summaryrefslogtreecommitdiff
path: root/runs/slurm_logs/14363510_cifar10_conv.out
blob: 0570c1f78b1a320fbbae420c48238f0e525f0bfc (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
============================================================
CIFAR-10 Conv-SNN Experiment
Job ID: 14363510 | Node: gpub011
Start: Mon Dec 29 10:47:15 CST 2025
============================================================
NVIDIA A40, 46068 MiB
============================================================
======================================================================
CIFAR-10 Conv-SNN Experiment
======================================================================
Model: simple
Timesteps: 25
Epochs: 50
Device: cuda
======================================================================

Loading CIFAR-10...
Train: 50000, Test: 10000

============================================================
Depth = 2 conv layers, channels = [64, 128]
============================================================

  Training VANILLA...
  Model: simple, params: 157,770
  Epoch   1: train=0.294 test=0.387  (68.7s)
  Epoch   2: train=0.363 test=0.461  (66.7s)
  Epoch   3: train=0.430 test=0.510  (66.7s)
  Epoch   4: train=0.508 test=0.502  (66.7s)
  Epoch   5: train=0.537 test=0.575  (66.7s)
  Epoch   6: train=0.560 test=0.551  (66.7s)
  Epoch   7: train=0.579 test=0.577  (66.7s)
  Epoch   8: train=0.592 test=0.616  (66.7s)
  Epoch   9: train=0.604 test=0.620  (66.7s)
  Epoch  10: train=0.615 test=0.620  (66.7s)
  Epoch  11: train=0.623 test=0.637  (66.7s)
  Epoch  12: train=0.633 test=0.664  (66.7s)
  Epoch  13: train=0.639 test=0.660  (66.7s)
  Epoch  14: train=0.647 test=0.635  (66.8s)
  Epoch  15: train=0.652 test=0.679  (66.7s)
  Epoch  16: train=0.657 test=0.677  (66.8s)
  Epoch  17: train=0.664 test=0.678  (66.8s)
  Epoch  18: train=0.669 test=0.693  (66.8s)
  Epoch  19: train=0.674 test=0.697  (66.8s)
  Epoch  20: train=0.677 test=0.688  (66.8s)
  Epoch  21: train=0.682 test=0.705  (66.8s)
  Epoch  22: train=0.681 test=0.700  (66.8s)
  Epoch  23: train=0.684 test=0.708  (66.8s)
  Epoch  24: train=0.691 test=0.695  (66.7s)
  Epoch  25: train=0.695 test=0.708  (66.8s)
  Epoch  26: train=0.696 test=0.702  (66.8s)
  Epoch  27: train=0.699 test=0.713  (66.8s)
  Epoch  28: train=0.703 test=0.720  (66.8s)
  Epoch  29: train=0.704 test=0.718  (66.8s)
  Epoch  30: train=0.706 test=0.723  (66.8s)
  Epoch  31: train=0.711 test=0.736  (66.8s)
  Epoch  32: train=0.711 test=0.732  (66.8s)
  Epoch  33: train=0.715 test=0.733  (66.8s)
  Epoch  34: train=0.717 test=0.728  (66.8s)
  Epoch  35: train=0.720 test=0.730  (66.8s)
  Epoch  36: train=0.723 test=0.735  (66.8s)
  Epoch  37: train=0.720 test=0.727  (66.8s)
  Epoch  38: train=0.726 test=0.731  (66.8s)
  Epoch  39: train=0.726 test=0.739  (66.8s)
  Epoch  40: train=0.728 test=0.738  (66.8s)
  Epoch  41: train=0.728 test=0.738  (66.7s)
  Epoch  42: train=0.730 test=0.735  (66.7s)
  Epoch  43: train=0.729 test=0.737  (66.8s)
  Epoch  44: train=0.731 test=0.742  (66.8s)
  Epoch  45: train=0.730 test=0.750  (66.8s)
  Epoch  46: train=0.733 test=0.739  (66.8s)
  Epoch  47: train=0.731 test=0.748  (66.8s)
  Epoch  48: train=0.731 test=0.746  (66.8s)
  Epoch  49: train=0.736 test=0.747  (66.8s)
  Epoch  50: train=0.735 test=0.737  (66.8s)
  Best test accuracy: 0.750

