summaryrefslogtreecommitdiff
path: root/.venv/lib/python3.12/site-packages/numpy/_core
diff options
context:
space:
mode:
authorblackhao <13851610112@163.com>2025-08-22 02:51:50 -0500
committerblackhao <13851610112@163.com>2025-08-22 02:51:50 -0500
commit4aab4087dc97906d0b9890035401175cdaab32d4 (patch)
tree4e2e9d88a711ec5b1cfa02e8ac72a55183b99123 /.venv/lib/python3.12/site-packages/numpy/_core
parentafa8f50d1d21c721dabcb31ad244610946ab65a3 (diff)
2.0
Diffstat (limited to '.venv/lib/python3.12/site-packages/numpy/_core')
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/_core/__init__.py186
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/_core/__init__.pyi2
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/_core/__pycache__/__init__.cpython-312.pycbin0 -> 5672 bytes
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/_core/__pycache__/_add_newdocs.cpython-312.pycbin0 -> 200245 bytes
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/_core/__pycache__/_add_newdocs_scalars.cpython-312.pycbin0 -> 13221 bytes
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/_core/__pycache__/_asarray.cpython-312.pycbin0 -> 4282 bytes
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/_core/__pycache__/_dtype.cpython-312.pycbin0 -> 13470 bytes
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/_core/__pycache__/_dtype_ctypes.cpython-312.pycbin0 -> 4844 bytes
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/_core/__pycache__/_exceptions.cpython-312.pycbin0 -> 8291 bytes
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/_core/__pycache__/_internal.cpython-312.pycbin0 -> 34878 bytes
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/_core/__pycache__/_machar.cpython-312.pycbin0 -> 11687 bytes
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/_core/__pycache__/_methods.cpython-312.pycbin0 -> 11439 bytes
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/_core/__pycache__/_string_helpers.cpython-312.pycbin0 -> 3292 bytes
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/_core/__pycache__/_type_aliases.cpython-312.pycbin0 -> 3758 bytes
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/_core/__pycache__/_ufunc_config.cpython-312.pycbin0 -> 16595 bytes
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/_core/__pycache__/arrayprint.cpython-312.pycbin0 -> 72498 bytes
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/_core/__pycache__/cversions.cpython-312.pycbin0 -> 632 bytes
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/_core/__pycache__/defchararray.cpython-312.pycbin0 -> 42062 bytes
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/_core/__pycache__/einsumfunc.cpython-312.pycbin0 -> 50073 bytes
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/_core/__pycache__/fromnumeric.cpython-312.pycbin0 -> 150475 bytes
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/_core/__pycache__/function_base.cpython-312.pycbin0 -> 20803 bytes
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/_core/__pycache__/getlimits.cpython-312.pycbin0 -> 28447 bytes
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/_core/__pycache__/memmap.cpython-312.pycbin0 -> 13331 bytes
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/_core/__pycache__/multiarray.cpython-312.pycbin0 -> 58659 bytes
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/_core/__pycache__/numeric.cpython-312.pycbin0 -> 91193 bytes
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/_core/__pycache__/numerictypes.cpython-312.pycbin0 -> 17689 bytes
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/_core/__pycache__/overrides.cpython-312.pycbin0 -> 7902 bytes
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/_core/__pycache__/printoptions.cpython-312.pycbin0 -> 941 bytes
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/_core/__pycache__/records.cpython-312.pycbin0 -> 39474 bytes
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/_core/__pycache__/shape_base.cpython-312.pycbin0 -> 34456 bytes
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/_core/__pycache__/strings.cpython-312.pycbin0 -> 59926 bytes
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/_core/__pycache__/umath.cpython-312.pycbin0 -> 2010 bytes
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/_core/_add_newdocs.py6967
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/_core/_add_newdocs.pyi3
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/_core/_add_newdocs_scalars.py390
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/_core/_add_newdocs_scalars.pyi16
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/_core/_asarray.py134
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/_core/_asarray.pyi41
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/_core/_dtype.py366
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/_core/_dtype.pyi58
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/_core/_dtype_ctypes.py120
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/_core/_dtype_ctypes.pyi83
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/_core/_exceptions.py162
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/_core/_exceptions.pyi55
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/_core/_internal.py958
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/_core/_internal.pyi72
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/_core/_machar.py355
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/_core/_machar.pyi55
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/_core/_methods.py255
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/_core/_methods.pyi22
-rwxr-xr-x.venv/lib/python3.12/site-packages/numpy/_core/_multiarray_tests.cpython-312-x86_64-linux-gnu.sobin0 -> 141888 bytes
-rwxr-xr-x.venv/lib/python3.12/site-packages/numpy/_core/_multiarray_umath.cpython-312-x86_64-linux-gnu.sobin0 -> 10808937 bytes
-rwxr-xr-x.venv/lib/python3.12/site-packages/numpy/_core/_operand_flag_tests.cpython-312-x86_64-linux-gnu.sobin0 -> 16800 bytes
-rwxr-xr-x.venv/lib/python3.12/site-packages/numpy/_core/_rational_tests.cpython-312-x86_64-linux-gnu.sobin0 -> 59592 bytes
-rwxr-xr-x.venv/lib/python3.12/site-packages/numpy/_core/_simd.cpython-312-x86_64-linux-gnu.sobin0 -> 2882368 bytes
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/_core/_simd.pyi25
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/_core/_string_helpers.py100
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/_core/_string_helpers.pyi12
-rwxr-xr-x.venv/lib/python3.12/site-packages/numpy/_core/_struct_ufunc_tests.cpython-312-x86_64-linux-gnu.sobin0 -> 16936 bytes
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/_core/_type_aliases.py119
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/_core/_type_aliases.pyi97
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/_core/_ufunc_config.py489
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/_core/_ufunc_config.pyi32
-rwxr-xr-x.venv/lib/python3.12/site-packages/numpy/_core/_umath_tests.cpython-312-x86_64-linux-gnu.sobin0 -> 50312 bytes
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/_core/arrayprint.py1775
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/_core/arrayprint.pyi238
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/_core/cversions.py13
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/_core/defchararray.py1427
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/_core/defchararray.pyi1135
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/_core/einsumfunc.py1498
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/_core/einsumfunc.pyi184
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py4269
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.pyi1750
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/_core/function_base.py545
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/_core/function_base.pyi278
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/_core/getlimits.py748
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/_core/getlimits.pyi3
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/_core/include/numpy/__multiarray_api.c376
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/_core/include/numpy/__multiarray_api.h1622
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/_core/include/numpy/__ufunc_api.c54
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/_core/include/numpy/__ufunc_api.h341
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/_core/include/numpy/_neighborhood_iterator_imp.h90
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/_core/include/numpy/_numpyconfig.h33
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/_core/include/numpy/_public_dtype_api_table.h86
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/_core/include/numpy/arrayobject.h7
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/_core/include/numpy/arrayscalars.h196
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/_core/include/numpy/dtype_api.h480
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/_core/include/numpy/halffloat.h70
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/_core/include/numpy/ndarrayobject.h304
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/_core/include/numpy/ndarraytypes.h1950
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/_core/include/numpy/npy_2_compat.h249
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/_core/include/numpy/npy_2_complexcompat.h28
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/_core/include/numpy/npy_3kcompat.h374
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/_core/include/numpy/npy_common.h977
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/_core/include/numpy/npy_cpu.h124
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/_core/include/numpy/npy_endian.h78
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/_core/include/numpy/npy_math.h602
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/_core/include/numpy/npy_no_deprecated_api.h20
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/_core/include/numpy/npy_os.h42
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/_core/include/numpy/numpyconfig.h182
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/_core/include/numpy/random/LICENSE.txt21
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/_core/include/numpy/random/bitgen.h20
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/_core/include/numpy/random/distributions.h209
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/_core/include/numpy/random/libdivide.h2079
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/_core/include/numpy/ufuncobject.h343
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/_core/include/numpy/utils.h37
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/_core/lib/libnpymath.abin0 -> 54312 bytes
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/_core/lib/npy-pkg-config/mlib.ini12
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/_core/lib/npy-pkg-config/npymath.ini20
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/_core/lib/pkgconfig/numpy.pc7
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/_core/memmap.py363
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/_core/memmap.pyi3
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/_core/multiarray.py1762
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/_core/multiarray.pyi1285
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/_core/numeric.py2760
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/_core/numeric.pyi882
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/_core/numerictypes.py633
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/_core/numerictypes.pyi192
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/_core/overrides.py183
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/_core/overrides.pyi48
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/_core/printoptions.py32
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/_core/printoptions.pyi28
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/_core/records.py1089
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/_core/records.pyi333
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/_core/shape_base.py998
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/_core/shape_base.pyi175
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/_core/strings.py1823
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/_core/strings.pyi511
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/_locales.cpython-312.pycbin0 -> 3576 bytes
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/_natype.cpython-312.pycbin0 -> 8145 bytes
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test__exceptions.cpython-312.pycbin0 -> 5481 bytes
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_abc.cpython-312.pycbin0 -> 4457 bytes
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_api.cpython-312.pycbin0 -> 39732 bytes
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_argparse.cpython-312.pycbin0 -> 5156 bytes
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_array_api_info.cpython-312.pycbin0 -> 6002 bytes
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_array_coercion.cpython-312.pycbin0 -> 52255 bytes
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_array_interface.cpython-312.pycbin0 -> 8236 bytes
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_arraymethod.cpython-312.pycbin0 -> 5077 bytes
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_arrayobject.cpython-312.pycbin0 -> 4185 bytes
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_arrayprint.cpython-312.pycbin0 -> 74163 bytes
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_casting_floatingpoint_errors.cpython-312.pycbin0 -> 9300 bytes
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_casting_unittests.cpython-312.pycbin0 -> 39301 bytes
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_conversion_utils.cpython-312.pycbin0 -> 12983 bytes
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_cpu_dispatcher.cpython-312.pycbin0 -> 1550 bytes
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_cpu_features.cpython-312.pycbin0 -> 20368 bytes
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_custom_dtypes.cpython-312.pycbin0 -> 21319 bytes
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_cython.cpython-312.pycbin0 -> 18827 bytes
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_datetime.cpython-312.pycbin0 -> 174850 bytes
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_defchararray.cpython-312.pycbin0 -> 64382 bytes
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_deprecations.cpython-312.pycbin0 -> 31575 bytes
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_dlpack.cpython-312.pycbin0 -> 12981 bytes
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_dtype.cpython-312.pycbin0 -> 122350 bytes
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_einsum.cpython-312.pycbin0 -> 78324 bytes
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_errstate.cpython-312.pycbin0 -> 8694 bytes
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_extint128.cpython-312.pycbin0 -> 10344 bytes
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_function_base.cpython-312.pycbin0 -> 29345 bytes
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_getlimits.cpython-312.pycbin0 -> 13842 bytes
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_half.cpython-312.pycbin0 -> 38233 bytes
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_hashtable.cpython-312.pycbin0 -> 1766 bytes
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_indexerrors.cpython-312.pycbin0 -> 12910 bytes
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_indexing.cpython-312.pycbin0 -> 86408 bytes
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_item_selection.cpython-312.pycbin0 -> 10641 bytes
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_limited_api.cpython-312.pycbin0 -> 4733 bytes
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_longdouble.cpython-312.pycbin0 -> 23323 bytes
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_machar.cpython-312.pycbin0 -> 1769 bytes
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_mem_overlap.cpython-312.pycbin0 -> 49249 bytes
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_mem_policy.cpython-312.pycbin0 -> 20028 bytes
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_memmap.cpython-312.pycbin0 -> 14628 bytes
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_multiarray.cpython-312.pycbin0 -> 678288 bytes
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_multithreading.cpython-312.pycbin0 -> 14978 bytes
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_nditer.cpython-312.pycbin0 -> 185737 bytes
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_nep50_promotions.cpython-312.pycbin0 -> 17904 bytes
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_numeric.cpython-312.pycbin0 -> 280511 bytes
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_numerictypes.cpython-312.pycbin0 -> 41326 bytes
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_overrides.cpython-312.pycbin0 -> 52364 bytes
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_print.cpython-312.pycbin0 -> 11602 bytes
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_protocols.cpython-312.pycbin0 -> 3258 bytes
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_records.cpython-312.pycbin0 -> 39462 bytes
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_regression.cpython-312.pycbin0 -> 176141 bytes
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_scalar_ctors.cpython-312.pycbin0 -> 13993 bytes
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_scalar_methods.cpython-312.pycbin0 -> 17146 bytes
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_scalarbuffer.cpython-312.pycbin0 -> 9471 bytes
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_scalarinherit.cpython-312.pycbin0 -> 6196 bytes
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_scalarmath.cpython-312.pycbin0 -> 73753 bytes
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_scalarprint.cpython-312.pycbin0 -> 21426 bytes
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_shape_base.cpython-312.pycbin0 -> 50651 bytes
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_simd.cpython-312.pycbin0 -> 70235 bytes
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_simd_module.cpython-312.pycbin0 -> 7046 bytes
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_stringdtype.cpython-312.pycbin0 -> 94845 bytes
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_strings.cpython-312.pycbin0 -> 85552 bytes
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_ufunc.cpython-312.pycbin0 -> 222129 bytes
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_umath.cpython-312.pycbin0 -> 342735 bytes
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_umath_accuracy.cpython-312.pycbin0 -> 8685 bytes
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_umath_complex.cpython-312.pycbin0 -> 42942 bytes
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_unicode.cpython-312.pycbin0 -> 18959 bytes
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/_core/tests/_locales.py72
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/_core/tests/_natype.py205
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/_core/tests/data/astype_copy.pklbin0 -> 716 bytes
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/_core/tests/data/generate_umath_validation_data.cpp170
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/_core/tests/data/recarray_from_file.fitsbin0 -> 8640 bytes
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/_core/tests/data/umath-validation-set-README.txt15
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/_core/tests/data/umath-validation-set-arccos.csv1429
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/_core/tests/data/umath-validation-set-arccosh.csv1429
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/_core/tests/data/umath-validation-set-arcsin.csv1429
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/_core/tests/data/umath-validation-set-arcsinh.csv1429
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/_core/tests/data/umath-validation-set-arctan.csv1429
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/_core/tests/data/umath-validation-set-arctanh.csv1429
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/_core/tests/data/umath-validation-set-cbrt.csv1429
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/_core/tests/data/umath-validation-set-cos.csv1375
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/_core/tests/data/umath-validation-set-cosh.csv1429
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/_core/tests/data/umath-validation-set-exp.csv412
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/_core/tests/data/umath-validation-set-exp2.csv1429
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/_core/tests/data/umath-validation-set-expm1.csv1429
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/_core/tests/data/umath-validation-set-log.csv271
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/_core/tests/data/umath-validation-set-log10.csv1629
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/_core/tests/data/umath-validation-set-log1p.csv1429
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/_core/tests/data/umath-validation-set-log2.csv1629
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/_core/tests/data/umath-validation-set-sin.csv1370
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/_core/tests/data/umath-validation-set-sinh.csv1429
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/_core/tests/data/umath-validation-set-tan.csv1429
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/_core/tests/data/umath-validation-set-tanh.csv1429
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/_core/tests/examples/cython/__pycache__/setup.cpython-312.pycbin0 -> 1273 bytes
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/_core/tests/examples/cython/checks.pyx373
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/_core/tests/examples/cython/meson.build43
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/_core/tests/examples/cython/setup.py39
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/_core/tests/examples/limited_api/__pycache__/setup.cpython-312.pycbin0 -> 813 bytes
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/_core/tests/examples/limited_api/limited_api1.c17
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/_core/tests/examples/limited_api/limited_api2.pyx11
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/_core/tests/examples/limited_api/limited_api_latest.c19
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/_core/tests/examples/limited_api/meson.build59
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/_core/tests/examples/limited_api/setup.py24
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/_core/tests/test__exceptions.py90
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/_core/tests/test_abc.py54
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/_core/tests/test_api.py621
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/_core/tests/test_argparse.py92
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/_core/tests/test_array_api_info.py113
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/_core/tests/test_array_coercion.py911
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/_core/tests/test_array_interface.py222
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/_core/tests/test_arraymethod.py84
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/_core/tests/test_arrayobject.py75
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/_core/tests/test_arrayprint.py1328
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/_core/tests/test_casting_floatingpoint_errors.py154
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/_core/tests/test_casting_unittests.py817
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/_core/tests/test_conversion_utils.py206
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/_core/tests/test_cpu_dispatcher.py49
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/_core/tests/test_cpu_features.py432
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/_core/tests/test_custom_dtypes.py315
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/_core/tests/test_cython.py351
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/_core/tests/test_datetime.py2710
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/_core/tests/test_defchararray.py825
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/_core/tests/test_deprecations.py454
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/_core/tests/test_dlpack.py190
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/_core/tests/test_dtype.py1995
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/_core/tests/test_einsum.py1317
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/_core/tests/test_errstate.py131
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/_core/tests/test_extint128.py217
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/_core/tests/test_function_base.py503
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/_core/tests/test_getlimits.py205
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/_core/tests/test_half.py568
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/_core/tests/test_hashtable.py35
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/_core/tests/test_indexerrors.py125
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/_core/tests/test_indexing.py1455
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/_core/tests/test_item_selection.py167
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/_core/tests/test_limited_api.py102
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/_core/tests/test_longdouble.py369
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/_core/tests/test_machar.py30
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/_core/tests/test_mem_overlap.py930
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/_core/tests/test_mem_policy.py452
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/_core/tests/test_memmap.py246
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/_core/tests/test_multiarray.py10563
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/_core/tests/test_multithreading.py292
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/_core/tests/test_nditer.py3498
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/_core/tests/test_nep50_promotions.py287
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/_core/tests/test_numeric.py4247
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/_core/tests/test_numerictypes.py622
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/_core/tests/test_overrides.py791
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/_core/tests/test_print.py200
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/_core/tests/test_protocols.py46
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/_core/tests/test_records.py544
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/_core/tests/test_regression.py2670
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/_core/tests/test_scalar_ctors.py207
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/_core/tests/test_scalar_methods.py246
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/_core/tests/test_scalarbuffer.py153
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/_core/tests/test_scalarinherit.py105
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/_core/tests/test_scalarmath.py1176
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/_core/tests/test_scalarprint.py403
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/_core/tests/test_shape_base.py891
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/_core/tests/test_simd.py1341
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/_core/tests/test_simd_module.py103
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/_core/tests/test_stringdtype.py1807
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/_core/tests/test_strings.py1454
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/_core/tests/test_ufunc.py3313
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/_core/tests/test_umath.py4916
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/_core/tests/test_umath_accuracy.py124
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/_core/tests/test_umath_complex.py626
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/_core/tests/test_unicode.py368
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/_core/umath.py60
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/_core/umath.pyi197
298 files changed, 137099 insertions, 0 deletions
diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/__init__.py b/.venv/lib/python3.12/site-packages/numpy/_core/__init__.py
new file mode 100644
index 0000000..d0da7e0
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/_core/__init__.py
@@ -0,0 +1,186 @@
+"""
+Contains the core of NumPy: ndarray, ufuncs, dtypes, etc.
+
+Please note that this module is private. All functions and objects
+are available in the main ``numpy`` namespace - use that instead.
+
+"""
+
+import os
+
+from numpy.version import version as __version__
+
+# disables OpenBLAS affinity setting of the main thread that limits
+# python threads or processes to one core
+env_added = []
+for envkey in ['OPENBLAS_MAIN_FREE', 'GOTOBLAS_MAIN_FREE']:
+ if envkey not in os.environ:
+ os.environ[envkey] = '1'
+ env_added.append(envkey)
+
+try:
+ from . import multiarray
+except ImportError as exc:
+ import sys
+ msg = """
+
+IMPORTANT: PLEASE READ THIS FOR ADVICE ON HOW TO SOLVE THIS ISSUE!
+
+Importing the numpy C-extensions failed. This error can happen for
+many reasons, often due to issues with your setup or how NumPy was
+installed.
+
+We have compiled some common reasons and troubleshooting tips at:
+
+ https://numpy.org/devdocs/user/troubleshooting-importerror.html
+
+Please note and check the following:
+
+ * The Python version is: Python%d.%d from "%s"
+ * The NumPy version is: "%s"
+
+and make sure that they are the versions you expect.
+Please carefully study the documentation linked above for further help.
+
+Original error was: %s
+""" % (sys.version_info[0], sys.version_info[1], sys.executable,
+ __version__, exc)
+ raise ImportError(msg) from exc
+finally:
+ for envkey in env_added:
+ del os.environ[envkey]
+del envkey
+del env_added
+del os
+
+from . import umath
+
+# Check that multiarray,umath are pure python modules wrapping
+# _multiarray_umath and not either of the old c-extension modules
+if not (hasattr(multiarray, '_multiarray_umath') and
+ hasattr(umath, '_multiarray_umath')):
+ import sys
+ path = sys.modules['numpy'].__path__
+ msg = ("Something is wrong with the numpy installation. "
+ "While importing we detected an older version of "
+ "numpy in {}. One method of fixing this is to repeatedly uninstall "
+ "numpy until none is found, then reinstall this version.")
+ raise ImportError(msg.format(path))
+
+from . import numerictypes as nt
+from .numerictypes import sctypeDict, sctypes
+
+multiarray.set_typeDict(nt.sctypeDict)
+from . import (
+ _machar,
+ einsumfunc,
+ fromnumeric,
+ function_base,
+ getlimits,
+ numeric,
+ shape_base,
+)
+from .einsumfunc import *
+from .fromnumeric import *
+from .function_base import *
+from .getlimits import *
+
+# Note: module name memmap is overwritten by a class with same name
+from .memmap import *
+from .numeric import *
+from .records import recarray, record
+from .shape_base import *
+
+del nt
+
+# do this after everything else, to minimize the chance of this misleadingly
+# appearing in an import-time traceback
+# add these for module-freeze analysis (like PyInstaller)
+from . import (
+ _add_newdocs,
+ _add_newdocs_scalars,
+ _dtype,
+ _dtype_ctypes,
+ _internal,
+ _methods,
+)
+from .numeric import absolute as abs
+
+acos = numeric.arccos
+acosh = numeric.arccosh
+asin = numeric.arcsin
+asinh = numeric.arcsinh
+atan = numeric.arctan
+atanh = numeric.arctanh
+atan2 = numeric.arctan2
+concat = numeric.concatenate
+bitwise_left_shift = numeric.left_shift
+bitwise_invert = numeric.invert
+bitwise_right_shift = numeric.right_shift
+permute_dims = numeric.transpose
+pow = numeric.power
+
+__all__ = [
+ "abs", "acos", "acosh", "asin", "asinh", "atan", "atanh", "atan2",
+ "bitwise_invert", "bitwise_left_shift", "bitwise_right_shift", "concat",
+ "pow", "permute_dims", "memmap", "sctypeDict", "record", "recarray"
+]
+__all__ += numeric.__all__
+__all__ += function_base.__all__
+__all__ += getlimits.__all__
+__all__ += shape_base.__all__
+__all__ += einsumfunc.__all__
+
+
+def _ufunc_reduce(func):
+ # Report the `__name__`. pickle will try to find the module. Note that
+ # pickle supports for this `__name__` to be a `__qualname__`. It may
+ # make sense to add a `__qualname__` to ufuncs, to allow this more
+ # explicitly (Numba has ufuncs as attributes).
+ # See also: https://github.com/dask/distributed/issues/3450
+ return func.__name__
+
+
+def _DType_reconstruct(scalar_type):
+ # This is a work-around to pickle type(np.dtype(np.float64)), etc.
+ # and it should eventually be replaced with a better solution, e.g. when
+ # DTypes become HeapTypes.
+ return type(dtype(scalar_type))
+
+
+def _DType_reduce(DType):
+ # As types/classes, most DTypes can simply be pickled by their name:
+ if not DType._legacy or DType.__module__ == "numpy.dtypes":
+ return DType.__name__
+
+ # However, user defined legacy dtypes (like rational) do not end up in
+ # `numpy.dtypes` as module and do not have a public class at all.
+ # For these, we pickle them by reconstructing them from the scalar type:
+ scalar_type = DType.type
+ return _DType_reconstruct, (scalar_type,)
+
+
+def __getattr__(name):
+ # Deprecated 2022-11-22, NumPy 1.25.
+ if name == "MachAr":
+ import warnings
+ warnings.warn(
+ "The `np._core.MachAr` is considered private API (NumPy 1.24)",
+ DeprecationWarning, stacklevel=2,
+ )
+ return _machar.MachAr
+ raise AttributeError(f"Module {__name__!r} has no attribute {name!r}")
+
+
+import copyreg
+
+copyreg.pickle(ufunc, _ufunc_reduce)
+copyreg.pickle(type(dtype), _DType_reduce, _DType_reconstruct)
+
+# Unclutter namespace (must keep _*_reconstruct for unpickling)
+del copyreg, _ufunc_reduce, _DType_reduce
+
+from numpy._pytesttester import PytestTester
+
+test = PytestTester(__name__)
+del PytestTester
diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/__init__.pyi b/.venv/lib/python3.12/site-packages/numpy/_core/__init__.pyi
new file mode 100644
index 0000000..40d9c41
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/_core/__init__.pyi
@@ -0,0 +1,2 @@
+# NOTE: The `np._core` namespace is deliberately kept empty due to it
+# being private
diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/__pycache__/__init__.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/_core/__pycache__/__init__.cpython-312.pyc
new file mode 100644
index 0000000..eee68ab
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/_core/__pycache__/__init__.cpython-312.pyc
Binary files differ
diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/__pycache__/_add_newdocs.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/_core/__pycache__/_add_newdocs.cpython-312.pyc
new file mode 100644
index 0000000..7d03b1a
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/_core/__pycache__/_add_newdocs.cpython-312.pyc
Binary files differ
diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/__pycache__/_add_newdocs_scalars.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/_core/__pycache__/_add_newdocs_scalars.cpython-312.pyc
new file mode 100644
index 0000000..c22395e
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/_core/__pycache__/_add_newdocs_scalars.cpython-312.pyc
Binary files differ
diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/__pycache__/_asarray.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/_core/__pycache__/_asarray.cpython-312.pyc
new file mode 100644
index 0000000..79fc012
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/_core/__pycache__/_asarray.cpython-312.pyc
Binary files differ
diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/__pycache__/_dtype.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/_core/__pycache__/_dtype.cpython-312.pyc
new file mode 100644
index 0000000..1ff83ec
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/_core/__pycache__/_dtype.cpython-312.pyc
Binary files differ
diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/__pycache__/_dtype_ctypes.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/_core/__pycache__/_dtype_ctypes.cpython-312.pyc
new file mode 100644
index 0000000..434c6eb
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/_core/__pycache__/_dtype_ctypes.cpython-312.pyc
Binary files differ
diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/__pycache__/_exceptions.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/_core/__pycache__/_exceptions.cpython-312.pyc
new file mode 100644
index 0000000..37814af
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/_core/__pycache__/_exceptions.cpython-312.pyc
Binary files differ
diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/__pycache__/_internal.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/_core/__pycache__/_internal.cpython-312.pyc
new file mode 100644
index 0000000..3d1a0ec
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/_core/__pycache__/_internal.cpython-312.pyc
Binary files differ
diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/__pycache__/_machar.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/_core/__pycache__/_machar.cpython-312.pyc
new file mode 100644
index 0000000..b466096
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/_core/__pycache__/_machar.cpython-312.pyc
Binary files differ
diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/__pycache__/_methods.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/_core/__pycache__/_methods.cpython-312.pyc
new file mode 100644
index 0000000..6d03e14
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/_core/__pycache__/_methods.cpython-312.pyc
Binary files differ
diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/__pycache__/_string_helpers.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/_core/__pycache__/_string_helpers.cpython-312.pyc
new file mode 100644
index 0000000..54369a2
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/_core/__pycache__/_string_helpers.cpython-312.pyc
Binary files differ
diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/__pycache__/_type_aliases.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/_core/__pycache__/_type_aliases.cpython-312.pyc
new file mode 100644
index 0000000..202bc7f
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/_core/__pycache__/_type_aliases.cpython-312.pyc
Binary files differ
diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/__pycache__/_ufunc_config.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/_core/__pycache__/_ufunc_config.cpython-312.pyc
new file mode 100644
index 0000000..760cbab
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/_core/__pycache__/_ufunc_config.cpython-312.pyc
Binary files differ
diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/__pycache__/arrayprint.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/_core/__pycache__/arrayprint.cpython-312.pyc
new file mode 100644
index 0000000..8117740
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/_core/__pycache__/arrayprint.cpython-312.pyc
Binary files differ
diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/__pycache__/cversions.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/_core/__pycache__/cversions.cpython-312.pyc
new file mode 100644
index 0000000..532c821
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/_core/__pycache__/cversions.cpython-312.pyc
Binary files differ
diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/__pycache__/defchararray.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/_core/__pycache__/defchararray.cpython-312.pyc
new file mode 100644
index 0000000..2d68f6a
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/_core/__pycache__/defchararray.cpython-312.pyc
Binary files differ
diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/__pycache__/einsumfunc.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/_core/__pycache__/einsumfunc.cpython-312.pyc
new file mode 100644
index 0000000..b17224a
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/_core/__pycache__/einsumfunc.cpython-312.pyc
Binary files differ
diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/__pycache__/fromnumeric.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/_core/__pycache__/fromnumeric.cpython-312.pyc
new file mode 100644
index 0000000..93f3f89
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/_core/__pycache__/fromnumeric.cpython-312.pyc
Binary files differ
diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/__pycache__/function_base.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/_core/__pycache__/function_base.cpython-312.pyc
new file mode 100644
index 0000000..d45dcd3
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/_core/__pycache__/function_base.cpython-312.pyc
Binary files differ
diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/__pycache__/getlimits.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/_core/__pycache__/getlimits.cpython-312.pyc
new file mode 100644
index 0000000..18b6fb6
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/_core/__pycache__/getlimits.cpython-312.pyc
Binary files differ
diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/__pycache__/memmap.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/_core/__pycache__/memmap.cpython-312.pyc
new file mode 100644
index 0000000..05e2f99
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/_core/__pycache__/memmap.cpython-312.pyc
Binary files differ
diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/__pycache__/multiarray.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/_core/__pycache__/multiarray.cpython-312.pyc
new file mode 100644
index 0000000..29266a5
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/_core/__pycache__/multiarray.cpython-312.pyc
Binary files differ
diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/__pycache__/numeric.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/_core/__pycache__/numeric.cpython-312.pyc
new file mode 100644
index 0000000..e79b272
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/_core/__pycache__/numeric.cpython-312.pyc
Binary files differ
diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/__pycache__/numerictypes.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/_core/__pycache__/numerictypes.cpython-312.pyc
new file mode 100644
index 0000000..8c2feac
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/_core/__pycache__/numerictypes.cpython-312.pyc
Binary files differ
diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/__pycache__/overrides.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/_core/__pycache__/overrides.cpython-312.pyc
new file mode 100644
index 0000000..d4a3473
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/_core/__pycache__/overrides.cpython-312.pyc
Binary files differ
diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/__pycache__/printoptions.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/_core/__pycache__/printoptions.cpython-312.pyc
new file mode 100644
index 0000000..f070192
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/_core/__pycache__/printoptions.cpython-312.pyc
Binary files differ
diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/__pycache__/records.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/_core/__pycache__/records.cpython-312.pyc
new file mode 100644
index 0000000..ac0b55c
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/_core/__pycache__/records.cpython-312.pyc
Binary files differ
diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/__pycache__/shape_base.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/_core/__pycache__/shape_base.cpython-312.pyc
new file mode 100644
index 0000000..6882a72
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/_core/__pycache__/shape_base.cpython-312.pyc
Binary files differ
diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/__pycache__/strings.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/_core/__pycache__/strings.cpython-312.pyc
new file mode 100644
index 0000000..0ae9211
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/_core/__pycache__/strings.cpython-312.pyc
Binary files differ
diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/__pycache__/umath.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/_core/__pycache__/umath.cpython-312.pyc
new file mode 100644
index 0000000..95fbac4
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/_core/__pycache__/umath.cpython-312.pyc
Binary files differ
diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/_add_newdocs.py b/.venv/lib/python3.12/site-packages/numpy/_core/_add_newdocs.py
new file mode 100644
index 0000000..8f5de4b
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/_core/_add_newdocs.py
@@ -0,0 +1,6967 @@
+"""
+This is only meant to add docs to objects defined in C-extension modules.
+The purpose is to allow easier editing of the docstrings without
+requiring a re-compile.
+
+NOTE: Many of the methods of ndarray have corresponding functions.
+ If you update these docstrings, please keep also the ones in
+ _core/fromnumeric.py, matrixlib/defmatrix.py up-to-date.
+
+"""
+
+from numpy._core.function_base import add_newdoc
+from numpy._core.overrides import get_array_function_like_doc # noqa: F401
+
+###############################################################################
+#
+# flatiter
+#
+# flatiter needs a toplevel description
+#
+###############################################################################
+
+add_newdoc('numpy._core', 'flatiter',
+ """
+ Flat iterator object to iterate over arrays.
+
+ A `flatiter` iterator is returned by ``x.flat`` for any array `x`.
+ It allows iterating over the array as if it were a 1-D array,
+ either in a for-loop or by calling its `next` method.
+
+ Iteration is done in row-major, C-style order (the last
+ index varying the fastest). The iterator can also be indexed using
+ basic slicing or advanced indexing.
+
+ See Also
+ --------
+ ndarray.flat : Return a flat iterator over an array.
+ ndarray.flatten : Returns a flattened copy of an array.
+
+ Notes
+ -----
+ A `flatiter` iterator can not be constructed directly from Python code
+ by calling the `flatiter` constructor.
+
+ Examples
+ --------
+ >>> import numpy as np
+ >>> x = np.arange(6).reshape(2, 3)
+ >>> fl = x.flat
+ >>> type(fl)
+ <class 'numpy.flatiter'>
+ >>> for item in fl:
+ ... print(item)
+ ...
+ 0
+ 1
+ 2
+ 3
+ 4
+ 5
+
+ >>> fl[2:4]
+ array([2, 3])
+
+ """)
+
+# flatiter attributes
+
+add_newdoc('numpy._core', 'flatiter', ('base',
+ """
+ A reference to the array that is iterated over.
+
+ Examples
+ --------
+ >>> import numpy as np
+ >>> x = np.arange(5)
+ >>> fl = x.flat
+ >>> fl.base is x
+ True
+
+ """))
+
+
+add_newdoc('numpy._core', 'flatiter', ('coords',
+ """
+ An N-dimensional tuple of current coordinates.
+
+ Examples
+ --------
+ >>> import numpy as np
+ >>> x = np.arange(6).reshape(2, 3)
+ >>> fl = x.flat
+ >>> fl.coords
+ (0, 0)
+ >>> next(fl)
+ 0
+ >>> fl.coords
+ (0, 1)
+
+ """))
+
+
+add_newdoc('numpy._core', 'flatiter', ('index',
+ """
+ Current flat index into the array.
+
+ Examples
+ --------
+ >>> import numpy as np
+ >>> x = np.arange(6).reshape(2, 3)
+ >>> fl = x.flat
+ >>> fl.index
+ 0
+ >>> next(fl)
+ 0
+ >>> fl.index
+ 1
+
+ """))
+
+# flatiter functions
+
+add_newdoc('numpy._core', 'flatiter', ('__array__',
+ """__array__(type=None) Get array from iterator
+
+ """))
+
+
+add_newdoc('numpy._core', 'flatiter', ('copy',
+ """
+ copy()
+
+ Get a copy of the iterator as a 1-D array.
+
+ Examples
+ --------
+ >>> import numpy as np
+ >>> x = np.arange(6).reshape(2, 3)
+ >>> x
+ array([[0, 1, 2],
+ [3, 4, 5]])
+ >>> fl = x.flat
+ >>> fl.copy()
+ array([0, 1, 2, 3, 4, 5])
+
+ """))
+
+
+###############################################################################
+#
+# nditer
+#
+###############################################################################
+
+add_newdoc('numpy._core', 'nditer',
+ """
+ nditer(op, flags=None, op_flags=None, op_dtypes=None, order='K',
+ casting='safe', op_axes=None, itershape=None, buffersize=0)
+
+ Efficient multi-dimensional iterator object to iterate over arrays.
+ To get started using this object, see the
+ :ref:`introductory guide to array iteration <arrays.nditer>`.
+
+ Parameters
+ ----------
+ op : ndarray or sequence of array_like
+ The array(s) to iterate over.
+
+ flags : sequence of str, optional
+ Flags to control the behavior of the iterator.
+
+ * ``buffered`` enables buffering when required.
+ * ``c_index`` causes a C-order index to be tracked.
+ * ``f_index`` causes a Fortran-order index to be tracked.
+ * ``multi_index`` causes a multi-index, or a tuple of indices
+ with one per iteration dimension, to be tracked.
+ * ``common_dtype`` causes all the operands to be converted to
+ a common data type, with copying or buffering as necessary.
+ * ``copy_if_overlap`` causes the iterator to determine if read
+ operands have overlap with write operands, and make temporary
+ copies as necessary to avoid overlap. False positives (needless
+ copying) are possible in some cases.
+ * ``delay_bufalloc`` delays allocation of the buffers until
+ a reset() call is made. Allows ``allocate`` operands to
+ be initialized before their values are copied into the buffers.
+ * ``external_loop`` causes the ``values`` given to be
+ one-dimensional arrays with multiple values instead of
+ zero-dimensional arrays.
+ * ``grow_inner`` allows the ``value`` array sizes to be made
+ larger than the buffer size when both ``buffered`` and
+ ``external_loop`` is used.
+ * ``ranged`` allows the iterator to be restricted to a sub-range
+ of the iterindex values.
+ * ``refs_ok`` enables iteration of reference types, such as
+ object arrays.
+ * ``reduce_ok`` enables iteration of ``readwrite`` operands
+ which are broadcasted, also known as reduction operands.
+ * ``zerosize_ok`` allows `itersize` to be zero.
+ op_flags : list of list of str, optional
+ This is a list of flags for each operand. At minimum, one of
+ ``readonly``, ``readwrite``, or ``writeonly`` must be specified.
+
+ * ``readonly`` indicates the operand will only be read from.
+ * ``readwrite`` indicates the operand will be read from and written to.
+ * ``writeonly`` indicates the operand will only be written to.
+ * ``no_broadcast`` prevents the operand from being broadcasted.
+ * ``contig`` forces the operand data to be contiguous.
+ * ``aligned`` forces the operand data to be aligned.
+ * ``nbo`` forces the operand data to be in native byte order.
+ * ``copy`` allows a temporary read-only copy if required.
+ * ``updateifcopy`` allows a temporary read-write copy if required.
+ * ``allocate`` causes the array to be allocated if it is None
+ in the ``op`` parameter.
+ * ``no_subtype`` prevents an ``allocate`` operand from using a subtype.
+ * ``arraymask`` indicates that this operand is the mask to use
+ for selecting elements when writing to operands with the
+ 'writemasked' flag set. The iterator does not enforce this,
+ but when writing from a buffer back to the array, it only
+ copies those elements indicated by this mask.
+ * ``writemasked`` indicates that only elements where the chosen
+ ``arraymask`` operand is True will be written to.
+ * ``overlap_assume_elementwise`` can be used to mark operands that are
+ accessed only in the iterator order, to allow less conservative
+ copying when ``copy_if_overlap`` is present.
+ op_dtypes : dtype or tuple of dtype(s), optional
+ The required data type(s) of the operands. If copying or buffering
+ is enabled, the data will be converted to/from their original types.
+ order : {'C', 'F', 'A', 'K'}, optional
+ Controls the iteration order. 'C' means C order, 'F' means
+ Fortran order, 'A' means 'F' order if all the arrays are Fortran
+ contiguous, 'C' order otherwise, and 'K' means as close to the
+ order the array elements appear in memory as possible. This also
+ affects the element memory order of ``allocate`` operands, as they
+ are allocated to be compatible with iteration order.
+ Default is 'K'.
+ casting : {'no', 'equiv', 'safe', 'same_kind', 'unsafe'}, optional
+ Controls what kind of data casting may occur when making a copy
+ or buffering. Setting this to 'unsafe' is not recommended,
+ as it can adversely affect accumulations.
+
+ * 'no' means the data types should not be cast at all.
+ * 'equiv' means only byte-order changes are allowed.
+ * 'safe' means only casts which can preserve values are allowed.
+ * 'same_kind' means only safe casts or casts within a kind,
+ like float64 to float32, are allowed.
+ * 'unsafe' means any data conversions may be done.
+ op_axes : list of list of ints, optional
+ If provided, is a list of ints or None for each operands.
+ The list of axes for an operand is a mapping from the dimensions
+ of the iterator to the dimensions of the operand. A value of
+ -1 can be placed for entries, causing that dimension to be
+ treated as `newaxis`.
+ itershape : tuple of ints, optional
+ The desired shape of the iterator. This allows ``allocate`` operands
+ with a dimension mapped by op_axes not corresponding to a dimension
+ of a different operand to get a value not equal to 1 for that
+ dimension.
+ buffersize : int, optional
+ When buffering is enabled, controls the size of the temporary
+ buffers. Set to 0 for the default value.
+
+ Attributes
+ ----------
+ dtypes : tuple of dtype(s)
+ The data types of the values provided in `value`. This may be
+ different from the operand data types if buffering is enabled.
+ Valid only before the iterator is closed.
+ finished : bool
+ Whether the iteration over the operands is finished or not.
+ has_delayed_bufalloc : bool
+ If True, the iterator was created with the ``delay_bufalloc`` flag,
+ and no reset() function was called on it yet.
+ has_index : bool
+ If True, the iterator was created with either the ``c_index`` or
+ the ``f_index`` flag, and the property `index` can be used to
+ retrieve it.
+ has_multi_index : bool
+ If True, the iterator was created with the ``multi_index`` flag,
+ and the property `multi_index` can be used to retrieve it.
+ index
+ When the ``c_index`` or ``f_index`` flag was used, this property
+ provides access to the index. Raises a ValueError if accessed
+ and ``has_index`` is False.
+ iterationneedsapi : bool
+ Whether iteration requires access to the Python API, for example
+ if one of the operands is an object array.
+ iterindex : int
+ An index which matches the order of iteration.
+ itersize : int
+ Size of the iterator.
+ itviews
+ Structured view(s) of `operands` in memory, matching the reordered
+ and optimized iterator access pattern. Valid only before the iterator
+ is closed.
+ multi_index
+ When the ``multi_index`` flag was used, this property
+ provides access to the index. Raises a ValueError if accessed
+ accessed and ``has_multi_index`` is False.
+ ndim : int
+ The dimensions of the iterator.
+ nop : int
+ The number of iterator operands.
+ operands : tuple of operand(s)
+ The array(s) to be iterated over. Valid only before the iterator is
+ closed.
+ shape : tuple of ints
+ Shape tuple, the shape of the iterator.
+ value
+ Value of ``operands`` at current iteration. Normally, this is a
+ tuple of array scalars, but if the flag ``external_loop`` is used,
+ it is a tuple of one dimensional arrays.
+
+ Notes
+ -----
+ `nditer` supersedes `flatiter`. The iterator implementation behind
+ `nditer` is also exposed by the NumPy C API.
+
+ The Python exposure supplies two iteration interfaces, one which follows
+ the Python iterator protocol, and another which mirrors the C-style
+ do-while pattern. The native Python approach is better in most cases, but
+ if you need the coordinates or index of an iterator, use the C-style pattern.
+
+ Examples
+ --------
+ Here is how we might write an ``iter_add`` function, using the
+ Python iterator protocol:
+
+ >>> import numpy as np
+
+ >>> def iter_add_py(x, y, out=None):
+ ... addop = np.add
+ ... it = np.nditer([x, y, out], [],
+ ... [['readonly'], ['readonly'], ['writeonly','allocate']])
+ ... with it:
+ ... for (a, b, c) in it:
+ ... addop(a, b, out=c)
+ ... return it.operands[2]
+
+ Here is the same function, but following the C-style pattern:
+
+ >>> def iter_add(x, y, out=None):
+ ... addop = np.add
+ ... it = np.nditer([x, y, out], [],
+ ... [['readonly'], ['readonly'], ['writeonly','allocate']])
+ ... with it:
+ ... while not it.finished:
+ ... addop(it[0], it[1], out=it[2])
+ ... it.iternext()
+ ... return it.operands[2]
+
+ Here is an example outer product function:
+
+ >>> def outer_it(x, y, out=None):
+ ... mulop = np.multiply
+ ... it = np.nditer([x, y, out], ['external_loop'],
+ ... [['readonly'], ['readonly'], ['writeonly', 'allocate']],
+ ... op_axes=[list(range(x.ndim)) + [-1] * y.ndim,
+ ... [-1] * x.ndim + list(range(y.ndim)),
+ ... None])
+ ... with it:
+ ... for (a, b, c) in it:
+ ... mulop(a, b, out=c)
+ ... return it.operands[2]
+
+ >>> a = np.arange(2)+1
+ >>> b = np.arange(3)+1
+ >>> outer_it(a,b)
+ array([[1, 2, 3],
+ [2, 4, 6]])
+
+ Here is an example function which operates like a "lambda" ufunc:
+
+ >>> def luf(lamdaexpr, *args, **kwargs):
+ ... '''luf(lambdaexpr, op1, ..., opn, out=None, order='K', casting='safe', buffersize=0)'''
+ ... nargs = len(args)
+ ... op = (kwargs.get('out',None),) + args
+ ... it = np.nditer(op, ['buffered','external_loop'],
+ ... [['writeonly','allocate','no_broadcast']] +
+ ... [['readonly','nbo','aligned']]*nargs,
+ ... order=kwargs.get('order','K'),
+ ... casting=kwargs.get('casting','safe'),
+ ... buffersize=kwargs.get('buffersize',0))
+ ... while not it.finished:
+ ... it[0] = lamdaexpr(*it[1:])
+ ... it.iternext()
+ ... return it.operands[0]
+
+ >>> a = np.arange(5)
+ >>> b = np.ones(5)
+ >>> luf(lambda i,j:i*i + j/2, a, b)
+ array([ 0.5, 1.5, 4.5, 9.5, 16.5])
+
+ If operand flags ``"writeonly"`` or ``"readwrite"`` are used the
+ operands may be views into the original data with the
+ `WRITEBACKIFCOPY` flag. In this case `nditer` must be used as a
+ context manager or the `nditer.close` method must be called before
+ using the result. The temporary data will be written back to the
+ original data when the :meth:`~object.__exit__` function is called
+ but not before:
+
+ >>> a = np.arange(6, dtype='i4')[::-2]
+ >>> with np.nditer(a, [],
+ ... [['writeonly', 'updateifcopy']],
+ ... casting='unsafe',
+ ... op_dtypes=[np.dtype('f4')]) as i:
+ ... x = i.operands[0]
+ ... x[:] = [-1, -2, -3]
+ ... # a still unchanged here
+ >>> a, x
+ (array([-1, -2, -3], dtype=int32), array([-1., -2., -3.], dtype=float32))
+
+ It is important to note that once the iterator is exited, dangling
+ references (like `x` in the example) may or may not share data with
+ the original data `a`. If writeback semantics were active, i.e. if
+ `x.base.flags.writebackifcopy` is `True`, then exiting the iterator
+ will sever the connection between `x` and `a`, writing to `x` will
+ no longer write to `a`. If writeback semantics are not active, then
+ `x.data` will still point at some part of `a.data`, and writing to
+ one will affect the other.
+
+ Context management and the `close` method appeared in version 1.15.0.
+
+ """)
+
+# nditer methods
+
+add_newdoc('numpy._core', 'nditer', ('copy',
+ """
+ copy()
+
+ Get a copy of the iterator in its current state.
+
+ Examples
+ --------
+ >>> import numpy as np
+ >>> x = np.arange(10)
+ >>> y = x + 1
+ >>> it = np.nditer([x, y])
+ >>> next(it)
+ (array(0), array(1))
+ >>> it2 = it.copy()
+ >>> next(it2)
+ (array(1), array(2))
+
+ """))
+
+add_newdoc('numpy._core', 'nditer', ('operands',
+ """
+ operands[`Slice`]
+
+ The array(s) to be iterated over. Valid only before the iterator is closed.
+ """))
+
+add_newdoc('numpy._core', 'nditer', ('debug_print',
+ """
+ debug_print()
+
+ Print the current state of the `nditer` instance and debug info to stdout.
+
+ """))
+
+add_newdoc('numpy._core', 'nditer', ('enable_external_loop',
+ """
+ enable_external_loop()
+
+ When the "external_loop" was not used during construction, but
+ is desired, this modifies the iterator to behave as if the flag
+ was specified.
+
+ """))
+
+add_newdoc('numpy._core', 'nditer', ('iternext',
+ """
+ iternext()
+
+ Check whether iterations are left, and perform a single internal iteration
+ without returning the result. Used in the C-style pattern do-while
+ pattern. For an example, see `nditer`.
+
+ Returns
+ -------
+ iternext : bool
+ Whether or not there are iterations left.
+
+ """))
+
+add_newdoc('numpy._core', 'nditer', ('remove_axis',
+ """
+ remove_axis(i, /)
+
+ Removes axis `i` from the iterator. Requires that the flag "multi_index"
+ be enabled.
+
+ """))
+
+add_newdoc('numpy._core', 'nditer', ('remove_multi_index',
+ """
+ remove_multi_index()
+
+ When the "multi_index" flag was specified, this removes it, allowing
+ the internal iteration structure to be optimized further.
+
+ """))
+
+add_newdoc('numpy._core', 'nditer', ('reset',
+ """
+ reset()
+
+ Reset the iterator to its initial state.
+
+ """))
+
+add_newdoc('numpy._core', 'nested_iters',
+ """
+ nested_iters(op, axes, flags=None, op_flags=None, op_dtypes=None, \
+ order="K", casting="safe", buffersize=0)
+
+ Create nditers for use in nested loops
+
+ Create a tuple of `nditer` objects which iterate in nested loops over
+ different axes of the op argument. The first iterator is used in the
+ outermost loop, the last in the innermost loop. Advancing one will change
+ the subsequent iterators to point at its new element.
+
+ Parameters
+ ----------
+ op : ndarray or sequence of array_like
+ The array(s) to iterate over.
+
+ axes : list of list of int
+ Each item is used as an "op_axes" argument to an nditer
+
+ flags, op_flags, op_dtypes, order, casting, buffersize (optional)
+ See `nditer` parameters of the same name
+
+ Returns
+ -------
+ iters : tuple of nditer
+ An nditer for each item in `axes`, outermost first
+
+ See Also
+ --------
+ nditer
+
+ Examples
+ --------
+
+ Basic usage. Note how y is the "flattened" version of
+ [a[:, 0, :], a[:, 1, 0], a[:, 2, :]] since we specified
+ the first iter's axes as [1]
+
+ >>> import numpy as np
+ >>> a = np.arange(12).reshape(2, 3, 2)
+ >>> i, j = np.nested_iters(a, [[1], [0, 2]], flags=["multi_index"])
+ >>> for x in i:
+ ... print(i.multi_index)
+ ... for y in j:
+ ... print('', j.multi_index, y)
+ (0,)
+ (0, 0) 0
+ (0, 1) 1
+ (1, 0) 6
+ (1, 1) 7
+ (1,)
+ (0, 0) 2
+ (0, 1) 3
+ (1, 0) 8
+ (1, 1) 9
+ (2,)
+ (0, 0) 4
+ (0, 1) 5
+ (1, 0) 10
+ (1, 1) 11
+
+ """)
+
+add_newdoc('numpy._core', 'nditer', ('close',
+ """
+ close()
+
+ Resolve all writeback semantics in writeable operands.
+
+ See Also
+ --------
+
+ :ref:`nditer-context-manager`
+
+ """))
+
+
+###############################################################################
+#
+# broadcast
+#
+###############################################################################
+
+add_newdoc('numpy._core', 'broadcast',
+ """
+ Produce an object that mimics broadcasting.
+
+ Parameters
+ ----------
+ in1, in2, ... : array_like
+ Input parameters.
+
+ Returns
+ -------
+ b : broadcast object
+ Broadcast the input parameters against one another, and
+ return an object that encapsulates the result.
+ Amongst others, it has ``shape`` and ``nd`` properties, and
+ may be used as an iterator.
+
+ See Also
+ --------
+ broadcast_arrays
+ broadcast_to
+ broadcast_shapes
+
+ Examples
+ --------
+
+ Manually adding two vectors, using broadcasting:
+
+ >>> import numpy as np
+ >>> x = np.array([[1], [2], [3]])
+ >>> y = np.array([4, 5, 6])
+ >>> b = np.broadcast(x, y)
+
+ >>> out = np.empty(b.shape)
+ >>> out.flat = [u+v for (u,v) in b]
+ >>> out
+ array([[5., 6., 7.],
+ [6., 7., 8.],
+ [7., 8., 9.]])
+
+ Compare against built-in broadcasting:
+
+ >>> x + y
+ array([[5, 6, 7],
+ [6, 7, 8],
+ [7, 8, 9]])
+
+ """)
+
+# attributes
+
+add_newdoc('numpy._core', 'broadcast', ('index',
+ """
+ current index in broadcasted result
+
+ Examples
+ --------
+
+ >>> import numpy as np
+ >>> x = np.array([[1], [2], [3]])
+ >>> y = np.array([4, 5, 6])
+ >>> b = np.broadcast(x, y)
+ >>> b.index
+ 0
+ >>> next(b), next(b), next(b)
+ ((1, 4), (1, 5), (1, 6))
+ >>> b.index
+ 3
+
+ """))
+
+add_newdoc('numpy._core', 'broadcast', ('iters',
+ """
+ tuple of iterators along ``self``'s "components."
+
+ Returns a tuple of `numpy.flatiter` objects, one for each "component"
+ of ``self``.
+
+ See Also
+ --------
+ numpy.flatiter
+
+ Examples
+ --------
+
+ >>> import numpy as np
+ >>> x = np.array([1, 2, 3])
+ >>> y = np.array([[4], [5], [6]])
+ >>> b = np.broadcast(x, y)
+ >>> row, col = b.iters
+ >>> next(row), next(col)
+ (1, 4)
+
+ """))
+
+add_newdoc('numpy._core', 'broadcast', ('ndim',
+ """
+ Number of dimensions of broadcasted result. Alias for `nd`.
+
+ Examples
+ --------
+ >>> import numpy as np
+ >>> x = np.array([1, 2, 3])
+ >>> y = np.array([[4], [5], [6]])
+ >>> b = np.broadcast(x, y)
+ >>> b.ndim
+ 2
+
+ """))
+
+add_newdoc('numpy._core', 'broadcast', ('nd',
+ """
+ Number of dimensions of broadcasted result. For code intended for NumPy
+ 1.12.0 and later the more consistent `ndim` is preferred.
+
+ Examples
+ --------
+ >>> import numpy as np
+ >>> x = np.array([1, 2, 3])
+ >>> y = np.array([[4], [5], [6]])
+ >>> b = np.broadcast(x, y)
+ >>> b.nd
+ 2
+
+ """))
+
+add_newdoc('numpy._core', 'broadcast', ('numiter',
+ """
+ Number of iterators possessed by the broadcasted result.
+
+ Examples
+ --------
+ >>> import numpy as np
+ >>> x = np.array([1, 2, 3])
+ >>> y = np.array([[4], [5], [6]])
+ >>> b = np.broadcast(x, y)
+ >>> b.numiter
+ 2
+
+ """))
+
+add_newdoc('numpy._core', 'broadcast', ('shape',
+ """
+ Shape of broadcasted result.
+
+ Examples
+ --------
+ >>> import numpy as np
+ >>> x = np.array([1, 2, 3])
+ >>> y = np.array([[4], [5], [6]])
+ >>> b = np.broadcast(x, y)
+ >>> b.shape
+ (3, 3)
+
+ """))
+
+add_newdoc('numpy._core', 'broadcast', ('size',
+ """
+ Total size of broadcasted result.
+
+ Examples
+ --------
+ >>> import numpy as np
+ >>> x = np.array([1, 2, 3])
+ >>> y = np.array([[4], [5], [6]])
+ >>> b = np.broadcast(x, y)
+ >>> b.size
+ 9
+
+ """))
+
+add_newdoc('numpy._core', 'broadcast', ('reset',
+ """
+ reset()
+
+ Reset the broadcasted result's iterator(s).
+
+ Parameters
+ ----------
+ None
+
+ Returns
+ -------
+ None
+
+ Examples
+ --------
+ >>> import numpy as np
+ >>> x = np.array([1, 2, 3])
+ >>> y = np.array([[4], [5], [6]])
+ >>> b = np.broadcast(x, y)
+ >>> b.index
+ 0
+ >>> next(b), next(b), next(b)
+ ((1, 4), (2, 4), (3, 4))
+ >>> b.index
+ 3
+ >>> b.reset()
+ >>> b.index
+ 0
+
+ """))
+
+###############################################################################
+#
+# numpy functions
+#
+###############################################################################
+
+add_newdoc('numpy._core.multiarray', 'array',
+ """
+ array(object, dtype=None, *, copy=True, order='K', subok=False, ndmin=0,
+ like=None)
+
+ Create an array.
+
+ Parameters
+ ----------
+ object : array_like
+ An array, any object exposing the array interface, an object whose
+ ``__array__`` method returns an array, or any (nested) sequence.
+ If object is a scalar, a 0-dimensional array containing object is
+ returned.
+ dtype : data-type, optional
+ The desired data-type for the array. If not given, NumPy will try to use
+ a default ``dtype`` that can represent the values (by applying promotion
+ rules when necessary.)
+ copy : bool, optional
+ If ``True`` (default), then the array data is copied. If ``None``,
+ a copy will only be made if ``__array__`` returns a copy, if obj is
+ a nested sequence, or if a copy is needed to satisfy any of the other
+ requirements (``dtype``, ``order``, etc.). Note that any copy of
+ the data is shallow, i.e., for arrays with object dtype, the new
+ array will point to the same objects. See Examples for `ndarray.copy`.
+ For ``False`` it raises a ``ValueError`` if a copy cannot be avoided.
+ Default: ``True``.
+ order : {'K', 'A', 'C', 'F'}, optional
+ Specify the memory layout of the array. If object is not an array, the
+ newly created array will be in C order (row major) unless 'F' is
+ specified, in which case it will be in Fortran order (column major).
+ If object is an array the following holds.
+
+ ===== ========= ===================================================
+ order no copy copy=True
+ ===== ========= ===================================================
+ 'K' unchanged F & C order preserved, otherwise most similar order
+ 'A' unchanged F order if input is F and not C, otherwise C order
+ 'C' C order C order
+ 'F' F order F order
+ ===== ========= ===================================================
+
+ When ``copy=None`` and a copy is made for other reasons, the result is
+ the same as if ``copy=True``, with some exceptions for 'A', see the
+ Notes section. The default order is 'K'.
+ subok : bool, optional
+ If True, then sub-classes will be passed-through, otherwise
+ the returned array will be forced to be a base-class array (default).
+ ndmin : int, optional
+ Specifies the minimum number of dimensions that the resulting
+ array should have. Ones will be prepended to the shape as
+ needed to meet this requirement.
+ ${ARRAY_FUNCTION_LIKE}
+
+ .. versionadded:: 1.20.0
+
+ Returns
+ -------
+ out : ndarray
+ An array object satisfying the specified requirements.
+
+ See Also
+ --------
+ empty_like : Return an empty array with shape and type of input.
+ ones_like : Return an array of ones with shape and type of input.
+ zeros_like : Return an array of zeros with shape and type of input.
+ full_like : Return a new array with shape of input filled with value.
+ empty : Return a new uninitialized array.
+ ones : Return a new array setting values to one.
+ zeros : Return a new array setting values to zero.
+ full : Return a new array of given shape filled with value.
+ copy: Return an array copy of the given object.
+
+
+ Notes
+ -----
+ When order is 'A' and ``object`` is an array in neither 'C' nor 'F' order,
+ and a copy is forced by a change in dtype, then the order of the result is
+ not necessarily 'C' as expected. This is likely a bug.
+
+ Examples
+ --------
+ >>> import numpy as np
+ >>> np.array([1, 2, 3])
+ array([1, 2, 3])
+
+ Upcasting:
+
+ >>> np.array([1, 2, 3.0])
+ array([ 1., 2., 3.])
+
+ More than one dimension:
+
+ >>> np.array([[1, 2], [3, 4]])
+ array([[1, 2],
+ [3, 4]])
+
+ Minimum dimensions 2:
+
+ >>> np.array([1, 2, 3], ndmin=2)
+ array([[1, 2, 3]])
+
+ Type provided:
+
+ >>> np.array([1, 2, 3], dtype=complex)
+ array([ 1.+0.j, 2.+0.j, 3.+0.j])
+
+ Data-type consisting of more than one element:
+
+ >>> x = np.array([(1,2),(3,4)],dtype=[('a','<i4'),('b','<i4')])
+ >>> x['a']
+ array([1, 3], dtype=int32)
+
+ Creating an array from sub-classes:
+
+ >>> np.array(np.asmatrix('1 2; 3 4'))
+ array([[1, 2],
+ [3, 4]])
+
+ >>> np.array(np.asmatrix('1 2; 3 4'), subok=True)
+ matrix([[1, 2],
+ [3, 4]])
+
+ """)
+
+add_newdoc('numpy._core.multiarray', 'asarray',
+ """
+ asarray(a, dtype=None, order=None, *, device=None, copy=None, like=None)
+
+ Convert the input to an array.
+
+ Parameters
+ ----------
+ a : array_like
+ Input data, in any form that can be converted to an array. This
+ includes lists, lists of tuples, tuples, tuples of tuples, tuples
+ of lists and ndarrays.
+ dtype : data-type, optional
+ By default, the data-type is inferred from the input data.
+ order : {'C', 'F', 'A', 'K'}, optional
+ Memory layout. 'A' and 'K' depend on the order of input array a.
+ 'C' row-major (C-style),
+ 'F' column-major (Fortran-style) memory representation.
+ 'A' (any) means 'F' if `a` is Fortran contiguous, 'C' otherwise
+ 'K' (keep) preserve input order
+ Defaults to 'K'.
+ device : str, optional
+ The device on which to place the created array. Default: ``None``.
+ For Array-API interoperability only, so must be ``"cpu"`` if passed.
+
+ .. versionadded:: 2.0.0
+ copy : bool, optional
+ If ``True``, then the object is copied. If ``None`` then the object is
+ copied only if needed, i.e. if ``__array__`` returns a copy, if obj
+ is a nested sequence, or if a copy is needed to satisfy any of
+ the other requirements (``dtype``, ``order``, etc.).
+ For ``False`` it raises a ``ValueError`` if a copy cannot be avoided.
+ Default: ``None``.
+
+ .. versionadded:: 2.0.0
+ ${ARRAY_FUNCTION_LIKE}
+
+ .. versionadded:: 1.20.0
+
+ Returns
+ -------
+ out : ndarray
+ Array interpretation of ``a``. No copy is performed if the input
+ is already an ndarray with matching dtype and order. If ``a`` is a
+ subclass of ndarray, a base class ndarray is returned.
+
+ See Also
+ --------
+ asanyarray : Similar function which passes through subclasses.
+ ascontiguousarray : Convert input to a contiguous array.
+ asfortranarray : Convert input to an ndarray with column-major
+ memory order.
+ asarray_chkfinite : Similar function which checks input for NaNs and Infs.
+ fromiter : Create an array from an iterator.
+ fromfunction : Construct an array by executing a function on grid
+ positions.
+
+ Examples
+ --------
+ Convert a list into an array:
+
+ >>> a = [1, 2]
+ >>> import numpy as np
+ >>> np.asarray(a)
+ array([1, 2])
+
+ Existing arrays are not copied:
+
+ >>> a = np.array([1, 2])
+ >>> np.asarray(a) is a
+ True
+
+ If `dtype` is set, array is copied only if dtype does not match:
+
+ >>> a = np.array([1, 2], dtype=np.float32)
+ >>> np.shares_memory(np.asarray(a, dtype=np.float32), a)
+ True
+ >>> np.shares_memory(np.asarray(a, dtype=np.float64), a)
+ False
+
+ Contrary to `asanyarray`, ndarray subclasses are not passed through:
+
+ >>> issubclass(np.recarray, np.ndarray)
+ True
+ >>> a = np.array([(1., 2), (3., 4)], dtype='f4,i4').view(np.recarray)
+ >>> np.asarray(a) is a
+ False
+ >>> np.asanyarray(a) is a
+ True
+
+ """)
+
+add_newdoc('numpy._core.multiarray', 'asanyarray',
+ """
+ asanyarray(a, dtype=None, order=None, *, device=None, copy=None, like=None)
+
+ Convert the input to an ndarray, but pass ndarray subclasses through.
+
+ Parameters
+ ----------
+ a : array_like
+ Input data, in any form that can be converted to an array. This
+ includes scalars, lists, lists of tuples, tuples, tuples of tuples,
+ tuples of lists, and ndarrays.
+ dtype : data-type, optional
+ By default, the data-type is inferred from the input data.
+ order : {'C', 'F', 'A', 'K'}, optional
+ Memory layout. 'A' and 'K' depend on the order of input array a.
+ 'C' row-major (C-style),
+ 'F' column-major (Fortran-style) memory representation.
+ 'A' (any) means 'F' if `a` is Fortran contiguous, 'C' otherwise
+ 'K' (keep) preserve input order
+ Defaults to 'C'.
+ device : str, optional
+ The device on which to place the created array. Default: ``None``.
+ For Array-API interoperability only, so must be ``"cpu"`` if passed.
+
+ .. versionadded:: 2.1.0
+
+ copy : bool, optional
+ If ``True``, then the object is copied. If ``None`` then the object is
+ copied only if needed, i.e. if ``__array__`` returns a copy, if obj
+ is a nested sequence, or if a copy is needed to satisfy any of
+ the other requirements (``dtype``, ``order``, etc.).
+ For ``False`` it raises a ``ValueError`` if a copy cannot be avoided.
+ Default: ``None``.
+
+ .. versionadded:: 2.1.0
+
+ ${ARRAY_FUNCTION_LIKE}
+
+ .. versionadded:: 1.20.0
+
+ Returns
+ -------
+ out : ndarray or an ndarray subclass
+ Array interpretation of `a`. If `a` is an ndarray or a subclass
+ of ndarray, it is returned as-is and no copy is performed.
+
+ See Also
+ --------
+ asarray : Similar function which always returns ndarrays.
+ ascontiguousarray : Convert input to a contiguous array.
+ asfortranarray : Convert input to an ndarray with column-major
+ memory order.
+ asarray_chkfinite : Similar function which checks input for NaNs and
+ Infs.
+ fromiter : Create an array from an iterator.
+ fromfunction : Construct an array by executing a function on grid
+ positions.
+
+ Examples
+ --------
+ Convert a list into an array:
+
+ >>> a = [1, 2]
+ >>> import numpy as np
+ >>> np.asanyarray(a)
+ array([1, 2])
+
+ Instances of `ndarray` subclasses are passed through as-is:
+
+ >>> a = np.array([(1., 2), (3., 4)], dtype='f4,i4').view(np.recarray)
+ >>> np.asanyarray(a) is a
+ True
+
+ """)
+
+add_newdoc('numpy._core.multiarray', 'ascontiguousarray',
+ """
+ ascontiguousarray(a, dtype=None, *, like=None)
+
+ Return a contiguous array (ndim >= 1) in memory (C order).
+
+ Parameters
+ ----------
+ a : array_like
+ Input array.
+ dtype : str or dtype object, optional
+ Data-type of returned array.
+ ${ARRAY_FUNCTION_LIKE}
+
+ .. versionadded:: 1.20.0
+
+ Returns
+ -------
+ out : ndarray
+ Contiguous array of same shape and content as `a`, with type `dtype`
+ if specified.
+
+ See Also
+ --------
+ asfortranarray : Convert input to an ndarray with column-major
+ memory order.
+ require : Return an ndarray that satisfies requirements.
+ ndarray.flags : Information about the memory layout of the array.
+
+ Examples
+ --------
+ Starting with a Fortran-contiguous array:
+
+ >>> import numpy as np
+ >>> x = np.ones((2, 3), order='F')
+ >>> x.flags['F_CONTIGUOUS']
+ True
+
+ Calling ``ascontiguousarray`` makes a C-contiguous copy:
+
+ >>> y = np.ascontiguousarray(x)
+ >>> y.flags['C_CONTIGUOUS']
+ True
+ >>> np.may_share_memory(x, y)
+ False
+
+ Now, starting with a C-contiguous array:
+
+ >>> x = np.ones((2, 3), order='C')
+ >>> x.flags['C_CONTIGUOUS']
+ True
+
+ Then, calling ``ascontiguousarray`` returns the same object:
+
+ >>> y = np.ascontiguousarray(x)
+ >>> x is y
+ True
+
+ Note: This function returns an array with at least one-dimension (1-d)
+ so it will not preserve 0-d arrays.
+
+ """)
+
+add_newdoc('numpy._core.multiarray', 'asfortranarray',
+ """
+ asfortranarray(a, dtype=None, *, like=None)
+
+ Return an array (ndim >= 1) laid out in Fortran order in memory.
+
+ Parameters
+ ----------
+ a : array_like
+ Input array.
+ dtype : str or dtype object, optional
+ By default, the data-type is inferred from the input data.
+ ${ARRAY_FUNCTION_LIKE}
+
+ .. versionadded:: 1.20.0
+
+ Returns
+ -------
+ out : ndarray
+ The input `a` in Fortran, or column-major, order.
+
+ See Also
+ --------
+ ascontiguousarray : Convert input to a contiguous (C order) array.
+ asanyarray : Convert input to an ndarray with either row or
+ column-major memory order.
+ require : Return an ndarray that satisfies requirements.
+ ndarray.flags : Information about the memory layout of the array.
+
+ Examples
+ --------
+ Starting with a C-contiguous array:
+
+ >>> import numpy as np
+ >>> x = np.ones((2, 3), order='C')
+ >>> x.flags['C_CONTIGUOUS']
+ True
+
+ Calling ``asfortranarray`` makes a Fortran-contiguous copy:
+
+ >>> y = np.asfortranarray(x)
+ >>> y.flags['F_CONTIGUOUS']
+ True
+ >>> np.may_share_memory(x, y)
+ False
+
+ Now, starting with a Fortran-contiguous array:
+
+ >>> x = np.ones((2, 3), order='F')
+ >>> x.flags['F_CONTIGUOUS']
+ True
+
+ Then, calling ``asfortranarray`` returns the same object:
+
+ >>> y = np.asfortranarray(x)
+ >>> x is y
+ True
+
+ Note: This function returns an array with at least one-dimension (1-d)
+ so it will not preserve 0-d arrays.
+
+ """)
+
+add_newdoc('numpy._core.multiarray', 'empty',
+ """
+ empty(shape, dtype=float, order='C', *, device=None, like=None)
+
+ Return a new array of given shape and type, without initializing entries.
+
+ Parameters
+ ----------
+ shape : int or tuple of int
+ Shape of the empty array, e.g., ``(2, 3)`` or ``2``.
+ dtype : data-type, optional
+ Desired output data-type for the array, e.g, `numpy.int8`. Default is
+ `numpy.float64`.
+ order : {'C', 'F'}, optional, default: 'C'
+ Whether to store multi-dimensional data in row-major
+ (C-style) or column-major (Fortran-style) order in
+ memory.
+ device : str, optional
+ The device on which to place the created array. Default: ``None``.
+ For Array-API interoperability only, so must be ``"cpu"`` if passed.
+
+ .. versionadded:: 2.0.0
+ ${ARRAY_FUNCTION_LIKE}
+
+ .. versionadded:: 1.20.0
+
+ Returns
+ -------
+ out : ndarray
+ Array of uninitialized (arbitrary) data of the given shape, dtype, and
+ order. Object arrays will be initialized to None.
+
+ See Also
+ --------
+ empty_like : Return an empty array with shape and type of input.
+ ones : Return a new array setting values to one.
+ zeros : Return a new array setting values to zero.
+ full : Return a new array of given shape filled with value.
+
+ Notes
+ -----
+ Unlike other array creation functions (e.g. `zeros`, `ones`, `full`),
+ `empty` does not initialize the values of the array, and may therefore be
+ marginally faster. However, the values stored in the newly allocated array
+ are arbitrary. For reproducible behavior, be sure to set each element of
+ the array before reading.
+
+ Examples
+ --------
+ >>> import numpy as np
+ >>> np.empty([2, 2])
+ array([[ -9.74499359e+001, 6.69583040e-309],
+ [ 2.13182611e-314, 3.06959433e-309]]) #uninitialized
+
+ >>> np.empty([2, 2], dtype=int)
+ array([[-1073741821, -1067949133],
+ [ 496041986, 19249760]]) #uninitialized
+
+ """)
+
+add_newdoc('numpy._core.multiarray', 'scalar',
+ """
+ scalar(dtype, obj)
+
+ Return a new scalar array of the given type initialized with obj.
+
+ This function is meant mainly for pickle support. `dtype` must be a
+ valid data-type descriptor. If `dtype` corresponds to an object
+ descriptor, then `obj` can be any object, otherwise `obj` must be a
+ string. If `obj` is not given, it will be interpreted as None for object
+ type and as zeros for all other types.
+
+ """)
+
+add_newdoc('numpy._core.multiarray', 'zeros',
+ """
+ zeros(shape, dtype=float, order='C', *, like=None)
+
+ Return a new array of given shape and type, filled with zeros.
+
+ Parameters
+ ----------
+ shape : int or tuple of ints
+ Shape of the new array, e.g., ``(2, 3)`` or ``2``.
+ dtype : data-type, optional
+ The desired data-type for the array, e.g., `numpy.int8`. Default is
+ `numpy.float64`.
+ order : {'C', 'F'}, optional, default: 'C'
+ Whether to store multi-dimensional data in row-major
+ (C-style) or column-major (Fortran-style) order in
+ memory.
+ ${ARRAY_FUNCTION_LIKE}
+
+ .. versionadded:: 1.20.0
+
+ Returns
+ -------
+ out : ndarray
+ Array of zeros with the given shape, dtype, and order.
+
+ See Also
+ --------
+ zeros_like : Return an array of zeros with shape and type of input.
+ empty : Return a new uninitialized array.
+ ones : Return a new array setting values to one.
+ full : Return a new array of given shape filled with value.
+
+ Examples
+ --------
+ >>> import numpy as np
+ >>> np.zeros(5)
+ array([ 0., 0., 0., 0., 0.])
+
+ >>> np.zeros((5,), dtype=int)
+ array([0, 0, 0, 0, 0])
+
+ >>> np.zeros((2, 1))
+ array([[ 0.],
+ [ 0.]])
+
+ >>> s = (2,2)
+ >>> np.zeros(s)
+ array([[ 0., 0.],
+ [ 0., 0.]])
+
+ >>> np.zeros((2,), dtype=[('x', 'i4'), ('y', 'i4')]) # custom dtype
+ array([(0, 0), (0, 0)],
+ dtype=[('x', '<i4'), ('y', '<i4')])
+
+ """)
+
+add_newdoc('numpy._core.multiarray', 'set_typeDict',
+ """set_typeDict(dict)
+
+ Set the internal dictionary that can look up an array type using a
+ registered code.
+
+ """)
+
+add_newdoc('numpy._core.multiarray', 'fromstring',
+ """
+ fromstring(string, dtype=float, count=-1, *, sep, like=None)
+
+ A new 1-D array initialized from text data in a string.
+
+ Parameters
+ ----------
+ string : str
+ A string containing the data.
+ dtype : data-type, optional
+ The data type of the array; default: float. For binary input data,
+ the data must be in exactly this format. Most builtin numeric types are
+ supported and extension types may be supported.
+ count : int, optional
+ Read this number of `dtype` elements from the data. If this is
+ negative (the default), the count will be determined from the
+ length of the data.
+ sep : str, optional
+ The string separating numbers in the data; extra whitespace between
+ elements is also ignored.
+
+ .. deprecated:: 1.14
+ Passing ``sep=''``, the default, is deprecated since it will
+ trigger the deprecated binary mode of this function. This mode
+ interprets `string` as binary bytes, rather than ASCII text with
+ decimal numbers, an operation which is better spelt
+ ``frombuffer(string, dtype, count)``. If `string` contains unicode
+ text, the binary mode of `fromstring` will first encode it into
+ bytes using utf-8, which will not produce sane results.
+
+ ${ARRAY_FUNCTION_LIKE}
+
+ .. versionadded:: 1.20.0
+
+ Returns
+ -------
+ arr : ndarray
+ The constructed array.
+
+ Raises
+ ------
+ ValueError
+ If the string is not the correct size to satisfy the requested
+ `dtype` and `count`.
+
+ See Also
+ --------
+ frombuffer, fromfile, fromiter
+
+ Examples
+ --------
+ >>> import numpy as np
+ >>> np.fromstring('1 2', dtype=int, sep=' ')
+ array([1, 2])
+ >>> np.fromstring('1, 2', dtype=int, sep=',')
+ array([1, 2])
+
+ """)
+
+add_newdoc('numpy._core.multiarray', 'compare_chararrays',
+ """
+ compare_chararrays(a1, a2, cmp, rstrip)
+
+ Performs element-wise comparison of two string arrays using the
+ comparison operator specified by `cmp`.
+
+ Parameters
+ ----------
+ a1, a2 : array_like
+ Arrays to be compared.
+ cmp : {"<", "<=", "==", ">=", ">", "!="}
+ Type of comparison.
+ rstrip : Boolean
+ If True, the spaces at the end of Strings are removed before the comparison.
+
+ Returns
+ -------
+ out : ndarray
+ The output array of type Boolean with the same shape as a and b.
+
+ Raises
+ ------
+ ValueError
+ If `cmp` is not valid.
+ TypeError
+ If at least one of `a` or `b` is a non-string array
+
+ Examples
+ --------
+ >>> import numpy as np
+ >>> a = np.array(["a", "b", "cde"])
+ >>> b = np.array(["a", "a", "dec"])
+ >>> np.char.compare_chararrays(a, b, ">", True)
+ array([False, True, False])
+
+ """)
+
+add_newdoc('numpy._core.multiarray', 'fromiter',
+ """
+ fromiter(iter, dtype, count=-1, *, like=None)
+
+ Create a new 1-dimensional array from an iterable object.
+
+ Parameters
+ ----------
+ iter : iterable object
+ An iterable object providing data for the array.
+ dtype : data-type
+ The data-type of the returned array.
+
+ .. versionchanged:: 1.23
+ Object and subarray dtypes are now supported (note that the final
+ result is not 1-D for a subarray dtype).
+
+ count : int, optional
+ The number of items to read from *iterable*. The default is -1,
+ which means all data is read.
+ ${ARRAY_FUNCTION_LIKE}
+
+ .. versionadded:: 1.20.0
+
+ Returns
+ -------
+ out : ndarray
+ The output array.
+
+ Notes
+ -----
+ Specify `count` to improve performance. It allows ``fromiter`` to
+ pre-allocate the output array, instead of resizing it on demand.
+
+ Examples
+ --------
+ >>> import numpy as np
+ >>> iterable = (x*x for x in range(5))
+ >>> np.fromiter(iterable, float)
+ array([ 0., 1., 4., 9., 16.])
+
+ A carefully constructed subarray dtype will lead to higher dimensional
+ results:
+
+ >>> iterable = ((x+1, x+2) for x in range(5))
+ >>> np.fromiter(iterable, dtype=np.dtype((int, 2)))
+ array([[1, 2],
+ [2, 3],
+ [3, 4],
+ [4, 5],
+ [5, 6]])
+
+
+ """)
+
+add_newdoc('numpy._core.multiarray', 'fromfile',
+ """
+ fromfile(file, dtype=float, count=-1, sep='', offset=0, *, like=None)
+
+ Construct an array from data in a text or binary file.
+
+ A highly efficient way of reading binary data with a known data-type,
+ as well as parsing simply formatted text files. Data written using the
+ `tofile` method can be read using this function.
+
+ Parameters
+ ----------
+ file : file or str or Path
+ Open file object or filename.
+ dtype : data-type
+ Data type of the returned array.
+ For binary files, it is used to determine the size and byte-order
+ of the items in the file.
+ Most builtin numeric types are supported and extension types may be supported.
+ count : int
+ Number of items to read. ``-1`` means all items (i.e., the complete
+ file).
+ sep : str
+ Separator between items if file is a text file.
+ Empty ("") separator means the file should be treated as binary.
+ Spaces (" ") in the separator match zero or more whitespace characters.
+ A separator consisting only of spaces must match at least one
+ whitespace.
+ offset : int
+ The offset (in bytes) from the file's current position. Defaults to 0.
+ Only permitted for binary files.
+ ${ARRAY_FUNCTION_LIKE}
+
+ .. versionadded:: 1.20.0
+
+ See also
+ --------
+ load, save
+ ndarray.tofile
+ loadtxt : More flexible way of loading data from a text file.
+
+ Notes
+ -----
+ Do not rely on the combination of `tofile` and `fromfile` for
+ data storage, as the binary files generated are not platform
+ independent. In particular, no byte-order or data-type information is
+ saved. Data can be stored in the platform independent ``.npy`` format
+ using `save` and `load` instead.
+
+ Examples
+ --------
+ Construct an ndarray:
+
+ >>> import numpy as np
+ >>> dt = np.dtype([('time', [('min', np.int64), ('sec', np.int64)]),
+ ... ('temp', float)])
+ >>> x = np.zeros((1,), dtype=dt)
+ >>> x['time']['min'] = 10; x['temp'] = 98.25
+ >>> x
+ array([((10, 0), 98.25)],
+ dtype=[('time', [('min', '<i8'), ('sec', '<i8')]), ('temp', '<f8')])
+
+ Save the raw data to disk:
+
+ >>> import tempfile
+ >>> fname = tempfile.mkstemp()[1]
+ >>> x.tofile(fname)
+
+ Read the raw data from disk:
+
+ >>> np.fromfile(fname, dtype=dt)
+ array([((10, 0), 98.25)],
+ dtype=[('time', [('min', '<i8'), ('sec', '<i8')]), ('temp', '<f8')])
+
+ The recommended way to store and load data:
+
+ >>> np.save(fname, x)
+ >>> np.load(fname + '.npy')
+ array([((10, 0), 98.25)],
+ dtype=[('time', [('min', '<i8'), ('sec', '<i8')]), ('temp', '<f8')])
+
+ """)
+
+add_newdoc('numpy._core.multiarray', 'frombuffer',
+ """
+ frombuffer(buffer, dtype=float, count=-1, offset=0, *, like=None)
+
+ Interpret a buffer as a 1-dimensional array.
+
+ Parameters
+ ----------
+ buffer : buffer_like
+ An object that exposes the buffer interface.
+ dtype : data-type, optional
+ Data-type of the returned array; default: float.
+ count : int, optional
+ Number of items to read. ``-1`` means all data in the buffer.
+ offset : int, optional
+ Start reading the buffer from this offset (in bytes); default: 0.
+ ${ARRAY_FUNCTION_LIKE}
+
+ .. versionadded:: 1.20.0
+
+ Returns
+ -------
+ out : ndarray
+
+ See also
+ --------
+ ndarray.tobytes
+ Inverse of this operation, construct Python bytes from the raw data
+ bytes in the array.
+
+ Notes
+ -----
+ If the buffer has data that is not in machine byte-order, this should
+ be specified as part of the data-type, e.g.::
+
+ >>> dt = np.dtype(int)
+ >>> dt = dt.newbyteorder('>')
+ >>> np.frombuffer(buf, dtype=dt) # doctest: +SKIP
+
+ The data of the resulting array will not be byteswapped, but will be
+ interpreted correctly.
+
+ This function creates a view into the original object. This should be safe
+ in general, but it may make sense to copy the result when the original
+ object is mutable or untrusted.
+
+ Examples
+ --------
+ >>> import numpy as np
+ >>> s = b'hello world'
+ >>> np.frombuffer(s, dtype='S1', count=5, offset=6)
+ array([b'w', b'o', b'r', b'l', b'd'], dtype='|S1')
+
+ >>> np.frombuffer(b'\\x01\\x02', dtype=np.uint8)
+ array([1, 2], dtype=uint8)
+ >>> np.frombuffer(b'\\x01\\x02\\x03\\x04\\x05', dtype=np.uint8, count=3)
+ array([1, 2, 3], dtype=uint8)
+
+ """)
+
+add_newdoc('numpy._core.multiarray', 'from_dlpack',
+ """
+ from_dlpack(x, /, *, device=None, copy=None)
+
+ Create a NumPy array from an object implementing the ``__dlpack__``
+ protocol. Generally, the returned NumPy array is a view of the input
+ object. See [1]_ and [2]_ for more details.
+
+ Parameters
+ ----------
+ x : object
+ A Python object that implements the ``__dlpack__`` and
+ ``__dlpack_device__`` methods.
+ device : device, optional
+ Device on which to place the created array. Default: ``None``.
+ Must be ``"cpu"`` if passed which may allow importing an array
+ that is not already CPU available.
+ copy : bool, optional
+ Boolean indicating whether or not to copy the input. If ``True``,
+ the copy will be made. If ``False``, the function will never copy,
+ and will raise ``BufferError`` in case a copy is deemed necessary.
+ Passing it requests a copy from the exporter who may or may not
+ implement the capability.
+ If ``None``, the function will reuse the existing memory buffer if
+ possible and copy otherwise. Default: ``None``.
+
+
+ Returns
+ -------
+ out : ndarray
+
+ References
+ ----------
+ .. [1] Array API documentation,
+ https://data-apis.org/array-api/latest/design_topics/data_interchange.html#syntax-for-data-interchange-with-dlpack
+
+ .. [2] Python specification for DLPack,
+ https://dmlc.github.io/dlpack/latest/python_spec.html
+
+ Examples
+ --------
+ >>> import torch # doctest: +SKIP
+ >>> x = torch.arange(10) # doctest: +SKIP
+ >>> # create a view of the torch tensor "x" in NumPy
+ >>> y = np.from_dlpack(x) # doctest: +SKIP
+ """)
+
+add_newdoc('numpy._core.multiarray', 'correlate',
+ """cross_correlate(a,v, mode=0)""")
+
+add_newdoc('numpy._core.multiarray', 'arange',
+ """
+ arange([start,] stop[, step,], dtype=None, *, device=None, like=None)
+
+ Return evenly spaced values within a given interval.
+
+ ``arange`` can be called with a varying number of positional arguments:
+
+ * ``arange(stop)``: Values are generated within the half-open interval
+ ``[0, stop)`` (in other words, the interval including `start` but
+ excluding `stop`).
+ * ``arange(start, stop)``: Values are generated within the half-open
+ interval ``[start, stop)``.
+ * ``arange(start, stop, step)`` Values are generated within the half-open
+ interval ``[start, stop)``, with spacing between values given by
+ ``step``.
+
+ For integer arguments the function is roughly equivalent to the Python
+ built-in :py:class:`range`, but returns an ndarray rather than a ``range``
+ instance.
+
+ When using a non-integer step, such as 0.1, it is often better to use
+ `numpy.linspace`.
+
+ See the Warning sections below for more information.
+
+ Parameters
+ ----------
+ start : integer or real, optional
+ Start of interval. The interval includes this value. The default
+ start value is 0.
+ stop : integer or real
+ End of interval. The interval does not include this value, except
+ in some cases where `step` is not an integer and floating point
+ round-off affects the length of `out`.
+ step : integer or real, optional
+ Spacing between values. For any output `out`, this is the distance
+ between two adjacent values, ``out[i+1] - out[i]``. The default
+ step size is 1. If `step` is specified as a position argument,
+ `start` must also be given.
+ dtype : dtype, optional
+ The type of the output array. If `dtype` is not given, infer the data
+ type from the other input arguments.
+ device : str, optional
+ The device on which to place the created array. Default: ``None``.
+ For Array-API interoperability only, so must be ``"cpu"`` if passed.
+
+ .. versionadded:: 2.0.0
+ ${ARRAY_FUNCTION_LIKE}
+
+ .. versionadded:: 1.20.0
+
+ Returns
+ -------
+ arange : ndarray
+ Array of evenly spaced values.
+
+ For floating point arguments, the length of the result is
+ ``ceil((stop - start)/step)``. Because of floating point overflow,
+ this rule may result in the last element of `out` being greater
+ than `stop`.
+
+ Warnings
+ --------
+ The length of the output might not be numerically stable.
+
+ Another stability issue is due to the internal implementation of
+ `numpy.arange`.
+ The actual step value used to populate the array is
+ ``dtype(start + step) - dtype(start)`` and not `step`. Precision loss
+ can occur here, due to casting or due to using floating points when
+ `start` is much larger than `step`. This can lead to unexpected
+ behaviour. For example::
+
+ >>> np.arange(0, 5, 0.5, dtype=int)
+ array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0])
+ >>> np.arange(-3, 3, 0.5, dtype=int)
+ array([-3, -2, -1, 0, 1, 2, 3, 4, 5, 6, 7, 8])
+
+ In such cases, the use of `numpy.linspace` should be preferred.
+
+ The built-in :py:class:`range` generates :std:doc:`Python built-in integers
+ that have arbitrary size <python:c-api/long>`, while `numpy.arange`
+ produces `numpy.int32` or `numpy.int64` numbers. This may result in
+ incorrect results for large integer values::
+
+ >>> power = 40
+ >>> modulo = 10000
+ >>> x1 = [(n ** power) % modulo for n in range(8)]
+ >>> x2 = [(n ** power) % modulo for n in np.arange(8)]
+ >>> print(x1)
+ [0, 1, 7776, 8801, 6176, 625, 6576, 4001] # correct
+ >>> print(x2)
+ [0, 1, 7776, 7185, 0, 5969, 4816, 3361] # incorrect
+
+ See Also
+ --------
+ numpy.linspace : Evenly spaced numbers with careful handling of endpoints.
+ numpy.ogrid: Arrays of evenly spaced numbers in N-dimensions.
+ numpy.mgrid: Grid-shaped arrays of evenly spaced numbers in N-dimensions.
+ :ref:`how-to-partition`
+
+ Examples
+ --------
+ >>> import numpy as np
+ >>> np.arange(3)
+ array([0, 1, 2])
+ >>> np.arange(3.0)
+ array([ 0., 1., 2.])
+ >>> np.arange(3,7)
+ array([3, 4, 5, 6])
+ >>> np.arange(3,7,2)
+ array([3, 5])
+
+ """)
+
+add_newdoc('numpy._core.multiarray', '_get_ndarray_c_version',
+ """_get_ndarray_c_version()
+
+ Return the compile time NPY_VERSION (formerly called NDARRAY_VERSION) number.
+
+ """)
+
+add_newdoc('numpy._core.multiarray', '_reconstruct',
+ """_reconstruct(subtype, shape, dtype)
+
+ Construct an empty array. Used by Pickles.
+
+ """)
+
+add_newdoc('numpy._core.multiarray', 'promote_types',
+ """
+ promote_types(type1, type2)
+
+ Returns the data type with the smallest size and smallest scalar
+ kind to which both ``type1`` and ``type2`` may be safely cast.
+ The returned data type is always considered "canonical", this mainly
+ means that the promoted dtype will always be in native byte order.
+
+ This function is symmetric, but rarely associative.
+
+ Parameters
+ ----------
+ type1 : dtype or dtype specifier
+ First data type.
+ type2 : dtype or dtype specifier
+ Second data type.
+
+ Returns
+ -------
+ out : dtype
+ The promoted data type.
+
+ Notes
+ -----
+ Please see `numpy.result_type` for additional information about promotion.
+
+ Starting in NumPy 1.9, promote_types function now returns a valid string
+ length when given an integer or float dtype as one argument and a string
+ dtype as another argument. Previously it always returned the input string
+ dtype, even if it wasn't long enough to store the max integer/float value
+ converted to a string.
+
+ .. versionchanged:: 1.23.0
+
+ NumPy now supports promotion for more structured dtypes. It will now
+ remove unnecessary padding from a structure dtype and promote included
+ fields individually.
+
+ See Also
+ --------
+ result_type, dtype, can_cast
+
+ Examples
+ --------
+ >>> import numpy as np
+ >>> np.promote_types('f4', 'f8')
+ dtype('float64')
+
+ >>> np.promote_types('i8', 'f4')
+ dtype('float64')
+
+ >>> np.promote_types('>i8', '<c8')
+ dtype('complex128')
+
+ >>> np.promote_types('i4', 'S8')
+ dtype('S11')
+
+ An example of a non-associative case:
+
+ >>> p = np.promote_types
+ >>> p('S', p('i1', 'u1'))
+ dtype('S6')
+ >>> p(p('S', 'i1'), 'u1')
+ dtype('S4')
+
+ """)
+
+add_newdoc('numpy._core.multiarray', 'c_einsum',
+ """
+ c_einsum(subscripts, *operands, out=None, dtype=None, order='K',
+ casting='safe')
+
+ *This documentation shadows that of the native python implementation of the `einsum` function,
+ except all references and examples related to the `optimize` argument (v 0.12.0) have been removed.*
+
+ Evaluates the Einstein summation convention on the operands.
+
+ Using the Einstein summation convention, many common multi-dimensional,
+ linear algebraic array operations can be represented in a simple fashion.
+ In *implicit* mode `einsum` computes these values.
+
+ In *explicit* mode, `einsum` provides further flexibility to compute
+ other array operations that might not be considered classical Einstein
+ summation operations, by disabling, or forcing summation over specified
+ subscript labels.
+
+ See the notes and examples for clarification.
+
+ Parameters
+ ----------
+ subscripts : str
+ Specifies the subscripts for summation as comma separated list of
+ subscript labels. An implicit (classical Einstein summation)
+ calculation is performed unless the explicit indicator '->' is
+ included as well as subscript labels of the precise output form.
+ operands : list of array_like
+ These are the arrays for the operation.
+ out : ndarray, optional
+ If provided, the calculation is done into this array.
+ dtype : {data-type, None}, optional
+ If provided, forces the calculation to use the data type specified.
+ Note that you may have to also give a more liberal `casting`
+ parameter to allow the conversions. Default is None.
+ order : {'C', 'F', 'A', 'K'}, optional
+ Controls the memory layout of the output. 'C' means it should
+ be C contiguous. 'F' means it should be Fortran contiguous,
+ 'A' means it should be 'F' if the inputs are all 'F', 'C' otherwise.
+ 'K' means it should be as close to the layout of the inputs as
+ is possible, including arbitrarily permuted axes.
+ Default is 'K'.
+ casting : {'no', 'equiv', 'safe', 'same_kind', 'unsafe'}, optional
+ Controls what kind of data casting may occur. Setting this to
+ 'unsafe' is not recommended, as it can adversely affect accumulations.
+
+ * 'no' means the data types should not be cast at all.
+ * 'equiv' means only byte-order changes are allowed.
+ * 'safe' means only casts which can preserve values are allowed.
+ * 'same_kind' means only safe casts or casts within a kind,
+ like float64 to float32, are allowed.
+ * 'unsafe' means any data conversions may be done.
+
+ Default is 'safe'.
+ optimize : {False, True, 'greedy', 'optimal'}, optional
+ Controls if intermediate optimization should occur. No optimization
+ will occur if False and True will default to the 'greedy' algorithm.
+ Also accepts an explicit contraction list from the ``np.einsum_path``
+ function. See ``np.einsum_path`` for more details. Defaults to False.
+
+ Returns
+ -------
+ output : ndarray
+ The calculation based on the Einstein summation convention.
+
+ See Also
+ --------
+ einsum_path, dot, inner, outer, tensordot, linalg.multi_dot
+
+ Notes
+ -----
+ The Einstein summation convention can be used to compute
+ many multi-dimensional, linear algebraic array operations. `einsum`
+ provides a succinct way of representing these.
+
+ A non-exhaustive list of these operations,
+ which can be computed by `einsum`, is shown below along with examples:
+
+ * Trace of an array, :py:func:`numpy.trace`.
+ * Return a diagonal, :py:func:`numpy.diag`.
+ * Array axis summations, :py:func:`numpy.sum`.
+ * Transpositions and permutations, :py:func:`numpy.transpose`.
+ * Matrix multiplication and dot product, :py:func:`numpy.matmul` :py:func:`numpy.dot`.
+ * Vector inner and outer products, :py:func:`numpy.inner` :py:func:`numpy.outer`.
+ * Broadcasting, element-wise and scalar multiplication, :py:func:`numpy.multiply`.
+ * Tensor contractions, :py:func:`numpy.tensordot`.
+ * Chained array operations, in efficient calculation order, :py:func:`numpy.einsum_path`.
+
+ The subscripts string is a comma-separated list of subscript labels,
+ where each label refers to a dimension of the corresponding operand.
+ Whenever a label is repeated it is summed, so ``np.einsum('i,i', a, b)``
+ is equivalent to :py:func:`np.inner(a,b) <numpy.inner>`. If a label
+ appears only once, it is not summed, so ``np.einsum('i', a)`` produces a
+ view of ``a`` with no changes. A further example ``np.einsum('ij,jk', a, b)``
+ describes traditional matrix multiplication and is equivalent to
+ :py:func:`np.matmul(a,b) <numpy.matmul>`. Repeated subscript labels in one
+ operand take the diagonal. For example, ``np.einsum('ii', a)`` is equivalent
+ to :py:func:`np.trace(a) <numpy.trace>`.
+
+ In *implicit mode*, the chosen subscripts are important
+ since the axes of the output are reordered alphabetically. This
+ means that ``np.einsum('ij', a)`` doesn't affect a 2D array, while
+ ``np.einsum('ji', a)`` takes its transpose. Additionally,
+ ``np.einsum('ij,jk', a, b)`` returns a matrix multiplication, while,
+ ``np.einsum('ij,jh', a, b)`` returns the transpose of the
+ multiplication since subscript 'h' precedes subscript 'i'.
+
+ In *explicit mode* the output can be directly controlled by
+ specifying output subscript labels. This requires the
+ identifier '->' as well as the list of output subscript labels.
+ This feature increases the flexibility of the function since
+ summing can be disabled or forced when required. The call
+ ``np.einsum('i->', a)`` is like :py:func:`np.sum(a) <numpy.sum>`
+ if ``a`` is a 1-D array, and ``np.einsum('ii->i', a)``
+ is like :py:func:`np.diag(a) <numpy.diag>` if ``a`` is a square 2-D array.
+ The difference is that `einsum` does not allow broadcasting by default.
+ Additionally ``np.einsum('ij,jh->ih', a, b)`` directly specifies the
+ order of the output subscript labels and therefore returns matrix
+ multiplication, unlike the example above in implicit mode.
+
+ To enable and control broadcasting, use an ellipsis. Default
+ NumPy-style broadcasting is done by adding an ellipsis
+ to the left of each term, like ``np.einsum('...ii->...i', a)``.
+ ``np.einsum('...i->...', a)`` is like
+ :py:func:`np.sum(a, axis=-1) <numpy.sum>` for array ``a`` of any shape.
+ To take the trace along the first and last axes,
+ you can do ``np.einsum('i...i', a)``, or to do a matrix-matrix
+ product with the left-most indices instead of rightmost, one can do
+ ``np.einsum('ij...,jk...->ik...', a, b)``.
+
+ When there is only one operand, no axes are summed, and no output
+ parameter is provided, a view into the operand is returned instead
+ of a new array. Thus, taking the diagonal as ``np.einsum('ii->i', a)``
+ produces a view (changed in version 1.10.0).
+
+ `einsum` also provides an alternative way to provide the subscripts
+ and operands as ``einsum(op0, sublist0, op1, sublist1, ..., [sublistout])``.
+ If the output shape is not provided in this format `einsum` will be
+ calculated in implicit mode, otherwise it will be performed explicitly.
+ The examples below have corresponding `einsum` calls with the two
+ parameter methods.
+
+ Views returned from einsum are now writeable whenever the input array
+ is writeable. For example, ``np.einsum('ijk...->kji...', a)`` will now
+ have the same effect as :py:func:`np.swapaxes(a, 0, 2) <numpy.swapaxes>`
+ and ``np.einsum('ii->i', a)`` will return a writeable view of the diagonal
+ of a 2D array.
+
+ Examples
+ --------
+ >>> import numpy as np
+ >>> a = np.arange(25).reshape(5,5)
+ >>> b = np.arange(5)
+ >>> c = np.arange(6).reshape(2,3)
+
+ Trace of a matrix:
+
+ >>> np.einsum('ii', a)
+ 60
+ >>> np.einsum(a, [0,0])
+ 60
+ >>> np.trace(a)
+ 60
+
+ Extract the diagonal (requires explicit form):
+
+ >>> np.einsum('ii->i', a)
+ array([ 0, 6, 12, 18, 24])
+ >>> np.einsum(a, [0,0], [0])
+ array([ 0, 6, 12, 18, 24])
+ >>> np.diag(a)
+ array([ 0, 6, 12, 18, 24])
+
+ Sum over an axis (requires explicit form):
+
+ >>> np.einsum('ij->i', a)
+ array([ 10, 35, 60, 85, 110])
+ >>> np.einsum(a, [0,1], [0])
+ array([ 10, 35, 60, 85, 110])
+ >>> np.sum(a, axis=1)
+ array([ 10, 35, 60, 85, 110])
+
+ For higher dimensional arrays summing a single axis can be done with ellipsis:
+
+ >>> np.einsum('...j->...', a)
+ array([ 10, 35, 60, 85, 110])
+ >>> np.einsum(a, [Ellipsis,1], [Ellipsis])
+ array([ 10, 35, 60, 85, 110])
+
+ Compute a matrix transpose, or reorder any number of axes:
+
+ >>> np.einsum('ji', c)
+ array([[0, 3],
+ [1, 4],
+ [2, 5]])
+ >>> np.einsum('ij->ji', c)
+ array([[0, 3],
+ [1, 4],
+ [2, 5]])
+ >>> np.einsum(c, [1,0])
+ array([[0, 3],
+ [1, 4],
+ [2, 5]])
+ >>> np.transpose(c)
+ array([[0, 3],
+ [1, 4],
+ [2, 5]])
+
+ Vector inner products:
+
+ >>> np.einsum('i,i', b, b)
+ 30
+ >>> np.einsum(b, [0], b, [0])
+ 30
+ >>> np.inner(b,b)
+ 30
+
+ Matrix vector multiplication:
+
+ >>> np.einsum('ij,j', a, b)
+ array([ 30, 80, 130, 180, 230])
+ >>> np.einsum(a, [0,1], b, [1])
+ array([ 30, 80, 130, 180, 230])
+ >>> np.dot(a, b)
+ array([ 30, 80, 130, 180, 230])
+ >>> np.einsum('...j,j', a, b)
+ array([ 30, 80, 130, 180, 230])
+
+ Broadcasting and scalar multiplication:
+
+ >>> np.einsum('..., ...', 3, c)
+ array([[ 0, 3, 6],
+ [ 9, 12, 15]])
+ >>> np.einsum(',ij', 3, c)
+ array([[ 0, 3, 6],
+ [ 9, 12, 15]])
+ >>> np.einsum(3, [Ellipsis], c, [Ellipsis])
+ array([[ 0, 3, 6],
+ [ 9, 12, 15]])
+ >>> np.multiply(3, c)
+ array([[ 0, 3, 6],
+ [ 9, 12, 15]])
+
+ Vector outer product:
+
+ >>> np.einsum('i,j', np.arange(2)+1, b)
+ array([[0, 1, 2, 3, 4],
+ [0, 2, 4, 6, 8]])
+ >>> np.einsum(np.arange(2)+1, [0], b, [1])
+ array([[0, 1, 2, 3, 4],
+ [0, 2, 4, 6, 8]])
+ >>> np.outer(np.arange(2)+1, b)
+ array([[0, 1, 2, 3, 4],
+ [0, 2, 4, 6, 8]])
+
+ Tensor contraction:
+
+ >>> a = np.arange(60.).reshape(3,4,5)
+ >>> b = np.arange(24.).reshape(4,3,2)
+ >>> np.einsum('ijk,jil->kl', a, b)
+ array([[ 4400., 4730.],
+ [ 4532., 4874.],
+ [ 4664., 5018.],
+ [ 4796., 5162.],
+ [ 4928., 5306.]])
+ >>> np.einsum(a, [0,1,2], b, [1,0,3], [2,3])
+ array([[ 4400., 4730.],
+ [ 4532., 4874.],
+ [ 4664., 5018.],
+ [ 4796., 5162.],
+ [ 4928., 5306.]])
+ >>> np.tensordot(a,b, axes=([1,0],[0,1]))
+ array([[ 4400., 4730.],
+ [ 4532., 4874.],
+ [ 4664., 5018.],
+ [ 4796., 5162.],
+ [ 4928., 5306.]])
+
+ Writeable returned arrays (since version 1.10.0):
+
+ >>> a = np.zeros((3, 3))
+ >>> np.einsum('ii->i', a)[:] = 1
+ >>> a
+ array([[ 1., 0., 0.],
+ [ 0., 1., 0.],
+ [ 0., 0., 1.]])
+
+ Example of ellipsis use:
+
+ >>> a = np.arange(6).reshape((3,2))
+ >>> b = np.arange(12).reshape((4,3))
+ >>> np.einsum('ki,jk->ij', a, b)
+ array([[10, 28, 46, 64],
+ [13, 40, 67, 94]])
+ >>> np.einsum('ki,...k->i...', a, b)
+ array([[10, 28, 46, 64],
+ [13, 40, 67, 94]])
+ >>> np.einsum('k...,jk', a, b)
+ array([[10, 28, 46, 64],
+ [13, 40, 67, 94]])
+
+ """)
+
+
+##############################################################################
+#
+# Documentation for ndarray attributes and methods
+#
+##############################################################################
+
+
+##############################################################################
+#
+# ndarray object
+#
+##############################################################################
+
+
+add_newdoc('numpy._core.multiarray', 'ndarray',
+ """
+ ndarray(shape, dtype=float, buffer=None, offset=0,
+ strides=None, order=None)
+
+ An array object represents a multidimensional, homogeneous array
+ of fixed-size items. An associated data-type object describes the
+ format of each element in the array (its byte-order, how many bytes it
+ occupies in memory, whether it is an integer, a floating point number,
+ or something else, etc.)
+
+ Arrays should be constructed using `array`, `zeros` or `empty` (refer
+ to the See Also section below). The parameters given here refer to
+ a low-level method (`ndarray(...)`) for instantiating an array.
+
+ For more information, refer to the `numpy` module and examine the
+ methods and attributes of an array.
+
+ Parameters
+ ----------
+ (for the __new__ method; see Notes below)
+
+ shape : tuple of ints
+ Shape of created array.
+ dtype : data-type, optional
+ Any object that can be interpreted as a numpy data type.
+ buffer : object exposing buffer interface, optional
+ Used to fill the array with data.
+ offset : int, optional
+ Offset of array data in buffer.
+ strides : tuple of ints, optional
+ Strides of data in memory.
+ order : {'C', 'F'}, optional
+ Row-major (C-style) or column-major (Fortran-style) order.
+
+ Attributes
+ ----------
+ T : ndarray
+ Transpose of the array.
+ data : buffer
+ The array's elements, in memory.
+ dtype : dtype object
+ Describes the format of the elements in the array.
+ flags : dict
+ Dictionary containing information related to memory use, e.g.,
+ 'C_CONTIGUOUS', 'OWNDATA', 'WRITEABLE', etc.
+ flat : numpy.flatiter object
+ Flattened version of the array as an iterator. The iterator
+ allows assignments, e.g., ``x.flat = 3`` (See `ndarray.flat` for
+ assignment examples; TODO).
+ imag : ndarray
+ Imaginary part of the array.
+ real : ndarray
+ Real part of the array.
+ size : int
+ Number of elements in the array.
+ itemsize : int
+ The memory use of each array element in bytes.
+ nbytes : int
+ The total number of bytes required to store the array data,
+ i.e., ``itemsize * size``.
+ ndim : int
+ The array's number of dimensions.
+ shape : tuple of ints
+ Shape of the array.
+ strides : tuple of ints
+ The step-size required to move from one element to the next in
+ memory. For example, a contiguous ``(3, 4)`` array of type
+ ``int16`` in C-order has strides ``(8, 2)``. This implies that
+ to move from element to element in memory requires jumps of 2 bytes.
+ To move from row-to-row, one needs to jump 8 bytes at a time
+ (``2 * 4``).
+ ctypes : ctypes object
+ Class containing properties of the array needed for interaction
+ with ctypes.
+ base : ndarray
+ If the array is a view into another array, that array is its `base`
+ (unless that array is also a view). The `base` array is where the
+ array data is actually stored.
+
+ See Also
+ --------
+ array : Construct an array.
+ zeros : Create an array, each element of which is zero.
+ empty : Create an array, but leave its allocated memory unchanged (i.e.,
+ it contains "garbage").
+ dtype : Create a data-type.
+ numpy.typing.NDArray : An ndarray alias :term:`generic <generic type>`
+ w.r.t. its `dtype.type <numpy.dtype.type>`.
+
+ Notes
+ -----
+ There are two modes of creating an array using ``__new__``:
+
+ 1. If `buffer` is None, then only `shape`, `dtype`, and `order`
+ are used.
+ 2. If `buffer` is an object exposing the buffer interface, then
+ all keywords are interpreted.
+
+ No ``__init__`` method is needed because the array is fully initialized
+ after the ``__new__`` method.
+
+ Examples
+ --------
+ These examples illustrate the low-level `ndarray` constructor. Refer
+ to the `See Also` section above for easier ways of constructing an
+ ndarray.
+
+ First mode, `buffer` is None:
+
+ >>> import numpy as np
+ >>> np.ndarray(shape=(2,2), dtype=float, order='F')
+ array([[0.0e+000, 0.0e+000], # random
+ [ nan, 2.5e-323]])
+
+ Second mode:
+
+ >>> np.ndarray((2,), buffer=np.array([1,2,3]),
+ ... offset=np.int_().itemsize,
+ ... dtype=int) # offset = 1*itemsize, i.e. skip first element
+ array([2, 3])
+
+ """)
+
+
+##############################################################################
+#
+# ndarray attributes
+#
+##############################################################################
+
+
+add_newdoc('numpy._core.multiarray', 'ndarray', ('__array_interface__',
+ """Array protocol: Python side."""))
+
+
+add_newdoc('numpy._core.multiarray', 'ndarray', ('__array_priority__',
+ """Array priority."""))
+
+
+add_newdoc('numpy._core.multiarray', 'ndarray', ('__array_struct__',
+ """Array protocol: C-struct side."""))
+
+add_newdoc('numpy._core.multiarray', 'ndarray', ('__dlpack__',
+ """
+ a.__dlpack__(*, stream=None, max_version=None, dl_device=None, copy=None)
+
+ DLPack Protocol: Part of the Array API.
+
+ """))
+
+add_newdoc('numpy._core.multiarray', 'ndarray', ('__dlpack_device__',
+ """
+ a.__dlpack_device__()
+
+ DLPack Protocol: Part of the Array API.
+
+ """))
+
+add_newdoc('numpy._core.multiarray', 'ndarray', ('base',
+ """
+ Base object if memory is from some other object.
+
+ Examples
+ --------
+ The base of an array that owns its memory is None:
+
+ >>> import numpy as np
+ >>> x = np.array([1,2,3,4])
+ >>> x.base is None
+ True
+
+ Slicing creates a view, whose memory is shared with x:
+
+ >>> y = x[2:]
+ >>> y.base is x
+ True
+
+ """))
+
+
+add_newdoc('numpy._core.multiarray', 'ndarray', ('ctypes',
+ """
+ An object to simplify the interaction of the array with the ctypes
+ module.
+
+ This attribute creates an object that makes it easier to use arrays
+ when calling shared libraries with the ctypes module. The returned
+ object has, among others, data, shape, and strides attributes (see
+ Notes below) which themselves return ctypes objects that can be used
+ as arguments to a shared library.
+
+ Parameters
+ ----------
+ None
+
+ Returns
+ -------
+ c : Python object
+ Possessing attributes data, shape, strides, etc.
+
+ See Also
+ --------
+ numpy.ctypeslib
+
+ Notes
+ -----
+ Below are the public attributes of this object which were documented
+ in "Guide to NumPy" (we have omitted undocumented public attributes,
+ as well as documented private attributes):
+
+ .. autoattribute:: numpy._core._internal._ctypes.data
+ :noindex:
+
+ .. autoattribute:: numpy._core._internal._ctypes.shape
+ :noindex:
+
+ .. autoattribute:: numpy._core._internal._ctypes.strides
+ :noindex:
+
+ .. automethod:: numpy._core._internal._ctypes.data_as
+ :noindex:
+
+ .. automethod:: numpy._core._internal._ctypes.shape_as
+ :noindex:
+
+ .. automethod:: numpy._core._internal._ctypes.strides_as
+ :noindex:
+
+ If the ctypes module is not available, then the ctypes attribute
+ of array objects still returns something useful, but ctypes objects
+ are not returned and errors may be raised instead. In particular,
+ the object will still have the ``as_parameter`` attribute which will
+ return an integer equal to the data attribute.
+
+ Examples
+ --------
+ >>> import numpy as np
+ >>> import ctypes
+ >>> x = np.array([[0, 1], [2, 3]], dtype=np.int32)
+ >>> x
+ array([[0, 1],
+ [2, 3]], dtype=int32)
+ >>> x.ctypes.data
+ 31962608 # may vary
+ >>> x.ctypes.data_as(ctypes.POINTER(ctypes.c_uint32))
+ <__main__.LP_c_uint object at 0x7ff2fc1fc200> # may vary
+ >>> x.ctypes.data_as(ctypes.POINTER(ctypes.c_uint32)).contents
+ c_uint(0)
+ >>> x.ctypes.data_as(ctypes.POINTER(ctypes.c_uint64)).contents
+ c_ulong(4294967296)
+ >>> x.ctypes.shape
+ <numpy._core._internal.c_long_Array_2 object at 0x7ff2fc1fce60> # may vary
+ >>> x.ctypes.strides
+ <numpy._core._internal.c_long_Array_2 object at 0x7ff2fc1ff320> # may vary
+
+ """))
+
+
+add_newdoc('numpy._core.multiarray', 'ndarray', ('data',
+ """Python buffer object pointing to the start of the array's data."""))
+
+
+add_newdoc('numpy._core.multiarray', 'ndarray', ('dtype',
+ """
+ Data-type of the array's elements.
+
+ .. warning::
+
+ Setting ``arr.dtype`` is discouraged and may be deprecated in the
+ future. Setting will replace the ``dtype`` without modifying the
+ memory (see also `ndarray.view` and `ndarray.astype`).
+
+ Parameters
+ ----------
+ None
+
+ Returns
+ -------
+ d : numpy dtype object
+
+ See Also
+ --------
+ ndarray.astype : Cast the values contained in the array to a new data-type.
+ ndarray.view : Create a view of the same data but a different data-type.
+ numpy.dtype
+
+ Examples
+ --------
+ >>> import numpy as np
+ >>> x = np.arange(4).reshape((2, 2))
+ >>> x
+ array([[0, 1],
+ [2, 3]])
+ >>> x.dtype
+ dtype('int64') # may vary (OS, bitness)
+ >>> isinstance(x.dtype, np.dtype)
+ True
+
+ """))
+
+
+add_newdoc('numpy._core.multiarray', 'ndarray', ('imag',
+ """
+ The imaginary part of the array.
+
+ Examples
+ --------
+ >>> import numpy as np
+ >>> x = np.sqrt([1+0j, 0+1j])
+ >>> x.imag
+ array([ 0. , 0.70710678])
+ >>> x.imag.dtype
+ dtype('float64')
+
+ """))
+
+
+add_newdoc('numpy._core.multiarray', 'ndarray', ('itemsize',
+ """
+ Length of one array element in bytes.
+
+ Examples
+ --------
+ >>> import numpy as np
+ >>> x = np.array([1,2,3], dtype=np.float64)
+ >>> x.itemsize
+ 8
+ >>> x = np.array([1,2,3], dtype=np.complex128)
+ >>> x.itemsize
+ 16
+
+ """))
+
+
+add_newdoc('numpy._core.multiarray', 'ndarray', ('flags',
+ """
+ Information about the memory layout of the array.
+
+ Attributes
+ ----------
+ C_CONTIGUOUS (C)
+ The data is in a single, C-style contiguous segment.
+ F_CONTIGUOUS (F)
+ The data is in a single, Fortran-style contiguous segment.
+ OWNDATA (O)
+ The array owns the memory it uses or borrows it from another object.
+ WRITEABLE (W)
+ The data area can be written to. Setting this to False locks
+ the data, making it read-only. A view (slice, etc.) inherits WRITEABLE
+ from its base array at creation time, but a view of a writeable
+ array may be subsequently locked while the base array remains writeable.
+ (The opposite is not true, in that a view of a locked array may not
+ be made writeable. However, currently, locking a base object does not
+ lock any views that already reference it, so under that circumstance it
+ is possible to alter the contents of a locked array via a previously
+ created writeable view onto it.) Attempting to change a non-writeable
+ array raises a RuntimeError exception.
+ ALIGNED (A)
+ The data and all elements are aligned appropriately for the hardware.
+ WRITEBACKIFCOPY (X)
+ This array is a copy of some other array. The C-API function
+ PyArray_ResolveWritebackIfCopy must be called before deallocating
+ to the base array will be updated with the contents of this array.
+ FNC
+ F_CONTIGUOUS and not C_CONTIGUOUS.
+ FORC
+ F_CONTIGUOUS or C_CONTIGUOUS (one-segment test).
+ BEHAVED (B)
+ ALIGNED and WRITEABLE.
+ CARRAY (CA)
+ BEHAVED and C_CONTIGUOUS.
+ FARRAY (FA)
+ BEHAVED and F_CONTIGUOUS and not C_CONTIGUOUS.
+
+ Notes
+ -----
+ The `flags` object can be accessed dictionary-like (as in ``a.flags['WRITEABLE']``),
+ or by using lowercased attribute names (as in ``a.flags.writeable``). Short flag
+ names are only supported in dictionary access.
+
+ Only the WRITEBACKIFCOPY, WRITEABLE, and ALIGNED flags can be
+ changed by the user, via direct assignment to the attribute or dictionary
+ entry, or by calling `ndarray.setflags`.
+
+ The array flags cannot be set arbitrarily:
+
+ - WRITEBACKIFCOPY can only be set ``False``.
+ - ALIGNED can only be set ``True`` if the data is truly aligned.
+ - WRITEABLE can only be set ``True`` if the array owns its own memory
+ or the ultimate owner of the memory exposes a writeable buffer
+ interface or is a string.
+
+ Arrays can be both C-style and Fortran-style contiguous simultaneously.
+ This is clear for 1-dimensional arrays, but can also be true for higher
+ dimensional arrays.
+
+ Even for contiguous arrays a stride for a given dimension
+ ``arr.strides[dim]`` may be *arbitrary* if ``arr.shape[dim] == 1``
+ or the array has no elements.
+ It does *not* generally hold that ``self.strides[-1] == self.itemsize``
+ for C-style contiguous arrays or ``self.strides[0] == self.itemsize`` for
+ Fortran-style contiguous arrays is true.
+ """))
+
+
+add_newdoc('numpy._core.multiarray', 'ndarray', ('flat',
+ """
+ A 1-D iterator over the array.
+
+ This is a `numpy.flatiter` instance, which acts similarly to, but is not
+ a subclass of, Python's built-in iterator object.
+
+ See Also
+ --------
+ flatten : Return a copy of the array collapsed into one dimension.
+
+ flatiter
+
+ Examples
+ --------
+ >>> import numpy as np
+ >>> x = np.arange(1, 7).reshape(2, 3)
+ >>> x
+ array([[1, 2, 3],
+ [4, 5, 6]])
+ >>> x.flat[3]
+ 4
+ >>> x.T
+ array([[1, 4],
+ [2, 5],
+ [3, 6]])
+ >>> x.T.flat[3]
+ 5
+ >>> type(x.flat)
+ <class 'numpy.flatiter'>
+
+ An assignment example:
+
+ >>> x.flat = 3; x
+ array([[3, 3, 3],
+ [3, 3, 3]])
+ >>> x.flat[[1,4]] = 1; x
+ array([[3, 1, 3],
+ [3, 1, 3]])
+
+ """))
+
+
+add_newdoc('numpy._core.multiarray', 'ndarray', ('nbytes',
+ """
+ Total bytes consumed by the elements of the array.
+
+ Notes
+ -----
+ Does not include memory consumed by non-element attributes of the
+ array object.
+
+ See Also
+ --------
+ sys.getsizeof
+ Memory consumed by the object itself without parents in case view.
+ This does include memory consumed by non-element attributes.
+
+ Examples
+ --------
+ >>> import numpy as np
+ >>> x = np.zeros((3,5,2), dtype=np.complex128)
+ >>> x.nbytes
+ 480
+ >>> np.prod(x.shape) * x.itemsize
+ 480
+
+ """))
+
+
+add_newdoc('numpy._core.multiarray', 'ndarray', ('ndim',
+ """
+ Number of array dimensions.
+
+ Examples
+ --------
+ >>> import numpy as np
+ >>> x = np.array([1, 2, 3])
+ >>> x.ndim
+ 1
+ >>> y = np.zeros((2, 3, 4))
+ >>> y.ndim
+ 3
+
+ """))
+
+
+add_newdoc('numpy._core.multiarray', 'ndarray', ('real',
+ """
+ The real part of the array.
+
+ Examples
+ --------
+ >>> import numpy as np
+ >>> x = np.sqrt([1+0j, 0+1j])
+ >>> x.real
+ array([ 1. , 0.70710678])
+ >>> x.real.dtype
+ dtype('float64')
+
+ See Also
+ --------
+ numpy.real : equivalent function
+
+ """))
+
+
+add_newdoc('numpy._core.multiarray', 'ndarray', ('shape',
+ """
+ Tuple of array dimensions.
+
+ The shape property is usually used to get the current shape of an array,
+ but may also be used to reshape the array in-place by assigning a tuple of
+ array dimensions to it. As with `numpy.reshape`, one of the new shape
+ dimensions can be -1, in which case its value is inferred from the size of
+ the array and the remaining dimensions. Reshaping an array in-place will
+ fail if a copy is required.
+
+ .. warning::
+
+ Setting ``arr.shape`` is discouraged and may be deprecated in the
+ future. Using `ndarray.reshape` is the preferred approach.
+
+ Examples
+ --------
+ >>> import numpy as np
+ >>> x = np.array([1, 2, 3, 4])
+ >>> x.shape
+ (4,)
+ >>> y = np.zeros((2, 3, 4))
+ >>> y.shape
+ (2, 3, 4)
+ >>> y.shape = (3, 8)
+ >>> y
+ array([[ 0., 0., 0., 0., 0., 0., 0., 0.],
+ [ 0., 0., 0., 0., 0., 0., 0., 0.],
+ [ 0., 0., 0., 0., 0., 0., 0., 0.]])
+ >>> y.shape = (3, 6)
+ Traceback (most recent call last):
+ File "<stdin>", line 1, in <module>
+ ValueError: cannot reshape array of size 24 into shape (3,6)
+ >>> np.zeros((4,2))[::2].shape = (-1,)
+ Traceback (most recent call last):
+ File "<stdin>", line 1, in <module>
+ AttributeError: Incompatible shape for in-place modification. Use
+ `.reshape()` to make a copy with the desired shape.
+
+ See Also
+ --------
+ numpy.shape : Equivalent getter function.
+ numpy.reshape : Function similar to setting ``shape``.
+ ndarray.reshape : Method similar to setting ``shape``.
+
+ """))
+
+
+add_newdoc('numpy._core.multiarray', 'ndarray', ('size',
+ """
+ Number of elements in the array.
+
+ Equal to ``np.prod(a.shape)``, i.e., the product of the array's
+ dimensions.
+
+ Notes
+ -----
+ `a.size` returns a standard arbitrary precision Python integer. This
+ may not be the case with other methods of obtaining the same value
+ (like the suggested ``np.prod(a.shape)``, which returns an instance
+ of ``np.int_``), and may be relevant if the value is used further in
+ calculations that may overflow a fixed size integer type.
+
+ Examples
+ --------
+ >>> import numpy as np
+ >>> x = np.zeros((3, 5, 2), dtype=np.complex128)
+ >>> x.size
+ 30
+ >>> np.prod(x.shape)
+ 30
+
+ """))
+
+
+add_newdoc('numpy._core.multiarray', 'ndarray', ('strides',
+ """
+ Tuple of bytes to step in each dimension when traversing an array.
+
+ The byte offset of element ``(i[0], i[1], ..., i[n])`` in an array `a`
+ is::
+
+ offset = sum(np.array(i) * a.strides)
+
+ A more detailed explanation of strides can be found in
+ :ref:`arrays.ndarray`.
+
+ .. warning::
+
+ Setting ``arr.strides`` is discouraged and may be deprecated in the
+ future. `numpy.lib.stride_tricks.as_strided` should be preferred
+ to create a new view of the same data in a safer way.
+
+ Notes
+ -----
+ Imagine an array of 32-bit integers (each 4 bytes)::
+
+ x = np.array([[0, 1, 2, 3, 4],
+ [5, 6, 7, 8, 9]], dtype=np.int32)
+
+ This array is stored in memory as 40 bytes, one after the other
+ (known as a contiguous block of memory). The strides of an array tell
+ us how many bytes we have to skip in memory to move to the next position
+ along a certain axis. For example, we have to skip 4 bytes (1 value) to
+ move to the next column, but 20 bytes (5 values) to get to the same
+ position in the next row. As such, the strides for the array `x` will be
+ ``(20, 4)``.
+
+ See Also
+ --------
+ numpy.lib.stride_tricks.as_strided
+
+ Examples
+ --------
+ >>> import numpy as np
+ >>> y = np.reshape(np.arange(2 * 3 * 4, dtype=np.int32), (2, 3, 4))
+ >>> y
+ array([[[ 0, 1, 2, 3],
+ [ 4, 5, 6, 7],
+ [ 8, 9, 10, 11]],
+ [[12, 13, 14, 15],
+ [16, 17, 18, 19],
+ [20, 21, 22, 23]]], dtype=np.int32)
+ >>> y.strides
+ (48, 16, 4)
+ >>> y[1, 1, 1]
+ np.int32(17)
+ >>> offset = sum(y.strides * np.array((1, 1, 1)))
+ >>> offset // y.itemsize
+ np.int64(17)
+
+ >>> x = np.reshape(np.arange(5*6*7*8, dtype=np.int32), (5, 6, 7, 8))
+ >>> x = x.transpose(2, 3, 1, 0)
+ >>> x.strides
+ (32, 4, 224, 1344)
+ >>> i = np.array([3, 5, 2, 2], dtype=np.int32)
+ >>> offset = sum(i * x.strides)
+ >>> x[3, 5, 2, 2]
+ np.int32(813)
+ >>> offset // x.itemsize
+ np.int64(813)
+
+ """))
+
+
+add_newdoc('numpy._core.multiarray', 'ndarray', ('T',
+ """
+ View of the transposed array.
+
+ Same as ``self.transpose()``.
+
+ Examples
+ --------
+ >>> import numpy as np
+ >>> a = np.array([[1, 2], [3, 4]])
+ >>> a
+ array([[1, 2],
+ [3, 4]])
+ >>> a.T
+ array([[1, 3],
+ [2, 4]])
+
+ >>> a = np.array([1, 2, 3, 4])
+ >>> a
+ array([1, 2, 3, 4])
+ >>> a.T
+ array([1, 2, 3, 4])
+
+ See Also
+ --------
+ transpose
+
+ """))
+
+
+add_newdoc('numpy._core.multiarray', 'ndarray', ('mT',
+ """
+ View of the matrix transposed array.
+
+ The matrix transpose is the transpose of the last two dimensions, even
+ if the array is of higher dimension.
+
+ .. versionadded:: 2.0
+
+ Raises
+ ------
+ ValueError
+ If the array is of dimension less than 2.
+
+ Examples
+ --------
+ >>> import numpy as np
+ >>> a = np.array([[1, 2], [3, 4]])
+ >>> a
+ array([[1, 2],
+ [3, 4]])
+ >>> a.mT
+ array([[1, 3],
+ [2, 4]])
+
+ >>> a = np.arange(8).reshape((2, 2, 2))
+ >>> a
+ array([[[0, 1],
+ [2, 3]],
+ <BLANKLINE>
+ [[4, 5],
+ [6, 7]]])
+ >>> a.mT
+ array([[[0, 2],
+ [1, 3]],
+ <BLANKLINE>
+ [[4, 6],
+ [5, 7]]])
+
+ """))
+##############################################################################
+#
+# ndarray methods
+#
+##############################################################################
+
+
+add_newdoc('numpy._core.multiarray', 'ndarray', ('__array__',
+ """
+ a.__array__([dtype], *, copy=None)
+
+ For ``dtype`` parameter it returns a new reference to self if
+ ``dtype`` is not given or it matches array's data type.
+ A new array of provided data type is returned if ``dtype``
+ is different from the current data type of the array.
+ For ``copy`` parameter it returns a new reference to self if
+ ``copy=False`` or ``copy=None`` and copying isn't enforced by ``dtype``
+ parameter. The method returns a new array for ``copy=True``, regardless of
+ ``dtype`` parameter.
+
+ A more detailed explanation of the ``__array__`` interface
+ can be found in :ref:`dunder_array.interface`.
+
+ """))
+
+
+add_newdoc('numpy._core.multiarray', 'ndarray', ('__array_finalize__',
+ """
+ a.__array_finalize__(obj, /)
+
+ Present so subclasses can call super. Does nothing.
+
+ """))
+
+
+add_newdoc('numpy._core.multiarray', 'ndarray', ('__array_wrap__',
+ """
+ a.__array_wrap__(array[, context], /)
+
+ Returns a view of `array` with the same type as self.
+
+ """))
+
+
+add_newdoc('numpy._core.multiarray', 'ndarray', ('__copy__',
+ """
+ a.__copy__()
+
+ Used if :func:`copy.copy` is called on an array. Returns a copy of the array.
+
+ Equivalent to ``a.copy(order='K')``.
+
+ """))
+
+
+add_newdoc('numpy._core.multiarray', 'ndarray', ('__class_getitem__',
+ """
+ a.__class_getitem__(item, /)
+
+ Return a parametrized wrapper around the `~numpy.ndarray` type.
+
+ .. versionadded:: 1.22
+
+ Returns
+ -------
+ alias : types.GenericAlias
+ A parametrized `~numpy.ndarray` type.
+
+ Examples
+ --------
+ >>> from typing import Any
+ >>> import numpy as np
+
+ >>> np.ndarray[Any, np.dtype[np.uint8]]
+ numpy.ndarray[typing.Any, numpy.dtype[numpy.uint8]]
+
+ See Also
+ --------
+ :pep:`585` : Type hinting generics in standard collections.
+ numpy.typing.NDArray : An ndarray alias :term:`generic <generic type>`
+ w.r.t. its `dtype.type <numpy.dtype.type>`.
+
+ """))
+
+
+add_newdoc('numpy._core.multiarray', 'ndarray', ('__deepcopy__',
+ """
+ a.__deepcopy__(memo, /)
+
+ Used if :func:`copy.deepcopy` is called on an array.
+
+ """))
+
+
+add_newdoc('numpy._core.multiarray', 'ndarray', ('__reduce__',
+ """
+ a.__reduce__()
+
+ For pickling.
+
+ """))
+
+
+add_newdoc('numpy._core.multiarray', 'ndarray', ('__setstate__',
+ """
+ a.__setstate__(state, /)
+
+ For unpickling.
+
+ The `state` argument must be a sequence that contains the following
+ elements:
+
+ Parameters
+ ----------
+ version : int
+ optional pickle version. If omitted defaults to 0.
+ shape : tuple
+ dtype : data-type
+ isFortran : bool
+ rawdata : string or list
+ a binary string with the data (or a list if 'a' is an object array)
+
+ """))
+
+
+add_newdoc('numpy._core.multiarray', 'ndarray', ('all',
+ """
+ a.all(axis=None, out=None, keepdims=False, *, where=True)
+
+ Returns True if all elements evaluate to True.
+
+ Refer to `numpy.all` for full documentation.
+
+ See Also
+ --------
+ numpy.all : equivalent function
+
+ """))
+
+
+add_newdoc('numpy._core.multiarray', 'ndarray', ('any',
+ """
+ a.any(axis=None, out=None, keepdims=False, *, where=True)
+
+ Returns True if any of the elements of `a` evaluate to True.
+
+ Refer to `numpy.any` for full documentation.
+
+ See Also
+ --------
+ numpy.any : equivalent function
+
+ """))
+
+
+add_newdoc('numpy._core.multiarray', 'ndarray', ('argmax',
+ """
+ a.argmax(axis=None, out=None, *, keepdims=False)
+
+ Return indices of the maximum values along the given axis.
+
+ Refer to `numpy.argmax` for full documentation.
+
+ See Also
+ --------
+ numpy.argmax : equivalent function
+
+ """))
+
+
+add_newdoc('numpy._core.multiarray', 'ndarray', ('argmin',
+ """
+ a.argmin(axis=None, out=None, *, keepdims=False)
+
+ Return indices of the minimum values along the given axis.
+
+ Refer to `numpy.argmin` for detailed documentation.
+
+ See Also
+ --------
+ numpy.argmin : equivalent function
+
+ """))
+
+
+add_newdoc('numpy._core.multiarray', 'ndarray', ('argsort',
+ """
+ a.argsort(axis=-1, kind=None, order=None)
+
+ Returns the indices that would sort this array.
+
+ Refer to `numpy.argsort` for full documentation.
+
+ See Also
+ --------
+ numpy.argsort : equivalent function
+
+ """))
+
+
+add_newdoc('numpy._core.multiarray', 'ndarray', ('argpartition',
+ """
+ a.argpartition(kth, axis=-1, kind='introselect', order=None)
+
+ Returns the indices that would partition this array.
+
+ Refer to `numpy.argpartition` for full documentation.
+
+ See Also
+ --------
+ numpy.argpartition : equivalent function
+
+ """))
+
+
+add_newdoc('numpy._core.multiarray', 'ndarray', ('astype',
+ """
+ a.astype(dtype, order='K', casting='unsafe', subok=True, copy=True)
+
+ Copy of the array, cast to a specified type.
+
+ Parameters
+ ----------
+ dtype : str or dtype
+ Typecode or data-type to which the array is cast.
+ order : {'C', 'F', 'A', 'K'}, optional
+ Controls the memory layout order of the result.
+ 'C' means C order, 'F' means Fortran order, 'A'
+ means 'F' order if all the arrays are Fortran contiguous,
+ 'C' order otherwise, and 'K' means as close to the
+ order the array elements appear in memory as possible.
+ Default is 'K'.
+ casting : {'no', 'equiv', 'safe', 'same_kind', 'unsafe'}, optional
+ Controls what kind of data casting may occur. Defaults to 'unsafe'
+ for backwards compatibility.
+
+ * 'no' means the data types should not be cast at all.
+ * 'equiv' means only byte-order changes are allowed.
+ * 'safe' means only casts which can preserve values are allowed.
+ * 'same_kind' means only safe casts or casts within a kind,
+ like float64 to float32, are allowed.
+ * 'unsafe' means any data conversions may be done.
+ subok : bool, optional
+ If True, then sub-classes will be passed-through (default), otherwise
+ the returned array will be forced to be a base-class array.
+ copy : bool, optional
+ By default, astype always returns a newly allocated array. If this
+ is set to false, and the `dtype`, `order`, and `subok`
+ requirements are satisfied, the input array is returned instead
+ of a copy.
+
+ Returns
+ -------
+ arr_t : ndarray
+ Unless `copy` is False and the other conditions for returning the input
+ array are satisfied (see description for `copy` input parameter), `arr_t`
+ is a new array of the same shape as the input array, with dtype, order
+ given by `dtype`, `order`.
+
+ Raises
+ ------
+ ComplexWarning
+ When casting from complex to float or int. To avoid this,
+ one should use ``a.real.astype(t)``.
+
+ Examples
+ --------
+ >>> import numpy as np
+ >>> x = np.array([1, 2, 2.5])
+ >>> x
+ array([1. , 2. , 2.5])
+
+ >>> x.astype(int)
+ array([1, 2, 2])
+
+ """))
+
+
+add_newdoc('numpy._core.multiarray', 'ndarray', ('byteswap',
+ """
+ a.byteswap(inplace=False)
+
+ Swap the bytes of the array elements
+
+ Toggle between low-endian and big-endian data representation by
+ returning a byteswapped array, optionally swapped in-place.
+ Arrays of byte-strings are not swapped. The real and imaginary
+ parts of a complex number are swapped individually.
+
+ Parameters
+ ----------
+ inplace : bool, optional
+ If ``True``, swap bytes in-place, default is ``False``.
+
+ Returns
+ -------
+ out : ndarray
+ The byteswapped array. If `inplace` is ``True``, this is
+ a view to self.
+
+ Examples
+ --------
+ >>> import numpy as np
+ >>> A = np.array([1, 256, 8755], dtype=np.int16)
+ >>> list(map(hex, A))
+ ['0x1', '0x100', '0x2233']
+ >>> A.byteswap(inplace=True)
+ array([ 256, 1, 13090], dtype=int16)
+ >>> list(map(hex, A))
+ ['0x100', '0x1', '0x3322']
+
+ Arrays of byte-strings are not swapped
+
+ >>> A = np.array([b'ceg', b'fac'])
+ >>> A.byteswap()
+ array([b'ceg', b'fac'], dtype='|S3')
+
+ ``A.view(A.dtype.newbyteorder()).byteswap()`` produces an array with
+ the same values but different representation in memory
+
+ >>> A = np.array([1, 2, 3],dtype=np.int64)
+ >>> A.view(np.uint8)
+ array([1, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0,
+ 0, 0], dtype=uint8)
+ >>> A.view(A.dtype.newbyteorder()).byteswap(inplace=True)
+ array([1, 2, 3], dtype='>i8')
+ >>> A.view(np.uint8)
+ array([0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0,
+ 0, 3], dtype=uint8)
+
+ """))
+
+
+add_newdoc('numpy._core.multiarray', 'ndarray', ('choose',
+ """
+ a.choose(choices, out=None, mode='raise')
+
+ Use an index array to construct a new array from a set of choices.
+
+ Refer to `numpy.choose` for full documentation.
+
+ See Also
+ --------
+ numpy.choose : equivalent function
+
+ """))
+
+
+add_newdoc('numpy._core.multiarray', 'ndarray', ('clip',
+ """
+ a.clip(min=None, max=None, out=None, **kwargs)
+
+ Return an array whose values are limited to ``[min, max]``.
+ One of max or min must be given.
+
+ Refer to `numpy.clip` for full documentation.
+
+ See Also
+ --------
+ numpy.clip : equivalent function
+
+ """))
+
+
+add_newdoc('numpy._core.multiarray', 'ndarray', ('compress',
+ """
+ a.compress(condition, axis=None, out=None)
+
+ Return selected slices of this array along given axis.
+
+ Refer to `numpy.compress` for full documentation.
+
+ See Also
+ --------
+ numpy.compress : equivalent function
+
+ """))
+
+
+add_newdoc('numpy._core.multiarray', 'ndarray', ('conj',
+ """
+ a.conj()
+
+ Complex-conjugate all elements.
+
+ Refer to `numpy.conjugate` for full documentation.
+
+ See Also
+ --------
+ numpy.conjugate : equivalent function
+
+ """))
+
+
+add_newdoc('numpy._core.multiarray', 'ndarray', ('conjugate',
+ """
+ a.conjugate()
+
+ Return the complex conjugate, element-wise.
+
+ Refer to `numpy.conjugate` for full documentation.
+
+ See Also
+ --------
+ numpy.conjugate : equivalent function
+
+ """))
+
+
+add_newdoc('numpy._core.multiarray', 'ndarray', ('copy',
+ """
+ a.copy(order='C')
+
+ Return a copy of the array.
+
+ Parameters
+ ----------
+ order : {'C', 'F', 'A', 'K'}, optional
+ Controls the memory layout of the copy. 'C' means C-order,
+ 'F' means F-order, 'A' means 'F' if `a` is Fortran contiguous,
+ 'C' otherwise. 'K' means match the layout of `a` as closely
+ as possible. (Note that this function and :func:`numpy.copy` are very
+ similar but have different default values for their order=
+ arguments, and this function always passes sub-classes through.)
+
+ See also
+ --------
+ numpy.copy : Similar function with different default behavior
+ numpy.copyto
+
+ Notes
+ -----
+ This function is the preferred method for creating an array copy. The
+ function :func:`numpy.copy` is similar, but it defaults to using order 'K',
+ and will not pass sub-classes through by default.
+
+ Examples
+ --------
+ >>> import numpy as np
+ >>> x = np.array([[1,2,3],[4,5,6]], order='F')
+
+ >>> y = x.copy()
+
+ >>> x.fill(0)
+
+ >>> x
+ array([[0, 0, 0],
+ [0, 0, 0]])
+
+ >>> y
+ array([[1, 2, 3],
+ [4, 5, 6]])
+
+ >>> y.flags['C_CONTIGUOUS']
+ True
+
+ For arrays containing Python objects (e.g. dtype=object),
+ the copy is a shallow one. The new array will contain the
+ same object which may lead to surprises if that object can
+ be modified (is mutable):
+
+ >>> a = np.array([1, 'm', [2, 3, 4]], dtype=object)
+ >>> b = a.copy()
+ >>> b[2][0] = 10
+ >>> a
+ array([1, 'm', list([10, 3, 4])], dtype=object)
+
+ To ensure all elements within an ``object`` array are copied,
+ use `copy.deepcopy`:
+
+ >>> import copy
+ >>> a = np.array([1, 'm', [2, 3, 4]], dtype=object)
+ >>> c = copy.deepcopy(a)
+ >>> c[2][0] = 10
+ >>> c
+ array([1, 'm', list([10, 3, 4])], dtype=object)
+ >>> a
+ array([1, 'm', list([2, 3, 4])], dtype=object)
+
+ """))
+
+
+add_newdoc('numpy._core.multiarray', 'ndarray', ('cumprod',
+ """
+ a.cumprod(axis=None, dtype=None, out=None)
+
+ Return the cumulative product of the elements along the given axis.
+
+ Refer to `numpy.cumprod` for full documentation.
+
+ See Also
+ --------
+ numpy.cumprod : equivalent function
+
+ """))
+
+
+add_newdoc('numpy._core.multiarray', 'ndarray', ('cumsum',
+ """
+ a.cumsum(axis=None, dtype=None, out=None)
+
+ Return the cumulative sum of the elements along the given axis.
+
+ Refer to `numpy.cumsum` for full documentation.
+
+ See Also
+ --------
+ numpy.cumsum : equivalent function
+
+ """))
+
+
+add_newdoc('numpy._core.multiarray', 'ndarray', ('diagonal',
+ """
+ a.diagonal(offset=0, axis1=0, axis2=1)
+
+ Return specified diagonals. In NumPy 1.9 the returned array is a
+ read-only view instead of a copy as in previous NumPy versions. In
+ a future version the read-only restriction will be removed.
+
+ Refer to :func:`numpy.diagonal` for full documentation.
+
+ See Also
+ --------
+ numpy.diagonal : equivalent function
+
+ """))
+
+
+add_newdoc('numpy._core.multiarray', 'ndarray', ('dot'))
+
+
+add_newdoc('numpy._core.multiarray', 'ndarray', ('dump',
+ """
+ a.dump(file)
+
+ Dump a pickle of the array to the specified file.
+ The array can be read back with pickle.load or numpy.load.
+
+ Parameters
+ ----------
+ file : str or Path
+ A string naming the dump file.
+
+ """))
+
+
+add_newdoc('numpy._core.multiarray', 'ndarray', ('dumps',
+ """
+ a.dumps()
+
+ Returns the pickle of the array as a string.
+ pickle.loads will convert the string back to an array.
+
+ Parameters
+ ----------
+ None
+
+ """))
+
+
+add_newdoc('numpy._core.multiarray', 'ndarray', ('fill',
+ """
+ a.fill(value)
+
+ Fill the array with a scalar value.
+
+ Parameters
+ ----------
+ value : scalar
+ All elements of `a` will be assigned this value.
+
+ Examples
+ --------
+ >>> import numpy as np
+ >>> a = np.array([1, 2])
+ >>> a.fill(0)
+ >>> a
+ array([0, 0])
+ >>> a = np.empty(2)
+ >>> a.fill(1)
+ >>> a
+ array([1., 1.])
+
+ Fill expects a scalar value and always behaves the same as assigning
+ to a single array element. The following is a rare example where this
+ distinction is important:
+
+ >>> a = np.array([None, None], dtype=object)
+ >>> a[0] = np.array(3)
+ >>> a
+ array([array(3), None], dtype=object)
+ >>> a.fill(np.array(3))
+ >>> a
+ array([array(3), array(3)], dtype=object)
+
+ Where other forms of assignments will unpack the array being assigned:
+
+ >>> a[...] = np.array(3)
+ >>> a
+ array([3, 3], dtype=object)
+
+ """))
+
+
+add_newdoc('numpy._core.multiarray', 'ndarray', ('flatten',
+ """
+ a.flatten(order='C')
+
+ Return a copy of the array collapsed into one dimension.
+
+ Parameters
+ ----------
+ order : {'C', 'F', 'A', 'K'}, optional
+ 'C' means to flatten in row-major (C-style) order.
+ 'F' means to flatten in column-major (Fortran-
+ style) order. 'A' means to flatten in column-major
+ order if `a` is Fortran *contiguous* in memory,
+ row-major order otherwise. 'K' means to flatten
+ `a` in the order the elements occur in memory.
+ The default is 'C'.
+
+ Returns
+ -------
+ y : ndarray
+ A copy of the input array, flattened to one dimension.
+
+ See Also
+ --------
+ ravel : Return a flattened array.
+ flat : A 1-D flat iterator over the array.
+
+ Examples
+ --------
+ >>> import numpy as np
+ >>> a = np.array([[1,2], [3,4]])
+ >>> a.flatten()
+ array([1, 2, 3, 4])
+ >>> a.flatten('F')
+ array([1, 3, 2, 4])
+
+ """))
+
+
+add_newdoc('numpy._core.multiarray', 'ndarray', ('getfield',
+ """
+ a.getfield(dtype, offset=0)
+
+ Returns a field of the given array as a certain type.
+
+ A field is a view of the array data with a given data-type. The values in
+ the view are determined by the given type and the offset into the current
+ array in bytes. The offset needs to be such that the view dtype fits in the
+ array dtype; for example an array of dtype complex128 has 16-byte elements.
+ If taking a view with a 32-bit integer (4 bytes), the offset needs to be
+ between 0 and 12 bytes.
+
+ Parameters
+ ----------
+ dtype : str or dtype
+ The data type of the view. The dtype size of the view can not be larger
+ than that of the array itself.
+ offset : int
+ Number of bytes to skip before beginning the element view.
+
+ Examples
+ --------
+ >>> import numpy as np
+ >>> x = np.diag([1.+1.j]*2)
+ >>> x[1, 1] = 2 + 4.j
+ >>> x
+ array([[1.+1.j, 0.+0.j],
+ [0.+0.j, 2.+4.j]])
+ >>> x.getfield(np.float64)
+ array([[1., 0.],
+ [0., 2.]])
+
+ By choosing an offset of 8 bytes we can select the complex part of the
+ array for our view:
+
+ >>> x.getfield(np.float64, offset=8)
+ array([[1., 0.],
+ [0., 4.]])
+
+ """))
+
+
+add_newdoc('numpy._core.multiarray', 'ndarray', ('item',
+ """
+ a.item(*args)
+
+ Copy an element of an array to a standard Python scalar and return it.
+
+ Parameters
+ ----------
+ \\*args : Arguments (variable number and type)
+
+ * none: in this case, the method only works for arrays
+ with one element (`a.size == 1`), which element is
+ copied into a standard Python scalar object and returned.
+
+ * int_type: this argument is interpreted as a flat index into
+ the array, specifying which element to copy and return.
+
+ * tuple of int_types: functions as does a single int_type argument,
+ except that the argument is interpreted as an nd-index into the
+ array.
+
+ Returns
+ -------
+ z : Standard Python scalar object
+ A copy of the specified element of the array as a suitable
+ Python scalar
+
+ Notes
+ -----
+ When the data type of `a` is longdouble or clongdouble, item() returns
+ a scalar array object because there is no available Python scalar that
+ would not lose information. Void arrays return a buffer object for item(),
+ unless fields are defined, in which case a tuple is returned.
+
+ `item` is very similar to a[args], except, instead of an array scalar,
+ a standard Python scalar is returned. This can be useful for speeding up
+ access to elements of the array and doing arithmetic on elements of the
+ array using Python's optimized math.
+
+ Examples
+ --------
+ >>> import numpy as np
+ >>> np.random.seed(123)
+ >>> x = np.random.randint(9, size=(3, 3))
+ >>> x
+ array([[2, 2, 6],
+ [1, 3, 6],
+ [1, 0, 1]])
+ >>> x.item(3)
+ 1
+ >>> x.item(7)
+ 0
+ >>> x.item((0, 1))
+ 2
+ >>> x.item((2, 2))
+ 1
+
+ For an array with object dtype, elements are returned as-is.
+
+ >>> a = np.array([np.int64(1)], dtype=object)
+ >>> a.item() #return np.int64
+ np.int64(1)
+
+ """))
+
+
+add_newdoc('numpy._core.multiarray', 'ndarray', ('max',
+ """
+ a.max(axis=None, out=None, keepdims=False, initial=<no value>, where=True)
+
+ Return the maximum along a given axis.
+
+ Refer to `numpy.amax` for full documentation.
+
+ See Also
+ --------
+ numpy.amax : equivalent function
+
+ """))
+
+
+add_newdoc('numpy._core.multiarray', 'ndarray', ('mean',
+ """
+ a.mean(axis=None, dtype=None, out=None, keepdims=False, *, where=True)
+
+ Returns the average of the array elements along given axis.
+
+ Refer to `numpy.mean` for full documentation.
+
+ See Also
+ --------
+ numpy.mean : equivalent function
+
+ """))
+
+
+add_newdoc('numpy._core.multiarray', 'ndarray', ('min',
+ """
+ a.min(axis=None, out=None, keepdims=False, initial=<no value>, where=True)
+
+ Return the minimum along a given axis.
+
+ Refer to `numpy.amin` for full documentation.
+
+ See Also
+ --------
+ numpy.amin : equivalent function
+
+ """))
+
+
+add_newdoc('numpy._core.multiarray', 'ndarray', ('nonzero',
+ """
+ a.nonzero()
+
+ Return the indices of the elements that are non-zero.
+
+ Refer to `numpy.nonzero` for full documentation.
+
+ See Also
+ --------
+ numpy.nonzero : equivalent function
+
+ """))
+
+
+add_newdoc('numpy._core.multiarray', 'ndarray', ('prod',
+ """
+ a.prod(axis=None, dtype=None, out=None, keepdims=False,
+ initial=1, where=True)
+
+ Return the product of the array elements over the given axis
+
+ Refer to `numpy.prod` for full documentation.
+
+ See Also
+ --------
+ numpy.prod : equivalent function
+
+ """))
+
+
+add_newdoc('numpy._core.multiarray', 'ndarray', ('put',
+ """
+ a.put(indices, values, mode='raise')
+
+ Set ``a.flat[n] = values[n]`` for all `n` in indices.
+
+ Refer to `numpy.put` for full documentation.
+
+ See Also
+ --------
+ numpy.put : equivalent function
+
+ """))
+
+
+add_newdoc('numpy._core.multiarray', 'ndarray', ('ravel',
+ """
+ a.ravel([order])
+
+ Return a flattened array.
+
+ Refer to `numpy.ravel` for full documentation.
+
+ See Also
+ --------
+ numpy.ravel : equivalent function
+
+ ndarray.flat : a flat iterator on the array.
+
+ """))
+
+
+add_newdoc('numpy._core.multiarray', 'ndarray', ('repeat',
+ """
+ a.repeat(repeats, axis=None)
+
+ Repeat elements of an array.
+
+ Refer to `numpy.repeat` for full documentation.
+
+ See Also
+ --------
+ numpy.repeat : equivalent function
+
+ """))
+
+
+add_newdoc('numpy._core.multiarray', 'ndarray', ('reshape',
+ """
+ a.reshape(shape, /, *, order='C', copy=None)
+
+ Returns an array containing the same data with a new shape.
+
+ Refer to `numpy.reshape` for full documentation.
+
+ See Also
+ --------
+ numpy.reshape : equivalent function
+
+ Notes
+ -----
+ Unlike the free function `numpy.reshape`, this method on `ndarray` allows
+ the elements of the shape parameter to be passed in as separate arguments.
+ For example, ``a.reshape(10, 11)`` is equivalent to
+ ``a.reshape((10, 11))``.
+
+ """))
+
+
+add_newdoc('numpy._core.multiarray', 'ndarray', ('resize',
+ """
+ a.resize(new_shape, refcheck=True)
+
+ Change shape and size of array in-place.
+
+ Parameters
+ ----------
+ new_shape : tuple of ints, or `n` ints
+ Shape of resized array.
+ refcheck : bool, optional
+ If False, reference count will not be checked. Default is True.
+
+ Returns
+ -------
+ None
+
+ Raises
+ ------
+ ValueError
+ If `a` does not own its own data or references or views to it exist,
+ and the data memory must be changed.
+ PyPy only: will always raise if the data memory must be changed, since
+ there is no reliable way to determine if references or views to it
+ exist.
+
+ SystemError
+ If the `order` keyword argument is specified. This behaviour is a
+ bug in NumPy.
+
+ See Also
+ --------
+ resize : Return a new array with the specified shape.
+
+ Notes
+ -----
+ This reallocates space for the data area if necessary.
+
+ Only contiguous arrays (data elements consecutive in memory) can be
+ resized.
+
+ The purpose of the reference count check is to make sure you
+ do not use this array as a buffer for another Python object and then
+ reallocate the memory. However, reference counts can increase in
+ other ways so if you are sure that you have not shared the memory
+ for this array with another Python object, then you may safely set
+ `refcheck` to False.
+
+ Examples
+ --------
+ Shrinking an array: array is flattened (in the order that the data are
+ stored in memory), resized, and reshaped:
+
+ >>> import numpy as np
+
+ >>> a = np.array([[0, 1], [2, 3]], order='C')
+ >>> a.resize((2, 1))
+ >>> a
+ array([[0],
+ [1]])
+
+ >>> a = np.array([[0, 1], [2, 3]], order='F')
+ >>> a.resize((2, 1))
+ >>> a
+ array([[0],
+ [2]])
+
+ Enlarging an array: as above, but missing entries are filled with zeros:
+
+ >>> b = np.array([[0, 1], [2, 3]])
+ >>> b.resize(2, 3) # new_shape parameter doesn't have to be a tuple
+ >>> b
+ array([[0, 1, 2],
+ [3, 0, 0]])
+
+ Referencing an array prevents resizing...
+
+ >>> c = a
+ >>> a.resize((1, 1))
+ Traceback (most recent call last):
+ ...
+ ValueError: cannot resize an array that references or is referenced ...
+
+ Unless `refcheck` is False:
+
+ >>> a.resize((1, 1), refcheck=False)
+ >>> a
+ array([[0]])
+ >>> c
+ array([[0]])
+
+ """))
+
+
+add_newdoc('numpy._core.multiarray', 'ndarray', ('round',
+ """
+ a.round(decimals=0, out=None)
+
+ Return `a` with each element rounded to the given number of decimals.
+
+ Refer to `numpy.around` for full documentation.
+
+ See Also
+ --------
+ numpy.around : equivalent function
+
+ """))
+
+
+add_newdoc('numpy._core.multiarray', 'ndarray', ('searchsorted',
+ """
+ a.searchsorted(v, side='left', sorter=None)
+
+ Find indices where elements of v should be inserted in a to maintain order.
+
+ For full documentation, see `numpy.searchsorted`
+
+ See Also
+ --------
+ numpy.searchsorted : equivalent function
+
+ """))
+
+
+add_newdoc('numpy._core.multiarray', 'ndarray', ('setfield',
+ """
+ a.setfield(val, dtype, offset=0)
+
+ Put a value into a specified place in a field defined by a data-type.
+
+ Place `val` into `a`'s field defined by `dtype` and beginning `offset`
+ bytes into the field.
+
+ Parameters
+ ----------
+ val : object
+ Value to be placed in field.
+ dtype : dtype object
+ Data-type of the field in which to place `val`.
+ offset : int, optional
+ The number of bytes into the field at which to place `val`.
+
+ Returns
+ -------
+ None
+
+ See Also
+ --------
+ getfield
+
+ Examples
+ --------
+ >>> import numpy as np
+ >>> x = np.eye(3)
+ >>> x.getfield(np.float64)
+ array([[1., 0., 0.],
+ [0., 1., 0.],
+ [0., 0., 1.]])
+ >>> x.setfield(3, np.int32)
+ >>> x.getfield(np.int32)
+ array([[3, 3, 3],
+ [3, 3, 3],
+ [3, 3, 3]], dtype=int32)
+ >>> x
+ array([[1.0e+000, 1.5e-323, 1.5e-323],
+ [1.5e-323, 1.0e+000, 1.5e-323],
+ [1.5e-323, 1.5e-323, 1.0e+000]])
+ >>> x.setfield(np.eye(3), np.int32)
+ >>> x
+ array([[1., 0., 0.],
+ [0., 1., 0.],
+ [0., 0., 1.]])
+
+ """))
+
+
+add_newdoc('numpy._core.multiarray', 'ndarray', ('setflags',
+ """
+ a.setflags(write=None, align=None, uic=None)
+
+ Set array flags WRITEABLE, ALIGNED, WRITEBACKIFCOPY,
+ respectively.
+
+ These Boolean-valued flags affect how numpy interprets the memory
+ area used by `a` (see Notes below). The ALIGNED flag can only
+ be set to True if the data is actually aligned according to the type.
+ The WRITEBACKIFCOPY flag can never be set
+ to True. The flag WRITEABLE can only be set to True if the array owns its
+ own memory, or the ultimate owner of the memory exposes a writeable buffer
+ interface, or is a string. (The exception for string is made so that
+ unpickling can be done without copying memory.)
+
+ Parameters
+ ----------
+ write : bool, optional
+ Describes whether or not `a` can be written to.
+ align : bool, optional
+ Describes whether or not `a` is aligned properly for its type.
+ uic : bool, optional
+ Describes whether or not `a` is a copy of another "base" array.
+
+ Notes
+ -----
+ Array flags provide information about how the memory area used
+ for the array is to be interpreted. There are 7 Boolean flags
+ in use, only three of which can be changed by the user:
+ WRITEBACKIFCOPY, WRITEABLE, and ALIGNED.
+
+ WRITEABLE (W) the data area can be written to;
+
+ ALIGNED (A) the data and strides are aligned appropriately for the hardware
+ (as determined by the compiler);
+
+ WRITEBACKIFCOPY (X) this array is a copy of some other array (referenced
+ by .base). When the C-API function PyArray_ResolveWritebackIfCopy is
+ called, the base array will be updated with the contents of this array.
+
+ All flags can be accessed using the single (upper case) letter as well
+ as the full name.
+
+ Examples
+ --------
+ >>> import numpy as np
+ >>> y = np.array([[3, 1, 7],
+ ... [2, 0, 0],
+ ... [8, 5, 9]])
+ >>> y
+ array([[3, 1, 7],
+ [2, 0, 0],
+ [8, 5, 9]])
+ >>> y.flags
+ C_CONTIGUOUS : True
+ F_CONTIGUOUS : False
+ OWNDATA : True
+ WRITEABLE : True
+ ALIGNED : True
+ WRITEBACKIFCOPY : False
+ >>> y.setflags(write=0, align=0)
+ >>> y.flags
+ C_CONTIGUOUS : True
+ F_CONTIGUOUS : False
+ OWNDATA : True
+ WRITEABLE : False
+ ALIGNED : False
+ WRITEBACKIFCOPY : False
+ >>> y.setflags(uic=1)
+ Traceback (most recent call last):
+ File "<stdin>", line 1, in <module>
+ ValueError: cannot set WRITEBACKIFCOPY flag to True
+
+ """))
+
+
+add_newdoc('numpy._core.multiarray', 'ndarray', ('sort',
+ """
+ a.sort(axis=-1, kind=None, order=None)
+
+ Sort an array in-place. Refer to `numpy.sort` for full documentation.
+
+ Parameters
+ ----------
+ axis : int, optional
+ Axis along which to sort. Default is -1, which means sort along the
+ last axis.
+ kind : {'quicksort', 'mergesort', 'heapsort', 'stable'}, optional
+ Sorting algorithm. The default is 'quicksort'. Note that both 'stable'
+ and 'mergesort' use timsort under the covers and, in general, the
+ actual implementation will vary with datatype. The 'mergesort' option
+ is retained for backwards compatibility.
+ order : str or list of str, optional
+ When `a` is an array with fields defined, this argument specifies
+ which fields to compare first, second, etc. A single field can
+ be specified as a string, and not all fields need be specified,
+ but unspecified fields will still be used, in the order in which
+ they come up in the dtype, to break ties.
+
+ See Also
+ --------
+ numpy.sort : Return a sorted copy of an array.
+ numpy.argsort : Indirect sort.
+ numpy.lexsort : Indirect stable sort on multiple keys.
+ numpy.searchsorted : Find elements in sorted array.
+ numpy.partition: Partial sort.
+
+ Notes
+ -----
+ See `numpy.sort` for notes on the different sorting algorithms.
+
+ Examples
+ --------
+ >>> import numpy as np
+ >>> a = np.array([[1,4], [3,1]])
+ >>> a.sort(axis=1)
+ >>> a
+ array([[1, 4],
+ [1, 3]])
+ >>> a.sort(axis=0)
+ >>> a
+ array([[1, 3],
+ [1, 4]])
+
+ Use the `order` keyword to specify a field to use when sorting a
+ structured array:
+
+ >>> a = np.array([('a', 2), ('c', 1)], dtype=[('x', 'S1'), ('y', int)])
+ >>> a.sort(order='y')
+ >>> a
+ array([(b'c', 1), (b'a', 2)],
+ dtype=[('x', 'S1'), ('y', '<i8')])
+
+ """))
+
+
+add_newdoc('numpy._core.multiarray', 'ndarray', ('partition',
+ """
+ a.partition(kth, axis=-1, kind='introselect', order=None)
+
+ Partially sorts the elements in the array in such a way that the value of
+ the element in k-th position is in the position it would be in a sorted
+ array. In the output array, all elements smaller than the k-th element
+ are located to the left of this element and all equal or greater are
+ located to its right. The ordering of the elements in the two partitions
+ on the either side of the k-th element in the output array is undefined.
+
+ Parameters
+ ----------
+ kth : int or sequence of ints
+ Element index to partition by. The kth element value will be in its
+ final sorted position and all smaller elements will be moved before it
+ and all equal or greater elements behind it.
+ The order of all elements in the partitions is undefined.
+ If provided with a sequence of kth it will partition all elements
+ indexed by kth of them into their sorted position at once.
+
+ .. deprecated:: 1.22.0
+ Passing booleans as index is deprecated.
+ axis : int, optional
+ Axis along which to sort. Default is -1, which means sort along the
+ last axis.
+ kind : {'introselect'}, optional
+ Selection algorithm. Default is 'introselect'.
+ order : str or list of str, optional
+ When `a` is an array with fields defined, this argument specifies
+ which fields to compare first, second, etc. A single field can
+ be specified as a string, and not all fields need to be specified,
+ but unspecified fields will still be used, in the order in which
+ they come up in the dtype, to break ties.
+
+ See Also
+ --------
+ numpy.partition : Return a partitioned copy of an array.
+ argpartition : Indirect partition.
+ sort : Full sort.
+
+ Notes
+ -----
+ See ``np.partition`` for notes on the different algorithms.
+
+ Examples
+ --------
+ >>> import numpy as np
+ >>> a = np.array([3, 4, 2, 1])
+ >>> a.partition(3)
+ >>> a
+ array([2, 1, 3, 4]) # may vary
+
+ >>> a.partition((1, 3))
+ >>> a
+ array([1, 2, 3, 4])
+ """))
+
+
+add_newdoc('numpy._core.multiarray', 'ndarray', ('squeeze',
+ """
+ a.squeeze(axis=None)
+
+ Remove axes of length one from `a`.
+
+ Refer to `numpy.squeeze` for full documentation.
+
+ See Also
+ --------
+ numpy.squeeze : equivalent function
+
+ """))
+
+
+add_newdoc('numpy._core.multiarray', 'ndarray', ('std',
+ """
+ a.std(axis=None, dtype=None, out=None, ddof=0, keepdims=False, *, where=True)
+
+ Returns the standard deviation of the array elements along given axis.
+
+ Refer to `numpy.std` for full documentation.
+
+ See Also
+ --------
+ numpy.std : equivalent function
+
+ """))
+
+
+add_newdoc('numpy._core.multiarray', 'ndarray', ('sum',
+ """
+ a.sum(axis=None, dtype=None, out=None, keepdims=False, initial=0, where=True)
+
+ Return the sum of the array elements over the given axis.
+
+ Refer to `numpy.sum` for full documentation.
+
+ See Also
+ --------
+ numpy.sum : equivalent function
+
+ """))
+
+
+add_newdoc('numpy._core.multiarray', 'ndarray', ('swapaxes',
+ """
+ a.swapaxes(axis1, axis2)
+
+ Return a view of the array with `axis1` and `axis2` interchanged.
+
+ Refer to `numpy.swapaxes` for full documentation.
+
+ See Also
+ --------
+ numpy.swapaxes : equivalent function
+
+ """))
+
+
+add_newdoc('numpy._core.multiarray', 'ndarray', ('take',
+ """
+ a.take(indices, axis=None, out=None, mode='raise')
+
+ Return an array formed from the elements of `a` at the given indices.
+
+ Refer to `numpy.take` for full documentation.
+
+ See Also
+ --------
+ numpy.take : equivalent function
+
+ """))
+
+
+add_newdoc('numpy._core.multiarray', 'ndarray', ('tofile',
+ """
+ a.tofile(fid, sep="", format="%s")
+
+ Write array to a file as text or binary (default).
+
+ Data is always written in 'C' order, independent of the order of `a`.
+ The data produced by this method can be recovered using the function
+ fromfile().
+
+ Parameters
+ ----------
+ fid : file or str or Path
+ An open file object, or a string containing a filename.
+ sep : str
+ Separator between array items for text output.
+ If "" (empty), a binary file is written, equivalent to
+ ``file.write(a.tobytes())``.
+ format : str
+ Format string for text file output.
+ Each entry in the array is formatted to text by first converting
+ it to the closest Python type, and then using "format" % item.
+
+ Notes
+ -----
+ This is a convenience function for quick storage of array data.
+ Information on endianness and precision is lost, so this method is not a
+ good choice for files intended to archive data or transport data between
+ machines with different endianness. Some of these problems can be overcome
+ by outputting the data as text files, at the expense of speed and file
+ size.
+
+ When fid is a file object, array contents are directly written to the
+ file, bypassing the file object's ``write`` method. As a result, tofile
+ cannot be used with files objects supporting compression (e.g., GzipFile)
+ or file-like objects that do not support ``fileno()`` (e.g., BytesIO).
+
+ """))
+
+
+add_newdoc('numpy._core.multiarray', 'ndarray', ('tolist',
+ """
+ a.tolist()
+
+ Return the array as an ``a.ndim``-levels deep nested list of Python scalars.
+
+ Return a copy of the array data as a (nested) Python list.
+ Data items are converted to the nearest compatible builtin Python type, via
+ the `~numpy.ndarray.item` function.
+
+ If ``a.ndim`` is 0, then since the depth of the nested list is 0, it will
+ not be a list at all, but a simple Python scalar.
+
+ Parameters
+ ----------
+ none
+
+ Returns
+ -------
+ y : object, or list of object, or list of list of object, or ...
+ The possibly nested list of array elements.
+
+ Notes
+ -----
+ The array may be recreated via ``a = np.array(a.tolist())``, although this
+ may sometimes lose precision.
+
+ Examples
+ --------
+ For a 1D array, ``a.tolist()`` is almost the same as ``list(a)``,
+ except that ``tolist`` changes numpy scalars to Python scalars:
+
+ >>> import numpy as np
+ >>> a = np.uint32([1, 2])
+ >>> a_list = list(a)
+ >>> a_list
+ [np.uint32(1), np.uint32(2)]
+ >>> type(a_list[0])
+ <class 'numpy.uint32'>
+ >>> a_tolist = a.tolist()
+ >>> a_tolist
+ [1, 2]
+ >>> type(a_tolist[0])
+ <class 'int'>
+
+ Additionally, for a 2D array, ``tolist`` applies recursively:
+
+ >>> a = np.array([[1, 2], [3, 4]])
+ >>> list(a)
+ [array([1, 2]), array([3, 4])]
+ >>> a.tolist()
+ [[1, 2], [3, 4]]
+
+ The base case for this recursion is a 0D array:
+
+ >>> a = np.array(1)
+ >>> list(a)
+ Traceback (most recent call last):
+ ...
+ TypeError: iteration over a 0-d array
+ >>> a.tolist()
+ 1
+ """))
+
+
+add_newdoc('numpy._core.multiarray', 'ndarray', ('tobytes', """
+ a.tobytes(order='C')
+
+ Construct Python bytes containing the raw data bytes in the array.
+
+ Constructs Python bytes showing a copy of the raw contents of
+ data memory. The bytes object is produced in C-order by default.
+ This behavior is controlled by the ``order`` parameter.
+
+ Parameters
+ ----------
+ order : {'C', 'F', 'A'}, optional
+ Controls the memory layout of the bytes object. 'C' means C-order,
+ 'F' means F-order, 'A' (short for *Any*) means 'F' if `a` is
+ Fortran contiguous, 'C' otherwise. Default is 'C'.
+
+ Returns
+ -------
+ s : bytes
+ Python bytes exhibiting a copy of `a`'s raw data.
+
+ See also
+ --------
+ frombuffer
+ Inverse of this operation, construct a 1-dimensional array from Python
+ bytes.
+
+ Examples
+ --------
+ >>> import numpy as np
+ >>> x = np.array([[0, 1], [2, 3]], dtype='<u2')
+ >>> x.tobytes()
+ b'\\x00\\x00\\x01\\x00\\x02\\x00\\x03\\x00'
+ >>> x.tobytes('C') == x.tobytes()
+ True
+ >>> x.tobytes('F')
+ b'\\x00\\x00\\x02\\x00\\x01\\x00\\x03\\x00'
+
+ """))
+
+
+add_newdoc('numpy._core.multiarray', 'ndarray', ('trace',
+ """
+ a.trace(offset=0, axis1=0, axis2=1, dtype=None, out=None)
+
+ Return the sum along diagonals of the array.
