1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
|
#!/usr/bin/env python3
# train_rlvr.py
"""
RLVR Training Script with DAPO Algorithm.
This script implements the training loop for reinforcement learning with
verifiable rewards (RLVR) using the DAPO algorithm. It supports two precision
configurations:
- P-high (fp32): High precision master weights for low numerical noise
- P-bf16: Default RLVR configuration with bf16 master weights
The script integrates with VeRL framework for distributed RL training.
Usage:
python train_rlvr.py \
--precision_mode fp32 \
--seed 1 \
--output_dir results/train_logs/fp32_seed1 \
--train_dataset_path data/dm_train.json
"""
import argparse
import json
import os
import random
import logging
from typing import Dict, Any, List, Optional, Tuple
from dataclasses import asdict
import numpy as np
import torch
import torch.distributed as dist
from torch.cuda.amp import autocast, GradScaler
from transformers import AutoModelForCausalLM, AutoTokenizer
import deepspeed
from config import (
make_training_config,
make_precision_config,
TrainingConfig,
PrecisionConfig,
)
# Configure logging
logging.basicConfig(
level=logging.INFO,
format="%(asctime)s - %(name)s - %(levelname)s - %(message)s"
)
logger = logging.getLogger(__name__)
# ============================================================================
# Seed and Determinism Utilities
# ============================================================================
def set_seed(seed: int) -> None:
"""Set random seeds for reproducibility."""
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
# For hash-based operations
os.environ["PYTHONHASHSEED"] = str(seed)
logger.info(f"Set random seed to {seed}")
def configure_torch_deterministic(deterministic: bool) -> None:
"""Configure PyTorch deterministic algorithms."""
if deterministic:
torch.use_deterministic_algorithms(True, warn_only=True)
torch.backends.cudnn.benchmark = False
torch.backends.cudnn.deterministic = True
os.environ["CUBLAS_WORKSPACE_CONFIG"] = ":4096:8"
logger.info("Enabled deterministic algorithms")
else:
torch.use_deterministic_algorithms(False)
torch.backends.cudnn.benchmark = True
torch.backends.cudnn.deterministic = False
logger.info("Using non-deterministic algorithms (default)")
# ============================================================================
# Model Utilities
# ============================================================================
def get_torch_dtype(dtype_str: str) -> torch.dtype:
"""Convert string dtype to torch.dtype."""
dtype_map = {
"float32": torch.float32,
"float16": torch.float16,
"bfloat16": torch.bfloat16,
}
if dtype_str not in dtype_map:
raise ValueError(f"Unknown dtype: {dtype_str}")
return dtype_map[dtype_str]
def cast_model_param_dtype(
model: torch.nn.Module,
param_dtype: str
) -> torch.nn.Module:
"""Cast model parameters to specified dtype."""
dtype = get_torch_dtype(param_dtype)
model.to(dtype=dtype)
logger.info(f"Cast model parameters to {param_dtype}")
return model
def disable_dropout(model: torch.nn.Module) -> None:
"""Disable all dropout layers in the model."""
for module in model.modules():
if isinstance(module, torch.nn.Dropout):
module.p = 0.0
logger.info("Disabled all dropout layers")
def count_parameters(model: torch.nn.Module) -> int:
"""Count trainable parameters."""
return sum(p.numel() for p in model.parameters() if p.requires_grad)
# ============================================================================
# Data Loading
# ============================================================================
def load_training_data(dataset_path: str) -> List[Dict[str, Any]]:
"""Load training dataset from JSON file."""
with open(dataset_path, "r", encoding="utf-8") as f:
data = json.load(f)
logger.info(f"Loaded {len(data)} training examples from {dataset_path}")
return data
def sample_batch(
data: List[Dict[str, Any]],
batch_size: int,
rng: np.random.Generator
) -> List[Dict[str, Any]]:
"""Sample a batch of prompts from the dataset."""
indices = rng.choice(len(data), size=min(batch_size, len(data)), replace=False)
return [data[i] for i in indices]
# ============================================================================
# Reward Function (Math Verifier)
# ============================================================================
def compute_math_reward(
prompt: str,
response: str,
ground_truth: Optional[str] = None
) -> float:
"""
Compute reward for a math problem response.
