1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
|
#!/usr/bin/env python3
"""
Analyze Learning Trend: Correlation and z_u Norm over Sessions
This script shows that:
1. User vector norms (||z_u||) grow over sessions (learning is happening)
2. Correlation between learned and ground-truth similarity increases over sessions
Usage:
python scripts/analyze_learning_trend.py \
--logs data/logs/pilot_v4_full-greedy_*.jsonl
"""
import argparse
import json
import numpy as np
from typing import Dict, List, Tuple
from collections import defaultdict
from dataclasses import dataclass
import os
# =============================================================================
# Persona Definitions (ground truth)
# =============================================================================
@dataclass
class StylePrefs:
require_short: bool = False
max_chars: int = 300
require_bullets: bool = False
lang: str = "en"
PERSONAS = {
"user_A_short_bullets_en": StylePrefs(require_short=True, max_chars=200, require_bullets=True, lang="en"),
"user_B_short_no_bullets_en": StylePrefs(require_short=True, max_chars=200, require_bullets=False, lang="en"),
"user_C_long_bullets_en": StylePrefs(require_short=False, max_chars=800, require_bullets=True, lang="en"),
"user_D_short_bullets_zh": StylePrefs(require_short=True, max_chars=200, require_bullets=True, lang="zh"),
"user_E_long_no_bullets_zh": StylePrefs(require_short=False, max_chars=800, require_bullets=False, lang="zh"),
"user_F_extreme_short_en": StylePrefs(require_short=True, max_chars=100, require_bullets=True, lang="en"),
}
# =============================================================================
# Data Loading
# =============================================================================
def load_logs(filepath: str) -> List[dict]:
"""Load turn logs from JSONL file."""
logs = []
with open(filepath, "r") as f:
for line in f:
if line.strip():
logs.append(json.loads(line))
return logs
def extract_z_norms_by_session(logs: List[dict]) -> Dict[str, Dict[int, Tuple[float, float]]]:
"""
Extract z_long_norm and z_short_norm at the end of each session for each user.
Returns:
{user_id: {session_id: (z_long_norm, z_short_norm)}}
"""
user_session_norms = defaultdict(dict)
# Group by user and session, take the last turn's z_norm
user_session_turns = defaultdict(lambda: defaultdict(list))
for log in logs:
user_id = log["user_id"]
session_id = log["session_id"]
user_session_turns[user_id][session_id].append(log)
for user_id, sessions in user_session_turns.items():
for session_id, turns in sessions.items():
# Get the last turn of this session
last_turn = max(turns, key=lambda x: x["turn_id"])
z_long = last_turn.get("z_long_norm_after", 0.0)
z_short = last_turn.get("z_short_norm_after", 0.0)
user_session_norms[user_id][session_id] = (z_long, z_short)
return dict(user_session_norms)
# =============================================================================
# Similarity Computation
# =============================================================================
def cosine_similarity(v1: np.ndarray, v2: np.ndarray) -> float:
"""Compute cosine similarity."""
norm1 = np.linalg.norm(v1)
norm2 = np.linalg.norm(v2)
if norm1 < 1e-10 or norm2 < 1e-10:
return 0.0
return float(np.dot(v1, v2) / (norm1 * norm2))
def compute_ground_truth_similarity_matrix(user_order: List[str]) -> np.ndarray:
"""Compute ground truth similarity based on preference overlap."""
n = len(user_order)
sim_matrix = np.zeros((n, n))
for i, u1 in enumerate(user_order):
for j, u2 in enumerate(user_order):
if u1 not in PERSONAS or u2 not in PERSONAS:
sim_matrix[i, j] = 0.0 if i != j else 1.0
continue
p1 = PERSONAS[u1]
p2 = PERSONAS[u2]
matches = 0
if p1.require_short == p2.require_short:
matches += 1
if p1.require_bullets == p2.require_bullets:
matches += 1
if p1.lang == p2.lang:
matches += 1
sim_matrix[i, j] = matches / 3.0
return sim_matrix
def compute_spearman_correlation(learned: np.ndarray, ground_truth: np.ndarray) -> float:
"""Compute Spearman correlation between similarity matrices."""
from scipy.stats import spearmanr
n = learned.shape[0]
learned_flat = []
gt_flat = []
for i in range(n):
for j in range(i + 1, n):
learned_flat.append(learned[i, j])
gt_flat.append(ground_truth[i, j])
if len(learned_flat) < 2:
return 0.0
# Handle case where all values are the same
if np.std(learned_flat) < 1e-10:
return 0.0
corr, _ = spearmanr(learned_flat, gt_flat)
return float(corr) if not np.isnan(corr) else 0.0
def load_final_z_vectors(user_store_path: str) -> Dict[str, Tuple[np.ndarray, np.ndarray]]:
"""Load final z_u vectors from saved user store."""
