summaryrefslogtreecommitdiff
path: root/.venv/lib/python3.12/site-packages/networkx/drawing/tests/test_pylab.py
diff options
context:
space:
mode:
authorblackhao <13851610112@163.com>2025-08-22 02:51:50 -0500
committerblackhao <13851610112@163.com>2025-08-22 02:51:50 -0500
commit4aab4087dc97906d0b9890035401175cdaab32d4 (patch)
tree4e2e9d88a711ec5b1cfa02e8ac72a55183b99123 /.venv/lib/python3.12/site-packages/networkx/drawing/tests/test_pylab.py
parentafa8f50d1d21c721dabcb31ad244610946ab65a3 (diff)
2.0
Diffstat (limited to '.venv/lib/python3.12/site-packages/networkx/drawing/tests/test_pylab.py')
-rw-r--r--.venv/lib/python3.12/site-packages/networkx/drawing/tests/test_pylab.py1756
1 files changed, 1756 insertions, 0 deletions
diff --git a/.venv/lib/python3.12/site-packages/networkx/drawing/tests/test_pylab.py b/.venv/lib/python3.12/site-packages/networkx/drawing/tests/test_pylab.py
new file mode 100644
index 0000000..5335dd4
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/networkx/drawing/tests/test_pylab.py
@@ -0,0 +1,1756 @@
+"""Unit tests for matplotlib drawing functions."""
+
+import itertools
+import os
+import warnings
+
+import pytest
+
+import networkx as nx
+
+mpl = pytest.importorskip("matplotlib")
+np = pytest.importorskip("numpy")
+mpl.use("PS")
+plt = pytest.importorskip("matplotlib.pyplot")
+plt.rcParams["text.usetex"] = False
+
+
+barbell = nx.barbell_graph(4, 6)
+
+defaults = {
+ "node_pos": None,
+ "node_visible": True,
+ "node_color": "#1f78b4",
+ "node_size": 300,
+ "node_label": {
+ "size": 12,
+ "color": "#000000",
+ "family": "sans-serif",
+ "weight": "normal",
+ "alpha": 1.0,
+ "background_color": None,
+ "background_alpha": None,
+ "h_align": "center",
+ "v_align": "center",
+ "bbox": None,
+ },
+ "node_shape": "o",
+ "node_alpha": 1.0,
+ "node_border_width": 1.0,
+ "node_border_color": "face",
+ "edge_visible": True,
+ "edge_width": 1.0,
+ "edge_color": "#000000",
+ "edge_label": {
+ "size": 12,
+ "color": "#000000",
+ "family": "sans-serif",
+ "weight": "normal",
+ "alpha": 1.0,
+ "bbox": {"boxstyle": "round", "ec": (1.0, 1.0, 1.0), "fc": (1.0, 1.0, 1.0)},
+ "h_align": "center",
+ "v_align": "center",
+ "pos": 0.5,
+ "rotate": True,
+ },
+ "edge_style": "-",
+ "edge_alpha": 1.0,
+ # These are for undirected-graphs. Directed graphs shouls use "-|>" and 10, respectively
+ "edge_arrowstyle": "-",
+ "edge_arrowsize": 0,
+ "edge_curvature": "arc3",
+ "edge_source_margin": 0,
+ "edge_target_margin": 0,
+}
+
+
+@pytest.mark.parametrize(
+ ("param_name", "param_value", "expected"),
+ (
+ ("node_color", None, defaults["node_color"]),
+ ("node_color", "#FF0000", "red"),
+ ("node_color", "color", "lime"),
+ ),
+)
+def test_display_arg_handling_node_color(param_name, param_value, expected):
+ G = nx.path_graph(4)
+ nx.set_node_attributes(G, "#00FF00", "color")
+ canvas = plt.figure().add_subplot(111)
+ nx.display(G, canvas=canvas, **{param_name: param_value})
+ assert mpl.colors.same_color(canvas.get_children()[0].get_edgecolors()[0], expected)
+ plt.close()
+
+
+@pytest.mark.parametrize(
+ ("param_value", "expected"),
+ (
+ (None, (1, 1, 1, 1)), # default value
+ (0.5, (0.5, 0.5, 0.5, 0.5)),
+ ("n_alpha", (1.0, 1 / 2, 1 / 3, 0.25)),
+ ),
+)
+def test_display_arg_handling_node_alpha(param_value, expected):
+ G = nx.path_graph(4)
+ nx.set_node_attributes(G, {n: 1 / (n + 1) for n in G.nodes()}, "n_alpha")
+ canvas = plt.figure().add_subplot(111)
+ nx.display(G, canvas=canvas, node_alpha=param_value)
+ assert all(
+ canvas.get_children()[0].get_fc()[:, 3] == expected
+ ) # Extract just the alpha from the node colors
+ plt.close()
+
+
+def test_display_node_position():
+ G = nx.path_graph(4)
+ nx.set_node_attributes(G, {n: (n, n) for n in G.nodes()}, "pos")
+ canvas = plt.figure().add_subplot(111)
+ nx.display(G, canvas=canvas, node_pos="pos")
+ assert np.all(
+ canvas.get_children()[0].get_offsets().data == [[0, 0], [1, 1], [2, 2], [3, 3]]
+ )
+ plt.close()
+
+
+@pytest.mark.mpl_image_compare
+def test_display_house_with_colors():
+ """
+ Originally, I wanted to use the exact samge image as test_house_with_colors.
+ But I can't seem to find the correct value for the margins to get the figures
+ to line up perfectly. To the human eye, these visualizations are basically the
+ same.
+ """
+ G = nx.house_graph()
+ fig, ax = plt.subplots()
+ nx.set_node_attributes(
+ G, {0: (0, 0), 1: (1, 0), 2: (0, 1), 3: (1, 1), 4: (0.5, 2.0)}, "pos"
+ )
+ nx.set_node_attributes(
+ G,
+ {
+ n: {
+ "size": 3000 if n != 4 else 2000,
+ "color": "tab:blue" if n != 4 else "tab:orange",
+ }
+ for n in G.nodes()
+ },
+ )
+ nx.display(
+ G,
+ node_pos="pos",
+ edge_alpha=0.5,
+ edge_width=6,
+ node_label=None,
+ node_border_color="k",
+ )
+ ax.margins(0.17)
+ plt.tight_layout()
+ plt.axis("off")
+ return fig
+
+
+def test_display_line_collection():
+ G = nx.karate_club_graph()
+ nx.set_edge_attributes(
+ G, {(u, v): "-|>" if (u + v) % 2 else "-" for u, v in G.edges()}, "arrowstyle"
+ )
+ canvas = plt.figure().add_subplot(111)
+ nx.display(G, canvas=canvas, edge_arrowsize=10)
+ # There should only be one line collection in any given visualization
+ lc = [
+ l
+ for l in canvas.get_children()
+ if isinstance(l, mpl.collections.LineCollection)
+ ][0]
+ assert len(lc.get_paths()) == sum([1 for u, v in G.edges() if (u + v) % 2])
+ plt.close()
+
+
+@pytest.mark.mpl_image_compare
+def test_display_labels_and_colors():
+ """See 'Labels and Colors' gallery example"""
+ fig, ax = plt.subplots()
+ G = nx.cubical_graph()
+ pos = nx.spring_layout(G, seed=3113794652) # positions for all nodes
+ nx.set_node_attributes(G, pos, "pos") # Will not be needed after PR 7571
+ labels = iter(
+ [
+ r"$a$",
+ r"$b$",
+ r"$c$",
+ r"$d$",
+ r"$\alpha$",
+ r"$\beta$",
+ r"$\gamma$",
+ r"$\delta$",
+ ]
+ )
+ nx.set_node_attributes(
+ G,
+ {
+ n: {
+ "size": 800,
+ "alpha": 0.9,
+ "color": "tab:red" if n < 4 else "tab:blue",
+ "label": {"label": next(labels), "size": 22, "color": "whitesmoke"},
+ }
+ for n in G.nodes()
+ },
+ )
+
+ nx.display(G, node_pos="pos", edge_color="tab:grey")
+
+ # The tricky bit is the highlighted colors for the edges
+ edgelist = [(0, 1), (1, 2), (2, 3), (0, 3)]
+ nx.set_edge_attributes(
+ G,
+ {
+ (u, v): {
+ "width": 8,
+ "alpha": 0.5,
+ "color": "tab:red",
+ "visible": (u, v) in edgelist,
+ }
+ for u, v in G.edges()
+ },
+ )
+ nx.display(G, node_pos="pos", node_visible=False)
+ edgelist = [(4, 5), (5, 6), (6, 7), (4, 7)]
+ nx.set_edge_attributes(
+ G,
+ {
+ (u, v): {
+ "color": "tab:blue",
+ "visible": (u, v) in edgelist,
+ }
+ for u, v in G.edges()
+ },
+ )
+ nx.display(G, node_pos="pos", node_visible=False)
+
+ plt.tight_layout()
+ plt.axis("off")
+ return fig
+
+
+@pytest.mark.mpl_image_compare
+def test_display_complex():
+ import itertools as it
+
+ fig, ax = plt.subplots()
+ G = nx.MultiDiGraph()
+ nodes = "ABC"
+ prod = list(it.product(nodes, repeat=2)) * 4
+ G = nx.MultiDiGraph()
+ for i, (u, v) in enumerate(prod):
+ G.add_edge(u, v, w=round(i / 3, 2))
+ nx.set_node_attributes(G, nx.spring_layout(G, seed=3113794652), "pos")