+
+ Refer to `numpy.trace` for full documentation.
+
+ See Also
+ --------
+ numpy.trace : equivalent function
+
+ """))
+
+
+add_newdoc('numpy._core.multiarray', 'ndarray', ('transpose',
+ """
+ a.transpose(*axes)
+
+ Returns a view of the array with axes transposed.
+
+ Refer to `numpy.transpose` for full documentation.
+
+ Parameters
+ ----------
+ axes : None, tuple of ints, or `n` ints
+
+ * None or no argument: reverses the order of the axes.
+
+ * tuple of ints: `i` in the `j`-th place in the tuple means that the
+ array's `i`-th axis becomes the transposed array's `j`-th axis.
+
+ * `n` ints: same as an n-tuple of the same ints (this form is
+ intended simply as a "convenience" alternative to the tuple form).
+
+ Returns
+ -------
+ p : ndarray
+ View of the array with its axes suitably permuted.
+
+ See Also
+ --------
+ transpose : Equivalent function.
+ ndarray.T : Array property returning the array transposed.
+ ndarray.reshape : Give a new shape to an array without changing its data.
+
+ Examples
+ --------
+ >>> import numpy as np
+ >>> a = np.array([[1, 2], [3, 4]])
+ >>> a
+ array([[1, 2],
+ [3, 4]])
+ >>> a.transpose()
+ array([[1, 3],
+ [2, 4]])
+ >>> a.transpose((1, 0))
+ array([[1, 3],
+ [2, 4]])
+ >>> a.transpose(1, 0)
+ array([[1, 3],
+ [2, 4]])
+
+ >>> a = np.array([1, 2, 3, 4])
+ >>> a
+ array([1, 2, 3, 4])
+ >>> a.transpose()
+ array([1, 2, 3, 4])
+
+ """))
+
+
+add_newdoc('numpy._core.multiarray', 'ndarray', ('var',
+ """
+ a.var(axis=None, dtype=None, out=None, ddof=0, keepdims=False, *, where=True)
+
+ Returns the variance of the array elements, along given axis.
+
+ Refer to `numpy.var` for full documentation.
+
+ See Also
+ --------
+ numpy.var : equivalent function
+
+ """))
+
+
+add_newdoc('numpy._core.multiarray', 'ndarray', ('view',
+ """
+ a.view([dtype][, type])
+
+ New view of array with the same data.
+
+ .. note::
+ Passing None for ``dtype`` is different from omitting the parameter,
+ since the former invokes ``dtype(None)`` which is an alias for
+ ``dtype('float64')``.
+
+ Parameters
+ ----------
+ dtype : data-type or ndarray sub-class, optional
+ Data-type descriptor of the returned view, e.g., float32 or int16.
+ Omitting it results in the view having the same data-type as `a`.
+ This argument can also be specified as an ndarray sub-class, which
+ then specifies the type of the returned object (this is equivalent to
+ setting the ``type`` parameter).
+ type : Python type, optional
+ Type of the returned view, e.g., ndarray or matrix. Again, omission
+ of the parameter results in type preservation.
+
+ Notes
+ -----
+ ``a.view()`` is used two different ways:
+
+ ``a.view(some_dtype)`` or ``a.view(dtype=some_dtype)`` constructs a view
+ of the array's memory with a different data-type. This can cause a
+ reinterpretation of the bytes of memory.
+
+ ``a.view(ndarray_subclass)`` or ``a.view(type=ndarray_subclass)`` just
+ returns an instance of `ndarray_subclass` that looks at the same array
+ (same shape, dtype, etc.) This does not cause a reinterpretation of the
+ memory.
+
+ For ``a.view(some_dtype)``, if ``some_dtype`` has a different number of
+ bytes per entry than the previous dtype (for example, converting a regular
+ array to a structured array), then the last axis of ``a`` must be
+ contiguous. This axis will be resized in the result.
+
+ .. versionchanged:: 1.23.0
+ Only the last axis needs to be contiguous. Previously, the entire array
+ had to be C-contiguous.
+
+ Examples
+ --------
+ >>> import numpy as np
+ >>> x = np.array([(-1, 2)], dtype=[('a', np.int8), ('b', np.int8)])
+
+ Viewing array data using a different type and dtype:
+
+ >>> nonneg = np.dtype([("a", np.uint8), ("b", np.uint8)])
+ >>> y = x.view(dtype=nonneg, type=np.recarray)
+ >>> x["a"]
+ array([-1], dtype=int8)
+ >>> y.a
+ array([255], dtype=uint8)
+
+ Creating a view on a structured array so it can be used in calculations
+
+ >>> x = np.array([(1, 2),(3,4)], dtype=[('a', np.int8), ('b', np.int8)])
+ >>> xv = x.view(dtype=np.int8).reshape(-1,2)
+ >>> xv
+ array([[1, 2],
+ [3, 4]], dtype=int8)
+ >>> xv.mean(0)
+ array([2., 3.])
+
+ Making changes to the view changes the underlying array
+
+ >>> xv[0,1] = 20
+ >>> x
+ array([(1, 20), (3, 4)], dtype=[('a', 'i1'), ('b', 'i1')])
+
+ Using a view to convert an array to a recarray:
+
+ >>> z = x.view(np.recarray)
+ >>> z.a
+ array([1, 3], dtype=int8)
+
+ Views share data:
+
+ >>> x[0] = (9, 10)
+ >>> z[0]
+ np.record((9, 10), dtype=[('a', 'i1'), ('b', 'i1')])
+
+ Views that change the dtype size (bytes per entry) should normally be
+ avoided on arrays defined by slices, transposes, fortran-ordering, etc.:
+
+ >>> x = np.array([[1, 2, 3], [4, 5, 6]], dtype=np.int16)
+ >>> y = x[:, ::2]
+ >>> y
+ array([[1, 3],
+ [4, 6]], dtype=int16)
+ >>> y.view(dtype=[('width', np.int16), ('length', np.int16)])
+ Traceback (most recent call last):
+ ...
+ ValueError: To change to a dtype of a different size, the last axis must be contiguous
+ >>> z = y.copy()
+ >>> z.view(dtype=[('width', np.int16), ('length', np.int16)])
+ array([[(1, 3)],
+ [(4, 6)]], dtype=[('width', '<i2'), ('length', '<i2')])
+
+ However, views that change dtype are totally fine for arrays with a
+ contiguous last axis, even if the rest of the axes are not C-contiguous:
+
+ >>> x = np.arange(2 * 3 * 4, dtype=np.int8).reshape(2, 3, 4)
+ >>> x.transpose(1, 0, 2).view(np.int16)
+ array([[[ 256, 770],
+ [3340, 3854]],
+ <BLANKLINE>
+ [[1284, 1798],
+ [4368, 4882]],
+ <BLANKLINE>
+ [[2312, 2826],
+ [5396, 5910]]], dtype=int16)
+
+ """))
+
+
+##############################################################################
+#
+# umath functions
+#
+##############################################################################
+
+add_newdoc('numpy._core.umath', 'frompyfunc',
+ """
+ frompyfunc(func, /, nin, nout, *[, identity])
+
+ Takes an arbitrary Python function and returns a NumPy ufunc.
+
+ Can be used, for example, to add broadcasting to a built-in Python
+ function (see Examples section).
+
+ Parameters
+ ----------
+ func : Python function object
+ An arbitrary Python function.
+ nin : int
+ The number of input arguments.
+ nout : int
+ The number of objects returned by `func`.
+ identity : object, optional
+ The value to use for the `~numpy.ufunc.identity` attribute of the resulting
+ object. If specified, this is equivalent to setting the underlying
+ C ``identity`` field to ``PyUFunc_IdentityValue``.
+ If omitted, the identity is set to ``PyUFunc_None``. Note that this is
+ _not_ equivalent to setting the identity to ``None``, which implies the
+ operation is reorderable.
+
+ Returns
+ -------
+ out : ufunc
+ Returns a NumPy universal function (``ufunc``) object.
+
+ See Also
+ --------
+ vectorize : Evaluates pyfunc over input arrays using broadcasting rules of numpy.
+
+ Notes
+ -----
+ The returned ufunc always returns PyObject arrays.
+
+ Examples
+ --------
+ Use frompyfunc to add broadcasting to the Python function ``oct``:
+
+ >>> import numpy as np
+ >>> oct_array = np.frompyfunc(oct, 1, 1)
+ >>> oct_array(np.array((10, 30, 100)))
+ array(['0o12', '0o36', '0o144'], dtype=object)
+ >>> np.array((oct(10), oct(30), oct(100))) # for comparison
+ array(['0o12', '0o36', '0o144'], dtype='<U5')
+
+ """)
+
+
+##############################################################################
+#
+# compiled_base functions
+#
+##############################################################################
+
+add_newdoc('numpy._core.multiarray', 'add_docstring',
+ """
+ add_docstring(obj, docstring)
+
+ Add a docstring to a built-in obj if possible.
+ If the obj already has a docstring raise a RuntimeError
+ If this routine does not know how to add a docstring to the object
+ raise a TypeError
+ """)
+
+add_newdoc('numpy._core.umath', '_add_newdoc_ufunc',
+ """
+ add_ufunc_docstring(ufunc, new_docstring)
+
+ Replace the docstring for a ufunc with new_docstring.
+ This method will only work if the current docstring for
+ the ufunc is NULL. (At the C level, i.e. when ufunc->doc is NULL.)
+
+ Parameters
+ ----------
+ ufunc : numpy.ufunc
+ A ufunc whose current doc is NULL.
+ new_docstring : string
+ The new docstring for the ufunc.
+
+ Notes
+ -----
+ This method allocates memory for new_docstring on
+ the heap. Technically this creates a memory leak, since this
+ memory will not be reclaimed until the end of the program
+ even if the ufunc itself is removed. However this will only
+ be a problem if the user is repeatedly creating ufuncs with
+ no documentation, adding documentation via add_newdoc_ufunc,
+ and then throwing away the ufunc.
+ """)
+
+add_newdoc('numpy._core.multiarray', 'get_handler_name',
+ """
+ get_handler_name(a: ndarray) -> str,None
+
+ Return the name of the memory handler used by `a`. If not provided, return
+ the name of the memory handler that will be used to allocate data for the
+ next `ndarray` in this context. May return None if `a` does not own its
+ memory, in which case you can traverse ``a.base`` for a memory handler.
+ """)
+
+add_newdoc('numpy._core.multiarray', 'get_handler_version',
+ """
+ get_handler_version(a: ndarray) -> int,None
+
+ Return the version of the memory handler used by `a`. If not provided,
+ return the version of the memory handler that will be used to allocate data
+ for the next `ndarray` in this context. May return None if `a` does not own
+ its memory, in which case you can traverse ``a.base`` for a memory handler.
+ """)
+
+add_newdoc('numpy._core._multiarray_umath', '_array_converter',
+ """
+ _array_converter(*array_likes)
+
+ Helper to convert one or more objects to arrays. Integrates machinery
+ to deal with the ``result_type`` and ``__array_wrap__``.
+
+ The reason for this is that e.g. ``result_type`` needs to convert to arrays
+ to find the ``dtype``. But converting to an array before calling
+ ``result_type`` would incorrectly "forget" whether it was a Python int,
+ float, or complex.
+ """)
+
+add_newdoc(
+ 'numpy._core._multiarray_umath', '_array_converter', ('scalar_input',
+ """
+ A tuple which indicates for each input whether it was a scalar that
+ was coerced to a 0-D array (and was not already an array or something
+ converted via a protocol like ``__array__()``).
+ """))
+
+add_newdoc('numpy._core._multiarray_umath', '_array_converter', ('as_arrays',
+ """
+ as_arrays(/, subok=True, pyscalars="convert_if_no_array")
+
+ Return the inputs as arrays or scalars.
+
+ Parameters
+ ----------
+ subok : True or False, optional
+ Whether array subclasses are preserved.
+ pyscalars : {"convert", "preserve", "convert_if_no_array"}, optional
+ To allow NEP 50 weak promotion later, it may be desirable to preserve
+ Python scalars. As default, these are preserved unless all inputs
+ are Python scalars. "convert" enforces an array return.
+ """))
+
+add_newdoc('numpy._core._multiarray_umath', '_array_converter', ('result_type',
+ """result_type(/, extra_dtype=None, ensure_inexact=False)
+
+ Find the ``result_type`` just as ``np.result_type`` would, but taking
+ into account that the original inputs (before converting to an array) may
+ have been Python scalars with weak promotion.
+
+ Parameters
+ ----------
+ extra_dtype : dtype instance or class
+ An additional DType or dtype instance to promote (e.g. could be used
+ to ensure the result precision is at least float32).
+ ensure_inexact : True or False
+ When ``True``, ensures a floating point (or complex) result replacing
+ the ``arr * 1.`` or ``result_type(..., 0.0)`` pattern.
+ """))
+
+add_newdoc('numpy._core._multiarray_umath', '_array_converter', ('wrap',
+ """
+ wrap(arr, /, to_scalar=None)
+
+ Call ``__array_wrap__`` on ``arr`` if ``arr`` is not the same subclass
+ as the input the ``__array_wrap__`` method was retrieved from.
+
+ Parameters
+ ----------
+ arr : ndarray
+ The object to be wrapped. Normally an ndarray or subclass,
+ although for backward compatibility NumPy scalars are also accepted
+ (these will be converted to a NumPy array before being passed on to
+ the ``__array_wrap__`` method).
+ to_scalar : {True, False, None}, optional
+ When ``True`` will convert a 0-d array to a scalar via ``result[()]``
+ (with a fast-path for non-subclasses). If ``False`` the result should
+ be an array-like (as ``__array_wrap__`` is free to return a non-array).
+ By default (``None``), a scalar is returned if all inputs were scalar.
+ """))
+
+
+add_newdoc('numpy._core.multiarray', '_get_madvise_hugepage',
+ """
+ _get_madvise_hugepage() -> bool
+
+ Get use of ``madvise (2)`` MADV_HUGEPAGE support when
+ allocating the array data. Returns the currently set value.
+ See `global_state` for more information.
+ """)
+
+add_newdoc('numpy._core.multiarray', '_set_madvise_hugepage',
+ """
+ _set_madvise_hugepage(enabled: bool) -> bool
+
+ Set or unset use of ``madvise (2)`` MADV_HUGEPAGE support when
+ allocating the array data. Returns the previously set value.
+ See `global_state` for more information.
+ """)
+
+
+##############################################################################
+#
+# Documentation for ufunc attributes and methods
+#
+##############################################################################
+
+
+##############################################################################
+#
+# ufunc object
+#
+##############################################################################
+
+add_newdoc('numpy._core', 'ufunc',
+ """
+ Functions that operate element by element on whole arrays.
+
+ To see the documentation for a specific ufunc, use `info`. For
+ example, ``np.info(np.sin)``. Because ufuncs are written in C
+ (for speed) and linked into Python with NumPy's ufunc facility,
+ Python's help() function finds this page whenever help() is called
+ on a ufunc.
+
+ A detailed explanation of ufuncs can be found in the docs for :ref:`ufuncs`.
+
+ **Calling ufuncs:** ``op(*x[, out], where=True, **kwargs)``
+
+ Apply `op` to the arguments `*x` elementwise, broadcasting the arguments.
+
+ The broadcasting rules are:
+
+ * Dimensions of length 1 may be prepended to either array.
+ * Arrays may be repeated along dimensions of length 1.
+
+ Parameters
+ ----------
+ *x : array_like
+ Input arrays.
+ out : ndarray, None, ..., or tuple of ndarray and None, optional
+ Location(s) into which the result(s) are stored.
+ If not provided or None, new array(s) are created by the ufunc.
+ If passed as a keyword argument, can be Ellipses (``out=...``) to
+ ensure an array is returned even if the result is 0-dimensional,
+ or a tuple with length equal to the number of outputs (where None
+ can be used for allocation by the ufunc).
+
+ .. versionadded:: 2.3
+ Support for ``out=...`` was added.
+
+ where : array_like, optional
+ This condition is broadcast over the input. At locations where the
+ condition is True, the `out` array will be set to the ufunc result.
+ Elsewhere, the `out` array will retain its original value.
+ Note that if an uninitialized `out` array is created via the default
+ ``out=None``, locations within it where the condition is False will
+ remain uninitialized.
+ **kwargs
+ For other keyword-only arguments, see the :ref:`ufunc docs <ufuncs.kwargs>`.
+
+ Returns
+ -------
+ r : ndarray or tuple of ndarray
+ `r` will have the shape that the arrays in `x` broadcast to; if `out` is
+ provided, it will be returned. If not, `r` will be allocated and
+ may contain uninitialized values. If the function has more than one
+ output, then the result will be a tuple of arrays.
+
+ """)
+
+
+##############################################################################
+#
+# ufunc attributes
+#
+##############################################################################
+
+add_newdoc('numpy._core', 'ufunc', ('identity',
+ """
+ The identity value.
+
+ Data attribute containing the identity element for the ufunc,
+ if it has one. If it does not, the attribute value is None.
+
+ Examples
+ --------
+ >>> import numpy as np
+ >>> np.add.identity
+ 0
+ >>> np.multiply.identity
+ 1
+ >>> print(np.power.identity)
+ None
+ >>> print(np.exp.identity)
+ None
+ """))
+
+add_newdoc('numpy._core', 'ufunc', ('nargs',
+ """
+ The number of arguments.
+
+ Data attribute containing the number of arguments the ufunc takes, including
+ optional ones.
+
+ Notes
+ -----
+ Typically this value will be one more than what you might expect
+ because all ufuncs take the optional "out" argument.
+
+ Examples
+ --------
+ >>> import numpy as np
+ >>> np.add.nargs
+ 3
+ >>> np.multiply.nargs
+ 3
+ >>> np.power.nargs
+ 3
+ >>> np.exp.nargs
+ 2
+ """))
+
+add_newdoc('numpy._core', 'ufunc', ('nin',
+ """
+ The number of inputs.
+
+ Data attribute containing the number of arguments the ufunc treats as input.
+
+ Examples
+ --------
+ >>> import numpy as np
+ >>> np.add.nin
+ 2
+ >>> np.multiply.nin
+ 2
+ >>> np.power.nin
+ 2
+ >>> np.exp.nin
+ 1
+ """))
+
+add_newdoc('numpy._core', 'ufunc', ('nout',
+ """
+ The number of outputs.
+
+ Data attribute containing the number of arguments the ufunc treats as output.
+
+ Notes
+ -----
+ Since all ufuncs can take output arguments, this will always be at least 1.
+
+ Examples
+ --------
+ >>> import numpy as np
+ >>> np.add.nout
+ 1
+ >>> np.multiply.nout
+ 1
+ >>> np.power.nout
+ 1
+ >>> np.exp.nout
+ 1
+
+ """))
+
+add_newdoc('numpy._core', 'ufunc', ('ntypes',
+ """
+ The number of types.
+
+ The number of numerical NumPy types - of which there are 18 total - on which
+ the ufunc can operate.
+
+ See Also
+ --------
+ numpy.ufunc.types
+
+ Examples
+ --------
+ >>> import numpy as np
+ >>> np.add.ntypes
+ 22
+ >>> np.multiply.ntypes
+ 23
+ >>> np.power.ntypes
+ 21
+ >>> np.exp.ntypes
+ 10
+ >>> np.remainder.ntypes
+ 16
+
+ """))
+
+add_newdoc('numpy._core', 'ufunc', ('types',
+ """
+ Returns a list with types grouped input->output.
+
+ Data attribute listing the data-type "Domain-Range" groupings the ufunc can
+ deliver. The data-types are given using the character codes.
+
+ See Also
+ --------
+ numpy.ufunc.ntypes
+
+ Examples
+ --------
+ >>> import numpy as np
+ >>> np.add.types
+ ['??->?', 'bb->b', 'BB->B', 'hh->h', 'HH->H', 'ii->i', 'II->I', ...
+
+ >>> np.power.types
+ ['bb->b', 'BB->B', 'hh->h', 'HH->H', 'ii->i', 'II->I', 'll->l', ...
+
+ >>> np.exp.types
+ ['e->e', 'f->f', 'd->d', 'f->f', 'd->d', 'g->g', 'F->F', 'D->D', 'G->G', 'O->O']
+
+ >>> np.remainder.types
+ ['bb->b', 'BB->B', 'hh->h', 'HH->H', 'ii->i', 'II->I', 'll->l', ...
+
+ """))
+
+add_newdoc('numpy._core', 'ufunc', ('signature',
+ """
+ Definition of the core elements a generalized ufunc operates on.
+
+ The signature determines how the dimensions of each input/output array
+ are split into core and loop dimensions:
+
+ 1. Each dimension in the signature is matched to a dimension of the
+ corresponding passed-in array, starting from the end of the shape tuple.
+ 2. Core dimensions assigned to the same label in the signature must have
+ exactly matching sizes, no broadcasting is performed.
+ 3. The core dimensions are removed from all inputs and the remaining
+ dimensions are broadcast together, defining the loop dimensions.
+
+ Notes
+ -----
+ Generalized ufuncs are used internally in many linalg functions, and in
+ the testing suite; the examples below are taken from these.
+ For ufuncs that operate on scalars, the signature is None, which is
+ equivalent to '()' for every argument.
+
+ Examples
+ --------
+ >>> import numpy as np
+ >>> np.linalg._umath_linalg.det.signature
+ '(m,m)->()'
+ >>> np.matmul.signature
+ '(n?,k),(k,m?)->(n?,m?)'
+ >>> np.add.signature is None
+ True # equivalent to '(),()->()'
+ """))
+
+##############################################################################
+#
+# ufunc methods
+#
+##############################################################################
+
+add_newdoc('numpy._core', 'ufunc', ('reduce',
+ """
+ reduce(array, axis=0, dtype=None, out=None, keepdims=False, initial=<no value>, where=True)
+
+ Reduces `array`'s dimension by one, by applying ufunc along one axis.
+
+ Let :math:`array.shape = (N_0, ..., N_i, ..., N_{M-1})`. Then
+ :math:`ufunc.reduce(array, axis=i)[k_0, ..,k_{i-1}, k_{i+1}, .., k_{M-1}]` =
+ the result of iterating `j` over :math:`range(N_i)`, cumulatively applying
+ ufunc to each :math:`array[k_0, ..,k_{i-1}, j, k_{i+1}, .., k_{M-1}]`.
+ For a one-dimensional array, reduce produces results equivalent to:
+ ::
+
+ r = op.identity # op = ufunc
+ for i in range(len(A)):
+ r = op(r, A[i])
+ return r
+
+ For example, add.reduce() is equivalent to sum().
+
+ Parameters
+ ----------
+ array : array_like
+ The array to act on.
+ axis : None or int or tuple of ints, optional
+ Axis or axes along which a reduction is performed.
+ The default (`axis` = 0) is perform a reduction over the first
+ dimension of the input array. `axis` may be negative, in
+ which case it counts from the last to the first axis.
+
+ If this is None, a reduction is performed over all the axes.
+ If this is a tuple of ints, a reduction is performed on multiple
+ axes, instead of a single axis or all the axes as before.
+
+ For operations which are either not commutative or not associative,
+ doing a reduction over multiple axes is not well-defined. The
+ ufuncs do not currently raise an exception in this case, but will
+ likely do so in the future.
+ dtype : data-type code, optional
+ The data type used to perform the operation. Defaults to that of
+ ``out`` if given, and the data type of ``array`` otherwise (though
+ upcast to conserve precision for some cases, such as
+ ``numpy.add.reduce`` for integer or boolean input).
+ out : ndarray, None, ..., or tuple of ndarray and None, optional
+ Location into which the result is stored.
+ If not provided or None, a freshly-allocated array is returned.
+ If passed as a keyword argument, can be Ellipses (``out=...``) to
+ ensure an array is returned even if the result is 0-dimensional
+ (which is useful especially for object dtype), or a 1-element tuple
+ (latter for consistency with ``ufunc.__call__``).
+
+ .. versionadded:: 2.3
+ Support for ``out=...`` was added.
+
+ keepdims : bool, optional
+ If this is set to True, the axes which are reduced are left
+ in the result as dimensions with size one. With this option,
+ the result will broadcast correctly against the original `array`.
+ initial : scalar, optional
+ The value with which to start the reduction.
+ If the ufunc has no identity or the dtype is object, this defaults
+ to None - otherwise it defaults to ufunc.identity.
+ If ``None`` is given, the first element of the reduction is used,
+ and an error is thrown if the reduction is empty.
+ where : array_like of bool, optional
+ A boolean array which is broadcasted to match the dimensions
+ of `array`, and selects elements to include in the reduction. Note
+ that for ufuncs like ``minimum`` that do not have an identity
+ defined, one has to pass in also ``initial``.
+
+ Returns
+ -------
+ r : ndarray
+ The reduced array. If `out` was supplied, `r` is a reference to it.
+
+ Examples
+ --------
+ >>> import numpy as np
+ >>> np.multiply.reduce([2,3,5])
+ 30
+
+ A multi-dimensional array example:
+
+ >>> X = np.arange(8).reshape((2,2,2))
+ >>> X
+ array([[[0, 1],
+ [2, 3]],
+ [[4, 5],
+ [6, 7]]])
+ >>> np.add.reduce(X, 0)
+ array([[ 4, 6],
+ [ 8, 10]])
+ >>> np.add.reduce(X) # confirm: default axis value is 0
+ array([[ 4, 6],
+ [ 8, 10]])
+ >>> np.add.reduce(X, 1)
+ array([[ 2, 4],
+ [10, 12]])
+ >>> np.add.reduce(X, 2)
+ array([[ 1, 5],
+ [ 9, 13]])
+
+ You can use the ``initial`` keyword argument to initialize the reduction
+ with a different value, and ``where`` to select specific elements to include:
+
+ >>> np.add.reduce([10], initial=5)
+ 15
+ >>> np.add.reduce(np.ones((2, 2, 2)), axis=(0, 2), initial=10)
+ array([14., 14.])
+ >>> a = np.array([10., np.nan, 10])
+ >>> np.add.reduce(a, where=~np.isnan(a))
+ 20.0
+
+ Allows reductions of empty arrays where they would normally fail, i.e.
+ for ufuncs without an identity.
+
+ >>> np.minimum.reduce([], initial=np.inf)
+ inf
+ >>> np.minimum.reduce([[1., 2.], [3., 4.]], initial=10., where=[True, False])
+ array([ 1., 10.])
+ >>> np.minimum.reduce([])
+ Traceback (most recent call last):
+ ...
+ ValueError: zero-size array to reduction operation minimum which has no identity
+ """))
+
+add_newdoc('numpy._core', 'ufunc', ('accumulate',
+ """
+ accumulate(array, axis=0, dtype=None, out=None)
+
+ Accumulate the result of applying the operator to all elements.
+
+ For a one-dimensional array, accumulate produces results equivalent to::
+
+ r = np.empty(len(A))
+ t = op.identity # op = the ufunc being applied to A's elements
+ for i in range(len(A)):
+ t = op(t, A[i])
+ r[i] = t
+ return r
+
+ For example, add.accumulate() is equivalent to np.cumsum().
+
+ For a multi-dimensional array, accumulate is applied along only one
+ axis (axis zero by default; see Examples below) so repeated use is
+ necessary if one wants to accumulate over multiple axes.
+
+ Parameters
+ ----------
+ array : array_like
+ The array to act on.
+ axis : int, optional
+ The axis along which to apply the accumulation; default is zero.
+ dtype : data-type code, optional
+ The data-type used to represent the intermediate results. Defaults
+ to the data-type of the output array if such is provided, or the
+ data-type of the input array if no output array is provided.
+ out : ndarray, None, or tuple of ndarray and None, optional
+ Location into which the result is stored.
+ If not provided or None, a freshly-allocated array is returned.
+ For consistency with ``ufunc.__call__``, if passed as a keyword
+ argument, can be Ellipses (``out=...``, which has the same effect
+ as None as an array is always returned), or a 1-element tuple.
+
+ Returns
+ -------
+ r : ndarray
+ The accumulated values. If `out` was supplied, `r` is a reference to
+ `out`.
+
+ Examples
+ --------
+ 1-D array examples:
+
+ >>> import numpy as np
+ >>> np.add.accumulate([2, 3, 5])
+ array([ 2, 5, 10])
+ >>> np.multiply.accumulate([2, 3, 5])
+ array([ 2, 6, 30])
+
+ 2-D array examples:
+
+ >>> I = np.eye(2)
+ >>> I
+ array([[1., 0.],
+ [0., 1.]])
+
+ Accumulate along axis 0 (rows), down columns:
+
+ >>> np.add.accumulate(I, 0)
+ array([[1., 0.],
+ [1., 1.]])
+ >>> np.add.accumulate(I) # no axis specified = axis zero
+ array([[1., 0.],
+ [1., 1.]])
+
+ Accumulate along axis 1 (columns), through rows:
+
+ >>> np.add.accumulate(I, 1)
+ array([[1., 1.],
+ [0., 1.]])
+
+ """))
+
+add_newdoc('numpy._core', 'ufunc', ('reduceat',
+ """
+ reduceat(array, indices, axis=0, dtype=None, out=None)
+
+ Performs a (local) reduce with specified slices over a single axis.
+
+ For i in ``range(len(indices))``, `reduceat` computes
+ ``ufunc.reduce(array[indices[i]:indices[i+1]])``, which becomes the i-th
+ generalized "row" parallel to `axis` in the final result (i.e., in a
+ 2-D array, for example, if `axis = 0`, it becomes the i-th row, but if
+ `axis = 1`, it becomes the i-th column). There are three exceptions to this:
+
+ * when ``i = len(indices) - 1`` (so for the last index),
+ ``indices[i+1] = array.shape[axis]``.
+ * if ``indices[i] >= indices[i + 1]``, the i-th generalized "row" is
+ simply ``array[indices[i]]``.
+ * if ``indices[i] >= len(array)`` or ``indices[i] < 0``, an error is raised.
+
+ The shape of the output depends on the size of `indices`, and may be
+ larger than `array` (this happens if ``len(indices) > array.shape[axis]``).
+
+ Parameters
+ ----------
+ array : array_like
+ The array to act on.
+ indices : array_like
+ Paired indices, comma separated (not colon), specifying slices to
+ reduce.
+ axis : int, optional
+ The axis along which to apply the reduceat.
+ dtype : data-type code, optional
+ The data type used to perform the operation. Defaults to that of
+ ``out`` if given, and the data type of ``array`` otherwise (though
+ upcast to conserve precision for some cases, such as
+ ``numpy.add.reduce`` for integer or boolean input).
+ out : ndarray, None, or tuple of ndarray and None, optional
+ Location into which the result is stored.
+ If not provided or None, a freshly-allocated array is returned.
+ For consistency with ``ufunc.__call__``, if passed as a keyword
+ argument, can be Ellipses (``out=...``, which has the same effect
+ as None as an array is always returned), or a 1-element tuple.
+
+ Returns
+ -------
+ r : ndarray
+ The reduced values. If `out` was supplied, `r` is a reference to
+ `out`.
+
+ Notes
+ -----
+ A descriptive example:
+
+ If `array` is 1-D, the function `ufunc.accumulate(array)` is the same as
+ ``ufunc.reduceat(array, indices)[::2]`` where `indices` is
+ ``range(len(array) - 1)`` with a zero placed
+ in every other element:
+ ``indices = zeros(2 * len(array) - 1)``,
+ ``indices[1::2] = range(1, len(array))``.
+
+ Don't be fooled by this attribute's name: `reduceat(array)` is not
+ necessarily smaller than `array`.
+
+ Examples
+ --------
+ To take the running sum of four successive values:
+
+ >>> import numpy as np
+ >>> np.add.reduceat(np.arange(8),[0,4, 1,5, 2,6, 3,7])[::2]
+ array([ 6, 10, 14, 18])
+
+ A 2-D example:
+
+ >>> x = np.linspace(0, 15, 16).reshape(4,4)
+ >>> x
+ array([[ 0., 1., 2., 3.],
+ [ 4., 5., 6., 7.],
+ [ 8., 9., 10., 11.],
+ [12., 13., 14., 15.]])
+
+ ::
+
+ # reduce such that the result has the following five rows:
+ # [row1 + row2 + row3]
+ # [row4]
+ # [row2]
+ # [row3]
+ # [row1 + row2 + row3 + row4]
+
+ >>> np.add.reduceat(x, [0, 3, 1, 2, 0])
+ array([[12., 15., 18., 21.],
+ [12., 13., 14., 15.],
+ [ 4., 5., 6., 7.],
+ [ 8., 9., 10., 11.],
+ [24., 28., 32., 36.]])
+
+ ::
+
+ # reduce such that result has the following two columns:
+ # [col1 * col2 * col3, col4]
+
+ >>> np.multiply.reduceat(x, [0, 3], 1)
+ array([[ 0., 3.],
+ [ 120., 7.],
+ [ 720., 11.],
+ [2184., 15.]])
+
+ """))
+
+add_newdoc('numpy._core', 'ufunc', ('outer',
+ r"""
+ outer(A, B, /, **kwargs)
+
+ Apply the ufunc `op` to all pairs (a, b) with a in `A` and b in `B`.
+
+ Let ``M = A.ndim``, ``N = B.ndim``. Then the result, `C`, of
+ ``op.outer(A, B)`` is an array of dimension M + N such that:
+
+ .. math:: C[i_0, ..., i_{M-1}, j_0, ..., j_{N-1}] =
+ op(A[i_0, ..., i_{M-1}], B[j_0, ..., j_{N-1}])
+
+ For `A` and `B` one-dimensional, this is equivalent to::
+
+ r = empty(len(A),len(B))
+ for i in range(len(A)):
+ for j in range(len(B)):
+ r[i,j] = op(A[i], B[j]) # op = ufunc in question
+
+ Parameters
+ ----------
+ A : array_like
+ First array
+ B : array_like
+ Second array
+ kwargs : any
+ Arguments to pass on to the ufunc. Typically `dtype` or `out`.
+ See `ufunc` for a comprehensive overview of all available arguments.
+
+ Returns
+ -------
+ r : ndarray
+ Output array
+
+ See Also
+ --------
+ numpy.outer : A less powerful version of ``np.multiply.outer``
+ that `ravel`\ s all inputs to 1D. This exists
+ primarily for compatibility with old code.
+
+ tensordot : ``np.tensordot(a, b, axes=((), ()))`` and
+ ``np.multiply.outer(a, b)`` behave same for all
+ dimensions of a and b.
+
+ Examples
+ --------
+ >>> np.multiply.outer([1, 2, 3], [4, 5, 6])
+ array([[ 4, 5, 6],
+ [ 8, 10, 12],
+ [12, 15, 18]])
+
+ A multi-dimensional example:
+
+ >>> A = np.array([[1, 2, 3], [4, 5, 6]])
+ >>> A.shape
+ (2, 3)
+ >>> B = np.array([[1, 2, 3, 4]])
+ >>> B.shape
+ (1, 4)
+ >>> C = np.multiply.outer(A, B)
+ >>> C.shape; C
+ (2, 3, 1, 4)
+ array([[[[ 1, 2, 3, 4]],
+ [[ 2, 4, 6, 8]],
+ [[ 3, 6, 9, 12]]],
+ [[[ 4, 8, 12, 16]],
+ [[ 5, 10, 15, 20]],
+ [[ 6, 12, 18, 24]]]])
+
+ """))
+
+add_newdoc('numpy._core', 'ufunc', ('at',
+ """
+ at(a, indices, b=None, /)
+
+ Performs unbuffered in place operation on operand 'a' for elements
+ specified by 'indices'. For addition ufunc, this method is equivalent to
+ ``a[indices] += b``, except that results are accumulated for elements that
+ are indexed more than once. For example, ``a[[0,0]] += 1`` will only
+ increment the first element once because of buffering, whereas
+ ``add.at(a, [0,0], 1)`` will increment the first element twice.
+
+ Parameters
+ ----------
+ a : array_like
+ The array to perform in place operation on.
+ indices : array_like or tuple
+ Array like index object or slice object for indexing into first
+ operand. If first operand has multiple dimensions, indices can be a
+ tuple of array like index objects or slice objects.
+ b : array_like
+ Second operand for ufuncs requiring two operands. Operand must be
+ broadcastable over first operand after indexing or slicing.
+
+ Examples
+ --------
+ Set items 0 and 1 to their negative values:
+
+ >>> import numpy as np
+ >>> a = np.array([1, 2, 3, 4])
+ >>> np.negative.at(a, [0, 1])
+ >>> a
+ array([-1, -2, 3, 4])
+
+ Increment items 0 and 1, and increment item 2 twice:
+
+ >>> a = np.array([1, 2, 3, 4])
+ >>> np.add.at(a, [0, 1, 2, 2], 1)
+ >>> a
+ array([2, 3, 5, 4])
+
+ Add items 0 and 1 in first array to second array,
+ and store results in first array:
+
+ >>> a = np.array([1, 2, 3, 4])
+ >>> b = np.array([1, 2])
+ >>> np.add.at(a, [0, 1], b)
+ >>> a
+ array([2, 4, 3, 4])
+
+ """))
+
+add_newdoc('numpy._core', 'ufunc', ('resolve_dtypes',
+ """
+ resolve_dtypes(dtypes, *, signature=None, casting=None, reduction=False)
+
+ Find the dtypes NumPy will use for the operation. Both input and
+ output dtypes are returned and may differ from those provided.
+
+ .. note::
+
+ This function always applies NEP 50 rules since it is not provided
+ any actual values. The Python types ``int``, ``float``, and
+ ``complex`` thus behave weak and should be passed for "untyped"
+ Python input.
+
+ Parameters
+ ----------
+ dtypes : tuple of dtypes, None, or literal int, float, complex
+ The input dtypes for each operand. Output operands can be
+ None, indicating that the dtype must be found.
+ signature : tuple of DTypes or None, optional
+ If given, enforces exact DType (classes) of the specific operand.
+ The ufunc ``dtype`` argument is equivalent to passing a tuple with
+ only output dtypes set.
+ casting : {'no', 'equiv', 'safe', 'same_kind', 'unsafe'}, optional
+ The casting mode when casting is necessary. This is identical to
+ the ufunc call casting modes.
+ reduction : boolean
+ If given, the resolution assumes a reduce operation is happening
+ which slightly changes the promotion and type resolution rules.
+ `dtypes` is usually something like ``(None, np.dtype("i2"), None)``
+ for reductions (first input is also the output).
+
+ .. note::
+
+ The default casting mode is "same_kind", however, as of
+ NumPy 1.24, NumPy uses "unsafe" for reductions.
+
+ Returns
+ -------
+ dtypes : tuple of dtypes
+ The dtypes which NumPy would use for the calculation. Note that
+ dtypes may not match the passed in ones (casting is necessary).
+
+
+ Examples
+ --------
+ This API requires passing dtypes, define them for convenience:
+
+ >>> import numpy as np
+ >>> int32 = np.dtype("int32")
+ >>> float32 = np.dtype("float32")
+
+ The typical ufunc call does not pass an output dtype. `numpy.add` has two
+ inputs and one output, so leave the output as ``None`` (not provided):
+
+ >>> np.add.resolve_dtypes((int32, float32, None))
+ (dtype('float64'), dtype('float64'), dtype('float64'))
+
+ The loop found uses "float64" for all operands (including the output), the
+ first input would be cast.
+
+ ``resolve_dtypes`` supports "weak" handling for Python scalars by passing
+ ``int``, ``float``, or ``complex``:
+
+ >>> np.add.resolve_dtypes((float32, float, None))
+ (dtype('float32'), dtype('float32'), dtype('float32'))
+
+ Where the Python ``float`` behaves similar to a Python value ``0.0``
+ in a ufunc call. (See :ref:`NEP 50 <NEP50>` for details.)
+
+ """))
+
+add_newdoc('numpy._core', 'ufunc', ('_resolve_dtypes_and_context',
+ """
+ _resolve_dtypes_and_context(dtypes, *, signature=None, casting=None, reduction=False)
+
+ See `numpy.ufunc.resolve_dtypes` for parameter information. This
+ function is considered *unstable*. You may use it, but the returned
+ information is NumPy version specific and expected to change.
+ Large API/ABI changes are not expected, but a new NumPy version is
+ expected to require updating code using this functionality.
+
+ This function is designed to be used in conjunction with
+ `numpy.ufunc._get_strided_loop`. The calls are split to mirror the C API
+ and allow future improvements.
+
+ Returns
+ -------
+ dtypes : tuple of dtypes
+ call_info :
+ PyCapsule with all necessary information to get access to low level
+ C calls. See `numpy.ufunc._get_strided_loop` for more information.
+
+ """))
+
+add_newdoc('numpy._core', 'ufunc', ('_get_strided_loop',
+ """
+ _get_strided_loop(call_info, /, *, fixed_strides=None)
+
+ This function fills in the ``call_info`` capsule to include all
+ information necessary to call the low-level strided loop from NumPy.
+
+ See notes for more information.
+
+ Parameters
+ ----------
+ call_info : PyCapsule
+ The PyCapsule returned by `numpy.ufunc._resolve_dtypes_and_context`.
+ fixed_strides : tuple of int or None, optional
+ A tuple with fixed byte strides of all input arrays. NumPy may use
+ this information to find specialized loops, so any call must follow
+ the given stride. Use ``None`` to indicate that the stride is not
+ known (or not fixed) for all calls.
+
+ Notes
+ -----
+ Together with `numpy.ufunc._resolve_dtypes_and_context` this function
+ gives low-level access to the NumPy ufunc loops.
+ The first function does general preparation and returns the required
+ information. It returns this as a C capsule with the version specific
+ name ``numpy_1.24_ufunc_call_info``.
+ The NumPy 1.24 ufunc call info capsule has the following layout::
+
+ typedef struct {
+ PyArrayMethod_StridedLoop *strided_loop;
+ PyArrayMethod_Context *context;
+ NpyAuxData *auxdata;
+
+ /* Flag information (expected to change) */
+ npy_bool requires_pyapi; /* GIL is required by loop */
+
+ /* Loop doesn't set FPE flags; if not set check FPE flags */
+ npy_bool no_floatingpoint_errors;
+ } ufunc_call_info;
+
+ Note that the first call only fills in the ``context``. The call to
+ ``_get_strided_loop`` fills in all other data. The main thing to note is
+ that the new-style loops return 0 on success, -1 on failure. They are
+ passed context as new first input and ``auxdata`` as (replaced) last.
+
+ Only the ``strided_loop``signature is considered guaranteed stable
+ for NumPy bug-fix releases. All other API is tied to the experimental
+ API versioning.
+
+ The reason for the split call is that cast information is required to
+ decide what the fixed-strides will be.
+
+ NumPy ties the lifetime of the ``auxdata`` information to the capsule.
+
+ """))
+
+
+##############################################################################
+#
+# Documentation for dtype attributes and methods
+#
+##############################################################################
+
+##############################################################################
+#
+# dtype object
+#
+##############################################################################
+
+add_newdoc('numpy._core.multiarray', 'dtype',
+ """
+ dtype(dtype, align=False, copy=False, [metadata])
+
+ Create a data type object.
+
+ A numpy array is homogeneous, and contains elements described by a
+ dtype object. A dtype object can be constructed from different
+ combinations of fundamental numeric types.
+
+ Parameters
+ ----------
+ dtype
+ Object to be converted to a data type object.
+ align : bool, optional
+ Add padding to the fields to match what a C compiler would output
+ for a similar C-struct. Can be ``True`` only if `obj` is a dictionary
+ or a comma-separated string. If a struct dtype is being created,
+ this also sets a sticky alignment flag ``isalignedstruct``.
+ copy : bool, optional
+ Make a new copy of the data-type object. If ``False``, the result
+ may just be a reference to a built-in data-type object.
+ metadata : dict, optional
+ An optional dictionary with dtype metadata.
+
+ See also
+ --------
+ result_type
+
+ Examples
+ --------
+ Using array-scalar type:
+
+ >>> import numpy as np
+ >>> np.dtype(np.int16)
+ dtype('int16')
+
+ Structured type, one field name 'f1', containing int16:
+
+ >>> np.dtype([('f1', np.int16)])
+ dtype([('f1', '<i2')])
+
+ Structured type, one field named 'f1', in itself containing a structured
+ type with one field:
+
+ >>> np.dtype([('f1', [('f1', np.int16)])])
+ dtype([('f1', [('f1', '<i2')])])
+
+ Structured type, two fields: the first field contains an unsigned int, the
+ second an int32:
+
+ >>> np.dtype([('f1', np.uint64), ('f2', np.int32)])
+ dtype([('f1', '<u8'), ('f2', '<i4')])
+
+ Using array-protocol type strings:
+
+ >>> np.dtype([('a','f8'),('b','S10')])
+ dtype([('a', '<f8'), ('b', 'S10')])
+
+ Using comma-separated field formats. The shape is (2,3):
+
+ >>> np.dtype("i4, (2,3)f8")
+ dtype([('f0', '<i4'), ('f1', '<f8', (2, 3))])
+
+ Using tuples. ``int`` is a fixed type, 3 the field's shape. ``void``
+ is a flexible type, here of size 10:
+
+ >>> np.dtype([('hello',(np.int64,3)),('world',np.void,10)])
+ dtype([('hello', '<i8', (3,)), ('world', 'V10')])
+
+ Subdivide ``int16`` into 2 ``int8``'s, called x and y. 0 and 1 are
+ the offsets in bytes:
+
+ >>> np.dtype((np.int16, {'x':(np.int8,0), 'y':(np.int8,1)}))
+ dtype((numpy.int16, [('x', 'i1'), ('y', 'i1')]))
+
+ Using dictionaries. Two fields named 'gender' and 'age':
+
+ >>> np.dtype({'names':['gender','age'], 'formats':['S1',np.uint8]})
+ dtype([('gender', 'S1'), ('age', 'u1')])
+
+ Offsets in bytes, here 0 and 25:
+
+ >>> np.dtype({'surname':('S25',0),'age':(np.uint8,25)})
+ dtype([('surname', 'S25'), ('age', 'u1')])
+
+ """)
+
+##############################################################################
+#
+# dtype attributes
+#
+##############################################################################
+
+add_newdoc('numpy._core.multiarray', 'dtype', ('alignment',
+ """
+ The required alignment (bytes) of this data-type according to the compiler.
+
+ More information is available in the C-API section of the manual.
+
+ Examples
+ --------
+
+ >>> import numpy as np
+ >>> x = np.dtype('i4')
+ >>> x.alignment
+ 4
+
+ >>> x = np.dtype(float)
+ >>> x.alignment
+ 8
+
+ """))
+
+add_newdoc('numpy._core.multiarray', 'dtype', ('byteorder',
+ """
+ A character indicating the byte-order of this data-type object.
+
+ One of:
+
+ === ==============
+ '=' native
+ '<' little-endian
+ '>' big-endian
+ '|' not applicable
+ === ==============
+
+ All built-in data-type objects have byteorder either '=' or '|'.
+
+ Examples
+ --------
+
+ >>> import numpy as np
+ >>> dt = np.dtype('i2')
+ >>> dt.byteorder
+ '='
+ >>> # endian is not relevant for 8 bit numbers
+ >>> np.dtype('i1').byteorder
+ '|'
+ >>> # or ASCII strings
+ >>> np.dtype('S2').byteorder
+ '|'
+ >>> # Even if specific code is given, and it is native
+ >>> # '=' is the byteorder
+ >>> import sys
+ >>> sys_is_le = sys.byteorder == 'little'
+ >>> native_code = '<' if sys_is_le else '>'
+ >>> swapped_code = '>' if sys_is_le else '<'
+ >>> dt = np.dtype(native_code + 'i2')
+ >>> dt.byteorder
+ '='
+ >>> # Swapped code shows up as itself
+ >>> dt = np.dtype(swapped_code + 'i2')
+ >>> dt.byteorder == swapped_code
+ True
+
+ """))
+
+add_newdoc('numpy._core.multiarray', 'dtype', ('char',
+ """A unique character code for each of the 21 different built-in types.
+
+ Examples
+ --------
+
+ >>> import numpy as np
+ >>> x = np.dtype(float)
+ >>> x.char
+ 'd'
+
+ """))
+
+add_newdoc('numpy._core.multiarray', 'dtype', ('descr',
+ """
+ `__array_interface__` description of the data-type.
+
+ The format is that required by the 'descr' key in the
+ `__array_interface__` attribute.
+
+ Warning: This attribute exists specifically for `__array_interface__`,
+ and passing it directly to `numpy.dtype` will not accurately reconstruct
+ some dtypes (e.g., scalar and subarray dtypes).
+
+ Examples
+ --------
+
+ >>> import numpy as np
+ >>> x = np.dtype(float)
+ >>> x.descr
+ [('', '<f8')]
+
+ >>> dt = np.dtype([('name', np.str_, 16), ('grades', np.float64, (2,))])
+ >>> dt.descr
+ [('name', '<U16'), ('grades', '<f8', (2,))]
+
+ """))
+
+add_newdoc('numpy._core.multiarray', 'dtype', ('fields',
+ """
+ Dictionary of named fields defined for this data type, or ``None``.
+
+ The dictionary is indexed by keys that are the names of the fields.
+ Each entry in the dictionary is a tuple fully describing the field::
+
+ (dtype, offset[, title])
+
+ Offset is limited to C int, which is signed and usually 32 bits.
+ If present, the optional title can be any object (if it is a string
+ or unicode then it will also be a key in the fields dictionary,
+ otherwise it's meta-data). Notice also that the first two elements
+ of the tuple can be passed directly as arguments to the
+ ``ndarray.getfield`` and ``ndarray.setfield`` methods.
+
+ See Also
+ --------
+ ndarray.getfield, ndarray.setfield
+
+ Examples
+ --------
+
+ >>> import numpy as np
+ >>> dt = np.dtype([('name', np.str_, 16), ('grades', np.float64, (2,))])
+ >>> print(dt.fields)
+ {'name': (dtype('|S16'), 0), 'grades': (dtype(('float64',(2,))), 16)}
+
+ """))
+
+add_newdoc('numpy._core.multiarray', 'dtype', ('flags',
+ """
+ Bit-flags describing how this data type is to be interpreted.
+
+ Bit-masks are in ``numpy._core.multiarray`` as the constants
+ `ITEM_HASOBJECT`, `LIST_PICKLE`, `ITEM_IS_POINTER`, `NEEDS_INIT`,
+ `NEEDS_PYAPI`, `USE_GETITEM`, `USE_SETITEM`. A full explanation
+ of these flags is in C-API documentation; they are largely useful
+ for user-defined data-types.
+
+ The following example demonstrates that operations on this particular
+ dtype requires Python C-API.
+
+ Examples
+ --------
+
+ >>> import numpy as np
+ >>> x = np.dtype([('a', np.int32, 8), ('b', np.float64, 6)])
+ >>> x.flags
+ 16
+ >>> np._core.multiarray.NEEDS_PYAPI
+ 16
+
+ """))
+
+add_newdoc('numpy._core.multiarray', 'dtype', ('hasobject',
+ """
+ Boolean indicating whether this dtype contains any reference-counted
+ objects in any fields or sub-dtypes.
+
+ Recall that what is actually in the ndarray memory representing
+ the Python object is the memory address of that object (a pointer).
+ Special handling may be required, and this attribute is useful for
+ distinguishing data types that may contain arbitrary Python objects
+ and data-types that won't.
+
+ """))
+
+add_newdoc('numpy._core.multiarray', 'dtype', ('isbuiltin',
+ """
+ Integer indicating how this dtype relates to the built-in dtypes.
+
+ Read-only.
+
+ = ========================================================================
+ 0 if this is a structured array type, with fields
+ 1 if this is a dtype compiled into numpy (such as ints, floats etc)
+ 2 if the dtype is for a user-defined numpy type
+ A user-defined type uses the numpy C-API machinery to extend
+ numpy to handle a new array type. See
+ :ref:`user.user-defined-data-types` in the NumPy manual.
+ = ========================================================================
+
+ Examples
+ --------
+
+ >>> import numpy as np
+ >>> dt = np.dtype('i2')
+ >>> dt.isbuiltin
+ 1
+ >>> dt = np.dtype('f8')
+ >>> dt.isbuiltin
+ 1
+ >>> dt = np.dtype([('field1', 'f8')])
+ >>> dt.isbuiltin
+ 0
+
+ """))
+
+add_newdoc('numpy._core.multiarray', 'dtype', ('isnative',
+ """
+ Boolean indicating whether the byte order of this dtype is native
+ to the platform.
+
+ """))
+
+add_newdoc('numpy._core.multiarray', 'dtype', ('isalignedstruct',
+ """
+ Boolean indicating whether the dtype is a struct which maintains
+ field alignment. This flag is sticky, so when combining multiple
+ structs together, it is preserved and produces new dtypes which
+ are also aligned.
+
+ """))
+
+add_newdoc('numpy._core.multiarray', 'dtype', ('itemsize',
+ """
+ The element size of this data-type object.
+
+ For 18 of the 21 types this number is fixed by the data-type.
+ For the flexible data-types, this number can be anything.
+
+ Examples
+ --------
+
+ >>> import numpy as np
+ >>> arr = np.array([[1, 2], [3, 4]])
+ >>> arr.dtype
+ dtype('int64')
+ >>> arr.itemsize
+ 8
+
+ >>> dt = np.dtype([('name', np.str_, 16), ('grades', np.float64, (2,))])
+ >>> dt.itemsize
+ 80
+
+ """))
+
+add_newdoc('numpy._core.multiarray', 'dtype', ('kind',
+ """
+ A character code (one of 'biufcmMOSTUV') identifying the general kind of data.
+
+ = ======================
+ b boolean
+ i signed integer
+ u unsigned integer
+ f floating-point
+ c complex floating-point
+ m timedelta
+ M datetime
+ O object
+ S (byte-)string
+ T string (StringDType)
+ U Unicode
+ V void
+ = ======================
+
+ Examples
+ --------
+
+ >>> import numpy as np
+ >>> dt = np.dtype('i4')
+ >>> dt.kind
+ 'i'
+ >>> dt = np.dtype('f8')
+ >>> dt.kind
+ 'f'
+ >>> dt = np.dtype([('field1', 'f8')])
+ >>> dt.kind
+ 'V'
+
+ """))
+
+add_newdoc('numpy._core.multiarray', 'dtype', ('metadata',
+ """
+ Either ``None`` or a readonly dictionary of metadata (mappingproxy).
+
+ The metadata field can be set using any dictionary at data-type
+ creation. NumPy currently has no uniform approach to propagating
+ metadata; although some array operations preserve it, there is no
+ guarantee that others will.
+
+ .. warning::
+
+ Although used in certain projects, this feature was long undocumented
+ and is not well supported. Some aspects of metadata propagation
+ are expected to change in the future.
+
+ Examples
+ --------
+
+ >>> import numpy as np
+ >>> dt = np.dtype(float, metadata={"key": "value"})
+ >>> dt.metadata["key"]
+ 'value'
+ >>> arr = np.array([1, 2, 3], dtype=dt)
+ >>> arr.dtype.metadata
+ mappingproxy({'key': 'value'})
+
+ Adding arrays with identical datatypes currently preserves the metadata:
+
+ >>> (arr + arr).dtype.metadata
+ mappingproxy({'key': 'value'})
+
+ If the arrays have different dtype metadata, the first one wins:
+
+ >>> dt2 = np.dtype(float, metadata={"key2": "value2"})
+ >>> arr2 = np.array([3, 2, 1], dtype=dt2)
+ >>> print((arr + arr2).dtype.metadata)
+ {'key': 'value'}
+ """))
+
+add_newdoc('numpy._core.multiarray', 'dtype', ('name',
+ """
+ A bit-width name for this data-type.
+
+ Un-sized flexible data-type objects do not have this attribute.
+
+ Examples
+ --------
+
+ >>> import numpy as np
+ >>> x = np.dtype(float)
+ >>> x.name
+ 'float64'
+ >>> x = np.dtype([('a', np.int32, 8), ('b', np.float64, 6)])
+ >>> x.name
+ 'void640'
+
+ """))
+
+add_newdoc('numpy._core.multiarray', 'dtype', ('names',
+ """
+ Ordered list of field names, or ``None`` if there are no fields.
+
+ The names are ordered according to increasing byte offset. This can be
+ used, for example, to walk through all of the named fields in offset order.
+
+ Examples
+ --------
+ >>> dt = np.dtype([('name', np.str_, 16), ('grades', np.float64, (2,))])
+ >>> dt.names
+ ('name', 'grades')
+
+ """))
+
+add_newdoc('numpy._core.multiarray', 'dtype', ('num',
+ """
+ A unique number for each of the 21 different built-in types.
+
+ These are roughly ordered from least-to-most precision.
+
+ Examples
+ --------
+
+ >>> import numpy as np
+ >>> dt = np.dtype(str)
+ >>> dt.num
+ 19
+
+ >>> dt = np.dtype(float)
+ >>> dt.num
+ 12
+
+ """))
+
+add_newdoc('numpy._core.multiarray', 'dtype', ('shape',
+ """
+ Shape tuple of the sub-array if this data type describes a sub-array,
+ and ``()`` otherwise.
+
+ Examples
+ --------
+
+ >>> import numpy as np
+ >>> dt = np.dtype(('i4', 4))
+ >>> dt.shape
+ (4,)
+
+ >>> dt = np.dtype(('i4', (2, 3)))
+ >>> dt.shape
+ (2, 3)
+
+ """))
+
+add_newdoc('numpy._core.multiarray', 'dtype', ('ndim',
+ """
+ Number of dimensions of the sub-array if this data type describes a
+ sub-array, and ``0`` otherwise.
+
+ Examples
+ --------
+ >>> import numpy as np
+ >>> x = np.dtype(float)
+ >>> x.ndim
+ 0
+
+ >>> x = np.dtype((float, 8))
+ >>> x.ndim
+ 1
+
+ >>> x = np.dtype(('i4', (3, 4)))
+ >>> x.ndim
+ 2
+
+ """))
+
+add_newdoc('numpy._core.multiarray', 'dtype', ('str',
+ """The array-protocol typestring of this data-type object."""))
+
+add_newdoc('numpy._core.multiarray', 'dtype', ('subdtype',
+ """
+ Tuple ``(item_dtype, shape)`` if this `dtype` describes a sub-array, and
+ None otherwise.
+
+ The *shape* is the fixed shape of the sub-array described by this
+ data type, and *item_dtype* the data type of the array.
+
+ If a field whose dtype object has this attribute is retrieved,
+ then the extra dimensions implied by *shape* are tacked on to
+ the end of the retrieved array.
+
+ See Also
+ --------
+ dtype.base
+
+ Examples
+ --------
+ >>> import numpy as np
+ >>> x = np.dtype('8f')
+ >>> x.subdtype
+ (dtype('float32'), (8,))
+
+ >>> x = np.dtype('i2')
+ >>> x.subdtype
+ >>>
+
+ """))
+
+add_newdoc('numpy._core.multiarray', 'dtype', ('base',
+ """
+ Returns dtype for the base element of the subarrays,
+ regardless of their dimension or shape.
+
+ See Also
+ --------
+ dtype.subdtype
+
+ Examples
+ --------
+ >>> import numpy as np
+ >>> x = np.dtype('8f')
+ >>> x.base
+ dtype('float32')
+
+ >>> x = np.dtype('i2')
+ >>> x.base
+ dtype('int16')
+
+ """))
+
+add_newdoc('numpy._core.multiarray', 'dtype', ('type',
+ """The type object used to instantiate a scalar of this data-type."""))
+
+##############################################################################
+#
+# dtype methods
+#
+##############################################################################
+
+add_newdoc('numpy._core.multiarray', 'dtype', ('newbyteorder',
+ """
+ newbyteorder(new_order='S', /)
+
+ Return a new dtype with a different byte order.
+
+ Changes are also made in all fields and sub-arrays of the data type.
+
+ Parameters
+ ----------
+ new_order : string, optional
+ Byte order to force; a value from the byte order specifications
+ below. The default value ('S') results in swapping the current
+ byte order. `new_order` codes can be any of:
+
+ * 'S' - swap dtype from current to opposite endian
+ * {'<', 'little'} - little endian
+ * {'>', 'big'} - big endian
+ * {'=', 'native'} - native order
+ * {'|', 'I'} - ignore (no change to byte order)
+
+ Returns
+ -------
+ new_dtype : dtype
+ New dtype object with the given change to the byte order.
+
+ Notes
+ -----
+ Changes are also made in all fields and sub-arrays of the data type.
+
+ Examples
+ --------
+ >>> import sys
+ >>> sys_is_le = sys.byteorder == 'little'
+ >>> native_code = '<' if sys_is_le else '>'
+ >>> swapped_code = '>' if sys_is_le else '<'
+ >>> import numpy as np
+ >>> native_dt = np.dtype(native_code+'i2')
+ >>> swapped_dt = np.dtype(swapped_code+'i2')
+ >>> native_dt.newbyteorder('S') == swapped_dt
+ True
+ >>> native_dt.newbyteorder() == swapped_dt
+ True
+ >>> native_dt == swapped_dt.newbyteorder('S')
+ True
+ >>> native_dt == swapped_dt.newbyteorder('=')
+ True
+ >>> native_dt == swapped_dt.newbyteorder('N')
+ True
+ >>> native_dt == native_dt.newbyteorder('|')
+ True
+ >>> np.dtype('<i2') == native_dt.newbyteorder('<')
+ True
+ >>> np.dtype('<i2') == native_dt.newbyteorder('L')
+ True
+ >>> np.dtype('>i2') == native_dt.newbyteorder('>')
+ True
+ >>> np.dtype('>i2') == native_dt.newbyteorder('B')
+ True
+
+ """))
+
+add_newdoc('numpy._core.multiarray', 'dtype', ('__class_getitem__',
+ """
+ __class_getitem__(item, /)
+
+ Return a parametrized wrapper around the `~numpy.dtype` type.
+
+ .. versionadded:: 1.22
+
+ Returns
+ -------
+ alias : types.GenericAlias
+ A parametrized `~numpy.dtype` type.
+
+ Examples
+ --------
+ >>> import numpy as np
+
+ >>> np.dtype[np.int64]
+ numpy.dtype[numpy.int64]
+
+ See Also
+ --------
+ :pep:`585` : Type hinting generics in standard collections.
+
+ """))
+
+add_newdoc('numpy._core.multiarray', 'dtype', ('__ge__',
+ """
+ __ge__(value, /)
+
+ Return ``self >= value``.
+
+ Equivalent to ``np.can_cast(value, self, casting="safe")``.
+
+ See Also
+ --------
+ can_cast : Returns True if cast between data types can occur according to
+ the casting rule.
+
+ """))
+
+add_newdoc('numpy._core.multiarray', 'dtype', ('__le__',
+ """
+ __le__(value, /)
+
+ Return ``self <= value``.
+
+ Equivalent to ``np.can_cast(self, value, casting="safe")``.
+
+ See Also
+ --------
+ can_cast : Returns True if cast between data types can occur according to
+ the casting rule.
+
+ """))
+
+add_newdoc('numpy._core.multiarray', 'dtype', ('__gt__',
+ """
+ __ge__(value, /)
+
+ Return ``self > value``.
+
+ Equivalent to
+ ``self != value and np.can_cast(value, self, casting="safe")``.
+
+ See Also
+ --------
+ can_cast : Returns True if cast between data types can occur according to
+ the casting rule.
+
+ """))
+
+add_newdoc('numpy._core.multiarray', 'dtype', ('__lt__',
+ """
+ __lt__(value, /)
+
+ Return ``self < value``.
+
+ Equivalent to
+ ``self != value and np.can_cast(self, value, casting="safe")``.
+
+ See Also
+ --------
+ can_cast : Returns True if cast between data types can occur according to
+ the casting rule.
+
+ """))
+
+##############################################################################
+#
+# Datetime-related Methods
+#
+##############################################################################
+
+add_newdoc('numpy._core.multiarray', 'busdaycalendar',
+ """
+ busdaycalendar(weekmask='1111100', holidays=None)
+
+ A business day calendar object that efficiently stores information
+ defining valid days for the busday family of functions.
+
+ The default valid days are Monday through Friday ("business days").
+ A busdaycalendar object can be specified with any set of weekly
+ valid days, plus an optional "holiday" dates that always will be invalid.
+
+ Once a busdaycalendar object is created, the weekmask and holidays
+ cannot be modified.
+
+ Parameters
+ ----------
+ weekmask : str or array_like of bool, optional
+ A seven-element array indicating which of Monday through Sunday are
+ valid days. May be specified as a length-seven list or array, like
+ [1,1,1,1,1,0,0]; a length-seven string, like '1111100'; or a string
+ like "Mon Tue Wed Thu Fri", made up of 3-character abbreviations for
+ weekdays, optionally separated by white space. Valid abbreviations
+ are: Mon Tue Wed Thu Fri Sat Sun
+ holidays : array_like of datetime64[D], optional
+ An array of dates to consider as invalid dates, no matter which
+ weekday they fall upon. Holiday dates may be specified in any
+ order, and NaT (not-a-time) dates are ignored. This list is
+ saved in a normalized form that is suited for fast calculations
+ of valid days.
+
+ Returns
+ -------
+ out : busdaycalendar
+ A business day calendar object containing the specified
+ weekmask and holidays values.
+
+ See Also
+ --------
+ is_busday : Returns a boolean array indicating valid days.
+ busday_offset : Applies an offset counted in valid days.
+ busday_count : Counts how many valid days are in a half-open date range.
+
+ Attributes
+ ----------
+ weekmask : (copy) seven-element array of bool
+ holidays : (copy) sorted array of datetime64[D]
+
+ Notes
+ -----
+ Once a busdaycalendar object is created, you cannot modify the
+ weekmask or holidays. The attributes return copies of internal data.
+
+ Examples
+ --------
+ >>> import numpy as np
+ >>> # Some important days in July
+ ... bdd = np.busdaycalendar(
+ ... holidays=['2011-07-01', '2011-07-04', '2011-07-17'])
+ >>> # Default is Monday to Friday weekdays
+ ... bdd.weekmask
+ array([ True, True, True, True, True, False, False])
+ >>> # Any holidays already on the weekend are removed
+ ... bdd.holidays
+ array(['2011-07-01', '2011-07-04'], dtype='datetime64[D]')
+ """)
+
+add_newdoc('numpy._core.multiarray', 'busdaycalendar', ('weekmask',
+ """A copy of the seven-element boolean mask indicating valid days."""))
+
+add_newdoc('numpy._core.multiarray', 'busdaycalendar', ('holidays',
+ """A copy of the holiday array indicating additional invalid days."""))
+
+add_newdoc('numpy._core.multiarray', 'normalize_axis_index',
+ """
+ normalize_axis_index(axis, ndim, msg_prefix=None)
+
+ Normalizes an axis index, `axis`, such that is a valid positive index into
+ the shape of array with `ndim` dimensions. Raises an AxisError with an
+ appropriate message if this is not possible.
+
+ Used internally by all axis-checking logic.
+
+ Parameters
+ ----------
+ axis : int
+ The un-normalized index of the axis. Can be negative
+ ndim : int
+ The number of dimensions of the array that `axis` should be normalized
+ against
+ msg_prefix : str
+ A prefix to put before the message, typically the name of the argument
+
+ Returns
+ -------
+ normalized_axis : int
+ The normalized axis index, such that `0 <= normalized_axis < ndim`
+
+ Raises
+ ------
+ AxisError
+ If the axis index is invalid, when `-ndim <= axis < ndim` is false.
+
+ Examples
+ --------
+ >>> import numpy as np
+ >>> from numpy.lib.array_utils import normalize_axis_index
+ >>> normalize_axis_index(0, ndim=3)
+ 0
+ >>> normalize_axis_index(1, ndim=3)
+ 1
+ >>> normalize_axis_index(-1, ndim=3)
+ 2
+
+ >>> normalize_axis_index(3, ndim=3)
+ Traceback (most recent call last):
+ ...
+ numpy.exceptions.AxisError: axis 3 is out of bounds for array ...
+ >>> normalize_axis_index(-4, ndim=3, msg_prefix='axes_arg')
+ Traceback (most recent call last):
+ ...
+ numpy.exceptions.AxisError: axes_arg: axis -4 is out of bounds ...
+ """)
+
+add_newdoc('numpy._core.multiarray', 'datetime_data',
+ """
+ datetime_data(dtype, /)
+
+ Get information about the step size of a date or time type.
+
+ The returned tuple can be passed as the second argument of `numpy.datetime64` and
+ `numpy.timedelta64`.
+
+ Parameters
+ ----------
+ dtype : dtype
+ The dtype object, which must be a `datetime64` or `timedelta64` type.
+
+ Returns
+ -------
+ unit : str
+ The :ref:`datetime unit <arrays.dtypes.dateunits>` on which this dtype
+ is based.
+ count : int
+ The number of base units in a step.
+
+ Examples
+ --------
+ >>> import numpy as np
+ >>> dt_25s = np.dtype('timedelta64[25s]')
+ >>> np.datetime_data(dt_25s)
+ ('s', 25)
+ >>> np.array(10, dt_25s).astype('timedelta64[s]')
+ array(250, dtype='timedelta64[s]')
+
+ The result can be used to construct a datetime that uses the same units
+ as a timedelta
+
+ >>> np.datetime64('2010', np.datetime_data(dt_25s))
+ np.datetime64('2010-01-01T00:00:00','25s')
+ """)
+
+
+##############################################################################
+#
+# Documentation for `generic` attributes and methods
+#
+##############################################################################
+
+add_newdoc('numpy._core.numerictypes', 'generic',
+ """
+ Base class for numpy scalar types.
+
+ Class from which most (all?) numpy scalar types are derived. For
+ consistency, exposes the same API as `ndarray`, despite many
+ consequent attributes being either "get-only," or completely irrelevant.
+ This is the class from which it is strongly suggested users should derive
+ custom scalar types.
+
+ """)
+
+# Attributes
+
+def refer_to_array_attribute(attr, method=True):
+ docstring = """
+ Scalar {} identical to the corresponding array attribute.
+
+ Please see `ndarray.{}`.
+ """
+
+ return attr, docstring.format("method" if method else "attribute", attr)
+
+
+add_newdoc('numpy._core.numerictypes', 'generic',
+ refer_to_array_attribute('T', method=False))
+
+add_newdoc('numpy._core.numerictypes', 'generic',
+ refer_to_array_attribute('base', method=False))
+
+add_newdoc('numpy._core.numerictypes', 'generic', ('data',
+ """Pointer to start of data."""))
+
+add_newdoc('numpy._core.numerictypes', 'generic', ('dtype',
+ """Get array data-descriptor."""))
+
+add_newdoc('numpy._core.numerictypes', 'generic', ('flags',
+ """The integer value of flags."""))
+
+add_newdoc('numpy._core.numerictypes', 'generic', ('flat',
+ """A 1-D view of the scalar."""))
+
+add_newdoc('numpy._core.numerictypes', 'generic', ('imag',
+ """The imaginary part of the scalar."""))
+
+add_newdoc('numpy._core.numerictypes', 'generic', ('itemsize',
+ """The length of one element in bytes."""))
+
+add_newdoc('numpy._core.numerictypes', 'generic', ('ndim',
+ """The number of array dimensions."""))
+
+add_newdoc('numpy._core.numerictypes', 'generic', ('real',
+ """The real part of the scalar."""))
+
+add_newdoc('numpy._core.numerictypes', 'generic', ('shape',
+ """Tuple of array dimensions."""))
+
+add_newdoc('numpy._core.numerictypes', 'generic', ('size',
+ """The number of elements in the gentype."""))
+
+add_newdoc('numpy._core.numerictypes', 'generic', ('strides',
+ """Tuple of bytes steps in each dimension."""))
+
+# Methods
+
+add_newdoc('numpy._core.numerictypes', 'generic',
+ refer_to_array_attribute('all'))
+
+add_newdoc('numpy._core.numerictypes', 'generic',
+ refer_to_array_attribute('any'))
+
+add_newdoc('numpy._core.numerictypes', 'generic',
+ refer_to_array_attribute('argmax'))
+
+add_newdoc('numpy._core.numerictypes', 'generic',
+ refer_to_array_attribute('argmin'))
+
+add_newdoc('numpy._core.numerictypes', 'generic',
+ refer_to_array_attribute('argsort'))
+
+add_newdoc('numpy._core.numerictypes', 'generic',
+ refer_to_array_attribute('astype'))
+
+add_newdoc('numpy._core.numerictypes', 'generic',
+ refer_to_array_attribute('byteswap'))
+
+add_newdoc('numpy._core.numerictypes', 'generic',
+ refer_to_array_attribute('choose'))
+
+add_newdoc('numpy._core.numerictypes', 'generic',
+ refer_to_array_attribute('clip'))
+
+add_newdoc('numpy._core.numerictypes', 'generic',
+ refer_to_array_attribute('compress'))
+
+add_newdoc('numpy._core.numerictypes', 'generic',
+ refer_to_array_attribute('conjugate'))
+
+add_newdoc('numpy._core.numerictypes', 'generic',
+ refer_to_array_attribute('copy'))
+
+add_newdoc('numpy._core.numerictypes', 'generic',
+ refer_to_array_attribute('cumprod'))
+
+add_newdoc('numpy._core.numerictypes', 'generic',
+ refer_to_array_attribute('cumsum'))
+
+add_newdoc('numpy._core.numerictypes', 'generic',
+ refer_to_array_attribute('diagonal'))
+
+add_newdoc('numpy._core.numerictypes', 'generic',
+ refer_to_array_attribute('dump'))
+
+add_newdoc('numpy._core.numerictypes', 'generic',
+ refer_to_array_attribute('dumps'))
+
+add_newdoc('numpy._core.numerictypes', 'generic',
+ refer_to_array_attribute('fill'))
+
+add_newdoc('numpy._core.numerictypes', 'generic',
+ refer_to_array_attribute('flatten'))
+
+add_newdoc('numpy._core.numerictypes', 'generic',
+ refer_to_array_attribute('getfield'))
+
+add_newdoc('numpy._core.numerictypes', 'generic',
+ refer_to_array_attribute('item'))
+
+add_newdoc('numpy._core.numerictypes', 'generic',
+ refer_to_array_attribute('max'))
+
+add_newdoc('numpy._core.numerictypes', 'generic',
+ refer_to_array_attribute('mean'))
+
+add_newdoc('numpy._core.numerictypes', 'generic',
+ refer_to_array_attribute('min'))
+
+add_newdoc('numpy._core.numerictypes', 'generic',
+ refer_to_array_attribute('nonzero'))
+
+add_newdoc('numpy._core.numerictypes', 'generic',
+ refer_to_array_attribute('prod'))
+
+add_newdoc('numpy._core.numerictypes', 'generic',
+ refer_to_array_attribute('put'))
+
+add_newdoc('numpy._core.numerictypes', 'generic',
+ refer_to_array_attribute('ravel'))
+
+add_newdoc('numpy._core.numerictypes', 'generic',
+ refer_to_array_attribute('repeat'))
+
+add_newdoc('numpy._core.numerictypes', 'generic',
+ refer_to_array_attribute('reshape'))
+
+add_newdoc('numpy._core.numerictypes', 'generic',
+ refer_to_array_attribute('resize'))
+
+add_newdoc('numpy._core.numerictypes', 'generic',
+ refer_to_array_attribute('round'))
+
+add_newdoc('numpy._core.numerictypes', 'generic',
+ refer_to_array_attribute('searchsorted'))
+
+add_newdoc('numpy._core.numerictypes', 'generic',
+ refer_to_array_attribute('setfield'))
+
+add_newdoc('numpy._core.numerictypes', 'generic',
+ refer_to_array_attribute('setflags'))
+
+add_newdoc('numpy._core.numerictypes', 'generic',
+ refer_to_array_attribute('sort'))
+
+add_newdoc('numpy._core.numerictypes', 'generic',
+ refer_to_array_attribute('squeeze'))
+
+add_newdoc('numpy._core.numerictypes', 'generic',
+ refer_to_array_attribute('std'))
+
+add_newdoc('numpy._core.numerictypes', 'generic',
+ refer_to_array_attribute('sum'))
+
+add_newdoc('numpy._core.numerictypes', 'generic',
+ refer_to_array_attribute('swapaxes'))
+
+add_newdoc('numpy._core.numerictypes', 'generic',
+ refer_to_array_attribute('take'))
+
+add_newdoc('numpy._core.numerictypes', 'generic',
+ refer_to_array_attribute('tofile'))
+
+add_newdoc('numpy._core.numerictypes', 'generic',
+ refer_to_array_attribute('tolist'))
+
+add_newdoc('numpy._core.numerictypes', 'generic',
+ refer_to_array_attribute('tostring'))
+
+add_newdoc('numpy._core.numerictypes', 'generic',
+ refer_to_array_attribute('trace'))
+
+add_newdoc('numpy._core.numerictypes', 'generic',
+ refer_to_array_attribute('transpose'))
+
+add_newdoc('numpy._core.numerictypes', 'generic',
+ refer_to_array_attribute('var'))
+
+add_newdoc('numpy._core.numerictypes', 'generic',
+ refer_to_array_attribute('view'))
+
+add_newdoc('numpy._core.numerictypes', 'number', ('__class_getitem__',
+ """
+ __class_getitem__(item, /)
+
+ Return a parametrized wrapper around the `~numpy.number` type.
+
+ .. versionadded:: 1.22
+
+ Returns
+ -------
+ alias : types.GenericAlias
+ A parametrized `~numpy.number` type.
+
+ Examples
+ --------
+ >>> from typing import Any
+ >>> import numpy as np
+
+ >>> np.signedinteger[Any]
+ numpy.signedinteger[typing.Any]
+
+ See Also
+ --------
+ :pep:`585` : Type hinting generics in standard collections.
+
+ """))
+
+##############################################################################
+#
+# Documentation for scalar type abstract base classes in type hierarchy
+#
+##############################################################################
+
+
+add_newdoc('numpy._core.numerictypes', 'number',
+ """
+ Abstract base class of all numeric scalar types.
+
+ """)
+
+add_newdoc('numpy._core.numerictypes', 'integer',
+ """
+ Abstract base class of all integer scalar types.
+
+ """)
+
+add_newdoc('numpy._core.numerictypes', 'signedinteger',
+ """
+ Abstract base class of all signed integer scalar types.
+
+ """)
+
+add_newdoc('numpy._core.numerictypes', 'unsignedinteger',
+ """
+ Abstract base class of all unsigned integer scalar types.
+
+ """)
+
+add_newdoc('numpy._core.numerictypes', 'inexact',
+ """
+ Abstract base class of all numeric scalar types with a (potentially)
+ inexact representation of the values in its range, such as
+ floating-point numbers.
+
+ """)
+
+add_newdoc('numpy._core.numerictypes', 'floating',
+ """
+ Abstract base class of all floating-point scalar types.
+
+ """)
+
+add_newdoc('numpy._core.numerictypes', 'complexfloating',
+ """
+ Abstract base class of all complex number scalar types that are made up of
+ floating-point numbers.
+
+ """)
+
+add_newdoc('numpy._core.numerictypes', 'flexible',
+ """
+ Abstract base class of all scalar types without predefined length.
+ The actual size of these types depends on the specific `numpy.dtype`
+ instantiation.
+
+ """)
+
+add_newdoc('numpy._core.numerictypes', 'character',
+ """
+ Abstract base class of all character string scalar types.
+
+ """)
+
+add_newdoc('numpy._core.multiarray', 'StringDType',
+ """
+ StringDType(*, na_object=np._NoValue, coerce=True)
+
+ Create a StringDType instance.
+
+ StringDType can be used to store UTF-8 encoded variable-width strings in
+ a NumPy array.
+
+ Parameters
+ ----------
+ na_object : object, optional
+ Object used to represent missing data. If unset, the array will not
+ use a missing data sentinel.
+ coerce : bool, optional
+ Whether or not items in an array-like passed to an array creation
+ function that are neither a str or str subtype should be coerced to
+ str. Defaults to True. If set to False, creating a StringDType
+ array from an array-like containing entries that are not already
+ strings will raise an error.
+
+ Examples
+ --------
+
+ >>> import numpy as np
+
+ >>> from numpy.dtypes import StringDType
+ >>> np.array(["hello", "world"], dtype=StringDType())
+ array(["hello", "world"], dtype=StringDType())
+
+ >>> arr = np.array(["hello", None, "world"],
+ ... dtype=StringDType(na_object=None))
+ >>> arr
+ array(["hello", None, "world"], dtype=StringDType(na_object=None))
+ >>> arr[1] is None
+ True
+
+ >>> arr = np.array(["hello", np.nan, "world"],
+ ... dtype=StringDType(na_object=np.nan))
+ >>> np.isnan(arr)
+ array([False, True, False])
+
+ >>> np.array([1.2, object(), "hello world"],
+ ... dtype=StringDType(coerce=False))
+ Traceback (most recent call last):
+ ...
+ ValueError: StringDType only allows string data when string coercion is disabled.
+
+ >>> np.array(["hello", "world"], dtype=StringDType(coerce=True))
+ array(["hello", "world"], dtype=StringDType(coerce=True))
+ """)
diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/_add_newdocs.pyi b/.venv/lib/python3.12/site-packages/numpy/_core/_add_newdocs.pyi
new file mode 100644
index 0000000..b23c3b1
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/_core/_add_newdocs.pyi
@@ -0,0 +1,3 @@
+from .overrides import get_array_function_like_doc as get_array_function_like_doc
+
+def refer_to_array_attribute(attr: str, method: bool = True) -> tuple[str, str]: ...
diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/_add_newdocs_scalars.py b/.venv/lib/python3.12/site-packages/numpy/_core/_add_newdocs_scalars.py
new file mode 100644
index 0000000..96170d8
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/_core/_add_newdocs_scalars.py
@@ -0,0 +1,390 @@
+"""
+This file is separate from ``_add_newdocs.py`` so that it can be mocked out by
+our sphinx ``conf.py`` during doc builds, where we want to avoid showing
+platform-dependent information.
+"""
+import os
+import sys
+
+from numpy._core import dtype
+from numpy._core import numerictypes as _numerictypes
+from numpy._core.function_base import add_newdoc
+
+##############################################################################
+#
+# Documentation for concrete scalar classes
+#
+##############################################################################
+
+def numeric_type_aliases(aliases):
+ def type_aliases_gen():
+ for alias, doc in aliases:
+ try:
+ alias_type = getattr(_numerictypes, alias)
+ except AttributeError:
+ # The set of aliases that actually exist varies between platforms
+ pass
+ else:
+ yield (alias_type, alias, doc)
+ return list(type_aliases_gen())
+
+
+possible_aliases = numeric_type_aliases([
+ ('int8', '8-bit signed integer (``-128`` to ``127``)'),
+ ('int16', '16-bit signed integer (``-32_768`` to ``32_767``)'),
+ ('int32', '32-bit signed integer (``-2_147_483_648`` to ``2_147_483_647``)'),
+ ('int64', '64-bit signed integer (``-9_223_372_036_854_775_808`` to ``9_223_372_036_854_775_807``)'),
+ ('intp', 'Signed integer large enough to fit pointer, compatible with C ``intptr_t``'),
+ ('uint8', '8-bit unsigned integer (``0`` to ``255``)'),
+ ('uint16', '16-bit unsigned integer (``0`` to ``65_535``)'),
+ ('uint32', '32-bit unsigned integer (``0`` to ``4_294_967_295``)'),
+ ('uint64', '64-bit unsigned integer (``0`` to ``18_446_744_073_709_551_615``)'),
+ ('uintp', 'Unsigned integer large enough to fit pointer, compatible with C ``uintptr_t``'),
+ ('float16', '16-bit-precision floating-point number type: sign bit, 5 bits exponent, 10 bits mantissa'),
+ ('float32', '32-bit-precision floating-point number type: sign bit, 8 bits exponent, 23 bits mantissa'),
+ ('float64', '64-bit precision floating-point number type: sign bit, 11 bits exponent, 52 bits mantissa'),
+ ('float96', '96-bit extended-precision floating-point number type'),
+ ('float128', '128-bit extended-precision floating-point number type'),
+ ('complex64', 'Complex number type composed of 2 32-bit-precision floating-point numbers'),
+ ('complex128', 'Complex number type composed of 2 64-bit-precision floating-point numbers'),
+ ('complex192', 'Complex number type composed of 2 96-bit extended-precision floating-point numbers'),
+ ('complex256', 'Complex number type composed of 2 128-bit extended-precision floating-point numbers'),
+ ])
+
+
+def _get_platform_and_machine():
+ try:
+ system, _, _, _, machine = os.uname()
+ except AttributeError:
+ system = sys.platform
+ if system == 'win32':
+ machine = os.environ.get('PROCESSOR_ARCHITEW6432', '') \
+ or os.environ.get('PROCESSOR_ARCHITECTURE', '')
+ else:
+ machine = 'unknown'
+ return system, machine
+
+
+_system, _machine = _get_platform_and_machine()
+_doc_alias_string = f":Alias on this platform ({_system} {_machine}):"
+
+
+def add_newdoc_for_scalar_type(obj, fixed_aliases, doc):
+ # note: `:field: value` is rST syntax which renders as field lists.
+ o = getattr(_numerictypes, obj)
+
+ character_code = dtype(o).char
+ canonical_name_doc = "" if obj == o.__name__ else \
+ f":Canonical name: `numpy.{obj}`\n "
+ if fixed_aliases:
+ alias_doc = ''.join(f":Alias: `numpy.{alias}`\n "
+ for alias in fixed_aliases)
+ else:
+ alias_doc = ''
+ alias_doc += ''.join(f"{_doc_alias_string} `numpy.{alias}`: {doc}.\n "
+ for (alias_type, alias, doc) in possible_aliases if alias_type is o)
+
+ docstring = f"""
+ {doc.strip()}
+
+ :Character code: ``'{character_code}'``
+ {canonical_name_doc}{alias_doc}
+ """
+
+ add_newdoc('numpy._core.numerictypes', obj, docstring)
+
+
+_bool_docstring = (
+ """
+ Boolean type (True or False), stored as a byte.
+
+ .. warning::
+
+ The :class:`bool` type is not a subclass of the :class:`int_` type
+ (the :class:`bool` is not even a number type). This is different
+ than Python's default implementation of :class:`bool` as a
+ sub-class of :class:`int`.
+ """
+)
+
+add_newdoc_for_scalar_type('bool', [], _bool_docstring)
+
+add_newdoc_for_scalar_type('bool_', [], _bool_docstring)
+
+add_newdoc_for_scalar_type('byte', [],
+ """
+ Signed integer type, compatible with C ``char``.
+ """)
+
+add_newdoc_for_scalar_type('short', [],
+ """
+ Signed integer type, compatible with C ``short``.
+ """)
+
+add_newdoc_for_scalar_type('intc', [],
+ """
+ Signed integer type, compatible with C ``int``.
+ """)
+
+# TODO: These docs probably need an if to highlight the default rather than
+# the C-types (and be correct).
+add_newdoc_for_scalar_type('int_', [],
+ """
+ Default signed integer type, 64bit on 64bit systems and 32bit on 32bit
+ systems.
+ """)
+
+add_newdoc_for_scalar_type('longlong', [],
+ """
+ Signed integer type, compatible with C ``long long``.
+ """)
+
+add_newdoc_for_scalar_type('ubyte', [],
+ """
+ Unsigned integer type, compatible with C ``unsigned char``.
+ """)
+
+add_newdoc_for_scalar_type('ushort', [],
+ """
+ Unsigned integer type, compatible with C ``unsigned short``.
+ """)
+
+add_newdoc_for_scalar_type('uintc', [],
+ """
+ Unsigned integer type, compatible with C ``unsigned int``.
+ """)
+
+add_newdoc_for_scalar_type('uint', [],
+ """
+ Unsigned signed integer type, 64bit on 64bit systems and 32bit on 32bit
+ systems.
+ """)
+
+add_newdoc_for_scalar_type('ulonglong', [],
+ """
+ Signed integer type, compatible with C ``unsigned long long``.
+ """)
+
+add_newdoc_for_scalar_type('half', [],
+ """
+ Half-precision floating-point number type.
+ """)
+
+add_newdoc_for_scalar_type('single', [],
+ """
+ Single-precision floating-point number type, compatible with C ``float``.
+ """)
+
+add_newdoc_for_scalar_type('double', [],
+ """
+ Double-precision floating-point number type, compatible with Python
+ :class:`float` and C ``double``.
+ """)
+
+add_newdoc_for_scalar_type('longdouble', [],
+ """
+ Extended-precision floating-point number type, compatible with C
+ ``long double`` but not necessarily with IEEE 754 quadruple-precision.
+ """)
+
+add_newdoc_for_scalar_type('csingle', [],
+ """
+ Complex number type composed of two single-precision floating-point
+ numbers.
+ """)
+
+add_newdoc_for_scalar_type('cdouble', [],
+ """
+ Complex number type composed of two double-precision floating-point
+ numbers, compatible with Python :class:`complex`.
+ """)
+
+add_newdoc_for_scalar_type('clongdouble', [],
+ """
+ Complex number type composed of two extended-precision floating-point
+ numbers.
+ """)
+
+add_newdoc_for_scalar_type('object_', [],
+ """
+ Any Python object.
+ """)
+
+add_newdoc_for_scalar_type('str_', [],
+ r"""
+ A unicode string.
+
+ This type strips trailing null codepoints.
+
+ >>> s = np.str_("abc\x00")
+ >>> s
+ 'abc'
+
+ Unlike the builtin :class:`str`, this supports the
+ :ref:`python:bufferobjects`, exposing its contents as UCS4:
+
+ >>> m = memoryview(np.str_("abc"))
+ >>> m.format
+ '3w'
+ >>> m.tobytes()
+ b'a\x00\x00\x00b\x00\x00\x00c\x00\x00\x00'
+ """)
+
+add_newdoc_for_scalar_type('bytes_', [],
+ r"""
+ A byte string.
+
+ When used in arrays, this type strips trailing null bytes.
+ """)
+
+add_newdoc_for_scalar_type('void', [],
+ r"""
+ np.void(length_or_data, /, dtype=None)
+
+ Create a new structured or unstructured void scalar.
+
+ Parameters
+ ----------
+ length_or_data : int, array-like, bytes-like, object
+ One of multiple meanings (see notes). The length or
+ bytes data of an unstructured void. Or alternatively,
+ the data to be stored in the new scalar when `dtype`
+ is provided.
+ This can be an array-like, in which case an array may
+ be returned.
+ dtype : dtype, optional
+ If provided the dtype of the new scalar. This dtype must
+ be "void" dtype (i.e. a structured or unstructured void,
+ see also :ref:`defining-structured-types`).
+
+ .. versionadded:: 1.24
+
+ Notes
+ -----
+ For historical reasons and because void scalars can represent both
+ arbitrary byte data and structured dtypes, the void constructor
+ has three calling conventions:
+
+ 1. ``np.void(5)`` creates a ``dtype="V5"`` scalar filled with five
+ ``\0`` bytes. The 5 can be a Python or NumPy integer.
+ 2. ``np.void(b"bytes-like")`` creates a void scalar from the byte string.
+ The dtype itemsize will match the byte string length, here ``"V10"``.
+ 3. When a ``dtype=`` is passed the call is roughly the same as an
+ array creation. However, a void scalar rather than array is returned.
+
+ Please see the examples which show all three different conventions.
+
+ Examples
+ --------
+ >>> np.void(5)
+ np.void(b'\x00\x00\x00\x00\x00')
+ >>> np.void(b'abcd')
+ np.void(b'\x61\x62\x63\x64')
+ >>> np.void((3.2, b'eggs'), dtype="d,S5")
+ np.void((3.2, b'eggs'), dtype=[('f0', '<f8'), ('f1', 'S5')])
+ >>> np.void(3, dtype=[('x', np.int8), ('y', np.int8)])
+ np.void((3, 3), dtype=[('x', 'i1'), ('y', 'i1')])
+
+ """)
+
+add_newdoc_for_scalar_type('datetime64', [],
+ """
+ If created from a 64-bit integer, it represents an offset from
+ ``1970-01-01T00:00:00``.
+ If created from string, the string can be in ISO 8601 date
+ or datetime format.
+
+ When parsing a string to create a datetime object, if the string contains
+ a trailing timezone (A 'Z' or a timezone offset), the timezone will be
+ dropped and a User Warning is given.
+
+ Datetime64 objects should be considered to be UTC and therefore have an
+ offset of +0000.
+
+ >>> np.datetime64(10, 'Y')
+ np.datetime64('1980')
+ >>> np.datetime64('1980', 'Y')
+ np.datetime64('1980')
+ >>> np.datetime64(10, 'D')
+ np.datetime64('1970-01-11')
+
+ See :ref:`arrays.datetime` for more information.
+ """)
+
+add_newdoc_for_scalar_type('timedelta64', [],
+ """
+ A timedelta stored as a 64-bit integer.
+
+ See :ref:`arrays.datetime` for more information.
+ """)
+
+add_newdoc('numpy._core.numerictypes', "integer", ('is_integer',
+ """
+ integer.is_integer() -> bool
+
+ Return ``True`` if the number is finite with integral value.
+
+ .. versionadded:: 1.22
+
+ Examples
+ --------
+ >>> import numpy as np
+ >>> np.int64(-2).is_integer()
+ True
+ >>> np.uint32(5).is_integer()
+ True
+ """))
+
+# TODO: work out how to put this on the base class, np.floating
+for float_name in ('half', 'single', 'double', 'longdouble'):
+ add_newdoc('numpy._core.numerictypes', float_name, ('as_integer_ratio',
+ f"""
+ {float_name}.as_integer_ratio() -> (int, int)
+
+ Return a pair of integers, whose ratio is exactly equal to the original
+ floating point number, and with a positive denominator.
+ Raise `OverflowError` on infinities and a `ValueError` on NaNs.
+
+ >>> np.{float_name}(10.0).as_integer_ratio()
+ (10, 1)
+ >>> np.{float_name}(0.0).as_integer_ratio()
+ (0, 1)
+ >>> np.{float_name}(-.25).as_integer_ratio()
+ (-1, 4)
+ """))
+
+ add_newdoc('numpy._core.numerictypes', float_name, ('is_integer',
+ f"""
+ {float_name}.is_integer() -> bool
+
+ Return ``True`` if the floating point number is finite with integral
+ value, and ``False`` otherwise.
+
+ .. versionadded:: 1.22
+
+ Examples
+ --------
+ >>> np.{float_name}(-2.0).is_integer()
+ True
+ >>> np.{float_name}(3.2).is_integer()
+ False
+ """))
+
+for int_name in ('int8', 'uint8', 'int16', 'uint16', 'int32', 'uint32',
+ 'int64', 'uint64', 'int64', 'uint64', 'int64', 'uint64'):
+ # Add negative examples for signed cases by checking typecode
+ add_newdoc('numpy._core.numerictypes', int_name, ('bit_count',
+ f"""
+ {int_name}.bit_count() -> int
+
+ Computes the number of 1-bits in the absolute value of the input.
+ Analogous to the builtin `int.bit_count` or ``popcount`` in C++.
+
+ Examples
+ --------
+ >>> np.{int_name}(127).bit_count()
+ 7""" +
+ (f"""
+ >>> np.{int_name}(-127).bit_count()
+ 7
+ """ if dtype(int_name).char.islower() else "")))
diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/_add_newdocs_scalars.pyi b/.venv/lib/python3.12/site-packages/numpy/_core/_add_newdocs_scalars.pyi
new file mode 100644
index 0000000..4a06c9b
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/_core/_add_newdocs_scalars.pyi
@@ -0,0 +1,16 @@
+from collections.abc import Iterable
+from typing import Final
+
+import numpy as np
+
+possible_aliases: Final[list[tuple[type[np.number], str, str]]] = ...
+_system: Final[str] = ...
+_machine: Final[str] = ...
+_doc_alias_string: Final[str] = ...
+_bool_docstring: Final[str] = ...
+int_name: str = ...
+float_name: str = ...
+
+def numeric_type_aliases(aliases: list[tuple[str, str]]) -> list[tuple[type[np.number], str, str]]: ...
+def add_newdoc_for_scalar_type(obj: str, fixed_aliases: Iterable[str], doc: str) -> None: ...
+def _get_platform_and_machine() -> tuple[str, str]: ...
diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/_asarray.py b/.venv/lib/python3.12/site-packages/numpy/_core/_asarray.py
new file mode 100644
index 0000000..613c5cf
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/_core/_asarray.py
@@ -0,0 +1,134 @@
+"""
+Functions in the ``as*array`` family that promote array-likes into arrays.
+
+`require` fits this category despite its name not matching this pattern.
+"""
+from .multiarray import array, asanyarray
+from .overrides import (
+ array_function_dispatch,
+ finalize_array_function_like,
+ set_module,
+)
+
+__all__ = ["require"]
+
+
+POSSIBLE_FLAGS = {
+ 'C': 'C', 'C_CONTIGUOUS': 'C', 'CONTIGUOUS': 'C',
+ 'F': 'F', 'F_CONTIGUOUS': 'F', 'FORTRAN': 'F',
+ 'A': 'A', 'ALIGNED': 'A',
+ 'W': 'W', 'WRITEABLE': 'W',
+ 'O': 'O', 'OWNDATA': 'O',
+ 'E': 'E', 'ENSUREARRAY': 'E'
+}
+
+
+@finalize_array_function_like
+@set_module('numpy')
+def require(a, dtype=None, requirements=None, *, like=None):
+ """
+ Return an ndarray of the provided type that satisfies requirements.
+
+ This function is useful to be sure that an array with the correct flags
+ is returned for passing to compiled code (perhaps through ctypes).
+
+ Parameters
+ ----------
+ a : array_like
+ The object to be converted to a type-and-requirement-satisfying array.
+ dtype : data-type
+ The required data-type. If None preserve the current dtype. If your
+ application requires the data to be in native byteorder, include
+ a byteorder specification as a part of the dtype specification.
+ requirements : str or sequence of str
+ The requirements list can be any of the following
+
+ * 'F_CONTIGUOUS' ('F') - ensure a Fortran-contiguous array
+ * 'C_CONTIGUOUS' ('C') - ensure a C-contiguous array
+ * 'ALIGNED' ('A') - ensure a data-type aligned array
+ * 'WRITEABLE' ('W') - ensure a writable array
+ * 'OWNDATA' ('O') - ensure an array that owns its own data
+ * 'ENSUREARRAY', ('E') - ensure a base array, instead of a subclass
+ ${ARRAY_FUNCTION_LIKE}
+
+ .. versionadded:: 1.20.0
+
+ Returns
+ -------
+ out : ndarray
+ Array with specified requirements and type if given.
+
+ See Also
+ --------
+ asarray : Convert input to an ndarray.
+ asanyarray : Convert to an ndarray, but pass through ndarray subclasses.
+ ascontiguousarray : Convert input to a contiguous array.
+ asfortranarray : Convert input to an ndarray with column-major
+ memory order.
+ ndarray.flags : Information about the memory layout of the array.
+
+ Notes
+ -----
+ The returned array will be guaranteed to have the listed requirements
+ by making a copy if needed.
+
+ Examples
+ --------
+ >>> import numpy as np
+ >>> x = np.arange(6).reshape(2,3)
+ >>> x.flags
+ C_CONTIGUOUS : True
+ F_CONTIGUOUS : False
+ OWNDATA : False
+ WRITEABLE : True
+ ALIGNED : True
+ WRITEBACKIFCOPY : False
+
+ >>> y = np.require(x, dtype=np.float32, requirements=['A', 'O', 'W', 'F'])
+ >>> y.flags
+ C_CONTIGUOUS : False
+ F_CONTIGUOUS : True
+ OWNDATA : True
+ WRITEABLE : True
+ ALIGNED : True
+ WRITEBACKIFCOPY : False
+
+ """
+ if like is not None:
+ return _require_with_like(
+ like,
+ a,
+ dtype=dtype,
+ requirements=requirements,
+ )
+
+ if not requirements:
+ return asanyarray(a, dtype=dtype)
+
+ requirements = {POSSIBLE_FLAGS[x.upper()] for x in requirements}
+
+ if 'E' in requirements:
+ requirements.remove('E')
+ subok = False
+ else:
+ subok = True
+
+ order = 'A'
+ if requirements >= {'C', 'F'}:
+ raise ValueError('Cannot specify both "C" and "F" order')
+ elif 'F' in requirements:
+ order = 'F'
+ requirements.remove('F')
+ elif 'C' in requirements:
+ order = 'C'
+ requirements.remove('C')
+
+ arr = array(a, dtype=dtype, order=order, copy=None, subok=subok)
+
+ for prop in requirements:
+ if not arr.flags[prop]:
+ return arr.copy(order)
+ return arr
+
+
+_require_with_like = array_function_dispatch()(require)
diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/_asarray.pyi b/.venv/lib/python3.12/site-packages/numpy/_core/_asarray.pyi
new file mode 100644
index 0000000..a4bee00
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/_core/_asarray.pyi
@@ -0,0 +1,41 @@
+from collections.abc import Iterable
+from typing import Any, Literal, TypeAlias, TypeVar, overload
+
+from numpy._typing import DTypeLike, NDArray, _SupportsArrayFunc
+
+_ArrayT = TypeVar("_ArrayT", bound=NDArray[Any])
+
+_Requirements: TypeAlias = Literal[
+ "C", "C_CONTIGUOUS", "CONTIGUOUS",
+ "F", "F_CONTIGUOUS", "FORTRAN",
+ "A", "ALIGNED",
+ "W", "WRITEABLE",
+ "O", "OWNDATA"
+]
+_E: TypeAlias = Literal["E", "ENSUREARRAY"]
+_RequirementsWithE: TypeAlias = _Requirements | _E
+
+@overload
+def require(
+ a: _ArrayT,
+ dtype: None = ...,
+ requirements: _Requirements | Iterable[_Requirements] | None = ...,
+ *,
+ like: _SupportsArrayFunc = ...
+) -> _ArrayT: ...
+@overload
+def require(
+ a: object,
+ dtype: DTypeLike = ...,
+ requirements: _E | Iterable[_RequirementsWithE] = ...,
+ *,
+ like: _SupportsArrayFunc = ...
+) -> NDArray[Any]: ...
+@overload
+def require(
+ a: object,
+ dtype: DTypeLike = ...,
+ requirements: _Requirements | Iterable[_Requirements] | None = ...,
+ *,
+ like: _SupportsArrayFunc = ...
+) -> NDArray[Any]: ...
diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/_dtype.py b/.venv/lib/python3.12/site-packages/numpy/_core/_dtype.py
new file mode 100644
index 0000000..6a8a091
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/_core/_dtype.py
@@ -0,0 +1,366 @@
+"""
+A place for code to be called from the implementation of np.dtype
+
+String handling is much easier to do correctly in python.
+"""
+import numpy as np
+
+_kind_to_stem = {
+ 'u': 'uint',
+ 'i': 'int',
+ 'c': 'complex',
+ 'f': 'float',
+ 'b': 'bool',
+ 'V': 'void',
+ 'O': 'object',
+ 'M': 'datetime',
+ 'm': 'timedelta',
+ 'S': 'bytes',
+ 'U': 'str',
+}
+
+
+def _kind_name(dtype):
+ try:
+ return _kind_to_stem[dtype.kind]
+ except KeyError as e:
+ raise RuntimeError(
+ f"internal dtype error, unknown kind {dtype.kind!r}"
+ ) from None
+
+
+def __str__(dtype):
+ if dtype.fields is not None:
+ return _struct_str(dtype, include_align=True)
+ elif dtype.subdtype:
+ return _subarray_str(dtype)
+ elif issubclass(dtype.type, np.flexible) or not dtype.isnative:
+ return dtype.str
+ else:
+ return dtype.name
+
+
+def __repr__(dtype):
+ arg_str = _construction_repr(dtype, include_align=False)
+ if dtype.isalignedstruct:
+ arg_str = arg_str + ", align=True"
+ return f"dtype({arg_str})"
+
+
+def _unpack_field(dtype, offset, title=None):
+ """
+ Helper function to normalize the items in dtype.fields.
+
+ Call as:
+
+ dtype, offset, title = _unpack_field(*dtype.fields[name])
+ """
+ return dtype, offset, title
+
+
+def _isunsized(dtype):
+ # PyDataType_ISUNSIZED
+ return dtype.itemsize == 0
+
+
+def _construction_repr(dtype, include_align=False, short=False):
+ """
+ Creates a string repr of the dtype, excluding the 'dtype()' part
+ surrounding the object. This object may be a string, a list, or
+ a dict depending on the nature of the dtype. This
+ is the object passed as the first parameter to the dtype
+ constructor, and if no additional constructor parameters are
+ given, will reproduce the exact memory layout.
+
+ Parameters
+ ----------
+ short : bool
+ If true, this creates a shorter repr using 'kind' and 'itemsize',
+ instead of the longer type name.
+
+ include_align : bool
+ If true, this includes the 'align=True' parameter
+ inside the struct dtype construction dict when needed. Use this flag
+ if you want a proper repr string without the 'dtype()' part around it.
+
+ If false, this does not preserve the
+ 'align=True' parameter or sticky NPY_ALIGNED_STRUCT flag for
+ struct arrays like the regular repr does, because the 'align'
+ flag is not part of first dtype constructor parameter. This
+ mode is intended for a full 'repr', where the 'align=True' is
+ provided as the second parameter.
+ """
+ if dtype.fields is not None:
+ return _struct_str(dtype, include_align=include_align)
+ elif dtype.subdtype:
+ return _subarray_str(dtype)
+ else:
+ return _scalar_str(dtype, short=short)
+
+
+def _scalar_str(dtype, short):
+ byteorder = _byte_order_str(dtype)
+
+ if dtype.type == np.bool:
+ if short:
+ return "'?'"
+ else:
+ return "'bool'"
+
+ elif dtype.type == np.object_:
+ # The object reference may be different sizes on different
+ # platforms, so it should never include the itemsize here.
+ return "'O'"
+
+ elif dtype.type == np.bytes_:
+ if _isunsized(dtype):
+ return "'S'"
+ else:
+ return "'S%d'" % dtype.itemsize
+
+ elif dtype.type == np.str_:
+ if _isunsized(dtype):
+ return f"'{byteorder}U'"
+ else:
+ return "'%sU%d'" % (byteorder, dtype.itemsize / 4)
+
+ elif dtype.type == str:
+ return "'T'"
+
+ elif not type(dtype)._legacy:
+ return f"'{byteorder}{type(dtype).__name__}{dtype.itemsize * 8}'"
+
+ # unlike the other types, subclasses of void are preserved - but
+ # historically the repr does not actually reveal the subclass
+ elif issubclass(dtype.type, np.void):
+ if _isunsized(dtype):
+ return "'V'"
+ else:
+ return "'V%d'" % dtype.itemsize
+
+ elif dtype.type == np.datetime64:
+ return f"'{byteorder}M8{_datetime_metadata_str(dtype)}'"
+
+ elif dtype.type == np.timedelta64:
+ return f"'{byteorder}m8{_datetime_metadata_str(dtype)}'"
+
+ elif dtype.isbuiltin == 2:
+ return dtype.type.__name__
+
+ elif np.issubdtype(dtype, np.number):
+ # Short repr with endianness, like '<f8'
+ if short or dtype.byteorder not in ('=', '|'):
+ return "'%s%c%d'" % (byteorder, dtype.kind, dtype.itemsize)
+
+ # Longer repr, like 'float64'
+ else:
+ return "'%s%d'" % (_kind_name(dtype), 8 * dtype.itemsize)
+
+ else:
+ raise RuntimeError(
+ "Internal error: NumPy dtype unrecognized type number")
+
+
+def _byte_order_str(dtype):
+ """ Normalize byteorder to '<' or '>' """
+ # hack to obtain the native and swapped byte order characters
+ swapped = np.dtype(int).newbyteorder('S')
+ native = swapped.newbyteorder('S')
+
+ byteorder = dtype.byteorder
+ if byteorder == '=':
+ return native.byteorder
+ if byteorder == 'S':
+ # TODO: this path can never be reached
+ return swapped.byteorder
+ elif byteorder == '|':
+ return ''
+ else:
+ return byteorder
+
+
+def _datetime_metadata_str(dtype):
+ # TODO: this duplicates the C metastr_to_unicode functionality
+ unit, count = np.datetime_data(dtype)
+ if unit == 'generic':
+ return ''
+ elif count == 1:
+ return f'[{unit}]'
+ else:
+ return f'[{count}{unit}]'
+
+
+def _struct_dict_str(dtype, includealignedflag):
+ # unpack the fields dictionary into ls
+ names = dtype.names
+ fld_dtypes = []
+ offsets = []
+ titles = []
+ for name in names:
+ fld_dtype, offset, title = _unpack_field(*dtype.fields[name])
+ fld_dtypes.append(fld_dtype)
+ offsets.append(offset)
+ titles.append(title)
+
+ # Build up a string to make the dictionary
+
+ if np._core.arrayprint._get_legacy_print_mode() <= 121:
+ colon = ":"
+ fieldsep = ","
+ else:
+ colon = ": "
+ fieldsep = ", "
+
+ # First, the names
+ ret = "{'names'%s[" % colon
+ ret += fieldsep.join(repr(name) for name in names)
+
+ # Second, the formats
+ ret += f"], 'formats'{colon}["
+ ret += fieldsep.join(
+ _construction_repr(fld_dtype, short=True) for fld_dtype in fld_dtypes)
+
+ # Third, the offsets
+ ret += f"], 'offsets'{colon}["
+ ret += fieldsep.join("%d" % offset for offset in offsets)
+
+ # Fourth, the titles
+ if any(title is not None for title in titles):
+ ret += f"], 'titles'{colon}["
+ ret += fieldsep.join(repr(title) for title in titles)
+
+ # Fifth, the itemsize
+ ret += "], 'itemsize'%s%d" % (colon, dtype.itemsize)
+
+ if (includealignedflag and dtype.isalignedstruct):
+ # Finally, the aligned flag
+ ret += ", 'aligned'%sTrue}" % colon
+ else:
+ ret += "}"
+
+ return ret
+
+
+def _aligned_offset(offset, alignment):
+ # round up offset:
+ return - (-offset // alignment) * alignment
+
+
+def _is_packed(dtype):
+ """
+ Checks whether the structured data type in 'dtype'
+ has a simple layout, where all the fields are in order,
+ and follow each other with no alignment padding.
+
+ When this returns true, the dtype can be reconstructed
+ from a list of the field names and dtypes with no additional
+ dtype parameters.
+
+ Duplicates the C `is_dtype_struct_simple_unaligned_layout` function.
+ """
+ align = dtype.isalignedstruct
+ max_alignment = 1
+ total_offset = 0
+ for name in dtype.names:
+ fld_dtype, fld_offset, title = _unpack_field(*dtype.fields[name])
+
+ if align:
+ total_offset = _aligned_offset(total_offset, fld_dtype.alignment)
+ max_alignment = max(max_alignment, fld_dtype.alignment)
+
+ if fld_offset != total_offset:
+ return False
+ total_offset += fld_dtype.itemsize
+
+ if align:
+ total_offset = _aligned_offset(total_offset, max_alignment)
+
+ return total_offset == dtype.itemsize
+
+
+def _struct_list_str(dtype):
+ items = []
+ for name in dtype.names:
+ fld_dtype, fld_offset, title = _unpack_field(*dtype.fields[name])
+
+ item = "("
+ if title is not None:
+ item += f"({title!r}, {name!r}), "
+ else:
+ item += f"{name!r}, "
+ # Special case subarray handling here
+ if fld_dtype.subdtype is not None:
+ base, shape = fld_dtype.subdtype
+ item += f"{_construction_repr(base, short=True)}, {shape}"
+ else:
+ item += _construction_repr(fld_dtype, short=True)
+
+ item += ")"
+ items.append(item)
+
+ return "[" + ", ".join(items) + "]"
+
+
+def _struct_str(dtype, include_align):
+ # The list str representation can't include the 'align=' flag,
+ # so if it is requested and the struct has the aligned flag set,
+ # we must use the dict str instead.
+ if not (include_align and dtype.isalignedstruct) and _is_packed(dtype):
+ sub = _struct_list_str(dtype)
+
+ else:
+ sub = _struct_dict_str(dtype, include_align)
+
+ # If the data type isn't the default, void, show it
+ if dtype.type != np.void:
+ return f"({dtype.type.__module__}.{dtype.type.__name__}, {sub})"
+ else:
+ return sub
+
+
+def _subarray_str(dtype):
+ base, shape = dtype.subdtype
+ return f"({_construction_repr(base, short=True)}, {shape})"
+
+
+def _name_includes_bit_suffix(dtype):
+ if dtype.type == np.object_:
+ # pointer size varies by system, best to omit it
+ return False
+ elif dtype.type == np.bool:
+ # implied
+ return False
+ elif dtype.type is None:
+ return True
+ elif np.issubdtype(dtype, np.flexible) and _isunsized(dtype):
+ # unspecified
+ return False
+ else:
+ return True
+
+
+def _name_get(dtype):
+ # provides dtype.name.__get__, documented as returning a "bit name"
+
+ if dtype.isbuiltin == 2:
+ # user dtypes don't promise to do anything special
+ return dtype.type.__name__
+
+ if not type(dtype)._legacy:
+ name = type(dtype).__name__
+
+ elif issubclass(dtype.type, np.void):
+ # historically, void subclasses preserve their name, eg `record64`
+ name = dtype.type.__name__
+ else:
+ name = _kind_name(dtype)
+
+ # append bit counts
+ if _name_includes_bit_suffix(dtype):
+ name += f"{dtype.itemsize * 8}"
+
+ # append metadata to datetimes
+ if dtype.type in (np.datetime64, np.timedelta64):
+ name += _datetime_metadata_str(dtype)
+
+ return name
diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/_dtype.pyi b/.venv/lib/python3.12/site-packages/numpy/_core/_dtype.pyi
new file mode 100644
index 0000000..6cdd77b
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/_core/_dtype.pyi
@@ -0,0 +1,58 @@
+from typing import Final, TypeAlias, TypedDict, overload, type_check_only
+from typing import Literal as L
+
+from typing_extensions import ReadOnly, TypeVar
+
+import numpy as np
+
+###
+
+_T = TypeVar("_T")
+
+_Name: TypeAlias = L["uint", "int", "complex", "float", "bool", "void", "object", "datetime", "timedelta", "bytes", "str"]
+
+@type_check_only
+class _KindToStemType(TypedDict):
+ u: ReadOnly[L["uint"]]
+ i: ReadOnly[L["int"]]
+ c: ReadOnly[L["complex"]]
+ f: ReadOnly[L["float"]]
+ b: ReadOnly[L["bool"]]
+ V: ReadOnly[L["void"]]
+ O: ReadOnly[L["object"]]
+ M: ReadOnly[L["datetime"]]
+ m: ReadOnly[L["timedelta"]]
+ S: ReadOnly[L["bytes"]]
+ U: ReadOnly[L["str"]]
+
+###
+
+_kind_to_stem: Final[_KindToStemType] = ...
+
+#
+def _kind_name(dtype: np.dtype) -> _Name: ...
+def __str__(dtype: np.dtype) -> str: ...
+def __repr__(dtype: np.dtype) -> str: ...
+
+#
+def _isunsized(dtype: np.dtype) -> bool: ...
+def _is_packed(dtype: np.dtype) -> bool: ...
+def _name_includes_bit_suffix(dtype: np.dtype) -> bool: ...
+
+#
+def _construction_repr(dtype: np.dtype, include_align: bool = False, short: bool = False) -> str: ...
+def _scalar_str(dtype: np.dtype, short: bool) -> str: ...
+def _byte_order_str(dtype: np.dtype) -> str: ...
+def _datetime_metadata_str(dtype: np.dtype) -> str: ...
+def _struct_dict_str(dtype: np.dtype, includealignedflag: bool) -> str: ...
+def _struct_list_str(dtype: np.dtype) -> str: ...
+def _struct_str(dtype: np.dtype, include_align: bool) -> str: ...
+def _subarray_str(dtype: np.dtype) -> str: ...
+def _name_get(dtype: np.dtype) -> str: ...
+
+#
+@overload
+def _unpack_field(dtype: np.dtype, offset: int, title: _T) -> tuple[np.dtype, int, _T]: ...
+@overload
+def _unpack_field(dtype: np.dtype, offset: int, title: None = None) -> tuple[np.dtype, int, None]: ...
+def _aligned_offset(offset: int, alignment: int) -> int: ...
diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/_dtype_ctypes.py b/.venv/lib/python3.12/site-packages/numpy/_core/_dtype_ctypes.py
new file mode 100644
index 0000000..4de6df6
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/_core/_dtype_ctypes.py
@@ -0,0 +1,120 @@
+"""
+Conversion from ctypes to dtype.
+
+In an ideal world, we could achieve this through the PEP3118 buffer protocol,
+something like::
+
+ def dtype_from_ctypes_type(t):
+ # needed to ensure that the shape of `t` is within memoryview.format
+ class DummyStruct(ctypes.Structure):
+ _fields_ = [('a', t)]
+
+ # empty to avoid memory allocation
+ ctype_0 = (DummyStruct * 0)()
+ mv = memoryview(ctype_0)
+
+ # convert the struct, and slice back out the field
+ return _dtype_from_pep3118(mv.format)['a']
+
+Unfortunately, this fails because:
+
+* ctypes cannot handle length-0 arrays with PEP3118 (bpo-32782)
+* PEP3118 cannot represent unions, but both numpy and ctypes can
+* ctypes cannot handle big-endian structs with PEP3118 (bpo-32780)
+"""
+
+# We delay-import ctypes for distributions that do not include it.
+# While this module is not used unless the user passes in ctypes
+# members, it is eagerly imported from numpy/_core/__init__.py.
+import numpy as np
+
+
+def _from_ctypes_array(t):
+ return np.dtype((dtype_from_ctypes_type(t._type_), (t._length_,)))
+
+
+def _from_ctypes_structure(t):
+ for item in t._fields_:
+ if len(item) > 2:
+ raise TypeError(
+ "ctypes bitfields have no dtype equivalent")
+
+ if hasattr(t, "_pack_"):
+ import ctypes
+ formats = []
+ offsets = []
+ names = []
+ current_offset = 0
+ for fname, ftyp in t._fields_:
+ names.append(fname)
+ formats.append(dtype_from_ctypes_type(ftyp))
+ # Each type has a default offset, this is platform dependent
+ # for some types.
+ effective_pack = min(t._pack_, ctypes.alignment(ftyp))
+ current_offset = (
+ (current_offset + effective_pack - 1) // effective_pack
+ ) * effective_pack
+ offsets.append(current_offset)
+ current_offset += ctypes.sizeof(ftyp)
+
+ return np.dtype({
+ "formats": formats,
+ "offsets": offsets,
+ "names": names,
+ "itemsize": ctypes.sizeof(t)})
+ else:
+ fields = []
+ for fname, ftyp in t._fields_:
+ fields.append((fname, dtype_from_ctypes_type(ftyp)))
+
+ # by default, ctypes structs are aligned
+ return np.dtype(fields, align=True)
+
+
+def _from_ctypes_scalar(t):
+ """
+ Return the dtype type with endianness included if it's the case
+ """
+ if getattr(t, '__ctype_be__', None) is t:
+ return np.dtype('>' + t._type_)
+ elif getattr(t, '__ctype_le__', None) is t:
+ return np.dtype('<' + t._type_)
+ else:
+ return np.dtype(t._type_)
+
+
+def _from_ctypes_union(t):
+ import ctypes
+ formats = []
+ offsets = []
+ names = []
+ for fname, ftyp in t._fields_:
+ names.append(fname)
+ formats.append(dtype_from_ctypes_type(ftyp))
+ offsets.append(0) # Union fields are offset to 0
+
+ return np.dtype({
+ "formats": formats,
+ "offsets": offsets,
+ "names": names,
+ "itemsize": ctypes.sizeof(t)})
+
+
+def dtype_from_ctypes_type(t):
+ """
+ Construct a dtype object from a ctypes type
+ """
+ import _ctypes
+ if issubclass(t, _ctypes.Array):
+ return _from_ctypes_array(t)
+ elif issubclass(t, _ctypes._Pointer):
+ raise TypeError("ctypes pointers have no dtype equivalent")
+ elif issubclass(t, _ctypes.Structure):
+ return _from_ctypes_structure(t)
+ elif issubclass(t, _ctypes.Union):
+ return _from_ctypes_union(t)
+ elif isinstance(getattr(t, '_type_', None), str):
+ return _from_ctypes_scalar(t)
+ else:
+ raise NotImplementedError(
+ f"Unknown ctypes type {t.__name__}")
diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/_dtype_ctypes.pyi b/.venv/lib/python3.12/site-packages/numpy/_core/_dtype_ctypes.pyi
new file mode 100644
index 0000000..69438a2
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/_core/_dtype_ctypes.pyi
@@ -0,0 +1,83 @@
+import _ctypes
+import ctypes as ct
+from typing import Any, overload
+
+import numpy as np
+
+#
+@overload
+def dtype_from_ctypes_type(t: type[_ctypes.Array[Any] | _ctypes.Structure]) -> np.dtype[np.void]: ...
+@overload
+def dtype_from_ctypes_type(t: type[ct.c_bool]) -> np.dtype[np.bool]: ...
+@overload
+def dtype_from_ctypes_type(t: type[ct.c_int8 | ct.c_byte]) -> np.dtype[np.int8]: ...
+@overload
+def dtype_from_ctypes_type(t: type[ct.c_uint8 | ct.c_ubyte]) -> np.dtype[np.uint8]: ...
+@overload
+def dtype_from_ctypes_type(t: type[ct.c_int16 | ct.c_short]) -> np.dtype[np.int16]: ...
+@overload
+def dtype_from_ctypes_type(t: type[ct.c_uint16 | ct.c_ushort]) -> np.dtype[np.uint16]: ...
+@overload
+def dtype_from_ctypes_type(t: type[ct.c_int32 | ct.c_int]) -> np.dtype[np.int32]: ...
+@overload
+def dtype_from_ctypes_type(t: type[ct.c_uint32 | ct.c_uint]) -> np.dtype[np.uint32]: ...
+@overload
+def dtype_from_ctypes_type(t: type[ct.c_ssize_t | ct.c_long]) -> np.dtype[np.int32 | np.int64]: ...
+@overload
+def dtype_from_ctypes_type(t: type[ct.c_size_t | ct.c_ulong]) -> np.dtype[np.uint32 | np.uint64]: ...
+@overload
+def dtype_from_ctypes_type(t: type[ct.c_int64 | ct.c_longlong]) -> np.dtype[np.int64]: ...
+@overload
+def dtype_from_ctypes_type(t: type[ct.c_uint64 | ct.c_ulonglong]) -> np.dtype[np.uint64]: ...
+@overload
+def dtype_from_ctypes_type(t: type[ct.c_float]) -> np.dtype[np.float32]: ...
+@overload
+def dtype_from_ctypes_type(t: type[ct.c_double]) -> np.dtype[np.float64]: ...
+@overload
+def dtype_from_ctypes_type(t: type[ct.c_longdouble]) -> np.dtype[np.longdouble]: ...
+@overload
+def dtype_from_ctypes_type(t: type[ct.c_char]) -> np.dtype[np.bytes_]: ...
+@overload
+def dtype_from_ctypes_type(t: type[ct.py_object[Any]]) -> np.dtype[np.object_]: ...
+
+# NOTE: the complex ctypes on python>=3.14 are not yet supported at runtim, see
+# https://github.com/numpy/numpy/issues/28360
+
+#
+def _from_ctypes_array(t: type[_ctypes.Array[Any]]) -> np.dtype[np.void]: ...
+def _from_ctypes_structure(t: type[_ctypes.Structure]) -> np.dtype[np.void]: ...
+def _from_ctypes_union(t: type[_ctypes.Union]) -> np.dtype[np.void]: ...
+
+# keep in sync with `dtype_from_ctypes_type` (minus the first overload)
+@overload
+def _from_ctypes_scalar(t: type[ct.c_bool]) -> np.dtype[np.bool]: ...
+@overload
+def _from_ctypes_scalar(t: type[ct.c_int8 | ct.c_byte]) -> np.dtype[np.int8]: ...
+@overload
+def _from_ctypes_scalar(t: type[ct.c_uint8 | ct.c_ubyte]) -> np.dtype[np.uint8]: ...
+@overload
+def _from_ctypes_scalar(t: type[ct.c_int16 | ct.c_short]) -> np.dtype[np.int16]: ...
+@overload
+def _from_ctypes_scalar(t: type[ct.c_uint16 | ct.c_ushort]) -> np.dtype[np.uint16]: ...
+@overload
+def _from_ctypes_scalar(t: type[ct.c_int32 | ct.c_int]) -> np.dtype[np.int32]: ...
+@overload
+def _from_ctypes_scalar(t: type[ct.c_uint32 | ct.c_uint]) -> np.dtype[np.uint32]: ...
+@overload
+def _from_ctypes_scalar(t: type[ct.c_ssize_t | ct.c_long]) -> np.dtype[np.int32 | np.int64]: ...
+@overload
+def _from_ctypes_scalar(t: type[ct.c_size_t | ct.c_ulong]) -> np.dtype[np.uint32 | np.uint64]: ...
+@overload
+def _from_ctypes_scalar(t: type[ct.c_int64 | ct.c_longlong]) -> np.dtype[np.int64]: ...
+@overload
+def _from_ctypes_scalar(t: type[ct.c_uint64 | ct.c_ulonglong]) -> np.dtype[np.uint64]: ...
+@overload
+def _from_ctypes_scalar(t: type[ct.c_float]) -> np.dtype[np.float32]: ...
+@overload
+def _from_ctypes_scalar(t: type[ct.c_double]) -> np.dtype[np.float64]: ...
+@overload
+def _from_ctypes_scalar(t: type[ct.c_longdouble]) -> np.dtype[np.longdouble]: ...
+@overload
+def _from_ctypes_scalar(t: type[ct.c_char]) -> np.dtype[np.bytes_]: ...
+@overload
+def _from_ctypes_scalar(t: type[ct.py_object[Any]]) -> np.dtype[np.object_]: ...
diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/_exceptions.py b/.venv/lib/python3.12/site-packages/numpy/_core/_exceptions.py
new file mode 100644
index 0000000..73b07d2
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/_core/_exceptions.py
@@ -0,0 +1,162 @@
+"""
+Various richly-typed exceptions, that also help us deal with string formatting
+in python where it's easier.
+
+By putting the formatting in `__str__`, we also avoid paying the cost for
+users who silence the exceptions.
+"""
+
+def _unpack_tuple(tup):
+ if len(tup) == 1:
+ return tup[0]
+ else:
+ return tup
+
+
+def _display_as_base(cls):
+ """
+ A decorator that makes an exception class look like its base.
+
+ We use this to hide subclasses that are implementation details - the user
+ should catch the base type, which is what the traceback will show them.
+
+ Classes decorated with this decorator are subject to removal without a
+ deprecation warning.
+ """
+ assert issubclass(cls, Exception)
+ cls.__name__ = cls.__base__.__name__
+ return cls
+
+
+class UFuncTypeError(TypeError):
+ """ Base class for all ufunc exceptions """
+ def __init__(self, ufunc):
+ self.ufunc = ufunc
+
+
+@_display_as_base
+class _UFuncNoLoopError(UFuncTypeError):
+ """ Thrown when a ufunc loop cannot be found """
+ def __init__(self, ufunc, dtypes):
+ super().__init__(ufunc)
+ self.dtypes = tuple(dtypes)
+
+ def __str__(self):
+ return (
+ f"ufunc {self.ufunc.__name__!r} did not contain a loop with signature "
+ f"matching types {_unpack_tuple(self.dtypes[:self.ufunc.nin])!r} "
+ f"-> {_unpack_tuple(self.dtypes[self.ufunc.nin:])!r}"
+ )
+
+
+@_display_as_base
+class _UFuncBinaryResolutionError(_UFuncNoLoopError):
+ """ Thrown when a binary resolution fails """
+ def __init__(self, ufunc, dtypes):
+ super().__init__(ufunc, dtypes)
+ assert len(self.dtypes) == 2
+
+ def __str__(self):
+ return (
+ "ufunc {!r} cannot use operands with types {!r} and {!r}"
+ ).format(
+ self.ufunc.__name__, *self.dtypes
+ )
+
+
+@_display_as_base
+class _UFuncCastingError(UFuncTypeError):
+ def __init__(self, ufunc, casting, from_, to):
+ super().__init__(ufunc)
+ self.casting = casting
+ self.from_ = from_
+ self.to = to
+
+
+@_display_as_base
+class _UFuncInputCastingError(_UFuncCastingError):
+ """ Thrown when a ufunc input cannot be casted """
+ def __init__(self, ufunc, casting, from_, to, i):
+ super().__init__(ufunc, casting, from_, to)
+ self.in_i = i
+
+ def __str__(self):
+ # only show the number if more than one input exists
+ i_str = f"{self.in_i} " if self.ufunc.nin != 1 else ""
+ return (
+ f"Cannot cast ufunc {self.ufunc.__name__!r} input {i_str}from "
+ f"{self.from_!r} to {self.to!r} with casting rule {self.casting!r}"
+ )
+
+
+@_display_as_base
+class _UFuncOutputCastingError(_UFuncCastingError):
+ """ Thrown when a ufunc output cannot be casted """
+ def __init__(self, ufunc, casting, from_, to, i):
+ super().__init__(ufunc, casting, from_, to)
+ self.out_i = i
+
+ def __str__(self):
+ # only show the number if more than one output exists
+ i_str = f"{self.out_i} " if self.ufunc.nout != 1 else ""
+ return (
+ f"Cannot cast ufunc {self.ufunc.__name__!r} output {i_str}from "
+ f"{self.from_!r} to {self.to!r} with casting rule {self.casting!r}"
+ )
+
+
+@_display_as_base
+class _ArrayMemoryError(MemoryError):
+ """ Thrown when an array cannot be allocated"""
+ def __init__(self, shape, dtype):
+ self.shape = shape
+ self.dtype = dtype
+
+ @property
+ def _total_size(self):
+ num_bytes = self.dtype.itemsize
+ for dim in self.shape:
+ num_bytes *= dim
+ return num_bytes
+
+ @staticmethod
+ def _size_to_string(num_bytes):
+ """ Convert a number of bytes into a binary size string """
+
+ # https://en.wikipedia.org/wiki/Binary_prefix
+ LOG2_STEP = 10
+ STEP = 1024
+ units = ['bytes', 'KiB', 'MiB', 'GiB', 'TiB', 'PiB', 'EiB']
+
+ unit_i = max(num_bytes.bit_length() - 1, 1) // LOG2_STEP
+ unit_val = 1 << (unit_i * LOG2_STEP)
+ n_units = num_bytes / unit_val
+ del unit_val
+
+ # ensure we pick a unit that is correct after rounding
+ if round(n_units) == STEP:
+ unit_i += 1
+ n_units /= STEP
+
+ # deal with sizes so large that we don't have units for them
+ if unit_i >= len(units):
+ new_unit_i = len(units) - 1
+ n_units *= 1 << ((unit_i - new_unit_i) * LOG2_STEP)
+ unit_i = new_unit_i
+
+ unit_name = units[unit_i]
+ # format with a sensible number of digits
+ if unit_i == 0:
+ # no decimal point on bytes
+ return f'{n_units:.0f} {unit_name}'
+ elif round(n_units) < 1000:
+ # 3 significant figures, if none are dropped to the left of the .
+ return f'{n_units:#.3g} {unit_name}'
+ else:
+ # just give all the digits otherwise
+ return f'{n_units:#.0f} {unit_name}'
+
+ def __str__(self):
+ size_str = self._size_to_string(self._total_size)
+ return (f"Unable to allocate {size_str} for an array with shape "
+ f"{self.shape} and data type {self.dtype}")
diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/_exceptions.pyi b/.venv/lib/python3.12/site-packages/numpy/_core/_exceptions.pyi
new file mode 100644
index 0000000..02637a1
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/_core/_exceptions.pyi
@@ -0,0 +1,55 @@
+from collections.abc import Iterable
+from typing import Any, Final, TypeVar, overload
+
+import numpy as np
+from numpy import _CastingKind
+from numpy._utils import set_module as set_module
+
+###
+
+_T = TypeVar("_T")
+_TupleT = TypeVar("_TupleT", bound=tuple[()] | tuple[Any, Any, *tuple[Any, ...]])
+_ExceptionT = TypeVar("_ExceptionT", bound=Exception)
+
+###
+
+class UFuncTypeError(TypeError):
+ ufunc: Final[np.ufunc]
+ def __init__(self, /, ufunc: np.ufunc) -> None: ...
+
+class _UFuncNoLoopError(UFuncTypeError):
+ dtypes: tuple[np.dtype, ...]
+ def __init__(self, /, ufunc: np.ufunc, dtypes: Iterable[np.dtype]) -> None: ...
+
+class _UFuncBinaryResolutionError(_UFuncNoLoopError):
+ dtypes: tuple[np.dtype, np.dtype]
+ def __init__(self, /, ufunc: np.ufunc, dtypes: Iterable[np.dtype]) -> None: ...
+
+class _UFuncCastingError(UFuncTypeError):
+ casting: Final[_CastingKind]
+ from_: Final[np.dtype]
+ to: Final[np.dtype]
+ def __init__(self, /, ufunc: np.ufunc, casting: _CastingKind, from_: np.dtype, to: np.dtype) -> None: ...
+
+class _UFuncInputCastingError(_UFuncCastingError):
+ in_i: Final[int]
+ def __init__(self, /, ufunc: np.ufunc, casting: _CastingKind, from_: np.dtype, to: np.dtype, i: int) -> None: ...
+
+class _UFuncOutputCastingError(_UFuncCastingError):
+ out_i: Final[int]
+ def __init__(self, /, ufunc: np.ufunc, casting: _CastingKind, from_: np.dtype, to: np.dtype, i: int) -> None: ...
+
+class _ArrayMemoryError(MemoryError):
+ shape: tuple[int, ...]
+ dtype: np.dtype
+ def __init__(self, /, shape: tuple[int, ...], dtype: np.dtype) -> None: ...
+ @property
+ def _total_size(self) -> int: ...
+ @staticmethod
+ def _size_to_string(num_bytes: int) -> str: ...
+
+@overload
+def _unpack_tuple(tup: tuple[_T]) -> _T: ...
+@overload
+def _unpack_tuple(tup: _TupleT) -> _TupleT: ...
+def _display_as_base(cls: type[_ExceptionT]) -> type[_ExceptionT]: ...
diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/_internal.py b/.venv/lib/python3.12/site-packages/numpy/_core/_internal.py
new file mode 100644
index 0000000..e00e1b2
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/_core/_internal.py
@@ -0,0 +1,958 @@
+"""
+A place for internal code
+
+Some things are more easily handled Python.
+
+"""
+import ast
+import math
+import re
+import sys
+import warnings
+
+from numpy import _NoValue
+from numpy.exceptions import DTypePromotionError
+
+from .multiarray import StringDType, array, dtype, promote_types
+
+try:
+ import ctypes
+except ImportError:
+ ctypes = None
+
+IS_PYPY = sys.implementation.name == 'pypy'
+
+if sys.byteorder == 'little':
+ _nbo = '<'
+else:
+ _nbo = '>'
+
+def _makenames_list(adict, align):
+ allfields = []
+
+ for fname, obj in adict.items():
+ n = len(obj)
+ if not isinstance(obj, tuple) or n not in (2, 3):
+ raise ValueError("entry not a 2- or 3- tuple")
+ if n > 2 and obj[2] == fname:
+ continue
+ num = int(obj[1])
+ if num < 0:
+ raise ValueError("invalid offset.")
+ format = dtype(obj[0], align=align)
+ if n > 2:
+ title = obj[2]
+ else:
+ title = None
+ allfields.append((fname, format, num, title))
+ # sort by offsets
+ allfields.sort(key=lambda x: x[2])
+ names = [x[0] for x in allfields]
+ formats = [x[1] for x in allfields]
+ offsets = [x[2] for x in allfields]
+ titles = [x[3] for x in allfields]
+
+ return names, formats, offsets, titles
+
+# Called in PyArray_DescrConverter function when
+# a dictionary without "names" and "formats"
+# fields is used as a data-type descriptor.
+def _usefields(adict, align):
+ try:
+ names = adict[-1]
+ except KeyError:
+ names = None
+ if names is None:
+ names, formats, offsets, titles = _makenames_list(adict, align)
+ else:
+ formats = []
+ offsets = []
+ titles = []
+ for name in names:
+ res = adict[name]
+ formats.append(res[0])
+ offsets.append(res[1])
+ if len(res) > 2:
+ titles.append(res[2])
+ else:
+ titles.append(None)
+
+ return dtype({"names": names,
+ "formats": formats,
+ "offsets": offsets,
+ "titles": titles}, align)
+
+
+# construct an array_protocol descriptor list
+# from the fields attribute of a descriptor
+# This calls itself recursively but should eventually hit
+# a descriptor that has no fields and then return
+# a simple typestring
+
+def _array_descr(descriptor):
+ fields = descriptor.fields
+ if fields is None:
+ subdtype = descriptor.subdtype
+ if subdtype is None:
+ if descriptor.metadata is None:
+ return descriptor.str
+ else:
+ new = descriptor.metadata.copy()
+ if new:
+ return (descriptor.str, new)
+ else:
+ return descriptor.str
+ else:
+ return (_array_descr(subdtype[0]), subdtype[1])
+
+ names = descriptor.names
+ ordered_fields = [fields[x] + (x,) for x in names]
+ result = []
+ offset = 0
+ for field in ordered_fields:
+ if field[1] > offset:
+ num = field[1] - offset
+ result.append(('', f'|V{num}'))
+ offset += num
+ elif field[1] < offset:
+ raise ValueError(
+ "dtype.descr is not defined for types with overlapping or "
+ "out-of-order fields")
+ if len(field) > 3:
+ name = (field[2], field[3])
+ else:
+ name = field[2]
+ if field[0].subdtype:
+ tup = (name, _array_descr(field[0].subdtype[0]),
+ field[0].subdtype[1])
+ else:
+ tup = (name, _array_descr(field[0]))
+ offset += field[0].itemsize
+ result.append(tup)
+
+ if descriptor.itemsize > offset:
+ num = descriptor.itemsize - offset
+ result.append(('', f'|V{num}'))
+
+ return result
+
+
+# format_re was originally from numarray by J. Todd Miller
+
+format_re = re.compile(r'(?P<order1>[<>|=]?)'
+ r'(?P<repeats> *[(]?[ ,0-9]*[)]? *)'
+ r'(?P<order2>[<>|=]?)'
+ r'(?P<dtype>[A-Za-z0-9.?]*(?:\[[a-zA-Z0-9,.]+\])?)')
+sep_re = re.compile(r'\s*,\s*')
+space_re = re.compile(r'\s+$')
+
+# astr is a string (perhaps comma separated)
+
+_convorder = {'=': _nbo}
+
+def _commastring(astr):
+ startindex = 0
+ result = []
+ islist = False
+ while startindex < len(astr):
+ mo = format_re.match(astr, pos=startindex)
+ try:
+ (order1, repeats, order2, dtype) = mo.groups()
+ except (TypeError, AttributeError):
+ raise ValueError(
+ f'format number {len(result) + 1} of "{astr}" is not recognized'
+ ) from None
+ startindex = mo.end()
+ # Separator or ending padding
+ if startindex < len(astr):
+ if space_re.match(astr, pos=startindex):
+ startindex = len(astr)
+ else:
+ mo = sep_re.match(astr, pos=startindex)
+ if not mo:
+ raise ValueError(
+ 'format number %d of "%s" is not recognized' %
+ (len(result) + 1, astr))
+ startindex = mo.end()
+ islist = True
+
+ if order2 == '':
+ order = order1
+ elif order1 == '':
+ order = order2
+ else:
+ order1 = _convorder.get(order1, order1)
+ order2 = _convorder.get(order2, order2)
+ if (order1 != order2):
+ raise ValueError(
+ f'inconsistent byte-order specification {order1} and {order2}')
+ order = order1
+
+ if order in ('|', '=', _nbo):
+ order = ''
+ dtype = order + dtype
+ if repeats == '':
+ newitem = dtype
+ else:
+ if (repeats[0] == "(" and repeats[-1] == ")"
+ and repeats[1:-1].strip() != ""
+ and "," not in repeats):
+ warnings.warn(
+ 'Passing in a parenthesized single number for repeats '
+ 'is deprecated; pass either a single number or indicate '
+ 'a tuple with a comma, like "(2,)".', DeprecationWarning,
+ stacklevel=2)
+ newitem = (dtype, ast.literal_eval(repeats))
+
+ result.append(newitem)
+
+ return result if islist else result[0]
+
+class dummy_ctype:
+
+ def __init__(self, cls):
+ self._cls = cls
+
+ def __mul__(self, other):
+ return self
+
+ def __call__(self, *other):
+ return self._cls(other)
+
+ def __eq__(self, other):
+ return self._cls == other._cls
+
+ def __ne__(self, other):
+ return self._cls != other._cls
+
+def _getintp_ctype():
+ val = _getintp_ctype.cache
+ if val is not None:
+ return val
+ if ctypes is None:
+ import numpy as np
+ val = dummy_ctype(np.intp)
+ else:
+ char = dtype('n').char
+ if char == 'i':
+ val = ctypes.c_int
+ elif char == 'l':
+ val = ctypes.c_long
+ elif char == 'q':
+ val = ctypes.c_longlong
+ else:
+ val = ctypes.c_long
+ _getintp_ctype.cache = val
+ return val
+
+
+_getintp_ctype.cache = None
+
+# Used for .ctypes attribute of ndarray
+
+class _missing_ctypes:
+ def cast(self, num, obj):
+ return num.value
+
+ class c_void_p:
+ def __init__(self, ptr):
+ self.value = ptr
+
+
+class _ctypes:
+ def __init__(self, array, ptr=None):
+ self._arr = array
+
+ if ctypes:
+ self._ctypes = ctypes
+ self._data = self._ctypes.c_void_p(ptr)
+ else:
+ # fake a pointer-like object that holds onto the reference
+ self._ctypes = _missing_ctypes()
+ self._data = self._ctypes.c_void_p(ptr)
+ self._data._objects = array
+
+ if self._arr.ndim == 0:
+ self._zerod = True
+ else:
+ self._zerod = False
+
+ def data_as(self, obj):
+ """
+ Return the data pointer cast to a particular c-types object.
+ For example, calling ``self._as_parameter_`` is equivalent to
+ ``self.data_as(ctypes.c_void_p)``. Perhaps you want to use
+ the data as a pointer to a ctypes array of floating-point data:
+ ``self.data_as(ctypes.POINTER(ctypes.c_double))``.
+
+ The returned pointer will keep a reference to the array.
+ """
+ # _ctypes.cast function causes a circular reference of self._data in
+ # self._data._objects. Attributes of self._data cannot be released
+ # until gc.collect is called. Make a copy of the pointer first then
+ # let it hold the array reference. This is a workaround to circumvent
+ # the CPython bug https://bugs.python.org/issue12836.
+ ptr = self._ctypes.cast(self._data, obj)
+ ptr._arr = self._arr
+ return ptr
+
+ def shape_as(self, obj):
+ """
+ Return the shape tuple as an array of some other c-types
+ type. For example: ``self.shape_as(ctypes.c_short)``.
+ """
+ if self._zerod:
+ return None
+ return (obj * self._arr.ndim)(*self._arr.shape)
+
+ def strides_as(self, obj):
+ """
+ Return the strides tuple as an array of some other
+ c-types type. For example: ``self.strides_as(ctypes.c_longlong)``.
+ """
+ if self._zerod:
+ return None
+ return (obj * self._arr.ndim)(*self._arr.strides)
+
+ @property
+ def data(self):
+ """
+ A pointer to the memory area of the array as a Python integer.
+ This memory area may contain data that is not aligned, or not in
+ correct byte-order. The memory area may not even be writeable.
+ The array flags and data-type of this array should be respected
+ when passing this attribute to arbitrary C-code to avoid trouble
+ that can include Python crashing. User Beware! The value of this
+ attribute is exactly the same as:
+ ``self._array_interface_['data'][0]``.
+
+ Note that unlike ``data_as``, a reference won't be kept to the array:
+ code like ``ctypes.c_void_p((a + b).ctypes.data)`` will result in a
+ pointer to a deallocated array, and should be spelt
+ ``(a + b).ctypes.data_as(ctypes.c_void_p)``
+ """
+ return self._data.value
+
+ @property
+ def shape(self):
+ """
+ (c_intp*self.ndim): A ctypes array of length self.ndim where
+ the basetype is the C-integer corresponding to ``dtype('p')`` on this
+ platform (see `~numpy.ctypeslib.c_intp`). This base-type could be
+ `ctypes.c_int`, `ctypes.c_long`, or `ctypes.c_longlong` depending on
+ the platform. The ctypes array contains the shape of
+ the underlying array.
+ """
+ return self.shape_as(_getintp_ctype())
+
+ @property
+ def strides(self):
+ """
+ (c_intp*self.ndim): A ctypes array of length self.ndim where
+ the basetype is the same as for the shape attribute. This ctypes
+ array contains the strides information from the underlying array.
+ This strides information is important for showing how many bytes
+ must be jumped to get to the next element in the array.
+ """
+ return self.strides_as(_getintp_ctype())
+
+ @property
+ def _as_parameter_(self):
+ """
+ Overrides the ctypes semi-magic method
+
+ Enables `c_func(some_array.ctypes)`
+ """
+ return self.data_as(ctypes.c_void_p)
+
+ # Numpy 1.21.0, 2021-05-18
+
+ def get_data(self):
+ """Deprecated getter for the `_ctypes.data` property.
+
+ .. deprecated:: 1.21
+ """
+ warnings.warn('"get_data" is deprecated. Use "data" instead',
+ DeprecationWarning, stacklevel=2)
+ return self.data
+
+ def get_shape(self):
+ """Deprecated getter for the `_ctypes.shape` property.
+
+ .. deprecated:: 1.21
+ """
+ warnings.warn('"get_shape" is deprecated. Use "shape" instead',
+ DeprecationWarning, stacklevel=2)
+ return self.shape
+
+ def get_strides(self):
+ """Deprecated getter for the `_ctypes.strides` property.
+
+ .. deprecated:: 1.21
+ """
+ warnings.warn('"get_strides" is deprecated. Use "strides" instead',
+ DeprecationWarning, stacklevel=2)
+ return self.strides
+
+ def get_as_parameter(self):
+ """Deprecated getter for the `_ctypes._as_parameter_` property.
+
+ .. deprecated:: 1.21
+ """
+ warnings.warn(
+ '"get_as_parameter" is deprecated. Use "_as_parameter_" instead',
+ DeprecationWarning, stacklevel=2,
+ )
+ return self._as_parameter_
+
+
+def _newnames(datatype, order):
+ """
+ Given a datatype and an order object, return a new names tuple, with the
+ order indicated
+ """
+ oldnames = datatype.names
+ nameslist = list(oldnames)
+ if isinstance(order, str):
+ order = [order]
+ seen = set()
+ if isinstance(order, (list, tuple)):
+ for name in order:
+ try:
+ nameslist.remove(name)
+ except ValueError:
+ if name in seen:
+ raise ValueError(f"duplicate field name: {name}") from None
+ else:
+ raise ValueError(f"unknown field name: {name}") from None
+ seen.add(name)
+ return tuple(list(order) + nameslist)
+ raise ValueError(f"unsupported order value: {order}")
+
+def _copy_fields(ary):
+ """Return copy of structured array with padding between fields removed.
+
+ Parameters
+ ----------
+ ary : ndarray
+ Structured array from which to remove padding bytes
+
+ Returns
+ -------
+ ary_copy : ndarray
+ Copy of ary with padding bytes removed
+ """
+ dt = ary.dtype
+ copy_dtype = {'names': dt.names,
+ 'formats': [dt.fields[name][0] for name in dt.names]}
+ return array(ary, dtype=copy_dtype, copy=True)
+
+def _promote_fields(dt1, dt2):
+ """ Perform type promotion for two structured dtypes.
+
+ Parameters
+ ----------
+ dt1 : structured dtype
+ First dtype.
+ dt2 : structured dtype
+ Second dtype.
+
+ Returns
+ -------
+ out : dtype
+ The promoted dtype
+
+ Notes
+ -----
+ If one of the inputs is aligned, the result will be. The titles of
+ both descriptors must match (point to the same field).
+ """
+ # Both must be structured and have the same names in the same order
+ if (dt1.names is None or dt2.names is None) or dt1.names != dt2.names:
+ raise DTypePromotionError(
+ f"field names `{dt1.names}` and `{dt2.names}` mismatch.")
+
+ # if both are identical, we can (maybe!) just return the same dtype.
+ identical = dt1 is dt2
+ new_fields = []
+ for name in dt1.names:
+ field1 = dt1.fields[name]
+ field2 = dt2.fields[name]
+ new_descr = promote_types(field1[0], field2[0])
+ identical = identical and new_descr is field1[0]
+
+ # Check that the titles match (if given):
+ if field1[2:] != field2[2:]:
+ raise DTypePromotionError(
+ f"field titles of field '{name}' mismatch")
+ if len(field1) == 2:
+ new_fields.append((name, new_descr))
+ else:
+ new_fields.append(((field1[2], name), new_descr))
+
+ res = dtype(new_fields, align=dt1.isalignedstruct or dt2.isalignedstruct)
+
+ # Might as well preserve identity (and metadata) if the dtype is identical
+ # and the itemsize, offsets are also unmodified. This could probably be
+ # sped up, but also probably just be removed entirely.
+ if identical and res.itemsize == dt1.itemsize:
+ for name in dt1.names:
+ if dt1.fields[name][1] != res.fields[name][1]:
+ return res # the dtype changed.
+ return dt1
+
+ return res
+
+
+def _getfield_is_safe(oldtype, newtype, offset):
+ """ Checks safety of getfield for object arrays.
+
+ As in _view_is_safe, we need to check that memory containing objects is not
+ reinterpreted as a non-object datatype and vice versa.
+
+ Parameters
+ ----------
+ oldtype : data-type
+ Data type of the original ndarray.
+ newtype : data-type
+ Data type of the field being accessed by ndarray.getfield
+ offset : int
+ Offset of the field being accessed by ndarray.getfield
+
+ Raises
+ ------
+ TypeError
+ If the field access is invalid
+
+ """
+ if newtype.hasobject or oldtype.hasobject:
+ if offset == 0 and newtype == oldtype:
+ return
+ if oldtype.names is not None:
+ for name in oldtype.names:
+ if (oldtype.fields[name][1] == offset and
+ oldtype.fields[name][0] == newtype):
+ return
+ raise TypeError("Cannot get/set field of an object array")
+ return
+
+def _view_is_safe(oldtype, newtype):
+ """ Checks safety of a view involving object arrays, for example when
+ doing::
+
+ np.zeros(10, dtype=oldtype).view(newtype)
+
+ Parameters
+ ----------
+ oldtype : data-type
+ Data type of original ndarray
+ newtype : data-type
+ Data type of the view
+
+ Raises
+ ------
+ TypeError
+ If the new type is incompatible with the old type.
+
+ """
+
+ # if the types are equivalent, there is no problem.
+ # for example: dtype((np.record, 'i4,i4')) == dtype((np.void, 'i4,i4'))
+ if oldtype == newtype:
+ return
+
+ if newtype.hasobject or oldtype.hasobject:
+ raise TypeError("Cannot change data-type for array of references.")
+ return
+
+
+# Given a string containing a PEP 3118 format specifier,
+# construct a NumPy dtype
+
+_pep3118_native_map = {
+ '?': '?',
+ 'c': 'S1',
+ 'b': 'b',
+ 'B': 'B',
+ 'h': 'h',
+ 'H': 'H',
+ 'i': 'i',
+ 'I': 'I',
+ 'l': 'l',
+ 'L': 'L',
+ 'q': 'q',
+ 'Q': 'Q',
+ 'e': 'e',
+ 'f': 'f',
+ 'd': 'd',
+ 'g': 'g',
+ 'Zf': 'F',
+ 'Zd': 'D',
+ 'Zg': 'G',
+ 's': 'S',
+ 'w': 'U',
+ 'O': 'O',
+ 'x': 'V', # padding
+}
+_pep3118_native_typechars = ''.join(_pep3118_native_map.keys())
+
+_pep3118_standard_map = {
+ '?': '?',
+ 'c': 'S1',
+ 'b': 'b',
+ 'B': 'B',
+ 'h': 'i2',
+ 'H': 'u2',
+ 'i': 'i4',
+ 'I': 'u4',
+ 'l': 'i4',
+ 'L': 'u4',
+ 'q': 'i8',
+ 'Q': 'u8',
+ 'e': 'f2',
+ 'f': 'f',
+ 'd': 'd',
+ 'Zf': 'F',
+ 'Zd': 'D',
+ 's': 'S',
+ 'w': 'U',
+ 'O': 'O',
+ 'x': 'V', # padding
+}
+_pep3118_standard_typechars = ''.join(_pep3118_standard_map.keys())
+
+_pep3118_unsupported_map = {
+ 'u': 'UCS-2 strings',
+ '&': 'pointers',
+ 't': 'bitfields',
+ 'X': 'function pointers',
+}
+
+class _Stream:
+ def __init__(self, s):
+ self.s = s
+ self.byteorder = '@'
+
+ def advance(self, n):
+ res = self.s[:n]
+ self.s = self.s[n:]
+ return res
+
+ def consume(self, c):
+ if self.s[:len(c)] == c:
+ self.advance(len(c))
+ return True
+ return False
+
+ def consume_until(self, c):
+ if callable(c):
+ i = 0
+ while i < len(self.s) and not c(self.s[i]):
+ i = i + 1
+ return self.advance(i)
+ else:
+ i = self.s.index(c)
+ res = self.advance(i)
+ self.advance(len(c))
+ return res
+
+ @property
+ def next(self):
+ return self.s[0]
+
+ def __bool__(self):
+ return bool(self.s)
+
+
+def _dtype_from_pep3118(spec):
+ stream = _Stream(spec)
+ dtype, align = __dtype_from_pep3118(stream, is_subdtype=False)
+ return dtype
+
+def __dtype_from_pep3118(stream, is_subdtype):
+ field_spec = {
+ 'names': [],
+ 'formats': [],
+ 'offsets': [],
+ 'itemsize': 0
+ }
+ offset = 0
+ common_alignment = 1
+ is_padding = False
+
+ # Parse spec
+ while stream:
+ value = None
+
+ # End of structure, bail out to upper level
+ if stream.consume('}'):
+ break
+
+ # Sub-arrays (1)
+ shape = None
+ if stream.consume('('):
+ shape = stream.consume_until(')')
+ shape = tuple(map(int, shape.split(',')))
+
+ # Byte order
+ if stream.next in ('@', '=', '<', '>', '^', '!'):
+ byteorder = stream.advance(1)
+ if byteorder == '!':
+ byteorder = '>'
+ stream.byteorder = byteorder
+
+ # Byte order characters also control native vs. standard type sizes
+ if stream.byteorder in ('@', '^'):
+ type_map = _pep3118_native_map
+ type_map_chars = _pep3118_native_typechars
+ else:
+ type_map = _pep3118_standard_map
+ type_map_chars = _pep3118_standard_typechars
+
+ # Item sizes
+ itemsize_str = stream.consume_until(lambda c: not c.isdigit())
+ if itemsize_str:
+ itemsize = int(itemsize_str)
+ else:
+ itemsize = 1
+
+ # Data types
+ is_padding = False
+
+ if stream.consume('T{'):
+ value, align = __dtype_from_pep3118(
+ stream, is_subdtype=True)
+ elif stream.next in type_map_chars:
+ if stream.next == 'Z':
+ typechar = stream.advance(2)
+ else:
+ typechar = stream.advance(1)
+
+ is_padding = (typechar == 'x')
+ dtypechar = type_map[typechar]
+ if dtypechar in 'USV':
+ dtypechar += '%d' % itemsize
+ itemsize = 1
+ numpy_byteorder = {'@': '=', '^': '='}.get(
+ stream.byteorder, stream.byteorder)
+ value = dtype(numpy_byteorder + dtypechar)
+ align = value.alignment
+ elif stream.next in _pep3118_unsupported_map:
+ desc = _pep3118_unsupported_map[stream.next]
+ raise NotImplementedError(
+ f"Unrepresentable PEP 3118 data type {stream.next!r} ({desc})")
+ else:
+ raise ValueError(
+ f"Unknown PEP 3118 data type specifier {stream.s!r}"
+ )
+
+ #
+ # Native alignment may require padding
+ #
+ # Here we assume that the presence of a '@' character implicitly
+ # implies that the start of the array is *already* aligned.
+ #
+ extra_offset = 0
+ if stream.byteorder == '@':
+ start_padding = (-offset) % align
+ intra_padding = (-value.itemsize) % align
+
+ offset += start_padding
+
+ if intra_padding != 0:
+ if itemsize > 1 or (shape is not None and _prod(shape) > 1):
+ # Inject internal padding to the end of the sub-item
+ value = _add_trailing_padding(value, intra_padding)
+ else:
+ # We can postpone the injection of internal padding,
+ # as the item appears at most once
+ extra_offset += intra_padding
+
+ # Update common alignment
+ common_alignment = _lcm(align, common_alignment)
+
+ # Convert itemsize to sub-array
+ if itemsize != 1:
+ value = dtype((value, (itemsize,)))
+
+ # Sub-arrays (2)
+ if shape is not None:
+ value = dtype((value, shape))
+
+ # Field name
+ if stream.consume(':'):
+ name = stream.consume_until(':')
+ else:
+ name = None
+
+ if not (is_padding and name is None):
+ if name is not None and name in field_spec['names']:
+ raise RuntimeError(
+ f"Duplicate field name '{name}' in PEP3118 format"
+ )
+ field_spec['names'].append(name)
+ field_spec['formats'].append(value)
+ field_spec['offsets'].append(offset)
+
+ offset += value.itemsize
+ offset += extra_offset
+
+ field_spec['itemsize'] = offset
+
+ # extra final padding for aligned types
+ if stream.byteorder == '@':
+ field_spec['itemsize'] += (-offset) % common_alignment
+
+ # Check if this was a simple 1-item type, and unwrap it
+ if (field_spec['names'] == [None]
+ and field_spec['offsets'][0] == 0
+ and field_spec['itemsize'] == field_spec['formats'][0].itemsize
+ and not is_subdtype):
+ ret = field_spec['formats'][0]
+ else:
+ _fix_names(field_spec)
+ ret = dtype(field_spec)
+
+ # Finished
+ return ret, common_alignment
+
+def _fix_names(field_spec):
+ """ Replace names which are None with the next unused f%d name """
+ names = field_spec['names']
+ for i, name in enumerate(names):
+ if name is not None:
+ continue
+
+ j = 0
+ while True:
+ name = f'f{j}'
+ if name not in names:
+ break
+ j = j + 1
+ names[i] = name
+
+def _add_trailing_padding(value, padding):
+ """Inject the specified number of padding bytes at the end of a dtype"""
+ if value.fields is None:
+ field_spec = {
+ 'names': ['f0'],
+ 'formats': [value],
+ 'offsets': [0],
+ 'itemsize': value.itemsize
+ }
+ else:
+ fields = value.fields
+ names = value.names
+ field_spec = {
+ 'names': names,
+ 'formats': [fields[name][0] for name in names],
+ 'offsets': [fields[name][1] for name in names],
+ 'itemsize': value.itemsize
+ }
+
+ field_spec['itemsize'] += padding
+ return dtype(field_spec)
+
+def _prod(a):
+ p = 1
+ for x in a:
+ p *= x
+ return p
+
+def _gcd(a, b):
+ """Calculate the greatest common divisor of a and b"""
+ if not (math.isfinite(a) and math.isfinite(b)):
+ raise ValueError('Can only find greatest common divisor of '
+ f'finite arguments, found "{a}" and "{b}"')
+ while b:
+ a, b = b, a % b
+ return a
+
+def _lcm(a, b):
+ return a // _gcd(a, b) * b
+
+def array_ufunc_errmsg_formatter(dummy, ufunc, method, *inputs, **kwargs):
+ """ Format the error message for when __array_ufunc__ gives up. """
+ args_string = ', '.join([f'{arg!r}' for arg in inputs] +
+ [f'{k}={v!r}'
+ for k, v in kwargs.items()])
+ args = inputs + kwargs.get('out', ())
+ types_string = ', '.join(repr(type(arg).__name__) for arg in args)
+ return ('operand type(s) all returned NotImplemented from '
+ f'__array_ufunc__({ufunc!r}, {method!r}, {args_string}): {types_string}'
+ )
+
+
+def array_function_errmsg_formatter(public_api, types):
+ """ Format the error message for when __array_ufunc__ gives up. """
+ func_name = f'{public_api.__module__}.{public_api.__name__}'
+ return (f"no implementation found for '{func_name}' on types that implement "
+ f'__array_function__: {list(types)}')
+
+
+def _ufunc_doc_signature_formatter(ufunc):
+ """
+ Builds a signature string which resembles PEP 457
+
+ This is used to construct the first line of the docstring
+ """
+
+ # input arguments are simple
+ if ufunc.nin == 1:
+ in_args = 'x'
+ else:
+ in_args = ', '.join(f'x{i + 1}' for i in range(ufunc.nin))
+
+ # output arguments are both keyword or positional
+ if ufunc.nout == 0:
+ out_args = ', /, out=()'
+ elif ufunc.nout == 1:
+ out_args = ', /, out=None'
+ else:
+ out_args = '[, {positional}], / [, out={default}]'.format(
+ positional=', '.join(
+ f'out{i + 1}' for i in range(ufunc.nout)),
+ default=repr((None,) * ufunc.nout)
+ )
+
+ # keyword only args depend on whether this is a gufunc
+ kwargs = (
+ ", casting='same_kind'"
+ ", order='K'"
+ ", dtype=None"
+ ", subok=True"
+ )
+
+ # NOTE: gufuncs may or may not support the `axis` parameter
+ if ufunc.signature is None:
+ kwargs = f", where=True{kwargs}[, signature]"
+ else:
+ kwargs += "[, signature, axes, axis]"
+
+ # join all the parts together
+ return f'{ufunc.__name__}({in_args}{out_args}, *{kwargs})'
+
+
+def npy_ctypes_check(cls):
+ # determine if a class comes from ctypes, in order to work around
+ # a bug in the buffer protocol for those objects, bpo-10746
+ try:
+ # ctypes class are new-style, so have an __mro__. This probably fails
+ # for ctypes classes with multiple inheritance.
+ if IS_PYPY:
+ # (..., _ctypes.basics._CData, Bufferable, object)
+ ctype_base = cls.__mro__[-3]
+ else:
+ # # (..., _ctypes._CData, object)
+ ctype_base = cls.__mro__[-2]
+ # right now, they're part of the _ctypes module
+ return '_ctypes' in ctype_base.__module__
+ except Exception:
+ return False
+
+# used to handle the _NoValue default argument for na_object
+# in the C implementation of the __reduce__ method for stringdtype
+def _convert_to_stringdtype_kwargs(coerce, na_object=_NoValue):
+ if na_object is _NoValue:
+ return StringDType(coerce=coerce)
+ return StringDType(coerce=coerce, na_object=na_object)
diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/_internal.pyi b/.venv/lib/python3.12/site-packages/numpy/_core/_internal.pyi
new file mode 100644
index 0000000..3038297
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/_core/_internal.pyi
@@ -0,0 +1,72 @@
+import ctypes as ct
+import re
+from collections.abc import Callable, Iterable
+from typing import Any, Final, Generic, Self, overload
+
+from typing_extensions import TypeVar, deprecated
+
+import numpy as np
+import numpy.typing as npt
+from numpy.ctypeslib import c_intp
+
+_CastT = TypeVar("_CastT", bound=ct._CanCastTo)
+_T_co = TypeVar("_T_co", covariant=True)
+_CT = TypeVar("_CT", bound=ct._CData)
+_PT_co = TypeVar("_PT_co", bound=int | None, default=None, covariant=True)
+
+###
+
+IS_PYPY: Final[bool] = ...
+
+format_re: Final[re.Pattern[str]] = ...
+sep_re: Final[re.Pattern[str]] = ...
+space_re: Final[re.Pattern[str]] = ...
+
+###
+
+# TODO: Let the likes of `shape_as` and `strides_as` return `None`
+# for 0D arrays once we've got shape-support
+
+class _ctypes(Generic[_PT_co]):
+ @overload
+ def __init__(self: _ctypes[None], /, array: npt.NDArray[Any], ptr: None = None) -> None: ...
+ @overload
+ def __init__(self, /, array: npt.NDArray[Any], ptr: _PT_co) -> None: ...
+
+ #
+ @property
+ def data(self) -> _PT_co: ...
+ @property
+ def shape(self) -> ct.Array[c_intp]: ...
+ @property
+ def strides(self) -> ct.Array[c_intp]: ...
+ @property
+ def _as_parameter_(self) -> ct.c_void_p: ...
+
+ #
+ def data_as(self, /, obj: type[_CastT]) -> _CastT: ...
+ def shape_as(self, /, obj: type[_CT]) -> ct.Array[_CT]: ...
+ def strides_as(self, /, obj: type[_CT]) -> ct.Array[_CT]: ...
+
+ #
+ @deprecated('"get_data" is deprecated. Use "data" instead')
+ def get_data(self, /) -> _PT_co: ...
+ @deprecated('"get_shape" is deprecated. Use "shape" instead')
+ def get_shape(self, /) -> ct.Array[c_intp]: ...
+ @deprecated('"get_strides" is deprecated. Use "strides" instead')
+ def get_strides(self, /) -> ct.Array[c_intp]: ...
+ @deprecated('"get_as_parameter" is deprecated. Use "_as_parameter_" instead')
+ def get_as_parameter(self, /) -> ct.c_void_p: ...
+
+class dummy_ctype(Generic[_T_co]):
+ _cls: type[_T_co]
+
+ def __init__(self, /, cls: type[_T_co]) -> None: ...
+ def __eq__(self, other: Self, /) -> bool: ... # type: ignore[override] # pyright: ignore[reportIncompatibleMethodOverride]
+ def __ne__(self, other: Self, /) -> bool: ... # type: ignore[override] # pyright: ignore[reportIncompatibleMethodOverride]
+ def __mul__(self, other: object, /) -> Self: ...
+ def __call__(self, /, *other: object) -> _T_co: ...
+
+def array_ufunc_errmsg_formatter(dummy: object, ufunc: np.ufunc, method: str, *inputs: object, **kwargs: object) -> str: ...
+def array_function_errmsg_formatter(public_api: Callable[..., object], types: Iterable[str]) -> str: ...
+def npy_ctypes_check(cls: type) -> bool: ...
diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/_machar.py b/.venv/lib/python3.12/site-packages/numpy/_core/_machar.py
new file mode 100644
index 0000000..b49742a
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/_core/_machar.py
@@ -0,0 +1,355 @@
+"""
+Machine arithmetic - determine the parameters of the
+floating-point arithmetic system
+
+Author: Pearu Peterson, September 2003
+
+"""
+__all__ = ['MachAr']
+
+from ._ufunc_config import errstate
+from .fromnumeric import any
+
+# Need to speed this up...especially for longdouble
+
+# Deprecated 2021-10-20, NumPy 1.22
+class MachAr:
+ """
+ Diagnosing machine parameters.
+
+ Attributes
+ ----------
+ ibeta : int
+ Radix in which numbers are represented.
+ it : int
+ Number of base-`ibeta` digits in the floating point mantissa M.
+ machep : int
+ Exponent of the smallest (most negative) power of `ibeta` that,
+ added to 1.0, gives something different from 1.0
+ eps : float
+ Floating-point number ``beta**machep`` (floating point precision)
+ negep : int
+ Exponent of the smallest power of `ibeta` that, subtracted
+ from 1.0, gives something different from 1.0.
+ epsneg : float
+ Floating-point number ``beta**negep``.
+ iexp : int
+ Number of bits in the exponent (including its sign and bias).
+ minexp : int
+ Smallest (most negative) power of `ibeta` consistent with there
+ being no leading zeros in the mantissa.
+ xmin : float
+ Floating-point number ``beta**minexp`` (the smallest [in
+ magnitude] positive floating point number with full precision).
+ maxexp : int
+ Smallest (positive) power of `ibeta` that causes overflow.
+ xmax : float
+ ``(1-epsneg) * beta**maxexp`` (the largest [in magnitude]
+ usable floating value).
+ irnd : int
+ In ``range(6)``, information on what kind of rounding is done
+ in addition, and on how underflow is handled.
+ ngrd : int
+ Number of 'guard digits' used when truncating the product
+ of two mantissas to fit the representation.
+ epsilon : float
+ Same as `eps`.
+ tiny : float
+ An alias for `smallest_normal`, kept for backwards compatibility.
+ huge : float
+ Same as `xmax`.
+ precision : float
+ ``- int(-log10(eps))``
+ resolution : float
+ ``- 10**(-precision)``
+ smallest_normal : float
+ The smallest positive floating point number with 1 as leading bit in
+ the mantissa following IEEE-754. Same as `xmin`.
+ smallest_subnormal : float
+ The smallest positive floating point number with 0 as leading bit in
+ the mantissa following IEEE-754.
+
+ Parameters
+ ----------
+ float_conv : function, optional
+ Function that converts an integer or integer array to a float
+ or float array. Default is `float`.
+ int_conv : function, optional
+ Function that converts a float or float array to an integer or
+ integer array. Default is `int`.
+ float_to_float : function, optional
+ Function that converts a float array to float. Default is `float`.
+ Note that this does not seem to do anything useful in the current
+ implementation.
+ float_to_str : function, optional
+ Function that converts a single float to a string. Default is
+ ``lambda v:'%24.16e' %v``.
+ title : str, optional
+ Title that is printed in the string representation of `MachAr`.
+
+ See Also
+ --------
+ finfo : Machine limits for floating point types.
+ iinfo : Machine limits for integer types.
+
+ References
+ ----------
+ .. [1] Press, Teukolsky, Vetterling and Flannery,
+ "Numerical Recipes in C++," 2nd ed,
+ Cambridge University Press, 2002, p. 31.
