1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
|
"""
Lyapunov Computation Speedup Benchmark
Tests different optimization approaches for computing Lyapunov exponents
during SNN training. All approaches should produce equivalent results
(within numerical precision) but with different performance characteristics.
Approaches tested:
- Baseline: Current sequential implementation
- Approach A: Trajectory-as-batch (P=2), share first Linear
- Approach B: Global-norm divergence + single-scale renorm
- Approach C: torch.compile the time loop
- Combined: A + B + C together
"""
import os
import sys
import time
from typing import Tuple, Optional, List
from dataclasses import dataclass
import torch
import torch.nn as nn
import snntorch as snn
from snntorch import surrogate
# Ensure we can import from project
_HERE = os.path.dirname(__file__)
_ROOT = os.path.dirname(os.path.dirname(_HERE))
if _ROOT not in sys.path:
sys.path.insert(0, _ROOT)
# =============================================================================
# Baseline Implementation (Current)
# =============================================================================
class BaselineSNN(nn.Module):
"""Current implementation: sequential perturbed trajectory."""
def __init__(self, in_channels=3, hidden_dims=[64, 128, 256], T=4, beta=0.9):
super().__init__()
self.T = T
self.hidden_dims = hidden_dims
spike_grad = surrogate.fast_sigmoid(slope=25)
# Simple feedforward for benchmarking (not full VGG)
self.linears = nn.ModuleList()
self.lifs = nn.ModuleList()
dims = [in_channels * 32 * 32] + hidden_dims # Flattened input
for i in range(len(hidden_dims)):
self.linears.append(nn.Linear(dims[i], dims[i+1]))
self.lifs.append(snn.Leaky(beta=beta, threshold=1.0,
spike_grad=spike_grad, init_hidden=False))
self.readout = nn.Linear(hidden_dims[-1], 10)
def forward(self, x, compute_lyapunov=False, lyap_eps=1e-4):
B = x.size(0)
device, dtype = x.device, x.dtype
x = x.view(B, -1) # Flatten
# Init membrane potentials
mems = [torch.zeros(B, h, device=device, dtype=dtype) for h in self.hidden_dims]
if compute_lyapunov:
mems_p = [m + lyap_eps * torch.randn_like(m) for m in mems]
lyap_accum = torch.zeros(B, device=device, dtype=dtype)
spike_sum = torch.zeros(B, self.hidden_dims[-1], device=device, dtype=dtype)
for t in range(self.T):
# Original trajectory
h = x
new_mems = []
for i, (lin, lif) in enumerate(zip(self.linears, self.lifs)):
h = lin(h)
spk, mem = lif(h, mems[i])
new_mems.append(mem)
h = spk
mems = new_mems
spike_sum = spike_sum + h
if compute_lyapunov:
# Perturbed trajectory (SEPARATE PASS - this is slow)
h_p = x
new_mems_p = []
for i, (lin, lif) in enumerate(zip(self.linears, self.lifs)):
h_p = lin(h_p)
spk_p, mem_p = lif(h_p, mems_p[i])
new_mems_p.append(mem_p)
h_p = spk_p
# Divergence (per-layer norms, then sum)
delta_sq = torch.zeros(B, device=device, dtype=dtype)
for i in range(len(self.hidden_dims)):
diff = new_mems_p[i] - new_mems[i]
delta_sq += (diff ** 2).sum(dim=1)
delta = torch.sqrt(delta_sq + 1e-12)
lyap_accum = lyap_accum + torch.log(delta / lyap_eps + 1e-12)
# Renormalize (per-layer - SLOW)
for i in range(len(self.hidden_dims)):
diff = new_mems_p[i] - new_mems[i]
norm = torch.norm(diff, dim=1, keepdim=True) + 1e-12
new_mems_p[i] = new_mems[i] + lyap_eps * diff / norm
mems_p = new_mems_p
logits = self.readout(spike_sum)
lyap_est = (lyap_accum / self.T).mean() if compute_lyapunov else None
return logits, lyap_est
# =============================================================================
# Approach A: Trajectory-as-batch (P=2), share first Linear
# =============================================================================
class ApproachA_SNN(nn.Module):
"""Batch both trajectories together, share Linear_1."""