  Training LYAPUNOV...
  Model: simple, params: 157,770
  Epoch   1: train=0.290 test=0.412 λ=1.266 (177.1s)
  Epoch   2: train=0.361 test=0.485 λ=1.141 (177.1s)
  Epoch   3: train=0.405 test=0.508 λ=0.808 (177.0s)
  Epoch   4: train=0.490 test=0.580 λ=0.641 (177.1s)
  Epoch   5: train=0.532 test=0.588 λ=0.617 (177.1s)
  Epoch   6: train=0.552 test=0.611 λ=0.610 (177.2s)
  Epoch   7: train=0.568 test=0.632 λ=0.602 (177.1s)
  Epoch   8: train=0.578 test=0.628 λ=0.600 (177.1s)
  Epoch   9: train=0.590 test=0.639 λ=0.593 (177.1s)
  Epoch  10: train=0.594 test=0.643 λ=0.588 (177.1s)
  Epoch  11: train=0.605 test=0.662 λ=0.587 (177.1s)
  Epoch  12: train=0.612 test=0.657 λ=0.585 (177.1s)
  Epoch  13: train=0.615 test=0.663 λ=0.586 (177.1s)
  Epoch  14: train=0.624 test=0.642 λ=0.584 (177.1s)
  Epoch  15: train=0.627 test=0.673 λ=0.580 (177.1s)
  Epoch  16: train=0.629 test=0.662 λ=0.582 (177.1s)
  Epoch  17: train=0.636 test=0.671 λ=0.580 (177.1s)
  Epoch  18: train=0.639 test=0.683 λ=0.579 (177.2s)
  Epoch  19: train=0.644 test=0.673 λ=0.580 (177.2s)
  Epoch  20: train=0.649 test=0.686 λ=0.581 (177.2s)
  Epoch  21: train=0.650 test=0.689 λ=0.575 (177.2s)
  Epoch  22: train=0.653 test=0.696 λ=0.572 (177.2s)
  Epoch  23: train=0.657 test=0.695 λ=0.579 (177.2s)
  Epoch  24: train=0.663 test=0.683 λ=0.574 (177.2s)
  Epoch  25: train=0.662 test=0.706 λ=0.577 (177.2s)
  Epoch  26: train=0.667 test=0.702 λ=0.572 (177.2s)
  Epoch  27: train=0.669 test=0.701 λ=0.572 (177.2s)
  Epoch  28: train=0.675 test=0.702 λ=0.572 (177.2s)
  Epoch  29: train=0.675 test=0.701 λ=0.570 (177.2s)
  Epoch  30: train=0.674 test=0.701 λ=0.573 (177.2s)
  Epoch  31: train=0.679 test=0.718 λ=0.573 (177.2s)
  Epoch  32: train=0.680 test=0.708 λ=0.569 (177.2s)
  Epoch  33: train=0.684 test=0.716 λ=0.569 (177.2s)
  Epoch  34: train=0.684 test=0.710 λ=0.570 (177.2s)
  Epoch  35: train=0.687 test=0.719 λ=0.573 (177.2s)
  Epoch  36: train=0.691 test=0.724 λ=0.573 (177.2s)
  Epoch  37: train=0.692 test=0.701 λ=0.570 (177.2s)
  Epoch  38: train=0.694 test=0.716 λ=0.569 (177.2s)
  Epoch  39: train=0.694 test=0.726 λ=0.569 (177.2s)
  Epoch  40: train=0.695 test=0.720 λ=0.569 (177.2s)
  Epoch  41: train=0.697 test=0.728 λ=0.569 (177.2s)
  Epoch  42: train=0.698 test=0.714 λ=0.571 (177.3s)
  Epoch  43: train=0.697 test=0.719 λ=0.569 (177.2s)
  Epoch  44: train=0.700 test=0.719 λ=0.571 (177.2s)
  Epoch  45: train=0.699 test=0.721 λ=0.568 (177.2s)
  Epoch  46: train=0.702 test=0.722 λ=0.572 (177.2s)
  Epoch  47: train=0.702 test=0.727 λ=0.569 (177.2s)
  Epoch  48: train=0.702 test=0.726 λ=0.571 (177.2s)
  Epoch  49: train=0.701 test=0.728 λ=0.572 (177.2s)
  Epoch  50: train=0.700 test=0.714 λ=0.570 (177.2s)
  Best test accuracy: 0.728