+ csi = it.cycle([f"arc3,rad={r}" for r in it.accumulate([0.15] * 4)])
+ nx.set_edge_attributes(G, {e: next(csi) for e in G.edges(keys=True)}, "curvature")
+ nx.set_edge_attributes(
+ G,
+ {
+ tuple(e): {"label": w, "bbox": {"alpha": 0}}
+ for *e, w in G.edges(keys=True, data="w")
+ },
+ "label",
+ )
+ nx.apply_matplotlib_colors(G, "w", "color", mpl.colormaps["inferno"], nodes=False)
+ nx.display(G, canvas=ax, node_pos="pos")
+
+ plt.tight_layout()
+ plt.axis("off")
+ return fig
+
+
+@pytest.mark.mpl_image_compare
+def test_display_shortest_path():
+ fig, ax = plt.subplots()
+ G = nx.Graph()
+ G.add_nodes_from(["A", "B", "C", "D", "E", "F", "G", "H"])
+ G.add_edge("A", "B", weight=4)
+ G.add_edge("A", "H", weight=8)
+ G.add_edge("B", "C", weight=8)
+ G.add_edge("B", "H", weight=11)
+ G.add_edge("C", "D", weight=7)
+ G.add_edge("C", "F", weight=4)
+ G.add_edge("C", "I", weight=2)
+ G.add_edge("D", "E", weight=9)
+ G.add_edge("D", "F", weight=14)
+ G.add_edge("E", "F", weight=10)
+ G.add_edge("F", "G", weight=2)
+ G.add_edge("G", "H", weight=1)
+ G.add_edge("G", "I", weight=6)
+ G.add_edge("H", "I", weight=7)
+
+ # Find the shortest path from node A to node E
+ path = nx.shortest_path(G, "A", "E", weight="weight")
+
+ # Create a list of edges in the shortest path
+ path_edges = list(zip(path, path[1:]))
+ nx.set_node_attributes(G, nx.spring_layout(G, seed=37), "pos")
+ nx.set_edge_attributes(
+ G,
+ {
+ (u, v): {
+ "color": (
+ "red"
+ if (u, v) in path_edges or tuple(reversed((u, v))) in path_edges
+ else "black"
+ ),
+ "label": {"label": d["weight"], "rotate": False},
+ }
+ for u, v, d in G.edges(data=True)
+ },
+ )
+ nx.display(G, canvas=ax)
+ plt.tight_layout()
+ plt.axis("off")
+ return fig
+
+
+@pytest.mark.parametrize(
+ ("edge_color", "expected"),
+ (
+ (None, "black"),
+ ("r", "red"),
+ ((1.0, 1.0, 0.0), "yellow"),
+ ((0, 1, 0, 1), "lime"),
+ ("color", "blue"),
+ ("#0000FF", "blue"),
+ ),
+)
+@pytest.mark.parametrize("graph_type", (nx.Graph, nx.DiGraph))
+def test_display_edge_single_color(edge_color, expected, graph_type):
+ G = nx.path_graph(3, create_using=graph_type)
+ nx.set_edge_attributes(G, "#0000FF", "color")
+ canvas = plt.figure().add_subplot(111)
+ nx.display(G, edge_color=edge_color, canvas=canvas)
+ if G.is_directed():
+ colors = [
+ f.get_fc()
+ for f in canvas.get_children()
+ if isinstance(f, mpl.patches.FancyArrowPatch)
+ ]
+ else:
+ colors = [
+ l
+ for l in canvas.collections
+ if isinstance(l, mpl.collections.LineCollection)
+ ][0].get_colors()
+ assert all(mpl.colors.same_color(c, expected) for c in colors)
+ plt.close()
+
+
+@pytest.mark.parametrize("graph_type", (nx.Graph, nx.DiGraph))
+def test_display_edge_multiple_colors(graph_type):
+ G = nx.path_graph(3, create_using=graph_type)
+ nx.set_edge_attributes(G, {(0, 1): "#FF0000", (1, 2): (0, 0, 1)}, "color")
+ ax = plt.figure().add_subplot(111)
+ nx.display(G, canvas=ax)
+ expected = ["red", "blue"]
+ if G.is_directed():
+ colors = [
+ f.get_fc()
+ for f in ax.get_children()
+ if isinstance(f, mpl.patches.FancyArrowPatch)
+ ]
+ else:
+ colors = [
+ l for l in ax.collections if isinstance(l, mpl.collections.LineCollection)
+ ][0].get_colors()
+ assert mpl.colors.same_color(colors, expected)
+ plt.close()
+
+
+@pytest.mark.parametrize("graph_type", (nx.Graph, nx.DiGraph))
+def test_display_edge_position(graph_type):
+ G = nx.path_graph(3, create_using=graph_type)
+ nx.set_node_attributes(G, {n: (n, n) for n in G.nodes()}, "pos")
+ ax = plt.figure().add_subplot(111)
+ nx.display(G, canvas=ax)
+ if G.is_directed():
+ end_points = [
+ (f.get_path().vertices[0, :], f.get_path().vertices[-2, :])
+ for f in ax.get_children()
+ if isinstance(f, mpl.patches.FancyArrowPatch)
+ ]
+ else:
+ line_collection = [
+ l for l in ax.collections if isinstance(l, mpl.collections.LineCollection)
+ ][0]
+ end_points = [
+ (p.vertices[0, :], p.vertices[-1, :]) for p in line_collection.get_paths()
+ ]
+ expected = [((0, 0), (1, 1)), ((1, 1), (2, 2))]
+ # Use the threshold to account for slight shifts in FancyArrowPatch margins to
+ # avoid covering the arrow head with the node.
+ threshold = 0.05
+ for a, e in zip(end_points, expected):
+ act_start, act_end = a
+ exp_start, exp_end = e
+ assert all(abs(act_start - exp_start) < (threshold, threshold)) and all(
+ abs(act_end - exp_end) < (threshold, threshold)
+ )
+ plt.close()
+
+
+def test_display_position_function():
+ G = nx.karate_club_graph()
+
+ def fixed_layout(G):
+ return nx.spring_layout(G, seed=314159)
+
+ pos = fixed_layout(G)
+ ax = plt.figure().add_subplot(111)
+ nx.display(G, node_pos=fixed_layout, canvas=ax)
+ # rebuild the position dictionary from the canvas
+ act_pos = {
+ n: tuple(p) for n, p in zip(G.nodes(), ax.get_children()[0].get_offsets().data)
+ }
+ for n in G.nodes():
+ assert all(pos[n] == act_pos[n])
+ plt.close()
+
+
+@pytest.mark.parametrize("graph_type", (nx.Graph, nx.DiGraph))
+def test_display_edge_colormaps(graph_type):
+ G = nx.path_graph(3, create_using=graph_type)
+ nx.set_edge_attributes(G, {(0, 1): 0, (1, 2): 1}, "weight")
+ cmap = mpl.colormaps["plasma"]
+ nx.apply_matplotlib_colors(G, "weight", "color", cmap, nodes=False)
+ canvas = plt.figure().add_subplot(111)
+ nx.display(G, canvas=canvas)
+ mapper = mpl.cm.ScalarMappable(cmap=cmap)
+ mapper.set_clim(0, 1)
+ expected = [mapper.to_rgba(0), mapper.to_rgba(1)]
+ if G.is_directed():
+ colors = [
+ f.get_facecolor()
+ for f in canvas.get_children()
+ if isinstance(f, mpl.patches.FancyArrowPatch)
+ ]
+ else:
+ colors = [
+ l
+ for l in canvas.collections
+ if isinstance(l, mpl.collections.LineCollection)
+ ][0].get_colors()
+ assert mpl.colors.same_color(expected[0], G.edges[0, 1]["color"])
+ assert mpl.colors.same_color(expected[1], G.edges[1, 2]["color"])
+ assert mpl.colors.same_color(expected, colors)
+ plt.close()
+
+
+@pytest.mark.parametrize("graph_type", (nx.Graph, nx.DiGraph))
+def test_display_node_colormaps(graph_type):
+ G = nx.path_graph(3, create_using=graph_type)
+ nx.set_node_attributes(G, {0: 0, 1: 0.5, 2: 1}, "weight")
+ cmap = mpl.colormaps["plasma"]
+ nx.apply_matplotlib_colors(G, "weight", "color", cmap)
+ canvas = plt.figure().add_subplot(111)
+ nx.display(G, canvas=canvas)
+ mapper = mpl.cm.ScalarMappable(cmap=cmap)
+ mapper.set_clim(0, 1)
+ expected = [mapper.to_rgba(0), mapper.to_rgba(0.5), mapper.to_rgba(1)]
+ colors = [
+ s for s in canvas.collections if isinstance(s, mpl.collections.PathCollection)
+ ][0].get_edgecolors()
+ assert mpl.colors.same_color(expected[0], G.nodes[0]["color"])
+ assert mpl.colors.same_color(expected[1], G.nodes[1]["color"])
+ assert mpl.colors.same_color(expected[2], G.nodes[2]["color"])
+ assert mpl.colors.same_color(expected, colors)
+ plt.close()
+
+
+@pytest.mark.parametrize(
+ ("param_value", "expected"),
+ (
+ (None, [defaults["edge_width"], defaults["edge_width"]]),
+ (5, [5, 5]),
+ ("width", [5, 10]),
+ ),
+)
+@pytest.mark.parametrize("graph_type", (nx.Graph, nx.DiGraph))
+def test_display_edge_width(param_value, expected, graph_type):
+ G = nx.path_graph(3, create_using=graph_type)
+ nx.set_edge_attributes(G, {(0, 1): 5, (1, 2): 10}, "width")
