summaryrefslogtreecommitdiff
path: root/src/personalization/serving/personalized_llm.py
blob: 2c4d5a827787723e97ce5dd720e06a94501ad858 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
#!/usr/bin/env python3
"""
Personalized LLM Interface for Evaluation.

This module provides the `PersonalizedLLM` class that wraps the entire
personalization system into a clean interface for evaluation frameworks
and user simulators.

Interface contract:
- chat(user_id, query) -> AssistantResponse: Main online interface
- reset_session(user_id): Clear session history and short-term state
- reset_user(user_id): Completely reset user (long-term, short-term, memories)
- apply_feedback(feedback): Apply external feedback for RL updates
"""

from __future__ import annotations

import os
import sys
import uuid
from dataclasses import dataclass, field
from typing import Any, Dict, List, Optional

import numpy as np
import yaml

# Ensure src is in path for standalone usage
_src_path = os.path.join(os.path.dirname(__file__), "../../..")
if _src_path not in sys.path:
    sys.path.insert(0, _src_path)

from personalization.config.settings import load_local_models_config
from personalization.config.registry import get_preference_extractor, get_chat_model
from personalization.models.embedding.qwen3_8b import Qwen3Embedding8B
from personalization.models.reranker.qwen3_reranker import Qwen3Reranker
from personalization.user_model.tensor_store import UserTensorStore, UserState
from personalization.user_model.session_state import OnlineSessionState
from personalization.user_model.features import ItemProjection
from personalization.retrieval.preference_store.schemas import (
    MemoryCard, ChatTurn, PreferenceList, Preference
)
from personalization.retrieval.pipeline import retrieve_with_policy, retrieve_no_policy
from personalization.feedback.handlers import eval_step
from personalization.user_model.policy.reinforce import reinforce_update_user_state


# =============================================================================
# Data Classes for Interface
# =============================================================================

@dataclass
class UsageStats:
    """Token usage statistics from a chat completion."""
    prompt_tokens: int
    completion_tokens: int
    total_tokens: int
    model: str


@dataclass
class DebugInfo:
    """
    Debug information for analysis and ablation studies.
    All fields are optional - fill what you have, leave empty what you don't.
    """
    selected_memory_ids: List[str] = field(default_factory=list)
    selected_memory_notes: List[str] = field(default_factory=list)
    selected_memory_scores: List[float] = field(default_factory=list)
    user_vector_before: Optional[List[float]] = None
    user_vector_after: Optional[List[float]] = None
    extracted_preferences: List[Dict[str, Any]] = field(default_factory=list)
    extra: Dict[str, Any] = field(default_factory=dict)


@dataclass
class AssistantResponse:
    """Response from the personalized LLM chat interface."""
    answer: str
    usage: UsageStats
    debug: Optional[DebugInfo] = None


@dataclass
class Feedback:
    """
    Feedback data structure for RL updates from user simulator or judge.
    
    Attributes:
        user_id: The user this feedback is for.
        turn_id: The turn this feedback refers to (from the previous turn).
        reward: Reward scalar computed by user simulator / judge.
        gating: Gating flag (1=valid learning signal, 0=skip update).
        meta: Additional metadata for training/analysis.
    """
    user_id: str
    turn_id: int
    reward: float
    gating: float  # Can be 0.0 or 1.0, or continuous
    meta: Dict[str, Any] = field(default_factory=dict)


# =============================================================================
# Internal Session State Extended
# =============================================================================

@dataclass
class _SessionContext:
    """Extended session context for evaluation tracking."""
    session_state: OnlineSessionState
    turn_counter: int = 0
    # Store info needed for apply_feedback
    pending_rl_update: Optional[Dict[str, Any]] = None


# =============================================================================
# PersonalizedLLM Class
# =============================================================================

class PersonalizedLLM:
    """
    Personalized LLM wrapper for evaluation frameworks.
    
