1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
|
#!/usr/bin/env python3
# analyze_results.py
"""
Results Analysis for RLVR Floating-Point Precision Experiments.
This script analyzes the experimental results to verify the hypotheses:
1. On-task performance is insensitive to floating-point noise
2. Off-task performance and KL divergence are sensitive to precision
Computes:
- Mean and variance of ΔJ_k for each precision mode
- KL divergence patterns for on-task vs off-task
- Statistical tests for significance
- Visualizations
Usage:
python analyze_results.py \
--results_dir results/eval_metrics \
--output_dir results/analysis
"""
import argparse
import json
import os
import glob
from typing import Dict, Any, List, Tuple, Optional
from collections import defaultdict
import logging
import numpy as np
from scipy import stats
# Optional: for visualizations
try:
import matplotlib.pyplot as plt
import matplotlib
matplotlib.use('Agg') # Non-interactive backend
HAS_MATPLOTLIB = True
except ImportError:
HAS_MATPLOTLIB = False
logging.basicConfig(
level=logging.INFO,
format="%(asctime)s - %(name)s - %(levelname)s - %(message)s"
)
logger = logging.getLogger(__name__)
# ============================================================================
# Data Loading
# ============================================================================
def load_eval_results(results_dir: str) -> Dict[str, Dict[str, Any]]:
"""
Load all evaluation results from a directory.
Returns:
Dictionary mapping "{precision_mode}_seed{seed}" to results
"""
results = {}
pattern = os.path.join(results_dir, "*.json")
for filepath in glob.glob(pattern):
filename = os.path.basename(filepath)
# Skip sparsity files
if "sparsity" in filename:
continue
# Parse filename: {precision_mode}_seed{seed}.json
name = filename.replace(".json", "")
try:
with open(filepath, "r") as f:
data = json.load(f)
results[name] = data
logger.info(f"Loaded {filepath}")
except Exception as e:
logger.warning(f"Failed to load {filepath}: {e}")
return results
def load_sparsity_results(results_dir: str) -> Dict[str, Dict[str, Any]]:
"""Load bf16 sparsity analysis results."""
results = {}
pattern = os.path.join(results_dir, "*_sparsity.json")
for filepath in glob.glob(pattern):
filename = os.path.basename(filepath)
name = filename.replace("_sparsity.json", "")
try:
with open(filepath, "r") as f:
data = json.load(f)
results[name] = data
logger.info(f"Loaded sparsity: {filepath}")
except Exception as e:
logger.warning(f"Failed to load {filepath}: {e}")
return results
def parse_run_name(name: str) -> Tuple[str, int]:
"""Parse run name to get precision mode and seed."""
# Format: {precision_mode}_seed{seed}
parts = name.split("_seed")
if len(parts) == 2:
precision_mode = parts[0]
seed = int(parts[1])
return precision_mode, seed
raise ValueError(f"Cannot parse run name: {name}")
# ============================================================================
# Metrics Aggregation
# ============================================================================
def aggregate_by_precision(
results: Dict[str, Dict[str, Any]]
) -> Dict[str, Dict[str, List[float]]]:
"""
Aggregate results by precision mode.
Returns:
{precision_mode: {task_name: [scores from different seeds]}}
"""
aggregated: Dict[str, Dict[str, List[float]]] = defaultdict(
lambda: defaultdict(list)
)
for run_name, run_results in results.items():
try:
precision_mode, seed = parse_run_name(run_name)
except ValueError:
continue
tasks = run_results.get("tasks", {})
for task_name, task_data in tasks.items():
# Score
if "ft_avg_score" in task_data:
aggregated[precision_mode][f"{task_name}_score"].append(
task_data["ft_avg_score"]
)
# Delta J
if "delta_j" in task_data:
aggregated[precision_mode][f"{task_name}_delta_j"].append(
task_data["delta_j"]
)
# KL
if "avg_kl" in task_data:
aggregated[precision_mode][f"{task_name}_kl"].append(
task_data["avg_kl"]
)
return dict(aggregated)
def compute_statistics(values: List[float]) -> Dict[str, float]:
"""Compute statistics for a list of values."""
if not values:
return {
"mean": 0.0,
"std": 0.0,
"var": 0.0,
"min": 0.0,
"max": 0.0,
"n": 0,
}
arr = np.array(values)
return {
"mean": float(np.mean(arr)),
"std": float(np.std(arr)),
"var": float(np.var(arr)),
"min": float(np.min(arr)),
"max": float(np.max(arr)),
"n": len(arr),
}
# ============================================================================
# Hypothesis Testing
# ============================================================================
def test_variance_ratio(
values1: List[float],
values2: List[float],
alpha: float = 0.05
) -> Dict[str, Any]:
"""
Test if variance of values2 is significantly greater than values1.
