summaryrefslogtreecommitdiff
path: root/scripts/pilot_runner_v1.py
blob: fbb2876508c936f487d2299226729d1b63884a60 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
#!/usr/bin/env python3
"""
Pilot Runner v1 - Style-Aware Judge + Gating Logic

Upgrade from v0:
- StylePrefs: User style preferences (length, bullets, language)
- style_judge: Checks style conformance, not just non-empty
- compute_feedback_for_turn: gating=1 only for preference-related turns
- Extended queries: ~10 turns with preference/task mix

Goal: Verify that:
1. sat_t varies based on style violations (not always 1)
2. gating=1 only on preference turns, 0 on regular tasks
3. RL updates happen when gating=1 and reward != baseline
4. Over turns, model may adapt to preferences (sat_t improves)
"""

import sys
import os
import json
from datetime import datetime
from dataclasses import dataclass, asdict, field
from typing import List, Dict, Any, Optional, Tuple

# Add src to path
sys.path.insert(0, os.path.join(os.path.dirname(__file__), "../src"))

from personalization.serving import PersonalizedLLM, Feedback, AssistantResponse


# =============================================================================
# Style Preferences
# =============================================================================

@dataclass
class StylePrefs:
    """User's style preferences for the judge to check."""
    require_short: bool = False
    max_chars: int = 300
    require_bullets: bool = False
    lang: str = "en"  # "en" or "zh"


# =============================================================================
# Style-Aware Judge
# =============================================================================

@dataclass
class JudgeResult:
    """Output from the judge for one turn."""
    sat_t: float        # Satisfaction score [0, 1]
    sev_t: float        # Severity of violations [0, 1]
    prog_t: float       # Task progress [0, 1]
    violations: List[str]  # List of violated constraints


def style_judge(
    query: str,
    answer: str,
    task_type: str,
    prefs: StylePrefs,
) -> JudgeResult:
    """
    Style-aware judge that checks:
    - Empty/too short answer
    - Length constraint (max_chars)
    - Bullet point requirement
    - Language preference
    - Code block for code tasks
    
    Returns:
        JudgeResult with sat_t, sev_t, prog_t, and violations list.
    """
    violations: List[str] = []
    text = (answer or "").strip()

    # 0) Empty answer - immediate fail
    if not text or len(text) < 5:
        violations.append("empty_answer")
        return JudgeResult(
            sat_t=0.0,
            sev_t=1.0,
            prog_t=0.0,
            violations=violations,
        )

    # 1) Length preference
    if prefs.require_short:
        if len(text) > prefs.max_chars:
            violations.append("too_long")

    # 2) Bullet preference (only for general/list tasks, not pure preference statements)
    if prefs.require_bullets and task_type in ("general", "list"):
        has_bullets = ("- " in text) or ("• " in text) or ("* " in text) or ("\n- " in text)
        if not has_bullets:
            violations.append("no_bullets")

    # 3) Language preference (rough heuristic)
    if prefs.lang == "zh":
        # For Chinese preference, check if answer has enough non-ASCII chars
        ascii_count = sum(c.isascii() for c in text)
        ascii_ratio = ascii_count / max(1, len(text))
        if ascii_ratio > 0.7:  # Too much ASCII = probably not Chinese
            violations.append("wrong_lang")
    elif prefs.lang == "en":
        # For English preference, check if answer is mostly ASCII
        ascii_count = sum(c.isascii() for c in text)
        ascii_ratio = ascii_count / max(1, len(text))
        if ascii_ratio < 0.5:  # Too little ASCII = probably not English
            violations.append("wrong_lang")

    # 4) Code task: must have code markers
    prog_t = 1.0
    if task_type == "code":
        has_code = ("```" in text) or ("def " in text) or ("function " in text)
        if not has_code:
            violations.append("no_code_block")
            prog_t = 0.0