+ canvas = plt.figure().add_subplot(111)
+ nx.display(G, edge_width=param_value, canvas=canvas)
+ if G.is_directed():
+ widths = [
+ f.get_linewidth()
+ for f in canvas.get_children()
+ if isinstance(f, mpl.patches.FancyArrowPatch)
+ ]
+ else:
+ widths = list(
+ [
+ l
+ for l in canvas.collections
+ if isinstance(l, mpl.collections.LineCollection)
+ ][0].get_linewidths()
+ )
+ assert widths == expected
+
+
+@pytest.mark.parametrize(
+ ("param_value", "expected"),
+ (
+ (None, [defaults["edge_style"], defaults["edge_style"]]),
+ (":", [":", ":"]),
+ ("style", ["-", ":"]),
+ ),
+)
+@pytest.mark.parametrize("graph_type", (nx.Graph, nx.DiGraph))
+def test_display_edge_style(param_value, expected, graph_type):
+ G = nx.path_graph(3, create_using=graph_type)
+ nx.set_edge_attributes(G, {(0, 1): "-", (1, 2): ":"}, "style")
+ canvas = plt.figure().add_subplot(111)
+ nx.display(G, edge_style=param_value, canvas=canvas)
+ if G.is_directed():
+ styles = [
+ f.get_linestyle()
+ for f in canvas.get_children()
+ if isinstance(f, mpl.patches.FancyArrowPatch)
+ ]
+ else:
+ # Convert back from tuple description to character form
+ linestyles = {(0, None): "-", (0, (1, 1.65)): ":"}
+ styles = [
+ linestyles[(s[0], tuple(s[1]) if s[1] is not None else None)]
+ for s in [
+ l
+ for l in canvas.collections
+ if isinstance(l, mpl.collections.LineCollection)
+ ][0].get_linestyles()
+ ]
+ assert styles == expected
+ plt.close()
+
+
+def test_display_node_labels():
+ G = nx.path_graph(4)
+ canvas = plt.figure().add_subplot(111)
+ nx.display(G, canvas=canvas, node_label={"size": 20})
+ labels = [t for t in canvas.get_children() if isinstance(t, mpl.text.Text)]
+ for n, l in zip(G.nodes(), labels):
+ assert l.get_text() == str(n)
+ assert l.get_size() == 20.0
+ plt.close()
+
+
+def test_display_edge_labels():
+ G = nx.path_graph(4)
+ canvas = plt.figure().add_subplot(111)
+ # While we can pass in dicts for edge label defaults without errors,
+ # this isn't helpful unless we want one label for all edges.
+ nx.set_edge_attributes(G, {(u, v): {"label": u + v} for u, v in G.edges()})
+ nx.display(G, canvas=canvas, edge_label={"color": "r"}, node_label=None)
+ labels = [t for t in canvas.get_children() if isinstance(t, mpl.text.Text)]
+ print(labels)
+ for e, l in zip(G.edges(), labels):
+ assert l.get_text() == str(e[0] + e[1])
+ assert l.get_color() == "r"
+ plt.close()
+
+
+@pytest.mark.mpl_image_compare
+def test_display_empty_graph():
+ G = nx.empty_graph()
+ fig, ax = plt.subplots()
+ nx.display(G, canvas=ax)
+ plt.tight_layout()
+ plt.axis("off")
+ return fig
+
+
+def test_display_multigraph_non_integer_keys():
+ G = nx.MultiGraph()
+ G.add_nodes_from(["A", "B", "C", "D"])
+ G.add_edges_from(
+ [
+ ("A", "B", "0"),
+ ("A", "B", "1"),
+ ("B", "C", "-1"),
+ ("B", "C", "1"),
+ ("C", "D", "-1"),
+ ("C", "D", "0"),
+ ]
+ )
+ nx.set_edge_attributes(
+ G, {e: f"arc3,rad={0.2 * int(e[2])}" for e in G.edges(keys=True)}, "curvature"
+ )
+ canvas = plt.figure().add_subplot(111)
+ nx.display(G, canvas=canvas)
+ rads = [
+ f.get_connectionstyle().rad
+ for f in canvas.get_children()
+ if isinstance(f, mpl.patches.FancyArrowPatch)
+ ]
+ assert rads == [0.0, 0.2, -0.2, 0.2, -0.2, 0.0]
+ plt.close()
+
+
+def test_display_raises_for_bad_arg():
+ G = nx.karate_club_graph()
+ with pytest.raises(nx.NetworkXError):
+ nx.display(G, bad_arg="bad_arg")
+ plt.close()
+
+
+def test_display_arrow_size():
+ G = nx.path_graph(4, create_using=nx.DiGraph)
+ nx.set_edge_attributes(
+ G, {(u, v): (u + v + 2) ** 2 for u, v in G.edges()}, "arrowsize"
+ )
+ ax = plt.axes()
+ nx.display(G, canvas=ax)
+ assert [9, 25, 49] == [
+ f.get_mutation_scale()
+ for f in ax.get_children()
+ if isinstance(f, mpl.patches.FancyArrowPatch)
+ ]
+ plt.close()
+
+
+def test_display_mismatched_edge_position():
+ """
+ This test ensures that a error is raised for incomplete position data.
+ """
+ G = nx.path_graph(5)
+ # Notice that there is no position for node 3
+ nx.set_node_attributes(G, {0: (0, 0), 1: (1, 1), 2: (2, 2), 4: (4, 4)}, "pos")
+ # But that's not a problem since we don't want to show node 4, right?
+ nx.set_node_attributes(G, {n: n < 4 for n in G.nodes()}, "visible")
+ # However, if we try to visualize every edge (including 3 -> 4)...
+ # That's a problem since node 4 doesn't have a position
+ with pytest.raises(nx.NetworkXError):
+ nx.display(G)
+
+
+# NOTE: parametrizing on marker to test both branches of internal
+# to_marker_edge function
+@pytest.mark.parametrize("node_shape", ("o", "s"))
+def test_display_edge_margins(node_shape):
+ """
+ Test that there is a wider gap between the node and the start of an
+ incident edge when min_source_margin is specified.
+
+ This test checks that the use os min_{source/target}_margin edge
+ attributes result is shorter (more padding) between the edges and
+ source and target nodes.
+
+
+ As a crude visual example, let 's' and 't' represent source and target
+ nodes, respectively:
+
+ Default:
+ s-----------------------------t
+
+ With margins:
+ s ----------------------- t
+
+ """
+ ax = plt.figure().add_subplot(111)
+ G = nx.DiGraph([(0, 1)])
+ nx.set_node_attributes(G, {0: (0, 0), 1: (1, 1)}, "pos")
+ # Get the default patches from the regular visualization
+ nx.display(G, canvas=ax, node_shape=node_shape)
+ default_arrow = [
+ f for f in ax.get_children() if isinstance(f, mpl.patches.FancyArrowPatch)
+ ][0]
+ default_extent = default_arrow.get_extents().corners()[::2, 0]
+ # Now plot again with margins
+ ax = plt.figure().add_subplot(111)
+ nx.display(
+ G,
+ canvas=ax,
+ edge_source_margin=100,
+ edge_target_margin=100,
+ node_shape=node_shape,
+ )
+ padded_arrow = [
+ f for f in ax.get_children() if isinstance(f, mpl.patches.FancyArrowPatch)
+ ][0]
+ padded_extent = padded_arrow.get_extents().corners()[::2, 0]
+
+ # With padding, the left-most extent of the edge should be further to the right
+ assert padded_extent[0] > default_extent[0]
+ # And the rightmost extent of the edge, further to the left
+ assert padded_extent[1] < default_extent[1]
+ plt.close()
+
+
+@pytest.mark.parametrize("ticks", [False, True])
+def test_display_hide_ticks(ticks):
+ G = nx.path_graph(3)
+ nx.set_node_attributes(G, {n: (n, n) for n in G.nodes()}, "pos")
+ ax = plt.axes()
+ nx.display(G, hide_ticks=ticks)
+ for axis in [ax.xaxis, ax.yaxis]:
+ assert bool(axis.get_ticklabels()) != ticks
+
+ plt.close()
+
+
+def test_display_self_loop():
+ ax = plt.axes()
+ G = nx.DiGraph()
+ G.add_node(0)
+ G.add_edge(0, 0)
+ nx.set_node_attributes(G, {0: (0, 0)}, "pos")
+ nx.display(G, canvas=ax)
+ arrow = [
+ f for f in ax.get_children() if isinstance(f, mpl.patches.FancyArrowPatch)
+ ][0]
+ bbox = arrow.get_extents()
+ print(bbox.width)
+ print(bbox.height)
+ assert bbox.width > 0 and bbox.height > 0
+
+ plt.delaxes(ax)
+ plt.close()
+
+
+def test_display_remove_pos_attr():
+ """
+ If the pos attribute isn't provided or is a function, display computes the layout
+ and adds it to the graph. We need to ensure that this new attribute is removed from
+ the returned graph.