============================================================
Depth = 3 conv layers, channels = [64, 128, 256]
============================================================

  Training VANILLA...
  Model: simple, params: 412,234
  Epoch   1: train=0.293 test=0.431  (81.7s)
  Epoch   2: train=0.377 test=0.464  (81.6s)
  Epoch   3: train=0.449 test=0.478  (81.6s)
  Epoch   4: train=0.499 test=0.577  (81.6s)
  Epoch   5: train=0.563 test=0.615  (81.6s)
  Epoch   6: train=0.618 test=0.665  (81.6s)
  Epoch   7: train=0.642 test=0.670  (81.6s)
  Epoch   8: train=0.663 test=0.693  (81.6s)
  Epoch   9: train=0.679 test=0.687  (81.6s)
  Epoch  10: train=0.693 test=0.715  (81.6s)
  Epoch  11: train=0.704 test=0.704  (96.8s)
  Epoch  12: train=0.714 test=0.701  (81.6s)
  Epoch  13: train=0.718 test=0.723  (91.9s)
  Epoch  14: train=0.728 test=0.734  (81.6s)
  Epoch  15: train=0.734 test=0.720  (81.6s)
  Epoch  16: train=0.742 test=0.730  (91.9s)
  Epoch  17: train=0.748 test=0.726  (81.6s)
  Epoch  18: train=0.752 test=0.754  (81.6s)
  Epoch  19: train=0.758 test=0.746  (81.6s)
  Epoch  20: train=0.764 test=0.760  (81.6s)
  Epoch  21: train=0.770 test=0.757  (81.6s)
  Epoch  22: train=0.776 test=0.756  (81.6s)
  Epoch  23: train=0.781 test=0.730  (81.6s)
  Epoch  24: train=0.786 test=0.752  (81.6s)
  Epoch  25: train=0.790 test=0.771  (81.6s)
  Epoch  26: train=0.795 test=0.772  (81.6s)
  Epoch  27: train=0.796 test=0.766  (81.6s)
  Epoch  28: train=0.800 test=0.760  (81.7s)
  Epoch  29: train=0.804 test=0.755  (81.6s)
  Epoch  30: train=0.808 test=0.754  (81.6s)
  Epoch  31: train=0.810 test=0.760  (81.6s)
  Epoch  32: train=0.813 test=0.771  (81.6s)
  Epoch  33: train=0.817 test=0.753  (81.6s)
  Epoch  34: train=0.820 test=0.784  (81.6s)
  Epoch  35: train=0.819 test=0.779  (81.6s)
  Epoch  36: train=0.823 test=0.773  (81.6s)
  Epoch  37: train=0.823 test=0.773  (81.6s)
  Epoch  38: train=0.829 test=0.778  (81.6s)
  Epoch  39: train=0.831 test=0.776  (81.9s)
  Epoch  40: train=0.832 test=0.785  (81.7s)
  Epoch  41: train=0.831 test=0.787  (81.6s)
  Epoch  42: train=0.835 test=0.780  (81.6s)
  Epoch  43: train=0.836 test=0.775  (81.6s)
  Epoch  44: train=0.838 test=0.779  (81.6s)
  Epoch  45: train=0.837 test=0.774  (81.6s)
  Epoch  46: train=0.837 test=0.777  (81.6s)
  Epoch  47: train=0.839 test=0.796  (81.6s)
  Epoch  48: train=0.840 test=0.775  (81.7s)
  Epoch  49: train=0.839 test=0.776  (81.6s)
  Epoch  50: train=0.837 test=0.777  (81.6s)
  Best test accuracy: 0.796

