1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
|
#!/usr/bin/env python3
"""
Script to migrate raw queries into MemoryCards by extracting preferences.
It reads from data/raw_datasets/pilot_study_1000.jsonl and outputs:
- data/corpora/memory_cards.jsonl
- data/corpora/memory_embeddings.npy
"""
import json
import os
import sys
# Add src to sys.path so we can import personalization
sys.path.append(os.path.join(os.path.dirname(__file__), "../src"))
import uuid
import numpy as np
import torch
from pathlib import Path
from tqdm import tqdm
from typing import List
from personalization.config.settings import load_local_models_config
# from personalization.models.preference_extractor.rule_extractor import QwenRuleExtractor
from personalization.models.preference_extractor.gpt4o_extractor import GPT4OExtractor
from personalization.models.embedding.qwen3_8b import Qwen3Embedding8B
from personalization.retrieval.preference_store.schemas import ChatTurn, MemoryCard, PreferenceList
def ensure_dir(path: str):
Path(path).parent.mkdir(parents=True, exist_ok=True)
def main():
# 1. Setup paths
input_path = "data/corpora/oasst1_labeled.jsonl"
# input_path = "data/raw_datasets/oasst1_queries.jsonl"
output_cards_path = "data/corpora/memory_cards.jsonl"
output_emb_path = "data/corpora/memory_embeddings.npy"
ensure_dir(output_cards_path)
print("Loading models configuration...")
cfg = load_local_models_config()
# 2. Initialize models
# print("Initializing Preference Extractor (GPT-4o)...")
# extractor = GPT4OExtractor.from_config(cfg)
print("Initializing Embedding Model...")
embedder = Qwen3Embedding8B.from_config(cfg)
# 3. Process data
print(f"Reading from {input_path}...")
memory_cards: List[MemoryCard] = []
# We will process in small batches to manage memory if needed,
# but for 1000 items, we can iterate one by one for extraction
# and maybe batch for embedding if we want optimization.
# Given the complexity, let's just do sequential for simplicity and safety.
with open(input_path, "r", encoding="utf-8") as f:
lines = f.readlines()
# Synthetic user distribution (round robin for 10 users)
users = [f"user_{i}" for i in range(10)]
print("Extracting preferences...")
# Use tqdm for progress
for idx, line in enumerate(tqdm(lines)):
# if idx >= 100: # LIMIT to 100 items
# break
row = json.loads(line)
query = row.get("original_query", "").strip()
if not query:
continue
# Use real metadata from dataset
user_id = row.get("user_id", f"user_{idx}")
session_id = row.get("session_id", f"sess_{idx}")
turn_id = row.get("turn_id", 0)
# Load pre-extracted preferences
has_pref = row.get("has_preference", False)
extracted_data = row.get("extracted_json", {})
# Skip if no preference (according to label)
if not has_pref:
continue
try:
pref_list = PreferenceList.model_validate(extracted_data)
except Exception:
# Fallback or skip if validation fails
continue
# If we have preferences, create a memory card
if pref_list.preferences:
# Construct a note text: "condition: action"
notes = [f"{p.condition}: {p.action}" for p in pref_list.preferences]
note_summary = "; ".join(notes)
# Create MemoryCard (embedding will be filled later)
card = MemoryCard(
card_id=str(uuid.uuid4()),
user_id=user_id,
source_session_id=session_id,
source_turn_ids=[turn_id],
raw_queries=[query],
preference_list=pref_list,
note_text=note_summary,
embedding_e=[], # To be filled
kind="pref"
)
memory_cards.append(card)
print(f"Found {len(memory_cards)} memory cards. Generating embeddings...")
if not memory_cards:
print("No preferences found. Exiting.")
return
# 4. Generate Embeddings
# We'll embed the `raw_queries` (joined) or `note_text`?
# The design doc says: "Qwen3Embedding8B.encode([turn.text])"
# So we embed the original query that generated the memory.
texts_to_embed = [card.raw_queries[0] for card in memory_cards]
print(f"Embedding {len(texts_to_embed)} memories...")
embeddings_list = []
chunk_size = 2000 # Process in chunks to avoid OOM
for i in range(0, len(texts_to_embed), chunk_size):
print(f" Embedding chunk {i} to {min(i+chunk_size, len(texts_to_embed))}...")
chunk = texts_to_embed[i : i + chunk_size]
# Batch encode with larger batch_size for A40
chunk_emb = embedder.encode(
chunk,
batch_size=128,
normalize=True,
return_tensor=False
)
embeddings_list.extend(chunk_emb)
# Assign back to cards and prepare matrix
emb_matrix = []
for card, emb in zip(memory_cards, embeddings_list):
card.embedding_e = emb
emb_matrix.append(emb)
# 5. Save
print(f"Saving {len(memory_cards)} cards to {output_cards_path}...")
with open(output_cards_path, "w", encoding="utf-8") as f:
for card in memory_cards:
f.write(card.model_dump_json() + "\n")
print(f"Saving embeddings matrix to {output_emb_path}...")
np_emb = np.array(emb_matrix, dtype=np.float32)
np.save(output_emb_path, np_emb)
print("Done!")
if __name__ == "__main__":
main()
|