+
+ """
+
+ def __init__(self, float_conv=float, int_conv=int,
+ float_to_float=float,
+ float_to_str=lambda v: f'{v:24.16e}',
+ title='Python floating point number'):
+ """
+
+ float_conv - convert integer to float (array)
+ int_conv - convert float (array) to integer
+ float_to_float - convert float array to float
+ float_to_str - convert array float to str
+ title - description of used floating point numbers
+
+ """
+ # We ignore all errors here because we are purposely triggering
+ # underflow to detect the properties of the running arch.
+ with errstate(under='ignore'):
+ self._do_init(float_conv, int_conv, float_to_float, float_to_str, title)
+
+ def _do_init(self, float_conv, int_conv, float_to_float, float_to_str, title):
+ max_iterN = 10000
+ msg = "Did not converge after %d tries with %s"
+ one = float_conv(1)
+ two = one + one
+ zero = one - one
+
+ # Do we really need to do this? Aren't they 2 and 2.0?
+ # Determine ibeta and beta
+ a = one
+ for _ in range(max_iterN):
+ a = a + a
+ temp = a + one
+ temp1 = temp - a
+ if any(temp1 - one != zero):
+ break
+ else:
+ raise RuntimeError(msg % (_, one.dtype))
+ b = one
+ for _ in range(max_iterN):
+ b = b + b
+ temp = a + b
+ itemp = int_conv(temp - a)
+ if any(itemp != 0):
+ break
+ else:
+ raise RuntimeError(msg % (_, one.dtype))
+ ibeta = itemp
+ beta = float_conv(ibeta)
+
+ # Determine it and irnd
+ it = -1
+ b = one
+ for _ in range(max_iterN):
+ it = it + 1
+ b = b * beta
+ temp = b + one
+ temp1 = temp - b
+ if any(temp1 - one != zero):
+ break
+ else:
+ raise RuntimeError(msg % (_, one.dtype))
+
+ betah = beta / two
+ a = one
+ for _ in range(max_iterN):
+ a = a + a
+ temp = a + one
+ temp1 = temp - a
+ if any(temp1 - one != zero):
+ break
+ else:
+ raise RuntimeError(msg % (_, one.dtype))
+ temp = a + betah
+ irnd = 0
+ if any(temp - a != zero):
+ irnd = 1
+ tempa = a + beta
+ temp = tempa + betah
+ if irnd == 0 and any(temp - tempa != zero):
+ irnd = 2
+
+ # Determine negep and epsneg
+ negep = it + 3
+ betain = one / beta
+ a = one
+ for i in range(negep):
+ a = a * betain
+ b = a
+ for _ in range(max_iterN):
+ temp = one - a
+ if any(temp - one != zero):
+ break
+ a = a * beta
+ negep = negep - 1
+ # Prevent infinite loop on PPC with gcc 4.0:
+ if negep < 0:
+ raise RuntimeError("could not determine machine tolerance "
+ "for 'negep', locals() -> %s" % (locals()))
+ else:
+ raise RuntimeError(msg % (_, one.dtype))
+ negep = -negep
+ epsneg = a
+
+ # Determine machep and eps
+ machep = - it - 3
+ a = b
+
+ for _ in range(max_iterN):
+ temp = one + a
+ if any(temp - one != zero):
+ break
+ a = a * beta
+ machep = machep + 1
+ else:
+ raise RuntimeError(msg % (_, one.dtype))
+ eps = a
+
+ # Determine ngrd
+ ngrd = 0
+ temp = one + eps
+ if irnd == 0 and any(temp * one - one != zero):
+ ngrd = 1
+
+ # Determine iexp
+ i = 0
+ k = 1
+ z = betain
+ t = one + eps
+ nxres = 0
+ for _ in range(max_iterN):
+ y = z
+ z = y * y
+ a = z * one # Check here for underflow
+ temp = z * t
+ if any(a + a == zero) or any(abs(z) >= y):
+ break
+ temp1 = temp * betain
+ if any(temp1 * beta == z):
+ break
+ i = i + 1
+ k = k + k
+ else:
+ raise RuntimeError(msg % (_, one.dtype))
+ if ibeta != 10:
+ iexp = i + 1
+ mx = k + k
+ else:
+ iexp = 2
+ iz = ibeta
+ while k >= iz:
+ iz = iz * ibeta
+ iexp = iexp + 1
+ mx = iz + iz - 1
+
+ # Determine minexp and xmin
+ for _ in range(max_iterN):
+ xmin = y
+ y = y * betain
+ a = y * one
+ temp = y * t
+ if any((a + a) != zero) and any(abs(y) < xmin):
+ k = k + 1
+ temp1 = temp * betain
+ if any(temp1 * beta == y) and any(temp != y):
+ nxres = 3
+ xmin = y
+ break
+ else:
+ break
+ else:
+ raise RuntimeError(msg % (_, one.dtype))
+ minexp = -k
+
+ # Determine maxexp, xmax
+ if mx <= k + k - 3 and ibeta != 10:
+ mx = mx + mx
+ iexp = iexp + 1
+ maxexp = mx + minexp
+ irnd = irnd + nxres
+ if irnd >= 2:
+ maxexp = maxexp - 2
+ i = maxexp + minexp
+ if ibeta == 2 and not i:
+ maxexp = maxexp - 1
+ if i > 20:
+ maxexp = maxexp - 1
+ if any(a != y):
+ maxexp = maxexp - 2
+ xmax = one - epsneg
+ if any(xmax * one != xmax):
+ xmax = one - beta * epsneg
+ xmax = xmax / (xmin * beta * beta * beta)
+ i = maxexp + minexp + 3
+ for j in range(i):
+ if ibeta == 2:
+ xmax = xmax + xmax
+ else:
+ xmax = xmax * beta
+
+ smallest_subnormal = abs(xmin / beta ** (it))
+
+ self.ibeta = ibeta
+ self.it = it
+ self.negep = negep
+ self.epsneg = float_to_float(epsneg)
+ self._str_epsneg = float_to_str(epsneg)
+ self.machep = machep
+ self.eps = float_to_float(eps)
+ self._str_eps = float_to_str(eps)
+ self.ngrd = ngrd
+ self.iexp = iexp
+ self.minexp = minexp
+ self.xmin = float_to_float(xmin)
+ self._str_xmin = float_to_str(xmin)
+ self.maxexp = maxexp
+ self.xmax = float_to_float(xmax)
+ self._str_xmax = float_to_str(xmax)
+ self.irnd = irnd
+
+ self.title = title
+ # Commonly used parameters
+ self.epsilon = self.eps
+ self.tiny = self.xmin
+ self.huge = self.xmax
+ self.smallest_normal = self.xmin
+ self._str_smallest_normal = float_to_str(self.xmin)
+ self.smallest_subnormal = float_to_float(smallest_subnormal)
+ self._str_smallest_subnormal = float_to_str(smallest_subnormal)
+
+ import math
+ self.precision = int(-math.log10(float_to_float(self.eps)))
+ ten = two + two + two + two + two
+ resolution = ten ** (-self.precision)
+ self.resolution = float_to_float(resolution)
+ self._str_resolution = float_to_str(resolution)
+
+ def __str__(self):
+ fmt = (
+ 'Machine parameters for %(title)s\n'
+ '---------------------------------------------------------------------\n'
+ 'ibeta=%(ibeta)s it=%(it)s iexp=%(iexp)s ngrd=%(ngrd)s irnd=%(irnd)s\n'
+ 'machep=%(machep)s eps=%(_str_eps)s (beta**machep == epsilon)\n'
+ 'negep =%(negep)s epsneg=%(_str_epsneg)s (beta**epsneg)\n'
+ 'minexp=%(minexp)s xmin=%(_str_xmin)s (beta**minexp == tiny)\n'
+ 'maxexp=%(maxexp)s xmax=%(_str_xmax)s ((1-epsneg)*beta**maxexp == huge)\n'
+ 'smallest_normal=%(smallest_normal)s '
+ 'smallest_subnormal=%(smallest_subnormal)s\n'
+ '---------------------------------------------------------------------\n'
+ )
+ return fmt % self.__dict__
+
+
+if __name__ == '__main__':
+ print(MachAr())
diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/_machar.pyi b/.venv/lib/python3.12/site-packages/numpy/_core/_machar.pyi
new file mode 100644
index 0000000..02637a1
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/_core/_machar.pyi
@@ -0,0 +1,55 @@
+from collections.abc import Iterable
+from typing import Any, Final, TypeVar, overload
+
+import numpy as np
+from numpy import _CastingKind
+from numpy._utils import set_module as set_module
+
+###
+
+_T = TypeVar("_T")
+_TupleT = TypeVar("_TupleT", bound=tuple[()] | tuple[Any, Any, *tuple[Any, ...]])
+_ExceptionT = TypeVar("_ExceptionT", bound=Exception)
+
+###
+
+class UFuncTypeError(TypeError):
+ ufunc: Final[np.ufunc]
+ def __init__(self, /, ufunc: np.ufunc) -> None: ...
+
+class _UFuncNoLoopError(UFuncTypeError):
+ dtypes: tuple[np.dtype, ...]
+ def __init__(self, /, ufunc: np.ufunc, dtypes: Iterable[np.dtype]) -> None: ...
+
+class _UFuncBinaryResolutionError(_UFuncNoLoopError):
+ dtypes: tuple[np.dtype, np.dtype]
+ def __init__(self, /, ufunc: np.ufunc, dtypes: Iterable[np.dtype]) -> None: ...
+
+class _UFuncCastingError(UFuncTypeError):
+ casting: Final[_CastingKind]
+ from_: Final[np.dtype]
+ to: Final[np.dtype]
+ def __init__(self, /, ufunc: np.ufunc, casting: _CastingKind, from_: np.dtype, to: np.dtype) -> None: ...
+
+class _UFuncInputCastingError(_UFuncCastingError):
+ in_i: Final[int]
+ def __init__(self, /, ufunc: np.ufunc, casting: _CastingKind, from_: np.dtype, to: np.dtype, i: int) -> None: ...
+
+class _UFuncOutputCastingError(_UFuncCastingError):
+ out_i: Final[int]
+ def __init__(self, /, ufunc: np.ufunc, casting: _CastingKind, from_: np.dtype, to: np.dtype, i: int) -> None: ...
+
+class _ArrayMemoryError(MemoryError):
+ shape: tuple[int, ...]
+ dtype: np.dtype
+ def __init__(self, /, shape: tuple[int, ...], dtype: np.dtype) -> None: ...
+ @property
+ def _total_size(self) -> int: ...
+ @staticmethod
+ def _size_to_string(num_bytes: int) -> str: ...
+
+@overload
+def _unpack_tuple(tup: tuple[_T]) -> _T: ...
+@overload
+def _unpack_tuple(tup: _TupleT) -> _TupleT: ...
+def _display_as_base(cls: type[_ExceptionT]) -> type[_ExceptionT]: ...
diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/_methods.py b/.venv/lib/python3.12/site-packages/numpy/_core/_methods.py
new file mode 100644
index 0000000..21ad790
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/_core/_methods.py
@@ -0,0 +1,255 @@
+"""
+Array methods which are called by both the C-code for the method
+and the Python code for the NumPy-namespace function
+
+"""
+import os
+import pickle
+import warnings
+from contextlib import nullcontext
+
+import numpy as np
+from numpy._core import multiarray as mu
+from numpy._core import numerictypes as nt
+from numpy._core import umath as um
+from numpy._core.multiarray import asanyarray
+from numpy._globals import _NoValue
+
+# save those O(100) nanoseconds!
+bool_dt = mu.dtype("bool")
+umr_maximum = um.maximum.reduce
+umr_minimum = um.minimum.reduce
+umr_sum = um.add.reduce
+umr_prod = um.multiply.reduce
+umr_bitwise_count = um.bitwise_count
+umr_any = um.logical_or.reduce
+umr_all = um.logical_and.reduce
+
+# Complex types to -> (2,)float view for fast-path computation in _var()
+_complex_to_float = {
+ nt.dtype(nt.csingle): nt.dtype(nt.single),
+ nt.dtype(nt.cdouble): nt.dtype(nt.double),
+}
+# Special case for windows: ensure double takes precedence
+if nt.dtype(nt.longdouble) != nt.dtype(nt.double):
+ _complex_to_float.update({
+ nt.dtype(nt.clongdouble): nt.dtype(nt.longdouble),
+ })
+
+# avoid keyword arguments to speed up parsing, saves about 15%-20% for very
+# small reductions
+def _amax(a, axis=None, out=None, keepdims=False,
+ initial=_NoValue, where=True):
+ return umr_maximum(a, axis, None, out, keepdims, initial, where)
+
+def _amin(a, axis=None, out=None, keepdims=False,
+ initial=_NoValue, where=True):
+ return umr_minimum(a, axis, None, out, keepdims, initial, where)
+
+def _sum(a, axis=None, dtype=None, out=None, keepdims=False,
+ initial=_NoValue, where=True):
+ return umr_sum(a, axis, dtype, out, keepdims, initial, where)
+
+def _prod(a, axis=None, dtype=None, out=None, keepdims=False,
+ initial=_NoValue, where=True):
+ return umr_prod(a, axis, dtype, out, keepdims, initial, where)
+
+def _any(a, axis=None, dtype=None, out=None, keepdims=False, *, where=True):
+ # By default, return a boolean for any and all
+ if dtype is None:
+ dtype = bool_dt
+ # Parsing keyword arguments is currently fairly slow, so avoid it for now
+ if where is True:
+ return umr_any(a, axis, dtype, out, keepdims)
+ return umr_any(a, axis, dtype, out, keepdims, where=where)
+
+def _all(a, axis=None, dtype=None, out=None, keepdims=False, *, where=True):
+ # By default, return a boolean for any and all
+ if dtype is None:
+ dtype = bool_dt
+ # Parsing keyword arguments is currently fairly slow, so avoid it for now
+ if where is True:
+ return umr_all(a, axis, dtype, out, keepdims)
+ return umr_all(a, axis, dtype, out, keepdims, where=where)
+
+def _count_reduce_items(arr, axis, keepdims=False, where=True):
+ # fast-path for the default case
+ if where is True:
+ # no boolean mask given, calculate items according to axis
+ if axis is None:
+ axis = tuple(range(arr.ndim))
+ elif not isinstance(axis, tuple):
+ axis = (axis,)
+ items = 1
+ for ax in axis:
+ items *= arr.shape[mu.normalize_axis_index(ax, arr.ndim)]
+ items = nt.intp(items)
+ else:
+ # TODO: Optimize case when `where` is broadcast along a non-reduction
+ # axis and full sum is more excessive than needed.
+
+ # guarded to protect circular imports
+ from numpy.lib._stride_tricks_impl import broadcast_to
+ # count True values in (potentially broadcasted) boolean mask
+ items = umr_sum(broadcast_to(where, arr.shape), axis, nt.intp, None,
+ keepdims)
+ return items
+
+def _clip(a, min=None, max=None, out=None, **kwargs):
+ if a.dtype.kind in "iu":
+ # If min/max is a Python integer, deal with out-of-bound values here.
+ # (This enforces NEP 50 rules as no value based promotion is done.)
+ if type(min) is int and min <= np.iinfo(a.dtype).min:
+ min = None
+ if type(max) is int and max >= np.iinfo(a.dtype).max:
+ max = None
+
+ if min is None and max is None:
+ # return identity
+ return um.positive(a, out=out, **kwargs)
+ elif min is None:
+ return um.minimum(a, max, out=out, **kwargs)
+ elif max is None:
+ return um.maximum(a, min, out=out, **kwargs)
+ else:
+ return um.clip(a, min, max, out=out, **kwargs)
+
+def _mean(a, axis=None, dtype=None, out=None, keepdims=False, *, where=True):
+ arr = asanyarray(a)
+
+ is_float16_result = False
+
+ rcount = _count_reduce_items(arr, axis, keepdims=keepdims, where=where)
+ if rcount == 0 if where is True else umr_any(rcount == 0, axis=None):
+ warnings.warn("Mean of empty slice.", RuntimeWarning, stacklevel=2)
+
+ # Cast bool, unsigned int, and int to float64 by default
+ if dtype is None:
+ if issubclass(arr.dtype.type, (nt.integer, nt.bool)):
+ dtype = mu.dtype('f8')
+ elif issubclass(arr.dtype.type, nt.float16):
+ dtype = mu.dtype('f4')
+ is_float16_result = True
+
+ ret = umr_sum(arr, axis, dtype, out, keepdims, where=where)
+ if isinstance(ret, mu.ndarray):
+ ret = um.true_divide(
+ ret, rcount, out=ret, casting='unsafe', subok=False)
+ if is_float16_result and out is None:
+ ret = arr.dtype.type(ret)
+ elif hasattr(ret, 'dtype'):
+ if is_float16_result:
+ ret = arr.dtype.type(ret / rcount)
+ else:
+ ret = ret.dtype.type(ret / rcount)
+ else:
+ ret = ret / rcount
+
+ return ret
+
+def _var(a, axis=None, dtype=None, out=None, ddof=0, keepdims=False, *,
+ where=True, mean=None):
+ arr = asanyarray(a)
+
+ rcount = _count_reduce_items(arr, axis, keepdims=keepdims, where=where)
+ # Make this warning show up on top.
+ if ddof >= rcount if where is True else umr_any(ddof >= rcount, axis=None):
+ warnings.warn("Degrees of freedom <= 0 for slice", RuntimeWarning,
+ stacklevel=2)
+
+ # Cast bool, unsigned int, and int to float64 by default
+ if dtype is None and issubclass(arr.dtype.type, (nt.integer, nt.bool)):
+ dtype = mu.dtype('f8')
+
+ if mean is not None:
+ arrmean = mean
+ else:
+ # Compute the mean.
+ # Note that if dtype is not of inexact type then arraymean will
+ # not be either.
+ arrmean = umr_sum(arr, axis, dtype, keepdims=True, where=where)
+ # The shape of rcount has to match arrmean to not change the shape of
+ # out in broadcasting. Otherwise, it cannot be stored back to arrmean.
+ if rcount.ndim == 0:
+ # fast-path for default case when where is True
+ div = rcount
+ else:
+ # matching rcount to arrmean when where is specified as array
+ div = rcount.reshape(arrmean.shape)
+ if isinstance(arrmean, mu.ndarray):
+ arrmean = um.true_divide(arrmean, div, out=arrmean,
+ casting='unsafe', subok=False)
+ elif hasattr(arrmean, "dtype"):
+ arrmean = arrmean.dtype.type(arrmean / rcount)
+ else:
+ arrmean = arrmean / rcount
+
+ # Compute sum of squared deviations from mean
+ # Note that x may not be inexact and that we need it to be an array,
+ # not a scalar.
+ x = asanyarray(arr - arrmean)
+
+ if issubclass(arr.dtype.type, (nt.floating, nt.integer)):
+ x = um.multiply(x, x, out=x)
+ # Fast-paths for built-in complex types
+ elif x.dtype in _complex_to_float:
+ xv = x.view(dtype=(_complex_to_float[x.dtype], (2,)))
+ um.multiply(xv, xv, out=xv)
+ x = um.add(xv[..., 0], xv[..., 1], out=x.real).real
+ # Most general case; includes handling object arrays containing imaginary
+ # numbers and complex types with non-native byteorder
+ else:
+ x = um.multiply(x, um.conjugate(x), out=x).real
+
+ ret = umr_sum(x, axis, dtype, out, keepdims=keepdims, where=where)
+
+ # Compute degrees of freedom and make sure it is not negative.
+ rcount = um.maximum(rcount - ddof, 0)
+
+ # divide by degrees of freedom
+ if isinstance(ret, mu.ndarray):
+ ret = um.true_divide(
+ ret, rcount, out=ret, casting='unsafe', subok=False)
+ elif hasattr(ret, 'dtype'):
+ ret = ret.dtype.type(ret / rcount)
+ else:
+ ret = ret / rcount
+
+ return ret
+
+def _std(a, axis=None, dtype=None, out=None, ddof=0, keepdims=False, *,
+ where=True, mean=None):
+ ret = _var(a, axis=axis, dtype=dtype, out=out, ddof=ddof,
+ keepdims=keepdims, where=where, mean=mean)
+
+ if isinstance(ret, mu.ndarray):
+ ret = um.sqrt(ret, out=ret)
+ elif hasattr(ret, 'dtype'):
+ ret = ret.dtype.type(um.sqrt(ret))
+ else:
+ ret = um.sqrt(ret)
+
+ return ret
+
+def _ptp(a, axis=None, out=None, keepdims=False):
+ return um.subtract(
+ umr_maximum(a, axis, None, out, keepdims),
+ umr_minimum(a, axis, None, None, keepdims),
+ out
+ )
+
+def _dump(self, file, protocol=2):
+ if hasattr(file, 'write'):
+ ctx = nullcontext(file)
+ else:
+ ctx = open(os.fspath(file), "wb")
+ with ctx as f:
+ pickle.dump(self, f, protocol=protocol)
+
+def _dumps(self, protocol=2):
+ return pickle.dumps(self, protocol=protocol)
+
+def _bitwise_count(a, out=None, *, where=True, casting='same_kind',
+ order='K', dtype=None, subok=True):
+ return umr_bitwise_count(a, out, where=where, casting=casting,
+ order=order, dtype=dtype, subok=subok)
diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/_methods.pyi b/.venv/lib/python3.12/site-packages/numpy/_core/_methods.pyi
new file mode 100644
index 0000000..3c80683
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/_core/_methods.pyi
@@ -0,0 +1,22 @@
+from collections.abc import Callable
+from typing import Any, Concatenate, TypeAlias
+
+import numpy as np
+
+from . import _exceptions as _exceptions
+
+###
+
+_Reduce2: TypeAlias = Callable[Concatenate[object, ...], Any]
+
+###
+
+bool_dt: np.dtype[np.bool] = ...
+umr_maximum: _Reduce2 = ...
+umr_minimum: _Reduce2 = ...
+umr_sum: _Reduce2 = ...
+umr_prod: _Reduce2 = ...
+umr_bitwise_count = np.bitwise_count
+umr_any: _Reduce2 = ...
+umr_all: _Reduce2 = ...
+_complex_to_float: dict[np.dtype[np.complexfloating], np.dtype[np.floating]] = ...
diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/_multiarray_tests.cpython-312-x86_64-linux-gnu.so b/.venv/lib/python3.12/site-packages/numpy/_core/_multiarray_tests.cpython-312-x86_64-linux-gnu.so
new file mode 100755
index 0000000..ce78182
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/_core/_multiarray_tests.cpython-312-x86_64-linux-gnu.so
Binary files differ
diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/_multiarray_umath.cpython-312-x86_64-linux-gnu.so b/.venv/lib/python3.12/site-packages/numpy/_core/_multiarray_umath.cpython-312-x86_64-linux-gnu.so
new file mode 100755
index 0000000..8b2a78b
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/_core/_multiarray_umath.cpython-312-x86_64-linux-gnu.so
Binary files differ
diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/_operand_flag_tests.cpython-312-x86_64-linux-gnu.so b/.venv/lib/python3.12/site-packages/numpy/_core/_operand_flag_tests.cpython-312-x86_64-linux-gnu.so
new file mode 100755
index 0000000..bf24fe0
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/_core/_operand_flag_tests.cpython-312-x86_64-linux-gnu.so
Binary files differ
diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/_rational_tests.cpython-312-x86_64-linux-gnu.so b/.venv/lib/python3.12/site-packages/numpy/_core/_rational_tests.cpython-312-x86_64-linux-gnu.so
new file mode 100755
index 0000000..b9a7717
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/_core/_rational_tests.cpython-312-x86_64-linux-gnu.so
Binary files differ
diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/_simd.cpython-312-x86_64-linux-gnu.so b/.venv/lib/python3.12/site-packages/numpy/_core/_simd.cpython-312-x86_64-linux-gnu.so
new file mode 100755
index 0000000..54bbb83
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/_core/_simd.cpython-312-x86_64-linux-gnu.so
Binary files differ
diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/_simd.pyi b/.venv/lib/python3.12/site-packages/numpy/_core/_simd.pyi
new file mode 100644
index 0000000..70bb707
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/_core/_simd.pyi
@@ -0,0 +1,25 @@
+from types import ModuleType
+from typing import TypedDict, type_check_only
+
+# NOTE: these 5 are only defined on systems with an intel processor
+SSE42: ModuleType | None = ...
+FMA3: ModuleType | None = ...
+AVX2: ModuleType | None = ...
+AVX512F: ModuleType | None = ...
+AVX512_SKX: ModuleType | None = ...
+
+baseline: ModuleType | None = ...
+
+@type_check_only
+class SimdTargets(TypedDict):
+ SSE42: ModuleType | None
+ AVX2: ModuleType | None
+ FMA3: ModuleType | None
+ AVX512F: ModuleType | None
+ AVX512_SKX: ModuleType | None
+ baseline: ModuleType | None
+
+targets: SimdTargets = ...
+
+def clear_floatstatus() -> None: ...
+def get_floatstatus() -> int: ...
diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/_string_helpers.py b/.venv/lib/python3.12/site-packages/numpy/_core/_string_helpers.py
new file mode 100644
index 0000000..87085d4
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/_core/_string_helpers.py
@@ -0,0 +1,100 @@
+"""
+String-handling utilities to avoid locale-dependence.
+
+Used primarily to generate type name aliases.
+"""
+# "import string" is costly to import!
+# Construct the translation tables directly
+# "A" = chr(65), "a" = chr(97)
+_all_chars = tuple(map(chr, range(256)))
+_ascii_upper = _all_chars[65:65 + 26]
+_ascii_lower = _all_chars[97:97 + 26]
+LOWER_TABLE = _all_chars[:65] + _ascii_lower + _all_chars[65 + 26:]
+UPPER_TABLE = _all_chars[:97] + _ascii_upper + _all_chars[97 + 26:]
+
+
+def english_lower(s):
+ """ Apply English case rules to convert ASCII strings to all lower case.
+
+ This is an internal utility function to replace calls to str.lower() such
+ that we can avoid changing behavior with changing locales. In particular,
+ Turkish has distinct dotted and dotless variants of the Latin letter "I" in
+ both lowercase and uppercase. Thus, "I".lower() != "i" in a "tr" locale.
+
+ Parameters
+ ----------
+ s : str
+
+ Returns
+ -------
+ lowered : str
+
+ Examples
+ --------
+ >>> from numpy._core.numerictypes import english_lower
+ >>> english_lower('ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789_')
+ 'abcdefghijklmnopqrstuvwxyzabcdefghijklmnopqrstuvwxyz0123456789_'
+ >>> english_lower('')
+ ''
+ """
+ lowered = s.translate(LOWER_TABLE)
+ return lowered
+
+
+def english_upper(s):
+ """ Apply English case rules to convert ASCII strings to all upper case.
+
+ This is an internal utility function to replace calls to str.upper() such
+ that we can avoid changing behavior with changing locales. In particular,
+ Turkish has distinct dotted and dotless variants of the Latin letter "I" in
+ both lowercase and uppercase. Thus, "i".upper() != "I" in a "tr" locale.
+
+ Parameters
+ ----------
+ s : str
+
+ Returns
+ -------
+ uppered : str
+
+ Examples
+ --------
+ >>> from numpy._core.numerictypes import english_upper
+ >>> english_upper('ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789_')
+ 'ABCDEFGHIJKLMNOPQRSTUVWXYZABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789_'
+ >>> english_upper('')
+ ''
+ """
+ uppered = s.translate(UPPER_TABLE)
+ return uppered
+
+
+def english_capitalize(s):
+ """ Apply English case rules to convert the first character of an ASCII
+ string to upper case.
+
+ This is an internal utility function to replace calls to str.capitalize()
+ such that we can avoid changing behavior with changing locales.
+
+ Parameters
+ ----------
+ s : str
+
+ Returns
+ -------
+ capitalized : str
+
+ Examples
+ --------
+ >>> from numpy._core.numerictypes import english_capitalize
+ >>> english_capitalize('int8')
+ 'Int8'
+ >>> english_capitalize('Int8')
+ 'Int8'
+ >>> english_capitalize('')
+ ''
+ """
+ if s:
+ return english_upper(s[0]) + s[1:]
+ else:
+ return s
diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/_string_helpers.pyi b/.venv/lib/python3.12/site-packages/numpy/_core/_string_helpers.pyi
new file mode 100644
index 0000000..6a85832
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/_core/_string_helpers.pyi
@@ -0,0 +1,12 @@
+from typing import Final
+
+_all_chars: Final[tuple[str, ...]] = ...
+_ascii_upper: Final[tuple[str, ...]] = ...
+_ascii_lower: Final[tuple[str, ...]] = ...
+
+LOWER_TABLE: Final[tuple[str, ...]] = ...
+UPPER_TABLE: Final[tuple[str, ...]] = ...
+
+def english_lower(s: str) -> str: ...
+def english_upper(s: str) -> str: ...
+def english_capitalize(s: str) -> str: ...
diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/_struct_ufunc_tests.cpython-312-x86_64-linux-gnu.so b/.venv/lib/python3.12/site-packages/numpy/_core/_struct_ufunc_tests.cpython-312-x86_64-linux-gnu.so
new file mode 100755
index 0000000..10747a3
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/_core/_struct_ufunc_tests.cpython-312-x86_64-linux-gnu.so
Binary files differ
diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/_type_aliases.py b/.venv/lib/python3.12/site-packages/numpy/_core/_type_aliases.py
new file mode 100644
index 0000000..de6c309
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/_core/_type_aliases.py
@@ -0,0 +1,119 @@
+"""
+Due to compatibility, numpy has a very large number of different naming
+conventions for the scalar types (those subclassing from `numpy.generic`).
+This file produces a convoluted set of dictionaries mapping names to types,
+and sometimes other mappings too.
+
+.. data:: allTypes
+ A dictionary of names to types that will be exposed as attributes through
+ ``np._core.numerictypes.*``
+
+.. data:: sctypeDict
+ Similar to `allTypes`, but maps a broader set of aliases to their types.
+
+.. data:: sctypes
+ A dictionary keyed by a "type group" string, providing a list of types
+ under that group.
+
+"""
+
+import numpy._core.multiarray as ma
+from numpy._core.multiarray import dtype, typeinfo
+
+######################################
+# Building `sctypeDict` and `allTypes`
+######################################
+
+sctypeDict = {}
+allTypes = {}
+c_names_dict = {}
+
+_abstract_type_names = {
+ "generic", "integer", "inexact", "floating", "number",
+ "flexible", "character", "complexfloating", "unsignedinteger",
+ "signedinteger"
+}
+
+for _abstract_type_name in _abstract_type_names:
+ allTypes[_abstract_type_name] = getattr(ma, _abstract_type_name)
+
+for k, v in typeinfo.items():
+ if k.startswith("NPY_") and v not in c_names_dict:
+ c_names_dict[k[4:]] = v
+ else:
+ concrete_type = v.type
+ allTypes[k] = concrete_type
+ sctypeDict[k] = concrete_type
+
+_aliases = {
+ "double": "float64",
+ "cdouble": "complex128",
+ "single": "float32",
+ "csingle": "complex64",
+ "half": "float16",
+ "bool_": "bool",
+ # Default integer:
+ "int_": "intp",
+ "uint": "uintp",
+}
+
+for k, v in _aliases.items():
+ sctypeDict[k] = allTypes[v]
+ allTypes[k] = allTypes[v]
+
+# extra aliases are added only to `sctypeDict`
+# to support dtype name access, such as`np.dtype("float")`
+_extra_aliases = {
+ "float": "float64",
+ "complex": "complex128",
+ "object": "object_",
+ "bytes": "bytes_",
+ "a": "bytes_",
+ "int": "int_",
+ "str": "str_",
+ "unicode": "str_",
+}
+
+for k, v in _extra_aliases.items():
+ sctypeDict[k] = allTypes[v]
+
+# include extended precision sized aliases
+for is_complex, full_name in [(False, "longdouble"), (True, "clongdouble")]:
+ longdouble_type: type = allTypes[full_name]
+
+ bits: int = dtype(longdouble_type).itemsize * 8
+ base_name: str = "complex" if is_complex else "float"
+ extended_prec_name: str = f"{base_name}{bits}"
+ if extended_prec_name not in allTypes:
+ sctypeDict[extended_prec_name] = longdouble_type
+ allTypes[extended_prec_name] = longdouble_type
+
+
+####################
+# Building `sctypes`
+####################
+
+sctypes = {"int": set(), "uint": set(), "float": set(),
+ "complex": set(), "others": set()}
+
+for type_info in typeinfo.values():
+ if type_info.kind in ["M", "m"]: # exclude timedelta and datetime
+ continue
+
+ concrete_type = type_info.type
+
+ # find proper group for each concrete type
+ for type_group, abstract_type in [
+ ("int", ma.signedinteger), ("uint", ma.unsignedinteger),
+ ("float", ma.floating), ("complex", ma.complexfloating),
+ ("others", ma.generic)
+ ]:
+ if issubclass(concrete_type, abstract_type):
+ sctypes[type_group].add(concrete_type)
+ break
+
+# sort sctype groups by bitsize
+for sctype_key in sctypes.keys():
+ sctype_list = list(sctypes[sctype_key])
+ sctype_list.sort(key=lambda x: dtype(x).itemsize)
+ sctypes[sctype_key] = sctype_list
diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/_type_aliases.pyi b/.venv/lib/python3.12/site-packages/numpy/_core/_type_aliases.pyi
new file mode 100644
index 0000000..3c9dac7
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/_core/_type_aliases.pyi
@@ -0,0 +1,97 @@
+from collections.abc import Collection
+from typing import Final, TypeAlias, TypedDict, type_check_only
+from typing import Literal as L
+
+import numpy as np
+
+__all__ = (
+ "_abstract_type_names",
+ "_aliases",
+ "_extra_aliases",
+ "allTypes",
+ "c_names_dict",
+ "sctypeDict",
+ "sctypes",
+)
+
+sctypeDict: Final[dict[str, type[np.generic]]]
+allTypes: Final[dict[str, type[np.generic]]]
+
+@type_check_only
+class _CNamesDict(TypedDict):
+ BOOL: np.dtype[np.bool]
+ HALF: np.dtype[np.half]
+ FLOAT: np.dtype[np.single]
+ DOUBLE: np.dtype[np.double]
+ LONGDOUBLE: np.dtype[np.longdouble]
+ CFLOAT: np.dtype[np.csingle]
+ CDOUBLE: np.dtype[np.cdouble]
+ CLONGDOUBLE: np.dtype[np.clongdouble]
+ STRING: np.dtype[np.bytes_]
+ UNICODE: np.dtype[np.str_]
+ VOID: np.dtype[np.void]
+ OBJECT: np.dtype[np.object_]
+ DATETIME: np.dtype[np.datetime64]
+ TIMEDELTA: np.dtype[np.timedelta64]
+ BYTE: np.dtype[np.byte]
+ UBYTE: np.dtype[np.ubyte]
+ SHORT: np.dtype[np.short]
+ USHORT: np.dtype[np.ushort]
+ INT: np.dtype[np.intc]
+ UINT: np.dtype[np.uintc]
+ LONG: np.dtype[np.long]
+ ULONG: np.dtype[np.ulong]
+ LONGLONG: np.dtype[np.longlong]
+ ULONGLONG: np.dtype[np.ulonglong]
+
+c_names_dict: Final[_CNamesDict]
+
+_AbstractTypeName: TypeAlias = L[
+ "generic",
+ "flexible",
+ "character",
+ "number",
+ "integer",
+ "inexact",
+ "unsignedinteger",
+ "signedinteger",
+ "floating",
+ "complexfloating",
+]
+_abstract_type_names: Final[set[_AbstractTypeName]]
+
+@type_check_only
+class _AliasesType(TypedDict):
+ double: L["float64"]
+ cdouble: L["complex128"]
+ single: L["float32"]
+ csingle: L["complex64"]
+ half: L["float16"]
+ bool_: L["bool"]
+ int_: L["intp"]
+ uint: L["intp"]
+
+_aliases: Final[_AliasesType]
+
+@type_check_only
+class _ExtraAliasesType(TypedDict):
+ float: L["float64"]
+ complex: L["complex128"]
+ object: L["object_"]
+ bytes: L["bytes_"]
+ a: L["bytes_"]
+ int: L["int_"]
+ str: L["str_"]
+ unicode: L["str_"]
+
+_extra_aliases: Final[_ExtraAliasesType]
+
+@type_check_only
+class _SCTypes(TypedDict):
+ int: Collection[type[np.signedinteger]]
+ uint: Collection[type[np.unsignedinteger]]
+ float: Collection[type[np.floating]]
+ complex: Collection[type[np.complexfloating]]
+ others: Collection[type[np.flexible | np.bool | np.object_]]
+
+sctypes: Final[_SCTypes]
diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/_ufunc_config.py b/.venv/lib/python3.12/site-packages/numpy/_core/_ufunc_config.py
new file mode 100644
index 0000000..24abecd
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/_core/_ufunc_config.py
@@ -0,0 +1,489 @@
+"""
+Functions for changing global ufunc configuration
+
+This provides helpers which wrap `_get_extobj_dict` and `_make_extobj`, and
+`_extobj_contextvar` from umath.
+"""
+import functools
+
+from numpy._utils import set_module
+
+from .umath import _extobj_contextvar, _get_extobj_dict, _make_extobj
+
+__all__ = [
+ "seterr", "geterr", "setbufsize", "getbufsize", "seterrcall", "geterrcall",
+ "errstate"
+]
+
+
+@set_module('numpy')
+def seterr(all=None, divide=None, over=None, under=None, invalid=None):
+ """
+ Set how floating-point errors are handled.
+
+ Note that operations on integer scalar types (such as `int16`) are
+ handled like floating point, and are affected by these settings.
+
+ Parameters
+ ----------
+ all : {'ignore', 'warn', 'raise', 'call', 'print', 'log'}, optional
+ Set treatment for all types of floating-point errors at once:
+
+ - ignore: Take no action when the exception occurs.
+ - warn: Print a :exc:`RuntimeWarning` (via the Python `warnings`
+ module).
+ - raise: Raise a :exc:`FloatingPointError`.
+ - call: Call a function specified using the `seterrcall` function.
+ - print: Print a warning directly to ``stdout``.
+ - log: Record error in a Log object specified by `seterrcall`.
+
+ The default is not to change the current behavior.
+ divide : {'ignore', 'warn', 'raise', 'call', 'print', 'log'}, optional
+ Treatment for division by zero.
+ over : {'ignore', 'warn', 'raise', 'call', 'print', 'log'}, optional
+ Treatment for floating-point overflow.
+ under : {'ignore', 'warn', 'raise', 'call', 'print', 'log'}, optional
+ Treatment for floating-point underflow.
+ invalid : {'ignore', 'warn', 'raise', 'call', 'print', 'log'}, optional
+ Treatment for invalid floating-point operation.
+
+ Returns
+ -------
+ old_settings : dict
+ Dictionary containing the old settings.
+
+ See also
+ --------
+ seterrcall : Set a callback function for the 'call' mode.
+ geterr, geterrcall, errstate
+
+ Notes
+ -----
+ The floating-point exceptions are defined in the IEEE 754 standard [1]_:
+
+ - Division by zero: infinite result obtained from finite numbers.
+ - Overflow: result too large to be expressed.
+ - Underflow: result so close to zero that some precision
+ was lost.
+ - Invalid operation: result is not an expressible number, typically
+ indicates that a NaN was produced.
+
+ .. [1] https://en.wikipedia.org/wiki/IEEE_754
+
+ Examples
+ --------
+ >>> import numpy as np
+ >>> orig_settings = np.seterr(all='ignore') # seterr to known value
+ >>> np.int16(32000) * np.int16(3)
+ np.int16(30464)
+ >>> np.seterr(over='raise')
+ {'divide': 'ignore', 'over': 'ignore', 'under': 'ignore', 'invalid': 'ignore'}
+ >>> old_settings = np.seterr(all='warn', over='raise')
+ >>> np.int16(32000) * np.int16(3)
+ Traceback (most recent call last):
+ File "<stdin>", line 1, in <module>
+ FloatingPointError: overflow encountered in scalar multiply
+
+ >>> old_settings = np.seterr(all='print')
+ >>> np.geterr()
+ {'divide': 'print', 'over': 'print', 'under': 'print', 'invalid': 'print'}
+ >>> np.int16(32000) * np.int16(3)
+ np.int16(30464)
+ >>> np.seterr(**orig_settings) # restore original
+ {'divide': 'print', 'over': 'print', 'under': 'print', 'invalid': 'print'}
+
+ """
+
+ old = _get_extobj_dict()
+ # The errstate doesn't include call and bufsize, so pop them:
+ old.pop("call", None)
+ old.pop("bufsize", None)
+
+ extobj = _make_extobj(
+ all=all, divide=divide, over=over, under=under, invalid=invalid)
+ _extobj_contextvar.set(extobj)
+ return old
+
+
+@set_module('numpy')
+def geterr():
+ """
+ Get the current way of handling floating-point errors.
+
+ Returns
+ -------
+ res : dict
+ A dictionary with keys "divide", "over", "under", and "invalid",
+ whose values are from the strings "ignore", "print", "log", "warn",
+ "raise", and "call". The keys represent possible floating-point
+ exceptions, and the values define how these exceptions are handled.
+
+ See Also
+ --------
+ geterrcall, seterr, seterrcall
+
+ Notes
+ -----
+ For complete documentation of the types of floating-point exceptions and
+ treatment options, see `seterr`.
+
+ Examples
+ --------
+ >>> import numpy as np
+ >>> np.geterr()
+ {'divide': 'warn', 'over': 'warn', 'under': 'ignore', 'invalid': 'warn'}
+ >>> np.arange(3.) / np.arange(3.) # doctest: +SKIP
+ array([nan, 1., 1.])
+ RuntimeWarning: invalid value encountered in divide
+
+ >>> oldsettings = np.seterr(all='warn', invalid='raise')
+ >>> np.geterr()
+ {'divide': 'warn', 'over': 'warn', 'under': 'warn', 'invalid': 'raise'}
+ >>> np.arange(3.) / np.arange(3.)
+ Traceback (most recent call last):
+ ...
+ FloatingPointError: invalid value encountered in divide
+ >>> oldsettings = np.seterr(**oldsettings) # restore original
+
+ """
+ res = _get_extobj_dict()
+ # The "geterr" doesn't include call and bufsize,:
+ res.pop("call", None)
+ res.pop("bufsize", None)
+ return res
+
+
+@set_module('numpy')
+def setbufsize(size):
+ """
+ Set the size of the buffer used in ufuncs.
+
+ .. versionchanged:: 2.0
+ The scope of setting the buffer is tied to the `numpy.errstate`
+ context. Exiting a ``with errstate():`` will also restore the bufsize.
+
+ Parameters
+ ----------
+ size : int
+ Size of buffer.
+
+ Returns
+ -------
+ bufsize : int
+ Previous size of ufunc buffer in bytes.
+
+ Examples
+ --------
+ When exiting a `numpy.errstate` context manager the bufsize is restored:
+
+ >>> import numpy as np
+ >>> with np.errstate():
+ ... np.setbufsize(4096)
+ ... print(np.getbufsize())
+ ...
+ 8192
+ 4096
+ >>> np.getbufsize()
+ 8192
+
+ """
+ old = _get_extobj_dict()["bufsize"]
+ extobj = _make_extobj(bufsize=size)
+ _extobj_contextvar.set(extobj)
+ return old
+
+
+@set_module('numpy')
+def getbufsize():
+ """
+ Return the size of the buffer used in ufuncs.
+
+ Returns
+ -------
+ getbufsize : int
+ Size of ufunc buffer in bytes.
+
+ Examples
+ --------
+ >>> import numpy as np
+ >>> np.getbufsize()
+ 8192
+
+ """
+ return _get_extobj_dict()["bufsize"]
+
+
+@set_module('numpy')
+def seterrcall(func):
+ """
+ Set the floating-point error callback function or log object.
+
+ There are two ways to capture floating-point error messages. The first
+ is to set the error-handler to 'call', using `seterr`. Then, set
+ the function to call using this function.
+
+ The second is to set the error-handler to 'log', using `seterr`.
+ Floating-point errors then trigger a call to the 'write' method of
+ the provided object.
+
+ Parameters
+ ----------
+ func : callable f(err, flag) or object with write method
+ Function to call upon floating-point errors ('call'-mode) or
+ object whose 'write' method is used to log such message ('log'-mode).
+
+ The call function takes two arguments. The first is a string describing
+ the type of error (such as "divide by zero", "overflow", "underflow",
+ or "invalid value"), and the second is the status flag. The flag is a
+ byte, whose four least-significant bits indicate the type of error, one
+ of "divide", "over", "under", "invalid"::
+
+ [0 0 0 0 divide over under invalid]
+
+ In other words, ``flags = divide + 2*over + 4*under + 8*invalid``.
+
+ If an object is provided, its write method should take one argument,
+ a string.
+
+ Returns
+ -------
+ h : callable, log instance or None
+ The old error handler.
+
+ See Also
+ --------
+ seterr, geterr, geterrcall
+
+ Examples
+ --------
+ Callback upon error:
+
+ >>> def err_handler(type, flag):
+ ... print("Floating point error (%s), with flag %s" % (type, flag))
+ ...
+
+ >>> import numpy as np
+
+ >>> orig_handler = np.seterrcall(err_handler)
+ >>> orig_err = np.seterr(all='call')
+
+ >>> np.array([1, 2, 3]) / 0.0
+ Floating point error (divide by zero), with flag 1
+ array([inf, inf, inf])
+
+ >>> np.seterrcall(orig_handler)
+ <function err_handler at 0x...>
+ >>> np.seterr(**orig_err)
+ {'divide': 'call', 'over': 'call', 'under': 'call', 'invalid': 'call'}
+
+ Log error message:
+
+ >>> class Log:
+ ... def write(self, msg):
+ ... print("LOG: %s" % msg)
+ ...
+
+ >>> log = Log()
+ >>> saved_handler = np.seterrcall(log)
+ >>> save_err = np.seterr(all='log')
+
+ >>> np.array([1, 2, 3]) / 0.0
+ LOG: Warning: divide by zero encountered in divide
+ array([inf, inf, inf])
+
+ >>> np.seterrcall(orig_handler)
+ <numpy.Log object at 0x...>
+ >>> np.seterr(**orig_err)
+ {'divide': 'log', 'over': 'log', 'under': 'log', 'invalid': 'log'}
+
+ """
+ old = _get_extobj_dict()["call"]
+ extobj = _make_extobj(call=func)
+ _extobj_contextvar.set(extobj)
+ return old
+
+
+@set_module('numpy')
+def geterrcall():
+ """
+ Return the current callback function used on floating-point errors.
+
+ When the error handling for a floating-point error (one of "divide",
+ "over", "under", or "invalid") is set to 'call' or 'log', the function
+ that is called or the log instance that is written to is returned by
+ `geterrcall`. This function or log instance has been set with
+ `seterrcall`.
+
+ Returns
+ -------
+ errobj : callable, log instance or None
+ The current error handler. If no handler was set through `seterrcall`,
+ ``None`` is returned.
+
+ See Also
+ --------
+ seterrcall, seterr, geterr
+
+ Notes
+ -----
+ For complete documentation of the types of floating-point exceptions and
+ treatment options, see `seterr`.
+
+ Examples
+ --------
+ >>> import numpy as np
+ >>> np.geterrcall() # we did not yet set a handler, returns None
+
+ >>> orig_settings = np.seterr(all='call')
+ >>> def err_handler(type, flag):
+ ... print("Floating point error (%s), with flag %s" % (type, flag))
+ >>> old_handler = np.seterrcall(err_handler)
+ >>> np.array([1, 2, 3]) / 0.0
+ Floating point error (divide by zero), with flag 1
+ array([inf, inf, inf])
+
+ >>> cur_handler = np.geterrcall()
+ >>> cur_handler is err_handler
+ True
+ >>> old_settings = np.seterr(**orig_settings) # restore original
+ >>> old_handler = np.seterrcall(None) # restore original
+
+ """
+ return _get_extobj_dict()["call"]
+
+
+class _unspecified:
+ pass
+
+
+_Unspecified = _unspecified()
+
+
+@set_module('numpy')
+class errstate:
+ """
+ errstate(**kwargs)
+
+ Context manager for floating-point error handling.
+
+ Using an instance of `errstate` as a context manager allows statements in
+ that context to execute with a known error handling behavior. Upon entering
+ the context the error handling is set with `seterr` and `seterrcall`, and
+ upon exiting it is reset to what it was before.
+
+ .. versionchanged:: 1.17.0
+ `errstate` is also usable as a function decorator, saving
+ a level of indentation if an entire function is wrapped.
+
+ .. versionchanged:: 2.0
+ `errstate` is now fully thread and asyncio safe, but may not be
+ entered more than once.
+ It is not safe to decorate async functions using ``errstate``.
+
+ Parameters
+ ----------
+ kwargs : {divide, over, under, invalid}
+ Keyword arguments. The valid keywords are the possible floating-point
+ exceptions. Each keyword should have a string value that defines the
+ treatment for the particular error. Possible values are
+ {'ignore', 'warn', 'raise', 'call', 'print', 'log'}.
+
+ See Also
+ --------
+ seterr, geterr, seterrcall, geterrcall
+
+ Notes
+ -----
+ For complete documentation of the types of floating-point exceptions and
+ treatment options, see `seterr`.
+
+ Examples
+ --------
+ >>> import numpy as np
+ >>> olderr = np.seterr(all='ignore') # Set error handling to known state.
+
+ >>> np.arange(3) / 0.
+ array([nan, inf, inf])
+ >>> with np.errstate(divide='ignore'):
+ ... np.arange(3) / 0.
+ array([nan, inf, inf])
+
+ >>> np.sqrt(-1)
+ np.float64(nan)
+ >>> with np.errstate(invalid='raise'):
+ ... np.sqrt(-1)
+ Traceback (most recent call last):
+ File "<stdin>", line 2, in <module>
+ FloatingPointError: invalid value encountered in sqrt
+
+ Outside the context the error handling behavior has not changed:
+
+ >>> np.geterr()
+ {'divide': 'ignore', 'over': 'ignore', 'under': 'ignore', 'invalid': 'ignore'}
+ >>> olderr = np.seterr(**olderr) # restore original state
+
+ """
+ __slots__ = (
+ "_all",
+ "_call",
+ "_divide",
+ "_invalid",
+ "_over",
+ "_token",
+ "_under",
+ )
+
+ def __init__(self, *, call=_Unspecified,
+ all=None, divide=None, over=None, under=None, invalid=None):
+ self._token = None
+ self._call = call
+ self._all = all
+ self._divide = divide
+ self._over = over
+ self._under = under
+ self._invalid = invalid
+
+ def __enter__(self):
+ # Note that __call__ duplicates much of this logic
+ if self._token is not None:
+ raise TypeError("Cannot enter `np.errstate` twice.")
+ if self._call is _Unspecified:
+ extobj = _make_extobj(
+ all=self._all, divide=self._divide, over=self._over,
+ under=self._under, invalid=self._invalid)
+ else:
+ extobj = _make_extobj(
+ call=self._call,
+ all=self._all, divide=self._divide, over=self._over,
+ under=self._under, invalid=self._invalid)
+
+ self._token = _extobj_contextvar.set(extobj)
+
+ def __exit__(self, *exc_info):
+ _extobj_contextvar.reset(self._token)
+
+ def __call__(self, func):
+ # We need to customize `__call__` compared to `ContextDecorator`
+ # because we must store the token per-thread so cannot store it on
+ # the instance (we could create a new instance for this).
+ # This duplicates the code from `__enter__`.
+ @functools.wraps(func)
+ def inner(*args, **kwargs):
+ if self._call is _Unspecified:
+ extobj = _make_extobj(
+ all=self._all, divide=self._divide, over=self._over,
+ under=self._under, invalid=self._invalid)
+ else:
+ extobj = _make_extobj(
+ call=self._call,
+ all=self._all, divide=self._divide, over=self._over,
+ under=self._under, invalid=self._invalid)
+
+ _token = _extobj_contextvar.set(extobj)
+ try:
+ # Call the original, decorated, function:
+ return func(*args, **kwargs)
+ finally:
+ _extobj_contextvar.reset(_token)
+
+ return inner
diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/_ufunc_config.pyi b/.venv/lib/python3.12/site-packages/numpy/_core/_ufunc_config.pyi
new file mode 100644
index 0000000..1a66131
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/_core/_ufunc_config.pyi
@@ -0,0 +1,32 @@
+from collections.abc import Callable
+from typing import Any, Literal, TypeAlias, TypedDict, type_check_only
+
+from _typeshed import SupportsWrite
+
+from numpy import errstate as errstate
+
+_ErrKind: TypeAlias = Literal["ignore", "warn", "raise", "call", "print", "log"]
+_ErrFunc: TypeAlias = Callable[[str, int], Any]
+_ErrCall: TypeAlias = _ErrFunc | SupportsWrite[str]
+
+@type_check_only
+class _ErrDict(TypedDict):
+ divide: _ErrKind
+ over: _ErrKind
+ under: _ErrKind
+ invalid: _ErrKind
+
+def seterr(
+ all: _ErrKind | None = ...,
+ divide: _ErrKind | None = ...,
+ over: _ErrKind | None = ...,
+ under: _ErrKind | None = ...,
+ invalid: _ErrKind | None = ...,
+) -> _ErrDict: ...
+def geterr() -> _ErrDict: ...
+def setbufsize(size: int) -> int: ...
+def getbufsize() -> int: ...
+def seterrcall(func: _ErrCall | None) -> _ErrCall | None: ...
+def geterrcall() -> _ErrCall | None: ...
+
+# See `numpy/__init__.pyi` for the `errstate` class and `no_nep5_warnings`
diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/_umath_tests.cpython-312-x86_64-linux-gnu.so b/.venv/lib/python3.12/site-packages/numpy/_core/_umath_tests.cpython-312-x86_64-linux-gnu.so
new file mode 100755
index 0000000..51212e8
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/_core/_umath_tests.cpython-312-x86_64-linux-gnu.so
Binary files differ
diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/arrayprint.py b/.venv/lib/python3.12/site-packages/numpy/_core/arrayprint.py
new file mode 100644
index 0000000..2a68428
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/_core/arrayprint.py
@@ -0,0 +1,1775 @@
+"""Array printing function
+
+$Id: arrayprint.py,v 1.9 2005/09/13 13:58:44 teoliphant Exp $
+
+"""
+__all__ = ["array2string", "array_str", "array_repr",
+ "set_printoptions", "get_printoptions", "printoptions",
+ "format_float_positional", "format_float_scientific"]
+__docformat__ = 'restructuredtext'
+
+#
+# Written by Konrad Hinsen <hinsenk@ere.umontreal.ca>
+# last revision: 1996-3-13
+# modified by Jim Hugunin 1997-3-3 for repr's and str's (and other details)
+# and by Perry Greenfield 2000-4-1 for numarray
+# and by Travis Oliphant 2005-8-22 for numpy
+
+
+# Note: Both scalartypes.c.src and arrayprint.py implement strs for numpy
+# scalars but for different purposes. scalartypes.c.src has str/reprs for when
+# the scalar is printed on its own, while arrayprint.py has strs for when
+# scalars are printed inside an ndarray. Only the latter strs are currently
+# user-customizable.
+
+import functools
+import numbers
+import sys
+
+try:
+ from _thread import get_ident
+except ImportError:
+ from _dummy_thread import get_ident
+
+import contextlib
+import operator
+import warnings
+
+import numpy as np
+
+from . import numerictypes as _nt
+from .fromnumeric import any
+from .multiarray import (
+ array,
+ datetime_as_string,
+ datetime_data,
+ dragon4_positional,
+ dragon4_scientific,
+ ndarray,
+)
+from .numeric import asarray, concatenate, errstate
+from .numerictypes import complex128, flexible, float64, int_
+from .overrides import array_function_dispatch, set_module
+from .printoptions import format_options
+from .umath import absolute, isfinite, isinf, isnat
+
+
+def _make_options_dict(precision=None, threshold=None, edgeitems=None,
+ linewidth=None, suppress=None, nanstr=None, infstr=None,
+ sign=None, formatter=None, floatmode=None, legacy=None,
+ override_repr=None):
+ """
+ Make a dictionary out of the non-None arguments, plus conversion of
+ *legacy* and sanity checks.
+ """
+
+ options = {k: v for k, v in list(locals().items()) if v is not None}
+
+ if suppress is not None:
+ options['suppress'] = bool(suppress)
+
+ modes = ['fixed', 'unique', 'maxprec', 'maxprec_equal']
+ if floatmode not in modes + [None]:
+ raise ValueError("floatmode option must be one of " +
+ ", ".join(f'"{m}"' for m in modes))
+
+ if sign not in [None, '-', '+', ' ']:
+ raise ValueError("sign option must be one of ' ', '+', or '-'")
+
+ if legacy is False:
+ options['legacy'] = sys.maxsize
+ elif legacy == False: # noqa: E712
+ warnings.warn(
+ f"Passing `legacy={legacy!r}` is deprecated.",
+ FutureWarning, stacklevel=3
+ )
+ options['legacy'] = sys.maxsize
+ elif legacy == '1.13':
+ options['legacy'] = 113
+ elif legacy == '1.21':
+ options['legacy'] = 121
+ elif legacy == '1.25':
+ options['legacy'] = 125
+ elif legacy == '2.1':
+ options['legacy'] = 201
+ elif legacy == '2.2':
+ options['legacy'] = 202
+ elif legacy is None:
+ pass # OK, do nothing.
+ else:
+ warnings.warn(
+ "legacy printing option can currently only be '1.13', '1.21', "
+ "'1.25', '2.1', '2.2' or `False`", stacklevel=3)
+
+ if threshold is not None:
+ # forbid the bad threshold arg suggested by stack overflow, gh-12351
+ if not isinstance(threshold, numbers.Number):
+ raise TypeError("threshold must be numeric")
+ if np.isnan(threshold):
+ raise ValueError("threshold must be non-NAN, try "
+ "sys.maxsize for untruncated representation")
+
+ if precision is not None:
+ # forbid the bad precision arg as suggested by issue #18254
+ try:
+ options['precision'] = operator.index(precision)
+ except TypeError as e:
+ raise TypeError('precision must be an integer') from e
+
+ return options
+
+
+@set_module('numpy')
+def set_printoptions(precision=None, threshold=None, edgeitems=None,
+ linewidth=None, suppress=None, nanstr=None,
+ infstr=None, formatter=None, sign=None, floatmode=None,
+ *, legacy=None, override_repr=None):
+ """
+ Set printing options.
+
+ These options determine the way floating point numbers, arrays and
+ other NumPy objects are displayed.
+
+ Parameters
+ ----------
+ precision : int or None, optional
+ Number of digits of precision for floating point output (default 8).
+ May be None if `floatmode` is not `fixed`, to print as many digits as
+ necessary to uniquely specify the value.
+ threshold : int, optional
+ Total number of array elements which trigger summarization
+ rather than full repr (default 1000).
+ To always use the full repr without summarization, pass `sys.maxsize`.
+ edgeitems : int, optional
+ Number of array items in summary at beginning and end of
+ each dimension (default 3).
+ linewidth : int, optional
+ The number of characters per line for the purpose of inserting
+ line breaks (default 75).
+ suppress : bool, optional
+ If True, always print floating point numbers using fixed point
+ notation, in which case numbers equal to zero in the current precision
+ will print as zero. If False, then scientific notation is used when
+ absolute value of the smallest number is < 1e-4 or the ratio of the
+ maximum absolute value to the minimum is > 1e3. The default is False.
+ nanstr : str, optional
+ String representation of floating point not-a-number (default nan).
+ infstr : str, optional
+ String representation of floating point infinity (default inf).
+ sign : string, either '-', '+', or ' ', optional
+ Controls printing of the sign of floating-point types. If '+', always
+ print the sign of positive values. If ' ', always prints a space
+ (whitespace character) in the sign position of positive values. If
+ '-', omit the sign character of positive values. (default '-')
+
+ .. versionchanged:: 2.0
+ The sign parameter can now be an integer type, previously
+ types were floating-point types.
+
+ formatter : dict of callables, optional
+ If not None, the keys should indicate the type(s) that the respective
+ formatting function applies to. Callables should return a string.
+ Types that are not specified (by their corresponding keys) are handled
+ by the default formatters. Individual types for which a formatter
+ can be set are:
+
+ - 'bool'
+ - 'int'
+ - 'timedelta' : a `numpy.timedelta64`
+ - 'datetime' : a `numpy.datetime64`
+ - 'float'
+ - 'longfloat' : 128-bit floats
+ - 'complexfloat'
+ - 'longcomplexfloat' : composed of two 128-bit floats
+ - 'numpystr' : types `numpy.bytes_` and `numpy.str_`
+ - 'object' : `np.object_` arrays
+
+ Other keys that can be used to set a group of types at once are:
+
+ - 'all' : sets all types
+ - 'int_kind' : sets 'int'
+ - 'float_kind' : sets 'float' and 'longfloat'
+ - 'complex_kind' : sets 'complexfloat' and 'longcomplexfloat'
+ - 'str_kind' : sets 'numpystr'
+ floatmode : str, optional
+ Controls the interpretation of the `precision` option for
+ floating-point types. Can take the following values
+ (default maxprec_equal):
+
+ * 'fixed': Always print exactly `precision` fractional digits,
+ even if this would print more or fewer digits than
+ necessary to specify the value uniquely.
+ * 'unique': Print the minimum number of fractional digits necessary
+ to represent each value uniquely. Different elements may
+ have a different number of digits. The value of the
+ `precision` option is ignored.
+ * 'maxprec': Print at most `precision` fractional digits, but if
+ an element can be uniquely represented with fewer digits
+ only print it with that many.
+ * 'maxprec_equal': Print at most `precision` fractional digits,
+ but if every element in the array can be uniquely
+ represented with an equal number of fewer digits, use that
+ many digits for all elements.
+ legacy : string or `False`, optional
+ If set to the string ``'1.13'`` enables 1.13 legacy printing mode. This
+ approximates numpy 1.13 print output by including a space in the sign
+ position of floats and different behavior for 0d arrays. This also
+ enables 1.21 legacy printing mode (described below).
+
+ If set to the string ``'1.21'`` enables 1.21 legacy printing mode. This
+ approximates numpy 1.21 print output of complex structured dtypes
+ by not inserting spaces after commas that separate fields and after
+ colons.
+
+ If set to ``'1.25'`` approximates printing of 1.25 which mainly means
+ that numeric scalars are printed without their type information, e.g.
+ as ``3.0`` rather than ``np.float64(3.0)``.
+
+ If set to ``'2.1'``, shape information is not given when arrays are
+ summarized (i.e., multiple elements replaced with ``...``).
+
+ If set to ``'2.2'``, the transition to use scientific notation for
+ printing ``np.float16`` and ``np.float32`` types may happen later or
+ not at all for larger values.
+
+ If set to `False`, disables legacy mode.
+
+ Unrecognized strings will be ignored with a warning for forward
+ compatibility.
+
+ .. versionchanged:: 1.22.0
+ .. versionchanged:: 2.2
+
+ override_repr: callable, optional
+ If set a passed function will be used for generating arrays' repr.
+ Other options will be ignored.
+
+ See Also
+ --------
+ get_printoptions, printoptions, array2string
+
+ Notes
+ -----
+ `formatter` is always reset with a call to `set_printoptions`.
+
+ Use `printoptions` as a context manager to set the values temporarily.
+
+ Examples
+ --------
+ Floating point precision can be set:
+
+ >>> import numpy as np
+ >>> np.set_printoptions(precision=4)
+ >>> np.array([1.123456789])
+ [1.1235]
+
+ Long arrays can be summarised:
+
+ >>> np.set_printoptions(threshold=5)
+ >>> np.arange(10)
+ array([0, 1, 2, ..., 7, 8, 9], shape=(10,))
+
+ Small results can be suppressed:
+
+ >>> eps = np.finfo(float).eps
+ >>> x = np.arange(4.)
+ >>> x**2 - (x + eps)**2
+ array([-4.9304e-32, -4.4409e-16, 0.0000e+00, 0.0000e+00])
+ >>> np.set_printoptions(suppress=True)
+ >>> x**2 - (x + eps)**2
+ array([-0., -0., 0., 0.])
+
+ A custom formatter can be used to display array elements as desired:
+
+ >>> np.set_printoptions(formatter={'all':lambda x: 'int: '+str(-x)})
+ >>> x = np.arange(3)
+ >>> x
+ array([int: 0, int: -1, int: -2])
+ >>> np.set_printoptions() # formatter gets reset
+ >>> x
+ array([0, 1, 2])
+
+ To put back the default options, you can use:
+
+ >>> np.set_printoptions(edgeitems=3, infstr='inf',
+ ... linewidth=75, nanstr='nan', precision=8,
+ ... suppress=False, threshold=1000, formatter=None)
+
+ Also to temporarily override options, use `printoptions`
+ as a context manager:
+
+ >>> with np.printoptions(precision=2, suppress=True, threshold=5):
+ ... np.linspace(0, 10, 10)
+ array([ 0. , 1.11, 2.22, ..., 7.78, 8.89, 10. ], shape=(10,))
+
+ """
+ _set_printoptions(precision, threshold, edgeitems, linewidth, suppress,
+ nanstr, infstr, formatter, sign, floatmode,
+ legacy=legacy, override_repr=override_repr)
+
+
+def _set_printoptions(precision=None, threshold=None, edgeitems=None,
+ linewidth=None, suppress=None, nanstr=None,
+ infstr=None, formatter=None, sign=None, floatmode=None,
+ *, legacy=None, override_repr=None):
+ new_opt = _make_options_dict(precision, threshold, edgeitems, linewidth,
+ suppress, nanstr, infstr, sign, formatter,
+ floatmode, legacy)
+ # formatter and override_repr are always reset
+ new_opt['formatter'] = formatter
+ new_opt['override_repr'] = override_repr
+
+ updated_opt = format_options.get() | new_opt
+ updated_opt.update(new_opt)
+
+ if updated_opt['legacy'] == 113:
+ updated_opt['sign'] = '-'
+
+ return format_options.set(updated_opt)
+
+
+@set_module('numpy')
+def get_printoptions():
+ """
+ Return the current print options.
+
+ Returns
+ -------
+ print_opts : dict
+ Dictionary of current print options with keys
+
+ - precision : int
+ - threshold : int
+ - edgeitems : int
+ - linewidth : int
+ - suppress : bool
+ - nanstr : str
+ - infstr : str
+ - sign : str
+ - formatter : dict of callables
+ - floatmode : str
+ - legacy : str or False
+
+ For a full description of these options, see `set_printoptions`.
+
+ See Also
+ --------
+ set_printoptions, printoptions
+
+ Examples
+ --------
+ >>> import numpy as np
+
+ >>> np.get_printoptions()
+ {'edgeitems': 3, 'threshold': 1000, ..., 'override_repr': None}
+
+ >>> np.get_printoptions()['linewidth']
+ 75
+ >>> np.set_printoptions(linewidth=100)
+ >>> np.get_printoptions()['linewidth']
+ 100
+
+ """
+ opts = format_options.get().copy()
+ opts['legacy'] = {
+ 113: '1.13', 121: '1.21', 125: '1.25', 201: '2.1',
+ 202: '2.2', sys.maxsize: False,
+ }[opts['legacy']]
+ return opts
+
+
+def _get_legacy_print_mode():
+ """Return the legacy print mode as an int."""
+ return format_options.get()['legacy']
+
+
+@set_module('numpy')
+@contextlib.contextmanager
+def printoptions(*args, **kwargs):
+ """Context manager for setting print options.
+
+ Set print options for the scope of the `with` block, and restore the old
+ options at the end. See `set_printoptions` for the full description of
+ available options.
+
+ Examples
+ --------
+ >>> import numpy as np
+
+ >>> from numpy.testing import assert_equal
+ >>> with np.printoptions(precision=2):
+ ... np.array([2.0]) / 3
+ array([0.67])
+
+ The `as`-clause of the `with`-statement gives the current print options:
+
+ >>> with np.printoptions(precision=2) as opts:
+ ... assert_equal(opts, np.get_printoptions())
+
+ See Also
+ --------
+ set_printoptions, get_printoptions
+
+ """
+ token = _set_printoptions(*args, **kwargs)
+
+ try:
+ yield get_printoptions()
+ finally:
+ format_options.reset(token)
+
+
+def _leading_trailing(a, edgeitems, index=()):
+ """
+ Keep only the N-D corners (leading and trailing edges) of an array.
+
+ Should be passed a base-class ndarray, since it makes no guarantees about
+ preserving subclasses.
+ """
+ axis = len(index)
+ if axis == a.ndim:
+ return a[index]
+
+ if a.shape[axis] > 2 * edgeitems:
+ return concatenate((
+ _leading_trailing(a, edgeitems, index + np.index_exp[:edgeitems]),
+ _leading_trailing(a, edgeitems, index + np.index_exp[-edgeitems:])
+ ), axis=axis)
+ else:
+ return _leading_trailing(a, edgeitems, index + np.index_exp[:])
+
+
+def _object_format(o):
+ """ Object arrays containing lists should be printed unambiguously """
+ if type(o) is list:
+ fmt = 'list({!r})'
+ else:
+ fmt = '{!r}'
+ return fmt.format(o)
+
+def repr_format(x):
+ if isinstance(x, (np.str_, np.bytes_)):
+ return repr(x.item())
+ return repr(x)
+
+def str_format(x):
+ if isinstance(x, (np.str_, np.bytes_)):
+ return str(x.item())
+ return str(x)
+
+def _get_formatdict(data, *, precision, floatmode, suppress, sign, legacy,
+ formatter, **kwargs):
+ # note: extra arguments in kwargs are ignored
+
+ # wrapped in lambdas to avoid taking a code path
+ # with the wrong type of data
+ formatdict = {
+ 'bool': lambda: BoolFormat(data),
+ 'int': lambda: IntegerFormat(data, sign),
+ 'float': lambda: FloatingFormat(
+ data, precision, floatmode, suppress, sign, legacy=legacy),
+ 'longfloat': lambda: FloatingFormat(
+ data, precision, floatmode, suppress, sign, legacy=legacy),
+ 'complexfloat': lambda: ComplexFloatingFormat(
+ data, precision, floatmode, suppress, sign, legacy=legacy),
+ 'longcomplexfloat': lambda: ComplexFloatingFormat(
+ data, precision, floatmode, suppress, sign, legacy=legacy),
+ 'datetime': lambda: DatetimeFormat(data, legacy=legacy),
+ 'timedelta': lambda: TimedeltaFormat(data),
+ 'object': lambda: _object_format,
+ 'void': lambda: str_format,
+ 'numpystr': lambda: repr_format}
+
+ # we need to wrap values in `formatter` in a lambda, so that the interface
+ # is the same as the above values.
+ def indirect(x):
+ return lambda: x
+
+ if formatter is not None:
+ fkeys = [k for k in formatter.keys() if formatter[k] is not None]
+ if 'all' in fkeys:
+ for key in formatdict.keys():
+ formatdict[key] = indirect(formatter['all'])
+ if 'int_kind' in fkeys:
+ for key in ['int']:
+ formatdict[key] = indirect(formatter['int_kind'])
+ if 'float_kind' in fkeys:
+ for key in ['float', 'longfloat']:
+ formatdict[key] = indirect(formatter['float_kind'])
+ if 'complex_kind' in fkeys:
+ for key in ['complexfloat', 'longcomplexfloat']:
+ formatdict[key] = indirect(formatter['complex_kind'])
+ if 'str_kind' in fkeys:
+ formatdict['numpystr'] = indirect(formatter['str_kind'])
+ for key in formatdict.keys():
+ if key in fkeys:
+ formatdict[key] = indirect(formatter[key])
+
+ return formatdict
+
+def _get_format_function(data, **options):
+ """
+ find the right formatting function for the dtype_
+ """
+ dtype_ = data.dtype
+ dtypeobj = dtype_.type
+ formatdict = _get_formatdict(data, **options)
+ if dtypeobj is None:
+ return formatdict["numpystr"]()
+ elif issubclass(dtypeobj, _nt.bool):
+ return formatdict['bool']()
+ elif issubclass(dtypeobj, _nt.integer):
+ if issubclass(dtypeobj, _nt.timedelta64):
+ return formatdict['timedelta']()
+ else:
+ return formatdict['int']()
+ elif issubclass(dtypeobj, _nt.floating):
+ if issubclass(dtypeobj, _nt.longdouble):
+ return formatdict['longfloat']()
+ else:
+ return formatdict['float']()
+ elif issubclass(dtypeobj, _nt.complexfloating):
+ if issubclass(dtypeobj, _nt.clongdouble):
+ return formatdict['longcomplexfloat']()
+ else:
+ return formatdict['complexfloat']()
+ elif issubclass(dtypeobj, (_nt.str_, _nt.bytes_)):
+ return formatdict['numpystr']()
+ elif issubclass(dtypeobj, _nt.datetime64):
+ return formatdict['datetime']()
+ elif issubclass(dtypeobj, _nt.object_):
+ return formatdict['object']()
+ elif issubclass(dtypeobj, _nt.void):
+ if dtype_.names is not None:
+ return StructuredVoidFormat.from_data(data, **options)
+ else:
+ return formatdict['void']()
+ else:
+ return formatdict['numpystr']()
+
+
+def _recursive_guard(fillvalue='...'):
+ """
+ Like the python 3.2 reprlib.recursive_repr, but forwards *args and **kwargs
+
+ Decorates a function such that if it calls itself with the same first
+ argument, it returns `fillvalue` instead of recursing.
+
+ Largely copied from reprlib.recursive_repr
+ """
+
+ def decorating_function(f):
+ repr_running = set()
+
+ @functools.wraps(f)
+ def wrapper(self, *args, **kwargs):
+ key = id(self), get_ident()
+ if key in repr_running:
+ return fillvalue
+ repr_running.add(key)
+ try:
+ return f(self, *args, **kwargs)
+ finally:
+ repr_running.discard(key)
+
+ return wrapper
+
+ return decorating_function
+
+
+# gracefully handle recursive calls, when object arrays contain themselves
+@_recursive_guard()
+def _array2string(a, options, separator=' ', prefix=""):
+ # The formatter __init__s in _get_format_function cannot deal with
+ # subclasses yet, and we also need to avoid recursion issues in
+ # _formatArray with subclasses which return 0d arrays in place of scalars
+ data = asarray(a)
+ if a.shape == ():
+ a = data
+
+ if a.size > options['threshold']:
+ summary_insert = "..."
+ data = _leading_trailing(data, options['edgeitems'])
+ else:
+ summary_insert = ""
+
+ # find the right formatting function for the array
+ format_function = _get_format_function(data, **options)
+
+ # skip over "["
+ next_line_prefix = " "
+ # skip over array(
+ next_line_prefix += " " * len(prefix)
+
+ lst = _formatArray(a, format_function, options['linewidth'],
+ next_line_prefix, separator, options['edgeitems'],
+ summary_insert, options['legacy'])
+ return lst
+
+
+def _array2string_dispatcher(
+ a, max_line_width=None, precision=None,
+ suppress_small=None, separator=None, prefix=None,
+ style=None, formatter=None, threshold=None,
+ edgeitems=None, sign=None, floatmode=None, suffix=None,
+ *, legacy=None):
+ return (a,)
+
+
+@array_function_dispatch(_array2string_dispatcher, module='numpy')
+def array2string(a, max_line_width=None, precision=None,
+ suppress_small=None, separator=' ', prefix="",
+ style=np._NoValue, formatter=None, threshold=None,
+ edgeitems=None, sign=None, floatmode=None, suffix="",
+ *, legacy=None):
+ """
+ Return a string representation of an array.
+
+ Parameters
+ ----------
+ a : ndarray
+ Input array.
+ max_line_width : int, optional
+ Inserts newlines if text is longer than `max_line_width`.
+ Defaults to ``numpy.get_printoptions()['linewidth']``.
+ precision : int or None, optional
+ Floating point precision.
+ Defaults to ``numpy.get_printoptions()['precision']``.
+ suppress_small : bool, optional
+ Represent numbers "very close" to zero as zero; default is False.
+ Very close is defined by precision: if the precision is 8, e.g.,
+ numbers smaller (in absolute value) than 5e-9 are represented as
+ zero.
+ Defaults to ``numpy.get_printoptions()['suppress']``.
+ separator : str, optional
+ Inserted between elements.
+ prefix : str, optional
+ suffix : str, optional
+ The length of the prefix and suffix strings are used to respectively
+ align and wrap the output. An array is typically printed as::
+
+ prefix + array2string(a) + suffix
+
+ The output is left-padded by the length of the prefix string, and
+ wrapping is forced at the column ``max_line_width - len(suffix)``.
+ It should be noted that the content of prefix and suffix strings are
+ not included in the output.
+ style : _NoValue, optional
+ Has no effect, do not use.
+
+ .. deprecated:: 1.14.0
+ formatter : dict of callables, optional
+ If not None, the keys should indicate the type(s) that the respective
+ formatting function applies to. Callables should return a string.
+ Types that are not specified (by their corresponding keys) are handled
+ by the default formatters. Individual types for which a formatter
+ can be set are:
+
+ - 'bool'
+ - 'int'
+ - 'timedelta' : a `numpy.timedelta64`
+ - 'datetime' : a `numpy.datetime64`
+ - 'float'
+ - 'longfloat' : 128-bit floats
+ - 'complexfloat'
+ - 'longcomplexfloat' : composed of two 128-bit floats
+ - 'void' : type `numpy.void`
+ - 'numpystr' : types `numpy.bytes_` and `numpy.str_`
+
+ Other keys that can be used to set a group of types at once are:
+
+ - 'all' : sets all types
+ - 'int_kind' : sets 'int'
+ - 'float_kind' : sets 'float' and 'longfloat'
+ - 'complex_kind' : sets 'complexfloat' and 'longcomplexfloat'
+ - 'str_kind' : sets 'numpystr'
+ threshold : int, optional
+ Total number of array elements which trigger summarization
+ rather than full repr.
+ Defaults to ``numpy.get_printoptions()['threshold']``.
+ edgeitems : int, optional
+ Number of array items in summary at beginning and end of
+ each dimension.
+ Defaults to ``numpy.get_printoptions()['edgeitems']``.
+ sign : string, either '-', '+', or ' ', optional
+ Controls printing of the sign of floating-point types. If '+', always
+ print the sign of positive values. If ' ', always prints a space
+ (whitespace character) in the sign position of positive values. If
+ '-', omit the sign character of positive values.
+ Defaults to ``numpy.get_printoptions()['sign']``.
+
+ .. versionchanged:: 2.0
+ The sign parameter can now be an integer type, previously
+ types were floating-point types.
+
+ floatmode : str, optional
+ Controls the interpretation of the `precision` option for
+ floating-point types.
+ Defaults to ``numpy.get_printoptions()['floatmode']``.
+ Can take the following values:
+
+ - 'fixed': Always print exactly `precision` fractional digits,
+ even if this would print more or fewer digits than
+ necessary to specify the value uniquely.
+ - 'unique': Print the minimum number of fractional digits necessary
+ to represent each value uniquely. Different elements may
+ have a different number of digits. The value of the
+ `precision` option is ignored.
+ - 'maxprec': Print at most `precision` fractional digits, but if
+ an element can be uniquely represented with fewer digits
+ only print it with that many.
+ - 'maxprec_equal': Print at most `precision` fractional digits,
+ but if every element in the array can be uniquely
+ represented with an equal number of fewer digits, use that
+ many digits for all elements.
+ legacy : string or `False`, optional
+ If set to the string ``'1.13'`` enables 1.13 legacy printing mode. This
+ approximates numpy 1.13 print output by including a space in the sign
+ position of floats and different behavior for 0d arrays. If set to
+ `False`, disables legacy mode. Unrecognized strings will be ignored
+ with a warning for forward compatibility.
+
+ Returns
+ -------
+ array_str : str
+ String representation of the array.
+
+ Raises
+ ------
+ TypeError
+ if a callable in `formatter` does not return a string.
+
+ See Also
+ --------
+ array_str, array_repr, set_printoptions, get_printoptions
+
+ Notes
+ -----
+ If a formatter is specified for a certain type, the `precision` keyword is
+ ignored for that type.
+
+ This is a very flexible function; `array_repr` and `array_str` are using
+ `array2string` internally so keywords with the same name should work
+ identically in all three functions.
+
+ Examples
+ --------
+ >>> import numpy as np
+ >>> x = np.array([1e-16,1,2,3])
+ >>> np.array2string(x, precision=2, separator=',',
+ ... suppress_small=True)
+ '[0.,1.,2.,3.]'
+
+ >>> x = np.arange(3.)
+ >>> np.array2string(x, formatter={'float_kind':lambda x: "%.2f" % x})
+ '[0.00 1.00 2.00]'
+
+ >>> x = np.arange(3)
+ >>> np.array2string(x, formatter={'int':lambda x: hex(x)})
+ '[0x0 0x1 0x2]'
+
+ """
+
+ overrides = _make_options_dict(precision, threshold, edgeitems,
+ max_line_width, suppress_small, None, None,
+ sign, formatter, floatmode, legacy)
+ options = format_options.get().copy()
+ options.update(overrides)
+
+ if options['legacy'] <= 113:
+ if style is np._NoValue:
+ style = repr
+
+ if a.shape == () and a.dtype.names is None:
+ return style(a.item())
+ elif style is not np._NoValue:
+ # Deprecation 11-9-2017 v1.14
+ warnings.warn("'style' argument is deprecated and no longer functional"
+ " except in 1.13 'legacy' mode",
+ DeprecationWarning, stacklevel=2)
+
+ if options['legacy'] > 113:
+ options['linewidth'] -= len(suffix)
+
+ # treat as a null array if any of shape elements == 0
+ if a.size == 0:
+ return "[]"
+
+ return _array2string(a, options, separator, prefix)
+
+
+def _extendLine(s, line, word, line_width, next_line_prefix, legacy):
+ needs_wrap = len(line) + len(word) > line_width
+ if legacy > 113:
+ # don't wrap lines if it won't help
+ if len(line) <= len(next_line_prefix):
+ needs_wrap = False
+
+ if needs_wrap:
+ s += line.rstrip() + "\n"
+ line = next_line_prefix
+ line += word
+ return s, line
+
+
+def _extendLine_pretty(s, line, word, line_width, next_line_prefix, legacy):
+ """
+ Extends line with nicely formatted (possibly multi-line) string ``word``.
+ """
+ words = word.splitlines()
+ if len(words) == 1 or legacy <= 113:
+ return _extendLine(s, line, word, line_width, next_line_prefix, legacy)
+
+ max_word_length = max(len(word) for word in words)
+ if (len(line) + max_word_length > line_width and
+ len(line) > len(next_line_prefix)):
+ s += line.rstrip() + '\n'
+ line = next_line_prefix + words[0]
+ indent = next_line_prefix
+ else:
+ indent = len(line) * ' '
+ line += words[0]
+
+ for word in words[1::]:
+ s += line.rstrip() + '\n'
+ line = indent + word
+
+ suffix_length = max_word_length - len(words[-1])
+ line += suffix_length * ' '
+
+ return s, line
+
+def _formatArray(a, format_function, line_width, next_line_prefix,
+ separator, edge_items, summary_insert, legacy):
+ """formatArray is designed for two modes of operation:
+
+ 1. Full output
+
+ 2. Summarized output
+
+ """
+ def recurser(index, hanging_indent, curr_width):
+ """
+ By using this local function, we don't need to recurse with all the
+ arguments. Since this function is not created recursively, the cost is
+ not significant
+ """
+ axis = len(index)
+ axes_left = a.ndim - axis
+
+ if axes_left == 0:
+ return format_function(a[index])
+
+ # when recursing, add a space to align with the [ added, and reduce the
+ # length of the line by 1
+ next_hanging_indent = hanging_indent + ' '
+ if legacy <= 113:
+ next_width = curr_width
+ else:
+ next_width = curr_width - len(']')
+
+ a_len = a.shape[axis]
+ show_summary = summary_insert and 2 * edge_items < a_len
+ if show_summary:
+ leading_items = edge_items
+ trailing_items = edge_items
+ else:
+ leading_items = 0
+ trailing_items = a_len
+
+ # stringify the array with the hanging indent on the first line too
+ s = ''
+
+ # last axis (rows) - wrap elements if they would not fit on one line
+ if axes_left == 1:
+ # the length up until the beginning of the separator / bracket
+ if legacy <= 113:
+ elem_width = curr_width - len(separator.rstrip())
+ else:
+ elem_width = curr_width - max(
+ len(separator.rstrip()), len(']')
+ )
+
+ line = hanging_indent
+ for i in range(leading_items):
+ word = recurser(index + (i,), next_hanging_indent, next_width)
+ s, line = _extendLine_pretty(
+ s, line, word, elem_width, hanging_indent, legacy)
+ line += separator
+
+ if show_summary:
+ s, line = _extendLine(
+ s, line, summary_insert, elem_width, hanging_indent, legacy
+ )
+ if legacy <= 113:
+ line += ", "
+ else:
+ line += separator
+
+ for i in range(trailing_items, 1, -1):
+ word = recurser(index + (-i,), next_hanging_indent, next_width)
+ s, line = _extendLine_pretty(
+ s, line, word, elem_width, hanging_indent, legacy)
+ line += separator
+
+ if legacy <= 113:
+ # width of the separator is not considered on 1.13
+ elem_width = curr_width
+ word = recurser(index + (-1,), next_hanging_indent, next_width)
+ s, line = _extendLine_pretty(
+ s, line, word, elem_width, hanging_indent, legacy)
+
+ s += line
+
+ # other axes - insert newlines between rows
+ else:
+ s = ''
+ line_sep = separator.rstrip() + '\n' * (axes_left - 1)
+
+ for i in range(leading_items):
+ nested = recurser(
+ index + (i,), next_hanging_indent, next_width
+ )
+ s += hanging_indent + nested + line_sep
+
+ if show_summary:
+ if legacy <= 113:
+ # trailing space, fixed nbr of newlines,
+ # and fixed separator
+ s += hanging_indent + summary_insert + ", \n"
+ else:
+ s += hanging_indent + summary_insert + line_sep
+
+ for i in range(trailing_items, 1, -1):
+ nested = recurser(index + (-i,), next_hanging_indent,
+ next_width)
+ s += hanging_indent + nested + line_sep
+
+ nested = recurser(index + (-1,), next_hanging_indent, next_width)
+ s += hanging_indent + nested
+
+ # remove the hanging indent, and wrap in []
+ s = '[' + s[len(hanging_indent):] + ']'
+ return s
+
+ try:
+ # invoke the recursive part with an initial index and prefix
+ return recurser(index=(),
+ hanging_indent=next_line_prefix,
+ curr_width=line_width)
+ finally:
+ # recursive closures have a cyclic reference to themselves, which
+ # requires gc to collect (gh-10620). To avoid this problem, for
+ # performance and PyPy friendliness, we break the cycle:
+ recurser = None
+
+def _none_or_positive_arg(x, name):
+ if x is None:
+ return -1
+ if x < 0:
+ raise ValueError(f"{name} must be >= 0")
+ return x
+
+class FloatingFormat:
+ """ Formatter for subtypes of np.floating """
+ def __init__(self, data, precision, floatmode, suppress_small, sign=False,
+ *, legacy=None):
+ # for backcompatibility, accept bools
+ if isinstance(sign, bool):
+ sign = '+' if sign else '-'
+
+ self._legacy = legacy
+ if self._legacy <= 113:
+ # when not 0d, legacy does not support '-'
+ if data.shape != () and sign == '-':
+ sign = ' '
+
+ self.floatmode = floatmode
+ if floatmode == 'unique':
+ self.precision = None
+ else:
+ self.precision = precision
+
+ self.precision = _none_or_positive_arg(self.precision, 'precision')
+
+ self.suppress_small = suppress_small
+ self.sign = sign
+ self.exp_format = False
+ self.large_exponent = False
+ self.fillFormat(data)
+
+ def fillFormat(self, data):
+ # only the finite values are used to compute the number of digits
+ finite_vals = data[isfinite(data)]
+
+ # choose exponential mode based on the non-zero finite values:
+ abs_non_zero = absolute(finite_vals[finite_vals != 0])
+ if len(abs_non_zero) != 0:
+ max_val = np.max(abs_non_zero)
+ min_val = np.min(abs_non_zero)
+ if self._legacy <= 202:
+ exp_cutoff_max = 1.e8
+ else:
+ # consider data type while deciding the max cutoff for exp format
+ exp_cutoff_max = 10.**min(8, np.finfo(data.dtype).precision)
+ with errstate(over='ignore'): # division can overflow
+ if max_val >= exp_cutoff_max or (not self.suppress_small and
+ (min_val < 0.0001 or max_val / min_val > 1000.)):
+ self.exp_format = True
+
+ # do a first pass of printing all the numbers, to determine sizes
+ if len(finite_vals) == 0:
+ self.pad_left = 0
+ self.pad_right = 0
+ self.trim = '.'
+ self.exp_size = -1
+ self.unique = True
+ self.min_digits = None
+ elif self.exp_format:
+ trim, unique = '.', True
+ if self.floatmode == 'fixed' or self._legacy <= 113:
+ trim, unique = 'k', False
+ strs = (dragon4_scientific(x, precision=self.precision,
+ unique=unique, trim=trim, sign=self.sign == '+')
+ for x in finite_vals)
+ frac_strs, _, exp_strs = zip(*(s.partition('e') for s in strs))
+ int_part, frac_part = zip(*(s.split('.') for s in frac_strs))
+ self.exp_size = max(len(s) for s in exp_strs) - 1
+
+ self.trim = 'k'
+ self.precision = max(len(s) for s in frac_part)
+ self.min_digits = self.precision
+ self.unique = unique
+
+ # for back-compat with np 1.13, use 2 spaces & sign and full prec
+ if self._legacy <= 113:
+ self.pad_left = 3
+ else:
+ # this should be only 1 or 2. Can be calculated from sign.
+ self.pad_left = max(len(s) for s in int_part)
+ # pad_right is only needed for nan length calculation
+ self.pad_right = self.exp_size + 2 + self.precision
+ else:
+ trim, unique = '.', True
+ if self.floatmode == 'fixed':
+ trim, unique = 'k', False
+ strs = (dragon4_positional(x, precision=self.precision,
+ fractional=True,
+ unique=unique, trim=trim,
+ sign=self.sign == '+')
+ for x in finite_vals)
+ int_part, frac_part = zip(*(s.split('.') for s in strs))
+ if self._legacy <= 113:
+ self.pad_left = 1 + max(len(s.lstrip('-+')) for s in int_part)
+ else:
+ self.pad_left = max(len(s) for s in int_part)
+ self.pad_right = max(len(s) for s in frac_part)
+ self.exp_size = -1
+ self.unique = unique
+
+ if self.floatmode in ['fixed', 'maxprec_equal']:
+ self.precision = self.min_digits = self.pad_right
+ self.trim = 'k'
+ else:
+ self.trim = '.'
+ self.min_digits = 0
+
+ if self._legacy > 113:
+ # account for sign = ' ' by adding one to pad_left
+ if self.sign == ' ' and not any(np.signbit(finite_vals)):
+ self.pad_left += 1
+
+ # if there are non-finite values, may need to increase pad_left
+ if data.size != finite_vals.size:
+ neginf = self.sign != '-' or any(data[isinf(data)] < 0)
+ offset = self.pad_right + 1 # +1 for decimal pt
+ current_options = format_options.get()
+ self.pad_left = max(
+ self.pad_left, len(current_options['nanstr']) - offset,
+ len(current_options['infstr']) + neginf - offset
+ )
+
+ def __call__(self, x):
+ if not np.isfinite(x):
+ with errstate(invalid='ignore'):
+ current_options = format_options.get()
+ if np.isnan(x):
+ sign = '+' if self.sign == '+' else ''
+ ret = sign + current_options['nanstr']
+ else: # isinf
+ sign = '-' if x < 0 else '+' if self.sign == '+' else ''
+ ret = sign + current_options['infstr']
+ return ' ' * (
+ self.pad_left + self.pad_right + 1 - len(ret)
+ ) + ret
+
+ if self.exp_format:
+ return dragon4_scientific(x,
+ precision=self.precision,
+ min_digits=self.min_digits,
+ unique=self.unique,
+ trim=self.trim,
+ sign=self.sign == '+',
+ pad_left=self.pad_left,
+ exp_digits=self.exp_size)
+ else:
+ return dragon4_positional(x,
+ precision=self.precision,
+ min_digits=self.min_digits,
+ unique=self.unique,
+ fractional=True,
+ trim=self.trim,
+ sign=self.sign == '+',
+ pad_left=self.pad_left,
+ pad_right=self.pad_right)
+
+
+@set_module('numpy')
+def format_float_scientific(x, precision=None, unique=True, trim='k',
+ sign=False, pad_left=None, exp_digits=None,
+ min_digits=None):
+ """
+ Format a floating-point scalar as a decimal string in scientific notation.
+
+ Provides control over rounding, trimming and padding. Uses and assumes
+ IEEE unbiased rounding. Uses the "Dragon4" algorithm.
+
+ Parameters
+ ----------
+ x : python float or numpy floating scalar
+ Value to format.
+ precision : non-negative integer or None, optional
+ Maximum number of digits to print. May be None if `unique` is
+ `True`, but must be an integer if unique is `False`.
+ unique : boolean, optional
+ If `True`, use a digit-generation strategy which gives the shortest
+ representation which uniquely identifies the floating-point number from
+ other values of the same type, by judicious rounding. If `precision`
+ is given fewer digits than necessary can be printed. If `min_digits`
+ is given more can be printed, in which cases the last digit is rounded
+ with unbiased rounding.
+ If `False`, digits are generated as if printing an infinite-precision
+ value and stopping after `precision` digits, rounding the remaining
+ value with unbiased rounding
+ trim : one of 'k', '.', '0', '-', optional
+ Controls post-processing trimming of trailing digits, as follows:
+
+ * 'k' : keep trailing zeros, keep decimal point (no trimming)
+ * '.' : trim all trailing zeros, leave decimal point
+ * '0' : trim all but the zero before the decimal point. Insert the
+ zero if it is missing.
+ * '-' : trim trailing zeros and any trailing decimal point
+ sign : boolean, optional
+ Whether to show the sign for positive values.
+ pad_left : non-negative integer, optional
+ Pad the left side of the string with whitespace until at least that
+ many characters are to the left of the decimal point.
+ exp_digits : non-negative integer, optional
+ Pad the exponent with zeros until it contains at least this
+ many digits. If omitted, the exponent will be at least 2 digits.
+ min_digits : non-negative integer or None, optional
+ Minimum number of digits to print. This only has an effect for
+ `unique=True`. In that case more digits than necessary to uniquely
+ identify the value may be printed and rounded unbiased.
+
+ .. versionadded:: 1.21.0
+
+ Returns
+ -------
+ rep : string
+ The string representation of the floating point value
+
+ See Also
+ --------
+ format_float_positional
+
+ Examples
+ --------
+ >>> import numpy as np
+ >>> np.format_float_scientific(np.float32(np.pi))
+ '3.1415927e+00'
+ >>> s = np.float32(1.23e24)
+ >>> np.format_float_scientific(s, unique=False, precision=15)
+ '1.230000071797338e+24'
+ >>> np.format_float_scientific(s, exp_digits=4)
+ '1.23e+0024'
+ """
+ precision = _none_or_positive_arg(precision, 'precision')
+ pad_left = _none_or_positive_arg(pad_left, 'pad_left')
+ exp_digits = _none_or_positive_arg(exp_digits, 'exp_digits')
+ min_digits = _none_or_positive_arg(min_digits, 'min_digits')
+ if min_digits > 0 and precision > 0 and min_digits > precision:
+ raise ValueError("min_digits must be less than or equal to precision")
+ return dragon4_scientific(x, precision=precision, unique=unique,
+ trim=trim, sign=sign, pad_left=pad_left,
+ exp_digits=exp_digits, min_digits=min_digits)
+
+
+@set_module('numpy')
+def format_float_positional(x, precision=None, unique=True,
+ fractional=True, trim='k', sign=False,
+ pad_left=None, pad_right=None, min_digits=None):
+ """
+ Format a floating-point scalar as a decimal string in positional notation.
+
+ Provides control over rounding, trimming and padding. Uses and assumes
+ IEEE unbiased rounding. Uses the "Dragon4" algorithm.
+
+ Parameters
+ ----------
+ x : python float or numpy floating scalar
+ Value to format.
+ precision : non-negative integer or None, optional
+ Maximum number of digits to print. May be None if `unique` is
+ `True`, but must be an integer if unique is `False`.
+ unique : boolean, optional
+ If `True`, use a digit-generation strategy which gives the shortest
+ representation which uniquely identifies the floating-point number from
+ other values of the same type, by judicious rounding. If `precision`
+ is given fewer digits than necessary can be printed, or if `min_digits`
+ is given more can be printed, in which cases the last digit is rounded
+ with unbiased rounding.
+ If `False`, digits are generated as if printing an infinite-precision
+ value and stopping after `precision` digits, rounding the remaining
+ value with unbiased rounding
+ fractional : boolean, optional
+ If `True`, the cutoffs of `precision` and `min_digits` refer to the
+ total number of digits after the decimal point, including leading
+ zeros.
+ If `False`, `precision` and `min_digits` refer to the total number of
+ significant digits, before or after the decimal point, ignoring leading
+ zeros.
+ trim : one of 'k', '.', '0', '-', optional
+ Controls post-processing trimming of trailing digits, as follows:
+
+ * 'k' : keep trailing zeros, keep decimal point (no trimming)
+ * '.' : trim all trailing zeros, leave decimal point
+ * '0' : trim all but the zero before the decimal point. Insert the
+ zero if it is missing.
+ * '-' : trim trailing zeros and any trailing decimal point
+ sign : boolean, optional
+ Whether to show the sign for positive values.
+ pad_left : non-negative integer, optional
+ Pad the left side of the string with whitespace until at least that
+ many characters are to the left of the decimal point.
+ pad_right : non-negative integer, optional
+ Pad the right side of the string with whitespace until at least that
+ many characters are to the right of the decimal point.
+ min_digits : non-negative integer or None, optional
+ Minimum number of digits to print. Only has an effect if `unique=True`
+ in which case additional digits past those necessary to uniquely
+ identify the value may be printed, rounding the last additional digit.
+
+ .. versionadded:: 1.21.0
+
+ Returns
+ -------
+ rep : string
+ The string representation of the floating point value
+
+ See Also
+ --------
+ format_float_scientific
+
+ Examples
+ --------
+ >>> import numpy as np
+ >>> np.format_float_positional(np.float32(np.pi))
+ '3.1415927'
+ >>> np.format_float_positional(np.float16(np.pi))
+ '3.14'
+ >>> np.format_float_positional(np.float16(0.3))
+ '0.3'
+ >>> np.format_float_positional(np.float16(0.3), unique=False, precision=10)
+ '0.3000488281'
+ """
+ precision = _none_or_positive_arg(precision, 'precision')
+ pad_left = _none_or_positive_arg(pad_left, 'pad_left')
+ pad_right = _none_or_positive_arg(pad_right, 'pad_right')
+ min_digits = _none_or_positive_arg(min_digits, 'min_digits')
+ if not fractional and precision == 0:
+ raise ValueError("precision must be greater than 0 if "
+ "fractional=False")
+ if min_digits > 0 and precision > 0 and min_digits > precision:
+ raise ValueError("min_digits must be less than or equal to precision")
+ return dragon4_positional(x, precision=precision, unique=unique,
+ fractional=fractional, trim=trim,
+ sign=sign, pad_left=pad_left,
+ pad_right=pad_right, min_digits=min_digits)
+
+class IntegerFormat:
+ def __init__(self, data, sign='-'):
+ if data.size > 0:
+ data_max = np.max(data)
+ data_min = np.min(data)
+ data_max_str_len = len(str(data_max))
+ if sign == ' ' and data_min < 0:
+ sign = '-'
+ if data_max >= 0 and sign in "+ ":
+ data_max_str_len += 1
+ max_str_len = max(data_max_str_len,
+ len(str(data_min)))
+ else:
+ max_str_len = 0
+ self.format = f'{{:{sign}{max_str_len}d}}'
+
+ def __call__(self, x):
+ return self.format.format(x)
+
+class BoolFormat:
+ def __init__(self, data, **kwargs):
+ # add an extra space so " True" and "False" have the same length and
+ # array elements align nicely when printed, except in 0d arrays
+ self.truestr = ' True' if data.shape != () else 'True'
+
+ def __call__(self, x):
+ return self.truestr if x else "False"
+
+
+class ComplexFloatingFormat:
+ """ Formatter for subtypes of np.complexfloating """
+ def __init__(self, x, precision, floatmode, suppress_small,
+ sign=False, *, legacy=None):
+ # for backcompatibility, accept bools
+ if isinstance(sign, bool):
+ sign = '+' if sign else '-'
+
+ floatmode_real = floatmode_imag = floatmode
+ if legacy <= 113:
+ floatmode_real = 'maxprec_equal'
+ floatmode_imag = 'maxprec'
+
+ self.real_format = FloatingFormat(
+ x.real, precision, floatmode_real, suppress_small,
+ sign=sign, legacy=legacy
+ )
+ self.imag_format = FloatingFormat(
+ x.imag, precision, floatmode_imag, suppress_small,
+ sign='+', legacy=legacy
+ )
+
+ def __call__(self, x):
+ r = self.real_format(x.real)
+ i = self.imag_format(x.imag)
+
+ # add the 'j' before the terminal whitespace in i
+ sp = len(i.rstrip())
+ i = i[:sp] + 'j' + i[sp:]
+
+ return r + i
+
+
+class _TimelikeFormat:
+ def __init__(self, data):
+ non_nat = data[~isnat(data)]
+ if len(non_nat) > 0:
+ # Max str length of non-NaT elements
+ max_str_len = max(len(self._format_non_nat(np.max(non_nat))),
+ len(self._format_non_nat(np.min(non_nat))))
+ else:
+ max_str_len = 0
+ if len(non_nat) < data.size:
+ # data contains a NaT
+ max_str_len = max(max_str_len, 5)
+ self._format = f'%{max_str_len}s'
+ self._nat = "'NaT'".rjust(max_str_len)
+
+ def _format_non_nat(self, x):
+ # override in subclass
+ raise NotImplementedError
+
+ def __call__(self, x):
+ if isnat(x):
+ return self._nat
+ else:
+ return self._format % self._format_non_nat(x)
+
+
+class DatetimeFormat(_TimelikeFormat):
+ def __init__(self, x, unit=None, timezone=None, casting='same_kind',
+ legacy=False):
+ # Get the unit from the dtype
+ if unit is None:
+ if x.dtype.kind == 'M':
+ unit = datetime_data(x.dtype)[0]
+ else:
+ unit = 's'
+
+ if timezone is None:
+ timezone = 'naive'
+ self.timezone = timezone
+ self.unit = unit
+ self.casting = casting
+ self.legacy = legacy
+
+ # must be called after the above are configured
+ super().__init__(x)
+
+ def __call__(self, x):
+ if self.legacy <= 113:
+ return self._format_non_nat(x)
+ return super().__call__(x)
+
+ def _format_non_nat(self, x):
+ return "'%s'" % datetime_as_string(x,
+ unit=self.unit,
+ timezone=self.timezone,
+ casting=self.casting)
+
+
+class TimedeltaFormat(_TimelikeFormat):
+ def _format_non_nat(self, x):
+ return str(x.astype('i8'))
+
+
+class SubArrayFormat:
+ def __init__(self, format_function, **options):
+ self.format_function = format_function
+ self.threshold = options['threshold']
+ self.edge_items = options['edgeitems']
+
+ def __call__(self, a):
+ self.summary_insert = "..." if a.size > self.threshold else ""
+ return self.format_array(a)
+
+ def format_array(self, a):
+ if np.ndim(a) == 0:
+ return self.format_function(a)
+
+ if self.summary_insert and a.shape[0] > 2 * self.edge_items:
+ formatted = (
+ [self.format_array(a_) for a_ in a[:self.edge_items]]
+ + [self.summary_insert]
+ + [self.format_array(a_) for a_ in a[-self.edge_items:]]
+ )
+ else:
+ formatted = [self.format_array(a_) for a_ in a]
+
+ return "[" + ", ".join(formatted) + "]"
+
+
+class StructuredVoidFormat:
+ """
+ Formatter for structured np.void objects.
+
+ This does not work on structured alias types like
+ np.dtype(('i4', 'i2,i2')), as alias scalars lose their field information,
+ and the implementation relies upon np.void.__getitem__.
+ """
+ def __init__(self, format_functions):
+ self.format_functions = format_functions
+
+ @classmethod
+ def from_data(cls, data, **options):
+ """
+ This is a second way to initialize StructuredVoidFormat,
+ using the raw data as input. Added to avoid changing
+ the signature of __init__.
+ """
+ format_functions = []
+ for field_name in data.dtype.names:
+ format_function = _get_format_function(data[field_name], **options)
+ if data.dtype[field_name].shape != ():
+ format_function = SubArrayFormat(format_function, **options)
+ format_functions.append(format_function)
+ return cls(format_functions)
+
+ def __call__(self, x):
+ str_fields = [
+ format_function(field)
+ for field, format_function in zip(x, self.format_functions)
+ ]
+ if len(str_fields) == 1:
+ return f"({str_fields[0]},)"
+ else:
+ return f"({', '.join(str_fields)})"
+
+
+def _void_scalar_to_string(x, is_repr=True):
+ """
+ Implements the repr for structured-void scalars. It is called from the
+ scalartypes.c.src code, and is placed here because it uses the elementwise
+ formatters defined above.
+ """
+ options = format_options.get().copy()
+
+ if options["legacy"] <= 125:
+ return StructuredVoidFormat.from_data(array(x), **options)(x)
+
+ if options.get('formatter') is None:
+ options['formatter'] = {}
+ options['formatter'].setdefault('float_kind', str)
+ val_repr = StructuredVoidFormat.from_data(array(x), **options)(x)
+ if not is_repr:
+ return val_repr
+ cls = type(x)
+ cls_fqn = cls.__module__.replace("numpy", "np") + "." + cls.__name__
+ void_dtype = np.dtype((np.void, x.dtype))
+ return f"{cls_fqn}({val_repr}, dtype={void_dtype!s})"
+
+
+_typelessdata = [int_, float64, complex128, _nt.bool]
+
+
+def dtype_is_implied(dtype):
+ """
+ Determine if the given dtype is implied by the representation
+ of its values.
+
+ Parameters
+ ----------
+ dtype : dtype
+ Data type
+
+ Returns
+ -------
+ implied : bool
+ True if the dtype is implied by the representation of its values.
+
+ Examples
+ --------
+ >>> import numpy as np
+ >>> np._core.arrayprint.dtype_is_implied(int)
+ True
+ >>> np.array([1, 2, 3], int)
+ array([1, 2, 3])
+ >>> np._core.arrayprint.dtype_is_implied(np.int8)
+ False
+ >>> np.array([1, 2, 3], np.int8)
+ array([1, 2, 3], dtype=int8)
+ """
+ dtype = np.dtype(dtype)
+ if format_options.get()['legacy'] <= 113 and dtype.type == np.bool:
+ return False
+
+ # not just void types can be structured, and names are not part of the repr
+ if dtype.names is not None:
+ return False
+
+ # should care about endianness *unless size is 1* (e.g., int8, bool)
+ if not dtype.isnative:
+ return False
+
+ return dtype.type in _typelessdata
+
+
+def dtype_short_repr(dtype):
+ """
+ Convert a dtype to a short form which evaluates to the same dtype.
+
+ The intent is roughly that the following holds
+
+ >>> from numpy import *
+ >>> dt = np.int64([1, 2]).dtype
+ >>> assert eval(dtype_short_repr(dt)) == dt
+ """
+ if type(dtype).__repr__ != np.dtype.__repr__:
+ # TODO: Custom repr for user DTypes, logic should likely move.
+ return repr(dtype)
+ if dtype.names is not None:
+ # structured dtypes give a list or tuple repr
+ return str(dtype)
+ elif issubclass(dtype.type, flexible):
+ # handle these separately so they don't give garbage like str256
+ return f"'{str(dtype)}'"
+
+ typename = dtype.name
+ if not dtype.isnative:
+ # deal with cases like dtype('<u2') that are identical to an
+ # established dtype (in this case uint16)
+ # except that they have a different endianness.
+ return f"'{str(dtype)}'"
+ # quote typenames which can't be represented as python variable names
+ if typename and not (typename[0].isalpha() and typename.isalnum()):
+ typename = repr(typename)
+ return typename
+
+
+def _array_repr_implementation(
+ arr, max_line_width=None, precision=None, suppress_small=None,
+ array2string=array2string):
+ """Internal version of array_repr() that allows overriding array2string."""
+ current_options = format_options.get()
+ override_repr = current_options["override_repr"]
+ if override_repr is not None:
+ return override_repr(arr)
+
+ if max_line_width is None:
+ max_line_width = current_options['linewidth']
+
+ if type(arr) is not ndarray:
+ class_name = type(arr).__name__
+ else:
+ class_name = "array"
+
+ prefix = class_name + "("
+ if (current_options['legacy'] <= 113 and
+ arr.shape == () and not arr.dtype.names):
+ lst = repr(arr.item())
+ else:
+ lst = array2string(arr, max_line_width, precision, suppress_small,
+ ', ', prefix, suffix=")")
+
+ # Add dtype and shape information if these cannot be inferred from
+ # the array string.
+ extras = []
+ if ((arr.size == 0 and arr.shape != (0,))
+ or (current_options['legacy'] > 210
+ and arr.size > current_options['threshold'])):
+ extras.append(f"shape={arr.shape}")
+ if not dtype_is_implied(arr.dtype) or arr.size == 0:
+ extras.append(f"dtype={dtype_short_repr(arr.dtype)}")
+
+ if not extras:
+ return prefix + lst + ")"
+
+ arr_str = prefix + lst + ","
+ extra_str = ", ".join(extras) + ")"
+ # compute whether we should put extras on a new line: Do so if adding the
+ # extras would extend the last line past max_line_width.
+ # Note: This line gives the correct result even when rfind returns -1.
+ last_line_len = len(arr_str) - (arr_str.rfind('\n') + 1)
+ spacer = " "
+ if current_options['legacy'] <= 113:
+ if issubclass(arr.dtype.type, flexible):
+ spacer = '\n' + ' ' * len(prefix)
+ elif last_line_len + len(extra_str) + 1 > max_line_width:
+ spacer = '\n' + ' ' * len(prefix)
+
+ return arr_str + spacer + extra_str
+
+
+def _array_repr_dispatcher(
+ arr, max_line_width=None, precision=None, suppress_small=None):
+ return (arr,)
+
+
+@array_function_dispatch(_array_repr_dispatcher, module='numpy')
+def array_repr(arr, max_line_width=None, precision=None, suppress_small=None):
+ """
+ Return the string representation of an array.
+
+ Parameters
+ ----------
+ arr : ndarray
+ Input array.
+ max_line_width : int, optional
+ Inserts newlines if text is longer than `max_line_width`.
+ Defaults to ``numpy.get_printoptions()['linewidth']``.
+ precision : int, optional
+ Floating point precision.
+ Defaults to ``numpy.get_printoptions()['precision']``.
+ suppress_small : bool, optional
+ Represent numbers "very close" to zero as zero; default is False.
+ Very close is defined by precision: if the precision is 8, e.g.,
+ numbers smaller (in absolute value) than 5e-9 are represented as
+ zero.
+ Defaults to ``numpy.get_printoptions()['suppress']``.
+
+ Returns
+ -------
+ string : str
+ The string representation of an array.
+
+ See Also
+ --------
+ array_str, array2string, set_printoptions
+
+ Examples
+ --------
+ >>> import numpy as np
+ >>> np.array_repr(np.array([1,2]))
+ 'array([1, 2])'
+ >>> np.array_repr(np.ma.array([0.]))
+ 'MaskedArray([0.])'
+ >>> np.array_repr(np.array([], np.int32))
+ 'array([], dtype=int32)'
+
+ >>> x = np.array([1e-6, 4e-7, 2, 3])
+ >>> np.array_repr(x, precision=6, suppress_small=True)
+ 'array([0.000001, 0. , 2. , 3. ])'
+
+ """
+ return _array_repr_implementation(
+ arr, max_line_width, precision, suppress_small)
+
+
+@_recursive_guard()
+def _guarded_repr_or_str(v):
+ if isinstance(v, bytes):
+ return repr(v)
+ return str(v)
+
+
+def _array_str_implementation(
+ a, max_line_width=None, precision=None, suppress_small=None,
+ array2string=array2string):
+ """Internal version of array_str() that allows overriding array2string."""
+ if (format_options.get()['legacy'] <= 113 and
+ a.shape == () and not a.dtype.names):
+ return str(a.item())
+
+ # the str of 0d arrays is a special case: It should appear like a scalar,
+ # so floats are not truncated by `precision`, and strings are not wrapped
+ # in quotes. So we return the str of the scalar value.
+ if a.shape == ():
+ # obtain a scalar and call str on it, avoiding problems for subclasses
+ # for which indexing with () returns a 0d instead of a scalar by using
+ # ndarray's getindex. Also guard against recursive 0d object arrays.
+ return _guarded_repr_or_str(np.ndarray.__getitem__(a, ()))
+
+ return array2string(a, max_line_width, precision, suppress_small, ' ', "")
+
+
+def _array_str_dispatcher(
+ a, max_line_width=None, precision=None, suppress_small=None):
+ return (a,)
+
+
+@array_function_dispatch(_array_str_dispatcher, module='numpy')
+def array_str(a, max_line_width=None, precision=None, suppress_small=None):
+ """
+ Return a string representation of the data in an array.
+
+ The data in the array is returned as a single string. This function is
+ similar to `array_repr`, the difference being that `array_repr` also
+ returns information on the kind of array and its data type.
+
+ Parameters
+ ----------
+ a : ndarray
+ Input array.
+ max_line_width : int, optional
+ Inserts newlines if text is longer than `max_line_width`.
+ Defaults to ``numpy.get_printoptions()['linewidth']``.
+ precision : int, optional
+ Floating point precision.
+ Defaults to ``numpy.get_printoptions()['precision']``.
+ suppress_small : bool, optional
+ Represent numbers "very close" to zero as zero; default is False.
+ Very close is defined by precision: if the precision is 8, e.g.,
+ numbers smaller (in absolute value) than 5e-9 are represented as
+ zero.
+ Defaults to ``numpy.get_printoptions()['suppress']``.
+
+ See Also
+ --------
+ array2string, array_repr, set_printoptions
+
+ Examples
+ --------
+ >>> import numpy as np
+ >>> np.array_str(np.arange(3))
+ '[0 1 2]'
+
+ """
+ return _array_str_implementation(
+ a, max_line_width, precision, suppress_small)
+
+
+# needed if __array_function__ is disabled
+_array2string_impl = getattr(array2string, '__wrapped__', array2string)
+_default_array_str = functools.partial(_array_str_implementation,
+ array2string=_array2string_impl)
+_default_array_repr = functools.partial(_array_repr_implementation,
+ array2string=_array2string_impl)
diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/arrayprint.pyi b/.venv/lib/python3.12/site-packages/numpy/_core/arrayprint.pyi
new file mode 100644
index 0000000..fec03a6
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/_core/arrayprint.pyi
@@ -0,0 +1,238 @@
+from collections.abc import Callable
+
+# Using a private class is by no means ideal, but it is simply a consequence
+# of a `contextlib.context` returning an instance of aforementioned class
+from contextlib import _GeneratorContextManager
+from typing import (
+ Any,
+ Final,
+ Literal,
+ SupportsIndex,
+ TypeAlias,
+ TypedDict,
+ overload,
+ type_check_only,
+)
+
+from typing_extensions import deprecated
+
+import numpy as np
+from numpy._globals import _NoValueType
+from numpy._typing import NDArray, _CharLike_co, _FloatLike_co
+
+__all__ = [
+ "array2string",
+ "array_repr",
+ "array_str",
+ "format_float_positional",
+ "format_float_scientific",
+ "get_printoptions",
+ "printoptions",
+ "set_printoptions",
+]
+
+###
+
+_FloatMode: TypeAlias = Literal["fixed", "unique", "maxprec", "maxprec_equal"]
+_LegacyNoStyle: TypeAlias = Literal["1.21", "1.25", "2.1", False]
+_Legacy: TypeAlias = Literal["1.13", _LegacyNoStyle]
+_Sign: TypeAlias = Literal["-", "+", " "]
+_Trim: TypeAlias = Literal["k", ".", "0", "-"]
+_ReprFunc: TypeAlias = Callable[[NDArray[Any]], str]
+
+@type_check_only
+class _FormatDict(TypedDict, total=False):
+ bool: Callable[[np.bool], str]
+ int: Callable[[np.integer], str]
+ timedelta: Callable[[np.timedelta64], str]
+ datetime: Callable[[np.datetime64], str]
+ float: Callable[[np.floating], str]
+ longfloat: Callable[[np.longdouble], str]
+ complexfloat: Callable[[np.complexfloating], str]
+ longcomplexfloat: Callable[[np.clongdouble], str]
+ void: Callable[[np.void], str]
+ numpystr: Callable[[_CharLike_co], str]
+ object: Callable[[object], str]
+ all: Callable[[object], str]
+ int_kind: Callable[[np.integer], str]
+ float_kind: Callable[[np.floating], str]
+ complex_kind: Callable[[np.complexfloating], str]
+ str_kind: Callable[[_CharLike_co], str]
+
+@type_check_only
+class _FormatOptions(TypedDict):
+ precision: int
+ threshold: int
+ edgeitems: int
+ linewidth: int
+ suppress: bool
+ nanstr: str
+ infstr: str
+ formatter: _FormatDict | None
+ sign: _Sign
+ floatmode: _FloatMode
+ legacy: _Legacy
+
+###
+
+__docformat__: Final = "restructuredtext" # undocumented
+
+def set_printoptions(
+ precision: SupportsIndex | None = ...,
+ threshold: int | None = ...,
+ edgeitems: int | None = ...,
+ linewidth: int | None = ...,
+ suppress: bool | None = ...,
+ nanstr: str | None = ...,
+ infstr: str | None = ...,
+ formatter: _FormatDict | None = ...,
+ sign: _Sign | None = None,
+ floatmode: _FloatMode | None = None,
+ *,
+ legacy: _Legacy | None = None,
+ override_repr: _ReprFunc | None = None,
+) -> None: ...
+def get_printoptions() -> _FormatOptions: ...
+
+# public numpy export
+@overload # no style
+def array2string(
+ a: NDArray[Any],
+ max_line_width: int | None = None,
+ precision: SupportsIndex | None = None,
+ suppress_small: bool | None = None,
+ separator: str = " ",
+ prefix: str = "",
+ style: _NoValueType = ...,
+ formatter: _FormatDict | None = None,
+ threshold: int | None = None,
+ edgeitems: int | None = None,
+ sign: _Sign | None = None,
+ floatmode: _FloatMode | None = None,
+ suffix: str = "",
+ *,
+ legacy: _Legacy | None = None,
+) -> str: ...
+@overload # style=<given> (positional), legacy="1.13"
+def array2string(
+ a: NDArray[Any],
+ max_line_width: int | None,
+ precision: SupportsIndex | None,
+ suppress_small: bool | None,
+ separator: str,
+ prefix: str,
+ style: _ReprFunc,
+ formatter: _FormatDict | None = None,
+ threshold: int | None = None,
+ edgeitems: int | None = None,
+ sign: _Sign | None = None,
+ floatmode: _FloatMode | None = None,
+ suffix: str = "",
+ *,
+ legacy: Literal["1.13"],
+) -> str: ...
+@overload # style=<given> (keyword), legacy="1.13"
+def array2string(
+ a: NDArray[Any],
+ max_line_width: int | None = None,
+ precision: SupportsIndex | None = None,
+ suppress_small: bool | None = None,
+ separator: str = " ",
+ prefix: str = "",
+ *,
+ style: _ReprFunc,
+ formatter: _FormatDict | None = None,
+ threshold: int | None = None,
+ edgeitems: int | None = None,
+ sign: _Sign | None = None,
+ floatmode: _FloatMode | None = None,
+ suffix: str = "",
+ legacy: Literal["1.13"],
+) -> str: ...
+@overload # style=<given> (positional), legacy!="1.13"
+@deprecated("'style' argument is deprecated and no longer functional except in 1.13 'legacy' mode")
+def array2string(
+ a: NDArray[Any],
+ max_line_width: int | None,
+ precision: SupportsIndex | None,
+ suppress_small: bool | None,
+ separator: str,
+ prefix: str,
+ style: _ReprFunc,
+ formatter: _FormatDict | None = None,
+ threshold: int | None = None,
+ edgeitems: int | None = None,
+ sign: _Sign | None = None,
+ floatmode: _FloatMode | None = None,
+ suffix: str = "",
+ *,
+ legacy: _LegacyNoStyle | None = None,
+) -> str: ...
+@overload # style=<given> (keyword), legacy="1.13"
+@deprecated("'style' argument is deprecated and no longer functional except in 1.13 'legacy' mode")
+def array2string(
+ a: NDArray[Any],
+ max_line_width: int | None = None,
+ precision: SupportsIndex | None = None,
+ suppress_small: bool | None = None,
+ separator: str = " ",
+ prefix: str = "",
+ *,
+ style: _ReprFunc,
+ formatter: _FormatDict | None = None,
+ threshold: int | None = None,
+ edgeitems: int | None = None,
+ sign: _Sign | None = None,
+ floatmode: _FloatMode | None = None,
+ suffix: str = "",
+ legacy: _LegacyNoStyle | None = None,
+) -> str: ...
+
+def format_float_scientific(
+ x: _FloatLike_co,
+ precision: int | None = ...,
+ unique: bool = ...,
+ trim: _Trim = "k",
+ sign: bool = ...,
+ pad_left: int | None = ...,
+ exp_digits: int | None = ...,
+ min_digits: int | None = ...,
+) -> str: ...
+def format_float_positional(
+ x: _FloatLike_co,
+ precision: int | None = ...,
+ unique: bool = ...,
+ fractional: bool = ...,
+ trim: _Trim = "k",
+ sign: bool = ...,
+ pad_left: int | None = ...,
+ pad_right: int | None = ...,
+ min_digits: int | None = ...,
+) -> str: ...
+def array_repr(
+ arr: NDArray[Any],
+ max_line_width: int | None = ...,
+ precision: SupportsIndex | None = ...,
+ suppress_small: bool | None = ...,
+) -> str: ...
+def array_str(
+ a: NDArray[Any],
+ max_line_width: int | None = ...,
+ precision: SupportsIndex | None = ...,
+ suppress_small: bool | None = ...,
+) -> str: ...
+def printoptions(
+ precision: SupportsIndex | None = ...,
+ threshold: int | None = ...,
+ edgeitems: int | None = ...,
+ linewidth: int | None = ...,
+ suppress: bool | None = ...,
+ nanstr: str | None = ...,
+ infstr: str | None = ...,
+ formatter: _FormatDict | None = ...,
+ sign: _Sign | None = None,
+ floatmode: _FloatMode | None = None,
+ *,
+ legacy: _Legacy | None = None,
+ override_repr: _ReprFunc | None = None,
+) -> _GeneratorContextManager[_FormatOptions]: ...
diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/cversions.py b/.venv/lib/python3.12/site-packages/numpy/_core/cversions.py
new file mode 100644
index 0000000..00159c3
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/_core/cversions.py
@@ -0,0 +1,13 @@
+"""Simple script to compute the api hash of the current API.
+
+The API has is defined by numpy_api_order and ufunc_api_order.
+
+"""
+from os.path import dirname
+
+from code_generators.genapi import fullapi_hash
+from code_generators.numpy_api import full_api
+
+if __name__ == '__main__':
+ curdir = dirname(__file__)
+ print(fullapi_hash(full_api))
diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/defchararray.py b/.venv/lib/python3.12/site-packages/numpy/_core/defchararray.py
new file mode 100644
index 0000000..bde8921
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/_core/defchararray.py
@@ -0,0 +1,1427 @@
+"""
+This module contains a set of functions for vectorized string
+operations and methods.
+
+.. note::
+ The `chararray` class exists for backwards compatibility with
+ Numarray, it is not recommended for new development. Starting from numpy
+ 1.4, if one needs arrays of strings, it is recommended to use arrays of
+ `dtype` `object_`, `bytes_` or `str_`, and use the free functions
+ in the `numpy.char` module for fast vectorized string operations.
+
+Some methods will only be available if the corresponding string method is
+available in your version of Python.
+
+The preferred alias for `defchararray` is `numpy.char`.
+
+"""
+import functools
+
+import numpy as np
+from numpy._core import overrides
+from numpy._core.multiarray import compare_chararrays
+from numpy._core.strings import (
+ _join as join,
+)
+from numpy._core.strings import (
+ _rsplit as rsplit,
+)
+from numpy._core.strings import (
+ _split as split,
+)
+from numpy._core.strings import (
+ _splitlines as splitlines,
+)
+from numpy._utils import set_module
+from numpy.strings import *
+from numpy.strings import (
+ multiply as strings_multiply,
+)
+from numpy.strings import (
+ partition as strings_partition,
+)
+from numpy.strings import (
+ rpartition as strings_rpartition,
+)
+
+from .numeric import array as narray
+from .numeric import asarray as asnarray
+from .numeric import ndarray
+from .numerictypes import bytes_, character, str_
+
+__all__ = [
+ 'equal', 'not_equal', 'greater_equal', 'less_equal',
+ 'greater', 'less', 'str_len', 'add', 'multiply', 'mod', 'capitalize',
+ 'center', 'count', 'decode', 'encode', 'endswith', 'expandtabs',
+ 'find', 'index', 'isalnum', 'isalpha', 'isdigit', 'islower', 'isspace',
+ 'istitle', 'isupper', 'join', 'ljust', 'lower', 'lstrip', 'partition',
+ 'replace', 'rfind', 'rindex', 'rjust', 'rpartition', 'rsplit',
+ 'rstrip', 'split', 'splitlines', 'startswith', 'strip', 'swapcase',
+ 'title', 'translate', 'upper', 'zfill', 'isnumeric', 'isdecimal',
+ 'array', 'asarray', 'compare_chararrays', 'chararray'
+ ]
+
+
+array_function_dispatch = functools.partial(
+ overrides.array_function_dispatch, module='numpy.char')
+
+
+def _binary_op_dispatcher(x1, x2):
+ return (x1, x2)
+
+
+@array_function_dispatch(_binary_op_dispatcher)
+def equal(x1, x2):
+ """
+ Return (x1 == x2) element-wise.
+
+ Unlike `numpy.equal`, this comparison is performed by first
+ stripping whitespace characters from the end of the string. This
+ behavior is provided for backward-compatibility with numarray.
+
+ Parameters
+ ----------
+ x1, x2 : array_like of str or unicode
+ Input arrays of the same shape.
+
+ Returns
+ -------
+ out : ndarray
+ Output array of bools.
+
+ Examples
+ --------
+ >>> import numpy as np
+ >>> y = "aa "
+ >>> x = "aa"
+ >>> np.char.equal(x, y)
+ array(True)
+
+ See Also
+ --------
+ not_equal, greater_equal, less_equal, greater, less
+ """
+ return compare_chararrays(x1, x2, '==', True)
+
+
+@array_function_dispatch(_binary_op_dispatcher)
+def not_equal(x1, x2):
+ """
+ Return (x1 != x2) element-wise.
+
+ Unlike `numpy.not_equal`, this comparison is performed by first
+ stripping whitespace characters from the end of the string. This
+ behavior is provided for backward-compatibility with numarray.
+
+ Parameters
+ ----------
+ x1, x2 : array_like of str or unicode
+ Input arrays of the same shape.
+
+ Returns
+ -------
+ out : ndarray
+ Output array of bools.
+
+ See Also
+ --------
+ equal, greater_equal, less_equal, greater, less
+
+ Examples
+ --------
+ >>> import numpy as np
+ >>> x1 = np.array(['a', 'b', 'c'])
+ >>> np.char.not_equal(x1, 'b')
+ array([ True, False, True])
+
+ """
+ return compare_chararrays(x1, x2, '!=', True)
+
+
+@array_function_dispatch(_binary_op_dispatcher)
+def greater_equal(x1, x2):
+ """
+ Return (x1 >= x2) element-wise.
+
+ Unlike `numpy.greater_equal`, this comparison is performed by
+ first stripping whitespace characters from the end of the string.
+ This behavior is provided for backward-compatibility with
+ numarray.
+
+ Parameters
+ ----------
+ x1, x2 : array_like of str or unicode
+ Input arrays of the same shape.
+
+ Returns
+ -------
+ out : ndarray
+ Output array of bools.
+
+ See Also
+ --------
+ equal, not_equal, less_equal, greater, less
+
+ Examples
+ --------
+ >>> import numpy as np
+ >>> x1 = np.array(['a', 'b', 'c'])
+ >>> np.char.greater_equal(x1, 'b')
+ array([False, True, True])
+
+ """
+ return compare_chararrays(x1, x2, '>=', True)
+
+
+@array_function_dispatch(_binary_op_dispatcher)
+def less_equal(x1, x2):
+ """
+ Return (x1 <= x2) element-wise.
+
+ Unlike `numpy.less_equal`, this comparison is performed by first
+ stripping whitespace characters from the end of the string. This
+ behavior is provided for backward-compatibility with numarray.
+
+ Parameters
+ ----------
+ x1, x2 : array_like of str or unicode
+ Input arrays of the same shape.
+
+ Returns
+ -------
+ out : ndarray
+ Output array of bools.
+
+ See Also
+ --------
+ equal, not_equal, greater_equal, greater, less
+
+ Examples
+ --------
+ >>> import numpy as np
+ >>> x1 = np.array(['a', 'b', 'c'])
+ >>> np.char.less_equal(x1, 'b')
+ array([ True, True, False])
+
+ """
+ return compare_chararrays(x1, x2, '<=', True)
+
+
+@array_function_dispatch(_binary_op_dispatcher)
+def greater(x1, x2):
+ """
+ Return (x1 > x2) element-wise.
+
+ Unlike `numpy.greater`, this comparison is performed by first
+ stripping whitespace characters from the end of the string. This
+ behavior is provided for backward-compatibility with numarray.
+
+ Parameters
+ ----------
+ x1, x2 : array_like of str or unicode
+ Input arrays of the same shape.
+
+ Returns
+ -------
+ out : ndarray
+ Output array of bools.
+
+ See Also
+ --------
+ equal, not_equal, greater_equal, less_equal, less
+
+ Examples
+ --------
+ >>> import numpy as np
+ >>> x1 = np.array(['a', 'b', 'c'])
+ >>> np.char.greater(x1, 'b')
+ array([False, False, True])
+
+ """
+ return compare_chararrays(x1, x2, '>', True)
+
+
+@array_function_dispatch(_binary_op_dispatcher)
+def less(x1, x2):
+ """
+ Return (x1 < x2) element-wise.
+
+ Unlike `numpy.greater`, this comparison is performed by first
+ stripping whitespace characters from the end of the string. This
+ behavior is provided for backward-compatibility with numarray.
+
+ Parameters
+ ----------
+ x1, x2 : array_like of str or unicode
+ Input arrays of the same shape.
+
+ Returns
+ -------
+ out : ndarray
+ Output array of bools.
+
+ See Also
+ --------
+ equal, not_equal, greater_equal, less_equal, greater
+
+ Examples
+ --------
+ >>> import numpy as np
+ >>> x1 = np.array(['a', 'b', 'c'])
+ >>> np.char.less(x1, 'b')
+ array([True, False, False])
+
+ """
+ return compare_chararrays(x1, x2, '<', True)
+
+
+@set_module("numpy.char")
+def multiply(a, i):
+ """
+ Return (a * i), that is string multiple concatenation,
+ element-wise.
+
+ Values in ``i`` of less than 0 are treated as 0 (which yields an
+ empty string).
+
+ Parameters
+ ----------
+ a : array_like, with `np.bytes_` or `np.str_` dtype
+
+ i : array_like, with any integer dtype
+
+ Returns
+ -------
+ out : ndarray
+ Output array of str or unicode, depending on input types
+
+ Notes
+ -----
+ This is a thin wrapper around np.strings.multiply that raises
+ `ValueError` when ``i`` is not an integer. It only
+ exists for backwards-compatibility.
+
+ Examples
+ --------
+ >>> import numpy as np
+ >>> a = np.array(["a", "b", "c"])
+ >>> np.strings.multiply(a, 3)
+ array(['aaa', 'bbb', 'ccc'], dtype='<U3')
+ >>> i = np.array([1, 2, 3])
+ >>> np.strings.multiply(a, i)
+ array(['a', 'bb', 'ccc'], dtype='<U3')
+ >>> np.strings.multiply(np.array(['a']), i)
+ array(['a', 'aa', 'aaa'], dtype='<U3')
+ >>> a = np.array(['a', 'b', 'c', 'd', 'e', 'f']).reshape((2, 3))
+ >>> np.strings.multiply(a, 3)
+ array([['aaa', 'bbb', 'ccc'],
+ ['ddd', 'eee', 'fff']], dtype='<U3')
+ >>> np.strings.multiply(a, i)
+ array([['a', 'bb', 'ccc'],
+ ['d', 'ee', 'fff']], dtype='<U3')
+
+ """
+ try:
+ return strings_multiply(a, i)
+ except TypeError:
+ raise ValueError("Can only multiply by integers")
+
+
+@set_module("numpy.char")
+def partition(a, sep):
+ """
+ Partition each element in `a` around `sep`.
+
+ Calls :meth:`str.partition` element-wise.
+
+ For each element in `a`, split the element as the first
+ occurrence of `sep`, and return 3 strings containing the part
+ before the separator, the separator itself, and the part after
+ the separator. If the separator is not found, return 3 strings
+ containing the string itself, followed by two empty strings.
+
+ Parameters
+ ----------
+ a : array-like, with ``StringDType``, ``bytes_``, or ``str_`` dtype
+ Input array
+ sep : {str, unicode}
+ Separator to split each string element in `a`.
+
+ Returns
+ -------
+ out : ndarray
+ Output array of ``StringDType``, ``bytes_`` or ``str_`` dtype,
+ depending on input types. The output array will have an extra
+ dimension with 3 elements per input element.
+
+ Examples
+ --------
+ >>> import numpy as np
+ >>> x = np.array(["Numpy is nice!"])
+ >>> np.char.partition(x, " ")
+ array([['Numpy', ' ', 'is nice!']], dtype='<U8')
+
+ See Also
+ --------
+ str.partition
+
+ """
+ return np.stack(strings_partition(a, sep), axis=-1)
+
+
+@set_module("numpy.char")
+def rpartition(a, sep):
+ """
+ Partition (split) each element around the right-most separator.
+
+ Calls :meth:`str.rpartition` element-wise.
+
+ For each element in `a`, split the element as the last
+ occurrence of `sep`, and return 3 strings containing the part
+ before the separator, the separator itself, and the part after
+ the separator. If the separator is not found, return 3 strings
+ containing the string itself, followed by two empty strings.
+
+ Parameters
+ ----------
+ a : array-like, with ``StringDType``, ``bytes_``, or ``str_`` dtype
+ Input array
+ sep : str or unicode
+ Right-most separator to split each element in array.
+
+ Returns
+ -------
+ out : ndarray
+ Output array of ``StringDType``, ``bytes_`` or ``str_`` dtype,
+ depending on input types. The output array will have an extra
+ dimension with 3 elements per input element.
+
+ See Also
+ --------
+ str.rpartition
+
+ Examples
+ --------
+ >>> import numpy as np
+ >>> a = np.array(['aAaAaA', ' aA ', 'abBABba'])
+ >>> np.char.rpartition(a, 'A')
+ array([['aAaAa', 'A', ''],
+ [' a', 'A', ' '],
+ ['abB', 'A', 'Bba']], dtype='<U5')
+
+ """
+ return np.stack(strings_rpartition(a, sep), axis=-1)
+
+
+@set_module("numpy.char")
+class chararray(ndarray):
+ """
+ chararray(shape, itemsize=1, unicode=False, buffer=None, offset=0,
+ strides=None, order=None)
+
+ Provides a convenient view on arrays of string and unicode values.
+
+ .. note::
+ The `chararray` class exists for backwards compatibility with
+ Numarray, it is not recommended for new development. Starting from numpy
+ 1.4, if one needs arrays of strings, it is recommended to use arrays of
+ `dtype` `~numpy.object_`, `~numpy.bytes_` or `~numpy.str_`, and use
+ the free functions in the `numpy.char` module for fast vectorized
+ string operations.
+
+ Versus a NumPy array of dtype `~numpy.bytes_` or `~numpy.str_`, this
+ class adds the following functionality:
+
+ 1) values automatically have whitespace removed from the end
+ when indexed
+
+ 2) comparison operators automatically remove whitespace from the
+ end when comparing values
+
+ 3) vectorized string operations are provided as methods
+ (e.g. `.endswith`) and infix operators (e.g. ``"+", "*", "%"``)
+
+ chararrays should be created using `numpy.char.array` or
+ `numpy.char.asarray`, rather than this constructor directly.
+
+ This constructor creates the array, using `buffer` (with `offset`
+ and `strides`) if it is not ``None``. If `buffer` is ``None``, then
+ constructs a new array with `strides` in "C order", unless both
+ ``len(shape) >= 2`` and ``order='F'``, in which case `strides`
+ is in "Fortran order".
+
+ Methods
+ -------
+ astype
+ argsort
+ copy
+ count
+ decode
+ dump
+ dumps
+ encode
+ endswith
+ expandtabs
+ fill
+ find
+ flatten
+ getfield
+ index
+ isalnum
+ isalpha
+ isdecimal
+ isdigit
+ islower
+ isnumeric
+ isspace
+ istitle
+ isupper
+ item
+ join
+ ljust
+ lower
+ lstrip
+ nonzero
+ put
+ ravel
+ repeat
+ replace
+ reshape
+ resize
+ rfind
+ rindex
+ rjust
+ rsplit
+ rstrip
+ searchsorted
+ setfield
+ setflags
+ sort
+ split
+ splitlines
+ squeeze
+ startswith
+ strip
+ swapaxes
+ swapcase
+ take
+ title
+ tofile
+ tolist
+ tostring
+ translate
+ transpose
+ upper
+ view
+ zfill
+
+ Parameters
+ ----------
+ shape : tuple
+ Shape of the array.
+ itemsize : int, optional
+ Length of each array element, in number of characters. Default is 1.
+ unicode : bool, optional
+ Are the array elements of type unicode (True) or string (False).
+ Default is False.
+ buffer : object exposing the buffer interface or str, optional
+ Memory address of the start of the array data. Default is None,
+ in which case a new array is created.
+ offset : int, optional
+ Fixed stride displacement from the beginning of an axis?
+ Default is 0. Needs to be >=0.
+ strides : array_like of ints, optional
+ Strides for the array (see `~numpy.ndarray.strides` for
+ full description). Default is None.
+ order : {'C', 'F'}, optional
+ The order in which the array data is stored in memory: 'C' ->
+ "row major" order (the default), 'F' -> "column major"
+ (Fortran) order.
+
+ Examples
+ --------
+ >>> import numpy as np
+ >>> charar = np.char.chararray((3, 3))
+ >>> charar[:] = 'a'
+ >>> charar
+ chararray([[b'a', b'a', b'a'],
+ [b'a', b'a', b'a'],
+ [b'a', b'a', b'a']], dtype='|S1')
+
+ >>> charar = np.char.chararray(charar.shape, itemsize=5)
+ >>> charar[:] = 'abc'
+ >>> charar
+ chararray([[b'abc', b'abc', b'abc'],
+ [b'abc', b'abc', b'abc'],
+ [b'abc', b'abc', b'abc']], dtype='|S5')
+
+ """
+ def __new__(subtype, shape, itemsize=1, unicode=False, buffer=None,
+ offset=0, strides=None, order='C'):
+ if unicode:
+ dtype = str_
+ else:
+ dtype = bytes_
+
+ # force itemsize to be a Python int, since using NumPy integer
+ # types results in itemsize.itemsize being used as the size of
+ # strings in the new array.
+ itemsize = int(itemsize)
+
+ if isinstance(buffer, str):
+ # unicode objects do not have the buffer interface
+ filler = buffer
+ buffer = None
+ else:
+ filler = None
+
+ if buffer is None:
+ self = ndarray.__new__(subtype, shape, (dtype, itemsize),
+ order=order)
+ else:
+ self = ndarray.__new__(subtype, shape, (dtype, itemsize),
+ buffer=buffer,
+ offset=offset, strides=strides,
+ order=order)
+ if filler is not None:
+ self[...] = filler
+
+ return self
+
+ def __array_wrap__(self, arr, context=None, return_scalar=False):
+ # When calling a ufunc (and some other functions), we return a
+ # chararray if the ufunc output is a string-like array,
+ # or an ndarray otherwise
+ if arr.dtype.char in "SUbc":
+ return arr.view(type(self))
+ return arr
+
+ def __array_finalize__(self, obj):
+ # The b is a special case because it is used for reconstructing.
+ if self.dtype.char not in 'VSUbc':
+ raise ValueError("Can only create a chararray from string data.")
+
+ def __getitem__(self, obj):
+ val = ndarray.__getitem__(self, obj)
+ if isinstance(val, character):
+ return val.rstrip()
+ return val
+
+ # IMPLEMENTATION NOTE: Most of the methods of this class are
+ # direct delegations to the free functions in this module.
+ # However, those that return an array of strings should instead
+ # return a chararray, so some extra wrapping is required.
+
+ def __eq__(self, other):
+ """
+ Return (self == other) element-wise.
+
+ See Also
+ --------
+ equal
+ """
+ return equal(self, other)
+
+ def __ne__(self, other):
+ """
+ Return (self != other) element-wise.
+
+ See Also
+ --------
+ not_equal
+ """
+ return not_equal(self, other)
+
+ def __ge__(self, other):
+ """
+ Return (self >= other) element-wise.
+
+ See Also
+ --------
+ greater_equal
+ """
+ return greater_equal(self, other)
+
+ def __le__(self, other):
+ """
+ Return (self <= other) element-wise.
+
+ See Also
+ --------
+ less_equal
+ """
+ return less_equal(self, other)
+
+ def __gt__(self, other):
+ """
+ Return (self > other) element-wise.
+
+ See Also
+ --------
+ greater
+ """
+ return greater(self, other)
+
+ def __lt__(self, other):
+ """
+ Return (self < other) element-wise.
+
+ See Also
+ --------
+ less
+ """
+ return less(self, other)
+
+ def __add__(self, other):
+ """
+ Return (self + other), that is string concatenation,
+ element-wise for a pair of array_likes of str or unicode.
+
+ See Also
+ --------
+ add
+ """
+ return add(self, other)
+
+ def __radd__(self, other):
+ """
+ Return (other + self), that is string concatenation,
+ element-wise for a pair of array_likes of `bytes_` or `str_`.
+
+ See Also
+ --------
+ add
+ """
+ return add(other, self)
+
+ def __mul__(self, i):
+ """
+ Return (self * i), that is string multiple concatenation,
+ element-wise.
+
+ See Also
+ --------
+ multiply
+ """
+ return asarray(multiply(self, i))
+
+ def __rmul__(self, i):
+ """
+ Return (self * i), that is string multiple concatenation,
+ element-wise.
+
+ See Also
+ --------
+ multiply
+ """
+ return asarray(multiply(self, i))
+
+ def __mod__(self, i):
+ """
+ Return (self % i), that is pre-Python 2.6 string formatting
+ (interpolation), element-wise for a pair of array_likes of `bytes_`
+ or `str_`.
+
+ See Also
+ --------
+ mod
+ """
+ return asarray(mod(self, i))
+
+ def __rmod__(self, other):
+ return NotImplemented
+
+ def argsort(self, axis=-1, kind=None, order=None):
+ """
+ Return the indices that sort the array lexicographically.
+
+ For full documentation see `numpy.argsort`, for which this method is
+ in fact merely a "thin wrapper."
+
+ Examples
+ --------
+ >>> c = np.array(['a1b c', '1b ca', 'b ca1', 'Ca1b'], 'S5')
+ >>> c = c.view(np.char.chararray); c
+ chararray(['a1b c', '1b ca', 'b ca1', 'Ca1b'],
+ dtype='|S5')
+ >>> c[c.argsort()]
+ chararray(['1b ca', 'Ca1b', 'a1b c', 'b ca1'],
+ dtype='|S5')
+
+ """
+ return self.__array__().argsort(axis, kind, order)
+ argsort.__doc__ = ndarray.argsort.__doc__
+
+ def capitalize(self):
+ """
+ Return a copy of `self` with only the first character of each element
+ capitalized.
+
+ See Also
+ --------
+ char.capitalize
+
+ """
+ return asarray(capitalize(self))
+
+ def center(self, width, fillchar=' '):
+ """
+ Return a copy of `self` with its elements centered in a
+ string of length `width`.
+
+ See Also
+ --------
+ center
+ """
+ return asarray(center(self, width, fillchar))
+
+ def count(self, sub, start=0, end=None):
+ """
+ Returns an array with the number of non-overlapping occurrences of
+ substring `sub` in the range [`start`, `end`].
+
+ See Also
+ --------
+ char.count
+
+ """
+ return count(self, sub, start, end)
+
+ def decode(self, encoding=None, errors=None):
+ """
+ Calls ``bytes.decode`` element-wise.
+
+ See Also
+ --------
+ char.decode
+
+ """
+ return decode(self, encoding, errors)
+
+ def encode(self, encoding=None, errors=None):
+ """
+ Calls :meth:`str.encode` element-wise.
+
+ See Also
+ --------
+ char.encode
+
+ """
+ return encode(self, encoding, errors)
+
+ def endswith(self, suffix, start=0, end=None):
+ """
+ Returns a boolean array which is `True` where the string element
+ in `self` ends with `suffix`, otherwise `False`.
+
+ See Also
+ --------
+ char.endswith
+
+ """
+ return endswith(self, suffix, start, end)
+
+ def expandtabs(self, tabsize=8):
+ """
+ Return a copy of each string element where all tab characters are
+ replaced by one or more spaces.
+
+ See Also
+ --------
+ char.expandtabs
+
+ """
+ return asarray(expandtabs(self, tabsize))
+
+ def find(self, sub, start=0, end=None):
+ """
+ For each element, return the lowest index in the string where
+ substring `sub` is found.
+
+ See Also
+ --------
+ char.find
+
+ """
+ return find(self, sub, start, end)
+
+ def index(self, sub, start=0, end=None):
+ """
+ Like `find`, but raises :exc:`ValueError` when the substring is not
+ found.
+
+ See Also
+ --------
+ char.index
+
+ """
+ return index(self, sub, start, end)
+
+ def isalnum(self):
+ """
+ Returns true for each element if all characters in the string
+ are alphanumeric and there is at least one character, false
+ otherwise.
+
+ See Also
+ --------
+ char.isalnum
+
+ """
+ return isalnum(self)
+
+ def isalpha(self):
+ """
+ Returns true for each element if all characters in the string
+ are alphabetic and there is at least one character, false
+ otherwise.
+
+ See Also
+ --------
+ char.isalpha
+
+ """
+ return isalpha(self)
+
+ def isdigit(self):
+ """
+ Returns true for each element if all characters in the string are
+ digits and there is at least one character, false otherwise.
+
+ See Also
+ --------
+ char.isdigit
+
+ """
+ return isdigit(self)
+
+ def islower(self):
+ """
+ Returns true for each element if all cased characters in the
+ string are lowercase and there is at least one cased character,
+ false otherwise.
+
+ See Also
+ --------
+ char.islower
+
+ """
+ return islower(self)
+
+ def isspace(self):
+ """
+ Returns true for each element if there are only whitespace
+ characters in the string and there is at least one character,
+ false otherwise.
+
+ See Also
+ --------
+ char.isspace
+
+ """
+ return isspace(self)
+
+ def istitle(self):
+ """
+ Returns true for each element if the element is a titlecased
+ string and there is at least one character, false otherwise.
+
+ See Also
+ --------
+ char.istitle
+
+ """
+ return istitle(self)
+
+ def isupper(self):
+ """
+ Returns true for each element if all cased characters in the
+ string are uppercase and there is at least one character, false
+ otherwise.
+
+ See Also
+ --------
+ char.isupper
+
+ """
+ return isupper(self)
+
+ def join(self, seq):
+ """
+ Return a string which is the concatenation of the strings in the
+ sequence `seq`.
+
+ See Also
+ --------
+ char.join
+
+ """
+ return join(self, seq)
+
+ def ljust(self, width, fillchar=' '):
+ """
+ Return an array with the elements of `self` left-justified in a
+ string of length `width`.
+
+ See Also
+ --------
+ char.ljust
+
+ """
+ return asarray(ljust(self, width, fillchar))
+
+ def lower(self):
+ """
+ Return an array with the elements of `self` converted to
+ lowercase.
+
+ See Also
+ --------
+ char.lower
+
+ """
+ return asarray(lower(self))
+
+ def lstrip(self, chars=None):
+ """
+ For each element in `self`, return a copy with the leading characters
+ removed.
+
+ See Also
+ --------
+ char.lstrip
+
+ """
+ return lstrip(self, chars)
+
+ def partition(self, sep):
+ """
+ Partition each element in `self` around `sep`.
+
+ See Also
+ --------
+ partition
+ """
+ return asarray(partition(self, sep))
+
+ def replace(self, old, new, count=None):
+ """
+ For each element in `self`, return a copy of the string with all
+ occurrences of substring `old` replaced by `new`.
+
+ See Also
+ --------
+ char.replace
+
+ """
+ return replace(self, old, new, count if count is not None else -1)
+
+ def rfind(self, sub, start=0, end=None):
+ """
+ For each element in `self`, return the highest index in the string
+ where substring `sub` is found, such that `sub` is contained
+ within [`start`, `end`].
+
+ See Also
+ --------
+ char.rfind
+
+ """
+ return rfind(self, sub, start, end)
+
+ def rindex(self, sub, start=0, end=None):
+ """
+ Like `rfind`, but raises :exc:`ValueError` when the substring `sub` is
+ not found.
+
+ See Also
+ --------
+ char.rindex
+
+ """
+ return rindex(self, sub, start, end)
+
+ def rjust(self, width, fillchar=' '):
+ """
+ Return an array with the elements of `self`
+ right-justified in a string of length `width`.
+
+ See Also
+ --------
+ char.rjust
+
+ """
+ return asarray(rjust(self, width, fillchar))
+
+ def rpartition(self, sep):
+ """
+ Partition each element in `self` around `sep`.
+
+ See Also
+ --------
+ rpartition
+ """
+ return asarray(rpartition(self, sep))
+
+ def rsplit(self, sep=None, maxsplit=None):
+ """
+ For each element in `self`, return a list of the words in
+ the string, using `sep` as the delimiter string.
+
+ See Also
+ --------
+ char.rsplit
+
+ """
+ return rsplit(self, sep, maxsplit)
+
+ def rstrip(self, chars=None):
+ """
+ For each element in `self`, return a copy with the trailing
+ characters removed.
+
+ See Also
+ --------
+ char.rstrip
+
+ """
+ return rstrip(self, chars)
+
+ def split(self, sep=None, maxsplit=None):
+ """
+ For each element in `self`, return a list of the words in the
+ string, using `sep` as the delimiter string.
+
+ See Also
+ --------
+ char.split
+
+ """
+ return split(self, sep, maxsplit)
+
+ def splitlines(self, keepends=None):
+ """
+ For each element in `self`, return a list of the lines in the
+ element, breaking at line boundaries.
+
+ See Also
+ --------
+ char.splitlines
+
+ """
+ return splitlines(self, keepends)
+
+ def startswith(self, prefix, start=0, end=None):
+ """
+ Returns a boolean array which is `True` where the string element
+ in `self` starts with `prefix`, otherwise `False`.
+
+ See Also
+ --------
+ char.startswith
+
+ """
+ return startswith(self, prefix, start, end)
+
+ def strip(self, chars=None):
+ """
+ For each element in `self`, return a copy with the leading and
+ trailing characters removed.
+
+ See Also
+ --------
+ char.strip
+
+ """
+ return strip(self, chars)
+
+ def swapcase(self):
+ """
+ For each element in `self`, return a copy of the string with
+ uppercase characters converted to lowercase and vice versa.
+
+ See Also
+ --------
+ char.swapcase
+
+ """
+ return asarray(swapcase(self))
+
+ def title(self):
+ """
+ For each element in `self`, return a titlecased version of the
+ string: words start with uppercase characters, all remaining cased
+ characters are lowercase.
+
+ See Also
+ --------
+ char.title
+
+ """
+ return asarray(title(self))
+
+ def translate(self, table, deletechars=None):
+ """
+ For each element in `self`, return a copy of the string where
+ all characters occurring in the optional argument
+ `deletechars` are removed, and the remaining characters have
+ been mapped through the given translation table.
+
+ See Also
+ --------
+ char.translate
+
+ """
+ return asarray(translate(self, table, deletechars))
+
+ def upper(self):
+ """
+ Return an array with the elements of `self` converted to
+ uppercase.
+
+ See Also
+ --------
+ char.upper
+
+ """
+ return asarray(upper(self))
+
+ def zfill(self, width):
+ """
+ Return the numeric string left-filled with zeros in a string of
+ length `width`.
+
+ See Also
+ --------
+ char.zfill
+
+ """
+ return asarray(zfill(self, width))
+
+ def isnumeric(self):
+ """
+ For each element in `self`, return True if there are only
+ numeric characters in the element.
+
+ See Also
+ --------
+ char.isnumeric
+
+ """
+ return isnumeric(self)
+
+ def isdecimal(self):
+ """
+ For each element in `self`, return True if there are only
+ decimal characters in the element.
+
+ See Also
+ --------
+ char.isdecimal
+
+ """
+ return isdecimal(self)
+
+
+@set_module("numpy.char")
+def array(obj, itemsize=None, copy=True, unicode=None, order=None):
+ """
+ Create a `~numpy.char.chararray`.
+
+ .. note::
+ This class is provided for numarray backward-compatibility.
+ New code (not concerned with numarray compatibility) should use
+ arrays of type `bytes_` or `str_` and use the free functions
+ in :mod:`numpy.char` for fast vectorized string operations instead.
+
+ Versus a NumPy array of dtype `bytes_` or `str_`, this
+ class adds the following functionality:
+
+ 1) values automatically have whitespace removed from the end
+ when indexed
+
+ 2) comparison operators automatically remove whitespace from the
+ end when comparing values
+
+ 3) vectorized string operations are provided as methods
+ (e.g. `chararray.endswith <numpy.char.chararray.endswith>`)
+ and infix operators (e.g. ``+, *, %``)
+
+ Parameters
+ ----------
+ obj : array of str or unicode-like
+
+ itemsize : int, optional
+ `itemsize` is the number of characters per scalar in the
+ resulting array. If `itemsize` is None, and `obj` is an
+ object array or a Python list, the `itemsize` will be
+ automatically determined. If `itemsize` is provided and `obj`
+ is of type str or unicode, then the `obj` string will be
+ chunked into `itemsize` pieces.
+
+ copy : bool, optional
+ If true (default), then the object is copied. Otherwise, a copy
+ will only be made if ``__array__`` returns a copy, if obj is a
+ nested sequence, or if a copy is needed to satisfy any of the other
+ requirements (`itemsize`, unicode, `order`, etc.).
+
+ unicode : bool, optional
+ When true, the resulting `~numpy.char.chararray` can contain Unicode
+ characters, when false only 8-bit characters. If unicode is
+ None and `obj` is one of the following:
+
+ - a `~numpy.char.chararray`,
+ - an ndarray of type :class:`str_` or :class:`bytes_`
+ - a Python :class:`str` or :class:`bytes` object,
+
+ then the unicode setting of the output array will be
+ automatically determined.
+
+ order : {'C', 'F', 'A'}, optional
+ Specify the order of the array. If order is 'C' (default), then the
+ array will be in C-contiguous order (last-index varies the
+ fastest). If order is 'F', then the returned array
+ will be in Fortran-contiguous order (first-index varies the
+ fastest). If order is 'A', then the returned array may
+ be in any order (either C-, Fortran-contiguous, or even
+ discontiguous).
+
+ Examples
+ --------
+
+ >>> import numpy as np
+ >>> char_array = np.char.array(['hello', 'world', 'numpy','array'])
+ >>> char_array
+ chararray(['hello', 'world', 'numpy', 'array'], dtype='<U5')
+
+ """
+ if isinstance(obj, (bytes, str)):
+ if unicode is None:
+ if isinstance(obj, str):
+ unicode = True
+ else:
+ unicode = False
+
+ if itemsize is None:
+ itemsize = len(obj)
+ shape = len(obj) // itemsize
+
+ return chararray(shape, itemsize=itemsize, unicode=unicode,
+ buffer=obj, order=order)
+
+ if isinstance(obj, (list, tuple)):
+ obj = asnarray(obj)
+
+ if isinstance(obj, ndarray) and issubclass(obj.dtype.type, character):
+ # If we just have a vanilla chararray, create a chararray
+ # view around it.
+ if not isinstance(obj, chararray):
+ obj = obj.view(chararray)
+
+ if itemsize is None:
+ itemsize = obj.itemsize
+ # itemsize is in 8-bit chars, so for Unicode, we need
+ # to divide by the size of a single Unicode character,
+ # which for NumPy is always 4
+ if issubclass(obj.dtype.type, str_):
+ itemsize //= 4
+
+ if unicode is None:
+ if issubclass(obj.dtype.type, str_):
+ unicode = True
+ else:
+ unicode = False
+
+ if unicode:
+ dtype = str_
+ else:
+ dtype = bytes_
+
+ if order is not None:
+ obj = asnarray(obj, order=order)
+ if (copy or
+ (itemsize != obj.itemsize) or
+ (not unicode and isinstance(obj, str_)) or
+ (unicode and isinstance(obj, bytes_))):
+ obj = obj.astype((dtype, int(itemsize)))
+ return obj
+
+ if isinstance(obj, ndarray) and issubclass(obj.dtype.type, object):
+ if itemsize is None:
+ # Since no itemsize was specified, convert the input array to
+ # a list so the ndarray constructor will automatically
+ # determine the itemsize for us.
+ obj = obj.tolist()
+ # Fall through to the default case
+
+ if unicode:
+ dtype = str_
+ else:
+ dtype = bytes_
+
+ if itemsize is None:
+ val = narray(obj, dtype=dtype, order=order, subok=True)
+ else:
+ val = narray(obj, dtype=(dtype, itemsize), order=order, subok=True)
+ return val.view(chararray)
+
+
+@set_module("numpy.char")
+def asarray(obj, itemsize=None, unicode=None, order=None):
+ """
+ Convert the input to a `~numpy.char.chararray`, copying the data only if
+ necessary.
+
+ Versus a NumPy array of dtype `bytes_` or `str_`, this
+ class adds the following functionality:
+
+ 1) values automatically have whitespace removed from the end
+ when indexed
+
+ 2) comparison operators automatically remove whitespace from the
+ end when comparing values
+
+ 3) vectorized string operations are provided as methods
+ (e.g. `chararray.endswith <numpy.char.chararray.endswith>`)
+ and infix operators (e.g. ``+``, ``*``, ``%``)
+
+ Parameters
+ ----------
+ obj : array of str or unicode-like
+
+ itemsize : int, optional
+ `itemsize` is the number of characters per scalar in the
+ resulting array. If `itemsize` is None, and `obj` is an
+ object array or a Python list, the `itemsize` will be
+ automatically determined. If `itemsize` is provided and `obj`
+ is of type str or unicode, then the `obj` string will be
+ chunked into `itemsize` pieces.
+
+ unicode : bool, optional
+ When true, the resulting `~numpy.char.chararray` can contain Unicode
+ characters, when false only 8-bit characters. If unicode is
+ None and `obj` is one of the following:
+
+ - a `~numpy.char.chararray`,
+ - an ndarray of type `str_` or `unicode_`
+ - a Python str or unicode object,
+
+ then the unicode setting of the output array will be
+ automatically determined.
+
+ order : {'C', 'F'}, optional
+ Specify the order of the array. If order is 'C' (default), then the
+ array will be in C-contiguous order (last-index varies the
+ fastest). If order is 'F', then the returned array
+ will be in Fortran-contiguous order (first-index varies the
+ fastest).
+
+ Examples
+ --------
+ >>> import numpy as np
+ >>> np.char.asarray(['hello', 'world'])
+ chararray(['hello', 'world'], dtype='<U5')
+
+ """
+ return array(obj, itemsize, copy=False,
+ unicode=unicode, order=order)
diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/defchararray.pyi b/.venv/lib/python3.12/site-packages/numpy/_core/defchararray.pyi
new file mode 100644
index 0000000..2361fff
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/_core/defchararray.pyi
@@ -0,0 +1,1135 @@
+from typing import Any, Self, SupportsIndex, SupportsInt, TypeAlias, overload
+from typing import Literal as L
+
+from typing_extensions import TypeVar
+
+import numpy as np
+from numpy import (
+ _OrderKACF,
+ _SupportsBuffer,
+ bytes_,
+ dtype,
+ int_,
+ ndarray,
+ object_,
+ str_,
+)
+from numpy._core.multiarray import compare_chararrays
+from numpy._typing import NDArray, _AnyShape, _Shape, _ShapeLike, _SupportsArray
+from numpy._typing import _ArrayLikeAnyString_co as UST_co
+from numpy._typing import _ArrayLikeBool_co as b_co
+from numpy._typing import _ArrayLikeBytes_co as S_co
+from numpy._typing import _ArrayLikeInt_co as i_co
+from numpy._typing import _ArrayLikeStr_co as U_co
+from numpy._typing import _ArrayLikeString_co as T_co
+
+__all__ = [
+ "equal",
+ "not_equal",
+ "greater_equal",
+ "less_equal",
+ "greater",
+ "less",
+ "str_len",
+ "add",
+ "multiply",
+ "mod",
+ "capitalize",
+ "center",
+ "count",
+ "decode",
+ "encode",
+ "endswith",
+ "expandtabs",
+ "find",
+ "index",
+ "isalnum",
+ "isalpha",
+ "isdigit",
+ "islower",
+ "isspace",
+ "istitle",
+ "isupper",
+ "join",
+ "ljust",
+ "lower",
+ "lstrip",
+ "partition",
+ "replace",
+ "rfind",
+ "rindex",
+ "rjust",
+ "rpartition",
+ "rsplit",
+ "rstrip",
+ "split",
+ "splitlines",
+ "startswith",
+ "strip",
+ "swapcase",
+ "title",
+ "translate",
+ "upper",
+ "zfill",
+ "isnumeric",
+ "isdecimal",
+ "array",
+ "asarray",
+ "compare_chararrays",
+ "chararray",
+]
+
+_ShapeT_co = TypeVar("_ShapeT_co", bound=_Shape, default=_AnyShape, covariant=True)
+_CharacterT = TypeVar("_CharacterT", bound=np.character)
+_CharDTypeT_co = TypeVar("_CharDTypeT_co", bound=dtype[np.character], default=dtype, covariant=True)
+
+_CharArray: TypeAlias = chararray[_AnyShape, dtype[_CharacterT]]
+
+_StringDTypeArray: TypeAlias = np.ndarray[_AnyShape, np.dtypes.StringDType]
+_StringDTypeOrUnicodeArray: TypeAlias = _StringDTypeArray | NDArray[np.str_]
+_StringDTypeSupportsArray: TypeAlias = _SupportsArray[np.dtypes.StringDType]
+
+class chararray(ndarray[_ShapeT_co, _CharDTypeT_co]):
+ @overload
+ def __new__(
+ subtype,
+ shape: _ShapeLike,
+ itemsize: SupportsIndex | SupportsInt = ...,
+ unicode: L[False] = ...,
+ buffer: _SupportsBuffer = ...,
+ offset: SupportsIndex = ...,
+ strides: _ShapeLike = ...,
+ order: _OrderKACF = ...,
+ ) -> _CharArray[bytes_]: ...
+ @overload
+ def __new__(
+ subtype,
+ shape: _ShapeLike,
+ itemsize: SupportsIndex | SupportsInt = ...,
+ unicode: L[True] = ...,
+ buffer: _SupportsBuffer = ...,
+ offset: SupportsIndex = ...,
+ strides: _ShapeLike = ...,
+ order: _OrderKACF = ...,
+ ) -> _CharArray[str_]: ...
+
+ def __array_finalize__(self, obj: object) -> None: ...
+ def __mul__(self, other: i_co) -> chararray[_AnyShape, _CharDTypeT_co]: ...
+ def __rmul__(self, other: i_co) -> chararray[_AnyShape, _CharDTypeT_co]: ...
+ def __mod__(self, i: Any) -> chararray[_AnyShape, _CharDTypeT_co]: ...
+
+ @overload
+ def __eq__(
+ self: _CharArray[str_],
+ other: U_co,
+ ) -> NDArray[np.bool]: ...
+ @overload
+ def __eq__(
+ self: _CharArray[bytes_],
+ other: S_co,
+ ) -> NDArray[np.bool]: ...
+
+ @overload
+ def __ne__(
+ self: _CharArray[str_],
+ other: U_co,
+ ) -> NDArray[np.bool]: ...
+ @overload
+ def __ne__(
+ self: _CharArray[bytes_],
+ other: S_co,
+ ) -> NDArray[np.bool]: ...
+
+ @overload
+ def __ge__(
+ self: _CharArray[str_],
+ other: U_co,
+ ) -> NDArray[np.bool]: ...
+ @overload
+ def __ge__(
+ self: _CharArray[bytes_],
+ other: S_co,
+ ) -> NDArray[np.bool]: ...
+
+ @overload
+ def __le__(
+ self: _CharArray[str_],
+ other: U_co,
+ ) -> NDArray[np.bool]: ...
+ @overload
+ def __le__(
+ self: _CharArray[bytes_],
+ other: S_co,
+ ) -> NDArray[np.bool]: ...
+
+ @overload
+ def __gt__(
+ self: _CharArray[str_],
+ other: U_co,
+ ) -> NDArray[np.bool]: ...
+ @overload
+ def __gt__(
+ self: _CharArray[bytes_],
+ other: S_co,
+ ) -> NDArray[np.bool]: ...
+
+ @overload
+ def __lt__(
+ self: _CharArray[str_],
+ other: U_co,
+ ) -> NDArray[np.bool]: ...
+ @overload
+ def __lt__(
+ self: _CharArray[bytes_],
+ other: S_co,
+ ) -> NDArray[np.bool]: ...
+
+ @overload
+ def __add__(
+ self: _CharArray[str_],
+ other: U_co,
+ ) -> _CharArray[str_]: ...
+ @overload
+ def __add__(
+ self: _CharArray[bytes_],
+ other: S_co,
+ ) -> _CharArray[bytes_]: ...
+
+ @overload
+ def __radd__(
+ self: _CharArray[str_],
+ other: U_co,
+ ) -> _CharArray[str_]: ...
+ @overload
+ def __radd__(
+ self: _CharArray[bytes_],
+ other: S_co,
+ ) -> _CharArray[bytes_]: ...
+
+ @overload
+ def center(
+ self: _CharArray[str_],
+ width: i_co,
+ fillchar: U_co = ...,
+ ) -> _CharArray[str_]: ...
+ @overload
+ def center(
+ self: _CharArray[bytes_],
+ width: i_co,
+ fillchar: S_co = ...,
+ ) -> _CharArray[bytes_]: ...
+
+ @overload
+ def count(
+ self: _CharArray[str_],
+ sub: U_co,
+ start: i_co = ...,
+ end: i_co | None = ...,
+ ) -> NDArray[int_]: ...
+ @overload
+ def count(
+ self: _CharArray[bytes_],
+ sub: S_co,
+ start: i_co = ...,
+ end: i_co | None = ...,
+ ) -> NDArray[int_]: ...
+
+ def decode(
+ self: _CharArray[bytes_],
+ encoding: str | None = ...,
+ errors: str | None = ...,
+ ) -> _CharArray[str_]: ...
+
+ def encode(
+ self: _CharArray[str_],
+ encoding: str | None = ...,
+ errors: str | None = ...,
+ ) -> _CharArray[bytes_]: ...
+
+ @overload
+ def endswith(
+ self: _CharArray[str_],
+ suffix: U_co,
+ start: i_co = ...,
+ end: i_co | None = ...,
+ ) -> NDArray[np.bool]: ...
+ @overload
+ def endswith(
+ self: _CharArray[bytes_],
+ suffix: S_co,
+ start: i_co = ...,
+ end: i_co | None = ...,
+ ) -> NDArray[np.bool]: ...
+
+ def expandtabs(
+ self,
+ tabsize: i_co = ...,
+ ) -> Self: ...
+
+ @overload
+ def find(
+ self: _CharArray[str_],
+ sub: U_co,
+ start: i_co = ...,
+ end: i_co | None = ...,
+ ) -> NDArray[int_]: ...
+ @overload
+ def find(
+ self: _CharArray[bytes_],
+ sub: S_co,
+ start: i_co = ...,
+ end: i_co | None = ...,
+ ) -> NDArray[int_]: ...
+
+ @overload
+ def index(
+ self: _CharArray[str_],
+ sub: U_co,
+ start: i_co = ...,
+ end: i_co | None = ...,
+ ) -> NDArray[int_]: ...
+ @overload
+ def index(
+ self: _CharArray[bytes_],
+ sub: S_co,
+ start: i_co = ...,
+ end: i_co | None = ...,
+ ) -> NDArray[int_]: ...
+
+ @overload
+ def join(
+ self: _CharArray[str_],
+ seq: U_co,
+ ) -> _CharArray[str_]: ...
+ @overload
+ def join(
+ self: _CharArray[bytes_],
+ seq: S_co,
+ ) -> _CharArray[bytes_]: ...
+
+ @overload
+ def ljust(
+ self: _CharArray[str_],
+ width: i_co,
+ fillchar: U_co = ...,
+ ) -> _CharArray[str_]: ...
+ @overload
+ def ljust(
+ self: _CharArray[bytes_],
+ width: i_co,
+ fillchar: S_co = ...,
+ ) -> _CharArray[bytes_]: ...
+
+ @overload
+ def lstrip(
+ self: _CharArray[str_],
+ chars: U_co | None = ...,
+ ) -> _CharArray[str_]: ...
+ @overload
+ def lstrip(
+ self: _CharArray[bytes_],
+ chars: S_co | None = ...,
+ ) -> _CharArray[bytes_]: ...
+
+ @overload
+ def partition(
+ self: _CharArray[str_],
+ sep: U_co,
+ ) -> _CharArray[str_]: ...