Uses F-test (Levene's test is more robust but F-test is simpler).
"""
if len(values1) < 2 or len(values2) < 2:
return {
"test": "variance_ratio",
"valid": False,
"reason": "Not enough samples",
}
var1 = np.var(values1, ddof=1)
var2 = np.var(values2, ddof=1)
# F statistic
if var1 > 0:
f_stat = var2 / var1
else:
f_stat = float("inf")
df1 = len(values2) - 1
df2 = len(values1) - 1
# p-value (one-tailed: var2 > var1)
p_value = 1 - stats.f.cdf(f_stat, df1, df2)
return {
"test": "variance_ratio",
"valid": True,
"var1": var1,
"var2": var2,
"f_statistic": f_stat,
"p_value": p_value,
"significant": p_value < alpha,
"alpha": alpha,
}
def test_mean_difference(
values1: List[float],
values2: List[float],
alpha: float = 0.05
) -> Dict[str, Any]:
"""
Test if means are significantly different (two-tailed t-test).
"""
if len(values1) < 2 or len(values2) < 2:
return {
"test": "mean_difference",
"valid": False,
"reason": "Not enough samples",
}
t_stat, p_value = stats.ttest_ind(values1, values2)
return {
"test": "mean_difference",
"valid": True,
"mean1": float(np.mean(values1)),
"mean2": float(np.mean(values2)),
"t_statistic": float(t_stat),
"p_value": float(p_value),
"significant": p_value < alpha,
"alpha": alpha,
}
# ============================================================================
# Hypothesis Verification
# ============================================================================
def verify_hypothesis_1(
aggregated: Dict[str, Dict[str, List[float]]],
on_task_names: List[str]
) -> Dict[str, Any]:
"""
Verify Hypothesis 1: On-task performance is insensitive to precision.
Expected:
- E[ΔJ_0^{fp32}] ≈ E[ΔJ_0^{bf16}] > 0
- Var[ΔJ_0^{fp32}] and Var[ΔJ_0^{bf16}] are both small
"""
results = {
"hypothesis": "On-task performance insensitive to precision",
"tasks": {},
}
fp32_data = aggregated.get("fp32", {})
bf16_data = aggregated.get("bf16", {})
for task_name in on_task_names:
key = f"{task_name}_delta_j"
fp32_values = fp32_data.get(key, [])
bf16_values = bf16_data.get(key, [])
task_result = {
"fp32": compute_statistics(fp32_values),
"bf16": compute_statistics(bf16_values),
}
# Test mean difference (should NOT be significant)
mean_test = test_mean_difference(fp32_values, bf16_values)
task_result["mean_test"] = mean_test
# Test variance ratio (should NOT show bf16 >> fp32)
var_test = test_variance_ratio(fp32_values, bf16_values)
task_result["variance_test"] = var_test
# Verify expected pattern
fp32_mean = task_result["fp32"]["mean"]
bf16_mean = task_result["bf16"]["mean"]
fp32_var = task_result["fp32"]["var"]
bf16_var = task_result["bf16"]["var"]
task_result["verification"] = {
"means_similar": abs(fp32_mean - bf16_mean) < 0.05, # Within 5%
"both_positive": fp32_mean > 0 and bf16_mean > 0,
"variances_small": fp32_var < 0.01 and bf16_var < 0.01,
"hypothesis_supported": (
abs(fp32_mean - bf16_mean) < 0.05 and
fp32_mean > 0 and bf16_mean > 0
),
}
results["tasks"][task_name] = task_result
# Overall verdict
all_supported = all(
t["verification"]["hypothesis_supported"]
for t in results["tasks"].values()
)
results["overall_supported"] = all_supported
return results
def verify_hypothesis_2(
aggregated: Dict[str, Dict[str, List[float]]],
off_task_names: List[str],
on_task_names: List[str]
) -> Dict[str, Any]:
"""
Verify Hypothesis 2: Off-task performance is sensitive to precision.