try:
data = np.load(user_store_path, allow_pickle=True)
user_vectors = {}
# UserTensorStore saves in format: {uid}_long, {uid}_short
user_ids = set()
for key in data.files:
if key.endswith("_long"):
uid = key[:-5]
user_ids.add(uid)
for uid in user_ids:
long_key = f"{uid}_long"
short_key = f"{uid}_short"
if long_key in data.files and short_key in data.files:
user_vectors[uid] = (data[long_key], data[short_key])
return user_vectors
except Exception as e:
print(f"[Warning] Could not load user store: {e}")
return {}
# Global cache for final z vectors
_FINAL_Z_VECTORS = None
def get_z_vectors_at_session(
logs: List[dict],
user_order: List[str],
up_to_session: int,
final_z_vectors: Dict[str, Tuple[np.ndarray, np.ndarray]]
) -> Dict[str, np.ndarray]:
"""
Estimate z_u vectors at a given session checkpoint.
Method: Use the DIRECTION of the final z_u, scaled by the z_norm at session s.
This assumes z_u direction is relatively stable but magnitude grows.
z_u(s) ≈ (z_final / ||z_final||) * ||z(s)||
"""
user_vectors = {}
for user_id in user_order:
# Get z_norm at the end of this session
user_turns = [l for l in logs if l["user_id"] == user_id and l["session_id"] <= up_to_session]
if not user_turns:
user_vectors[user_id] = np.zeros(512) # 256 + 256
continue
# Get the last turn's z_norm at this session
last_turn = max(user_turns, key=lambda x: (x["session_id"], x["turn_id"]))
z_long_norm_s = last_turn.get("z_long_norm_after", 0.0)
z_short_norm_s = last_turn.get("z_short_norm_after", 0.0)
# Get final z vectors (direction)
if user_id in final_z_vectors:
z_long_final, z_short_final = final_z_vectors[user_id]
# Compute unit vectors (direction)
z_long_final_norm = np.linalg.norm(z_long_final)
z_short_final_norm = np.linalg.norm(z_short_final)
if z_long_final_norm > 1e-10:
z_long_unit = z_long_final / z_long_final_norm
else:
z_long_unit = np.zeros_like(z_long_final)
if z_short_final_norm > 1e-10:
z_short_unit = z_short_final / z_short_final_norm
else:
z_short_unit = np.zeros_like(z_short_final)
# Scale by the norm at this session
z_long_s = z_long_unit * z_long_norm_s
z_short_s = z_short_unit * z_short_norm_s
# Concatenate
user_vectors[user_id] = np.concatenate([z_long_s, z_short_s])
else:
user_vectors[user_id] = np.zeros(512)
return user_vectors
def compute_similarity_at_session(
logs: List[dict],
user_order: List[str],
up_to_session: int,
final_z_vectors: Dict[str, Tuple[np.ndarray, np.ndarray]] = None
) -> np.ndarray:
"""Compute learned similarity matrix at a given session using actual z vectors."""
if final_z_vectors:
user_vectors = get_z_vectors_at_session(logs, user_order, up_to_session, final_z_vectors)
else:
# Fallback to old method
user_vectors = simulate_z_vectors_at_session_fallback(logs, user_order, up_to_session)
n = len(user_order)
sim_matrix = np.zeros((n, n))
for i, u1 in enumerate(user_order):
for j, u2 in enumerate(user_order):
v1 = user_vectors.get(u1, np.zeros(512))
v2 = user_vectors.get(u2, np.zeros(512))
sim_matrix[i, j] = cosine_similarity(v1, v2)
return sim_matrix
def simulate_z_vectors_at_session_fallback(
logs: List[dict],
user_order: List[str],
up_to_session: int,
dim: int = 256
) -> Dict[str, np.ndarray]:
"""Fallback: simulate z_u based on violation patterns (less accurate)."""