+ """
+ G = nx.karate_club_graph()
+ nx.display(G)
+ assert nx.get_node_attributes(G, "display's position attribute name") == {}
+
+
+@pytest.fixture
+def subplots():
+ fig, ax = plt.subplots()
+ yield fig, ax
+ plt.delaxes(ax)
+ plt.close()
+
+
+def test_draw():
+ try:
+ functions = [
+ nx.draw_circular,
+ nx.draw_kamada_kawai,
+ nx.draw_planar,
+ nx.draw_random,
+ nx.draw_spectral,
+ nx.draw_spring,
+ nx.draw_shell,
+ ]
+ options = [{"node_color": "black", "node_size": 100, "width": 3}]
+ for function, option in itertools.product(functions, options):
+ function(barbell, **option)
+ plt.savefig("test.ps")
+ except ModuleNotFoundError: # draw_kamada_kawai requires scipy
+ pass
+ finally:
+ try:
+ os.unlink("test.ps")
+ except OSError:
+ pass
+
+
+def test_draw_shell_nlist():
+ try:
+ nlist = [list(range(4)), list(range(4, 10)), list(range(10, 14))]
+ nx.draw_shell(barbell, nlist=nlist)
+ plt.savefig("test.ps")
+ finally:
+ try:
+ os.unlink("test.ps")
+ except OSError:
+ pass
+
+
+def test_draw_bipartite():
+ try:
+ G = nx.complete_bipartite_graph(2, 5)
+ nx.draw_bipartite(G)
+ plt.savefig("test.ps")
+ finally:
+ try:
+ os.unlink("test.ps")
+ except OSError:
+ pass
+
+
+def test_edge_colormap():
+ colors = range(barbell.number_of_edges())
+ nx.draw_spring(
+ barbell, edge_color=colors, width=4, edge_cmap=plt.cm.Blues, with_labels=True
+ )
+ # plt.show()
+
+
+def test_arrows():
+ nx.draw_spring(barbell.to_directed())
+ # plt.show()
+
+
+@pytest.mark.parametrize(
+ ("edge_color", "expected"),
+ (
+ (None, "black"), # Default
+ ("r", "red"), # Non-default color string
+ (["r"], "red"), # Single non-default color in a list
+ ((1.0, 1.0, 0.0), "yellow"), # single color as rgb tuple
+ ([(1.0, 1.0, 0.0)], "yellow"), # single color as rgb tuple in list
+ ((0, 1, 0, 1), "lime"), # single color as rgba tuple
+ ([(0, 1, 0, 1)], "lime"), # single color as rgba tuple in list
+ ("#0000ff", "blue"), # single color hex code
+ (["#0000ff"], "blue"), # hex code in list
+ ),
+)
+@pytest.mark.parametrize("edgelist", (None, [(0, 1)]))
+def test_single_edge_color_undirected(edge_color, expected, edgelist):
+ """Tests ways of specifying all edges have a single color for edges
+ drawn with a LineCollection"""
+
+ G = nx.path_graph(3)
+ drawn_edges = nx.draw_networkx_edges(
+ G, pos=nx.random_layout(G), edgelist=edgelist, edge_color=edge_color
+ )
+ assert mpl.colors.same_color(drawn_edges.get_color(), expected)
+
+
+@pytest.mark.parametrize(
+ ("edge_color", "expected"),
+ (
+ (None, "black"), # Default
+ ("r", "red"), # Non-default color string
+ (["r"], "red"), # Single non-default color in a list
+ ((1.0, 1.0, 0.0), "yellow"), # single color as rgb tuple
+ ([(1.0, 1.0, 0.0)], "yellow"), # single color as rgb tuple in list
+ ((0, 1, 0, 1), "lime"), # single color as rgba tuple
+ ([(0, 1, 0, 1)], "lime"), # single color as rgba tuple in list
+ ("#0000ff", "blue"), # single color hex code
+ (["#0000ff"], "blue"), # hex code in list
+ ),
+)
+@pytest.mark.parametrize("edgelist", (None, [(0, 1)]))
+def test_single_edge_color_directed(edge_color, expected, edgelist):
+ """Tests ways of specifying all edges have a single color for edges drawn
+ with FancyArrowPatches"""
+
+ G = nx.path_graph(3, create_using=nx.DiGraph)
+ drawn_edges = nx.draw_networkx_edges(
+ G, pos=nx.random_layout(G), edgelist=edgelist, edge_color=edge_color
+ )
+ for fap in drawn_edges:
+ assert mpl.colors.same_color(fap.get_edgecolor(), expected)
+
+
+def test_edge_color_tuple_interpretation():
+ """If edge_color is a sequence with the same length as edgelist, then each
+ value in edge_color is mapped onto each edge via colormap."""
+ G = nx.path_graph(6, create_using=nx.DiGraph)
+ pos = {n: (n, n) for n in range(len(G))}
+
+ # num edges != 3 or 4 --> edge_color interpreted as rgb(a)
+ for ec in ((0, 0, 1), (0, 0, 1, 1)):
+ # More than 4 edges
+ drawn_edges = nx.draw_networkx_edges(G, pos, edge_color=ec)
+ for fap in drawn_edges:
+ assert mpl.colors.same_color(fap.get_edgecolor(), ec)
+ # Fewer than 3 edges
+ drawn_edges = nx.draw_networkx_edges(
+ G, pos, edgelist=[(0, 1), (1, 2)], edge_color=ec
+ )
+ for fap in drawn_edges:
+ assert mpl.colors.same_color(fap.get_edgecolor(), ec)
+
+ # num edges == 3, len(edge_color) == 4: interpreted as rgba
+ drawn_edges = nx.draw_networkx_edges(
+ G, pos, edgelist=[(0, 1), (1, 2), (2, 3)], edge_color=(0, 0, 1, 1)
+ )
+ for fap in drawn_edges:
+ assert mpl.colors.same_color(fap.get_edgecolor(), "blue")
+
+ # num edges == 4, len(edge_color) == 3: interpreted as rgb
+ drawn_edges = nx.draw_networkx_edges(
+ G, pos, edgelist=[(0, 1), (1, 2), (2, 3), (3, 4)], edge_color=(0, 0, 1)
+ )
+ for fap in drawn_edges:
+ assert mpl.colors.same_color(fap.get_edgecolor(), "blue")
+
+ # num edges == len(edge_color) == 3: interpreted with cmap, *not* as rgb
+ drawn_edges = nx.draw_networkx_edges(
+ G, pos, edgelist=[(0, 1), (1, 2), (2, 3)], edge_color=(0, 0, 1)
+ )
+ assert mpl.colors.same_color(
+ drawn_edges[0].get_edgecolor(), drawn_edges[1].get_edgecolor()
+ )
+ for fap in drawn_edges:
+ assert not mpl.colors.same_color(fap.get_edgecolor(), "blue")
+
+ # num edges == len(edge_color) == 4: interpreted with cmap, *not* as rgba
+ drawn_edges = nx.draw_networkx_edges(
+ G, pos, edgelist=[(0, 1), (1, 2), (2, 3), (3, 4)], edge_color=(0, 0, 1, 1)
+ )
+ assert mpl.colors.same_color(
+ drawn_edges[0].get_edgecolor(), drawn_edges[1].get_edgecolor()
+ )
+ assert mpl.colors.same_color(
+ drawn_edges[2].get_edgecolor(), drawn_edges[3].get_edgecolor()
+ )
+ for fap in drawn_edges:
+ assert not mpl.colors.same_color(fap.get_edgecolor(), "blue")
+
+
+def test_fewer_edge_colors_than_num_edges_directed():
+ """Test that the edge colors are cycled when there are fewer specified
+ colors than edges."""
+ G = barbell.to_directed()
+ pos = nx.random_layout(barbell)
+ edgecolors = ("r", "g", "b")
+ drawn_edges = nx.draw_networkx_edges(G, pos, edge_color=edgecolors)
+ for fap, expected in zip(drawn_edges, itertools.cycle(edgecolors)):
+ assert mpl.colors.same_color(fap.get_edgecolor(), expected)
+
+
+def test_more_edge_colors_than_num_edges_directed():
+ """Test that extra edge colors are ignored when there are more specified
+ colors than edges."""