Expected:
- Var[ΔJ_k^{bf16}] >> Var[ΔJ_k^{fp32}] >> Var[ΔJ_0]
"""
results = {
"hypothesis": "Off-task performance sensitive to precision",
"tasks": {},
}
fp32_data = aggregated.get("fp32", {})
bf16_data = aggregated.get("bf16", {})
# Get on-task variance for comparison
on_task_variances = []
for task_name in on_task_names:
key = f"{task_name}_delta_j"
for precision_data in [fp32_data, bf16_data]:
values = precision_data.get(key, [])
if values:
on_task_variances.append(np.var(values))
on_task_avg_var = np.mean(on_task_variances) if on_task_variances else 0.0
for task_name in off_task_names:
key = f"{task_name}_delta_j"
fp32_values = fp32_data.get(key, [])
bf16_values = bf16_data.get(key, [])
task_result = {
"fp32": compute_statistics(fp32_values),
"bf16": compute_statistics(bf16_values),
"on_task_avg_var": on_task_avg_var,
}
# Test variance ratio (bf16 should be >> fp32)
var_test = test_variance_ratio(fp32_values, bf16_values)
task_result["variance_test"] = var_test
# Verify expected pattern
fp32_var = task_result["fp32"]["var"]
bf16_var = task_result["bf16"]["var"]
task_result["verification"] = {
"bf16_var_gt_fp32": bf16_var > fp32_var,
"bf16_var_gt_fp32_by_5x": bf16_var > 5 * fp32_var if fp32_var > 0 else False,
"fp32_var_gt_ontask": fp32_var > on_task_avg_var,
"variance_ratio": bf16_var / fp32_var if fp32_var > 0 else float("inf"),
"hypothesis_supported": bf16_var > fp32_var,
}
results["tasks"][task_name] = task_result
# Count how many tasks show expected pattern
supported_count = sum(
1 for t in results["tasks"].values()
if t["verification"]["hypothesis_supported"]
)
results["num_tasks_supported"] = supported_count
results["num_tasks_total"] = len(off_task_names)
results["overall_supported"] = supported_count > len(off_task_names) // 2
return results
def verify_hypothesis_3(
aggregated: Dict[str, Dict[str, List[float]]],
on_task_names: List[str],
off_task_names: List[str]
) -> Dict[str, Any]:
"""
Verify Hypothesis 3: KL divergence patterns.
Expected:
- On-task KL is similar between fp32 and bf16 (DAPO implicit leash)
- Off-task KL has higher variance in bf16
"""
results = {
"hypothesis": "KL divergence patterns differ by task type",
"on_task": {},
"off_task": {},
}
fp32_data = aggregated.get("fp32", {})
bf16_data = aggregated.get("bf16", {})
# On-task KL analysis
for task_name in on_task_names:
key = f"{task_name}_kl"
fp32_values = fp32_data.get(key, [])
bf16_values = bf16_data.get(key, [])
task_result = {
"fp32": compute_statistics(fp32_values),
"bf16": compute_statistics(bf16_values),
}
mean_test = test_mean_difference(fp32_values, bf16_values)
task_result["mean_test"] = mean_test
# Verify: KL should be similar (implicit leash working)
task_result["kl_similar"] = not mean_test.get("significant", True)
results["on_task"][task_name] = task_result
# Off-task KL analysis
for task_name in off_task_names:
key = f"{task_name}_kl"
fp32_values = fp32_data.get(key, [])
bf16_values = bf16_data.get(key, [])
task_result = {
"fp32": compute_statistics(fp32_values),
"bf16": compute_statistics(bf16_values),
}
var_test = test_variance_ratio(fp32_values, bf16_values)
task_result["variance_test"] = var_test
# Verify: bf16 should have higher variance
task_result["bf16_higher_variance"] = var_test.get("significant", False)
results["off_task"][task_name] = task_result
# Overall assessment
on_task_similar = all(
t.get("kl_similar", False) for t in results["on_task"].values()
)
off_task_variance_higher = sum(
1 for t in results["off_task"].values()
if t.get("bf16_higher_variance", False)
)
results["summary"] = {
"on_task_kl_similar": on_task_similar,
"off_task_higher_variance_count": off_task_variance_higher,
"off_task_total": len(off_task_names),
}
return results
# ============================================================================
# Visualization
# ============================================================================
def plot_delta_j_comparison(
aggregated: Dict[str, Dict[str, List[float]]],
task_names: List[str],
output_path: str
) -> None:
"""Plot ΔJ comparison between precision modes."""
