1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
|
#!/usr/bin/env python3
"""
Pilot Runner v3 - Multi-User Multi-Session with Personas
Upgrades from v2:
- Persona: Bundles StylePrefs into user types
- 5 test personas (A-E) targeting different style combinations
- Multi-user × multi-session evaluation
- Refined judge: bullets only on list tasks, relaxed empty_answer
- Baseline mode support (no-personalization comparison)
5 Test Personas:
- A: short + bullets + en (sanity check)
- B: short + NO bullets + en (anti-bullet)
- C: long + bullets + en (no length constraint)
- D: short + bullets + zh (Chinese)
- E: long + NO bullets + zh (most "anti-default")
"""
import sys
import os
import json
from datetime import datetime
from dataclasses import dataclass, asdict, field
from typing import List, Dict, Any, Optional, Tuple, Set, Literal
# Add src to path
sys.path.insert(0, os.path.join(os.path.dirname(__file__), "../src"))
from personalization.serving import PersonalizedLLM, Feedback, AssistantResponse
# =============================================================================
# Style Preferences (True Preferences)
# =============================================================================
@dataclass
class StylePrefs:
"""User's TRUE style preferences."""
require_short: bool = False
max_chars: int = 300
require_bullets: bool = False
lang: str = "en" # "en" or "zh"
# =============================================================================
# Persona Definition
# =============================================================================
@dataclass
class Persona:
"""
A user persona that bundles style preferences.
Each persona represents a distinct user type for testing.
"""
persona_id: str
style_prefs: StylePrefs
description: str = ""
# Future extensions:
# task_preferences: Dict[str, float] # e.g., {"code": 0.3, "rewrite": 0.7}
# tone: str = "neutral" # "formal", "casual", etc.
# domain: str = "general" # "tech", "daily_life", etc.
# =============================================================================
# 5 Test Personas (A-E)
# =============================================================================
PERSONA_A = Persona(
persona_id="A_short_bullets_en",
style_prefs=StylePrefs(
require_short=True,
max_chars=200,
require_bullets=True,
lang="en",
),
description="Short + bullets + English (sanity check, same as v2)",
)
PERSONA_B = Persona(
persona_id="B_short_no_bullets_en",
style_prefs=StylePrefs(
require_short=True,
max_chars=200,
require_bullets=False,
lang="en",
),
description="Short + NO bullets + English (anti-bullet test)",
)
PERSONA_C = Persona(
persona_id="C_long_bullets_en",
style_prefs=StylePrefs(
require_short=False,
max_chars=800,
require_bullets=True,
lang="en",
),
description="Long + bullets + English (no length constraint)",
)
PERSONA_D = Persona(
persona_id="D_short_bullets_zh",
style_prefs=StylePrefs(
require_short=True,
max_chars=200,
require_bullets=True,
lang="zh",
),
description="Short + bullets + Chinese (language test)",
)
PERSONA_E = Persona(
persona_id="E_long_no_bullets_zh",
style_prefs=StylePrefs(
require_short=False,
max_chars=800,
require_bullets=False,
lang="zh",
),
description="Long + NO bullets + Chinese (most anti-default)",
)
ALL_PERSONAS = [PERSONA_A, PERSONA_B, PERSONA_C, PERSONA_D, PERSONA_E]
def get_persona_by_id(persona_id: str) -> Optional[Persona]:
"""Get persona by ID."""
for p in ALL_PERSONAS:
if p.persona_id == persona_id:
return p
return None
# =============================================================================
# Reveal State
# =============================================================================
@dataclass
class RevealState:
"""Tracks which preferences have been explicitly revealed."""
short_revealed: bool = False
bullets_revealed: bool = False
lang_revealed: bool = False
def reset(self):
self.short_revealed = False
self.bullets_revealed = False
self.lang_revealed = False
def to_dict(self) -> Dict[str, bool]:
return {
"short": self.short_revealed,
"bullets": self.bullets_revealed,
"lang": self.lang_revealed,
}
def __str__(self) -> str:
flags = []
if self.short_revealed:
flags.append("short")
if self.bullets_revealed:
flags.append("bullets")
if self.lang_revealed:
flags.append("lang")
return f"RevealState({', '.join(flags) if flags else 'none'})"
class RevealStateManager:
"""Manages reveal state for multiple users."""
def __init__(self):
self._states: Dict[str, RevealState] = {}
def get_state(self, user_id: str) -> RevealState:
if user_id not in self._states:
self._states[user_id] = RevealState()
return self._states[user_id]
def reset_user(self, user_id: str):
if user_id in self._states:
self._states[user_id].reset()
else:
self._states[user_id] = RevealState()
def reset_session(self, user_id: str):
pass # Reveal state persists across sessions
# =============================================================================
# Preference Detection
# =============================================================================
def detect_revealed_preferences(query: str, prefs: StylePrefs) -> Dict[str, bool]:
"""
Detect which preferences are mentioned in a query.