+ G = nx.path_graph(4, create_using=nx.DiGraph) # 3 edges
+ pos = nx.random_layout(barbell)
+ edgecolors = ("r", "g", "b", "c") # 4 edge colors
+ drawn_edges = nx.draw_networkx_edges(G, pos, edge_color=edgecolors)
+ for fap, expected in zip(drawn_edges, edgecolors[:-1]):
+ assert mpl.colors.same_color(fap.get_edgecolor(), expected)
+
+
+def test_edge_color_string_with_global_alpha_undirected():
+ edge_collection = nx.draw_networkx_edges(
+ barbell,
+ pos=nx.random_layout(barbell),
+ edgelist=[(0, 1), (1, 2)],
+ edge_color="purple",
+ alpha=0.2,
+ )
+ ec = edge_collection.get_color().squeeze() # as rgba tuple
+ assert len(edge_collection.get_paths()) == 2
+ assert mpl.colors.same_color(ec[:-1], "purple")
+ assert ec[-1] == 0.2
+
+
+def test_edge_color_string_with_global_alpha_directed():
+ drawn_edges = nx.draw_networkx_edges(
+ barbell.to_directed(),
+ pos=nx.random_layout(barbell),
+ edgelist=[(0, 1), (1, 2)],
+ edge_color="purple",
+ alpha=0.2,
+ )
+ assert len(drawn_edges) == 2
+ for fap in drawn_edges:
+ ec = fap.get_edgecolor() # As rgba tuple
+ assert mpl.colors.same_color(ec[:-1], "purple")
+ assert ec[-1] == 0.2
+
+
+@pytest.mark.parametrize("graph_type", (nx.Graph, nx.DiGraph))
+def test_edge_width_default_value(graph_type):
+ """Test the default linewidth for edges drawn either via LineCollection or
+ FancyArrowPatches."""
+ G = nx.path_graph(2, create_using=graph_type)
+ pos = {n: (n, n) for n in range(len(G))}
+ drawn_edges = nx.draw_networkx_edges(G, pos)
+ if isinstance(drawn_edges, list): # directed case: list of FancyArrowPatch
+ drawn_edges = drawn_edges[0]
+ assert drawn_edges.get_linewidth() == 1
+
+
+@pytest.mark.parametrize(
+ ("edgewidth", "expected"),
+ (
+ (3, 3), # single-value, non-default
+ ([3], 3), # Single value as a list
+ ),
+)
+def test_edge_width_single_value_undirected(edgewidth, expected):
+ G = nx.path_graph(4)
+ pos = {n: (n, n) for n in range(len(G))}
+ drawn_edges = nx.draw_networkx_edges(G, pos, width=edgewidth)
+ assert len(drawn_edges.get_paths()) == 3
+ assert drawn_edges.get_linewidth() == expected
+
+
+@pytest.mark.parametrize(
+ ("edgewidth", "expected"),
+ (
+ (3, 3), # single-value, non-default
+ ([3], 3), # Single value as a list
+ ),
+)
+def test_edge_width_single_value_directed(edgewidth, expected):
+ G = nx.path_graph(4, create_using=nx.DiGraph)
+ pos = {n: (n, n) for n in range(len(G))}
+ drawn_edges = nx.draw_networkx_edges(G, pos, width=edgewidth)
+ assert len(drawn_edges) == 3
+ for fap in drawn_edges:
+ assert fap.get_linewidth() == expected
+
+
+@pytest.mark.parametrize(
+ "edgelist",
+ (
+ [(0, 1), (1, 2), (2, 3)], # one width specification per edge
+ None, # fewer widths than edges - widths cycle
+ [(0, 1), (1, 2)], # More widths than edges - unused widths ignored
+ ),
+)
+def test_edge_width_sequence(edgelist):
+ G = barbell.to_directed()
+ pos = nx.random_layout(G)
+ widths = (0.5, 2.0, 12.0)
+ drawn_edges = nx.draw_networkx_edges(G, pos, edgelist=edgelist, width=widths)
+ for fap, expected_width in zip(drawn_edges, itertools.cycle(widths)):
+ assert fap.get_linewidth() == expected_width
+
+
+def test_edge_color_with_edge_vmin_vmax():
+ """Test that edge_vmin and edge_vmax properly set the dynamic range of the
+ color map when num edges == len(edge_colors)."""
+ G = nx.path_graph(3, create_using=nx.DiGraph)
+ pos = nx.random_layout(G)
+ # Extract colors from the original (unscaled) colormap
+ drawn_edges = nx.draw_networkx_edges(G, pos, edge_color=[0, 1.0])
+ orig_colors = [e.get_edgecolor() for e in drawn_edges]
+ # Colors from scaled colormap
+ drawn_edges = nx.draw_networkx_edges(
+ G, pos, edge_color=[0.2, 0.8], edge_vmin=0.2, edge_vmax=0.8
+ )
+ scaled_colors = [e.get_edgecolor() for e in drawn_edges]
+ assert mpl.colors.same_color(orig_colors, scaled_colors)
+
+
+def test_directed_edges_linestyle_default():
+ """Test default linestyle for edges drawn with FancyArrowPatches."""
+ G = nx.path_graph(4, create_using=nx.DiGraph) # Graph with 3 edges
+ pos = {n: (n, n) for n in range(len(G))}
+
+ # edge with default style
+ drawn_edges = nx.draw_networkx_edges(G, pos)
+ assert len(drawn_edges) == 3
+ for fap in drawn_edges:
+ assert fap.get_linestyle() == "solid"
+
+
+@pytest.mark.parametrize(
+ "style",
+ (
+ "dashed", # edge with string style
+ "--", # edge with simplified string style
+ (1, (1, 1)), # edge with (offset, onoffseq) style
+ ),
+)
+def test_directed_edges_linestyle_single_value(style):
+ """Tests support for specifying linestyles with a single value to be applied to
+ all edges in ``draw_networkx_edges`` for FancyArrowPatch outputs
+ (e.g. directed edges)."""
+
+ G = nx.path_graph(4, create_using=nx.DiGraph) # Graph with 3 edges
+ pos = {n: (n, n) for n in range(len(G))}
+
+ drawn_edges = nx.draw_networkx_edges(G, pos, style=style)
+ assert len(drawn_edges) == 3
+ for fap in drawn_edges:
+ assert fap.get_linestyle() == style
+
+
+@pytest.mark.parametrize(
+ "style_seq",
+ (
+ ["dashed"], # edge with string style in list
+ ["--"], # edge with simplified string style in list
+ [(1, (1, 1))], # edge with (offset, onoffseq) style in list
+ ["--", "-", ":"], # edges with styles for each edge
+ ["--", "-"], # edges with fewer styles than edges (styles cycle)
+ ["--", "-", ":", "-."], # edges with more styles than edges (extra unused)
+ ),
+)
+def test_directed_edges_linestyle_sequence(style_seq):
+ """Tests support for specifying linestyles with sequences in
+ ``draw_networkx_edges`` for FancyArrowPatch outputs (e.g. directed edges)."""