    This class provides a clean interface that accepts only (user_id, query)
    for the main chat function, while internally managing:
    - User state vectors (z_long, z_short)
    - Session history
    - Memory retrieval and policy
    - Preference extraction and storage
    - RL updates
    
    Example usage:
        llm = PersonalizedLLM()
        
        # Reset user for fresh experiment
        llm.reset_user("user_123")
        
        # Start a session
        llm.reset_session("user_123")
        
        # Chat
        response = llm.chat("user_123", "What's a good recipe for dinner?")
        print(response.answer)
        
        # Apply feedback from previous turn (from turn 2 onwards)
        llm.apply_feedback(Feedback(
            user_id="user_123",
            turn_id=0,
            reward=0.8,
            gating=1.0
        ))
    """
    
    def __init__(
        self,
        config_path: Optional[str] = None,
        user_store_path: str = "data/users/user_store_eval.npz",
        memory_cards_path: str = "data/corpora/memory_cards.jsonl",
        memory_embeddings_path: str = "data/corpora/memory_embeddings.npy",
        item_projection_path: str = "data/corpora/item_projection.npz",
        only_own_memories: bool = True,
        enable_preference_extraction: bool = True,
        enable_rl_updates: bool = True,
        mode: str = "full",  # "full", "nopersonal", or "vanilla"
        eval_mode: bool = True,  # True = greedy selection, False = stochastic sampling
        device_assignment: Optional[Dict[str, str]] = None,  # Multi-GPU support
    ):
        """
        Initialize the PersonalizedLLM.
        
        Args:
            config_path: Path to config file. If None, uses default locations.
            user_store_path: Path to persist user state vectors.
            memory_cards_path: Path to memory cards JSONL file.
            memory_embeddings_path: Path to memory embeddings numpy file.
            item_projection_path: Path to item projection (PCA) file.
            only_own_memories: If True, only retrieve user's own memories (strict privacy).
            enable_preference_extraction: If True, extract preferences from user turns.
            enable_rl_updates: If True, apply RL updates via apply_feedback.
            mode: "full" for full personalization, "nopersonal" for baseline (no user vector influence),
                  "vanilla" for pure LLM without any memory retrieval or preference extraction.
            eval_mode: If True, use greedy/deterministic selection (for evaluation).
                       If False, use stochastic sampling (for training/exploration).
            device_assignment: Optional dict to assign models to specific GPUs.
                Example: {"embed": "cuda:0", "reranker": "cuda:1", "chat": "cuda:2", "extractor": "cuda:3"}
                If None, uses "auto" for all models.
        """
        self.only_own_memories = only_own_memories
        self.enable_preference_extraction = enable_preference_extraction
        self.enable_rl_updates = enable_rl_updates
        self.mode = mode  # "full" or "nopersonal"
        self.eval_mode = eval_mode  # True = greedy, False = sample
        
        # Multi-GPU device assignment
        self._device_assignment = device_assignment or {
            "embed": "auto",
            "reranker": "auto",
            "chat": "auto",
            "extractor": "auto",
        }
        
        # Paths
        self._memory_cards_path = memory_cards_path
        self._memory_embeddings_path = memory_embeddings_path
        self._item_projection_path = item_projection_path
        
        # RL Configuration
        # Note: beta/eta increased for more significant z_u updates
        self._rl_cfg = {
            "item_dim": 256,
            "beta_long": 2.0,    # Increased from 0.1 for stronger personalization
            "beta_short": 5.0,   # Increased from 0.3
            "tau": 1.0,
            "eta_long": 0.01,    # Increased from 1e-3 for faster learning
            "eta_short": 0.05,   # Increased from 5e-3
            "ema_alpha": 0.05,
            "short_decay": 0.1,
            "dense_topk": 64,
            "rerank_topk": 3,
            "max_new_tokens": 512,
        }
        
        # Load config and override RL params if available
        self._load_config(config_path)
        
        # Load models
        print("[PersonalizedLLM] Loading models...")
        self._load_models()
        
        # Load memory store
        print("[PersonalizedLLM] Loading memory store...")
        self._load_memory_store()
        
        # Initialize user store
        self._user_store = UserTensorStore(
            k=self._rl_cfg["item_dim"],
            path=user_store_path,
        )
        
        # Session contexts per user (in-memory)
        self._sessions: Dict[str, _SessionContext] = {}
        
        print("[PersonalizedLLM] Initialization complete.")
    
    def _load_config(self, config_path: Optional[str]):
        """Load configuration from yaml files."""
        self._cfg = load_local_models_config()
        