if not HAS_MATPLOTLIB:
logger.warning("matplotlib not available, skipping plot")
return
fig, ax = plt.subplots(figsize=(12, 6))
x = np.arange(len(task_names))
width = 0.35
fp32_data = aggregated.get("fp32", {})
bf16_data = aggregated.get("bf16", {})
fp32_means = []
fp32_stds = []
bf16_means = []
bf16_stds = []
for task_name in task_names:
key = f"{task_name}_delta_j"
fp32_values = fp32_data.get(key, [0])
bf16_values = bf16_data.get(key, [0])
fp32_means.append(np.mean(fp32_values))
fp32_stds.append(np.std(fp32_values))
bf16_means.append(np.mean(bf16_values))
bf16_stds.append(np.std(bf16_values))
ax.bar(x - width/2, fp32_means, width, yerr=fp32_stds,
label='FP32', color='steelblue', capsize=5)
ax.bar(x + width/2, bf16_means, width, yerr=bf16_stds,
label='bf16', color='coral', capsize=5)
ax.set_ylabel('ΔJ (Performance Delta)')
ax.set_xlabel('Task')
ax.set_title('Performance Delta by Precision Mode')
ax.set_xticks(x)
ax.set_xticklabels(task_names, rotation=45, ha='right')
ax.legend()
ax.axhline(y=0, color='gray', linestyle='--', alpha=0.5)
plt.tight_layout()
plt.savefig(output_path, dpi=150)
plt.close()
logger.info(f"Saved plot to {output_path}")
def plot_variance_comparison(
aggregated: Dict[str, Dict[str, List[float]]],
task_names: List[str],
output_path: str
) -> None:
"""Plot variance comparison between precision modes."""
if not HAS_MATPLOTLIB:
logger.warning("matplotlib not available, skipping plot")
return
fig, ax = plt.subplots(figsize=(12, 6))
x = np.arange(len(task_names))
width = 0.35
fp32_data = aggregated.get("fp32", {})
bf16_data = aggregated.get("bf16", {})
fp32_vars = []
bf16_vars = []
for task_name in task_names:
key = f"{task_name}_delta_j"
fp32_values = fp32_data.get(key, [0])
bf16_values = bf16_data.get(key, [0])
fp32_vars.append(np.var(fp32_values))
bf16_vars.append(np.var(bf16_values))
ax.bar(x - width/2, fp32_vars, width, label='FP32', color='steelblue')
ax.bar(x + width/2, bf16_vars, width, label='bf16', color='coral')
ax.set_ylabel('Variance of ΔJ')
ax.set_xlabel('Task')
ax.set_title('Variance of Performance Delta by Precision Mode')
ax.set_xticks(x)
ax.set_xticklabels(task_names, rotation=45, ha='right')
ax.legend()
ax.set_yscale('log')
plt.tight_layout()
plt.savefig(output_path, dpi=150)
plt.close()
logger.info(f"Saved plot to {output_path}")
# ============================================================================
# Main Analysis
# ============================================================================
def parse_args() -> argparse.Namespace:
"""Parse command line arguments."""
parser = argparse.ArgumentParser(
description="Analyze RLVR floating-point precision experiment results"
)
parser.add_argument(
"--results_dir",
type=str,
required=True,
help="Directory containing evaluation results"
)
parser.add_argument(
"--output_dir",
type=str,
required=True,
help="Directory to save analysis outputs"
)
parser.add_argument(
"--on_task",
type=str,
nargs="+",
default=["dm_val"],
help="On-task (training distribution) task names"
)
parser.add_argument(
"--off_task",
type=str,
nargs="+",
default=["aime24", "aime25", "amc23", "math500", "mmlu_stem", "humaneval"],
help="Off-task task names"
)
return parser.parse_args()
def main() -> None:
"""Main analysis function."""
