1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
|
{
"cells": [
{
"cell_type": "code",
"execution_count": null,
"id": "8ce6b023",
"metadata": {},
"outputs": [],
"source": [
"import numpy as np\n",
"import pandas as pd\n",
"import yfinance as yf\n",
"import requests"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "8304939a",
"metadata": {},
"outputs": [],
"source": [
"file_path_23 = \"./data/23-138.Records.xlsx\"\n",
" # skip header rows so column names align, drop all NaN rows\n",
"df = pd.read_excel(file_path_23, parse_dates=True, skiprows=6).dropna(how='all')"
]
},
{
"cell_type": "markdown",
"id": "538233a8",
"metadata": {},
"source": [
"#### Setting up the Operating Pool DataFrame "
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "96dee5bc",
"metadata": {},
"outputs": [],
"source": [
"bank_i = df[df['Account or Security'].str.contains(\"9-200100\", na=False)].index\n",
"op_i = df[df['Account or Security'].str.contains(\"Operating Funds Pool\", na=False)].index\n",
"op_df = df.loc[bank_i[0]:op_i[1]-1]\n",
"op_df.insert(6, 'Bank', pd.NA)\n",
"op_df.insert(7, 'Asset Type', pd.NA)\n",
"op_df.insert(8, 'Company', pd.NA)\n",
"op_df.insert(9, 'Industry', pd.NA)\n",
"op_df.insert(10, 'Private Placement', False)\n",
"op_df.insert(11, 'Ticker', pd.NA)\n",
"# op_df = op_df.insert(7, 'Bank', pd.NA)\n",
"op_df.head()"
]
},
{
"cell_type": "markdown",
"id": "cc1f037f",
"metadata": {},
"source": [
"#### Add the Bank and Asset Type "
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "29c95d09",
"metadata": {},
"outputs": [],
"source": [
"bank_name = pd.NA\n",
"asset_type = pd.NA\n",
"for i in op_df.index:\n",
" if np.isnan(op_df.loc[i][\"Quantity\"]):\n",
" if \"9-200100\" in df.loc[i][\"Account or Security\"]:\n",
" bank_name = df.loc[i][\"Account or Security\"]\n",
" else:\n",
" asset_type = df.loc[i][\"Account or Security\"]\n",
" op_df.at[i,'Bank'] = bank_name\n",
" op_df.at[i,'Asset Type'] = asset_type\n",
"op_df.head()"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "3ea40a3e",
"metadata": {},
"outputs": [],
"source": [
"all_asset_types = set([op_df.loc[i]['Asset Type'] for i in op_df.index]);all_asset_types"
]
},
{
"cell_type": "markdown",
"id": "274d0b39",
"metadata": {},
"source": [
"#### First, we just check the corperate bonds "
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "fe124c92",
"metadata": {},
"outputs": [],
"source": [
"cb_df = op_df[op_df['Asset Type'].str.contains(\"Corporate Bonds\", na=False)]\n",
"print(\"Corperate Bond Totals\")\n",
"print(\"Cost Value\\t\",'${:,.2f}'.format(cb_df.sum(numeric_only=True)[\"Cost Value\"]))\n",
"print(\"Market Value\\t\",'${:,.2f}'.format(cb_df.sum(numeric_only=True)[\"Market Value\"]))"
]
},
{
"cell_type": "markdown",
"id": "d4aba4d7",
"metadata": {},
"source": [
"Yup, you read that right"
]
},
{
"cell_type": "markdown",
"id": "9879b032",
"metadata": {},
"source": [
"##### get company name\n",
"+ Parse our 'PVTPL', which is an abreviation for privatly placed https://www.investopedia.com/terms/p/privateplacement.asp\n",
