summaryrefslogtreecommitdiff
path: root/runs/slurm_logs/14360854_test.out
diff options
context:
space:
mode:
authorYurenHao0426 <blackhao0426@gmail.com>2026-01-13 23:49:05 -0600
committerYurenHao0426 <blackhao0426@gmail.com>2026-01-13 23:49:05 -0600
commitcd99d6b874d9d09b3bb87b8485cc787885af71f1 (patch)
tree59a233959932ca0e4f12f196275e07fcf443b33f /runs/slurm_logs/14360854_test.out
init commit
Diffstat (limited to 'runs/slurm_logs/14360854_test.out')
-rw-r--r--runs/slurm_logs/14360854_test.out86
1 files changed, 86 insertions, 0 deletions
diff --git a/runs/slurm_logs/14360854_test.out b/runs/slurm_logs/14360854_test.out
new file mode 100644
index 0000000..44463f3
--- /dev/null
+++ b/runs/slurm_logs/14360854_test.out
@@ -0,0 +1,86 @@
+============================================================
+Quick Test: SNN with Lyapunov Regularization
+Job ID: 14360854 | Node: gpub040
+============================================================
+NVIDIA A40, 46068 MiB
+============================================================
+Test 1: Model and Lyapunov computation...
+ Logits shape: torch.Size([8, 10])
+ Lyapunov exponent: 0.3758
+ Spikes shape: torch.Size([8, 50, 64])
+ PASSED
+
+Test 2: Training loop with Lyapunov regularization...
+ Step 1: loss=5.7394, lyap=0.4977
+ Step 2: loss=4.2242, lyap=0.4870
+ Step 3: loss=3.0435, lyap=0.4873
+ Step 4: loss=2.5410, lyap=0.4870
+ Step 5: loss=2.1885, lyap=0.4874
+ PASSED
+
+Test 3: Depth comparison (2 epochs, depths 1,2,4)...
+======================================================================
+Experiment: Vanilla vs Lyapunov-Regularized SNN
+======================================================================
+Depths: [1, 2, 4]
+Hidden dim: 64
+Epochs: 2
+Lambda_reg: 0.1
+Device: cuda
+
+Using SYNTHETIC data for quick testing
+Data: T=50, D=100, classes=10
+
+==================================================
+Depth = 1 layers
+==================================================
+
+ Training VANILLA...
+ Final: loss=0.1148 acc=0.979 val_acc=0.998 λ=N/A ∇=0.99
+
+ Training LYAPUNOV...
+ Final: loss=0.1152 acc=0.979 val_acc=1.000 λ=-0.063 ∇=0.99
+
+==================================================
+Depth = 2 layers
+==================================================
+
+ Training VANILLA...
+ Final: loss=0.0306 acc=0.999 val_acc=1.000 λ=N/A ∇=0.24
+
+ Training LYAPUNOV...
+ Final: loss=0.0424 acc=1.000 val_acc=1.000 λ=0.285 ∇=0.28
+
+==================================================
+Depth = 4 layers
+==================================================
+
+ Training VANILLA...
+ Final: loss=0.7594 acc=0.758 val_acc=0.826 λ=N/A ∇=1.03
+
+ Training LYAPUNOV...
+ Final: loss=0.7975 acc=0.774 val_acc=0.828 λ=0.638 ∇=1.02
+
+======================================================================
+SUMMARY: Final Validation Accuracy by Depth
+======================================================================
+Depth Vanilla Lyapunov Difference
+----------------------------------------------------------------------
+1 0.998 1.000 +0.002
+2 1.000 1.000 0.000
+4 0.826 0.828 +0.002
+======================================================================
+
+Gradient Norm Analysis (final epoch):
+----------------------------------------------------------------------
+Depth Vanilla ∇ Lyapunov ∇
+----------------------------------------------------------------------
+1 0.99 0.99
+2 0.24 0.28
+4 1.03 1.02
+
+Results saved to runs/test_output/20251227-055553
+
+============================================================
+All tests PASSED
+============================================================