args = parse_args()
# Create output directory
os.makedirs(args.output_dir, exist_ok=True)
# Load results
logger.info(f"Loading results from {args.results_dir}")
eval_results = load_eval_results(args.results_dir)
sparsity_results = load_sparsity_results(args.results_dir)
if not eval_results:
logger.error("No evaluation results found!")
return
# Aggregate by precision mode
aggregated = aggregate_by_precision(eval_results)
# Get all task names from results
all_tasks = set()
for run_results in eval_results.values():
all_tasks.update(run_results.get("tasks", {}).keys())
# Filter task names to those present in results
on_task_names = [t for t in args.on_task if t in all_tasks]
off_task_names = [t for t in args.off_task if t in all_tasks]
logger.info(f"On-task: {on_task_names}")
logger.info(f"Off-task: {off_task_names}")
# Verify hypotheses
analysis = {}
logger.info("\n" + "="*60)
logger.info("HYPOTHESIS 1: On-task insensitivity")
logger.info("="*60)
h1_result = verify_hypothesis_1(aggregated, on_task_names)
analysis["hypothesis_1"] = h1_result
logger.info(f"Supported: {h1_result['overall_supported']}")
logger.info("\n" + "="*60)
logger.info("HYPOTHESIS 2: Off-task sensitivity")
logger.info("="*60)
h2_result = verify_hypothesis_2(aggregated, off_task_names, on_task_names)
analysis["hypothesis_2"] = h2_result
logger.info(f"Supported: {h2_result['overall_supported']} "
f"({h2_result['num_tasks_supported']}/{h2_result['num_tasks_total']} tasks)")
logger.info("\n" + "="*60)
logger.info("HYPOTHESIS 3: KL divergence patterns")
logger.info("="*60)
h3_result = verify_hypothesis_3(aggregated, on_task_names, off_task_names)
analysis["hypothesis_3"] = h3_result
logger.info(f"On-task KL similar: {h3_result['summary']['on_task_kl_similar']}")
# Add sparsity analysis
if sparsity_results:
sparsity_summary = {}
for name, data in sparsity_results.items():
sparsity_info = data.get("sparsity", {})
sparsity_summary[name] = {
"sparsity_percent": sparsity_info.get("sparsity_percent", 0),
"num_changed": sparsity_info.get("num_changed", 0),
}
analysis["bf16_sparsity"] = sparsity_summary
# Save full analysis
analysis_path = os.path.join(args.output_dir, "full_analysis.json")
with open(analysis_path, "w") as f:
json.dump(analysis, f, indent=2, default=str)
logger.info(f"Saved analysis to {analysis_path}")
# Generate plots
all_task_names = on_task_names + off_task_names
plot_delta_j_comparison(
aggregated,
all_task_names,
os.path.join(args.output_dir, "delta_j_comparison.png")
)
plot_variance_comparison(
aggregated,
all_task_names,
os.path.join(args.output_dir, "variance_comparison.png")
)
# Print summary
print("\n" + "="*80)
print("ANALYSIS SUMMARY")
print("="*80)
print("\nHypothesis 1 (On-task insensitivity):")
print(f" Supported: {h1_result['overall_supported']}")
print("\nHypothesis 2 (Off-task sensitivity):")
print(f" Supported: {h2_result['overall_supported']}")
print(f" Tasks showing expected pattern: {h2_result['num_tasks_supported']}/{h2_result['num_tasks_total']}")
print("\nHypothesis 3 (KL patterns):")
print(f" On-task KL similar across precision: {h3_result['summary']['on_task_kl_similar']}")
print(f" Off-task with higher bf16 variance: {h3_result['summary']['off_task_higher_variance_count']}/{h3_result['summary']['off_task_total']}")
if sparsity_results:
print("\nbf16 Sparsity:")
for name, data in sorted(sparsity_summary.items()):
print(f" {name}: {data['sparsity_percent']:.1f}% sparse")
print("="*80)
if __name__ == "__main__":
main()
|