def __init__(self, in_channels=3, hidden_dims=[64, 128, 256], T=4, beta=0.9):
super().__init__()
self.T = T
self.hidden_dims = hidden_dims
spike_grad = surrogate.fast_sigmoid(slope=25)
self.linears = nn.ModuleList()
self.lifs = nn.ModuleList()
dims = [in_channels * 32 * 32] + hidden_dims
for i in range(len(hidden_dims)):
self.linears.append(nn.Linear(dims[i], dims[i+1]))
self.lifs.append(snn.Leaky(beta=beta, threshold=1.0,
spike_grad=spike_grad, init_hidden=False))
self.readout = nn.Linear(hidden_dims[-1], 10)
def forward(self, x, compute_lyapunov=False, lyap_eps=1e-4):
B = x.size(0)
device, dtype = x.device, x.dtype
x = x.view(B, -1)
P = 2 if compute_lyapunov else 1
# State layout: (P, B, H) where P=2 for [original, perturbed]
mems = [torch.zeros(P, B, h, device=device, dtype=dtype) for h in self.hidden_dims]
if compute_lyapunov:
# Initialize perturbed state
for i in range(len(self.hidden_dims)):
mems[i][1] = mems[i][0] + lyap_eps * torch.randn(B, self.hidden_dims[i], device=device, dtype=dtype)
lyap_accum = torch.zeros(B, device=device, dtype=dtype)
spike_sum = torch.zeros(B, self.hidden_dims[-1], device=device, dtype=dtype)
for t in range(self.T):
# Layer 1: compute Linear ONCE, expand to (P, B, H1)
h1 = self.linears[0](x) # (B, H1) - computed ONCE
if compute_lyapunov:
h = h1.unsqueeze(0).expand(P, -1, -1) # (P, B, H1) - zero-copy view
else:
h = h1.unsqueeze(0) # (1, B, H1)
# LIF layer 1
spk, mems[0] = self.lifs[0](h, mems[0])
h = spk
# Layers 2+: different inputs for each trajectory
for i in range(1, len(self.hidden_dims)):
# Reshape to (P*B, H) for batched Linear
h_flat = h.reshape(P * B, -1)
h_lin = self.linears[i](h_flat).view(P, B, self.hidden_dims[i])
spk, mems[i] = self.lifs[i](h_lin, mems[i])
h = spk
# Accumulate spikes from original trajectory only
spike_sum = spike_sum + h[0]
if compute_lyapunov:
# Global divergence across all layers
delta_sq = torch.zeros(B, device=device, dtype=dtype)
for i in range(len(self.hidden_dims)):
diff = mems[i][1] - mems[i][0] # (B, H_i)
delta_sq = delta_sq + diff.square().sum(dim=-1)
delta = (delta_sq + 1e-12).sqrt()
lyap_accum = lyap_accum + (delta / lyap_eps).log()
# Renormalize with global scale (per-layer still, but simpler)
for i in range(len(self.hidden_dims)):
diff = mems[i][1] - mems[i][0]
norm = torch.norm(diff, dim=1, keepdim=True) + 1e-12
mems[i][1] = mems[i][0] + lyap_eps * diff / norm
logits = self.readout(spike_sum)
lyap_est = (lyap_accum / self.T).mean() if compute_lyapunov else None
return logits, lyap_est
# =============================================================================
# Approach B: Global-norm divergence + single-scale renorm
# =============================================================================
class ApproachB_SNN(nn.Module):
"""Global norm for divergence, single scale factor for renorm."""
def __init__(self, in_channels=3, hidden_dims=[64, 128, 256], T=4, beta=0.9):
super().__init__()
self.T = T
self.hidden_dims = hidden_dims
spike_grad = surrogate.fast_sigmoid(slope=25)
self.linears = nn.ModuleList()
self.lifs = nn.ModuleList()
dims = [in_channels * 32 * 32] + hidden_dims
for i in range(len(hidden_dims)):
self.linears.append(nn.Linear(dims[i], dims[i+1]))
self.lifs.append(snn.Leaky(beta=beta, threshold=1.0,
spike_grad=spike_grad, init_hidden=False))
self.readout = nn.Linear(hidden_dims[-1], 10)
def forward(self, x, compute_lyapunov=False, lyap_eps=1e-4):
B = x.size(0)
device, dtype = x.device, x.dtype
x = x.view(B, -1)
mems = [torch.zeros(B, h, device=device, dtype=dtype) for h in self.hidden_dims]
if compute_lyapunov:
mems_p = [m + lyap_eps * torch.randn_like(m) for m in mems]
lyap_accum = torch.zeros(B, device=device, dtype=dtype)
spike_sum = torch.zeros(B, self.hidden_dims[-1], device=device, dtype=dtype)
for t in range(self.T):
