summaryrefslogtreecommitdiff
path: root/runs/slurm_logs/14363508_cifar100_depth.out
blob: 2d4474539982f843bb948a2f80ca132162e72c8e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
============================================================
CIFAR-100 Depth Scaling Benchmark
Job ID: 14363508 | Node: gpub039
Start: Mon Dec 29 09:14:19 CST 2025
============================================================
NVIDIA A40, 46068 MiB
============================================================
================================================================================
DEPTH SCALING BENCHMARK
================================================================================
Dataset: cifar100
Depths: [4, 8, 12, 16, 20]
Timesteps: 4
Epochs: 150
λ_reg: 0.3, λ_target: -0.1
Device: cuda
================================================================================

Loading cifar100...
Classes: 100, Input: (3, 32, 32)
Train: 50000, Test: 10000

Depth configurations: [(4, '4×1'), (8, '4×2'), (12, '4×3'), (16, '4×4'), (20, '4×5')]

============================================================
Depth = 4 conv layers (4 stages × 1 blocks)
============================================================
    Vanilla: depth=4, params=1,756,836
      Epoch  10: train=0.494 test=0.423  σ=9.41e-01/3.56e-08
      Epoch  20: train=0.626 test=0.503  σ=5.87e-01/2.43e-08
      Epoch  30: train=0.703 test=0.550  σ=4.74e-01/1.97e-08
      Epoch  40: train=0.755 test=0.564  σ=4.13e-01/1.70e-08
      Epoch  50: train=0.797 test=0.542  σ=3.68e-01/1.50e-08
      Epoch  60: train=0.830 test=0.581  σ=3.41e-01/1.42e-08
      Epoch  70: train=0.862 test=0.583  σ=3.14e-01/1.29e-08
      Epoch  80: train=0.883 test=0.599  σ=3.02e-01/1.21e-08
      Epoch  90: train=0.905 test=0.594  σ=2.83e-01/1.09e-08
      Epoch 100: train=0.920 test=0.607  σ=2.60e-01/9.94e-09
      Epoch 110: train=0.932 test=0.611  σ=2.57e-01/9.62e-09
      Epoch 120: train=0.941 test=0.610  σ=2.45e-01/9.26e-09
      Epoch 130: train=0.949 test=0.616  σ=2.44e-01/8.78e-09
      Epoch 140: train=0.951 test=0.613  σ=2.30e-01/8.58e-09
      Epoch 150: train=0.952 test=0.614  σ=2.32e-01/8.66e-09
      Best test acc: 0.621
    Lyapunov: depth=4, params=1,756,836
      Epoch  10: train=0.012 test=0.010 λ=1.940 σ=9.87e-02/2.73e-13
      Epoch  20: train=0.010 test=0.010 λ=1.930 σ=3.70e-02/0.00e+00
      Epoch  30: train=0.009 test=0.010 λ=1.920 σ=4.74e-03/0.00e+00
      Epoch  40: train=0.009 test=0.010 λ=1.920 σ=2.81e-03/0.00e+00
      Epoch  50: train=0.008 test=0.010 λ=1.920 
      Epoch  60: train=0.008 test=0.010 λ=1.921 
      Epoch  70: train=0.010 test=0.010 λ=1.922 
      Epoch  80: train=0.009 test=0.010 λ=1.923 
      Epoch  90: train=0.009 test=0.010 λ=1.919 
      Epoch 100: train=0.009 test=0.010 λ=1.923 
      Epoch 110: train=0.009 test=0.010 λ=1.921 
      Epoch 120: train=0.009 test=0.010 λ=1.923 
      Epoch 130: train=0.009 test=0.010 λ=1.923 
      Epoch 140: train=0.009 test=0.010 λ=1.922 
      Epoch 150: train=0.010 test=0.010 λ=1.921 
      Best test acc: 0.054