Uses a simple rule-based verifier. In production, this should be replaced
with Eval-Chemy or similar math verification system.
Args:
prompt: The math problem prompt
response: The model's generated response
ground_truth: The expected answer (if available)
Returns:
+1.0 if correct, -1.0 if incorrect
"""
# TODO: Replace with actual math verifier (Eval-Chemy)
# This is a placeholder implementation
if ground_truth is None:
# Cannot verify without ground truth
return 0.0
# Extract final answer from response (simple heuristic)
response_lower = response.lower().strip()
gt_lower = ground_truth.lower().strip()
# Check for common answer formats
answer_markers = ["the answer is", "therefore", "=", "\\boxed{"]
for marker in answer_markers:
if marker in response_lower:
idx = response_lower.rfind(marker)
potential_answer = response_lower[idx:].strip()
if gt_lower in potential_answer:
return 1.0
# Direct containment check as fallback
if gt_lower in response_lower:
return 1.0
return -1.0
# ============================================================================
# DAPO Algorithm Implementation
# ============================================================================
class DAPOTrainer:
"""
DAPO (Direct Alignment from Preferences Optimization) Trainer.
Implements clip-only DAPO with implicit KL constraint through ratio clipping.
This is a simplified implementation - for production use VeRL's DapoTrainer.
"""
def __init__(
self,
model_engine, # DeepSpeed engine or raw model
ref_model: torch.nn.Module,
tokenizer,
train_config: TrainingConfig,
precision_config: PrecisionConfig,
device: torch.device,
ref_device: Optional[torch.device] = None,
use_deepspeed: bool = False
) -> None:
self.use_deepspeed = use_deepspeed
if use_deepspeed:
self.model_engine = model_engine
self.model = model_engine.module
else:
self.model = model_engine
self.model_engine = None
self.ref_model = ref_model
self.tokenizer = tokenizer
self.train_config = train_config
self.precision_config = precision_config
self.device = device
self.ref_device = ref_device if ref_device is not None else device
# Freeze reference model
for param in self.ref_model.parameters():
param.requires_grad = False
self.ref_model.eval()
# Setup optimizer (only if not using DeepSpeed)
if not use_deepspeed:
self.optimizer = torch.optim.AdamW(
self.model.parameters(),
lr=train_config.learning_rate,
betas=(train_config.beta1, train_config.beta2),
weight_decay=train_config.weight_decay
)
else:
self.optimizer = None # DeepSpeed manages optimizer
# Setup AMP scaler if using fp16 (not needed with DeepSpeed)
self.scaler = None
if not use_deepspeed and precision_config.use_amp and precision_config.amp_dtype == "float16":
self.scaler = GradScaler()
# Training state
self.global_step = 0
self.rng = np.random.default_rng(train_config.seed)
# Metrics tracking
self.metrics_history: List[Dict[str, float]] = []
def compute_log_probs(
self,
model: torch.nn.Module,
input_ids: torch.Tensor,
attention_mask: torch.Tensor,
labels: torch.Tensor
) -> torch.Tensor:
"""Compute token-level log probabilities."""
with autocast(
enabled=self.precision_config.use_amp,
dtype=get_torch_dtype(self.precision_config.amp_dtype)
):
outputs = model(
input_ids=input_ids,
attention_mask=attention_mask,
use_cache=False
)
logits = outputs.logits
log_probs = torch.log_softmax(logits, dim=-1)
# Gather log probs for actual tokens
# Shift for autoregressive: predict next token
shift_log_probs = log_probs[:, :-1, :]
shift_labels = labels[:, 1:]
token_log_probs = torch.gather(
shift_log_probs,
dim=-1,
index=shift_labels.unsqueeze(-1)
).squeeze(-1)
return token_log_probs
def compute_dapo_loss(
self,
policy_log_probs: torch.Tensor,
ref_log_probs: torch.Tensor,
rewards: torch.Tensor,
response_mask: torch.Tensor
) -> Tuple[torch.Tensor, Dict[str, float]]:
"""
Compute DAPO clip-only loss.
DAPO uses ratio clipping without explicit KL penalty (beta=0).