# Original trajectory
h = x
new_mems = []
for i, (lin, lif) in enumerate(zip(self.linears, self.lifs)):
h = lin(h)
spk, mem = lif(h, mems[i])
new_mems.append(mem)
h = spk
mems = new_mems
spike_sum = spike_sum + h
if compute_lyapunov:
# Perturbed trajectory
h_p = x
new_mems_p = []
for i, (lin, lif) in enumerate(zip(self.linears, self.lifs)):
h_p = lin(h_p)
spk_p, mem_p = lif(h_p, mems_p[i])
new_mems_p.append(mem_p)
h_p = spk_p
# GLOBAL divergence (one delta per batch element)
delta_sq = torch.zeros(B, device=device, dtype=dtype)
for i in range(len(self.hidden_dims)):
diff = new_mems_p[i] - new_mems[i]
delta_sq = delta_sq + diff.square().sum(dim=-1)
delta = (delta_sq + 1e-12).sqrt()
lyap_accum = lyap_accum + (delta / lyap_eps).log()
# SINGLE SCALE renormalization (key optimization)
scale = (lyap_eps / delta).unsqueeze(-1) # (B, 1)
for i in range(len(self.hidden_dims)):
diff = new_mems_p[i] - new_mems[i]
new_mems_p[i] = new_mems[i] + diff * scale
mems_p = new_mems_p
logits = self.readout(spike_sum)
lyap_est = (lyap_accum / self.T).mean() if compute_lyapunov else None
return logits, lyap_est
# =============================================================================
# Approach A+B Combined: Batched trajectories + global renorm
# =============================================================================
class ApproachAB_SNN(nn.Module):
"""Combined: trajectory-as-batch + global-norm renorm."""
def __init__(self, in_channels=3, hidden_dims=[64, 128, 256], T=4, beta=0.9):
super().__init__()
self.T = T
self.hidden_dims = hidden_dims
spike_grad = surrogate.fast_sigmoid(slope=25)
self.linears = nn.ModuleList()
self.lifs = nn.ModuleList()
dims = [in_channels * 32 * 32] + hidden_dims
for i in range(len(hidden_dims)):
self.linears.append(nn.Linear(dims[i], dims[i+1]))
self.lifs.append(snn.Leaky(beta=beta, threshold=1.0,
spike_grad=spike_grad, init_hidden=False))
self.readout = nn.Linear(hidden_dims[-1], 10)
def forward(self, x, compute_lyapunov=False, lyap_eps=1e-4):
B = x.size(0)
device, dtype = x.device, x.dtype
x = x.view(B, -1)
P = 2 if compute_lyapunov else 1
# State: (P, B, H)
mems = [torch.zeros(P, B, h, device=device, dtype=dtype) for h in self.hidden_dims]
if compute_lyapunov:
for i in range(len(self.hidden_dims)):
mems[i][1] = lyap_eps * torch.randn(B, self.hidden_dims[i], device=device, dtype=dtype)
lyap_accum = torch.zeros(B, device=device, dtype=dtype)
spike_sum = torch.zeros(B, self.hidden_dims[-1], device=device, dtype=dtype)
for t in range(self.T):
# Layer 1: Linear computed ONCE
h1 = self.linears[0](x)
h = h1.unsqueeze(0).expand(P, -1, -1) if compute_lyapunov else h1.unsqueeze(0)
spk, mems[0] = self.lifs[0](h, mems[0])
h = spk
# Layers 2+
for i in range(1, len(self.hidden_dims)):
h_flat = h.reshape(P * B, -1)
h_lin = self.linears[i](h_flat).view(P, B, self.hidden_dims[i])
spk, mems[i] = self.lifs[i](h_lin, mems[i])
h = spk
spike_sum = spike_sum + h[0]
if compute_lyapunov:
# Global divergence
delta_sq = torch.zeros(B, device=device, dtype=dtype)
for i in range(len(self.hidden_dims)):
diff = mems[i][1] - mems[i][0]
delta_sq = delta_sq + diff.square().sum(dim=-1)
delta = (delta_sq + 1e-12).sqrt()
lyap_accum = lyap_accum + (delta / lyap_eps).log()
# Global scale renorm
scale = (lyap_eps / delta).unsqueeze(-1)
for i in range(len(self.hidden_dims)):
diff = mems[i][1] - mems[i][0]
mems[i][1] = mems[i][0] + diff * scale
logits = self.readout(spike_sum)
lyap_est = (lyap_accum / self.T).mean() if compute_lyapunov else None
return logits, lyap_est
# =============================================================================
# Approach C: torch.compile wrapper
# =============================================================================
def make_compiled_model(model_class, *args, **kwargs):
"""Create a model and compile its forward pass."""