    # 5) Compute sat_t and sev_t from violations
    if not violations:
        sat_t = 1.0
        sev_t = 0.0
    else:
        # Each violation costs 0.3, minimum 0
        sat_t = max(0.0, 1.0 - 0.3 * float(len(violations)))
        # Hard violations trigger sev_t=1
        hard_violations = {"empty_answer", "too_long", "wrong_lang"}
        sev_t = 1.0 if any(v in hard_violations for v in violations) else 0.0

    return JudgeResult(
        sat_t=sat_t,
        sev_t=sev_t,
        prog_t=prog_t,
        violations=violations,
    )


# =============================================================================
# Feedback Computation (reward + gating)
# =============================================================================

def compute_feedback_for_turn(
    turn_id: int,
    query: str,
    query_type: str,
    task_type: str,
    judge_result: JudgeResult,
) -> Tuple[float, float]:
    """
    Convert JudgeResult into (reward, gating):
    - reward = sat_t (style satisfaction)
    - gating = 1 only if this turn is preference-related (declared or complained)
    
    Args:
        turn_id: The turn index
        query: The user's query text
        query_type: "preference" or "task" from query metadata
        task_type: "general", "list", "code", etc.
        judge_result: The judge's evaluation
    
    Returns:
        (reward, gating) tuple
    """
    reward = judge_result.sat_t

    # Gating logic: only allow RL update on preference-related turns
    # 1. Explicit preference declaration (query_type == "preference")
    # 2. Complaint about not following preference
    lower_q = (query or "").lower()
    
    is_pref_turn = (
        query_type == "preference"
        or "i prefer" in lower_q
        or "my preference" in lower_q
        or "please use" in lower_q
        or "please keep" in lower_q
        or "you didn't follow" in lower_q
        or "you forgot" in lower_q
        or "remember that i" in lower_q
        or "i told you" in lower_q
        or "i asked for" in lower_q
    )

    if is_pref_turn:
        gating = 1.0
    else:
        gating = 0.0

    return reward, gating


# =============================================================================
# Extended Queries for Pilot v1 (~10 turns)
# =============================================================================

def get_pilot_v1_queries() -> List[Dict[str, Any]]:
    """
    Extended query set for pilot v1.
    Mix of preference declarations and tasks.
    Tests: length constraint, bullet points, task completion.
    """
    return [
        # Turn 0: Declare length preference
        {
            "query": "I prefer short, concise answers. Please keep responses under 200 characters.",
            "type": "preference",
            "task_type": "general",
        },
        # Turn 1: Task that should be short
        {
            "query": "What are three tips for better sleep?",
            "type": "task",
            "task_type": "list",
        },
        # Turn 2: Declare bullet preference
        {
            "query": "I also prefer bullet points when listing things. Please use bullet points.",
            "type": "preference",
            "task_type": "general",
        },
        # Turn 3: Task that should use bullets
        {
            "query": "What are the main benefits of regular exercise?",
            "type": "task",
            "task_type": "list",
        },
        # Turn 4: Another task (test if preferences stick)
        {
            "query": "Name five popular programming languages.",
            "type": "task",
            "task_type": "list",
        },
        # Turn 5: Complaint if needed (always include to test gating)
        {
            "query": "Remember that I asked for short answers with bullet points. Can you list three healthy breakfast ideas?",
            "type": "preference",
            "task_type": "list",
        },
        # Turn 6: Regular task
        {
            "query": "What is the capital of France?",
            "type": "task",
            "task_type": "general",
        },
        # Turn 7: Task requiring list
        {
            "query": "What are four seasons of the year?",
            "type": "task",
            "task_type": "list",
        },
        # Turn 8: Another preference reminder
        {
            "query": "I prefer concise bullet points. Please list three types of renewable energy.",
            "type": "preference",
            "task_type": "list",
        },
        # Turn 9: Final task - test memory
        {
            "query": "Summarize what you know about my communication preferences.",
            "type": "task",
            "task_type": "general",
        },
    ]


# =============================================================================
# Logging
# =============================================================================

