1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
|
import os
import sys
import json
import csv
_HERE = os.path.dirname(__file__)
_ROOT = os.path.dirname(_HERE)
if _ROOT not in sys.path:
sys.path.insert(0, _ROOT)
import argparse
import time
from typing import Optional
import torch
import torch.nn as nn
import torch.optim as optim
from files.data_io.dataset_loader import get_dataloader, SHDDataset
from files.models.snn import SimpleSNN
from tqdm.auto import tqdm
def _prepare_run_dir(base_dir: str):
ts = time.strftime("%Y%m%d-%H%M%S")
run_dir = os.path.join(base_dir, ts)
os.makedirs(run_dir, exist_ok=True)
return run_dir
def _append_metrics(csv_path: str, row: dict):
write_header = not os.path.exists(csv_path)
with open(csv_path, "a", newline="") as f:
writer = csv.DictWriter(f, fieldnames=row.keys())
if write_header:
writer.writeheader()
writer.writerow(row)
def parse_args():
p = argparse.ArgumentParser(description="MVP training: baseline vs Lyapunov-regularized")
p.add_argument("--cfg", type=str, default="data_io/configs/shd.yaml", help="YAML config for dataloader")
p.add_argument("--epochs", type=int, default=2)
p.add_argument("--hidden", type=int, default=256)
p.add_argument("--classes", type=int, default=20, help="Number of classes")
p.add_argument("--lr", type=float, default=1e-3)
p.add_argument("--device", type=str, default="cuda" if torch.cuda.is_available() else "cpu")
p.add_argument("--lyapunov", action="store_true", help="Enable Lyapunov regulation")
p.add_argument("--lambda_reg", type=float, default=0.1, help="Weight for Lyapunov penalty")
p.add_argument("--lambda_target", type=float, default=0.0, help="Target average log growth (≈0 for neutral)")
p.add_argument("--no-progress", action="store_true", help="Disable tqdm progress bar")
p.add_argument("--out_dir", type=str, default="runs/mvp", help="Directory to save metrics/checkpoints")
p.add_argument("--log_batches", action="store_true", help="Also log per-batch metrics to CSV")
# Model dynamics and recurrence controls
p.add_argument("--spike_alpha", type=float, default=5.0, help="Surrogate spike sharpness")
p.add_argument("--decay", type=float, default=0.95, help="Membrane decay")
p.add_argument("--v_threshold", type=float, default=1.0, help="Firing threshold")
p.add_argument("--rec_strength", type=float, default=0.0, help="Recurrent coupling strength on spikes")
p.add_argument("--rec_init_scale", type=float, default=1.0, help="Gain for recurrent weight init")
# Lyapunov measurement controls
p.add_argument("--lyap_measure", type=str, default="v", choices=["v", "s"], help="Measure divergence on 'v' or 's'")
p.add_argument("--lyap_eps", type=float, default=1e-3, help="Initial perturbation magnitude")
return p.parse_args()
def train_one_epoch(
model: SimpleSNN,
loader,
optimizer,
device,
ce_loss: nn.Module,
lyapunov: bool,
lambda_reg: float,
lambda_target: float,
progress: bool,
run_dir: str | None = None,
epoch_idx: int | None = None,
log_batches: bool = False,
lyap_measure: str = "v",
lyap_eps: float = 1e-3,
):
model.train()
total = 0
correct = 0
running_loss = 0.0
lyap_vals = []
iterator = tqdm(loader, desc="train", leave=False, dynamic_ncols=True) if progress else loader
for bidx, (x, y) in enumerate(iterator):
x = x.to(device) # (B, T, D)
y = y.to(device)
optimizer.zero_grad(set_to_none=True)
logits, lyap_est = model(
x,
compute_lyapunov=lyapunov,
lyap_eps=lyap_eps,
lyap_measure=lyap_measure,
)
ce = ce_loss(logits, y)
if lyapunov and lyap_est is not None:
reg = (lyap_est - lambda_target) ** 2
loss = ce + lambda_reg * reg
lyap_vals.append(lyap_est.detach().item())
else:
loss = ce
loss.backward()
optimizer.step()
running_loss += loss.item() * x.size(0)
preds = logits.argmax(dim=1)
batch_correct = (preds == y).sum().item()
correct += batch_correct
total += x.size(0)
if log_batches and run_dir is not None and epoch_idx is not None:
_append_metrics(
os.path.join(run_dir, "metrics.csv"),
{
"step": "batch",
"epoch": int(epoch_idx),
"batch": int(bidx),
"loss": float(loss.item()),
"acc": float(batch_correct / max(x.size(0), 1)),
"lyap": float(lyap_est.item()) if (lyapunov and lyap_est is not None) else float("nan"),
"time_sec": float(0.0),
},
)
if progress:
avg_loss = running_loss / max(total, 1)
avg_lyap = (sum(lyap_vals) / len(lyap_vals)) if lyap_vals else None
postfix = {"loss": f"{avg_loss:.4f}"}
if avg_lyap is not None:
postfix["lyap"] = f"{avg_lyap:.4f}"
iterator.set_postfix(postfix)
avg_loss = running_loss / max(total, 1)
acc = correct / max(total, 1)
avg_lyap = sum(lyap_vals) / len(lyap_vals) if lyap_vals else None
return avg_loss, acc, avg_lyap
def main():
args = parse_args()
device = torch.device(args.device)
# Prepare output directory and save run config
run_dir = _prepare_run_dir(args.out_dir)
with open(os.path.join(run_dir, "args.json"), "w") as f:
json.dump(vars(args), f, indent=2)
train_loader, val_loader = get_dataloader(args.cfg)
# Infer input dim and classes from a sample and args
xb, yb = next(iter(train_loader))
_, T, D = xb.shape
C = args.classes
model = SimpleSNN(
input_dim=D,
hidden_dim=args.hidden,
num_classes=C,
v_threshold=args.v_threshold,
decay=args.decay,
spike_alpha=args.spike_alpha,
rec_strength=args.rec_strength,
rec_init_scale=args.rec_init_scale,
).to(device)
optimizer = optim.Adam(model.parameters(), lr=args.lr)
ce_loss = nn.CrossEntropyLoss()
print(f"Starting training on {device} | lyapunov={args.lyapunov} lambda={args.lambda_reg} target={args.lambda_target}")
print(f"Saving run to: {run_dir}")
for epoch in range(1, args.epochs + 1):
t0 = time.time()
tr_loss, tr_acc, tr_lyap = train_one_epoch(
model, train_loader, optimizer, device, ce_loss,
lyapunov=args.lyapunov, lambda_reg=args.lambda_reg, lambda_target=args.lambda_target,
progress=(not args.no_progress),
run_dir=run_dir,
epoch_idx=epoch,
log_batches=args.log_batches,
lyap_measure=args.lyap_measure,
lyap_eps=args.lyap_eps,
)
dt = time.time() - t0
lyap_str = f" lyap={tr_lyap:.4f}" if tr_lyap is not None else ""
print(f"[Epoch {epoch}] loss={tr_loss:.4f} acc={tr_acc:.3f}{lyap_str} ({dt:.1f}s)")
_append_metrics(
os.path.join(run_dir, "metrics.csv"),
{
"step": "epoch",
"epoch": int(epoch),
"batch": int(-1),
"loss": float(tr_loss),
"acc": float(tr_acc),
"lyap": float(tr_lyap) if tr_lyap is not None else float("nan"),
"time_sec": float(dt),
},
)
if __name__ == "__main__":
main()
|