Also considers the user's true preferences for language detection.
"""
lower_q = (query or "").lower()
revealed = {
"short": False,
"bullets": False,
"lang": False,
}
# Short/length preference
short_patterns = [
"short", "concise", "brief", "under ", "less than",
"keep it short", "keep responses", "keep answers",
"maximum ", "max ", "characters", "words or less",
"200 ", "100 ", "50 ", "300 ",
]
for pattern in short_patterns:
if pattern in lower_q:
revealed["short"] = True
break
# Bullet preference (both positive and negative)
bullet_patterns = [
"bullet", "bullet point", "bullet-point",
"bulleted", "list format", "use bullets",
"no bullet", "don't use bullet", "without bullet",
"numbered list", "use numbers",
]
for pattern in bullet_patterns:
if pattern in lower_q:
revealed["bullets"] = True
break
# Language preference
lang_patterns_zh = [
"chinese", "中文", "in chinese", "用中文",
"speak chinese", "write chinese", "respond in chinese",
"please use chinese", "mandarin", "请用中文",
]
lang_patterns_en = [
"english", "in english", "use english",
"speak english", "write english", "respond in english",
"please use english",
]
for pattern in lang_patterns_zh + lang_patterns_en:
if pattern in lower_q:
revealed["lang"] = True
break
return revealed
def update_reveal_state(reveal_state: RevealState, query: str, prefs: StylePrefs) -> Set[str]:
"""Update reveal state based on query content."""
detected = detect_revealed_preferences(query, prefs)
newly_revealed = set()
if detected["short"] and not reveal_state.short_revealed:
reveal_state.short_revealed = True
newly_revealed.add("short")
if detected["bullets"] and not reveal_state.bullets_revealed:
reveal_state.bullets_revealed = True
newly_revealed.add("bullets")
if detected["lang"] and not reveal_state.lang_revealed:
reveal_state.lang_revealed = True
newly_revealed.add("lang")
return newly_revealed
# =============================================================================
# Refined Style Judge
# =============================================================================
@dataclass
class JudgeResult:
"""Output from the judge for one turn."""
sat_t: float
sev_t: float
prog_t: float
violations: List[str]
enforced_constraints: List[str]
def style_judge_v3(
query: str,
answer: str,
task_type: str,
prefs: StylePrefs,
reveal_state: RevealState,
) -> JudgeResult:
"""
Refined style judge with:
- Bullets only enforced on list-type tasks
- Relaxed empty_answer (only truly empty or single char)
- Reveal-aware enforcement
"""
violations: List[str] = []
enforced: List[str] = []
text = (answer or "").strip()
# 0) Empty answer - only truly empty or single non-meaningful char
# Relaxed: allow short factual answers like "4", "Paris"
if len(text) == 0:
violations.append("empty_answer")
return JudgeResult(
sat_t=0.0,
sev_t=1.0,
prog_t=0.0,
violations=violations,
enforced_constraints=["non_empty"],
)
# 1) Length - enforce only if BOTH true AND revealed
if prefs.require_short and reveal_state.short_revealed:
enforced.append("short")
if len(text) > prefs.max_chars:
violations.append("too_long")