============================================================
Depth = 8 conv layers (4 stages × 2 blocks)
============================================================
    Vanilla: depth=8, params=4,892,196
      Epoch  10: train=0.390 test=0.338  σ=8.34e-01/3.11e-08
      Epoch  20: train=0.547 test=0.438  σ=4.73e-01/2.15e-08
      Epoch  30: train=0.633 test=0.454  σ=3.91e-01/1.80e-08
      Epoch  40: train=0.699 test=0.489  σ=3.30e-01/1.55e-08
      Epoch  50: train=0.754 test=0.509  σ=3.13e-01/1.41e-08
      Epoch  60: train=0.795 test=0.503  σ=2.84e-01/1.27e-08
      Epoch  70: train=0.836 test=0.511  σ=2.72e-01/1.18e-08
      Epoch  80: train=0.869 test=0.517  σ=2.46e-01/1.02e-08
      Epoch  90: train=0.897 test=0.523  σ=2.46e-01/1.00e-08
      Epoch 100: train=0.917 test=0.519  σ=2.33e-01/9.01e-09
      Epoch 110: train=0.932 test=0.528  σ=2.26e-01/8.65e-09
      Epoch 120: train=0.947 test=0.537  σ=2.11e-01/8.16e-09
      Epoch 130: train=0.953 test=0.526  σ=2.06e-01/7.74e-09
      Epoch 140: train=0.954 test=0.538  σ=1.98e-01/7.35e-09
      Epoch 150: train=0.956 test=0.522  σ=2.00e-01/7.34e-09
      Best test acc: 0.541
    Lyapunov: depth=8, params=4,892,196
      Epoch  10: train=0.010 test=0.010 λ=2.704 σ=1.07e-01/7.42e-16
      Epoch  20: train=0.009 test=0.010 λ=2.262 
      Epoch  30: train=0.009 test=0.010 λ=2.272 
      Epoch  40: train=0.009 test=0.010 λ=2.264 σ=6.25e-03/0.00e+00
      Epoch  50: train=0.008 test=0.010 λ=2.281 
      Epoch  60: train=0.009 test=0.010 λ=2.273 
      Epoch  70: train=0.008 test=0.010 λ=2.267 
      Epoch  80: train=0.009 test=0.010 λ=2.263 
      Epoch  90: train=0.009 test=0.010 λ=2.264 
      Epoch 100: train=0.009 test=0.010 λ=2.261 
      Epoch 110: train=0.008 test=0.010 λ=2.264 
      Epoch 120: train=0.009 test=0.010 λ=2.261 
      Epoch 130: train=0.009 test=0.010 λ=2.264 
      Epoch 140: train=0.009 test=0.010 λ=2.263 
      Epoch 150: train=0.010 test=0.010 λ=2.262 
      Best test acc: 0.028

============================================================
Depth = 12 conv layers (4 stages × 3 blocks)
============================================================
    Vanilla: depth=12, params=8,027,556
      Epoch  10: train=0.215 test=0.064  σ=6.68e-01/2.31e-08
      Epoch  20: train=0.286 test=0.052  σ=3.31e-01/1.58e-08
      Epoch  30: train=0.336 test=0.081  σ=2.75e-01/1.39e-08
      Epoch  40: train=0.369 test=0.069  σ=2.34e-01/1.27e-08
      Epoch  50: train=0.410 test=0.064  σ=2.31e-01/1.24e-08
      Epoch  60: train=0.435 test=0.059  σ=2.20e-01/1.22e-08
      Epoch  70: train=0.262 test=0.108  σ=2.07e-01/1.12e-08
      Epoch  80: train=0.390 test=0.110  σ=2.14e-01/1.20e-08
      Epoch  90: train=0.437 test=0.106  σ=2.23e-01/1.22e-08
      Epoch 100: train=0.473 test=0.124  σ=2.28e-01/1.25e-08
      Epoch 110: train=0.500 test=0.103  σ=2.28e-01/1.24e-08
      Epoch 120: train=0.527 test=0.095  σ=2.35e-01/1.25e-08
      Epoch 130: train=0.536 test=0.107  σ=2.38e-01/1.28e-08
      Epoch 140: train=0.545 test=0.111  σ=2.40e-01/1.26e-08
      Epoch 150: train=0.547 test=0.102  σ=2.40e-01/1.29e-08
      Best test acc: 0.126
    Lyapunov: depth=12, params=8,027,556
      Epoch  10: train=0.013 test=0.010 λ=2.873 σ=2.57e-01/2.15e-13
      Epoch  20: train=0.010 test=0.010 λ=2.629 σ=2.81e-02/0.00e+00
      Epoch  30: train=0.009 test=0.010 λ=2.465 σ=6.68e-03/0.00e+00
      Epoch  40: train=0.009 test=0.010 λ=2.480 
      Epoch  50: train=0.009 test=0.010 λ=2.470 
      Epoch  60: train=0.009 test=0.010 λ=2.482 
      Epoch  70: train=0.008 test=0.010 λ=2.473 
      Epoch  80: train=0.008 test=0.010 λ=2.463 
      Epoch  90: train=0.008 test=0.010 λ=2.465 
      Epoch 100: train=0.009 test=0.010 λ=2.463 
      Epoch 110: train=0.008 test=0.010 λ=2.470 
      Epoch 120: train=0.009 test=0.010 λ=2.468 
      Epoch 130: train=0.010 test=0.010 λ=2.470 
      Epoch 140: train=0.009 test=0.010 λ=2.463 
      Epoch 150: train=0.010 test=0.010 λ=2.462 
      Best test acc: 0.011