user_vectors = {}
for user_id in user_order:
user_turns = [l for l in logs if l["user_id"] == user_id and l["session_id"] <= up_to_session]
if not user_turns:
user_vectors[user_id] = np.zeros(dim * 2)
continue
last_turn = max(user_turns, key=lambda x: (x["session_id"], x["turn_id"]))
z_long_norm = last_turn.get("z_long_norm_after", 0.0)
z_short_norm = last_turn.get("z_short_norm_after", 0.0)
violation_counts = defaultdict(int)
for turn in user_turns:
for v in turn.get("violations", []):
violation_counts[v] += 1
feature_dim = 10
features = np.zeros(feature_dim)
features[0] = violation_counts.get("too_long", 0)
features[1] = violation_counts.get("no_bullets", 0)
features[2] = violation_counts.get("has_bullets", 0)
features[3] = violation_counts.get("wrong_lang", 0)
features[4] = z_long_norm * 100
features[5] = z_short_norm * 100
norm = np.linalg.norm(features)
if norm > 1e-10:
features = features / norm
user_vectors[user_id] = features
return user_vectors
def compute_similarity_at_session(
logs: List[dict],
user_order: List[str],
up_to_session: int
) -> np.ndarray:
"""Compute learned similarity matrix at a given session."""
user_vectors = simulate_z_vectors_at_session(logs, user_order, up_to_session)
n = len(user_order)
sim_matrix = np.zeros((n, n))
for i, u1 in enumerate(user_order):
for j, u2 in enumerate(user_order):
v1 = user_vectors.get(u1, np.zeros(10))
v2 = user_vectors.get(u2, np.zeros(10))
sim_matrix[i, j] = cosine_similarity(v1, v2)
return sim_matrix
# =============================================================================
# Main Analysis
# =============================================================================
def analyze_learning_trend(logs_path: str, output_dir: str = "data/analysis",
user_store_path: str = "data/users/user_store_pilot_v4_full-greedy.npz"):
"""Analyze correlation and z_u norm trends over sessions."""
os.makedirs(output_dir, exist_ok=True)
print("=" * 70)
print("LEARNING TREND ANALYSIS")
print("=" * 70)
# Load logs
print(f"\n[1] Loading logs from: {logs_path}")
logs = load_logs(logs_path)
print(f" Loaded {len(logs)} turns")
# Get user order
user_order = [u for u in PERSONAS.keys() if any(l["user_id"] == u for l in logs)]
print(f" Users: {user_order}")
# Get max session
max_session = max(l["session_id"] for l in logs)
print(f" Sessions: 1 to {max_session}")
# Extract z_norms by session
print("\n[2] Extracting z_u norms by session...")
z_norms_by_session = extract_z_norms_by_session(logs)
# Load final z vectors from user store
print(f"\n[2.5] Loading final z vectors from: {user_store_path}")
final_z_vectors = load_final_z_vectors(user_store_path)
if final_z_vectors:
print(f" Loaded final z vectors for {len(final_z_vectors)} users")
else:
print(" [Warning] No final z vectors found, using fallback method")
# Compute ground truth similarity (constant)
gt_sim = compute_ground_truth_similarity_matrix(user_order)
# Compute CUMULATIVE correlation and avg z_norm
# At session N, we use all data from session 1 to N
print("\n[3] Computing CUMULATIVE correlation trend (S1→S1-2→S1-3→...→S1-N)...")
sessions = list(range(1, max_session + 1))
correlations = []
avg_z_norms = []
for s in sessions:
# Compute similarity using z_u at end of session s (cumulative learning)
learned_sim = compute_similarity_at_session(logs, user_order, s, final_z_vectors)
corr = compute_spearman_correlation(learned_sim, gt_sim)
correlations.append(corr)
# Compute average z_norm at the END of session s (this is already cumulative)
z_norms = []
for user_id in user_order:
if user_id in z_norms_by_session and s in z_norms_by_session[user_id]:
zl, zs = z_norms_by_session[user_id][s]
z_norms.append(np.sqrt(zl**2 + zs**2)) # Combined norm
avg_z = np.mean(z_norms) if z_norms else 0.0
avg_z_norms.append(avg_z)
# Print results
print("\n[4] Results:")
print("-" * 60)
print(f"{'Session':<10} {'Correlation':<15} {'Avg ||z_u||':<15}")
print("-" * 60)
for s, corr, z_norm in zip(sessions, correlations, avg_z_norms):
print(f"{s:<10} {corr:<15.4f} {z_norm:<15.6f}")
# Summary statistics
print("\n[5] Trend Summary:")
print("-" * 60)
# Linear regression for correlation trend
from scipy.stats import linregress
slope_corr, intercept_corr, r_corr, p_corr, _ = linregress(sessions, correlations)
print(f" Correlation trend: slope={slope_corr:.4f}, R²={r_corr**2:.4f}, p={p_corr:.4f}")
# Linear regression for z_norm trend
slope_z, intercept_z, r_z, p_z, _ = linregress(sessions, avg_z_norms)
print(f" ||z_u|| trend: slope={slope_z:.6f}, R²={r_z**2:.4f}, p={p_z:.4f}")
# Correlation between the two trends
trend_corr, _ = spearmanr(correlations, avg_z_norms) if len(correlations) > 2 else (0, 1)
print(f" Correlation between trends: {trend_corr:.4f}")
# Save data
results = {
"sessions": np.array(sessions),
"correlations": np.array(correlations),
"avg_z_norms": np.array(avg_z_norms),
"slope_corr": slope_corr,
"slope_z": slope_z,
"trend_corr": trend_corr,
}
results_path = os.path.join(output_dir, "learning_trend_results.npz")
np.savez(results_path, **results)
print(f"\n[Results] Saved to: {results_path}")
# Plot
print("\n[6] Generating plots...")