"+ Remove everything after and including the tokens ```['%']```\n",
"+ Remove everything after `[\" CAP\", \" INC\", \" FDG\", \" CORP\", \" CO\", \" LLC\", \" CR\"]`\n",
"+ Add the company names to a set\n",
"+ Map different semantic names to the same syntax for the same company"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "d78a9733",
"metadata": {},
"outputs": [],
"source": [
"company_name_dict = {\n",
" \"AMERICAN EXPRESS\" : \"AMERICAN EXPRESS CO\",\n",
" 'AIG GLOBAL' : \"AMERICAN INTL GROUP INC\",\n",
" \"ANHEUSER-BUSCH\" : \"ANHEUSER-BUSCH CO\",\n",
" \"APTIV\" : \"APTIV CO\",\n",
" \"ASTRAZENECA\" : \"ASTRAZENECA PLC\",\n",
" \"AUSTRALIA & NEW\" : \"AUSTRALIA & NEW ZEALAND BKG GR\",\n",
" \"BAE SYS\" : \"BAE SYS PLC\",\n",
" \"BANCO SANTANDER\" : \"BANCO SANTANDER SA\",\n",
" \"BANK MONTREAL\" : \"BANK OF MONTREAL\",\n",
" \"BANK OF MONTREAL\" : \"BANK OF MONTREAL\",\n",
" \"BK MONTREAL\" : \"BANK OF MONTREAL\",\n",
" \"BANK NOVA SCOTIA\" : \"BANK OF NOVA SCOTIA\",\n",
" \"BANK OF NOVA SCOTIA\" : \"BANK OF NOVA SCOTIA\",\n",
" \"BANK AMER\" : \"BANK OF AMERICA CO\",\n",
" \"BAXTER INT\" : \"BAXTER INTERNATIONAL INC\",\n",
" \"BAYER US FIN\" : \"BAYER US FINANCE LLC\",\n",
" \"BB&T\" : \"BB&T CO\",\n",
" \"BLACKSTONE\" : \"BLACKSTONE\",\n",
" \"BMW\" : \"BMW\",\n",
" \"BNP PARIBAS\" : \"BNP PARIBAS\",\n",
" \"BRIGHTHOUSE\" : \"BRIGHTHOUSE\",\n",
" \"BRISTOL MYERS SQUIBB\" : \"BRISTOL MYERS SQUIBB CO\",\n",
" \"BRISTOL-MYERS SQUIBB\" : \"BRISTOL MYERS SQUIBB CO\",\n",
" \"CANADIAN IMPERIAL BK\" : \"CANADIAN IMPERIAL BK CO\",\n",
" \"CAPITAL ONE\" : \"CAPITAL ONE FINL CO\",\n",
" \"CATERPILLAR FINL\" : \"CATERPILLAR FINL\",\n",
" \"CENTERPOINT ENERGY\" : \"CENTERPOINT ENERGY INC\",\n",
" \"CHEVRON U S A\" : \"CHEVRON CO\",\n",
" \"CREDIT AGRICOLE\" : \"CREDIT AGRICOLE\",\n",
" \"CREDIT SUISSE\" : \"CREDIT SUISSE GROUP AG\",\n",
" \"CROWN CASTLE INTL\" : \"CROWN CASTLE INTL\",\n",
" \"DAIMLER\" : \"DAIMLER\",\n",
" \"DELTA AIR LINES\" : \"DELTA AIR LINES\",\n",
" \"DTE E\" : \"DTE ELEC\",\n",
" \"DUKE ENERGY\" : \"DUKE ENERGY CO\",\n",
" \"DOWDUPONT INC\" : \"DUPONT DE NEMOURS INC\",\n",
" \"ENTERGY\" : \"ENTERGY CO\",\n",
" \"EQUITABLE FINL LIFE\" : \"EQUITABLE FINL LIFE GLOBAL FDG\",\n",
" \"ESC CB LEHMAN BROS\" : \"ESC LEHMAN BROTH HLD INC\",\n",
" \"FIFTH THIRD BANCORP\" : \"FIFTH THIRD BANCORP\",\n",
" \"FLORIDA P\" : \"FLORIDA POWER & LIGHT CO\",\n",
" \"GENERAL MTRS\" : \"GENERAL MOTORS\",\n",
" \"GENERAL MOTORS\" : \"GENERAL MOTORS\",\n",
" \"HEWLETT PACKARD\" : \"HEWLETT PACKARD ENTERPRISE CO\",\n",
" \"HP INC\" : \"HEWLETT PACKARD ENTERPRISE CO\",\n",
" \"HUNTINGTON\" : \"HUNTINGTON NATL BK MD\",\n",
" \"JACKSON FINANCIAL INC\" : \"JACKSON NATIONAL LIFE GL\",\n",
" \"JPM CHASE\" : \"JPMORGAN CHASE & CO\",\n",
" \"KINDER MORGAN\" : \"KINDER MORGAN INC\",\n",
" \"LLOYDS BKG\" : \"LLOYDS BANKING GROUP PLC FORME\",\n",
" \"MACQUARIE\" : \"MACQUARIE BK LTD\",\n",
" \"MIZUHO\" : \"MIZUHO CO\",\n",
" \"MONDELEZ INT\" : \"MONDELEZ INTERNATIONAL INC\",\n",