+ @overload
+ def partition(
+ self: _CharArray[bytes_],
+ sep: S_co,
+ ) -> _CharArray[bytes_]: ...
+
+ @overload
+ def replace(
+ self: _CharArray[str_],
+ old: U_co,
+ new: U_co,
+ count: i_co | None = ...,
+ ) -> _CharArray[str_]: ...
+ @overload
+ def replace(
+ self: _CharArray[bytes_],
+ old: S_co,
+ new: S_co,
+ count: i_co | None = ...,
+ ) -> _CharArray[bytes_]: ...
+
+ @overload
+ def rfind(
+ self: _CharArray[str_],
+ sub: U_co,
+ start: i_co = ...,
+ end: i_co | None = ...,
+ ) -> NDArray[int_]: ...
+ @overload
+ def rfind(
+ self: _CharArray[bytes_],
+ sub: S_co,
+ start: i_co = ...,
+ end: i_co | None = ...,
+ ) -> NDArray[int_]: ...
+
+ @overload
+ def rindex(
+ self: _CharArray[str_],
+ sub: U_co,
+ start: i_co = ...,
+ end: i_co | None = ...,
+ ) -> NDArray[int_]: ...
+ @overload
+ def rindex(
+ self: _CharArray[bytes_],
+ sub: S_co,
+ start: i_co = ...,
+ end: i_co | None = ...,
+ ) -> NDArray[int_]: ...
+
+ @overload
+ def rjust(
+ self: _CharArray[str_],
+ width: i_co,
+ fillchar: U_co = ...,
+ ) -> _CharArray[str_]: ...
+ @overload
+ def rjust(
+ self: _CharArray[bytes_],
+ width: i_co,
+ fillchar: S_co = ...,
+ ) -> _CharArray[bytes_]: ...
+
+ @overload
+ def rpartition(
+ self: _CharArray[str_],
+ sep: U_co,
+ ) -> _CharArray[str_]: ...
+ @overload
+ def rpartition(
+ self: _CharArray[bytes_],
+ sep: S_co,
+ ) -> _CharArray[bytes_]: ...
+
+ @overload
+ def rsplit(
+ self: _CharArray[str_],
+ sep: U_co | None = ...,
+ maxsplit: i_co | None = ...,
+ ) -> NDArray[object_]: ...
+ @overload
+ def rsplit(
+ self: _CharArray[bytes_],
+ sep: S_co | None = ...,
+ maxsplit: i_co | None = ...,
+ ) -> NDArray[object_]: ...
+
+ @overload
+ def rstrip(
+ self: _CharArray[str_],
+ chars: U_co | None = ...,
+ ) -> _CharArray[str_]: ...
+ @overload
+ def rstrip(
+ self: _CharArray[bytes_],
+ chars: S_co | None = ...,
+ ) -> _CharArray[bytes_]: ...
+
+ @overload
+ def split(
+ self: _CharArray[str_],
+ sep: U_co | None = ...,
+ maxsplit: i_co | None = ...,
+ ) -> NDArray[object_]: ...
+ @overload
+ def split(
+ self: _CharArray[bytes_],
+ sep: S_co | None = ...,
+ maxsplit: i_co | None = ...,
+ ) -> NDArray[object_]: ...
+
+ def splitlines(self, keepends: b_co | None = ...) -> NDArray[object_]: ...
+
+ @overload
+ def startswith(
+ self: _CharArray[str_],
+ prefix: U_co,
+ start: i_co = ...,
+ end: i_co | None = ...,
+ ) -> NDArray[np.bool]: ...
+ @overload
+ def startswith(
+ self: _CharArray[bytes_],
+ prefix: S_co,
+ start: i_co = ...,
+ end: i_co | None = ...,
+ ) -> NDArray[np.bool]: ...
+
+ @overload
+ def strip(
+ self: _CharArray[str_],
+ chars: U_co | None = ...,
+ ) -> _CharArray[str_]: ...
+ @overload
+ def strip(
+ self: _CharArray[bytes_],
+ chars: S_co | None = ...,
+ ) -> _CharArray[bytes_]: ...
+
+ @overload
+ def translate(
+ self: _CharArray[str_],
+ table: U_co,
+ deletechars: U_co | None = ...,
+ ) -> _CharArray[str_]: ...
+ @overload
+ def translate(
+ self: _CharArray[bytes_],
+ table: S_co,
+ deletechars: S_co | None = ...,
+ ) -> _CharArray[bytes_]: ...
+
+ def zfill(self, width: i_co) -> Self: ...
+ def capitalize(self) -> Self: ...
+ def title(self) -> Self: ...
+ def swapcase(self) -> Self: ...
+ def lower(self) -> Self: ...
+ def upper(self) -> Self: ...
+ def isalnum(self) -> ndarray[_ShapeT_co, dtype[np.bool]]: ...
+ def isalpha(self) -> ndarray[_ShapeT_co, dtype[np.bool]]: ...
+ def isdigit(self) -> ndarray[_ShapeT_co, dtype[np.bool]]: ...
+ def islower(self) -> ndarray[_ShapeT_co, dtype[np.bool]]: ...
+ def isspace(self) -> ndarray[_ShapeT_co, dtype[np.bool]]: ...
+ def istitle(self) -> ndarray[_ShapeT_co, dtype[np.bool]]: ...
+ def isupper(self) -> ndarray[_ShapeT_co, dtype[np.bool]]: ...
+ def isnumeric(self) -> ndarray[_ShapeT_co, dtype[np.bool]]: ...
+ def isdecimal(self) -> ndarray[_ShapeT_co, dtype[np.bool]]: ...
+
+# Comparison
+@overload
+def equal(x1: U_co, x2: U_co) -> NDArray[np.bool]: ...
+@overload
+def equal(x1: S_co, x2: S_co) -> NDArray[np.bool]: ...
+@overload
+def equal(x1: T_co, x2: T_co) -> NDArray[np.bool]: ...
+
+@overload
+def not_equal(x1: U_co, x2: U_co) -> NDArray[np.bool]: ...
+@overload
+def not_equal(x1: S_co, x2: S_co) -> NDArray[np.bool]: ...
+@overload
+def not_equal(x1: T_co, x2: T_co) -> NDArray[np.bool]: ...
+
+@overload
+def greater_equal(x1: U_co, x2: U_co) -> NDArray[np.bool]: ...
+@overload
+def greater_equal(x1: S_co, x2: S_co) -> NDArray[np.bool]: ...
+@overload
+def greater_equal(x1: T_co, x2: T_co) -> NDArray[np.bool]: ...
+
+@overload
+def less_equal(x1: U_co, x2: U_co) -> NDArray[np.bool]: ...
+@overload
+def less_equal(x1: S_co, x2: S_co) -> NDArray[np.bool]: ...
+@overload
+def less_equal(x1: T_co, x2: T_co) -> NDArray[np.bool]: ...
+
+@overload
+def greater(x1: U_co, x2: U_co) -> NDArray[np.bool]: ...
+@overload
+def greater(x1: S_co, x2: S_co) -> NDArray[np.bool]: ...
+@overload
+def greater(x1: T_co, x2: T_co) -> NDArray[np.bool]: ...
+
+@overload
+def less(x1: U_co, x2: U_co) -> NDArray[np.bool]: ...
+@overload
+def less(x1: S_co, x2: S_co) -> NDArray[np.bool]: ...
+@overload
+def less(x1: T_co, x2: T_co) -> NDArray[np.bool]: ...
+
+@overload
+def add(x1: U_co, x2: U_co) -> NDArray[np.str_]: ...
+@overload
+def add(x1: S_co, x2: S_co) -> NDArray[np.bytes_]: ...
+@overload
+def add(x1: _StringDTypeSupportsArray, x2: _StringDTypeSupportsArray) -> _StringDTypeArray: ...
+@overload
+def add(x1: T_co, x2: T_co) -> _StringDTypeOrUnicodeArray: ...
+
+@overload
+def multiply(a: U_co, i: i_co) -> NDArray[np.str_]: ...
+@overload
+def multiply(a: S_co, i: i_co) -> NDArray[np.bytes_]: ...
+@overload
+def multiply(a: _StringDTypeSupportsArray, i: i_co) -> _StringDTypeArray: ...
+@overload
+def multiply(a: T_co, i: i_co) -> _StringDTypeOrUnicodeArray: ...
+
+@overload
+def mod(a: U_co, value: Any) -> NDArray[np.str_]: ...
+@overload
+def mod(a: S_co, value: Any) -> NDArray[np.bytes_]: ...
+@overload
+def mod(a: _StringDTypeSupportsArray, value: Any) -> _StringDTypeArray: ...
+@overload
+def mod(a: T_co, value: Any) -> _StringDTypeOrUnicodeArray: ...
+
+@overload
+def capitalize(a: U_co) -> NDArray[str_]: ...
+@overload
+def capitalize(a: S_co) -> NDArray[bytes_]: ...
+@overload
+def capitalize(a: _StringDTypeSupportsArray) -> _StringDTypeArray: ...
+@overload
+def capitalize(a: T_co) -> _StringDTypeOrUnicodeArray: ...
+
+@overload
+def center(a: U_co, width: i_co, fillchar: U_co = ...) -> NDArray[str_]: ...
+@overload
+def center(a: S_co, width: i_co, fillchar: S_co = ...) -> NDArray[bytes_]: ...
+@overload
+def center(a: _StringDTypeSupportsArray, width: i_co, fillchar: _StringDTypeSupportsArray = ...) -> _StringDTypeArray: ...
+@overload
+def center(a: T_co, width: i_co, fillchar: T_co = ...) -> _StringDTypeOrUnicodeArray: ...
+
+def decode(
+ a: S_co,
+ encoding: str | None = ...,
+ errors: str | None = ...,
+) -> NDArray[str_]: ...
+def encode(
+ a: U_co | T_co,
+ encoding: str | None = ...,
+ errors: str | None = ...,
+) -> NDArray[bytes_]: ...
+
+@overload
+def expandtabs(a: U_co, tabsize: i_co = ...) -> NDArray[str_]: ...
+@overload
+def expandtabs(a: S_co, tabsize: i_co = ...) -> NDArray[bytes_]: ...
+@overload
+def expandtabs(a: _StringDTypeSupportsArray, tabsize: i_co = ...) -> _StringDTypeArray: ...
+@overload
+def expandtabs(a: T_co, tabsize: i_co = ...) -> _StringDTypeOrUnicodeArray: ...
+
+@overload
+def join(sep: U_co, seq: U_co) -> NDArray[str_]: ...
+@overload
+def join(sep: S_co, seq: S_co) -> NDArray[bytes_]: ...
+@overload
+def join(sep: _StringDTypeSupportsArray, seq: _StringDTypeSupportsArray) -> _StringDTypeArray: ...
+@overload
+def join(sep: T_co, seq: T_co) -> _StringDTypeOrUnicodeArray: ...
+
+@overload
+def ljust(a: U_co, width: i_co, fillchar: U_co = ...) -> NDArray[str_]: ...
+@overload
+def ljust(a: S_co, width: i_co, fillchar: S_co = ...) -> NDArray[bytes_]: ...
+@overload
+def ljust(a: _StringDTypeSupportsArray, width: i_co, fillchar: _StringDTypeSupportsArray = ...) -> _StringDTypeArray: ...
+@overload
+def ljust(a: T_co, width: i_co, fillchar: T_co = ...) -> _StringDTypeOrUnicodeArray: ...
+
+@overload
+def lower(a: U_co) -> NDArray[str_]: ...
+@overload
+def lower(a: S_co) -> NDArray[bytes_]: ...
+@overload
+def lower(a: _StringDTypeSupportsArray) -> _StringDTypeArray: ...
+@overload
+def lower(a: T_co) -> _StringDTypeOrUnicodeArray: ...
+
+@overload
+def lstrip(a: U_co, chars: U_co | None = ...) -> NDArray[str_]: ...
+@overload
+def lstrip(a: S_co, chars: S_co | None = ...) -> NDArray[bytes_]: ...
+@overload
+def lstrip(a: _StringDTypeSupportsArray, chars: _StringDTypeSupportsArray | None = ...) -> _StringDTypeArray: ...
+@overload
+def lstrip(a: T_co, chars: T_co | None = ...) -> _StringDTypeOrUnicodeArray: ...
+
+@overload
+def partition(a: U_co, sep: U_co) -> NDArray[str_]: ...
+@overload
+def partition(a: S_co, sep: S_co) -> NDArray[bytes_]: ...
+@overload
+def partition(a: _StringDTypeSupportsArray, sep: _StringDTypeSupportsArray) -> _StringDTypeArray: ...
+@overload
+def partition(a: T_co, sep: T_co) -> _StringDTypeOrUnicodeArray: ...
+
+@overload
+def replace(
+ a: U_co,
+ old: U_co,
+ new: U_co,
+ count: i_co | None = ...,
+) -> NDArray[str_]: ...
+@overload
+def replace(
+ a: S_co,
+ old: S_co,
+ new: S_co,
+ count: i_co | None = ...,
+) -> NDArray[bytes_]: ...
+@overload
+def replace(
+ a: _StringDTypeSupportsArray,
+ old: _StringDTypeSupportsArray,
+ new: _StringDTypeSupportsArray,
+ count: i_co = ...,
+) -> _StringDTypeArray: ...
+@overload
+def replace(
+ a: T_co,
+ old: T_co,
+ new: T_co,
+ count: i_co = ...,
+) -> _StringDTypeOrUnicodeArray: ...
+
+@overload
+def rjust(
+ a: U_co,
+ width: i_co,
+ fillchar: U_co = ...,
+) -> NDArray[str_]: ...
+@overload
+def rjust(
+ a: S_co,
+ width: i_co,
+ fillchar: S_co = ...,
+) -> NDArray[bytes_]: ...
+@overload
+def rjust(
+ a: _StringDTypeSupportsArray,
+ width: i_co,
+ fillchar: _StringDTypeSupportsArray = ...,
+) -> _StringDTypeArray: ...
+@overload
+def rjust(
+ a: T_co,
+ width: i_co,
+ fillchar: T_co = ...,
+) -> _StringDTypeOrUnicodeArray: ...
+
+@overload
+def rpartition(a: U_co, sep: U_co) -> NDArray[str_]: ...
+@overload
+def rpartition(a: S_co, sep: S_co) -> NDArray[bytes_]: ...
+@overload
+def rpartition(a: _StringDTypeSupportsArray, sep: _StringDTypeSupportsArray) -> _StringDTypeArray: ...
+@overload
+def rpartition(a: T_co, sep: T_co) -> _StringDTypeOrUnicodeArray: ...
+
+@overload
+def rsplit(
+ a: U_co,
+ sep: U_co | None = ...,
+ maxsplit: i_co | None = ...,
+) -> NDArray[object_]: ...
+@overload
+def rsplit(
+ a: S_co,
+ sep: S_co | None = ...,
+ maxsplit: i_co | None = ...,
+) -> NDArray[object_]: ...
+@overload
+def rsplit(
+ a: _StringDTypeSupportsArray,
+ sep: _StringDTypeSupportsArray | None = ...,
+ maxsplit: i_co | None = ...,
+) -> NDArray[object_]: ...
+@overload
+def rsplit(
+ a: T_co,
+ sep: T_co | None = ...,
+ maxsplit: i_co | None = ...,
+) -> NDArray[object_]: ...
+
+@overload
+def rstrip(a: U_co, chars: U_co | None = ...) -> NDArray[str_]: ...
+@overload
+def rstrip(a: S_co, chars: S_co | None = ...) -> NDArray[bytes_]: ...
+@overload
+def rstrip(a: _StringDTypeSupportsArray, chars: _StringDTypeSupportsArray | None = ...) -> _StringDTypeArray: ...
+@overload
+def rstrip(a: T_co, chars: T_co | None = ...) -> _StringDTypeOrUnicodeArray: ...
+
+@overload
+def split(
+ a: U_co,
+ sep: U_co | None = ...,
+ maxsplit: i_co | None = ...,
+) -> NDArray[object_]: ...
+@overload
+def split(
+ a: S_co,
+ sep: S_co | None = ...,
+ maxsplit: i_co | None = ...,
+) -> NDArray[object_]: ...
+@overload
+def split(
+ a: _StringDTypeSupportsArray,
+ sep: _StringDTypeSupportsArray | None = ...,
+ maxsplit: i_co | None = ...,
+) -> NDArray[object_]: ...
+@overload
+def split(
+ a: T_co,
+ sep: T_co | None = ...,
+ maxsplit: i_co | None = ...,
+) -> NDArray[object_]: ...
+
+def splitlines(a: UST_co, keepends: b_co | None = ...) -> NDArray[np.object_]: ...
+
+@overload
+def strip(a: U_co, chars: U_co | None = ...) -> NDArray[str_]: ...
+@overload
+def strip(a: S_co, chars: S_co | None = ...) -> NDArray[bytes_]: ...
+@overload
+def strip(a: _StringDTypeSupportsArray, chars: _StringDTypeSupportsArray | None = ...) -> _StringDTypeArray: ...
+@overload
+def strip(a: T_co, chars: T_co | None = ...) -> _StringDTypeOrUnicodeArray: ...
+
+@overload
+def swapcase(a: U_co) -> NDArray[str_]: ...
+@overload
+def swapcase(a: S_co) -> NDArray[bytes_]: ...
+@overload
+def swapcase(a: _StringDTypeSupportsArray) -> _StringDTypeArray: ...
+@overload
+def swapcase(a: T_co) -> _StringDTypeOrUnicodeArray: ...
+
+@overload
+def title(a: U_co) -> NDArray[str_]: ...
+@overload
+def title(a: S_co) -> NDArray[bytes_]: ...
+@overload
+def title(a: _StringDTypeSupportsArray) -> _StringDTypeArray: ...
+@overload
+def title(a: T_co) -> _StringDTypeOrUnicodeArray: ...
+
+@overload
+def translate(
+ a: U_co,
+ table: str,
+ deletechars: str | None = ...,
+) -> NDArray[str_]: ...
+@overload
+def translate(
+ a: S_co,
+ table: str,
+ deletechars: str | None = ...,
+) -> NDArray[bytes_]: ...
+@overload
+def translate(
+ a: _StringDTypeSupportsArray,
+ table: str,
+ deletechars: str | None = ...,
+) -> _StringDTypeArray: ...
+@overload
+def translate(
+ a: T_co,
+ table: str,
+ deletechars: str | None = ...,
+) -> _StringDTypeOrUnicodeArray: ...
+
+@overload
+def upper(a: U_co) -> NDArray[str_]: ...
+@overload
+def upper(a: S_co) -> NDArray[bytes_]: ...
+@overload
+def upper(a: _StringDTypeSupportsArray) -> _StringDTypeArray: ...
+@overload
+def upper(a: T_co) -> _StringDTypeOrUnicodeArray: ...
+
+@overload
+def zfill(a: U_co, width: i_co) -> NDArray[str_]: ...
+@overload
+def zfill(a: S_co, width: i_co) -> NDArray[bytes_]: ...
+@overload
+def zfill(a: _StringDTypeSupportsArray, width: i_co) -> _StringDTypeArray: ...
+@overload
+def zfill(a: T_co, width: i_co) -> _StringDTypeOrUnicodeArray: ...
+
+# String information
+@overload
+def count(
+ a: U_co,
+ sub: U_co,
+ start: i_co = ...,
+ end: i_co | None = ...,
+) -> NDArray[int_]: ...
+@overload
+def count(
+ a: S_co,
+ sub: S_co,
+ start: i_co = ...,
+ end: i_co | None = ...,
+) -> NDArray[int_]: ...
+@overload
+def count(
+ a: T_co,
+ sub: T_co,
+ start: i_co = ...,
+ end: i_co | None = ...,
+) -> NDArray[np.int_]: ...
+
+@overload
+def endswith(
+ a: U_co,
+ suffix: U_co,
+ start: i_co = ...,
+ end: i_co | None = ...,
+) -> NDArray[np.bool]: ...
+@overload
+def endswith(
+ a: S_co,
+ suffix: S_co,
+ start: i_co = ...,
+ end: i_co | None = ...,
+) -> NDArray[np.bool]: ...
+@overload
+def endswith(
+ a: T_co,
+ suffix: T_co,
+ start: i_co = ...,
+ end: i_co | None = ...,
+) -> NDArray[np.bool]: ...
+
+@overload
+def find(
+ a: U_co,
+ sub: U_co,
+ start: i_co = ...,
+ end: i_co | None = ...,
+) -> NDArray[int_]: ...
+@overload
+def find(
+ a: S_co,
+ sub: S_co,
+ start: i_co = ...,
+ end: i_co | None = ...,
+) -> NDArray[int_]: ...
+@overload
+def find(
+ a: T_co,
+ sub: T_co,
+ start: i_co = ...,
+ end: i_co | None = ...,
+) -> NDArray[np.int_]: ...
+
+@overload
+def index(
+ a: U_co,
+ sub: U_co,
+ start: i_co = ...,
+ end: i_co | None = ...,
+) -> NDArray[int_]: ...
+@overload
+def index(
+ a: S_co,
+ sub: S_co,
+ start: i_co = ...,
+ end: i_co | None = ...,
+) -> NDArray[int_]: ...
+@overload
+def index(
+ a: T_co,
+ sub: T_co,
+ start: i_co = ...,
+ end: i_co | None = ...,
+) -> NDArray[np.int_]: ...
+
+def isalpha(a: UST_co) -> NDArray[np.bool]: ...
+def isalnum(a: UST_co) -> NDArray[np.bool]: ...
+def isdecimal(a: U_co | T_co) -> NDArray[np.bool]: ...
+def isdigit(a: UST_co) -> NDArray[np.bool]: ...
+def islower(a: UST_co) -> NDArray[np.bool]: ...
+def isnumeric(a: U_co | T_co) -> NDArray[np.bool]: ...
+def isspace(a: UST_co) -> NDArray[np.bool]: ...
+def istitle(a: UST_co) -> NDArray[np.bool]: ...
+def isupper(a: UST_co) -> NDArray[np.bool]: ...
+
+@overload
+def rfind(
+ a: U_co,
+ sub: U_co,
+ start: i_co = ...,
+ end: i_co | None = ...,
+) -> NDArray[int_]: ...
+@overload
+def rfind(
+ a: S_co,
+ sub: S_co,
+ start: i_co = ...,
+ end: i_co | None = ...,
+) -> NDArray[int_]: ...
+@overload
+def rfind(
+ a: T_co,
+ sub: T_co,
+ start: i_co = ...,
+ end: i_co | None = ...,
+) -> NDArray[np.int_]: ...
+
+@overload
+def rindex(
+ a: U_co,
+ sub: U_co,
+ start: i_co = ...,
+ end: i_co | None = ...,
+) -> NDArray[int_]: ...
+@overload
+def rindex(
+ a: S_co,
+ sub: S_co,
+ start: i_co = ...,
+ end: i_co | None = ...,
+) -> NDArray[int_]: ...
+@overload
+def rindex(
+ a: T_co,
+ sub: T_co,
+ start: i_co = ...,
+ end: i_co | None = ...,
+) -> NDArray[np.int_]: ...
+
+@overload
+def startswith(
+ a: U_co,
+ prefix: U_co,
+ start: i_co = ...,
+ end: i_co | None = ...,
+) -> NDArray[np.bool]: ...
+@overload
+def startswith(
+ a: S_co,
+ prefix: S_co,
+ start: i_co = ...,
+ end: i_co | None = ...,
+) -> NDArray[np.bool]: ...
+@overload
+def startswith(
+ a: T_co,
+ suffix: T_co,
+ start: i_co = ...,
+ end: i_co | None = ...,
+) -> NDArray[np.bool]: ...
+
+def str_len(A: UST_co) -> NDArray[int_]: ...
+
+# Overload 1 and 2: str- or bytes-based array-likes
+# overload 3 and 4: arbitrary object with unicode=False (-> bytes_)
+# overload 5 and 6: arbitrary object with unicode=True (-> str_)
+# overload 7: arbitrary object with unicode=None (default) (-> str_ | bytes_)
+@overload
+def array(
+ obj: U_co,
+ itemsize: int | None = ...,
+ copy: bool = ...,
+ unicode: L[True] | None = ...,
+ order: _OrderKACF = ...,
+) -> _CharArray[str_]: ...
+@overload
+def array(
+ obj: S_co,
+ itemsize: int | None = ...,
+ copy: bool = ...,
+ unicode: L[False] | None = ...,
+ order: _OrderKACF = ...,
+) -> _CharArray[bytes_]: ...
+@overload
+def array(
+ obj: object,
+ itemsize: int | None,
+ copy: bool,
+ unicode: L[False],
+ order: _OrderKACF = ...,
+) -> _CharArray[bytes_]: ...
+@overload
+def array(
+ obj: object,
+ itemsize: int | None = ...,
+ copy: bool = ...,
+ *,
+ unicode: L[False],
+ order: _OrderKACF = ...,
+) -> _CharArray[bytes_]: ...
+@overload
+def array(
+ obj: object,
+ itemsize: int | None,
+ copy: bool,
+ unicode: L[True],
+ order: _OrderKACF = ...,
+) -> _CharArray[str_]: ...
+@overload
+def array(
+ obj: object,
+ itemsize: int | None = ...,
+ copy: bool = ...,
+ *,
+ unicode: L[True],
+ order: _OrderKACF = ...,
+) -> _CharArray[str_]: ...
+@overload
+def array(
+ obj: object,
+ itemsize: int | None = ...,
+ copy: bool = ...,
+ unicode: bool | None = ...,
+ order: _OrderKACF = ...,
+) -> _CharArray[str_] | _CharArray[bytes_]: ...
+
+@overload
+def asarray(
+ obj: U_co,
+ itemsize: int | None = ...,
+ unicode: L[True] | None = ...,
+ order: _OrderKACF = ...,
+) -> _CharArray[str_]: ...
+@overload
+def asarray(
+ obj: S_co,
+ itemsize: int | None = ...,
+ unicode: L[False] | None = ...,
+ order: _OrderKACF = ...,
+) -> _CharArray[bytes_]: ...
+@overload
+def asarray(
+ obj: object,
+ itemsize: int | None,
+ unicode: L[False],
+ order: _OrderKACF = ...,
+) -> _CharArray[bytes_]: ...
+@overload
+def asarray(
+ obj: object,
+ itemsize: int | None = ...,
+ *,
+ unicode: L[False],
+ order: _OrderKACF = ...,
+) -> _CharArray[bytes_]: ...
+@overload
+def asarray(
+ obj: object,
+ itemsize: int | None,
+ unicode: L[True],
+ order: _OrderKACF = ...,
+) -> _CharArray[str_]: ...
+@overload
+def asarray(
+ obj: object,
+ itemsize: int | None = ...,
+ *,
+ unicode: L[True],
+ order: _OrderKACF = ...,
+) -> _CharArray[str_]: ...
+@overload
+def asarray(
+ obj: object,
+ itemsize: int | None = ...,
+ unicode: bool | None = ...,
+ order: _OrderKACF = ...,
+) -> _CharArray[str_] | _CharArray[bytes_]: ...
diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/einsumfunc.py b/.venv/lib/python3.12/site-packages/numpy/_core/einsumfunc.py
new file mode 100644
index 0000000..8e71e6d
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/_core/einsumfunc.py
@@ -0,0 +1,1498 @@
+"""
+Implementation of optimized einsum.
+
+"""
+import itertools
+import operator
+
+from numpy._core.multiarray import c_einsum
+from numpy._core.numeric import asanyarray, tensordot
+from numpy._core.overrides import array_function_dispatch
+
+__all__ = ['einsum', 'einsum_path']
+
+# importing string for string.ascii_letters would be too slow
+# the first import before caching has been measured to take 800 µs (#23777)
+# imports begin with uppercase to mimic ASCII values to avoid sorting issues
+einsum_symbols = 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz'
+einsum_symbols_set = set(einsum_symbols)
+
+
+def _flop_count(idx_contraction, inner, num_terms, size_dictionary):
+ """
+ Computes the number of FLOPS in the contraction.
+
+ Parameters
+ ----------
+ idx_contraction : iterable
+ The indices involved in the contraction
+ inner : bool
+ Does this contraction require an inner product?
+ num_terms : int
+ The number of terms in a contraction
+ size_dictionary : dict
+ The size of each of the indices in idx_contraction
+
+ Returns
+ -------
+ flop_count : int
+ The total number of FLOPS required for the contraction.
+
+ Examples
+ --------
+
+ >>> _flop_count('abc', False, 1, {'a': 2, 'b':3, 'c':5})
+ 30
+
+ >>> _flop_count('abc', True, 2, {'a': 2, 'b':3, 'c':5})
+ 60
+
+ """
+
+ overall_size = _compute_size_by_dict(idx_contraction, size_dictionary)
+ op_factor = max(1, num_terms - 1)
+ if inner:
+ op_factor += 1
+
+ return overall_size * op_factor
+
+def _compute_size_by_dict(indices, idx_dict):
+ """
+ Computes the product of the elements in indices based on the dictionary
+ idx_dict.
+
+ Parameters
+ ----------
+ indices : iterable
+ Indices to base the product on.
+ idx_dict : dictionary
+ Dictionary of index sizes
+
+ Returns
+ -------
+ ret : int
+ The resulting product.
+
+ Examples
+ --------
+ >>> _compute_size_by_dict('abbc', {'a': 2, 'b':3, 'c':5})
+ 90
+
+ """
+ ret = 1
+ for i in indices:
+ ret *= idx_dict[i]
+ return ret
+
+
+def _find_contraction(positions, input_sets, output_set):
+ """
+ Finds the contraction for a given set of input and output sets.
+
+ Parameters
+ ----------
+ positions : iterable
+ Integer positions of terms used in the contraction.
+ input_sets : list
+ List of sets that represent the lhs side of the einsum subscript
+ output_set : set
+ Set that represents the rhs side of the overall einsum subscript
+
+ Returns
+ -------
+ new_result : set
+ The indices of the resulting contraction
+ remaining : list
+ List of sets that have not been contracted, the new set is appended to
+ the end of this list
+ idx_removed : set
+ Indices removed from the entire contraction
+ idx_contraction : set
+ The indices used in the current contraction
+
+ Examples
+ --------
+
+ # A simple dot product test case
+ >>> pos = (0, 1)
+ >>> isets = [set('ab'), set('bc')]
+ >>> oset = set('ac')
+ >>> _find_contraction(pos, isets, oset)
+ ({'a', 'c'}, [{'a', 'c'}], {'b'}, {'a', 'b', 'c'})
+
+ # A more complex case with additional terms in the contraction
+ >>> pos = (0, 2)
+ >>> isets = [set('abd'), set('ac'), set('bdc')]
+ >>> oset = set('ac')
+ >>> _find_contraction(pos, isets, oset)
+ ({'a', 'c'}, [{'a', 'c'}, {'a', 'c'}], {'b', 'd'}, {'a', 'b', 'c', 'd'})
+ """
+
+ idx_contract = set()
+ idx_remain = output_set.copy()
+ remaining = []
+ for ind, value in enumerate(input_sets):
+ if ind in positions:
+ idx_contract |= value
+ else:
+ remaining.append(value)
+ idx_remain |= value
+
+ new_result = idx_remain & idx_contract
+ idx_removed = (idx_contract - new_result)
+ remaining.append(new_result)
+
+ return (new_result, remaining, idx_removed, idx_contract)
+
+
+def _optimal_path(input_sets, output_set, idx_dict, memory_limit):
+ """
+ Computes all possible pair contractions, sieves the results based
+ on ``memory_limit`` and returns the lowest cost path. This algorithm
+ scales factorial with respect to the elements in the list ``input_sets``.
+
+ Parameters
+ ----------
+ input_sets : list
+ List of sets that represent the lhs side of the einsum subscript
+ output_set : set
+ Set that represents the rhs side of the overall einsum subscript
+ idx_dict : dictionary
+ Dictionary of index sizes
+ memory_limit : int
+ The maximum number of elements in a temporary array
+
+ Returns
+ -------
+ path : list
+ The optimal contraction order within the memory limit constraint.
+
+ Examples
+ --------
+ >>> isets = [set('abd'), set('ac'), set('bdc')]
+ >>> oset = set()
+ >>> idx_sizes = {'a': 1, 'b':2, 'c':3, 'd':4}
+ >>> _optimal_path(isets, oset, idx_sizes, 5000)
+ [(0, 2), (0, 1)]
+ """
+
+ full_results = [(0, [], input_sets)]
+ for iteration in range(len(input_sets) - 1):
+ iter_results = []
+
+ # Compute all unique pairs
+ for curr in full_results:
+ cost, positions, remaining = curr
+ for con in itertools.combinations(
+ range(len(input_sets) - iteration), 2
+ ):
+
+ # Find the contraction
+ cont = _find_contraction(con, remaining, output_set)
+ new_result, new_input_sets, idx_removed, idx_contract = cont
+
+ # Sieve the results based on memory_limit
+ new_size = _compute_size_by_dict(new_result, idx_dict)
+ if new_size > memory_limit:
+ continue
+
+ # Build (total_cost, positions, indices_remaining)
+ total_cost = cost + _flop_count(
+ idx_contract, idx_removed, len(con), idx_dict
+ )
+ new_pos = positions + [con]
+ iter_results.append((total_cost, new_pos, new_input_sets))
+
+ # Update combinatorial list, if we did not find anything return best
+ # path + remaining contractions
+ if iter_results:
+ full_results = iter_results
+ else:
+ path = min(full_results, key=lambda x: x[0])[1]
+ path += [tuple(range(len(input_sets) - iteration))]
+ return path
+
+ # If we have not found anything return single einsum contraction
+ if len(full_results) == 0:
+ return [tuple(range(len(input_sets)))]
+
+ path = min(full_results, key=lambda x: x[0])[1]
+ return path
+
+def _parse_possible_contraction(
+ positions, input_sets, output_set, idx_dict,
+ memory_limit, path_cost, naive_cost
+ ):
+ """Compute the cost (removed size + flops) and resultant indices for
+ performing the contraction specified by ``positions``.
+
+ Parameters
+ ----------
+ positions : tuple of int
+ The locations of the proposed tensors to contract.
+ input_sets : list of sets
+ The indices found on each tensors.
+ output_set : set
+ The output indices of the expression.
+ idx_dict : dict
+ Mapping of each index to its size.
+ memory_limit : int
+ The total allowed size for an intermediary tensor.
+ path_cost : int
+ The contraction cost so far.
+ naive_cost : int
+ The cost of the unoptimized expression.
+
+ Returns
+ -------
+ cost : (int, int)
+ A tuple containing the size of any indices removed, and the flop cost.
+ positions : tuple of int
+ The locations of the proposed tensors to contract.
+ new_input_sets : list of sets
+ The resulting new list of indices if this proposed contraction
+ is performed.
+
+ """
+
+ # Find the contraction
+ contract = _find_contraction(positions, input_sets, output_set)
+ idx_result, new_input_sets, idx_removed, idx_contract = contract
+
+ # Sieve the results based on memory_limit
+ new_size = _compute_size_by_dict(idx_result, idx_dict)
+ if new_size > memory_limit:
+ return None
+
+ # Build sort tuple
+ old_sizes = (
+ _compute_size_by_dict(input_sets[p], idx_dict) for p in positions
+ )
+ removed_size = sum(old_sizes) - new_size
+
+ # NB: removed_size used to be just the size of any removed indices i.e.:
+ # helpers.compute_size_by_dict(idx_removed, idx_dict)
+ cost = _flop_count(idx_contract, idx_removed, len(positions), idx_dict)
+ sort = (-removed_size, cost)
+
+ # Sieve based on total cost as well
+ if (path_cost + cost) > naive_cost:
+ return None
+
+ # Add contraction to possible choices
+ return [sort, positions, new_input_sets]
+
+
+def _update_other_results(results, best):
+ """Update the positions and provisional input_sets of ``results``
+ based on performing the contraction result ``best``. Remove any
+ involving the tensors contracted.
+
+ Parameters
+ ----------
+ results : list
+ List of contraction results produced by
+ ``_parse_possible_contraction``.
+ best : list
+ The best contraction of ``results`` i.e. the one that
+ will be performed.
+
+ Returns
+ -------
+ mod_results : list
+ The list of modified results, updated with outcome of
+ ``best`` contraction.
+ """
+
+ best_con = best[1]
+ bx, by = best_con
+ mod_results = []
+
+ for cost, (x, y), con_sets in results:
+
+ # Ignore results involving tensors just contracted
+ if x in best_con or y in best_con:
+ continue
+
+ # Update the input_sets
+ del con_sets[by - int(by > x) - int(by > y)]
+ del con_sets[bx - int(bx > x) - int(bx > y)]
+ con_sets.insert(-1, best[2][-1])
+
+ # Update the position indices
+ mod_con = x - int(x > bx) - int(x > by), y - int(y > bx) - int(y > by)
+ mod_results.append((cost, mod_con, con_sets))
+
+ return mod_results
+
+def _greedy_path(input_sets, output_set, idx_dict, memory_limit):
+ """
+ Finds the path by contracting the best pair until the input list is
+ exhausted. The best pair is found by minimizing the tuple
+ ``(-prod(indices_removed), cost)``. What this amounts to is prioritizing
+ matrix multiplication or inner product operations, then Hadamard like
+ operations, and finally outer operations. Outer products are limited by
+ ``memory_limit``. This algorithm scales cubically with respect to the
+ number of elements in the list ``input_sets``.
+
+ Parameters
+ ----------
+ input_sets : list
+ List of sets that represent the lhs side of the einsum subscript
+ output_set : set
+ Set that represents the rhs side of the overall einsum subscript
+ idx_dict : dictionary
+ Dictionary of index sizes
+ memory_limit : int
+ The maximum number of elements in a temporary array
+
+ Returns
+ -------
+ path : list
+ The greedy contraction order within the memory limit constraint.
+
+ Examples
+ --------
+ >>> isets = [set('abd'), set('ac'), set('bdc')]
+ >>> oset = set()
+ >>> idx_sizes = {'a': 1, 'b':2, 'c':3, 'd':4}
+ >>> _greedy_path(isets, oset, idx_sizes, 5000)
+ [(0, 2), (0, 1)]
+ """
+
+ # Handle trivial cases that leaked through
+ if len(input_sets) == 1:
+ return [(0,)]
+ elif len(input_sets) == 2:
+ return [(0, 1)]
+
+ # Build up a naive cost
+ contract = _find_contraction(
+ range(len(input_sets)), input_sets, output_set
+ )
+ idx_result, new_input_sets, idx_removed, idx_contract = contract
+ naive_cost = _flop_count(
+ idx_contract, idx_removed, len(input_sets), idx_dict
+ )
+
+ # Initially iterate over all pairs
+ comb_iter = itertools.combinations(range(len(input_sets)), 2)
+ known_contractions = []
+
+ path_cost = 0
+ path = []
+
+ for iteration in range(len(input_sets) - 1):
+
+ # Iterate over all pairs on the first step, only previously
+ # found pairs on subsequent steps
+ for positions in comb_iter:
+
+ # Always initially ignore outer products
+ if input_sets[positions[0]].isdisjoint(input_sets[positions[1]]):
+ continue
+
+ result = _parse_possible_contraction(
+ positions, input_sets, output_set, idx_dict,
+ memory_limit, path_cost, naive_cost
+ )
+ if result is not None:
+ known_contractions.append(result)
+
+ # If we do not have a inner contraction, rescan pairs
+ # including outer products
+ if len(known_contractions) == 0:
+
+ # Then check the outer products
+ for positions in itertools.combinations(
+ range(len(input_sets)), 2
+ ):
+ result = _parse_possible_contraction(
+ positions, input_sets, output_set, idx_dict,
+ memory_limit, path_cost, naive_cost
+ )
+ if result is not None:
+ known_contractions.append(result)
+
+ # If we still did not find any remaining contractions,
+ # default back to einsum like behavior
+ if len(known_contractions) == 0:
+ path.append(tuple(range(len(input_sets))))
+ break
+
+ # Sort based on first index
+ best = min(known_contractions, key=lambda x: x[0])
+
+ # Now propagate as many unused contractions as possible
+ # to the next iteration
+ known_contractions = _update_other_results(known_contractions, best)
+
+ # Next iteration only compute contractions with the new tensor
+ # All other contractions have been accounted for
+ input_sets = best[2]
+ new_tensor_pos = len(input_sets) - 1
+ comb_iter = ((i, new_tensor_pos) for i in range(new_tensor_pos))
+
+ # Update path and total cost
+ path.append(best[1])
+ path_cost += best[0][1]
+
+ return path
+
+
+def _can_dot(inputs, result, idx_removed):
+ """
+ Checks if we can use BLAS (np.tensordot) call and its beneficial to do so.
+
+ Parameters
+ ----------
+ inputs : list of str
+ Specifies the subscripts for summation.
+ result : str
+ Resulting summation.
+ idx_removed : set
+ Indices that are removed in the summation
+
+
+ Returns
+ -------
+ type : bool
+ Returns true if BLAS should and can be used, else False
+
+ Notes
+ -----
+ If the operations is BLAS level 1 or 2 and is not already aligned
+ we default back to einsum as the memory movement to copy is more
+ costly than the operation itself.
+
+
+ Examples
+ --------
+
+ # Standard GEMM operation
+ >>> _can_dot(['ij', 'jk'], 'ik', set('j'))
+ True
+
+ # Can use the standard BLAS, but requires odd data movement
+ >>> _can_dot(['ijj', 'jk'], 'ik', set('j'))
+ False
+
+ # DDOT where the memory is not aligned
+ >>> _can_dot(['ijk', 'ikj'], '', set('ijk'))
+ False
+
+ """
+
+ # All `dot` calls remove indices
+ if len(idx_removed) == 0:
+ return False
+
+ # BLAS can only handle two operands
+ if len(inputs) != 2:
+ return False
+
+ input_left, input_right = inputs
+
+ for c in set(input_left + input_right):
+ # can't deal with repeated indices on same input or more than 2 total
+ nl, nr = input_left.count(c), input_right.count(c)
+ if (nl > 1) or (nr > 1) or (nl + nr > 2):
+ return False
+
+ # can't do implicit summation or dimension collapse e.g.
+ # "ab,bc->c" (implicitly sum over 'a')
+ # "ab,ca->ca" (take diagonal of 'a')
+ if nl + nr - 1 == int(c in result):
+ return False
+
+ # Build a few temporaries
+ set_left = set(input_left)
+ set_right = set(input_right)
+ keep_left = set_left - idx_removed
+ keep_right = set_right - idx_removed
+ rs = len(idx_removed)
+
+ # At this point we are a DOT, GEMV, or GEMM operation
+
+ # Handle inner products
+
+ # DDOT with aligned data
+ if input_left == input_right:
+ return True
+
+ # DDOT without aligned data (better to use einsum)
+ if set_left == set_right:
+ return False
+
+ # Handle the 4 possible (aligned) GEMV or GEMM cases
+
+ # GEMM or GEMV no transpose
+ if input_left[-rs:] == input_right[:rs]:
+ return True
+
+ # GEMM or GEMV transpose both
+ if input_left[:rs] == input_right[-rs:]:
+ return True
+
+ # GEMM or GEMV transpose right
+ if input_left[-rs:] == input_right[-rs:]:
+ return True
+
+ # GEMM or GEMV transpose left
+ if input_left[:rs] == input_right[:rs]:
+ return True
+
+ # Einsum is faster than GEMV if we have to copy data
+ if not keep_left or not keep_right:
+ return False
+
+ # We are a matrix-matrix product, but we need to copy data
+ return True
+
+
+def _parse_einsum_input(operands):
+ """
+ A reproduction of einsum c side einsum parsing in python.
+
+ Returns
+ -------
+ input_strings : str
+ Parsed input strings
+ output_string : str
+ Parsed output string
+ operands : list of array_like
+ The operands to use in the numpy contraction
+
+ Examples
+ --------
+ The operand list is simplified to reduce printing:
+
+ >>> np.random.seed(123)
+ >>> a = np.random.rand(4, 4)
+ >>> b = np.random.rand(4, 4, 4)
+ >>> _parse_einsum_input(('...a,...a->...', a, b))
+ ('za,xza', 'xz', [a, b]) # may vary
+
+ >>> _parse_einsum_input((a, [Ellipsis, 0], b, [Ellipsis, 0]))
+ ('za,xza', 'xz', [a, b]) # may vary
+ """
+
+ if len(operands) == 0:
+ raise ValueError("No input operands")
+
+ if isinstance(operands[0], str):
+ subscripts = operands[0].replace(" ", "")
+ operands = [asanyarray(v) for v in operands[1:]]
+
+ # Ensure all characters are valid
+ for s in subscripts:
+ if s in '.,->':
+ continue
+ if s not in einsum_symbols:
+ raise ValueError(f"Character {s} is not a valid symbol.")
+
+ else:
+ tmp_operands = list(operands)
+ operand_list = []
+ subscript_list = []
+ for p in range(len(operands) // 2):
+ operand_list.append(tmp_operands.pop(0))
+ subscript_list.append(tmp_operands.pop(0))
+
+ output_list = tmp_operands[-1] if len(tmp_operands) else None
+ operands = [asanyarray(v) for v in operand_list]
+ subscripts = ""
+ last = len(subscript_list) - 1
+ for num, sub in enumerate(subscript_list):
+ for s in sub:
+ if s is Ellipsis:
+ subscripts += "..."
+ else:
+ try:
+ s = operator.index(s)
+ except TypeError as e:
+ raise TypeError(
+ "For this input type lists must contain "
+ "either int or Ellipsis"
+ ) from e
+ subscripts += einsum_symbols[s]
+ if num != last:
+ subscripts += ","
+
+ if output_list is not None:
+ subscripts += "->"
+ for s in output_list:
+ if s is Ellipsis:
+ subscripts += "..."
+ else:
+ try:
+ s = operator.index(s)
+ except TypeError as e:
+ raise TypeError(
+ "For this input type lists must contain "
+ "either int or Ellipsis"
+ ) from e
+ subscripts += einsum_symbols[s]
+ # Check for proper "->"
+ if ("-" in subscripts) or (">" in subscripts):
+ invalid = (subscripts.count("-") > 1) or (subscripts.count(">") > 1)
+ if invalid or (subscripts.count("->") != 1):
+ raise ValueError("Subscripts can only contain one '->'.")
+
+ # Parse ellipses
+ if "." in subscripts:
+ used = subscripts.replace(".", "").replace(",", "").replace("->", "")
+ unused = list(einsum_symbols_set - set(used))
+ ellipse_inds = "".join(unused)
+ longest = 0
+
+ if "->" in subscripts:
+ input_tmp, output_sub = subscripts.split("->")
+ split_subscripts = input_tmp.split(",")
+ out_sub = True
+ else:
+ split_subscripts = subscripts.split(',')
+ out_sub = False
+
+ for num, sub in enumerate(split_subscripts):
+ if "." in sub:
+ if (sub.count(".") != 3) or (sub.count("...") != 1):
+ raise ValueError("Invalid Ellipses.")
+
+ # Take into account numerical values
+ if operands[num].shape == ():
+ ellipse_count = 0
+ else:
+ ellipse_count = max(operands[num].ndim, 1)
+ ellipse_count -= (len(sub) - 3)
+
+ if ellipse_count > longest:
+ longest = ellipse_count
+
+ if ellipse_count < 0:
+ raise ValueError("Ellipses lengths do not match.")
+ elif ellipse_count == 0:
+ split_subscripts[num] = sub.replace('...', '')
+ else:
+ rep_inds = ellipse_inds[-ellipse_count:]
+ split_subscripts[num] = sub.replace('...', rep_inds)
+
+ subscripts = ",".join(split_subscripts)
+ if longest == 0:
+ out_ellipse = ""
+ else:
+ out_ellipse = ellipse_inds[-longest:]
+
+ if out_sub:
+ subscripts += "->" + output_sub.replace("...", out_ellipse)
+ else:
+ # Special care for outputless ellipses
+ output_subscript = ""
+ tmp_subscripts = subscripts.replace(",", "")
+ for s in sorted(set(tmp_subscripts)):
+ if s not in (einsum_symbols):
+ raise ValueError(f"Character {s} is not a valid symbol.")
+ if tmp_subscripts.count(s) == 1:
+ output_subscript += s
+ normal_inds = ''.join(sorted(set(output_subscript) -
+ set(out_ellipse)))
+
+ subscripts += "->" + out_ellipse + normal_inds
+
+ # Build output string if does not exist
+ if "->" in subscripts:
+ input_subscripts, output_subscript = subscripts.split("->")
+ else:
+ input_subscripts = subscripts
+ # Build output subscripts
+ tmp_subscripts = subscripts.replace(",", "")
+ output_subscript = ""
+ for s in sorted(set(tmp_subscripts)):
+ if s not in einsum_symbols:
+ raise ValueError(f"Character {s} is not a valid symbol.")
+ if tmp_subscripts.count(s) == 1:
+ output_subscript += s
+
+ # Make sure output subscripts are in the input
+ for char in output_subscript:
+ if output_subscript.count(char) != 1:
+ raise ValueError("Output character %s appeared more than once in "
+ "the output." % char)
+ if char not in input_subscripts:
+ raise ValueError(f"Output character {char} did not appear in the input")
+
+ # Make sure number operands is equivalent to the number of terms
+ if len(input_subscripts.split(',')) != len(operands):
+ raise ValueError("Number of einsum subscripts must be equal to the "
+ "number of operands.")
+
+ return (input_subscripts, output_subscript, operands)
+
+
+def _einsum_path_dispatcher(*operands, optimize=None, einsum_call=None):
+ # NOTE: technically, we should only dispatch on array-like arguments, not
+ # subscripts (given as strings). But separating operands into
+ # arrays/subscripts is a little tricky/slow (given einsum's two supported
+ # signatures), so as a practical shortcut we dispatch on everything.
+ # Strings will be ignored for dispatching since they don't define
+ # __array_function__.
+ return operands
+
+
+@array_function_dispatch(_einsum_path_dispatcher, module='numpy')
+def einsum_path(*operands, optimize='greedy', einsum_call=False):
+ """
+ einsum_path(subscripts, *operands, optimize='greedy')
+
+ Evaluates the lowest cost contraction order for an einsum expression by
+ considering the creation of intermediate arrays.
+
+ Parameters
+ ----------
+ subscripts : str
+ Specifies the subscripts for summation.
+ *operands : list of array_like
+ These are the arrays for the operation.
+ optimize : {bool, list, tuple, 'greedy', 'optimal'}
+ Choose the type of path. If a tuple is provided, the second argument is
+ assumed to be the maximum intermediate size created. If only a single
+ argument is provided the largest input or output array size is used
+ as a maximum intermediate size.
+
+ * if a list is given that starts with ``einsum_path``, uses this as the
+ contraction path
+ * if False no optimization is taken
+ * if True defaults to the 'greedy' algorithm
+ * 'optimal' An algorithm that combinatorially explores all possible
+ ways of contracting the listed tensors and chooses the least costly
+ path. Scales exponentially with the number of terms in the
+ contraction.
+ * 'greedy' An algorithm that chooses the best pair contraction
+ at each step. Effectively, this algorithm searches the largest inner,
+ Hadamard, and then outer products at each step. Scales cubically with
+ the number of terms in the contraction. Equivalent to the 'optimal'
+ path for most contractions.
+
+ Default is 'greedy'.
+
+ Returns
+ -------
+ path : list of tuples
+ A list representation of the einsum path.
+ string_repr : str
+ A printable representation of the einsum path.
+
+ Notes
+ -----
+ The resulting path indicates which terms of the input contraction should be
+ contracted first, the result of this contraction is then appended to the
+ end of the contraction list. This list can then be iterated over until all
+ intermediate contractions are complete.
+
+ See Also
+ --------
+ einsum, linalg.multi_dot
+
+ Examples
+ --------
+
+ We can begin with a chain dot example. In this case, it is optimal to
+ contract the ``b`` and ``c`` tensors first as represented by the first
+ element of the path ``(1, 2)``. The resulting tensor is added to the end
+ of the contraction and the remaining contraction ``(0, 1)`` is then
+ completed.
+
+ >>> np.random.seed(123)
+ >>> a = np.random.rand(2, 2)
+ >>> b = np.random.rand(2, 5)
+ >>> c = np.random.rand(5, 2)
+ >>> path_info = np.einsum_path('ij,jk,kl->il', a, b, c, optimize='greedy')
+ >>> print(path_info[0])
+ ['einsum_path', (1, 2), (0, 1)]
+ >>> print(path_info[1])
+ Complete contraction: ij,jk,kl->il # may vary
+ Naive scaling: 4
+ Optimized scaling: 3
+ Naive FLOP count: 1.600e+02
+ Optimized FLOP count: 5.600e+01
+ Theoretical speedup: 2.857
+ Largest intermediate: 4.000e+00 elements
+ -------------------------------------------------------------------------
+ scaling current remaining
+ -------------------------------------------------------------------------
+ 3 kl,jk->jl ij,jl->il
+ 3 jl,ij->il il->il
+
+
+ A more complex index transformation example.
+
+ >>> I = np.random.rand(10, 10, 10, 10)
+ >>> C = np.random.rand(10, 10)
+ >>> path_info = np.einsum_path('ea,fb,abcd,gc,hd->efgh', C, C, I, C, C,
+ ... optimize='greedy')
+
+ >>> print(path_info[0])
+ ['einsum_path', (0, 2), (0, 3), (0, 2), (0, 1)]
+ >>> print(path_info[1])
+ Complete contraction: ea,fb,abcd,gc,hd->efgh # may vary
+ Naive scaling: 8
+ Optimized scaling: 5
+ Naive FLOP count: 8.000e+08
+ Optimized FLOP count: 8.000e+05
+ Theoretical speedup: 1000.000
+ Largest intermediate: 1.000e+04 elements
+ --------------------------------------------------------------------------
+ scaling current remaining
+ --------------------------------------------------------------------------
+ 5 abcd,ea->bcde fb,gc,hd,bcde->efgh
+ 5 bcde,fb->cdef gc,hd,cdef->efgh
+ 5 cdef,gc->defg hd,defg->efgh
+ 5 defg,hd->efgh efgh->efgh
+ """
+
+ # Figure out what the path really is
+ path_type = optimize
+ if path_type is True:
+ path_type = 'greedy'
+ if path_type is None:
+ path_type = False
+
+ explicit_einsum_path = False
+ memory_limit = None
+
+ # No optimization or a named path algorithm
+ if (path_type is False) or isinstance(path_type, str):
+ pass
+
+ # Given an explicit path
+ elif len(path_type) and (path_type[0] == 'einsum_path'):
+ explicit_einsum_path = True
+
+ # Path tuple with memory limit
+ elif ((len(path_type) == 2) and isinstance(path_type[0], str) and
+ isinstance(path_type[1], (int, float))):
+ memory_limit = int(path_type[1])
+ path_type = path_type[0]
+
+ else:
+ raise TypeError(f"Did not understand the path: {str(path_type)}")
+
+ # Hidden option, only einsum should call this
+ einsum_call_arg = einsum_call
+
+ # Python side parsing
+ input_subscripts, output_subscript, operands = (
+ _parse_einsum_input(operands)
+ )
+
+ # Build a few useful list and sets
+ input_list = input_subscripts.split(',')
+ input_sets = [set(x) for x in input_list]
+ output_set = set(output_subscript)
+ indices = set(input_subscripts.replace(',', ''))
+
+ # Get length of each unique dimension and ensure all dimensions are correct
+ dimension_dict = {}
+ broadcast_indices = [[] for x in range(len(input_list))]
+ for tnum, term in enumerate(input_list):
+ sh = operands[tnum].shape
+ if len(sh) != len(term):
+ raise ValueError("Einstein sum subscript %s does not contain the "
+ "correct number of indices for operand %d."
+ % (input_subscripts[tnum], tnum))
+ for cnum, char in enumerate(term):
+ dim = sh[cnum]
+
+ # Build out broadcast indices
+ if dim == 1:
+ broadcast_indices[tnum].append(char)
+
+ if char in dimension_dict.keys():
+ # For broadcasting cases we always want the largest dim size
+ if dimension_dict[char] == 1:
+ dimension_dict[char] = dim
+ elif dim not in (1, dimension_dict[char]):
+ raise ValueError("Size of label '%s' for operand %d (%d) "
+ "does not match previous terms (%d)."
+ % (char, tnum, dimension_dict[char], dim))
+ else:
+ dimension_dict[char] = dim
+
+ # Convert broadcast inds to sets
+ broadcast_indices = [set(x) for x in broadcast_indices]
+
+ # Compute size of each input array plus the output array
+ size_list = [_compute_size_by_dict(term, dimension_dict)
+ for term in input_list + [output_subscript]]
+ max_size = max(size_list)
+
+ if memory_limit is None:
+ memory_arg = max_size
+ else:
+ memory_arg = memory_limit
+
+ # Compute naive cost
+ # This isn't quite right, need to look into exactly how einsum does this
+ inner_product = (sum(len(x) for x in input_sets) - len(indices)) > 0
+ naive_cost = _flop_count(
+ indices, inner_product, len(input_list), dimension_dict
+ )
+
+ # Compute the path
+ if explicit_einsum_path:
+ path = path_type[1:]
+ elif (
+ (path_type is False)
+ or (len(input_list) in [1, 2])
+ or (indices == output_set)
+ ):
+ # Nothing to be optimized, leave it to einsum
+ path = [tuple(range(len(input_list)))]
+ elif path_type == "greedy":
+ path = _greedy_path(
+ input_sets, output_set, dimension_dict, memory_arg
+ )
+ elif path_type == "optimal":
+ path = _optimal_path(
+ input_sets, output_set, dimension_dict, memory_arg
+ )
+ else:
+ raise KeyError("Path name %s not found", path_type)
+
+ cost_list, scale_list, size_list, contraction_list = [], [], [], []
+
+ # Build contraction tuple (positions, gemm, einsum_str, remaining)
+ for cnum, contract_inds in enumerate(path):
+ # Make sure we remove inds from right to left
+ contract_inds = tuple(sorted(contract_inds, reverse=True))
+
+ contract = _find_contraction(contract_inds, input_sets, output_set)
+ out_inds, input_sets, idx_removed, idx_contract = contract
+
+ cost = _flop_count(
+ idx_contract, idx_removed, len(contract_inds), dimension_dict
+ )
+ cost_list.append(cost)
+ scale_list.append(len(idx_contract))
+ size_list.append(_compute_size_by_dict(out_inds, dimension_dict))
+
+ bcast = set()
+ tmp_inputs = []
+ for x in contract_inds:
+ tmp_inputs.append(input_list.pop(x))
+ bcast |= broadcast_indices.pop(x)
+
+ new_bcast_inds = bcast - idx_removed
+
+ # If we're broadcasting, nix blas
+ if not len(idx_removed & bcast):
+ do_blas = _can_dot(tmp_inputs, out_inds, idx_removed)
+ else:
+ do_blas = False
+
+ # Last contraction
+ if (cnum - len(path)) == -1:
+ idx_result = output_subscript
+ else:
+ sort_result = [(dimension_dict[ind], ind) for ind in out_inds]
+ idx_result = "".join([x[1] for x in sorted(sort_result)])
+
+ input_list.append(idx_result)
+ broadcast_indices.append(new_bcast_inds)
+ einsum_str = ",".join(tmp_inputs) + "->" + idx_result
+
+ contraction = (
+ contract_inds, idx_removed, einsum_str, input_list[:], do_blas
+ )
+ contraction_list.append(contraction)
+
+ opt_cost = sum(cost_list) + 1
+
+ if len(input_list) != 1:
+ # Explicit "einsum_path" is usually trusted, but we detect this kind of
+ # mistake in order to prevent from returning an intermediate value.
+ raise RuntimeError(
+ f"Invalid einsum_path is specified: {len(input_list) - 1} more "
+ "operands has to be contracted.")
+
+ if einsum_call_arg:
+ return (operands, contraction_list)
+
+ # Return the path along with a nice string representation
+ overall_contraction = input_subscripts + "->" + output_subscript
+ header = ("scaling", "current", "remaining")
+
+ speedup = naive_cost / opt_cost
+ max_i = max(size_list)
+
+ path_print = f" Complete contraction: {overall_contraction}\n"
+ path_print += f" Naive scaling: {len(indices)}\n"
+ path_print += " Optimized scaling: %d\n" % max(scale_list)
+ path_print += f" Naive FLOP count: {naive_cost:.3e}\n"
+ path_print += f" Optimized FLOP count: {opt_cost:.3e}\n"
+ path_print += f" Theoretical speedup: {speedup:3.3f}\n"
+ path_print += f" Largest intermediate: {max_i:.3e} elements\n"
+ path_print += "-" * 74 + "\n"
+ path_print += "%6s %24s %40s\n" % header
+ path_print += "-" * 74
+
+ for n, contraction in enumerate(contraction_list):
+ inds, idx_rm, einsum_str, remaining, blas = contraction
+ remaining_str = ",".join(remaining) + "->" + output_subscript
+ path_run = (scale_list[n], einsum_str, remaining_str)
+ path_print += "\n%4d %24s %40s" % path_run
+
+ path = ['einsum_path'] + path
+ return (path, path_print)
+
+
+def _einsum_dispatcher(*operands, out=None, optimize=None, **kwargs):
+ # Arguably we dispatch on more arguments than we really should; see note in
+ # _einsum_path_dispatcher for why.
+ yield from operands
+ yield out
+
+
+# Rewrite einsum to handle different cases
+@array_function_dispatch(_einsum_dispatcher, module='numpy')
+def einsum(*operands, out=None, optimize=False, **kwargs):
+ """
+ einsum(subscripts, *operands, out=None, dtype=None, order='K',
+ casting='safe', optimize=False)
+
+ Evaluates the Einstein summation convention on the operands.
+
+ Using the Einstein summation convention, many common multi-dimensional,
+ linear algebraic array operations can be represented in a simple fashion.
+ In *implicit* mode `einsum` computes these values.
+
+ In *explicit* mode, `einsum` provides further flexibility to compute
+ other array operations that might not be considered classical Einstein
+ summation operations, by disabling, or forcing summation over specified
+ subscript labels.
+
+ See the notes and examples for clarification.
+
+ Parameters
+ ----------
+ subscripts : str
+ Specifies the subscripts for summation as comma separated list of
+ subscript labels. An implicit (classical Einstein summation)
+ calculation is performed unless the explicit indicator '->' is
+ included as well as subscript labels of the precise output form.
+ operands : list of array_like
+ These are the arrays for the operation.
+ out : ndarray, optional
+ If provided, the calculation is done into this array.
+ dtype : {data-type, None}, optional
+ If provided, forces the calculation to use the data type specified.
+ Note that you may have to also give a more liberal `casting`
+ parameter to allow the conversions. Default is None.
+ order : {'C', 'F', 'A', 'K'}, optional
+ Controls the memory layout of the output. 'C' means it should
+ be C contiguous. 'F' means it should be Fortran contiguous,
+ 'A' means it should be 'F' if the inputs are all 'F', 'C' otherwise.
+ 'K' means it should be as close to the layout as the inputs as
+ is possible, including arbitrarily permuted axes.
+ Default is 'K'.
+ casting : {'no', 'equiv', 'safe', 'same_kind', 'unsafe'}, optional
+ Controls what kind of data casting may occur. Setting this to
+ 'unsafe' is not recommended, as it can adversely affect accumulations.
+
+ * 'no' means the data types should not be cast at all.
+ * 'equiv' means only byte-order changes are allowed.
+ * 'safe' means only casts which can preserve values are allowed.
+ * 'same_kind' means only safe casts or casts within a kind,
+ like float64 to float32, are allowed.
+ * 'unsafe' means any data conversions may be done.
+
+ Default is 'safe'.
+ optimize : {False, True, 'greedy', 'optimal'}, optional
+ Controls if intermediate optimization should occur. No optimization
+ will occur if False and True will default to the 'greedy' algorithm.
+ Also accepts an explicit contraction list from the ``np.einsum_path``
+ function. See ``np.einsum_path`` for more details. Defaults to False.
+
+ Returns
+ -------
+ output : ndarray
+ The calculation based on the Einstein summation convention.
+
+ See Also
+ --------
+ einsum_path, dot, inner, outer, tensordot, linalg.multi_dot
+ einsum:
+ Similar verbose interface is provided by the
+ `einops <https://github.com/arogozhnikov/einops>`_ package to cover
+ additional operations: transpose, reshape/flatten, repeat/tile,
+ squeeze/unsqueeze and reductions.
+ The `opt_einsum <https://optimized-einsum.readthedocs.io/en/stable/>`_
+ optimizes contraction order for einsum-like expressions
+ in backend-agnostic manner.
+
+ Notes
+ -----
+ The Einstein summation convention can be used to compute
+ many multi-dimensional, linear algebraic array operations. `einsum`
+ provides a succinct way of representing these.
+
+ A non-exhaustive list of these operations,
+ which can be computed by `einsum`, is shown below along with examples:
+
+ * Trace of an array, :py:func:`numpy.trace`.
+ * Return a diagonal, :py:func:`numpy.diag`.
+ * Array axis summations, :py:func:`numpy.sum`.
+ * Transpositions and permutations, :py:func:`numpy.transpose`.
+ * Matrix multiplication and dot product, :py:func:`numpy.matmul`
+ :py:func:`numpy.dot`.
+ * Vector inner and outer products, :py:func:`numpy.inner`
+ :py:func:`numpy.outer`.
+ * Broadcasting, element-wise and scalar multiplication,
+ :py:func:`numpy.multiply`.
+ * Tensor contractions, :py:func:`numpy.tensordot`.
+ * Chained array operations, in efficient calculation order,
+ :py:func:`numpy.einsum_path`.
+
+ The subscripts string is a comma-separated list of subscript labels,
+ where each label refers to a dimension of the corresponding operand.
+ Whenever a label is repeated it is summed, so ``np.einsum('i,i', a, b)``
+ is equivalent to :py:func:`np.inner(a,b) <numpy.inner>`. If a label
+ appears only once, it is not summed, so ``np.einsum('i', a)``
+ produces a view of ``a`` with no changes. A further example
+ ``np.einsum('ij,jk', a, b)`` describes traditional matrix multiplication
+ and is equivalent to :py:func:`np.matmul(a,b) <numpy.matmul>`.
+ Repeated subscript labels in one operand take the diagonal.
+ For example, ``np.einsum('ii', a)`` is equivalent to
+ :py:func:`np.trace(a) <numpy.trace>`.
+
+ In *implicit mode*, the chosen subscripts are important
+ since the axes of the output are reordered alphabetically. This
+ means that ``np.einsum('ij', a)`` doesn't affect a 2D array, while
+ ``np.einsum('ji', a)`` takes its transpose. Additionally,
+ ``np.einsum('ij,jk', a, b)`` returns a matrix multiplication, while,
+ ``np.einsum('ij,jh', a, b)`` returns the transpose of the
+ multiplication since subscript 'h' precedes subscript 'i'.
+
+ In *explicit mode* the output can be directly controlled by
+ specifying output subscript labels. This requires the
+ identifier '->' as well as the list of output subscript labels.
+ This feature increases the flexibility of the function since
+ summing can be disabled or forced when required. The call
+ ``np.einsum('i->', a)`` is like :py:func:`np.sum(a) <numpy.sum>`
+ if ``a`` is a 1-D array, and ``np.einsum('ii->i', a)``
+ is like :py:func:`np.diag(a) <numpy.diag>` if ``a`` is a square 2-D array.
+ The difference is that `einsum` does not allow broadcasting by default.
+ Additionally ``np.einsum('ij,jh->ih', a, b)`` directly specifies the
+ order of the output subscript labels and therefore returns matrix
+ multiplication, unlike the example above in implicit mode.
+
+ To enable and control broadcasting, use an ellipsis. Default
+ NumPy-style broadcasting is done by adding an ellipsis
+ to the left of each term, like ``np.einsum('...ii->...i', a)``.
+ ``np.einsum('...i->...', a)`` is like
+ :py:func:`np.sum(a, axis=-1) <numpy.sum>` for array ``a`` of any shape.
+ To take the trace along the first and last axes,
+ you can do ``np.einsum('i...i', a)``, or to do a matrix-matrix
+ product with the left-most indices instead of rightmost, one can do
+ ``np.einsum('ij...,jk...->ik...', a, b)``.
+
+ When there is only one operand, no axes are summed, and no output
+ parameter is provided, a view into the operand is returned instead
+ of a new array. Thus, taking the diagonal as ``np.einsum('ii->i', a)``
+ produces a view (changed in version 1.10.0).
+
+ `einsum` also provides an alternative way to provide the subscripts and
+ operands as ``einsum(op0, sublist0, op1, sublist1, ..., [sublistout])``.
+ If the output shape is not provided in this format `einsum` will be
+ calculated in implicit mode, otherwise it will be performed explicitly.
+ The examples below have corresponding `einsum` calls with the two
+ parameter methods.
+
+ Views returned from einsum are now writeable whenever the input array
+ is writeable. For example, ``np.einsum('ijk...->kji...', a)`` will now
+ have the same effect as :py:func:`np.swapaxes(a, 0, 2) <numpy.swapaxes>`
+ and ``np.einsum('ii->i', a)`` will return a writeable view of the diagonal
+ of a 2D array.
+
+ Added the ``optimize`` argument which will optimize the contraction order
+ of an einsum expression. For a contraction with three or more operands
+ this can greatly increase the computational efficiency at the cost of
+ a larger memory footprint during computation.
+
+ Typically a 'greedy' algorithm is applied which empirical tests have shown
+ returns the optimal path in the majority of cases. In some cases 'optimal'
+ will return the superlative path through a more expensive, exhaustive
+ search. For iterative calculations it may be advisable to calculate
+ the optimal path once and reuse that path by supplying it as an argument.
+ An example is given below.
+
+ See :py:func:`numpy.einsum_path` for more details.
+
+ Examples
+ --------
+ >>> a = np.arange(25).reshape(5,5)
+ >>> b = np.arange(5)
+ >>> c = np.arange(6).reshape(2,3)
+
+ Trace of a matrix:
+
+ >>> np.einsum('ii', a)
+ 60
+ >>> np.einsum(a, [0,0])
+ 60
+ >>> np.trace(a)
+ 60
+
+ Extract the diagonal (requires explicit form):
+
+ >>> np.einsum('ii->i', a)
+ array([ 0, 6, 12, 18, 24])
+ >>> np.einsum(a, [0,0], [0])
+ array([ 0, 6, 12, 18, 24])
+ >>> np.diag(a)
+ array([ 0, 6, 12, 18, 24])
+
+ Sum over an axis (requires explicit form):
+
+ >>> np.einsum('ij->i', a)
+ array([ 10, 35, 60, 85, 110])
+ >>> np.einsum(a, [0,1], [0])
+ array([ 10, 35, 60, 85, 110])
+ >>> np.sum(a, axis=1)
+ array([ 10, 35, 60, 85, 110])
+
+ For higher dimensional arrays summing a single axis can be done
+ with ellipsis:
+
+ >>> np.einsum('...j->...', a)
+ array([ 10, 35, 60, 85, 110])
+ >>> np.einsum(a, [Ellipsis,1], [Ellipsis])
+ array([ 10, 35, 60, 85, 110])
+
+ Compute a matrix transpose, or reorder any number of axes:
+
+ >>> np.einsum('ji', c)
+ array([[0, 3],
+ [1, 4],
+ [2, 5]])
+ >>> np.einsum('ij->ji', c)
+ array([[0, 3],
+ [1, 4],
+ [2, 5]])
+ >>> np.einsum(c, [1,0])
+ array([[0, 3],
+ [1, 4],
+ [2, 5]])
+ >>> np.transpose(c)
+ array([[0, 3],
+ [1, 4],
+ [2, 5]])
+
+ Vector inner products:
+
+ >>> np.einsum('i,i', b, b)
+ 30
+ >>> np.einsum(b, [0], b, [0])
+ 30
+ >>> np.inner(b,b)
+ 30
+
+ Matrix vector multiplication:
+
+ >>> np.einsum('ij,j', a, b)
+ array([ 30, 80, 130, 180, 230])
+ >>> np.einsum(a, [0,1], b, [1])
+ array([ 30, 80, 130, 180, 230])
+ >>> np.dot(a, b)
+ array([ 30, 80, 130, 180, 230])
+ >>> np.einsum('...j,j', a, b)
+ array([ 30, 80, 130, 180, 230])
+
+ Broadcasting and scalar multiplication:
+
+ >>> np.einsum('..., ...', 3, c)
+ array([[ 0, 3, 6],
+ [ 9, 12, 15]])
+ >>> np.einsum(',ij', 3, c)
+ array([[ 0, 3, 6],
+ [ 9, 12, 15]])
+ >>> np.einsum(3, [Ellipsis], c, [Ellipsis])
+ array([[ 0, 3, 6],
+ [ 9, 12, 15]])
+ >>> np.multiply(3, c)
+ array([[ 0, 3, 6],
+ [ 9, 12, 15]])
+
+ Vector outer product:
+
+ >>> np.einsum('i,j', np.arange(2)+1, b)
+ array([[0, 1, 2, 3, 4],
+ [0, 2, 4, 6, 8]])
+ >>> np.einsum(np.arange(2)+1, [0], b, [1])
+ array([[0, 1, 2, 3, 4],
+ [0, 2, 4, 6, 8]])
+ >>> np.outer(np.arange(2)+1, b)
+ array([[0, 1, 2, 3, 4],
+ [0, 2, 4, 6, 8]])
+
+ Tensor contraction:
+
+ >>> a = np.arange(60.).reshape(3,4,5)
+ >>> b = np.arange(24.).reshape(4,3,2)
+ >>> np.einsum('ijk,jil->kl', a, b)
+ array([[4400., 4730.],
+ [4532., 4874.],
+ [4664., 5018.],
+ [4796., 5162.],
+ [4928., 5306.]])
+ >>> np.einsum(a, [0,1,2], b, [1,0,3], [2,3])
+ array([[4400., 4730.],
+ [4532., 4874.],
+ [4664., 5018.],
+ [4796., 5162.],
+ [4928., 5306.]])
+ >>> np.tensordot(a,b, axes=([1,0],[0,1]))
+ array([[4400., 4730.],
+ [4532., 4874.],
+ [4664., 5018.],
+ [4796., 5162.],
+ [4928., 5306.]])
+
+ Writeable returned arrays (since version 1.10.0):
+
+ >>> a = np.zeros((3, 3))
+ >>> np.einsum('ii->i', a)[:] = 1
+ >>> a
+ array([[1., 0., 0.],
+ [0., 1., 0.],
+ [0., 0., 1.]])
+
+ Example of ellipsis use:
+
+ >>> a = np.arange(6).reshape((3,2))
+ >>> b = np.arange(12).reshape((4,3))
+ >>> np.einsum('ki,jk->ij', a, b)
+ array([[10, 28, 46, 64],
+ [13, 40, 67, 94]])
+ >>> np.einsum('ki,...k->i...', a, b)
+ array([[10, 28, 46, 64],
+ [13, 40, 67, 94]])
+ >>> np.einsum('k...,jk', a, b)
+ array([[10, 28, 46, 64],
+ [13, 40, 67, 94]])
+
+ Chained array operations. For more complicated contractions, speed ups
+ might be achieved by repeatedly computing a 'greedy' path or pre-computing
+ the 'optimal' path and repeatedly applying it, using an `einsum_path`
+ insertion (since version 1.12.0). Performance improvements can be
+ particularly significant with larger arrays:
+
+ >>> a = np.ones(64).reshape(2,4,8)
+
+ Basic `einsum`: ~1520ms (benchmarked on 3.1GHz Intel i5.)
+
+ >>> for iteration in range(500):
+ ... _ = np.einsum('ijk,ilm,njm,nlk,abc->',a,a,a,a,a)
+
+ Sub-optimal `einsum` (due to repeated path calculation time): ~330ms
+
+ >>> for iteration in range(500):
+ ... _ = np.einsum('ijk,ilm,njm,nlk,abc->',a,a,a,a,a,
+ ... optimize='optimal')
+
+ Greedy `einsum` (faster optimal path approximation): ~160ms
+
+ >>> for iteration in range(500):
+ ... _ = np.einsum('ijk,ilm,njm,nlk,abc->',a,a,a,a,a, optimize='greedy')
+
+ Optimal `einsum` (best usage pattern in some use cases): ~110ms
+
+ >>> path = np.einsum_path('ijk,ilm,njm,nlk,abc->',a,a,a,a,a,
+ ... optimize='optimal')[0]
+ >>> for iteration in range(500):
+ ... _ = np.einsum('ijk,ilm,njm,nlk,abc->',a,a,a,a,a, optimize=path)
+
+ """
+ # Special handling if out is specified
+ specified_out = out is not None
+
+ # If no optimization, run pure einsum
+ if optimize is False:
+ if specified_out:
+ kwargs['out'] = out
+ return c_einsum(*operands, **kwargs)
+
+ # Check the kwargs to avoid a more cryptic error later, without having to
+ # repeat default values here
+ valid_einsum_kwargs = ['dtype', 'order', 'casting']
+ unknown_kwargs = [k for (k, v) in kwargs.items() if
+ k not in valid_einsum_kwargs]
+ if len(unknown_kwargs):
+ raise TypeError(f"Did not understand the following kwargs: {unknown_kwargs}")
+
+ # Build the contraction list and operand
+ operands, contraction_list = einsum_path(*operands, optimize=optimize,
+ einsum_call=True)
+
+ # Handle order kwarg for output array, c_einsum allows mixed case
+ output_order = kwargs.pop('order', 'K')
+ if output_order.upper() == 'A':
+ if all(arr.flags.f_contiguous for arr in operands):
+ output_order = 'F'
+ else:
+ output_order = 'C'
+
+ # Start contraction loop
+ for num, contraction in enumerate(contraction_list):
+ inds, idx_rm, einsum_str, remaining, blas = contraction
+ tmp_operands = [operands.pop(x) for x in inds]
+
+ # Do we need to deal with the output?
+ handle_out = specified_out and ((num + 1) == len(contraction_list))
+
+ # Call tensordot if still possible
+ if blas:
+ # Checks have already been handled
+ input_str, results_index = einsum_str.split('->')
+ input_left, input_right = input_str.split(',')
+
+ tensor_result = input_left + input_right
+ for s in idx_rm:
+ tensor_result = tensor_result.replace(s, "")
+
+ # Find indices to contract over
+ left_pos, right_pos = [], []
+ for s in sorted(idx_rm):
+ left_pos.append(input_left.find(s))
+ right_pos.append(input_right.find(s))
+
+ # Contract!
+ new_view = tensordot(
+ *tmp_operands, axes=(tuple(left_pos), tuple(right_pos))
+ )
+
+ # Build a new view if needed
+ if (tensor_result != results_index) or handle_out:
+ if handle_out:
+ kwargs["out"] = out
+ new_view = c_einsum(
+ tensor_result + '->' + results_index, new_view, **kwargs
+ )
+
+ # Call einsum
+ else:
+ # If out was specified
+ if handle_out:
+ kwargs["out"] = out
+
+ # Do the contraction
+ new_view = c_einsum(einsum_str, *tmp_operands, **kwargs)
+
+ # Append new items and dereference what we can
+ operands.append(new_view)
+ del tmp_operands, new_view
+
+ if specified_out:
+ return out
+ else:
+ return asanyarray(operands[0], order=output_order)
diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/einsumfunc.pyi b/.venv/lib/python3.12/site-packages/numpy/_core/einsumfunc.pyi
new file mode 100644
index 0000000..9653a26
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/_core/einsumfunc.pyi
@@ -0,0 +1,184 @@
+from collections.abc import Sequence
+from typing import Any, Literal, TypeAlias, TypeVar, overload
+
+import numpy as np
+from numpy import _OrderKACF, number
+from numpy._typing import (
+ NDArray,
+ _ArrayLikeBool_co,
+ _ArrayLikeComplex_co,
+ _ArrayLikeFloat_co,
+ _ArrayLikeInt_co,
+ _ArrayLikeObject_co,
+ _ArrayLikeUInt_co,
+ _DTypeLikeBool,
+ _DTypeLikeComplex,
+ _DTypeLikeComplex_co,
+ _DTypeLikeFloat,
+ _DTypeLikeInt,
+ _DTypeLikeObject,
+ _DTypeLikeUInt,
+)
+
+__all__ = ["einsum", "einsum_path"]
+
+_ArrayT = TypeVar(
+ "_ArrayT",
+ bound=NDArray[np.bool | number],
+)
+
+_OptimizeKind: TypeAlias = bool | Literal["greedy", "optimal"] | Sequence[Any] | None
+_CastingSafe: TypeAlias = Literal["no", "equiv", "safe", "same_kind"]
+_CastingUnsafe: TypeAlias = Literal["unsafe"]
+
+# TODO: Properly handle the `casting`-based combinatorics
+# TODO: We need to evaluate the content `__subscripts` in order
+# to identify whether or an array or scalar is returned. At a cursory
+# glance this seems like something that can quite easily be done with
+# a mypy plugin.
+# Something like `is_scalar = bool(__subscripts.partition("->")[-1])`
+@overload
+def einsum(
+ subscripts: str | _ArrayLikeInt_co,
+ /,
+ *operands: _ArrayLikeBool_co,
+ out: None = ...,
+ dtype: _DTypeLikeBool | None = ...,
+ order: _OrderKACF = ...,
+ casting: _CastingSafe = ...,
+ optimize: _OptimizeKind = ...,
+) -> Any: ...
+@overload
+def einsum(
+ subscripts: str | _ArrayLikeInt_co,
+ /,
+ *operands: _ArrayLikeUInt_co,
+ out: None = ...,
+ dtype: _DTypeLikeUInt | None = ...,
+ order: _OrderKACF = ...,
+ casting: _CastingSafe = ...,
+ optimize: _OptimizeKind = ...,
+) -> Any: ...
+@overload
+def einsum(
+ subscripts: str | _ArrayLikeInt_co,
+ /,
+ *operands: _ArrayLikeInt_co,
+ out: None = ...,
+ dtype: _DTypeLikeInt | None = ...,
+ order: _OrderKACF = ...,
+ casting: _CastingSafe = ...,
+ optimize: _OptimizeKind = ...,
+) -> Any: ...
+@overload
+def einsum(
+ subscripts: str | _ArrayLikeInt_co,
+ /,
+ *operands: _ArrayLikeFloat_co,
+ out: None = ...,
+ dtype: _DTypeLikeFloat | None = ...,
+ order: _OrderKACF = ...,
+ casting: _CastingSafe = ...,
+ optimize: _OptimizeKind = ...,
+) -> Any: ...
+@overload
+def einsum(
+ subscripts: str | _ArrayLikeInt_co,
+ /,
+ *operands: _ArrayLikeComplex_co,
+ out: None = ...,
+ dtype: _DTypeLikeComplex | None = ...,
+ order: _OrderKACF = ...,
+ casting: _CastingSafe = ...,
+ optimize: _OptimizeKind = ...,
+) -> Any: ...
+@overload
+def einsum(
+ subscripts: str | _ArrayLikeInt_co,
+ /,
+ *operands: Any,
+ casting: _CastingUnsafe,
+ dtype: _DTypeLikeComplex_co | None = ...,
+ out: None = ...,
+ order: _OrderKACF = ...,
+ optimize: _OptimizeKind = ...,
+) -> Any: ...
+@overload
+def einsum(
+ subscripts: str | _ArrayLikeInt_co,
+ /,
+ *operands: _ArrayLikeComplex_co,
+ out: _ArrayT,
+ dtype: _DTypeLikeComplex_co | None = ...,
+ order: _OrderKACF = ...,
+ casting: _CastingSafe = ...,
+ optimize: _OptimizeKind = ...,
+) -> _ArrayT: ...
+@overload
+def einsum(
+ subscripts: str | _ArrayLikeInt_co,
+ /,
+ *operands: Any,
+ out: _ArrayT,
+ casting: _CastingUnsafe,
+ dtype: _DTypeLikeComplex_co | None = ...,
+ order: _OrderKACF = ...,
+ optimize: _OptimizeKind = ...,
+) -> _ArrayT: ...
+
+@overload
+def einsum(
+ subscripts: str | _ArrayLikeInt_co,
+ /,
+ *operands: _ArrayLikeObject_co,
+ out: None = ...,
+ dtype: _DTypeLikeObject | None = ...,
+ order: _OrderKACF = ...,
+ casting: _CastingSafe = ...,
+ optimize: _OptimizeKind = ...,
+) -> Any: ...
+@overload
+def einsum(
+ subscripts: str | _ArrayLikeInt_co,
+ /,
+ *operands: Any,
+ casting: _CastingUnsafe,
+ dtype: _DTypeLikeObject | None = ...,
+ out: None = ...,
+ order: _OrderKACF = ...,
+ optimize: _OptimizeKind = ...,
+) -> Any: ...
+@overload
+def einsum(
+ subscripts: str | _ArrayLikeInt_co,
+ /,
+ *operands: _ArrayLikeObject_co,
+ out: _ArrayT,
+ dtype: _DTypeLikeObject | None = ...,
+ order: _OrderKACF = ...,
+ casting: _CastingSafe = ...,
+ optimize: _OptimizeKind = ...,
+) -> _ArrayT: ...
+@overload
+def einsum(
+ subscripts: str | _ArrayLikeInt_co,
+ /,
+ *operands: Any,
+ out: _ArrayT,
+ casting: _CastingUnsafe,
+ dtype: _DTypeLikeObject | None = ...,
+ order: _OrderKACF = ...,
+ optimize: _OptimizeKind = ...,
+) -> _ArrayT: ...
+
+# NOTE: `einsum_call` is a hidden kwarg unavailable for public use.
+# It is therefore excluded from the signatures below.
+# NOTE: In practice the list consists of a `str` (first element)
+# and a variable number of integer tuples.
+def einsum_path(
+ subscripts: str | _ArrayLikeInt_co,
+ /,
+ *operands: _ArrayLikeComplex_co | _DTypeLikeObject,
+ optimize: _OptimizeKind = "greedy",
+ einsum_call: Literal[False] = False,
+) -> tuple[list[Any], str]: ...
diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py b/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py
new file mode 100644
index 0000000..e20d774
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py
@@ -0,0 +1,4269 @@
+"""Module containing non-deprecated functions borrowed from Numeric.
+
+"""
+import functools
+import types
+import warnings
+
+import numpy as np
+from numpy._utils import set_module
+
+from . import _methods, overrides
+from . import multiarray as mu
+from . import numerictypes as nt
+from . import umath as um
+from ._multiarray_umath import _array_converter
+from .multiarray import asanyarray, asarray, concatenate
+
+_dt_ = nt.sctype2char
+
+# functions that are methods
+__all__ = [
+ 'all', 'amax', 'amin', 'any', 'argmax',
+ 'argmin', 'argpartition', 'argsort', 'around', 'choose', 'clip',
+ 'compress', 'cumprod', 'cumsum', 'cumulative_prod', 'cumulative_sum',
+ 'diagonal', 'mean', 'max', 'min', 'matrix_transpose',
+ 'ndim', 'nonzero', 'partition', 'prod', 'ptp', 'put',
+ 'ravel', 'repeat', 'reshape', 'resize', 'round',
+ 'searchsorted', 'shape', 'size', 'sort', 'squeeze',
+ 'std', 'sum', 'swapaxes', 'take', 'trace', 'transpose', 'var',
+]
+
+_gentype = types.GeneratorType
+# save away Python sum
+_sum_ = sum
+
+array_function_dispatch = functools.partial(
+ overrides.array_function_dispatch, module='numpy')
+
+
+# functions that are now methods
+def _wrapit(obj, method, *args, **kwds):
+ conv = _array_converter(obj)
+ # As this already tried the method, subok is maybe quite reasonable here
+ # but this follows what was done before. TODO: revisit this.
+ arr, = conv.as_arrays(subok=False)
+ result = getattr(arr, method)(*args, **kwds)
+
+ return conv.wrap(result, to_scalar=False)
+
+
+def _wrapfunc(obj, method, *args, **kwds):
+ bound = getattr(obj, method, None)
+ if bound is None:
+ return _wrapit(obj, method, *args, **kwds)
+
+ try:
+ return bound(*args, **kwds)
+ except TypeError:
+ # A TypeError occurs if the object does have such a method in its
+ # class, but its signature is not identical to that of NumPy's. This
+ # situation has occurred in the case of a downstream library like
+ # 'pandas'.
+ #
+ # Call _wrapit from within the except clause to ensure a potential
+ # exception has a traceback chain.
+ return _wrapit(obj, method, *args, **kwds)
+
+
+def _wrapreduction(obj, ufunc, method, axis, dtype, out, **kwargs):
+ passkwargs = {k: v for k, v in kwargs.items()
+ if v is not np._NoValue}
+
+ if type(obj) is not mu.ndarray:
+ try:
+ reduction = getattr(obj, method)
+ except AttributeError:
+ pass
+ else:
+ # This branch is needed for reductions like any which don't
+ # support a dtype.
+ if dtype is not None:
+ return reduction(axis=axis, dtype=dtype, out=out, **passkwargs)
+ else:
+ return reduction(axis=axis, out=out, **passkwargs)
+
+ return ufunc.reduce(obj, axis, dtype, out, **passkwargs)
+
+
+def _wrapreduction_any_all(obj, ufunc, method, axis, out, **kwargs):
+ # Same as above function, but dtype is always bool (but never passed on)
+ passkwargs = {k: v for k, v in kwargs.items()
+ if v is not np._NoValue}
+
+ if type(obj) is not mu.ndarray:
+ try:
+ reduction = getattr(obj, method)
+ except AttributeError:
+ pass
+ else:
+ return reduction(axis=axis, out=out, **passkwargs)
+
+ return ufunc.reduce(obj, axis, bool, out, **passkwargs)
+
+
+def _take_dispatcher(a, indices, axis=None, out=None, mode=None):
+ return (a, out)
+
+
+@array_function_dispatch(_take_dispatcher)
+def take(a, indices, axis=None, out=None, mode='raise'):
+ """
+ Take elements from an array along an axis.
+
+ When axis is not None, this function does the same thing as "fancy"
+ indexing (indexing arrays using arrays); however, it can be easier to use
+ if you need elements along a given axis. A call such as
+ ``np.take(arr, indices, axis=3)`` is equivalent to
+ ``arr[:,:,:,indices,...]``.
+
+ Explained without fancy indexing, this is equivalent to the following use
+ of `ndindex`, which sets each of ``ii``, ``jj``, and ``kk`` to a tuple of
+ indices::
+
+ Ni, Nk = a.shape[:axis], a.shape[axis+1:]
+ Nj = indices.shape
+ for ii in ndindex(Ni):
+ for jj in ndindex(Nj):
+ for kk in ndindex(Nk):
+ out[ii + jj + kk] = a[ii + (indices[jj],) + kk]
+
+ Parameters
+ ----------
+ a : array_like (Ni..., M, Nk...)
+ The source array.
+ indices : array_like (Nj...)
+ The indices of the values to extract.
+ Also allow scalars for indices.
+ axis : int, optional
+ The axis over which to select values. By default, the flattened
+ input array is used.
+ out : ndarray, optional (Ni..., Nj..., Nk...)
+ If provided, the result will be placed in this array. It should
+ be of the appropriate shape and dtype. Note that `out` is always
+ buffered if `mode='raise'`; use other modes for better performance.
+ mode : {'raise', 'wrap', 'clip'}, optional
+ Specifies how out-of-bounds indices will behave.
+
+ * 'raise' -- raise an error (default)
+ * 'wrap' -- wrap around
+ * 'clip' -- clip to the range
+
+ 'clip' mode means that all indices that are too large are replaced
+ by the index that addresses the last element along that axis. Note
+ that this disables indexing with negative numbers.
+
+ Returns
+ -------
+ out : ndarray (Ni..., Nj..., Nk...)
+ The returned array has the same type as `a`.
+
+ See Also
+ --------
+ compress : Take elements using a boolean mask
+ ndarray.take : equivalent method
+ take_along_axis : Take elements by matching the array and the index arrays
+
+ Notes
+ -----
+ By eliminating the inner loop in the description above, and using `s_` to
+ build simple slice objects, `take` can be expressed in terms of applying
+ fancy indexing to each 1-d slice::
+
+ Ni, Nk = a.shape[:axis], a.shape[axis+1:]
+ for ii in ndindex(Ni):
+ for kk in ndindex(Nj):
+ out[ii + s_[...,] + kk] = a[ii + s_[:,] + kk][indices]
+
+ For this reason, it is equivalent to (but faster than) the following use
+ of `apply_along_axis`::
+
+ out = np.apply_along_axis(lambda a_1d: a_1d[indices], axis, a)
+
+ Examples
+ --------
+ >>> import numpy as np
+ >>> a = [4, 3, 5, 7, 6, 8]
+ >>> indices = [0, 1, 4]
+ >>> np.take(a, indices)
+ array([4, 3, 6])
+
+ In this example if `a` is an ndarray, "fancy" indexing can be used.
+
+ >>> a = np.array(a)
+ >>> a[indices]
+ array([4, 3, 6])
+
+ If `indices` is not one dimensional, the output also has these dimensions.
+
+ >>> np.take(a, [[0, 1], [2, 3]])
+ array([[4, 3],
+ [5, 7]])
+ """
+ return _wrapfunc(a, 'take', indices, axis=axis, out=out, mode=mode)
+
+
+def _reshape_dispatcher(a, /, shape=None, order=None, *, newshape=None,
+ copy=None):
+ return (a,)
+
+
+@array_function_dispatch(_reshape_dispatcher)
+def reshape(a, /, shape=None, order='C', *, newshape=None, copy=None):
+ """
+ Gives a new shape to an array without changing its data.
+
+ Parameters
+ ----------
+ a : array_like
+ Array to be reshaped.
+ shape : int or tuple of ints
+ The new shape should be compatible with the original shape. If
+ an integer, then the result will be a 1-D array of that length.
+ One shape dimension can be -1. In this case, the value is
+ inferred from the length of the array and remaining dimensions.
+ order : {'C', 'F', 'A'}, optional
+ Read the elements of ``a`` using this index order, and place the
+ elements into the reshaped array using this index order. 'C'
+ means to read / write the elements using C-like index order,
+ with the last axis index changing fastest, back to the first
+ axis index changing slowest. 'F' means to read / write the
+ elements using Fortran-like index order, with the first index
+ changing fastest, and the last index changing slowest. Note that
+ the 'C' and 'F' options take no account of the memory layout of
+ the underlying array, and only refer to the order of indexing.
+ 'A' means to read / write the elements in Fortran-like index
+ order if ``a`` is Fortran *contiguous* in memory, C-like order
+ otherwise.
+ newshape : int or tuple of ints
+ .. deprecated:: 2.1
+ Replaced by ``shape`` argument. Retained for backward
+ compatibility.
+ copy : bool, optional
+ If ``True``, then the array data is copied. If ``None``, a copy will
+ only be made if it's required by ``order``. For ``False`` it raises
+ a ``ValueError`` if a copy cannot be avoided. Default: ``None``.
+
+ Returns
+ -------
+ reshaped_array : ndarray
+ This will be a new view object if possible; otherwise, it will
+ be a copy. Note there is no guarantee of the *memory layout* (C- or
+ Fortran- contiguous) of the returned array.
+
+ See Also
+ --------
+ ndarray.reshape : Equivalent method.
+
+ Notes
+ -----
+ It is not always possible to change the shape of an array without copying
+ the data.
+
+ The ``order`` keyword gives the index ordering both for *fetching*
+ the values from ``a``, and then *placing* the values into the output
+ array. For example, let's say you have an array:
+
+ >>> a = np.arange(6).reshape((3, 2))
+ >>> a
+ array([[0, 1],
+ [2, 3],
+ [4, 5]])
+
+ You can think of reshaping as first raveling the array (using the given
+ index order), then inserting the elements from the raveled array into the
+ new array using the same kind of index ordering as was used for the
+ raveling.
+
+ >>> np.reshape(a, (2, 3)) # C-like index ordering
+ array([[0, 1, 2],
+ [3, 4, 5]])
+ >>> np.reshape(np.ravel(a), (2, 3)) # equivalent to C ravel then C reshape
+ array([[0, 1, 2],
+ [3, 4, 5]])
+ >>> np.reshape(a, (2, 3), order='F') # Fortran-like index ordering
+ array([[0, 4, 3],
+ [2, 1, 5]])
+ >>> np.reshape(np.ravel(a, order='F'), (2, 3), order='F')
+ array([[0, 4, 3],
+ [2, 1, 5]])
+
+ Examples
+ --------
+ >>> import numpy as np
+ >>> a = np.array([[1,2,3], [4,5,6]])
+ >>> np.reshape(a, 6)
+ array([1, 2, 3, 4, 5, 6])
+ >>> np.reshape(a, 6, order='F')
+ array([1, 4, 2, 5, 3, 6])
+
+ >>> np.reshape(a, (3,-1)) # the unspecified value is inferred to be 2
+ array([[1, 2],
+ [3, 4],
+ [5, 6]])
+ """
+ if newshape is None and shape is None:
+ raise TypeError(
+ "reshape() missing 1 required positional argument: 'shape'")
+ if newshape is not None:
+ if shape is not None:
+ raise TypeError(
+ "You cannot specify 'newshape' and 'shape' arguments "
+ "at the same time.")
+ # Deprecated in NumPy 2.1, 2024-04-18
+ warnings.warn(
+ "`newshape` keyword argument is deprecated, "
+ "use `shape=...` or pass shape positionally instead. "
+ "(deprecated in NumPy 2.1)",
+ DeprecationWarning,
+ stacklevel=2,
+ )
+ shape = newshape
+ if copy is not None:
+ return _wrapfunc(a, 'reshape', shape, order=order, copy=copy)
+ return _wrapfunc(a, 'reshape', shape, order=order)
+
+
+def _choose_dispatcher(a, choices, out=None, mode=None):
+ yield a
+ yield from choices
+ yield out
+
+
+@array_function_dispatch(_choose_dispatcher)
+def choose(a, choices, out=None, mode='raise'):
+ """
+ Construct an array from an index array and a list of arrays to choose from.
+
+ First of all, if confused or uncertain, definitely look at the Examples -
+ in its full generality, this function is less simple than it might
+ seem from the following code description::
+
+ np.choose(a,c) == np.array([c[a[I]][I] for I in np.ndindex(a.shape)])
+
+ But this omits some subtleties. Here is a fully general summary:
+
+ Given an "index" array (`a`) of integers and a sequence of ``n`` arrays
+ (`choices`), `a` and each choice array are first broadcast, as necessary,
+ to arrays of a common shape; calling these *Ba* and *Bchoices[i], i =
+ 0,...,n-1* we have that, necessarily, ``Ba.shape == Bchoices[i].shape``
+ for each ``i``. Then, a new array with shape ``Ba.shape`` is created as
+ follows:
+
+ * if ``mode='raise'`` (the default), then, first of all, each element of
+ ``a`` (and thus ``Ba``) must be in the range ``[0, n-1]``; now, suppose
+ that ``i`` (in that range) is the value at the ``(j0, j1, ..., jm)``
+ position in ``Ba`` - then the value at the same position in the new array
+ is the value in ``Bchoices[i]`` at that same position;
+
+ * if ``mode='wrap'``, values in `a` (and thus `Ba`) may be any (signed)
+ integer; modular arithmetic is used to map integers outside the range
+ `[0, n-1]` back into that range; and then the new array is constructed
+ as above;
+
+ * if ``mode='clip'``, values in `a` (and thus ``Ba``) may be any (signed)
+ integer; negative integers are mapped to 0; values greater than ``n-1``
+ are mapped to ``n-1``; and then the new array is constructed as above.
+
+ Parameters
+ ----------
+ a : int array
+ This array must contain integers in ``[0, n-1]``, where ``n`` is the
+ number of choices, unless ``mode=wrap`` or ``mode=clip``, in which
+ cases any integers are permissible.
+ choices : sequence of arrays
+ Choice arrays. `a` and all of the choices must be broadcastable to the
+ same shape. If `choices` is itself an array (not recommended), then
+ its outermost dimension (i.e., the one corresponding to
+ ``choices.shape[0]``) is taken as defining the "sequence".
+ out : array, optional
+ If provided, the result will be inserted into this array. It should
+ be of the appropriate shape and dtype. Note that `out` is always
+ buffered if ``mode='raise'``; use other modes for better performance.
+ mode : {'raise' (default), 'wrap', 'clip'}, optional
+ Specifies how indices outside ``[0, n-1]`` will be treated:
+
+ * 'raise' : an exception is raised
+ * 'wrap' : value becomes value mod ``n``
+ * 'clip' : values < 0 are mapped to 0, values > n-1 are mapped to n-1
+
+ Returns
+ -------
+ merged_array : array
+ The merged result.
+
+ Raises
+ ------
+ ValueError: shape mismatch
+ If `a` and each choice array are not all broadcastable to the same
+ shape.
+
+ See Also
+ --------
+ ndarray.choose : equivalent method
+ numpy.take_along_axis : Preferable if `choices` is an array
+
+ Notes
+ -----
+ To reduce the chance of misinterpretation, even though the following
+ "abuse" is nominally supported, `choices` should neither be, nor be
+ thought of as, a single array, i.e., the outermost sequence-like container
+ should be either a list or a tuple.
+
+ Examples
+ --------
+
+ >>> import numpy as np
+ >>> choices = [[0, 1, 2, 3], [10, 11, 12, 13],
+ ... [20, 21, 22, 23], [30, 31, 32, 33]]
+ >>> np.choose([2, 3, 1, 0], choices
+ ... # the first element of the result will be the first element of the
+ ... # third (2+1) "array" in choices, namely, 20; the second element
+ ... # will be the second element of the fourth (3+1) choice array, i.e.,
+ ... # 31, etc.
+ ... )
+ array([20, 31, 12, 3])
+ >>> np.choose([2, 4, 1, 0], choices, mode='clip') # 4 goes to 3 (4-1)
+ array([20, 31, 12, 3])
+ >>> # because there are 4 choice arrays
+ >>> np.choose([2, 4, 1, 0], choices, mode='wrap') # 4 goes to (4 mod 4)
+ array([20, 1, 12, 3])
+ >>> # i.e., 0
+
+ A couple examples illustrating how choose broadcasts:
+
+ >>> a = [[1, 0, 1], [0, 1, 0], [1, 0, 1]]
+ >>> choices = [-10, 10]
+ >>> np.choose(a, choices)
+ array([[ 10, -10, 10],
+ [-10, 10, -10],
+ [ 10, -10, 10]])
+
+ >>> # With thanks to Anne Archibald
+ >>> a = np.array([0, 1]).reshape((2,1,1))
+ >>> c1 = np.array([1, 2, 3]).reshape((1,3,1))
+ >>> c2 = np.array([-1, -2, -3, -4, -5]).reshape((1,1,5))
+ >>> np.choose(a, (c1, c2)) # result is 2x3x5, res[0,:,:]=c1, res[1,:,:]=c2
+ array([[[ 1, 1, 1, 1, 1],
+ [ 2, 2, 2, 2, 2],
+ [ 3, 3, 3, 3, 3]],
+ [[-1, -2, -3, -4, -5],
+ [-1, -2, -3, -4, -5],
+ [-1, -2, -3, -4, -5]]])
+
+ """
+ return _wrapfunc(a, 'choose', choices, out=out, mode=mode)
+
+
+def _repeat_dispatcher(a, repeats, axis=None):
+ return (a,)
+
+
+@array_function_dispatch(_repeat_dispatcher)
+def repeat(a, repeats, axis=None):
+ """
+ Repeat each element of an array after themselves
+
+ Parameters
+ ----------
+ a : array_like
+ Input array.
+ repeats : int or array of ints
+ The number of repetitions for each element. `repeats` is broadcasted
+ to fit the shape of the given axis.
+ axis : int, optional
+ The axis along which to repeat values. By default, use the
+ flattened input array, and return a flat output array.
+
+ Returns
+ -------
+ repeated_array : ndarray
+ Output array which has the same shape as `a`, except along
+ the given axis.
+
+ See Also
+ --------
+ tile : Tile an array.
+ unique : Find the unique elements of an array.
+
+ Examples
+ --------
+ >>> import numpy as np
+ >>> np.repeat(3, 4)
+ array([3, 3, 3, 3])
+ >>> x = np.array([[1,2],[3,4]])
+ >>> np.repeat(x, 2)
+ array([1, 1, 2, 2, 3, 3, 4, 4])
+ >>> np.repeat(x, 3, axis=1)
+ array([[1, 1, 1, 2, 2, 2],
+ [3, 3, 3, 4, 4, 4]])
+ >>> np.repeat(x, [1, 2], axis=0)
+ array([[1, 2],
+ [3, 4],
+ [3, 4]])
+
+ """
+ return _wrapfunc(a, 'repeat', repeats, axis=axis)
+
+
+def _put_dispatcher(a, ind, v, mode=None):
+ return (a, ind, v)
+
+
+@array_function_dispatch(_put_dispatcher)
+def put(a, ind, v, mode='raise'):
+ """
+ Replaces specified elements of an array with given values.
+
+ The indexing works on the flattened target array. `put` is roughly
+ equivalent to:
+
+ ::
+
+ a.flat[ind] = v
+
+ Parameters
+ ----------
+ a : ndarray
+ Target array.
+ ind : array_like
+ Target indices, interpreted as integers.
+ v : array_like
+ Values to place in `a` at target indices. If `v` is shorter than
+ `ind` it will be repeated as necessary.
+ mode : {'raise', 'wrap', 'clip'}, optional
+ Specifies how out-of-bounds indices will behave.
+
+ * 'raise' -- raise an error (default)
+ * 'wrap' -- wrap around
+ * 'clip' -- clip to the range
+
+ 'clip' mode means that all indices that are too large are replaced
+ by the index that addresses the last element along that axis. Note
+ that this disables indexing with negative numbers. In 'raise' mode,
+ if an exception occurs the target array may still be modified.
+
+ See Also
+ --------
+ putmask, place
+ put_along_axis : Put elements by matching the array and the index arrays
+
+ Examples
+ --------
+ >>> import numpy as np
+ >>> a = np.arange(5)
+ >>> np.put(a, [0, 2], [-44, -55])
+ >>> a
+ array([-44, 1, -55, 3, 4])
+
+ >>> a = np.arange(5)
+ >>> np.put(a, 22, -5, mode='clip')
+ >>> a
+ array([ 0, 1, 2, 3, -5])
+
+ """
+ try:
+ put = a.put
+ except AttributeError as e:
+ raise TypeError(f"argument 1 must be numpy.ndarray, not {type(a)}") from e
+
+ return put(ind, v, mode=mode)
+
+
+def _swapaxes_dispatcher(a, axis1, axis2):
+ return (a,)
+
+
+@array_function_dispatch(_swapaxes_dispatcher)
+def swapaxes(a, axis1, axis2):
+ """
+ Interchange two axes of an array.
+
+ Parameters
+ ----------
+ a : array_like
+ Input array.
+ axis1 : int
+ First axis.
+ axis2 : int
+ Second axis.
+
+ Returns
+ -------
+ a_swapped : ndarray
+ For NumPy >= 1.10.0, if `a` is an ndarray, then a view of `a` is
+ returned; otherwise a new array is created. For earlier NumPy
+ versions a view of `a` is returned only if the order of the
+ axes is changed, otherwise the input array is returned.
+
+ Examples
+ --------
+ >>> import numpy as np
+ >>> x = np.array([[1,2,3]])
+ >>> np.swapaxes(x,0,1)
+ array([[1],
+ [2],
+ [3]])
+
+ >>> x = np.array([[[0,1],[2,3]],[[4,5],[6,7]]])
+ >>> x
+ array([[[0, 1],
+ [2, 3]],
+ [[4, 5],
+ [6, 7]]])
+
+ >>> np.swapaxes(x,0,2)
+ array([[[0, 4],
+ [2, 6]],
+ [[1, 5],
+ [3, 7]]])
+
+ """
+ return _wrapfunc(a, 'swapaxes', axis1, axis2)
+
+
+def _transpose_dispatcher(a, axes=None):
+ return (a,)
+
+
+@array_function_dispatch(_transpose_dispatcher)
+def transpose(a, axes=None):
+ """
+ Returns an array with axes transposed.
+
+ For a 1-D array, this returns an unchanged view of the original array, as a
+ transposed vector is simply the same vector.
+ To convert a 1-D array into a 2-D column vector, an additional dimension
+ must be added, e.g., ``np.atleast_2d(a).T`` achieves this, as does
+ ``a[:, np.newaxis]``.
+ For a 2-D array, this is the standard matrix transpose.
+ For an n-D array, if axes are given, their order indicates how the
+ axes are permuted (see Examples). If axes are not provided, then
+ ``transpose(a).shape == a.shape[::-1]``.
+
+ Parameters
+ ----------
+ a : array_like
+ Input array.
+ axes : tuple or list of ints, optional
+ If specified, it must be a tuple or list which contains a permutation
+ of [0, 1, ..., N-1] where N is the number of axes of `a`. Negative
+ indices can also be used to specify axes. The i-th axis of the returned
+ array will correspond to the axis numbered ``axes[i]`` of the input.
+ If not specified, defaults to ``range(a.ndim)[::-1]``, which reverses
+ the order of the axes.
+
+ Returns
+ -------
+ p : ndarray
+ `a` with its axes permuted. A view is returned whenever possible.
+
+ See Also
+ --------
+ ndarray.transpose : Equivalent method.
+ moveaxis : Move axes of an array to new positions.
+ argsort : Return the indices that would sort an array.
+
+ Notes
+ -----
+ Use ``transpose(a, argsort(axes))`` to invert the transposition of tensors
+ when using the `axes` keyword argument.
+
+ Examples
+ --------
+ >>> import numpy as np
+ >>> a = np.array([[1, 2], [3, 4]])
+ >>> a
+ array([[1, 2],
+ [3, 4]])
+ >>> np.transpose(a)
+ array([[1, 3],
+ [2, 4]])
+
+ >>> a = np.array([1, 2, 3, 4])
+ >>> a
+ array([1, 2, 3, 4])
+ >>> np.transpose(a)
+ array([1, 2, 3, 4])
+
+ >>> a = np.ones((1, 2, 3))
+ >>> np.transpose(a, (1, 0, 2)).shape
+ (2, 1, 3)
+
+ >>> a = np.ones((2, 3, 4, 5))
+ >>> np.transpose(a).shape
+ (5, 4, 3, 2)
+
+ >>> a = np.arange(3*4*5).reshape((3, 4, 5))
+ >>> np.transpose(a, (-1, 0, -2)).shape
+ (5, 3, 4)
+
+ """
+ return _wrapfunc(a, 'transpose', axes)
+
+
+def _matrix_transpose_dispatcher(x):
+ return (x,)
+
+@array_function_dispatch(_matrix_transpose_dispatcher)
+def matrix_transpose(x, /):
+ """
+ Transposes a matrix (or a stack of matrices) ``x``.
+
+ This function is Array API compatible.
+
+ Parameters
+ ----------
+ x : array_like
+ Input array having shape (..., M, N) and whose two innermost
+ dimensions form ``MxN`` matrices.
+
+ Returns
+ -------
+ out : ndarray
+ An array containing the transpose for each matrix and having shape
+ (..., N, M).
+
+ See Also
+ --------
+ transpose : Generic transpose method.
+
+ Examples
+ --------
+ >>> import numpy as np
+ >>> np.matrix_transpose([[1, 2], [3, 4]])
+ array([[1, 3],
+ [2, 4]])
+
+ >>> np.matrix_transpose([[[1, 2], [3, 4]], [[5, 6], [7, 8]]])
+ array([[[1, 3],
+ [2, 4]],
+ [[5, 7],
+ [6, 8]]])
+
+ """
+ x = asanyarray(x)
+ if x.ndim < 2:
+ raise ValueError(
+ f"Input array must be at least 2-dimensional, but it is {x.ndim}"
+ )
+ return swapaxes(x, -1, -2)
+
+
+def _partition_dispatcher(a, kth, axis=None, kind=None, order=None):
+ return (a,)
+
+
+@array_function_dispatch(_partition_dispatcher)
+def partition(a, kth, axis=-1, kind='introselect', order=None):
+ """
+ Return a partitioned copy of an array.
+
+ Creates a copy of the array and partially sorts it in such a way that
+ the value of the element in k-th position is in the position it would be
+ in a sorted array. In the output array, all elements smaller than the k-th
+ element are located to the left of this element and all equal or greater
+ are located to its right. The ordering of the elements in the two
+ partitions on the either side of the k-th element in the output array is
+ undefined.
+
+ Parameters
+ ----------
+ a : array_like
+ Array to be sorted.
+ kth : int or sequence of ints
+ Element index to partition by. The k-th value of the element
+ will be in its final sorted position and all smaller elements
+ will be moved before it and all equal or greater elements behind
+ it. The order of all elements in the partitions is undefined. If
+ provided with a sequence of k-th it will partition all elements
+ indexed by k-th of them into their sorted position at once.
+
+ .. deprecated:: 1.22.0
+ Passing booleans as index is deprecated.
+ axis : int or None, optional
+ Axis along which to sort. If None, the array is flattened before
+ sorting. The default is -1, which sorts along the last axis.
+ kind : {'introselect'}, optional
+ Selection algorithm. Default is 'introselect'.
+ order : str or list of str, optional
+ When `a` is an array with fields defined, this argument
+ specifies which fields to compare first, second, etc. A single
+ field can be specified as a string. Not all fields need be
+ specified, but unspecified fields will still be used, in the
+ order in which they come up in the dtype, to break ties.
+
+ Returns
+ -------
+ partitioned_array : ndarray
+ Array of the same type and shape as `a`.
+
+ See Also
+ --------
+ ndarray.partition : Method to sort an array in-place.
+ argpartition : Indirect partition.
+ sort : Full sorting
+
+ Notes
+ -----
+ The various selection algorithms are characterized by their average
+ speed, worst case performance, work space size, and whether they are
+ stable. A stable sort keeps items with the same key in the same
+ relative order. The available algorithms have the following
+ properties:
+
+ ================= ======= ============= ============ =======
+ kind speed worst case work space stable
+ ================= ======= ============= ============ =======
+ 'introselect' 1 O(n) 0 no
+ ================= ======= ============= ============ =======
+
+ All the partition algorithms make temporary copies of the data when
+ partitioning along any but the last axis. Consequently,
+ partitioning along the last axis is faster and uses less space than
+ partitioning along any other axis.
+
+ The sort order for complex numbers is lexicographic. If both the
+ real and imaginary parts are non-nan then the order is determined by
+ the real parts except when they are equal, in which case the order
+ is determined by the imaginary parts.
+
+ The sort order of ``np.nan`` is bigger than ``np.inf``.
+
+ Examples
+ --------
+ >>> import numpy as np
+ >>> a = np.array([7, 1, 7, 7, 1, 5, 7, 2, 3, 2, 6, 2, 3, 0])
+ >>> p = np.partition(a, 4)
+ >>> p
+ array([0, 1, 2, 1, 2, 5, 2, 3, 3, 6, 7, 7, 7, 7]) # may vary
+
+ ``p[4]`` is 2; all elements in ``p[:4]`` are less than or equal
+ to ``p[4]``, and all elements in ``p[5:]`` are greater than or
+ equal to ``p[4]``. The partition is::
+
+ [0, 1, 2, 1], [2], [5, 2, 3, 3, 6, 7, 7, 7, 7]
+
+ The next example shows the use of multiple values passed to `kth`.
+
+ >>> p2 = np.partition(a, (4, 8))
+ >>> p2
+ array([0, 1, 2, 1, 2, 3, 3, 2, 5, 6, 7, 7, 7, 7])
+
+ ``p2[4]`` is 2 and ``p2[8]`` is 5. All elements in ``p2[:4]``
+ are less than or equal to ``p2[4]``, all elements in ``p2[5:8]``
+ are greater than or equal to ``p2[4]`` and less than or equal to
+ ``p2[8]``, and all elements in ``p2[9:]`` are greater than or
+ equal to ``p2[8]``. The partition is::
+
+ [0, 1, 2, 1], [2], [3, 3, 2], [5], [6, 7, 7, 7, 7]
+ """
+ if axis is None:
+ # flatten returns (1, N) for np.matrix, so always use the last axis
+ a = asanyarray(a).flatten()
+ axis = -1
+ else:
+ a = asanyarray(a).copy(order="K")
+ a.partition(kth, axis=axis, kind=kind, order=order)
+ return a
+
+
+def _argpartition_dispatcher(a, kth, axis=None, kind=None, order=None):
+ return (a,)
+
+
+@array_function_dispatch(_argpartition_dispatcher)
+def argpartition(a, kth, axis=-1, kind='introselect', order=None):
+ """
+ Perform an indirect partition along the given axis using the
+ algorithm specified by the `kind` keyword. It returns an array of
+ indices of the same shape as `a` that index data along the given
+ axis in partitioned order.
+
+ Parameters
+ ----------
+ a : array_like
+ Array to sort.
+ kth : int or sequence of ints
+ Element index to partition by. The k-th element will be in its
+ final sorted position and all smaller elements will be moved
+ before it and all larger elements behind it. The order of all
+ elements in the partitions is undefined. If provided with a
+ sequence of k-th it will partition all of them into their sorted
+ position at once.
+
+ .. deprecated:: 1.22.0
+ Passing booleans as index is deprecated.
+ axis : int or None, optional
+ Axis along which to sort. The default is -1 (the last axis). If
+ None, the flattened array is used.
+ kind : {'introselect'}, optional
+ Selection algorithm. Default is 'introselect'
+ order : str or list of str, optional
+ When `a` is an array with fields defined, this argument
+ specifies which fields to compare first, second, etc. A single
+ field can be specified as a string, and not all fields need be
+ specified, but unspecified fields will still be used, in the
+ order in which they come up in the dtype, to break ties.
+
+ Returns
+ -------
+ index_array : ndarray, int
+ Array of indices that partition `a` along the specified axis.
+ If `a` is one-dimensional, ``a[index_array]`` yields a partitioned `a`.
+ More generally, ``np.take_along_axis(a, index_array, axis=axis)``
+ always yields the partitioned `a`, irrespective of dimensionality.
+
+ See Also
+ --------
+ partition : Describes partition algorithms used.
+ ndarray.partition : Inplace partition.
+ argsort : Full indirect sort.
+ take_along_axis : Apply ``index_array`` from argpartition
+ to an array as if by calling partition.
+
+ Notes
+ -----
+ The returned indices are not guaranteed to be sorted according to
+ the values. Furthermore, the default selection algorithm ``introselect``
+ is unstable, and hence the returned indices are not guaranteed
+ to be the earliest/latest occurrence of the element.
+
+ `argpartition` works for real/complex inputs with nan values,
+ see `partition` for notes on the enhanced sort order and
+ different selection algorithms.
+
+ Examples
+ --------
+ One dimensional array:
+
+ >>> import numpy as np
+ >>> x = np.array([3, 4, 2, 1])
+ >>> x[np.argpartition(x, 3)]
+ array([2, 1, 3, 4]) # may vary
+ >>> x[np.argpartition(x, (1, 3))]
+ array([1, 2, 3, 4]) # may vary
+
+ >>> x = [3, 4, 2, 1]
+ >>> np.array(x)[np.argpartition(x, 3)]
+ array([2, 1, 3, 4]) # may vary
+
+ Multi-dimensional array:
+
+ >>> x = np.array([[3, 4, 2], [1, 3, 1]])
+ >>> index_array = np.argpartition(x, kth=1, axis=-1)
+ >>> # below is the same as np.partition(x, kth=1)
+ >>> np.take_along_axis(x, index_array, axis=-1)
+ array([[2, 3, 4],
+ [1, 1, 3]])
+
+ """
+ return _wrapfunc(a, 'argpartition', kth, axis=axis, kind=kind, order=order)
+
+
+def _sort_dispatcher(a, axis=None, kind=None, order=None, *, stable=None):
+ return (a,)
+
+
+@array_function_dispatch(_sort_dispatcher)
+def sort(a, axis=-1, kind=None, order=None, *, stable=None):
+ """
+ Return a sorted copy of an array.
+
+ Parameters
+ ----------
+ a : array_like
+ Array to be sorted.
+ axis : int or None, optional
+ Axis along which to sort. If None, the array is flattened before
+ sorting. The default is -1, which sorts along the last axis.
+ kind : {'quicksort', 'mergesort', 'heapsort', 'stable'}, optional
+ Sorting algorithm. The default is 'quicksort'. Note that both 'stable'
+ and 'mergesort' use timsort or radix sort under the covers and,
+ in general, the actual implementation will vary with data type.
+ The 'mergesort' option is retained for backwards compatibility.
+ order : str or list of str, optional
+ When `a` is an array with fields defined, this argument specifies
+ which fields to compare first, second, etc. A single field can
+ be specified as a string, and not all fields need be specified,
+ but unspecified fields will still be used, in the order in which
+ they come up in the dtype, to break ties.
+ stable : bool, optional
+ Sort stability. If ``True``, the returned array will maintain
+ the relative order of ``a`` values which compare as equal.
+ If ``False`` or ``None``, this is not guaranteed. Internally,
+ this option selects ``kind='stable'``. Default: ``None``.
+
+ .. versionadded:: 2.0.0
+
+ Returns
+ -------
+ sorted_array : ndarray
+ Array of the same type and shape as `a`.
+
+ See Also
+ --------
+ ndarray.sort : Method to sort an array in-place.
+ argsort : Indirect sort.
+ lexsort : Indirect stable sort on multiple keys.
+ searchsorted : Find elements in a sorted array.
+ partition : Partial sort.
+
+ Notes
+ -----
+ The various sorting algorithms are characterized by their average speed,
+ worst case performance, work space size, and whether they are stable. A
+ stable sort keeps items with the same key in the same relative
+ order. The four algorithms implemented in NumPy have the following
+ properties:
+
+ =========== ======= ============= ============ ========
+ kind speed worst case work space stable
+ =========== ======= ============= ============ ========
+ 'quicksort' 1 O(n^2) 0 no
+ 'heapsort' 3 O(n*log(n)) 0 no
+ 'mergesort' 2 O(n*log(n)) ~n/2 yes
+ 'timsort' 2 O(n*log(n)) ~n/2 yes
+ =========== ======= ============= ============ ========
+
+ .. note:: The datatype determines which of 'mergesort' or 'timsort'
+ is actually used, even if 'mergesort' is specified. User selection
+ at a finer scale is not currently available.
+
+ For performance, ``sort`` makes a temporary copy if needed to make the data
+ `contiguous <https://numpy.org/doc/stable/glossary.html#term-contiguous>`_
+ in memory along the sort axis. For even better performance and reduced
+ memory consumption, ensure that the array is already contiguous along the
+ sort axis.
+
+ The sort order for complex numbers is lexicographic. If both the real
+ and imaginary parts are non-nan then the order is determined by the
+ real parts except when they are equal, in which case the order is
+ determined by the imaginary parts.
+
+ Previous to numpy 1.4.0 sorting real and complex arrays containing nan
+ values led to undefined behaviour. In numpy versions >= 1.4.0 nan
+ values are sorted to the end. The extended sort order is:
+
+ * Real: [R, nan]
+ * Complex: [R + Rj, R + nanj, nan + Rj, nan + nanj]
+
+ where R is a non-nan real value. Complex values with the same nan
+ placements are sorted according to the non-nan part if it exists.
+ Non-nan values are sorted as before.
+
+ quicksort has been changed to:
+ `introsort <https://en.wikipedia.org/wiki/Introsort>`_.
+ When sorting does not make enough progress it switches to
+ `heapsort <https://en.wikipedia.org/wiki/Heapsort>`_.
+ This implementation makes quicksort O(n*log(n)) in the worst case.
+
+ 'stable' automatically chooses the best stable sorting algorithm
+ for the data type being sorted.
+ It, along with 'mergesort' is currently mapped to
+ `timsort <https://en.wikipedia.org/wiki/Timsort>`_
+ or `radix sort <https://en.wikipedia.org/wiki/Radix_sort>`_
+ depending on the data type.
+ API forward compatibility currently limits the
+ ability to select the implementation and it is hardwired for the different
+ data types.
+
+ Timsort is added for better performance on already or nearly
+ sorted data. On random data timsort is almost identical to
+ mergesort. It is now used for stable sort while quicksort is still the
+ default sort if none is chosen. For timsort details, refer to
+ `CPython listsort.txt
+ <https://github.com/python/cpython/blob/3.7/Objects/listsort.txt>`_
+ 'mergesort' and 'stable' are mapped to radix sort for integer data types.
+ Radix sort is an O(n) sort instead of O(n log n).
+
+ NaT now sorts to the end of arrays for consistency with NaN.
+
+ Examples
+ --------
+ >>> import numpy as np
+ >>> a = np.array([[1,4],[3,1]])
+ >>> np.sort(a) # sort along the last axis
+ array([[1, 4],
+ [1, 3]])
+ >>> np.sort(a, axis=None) # sort the flattened array
+ array([1, 1, 3, 4])
+ >>> np.sort(a, axis=0) # sort along the first axis
+ array([[1, 1],
+ [3, 4]])
+
+ Use the `order` keyword to specify a field to use when sorting a
+ structured array:
+
+ >>> dtype = [('name', 'S10'), ('height', float), ('age', int)]
+ >>> values = [('Arthur', 1.8, 41), ('Lancelot', 1.9, 38),
+ ... ('Galahad', 1.7, 38)]
+ >>> a = np.array(values, dtype=dtype) # create a structured array
+ >>> np.sort(a, order='height') # doctest: +SKIP
+ array([('Galahad', 1.7, 38), ('Arthur', 1.8, 41),
+ ('Lancelot', 1.8999999999999999, 38)],
+ dtype=[('name', '|S10'), ('height', '<f8'), ('age', '<i4')])
+
+ Sort by age, then height if ages are equal:
+
+ >>> np.sort(a, order=['age', 'height']) # doctest: +SKIP
+ array([('Galahad', 1.7, 38), ('Lancelot', 1.8999999999999999, 38),
+ ('Arthur', 1.8, 41)],
+ dtype=[('name', '|S10'), ('height', '<f8'), ('age', '<i4')])
+
+ """
+ if axis is None:
+ # flatten returns (1, N) for np.matrix, so always use the last axis
+ a = asanyarray(a).flatten()
+ axis = -1
+ else:
+ a = asanyarray(a).copy(order="K")
+ a.sort(axis=axis, kind=kind, order=order, stable=stable)
+ return a
+
+
+def _argsort_dispatcher(a, axis=None, kind=None, order=None, *, stable=None):
+ return (a,)
+
+
+@array_function_dispatch(_argsort_dispatcher)
+def argsort(a, axis=-1, kind=None, order=None, *, stable=None):
+ """
+ Returns the indices that would sort an array.
+
+ Perform an indirect sort along the given axis using the algorithm specified
+ by the `kind` keyword. It returns an array of indices of the same shape as
+ `a` that index data along the given axis in sorted order.
+
+ Parameters
+ ----------
+ a : array_like
+ Array to sort.
+ axis : int or None, optional
+ Axis along which to sort. The default is -1 (the last axis). If None,
+ the flattened array is used.
+ kind : {'quicksort', 'mergesort', 'heapsort', 'stable'}, optional
+ Sorting algorithm. The default is 'quicksort'. Note that both 'stable'
+ and 'mergesort' use timsort under the covers and, in general, the
+ actual implementation will vary with data type. The 'mergesort' option
+ is retained for backwards compatibility.
+ order : str or list of str, optional
+ When `a` is an array with fields defined, this argument specifies
+ which fields to compare first, second, etc. A single field can
+ be specified as a string, and not all fields need be specified,
+ but unspecified fields will still be used, in the order in which
+ they come up in the dtype, to break ties.
+ stable : bool, optional
+ Sort stability. If ``True``, the returned array will maintain
+ the relative order of ``a`` values which compare as equal.
+ If ``False`` or ``None``, this is not guaranteed. Internally,
+ this option selects ``kind='stable'``. Default: ``None``.
+
+ .. versionadded:: 2.0.0
+
+ Returns
+ -------
+ index_array : ndarray, int
+ Array of indices that sort `a` along the specified `axis`.
+ If `a` is one-dimensional, ``a[index_array]`` yields a sorted `a`.
+ More generally, ``np.take_along_axis(a, index_array, axis=axis)``
+ always yields the sorted `a`, irrespective of dimensionality.
+
+ See Also
+ --------
+ sort : Describes sorting algorithms used.
+ lexsort : Indirect stable sort with multiple keys.
+ ndarray.sort : Inplace sort.
+ argpartition : Indirect partial sort.
+ take_along_axis : Apply ``index_array`` from argsort
+ to an array as if by calling sort.
+
+ Notes
+ -----
+ See `sort` for notes on the different sorting algorithms.
+
+ As of NumPy 1.4.0 `argsort` works with real/complex arrays containing
+ nan values. The enhanced sort order is documented in `sort`.
+
+ Examples
+ --------
+ One dimensional array:
+
+ >>> import numpy as np
+ >>> x = np.array([3, 1, 2])
+ >>> np.argsort(x)
+ array([1, 2, 0])
+
+ Two-dimensional array:
+
+ >>> x = np.array([[0, 3], [2, 2]])
+ >>> x
+ array([[0, 3],
+ [2, 2]])
+
+ >>> ind = np.argsort(x, axis=0) # sorts along first axis (down)
+ >>> ind
+ array([[0, 1],
+ [1, 0]])
+ >>> np.take_along_axis(x, ind, axis=0) # same as np.sort(x, axis=0)
+ array([[0, 2],
+ [2, 3]])
+
+ >>> ind = np.argsort(x, axis=1) # sorts along last axis (across)
+ >>> ind
+ array([[0, 1],
+ [0, 1]])
+ >>> np.take_along_axis(x, ind, axis=1) # same as np.sort(x, axis=1)
+ array([[0, 3],
+ [2, 2]])
+
+ Indices of the sorted elements of a N-dimensional array:
+
+ >>> ind = np.unravel_index(np.argsort(x, axis=None), x.shape)
+ >>> ind
+ (array([0, 1, 1, 0]), array([0, 0, 1, 1]))
+ >>> x[ind] # same as np.sort(x, axis=None)
+ array([0, 2, 2, 3])
+
+ Sorting with keys:
+
+ >>> x = np.array([(1, 0), (0, 1)], dtype=[('x', '<i4'), ('y', '<i4')])
+ >>> x
+ array([(1, 0), (0, 1)],
+ dtype=[('x', '<i4'), ('y', '<i4')])
+
+ >>> np.argsort(x, order=('x','y'))
+ array([1, 0])
+
+ >>> np.argsort(x, order=('y','x'))
+ array([0, 1])
+
+ """
+ return _wrapfunc(
+ a, 'argsort', axis=axis, kind=kind, order=order, stable=stable
+ )
+
+def _argmax_dispatcher(a, axis=None, out=None, *, keepdims=np._NoValue):
+ return (a, out)
+
+
+@array_function_dispatch(_argmax_dispatcher)
+def argmax(a, axis=None, out=None, *, keepdims=np._NoValue):
+ """
+ Returns the indices of the maximum values along an axis.
+
+ Parameters
+ ----------
+ a : array_like
+ Input array.
+ axis : int, optional
+ By default, the index is into the flattened array, otherwise
+ along the specified axis.
+ out : array, optional
+ If provided, the result will be inserted into this array. It should
+ be of the appropriate shape and dtype.
+ keepdims : bool, optional
+ If this is set to True, the axes which are reduced are left
+ in the result as dimensions with size one. With this option,
+ the result will broadcast correctly against the array.
+
+ .. versionadded:: 1.22.0
+
+ Returns
+ -------
+ index_array : ndarray of ints
+ Array of indices into the array. It has the same shape as ``a.shape``
+ with the dimension along `axis` removed. If `keepdims` is set to True,
+ then the size of `axis` will be 1 with the resulting array having same
+ shape as ``a.shape``.
+
+ See Also
+ --------
+ ndarray.argmax, argmin
+ amax : The maximum value along a given axis.
+ unravel_index : Convert a flat index into an index tuple.
+ take_along_axis : Apply ``np.expand_dims(index_array, axis)``
+ from argmax to an array as if by calling max.
+
+ Notes
+ -----
+ In case of multiple occurrences of the maximum values, the indices
+ corresponding to the first occurrence are returned.
+
+ Examples
+ --------
+ >>> import numpy as np
+ >>> a = np.arange(6).reshape(2,3) + 10
+ >>> a
+ array([[10, 11, 12],
+ [13, 14, 15]])
+ >>> np.argmax(a)
+ 5
+ >>> np.argmax(a, axis=0)
+ array([1, 1, 1])
+ >>> np.argmax(a, axis=1)
+ array([2, 2])
+
+ Indexes of the maximal elements of a N-dimensional array:
+
+ >>> ind = np.unravel_index(np.argmax(a, axis=None), a.shape)
+ >>> ind
+ (1, 2)
+ >>> a[ind]
+ 15
+
+ >>> b = np.arange(6)
+ >>> b[1] = 5
+ >>> b
+ array([0, 5, 2, 3, 4, 5])
+ >>> np.argmax(b) # Only the first occurrence is returned.
+ 1
+
+ >>> x = np.array([[4,2,3], [1,0,3]])
+ >>> index_array = np.argmax(x, axis=-1)
+ >>> # Same as np.amax(x, axis=-1, keepdims=True)
+ >>> np.take_along_axis(x, np.expand_dims(index_array, axis=-1), axis=-1)
+ array([[4],
+ [3]])
+ >>> # Same as np.amax(x, axis=-1)
+ >>> np.take_along_axis(x, np.expand_dims(index_array, axis=-1),
+ ... axis=-1).squeeze(axis=-1)
+ array([4, 3])
+
+ Setting `keepdims` to `True`,
+
+ >>> x = np.arange(24).reshape((2, 3, 4))
+ >>> res = np.argmax(x, axis=1, keepdims=True)
+ >>> res.shape
+ (2, 1, 4)
+ """
+ kwds = {'keepdims': keepdims} if keepdims is not np._NoValue else {}
+ return _wrapfunc(a, 'argmax', axis=axis, out=out, **kwds)
+
+
+def _argmin_dispatcher(a, axis=None, out=None, *, keepdims=np._NoValue):
+ return (a, out)
+
+
+@array_function_dispatch(_argmin_dispatcher)
+def argmin(a, axis=None, out=None, *, keepdims=np._NoValue):
+ """
+ Returns the indices of the minimum values along an axis.
+
+ Parameters
+ ----------
+ a : array_like
+ Input array.
+ axis : int, optional
+ By default, the index is into the flattened array, otherwise
+ along the specified axis.
+ out : array, optional
+ If provided, the result will be inserted into this array. It should
+ be of the appropriate shape and dtype.
+ keepdims : bool, optional
+ If this is set to True, the axes which are reduced are left
+ in the result as dimensions with size one. With this option,
+ the result will broadcast correctly against the array.
+
+ .. versionadded:: 1.22.0
+
+ Returns
+ -------
+ index_array : ndarray of ints
+ Array of indices into the array. It has the same shape as `a.shape`
+ with the dimension along `axis` removed. If `keepdims` is set to True,
+ then the size of `axis` will be 1 with the resulting array having same
+ shape as `a.shape`.
+
+ See Also
+ --------
+ ndarray.argmin, argmax
+ amin : The minimum value along a given axis.
+ unravel_index : Convert a flat index into an index tuple.
+ take_along_axis : Apply ``np.expand_dims(index_array, axis)``
+ from argmin to an array as if by calling min.
+
+ Notes
+ -----
+ In case of multiple occurrences of the minimum values, the indices
+ corresponding to the first occurrence are returned.
+
+ Examples
+ --------
+ >>> import numpy as np
+ >>> a = np.arange(6).reshape(2,3) + 10
+ >>> a
+ array([[10, 11, 12],
+ [13, 14, 15]])
+ >>> np.argmin(a)
+ 0
+ >>> np.argmin(a, axis=0)
+ array([0, 0, 0])
+ >>> np.argmin(a, axis=1)
+ array([0, 0])
+
+ Indices of the minimum elements of a N-dimensional array:
+
+ >>> ind = np.unravel_index(np.argmin(a, axis=None), a.shape)
+ >>> ind
+ (0, 0)
+ >>> a[ind]
+ 10
+
+ >>> b = np.arange(6) + 10
+ >>> b[4] = 10
+ >>> b
+ array([10, 11, 12, 13, 10, 15])
+ >>> np.argmin(b) # Only the first occurrence is returned.
+ 0
+
+ >>> x = np.array([[4,2,3], [1,0,3]])
+ >>> index_array = np.argmin(x, axis=-1)
+ >>> # Same as np.amin(x, axis=-1, keepdims=True)
+ >>> np.take_along_axis(x, np.expand_dims(index_array, axis=-1), axis=-1)
+ array([[2],
+ [0]])
+ >>> # Same as np.amax(x, axis=-1)
+ >>> np.take_along_axis(x, np.expand_dims(index_array, axis=-1),
+ ... axis=-1).squeeze(axis=-1)
+ array([2, 0])
+
+ Setting `keepdims` to `True`,
+
+ >>> x = np.arange(24).reshape((2, 3, 4))
+ >>> res = np.argmin(x, axis=1, keepdims=True)
+ >>> res.shape
+ (2, 1, 4)
+ """
+ kwds = {'keepdims': keepdims} if keepdims is not np._NoValue else {}
+ return _wrapfunc(a, 'argmin', axis=axis, out=out, **kwds)
+
+
+def _searchsorted_dispatcher(a, v, side=None, sorter=None):
+ return (a, v, sorter)
+
+
+@array_function_dispatch(_searchsorted_dispatcher)
+def searchsorted(a, v, side='left', sorter=None):
+ """
+ Find indices where elements should be inserted to maintain order.
+
+ Find the indices into a sorted array `a` such that, if the
+ corresponding elements in `v` were inserted before the indices, the
+ order of `a` would be preserved.
+
+ Assuming that `a` is sorted:
+
+ ====== ============================
+ `side` returned index `i` satisfies
+ ====== ============================
+ left ``a[i-1] < v <= a[i]``
+ right ``a[i-1] <= v < a[i]``
+ ====== ============================
+
+ Parameters
+ ----------
+ a : 1-D array_like
+ Input array. If `sorter` is None, then it must be sorted in
+ ascending order, otherwise `sorter` must be an array of indices
+ that sort it.
+ v : array_like
+ Values to insert into `a`.
+ side : {'left', 'right'}, optional
+ If 'left', the index of the first suitable location found is given.
+ If 'right', return the last such index. If there is no suitable
+ index, return either 0 or N (where N is the length of `a`).
+ sorter : 1-D array_like, optional
+ Optional array of integer indices that sort array a into ascending
+ order. They are typically the result of argsort.
+
+ Returns
+ -------
+ indices : int or array of ints
+ Array of insertion points with the same shape as `v`,
+ or an integer if `v` is a scalar.
+
+ See Also
+ --------
+ sort : Return a sorted copy of an array.
+ histogram : Produce histogram from 1-D data.
+
+ Notes
+ -----
+ Binary search is used to find the required insertion points.
+
+ As of NumPy 1.4.0 `searchsorted` works with real/complex arrays containing
+ `nan` values. The enhanced sort order is documented in `sort`.
+
+ This function uses the same algorithm as the builtin python
+ `bisect.bisect_left` (``side='left'``) and `bisect.bisect_right`
+ (``side='right'``) functions, which is also vectorized
+ in the `v` argument.
+
+ Examples
+ --------
+ >>> import numpy as np
+ >>> np.searchsorted([11,12,13,14,15], 13)
+ 2
+ >>> np.searchsorted([11,12,13,14,15], 13, side='right')
+ 3
+ >>> np.searchsorted([11,12,13,14,15], [-10, 20, 12, 13])
+ array([0, 5, 1, 2])
+
+ When `sorter` is used, the returned indices refer to the sorted
+ array of `a` and not `a` itself:
+
+ >>> a = np.array([40, 10, 20, 30])
+ >>> sorter = np.argsort(a)
+ >>> sorter
+ array([1, 2, 3, 0]) # Indices that would sort the array 'a'
+ >>> result = np.searchsorted(a, 25, sorter=sorter)
+ >>> result
+ 2
+ >>> a[sorter[result]]
+ 30 # The element at index 2 of the sorted array is 30.
+ """
+ return _wrapfunc(a, 'searchsorted', v, side=side, sorter=sorter)
+
+
+def _resize_dispatcher(a, new_shape):
+ return (a,)
+
+
+@array_function_dispatch(_resize_dispatcher)
+def resize(a, new_shape):
+ """
+ Return a new array with the specified shape.
+
+ If the new array is larger than the original array, then the new
+ array is filled with repeated copies of `a`. Note that this behavior
+ is different from a.resize(new_shape) which fills with zeros instead
+ of repeated copies of `a`.
+
+ Parameters
+ ----------
+ a : array_like
+ Array to be resized.
+
+ new_shape : int or tuple of int
+ Shape of resized array.
+
+ Returns
+ -------
+ reshaped_array : ndarray
+ The new array is formed from the data in the old array, repeated
+ if necessary to fill out the required number of elements. The
+ data are repeated iterating over the array in C-order.
+
+ See Also
+ --------
+ numpy.reshape : Reshape an array without changing the total size.
+ numpy.pad : Enlarge and pad an array.
+ numpy.repeat : Repeat elements of an array.
+ ndarray.resize : resize an array in-place.
+
+ Notes
+ -----
+ When the total size of the array does not change `~numpy.reshape` should
+ be used. In most other cases either indexing (to reduce the size)
+ or padding (to increase the size) may be a more appropriate solution.
+
+ Warning: This functionality does **not** consider axes separately,
+ i.e. it does not apply interpolation/extrapolation.
+ It fills the return array with the required number of elements, iterating
+ over `a` in C-order, disregarding axes (and cycling back from the start if
+ the new shape is larger). This functionality is therefore not suitable to
+ resize images, or data where each axis represents a separate and distinct
+ entity.
+
+ Examples
+ --------
+ >>> import numpy as np
+ >>> a = np.array([[0,1],[2,3]])
+ >>> np.resize(a,(2,3))
+ array([[0, 1, 2],
+ [3, 0, 1]])
+ >>> np.resize(a,(1,4))
+ array([[0, 1, 2, 3]])
+ >>> np.resize(a,(2,4))
+ array([[0, 1, 2, 3],
+ [0, 1, 2, 3]])
+
+ """
+ if isinstance(new_shape, (int, nt.integer)):
+ new_shape = (new_shape,)
+
+ a = ravel(a)
+
+ new_size = 1
+ for dim_length in new_shape:
+ new_size *= dim_length
+ if dim_length < 0:
+ raise ValueError(
+ 'all elements of `new_shape` must be non-negative'
+ )
+
+ if a.size == 0 or new_size == 0:
+ # First case must zero fill. The second would have repeats == 0.
+ return np.zeros_like(a, shape=new_shape)
+
+ # ceiling division without negating new_size
+ repeats = (new_size + a.size - 1) // a.size
+ a = concatenate((a,) * repeats)[:new_size]
+
+ return reshape(a, new_shape)
+
+
+def _squeeze_dispatcher(a, axis=None):
+ return (a,)
+
+
+@array_function_dispatch(_squeeze_dispatcher)
+def squeeze(a, axis=None):
+ """
+ Remove axes of length one from `a`.
+
+ Parameters
+ ----------
+ a : array_like
+ Input data.
+ axis : None or int or tuple of ints, optional
+ Selects a subset of the entries of length one in the
+ shape. If an axis is selected with shape entry greater than
+ one, an error is raised.
+
+ Returns
+ -------
+ squeezed : ndarray
+ The input array, but with all or a subset of the
+ dimensions of length 1 removed. This is always `a` itself
+ or a view into `a`. Note that if all axes are squeezed,
+ the result is a 0d array and not a scalar.
+
+ Raises
+ ------
+ ValueError
+ If `axis` is not None, and an axis being squeezed is not of length 1
+
+ See Also
+ --------
+ expand_dims : The inverse operation, adding entries of length one
+ reshape : Insert, remove, and combine dimensions, and resize existing ones
+
+ Examples
+ --------
+ >>> import numpy as np
+ >>> x = np.array([[[0], [1], [2]]])
+ >>> x.shape
+ (1, 3, 1)
+ >>> np.squeeze(x).shape
+ (3,)
+ >>> np.squeeze(x, axis=0).shape
+ (3, 1)
+ >>> np.squeeze(x, axis=1).shape
+ Traceback (most recent call last):
+ ...
+ ValueError: cannot select an axis to squeeze out which has size
+ not equal to one
+ >>> np.squeeze(x, axis=2).shape
+ (1, 3)
+ >>> x = np.array([[1234]])
+ >>> x.shape
+ (1, 1)
+ >>> np.squeeze(x)
+ array(1234) # 0d array
+ >>> np.squeeze(x).shape
+ ()
+ >>> np.squeeze(x)[()]
+ 1234
+
+ """
+ try:
+ squeeze = a.squeeze
+ except AttributeError:
+ return _wrapit(a, 'squeeze', axis=axis)
+ if axis is None:
+ return squeeze()
+ else:
+ return squeeze(axis=axis)
+
+
+def _diagonal_dispatcher(a, offset=None, axis1=None, axis2=None):
+ return (a,)
+
+
+@array_function_dispatch(_diagonal_dispatcher)
+def diagonal(a, offset=0, axis1=0, axis2=1):
+ """
+ Return specified diagonals.
+
+ If `a` is 2-D, returns the diagonal of `a` with the given offset,
+ i.e., the collection of elements of the form ``a[i, i+offset]``. If
+ `a` has more than two dimensions, then the axes specified by `axis1`
+ and `axis2` are used to determine the 2-D sub-array whose diagonal is
+ returned. The shape of the resulting array can be determined by
+ removing `axis1` and `axis2` and appending an index to the right equal
+ to the size of the resulting diagonals.
+
+ In versions of NumPy prior to 1.7, this function always returned a new,
+ independent array containing a copy of the values in the diagonal.
+
+ In NumPy 1.7 and 1.8, it continues to return a copy of the diagonal,
+ but depending on this fact is deprecated. Writing to the resulting
+ array continues to work as it used to, but a FutureWarning is issued.
+
+ Starting in NumPy 1.9 it returns a read-only view on the original array.
+ Attempting to write to the resulting array will produce an error.
+
+ In some future release, it will return a read/write view and writing to
+ the returned array will alter your original array. The returned array
+ will have the same type as the input array.
+
+ If you don't write to the array returned by this function, then you can
+ just ignore all of the above.
+
+ If you depend on the current behavior, then we suggest copying the
+ returned array explicitly, i.e., use ``np.diagonal(a).copy()`` instead
+ of just ``np.diagonal(a)``. This will work with both past and future
+ versions of NumPy.
+
+ Parameters
+ ----------
+ a : array_like
+ Array from which the diagonals are taken.
+ offset : int, optional
+ Offset of the diagonal from the main diagonal. Can be positive or
+ negative. Defaults to main diagonal (0).
+ axis1 : int, optional
+ Axis to be used as the first axis of the 2-D sub-arrays from which
+ the diagonals should be taken. Defaults to first axis (0).
+ axis2 : int, optional
+ Axis to be used as the second axis of the 2-D sub-arrays from
+ which the diagonals should be taken. Defaults to second axis (1).
+
+ Returns
+ -------
+ array_of_diagonals : ndarray
+ If `a` is 2-D, then a 1-D array containing the diagonal and of the
+ same type as `a` is returned unless `a` is a `matrix`, in which case
+ a 1-D array rather than a (2-D) `matrix` is returned in order to
+ maintain backward compatibility.
+
+ If ``a.ndim > 2``, then the dimensions specified by `axis1` and `axis2`
+ are removed, and a new axis inserted at the end corresponding to the
+ diagonal.
+
+ Raises
+ ------
+ ValueError
+ If the dimension of `a` is less than 2.
+
+ See Also
+ --------
+ diag : MATLAB work-a-like for 1-D and 2-D arrays.
+ diagflat : Create diagonal arrays.
+ trace : Sum along diagonals.
+
+ Examples
+ --------
+ >>> import numpy as np
+ >>> a = np.arange(4).reshape(2,2)
+ >>> a
+ array([[0, 1],
+ [2, 3]])
+ >>> a.diagonal()
+ array([0, 3])
+ >>> a.diagonal(1)
+ array([1])
+
+ A 3-D example:
+
+ >>> a = np.arange(8).reshape(2,2,2); a
+ array([[[0, 1],
+ [2, 3]],
+ [[4, 5],
+ [6, 7]]])
+ >>> a.diagonal(0, # Main diagonals of two arrays created by skipping
+ ... 0, # across the outer(left)-most axis last and
+ ... 1) # the "middle" (row) axis first.
+ array([[0, 6],
+ [1, 7]])
+
+ The sub-arrays whose main diagonals we just obtained; note that each
+ corresponds to fixing the right-most (column) axis, and that the
+ diagonals are "packed" in rows.
+
+ >>> a[:,:,0] # main diagonal is [0 6]
+ array([[0, 2],
+ [4, 6]])
+ >>> a[:,:,1] # main diagonal is [1 7]
+ array([[1, 3],
+ [5, 7]])
+
+ The anti-diagonal can be obtained by reversing the order of elements
+ using either `numpy.flipud` or `numpy.fliplr`.
+
+ >>> a = np.arange(9).reshape(3, 3)
+ >>> a
+ array([[0, 1, 2],
+ [3, 4, 5],
+ [6, 7, 8]])
+ >>> np.fliplr(a).diagonal() # Horizontal flip
+ array([2, 4, 6])
+ >>> np.flipud(a).diagonal() # Vertical flip
+ array([6, 4, 2])
+
+ Note that the order in which the diagonal is retrieved varies depending
+ on the flip function.
+ """
+ if isinstance(a, np.matrix):
+ # Make diagonal of matrix 1-D to preserve backward compatibility.
+ return asarray(a).diagonal(offset=offset, axis1=axis1, axis2=axis2)
+ else:
+ return asanyarray(a).diagonal(offset=offset, axis1=axis1, axis2=axis2)
+
+
+def _trace_dispatcher(
+ a, offset=None, axis1=None, axis2=None, dtype=None, out=None):
+ return (a, out)
+
+
+@array_function_dispatch(_trace_dispatcher)
+def trace(a, offset=0, axis1=0, axis2=1, dtype=None, out=None):
+ """
+ Return the sum along diagonals of the array.
+
+ If `a` is 2-D, the sum along its diagonal with the given offset
+ is returned, i.e., the sum of elements ``a[i,i+offset]`` for all i.
+
+ If `a` has more than two dimensions, then the axes specified by axis1 and
+ axis2 are used to determine the 2-D sub-arrays whose traces are returned.
+ The shape of the resulting array is the same as that of `a` with `axis1`
+ and `axis2` removed.
+
+ Parameters
+ ----------
+ a : array_like
+ Input array, from which the diagonals are taken.
+ offset : int, optional
+ Offset of the diagonal from the main diagonal. Can be both positive
+ and negative. Defaults to 0.
+ axis1, axis2 : int, optional
+ Axes to be used as the first and second axis of the 2-D sub-arrays
+ from which the diagonals should be taken. Defaults are the first two
+ axes of `a`.
+ dtype : dtype, optional
+ Determines the data-type of the returned array and of the accumulator
+ where the elements are summed. If dtype has the value None and `a` is
+ of integer type of precision less than the default integer
+ precision, then the default integer precision is used. Otherwise,
+ the precision is the same as that of `a`.
+ out : ndarray, optional
+ Array into which the output is placed. Its type is preserved and
+ it must be of the right shape to hold the output.
+
+ Returns
+ -------
+ sum_along_diagonals : ndarray
+ If `a` is 2-D, the sum along the diagonal is returned. If `a` has
+ larger dimensions, then an array of sums along diagonals is returned.
+
+ See Also
+ --------
+ diag, diagonal, diagflat
+
+ Examples
+ --------
+ >>> import numpy as np
+ >>> np.trace(np.eye(3))
+ 3.0
+ >>> a = np.arange(8).reshape((2,2,2))
+ >>> np.trace(a)
+ array([6, 8])
+
+ >>> a = np.arange(24).reshape((2,2,2,3))
+ >>> np.trace(a).shape
+ (2, 3)
+
+ """
+ if isinstance(a, np.matrix):
+ # Get trace of matrix via an array to preserve backward compatibility.
+ return asarray(a).trace(
+ offset=offset, axis1=axis1, axis2=axis2, dtype=dtype, out=out
+ )
+ else:
+ return asanyarray(a).trace(
+ offset=offset, axis1=axis1, axis2=axis2, dtype=dtype, out=out
+ )
+
+
+def _ravel_dispatcher(a, order=None):
+ return (a,)
+
+
+@array_function_dispatch(_ravel_dispatcher)
+def ravel(a, order='C'):
+ """Return a contiguous flattened array.
+
+ A 1-D array, containing the elements of the input, is returned. A copy is
+ made only if needed.
+
+ As of NumPy 1.10, the returned array will have the same type as the input
+ array. (for example, a masked array will be returned for a masked array
+ input)
+
+ Parameters
+ ----------
+ a : array_like
+ Input array. The elements in `a` are read in the order specified by
+ `order`, and packed as a 1-D array.
+ order : {'C','F', 'A', 'K'}, optional
+
+ The elements of `a` are read using this index order. 'C' means
+ to index the elements in row-major, C-style order,
+ with the last axis index changing fastest, back to the first
+ axis index changing slowest. 'F' means to index the elements
+ in column-major, Fortran-style order, with the
+ first index changing fastest, and the last index changing
+ slowest. Note that the 'C' and 'F' options take no account of
+ the memory layout of the underlying array, and only refer to
+ the order of axis indexing. 'A' means to read the elements in
+ Fortran-like index order if `a` is Fortran *contiguous* in
+ memory, C-like order otherwise. 'K' means to read the
+ elements in the order they occur in memory, except for
+ reversing the data when strides are negative. By default, 'C'
+ index order is used.
+
+ Returns
+ -------
+ y : array_like
+ y is a contiguous 1-D array of the same subtype as `a`,
+ with shape ``(a.size,)``.
+ Note that matrices are special cased for backward compatibility,
+ if `a` is a matrix, then y is a 1-D ndarray.
+
+ See Also
+ --------
+ ndarray.flat : 1-D iterator over an array.
+ ndarray.flatten : 1-D array copy of the elements of an array
+ in row-major order.
+ ndarray.reshape : Change the shape of an array without changing its data.
+
+ Notes
+ -----
+ In row-major, C-style order, in two dimensions, the row index
+ varies the slowest, and the column index the quickest. This can
+ be generalized to multiple dimensions, where row-major order
+ implies that the index along the first axis varies slowest, and
+ the index along the last quickest. The opposite holds for
+ column-major, Fortran-style index ordering.
+
+ When a view is desired in as many cases as possible, ``arr.reshape(-1)``
+ may be preferable. However, ``ravel`` supports ``K`` in the optional
+ ``order`` argument while ``reshape`` does not.
+
+ Examples
+ --------
+ It is equivalent to ``reshape(-1, order=order)``.
+
+ >>> import numpy as np
+ >>> x = np.array([[1, 2, 3], [4, 5, 6]])
+ >>> np.ravel(x)
+ array([1, 2, 3, 4, 5, 6])
+
+ >>> x.reshape(-1)
+ array([1, 2, 3, 4, 5, 6])
+
+ >>> np.ravel(x, order='F')
+ array([1, 4, 2, 5, 3, 6])
+
+ When ``order`` is 'A', it will preserve the array's 'C' or 'F' ordering:
+
+ >>> np.ravel(x.T)
+ array([1, 4, 2, 5, 3, 6])
+ >>> np.ravel(x.T, order='A')
+ array([1, 2, 3, 4, 5, 6])
+
+ When ``order`` is 'K', it will preserve orderings that are neither 'C'
+ nor 'F', but won't reverse axes:
+
+ >>> a = np.arange(3)[::-1]; a
+ array([2, 1, 0])
+ >>> a.ravel(order='C')
+ array([2, 1, 0])
+ >>> a.ravel(order='K')
+ array([2, 1, 0])
+
+ >>> a = np.arange(12).reshape(2,3,2).swapaxes(1,2); a
+ array([[[ 0, 2, 4],
+ [ 1, 3, 5]],
+ [[ 6, 8, 10],
+ [ 7, 9, 11]]])
+ >>> a.ravel(order='C')
+ array([ 0, 2, 4, 1, 3, 5, 6, 8, 10, 7, 9, 11])
+ >>> a.ravel(order='K')
+ array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11])
+
+ """
+ if isinstance(a, np.matrix):
+ return asarray(a).ravel(order=order)
+ else:
+ return asanyarray(a).ravel(order=order)
+
+
+def _nonzero_dispatcher(a):
+ return (a,)
+
+
+@array_function_dispatch(_nonzero_dispatcher)
+def nonzero(a):
+ """
+ Return the indices of the elements that are non-zero.
+
+ Returns a tuple of arrays, one for each dimension of `a`,
+ containing the indices of the non-zero elements in that
+ dimension. The values in `a` are always tested and returned in
+ row-major, C-style order.
+
+ To group the indices by element, rather than dimension, use `argwhere`,
+ which returns a row for each non-zero element.
+
+ .. note::
+
+ When called on a zero-d array or scalar, ``nonzero(a)`` is treated
+ as ``nonzero(atleast_1d(a))``.
+
+ .. deprecated:: 1.17.0
+
+ Use `atleast_1d` explicitly if this behavior is deliberate.
+
+ Parameters
+ ----------
+ a : array_like
+ Input array.
+
+ Returns
+ -------
+ tuple_of_arrays : tuple
+ Indices of elements that are non-zero.
+
+ See Also
+ --------
+ flatnonzero :
+ Return indices that are non-zero in the flattened version of the input
+ array.
+ ndarray.nonzero :
+ Equivalent ndarray method.
+ count_nonzero :
+ Counts the number of non-zero elements in the input array.
+
+ Notes
+ -----
+ While the nonzero values can be obtained with ``a[nonzero(a)]``, it is
+ recommended to use ``x[x.astype(bool)]`` or ``x[x != 0]`` instead, which
+ will correctly handle 0-d arrays.
+
+ Examples
+ --------
+ >>> import numpy as np
+ >>> x = np.array([[3, 0, 0], [0, 4, 0], [5, 6, 0]])
+ >>> x
+ array([[3, 0, 0],
+ [0, 4, 0],
+ [5, 6, 0]])
+ >>> np.nonzero(x)
+ (array([0, 1, 2, 2]), array([0, 1, 0, 1]))
+
+ >>> x[np.nonzero(x)]
+ array([3, 4, 5, 6])
+ >>> np.transpose(np.nonzero(x))
+ array([[0, 0],
+ [1, 1],
+ [2, 0],
+ [2, 1]])
+
+ A common use for ``nonzero`` is to find the indices of an array, where
+ a condition is True. Given an array `a`, the condition `a` > 3 is a
+ boolean array and since False is interpreted as 0, np.nonzero(a > 3)
+ yields the indices of the `a` where the condition is true.
+
+ >>> a = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
+ >>> a > 3
+ array([[False, False, False],
+ [ True, True, True],
+ [ True, True, True]])
+ >>> np.nonzero(a > 3)
+ (array([1, 1, 1, 2, 2, 2]), array([0, 1, 2, 0, 1, 2]))
+
+ Using this result to index `a` is equivalent to using the mask directly:
+
+ >>> a[np.nonzero(a > 3)]
+ array([4, 5, 6, 7, 8, 9])
+ >>> a[a > 3] # prefer this spelling
+ array([4, 5, 6, 7, 8, 9])
+
+ ``nonzero`` can also be called as a method of the array.
+
+ >>> (a > 3).nonzero()
+ (array([1, 1, 1, 2, 2, 2]), array([0, 1, 2, 0, 1, 2]))
+
+ """
+ return _wrapfunc(a, 'nonzero')
+
+
+def _shape_dispatcher(a):
+ return (a,)
+
+
+@array_function_dispatch(_shape_dispatcher)
+def shape(a):
+ """
+ Return the shape of an array.
+
+ Parameters
+ ----------
+ a : array_like
+ Input array.
+
+ Returns
+ -------
+ shape : tuple of ints
+ The elements of the shape tuple give the lengths of the
+ corresponding array dimensions.
+
+ See Also
+ --------
+ len : ``len(a)`` is equivalent to ``np.shape(a)[0]`` for N-D arrays with
+ ``N>=1``.
+ ndarray.shape : Equivalent array method.
+
+ Examples
+ --------
+ >>> import numpy as np
+ >>> np.shape(np.eye(3))
+ (3, 3)
+ >>> np.shape([[1, 3]])
+ (1, 2)
+ >>> np.shape([0])
+ (1,)
+ >>> np.shape(0)
+ ()
+
+ >>> a = np.array([(1, 2), (3, 4), (5, 6)],
+ ... dtype=[('x', 'i4'), ('y', 'i4')])
+ >>> np.shape(a)
+ (3,)
+ >>> a.shape
+ (3,)
+
+ """
+ try:
+ result = a.shape
+ except AttributeError:
+ result = asarray(a).shape
+ return result
+
+
+def _compress_dispatcher(condition, a, axis=None, out=None):
+ return (condition, a, out)
+
+
+@array_function_dispatch(_compress_dispatcher)
+def compress(condition, a, axis=None, out=None):
+ """
+ Return selected slices of an array along given axis.
+
+ When working along a given axis, a slice along that axis is returned in
+ `output` for each index where `condition` evaluates to True. When
+ working on a 1-D array, `compress` is equivalent to `extract`.
+
+ Parameters
+ ----------
+ condition : 1-D array of bools
+ Array that selects which entries to return. If len(condition)
+ is less than the size of `a` along the given axis, then output is
+ truncated to the length of the condition array.
+ a : array_like
+ Array from which to extract a part.
+ axis : int, optional
+ Axis along which to take slices. If None (default), work on the
+ flattened array.
+ out : ndarray, optional
+ Output array. Its type is preserved and it must be of the right
+ shape to hold the output.
+
+ Returns
+ -------
+ compressed_array : ndarray
+ A copy of `a` without the slices along axis for which `condition`
+ is false.
+
+ See Also
+ --------
+ take, choose, diag, diagonal, select
+ ndarray.compress : Equivalent method in ndarray
+ extract : Equivalent method when working on 1-D arrays
+ :ref:`ufuncs-output-type`
+
+ Examples
+ --------
+ >>> import numpy as np
+ >>> a = np.array([[1, 2], [3, 4], [5, 6]])
+ >>> a
+ array([[1, 2],
+ [3, 4],
+ [5, 6]])
+ >>> np.compress([0, 1], a, axis=0)
+ array([[3, 4]])
+ >>> np.compress([False, True, True], a, axis=0)
+ array([[3, 4],
+ [5, 6]])
+ >>> np.compress([False, True], a, axis=1)
+ array([[2],
+ [4],
+ [6]])
+
+ Working on the flattened array does not return slices along an axis but
+ selects elements.
+
+ >>> np.compress([False, True], a)
+ array([2])
+
+ """
+ return _wrapfunc(a, 'compress', condition, axis=axis, out=out)
+
+
+def _clip_dispatcher(a, a_min=None, a_max=None, out=None, *, min=None,
+ max=None, **kwargs):
+ return (a, a_min, a_max, out, min, max)
+
+
+@array_function_dispatch(_clip_dispatcher)
+def clip(a, a_min=np._NoValue, a_max=np._NoValue, out=None, *,
+ min=np._NoValue, max=np._NoValue, **kwargs):
+ """
+ Clip (limit) the values in an array.
+
+ Given an interval, values outside the interval are clipped to
+ the interval edges. For example, if an interval of ``[0, 1]``
+ is specified, values smaller than 0 become 0, and values larger
+ than 1 become 1.
+
+ Equivalent to but faster than ``np.minimum(a_max, np.maximum(a, a_min))``.
+
+ No check is performed to ensure ``a_min < a_max``.
+
+ Parameters
+ ----------
+ a : array_like
+ Array containing elements to clip.
+ a_min, a_max : array_like or None
+ Minimum and maximum value. If ``None``, clipping is not performed on
+ the corresponding edge. If both ``a_min`` and ``a_max`` are ``None``,
+ the elements of the returned array stay the same. Both are broadcasted
+ against ``a``.
+ out : ndarray, optional
+ The results will be placed in this array. It may be the input
+ array for in-place clipping. `out` must be of the right shape
+ to hold the output. Its type is preserved.
+ min, max : array_like or None
+ Array API compatible alternatives for ``a_min`` and ``a_max``
+ arguments. Either ``a_min`` and ``a_max`` or ``min`` and ``max``
+ can be passed at the same time. Default: ``None``.
+
+ .. versionadded:: 2.1.0
+ **kwargs
+ For other keyword-only arguments, see the
+ :ref:`ufunc docs <ufuncs.kwargs>`.
+
+ Returns
+ -------
+ clipped_array : ndarray
+ An array with the elements of `a`, but where values
+ < `a_min` are replaced with `a_min`, and those > `a_max`
+ with `a_max`.
+
+ See Also
+ --------
+ :ref:`ufuncs-output-type`
+
+ Notes
+ -----
+ When `a_min` is greater than `a_max`, `clip` returns an
+ array in which all values are equal to `a_max`,
+ as shown in the second example.
+
+ Examples
+ --------
+ >>> import numpy as np
+ >>> a = np.arange(10)
+ >>> a
+ array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
+ >>> np.clip(a, 1, 8)
+ array([1, 1, 2, 3, 4, 5, 6, 7, 8, 8])
+ >>> np.clip(a, 8, 1)
+ array([1, 1, 1, 1, 1, 1, 1, 1, 1, 1])
+ >>> np.clip(a, 3, 6, out=a)
+ array([3, 3, 3, 3, 4, 5, 6, 6, 6, 6])
+ >>> a
+ array([3, 3, 3, 3, 4, 5, 6, 6, 6, 6])
+ >>> a = np.arange(10)
+ >>> a
+ array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
+ >>> np.clip(a, [3, 4, 1, 1, 1, 4, 4, 4, 4, 4], 8)
+ array([3, 4, 2, 3, 4, 5, 6, 7, 8, 8])
+
+ """
+ if a_min is np._NoValue and a_max is np._NoValue:
+ a_min = None if min is np._NoValue else min
+ a_max = None if max is np._NoValue else max
+ elif a_min is np._NoValue:
+ raise TypeError("clip() missing 1 required positional "
+ "argument: 'a_min'")
+ elif a_max is np._NoValue:
+ raise TypeError("clip() missing 1 required positional "
+ "argument: 'a_max'")
+ elif min is not np._NoValue or max is not np._NoValue:
+ raise ValueError("Passing `min` or `max` keyword argument when "
+ "`a_min` and `a_max` are provided is forbidden.")
+
+ return _wrapfunc(a, 'clip', a_min, a_max, out=out, **kwargs)
+
+
+def _sum_dispatcher(a, axis=None, dtype=None, out=None, keepdims=None,
+ initial=None, where=None):
+ return (a, out)
+
+
+@array_function_dispatch(_sum_dispatcher)
+def sum(a, axis=None, dtype=None, out=None, keepdims=np._NoValue,
+ initial=np._NoValue, where=np._NoValue):
+ """
+ Sum of array elements over a given axis.
+
+ Parameters
+ ----------
+ a : array_like
+ Elements to sum.
+ axis : None or int or tuple of ints, optional
+ Axis or axes along which a sum is performed. The default,
+ axis=None, will sum all of the elements of the input array. If
+ axis is negative it counts from the last to the first axis. If
+ axis is a tuple of ints, a sum is performed on all of the axes
+ specified in the tuple instead of a single axis or all the axes as
+ before.
+ dtype : dtype, optional
+ The type of the returned array and of the accumulator in which the
+ elements are summed. The dtype of `a` is used by default unless `a`
+ has an integer dtype of less precision than the default platform
+ integer. In that case, if `a` is signed then the platform integer
+ is used while if `a` is unsigned then an unsigned integer of the
+ same precision as the platform integer is used.
+ out : ndarray, optional
+ Alternative output array in which to place the result. It must have
+ the same shape as the expected output, but the type of the output
+ values will be cast if necessary.
+ keepdims : bool, optional
+ If this is set to True, the axes which are reduced are left
+ in the result as dimensions with size one. With this option,
+ the result will broadcast correctly against the input array.
+
+ If the default value is passed, then `keepdims` will not be
+ passed through to the `sum` method of sub-classes of
+ `ndarray`, however any non-default value will be. If the
+ sub-class' method does not implement `keepdims` any
+ exceptions will be raised.
+ initial : scalar, optional
+ Starting value for the sum. See `~numpy.ufunc.reduce` for details.
+ where : array_like of bool, optional
+ Elements to include in the sum. See `~numpy.ufunc.reduce` for details.
+
+ Returns
+ -------
+ sum_along_axis : ndarray
+ An array with the same shape as `a`, with the specified
+ axis removed. If `a` is a 0-d array, or if `axis` is None, a scalar
+ is returned. If an output array is specified, a reference to
+ `out` is returned.
+
+ See Also
+ --------
+ ndarray.sum : Equivalent method.
+ add: ``numpy.add.reduce`` equivalent function.
+ cumsum : Cumulative sum of array elements.
+ trapezoid : Integration of array values using composite trapezoidal rule.
+
+ mean, average
+
+ Notes
+ -----
+ Arithmetic is modular when using integer types, and no error is
+ raised on overflow.
+
+ The sum of an empty array is the neutral element 0:
+
+ >>> np.sum([])
+ 0.0
+
+ For floating point numbers the numerical precision of sum (and
+ ``np.add.reduce``) is in general limited by directly adding each number
+ individually to the result causing rounding errors in every step.
+ However, often numpy will use a numerically better approach (partial
+ pairwise summation) leading to improved precision in many use-cases.
+ This improved precision is always provided when no ``axis`` is given.
+ When ``axis`` is given, it will depend on which axis is summed.
+ Technically, to provide the best speed possible, the improved precision
+ is only used when the summation is along the fast axis in memory.
+ Note that the exact precision may vary depending on other parameters.
+ In contrast to NumPy, Python's ``math.fsum`` function uses a slower but
+ more precise approach to summation.
+ Especially when summing a large number of lower precision floating point
+ numbers, such as ``float32``, numerical errors can become significant.
+ In such cases it can be advisable to use `dtype="float64"` to use a higher
+ precision for the output.
+
+ Examples
+ --------
+ >>> import numpy as np
+ >>> np.sum([0.5, 1.5])
+ 2.0
+ >>> np.sum([0.5, 0.7, 0.2, 1.5], dtype=np.int32)
+ np.int32(1)
+ >>> np.sum([[0, 1], [0, 5]])
+ 6
+ >>> np.sum([[0, 1], [0, 5]], axis=0)
+ array([0, 6])
+ >>> np.sum([[0, 1], [0, 5]], axis=1)
+ array([1, 5])
+ >>> np.sum([[0, 1], [np.nan, 5]], where=[False, True], axis=1)
+ array([1., 5.])