# 2) Bullets - enforce ONLY on list-type tasks AND if revealed
# task_type "list" = listing tasks (Name X things, What are the N...)
# task_type "qa" = factual QA (What is the capital...)
# task_type "general" = other general tasks
if prefs.require_bullets and reveal_state.bullets_revealed:
if task_type == "list": # Only enforce on list tasks
enforced.append("bullets")
has_bullets = ("- " in text) or ("• " in text) or ("* " in text) or ("\n- " in text)
if not has_bullets:
violations.append("no_bullets")
# 3) Language - enforce only if revealed
if reveal_state.lang_revealed:
enforced.append("lang")
if prefs.lang == "zh":
# For Chinese: should have significant non-ASCII content
ascii_count = sum(c.isascii() for c in text)
ascii_ratio = ascii_count / max(1, len(text))
if ascii_ratio > 0.7:
violations.append("wrong_lang")
elif prefs.lang == "en":
# For English: should be mostly ASCII
ascii_count = sum(c.isascii() for c in text)
ascii_ratio = ascii_count / max(1, len(text))
if ascii_ratio < 0.5:
violations.append("wrong_lang")
# 4) Code task: always enforce
prog_t = 1.0
if task_type == "code":
enforced.append("code_block")
has_code = ("```" in text) or ("def " in text) or ("function " in text)
if not has_code:
violations.append("no_code_block")
prog_t = 0.0
# 5) Compute scores
if not violations:
sat_t = 1.0
sev_t = 0.0
else:
sat_t = max(0.0, 1.0 - 0.3 * float(len(violations)))
hard_violations = {"empty_answer", "too_long", "wrong_lang"}
sev_t = 1.0 if any(v in hard_violations for v in violations) else 0.0
return JudgeResult(
sat_t=sat_t,
sev_t=sev_t,
prog_t=prog_t,
violations=violations,
enforced_constraints=enforced,
)
# =============================================================================
# Feedback Computation
# =============================================================================
def compute_feedback_for_turn(
turn_id: int,
query: str,
query_type: str,
task_type: str,
judge_result: JudgeResult,
) -> Tuple[float, float]:
"""Convert JudgeResult into (reward, gating)."""
reward = judge_result.sat_t
lower_q = (query or "").lower()
is_pref_turn = (
query_type == "preference"
or "i prefer" in lower_q
or "my preference" in lower_q
or "please use" in lower_q
or "please keep" in lower_q
or "you didn't follow" in lower_q
or "you forgot" in lower_q
or "remember that i" in lower_q
or "i told you" in lower_q
or "i asked for" in lower_q
or "中文" in lower_q
or "用中文" in lower_q
)
gating = 1.0 if is_pref_turn else 0.0
return reward, gating
# =============================================================================
# Query Generation per Persona
# =============================================================================
def get_session_1_queries_for_persona(persona: Persona) -> List[Dict[str, Any]]:
"""
Session 1: Reveal preferences.
Customize based on persona's true preferences.
"""
queries = []
prefs = persona.style_prefs
# Turn 0: Reveal length preference
if prefs.require_short:
if prefs.lang == "zh":
queries.append({
"query": "我喜欢简短的回答,请保持回复在200字以内。",
"type": "preference",
"task_type": "general",
})
else:
queries.append({
"query": "I prefer short, concise answers. Please keep responses under 200 characters.",
"type": "preference",
"task_type": "general",
})
else:
# Long preference - don't reveal (let short_revealed stay False)
if prefs.lang == "zh":
queries.append({
"query": "你好,我想了解一些问题。",
"type": "task",
"task_type": "general",
})
else:
queries.append({
"query": "Hello, I have some questions for you.",
"type": "task",
"task_type": "general",
})
# Turn 1: First task
if prefs.lang == "zh":
queries.append({
"query": "列出三个改善睡眠的建议。",
"type": "task",
"task_type": "list",
})
else:
queries.append({
"query": "List three tips for better sleep.",
"type": "task",
"task_type": "list",
})
# Turn 2: Reveal bullet preference
if prefs.require_bullets:
if prefs.lang == "zh":
queries.append({
"query": "我喜欢用项目符号列出要点,请使用bullet points。",
"type": "preference",
"task_type": "general",
})
else:
queries.append({
"query": "I prefer bullet points when listing things. Please use bullet points.",
"type": "preference",
"task_type": "general",
})
else:
# Don't reveal bullet preference (or reveal anti-bullet)
if prefs.lang == "zh":
queries.append({
"query": "请不要用项目符号,我更喜欢连续的句子。",
"type": "preference",
"task_type": "general",
})
else:
queries.append({
"query": "Please don't use bullet points. I prefer continuous prose.",
"type": "preference",
"task_type": "general",
})
# Turn 3: Reveal language preference (for non-English personas)
if prefs.lang == "zh":
queries.append({
"query": "请用中文回答我的问题。",
"type": "preference",
"task_type": "general",
})
else:
queries.append({
"query": "Please respond in English.",
"type": "preference",
"task_type": "general",
})
# Turn 4-5: Tasks
if prefs.lang == "zh":
queries.extend([
{
"query": "锻炼有什么好处?",
"type": "task",
"task_type": "list",
},
{
"query": "列出五种流行的编程语言。",
"type": "task",
"task_type": "list",
},
])
else:
queries.extend([
{
"query": "What are the benefits of exercise?",
"type": "task",
"task_type": "list",
},
{
"query": "Name five popular programming languages.",
"type": "task",
"task_type": "list",
},
])
return queries
def get_session_2_queries_for_persona(persona: Persona) -> List[Dict[str, Any]]:
"""
Session 2: NO preference restatement.