model = model_class(*args, **kwargs)
# Compile the forward method
model.forward = torch.compile(model.forward, mode="reduce-overhead")
return model
# =============================================================================
# Benchmarking
# =============================================================================
@dataclass
class BenchmarkResult:
name: str
forward_time_ms: float
backward_time_ms: float
total_time_ms: float
lyap_value: float
memory_mb: float
def __str__(self):
return (f"{self.name:<25} | Fwd: {self.forward_time_ms:7.2f}ms | "
f"Bwd: {self.backward_time_ms:7.2f}ms | "
f"Total: {self.total_time_ms:7.2f}ms | "
f"λ: {self.lyap_value:+.4f} | Mem: {self.memory_mb:.1f}MB")
def benchmark_model(
model: nn.Module,
x: torch.Tensor,
y: torch.Tensor,
name: str,
warmup_iters: int = 5,
bench_iters: int = 20,
) -> BenchmarkResult:
"""Benchmark a single model configuration."""
device = x.device
criterion = nn.CrossEntropyLoss()
# Warmup
for _ in range(warmup_iters):
logits, lyap = model(x, compute_lyapunov=True)
loss = criterion(logits, y) + 0.3 * (lyap ** 2 if lyap is not None else 0)
loss.backward()
model.zero_grad()
torch.cuda.synchronize()
torch.cuda.reset_peak_memory_stats()
fwd_times = []
bwd_times = []
lyap_vals = []
for _ in range(bench_iters):
# Forward
torch.cuda.synchronize()
t0 = time.perf_counter()
logits, lyap = model(x, compute_lyapunov=True)
loss = criterion(logits, y) + 0.3 * (lyap ** 2 if lyap is not None else 0)
torch.cuda.synchronize()
t1 = time.perf_counter()
# Backward
loss.backward()
torch.cuda.synchronize()
t2 = time.perf_counter()
fwd_times.append((t1 - t0) * 1000)
bwd_times.append((t2 - t1) * 1000)
if lyap is not None:
lyap_vals.append(lyap.item())
model.zero_grad()
peak_mem = torch.cuda.max_memory_allocated() / 1024 / 1024
return BenchmarkResult(
name=name,
forward_time_ms=sum(fwd_times) / len(fwd_times),
backward_time_ms=sum(bwd_times) / len(bwd_times),
total_time_ms=sum(fwd_times) / len(fwd_times) + sum(bwd_times) / len(bwd_times),
lyap_value=sum(lyap_vals) / len(lyap_vals) if lyap_vals else 0.0,
memory_mb=peak_mem,
)
def run_benchmarks(
batch_size: int = 64,
T: int = 4,
hidden_dims: List[int] = [64, 128, 256],
device: str = "cuda",
):
"""Run all benchmarks and compare."""
print("=" * 80)
print("LYAPUNOV COMPUTATION SPEEDUP BENCHMARK")
print("=" * 80)
print(f"Batch size: {batch_size}")
print(f"Timesteps: {T}")
print(f"Hidden dims: {hidden_dims}")
print(f"Device: {device}")
print("=" * 80)
# Create dummy data
x = torch.randn(batch_size, 3, 32, 32, device=device)
y = torch.randint(0, 10, (batch_size,), device=device)
results = []
# 1. Baseline
print("\n[1/6] Benchmarking Baseline...")
model = BaselineSNN(hidden_dims=hidden_dims, T=T).to(device)
results.append(benchmark_model(model, x, y, "Baseline"))
del model
torch.cuda.empty_cache()
# 2. Approach A (batched trajectories)
print("[2/6] Benchmarking Approach A (batched)...")
model = ApproachA_SNN(hidden_dims=hidden_dims, T=T).to(device)
results.append(benchmark_model(model, x, y, "A: Batched trajectories"))
del model
torch.cuda.empty_cache()
# 3. Approach B (global renorm)
print("[3/6] Benchmarking Approach B (global renorm)...")
model = ApproachB_SNN(hidden_dims=hidden_dims, T=T).to(device)
results.append(benchmark_model(model, x, y, "B: Global renorm"))
del model
torch.cuda.empty_cache()
# 4. Approach A+B combined
print("[4/6] Benchmarking Approach A+B (combined)...")
model = ApproachAB_SNN(hidden_dims=hidden_dims, T=T).to(device)
results.append(benchmark_model(model, x, y, "A+B: Combined"))
del model
torch.cuda.empty_cache()
# 5. Approach C (torch.compile on baseline)
print("[5/6] Benchmarking Approach C (compiled baseline)...")