        # Try to load user_model.yaml for RL params
        if config_path is None:
            config_path = "configs/user_model.yaml"
        
        self._llm_name = "qwen_1_5b"  # Default
        
        try:
            if os.path.exists(config_path):
                with open(config_path, "r") as f:
                    user_cfg = yaml.safe_load(f)
                    if user_cfg:
                        # Override RL params if present
                        for key in self._rl_cfg:
                            if key in user_cfg:
                                self._rl_cfg[key] = user_cfg[key]
                        # LLM name
                        if "llm_name" in user_cfg:
                            self._llm_name = user_cfg["llm_name"]
        except Exception as e:
            print(f"[PersonalizedLLM] Warning: Failed to load config: {e}")
    
    def _load_models(self):
        """Load all ML models with optional multi-GPU assignment."""
        import torch
        
        # Report GPU availability
        num_gpus = torch.cuda.device_count()
        print(f"[PersonalizedLLM] Available GPUs: {num_gpus}")
        for i in range(num_gpus):
            mem = torch.cuda.get_device_properties(i).total_memory / 1e9
            print(f"  GPU {i}: {torch.cuda.get_device_name(i)} ({mem:.1f}GB)")
        
        embed_device = self._device_assignment.get("embed", "auto")
        reranker_device = self._device_assignment.get("reranker", "auto")
        chat_device = self._device_assignment.get("chat", "auto")
        extractor_device = self._device_assignment.get("extractor", "auto")
        
        # Embedding model
        print(f"[PersonalizedLLM] Loading Embedding model on {embed_device}...")
        self._embed_model = Qwen3Embedding8B(
            model_path=self._cfg.embedding.qwen3.local_path,
            dtype=torch.bfloat16,
            device_map=embed_device,
        )
        
        # Reranker
        print(f"[PersonalizedLLM] Loading Reranker on {reranker_device}...")
        self._reranker = Qwen3Reranker(
            model_path=self._cfg.reranker.qwen3_8b.local_path,
            device_map=reranker_device,
            dtype=torch.bfloat16,
        )
        
        # Chat model (via registry for backend switching)
        print(f"[PersonalizedLLM] Loading ChatModel: {self._llm_name} on {chat_device}...")
        # Pass device override if specified (not "auto")
        device_for_chat = chat_device if chat_device != "auto" else None
        self._chat_model = get_chat_model(self._llm_name, device_override=device_for_chat)
        
        # Preference extractor
        if self.enable_preference_extraction:
            extractor_name = "qwen3_0_6b_sft"
            print(f"[PersonalizedLLM] Loading extractor: {extractor_name} on {extractor_device}...")
            try:
                self._extractor = get_preference_extractor(extractor_name)
            except Exception as e:
                print(f"[PersonalizedLLM] Warning: Failed to load {extractor_name}: {e}. Using rule-based.")
                self._extractor = get_preference_extractor("rule")
        else:
            print("[PersonalizedLLM] Preference extraction disabled, using rule-based extractor.")
            self._extractor = get_preference_extractor("rule")
    
    def _load_memory_store(self):
        """Load memory cards and embeddings."""
        if not os.path.exists(self._memory_cards_path):
            print(f"[PersonalizedLLM] Warning: Memory cards not found at {self._memory_cards_path}")
            self._memory_cards: List[MemoryCard] = []
            self._memory_embeddings = np.zeros((0, 4096), dtype=np.float32)
            self._item_vectors = np.zeros((0, self._rl_cfg["item_dim"]), dtype=np.float32)
            self._projection = None
            return
        
        # Load cards
        self._memory_cards = []
        with open(self._memory_cards_path, "r") as f:
            for line in f:
                line = line.strip()
                if line:
                    self._memory_cards.append(MemoryCard.model_validate_json(line))
        
        # Load embeddings
        if os.path.exists(self._memory_embeddings_path):
            self._memory_embeddings = np.load(self._memory_embeddings_path)
        else:
            self._memory_embeddings = np.zeros((len(self._memory_cards), 4096), dtype=np.float32)
        
