1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
|
#!/usr/bin/env python3
"""
Analyze Full vs NoPersonal Baseline Comparison.
This script loads logs from pilot_runner_v4 runs (both full and nopersonal modes)
and produces comparison metrics for:
1. Session 2 retention (base task avg satisfaction)
2. Violation rates by type
3. Preference memory recall@k
Usage:
python scripts/analyze_full_vs_nopersonal.py \
--full data/logs/pilot_v4_full_TIMESTAMP.jsonl \
--nopersonal data/logs/pilot_v4_nopersonal_TIMESTAMP.jsonl
"""
import json
import argparse
import re
from dataclasses import dataclass
from typing import List, Dict, Any, Optional, Set
from collections import defaultdict
@dataclass
class TurnLog:
"""Parsed log entry."""
user_id: str
persona_id: str
session_id: int
turn_id: int
query: str
query_type: str
task_type: str
answer: str
answer_length: int
sat_t: float
sev_t: float
prog_t: float
violations: List[str]
enforced_constraints: List[str]
reward: float
gating: float
is_complaint: bool
reveal_state_before: Dict[str, bool]
reveal_state_after: Dict[str, bool]
newly_revealed: List[str]
z_long_norm_before: float
z_long_norm_after: float
z_short_norm_before: float
z_short_norm_after: float
prompt_tokens: int
completion_tokens: int
total_tokens: int
num_memories_retrieved: int
num_prefs_extracted: int
selected_memory_ids: List[str]
selected_memory_notes: List[str]
selected_memory_scores: List[float]
num_candidates: int
num_total_memories: int
mode: str
eval_mode: bool # True = greedy, False = sample
def load_logs(filepath: str) -> List[TurnLog]:
"""Load logs from JSONL file."""
logs = []
with open(filepath, "r") as f:
for line in f:
if line.strip():
data = json.loads(line)
# Handle missing fields with defaults
log = TurnLog(
user_id=data.get("user_id", ""),
persona_id=data.get("persona_id", ""),
session_id=data.get("session_id", 0),
turn_id=data.get("turn_id", 0),
query=data.get("query", ""),
query_type=data.get("query_type", ""),
task_type=data.get("task_type", ""),
answer=data.get("answer", ""),
answer_length=data.get("answer_length", 0),
sat_t=data.get("sat_t", 0.0),
sev_t=data.get("sev_t", 0.0),
prog_t=data.get("prog_t", 0.0),
violations=data.get("violations", []),
enforced_constraints=data.get("enforced_constraints", []),
reward=data.get("reward", 0.0),
gating=data.get("gating", 0.0),
is_complaint=data.get("is_complaint", False),
reveal_state_before=data.get("reveal_state_before", {}),
reveal_state_after=data.get("reveal_state_after", {}),
newly_revealed=data.get("newly_revealed", []),
z_long_norm_before=data.get("z_long_norm_before", 0.0),
z_long_norm_after=data.get("z_long_norm_after", 0.0),
z_short_norm_before=data.get("z_short_norm_before", 0.0),
z_short_norm_after=data.get("z_short_norm_after", 0.0),
prompt_tokens=data.get("prompt_tokens", 0),
completion_tokens=data.get("completion_tokens", 0),
total_tokens=data.get("total_tokens", 0),
num_memories_retrieved=data.get("num_memories_retrieved", 0),
num_prefs_extracted=data.get("num_prefs_extracted", 0),
selected_memory_ids=data.get("selected_memory_ids", []),
selected_memory_notes=data.get("selected_memory_notes", []),
selected_memory_scores=data.get("selected_memory_scores", []),
num_candidates=data.get("num_candidates", 0),
num_total_memories=data.get("num_total_memories", 0),
mode=data.get("mode", "unknown"),
eval_mode=data.get("eval_mode", True),
)
logs.append(log)
return logs
def is_base_task_turn(log: TurnLog) -> bool:
"""Check if this is a base task turn (not complaint, not preference)."""
if log.is_complaint:
return False
if log.query_type == "preference":
return False
if log.query_type in ("task", "task_list"):
return True
return False
def compute_session2_base_avg_sat(logs: List[TurnLog]) -> Dict[str, float]:
"""
Compute average satisfaction for Session 2 base tasks.
