1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
|
"""
Post-hoc Lyapunov Fine-tuning Experiment
Strategy:
1. Train network with vanilla (no Lyapunov) for N epochs
2. Then fine-tune with Lyapunov regularization for M epochs
This allows the network to learn task-relevant features first,
then stabilize dynamics without starting from chaotic initialization.
"""
import os
import sys
import json
import time
from dataclasses import dataclass, asdict
from typing import Dict, List, Optional, Tuple
_HERE = os.path.dirname(__file__)
_ROOT = os.path.dirname(os.path.dirname(_HERE))
if _ROOT not in sys.path:
sys.path.insert(0, _ROOT)
import argparse
import numpy as np
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader
from tqdm.auto import tqdm
from files.experiments.depth_scaling_benchmark import (
SpikingVGG,
get_dataset,
train_epoch,
evaluate,
TrainingMetrics,
compute_lyap_reg_loss,
)
def run_posthoc_experiment(
dataset_name: str,
depth_config: Tuple[int, int],
train_loader: DataLoader,
test_loader: DataLoader,
num_classes: int,
in_channels: int,
T: int,
pretrain_epochs: int,
finetune_epochs: int,
lr: float,
finetune_lr: float,
lambda_reg: float,
lambda_target: float,
device: torch.device,
seed: int,
reg_type: str = "extreme",
lyap_threshold: float = 2.0,
progress: bool = True,
) -> Dict:
"""Run post-hoc fine-tuning experiment."""
torch.manual_seed(seed)
num_stages, blocks_per_stage = depth_config
total_depth = num_stages * blocks_per_stage
print(f"\n{'='*60}")
print(f"POST-HOC FINE-TUNING: Depth = {total_depth}")
print(f"Pretrain: {pretrain_epochs} epochs (vanilla)")
print(f"Finetune: {finetune_epochs} epochs (Lyapunov, reg_type={reg_type})")
print(f"{'='*60}")
model = SpikingVGG(
in_channels=in_channels,
num_classes=num_classes,
base_channels=64,
num_stages=num_stages,
blocks_per_stage=blocks_per_stage,
T=T,
).to(device)
num_params = sum(p.numel() for p in model.parameters() if p.requires_grad)
print(f"Parameters: {num_params:,}")
criterion = nn.CrossEntropyLoss()
# Phase 1: Vanilla pre-training
print(f"\n--- Phase 1: Vanilla Pre-training ({pretrain_epochs} epochs) ---")
optimizer = optim.AdamW(model.parameters(), lr=lr, weight_decay=1e-4)
scheduler = optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=pretrain_epochs)
pretrain_history = []
best_pretrain_acc = 0.0
for epoch in range(1, pretrain_epochs + 1):
t0 = time.time()
train_loss, train_acc, lyap, grad_norm, grad_max_sv, grad_min_sv, grad_cond = train_epoch(
model, train_loader, optimizer, criterion, device,
use_lyapunov=False, # No Lyapunov during pre-training
lambda_reg=0, lambda_target=0, lyap_eps=1e-4,
progress=progress,
)
test_loss, test_acc = evaluate(model, test_loader, criterion, device, progress)
scheduler.step()
dt = time.time() - t0
best_pretrain_acc = max(best_pretrain_acc, test_acc)
metrics = TrainingMetrics(
epoch=epoch,
train_loss=train_loss,
train_acc=train_acc,
test_loss=test_loss,
test_acc=test_acc,
lyapunov=lyap,
grad_norm=grad_norm,
grad_max_sv=grad_max_sv,
grad_min_sv=grad_min_sv,
grad_condition=grad_cond,
lr=scheduler.get_last_lr()[0],
time_sec=dt,
)
pretrain_history.append(metrics)
if epoch % 10 == 0 or epoch == pretrain_epochs:
print(f" Epoch {epoch:3d}: train={train_acc:.3f} test={test_acc:.3f}")
print(f" Best pretrain acc: {best_pretrain_acc:.3f}")
# Phase 2: Lyapunov fine-tuning
print(f"\n--- Phase 2: Lyapunov Fine-tuning ({finetune_epochs} epochs) ---")
print(f" reg_type={reg_type}, lambda_reg={lambda_reg}, threshold={lyap_threshold}")
# Reset optimizer with lower learning rate for fine-tuning
optimizer = optim.AdamW(model.parameters(), lr=finetune_lr, weight_decay=1e-4)
scheduler = optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=finetune_epochs)
finetune_history = []
best_finetune_acc = 0.0
for epoch in range(1, finetune_epochs + 1):
t0 = time.time()
# Warmup lambda_reg over first 10 epochs of fine-tuning
warmup_epochs = 10
if epoch <= warmup_epochs:
current_lambda_reg = lambda_reg * (epoch / warmup_epochs)
else:
current_lambda_reg = lambda_reg
train_loss, train_acc, lyap, grad_norm, grad_max_sv, grad_min_sv, grad_cond = train_epoch(
model, train_loader, optimizer, criterion, device,
use_lyapunov=True,
lambda_reg=lambda_reg,
lambda_target=lambda_target,
lyap_eps=1e-4,
progress=progress,
reg_type=reg_type,
current_lambda_reg=current_lambda_reg,
lyap_threshold=lyap_threshold,
)
test_loss, test_acc = evaluate(model, test_loader, criterion, device, progress)
scheduler.step()
dt = time.time() - t0
best_finetune_acc = max(best_finetune_acc, test_acc)
metrics = TrainingMetrics(
epoch=pretrain_epochs + epoch, # Continue epoch numbering
train_loss=train_loss,
train_acc=train_acc,