  Training LYAPUNOV...
  Model: simple, params: 412,234
  Epoch   1: train=0.268 test=0.346 λ=1.850 (219.1s)
  Epoch   2: train=0.321 test=0.407 λ=1.465 (219.1s)
  Epoch   3: train=0.381 test=0.417 λ=1.248 (219.1s)
  Epoch   4: train=0.419 test=0.461 λ=1.133 (219.1s)
  Epoch   5: train=0.445 test=0.511 λ=1.062 (219.1s)
  Epoch   6: train=0.483 test=0.564 λ=0.977 (219.1s)
  Epoch   7: train=0.517 test=0.573 λ=0.942 (219.0s)
  Epoch   8: train=0.532 test=0.581 λ=0.921 (219.1s)
  Epoch   9: train=0.539 test=0.596 λ=0.909 (219.1s)
  Epoch  10: train=0.549 test=0.601 λ=0.907 (219.1s)
  Epoch  11: train=0.557 test=0.610 λ=0.902 (219.0s)
  Epoch  12: train=0.568 test=0.611 λ=0.897 (219.1s)
  Epoch  13: train=0.574 test=0.612 λ=0.900 (219.1s)
  Epoch  14: train=0.579 test=0.622 λ=0.894 (219.1s)
  Epoch  15: train=0.580 test=0.627 λ=0.895 (219.1s)
  Epoch  16: train=0.586 test=0.637 λ=0.890 (219.1s)
  Epoch  17: train=0.592 test=0.645 λ=0.891 (219.1s)
  Epoch  18: train=0.593 test=0.638 λ=0.889 (219.1s)
  Epoch  19: train=0.599 test=0.641 λ=0.887 (219.0s)
  Epoch  20: train=0.603 test=0.644 λ=0.883 (219.0s)
  Epoch  21: train=0.606 test=0.645 λ=0.879 (219.1s)
  Epoch  22: train=0.610 test=0.655 λ=0.882 (219.1s)
  Epoch  23: train=0.612 test=0.649 λ=0.888 (219.1s)
  Epoch  24: train=0.616 test=0.649 λ=0.878 (219.1s)
  Epoch  25: train=0.619 test=0.661 λ=0.885 (219.1s)
  Epoch  26: train=0.622 test=0.657 λ=0.882 (219.1s)
  Epoch  27: train=0.626 test=0.662 λ=0.881 (219.1s)
  Epoch  28: train=0.627 test=0.662 λ=0.875 (219.1s)
  Epoch  29: train=0.627 test=0.660 λ=0.882 (219.1s)
  Epoch  30: train=0.634 test=0.672 λ=0.879 (219.1s)
  Epoch  31: train=0.633 test=0.673 λ=0.879 (219.2s)
  Epoch  32: train=0.637 test=0.674 λ=0.877 (219.2s)
  Epoch  33: train=0.639 test=0.664 λ=0.880 (219.2s)
  Epoch  34: train=0.640 test=0.677 λ=0.883 (219.1s)
  Epoch  35: train=0.639 test=0.674 λ=0.877 (219.1s)
  Epoch  36: train=0.645 test=0.678 λ=0.877 (219.1s)
  Epoch  37: train=0.645 test=0.665 λ=0.878 (219.1s)
  Epoch  38: train=0.644 test=0.669 λ=0.875 (219.1s)
  Epoch  39: train=0.649 test=0.673 λ=0.877 (219.1s)
  Epoch  40: train=0.648 test=0.680 λ=0.876 (219.1s)
  Epoch  41: train=0.651 test=0.674 λ=0.878 (219.1s)
  Epoch  42: train=0.649 test=0.679 λ=0.881 (219.1s)
  Epoch  43: train=0.651 test=0.676 λ=0.873 (219.1s)
  Epoch  44: train=0.650 test=0.680 λ=0.878 (219.1s)
  Epoch  45: train=0.649 test=0.684 λ=0.875 (219.1s)
  Epoch  46: train=0.652 test=0.682 λ=0.882 (219.1s)
  Epoch  47: train=0.653 test=0.681 λ=0.876 (219.1s)
  Epoch  48: train=0.650 test=0.684 λ=0.876 (219.1s)
  Epoch  49: train=0.653 test=0.679 λ=0.872 (219.1s)
  Epoch  50: train=0.653 test=0.679 λ=0.877 (219.1s)
  Best test accuracy: 0.684

============================================================
Depth = 4 conv layers, channels = [64, 128, 256, 512]
============================================================