Returns: {user_id: avg_sat}
"""
user_sat = defaultdict(list)
for log in logs:
if log.session_id == 2 and is_base_task_turn(log):
user_sat[log.user_id].append(log.sat_t)
result = {}
for user_id, sats in user_sat.items():
if sats:
result[user_id] = sum(sats) / len(sats)
return result
def compute_overall_session2_avg_sat(logs: List[TurnLog]) -> float:
"""Compute overall average satisfaction for Session 2 base tasks."""
sats = []
for log in logs:
if log.session_id == 2 and is_base_task_turn(log):
sats.append(log.sat_t)
return sum(sats) / len(sats) if sats else 0.0
def compute_violation_rates(logs: List[TurnLog], session_filter: Optional[int] = None) -> Dict[str, float]:
"""
Compute violation rates by type.
Returns: {violation_type: rate}
"""
violation_counts = defaultdict(int)
total_base_tasks = 0
for log in logs:
if session_filter is not None and log.session_id != session_filter:
continue
if not is_base_task_turn(log):
continue
total_base_tasks += 1
for v in log.violations:
violation_counts[v] += 1
if total_base_tasks == 0:
return {}
return {v: count / total_base_tasks for v, count in violation_counts.items()}
def is_pref_memory(note_text: str, dim: str) -> bool:
"""
Check if a memory note relates to a preference dimension.
dim: "short", "bullets", or "lang"
"""
text_lower = note_text.lower()
if dim == "short":
keywords = [
"short", "concise", "brief", "200", "characters", "less",
"简短", "精简", "字以内", "不超过", "简洁"
]
return any(kw in text_lower for kw in keywords)
elif dim == "bullets":
keywords = [
"bullet", "bullets", "list", "point", "points",
"要点", "列表", "项目符号"
]
# Also check for "no bullet" / "don't use bullet"
no_bullet = any(x in text_lower for x in ["no bullet", "don't use bullet", "without bullet", "不要要点", "不使用列表"])
if no_bullet:
return True # It's still about bullets preference
return any(kw in text_lower for kw in keywords)
elif dim == "lang":
# Check for language preferences
zh_keywords = ["chinese", "中文", "用中文", "请用中文"]
en_keywords = ["english", "英文", "in english"]
return any(kw in text_lower for kw in zh_keywords + en_keywords)
return False
def compute_pref_recall_at_k(logs: List[TurnLog], dim: str, session_filter: Optional[int] = None) -> float:
"""
Compute preference memory recall@k for a given dimension.
Returns: fraction of base task turns where a relevant pref memory was retrieved.
"""
hits = 0
total = 0
for log in logs:
if session_filter is not None and log.session_id != session_filter:
continue
if not is_base_task_turn(log):
continue
total += 1
# Check if any selected memory note matches the dimension
for note in log.selected_memory_notes:
if is_pref_memory(note, dim):
hits += 1
break
return hits / total if total > 0 else 0.0
def print_comparison_table(full_logs: List[TurnLog], nopersonal_logs: List[TurnLog]):
"""Print a comparison table of Full vs NoPersonal metrics."""
# Detect mode from logs
full_mode = full_logs[0].mode if full_logs else "unknown"
full_eval = "greedy" if (full_logs and full_logs[0].eval_mode) else "sample"
np_mode = nopersonal_logs[0].mode if nopersonal_logs else "unknown"
np_eval = "greedy" if (nopersonal_logs and nopersonal_logs[0].eval_mode) else "sample"
print("\n" + "=" * 70)
print("FULL vs NOPERSONAL COMPARISON")
print(f"Full: mode={full_mode}, selection={full_eval}")
print(f"NoPersonal: mode={np_mode}, selection={np_eval}")
print("=" * 70)
# 1. Session 2 Base Task Average Satisfaction
print("\n### 1. Session 2 Base Task Average Satisfaction")
print("-" * 50)
full_s2_sat = compute_overall_session2_avg_sat(full_logs)
nopersonal_s2_sat = compute_overall_session2_avg_sat(nopersonal_logs)
delta = full_s2_sat - nopersonal_s2_sat
print(f"{'Metric':<30} {'Full':<12} {'NoPersonal':<12} {'Delta':<12}")