@dataclass
class TurnLog:
    """Log entry for one turn."""
    turn_id: int
    query: str
    query_type: str
    task_type: str
    answer: str
    answer_length: int
    sat_t: float
    sev_t: float
    prog_t: float
    violations: List[str]
    reward: float
    gating: float
    z_long_norm_before: float
    z_long_norm_after: float
    z_short_norm_before: float
    z_short_norm_after: float
    prompt_tokens: int
    completion_tokens: int
    total_tokens: int
    num_memories_retrieved: int
    num_prefs_extracted: int


def log_to_jsonl(logs: List[TurnLog], filepath: str):
    """Save logs to JSONL file."""
    os.makedirs(os.path.dirname(filepath), exist_ok=True)
    with open(filepath, "w") as f:
        for log in logs:
            f.write(json.dumps(asdict(log)) + "\n")


# =============================================================================
# Pilot Runner v1
# =============================================================================

def run_pilot_v1(
    llm: PersonalizedLLM,
    user_id: str = "pilot_user_v1",
    prefs: Optional[StylePrefs] = None,
    queries: Optional[List[Dict[str, Any]]] = None,
) -> List[TurnLog]:
    """
    Run pilot v1 with style-aware judge and gating.
    
    Args:
        llm: PersonalizedLLM instance
        user_id: User identifier
        prefs: Style preferences for this user
        queries: Query list (defaults to get_pilot_v1_queries)
    
    Returns:
        List of TurnLog entries
    """
    if prefs is None:
        # Default preferences: short + bullets + English
        prefs = StylePrefs(
            require_short=True,
            max_chars=200,
            require_bullets=True,
            lang="en",
        )
    
    if queries is None:
        queries = get_pilot_v1_queries()
    
    logs: List[TurnLog] = []
    
    print(f"\n{'='*60}")
    print(f"PILOT v1 SESSION: user_id={user_id}, turns={len(queries)}")
    print(f"Preferences: short={prefs.require_short}, max_chars={prefs.max_chars}, bullets={prefs.require_bullets}, lang={prefs.lang}")
    print(f"{'='*60}")
    
    # Reset user for clean start
    print(f"\n[Pilot] Resetting user: {user_id}")
    llm.reset_user(user_id)
    
    # Start session
    print(f"[Pilot] Starting session")
    llm.reset_session(user_id)
    
    # Get initial state
    state_before = llm.get_user_state_summary(user_id)
    print(f"[Pilot] Initial state: z_long={state_before['z_long_norm']:.6f}, z_short={state_before['z_short_norm']:.6f}")
    
    for turn_id, q_info in enumerate(queries):
        query = q_info["query"]
        query_type = q_info.get("type", "task")
        task_type = q_info.get("task_type", "general")
        
        print(f"\n{'─'*60}")
        print(f"Turn {turn_id} [{query_type}]")
        print(f"{'─'*60}")
        print(f"[Query] {query}")
        
        # Get state before
        state_before = llm.get_user_state_summary(user_id)
        z_long_before = state_before["z_long_norm"]
        z_short_before = state_before["z_short_norm"]
        
        # Apply feedback for previous turn (from turn 1 onwards)
        if turn_id > 0 and len(logs) > 0:
            prev_log = logs[-1]
            prev_query = queries[turn_id - 1]
            
            # Re-judge the previous answer with current context
            # (In practice we already have the result, but this shows the flow)
            feedback = Feedback(
                user_id=user_id,
                turn_id=turn_id - 1,
                reward=prev_log.reward,
                gating=prev_log.gating,
                meta={
                    "sat_t": prev_log.sat_t,
                    "sev_t": prev_log.sev_t,
                    "prog_t": prev_log.prog_t,
                    "violations": prev_log.violations,
                    "task_type": prev_log.task_type,
                    "source": "pilot_v1",
                }
            )
            print(f"[Feedback] turn={turn_id-1}, reward={feedback.reward:.2f}, gating={feedback.gating:.1f}")
            llm.apply_feedback(feedback)
        
        # Chat
        resp: AssistantResponse = llm.chat(user_id, query)
        
        # Truncate answer for display
        answer_display = resp.answer[:150] + "..." if len(resp.answer) > 150 else resp.answer
        print(f"[Answer] ({len(resp.answer)} chars) {answer_display}")
        print(f"[Usage] prompt={resp.usage.prompt_tokens}, completion={resp.usage.completion_tokens}")
        