        # Load projection
        if os.path.exists(self._item_projection_path):
            proj_data = np.load(self._item_projection_path)
            self._projection = ItemProjection(P=proj_data["P"], mean=proj_data["mean"])
            self._item_vectors = proj_data["V"]
        else:
            self._projection = None
            self._item_vectors = np.zeros((len(self._memory_cards), self._rl_cfg["item_dim"]), dtype=np.float32)
        
        print(f"[PersonalizedLLM] Loaded {len(self._memory_cards)} memory cards.")
    
    def _get_or_create_session(self, user_id: str) -> _SessionContext:
        """Get or create session context for a user."""
        if user_id not in self._sessions:
            self._sessions[user_id] = _SessionContext(
                session_state=OnlineSessionState(user_id=user_id),
                turn_counter=0,
            )
        return self._sessions[user_id]
    
    def _build_chat_turn(self, user_id: str, text: str, role: str, turn_id: int) -> ChatTurn:
        """Build a ChatTurn object."""
        return ChatTurn(
            user_id=user_id,
            session_id=f"eval_session_{user_id}",
            turn_id=turn_id,
            role=role,
            text=text,
            meta={"source": "eval"}
        )
    
    def _count_tokens(self, text: str) -> int:
        """Estimate token count using the tokenizer."""
        try:
            # Use the chat model's tokenizer if available
            if hasattr(self._chat_model, 'tokenizer'):
                return len(self._chat_model.tokenizer.encode(text))
            else:
                # Rough estimate: ~4 chars per token
                return len(text) // 4
        except Exception:
            return len(text) // 4
    
    def _add_preferences_as_memory(
        self,
        prefs: PreferenceList,
        query: str,
        user_id: str,
        turn_id: int,
    ) -> List[Dict[str, Any]]:
        """
        Add extracted preferences as new memory cards.
        Returns list of preference dicts for debug info.
        """
        extracted = []
        
        if not prefs.preferences or self._projection is None:
            return extracted
        
        # Compute embedding for the query
        e_q = self._embed_model.encode([query], return_tensor=False)[0]
        v_q = self._projection.transform_vector(np.array(e_q))
        
        for pref in prefs.preferences:
            note_text = f"When {pref.condition}, {pref.action}."
            
            # Record for debug
            extracted.append({
                "condition": pref.condition,
                "action": pref.action,
                "confidence": pref.confidence,
            })
            
            # Deduplication check
            is_duplicate = any(
                card.user_id == user_id and card.note_text == note_text
                for card in self._memory_cards
            )
            
            if is_duplicate:
                continue
            
            # Create new memory card
            card = MemoryCard(
                card_id=str(uuid.uuid4()),
                user_id=user_id,
                source_session_id=f"eval_session_{user_id}",
                source_turn_ids=[turn_id],
                raw_queries=[query],
                preference_list=PreferenceList(preferences=[pref]),
                note_text=note_text,
                embedding_e=list(e_q),
                kind="pref",
            )
            
            # Add to memory store
            self._memory_cards.append(card)
            self._memory_embeddings = np.vstack([self._memory_embeddings, np.array([e_q])])
            self._item_vectors = np.vstack([self._item_vectors, np.array([v_q])])
        
        return extracted
    
    # =========================================================================
    # Public Interface
    # =========================================================================
    
    def chat(self, user_id: str, query: str) -> AssistantResponse:
        """
        Main online chat interface.
        
        Args:
            user_id: Unique identifier for the user.
            query: Current user query/message.
        
        Returns:
            AssistantResponse containing the answer, usage stats, and debug info.
        
        Notes:
            - Internally manages user state, session history, memory retrieval
            - After this call, you can call apply_feedback() with the turn's feedback
        """
        ctx = self._get_or_create_session(user_id)
        session = ctx.session_state
        user_state = self._user_store.get_state(user_id)
        
        # Record user vector before for debug
        z_long_before = user_state.z_long.copy().tolist()
        z_short_before = user_state.z_short.copy().tolist()
        