test_loss=test_loss,
test_acc=test_acc,
lyapunov=lyap,
grad_norm=grad_norm,
grad_max_sv=grad_max_sv,
grad_min_sv=grad_min_sv,
grad_condition=grad_cond,
lr=scheduler.get_last_lr()[0],
time_sec=dt,
)
finetune_history.append(metrics)
if epoch % 10 == 0 or epoch == finetune_epochs:
lyap_str = f"λ={lyap:.3f}" if lyap else ""
print(f" Epoch {pretrain_epochs + epoch:3d}: train={train_acc:.3f} test={test_acc:.3f} {lyap_str}")
if np.isnan(train_loss):
print(f" DIVERGED at epoch {epoch}")
break
print(f" Best finetune acc: {best_finetune_acc:.3f}")
print(f" Final λ: {finetune_history[-1].lyapunov:.3f}" if finetune_history[-1].lyapunov else "")
return {
"depth": total_depth,
"pretrain_history": pretrain_history,
"finetune_history": finetune_history,
"best_pretrain_acc": best_pretrain_acc,
"best_finetune_acc": best_finetune_acc,
}
def main():
parser = argparse.ArgumentParser(description="Post-hoc Lyapunov Fine-tuning")
parser.add_argument("--dataset", type=str, default="cifar100",
choices=["mnist", "fashion_mnist", "cifar10", "cifar100"])
parser.add_argument("--depths", type=int, nargs="+", default=[4, 8, 12, 16])
parser.add_argument("--T", type=int, default=4)
parser.add_argument("--pretrain_epochs", type=int, default=100)
parser.add_argument("--finetune_epochs", type=int, default=50)
parser.add_argument("--batch_size", type=int, default=128)
parser.add_argument("--lr", type=float, default=1e-3)
parser.add_argument("--finetune_lr", type=float, default=1e-4)
parser.add_argument("--lambda_reg", type=float, default=0.1)
parser.add_argument("--lambda_target", type=float, default=-0.1)
parser.add_argument("--reg_type", type=str, default="extreme")
parser.add_argument("--lyap_threshold", type=float, default=2.0)
parser.add_argument("--data_dir", type=str, default="./data")
parser.add_argument("--out_dir", type=str, default="runs/posthoc_finetune")
parser.add_argument("--device", type=str, default="cuda")
parser.add_argument("--seed", type=int, default=42)
parser.add_argument("--no-progress", action="store_true")
args = parser.parse_args()
device = torch.device(args.device)
print("=" * 80)
print("POST-HOC LYAPUNOV FINE-TUNING EXPERIMENT")
print("=" * 80)
print(f"Dataset: {args.dataset}")
print(f"Depths: {args.depths}")
print(f"Pretrain: {args.pretrain_epochs} epochs (vanilla, lr={args.lr})")
print(f"Finetune: {args.finetune_epochs} epochs (Lyapunov, lr={args.finetune_lr})")
print(f"Lyapunov: reg_type={args.reg_type}, λ_reg={args.lambda_reg}, threshold={args.lyap_threshold}")
print("=" * 80)
# Load data
train_loader, test_loader, num_classes, input_shape = get_dataset(
args.dataset, args.data_dir, args.batch_size
)
in_channels = input_shape[0]
# Convert depths to configs
depth_configs = []
for d in args.depths:
if d <= 4:
depth_configs.append((d, 1))
else:
depth_configs.append((4, d // 4))
# Run experiments
all_results = []
for depth_config in depth_configs:
result = run_posthoc_experiment(
dataset_name=args.dataset,
depth_config=depth_config,
train_loader=train_loader,
test_loader=test_loader,
num_classes=num_classes,
in_channels=in_channels,
T=args.T,
pretrain_epochs=args.pretrain_epochs,
finetune_epochs=args.finetune_epochs,
lr=args.lr,
finetune_lr=args.finetune_lr,
lambda_reg=args.lambda_reg,
lambda_target=args.lambda_target,
device=device,
seed=args.seed,
reg_type=args.reg_type,
lyap_threshold=args.lyap_threshold,
progress=not args.no_progress,
)
all_results.append(result)
# Summary
print("\n" + "=" * 80)
print("SUMMARY")
print("=" * 80)
print(f"{'Depth':<8} {'Pretrain Acc':<15} {'Finetune Acc':<15} {'Change':<10} {'Final λ':<10}")
print("-" * 80)
for r in all_results:
pre_acc = r["best_pretrain_acc"]
fine_acc = r["best_finetune_acc"]
change = fine_acc - pre_acc
final_lyap = r["finetune_history"][-1].lyapunov if r["finetune_history"] else None
lyap_str = f"{final_lyap:.3f}" if final_lyap else "N/A"
change_str = f"{change:+.3f}"
print(f"{r['depth']:<8} {pre_acc:<15.3f} {fine_acc:<15.3f} {change_str:<10} {lyap_str:<10}")
print("=" * 80)
# Save results
os.makedirs(args.out_dir, exist_ok=True)
ts = time.strftime("%Y%m%d-%H%M%S")
output_file = os.path.join(args.out_dir, f"{args.dataset}_{ts}.json")
serializable_results = []
for r in all_results:
sr = {
"depth": r["depth"],
"best_pretrain_acc": r["best_pretrain_acc"],
"best_finetune_acc": r["best_finetune_acc"],
"pretrain_history": [asdict(m) for m in r["pretrain_history"]],
"finetune_history": [asdict(m) for m in r["finetune_history"]],
}
serializable_results.append(sr)
with open(output_file, "w") as f:
json.dump({"config": vars(args), "results": serializable_results}, f, indent=2)
print(f"\nResults saved to {output_file}")
if __name__ == "__main__":
main()
|