============================================================
Depth = 16 conv layers (4 stages × 4 blocks)
============================================================
    Vanilla: depth=16, params=11,162,916
      Epoch  10: train=0.094 test=0.011  σ=4.41e-01/1.38e-08
      Epoch  20: train=0.134 test=0.020  σ=2.83e-01/1.10e-08
      Epoch  30: train=0.156 test=0.022  σ=2.27e-01/9.71e-09
      Epoch  40: train=0.174 test=0.022  σ=1.97e-01/9.00e-09
      Epoch  50: train=0.184 test=0.022  σ=1.79e-01/8.89e-09
      Epoch  60: train=0.198 test=0.021  σ=1.70e-01/8.88e-09
      Epoch  70: train=0.212 test=0.022  σ=1.60e-01/8.82e-09
      Epoch  80: train=0.224 test=0.027  σ=1.63e-01/8.93e-09
      Epoch  90: train=0.235 test=0.031  σ=1.57e-01/8.95e-09
      Epoch 100: train=0.241 test=0.032  σ=1.60e-01/9.14e-09
      Epoch 110: train=0.255 test=0.037  σ=1.58e-01/9.23e-09
      Epoch 120: train=0.259 test=0.034  σ=1.61e-01/9.22e-09
      Epoch 130: train=0.263 test=0.038  σ=1.61e-01/9.35e-09
      Epoch 140: train=0.265 test=0.032  σ=1.63e-01/9.35e-09
      Epoch 150: train=0.269 test=0.037  σ=1.65e-01/9.36e-09
      Best test acc: 0.040
    Lyapunov: depth=16, params=11,162,916
      Epoch  10: train=0.013 test=0.010 λ=2.901 σ=2.73e-01/2.05e-13
      Epoch  20: train=0.009 test=0.010 λ=3.238 σ=1.03e-02/0.00e+00
      Epoch  30: train=0.009 test=0.010 λ=2.605 σ=3.07e-03/0.00e+00
      Epoch  40: train=0.008 test=0.010 λ=2.603 
      Epoch  50: train=0.008 test=0.010 λ=2.610 
      Epoch  60: train=0.009 test=0.010 λ=2.627 
      Epoch  70: train=0.009 test=0.010 λ=2.609 
      Epoch  80: train=0.009 test=0.010 λ=2.607 
      Epoch  90: train=0.009 test=0.010 λ=2.622 
      Epoch 100: train=0.009 test=0.010 λ=2.614 
      Epoch 110: train=0.009 test=0.010 λ=2.606 
      Epoch 120: train=0.009 test=0.010 λ=2.602 
      Epoch 130: train=0.009 test=0.010 λ=2.615 
      Epoch 140: train=0.010 test=0.010 λ=2.602 
      Epoch 150: train=0.010 test=0.010 λ=2.603 
      Best test acc: 0.011