        # Judge with style preferences
        judge_result = style_judge(query, resp.answer, task_type, prefs)
        print(f"[Judge] sat={judge_result.sat_t:.2f}, sev={judge_result.sev_t:.1f}, prog={judge_result.prog_t:.1f}")
        if judge_result.violations:
            print(f"[Judge] violations={judge_result.violations}")
        
        # Compute feedback for THIS turn (will be applied next turn)
        reward, gating = compute_feedback_for_turn(
            turn_id=turn_id,
            query=query,
            query_type=query_type,
            task_type=task_type,
            judge_result=judge_result,
        )
        print(f"[Feedback] reward={reward:.2f}, gating={gating:.1f} (computed for this turn)")
        
        # Get state after
        state_after = llm.get_user_state_summary(user_id)
        z_long_after = state_after["z_long_norm"]
        z_short_after = state_after["z_short_norm"]
        
        # Debug info
        num_memories = len(resp.debug.selected_memory_ids) if resp.debug else 0
        num_prefs = len(resp.debug.extracted_preferences) if resp.debug else 0
        
        z_long_delta = z_long_after - z_long_before
        z_short_delta = z_short_after - z_short_before
        print(f"[State] z_long: {z_long_before:.6f} → {z_long_after:.6f} (Δ={z_long_delta:+.6f})")
        print(f"[State] z_short: {z_short_before:.6f} → {z_short_after:.6f} (Δ={z_short_delta:+.6f})")
        print(f"[Debug] memories={num_memories}, prefs_extracted={num_prefs}")
        
        # Log
        log = TurnLog(
            turn_id=turn_id,
            query=query,
            query_type=query_type,
            task_type=task_type,
            answer=resp.answer,
            answer_length=len(resp.answer),
            sat_t=judge_result.sat_t,
            sev_t=judge_result.sev_t,
            prog_t=judge_result.prog_t,
            violations=judge_result.violations,
            reward=reward,
            gating=gating,
            z_long_norm_before=z_long_before,
            z_long_norm_after=z_long_after,
            z_short_norm_before=z_short_before,
            z_short_norm_after=z_short_after,
            prompt_tokens=resp.usage.prompt_tokens,
            completion_tokens=resp.usage.completion_tokens,
            total_tokens=resp.usage.total_tokens,
            num_memories_retrieved=num_memories,
            num_prefs_extracted=num_prefs,
        )
        logs.append(log)
    
    # Apply final feedback for last turn
    if len(logs) > 0:
        last_log = logs[-1]
        feedback = Feedback(
            user_id=user_id,
            turn_id=len(queries) - 1,
            reward=last_log.reward,
            gating=last_log.gating,
            meta={"source": "pilot_v1", "final": True}
        )
        print(f"\n[Final Feedback] turn={len(queries)-1}, reward={feedback.reward:.2f}, gating={feedback.gating:.1f}")
        llm.apply_feedback(feedback)
    
    return logs


def print_summary_v1(logs: List[TurnLog], prefs: StylePrefs):
    """Print summary statistics for pilot v1."""
    print(f"\n{'='*60}")
    print("PILOT v1 SUMMARY")
    print(f"{'='*60}")
    
    total_turns = len(logs)
    if total_turns == 0:
        print("No turns to summarize.")
        return
    
    # Basic stats
    avg_sat = sum(l.sat_t for l in logs) / total_turns
    avg_prog = sum(l.prog_t for l in logs) / total_turns
    total_tokens = sum(l.total_tokens for l in logs)
    total_prompt = sum(l.prompt_tokens for l in logs)
    total_completion = sum(l.completion_tokens for l in logs)
    
    # Gating stats
    gated_turns = [l for l in logs if l.gating > 0]
    non_gated_turns = [l for l in logs if l.gating == 0]
    
    print(f"\n--- Turn Statistics ---")
    print(f"Total turns: {total_turns}")
    print(f"Gated turns (RL active): {len(gated_turns)}")
    print(f"Non-gated turns (RL skipped): {len(non_gated_turns)}")
    
    print(f"\n--- Satisfaction ---")
    print(f"Average sat_t (all): {avg_sat:.3f}")
    if gated_turns:
        avg_sat_gated = sum(l.sat_t for l in gated_turns) / len(gated_turns)
        print(f"Average sat_t (gated only): {avg_sat_gated:.3f}")
    print(f"Average prog_t: {avg_prog:.3f}")
    
    print(f"\n--- Token Usage ---")
    print(f"Total tokens: {total_tokens}")
    print(f"  Prompt: {total_prompt}")
    print(f"  Completion: {total_completion}")
    print(f"Avg tokens/turn: {total_tokens / total_turns:.1f}")
    