" \"MORGAN STANLEY\" : \"MORGAN STANLEY\",\n",
" \"NATIONAL AUSTRALIA B\" : \"NATIONAL AUSTRALIA BANK\",\n",
" \"NATIONWIDE BLDG SOC\" : \"NATIONWIDE BLDG SOCIETY\",\n",
" \"NATIONAL BANK OF CANADA\" : \"NATIONAL BANK OF CANADA\",\n",
" \"NATL BK CDA\" : \"NATIONAL BANK OF CANADA\",\n",
" \"NATWEST M\" : \"NATWEST MARKETS PLC\",\n",
" \"NEXTERA ENERGY\" : \"NEXTERA ENERGY CAP\",\n",
" \"NORDEA BANK\" : \"NORDEA BANK\",\n",
" \"NORTHWESTERN\" : \"NORTHWESTERN MUT\",\n",
" \"NXP B V\" : \"NXP B V\",\n",
" \"PHILLIPS 66\" : \"PHILLIPS 66\",\n",
" \"PRINCIPAL LIFE GLOBAL\" : \"PRINCIPAL LIFE GLOBAL FDG\",\n",
" \"PROTECTIVE LIFE G\" : \"PROTECTIVE LIFE GLOBAL\",\n",
" \"PUBLIC SVC\" : \"PUBLIC SERVICE ELECTRIC & GAS\",\n",
" \"RABOBANK NEDERLAND\" : \"RABOBANK NEDERLAND\",\n",
" \"ROCHE H\" : \"ROCHE HOLDINGS INC\",\n",
" \"ROPER \" : \"ROPER TECHNOLOGIES INC\",\n",
" \"ROYAL BANK OF CANADA\" : \"ROYAL BANK OF CANADA\",\n",
" \"ROYAL BK CDA\" : \"ROYAL BANK OF CANADA\",\n",
" \"SCHLUMBERGER\" : \"SCHLUMBERGER\", \n",
" \"SIEMENS FINANCIERINGSMAA\" : \"SIEMENS FINANCIERINGSMAATSCHAP\",\n",
" \"SIMON PPTY GROUP\" : \"SIMON PPTY GROUP\",\n",
" \"STATE STR\" : \"STATE STREET CO\",\n",
" \"SUMITOMO MITSUI\" : \"SUMITOMO MITSUI BANKING\",\n",
" \"SWEDBANK AB\" : \"SWEDBANK AB\",\n",
" \"TORONTO DOMINION B\" : \"TORONTO DOMINION BANK\",\n",
" \"TOYOTA M\" : \"TOYOTA MOTOR\",\n",
" \"TRANS-CDA PIPELINES\" : \"TRANS-CDA PIPELINES\",\n",
" \"TRUIST \" : \"TRUIST BANK\",\n",
" \"TSMC \" : \"TSMC GLOBAL LTD\",\n",
" \"U S B\" : \"U S BANCORP\",\n",
" \"UBS \" : \"UBS AG LONDON\",\n",
" \"VENTAS REALTY\" : \"VENTAS REALTY LP\",\n",
" \"VOLKSWAGEN GROUP\" : \"VOLKSWAGEN GROUP\",\n",
" \"WESTPAC B\" : \"WESTPAC BANKING\",\n",
"}"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "659c0ba7",
"metadata": {},
"outputs": [],
"source": [
"company_names = set()\n",
"for i in cb_df.index:\n",
" # Set the Company to be cleaned\n",
" cb_df.at[i,'Company'] = cb_df.at[i,'Account or Security']\n",
" if not np.isnan(cb_df.at[i,'Quantity']):\n",
" # clean private placement\n",
" for prefix in [\"PVTPL\", \"PVPTL\", \"PVYPL\", \"PVT PL\", \"PVPTL\"]:\n",
" if prefix in cb_df.loc[i][\"Company\"]:\n",
" cb_df.at[i,'Private Placement'] = True\n",
" cb_df.at[i,'Company'] = cb_df.at[i,'Company'][6:].strip()\n",
" for end in [\" CAP\", \" INC\", \" FDG\", \" CORP\", \" CO\", \" LLC\", \" CR\", \" SR\", \" A/S\", \" LP\", \" ASA\", \" LTD\", ]:\n",
" if end in cb_df.at[i, \"Company\"]:\n",
" cb_df.at[i, \"Company\"] = cb_df.at[i, 'Company'].split(end)[0].strip()+\" \"+end\n",
" for token in ['%']:\n",
" if token in cb_df.at[i, \"Company\"]:\n",
" # get everythng before the token, then get eveything before the last space\n",
" cb_df.at[i, \"Company\"] = cb_df.at[i, \"Company\"].split(token)[0].rsplit(' ', 1)[0].strip()\n",
" for key, value in company_name_dict.items():\n",
" if key in cb_df.at[i, \"Company\"]:\n",
" cb_df.at[i, \"Company\"] = value\n",
" company_names.add(cb_df.at[i, \"Company\"])\n",
" else:\n",