  Training VANILLA...
  Model: simple, params: 1,572,426
  Epoch   1: train=0.293 test=0.421  (91.2s)
  Epoch   2: train=0.406 test=0.522  (91.1s)
  Epoch   3: train=0.490 test=0.491  (91.1s)
  Epoch   4: train=0.543 test=0.591  (91.2s)
  Epoch   5: train=0.598 test=0.635  (91.1s)
  Epoch   6: train=0.637 test=0.648  (91.2s)
  Epoch   7: train=0.671 test=0.657  (91.1s)
  Epoch   8: train=0.696 test=0.683  (91.2s)
  Epoch   9: train=0.714 test=0.688  (91.1s)
  Epoch  10: train=0.731 test=0.686  (91.1s)
  Epoch  11: train=0.742 test=0.730  (91.2s)
  Epoch  12: train=0.755 test=0.718  (91.1s)
  Epoch  13: train=0.763 test=0.707  (91.2s)
  Epoch  14: train=0.775 test=0.723  (91.1s)
  Epoch  15: train=0.781 test=0.748  (91.1s)
  Epoch  16: train=0.787 test=0.730  (91.2s)
  Epoch  17: train=0.795 test=0.694  (91.1s)
  Epoch  18: train=0.802 test=0.716  (91.1s)
  Epoch  19: train=0.808 test=0.759  (91.1s)
  Epoch  20: train=0.815 test=0.751  (91.2s)
  Epoch  21: train=0.822 test=0.756  (91.1s)
  Epoch  22: train=0.825 test=0.748  (91.1s)
  Epoch  23: train=0.835 test=0.743  (91.2s)
  Epoch  24: train=0.837 test=0.762  (91.1s)
  Epoch  25: train=0.843 test=0.751  (91.1s)
  Epoch  26: train=0.845 test=0.763  (91.1s)
  Epoch  27: train=0.852 test=0.782  (91.1s)
  Epoch  28: train=0.858 test=0.760  (91.1s)
  Epoch  29: train=0.862 test=0.774  (91.1s)
  Epoch  30: train=0.865 test=0.766  (91.1s)
  Epoch  31: train=0.868 test=0.748  (91.1s)
  Epoch  32: train=0.870 test=0.776  (91.1s)
  Epoch  33: train=0.876 test=0.763  (91.1s)
  Epoch  34: train=0.880 test=0.766  (91.1s)
  Epoch  35: train=0.883 test=0.768  (91.1s)
  Epoch  36: train=0.887 test=0.772  (91.1s)
  Epoch  37: train=0.891 test=0.767  (91.2s)
  Epoch  38: train=0.890 test=0.773  (91.1s)
  Epoch  39: train=0.894 test=0.774  (91.1s)
  Epoch  40: train=0.893 test=0.757  (91.1s)
  Epoch  41: train=0.899 test=0.773  (91.1s)
  Epoch  42: train=0.900 test=0.787  (91.1s)
  Epoch  43: train=0.902 test=0.764  (91.1s)
  Epoch  44: train=0.901 test=0.778  (91.1s)
  Epoch  45: train=0.904 test=0.754  (91.0s)
  Epoch  46: train=0.905 test=0.786  (91.1s)
  Epoch  47: train=0.906 test=0.775  (91.1s)
  Epoch  48: train=0.906 test=0.790  (91.1s)
  Epoch  49: train=0.906 test=0.778  (91.1s)
  Epoch  50: train=0.907 test=0.785  (91.0s)
  Best test accuracy: 0.790