+
+ G = nx.path_graph(4, create_using=nx.DiGraph) # Graph with 3 edges
+ pos = {n: (n, n) for n in range(len(G))}
+
+ drawn_edges = nx.draw_networkx_edges(G, pos, style=style_seq)
+ assert len(drawn_edges) == 3
+ for fap, style in zip(drawn_edges, itertools.cycle(style_seq)):
+ assert fap.get_linestyle() == style
+
+
+def test_return_types():
+ from matplotlib.collections import LineCollection, PathCollection
+ from matplotlib.patches import FancyArrowPatch
+
+ G = nx.frucht_graph(create_using=nx.Graph)
+ dG = nx.frucht_graph(create_using=nx.DiGraph)
+ pos = nx.spring_layout(G)
+ dpos = nx.spring_layout(dG)
+ # nodes
+ nodes = nx.draw_networkx_nodes(G, pos)
+ assert isinstance(nodes, PathCollection)
+ # edges
+ edges = nx.draw_networkx_edges(dG, dpos, arrows=True)
+ assert isinstance(edges, list)
+ if len(edges) > 0:
+ assert isinstance(edges[0], FancyArrowPatch)
+ edges = nx.draw_networkx_edges(dG, dpos, arrows=False)
+ assert isinstance(edges, LineCollection)
+ edges = nx.draw_networkx_edges(G, dpos, arrows=None)
+ assert isinstance(edges, LineCollection)
+ edges = nx.draw_networkx_edges(dG, pos, arrows=None)
+ assert isinstance(edges, list)
+ if len(edges) > 0:
+ assert isinstance(edges[0], FancyArrowPatch)
+
+
+def test_labels_and_colors():
+ G = nx.cubical_graph()
+ pos = nx.spring_layout(G) # positions for all nodes
+ # nodes
+ nx.draw_networkx_nodes(
+ G, pos, nodelist=[0, 1, 2, 3], node_color="r", node_size=500, alpha=0.75
+ )
+ nx.draw_networkx_nodes(
+ G,
+ pos,
+ nodelist=[4, 5, 6, 7],
+ node_color="b",
+ node_size=500,
+ alpha=[0.25, 0.5, 0.75, 1.0],
+ )
+ # edges
+ nx.draw_networkx_edges(G, pos, width=1.0, alpha=0.5)
+ nx.draw_networkx_edges(
+ G,
+ pos,
+ edgelist=[(0, 1), (1, 2), (2, 3), (3, 0)],
+ width=8,
+ alpha=0.5,
+ edge_color="r",
+ )
+ nx.draw_networkx_edges(
+ G,
+ pos,
+ edgelist=[(4, 5), (5, 6), (6, 7), (7, 4)],
+ width=8,
+ alpha=0.5,
+ edge_color="b",
+ )
+ nx.draw_networkx_edges(
+ G,
+ pos,
+ edgelist=[(4, 5), (5, 6), (6, 7), (7, 4)],
+ arrows=True,
+ min_source_margin=0.5,
+ min_target_margin=0.75,
+ width=8,
+ edge_color="b",
+ )
+ # some math labels
+ labels = {}
+ labels[0] = r"$a$"
+ labels[1] = r"$b$"
+ labels[2] = r"$c$"
+ labels[3] = r"$d$"
+ labels[4] = r"$\alpha$"
+ labels[5] = r"$\beta$"
+ labels[6] = r"$\gamma$"
+ labels[7] = r"$\delta$"
+ colors = {n: "k" if n % 2 == 0 else "r" for n in range(8)}
+ nx.draw_networkx_labels(G, pos, labels, font_size=16)
+ nx.draw_networkx_labels(G, pos, labels, font_size=16, font_color=colors)
+ nx.draw_networkx_edge_labels(G, pos, edge_labels=None, rotate=False)
+ nx.draw_networkx_edge_labels(G, pos, edge_labels={(4, 5): "4-5"})
+ # plt.show()
+
+
+@pytest.mark.mpl_image_compare
+def test_house_with_colors():
+ G = nx.house_graph()
+ # explicitly set positions
+ fig, ax = plt.subplots()
+ pos = {0: (0, 0), 1: (1, 0), 2: (0, 1), 3: (1, 1), 4: (0.5, 2.0)}
+
+ # Plot nodes with different properties for the "wall" and "roof" nodes
+ nx.draw_networkx_nodes(
+ G,
+ pos,
+ node_size=3000,
+ nodelist=[0, 1, 2, 3],
+ node_color="tab:blue",
+ )
+ nx.draw_networkx_nodes(
+ G, pos, node_size=2000, nodelist=[4], node_color="tab:orange"
+ )
+ nx.draw_networkx_edges(G, pos, alpha=0.5, width=6)
+ # Customize axes
+ ax.margins(0.11)
+ plt.tight_layout()
+ plt.axis("off")
+ return fig
+
+
+def test_axes(subplots):
+ fig, ax = subplots
+ nx.draw(barbell, ax=ax)
+ nx.draw_networkx_edge_labels(barbell, nx.circular_layout(barbell), ax=ax)
+
+
+def test_empty_graph():
+ G = nx.Graph()
+ nx.draw(G)
+
+
+def test_draw_empty_nodes_return_values():
+ # See Issue #3833
+ import matplotlib.collections # call as mpl.collections
+
+ G = nx.Graph([(1, 2), (2, 3)])
+ DG = nx.DiGraph([(1, 2), (2, 3)])
+ pos = nx.circular_layout(G)
+ assert isinstance(
+ nx.draw_networkx_nodes(G, pos, nodelist=[]), mpl.collections.PathCollection
+ )
+ assert isinstance(
+ nx.draw_networkx_nodes(DG, pos, nodelist=[]), mpl.collections.PathCollection
+ )
+
+ # drawing empty edges used to return an empty LineCollection or empty list.
+ # Now it is always an empty list (because edges are now lists of FancyArrows)
+ assert nx.draw_networkx_edges(G, pos, edgelist=[], arrows=True) == []
+ assert nx.draw_networkx_edges(G, pos, edgelist=[], arrows=False) == []
+ assert nx.draw_networkx_edges(DG, pos, edgelist=[], arrows=False) == []
+ assert nx.draw_networkx_edges(DG, pos, edgelist=[], arrows=True) == []
+
+
+def test_multigraph_edgelist_tuples():
+ # See Issue #3295
+ G = nx.path_graph(3, create_using=nx.MultiDiGraph)
+ nx.draw_networkx(G, edgelist=[(0, 1, 0)])
+ nx.draw_networkx(G, edgelist=[(0, 1, 0)], node_size=[10, 20, 0])
+
+
+def test_alpha_iter():
+ pos = nx.random_layout(barbell)
+ fig = plt.figure()
+ # with fewer alpha elements than nodes
+ fig.add_subplot(131) # Each test in a new axis object
+ nx.draw_networkx_nodes(barbell, pos, alpha=[0.1, 0.2])
+ # with equal alpha elements and nodes
+ num_nodes = len(barbell.nodes)
+ alpha = [x / num_nodes for x in range(num_nodes)]
+ colors = range(num_nodes)
+ fig.add_subplot(132)
+ nx.draw_networkx_nodes(barbell, pos, node_color=colors, alpha=alpha)
+ # with more alpha elements than nodes
+ alpha.append(1)
+ fig.add_subplot(133)
+ nx.draw_networkx_nodes(barbell, pos, alpha=alpha)
+
+
+def test_multiple_node_shapes(subplots):
+ fig, ax = subplots
+ G = nx.path_graph(4)
+ nx.draw(G, node_shape=["o", "h", "s", "^"], ax=ax)
+ scatters = [
+ s for s in ax.get_children() if isinstance(s, mpl.collections.PathCollection)
+ ]
+ assert len(scatters) == 4
+
+
+def test_individualized_font_attributes(subplots):
+ G = nx.karate_club_graph()
+ fig, ax = subplots
+ nx.draw(
+ G,
+ ax=ax,
+ font_color={n: "k" if n % 2 else "r" for n in G.nodes()},
+ font_size={n: int(n / (34 / 15) + 5) for n in G.nodes()},
+ )
+ for n, t in zip(
+ G.nodes(),
+ [
+ t
+ for t in ax.get_children()
+ if isinstance(t, mpl.text.Text) and len(t.get_text()) > 0
+ ],
+ ):
+ expected = "black" if n % 2 else "red"
+
+ assert mpl.colors.same_color(t.get_color(), expected)
+ assert int(n / (34 / 15) + 5) == t.get_size()
+
+
+def test_individualized_edge_attributes(subplots):
+ G = nx.karate_club_graph()
+ fig, ax = subplots
+ arrowstyles = ["-|>" if (u + v) % 2 == 0 else "-[" for u, v in G.edges()]
+ arrowsizes = [10 * (u % 2 + v % 2) + 10 for u, v in G.edges()]
+ nx.draw(G, ax=ax, arrows=True, arrowstyle=arrowstyles, arrowsize=arrowsizes)
+ arrows = [
+ f for f in ax.get_children() if isinstance(f, mpl.patches.FancyArrowPatch)
+ ]
+ for e, a in zip(G.edges(), arrows):
+ assert a.get_mutation_scale() == 10 * (e[0] % 2 + e[1] % 2) + 10
+ expected = (
+ mpl.patches.ArrowStyle.BracketB
+ if sum(e) % 2
+ else mpl.patches.ArrowStyle.CurveFilledB
+ )
+ assert isinstance(a.get_arrowstyle(), expected)
+
+
+def test_error_invalid_kwds():
+ with pytest.raises(ValueError, match="Received invalid argument"):
+ nx.draw(barbell, foo="bar")
+
+
+def test_draw_networkx_arrowsize_incorrect_size():
+ G = nx.DiGraph([(0, 1), (0, 2), (0, 3), (1, 3)])
+ arrowsize = [1, 2, 3]
+ with pytest.raises(
+ ValueError, match="arrowsize should have the same length as edgelist"
+ ):
+ nx.draw(G, arrowsize=arrowsize)
+
+
+@pytest.mark.parametrize("arrowsize", (30, [10, 20, 30]))
+def test_draw_edges_arrowsize(arrowsize):
+ G = nx.DiGraph([(0, 1), (0, 2), (1, 2)])
+ pos = {0: (0, 0), 1: (0, 1), 2: (1, 0)}
+ edges = nx.draw_networkx_edges(G, pos=pos, arrowsize=arrowsize)
+
+ arrowsize = itertools.repeat(arrowsize) if isinstance(arrowsize, int) else arrowsize
+
+ for fap, expected in zip(edges, arrowsize):
+ assert isinstance(fap, mpl.patches.FancyArrowPatch)
+ assert fap.get_mutation_scale() == expected
+
+
+@pytest.mark.parametrize("arrowstyle", ("-|>", ["-|>", "-[", "<|-|>"]))
+def test_draw_edges_arrowstyle(arrowstyle):
+ G = nx.DiGraph([(0, 1), (0, 2), (1, 2)])
+ pos = {0: (0, 0), 1: (0, 1), 2: (1, 0)}
+ edges = nx.draw_networkx_edges(G, pos=pos, arrowstyle=arrowstyle)
+
+ arrowstyle = (
+ itertools.repeat(arrowstyle) if isinstance(arrowstyle, str) else arrowstyle
+ )
+
+ arrow_objects = {
+ "-|>": mpl.patches.ArrowStyle.CurveFilledB,
+ "-[": mpl.patches.ArrowStyle.BracketB,
+ "<|-|>": mpl.patches.ArrowStyle.CurveFilledAB,
+ }
+
+ for fap, expected in zip(edges, arrowstyle):
+ assert isinstance(fap, mpl.patches.FancyArrowPatch)
+ assert isinstance(fap.get_arrowstyle(), arrow_objects[expected])
+
+
+def test_np_edgelist():
+ # see issue #4129
+ nx.draw_networkx(barbell, edgelist=np.array([(0, 2), (0, 3)]))
+
+
+def test_draw_nodes_missing_node_from_position():
+ G = nx.path_graph(3)
+ pos = {0: (0, 0), 1: (1, 1)} # No position for node 2
+ with pytest.raises(nx.NetworkXError, match="has no position"):
+ nx.draw_networkx_nodes(G, pos)
+
+
+# NOTE: parametrizing on marker to test both branches of internal
+# nx.draw_networkx_edges.to_marker_edge function
+@pytest.mark.parametrize("node_shape", ("o", "s"))
+def test_draw_edges_min_source_target_margins(node_shape, subplots):
+ """Test that there is a wider gap between the node and the start of an
+ incident edge when min_source_margin is specified.
