summaryrefslogtreecommitdiff
path: root/scripts/run_depth_scaling_hinge.sbatch
diff options
context:
space:
mode:
authorYurenHao0426 <blackhao0426@gmail.com>2026-01-13 23:49:05 -0600
committerYurenHao0426 <blackhao0426@gmail.com>2026-01-13 23:49:05 -0600
commitcd99d6b874d9d09b3bb87b8485cc787885af71f1 (patch)
tree59a233959932ca0e4f12f196275e07fcf443b33f /scripts/run_depth_scaling_hinge.sbatch
init commit
Diffstat (limited to 'scripts/run_depth_scaling_hinge.sbatch')
-rw-r--r--scripts/run_depth_scaling_hinge.sbatch61
1 files changed, 61 insertions, 0 deletions
diff --git a/scripts/run_depth_scaling_hinge.sbatch b/scripts/run_depth_scaling_hinge.sbatch
new file mode 100644
index 0000000..8ca3112
--- /dev/null
+++ b/scripts/run_depth_scaling_hinge.sbatch
@@ -0,0 +1,61 @@
+#!/bin/bash
+#SBATCH --job-name=snn_hinge
+#SBATCH --account=bfqt-delta-gpu
+#SBATCH --partition=gpuA40x4
+#SBATCH --nodes=1
+#SBATCH --ntasks=1
+#SBATCH --cpus-per-task=8
+#SBATCH --gpus-per-node=1
+#SBATCH --mem=64G
+#SBATCH --time=48:00:00
+#SBATCH --output=runs/slurm_logs/%j_hinge.out
+#SBATCH --error=runs/slurm_logs/%j_hinge.err
+
+# ============================================================
+# Hinge Loss Lyapunov Regularization Experiment
+# ============================================================
+# Hypothesis: Using hinge loss (only penalize chaos, not stability)
+# will allow the network to learn while still preventing chaotic
+# dynamics.
+#
+# Hinge loss: max(0, lambda)^2
+# - Only penalizes positive Lyapunov (chaos)
+# - Allows negative Lyapunov (stable dynamics) without penalty
+# - Combined with warmup to let network start learning first
+# ============================================================
+
+set -e
+
+PROJECT_DIR="/projects/bfqt/users/yurenh2/ml-projects/snn-training"
+cd "$PROJECT_DIR"
+
+mkdir -p runs/slurm_logs data
+
+echo "============================================================"
+echo "HINGE LOSS Lyapunov Regularization"
+echo "Job ID: $SLURM_JOB_ID | Node: $SLURM_NODELIST"
+echo "Start: $(date)"
+echo "============================================================"
+nvidia-smi --query-gpu=name,memory.total --format=csv,noheader
+echo "============================================================"
+
+# Test depths: 4, 8, 12, 16 conv layers
+# Using hinge loss + 20 epoch warmup
+python files/experiments/depth_scaling_benchmark.py \
+ --dataset cifar100 \
+ --depths 4 8 12 16 \
+ --T 4 \
+ --epochs 150 \
+ --batch_size 128 \
+ --lr 0.001 \
+ --lambda_reg 0.3 \
+ --lambda_target -0.1 \
+ --reg_type hinge \
+ --warmup_epochs 20 \
+ --data_dir ./data \
+ --out_dir runs/depth_scaling_hinge \
+ --device cuda
+
+echo "============================================================"
+echo "Finished: $(date)"
+echo "============================================================"