1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
|
import numpy as np
from personalization.feedback.schemas import TurnSample
def cosine_sim(a: np.ndarray, b: np.ndarray) -> float:
norm_a = np.linalg.norm(a)
norm_b = np.linalg.norm(b)
if norm_a == 0 or norm_b == 0:
return 0.0
return float(np.dot(a, b) / (norm_a * norm_b))
def estimate_reward(sample: TurnSample) -> float:
"""
Return a scalar reward_hat, indicating if the previous answer was helpful.
Range: [-1.0, 1.0] (approx)
"""
# 1. Language/Topic Coherence
if sample.query_embedding_t is None or sample.query_embedding_t1 is None:
topic_sim = 0.5
else:
topic_sim = cosine_sim(sample.query_embedding_t, sample.query_embedding_t1)
# 2. Negative Keywords (Complaint/Correction)
negative_keywords = [
"you didn't", "that's not", "incorrect", "redo", "again", "explain more",
"doesn't help", "wrong", "no", "not what i asked",
"你没", "不是", "这不是", "重来", "重新", "不对", "错了", "没说清楚"
]
# 3. Positive Keywords (Follow-up/Elaboration)
positive_keywords = [
"can you elaborate", "give an example", "continue", "what if", "based on that",
"thanks", "good", "great", "cool",
"能不能详细一点", "举个例子", "再继续", "那如果", "接下来", "在这个基础上", "谢谢", "不错"
]
q1_lower = sample.query_t1.lower()
has_negative = any(kw in q1_lower for kw in negative_keywords)
has_positive = any(kw in q1_lower for kw in positive_keywords)
reward = 0.0
if has_negative:
reward -= 1.0
if has_positive:
# Only reward if topic similarity is decent, otherwise might be "thanks, bye" (end of session)
# But "thanks" is good.
reward += 0.5
if topic_sim > 0.3:
reward += 0.5
if topic_sim < 0.2:
# Topic shift -> previous interaction likely finished or failed.
# If no explicit positive/negative, assume neutral/slightly decayed.
# If user changes topic, it often means the previous task is done (neutral/positive)
# OR they gave up (negative). Hard to tell.
# Let's dampen the reward towards 0.
reward *= 0.5
# Clip
return max(-1.0, min(1.0, reward))
|