+
+ This test checks that the use of min_{source/target}_margin kwargs result
+ in shorter (more padding) between the edges and source and target nodes.
+ As a crude visual example, let 's' and 't' represent source and target
+ nodes, respectively:
+
+ Default:
+ s-----------------------------t
+
+ With margins:
+ s ----------------------- t
+
+ """
+ # Create a single axis object to get consistent pixel coords across
+ # multiple draws
+ fig, ax = subplots
+ G = nx.DiGraph([(0, 1)])
+ pos = {0: (0, 0), 1: (1, 0)} # horizontal layout
+ # Get leftmost and rightmost points of the FancyArrowPatch object
+ # representing the edge between nodes 0 and 1 (in pixel coordinates)
+ default_patch = nx.draw_networkx_edges(G, pos, ax=ax, node_shape=node_shape)[0]
+ default_extent = default_patch.get_extents().corners()[::2, 0]
+ # Now, do the same but with "padding" for the source and target via the
+ # min_{source/target}_margin kwargs
+ padded_patch = nx.draw_networkx_edges(
+ G,
+ pos,
+ ax=ax,
+ node_shape=node_shape,
+ min_source_margin=100,
+ min_target_margin=100,
+ )[0]
+ padded_extent = padded_patch.get_extents().corners()[::2, 0]
+
+ # With padding, the left-most extent of the edge should be further to the
+ # right
+ assert padded_extent[0] > default_extent[0]
+ # And the rightmost extent of the edge, further to the left
+ assert padded_extent[1] < default_extent[1]
+
+
+# NOTE: parametrizing on marker to test both branches of internal
+# nx.draw_networkx_edges.to_marker_edge function
+@pytest.mark.parametrize("node_shape", ("o", "s"))
+def test_draw_edges_min_source_target_margins_individual(node_shape, subplots):
+ """Test that there is a wider gap between the node and the start of an
+ incident edge when min_source_margin is specified.
+
+ This test checks that the use of min_{source/target}_margin kwargs result
+ in shorter (more padding) between the edges and source and target nodes.
+ As a crude visual example, let 's' and 't' represent source and target
+ nodes, respectively:
+
+ Default:
+ s-----------------------------t
+
+ With margins:
+ s ----------------------- t
+
+ """
+ # Create a single axis object to get consistent pixel coords across
+ # multiple draws
+ fig, ax = subplots
+ G = nx.DiGraph([(0, 1), (1, 2)])
+ pos = {0: (0, 0), 1: (1, 0), 2: (2, 0)} # horizontal layout
+ # Get leftmost and rightmost points of the FancyArrowPatch object
+ # representing the edge between nodes 0 and 1 (in pixel coordinates)
+ default_patch = nx.draw_networkx_edges(G, pos, ax=ax, node_shape=node_shape)
+ default_extent = [d.get_extents().corners()[::2, 0] for d in default_patch]
+ # Now, do the same but with "padding" for the source and target via the
+ # min_{source/target}_margin kwargs
+ padded_patch = nx.draw_networkx_edges(
+ G,
+ pos,
+ ax=ax,
+ node_shape=node_shape,
+ min_source_margin=[98, 102],
+ min_target_margin=[98, 102],
+ )
+ padded_extent = [p.get_extents().corners()[::2, 0] for p in padded_patch]
+ for d, p in zip(default_extent, padded_extent):
+ # With padding, the left-most extent of the edge should be further to the
+ # right
+ assert p[0] > d[0]
+ # And the rightmost extent of the edge, further to the left
+ assert p[1] < d[1]
+
+
+def test_nonzero_selfloop_with_single_node(subplots):
+ """Ensure that selfloop extent is non-zero when there is only one node."""
+ # Create explicit axis object for test
+ fig, ax = subplots
+ # Graph with single node + self loop
+ G = nx.DiGraph()
+ G.add_node(0)
+ G.add_edge(0, 0)
+ # Draw
+ patch = nx.draw_networkx_edges(G, {0: (0, 0)})[0]
+ # The resulting patch must have non-zero extent
+ bbox = patch.get_extents()
+ assert bbox.width > 0 and bbox.height > 0
+
+
+def test_nonzero_selfloop_with_single_edge_in_edgelist(subplots):
+ """Ensure that selfloop extent is non-zero when only a single edge is
+ specified in the edgelist.
+ """
+ # Create explicit axis object for test
+ fig, ax = subplots
+ # Graph with selfloop
+ G = nx.path_graph(2, create_using=nx.DiGraph)
+ G.add_edge(1, 1)
+ pos = {n: (n, n) for n in G.nodes}
+ # Draw only the selfloop edge via the `edgelist` kwarg
+ patch = nx.draw_networkx_edges(G, pos, edgelist=[(1, 1)])[0]
+ # The resulting patch must have non-zero extent
+ bbox = patch.get_extents()
+ assert bbox.width > 0 and bbox.height > 0
+
+
+def test_apply_alpha():
+ """Test apply_alpha when there is a mismatch between the number of
+ supplied colors and elements.
+ """
+ nodelist = [0, 1, 2]
+ colorlist = ["r", "g", "b"]
+ alpha = 0.5
+ rgba_colors = nx.drawing.nx_pylab.apply_alpha(colorlist, alpha, nodelist)
+ assert all(rgba_colors[:, -1] == alpha)
+
+
+def test_draw_edges_toggling_with_arrows_kwarg():
+ """
+ The `arrows` keyword argument is used as a 3-way switch to select which
+ type of object to use for drawing edges:
+ - ``arrows=None`` -> default (FancyArrowPatches for directed, else LineCollection)
+ - ``arrows=True`` -> FancyArrowPatches
+ - ``arrows=False`` -> LineCollection
+ """
+ import matplotlib.collections
+ import matplotlib.patches
+
+ UG = nx.path_graph(3)
+ DG = nx.path_graph(3, create_using=nx.DiGraph)
+ pos = {n: (n, n) for n in UG}
+
+ # Use FancyArrowPatches when arrows=True, regardless of graph type
+ for G in (UG, DG):
+ edges = nx.draw_networkx_edges(G, pos, arrows=True)
+ assert len(edges) == len(G.edges)
+ assert isinstance(edges[0], mpl.patches.FancyArrowPatch)
+
+ # Use LineCollection when arrows=False, regardless of graph type
+ for G in (UG, DG):
+ edges = nx.draw_networkx_edges(G, pos, arrows=False)
+ assert isinstance(edges, mpl.collections.LineCollection)
+
+ # Default behavior when arrows=None: FAPs for directed, LC's for undirected
+ edges = nx.draw_networkx_edges(UG, pos)
+ assert isinstance(edges, mpl.collections.LineCollection)
+ edges = nx.draw_networkx_edges(DG, pos)
+ assert len(edges) == len(G.edges)
+ assert isinstance(edges[0], mpl.patches.FancyArrowPatch)
+
+
+@pytest.mark.parametrize("drawing_func", (nx.draw, nx.draw_networkx))
+def test_draw_networkx_arrows_default_undirected(drawing_func, subplots):
+ import matplotlib.collections
+
+ G = nx.path_graph(3)
+ fig, ax = subplots
+ drawing_func(G, ax=ax)
+ assert any(isinstance(c, mpl.collections.LineCollection) for c in ax.collections)
+ assert not ax.patches
+
+
+@pytest.mark.parametrize("drawing_func", (nx.draw, nx.draw_networkx))
+def test_draw_networkx_arrows_default_directed(drawing_func, subplots):
+ import matplotlib.collections
+
+ G = nx.path_graph(3, create_using=nx.DiGraph)
+ fig, ax = subplots
+ drawing_func(G, ax=ax)
+ assert not any(
+ isinstance(c, mpl.collections.LineCollection) for c in ax.collections
+ )
+ assert ax.patches
+
+
+def test_edgelist_kwarg_not_ignored(subplots):
+ # See gh-4994
+ G = nx.path_graph(3)