        # Compute query embedding
        e_q_t = np.array(self._embed_model.encode([query], return_tensor=False)[0])
        
        # Store pending RL update info from last turn (for apply_feedback)
        if session.last_query is not None and self.enable_rl_updates:
            ctx.pending_rl_update = {
                "last_query": session.last_query,
                "last_answer": session.last_answer,
                "last_memories": session.last_memories,
                "last_query_embedding": session.last_query_embedding,
                "current_query_embedding": e_q_t,
                "last_candidate_item_vectors": session.last_candidate_item_vectors,
                "last_policy_probs": session.last_policy_probs,
                "last_chosen_indices": session.last_chosen_indices,
            }
        
        # Add user turn to history
        user_turn = self._build_chat_turn(user_id, query, "user", ctx.turn_counter)
        session.history.append(user_turn)
        
        # Vanilla mode: pure LLM without any memory or preference extraction
        if self.mode == "vanilla":
            # Skip preference extraction and memory retrieval entirely
            extracted_prefs = []
            candidates = []
            cand_item_vecs = np.array([])
            base_scores = np.array([])
            chosen_indices = []
            probs = np.array([])
            memories_t = []
            memory_notes = []
        else:
            # Extract preferences from conversation (if enabled)
            extracted_prefs = []
            if self.enable_preference_extraction:
                prefs = self._extractor.extract_turn(session.history)
                extracted_prefs = self._add_preferences_as_memory(
                    prefs, query, user_id, ctx.turn_counter
                )
            
            # Retrieve memories
            # In "nopersonal" mode: deterministic retrieval (dense + rerank + topk), no policy/user vector
            # In "full" mode: policy-based retrieval with user vector influence
            if self.mode == "nopersonal":
                candidates, cand_item_vecs, base_scores, chosen_indices, probs = retrieve_no_policy(
                    user_id=user_id,
                    query=query,
                    embed_model=self._embed_model,
                    reranker=self._reranker,
                    memory_cards=self._memory_cards,
                    memory_embeddings=self._memory_embeddings,
                    topk_dense=self._rl_cfg["dense_topk"],
                    topk_rerank=self._rl_cfg["rerank_topk"],
                    only_own_memories=self.only_own_memories,
                )
            else:
                beta_long = self._rl_cfg["beta_long"]
                beta_short = self._rl_cfg["beta_short"]
                # eval_mode=True -> sample=False (greedy/deterministic)
                # eval_mode=False -> sample=True (stochastic/exploration)
                candidates, cand_item_vecs, base_scores, chosen_indices, probs = retrieve_with_policy(
                    user_id=user_id,
                    query=query,
                    embed_model=self._embed_model,
                    reranker=self._reranker,
                    memory_cards=self._memory_cards,
                    memory_embeddings=self._memory_embeddings,
                    user_store=self._user_store,
                    item_vectors=self._item_vectors,
                    topk_dense=self._rl_cfg["dense_topk"],
                    topk_rerank=self._rl_cfg["rerank_topk"],
                    beta_long=beta_long,
                    beta_short=beta_short,
                    tau=self._rl_cfg["tau"],
                    only_own_memories=self.only_own_memories,
                    sample=not self.eval_mode,
                )
            
            # Get selected memories
            memories_t = [candidates[int(i)] for i in chosen_indices] if chosen_indices else []
            memory_notes = [m.note_text for m in memories_t]
        
        # Build prompt and count tokens
        prompt_tokens = self._count_tokens(query)
        for turn in session.history:
            prompt_tokens += self._count_tokens(turn.text)
        for note in memory_notes:
            prompt_tokens += self._count_tokens(note)
        
        # Generate answer
        answer_t = self._chat_model.answer(
            history=session.history,
            memory_notes=memory_notes,
            max_new_tokens=self._rl_cfg["max_new_tokens"],
        )
        
        completion_tokens = self._count_tokens(answer_t)
        
        # Add assistant turn to history
        assist_turn = self._build_chat_turn(user_id, answer_t, "assistant", ctx.turn_counter)
        session.history.append(assist_turn)
        