Tests cross-session retention.
"""
prefs = persona.style_prefs
if prefs.lang == "zh":
return [
{"query": "推荐三种健康的早餐。", "type": "task", "task_type": "list"},
{"query": "一年有哪四个季节?", "type": "task", "task_type": "list"},
{"query": "法国的首都是哪里?", "type": "task", "task_type": "qa"},
{"query": "列出三种可再生能源。", "type": "task", "task_type": "list"},
]
else:
return [
{"query": "What are three healthy breakfast ideas?", "type": "task", "task_type": "list"},
{"query": "What are the four seasons of the year?", "type": "task", "task_type": "list"},
{"query": "What is the capital of France?", "type": "task", "task_type": "qa"},
{"query": "Name three types of renewable energy.", "type": "task", "task_type": "list"},
]
def get_session_3_queries_for_persona(persona: Persona) -> List[Dict[str, Any]]:
"""
Session 3: Mix of tasks and one reminder.
"""
prefs = persona.style_prefs
if prefs.lang == "zh":
return [
{"query": "列出五种常见的水果。", "type": "task", "task_type": "list"},
{"query": "请记住我喜欢简短的回答。列出三种海洋动物。", "type": "preference", "task_type": "list"},
{"query": "2加2等于多少?", "type": "task", "task_type": "qa"},
]
else:
return [
{"query": "Name five common fruits.", "type": "task", "task_type": "list"},
{"query": "Remember that I asked for short answers. List three ocean animals.", "type": "preference", "task_type": "list"},
{"query": "What is 2 + 2?", "type": "task", "task_type": "qa"},
]
# =============================================================================
# Logging
# =============================================================================
@dataclass
class TurnLog:
"""Log entry for one turn."""
user_id: str
persona_id: str
session_id: int
turn_id: int
query: str
query_type: str
task_type: str
answer: str
answer_length: int
sat_t: float
sev_t: float
prog_t: float
violations: List[str]
enforced_constraints: List[str]
reward: float
gating: float
reveal_state_before: Dict[str, bool]
reveal_state_after: Dict[str, bool]
newly_revealed: List[str]
z_long_norm_before: float
z_long_norm_after: float
z_short_norm_before: float
z_short_norm_after: float
prompt_tokens: int
completion_tokens: int
total_tokens: int
num_memories_retrieved: int
num_prefs_extracted: int
def log_to_jsonl(logs: List[TurnLog], filepath: str):
"""Save logs to JSONL file."""
os.makedirs(os.path.dirname(filepath), exist_ok=True)
with open(filepath, "w") as f:
for log in logs:
f.write(json.dumps(asdict(log)) + "\n")
# =============================================================================
# Session Runner
# =============================================================================
def run_session(
llm: PersonalizedLLM,
user_id: str,
persona: Persona,
session_id: int,
reveal_state: RevealState,
queries: List[Dict[str, Any]],
all_logs: List[TurnLog],
) -> List[TurnLog]:
"""Run a single session for a user."""