+ G.add_edge(0, 0)
+ fig, ax = subplots
+ nx.draw(G, edgelist=[(0, 1), (1, 2)], ax=ax) # Exclude self-loop from edgelist
+ assert not ax.patches
+
+
+@pytest.mark.parametrize(
+ ("G", "expected_n_edges"),
+ ([nx.DiGraph(), 2], [nx.MultiGraph(), 4], [nx.MultiDiGraph(), 4]),
+)
+def test_draw_networkx_edges_multiedge_connectionstyle(G, expected_n_edges):
+ """Draws edges correctly for 3 types of graphs and checks for valid length"""
+ for i, (u, v) in enumerate([(0, 1), (0, 1), (0, 1), (0, 2)]):
+ G.add_edge(u, v, weight=round(i / 3, 2))
+ pos = {n: (n, n) for n in G}
+ # Raises on insufficient connectionstyle length
+ for conn_style in [
+ "arc3,rad=0.1",
+ ["arc3,rad=0.1", "arc3,rad=0.1"],
+ ["arc3,rad=0.1", "arc3,rad=0.1", "arc3,rad=0.2"],
+ ]:
+ nx.draw_networkx_edges(G, pos, connectionstyle=conn_style)
+ arrows = nx.draw_networkx_edges(G, pos, connectionstyle=conn_style)
+ assert len(arrows) == expected_n_edges
+
+
+@pytest.mark.parametrize(
+ ("G", "expected_n_edges"),
+ ([nx.DiGraph(), 2], [nx.MultiGraph(), 4], [nx.MultiDiGraph(), 4]),
+)
+def test_draw_networkx_edge_labels_multiedge_connectionstyle(G, expected_n_edges):
+ """Draws labels correctly for 3 types of graphs and checks for valid length and class names"""
+ for i, (u, v) in enumerate([(0, 1), (0, 1), (0, 1), (0, 2)]):
+ G.add_edge(u, v, weight=round(i / 3, 2))
+ pos = {n: (n, n) for n in G}
+ # Raises on insufficient connectionstyle length
+ arrows = nx.draw_networkx_edges(
+ G, pos, connectionstyle=["arc3,rad=0.1", "arc3,rad=0.1", "arc3,rad=0.1"]
+ )
+ for conn_style in [
+ "arc3,rad=0.1",
+ ["arc3,rad=0.1", "arc3,rad=0.2"],
+ ["arc3,rad=0.1", "arc3,rad=0.1", "arc3,rad=0.1"],
+ ]:
+ text_items = nx.draw_networkx_edge_labels(G, pos, connectionstyle=conn_style)
+ assert len(text_items) == expected_n_edges
+ for ti in text_items.values():
+ assert ti.__class__.__name__ == "CurvedArrowText"
+
+
+def test_draw_networkx_edge_label_multiedge():
+ G = nx.MultiGraph()
+ G.add_edge(0, 1, weight=10)
+ G.add_edge(0, 1, weight=20)
+ edge_labels = nx.get_edge_attributes(G, "weight") # Includes edge keys
+ pos = {n: (n, n) for n in G}
+ text_items = nx.draw_networkx_edge_labels(
+ G,
+ pos,
+ edge_labels=edge_labels,
+ connectionstyle=["arc3,rad=0.1", "arc3,rad=0.2"],
+ )
+ assert len(text_items) == 2
+
+
+def test_draw_networkx_edge_label_empty_dict():
+ """Regression test for draw_networkx_edge_labels with empty dict. See
+ gh-5372."""
+ G = nx.path_graph(3)
+ pos = {n: (n, n) for n in G.nodes}
+ assert nx.draw_networkx_edge_labels(G, pos, edge_labels={}) == {}
+
+
+def test_draw_networkx_edges_undirected_selfloop_colors(subplots):
+ """When an edgelist is supplied along with a sequence of colors, check that
+ the self-loops have the correct colors."""
+ fig, ax = subplots
+ # Edge list and corresponding colors
+ edgelist = [(1, 3), (1, 2), (2, 3), (1, 1), (3, 3), (2, 2)]
+ edge_colors = ["pink", "cyan", "black", "red", "blue", "green"]
+
+ G = nx.Graph(edgelist)
+ pos = {n: (n, n) for n in G.nodes}
+ nx.draw_networkx_edges(G, pos, ax=ax, edgelist=edgelist, edge_color=edge_colors)
+
+ # Verify that there are three fancy arrow patches (1 per self loop)
+ assert len(ax.patches) == 3
+
+ # These are points that should be contained in the self loops. For example,
+ # sl_points[0] will be (1, 1.1), which is inside the "path" of the first
+ # self-loop but outside the others
+ sl_points = np.array(edgelist[-3:]) + np.array([0, 0.1])
+
+ # Check that the mapping between self-loop locations and their colors is
+ # correct
+ for fap, clr, slp in zip(ax.patches, edge_colors[-3:], sl_points):
+ assert fap.get_path().contains_point(slp)
+ assert mpl.colors.same_color(fap.get_edgecolor(), clr)
+
+
+@pytest.mark.parametrize(
+ "fap_only_kwarg", # Non-default values for kwargs that only apply to FAPs
+ (
+ {"arrowstyle": "-"},
+ {"arrowsize": 20},
+ {"connectionstyle": "arc3,rad=0.2"},
+ {"min_source_margin": 10},
+ {"min_target_margin": 10},
+ ),
+)
+def test_user_warnings_for_unused_edge_drawing_kwargs(fap_only_kwarg, subplots):
+ """Users should get a warning when they specify a non-default value for
+ one of the kwargs that applies only to edges drawn with FancyArrowPatches,
+ but FancyArrowPatches aren't being used under the hood."""
+ G = nx.path_graph(3)
+ pos = {n: (n, n) for n in G}
+ fig, ax = subplots
+ # By default, an undirected graph will use LineCollection to represent
+ # the edges
+ kwarg_name = list(fap_only_kwarg.keys())[0]
+ with pytest.warns(
+ UserWarning, match=f"\n\nThe {kwarg_name} keyword argument is not applicable"
+ ):
+ nx.draw_networkx_edges(G, pos, ax=ax, **fap_only_kwarg)
+ # FancyArrowPatches are always used when `arrows=True` is specified.
+ # Check that warnings are *not* raised in this case
+ with warnings.catch_warnings():
+ # Escalate warnings -> errors so tests fail if warnings are raised
+ warnings.simplefilter("error")
+ warnings.filterwarnings("ignore", category=DeprecationWarning)
+ nx.draw_networkx_edges(G, pos, ax=ax, arrows=True, **fap_only_kwarg)
+
+
+@pytest.mark.parametrize("draw_fn", (nx.draw, nx.draw_circular))
+def test_no_warning_on_default_draw_arrowstyle(draw_fn, subplots):
+ # See gh-7284
+ fig, ax = subplots
+ G = nx.cycle_graph(5)
+ with warnings.catch_warnings(record=True) as w:
+ draw_fn(G, ax=ax)
+ assert len(w) == 0
+
+
+@pytest.mark.parametrize("hide_ticks", [False, True])
+@pytest.mark.parametrize(
+ "method",
+ [
+ nx.draw_networkx,
+ nx.draw_networkx_edge_labels,
+ nx.draw_networkx_edges,
+ nx.draw_networkx_labels,
+ nx.draw_networkx_nodes,
+ ],
+)
+def test_hide_ticks(method, hide_ticks, subplots):
+ G = nx.path_graph(3)
+ pos = {n: (n, n) for n in G.nodes}
+ _, ax = subplots
+ method(G, pos=pos, ax=ax, hide_ticks=hide_ticks)
+ for axis in [ax.xaxis, ax.yaxis]:
+ assert bool(axis.get_ticklabels()) != hide_ticks
+
+
+def test_edge_label_bar_connectionstyle(subplots):
+ """Check that FancyArrowPatches with `bar` connectionstyle are also supported
+ in edge label rendering. See gh-7735."""
+ fig, ax = subplots
+ edge = (0, 1)
+ G = nx.DiGraph([edge])
+ pos = {n: (n, 0) for n in G} # Edge is horizontal line between (0, 0) and (1, 0)
+
+ style_arc = "arc3,rad=0.0"
+ style_bar = "bar,fraction=0.1"
+
+ arc_lbl = nx.draw_networkx_edge_labels(
+ G, pos, edge_labels={edge: "edge"}, connectionstyle=style_arc
+ )
+ # This would fail prior to gh-7739
+ bar_lbl = nx.draw_networkx_edge_labels(
+ G, pos, edge_labels={edge: "edge"}, connectionstyle=style_bar
+ )
+
+ # For the "arc" style, the label should be at roughly the midpoint
+ assert arc_lbl[edge].x, arc_lbl[edge].y == pytest.approx((0.5, 0))
+ # The label should be below the x-axis for the "bar" style
+ assert bar_lbl[edge].y < arc_lbl[edge].y