summaryrefslogtreecommitdiff
path: root/runs/slurm_logs/14363509_cifar10_depth.out
blob: 37006d0915261cdeb77ac598c3de521f43248288 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
============================================================
CIFAR-10 Depth Scaling Benchmark
Job ID: 14363509 | Node: gpub039
Start: Mon Dec 29 00:06:15 CST 2025
============================================================
NVIDIA A40, 46068 MiB
============================================================
================================================================================
DEPTH SCALING BENCHMARK
================================================================================
Dataset: cifar10
Depths: [4, 8, 12, 16]
Timesteps: 4
Epochs: 100
λ_reg: 0.3, λ_target: -0.1
Device: cuda
================================================================================

Loading cifar10...
Classes: 10, Input: (3, 32, 32)
Train: 50000, Test: 10000

Depth configurations: [(4, '4×1'), (8, '4×2'), (12, '4×3'), (16, '4×4')]

============================================================
Depth = 4 conv layers (4 stages × 1 blocks)
============================================================
    Vanilla: depth=4, params=1,572,426
      Epoch  10: train=0.766 test=0.684  σ=1.77e+00/1.12e-07
      Epoch  20: train=0.845 test=0.769  σ=8.13e-01/6.93e-08
      Epoch  30: train=0.885 test=0.795  σ=5.04e-01/5.04e-08
      Epoch  40: train=0.913 test=0.830  σ=3.73e-01/4.29e-08
      Epoch  50: train=0.936 test=0.851  σ=3.15e-01/3.97e-08
      Epoch  60: train=0.952 test=0.854  σ=2.80e-01/3.70e-08
      Epoch  70: train=0.967 test=0.867  σ=2.29e-01/3.56e-08
      Epoch  80: train=0.973 test=0.869  σ=2.24e-01/3.51e-08
      Epoch  90: train=0.979 test=0.870  σ=2.04e-01/3.44e-08
      Epoch 100: train=0.979 test=0.872  σ=1.99e-01/3.30e-08
      Best test acc: 0.873
    Lyapunov: depth=4, params=1,572,426
      Epoch  10: train=0.098 test=0.100 λ=1.928 σ=7.83e-02/8.44e-10
      Epoch  20: train=0.097 test=0.100 λ=1.919 
      Epoch  30: train=0.098 test=0.100 λ=1.918 σ=3.72e-03/2.28e-14
      Epoch  40: train=0.098 test=0.100 λ=1.922 
      Epoch  50: train=0.098 test=0.100 λ=1.923 
      Epoch  60: train=0.097 test=0.100 λ=1.920 
      Epoch  70: train=0.097 test=0.100 λ=1.920 
      Epoch  80: train=0.098 test=0.100 λ=1.920 
      Epoch  90: train=0.098 test=0.100 λ=1.920 
      Epoch 100: train=0.100 test=0.100 λ=1.920 
      Best test acc: 0.275

============================================================
Depth = 8 conv layers (4 stages × 2 blocks)
============================================================
    Vanilla: depth=8, params=4,707,786
      Epoch  10: train=0.709 test=0.682  σ=1.97e+00/1.14e-07
      Epoch  20: train=0.815 test=0.752  σ=5.91e-01/5.57e-08
      Epoch  30: train=0.867 test=0.811  σ=3.68e-01/4.03e-08
      Epoch  40: train=0.900 test=0.815  σ=2.64e-01/3.40e-08
      Epoch  50: train=0.925 test=0.840  σ=2.22e-01/2.97e-08
      Epoch  60: train=0.948 test=0.834  σ=2.00e-01/2.76e-08
      Epoch  70: train=0.964 test=0.831  σ=1.76e-01/2.67e-08
      Epoch  80: train=0.974 test=0.839  σ=1.47e-01/2.56e-08
      Epoch  90: train=0.980 test=0.848  σ=1.40e-01/2.45e-08
      Epoch 100: train=0.981 test=0.850  σ=1.47e-01/2.44e-08
      Best test acc: 0.851
    Lyapunov: depth=8, params=4,707,786
      Epoch  10: train=0.128 test=0.100 λ=2.363 σ=1.04e-01/3.70e-09
      Epoch  20: train=0.097 test=0.100 λ=2.262 σ=4.82e-03/7.30e-36
      Epoch  30: train=0.099 test=0.100 λ=2.268 
      Epoch  40: train=0.099 test=0.100 λ=2.260 
      Epoch  50: train=0.096 test=0.100 λ=2.261 
      Epoch  60: train=0.097 test=0.100 λ=2.263 
      Epoch  70: train=0.099 test=0.100 λ=2.262 
      Epoch  80: train=0.096 test=0.100 λ=2.261 
      Epoch  90: train=0.097 test=0.100 λ=2.260 
      Epoch 100: train=0.100 test=0.100 λ=2.261 
      Best test acc: 0.212