The clipping provides implicit KL constraint (Gate I).
"""
# Compute log ratios
log_ratios = policy_log_probs - ref_log_probs
# Sum log ratios over response tokens
masked_log_ratios = log_ratios * response_mask
sequence_log_ratios = masked_log_ratios.sum(dim=-1)
# Compute importance sampling ratios
ratios = torch.exp(sequence_log_ratios)
# DAPO objective with clipping
clip_ratio = self.train_config.clip_ratio
# Advantage estimation (simplified: just use rewards)
advantages = rewards
# Clipped surrogate objective
unclipped = ratios * advantages
clipped = torch.clamp(ratios, 1 - clip_ratio, 1 + clip_ratio) * advantages
# Take minimum for pessimistic update
loss = -torch.min(unclipped, clipped).mean()
# Compute metrics
with torch.no_grad():
approx_kl = (log_ratios * response_mask).sum() / response_mask.sum()
clip_fraction = ((ratios - 1).abs() > clip_ratio).float().mean()
metrics = {
"loss": loss.item(),
"approx_kl": approx_kl.item(),
"clip_fraction": clip_fraction.item(),
"mean_ratio": ratios.mean().item(),
"mean_reward": rewards.mean().item(),
}
return loss, metrics
def generate_rollouts(
self,
prompts: List[str],
num_samples: int
) -> List[Dict[str, Any]]:
"""Generate rollouts for a batch of prompts."""
rollouts = []
self.model.eval()
with torch.no_grad():
for prompt in prompts:
inputs = self.tokenizer(
prompt,
return_tensors="pt",
truncation=True,
max_length=self.train_config.max_seq_len // 2
).to(self.device)
for _ in range(num_samples):
with autocast(
enabled=self.precision_config.use_amp,
dtype=get_torch_dtype(self.precision_config.amp_dtype)
):
outputs = self.model.generate(
**inputs,
max_new_tokens=self.train_config.max_seq_len // 2,
do_sample=True,
temperature=0.7,
top_p=0.8,
pad_token_id=self.tokenizer.eos_token_id
)
response_ids = outputs[0, inputs["input_ids"].shape[1]:]
response_text = self.tokenizer.decode(
response_ids,
skip_special_tokens=True
)
rollouts.append({
"prompt": prompt,
"response": response_text,
"input_ids": inputs["input_ids"][0],
"response_ids": response_ids,
"full_ids": outputs[0]
})
self.model.train()
return rollouts
def train_step(
self,
batch: List[Dict[str, Any]]
) -> Dict[str, float]:
"""Execute one training step on a batch."""
self.model.train()
# Generate rollouts
prompts = [ex["prompt"] for ex in batch]
ground_truths = [ex.get("answer", None) for ex in batch]
rollouts = self.generate_rollouts(
prompts,
self.train_config.num_rollouts_per_prompt
)
# Compute rewards
rewards = []
for i, rollout in enumerate(rollouts):
prompt_idx = i // self.train_config.num_rollouts_per_prompt
gt = ground_truths[prompt_idx] if prompt_idx < len(ground_truths) else None
reward = compute_math_reward(rollout["prompt"], rollout["response"], gt)
rewards.append(reward)
rewards_tensor = torch.tensor(rewards, device=self.device, dtype=torch.float32)
# Skip if all rewards are the same (no learning signal)
if rewards_tensor.std() < 1e-6:
return {"skipped": 1.0}
# Normalize rewards per prompt (advantage estimation)
rewards_per_prompt = rewards_tensor.view(-1, self.train_config.num_rollouts_per_prompt)
normalized_rewards = (rewards_per_prompt - rewards_per_prompt.mean(dim=1, keepdim=True))
normalized_rewards = normalized_rewards / (rewards_per_prompt.std(dim=1, keepdim=True) + 1e-8)
normalized_rewards = normalized_rewards.view(-1)
# Prepare for training (DeepSpeed handles zero_grad internally)
if not self.use_deepspeed:
self.optimizer.zero_grad()
total_loss = 0.0
all_metrics: Dict[str, List[float]] = {}
# Process rollouts in micro-batches
num_rollouts = len(rollouts)