prefs = persona.style_prefs
session_logs: List[TurnLog] = []
print(f"\n{'='*60}")
print(f"[{persona.persona_id}] Session {session_id}: {len(queries)} turns")
print(f"Reveal state (start): {reveal_state}")
print(f"{'='*60}")
# Reset session (clears history, z_short; keeps z_long and reveal state)
llm.reset_session(user_id)
for turn_id, q_info in enumerate(queries):
query = q_info["query"]
query_type = q_info.get("type", "task")
task_type = q_info.get("task_type", "general")
print(f"\n--- S{session_id}/T{turn_id} [{query_type}] ---")
print(f"[Q] {query[:60]}{'...' if len(query) > 60 else ''}")
# Capture reveal state BEFORE
reveal_before = reveal_state.to_dict()
# Update reveal state
newly_revealed = update_reveal_state(reveal_state, query, prefs)
if newly_revealed:
print(f"[Reveal] Newly: {newly_revealed}")
reveal_after = reveal_state.to_dict()
# Get user state before
state_before = llm.get_user_state_summary(user_id)
z_long_before = state_before["z_long_norm"]
z_short_before = state_before["z_short_norm"]
# Apply feedback for previous turn
if turn_id > 0 and session_logs:
prev_log = session_logs[-1]
feedback = Feedback(
user_id=user_id,
turn_id=prev_log.turn_id,
reward=prev_log.reward,
gating=prev_log.gating,
meta={"source": "pilot_v3", "session_id": session_id}
)
llm.apply_feedback(feedback)
# Chat
resp: AssistantResponse = llm.chat(user_id, query)
answer_display = resp.answer[:80] + "..." if len(resp.answer) > 80 else resp.answer
print(f"[A] ({len(resp.answer)}c) {answer_display}")
# Judge
judge_result = style_judge_v3(query, resp.answer, task_type, prefs, reveal_state)
print(f"[J] sat={judge_result.sat_t:.2f}, enforced={judge_result.enforced_constraints}, viol={judge_result.violations}")
# Compute feedback
reward, gating = compute_feedback_for_turn(turn_id, query, query_type, task_type, judge_result)
# Get state after
state_after = llm.get_user_state_summary(user_id)
z_long_after = state_after["z_long_norm"]
z_short_after = state_after["z_short_norm"]
# Debug info
num_memories = len(resp.debug.selected_memory_ids) if resp.debug else 0
num_prefs = len(resp.debug.extracted_preferences) if resp.debug else 0
# Log
log = TurnLog(
user_id=user_id,
persona_id=persona.persona_id,
session_id=session_id,
turn_id=turn_id,
query=query,
query_type=query_type,
task_type=task_type,
answer=resp.answer,
answer_length=len(resp.answer),
sat_t=judge_result.sat_t,
sev_t=judge_result.sev_t,
prog_t=judge_result.prog_t,
violations=judge_result.violations,
enforced_constraints=judge_result.enforced_constraints,
reward=reward,
gating=gating,
reveal_state_before=reveal_before,
reveal_state_after=reveal_after,
newly_revealed=list(newly_revealed),
z_long_norm_before=z_long_before,
z_long_norm_after=z_long_after,
z_short_norm_before=z_short_before,
z_short_norm_after=z_short_after,
prompt_tokens=resp.usage.prompt_tokens,
completion_tokens=resp.usage.completion_tokens,
total_tokens=resp.usage.total_tokens,
num_memories_retrieved=num_memories,
num_prefs_extracted=num_prefs,
)
session_logs.append(log)
all_logs.append(log)
# Apply final feedback
if session_logs:
last_log = session_logs[-1]
feedback = Feedback(
user_id=user_id,
turn_id=last_log.turn_id,
reward=last_log.reward,
gating=last_log.gating,
meta={"source": "pilot_v3", "session_id": session_id, "final": True}
)
llm.apply_feedback(feedback)
return session_logs
# =============================================================================
# Multi-User Multi-Session Runner
# =============================================================================
def run_multi_user_pilot(
llm: PersonalizedLLM,
personas: List[Persona],
num_sessions: int = 3,
reveal_manager: Optional[RevealStateManager] = None,
) -> List[TurnLog]:
"""
Run multi-user multi-session pilot.