+
+ If the accumulator is too small, overflow occurs:
+
+ >>> np.ones(128, dtype=np.int8).sum(dtype=np.int8)
+ np.int8(-128)
+
+ You can also start the sum with a value other than zero:
+
+ >>> np.sum([10], initial=5)
+ 15
+ """
+ if isinstance(a, _gentype):
+ # 2018-02-25, 1.15.0
+ warnings.warn(
+ "Calling np.sum(generator) is deprecated, and in the future will "
+ "give a different result. Use np.sum(np.fromiter(generator)) or "
+ "the python sum builtin instead.",
+ DeprecationWarning, stacklevel=2
+ )
+
+ res = _sum_(a)
+ if out is not None:
+ out[...] = res
+ return out
+ return res
+
+ return _wrapreduction(
+ a, np.add, 'sum', axis, dtype, out,
+ keepdims=keepdims, initial=initial, where=where
+ )
+
+
+def _any_dispatcher(a, axis=None, out=None, keepdims=None, *,
+ where=np._NoValue):
+ return (a, where, out)
+
+
+@array_function_dispatch(_any_dispatcher)
+def any(a, axis=None, out=None, keepdims=np._NoValue, *, where=np._NoValue):
+ """
+ Test whether any array element along a given axis evaluates to True.
+
+ Returns single boolean if `axis` is ``None``
+
+ Parameters
+ ----------
+ a : array_like
+ Input array or object that can be converted to an array.
+ axis : None or int or tuple of ints, optional
+ Axis or axes along which a logical OR reduction is performed.
+ The default (``axis=None``) is to perform a logical OR over all
+ the dimensions of the input array. `axis` may be negative, in
+ which case it counts from the last to the first axis. If this
+ is a tuple of ints, a reduction is performed on multiple
+ axes, instead of a single axis or all the axes as before.
+ out : ndarray, optional
+ Alternate output array in which to place the result. It must have
+ the same shape as the expected output and its type is preserved
+ (e.g., if it is of type float, then it will remain so, returning
+ 1.0 for True and 0.0 for False, regardless of the type of `a`).
+ See :ref:`ufuncs-output-type` for more details.
+
+ keepdims : bool, optional
+ If this is set to True, the axes which are reduced are left
+ in the result as dimensions with size one. With this option,
+ the result will broadcast correctly against the input array.
+
+ If the default value is passed, then `keepdims` will not be
+ passed through to the `any` method of sub-classes of
+ `ndarray`, however any non-default value will be. If the
+ sub-class' method does not implement `keepdims` any
+ exceptions will be raised.
+
+ where : array_like of bool, optional
+ Elements to include in checking for any `True` values.
+ See `~numpy.ufunc.reduce` for details.
+
+ .. versionadded:: 1.20.0
+
+ Returns
+ -------
+ any : bool or ndarray
+ A new boolean or `ndarray` is returned unless `out` is specified,
+ in which case a reference to `out` is returned.
+
+ See Also
+ --------
+ ndarray.any : equivalent method
+
+ all : Test whether all elements along a given axis evaluate to True.
+
+ Notes
+ -----
+ Not a Number (NaN), positive infinity and negative infinity evaluate
+ to `True` because these are not equal to zero.
+
+ .. versionchanged:: 2.0
+ Before NumPy 2.0, ``any`` did not return booleans for object dtype
+ input arrays.
+ This behavior is still available via ``np.logical_or.reduce``.
+
+ Examples
+ --------
+ >>> import numpy as np
+ >>> np.any([[True, False], [True, True]])
+ True
+
+ >>> np.any([[True, False, True ],
+ ... [False, False, False]], axis=0)
+ array([ True, False, True])
+
+ >>> np.any([-1, 0, 5])
+ True
+
+ >>> np.any([[np.nan], [np.inf]], axis=1, keepdims=True)
+ array([[ True],
+ [ True]])
+
+ >>> np.any([[True, False], [False, False]], where=[[False], [True]])
+ False
+
+ >>> a = np.array([[1, 0, 0],
+ ... [0, 0, 1],
+ ... [0, 0, 0]])
+ >>> np.any(a, axis=0)
+ array([ True, False, True])
+ >>> np.any(a, axis=1)
+ array([ True, True, False])
+
+ >>> o=np.array(False)
+ >>> z=np.any([-1, 4, 5], out=o)
+ >>> z, o
+ (array(True), array(True))
+ >>> # Check now that z is a reference to o
+ >>> z is o
+ True
+ >>> id(z), id(o) # identity of z and o # doctest: +SKIP
+ (191614240, 191614240)
+
+ """
+ return _wrapreduction_any_all(a, np.logical_or, 'any', axis, out,
+ keepdims=keepdims, where=where)
+
+
+def _all_dispatcher(a, axis=None, out=None, keepdims=None, *,
+ where=None):
+ return (a, where, out)
+
+
+@array_function_dispatch(_all_dispatcher)
+def all(a, axis=None, out=None, keepdims=np._NoValue, *, where=np._NoValue):
+ """
+ Test whether all array elements along a given axis evaluate to True.
+
+ Parameters
+ ----------
+ a : array_like
+ Input array or object that can be converted to an array.
+ axis : None or int or tuple of ints, optional
+ Axis or axes along which a logical AND reduction is performed.
+ The default (``axis=None``) is to perform a logical AND over all
+ the dimensions of the input array. `axis` may be negative, in
+ which case it counts from the last to the first axis. If this
+ is a tuple of ints, a reduction is performed on multiple
+ axes, instead of a single axis or all the axes as before.
+ out : ndarray, optional
+ Alternate output array in which to place the result.
+ It must have the same shape as the expected output and its
+ type is preserved (e.g., if ``dtype(out)`` is float, the result
+ will consist of 0.0's and 1.0's). See :ref:`ufuncs-output-type`
+ for more details.
+
+ keepdims : bool, optional
+ If this is set to True, the axes which are reduced are left
+ in the result as dimensions with size one. With this option,
+ the result will broadcast correctly against the input array.
+
+ If the default value is passed, then `keepdims` will not be
+ passed through to the `all` method of sub-classes of
+ `ndarray`, however any non-default value will be. If the
+ sub-class' method does not implement `keepdims` any
+ exceptions will be raised.
+
+ where : array_like of bool, optional
+ Elements to include in checking for all `True` values.
+ See `~numpy.ufunc.reduce` for details.
+
+ .. versionadded:: 1.20.0
+
+ Returns
+ -------
+ all : ndarray, bool
+ A new boolean or array is returned unless `out` is specified,
+ in which case a reference to `out` is returned.
+
+ See Also
+ --------
+ ndarray.all : equivalent method
+
+ any : Test whether any element along a given axis evaluates to True.
+
+ Notes
+ -----
+ Not a Number (NaN), positive infinity and negative infinity
+ evaluate to `True` because these are not equal to zero.
+
+ .. versionchanged:: 2.0
+ Before NumPy 2.0, ``all`` did not return booleans for object dtype
+ input arrays.
+ This behavior is still available via ``np.logical_and.reduce``.
+
+ Examples
+ --------
+ >>> import numpy as np
+ >>> np.all([[True,False],[True,True]])
+ False
+
+ >>> np.all([[True,False],[True,True]], axis=0)
+ array([ True, False])
+
+ >>> np.all([-1, 4, 5])
+ True
+
+ >>> np.all([1.0, np.nan])
+ True
+
+ >>> np.all([[True, True], [False, True]], where=[[True], [False]])
+ True
+
+ >>> o=np.array(False)
+ >>> z=np.all([-1, 4, 5], out=o)
+ >>> id(z), id(o), z
+ (28293632, 28293632, array(True)) # may vary
+
+ """
+ return _wrapreduction_any_all(a, np.logical_and, 'all', axis, out,
+ keepdims=keepdims, where=where)
+
+
+def _cumulative_func(x, func, axis, dtype, out, include_initial):
+ x = np.atleast_1d(x)
+ x_ndim = x.ndim
+ if axis is None:
+ if x_ndim >= 2:
+ raise ValueError("For arrays which have more than one dimension "
+ "``axis`` argument is required.")
+ axis = 0
+
+ if out is not None and include_initial:
+ item = [slice(None)] * x_ndim
+ item[axis] = slice(1, None)
+ func.accumulate(x, axis=axis, dtype=dtype, out=out[tuple(item)])
+ item[axis] = 0
+ out[tuple(item)] = func.identity
+ return out
+
+ res = func.accumulate(x, axis=axis, dtype=dtype, out=out)
+ if include_initial:
+ initial_shape = list(x.shape)
+ initial_shape[axis] = 1
+ res = np.concat(
+ [np.full_like(res, func.identity, shape=initial_shape), res],
+ axis=axis,
+ )
+
+ return res
+
+
+def _cumulative_prod_dispatcher(x, /, *, axis=None, dtype=None, out=None,
+ include_initial=None):
+ return (x, out)
+
+
+@array_function_dispatch(_cumulative_prod_dispatcher)
+def cumulative_prod(x, /, *, axis=None, dtype=None, out=None,
+ include_initial=False):
+ """
+ Return the cumulative product of elements along a given axis.
+
+ This function is an Array API compatible alternative to `numpy.cumprod`.
+
+ Parameters
+ ----------
+ x : array_like
+ Input array.
+ axis : int, optional
+ Axis along which the cumulative product is computed. The default
+ (None) is only allowed for one-dimensional arrays. For arrays
+ with more than one dimension ``axis`` is required.
+ dtype : dtype, optional
+ Type of the returned array, as well as of the accumulator in which
+ the elements are multiplied. If ``dtype`` is not specified, it
+ defaults to the dtype of ``x``, unless ``x`` has an integer dtype
+ with a precision less than that of the default platform integer.
+ In that case, the default platform integer is used instead.
+ out : ndarray, optional
+ Alternative output array in which to place the result. It must
+ have the same shape and buffer length as the expected output
+ but the type of the resulting values will be cast if necessary.
+ See :ref:`ufuncs-output-type` for more details.
+ include_initial : bool, optional
+ Boolean indicating whether to include the initial value (ones) as
+ the first value in the output. With ``include_initial=True``
+ the shape of the output is different than the shape of the input.
+ Default: ``False``.
+
+ Returns
+ -------
+ cumulative_prod_along_axis : ndarray
+ A new array holding the result is returned unless ``out`` is
+ specified, in which case a reference to ``out`` is returned. The
+ result has the same shape as ``x`` if ``include_initial=False``.
+
+ Notes
+ -----
+ Arithmetic is modular when using integer types, and no error is
+ raised on overflow.
+
+ Examples
+ --------
+ >>> a = np.array([1, 2, 3])
+ >>> np.cumulative_prod(a) # intermediate results 1, 1*2
+ ... # total product 1*2*3 = 6
+ array([1, 2, 6])
+ >>> a = np.array([1, 2, 3, 4, 5, 6])
+ >>> np.cumulative_prod(a, dtype=float) # specify type of output
+ array([ 1., 2., 6., 24., 120., 720.])
+
+ The cumulative product for each column (i.e., over the rows) of ``b``:
+
+ >>> b = np.array([[1, 2, 3], [4, 5, 6]])
+ >>> np.cumulative_prod(b, axis=0)
+ array([[ 1, 2, 3],
+ [ 4, 10, 18]])
+
+ The cumulative product for each row (i.e. over the columns) of ``b``:
+
+ >>> np.cumulative_prod(b, axis=1)
+ array([[ 1, 2, 6],
+ [ 4, 20, 120]])
+
+ """
+ return _cumulative_func(x, um.multiply, axis, dtype, out, include_initial)
+
+
+def _cumulative_sum_dispatcher(x, /, *, axis=None, dtype=None, out=None,
+ include_initial=None):
+ return (x, out)
+
+
+@array_function_dispatch(_cumulative_sum_dispatcher)
+def cumulative_sum(x, /, *, axis=None, dtype=None, out=None,
+ include_initial=False):
+ """
+ Return the cumulative sum of the elements along a given axis.
+
+ This function is an Array API compatible alternative to `numpy.cumsum`.
+
+ Parameters
+ ----------
+ x : array_like
+ Input array.
+ axis : int, optional
+ Axis along which the cumulative sum is computed. The default
+ (None) is only allowed for one-dimensional arrays. For arrays
+ with more than one dimension ``axis`` is required.
+ dtype : dtype, optional
+ Type of the returned array and of the accumulator in which the
+ elements are summed. If ``dtype`` is not specified, it defaults
+ to the dtype of ``x``, unless ``x`` has an integer dtype with
+ a precision less than that of the default platform integer.
+ In that case, the default platform integer is used.
+ out : ndarray, optional
+ Alternative output array in which to place the result. It must
+ have the same shape and buffer length as the expected output
+ but the type will be cast if necessary. See :ref:`ufuncs-output-type`
+ for more details.
+ include_initial : bool, optional
+ Boolean indicating whether to include the initial value (zeros) as
+ the first value in the output. With ``include_initial=True``
+ the shape of the output is different than the shape of the input.
+ Default: ``False``.
+
+ Returns
+ -------
+ cumulative_sum_along_axis : ndarray
+ A new array holding the result is returned unless ``out`` is
+ specified, in which case a reference to ``out`` is returned. The
+ result has the same shape as ``x`` if ``include_initial=False``.
+
+ See Also
+ --------
+ sum : Sum array elements.
+ trapezoid : Integration of array values using composite trapezoidal rule.
+ diff : Calculate the n-th discrete difference along given axis.
+
+ Notes
+ -----
+ Arithmetic is modular when using integer types, and no error is
+ raised on overflow.
+
+ ``cumulative_sum(a)[-1]`` may not be equal to ``sum(a)`` for
+ floating-point values since ``sum`` may use a pairwise summation routine,
+ reducing the roundoff-error. See `sum` for more information.
+
+ Examples
+ --------
+ >>> a = np.array([1, 2, 3, 4, 5, 6])
+ >>> a
+ array([1, 2, 3, 4, 5, 6])
+ >>> np.cumulative_sum(a)
+ array([ 1, 3, 6, 10, 15, 21])
+ >>> np.cumulative_sum(a, dtype=float) # specifies type of output value(s)
+ array([ 1., 3., 6., 10., 15., 21.])
+
+ >>> b = np.array([[1, 2, 3], [4, 5, 6]])
+ >>> np.cumulative_sum(b,axis=0) # sum over rows for each of the 3 columns
+ array([[1, 2, 3],
+ [5, 7, 9]])
+ >>> np.cumulative_sum(b,axis=1) # sum over columns for each of the 2 rows
+ array([[ 1, 3, 6],
+ [ 4, 9, 15]])
+
+ ``cumulative_sum(c)[-1]`` may not be equal to ``sum(c)``
+
+ >>> c = np.array([1, 2e-9, 3e-9] * 1000000)
+ >>> np.cumulative_sum(c)[-1]
+ 1000000.0050045159
+ >>> c.sum()
+ 1000000.0050000029
+
+ """
+ return _cumulative_func(x, um.add, axis, dtype, out, include_initial)
+
+
+def _cumsum_dispatcher(a, axis=None, dtype=None, out=None):
+ return (a, out)
+
+
+@array_function_dispatch(_cumsum_dispatcher)
+def cumsum(a, axis=None, dtype=None, out=None):
+ """
+ Return the cumulative sum of the elements along a given axis.
+
+ Parameters
+ ----------
+ a : array_like
+ Input array.
+ axis : int, optional
+ Axis along which the cumulative sum is computed. The default
+ (None) is to compute the cumsum over the flattened array.
+ dtype : dtype, optional
+ Type of the returned array and of the accumulator in which the
+ elements are summed. If `dtype` is not specified, it defaults
+ to the dtype of `a`, unless `a` has an integer dtype with a
+ precision less than that of the default platform integer. In
+ that case, the default platform integer is used.
+ out : ndarray, optional
+ Alternative output array in which to place the result. It must
+ have the same shape and buffer length as the expected output
+ but the type will be cast if necessary. See :ref:`ufuncs-output-type`
+ for more details.
+
+ Returns
+ -------
+ cumsum_along_axis : ndarray.
+ A new array holding the result is returned unless `out` is
+ specified, in which case a reference to `out` is returned. The
+ result has the same size as `a`, and the same shape as `a` if
+ `axis` is not None or `a` is a 1-d array.
+
+ See Also
+ --------
+ cumulative_sum : Array API compatible alternative for ``cumsum``.
+ sum : Sum array elements.
+ trapezoid : Integration of array values using composite trapezoidal rule.
+ diff : Calculate the n-th discrete difference along given axis.
+
+ Notes
+ -----
+ Arithmetic is modular when using integer types, and no error is
+ raised on overflow.
+
+ ``cumsum(a)[-1]`` may not be equal to ``sum(a)`` for floating-point
+ values since ``sum`` may use a pairwise summation routine, reducing
+ the roundoff-error. See `sum` for more information.
+
+ Examples
+ --------
+ >>> import numpy as np
+ >>> a = np.array([[1,2,3], [4,5,6]])
+ >>> a
+ array([[1, 2, 3],
+ [4, 5, 6]])
+ >>> np.cumsum(a)
+ array([ 1, 3, 6, 10, 15, 21])
+ >>> np.cumsum(a, dtype=float) # specifies type of output value(s)
+ array([ 1., 3., 6., 10., 15., 21.])
+
+ >>> np.cumsum(a,axis=0) # sum over rows for each of the 3 columns
+ array([[1, 2, 3],
+ [5, 7, 9]])
+ >>> np.cumsum(a,axis=1) # sum over columns for each of the 2 rows
+ array([[ 1, 3, 6],
+ [ 4, 9, 15]])
+
+ ``cumsum(b)[-1]`` may not be equal to ``sum(b)``
+
+ >>> b = np.array([1, 2e-9, 3e-9] * 1000000)
+ >>> b.cumsum()[-1]
+ 1000000.0050045159
+ >>> b.sum()
+ 1000000.0050000029
+
+ """
+ return _wrapfunc(a, 'cumsum', axis=axis, dtype=dtype, out=out)
+
+
+def _ptp_dispatcher(a, axis=None, out=None, keepdims=None):
+ return (a, out)
+
+
+@array_function_dispatch(_ptp_dispatcher)
+def ptp(a, axis=None, out=None, keepdims=np._NoValue):
+ """
+ Range of values (maximum - minimum) along an axis.
+
+ The name of the function comes from the acronym for 'peak to peak'.
+
+ .. warning::
+ `ptp` preserves the data type of the array. This means the
+ return value for an input of signed integers with n bits
+ (e.g. `numpy.int8`, `numpy.int16`, etc) is also a signed integer
+ with n bits. In that case, peak-to-peak values greater than
+ ``2**(n-1)-1`` will be returned as negative values. An example
+ with a work-around is shown below.
+
+ Parameters
+ ----------
+ a : array_like
+ Input values.
+ axis : None or int or tuple of ints, optional
+ Axis along which to find the peaks. By default, flatten the
+ array. `axis` may be negative, in
+ which case it counts from the last to the first axis.
+ If this is a tuple of ints, a reduction is performed on multiple
+ axes, instead of a single axis or all the axes as before.
+ out : array_like
+ Alternative output array in which to place the result. It must
+ have the same shape and buffer length as the expected output,
+ but the type of the output values will be cast if necessary.
+
+ keepdims : bool, optional
+ If this is set to True, the axes which are reduced are left
+ in the result as dimensions with size one. With this option,
+ the result will broadcast correctly against the input array.
+
+ If the default value is passed, then `keepdims` will not be
+ passed through to the `ptp` method of sub-classes of
+ `ndarray`, however any non-default value will be. If the
+ sub-class' method does not implement `keepdims` any
+ exceptions will be raised.
+
+ Returns
+ -------
+ ptp : ndarray or scalar
+ The range of a given array - `scalar` if array is one-dimensional
+ or a new array holding the result along the given axis
+
+ Examples
+ --------
+ >>> import numpy as np
+ >>> x = np.array([[4, 9, 2, 10],
+ ... [6, 9, 7, 12]])
+
+ >>> np.ptp(x, axis=1)
+ array([8, 6])
+
+ >>> np.ptp(x, axis=0)
+ array([2, 0, 5, 2])
+
+ >>> np.ptp(x)
+ 10
+
+ This example shows that a negative value can be returned when
+ the input is an array of signed integers.
+
+ >>> y = np.array([[1, 127],
+ ... [0, 127],
+ ... [-1, 127],
+ ... [-2, 127]], dtype=np.int8)
+ >>> np.ptp(y, axis=1)
+ array([ 126, 127, -128, -127], dtype=int8)
+
+ A work-around is to use the `view()` method to view the result as
+ unsigned integers with the same bit width:
+
+ >>> np.ptp(y, axis=1).view(np.uint8)
+ array([126, 127, 128, 129], dtype=uint8)
+
+ """
+ kwargs = {}
+ if keepdims is not np._NoValue:
+ kwargs['keepdims'] = keepdims
+ return _methods._ptp(a, axis=axis, out=out, **kwargs)
+
+
+def _max_dispatcher(a, axis=None, out=None, keepdims=None, initial=None,
+ where=None):
+ return (a, out)
+
+
+@array_function_dispatch(_max_dispatcher)
+@set_module('numpy')
+def max(a, axis=None, out=None, keepdims=np._NoValue, initial=np._NoValue,
+ where=np._NoValue):
+ """
+ Return the maximum of an array or maximum along an axis.
+
+ Parameters
+ ----------
+ a : array_like
+ Input data.
+ axis : None or int or tuple of ints, optional
+ Axis or axes along which to operate. By default, flattened input is
+ used. If this is a tuple of ints, the maximum is selected over
+ multiple axes, instead of a single axis or all the axes as before.
+
+ out : ndarray, optional
+ Alternative output array in which to place the result. Must
+ be of the same shape and buffer length as the expected output.
+ See :ref:`ufuncs-output-type` for more details.
+
+ keepdims : bool, optional
+ If this is set to True, the axes which are reduced are left
+ in the result as dimensions with size one. With this option,
+ the result will broadcast correctly against the input array.
+
+ If the default value is passed, then `keepdims` will not be
+ passed through to the ``max`` method of sub-classes of
+ `ndarray`, however any non-default value will be. If the
+ sub-class' method does not implement `keepdims` any
+ exceptions will be raised.
+
+ initial : scalar, optional
+ The minimum value of an output element. Must be present to allow
+ computation on empty slice. See `~numpy.ufunc.reduce` for details.
+
+ where : array_like of bool, optional
+ Elements to compare for the maximum. See `~numpy.ufunc.reduce`
+ for details.
+
+ Returns
+ -------
+ max : ndarray or scalar
+ Maximum of `a`. If `axis` is None, the result is a scalar value.
+ If `axis` is an int, the result is an array of dimension
+ ``a.ndim - 1``. If `axis` is a tuple, the result is an array of
+ dimension ``a.ndim - len(axis)``.
+
+ See Also
+ --------
+ amin :
+ The minimum value of an array along a given axis, propagating any NaNs.
+ nanmax :
+ The maximum value of an array along a given axis, ignoring any NaNs.
+ maximum :
+ Element-wise maximum of two arrays, propagating any NaNs.
+ fmax :
+ Element-wise maximum of two arrays, ignoring any NaNs.
+ argmax :
+ Return the indices of the maximum values.
+
+ nanmin, minimum, fmin
+
+ Notes
+ -----
+ NaN values are propagated, that is if at least one item is NaN, the
+ corresponding max value will be NaN as well. To ignore NaN values
+ (MATLAB behavior), please use nanmax.
+
+ Don't use `~numpy.max` for element-wise comparison of 2 arrays; when
+ ``a.shape[0]`` is 2, ``maximum(a[0], a[1])`` is faster than
+ ``max(a, axis=0)``.
+
+ Examples
+ --------
+ >>> import numpy as np
+ >>> a = np.arange(4).reshape((2,2))
+ >>> a
+ array([[0, 1],
+ [2, 3]])
+ >>> np.max(a) # Maximum of the flattened array
+ 3
+ >>> np.max(a, axis=0) # Maxima along the first axis
+ array([2, 3])
+ >>> np.max(a, axis=1) # Maxima along the second axis
+ array([1, 3])
+ >>> np.max(a, where=[False, True], initial=-1, axis=0)
+ array([-1, 3])
+ >>> b = np.arange(5, dtype=float)
+ >>> b[2] = np.nan
+ >>> np.max(b)
+ np.float64(nan)
+ >>> np.max(b, where=~np.isnan(b), initial=-1)
+ 4.0
+ >>> np.nanmax(b)
+ 4.0
+
+ You can use an initial value to compute the maximum of an empty slice, or
+ to initialize it to a different value:
+
+ >>> np.max([[-50], [10]], axis=-1, initial=0)
+ array([ 0, 10])
+
+ Notice that the initial value is used as one of the elements for which the
+ maximum is determined, unlike for the default argument Python's max
+ function, which is only used for empty iterables.
+
+ >>> np.max([5], initial=6)
+ 6
+ >>> max([5], default=6)
+ 5
+ """
+ return _wrapreduction(a, np.maximum, 'max', axis, None, out,
+ keepdims=keepdims, initial=initial, where=where)
+
+
+@array_function_dispatch(_max_dispatcher)
+def amax(a, axis=None, out=None, keepdims=np._NoValue, initial=np._NoValue,
+ where=np._NoValue):
+ """
+ Return the maximum of an array or maximum along an axis.
+
+ `amax` is an alias of `~numpy.max`.
+
+ See Also
+ --------
+ max : alias of this function
+ ndarray.max : equivalent method
+ """
+ return _wrapreduction(a, np.maximum, 'max', axis, None, out,
+ keepdims=keepdims, initial=initial, where=where)
+
+
+def _min_dispatcher(a, axis=None, out=None, keepdims=None, initial=None,
+ where=None):
+ return (a, out)
+
+
+@array_function_dispatch(_min_dispatcher)
+def min(a, axis=None, out=None, keepdims=np._NoValue, initial=np._NoValue,
+ where=np._NoValue):
+ """
+ Return the minimum of an array or minimum along an axis.
+
+ Parameters
+ ----------
+ a : array_like
+ Input data.
+ axis : None or int or tuple of ints, optional
+ Axis or axes along which to operate. By default, flattened input is
+ used.
+
+ If this is a tuple of ints, the minimum is selected over multiple axes,
+ instead of a single axis or all the axes as before.
+ out : ndarray, optional
+ Alternative output array in which to place the result. Must
+ be of the same shape and buffer length as the expected output.
+ See :ref:`ufuncs-output-type` for more details.
+
+ keepdims : bool, optional
+ If this is set to True, the axes which are reduced are left
+ in the result as dimensions with size one. With this option,
+ the result will broadcast correctly against the input array.
+
+ If the default value is passed, then `keepdims` will not be
+ passed through to the ``min`` method of sub-classes of
+ `ndarray`, however any non-default value will be. If the
+ sub-class' method does not implement `keepdims` any
+ exceptions will be raised.
+
+ initial : scalar, optional
+ The maximum value of an output element. Must be present to allow
+ computation on empty slice. See `~numpy.ufunc.reduce` for details.
+
+ where : array_like of bool, optional
+ Elements to compare for the minimum. See `~numpy.ufunc.reduce`
+ for details.
+
+ Returns
+ -------
+ min : ndarray or scalar
+ Minimum of `a`. If `axis` is None, the result is a scalar value.
+ If `axis` is an int, the result is an array of dimension
+ ``a.ndim - 1``. If `axis` is a tuple, the result is an array of
+ dimension ``a.ndim - len(axis)``.
+
+ See Also
+ --------
+ amax :
+ The maximum value of an array along a given axis, propagating any NaNs.
+ nanmin :
+ The minimum value of an array along a given axis, ignoring any NaNs.
+ minimum :
+ Element-wise minimum of two arrays, propagating any NaNs.
+ fmin :
+ Element-wise minimum of two arrays, ignoring any NaNs.
+ argmin :
+ Return the indices of the minimum values.
+
+ nanmax, maximum, fmax
+
+ Notes
+ -----
+ NaN values are propagated, that is if at least one item is NaN, the
+ corresponding min value will be NaN as well. To ignore NaN values
+ (MATLAB behavior), please use nanmin.
+
+ Don't use `~numpy.min` for element-wise comparison of 2 arrays; when
+ ``a.shape[0]`` is 2, ``minimum(a[0], a[1])`` is faster than
+ ``min(a, axis=0)``.
+
+ Examples
+ --------
+ >>> import numpy as np
+ >>> a = np.arange(4).reshape((2,2))
+ >>> a
+ array([[0, 1],
+ [2, 3]])
+ >>> np.min(a) # Minimum of the flattened array
+ 0
+ >>> np.min(a, axis=0) # Minima along the first axis
+ array([0, 1])
+ >>> np.min(a, axis=1) # Minima along the second axis
+ array([0, 2])
+ >>> np.min(a, where=[False, True], initial=10, axis=0)
+ array([10, 1])
+
+ >>> b = np.arange(5, dtype=float)
+ >>> b[2] = np.nan
+ >>> np.min(b)
+ np.float64(nan)
+ >>> np.min(b, where=~np.isnan(b), initial=10)
+ 0.0
+ >>> np.nanmin(b)
+ 0.0
+
+ >>> np.min([[-50], [10]], axis=-1, initial=0)
+ array([-50, 0])
+
+ Notice that the initial value is used as one of the elements for which the
+ minimum is determined, unlike for the default argument Python's max
+ function, which is only used for empty iterables.
+
+ Notice that this isn't the same as Python's ``default`` argument.
+
+ >>> np.min([6], initial=5)
+ 5
+ >>> min([6], default=5)
+ 6
+ """
+ return _wrapreduction(a, np.minimum, 'min', axis, None, out,
+ keepdims=keepdims, initial=initial, where=where)
+
+
+@array_function_dispatch(_min_dispatcher)
+def amin(a, axis=None, out=None, keepdims=np._NoValue, initial=np._NoValue,
+ where=np._NoValue):
+ """
+ Return the minimum of an array or minimum along an axis.
+
+ `amin` is an alias of `~numpy.min`.
+
+ See Also
+ --------
+ min : alias of this function
+ ndarray.min : equivalent method
+ """
+ return _wrapreduction(a, np.minimum, 'min', axis, None, out,
+ keepdims=keepdims, initial=initial, where=where)
+
+
+def _prod_dispatcher(a, axis=None, dtype=None, out=None, keepdims=None,
+ initial=None, where=None):
+ return (a, out)
+
+
+@array_function_dispatch(_prod_dispatcher)
+def prod(a, axis=None, dtype=None, out=None, keepdims=np._NoValue,
+ initial=np._NoValue, where=np._NoValue):
+ """
+ Return the product of array elements over a given axis.
+
+ Parameters
+ ----------
+ a : array_like
+ Input data.
+ axis : None or int or tuple of ints, optional
+ Axis or axes along which a product is performed. The default,
+ axis=None, will calculate the product of all the elements in the
+ input array. If axis is negative it counts from the last to the
+ first axis.
+
+ If axis is a tuple of ints, a product is performed on all of the
+ axes specified in the tuple instead of a single axis or all the
+ axes as before.
+ dtype : dtype, optional
+ The type of the returned array, as well as of the accumulator in
+ which the elements are multiplied. The dtype of `a` is used by
+ default unless `a` has an integer dtype of less precision than the
+ default platform integer. In that case, if `a` is signed then the
+ platform integer is used while if `a` is unsigned then an unsigned
+ integer of the same precision as the platform integer is used.
+ out : ndarray, optional
+ Alternative output array in which to place the result. It must have
+ the same shape as the expected output, but the type of the output
+ values will be cast if necessary.
+ keepdims : bool, optional
+ If this is set to True, the axes which are reduced are left in the
+ result as dimensions with size one. With this option, the result
+ will broadcast correctly against the input array.
+
+ If the default value is passed, then `keepdims` will not be
+ passed through to the `prod` method of sub-classes of
+ `ndarray`, however any non-default value will be. If the
+ sub-class' method does not implement `keepdims` any
+ exceptions will be raised.
+ initial : scalar, optional
+ The starting value for this product. See `~numpy.ufunc.reduce`
+ for details.
+ where : array_like of bool, optional
+ Elements to include in the product. See `~numpy.ufunc.reduce`
+ for details.
+
+ Returns
+ -------
+ product_along_axis : ndarray, see `dtype` parameter above.
+ An array shaped as `a` but with the specified axis removed.
+ Returns a reference to `out` if specified.
+
+ See Also
+ --------
+ ndarray.prod : equivalent method
+ :ref:`ufuncs-output-type`
+
+ Notes
+ -----
+ Arithmetic is modular when using integer types, and no error is
+ raised on overflow. That means that, on a 32-bit platform:
+
+ >>> x = np.array([536870910, 536870910, 536870910, 536870910])
+ >>> np.prod(x)
+ 16 # may vary
+
+ The product of an empty array is the neutral element 1:
+
+ >>> np.prod([])
+ 1.0
+
+ Examples
+ --------
+ By default, calculate the product of all elements:
+
+ >>> import numpy as np
+ >>> np.prod([1.,2.])
+ 2.0
+
+ Even when the input array is two-dimensional:
+
+ >>> a = np.array([[1., 2.], [3., 4.]])
+ >>> np.prod(a)
+ 24.0
+
+ But we can also specify the axis over which to multiply:
+
+ >>> np.prod(a, axis=1)
+ array([ 2., 12.])
+ >>> np.prod(a, axis=0)
+ array([3., 8.])
+
+ Or select specific elements to include:
+
+ >>> np.prod([1., np.nan, 3.], where=[True, False, True])
+ 3.0
+
+ If the type of `x` is unsigned, then the output type is
+ the unsigned platform integer:
+
+ >>> x = np.array([1, 2, 3], dtype=np.uint8)
+ >>> np.prod(x).dtype == np.uint
+ True
+
+ If `x` is of a signed integer type, then the output type
+ is the default platform integer:
+
+ >>> x = np.array([1, 2, 3], dtype=np.int8)
+ >>> np.prod(x).dtype == int
+ True
+
+ You can also start the product with a value other than one:
+
+ >>> np.prod([1, 2], initial=5)
+ 10
+ """
+ return _wrapreduction(a, np.multiply, 'prod', axis, dtype, out,
+ keepdims=keepdims, initial=initial, where=where)
+
+
+def _cumprod_dispatcher(a, axis=None, dtype=None, out=None):
+ return (a, out)
+
+
+@array_function_dispatch(_cumprod_dispatcher)
+def cumprod(a, axis=None, dtype=None, out=None):
+ """
+ Return the cumulative product of elements along a given axis.
+
+ Parameters
+ ----------
+ a : array_like
+ Input array.
+ axis : int, optional
+ Axis along which the cumulative product is computed. By default
+ the input is flattened.
+ dtype : dtype, optional
+ Type of the returned array, as well as of the accumulator in which
+ the elements are multiplied. If *dtype* is not specified, it
+ defaults to the dtype of `a`, unless `a` has an integer dtype with
+ a precision less than that of the default platform integer. In
+ that case, the default platform integer is used instead.
+ out : ndarray, optional
+ Alternative output array in which to place the result. It must
+ have the same shape and buffer length as the expected output
+ but the type of the resulting values will be cast if necessary.
+
+ Returns
+ -------
+ cumprod : ndarray
+ A new array holding the result is returned unless `out` is
+ specified, in which case a reference to out is returned.
+
+ See Also
+ --------
+ cumulative_prod : Array API compatible alternative for ``cumprod``.
+ :ref:`ufuncs-output-type`
+
+ Notes
+ -----
+ Arithmetic is modular when using integer types, and no error is
+ raised on overflow.
+
+ Examples
+ --------
+ >>> import numpy as np
+ >>> a = np.array([1,2,3])
+ >>> np.cumprod(a) # intermediate results 1, 1*2
+ ... # total product 1*2*3 = 6
+ array([1, 2, 6])
+ >>> a = np.array([[1, 2, 3], [4, 5, 6]])
+ >>> np.cumprod(a, dtype=float) # specify type of output
+ array([ 1., 2., 6., 24., 120., 720.])
+
+ The cumulative product for each column (i.e., over the rows) of `a`:
+
+ >>> np.cumprod(a, axis=0)
+ array([[ 1, 2, 3],
+ [ 4, 10, 18]])
+
+ The cumulative product for each row (i.e. over the columns) of `a`:
+
+ >>> np.cumprod(a,axis=1)
+ array([[ 1, 2, 6],
+ [ 4, 20, 120]])
+
+ """
+ return _wrapfunc(a, 'cumprod', axis=axis, dtype=dtype, out=out)
+
+
+def _ndim_dispatcher(a):
+ return (a,)
+
+
+@array_function_dispatch(_ndim_dispatcher)
+def ndim(a):
+ """
+ Return the number of dimensions of an array.
+
+ Parameters
+ ----------
+ a : array_like
+ Input array. If it is not already an ndarray, a conversion is
+ attempted.
+
+ Returns
+ -------
+ number_of_dimensions : int
+ The number of dimensions in `a`. Scalars are zero-dimensional.
+
+ See Also
+ --------
+ ndarray.ndim : equivalent method
+ shape : dimensions of array
+ ndarray.shape : dimensions of array
+
+ Examples
+ --------
+ >>> import numpy as np
+ >>> np.ndim([[1,2,3],[4,5,6]])
+ 2
+ >>> np.ndim(np.array([[1,2,3],[4,5,6]]))
+ 2
+ >>> np.ndim(1)
+ 0
+
+ """
+ try:
+ return a.ndim
+ except AttributeError:
+ return asarray(a).ndim
+
+
+def _size_dispatcher(a, axis=None):
+ return (a,)
+
+
+@array_function_dispatch(_size_dispatcher)
+def size(a, axis=None):
+ """
+ Return the number of elements along a given axis.
+
+ Parameters
+ ----------
+ a : array_like
+ Input data.
+ axis : int, optional
+ Axis along which the elements are counted. By default, give
+ the total number of elements.
+
+ Returns
+ -------
+ element_count : int
+ Number of elements along the specified axis.
+
+ See Also
+ --------
+ shape : dimensions of array
+ ndarray.shape : dimensions of array
+ ndarray.size : number of elements in array
+
+ Examples
+ --------
+ >>> import numpy as np
+ >>> a = np.array([[1,2,3],[4,5,6]])
+ >>> np.size(a)
+ 6
+ >>> np.size(a,1)
+ 3
+ >>> np.size(a,0)
+ 2
+
+ """
+ if axis is None:
+ try:
+ return a.size
+ except AttributeError:
+ return asarray(a).size
+ else:
+ try:
+ return a.shape[axis]
+ except AttributeError:
+ return asarray(a).shape[axis]
+
+
+def _round_dispatcher(a, decimals=None, out=None):
+ return (a, out)
+
+
+@array_function_dispatch(_round_dispatcher)
+def round(a, decimals=0, out=None):
+ """
+ Evenly round to the given number of decimals.
+
+ Parameters
+ ----------
+ a : array_like
+ Input data.
+ decimals : int, optional
+ Number of decimal places to round to (default: 0). If
+ decimals is negative, it specifies the number of positions to
+ the left of the decimal point.
+ out : ndarray, optional
+ Alternative output array in which to place the result. It must have
+ the same shape as the expected output, but the type of the output
+ values will be cast if necessary. See :ref:`ufuncs-output-type`
+ for more details.
+
+ Returns
+ -------
+ rounded_array : ndarray
+ An array of the same type as `a`, containing the rounded values.
+ Unless `out` was specified, a new array is created. A reference to
+ the result is returned.
+
+ The real and imaginary parts of complex numbers are rounded
+ separately. The result of rounding a float is a float.
+
+ See Also
+ --------
+ ndarray.round : equivalent method
+ around : an alias for this function
+ ceil, fix, floor, rint, trunc
+
+
+ Notes
+ -----
+ For values exactly halfway between rounded decimal values, NumPy
+ rounds to the nearest even value. Thus 1.5 and 2.5 round to 2.0,
+ -0.5 and 0.5 round to 0.0, etc.
+
+ ``np.round`` uses a fast but sometimes inexact algorithm to round
+ floating-point datatypes. For positive `decimals` it is equivalent to
+ ``np.true_divide(np.rint(a * 10**decimals), 10**decimals)``, which has
+ error due to the inexact representation of decimal fractions in the IEEE
+ floating point standard [1]_ and errors introduced when scaling by powers
+ of ten. For instance, note the extra "1" in the following:
+
+ >>> np.round(56294995342131.5, 3)
+ 56294995342131.51
+
+ If your goal is to print such values with a fixed number of decimals, it is
+ preferable to use numpy's float printing routines to limit the number of
+ printed decimals:
+
+ >>> np.format_float_positional(56294995342131.5, precision=3)
+ '56294995342131.5'
+
+ The float printing routines use an accurate but much more computationally
+ demanding algorithm to compute the number of digits after the decimal
+ point.
+
+ Alternatively, Python's builtin `round` function uses a more accurate
+ but slower algorithm for 64-bit floating point values:
+
+ >>> round(56294995342131.5, 3)
+ 56294995342131.5
+ >>> np.round(16.055, 2), round(16.055, 2) # equals 16.0549999999999997
+ (16.06, 16.05)
+
+
+ References
+ ----------
+ .. [1] "Lecture Notes on the Status of IEEE 754", William Kahan,
+ https://people.eecs.berkeley.edu/~wkahan/ieee754status/IEEE754.PDF
+
+ Examples
+ --------
+ >>> import numpy as np
+ >>> np.round([0.37, 1.64])
+ array([0., 2.])
+ >>> np.round([0.37, 1.64], decimals=1)
+ array([0.4, 1.6])
+ >>> np.round([.5, 1.5, 2.5, 3.5, 4.5]) # rounds to nearest even value
+ array([0., 2., 2., 4., 4.])
+ >>> np.round([1,2,3,11], decimals=1) # ndarray of ints is returned
+ array([ 1, 2, 3, 11])
+ >>> np.round([1,2,3,11], decimals=-1)
+ array([ 0, 0, 0, 10])
+
+ """
+ return _wrapfunc(a, 'round', decimals=decimals, out=out)
+
+
+@array_function_dispatch(_round_dispatcher)
+def around(a, decimals=0, out=None):
+ """
+ Round an array to the given number of decimals.
+
+ `around` is an alias of `~numpy.round`.
+
+ See Also
+ --------
+ ndarray.round : equivalent method
+ round : alias for this function
+ ceil, fix, floor, rint, trunc
+
+ """
+ return _wrapfunc(a, 'round', decimals=decimals, out=out)
+
+
+def _mean_dispatcher(a, axis=None, dtype=None, out=None, keepdims=None, *,
+ where=None):
+ return (a, where, out)
+
+
+@array_function_dispatch(_mean_dispatcher)
+def mean(a, axis=None, dtype=None, out=None, keepdims=np._NoValue, *,
+ where=np._NoValue):
+ """
+ Compute the arithmetic mean along the specified axis.
+
+ Returns the average of the array elements. The average is taken over
+ the flattened array by default, otherwise over the specified axis.
+ `float64` intermediate and return values are used for integer inputs.
+
+ Parameters
+ ----------
+ a : array_like
+ Array containing numbers whose mean is desired. If `a` is not an
+ array, a conversion is attempted.
+ axis : None or int or tuple of ints, optional
+ Axis or axes along which the means are computed. The default is to
+ compute the mean of the flattened array.
+
+ If this is a tuple of ints, a mean is performed over multiple axes,
+ instead of a single axis or all the axes as before.
+ dtype : data-type, optional
+ Type to use in computing the mean. For integer inputs, the default
+ is `float64`; for floating point inputs, it is the same as the
+ input dtype.
+ out : ndarray, optional
+ Alternate output array in which to place the result. The default
+ is ``None``; if provided, it must have the same shape as the
+ expected output, but the type will be cast if necessary.
+ See :ref:`ufuncs-output-type` for more details.
+ See :ref:`ufuncs-output-type` for more details.
+
+ keepdims : bool, optional
+ If this is set to True, the axes which are reduced are left
+ in the result as dimensions with size one. With this option,
+ the result will broadcast correctly against the input array.
+
+ If the default value is passed, then `keepdims` will not be
+ passed through to the `mean` method of sub-classes of
+ `ndarray`, however any non-default value will be. If the
+ sub-class' method does not implement `keepdims` any
+ exceptions will be raised.
+
+ where : array_like of bool, optional
+ Elements to include in the mean. See `~numpy.ufunc.reduce` for details.
+
+ .. versionadded:: 1.20.0
+
+ Returns
+ -------
+ m : ndarray, see dtype parameter above
+ If `out=None`, returns a new array containing the mean values,
+ otherwise a reference to the output array is returned.
+
+ See Also
+ --------
+ average : Weighted average
+ std, var, nanmean, nanstd, nanvar
+
+ Notes
+ -----
+ The arithmetic mean is the sum of the elements along the axis divided
+ by the number of elements.
+
+ Note that for floating-point input, the mean is computed using the
+ same precision the input has. Depending on the input data, this can
+ cause the results to be inaccurate, especially for `float32` (see
+ example below). Specifying a higher-precision accumulator using the
+ `dtype` keyword can alleviate this issue.
+
+ By default, `float16` results are computed using `float32` intermediates
+ for extra precision.
+
+ Examples
+ --------
+ >>> import numpy as np
+ >>> a = np.array([[1, 2], [3, 4]])
+ >>> np.mean(a)
+ 2.5
+ >>> np.mean(a, axis=0)
+ array([2., 3.])
+ >>> np.mean(a, axis=1)
+ array([1.5, 3.5])
+
+ In single precision, `mean` can be inaccurate:
+
+ >>> a = np.zeros((2, 512*512), dtype=np.float32)
+ >>> a[0, :] = 1.0
+ >>> a[1, :] = 0.1
+ >>> np.mean(a)
+ np.float32(0.54999924)
+
+ Computing the mean in float64 is more accurate:
+
+ >>> np.mean(a, dtype=np.float64)
+ 0.55000000074505806 # may vary
+
+ Computing the mean in timedelta64 is available:
+
+ >>> b = np.array([1, 3], dtype="timedelta64[D]")
+ >>> np.mean(b)
+ np.timedelta64(2,'D')
+
+ Specifying a where argument:
+
+ >>> a = np.array([[5, 9, 13], [14, 10, 12], [11, 15, 19]])
+ >>> np.mean(a)
+ 12.0
+ >>> np.mean(a, where=[[True], [False], [False]])
+ 9.0
+
+ """
+ kwargs = {}
+ if keepdims is not np._NoValue:
+ kwargs['keepdims'] = keepdims
+ if where is not np._NoValue:
+ kwargs['where'] = where
+ if type(a) is not mu.ndarray:
+ try:
+ mean = a.mean
+ except AttributeError:
+ pass
+ else:
+ return mean(axis=axis, dtype=dtype, out=out, **kwargs)
+
+ return _methods._mean(a, axis=axis, dtype=dtype,
+ out=out, **kwargs)
+
+
+def _std_dispatcher(a, axis=None, dtype=None, out=None, ddof=None,
+ keepdims=None, *, where=None, mean=None, correction=None):
+ return (a, where, out, mean)
+
+
+@array_function_dispatch(_std_dispatcher)
+def std(a, axis=None, dtype=None, out=None, ddof=0, keepdims=np._NoValue, *,
+ where=np._NoValue, mean=np._NoValue, correction=np._NoValue):
+ r"""
+ Compute the standard deviation along the specified axis.
+
+ Returns the standard deviation, a measure of the spread of a distribution,
+ of the array elements. The standard deviation is computed for the
+ flattened array by default, otherwise over the specified axis.
+
+ Parameters
+ ----------
+ a : array_like
+ Calculate the standard deviation of these values.
+ axis : None or int or tuple of ints, optional
+ Axis or axes along which the standard deviation is computed. The
+ default is to compute the standard deviation of the flattened array.
+ If this is a tuple of ints, a standard deviation is performed over
+ multiple axes, instead of a single axis or all the axes as before.
+ dtype : dtype, optional
+ Type to use in computing the standard deviation. For arrays of
+ integer type the default is float64, for arrays of float types it is
+ the same as the array type.
+ out : ndarray, optional
+ Alternative output array in which to place the result. It must have
+ the same shape as the expected output but the type (of the calculated
+ values) will be cast if necessary.
+ See :ref:`ufuncs-output-type` for more details.
+ ddof : {int, float}, optional
+ Means Delta Degrees of Freedom. The divisor used in calculations
+ is ``N - ddof``, where ``N`` represents the number of elements.
+ By default `ddof` is zero. See Notes for details about use of `ddof`.
+ keepdims : bool, optional
+ If this is set to True, the axes which are reduced are left
+ in the result as dimensions with size one. With this option,
+ the result will broadcast correctly against the input array.
+
+ If the default value is passed, then `keepdims` will not be
+ passed through to the `std` method of sub-classes of
+ `ndarray`, however any non-default value will be. If the
+ sub-class' method does not implement `keepdims` any
+ exceptions will be raised.
+ where : array_like of bool, optional
+ Elements to include in the standard deviation.
+ See `~numpy.ufunc.reduce` for details.
+
+ .. versionadded:: 1.20.0
+
+ mean : array_like, optional
+ Provide the mean to prevent its recalculation. The mean should have
+ a shape as if it was calculated with ``keepdims=True``.
+ The axis for the calculation of the mean should be the same as used in
+ the call to this std function.
+
+ .. versionadded:: 2.0.0
+
+ correction : {int, float}, optional
+ Array API compatible name for the ``ddof`` parameter. Only one of them
+ can be provided at the same time.
+
+ .. versionadded:: 2.0.0
+
+ Returns
+ -------
+ standard_deviation : ndarray, see dtype parameter above.
+ If `out` is None, return a new array containing the standard deviation,
+ otherwise return a reference to the output array.
+
+ See Also
+ --------
+ var, mean, nanmean, nanstd, nanvar
+ :ref:`ufuncs-output-type`
+
+ Notes
+ -----
+ There are several common variants of the array standard deviation
+ calculation. Assuming the input `a` is a one-dimensional NumPy array
+ and ``mean`` is either provided as an argument or computed as
+ ``a.mean()``, NumPy computes the standard deviation of an array as::
+
+ N = len(a)
+ d2 = abs(a - mean)**2 # abs is for complex `a`
+ var = d2.sum() / (N - ddof) # note use of `ddof`
+ std = var**0.5
+
+ Different values of the argument `ddof` are useful in different
+ contexts. NumPy's default ``ddof=0`` corresponds with the expression:
+
+ .. math::
+
+ \sqrt{\frac{\sum_i{|a_i - \bar{a}|^2 }}{N}}
+
+ which is sometimes called the "population standard deviation" in the field
+ of statistics because it applies the definition of standard deviation to
+ `a` as if `a` were a complete population of possible observations.
+
+ Many other libraries define the standard deviation of an array
+ differently, e.g.:
+
+ .. math::
+
+ \sqrt{\frac{\sum_i{|a_i - \bar{a}|^2 }}{N - 1}}
+
+ In statistics, the resulting quantity is sometimes called the "sample
+ standard deviation" because if `a` is a random sample from a larger
+ population, this calculation provides the square root of an unbiased
+ estimate of the variance of the population. The use of :math:`N-1` in the
+ denominator is often called "Bessel's correction" because it corrects for
+ bias (toward lower values) in the variance estimate introduced when the
+ sample mean of `a` is used in place of the true mean of the population.
+ The resulting estimate of the standard deviation is still biased, but less
+ than it would have been without the correction. For this quantity, use
+ ``ddof=1``.
+
+ Note that, for complex numbers, `std` takes the absolute
+ value before squaring, so that the result is always real and nonnegative.
+
+ For floating-point input, the standard deviation is computed using the same
+ precision the input has. Depending on the input data, this can cause
+ the results to be inaccurate, especially for float32 (see example below).
+ Specifying a higher-accuracy accumulator using the `dtype` keyword can
+ alleviate this issue.
+
+ Examples
+ --------
+ >>> import numpy as np
+ >>> a = np.array([[1, 2], [3, 4]])
+ >>> np.std(a)
+ 1.1180339887498949 # may vary
+ >>> np.std(a, axis=0)
+ array([1., 1.])
+ >>> np.std(a, axis=1)
+ array([0.5, 0.5])
+
+ In single precision, std() can be inaccurate:
+
+ >>> a = np.zeros((2, 512*512), dtype=np.float32)
+ >>> a[0, :] = 1.0
+ >>> a[1, :] = 0.1
+ >>> np.std(a)
+ np.float32(0.45000005)
+
+ Computing the standard deviation in float64 is more accurate:
+
+ >>> np.std(a, dtype=np.float64)
+ 0.44999999925494177 # may vary
+
+ Specifying a where argument:
+
+ >>> a = np.array([[14, 8, 11, 10], [7, 9, 10, 11], [10, 15, 5, 10]])
+ >>> np.std(a)
+ 2.614064523559687 # may vary
+ >>> np.std(a, where=[[True], [True], [False]])
+ 2.0
+
+ Using the mean keyword to save computation time:
+
+ >>> import numpy as np
+ >>> from timeit import timeit
+ >>> a = np.array([[14, 8, 11, 10], [7, 9, 10, 11], [10, 15, 5, 10]])
+ >>> mean = np.mean(a, axis=1, keepdims=True)
+ >>>
+ >>> g = globals()
+ >>> n = 10000
+ >>> t1 = timeit("std = np.std(a, axis=1, mean=mean)", globals=g, number=n)
+ >>> t2 = timeit("std = np.std(a, axis=1)", globals=g, number=n)
+ >>> print(f'Percentage execution time saved {100*(t2-t1)/t2:.0f}%')
+ #doctest: +SKIP
+ Percentage execution time saved 30%
+
+ """
+ kwargs = {}
+ if keepdims is not np._NoValue:
+ kwargs['keepdims'] = keepdims
+ if where is not np._NoValue:
+ kwargs['where'] = where
+ if mean is not np._NoValue:
+ kwargs['mean'] = mean
+
+ if correction != np._NoValue:
+ if ddof != 0:
+ raise ValueError(
+ "ddof and correction can't be provided simultaneously."
+ )
+ else:
+ ddof = correction
+
+ if type(a) is not mu.ndarray:
+ try:
+ std = a.std
+ except AttributeError:
+ pass
+ else:
+ return std(axis=axis, dtype=dtype, out=out, ddof=ddof, **kwargs)
+
+ return _methods._std(a, axis=axis, dtype=dtype, out=out, ddof=ddof,
+ **kwargs)
+
+
+def _var_dispatcher(a, axis=None, dtype=None, out=None, ddof=None,
+ keepdims=None, *, where=None, mean=None, correction=None):
+ return (a, where, out, mean)
+
+
+@array_function_dispatch(_var_dispatcher)
+def var(a, axis=None, dtype=None, out=None, ddof=0, keepdims=np._NoValue, *,
+ where=np._NoValue, mean=np._NoValue, correction=np._NoValue):
+ r"""
+ Compute the variance along the specified axis.
+
+ Returns the variance of the array elements, a measure of the spread of a
+ distribution. The variance is computed for the flattened array by
+ default, otherwise over the specified axis.
+
+ Parameters
+ ----------
+ a : array_like
+ Array containing numbers whose variance is desired. If `a` is not an
+ array, a conversion is attempted.
+ axis : None or int or tuple of ints, optional
+ Axis or axes along which the variance is computed. The default is to
+ compute the variance of the flattened array.
+ If this is a tuple of ints, a variance is performed over multiple axes,
+ instead of a single axis or all the axes as before.
+ dtype : data-type, optional
+ Type to use in computing the variance. For arrays of integer type
+ the default is `float64`; for arrays of float types it is the same as
+ the array type.
+ out : ndarray, optional
+ Alternate output array in which to place the result. It must have
+ the same shape as the expected output, but the type is cast if
+ necessary.
+ ddof : {int, float}, optional
+ "Delta Degrees of Freedom": the divisor used in the calculation is
+ ``N - ddof``, where ``N`` represents the number of elements. By
+ default `ddof` is zero. See notes for details about use of `ddof`.
+ keepdims : bool, optional
+ If this is set to True, the axes which are reduced are left
+ in the result as dimensions with size one. With this option,
+ the result will broadcast correctly against the input array.
+
+ If the default value is passed, then `keepdims` will not be
+ passed through to the `var` method of sub-classes of
+ `ndarray`, however any non-default value will be. If the
+ sub-class' method does not implement `keepdims` any
+ exceptions will be raised.
+ where : array_like of bool, optional
+ Elements to include in the variance. See `~numpy.ufunc.reduce` for
+ details.
+
+ .. versionadded:: 1.20.0
+
+ mean : array like, optional
+ Provide the mean to prevent its recalculation. The mean should have
+ a shape as if it was calculated with ``keepdims=True``.
+ The axis for the calculation of the mean should be the same as used in
+ the call to this var function.
+
+ .. versionadded:: 2.0.0
+
+ correction : {int, float}, optional
+ Array API compatible name for the ``ddof`` parameter. Only one of them
+ can be provided at the same time.
+
+ .. versionadded:: 2.0.0
+
+ Returns
+ -------
+ variance : ndarray, see dtype parameter above
+ If ``out=None``, returns a new array containing the variance;
+ otherwise, a reference to the output array is returned.
+
+ See Also
+ --------
+ std, mean, nanmean, nanstd, nanvar
+ :ref:`ufuncs-output-type`
+
+ Notes
+ -----
+ There are several common variants of the array variance calculation.
+ Assuming the input `a` is a one-dimensional NumPy array and ``mean`` is
+ either provided as an argument or computed as ``a.mean()``, NumPy
+ computes the variance of an array as::
+
+ N = len(a)
+ d2 = abs(a - mean)**2 # abs is for complex `a`
+ var = d2.sum() / (N - ddof) # note use of `ddof`
+
+ Different values of the argument `ddof` are useful in different
+ contexts. NumPy's default ``ddof=0`` corresponds with the expression:
+
+ .. math::
+
+ \frac{\sum_i{|a_i - \bar{a}|^2 }}{N}
+
+ which is sometimes called the "population variance" in the field of
+ statistics because it applies the definition of variance to `a` as if `a`
+ were a complete population of possible observations.
+
+ Many other libraries define the variance of an array differently, e.g.:
+
+ .. math::
+
+ \frac{\sum_i{|a_i - \bar{a}|^2}}{N - 1}
+
+ In statistics, the resulting quantity is sometimes called the "sample
+ variance" because if `a` is a random sample from a larger population,
+ this calculation provides an unbiased estimate of the variance of the
+ population. The use of :math:`N-1` in the denominator is often called
+ "Bessel's correction" because it corrects for bias (toward lower values)
+ in the variance estimate introduced when the sample mean of `a` is used
+ in place of the true mean of the population. For this quantity, use
+ ``ddof=1``.
+
+ Note that for complex numbers, the absolute value is taken before
+ squaring, so that the result is always real and nonnegative.
+
+ For floating-point input, the variance is computed using the same
+ precision the input has. Depending on the input data, this can cause
+ the results to be inaccurate, especially for `float32` (see example
+ below). Specifying a higher-accuracy accumulator using the ``dtype``
+ keyword can alleviate this issue.
+
+ Examples
+ --------
+ >>> import numpy as np
+ >>> a = np.array([[1, 2], [3, 4]])
+ >>> np.var(a)
+ 1.25
+ >>> np.var(a, axis=0)
+ array([1., 1.])
+ >>> np.var(a, axis=1)
+ array([0.25, 0.25])
+
+ In single precision, var() can be inaccurate:
+
+ >>> a = np.zeros((2, 512*512), dtype=np.float32)
+ >>> a[0, :] = 1.0
+ >>> a[1, :] = 0.1
+ >>> np.var(a)
+ np.float32(0.20250003)
+
+ Computing the variance in float64 is more accurate:
+
+ >>> np.var(a, dtype=np.float64)
+ 0.20249999932944759 # may vary
+ >>> ((1-0.55)**2 + (0.1-0.55)**2)/2
+ 0.2025
+
+ Specifying a where argument:
+
+ >>> a = np.array([[14, 8, 11, 10], [7, 9, 10, 11], [10, 15, 5, 10]])
+ >>> np.var(a)
+ 6.833333333333333 # may vary
+ >>> np.var(a, where=[[True], [True], [False]])
+ 4.0
+
+ Using the mean keyword to save computation time:
+
+ >>> import numpy as np
+ >>> from timeit import timeit
+ >>>
+ >>> a = np.array([[14, 8, 11, 10], [7, 9, 10, 11], [10, 15, 5, 10]])
+ >>> mean = np.mean(a, axis=1, keepdims=True)
+ >>>
+ >>> g = globals()
+ >>> n = 10000
+ >>> t1 = timeit("var = np.var(a, axis=1, mean=mean)", globals=g, number=n)
+ >>> t2 = timeit("var = np.var(a, axis=1)", globals=g, number=n)
+ >>> print(f'Percentage execution time saved {100*(t2-t1)/t2:.0f}%')
+ #doctest: +SKIP
+ Percentage execution time saved 32%
+
+ """
+ kwargs = {}
+ if keepdims is not np._NoValue:
+ kwargs['keepdims'] = keepdims
+ if where is not np._NoValue:
+ kwargs['where'] = where
+ if mean is not np._NoValue:
+ kwargs['mean'] = mean
+
+ if correction != np._NoValue:
+ if ddof != 0:
+ raise ValueError(
+ "ddof and correction can't be provided simultaneously."
+ )
+ else:
+ ddof = correction
+
+ if type(a) is not mu.ndarray:
+ try:
+ var = a.var
+
+ except AttributeError:
+ pass
+ else:
+ return var(axis=axis, dtype=dtype, out=out, ddof=ddof, **kwargs)
+
+ return _methods._var(a, axis=axis, dtype=dtype, out=out, ddof=ddof,
+ **kwargs)
diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.pyi b/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.pyi
new file mode 100644
index 0000000..f0f8309
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.pyi
@@ -0,0 +1,1750 @@
+# ruff: noqa: ANN401
+from collections.abc import Sequence
+from typing import (
+ Any,
+ Literal,
+ Never,
+ Protocol,
+ SupportsIndex,
+ TypeAlias,
+ TypeVar,
+ overload,
+ type_check_only,
+)
+
+from _typeshed import Incomplete
+from typing_extensions import deprecated
+
+import numpy as np
+from numpy import (
+ _AnyShapeT,
+ _CastingKind,
+ _ModeKind,
+ _OrderACF,
+ _OrderKACF,
+ _PartitionKind,
+ _SortKind,
+ _SortSide,
+ complexfloating,
+ float16,
+ floating,
+ generic,
+ int64,
+ int_,
+ intp,
+ object_,
+ timedelta64,
+ uint64,
+)
+from numpy._globals import _NoValueType
+from numpy._typing import (
+ ArrayLike,
+ DTypeLike,
+ NDArray,
+ _AnyShape,
+ _ArrayLike,
+ _ArrayLikeBool_co,
+ _ArrayLikeComplex_co,
+ _ArrayLikeFloat_co,
+ _ArrayLikeInt,
+ _ArrayLikeInt_co,
+ _ArrayLikeObject_co,
+ _ArrayLikeUInt_co,
+ _BoolLike_co,
+ _ComplexLike_co,
+ _DTypeLike,
+ _IntLike_co,
+ _NestedSequence,
+ _NumberLike_co,
+ _ScalarLike_co,
+ _ShapeLike,
+)
+
+__all__ = [
+ "all",
+ "amax",
+ "amin",
+ "any",
+ "argmax",
+ "argmin",
+ "argpartition",
+ "argsort",
+ "around",
+ "choose",
+ "clip",
+ "compress",
+ "cumprod",
+ "cumsum",
+ "cumulative_prod",
+ "cumulative_sum",
+ "diagonal",
+ "mean",
+ "max",
+ "min",
+ "matrix_transpose",
+ "ndim",
+ "nonzero",
+ "partition",
+ "prod",
+ "ptp",
+ "put",
+ "ravel",
+ "repeat",
+ "reshape",
+ "resize",
+ "round",
+ "searchsorted",
+ "shape",
+ "size",
+ "sort",
+ "squeeze",
+ "std",
+ "sum",
+ "swapaxes",
+ "take",
+ "trace",
+ "transpose",
+ "var",
+]
+
+_ScalarT = TypeVar("_ScalarT", bound=generic)
+_NumberOrObjectT = TypeVar("_NumberOrObjectT", bound=np.number | np.object_)
+_ArrayT = TypeVar("_ArrayT", bound=np.ndarray[Any, Any])
+_ShapeT = TypeVar("_ShapeT", bound=tuple[int, ...])
+_ShapeT_co = TypeVar("_ShapeT_co", bound=tuple[int, ...], covariant=True)
+_BoolOrIntArrayT = TypeVar("_BoolOrIntArrayT", bound=NDArray[np.integer | np.bool])
+
+@type_check_only
+class _SupportsShape(Protocol[_ShapeT_co]):
+ # NOTE: it matters that `self` is positional only
+ @property
+ def shape(self, /) -> _ShapeT_co: ...
+
+# a "sequence" that isn't a string, bytes, bytearray, or memoryview
+_T = TypeVar("_T")
+_PyArray: TypeAlias = list[_T] | tuple[_T, ...]
+# `int` also covers `bool`
+_PyScalar: TypeAlias = complex | bytes | str
+
+@overload
+def take(
+ a: _ArrayLike[_ScalarT],
+ indices: _IntLike_co,
+ axis: None = ...,
+ out: None = ...,
+ mode: _ModeKind = ...,
+) -> _ScalarT: ...
+@overload
+def take(
+ a: ArrayLike,
+ indices: _IntLike_co,
+ axis: SupportsIndex | None = ...,
+ out: None = ...,
+ mode: _ModeKind = ...,
+) -> Any: ...
+@overload
+def take(
+ a: _ArrayLike[_ScalarT],
+ indices: _ArrayLikeInt_co,
+ axis: SupportsIndex | None = ...,
+ out: None = ...,
+ mode: _ModeKind = ...,
+) -> NDArray[_ScalarT]: ...
+@overload
+def take(
+ a: ArrayLike,
+ indices: _ArrayLikeInt_co,
+ axis: SupportsIndex | None = ...,
+ out: None = ...,
+ mode: _ModeKind = ...,
+) -> NDArray[Any]: ...
+@overload
+def take(
+ a: ArrayLike,
+ indices: _ArrayLikeInt_co,
+ axis: SupportsIndex | None,
+ out: _ArrayT,
+ mode: _ModeKind = ...,
+) -> _ArrayT: ...
+@overload
+def take(
+ a: ArrayLike,
+ indices: _ArrayLikeInt_co,
+ axis: SupportsIndex | None = ...,
+ *,
+ out: _ArrayT,
+ mode: _ModeKind = ...,
+) -> _ArrayT: ...
+
+@overload
+def reshape( # shape: index
+ a: _ArrayLike[_ScalarT],
+ /,
+ shape: SupportsIndex,
+ order: _OrderACF = "C",
+ *,
+ copy: bool | None = None,
+) -> np.ndarray[tuple[int], np.dtype[_ScalarT]]: ...
+@overload
+def reshape( # shape: (int, ...) @ _AnyShapeT
+ a: _ArrayLike[_ScalarT],
+ /,
+ shape: _AnyShapeT,
+ order: _OrderACF = "C",
+ *,
+ copy: bool | None = None,
+) -> np.ndarray[_AnyShapeT, np.dtype[_ScalarT]]: ...
+@overload # shape: Sequence[index]
+def reshape(
+ a: _ArrayLike[_ScalarT],
+ /,
+ shape: Sequence[SupportsIndex],
+ order: _OrderACF = "C",
+ *,
+ copy: bool | None = None,
+) -> NDArray[_ScalarT]: ...
+@overload # shape: index
+def reshape(
+ a: ArrayLike,
+ /,
+ shape: SupportsIndex,
+ order: _OrderACF = "C",
+ *,
+ copy: bool | None = None,
+) -> np.ndarray[tuple[int], np.dtype]: ...
+@overload
+def reshape( # shape: (int, ...) @ _AnyShapeT
+ a: ArrayLike,
+ /,
+ shape: _AnyShapeT,
+ order: _OrderACF = "C",
+ *,
+ copy: bool | None = None,
+) -> np.ndarray[_AnyShapeT, np.dtype]: ...
+@overload # shape: Sequence[index]
+def reshape(
+ a: ArrayLike,
+ /,
+ shape: Sequence[SupportsIndex],
+ order: _OrderACF = "C",
+ *,
+ copy: bool | None = None,
+) -> NDArray[Any]: ...
+@overload
+@deprecated(
+ "`newshape` keyword argument is deprecated, "
+ "use `shape=...` or pass shape positionally instead. "
+ "(deprecated in NumPy 2.1)",
+)
+def reshape(
+ a: ArrayLike,
+ /,
+ shape: None = None,
+ order: _OrderACF = "C",
+ *,
+ newshape: _ShapeLike,
+ copy: bool | None = None,
+) -> NDArray[Any]: ...
+
+@overload
+def choose(
+ a: _IntLike_co,
+ choices: ArrayLike,
+ out: None = ...,
+ mode: _ModeKind = ...,
+) -> Any: ...
+@overload
+def choose(
+ a: _ArrayLikeInt_co,
+ choices: _ArrayLike[_ScalarT],
+ out: None = ...,
+ mode: _ModeKind = ...,
+) -> NDArray[_ScalarT]: ...
+@overload
+def choose(
+ a: _ArrayLikeInt_co,
+ choices: ArrayLike,
+ out: None = ...,
+ mode: _ModeKind = ...,
+) -> NDArray[Any]: ...
+@overload
+def choose(
+ a: _ArrayLikeInt_co,
+ choices: ArrayLike,
+ out: _ArrayT,
+ mode: _ModeKind = ...,
+) -> _ArrayT: ...
+
+@overload
+def repeat(
+ a: _ArrayLike[_ScalarT],
+ repeats: _ArrayLikeInt_co,
+ axis: None = None,
+) -> np.ndarray[tuple[int], np.dtype[_ScalarT]]: ...
+@overload
+def repeat(
+ a: _ArrayLike[_ScalarT],
+ repeats: _ArrayLikeInt_co,
+ axis: SupportsIndex,
+) -> NDArray[_ScalarT]: ...
+@overload
+def repeat(
+ a: ArrayLike,
+ repeats: _ArrayLikeInt_co,
+ axis: None = None,
+) -> np.ndarray[tuple[int], np.dtype[Any]]: ...
+@overload
+def repeat(
+ a: ArrayLike,
+ repeats: _ArrayLikeInt_co,
+ axis: SupportsIndex,
+) -> NDArray[Any]: ...
+
+def put(
+ a: NDArray[Any],
+ ind: _ArrayLikeInt_co,
+ v: ArrayLike,
+ mode: _ModeKind = ...,
+) -> None: ...
+
+@overload
+def swapaxes(
+ a: _ArrayLike[_ScalarT],
+ axis1: SupportsIndex,
+ axis2: SupportsIndex,
+) -> NDArray[_ScalarT]: ...
+@overload
+def swapaxes(
+ a: ArrayLike,
+ axis1: SupportsIndex,
+ axis2: SupportsIndex,
+) -> NDArray[Any]: ...
+
+@overload
+def transpose(
+ a: _ArrayLike[_ScalarT],
+ axes: _ShapeLike | None = ...
+) -> NDArray[_ScalarT]: ...
+@overload
+def transpose(
+ a: ArrayLike,
+ axes: _ShapeLike | None = ...
+) -> NDArray[Any]: ...
+
+@overload
+def matrix_transpose(x: _ArrayLike[_ScalarT], /) -> NDArray[_ScalarT]: ...
+@overload
+def matrix_transpose(x: ArrayLike, /) -> NDArray[Any]: ...
+
+#
+@overload
+def partition(
+ a: _ArrayLike[_ScalarT],
+ kth: _ArrayLikeInt,
+ axis: SupportsIndex | None = -1,
+ kind: _PartitionKind = "introselect",
+ order: None = None,
+) -> NDArray[_ScalarT]: ...
+@overload
+def partition(
+ a: _ArrayLike[np.void],
+ kth: _ArrayLikeInt,
+ axis: SupportsIndex | None = -1,
+ kind: _PartitionKind = "introselect",
+ order: str | Sequence[str] | None = None,
+) -> NDArray[np.void]: ...
+@overload
+def partition(
+ a: ArrayLike,
+ kth: _ArrayLikeInt,
+ axis: SupportsIndex | None = -1,
+ kind: _PartitionKind = "introselect",
+ order: str | Sequence[str] | None = None,
+) -> NDArray[Any]: ...
+
+#
+def argpartition(
+ a: ArrayLike,
+ kth: _ArrayLikeInt,
+ axis: SupportsIndex | None = -1,
+ kind: _PartitionKind = "introselect",
+ order: str | Sequence[str] | None = None,
+) -> NDArray[intp]: ...
+
+#
+@overload
+def sort(
+ a: _ArrayLike[_ScalarT],
+ axis: SupportsIndex | None = ...,
+ kind: _SortKind | None = ...,
+ order: str | Sequence[str] | None = ...,
+ *,
+ stable: bool | None = ...,
+) -> NDArray[_ScalarT]: ...
+@overload
+def sort(
+ a: ArrayLike,
+ axis: SupportsIndex | None = ...,
+ kind: _SortKind | None = ...,
+ order: str | Sequence[str] | None = ...,
+ *,
+ stable: bool | None = ...,
+) -> NDArray[Any]: ...
+
+def argsort(
+ a: ArrayLike,
+ axis: SupportsIndex | None = ...,
+ kind: _SortKind | None = ...,
+ order: str | Sequence[str] | None = ...,
+ *,
+ stable: bool | None = ...,
+) -> NDArray[intp]: ...
+
+@overload
+def argmax(
+ a: ArrayLike,
+ axis: None = ...,
+ out: None = ...,
+ *,
+ keepdims: Literal[False] = ...,
+) -> intp: ...
+@overload
+def argmax(
+ a: ArrayLike,
+ axis: SupportsIndex | None = ...,
+ out: None = ...,
+ *,
+ keepdims: bool = ...,
+) -> Any: ...
+@overload
+def argmax(
+ a: ArrayLike,
+ axis: SupportsIndex | None,
+ out: _BoolOrIntArrayT,
+ *,
+ keepdims: bool = ...,
+) -> _BoolOrIntArrayT: ...
+@overload
+def argmax(
+ a: ArrayLike,
+ axis: SupportsIndex | None = ...,
+ *,
+ out: _BoolOrIntArrayT,
+ keepdims: bool = ...,
+) -> _BoolOrIntArrayT: ...
+
+@overload
+def argmin(
+ a: ArrayLike,
+ axis: None = ...,
+ out: None = ...,
+ *,
+ keepdims: Literal[False] = ...,
+) -> intp: ...
+@overload
+def argmin(
+ a: ArrayLike,
+ axis: SupportsIndex | None = ...,
+ out: None = ...,
+ *,
+ keepdims: bool = ...,
+) -> Any: ...
+@overload
+def argmin(
+ a: ArrayLike,
+ axis: SupportsIndex | None,
+ out: _BoolOrIntArrayT,
+ *,
+ keepdims: bool = ...,
+) -> _BoolOrIntArrayT: ...
+@overload
+def argmin(
+ a: ArrayLike,
+ axis: SupportsIndex | None = ...,
+ *,
+ out: _BoolOrIntArrayT,
+ keepdims: bool = ...,
+) -> _BoolOrIntArrayT: ...
+
+@overload
+def searchsorted(
+ a: ArrayLike,
+ v: _ScalarLike_co,
+ side: _SortSide = ...,
+ sorter: _ArrayLikeInt_co | None = ..., # 1D int array
+) -> intp: ...
+@overload
+def searchsorted(
+ a: ArrayLike,
+ v: ArrayLike,
+ side: _SortSide = ...,
+ sorter: _ArrayLikeInt_co | None = ..., # 1D int array
+) -> NDArray[intp]: ...
+
+#
+@overload
+def resize(a: _ArrayLike[_ScalarT], new_shape: SupportsIndex | tuple[SupportsIndex]) -> np.ndarray[tuple[int], np.dtype[_ScalarT]]: ...
+@overload
+def resize(a: _ArrayLike[_ScalarT], new_shape: _AnyShapeT) -> np.ndarray[_AnyShapeT, np.dtype[_ScalarT]]: ...
+@overload
+def resize(a: _ArrayLike[_ScalarT], new_shape: _ShapeLike) -> NDArray[_ScalarT]: ...
+@overload
+def resize(a: ArrayLike, new_shape: SupportsIndex | tuple[SupportsIndex]) -> np.ndarray[tuple[int], np.dtype]: ...
+@overload
+def resize(a: ArrayLike, new_shape: _AnyShapeT) -> np.ndarray[_AnyShapeT, np.dtype]: ...
+@overload
+def resize(a: ArrayLike, new_shape: _ShapeLike) -> NDArray[Any]: ...
+
+@overload
+def squeeze(
+ a: _ScalarT,
+ axis: _ShapeLike | None = ...,
+) -> _ScalarT: ...
+@overload
+def squeeze(
+ a: _ArrayLike[_ScalarT],
+ axis: _ShapeLike | None = ...,
+) -> NDArray[_ScalarT]: ...
+@overload
+def squeeze(
+ a: ArrayLike,
+ axis: _ShapeLike | None = ...,
+) -> NDArray[Any]: ...
+
+@overload
+def diagonal(
+ a: _ArrayLike[_ScalarT],
+ offset: SupportsIndex = ...,
+ axis1: SupportsIndex = ...,
+ axis2: SupportsIndex = ..., # >= 2D array
+) -> NDArray[_ScalarT]: ...
+@overload
+def diagonal(
+ a: ArrayLike,
+ offset: SupportsIndex = ...,
+ axis1: SupportsIndex = ...,
+ axis2: SupportsIndex = ..., # >= 2D array
+) -> NDArray[Any]: ...
+
+@overload
+def trace(
+ a: ArrayLike, # >= 2D array
+ offset: SupportsIndex = ...,
+ axis1: SupportsIndex = ...,
+ axis2: SupportsIndex = ...,
+ dtype: DTypeLike = ...,
+ out: None = ...,
+) -> Any: ...
+@overload
+def trace(
+ a: ArrayLike, # >= 2D array
+ offset: SupportsIndex,
+ axis1: SupportsIndex,
+ axis2: SupportsIndex,
+ dtype: DTypeLike,
+ out: _ArrayT,
+) -> _ArrayT: ...
+@overload
+def trace(
+ a: ArrayLike, # >= 2D array
+ offset: SupportsIndex = ...,
+ axis1: SupportsIndex = ...,
+ axis2: SupportsIndex = ...,
+ dtype: DTypeLike = ...,
+ *,
+ out: _ArrayT,
+) -> _ArrayT: ...
+
+_Array1D: TypeAlias = np.ndarray[tuple[int], np.dtype[_ScalarT]]
+
+@overload
+def ravel(a: _ArrayLike[_ScalarT], order: _OrderKACF = "C") -> _Array1D[_ScalarT]: ...
+@overload
+def ravel(a: bytes | _NestedSequence[bytes], order: _OrderKACF = "C") -> _Array1D[np.bytes_]: ...
+@overload
+def ravel(a: str | _NestedSequence[str], order: _OrderKACF = "C") -> _Array1D[np.str_]: ...
+@overload
+def ravel(a: bool | _NestedSequence[bool], order: _OrderKACF = "C") -> _Array1D[np.bool]: ...
+@overload
+def ravel(a: int | _NestedSequence[int], order: _OrderKACF = "C") -> _Array1D[np.int_ | np.bool]: ...
+@overload
+def ravel(a: float | _NestedSequence[float], order: _OrderKACF = "C") -> _Array1D[np.float64 | np.int_ | np.bool]: ...
+@overload
+def ravel(
+ a: complex | _NestedSequence[complex],
+ order: _OrderKACF = "C",
+) -> _Array1D[np.complex128 | np.float64 | np.int_ | np.bool]: ...
+@overload
+def ravel(a: ArrayLike, order: _OrderKACF = "C") -> np.ndarray[tuple[int], np.dtype]: ...
+
+def nonzero(a: _ArrayLike[Any]) -> tuple[NDArray[intp], ...]: ...
+
+# this prevents `Any` from being returned with Pyright
+@overload
+def shape(a: _SupportsShape[Never]) -> _AnyShape: ...
+@overload
+def shape(a: _SupportsShape[_ShapeT]) -> _ShapeT: ...
+@overload
+def shape(a: _PyScalar) -> tuple[()]: ...
+# `collections.abc.Sequence` can't be used hesre, since `bytes` and `str` are
+# subtypes of it, which would make the return types incompatible.
+@overload
+def shape(a: _PyArray[_PyScalar]) -> tuple[int]: ...
+@overload
+def shape(a: _PyArray[_PyArray[_PyScalar]]) -> tuple[int, int]: ...
+# this overload will be skipped by typecheckers that don't support PEP 688
+@overload
+def shape(a: memoryview | bytearray) -> tuple[int]: ...
+@overload
+def shape(a: ArrayLike) -> _AnyShape: ...
+
+@overload
+def compress(
+ condition: _ArrayLikeBool_co, # 1D bool array
+ a: _ArrayLike[_ScalarT],
+ axis: SupportsIndex | None = ...,
+ out: None = ...,
+) -> NDArray[_ScalarT]: ...
+@overload
+def compress(
+ condition: _ArrayLikeBool_co, # 1D bool array
+ a: ArrayLike,
+ axis: SupportsIndex | None = ...,
+ out: None = ...,
+) -> NDArray[Any]: ...
+@overload
+def compress(
+ condition: _ArrayLikeBool_co, # 1D bool array
+ a: ArrayLike,
+ axis: SupportsIndex | None,
+ out: _ArrayT,
+) -> _ArrayT: ...
+@overload
+def compress(
+ condition: _ArrayLikeBool_co, # 1D bool array
+ a: ArrayLike,
+ axis: SupportsIndex | None = ...,
+ *,
+ out: _ArrayT,
+) -> _ArrayT: ...
+
+@overload
+def clip(
+ a: _ScalarT,
+ a_min: ArrayLike | None,
+ a_max: ArrayLike | None,
+ out: None = ...,
+ *,
+ min: ArrayLike | None = ...,
+ max: ArrayLike | None = ...,
+ dtype: None = ...,
+ where: _ArrayLikeBool_co | None = ...,
+ order: _OrderKACF = ...,
+ subok: bool = ...,
+ signature: str | tuple[str | None, ...] = ...,
+ casting: _CastingKind = ...,
+) -> _ScalarT: ...
+@overload
+def clip(
+ a: _ScalarLike_co,
+ a_min: ArrayLike | None,
+ a_max: ArrayLike | None,
+ out: None = ...,
+ *,
+ min: ArrayLike | None = ...,
+ max: ArrayLike | None = ...,
+ dtype: None = ...,
+ where: _ArrayLikeBool_co | None = ...,
+ order: _OrderKACF = ...,
+ subok: bool = ...,
+ signature: str | tuple[str | None, ...] = ...,
+ casting: _CastingKind = ...,
+) -> Any: ...
+@overload
+def clip(
+ a: _ArrayLike[_ScalarT],
+ a_min: ArrayLike | None,
+ a_max: ArrayLike | None,
+ out: None = ...,
+ *,
+ min: ArrayLike | None = ...,
+ max: ArrayLike | None = ...,
+ dtype: None = ...,
+ where: _ArrayLikeBool_co | None = ...,
+ order: _OrderKACF = ...,
+ subok: bool = ...,
+ signature: str | tuple[str | None, ...] = ...,
+ casting: _CastingKind = ...,
+) -> NDArray[_ScalarT]: ...
+@overload
+def clip(
+ a: ArrayLike,
+ a_min: ArrayLike | None,
+ a_max: ArrayLike | None,
+ out: None = ...,
+ *,
+ min: ArrayLike | None = ...,
+ max: ArrayLike | None = ...,
+ dtype: None = ...,
+ where: _ArrayLikeBool_co | None = ...,
+ order: _OrderKACF = ...,
+ subok: bool = ...,
+ signature: str | tuple[str | None, ...] = ...,
+ casting: _CastingKind = ...,
+) -> NDArray[Any]: ...
+@overload
+def clip(
+ a: ArrayLike,
+ a_min: ArrayLike | None,
+ a_max: ArrayLike | None,
+ out: _ArrayT,
+ *,
+ min: ArrayLike | None = ...,
+ max: ArrayLike | None = ...,
+ dtype: DTypeLike = ...,
+ where: _ArrayLikeBool_co | None = ...,
+ order: _OrderKACF = ...,
+ subok: bool = ...,
+ signature: str | tuple[str | None, ...] = ...,
+ casting: _CastingKind = ...,
+) -> _ArrayT: ...
+@overload
+def clip(
+ a: ArrayLike,
+ a_min: ArrayLike | None,
+ a_max: ArrayLike | None,
+ out: ArrayLike = ...,
+ *,
+ min: ArrayLike | None = ...,
+ max: ArrayLike | None = ...,
+ dtype: DTypeLike,
+ where: _ArrayLikeBool_co | None = ...,
+ order: _OrderKACF = ...,
+ subok: bool = ...,
+ signature: str | tuple[str | None, ...] = ...,
+ casting: _CastingKind = ...,
+) -> Any: ...
+
+@overload
+def sum(
+ a: _ArrayLike[_ScalarT],
+ axis: None = ...,
+ dtype: None = ...,
+ out: None = ...,
+ keepdims: Literal[False] = ...,
+ initial: _NumberLike_co = ...,
+ where: _ArrayLikeBool_co = ...,
+) -> _ScalarT: ...
+@overload
+def sum(
+ a: _ArrayLike[_ScalarT],
+ axis: None = ...,
+ dtype: None = ...,
+ out: None = ...,
+ keepdims: bool = ...,
+ initial: _NumberLike_co = ...,
+ where: _ArrayLikeBool_co = ...,
+) -> _ScalarT | NDArray[_ScalarT]: ...
+@overload
+def sum(
+ a: ArrayLike,
+ axis: None,
+ dtype: _DTypeLike[_ScalarT],
+ out: None = ...,
+ keepdims: Literal[False] = ...,
+ initial: _NumberLike_co = ...,
+ where: _ArrayLikeBool_co = ...,
+) -> _ScalarT: ...
+@overload
+def sum(
+ a: ArrayLike,
+ axis: None = ...,
+ *,
+ dtype: _DTypeLike[_ScalarT],
+ out: None = ...,
+ keepdims: Literal[False] = ...,
+ initial: _NumberLike_co = ...,
+ where: _ArrayLikeBool_co = ...,
+) -> _ScalarT: ...
+@overload
+def sum(
+ a: ArrayLike,
+ axis: _ShapeLike | None,
+ dtype: _DTypeLike[_ScalarT],
+ out: None = ...,
+ keepdims: bool = ...,
+ initial: _NumberLike_co = ...,
+ where: _ArrayLikeBool_co = ...,
+) -> _ScalarT | NDArray[_ScalarT]: ...
+@overload
+def sum(
+ a: ArrayLike,
+ axis: _ShapeLike | None = ...,
+ *,
+ dtype: _DTypeLike[_ScalarT],
+ out: None = ...,
+ keepdims: bool = ...,
+ initial: _NumberLike_co = ...,
+ where: _ArrayLikeBool_co = ...,
+) -> _ScalarT | NDArray[_ScalarT]: ...
+@overload
+def sum(
+ a: ArrayLike,
+ axis: _ShapeLike | None = ...,
+ dtype: DTypeLike = ...,
+ out: None = ...,
+ keepdims: bool = ...,
+ initial: _NumberLike_co = ...,
+ where: _ArrayLikeBool_co = ...,
+) -> Any: ...
+@overload
+def sum(
+ a: ArrayLike,
+ axis: _ShapeLike | None,
+ dtype: DTypeLike,
+ out: _ArrayT,
+ keepdims: bool = ...,
+ initial: _NumberLike_co = ...,
+ where: _ArrayLikeBool_co = ...,
+) -> _ArrayT: ...
+@overload
+def sum(
+ a: ArrayLike,
+ axis: _ShapeLike | None = ...,
+ dtype: DTypeLike = ...,
+ *,
+ out: _ArrayT,
+ keepdims: bool = ...,
+ initial: _NumberLike_co = ...,
+ where: _ArrayLikeBool_co = ...,
+) -> _ArrayT: ...
+
+# keep in sync with `any`
+@overload
+def all(
+ a: ArrayLike | None,
+ axis: None = None,
+ out: None = None,
+ keepdims: Literal[False, 0] | _NoValueType = ...,
+ *,
+ where: _ArrayLikeBool_co | _NoValueType = ...,
+) -> np.bool: ...
+@overload
+def all(
+ a: ArrayLike | None,
+ axis: int | tuple[int, ...] | None = None,
+ out: None = None,
+ keepdims: _BoolLike_co | _NoValueType = ...,
+ *,
+ where: _ArrayLikeBool_co | _NoValueType = ...,
+) -> Incomplete: ...
+@overload
+def all(
+ a: ArrayLike | None,
+ axis: int | tuple[int, ...] | None,
+ out: _ArrayT,
+ keepdims: _BoolLike_co | _NoValueType = ...,
+ *,
+ where: _ArrayLikeBool_co | _NoValueType = ...,
+) -> _ArrayT: ...
+@overload
+def all(
+ a: ArrayLike | None,
+ axis: int | tuple[int, ...] | None = None,
+ *,
+ out: _ArrayT,
+ keepdims: _BoolLike_co | _NoValueType = ...,
+ where: _ArrayLikeBool_co | _NoValueType = ...,
+) -> _ArrayT: ...
+
+# keep in sync with `all`
+@overload
+def any(
+ a: ArrayLike | None,
+ axis: None = None,
+ out: None = None,
+ keepdims: Literal[False, 0] | _NoValueType = ...,
+ *,
+ where: _ArrayLikeBool_co | _NoValueType = ...,
+) -> np.bool: ...
+@overload
+def any(
+ a: ArrayLike | None,
+ axis: int | tuple[int, ...] | None = None,
+ out: None = None,
+ keepdims: _BoolLike_co | _NoValueType = ...,
+ *,
+ where: _ArrayLikeBool_co | _NoValueType = ...,
+) -> Incomplete: ...
+@overload
+def any(
+ a: ArrayLike | None,
+ axis: int | tuple[int, ...] | None,
+ out: _ArrayT,
+ keepdims: _BoolLike_co | _NoValueType = ...,
+ *,
+ where: _ArrayLikeBool_co | _NoValueType = ...,
+) -> _ArrayT: ...
+@overload
+def any(
+ a: ArrayLike | None,
+ axis: int | tuple[int, ...] | None = None,
+ *,
+ out: _ArrayT,
+ keepdims: _BoolLike_co | _NoValueType = ...,
+ where: _ArrayLikeBool_co | _NoValueType = ...,
+) -> _ArrayT: ...
+
+#
+@overload
+def cumsum(
+ a: _ArrayLike[_ScalarT],
+ axis: SupportsIndex | None = ...,
+ dtype: None = ...,
+ out: None = ...,
+) -> NDArray[_ScalarT]: ...
+@overload
+def cumsum(
+ a: ArrayLike,
+ axis: SupportsIndex | None = ...,
+ dtype: None = ...,
+ out: None = ...,
+) -> NDArray[Any]: ...
+@overload
+def cumsum(
+ a: ArrayLike,
+ axis: SupportsIndex | None,
+ dtype: _DTypeLike[_ScalarT],
+ out: None = ...,
+) -> NDArray[_ScalarT]: ...
+@overload
+def cumsum(
+ a: ArrayLike,
+ axis: SupportsIndex | None = ...,
+ *,
+ dtype: _DTypeLike[_ScalarT],
+ out: None = ...,
+) -> NDArray[_ScalarT]: ...
+@overload
+def cumsum(
+ a: ArrayLike,
+ axis: SupportsIndex | None = ...,
+ dtype: DTypeLike = ...,
+ out: None = ...,
+) -> NDArray[Any]: ...
+@overload
+def cumsum(
+ a: ArrayLike,
+ axis: SupportsIndex | None,
+ dtype: DTypeLike,
+ out: _ArrayT,
+) -> _ArrayT: ...
+@overload
+def cumsum(
+ a: ArrayLike,
+ axis: SupportsIndex | None = ...,
+ dtype: DTypeLike = ...,
+ *,
+ out: _ArrayT,
+) -> _ArrayT: ...
+
+@overload
+def cumulative_sum(
+ x: _ArrayLike[_ScalarT],
+ /,
+ *,
+ axis: SupportsIndex | None = ...,
+ dtype: None = ...,
+ out: None = ...,
+ include_initial: bool = ...,
+) -> NDArray[_ScalarT]: ...
+@overload
+def cumulative_sum(
+ x: ArrayLike,
+ /,
+ *,
+ axis: SupportsIndex | None = ...,
+ dtype: None = ...,
+ out: None = ...,
+ include_initial: bool = ...,
+) -> NDArray[Any]: ...
+@overload
+def cumulative_sum(
+ x: ArrayLike,
+ /,
+ *,
+ axis: SupportsIndex | None = ...,
+ dtype: _DTypeLike[_ScalarT],
+ out: None = ...,
+ include_initial: bool = ...,
+) -> NDArray[_ScalarT]: ...
+@overload
+def cumulative_sum(
+ x: ArrayLike,
+ /,
+ *,
+ axis: SupportsIndex | None = ...,
+ dtype: DTypeLike = ...,
+ out: None = ...,
+ include_initial: bool = ...,
+) -> NDArray[Any]: ...
+@overload
+def cumulative_sum(
+ x: ArrayLike,
+ /,
+ *,
+ axis: SupportsIndex | None = ...,
+ dtype: DTypeLike = ...,
+ out: _ArrayT,
+ include_initial: bool = ...,
+) -> _ArrayT: ...
+
+@overload
+def ptp(
+ a: _ArrayLike[_ScalarT],
+ axis: None = ...,
+ out: None = ...,
+ keepdims: Literal[False] = ...,
+) -> _ScalarT: ...
+@overload
+def ptp(
+ a: ArrayLike,
+ axis: _ShapeLike | None = ...,
+ out: None = ...,
+ keepdims: bool = ...,
+) -> Any: ...
+@overload
+def ptp(
+ a: ArrayLike,
+ axis: _ShapeLike | None,
+ out: _ArrayT,
+ keepdims: bool = ...,
+) -> _ArrayT: ...
+@overload
+def ptp(
+ a: ArrayLike,
+ axis: _ShapeLike | None = ...,
+ *,
+ out: _ArrayT,
+ keepdims: bool = ...,
+) -> _ArrayT: ...
+
+@overload
+def amax(
+ a: _ArrayLike[_ScalarT],
+ axis: None = ...,
+ out: None = ...,
+ keepdims: Literal[False] = ...,
+ initial: _NumberLike_co = ...,
+ where: _ArrayLikeBool_co = ...,
+) -> _ScalarT: ...
+@overload
+def amax(
+ a: ArrayLike,
+ axis: _ShapeLike | None = ...,
+ out: None = ...,
+ keepdims: bool = ...,
+ initial: _NumberLike_co = ...,
+ where: _ArrayLikeBool_co = ...,
+) -> Any: ...
+@overload
+def amax(
+ a: ArrayLike,
+ axis: _ShapeLike | None,
+ out: _ArrayT,
+ keepdims: bool = ...,
+ initial: _NumberLike_co = ...,
+ where: _ArrayLikeBool_co = ...,
+) -> _ArrayT: ...
+@overload
+def amax(
+ a: ArrayLike,
+ axis: _ShapeLike | None = ...,
+ *,
+ out: _ArrayT,
+ keepdims: bool = ...,
+ initial: _NumberLike_co = ...,
+ where: _ArrayLikeBool_co = ...,
+) -> _ArrayT: ...
+
+@overload
+def amin(
+ a: _ArrayLike[_ScalarT],
+ axis: None = ...,
+ out: None = ...,
+ keepdims: Literal[False] = ...,
+ initial: _NumberLike_co = ...,
+ where: _ArrayLikeBool_co = ...,
+) -> _ScalarT: ...
+@overload
+def amin(
+ a: ArrayLike,
+ axis: _ShapeLike | None = ...,
+ out: None = ...,
+ keepdims: bool = ...,
+ initial: _NumberLike_co = ...,
+ where: _ArrayLikeBool_co = ...,
+) -> Any: ...
+@overload
+def amin(
+ a: ArrayLike,
+ axis: _ShapeLike | None,
+ out: _ArrayT,
+ keepdims: bool = ...,
+ initial: _NumberLike_co = ...,
+ where: _ArrayLikeBool_co = ...,
+) -> _ArrayT: ...
+@overload
+def amin(
+ a: ArrayLike,
+ axis: _ShapeLike | None = ...,
+ *,
+ out: _ArrayT,
+ keepdims: bool = ...,
+ initial: _NumberLike_co = ...,
+ where: _ArrayLikeBool_co = ...,
+) -> _ArrayT: ...
+
+# TODO: `np.prod()``: For object arrays `initial` does not necessarily
+# have to be a numerical scalar.
+# The only requirement is that it is compatible
+# with the `.__mul__()` method(s) of the passed array's elements.
+
+# Note that the same situation holds for all wrappers around
+# `np.ufunc.reduce`, e.g. `np.sum()` (`.__add__()`).
+@overload
+def prod(
+ a: _ArrayLikeBool_co,
+ axis: None = ...,
+ dtype: None = ...,
+ out: None = ...,
+ keepdims: Literal[False] = ...,
+ initial: _NumberLike_co = ...,
+ where: _ArrayLikeBool_co = ...,
+) -> int_: ...
+@overload
+def prod(
+ a: _ArrayLikeUInt_co,
+ axis: None = ...,
+ dtype: None = ...,
+ out: None = ...,
+ keepdims: Literal[False] = ...,
+ initial: _NumberLike_co = ...,
+ where: _ArrayLikeBool_co = ...,
+) -> uint64: ...
+@overload
+def prod(
+ a: _ArrayLikeInt_co,
+ axis: None = ...,
+ dtype: None = ...,
+ out: None = ...,
+ keepdims: Literal[False] = ...,
+ initial: _NumberLike_co = ...,
+ where: _ArrayLikeBool_co = ...,
+) -> int64: ...
+@overload
+def prod(
+ a: _ArrayLikeFloat_co,
+ axis: None = ...,
+ dtype: None = ...,
+ out: None = ...,
+ keepdims: Literal[False] = ...,
+ initial: _NumberLike_co = ...,
+ where: _ArrayLikeBool_co = ...,
+) -> floating: ...
+@overload
+def prod(
+ a: _ArrayLikeComplex_co,
+ axis: None = ...,
+ dtype: None = ...,
+ out: None = ...,
+ keepdims: Literal[False] = ...,
+ initial: _NumberLike_co = ...,
+ where: _ArrayLikeBool_co = ...,
+) -> complexfloating: ...
+@overload
+def prod(
+ a: _ArrayLikeComplex_co | _ArrayLikeObject_co,
+ axis: _ShapeLike | None = ...,
+ dtype: None = ...,
+ out: None = ...,
+ keepdims: bool = ...,
+ initial: _NumberLike_co = ...,
+ where: _ArrayLikeBool_co = ...,
+) -> Any: ...
+@overload
+def prod(
+ a: _ArrayLikeComplex_co | _ArrayLikeObject_co,
+ axis: None,
+ dtype: _DTypeLike[_ScalarT],
+ out: None = ...,
+ keepdims: Literal[False] = ...,
+ initial: _NumberLike_co = ...,
+ where: _ArrayLikeBool_co = ...,
+) -> _ScalarT: ...
+@overload
+def prod(
+ a: _ArrayLikeComplex_co | _ArrayLikeObject_co,
+ axis: None = ...,
+ *,
+ dtype: _DTypeLike[_ScalarT],
+ out: None = ...,
+ keepdims: Literal[False] = ...,
+ initial: _NumberLike_co = ...,
+ where: _ArrayLikeBool_co = ...,
+) -> _ScalarT: ...
+@overload
+def prod(
+ a: _ArrayLikeComplex_co | _ArrayLikeObject_co,
+ axis: _ShapeLike | None = ...,
+ dtype: DTypeLike | None = ...,
+ out: None = ...,
+ keepdims: bool = ...,
+ initial: _NumberLike_co = ...,
+ where: _ArrayLikeBool_co = ...,
+) -> Any: ...
+@overload
+def prod(
+ a: _ArrayLikeComplex_co | _ArrayLikeObject_co,
+ axis: _ShapeLike | None,
+ dtype: DTypeLike | None,
+ out: _ArrayT,
+ keepdims: bool = ...,
+ initial: _NumberLike_co = ...,
+ where: _ArrayLikeBool_co = ...,
+) -> _ArrayT: ...
+@overload
+def prod(
+ a: _ArrayLikeComplex_co | _ArrayLikeObject_co,
+ axis: _ShapeLike | None = ...,
+ dtype: DTypeLike | None = ...,
+ *,
+ out: _ArrayT,
+ keepdims: bool = ...,
+ initial: _NumberLike_co = ...,
+ where: _ArrayLikeBool_co = ...,
+) -> _ArrayT: ...
+
+@overload
+def cumprod(
+ a: _ArrayLikeBool_co,
+ axis: SupportsIndex | None = ...,
+ dtype: None = ...,
+ out: None = ...,
+) -> NDArray[int_]: ...
+@overload
+def cumprod(
+ a: _ArrayLikeUInt_co,
+ axis: SupportsIndex | None = ...,
+ dtype: None = ...,
+ out: None = ...,
+) -> NDArray[uint64]: ...
+@overload
+def cumprod(
+ a: _ArrayLikeInt_co,
+ axis: SupportsIndex | None = ...,
+ dtype: None = ...,
+ out: None = ...,
+) -> NDArray[int64]: ...
+@overload
+def cumprod(
+ a: _ArrayLikeFloat_co,
+ axis: SupportsIndex | None = ...,
+ dtype: None = ...,
+ out: None = ...,
+) -> NDArray[floating]: ...
+@overload
+def cumprod(
+ a: _ArrayLikeComplex_co,
+ axis: SupportsIndex | None = ...,
+ dtype: None = ...,
+ out: None = ...,
+) -> NDArray[complexfloating]: ...
+@overload
+def cumprod(
+ a: _ArrayLikeObject_co,
+ axis: SupportsIndex | None = ...,
+ dtype: None = ...,
+ out: None = ...,
+) -> NDArray[object_]: ...
+@overload
+def cumprod(
+ a: _ArrayLikeComplex_co | _ArrayLikeObject_co,
+ axis: SupportsIndex | None,
+ dtype: _DTypeLike[_ScalarT],
+ out: None = ...,
+) -> NDArray[_ScalarT]: ...
+@overload
+def cumprod(
+ a: _ArrayLikeComplex_co | _ArrayLikeObject_co,
+ axis: SupportsIndex | None = ...,
+ *,
+ dtype: _DTypeLike[_ScalarT],
+ out: None = ...,
+) -> NDArray[_ScalarT]: ...
+@overload
+def cumprod(
+ a: _ArrayLikeComplex_co | _ArrayLikeObject_co,
+ axis: SupportsIndex | None = ...,
+ dtype: DTypeLike = ...,
+ out: None = ...,
+) -> NDArray[Any]: ...
+@overload
+def cumprod(
+ a: _ArrayLikeComplex_co | _ArrayLikeObject_co,
+ axis: SupportsIndex | None,
+ dtype: DTypeLike,
+ out: _ArrayT,
+) -> _ArrayT: ...
+@overload
+def cumprod(
+ a: _ArrayLikeComplex_co | _ArrayLikeObject_co,
+ axis: SupportsIndex | None = ...,
+ dtype: DTypeLike = ...,
+ *,
+ out: _ArrayT,
+) -> _ArrayT: ...
+
+@overload
+def cumulative_prod(
+ x: _ArrayLikeBool_co,
+ /,
+ *,
+ axis: SupportsIndex | None = ...,
+ dtype: None = ...,
+ out: None = ...,
+ include_initial: bool = ...,
+) -> NDArray[int_]: ...
+@overload
+def cumulative_prod(
+ x: _ArrayLikeUInt_co,
+ /,
+ *,
+ axis: SupportsIndex | None = ...,
+ dtype: None = ...,
+ out: None = ...,
+ include_initial: bool = ...,
+) -> NDArray[uint64]: ...
+@overload
+def cumulative_prod(
+ x: _ArrayLikeInt_co,
+ /,
+ *,
+ axis: SupportsIndex | None = ...,
+ dtype: None = ...,
+ out: None = ...,
+ include_initial: bool = ...,
+) -> NDArray[int64]: ...
+@overload
+def cumulative_prod(
+ x: _ArrayLikeFloat_co,
+ /,
+ *,
+ axis: SupportsIndex | None = ...,
+ dtype: None = ...,
+ out: None = ...,
+ include_initial: bool = ...,
+) -> NDArray[floating]: ...
+@overload
+def cumulative_prod(
+ x: _ArrayLikeComplex_co,
+ /,
+ *,
+ axis: SupportsIndex | None = ...,
+ dtype: None = ...,
+ out: None = ...,
+ include_initial: bool = ...,
+) -> NDArray[complexfloating]: ...
+@overload
+def cumulative_prod(
+ x: _ArrayLikeObject_co,
+ /,
+ *,
+ axis: SupportsIndex | None = ...,
+ dtype: None = ...,
+ out: None = ...,
+ include_initial: bool = ...,
+) -> NDArray[object_]: ...
+@overload
+def cumulative_prod(
+ x: _ArrayLikeComplex_co | _ArrayLikeObject_co,
+ /,
+ *,
+ axis: SupportsIndex | None = ...,
+ dtype: _DTypeLike[_ScalarT],
+ out: None = ...,
+ include_initial: bool = ...,
+) -> NDArray[_ScalarT]: ...
+@overload
+def cumulative_prod(
+ x: _ArrayLikeComplex_co | _ArrayLikeObject_co,
+ /,
+ *,
+ axis: SupportsIndex | None = ...,
+ dtype: DTypeLike = ...,
+ out: None = ...,
+ include_initial: bool = ...,
+) -> NDArray[Any]: ...
+@overload
+def cumulative_prod(
+ x: _ArrayLikeComplex_co | _ArrayLikeObject_co,
+ /,
+ *,
+ axis: SupportsIndex | None = ...,
+ dtype: DTypeLike = ...,
+ out: _ArrayT,
+ include_initial: bool = ...,
+) -> _ArrayT: ...
+
+def ndim(a: ArrayLike) -> int: ...
+
+def size(a: ArrayLike, axis: int | None = ...) -> int: ...
+
+@overload
+def around(
+ a: _BoolLike_co,
+ decimals: SupportsIndex = ...,
+ out: None = ...,
+) -> float16: ...
+@overload
+def around(
+ a: _NumberOrObjectT,
+ decimals: SupportsIndex = ...,
+ out: None = ...,
+) -> _NumberOrObjectT: ...
+@overload
+def around(
+ a: _ComplexLike_co | object_,
+ decimals: SupportsIndex = ...,
+ out: None = ...,
+) -> Any: ...
+@overload
+def around(
+ a: _ArrayLikeBool_co,
+ decimals: SupportsIndex = ...,
+ out: None = ...,
+) -> NDArray[float16]: ...
+@overload
+def around(
+ a: _ArrayLike[_NumberOrObjectT],
+ decimals: SupportsIndex = ...,
+ out: None = ...,
+) -> NDArray[_NumberOrObjectT]: ...
+@overload
+def around(
+ a: _ArrayLikeComplex_co | _ArrayLikeObject_co,
+ decimals: SupportsIndex = ...,
+ out: None = ...,
+) -> NDArray[Any]: ...
+@overload
+def around(
+ a: _ArrayLikeComplex_co | _ArrayLikeObject_co,
+ decimals: SupportsIndex,
+ out: _ArrayT,
+) -> _ArrayT: ...
+@overload
+def around(
+ a: _ArrayLikeComplex_co | _ArrayLikeObject_co,
+ decimals: SupportsIndex = ...,
+ *,
+ out: _ArrayT,
+) -> _ArrayT: ...
+
+@overload
+def mean(
+ a: _ArrayLikeFloat_co,
+ axis: None = ...,
+ dtype: None = ...,
+ out: None = ...,
+ keepdims: Literal[False] | _NoValueType = ...,
+ *,
+ where: _ArrayLikeBool_co | _NoValueType = ...,
+) -> floating: ...
+@overload
+def mean(
+ a: _ArrayLikeComplex_co,
+ axis: None = ...,
+ dtype: None = ...,
+ out: None = ...,
+ keepdims: Literal[False] | _NoValueType = ...,
+ *,
+ where: _ArrayLikeBool_co | _NoValueType = ...,
+) -> complexfloating: ...
+@overload
+def mean(
+ a: _ArrayLike[np.timedelta64],
+ axis: None = ...,
+ dtype: None = ...,
+ out: None = ...,
+ keepdims: Literal[False] | _NoValueType = ...,
+ *,
+ where: _ArrayLikeBool_co | _NoValueType = ...,
+) -> timedelta64: ...
+@overload
+def mean(
+ a: _ArrayLikeComplex_co | _ArrayLikeObject_co,
+ axis: _ShapeLike | None,
+ dtype: DTypeLike,
+ out: _ArrayT,
+ keepdims: bool | _NoValueType = ...,
+ *,
+ where: _ArrayLikeBool_co | _NoValueType = ...,
+) -> _ArrayT: ...
+@overload
+def mean(
+ a: _ArrayLikeComplex_co | _ArrayLikeObject_co,
+ axis: _ShapeLike | None = ...,
+ dtype: DTypeLike | None = ...,
+ *,
+ out: _ArrayT,
+ keepdims: bool | _NoValueType = ...,
+ where: _ArrayLikeBool_co | _NoValueType = ...,
+) -> _ArrayT: ...
+@overload
+def mean(
+ a: _ArrayLikeComplex_co | _ArrayLikeObject_co,
+ axis: None,
+ dtype: _DTypeLike[_ScalarT],
+ out: None = ...,
+ keepdims: Literal[False] | _NoValueType = ...,
+ *,
+ where: _ArrayLikeBool_co | _NoValueType = ...,
+) -> _ScalarT: ...
+@overload
+def mean(
+ a: _ArrayLikeComplex_co | _ArrayLikeObject_co,
+ axis: None = ...,
+ *,
+ dtype: _DTypeLike[_ScalarT],
+ out: None = ...,
+ keepdims: Literal[False] | _NoValueType = ...,
+ where: _ArrayLikeBool_co | _NoValueType = ...,
+) -> _ScalarT: ...
+@overload
+def mean(
+ a: _ArrayLikeComplex_co | _ArrayLikeObject_co,
+ axis: _ShapeLike | None,
+ dtype: _DTypeLike[_ScalarT],
+ out: None,
+ keepdims: Literal[True, 1],
+ *,
+ where: _ArrayLikeBool_co | _NoValueType = ...,
+) -> NDArray[_ScalarT]: ...
+@overload
+def mean(
+ a: _ArrayLikeComplex_co | _ArrayLikeObject_co,
+ axis: _ShapeLike | None,
+ dtype: _DTypeLike[_ScalarT],
+ out: None = ...,
+ *,
+ keepdims: bool | _NoValueType = ...,
+ where: _ArrayLikeBool_co | _NoValueType = ...,
+) -> _ScalarT | NDArray[_ScalarT]: ...
+@overload
+def mean(
+ a: _ArrayLikeComplex_co | _ArrayLikeObject_co,
+ axis: _ShapeLike | None = ...,
+ *,
+ dtype: _DTypeLike[_ScalarT],
+ out: None = ...,
+ keepdims: bool | _NoValueType = ...,
+ where: _ArrayLikeBool_co | _NoValueType = ...,
+) -> _ScalarT | NDArray[_ScalarT]: ...
+@overload
+def mean(
+ a: _ArrayLikeComplex_co | _ArrayLikeObject_co,
+ axis: _ShapeLike | None = ...,
+ dtype: DTypeLike | None = ...,
+ out: None = ...,
+ keepdims: bool | _NoValueType = ...,
+ *,
+ where: _ArrayLikeBool_co | _NoValueType = ...,
+) -> Incomplete: ...
+
+@overload
+def std(
+ a: _ArrayLikeComplex_co,
+ axis: None = ...,
+ dtype: None = ...,
+ out: None = ...,
+ ddof: float = ...,
+ keepdims: Literal[False] = ...,
+ *,
+ where: _ArrayLikeBool_co | _NoValueType = ...,
+ mean: _ArrayLikeComplex_co | _NoValueType = ...,
+ correction: float | _NoValueType = ...,
+) -> floating: ...
+@overload
+def std(
+ a: _ArrayLikeComplex_co | _ArrayLikeObject_co,
+ axis: _ShapeLike | None = ...,
+ dtype: None = ...,
+ out: None = ...,
+ ddof: float = ...,
+ keepdims: bool = ...,
+ *,
+ where: _ArrayLikeBool_co | _NoValueType = ...,
+ mean: _ArrayLikeComplex_co | _ArrayLikeObject_co | _NoValueType = ...,
+ correction: float | _NoValueType = ...,
+) -> Any: ...
+@overload
+def std(
+ a: _ArrayLikeComplex_co | _ArrayLikeObject_co,
+ axis: None,
+ dtype: _DTypeLike[_ScalarT],
+ out: None = ...,
+ ddof: float = ...,
+ keepdims: Literal[False] = ...,
+ *,
+ where: _ArrayLikeBool_co | _NoValueType = ...,
+ mean: _ArrayLikeComplex_co | _ArrayLikeObject_co | _NoValueType = ...,
+ correction: float | _NoValueType = ...,
+) -> _ScalarT: ...
+@overload
+def std(
+ a: _ArrayLikeComplex_co | _ArrayLikeObject_co,
+ axis: None = ...,
+ *,
+ dtype: _DTypeLike[_ScalarT],
+ out: None = ...,
+ ddof: float = ...,
+ keepdims: Literal[False] = ...,
+ where: _ArrayLikeBool_co | _NoValueType = ...,
+ mean: _ArrayLikeComplex_co | _ArrayLikeObject_co | _NoValueType = ...,
+ correction: float | _NoValueType = ...,
+) -> _ScalarT: ...
+@overload
+def std(
+ a: _ArrayLikeComplex_co | _ArrayLikeObject_co,
+ axis: _ShapeLike | None = ...,
+ dtype: DTypeLike = ...,
+ out: None = ...,
+ ddof: float = ...,
+ keepdims: bool = ...,
+ *,
+ where: _ArrayLikeBool_co | _NoValueType = ...,
+ mean: _ArrayLikeComplex_co | _ArrayLikeObject_co | _NoValueType = ...,
+ correction: float | _NoValueType = ...,
+) -> Any: ...
+@overload
+def std(
+ a: _ArrayLikeComplex_co | _ArrayLikeObject_co,
+ axis: _ShapeLike | None,
+ dtype: DTypeLike,
+ out: _ArrayT,
+ ddof: float = ...,
+ keepdims: bool = ...,
+ *,
+ where: _ArrayLikeBool_co | _NoValueType = ...,
+ mean: _ArrayLikeComplex_co | _ArrayLikeObject_co | _NoValueType = ...,
+ correction: float | _NoValueType = ...,
+) -> _ArrayT: ...
+@overload
+def std(
+ a: _ArrayLikeComplex_co | _ArrayLikeObject_co,
+ axis: _ShapeLike | None = ...,
+ dtype: DTypeLike = ...,
+ *,
+ out: _ArrayT,
+ ddof: float = ...,
+ keepdims: bool = ...,
+ where: _ArrayLikeBool_co | _NoValueType = ...,
+ mean: _ArrayLikeComplex_co | _ArrayLikeObject_co | _NoValueType = ...,
+ correction: float | _NoValueType = ...,
+) -> _ArrayT: ...
+
+@overload
+def var(
+ a: _ArrayLikeComplex_co,
+ axis: None = ...,
+ dtype: None = ...,
+ out: None = ...,
+ ddof: float = ...,
+ keepdims: Literal[False] = ...,
+ *,
+ where: _ArrayLikeBool_co | _NoValueType = ...,
+ mean: _ArrayLikeComplex_co | _NoValueType = ...,
+ correction: float | _NoValueType = ...,
+) -> floating: ...
+@overload
+def var(
+ a: _ArrayLikeComplex_co | _ArrayLikeObject_co,
+ axis: _ShapeLike | None = ...,
+ dtype: None = ...,
+ out: None = ...,
+ ddof: float = ...,
+ keepdims: bool = ...,
+ *,
+ where: _ArrayLikeBool_co | _NoValueType = ...,
+ mean: _ArrayLikeComplex_co | _ArrayLikeObject_co | _NoValueType = ...,
+ correction: float | _NoValueType = ...,
+) -> Any: ...
+@overload
+def var(
+ a: _ArrayLikeComplex_co | _ArrayLikeObject_co,
+ axis: None,
+ dtype: _DTypeLike[_ScalarT],
+ out: None = ...,
+ ddof: float = ...,
+ keepdims: Literal[False] = ...,
+ *,
+ where: _ArrayLikeBool_co | _NoValueType = ...,
+ mean: _ArrayLikeComplex_co | _ArrayLikeObject_co | _NoValueType = ...,
+ correction: float | _NoValueType = ...,
+) -> _ScalarT: ...
+@overload
+def var(
+ a: _ArrayLikeComplex_co | _ArrayLikeObject_co,
+ axis: None = ...,
+ *,
+ dtype: _DTypeLike[_ScalarT],
+ out: None = ...,
+ ddof: float = ...,
+ keepdims: Literal[False] = ...,
+ where: _ArrayLikeBool_co | _NoValueType = ...,
+ mean: _ArrayLikeComplex_co | _ArrayLikeObject_co | _NoValueType = ...,
+ correction: float | _NoValueType = ...,
+) -> _ScalarT: ...
+@overload
+def var(
+ a: _ArrayLikeComplex_co | _ArrayLikeObject_co,
+ axis: _ShapeLike | None = ...,
+ dtype: DTypeLike = ...,
+ out: None = ...,
+ ddof: float = ...,
+ keepdims: bool = ...,
+ *,
+ where: _ArrayLikeBool_co | _NoValueType = ...,
+ mean: _ArrayLikeComplex_co | _ArrayLikeObject_co | _NoValueType = ...,
+ correction: float | _NoValueType = ...,
+) -> Any: ...
+@overload
+def var(
+ a: _ArrayLikeComplex_co | _ArrayLikeObject_co,
+ axis: _ShapeLike | None,
+ dtype: DTypeLike,
+ out: _ArrayT,
+ ddof: float = ...,
+ keepdims: bool = ...,
+ *,
+ where: _ArrayLikeBool_co | _NoValueType = ...,
+ mean: _ArrayLikeComplex_co | _ArrayLikeObject_co | _NoValueType = ...,
+ correction: float | _NoValueType = ...,
+) -> _ArrayT: ...
+@overload
+def var(
+ a: _ArrayLikeComplex_co | _ArrayLikeObject_co,
+ axis: _ShapeLike | None = ...,
+ dtype: DTypeLike = ...,
+ *,
+ out: _ArrayT,
+ ddof: float = ...,
+ keepdims: bool = ...,
+ where: _ArrayLikeBool_co | _NoValueType = ...,
+ mean: _ArrayLikeComplex_co | _ArrayLikeObject_co | _NoValueType = ...,
+ correction: float | _NoValueType = ...,
+) -> _ArrayT: ...
+
+max = amax
+min = amin
+round = around
diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/function_base.py b/.venv/lib/python3.12/site-packages/numpy/_core/function_base.py
new file mode 100644
index 0000000..12ab2a7
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/_core/function_base.py
@@ -0,0 +1,545 @@
+import functools
+import operator
+import types
+import warnings
+
+import numpy as np
+from numpy._core import overrides
+from numpy._core._multiarray_umath import _array_converter
+from numpy._core.multiarray import add_docstring
+
+from . import numeric as _nx
+from .numeric import asanyarray, nan, ndim, result_type
+
+__all__ = ['logspace', 'linspace', 'geomspace']
+
+
+array_function_dispatch = functools.partial(
+ overrides.array_function_dispatch, module='numpy')
+
+
+def _linspace_dispatcher(start, stop, num=None, endpoint=None, retstep=None,
+ dtype=None, axis=None, *, device=None):
+ return (start, stop)
+
+
+@array_function_dispatch(_linspace_dispatcher)
+def linspace(start, stop, num=50, endpoint=True, retstep=False, dtype=None,
+ axis=0, *, device=None):
+ """
+ Return evenly spaced numbers over a specified interval.
+
+ Returns `num` evenly spaced samples, calculated over the
+ interval [`start`, `stop`].
+
+ The endpoint of the interval can optionally be excluded.
+
+ .. versionchanged:: 1.20.0
+ Values are rounded towards ``-inf`` instead of ``0`` when an
+ integer ``dtype`` is specified. The old behavior can
+ still be obtained with ``np.linspace(start, stop, num).astype(int)``
+
+ Parameters
+ ----------
+ start : array_like
+ The starting value of the sequence.
+ stop : array_like
+ The end value of the sequence, unless `endpoint` is set to False.
+ In that case, the sequence consists of all but the last of ``num + 1``
+ evenly spaced samples, so that `stop` is excluded. Note that the step
+ size changes when `endpoint` is False.
+ num : int, optional
+ Number of samples to generate. Default is 50. Must be non-negative.
+ endpoint : bool, optional
+ If True, `stop` is the last sample. Otherwise, it is not included.
+ Default is True.
+ retstep : bool, optional
+ If True, return (`samples`, `step`), where `step` is the spacing
+ between samples.
+ dtype : dtype, optional
+ The type of the output array. If `dtype` is not given, the data type
+ is inferred from `start` and `stop`. The inferred dtype will never be
+ an integer; `float` is chosen even if the arguments would produce an
+ array of integers.
+ axis : int, optional
+ The axis in the result to store the samples. Relevant only if start
+ or stop are array-like. By default (0), the samples will be along a
+ new axis inserted at the beginning. Use -1 to get an axis at the end.
+ device : str, optional
+ The device on which to place the created array. Default: None.
+ For Array-API interoperability only, so must be ``"cpu"`` if passed.
+
+ .. versionadded:: 2.0.0
+
+ Returns
+ -------
+ samples : ndarray
+ There are `num` equally spaced samples in the closed interval
+ ``[start, stop]`` or the half-open interval ``[start, stop)``
+ (depending on whether `endpoint` is True or False).
+ step : float, optional
+ Only returned if `retstep` is True
+
+ Size of spacing between samples.
+
+
+ See Also
+ --------
+ arange : Similar to `linspace`, but uses a step size (instead of the
+ number of samples).
+ geomspace : Similar to `linspace`, but with numbers spaced evenly on a log
+ scale (a geometric progression).
+ logspace : Similar to `geomspace`, but with the end points specified as
+ logarithms.
+ :ref:`how-to-partition`
+
+ Examples
+ --------
+ >>> import numpy as np
+ >>> np.linspace(2.0, 3.0, num=5)
+ array([2. , 2.25, 2.5 , 2.75, 3. ])
+ >>> np.linspace(2.0, 3.0, num=5, endpoint=False)
+ array([2. , 2.2, 2.4, 2.6, 2.8])
+ >>> np.linspace(2.0, 3.0, num=5, retstep=True)
+ (array([2. , 2.25, 2.5 , 2.75, 3. ]), 0.25)
+
+ Graphical illustration:
+
+ >>> import matplotlib.pyplot as plt
+ >>> N = 8
+ >>> y = np.zeros(N)
+ >>> x1 = np.linspace(0, 10, N, endpoint=True)
+ >>> x2 = np.linspace(0, 10, N, endpoint=False)
+ >>> plt.plot(x1, y, 'o')
+ [<matplotlib.lines.Line2D object at 0x...>]
+ >>> plt.plot(x2, y + 0.5, 'o')
+ [<matplotlib.lines.Line2D object at 0x...>]
+ >>> plt.ylim([-0.5, 1])
+ (-0.5, 1)
+ >>> plt.show()
+
+ """
+ num = operator.index(num)
+ if num < 0:
+ raise ValueError(
+ f"Number of samples, {num}, must be non-negative."
+ )
+ div = (num - 1) if endpoint else num
+
+ conv = _array_converter(start, stop)
+ start, stop = conv.as_arrays()
+ dt = conv.result_type(ensure_inexact=True)
+
+ if dtype is None:
+ dtype = dt
+ integer_dtype = False
+ else:
+ integer_dtype = _nx.issubdtype(dtype, _nx.integer)
+
+ # Use `dtype=type(dt)` to enforce a floating point evaluation:
+ delta = np.subtract(stop, start, dtype=type(dt))
+ y = _nx.arange(
+ 0, num, dtype=dt, device=device
+ ).reshape((-1,) + (1,) * ndim(delta))
+
+ # In-place multiplication y *= delta/div is faster, but prevents
+ # the multiplicant from overriding what class is produced, and thus
+ # prevents, e.g. use of Quantities, see gh-7142. Hence, we multiply
+ # in place only for standard scalar types.
+ if div > 0:
+ _mult_inplace = _nx.isscalar(delta)
+ step = delta / div
+ any_step_zero = (
+ step == 0 if _mult_inplace else _nx.asanyarray(step == 0).any())
+ if any_step_zero:
+ # Special handling for denormal numbers, gh-5437
+ y /= div
+ if _mult_inplace:
+ y *= delta
+ else:
+ y = y * delta
+ elif _mult_inplace:
+ y *= step
+ else:
+ y = y * step
+ else:
+ # sequences with 0 items or 1 item with endpoint=True (i.e. div <= 0)
+ # have an undefined step
+ step = nan
+ # Multiply with delta to allow possible override of output class.
+ y = y * delta
+
+ y += start
+
+ if endpoint and num > 1:
+ y[-1, ...] = stop
+
+ if axis != 0:
+ y = _nx.moveaxis(y, 0, axis)
+
+ if integer_dtype:
+ _nx.floor(y, out=y)
+
+ y = conv.wrap(y.astype(dtype, copy=False))
+ if retstep:
+ return y, step
+ else:
+ return y
+
+
+def _logspace_dispatcher(start, stop, num=None, endpoint=None, base=None,
+ dtype=None, axis=None):
+ return (start, stop, base)
+
+
+@array_function_dispatch(_logspace_dispatcher)
+def logspace(start, stop, num=50, endpoint=True, base=10.0, dtype=None,
+ axis=0):
+ """
+ Return numbers spaced evenly on a log scale.
+
+ In linear space, the sequence starts at ``base ** start``
+ (`base` to the power of `start`) and ends with ``base ** stop``
+ (see `endpoint` below).
+
+ .. versionchanged:: 1.25.0
+ Non-scalar 'base` is now supported
+
+ Parameters
+ ----------
+ start : array_like
+ ``base ** start`` is the starting value of the sequence.
+ stop : array_like
+ ``base ** stop`` is the final value of the sequence, unless `endpoint`
+ is False. In that case, ``num + 1`` values are spaced over the
+ interval in log-space, of which all but the last (a sequence of
+ length `num`) are returned.
+ num : integer, optional
+ Number of samples to generate. Default is 50.
+ endpoint : boolean, optional
+ If true, `stop` is the last sample. Otherwise, it is not included.
+ Default is True.
+ base : array_like, optional
+ The base of the log space. The step size between the elements in
+ ``ln(samples) / ln(base)`` (or ``log_base(samples)``) is uniform.
+ Default is 10.0.
+ dtype : dtype
+ The type of the output array. If `dtype` is not given, the data type
+ is inferred from `start` and `stop`. The inferred type will never be
+ an integer; `float` is chosen even if the arguments would produce an
+ array of integers.
+ axis : int, optional
+ The axis in the result to store the samples. Relevant only if start,
+ stop, or base are array-like. By default (0), the samples will be
+ along a new axis inserted at the beginning. Use -1 to get an axis at
+ the end.
+
+ Returns
+ -------
+ samples : ndarray
+ `num` samples, equally spaced on a log scale.
+
+ See Also
+ --------
+ arange : Similar to linspace, with the step size specified instead of the
+ number of samples. Note that, when used with a float endpoint, the
+ endpoint may or may not be included.
+ linspace : Similar to logspace, but with the samples uniformly distributed
+ in linear space, instead of log space.
+ geomspace : Similar to logspace, but with endpoints specified directly.
+ :ref:`how-to-partition`
+
+ Notes
+ -----
+ If base is a scalar, logspace is equivalent to the code
+
+ >>> y = np.linspace(start, stop, num=num, endpoint=endpoint)
+ ... # doctest: +SKIP
+ >>> power(base, y).astype(dtype)
+ ... # doctest: +SKIP
+
+ Examples
+ --------
+ >>> import numpy as np
+ >>> np.logspace(2.0, 3.0, num=4)
+ array([ 100. , 215.443469 , 464.15888336, 1000. ])
+ >>> np.logspace(2.0, 3.0, num=4, endpoint=False)
+ array([100. , 177.827941 , 316.22776602, 562.34132519])
+ >>> np.logspace(2.0, 3.0, num=4, base=2.0)
+ array([4. , 5.0396842 , 6.34960421, 8. ])
+ >>> np.logspace(2.0, 3.0, num=4, base=[2.0, 3.0], axis=-1)
+ array([[ 4. , 5.0396842 , 6.34960421, 8. ],
+ [ 9. , 12.98024613, 18.72075441, 27. ]])
+
+ Graphical illustration:
+
+ >>> import matplotlib.pyplot as plt
+ >>> N = 10
+ >>> x1 = np.logspace(0.1, 1, N, endpoint=True)
+ >>> x2 = np.logspace(0.1, 1, N, endpoint=False)
+ >>> y = np.zeros(N)
+ >>> plt.plot(x1, y, 'o')
+ [<matplotlib.lines.Line2D object at 0x...>]
+ >>> plt.plot(x2, y + 0.5, 'o')
+ [<matplotlib.lines.Line2D object at 0x...>]
+ >>> plt.ylim([-0.5, 1])
+ (-0.5, 1)
+ >>> plt.show()
+
+ """
+ if not isinstance(base, (float, int)) and np.ndim(base):
+ # If base is non-scalar, broadcast it with the others, since it
+ # may influence how axis is interpreted.
+ ndmax = np.broadcast(start, stop, base).ndim
+ start, stop, base = (
+ np.array(a, copy=None, subok=True, ndmin=ndmax)
+ for a in (start, stop, base)
+ )
+ base = np.expand_dims(base, axis=axis)
+ y = linspace(start, stop, num=num, endpoint=endpoint, axis=axis)
+ if dtype is None:
+ return _nx.power(base, y)
+ return _nx.power(base, y).astype(dtype, copy=False)
+
+
+def _geomspace_dispatcher(start, stop, num=None, endpoint=None, dtype=None,
+ axis=None):
+ return (start, stop)
+
+
+@array_function_dispatch(_geomspace_dispatcher)
+def geomspace(start, stop, num=50, endpoint=True, dtype=None, axis=0):
+ """
+ Return numbers spaced evenly on a log scale (a geometric progression).
+
+ This is similar to `logspace`, but with endpoints specified directly.
+ Each output sample is a constant multiple of the previous.
+
+ Parameters
+ ----------
+ start : array_like
+ The starting value of the sequence.
+ stop : array_like
+ The final value of the sequence, unless `endpoint` is False.
+ In that case, ``num + 1`` values are spaced over the
+ interval in log-space, of which all but the last (a sequence of
+ length `num`) are returned.
+ num : integer, optional
+ Number of samples to generate. Default is 50.
+ endpoint : boolean, optional
+ If true, `stop` is the last sample. Otherwise, it is not included.
+ Default is True.
+ dtype : dtype
+ The type of the output array. If `dtype` is not given, the data type
+ is inferred from `start` and `stop`. The inferred dtype will never be
+ an integer; `float` is chosen even if the arguments would produce an
+ array of integers.
+ axis : int, optional
+ The axis in the result to store the samples. Relevant only if start
+ or stop are array-like. By default (0), the samples will be along a
+ new axis inserted at the beginning. Use -1 to get an axis at the end.
+
+ Returns
+ -------
+ samples : ndarray
+ `num` samples, equally spaced on a log scale.
+
+ See Also
+ --------
+ logspace : Similar to geomspace, but with endpoints specified using log
+ and base.
+ linspace : Similar to geomspace, but with arithmetic instead of geometric
+ progression.
+ arange : Similar to linspace, with the step size specified instead of the
+ number of samples.
+ :ref:`how-to-partition`
+
+ Notes
+ -----
+ If the inputs or dtype are complex, the output will follow a logarithmic
+ spiral in the complex plane. (There are an infinite number of spirals
+ passing through two points; the output will follow the shortest such path.)
+
+ Examples
+ --------
+ >>> import numpy as np
+ >>> np.geomspace(1, 1000, num=4)
+ array([ 1., 10., 100., 1000.])
+ >>> np.geomspace(1, 1000, num=3, endpoint=False)
+ array([ 1., 10., 100.])
+ >>> np.geomspace(1, 1000, num=4, endpoint=False)
+ array([ 1. , 5.62341325, 31.6227766 , 177.827941 ])
+ >>> np.geomspace(1, 256, num=9)
+ array([ 1., 2., 4., 8., 16., 32., 64., 128., 256.])
+
+ Note that the above may not produce exact integers:
+
+ >>> np.geomspace(1, 256, num=9, dtype=int)
+ array([ 1, 2, 4, 7, 16, 32, 63, 127, 256])
+ >>> np.around(np.geomspace(1, 256, num=9)).astype(int)
+ array([ 1, 2, 4, 8, 16, 32, 64, 128, 256])
+
+ Negative, decreasing, and complex inputs are allowed:
+
+ >>> np.geomspace(1000, 1, num=4)
+ array([1000., 100., 10., 1.])
+ >>> np.geomspace(-1000, -1, num=4)
+ array([-1000., -100., -10., -1.])
+ >>> np.geomspace(1j, 1000j, num=4) # Straight line
+ array([0. +1.j, 0. +10.j, 0. +100.j, 0.+1000.j])
+ >>> np.geomspace(-1+0j, 1+0j, num=5) # Circle
+ array([-1.00000000e+00+1.22464680e-16j, -7.07106781e-01+7.07106781e-01j,
+ 6.12323400e-17+1.00000000e+00j, 7.07106781e-01+7.07106781e-01j,
+ 1.00000000e+00+0.00000000e+00j])
+
+ Graphical illustration of `endpoint` parameter:
+
+ >>> import matplotlib.pyplot as plt
+ >>> N = 10
+ >>> y = np.zeros(N)
+ >>> plt.semilogx(np.geomspace(1, 1000, N, endpoint=True), y + 1, 'o')
+ [<matplotlib.lines.Line2D object at 0x...>]
+ >>> plt.semilogx(np.geomspace(1, 1000, N, endpoint=False), y + 2, 'o')
+ [<matplotlib.lines.Line2D object at 0x...>]
+ >>> plt.axis([0.5, 2000, 0, 3])
+ [0.5, 2000, 0, 3]
+ >>> plt.grid(True, color='0.7', linestyle='-', which='both', axis='both')
+ >>> plt.show()
+
+ """
+ start = asanyarray(start)
+ stop = asanyarray(stop)
+ if _nx.any(start == 0) or _nx.any(stop == 0):
+ raise ValueError('Geometric sequence cannot include zero')
+
+ dt = result_type(start, stop, float(num), _nx.zeros((), dtype))
+ if dtype is None:
+ dtype = dt
+ else:
+ # complex to dtype('complex128'), for instance
+ dtype = _nx.dtype(dtype)
+
+ # Promote both arguments to the same dtype in case, for instance, one is
+ # complex and another is negative and log would produce NaN otherwise.
+ # Copy since we may change things in-place further down.
+ start = start.astype(dt, copy=True)
+ stop = stop.astype(dt, copy=True)
+
+ # Allow negative real values and ensure a consistent result for complex
+ # (including avoiding negligible real or imaginary parts in output) by
+ # rotating start to positive real, calculating, then undoing rotation.
+ out_sign = _nx.sign(start)
+ start /= out_sign
+ stop = stop / out_sign
+
+ log_start = _nx.log10(start)
+ log_stop = _nx.log10(stop)
+ result = logspace(log_start, log_stop, num=num,
+ endpoint=endpoint, base=10.0, dtype=dt)
+
+ # Make sure the endpoints match the start and stop arguments. This is
+ # necessary because np.exp(np.log(x)) is not necessarily equal to x.
+ if num > 0:
+ result[0] = start
+ if num > 1 and endpoint:
+ result[-1] = stop
+
+ result *= out_sign
+
+ if axis != 0:
+ result = _nx.moveaxis(result, 0, axis)
+
+ return result.astype(dtype, copy=False)
+
+
+def _needs_add_docstring(obj):
+ """
+ Returns true if the only way to set the docstring of `obj` from python is
+ via add_docstring.
+
+ This function errs on the side of being overly conservative.
+ """
+ Py_TPFLAGS_HEAPTYPE = 1 << 9
+
+ if isinstance(obj, (types.FunctionType, types.MethodType, property)):
+ return False
+
+ if isinstance(obj, type) and obj.__flags__ & Py_TPFLAGS_HEAPTYPE:
+ return False
+
+ return True
+
+
+def _add_docstring(obj, doc, warn_on_python):
+ if warn_on_python and not _needs_add_docstring(obj):
+ warnings.warn(
+ f"add_newdoc was used on a pure-python object {obj}. "
+ "Prefer to attach it directly to the source.",
+ UserWarning,
+ stacklevel=3)
+ try:
+ add_docstring(obj, doc)
+ except Exception:
+ pass
+
+
+def add_newdoc(place, obj, doc, warn_on_python=True):
+ """
+ Add documentation to an existing object, typically one defined in C
+
+ The purpose is to allow easier editing of the docstrings without requiring
+ a re-compile. This exists primarily for internal use within numpy itself.
+
+ Parameters
+ ----------
+ place : str
+ The absolute name of the module to import from
+ obj : str or None
+ The name of the object to add documentation to, typically a class or
+ function name.
+ doc : {str, Tuple[str, str], List[Tuple[str, str]]}
+ If a string, the documentation to apply to `obj`
+
+ If a tuple, then the first element is interpreted as an attribute
+ of `obj` and the second as the docstring to apply -
+ ``(method, docstring)``
+
+ If a list, then each element of the list should be a tuple of length
+ two - ``[(method1, docstring1), (method2, docstring2), ...]``
+ warn_on_python : bool
+ If True, the default, emit `UserWarning` if this is used to attach
+ documentation to a pure-python object.
+
+ Notes
+ -----
+ This routine never raises an error if the docstring can't be written, but
+ will raise an error if the object being documented does not exist.
+
+ This routine cannot modify read-only docstrings, as appear
+ in new-style classes or built-in functions. Because this
+ routine never raises an error the caller must check manually
+ that the docstrings were changed.
+
+ Since this function grabs the ``char *`` from a c-level str object and puts
+ it into the ``tp_doc`` slot of the type of `obj`, it violates a number of
+ C-API best-practices, by:
+
+ - modifying a `PyTypeObject` after calling `PyType_Ready`
+ - calling `Py_INCREF` on the str and losing the reference, so the str
+ will never be released
+
+ If possible it should be avoided.
+ """
+ new = getattr(__import__(place, globals(), {}, [obj]), obj)
+ if isinstance(doc, str):
+ if "${ARRAY_FUNCTION_LIKE}" in doc:
+ doc = overrides.get_array_function_like_doc(new, doc)
+ _add_docstring(new, doc.strip(), warn_on_python)
+ elif isinstance(doc, tuple):
+ attr, docstring = doc
+ _add_docstring(getattr(new, attr), docstring.strip(), warn_on_python)
+ elif isinstance(doc, list):
+ for attr, docstring in doc:
+ _add_docstring(
+ getattr(new, attr), docstring.strip(), warn_on_python
+ )
diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/function_base.pyi b/.venv/lib/python3.12/site-packages/numpy/_core/function_base.pyi
new file mode 100644
index 0000000..44d1311
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/_core/function_base.pyi
@@ -0,0 +1,278 @@
+from typing import Literal as L
+from typing import SupportsIndex, TypeAlias, TypeVar, overload
+
+from _typeshed import Incomplete
+
+import numpy as np
+from numpy._typing import (
+ DTypeLike,
+ NDArray,
+ _ArrayLikeComplex_co,
+ _ArrayLikeFloat_co,
+ _DTypeLike,
+)
+from numpy._typing._array_like import _DualArrayLike
+
+__all__ = ["geomspace", "linspace", "logspace"]
+
+_ScalarT = TypeVar("_ScalarT", bound=np.generic)
+
+_ToArrayFloat64: TypeAlias = _DualArrayLike[np.dtype[np.float64 | np.integer | np.bool], float]
+
+@overload
+def linspace(
+ start: _ToArrayFloat64,
+ stop: _ToArrayFloat64,
+ num: SupportsIndex = 50,
+ endpoint: bool = True,
+ retstep: L[False] = False,
+ dtype: None = None,
+ axis: SupportsIndex = 0,
+ *,
+ device: L["cpu"] | None = None,
+) -> NDArray[np.float64]: ...
+@overload
+def linspace(
+ start: _ArrayLikeFloat_co,
+ stop: _ArrayLikeFloat_co,
+ num: SupportsIndex = 50,
+ endpoint: bool = True,
+ retstep: L[False] = False,
+ dtype: None = None,
+ axis: SupportsIndex = 0,
+ *,
+ device: L["cpu"] | None = None,
+) -> NDArray[np.floating]: ...
+@overload
+def linspace(
+ start: _ArrayLikeComplex_co,
+ stop: _ArrayLikeComplex_co,
+ num: SupportsIndex = 50,
+ endpoint: bool = True,
+ retstep: L[False] = False,
+ dtype: None = None,
+ axis: SupportsIndex = 0,
+ *,
+ device: L["cpu"] | None = None,
+) -> NDArray[np.complexfloating]: ...
+@overload
+def linspace(
+ start: _ArrayLikeComplex_co,
+ stop: _ArrayLikeComplex_co,
+ num: SupportsIndex,
+ endpoint: bool,
+ retstep: L[False],
+ dtype: _DTypeLike[_ScalarT],
+ axis: SupportsIndex = 0,
+ *,
+ device: L["cpu"] | None = None,
+) -> NDArray[_ScalarT]: ...
+@overload
+def linspace(
+ start: _ArrayLikeComplex_co,
+ stop: _ArrayLikeComplex_co,
+ num: SupportsIndex = 50,
+ endpoint: bool = True,
+ retstep: L[False] = False,
+ *,
+ dtype: _DTypeLike[_ScalarT],
+ axis: SupportsIndex = 0,
+ device: L["cpu"] | None = None,
+) -> NDArray[_ScalarT]: ...
+@overload
+def linspace(
+ start: _ArrayLikeComplex_co,
+ stop: _ArrayLikeComplex_co,
+ num: SupportsIndex = 50,
+ endpoint: bool = True,
+ retstep: L[False] = False,
+ dtype: DTypeLike | None = None,
+ axis: SupportsIndex = 0,
+ *,
+ device: L["cpu"] | None = None,
+) -> NDArray[Incomplete]: ...
+@overload
+def linspace(
+ start: _ToArrayFloat64,
+ stop: _ToArrayFloat64,
+ num: SupportsIndex = 50,
+ endpoint: bool = True,
+ *,
+ retstep: L[True],
+ dtype: None = None,
+ axis: SupportsIndex = 0,
+ device: L["cpu"] | None = None,
+) -> tuple[NDArray[np.float64], np.float64]: ...
+@overload
+def linspace(
+ start: _ArrayLikeFloat_co,
+ stop: _ArrayLikeFloat_co,
+ num: SupportsIndex = 50,
+ endpoint: bool = True,
+ *,
+ retstep: L[True],
+ dtype: None = None,
+ axis: SupportsIndex = 0,
+ device: L["cpu"] | None = None,
+) -> tuple[NDArray[np.floating], np.floating]: ...
+@overload
+def linspace(
+ start: _ArrayLikeComplex_co,
+ stop: _ArrayLikeComplex_co,
+ num: SupportsIndex = 50,
+ endpoint: bool = True,
+ *,
+ retstep: L[True],
+ dtype: None = None,
+ axis: SupportsIndex = 0,
+ device: L["cpu"] | None = None,
+) -> tuple[NDArray[np.complexfloating], np.complexfloating]: ...
+@overload
+def linspace(
+ start: _ArrayLikeComplex_co,
+ stop: _ArrayLikeComplex_co,
+ num: SupportsIndex = 50,
+ endpoint: bool = True,
+ *,
+ retstep: L[True],
+ dtype: _DTypeLike[_ScalarT],
+ axis: SupportsIndex = 0,
+ device: L["cpu"] | None = None,
+) -> tuple[NDArray[_ScalarT], _ScalarT]: ...
+@overload
+def linspace(
+ start: _ArrayLikeComplex_co,
+ stop: _ArrayLikeComplex_co,
+ num: SupportsIndex = 50,
+ endpoint: bool = True,
+ *,
+ retstep: L[True],
+ dtype: DTypeLike | None = None,
+ axis: SupportsIndex = 0,
+ device: L["cpu"] | None = None,
+) -> tuple[NDArray[Incomplete], Incomplete]: ...
+
+@overload
+def logspace(
+ start: _ToArrayFloat64,
+ stop: _ToArrayFloat64,
+ num: SupportsIndex = 50,
+ endpoint: bool = True,
+ base: _ToArrayFloat64 = 10.0,
+ dtype: None = None,
+ axis: SupportsIndex = 0,
+) -> NDArray[np.float64]: ...
+@overload
+def logspace(
+ start: _ArrayLikeFloat_co,
+ stop: _ArrayLikeFloat_co,
+ num: SupportsIndex = 50,
+ endpoint: bool = True,
+ base: _ArrayLikeFloat_co = 10.0,
+ dtype: None = None,
+ axis: SupportsIndex = 0,
+) -> NDArray[np.floating]: ...
+@overload
+def logspace(
+ start: _ArrayLikeComplex_co,
+ stop: _ArrayLikeComplex_co,
+ num: SupportsIndex = 50,
+ endpoint: bool = True,
+ base: _ArrayLikeComplex_co = 10.0,
+ dtype: None = None,
+ axis: SupportsIndex = 0,
+) -> NDArray[np.complexfloating]: ...
+@overload
+def logspace(
+ start: _ArrayLikeComplex_co,
+ stop: _ArrayLikeComplex_co,
+ num: SupportsIndex,
+ endpoint: bool,
+ base: _ArrayLikeComplex_co,
+ dtype: _DTypeLike[_ScalarT],
+ axis: SupportsIndex = 0,
+) -> NDArray[_ScalarT]: ...
+@overload
+def logspace(
+ start: _ArrayLikeComplex_co,
+ stop: _ArrayLikeComplex_co,
+ num: SupportsIndex = 50,
+ endpoint: bool = True,
+ base: _ArrayLikeComplex_co = 10.0,
+ *,
+ dtype: _DTypeLike[_ScalarT],
+ axis: SupportsIndex = 0,
+) -> NDArray[_ScalarT]: ...
+@overload
+def logspace(
+ start: _ArrayLikeComplex_co,
+ stop: _ArrayLikeComplex_co,
+ num: SupportsIndex = 50,
+ endpoint: bool = True,
+ base: _ArrayLikeComplex_co = 10.0,
+ dtype: DTypeLike | None = None,
+ axis: SupportsIndex = 0,
+) -> NDArray[Incomplete]: ...
+
+@overload
+def geomspace(
+ start: _ToArrayFloat64,
+ stop: _ToArrayFloat64,
+ num: SupportsIndex = 50,
+ endpoint: bool = True,
+ dtype: None = None,
+ axis: SupportsIndex = 0,
+) -> NDArray[np.float64]: ...
+@overload
+def geomspace(
+ start: _ArrayLikeFloat_co,
+ stop: _ArrayLikeFloat_co,
+ num: SupportsIndex = 50,
+ endpoint: bool = True,
+ dtype: None = None,
+ axis: SupportsIndex = 0,
+) -> NDArray[np.floating]: ...
+@overload
+def geomspace(
+ start: _ArrayLikeComplex_co,
+ stop: _ArrayLikeComplex_co,
+ num: SupportsIndex = 50,
+ endpoint: bool = True,
+ dtype: None = None,
+ axis: SupportsIndex = 0,
+) -> NDArray[np.complexfloating]: ...
+@overload
+def geomspace(
+ start: _ArrayLikeComplex_co,
+ stop: _ArrayLikeComplex_co,
+ num: SupportsIndex,
+ endpoint: bool,
+ dtype: _DTypeLike[_ScalarT],
+ axis: SupportsIndex = 0,
+) -> NDArray[_ScalarT]: ...
+@overload
+def geomspace(
+ start: _ArrayLikeComplex_co,
+ stop: _ArrayLikeComplex_co,
+ num: SupportsIndex = 50,
+ endpoint: bool = True,
+ *,
+ dtype: _DTypeLike[_ScalarT],
+ axis: SupportsIndex = 0,
+) -> NDArray[_ScalarT]: ...
+@overload
+def geomspace(
+ start: _ArrayLikeComplex_co,
+ stop: _ArrayLikeComplex_co,
+ num: SupportsIndex = 50,
+ endpoint: bool = True,
+ dtype: DTypeLike | None = None,
+ axis: SupportsIndex = 0,
+) -> NDArray[Incomplete]: ...
+
+def add_newdoc(
+ place: str,
+ obj: str,
+ doc: str | tuple[str, str] | list[tuple[str, str]],
+ warn_on_python: bool = True,
+) -> None: ...
diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/getlimits.py b/.venv/lib/python3.12/site-packages/numpy/_core/getlimits.py
new file mode 100644
index 0000000..afa2cce
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/_core/getlimits.py
@@ -0,0 +1,748 @@
+"""Machine limits for Float32 and Float64 and (long double) if available...
+
+"""
+__all__ = ['finfo', 'iinfo']
+
+import types
+import warnings
+
+from numpy._utils import set_module
+
+from . import numeric
+from . import numerictypes as ntypes
+from ._machar import MachAr
+from .numeric import array, inf, nan
+from .umath import exp2, isnan, log10, nextafter
+
+
+def _fr0(a):
+ """fix rank-0 --> rank-1"""
+ if a.ndim == 0:
+ a = a.copy()
+ a.shape = (1,)
+ return a
+
+
+def _fr1(a):
+ """fix rank > 0 --> rank-0"""
+ if a.size == 1:
+ a = a.copy()
+ a.shape = ()
+ return a
+
+
+class MachArLike:
+ """ Object to simulate MachAr instance """
+ def __init__(self, ftype, *, eps, epsneg, huge, tiny,
+ ibeta, smallest_subnormal=None, **kwargs):
+ self.params = _MACHAR_PARAMS[ftype]
+ self.ftype = ftype
+ self.title = self.params['title']
+ # Parameter types same as for discovered MachAr object.
+ if not smallest_subnormal:
+ self._smallest_subnormal = nextafter(
+ self.ftype(0), self.ftype(1), dtype=self.ftype)
+ else:
+ self._smallest_subnormal = smallest_subnormal
+ self.epsilon = self.eps = self._float_to_float(eps)
+ self.epsneg = self._float_to_float(epsneg)
+ self.xmax = self.huge = self._float_to_float(huge)
+ self.xmin = self._float_to_float(tiny)
+ self.smallest_normal = self.tiny = self._float_to_float(tiny)
+ self.ibeta = self.params['itype'](ibeta)
+ self.__dict__.update(kwargs)
+ self.precision = int(-log10(self.eps))
+ self.resolution = self._float_to_float(
+ self._float_conv(10) ** (-self.precision))
+ self._str_eps = self._float_to_str(self.eps)
+ self._str_epsneg = self._float_to_str(self.epsneg)
+ self._str_xmin = self._float_to_str(self.xmin)
+ self._str_xmax = self._float_to_str(self.xmax)
+ self._str_resolution = self._float_to_str(self.resolution)
+ self._str_smallest_normal = self._float_to_str(self.xmin)
+
+ @property
+ def smallest_subnormal(self):
+ """Return the value for the smallest subnormal.
+
+ Returns
+ -------
+ smallest_subnormal : float
+ value for the smallest subnormal.
+
+ Warns
+ -----
+ UserWarning
+ If the calculated value for the smallest subnormal is zero.
+ """
+ # Check that the calculated value is not zero, in case it raises a
+ # warning.
+ value = self._smallest_subnormal
+ if self.ftype(0) == value:
+ warnings.warn(
+ f'The value of the smallest subnormal for {self.ftype} type is zero.',
+ UserWarning, stacklevel=2)
+
+ return self._float_to_float(value)
+
+ @property
+ def _str_smallest_subnormal(self):
+ """Return the string representation of the smallest subnormal."""
+ return self._float_to_str(self.smallest_subnormal)
+
+ def _float_to_float(self, value):
+ """Converts float to float.
+
+ Parameters
+ ----------
+ value : float
+ value to be converted.
+ """
+ return _fr1(self._float_conv(value))
+
+ def _float_conv(self, value):
+ """Converts float to conv.
+
+ Parameters
+ ----------
+ value : float
+ value to be converted.
+ """
+ return array([value], self.ftype)
+
+ def _float_to_str(self, value):
+ """Converts float to str.
+
+ Parameters
+ ----------
+ value : float
+ value to be converted.
+ """
+ return self.params['fmt'] % array(_fr0(value)[0], self.ftype)
+
+
+_convert_to_float = {
+ ntypes.csingle: ntypes.single,
+ ntypes.complex128: ntypes.float64,
+ ntypes.clongdouble: ntypes.longdouble
+ }
+
+# Parameters for creating MachAr / MachAr-like objects
+_title_fmt = 'numpy {} precision floating point number'
+_MACHAR_PARAMS = {
+ ntypes.double: {
+ 'itype': ntypes.int64,
+ 'fmt': '%24.16e',
+ 'title': _title_fmt.format('double')},
+ ntypes.single: {
+ 'itype': ntypes.int32,
+ 'fmt': '%15.7e',
+ 'title': _title_fmt.format('single')},
+ ntypes.longdouble: {
+ 'itype': ntypes.longlong,
+ 'fmt': '%s',
+ 'title': _title_fmt.format('long double')},
+ ntypes.half: {
+ 'itype': ntypes.int16,
+ 'fmt': '%12.5e',
+ 'title': _title_fmt.format('half')}}
+
+# Key to identify the floating point type. Key is result of
+#
+# ftype = np.longdouble # or float64, float32, etc.
+# v = (ftype(-1.0) / ftype(10.0))
+# v.view(v.dtype.newbyteorder('<')).tobytes()
+#
+# Uses division to work around deficiencies in strtold on some platforms.
+# See:
+# https://perl5.git.perl.org/perl.git/blob/3118d7d684b56cbeb702af874f4326683c45f045:/Configure
+
+_KNOWN_TYPES = {}
+def _register_type(machar, bytepat):
+ _KNOWN_TYPES[bytepat] = machar
+
+
+_float_ma = {}
+
+
+def _register_known_types():
+ # Known parameters for float16
+ # See docstring of MachAr class for description of parameters.
+ f16 = ntypes.float16
+ float16_ma = MachArLike(f16,
+ machep=-10,
+ negep=-11,
+ minexp=-14,
+ maxexp=16,
+ it=10,
+ iexp=5,
+ ibeta=2,
+ irnd=5,
+ ngrd=0,
+ eps=exp2(f16(-10)),
+ epsneg=exp2(f16(-11)),
+ huge=f16(65504),
+ tiny=f16(2 ** -14))
+ _register_type(float16_ma, b'f\xae')
+ _float_ma[16] = float16_ma
+
+ # Known parameters for float32
+ f32 = ntypes.float32
+ float32_ma = MachArLike(f32,
+ machep=-23,
+ negep=-24,
+ minexp=-126,
+ maxexp=128,
+ it=23,
+ iexp=8,
+ ibeta=2,
+ irnd=5,
+ ngrd=0,
+ eps=exp2(f32(-23)),
+ epsneg=exp2(f32(-24)),
+ huge=f32((1 - 2 ** -24) * 2**128),
+ tiny=exp2(f32(-126)))
+ _register_type(float32_ma, b'\xcd\xcc\xcc\xbd')
+ _float_ma[32] = float32_ma
+
+ # Known parameters for float64
+ f64 = ntypes.float64
+ epsneg_f64 = 2.0 ** -53.0
+ tiny_f64 = 2.0 ** -1022.0
+ float64_ma = MachArLike(f64,
+ machep=-52,
+ negep=-53,
+ minexp=-1022,
+ maxexp=1024,
+ it=52,
+ iexp=11,
+ ibeta=2,
+ irnd=5,
+ ngrd=0,
+ eps=2.0 ** -52.0,
+ epsneg=epsneg_f64,
+ huge=(1.0 - epsneg_f64) / tiny_f64 * f64(4),
+ tiny=tiny_f64)
+ _register_type(float64_ma, b'\x9a\x99\x99\x99\x99\x99\xb9\xbf')
+ _float_ma[64] = float64_ma
+
+ # Known parameters for IEEE 754 128-bit binary float
+ ld = ntypes.longdouble
+ epsneg_f128 = exp2(ld(-113))
+ tiny_f128 = exp2(ld(-16382))
+ # Ignore runtime error when this is not f128
+ with numeric.errstate(all='ignore'):
+ huge_f128 = (ld(1) - epsneg_f128) / tiny_f128 * ld(4)
+ float128_ma = MachArLike(ld,
+ machep=-112,
+ negep=-113,
+ minexp=-16382,
+ maxexp=16384,
+ it=112,
+ iexp=15,
+ ibeta=2,
+ irnd=5,
+ ngrd=0,
+ eps=exp2(ld(-112)),
+ epsneg=epsneg_f128,
+ huge=huge_f128,
+ tiny=tiny_f128)
+ # IEEE 754 128-bit binary float
+ _register_type(float128_ma,
+ b'\x9a\x99\x99\x99\x99\x99\x99\x99\x99\x99\x99\x99\x99\x99\xfb\xbf')
+ _float_ma[128] = float128_ma
+
+ # Known parameters for float80 (Intel 80-bit extended precision)
+ epsneg_f80 = exp2(ld(-64))
+ tiny_f80 = exp2(ld(-16382))
+ # Ignore runtime error when this is not f80
+ with numeric.errstate(all='ignore'):
+ huge_f80 = (ld(1) - epsneg_f80) / tiny_f80 * ld(4)
+ float80_ma = MachArLike(ld,
+ machep=-63,
+ negep=-64,
+ minexp=-16382,
+ maxexp=16384,
+ it=63,
+ iexp=15,
+ ibeta=2,
+ irnd=5,
+ ngrd=0,
+ eps=exp2(ld(-63)),
+ epsneg=epsneg_f80,
+ huge=huge_f80,
+ tiny=tiny_f80)
+ # float80, first 10 bytes containing actual storage
+ _register_type(float80_ma, b'\xcd\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xfb\xbf')
+ _float_ma[80] = float80_ma
+
+ # Guessed / known parameters for double double; see:
+ # https://en.wikipedia.org/wiki/Quadruple-precision_floating-point_format#Double-double_arithmetic
+ # These numbers have the same exponent range as float64, but extended
+ # number of digits in the significand.
+ huge_dd = nextafter(ld(inf), ld(0), dtype=ld)
+ # As the smallest_normal in double double is so hard to calculate we set
+ # it to NaN.
+ smallest_normal_dd = nan
+ # Leave the same value for the smallest subnormal as double
+ smallest_subnormal_dd = ld(nextafter(0., 1.))
+ float_dd_ma = MachArLike(ld,
+ machep=-105,
+ negep=-106,
+ minexp=-1022,
+ maxexp=1024,
+ it=105,
+ iexp=11,
+ ibeta=2,
+ irnd=5,
+ ngrd=0,
+ eps=exp2(ld(-105)),
+ epsneg=exp2(ld(-106)),
+ huge=huge_dd,
+ tiny=smallest_normal_dd,
+ smallest_subnormal=smallest_subnormal_dd)
+ # double double; low, high order (e.g. PPC 64)
+ _register_type(float_dd_ma,
+ b'\x9a\x99\x99\x99\x99\x99Y<\x9a\x99\x99\x99\x99\x99\xb9\xbf')
+ # double double; high, low order (e.g. PPC 64 le)
+ _register_type(float_dd_ma,
+ b'\x9a\x99\x99\x99\x99\x99\xb9\xbf\x9a\x99\x99\x99\x99\x99Y<')
+ _float_ma['dd'] = float_dd_ma
+
+
+def _get_machar(ftype):
+ """ Get MachAr instance or MachAr-like instance
+
+ Get parameters for floating point type, by first trying signatures of
+ various known floating point types, then, if none match, attempting to
+ identify parameters by analysis.
+
+ Parameters
+ ----------
+ ftype : class
+ Numpy floating point type class (e.g. ``np.float64``)
+
+ Returns
+ -------
+ ma_like : instance of :class:`MachAr` or :class:`MachArLike`
+ Object giving floating point parameters for `ftype`.
+
+ Warns
+ -----
+ UserWarning
+ If the binary signature of the float type is not in the dictionary of
+ known float types.
+ """
+ params = _MACHAR_PARAMS.get(ftype)
+ if params is None:
+ raise ValueError(repr(ftype))
+ # Detect known / suspected types
+ # ftype(-1.0) / ftype(10.0) is better than ftype('-0.1') because stold
+ # may be deficient
+ key = (ftype(-1.0) / ftype(10.))
+ key = key.view(key.dtype.newbyteorder("<")).tobytes()
+ ma_like = None
+ if ftype == ntypes.longdouble:
+ # Could be 80 bit == 10 byte extended precision, where last bytes can
+ # be random garbage.
+ # Comparing first 10 bytes to pattern first to avoid branching on the
+ # random garbage.
+ ma_like = _KNOWN_TYPES.get(key[:10])
+ if ma_like is None:
+ # see if the full key is known.
+ ma_like = _KNOWN_TYPES.get(key)
+ if ma_like is None and len(key) == 16:
+ # machine limits could be f80 masquerading as np.float128,
+ # find all keys with length 16 and make new dict, but make the keys
+ # only 10 bytes long, the last bytes can be random garbage
+ _kt = {k[:10]: v for k, v in _KNOWN_TYPES.items() if len(k) == 16}
+ ma_like = _kt.get(key[:10])
+ if ma_like is not None:
+ return ma_like
+ # Fall back to parameter discovery
+ warnings.warn(
+ f'Signature {key} for {ftype} does not match any known type: '
+ 'falling back to type probe function.\n'
+ 'This warnings indicates broken support for the dtype!',
+ UserWarning, stacklevel=2)
+ return _discovered_machar(ftype)
+
+
+def _discovered_machar(ftype):
+ """ Create MachAr instance with found information on float types
+
+ TODO: MachAr should be retired completely ideally. We currently only
+ ever use it system with broken longdouble (valgrind, WSL).
+ """
+ params = _MACHAR_PARAMS[ftype]
+ return MachAr(lambda v: array([v], ftype),
+ lambda v: _fr0(v.astype(params['itype']))[0],
+ lambda v: array(_fr0(v)[0], ftype),
+ lambda v: params['fmt'] % array(_fr0(v)[0], ftype),
+ params['title'])
+
+
+@set_module('numpy')
+class finfo:
+ """
+ finfo(dtype)
+
+ Machine limits for floating point types.
+
+ Attributes
+ ----------
+ bits : int
+ The number of bits occupied by the type.
+ dtype : dtype
+ Returns the dtype for which `finfo` returns information. For complex
+ input, the returned dtype is the associated ``float*`` dtype for its
+ real and complex components.
+ eps : float
+ The difference between 1.0 and the next smallest representable float
+ larger than 1.0. For example, for 64-bit binary floats in the IEEE-754
+ standard, ``eps = 2**-52``, approximately 2.22e-16.
+ epsneg : float
+ The difference between 1.0 and the next smallest representable float
+ less than 1.0. For example, for 64-bit binary floats in the IEEE-754
+ standard, ``epsneg = 2**-53``, approximately 1.11e-16.
+ iexp : int
+ The number of bits in the exponent portion of the floating point
+ representation.
+ machep : int
+ The exponent that yields `eps`.
+ max : floating point number of the appropriate type
+ The largest representable number.
+ maxexp : int
+ The smallest positive power of the base (2) that causes overflow.
+ min : floating point number of the appropriate type
+ The smallest representable number, typically ``-max``.
+ minexp : int
+ The most negative power of the base (2) consistent with there
+ being no leading 0's in the mantissa.
+ negep : int
+ The exponent that yields `epsneg`.
+ nexp : int
+ The number of bits in the exponent including its sign and bias.
+ nmant : int
+ The number of bits in the mantissa.
+ precision : int
+ The approximate number of decimal digits to which this kind of
+ float is precise.
+ resolution : floating point number of the appropriate type
+ The approximate decimal resolution of this type, i.e.,
+ ``10**-precision``.
+ tiny : float
+ An alias for `smallest_normal`, kept for backwards compatibility.
+ smallest_normal : float
+ The smallest positive floating point number with 1 as leading bit in
+ the mantissa following IEEE-754 (see Notes).
+ smallest_subnormal : float
+ The smallest positive floating point number with 0 as leading bit in
+ the mantissa following IEEE-754.
+
+ Parameters
+ ----------
+ dtype : float, dtype, or instance
+ Kind of floating point or complex floating point
+ data-type about which to get information.
+
+ See Also
+ --------
+ iinfo : The equivalent for integer data types.
+ spacing : The distance between a value and the nearest adjacent number
+ nextafter : The next floating point value after x1 towards x2
+
+ Notes
+ -----
+ For developers of NumPy: do not instantiate this at the module level.
+ The initial calculation of these parameters is expensive and negatively
+ impacts import times. These objects are cached, so calling ``finfo()``
+ repeatedly inside your functions is not a problem.
+
+ Note that ``smallest_normal`` is not actually the smallest positive
+ representable value in a NumPy floating point type. As in the IEEE-754
+ standard [1]_, NumPy floating point types make use of subnormal numbers to
+ fill the gap between 0 and ``smallest_normal``. However, subnormal numbers
+ may have significantly reduced precision [2]_.
+
+ This function can also be used for complex data types as well. If used,
+ the output will be the same as the corresponding real float type
+ (e.g. numpy.finfo(numpy.csingle) is the same as numpy.finfo(numpy.single)).
+ However, the output is true for the real and imaginary components.
+
+ References
+ ----------
+ .. [1] IEEE Standard for Floating-Point Arithmetic, IEEE Std 754-2008,
+ pp.1-70, 2008, https://doi.org/10.1109/IEEESTD.2008.4610935
+ .. [2] Wikipedia, "Denormal Numbers",
+ https://en.wikipedia.org/wiki/Denormal_number
+
+ Examples
+ --------
+ >>> import numpy as np
+ >>> np.finfo(np.float64).dtype
+ dtype('float64')
+ >>> np.finfo(np.complex64).dtype
+ dtype('float32')
+
+ """
+
+ _finfo_cache = {}
+
+ __class_getitem__ = classmethod(types.GenericAlias)
+
+ def __new__(cls, dtype):
+ try:
+ obj = cls._finfo_cache.get(dtype) # most common path
+ if obj is not None:
+ return obj
+ except TypeError:
+ pass
+
+ if dtype is None:
+ # Deprecated in NumPy 1.25, 2023-01-16
+ warnings.warn(
+ "finfo() dtype cannot be None. This behavior will "
+ "raise an error in the future. (Deprecated in NumPy 1.25)",
+ DeprecationWarning,
+ stacklevel=2
+ )
+
+ try:
+ dtype = numeric.dtype(dtype)
+ except TypeError:
+ # In case a float instance was given
+ dtype = numeric.dtype(type(dtype))
+
+ obj = cls._finfo_cache.get(dtype)
+ if obj is not None:
+ return obj
+ dtypes = [dtype]
+ newdtype = ntypes.obj2sctype(dtype)
+ if newdtype is not dtype:
+ dtypes.append(newdtype)
+ dtype = newdtype
+ if not issubclass(dtype, numeric.inexact):
+ raise ValueError(f"data type {dtype!r} not inexact")
+ obj = cls._finfo_cache.get(dtype)
+ if obj is not None:
+ return obj
+ if not issubclass(dtype, numeric.floating):
+ newdtype = _convert_to_float[dtype]
+ if newdtype is not dtype:
+ # dtype changed, for example from complex128 to float64
+ dtypes.append(newdtype)
+ dtype = newdtype
+
+ obj = cls._finfo_cache.get(dtype, None)
+ if obj is not None:
+ # the original dtype was not in the cache, but the new
+ # dtype is in the cache. we add the original dtypes to
+ # the cache and return the result
+ for dt in dtypes:
+ cls._finfo_cache[dt] = obj
+ return obj
+ obj = object.__new__(cls)._init(dtype)
+ for dt in dtypes:
+ cls._finfo_cache[dt] = obj
+ return obj
+
+ def _init(self, dtype):
+ self.dtype = numeric.dtype(dtype)
+ machar = _get_machar(dtype)
+
+ for word in ['precision', 'iexp',
+ 'maxexp', 'minexp', 'negep',
+ 'machep']:
+ setattr(self, word, getattr(machar, word))
+ for word in ['resolution', 'epsneg', 'smallest_subnormal']:
+ setattr(self, word, getattr(machar, word).flat[0])
+ self.bits = self.dtype.itemsize * 8
+ self.max = machar.huge.flat[0]
+ self.min = -self.max
+ self.eps = machar.eps.flat[0]
+ self.nexp = machar.iexp
+ self.nmant = machar.it
+ self._machar = machar
+ self._str_tiny = machar._str_xmin.strip()
+ self._str_max = machar._str_xmax.strip()
+ self._str_epsneg = machar._str_epsneg.strip()
+ self._str_eps = machar._str_eps.strip()
+ self._str_resolution = machar._str_resolution.strip()
+ self._str_smallest_normal = machar._str_smallest_normal.strip()
+ self._str_smallest_subnormal = machar._str_smallest_subnormal.strip()
+ return self
+
+ def __str__(self):
+ fmt = (
+ 'Machine parameters for %(dtype)s\n'
+ '---------------------------------------------------------------\n'
+ 'precision = %(precision)3s resolution = %(_str_resolution)s\n'
+ 'machep = %(machep)6s eps = %(_str_eps)s\n'
+ 'negep = %(negep)6s epsneg = %(_str_epsneg)s\n'
+ 'minexp = %(minexp)6s tiny = %(_str_tiny)s\n'
+ 'maxexp = %(maxexp)6s max = %(_str_max)s\n'
+ 'nexp = %(nexp)6s min = -max\n'
+ 'smallest_normal = %(_str_smallest_normal)s '
+ 'smallest_subnormal = %(_str_smallest_subnormal)s\n'
+ '---------------------------------------------------------------\n'
+ )
+ return fmt % self.__dict__
+
+ def __repr__(self):
+ c = self.__class__.__name__
+ d = self.__dict__.copy()
+ d['klass'] = c
+ return (("%(klass)s(resolution=%(resolution)s, min=-%(_str_max)s,"
+ " max=%(_str_max)s, dtype=%(dtype)s)") % d)
+
+ @property
+ def smallest_normal(self):
+ """Return the value for the smallest normal.