============================================================
Depth = 20 conv layers (4 stages × 5 blocks)
============================================================
    Vanilla: depth=20, params=14,298,276
      Epoch  10: train=0.010 test=0.011  σ=3.06e+00/4.22e-08
      Epoch  20: train=0.010 test=0.010  σ=2.15e+00/2.95e-08
      Epoch  30: train=0.010 test=0.010  σ=7.74e-01/2.37e-11
      Epoch  40: train=0.009 test=0.010  σ=1.44e-01/0.00e+00
      Epoch  50: train=0.009 test=0.010  σ=1.51e-02/0.00e+00
      Epoch  60: train=0.025 test=0.010  σ=2.05e-01/1.31e-11
      Epoch  70: train=0.032 test=0.010  σ=1.80e-01/1.69e-09
      Epoch  80: train=0.040 test=0.010  σ=1.61e-01/1.82e-09
      Epoch  90: train=0.043 test=0.010  σ=1.51e-01/2.04e-09
      Epoch 100: train=0.046 test=0.011  σ=1.49e-01/2.28e-09
      Epoch 110: train=0.050 test=0.011  σ=1.56e-01/2.59e-09
      Epoch 120: train=0.049 test=0.012  σ=1.53e-01/2.89e-09
      Epoch 130: train=0.053 test=0.010  σ=1.51e-01/3.14e-09
      Epoch 140: train=0.055 test=0.010  σ=1.49e-01/3.28e-09
      Epoch 150: train=0.053 test=0.010  σ=1.51e-01/3.29e-09
      Best test acc: 0.012
    Lyapunov: depth=20, params=14,298,276
      Epoch  10: train=0.013 test=0.010 λ=2.968 σ=3.33e-01/5.32e-13
      Epoch  20: train=0.011 test=0.010 λ=2.969 σ=5.00e-02/2.54e-43
      Epoch  30: train=0.008 test=0.010 λ=2.719 σ=1.06e-02/0.00e+00
      Epoch  40: train=0.009 test=0.010 λ=2.737 
      Epoch  50: train=0.009 test=0.010 λ=2.729 
      Epoch  60: train=0.009 test=0.010 λ=2.748 
      Epoch  70: train=0.009 test=0.010 λ=2.740 
      Epoch  80: train=0.008 test=0.010 λ=2.721 
      Epoch  90: train=0.009 test=0.010 λ=2.763 
      Epoch 100: train=0.008 test=0.010 λ=2.735 
      Epoch 110: train=0.009 test=0.010 λ=2.716 
      Epoch 120: train=0.009 test=0.010 λ=2.718 
      Epoch 130: train=0.009 test=0.010 λ=2.756 
      Epoch 140: train=0.009 test=0.010 λ=2.726 
      Epoch 150: train=0.010 test=0.010 λ=2.714 
      Best test acc: 0.016

====================================================================================================
DEPTH SCALING RESULTS: CIFAR100
====================================================================================================
Depth    Vanilla Acc  Lyapunov Acc Δ Acc    Lyap λ     Van ∇norm    Lyap ∇norm   Van κ     
----------------------------------------------------------------------------------------------------
4        0.614        0.010        -0.604   1.921      4.57e-01     8.82e-02     1.2e+09   
8        0.522        0.010        -0.512   2.262      3.86e-01     8.73e-02     1.4e+09   
12       0.102        0.010        -0.092   2.462      6.74e-01     8.77e-02     2.5e+07   
16       0.037        0.010        -0.027   2.603      5.04e-01     8.77e-02     2.4e+07   
20       0.010        0.010        -0.000   2.714      2.96e-01     8.80e-02     6.5e+07   
====================================================================================================

GRADIENT HEALTH ANALYSIS:
  Depth 4: ⚠️ Vanilla has ill-conditioned gradients (κ > 1e6)
  Depth 8: ⚠️ Vanilla has ill-conditioned gradients (κ > 1e6)
  Depth 12: ⚠️ Vanilla has ill-conditioned gradients (κ > 1e6)
  Depth 16: ⚠️ Vanilla has ill-conditioned gradients (κ > 1e6)
  Depth 20: ⚠️ Vanilla has ill-conditioned gradients (κ > 1e6)


KEY OBSERVATIONS:
  Vanilla  4→20 layers: -0.604 accuracy change
  Lyapunov 4→20 layers: +0.000 accuracy change
  ✓ Lyapunov regularization enables better depth scaling!

Results saved to runs/depth_scaling/cifar100_20251230-213033
============================================================
Finished: Tue Dec 30 21:30:34 CST 2025
============================================================