" cb_df.drop(i, axis=0)\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "e7e06dfe",
"metadata": {},
"outputs": [],
"source": [
"cb_df"
]
},
{
"cell_type": "markdown",
"id": "8b78d9cd",
"metadata": {},
"source": [
"##### get ticker"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "ba37103f",
"metadata": {},
"outputs": [],
"source": [
"# taken from https://gist.github.com/bruhbruhroblox/dd9d981c8c37983f61e423a45085e063\n",
"def getTicker(company_name):\n",
" yfinance = \"https://query2.finance.yahoo.com/v1/finance/search\"\n",
" user_agent = 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/108.0.0.0 Safari/537.36'\n",
" params = {\"q\": company_name, \"quotes_count\": 1, \"country\": \"United States\"}\n",
"\n",
" res = requests.get(url=yfinance, params=params, headers={'User-Agent': user_agent})\n",
" data = res.json()\n",
"\n",
" company_code = data['quotes'][0]['symbol']\n",
" return company_code"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "f2e232f5",
"metadata": {},
"outputs": [],
"source": [
"%%time\n",
"company_name_to_ticker = dict()\n",
"for name in company_names:\n",
" try:\n",
" # try to get the ticker\n",
" ticker = getTicker(name)\n",
" except:\n",
" try:\n",
" # shorten the name and try again\n",
" short_name = name.split(' ')[0]\n",
" ticker = getTicker(short_name)\n",
" except:\n",
" # no ticker could be found, probably a private company, check to make sure\n",
" ticker = 'NO_TICKER_FOUND'\n",
" company_name_to_ticker[name] = ticker"
]
},
{
"cell_type": "markdown",
"id": "e3009168",
"metadata": {},
"source": [
"##### match company name to ticker in DF"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "d80dca43",
"metadata": {},
"outputs": [],
"source": [
"company_name_to_ticker"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "921c344d",
"metadata": {},
"outputs": [],
"source": [
"company_names"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "7abeab84",
"metadata": {},
"outputs": [],
"source": [
"company_name_to_ticker[cb_df.at[104,'Company']]"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "e8f64024",
"metadata": {},
"outputs": [],
"source": [
"for i in cb_df.index:\n",
" try:\n",
" cb_df.at[i,'Ticker'] = company_name_to_ticker[cb_df.at[i,'Company']]\n",
" except:\n",
" assert cb_df.at[i,'Company'] == 'Corporate Bonds'"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "04e49491",
"metadata": {},
"outputs": [],
"source": [
"cb_df.head()"
]
},
{
"cell_type": "markdown",
"id": "2342f360",
"metadata": {},
"source": [
"## Get info from ticker "
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "6fe3d0df",
"metadata": {},
"outputs": [],
"source": [
"def get_info_from_ticker(ticker):\n",
" # Search for the company on Yahoo Finance\n",
" search_results = yf.Tickers(company_name)\n",
" return search_results.tickers['T'].info"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.9"
},
"vscode": {
"interpreter": {
"hash": "916dbcbb3f70747c44a77c7bcd40155683ae19c65e1c03b4aa3499c5328201f1"
}
}
},
"nbformat": 4,
"nbformat_minor": 5
}
|