try:
model = BaselineSNN(hidden_dims=hidden_dims, T=T).to(device)
model.forward = torch.compile(model.forward, mode="reduce-overhead")
results.append(benchmark_model(model, x, y, "C: Compiled baseline", warmup_iters=10))
del model
torch.cuda.empty_cache()
except Exception as e:
print(f" torch.compile failed: {e}")
results.append(BenchmarkResult("C: Compiled baseline", 0, 0, 0, 0, 0))
# 6. A+B+C (all combined)
print("[6/6] Benchmarking A+B+C (all optimizations)...")
try:
model = ApproachAB_SNN(hidden_dims=hidden_dims, T=T).to(device)
model.forward = torch.compile(model.forward, mode="reduce-overhead")
results.append(benchmark_model(model, x, y, "A+B+C: All optimized", warmup_iters=10))
del model
torch.cuda.empty_cache()
except Exception as e:
print(f" torch.compile failed: {e}")
results.append(BenchmarkResult("A+B+C: All optimized", 0, 0, 0, 0, 0))
# Print results
print("\n" + "=" * 80)
print("RESULTS")
print("=" * 80)
baseline_time = results[0].total_time_ms
for r in results:
print(r)
print("\n" + "-" * 80)
print("SPEEDUP vs BASELINE:")
print("-" * 80)
for r in results[1:]:
if r.total_time_ms > 0:
speedup = baseline_time / r.total_time_ms
print(f" {r.name:<25}: {speedup:.2f}x")
# Verify Lyapunov values are consistent
print("\n" + "-" * 80)
print("LYAPUNOV VALUE CONSISTENCY CHECK:")
print("-" * 80)
base_lyap = results[0].lyap_value
for r in results[1:]:
if r.lyap_value != 0:
diff = abs(r.lyap_value - base_lyap)
status = "✓" if diff < 0.1 else "✗"
print(f" {r.name:<25}: λ={r.lyap_value:+.4f} (diff={diff:.4f}) {status}")
return results
def run_scaling_test(device: str = "cuda"):
"""Test how approaches scale with batch size and timesteps."""
print("\n" + "=" * 80)
print("SCALING TESTS")
print("=" * 80)
configs = [
{"batch_size": 32, "T": 4, "hidden_dims": [64, 128, 256]},
{"batch_size": 64, "T": 4, "hidden_dims": [64, 128, 256]},
{"batch_size": 128, "T": 4, "hidden_dims": [64, 128, 256]},
{"batch_size": 64, "T": 8, "hidden_dims": [64, 128, 256]},
{"batch_size": 64, "T": 16, "hidden_dims": [64, 128, 256]},
{"batch_size": 64, "T": 4, "hidden_dims": [128, 256, 512]}, # Larger model
]
print(f"{'Config':<40} | {'Baseline':<12} | {'A+B':<12} | {'Speedup':<8}")
print("-" * 80)
for cfg in configs:
x = torch.randn(cfg["batch_size"], 3, 32, 32, device=device)
y = torch.randint(0, 10, (cfg["batch_size"],), device=device)
# Baseline
model_base = BaselineSNN(**cfg).to(device)
r_base = benchmark_model(model_base, x, y, "base", warmup_iters=3, bench_iters=10)
del model_base
# A+B
model_ab = ApproachAB_SNN(**cfg).to(device)
r_ab = benchmark_model(model_ab, x, y, "a+b", warmup_iters=3, bench_iters=10)
del model_ab
torch.cuda.empty_cache()
speedup = r_base.total_time_ms / r_ab.total_time_ms if r_ab.total_time_ms > 0 else 0
cfg_str = f"B={cfg['batch_size']}, T={cfg['T']}, H={cfg['hidden_dims']}"
print(f"{cfg_str:<40} | {r_base.total_time_ms:>10.2f}ms | {r_ab.total_time_ms:>10.2f}ms | {speedup:>6.2f}x")
if __name__ == "__main__":
import argparse
parser = argparse.ArgumentParser()
parser.add_argument("--batch_size", type=int, default=64)
parser.add_argument("--T", type=int, default=4)
parser.add_argument("--hidden_dims", type=int, nargs="+", default=[64, 128, 256])
parser.add_argument("--device", type=str, default="cuda")
parser.add_argument("--scaling", action="store_true", help="Run scaling tests")
args = parser.parse_args()
if not torch.cuda.is_available():
print("CUDA not available, using CPU (results will not be representative)")
args.device = "cpu"
# Main benchmark
results = run_benchmarks(
batch_size=args.batch_size,
T=args.T,
hidden_dims=args.hidden_dims,
device=args.device,
)
# Scaling tests
if args.scaling:
run_scaling_test(args.device)
|