print("-" * 50)
print(f"{'avg_sat_S2_base':<30} {full_s2_sat:<12.4f} {nopersonal_s2_sat:<12.4f} {delta:<+12.4f}")
# Per-user breakdown
full_user_sat = compute_session2_base_avg_sat(full_logs)
nopersonal_user_sat = compute_session2_base_avg_sat(nopersonal_logs)
print("\nPer-user Session 2 avg_sat:")
print(f"{'User':<20} {'Full':<12} {'NoPersonal':<12} {'Delta':<12}")
print("-" * 50)
all_users = set(full_user_sat.keys()) | set(nopersonal_user_sat.keys())
for user_id in sorted(all_users):
f_sat = full_user_sat.get(user_id, 0.0)
n_sat = nopersonal_user_sat.get(user_id, 0.0)
d = f_sat - n_sat
print(f"{user_id:<20} {f_sat:<12.4f} {n_sat:<12.4f} {d:<+12.4f}")
# 2. Violation Rates
print("\n### 2. Session 2 Violation Rates")
print("-" * 50)
full_viol = compute_violation_rates(full_logs, session_filter=2)
nopersonal_viol = compute_violation_rates(nopersonal_logs, session_filter=2)
all_viols = set(full_viol.keys()) | set(nopersonal_viol.keys())
key_viols = ["too_long", "no_bullets", "has_bullets", "wrong_lang", "empty_answer"]
print(f"{'Violation Type':<20} {'Full':<12} {'NoPersonal':<12} {'Delta':<12}")
print("-" * 50)
for v in key_viols:
if v in all_viols:
f_rate = full_viol.get(v, 0.0)
n_rate = nopersonal_viol.get(v, 0.0)
d = f_rate - n_rate
print(f"{v:<20} {f_rate:<12.4f} {n_rate:<12.4f} {d:<+12.4f}")
# Other violations
other_viols = [v for v in all_viols if v not in key_viols]
for v in sorted(other_viols):
f_rate = full_viol.get(v, 0.0)
n_rate = nopersonal_viol.get(v, 0.0)
d = f_rate - n_rate
print(f"{v:<20} {f_rate:<12.4f} {n_rate:<12.4f} {d:<+12.4f}")
# 3. Preference Memory Recall@k
print("\n### 3. Session 2 Preference Memory Recall@k")
print("-" * 50)
dims = ["short", "bullets", "lang"]
print(f"{'Dimension':<20} {'Full':<12} {'NoPersonal':<12} {'Delta':<12}")
print("-" * 50)
for dim in dims:
f_recall = compute_pref_recall_at_k(full_logs, dim, session_filter=2)
n_recall = compute_pref_recall_at_k(nopersonal_logs, dim, session_filter=2)
d = f_recall - n_recall
print(f"{dim:<20} {f_recall:<12.4f} {n_recall:<12.4f} {d:<+12.4f}")
# 4. Summary Statistics
print("\n### 4. Summary Statistics")
print("-" * 50)
def count_base_tasks(logs, session=None):
return sum(1 for l in logs if (session is None or l.session_id == session) and is_base_task_turn(l))
def count_complaints(logs, session=None):
return sum(1 for l in logs if (session is None or l.session_id == session) and l.is_complaint)
print(f"{'Statistic':<30} {'Full':<12} {'NoPersonal':<12}")
print("-" * 50)
print(f"{'Total turns':<30} {len(full_logs):<12} {len(nopersonal_logs):<12}")
print(f"{'S2 base task turns':<30} {count_base_tasks(full_logs, 2):<12} {count_base_tasks(nopersonal_logs, 2):<12}")
print(f"{'S2 complaint turns':<30} {count_complaints(full_logs, 2):<12} {count_complaints(nopersonal_logs, 2):<12}")
# Token usage
full_tokens = sum(l.total_tokens for l in full_logs)
nopersonal_tokens = sum(l.total_tokens for l in nopersonal_logs)
print(f"{'Total tokens':<30} {full_tokens:<12} {nopersonal_tokens:<12}")
print("\n" + "=" * 70)
def main():
parser = argparse.ArgumentParser(description="Analyze Full vs NoPersonal Comparison")
parser.add_argument("--full", type=str, required=True, help="Path to Full mode log file")
parser.add_argument("--nopersonal", type=str, required=True, help="Path to NoPersonal mode log file")
args = parser.parse_args()
print(f"Loading Full logs from: {args.full}")
full_logs = load_logs(args.full)
print(f" Loaded {len(full_logs)} turns")
print(f"Loading NoPersonal logs from: {args.nopersonal}")
nopersonal_logs = load_logs(args.nopersonal)
print(f" Loaded {len(nopersonal_logs)} turns")
print_comparison_table(full_logs, nopersonal_logs)
if __name__ == "__main__":
main()
|