        # Update session state for next turn
        session.last_query = query
        session.last_answer = answer_t
        session.last_memories = memories_t
        session.last_query_embedding = e_q_t
        session.last_candidate_item_vectors = cand_item_vecs
        session.last_policy_probs = probs
        session.last_chosen_indices = list(chosen_indices) if len(chosen_indices) > 0 else []
        
        ctx.turn_counter += 1
        
        # Build debug info
        debug = DebugInfo(
            selected_memory_ids=[m.card_id for m in memories_t],
            selected_memory_notes=[m.note_text for m in memories_t],
            selected_memory_scores=[float(probs[i]) if i < len(probs) else 0.0 for i in chosen_indices] if len(chosen_indices) > 0 else [],
            user_vector_before=z_long_before + z_short_before,  # Concatenated for simplicity
            user_vector_after=user_state.z_long.tolist() + user_state.z_short.tolist(),
            extracted_preferences=extracted_prefs,
            extra={
                "num_candidates": len(candidates),
                "num_total_memories": len(self._memory_cards),
                "z_long_norm": float(np.linalg.norm(user_state.z_long)),
                "z_short_norm": float(np.linalg.norm(user_state.z_short)),
            }
        )
        
        # Build usage stats
        usage = UsageStats(
            prompt_tokens=prompt_tokens,
            completion_tokens=completion_tokens,
            total_tokens=prompt_tokens + completion_tokens,
            model=self._llm_name,
        )
        
        return AssistantResponse(
            answer=answer_t,
            usage=usage,
            debug=debug,
        )
    
    def reset_session(self, user_id: str) -> None:
        """
        Reset session for a user (new chat window).
        
        This clears:
        - Session conversation history
        - Short-term user vector (z_short)
        - Pending RL update info
        
        This preserves:
        - Long-term user vector (z_long)
        - User's memory cards
        
        Args:
            user_id: The user whose session to reset.
        """
        # Clear session context
        if user_id in self._sessions:
            del self._sessions[user_id]
        
        # Create fresh session
        self._sessions[user_id] = _SessionContext(
            session_state=OnlineSessionState(user_id=user_id),
            turn_counter=0,
        )
        
        # Reset short-term vector but keep long-term
        user_state = self._user_store.get_state(user_id)
        user_state.z_short = np.zeros(self._rl_cfg["item_dim"], dtype=np.float32)
        self._user_store.save_state(user_state)
    
    def reset_user(self, user_id: str) -> None:
        """
        Completely reset a user (new "life").
        
        This clears:
        - Long-term user vector (z_long)
        - Short-term user vector (z_short)
        - User's memory cards
        - Session history
        - All cached state
        
        Args:
            user_id: The user to reset.
        """
        # Clear session
        if user_id in self._sessions:
            del self._sessions[user_id]
        
        # Reset user state vectors
        user_state = self._user_store.get_state(user_id)
        user_state.z_long = self._user_store.global_init_z.copy()
        user_state.z_short = np.zeros(self._rl_cfg["item_dim"], dtype=np.float32)
        user_state.reward_ma = 0.0
        self._user_store.save_state(user_state)
        
        # Find indices to KEEP (cards NOT belonging to this user)
        # Must do this BEFORE modifying _memory_cards
        keep_indices = [
            i for i, card in enumerate(self._memory_cards)
            if card.user_id != user_id
        ]
        
        # Filter memory cards
        self._memory_cards = [self._memory_cards[i] for i in keep_indices]
        
        # Filter embeddings and item vectors to match
        if len(keep_indices) > 0 and len(self._memory_embeddings) > 0:
            self._memory_embeddings = self._memory_embeddings[keep_indices]
            self._item_vectors = self._item_vectors[keep_indices]
        else:
            # No cards left or no embeddings
            embed_dim = self._memory_embeddings.shape[1] if len(self._memory_embeddings) > 0 else 4096
            self._memory_embeddings = np.zeros((0, embed_dim), dtype=np.float32)
            self._item_vectors = np.zeros((0, self._rl_cfg["item_dim"]), dtype=np.float32)
    
    def apply_feedback(self, feedback: Feedback) -> None:
        """
        Apply feedback from user simulator or judge.
        
        This performs the REINFORCE update to user vectors based on
        the reward signal from the previous turn.
        
        Args:
            feedback: Feedback object containing reward, gating, and metadata.
        