Args:
llm: PersonalizedLLM instance
personas: List of personas to test
num_sessions: Number of sessions per user
reveal_manager: Optional existing reveal manager
"""
if reveal_manager is None:
reveal_manager = RevealStateManager()
all_logs: List[TurnLog] = []
print(f"\n{'#'*60}")
print(f"PILOT v3: MULTI-USER MULTI-SESSION")
print(f"Users: {len(personas)}, Sessions per user: {num_sessions}")
print(f"{'#'*60}")
for persona in personas:
user_id = f"user_{persona.persona_id}"
prefs = persona.style_prefs
print(f"\n{'*'*60}")
print(f"USER: {user_id}")
print(f"Persona: {persona.description}")
print(f"True prefs: short={prefs.require_short}, bullets={prefs.require_bullets}, lang={prefs.lang}")
print(f"{'*'*60}")
# Reset user completely
llm.reset_user(user_id)
reveal_manager.reset_user(user_id)
reveal_state = reveal_manager.get_state(user_id)
# Run sessions
for session_id in range(1, num_sessions + 1):
if session_id == 1:
queries = get_session_1_queries_for_persona(persona)
elif session_id == 2:
queries = get_session_2_queries_for_persona(persona)
else:
queries = get_session_3_queries_for_persona(persona)
reveal_manager.reset_session(user_id) # No-op, just for clarity
run_session(llm, user_id, persona, session_id, reveal_state, queries, all_logs)
return all_logs
# =============================================================================
# Summary
# =============================================================================
def print_summary_v3(logs: List[TurnLog]):
"""Print summary for pilot v3."""
print(f"\n{'='*60}")
print("PILOT v3 SUMMARY - Multi-User Multi-Session")
print(f"{'='*60}")
if not logs:
print("No logs.")
return
from collections import Counter, defaultdict
# Per-persona stats
personas = sorted(set(l.persona_id for l in logs))
print(f"\n--- Per-Persona Statistics ---")
for pid in personas:
p_logs = [l for l in logs if l.persona_id == pid]
# Per-session breakdown
sessions = sorted(set(l.session_id for l in p_logs))
print(f"\n{pid}:")
for sid in sessions:
s_logs = [l for l in p_logs if l.session_id == sid]
avg_sat = sum(l.sat_t for l in s_logs) / len(s_logs) if s_logs else 0
violations = [v for l in s_logs for v in l.violations]
enforced = set(c for l in s_logs for c in l.enforced_constraints)
print(f" Session {sid}: {len(s_logs)} turns, avg_sat={avg_sat:.3f}, enforced={enforced}")
if violations:
print(f" violations: {dict(Counter(violations))}")
# Cross-session retention check
print(f"\n--- Cross-Session Retention ---")
for pid in personas:
p_logs = [l for l in logs if l.persona_id == pid]
s1_logs = [l for l in p_logs if l.session_id == 1]
s2_logs = [l for l in p_logs if l.session_id == 2]
if s1_logs and s2_logs:
s1_sat = sum(l.sat_t for l in s1_logs) / len(s1_logs)
s2_sat = sum(l.sat_t for l in s2_logs) / len(s2_logs)
# Check what was enforced in S2
s2_enforced = set(c for l in s2_logs for c in l.enforced_constraints)
print(f"{pid}: S1_sat={s1_sat:.3f} → S2_sat={s2_sat:.3f}, S2_enforced={s2_enforced}")
# Overall stats
total = len(logs)
avg_sat = sum(l.sat_t for l in logs) / total
total_tokens = sum(l.total_tokens for l in logs)
print(f"\n--- Overall ---")
print(f"Total turns: {total}")
print(f"Overall avg sat_t: {avg_sat:.3f}")
print(f"Total tokens: {total_tokens}")
# Violations by type
all_violations = [v for l in logs for v in l.violations]
if all_violations:
print(f"\nViolations: {dict(Counter(all_violations))}")
def main():
print("=" * 60)
print("PILOT RUNNER v3 - Multi-User Multi-Session with Personas")
print("=" * 60)
print(f"Started at: {datetime.now().isoformat()}")
# Select personas
personas = ALL_PERSONAS # All 5 personas
print(f"\n[Config] Running {len(personas)} personas:")
for p in personas:
print(f" - {p.persona_id}: {p.description}")
# Initialize LLM
print("\n[Init] Loading PersonalizedLLM...")
llm = PersonalizedLLM(
user_store_path="data/users/user_store_pilot_v3.npz",
only_own_memories=True,
enable_preference_extraction=True,
enable_rl_updates=True,
)
# Run pilot
logs = run_multi_user_pilot(llm, personas, num_sessions=3)
# Summary
print_summary_v3(logs)
# Save logs
log_path = f"data/logs/pilot_v3_{datetime.now().strftime('%Y%m%d_%H%M%S')}.jsonl"
log_to_jsonl(logs, log_path)
print(f"\n[Logs] Saved to: {log_path}")
print(f"\nCompleted at: {datetime.now().isoformat()}")
print("=" * 60)
if __name__ == "__main__":
main()
|