============================================================
Depth = 12 conv layers (4 stages × 3 blocks)
============================================================
    Vanilla: depth=12, params=7,843,146
      Epoch  10: train=0.508 test=0.243  σ=9.35e-01/6.03e-08
      Epoch  20: train=0.586 test=0.276  σ=4.45e-01/3.35e-08
      Epoch  30: train=0.639 test=0.353  σ=3.15e-01/2.46e-08
      Epoch  40: train=0.672 test=0.365  σ=2.83e-01/2.38e-08
      Epoch  50: train=0.699 test=0.459  σ=2.73e-01/2.35e-08
      Epoch  60: train=0.727 test=0.490  σ=2.61e-01/2.37e-08
      Epoch  70: train=0.747 test=0.499  σ=2.44e-01/2.33e-08
      Epoch  80: train=0.764 test=0.492  σ=2.47e-01/2.36e-08
      Epoch  90: train=0.774 test=0.462  σ=2.50e-01/2.30e-08
      Epoch 100: train=0.775 test=0.490  σ=2.31e-01/2.28e-08
      Best test acc: 0.499
    Lyapunov: depth=12, params=7,843,146
      Epoch  10: train=0.110 test=0.100 λ=3.021 σ=2.68e-01/5.79e-09
      Epoch  20: train=0.098 test=0.100 λ=2.464 
      Epoch  30: train=0.097 test=0.100 λ=2.484 
      Epoch  40: train=0.098 test=0.100 λ=2.470 
      Epoch  50: train=0.096 test=0.100 λ=2.463 
      Epoch  60: train=0.098 test=0.100 λ=2.480 
      Epoch  70: train=0.097 test=0.100 λ=2.468 
      Epoch  80: train=0.096 test=0.100 λ=2.463 
      Epoch  90: train=0.099 test=0.100 λ=2.467 
      Epoch 100: train=0.100 test=0.100 λ=2.463 
      Best test acc: 0.108

============================================================
Depth = 16 conv layers (4 stages × 4 blocks)
============================================================
    Vanilla: depth=16, params=10,978,506
      Epoch  10: train=0.308 test=0.100  σ=3.38e+00/1.23e-07
      Epoch  20: train=0.367 test=0.107  σ=2.47e+00/9.15e-08
      Epoch  30: train=0.402 test=0.105  σ=2.20e+00/8.56e-08
      Epoch  40: train=0.427 test=0.103  σ=1.93e+00/7.65e-08
      Epoch  50: train=0.448 test=0.108  σ=1.57e+00/6.91e-08
      Epoch  60: train=0.461 test=0.105  σ=1.43e+00/6.00e-08
      Epoch  70: train=0.473 test=0.105  σ=1.17e+00/5.32e-08
      Epoch  80: train=0.482 test=0.106  σ=1.18e+00/5.38e-08
      Epoch  90: train=0.487 test=0.109  σ=1.18e+00/5.38e-08
      Epoch 100: train=0.487 test=0.106  σ=1.09e+00/5.24e-08
      Best test acc: 0.120
    Lyapunov: depth=16, params=10,978,506
      Epoch  10: train=0.120 test=0.100 λ=2.810 σ=7.74e-01/1.07e-08
      Epoch  20: train=0.104 test=0.100 λ=2.748 σ=5.73e-02/5.65e-12
      Epoch  30: train=0.098 test=0.100 λ=2.608 σ=2.81e-03/0.00e+00
      Epoch  40: train=0.098 test=0.100 λ=2.605 
      Epoch  50: train=0.098 test=0.100 λ=2.609 
      Epoch  60: train=0.097 test=0.100 λ=2.618 
      Epoch  70: train=0.096 test=0.100 λ=2.615 
      Epoch  80: train=0.099 test=0.100 λ=2.606 
      Epoch  90: train=0.096 test=0.100 λ=2.604 
      Epoch 100: train=0.100 test=0.100 λ=2.602 
      Best test acc: 0.113

====================================================================================================
DEPTH SCALING RESULTS: CIFAR10
====================================================================================================
Depth    Vanilla Acc  Lyapunov Acc Δ Acc    Lyap λ     Van ∇norm    Lyap ∇norm   Van κ     
----------------------------------------------------------------------------------------------------
4        0.872        0.100        -0.772   1.920      2.75e-01     8.22e-02     6.1e+06   
8        0.850        0.100        -0.750   2.261      1.94e-01     8.25e-02     6.1e+06   
12       0.490        0.100        -0.390   2.463      4.09e-01     8.02e-02     1.0e+07   
16       0.106        0.100        -0.006   2.602      1.28e+00     8.22e-02     2.1e+07   
====================================================================================================

GRADIENT HEALTH ANALYSIS:
  Depth 4: ⚠️ Vanilla has ill-conditioned gradients (κ > 1e6)
  Depth 8: ⚠️ Vanilla has ill-conditioned gradients (κ > 1e6)
  Depth 12: ⚠️ Vanilla has ill-conditioned gradients (κ > 1e6)
  Depth 16: ⚠️ Vanilla has ill-conditioned gradients (κ > 1e6)


KEY OBSERVATIONS:
  Vanilla  4→16 layers: -0.767 accuracy change
  Lyapunov 4→16 layers: +0.000 accuracy change
  ✓ Lyapunov regularization enables better depth scaling!

Results saved to runs/depth_scaling/cifar10_20251229-160504
============================================================
Finished: Mon Dec 29 16:05:07 CST 2025
============================================================