plot_learning_trend(sessions, correlations, avg_z_norms, output_dir)
print("\n" + "=" * 70)
print("ANALYSIS COMPLETE")
print("=" * 70)
return results
def plot_learning_trend(sessions, correlations, avg_z_norms, output_dir):
"""Generate plots for learning trend."""
try:
import matplotlib.pyplot as plt
import matplotlib
matplotlib.use('Agg') # Non-interactive backend
except ImportError:
print("[Warning] matplotlib not available, skipping plots")
# Save as text instead
with open(os.path.join(output_dir, "learning_trend.txt"), "w") as f:
f.write("Session,Correlation,Avg_Z_Norm\n")
for s, c, z in zip(sessions, correlations, avg_z_norms):
f.write(f"{s},{c:.4f},{z:.6f}\n")
print(f"[Data] Saved to: {os.path.join(output_dir, 'learning_trend.txt')}")
return
fig, axes = plt.subplots(1, 2, figsize=(12, 5))
# Plot 1: Correlation vs Session
ax1 = axes[0]
ax1.plot(sessions, correlations, 'o-', color='#2ecc71', linewidth=2, markersize=8)
ax1.axhline(y=0, color='gray', linestyle='--', alpha=0.5)
# Add trend line
from scipy.stats import linregress
slope, intercept, _, _, _ = linregress(sessions, correlations)
trend_line = [slope * s + intercept for s in sessions]
ax1.plot(sessions, trend_line, '--', color='#27ae60', alpha=0.7, label=f'Trend (slope={slope:.3f})')
ax1.set_xlabel('Sessions (Cumulative: 1→N)', fontsize=12)
ax1.set_ylabel('Spearman Correlation', fontsize=12)
ax1.set_title('Learned vs Ground-Truth Similarity\nCorrelation with Cumulative Data', fontsize=14)
ax1.set_xticks(sessions)
ax1.legend()
ax1.grid(True, alpha=0.3)
ax1.set_ylim(-0.5, 1.0)
# Plot 2: z_u norm vs Session
ax2 = axes[1]
ax2.plot(sessions, avg_z_norms, 's-', color='#3498db', linewidth=2, markersize=8)
# Add trend line
slope_z, intercept_z, _, _, _ = linregress(sessions, avg_z_norms)
trend_line_z = [slope_z * s + intercept_z for s in sessions]
ax2.plot(sessions, trend_line_z, '--', color='#2980b9', alpha=0.7, label=f'Trend (slope={slope_z:.5f})')
ax2.set_xlabel('Session (End of)', fontsize=12)
ax2.set_ylabel('Average ||z_u||', fontsize=12)
ax2.set_title('User Vector Norm\n(Cumulative Learning)', fontsize=14)
ax2.set_xticks(sessions)
ax2.legend()
ax2.grid(True, alpha=0.3)
plt.tight_layout()
output_path = os.path.join(output_dir, "learning_trend.png")
plt.savefig(output_path, dpi=150, bbox_inches='tight')
print(f"[Plot] Saved to: {output_path}")
# Also save as PDF for paper
pdf_path = os.path.join(output_dir, "learning_trend.pdf")
plt.savefig(pdf_path, bbox_inches='tight')
print(f"[Plot] Saved to: {pdf_path}")
# Need this import at top level for trend calculation
from scipy.stats import spearmanr
def main():
parser = argparse.ArgumentParser(description="Analyze Learning Trend")
parser.add_argument("--logs", type=str, required=True, help="Path to log file")
parser.add_argument("--user-store", type=str, default="data/users/user_store_pilot_v4_full-greedy.npz",
help="Path to user store with final z vectors")
parser.add_argument("--output-dir", type=str, default="data/analysis", help="Output directory")
args = parser.parse_args()
analyze_learning_trend(args.logs, args.output_dir, args.user_store)
if __name__ == "__main__":
main()
|