micro_batch_size = self.train_config.micro_batch_size
for mb_start in range(0, num_rollouts, micro_batch_size):
mb_end = min(mb_start + micro_batch_size, num_rollouts)
mb_rollouts = rollouts[mb_start:mb_end]
mb_rewards = normalized_rewards[mb_start:mb_end]
# Prepare batch tensors
max_len = max(len(r["full_ids"]) for r in mb_rollouts)
batch_input_ids = torch.zeros(len(mb_rollouts), max_len, dtype=torch.long, device=self.device)
batch_attention_mask = torch.zeros(len(mb_rollouts), max_len, dtype=torch.long, device=self.device)
batch_response_mask = torch.zeros(len(mb_rollouts), max_len - 1, dtype=torch.float32, device=self.device)
for i, rollout in enumerate(mb_rollouts):
seq_len = len(rollout["full_ids"])
batch_input_ids[i, :seq_len] = rollout["full_ids"]
batch_attention_mask[i, :seq_len] = 1
prompt_len = len(rollout["input_ids"])
batch_response_mask[i, prompt_len-1:seq_len-1] = 1
# Compute log probs for policy and reference
policy_log_probs = self.compute_log_probs(
self.model,
batch_input_ids,
batch_attention_mask,
batch_input_ids
)
with torch.no_grad():
# Move tensors to ref_device if different from training device
if self.ref_device != self.device:
ref_input_ids = batch_input_ids.to(self.ref_device)
ref_attention_mask = batch_attention_mask.to(self.ref_device)
else:
ref_input_ids = batch_input_ids
ref_attention_mask = batch_attention_mask
ref_log_probs = self.compute_log_probs(
self.ref_model,
ref_input_ids,
ref_attention_mask,
ref_input_ids
)
# Move ref_log_probs back to training device
if self.ref_device != self.device:
ref_log_probs = ref_log_probs.to(self.device)
# Compute DAPO loss
loss, metrics = self.compute_dapo_loss(
policy_log_probs,
ref_log_probs,
mb_rewards,
batch_response_mask
)
# Scale loss for gradient accumulation (DeepSpeed handles this internally)
if self.use_deepspeed:
scaled_loss = loss
else:
scaled_loss = loss / self.train_config.grad_accumulation_steps
# Backward pass
if self.use_deepspeed:
self.model_engine.backward(scaled_loss)
elif self.scaler is not None:
self.scaler.scale(scaled_loss).backward()
else:
scaled_loss.backward()
total_loss += loss.item()
for k, v in metrics.items():
if k not in all_metrics:
all_metrics[k] = []
all_metrics[k].append(v)
# Optimizer step
if self.use_deepspeed:
self.model_engine.step()
elif self.scaler is not None:
self.scaler.step(self.optimizer)
self.scaler.update()
else:
self.optimizer.step()
self.global_step += 1
# Aggregate metrics
step_metrics = {k: np.mean(v) for k, v in all_metrics.items()}
step_metrics["total_loss"] = total_loss
step_metrics["step"] = self.global_step
self.metrics_history.append(step_metrics)
return step_metrics
def train(
self,
train_data: List[Dict[str, Any]],
save_checkpoints: bool = True
) -> None:
"""Run the full training loop."""
logger.info(f"Starting training for {self.train_config.num_steps} steps")
checkpoint_steps = set(self.train_config.checkpoint_steps)
for step in range(self.train_config.num_steps):
# Sample batch
batch = sample_batch(
train_data,
self.train_config.global_batch_size // self.train_config.num_rollouts_per_prompt,
self.rng
)
# Training step
metrics = self.train_step(batch)
# Logging
if step % 10 == 0:
logger.info(
f"Step {step}/{self.train_config.num_steps} | "
f"Loss: {metrics.get('total_loss', 0):.4f} | "
f"KL: {metrics.get('approx_kl', 0):.4f} | "
f"Reward: {metrics.get('mean_reward', 0):.4f}"
)
# Checkpointing
if save_checkpoints and (step + 1) in checkpoint_steps:
self.save_checkpoint(step + 1)
def save_checkpoint(self, step: int) -> None:
"""Save model checkpoint."""