+
+ Returns
+ -------
+ smallest_normal : float
+ Value for the smallest normal.
+
+ Warns
+ -----
+ UserWarning
+ If the calculated value for the smallest normal is requested for
+ double-double.
+ """
+ # This check is necessary because the value for smallest_normal is
+ # platform dependent for longdouble types.
+ if isnan(self._machar.smallest_normal.flat[0]):
+ warnings.warn(
+ 'The value of smallest normal is undefined for double double',
+ UserWarning, stacklevel=2)
+ return self._machar.smallest_normal.flat[0]
+
+ @property
+ def tiny(self):
+ """Return the value for tiny, alias of smallest_normal.
+
+ Returns
+ -------
+ tiny : float
+ Value for the smallest normal, alias of smallest_normal.
+
+ Warns
+ -----
+ UserWarning
+ If the calculated value for the smallest normal is requested for
+ double-double.
+ """
+ return self.smallest_normal
+
+
+@set_module('numpy')
+class iinfo:
+ """
+ iinfo(type)
+
+ Machine limits for integer types.
+
+ Attributes
+ ----------
+ bits : int
+ The number of bits occupied by the type.
+ dtype : dtype
+ Returns the dtype for which `iinfo` returns information.
+ min : int
+ The smallest integer expressible by the type.
+ max : int
+ The largest integer expressible by the type.
+
+ Parameters
+ ----------
+ int_type : integer type, dtype, or instance
+ The kind of integer data type to get information about.
+
+ See Also
+ --------
+ finfo : The equivalent for floating point data types.
+
+ Examples
+ --------
+ With types:
+
+ >>> import numpy as np
+ >>> ii16 = np.iinfo(np.int16)
+ >>> ii16.min
+ -32768
+ >>> ii16.max
+ 32767
+ >>> ii32 = np.iinfo(np.int32)
+ >>> ii32.min
+ -2147483648
+ >>> ii32.max
+ 2147483647
+
+ With instances:
+
+ >>> ii32 = np.iinfo(np.int32(10))
+ >>> ii32.min
+ -2147483648
+ >>> ii32.max
+ 2147483647
+
+ """
+
+ _min_vals = {}
+ _max_vals = {}
+
+ __class_getitem__ = classmethod(types.GenericAlias)
+
+ def __init__(self, int_type):
+ try:
+ self.dtype = numeric.dtype(int_type)
+ except TypeError:
+ self.dtype = numeric.dtype(type(int_type))
+ self.kind = self.dtype.kind
+ self.bits = self.dtype.itemsize * 8
+ self.key = "%s%d" % (self.kind, self.bits)
+ if self.kind not in 'iu':
+ raise ValueError(f"Invalid integer data type {self.kind!r}.")
+
+ @property
+ def min(self):
+ """Minimum value of given dtype."""
+ if self.kind == 'u':
+ return 0
+ else:
+ try:
+ val = iinfo._min_vals[self.key]
+ except KeyError:
+ val = int(-(1 << (self.bits - 1)))
+ iinfo._min_vals[self.key] = val
+ return val
+
+ @property
+ def max(self):
+ """Maximum value of given dtype."""
+ try:
+ val = iinfo._max_vals[self.key]
+ except KeyError:
+ if self.kind == 'u':
+ val = int((1 << self.bits) - 1)
+ else:
+ val = int((1 << (self.bits - 1)) - 1)
+ iinfo._max_vals[self.key] = val
+ return val
+
+ def __str__(self):
+ """String representation."""
+ fmt = (
+ 'Machine parameters for %(dtype)s\n'
+ '---------------------------------------------------------------\n'
+ 'min = %(min)s\n'
+ 'max = %(max)s\n'
+ '---------------------------------------------------------------\n'
+ )
+ return fmt % {'dtype': self.dtype, 'min': self.min, 'max': self.max}
+
+ def __repr__(self):
+ return "%s(min=%s, max=%s, dtype=%s)" % (self.__class__.__name__,
+ self.min, self.max, self.dtype)
diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/getlimits.pyi b/.venv/lib/python3.12/site-packages/numpy/_core/getlimits.pyi
new file mode 100644
index 0000000..9d79b17
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/_core/getlimits.pyi
@@ -0,0 +1,3 @@
+from numpy import finfo, iinfo
+
+__all__ = ["finfo", "iinfo"]
diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/include/numpy/__multiarray_api.c b/.venv/lib/python3.12/site-packages/numpy/_core/include/numpy/__multiarray_api.c
new file mode 100644
index 0000000..8398c62
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/_core/include/numpy/__multiarray_api.c
@@ -0,0 +1,376 @@
+
+/* These pointers will be stored in the C-object for use in other
+ extension modules
+*/
+
+void *PyArray_API[] = {
+ (void *) PyArray_GetNDArrayCVersion,
+ NULL,
+ (void *) &PyArray_Type,
+ (void *) &PyArrayDescr_Type,
+ NULL,
+ (void *) &PyArrayIter_Type,
+ (void *) &PyArrayMultiIter_Type,
+ (int *) &NPY_NUMUSERTYPES,
+ (void *) &PyBoolArrType_Type,
+ (void *) &_PyArrayScalar_BoolValues,
+ (void *) &PyGenericArrType_Type,
+ (void *) &PyNumberArrType_Type,
+ (void *) &PyIntegerArrType_Type,
+ (void *) &PySignedIntegerArrType_Type,
+ (void *) &PyUnsignedIntegerArrType_Type,
+ (void *) &PyInexactArrType_Type,
+ (void *) &PyFloatingArrType_Type,
+ (void *) &PyComplexFloatingArrType_Type,
+ (void *) &PyFlexibleArrType_Type,
+ (void *) &PyCharacterArrType_Type,
+ (void *) &PyByteArrType_Type,
+ (void *) &PyShortArrType_Type,
+ (void *) &PyIntArrType_Type,
+ (void *) &PyLongArrType_Type,
+ (void *) &PyLongLongArrType_Type,
+ (void *) &PyUByteArrType_Type,
+ (void *) &PyUShortArrType_Type,
+ (void *) &PyUIntArrType_Type,
+ (void *) &PyULongArrType_Type,
+ (void *) &PyULongLongArrType_Type,
+ (void *) &PyFloatArrType_Type,
+ (void *) &PyDoubleArrType_Type,
+ (void *) &PyLongDoubleArrType_Type,
+ (void *) &PyCFloatArrType_Type,
+ (void *) &PyCDoubleArrType_Type,
+ (void *) &PyCLongDoubleArrType_Type,
+ (void *) &PyObjectArrType_Type,
+ (void *) &PyStringArrType_Type,
+ (void *) &PyUnicodeArrType_Type,
+ (void *) &PyVoidArrType_Type,
+ NULL,
+ NULL,
+ (void *) PyArray_INCREF,
+ (void *) PyArray_XDECREF,
+ (void *) PyArray_SetStringFunction,
+ (void *) PyArray_DescrFromType,
+ (void *) PyArray_TypeObjectFromType,
+ (void *) PyArray_Zero,
+ (void *) PyArray_One,
+ (void *) PyArray_CastToType,
+ (void *) PyArray_CopyInto,
+ (void *) PyArray_CopyAnyInto,
+ (void *) PyArray_CanCastSafely,
+ (void *) PyArray_CanCastTo,
+ (void *) PyArray_ObjectType,
+ (void *) PyArray_DescrFromObject,
+ (void *) PyArray_ConvertToCommonType,
+ (void *) PyArray_DescrFromScalar,
+ (void *) PyArray_DescrFromTypeObject,
+ (void *) PyArray_Size,
+ (void *) PyArray_Scalar,
+ (void *) PyArray_FromScalar,
+ (void *) PyArray_ScalarAsCtype,
+ (void *) PyArray_CastScalarToCtype,
+ (void *) PyArray_CastScalarDirect,
+ (void *) PyArray_Pack,
+ NULL,
+ NULL,
+ NULL,
+ (void *) PyArray_FromAny,
+ (void *) PyArray_EnsureArray,
+ (void *) PyArray_EnsureAnyArray,
+ (void *) PyArray_FromFile,
+ (void *) PyArray_FromString,
+ (void *) PyArray_FromBuffer,
+ (void *) PyArray_FromIter,
+ (void *) PyArray_Return,
+ (void *) PyArray_GetField,
+ (void *) PyArray_SetField,
+ (void *) PyArray_Byteswap,
+ (void *) PyArray_Resize,
+ NULL,
+ NULL,
+ NULL,
+ (void *) PyArray_CopyObject,
+ (void *) PyArray_NewCopy,
+ (void *) PyArray_ToList,
+ (void *) PyArray_ToString,
+ (void *) PyArray_ToFile,
+ (void *) PyArray_Dump,
+ (void *) PyArray_Dumps,
+ (void *) PyArray_ValidType,
+ (void *) PyArray_UpdateFlags,
+ (void *) PyArray_New,
+ (void *) PyArray_NewFromDescr,
+ (void *) PyArray_DescrNew,
+ (void *) PyArray_DescrNewFromType,
+ (void *) PyArray_GetPriority,
+ (void *) PyArray_IterNew,
+ (void *) PyArray_MultiIterNew,
+ (void *) PyArray_PyIntAsInt,
+ (void *) PyArray_PyIntAsIntp,
+ (void *) PyArray_Broadcast,
+ NULL,
+ (void *) PyArray_FillWithScalar,
+ (void *) PyArray_CheckStrides,
+ (void *) PyArray_DescrNewByteorder,
+ (void *) PyArray_IterAllButAxis,
+ (void *) PyArray_CheckFromAny,
+ (void *) PyArray_FromArray,
+ (void *) PyArray_FromInterface,
+ (void *) PyArray_FromStructInterface,
+ (void *) PyArray_FromArrayAttr,
+ (void *) PyArray_ScalarKind,
+ (void *) PyArray_CanCoerceScalar,
+ NULL,
+ (void *) PyArray_CanCastScalar,
+ NULL,
+ (void *) PyArray_RemoveSmallest,
+ (void *) PyArray_ElementStrides,
+ (void *) PyArray_Item_INCREF,
+ (void *) PyArray_Item_XDECREF,
+ NULL,
+ (void *) PyArray_Transpose,
+ (void *) PyArray_TakeFrom,
+ (void *) PyArray_PutTo,
+ (void *) PyArray_PutMask,
+ (void *) PyArray_Repeat,
+ (void *) PyArray_Choose,
+ (void *) PyArray_Sort,
+ (void *) PyArray_ArgSort,
+ (void *) PyArray_SearchSorted,
+ (void *) PyArray_ArgMax,
+ (void *) PyArray_ArgMin,
+ (void *) PyArray_Reshape,
+ (void *) PyArray_Newshape,
+ (void *) PyArray_Squeeze,
+ (void *) PyArray_View,
+ (void *) PyArray_SwapAxes,
+ (void *) PyArray_Max,
+ (void *) PyArray_Min,
+ (void *) PyArray_Ptp,
+ (void *) PyArray_Mean,
+ (void *) PyArray_Trace,
+ (void *) PyArray_Diagonal,
+ (void *) PyArray_Clip,
+ (void *) PyArray_Conjugate,
+ (void *) PyArray_Nonzero,
+ (void *) PyArray_Std,
+ (void *) PyArray_Sum,
+ (void *) PyArray_CumSum,
+ (void *) PyArray_Prod,
+ (void *) PyArray_CumProd,
+ (void *) PyArray_All,
+ (void *) PyArray_Any,
+ (void *) PyArray_Compress,
+ (void *) PyArray_Flatten,
+ (void *) PyArray_Ravel,
+ (void *) PyArray_MultiplyList,
+ (void *) PyArray_MultiplyIntList,
+ (void *) PyArray_GetPtr,
+ (void *) PyArray_CompareLists,
+ (void *) PyArray_AsCArray,
+ NULL,
+ NULL,
+ (void *) PyArray_Free,
+ (void *) PyArray_Converter,
+ (void *) PyArray_IntpFromSequence,
+ (void *) PyArray_Concatenate,
+ (void *) PyArray_InnerProduct,
+ (void *) PyArray_MatrixProduct,
+ NULL,
+ (void *) PyArray_Correlate,
+ NULL,
+ (void *) PyArray_DescrConverter,
+ (void *) PyArray_DescrConverter2,
+ (void *) PyArray_IntpConverter,
+ (void *) PyArray_BufferConverter,
+ (void *) PyArray_AxisConverter,
+ (void *) PyArray_BoolConverter,
+ (void *) PyArray_ByteorderConverter,
+ (void *) PyArray_OrderConverter,
+ (void *) PyArray_EquivTypes,
+ (void *) PyArray_Zeros,
+ (void *) PyArray_Empty,
+ (void *) PyArray_Where,
+ (void *) PyArray_Arange,
+ (void *) PyArray_ArangeObj,
+ (void *) PyArray_SortkindConverter,
+ (void *) PyArray_LexSort,
+ (void *) PyArray_Round,
+ (void *) PyArray_EquivTypenums,
+ (void *) PyArray_RegisterDataType,
+ (void *) PyArray_RegisterCastFunc,
+ (void *) PyArray_RegisterCanCast,
+ (void *) PyArray_InitArrFuncs,
+ (void *) PyArray_IntTupleFromIntp,
+ NULL,
+ (void *) PyArray_ClipmodeConverter,
+ (void *) PyArray_OutputConverter,
+ (void *) PyArray_BroadcastToShape,
+ NULL,
+ NULL,
+ (void *) PyArray_DescrAlignConverter,
+ (void *) PyArray_DescrAlignConverter2,
+ (void *) PyArray_SearchsideConverter,
+ (void *) PyArray_CheckAxis,
+ (void *) PyArray_OverflowMultiplyList,
+ NULL,
+ (void *) PyArray_MultiIterFromObjects,
+ (void *) PyArray_GetEndianness,
+ (void *) PyArray_GetNDArrayCFeatureVersion,
+ (void *) PyArray_Correlate2,
+ (void *) PyArray_NeighborhoodIterNew,
+ (void *) &PyTimeIntegerArrType_Type,
+ (void *) &PyDatetimeArrType_Type,
+ (void *) &PyTimedeltaArrType_Type,
+ (void *) &PyHalfArrType_Type,
+ (void *) &NpyIter_Type,
+ NULL,
+ NULL,
+ NULL,
+ NULL,
+ (void *) NpyIter_GetTransferFlags,
+ (void *) NpyIter_New,
+ (void *) NpyIter_MultiNew,
+ (void *) NpyIter_AdvancedNew,
+ (void *) NpyIter_Copy,
+ (void *) NpyIter_Deallocate,
+ (void *) NpyIter_HasDelayedBufAlloc,
+ (void *) NpyIter_HasExternalLoop,
+ (void *) NpyIter_EnableExternalLoop,
+ (void *) NpyIter_GetInnerStrideArray,
+ (void *) NpyIter_GetInnerLoopSizePtr,
+ (void *) NpyIter_Reset,
+ (void *) NpyIter_ResetBasePointers,
+ (void *) NpyIter_ResetToIterIndexRange,
+ (void *) NpyIter_GetNDim,
+ (void *) NpyIter_GetNOp,
+ (void *) NpyIter_GetIterNext,
+ (void *) NpyIter_GetIterSize,
+ (void *) NpyIter_GetIterIndexRange,
+ (void *) NpyIter_GetIterIndex,
+ (void *) NpyIter_GotoIterIndex,
+ (void *) NpyIter_HasMultiIndex,
+ (void *) NpyIter_GetShape,
+ (void *) NpyIter_GetGetMultiIndex,
+ (void *) NpyIter_GotoMultiIndex,
+ (void *) NpyIter_RemoveMultiIndex,
+ (void *) NpyIter_HasIndex,
+ (void *) NpyIter_IsBuffered,
+ (void *) NpyIter_IsGrowInner,
+ (void *) NpyIter_GetBufferSize,
+ (void *) NpyIter_GetIndexPtr,
+ (void *) NpyIter_GotoIndex,
+ (void *) NpyIter_GetDataPtrArray,
+ (void *) NpyIter_GetDescrArray,
+ (void *) NpyIter_GetOperandArray,
+ (void *) NpyIter_GetIterView,
+ (void *) NpyIter_GetReadFlags,
+ (void *) NpyIter_GetWriteFlags,
+ (void *) NpyIter_DebugPrint,
+ (void *) NpyIter_IterationNeedsAPI,
+ (void *) NpyIter_GetInnerFixedStrideArray,
+ (void *) NpyIter_RemoveAxis,
+ (void *) NpyIter_GetAxisStrideArray,
+ (void *) NpyIter_RequiresBuffering,
+ (void *) NpyIter_GetInitialDataPtrArray,
+ (void *) NpyIter_CreateCompatibleStrides,
+ (void *) PyArray_CastingConverter,
+ (void *) PyArray_CountNonzero,
+ (void *) PyArray_PromoteTypes,
+ (void *) PyArray_MinScalarType,
+ (void *) PyArray_ResultType,
+ (void *) PyArray_CanCastArrayTo,
+ (void *) PyArray_CanCastTypeTo,
+ (void *) PyArray_EinsteinSum,
+ (void *) PyArray_NewLikeArray,
+ NULL,
+ (void *) PyArray_ConvertClipmodeSequence,
+ (void *) PyArray_MatrixProduct2,
+ (void *) NpyIter_IsFirstVisit,
+ (void *) PyArray_SetBaseObject,
+ (void *) PyArray_CreateSortedStridePerm,
+ (void *) PyArray_RemoveAxesInPlace,
+ (void *) PyArray_DebugPrint,
+ (void *) PyArray_FailUnlessWriteable,
+ (void *) PyArray_SetUpdateIfCopyBase,
+ (void *) PyDataMem_NEW,
+ (void *) PyDataMem_FREE,
+ (void *) PyDataMem_RENEW,
+ NULL,
+ (NPY_CASTING *) &NPY_DEFAULT_ASSIGN_CASTING,
+ NULL,
+ NULL,
+ NULL,
+ (void *) PyArray_Partition,
+ (void *) PyArray_ArgPartition,
+ (void *) PyArray_SelectkindConverter,
+ (void *) PyDataMem_NEW_ZEROED,
+ (void *) PyArray_CheckAnyScalarExact,
+ NULL,
+ (void *) PyArray_ResolveWritebackIfCopy,
+ (void *) PyArray_SetWritebackIfCopyBase,
+ (void *) PyDataMem_SetHandler,
+ (void *) PyDataMem_GetHandler,
+ (PyObject* *) &PyDataMem_DefaultHandler,
+ (void *) NpyDatetime_ConvertDatetime64ToDatetimeStruct,
+ (void *) NpyDatetime_ConvertDatetimeStructToDatetime64,
+ (void *) NpyDatetime_ConvertPyDateTimeToDatetimeStruct,
+ (void *) NpyDatetime_GetDatetimeISO8601StrLen,
+ (void *) NpyDatetime_MakeISO8601Datetime,
+ (void *) NpyDatetime_ParseISO8601Datetime,
+ (void *) NpyString_load,
+ (void *) NpyString_pack,
+ (void *) NpyString_pack_null,
+ (void *) NpyString_acquire_allocator,
+ (void *) NpyString_acquire_allocators,
+ (void *) NpyString_release_allocator,
+ (void *) NpyString_release_allocators,
+ NULL,
+ NULL,
+ NULL,
+ NULL,
+ NULL,
+ NULL,
+ NULL,
+ NULL,
+ NULL,
+ NULL,
+ NULL,
+ NULL,
+ NULL,
+ NULL,
+ NULL,
+ NULL,
+ NULL,
+ NULL,
+ NULL,
+ NULL,
+ NULL,
+ NULL,
+ NULL,
+ NULL,
+ NULL,
+ NULL,
+ NULL,
+ NULL,
+ NULL,
+ NULL,
+ NULL,
+ NULL,
+ NULL,
+ NULL,
+ NULL,
+ NULL,
+ NULL,
+ NULL,
+ NULL,
+ NULL,
+ NULL,
+ (void *) PyArray_GetDefaultDescr,
+ (void *) PyArrayInitDTypeMeta_FromSpec,
+ (void *) PyArray_CommonDType,
+ (void *) PyArray_PromoteDTypeSequence,
+ (void *) _PyDataType_GetArrFuncs,
+ NULL,
+ NULL,
+ NULL
+};
diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/include/numpy/__multiarray_api.h b/.venv/lib/python3.12/site-packages/numpy/_core/include/numpy/__multiarray_api.h
new file mode 100644
index 0000000..34363fb
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/_core/include/numpy/__multiarray_api.h
@@ -0,0 +1,1622 @@
+
+#if defined(_MULTIARRAYMODULE) || defined(WITH_CPYCHECKER_STEALS_REFERENCE_TO_ARG_ATTRIBUTE)
+
+typedef struct {
+ PyObject_HEAD
+ npy_bool obval;
+} PyBoolScalarObject;
+
+extern NPY_NO_EXPORT PyTypeObject PyArrayNeighborhoodIter_Type;
+extern NPY_NO_EXPORT PyBoolScalarObject _PyArrayScalar_BoolValues[2];
+
+NPY_NO_EXPORT unsigned int PyArray_GetNDArrayCVersion \
+ (void);
+extern NPY_NO_EXPORT PyTypeObject PyArray_Type;
+
+extern NPY_NO_EXPORT PyArray_DTypeMeta PyArrayDescr_TypeFull;
+#define PyArrayDescr_Type (*(PyTypeObject *)(&PyArrayDescr_TypeFull))
+
+extern NPY_NO_EXPORT PyTypeObject PyArrayIter_Type;
+
+extern NPY_NO_EXPORT PyTypeObject PyArrayMultiIter_Type;
+
+extern NPY_NO_EXPORT int NPY_NUMUSERTYPES;
+
+extern NPY_NO_EXPORT PyTypeObject PyBoolArrType_Type;
+
+extern NPY_NO_EXPORT PyBoolScalarObject _PyArrayScalar_BoolValues[2];
+
+extern NPY_NO_EXPORT PyTypeObject PyGenericArrType_Type;
+
+extern NPY_NO_EXPORT PyTypeObject PyNumberArrType_Type;
+
+extern NPY_NO_EXPORT PyTypeObject PyIntegerArrType_Type;
+
+extern NPY_NO_EXPORT PyTypeObject PySignedIntegerArrType_Type;
+
+extern NPY_NO_EXPORT PyTypeObject PyUnsignedIntegerArrType_Type;
+
+extern NPY_NO_EXPORT PyTypeObject PyInexactArrType_Type;
+
+extern NPY_NO_EXPORT PyTypeObject PyFloatingArrType_Type;
+
+extern NPY_NO_EXPORT PyTypeObject PyComplexFloatingArrType_Type;
+
+extern NPY_NO_EXPORT PyTypeObject PyFlexibleArrType_Type;
+
+extern NPY_NO_EXPORT PyTypeObject PyCharacterArrType_Type;
+
+extern NPY_NO_EXPORT PyTypeObject PyByteArrType_Type;
+
+extern NPY_NO_EXPORT PyTypeObject PyShortArrType_Type;
+
+extern NPY_NO_EXPORT PyTypeObject PyIntArrType_Type;
+
+extern NPY_NO_EXPORT PyTypeObject PyLongArrType_Type;
+
+extern NPY_NO_EXPORT PyTypeObject PyLongLongArrType_Type;
+
+extern NPY_NO_EXPORT PyTypeObject PyUByteArrType_Type;
+
+extern NPY_NO_EXPORT PyTypeObject PyUShortArrType_Type;
+
+extern NPY_NO_EXPORT PyTypeObject PyUIntArrType_Type;
+
+extern NPY_NO_EXPORT PyTypeObject PyULongArrType_Type;
+
+extern NPY_NO_EXPORT PyTypeObject PyULongLongArrType_Type;
+
+extern NPY_NO_EXPORT PyTypeObject PyFloatArrType_Type;
+
+extern NPY_NO_EXPORT PyTypeObject PyDoubleArrType_Type;
+
+extern NPY_NO_EXPORT PyTypeObject PyLongDoubleArrType_Type;
+
+extern NPY_NO_EXPORT PyTypeObject PyCFloatArrType_Type;
+
+extern NPY_NO_EXPORT PyTypeObject PyCDoubleArrType_Type;
+
+extern NPY_NO_EXPORT PyTypeObject PyCLongDoubleArrType_Type;
+
+extern NPY_NO_EXPORT PyTypeObject PyObjectArrType_Type;
+
+extern NPY_NO_EXPORT PyTypeObject PyStringArrType_Type;
+
+extern NPY_NO_EXPORT PyTypeObject PyUnicodeArrType_Type;
+
+extern NPY_NO_EXPORT PyTypeObject PyVoidArrType_Type;
+
+NPY_NO_EXPORT int PyArray_INCREF \
+ (PyArrayObject *);
+NPY_NO_EXPORT int PyArray_XDECREF \
+ (PyArrayObject *);
+NPY_NO_EXPORT void PyArray_SetStringFunction \
+ (PyObject *, int);
+NPY_NO_EXPORT PyArray_Descr * PyArray_DescrFromType \
+ (int);
+NPY_NO_EXPORT PyObject * PyArray_TypeObjectFromType \
+ (int);
+NPY_NO_EXPORT char * PyArray_Zero \
+ (PyArrayObject *);
+NPY_NO_EXPORT char * PyArray_One \
+ (PyArrayObject *);
+NPY_NO_EXPORT NPY_STEALS_REF_TO_ARG(2) PyObject * PyArray_CastToType \
+ (PyArrayObject *, PyArray_Descr *, int);
+NPY_NO_EXPORT int PyArray_CopyInto \
+ (PyArrayObject *, PyArrayObject *);
+NPY_NO_EXPORT int PyArray_CopyAnyInto \
+ (PyArrayObject *, PyArrayObject *);
+NPY_NO_EXPORT int PyArray_CanCastSafely \
+ (int, int);
+NPY_NO_EXPORT npy_bool PyArray_CanCastTo \
+ (PyArray_Descr *, PyArray_Descr *);
+NPY_NO_EXPORT int PyArray_ObjectType \
+ (PyObject *, int);
+NPY_NO_EXPORT PyArray_Descr * PyArray_DescrFromObject \
+ (PyObject *, PyArray_Descr *);
+NPY_NO_EXPORT PyArrayObject ** PyArray_ConvertToCommonType \
+ (PyObject *, int *);
+NPY_NO_EXPORT PyArray_Descr * PyArray_DescrFromScalar \
+ (PyObject *);
+NPY_NO_EXPORT PyArray_Descr * PyArray_DescrFromTypeObject \
+ (PyObject *);
+NPY_NO_EXPORT npy_intp PyArray_Size \
+ (PyObject *);
+NPY_NO_EXPORT PyObject * PyArray_Scalar \
+ (void *, PyArray_Descr *, PyObject *);
+NPY_NO_EXPORT NPY_STEALS_REF_TO_ARG(2) PyObject * PyArray_FromScalar \
+ (PyObject *, PyArray_Descr *);
+NPY_NO_EXPORT void PyArray_ScalarAsCtype \
+ (PyObject *, void *);
+NPY_NO_EXPORT int PyArray_CastScalarToCtype \
+ (PyObject *, void *, PyArray_Descr *);
+NPY_NO_EXPORT int PyArray_CastScalarDirect \
+ (PyObject *, PyArray_Descr *, void *, int);
+NPY_NO_EXPORT int PyArray_Pack \
+ (PyArray_Descr *, void *, PyObject *);
+NPY_NO_EXPORT NPY_STEALS_REF_TO_ARG(2) PyObject * PyArray_FromAny \
+ (PyObject *, PyArray_Descr *, int, int, int, PyObject *);
+NPY_NO_EXPORT NPY_STEALS_REF_TO_ARG(1) PyObject * PyArray_EnsureArray \
+ (PyObject *);
+NPY_NO_EXPORT NPY_STEALS_REF_TO_ARG(1) PyObject * PyArray_EnsureAnyArray \
+ (PyObject *);
+NPY_NO_EXPORT PyObject * PyArray_FromFile \
+ (FILE *, PyArray_Descr *, npy_intp, char *);
+NPY_NO_EXPORT PyObject * PyArray_FromString \
+ (char *, npy_intp, PyArray_Descr *, npy_intp, char *);
+NPY_NO_EXPORT PyObject * PyArray_FromBuffer \
+ (PyObject *, PyArray_Descr *, npy_intp, npy_intp);
+NPY_NO_EXPORT NPY_STEALS_REF_TO_ARG(2) PyObject * PyArray_FromIter \
+ (PyObject *, PyArray_Descr *, npy_intp);
+NPY_NO_EXPORT NPY_STEALS_REF_TO_ARG(1) PyObject * PyArray_Return \
+ (PyArrayObject *);
+NPY_NO_EXPORT NPY_STEALS_REF_TO_ARG(2) PyObject * PyArray_GetField \
+ (PyArrayObject *, PyArray_Descr *, int);
+NPY_NO_EXPORT NPY_STEALS_REF_TO_ARG(2) int PyArray_SetField \
+ (PyArrayObject *, PyArray_Descr *, int, PyObject *);
+NPY_NO_EXPORT PyObject * PyArray_Byteswap \
+ (PyArrayObject *, npy_bool);
+NPY_NO_EXPORT PyObject * PyArray_Resize \
+ (PyArrayObject *, PyArray_Dims *, int, NPY_ORDER NPY_UNUSED(order));
+NPY_NO_EXPORT int PyArray_CopyObject \
+ (PyArrayObject *, PyObject *);
+NPY_NO_EXPORT PyObject * PyArray_NewCopy \
+ (PyArrayObject *, NPY_ORDER);
+NPY_NO_EXPORT PyObject * PyArray_ToList \
+ (PyArrayObject *);
+NPY_NO_EXPORT PyObject * PyArray_ToString \
+ (PyArrayObject *, NPY_ORDER);
+NPY_NO_EXPORT int PyArray_ToFile \
+ (PyArrayObject *, FILE *, char *, char *);
+NPY_NO_EXPORT int PyArray_Dump \
+ (PyObject *, PyObject *, int);
+NPY_NO_EXPORT PyObject * PyArray_Dumps \
+ (PyObject *, int);
+NPY_NO_EXPORT int PyArray_ValidType \
+ (int);
+NPY_NO_EXPORT void PyArray_UpdateFlags \
+ (PyArrayObject *, int);
+NPY_NO_EXPORT PyObject * PyArray_New \
+ (PyTypeObject *, int, npy_intp const *, int, npy_intp const *, void *, int, int, PyObject *);
+NPY_NO_EXPORT NPY_STEALS_REF_TO_ARG(2) PyObject * PyArray_NewFromDescr \
+ (PyTypeObject *, PyArray_Descr *, int, npy_intp const *, npy_intp const *, void *, int, PyObject *);
+NPY_NO_EXPORT PyArray_Descr * PyArray_DescrNew \
+ (PyArray_Descr *);
+NPY_NO_EXPORT PyArray_Descr * PyArray_DescrNewFromType \
+ (int);
+NPY_NO_EXPORT double PyArray_GetPriority \
+ (PyObject *, double);
+NPY_NO_EXPORT PyObject * PyArray_IterNew \
+ (PyObject *);
+NPY_NO_EXPORT PyObject* PyArray_MultiIterNew \
+ (int, ...);
+NPY_NO_EXPORT int PyArray_PyIntAsInt \
+ (PyObject *);
+NPY_NO_EXPORT npy_intp PyArray_PyIntAsIntp \
+ (PyObject *);
+NPY_NO_EXPORT int PyArray_Broadcast \
+ (PyArrayMultiIterObject *);
+NPY_NO_EXPORT int PyArray_FillWithScalar \
+ (PyArrayObject *, PyObject *);
+NPY_NO_EXPORT npy_bool PyArray_CheckStrides \
+ (int, int, npy_intp, npy_intp, npy_intp const *, npy_intp const *);
+NPY_NO_EXPORT PyArray_Descr * PyArray_DescrNewByteorder \
+ (PyArray_Descr *, char);
+NPY_NO_EXPORT PyObject * PyArray_IterAllButAxis \
+ (PyObject *, int *);
+NPY_NO_EXPORT NPY_STEALS_REF_TO_ARG(2) PyObject * PyArray_CheckFromAny \
+ (PyObject *, PyArray_Descr *, int, int, int, PyObject *);
+NPY_NO_EXPORT NPY_STEALS_REF_TO_ARG(2) PyObject * PyArray_FromArray \
+ (PyArrayObject *, PyArray_Descr *, int);
+NPY_NO_EXPORT PyObject * PyArray_FromInterface \
+ (PyObject *);
+NPY_NO_EXPORT PyObject * PyArray_FromStructInterface \
+ (PyObject *);
+NPY_NO_EXPORT PyObject * PyArray_FromArrayAttr \
+ (PyObject *, PyArray_Descr *, PyObject *);
+NPY_NO_EXPORT NPY_SCALARKIND PyArray_ScalarKind \
+ (int, PyArrayObject **);
+NPY_NO_EXPORT int PyArray_CanCoerceScalar \
+ (int, int, NPY_SCALARKIND);
+NPY_NO_EXPORT npy_bool PyArray_CanCastScalar \
+ (PyTypeObject *, PyTypeObject *);
+NPY_NO_EXPORT int PyArray_RemoveSmallest \
+ (PyArrayMultiIterObject *);
+NPY_NO_EXPORT int PyArray_ElementStrides \
+ (PyObject *);
+NPY_NO_EXPORT void PyArray_Item_INCREF \
+ (char *, PyArray_Descr *);
+NPY_NO_EXPORT void PyArray_Item_XDECREF \
+ (char *, PyArray_Descr *);
+NPY_NO_EXPORT PyObject * PyArray_Transpose \
+ (PyArrayObject *, PyArray_Dims *);
+NPY_NO_EXPORT PyObject * PyArray_TakeFrom \
+ (PyArrayObject *, PyObject *, int, PyArrayObject *, NPY_CLIPMODE);
+NPY_NO_EXPORT PyObject * PyArray_PutTo \
+ (PyArrayObject *, PyObject*, PyObject *, NPY_CLIPMODE);
+NPY_NO_EXPORT PyObject * PyArray_PutMask \
+ (PyArrayObject *, PyObject*, PyObject*);
+NPY_NO_EXPORT PyObject * PyArray_Repeat \
+ (PyArrayObject *, PyObject *, int);
+NPY_NO_EXPORT PyObject * PyArray_Choose \
+ (PyArrayObject *, PyObject *, PyArrayObject *, NPY_CLIPMODE);
+NPY_NO_EXPORT int PyArray_Sort \
+ (PyArrayObject *, int, NPY_SORTKIND);
+NPY_NO_EXPORT PyObject * PyArray_ArgSort \
+ (PyArrayObject *, int, NPY_SORTKIND);
+NPY_NO_EXPORT PyObject * PyArray_SearchSorted \
+ (PyArrayObject *, PyObject *, NPY_SEARCHSIDE, PyObject *);
+NPY_NO_EXPORT PyObject * PyArray_ArgMax \
+ (PyArrayObject *, int, PyArrayObject *);
+NPY_NO_EXPORT PyObject * PyArray_ArgMin \
+ (PyArrayObject *, int, PyArrayObject *);
+NPY_NO_EXPORT PyObject * PyArray_Reshape \
+ (PyArrayObject *, PyObject *);
+NPY_NO_EXPORT PyObject * PyArray_Newshape \
+ (PyArrayObject *, PyArray_Dims *, NPY_ORDER);
+NPY_NO_EXPORT PyObject * PyArray_Squeeze \
+ (PyArrayObject *);
+NPY_NO_EXPORT NPY_STEALS_REF_TO_ARG(2) PyObject * PyArray_View \
+ (PyArrayObject *, PyArray_Descr *, PyTypeObject *);
+NPY_NO_EXPORT PyObject * PyArray_SwapAxes \
+ (PyArrayObject *, int, int);
+NPY_NO_EXPORT PyObject * PyArray_Max \
+ (PyArrayObject *, int, PyArrayObject *);
+NPY_NO_EXPORT PyObject * PyArray_Min \
+ (PyArrayObject *, int, PyArrayObject *);
+NPY_NO_EXPORT PyObject * PyArray_Ptp \
+ (PyArrayObject *, int, PyArrayObject *);
+NPY_NO_EXPORT PyObject * PyArray_Mean \
+ (PyArrayObject *, int, int, PyArrayObject *);
+NPY_NO_EXPORT PyObject * PyArray_Trace \
+ (PyArrayObject *, int, int, int, int, PyArrayObject *);
+NPY_NO_EXPORT PyObject * PyArray_Diagonal \
+ (PyArrayObject *, int, int, int);
+NPY_NO_EXPORT PyObject * PyArray_Clip \
+ (PyArrayObject *, PyObject *, PyObject *, PyArrayObject *);
+NPY_NO_EXPORT PyObject * PyArray_Conjugate \
+ (PyArrayObject *, PyArrayObject *);
+NPY_NO_EXPORT PyObject * PyArray_Nonzero \
+ (PyArrayObject *);
+NPY_NO_EXPORT PyObject * PyArray_Std \
+ (PyArrayObject *, int, int, PyArrayObject *, int);
+NPY_NO_EXPORT PyObject * PyArray_Sum \
+ (PyArrayObject *, int, int, PyArrayObject *);
+NPY_NO_EXPORT PyObject * PyArray_CumSum \
+ (PyArrayObject *, int, int, PyArrayObject *);
+NPY_NO_EXPORT PyObject * PyArray_Prod \
+ (PyArrayObject *, int, int, PyArrayObject *);
+NPY_NO_EXPORT PyObject * PyArray_CumProd \
+ (PyArrayObject *, int, int, PyArrayObject *);
+NPY_NO_EXPORT PyObject * PyArray_All \
+ (PyArrayObject *, int, PyArrayObject *);
+NPY_NO_EXPORT PyObject * PyArray_Any \
+ (PyArrayObject *, int, PyArrayObject *);
+NPY_NO_EXPORT PyObject * PyArray_Compress \
+ (PyArrayObject *, PyObject *, int, PyArrayObject *);
+NPY_NO_EXPORT PyObject * PyArray_Flatten \
+ (PyArrayObject *, NPY_ORDER);
+NPY_NO_EXPORT PyObject * PyArray_Ravel \
+ (PyArrayObject *, NPY_ORDER);
+NPY_NO_EXPORT npy_intp PyArray_MultiplyList \
+ (npy_intp const *, int);
+NPY_NO_EXPORT int PyArray_MultiplyIntList \
+ (int const *, int);
+NPY_NO_EXPORT void * PyArray_GetPtr \
+ (PyArrayObject *, npy_intp const*);
+NPY_NO_EXPORT int PyArray_CompareLists \
+ (npy_intp const *, npy_intp const *, int);
+NPY_NO_EXPORT NPY_STEALS_REF_TO_ARG(5) int PyArray_AsCArray \
+ (PyObject **, void *, npy_intp *, int, PyArray_Descr*);
+NPY_NO_EXPORT int PyArray_Free \
+ (PyObject *, void *);
+NPY_NO_EXPORT int PyArray_Converter \
+ (PyObject *, PyObject **);
+NPY_NO_EXPORT int PyArray_IntpFromSequence \
+ (PyObject *, npy_intp *, int);
+NPY_NO_EXPORT PyObject * PyArray_Concatenate \
+ (PyObject *, int);
+NPY_NO_EXPORT PyObject * PyArray_InnerProduct \
+ (PyObject *, PyObject *);
+NPY_NO_EXPORT PyObject * PyArray_MatrixProduct \
+ (PyObject *, PyObject *);
+NPY_NO_EXPORT PyObject * PyArray_Correlate \
+ (PyObject *, PyObject *, int);
+NPY_NO_EXPORT int PyArray_DescrConverter \
+ (PyObject *, PyArray_Descr **);
+NPY_NO_EXPORT int PyArray_DescrConverter2 \
+ (PyObject *, PyArray_Descr **);
+NPY_NO_EXPORT int PyArray_IntpConverter \
+ (PyObject *, PyArray_Dims *);
+NPY_NO_EXPORT int PyArray_BufferConverter \
+ (PyObject *, PyArray_Chunk *);
+NPY_NO_EXPORT int PyArray_AxisConverter \
+ (PyObject *, int *);
+NPY_NO_EXPORT int PyArray_BoolConverter \
+ (PyObject *, npy_bool *);
+NPY_NO_EXPORT int PyArray_ByteorderConverter \
+ (PyObject *, char *);
+NPY_NO_EXPORT int PyArray_OrderConverter \
+ (PyObject *, NPY_ORDER *);
+NPY_NO_EXPORT unsigned char PyArray_EquivTypes \
+ (PyArray_Descr *, PyArray_Descr *);
+NPY_NO_EXPORT NPY_STEALS_REF_TO_ARG(3) PyObject * PyArray_Zeros \
+ (int, npy_intp const *, PyArray_Descr *, int);
+NPY_NO_EXPORT NPY_STEALS_REF_TO_ARG(3) PyObject * PyArray_Empty \
+ (int, npy_intp const *, PyArray_Descr *, int);
+NPY_NO_EXPORT PyObject * PyArray_Where \
+ (PyObject *, PyObject *, PyObject *);
+NPY_NO_EXPORT PyObject * PyArray_Arange \
+ (double, double, double, int);
+NPY_NO_EXPORT PyObject * PyArray_ArangeObj \
+ (PyObject *, PyObject *, PyObject *, PyArray_Descr *);
+NPY_NO_EXPORT int PyArray_SortkindConverter \
+ (PyObject *, NPY_SORTKIND *);
+NPY_NO_EXPORT PyObject * PyArray_LexSort \
+ (PyObject *, int);
+NPY_NO_EXPORT PyObject * PyArray_Round \
+ (PyArrayObject *, int, PyArrayObject *);
+NPY_NO_EXPORT unsigned char PyArray_EquivTypenums \
+ (int, int);
+NPY_NO_EXPORT int PyArray_RegisterDataType \
+ (PyArray_DescrProto *);
+NPY_NO_EXPORT int PyArray_RegisterCastFunc \
+ (PyArray_Descr *, int, PyArray_VectorUnaryFunc *);
+NPY_NO_EXPORT int PyArray_RegisterCanCast \
+ (PyArray_Descr *, int, NPY_SCALARKIND);
+NPY_NO_EXPORT void PyArray_InitArrFuncs \
+ (PyArray_ArrFuncs *);
+NPY_NO_EXPORT PyObject * PyArray_IntTupleFromIntp \
+ (int, npy_intp const *);
+NPY_NO_EXPORT int PyArray_ClipmodeConverter \
+ (PyObject *, NPY_CLIPMODE *);
+NPY_NO_EXPORT int PyArray_OutputConverter \
+ (PyObject *, PyArrayObject **);
+NPY_NO_EXPORT PyObject * PyArray_BroadcastToShape \
+ (PyObject *, npy_intp *, int);
+NPY_NO_EXPORT int PyArray_DescrAlignConverter \
+ (PyObject *, PyArray_Descr **);
+NPY_NO_EXPORT int PyArray_DescrAlignConverter2 \
+ (PyObject *, PyArray_Descr **);
+NPY_NO_EXPORT int PyArray_SearchsideConverter \
+ (PyObject *, void *);
+NPY_NO_EXPORT PyObject * PyArray_CheckAxis \
+ (PyArrayObject *, int *, int);
+NPY_NO_EXPORT npy_intp PyArray_OverflowMultiplyList \
+ (npy_intp const *, int);
+NPY_NO_EXPORT PyObject* PyArray_MultiIterFromObjects \
+ (PyObject **, int, int, ...);
+NPY_NO_EXPORT int PyArray_GetEndianness \
+ (void);
+NPY_NO_EXPORT unsigned int PyArray_GetNDArrayCFeatureVersion \
+ (void);
+NPY_NO_EXPORT PyObject * PyArray_Correlate2 \
+ (PyObject *, PyObject *, int);
+NPY_NO_EXPORT PyObject* PyArray_NeighborhoodIterNew \
+ (PyArrayIterObject *, const npy_intp *, int, PyArrayObject*);
+extern NPY_NO_EXPORT PyTypeObject PyTimeIntegerArrType_Type;
+
+extern NPY_NO_EXPORT PyTypeObject PyDatetimeArrType_Type;
+
+extern NPY_NO_EXPORT PyTypeObject PyTimedeltaArrType_Type;
+
+extern NPY_NO_EXPORT PyTypeObject PyHalfArrType_Type;
+
+extern NPY_NO_EXPORT PyTypeObject NpyIter_Type;
+
+NPY_NO_EXPORT NPY_ARRAYMETHOD_FLAGS NpyIter_GetTransferFlags \
+ (NpyIter *);
+NPY_NO_EXPORT NpyIter * NpyIter_New \
+ (PyArrayObject *, npy_uint32, NPY_ORDER, NPY_CASTING, PyArray_Descr*);
+NPY_NO_EXPORT NpyIter * NpyIter_MultiNew \
+ (int, PyArrayObject **, npy_uint32, NPY_ORDER, NPY_CASTING, npy_uint32 *, PyArray_Descr **);
+NPY_NO_EXPORT NpyIter * NpyIter_AdvancedNew \
+ (int, PyArrayObject **, npy_uint32, NPY_ORDER, NPY_CASTING, npy_uint32 *, PyArray_Descr **, int, int **, npy_intp *, npy_intp);
+NPY_NO_EXPORT NpyIter * NpyIter_Copy \
+ (NpyIter *);
+NPY_NO_EXPORT int NpyIter_Deallocate \
+ (NpyIter *);
+NPY_NO_EXPORT npy_bool NpyIter_HasDelayedBufAlloc \
+ (NpyIter *);
+NPY_NO_EXPORT npy_bool NpyIter_HasExternalLoop \
+ (NpyIter *);
+NPY_NO_EXPORT int NpyIter_EnableExternalLoop \
+ (NpyIter *);
+NPY_NO_EXPORT npy_intp * NpyIter_GetInnerStrideArray \
+ (NpyIter *);
+NPY_NO_EXPORT npy_intp * NpyIter_GetInnerLoopSizePtr \
+ (NpyIter *);
+NPY_NO_EXPORT int NpyIter_Reset \
+ (NpyIter *, char **);
+NPY_NO_EXPORT int NpyIter_ResetBasePointers \
+ (NpyIter *, char **, char **);
+NPY_NO_EXPORT int NpyIter_ResetToIterIndexRange \
+ (NpyIter *, npy_intp, npy_intp, char **);
+NPY_NO_EXPORT int NpyIter_GetNDim \
+ (NpyIter *);
+NPY_NO_EXPORT int NpyIter_GetNOp \
+ (NpyIter *);
+NPY_NO_EXPORT NpyIter_IterNextFunc * NpyIter_GetIterNext \
+ (NpyIter *, char **);
+NPY_NO_EXPORT npy_intp NpyIter_GetIterSize \
+ (NpyIter *);
+NPY_NO_EXPORT void NpyIter_GetIterIndexRange \
+ (NpyIter *, npy_intp *, npy_intp *);
+NPY_NO_EXPORT npy_intp NpyIter_GetIterIndex \
+ (NpyIter *);
+NPY_NO_EXPORT int NpyIter_GotoIterIndex \
+ (NpyIter *, npy_intp);
+NPY_NO_EXPORT npy_bool NpyIter_HasMultiIndex \
+ (NpyIter *);
+NPY_NO_EXPORT int NpyIter_GetShape \
+ (NpyIter *, npy_intp *);
+NPY_NO_EXPORT NpyIter_GetMultiIndexFunc * NpyIter_GetGetMultiIndex \
+ (NpyIter *, char **);
+NPY_NO_EXPORT int NpyIter_GotoMultiIndex \
+ (NpyIter *, npy_intp const *);
+NPY_NO_EXPORT int NpyIter_RemoveMultiIndex \
+ (NpyIter *);
+NPY_NO_EXPORT npy_bool NpyIter_HasIndex \
+ (NpyIter *);
+NPY_NO_EXPORT npy_bool NpyIter_IsBuffered \
+ (NpyIter *);
+NPY_NO_EXPORT npy_bool NpyIter_IsGrowInner \
+ (NpyIter *);
+NPY_NO_EXPORT npy_intp NpyIter_GetBufferSize \
+ (NpyIter *);
+NPY_NO_EXPORT npy_intp * NpyIter_GetIndexPtr \
+ (NpyIter *);
+NPY_NO_EXPORT int NpyIter_GotoIndex \
+ (NpyIter *, npy_intp);
+NPY_NO_EXPORT char ** NpyIter_GetDataPtrArray \
+ (NpyIter *);
+NPY_NO_EXPORT PyArray_Descr ** NpyIter_GetDescrArray \
+ (NpyIter *);
+NPY_NO_EXPORT PyArrayObject ** NpyIter_GetOperandArray \
+ (NpyIter *);
+NPY_NO_EXPORT PyArrayObject * NpyIter_GetIterView \
+ (NpyIter *, npy_intp);
+NPY_NO_EXPORT void NpyIter_GetReadFlags \
+ (NpyIter *, char *);
+NPY_NO_EXPORT void NpyIter_GetWriteFlags \
+ (NpyIter *, char *);
+NPY_NO_EXPORT void NpyIter_DebugPrint \
+ (NpyIter *);
+NPY_NO_EXPORT npy_bool NpyIter_IterationNeedsAPI \
+ (NpyIter *);
+NPY_NO_EXPORT void NpyIter_GetInnerFixedStrideArray \
+ (NpyIter *, npy_intp *);
+NPY_NO_EXPORT int NpyIter_RemoveAxis \
+ (NpyIter *, int);
+NPY_NO_EXPORT npy_intp * NpyIter_GetAxisStrideArray \
+ (NpyIter *, int);
+NPY_NO_EXPORT npy_bool NpyIter_RequiresBuffering \
+ (NpyIter *);
+NPY_NO_EXPORT char ** NpyIter_GetInitialDataPtrArray \
+ (NpyIter *);
+NPY_NO_EXPORT int NpyIter_CreateCompatibleStrides \
+ (NpyIter *, npy_intp, npy_intp *);
+NPY_NO_EXPORT int PyArray_CastingConverter \
+ (PyObject *, NPY_CASTING *);
+NPY_NO_EXPORT npy_intp PyArray_CountNonzero \
+ (PyArrayObject *);
+NPY_NO_EXPORT PyArray_Descr * PyArray_PromoteTypes \
+ (PyArray_Descr *, PyArray_Descr *);
+NPY_NO_EXPORT PyArray_Descr * PyArray_MinScalarType \
+ (PyArrayObject *);
+NPY_NO_EXPORT PyArray_Descr * PyArray_ResultType \
+ (npy_intp, PyArrayObject *arrs[], npy_intp, PyArray_Descr *descrs[]);
+NPY_NO_EXPORT npy_bool PyArray_CanCastArrayTo \
+ (PyArrayObject *, PyArray_Descr *, NPY_CASTING);
+NPY_NO_EXPORT npy_bool PyArray_CanCastTypeTo \
+ (PyArray_Descr *, PyArray_Descr *, NPY_CASTING);
+NPY_NO_EXPORT PyArrayObject * PyArray_EinsteinSum \
+ (char *, npy_intp, PyArrayObject **, PyArray_Descr *, NPY_ORDER, NPY_CASTING, PyArrayObject *);
+NPY_NO_EXPORT NPY_STEALS_REF_TO_ARG(3) PyObject * PyArray_NewLikeArray \
+ (PyArrayObject *, NPY_ORDER, PyArray_Descr *, int);
+NPY_NO_EXPORT int PyArray_ConvertClipmodeSequence \
+ (PyObject *, NPY_CLIPMODE *, int);
+NPY_NO_EXPORT PyObject * PyArray_MatrixProduct2 \
+ (PyObject *, PyObject *, PyArrayObject*);
+NPY_NO_EXPORT npy_bool NpyIter_IsFirstVisit \
+ (NpyIter *, int);
+NPY_NO_EXPORT NPY_STEALS_REF_TO_ARG(2) int PyArray_SetBaseObject \
+ (PyArrayObject *, PyObject *);
+NPY_NO_EXPORT void PyArray_CreateSortedStridePerm \
+ (int, npy_intp const *, npy_stride_sort_item *);
+NPY_NO_EXPORT void PyArray_RemoveAxesInPlace \
+ (PyArrayObject *, const npy_bool *);
+NPY_NO_EXPORT void PyArray_DebugPrint \
+ (PyArrayObject *);
+NPY_NO_EXPORT int PyArray_FailUnlessWriteable \
+ (PyArrayObject *, const char *);
+NPY_NO_EXPORT NPY_STEALS_REF_TO_ARG(2) int PyArray_SetUpdateIfCopyBase \
+ (PyArrayObject *, PyArrayObject *);
+NPY_NO_EXPORT void * PyDataMem_NEW \
+ (size_t);
+NPY_NO_EXPORT void PyDataMem_FREE \
+ (void *);
+NPY_NO_EXPORT void * PyDataMem_RENEW \
+ (void *, size_t);
+extern NPY_NO_EXPORT NPY_CASTING NPY_DEFAULT_ASSIGN_CASTING;
+
+NPY_NO_EXPORT int PyArray_Partition \
+ (PyArrayObject *, PyArrayObject *, int, NPY_SELECTKIND);
+NPY_NO_EXPORT PyObject * PyArray_ArgPartition \
+ (PyArrayObject *, PyArrayObject *, int, NPY_SELECTKIND);
+NPY_NO_EXPORT int PyArray_SelectkindConverter \
+ (PyObject *, NPY_SELECTKIND *);
+NPY_NO_EXPORT void * PyDataMem_NEW_ZEROED \
+ (size_t, size_t);
+NPY_NO_EXPORT int PyArray_CheckAnyScalarExact \
+ (PyObject *);
+NPY_NO_EXPORT int PyArray_ResolveWritebackIfCopy \
+ (PyArrayObject *);
+NPY_NO_EXPORT int PyArray_SetWritebackIfCopyBase \
+ (PyArrayObject *, PyArrayObject *);
+NPY_NO_EXPORT PyObject * PyDataMem_SetHandler \
+ (PyObject *);
+NPY_NO_EXPORT PyObject * PyDataMem_GetHandler \
+ (void);
+extern NPY_NO_EXPORT PyObject* PyDataMem_DefaultHandler;
+
+NPY_NO_EXPORT int NpyDatetime_ConvertDatetime64ToDatetimeStruct \
+ (PyArray_DatetimeMetaData *, npy_datetime, npy_datetimestruct *);
+NPY_NO_EXPORT int NpyDatetime_ConvertDatetimeStructToDatetime64 \
+ (PyArray_DatetimeMetaData *, const npy_datetimestruct *, npy_datetime *);
+NPY_NO_EXPORT int NpyDatetime_ConvertPyDateTimeToDatetimeStruct \
+ (PyObject *, npy_datetimestruct *, NPY_DATETIMEUNIT *, int);
+NPY_NO_EXPORT int NpyDatetime_GetDatetimeISO8601StrLen \
+ (int, NPY_DATETIMEUNIT);
+NPY_NO_EXPORT int NpyDatetime_MakeISO8601Datetime \
+ (npy_datetimestruct *, char *, npy_intp, int, int, NPY_DATETIMEUNIT, int, NPY_CASTING);
+NPY_NO_EXPORT int NpyDatetime_ParseISO8601Datetime \
+ (char const *, Py_ssize_t, NPY_DATETIMEUNIT, NPY_CASTING, npy_datetimestruct *, NPY_DATETIMEUNIT *, npy_bool *);
+NPY_NO_EXPORT int NpyString_load \
+ (npy_string_allocator *, const npy_packed_static_string *, npy_static_string *);
+NPY_NO_EXPORT int NpyString_pack \
+ (npy_string_allocator *, npy_packed_static_string *, const char *, size_t);
+NPY_NO_EXPORT int NpyString_pack_null \
+ (npy_string_allocator *, npy_packed_static_string *);
+NPY_NO_EXPORT npy_string_allocator * NpyString_acquire_allocator \
+ (const PyArray_StringDTypeObject *);
+NPY_NO_EXPORT void NpyString_acquire_allocators \
+ (size_t, PyArray_Descr *const descrs[], npy_string_allocator *allocators[]);
+NPY_NO_EXPORT void NpyString_release_allocator \
+ (npy_string_allocator *);
+NPY_NO_EXPORT void NpyString_release_allocators \
+ (size_t, npy_string_allocator *allocators[]);
+NPY_NO_EXPORT PyArray_Descr * PyArray_GetDefaultDescr \
+ (PyArray_DTypeMeta *);
+NPY_NO_EXPORT int PyArrayInitDTypeMeta_FromSpec \
+ (PyArray_DTypeMeta *, PyArrayDTypeMeta_Spec *);
+NPY_NO_EXPORT PyArray_DTypeMeta * PyArray_CommonDType \
+ (PyArray_DTypeMeta *, PyArray_DTypeMeta *);
+NPY_NO_EXPORT PyArray_DTypeMeta * PyArray_PromoteDTypeSequence \
+ (npy_intp, PyArray_DTypeMeta **);
+NPY_NO_EXPORT PyArray_ArrFuncs * _PyDataType_GetArrFuncs \
+ (const PyArray_Descr *);
+
+#else
+
+#if defined(PY_ARRAY_UNIQUE_SYMBOL)
+ #define PyArray_API PY_ARRAY_UNIQUE_SYMBOL
+ #define _NPY_VERSION_CONCAT_HELPER2(x, y) x ## y
+ #define _NPY_VERSION_CONCAT_HELPER(arg) \
+ _NPY_VERSION_CONCAT_HELPER2(arg, PyArray_RUNTIME_VERSION)
+ #define PyArray_RUNTIME_VERSION \
+ _NPY_VERSION_CONCAT_HELPER(PY_ARRAY_UNIQUE_SYMBOL)
+#endif
+
+/* By default do not export API in an .so (was never the case on windows) */
+#ifndef NPY_API_SYMBOL_ATTRIBUTE
+ #define NPY_API_SYMBOL_ATTRIBUTE NPY_VISIBILITY_HIDDEN
+#endif
+
+#if defined(NO_IMPORT) || defined(NO_IMPORT_ARRAY)
+extern NPY_API_SYMBOL_ATTRIBUTE void **PyArray_API;
+extern NPY_API_SYMBOL_ATTRIBUTE int PyArray_RUNTIME_VERSION;
+#else
+#if defined(PY_ARRAY_UNIQUE_SYMBOL)
+NPY_API_SYMBOL_ATTRIBUTE void **PyArray_API;
+NPY_API_SYMBOL_ATTRIBUTE int PyArray_RUNTIME_VERSION;
+#else
+static void **PyArray_API = NULL;
+static int PyArray_RUNTIME_VERSION = 0;
+#endif
+#endif
+
+#define PyArray_GetNDArrayCVersion \
+ (*(unsigned int (*)(void)) \
+ PyArray_API[0])
+#define PyArray_Type (*(PyTypeObject *)PyArray_API[2])
+#define PyArrayDescr_Type (*(PyTypeObject *)PyArray_API[3])
+#define PyArrayIter_Type (*(PyTypeObject *)PyArray_API[5])
+#define PyArrayMultiIter_Type (*(PyTypeObject *)PyArray_API[6])
+#define NPY_NUMUSERTYPES (*(int *)PyArray_API[7])
+#define PyBoolArrType_Type (*(PyTypeObject *)PyArray_API[8])
+#define _PyArrayScalar_BoolValues ((PyBoolScalarObject *)PyArray_API[9])
+#define PyGenericArrType_Type (*(PyTypeObject *)PyArray_API[10])
+#define PyNumberArrType_Type (*(PyTypeObject *)PyArray_API[11])
+#define PyIntegerArrType_Type (*(PyTypeObject *)PyArray_API[12])
+#define PySignedIntegerArrType_Type (*(PyTypeObject *)PyArray_API[13])
+#define PyUnsignedIntegerArrType_Type (*(PyTypeObject *)PyArray_API[14])
+#define PyInexactArrType_Type (*(PyTypeObject *)PyArray_API[15])
+#define PyFloatingArrType_Type (*(PyTypeObject *)PyArray_API[16])
+#define PyComplexFloatingArrType_Type (*(PyTypeObject *)PyArray_API[17])
+#define PyFlexibleArrType_Type (*(PyTypeObject *)PyArray_API[18])
+#define PyCharacterArrType_Type (*(PyTypeObject *)PyArray_API[19])
+#define PyByteArrType_Type (*(PyTypeObject *)PyArray_API[20])
+#define PyShortArrType_Type (*(PyTypeObject *)PyArray_API[21])
+#define PyIntArrType_Type (*(PyTypeObject *)PyArray_API[22])
+#define PyLongArrType_Type (*(PyTypeObject *)PyArray_API[23])
+#define PyLongLongArrType_Type (*(PyTypeObject *)PyArray_API[24])
+#define PyUByteArrType_Type (*(PyTypeObject *)PyArray_API[25])
+#define PyUShortArrType_Type (*(PyTypeObject *)PyArray_API[26])
+#define PyUIntArrType_Type (*(PyTypeObject *)PyArray_API[27])
+#define PyULongArrType_Type (*(PyTypeObject *)PyArray_API[28])
+#define PyULongLongArrType_Type (*(PyTypeObject *)PyArray_API[29])
+#define PyFloatArrType_Type (*(PyTypeObject *)PyArray_API[30])
+#define PyDoubleArrType_Type (*(PyTypeObject *)PyArray_API[31])
+#define PyLongDoubleArrType_Type (*(PyTypeObject *)PyArray_API[32])
+#define PyCFloatArrType_Type (*(PyTypeObject *)PyArray_API[33])
+#define PyCDoubleArrType_Type (*(PyTypeObject *)PyArray_API[34])
+#define PyCLongDoubleArrType_Type (*(PyTypeObject *)PyArray_API[35])
+#define PyObjectArrType_Type (*(PyTypeObject *)PyArray_API[36])
+#define PyStringArrType_Type (*(PyTypeObject *)PyArray_API[37])
+#define PyUnicodeArrType_Type (*(PyTypeObject *)PyArray_API[38])
+#define PyVoidArrType_Type (*(PyTypeObject *)PyArray_API[39])
+#define PyArray_INCREF \
+ (*(int (*)(PyArrayObject *)) \
+ PyArray_API[42])
+#define PyArray_XDECREF \
+ (*(int (*)(PyArrayObject *)) \
+ PyArray_API[43])
+#define PyArray_SetStringFunction \
+ (*(void (*)(PyObject *, int)) \
+ PyArray_API[44])
+#define PyArray_DescrFromType \
+ (*(PyArray_Descr * (*)(int)) \
+ PyArray_API[45])
+#define PyArray_TypeObjectFromType \
+ (*(PyObject * (*)(int)) \
+ PyArray_API[46])
+#define PyArray_Zero \
+ (*(char * (*)(PyArrayObject *)) \
+ PyArray_API[47])
+#define PyArray_One \
+ (*(char * (*)(PyArrayObject *)) \
+ PyArray_API[48])
+#define PyArray_CastToType \
+ (*(PyObject * (*)(PyArrayObject *, PyArray_Descr *, int)) \
+ PyArray_API[49])
+#define PyArray_CopyInto \
+ (*(int (*)(PyArrayObject *, PyArrayObject *)) \
+ PyArray_API[50])
+#define PyArray_CopyAnyInto \
+ (*(int (*)(PyArrayObject *, PyArrayObject *)) \
+ PyArray_API[51])
+#define PyArray_CanCastSafely \
+ (*(int (*)(int, int)) \
+ PyArray_API[52])
+#define PyArray_CanCastTo \
+ (*(npy_bool (*)(PyArray_Descr *, PyArray_Descr *)) \
+ PyArray_API[53])
+#define PyArray_ObjectType \
+ (*(int (*)(PyObject *, int)) \
+ PyArray_API[54])
+#define PyArray_DescrFromObject \
+ (*(PyArray_Descr * (*)(PyObject *, PyArray_Descr *)) \
+ PyArray_API[55])
+#define PyArray_ConvertToCommonType \
+ (*(PyArrayObject ** (*)(PyObject *, int *)) \
+ PyArray_API[56])
+#define PyArray_DescrFromScalar \
+ (*(PyArray_Descr * (*)(PyObject *)) \
+ PyArray_API[57])
+#define PyArray_DescrFromTypeObject \
+ (*(PyArray_Descr * (*)(PyObject *)) \
+ PyArray_API[58])
+#define PyArray_Size \
+ (*(npy_intp (*)(PyObject *)) \
+ PyArray_API[59])
+#define PyArray_Scalar \
+ (*(PyObject * (*)(void *, PyArray_Descr *, PyObject *)) \
+ PyArray_API[60])
+#define PyArray_FromScalar \
+ (*(PyObject * (*)(PyObject *, PyArray_Descr *)) \
+ PyArray_API[61])
+#define PyArray_ScalarAsCtype \
+ (*(void (*)(PyObject *, void *)) \
+ PyArray_API[62])
+#define PyArray_CastScalarToCtype \
+ (*(int (*)(PyObject *, void *, PyArray_Descr *)) \
+ PyArray_API[63])
+#define PyArray_CastScalarDirect \
+ (*(int (*)(PyObject *, PyArray_Descr *, void *, int)) \
+ PyArray_API[64])
+
+#if NPY_FEATURE_VERSION >= NPY_2_0_API_VERSION
+#define PyArray_Pack \
+ (*(int (*)(PyArray_Descr *, void *, PyObject *)) \
+ PyArray_API[65])
+#endif
+#define PyArray_FromAny \
+ (*(PyObject * (*)(PyObject *, PyArray_Descr *, int, int, int, PyObject *)) \
+ PyArray_API[69])
+#define PyArray_EnsureArray \
+ (*(PyObject * (*)(PyObject *)) \
+ PyArray_API[70])
+#define PyArray_EnsureAnyArray \
+ (*(PyObject * (*)(PyObject *)) \
+ PyArray_API[71])
+#define PyArray_FromFile \
+ (*(PyObject * (*)(FILE *, PyArray_Descr *, npy_intp, char *)) \
+ PyArray_API[72])
+#define PyArray_FromString \
+ (*(PyObject * (*)(char *, npy_intp, PyArray_Descr *, npy_intp, char *)) \
+ PyArray_API[73])
+#define PyArray_FromBuffer \
+ (*(PyObject * (*)(PyObject *, PyArray_Descr *, npy_intp, npy_intp)) \
+ PyArray_API[74])
+#define PyArray_FromIter \
+ (*(PyObject * (*)(PyObject *, PyArray_Descr *, npy_intp)) \
+ PyArray_API[75])
+#define PyArray_Return \
+ (*(PyObject * (*)(PyArrayObject *)) \
+ PyArray_API[76])
+#define PyArray_GetField \
+ (*(PyObject * (*)(PyArrayObject *, PyArray_Descr *, int)) \
+ PyArray_API[77])
+#define PyArray_SetField \
+ (*(int (*)(PyArrayObject *, PyArray_Descr *, int, PyObject *)) \
+ PyArray_API[78])
+#define PyArray_Byteswap \
+ (*(PyObject * (*)(PyArrayObject *, npy_bool)) \
+ PyArray_API[79])
+#define PyArray_Resize \
+ (*(PyObject * (*)(PyArrayObject *, PyArray_Dims *, int, NPY_ORDER NPY_UNUSED(order))) \
+ PyArray_API[80])
+#define PyArray_CopyObject \
+ (*(int (*)(PyArrayObject *, PyObject *)) \
+ PyArray_API[84])
+#define PyArray_NewCopy \
+ (*(PyObject * (*)(PyArrayObject *, NPY_ORDER)) \
+ PyArray_API[85])
+#define PyArray_ToList \
+ (*(PyObject * (*)(PyArrayObject *)) \
+ PyArray_API[86])
+#define PyArray_ToString \
+ (*(PyObject * (*)(PyArrayObject *, NPY_ORDER)) \
+ PyArray_API[87])
+#define PyArray_ToFile \
+ (*(int (*)(PyArrayObject *, FILE *, char *, char *)) \
+ PyArray_API[88])
+#define PyArray_Dump \
+ (*(int (*)(PyObject *, PyObject *, int)) \
+ PyArray_API[89])
+#define PyArray_Dumps \
+ (*(PyObject * (*)(PyObject *, int)) \
+ PyArray_API[90])
+#define PyArray_ValidType \
+ (*(int (*)(int)) \
+ PyArray_API[91])
+#define PyArray_UpdateFlags \
+ (*(void (*)(PyArrayObject *, int)) \
+ PyArray_API[92])
+#define PyArray_New \
+ (*(PyObject * (*)(PyTypeObject *, int, npy_intp const *, int, npy_intp const *, void *, int, int, PyObject *)) \
+ PyArray_API[93])
+#define PyArray_NewFromDescr \
+ (*(PyObject * (*)(PyTypeObject *, PyArray_Descr *, int, npy_intp const *, npy_intp const *, void *, int, PyObject *)) \
+ PyArray_API[94])
+#define PyArray_DescrNew \
+ (*(PyArray_Descr * (*)(PyArray_Descr *)) \
+ PyArray_API[95])
+#define PyArray_DescrNewFromType \
+ (*(PyArray_Descr * (*)(int)) \
+ PyArray_API[96])
+#define PyArray_GetPriority \
+ (*(double (*)(PyObject *, double)) \
+ PyArray_API[97])
+#define PyArray_IterNew \
+ (*(PyObject * (*)(PyObject *)) \
+ PyArray_API[98])
+#define PyArray_MultiIterNew \
+ (*(PyObject* (*)(int, ...)) \
+ PyArray_API[99])
+#define PyArray_PyIntAsInt \
+ (*(int (*)(PyObject *)) \
+ PyArray_API[100])
+#define PyArray_PyIntAsIntp \
+ (*(npy_intp (*)(PyObject *)) \
+ PyArray_API[101])
+#define PyArray_Broadcast \
+ (*(int (*)(PyArrayMultiIterObject *)) \
+ PyArray_API[102])
+#define PyArray_FillWithScalar \
+ (*(int (*)(PyArrayObject *, PyObject *)) \
+ PyArray_API[104])
+#define PyArray_CheckStrides \
+ (*(npy_bool (*)(int, int, npy_intp, npy_intp, npy_intp const *, npy_intp const *)) \
+ PyArray_API[105])
+#define PyArray_DescrNewByteorder \
+ (*(PyArray_Descr * (*)(PyArray_Descr *, char)) \
+ PyArray_API[106])
+#define PyArray_IterAllButAxis \
+ (*(PyObject * (*)(PyObject *, int *)) \
+ PyArray_API[107])
+#define PyArray_CheckFromAny \
+ (*(PyObject * (*)(PyObject *, PyArray_Descr *, int, int, int, PyObject *)) \
+ PyArray_API[108])
+#define PyArray_FromArray \
+ (*(PyObject * (*)(PyArrayObject *, PyArray_Descr *, int)) \
+ PyArray_API[109])
+#define PyArray_FromInterface \
+ (*(PyObject * (*)(PyObject *)) \
+ PyArray_API[110])
+#define PyArray_FromStructInterface \
+ (*(PyObject * (*)(PyObject *)) \
+ PyArray_API[111])
+#define PyArray_FromArrayAttr \
+ (*(PyObject * (*)(PyObject *, PyArray_Descr *, PyObject *)) \
+ PyArray_API[112])
+#define PyArray_ScalarKind \
+ (*(NPY_SCALARKIND (*)(int, PyArrayObject **)) \
+ PyArray_API[113])
+#define PyArray_CanCoerceScalar \
+ (*(int (*)(int, int, NPY_SCALARKIND)) \
+ PyArray_API[114])
+#define PyArray_CanCastScalar \
+ (*(npy_bool (*)(PyTypeObject *, PyTypeObject *)) \
+ PyArray_API[116])
+#define PyArray_RemoveSmallest \
+ (*(int (*)(PyArrayMultiIterObject *)) \
+ PyArray_API[118])
+#define PyArray_ElementStrides \
+ (*(int (*)(PyObject *)) \
+ PyArray_API[119])
+#define PyArray_Item_INCREF \
+ (*(void (*)(char *, PyArray_Descr *)) \
+ PyArray_API[120])
+#define PyArray_Item_XDECREF \
+ (*(void (*)(char *, PyArray_Descr *)) \
+ PyArray_API[121])
+#define PyArray_Transpose \
+ (*(PyObject * (*)(PyArrayObject *, PyArray_Dims *)) \
+ PyArray_API[123])
+#define PyArray_TakeFrom \
+ (*(PyObject * (*)(PyArrayObject *, PyObject *, int, PyArrayObject *, NPY_CLIPMODE)) \
+ PyArray_API[124])
+#define PyArray_PutTo \
+ (*(PyObject * (*)(PyArrayObject *, PyObject*, PyObject *, NPY_CLIPMODE)) \
+ PyArray_API[125])
+#define PyArray_PutMask \
+ (*(PyObject * (*)(PyArrayObject *, PyObject*, PyObject*)) \
+ PyArray_API[126])
+#define PyArray_Repeat \
+ (*(PyObject * (*)(PyArrayObject *, PyObject *, int)) \
+ PyArray_API[127])
+#define PyArray_Choose \
+ (*(PyObject * (*)(PyArrayObject *, PyObject *, PyArrayObject *, NPY_CLIPMODE)) \
+ PyArray_API[128])
+#define PyArray_Sort \
+ (*(int (*)(PyArrayObject *, int, NPY_SORTKIND)) \
+ PyArray_API[129])
+#define PyArray_ArgSort \
+ (*(PyObject * (*)(PyArrayObject *, int, NPY_SORTKIND)) \
+ PyArray_API[130])
+#define PyArray_SearchSorted \
+ (*(PyObject * (*)(PyArrayObject *, PyObject *, NPY_SEARCHSIDE, PyObject *)) \
+ PyArray_API[131])
+#define PyArray_ArgMax \
+ (*(PyObject * (*)(PyArrayObject *, int, PyArrayObject *)) \
+ PyArray_API[132])
+#define PyArray_ArgMin \
+ (*(PyObject * (*)(PyArrayObject *, int, PyArrayObject *)) \
+ PyArray_API[133])
+#define PyArray_Reshape \
+ (*(PyObject * (*)(PyArrayObject *, PyObject *)) \
+ PyArray_API[134])
+#define PyArray_Newshape \
+ (*(PyObject * (*)(PyArrayObject *, PyArray_Dims *, NPY_ORDER)) \
+ PyArray_API[135])
+#define PyArray_Squeeze \
+ (*(PyObject * (*)(PyArrayObject *)) \
+ PyArray_API[136])
+#define PyArray_View \
+ (*(PyObject * (*)(PyArrayObject *, PyArray_Descr *, PyTypeObject *)) \
+ PyArray_API[137])
+#define PyArray_SwapAxes \
+ (*(PyObject * (*)(PyArrayObject *, int, int)) \
+ PyArray_API[138])
+#define PyArray_Max \
+ (*(PyObject * (*)(PyArrayObject *, int, PyArrayObject *)) \
+ PyArray_API[139])
+#define PyArray_Min \
+ (*(PyObject * (*)(PyArrayObject *, int, PyArrayObject *)) \
+ PyArray_API[140])
+#define PyArray_Ptp \
+ (*(PyObject * (*)(PyArrayObject *, int, PyArrayObject *)) \
+ PyArray_API[141])
+#define PyArray_Mean \
+ (*(PyObject * (*)(PyArrayObject *, int, int, PyArrayObject *)) \
+ PyArray_API[142])
+#define PyArray_Trace \
+ (*(PyObject * (*)(PyArrayObject *, int, int, int, int, PyArrayObject *)) \
+ PyArray_API[143])
+#define PyArray_Diagonal \
+ (*(PyObject * (*)(PyArrayObject *, int, int, int)) \
+ PyArray_API[144])
+#define PyArray_Clip \
+ (*(PyObject * (*)(PyArrayObject *, PyObject *, PyObject *, PyArrayObject *)) \
+ PyArray_API[145])
+#define PyArray_Conjugate \
+ (*(PyObject * (*)(PyArrayObject *, PyArrayObject *)) \
+ PyArray_API[146])
+#define PyArray_Nonzero \
+ (*(PyObject * (*)(PyArrayObject *)) \
+ PyArray_API[147])
+#define PyArray_Std \
+ (*(PyObject * (*)(PyArrayObject *, int, int, PyArrayObject *, int)) \
+ PyArray_API[148])
+#define PyArray_Sum \
+ (*(PyObject * (*)(PyArrayObject *, int, int, PyArrayObject *)) \
+ PyArray_API[149])
+#define PyArray_CumSum \
+ (*(PyObject * (*)(PyArrayObject *, int, int, PyArrayObject *)) \
+ PyArray_API[150])
+#define PyArray_Prod \
+ (*(PyObject * (*)(PyArrayObject *, int, int, PyArrayObject *)) \
+ PyArray_API[151])
+#define PyArray_CumProd \
+ (*(PyObject * (*)(PyArrayObject *, int, int, PyArrayObject *)) \
+ PyArray_API[152])
+#define PyArray_All \
+ (*(PyObject * (*)(PyArrayObject *, int, PyArrayObject *)) \
+ PyArray_API[153])
+#define PyArray_Any \
+ (*(PyObject * (*)(PyArrayObject *, int, PyArrayObject *)) \
+ PyArray_API[154])
+#define PyArray_Compress \
+ (*(PyObject * (*)(PyArrayObject *, PyObject *, int, PyArrayObject *)) \
+ PyArray_API[155])
+#define PyArray_Flatten \
+ (*(PyObject * (*)(PyArrayObject *, NPY_ORDER)) \
+ PyArray_API[156])
+#define PyArray_Ravel \
+ (*(PyObject * (*)(PyArrayObject *, NPY_ORDER)) \
+ PyArray_API[157])
+#define PyArray_MultiplyList \
+ (*(npy_intp (*)(npy_intp const *, int)) \
+ PyArray_API[158])
+#define PyArray_MultiplyIntList \
+ (*(int (*)(int const *, int)) \
+ PyArray_API[159])
+#define PyArray_GetPtr \
+ (*(void * (*)(PyArrayObject *, npy_intp const*)) \
+ PyArray_API[160])
+#define PyArray_CompareLists \
+ (*(int (*)(npy_intp const *, npy_intp const *, int)) \
+ PyArray_API[161])
+#define PyArray_AsCArray \
+ (*(int (*)(PyObject **, void *, npy_intp *, int, PyArray_Descr*)) \
+ PyArray_API[162])
+#define PyArray_Free \
+ (*(int (*)(PyObject *, void *)) \
+ PyArray_API[165])
+#define PyArray_Converter \
+ (*(int (*)(PyObject *, PyObject **)) \
+ PyArray_API[166])
+#define PyArray_IntpFromSequence \
+ (*(int (*)(PyObject *, npy_intp *, int)) \
+ PyArray_API[167])
+#define PyArray_Concatenate \
+ (*(PyObject * (*)(PyObject *, int)) \
+ PyArray_API[168])
+#define PyArray_InnerProduct \
+ (*(PyObject * (*)(PyObject *, PyObject *)) \
+ PyArray_API[169])
+#define PyArray_MatrixProduct \
+ (*(PyObject * (*)(PyObject *, PyObject *)) \
+ PyArray_API[170])
+#define PyArray_Correlate \
+ (*(PyObject * (*)(PyObject *, PyObject *, int)) \
+ PyArray_API[172])
+#define PyArray_DescrConverter \
+ (*(int (*)(PyObject *, PyArray_Descr **)) \
+ PyArray_API[174])
+#define PyArray_DescrConverter2 \
+ (*(int (*)(PyObject *, PyArray_Descr **)) \
+ PyArray_API[175])
+#define PyArray_IntpConverter \
+ (*(int (*)(PyObject *, PyArray_Dims *)) \
+ PyArray_API[176])
+#define PyArray_BufferConverter \
+ (*(int (*)(PyObject *, PyArray_Chunk *)) \
+ PyArray_API[177])
+#define PyArray_AxisConverter \
+ (*(int (*)(PyObject *, int *)) \
+ PyArray_API[178])
+#define PyArray_BoolConverter \
+ (*(int (*)(PyObject *, npy_bool *)) \
+ PyArray_API[179])
+#define PyArray_ByteorderConverter \
+ (*(int (*)(PyObject *, char *)) \
+ PyArray_API[180])
+#define PyArray_OrderConverter \
+ (*(int (*)(PyObject *, NPY_ORDER *)) \
+ PyArray_API[181])
+#define PyArray_EquivTypes \
+ (*(unsigned char (*)(PyArray_Descr *, PyArray_Descr *)) \
+ PyArray_API[182])
+#define PyArray_Zeros \
+ (*(PyObject * (*)(int, npy_intp const *, PyArray_Descr *, int)) \
+ PyArray_API[183])
+#define PyArray_Empty \
+ (*(PyObject * (*)(int, npy_intp const *, PyArray_Descr *, int)) \
+ PyArray_API[184])
+#define PyArray_Where \
+ (*(PyObject * (*)(PyObject *, PyObject *, PyObject *)) \
+ PyArray_API[185])
+#define PyArray_Arange \
+ (*(PyObject * (*)(double, double, double, int)) \
+ PyArray_API[186])
+#define PyArray_ArangeObj \
+ (*(PyObject * (*)(PyObject *, PyObject *, PyObject *, PyArray_Descr *)) \
+ PyArray_API[187])
+#define PyArray_SortkindConverter \
+ (*(int (*)(PyObject *, NPY_SORTKIND *)) \
+ PyArray_API[188])
+#define PyArray_LexSort \
+ (*(PyObject * (*)(PyObject *, int)) \
+ PyArray_API[189])
+#define PyArray_Round \
+ (*(PyObject * (*)(PyArrayObject *, int, PyArrayObject *)) \
+ PyArray_API[190])
+#define PyArray_EquivTypenums \
+ (*(unsigned char (*)(int, int)) \
+ PyArray_API[191])
+#define PyArray_RegisterDataType \
+ (*(int (*)(PyArray_DescrProto *)) \
+ PyArray_API[192])
+#define PyArray_RegisterCastFunc \
+ (*(int (*)(PyArray_Descr *, int, PyArray_VectorUnaryFunc *)) \
+ PyArray_API[193])
+#define PyArray_RegisterCanCast \
+ (*(int (*)(PyArray_Descr *, int, NPY_SCALARKIND)) \
+ PyArray_API[194])
+#define PyArray_InitArrFuncs \
+ (*(void (*)(PyArray_ArrFuncs *)) \
+ PyArray_API[195])
+#define PyArray_IntTupleFromIntp \
+ (*(PyObject * (*)(int, npy_intp const *)) \
+ PyArray_API[196])
+#define PyArray_ClipmodeConverter \
+ (*(int (*)(PyObject *, NPY_CLIPMODE *)) \
+ PyArray_API[198])
+#define PyArray_OutputConverter \
+ (*(int (*)(PyObject *, PyArrayObject **)) \
+ PyArray_API[199])
+#define PyArray_BroadcastToShape \
+ (*(PyObject * (*)(PyObject *, npy_intp *, int)) \
+ PyArray_API[200])
+#define PyArray_DescrAlignConverter \
+ (*(int (*)(PyObject *, PyArray_Descr **)) \
+ PyArray_API[203])
+#define PyArray_DescrAlignConverter2 \
+ (*(int (*)(PyObject *, PyArray_Descr **)) \
+ PyArray_API[204])
+#define PyArray_SearchsideConverter \
+ (*(int (*)(PyObject *, void *)) \
+ PyArray_API[205])
+#define PyArray_CheckAxis \
+ (*(PyObject * (*)(PyArrayObject *, int *, int)) \
+ PyArray_API[206])
+#define PyArray_OverflowMultiplyList \
+ (*(npy_intp (*)(npy_intp const *, int)) \
+ PyArray_API[207])
+#define PyArray_MultiIterFromObjects \
+ (*(PyObject* (*)(PyObject **, int, int, ...)) \
+ PyArray_API[209])
+#define PyArray_GetEndianness \
+ (*(int (*)(void)) \
+ PyArray_API[210])
+#define PyArray_GetNDArrayCFeatureVersion \
+ (*(unsigned int (*)(void)) \
+ PyArray_API[211])
+#define PyArray_Correlate2 \
+ (*(PyObject * (*)(PyObject *, PyObject *, int)) \
+ PyArray_API[212])
+#define PyArray_NeighborhoodIterNew \
+ (*(PyObject* (*)(PyArrayIterObject *, const npy_intp *, int, PyArrayObject*)) \
+ PyArray_API[213])
+#define PyTimeIntegerArrType_Type (*(PyTypeObject *)PyArray_API[214])
+#define PyDatetimeArrType_Type (*(PyTypeObject *)PyArray_API[215])
+#define PyTimedeltaArrType_Type (*(PyTypeObject *)PyArray_API[216])
+#define PyHalfArrType_Type (*(PyTypeObject *)PyArray_API[217])
+#define NpyIter_Type (*(PyTypeObject *)PyArray_API[218])
+
+#if NPY_FEATURE_VERSION >= NPY_2_3_API_VERSION
+#define NpyIter_GetTransferFlags \
+ (*(NPY_ARRAYMETHOD_FLAGS (*)(NpyIter *)) \
+ PyArray_API[223])
+#endif
+#define NpyIter_New \
+ (*(NpyIter * (*)(PyArrayObject *, npy_uint32, NPY_ORDER, NPY_CASTING, PyArray_Descr*)) \
+ PyArray_API[224])
+#define NpyIter_MultiNew \
+ (*(NpyIter * (*)(int, PyArrayObject **, npy_uint32, NPY_ORDER, NPY_CASTING, npy_uint32 *, PyArray_Descr **)) \
+ PyArray_API[225])
+#define NpyIter_AdvancedNew \
+ (*(NpyIter * (*)(int, PyArrayObject **, npy_uint32, NPY_ORDER, NPY_CASTING, npy_uint32 *, PyArray_Descr **, int, int **, npy_intp *, npy_intp)) \
+ PyArray_API[226])
+#define NpyIter_Copy \
+ (*(NpyIter * (*)(NpyIter *)) \
+ PyArray_API[227])
+#define NpyIter_Deallocate \
+ (*(int (*)(NpyIter *)) \
+ PyArray_API[228])
+#define NpyIter_HasDelayedBufAlloc \
+ (*(npy_bool (*)(NpyIter *)) \
+ PyArray_API[229])
+#define NpyIter_HasExternalLoop \
+ (*(npy_bool (*)(NpyIter *)) \
+ PyArray_API[230])
+#define NpyIter_EnableExternalLoop \
+ (*(int (*)(NpyIter *)) \
+ PyArray_API[231])
+#define NpyIter_GetInnerStrideArray \
+ (*(npy_intp * (*)(NpyIter *)) \
+ PyArray_API[232])
+#define NpyIter_GetInnerLoopSizePtr \
+ (*(npy_intp * (*)(NpyIter *)) \
+ PyArray_API[233])
+#define NpyIter_Reset \
+ (*(int (*)(NpyIter *, char **)) \
+ PyArray_API[234])
+#define NpyIter_ResetBasePointers \
+ (*(int (*)(NpyIter *, char **, char **)) \
+ PyArray_API[235])
+#define NpyIter_ResetToIterIndexRange \
+ (*(int (*)(NpyIter *, npy_intp, npy_intp, char **)) \
+ PyArray_API[236])
+#define NpyIter_GetNDim \
+ (*(int (*)(NpyIter *)) \
+ PyArray_API[237])
+#define NpyIter_GetNOp \
+ (*(int (*)(NpyIter *)) \
+ PyArray_API[238])
+#define NpyIter_GetIterNext \
+ (*(NpyIter_IterNextFunc * (*)(NpyIter *, char **)) \
+ PyArray_API[239])
+#define NpyIter_GetIterSize \
+ (*(npy_intp (*)(NpyIter *)) \
+ PyArray_API[240])
+#define NpyIter_GetIterIndexRange \
+ (*(void (*)(NpyIter *, npy_intp *, npy_intp *)) \
+ PyArray_API[241])
+#define NpyIter_GetIterIndex \
+ (*(npy_intp (*)(NpyIter *)) \
+ PyArray_API[242])
+#define NpyIter_GotoIterIndex \
+ (*(int (*)(NpyIter *, npy_intp)) \
+ PyArray_API[243])
+#define NpyIter_HasMultiIndex \
+ (*(npy_bool (*)(NpyIter *)) \
+ PyArray_API[244])
+#define NpyIter_GetShape \
+ (*(int (*)(NpyIter *, npy_intp *)) \
+ PyArray_API[245])
+#define NpyIter_GetGetMultiIndex \
+ (*(NpyIter_GetMultiIndexFunc * (*)(NpyIter *, char **)) \
+ PyArray_API[246])
+#define NpyIter_GotoMultiIndex \
+ (*(int (*)(NpyIter *, npy_intp const *)) \
+ PyArray_API[247])
+#define NpyIter_RemoveMultiIndex \
+ (*(int (*)(NpyIter *)) \
+ PyArray_API[248])
+#define NpyIter_HasIndex \
+ (*(npy_bool (*)(NpyIter *)) \
+ PyArray_API[249])
+#define NpyIter_IsBuffered \
+ (*(npy_bool (*)(NpyIter *)) \
+ PyArray_API[250])
+#define NpyIter_IsGrowInner \
+ (*(npy_bool (*)(NpyIter *)) \
+ PyArray_API[251])
+#define NpyIter_GetBufferSize \
+ (*(npy_intp (*)(NpyIter *)) \
+ PyArray_API[252])
+#define NpyIter_GetIndexPtr \
+ (*(npy_intp * (*)(NpyIter *)) \
+ PyArray_API[253])
+#define NpyIter_GotoIndex \
+ (*(int (*)(NpyIter *, npy_intp)) \
+ PyArray_API[254])
+#define NpyIter_GetDataPtrArray \
+ (*(char ** (*)(NpyIter *)) \
+ PyArray_API[255])
+#define NpyIter_GetDescrArray \
+ (*(PyArray_Descr ** (*)(NpyIter *)) \
+ PyArray_API[256])
+#define NpyIter_GetOperandArray \
+ (*(PyArrayObject ** (*)(NpyIter *)) \
+ PyArray_API[257])
+#define NpyIter_GetIterView \
+ (*(PyArrayObject * (*)(NpyIter *, npy_intp)) \
+ PyArray_API[258])
+#define NpyIter_GetReadFlags \
+ (*(void (*)(NpyIter *, char *)) \
+ PyArray_API[259])
+#define NpyIter_GetWriteFlags \
+ (*(void (*)(NpyIter *, char *)) \
+ PyArray_API[260])
+#define NpyIter_DebugPrint \
+ (*(void (*)(NpyIter *)) \
+ PyArray_API[261])
+#define NpyIter_IterationNeedsAPI \
+ (*(npy_bool (*)(NpyIter *)) \
+ PyArray_API[262])
+#define NpyIter_GetInnerFixedStrideArray \
+ (*(void (*)(NpyIter *, npy_intp *)) \
+ PyArray_API[263])
+#define NpyIter_RemoveAxis \
+ (*(int (*)(NpyIter *, int)) \
+ PyArray_API[264])
+#define NpyIter_GetAxisStrideArray \
+ (*(npy_intp * (*)(NpyIter *, int)) \
+ PyArray_API[265])
+#define NpyIter_RequiresBuffering \
+ (*(npy_bool (*)(NpyIter *)) \
+ PyArray_API[266])
+#define NpyIter_GetInitialDataPtrArray \
+ (*(char ** (*)(NpyIter *)) \
+ PyArray_API[267])
+#define NpyIter_CreateCompatibleStrides \
+ (*(int (*)(NpyIter *, npy_intp, npy_intp *)) \
+ PyArray_API[268])
+#define PyArray_CastingConverter \
+ (*(int (*)(PyObject *, NPY_CASTING *)) \
+ PyArray_API[269])
+#define PyArray_CountNonzero \
+ (*(npy_intp (*)(PyArrayObject *)) \
+ PyArray_API[270])
+#define PyArray_PromoteTypes \
+ (*(PyArray_Descr * (*)(PyArray_Descr *, PyArray_Descr *)) \
+ PyArray_API[271])
+#define PyArray_MinScalarType \
+ (*(PyArray_Descr * (*)(PyArrayObject *)) \
+ PyArray_API[272])
+#define PyArray_ResultType \
+ (*(PyArray_Descr * (*)(npy_intp, PyArrayObject *arrs[], npy_intp, PyArray_Descr *descrs[])) \
+ PyArray_API[273])
+#define PyArray_CanCastArrayTo \
+ (*(npy_bool (*)(PyArrayObject *, PyArray_Descr *, NPY_CASTING)) \
+ PyArray_API[274])
+#define PyArray_CanCastTypeTo \
+ (*(npy_bool (*)(PyArray_Descr *, PyArray_Descr *, NPY_CASTING)) \
+ PyArray_API[275])
+#define PyArray_EinsteinSum \
+ (*(PyArrayObject * (*)(char *, npy_intp, PyArrayObject **, PyArray_Descr *, NPY_ORDER, NPY_CASTING, PyArrayObject *)) \
+ PyArray_API[276])
+#define PyArray_NewLikeArray \
+ (*(PyObject * (*)(PyArrayObject *, NPY_ORDER, PyArray_Descr *, int)) \
+ PyArray_API[277])
+#define PyArray_ConvertClipmodeSequence \
+ (*(int (*)(PyObject *, NPY_CLIPMODE *, int)) \
+ PyArray_API[279])
+#define PyArray_MatrixProduct2 \
+ (*(PyObject * (*)(PyObject *, PyObject *, PyArrayObject*)) \
+ PyArray_API[280])
+#define NpyIter_IsFirstVisit \
+ (*(npy_bool (*)(NpyIter *, int)) \
+ PyArray_API[281])
+#define PyArray_SetBaseObject \
+ (*(int (*)(PyArrayObject *, PyObject *)) \
+ PyArray_API[282])
+#define PyArray_CreateSortedStridePerm \
+ (*(void (*)(int, npy_intp const *, npy_stride_sort_item *)) \
+ PyArray_API[283])
+#define PyArray_RemoveAxesInPlace \
+ (*(void (*)(PyArrayObject *, const npy_bool *)) \
+ PyArray_API[284])
+#define PyArray_DebugPrint \
+ (*(void (*)(PyArrayObject *)) \
+ PyArray_API[285])
+#define PyArray_FailUnlessWriteable \
+ (*(int (*)(PyArrayObject *, const char *)) \
+ PyArray_API[286])
+#define PyArray_SetUpdateIfCopyBase \
+ (*(int (*)(PyArrayObject *, PyArrayObject *)) \
+ PyArray_API[287])
+#define PyDataMem_NEW \
+ (*(void * (*)(size_t)) \
+ PyArray_API[288])
+#define PyDataMem_FREE \
+ (*(void (*)(void *)) \
+ PyArray_API[289])
+#define PyDataMem_RENEW \
+ (*(void * (*)(void *, size_t)) \
+ PyArray_API[290])
+#define NPY_DEFAULT_ASSIGN_CASTING (*(NPY_CASTING *)PyArray_API[292])
+#define PyArray_Partition \
+ (*(int (*)(PyArrayObject *, PyArrayObject *, int, NPY_SELECTKIND)) \
+ PyArray_API[296])
+#define PyArray_ArgPartition \
+ (*(PyObject * (*)(PyArrayObject *, PyArrayObject *, int, NPY_SELECTKIND)) \
+ PyArray_API[297])
+#define PyArray_SelectkindConverter \
+ (*(int (*)(PyObject *, NPY_SELECTKIND *)) \
+ PyArray_API[298])
+#define PyDataMem_NEW_ZEROED \
+ (*(void * (*)(size_t, size_t)) \
+ PyArray_API[299])
+#define PyArray_CheckAnyScalarExact \
+ (*(int (*)(PyObject *)) \
+ PyArray_API[300])
+#define PyArray_ResolveWritebackIfCopy \
+ (*(int (*)(PyArrayObject *)) \
+ PyArray_API[302])
+#define PyArray_SetWritebackIfCopyBase \
+ (*(int (*)(PyArrayObject *, PyArrayObject *)) \
+ PyArray_API[303])
+
+#if NPY_FEATURE_VERSION >= NPY_1_22_API_VERSION
+#define PyDataMem_SetHandler \
+ (*(PyObject * (*)(PyObject *)) \
+ PyArray_API[304])
+#endif
+
+#if NPY_FEATURE_VERSION >= NPY_1_22_API_VERSION
+#define PyDataMem_GetHandler \
+ (*(PyObject * (*)(void)) \
+ PyArray_API[305])
+#endif
+#define PyDataMem_DefaultHandler (*(PyObject* *)PyArray_API[306])
+
+#if NPY_FEATURE_VERSION >= NPY_2_0_API_VERSION
+#define NpyDatetime_ConvertDatetime64ToDatetimeStruct \
+ (*(int (*)(PyArray_DatetimeMetaData *, npy_datetime, npy_datetimestruct *)) \
+ PyArray_API[307])
+#endif
+
+#if NPY_FEATURE_VERSION >= NPY_2_0_API_VERSION
+#define NpyDatetime_ConvertDatetimeStructToDatetime64 \
+ (*(int (*)(PyArray_DatetimeMetaData *, const npy_datetimestruct *, npy_datetime *)) \
+ PyArray_API[308])
+#endif
+
+#if NPY_FEATURE_VERSION >= NPY_2_0_API_VERSION
+#define NpyDatetime_ConvertPyDateTimeToDatetimeStruct \
+ (*(int (*)(PyObject *, npy_datetimestruct *, NPY_DATETIMEUNIT *, int)) \
+ PyArray_API[309])
+#endif
+
+#if NPY_FEATURE_VERSION >= NPY_2_0_API_VERSION
+#define NpyDatetime_GetDatetimeISO8601StrLen \
+ (*(int (*)(int, NPY_DATETIMEUNIT)) \
+ PyArray_API[310])
+#endif
+
+#if NPY_FEATURE_VERSION >= NPY_2_0_API_VERSION
+#define NpyDatetime_MakeISO8601Datetime \
+ (*(int (*)(npy_datetimestruct *, char *, npy_intp, int, int, NPY_DATETIMEUNIT, int, NPY_CASTING)) \
+ PyArray_API[311])
+#endif
+
+#if NPY_FEATURE_VERSION >= NPY_2_0_API_VERSION
+#define NpyDatetime_ParseISO8601Datetime \
+ (*(int (*)(char const *, Py_ssize_t, NPY_DATETIMEUNIT, NPY_CASTING, npy_datetimestruct *, NPY_DATETIMEUNIT *, npy_bool *)) \
+ PyArray_API[312])
+#endif
+
+#if NPY_FEATURE_VERSION >= NPY_2_0_API_VERSION
+#define NpyString_load \
+ (*(int (*)(npy_string_allocator *, const npy_packed_static_string *, npy_static_string *)) \
+ PyArray_API[313])
+#endif
+
+#if NPY_FEATURE_VERSION >= NPY_2_0_API_VERSION
+#define NpyString_pack \
+ (*(int (*)(npy_string_allocator *, npy_packed_static_string *, const char *, size_t)) \
+ PyArray_API[314])
+#endif
+
+#if NPY_FEATURE_VERSION >= NPY_2_0_API_VERSION
+#define NpyString_pack_null \
+ (*(int (*)(npy_string_allocator *, npy_packed_static_string *)) \
+ PyArray_API[315])
+#endif
+
+#if NPY_FEATURE_VERSION >= NPY_2_0_API_VERSION
+#define NpyString_acquire_allocator \
+ (*(npy_string_allocator * (*)(const PyArray_StringDTypeObject *)) \
+ PyArray_API[316])
+#endif
+
+#if NPY_FEATURE_VERSION >= NPY_2_0_API_VERSION
+#define NpyString_acquire_allocators \
+ (*(void (*)(size_t, PyArray_Descr *const descrs[], npy_string_allocator *allocators[])) \
+ PyArray_API[317])
+#endif
+
+#if NPY_FEATURE_VERSION >= NPY_2_0_API_VERSION
+#define NpyString_release_allocator \
+ (*(void (*)(npy_string_allocator *)) \
+ PyArray_API[318])
+#endif
+
+#if NPY_FEATURE_VERSION >= NPY_2_0_API_VERSION
+#define NpyString_release_allocators \
+ (*(void (*)(size_t, npy_string_allocator *allocators[])) \
+ PyArray_API[319])
+#endif
+
+#if NPY_FEATURE_VERSION >= NPY_2_0_API_VERSION
+#define PyArray_GetDefaultDescr \
+ (*(PyArray_Descr * (*)(PyArray_DTypeMeta *)) \
+ PyArray_API[361])
+#endif
+
+#if NPY_FEATURE_VERSION >= NPY_2_0_API_VERSION
+#define PyArrayInitDTypeMeta_FromSpec \
+ (*(int (*)(PyArray_DTypeMeta *, PyArrayDTypeMeta_Spec *)) \
+ PyArray_API[362])
+#endif
+
+#if NPY_FEATURE_VERSION >= NPY_2_0_API_VERSION
+#define PyArray_CommonDType \
+ (*(PyArray_DTypeMeta * (*)(PyArray_DTypeMeta *, PyArray_DTypeMeta *)) \
+ PyArray_API[363])
+#endif
+
+#if NPY_FEATURE_VERSION >= NPY_2_0_API_VERSION
+#define PyArray_PromoteDTypeSequence \
+ (*(PyArray_DTypeMeta * (*)(npy_intp, PyArray_DTypeMeta **)) \
+ PyArray_API[364])
+#endif
+#define _PyDataType_GetArrFuncs \
+ (*(PyArray_ArrFuncs * (*)(const PyArray_Descr *)) \
+ PyArray_API[365])
+
+/*
+ * The DType classes are inconvenient for the Python generation so exposed
+ * manually in the header below (may be moved).
+ */
+#include "numpy/_public_dtype_api_table.h"
+
+#if !defined(NO_IMPORT_ARRAY) && !defined(NO_IMPORT)
+static int
+_import_array(void)
+{
+ int st;
+ PyObject *numpy = PyImport_ImportModule("numpy._core._multiarray_umath");
+ PyObject *c_api;
+ if (numpy == NULL && PyErr_ExceptionMatches(PyExc_ModuleNotFoundError)) {
+ PyErr_Clear();
+ numpy = PyImport_ImportModule("numpy.core._multiarray_umath");
+ }
+
+ if (numpy == NULL) {
+ return -1;
+ }
+
+ c_api = PyObject_GetAttrString(numpy, "_ARRAY_API");
+ Py_DECREF(numpy);
+ if (c_api == NULL) {
+ return -1;
+ }
+
+ if (!PyCapsule_CheckExact(c_api)) {
+ PyErr_SetString(PyExc_RuntimeError, "_ARRAY_API is not PyCapsule object");
+ Py_DECREF(c_api);
+ return -1;
+ }
+ PyArray_API = (void **)PyCapsule_GetPointer(c_api, NULL);
+ Py_DECREF(c_api);
+ if (PyArray_API == NULL) {
+ PyErr_SetString(PyExc_RuntimeError, "_ARRAY_API is NULL pointer");
+ return -1;
+ }
+
+ /*
+ * On exceedingly few platforms these sizes may not match, in which case
+ * We do not support older NumPy versions at all.
+ */
+ if (sizeof(Py_ssize_t) != sizeof(Py_intptr_t) &&
+ PyArray_RUNTIME_VERSION < NPY_2_0_API_VERSION) {
+ PyErr_Format(PyExc_RuntimeError,
+ "module compiled against NumPy 2.0 but running on NumPy 1.x. "
+ "Unfortunately, this is not supported on niche platforms where "
+ "`sizeof(size_t) != sizeof(inptr_t)`.");
+ }
+ /*
+ * Perform runtime check of C API version. As of now NumPy 2.0 is ABI
+ * backwards compatible (in the exposed feature subset!) for all practical
+ * purposes.
+ */
+ if (NPY_VERSION < PyArray_GetNDArrayCVersion()) {
+ PyErr_Format(PyExc_RuntimeError, "module compiled against "\
+ "ABI version 0x%x but this version of numpy is 0x%x", \
+ (int) NPY_VERSION, (int) PyArray_GetNDArrayCVersion());
+ return -1;
+ }
+ PyArray_RUNTIME_VERSION = (int)PyArray_GetNDArrayCFeatureVersion();
+ if (NPY_FEATURE_VERSION > PyArray_RUNTIME_VERSION) {
+ PyErr_Format(PyExc_RuntimeError,
+ "module was compiled against NumPy C-API version 0x%x "
+ "(NumPy " NPY_FEATURE_VERSION_STRING ") "
+ "but the running NumPy has C-API version 0x%x. "
+ "Check the section C-API incompatibility at the "
+ "Troubleshooting ImportError section at "
+ "https://numpy.org/devdocs/user/troubleshooting-importerror.html"
+ "#c-api-incompatibility "
+ "for indications on how to solve this problem.",
+ (int)NPY_FEATURE_VERSION, PyArray_RUNTIME_VERSION);
+ return -1;
+ }
+
+ /*
+ * Perform runtime check of endianness and check it matches the one set by
+ * the headers (npy_endian.h) as a safeguard
+ */
+ st = PyArray_GetEndianness();
+ if (st == NPY_CPU_UNKNOWN_ENDIAN) {
+ PyErr_SetString(PyExc_RuntimeError,
+ "FATAL: module compiled as unknown endian");
+ return -1;
+ }
+#if NPY_BYTE_ORDER == NPY_BIG_ENDIAN
+ if (st != NPY_CPU_BIG) {
+ PyErr_SetString(PyExc_RuntimeError,
+ "FATAL: module compiled as big endian, but "
+ "detected different endianness at runtime");
+ return -1;
+ }
+#elif NPY_BYTE_ORDER == NPY_LITTLE_ENDIAN
+ if (st != NPY_CPU_LITTLE) {
+ PyErr_SetString(PyExc_RuntimeError,
+ "FATAL: module compiled as little endian, but "
+ "detected different endianness at runtime");
+ return -1;
+ }
+#endif
+
+ return 0;
+}
+
+#define import_array() { \
+ if (_import_array() < 0) { \
+ PyErr_Print(); \
+ PyErr_SetString( \
+ PyExc_ImportError, \
+ "numpy._core.multiarray failed to import" \
+ ); \
+ return NULL; \
+ } \
+}
+
+#define import_array1(ret) { \
+ if (_import_array() < 0) { \
+ PyErr_Print(); \
+ PyErr_SetString( \
+ PyExc_ImportError, \
+ "numpy._core.multiarray failed to import" \
+ ); \
+ return ret; \
+ } \
+}
+
+#define import_array2(msg, ret) { \
+ if (_import_array() < 0) { \
+ PyErr_Print(); \
+ PyErr_SetString(PyExc_ImportError, msg); \
+ return ret; \
+ } \
+}
+
+#endif
+
+#endif
diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/include/numpy/__ufunc_api.c b/.venv/lib/python3.12/site-packages/numpy/_core/include/numpy/__ufunc_api.c
new file mode 100644
index 0000000..10fcbc4
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/_core/include/numpy/__ufunc_api.c
@@ -0,0 +1,54 @@
+
+/* These pointers will be stored in the C-object for use in other
+ extension modules
+*/
+
+void *PyUFunc_API[] = {
+ (void *) &PyUFunc_Type,
+ (void *) PyUFunc_FromFuncAndData,
+ (void *) PyUFunc_RegisterLoopForType,
+ NULL,
+ (void *) PyUFunc_f_f_As_d_d,
+ (void *) PyUFunc_d_d,
+ (void *) PyUFunc_f_f,
+ (void *) PyUFunc_g_g,
+ (void *) PyUFunc_F_F_As_D_D,
+ (void *) PyUFunc_F_F,
+ (void *) PyUFunc_D_D,
+ (void *) PyUFunc_G_G,
+ (void *) PyUFunc_O_O,
+ (void *) PyUFunc_ff_f_As_dd_d,
+ (void *) PyUFunc_ff_f,
+ (void *) PyUFunc_dd_d,
+ (void *) PyUFunc_gg_g,
+ (void *) PyUFunc_FF_F_As_DD_D,
+ (void *) PyUFunc_DD_D,
+ (void *) PyUFunc_FF_F,
+ (void *) PyUFunc_GG_G,
+ (void *) PyUFunc_OO_O,
+ (void *) PyUFunc_O_O_method,
+ (void *) PyUFunc_OO_O_method,
+ (void *) PyUFunc_On_Om,
+ NULL,
+ NULL,
+ (void *) PyUFunc_clearfperr,
+ (void *) PyUFunc_getfperr,
+ NULL,
+ (void *) PyUFunc_ReplaceLoopBySignature,
+ (void *) PyUFunc_FromFuncAndDataAndSignature,
+ NULL,
+ (void *) PyUFunc_e_e,
+ (void *) PyUFunc_e_e_As_f_f,
+ (void *) PyUFunc_e_e_As_d_d,
+ (void *) PyUFunc_ee_e,
+ (void *) PyUFunc_ee_e_As_ff_f,
+ (void *) PyUFunc_ee_e_As_dd_d,
+ (void *) PyUFunc_DefaultTypeResolver,
+ (void *) PyUFunc_ValidateCasting,
+ (void *) PyUFunc_RegisterLoopForDescr,
+ (void *) PyUFunc_FromFuncAndDataAndSignatureAndIdentity,
+ (void *) PyUFunc_AddLoopFromSpec,
+ (void *) PyUFunc_AddPromoter,
+ (void *) PyUFunc_AddWrappingLoop,
+ (void *) PyUFunc_GiveFloatingpointErrors
+};
diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/include/numpy/__ufunc_api.h b/.venv/lib/python3.12/site-packages/numpy/_core/include/numpy/__ufunc_api.h
new file mode 100644
index 0000000..b05dce3
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/_core/include/numpy/__ufunc_api.h
@@ -0,0 +1,341 @@
+
+#ifdef _UMATHMODULE
+
+extern NPY_NO_EXPORT PyTypeObject PyUFunc_Type;
+
+extern NPY_NO_EXPORT PyTypeObject PyUFunc_Type;
+
+NPY_NO_EXPORT PyObject * PyUFunc_FromFuncAndData \
+ (PyUFuncGenericFunction *, void *const *, const char *, int, int, int, int, const char *, const char *, int);
+NPY_NO_EXPORT int PyUFunc_RegisterLoopForType \
+ (PyUFuncObject *, int, PyUFuncGenericFunction, const int *, void *);
+NPY_NO_EXPORT void PyUFunc_f_f_As_d_d \
+ (char **, npy_intp const *, npy_intp const *, void *);
+NPY_NO_EXPORT void PyUFunc_d_d \
+ (char **, npy_intp const *, npy_intp const *, void *);
+NPY_NO_EXPORT void PyUFunc_f_f \
+ (char **, npy_intp const *, npy_intp const *, void *);
+NPY_NO_EXPORT void PyUFunc_g_g \
+ (char **, npy_intp const *, npy_intp const *, void *);
+NPY_NO_EXPORT void PyUFunc_F_F_As_D_D \
+ (char **, npy_intp const *, npy_intp const *, void *);
+NPY_NO_EXPORT void PyUFunc_F_F \
+ (char **, npy_intp const *, npy_intp const *, void *);
+NPY_NO_EXPORT void PyUFunc_D_D \
+ (char **, npy_intp const *, npy_intp const *, void *);
+NPY_NO_EXPORT void PyUFunc_G_G \
+ (char **, npy_intp const *, npy_intp const *, void *);
+NPY_NO_EXPORT void PyUFunc_O_O \
+ (char **, npy_intp const *, npy_intp const *, void *);
+NPY_NO_EXPORT void PyUFunc_ff_f_As_dd_d \
+ (char **, npy_intp const *, npy_intp const *, void *);
+NPY_NO_EXPORT void PyUFunc_ff_f \
+ (char **, npy_intp const *, npy_intp const *, void *);
+NPY_NO_EXPORT void PyUFunc_dd_d \
+ (char **, npy_intp const *, npy_intp const *, void *);
+NPY_NO_EXPORT void PyUFunc_gg_g \
+ (char **, npy_intp const *, npy_intp const *, void *);
+NPY_NO_EXPORT void PyUFunc_FF_F_As_DD_D \
+ (char **, npy_intp const *, npy_intp const *, void *);
+NPY_NO_EXPORT void PyUFunc_DD_D \
+ (char **, npy_intp const *, npy_intp const *, void *);
+NPY_NO_EXPORT void PyUFunc_FF_F \
+ (char **, npy_intp const *, npy_intp const *, void *);
+NPY_NO_EXPORT void PyUFunc_GG_G \
+ (char **, npy_intp const *, npy_intp const *, void *);
+NPY_NO_EXPORT void PyUFunc_OO_O \
+ (char **, npy_intp const *, npy_intp const *, void *);
+NPY_NO_EXPORT void PyUFunc_O_O_method \
+ (char **, npy_intp const *, npy_intp const *, void *);
+NPY_NO_EXPORT void PyUFunc_OO_O_method \
+ (char **, npy_intp const *, npy_intp const *, void *);
+NPY_NO_EXPORT void PyUFunc_On_Om \
+ (char **, npy_intp const *, npy_intp const *, void *);
+NPY_NO_EXPORT void PyUFunc_clearfperr \
+ (void);
+NPY_NO_EXPORT int PyUFunc_getfperr \
+ (void);
+NPY_NO_EXPORT int PyUFunc_ReplaceLoopBySignature \
+ (PyUFuncObject *, PyUFuncGenericFunction, const int *, PyUFuncGenericFunction *);
+NPY_NO_EXPORT PyObject * PyUFunc_FromFuncAndDataAndSignature \
+ (PyUFuncGenericFunction *, void *const *, const char *, int, int, int, int, const char *, const char *, int, const char *);
+NPY_NO_EXPORT void PyUFunc_e_e \
+ (char **, npy_intp const *, npy_intp const *, void *);
+NPY_NO_EXPORT void PyUFunc_e_e_As_f_f \
+ (char **, npy_intp const *, npy_intp const *, void *);
+NPY_NO_EXPORT void PyUFunc_e_e_As_d_d \
+ (char **, npy_intp const *, npy_intp const *, void *);
+NPY_NO_EXPORT void PyUFunc_ee_e \
+ (char **, npy_intp const *, npy_intp const *, void *);
+NPY_NO_EXPORT void PyUFunc_ee_e_As_ff_f \
+ (char **, npy_intp const *, npy_intp const *, void *);
+NPY_NO_EXPORT void PyUFunc_ee_e_As_dd_d \
+ (char **, npy_intp const *, npy_intp const *, void *);
+NPY_NO_EXPORT int PyUFunc_DefaultTypeResolver \
+ (PyUFuncObject *, NPY_CASTING, PyArrayObject **, PyObject *, PyArray_Descr **);
+NPY_NO_EXPORT int PyUFunc_ValidateCasting \
+ (PyUFuncObject *, NPY_CASTING, PyArrayObject **, PyArray_Descr *const *);
+NPY_NO_EXPORT int PyUFunc_RegisterLoopForDescr \
+ (PyUFuncObject *, PyArray_Descr *, PyUFuncGenericFunction, PyArray_Descr **, void *);
+NPY_NO_EXPORT PyObject * PyUFunc_FromFuncAndDataAndSignatureAndIdentity \
+ (PyUFuncGenericFunction *, void *const *, const char *, int, int, int, int, const char *, const char *, const int, const char *, PyObject *);
+NPY_NO_EXPORT int PyUFunc_AddLoopFromSpec \
+ (PyObject *, PyArrayMethod_Spec *);
+NPY_NO_EXPORT int PyUFunc_AddPromoter \
+ (PyObject *, PyObject *, PyObject *);
+NPY_NO_EXPORT int PyUFunc_AddWrappingLoop \
+ (PyObject *, PyArray_DTypeMeta *new_dtypes[], PyArray_DTypeMeta *wrapped_dtypes[], PyArrayMethod_TranslateGivenDescriptors *, PyArrayMethod_TranslateLoopDescriptors *);
+NPY_NO_EXPORT int PyUFunc_GiveFloatingpointErrors \
+ (const char *, int);
+
+#else
+
+#if defined(PY_UFUNC_UNIQUE_SYMBOL)
+#define PyUFunc_API PY_UFUNC_UNIQUE_SYMBOL
+#endif
+
+/* By default do not export API in an .so (was never the case on windows) */
+#ifndef NPY_API_SYMBOL_ATTRIBUTE
+ #define NPY_API_SYMBOL_ATTRIBUTE NPY_VISIBILITY_HIDDEN
+#endif
+
+#if defined(NO_IMPORT) || defined(NO_IMPORT_UFUNC)
+extern NPY_API_SYMBOL_ATTRIBUTE void **PyUFunc_API;
+#else
+#if defined(PY_UFUNC_UNIQUE_SYMBOL)
+NPY_API_SYMBOL_ATTRIBUTE void **PyUFunc_API;
+#else
+static void **PyUFunc_API=NULL;
+#endif
+#endif
+
+#define PyUFunc_Type (*(PyTypeObject *)PyUFunc_API[0])
+#define PyUFunc_FromFuncAndData \
+ (*(PyObject * (*)(PyUFuncGenericFunction *, void *const *, const char *, int, int, int, int, const char *, const char *, int)) \
+ PyUFunc_API[1])
+#define PyUFunc_RegisterLoopForType \
+ (*(int (*)(PyUFuncObject *, int, PyUFuncGenericFunction, const int *, void *)) \
+ PyUFunc_API[2])
+#define PyUFunc_f_f_As_d_d \
+ (*(void (*)(char **, npy_intp const *, npy_intp const *, void *)) \
+ PyUFunc_API[4])
+#define PyUFunc_d_d \
+ (*(void (*)(char **, npy_intp const *, npy_intp const *, void *)) \
+ PyUFunc_API[5])
+#define PyUFunc_f_f \
+ (*(void (*)(char **, npy_intp const *, npy_intp const *, void *)) \
+ PyUFunc_API[6])
+#define PyUFunc_g_g \
+ (*(void (*)(char **, npy_intp const *, npy_intp const *, void *)) \
+ PyUFunc_API[7])
+#define PyUFunc_F_F_As_D_D \
+ (*(void (*)(char **, npy_intp const *, npy_intp const *, void *)) \
+ PyUFunc_API[8])
+#define PyUFunc_F_F \
+ (*(void (*)(char **, npy_intp const *, npy_intp const *, void *)) \
+ PyUFunc_API[9])
+#define PyUFunc_D_D \
+ (*(void (*)(char **, npy_intp const *, npy_intp const *, void *)) \
+ PyUFunc_API[10])
+#define PyUFunc_G_G \
+ (*(void (*)(char **, npy_intp const *, npy_intp const *, void *)) \
+ PyUFunc_API[11])
+#define PyUFunc_O_O \
+ (*(void (*)(char **, npy_intp const *, npy_intp const *, void *)) \
+ PyUFunc_API[12])
+#define PyUFunc_ff_f_As_dd_d \
+ (*(void (*)(char **, npy_intp const *, npy_intp const *, void *)) \
+ PyUFunc_API[13])
+#define PyUFunc_ff_f \
+ (*(void (*)(char **, npy_intp const *, npy_intp const *, void *)) \
+ PyUFunc_API[14])
+#define PyUFunc_dd_d \
+ (*(void (*)(char **, npy_intp const *, npy_intp const *, void *)) \
+ PyUFunc_API[15])
+#define PyUFunc_gg_g \
+ (*(void (*)(char **, npy_intp const *, npy_intp const *, void *)) \
+ PyUFunc_API[16])
+#define PyUFunc_FF_F_As_DD_D \
+ (*(void (*)(char **, npy_intp const *, npy_intp const *, void *)) \
+ PyUFunc_API[17])
+#define PyUFunc_DD_D \
+ (*(void (*)(char **, npy_intp const *, npy_intp const *, void *)) \
+ PyUFunc_API[18])
+#define PyUFunc_FF_F \
+ (*(void (*)(char **, npy_intp const *, npy_intp const *, void *)) \
+ PyUFunc_API[19])
+#define PyUFunc_GG_G \
+ (*(void (*)(char **, npy_intp const *, npy_intp const *, void *)) \
+ PyUFunc_API[20])
+#define PyUFunc_OO_O \
+ (*(void (*)(char **, npy_intp const *, npy_intp const *, void *)) \
+ PyUFunc_API[21])
+#define PyUFunc_O_O_method \
+ (*(void (*)(char **, npy_intp const *, npy_intp const *, void *)) \
+ PyUFunc_API[22])
+#define PyUFunc_OO_O_method \
+ (*(void (*)(char **, npy_intp const *, npy_intp const *, void *)) \
+ PyUFunc_API[23])
+#define PyUFunc_On_Om \
+ (*(void (*)(char **, npy_intp const *, npy_intp const *, void *)) \
+ PyUFunc_API[24])
+#define PyUFunc_clearfperr \
+ (*(void (*)(void)) \
+ PyUFunc_API[27])
+#define PyUFunc_getfperr \
+ (*(int (*)(void)) \
+ PyUFunc_API[28])
+#define PyUFunc_ReplaceLoopBySignature \
+ (*(int (*)(PyUFuncObject *, PyUFuncGenericFunction, const int *, PyUFuncGenericFunction *)) \
+ PyUFunc_API[30])
+#define PyUFunc_FromFuncAndDataAndSignature \
+ (*(PyObject * (*)(PyUFuncGenericFunction *, void *const *, const char *, int, int, int, int, const char *, const char *, int, const char *)) \
+ PyUFunc_API[31])
+#define PyUFunc_e_e \
+ (*(void (*)(char **, npy_intp const *, npy_intp const *, void *)) \
+ PyUFunc_API[33])
+#define PyUFunc_e_e_As_f_f \
+ (*(void (*)(char **, npy_intp const *, npy_intp const *, void *)) \
+ PyUFunc_API[34])
+#define PyUFunc_e_e_As_d_d \
+ (*(void (*)(char **, npy_intp const *, npy_intp const *, void *)) \
+ PyUFunc_API[35])
+#define PyUFunc_ee_e \
+ (*(void (*)(char **, npy_intp const *, npy_intp const *, void *)) \
+ PyUFunc_API[36])
+#define PyUFunc_ee_e_As_ff_f \
+ (*(void (*)(char **, npy_intp const *, npy_intp const *, void *)) \
+ PyUFunc_API[37])
+#define PyUFunc_ee_e_As_dd_d \
+ (*(void (*)(char **, npy_intp const *, npy_intp const *, void *)) \
+ PyUFunc_API[38])
+#define PyUFunc_DefaultTypeResolver \
+ (*(int (*)(PyUFuncObject *, NPY_CASTING, PyArrayObject **, PyObject *, PyArray_Descr **)) \
+ PyUFunc_API[39])
+#define PyUFunc_ValidateCasting \
+ (*(int (*)(PyUFuncObject *, NPY_CASTING, PyArrayObject **, PyArray_Descr *const *)) \
+ PyUFunc_API[40])
+#define PyUFunc_RegisterLoopForDescr \
+ (*(int (*)(PyUFuncObject *, PyArray_Descr *, PyUFuncGenericFunction, PyArray_Descr **, void *)) \
+ PyUFunc_API[41])
+
+#if NPY_FEATURE_VERSION >= NPY_1_16_API_VERSION
+#define PyUFunc_FromFuncAndDataAndSignatureAndIdentity \
+ (*(PyObject * (*)(PyUFuncGenericFunction *, void *const *, const char *, int, int, int, int, const char *, const char *, const int, const char *, PyObject *)) \
+ PyUFunc_API[42])
+#endif
+
+#if NPY_FEATURE_VERSION >= NPY_2_0_API_VERSION
+#define PyUFunc_AddLoopFromSpec \
+ (*(int (*)(PyObject *, PyArrayMethod_Spec *)) \
+ PyUFunc_API[43])
+#endif
+
+#if NPY_FEATURE_VERSION >= NPY_2_0_API_VERSION
+#define PyUFunc_AddPromoter \
+ (*(int (*)(PyObject *, PyObject *, PyObject *)) \
+ PyUFunc_API[44])
+#endif
+
+#if NPY_FEATURE_VERSION >= NPY_2_0_API_VERSION
+#define PyUFunc_AddWrappingLoop \
+ (*(int (*)(PyObject *, PyArray_DTypeMeta *new_dtypes[], PyArray_DTypeMeta *wrapped_dtypes[], PyArrayMethod_TranslateGivenDescriptors *, PyArrayMethod_TranslateLoopDescriptors *)) \
+ PyUFunc_API[45])
+#endif
+
+#if NPY_FEATURE_VERSION >= NPY_2_0_API_VERSION
+#define PyUFunc_GiveFloatingpointErrors \
+ (*(int (*)(const char *, int)) \
+ PyUFunc_API[46])
+#endif
+
+static inline int
+_import_umath(void)
+{
+ PyObject *c_api;
+ PyObject *numpy = PyImport_ImportModule("numpy._core._multiarray_umath");
+ if (numpy == NULL && PyErr_ExceptionMatches(PyExc_ModuleNotFoundError)) {
+ PyErr_Clear();
+ numpy = PyImport_ImportModule("numpy.core._multiarray_umath");
+ }
+
+ if (numpy == NULL) {
+ PyErr_SetString(PyExc_ImportError,
+ "_multiarray_umath failed to import");
+ return -1;
+ }
+
+ c_api = PyObject_GetAttrString(numpy, "_UFUNC_API");
+ Py_DECREF(numpy);
+ if (c_api == NULL) {
+ PyErr_SetString(PyExc_AttributeError, "_UFUNC_API not found");
+ return -1;
+ }
+
+ if (!PyCapsule_CheckExact(c_api)) {
+ PyErr_SetString(PyExc_RuntimeError, "_UFUNC_API is not PyCapsule object");
+ Py_DECREF(c_api);
+ return -1;
+ }
+ PyUFunc_API = (void **)PyCapsule_GetPointer(c_api, NULL);
+ Py_DECREF(c_api);
+ if (PyUFunc_API == NULL) {
+ PyErr_SetString(PyExc_RuntimeError, "_UFUNC_API is NULL pointer");
+ return -1;
+ }
+ return 0;
+}
+
+#define import_umath() \
+ do {\
+ UFUNC_NOFPE\
+ if (_import_umath() < 0) {\
+ PyErr_Print();\
+ PyErr_SetString(PyExc_ImportError,\
+ "numpy._core.umath failed to import");\
+ return NULL;\
+ }\
+ } while(0)
+
+#define import_umath1(ret) \
+ do {\
+ UFUNC_NOFPE\
+ if (_import_umath() < 0) {\
+ PyErr_Print();\
+ PyErr_SetString(PyExc_ImportError,\
+ "numpy._core.umath failed to import");\
+ return ret;\
+ }\
+ } while(0)
+
+#define import_umath2(ret, msg) \
+ do {\
+ UFUNC_NOFPE\
+ if (_import_umath() < 0) {\
+ PyErr_Print();\
+ PyErr_SetString(PyExc_ImportError, msg);\
+ return ret;\
+ }\
+ } while(0)
+
+#define import_ufunc() \
+ do {\
+ UFUNC_NOFPE\
+ if (_import_umath() < 0) {\
+ PyErr_Print();\
+ PyErr_SetString(PyExc_ImportError,\
+ "numpy._core.umath failed to import");\
+ }\
+ } while(0)
+
+
+static inline int
+PyUFunc_ImportUFuncAPI()
+{
+ if (NPY_UNLIKELY(PyUFunc_API == NULL)) {
+ import_umath1(-1);
+ }
+ return 0;
+}
+
+#endif
diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/include/numpy/_neighborhood_iterator_imp.h b/.venv/lib/python3.12/site-packages/numpy/_core/include/numpy/_neighborhood_iterator_imp.h
new file mode 100644
index 0000000..b365cb5
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/_core/include/numpy/_neighborhood_iterator_imp.h
@@ -0,0 +1,90 @@
+#ifndef NUMPY_CORE_INCLUDE_NUMPY__NEIGHBORHOOD_IMP_H_
+#error You should not include this header directly
+#endif
+/*
+ * Private API (here for inline)
+ */
+static inline int
+_PyArrayNeighborhoodIter_IncrCoord(PyArrayNeighborhoodIterObject* iter);
+
+/*
+ * Update to next item of the iterator
+ *
+ * Note: this simply increment the coordinates vector, last dimension
+ * incremented first , i.e, for dimension 3
+ * ...
+ * -1, -1, -1
+ * -1, -1, 0
+ * -1, -1, 1
+ * ....
+ * -1, 0, -1
+ * -1, 0, 0
+ * ....
+ * 0, -1, -1
+ * 0, -1, 0
+ * ....
+ */
+#define _UPDATE_COORD_ITER(c) \
+ wb = iter->coordinates[c] < iter->bounds[c][1]; \
+ if (wb) { \
+ iter->coordinates[c] += 1; \
+ return 0; \
+ } \
+ else { \
+ iter->coordinates[c] = iter->bounds[c][0]; \
+ }
+
+static inline int
+_PyArrayNeighborhoodIter_IncrCoord(PyArrayNeighborhoodIterObject* iter)
+{
+ npy_intp i, wb;
+
+ for (i = iter->nd - 1; i >= 0; --i) {
+ _UPDATE_COORD_ITER(i)
+ }
+
+ return 0;
+}
+
+/*
+ * Version optimized for 2d arrays, manual loop unrolling
+ */
+static inline int
+_PyArrayNeighborhoodIter_IncrCoord2D(PyArrayNeighborhoodIterObject* iter)
+{
+ npy_intp wb;
+
+ _UPDATE_COORD_ITER(1)
+ _UPDATE_COORD_ITER(0)
+
+ return 0;
+}
+#undef _UPDATE_COORD_ITER
+
+/*
+ * Advance to the next neighbour
+ */
+static inline int
+PyArrayNeighborhoodIter_Next(PyArrayNeighborhoodIterObject* iter)
+{
+ _PyArrayNeighborhoodIter_IncrCoord (iter);
+ iter->dataptr = iter->translate((PyArrayIterObject*)iter, iter->coordinates);
+
+ return 0;
+}
+
+/*
+ * Reset functions
+ */
+static inline int
+PyArrayNeighborhoodIter_Reset(PyArrayNeighborhoodIterObject* iter)
+{
+ npy_intp i;
+
+ for (i = 0; i < iter->nd; ++i) {
+ iter->coordinates[i] = iter->bounds[i][0];
+ }
+ iter->dataptr = iter->translate((PyArrayIterObject*)iter, iter->coordinates);
+
+ return 0;
+}
diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/include/numpy/_numpyconfig.h b/.venv/lib/python3.12/site-packages/numpy/_core/include/numpy/_numpyconfig.h
new file mode 100644
index 0000000..16a4b44
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/_core/include/numpy/_numpyconfig.h
@@ -0,0 +1,33 @@
+#define NPY_HAVE_ENDIAN_H 1
+
+#define NPY_SIZEOF_SHORT 2
+#define NPY_SIZEOF_INT 4
+#define NPY_SIZEOF_LONG 8
+#define NPY_SIZEOF_FLOAT 4
+#define NPY_SIZEOF_COMPLEX_FLOAT 8
+#define NPY_SIZEOF_DOUBLE 8
+#define NPY_SIZEOF_COMPLEX_DOUBLE 16
+#define NPY_SIZEOF_LONGDOUBLE 16
+#define NPY_SIZEOF_COMPLEX_LONGDOUBLE 32
+#define NPY_SIZEOF_PY_INTPTR_T 8
+#define NPY_SIZEOF_INTP 8
+#define NPY_SIZEOF_UINTP 8
+#define NPY_SIZEOF_WCHAR_T 4
+#define NPY_SIZEOF_OFF_T 8
+#define NPY_SIZEOF_PY_LONG_LONG 8
+#define NPY_SIZEOF_LONGLONG 8
+
+/*
+ * Defined to 1 or 0. Note that Pyodide hardcodes NPY_NO_SMP (and other defines
+ * in this header) for better cross-compilation, so don't rename them without a
+ * good reason.
+ */
+#define NPY_NO_SMP 0
+
+#define NPY_VISIBILITY_HIDDEN __attribute__((visibility("hidden")))
+#define NPY_ABI_VERSION 0x02000000
+#define NPY_API_VERSION 0x00000014
+
+#ifndef __STDC_FORMAT_MACROS
+#define __STDC_FORMAT_MACROS 1
+#endif
diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/include/numpy/_public_dtype_api_table.h b/.venv/lib/python3.12/site-packages/numpy/_core/include/numpy/_public_dtype_api_table.h
new file mode 100644
index 0000000..51f3905
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/_core/include/numpy/_public_dtype_api_table.h
@@ -0,0 +1,86 @@
+/*
+ * Public exposure of the DType Classes. These are tricky to expose
+ * via the Python API, so they are exposed through this header for now.
+ *
+ * These definitions are only relevant for the public API and we reserve
+ * the slots 320-360 in the API table generation for this (currently).
+ *
+ * TODO: This file should be consolidated with the API table generation
+ * (although not sure the current generation is worth preserving).
+ */
+#ifndef NUMPY_CORE_INCLUDE_NUMPY__PUBLIC_DTYPE_API_TABLE_H_
+#define NUMPY_CORE_INCLUDE_NUMPY__PUBLIC_DTYPE_API_TABLE_H_
+
+#if !(defined(NPY_INTERNAL_BUILD) && NPY_INTERNAL_BUILD)
+
+/* All of these require NumPy 2.0 support */
+#if NPY_FEATURE_VERSION >= NPY_2_0_API_VERSION
+
+/*
+ * The type of the DType metaclass
+ */
+#define PyArrayDTypeMeta_Type (*(PyTypeObject *)(PyArray_API + 320)[0])
+/*
+ * NumPy's builtin DTypes:
+ */
+#define PyArray_BoolDType (*(PyArray_DTypeMeta *)(PyArray_API + 320)[1])
+/* Integers */
+#define PyArray_ByteDType (*(PyArray_DTypeMeta *)(PyArray_API + 320)[2])
+#define PyArray_UByteDType (*(PyArray_DTypeMeta *)(PyArray_API + 320)[3])
+#define PyArray_ShortDType (*(PyArray_DTypeMeta *)(PyArray_API + 320)[4])
+#define PyArray_UShortDType (*(PyArray_DTypeMeta *)(PyArray_API + 320)[5])
+#define PyArray_IntDType (*(PyArray_DTypeMeta *)(PyArray_API + 320)[6])
+#define PyArray_UIntDType (*(PyArray_DTypeMeta *)(PyArray_API + 320)[7])
+#define PyArray_LongDType (*(PyArray_DTypeMeta *)(PyArray_API + 320)[8])
+#define PyArray_ULongDType (*(PyArray_DTypeMeta *)(PyArray_API + 320)[9])
+#define PyArray_LongLongDType (*(PyArray_DTypeMeta *)(PyArray_API + 320)[10])
+#define PyArray_ULongLongDType (*(PyArray_DTypeMeta *)(PyArray_API + 320)[11])
+/* Integer aliases */
+#define PyArray_Int8DType (*(PyArray_DTypeMeta *)(PyArray_API + 320)[12])
+#define PyArray_UInt8DType (*(PyArray_DTypeMeta *)(PyArray_API + 320)[13])
+#define PyArray_Int16DType (*(PyArray_DTypeMeta *)(PyArray_API + 320)[14])
+#define PyArray_UInt16DType (*(PyArray_DTypeMeta *)(PyArray_API + 320)[15])
+#define PyArray_Int32DType (*(PyArray_DTypeMeta *)(PyArray_API + 320)[16])
+#define PyArray_UInt32DType (*(PyArray_DTypeMeta *)(PyArray_API + 320)[17])
+#define PyArray_Int64DType (*(PyArray_DTypeMeta *)(PyArray_API + 320)[18])
+#define PyArray_UInt64DType (*(PyArray_DTypeMeta *)(PyArray_API + 320)[19])
+#define PyArray_IntpDType (*(PyArray_DTypeMeta *)(PyArray_API + 320)[20])
+#define PyArray_UIntpDType (*(PyArray_DTypeMeta *)(PyArray_API + 320)[21])
+/* Floats */
+#define PyArray_HalfDType (*(PyArray_DTypeMeta *)(PyArray_API + 320)[22])
+#define PyArray_FloatDType (*(PyArray_DTypeMeta *)(PyArray_API + 320)[23])
+#define PyArray_DoubleDType (*(PyArray_DTypeMeta *)(PyArray_API + 320)[24])
+#define PyArray_LongDoubleDType (*(PyArray_DTypeMeta *)(PyArray_API + 320)[25])
+/* Complex */
+#define PyArray_CFloatDType (*(PyArray_DTypeMeta *)(PyArray_API + 320)[26])
+#define PyArray_CDoubleDType (*(PyArray_DTypeMeta *)(PyArray_API + 320)[27])
+#define PyArray_CLongDoubleDType (*(PyArray_DTypeMeta *)(PyArray_API + 320)[28])
+/* String/Bytes */
+#define PyArray_BytesDType (*(PyArray_DTypeMeta *)(PyArray_API + 320)[29])
+#define PyArray_UnicodeDType (*(PyArray_DTypeMeta *)(PyArray_API + 320)[30])
+/* Datetime/Timedelta */
+#define PyArray_DatetimeDType (*(PyArray_DTypeMeta *)(PyArray_API + 320)[31])
+#define PyArray_TimedeltaDType (*(PyArray_DTypeMeta *)(PyArray_API + 320)[32])
+/* Object/Void */
+#define PyArray_ObjectDType (*(PyArray_DTypeMeta *)(PyArray_API + 320)[33])
+#define PyArray_VoidDType (*(PyArray_DTypeMeta *)(PyArray_API + 320)[34])
+/* Python types (used as markers for scalars) */
+#define PyArray_PyLongDType (*(PyArray_DTypeMeta *)(PyArray_API + 320)[35])
+#define PyArray_PyFloatDType (*(PyArray_DTypeMeta *)(PyArray_API + 320)[36])
+#define PyArray_PyComplexDType (*(PyArray_DTypeMeta *)(PyArray_API + 320)[37])
+/* Default integer type */
+#define PyArray_DefaultIntDType (*(PyArray_DTypeMeta *)(PyArray_API + 320)[38])
+/* New non-legacy DTypes follow in the order they were added */
+#define PyArray_StringDType (*(PyArray_DTypeMeta *)(PyArray_API + 320)[39])
+
+/* NOTE: offset 40 is free */
+
+/* Need to start with a larger offset again for the abstract classes: */
+#define PyArray_IntAbstractDType (*(PyArray_DTypeMeta *)PyArray_API[366])
+#define PyArray_FloatAbstractDType (*(PyArray_DTypeMeta *)PyArray_API[367])
+#define PyArray_ComplexAbstractDType (*(PyArray_DTypeMeta *)PyArray_API[368])
+
+#endif /* NPY_FEATURE_VERSION >= NPY_2_0_API_VERSION */
+
+#endif /* NPY_INTERNAL_BUILD */
+#endif /* NUMPY_CORE_INCLUDE_NUMPY__PUBLIC_DTYPE_API_TABLE_H_ */
diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/include/numpy/arrayobject.h b/.venv/lib/python3.12/site-packages/numpy/_core/include/numpy/arrayobject.h
new file mode 100644
index 0000000..97d9359
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/_core/include/numpy/arrayobject.h
@@ -0,0 +1,7 @@
+#ifndef NUMPY_CORE_INCLUDE_NUMPY_ARRAYOBJECT_H_
+#define NUMPY_CORE_INCLUDE_NUMPY_ARRAYOBJECT_H_
+#define Py_ARRAYOBJECT_H
+
+#include "ndarrayobject.h"
+
+#endif /* NUMPY_CORE_INCLUDE_NUMPY_ARRAYOBJECT_H_ */
diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/include/numpy/arrayscalars.h b/.venv/lib/python3.12/site-packages/numpy/_core/include/numpy/arrayscalars.h
new file mode 100644
index 0000000..ff04806
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/_core/include/numpy/arrayscalars.h
@@ -0,0 +1,196 @@
+#ifndef NUMPY_CORE_INCLUDE_NUMPY_ARRAYSCALARS_H_
+#define NUMPY_CORE_INCLUDE_NUMPY_ARRAYSCALARS_H_
+
+#ifndef _MULTIARRAYMODULE
+typedef struct {
+ PyObject_HEAD
+ npy_bool obval;
+} PyBoolScalarObject;
+#endif
+
+
+typedef struct {
+ PyObject_HEAD
+ signed char obval;
+} PyByteScalarObject;
+
+
+typedef struct {
+ PyObject_HEAD
+ short obval;
+} PyShortScalarObject;
+
+
+typedef struct {
+ PyObject_HEAD
+ int obval;
+} PyIntScalarObject;
+
+
+typedef struct {
+ PyObject_HEAD
+ long obval;
+} PyLongScalarObject;
+
+
+typedef struct {
+ PyObject_HEAD
+ npy_longlong obval;
+} PyLongLongScalarObject;
+
+
+typedef struct {
+ PyObject_HEAD
+ unsigned char obval;
+} PyUByteScalarObject;
+
+
+typedef struct {
+ PyObject_HEAD
+ unsigned short obval;
+} PyUShortScalarObject;
+
+
+typedef struct {
+ PyObject_HEAD
+ unsigned int obval;
+} PyUIntScalarObject;
+
+
+typedef struct {
+ PyObject_HEAD
+ unsigned long obval;
+} PyULongScalarObject;
+
+
+typedef struct {
+ PyObject_HEAD
+ npy_ulonglong obval;
+} PyULongLongScalarObject;
+
+
+typedef struct {
+ PyObject_HEAD
+ npy_half obval;
+} PyHalfScalarObject;
+
+
+typedef struct {
+ PyObject_HEAD
+ float obval;
+} PyFloatScalarObject;
+
+
+typedef struct {
+ PyObject_HEAD
+ double obval;
+} PyDoubleScalarObject;
+
+
+typedef struct {
+ PyObject_HEAD
+ npy_longdouble obval;
+} PyLongDoubleScalarObject;
+
+
+typedef struct {
+ PyObject_HEAD
+ npy_cfloat obval;
+} PyCFloatScalarObject;
+
+
+typedef struct {
+ PyObject_HEAD
+ npy_cdouble obval;
+} PyCDoubleScalarObject;
+
+
+typedef struct {
+ PyObject_HEAD
+ npy_clongdouble obval;
+} PyCLongDoubleScalarObject;
+
+
+typedef struct {
+ PyObject_HEAD
+ PyObject * obval;
+} PyObjectScalarObject;
+
+typedef struct {
+ PyObject_HEAD
+ npy_datetime obval;
+ PyArray_DatetimeMetaData obmeta;
+} PyDatetimeScalarObject;
+
+typedef struct {
+ PyObject_HEAD
+ npy_timedelta obval;
+ PyArray_DatetimeMetaData obmeta;
+} PyTimedeltaScalarObject;
+
+
+typedef struct {
+ PyObject_HEAD
+ char obval;
+} PyScalarObject;
+
+#define PyStringScalarObject PyBytesObject
+#ifndef Py_LIMITED_API
+typedef struct {
+ /* note that the PyObject_HEAD macro lives right here */
+ PyUnicodeObject base;
+ Py_UCS4 *obval;
+ #if NPY_FEATURE_VERSION >= NPY_1_20_API_VERSION
+ char *buffer_fmt;
+ #endif
+} PyUnicodeScalarObject;
+#endif
+
+
+typedef struct {
+ PyObject_VAR_HEAD
+ char *obval;
+#if defined(NPY_INTERNAL_BUILD) && NPY_INTERNAL_BUILD
+ /* Internally use the subclass to allow accessing names/fields */
+ _PyArray_LegacyDescr *descr;
+#else
+ PyArray_Descr *descr;
+#endif
+ int flags;
+ PyObject *base;
+ #if NPY_FEATURE_VERSION >= NPY_1_20_API_VERSION
+ void *_buffer_info; /* private buffer info, tagged to allow warning */
+ #endif
+} PyVoidScalarObject;
+
+/* Macros
+ Py<Cls><bitsize>ScalarObject
+ Py<Cls><bitsize>ArrType_Type
+ are defined in ndarrayobject.h
+*/
+
+#define PyArrayScalar_False ((PyObject *)(&(_PyArrayScalar_BoolValues[0])))
+#define PyArrayScalar_True ((PyObject *)(&(_PyArrayScalar_BoolValues[1])))
+#define PyArrayScalar_FromLong(i) \
+ ((PyObject *)(&(_PyArrayScalar_BoolValues[((i)!=0)])))
+#define PyArrayScalar_RETURN_BOOL_FROM_LONG(i) \
+ return Py_INCREF(PyArrayScalar_FromLong(i)), \
+ PyArrayScalar_FromLong(i)
+#define PyArrayScalar_RETURN_FALSE \
+ return Py_INCREF(PyArrayScalar_False), \
+ PyArrayScalar_False
+#define PyArrayScalar_RETURN_TRUE \
+ return Py_INCREF(PyArrayScalar_True), \
+ PyArrayScalar_True
+
+#define PyArrayScalar_New(cls) \
+ Py##cls##ArrType_Type.tp_alloc(&Py##cls##ArrType_Type, 0)
+#ifndef Py_LIMITED_API
+/* For the limited API, use PyArray_ScalarAsCtype instead */
+#define PyArrayScalar_VAL(obj, cls) \
+ ((Py##cls##ScalarObject *)obj)->obval
+#define PyArrayScalar_ASSIGN(obj, cls, val) \
+ PyArrayScalar_VAL(obj, cls) = val
+#endif
+
+#endif /* NUMPY_CORE_INCLUDE_NUMPY_ARRAYSCALARS_H_ */
diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/include/numpy/dtype_api.h b/.venv/lib/python3.12/site-packages/numpy/_core/include/numpy/dtype_api.h
new file mode 100644
index 0000000..b37c9fb
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/_core/include/numpy/dtype_api.h
@@ -0,0 +1,480 @@
+/*
+ * The public DType API
+ */
+
+#ifndef NUMPY_CORE_INCLUDE_NUMPY___DTYPE_API_H_
+#define NUMPY_CORE_INCLUDE_NUMPY___DTYPE_API_H_
+
+struct PyArrayMethodObject_tag;
+
+/*
+ * Largely opaque struct for DType classes (i.e. metaclass instances).
+ * The internal definition is currently in `ndarraytypes.h` (export is a bit
+ * more complex because `PyArray_Descr` is a DTypeMeta internally but not
+ * externally).
+ */
+#if !(defined(NPY_INTERNAL_BUILD) && NPY_INTERNAL_BUILD)
+
+#ifndef Py_LIMITED_API
+
+ typedef struct PyArray_DTypeMeta_tag {
+ PyHeapTypeObject super;
+
+ /*
+ * Most DTypes will have a singleton default instance, for the
+ * parametric legacy DTypes (bytes, string, void, datetime) this
+ * may be a pointer to the *prototype* instance?
+ */
+ PyArray_Descr *singleton;
+ /* Copy of the legacy DTypes type number, usually invalid. */
+ int type_num;
+
+ /* The type object of the scalar instances (may be NULL?) */
+ PyTypeObject *scalar_type;
+ /*
+ * DType flags to signal legacy, parametric, or
+ * abstract. But plenty of space for additional information/flags.
+ */
+ npy_uint64 flags;
+
+ /*
+ * Use indirection in order to allow a fixed size for this struct.
+ * A stable ABI size makes creating a static DType less painful
+ * while also ensuring flexibility for all opaque API (with one
+ * indirection due the pointer lookup).
+ */
+ void *dt_slots;
+ /* Allow growing (at the moment also beyond this) */
+ void *reserved[3];
+ } PyArray_DTypeMeta;
+
+#else
+
+typedef PyTypeObject PyArray_DTypeMeta;
+
+#endif /* Py_LIMITED_API */
+
+#endif /* not internal build */
+
+/*
+ * ******************************************************
+ * ArrayMethod API (Casting and UFuncs)
+ * ******************************************************
+ */
+
+
+typedef enum {
+ /* Flag for whether the GIL is required */
+ NPY_METH_REQUIRES_PYAPI = 1 << 0,
+ /*
+ * Some functions cannot set floating point error flags, this flag
+ * gives us the option (not requirement) to skip floating point error
+ * setup/check. No function should set error flags and ignore them
+ * since it would interfere with chaining operations (e.g. casting).
+ */
+ NPY_METH_NO_FLOATINGPOINT_ERRORS = 1 << 1,
+ /* Whether the method supports unaligned access (not runtime) */
+ NPY_METH_SUPPORTS_UNALIGNED = 1 << 2,
+ /*
+ * Used for reductions to allow reordering the operation. At this point
+ * assume that if set, it also applies to normal operations though!
+ */
+ NPY_METH_IS_REORDERABLE = 1 << 3,
+ /*
+ * Private flag for now for *logic* functions. The logical functions
+ * `logical_or` and `logical_and` can always cast the inputs to booleans
+ * "safely" (because that is how the cast to bool is defined).
+ * @seberg: I am not sure this is the best way to handle this, so its
+ * private for now (also it is very limited anyway).
+ * There is one "exception". NA aware dtypes cannot cast to bool
+ * (hopefully), so the `??->?` loop should error even with this flag.
+ * But a second NA fallback loop will be necessary.
+ */
+ _NPY_METH_FORCE_CAST_INPUTS = 1 << 17,
+
+ /* All flags which can change at runtime */
+ NPY_METH_RUNTIME_FLAGS = (
+ NPY_METH_REQUIRES_PYAPI |
+ NPY_METH_NO_FLOATINGPOINT_ERRORS),
+} NPY_ARRAYMETHOD_FLAGS;
+
+
+typedef struct PyArrayMethod_Context_tag {
+ /* The caller, which is typically the original ufunc. May be NULL */
+ PyObject *caller;
+ /* The method "self". Currently an opaque object. */
+ struct PyArrayMethodObject_tag *method;
+
+ /* Operand descriptors, filled in by resolve_descriptors */
+ PyArray_Descr *const *descriptors;
+ /* Structure may grow (this is harmless for DType authors) */
+} PyArrayMethod_Context;
+
+
+/*
+ * The main object for creating a new ArrayMethod. We use the typical `slots`
+ * mechanism used by the Python limited API (see below for the slot defs).
+ */
+typedef struct {
+ const char *name;
+ int nin, nout;
+ NPY_CASTING casting;
+ NPY_ARRAYMETHOD_FLAGS flags;
+ PyArray_DTypeMeta **dtypes;
+ PyType_Slot *slots;
+} PyArrayMethod_Spec;
+
+
+/*
+ * ArrayMethod slots
+ * -----------------
+ *
+ * SLOTS IDs For the ArrayMethod creation, once fully public, IDs are fixed
+ * but can be deprecated and arbitrarily extended.
+ */
+#define _NPY_METH_resolve_descriptors_with_scalars 1
+#define NPY_METH_resolve_descriptors 2
+#define NPY_METH_get_loop 3
+#define NPY_METH_get_reduction_initial 4
+/* specific loops for constructions/default get_loop: */
+#define NPY_METH_strided_loop 5
+#define NPY_METH_contiguous_loop 6
+#define NPY_METH_unaligned_strided_loop 7
+#define NPY_METH_unaligned_contiguous_loop 8
+#define NPY_METH_contiguous_indexed_loop 9
+#define _NPY_METH_static_data 10
+
+
+/*
+ * The resolve descriptors function, must be able to handle NULL values for
+ * all output (but not input) `given_descrs` and fill `loop_descrs`.
+ * Return -1 on error or 0 if the operation is not possible without an error
+ * set. (This may still be in flux.)
+ * Otherwise must return the "casting safety", for normal functions, this is
+ * almost always "safe" (or even "equivalent"?).
+ *
+ * `resolve_descriptors` is optional if all output DTypes are non-parametric.
+ */
+typedef NPY_CASTING (PyArrayMethod_ResolveDescriptors)(
+ /* "method" is currently opaque (necessary e.g. to wrap Python) */
+ struct PyArrayMethodObject_tag *method,
+ /* DTypes the method was created for */
+ PyArray_DTypeMeta *const *dtypes,
+ /* Input descriptors (instances). Outputs may be NULL. */
+ PyArray_Descr *const *given_descrs,
+ /* Exact loop descriptors to use, must not hold references on error */
+ PyArray_Descr **loop_descrs,
+ npy_intp *view_offset);
+
+
+/*
+ * Rarely needed, slightly more powerful version of `resolve_descriptors`.
+ * See also `PyArrayMethod_ResolveDescriptors` for details on shared arguments.
+ *
+ * NOTE: This function is private now as it is unclear how and what to pass
+ * exactly as additional information to allow dealing with the scalars.
+ * See also gh-24915.
+ */
+typedef NPY_CASTING (PyArrayMethod_ResolveDescriptorsWithScalar)(
+ struct PyArrayMethodObject_tag *method,
+ PyArray_DTypeMeta *const *dtypes,
+ /* Unlike above, these can have any DType and we may allow NULL. */
+ PyArray_Descr *const *given_descrs,
+ /*
+ * Input scalars or NULL. Only ever passed for python scalars.
+ * WARNING: In some cases, a loop may be explicitly selected and the
+ * value passed is not available (NULL) or does not have the
+ * expected type.
+ */
+ PyObject *const *input_scalars,
+ PyArray_Descr **loop_descrs,
+ npy_intp *view_offset);
+
+
+
+typedef int (PyArrayMethod_StridedLoop)(PyArrayMethod_Context *context,
+ char *const *data, const npy_intp *dimensions, const npy_intp *strides,
+ NpyAuxData *transferdata);
+
+
+typedef int (PyArrayMethod_GetLoop)(
+ PyArrayMethod_Context *context,
+ int aligned, int move_references,
+ const npy_intp *strides,
+ PyArrayMethod_StridedLoop **out_loop,
+ NpyAuxData **out_transferdata,
+ NPY_ARRAYMETHOD_FLAGS *flags);
+
+/**
+ * Query an ArrayMethod for the initial value for use in reduction.
+ *
+ * @param context The arraymethod context, mainly to access the descriptors.
+ * @param reduction_is_empty Whether the reduction is empty. When it is, the
+ * value returned may differ. In this case it is a "default" value that
+ * may differ from the "identity" value normally used. For example:
+ * - `0.0` is the default for `sum([])`. But `-0.0` is the correct
+ * identity otherwise as it preserves the sign for `sum([-0.0])`.
+ * - We use no identity for object, but return the default of `0` and `1`
+ * for the empty `sum([], dtype=object)` and `prod([], dtype=object)`.
+ * This allows `np.sum(np.array(["a", "b"], dtype=object))` to work.
+ * - `-inf` or `INT_MIN` for `max` is an identity, but at least `INT_MIN`
+ * not a good *default* when there are no items.
+ * @param initial Pointer to initial data to be filled (if possible)
+ *
+ * @returns -1, 0, or 1 indicating error, no initial value, and initial being
+ * successfully filled. Errors must not be given where 0 is correct, NumPy
+ * may call this even when not strictly necessary.
+ */
+typedef int (PyArrayMethod_GetReductionInitial)(
+ PyArrayMethod_Context *context, npy_bool reduction_is_empty,
+ void *initial);
+
+/*
+ * The following functions are only used by the wrapping array method defined
+ * in umath/wrapping_array_method.c
+ */
+
+
+/*
+ * The function to convert the given descriptors (passed in to
+ * `resolve_descriptors`) and translates them for the wrapped loop.
+ * The new descriptors MUST be viewable with the old ones, `NULL` must be
+ * supported (for outputs) and should normally be forwarded.
+ *
+ * The function must clean up on error.
+ *
+ * NOTE: We currently assume that this translation gives "viewable" results.
+ * I.e. there is no additional casting related to the wrapping process.
+ * In principle that could be supported, but not sure it is useful.
+ * This currently also means that e.g. alignment must apply identically
+ * to the new dtypes.
+ *
+ * TODO: Due to the fact that `resolve_descriptors` is also used for `can_cast`
+ * there is no way to "pass out" the result of this function. This means
+ * it will be called twice for every ufunc call.
+ * (I am considering including `auxdata` as an "optional" parameter to
+ * `resolve_descriptors`, so that it can be filled there if not NULL.)
+ */
+typedef int (PyArrayMethod_TranslateGivenDescriptors)(int nin, int nout,
+ PyArray_DTypeMeta *const wrapped_dtypes[],
+ PyArray_Descr *const given_descrs[], PyArray_Descr *new_descrs[]);
+
+/**
+ * The function to convert the actual loop descriptors (as returned by the
+ * original `resolve_descriptors` function) to the ones the output array
+ * should use.
+ * This function must return "viewable" types, it must not mutate them in any
+ * form that would break the inner-loop logic. Does not need to support NULL.
+ *
+ * The function must clean up on error.
+ *
+ * @param nin Number of input arguments
+ * @param nout Number of output arguments
+ * @param new_dtypes The DTypes of the output (usually probably not needed)
+ * @param given_descrs Original given_descrs to the resolver, necessary to
+ * fetch any information related to the new dtypes from the original.
+ * @param original_descrs The `loop_descrs` returned by the wrapped loop.
+ * @param loop_descrs The output descriptors, compatible to `original_descrs`.
+ *
+ * @returns 0 on success, -1 on failure.
+ */
+typedef int (PyArrayMethod_TranslateLoopDescriptors)(int nin, int nout,
+ PyArray_DTypeMeta *const new_dtypes[], PyArray_Descr *const given_descrs[],
+ PyArray_Descr *original_descrs[], PyArray_Descr *loop_descrs[]);
+
+
+
+/*
+ * A traverse loop working on a single array. This is similar to the general
+ * strided-loop function. This is designed for loops that need to visit every
+ * element of a single array.
+ *
+ * Currently this is used for array clearing, via the NPY_DT_get_clear_loop
+ * API hook, and zero-filling, via the NPY_DT_get_fill_zero_loop API hook.
+ * These are most useful for handling arrays storing embedded references to
+ * python objects or heap-allocated data.
+ *
+ * The `void *traverse_context` is passed in because we may need to pass in
+ * Interpreter state or similar in the future, but we don't want to pass in
+ * a full context (with pointers to dtypes, method, caller which all make
+ * no sense for a traverse function).
+ *
+ * We assume for now that this context can be just passed through in the
+ * the future (for structured dtypes).
+ *
+ */
+typedef int (PyArrayMethod_TraverseLoop)(
+ void *traverse_context, const PyArray_Descr *descr, char *data,
+ npy_intp size, npy_intp stride, NpyAuxData *auxdata);
+
+
+/*
+ * Simplified get_loop function specific to dtype traversal
+ *
+ * It should set the flags needed for the traversal loop and set out_loop to the
+ * loop function, which must be a valid PyArrayMethod_TraverseLoop
+ * pointer. Currently this is used for zero-filling and clearing arrays storing
+ * embedded references.
+ *
+ */
+typedef int (PyArrayMethod_GetTraverseLoop)(
+ void *traverse_context, const PyArray_Descr *descr,
+ int aligned, npy_intp fixed_stride,
+ PyArrayMethod_TraverseLoop **out_loop, NpyAuxData **out_auxdata,
+ NPY_ARRAYMETHOD_FLAGS *flags);
+
+
+/*
+ * Type of the C promoter function, which must be wrapped into a
+ * PyCapsule with name "numpy._ufunc_promoter".
+ *
+ * Note that currently the output dtypes are always NULL unless they are
+ * also part of the signature. This is an implementation detail and could
+ * change in the future. However, in general promoters should not have a
+ * need for output dtypes.
+ * (There are potential use-cases, these are currently unsupported.)
+ */
+typedef int (PyArrayMethod_PromoterFunction)(PyObject *ufunc,
+ PyArray_DTypeMeta *const op_dtypes[], PyArray_DTypeMeta *const signature[],
+ PyArray_DTypeMeta *new_op_dtypes[]);
+
+/*
+ * ****************************
+ * DTYPE API
+ * ****************************
+ */
+
+#define NPY_DT_ABSTRACT 1 << 1
+#define NPY_DT_PARAMETRIC 1 << 2
+#define NPY_DT_NUMERIC 1 << 3
+
+/*
+ * These correspond to slots in the NPY_DType_Slots struct and must
+ * be in the same order as the members of that struct. If new slots
+ * get added or old slots get removed NPY_NUM_DTYPE_SLOTS must also
+ * be updated
+ */
+
+#define NPY_DT_discover_descr_from_pyobject 1
+// this slot is considered private because its API hasn't been decided
+#define _NPY_DT_is_known_scalar_type 2
+#define NPY_DT_default_descr 3
+#define NPY_DT_common_dtype 4
+#define NPY_DT_common_instance 5
+#define NPY_DT_ensure_canonical 6
+#define NPY_DT_setitem 7
+#define NPY_DT_getitem 8
+#define NPY_DT_get_clear_loop 9
+#define NPY_DT_get_fill_zero_loop 10
+#define NPY_DT_finalize_descr 11
+
+// These PyArray_ArrFunc slots will be deprecated and replaced eventually
+// getitem and setitem can be defined as a performance optimization;
+// by default the user dtypes call `legacy_getitem_using_DType` and
+// `legacy_setitem_using_DType`, respectively. This functionality is
+// only supported for basic NumPy DTypes.
+
+
+// used to separate dtype slots from arrfuncs slots
+// intended only for internal use but defined here for clarity
+#define _NPY_DT_ARRFUNCS_OFFSET (1 << 10)
+
+// Cast is disabled
+// #define NPY_DT_PyArray_ArrFuncs_cast 0 + _NPY_DT_ARRFUNCS_OFFSET
+
+#define NPY_DT_PyArray_ArrFuncs_getitem 1 + _NPY_DT_ARRFUNCS_OFFSET
+#define NPY_DT_PyArray_ArrFuncs_setitem 2 + _NPY_DT_ARRFUNCS_OFFSET
+
+// Copyswap is disabled
+// #define NPY_DT_PyArray_ArrFuncs_copyswapn 3 + _NPY_DT_ARRFUNCS_OFFSET
+// #define NPY_DT_PyArray_ArrFuncs_copyswap 4 + _NPY_DT_ARRFUNCS_OFFSET
+#define NPY_DT_PyArray_ArrFuncs_compare 5 + _NPY_DT_ARRFUNCS_OFFSET
+#define NPY_DT_PyArray_ArrFuncs_argmax 6 + _NPY_DT_ARRFUNCS_OFFSET
+#define NPY_DT_PyArray_ArrFuncs_dotfunc 7 + _NPY_DT_ARRFUNCS_OFFSET
+#define NPY_DT_PyArray_ArrFuncs_scanfunc 8 + _NPY_DT_ARRFUNCS_OFFSET
+#define NPY_DT_PyArray_ArrFuncs_fromstr 9 + _NPY_DT_ARRFUNCS_OFFSET
+#define NPY_DT_PyArray_ArrFuncs_nonzero 10 + _NPY_DT_ARRFUNCS_OFFSET
+#define NPY_DT_PyArray_ArrFuncs_fill 11 + _NPY_DT_ARRFUNCS_OFFSET
+#define NPY_DT_PyArray_ArrFuncs_fillwithscalar 12 + _NPY_DT_ARRFUNCS_OFFSET
+#define NPY_DT_PyArray_ArrFuncs_sort 13 + _NPY_DT_ARRFUNCS_OFFSET
+#define NPY_DT_PyArray_ArrFuncs_argsort 14 + _NPY_DT_ARRFUNCS_OFFSET
+
+// Casting related slots are disabled. See
+// https://github.com/numpy/numpy/pull/23173#discussion_r1101098163
+// #define NPY_DT_PyArray_ArrFuncs_castdict 15 + _NPY_DT_ARRFUNCS_OFFSET
+// #define NPY_DT_PyArray_ArrFuncs_scalarkind 16 + _NPY_DT_ARRFUNCS_OFFSET
+// #define NPY_DT_PyArray_ArrFuncs_cancastscalarkindto 17 + _NPY_DT_ARRFUNCS_OFFSET
+// #define NPY_DT_PyArray_ArrFuncs_cancastto 18 + _NPY_DT_ARRFUNCS_OFFSET
+
+// These are deprecated in NumPy 1.19, so are disabled here.
+// #define NPY_DT_PyArray_ArrFuncs_fastclip 19 + _NPY_DT_ARRFUNCS_OFFSET
+// #define NPY_DT_PyArray_ArrFuncs_fastputmask 20 + _NPY_DT_ARRFUNCS_OFFSET
+// #define NPY_DT_PyArray_ArrFuncs_fasttake 21 + _NPY_DT_ARRFUNCS_OFFSET
+#define NPY_DT_PyArray_ArrFuncs_argmin 22 + _NPY_DT_ARRFUNCS_OFFSET
+
+
+// TODO: These slots probably still need some thought, and/or a way to "grow"?
+typedef struct {
+ PyTypeObject *typeobj; /* type of python scalar or NULL */
+ int flags; /* flags, including parametric and abstract */
+ /* NULL terminated cast definitions. Use NULL for the newly created DType */
+ PyArrayMethod_Spec **casts;
+ PyType_Slot *slots;
+ /* Baseclass or NULL (will always subclass `np.dtype`) */
+ PyTypeObject *baseclass;
+} PyArrayDTypeMeta_Spec;
+
+
+typedef PyArray_Descr *(PyArrayDTypeMeta_DiscoverDescrFromPyobject)(
+ PyArray_DTypeMeta *cls, PyObject *obj);
+
+/*
+ * Before making this public, we should decide whether it should pass
+ * the type, or allow looking at the object. A possible use-case:
+ * `np.array(np.array([0]), dtype=np.ndarray)`
+ * Could consider arrays that are not `dtype=ndarray` "scalars".
+ */
+typedef int (PyArrayDTypeMeta_IsKnownScalarType)(
+ PyArray_DTypeMeta *cls, PyTypeObject *obj);
+
+typedef PyArray_Descr *(PyArrayDTypeMeta_DefaultDescriptor)(PyArray_DTypeMeta *cls);
+typedef PyArray_DTypeMeta *(PyArrayDTypeMeta_CommonDType)(
+ PyArray_DTypeMeta *dtype1, PyArray_DTypeMeta *dtype2);
+
+
+/*
+ * Convenience utility for getting a reference to the DType metaclass associated
+ * with a dtype instance.
+ */
+#define NPY_DTYPE(descr) ((PyArray_DTypeMeta *)Py_TYPE(descr))
+
+static inline PyArray_DTypeMeta *
+NPY_DT_NewRef(PyArray_DTypeMeta *o) {
+ Py_INCREF((PyObject *)o);
+ return o;
+}
+
+
+typedef PyArray_Descr *(PyArrayDTypeMeta_CommonInstance)(
+ PyArray_Descr *dtype1, PyArray_Descr *dtype2);
+typedef PyArray_Descr *(PyArrayDTypeMeta_EnsureCanonical)(PyArray_Descr *dtype);
+/*
+ * Returns either a new reference to *dtype* or a new descriptor instance
+ * initialized with the same parameters as *dtype*. The caller cannot know
+ * which choice a dtype will make. This function is called just before the
+ * array buffer is created for a newly created array, it is not called for
+ * views and the descriptor returned by this function is attached to the array.
+ */
+typedef PyArray_Descr *(PyArrayDTypeMeta_FinalizeDescriptor)(PyArray_Descr *dtype);
+
+/*
+ * TODO: These two functions are currently only used for experimental DType
+ * API support. Their relation should be "reversed": NumPy should
+ * always use them internally.
+ * There are open points about "casting safety" though, e.g. setting
+ * elements is currently always unsafe.
+ */
+typedef int(PyArrayDTypeMeta_SetItem)(PyArray_Descr *, PyObject *, char *);
+typedef PyObject *(PyArrayDTypeMeta_GetItem)(PyArray_Descr *, char *);
+
+#endif /* NUMPY_CORE_INCLUDE_NUMPY___DTYPE_API_H_ */
diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/include/numpy/halffloat.h b/.venv/lib/python3.12/site-packages/numpy/_core/include/numpy/halffloat.h
new file mode 100644
index 0000000..9504016
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/_core/include/numpy/halffloat.h
@@ -0,0 +1,70 @@
+#ifndef NUMPY_CORE_INCLUDE_NUMPY_HALFFLOAT_H_
+#define NUMPY_CORE_INCLUDE_NUMPY_HALFFLOAT_H_
+
+#include <Python.h>
+#include <numpy/npy_math.h>
+
+#ifdef __cplusplus
+extern "C" {
+#endif
+
+/*
+ * Half-precision routines
+ */
+
+/* Conversions */
+float npy_half_to_float(npy_half h);
+double npy_half_to_double(npy_half h);
+npy_half npy_float_to_half(float f);
+npy_half npy_double_to_half(double d);
+/* Comparisons */
+int npy_half_eq(npy_half h1, npy_half h2);
+int npy_half_ne(npy_half h1, npy_half h2);
+int npy_half_le(npy_half h1, npy_half h2);
+int npy_half_lt(npy_half h1, npy_half h2);
+int npy_half_ge(npy_half h1, npy_half h2);
+int npy_half_gt(npy_half h1, npy_half h2);
+/* faster *_nonan variants for when you know h1 and h2 are not NaN */
+int npy_half_eq_nonan(npy_half h1, npy_half h2);
+int npy_half_lt_nonan(npy_half h1, npy_half h2);
+int npy_half_le_nonan(npy_half h1, npy_half h2);
+/* Miscellaneous functions */
+int npy_half_iszero(npy_half h);
+int npy_half_isnan(npy_half h);
+int npy_half_isinf(npy_half h);
+int npy_half_isfinite(npy_half h);
+int npy_half_signbit(npy_half h);
+npy_half npy_half_copysign(npy_half x, npy_half y);
+npy_half npy_half_spacing(npy_half h);
+npy_half npy_half_nextafter(npy_half x, npy_half y);
+npy_half npy_half_divmod(npy_half x, npy_half y, npy_half *modulus);
+
+/*
+ * Half-precision constants
+ */
+
+#define NPY_HALF_ZERO (0x0000u)
+#define NPY_HALF_PZERO (0x0000u)
+#define NPY_HALF_NZERO (0x8000u)
+#define NPY_HALF_ONE (0x3c00u)
+#define NPY_HALF_NEGONE (0xbc00u)
+#define NPY_HALF_PINF (0x7c00u)
+#define NPY_HALF_NINF (0xfc00u)
+#define NPY_HALF_NAN (0x7e00u)
+
+#define NPY_MAX_HALF (0x7bffu)
+
+/*
+ * Bit-level conversions
+ */
+
+npy_uint16 npy_floatbits_to_halfbits(npy_uint32 f);
+npy_uint16 npy_doublebits_to_halfbits(npy_uint64 d);
+npy_uint32 npy_halfbits_to_floatbits(npy_uint16 h);
+npy_uint64 npy_halfbits_to_doublebits(npy_uint16 h);
+
+#ifdef __cplusplus
+}
+#endif
+
+#endif /* NUMPY_CORE_INCLUDE_NUMPY_HALFFLOAT_H_ */
diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/include/numpy/ndarrayobject.h b/.venv/lib/python3.12/site-packages/numpy/_core/include/numpy/ndarrayobject.h
new file mode 100644
index 0000000..f06bafe
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/_core/include/numpy/ndarrayobject.h
@@ -0,0 +1,304 @@
+/*
+ * DON'T INCLUDE THIS DIRECTLY.