  Training LYAPUNOV...
  Model: simple, params: 1,572,426
  Epoch   1: train=0.226 test=0.341 λ=2.642 (243.8s)
  Epoch   2: train=0.238 test=0.338 λ=1.931 (243.8s)
  Epoch   3: train=0.249 test=0.292 λ=1.659 (243.8s)
  Epoch   4: train=0.257 test=0.327 λ=1.510 (243.8s)
  Epoch   5: train=0.265 test=0.313 λ=1.386 (243.8s)
  Epoch   6: train=0.282 test=0.349 λ=1.291 (243.8s)
  Epoch   7: train=0.320 test=0.367 λ=1.211 (243.8s)
  Epoch   8: train=0.342 test=0.389 λ=1.171 (243.9s)
  Epoch   9: train=0.355 test=0.392 λ=1.157 (243.8s)
  Epoch  10: train=0.361 test=0.396 λ=1.140 (243.7s)
  Epoch  11: train=0.362 test=0.393 λ=1.139 (243.8s)
  Epoch  12: train=0.367 test=0.398 λ=1.131 (243.8s)
  Epoch  13: train=0.370 test=0.417 λ=1.123 (243.8s)
  Epoch  14: train=0.373 test=0.420 λ=1.124 (243.8s)
  Epoch  15: train=0.378 test=0.409 λ=1.120 (243.8s)
  Epoch  16: train=0.379 test=0.408 λ=1.119 (243.8s)
  Epoch  17: train=0.382 test=0.422 λ=1.117 (243.8s)
  Epoch  18: train=0.382 test=0.419 λ=1.120 (243.8s)
  Epoch  19: train=0.386 test=0.421 λ=1.119 (243.8s)
  Epoch  20: train=0.388 test=0.421 λ=1.121 (243.8s)
  Epoch  21: train=0.391 test=0.433 λ=1.127 (243.8s)
  Epoch  22: train=0.395 test=0.436 λ=1.130 (243.8s)
  Epoch  23: train=0.396 test=0.441 λ=1.125 (243.9s)
  Epoch  24: train=0.398 test=0.437 λ=1.129 (243.8s)
  Epoch  25: train=0.400 test=0.437 λ=1.136 (243.9s)
  Epoch  26: train=0.399 test=0.438 λ=1.141 (243.8s)
  Epoch  27: train=0.405 test=0.428 λ=1.137 (243.8s)
  Epoch  28: train=0.407 test=0.441 λ=1.143 (243.8s)
  Epoch  29: train=0.405 test=0.450 λ=1.139 (243.8s)
  Epoch  30: train=0.410 test=0.443 λ=1.139 (243.8s)
  Epoch  31: train=0.413 test=0.446 λ=1.139 (243.8s)
  Epoch  32: train=0.418 test=0.453 λ=1.138 (243.8s)
  Epoch  33: train=0.416 test=0.455 λ=1.138 (243.9s)
  Epoch  34: train=0.419 test=0.455 λ=1.139 (243.8s)
  Epoch  35: train=0.417 test=0.459 λ=1.138 (243.8s)
  Epoch  36: train=0.420 test=0.459 λ=1.141 (243.8s)
  Epoch  37: train=0.421 test=0.458 λ=1.139 (243.8s)
  Epoch  38: train=0.425 test=0.452 λ=1.140 (243.8s)
  Epoch  39: train=0.425 test=0.457 λ=1.135 (243.8s)
  Epoch  40: train=0.424 test=0.458 λ=1.141 (243.9s)
  Epoch  41: train=0.429 test=0.461 λ=1.138 (243.8s)
  Epoch  42: train=0.428 test=0.461 λ=1.134 (243.8s)
  Epoch  43: train=0.427 test=0.457 λ=1.136 (244.0s)
  Epoch  44: train=0.431 test=0.461 λ=1.136 (243.8s)
  Epoch  45: train=0.431 test=0.462 λ=1.138 (243.8s)
  Epoch  46: train=0.432 test=0.460 λ=1.139 (243.8s)
  Epoch  47: train=0.431 test=0.467 λ=1.142 (243.8s)
  Epoch  48: train=0.432 test=0.470 λ=1.136 (243.8s)
  Epoch  49: train=0.430 test=0.462 λ=1.136 (243.8s)
  Epoch  50: train=0.430 test=0.463 λ=1.142 (243.8s)
  Best test accuracy: 0.470

======================================================================
SUMMARY: CIFAR-10 Conv-SNN Results
======================================================================
Depth    Vanilla         Lyapunov        Improvement    
----------------------------------------------------------------------
2        0.737           0.714           -0.023         
3        0.777           0.679           -0.098         
4        0.785           0.463           -0.323         
======================================================================

Results saved to runs/cifar10_conv/20251229-230105
============================================================
Finished: Mon Dec 29 23:01:08 CST 2025
============================================================