ckpt_dir = os.path.join(
self.train_config.output_dir,
f"checkpoint_step{step}"
)
os.makedirs(ckpt_dir, exist_ok=True)
if self.use_deepspeed:
# Use DeepSpeed's save_checkpoint for proper ZeRO handling
self.model_engine.save_checkpoint(ckpt_dir, tag=f"step{step}")
else:
self.model.save_pretrained(ckpt_dir)
# Save training state
state = {
"step": step,
"optimizer_state_dict": self.optimizer.state_dict(),
"metrics_history": self.metrics_history,
}
torch.save(state, os.path.join(ckpt_dir, "training_state.pt"))
self.tokenizer.save_pretrained(ckpt_dir)
logger.info(f"Saved checkpoint at step {step} to {ckpt_dir}")
def save_final(self) -> str:
"""Save final model."""
final_dir = os.path.join(self.train_config.output_dir, "final_model")
os.makedirs(final_dir, exist_ok=True)
if self.use_deepspeed:
# Use DeepSpeed's save_checkpoint for proper ZeRO-3 weight gathering
self.model_engine.save_checkpoint(final_dir, tag="final")
else:
self.model.save_pretrained(final_dir)
self.tokenizer.save_pretrained(final_dir)
# Save metrics
with open(os.path.join(final_dir, "metrics_history.json"), "w") as f:
json.dump(self.metrics_history, f, indent=2)
logger.info(f"Saved final model to {final_dir}")
return final_dir
# ============================================================================
# Main Entry Point
# ============================================================================
def parse_args() -> argparse.Namespace:
"""Parse command line arguments."""
parser = argparse.ArgumentParser(
description="RLVR Training with DAPO Algorithm"
)
parser.add_argument(
"--precision_mode",
type=str,
required=True,
choices=["fp32", "bf16"],
help="Precision mode: fp32 (high precision) or bf16 (default RLVR)"
)
parser.add_argument(
"--seed",
type=int,
required=True,
help="Random seed for reproducibility"
)
parser.add_argument(
"--output_dir",
type=str,
required=True,
help="Directory to save outputs"
)
parser.add_argument(
"--train_dataset_path",
type=str,
required=True,
help="Path to training dataset JSON"
)
parser.add_argument(
"--model_name",
type=str,
default="Qwen/Qwen2.5-Math-7B",
help="HuggingFace model identifier"
)
parser.add_argument(
"--num_steps",
type=int,
default=300,
help="Number of training steps"
)
parser.add_argument(
"--device",
type=str,
default="cuda",
help="Device to use for training"
)
parser.add_argument(
"--deepspeed",
type=str,
default=None,
help="Path to DeepSpeed config file"
)
parser.add_argument(
"--local_rank",
type=int,
default=-1,
help="Local rank for distributed training (set by DeepSpeed)"
)
return parser.parse_args()
def main() -> None:
"""Main training function."""
args = parse_args()
# Create configurations
train_config = make_training_config(
precision_mode=args.precision_mode,
seed=args.seed,
output_dir=args.output_dir,
train_dataset_path=args.train_dataset_path,
model_name=args.model_name
)
train_config.num_steps = args.num_steps
precision_config = make_precision_config(args.precision_mode)
# Setup output directory
os.makedirs(train_config.output_dir, exist_ok=True)
# Save configurations
with open(os.path.join(train_config.output_dir, "train_config.json"), "w") as f:
json.dump(asdict(train_config), f, indent=2)
with open(os.path.join(train_config.output_dir, "precision_config.json"), "w") as f:
json.dump(asdict(precision_config), f, indent=2)
# Set seeds and determinism
set_seed(train_config.seed)
configure_torch_deterministic(precision_config.deterministic)
# Check if using DeepSpeed
use_deepspeed = args.deepspeed is not None
# Setup devices
num_gpus = torch.cuda.device_count()
if use_deepspeed:
# Initialize DeepSpeed distributed
deepspeed.init_distributed()
local_rank = args.local_rank if args.local_rank >= 0 else int(os.environ.get("LOCAL_RANK", 0))
device = torch.device(f"cuda:{local_rank}")
torch.cuda.set_device(device)
# Put reference model on same GPU as training (each rank has its own copy)
# ZeRO-2 shards optimizer states, so there's room for the bf16 ref model (~14GB)
ref_device = device