+ */
+#ifndef NUMPY_CORE_INCLUDE_NUMPY_NDARRAYOBJECT_H_
+#define NUMPY_CORE_INCLUDE_NUMPY_NDARRAYOBJECT_H_
+
+#ifdef __cplusplus
+extern "C" {
+#endif
+
+#include <Python.h>
+#include "ndarraytypes.h"
+#include "dtype_api.h"
+
+/* Includes the "function" C-API -- these are all stored in a
+ list of pointers --- one for each file
+ The two lists are concatenated into one in multiarray.
+
+ They are available as import_array()
+*/
+
+#include "__multiarray_api.h"
+
+/*
+ * Include any definitions which are defined differently for 1.x and 2.x
+ * (Symbols only available on 2.x are not there, but rather guarded.)
+ */
+#include "npy_2_compat.h"
+
+/* C-API that requires previous API to be defined */
+
+#define PyArray_DescrCheck(op) PyObject_TypeCheck(op, &PyArrayDescr_Type)
+
+#define PyArray_Check(op) PyObject_TypeCheck(op, &PyArray_Type)
+#define PyArray_CheckExact(op) (((PyObject*)(op))->ob_type == &PyArray_Type)
+
+#define PyArray_HasArrayInterfaceType(op, type, context, out) \
+ ((((out)=PyArray_FromStructInterface(op)) != Py_NotImplemented) || \
+ (((out)=PyArray_FromInterface(op)) != Py_NotImplemented) || \
+ (((out)=PyArray_FromArrayAttr(op, type, context)) != \
+ Py_NotImplemented))
+
+#define PyArray_HasArrayInterface(op, out) \
+ PyArray_HasArrayInterfaceType(op, NULL, NULL, out)
+
+#define PyArray_IsZeroDim(op) (PyArray_Check(op) && \
+ (PyArray_NDIM((PyArrayObject *)op) == 0))
+
+#define PyArray_IsScalar(obj, cls) \
+ (PyObject_TypeCheck(obj, &Py##cls##ArrType_Type))
+
+#define PyArray_CheckScalar(m) (PyArray_IsScalar(m, Generic) || \
+ PyArray_IsZeroDim(m))
+#define PyArray_IsPythonNumber(obj) \
+ (PyFloat_Check(obj) || PyComplex_Check(obj) || \
+ PyLong_Check(obj) || PyBool_Check(obj))
+#define PyArray_IsIntegerScalar(obj) (PyLong_Check(obj) \
+ || PyArray_IsScalar((obj), Integer))
+#define PyArray_IsPythonScalar(obj) \
+ (PyArray_IsPythonNumber(obj) || PyBytes_Check(obj) || \
+ PyUnicode_Check(obj))
+
+#define PyArray_IsAnyScalar(obj) \
+ (PyArray_IsScalar(obj, Generic) || PyArray_IsPythonScalar(obj))
+
+#define PyArray_CheckAnyScalar(obj) (PyArray_IsPythonScalar(obj) || \
+ PyArray_CheckScalar(obj))
+
+
+#define PyArray_GETCONTIGUOUS(m) (PyArray_ISCONTIGUOUS(m) ? \
+ Py_INCREF(m), (m) : \
+ (PyArrayObject *)(PyArray_Copy(m)))
+
+#define PyArray_SAMESHAPE(a1,a2) ((PyArray_NDIM(a1) == PyArray_NDIM(a2)) && \
+ PyArray_CompareLists(PyArray_DIMS(a1), \
+ PyArray_DIMS(a2), \
+ PyArray_NDIM(a1)))
+
+#define PyArray_SIZE(m) PyArray_MultiplyList(PyArray_DIMS(m), PyArray_NDIM(m))
+#define PyArray_NBYTES(m) (PyArray_ITEMSIZE(m) * PyArray_SIZE(m))
+#define PyArray_FROM_O(m) PyArray_FromAny(m, NULL, 0, 0, 0, NULL)
+
+#define PyArray_FROM_OF(m,flags) PyArray_CheckFromAny(m, NULL, 0, 0, flags, \
+ NULL)
+
+#define PyArray_FROM_OT(m,type) PyArray_FromAny(m, \
+ PyArray_DescrFromType(type), 0, 0, 0, NULL)
+
+#define PyArray_FROM_OTF(m, type, flags) \
+ PyArray_FromAny(m, PyArray_DescrFromType(type), 0, 0, \
+ (((flags) & NPY_ARRAY_ENSURECOPY) ? \
+ ((flags) | NPY_ARRAY_DEFAULT) : (flags)), NULL)
+
+#define PyArray_FROMANY(m, type, min, max, flags) \
+ PyArray_FromAny(m, PyArray_DescrFromType(type), min, max, \
+ (((flags) & NPY_ARRAY_ENSURECOPY) ? \
+ (flags) | NPY_ARRAY_DEFAULT : (flags)), NULL)
+
+#define PyArray_ZEROS(m, dims, type, is_f_order) \
+ PyArray_Zeros(m, dims, PyArray_DescrFromType(type), is_f_order)
+
+#define PyArray_EMPTY(m, dims, type, is_f_order) \
+ PyArray_Empty(m, dims, PyArray_DescrFromType(type), is_f_order)
+
+#define PyArray_FILLWBYTE(obj, val) memset(PyArray_DATA(obj), val, \
+ PyArray_NBYTES(obj))
+
+#define PyArray_ContiguousFromAny(op, type, min_depth, max_depth) \
+ PyArray_FromAny(op, PyArray_DescrFromType(type), min_depth, \
+ max_depth, NPY_ARRAY_DEFAULT, NULL)
+
+#define PyArray_EquivArrTypes(a1, a2) \
+ PyArray_EquivTypes(PyArray_DESCR(a1), PyArray_DESCR(a2))
+
+#define PyArray_EquivByteorders(b1, b2) \
+ (((b1) == (b2)) || (PyArray_ISNBO(b1) == PyArray_ISNBO(b2)))
+
+#define PyArray_SimpleNew(nd, dims, typenum) \
+ PyArray_New(&PyArray_Type, nd, dims, typenum, NULL, NULL, 0, 0, NULL)
+
+#define PyArray_SimpleNewFromData(nd, dims, typenum, data) \
+ PyArray_New(&PyArray_Type, nd, dims, typenum, NULL, \
+ data, 0, NPY_ARRAY_CARRAY, NULL)
+
+#define PyArray_SimpleNewFromDescr(nd, dims, descr) \
+ PyArray_NewFromDescr(&PyArray_Type, descr, nd, dims, \
+ NULL, NULL, 0, NULL)
+
+#define PyArray_ToScalar(data, arr) \
+ PyArray_Scalar(data, PyArray_DESCR(arr), (PyObject *)arr)
+
+
+/* These might be faster without the dereferencing of obj
+ going on inside -- of course an optimizing compiler should
+ inline the constants inside a for loop making it a moot point
+*/
+
+#define PyArray_GETPTR1(obj, i) ((void *)(PyArray_BYTES(obj) + \
+ (i)*PyArray_STRIDES(obj)[0]))
+
+#define PyArray_GETPTR2(obj, i, j) ((void *)(PyArray_BYTES(obj) + \
+ (i)*PyArray_STRIDES(obj)[0] + \
+ (j)*PyArray_STRIDES(obj)[1]))
+
+#define PyArray_GETPTR3(obj, i, j, k) ((void *)(PyArray_BYTES(obj) + \
+ (i)*PyArray_STRIDES(obj)[0] + \
+ (j)*PyArray_STRIDES(obj)[1] + \
+ (k)*PyArray_STRIDES(obj)[2]))
+
+#define PyArray_GETPTR4(obj, i, j, k, l) ((void *)(PyArray_BYTES(obj) + \
+ (i)*PyArray_STRIDES(obj)[0] + \
+ (j)*PyArray_STRIDES(obj)[1] + \
+ (k)*PyArray_STRIDES(obj)[2] + \
+ (l)*PyArray_STRIDES(obj)[3]))
+
+static inline void
+PyArray_DiscardWritebackIfCopy(PyArrayObject *arr)
+{
+ PyArrayObject_fields *fa = (PyArrayObject_fields *)arr;
+ if (fa && fa->base) {
+ if (fa->flags & NPY_ARRAY_WRITEBACKIFCOPY) {
+ PyArray_ENABLEFLAGS((PyArrayObject*)fa->base, NPY_ARRAY_WRITEABLE);
+ Py_DECREF(fa->base);
+ fa->base = NULL;
+ PyArray_CLEARFLAGS(arr, NPY_ARRAY_WRITEBACKIFCOPY);
+ }
+ }
+}
+
+#define PyArray_DESCR_REPLACE(descr) do { \
+ PyArray_Descr *_new_; \
+ _new_ = PyArray_DescrNew(descr); \
+ Py_XDECREF(descr); \
+ descr = _new_; \
+ } while(0)
+
+/* Copy should always return contiguous array */
+#define PyArray_Copy(obj) PyArray_NewCopy(obj, NPY_CORDER)
+
+#define PyArray_FromObject(op, type, min_depth, max_depth) \
+ PyArray_FromAny(op, PyArray_DescrFromType(type), min_depth, \
+ max_depth, NPY_ARRAY_BEHAVED | \
+ NPY_ARRAY_ENSUREARRAY, NULL)
+
+#define PyArray_ContiguousFromObject(op, type, min_depth, max_depth) \
+ PyArray_FromAny(op, PyArray_DescrFromType(type), min_depth, \
+ max_depth, NPY_ARRAY_DEFAULT | \
+ NPY_ARRAY_ENSUREARRAY, NULL)
+
+#define PyArray_CopyFromObject(op, type, min_depth, max_depth) \
+ PyArray_FromAny(op, PyArray_DescrFromType(type), min_depth, \
+ max_depth, NPY_ARRAY_ENSURECOPY | \
+ NPY_ARRAY_DEFAULT | \
+ NPY_ARRAY_ENSUREARRAY, NULL)
+
+#define PyArray_Cast(mp, type_num) \
+ PyArray_CastToType(mp, PyArray_DescrFromType(type_num), 0)
+
+#define PyArray_Take(ap, items, axis) \
+ PyArray_TakeFrom(ap, items, axis, NULL, NPY_RAISE)
+
+#define PyArray_Put(ap, items, values) \
+ PyArray_PutTo(ap, items, values, NPY_RAISE)
+
+
+/*
+ Check to see if this key in the dictionary is the "title"
+ entry of the tuple (i.e. a duplicate dictionary entry in the fields
+ dict).
+*/
+
+static inline int
+NPY_TITLE_KEY_check(PyObject *key, PyObject *value)
+{
+ PyObject *title;
+ if (PyTuple_Size(value) != 3) {
+ return 0;
+ }
+ title = PyTuple_GetItem(value, 2);
+ if (key == title) {
+ return 1;
+ }
+#ifdef PYPY_VERSION
+ /*
+ * On PyPy, dictionary keys do not always preserve object identity.
+ * Fall back to comparison by value.
+ */
+ if (PyUnicode_Check(title) && PyUnicode_Check(key)) {
+ return PyUnicode_Compare(title, key) == 0 ? 1 : 0;
+ }
+#endif
+ return 0;
+}
+
+/* Macro, for backward compat with "if NPY_TITLE_KEY(key, value) { ..." */
+#define NPY_TITLE_KEY(key, value) (NPY_TITLE_KEY_check((key), (value)))
+
+#define DEPRECATE(msg) PyErr_WarnEx(PyExc_DeprecationWarning,msg,1)
+#define DEPRECATE_FUTUREWARNING(msg) PyErr_WarnEx(PyExc_FutureWarning,msg,1)
+
+
+/*
+ * These macros and functions unfortunately require runtime version checks
+ * that are only defined in `npy_2_compat.h`. For that reasons they cannot be
+ * part of `ndarraytypes.h` which tries to be self contained.
+ */
+
+static inline npy_intp
+PyArray_ITEMSIZE(const PyArrayObject *arr)
+{
+ return PyDataType_ELSIZE(((PyArrayObject_fields *)arr)->descr);
+}
+
+#define PyDataType_HASFIELDS(obj) (PyDataType_ISLEGACY((PyArray_Descr*)(obj)) && PyDataType_NAMES((PyArray_Descr*)(obj)) != NULL)
+#define PyDataType_HASSUBARRAY(dtype) (PyDataType_ISLEGACY(dtype) && PyDataType_SUBARRAY(dtype) != NULL)
+#define PyDataType_ISUNSIZED(dtype) ((dtype)->elsize == 0 && \
+ !PyDataType_HASFIELDS(dtype))
+
+#define PyDataType_FLAGCHK(dtype, flag) \
+ ((PyDataType_FLAGS(dtype) & (flag)) == (flag))
+
+#define PyDataType_REFCHK(dtype) \
+ PyDataType_FLAGCHK(dtype, NPY_ITEM_REFCOUNT)
+
+#define NPY_BEGIN_THREADS_DESCR(dtype) \
+ do {if (!(PyDataType_FLAGCHK((dtype), NPY_NEEDS_PYAPI))) \
+ NPY_BEGIN_THREADS;} while (0);
+
+#define NPY_END_THREADS_DESCR(dtype) \
+ do {if (!(PyDataType_FLAGCHK((dtype), NPY_NEEDS_PYAPI))) \
+ NPY_END_THREADS; } while (0);
+
+#if !(defined(NPY_INTERNAL_BUILD) && NPY_INTERNAL_BUILD)
+/* The internal copy of this is now defined in `dtypemeta.h` */
+/*
+ * `PyArray_Scalar` is the same as this function but converts will convert
+ * most NumPy types to Python scalars.
+ */
+static inline PyObject *
+PyArray_GETITEM(const PyArrayObject *arr, const char *itemptr)
+{
+ return PyDataType_GetArrFuncs(((PyArrayObject_fields *)arr)->descr)->getitem(
+ (void *)itemptr, (PyArrayObject *)arr);
+}
+
+/*
+ * SETITEM should only be used if it is known that the value is a scalar
+ * and of a type understood by the arrays dtype.
+ * Use `PyArray_Pack` if the value may be of a different dtype.
+ */
+static inline int
+PyArray_SETITEM(PyArrayObject *arr, char *itemptr, PyObject *v)
+{
+ return PyDataType_GetArrFuncs(((PyArrayObject_fields *)arr)->descr)->setitem(v, itemptr, arr);
+}
+#endif /* not internal */
+
+
+#ifdef __cplusplus
+}
+#endif
+
+
+#endif /* NUMPY_CORE_INCLUDE_NUMPY_NDARRAYOBJECT_H_ */
diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/include/numpy/ndarraytypes.h b/.venv/lib/python3.12/site-packages/numpy/_core/include/numpy/ndarraytypes.h
new file mode 100644
index 0000000..baa4240
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/_core/include/numpy/ndarraytypes.h
@@ -0,0 +1,1950 @@
+#ifndef NUMPY_CORE_INCLUDE_NUMPY_NDARRAYTYPES_H_
+#define NUMPY_CORE_INCLUDE_NUMPY_NDARRAYTYPES_H_
+
+#include "npy_common.h"
+#include "npy_endian.h"
+#include "npy_cpu.h"
+#include "utils.h"
+
+#ifdef __cplusplus
+extern "C" {
+#endif
+
+#define NPY_NO_EXPORT NPY_VISIBILITY_HIDDEN
+
+/* Always allow threading unless it was explicitly disabled at build time */
+#if !NPY_NO_SMP
+ #define NPY_ALLOW_THREADS 1
+#else
+ #define NPY_ALLOW_THREADS 0
+#endif
+
+#ifndef __has_extension
+#define __has_extension(x) 0
+#endif
+
+/*
+ * There are several places in the code where an array of dimensions
+ * is allocated statically. This is the size of that static
+ * allocation.
+ *
+ * The array creation itself could have arbitrary dimensions but all
+ * the places where static allocation is used would need to be changed
+ * to dynamic (including inside of several structures)
+ *
+ * As of NumPy 2.0, we strongly discourage the downstream use of NPY_MAXDIMS,
+ * but since auditing everything seems a big ask, define it as 64.
+ * A future version could:
+ * - Increase or remove the limit and require recompilation (like 2.0 did)
+ * - Deprecate or remove the macro but keep the limit (at basically any time)
+ */
+#define NPY_MAXDIMS 64
+/* We cannot change this as it would break ABI: */
+#define NPY_MAXDIMS_LEGACY_ITERS 32
+/* NPY_MAXARGS is version dependent and defined in npy_2_compat.h */
+
+/* Used for Converter Functions "O&" code in ParseTuple */
+#define NPY_FAIL 0
+#define NPY_SUCCEED 1
+
+
+enum NPY_TYPES { NPY_BOOL=0,
+ NPY_BYTE, NPY_UBYTE,
+ NPY_SHORT, NPY_USHORT,
+ NPY_INT, NPY_UINT,
+ NPY_LONG, NPY_ULONG,
+ NPY_LONGLONG, NPY_ULONGLONG,
+ NPY_FLOAT, NPY_DOUBLE, NPY_LONGDOUBLE,
+ NPY_CFLOAT, NPY_CDOUBLE, NPY_CLONGDOUBLE,
+ NPY_OBJECT=17,
+ NPY_STRING, NPY_UNICODE,
+ NPY_VOID,
+ /*
+ * New 1.6 types appended, may be integrated
+ * into the above in 2.0.
+ */
+ NPY_DATETIME, NPY_TIMEDELTA, NPY_HALF,
+
+ NPY_CHAR, /* Deprecated, will raise if used */
+
+ /* The number of *legacy* dtypes */
+ NPY_NTYPES_LEGACY=24,
+
+ /* assign a high value to avoid changing this in the
+ future when new dtypes are added */
+ NPY_NOTYPE=25,
+
+ NPY_USERDEF=256, /* leave room for characters */
+
+ /* The number of types not including the new 1.6 types */
+ NPY_NTYPES_ABI_COMPATIBLE=21,
+
+ /*
+ * New DTypes which do not share the legacy layout
+ * (added after NumPy 2.0). VSTRING is the first of these
+ * we may open up a block for user-defined dtypes in the
+ * future.
+ */
+ NPY_VSTRING=2056,
+};
+
+
+/* basetype array priority */
+#define NPY_PRIORITY 0.0
+
+/* default subtype priority */
+#define NPY_SUBTYPE_PRIORITY 1.0
+
+/* default scalar priority */
+#define NPY_SCALAR_PRIORITY -1000000.0
+
+/* How many floating point types are there (excluding half) */
+#define NPY_NUM_FLOATTYPE 3
+
+/*
+ * These characters correspond to the array type and the struct
+ * module
+ */
+
+enum NPY_TYPECHAR {
+ NPY_BOOLLTR = '?',
+ NPY_BYTELTR = 'b',
+ NPY_UBYTELTR = 'B',
+ NPY_SHORTLTR = 'h',
+ NPY_USHORTLTR = 'H',
+ NPY_INTLTR = 'i',
+ NPY_UINTLTR = 'I',
+ NPY_LONGLTR = 'l',
+ NPY_ULONGLTR = 'L',
+ NPY_LONGLONGLTR = 'q',
+ NPY_ULONGLONGLTR = 'Q',
+ NPY_HALFLTR = 'e',
+ NPY_FLOATLTR = 'f',
+ NPY_DOUBLELTR = 'd',
+ NPY_LONGDOUBLELTR = 'g',
+ NPY_CFLOATLTR = 'F',
+ NPY_CDOUBLELTR = 'D',
+ NPY_CLONGDOUBLELTR = 'G',
+ NPY_OBJECTLTR = 'O',
+ NPY_STRINGLTR = 'S',
+ NPY_DEPRECATED_STRINGLTR2 = 'a',
+ NPY_UNICODELTR = 'U',
+ NPY_VOIDLTR = 'V',
+ NPY_DATETIMELTR = 'M',
+ NPY_TIMEDELTALTR = 'm',
+ NPY_CHARLTR = 'c',
+
+ /*
+ * New non-legacy DTypes
+ */
+ NPY_VSTRINGLTR = 'T',
+
+ /*
+ * Note, we removed `NPY_INTPLTR` due to changing its definition
+ * to 'n', rather than 'p'. On any typical platform this is the
+ * same integer. 'n' should be used for the `np.intp` with the same
+ * size as `size_t` while 'p' remains pointer sized.
+ *
+ * 'p', 'P', 'n', and 'N' are valid and defined explicitly
+ * in `arraytypes.c.src`.
+ */
+
+ /*
+ * These are for dtype 'kinds', not dtype 'typecodes'
+ * as the above are for.
+ */
+ NPY_GENBOOLLTR ='b',
+ NPY_SIGNEDLTR = 'i',
+ NPY_UNSIGNEDLTR = 'u',
+ NPY_FLOATINGLTR = 'f',
+ NPY_COMPLEXLTR = 'c',
+
+};
+
+/*
+ * Changing this may break Numpy API compatibility
+ * due to changing offsets in PyArray_ArrFuncs, so be
+ * careful. Here we have reused the mergesort slot for
+ * any kind of stable sort, the actual implementation will
+ * depend on the data type.
+ */
+typedef enum {
+ _NPY_SORT_UNDEFINED=-1,
+ NPY_QUICKSORT=0,
+ NPY_HEAPSORT=1,
+ NPY_MERGESORT=2,
+ NPY_STABLESORT=2,
+} NPY_SORTKIND;
+#define NPY_NSORTS (NPY_STABLESORT + 1)
+
+
+typedef enum {
+ NPY_INTROSELECT=0
+} NPY_SELECTKIND;
+#define NPY_NSELECTS (NPY_INTROSELECT + 1)
+
+
+typedef enum {
+ NPY_SEARCHLEFT=0,
+ NPY_SEARCHRIGHT=1
+} NPY_SEARCHSIDE;
+#define NPY_NSEARCHSIDES (NPY_SEARCHRIGHT + 1)
+
+
+typedef enum {
+ NPY_NOSCALAR=-1,
+ NPY_BOOL_SCALAR,
+ NPY_INTPOS_SCALAR,
+ NPY_INTNEG_SCALAR,
+ NPY_FLOAT_SCALAR,
+ NPY_COMPLEX_SCALAR,
+ NPY_OBJECT_SCALAR
+} NPY_SCALARKIND;
+#define NPY_NSCALARKINDS (NPY_OBJECT_SCALAR + 1)
+
+/* For specifying array memory layout or iteration order */
+typedef enum {
+ /* Fortran order if inputs are all Fortran, C otherwise */
+ NPY_ANYORDER=-1,
+ /* C order */
+ NPY_CORDER=0,
+ /* Fortran order */
+ NPY_FORTRANORDER=1,
+ /* An order as close to the inputs as possible */
+ NPY_KEEPORDER=2
+} NPY_ORDER;
+
+/* For specifying allowed casting in operations which support it */
+typedef enum {
+ _NPY_ERROR_OCCURRED_IN_CAST = -1,
+ /* Only allow identical types */
+ NPY_NO_CASTING=0,
+ /* Allow identical and byte swapped types */
+ NPY_EQUIV_CASTING=1,
+ /* Only allow safe casts */
+ NPY_SAFE_CASTING=2,
+ /* Allow safe casts or casts within the same kind */
+ NPY_SAME_KIND_CASTING=3,
+ /* Allow any casts */
+ NPY_UNSAFE_CASTING=4,
+} NPY_CASTING;
+
+typedef enum {
+ NPY_CLIP=0,
+ NPY_WRAP=1,
+ NPY_RAISE=2
+} NPY_CLIPMODE;
+
+typedef enum {
+ NPY_VALID=0,
+ NPY_SAME=1,
+ NPY_FULL=2
+} NPY_CORRELATEMODE;
+
+/* The special not-a-time (NaT) value */
+#define NPY_DATETIME_NAT NPY_MIN_INT64
+
+/*
+ * Upper bound on the length of a DATETIME ISO 8601 string
+ * YEAR: 21 (64-bit year)
+ * MONTH: 3
+ * DAY: 3
+ * HOURS: 3
+ * MINUTES: 3
+ * SECONDS: 3
+ * ATTOSECONDS: 1 + 3*6
+ * TIMEZONE: 5
+ * NULL TERMINATOR: 1
+ */
+#define NPY_DATETIME_MAX_ISO8601_STRLEN (21 + 3*5 + 1 + 3*6 + 6 + 1)
+
+/* The FR in the unit names stands for frequency */
+typedef enum {
+ /* Force signed enum type, must be -1 for code compatibility */
+ NPY_FR_ERROR = -1, /* error or undetermined */
+
+ /* Start of valid units */
+ NPY_FR_Y = 0, /* Years */
+ NPY_FR_M = 1, /* Months */
+ NPY_FR_W = 2, /* Weeks */
+ /* Gap where 1.6 NPY_FR_B (value 3) was */
+ NPY_FR_D = 4, /* Days */
+ NPY_FR_h = 5, /* hours */
+ NPY_FR_m = 6, /* minutes */
+ NPY_FR_s = 7, /* seconds */
+ NPY_FR_ms = 8, /* milliseconds */
+ NPY_FR_us = 9, /* microseconds */
+ NPY_FR_ns = 10, /* nanoseconds */
+ NPY_FR_ps = 11, /* picoseconds */
+ NPY_FR_fs = 12, /* femtoseconds */
+ NPY_FR_as = 13, /* attoseconds */
+ NPY_FR_GENERIC = 14 /* unbound units, can convert to anything */
+} NPY_DATETIMEUNIT;
+
+/*
+ * NOTE: With the NPY_FR_B gap for 1.6 ABI compatibility, NPY_DATETIME_NUMUNITS
+ * is technically one more than the actual number of units.
+ */
+#define NPY_DATETIME_NUMUNITS (NPY_FR_GENERIC + 1)
+#define NPY_DATETIME_DEFAULTUNIT NPY_FR_GENERIC
+
+/*
+ * Business day conventions for mapping invalid business
+ * days to valid business days.
+ */
+typedef enum {
+ /* Go forward in time to the following business day. */
+ NPY_BUSDAY_FORWARD,
+ NPY_BUSDAY_FOLLOWING = NPY_BUSDAY_FORWARD,
+ /* Go backward in time to the preceding business day. */
+ NPY_BUSDAY_BACKWARD,
+ NPY_BUSDAY_PRECEDING = NPY_BUSDAY_BACKWARD,
+ /*
+ * Go forward in time to the following business day, unless it
+ * crosses a month boundary, in which case go backward
+ */
+ NPY_BUSDAY_MODIFIEDFOLLOWING,
+ /*
+ * Go backward in time to the preceding business day, unless it
+ * crosses a month boundary, in which case go forward.
+ */
+ NPY_BUSDAY_MODIFIEDPRECEDING,
+ /* Produce a NaT for non-business days. */
+ NPY_BUSDAY_NAT,
+ /* Raise an exception for non-business days. */
+ NPY_BUSDAY_RAISE
+} NPY_BUSDAY_ROLL;
+
+
+/************************************************************
+ * NumPy Auxiliary Data for inner loops, sort functions, etc.
+ ************************************************************/
+
+/*
+ * When creating an auxiliary data struct, this should always appear
+ * as the first member, like this:
+ *
+ * typedef struct {
+ * NpyAuxData base;
+ * double constant;
+ * } constant_multiplier_aux_data;
+ */
+typedef struct NpyAuxData_tag NpyAuxData;
+
+/* Function pointers for freeing or cloning auxiliary data */
+typedef void (NpyAuxData_FreeFunc) (NpyAuxData *);
+typedef NpyAuxData *(NpyAuxData_CloneFunc) (NpyAuxData *);
+
+struct NpyAuxData_tag {
+ NpyAuxData_FreeFunc *free;
+ NpyAuxData_CloneFunc *clone;
+ /* To allow for a bit of expansion without breaking the ABI */
+ void *reserved[2];
+};
+
+/* Macros to use for freeing and cloning auxiliary data */
+#define NPY_AUXDATA_FREE(auxdata) \
+ do { \
+ if ((auxdata) != NULL) { \
+ (auxdata)->free(auxdata); \
+ } \
+ } while(0)
+#define NPY_AUXDATA_CLONE(auxdata) \
+ ((auxdata)->clone(auxdata))
+
+#define NPY_ERR(str) fprintf(stderr, #str); fflush(stderr);
+#define NPY_ERR2(str) fprintf(stderr, str); fflush(stderr);
+
+/*
+* Macros to define how array, and dimension/strides data is
+* allocated. These should be made private
+*/
+
+#define NPY_USE_PYMEM 1
+
+
+#if NPY_USE_PYMEM == 1
+/* use the Raw versions which are safe to call with the GIL released */
+#define PyArray_malloc PyMem_RawMalloc
+#define PyArray_free PyMem_RawFree
+#define PyArray_realloc PyMem_RawRealloc
+#else
+#define PyArray_malloc malloc
+#define PyArray_free free
+#define PyArray_realloc realloc
+#endif
+
+/* Dimensions and strides */
+#define PyDimMem_NEW(size) \
+ ((npy_intp *)PyArray_malloc(size*sizeof(npy_intp)))
+
+#define PyDimMem_FREE(ptr) PyArray_free(ptr)
+
+#define PyDimMem_RENEW(ptr,size) \
+ ((npy_intp *)PyArray_realloc(ptr,size*sizeof(npy_intp)))
+
+/* forward declaration */
+struct _PyArray_Descr;
+
+/* These must deal with unaligned and swapped data if necessary */
+typedef PyObject * (PyArray_GetItemFunc) (void *, void *);
+typedef int (PyArray_SetItemFunc)(PyObject *, void *, void *);
+
+typedef void (PyArray_CopySwapNFunc)(void *, npy_intp, void *, npy_intp,
+ npy_intp, int, void *);
+
+typedef void (PyArray_CopySwapFunc)(void *, void *, int, void *);
+typedef npy_bool (PyArray_NonzeroFunc)(void *, void *);
+
+
+/*
+ * These assume aligned and notswapped data -- a buffer will be used
+ * before or contiguous data will be obtained
+ */
+
+typedef int (PyArray_CompareFunc)(const void *, const void *, void *);
+typedef int (PyArray_ArgFunc)(void*, npy_intp, npy_intp*, void *);
+
+typedef void (PyArray_DotFunc)(void *, npy_intp, void *, npy_intp, void *,
+ npy_intp, void *);
+
+typedef void (PyArray_VectorUnaryFunc)(void *, void *, npy_intp, void *,
+ void *);
+
+/*
+ * XXX the ignore argument should be removed next time the API version
+ * is bumped. It used to be the separator.
+ */
+typedef int (PyArray_ScanFunc)(FILE *fp, void *dptr,
+ char *ignore, struct _PyArray_Descr *);
+typedef int (PyArray_FromStrFunc)(char *s, void *dptr, char **endptr,
+ struct _PyArray_Descr *);
+
+typedef int (PyArray_FillFunc)(void *, npy_intp, void *);
+
+typedef int (PyArray_SortFunc)(void *, npy_intp, void *);
+typedef int (PyArray_ArgSortFunc)(void *, npy_intp *, npy_intp, void *);
+
+typedef int (PyArray_FillWithScalarFunc)(void *, npy_intp, void *, void *);
+
+typedef int (PyArray_ScalarKindFunc)(void *);
+
+typedef struct {
+ npy_intp *ptr;
+ int len;
+} PyArray_Dims;
+
+typedef struct {
+ /*
+ * Functions to cast to most other standard types
+ * Can have some NULL entries. The types
+ * DATETIME, TIMEDELTA, and HALF go into the castdict
+ * even though they are built-in.
+ */
+ PyArray_VectorUnaryFunc *cast[NPY_NTYPES_ABI_COMPATIBLE];
+
+ /* The next four functions *cannot* be NULL */
+
+ /*
+ * Functions to get and set items with standard Python types
+ * -- not array scalars
+ */
+ PyArray_GetItemFunc *getitem;
+ PyArray_SetItemFunc *setitem;
+
+ /*
+ * Copy and/or swap data. Memory areas may not overlap
+ * Use memmove first if they might
+ */
+ PyArray_CopySwapNFunc *copyswapn;
+ PyArray_CopySwapFunc *copyswap;
+
+ /*
+ * Function to compare items
+ * Can be NULL
+ */
+ PyArray_CompareFunc *compare;
+
+ /*
+ * Function to select largest
+ * Can be NULL
+ */
+ PyArray_ArgFunc *argmax;
+
+ /*
+ * Function to compute dot product
+ * Can be NULL
+ */
+ PyArray_DotFunc *dotfunc;
+
+ /*
+ * Function to scan an ASCII file and
+ * place a single value plus possible separator
+ * Can be NULL
+ */
+ PyArray_ScanFunc *scanfunc;
+
+ /*
+ * Function to read a single value from a string
+ * and adjust the pointer; Can be NULL
+ */
+ PyArray_FromStrFunc *fromstr;
+
+ /*
+ * Function to determine if data is zero or not
+ * If NULL a default version is
+ * used at Registration time.
+ */
+ PyArray_NonzeroFunc *nonzero;
+
+ /*
+ * Used for arange. Should return 0 on success
+ * and -1 on failure.
+ * Can be NULL.
+ */
+ PyArray_FillFunc *fill;
+
+ /*
+ * Function to fill arrays with scalar values
+ * Can be NULL
+ */
+ PyArray_FillWithScalarFunc *fillwithscalar;
+
+ /*
+ * Sorting functions
+ * Can be NULL
+ */
+ PyArray_SortFunc *sort[NPY_NSORTS];
+ PyArray_ArgSortFunc *argsort[NPY_NSORTS];
+
+ /*
+ * Dictionary of additional casting functions
+ * PyArray_VectorUnaryFuncs
+ * which can be populated to support casting
+ * to other registered types. Can be NULL
+ */
+ PyObject *castdict;
+
+ /*
+ * Functions useful for generalizing
+ * the casting rules.
+ * Can be NULL;
+ */
+ PyArray_ScalarKindFunc *scalarkind;
+ int **cancastscalarkindto;
+ int *cancastto;
+
+ void *_unused1;
+ void *_unused2;
+ void *_unused3;
+
+ /*
+ * Function to select smallest
+ * Can be NULL
+ */
+ PyArray_ArgFunc *argmin;
+
+} PyArray_ArrFuncs;
+
+
+/* The item must be reference counted when it is inserted or extracted. */
+#define NPY_ITEM_REFCOUNT 0x01
+/* Same as needing REFCOUNT */
+#define NPY_ITEM_HASOBJECT 0x01
+/* Convert to list for pickling */
+#define NPY_LIST_PICKLE 0x02
+/* The item is a POINTER */
+#define NPY_ITEM_IS_POINTER 0x04
+/* memory needs to be initialized for this data-type */
+#define NPY_NEEDS_INIT 0x08
+/* operations need Python C-API so don't give-up thread. */
+#define NPY_NEEDS_PYAPI 0x10
+/* Use f.getitem when extracting elements of this data-type */
+#define NPY_USE_GETITEM 0x20
+/* Use f.setitem when setting creating 0-d array from this data-type.*/
+#define NPY_USE_SETITEM 0x40
+/* A sticky flag specifically for structured arrays */
+#define NPY_ALIGNED_STRUCT 0x80
+
+/*
+ *These are inherited for global data-type if any data-types in the
+ * field have them
+ */
+#define NPY_FROM_FIELDS (NPY_NEEDS_INIT | NPY_LIST_PICKLE | \
+ NPY_ITEM_REFCOUNT | NPY_NEEDS_PYAPI)
+
+#define NPY_OBJECT_DTYPE_FLAGS (NPY_LIST_PICKLE | NPY_USE_GETITEM | \
+ NPY_ITEM_IS_POINTER | NPY_ITEM_REFCOUNT | \
+ NPY_NEEDS_INIT | NPY_NEEDS_PYAPI)
+
+#if NPY_FEATURE_VERSION >= NPY_2_0_API_VERSION
+/*
+ * Public version of the Descriptor struct as of 2.x
+ */
+typedef struct _PyArray_Descr {
+ PyObject_HEAD
+ /*
+ * the type object representing an
+ * instance of this type -- should not
+ * be two type_numbers with the same type
+ * object.
+ */
+ PyTypeObject *typeobj;
+ /* kind for this type */
+ char kind;
+ /* unique-character representing this type */
+ char type;
+ /*
+ * '>' (big), '<' (little), '|'
+ * (not-applicable), or '=' (native).
+ */
+ char byteorder;
+ /* Former flags flags space (unused) to ensure type_num is stable. */
+ char _former_flags;
+ /* number representing this type */
+ int type_num;
+ /* Space for dtype instance specific flags. */
+ npy_uint64 flags;
+ /* element size (itemsize) for this type */
+ npy_intp elsize;
+ /* alignment needed for this type */
+ npy_intp alignment;
+ /* metadata dict or NULL */
+ PyObject *metadata;
+ /* Cached hash value (-1 if not yet computed). */
+ npy_hash_t hash;
+ /* Unused slot (must be initialized to NULL) for future use */
+ void *reserved_null[2];
+} PyArray_Descr;
+
+#else /* 1.x and 2.x compatible version (only shared fields): */
+
+typedef struct _PyArray_Descr {
+ PyObject_HEAD
+ PyTypeObject *typeobj;
+ char kind;
+ char type;
+ char byteorder;
+ char _former_flags;
+ int type_num;
+} PyArray_Descr;
+
+/* To access modified fields, define the full 2.0 struct: */
+typedef struct {
+ PyObject_HEAD
+ PyTypeObject *typeobj;
+ char kind;
+ char type;
+ char byteorder;
+ char _former_flags;
+ int type_num;
+ npy_uint64 flags;
+ npy_intp elsize;
+ npy_intp alignment;
+ PyObject *metadata;
+ npy_hash_t hash;
+ void *reserved_null[2];
+} _PyArray_DescrNumPy2;
+
+#endif /* 1.x and 2.x compatible version */
+
+/*
+ * Semi-private struct with additional field of legacy descriptors (must
+ * check NPY_DT_is_legacy before casting/accessing). The struct is also not
+ * valid when running on 1.x (i.e. in public API use).
+ */
+typedef struct {
+ PyObject_HEAD
+ PyTypeObject *typeobj;
+ char kind;
+ char type;
+ char byteorder;
+ char _former_flags;
+ int type_num;
+ npy_uint64 flags;
+ npy_intp elsize;
+ npy_intp alignment;
+ PyObject *metadata;
+ npy_hash_t hash;
+ void *reserved_null[2];
+ struct _arr_descr *subarray;
+ PyObject *fields;
+ PyObject *names;
+ NpyAuxData *c_metadata;
+} _PyArray_LegacyDescr;
+
+
+/*
+ * Umodified PyArray_Descr struct identical to NumPy 1.x. This struct is
+ * used as a prototype for registering a new legacy DType.
+ * It is also used to access the fields in user code running on 1.x.
+ */
+typedef struct {
+ PyObject_HEAD
+ PyTypeObject *typeobj;
+ char kind;
+ char type;
+ char byteorder;
+ char flags;
+ int type_num;
+ int elsize;
+ int alignment;
+ struct _arr_descr *subarray;
+ PyObject *fields;
+ PyObject *names;
+ PyArray_ArrFuncs *f;
+ PyObject *metadata;
+ NpyAuxData *c_metadata;
+ npy_hash_t hash;
+} PyArray_DescrProto;
+
+
+typedef struct _arr_descr {
+ PyArray_Descr *base;
+ PyObject *shape; /* a tuple */
+} PyArray_ArrayDescr;
+
+/*
+ * Memory handler structure for array data.
+ */
+/* The declaration of free differs from PyMemAllocatorEx */
+typedef struct {
+ void *ctx;
+ void* (*malloc) (void *ctx, size_t size);
+ void* (*calloc) (void *ctx, size_t nelem, size_t elsize);
+ void* (*realloc) (void *ctx, void *ptr, size_t new_size);
+ void (*free) (void *ctx, void *ptr, size_t size);
+ /*
+ * This is the end of the version=1 struct. Only add new fields after
+ * this line
+ */
+} PyDataMemAllocator;
+
+typedef struct {
+ char name[127]; /* multiple of 64 to keep the struct aligned */
+ uint8_t version; /* currently 1 */
+ PyDataMemAllocator allocator;
+} PyDataMem_Handler;
+
+
+/*
+ * The main array object structure.
+ *
+ * It has been recommended to use the inline functions defined below
+ * (PyArray_DATA and friends) to access fields here for a number of
+ * releases. Direct access to the members themselves is deprecated.
+ * To ensure that your code does not use deprecated access,
+ * #define NPY_NO_DEPRECATED_API NPY_1_7_API_VERSION
+ * (or NPY_1_8_API_VERSION or higher as required).
+ */
+/* This struct will be moved to a private header in a future release */
+typedef struct tagPyArrayObject_fields {
+ PyObject_HEAD
+ /* Pointer to the raw data buffer */
+ char *data;
+ /* The number of dimensions, also called 'ndim' */
+ int nd;
+ /* The size in each dimension, also called 'shape' */
+ npy_intp *dimensions;
+ /*
+ * Number of bytes to jump to get to the
+ * next element in each dimension
+ */
+ npy_intp *strides;
+ /*
+ * This object is decref'd upon
+ * deletion of array. Except in the
+ * case of WRITEBACKIFCOPY which has
+ * special handling.
+ *
+ * For views it points to the original
+ * array, collapsed so no chains of
+ * views occur.
+ *
+ * For creation from buffer object it
+ * points to an object that should be
+ * decref'd on deletion
+ *
+ * For WRITEBACKIFCOPY flag this is an
+ * array to-be-updated upon calling
+ * PyArray_ResolveWritebackIfCopy
+ */
+ PyObject *base;
+ /* Pointer to type structure */
+ PyArray_Descr *descr;
+ /* Flags describing array -- see below */
+ int flags;
+ /* For weak references */
+ PyObject *weakreflist;
+#if NPY_FEATURE_VERSION >= NPY_1_20_API_VERSION
+ void *_buffer_info; /* private buffer info, tagged to allow warning */
+#endif
+ /*
+ * For malloc/calloc/realloc/free per object
+ */
+#if NPY_FEATURE_VERSION >= NPY_1_22_API_VERSION
+ PyObject *mem_handler;
+#endif
+} PyArrayObject_fields;
+
+/*
+ * To hide the implementation details, we only expose
+ * the Python struct HEAD.
+ */
+#if !defined(NPY_NO_DEPRECATED_API) || \
+ (NPY_NO_DEPRECATED_API < NPY_1_7_API_VERSION)
+/*
+ * Can't put this in npy_deprecated_api.h like the others.
+ * PyArrayObject field access is deprecated as of NumPy 1.7.
+ */
+typedef PyArrayObject_fields PyArrayObject;
+#else
+typedef struct tagPyArrayObject {
+ PyObject_HEAD
+} PyArrayObject;
+#endif
+
+/*
+ * Removed 2020-Nov-25, NumPy 1.20
+ * #define NPY_SIZEOF_PYARRAYOBJECT (sizeof(PyArrayObject_fields))
+ *
+ * The above macro was removed as it gave a false sense of a stable ABI
+ * with respect to the structures size. If you require a runtime constant,
+ * you can use `PyArray_Type.tp_basicsize` instead. Otherwise, please
+ * see the PyArrayObject documentation or ask the NumPy developers for
+ * information on how to correctly replace the macro in a way that is
+ * compatible with multiple NumPy versions.
+ */
+
+/* Mirrors buffer object to ptr */
+
+typedef struct {
+ PyObject_HEAD
+ PyObject *base;
+ void *ptr;
+ npy_intp len;
+ int flags;
+} PyArray_Chunk;
+
+typedef struct {
+ NPY_DATETIMEUNIT base;
+ int num;
+} PyArray_DatetimeMetaData;
+
+typedef struct {
+ NpyAuxData base;
+ PyArray_DatetimeMetaData meta;
+} PyArray_DatetimeDTypeMetaData;
+
+/*
+ * This structure contains an exploded view of a date-time value.
+ * NaT is represented by year == NPY_DATETIME_NAT.
+ */
+typedef struct {
+ npy_int64 year;
+ npy_int32 month, day, hour, min, sec, us, ps, as;
+} npy_datetimestruct;
+
+/* This structure contains an exploded view of a timedelta value */
+typedef struct {
+ npy_int64 day;
+ npy_int32 sec, us, ps, as;
+} npy_timedeltastruct;
+
+typedef int (PyArray_FinalizeFunc)(PyArrayObject *, PyObject *);
+
+/*
+ * Means c-style contiguous (last index varies the fastest). The data
+ * elements right after each other.
+ *
+ * This flag may be requested in constructor functions.
+ * This flag may be tested for in PyArray_FLAGS(arr).
+ */
+#define NPY_ARRAY_C_CONTIGUOUS 0x0001
+
+/*
+ * Set if array is a contiguous Fortran array: the first index varies
+ * the fastest in memory (strides array is reverse of C-contiguous
+ * array)
+ *
+ * This flag may be requested in constructor functions.
+ * This flag may be tested for in PyArray_FLAGS(arr).
+ */
+#define NPY_ARRAY_F_CONTIGUOUS 0x0002
+
+/*
+ * Note: all 0-d arrays are C_CONTIGUOUS and F_CONTIGUOUS. If a
+ * 1-d array is C_CONTIGUOUS it is also F_CONTIGUOUS. Arrays with
+ * more then one dimension can be C_CONTIGUOUS and F_CONTIGUOUS
+ * at the same time if they have either zero or one element.
+ * A higher dimensional array always has the same contiguity flags as
+ * `array.squeeze()`; dimensions with `array.shape[dimension] == 1` are
+ * effectively ignored when checking for contiguity.
+ */
+
+/*
+ * If set, the array owns the data: it will be free'd when the array
+ * is deleted.
+ *
+ * This flag may be tested for in PyArray_FLAGS(arr).
+ */
+#define NPY_ARRAY_OWNDATA 0x0004
+
+/*
+ * An array never has the next four set; they're only used as parameter
+ * flags to the various FromAny functions
+ *
+ * This flag may be requested in constructor functions.
+ */
+
+/* Cause a cast to occur regardless of whether or not it is safe. */
+#define NPY_ARRAY_FORCECAST 0x0010
+
+/*
+ * Always copy the array. Returned arrays are always CONTIGUOUS,
+ * ALIGNED, and WRITEABLE. See also: NPY_ARRAY_ENSURENOCOPY = 0x4000.
+ *
+ * This flag may be requested in constructor functions.
+ */
+#define NPY_ARRAY_ENSURECOPY 0x0020
+
+/*
+ * Make sure the returned array is a base-class ndarray
+ *
+ * This flag may be requested in constructor functions.
+ */
+#define NPY_ARRAY_ENSUREARRAY 0x0040
+
+/*
+ * Make sure that the strides are in units of the element size Needed
+ * for some operations with record-arrays.
+ *
+ * This flag may be requested in constructor functions.
+ */
+#define NPY_ARRAY_ELEMENTSTRIDES 0x0080
+
+/*
+ * Array data is aligned on the appropriate memory address for the type
+ * stored according to how the compiler would align things (e.g., an
+ * array of integers (4 bytes each) starts on a memory address that's
+ * a multiple of 4)
+ *
+ * This flag may be requested in constructor functions.
+ * This flag may be tested for in PyArray_FLAGS(arr).
+ */
+#define NPY_ARRAY_ALIGNED 0x0100
+
+/*
+ * Array data has the native endianness
+ *
+ * This flag may be requested in constructor functions.
+ */
+#define NPY_ARRAY_NOTSWAPPED 0x0200
+
+/*
+ * Array data is writeable
+ *
+ * This flag may be requested in constructor functions.
+ * This flag may be tested for in PyArray_FLAGS(arr).
+ */
+#define NPY_ARRAY_WRITEABLE 0x0400
+
+/*
+ * If this flag is set, then base contains a pointer to an array of
+ * the same size that should be updated with the current contents of
+ * this array when PyArray_ResolveWritebackIfCopy is called.
+ *
+ * This flag may be requested in constructor functions.
+ * This flag may be tested for in PyArray_FLAGS(arr).
+ */
+#define NPY_ARRAY_WRITEBACKIFCOPY 0x2000
+
+/*
+ * No copy may be made while converting from an object/array (result is a view)
+ *
+ * This flag may be requested in constructor functions.
+ */
+#define NPY_ARRAY_ENSURENOCOPY 0x4000
+
+/*
+ * NOTE: there are also internal flags defined in multiarray/arrayobject.h,
+ * which start at bit 31 and work down.
+ */
+
+#define NPY_ARRAY_BEHAVED (NPY_ARRAY_ALIGNED | \
+ NPY_ARRAY_WRITEABLE)
+#define NPY_ARRAY_BEHAVED_NS (NPY_ARRAY_ALIGNED | \
+ NPY_ARRAY_WRITEABLE | \
+ NPY_ARRAY_NOTSWAPPED)
+#define NPY_ARRAY_CARRAY (NPY_ARRAY_C_CONTIGUOUS | \
+ NPY_ARRAY_BEHAVED)
+#define NPY_ARRAY_CARRAY_RO (NPY_ARRAY_C_CONTIGUOUS | \
+ NPY_ARRAY_ALIGNED)
+#define NPY_ARRAY_FARRAY (NPY_ARRAY_F_CONTIGUOUS | \
+ NPY_ARRAY_BEHAVED)
+#define NPY_ARRAY_FARRAY_RO (NPY_ARRAY_F_CONTIGUOUS | \
+ NPY_ARRAY_ALIGNED)
+#define NPY_ARRAY_DEFAULT (NPY_ARRAY_CARRAY)
+#define NPY_ARRAY_IN_ARRAY (NPY_ARRAY_CARRAY_RO)
+#define NPY_ARRAY_OUT_ARRAY (NPY_ARRAY_CARRAY)
+#define NPY_ARRAY_INOUT_ARRAY (NPY_ARRAY_CARRAY)
+#define NPY_ARRAY_INOUT_ARRAY2 (NPY_ARRAY_CARRAY | \
+ NPY_ARRAY_WRITEBACKIFCOPY)
+#define NPY_ARRAY_IN_FARRAY (NPY_ARRAY_FARRAY_RO)
+#define NPY_ARRAY_OUT_FARRAY (NPY_ARRAY_FARRAY)
+#define NPY_ARRAY_INOUT_FARRAY (NPY_ARRAY_FARRAY)
+#define NPY_ARRAY_INOUT_FARRAY2 (NPY_ARRAY_FARRAY | \
+ NPY_ARRAY_WRITEBACKIFCOPY)
+
+#define NPY_ARRAY_UPDATE_ALL (NPY_ARRAY_C_CONTIGUOUS | \
+ NPY_ARRAY_F_CONTIGUOUS | \
+ NPY_ARRAY_ALIGNED)
+
+/* This flag is for the array interface, not PyArrayObject */
+#define NPY_ARR_HAS_DESCR 0x0800
+
+
+
+
+/*
+ * Size of internal buffers used for alignment Make BUFSIZE a multiple
+ * of sizeof(npy_cdouble) -- usually 16 so that ufunc buffers are aligned
+ */
+#define NPY_MIN_BUFSIZE ((int)sizeof(npy_cdouble))
+#define NPY_MAX_BUFSIZE (((int)sizeof(npy_cdouble))*1000000)
+#define NPY_BUFSIZE 8192
+/* buffer stress test size: */
+/*#define NPY_BUFSIZE 17*/
+
+/*
+ * C API: consists of Macros and functions. The MACROS are defined
+ * here.
+ */
+
+
+#define PyArray_ISCONTIGUOUS(m) PyArray_CHKFLAGS((m), NPY_ARRAY_C_CONTIGUOUS)
+#define PyArray_ISWRITEABLE(m) PyArray_CHKFLAGS((m), NPY_ARRAY_WRITEABLE)
+#define PyArray_ISALIGNED(m) PyArray_CHKFLAGS((m), NPY_ARRAY_ALIGNED)
+
+#define PyArray_IS_C_CONTIGUOUS(m) PyArray_CHKFLAGS((m), NPY_ARRAY_C_CONTIGUOUS)
+#define PyArray_IS_F_CONTIGUOUS(m) PyArray_CHKFLAGS((m), NPY_ARRAY_F_CONTIGUOUS)
+
+/* the variable is used in some places, so always define it */
+#define NPY_BEGIN_THREADS_DEF PyThreadState *_save=NULL;
+#if NPY_ALLOW_THREADS
+#define NPY_BEGIN_ALLOW_THREADS Py_BEGIN_ALLOW_THREADS
+#define NPY_END_ALLOW_THREADS Py_END_ALLOW_THREADS
+#define NPY_BEGIN_THREADS do {_save = PyEval_SaveThread();} while (0);
+#define NPY_END_THREADS do { if (_save) \
+ { PyEval_RestoreThread(_save); _save = NULL;} } while (0);
+#define NPY_BEGIN_THREADS_THRESHOLDED(loop_size) do { if ((loop_size) > 500) \
+ { _save = PyEval_SaveThread();} } while (0);
+
+
+#define NPY_ALLOW_C_API_DEF PyGILState_STATE __save__;
+#define NPY_ALLOW_C_API do {__save__ = PyGILState_Ensure();} while (0);
+#define NPY_DISABLE_C_API do {PyGILState_Release(__save__);} while (0);
+#else
+#define NPY_BEGIN_ALLOW_THREADS
+#define NPY_END_ALLOW_THREADS
+#define NPY_BEGIN_THREADS
+#define NPY_END_THREADS
+#define NPY_BEGIN_THREADS_THRESHOLDED(loop_size)
+#define NPY_BEGIN_THREADS_DESCR(dtype)
+#define NPY_END_THREADS_DESCR(dtype)
+#define NPY_ALLOW_C_API_DEF
+#define NPY_ALLOW_C_API
+#define NPY_DISABLE_C_API
+#endif
+
+/**********************************
+ * The nditer object, added in 1.6
+ **********************************/
+
+/* The actual structure of the iterator is an internal detail */
+typedef struct NpyIter_InternalOnly NpyIter;
+
+/* Iterator function pointers that may be specialized */
+typedef int (NpyIter_IterNextFunc)(NpyIter *iter);
+typedef void (NpyIter_GetMultiIndexFunc)(NpyIter *iter,
+ npy_intp *outcoords);
+
+/*** Global flags that may be passed to the iterator constructors ***/
+
+/* Track an index representing C order */
+#define NPY_ITER_C_INDEX 0x00000001
+/* Track an index representing Fortran order */
+#define NPY_ITER_F_INDEX 0x00000002
+/* Track a multi-index */
+#define NPY_ITER_MULTI_INDEX 0x00000004
+/* User code external to the iterator does the 1-dimensional innermost loop */
+#define NPY_ITER_EXTERNAL_LOOP 0x00000008
+/* Convert all the operands to a common data type */
+#define NPY_ITER_COMMON_DTYPE 0x00000010
+/* Operands may hold references, requiring API access during iteration */
+#define NPY_ITER_REFS_OK 0x00000020
+/* Zero-sized operands should be permitted, iteration checks IterSize for 0 */
+#define NPY_ITER_ZEROSIZE_OK 0x00000040
+/* Permits reductions (size-0 stride with dimension size > 1) */
+#define NPY_ITER_REDUCE_OK 0x00000080
+/* Enables sub-range iteration */
+#define NPY_ITER_RANGED 0x00000100
+/* Enables buffering */
+#define NPY_ITER_BUFFERED 0x00000200
+/* When buffering is enabled, grows the inner loop if possible */
+#define NPY_ITER_GROWINNER 0x00000400
+/* Delay allocation of buffers until first Reset* call */
+#define NPY_ITER_DELAY_BUFALLOC 0x00000800
+/* When NPY_KEEPORDER is specified, disable reversing negative-stride axes */
+#define NPY_ITER_DONT_NEGATE_STRIDES 0x00001000
+/*
+ * If output operands overlap with other operands (based on heuristics that
+ * has false positives but no false negatives), make temporary copies to
+ * eliminate overlap.
+ */
+#define NPY_ITER_COPY_IF_OVERLAP 0x00002000
+
+/*** Per-operand flags that may be passed to the iterator constructors ***/
+
+/* The operand will be read from and written to */
+#define NPY_ITER_READWRITE 0x00010000
+/* The operand will only be read from */
+#define NPY_ITER_READONLY 0x00020000
+/* The operand will only be written to */
+#define NPY_ITER_WRITEONLY 0x00040000
+/* The operand's data must be in native byte order */
+#define NPY_ITER_NBO 0x00080000
+/* The operand's data must be aligned */
+#define NPY_ITER_ALIGNED 0x00100000
+/* The operand's data must be contiguous (within the inner loop) */
+#define NPY_ITER_CONTIG 0x00200000
+/* The operand may be copied to satisfy requirements */
+#define NPY_ITER_COPY 0x00400000
+/* The operand may be copied with WRITEBACKIFCOPY to satisfy requirements */
+#define NPY_ITER_UPDATEIFCOPY 0x00800000
+/* Allocate the operand if it is NULL */
+#define NPY_ITER_ALLOCATE 0x01000000
+/* If an operand is allocated, don't use any subtype */
+#define NPY_ITER_NO_SUBTYPE 0x02000000
+/* This is a virtual array slot, operand is NULL but temporary data is there */
+#define NPY_ITER_VIRTUAL 0x04000000
+/* Require that the dimension match the iterator dimensions exactly */
+#define NPY_ITER_NO_BROADCAST 0x08000000
+/* A mask is being used on this array, affects buffer -> array copy */
+#define NPY_ITER_WRITEMASKED 0x10000000
+/* This array is the mask for all WRITEMASKED operands */
+#define NPY_ITER_ARRAYMASK 0x20000000
+/* Assume iterator order data access for COPY_IF_OVERLAP */
+#define NPY_ITER_OVERLAP_ASSUME_ELEMENTWISE 0x40000000
+
+#define NPY_ITER_GLOBAL_FLAGS 0x0000ffff
+#define NPY_ITER_PER_OP_FLAGS 0xffff0000
+
+
+/*****************************
+ * Basic iterator object
+ *****************************/
+
+/* FWD declaration */
+typedef struct PyArrayIterObject_tag PyArrayIterObject;
+
+/*
+ * type of the function which translates a set of coordinates to a
+ * pointer to the data
+ */
+typedef char* (*npy_iter_get_dataptr_t)(
+ PyArrayIterObject* iter, const npy_intp*);
+
+struct PyArrayIterObject_tag {
+ PyObject_HEAD
+ int nd_m1; /* number of dimensions - 1 */
+ npy_intp index, size;
+ npy_intp coordinates[NPY_MAXDIMS_LEGACY_ITERS];/* N-dimensional loop */
+ npy_intp dims_m1[NPY_MAXDIMS_LEGACY_ITERS]; /* ao->dimensions - 1 */
+ npy_intp strides[NPY_MAXDIMS_LEGACY_ITERS]; /* ao->strides or fake */
+ npy_intp backstrides[NPY_MAXDIMS_LEGACY_ITERS];/* how far to jump back */
+ npy_intp factors[NPY_MAXDIMS_LEGACY_ITERS]; /* shape factors */
+ PyArrayObject *ao;
+ char *dataptr; /* pointer to current item*/
+ npy_bool contiguous;
+
+ npy_intp bounds[NPY_MAXDIMS_LEGACY_ITERS][2];
+ npy_intp limits[NPY_MAXDIMS_LEGACY_ITERS][2];
+ npy_intp limits_sizes[NPY_MAXDIMS_LEGACY_ITERS];
+ npy_iter_get_dataptr_t translate;
+} ;
+
+
+/* Iterator API */
+#define PyArrayIter_Check(op) PyObject_TypeCheck((op), &PyArrayIter_Type)
+
+#define _PyAIT(it) ((PyArrayIterObject *)(it))
+#define PyArray_ITER_RESET(it) do { \
+ _PyAIT(it)->index = 0; \
+ _PyAIT(it)->dataptr = PyArray_BYTES(_PyAIT(it)->ao); \
+ memset(_PyAIT(it)->coordinates, 0, \
+ (_PyAIT(it)->nd_m1+1)*sizeof(npy_intp)); \
+} while (0)
+
+#define _PyArray_ITER_NEXT1(it) do { \
+ (it)->dataptr += _PyAIT(it)->strides[0]; \
+ (it)->coordinates[0]++; \
+} while (0)
+
+#define _PyArray_ITER_NEXT2(it) do { \
+ if ((it)->coordinates[1] < (it)->dims_m1[1]) { \
+ (it)->coordinates[1]++; \
+ (it)->dataptr += (it)->strides[1]; \
+ } \
+ else { \
+ (it)->coordinates[1] = 0; \
+ (it)->coordinates[0]++; \
+ (it)->dataptr += (it)->strides[0] - \
+ (it)->backstrides[1]; \
+ } \
+} while (0)
+
+#define PyArray_ITER_NEXT(it) do { \
+ _PyAIT(it)->index++; \
+ if (_PyAIT(it)->nd_m1 == 0) { \
+ _PyArray_ITER_NEXT1(_PyAIT(it)); \
+ } \
+ else if (_PyAIT(it)->contiguous) \
+ _PyAIT(it)->dataptr += PyArray_ITEMSIZE(_PyAIT(it)->ao); \
+ else if (_PyAIT(it)->nd_m1 == 1) { \
+ _PyArray_ITER_NEXT2(_PyAIT(it)); \
+ } \
+ else { \
+ int __npy_i; \
+ for (__npy_i=_PyAIT(it)->nd_m1; __npy_i >= 0; __npy_i--) { \
+ if (_PyAIT(it)->coordinates[__npy_i] < \
+ _PyAIT(it)->dims_m1[__npy_i]) { \
+ _PyAIT(it)->coordinates[__npy_i]++; \
+ _PyAIT(it)->dataptr += \
+ _PyAIT(it)->strides[__npy_i]; \
+ break; \
+ } \
+ else { \
+ _PyAIT(it)->coordinates[__npy_i] = 0; \
+ _PyAIT(it)->dataptr -= \
+ _PyAIT(it)->backstrides[__npy_i]; \
+ } \
+ } \
+ } \
+} while (0)
+
+#define PyArray_ITER_GOTO(it, destination) do { \
+ int __npy_i; \
+ _PyAIT(it)->index = 0; \
+ _PyAIT(it)->dataptr = PyArray_BYTES(_PyAIT(it)->ao); \
+ for (__npy_i = _PyAIT(it)->nd_m1; __npy_i>=0; __npy_i--) { \
+ if (destination[__npy_i] < 0) { \
+ destination[__npy_i] += \
+ _PyAIT(it)->dims_m1[__npy_i]+1; \
+ } \
+ _PyAIT(it)->dataptr += destination[__npy_i] * \
+ _PyAIT(it)->strides[__npy_i]; \
+ _PyAIT(it)->coordinates[__npy_i] = \
+ destination[__npy_i]; \
+ _PyAIT(it)->index += destination[__npy_i] * \
+ ( __npy_i==_PyAIT(it)->nd_m1 ? 1 : \
+ _PyAIT(it)->dims_m1[__npy_i+1]+1) ; \
+ } \
+} while (0)
+
+#define PyArray_ITER_GOTO1D(it, ind) do { \
+ int __npy_i; \
+ npy_intp __npy_ind = (npy_intp)(ind); \
+ if (__npy_ind < 0) __npy_ind += _PyAIT(it)->size; \
+ _PyAIT(it)->index = __npy_ind; \
+ if (_PyAIT(it)->nd_m1 == 0) { \
+ _PyAIT(it)->dataptr = PyArray_BYTES(_PyAIT(it)->ao) + \
+ __npy_ind * _PyAIT(it)->strides[0]; \
+ } \
+ else if (_PyAIT(it)->contiguous) \
+ _PyAIT(it)->dataptr = PyArray_BYTES(_PyAIT(it)->ao) + \
+ __npy_ind * PyArray_ITEMSIZE(_PyAIT(it)->ao); \
+ else { \
+ _PyAIT(it)->dataptr = PyArray_BYTES(_PyAIT(it)->ao); \
+ for (__npy_i = 0; __npy_i<=_PyAIT(it)->nd_m1; \
+ __npy_i++) { \
+ _PyAIT(it)->coordinates[__npy_i] = \
+ (__npy_ind / _PyAIT(it)->factors[__npy_i]); \
+ _PyAIT(it)->dataptr += \
+ (__npy_ind / _PyAIT(it)->factors[__npy_i]) \
+ * _PyAIT(it)->strides[__npy_i]; \
+ __npy_ind %= _PyAIT(it)->factors[__npy_i]; \
+ } \
+ } \
+} while (0)
+
+#define PyArray_ITER_DATA(it) ((void *)(_PyAIT(it)->dataptr))
+
+#define PyArray_ITER_NOTDONE(it) (_PyAIT(it)->index < _PyAIT(it)->size)
+
+
+/*
+ * Any object passed to PyArray_Broadcast must be binary compatible
+ * with this structure.
+ */
+
+typedef struct {
+ PyObject_HEAD
+ int numiter; /* number of iters */
+ npy_intp size; /* broadcasted size */
+ npy_intp index; /* current index */
+ int nd; /* number of dims */
+ npy_intp dimensions[NPY_MAXDIMS_LEGACY_ITERS]; /* dimensions */
+ /*
+ * Space for the individual iterators, do not specify size publicly
+ * to allow changing it more easily.
+ * One reason is that Cython uses this for checks and only allows
+ * growing structs (as of Cython 3.0.6). It also allows NPY_MAXARGS
+ * to be runtime dependent.
+ */
+#if (defined(NPY_INTERNAL_BUILD) && NPY_INTERNAL_BUILD)
+ PyArrayIterObject *iters[64];
+#elif defined(__cplusplus)
+ /*
+ * C++ doesn't strictly support flexible members and gives compilers
+ * warnings (pedantic only), so we lie. We can't make it 64 because
+ * then Cython is unhappy (larger struct at runtime is OK smaller not).
+ */
+ PyArrayIterObject *iters[32];
+#else
+ PyArrayIterObject *iters[];
+#endif
+} PyArrayMultiIterObject;
+
+#define _PyMIT(m) ((PyArrayMultiIterObject *)(m))
+#define PyArray_MultiIter_RESET(multi) do { \
+ int __npy_mi; \
+ _PyMIT(multi)->index = 0; \
+ for (__npy_mi=0; __npy_mi < _PyMIT(multi)->numiter; __npy_mi++) { \
+ PyArray_ITER_RESET(_PyMIT(multi)->iters[__npy_mi]); \
+ } \
+} while (0)
+
+#define PyArray_MultiIter_NEXT(multi) do { \
+ int __npy_mi; \
+ _PyMIT(multi)->index++; \
+ for (__npy_mi=0; __npy_mi < _PyMIT(multi)->numiter; __npy_mi++) { \
+ PyArray_ITER_NEXT(_PyMIT(multi)->iters[__npy_mi]); \
+ } \
+} while (0)
+
+#define PyArray_MultiIter_GOTO(multi, dest) do { \
+ int __npy_mi; \
+ for (__npy_mi=0; __npy_mi < _PyMIT(multi)->numiter; __npy_mi++) { \
+ PyArray_ITER_GOTO(_PyMIT(multi)->iters[__npy_mi], dest); \
+ } \
+ _PyMIT(multi)->index = _PyMIT(multi)->iters[0]->index; \
+} while (0)
+
+#define PyArray_MultiIter_GOTO1D(multi, ind) do { \
+ int __npy_mi; \
+ for (__npy_mi=0; __npy_mi < _PyMIT(multi)->numiter; __npy_mi++) { \
+ PyArray_ITER_GOTO1D(_PyMIT(multi)->iters[__npy_mi], ind); \
+ } \
+ _PyMIT(multi)->index = _PyMIT(multi)->iters[0]->index; \
+} while (0)
+
+#define PyArray_MultiIter_DATA(multi, i) \
+ ((void *)(_PyMIT(multi)->iters[i]->dataptr))
+
+#define PyArray_MultiIter_NEXTi(multi, i) \
+ PyArray_ITER_NEXT(_PyMIT(multi)->iters[i])
+
+#define PyArray_MultiIter_NOTDONE(multi) \
+ (_PyMIT(multi)->index < _PyMIT(multi)->size)
+
+
+static NPY_INLINE int
+PyArray_MultiIter_NUMITER(PyArrayMultiIterObject *multi)
+{
+ return multi->numiter;
+}
+
+
+static NPY_INLINE npy_intp
+PyArray_MultiIter_SIZE(PyArrayMultiIterObject *multi)
+{
+ return multi->size;
+}
+
+
+static NPY_INLINE npy_intp
+PyArray_MultiIter_INDEX(PyArrayMultiIterObject *multi)
+{
+ return multi->index;
+}
+
+
+static NPY_INLINE int
+PyArray_MultiIter_NDIM(PyArrayMultiIterObject *multi)
+{
+ return multi->nd;
+}
+
+
+static NPY_INLINE npy_intp *
+PyArray_MultiIter_DIMS(PyArrayMultiIterObject *multi)
+{
+ return multi->dimensions;
+}
+
+
+static NPY_INLINE void **
+PyArray_MultiIter_ITERS(PyArrayMultiIterObject *multi)
+{
+ return (void**)multi->iters;
+}
+
+
+enum {
+ NPY_NEIGHBORHOOD_ITER_ZERO_PADDING,
+ NPY_NEIGHBORHOOD_ITER_ONE_PADDING,
+ NPY_NEIGHBORHOOD_ITER_CONSTANT_PADDING,
+ NPY_NEIGHBORHOOD_ITER_CIRCULAR_PADDING,
+ NPY_NEIGHBORHOOD_ITER_MIRROR_PADDING
+};
+
+typedef struct {
+ PyObject_HEAD
+
+ /*
+ * PyArrayIterObject part: keep this in this exact order
+ */
+ int nd_m1; /* number of dimensions - 1 */
+ npy_intp index, size;
+ npy_intp coordinates[NPY_MAXDIMS_LEGACY_ITERS];/* N-dimensional loop */
+ npy_intp dims_m1[NPY_MAXDIMS_LEGACY_ITERS]; /* ao->dimensions - 1 */
+ npy_intp strides[NPY_MAXDIMS_LEGACY_ITERS]; /* ao->strides or fake */
+ npy_intp backstrides[NPY_MAXDIMS_LEGACY_ITERS];/* how far to jump back */
+ npy_intp factors[NPY_MAXDIMS_LEGACY_ITERS]; /* shape factors */
+ PyArrayObject *ao;
+ char *dataptr; /* pointer to current item*/
+ npy_bool contiguous;
+
+ npy_intp bounds[NPY_MAXDIMS_LEGACY_ITERS][2];
+ npy_intp limits[NPY_MAXDIMS_LEGACY_ITERS][2];
+ npy_intp limits_sizes[NPY_MAXDIMS_LEGACY_ITERS];
+ npy_iter_get_dataptr_t translate;
+
+ /*
+ * New members
+ */
+ npy_intp nd;
+
+ /* Dimensions is the dimension of the array */
+ npy_intp dimensions[NPY_MAXDIMS_LEGACY_ITERS];
+
+ /*
+ * Neighborhood points coordinates are computed relatively to the
+ * point pointed by _internal_iter
+ */
+ PyArrayIterObject* _internal_iter;
+ /*
+ * To keep a reference to the representation of the constant value
+ * for constant padding
+ */
+ char* constant;
+
+ int mode;
+} PyArrayNeighborhoodIterObject;
+
+/*
+ * Neighborhood iterator API
+ */
+
+/* General: those work for any mode */
+static inline int
+PyArrayNeighborhoodIter_Reset(PyArrayNeighborhoodIterObject* iter);
+static inline int
+PyArrayNeighborhoodIter_Next(PyArrayNeighborhoodIterObject* iter);
+#if 0
+static inline int
+PyArrayNeighborhoodIter_Next2D(PyArrayNeighborhoodIterObject* iter);
+#endif
+
+/*
+ * Include inline implementations - functions defined there are not
+ * considered public API
+ */
+#define NUMPY_CORE_INCLUDE_NUMPY__NEIGHBORHOOD_IMP_H_
+#include "_neighborhood_iterator_imp.h"
+#undef NUMPY_CORE_INCLUDE_NUMPY__NEIGHBORHOOD_IMP_H_
+
+
+
+/* The default array type */
+#define NPY_DEFAULT_TYPE NPY_DOUBLE
+/* default integer type defined in npy_2_compat header */
+
+/*
+ * All sorts of useful ways to look into a PyArrayObject. It is recommended
+ * to use PyArrayObject * objects instead of always casting from PyObject *,
+ * for improved type checking.
+ *
+ * In many cases here the macro versions of the accessors are deprecated,
+ * but can't be immediately changed to inline functions because the
+ * preexisting macros accept PyObject * and do automatic casts. Inline
+ * functions accepting PyArrayObject * provides for some compile-time
+ * checking of correctness when working with these objects in C.
+ */
+
+#define PyArray_ISONESEGMENT(m) (PyArray_CHKFLAGS(m, NPY_ARRAY_C_CONTIGUOUS) || \
+ PyArray_CHKFLAGS(m, NPY_ARRAY_F_CONTIGUOUS))
+
+#define PyArray_ISFORTRAN(m) (PyArray_CHKFLAGS(m, NPY_ARRAY_F_CONTIGUOUS) && \
+ (!PyArray_CHKFLAGS(m, NPY_ARRAY_C_CONTIGUOUS)))
+
+#define PyArray_FORTRAN_IF(m) ((PyArray_CHKFLAGS(m, NPY_ARRAY_F_CONTIGUOUS) ? \
+ NPY_ARRAY_F_CONTIGUOUS : 0))
+
+static inline int
+PyArray_NDIM(const PyArrayObject *arr)
+{
+ return ((PyArrayObject_fields *)arr)->nd;
+}
+
+static inline void *
+PyArray_DATA(const PyArrayObject *arr)
+{
+ return ((PyArrayObject_fields *)arr)->data;
+}
+
+static inline char *
+PyArray_BYTES(const PyArrayObject *arr)
+{
+ return ((PyArrayObject_fields *)arr)->data;
+}
+
+static inline npy_intp *
+PyArray_DIMS(const PyArrayObject *arr)
+{
+ return ((PyArrayObject_fields *)arr)->dimensions;
+}
+
+static inline npy_intp *
+PyArray_STRIDES(const PyArrayObject *arr)
+{
+ return ((PyArrayObject_fields *)arr)->strides;
+}
+
+static inline npy_intp
+PyArray_DIM(const PyArrayObject *arr, int idim)
+{
+ return ((PyArrayObject_fields *)arr)->dimensions[idim];
+}
+
+static inline npy_intp
+PyArray_STRIDE(const PyArrayObject *arr, int istride)
+{
+ return ((PyArrayObject_fields *)arr)->strides[istride];
+}
+
+static inline NPY_RETURNS_BORROWED_REF PyObject *
+PyArray_BASE(const PyArrayObject *arr)
+{
+ return ((PyArrayObject_fields *)arr)->base;
+}
+
+static inline NPY_RETURNS_BORROWED_REF PyArray_Descr *
+PyArray_DESCR(const PyArrayObject *arr)
+{
+ return ((PyArrayObject_fields *)arr)->descr;
+}
+
+static inline int
+PyArray_FLAGS(const PyArrayObject *arr)
+{
+ return ((PyArrayObject_fields *)arr)->flags;
+}
+
+
+static inline int
+PyArray_TYPE(const PyArrayObject *arr)
+{
+ return ((PyArrayObject_fields *)arr)->descr->type_num;
+}
+
+static inline int
+PyArray_CHKFLAGS(const PyArrayObject *arr, int flags)
+{
+ return (PyArray_FLAGS(arr) & flags) == flags;
+}
+
+static inline PyArray_Descr *
+PyArray_DTYPE(const PyArrayObject *arr)
+{
+ return ((PyArrayObject_fields *)arr)->descr;
+}
+
+static inline npy_intp *
+PyArray_SHAPE(const PyArrayObject *arr)
+{
+ return ((PyArrayObject_fields *)arr)->dimensions;
+}
+
+/*
+ * Enables the specified array flags. Does no checking,
+ * assumes you know what you're doing.
+ */
+static inline void
+PyArray_ENABLEFLAGS(PyArrayObject *arr, int flags)
+{
+ ((PyArrayObject_fields *)arr)->flags |= flags;
+}
+
+/*
+ * Clears the specified array flags. Does no checking,
+ * assumes you know what you're doing.
+ */
+static inline void
+PyArray_CLEARFLAGS(PyArrayObject *arr, int flags)
+{
+ ((PyArrayObject_fields *)arr)->flags &= ~flags;
+}
+
+#if NPY_FEATURE_VERSION >= NPY_1_22_API_VERSION
+ static inline NPY_RETURNS_BORROWED_REF PyObject *
+ PyArray_HANDLER(PyArrayObject *arr)
+ {
+ return ((PyArrayObject_fields *)arr)->mem_handler;
+ }
+#endif
+
+#define PyTypeNum_ISBOOL(type) ((type) == NPY_BOOL)
+
+#define PyTypeNum_ISUNSIGNED(type) (((type) == NPY_UBYTE) || \
+ ((type) == NPY_USHORT) || \
+ ((type) == NPY_UINT) || \
+ ((type) == NPY_ULONG) || \
+ ((type) == NPY_ULONGLONG))
+
+#define PyTypeNum_ISSIGNED(type) (((type) == NPY_BYTE) || \
+ ((type) == NPY_SHORT) || \
+ ((type) == NPY_INT) || \
+ ((type) == NPY_LONG) || \
+ ((type) == NPY_LONGLONG))
+
+#define PyTypeNum_ISINTEGER(type) (((type) >= NPY_BYTE) && \
+ ((type) <= NPY_ULONGLONG))
+
+#define PyTypeNum_ISFLOAT(type) ((((type) >= NPY_FLOAT) && \
+ ((type) <= NPY_LONGDOUBLE)) || \
+ ((type) == NPY_HALF))
+
+#define PyTypeNum_ISNUMBER(type) (((type) <= NPY_CLONGDOUBLE) || \
+ ((type) == NPY_HALF))
+
+#define PyTypeNum_ISSTRING(type) (((type) == NPY_STRING) || \
+ ((type) == NPY_UNICODE))
+
+#define PyTypeNum_ISCOMPLEX(type) (((type) >= NPY_CFLOAT) && \
+ ((type) <= NPY_CLONGDOUBLE))
+
+#define PyTypeNum_ISFLEXIBLE(type) (((type) >=NPY_STRING) && \
+ ((type) <=NPY_VOID))
+
+#define PyTypeNum_ISDATETIME(type) (((type) >=NPY_DATETIME) && \
+ ((type) <=NPY_TIMEDELTA))
+
+#define PyTypeNum_ISUSERDEF(type) (((type) >= NPY_USERDEF) && \
+ ((type) < NPY_USERDEF+ \
+ NPY_NUMUSERTYPES))
+
+#define PyTypeNum_ISEXTENDED(type) (PyTypeNum_ISFLEXIBLE(type) || \
+ PyTypeNum_ISUSERDEF(type))
+
+#define PyTypeNum_ISOBJECT(type) ((type) == NPY_OBJECT)
+
+
+#define PyDataType_ISLEGACY(dtype) ((dtype)->type_num < NPY_VSTRING && ((dtype)->type_num >= 0))
+#define PyDataType_ISBOOL(obj) PyTypeNum_ISBOOL(((PyArray_Descr*)(obj))->type_num)
+#define PyDataType_ISUNSIGNED(obj) PyTypeNum_ISUNSIGNED(((PyArray_Descr*)(obj))->type_num)
+#define PyDataType_ISSIGNED(obj) PyTypeNum_ISSIGNED(((PyArray_Descr*)(obj))->type_num)
+#define PyDataType_ISINTEGER(obj) PyTypeNum_ISINTEGER(((PyArray_Descr*)(obj))->type_num )
+#define PyDataType_ISFLOAT(obj) PyTypeNum_ISFLOAT(((PyArray_Descr*)(obj))->type_num)
+#define PyDataType_ISNUMBER(obj) PyTypeNum_ISNUMBER(((PyArray_Descr*)(obj))->type_num)
+#define PyDataType_ISSTRING(obj) PyTypeNum_ISSTRING(((PyArray_Descr*)(obj))->type_num)
+#define PyDataType_ISCOMPLEX(obj) PyTypeNum_ISCOMPLEX(((PyArray_Descr*)(obj))->type_num)
+#define PyDataType_ISFLEXIBLE(obj) PyTypeNum_ISFLEXIBLE(((PyArray_Descr*)(obj))->type_num)
+#define PyDataType_ISDATETIME(obj) PyTypeNum_ISDATETIME(((PyArray_Descr*)(obj))->type_num)
+#define PyDataType_ISUSERDEF(obj) PyTypeNum_ISUSERDEF(((PyArray_Descr*)(obj))->type_num)
+#define PyDataType_ISEXTENDED(obj) PyTypeNum_ISEXTENDED(((PyArray_Descr*)(obj))->type_num)
+#define PyDataType_ISOBJECT(obj) PyTypeNum_ISOBJECT(((PyArray_Descr*)(obj))->type_num)
+#define PyDataType_MAKEUNSIZED(dtype) ((dtype)->elsize = 0)
+/*
+ * PyDataType_* FLAGS, FLACHK, REFCHK, HASFIELDS, HASSUBARRAY, UNSIZED,
+ * SUBARRAY, NAMES, FIELDS, C_METADATA, and METADATA require version specific
+ * lookup and are defined in npy_2_compat.h.
+ */
+
+
+#define PyArray_ISBOOL(obj) PyTypeNum_ISBOOL(PyArray_TYPE(obj))
+#define PyArray_ISUNSIGNED(obj) PyTypeNum_ISUNSIGNED(PyArray_TYPE(obj))
+#define PyArray_ISSIGNED(obj) PyTypeNum_ISSIGNED(PyArray_TYPE(obj))
+#define PyArray_ISINTEGER(obj) PyTypeNum_ISINTEGER(PyArray_TYPE(obj))
+#define PyArray_ISFLOAT(obj) PyTypeNum_ISFLOAT(PyArray_TYPE(obj))
+#define PyArray_ISNUMBER(obj) PyTypeNum_ISNUMBER(PyArray_TYPE(obj))
+#define PyArray_ISSTRING(obj) PyTypeNum_ISSTRING(PyArray_TYPE(obj))
+#define PyArray_ISCOMPLEX(obj) PyTypeNum_ISCOMPLEX(PyArray_TYPE(obj))
+#define PyArray_ISFLEXIBLE(obj) PyTypeNum_ISFLEXIBLE(PyArray_TYPE(obj))
+#define PyArray_ISDATETIME(obj) PyTypeNum_ISDATETIME(PyArray_TYPE(obj))
+#define PyArray_ISUSERDEF(obj) PyTypeNum_ISUSERDEF(PyArray_TYPE(obj))
+#define PyArray_ISEXTENDED(obj) PyTypeNum_ISEXTENDED(PyArray_TYPE(obj))
+#define PyArray_ISOBJECT(obj) PyTypeNum_ISOBJECT(PyArray_TYPE(obj))
+#define PyArray_HASFIELDS(obj) PyDataType_HASFIELDS(PyArray_DESCR(obj))
+
+ /*
+ * FIXME: This should check for a flag on the data-type that
+ * states whether or not it is variable length. Because the
+ * ISFLEXIBLE check is hard-coded to the built-in data-types.
+ */
+#define PyArray_ISVARIABLE(obj) PyTypeNum_ISFLEXIBLE(PyArray_TYPE(obj))
+
+#define PyArray_SAFEALIGNEDCOPY(obj) (PyArray_ISALIGNED(obj) && !PyArray_ISVARIABLE(obj))
+
+
+#define NPY_LITTLE '<'
+#define NPY_BIG '>'
+#define NPY_NATIVE '='
+#define NPY_SWAP 's'
+#define NPY_IGNORE '|'
+
+#if NPY_BYTE_ORDER == NPY_BIG_ENDIAN
+#define NPY_NATBYTE NPY_BIG
+#define NPY_OPPBYTE NPY_LITTLE
+#else
+#define NPY_NATBYTE NPY_LITTLE
+#define NPY_OPPBYTE NPY_BIG
+#endif
+
+#define PyArray_ISNBO(arg) ((arg) != NPY_OPPBYTE)
+#define PyArray_IsNativeByteOrder PyArray_ISNBO
+#define PyArray_ISNOTSWAPPED(m) PyArray_ISNBO(PyArray_DESCR(m)->byteorder)
+#define PyArray_ISBYTESWAPPED(m) (!PyArray_ISNOTSWAPPED(m))
+
+#define PyArray_FLAGSWAP(m, flags) (PyArray_CHKFLAGS(m, flags) && \
+ PyArray_ISNOTSWAPPED(m))
+
+#define PyArray_ISCARRAY(m) PyArray_FLAGSWAP(m, NPY_ARRAY_CARRAY)
+#define PyArray_ISCARRAY_RO(m) PyArray_FLAGSWAP(m, NPY_ARRAY_CARRAY_RO)
+#define PyArray_ISFARRAY(m) PyArray_FLAGSWAP(m, NPY_ARRAY_FARRAY)
+#define PyArray_ISFARRAY_RO(m) PyArray_FLAGSWAP(m, NPY_ARRAY_FARRAY_RO)
+#define PyArray_ISBEHAVED(m) PyArray_FLAGSWAP(m, NPY_ARRAY_BEHAVED)
+#define PyArray_ISBEHAVED_RO(m) PyArray_FLAGSWAP(m, NPY_ARRAY_ALIGNED)
+
+
+#define PyDataType_ISNOTSWAPPED(d) PyArray_ISNBO(((PyArray_Descr *)(d))->byteorder)
+#define PyDataType_ISBYTESWAPPED(d) (!PyDataType_ISNOTSWAPPED(d))
+
+/************************************************************
+ * A struct used by PyArray_CreateSortedStridePerm, new in 1.7.
+ ************************************************************/
+
+typedef struct {
+ npy_intp perm, stride;
+} npy_stride_sort_item;
+
+/************************************************************
+ * This is the form of the struct that's stored in the
+ * PyCapsule returned by an array's __array_struct__ attribute. See
+ * https://docs.scipy.org/doc/numpy/reference/arrays.interface.html for the full
+ * documentation.
+ ************************************************************/
+typedef struct {
+ int two; /*
+ * contains the integer 2 as a sanity
+ * check
+ */
+
+ int nd; /* number of dimensions */
+
+ char typekind; /*
+ * kind in array --- character code of
+ * typestr
+ */
+
+ int itemsize; /* size of each element */
+
+ int flags; /*
+ * how should be data interpreted. Valid
+ * flags are CONTIGUOUS (1), F_CONTIGUOUS (2),
+ * ALIGNED (0x100), NOTSWAPPED (0x200), and
+ * WRITEABLE (0x400). ARR_HAS_DESCR (0x800)
+ * states that arrdescr field is present in
+ * structure
+ */
+
+ npy_intp *shape; /*
+ * A length-nd array of shape
+ * information
+ */
+
+ npy_intp *strides; /* A length-nd array of stride information */
+
+ void *data; /* A pointer to the first element of the array */
+
+ PyObject *descr; /*
+ * A list of fields or NULL (ignored if flags
+ * does not have ARR_HAS_DESCR flag set)
+ */
+} PyArrayInterface;
+
+
+/****************************************
+ * NpyString
+ *
+ * Types used by the NpyString API.
+ ****************************************/
+
+/*
+ * A "packed" encoded string. The string data must be accessed by first unpacking the string.
+ */
+typedef struct npy_packed_static_string npy_packed_static_string;
+
+/*
+ * An unpacked read-only view onto the data in a packed string
+ */
+typedef struct npy_unpacked_static_string {
+ size_t size;
+ const char *buf;
+} npy_static_string;
+
+/*
+ * Handles heap allocations for static strings.
+ */
+typedef struct npy_string_allocator npy_string_allocator;
+
+typedef struct {
+ PyArray_Descr base;
+ // The object representing a null value
+ PyObject *na_object;
+ // Flag indicating whether or not to coerce arbitrary objects to strings
+ char coerce;
+ // Flag indicating the na object is NaN-like
+ char has_nan_na;
+ // Flag indicating the na object is a string
+ char has_string_na;
+ // If nonzero, indicates that this instance is owned by an array already
+ char array_owned;
+ // The string data to use when a default string is needed
+ npy_static_string default_string;
+ // The name of the missing data object, if any
+ npy_static_string na_name;
+ // the allocator should only be directly accessed after
+ // acquiring the allocator_lock and the lock should
+ // be released immediately after the allocator is
+ // no longer needed
+ npy_string_allocator *allocator;
+} PyArray_StringDTypeObject;
+
+/*
+ * PyArray_DTypeMeta related definitions.
+ *
+ * As of now, this API is preliminary and will be extended as necessary.
+ */
+#if defined(NPY_INTERNAL_BUILD) && NPY_INTERNAL_BUILD
+ /*
+ * The Structures defined in this block are currently considered
+ * private API and may change without warning!
+ * Part of this (at least the size) is expected to be public API without
+ * further modifications.
+ */
+ /* TODO: Make this definition public in the API, as soon as its settled */
+ NPY_NO_EXPORT extern PyTypeObject PyArrayDTypeMeta_Type;
+
+ /*
+ * While NumPy DTypes would not need to be heap types the plan is to
+ * make DTypes available in Python at which point they will be heap types.
+ * Since we also wish to add fields to the DType class, this looks like
+ * a typical instance definition, but with PyHeapTypeObject instead of
+ * only the PyObject_HEAD.
+ * This must only be exposed very extremely careful consideration, since
+ * it is a fairly complex construct which may be better to allow
+ * refactoring of.
+ */
+ typedef struct {
+ PyHeapTypeObject super;
+
+ /*
+ * Most DTypes will have a singleton default instance, for the
+ * parametric legacy DTypes (bytes, string, void, datetime) this
+ * may be a pointer to the *prototype* instance?
+ */
+ PyArray_Descr *singleton;
+ /* Copy of the legacy DTypes type number, usually invalid. */
+ int type_num;
+
+ /* The type object of the scalar instances (may be NULL?) */
+ PyTypeObject *scalar_type;
+ /*
+ * DType flags to signal legacy, parametric, or
+ * abstract. But plenty of space for additional information/flags.
+ */
+ npy_uint64 flags;
+
+ /*
+ * Use indirection in order to allow a fixed size for this struct.
+ * A stable ABI size makes creating a static DType less painful
+ * while also ensuring flexibility for all opaque API (with one
+ * indirection due the pointer lookup).
+ */
+ void *dt_slots;
+ void *reserved[3];
+ } PyArray_DTypeMeta;
+
+#endif /* NPY_INTERNAL_BUILD */
+
+
+/*
+ * Use the keyword NPY_DEPRECATED_INCLUDES to ensure that the header files
+ * npy_*_*_deprecated_api.h are only included from here and nowhere else.
+ */
+#ifdef NPY_DEPRECATED_INCLUDES
+#error "Do not use the reserved keyword NPY_DEPRECATED_INCLUDES."
+#endif
+#define NPY_DEPRECATED_INCLUDES
+/*
+ * There is no file npy_1_8_deprecated_api.h since there are no additional
+ * deprecated API features in NumPy 1.8.
+ *
+ * Note to maintainers: insert code like the following in future NumPy
+ * versions.
+ *
+ * #if !defined(NPY_NO_DEPRECATED_API) || \
+ * (NPY_NO_DEPRECATED_API < NPY_1_9_API_VERSION)
+ * #include "npy_1_9_deprecated_api.h"
+ * #endif
+ * Then in the npy_1_9_deprecated_api.h header add something like this
+ * --------------------
+ * #ifndef NPY_DEPRECATED_INCLUDES
+ * #error "Should never include npy_*_*_deprecated_api directly."
+ * #endif
+ * #ifndef NUMPY_CORE_INCLUDE_NUMPY_NPY_1_7_DEPRECATED_API_H_
+ * #define NUMPY_CORE_INCLUDE_NUMPY_NPY_1_7_DEPRECATED_API_H_
+ *
+ * #ifndef NPY_NO_DEPRECATED_API
+ * #if defined(_WIN32)
+ * #define _WARN___STR2__(x) #x
+ * #define _WARN___STR1__(x) _WARN___STR2__(x)
+ * #define _WARN___LOC__ __FILE__ "(" _WARN___STR1__(__LINE__) ") : Warning Msg: "
+ * #pragma message(_WARN___LOC__"Using deprecated NumPy API, disable it with " \
+ * "#define NPY_NO_DEPRECATED_API NPY_1_7_API_VERSION")
+ * #else
+ * #warning "Using deprecated NumPy API, disable it with " \
+ * "#define NPY_NO_DEPRECATED_API NPY_1_7_API_VERSION"
+ * #endif
+ * #endif
+ * --------------------
+ */
+#undef NPY_DEPRECATED_INCLUDES
+
+#ifdef __cplusplus
+}
+#endif
+
+#endif /* NUMPY_CORE_INCLUDE_NUMPY_NDARRAYTYPES_H_ */
diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/include/numpy/npy_2_compat.h b/.venv/lib/python3.12/site-packages/numpy/_core/include/numpy/npy_2_compat.h
new file mode 100644
index 0000000..e39e65a
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/_core/include/numpy/npy_2_compat.h
@@ -0,0 +1,249 @@
+/*
+ * This header file defines relevant features which:
+ * - Require runtime inspection depending on the NumPy version.
+ * - May be needed when compiling with an older version of NumPy to allow
+ * a smooth transition.
+ *
+ * As such, it is shipped with NumPy 2.0, but designed to be vendored in full
+ * or parts by downstream projects.
+ *
+ * It must be included after any other includes. `import_array()` must have
+ * been called in the scope or version dependency will misbehave, even when
+ * only `PyUFunc_` API is used.
+ *
+ * If required complicated defs (with inline functions) should be written as:
+ *
+ * #if NPY_FEATURE_VERSION >= NPY_2_0_API_VERSION
+ * Simple definition when NumPy 2.0 API is guaranteed.
+ * #else
+ * static inline definition of a 1.x compatibility shim
+ * #if NPY_ABI_VERSION < 0x02000000
+ * Make 1.x compatibility shim the public API (1.x only branch)
+ * #else
+ * Runtime dispatched version (1.x or 2.x)
+ * #endif
+ * #endif
+ *
+ * An internal build always passes NPY_FEATURE_VERSION >= NPY_2_0_API_VERSION
+ */
+
+#ifndef NUMPY_CORE_INCLUDE_NUMPY_NPY_2_COMPAT_H_
+#define NUMPY_CORE_INCLUDE_NUMPY_NPY_2_COMPAT_H_
+
+/*
+ * New macros for accessing real and complex part of a complex number can be
+ * found in "npy_2_complexcompat.h".
+ */
+
+
+/*
+ * This header is meant to be included by downstream directly for 1.x compat.
+ * In that case we need to ensure that users first included the full headers
+ * and not just `ndarraytypes.h`.
+ */
+
+#ifndef NPY_FEATURE_VERSION
+ #error "The NumPy 2 compat header requires `import_array()` for which " \
+ "the `ndarraytypes.h` header include is not sufficient. Please " \
+ "include it after `numpy/ndarrayobject.h` or similar.\n" \
+ "To simplify inclusion, you may use `PyArray_ImportNumPy()` " \
+ "which is defined in the compat header and is lightweight (can be)."
+#endif
+
+#if NPY_ABI_VERSION < 0x02000000
+ /*
+ * Define 2.0 feature version as it is needed below to decide whether we
+ * compile for both 1.x and 2.x (defining it guarantees 1.x only).
+ */
+ #define NPY_2_0_API_VERSION 0x00000012
+ /*
+ * If we are compiling with NumPy 1.x, PyArray_RUNTIME_VERSION so we
+ * pretend the `PyArray_RUNTIME_VERSION` is `NPY_FEATURE_VERSION`.
+ * This allows downstream to use `PyArray_RUNTIME_VERSION` if they need to.
+ */
+ #define PyArray_RUNTIME_VERSION NPY_FEATURE_VERSION
+ /* Compiling on NumPy 1.x where these are the same: */
+ #define PyArray_DescrProto PyArray_Descr
+#endif
+
+
+/*
+ * Define a better way to call `_import_array()` to simplify backporting as
+ * we now require imports more often (necessary to make ABI flexible).
+ */
+#ifdef import_array1
+
+static inline int
+PyArray_ImportNumPyAPI(void)
+{
+ if (NPY_UNLIKELY(PyArray_API == NULL)) {
+ import_array1(-1);
+ }
+ return 0;
+}
+
+#endif /* import_array1 */
+
+
+/*
+ * NPY_DEFAULT_INT
+ *
+ * The default integer has changed, `NPY_DEFAULT_INT` is available at runtime
+ * for use as type number, e.g. `PyArray_DescrFromType(NPY_DEFAULT_INT)`.
+ *
+ * NPY_RAVEL_AXIS
+ *
+ * This was introduced in NumPy 2.0 to allow indicating that an axis should be
+ * raveled in an operation. Before NumPy 2.0, NPY_MAXDIMS was used for this purpose.
+ *
+ * NPY_MAXDIMS
+ *
+ * A constant indicating the maximum number dimensions allowed when creating
+ * an ndarray.
+ *
+ * NPY_NTYPES_LEGACY
+ *
+ * The number of built-in NumPy dtypes.
+ */
+#if NPY_FEATURE_VERSION >= NPY_2_0_API_VERSION
+ #define NPY_DEFAULT_INT NPY_INTP
+ #define NPY_RAVEL_AXIS NPY_MIN_INT
+ #define NPY_MAXARGS 64
+
+#elif NPY_ABI_VERSION < 0x02000000
+ #define NPY_DEFAULT_INT NPY_LONG
+ #define NPY_RAVEL_AXIS 32
+ #define NPY_MAXARGS 32
+
+ /* Aliases of 2.x names to 1.x only equivalent names */
+ #define NPY_NTYPES NPY_NTYPES_LEGACY
+ #define PyArray_DescrProto PyArray_Descr
+ #define _PyArray_LegacyDescr PyArray_Descr
+ /* NumPy 2 definition always works, but add it for 1.x only */
+ #define PyDataType_ISLEGACY(dtype) (1)
+#else
+ #define NPY_DEFAULT_INT \
+ (PyArray_RUNTIME_VERSION >= NPY_2_0_API_VERSION ? NPY_INTP : NPY_LONG)
+ #define NPY_RAVEL_AXIS \
+ (PyArray_RUNTIME_VERSION >= NPY_2_0_API_VERSION ? NPY_MIN_INT : 32)
+ #define NPY_MAXARGS \
+ (PyArray_RUNTIME_VERSION >= NPY_2_0_API_VERSION ? 64 : 32)
+#endif
+
+
+/*
+ * Access inline functions for descriptor fields. Except for the first
+ * few fields, these needed to be moved (elsize, alignment) for
+ * additional space. Or they are descriptor specific and are not generally
+ * available anymore (metadata, c_metadata, subarray, names, fields).
+ *
+ * Most of these are defined via the `DESCR_ACCESSOR` macro helper.
+ */
+#if NPY_FEATURE_VERSION >= NPY_2_0_API_VERSION || NPY_ABI_VERSION < 0x02000000
+ /* Compiling for 1.x or 2.x only, direct field access is OK: */
+
+ static inline void
+ PyDataType_SET_ELSIZE(PyArray_Descr *dtype, npy_intp size)
+ {
+ dtype->elsize = size;
+ }
+
+ static inline npy_uint64
+ PyDataType_FLAGS(const PyArray_Descr *dtype)
+ {
+ #if NPY_FEATURE_VERSION >= NPY_2_0_API_VERSION
+ return dtype->flags;
+ #else
+ return (unsigned char)dtype->flags; /* Need unsigned cast on 1.x */
+ #endif
+ }
+
+ #define DESCR_ACCESSOR(FIELD, field, type, legacy_only) \
+ static inline type \
+ PyDataType_##FIELD(const PyArray_Descr *dtype) { \
+ if (legacy_only && !PyDataType_ISLEGACY(dtype)) { \
+ return (type)0; \
+ } \
+ return ((_PyArray_LegacyDescr *)dtype)->field; \
+ }
+#else /* compiling for both 1.x and 2.x */
+
+ static inline void
+ PyDataType_SET_ELSIZE(PyArray_Descr *dtype, npy_intp size)
+ {
+ if (PyArray_RUNTIME_VERSION >= NPY_2_0_API_VERSION) {
+ ((_PyArray_DescrNumPy2 *)dtype)->elsize = size;
+ }
+ else {
+ ((PyArray_DescrProto *)dtype)->elsize = (int)size;
+ }
+ }
+
+ static inline npy_uint64
+ PyDataType_FLAGS(const PyArray_Descr *dtype)
+ {
+ if (PyArray_RUNTIME_VERSION >= NPY_2_0_API_VERSION) {
+ return ((_PyArray_DescrNumPy2 *)dtype)->flags;
+ }
+ else {
+ return (unsigned char)((PyArray_DescrProto *)dtype)->flags;
+ }
+ }
+
+ /* Cast to LegacyDescr always fine but needed when `legacy_only` */
+ #define DESCR_ACCESSOR(FIELD, field, type, legacy_only) \
+ static inline type \
+ PyDataType_##FIELD(const PyArray_Descr *dtype) { \
+ if (legacy_only && !PyDataType_ISLEGACY(dtype)) { \
+ return (type)0; \
+ } \
+ if (PyArray_RUNTIME_VERSION >= NPY_2_0_API_VERSION) { \
+ return ((_PyArray_LegacyDescr *)dtype)->field; \
+ } \
+ else { \
+ return ((PyArray_DescrProto *)dtype)->field; \
+ } \
+ }
+#endif
+
+DESCR_ACCESSOR(ELSIZE, elsize, npy_intp, 0)
+DESCR_ACCESSOR(ALIGNMENT, alignment, npy_intp, 0)
+DESCR_ACCESSOR(METADATA, metadata, PyObject *, 1)
+DESCR_ACCESSOR(SUBARRAY, subarray, PyArray_ArrayDescr *, 1)
+DESCR_ACCESSOR(NAMES, names, PyObject *, 1)
+DESCR_ACCESSOR(FIELDS, fields, PyObject *, 1)
+DESCR_ACCESSOR(C_METADATA, c_metadata, NpyAuxData *, 1)
+
+#undef DESCR_ACCESSOR
+
+
+#if !(defined(NPY_INTERNAL_BUILD) && NPY_INTERNAL_BUILD)
+#if NPY_FEATURE_VERSION >= NPY_2_0_API_VERSION
+ static inline PyArray_ArrFuncs *
+ PyDataType_GetArrFuncs(const PyArray_Descr *descr)
+ {
+ return _PyDataType_GetArrFuncs(descr);
+ }
+#elif NPY_ABI_VERSION < 0x02000000
+ static inline PyArray_ArrFuncs *
+ PyDataType_GetArrFuncs(const PyArray_Descr *descr)
+ {
+ return descr->f;
+ }
+#else
+ static inline PyArray_ArrFuncs *
+ PyDataType_GetArrFuncs(const PyArray_Descr *descr)
+ {
+ if (PyArray_RUNTIME_VERSION >= NPY_2_0_API_VERSION) {
+ return _PyDataType_GetArrFuncs(descr);
+ }
+ else {
+ return ((PyArray_DescrProto *)descr)->f;
+ }
+ }
+#endif
+
+
+#endif /* not internal build */
+
+#endif /* NUMPY_CORE_INCLUDE_NUMPY_NPY_2_COMPAT_H_ */
diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/include/numpy/npy_2_complexcompat.h b/.venv/lib/python3.12/site-packages/numpy/_core/include/numpy/npy_2_complexcompat.h
new file mode 100644
index 0000000..0b50901
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/_core/include/numpy/npy_2_complexcompat.h
@@ -0,0 +1,28 @@
+/* This header is designed to be copy-pasted into downstream packages, since it provides
+ a compatibility layer between the old C struct complex types and the new native C99
+ complex types. The new macros are in numpy/npy_math.h, which is why it is included here. */
+#ifndef NUMPY_CORE_INCLUDE_NUMPY_NPY_2_COMPLEXCOMPAT_H_
+#define NUMPY_CORE_INCLUDE_NUMPY_NPY_2_COMPLEXCOMPAT_H_
+
+#include <numpy/npy_math.h>
+
+#ifndef NPY_CSETREALF
+#define NPY_CSETREALF(c, r) (c)->real = (r)
+#endif
+#ifndef NPY_CSETIMAGF
+#define NPY_CSETIMAGF(c, i) (c)->imag = (i)
+#endif
+#ifndef NPY_CSETREAL
+#define NPY_CSETREAL(c, r) (c)->real = (r)
+#endif
+#ifndef NPY_CSETIMAG
+#define NPY_CSETIMAG(c, i) (c)->imag = (i)
+#endif
+#ifndef NPY_CSETREALL
+#define NPY_CSETREALL(c, r) (c)->real = (r)
+#endif
+#ifndef NPY_CSETIMAGL
+#define NPY_CSETIMAGL(c, i) (c)->imag = (i)
+#endif
+
+#endif
diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/include/numpy/npy_3kcompat.h b/.venv/lib/python3.12/site-packages/numpy/_core/include/numpy/npy_3kcompat.h
new file mode 100644
index 0000000..c2bf74f
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/_core/include/numpy/npy_3kcompat.h
@@ -0,0 +1,374 @@
+/*
+ * This is a convenience header file providing compatibility utilities
+ * for supporting different minor versions of Python 3.
+ * It was originally used to support the transition from Python 2,
+ * hence the "3k" naming.
+ *
+ * If you want to use this for your own projects, it's recommended to make a
+ * copy of it. We don't provide backwards compatibility guarantees.
+ */
+
+#ifndef NUMPY_CORE_INCLUDE_NUMPY_NPY_3KCOMPAT_H_
+#define NUMPY_CORE_INCLUDE_NUMPY_NPY_3KCOMPAT_H_
+
+#include <Python.h>
+#include <stdio.h>
+
+#include "npy_common.h"
+
+#ifdef __cplusplus
+extern "C" {
+#endif
+
+/* Python13 removes _PyLong_AsInt */
+static inline int
+Npy__PyLong_AsInt(PyObject *obj)
+{
+ int overflow;
+ long result = PyLong_AsLongAndOverflow(obj, &overflow);
+
+ /* INT_MAX and INT_MIN are defined in Python.h */
+ if (overflow || result > INT_MAX || result < INT_MIN) {
+ /* XXX: could be cute and give a different
+ message for overflow == -1 */
+ PyErr_SetString(PyExc_OverflowError,
+ "Python int too large to convert to C int");
+ return -1;
+ }
+ return (int)result;
+}
+
+#if defined _MSC_VER && _MSC_VER >= 1900
+
+#include <stdlib.h>
+
+/*
+ * Macros to protect CRT calls against instant termination when passed an
+ * invalid parameter (https://bugs.python.org/issue23524).
+ */
+extern _invalid_parameter_handler _Py_silent_invalid_parameter_handler;
+#define NPY_BEGIN_SUPPRESS_IPH { _invalid_parameter_handler _Py_old_handler = \
+ _set_thread_local_invalid_parameter_handler(_Py_silent_invalid_parameter_handler);
+#define NPY_END_SUPPRESS_IPH _set_thread_local_invalid_parameter_handler(_Py_old_handler); }
+
+#else
+
+#define NPY_BEGIN_SUPPRESS_IPH
+#define NPY_END_SUPPRESS_IPH
+
+#endif /* _MSC_VER >= 1900 */
+
+/*
+ * PyFile_* compatibility
+ */
+
+/*
+ * Get a FILE* handle to the file represented by the Python object
+ */
+static inline FILE*
+npy_PyFile_Dup2(PyObject *file, char *mode, npy_off_t *orig_pos)
+{
+ int fd, fd2, unbuf;
+ Py_ssize_t fd2_tmp;
+ PyObject *ret, *os, *io, *io_raw;
+ npy_off_t pos;
+ FILE *handle;
+
+ /* Flush first to ensure things end up in the file in the correct order */
+ ret = PyObject_CallMethod(file, "flush", "");
+ if (ret == NULL) {
+ return NULL;
+ }
+ Py_DECREF(ret);
+ fd = PyObject_AsFileDescriptor(file);
+ if (fd == -1) {
+ return NULL;
+ }
+
+ /*
+ * The handle needs to be dup'd because we have to call fclose
+ * at the end
+ */
+ os = PyImport_ImportModule("os");
+ if (os == NULL) {
+ return NULL;
+ }
+ ret = PyObject_CallMethod(os, "dup", "i", fd);
+ Py_DECREF(os);
+ if (ret == NULL) {
+ return NULL;
+ }
+ fd2_tmp = PyNumber_AsSsize_t(ret, PyExc_IOError);
+ Py_DECREF(ret);
+ if (fd2_tmp == -1 && PyErr_Occurred()) {
+ return NULL;
+ }
+ if (fd2_tmp < INT_MIN || fd2_tmp > INT_MAX) {
+ PyErr_SetString(PyExc_IOError,
+ "Getting an 'int' from os.dup() failed");
+ return NULL;
+ }
+ fd2 = (int)fd2_tmp;
+
+ /* Convert to FILE* handle */
+#ifdef _WIN32
+ NPY_BEGIN_SUPPRESS_IPH
+ handle = _fdopen(fd2, mode);
+ NPY_END_SUPPRESS_IPH
+#else
+ handle = fdopen(fd2, mode);
+#endif
+ if (handle == NULL) {
+ PyErr_SetString(PyExc_IOError,
+ "Getting a FILE* from a Python file object via "
+ "_fdopen failed. If you built NumPy, you probably "
+ "linked with the wrong debug/release runtime");
+ return NULL;
+ }
+
+ /* Record the original raw file handle position */
+ *orig_pos = npy_ftell(handle);
+ if (*orig_pos == -1) {
+ /* The io module is needed to determine if buffering is used */
+ io = PyImport_ImportModule("io");
+ if (io == NULL) {
+ fclose(handle);
+ return NULL;
+ }
+ /* File object instances of RawIOBase are unbuffered */
+ io_raw = PyObject_GetAttrString(io, "RawIOBase");
+ Py_DECREF(io);
+ if (io_raw == NULL) {
+ fclose(handle);
+ return NULL;
+ }
+ unbuf = PyObject_IsInstance(file, io_raw);
+ Py_DECREF(io_raw);
+ if (unbuf == 1) {
+ /* Succeed if the IO is unbuffered */
+ return handle;
+ }
+ else {
+ PyErr_SetString(PyExc_IOError, "obtaining file position failed");
+ fclose(handle);
+ return NULL;
+ }
+ }
+
+ /* Seek raw handle to the Python-side position */
+ ret = PyObject_CallMethod(file, "tell", "");
+ if (ret == NULL) {
+ fclose(handle);
+ return NULL;
+ }
+ pos = PyLong_AsLongLong(ret);
+ Py_DECREF(ret);
+ if (PyErr_Occurred()) {
+ fclose(handle);
+ return NULL;
+ }
+ if (npy_fseek(handle, pos, SEEK_SET) == -1) {
+ PyErr_SetString(PyExc_IOError, "seeking file failed");
+ fclose(handle);
+ return NULL;
+ }
+ return handle;
+}
+
+/*
+ * Close the dup-ed file handle, and seek the Python one to the current position
+ */
+static inline int
+npy_PyFile_DupClose2(PyObject *file, FILE* handle, npy_off_t orig_pos)
+{
+ int fd, unbuf;
+ PyObject *ret, *io, *io_raw;
+ npy_off_t position;
+
+ position = npy_ftell(handle);
+
+ /* Close the FILE* handle */
+ fclose(handle);
+
+ /*
+ * Restore original file handle position, in order to not confuse
+ * Python-side data structures
+ */
+ fd = PyObject_AsFileDescriptor(file);
+ if (fd == -1) {
+ return -1;
+ }
+
+ if (npy_lseek(fd, orig_pos, SEEK_SET) == -1) {
+
+ /* The io module is needed to determine if buffering is used */
+ io = PyImport_ImportModule("io");
+ if (io == NULL) {
+ return -1;
+ }
+ /* File object instances of RawIOBase are unbuffered */
+ io_raw = PyObject_GetAttrString(io, "RawIOBase");
+ Py_DECREF(io);
+ if (io_raw == NULL) {
+ return -1;
+ }
+ unbuf = PyObject_IsInstance(file, io_raw);
+ Py_DECREF(io_raw);
+ if (unbuf == 1) {
+ /* Succeed if the IO is unbuffered */
+ return 0;
+ }
+ else {
+ PyErr_SetString(PyExc_IOError, "seeking file failed");
+ return -1;
+ }
+ }
+
+ if (position == -1) {
+ PyErr_SetString(PyExc_IOError, "obtaining file position failed");
+ return -1;
+ }
+
+ /* Seek Python-side handle to the FILE* handle position */
+ ret = PyObject_CallMethod(file, "seek", NPY_OFF_T_PYFMT "i", position, 0);
+ if (ret == NULL) {
+ return -1;
+ }
+ Py_DECREF(ret);
+ return 0;
+}
+
+static inline PyObject*
+npy_PyFile_OpenFile(PyObject *filename, const char *mode)
+{
+ PyObject *open;
+ open = PyDict_GetItemString(PyEval_GetBuiltins(), "open");
+ if (open == NULL) {
+ return NULL;
+ }
+ return PyObject_CallFunction(open, "Os", filename, mode);
+}
+
+static inline int
+npy_PyFile_CloseFile(PyObject *file)
+{
+ PyObject *ret;
+
+ ret = PyObject_CallMethod(file, "close", NULL);
+ if (ret == NULL) {
+ return -1;
+ }
+ Py_DECREF(ret);
+ return 0;
+}
+
+/* This is a copy of _PyErr_ChainExceptions, which
+ * is no longer exported from Python3.12
+ */
+static inline void
+npy_PyErr_ChainExceptions(PyObject *exc, PyObject *val, PyObject *tb)
+{
+ if (exc == NULL)
+ return;
+
+ if (PyErr_Occurred()) {
+ PyObject *exc2, *val2, *tb2;
+ PyErr_Fetch(&exc2, &val2, &tb2);
+ PyErr_NormalizeException(&exc, &val, &tb);
+ if (tb != NULL) {
+ PyException_SetTraceback(val, tb);
+ Py_DECREF(tb);
+ }
+ Py_DECREF(exc);
+ PyErr_NormalizeException(&exc2, &val2, &tb2);
+ PyException_SetContext(val2, val);
+ PyErr_Restore(exc2, val2, tb2);
+ }
+ else {
+ PyErr_Restore(exc, val, tb);
+ }
+}
+
+/* This is a copy of _PyErr_ChainExceptions, with:
+ * __cause__ used instead of __context__
+ */
+static inline void
+npy_PyErr_ChainExceptionsCause(PyObject *exc, PyObject *val, PyObject *tb)
+{
+ if (exc == NULL)
+ return;
+
+ if (PyErr_Occurred()) {
+ PyObject *exc2, *val2, *tb2;
+ PyErr_Fetch(&exc2, &val2, &tb2);
+ PyErr_NormalizeException(&exc, &val, &tb);
+ if (tb != NULL) {
+ PyException_SetTraceback(val, tb);
+ Py_DECREF(tb);
+ }
+ Py_DECREF(exc);
+ PyErr_NormalizeException(&exc2, &val2, &tb2);
+ PyException_SetCause(val2, val);
+ PyErr_Restore(exc2, val2, tb2);
+ }
+ else {
+ PyErr_Restore(exc, val, tb);
+ }
+}
+
+/*
+ * PyCObject functions adapted to PyCapsules.
+ *
+ * The main job here is to get rid of the improved error handling
+ * of PyCapsules. It's a shame...
+ */
+static inline PyObject *
+NpyCapsule_FromVoidPtr(void *ptr, void (*dtor)(PyObject *))
+{
+ PyObject *ret = PyCapsule_New(ptr, NULL, dtor);
+ if (ret == NULL) {
+ PyErr_Clear();
+ }
+ return ret;
+}
+
+static inline PyObject *
+NpyCapsule_FromVoidPtrAndDesc(void *ptr, void* context, void (*dtor)(PyObject *))
+{
+ PyObject *ret = NpyCapsule_FromVoidPtr(ptr, dtor);
+ if (ret != NULL && PyCapsule_SetContext(ret, context) != 0) {
+ PyErr_Clear();
+ Py_DECREF(ret);
+ ret = NULL;
+ }
+ return ret;
+}
+
+static inline void *
+NpyCapsule_AsVoidPtr(PyObject *obj)
+{
+ void *ret = PyCapsule_GetPointer(obj, NULL);
+ if (ret == NULL) {
+ PyErr_Clear();
+ }
+ return ret;
+}
+
+static inline void *
+NpyCapsule_GetDesc(PyObject *obj)
+{
+ return PyCapsule_GetContext(obj);
+}
+
+static inline int
+NpyCapsule_Check(PyObject *ptr)
+{
+ return PyCapsule_CheckExact(ptr);
+}
+
+#ifdef __cplusplus
+}
+#endif
+
+
+#endif /* NUMPY_CORE_INCLUDE_NUMPY_NPY_3KCOMPAT_H_ */
diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/include/numpy/npy_common.h b/.venv/lib/python3.12/site-packages/numpy/_core/include/numpy/npy_common.h
new file mode 100644
index 0000000..e2556a0
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/_core/include/numpy/npy_common.h
@@ -0,0 +1,977 @@
+#ifndef NUMPY_CORE_INCLUDE_NUMPY_NPY_COMMON_H_
+#define NUMPY_CORE_INCLUDE_NUMPY_NPY_COMMON_H_
+
+/* need Python.h for npy_intp, npy_uintp */
+#include <Python.h>
+
+/* numpconfig.h is auto-generated */
+#include "numpyconfig.h"
+#ifdef HAVE_NPY_CONFIG_H
+#include <npy_config.h>
+#endif
+
+/*
+ * using static inline modifiers when defining npy_math functions
+ * allows the compiler to make optimizations when possible
+ */
+#ifndef NPY_INLINE_MATH
+#if defined(NPY_INTERNAL_BUILD) && NPY_INTERNAL_BUILD
+ #define NPY_INLINE_MATH 1
+#else
+ #define NPY_INLINE_MATH 0
+#endif
+#endif
+
+/*
+ * gcc does not unroll even with -O3
+ * use with care, unrolling on modern cpus rarely speeds things up
+ */
+#ifdef HAVE_ATTRIBUTE_OPTIMIZE_UNROLL_LOOPS
+#define NPY_GCC_UNROLL_LOOPS \
+ __attribute__((optimize("unroll-loops")))
+#else
+#define NPY_GCC_UNROLL_LOOPS
+#endif
+
+/* highest gcc optimization level, enabled autovectorizer */
+#ifdef HAVE_ATTRIBUTE_OPTIMIZE_OPT_3
+#define NPY_GCC_OPT_3 __attribute__((optimize("O3")))
+#else
+#define NPY_GCC_OPT_3
+#endif
+
+/*
+ * mark an argument (starting from 1) that must not be NULL and is not checked
+ * DO NOT USE IF FUNCTION CHECKS FOR NULL!! the compiler will remove the check
+ */
+#ifdef HAVE_ATTRIBUTE_NONNULL
+#define NPY_GCC_NONNULL(n) __attribute__((nonnull(n)))
+#else
+#define NPY_GCC_NONNULL(n)
+#endif
+
+/*
+ * give a hint to the compiler which branch is more likely or unlikely
+ * to occur, e.g. rare error cases:
+ *
+ * if (NPY_UNLIKELY(failure == 0))
+ * return NULL;
+ *
+ * the double !! is to cast the expression (e.g. NULL) to a boolean required by
+ * the intrinsic
+ */
+#ifdef HAVE___BUILTIN_EXPECT
+#define NPY_LIKELY(x) __builtin_expect(!!(x), 1)
+#define NPY_UNLIKELY(x) __builtin_expect(!!(x), 0)
+#else
+#define NPY_LIKELY(x) (x)
+#define NPY_UNLIKELY(x) (x)
+#endif
+
+#ifdef HAVE___BUILTIN_PREFETCH
+/* unlike _mm_prefetch also works on non-x86 */
+#define NPY_PREFETCH(x, rw, loc) __builtin_prefetch((x), (rw), (loc))
+#else
+#ifdef NPY_HAVE_SSE
+/* _MM_HINT_ET[01] (rw = 1) unsupported, only available in gcc >= 4.9 */
+#define NPY_PREFETCH(x, rw, loc) _mm_prefetch((x), loc == 0 ? _MM_HINT_NTA : \
+ (loc == 1 ? _MM_HINT_T2 : \
+ (loc == 2 ? _MM_HINT_T1 : \
+ (loc == 3 ? _MM_HINT_T0 : -1))))
+#else
+#define NPY_PREFETCH(x, rw,loc)
+#endif
+#endif
+
+/* `NPY_INLINE` kept for backwards compatibility; use `inline` instead */
+#if defined(_MSC_VER) && !defined(__clang__)
+ #define NPY_INLINE __inline
+/* clang included here to handle clang-cl on Windows */
+#elif defined(__GNUC__) || defined(__clang__)
+ #if defined(__STRICT_ANSI__)
+ #define NPY_INLINE __inline__
+ #else
+ #define NPY_INLINE inline
+ #endif
+#else
+ #define NPY_INLINE
+#endif
+
+#ifdef _MSC_VER
+ #define NPY_FINLINE static __forceinline
+#elif defined(__GNUC__)
+ #define NPY_FINLINE static inline __attribute__((always_inline))
+#else
+ #define NPY_FINLINE static
+#endif
+
+#if defined(_MSC_VER)
+ #define NPY_NOINLINE static __declspec(noinline)
+#elif defined(__GNUC__) || defined(__clang__)
+ #define NPY_NOINLINE static __attribute__((noinline))
+#else
+ #define NPY_NOINLINE static
+#endif
+
+#ifdef __cplusplus
+ #define NPY_TLS thread_local
+#elif defined(HAVE_THREAD_LOCAL)
+ #define NPY_TLS thread_local
+#elif defined(HAVE__THREAD_LOCAL)
+ #define NPY_TLS _Thread_local
+#elif defined(HAVE___THREAD)
+ #define NPY_TLS __thread
+#elif defined(HAVE___DECLSPEC_THREAD_)
+ #define NPY_TLS __declspec(thread)
+#else
+ #define NPY_TLS
+#endif
+
+#ifdef WITH_CPYCHECKER_RETURNS_BORROWED_REF_ATTRIBUTE
+ #define NPY_RETURNS_BORROWED_REF \
+ __attribute__((cpychecker_returns_borrowed_ref))
+#else
+ #define NPY_RETURNS_BORROWED_REF
+#endif
+
+#ifdef WITH_CPYCHECKER_STEALS_REFERENCE_TO_ARG_ATTRIBUTE
+ #define NPY_STEALS_REF_TO_ARG(n) \
+ __attribute__((cpychecker_steals_reference_to_arg(n)))
+#else
+ #define NPY_STEALS_REF_TO_ARG(n)
+#endif
+
+/* 64 bit file position support, also on win-amd64. Issue gh-2256 */
+#if defined(_MSC_VER) && defined(_WIN64) && (_MSC_VER > 1400) || \
+ defined(__MINGW32__) || defined(__MINGW64__)
+ #include <io.h>
+
+ #define npy_fseek _fseeki64
+ #define npy_ftell _ftelli64
+ #define npy_lseek _lseeki64
+ #define npy_off_t npy_int64
+
+ #if NPY_SIZEOF_INT == 8
+ #define NPY_OFF_T_PYFMT "i"
+ #elif NPY_SIZEOF_LONG == 8
+ #define NPY_OFF_T_PYFMT "l"
+ #elif NPY_SIZEOF_LONGLONG == 8
+ #define NPY_OFF_T_PYFMT "L"
+ #else
+ #error Unsupported size for type off_t
+ #endif
+#else
+#ifdef HAVE_FSEEKO
+ #define npy_fseek fseeko
+#else
+ #define npy_fseek fseek
+#endif
+#ifdef HAVE_FTELLO
+ #define npy_ftell ftello
+#else
+ #define npy_ftell ftell
+#endif
+ #include <sys/types.h>
+ #ifndef _WIN32
+ #include <unistd.h>
+ #endif
+ #define npy_lseek lseek
+ #define npy_off_t off_t
+
+ #if NPY_SIZEOF_OFF_T == NPY_SIZEOF_SHORT
+ #define NPY_OFF_T_PYFMT "h"
+ #elif NPY_SIZEOF_OFF_T == NPY_SIZEOF_INT
+ #define NPY_OFF_T_PYFMT "i"
+ #elif NPY_SIZEOF_OFF_T == NPY_SIZEOF_LONG
+ #define NPY_OFF_T_PYFMT "l"
+ #elif NPY_SIZEOF_OFF_T == NPY_SIZEOF_LONGLONG
+ #define NPY_OFF_T_PYFMT "L"
+ #else
+ #error Unsupported size for type off_t
+ #endif
+#endif
+
+/* enums for detected endianness */
+enum {
+ NPY_CPU_UNKNOWN_ENDIAN,
+ NPY_CPU_LITTLE,
+ NPY_CPU_BIG
+};
+
+/*
+ * This is to typedef npy_intp to the appropriate size for Py_ssize_t.
+ * (Before NumPy 2.0 we used Py_intptr_t and Py_uintptr_t from `pyport.h`.)
+ */
+typedef Py_ssize_t npy_intp;
+typedef size_t npy_uintp;
+
+/*
+ * Define sizes that were not defined in numpyconfig.h.
+ */
+#define NPY_SIZEOF_CHAR 1
+#define NPY_SIZEOF_BYTE 1
+#define NPY_SIZEOF_DATETIME 8
+#define NPY_SIZEOF_TIMEDELTA 8
+#define NPY_SIZEOF_HALF 2
+#define NPY_SIZEOF_CFLOAT NPY_SIZEOF_COMPLEX_FLOAT
+#define NPY_SIZEOF_CDOUBLE NPY_SIZEOF_COMPLEX_DOUBLE
+#define NPY_SIZEOF_CLONGDOUBLE NPY_SIZEOF_COMPLEX_LONGDOUBLE
+
+#ifdef constchar
+#undef constchar
+#endif
+
+#define NPY_SSIZE_T_PYFMT "n"
+#define constchar char
+
+/* NPY_INTP_FMT Note:
+ * Unlike the other NPY_*_FMT macros, which are used with PyOS_snprintf,
+ * NPY_INTP_FMT is used with PyErr_Format and PyUnicode_FromFormat. Those
+ * functions use different formatting codes that are portably specified
+ * according to the Python documentation. See issue gh-2388.
+ */
+#if NPY_SIZEOF_INTP == NPY_SIZEOF_LONG
+ #define NPY_INTP NPY_LONG
+ #define NPY_UINTP NPY_ULONG
+ #define PyIntpArrType_Type PyLongArrType_Type
+ #define PyUIntpArrType_Type PyULongArrType_Type
+ #define NPY_MAX_INTP NPY_MAX_LONG
+ #define NPY_MIN_INTP NPY_MIN_LONG
+ #define NPY_MAX_UINTP NPY_MAX_ULONG
+ #define NPY_INTP_FMT "ld"
+#elif NPY_SIZEOF_INTP == NPY_SIZEOF_INT
+ #define NPY_INTP NPY_INT
+ #define NPY_UINTP NPY_UINT
+ #define PyIntpArrType_Type PyIntArrType_Type
+ #define PyUIntpArrType_Type PyUIntArrType_Type
+ #define NPY_MAX_INTP NPY_MAX_INT
+ #define NPY_MIN_INTP NPY_MIN_INT
+ #define NPY_MAX_UINTP NPY_MAX_UINT
+ #define NPY_INTP_FMT "d"
+#elif defined(PY_LONG_LONG) && (NPY_SIZEOF_INTP == NPY_SIZEOF_LONGLONG)
+ #define NPY_INTP NPY_LONGLONG
+ #define NPY_UINTP NPY_ULONGLONG
+ #define PyIntpArrType_Type PyLongLongArrType_Type
+ #define PyUIntpArrType_Type PyULongLongArrType_Type
+ #define NPY_MAX_INTP NPY_MAX_LONGLONG
+ #define NPY_MIN_INTP NPY_MIN_LONGLONG
+ #define NPY_MAX_UINTP NPY_MAX_ULONGLONG
+ #define NPY_INTP_FMT "lld"
+#else
+ #error "Failed to correctly define NPY_INTP and NPY_UINTP"
+#endif
+
+
+/*
+ * Some platforms don't define bool, long long, or long double.
+ * Handle that here.
+ */
+#define NPY_BYTE_FMT "hhd"
+#define NPY_UBYTE_FMT "hhu"
+#define NPY_SHORT_FMT "hd"
+#define NPY_USHORT_FMT "hu"
+#define NPY_INT_FMT "d"
+#define NPY_UINT_FMT "u"
+#define NPY_LONG_FMT "ld"
+#define NPY_ULONG_FMT "lu"
+#define NPY_HALF_FMT "g"
+#define NPY_FLOAT_FMT "g"
+#define NPY_DOUBLE_FMT "g"
+
+
+#ifdef PY_LONG_LONG
+typedef PY_LONG_LONG npy_longlong;
+typedef unsigned PY_LONG_LONG npy_ulonglong;
+# ifdef _MSC_VER
+# define NPY_LONGLONG_FMT "I64d"
+# define NPY_ULONGLONG_FMT "I64u"
+# else
+# define NPY_LONGLONG_FMT "lld"
+# define NPY_ULONGLONG_FMT "llu"
+# endif
+# ifdef _MSC_VER
+# define NPY_LONGLONG_SUFFIX(x) (x##i64)
+# define NPY_ULONGLONG_SUFFIX(x) (x##Ui64)
+# else
+# define NPY_LONGLONG_SUFFIX(x) (x##LL)
+# define NPY_ULONGLONG_SUFFIX(x) (x##ULL)
+# endif
+#else
+typedef long npy_longlong;
+typedef unsigned long npy_ulonglong;
+# define NPY_LONGLONG_SUFFIX(x) (x##L)
+# define NPY_ULONGLONG_SUFFIX(x) (x##UL)
+#endif
+
+
+typedef unsigned char npy_bool;
+#define NPY_FALSE 0
+#define NPY_TRUE 1
+/*
+ * `NPY_SIZEOF_LONGDOUBLE` isn't usually equal to sizeof(long double).
+ * In some certain cases, it may forced to be equal to sizeof(double)
+ * even against the compiler implementation and the same goes for
+ * `complex long double`.
+ *
+ * Therefore, avoid `long double`, use `npy_longdouble` instead,
+ * and when it comes to standard math functions make sure of using
+ * the double version when `NPY_SIZEOF_LONGDOUBLE` == `NPY_SIZEOF_DOUBLE`.
+ * For example:
+ * npy_longdouble *ptr, x;
+ * #if NPY_SIZEOF_LONGDOUBLE == NPY_SIZEOF_DOUBLE
+ * npy_longdouble r = modf(x, ptr);
+ * #else
+ * npy_longdouble r = modfl(x, ptr);
+ * #endif
+ *
+ * See https://github.com/numpy/numpy/issues/20348
+ */
+#if NPY_SIZEOF_LONGDOUBLE == NPY_SIZEOF_DOUBLE
+ #define NPY_LONGDOUBLE_FMT "g"
+ #define longdouble_t double
+ typedef double npy_longdouble;
+#else
+ #define NPY_LONGDOUBLE_FMT "Lg"
+ #define longdouble_t long double
+ typedef long double npy_longdouble;
+#endif
+
+#ifndef Py_USING_UNICODE
+#error Must use Python with unicode enabled.
+#endif
+
+
+typedef signed char npy_byte;
+typedef unsigned char npy_ubyte;
+typedef unsigned short npy_ushort;
+typedef unsigned int npy_uint;
+typedef unsigned long npy_ulong;
+
+/* These are for completeness */
+typedef char npy_char;
+typedef short npy_short;
+typedef int npy_int;
+typedef long npy_long;
+typedef float npy_float;
+typedef double npy_double;
+
+typedef Py_hash_t npy_hash_t;
+#define NPY_SIZEOF_HASH_T NPY_SIZEOF_INTP
+
+#if defined(__cplusplus)
+
+typedef struct
+{
+ double _Val[2];
+} npy_cdouble;
+
+typedef struct
+{
+ float _Val[2];
+} npy_cfloat;
+
+typedef struct
+{
+ long double _Val[2];
+} npy_clongdouble;
+
+#else
+
+#include <complex.h>
+
+
+#if defined(_MSC_VER) && !defined(__INTEL_COMPILER)
+typedef _Dcomplex npy_cdouble;
+typedef _Fcomplex npy_cfloat;
+typedef _Lcomplex npy_clongdouble;
+#else /* !defined(_MSC_VER) || defined(__INTEL_COMPILER) */
+typedef double _Complex npy_cdouble;
+typedef float _Complex npy_cfloat;
+typedef longdouble_t _Complex npy_clongdouble;
+#endif
+
+#endif
+
+/*
+ * numarray-style bit-width typedefs
+ */
+#define NPY_MAX_INT8 127
+#define NPY_MIN_INT8 -128
+#define NPY_MAX_UINT8 255
+#define NPY_MAX_INT16 32767
+#define NPY_MIN_INT16 -32768
+#define NPY_MAX_UINT16 65535
+#define NPY_MAX_INT32 2147483647
+#define NPY_MIN_INT32 (-NPY_MAX_INT32 - 1)
+#define NPY_MAX_UINT32 4294967295U
+#define NPY_MAX_INT64 NPY_LONGLONG_SUFFIX(9223372036854775807)
+#define NPY_MIN_INT64 (-NPY_MAX_INT64 - NPY_LONGLONG_SUFFIX(1))
+#define NPY_MAX_UINT64 NPY_ULONGLONG_SUFFIX(18446744073709551615)
+#define NPY_MAX_INT128 NPY_LONGLONG_SUFFIX(85070591730234615865843651857942052864)
+#define NPY_MIN_INT128 (-NPY_MAX_INT128 - NPY_LONGLONG_SUFFIX(1))
+#define NPY_MAX_UINT128 NPY_ULONGLONG_SUFFIX(170141183460469231731687303715884105728)
+#define NPY_MIN_DATETIME NPY_MIN_INT64
+#define NPY_MAX_DATETIME NPY_MAX_INT64
+#define NPY_MIN_TIMEDELTA NPY_MIN_INT64
+#define NPY_MAX_TIMEDELTA NPY_MAX_INT64
+
+ /* Need to find the number of bits for each type and
+ make definitions accordingly.
+
+ C states that sizeof(char) == 1 by definition
+
+ So, just using the sizeof keyword won't help.
+
+ It also looks like Python itself uses sizeof(char) quite a
+ bit, which by definition should be 1 all the time.
+
+ Idea: Make Use of CHAR_BIT which should tell us how many
+ BITS per CHARACTER
+ */
+
+ /* Include platform definitions -- These are in the C89/90 standard */
+#include <limits.h>
+#define NPY_MAX_BYTE SCHAR_MAX
+#define NPY_MIN_BYTE SCHAR_MIN
+#define NPY_MAX_UBYTE UCHAR_MAX
+#define NPY_MAX_SHORT SHRT_MAX
+#define NPY_MIN_SHORT SHRT_MIN
+#define NPY_MAX_USHORT USHRT_MAX
+#define NPY_MAX_INT INT_MAX
+#ifndef INT_MIN
+#define INT_MIN (-INT_MAX - 1)
+#endif
+#define NPY_MIN_INT INT_MIN
+#define NPY_MAX_UINT UINT_MAX
+#define NPY_MAX_LONG LONG_MAX
+#define NPY_MIN_LONG LONG_MIN
+#define NPY_MAX_ULONG ULONG_MAX
+
+#define NPY_BITSOF_BOOL (sizeof(npy_bool) * CHAR_BIT)
+#define NPY_BITSOF_CHAR CHAR_BIT
+#define NPY_BITSOF_BYTE (NPY_SIZEOF_BYTE * CHAR_BIT)
+#define NPY_BITSOF_SHORT (NPY_SIZEOF_SHORT * CHAR_BIT)
+#define NPY_BITSOF_INT (NPY_SIZEOF_INT * CHAR_BIT)
+#define NPY_BITSOF_LONG (NPY_SIZEOF_LONG * CHAR_BIT)
+#define NPY_BITSOF_LONGLONG (NPY_SIZEOF_LONGLONG * CHAR_BIT)
+#define NPY_BITSOF_INTP (NPY_SIZEOF_INTP * CHAR_BIT)
+#define NPY_BITSOF_HALF (NPY_SIZEOF_HALF * CHAR_BIT)
+#define NPY_BITSOF_FLOAT (NPY_SIZEOF_FLOAT * CHAR_BIT)
+#define NPY_BITSOF_DOUBLE (NPY_SIZEOF_DOUBLE * CHAR_BIT)
+#define NPY_BITSOF_LONGDOUBLE (NPY_SIZEOF_LONGDOUBLE * CHAR_BIT)
+#define NPY_BITSOF_CFLOAT (NPY_SIZEOF_CFLOAT * CHAR_BIT)
+#define NPY_BITSOF_CDOUBLE (NPY_SIZEOF_CDOUBLE * CHAR_BIT)
+#define NPY_BITSOF_CLONGDOUBLE (NPY_SIZEOF_CLONGDOUBLE * CHAR_BIT)
+#define NPY_BITSOF_DATETIME (NPY_SIZEOF_DATETIME * CHAR_BIT)
+#define NPY_BITSOF_TIMEDELTA (NPY_SIZEOF_TIMEDELTA * CHAR_BIT)
+
+#if NPY_BITSOF_LONG == 8
+#define NPY_INT8 NPY_LONG
+#define NPY_UINT8 NPY_ULONG
+ typedef long npy_int8;
+ typedef unsigned long npy_uint8;
+#define PyInt8ScalarObject PyLongScalarObject
+#define PyInt8ArrType_Type PyLongArrType_Type
+#define PyUInt8ScalarObject PyULongScalarObject
+#define PyUInt8ArrType_Type PyULongArrType_Type
+#define NPY_INT8_FMT NPY_LONG_FMT
+#define NPY_UINT8_FMT NPY_ULONG_FMT
+#elif NPY_BITSOF_LONG == 16
+#define NPY_INT16 NPY_LONG
+#define NPY_UINT16 NPY_ULONG
+ typedef long npy_int16;
+ typedef unsigned long npy_uint16;
+#define PyInt16ScalarObject PyLongScalarObject
+#define PyInt16ArrType_Type PyLongArrType_Type
+#define PyUInt16ScalarObject PyULongScalarObject
+#define PyUInt16ArrType_Type PyULongArrType_Type
+#define NPY_INT16_FMT NPY_LONG_FMT
+#define NPY_UINT16_FMT NPY_ULONG_FMT
+#elif NPY_BITSOF_LONG == 32
+#define NPY_INT32 NPY_LONG
+#define NPY_UINT32 NPY_ULONG
+ typedef long npy_int32;
+ typedef unsigned long npy_uint32;
+ typedef unsigned long npy_ucs4;
+#define PyInt32ScalarObject PyLongScalarObject
+#define PyInt32ArrType_Type PyLongArrType_Type
+#define PyUInt32ScalarObject PyULongScalarObject
+#define PyUInt32ArrType_Type PyULongArrType_Type
+#define NPY_INT32_FMT NPY_LONG_FMT
+#define NPY_UINT32_FMT NPY_ULONG_FMT
+#elif NPY_BITSOF_LONG == 64
+#define NPY_INT64 NPY_LONG
+#define NPY_UINT64 NPY_ULONG
+ typedef long npy_int64;
+ typedef unsigned long npy_uint64;
+#define PyInt64ScalarObject PyLongScalarObject
+#define PyInt64ArrType_Type PyLongArrType_Type
+#define PyUInt64ScalarObject PyULongScalarObject
+#define PyUInt64ArrType_Type PyULongArrType_Type
+#define NPY_INT64_FMT NPY_LONG_FMT
+#define NPY_UINT64_FMT NPY_ULONG_FMT
+#define MyPyLong_FromInt64 PyLong_FromLong
+#define MyPyLong_AsInt64 PyLong_AsLong
+#endif
+
+#if NPY_BITSOF_LONGLONG == 8
+# ifndef NPY_INT8
+# define NPY_INT8 NPY_LONGLONG
+# define NPY_UINT8 NPY_ULONGLONG
+ typedef npy_longlong npy_int8;
+ typedef npy_ulonglong npy_uint8;
+# define PyInt8ScalarObject PyLongLongScalarObject
+# define PyInt8ArrType_Type PyLongLongArrType_Type
+# define PyUInt8ScalarObject PyULongLongScalarObject
+# define PyUInt8ArrType_Type PyULongLongArrType_Type
+#define NPY_INT8_FMT NPY_LONGLONG_FMT
+#define NPY_UINT8_FMT NPY_ULONGLONG_FMT
+# endif
+# define NPY_MAX_LONGLONG NPY_MAX_INT8
+# define NPY_MIN_LONGLONG NPY_MIN_INT8
+# define NPY_MAX_ULONGLONG NPY_MAX_UINT8
+#elif NPY_BITSOF_LONGLONG == 16
+# ifndef NPY_INT16
+# define NPY_INT16 NPY_LONGLONG
+# define NPY_UINT16 NPY_ULONGLONG
+ typedef npy_longlong npy_int16;
+ typedef npy_ulonglong npy_uint16;
+# define PyInt16ScalarObject PyLongLongScalarObject
+# define PyInt16ArrType_Type PyLongLongArrType_Type
+# define PyUInt16ScalarObject PyULongLongScalarObject
+# define PyUInt16ArrType_Type PyULongLongArrType_Type
+#define NPY_INT16_FMT NPY_LONGLONG_FMT
+#define NPY_UINT16_FMT NPY_ULONGLONG_FMT
+# endif
+# define NPY_MAX_LONGLONG NPY_MAX_INT16
+# define NPY_MIN_LONGLONG NPY_MIN_INT16
+# define NPY_MAX_ULONGLONG NPY_MAX_UINT16
+#elif NPY_BITSOF_LONGLONG == 32
+# ifndef NPY_INT32
+# define NPY_INT32 NPY_LONGLONG
+# define NPY_UINT32 NPY_ULONGLONG
+ typedef npy_longlong npy_int32;
+ typedef npy_ulonglong npy_uint32;
+ typedef npy_ulonglong npy_ucs4;
+# define PyInt32ScalarObject PyLongLongScalarObject
+# define PyInt32ArrType_Type PyLongLongArrType_Type
+# define PyUInt32ScalarObject PyULongLongScalarObject
+# define PyUInt32ArrType_Type PyULongLongArrType_Type
+#define NPY_INT32_FMT NPY_LONGLONG_FMT
+#define NPY_UINT32_FMT NPY_ULONGLONG_FMT
+# endif
+# define NPY_MAX_LONGLONG NPY_MAX_INT32
+# define NPY_MIN_LONGLONG NPY_MIN_INT32
+# define NPY_MAX_ULONGLONG NPY_MAX_UINT32
+#elif NPY_BITSOF_LONGLONG == 64
+# ifndef NPY_INT64
+# define NPY_INT64 NPY_LONGLONG
+# define NPY_UINT64 NPY_ULONGLONG
+ typedef npy_longlong npy_int64;
+ typedef npy_ulonglong npy_uint64;
+# define PyInt64ScalarObject PyLongLongScalarObject
+# define PyInt64ArrType_Type PyLongLongArrType_Type
+# define PyUInt64ScalarObject PyULongLongScalarObject
+# define PyUInt64ArrType_Type PyULongLongArrType_Type
+#define NPY_INT64_FMT NPY_LONGLONG_FMT
+#define NPY_UINT64_FMT NPY_ULONGLONG_FMT
+# define MyPyLong_FromInt64 PyLong_FromLongLong
+# define MyPyLong_AsInt64 PyLong_AsLongLong
+# endif
+# define NPY_MAX_LONGLONG NPY_MAX_INT64
+# define NPY_MIN_LONGLONG NPY_MIN_INT64
+# define NPY_MAX_ULONGLONG NPY_MAX_UINT64
+#endif
+
+#if NPY_BITSOF_INT == 8
+#ifndef NPY_INT8
+#define NPY_INT8 NPY_INT
+#define NPY_UINT8 NPY_UINT
+ typedef int npy_int8;
+ typedef unsigned int npy_uint8;
+# define PyInt8ScalarObject PyIntScalarObject
+# define PyInt8ArrType_Type PyIntArrType_Type
+# define PyUInt8ScalarObject PyUIntScalarObject
+# define PyUInt8ArrType_Type PyUIntArrType_Type
+#define NPY_INT8_FMT NPY_INT_FMT
+#define NPY_UINT8_FMT NPY_UINT_FMT
+#endif
+#elif NPY_BITSOF_INT == 16
+#ifndef NPY_INT16
+#define NPY_INT16 NPY_INT
+#define NPY_UINT16 NPY_UINT
+ typedef int npy_int16;
+ typedef unsigned int npy_uint16;
+# define PyInt16ScalarObject PyIntScalarObject
+# define PyInt16ArrType_Type PyIntArrType_Type
+# define PyUInt16ScalarObject PyIntUScalarObject
+# define PyUInt16ArrType_Type PyIntUArrType_Type
+#define NPY_INT16_FMT NPY_INT_FMT
+#define NPY_UINT16_FMT NPY_UINT_FMT
+#endif
+#elif NPY_BITSOF_INT == 32
+#ifndef NPY_INT32
+#define NPY_INT32 NPY_INT
+#define NPY_UINT32 NPY_UINT
+ typedef int npy_int32;
+ typedef unsigned int npy_uint32;
+ typedef unsigned int npy_ucs4;
+# define PyInt32ScalarObject PyIntScalarObject
+# define PyInt32ArrType_Type PyIntArrType_Type
+# define PyUInt32ScalarObject PyUIntScalarObject
+# define PyUInt32ArrType_Type PyUIntArrType_Type
+#define NPY_INT32_FMT NPY_INT_FMT
+#define NPY_UINT32_FMT NPY_UINT_FMT
+#endif
+#elif NPY_BITSOF_INT == 64
+#ifndef NPY_INT64
+#define NPY_INT64 NPY_INT
+#define NPY_UINT64 NPY_UINT
+ typedef int npy_int64;
+ typedef unsigned int npy_uint64;
+# define PyInt64ScalarObject PyIntScalarObject
+# define PyInt64ArrType_Type PyIntArrType_Type
+# define PyUInt64ScalarObject PyUIntScalarObject
+# define PyUInt64ArrType_Type PyUIntArrType_Type
+#define NPY_INT64_FMT NPY_INT_FMT
+#define NPY_UINT64_FMT NPY_UINT_FMT
+# define MyPyLong_FromInt64 PyLong_FromLong
+# define MyPyLong_AsInt64 PyLong_AsLong
+#endif
+#endif
+
+#if NPY_BITSOF_SHORT == 8
+#ifndef NPY_INT8
+#define NPY_INT8 NPY_SHORT
+#define NPY_UINT8 NPY_USHORT
+ typedef short npy_int8;
+ typedef unsigned short npy_uint8;
+# define PyInt8ScalarObject PyShortScalarObject
+# define PyInt8ArrType_Type PyShortArrType_Type
+# define PyUInt8ScalarObject PyUShortScalarObject
+# define PyUInt8ArrType_Type PyUShortArrType_Type
+#define NPY_INT8_FMT NPY_SHORT_FMT
+#define NPY_UINT8_FMT NPY_USHORT_FMT
+#endif
+#elif NPY_BITSOF_SHORT == 16
+#ifndef NPY_INT16
+#define NPY_INT16 NPY_SHORT
+#define NPY_UINT16 NPY_USHORT
+ typedef short npy_int16;
+ typedef unsigned short npy_uint16;
+# define PyInt16ScalarObject PyShortScalarObject
+# define PyInt16ArrType_Type PyShortArrType_Type
+# define PyUInt16ScalarObject PyUShortScalarObject
+# define PyUInt16ArrType_Type PyUShortArrType_Type
+#define NPY_INT16_FMT NPY_SHORT_FMT
+#define NPY_UINT16_FMT NPY_USHORT_FMT
+#endif
+#elif NPY_BITSOF_SHORT == 32
+#ifndef NPY_INT32
+#define NPY_INT32 NPY_SHORT
+#define NPY_UINT32 NPY_USHORT
+ typedef short npy_int32;
+ typedef unsigned short npy_uint32;
+ typedef unsigned short npy_ucs4;
+# define PyInt32ScalarObject PyShortScalarObject
+# define PyInt32ArrType_Type PyShortArrType_Type
+# define PyUInt32ScalarObject PyUShortScalarObject
+# define PyUInt32ArrType_Type PyUShortArrType_Type
+#define NPY_INT32_FMT NPY_SHORT_FMT
+#define NPY_UINT32_FMT NPY_USHORT_FMT
+#endif
+#elif NPY_BITSOF_SHORT == 64
+#ifndef NPY_INT64
+#define NPY_INT64 NPY_SHORT
+#define NPY_UINT64 NPY_USHORT
+ typedef short npy_int64;
+ typedef unsigned short npy_uint64;
+# define PyInt64ScalarObject PyShortScalarObject
+# define PyInt64ArrType_Type PyShortArrType_Type
+# define PyUInt64ScalarObject PyUShortScalarObject
+# define PyUInt64ArrType_Type PyUShortArrType_Type
+#define NPY_INT64_FMT NPY_SHORT_FMT
+#define NPY_UINT64_FMT NPY_USHORT_FMT
+# define MyPyLong_FromInt64 PyLong_FromLong
+# define MyPyLong_AsInt64 PyLong_AsLong
+#endif
+#endif
+
+
+#if NPY_BITSOF_CHAR == 8
+#ifndef NPY_INT8
+#define NPY_INT8 NPY_BYTE
+#define NPY_UINT8 NPY_UBYTE
+ typedef signed char npy_int8;
+ typedef unsigned char npy_uint8;
+# define PyInt8ScalarObject PyByteScalarObject
+# define PyInt8ArrType_Type PyByteArrType_Type
+# define PyUInt8ScalarObject PyUByteScalarObject
+# define PyUInt8ArrType_Type PyUByteArrType_Type
+#define NPY_INT8_FMT NPY_BYTE_FMT
+#define NPY_UINT8_FMT NPY_UBYTE_FMT
+#endif
+#elif NPY_BITSOF_CHAR == 16
+#ifndef NPY_INT16
+#define NPY_INT16 NPY_BYTE
+#define NPY_UINT16 NPY_UBYTE
+ typedef signed char npy_int16;
+ typedef unsigned char npy_uint16;
+# define PyInt16ScalarObject PyByteScalarObject
+# define PyInt16ArrType_Type PyByteArrType_Type
+# define PyUInt16ScalarObject PyUByteScalarObject
+# define PyUInt16ArrType_Type PyUByteArrType_Type
+#define NPY_INT16_FMT NPY_BYTE_FMT
+#define NPY_UINT16_FMT NPY_UBYTE_FMT
+#endif
+#elif NPY_BITSOF_CHAR == 32
+#ifndef NPY_INT32
+#define NPY_INT32 NPY_BYTE
+#define NPY_UINT32 NPY_UBYTE
+ typedef signed char npy_int32;
+ typedef unsigned char npy_uint32;
+ typedef unsigned char npy_ucs4;
+# define PyInt32ScalarObject PyByteScalarObject
+# define PyInt32ArrType_Type PyByteArrType_Type
+# define PyUInt32ScalarObject PyUByteScalarObject
+# define PyUInt32ArrType_Type PyUByteArrType_Type
+#define NPY_INT32_FMT NPY_BYTE_FMT
+#define NPY_UINT32_FMT NPY_UBYTE_FMT
+#endif
+#elif NPY_BITSOF_CHAR == 64
+#ifndef NPY_INT64
+#define NPY_INT64 NPY_BYTE
+#define NPY_UINT64 NPY_UBYTE
+ typedef signed char npy_int64;
+ typedef unsigned char npy_uint64;
+# define PyInt64ScalarObject PyByteScalarObject
+# define PyInt64ArrType_Type PyByteArrType_Type
+# define PyUInt64ScalarObject PyUByteScalarObject
+# define PyUInt64ArrType_Type PyUByteArrType_Type
+#define NPY_INT64_FMT NPY_BYTE_FMT
+#define NPY_UINT64_FMT NPY_UBYTE_FMT
+# define MyPyLong_FromInt64 PyLong_FromLong
+# define MyPyLong_AsInt64 PyLong_AsLong
+#endif
+#elif NPY_BITSOF_CHAR == 128
+#endif
+
+
+
+#if NPY_BITSOF_DOUBLE == 32
+#ifndef NPY_FLOAT32
+#define NPY_FLOAT32 NPY_DOUBLE
+#define NPY_COMPLEX64 NPY_CDOUBLE
+ typedef double npy_float32;
+ typedef npy_cdouble npy_complex64;
+# define PyFloat32ScalarObject PyDoubleScalarObject
+# define PyComplex64ScalarObject PyCDoubleScalarObject
+# define PyFloat32ArrType_Type PyDoubleArrType_Type
+# define PyComplex64ArrType_Type PyCDoubleArrType_Type
+#define NPY_FLOAT32_FMT NPY_DOUBLE_FMT
+#define NPY_COMPLEX64_FMT NPY_CDOUBLE_FMT
+#endif
+#elif NPY_BITSOF_DOUBLE == 64
+#ifndef NPY_FLOAT64
+#define NPY_FLOAT64 NPY_DOUBLE
+#define NPY_COMPLEX128 NPY_CDOUBLE
+ typedef double npy_float64;
+ typedef npy_cdouble npy_complex128;
+# define PyFloat64ScalarObject PyDoubleScalarObject
+# define PyComplex128ScalarObject PyCDoubleScalarObject
+# define PyFloat64ArrType_Type PyDoubleArrType_Type
+# define PyComplex128ArrType_Type PyCDoubleArrType_Type
+#define NPY_FLOAT64_FMT NPY_DOUBLE_FMT
+#define NPY_COMPLEX128_FMT NPY_CDOUBLE_FMT
+#endif
+#elif NPY_BITSOF_DOUBLE == 80
+#ifndef NPY_FLOAT80
+#define NPY_FLOAT80 NPY_DOUBLE
+#define NPY_COMPLEX160 NPY_CDOUBLE
+ typedef double npy_float80;
+ typedef npy_cdouble npy_complex160;
+# define PyFloat80ScalarObject PyDoubleScalarObject
+# define PyComplex160ScalarObject PyCDoubleScalarObject
+# define PyFloat80ArrType_Type PyDoubleArrType_Type
+# define PyComplex160ArrType_Type PyCDoubleArrType_Type
+#define NPY_FLOAT80_FMT NPY_DOUBLE_FMT
+#define NPY_COMPLEX160_FMT NPY_CDOUBLE_FMT
+#endif
+#elif NPY_BITSOF_DOUBLE == 96
+#ifndef NPY_FLOAT96
+#define NPY_FLOAT96 NPY_DOUBLE
+#define NPY_COMPLEX192 NPY_CDOUBLE
+ typedef double npy_float96;
+ typedef npy_cdouble npy_complex192;
+# define PyFloat96ScalarObject PyDoubleScalarObject
+# define PyComplex192ScalarObject PyCDoubleScalarObject
+# define PyFloat96ArrType_Type PyDoubleArrType_Type
+# define PyComplex192ArrType_Type PyCDoubleArrType_Type
+#define NPY_FLOAT96_FMT NPY_DOUBLE_FMT
+#define NPY_COMPLEX192_FMT NPY_CDOUBLE_FMT
+#endif
+#elif NPY_BITSOF_DOUBLE == 128
+#ifndef NPY_FLOAT128
+#define NPY_FLOAT128 NPY_DOUBLE
+#define NPY_COMPLEX256 NPY_CDOUBLE
+ typedef double npy_float128;
+ typedef npy_cdouble npy_complex256;
+# define PyFloat128ScalarObject PyDoubleScalarObject
+# define PyComplex256ScalarObject PyCDoubleScalarObject
+# define PyFloat128ArrType_Type PyDoubleArrType_Type
+# define PyComplex256ArrType_Type PyCDoubleArrType_Type
+#define NPY_FLOAT128_FMT NPY_DOUBLE_FMT
+#define NPY_COMPLEX256_FMT NPY_CDOUBLE_FMT
+#endif
+#endif
+
+
+
+#if NPY_BITSOF_FLOAT == 32
+#ifndef NPY_FLOAT32
+#define NPY_FLOAT32 NPY_FLOAT
+#define NPY_COMPLEX64 NPY_CFLOAT
+ typedef float npy_float32;
+ typedef npy_cfloat npy_complex64;
+# define PyFloat32ScalarObject PyFloatScalarObject
+# define PyComplex64ScalarObject PyCFloatScalarObject
+# define PyFloat32ArrType_Type PyFloatArrType_Type
+# define PyComplex64ArrType_Type PyCFloatArrType_Type
+#define NPY_FLOAT32_FMT NPY_FLOAT_FMT
+#define NPY_COMPLEX64_FMT NPY_CFLOAT_FMT
+#endif
+#elif NPY_BITSOF_FLOAT == 64
+#ifndef NPY_FLOAT64
+#define NPY_FLOAT64 NPY_FLOAT
+#define NPY_COMPLEX128 NPY_CFLOAT
+ typedef float npy_float64;
+ typedef npy_cfloat npy_complex128;
+# define PyFloat64ScalarObject PyFloatScalarObject
+# define PyComplex128ScalarObject PyCFloatScalarObject
+# define PyFloat64ArrType_Type PyFloatArrType_Type
+# define PyComplex128ArrType_Type PyCFloatArrType_Type
+#define NPY_FLOAT64_FMT NPY_FLOAT_FMT
+#define NPY_COMPLEX128_FMT NPY_CFLOAT_FMT
+#endif
+#elif NPY_BITSOF_FLOAT == 80
+#ifndef NPY_FLOAT80
+#define NPY_FLOAT80 NPY_FLOAT
+#define NPY_COMPLEX160 NPY_CFLOAT
+ typedef float npy_float80;
+ typedef npy_cfloat npy_complex160;
+# define PyFloat80ScalarObject PyFloatScalarObject
+# define PyComplex160ScalarObject PyCFloatScalarObject
+# define PyFloat80ArrType_Type PyFloatArrType_Type
+# define PyComplex160ArrType_Type PyCFloatArrType_Type
+#define NPY_FLOAT80_FMT NPY_FLOAT_FMT
+#define NPY_COMPLEX160_FMT NPY_CFLOAT_FMT
+#endif
+#elif NPY_BITSOF_FLOAT == 96
+#ifndef NPY_FLOAT96
+#define NPY_FLOAT96 NPY_FLOAT
+#define NPY_COMPLEX192 NPY_CFLOAT
+ typedef float npy_float96;
+ typedef npy_cfloat npy_complex192;
+# define PyFloat96ScalarObject PyFloatScalarObject
+# define PyComplex192ScalarObject PyCFloatScalarObject
+# define PyFloat96ArrType_Type PyFloatArrType_Type
+# define PyComplex192ArrType_Type PyCFloatArrType_Type
+#define NPY_FLOAT96_FMT NPY_FLOAT_FMT
+#define NPY_COMPLEX192_FMT NPY_CFLOAT_FMT
+#endif
+#elif NPY_BITSOF_FLOAT == 128
+#ifndef NPY_FLOAT128
+#define NPY_FLOAT128 NPY_FLOAT
+#define NPY_COMPLEX256 NPY_CFLOAT
+ typedef float npy_float128;
+ typedef npy_cfloat npy_complex256;
+# define PyFloat128ScalarObject PyFloatScalarObject
+# define PyComplex256ScalarObject PyCFloatScalarObject
+# define PyFloat128ArrType_Type PyFloatArrType_Type
+# define PyComplex256ArrType_Type PyCFloatArrType_Type
+#define NPY_FLOAT128_FMT NPY_FLOAT_FMT
+#define NPY_COMPLEX256_FMT NPY_CFLOAT_FMT
+#endif
+#endif
+
+/* half/float16 isn't a floating-point type in C */
+#define NPY_FLOAT16 NPY_HALF
+typedef npy_uint16 npy_half;
+typedef npy_half npy_float16;
+
+#if NPY_BITSOF_LONGDOUBLE == 32
+#ifndef NPY_FLOAT32
+#define NPY_FLOAT32 NPY_LONGDOUBLE
+#define NPY_COMPLEX64 NPY_CLONGDOUBLE
+ typedef npy_longdouble npy_float32;
+ typedef npy_clongdouble npy_complex64;
+# define PyFloat32ScalarObject PyLongDoubleScalarObject
+# define PyComplex64ScalarObject PyCLongDoubleScalarObject
+# define PyFloat32ArrType_Type PyLongDoubleArrType_Type
+# define PyComplex64ArrType_Type PyCLongDoubleArrType_Type
+#define NPY_FLOAT32_FMT NPY_LONGDOUBLE_FMT
+#define NPY_COMPLEX64_FMT NPY_CLONGDOUBLE_FMT
+#endif
+#elif NPY_BITSOF_LONGDOUBLE == 64
+#ifndef NPY_FLOAT64
+#define NPY_FLOAT64 NPY_LONGDOUBLE
+#define NPY_COMPLEX128 NPY_CLONGDOUBLE
+ typedef npy_longdouble npy_float64;
+ typedef npy_clongdouble npy_complex128;
+# define PyFloat64ScalarObject PyLongDoubleScalarObject
+# define PyComplex128ScalarObject PyCLongDoubleScalarObject
+# define PyFloat64ArrType_Type PyLongDoubleArrType_Type
+# define PyComplex128ArrType_Type PyCLongDoubleArrType_Type
+#define NPY_FLOAT64_FMT NPY_LONGDOUBLE_FMT
+#define NPY_COMPLEX128_FMT NPY_CLONGDOUBLE_FMT
+#endif
+#elif NPY_BITSOF_LONGDOUBLE == 80
+#ifndef NPY_FLOAT80
+#define NPY_FLOAT80 NPY_LONGDOUBLE
+#define NPY_COMPLEX160 NPY_CLONGDOUBLE
+ typedef npy_longdouble npy_float80;
+ typedef npy_clongdouble npy_complex160;
+# define PyFloat80ScalarObject PyLongDoubleScalarObject
+# define PyComplex160ScalarObject PyCLongDoubleScalarObject
+# define PyFloat80ArrType_Type PyLongDoubleArrType_Type
+# define PyComplex160ArrType_Type PyCLongDoubleArrType_Type
+#define NPY_FLOAT80_FMT NPY_LONGDOUBLE_FMT
+#define NPY_COMPLEX160_FMT NPY_CLONGDOUBLE_FMT
+#endif
+#elif NPY_BITSOF_LONGDOUBLE == 96
+#ifndef NPY_FLOAT96
+#define NPY_FLOAT96 NPY_LONGDOUBLE
+#define NPY_COMPLEX192 NPY_CLONGDOUBLE
+ typedef npy_longdouble npy_float96;
+ typedef npy_clongdouble npy_complex192;
+# define PyFloat96ScalarObject PyLongDoubleScalarObject
+# define PyComplex192ScalarObject PyCLongDoubleScalarObject
+# define PyFloat96ArrType_Type PyLongDoubleArrType_Type
+# define PyComplex192ArrType_Type PyCLongDoubleArrType_Type
+#define NPY_FLOAT96_FMT NPY_LONGDOUBLE_FMT
+#define NPY_COMPLEX192_FMT NPY_CLONGDOUBLE_FMT
+#endif
+#elif NPY_BITSOF_LONGDOUBLE == 128
+#ifndef NPY_FLOAT128
+#define NPY_FLOAT128 NPY_LONGDOUBLE
+#define NPY_COMPLEX256 NPY_CLONGDOUBLE
+ typedef npy_longdouble npy_float128;
+ typedef npy_clongdouble npy_complex256;
+# define PyFloat128ScalarObject PyLongDoubleScalarObject
+# define PyComplex256ScalarObject PyCLongDoubleScalarObject
+# define PyFloat128ArrType_Type PyLongDoubleArrType_Type
+# define PyComplex256ArrType_Type PyCLongDoubleArrType_Type
+#define NPY_FLOAT128_FMT NPY_LONGDOUBLE_FMT
+#define NPY_COMPLEX256_FMT NPY_CLONGDOUBLE_FMT
+#endif
+#endif
+
+/* datetime typedefs */
+typedef npy_int64 npy_timedelta;
+typedef npy_int64 npy_datetime;
+#define NPY_DATETIME_FMT NPY_INT64_FMT
+#define NPY_TIMEDELTA_FMT NPY_INT64_FMT
+
+/* End of typedefs for numarray style bit-width names */
+
+#endif /* NUMPY_CORE_INCLUDE_NUMPY_NPY_COMMON_H_ */
diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/include/numpy/npy_cpu.h b/.venv/lib/python3.12/site-packages/numpy/_core/include/numpy/npy_cpu.h
new file mode 100644
index 0000000..91cf2d8
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/_core/include/numpy/npy_cpu.h
@@ -0,0 +1,124 @@
+/*
+ * This set (target) cpu specific macros:
+ * - Possible values:
+ * NPY_CPU_X86
+ * NPY_CPU_AMD64
+ * NPY_CPU_PPC
+ * NPY_CPU_PPC64
+ * NPY_CPU_PPC64LE
+ * NPY_CPU_SPARC
+ * NPY_CPU_S390
+ * NPY_CPU_IA64
+ * NPY_CPU_HPPA
+ * NPY_CPU_ALPHA
+ * NPY_CPU_ARMEL
+ * NPY_CPU_ARMEB
+ * NPY_CPU_SH_LE
+ * NPY_CPU_SH_BE
+ * NPY_CPU_ARCEL
+ * NPY_CPU_ARCEB
+ * NPY_CPU_RISCV64
+ * NPY_CPU_RISCV32
+ * NPY_CPU_LOONGARCH
+ * NPY_CPU_WASM
+ */
+#ifndef NUMPY_CORE_INCLUDE_NUMPY_NPY_CPU_H_
+#define NUMPY_CORE_INCLUDE_NUMPY_NPY_CPU_H_
+
+#include "numpyconfig.h"
+
+#if defined( __i386__ ) || defined(i386) || defined(_M_IX86)
+ /*
+ * __i386__ is defined by gcc and Intel compiler on Linux,
+ * _M_IX86 by VS compiler,
+ * i386 by Sun compilers on opensolaris at least
+ */
+ #define NPY_CPU_X86
+#elif defined(__x86_64__) || defined(__amd64__) || defined(__x86_64) || defined(_M_AMD64)
+ /*
+ * both __x86_64__ and __amd64__ are defined by gcc
+ * __x86_64 defined by sun compiler on opensolaris at least
+ * _M_AMD64 defined by MS compiler
+ */
+ #define NPY_CPU_AMD64
+#elif defined(__powerpc64__) && defined(__LITTLE_ENDIAN__)
+ #define NPY_CPU_PPC64LE
+#elif defined(__powerpc64__) && defined(__BIG_ENDIAN__)
+ #define NPY_CPU_PPC64
+#elif defined(__ppc__) || defined(__powerpc__) || defined(_ARCH_PPC)
+ /*
+ * __ppc__ is defined by gcc, I remember having seen __powerpc__ once,
+ * but can't find it ATM
+ * _ARCH_PPC is used by at least gcc on AIX
+ * As __powerpc__ and _ARCH_PPC are also defined by PPC64 check
+ * for those specifically first before defaulting to ppc
+ */
+ #define NPY_CPU_PPC
+#elif defined(__sparc__) || defined(__sparc)
+ /* __sparc__ is defined by gcc and Forte (e.g. Sun) compilers */
+ #define NPY_CPU_SPARC
+#elif defined(__s390__)
+ #define NPY_CPU_S390
+#elif defined(__ia64)
+ #define NPY_CPU_IA64
+#elif defined(__hppa)
+ #define NPY_CPU_HPPA
+#elif defined(__alpha__)
+ #define NPY_CPU_ALPHA
+#elif defined(__arm__) || defined(__aarch64__) || defined(_M_ARM64)
+ /* _M_ARM64 is defined in MSVC for ARM64 compilation on Windows */
+ #if defined(__ARMEB__) || defined(__AARCH64EB__)
+ #if defined(__ARM_32BIT_STATE)
+ #define NPY_CPU_ARMEB_AARCH32
+ #elif defined(__ARM_64BIT_STATE)
+ #define NPY_CPU_ARMEB_AARCH64
+ #else
+ #define NPY_CPU_ARMEB
+ #endif
+ #elif defined(__ARMEL__) || defined(__AARCH64EL__) || defined(_M_ARM64)
+ #if defined(__ARM_32BIT_STATE)
+ #define NPY_CPU_ARMEL_AARCH32
+ #elif defined(__ARM_64BIT_STATE) || defined(_M_ARM64) || defined(__AARCH64EL__)
+ #define NPY_CPU_ARMEL_AARCH64
+ #else
+ #define NPY_CPU_ARMEL
+ #endif
+ #else
+ # error Unknown ARM CPU, please report this to numpy maintainers with \
+ information about your platform (OS, CPU and compiler)
+ #endif
+#elif defined(__sh__) && defined(__LITTLE_ENDIAN__)
+ #define NPY_CPU_SH_LE
+#elif defined(__sh__) && defined(__BIG_ENDIAN__)
+ #define NPY_CPU_SH_BE
+#elif defined(__MIPSEL__)
+ #define NPY_CPU_MIPSEL
+#elif defined(__MIPSEB__)
+ #define NPY_CPU_MIPSEB
+#elif defined(__or1k__)
+ #define NPY_CPU_OR1K
+#elif defined(__mc68000__)
+ #define NPY_CPU_M68K
+#elif defined(__arc__) && defined(__LITTLE_ENDIAN__)
+ #define NPY_CPU_ARCEL
+#elif defined(__arc__) && defined(__BIG_ENDIAN__)
+ #define NPY_CPU_ARCEB
+#elif defined(__riscv)
+ #if __riscv_xlen == 64
+ #define NPY_CPU_RISCV64
+ #elif __riscv_xlen == 32
+ #define NPY_CPU_RISCV32
+ #endif
+#elif defined(__loongarch_lp64)
+ #define NPY_CPU_LOONGARCH64
+#elif defined(__EMSCRIPTEN__)
+ /* __EMSCRIPTEN__ is defined by emscripten: an LLVM-to-Web compiler */
+ #define NPY_CPU_WASM
+#else
+ #error Unknown CPU, please report this to numpy maintainers with \
+ information about your platform (OS, CPU and compiler)
+#endif
+
+#define NPY_ALIGNMENT_REQUIRED 1
+
+#endif /* NUMPY_CORE_INCLUDE_NUMPY_NPY_CPU_H_ */
diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/include/numpy/npy_endian.h b/.venv/lib/python3.12/site-packages/numpy/_core/include/numpy/npy_endian.h
new file mode 100644
index 0000000..0926212
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/_core/include/numpy/npy_endian.h
@@ -0,0 +1,78 @@
+#ifndef NUMPY_CORE_INCLUDE_NUMPY_NPY_ENDIAN_H_
+#define NUMPY_CORE_INCLUDE_NUMPY_NPY_ENDIAN_H_
+
+/*
+ * NPY_BYTE_ORDER is set to the same value as BYTE_ORDER set by glibc in
+ * endian.h
+ */
+
+#if defined(NPY_HAVE_ENDIAN_H) || defined(NPY_HAVE_SYS_ENDIAN_H)
+ /* Use endian.h if available */
+
+ #if defined(NPY_HAVE_ENDIAN_H)
+ #include <endian.h>
+ #elif defined(NPY_HAVE_SYS_ENDIAN_H)
+ #include <sys/endian.h>
+ #endif
+
+ #if defined(BYTE_ORDER) && defined(BIG_ENDIAN) && defined(LITTLE_ENDIAN)
+ #define NPY_BYTE_ORDER BYTE_ORDER
+ #define NPY_LITTLE_ENDIAN LITTLE_ENDIAN
+ #define NPY_BIG_ENDIAN BIG_ENDIAN
+ #elif defined(_BYTE_ORDER) && defined(_BIG_ENDIAN) && defined(_LITTLE_ENDIAN)
+ #define NPY_BYTE_ORDER _BYTE_ORDER
+ #define NPY_LITTLE_ENDIAN _LITTLE_ENDIAN
+ #define NPY_BIG_ENDIAN _BIG_ENDIAN
+ #elif defined(__BYTE_ORDER) && defined(__BIG_ENDIAN) && defined(__LITTLE_ENDIAN)
+ #define NPY_BYTE_ORDER __BYTE_ORDER
+ #define NPY_LITTLE_ENDIAN __LITTLE_ENDIAN
+ #define NPY_BIG_ENDIAN __BIG_ENDIAN
+ #endif
+#endif
+
+#ifndef NPY_BYTE_ORDER
+ /* Set endianness info using target CPU */
+ #include "npy_cpu.h"
+
+ #define NPY_LITTLE_ENDIAN 1234
+ #define NPY_BIG_ENDIAN 4321
+
+ #if defined(NPY_CPU_X86) \
+ || defined(NPY_CPU_AMD64) \
+ || defined(NPY_CPU_IA64) \
+ || defined(NPY_CPU_ALPHA) \
+ || defined(NPY_CPU_ARMEL) \
+ || defined(NPY_CPU_ARMEL_AARCH32) \
+ || defined(NPY_CPU_ARMEL_AARCH64) \
+ || defined(NPY_CPU_SH_LE) \
+ || defined(NPY_CPU_MIPSEL) \
+ || defined(NPY_CPU_PPC64LE) \
+ || defined(NPY_CPU_ARCEL) \
+ || defined(NPY_CPU_RISCV64) \
+ || defined(NPY_CPU_RISCV32) \
+ || defined(NPY_CPU_LOONGARCH) \
+ || defined(NPY_CPU_WASM)
+ #define NPY_BYTE_ORDER NPY_LITTLE_ENDIAN
+
+ #elif defined(NPY_CPU_PPC) \
+ || defined(NPY_CPU_SPARC) \
+ || defined(NPY_CPU_S390) \
+ || defined(NPY_CPU_HPPA) \
+ || defined(NPY_CPU_PPC64) \
+ || defined(NPY_CPU_ARMEB) \
+ || defined(NPY_CPU_ARMEB_AARCH32) \
+ || defined(NPY_CPU_ARMEB_AARCH64) \
+ || defined(NPY_CPU_SH_BE) \
+ || defined(NPY_CPU_MIPSEB) \
+ || defined(NPY_CPU_OR1K) \
+ || defined(NPY_CPU_M68K) \
+ || defined(NPY_CPU_ARCEB)
+ #define NPY_BYTE_ORDER NPY_BIG_ENDIAN
+
+ #else
+ #error Unknown CPU: can not set endianness
+ #endif
+
+#endif
+
+#endif /* NUMPY_CORE_INCLUDE_NUMPY_NPY_ENDIAN_H_ */
diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/include/numpy/npy_math.h b/.venv/lib/python3.12/site-packages/numpy/_core/include/numpy/npy_math.h
new file mode 100644
index 0000000..abc784b
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/_core/include/numpy/npy_math.h
@@ -0,0 +1,602 @@
+#ifndef NUMPY_CORE_INCLUDE_NUMPY_NPY_MATH_H_
+#define NUMPY_CORE_INCLUDE_NUMPY_NPY_MATH_H_
+
+#include <numpy/npy_common.h>
+
+#include <math.h>
+
+/* By adding static inline specifiers to npy_math function definitions when
+ appropriate, compiler is given the opportunity to optimize */
+#if NPY_INLINE_MATH
+#define NPY_INPLACE static inline
+#else
+#define NPY_INPLACE
+#endif
+
+
+#ifdef __cplusplus
+extern "C" {
+#endif
+
+#define PyArray_MAX(a,b) (((a)>(b))?(a):(b))
+#define PyArray_MIN(a,b) (((a)<(b))?(a):(b))
+
+/*
+ * NAN and INFINITY like macros (same behavior as glibc for NAN, same as C99
+ * for INFINITY)
+ *
+ * XXX: I should test whether INFINITY and NAN are available on the platform
+ */
+static inline float __npy_inff(void)
+{
+ const union { npy_uint32 __i; float __f;} __bint = {0x7f800000UL};
+ return __bint.__f;
+}
+
+static inline float __npy_nanf(void)
+{
+ const union { npy_uint32 __i; float __f;} __bint = {0x7fc00000UL};
+ return __bint.__f;
+}
+
+static inline float __npy_pzerof(void)
+{
+ const union { npy_uint32 __i; float __f;} __bint = {0x00000000UL};
+ return __bint.__f;
+}
+
+static inline float __npy_nzerof(void)
+{
+ const union { npy_uint32 __i; float __f;} __bint = {0x80000000UL};
+ return __bint.__f;
+}
+
+#define NPY_INFINITYF __npy_inff()
+#define NPY_NANF __npy_nanf()
+#define NPY_PZEROF __npy_pzerof()
+#define NPY_NZEROF __npy_nzerof()
+
+#define NPY_INFINITY ((npy_double)NPY_INFINITYF)
+#define NPY_NAN ((npy_double)NPY_NANF)
+#define NPY_PZERO ((npy_double)NPY_PZEROF)
+#define NPY_NZERO ((npy_double)NPY_NZEROF)
+
+#define NPY_INFINITYL ((npy_longdouble)NPY_INFINITYF)
+#define NPY_NANL ((npy_longdouble)NPY_NANF)
+#define NPY_PZEROL ((npy_longdouble)NPY_PZEROF)
+#define NPY_NZEROL ((npy_longdouble)NPY_NZEROF)
+
+/*
+ * Useful constants
+ */
+#define NPY_E 2.718281828459045235360287471352662498 /* e */
+#define NPY_LOG2E 1.442695040888963407359924681001892137 /* log_2 e */
+#define NPY_LOG10E 0.434294481903251827651128918916605082 /* log_10 e */
+#define NPY_LOGE2 0.693147180559945309417232121458176568 /* log_e 2 */
+#define NPY_LOGE10 2.302585092994045684017991454684364208 /* log_e 10 */
+#define NPY_PI 3.141592653589793238462643383279502884 /* pi */
+#define NPY_PI_2 1.570796326794896619231321691639751442 /* pi/2 */
+#define NPY_PI_4 0.785398163397448309615660845819875721 /* pi/4 */
+#define NPY_1_PI 0.318309886183790671537767526745028724 /* 1/pi */
+#define NPY_2_PI 0.636619772367581343075535053490057448 /* 2/pi */
+#define NPY_EULER 0.577215664901532860606512090082402431 /* Euler constant */
+#define NPY_SQRT2 1.414213562373095048801688724209698079 /* sqrt(2) */
+#define NPY_SQRT1_2 0.707106781186547524400844362104849039 /* 1/sqrt(2) */
+
+#define NPY_Ef 2.718281828459045235360287471352662498F /* e */
+#define NPY_LOG2Ef 1.442695040888963407359924681001892137F /* log_2 e */
+#define NPY_LOG10Ef 0.434294481903251827651128918916605082F /* log_10 e */
+#define NPY_LOGE2f 0.693147180559945309417232121458176568F /* log_e 2 */
+#define NPY_LOGE10f 2.302585092994045684017991454684364208F /* log_e 10 */
+#define NPY_PIf 3.141592653589793238462643383279502884F /* pi */
+#define NPY_PI_2f 1.570796326794896619231321691639751442F /* pi/2 */
+#define NPY_PI_4f 0.785398163397448309615660845819875721F /* pi/4 */
+#define NPY_1_PIf 0.318309886183790671537767526745028724F /* 1/pi */
+#define NPY_2_PIf 0.636619772367581343075535053490057448F /* 2/pi */
+#define NPY_EULERf 0.577215664901532860606512090082402431F /* Euler constant */
+#define NPY_SQRT2f 1.414213562373095048801688724209698079F /* sqrt(2) */
+#define NPY_SQRT1_2f 0.707106781186547524400844362104849039F /* 1/sqrt(2) */
+
+#define NPY_El 2.718281828459045235360287471352662498L /* e */
+#define NPY_LOG2El 1.442695040888963407359924681001892137L /* log_2 e */
+#define NPY_LOG10El 0.434294481903251827651128918916605082L /* log_10 e */
+#define NPY_LOGE2l 0.693147180559945309417232121458176568L /* log_e 2 */
+#define NPY_LOGE10l 2.302585092994045684017991454684364208L /* log_e 10 */
+#define NPY_PIl 3.141592653589793238462643383279502884L /* pi */
+#define NPY_PI_2l 1.570796326794896619231321691639751442L /* pi/2 */
+#define NPY_PI_4l 0.785398163397448309615660845819875721L /* pi/4 */
+#define NPY_1_PIl 0.318309886183790671537767526745028724L /* 1/pi */
+#define NPY_2_PIl 0.636619772367581343075535053490057448L /* 2/pi */
+#define NPY_EULERl 0.577215664901532860606512090082402431L /* Euler constant */
+#define NPY_SQRT2l 1.414213562373095048801688724209698079L /* sqrt(2) */
+#define NPY_SQRT1_2l 0.707106781186547524400844362104849039L /* 1/sqrt(2) */
+
+/*
+ * Integer functions.