        Notes:
            - Should be called AFTER chat() but BEFORE the next chat() call
            - Uses the stored context from the previous turn
            - If enable_rl_updates is False, this is a no-op (logging only)
            - If mode is "nopersonal", this is a no-op (baseline comparison)
        """
        if not self.enable_rl_updates:
            return
        
        # In "nopersonal" or "vanilla" mode, skip RL updates entirely (baseline)
        if self.mode in ("nopersonal", "vanilla"):
            return
        
        user_id = feedback.user_id
        ctx = self._sessions.get(user_id)
        
        if ctx is None or ctx.pending_rl_update is None:
            return
        
        pending = ctx.pending_rl_update
        user_state = self._user_store.get_state(user_id)
        
        # Check if we have the necessary data for RL update
        if (pending.get("last_candidate_item_vectors") is not None and
            pending.get("last_policy_probs") is not None and
            pending.get("last_chosen_indices") is not None and
            len(pending["last_chosen_indices"]) > 0):
            
            # Extract chosen vectors
            chosen_indices = pending["last_chosen_indices"]
            candidate_vectors = pending["last_candidate_item_vectors"]
            
            if len(candidate_vectors) > 0:
                # REINFORCE expects:
                # - item_vectors: ALL candidate vectors [K, k]
                # - chosen_indices: indices into those candidates
                # - policy_probs: probabilities over all K candidates [K]
                updated = reinforce_update_user_state(
                    user_state=user_state,
                    item_vectors=candidate_vectors,  # All candidates, not just chosen
                    chosen_indices=chosen_indices,   # Original indices into candidates
                    policy_probs=pending["last_policy_probs"],
                    reward_hat=feedback.reward,
                    gating=feedback.gating,
                    tau=self._rl_cfg["tau"],
                    eta_long=self._rl_cfg["eta_long"],
                    eta_short=self._rl_cfg["eta_short"],
                    ema_alpha=self._rl_cfg["ema_alpha"],
                    short_decay=self._rl_cfg["short_decay"],
                )
                
                if updated:
                    self._user_store.save_state(user_state)
        
        # Clear pending update
        ctx.pending_rl_update = None
    
    def get_user_state_summary(self, user_id: str) -> Dict[str, Any]:
        """
        Get a summary of the user's current state (for debugging/analysis).
        
        Args:
            user_id: The user to query.
        
        Returns:
            Dictionary with user state information.
        """
        user_state = self._user_store.get_state(user_id)
        ctx = self._sessions.get(user_id)
        
        user_memory_count = sum(
            1 for card in self._memory_cards if card.user_id == user_id
        )
        
        return {
            "user_id": user_id,
            "z_long_norm": float(np.linalg.norm(user_state.z_long)),
            "z_short_norm": float(np.linalg.norm(user_state.z_short)),
            "reward_ma": user_state.reward_ma,
            "session_history_length": len(ctx.session_state.history) if ctx else 0,
            "turn_counter": ctx.turn_counter if ctx else 0,
            "user_memory_count": user_memory_count,
            "total_memory_count": len(self._memory_cards),
        }
    
    def persist(self) -> None:
        """
        Persist all state to disk.
        
        Call this at the end of an evaluation run to save:
        - User state vectors
        - Memory cards
        """
        # Save user store
        self._user_store.persist()
        
        # Save memory cards
        with open(self._memory_cards_path, "w", encoding="utf-8") as f:
            for card in self._memory_cards:
                f.write(card.model_dump_json() + "\n")
        
        # Save embeddings
        np.save(self._memory_embeddings_path, self._memory_embeddings)
        
        # Save item projection with updated vectors
        if self._projection is not None:
            np.savez(
                self._item_projection_path,
                P=self._projection.P,
                mean=self._projection.mean,
                V=self._item_vectors,
            )
        
        print("[PersonalizedLLM] State persisted to disk.")


# =============================================================================
# Convenience Factory
# =============================================================================

def create_personalized_llm(
    config_path: Optional[str] = None,
    **kwargs
) -> PersonalizedLLM:
    """
    Factory function to create a PersonalizedLLM instance.
    
    Args:
        config_path: Optional path to configuration file.
        **kwargs: Additional arguments passed to PersonalizedLLM constructor.
    
    Returns:
        Configured PersonalizedLLM instance.
    """
    return PersonalizedLLM(config_path=config_path, **kwargs)