logger.info(f"DeepSpeed: rank {local_rank}, training on {device}, ref model on {ref_device}")
else:
device = torch.device(args.device if torch.cuda.is_available() else "cpu")
if num_gpus >= 2:
ref_device = torch.device("cuda:1")
logger.info(f"Using device: {device} for training, {ref_device} for reference model")
else:
ref_device = device
logger.info(f"Using device: {device} for both training and reference model")
# Load tokenizer
tokenizer = AutoTokenizer.from_pretrained(
train_config.model_name,
use_fast=True,
trust_remote_code=True
)
tokenizer.padding_side = "left"
if tokenizer.pad_token is None:
tokenizer.pad_token = tokenizer.eos_token
# Load model
logger.info(f"Loading model: {train_config.model_name}")
model = AutoModelForCausalLM.from_pretrained(
train_config.model_name,
torch_dtype=torch.float32, # Load in FP32 first
device_map=None,
trust_remote_code=True
)
# Cast to target precision
model = cast_model_param_dtype(model, precision_config.param_dtype)
# Enable gradient checkpointing to save memory (trades compute for memory)
model.gradient_checkpointing_enable()
logger.info("Enabled gradient checkpointing to reduce memory usage")
# Disable dropout if needed
if not train_config.use_dropout:
disable_dropout(model)
logger.info(f"Model loaded with {count_parameters(model):,} trainable parameters")
# Initialize DeepSpeed or move model to device
if use_deepspeed:
# Create optimizer for DeepSpeed
optimizer = torch.optim.AdamW(
model.parameters(),
lr=train_config.learning_rate,
betas=(train_config.beta1, train_config.beta2),
weight_decay=train_config.weight_decay
)
# Load DeepSpeed config
with open(args.deepspeed, 'r') as f:
ds_config = json.load(f)
# Compute batch sizes compatible with DeepSpeed
# DeepSpeed requires: train_batch_size = micro_batch * grad_acc * world_size
world_size = int(os.environ.get("WORLD_SIZE", num_gpus - 1)) # -1 for ref model GPU
micro_batch = train_config.micro_batch_size
# Compute grad_acc to get closest to desired global batch size
desired_global = train_config.global_batch_size
grad_acc = max(1, desired_global // (micro_batch * world_size))
actual_global = micro_batch * grad_acc * world_size
ds_config["train_batch_size"] = actual_global
ds_config["train_micro_batch_size_per_gpu"] = micro_batch
ds_config["gradient_accumulation_steps"] = grad_acc
logger.info(f"DeepSpeed batch config: global={actual_global}, micro={micro_batch}, grad_acc={grad_acc}, world_size={world_size}")
# Initialize DeepSpeed engine
model_engine, optimizer, _, _ = deepspeed.initialize(
model=model,
optimizer=optimizer,
config=ds_config
)
logger.info(f"DeepSpeed ZeRO-2 initialized with {world_size} GPUs")
else:
model = model.to(device)
model_engine = model
# Load reference model (frozen copy)
# Always use bf16 for reference model - it's frozen and only used for KL computation.
# This is a controlled variable: same precision for both fp32 and bf16 training modes.
# The experiment tests training precision effects, not reference model precision.
logger.info("Loading reference model (bf16 for both modes - controlled variable)")
ref_model = AutoModelForCausalLM.from_pretrained(
train_config.model_name,
torch_dtype=torch.bfloat16, # Always bf16 to save memory & control variable
device_map=None,
trust_remote_code=True
)
ref_model = ref_model.to(ref_device)
ref_model.eval()
# Load training data
train_data = load_training_data(train_config.train_dataset_path)
# Initialize trainer
trainer = DAPOTrainer(
model_engine=model_engine,
ref_model=ref_model,
tokenizer=tokenizer,
train_config=train_config,
precision_config=precision_config,
device=device,
ref_device=ref_device,
use_deepspeed=use_deepspeed
)
# Run training
trainer.train(train_data, save_checkpoints=True)
# Save final model
final_path = trainer.save_final()
logger.info(f"Training complete. Final model saved to: {final_path}")
if __name__ == "__main__":
main()
|