summaryrefslogtreecommitdiff
path: root/scripts/run_depth_scaling_asymmetric.sbatch
blob: 51a619124a6584faafc271bb0511d38f30190a9a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
#!/bin/bash
#SBATCH --job-name=snn_asymm
#SBATCH --account=bfqt-delta-gpu
#SBATCH --partition=gpuA40x4
#SBATCH --nodes=1
#SBATCH --ntasks=1
#SBATCH --cpus-per-task=8
#SBATCH --gpus-per-node=1
#SBATCH --mem=64G
#SBATCH --time=48:00:00
#SBATCH --output=runs/slurm_logs/%j_asymm.out
#SBATCH --error=runs/slurm_logs/%j_asymm.err

# ============================================================
# Asymmetric Lyapunov Regularization Experiment
# ============================================================
# Hypothesis: Using asymmetric penalty will balance between
# preventing chaos and allowing learning.
#
# Asymmetric loss:
# - Strong penalty for chaos (lambda > 0): relu(lambda)^2
# - Weak penalty for collapse (lambda < -1): 0.1 * relu(-lambda-1)^2
#
# This allows dynamics in the "sweet spot" of slightly negative
# Lyapunov exponents (stable but not dead).
# ============================================================

set -e

PROJECT_DIR="/projects/bfqt/users/yurenh2/ml-projects/snn-training"
cd "$PROJECT_DIR"

mkdir -p runs/slurm_logs data

echo "============================================================"
echo "ASYMMETRIC Lyapunov Regularization"
echo "Job ID: $SLURM_JOB_ID | Node: $SLURM_NODELIST"
echo "Start: $(date)"
echo "============================================================"
nvidia-smi --query-gpu=name,memory.total --format=csv,noheader
echo "============================================================"

# Test depths: 4, 8, 12, 16 conv layers
# Using asymmetric loss + 20 epoch warmup
python files/experiments/depth_scaling_benchmark.py \
    --dataset cifar100 \
    --depths 4 8 12 16 \
    --T 4 \
    --epochs 150 \
    --batch_size 128 \
    --lr 0.001 \
    --lambda_reg 0.3 \
    --lambda_target -0.1 \
    --reg_type asymmetric \
    --warmup_epochs 20 \
    --data_dir ./data \
    --out_dir runs/depth_scaling_asymm \
    --device cuda

echo "============================================================"
echo "Finished: $(date)"
echo "============================================================"