    # Violations breakdown
    print(f"\n--- Violations ---")
    from collections import Counter
    all_violations = [v for l in logs for v in l.violations]
    if all_violations:
        print(f"Total violations: {len(all_violations)}")
        for v, count in Counter(all_violations).most_common():
            print(f"  {v}: {count}")
    else:
        print("No violations")
    
    # Answer length analysis
    print(f"\n--- Answer Lengths (max_chars={prefs.max_chars}) ---")
    lengths = [l.answer_length for l in logs]
    over_limit = sum(1 for l in lengths if l > prefs.max_chars)
    print(f"Min: {min(lengths)}, Max: {max(lengths)}, Avg: {sum(lengths)/len(lengths):.1f}")
    print(f"Over limit: {over_limit}/{total_turns}")
    
    # RL Health Check
    print(f"\n--- RL Health Check ---")
    z_long_changes = [abs(l.z_long_norm_after - l.z_long_norm_before) for l in logs]
    z_short_changes = [abs(l.z_short_norm_after - l.z_short_norm_before) for l in logs]
    any_z_long_change = any(c > 1e-6 for c in z_long_changes)
    any_z_short_change = any(c > 1e-6 for c in z_short_changes)
    
    print(f"z_long changed: {any_z_long_change} (max Δ: {max(z_long_changes):.6f})")
    print(f"z_short changed: {any_z_short_change} (max Δ: {max(z_short_changes):.6f})")
    
    if any_z_long_change or any_z_short_change:
        print("✓ User vectors ARE being updated by RL")
    else:
        print("✗ WARNING: User vectors NOT changing")
        print("  Check: gating=1 on some turns? reward != baseline?")
    
    # Per-turn detail table
    print(f"\n--- Turn-by-Turn Summary ---")
    print(f"{'Turn':>4} {'Type':>10} {'Len':>5} {'sat':>5} {'gate':>5} {'violations'}")
    print("-" * 60)
    for l in logs:
        viol_str = ",".join(l.violations) if l.violations else "-"
        print(f"{l.turn_id:>4} {l.query_type:>10} {l.answer_length:>5} {l.sat_t:>5.2f} {l.gating:>5.1f} {viol_str}")


def main():
    print("=" * 60)
    print("PILOT RUNNER v1 - Style-Aware Judge + Gating")
    print("=" * 60)
    print(f"Started at: {datetime.now().isoformat()}")
    
    # Define user preferences
    prefs = StylePrefs(
        require_short=True,
        max_chars=200,
        require_bullets=True,
        lang="en",
    )
    print(f"\n[Config] User preferences: {prefs}")
    
    # Initialize LLM
    print("\n[Init] Loading PersonalizedLLM...")
    llm = PersonalizedLLM(
        user_store_path="data/users/user_store_pilot_v1.npz",
        only_own_memories=True,
        enable_preference_extraction=True,
        enable_rl_updates=True,
    )
    
    # Run pilot
    user_id = "pilot_user_v1"
    logs = run_pilot_v1(llm, user_id=user_id, prefs=prefs)
    
    # Summary
    print_summary_v1(logs, prefs)
    
    # Save logs
    log_path = f"data/logs/pilot_v1_{datetime.now().strftime('%Y%m%d_%H%M%S')}.jsonl"
    log_to_jsonl(logs, log_path)
    print(f"\n[Logs] Saved to: {log_path}")
    
    # Final state
    final_state = llm.get_user_state_summary(user_id)
    print(f"\n[Final State] {final_state}")
    
    print(f"\nCompleted at: {datetime.now().isoformat()}")
    print("=" * 60)


if __name__ == "__main__":
    main()