blob: 9102e90874ff9386cd7045b322b59cba08800cb1 (
plain)
1
2
3
4
5
6
7
8
9
10
|
import numpy as np
import torch
from .base_encoder import BaseEncoder
class RankOrderEncoder(BaseEncoder):
"""Encode by rank order of input features."""
def encode(self, data: np.ndarray) -> torch.Tensor:
# TODO: implement rank order conversion
spikes = torch.zeros(10, data.size) # placeholder
return spikes
|