+ */
+NPY_INPLACE npy_uint npy_gcdu(npy_uint a, npy_uint b);
+NPY_INPLACE npy_uint npy_lcmu(npy_uint a, npy_uint b);
+NPY_INPLACE npy_ulong npy_gcdul(npy_ulong a, npy_ulong b);
+NPY_INPLACE npy_ulong npy_lcmul(npy_ulong a, npy_ulong b);
+NPY_INPLACE npy_ulonglong npy_gcdull(npy_ulonglong a, npy_ulonglong b);
+NPY_INPLACE npy_ulonglong npy_lcmull(npy_ulonglong a, npy_ulonglong b);
+
+NPY_INPLACE npy_int npy_gcd(npy_int a, npy_int b);
+NPY_INPLACE npy_int npy_lcm(npy_int a, npy_int b);
+NPY_INPLACE npy_long npy_gcdl(npy_long a, npy_long b);
+NPY_INPLACE npy_long npy_lcml(npy_long a, npy_long b);
+NPY_INPLACE npy_longlong npy_gcdll(npy_longlong a, npy_longlong b);
+NPY_INPLACE npy_longlong npy_lcmll(npy_longlong a, npy_longlong b);
+
+NPY_INPLACE npy_ubyte npy_rshiftuhh(npy_ubyte a, npy_ubyte b);
+NPY_INPLACE npy_ubyte npy_lshiftuhh(npy_ubyte a, npy_ubyte b);
+NPY_INPLACE npy_ushort npy_rshiftuh(npy_ushort a, npy_ushort b);
+NPY_INPLACE npy_ushort npy_lshiftuh(npy_ushort a, npy_ushort b);
+NPY_INPLACE npy_uint npy_rshiftu(npy_uint a, npy_uint b);
+NPY_INPLACE npy_uint npy_lshiftu(npy_uint a, npy_uint b);
+NPY_INPLACE npy_ulong npy_rshiftul(npy_ulong a, npy_ulong b);
+NPY_INPLACE npy_ulong npy_lshiftul(npy_ulong a, npy_ulong b);
+NPY_INPLACE npy_ulonglong npy_rshiftull(npy_ulonglong a, npy_ulonglong b);
+NPY_INPLACE npy_ulonglong npy_lshiftull(npy_ulonglong a, npy_ulonglong b);
+
+NPY_INPLACE npy_byte npy_rshifthh(npy_byte a, npy_byte b);
+NPY_INPLACE npy_byte npy_lshifthh(npy_byte a, npy_byte b);
+NPY_INPLACE npy_short npy_rshifth(npy_short a, npy_short b);
+NPY_INPLACE npy_short npy_lshifth(npy_short a, npy_short b);
+NPY_INPLACE npy_int npy_rshift(npy_int a, npy_int b);
+NPY_INPLACE npy_int npy_lshift(npy_int a, npy_int b);
+NPY_INPLACE npy_long npy_rshiftl(npy_long a, npy_long b);
+NPY_INPLACE npy_long npy_lshiftl(npy_long a, npy_long b);
+NPY_INPLACE npy_longlong npy_rshiftll(npy_longlong a, npy_longlong b);
+NPY_INPLACE npy_longlong npy_lshiftll(npy_longlong a, npy_longlong b);
+
+NPY_INPLACE uint8_t npy_popcountuhh(npy_ubyte a);
+NPY_INPLACE uint8_t npy_popcountuh(npy_ushort a);
+NPY_INPLACE uint8_t npy_popcountu(npy_uint a);
+NPY_INPLACE uint8_t npy_popcountul(npy_ulong a);
+NPY_INPLACE uint8_t npy_popcountull(npy_ulonglong a);
+NPY_INPLACE uint8_t npy_popcounthh(npy_byte a);
+NPY_INPLACE uint8_t npy_popcounth(npy_short a);
+NPY_INPLACE uint8_t npy_popcount(npy_int a);
+NPY_INPLACE uint8_t npy_popcountl(npy_long a);
+NPY_INPLACE uint8_t npy_popcountll(npy_longlong a);
+
+/*
+ * C99 double math funcs that need fixups or are blocklist-able
+ */
+NPY_INPLACE double npy_sin(double x);
+NPY_INPLACE double npy_cos(double x);
+NPY_INPLACE double npy_tan(double x);
+NPY_INPLACE double npy_hypot(double x, double y);
+NPY_INPLACE double npy_log2(double x);
+NPY_INPLACE double npy_atan2(double x, double y);
+
+/* Mandatory C99 double math funcs, no blocklisting or fixups */
+/* defined for legacy reasons, should be deprecated at some point */
+#define npy_sinh sinh
+#define npy_cosh cosh
+#define npy_tanh tanh
+#define npy_asin asin
+#define npy_acos acos
+#define npy_atan atan
+#define npy_log log
+#define npy_log10 log10
+#define npy_cbrt cbrt
+#define npy_fabs fabs
+#define npy_ceil ceil
+#define npy_fmod fmod
+#define npy_floor floor
+#define npy_expm1 expm1
+#define npy_log1p log1p
+#define npy_acosh acosh
+#define npy_asinh asinh
+#define npy_atanh atanh
+#define npy_rint rint
+#define npy_trunc trunc
+#define npy_exp2 exp2
+#define npy_frexp frexp
+#define npy_ldexp ldexp
+#define npy_copysign copysign
+#define npy_exp exp
+#define npy_sqrt sqrt
+#define npy_pow pow
+#define npy_modf modf
+#define npy_nextafter nextafter
+
+double npy_spacing(double x);
+
+/*
+ * IEEE 754 fpu handling
+ */
+
+/* use builtins to avoid function calls in tight loops
+ * only available if npy_config.h is available (= numpys own build) */
+#ifdef HAVE___BUILTIN_ISNAN
+ #define npy_isnan(x) __builtin_isnan(x)
+#else
+ #define npy_isnan(x) isnan(x)
+#endif
+
+
+/* only available if npy_config.h is available (= numpys own build) */
+#ifdef HAVE___BUILTIN_ISFINITE
+ #define npy_isfinite(x) __builtin_isfinite(x)
+#else
+ #define npy_isfinite(x) isfinite((x))
+#endif
+
+/* only available if npy_config.h is available (= numpys own build) */
+#ifdef HAVE___BUILTIN_ISINF
+ #define npy_isinf(x) __builtin_isinf(x)
+#else
+ #define npy_isinf(x) isinf((x))
+#endif
+
+#define npy_signbit(x) signbit((x))
+
+/*
+ * float C99 math funcs that need fixups or are blocklist-able
+ */
+NPY_INPLACE float npy_sinf(float x);
+NPY_INPLACE float npy_cosf(float x);
+NPY_INPLACE float npy_tanf(float x);
+NPY_INPLACE float npy_expf(float x);
+NPY_INPLACE float npy_sqrtf(float x);
+NPY_INPLACE float npy_hypotf(float x, float y);
+NPY_INPLACE float npy_log2f(float x);
+NPY_INPLACE float npy_atan2f(float x, float y);
+NPY_INPLACE float npy_powf(float x, float y);
+NPY_INPLACE float npy_modff(float x, float* y);
+
+/* Mandatory C99 float math funcs, no blocklisting or fixups */
+/* defined for legacy reasons, should be deprecated at some point */
+
+#define npy_sinhf sinhf
+#define npy_coshf coshf
+#define npy_tanhf tanhf
+#define npy_asinf asinf
+#define npy_acosf acosf
+#define npy_atanf atanf
+#define npy_logf logf
+#define npy_log10f log10f
+#define npy_cbrtf cbrtf
+#define npy_fabsf fabsf
+#define npy_ceilf ceilf
+#define npy_fmodf fmodf
+#define npy_floorf floorf
+#define npy_expm1f expm1f
+#define npy_log1pf log1pf
+#define npy_asinhf asinhf
+#define npy_acoshf acoshf
+#define npy_atanhf atanhf
+#define npy_rintf rintf
+#define npy_truncf truncf
+#define npy_exp2f exp2f
+#define npy_frexpf frexpf
+#define npy_ldexpf ldexpf
+#define npy_copysignf copysignf
+#define npy_nextafterf nextafterf
+
+float npy_spacingf(float x);
+
+/*
+ * long double C99 double math funcs that need fixups or are blocklist-able
+ */
+NPY_INPLACE npy_longdouble npy_sinl(npy_longdouble x);
+NPY_INPLACE npy_longdouble npy_cosl(npy_longdouble x);
+NPY_INPLACE npy_longdouble npy_tanl(npy_longdouble x);
+NPY_INPLACE npy_longdouble npy_expl(npy_longdouble x);
+NPY_INPLACE npy_longdouble npy_sqrtl(npy_longdouble x);
+NPY_INPLACE npy_longdouble npy_hypotl(npy_longdouble x, npy_longdouble y);
+NPY_INPLACE npy_longdouble npy_log2l(npy_longdouble x);
+NPY_INPLACE npy_longdouble npy_atan2l(npy_longdouble x, npy_longdouble y);
+NPY_INPLACE npy_longdouble npy_powl(npy_longdouble x, npy_longdouble y);
+NPY_INPLACE npy_longdouble npy_modfl(npy_longdouble x, npy_longdouble* y);
+
+/* Mandatory C99 double math funcs, no blocklisting or fixups */
+/* defined for legacy reasons, should be deprecated at some point */
+#define npy_sinhl sinhl
+#define npy_coshl coshl
+#define npy_tanhl tanhl
+#define npy_fabsl fabsl
+#define npy_floorl floorl
+#define npy_ceill ceill
+#define npy_rintl rintl
+#define npy_truncl truncl
+#define npy_cbrtl cbrtl
+#define npy_log10l log10l
+#define npy_logl logl
+#define npy_expm1l expm1l
+#define npy_asinl asinl
+#define npy_acosl acosl
+#define npy_atanl atanl
+#define npy_asinhl asinhl
+#define npy_acoshl acoshl
+#define npy_atanhl atanhl
+#define npy_log1pl log1pl
+#define npy_exp2l exp2l
+#define npy_fmodl fmodl
+#define npy_frexpl frexpl
+#define npy_ldexpl ldexpl
+#define npy_copysignl copysignl
+#define npy_nextafterl nextafterl
+
+npy_longdouble npy_spacingl(npy_longdouble x);
+
+/*
+ * Non standard functions
+ */
+NPY_INPLACE double npy_deg2rad(double x);
+NPY_INPLACE double npy_rad2deg(double x);
+NPY_INPLACE double npy_logaddexp(double x, double y);
+NPY_INPLACE double npy_logaddexp2(double x, double y);
+NPY_INPLACE double npy_divmod(double x, double y, double *modulus);
+NPY_INPLACE double npy_heaviside(double x, double h0);
+
+NPY_INPLACE float npy_deg2radf(float x);
+NPY_INPLACE float npy_rad2degf(float x);
+NPY_INPLACE float npy_logaddexpf(float x, float y);
+NPY_INPLACE float npy_logaddexp2f(float x, float y);
+NPY_INPLACE float npy_divmodf(float x, float y, float *modulus);
+NPY_INPLACE float npy_heavisidef(float x, float h0);
+
+NPY_INPLACE npy_longdouble npy_deg2radl(npy_longdouble x);
+NPY_INPLACE npy_longdouble npy_rad2degl(npy_longdouble x);
+NPY_INPLACE npy_longdouble npy_logaddexpl(npy_longdouble x, npy_longdouble y);
+NPY_INPLACE npy_longdouble npy_logaddexp2l(npy_longdouble x, npy_longdouble y);
+NPY_INPLACE npy_longdouble npy_divmodl(npy_longdouble x, npy_longdouble y,
+ npy_longdouble *modulus);
+NPY_INPLACE npy_longdouble npy_heavisidel(npy_longdouble x, npy_longdouble h0);
+
+#define npy_degrees npy_rad2deg
+#define npy_degreesf npy_rad2degf
+#define npy_degreesl npy_rad2degl
+
+#define npy_radians npy_deg2rad
+#define npy_radiansf npy_deg2radf
+#define npy_radiansl npy_deg2radl
+
+/*
+ * Complex declarations
+ */
+
+static inline double npy_creal(const npy_cdouble z)
+{
+#if defined(__cplusplus)
+ return z._Val[0];
+#else
+ return creal(z);
+#endif
+}
+
+static inline void npy_csetreal(npy_cdouble *z, const double r)
+{
+ ((double *) z)[0] = r;
+}
+
+static inline double npy_cimag(const npy_cdouble z)
+{
+#if defined(__cplusplus)
+ return z._Val[1];
+#else
+ return cimag(z);
+#endif
+}
+
+static inline void npy_csetimag(npy_cdouble *z, const double i)
+{
+ ((double *) z)[1] = i;
+}
+
+static inline float npy_crealf(const npy_cfloat z)
+{
+#if defined(__cplusplus)
+ return z._Val[0];
+#else
+ return crealf(z);
+#endif
+}
+
+static inline void npy_csetrealf(npy_cfloat *z, const float r)
+{
+ ((float *) z)[0] = r;
+}
+
+static inline float npy_cimagf(const npy_cfloat z)
+{
+#if defined(__cplusplus)
+ return z._Val[1];
+#else
+ return cimagf(z);
+#endif
+}
+
+static inline void npy_csetimagf(npy_cfloat *z, const float i)
+{
+ ((float *) z)[1] = i;
+}
+
+static inline npy_longdouble npy_creall(const npy_clongdouble z)
+{
+#if defined(__cplusplus)
+ return (npy_longdouble)z._Val[0];
+#else
+ return creall(z);
+#endif
+}
+
+static inline void npy_csetreall(npy_clongdouble *z, const longdouble_t r)
+{
+ ((longdouble_t *) z)[0] = r;
+}
+
+static inline npy_longdouble npy_cimagl(const npy_clongdouble z)
+{
+#if defined(__cplusplus)
+ return (npy_longdouble)z._Val[1];
+#else
+ return cimagl(z);
+#endif
+}
+
+static inline void npy_csetimagl(npy_clongdouble *z, const longdouble_t i)
+{
+ ((longdouble_t *) z)[1] = i;
+}
+
+#define NPY_CSETREAL(z, r) npy_csetreal(z, r)
+#define NPY_CSETIMAG(z, i) npy_csetimag(z, i)
+#define NPY_CSETREALF(z, r) npy_csetrealf(z, r)
+#define NPY_CSETIMAGF(z, i) npy_csetimagf(z, i)
+#define NPY_CSETREALL(z, r) npy_csetreall(z, r)
+#define NPY_CSETIMAGL(z, i) npy_csetimagl(z, i)
+
+static inline npy_cdouble npy_cpack(double x, double y)
+{
+ npy_cdouble z;
+ npy_csetreal(&z, x);
+ npy_csetimag(&z, y);
+ return z;
+}
+
+static inline npy_cfloat npy_cpackf(float x, float y)
+{
+ npy_cfloat z;
+ npy_csetrealf(&z, x);
+ npy_csetimagf(&z, y);
+ return z;
+}
+
+static inline npy_clongdouble npy_cpackl(npy_longdouble x, npy_longdouble y)
+{
+ npy_clongdouble z;
+ npy_csetreall(&z, x);
+ npy_csetimagl(&z, y);
+ return z;
+}
+
+/*
+ * Double precision complex functions
+ */
+double npy_cabs(npy_cdouble z);
+double npy_carg(npy_cdouble z);
+
+npy_cdouble npy_cexp(npy_cdouble z);
+npy_cdouble npy_clog(npy_cdouble z);
+npy_cdouble npy_cpow(npy_cdouble x, npy_cdouble y);
+
+npy_cdouble npy_csqrt(npy_cdouble z);
+
+npy_cdouble npy_ccos(npy_cdouble z);
+npy_cdouble npy_csin(npy_cdouble z);
+npy_cdouble npy_ctan(npy_cdouble z);
+
+npy_cdouble npy_ccosh(npy_cdouble z);
+npy_cdouble npy_csinh(npy_cdouble z);
+npy_cdouble npy_ctanh(npy_cdouble z);
+
+npy_cdouble npy_cacos(npy_cdouble z);
+npy_cdouble npy_casin(npy_cdouble z);
+npy_cdouble npy_catan(npy_cdouble z);
+
+npy_cdouble npy_cacosh(npy_cdouble z);
+npy_cdouble npy_casinh(npy_cdouble z);
+npy_cdouble npy_catanh(npy_cdouble z);
+
+/*
+ * Single precision complex functions
+ */
+float npy_cabsf(npy_cfloat z);
+float npy_cargf(npy_cfloat z);
+
+npy_cfloat npy_cexpf(npy_cfloat z);
+npy_cfloat npy_clogf(npy_cfloat z);
+npy_cfloat npy_cpowf(npy_cfloat x, npy_cfloat y);
+
+npy_cfloat npy_csqrtf(npy_cfloat z);
+
+npy_cfloat npy_ccosf(npy_cfloat z);
+npy_cfloat npy_csinf(npy_cfloat z);
+npy_cfloat npy_ctanf(npy_cfloat z);
+
+npy_cfloat npy_ccoshf(npy_cfloat z);
+npy_cfloat npy_csinhf(npy_cfloat z);
+npy_cfloat npy_ctanhf(npy_cfloat z);
+
+npy_cfloat npy_cacosf(npy_cfloat z);
+npy_cfloat npy_casinf(npy_cfloat z);
+npy_cfloat npy_catanf(npy_cfloat z);
+
+npy_cfloat npy_cacoshf(npy_cfloat z);
+npy_cfloat npy_casinhf(npy_cfloat z);
+npy_cfloat npy_catanhf(npy_cfloat z);
+
+
+/*
+ * Extended precision complex functions
+ */
+npy_longdouble npy_cabsl(npy_clongdouble z);
+npy_longdouble npy_cargl(npy_clongdouble z);
+
+npy_clongdouble npy_cexpl(npy_clongdouble z);
+npy_clongdouble npy_clogl(npy_clongdouble z);
+npy_clongdouble npy_cpowl(npy_clongdouble x, npy_clongdouble y);
+
+npy_clongdouble npy_csqrtl(npy_clongdouble z);
+
+npy_clongdouble npy_ccosl(npy_clongdouble z);
+npy_clongdouble npy_csinl(npy_clongdouble z);
+npy_clongdouble npy_ctanl(npy_clongdouble z);
+
+npy_clongdouble npy_ccoshl(npy_clongdouble z);
+npy_clongdouble npy_csinhl(npy_clongdouble z);
+npy_clongdouble npy_ctanhl(npy_clongdouble z);
+
+npy_clongdouble npy_cacosl(npy_clongdouble z);
+npy_clongdouble npy_casinl(npy_clongdouble z);
+npy_clongdouble npy_catanl(npy_clongdouble z);
+
+npy_clongdouble npy_cacoshl(npy_clongdouble z);
+npy_clongdouble npy_casinhl(npy_clongdouble z);
+npy_clongdouble npy_catanhl(npy_clongdouble z);
+
+
+/*
+ * Functions that set the floating point error
+ * status word.
+ */
+
+/*
+ * platform-dependent code translates floating point
+ * status to an integer sum of these values
+ */
+#define NPY_FPE_DIVIDEBYZERO 1
+#define NPY_FPE_OVERFLOW 2
+#define NPY_FPE_UNDERFLOW 4
+#define NPY_FPE_INVALID 8
+
+int npy_clear_floatstatus_barrier(char*);
+int npy_get_floatstatus_barrier(char*);
+/*
+ * use caution with these - clang and gcc8.1 are known to reorder calls
+ * to this form of the function which can defeat the check. The _barrier
+ * form of the call is preferable, where the argument is
+ * (char*)&local_variable
+ */
+int npy_clear_floatstatus(void);
+int npy_get_floatstatus(void);
+
+void npy_set_floatstatus_divbyzero(void);
+void npy_set_floatstatus_overflow(void);
+void npy_set_floatstatus_underflow(void);
+void npy_set_floatstatus_invalid(void);
+
+#ifdef __cplusplus
+}
+#endif
+
+#if NPY_INLINE_MATH
+#include "npy_math_internal.h"
+#endif
+
+#endif /* NUMPY_CORE_INCLUDE_NUMPY_NPY_MATH_H_ */
diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/include/numpy/npy_no_deprecated_api.h b/.venv/lib/python3.12/site-packages/numpy/_core/include/numpy/npy_no_deprecated_api.h
new file mode 100644
index 0000000..39658c0
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/_core/include/numpy/npy_no_deprecated_api.h
@@ -0,0 +1,20 @@
+/*
+ * This include file is provided for inclusion in Cython *.pyd files where
+ * one would like to define the NPY_NO_DEPRECATED_API macro. It can be
+ * included by
+ *
+ * cdef extern from "npy_no_deprecated_api.h": pass
+ *
+ */
+#ifndef NPY_NO_DEPRECATED_API
+
+/* put this check here since there may be multiple includes in C extensions. */
+#if defined(NUMPY_CORE_INCLUDE_NUMPY_NDARRAYTYPES_H_) || \
+ defined(NUMPY_CORE_INCLUDE_NUMPY_NPY_DEPRECATED_API_H) || \
+ defined(NUMPY_CORE_INCLUDE_NUMPY_OLD_DEFINES_H_)
+#error "npy_no_deprecated_api.h" must be first among numpy includes.
+#else
+#define NPY_NO_DEPRECATED_API NPY_API_VERSION
+#endif
+
+#endif /* NPY_NO_DEPRECATED_API */
diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/include/numpy/npy_os.h b/.venv/lib/python3.12/site-packages/numpy/_core/include/numpy/npy_os.h
new file mode 100644
index 0000000..0ce5d78
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/_core/include/numpy/npy_os.h
@@ -0,0 +1,42 @@
+#ifndef NUMPY_CORE_INCLUDE_NUMPY_NPY_OS_H_
+#define NUMPY_CORE_INCLUDE_NUMPY_NPY_OS_H_
+
+#if defined(linux) || defined(__linux) || defined(__linux__)
+ #define NPY_OS_LINUX
+#elif defined(__FreeBSD__) || defined(__NetBSD__) || \
+ defined(__OpenBSD__) || defined(__DragonFly__)
+ #define NPY_OS_BSD
+ #ifdef __FreeBSD__
+ #define NPY_OS_FREEBSD
+ #elif defined(__NetBSD__)
+ #define NPY_OS_NETBSD
+ #elif defined(__OpenBSD__)
+ #define NPY_OS_OPENBSD
+ #elif defined(__DragonFly__)
+ #define NPY_OS_DRAGONFLY
+ #endif
+#elif defined(sun) || defined(__sun)
+ #define NPY_OS_SOLARIS
+#elif defined(__CYGWIN__)
+ #define NPY_OS_CYGWIN
+/* We are on Windows.*/
+#elif defined(_WIN32)
+ /* We are using MinGW (64-bit or 32-bit)*/
+ #if defined(__MINGW32__) || defined(__MINGW64__)
+ #define NPY_OS_MINGW
+ /* Otherwise, if _WIN64 is defined, we are targeting 64-bit Windows*/
+ #elif defined(_WIN64)
+ #define NPY_OS_WIN64
+ /* Otherwise assume we are targeting 32-bit Windows*/
+ #else
+ #define NPY_OS_WIN32
+ #endif
+#elif defined(__APPLE__)
+ #define NPY_OS_DARWIN
+#elif defined(__HAIKU__)
+ #define NPY_OS_HAIKU
+#else
+ #define NPY_OS_UNKNOWN
+#endif
+
+#endif /* NUMPY_CORE_INCLUDE_NUMPY_NPY_OS_H_ */
diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/include/numpy/numpyconfig.h b/.venv/lib/python3.12/site-packages/numpy/_core/include/numpy/numpyconfig.h
new file mode 100644
index 0000000..ba44c28
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/_core/include/numpy/numpyconfig.h
@@ -0,0 +1,182 @@
+#ifndef NUMPY_CORE_INCLUDE_NUMPY_NPY_NUMPYCONFIG_H_
+#define NUMPY_CORE_INCLUDE_NUMPY_NPY_NUMPYCONFIG_H_
+
+#include "_numpyconfig.h"
+
+/*
+ * On Mac OS X, because there is only one configuration stage for all the archs
+ * in universal builds, any macro which depends on the arch needs to be
+ * hardcoded.
+ *
+ * Note that distutils/pip will attempt a universal2 build when Python itself
+ * is built as universal2, hence this hardcoding is needed even if we do not
+ * support universal2 wheels anymore (see gh-22796).
+ * This code block can be removed after we have dropped the setup.py based
+ * build completely.
+ */
+#ifdef __APPLE__
+ #undef NPY_SIZEOF_LONG
+
+ #ifdef __LP64__
+ #define NPY_SIZEOF_LONG 8
+ #else
+ #define NPY_SIZEOF_LONG 4
+ #endif
+
+ #undef NPY_SIZEOF_LONGDOUBLE
+ #undef NPY_SIZEOF_COMPLEX_LONGDOUBLE
+ #ifdef HAVE_LDOUBLE_IEEE_DOUBLE_LE
+ #undef HAVE_LDOUBLE_IEEE_DOUBLE_LE
+ #endif
+ #ifdef HAVE_LDOUBLE_INTEL_EXTENDED_16_BYTES_LE
+ #undef HAVE_LDOUBLE_INTEL_EXTENDED_16_BYTES_LE
+ #endif
+
+ #if defined(__arm64__)
+ #define NPY_SIZEOF_LONGDOUBLE 8
+ #define NPY_SIZEOF_COMPLEX_LONGDOUBLE 16
+ #define HAVE_LDOUBLE_IEEE_DOUBLE_LE 1
+ #elif defined(__x86_64)
+ #define NPY_SIZEOF_LONGDOUBLE 16
+ #define NPY_SIZEOF_COMPLEX_LONGDOUBLE 32
+ #define HAVE_LDOUBLE_INTEL_EXTENDED_16_BYTES_LE 1
+ #elif defined (__i386)
+ #define NPY_SIZEOF_LONGDOUBLE 12
+ #define NPY_SIZEOF_COMPLEX_LONGDOUBLE 24
+ #elif defined(__ppc__) || defined (__ppc64__)
+ #define NPY_SIZEOF_LONGDOUBLE 16
+ #define NPY_SIZEOF_COMPLEX_LONGDOUBLE 32
+ #else
+ #error "unknown architecture"
+ #endif
+#endif
+
+
+/**
+ * To help with both NPY_TARGET_VERSION and the NPY_NO_DEPRECATED_API macro,
+ * we include API version numbers for specific versions of NumPy.
+ * To exclude all API that was deprecated as of 1.7, add the following before
+ * #including any NumPy headers:
+ * #define NPY_NO_DEPRECATED_API NPY_1_7_API_VERSION
+ * The same is true for NPY_TARGET_VERSION, although NumPy will default to
+ * a backwards compatible build anyway.
+ */
+#define NPY_1_7_API_VERSION 0x00000007
+#define NPY_1_8_API_VERSION 0x00000008
+#define NPY_1_9_API_VERSION 0x00000009
+#define NPY_1_10_API_VERSION 0x0000000a
+#define NPY_1_11_API_VERSION 0x0000000a
+#define NPY_1_12_API_VERSION 0x0000000a
+#define NPY_1_13_API_VERSION 0x0000000b
+#define NPY_1_14_API_VERSION 0x0000000c
+#define NPY_1_15_API_VERSION 0x0000000c
+#define NPY_1_16_API_VERSION 0x0000000d
+#define NPY_1_17_API_VERSION 0x0000000d
+#define NPY_1_18_API_VERSION 0x0000000d
+#define NPY_1_19_API_VERSION 0x0000000d
+#define NPY_1_20_API_VERSION 0x0000000e
+#define NPY_1_21_API_VERSION 0x0000000e
+#define NPY_1_22_API_VERSION 0x0000000f
+#define NPY_1_23_API_VERSION 0x00000010
+#define NPY_1_24_API_VERSION 0x00000010
+#define NPY_1_25_API_VERSION 0x00000011
+#define NPY_2_0_API_VERSION 0x00000012
+#define NPY_2_1_API_VERSION 0x00000013
+#define NPY_2_2_API_VERSION 0x00000013
+#define NPY_2_3_API_VERSION 0x00000014
+
+
+/*
+ * Binary compatibility version number. This number is increased
+ * whenever the C-API is changed such that binary compatibility is
+ * broken, i.e. whenever a recompile of extension modules is needed.
+ */
+#define NPY_VERSION NPY_ABI_VERSION
+
+/*
+ * Minor API version we are compiling to be compatible with. The version
+ * Number is always increased when the API changes via: `NPY_API_VERSION`
+ * (and should maybe just track the NumPy version).
+ *
+ * If we have an internal build, we always target the current version of
+ * course.
+ *
+ * For downstream users, we default to an older version to provide them with
+ * maximum compatibility by default. Downstream can choose to extend that
+ * default, or narrow it down if they wish to use newer API. If you adjust
+ * this, consider the Python version support (example for 1.25.x):
+ *
+ * NumPy 1.25.x supports Python: 3.9 3.10 3.11 (3.12)
+ * NumPy 1.19.x supports Python: 3.6 3.7 3.8 3.9
+ * NumPy 1.17.x supports Python: 3.5 3.6 3.7 3.8
+ * NumPy 1.15.x supports Python: ... 3.6 3.7
+ *
+ * Users of the stable ABI may wish to target the last Python that is not
+ * end of life. This would be 3.8 at NumPy 1.25 release time.
+ * 1.17 as default was the choice of oldest-support-numpy at the time and
+ * has in practice no limit (compared to 1.19). Even earlier becomes legacy.
+ */
+#if defined(NPY_INTERNAL_BUILD) && NPY_INTERNAL_BUILD
+ /* NumPy internal build, always use current version. */
+ #define NPY_FEATURE_VERSION NPY_API_VERSION
+#elif defined(NPY_TARGET_VERSION) && NPY_TARGET_VERSION
+ /* user provided a target version, use it */
+ #define NPY_FEATURE_VERSION NPY_TARGET_VERSION
+#else
+ /* Use the default (increase when dropping Python 3.11 support) */
+ #define NPY_FEATURE_VERSION NPY_1_23_API_VERSION
+#endif
+
+/* Sanity check the (requested) feature version */
+#if NPY_FEATURE_VERSION > NPY_API_VERSION
+ #error "NPY_TARGET_VERSION higher than NumPy headers!"
+#elif NPY_FEATURE_VERSION < NPY_1_15_API_VERSION
+ /* No support for irrelevant old targets, no need for error, but warn. */
+ #ifndef _MSC_VER
+ #warning "Requested NumPy target lower than supported NumPy 1.15."
+ #else
+ #define _WARN___STR2__(x) #x
+ #define _WARN___STR1__(x) _WARN___STR2__(x)
+ #define _WARN___LOC__ __FILE__ "(" _WARN___STR1__(__LINE__) ") : Warning Msg: "
+ #pragma message(_WARN___LOC__"Requested NumPy target lower than supported NumPy 1.15.")
+ #endif
+#endif
+
+/*
+ * We define a human readable translation to the Python version of NumPy
+ * for error messages (and also to allow grepping the binaries for conda).
+ */
+#if NPY_FEATURE_VERSION == NPY_1_7_API_VERSION
+ #define NPY_FEATURE_VERSION_STRING "1.7"
+#elif NPY_FEATURE_VERSION == NPY_1_8_API_VERSION
+ #define NPY_FEATURE_VERSION_STRING "1.8"
+#elif NPY_FEATURE_VERSION == NPY_1_9_API_VERSION
+ #define NPY_FEATURE_VERSION_STRING "1.9"
+#elif NPY_FEATURE_VERSION == NPY_1_10_API_VERSION /* also 1.11, 1.12 */
+ #define NPY_FEATURE_VERSION_STRING "1.10"
+#elif NPY_FEATURE_VERSION == NPY_1_13_API_VERSION
+ #define NPY_FEATURE_VERSION_STRING "1.13"
+#elif NPY_FEATURE_VERSION == NPY_1_14_API_VERSION /* also 1.15 */
+ #define NPY_FEATURE_VERSION_STRING "1.14"
+#elif NPY_FEATURE_VERSION == NPY_1_16_API_VERSION /* also 1.17, 1.18, 1.19 */
+ #define NPY_FEATURE_VERSION_STRING "1.16"
+#elif NPY_FEATURE_VERSION == NPY_1_20_API_VERSION /* also 1.21 */
+ #define NPY_FEATURE_VERSION_STRING "1.20"
+#elif NPY_FEATURE_VERSION == NPY_1_22_API_VERSION
+ #define NPY_FEATURE_VERSION_STRING "1.22"
+#elif NPY_FEATURE_VERSION == NPY_1_23_API_VERSION /* also 1.24 */
+ #define NPY_FEATURE_VERSION_STRING "1.23"
+#elif NPY_FEATURE_VERSION == NPY_1_25_API_VERSION
+ #define NPY_FEATURE_VERSION_STRING "1.25"
+#elif NPY_FEATURE_VERSION == NPY_2_0_API_VERSION
+ #define NPY_FEATURE_VERSION_STRING "2.0"
+#elif NPY_FEATURE_VERSION == NPY_2_1_API_VERSION
+ #define NPY_FEATURE_VERSION_STRING "2.1"
+#elif NPY_FEATURE_VERSION == NPY_2_3_API_VERSION
+ #define NPY_FEATURE_VERSION_STRING "2.3"
+#else
+ #error "Missing version string define for new NumPy version."
+#endif
+
+
+#endif /* NUMPY_CORE_INCLUDE_NUMPY_NPY_NUMPYCONFIG_H_ */
diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/include/numpy/random/LICENSE.txt b/.venv/lib/python3.12/site-packages/numpy/_core/include/numpy/random/LICENSE.txt
new file mode 100644
index 0000000..d72a7c3
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/_core/include/numpy/random/LICENSE.txt
@@ -0,0 +1,21 @@
+ zlib License
+ ------------
+
+ Copyright (C) 2010 - 2019 ridiculous_fish, <libdivide@ridiculousfish.com>
+ Copyright (C) 2016 - 2019 Kim Walisch, <kim.walisch@gmail.com>
+
+ This software is provided 'as-is', without any express or implied
+ warranty. In no event will the authors be held liable for any damages
+ arising from the use of this software.
+
+ Permission is granted to anyone to use this software for any purpose,
+ including commercial applications, and to alter it and redistribute it
+ freely, subject to the following restrictions:
+
+ 1. The origin of this software must not be misrepresented; you must not
+ claim that you wrote the original software. If you use this software
+ in a product, an acknowledgment in the product documentation would be
+ appreciated but is not required.
+ 2. Altered source versions must be plainly marked as such, and must not be
+ misrepresented as being the original software.
+ 3. This notice may not be removed or altered from any source distribution.
diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/include/numpy/random/bitgen.h b/.venv/lib/python3.12/site-packages/numpy/_core/include/numpy/random/bitgen.h
new file mode 100644
index 0000000..162dd5c
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/_core/include/numpy/random/bitgen.h
@@ -0,0 +1,20 @@
+#ifndef NUMPY_CORE_INCLUDE_NUMPY_RANDOM_BITGEN_H_
+#define NUMPY_CORE_INCLUDE_NUMPY_RANDOM_BITGEN_H_
+
+#pragma once
+#include <stddef.h>
+#include <stdbool.h>
+#include <stdint.h>
+
+/* Must match the declaration in numpy/random/<any>.pxd */
+
+typedef struct bitgen {
+ void *state;
+ uint64_t (*next_uint64)(void *st);
+ uint32_t (*next_uint32)(void *st);
+ double (*next_double)(void *st);
+ uint64_t (*next_raw)(void *st);
+} bitgen_t;
+
+
+#endif /* NUMPY_CORE_INCLUDE_NUMPY_RANDOM_BITGEN_H_ */
diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/include/numpy/random/distributions.h b/.venv/lib/python3.12/site-packages/numpy/_core/include/numpy/random/distributions.h
new file mode 100644
index 0000000..e7fa4bd
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/_core/include/numpy/random/distributions.h
@@ -0,0 +1,209 @@
+#ifndef NUMPY_CORE_INCLUDE_NUMPY_RANDOM_DISTRIBUTIONS_H_
+#define NUMPY_CORE_INCLUDE_NUMPY_RANDOM_DISTRIBUTIONS_H_
+
+#ifdef __cplusplus
+extern "C" {
+#endif
+
+#include <Python.h>
+#include "numpy/npy_common.h"
+#include <stddef.h>
+#include <stdbool.h>
+#include <stdint.h>
+
+#include "numpy/npy_math.h"
+#include "numpy/random/bitgen.h"
+
+/*
+ * RAND_INT_TYPE is used to share integer generators with RandomState which
+ * used long in place of int64_t. If changing a distribution that uses
+ * RAND_INT_TYPE, then the original unmodified copy must be retained for
+ * use in RandomState by copying to the legacy distributions source file.
+ */
+#ifdef NP_RANDOM_LEGACY
+#define RAND_INT_TYPE long
+#define RAND_INT_MAX LONG_MAX
+#else
+#define RAND_INT_TYPE int64_t
+#define RAND_INT_MAX INT64_MAX
+#endif
+
+#ifdef _MSC_VER
+#define DECLDIR __declspec(dllexport)
+#else
+#define DECLDIR extern
+#endif
+
+#ifndef MIN
+#define MIN(x, y) (((x) < (y)) ? x : y)
+#define MAX(x, y) (((x) > (y)) ? x : y)
+#endif
+
+#ifndef M_PI
+#define M_PI 3.14159265358979323846264338328
+#endif
+
+typedef struct s_binomial_t {
+ int has_binomial; /* !=0: following parameters initialized for binomial */
+ double psave;
+ RAND_INT_TYPE nsave;
+ double r;
+ double q;
+ double fm;
+ RAND_INT_TYPE m;
+ double p1;
+ double xm;
+ double xl;
+ double xr;
+ double c;
+ double laml;
+ double lamr;
+ double p2;
+ double p3;
+ double p4;
+} binomial_t;
+
+DECLDIR float random_standard_uniform_f(bitgen_t *bitgen_state);
+DECLDIR double random_standard_uniform(bitgen_t *bitgen_state);
+DECLDIR void random_standard_uniform_fill(bitgen_t *, npy_intp, double *);
+DECLDIR void random_standard_uniform_fill_f(bitgen_t *, npy_intp, float *);
+
+DECLDIR int64_t random_positive_int64(bitgen_t *bitgen_state);
+DECLDIR int32_t random_positive_int32(bitgen_t *bitgen_state);
+DECLDIR int64_t random_positive_int(bitgen_t *bitgen_state);
+DECLDIR uint64_t random_uint(bitgen_t *bitgen_state);
+
+DECLDIR double random_standard_exponential(bitgen_t *bitgen_state);
+DECLDIR float random_standard_exponential_f(bitgen_t *bitgen_state);
+DECLDIR void random_standard_exponential_fill(bitgen_t *, npy_intp, double *);
+DECLDIR void random_standard_exponential_fill_f(bitgen_t *, npy_intp, float *);
+DECLDIR void random_standard_exponential_inv_fill(bitgen_t *, npy_intp, double *);
+DECLDIR void random_standard_exponential_inv_fill_f(bitgen_t *, npy_intp, float *);
+
+DECLDIR double random_standard_normal(bitgen_t *bitgen_state);
+DECLDIR float random_standard_normal_f(bitgen_t *bitgen_state);
+DECLDIR void random_standard_normal_fill(bitgen_t *, npy_intp, double *);
+DECLDIR void random_standard_normal_fill_f(bitgen_t *, npy_intp, float *);
+DECLDIR double random_standard_gamma(bitgen_t *bitgen_state, double shape);
+DECLDIR float random_standard_gamma_f(bitgen_t *bitgen_state, float shape);
+
+DECLDIR double random_normal(bitgen_t *bitgen_state, double loc, double scale);
+
+DECLDIR double random_gamma(bitgen_t *bitgen_state, double shape, double scale);
+DECLDIR float random_gamma_f(bitgen_t *bitgen_state, float shape, float scale);
+
+DECLDIR double random_exponential(bitgen_t *bitgen_state, double scale);
+DECLDIR double random_uniform(bitgen_t *bitgen_state, double lower, double range);
+DECLDIR double random_beta(bitgen_t *bitgen_state, double a, double b);
+DECLDIR double random_chisquare(bitgen_t *bitgen_state, double df);
+DECLDIR double random_f(bitgen_t *bitgen_state, double dfnum, double dfden);
+DECLDIR double random_standard_cauchy(bitgen_t *bitgen_state);
+DECLDIR double random_pareto(bitgen_t *bitgen_state, double a);
+DECLDIR double random_weibull(bitgen_t *bitgen_state, double a);
+DECLDIR double random_power(bitgen_t *bitgen_state, double a);
+DECLDIR double random_laplace(bitgen_t *bitgen_state, double loc, double scale);
+DECLDIR double random_gumbel(bitgen_t *bitgen_state, double loc, double scale);
+DECLDIR double random_logistic(bitgen_t *bitgen_state, double loc, double scale);
+DECLDIR double random_lognormal(bitgen_t *bitgen_state, double mean, double sigma);
+DECLDIR double random_rayleigh(bitgen_t *bitgen_state, double mode);
+DECLDIR double random_standard_t(bitgen_t *bitgen_state, double df);
+DECLDIR double random_noncentral_chisquare(bitgen_t *bitgen_state, double df,
+ double nonc);
+DECLDIR double random_noncentral_f(bitgen_t *bitgen_state, double dfnum,
+ double dfden, double nonc);
+DECLDIR double random_wald(bitgen_t *bitgen_state, double mean, double scale);
+DECLDIR double random_vonmises(bitgen_t *bitgen_state, double mu, double kappa);
+DECLDIR double random_triangular(bitgen_t *bitgen_state, double left, double mode,
+ double right);
+
+DECLDIR RAND_INT_TYPE random_poisson(bitgen_t *bitgen_state, double lam);
+DECLDIR RAND_INT_TYPE random_negative_binomial(bitgen_t *bitgen_state, double n,
+ double p);
+
+DECLDIR int64_t random_binomial(bitgen_t *bitgen_state, double p,
+ int64_t n, binomial_t *binomial);
+
+DECLDIR int64_t random_logseries(bitgen_t *bitgen_state, double p);
+DECLDIR int64_t random_geometric(bitgen_t *bitgen_state, double p);
+DECLDIR RAND_INT_TYPE random_geometric_search(bitgen_t *bitgen_state, double p);
+DECLDIR RAND_INT_TYPE random_zipf(bitgen_t *bitgen_state, double a);
+DECLDIR int64_t random_hypergeometric(bitgen_t *bitgen_state,
+ int64_t good, int64_t bad, int64_t sample);
+DECLDIR uint64_t random_interval(bitgen_t *bitgen_state, uint64_t max);
+
+/* Generate random uint64 numbers in closed interval [off, off + rng]. */
+DECLDIR uint64_t random_bounded_uint64(bitgen_t *bitgen_state, uint64_t off,
+ uint64_t rng, uint64_t mask,
+ bool use_masked);
+
+/* Generate random uint32 numbers in closed interval [off, off + rng]. */
+DECLDIR uint32_t random_buffered_bounded_uint32(bitgen_t *bitgen_state,
+ uint32_t off, uint32_t rng,
+ uint32_t mask, bool use_masked,
+ int *bcnt, uint32_t *buf);
+DECLDIR uint16_t random_buffered_bounded_uint16(bitgen_t *bitgen_state,
+ uint16_t off, uint16_t rng,
+ uint16_t mask, bool use_masked,
+ int *bcnt, uint32_t *buf);
+DECLDIR uint8_t random_buffered_bounded_uint8(bitgen_t *bitgen_state, uint8_t off,
+ uint8_t rng, uint8_t mask,
+ bool use_masked, int *bcnt,
+ uint32_t *buf);
+DECLDIR npy_bool random_buffered_bounded_bool(bitgen_t *bitgen_state, npy_bool off,
+ npy_bool rng, npy_bool mask,
+ bool use_masked, int *bcnt,
+ uint32_t *buf);
+
+DECLDIR void random_bounded_uint64_fill(bitgen_t *bitgen_state, uint64_t off,
+ uint64_t rng, npy_intp cnt,
+ bool use_masked, uint64_t *out);
+DECLDIR void random_bounded_uint32_fill(bitgen_t *bitgen_state, uint32_t off,
+ uint32_t rng, npy_intp cnt,
+ bool use_masked, uint32_t *out);
+DECLDIR void random_bounded_uint16_fill(bitgen_t *bitgen_state, uint16_t off,
+ uint16_t rng, npy_intp cnt,
+ bool use_masked, uint16_t *out);
+DECLDIR void random_bounded_uint8_fill(bitgen_t *bitgen_state, uint8_t off,
+ uint8_t rng, npy_intp cnt,
+ bool use_masked, uint8_t *out);
+DECLDIR void random_bounded_bool_fill(bitgen_t *bitgen_state, npy_bool off,
+ npy_bool rng, npy_intp cnt,
+ bool use_masked, npy_bool *out);
+
+DECLDIR void random_multinomial(bitgen_t *bitgen_state, RAND_INT_TYPE n, RAND_INT_TYPE *mnix,
+ double *pix, npy_intp d, binomial_t *binomial);
+
+/* multivariate hypergeometric, "count" method */
+DECLDIR int random_multivariate_hypergeometric_count(bitgen_t *bitgen_state,
+ int64_t total,
+ size_t num_colors, int64_t *colors,
+ int64_t nsample,
+ size_t num_variates, int64_t *variates);
+
+/* multivariate hypergeometric, "marginals" method */
+DECLDIR void random_multivariate_hypergeometric_marginals(bitgen_t *bitgen_state,
+ int64_t total,
+ size_t num_colors, int64_t *colors,
+ int64_t nsample,
+ size_t num_variates, int64_t *variates);
+
+/* Common to legacy-distributions.c and distributions.c but not exported */
+
+RAND_INT_TYPE random_binomial_btpe(bitgen_t *bitgen_state,
+ RAND_INT_TYPE n,
+ double p,
+ binomial_t *binomial);
+RAND_INT_TYPE random_binomial_inversion(bitgen_t *bitgen_state,
+ RAND_INT_TYPE n,
+ double p,
+ binomial_t *binomial);
+double random_loggam(double x);
+static inline double next_double(bitgen_t *bitgen_state) {
+ return bitgen_state->next_double(bitgen_state->state);
+}
+
+#ifdef __cplusplus
+}
+#endif
+
+#endif /* NUMPY_CORE_INCLUDE_NUMPY_RANDOM_DISTRIBUTIONS_H_ */
diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/include/numpy/random/libdivide.h b/.venv/lib/python3.12/site-packages/numpy/_core/include/numpy/random/libdivide.h
new file mode 100644
index 0000000..f4eb803
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/_core/include/numpy/random/libdivide.h
@@ -0,0 +1,2079 @@
+// libdivide.h - Optimized integer division
+// https://libdivide.com
+//
+// Copyright (C) 2010 - 2019 ridiculous_fish, <libdivide@ridiculousfish.com>
+// Copyright (C) 2016 - 2019 Kim Walisch, <kim.walisch@gmail.com>
+//
+// libdivide is dual-licensed under the Boost or zlib licenses.
+// You may use libdivide under the terms of either of these.
+// See LICENSE.txt for more details.
+
+#ifndef NUMPY_CORE_INCLUDE_NUMPY_LIBDIVIDE_LIBDIVIDE_H_
+#define NUMPY_CORE_INCLUDE_NUMPY_LIBDIVIDE_LIBDIVIDE_H_
+
+#define LIBDIVIDE_VERSION "3.0"
+#define LIBDIVIDE_VERSION_MAJOR 3
+#define LIBDIVIDE_VERSION_MINOR 0
+
+#include <stdint.h>
+
+#if defined(__cplusplus)
+ #include <cstdlib>
+ #include <cstdio>
+ #include <type_traits>
+#else
+ #include <stdlib.h>
+ #include <stdio.h>
+#endif
+
+#if defined(LIBDIVIDE_AVX512)
+ #include <immintrin.h>
+#elif defined(LIBDIVIDE_AVX2)
+ #include <immintrin.h>
+#elif defined(LIBDIVIDE_SSE2)
+ #include <emmintrin.h>
+#endif
+
+#if defined(_MSC_VER)
+ #include <intrin.h>
+ // disable warning C4146: unary minus operator applied
+ // to unsigned type, result still unsigned
+ #pragma warning(disable: 4146)
+ #define LIBDIVIDE_VC
+#endif
+
+#if !defined(__has_builtin)
+ #define __has_builtin(x) 0
+#endif
+
+#if defined(__SIZEOF_INT128__)
+ #define HAS_INT128_T
+ // clang-cl on Windows does not yet support 128-bit division
+ #if !(defined(__clang__) && defined(LIBDIVIDE_VC))
+ #define HAS_INT128_DIV
+ #endif
+#endif
+
+#if defined(__x86_64__) || defined(_M_X64)
+ #define LIBDIVIDE_X86_64
+#endif
+
+#if defined(__i386__)
+ #define LIBDIVIDE_i386
+#endif
+
+#if defined(__GNUC__) || defined(__clang__)
+ #define LIBDIVIDE_GCC_STYLE_ASM
+#endif
+
+#if defined(__cplusplus) || defined(LIBDIVIDE_VC)
+ #define LIBDIVIDE_FUNCTION __FUNCTION__
+#else
+ #define LIBDIVIDE_FUNCTION __func__
+#endif
+
+#define LIBDIVIDE_ERROR(msg) \
+ do { \
+ fprintf(stderr, "libdivide.h:%d: %s(): Error: %s\n", \
+ __LINE__, LIBDIVIDE_FUNCTION, msg); \
+ abort(); \
+ } while (0)
+
+#if defined(LIBDIVIDE_ASSERTIONS_ON)
+ #define LIBDIVIDE_ASSERT(x) \
+ do { \
+ if (!(x)) { \
+ fprintf(stderr, "libdivide.h:%d: %s(): Assertion failed: %s\n", \
+ __LINE__, LIBDIVIDE_FUNCTION, #x); \
+ abort(); \
+ } \
+ } while (0)
+#else
+ #define LIBDIVIDE_ASSERT(x)
+#endif
+
+#ifdef __cplusplus
+namespace libdivide {
+#endif
+
+// pack divider structs to prevent compilers from padding.
+// This reduces memory usage by up to 43% when using a large
+// array of libdivide dividers and improves performance
+// by up to 10% because of reduced memory bandwidth.
+#pragma pack(push, 1)
+
+struct libdivide_u32_t {
+ uint32_t magic;
+ uint8_t more;
+};
+
+struct libdivide_s32_t {
+ int32_t magic;
+ uint8_t more;
+};
+
+struct libdivide_u64_t {
+ uint64_t magic;
+ uint8_t more;
+};
+
+struct libdivide_s64_t {
+ int64_t magic;
+ uint8_t more;
+};
+
+struct libdivide_u32_branchfree_t {
+ uint32_t magic;
+ uint8_t more;
+};
+
+struct libdivide_s32_branchfree_t {
+ int32_t magic;
+ uint8_t more;
+};
+
+struct libdivide_u64_branchfree_t {
+ uint64_t magic;
+ uint8_t more;
+};
+
+struct libdivide_s64_branchfree_t {
+ int64_t magic;
+ uint8_t more;
+};
+
+#pragma pack(pop)
+
+// Explanation of the "more" field:
+//
+// * Bits 0-5 is the shift value (for shift path or mult path).
+// * Bit 6 is the add indicator for mult path.
+// * Bit 7 is set if the divisor is negative. We use bit 7 as the negative
+// divisor indicator so that we can efficiently use sign extension to
+// create a bitmask with all bits set to 1 (if the divisor is negative)
+// or 0 (if the divisor is positive).
+//
+// u32: [0-4] shift value
+// [5] ignored
+// [6] add indicator
+// magic number of 0 indicates shift path
+//
+// s32: [0-4] shift value
+// [5] ignored
+// [6] add indicator
+// [7] indicates negative divisor
+// magic number of 0 indicates shift path
+//
+// u64: [0-5] shift value
+// [6] add indicator
+// magic number of 0 indicates shift path
+//
+// s64: [0-5] shift value
+// [6] add indicator
+// [7] indicates negative divisor
+// magic number of 0 indicates shift path
+//
+// In s32 and s64 branchfree modes, the magic number is negated according to
+// whether the divisor is negated. In branchfree strategy, it is not negated.
+
+enum {
+ LIBDIVIDE_32_SHIFT_MASK = 0x1F,
+ LIBDIVIDE_64_SHIFT_MASK = 0x3F,
+ LIBDIVIDE_ADD_MARKER = 0x40,
+ LIBDIVIDE_NEGATIVE_DIVISOR = 0x80
+};
+
+static inline struct libdivide_s32_t libdivide_s32_gen(int32_t d);
+static inline struct libdivide_u32_t libdivide_u32_gen(uint32_t d);
+static inline struct libdivide_s64_t libdivide_s64_gen(int64_t d);
+static inline struct libdivide_u64_t libdivide_u64_gen(uint64_t d);
+
+static inline struct libdivide_s32_branchfree_t libdivide_s32_branchfree_gen(int32_t d);
+static inline struct libdivide_u32_branchfree_t libdivide_u32_branchfree_gen(uint32_t d);
+static inline struct libdivide_s64_branchfree_t libdivide_s64_branchfree_gen(int64_t d);
+static inline struct libdivide_u64_branchfree_t libdivide_u64_branchfree_gen(uint64_t d);
+
+static inline int32_t libdivide_s32_do(int32_t numer, const struct libdivide_s32_t *denom);
+static inline uint32_t libdivide_u32_do(uint32_t numer, const struct libdivide_u32_t *denom);
+static inline int64_t libdivide_s64_do(int64_t numer, const struct libdivide_s64_t *denom);
+static inline uint64_t libdivide_u64_do(uint64_t numer, const struct libdivide_u64_t *denom);
+
+static inline int32_t libdivide_s32_branchfree_do(int32_t numer, const struct libdivide_s32_branchfree_t *denom);
+static inline uint32_t libdivide_u32_branchfree_do(uint32_t numer, const struct libdivide_u32_branchfree_t *denom);
+static inline int64_t libdivide_s64_branchfree_do(int64_t numer, const struct libdivide_s64_branchfree_t *denom);
+static inline uint64_t libdivide_u64_branchfree_do(uint64_t numer, const struct libdivide_u64_branchfree_t *denom);
+
+static inline int32_t libdivide_s32_recover(const struct libdivide_s32_t *denom);
+static inline uint32_t libdivide_u32_recover(const struct libdivide_u32_t *denom);
+static inline int64_t libdivide_s64_recover(const struct libdivide_s64_t *denom);
+static inline uint64_t libdivide_u64_recover(const struct libdivide_u64_t *denom);
+
+static inline int32_t libdivide_s32_branchfree_recover(const struct libdivide_s32_branchfree_t *denom);
+static inline uint32_t libdivide_u32_branchfree_recover(const struct libdivide_u32_branchfree_t *denom);
+static inline int64_t libdivide_s64_branchfree_recover(const struct libdivide_s64_branchfree_t *denom);
+static inline uint64_t libdivide_u64_branchfree_recover(const struct libdivide_u64_branchfree_t *denom);
+
+//////// Internal Utility Functions
+
+static inline uint32_t libdivide_mullhi_u32(uint32_t x, uint32_t y) {
+ uint64_t xl = x, yl = y;
+ uint64_t rl = xl * yl;
+ return (uint32_t)(rl >> 32);
+}
+
+static inline int32_t libdivide_mullhi_s32(int32_t x, int32_t y) {
+ int64_t xl = x, yl = y;
+ int64_t rl = xl * yl;
+ // needs to be arithmetic shift
+ return (int32_t)(rl >> 32);
+}
+
+static inline uint64_t libdivide_mullhi_u64(uint64_t x, uint64_t y) {
+#if defined(LIBDIVIDE_VC) && \
+ defined(LIBDIVIDE_X86_64)
+ return __umulh(x, y);
+#elif defined(HAS_INT128_T)
+ __uint128_t xl = x, yl = y;
+ __uint128_t rl = xl * yl;
+ return (uint64_t)(rl >> 64);
+#else
+ // full 128 bits are x0 * y0 + (x0 * y1 << 32) + (x1 * y0 << 32) + (x1 * y1 << 64)
+ uint32_t mask = 0xFFFFFFFF;
+ uint32_t x0 = (uint32_t)(x & mask);
+ uint32_t x1 = (uint32_t)(x >> 32);
+ uint32_t y0 = (uint32_t)(y & mask);
+ uint32_t y1 = (uint32_t)(y >> 32);
+ uint32_t x0y0_hi = libdivide_mullhi_u32(x0, y0);
+ uint64_t x0y1 = x0 * (uint64_t)y1;
+ uint64_t x1y0 = x1 * (uint64_t)y0;
+ uint64_t x1y1 = x1 * (uint64_t)y1;
+ uint64_t temp = x1y0 + x0y0_hi;
+ uint64_t temp_lo = temp & mask;
+ uint64_t temp_hi = temp >> 32;
+
+ return x1y1 + temp_hi + ((temp_lo + x0y1) >> 32);
+#endif
+}
+
+static inline int64_t libdivide_mullhi_s64(int64_t x, int64_t y) {
+#if defined(LIBDIVIDE_VC) && \
+ defined(LIBDIVIDE_X86_64)
+ return __mulh(x, y);
+#elif defined(HAS_INT128_T)
+ __int128_t xl = x, yl = y;
+ __int128_t rl = xl * yl;
+ return (int64_t)(rl >> 64);
+#else
+ // full 128 bits are x0 * y0 + (x0 * y1 << 32) + (x1 * y0 << 32) + (x1 * y1 << 64)
+ uint32_t mask = 0xFFFFFFFF;
+ uint32_t x0 = (uint32_t)(x & mask);
+ uint32_t y0 = (uint32_t)(y & mask);
+ int32_t x1 = (int32_t)(x >> 32);
+ int32_t y1 = (int32_t)(y >> 32);
+ uint32_t x0y0_hi = libdivide_mullhi_u32(x0, y0);
+ int64_t t = x1 * (int64_t)y0 + x0y0_hi;
+ int64_t w1 = x0 * (int64_t)y1 + (t & mask);
+
+ return x1 * (int64_t)y1 + (t >> 32) + (w1 >> 32);
+#endif
+}
+
+static inline int32_t libdivide_count_leading_zeros32(uint32_t val) {
+#if defined(__GNUC__) || \
+ __has_builtin(__builtin_clz)
+ // Fast way to count leading zeros
+ return __builtin_clz(val);
+#elif defined(LIBDIVIDE_VC)
+ unsigned long result;
+ if (_BitScanReverse(&result, val)) {
+ return 31 - result;
+ }
+ return 0;
+#else
+ if (val == 0)
+ return 32;
+ int32_t result = 8;
+ uint32_t hi = 0xFFU << 24;
+ while ((val & hi) == 0) {
+ hi >>= 8;
+ result += 8;
+ }
+ while (val & hi) {
+ result -= 1;
+ hi <<= 1;
+ }
+ return result;
+#endif
+}
+
+static inline int32_t libdivide_count_leading_zeros64(uint64_t val) {
+#if defined(__GNUC__) || \
+ __has_builtin(__builtin_clzll)
+ // Fast way to count leading zeros
+ return __builtin_clzll(val);
+#elif defined(LIBDIVIDE_VC) && defined(_WIN64)
+ unsigned long result;
+ if (_BitScanReverse64(&result, val)) {
+ return 63 - result;
+ }
+ return 0;
+#else
+ uint32_t hi = val >> 32;
+ uint32_t lo = val & 0xFFFFFFFF;
+ if (hi != 0) return libdivide_count_leading_zeros32(hi);
+ return 32 + libdivide_count_leading_zeros32(lo);
+#endif
+}
+
+// libdivide_64_div_32_to_32: divides a 64-bit uint {u1, u0} by a 32-bit
+// uint {v}. The result must fit in 32 bits.
+// Returns the quotient directly and the remainder in *r
+static inline uint32_t libdivide_64_div_32_to_32(uint32_t u1, uint32_t u0, uint32_t v, uint32_t *r) {
+#if (defined(LIBDIVIDE_i386) || defined(LIBDIVIDE_X86_64)) && \
+ defined(LIBDIVIDE_GCC_STYLE_ASM)
+ uint32_t result;
+ __asm__("divl %[v]"
+ : "=a"(result), "=d"(*r)
+ : [v] "r"(v), "a"(u0), "d"(u1)
+ );
+ return result;
+#else
+ uint64_t n = ((uint64_t)u1 << 32) | u0;
+ uint32_t result = (uint32_t)(n / v);
+ *r = (uint32_t)(n - result * (uint64_t)v);
+ return result;
+#endif
+}
+
+// libdivide_128_div_64_to_64: divides a 128-bit uint {u1, u0} by a 64-bit
+// uint {v}. The result must fit in 64 bits.
+// Returns the quotient directly and the remainder in *r
+static uint64_t libdivide_128_div_64_to_64(uint64_t u1, uint64_t u0, uint64_t v, uint64_t *r) {
+#if defined(LIBDIVIDE_X86_64) && \
+ defined(LIBDIVIDE_GCC_STYLE_ASM)
+ uint64_t result;
+ __asm__("divq %[v]"
+ : "=a"(result), "=d"(*r)
+ : [v] "r"(v), "a"(u0), "d"(u1)
+ );
+ return result;
+#elif defined(HAS_INT128_T) && \
+ defined(HAS_INT128_DIV)
+ __uint128_t n = ((__uint128_t)u1 << 64) | u0;
+ uint64_t result = (uint64_t)(n / v);
+ *r = (uint64_t)(n - result * (__uint128_t)v);
+ return result;
+#else
+ // Code taken from Hacker's Delight:
+ // http://www.hackersdelight.org/HDcode/divlu.c.
+ // License permits inclusion here per:
+ // http://www.hackersdelight.org/permissions.htm
+
+ const uint64_t b = (1ULL << 32); // Number base (32 bits)
+ uint64_t un1, un0; // Norm. dividend LSD's
+ uint64_t vn1, vn0; // Norm. divisor digits
+ uint64_t q1, q0; // Quotient digits
+ uint64_t un64, un21, un10; // Dividend digit pairs
+ uint64_t rhat; // A remainder
+ int32_t s; // Shift amount for norm
+
+ // If overflow, set rem. to an impossible value,
+ // and return the largest possible quotient
+ if (u1 >= v) {
+ *r = (uint64_t) -1;
+ return (uint64_t) -1;
+ }
+
+ // count leading zeros
+ s = libdivide_count_leading_zeros64(v);
+ if (s > 0) {
+ // Normalize divisor
+ v = v << s;
+ un64 = (u1 << s) | (u0 >> (64 - s));
+ un10 = u0 << s; // Shift dividend left
+ } else {
+ // Avoid undefined behavior of (u0 >> 64).
+ // The behavior is undefined if the right operand is
+ // negative, or greater than or equal to the length
+ // in bits of the promoted left operand.
+ un64 = u1;
+ un10 = u0;
+ }
+
+ // Break divisor up into two 32-bit digits
+ vn1 = v >> 32;
+ vn0 = v & 0xFFFFFFFF;
+
+ // Break right half of dividend into two digits
+ un1 = un10 >> 32;
+ un0 = un10 & 0xFFFFFFFF;
+
+ // Compute the first quotient digit, q1
+ q1 = un64 / vn1;
+ rhat = un64 - q1 * vn1;
+
+ while (q1 >= b || q1 * vn0 > b * rhat + un1) {
+ q1 = q1 - 1;
+ rhat = rhat + vn1;
+ if (rhat >= b)
+ break;
+ }
+
+ // Multiply and subtract
+ un21 = un64 * b + un1 - q1 * v;
+
+ // Compute the second quotient digit
+ q0 = un21 / vn1;
+ rhat = un21 - q0 * vn1;
+
+ while (q0 >= b || q0 * vn0 > b * rhat + un0) {
+ q0 = q0 - 1;
+ rhat = rhat + vn1;
+ if (rhat >= b)
+ break;
+ }
+
+ *r = (un21 * b + un0 - q0 * v) >> s;
+ return q1 * b + q0;
+#endif
+}
+
+// Bitshift a u128 in place, left (signed_shift > 0) or right (signed_shift < 0)
+static inline void libdivide_u128_shift(uint64_t *u1, uint64_t *u0, int32_t signed_shift) {
+ if (signed_shift > 0) {
+ uint32_t shift = signed_shift;
+ *u1 <<= shift;
+ *u1 |= *u0 >> (64 - shift);
+ *u0 <<= shift;
+ }
+ else if (signed_shift < 0) {
+ uint32_t shift = -signed_shift;
+ *u0 >>= shift;
+ *u0 |= *u1 << (64 - shift);
+ *u1 >>= shift;
+ }
+}
+
+// Computes a 128 / 128 -> 64 bit division, with a 128 bit remainder.
+static uint64_t libdivide_128_div_128_to_64(uint64_t u_hi, uint64_t u_lo, uint64_t v_hi, uint64_t v_lo, uint64_t *r_hi, uint64_t *r_lo) {
+#if defined(HAS_INT128_T) && \
+ defined(HAS_INT128_DIV)
+ __uint128_t ufull = u_hi;
+ __uint128_t vfull = v_hi;
+ ufull = (ufull << 64) | u_lo;
+ vfull = (vfull << 64) | v_lo;
+ uint64_t res = (uint64_t)(ufull / vfull);
+ __uint128_t remainder = ufull - (vfull * res);
+ *r_lo = (uint64_t)remainder;
+ *r_hi = (uint64_t)(remainder >> 64);
+ return res;
+#else
+ // Adapted from "Unsigned Doubleword Division" in Hacker's Delight
+ // We want to compute u / v
+ typedef struct { uint64_t hi; uint64_t lo; } u128_t;
+ u128_t u = {u_hi, u_lo};
+ u128_t v = {v_hi, v_lo};
+
+ if (v.hi == 0) {
+ // divisor v is a 64 bit value, so we just need one 128/64 division
+ // Note that we are simpler than Hacker's Delight here, because we know
+ // the quotient fits in 64 bits whereas Hacker's Delight demands a full
+ // 128 bit quotient
+ *r_hi = 0;
+ return libdivide_128_div_64_to_64(u.hi, u.lo, v.lo, r_lo);
+ }
+ // Here v >= 2**64
+ // We know that v.hi != 0, so count leading zeros is OK
+ // We have 0 <= n <= 63
+ uint32_t n = libdivide_count_leading_zeros64(v.hi);
+
+ // Normalize the divisor so its MSB is 1
+ u128_t v1t = v;
+ libdivide_u128_shift(&v1t.hi, &v1t.lo, n);
+ uint64_t v1 = v1t.hi; // i.e. v1 = v1t >> 64
+
+ // To ensure no overflow
+ u128_t u1 = u;
+ libdivide_u128_shift(&u1.hi, &u1.lo, -1);
+
+ // Get quotient from divide unsigned insn.
+ uint64_t rem_ignored;
+ uint64_t q1 = libdivide_128_div_64_to_64(u1.hi, u1.lo, v1, &rem_ignored);
+
+ // Undo normalization and division of u by 2.
+ u128_t q0 = {0, q1};
+ libdivide_u128_shift(&q0.hi, &q0.lo, n);
+ libdivide_u128_shift(&q0.hi, &q0.lo, -63);
+
+ // Make q0 correct or too small by 1
+ // Equivalent to `if (q0 != 0) q0 = q0 - 1;`
+ if (q0.hi != 0 || q0.lo != 0) {
+ q0.hi -= (q0.lo == 0); // borrow
+ q0.lo -= 1;
+ }
+
+ // Now q0 is correct.
+ // Compute q0 * v as q0v
+ // = (q0.hi << 64 + q0.lo) * (v.hi << 64 + v.lo)
+ // = (q0.hi * v.hi << 128) + (q0.hi * v.lo << 64) +
+ // (q0.lo * v.hi << 64) + q0.lo * v.lo)
+ // Each term is 128 bit
+ // High half of full product (upper 128 bits!) are dropped
+ u128_t q0v = {0, 0};
+ q0v.hi = q0.hi*v.lo + q0.lo*v.hi + libdivide_mullhi_u64(q0.lo, v.lo);
+ q0v.lo = q0.lo*v.lo;
+
+ // Compute u - q0v as u_q0v
+ // This is the remainder
+ u128_t u_q0v = u;
+ u_q0v.hi -= q0v.hi + (u.lo < q0v.lo); // second term is borrow
+ u_q0v.lo -= q0v.lo;
+
+ // Check if u_q0v >= v
+ // This checks if our remainder is larger than the divisor
+ if ((u_q0v.hi > v.hi) ||
+ (u_q0v.hi == v.hi && u_q0v.lo >= v.lo)) {
+ // Increment q0
+ q0.lo += 1;
+ q0.hi += (q0.lo == 0); // carry
+
+ // Subtract v from remainder
+ u_q0v.hi -= v.hi + (u_q0v.lo < v.lo);
+ u_q0v.lo -= v.lo;
+ }
+
+ *r_hi = u_q0v.hi;
+ *r_lo = u_q0v.lo;
+
+ LIBDIVIDE_ASSERT(q0.hi == 0);
+ return q0.lo;
+#endif
+}
+
+////////// UINT32
+
+static inline struct libdivide_u32_t libdivide_internal_u32_gen(uint32_t d, int branchfree) {
+ if (d == 0) {
+ LIBDIVIDE_ERROR("divider must be != 0");
+ }
+
+ struct libdivide_u32_t result;
+ uint32_t floor_log_2_d = 31 - libdivide_count_leading_zeros32(d);
+
+ // Power of 2
+ if ((d & (d - 1)) == 0) {
+ // We need to subtract 1 from the shift value in case of an unsigned
+ // branchfree divider because there is a hardcoded right shift by 1
+ // in its division algorithm. Because of this we also need to add back
+ // 1 in its recovery algorithm.
+ result.magic = 0;
+ result.more = (uint8_t)(floor_log_2_d - (branchfree != 0));
+ } else {
+ uint8_t more;
+ uint32_t rem, proposed_m;
+ proposed_m = libdivide_64_div_32_to_32(1U << floor_log_2_d, 0, d, &rem);
+
+ LIBDIVIDE_ASSERT(rem > 0 && rem < d);
+ const uint32_t e = d - rem;
+
+ // This power works if e < 2**floor_log_2_d.
+ if (!branchfree && (e < (1U << floor_log_2_d))) {
+ // This power works
+ more = floor_log_2_d;
+ } else {
+ // We have to use the general 33-bit algorithm. We need to compute
+ // (2**power) / d. However, we already have (2**(power-1))/d and
+ // its remainder. By doubling both, and then correcting the
+ // remainder, we can compute the larger division.
+ // don't care about overflow here - in fact, we expect it
+ proposed_m += proposed_m;
+ const uint32_t twice_rem = rem + rem;
+ if (twice_rem >= d || twice_rem < rem) proposed_m += 1;
+ more = floor_log_2_d | LIBDIVIDE_ADD_MARKER;
+ }
+ result.magic = 1 + proposed_m;
+ result.more = more;
+ // result.more's shift should in general be ceil_log_2_d. But if we
+ // used the smaller power, we subtract one from the shift because we're
+ // using the smaller power. If we're using the larger power, we
+ // subtract one from the shift because it's taken care of by the add
+ // indicator. So floor_log_2_d happens to be correct in both cases.
+ }
+ return result;
+}
+
+struct libdivide_u32_t libdivide_u32_gen(uint32_t d) {
+ return libdivide_internal_u32_gen(d, 0);
+}
+
+struct libdivide_u32_branchfree_t libdivide_u32_branchfree_gen(uint32_t d) {
+ if (d == 1) {
+ LIBDIVIDE_ERROR("branchfree divider must be != 1");
+ }
+ struct libdivide_u32_t tmp = libdivide_internal_u32_gen(d, 1);
+ struct libdivide_u32_branchfree_t ret = {tmp.magic, (uint8_t)(tmp.more & LIBDIVIDE_32_SHIFT_MASK)};
+ return ret;
+}
+
+uint32_t libdivide_u32_do(uint32_t numer, const struct libdivide_u32_t *denom) {
+ uint8_t more = denom->more;
+ if (!denom->magic) {
+ return numer >> more;
+ }
+ else {
+ uint32_t q = libdivide_mullhi_u32(denom->magic, numer);
+ if (more & LIBDIVIDE_ADD_MARKER) {
+ uint32_t t = ((numer - q) >> 1) + q;
+ return t >> (more & LIBDIVIDE_32_SHIFT_MASK);
+ }
+ else {
+ // All upper bits are 0,
+ // don't need to mask them off.
+ return q >> more;
+ }
+ }
+}
+
+uint32_t libdivide_u32_branchfree_do(uint32_t numer, const struct libdivide_u32_branchfree_t *denom) {
+ uint32_t q = libdivide_mullhi_u32(denom->magic, numer);
+ uint32_t t = ((numer - q) >> 1) + q;
+ return t >> denom->more;
+}
+
+uint32_t libdivide_u32_recover(const struct libdivide_u32_t *denom) {
+ uint8_t more = denom->more;
+ uint8_t shift = more & LIBDIVIDE_32_SHIFT_MASK;
+
+ if (!denom->magic) {
+ return 1U << shift;
+ } else if (!(more & LIBDIVIDE_ADD_MARKER)) {
+ // We compute q = n/d = n*m / 2^(32 + shift)
+ // Therefore we have d = 2^(32 + shift) / m
+ // We need to ceil it.
+ // We know d is not a power of 2, so m is not a power of 2,
+ // so we can just add 1 to the floor
+ uint32_t hi_dividend = 1U << shift;
+ uint32_t rem_ignored;
+ return 1 + libdivide_64_div_32_to_32(hi_dividend, 0, denom->magic, &rem_ignored);
+ } else {
+ // Here we wish to compute d = 2^(32+shift+1)/(m+2^32).
+ // Notice (m + 2^32) is a 33 bit number. Use 64 bit division for now
+ // Also note that shift may be as high as 31, so shift + 1 will
+ // overflow. So we have to compute it as 2^(32+shift)/(m+2^32), and
+ // then double the quotient and remainder.
+ uint64_t half_n = 1ULL << (32 + shift);
+ uint64_t d = (1ULL << 32) | denom->magic;
+ // Note that the quotient is guaranteed <= 32 bits, but the remainder
+ // may need 33!
+ uint32_t half_q = (uint32_t)(half_n / d);
+ uint64_t rem = half_n % d;
+ // We computed 2^(32+shift)/(m+2^32)
+ // Need to double it, and then add 1 to the quotient if doubling th
+ // remainder would increase the quotient.
+ // Note that rem<<1 cannot overflow, since rem < d and d is 33 bits
+ uint32_t full_q = half_q + half_q + ((rem<<1) >= d);
+
+ // We rounded down in gen (hence +1)
+ return full_q + 1;
+ }
+}
+
+uint32_t libdivide_u32_branchfree_recover(const struct libdivide_u32_branchfree_t *denom) {
+ uint8_t more = denom->more;
+ uint8_t shift = more & LIBDIVIDE_32_SHIFT_MASK;
+
+ if (!denom->magic) {
+ return 1U << (shift + 1);
+ } else {
+ // Here we wish to compute d = 2^(32+shift+1)/(m+2^32).
+ // Notice (m + 2^32) is a 33 bit number. Use 64 bit division for now
+ // Also note that shift may be as high as 31, so shift + 1 will
+ // overflow. So we have to compute it as 2^(32+shift)/(m+2^32), and
+ // then double the quotient and remainder.
+ uint64_t half_n = 1ULL << (32 + shift);
+ uint64_t d = (1ULL << 32) | denom->magic;
+ // Note that the quotient is guaranteed <= 32 bits, but the remainder
+ // may need 33!
+ uint32_t half_q = (uint32_t)(half_n / d);
+ uint64_t rem = half_n % d;
+ // We computed 2^(32+shift)/(m+2^32)
+ // Need to double it, and then add 1 to the quotient if doubling th
+ // remainder would increase the quotient.
+ // Note that rem<<1 cannot overflow, since rem < d and d is 33 bits
+ uint32_t full_q = half_q + half_q + ((rem<<1) >= d);
+
+ // We rounded down in gen (hence +1)
+ return full_q + 1;
+ }
+}
+
+/////////// UINT64
+
+static inline struct libdivide_u64_t libdivide_internal_u64_gen(uint64_t d, int branchfree) {
+ if (d == 0) {
+ LIBDIVIDE_ERROR("divider must be != 0");
+ }
+
+ struct libdivide_u64_t result;
+ uint32_t floor_log_2_d = 63 - libdivide_count_leading_zeros64(d);
+
+ // Power of 2
+ if ((d & (d - 1)) == 0) {
+ // We need to subtract 1 from the shift value in case of an unsigned
+ // branchfree divider because there is a hardcoded right shift by 1
+ // in its division algorithm. Because of this we also need to add back
+ // 1 in its recovery algorithm.
+ result.magic = 0;
+ result.more = (uint8_t)(floor_log_2_d - (branchfree != 0));
+ } else {
+ uint64_t proposed_m, rem;
+ uint8_t more;
+ // (1 << (64 + floor_log_2_d)) / d
+ proposed_m = libdivide_128_div_64_to_64(1ULL << floor_log_2_d, 0, d, &rem);
+
+ LIBDIVIDE_ASSERT(rem > 0 && rem < d);
+ const uint64_t e = d - rem;
+
+ // This power works if e < 2**floor_log_2_d.
+ if (!branchfree && e < (1ULL << floor_log_2_d)) {
+ // This power works
+ more = floor_log_2_d;
+ } else {
+ // We have to use the general 65-bit algorithm. We need to compute
+ // (2**power) / d. However, we already have (2**(power-1))/d and
+ // its remainder. By doubling both, and then correcting the
+ // remainder, we can compute the larger division.
+ // don't care about overflow here - in fact, we expect it
+ proposed_m += proposed_m;
+ const uint64_t twice_rem = rem + rem;
+ if (twice_rem >= d || twice_rem < rem) proposed_m += 1;
+ more = floor_log_2_d | LIBDIVIDE_ADD_MARKER;
+ }
+ result.magic = 1 + proposed_m;
+ result.more = more;
+ // result.more's shift should in general be ceil_log_2_d. But if we
+ // used the smaller power, we subtract one from the shift because we're
+ // using the smaller power. If we're using the larger power, we
+ // subtract one from the shift because it's taken care of by the add
+ // indicator. So floor_log_2_d happens to be correct in both cases,
+ // which is why we do it outside of the if statement.
+ }
+ return result;
+}
+
+struct libdivide_u64_t libdivide_u64_gen(uint64_t d) {
+ return libdivide_internal_u64_gen(d, 0);
+}
+
+struct libdivide_u64_branchfree_t libdivide_u64_branchfree_gen(uint64_t d) {
+ if (d == 1) {
+ LIBDIVIDE_ERROR("branchfree divider must be != 1");
+ }
+ struct libdivide_u64_t tmp = libdivide_internal_u64_gen(d, 1);
+ struct libdivide_u64_branchfree_t ret = {tmp.magic, (uint8_t)(tmp.more & LIBDIVIDE_64_SHIFT_MASK)};
+ return ret;
+}
+
+uint64_t libdivide_u64_do(uint64_t numer, const struct libdivide_u64_t *denom) {
+ uint8_t more = denom->more;
+ if (!denom->magic) {
+ return numer >> more;
+ }
+ else {
+ uint64_t q = libdivide_mullhi_u64(denom->magic, numer);
+ if (more & LIBDIVIDE_ADD_MARKER) {
+ uint64_t t = ((numer - q) >> 1) + q;
+ return t >> (more & LIBDIVIDE_64_SHIFT_MASK);
+ }
+ else {
+ // All upper bits are 0,
+ // don't need to mask them off.
+ return q >> more;
+ }
+ }
+}
+
+uint64_t libdivide_u64_branchfree_do(uint64_t numer, const struct libdivide_u64_branchfree_t *denom) {
+ uint64_t q = libdivide_mullhi_u64(denom->magic, numer);
+ uint64_t t = ((numer - q) >> 1) + q;
+ return t >> denom->more;
+}
+
+uint64_t libdivide_u64_recover(const struct libdivide_u64_t *denom) {
+ uint8_t more = denom->more;
+ uint8_t shift = more & LIBDIVIDE_64_SHIFT_MASK;
+
+ if (!denom->magic) {
+ return 1ULL << shift;
+ } else if (!(more & LIBDIVIDE_ADD_MARKER)) {
+ // We compute q = n/d = n*m / 2^(64 + shift)
+ // Therefore we have d = 2^(64 + shift) / m
+ // We need to ceil it.
+ // We know d is not a power of 2, so m is not a power of 2,
+ // so we can just add 1 to the floor
+ uint64_t hi_dividend = 1ULL << shift;
+ uint64_t rem_ignored;
+ return 1 + libdivide_128_div_64_to_64(hi_dividend, 0, denom->magic, &rem_ignored);
+ } else {
+ // Here we wish to compute d = 2^(64+shift+1)/(m+2^64).
+ // Notice (m + 2^64) is a 65 bit number. This gets hairy. See
+ // libdivide_u32_recover for more on what we do here.
+ // TODO: do something better than 128 bit math
+
+ // Full n is a (potentially) 129 bit value
+ // half_n is a 128 bit value
+ // Compute the hi half of half_n. Low half is 0.
+ uint64_t half_n_hi = 1ULL << shift, half_n_lo = 0;
+ // d is a 65 bit value. The high bit is always set to 1.
+ const uint64_t d_hi = 1, d_lo = denom->magic;
+ // Note that the quotient is guaranteed <= 64 bits,
+ // but the remainder may need 65!
+ uint64_t r_hi, r_lo;
+ uint64_t half_q = libdivide_128_div_128_to_64(half_n_hi, half_n_lo, d_hi, d_lo, &r_hi, &r_lo);
+ // We computed 2^(64+shift)/(m+2^64)
+ // Double the remainder ('dr') and check if that is larger than d
+ // Note that d is a 65 bit value, so r1 is small and so r1 + r1
+ // cannot overflow
+ uint64_t dr_lo = r_lo + r_lo;
+ uint64_t dr_hi = r_hi + r_hi + (dr_lo < r_lo); // last term is carry
+ int dr_exceeds_d = (dr_hi > d_hi) || (dr_hi == d_hi && dr_lo >= d_lo);
+ uint64_t full_q = half_q + half_q + (dr_exceeds_d ? 1 : 0);
+ return full_q + 1;
+ }
+}
+
+uint64_t libdivide_u64_branchfree_recover(const struct libdivide_u64_branchfree_t *denom) {
+ uint8_t more = denom->more;
+ uint8_t shift = more & LIBDIVIDE_64_SHIFT_MASK;
+
+ if (!denom->magic) {
+ return 1ULL << (shift + 1);
+ } else {
+ // Here we wish to compute d = 2^(64+shift+1)/(m+2^64).
+ // Notice (m + 2^64) is a 65 bit number. This gets hairy. See
+ // libdivide_u32_recover for more on what we do here.
+ // TODO: do something better than 128 bit math
+
+ // Full n is a (potentially) 129 bit value
+ // half_n is a 128 bit value
+ // Compute the hi half of half_n. Low half is 0.
+ uint64_t half_n_hi = 1ULL << shift, half_n_lo = 0;
+ // d is a 65 bit value. The high bit is always set to 1.
+ const uint64_t d_hi = 1, d_lo = denom->magic;
+ // Note that the quotient is guaranteed <= 64 bits,
+ // but the remainder may need 65!
+ uint64_t r_hi, r_lo;
+ uint64_t half_q = libdivide_128_div_128_to_64(half_n_hi, half_n_lo, d_hi, d_lo, &r_hi, &r_lo);
+ // We computed 2^(64+shift)/(m+2^64)
+ // Double the remainder ('dr') and check if that is larger than d
+ // Note that d is a 65 bit value, so r1 is small and so r1 + r1
+ // cannot overflow
+ uint64_t dr_lo = r_lo + r_lo;
+ uint64_t dr_hi = r_hi + r_hi + (dr_lo < r_lo); // last term is carry
+ int dr_exceeds_d = (dr_hi > d_hi) || (dr_hi == d_hi && dr_lo >= d_lo);
+ uint64_t full_q = half_q + half_q + (dr_exceeds_d ? 1 : 0);
+ return full_q + 1;
+ }
+}
+
+/////////// SINT32
+
+static inline struct libdivide_s32_t libdivide_internal_s32_gen(int32_t d, int branchfree) {
+ if (d == 0) {
+ LIBDIVIDE_ERROR("divider must be != 0");
+ }
+
+ struct libdivide_s32_t result;
+
+ // If d is a power of 2, or negative a power of 2, we have to use a shift.
+ // This is especially important because the magic algorithm fails for -1.
+ // To check if d is a power of 2 or its inverse, it suffices to check
+ // whether its absolute value has exactly one bit set. This works even for
+ // INT_MIN, because abs(INT_MIN) == INT_MIN, and INT_MIN has one bit set
+ // and is a power of 2.
+ uint32_t ud = (uint32_t)d;
+ uint32_t absD = (d < 0) ? -ud : ud;
+ uint32_t floor_log_2_d = 31 - libdivide_count_leading_zeros32(absD);
+ // check if exactly one bit is set,
+ // don't care if absD is 0 since that's divide by zero
+ if ((absD & (absD - 1)) == 0) {
+ // Branchfree and normal paths are exactly the same
+ result.magic = 0;
+ result.more = floor_log_2_d | (d < 0 ? LIBDIVIDE_NEGATIVE_DIVISOR : 0);
+ } else {
+ LIBDIVIDE_ASSERT(floor_log_2_d >= 1);
+
+ uint8_t more;
+ // the dividend here is 2**(floor_log_2_d + 31), so the low 32 bit word
+ // is 0 and the high word is floor_log_2_d - 1
+ uint32_t rem, proposed_m;
+ proposed_m = libdivide_64_div_32_to_32(1U << (floor_log_2_d - 1), 0, absD, &rem);
+ const uint32_t e = absD - rem;
+
+ // We are going to start with a power of floor_log_2_d - 1.
+ // This works if works if e < 2**floor_log_2_d.
+ if (!branchfree && e < (1U << floor_log_2_d)) {
+ // This power works
+ more = floor_log_2_d - 1;
+ } else {
+ // We need to go one higher. This should not make proposed_m
+ // overflow, but it will make it negative when interpreted as an
+ // int32_t.
+ proposed_m += proposed_m;
+ const uint32_t twice_rem = rem + rem;
+ if (twice_rem >= absD || twice_rem < rem) proposed_m += 1;
+ more = floor_log_2_d | LIBDIVIDE_ADD_MARKER;
+ }
+
+ proposed_m += 1;
+ int32_t magic = (int32_t)proposed_m;
+
+ // Mark if we are negative. Note we only negate the magic number in the
+ // branchfull case.
+ if (d < 0) {
+ more |= LIBDIVIDE_NEGATIVE_DIVISOR;
+ if (!branchfree) {
+ magic = -magic;
+ }
+ }
+
+ result.more = more;
+ result.magic = magic;
+ }
+ return result;
+}
+
+struct libdivide_s32_t libdivide_s32_gen(int32_t d) {
+ return libdivide_internal_s32_gen(d, 0);
+}
+
+struct libdivide_s32_branchfree_t libdivide_s32_branchfree_gen(int32_t d) {
+ struct libdivide_s32_t tmp = libdivide_internal_s32_gen(d, 1);
+ struct libdivide_s32_branchfree_t result = {tmp.magic, tmp.more};
+ return result;
+}
+
+int32_t libdivide_s32_do(int32_t numer, const struct libdivide_s32_t *denom) {
+ uint8_t more = denom->more;
+ uint8_t shift = more & LIBDIVIDE_32_SHIFT_MASK;
+
+ if (!denom->magic) {
+ uint32_t sign = (int8_t)more >> 7;
+ uint32_t mask = (1U << shift) - 1;
+ uint32_t uq = numer + ((numer >> 31) & mask);
+ int32_t q = (int32_t)uq;
+ q >>= shift;
+ q = (q ^ sign) - sign;
+ return q;
+ } else {
+ uint32_t uq = (uint32_t)libdivide_mullhi_s32(denom->magic, numer);
+ if (more & LIBDIVIDE_ADD_MARKER) {
+ // must be arithmetic shift and then sign extend
+ int32_t sign = (int8_t)more >> 7;
+ // q += (more < 0 ? -numer : numer)
+ // cast required to avoid UB
+ uq += ((uint32_t)numer ^ sign) - sign;
+ }
+ int32_t q = (int32_t)uq;
+ q >>= shift;
+ q += (q < 0);
+ return q;
+ }
+}
+
+int32_t libdivide_s32_branchfree_do(int32_t numer, const struct libdivide_s32_branchfree_t *denom) {
+ uint8_t more = denom->more;
+ uint8_t shift = more & LIBDIVIDE_32_SHIFT_MASK;
+ // must be arithmetic shift and then sign extend
+ int32_t sign = (int8_t)more >> 7;
+ int32_t magic = denom->magic;
+ int32_t q = libdivide_mullhi_s32(magic, numer);
+ q += numer;
+
+ // If q is non-negative, we have nothing to do
+ // If q is negative, we want to add either (2**shift)-1 if d is a power of
+ // 2, or (2**shift) if it is not a power of 2
+ uint32_t is_power_of_2 = (magic == 0);
+ uint32_t q_sign = (uint32_t)(q >> 31);
+ q += q_sign & ((1U << shift) - is_power_of_2);
+
+ // Now arithmetic right shift
+ q >>= shift;
+ // Negate if needed
+ q = (q ^ sign) - sign;
+
+ return q;
+}
+
+int32_t libdivide_s32_recover(const struct libdivide_s32_t *denom) {
+ uint8_t more = denom->more;
+ uint8_t shift = more & LIBDIVIDE_32_SHIFT_MASK;
+ if (!denom->magic) {
+ uint32_t absD = 1U << shift;
+ if (more & LIBDIVIDE_NEGATIVE_DIVISOR) {
+ absD = -absD;
+ }
+ return (int32_t)absD;
+ } else {
+ // Unsigned math is much easier
+ // We negate the magic number only in the branchfull case, and we don't
+ // know which case we're in. However we have enough information to
+ // determine the correct sign of the magic number. The divisor was
+ // negative if LIBDIVIDE_NEGATIVE_DIVISOR is set. If ADD_MARKER is set,
+ // the magic number's sign is opposite that of the divisor.
+ // We want to compute the positive magic number.
+ int negative_divisor = (more & LIBDIVIDE_NEGATIVE_DIVISOR);
+ int magic_was_negated = (more & LIBDIVIDE_ADD_MARKER)
+ ? denom->magic > 0 : denom->magic < 0;
+
+ // Handle the power of 2 case (including branchfree)
+ if (denom->magic == 0) {
+ int32_t result = 1U << shift;
+ return negative_divisor ? -result : result;
+ }
+
+ uint32_t d = (uint32_t)(magic_was_negated ? -denom->magic : denom->magic);
+ uint64_t n = 1ULL << (32 + shift); // this shift cannot exceed 30
+ uint32_t q = (uint32_t)(n / d);
+ int32_t result = (int32_t)q;
+ result += 1;
+ return negative_divisor ? -result : result;
+ }
+}
+
+int32_t libdivide_s32_branchfree_recover(const struct libdivide_s32_branchfree_t *denom) {
+ return libdivide_s32_recover((const struct libdivide_s32_t *)denom);
+}
+
+///////////// SINT64
+
+static inline struct libdivide_s64_t libdivide_internal_s64_gen(int64_t d, int branchfree) {
+ if (d == 0) {
+ LIBDIVIDE_ERROR("divider must be != 0");
+ }
+
+ struct libdivide_s64_t result;
+
+ // If d is a power of 2, or negative a power of 2, we have to use a shift.
+ // This is especially important because the magic algorithm fails for -1.
+ // To check if d is a power of 2 or its inverse, it suffices to check
+ // whether its absolute value has exactly one bit set. This works even for
+ // INT_MIN, because abs(INT_MIN) == INT_MIN, and INT_MIN has one bit set
+ // and is a power of 2.
+ uint64_t ud = (uint64_t)d;
+ uint64_t absD = (d < 0) ? -ud : ud;
+ uint32_t floor_log_2_d = 63 - libdivide_count_leading_zeros64(absD);
+ // check if exactly one bit is set,
+ // don't care if absD is 0 since that's divide by zero
+ if ((absD & (absD - 1)) == 0) {
+ // Branchfree and non-branchfree cases are the same
+ result.magic = 0;
+ result.more = floor_log_2_d | (d < 0 ? LIBDIVIDE_NEGATIVE_DIVISOR : 0);
+ } else {
+ // the dividend here is 2**(floor_log_2_d + 63), so the low 64 bit word
+ // is 0 and the high word is floor_log_2_d - 1
+ uint8_t more;
+ uint64_t rem, proposed_m;
+ proposed_m = libdivide_128_div_64_to_64(1ULL << (floor_log_2_d - 1), 0, absD, &rem);
+ const uint64_t e = absD - rem;
+
+ // We are going to start with a power of floor_log_2_d - 1.
+ // This works if works if e < 2**floor_log_2_d.
+ if (!branchfree && e < (1ULL << floor_log_2_d)) {
+ // This power works
+ more = floor_log_2_d - 1;
+ } else {
+ // We need to go one higher. This should not make proposed_m
+ // overflow, but it will make it negative when interpreted as an
+ // int32_t.
+ proposed_m += proposed_m;
+ const uint64_t twice_rem = rem + rem;
+ if (twice_rem >= absD || twice_rem < rem) proposed_m += 1;
+ // note that we only set the LIBDIVIDE_NEGATIVE_DIVISOR bit if we
+ // also set ADD_MARKER this is an annoying optimization that
+ // enables algorithm #4 to avoid the mask. However we always set it
+ // in the branchfree case
+ more = floor_log_2_d | LIBDIVIDE_ADD_MARKER;
+ }
+ proposed_m += 1;
+ int64_t magic = (int64_t)proposed_m;
+
+ // Mark if we are negative
+ if (d < 0) {
+ more |= LIBDIVIDE_NEGATIVE_DIVISOR;
+ if (!branchfree) {
+ magic = -magic;
+ }
+ }
+
+ result.more = more;
+ result.magic = magic;
+ }
+ return result;
+}
+
+struct libdivide_s64_t libdivide_s64_gen(int64_t d) {
+ return libdivide_internal_s64_gen(d, 0);
+}
+
+struct libdivide_s64_branchfree_t libdivide_s64_branchfree_gen(int64_t d) {
+ struct libdivide_s64_t tmp = libdivide_internal_s64_gen(d, 1);
+ struct libdivide_s64_branchfree_t ret = {tmp.magic, tmp.more};
+ return ret;
+}
+
+int64_t libdivide_s64_do(int64_t numer, const struct libdivide_s64_t *denom) {
+ uint8_t more = denom->more;
+ uint8_t shift = more & LIBDIVIDE_64_SHIFT_MASK;
+
+ if (!denom->magic) { // shift path
+ uint64_t mask = (1ULL << shift) - 1;
+ uint64_t uq = numer + ((numer >> 63) & mask);
+ int64_t q = (int64_t)uq;
+ q >>= shift;
+ // must be arithmetic shift and then sign-extend
+ int64_t sign = (int8_t)more >> 7;
+ q = (q ^ sign) - sign;
+ return q;
+ } else {
+ uint64_t uq = (uint64_t)libdivide_mullhi_s64(denom->magic, numer);
+ if (more & LIBDIVIDE_ADD_MARKER) {
+ // must be arithmetic shift and then sign extend
+ int64_t sign = (int8_t)more >> 7;
+ // q += (more < 0 ? -numer : numer)
+ // cast required to avoid UB
+ uq += ((uint64_t)numer ^ sign) - sign;
+ }
+ int64_t q = (int64_t)uq;
+ q >>= shift;
+ q += (q < 0);
+ return q;
+ }
+}
+
+int64_t libdivide_s64_branchfree_do(int64_t numer, const struct libdivide_s64_branchfree_t *denom) {
+ uint8_t more = denom->more;
+ uint8_t shift = more & LIBDIVIDE_64_SHIFT_MASK;
+ // must be arithmetic shift and then sign extend
+ int64_t sign = (int8_t)more >> 7;
+ int64_t magic = denom->magic;
+ int64_t q = libdivide_mullhi_s64(magic, numer);
+ q += numer;
+
+ // If q is non-negative, we have nothing to do.
+ // If q is negative, we want to add either (2**shift)-1 if d is a power of
+ // 2, or (2**shift) if it is not a power of 2.
+ uint64_t is_power_of_2 = (magic == 0);
+ uint64_t q_sign = (uint64_t)(q >> 63);
+ q += q_sign & ((1ULL << shift) - is_power_of_2);
+
+ // Arithmetic right shift
+ q >>= shift;
+ // Negate if needed
+ q = (q ^ sign) - sign;
+
+ return q;
+}
+
+int64_t libdivide_s64_recover(const struct libdivide_s64_t *denom) {
+ uint8_t more = denom->more;
+ uint8_t shift = more & LIBDIVIDE_64_SHIFT_MASK;
+ if (denom->magic == 0) { // shift path
+ uint64_t absD = 1ULL << shift;
+ if (more & LIBDIVIDE_NEGATIVE_DIVISOR) {
+ absD = -absD;
+ }
+ return (int64_t)absD;
+ } else {
+ // Unsigned math is much easier
+ int negative_divisor = (more & LIBDIVIDE_NEGATIVE_DIVISOR);
+ int magic_was_negated = (more & LIBDIVIDE_ADD_MARKER)
+ ? denom->magic > 0 : denom->magic < 0;
+
+ uint64_t d = (uint64_t)(magic_was_negated ? -denom->magic : denom->magic);
+ uint64_t n_hi = 1ULL << shift, n_lo = 0;
+ uint64_t rem_ignored;
+ uint64_t q = libdivide_128_div_64_to_64(n_hi, n_lo, d, &rem_ignored);
+ int64_t result = (int64_t)(q + 1);
+ if (negative_divisor) {
+ result = -result;
+ }
+ return result;
+ }
+}
+
+int64_t libdivide_s64_branchfree_recover(const struct libdivide_s64_branchfree_t *denom) {
+ return libdivide_s64_recover((const struct libdivide_s64_t *)denom);
+}
+
+#if defined(LIBDIVIDE_AVX512)
+
+static inline __m512i libdivide_u32_do_vector(__m512i numers, const struct libdivide_u32_t *denom);
+static inline __m512i libdivide_s32_do_vector(__m512i numers, const struct libdivide_s32_t *denom);
+static inline __m512i libdivide_u64_do_vector(__m512i numers, const struct libdivide_u64_t *denom);
+static inline __m512i libdivide_s64_do_vector(__m512i numers, const struct libdivide_s64_t *denom);
+
+static inline __m512i libdivide_u32_branchfree_do_vector(__m512i numers, const struct libdivide_u32_branchfree_t *denom);
+static inline __m512i libdivide_s32_branchfree_do_vector(__m512i numers, const struct libdivide_s32_branchfree_t *denom);
+static inline __m512i libdivide_u64_branchfree_do_vector(__m512i numers, const struct libdivide_u64_branchfree_t *denom);
+static inline __m512i libdivide_s64_branchfree_do_vector(__m512i numers, const struct libdivide_s64_branchfree_t *denom);
+
+//////// Internal Utility Functions
+
+static inline __m512i libdivide_s64_signbits(__m512i v) {;
+ return _mm512_srai_epi64(v, 63);
+}
+
+static inline __m512i libdivide_s64_shift_right_vector(__m512i v, int amt) {
+ return _mm512_srai_epi64(v, amt);
+}
+
+// Here, b is assumed to contain one 32-bit value repeated.
+static inline __m512i libdivide_mullhi_u32_vector(__m512i a, __m512i b) {
+ __m512i hi_product_0Z2Z = _mm512_srli_epi64(_mm512_mul_epu32(a, b), 32);
+ __m512i a1X3X = _mm512_srli_epi64(a, 32);
+ __m512i mask = _mm512_set_epi32(-1, 0, -1, 0, -1, 0, -1, 0, -1, 0, -1, 0, -1, 0, -1, 0);
+ __m512i hi_product_Z1Z3 = _mm512_and_si512(_mm512_mul_epu32(a1X3X, b), mask);
+ return _mm512_or_si512(hi_product_0Z2Z, hi_product_Z1Z3);
+}
+
+// b is one 32-bit value repeated.
+static inline __m512i libdivide_mullhi_s32_vector(__m512i a, __m512i b) {
+ __m512i hi_product_0Z2Z = _mm512_srli_epi64(_mm512_mul_epi32(a, b), 32);
+ __m512i a1X3X = _mm512_srli_epi64(a, 32);
+ __m512i mask = _mm512_set_epi32(-1, 0, -1, 0, -1, 0, -1, 0, -1, 0, -1, 0, -1, 0, -1, 0);
+ __m512i hi_product_Z1Z3 = _mm512_and_si512(_mm512_mul_epi32(a1X3X, b), mask);
+ return _mm512_or_si512(hi_product_0Z2Z, hi_product_Z1Z3);
+}
+
+// Here, y is assumed to contain one 64-bit value repeated.
+// https://stackoverflow.com/a/28827013
+static inline __m512i libdivide_mullhi_u64_vector(__m512i x, __m512i y) {
+ __m512i lomask = _mm512_set1_epi64(0xffffffff);
+ __m512i xh = _mm512_shuffle_epi32(x, (_MM_PERM_ENUM) 0xB1);
+ __m512i yh = _mm512_shuffle_epi32(y, (_MM_PERM_ENUM) 0xB1);
+ __m512i w0 = _mm512_mul_epu32(x, y);
+ __m512i w1 = _mm512_mul_epu32(x, yh);
+ __m512i w2 = _mm512_mul_epu32(xh, y);
+ __m512i w3 = _mm512_mul_epu32(xh, yh);
+ __m512i w0h = _mm512_srli_epi64(w0, 32);
+ __m512i s1 = _mm512_add_epi64(w1, w0h);
+ __m512i s1l = _mm512_and_si512(s1, lomask);
+ __m512i s1h = _mm512_srli_epi64(s1, 32);
+ __m512i s2 = _mm512_add_epi64(w2, s1l);
+ __m512i s2h = _mm512_srli_epi64(s2, 32);
+ __m512i hi = _mm512_add_epi64(w3, s1h);
+ hi = _mm512_add_epi64(hi, s2h);
+
+ return hi;
+}
+
+// y is one 64-bit value repeated.
+static inline __m512i libdivide_mullhi_s64_vector(__m512i x, __m512i y) {
+ __m512i p = libdivide_mullhi_u64_vector(x, y);
+ __m512i t1 = _mm512_and_si512(libdivide_s64_signbits(x), y);
+ __m512i t2 = _mm512_and_si512(libdivide_s64_signbits(y), x);
+ p = _mm512_sub_epi64(p, t1);
+ p = _mm512_sub_epi64(p, t2);
+ return p;
+}
+
+////////// UINT32
+
+__m512i libdivide_u32_do_vector(__m512i numers, const struct libdivide_u32_t *denom) {
+ uint8_t more = denom->more;
+ if (!denom->magic) {
+ return _mm512_srli_epi32(numers, more);
+ }
+ else {
+ __m512i q = libdivide_mullhi_u32_vector(numers, _mm512_set1_epi32(denom->magic));
+ if (more & LIBDIVIDE_ADD_MARKER) {
+ // uint32_t t = ((numer - q) >> 1) + q;
+ // return t >> denom->shift;
+ uint32_t shift = more & LIBDIVIDE_32_SHIFT_MASK;
+ __m512i t = _mm512_add_epi32(_mm512_srli_epi32(_mm512_sub_epi32(numers, q), 1), q);
+ return _mm512_srli_epi32(t, shift);
+ }
+ else {
+ return _mm512_srli_epi32(q, more);
+ }
+ }
+}
+
+__m512i libdivide_u32_branchfree_do_vector(__m512i numers, const struct libdivide_u32_branchfree_t *denom) {
+ __m512i q = libdivide_mullhi_u32_vector(numers, _mm512_set1_epi32(denom->magic));
+ __m512i t = _mm512_add_epi32(_mm512_srli_epi32(_mm512_sub_epi32(numers, q), 1), q);
+ return _mm512_srli_epi32(t, denom->more);
+}
+
+////////// UINT64
+
+__m512i libdivide_u64_do_vector(__m512i numers, const struct libdivide_u64_t *denom) {
+ uint8_t more = denom->more;
+ if (!denom->magic) {
+ return _mm512_srli_epi64(numers, more);
+ }
+ else {
+ __m512i q = libdivide_mullhi_u64_vector(numers, _mm512_set1_epi64(denom->magic));
+ if (more & LIBDIVIDE_ADD_MARKER) {
+ // uint32_t t = ((numer - q) >> 1) + q;
+ // return t >> denom->shift;
+ uint32_t shift = more & LIBDIVIDE_64_SHIFT_MASK;
+ __m512i t = _mm512_add_epi64(_mm512_srli_epi64(_mm512_sub_epi64(numers, q), 1), q);
+ return _mm512_srli_epi64(t, shift);
+ }
+ else {
+ return _mm512_srli_epi64(q, more);
+ }
+ }
+}
+
+__m512i libdivide_u64_branchfree_do_vector(__m512i numers, const struct libdivide_u64_branchfree_t *denom) {
+ __m512i q = libdivide_mullhi_u64_vector(numers, _mm512_set1_epi64(denom->magic));
+ __m512i t = _mm512_add_epi64(_mm512_srli_epi64(_mm512_sub_epi64(numers, q), 1), q);
+ return _mm512_srli_epi64(t, denom->more);
+}
+
+////////// SINT32
+
+__m512i libdivide_s32_do_vector(__m512i numers, const struct libdivide_s32_t *denom) {
+ uint8_t more = denom->more;
+ if (!denom->magic) {
+ uint32_t shift = more & LIBDIVIDE_32_SHIFT_MASK;
+ uint32_t mask = (1U << shift) - 1;
+ __m512i roundToZeroTweak = _mm512_set1_epi32(mask);
+ // q = numer + ((numer >> 31) & roundToZeroTweak);
+ __m512i q = _mm512_add_epi32(numers, _mm512_and_si512(_mm512_srai_epi32(numers, 31), roundToZeroTweak));
+ q = _mm512_srai_epi32(q, shift);
+ __m512i sign = _mm512_set1_epi32((int8_t)more >> 7);
+ // q = (q ^ sign) - sign;
+ q = _mm512_sub_epi32(_mm512_xor_si512(q, sign), sign);
+ return q;
+ }
+ else {
+ __m512i q = libdivide_mullhi_s32_vector(numers, _mm512_set1_epi32(denom->magic));
+ if (more & LIBDIVIDE_ADD_MARKER) {
+ // must be arithmetic shift
+ __m512i sign = _mm512_set1_epi32((int8_t)more >> 7);
+ // q += ((numer ^ sign) - sign);
+ q = _mm512_add_epi32(q, _mm512_sub_epi32(_mm512_xor_si512(numers, sign), sign));
+ }
+ // q >>= shift
+ q = _mm512_srai_epi32(q, more & LIBDIVIDE_32_SHIFT_MASK);
+ q = _mm512_add_epi32(q, _mm512_srli_epi32(q, 31)); // q += (q < 0)
+ return q;
+ }
+}
+
+__m512i libdivide_s32_branchfree_do_vector(__m512i numers, const struct libdivide_s32_branchfree_t *denom) {
+ int32_t magic = denom->magic;
+ uint8_t more = denom->more;
+ uint8_t shift = more & LIBDIVIDE_32_SHIFT_MASK;
+ // must be arithmetic shift
+ __m512i sign = _mm512_set1_epi32((int8_t)more >> 7);
+ __m512i q = libdivide_mullhi_s32_vector(numers, _mm512_set1_epi32(magic));
+ q = _mm512_add_epi32(q, numers); // q += numers
+
+ // If q is non-negative, we have nothing to do
+ // If q is negative, we want to add either (2**shift)-1 if d is
+ // a power of 2, or (2**shift) if it is not a power of 2
+ uint32_t is_power_of_2 = (magic == 0);
+ __m512i q_sign = _mm512_srai_epi32(q, 31); // q_sign = q >> 31
+ __m512i mask = _mm512_set1_epi32((1U << shift) - is_power_of_2);
+ q = _mm512_add_epi32(q, _mm512_and_si512(q_sign, mask)); // q = q + (q_sign & mask)
+ q = _mm512_srai_epi32(q, shift); // q >>= shift
+ q = _mm512_sub_epi32(_mm512_xor_si512(q, sign), sign); // q = (q ^ sign) - sign
+ return q;
+}
+
+////////// SINT64
+
+__m512i libdivide_s64_do_vector(__m512i numers, const struct libdivide_s64_t *denom) {
+ uint8_t more = denom->more;
+ int64_t magic = denom->magic;
+ if (magic == 0) { // shift path
+ uint32_t shift = more & LIBDIVIDE_64_SHIFT_MASK;
+ uint64_t mask = (1ULL << shift) - 1;
+ __m512i roundToZeroTweak = _mm512_set1_epi64(mask);
+ // q = numer + ((numer >> 63) & roundToZeroTweak);
+ __m512i q = _mm512_add_epi64(numers, _mm512_and_si512(libdivide_s64_signbits(numers), roundToZeroTweak));
+ q = libdivide_s64_shift_right_vector(q, shift);
+ __m512i sign = _mm512_set1_epi32((int8_t)more >> 7);
+ // q = (q ^ sign) - sign;
+ q = _mm512_sub_epi64(_mm512_xor_si512(q, sign), sign);
+ return q;
+ }
+ else {
+ __m512i q = libdivide_mullhi_s64_vector(numers, _mm512_set1_epi64(magic));
+ if (more & LIBDIVIDE_ADD_MARKER) {
+ // must be arithmetic shift
+ __m512i sign = _mm512_set1_epi32((int8_t)more >> 7);
+ // q += ((numer ^ sign) - sign);
+ q = _mm512_add_epi64(q, _mm512_sub_epi64(_mm512_xor_si512(numers, sign), sign));
+ }
+ // q >>= denom->mult_path.shift
+ q = libdivide_s64_shift_right_vector(q, more & LIBDIVIDE_64_SHIFT_MASK);
+ q = _mm512_add_epi64(q, _mm512_srli_epi64(q, 63)); // q += (q < 0)
+ return q;
+ }
+}
+
+__m512i libdivide_s64_branchfree_do_vector(__m512i numers, const struct libdivide_s64_branchfree_t *denom) {
+ int64_t magic = denom->magic;
+ uint8_t more = denom->more;
+ uint8_t shift = more & LIBDIVIDE_64_SHIFT_MASK;
+ // must be arithmetic shift
+ __m512i sign = _mm512_set1_epi32((int8_t)more >> 7);
+
+ // libdivide_mullhi_s64(numers, magic);
+ __m512i q = libdivide_mullhi_s64_vector(numers, _mm512_set1_epi64(magic));
+ q = _mm512_add_epi64(q, numers); // q += numers
+
+ // If q is non-negative, we have nothing to do.
+ // If q is negative, we want to add either (2**shift)-1 if d is
+ // a power of 2, or (2**shift) if it is not a power of 2.
+ uint32_t is_power_of_2 = (magic == 0);
+ __m512i q_sign = libdivide_s64_signbits(q); // q_sign = q >> 63
+ __m512i mask = _mm512_set1_epi64((1ULL << shift) - is_power_of_2);
+ q = _mm512_add_epi64(q, _mm512_and_si512(q_sign, mask)); // q = q + (q_sign & mask)
+ q = libdivide_s64_shift_right_vector(q, shift); // q >>= shift
+ q = _mm512_sub_epi64(_mm512_xor_si512(q, sign), sign); // q = (q ^ sign) - sign
+ return q;
+}
+
+#elif defined(LIBDIVIDE_AVX2)
+
+static inline __m256i libdivide_u32_do_vector(__m256i numers, const struct libdivide_u32_t *denom);
+static inline __m256i libdivide_s32_do_vector(__m256i numers, const struct libdivide_s32_t *denom);
+static inline __m256i libdivide_u64_do_vector(__m256i numers, const struct libdivide_u64_t *denom);
+static inline __m256i libdivide_s64_do_vector(__m256i numers, const struct libdivide_s64_t *denom);
+
+static inline __m256i libdivide_u32_branchfree_do_vector(__m256i numers, const struct libdivide_u32_branchfree_t *denom);
+static inline __m256i libdivide_s32_branchfree_do_vector(__m256i numers, const struct libdivide_s32_branchfree_t *denom);
+static inline __m256i libdivide_u64_branchfree_do_vector(__m256i numers, const struct libdivide_u64_branchfree_t *denom);
+static inline __m256i libdivide_s64_branchfree_do_vector(__m256i numers, const struct libdivide_s64_branchfree_t *denom);
+
+//////// Internal Utility Functions
+
+// Implementation of _mm256_srai_epi64(v, 63) (from AVX512).
+static inline __m256i libdivide_s64_signbits(__m256i v) {
+ __m256i hiBitsDuped = _mm256_shuffle_epi32(v, _MM_SHUFFLE(3, 3, 1, 1));
+ __m256i signBits = _mm256_srai_epi32(hiBitsDuped, 31);
+ return signBits;
+}
+
+// Implementation of _mm256_srai_epi64 (from AVX512).
+static inline __m256i libdivide_s64_shift_right_vector(__m256i v, int amt) {
+ const int b = 64 - amt;
+ __m256i m = _mm256_set1_epi64x(1ULL << (b - 1));
+ __m256i x = _mm256_srli_epi64(v, amt);
+ __m256i result = _mm256_sub_epi64(_mm256_xor_si256(x, m), m);
+ return result;
+}
+
+// Here, b is assumed to contain one 32-bit value repeated.
+static inline __m256i libdivide_mullhi_u32_vector(__m256i a, __m256i b) {
+ __m256i hi_product_0Z2Z = _mm256_srli_epi64(_mm256_mul_epu32(a, b), 32);
+ __m256i a1X3X = _mm256_srli_epi64(a, 32);
+ __m256i mask = _mm256_set_epi32(-1, 0, -1, 0, -1, 0, -1, 0);
+ __m256i hi_product_Z1Z3 = _mm256_and_si256(_mm256_mul_epu32(a1X3X, b), mask);
+ return _mm256_or_si256(hi_product_0Z2Z, hi_product_Z1Z3);
+}
+
+// b is one 32-bit value repeated.
+static inline __m256i libdivide_mullhi_s32_vector(__m256i a, __m256i b) {
+ __m256i hi_product_0Z2Z = _mm256_srli_epi64(_mm256_mul_epi32(a, b), 32);
+ __m256i a1X3X = _mm256_srli_epi64(a, 32);
+ __m256i mask = _mm256_set_epi32(-1, 0, -1, 0, -1, 0, -1, 0);
+ __m256i hi_product_Z1Z3 = _mm256_and_si256(_mm256_mul_epi32(a1X3X, b), mask);
+ return _mm256_or_si256(hi_product_0Z2Z, hi_product_Z1Z3);
+}
+
+// Here, y is assumed to contain one 64-bit value repeated.
+// https://stackoverflow.com/a/28827013
+static inline __m256i libdivide_mullhi_u64_vector(__m256i x, __m256i y) {
+ __m256i lomask = _mm256_set1_epi64x(0xffffffff);
+ __m256i xh = _mm256_shuffle_epi32(x, 0xB1); // x0l, x0h, x1l, x1h
+ __m256i yh = _mm256_shuffle_epi32(y, 0xB1); // y0l, y0h, y1l, y1h
+ __m256i w0 = _mm256_mul_epu32(x, y); // x0l*y0l, x1l*y1l
+ __m256i w1 = _mm256_mul_epu32(x, yh); // x0l*y0h, x1l*y1h
+ __m256i w2 = _mm256_mul_epu32(xh, y); // x0h*y0l, x1h*y0l
+ __m256i w3 = _mm256_mul_epu32(xh, yh); // x0h*y0h, x1h*y1h
+ __m256i w0h = _mm256_srli_epi64(w0, 32);
+ __m256i s1 = _mm256_add_epi64(w1, w0h);
+ __m256i s1l = _mm256_and_si256(s1, lomask);
+ __m256i s1h = _mm256_srli_epi64(s1, 32);
+ __m256i s2 = _mm256_add_epi64(w2, s1l);
+ __m256i s2h = _mm256_srli_epi64(s2, 32);
+ __m256i hi = _mm256_add_epi64(w3, s1h);
+ hi = _mm256_add_epi64(hi, s2h);
+
+ return hi;
+}
+
+// y is one 64-bit value repeated.
+static inline __m256i libdivide_mullhi_s64_vector(__m256i x, __m256i y) {
+ __m256i p = libdivide_mullhi_u64_vector(x, y);
+ __m256i t1 = _mm256_and_si256(libdivide_s64_signbits(x), y);
+ __m256i t2 = _mm256_and_si256(libdivide_s64_signbits(y), x);
+ p = _mm256_sub_epi64(p, t1);
+ p = _mm256_sub_epi64(p, t2);
+ return p;
+}
+
+////////// UINT32
+
+__m256i libdivide_u32_do_vector(__m256i numers, const struct libdivide_u32_t *denom) {
+ uint8_t more = denom->more;
+ if (!denom->magic) {
+ return _mm256_srli_epi32(numers, more);
+ }
+ else {
+ __m256i q = libdivide_mullhi_u32_vector(numers, _mm256_set1_epi32(denom->magic));
+ if (more & LIBDIVIDE_ADD_MARKER) {
+ // uint32_t t = ((numer - q) >> 1) + q;
+ // return t >> denom->shift;
+ uint32_t shift = more & LIBDIVIDE_32_SHIFT_MASK;
+ __m256i t = _mm256_add_epi32(_mm256_srli_epi32(_mm256_sub_epi32(numers, q), 1), q);
+ return _mm256_srli_epi32(t, shift);
+ }
+ else {
+ return _mm256_srli_epi32(q, more);
+ }
+ }
+}
+
+__m256i libdivide_u32_branchfree_do_vector(__m256i numers, const struct libdivide_u32_branchfree_t *denom) {
+ __m256i q = libdivide_mullhi_u32_vector(numers, _mm256_set1_epi32(denom->magic));
+ __m256i t = _mm256_add_epi32(_mm256_srli_epi32(_mm256_sub_epi32(numers, q), 1), q);
+ return _mm256_srli_epi32(t, denom->more);
+}
+
+////////// UINT64
+
+__m256i libdivide_u64_do_vector(__m256i numers, const struct libdivide_u64_t *denom) {
+ uint8_t more = denom->more;
+ if (!denom->magic) {
+ return _mm256_srli_epi64(numers, more);
+ }
+ else {
+ __m256i q = libdivide_mullhi_u64_vector(numers, _mm256_set1_epi64x(denom->magic));
+ if (more & LIBDIVIDE_ADD_MARKER) {
+ // uint32_t t = ((numer - q) >> 1) + q;
+ // return t >> denom->shift;
+ uint32_t shift = more & LIBDIVIDE_64_SHIFT_MASK;
+ __m256i t = _mm256_add_epi64(_mm256_srli_epi64(_mm256_sub_epi64(numers, q), 1), q);
+ return _mm256_srli_epi64(t, shift);
+ }
+ else {
+ return _mm256_srli_epi64(q, more);
+ }
+ }
+}
+
+__m256i libdivide_u64_branchfree_do_vector(__m256i numers, const struct libdivide_u64_branchfree_t *denom) {
+ __m256i q = libdivide_mullhi_u64_vector(numers, _mm256_set1_epi64x(denom->magic));
+ __m256i t = _mm256_add_epi64(_mm256_srli_epi64(_mm256_sub_epi64(numers, q), 1), q);
+ return _mm256_srli_epi64(t, denom->more);
+}
+
+////////// SINT32
+
+__m256i libdivide_s32_do_vector(__m256i numers, const struct libdivide_s32_t *denom) {
+ uint8_t more = denom->more;
+ if (!denom->magic) {
+ uint32_t shift = more & LIBDIVIDE_32_SHIFT_MASK;
+ uint32_t mask = (1U << shift) - 1;
+ __m256i roundToZeroTweak = _mm256_set1_epi32(mask);
+ // q = numer + ((numer >> 31) & roundToZeroTweak);
+ __m256i q = _mm256_add_epi32(numers, _mm256_and_si256(_mm256_srai_epi32(numers, 31), roundToZeroTweak));
+ q = _mm256_srai_epi32(q, shift);
+ __m256i sign = _mm256_set1_epi32((int8_t)more >> 7);
+ // q = (q ^ sign) - sign;
+ q = _mm256_sub_epi32(_mm256_xor_si256(q, sign), sign);
+ return q;
+ }
+ else {
+ __m256i q = libdivide_mullhi_s32_vector(numers, _mm256_set1_epi32(denom->magic));
+ if (more & LIBDIVIDE_ADD_MARKER) {
+ // must be arithmetic shift
+ __m256i sign = _mm256_set1_epi32((int8_t)more >> 7);
+ // q += ((numer ^ sign) - sign);
+ q = _mm256_add_epi32(q, _mm256_sub_epi32(_mm256_xor_si256(numers, sign), sign));
+ }
+ // q >>= shift
+ q = _mm256_srai_epi32(q, more & LIBDIVIDE_32_SHIFT_MASK);
+ q = _mm256_add_epi32(q, _mm256_srli_epi32(q, 31)); // q += (q < 0)
+ return q;
+ }
+}
+
+__m256i libdivide_s32_branchfree_do_vector(__m256i numers, const struct libdivide_s32_branchfree_t *denom) {
+ int32_t magic = denom->magic;
+ uint8_t more = denom->more;
+ uint8_t shift = more & LIBDIVIDE_32_SHIFT_MASK;
+ // must be arithmetic shift
+ __m256i sign = _mm256_set1_epi32((int8_t)more >> 7);
+ __m256i q = libdivide_mullhi_s32_vector(numers, _mm256_set1_epi32(magic));
+ q = _mm256_add_epi32(q, numers); // q += numers
+
+ // If q is non-negative, we have nothing to do
+ // If q is negative, we want to add either (2**shift)-1 if d is
+ // a power of 2, or (2**shift) if it is not a power of 2
+ uint32_t is_power_of_2 = (magic == 0);
+ __m256i q_sign = _mm256_srai_epi32(q, 31); // q_sign = q >> 31
+ __m256i mask = _mm256_set1_epi32((1U << shift) - is_power_of_2);
+ q = _mm256_add_epi32(q, _mm256_and_si256(q_sign, mask)); // q = q + (q_sign & mask)
+ q = _mm256_srai_epi32(q, shift); // q >>= shift
+ q = _mm256_sub_epi32(_mm256_xor_si256(q, sign), sign); // q = (q ^ sign) - sign
+ return q;
+}
+
+////////// SINT64
+
+__m256i libdivide_s64_do_vector(__m256i numers, const struct libdivide_s64_t *denom) {
+ uint8_t more = denom->more;
+ int64_t magic = denom->magic;
+ if (magic == 0) { // shift path
+ uint32_t shift = more & LIBDIVIDE_64_SHIFT_MASK;
+ uint64_t mask = (1ULL << shift) - 1;
+ __m256i roundToZeroTweak = _mm256_set1_epi64x(mask);
+ // q = numer + ((numer >> 63) & roundToZeroTweak);
+ __m256i q = _mm256_add_epi64(numers, _mm256_and_si256(libdivide_s64_signbits(numers), roundToZeroTweak));
+ q = libdivide_s64_shift_right_vector(q, shift);
+ __m256i sign = _mm256_set1_epi32((int8_t)more >> 7);
+ // q = (q ^ sign) - sign;
+ q = _mm256_sub_epi64(_mm256_xor_si256(q, sign), sign);
+ return q;
+ }
+ else {
+ __m256i q = libdivide_mullhi_s64_vector(numers, _mm256_set1_epi64x(magic));
+ if (more & LIBDIVIDE_ADD_MARKER) {
+ // must be arithmetic shift
+ __m256i sign = _mm256_set1_epi32((int8_t)more >> 7);
+ // q += ((numer ^ sign) - sign);
+ q = _mm256_add_epi64(q, _mm256_sub_epi64(_mm256_xor_si256(numers, sign), sign));
+ }
+ // q >>= denom->mult_path.shift
+ q = libdivide_s64_shift_right_vector(q, more & LIBDIVIDE_64_SHIFT_MASK);
+ q = _mm256_add_epi64(q, _mm256_srli_epi64(q, 63)); // q += (q < 0)
+ return q;
+ }
+}
+
+__m256i libdivide_s64_branchfree_do_vector(__m256i numers, const struct libdivide_s64_branchfree_t *denom) {
+ int64_t magic = denom->magic;
+ uint8_t more = denom->more;
+ uint8_t shift = more & LIBDIVIDE_64_SHIFT_MASK;
+ // must be arithmetic shift
+ __m256i sign = _mm256_set1_epi32((int8_t)more >> 7);
+
+ // libdivide_mullhi_s64(numers, magic);
+ __m256i q = libdivide_mullhi_s64_vector(numers, _mm256_set1_epi64x(magic));
+ q = _mm256_add_epi64(q, numers); // q += numers
+
+ // If q is non-negative, we have nothing to do.
+ // If q is negative, we want to add either (2**shift)-1 if d is
+ // a power of 2, or (2**shift) if it is not a power of 2.
+ uint32_t is_power_of_2 = (magic == 0);
+ __m256i q_sign = libdivide_s64_signbits(q); // q_sign = q >> 63
+ __m256i mask = _mm256_set1_epi64x((1ULL << shift) - is_power_of_2);
+ q = _mm256_add_epi64(q, _mm256_and_si256(q_sign, mask)); // q = q + (q_sign & mask)
+ q = libdivide_s64_shift_right_vector(q, shift); // q >>= shift
+ q = _mm256_sub_epi64(_mm256_xor_si256(q, sign), sign); // q = (q ^ sign) - sign
+ return q;
+}
+
+#elif defined(LIBDIVIDE_SSE2)
+
+static inline __m128i libdivide_u32_do_vector(__m128i numers, const struct libdivide_u32_t *denom);
+static inline __m128i libdivide_s32_do_vector(__m128i numers, const struct libdivide_s32_t *denom);
+static inline __m128i libdivide_u64_do_vector(__m128i numers, const struct libdivide_u64_t *denom);
+static inline __m128i libdivide_s64_do_vector(__m128i numers, const struct libdivide_s64_t *denom);
+
+static inline __m128i libdivide_u32_branchfree_do_vector(__m128i numers, const struct libdivide_u32_branchfree_t *denom);
+static inline __m128i libdivide_s32_branchfree_do_vector(__m128i numers, const struct libdivide_s32_branchfree_t *denom);
+static inline __m128i libdivide_u64_branchfree_do_vector(__m128i numers, const struct libdivide_u64_branchfree_t *denom);
+static inline __m128i libdivide_s64_branchfree_do_vector(__m128i numers, const struct libdivide_s64_branchfree_t *denom);
+
+//////// Internal Utility Functions
+
+// Implementation of _mm_srai_epi64(v, 63) (from AVX512).
+static inline __m128i libdivide_s64_signbits(__m128i v) {
+ __m128i hiBitsDuped = _mm_shuffle_epi32(v, _MM_SHUFFLE(3, 3, 1, 1));
+ __m128i signBits = _mm_srai_epi32(hiBitsDuped, 31);
+ return signBits;
+}
+
+// Implementation of _mm_srai_epi64 (from AVX512).
+static inline __m128i libdivide_s64_shift_right_vector(__m128i v, int amt) {
+ const int b = 64 - amt;
+ __m128i m = _mm_set1_epi64x(1ULL << (b - 1));
+ __m128i x = _mm_srli_epi64(v, amt);
+ __m128i result = _mm_sub_epi64(_mm_xor_si128(x, m), m);
+ return result;
+}
+
+// Here, b is assumed to contain one 32-bit value repeated.
+static inline __m128i libdivide_mullhi_u32_vector(__m128i a, __m128i b) {
+ __m128i hi_product_0Z2Z = _mm_srli_epi64(_mm_mul_epu32(a, b), 32);
+ __m128i a1X3X = _mm_srli_epi64(a, 32);
+ __m128i mask = _mm_set_epi32(-1, 0, -1, 0);
+ __m128i hi_product_Z1Z3 = _mm_and_si128(_mm_mul_epu32(a1X3X, b), mask);
+ return _mm_or_si128(hi_product_0Z2Z, hi_product_Z1Z3);
+}
+
+// SSE2 does not have a signed multiplication instruction, but we can convert
+// unsigned to signed pretty efficiently. Again, b is just a 32 bit value
+// repeated four times.
+static inline __m128i libdivide_mullhi_s32_vector(__m128i a, __m128i b) {
+ __m128i p = libdivide_mullhi_u32_vector(a, b);
+ // t1 = (a >> 31) & y, arithmetic shift
+ __m128i t1 = _mm_and_si128(_mm_srai_epi32(a, 31), b);
+ __m128i t2 = _mm_and_si128(_mm_srai_epi32(b, 31), a);
+ p = _mm_sub_epi32(p, t1);
+ p = _mm_sub_epi32(p, t2);
+ return p;
+}
+
+// Here, y is assumed to contain one 64-bit value repeated.
+// https://stackoverflow.com/a/28827013
+static inline __m128i libdivide_mullhi_u64_vector(__m128i x, __m128i y) {
+ __m128i lomask = _mm_set1_epi64x(0xffffffff);
+ __m128i xh = _mm_shuffle_epi32(x, 0xB1); // x0l, x0h, x1l, x1h
+ __m128i yh = _mm_shuffle_epi32(y, 0xB1); // y0l, y0h, y1l, y1h
+ __m128i w0 = _mm_mul_epu32(x, y); // x0l*y0l, x1l*y1l
+ __m128i w1 = _mm_mul_epu32(x, yh); // x0l*y0h, x1l*y1h
+ __m128i w2 = _mm_mul_epu32(xh, y); // x0h*y0l, x1h*y0l
+ __m128i w3 = _mm_mul_epu32(xh, yh); // x0h*y0h, x1h*y1h
+ __m128i w0h = _mm_srli_epi64(w0, 32);
+ __m128i s1 = _mm_add_epi64(w1, w0h);
+ __m128i s1l = _mm_and_si128(s1, lomask);
+ __m128i s1h = _mm_srli_epi64(s1, 32);
+ __m128i s2 = _mm_add_epi64(w2, s1l);
+ __m128i s2h = _mm_srli_epi64(s2, 32);
+ __m128i hi = _mm_add_epi64(w3, s1h);
+ hi = _mm_add_epi64(hi, s2h);
+
+ return hi;
+}
+
+// y is one 64-bit value repeated.
+static inline __m128i libdivide_mullhi_s64_vector(__m128i x, __m128i y) {
+ __m128i p = libdivide_mullhi_u64_vector(x, y);
+ __m128i t1 = _mm_and_si128(libdivide_s64_signbits(x), y);
+ __m128i t2 = _mm_and_si128(libdivide_s64_signbits(y), x);
+ p = _mm_sub_epi64(p, t1);
+ p = _mm_sub_epi64(p, t2);
+ return p;
+}
+
+////////// UINT32
+
+__m128i libdivide_u32_do_vector(__m128i numers, const struct libdivide_u32_t *denom) {
+ uint8_t more = denom->more;
+ if (!denom->magic) {
+ return _mm_srli_epi32(numers, more);
+ }
+ else {
+ __m128i q = libdivide_mullhi_u32_vector(numers, _mm_set1_epi32(denom->magic));
+ if (more & LIBDIVIDE_ADD_MARKER) {
+ // uint32_t t = ((numer - q) >> 1) + q;
+ // return t >> denom->shift;
+ uint32_t shift = more & LIBDIVIDE_32_SHIFT_MASK;
+ __m128i t = _mm_add_epi32(_mm_srli_epi32(_mm_sub_epi32(numers, q), 1), q);
+ return _mm_srli_epi32(t, shift);
+ }
+ else {
+ return _mm_srli_epi32(q, more);
+ }
+ }
+}
+
+__m128i libdivide_u32_branchfree_do_vector(__m128i numers, const struct libdivide_u32_branchfree_t *denom) {
+ __m128i q = libdivide_mullhi_u32_vector(numers, _mm_set1_epi32(denom->magic));
+ __m128i t = _mm_add_epi32(_mm_srli_epi32(_mm_sub_epi32(numers, q), 1), q);
+ return _mm_srli_epi32(t, denom->more);
+}
+
+////////// UINT64
+
+__m128i libdivide_u64_do_vector(__m128i numers, const struct libdivide_u64_t *denom) {
+ uint8_t more = denom->more;
+ if (!denom->magic) {
+ return _mm_srli_epi64(numers, more);
+ }
+ else {
+ __m128i q = libdivide_mullhi_u64_vector(numers, _mm_set1_epi64x(denom->magic));
+ if (more & LIBDIVIDE_ADD_MARKER) {
+ // uint32_t t = ((numer - q) >> 1) + q;
+ // return t >> denom->shift;
+ uint32_t shift = more & LIBDIVIDE_64_SHIFT_MASK;
+ __m128i t = _mm_add_epi64(_mm_srli_epi64(_mm_sub_epi64(numers, q), 1), q);
+ return _mm_srli_epi64(t, shift);
+ }
+ else {
+ return _mm_srli_epi64(q, more);
+ }
+ }
+}
+
+__m128i libdivide_u64_branchfree_do_vector(__m128i numers, const struct libdivide_u64_branchfree_t *denom) {
+ __m128i q = libdivide_mullhi_u64_vector(numers, _mm_set1_epi64x(denom->magic));
+ __m128i t = _mm_add_epi64(_mm_srli_epi64(_mm_sub_epi64(numers, q), 1), q);
+ return _mm_srli_epi64(t, denom->more);
+}
+
+////////// SINT32
+
+__m128i libdivide_s32_do_vector(__m128i numers, const struct libdivide_s32_t *denom) {
+ uint8_t more = denom->more;
+ if (!denom->magic) {
+ uint32_t shift = more & LIBDIVIDE_32_SHIFT_MASK;
+ uint32_t mask = (1U << shift) - 1;
+ __m128i roundToZeroTweak = _mm_set1_epi32(mask);
+ // q = numer + ((numer >> 31) & roundToZeroTweak);
+ __m128i q = _mm_add_epi32(numers, _mm_and_si128(_mm_srai_epi32(numers, 31), roundToZeroTweak));
+ q = _mm_srai_epi32(q, shift);
+ __m128i sign = _mm_set1_epi32((int8_t)more >> 7);
+ // q = (q ^ sign) - sign;
+ q = _mm_sub_epi32(_mm_xor_si128(q, sign), sign);
+ return q;
+ }
+ else {
+ __m128i q = libdivide_mullhi_s32_vector(numers, _mm_set1_epi32(denom->magic));
+ if (more & LIBDIVIDE_ADD_MARKER) {
+ // must be arithmetic shift
+ __m128i sign = _mm_set1_epi32((int8_t)more >> 7);
+ // q += ((numer ^ sign) - sign);
+ q = _mm_add_epi32(q, _mm_sub_epi32(_mm_xor_si128(numers, sign), sign));
+ }
+ // q >>= shift
+ q = _mm_srai_epi32(q, more & LIBDIVIDE_32_SHIFT_MASK);
+ q = _mm_add_epi32(q, _mm_srli_epi32(q, 31)); // q += (q < 0)
+ return q;
+ }
+}
+
+__m128i libdivide_s32_branchfree_do_vector(__m128i numers, const struct libdivide_s32_branchfree_t *denom) {
+ int32_t magic = denom->magic;
+ uint8_t more = denom->more;
+ uint8_t shift = more & LIBDIVIDE_32_SHIFT_MASK;
+ // must be arithmetic shift
+ __m128i sign = _mm_set1_epi32((int8_t)more >> 7);
+ __m128i q = libdivide_mullhi_s32_vector(numers, _mm_set1_epi32(magic));
+ q = _mm_add_epi32(q, numers); // q += numers
+
+ // If q is non-negative, we have nothing to do
+ // If q is negative, we want to add either (2**shift)-1 if d is
+ // a power of 2, or (2**shift) if it is not a power of 2
+ uint32_t is_power_of_2 = (magic == 0);
+ __m128i q_sign = _mm_srai_epi32(q, 31); // q_sign = q >> 31
+ __m128i mask = _mm_set1_epi32((1U << shift) - is_power_of_2);
+ q = _mm_add_epi32(q, _mm_and_si128(q_sign, mask)); // q = q + (q_sign & mask)
+ q = _mm_srai_epi32(q, shift); // q >>= shift
+ q = _mm_sub_epi32(_mm_xor_si128(q, sign), sign); // q = (q ^ sign) - sign
+ return q;
+}
+
+////////// SINT64
+
+__m128i libdivide_s64_do_vector(__m128i numers, const struct libdivide_s64_t *denom) {
+ uint8_t more = denom->more;
+ int64_t magic = denom->magic;
+ if (magic == 0) { // shift path
+ uint32_t shift = more & LIBDIVIDE_64_SHIFT_MASK;
+ uint64_t mask = (1ULL << shift) - 1;
+ __m128i roundToZeroTweak = _mm_set1_epi64x(mask);
+ // q = numer + ((numer >> 63) & roundToZeroTweak);
+ __m128i q = _mm_add_epi64(numers, _mm_and_si128(libdivide_s64_signbits(numers), roundToZeroTweak));
+ q = libdivide_s64_shift_right_vector(q, shift);
+ __m128i sign = _mm_set1_epi32((int8_t)more >> 7);
+ // q = (q ^ sign) - sign;
+ q = _mm_sub_epi64(_mm_xor_si128(q, sign), sign);
+ return q;
+ }
+ else {
+ __m128i q = libdivide_mullhi_s64_vector(numers, _mm_set1_epi64x(magic));
+ if (more & LIBDIVIDE_ADD_MARKER) {
+ // must be arithmetic shift
+ __m128i sign = _mm_set1_epi32((int8_t)more >> 7);
+ // q += ((numer ^ sign) - sign);
+ q = _mm_add_epi64(q, _mm_sub_epi64(_mm_xor_si128(numers, sign), sign));
+ }
+ // q >>= denom->mult_path.shift
+ q = libdivide_s64_shift_right_vector(q, more & LIBDIVIDE_64_SHIFT_MASK);
+ q = _mm_add_epi64(q, _mm_srli_epi64(q, 63)); // q += (q < 0)
+ return q;
+ }
+}
+
+__m128i libdivide_s64_branchfree_do_vector(__m128i numers, const struct libdivide_s64_branchfree_t *denom) {
+ int64_t magic = denom->magic;
+ uint8_t more = denom->more;
+ uint8_t shift = more & LIBDIVIDE_64_SHIFT_MASK;
+ // must be arithmetic shift
+ __m128i sign = _mm_set1_epi32((int8_t)more >> 7);
+
+ // libdivide_mullhi_s64(numers, magic);
+ __m128i q = libdivide_mullhi_s64_vector(numers, _mm_set1_epi64x(magic));
+ q = _mm_add_epi64(q, numers); // q += numers
+
+ // If q is non-negative, we have nothing to do.
+ // If q is negative, we want to add either (2**shift)-1 if d is
+ // a power of 2, or (2**shift) if it is not a power of 2.
+ uint32_t is_power_of_2 = (magic == 0);
+ __m128i q_sign = libdivide_s64_signbits(q); // q_sign = q >> 63
+ __m128i mask = _mm_set1_epi64x((1ULL << shift) - is_power_of_2);
+ q = _mm_add_epi64(q, _mm_and_si128(q_sign, mask)); // q = q + (q_sign & mask)
+ q = libdivide_s64_shift_right_vector(q, shift); // q >>= shift
+ q = _mm_sub_epi64(_mm_xor_si128(q, sign), sign); // q = (q ^ sign) - sign
+ return q;
+}
+
+#endif
+
+/////////// C++ stuff
+
+#ifdef __cplusplus
+
+// The C++ divider class is templated on both an integer type
+// (like uint64_t) and an algorithm type.
+// * BRANCHFULL is the default algorithm type.
+// * BRANCHFREE is the branchfree algorithm type.
+enum {
+ BRANCHFULL,
+ BRANCHFREE
+};
+
+#if defined(LIBDIVIDE_AVX512)
+ #define LIBDIVIDE_VECTOR_TYPE __m512i
+#elif defined(LIBDIVIDE_AVX2)
+ #define LIBDIVIDE_VECTOR_TYPE __m256i
+#elif defined(LIBDIVIDE_SSE2)
+ #define LIBDIVIDE_VECTOR_TYPE __m128i
+#endif
+
+#if !defined(LIBDIVIDE_VECTOR_TYPE)
+ #define LIBDIVIDE_DIVIDE_VECTOR(ALGO)
+#else
+ #define LIBDIVIDE_DIVIDE_VECTOR(ALGO) \
+ LIBDIVIDE_VECTOR_TYPE divide(LIBDIVIDE_VECTOR_TYPE n) const { \
+ return libdivide_##ALGO##_do_vector(n, &denom); \
+ }
+#endif
+
+// The DISPATCHER_GEN() macro generates C++ methods (for the given integer
+// and algorithm types) that redirect to libdivide's C API.
+#define DISPATCHER_GEN(T, ALGO) \
+ libdivide_##ALGO##_t denom; \
+ dispatcher() { } \
+ dispatcher(T d) \
+ : denom(libdivide_##ALGO##_gen(d)) \
+ { } \
+ T divide(T n) const { \
+ return libdivide_##ALGO##_do(n, &denom); \
+ } \
+ LIBDIVIDE_DIVIDE_VECTOR(ALGO) \
+ T recover() const { \
+ return libdivide_##ALGO##_recover(&denom); \
+ }
+
+// The dispatcher selects a specific division algorithm for a given
+// type and ALGO using partial template specialization.
+template<bool IS_INTEGRAL, bool IS_SIGNED, int SIZEOF, int ALGO> struct dispatcher { };
+
+template<> struct dispatcher<true, true, sizeof(int32_t), BRANCHFULL> { DISPATCHER_GEN(int32_t, s32) };
+template<> struct dispatcher<true, true, sizeof(int32_t), BRANCHFREE> { DISPATCHER_GEN(int32_t, s32_branchfree) };
+template<> struct dispatcher<true, false, sizeof(uint32_t), BRANCHFULL> { DISPATCHER_GEN(uint32_t, u32) };
+template<> struct dispatcher<true, false, sizeof(uint32_t), BRANCHFREE> { DISPATCHER_GEN(uint32_t, u32_branchfree) };
+template<> struct dispatcher<true, true, sizeof(int64_t), BRANCHFULL> { DISPATCHER_GEN(int64_t, s64) };
+template<> struct dispatcher<true, true, sizeof(int64_t), BRANCHFREE> { DISPATCHER_GEN(int64_t, s64_branchfree) };
+template<> struct dispatcher<true, false, sizeof(uint64_t), BRANCHFULL> { DISPATCHER_GEN(uint64_t, u64) };
+template<> struct dispatcher<true, false, sizeof(uint64_t), BRANCHFREE> { DISPATCHER_GEN(uint64_t, u64_branchfree) };
+
+// This is the main divider class for use by the user (C++ API).
+// The actual division algorithm is selected using the dispatcher struct
+// based on the integer and algorithm template parameters.
+template<typename T, int ALGO = BRANCHFULL>
+class divider {
+public:
+ // We leave the default constructor empty so that creating
+ // an array of dividers and then initializing them
+ // later doesn't slow us down.
+ divider() { }
+
+ // Constructor that takes the divisor as a parameter
+ divider(T d) : div(d) { }
+
+ // Divides n by the divisor
+ T divide(T n) const {
+ return div.divide(n);
+ }
+
+ // Recovers the divisor, returns the value that was
+ // used to initialize this divider object.
+ T recover() const {
+ return div.recover();
+ }
+
+ bool operator==(const divider<T, ALGO>& other) const {
+ return div.denom.magic == other.denom.magic &&
+ div.denom.more == other.denom.more;
+ }
+
+ bool operator!=(const divider<T, ALGO>& other) const {
+ return !(*this == other);
+ }
+
+#if defined(LIBDIVIDE_VECTOR_TYPE)
+ // Treats the vector as packed integer values with the same type as
+ // the divider (e.g. s32, u32, s64, u64) and divides each of
+ // them by the divider, returning the packed quotients.
+ LIBDIVIDE_VECTOR_TYPE divide(LIBDIVIDE_VECTOR_TYPE n) const {
+ return div.divide(n);
+ }
+#endif
+
+private:
+ // Storage for the actual divisor
+ dispatcher<std::is_integral<T>::value,
+ std::is_signed<T>::value, sizeof(T), ALGO> div;
+};
+
+// Overload of operator / for scalar division
+template<typename T, int ALGO>
+T operator/(T n, const divider<T, ALGO>& div) {
+ return div.divide(n);
+}
+
+// Overload of operator /= for scalar division
+template<typename T, int ALGO>
+T& operator/=(T& n, const divider<T, ALGO>& div) {
+ n = div.divide(n);
+ return n;
+}
+
+#if defined(LIBDIVIDE_VECTOR_TYPE)
+ // Overload of operator / for vector division
+ template<typename T, int ALGO>
+ LIBDIVIDE_VECTOR_TYPE operator/(LIBDIVIDE_VECTOR_TYPE n, const divider<T, ALGO>& div) {
+ return div.divide(n);
+ }
+ // Overload of operator /= for vector division
+ template<typename T, int ALGO>
+ LIBDIVIDE_VECTOR_TYPE& operator/=(LIBDIVIDE_VECTOR_TYPE& n, const divider<T, ALGO>& div) {
+ n = div.divide(n);
+ return n;
+ }
+#endif
+
+// libdivdie::branchfree_divider<T>
+template <typename T>
+using branchfree_divider = divider<T, BRANCHFREE>;
+
+} // namespace libdivide
+
+#endif // __cplusplus
+
+#endif // NUMPY_CORE_INCLUDE_NUMPY_LIBDIVIDE_LIBDIVIDE_H_
diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/include/numpy/ufuncobject.h b/.venv/lib/python3.12/site-packages/numpy/_core/include/numpy/ufuncobject.h
new file mode 100644
index 0000000..f5f82b5
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/_core/include/numpy/ufuncobject.h
@@ -0,0 +1,343 @@
+#ifndef NUMPY_CORE_INCLUDE_NUMPY_UFUNCOBJECT_H_
+#define NUMPY_CORE_INCLUDE_NUMPY_UFUNCOBJECT_H_
+
+#include <numpy/npy_math.h>
+#include <numpy/npy_common.h>
+
+#ifdef __cplusplus
+extern "C" {
+#endif
+
+/*
+ * The legacy generic inner loop for a standard element-wise or
+ * generalized ufunc.
+ */
+typedef void (*PyUFuncGenericFunction)
+ (char **args,
+ npy_intp const *dimensions,
+ npy_intp const *strides,
+ void *innerloopdata);
+
+/*
+ * The most generic one-dimensional inner loop for
+ * a masked standard element-wise ufunc. "Masked" here means that it skips
+ * doing calculations on any items for which the maskptr array has a true
+ * value.
+ */
+typedef void (PyUFunc_MaskedStridedInnerLoopFunc)(
+ char **dataptrs, npy_intp *strides,
+ char *maskptr, npy_intp mask_stride,
+ npy_intp count,
+ NpyAuxData *innerloopdata);
+
+/* Forward declaration for the type resolver and loop selector typedefs */
+struct _tagPyUFuncObject;
+
+/*
+ * Given the operands for calling a ufunc, should determine the
+ * calculation input and output data types and return an inner loop function.
+ * This function should validate that the casting rule is being followed,
+ * and fail if it is not.
+ *
+ * For backwards compatibility, the regular type resolution function does not
+ * support auxiliary data with object semantics. The type resolution call
+ * which returns a masked generic function returns a standard NpyAuxData
+ * object, for which the NPY_AUXDATA_FREE and NPY_AUXDATA_CLONE macros
+ * work.
+ *
+ * ufunc: The ufunc object.
+ * casting: The 'casting' parameter provided to the ufunc.
+ * operands: An array of length (ufunc->nin + ufunc->nout),
+ * with the output parameters possibly NULL.
+ * type_tup: Either NULL, or the type_tup passed to the ufunc.
+ * out_dtypes: An array which should be populated with new
+ * references to (ufunc->nin + ufunc->nout) new
+ * dtypes, one for each input and output. These
+ * dtypes should all be in native-endian format.
+ *
+ * Should return 0 on success, -1 on failure (with exception set),
+ * or -2 if Py_NotImplemented should be returned.
+ */
+typedef int (PyUFunc_TypeResolutionFunc)(
+ struct _tagPyUFuncObject *ufunc,
+ NPY_CASTING casting,
+ PyArrayObject **operands,
+ PyObject *type_tup,
+ PyArray_Descr **out_dtypes);
+
+/*
+ * This is the signature for the functions that may be assigned to the
+ * `process_core_dims_func` field of the PyUFuncObject structure.
+ * Implementation of this function is optional. This function is only used
+ * by generalized ufuncs (i.e. those with the field `core_enabled` set to 1).
+ * The function is called by the ufunc during the processing of the arguments
+ * of a call of the ufunc. The function can check the core dimensions of the
+ * input and output arrays and return -1 with an exception set if any
+ * requirements are not satisfied. If the caller of the ufunc didn't provide
+ * output arrays, the core dimensions associated with the output arrays (i.e.
+ * those that are not also used in input arrays) will have the value -1 in
+ * `core_dim_sizes`. This function can replace any output core dimensions
+ * that are -1 with a value that is appropriate for the ufunc.
+ *
+ * Parameter Description
+ * --------------- ------------------------------------------------------
+ * ufunc The ufunc object
+ * core_dim_sizes An array with length `ufunc->core_num_dim_ix`.
+ * The core dimensions of the arrays passed to the ufunc
+ * will have been set. If the caller of the ufunc didn't
+ * provide the output array(s), the output-only core
+ * dimensions will have the value -1.
+ *
+ * The function must not change any element in `core_dim_sizes` that is
+ * not -1 on input. Doing so will result in incorrect output from the
+ * ufunc, and could result in a crash of the Python interpreter.
+ *
+ * The function must return 0 on success, -1 on failure (with an exception
+ * set).
+ */
+typedef int (PyUFunc_ProcessCoreDimsFunc)(
+ struct _tagPyUFuncObject *ufunc,
+ npy_intp *core_dim_sizes);
+
+typedef struct _tagPyUFuncObject {
+ PyObject_HEAD
+ /*
+ * nin: Number of inputs
+ * nout: Number of outputs
+ * nargs: Always nin + nout (Why is it stored?)
+ */
+ int nin, nout, nargs;
+
+ /*
+ * Identity for reduction, any of PyUFunc_One, PyUFunc_Zero
+ * PyUFunc_MinusOne, PyUFunc_None, PyUFunc_ReorderableNone,
+ * PyUFunc_IdentityValue.
+ */
+ int identity;
+
+ /* Array of one-dimensional core loops */
+ PyUFuncGenericFunction *functions;
+ /* Array of funcdata that gets passed into the functions */
+ void *const *data;
+ /* The number of elements in 'functions' and 'data' */
+ int ntypes;
+
+ /* Used to be unused field 'check_return' */
+ int reserved1;
+
+ /* The name of the ufunc */
+ const char *name;
+
+ /* Array of type numbers, of size ('nargs' * 'ntypes') */
+ const char *types;
+
+ /* Documentation string */
+ const char *doc;
+
+ void *ptr;
+ PyObject *obj;
+ PyObject *userloops;
+
+ /* generalized ufunc parameters */
+
+ /* 0 for scalar ufunc; 1 for generalized ufunc */
+ int core_enabled;
+ /* number of distinct dimension names in signature */
+ int core_num_dim_ix;
+
+ /*
+ * dimension indices of input/output argument k are stored in
+ * core_dim_ixs[core_offsets[k]..core_offsets[k]+core_num_dims[k]-1]
+ */
+
+ /* numbers of core dimensions of each argument */
+ int *core_num_dims;
+ /*
+ * dimension indices in a flatted form; indices
+ * are in the range of [0,core_num_dim_ix)
+ */
+ int *core_dim_ixs;
+ /*
+ * positions of 1st core dimensions of each
+ * argument in core_dim_ixs, equivalent to cumsum(core_num_dims)
+ */
+ int *core_offsets;
+ /* signature string for printing purpose */
+ char *core_signature;
+
+ /*
+ * A function which resolves the types and fills an array
+ * with the dtypes for the inputs and outputs.
+ */
+ PyUFunc_TypeResolutionFunc *type_resolver;
+
+ /* A dictionary to monkeypatch ufuncs */
+ PyObject *dict;
+
+ /*
+ * This was blocked off to be the "new" inner loop selector in 1.7,
+ * but this was never implemented. (This is also why the above
+ * selector is called the "legacy" selector.)
+ */
+ #ifndef Py_LIMITED_API
+ vectorcallfunc vectorcall;
+ #else
+ void *vectorcall;
+ #endif
+
+ /* Was previously the `PyUFunc_MaskedInnerLoopSelectionFunc` */
+ void *reserved3;
+
+ /*
+ * List of flags for each operand when ufunc is called by nditer object.
+ * These flags will be used in addition to the default flags for each
+ * operand set by nditer object.
+ */
+ npy_uint32 *op_flags;
+
+ /*
+ * List of global flags used when ufunc is called by nditer object.
+ * These flags will be used in addition to the default global flags
+ * set by nditer object.
+ */
+ npy_uint32 iter_flags;
+
+ /* New in NPY_API_VERSION 0x0000000D and above */
+ #if NPY_FEATURE_VERSION >= NPY_1_16_API_VERSION
+ /*
+ * for each core_num_dim_ix distinct dimension names,
+ * the possible "frozen" size (-1 if not frozen).
+ */
+ npy_intp *core_dim_sizes;
+
+ /*
+ * for each distinct core dimension, a set of UFUNC_CORE_DIM* flags
+ */
+ npy_uint32 *core_dim_flags;
+
+ /* Identity for reduction, when identity == PyUFunc_IdentityValue */
+ PyObject *identity_value;
+ #endif /* NPY_FEATURE_VERSION >= NPY_1_16_API_VERSION */
+
+ /* New in NPY_API_VERSION 0x0000000F and above */
+ #if NPY_FEATURE_VERSION >= NPY_1_22_API_VERSION
+ /* New private fields related to dispatching */
+ void *_dispatch_cache;
+ /* A PyListObject of `(tuple of DTypes, ArrayMethod/Promoter)` */
+ PyObject *_loops;
+ #endif
+ #if NPY_FEATURE_VERSION >= NPY_2_1_API_VERSION
+ /*
+ * Optional function to process core dimensions of a gufunc.
+ */
+ PyUFunc_ProcessCoreDimsFunc *process_core_dims_func;
+ #endif
+} PyUFuncObject;
+
+#include "arrayobject.h"
+/* Generalized ufunc; 0x0001 reserved for possible use as CORE_ENABLED */
+/* the core dimension's size will be determined by the operands. */
+#define UFUNC_CORE_DIM_SIZE_INFERRED 0x0002
+/* the core dimension may be absent */
+#define UFUNC_CORE_DIM_CAN_IGNORE 0x0004
+/* flags inferred during execution */
+#define UFUNC_CORE_DIM_MISSING 0x00040000
+
+
+#define UFUNC_OBJ_ISOBJECT 1
+#define UFUNC_OBJ_NEEDS_API 2
+
+
+#if NPY_ALLOW_THREADS
+#define NPY_LOOP_BEGIN_THREADS do {if (!(loop->obj & UFUNC_OBJ_NEEDS_API)) _save = PyEval_SaveThread();} while (0);
+#define NPY_LOOP_END_THREADS do {if (!(loop->obj & UFUNC_OBJ_NEEDS_API)) PyEval_RestoreThread(_save);} while (0);
+#else
+#define NPY_LOOP_BEGIN_THREADS
+#define NPY_LOOP_END_THREADS
+#endif
+
+/*
+ * UFunc has unit of 0, and the order of operations can be reordered
+ * This case allows reduction with multiple axes at once.
+ */
+#define PyUFunc_Zero 0
+/*
+ * UFunc has unit of 1, and the order of operations can be reordered
+ * This case allows reduction with multiple axes at once.
+ */
+#define PyUFunc_One 1
+/*
+ * UFunc has unit of -1, and the order of operations can be reordered
+ * This case allows reduction with multiple axes at once. Intended for
+ * bitwise_and reduction.
+ */
+#define PyUFunc_MinusOne 2
+/*
+ * UFunc has no unit, and the order of operations cannot be reordered.
+ * This case does not allow reduction with multiple axes at once.
+ */
+#define PyUFunc_None -1
+/*
+ * UFunc has no unit, and the order of operations can be reordered
+ * This case allows reduction with multiple axes at once.
+ */
+#define PyUFunc_ReorderableNone -2
+/*
+ * UFunc unit is an identity_value, and the order of operations can be reordered
+ * This case allows reduction with multiple axes at once.
+ */
+#define PyUFunc_IdentityValue -3
+
+
+#define UFUNC_REDUCE 0
+#define UFUNC_ACCUMULATE 1
+#define UFUNC_REDUCEAT 2
+#define UFUNC_OUTER 3
+
+
+typedef struct {
+ int nin;
+ int nout;
+ PyObject *callable;
+} PyUFunc_PyFuncData;
+
+/* A linked-list of function information for
+ user-defined 1-d loops.
+ */
+typedef struct _loop1d_info {
+ PyUFuncGenericFunction func;
+ void *data;
+ int *arg_types;
+ struct _loop1d_info *next;
+ int nargs;
+ PyArray_Descr **arg_dtypes;
+} PyUFunc_Loop1d;
+
+
+#define UFUNC_PYVALS_NAME "UFUNC_PYVALS"
+
+/* THESE MACROS ARE DEPRECATED.
+ * Use npy_set_floatstatus_* in the npymath library.
+ */
+#define UFUNC_FPE_DIVIDEBYZERO NPY_FPE_DIVIDEBYZERO
+#define UFUNC_FPE_OVERFLOW NPY_FPE_OVERFLOW
+#define UFUNC_FPE_UNDERFLOW NPY_FPE_UNDERFLOW
+#define UFUNC_FPE_INVALID NPY_FPE_INVALID
+
+/* Make sure it gets defined if it isn't already */
+#ifndef UFUNC_NOFPE
+/* Clear the floating point exception default of Borland C++ */
+#if defined(__BORLANDC__)
+#define UFUNC_NOFPE _control87(MCW_EM, MCW_EM);
+#else
+#define UFUNC_NOFPE
+#endif
+#endif
+
+#include "__ufunc_api.h"
+
+#ifdef __cplusplus
+}
+#endif
+
+#endif /* NUMPY_CORE_INCLUDE_NUMPY_UFUNCOBJECT_H_ */
diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/include/numpy/utils.h b/.venv/lib/python3.12/site-packages/numpy/_core/include/numpy/utils.h
new file mode 100644
index 0000000..97f0609
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/_core/include/numpy/utils.h
@@ -0,0 +1,37 @@
+#ifndef NUMPY_CORE_INCLUDE_NUMPY_UTILS_H_
+#define NUMPY_CORE_INCLUDE_NUMPY_UTILS_H_
+
+#ifndef __COMP_NPY_UNUSED
+ #if defined(__GNUC__)
+ #define __COMP_NPY_UNUSED __attribute__ ((__unused__))
+ #elif defined(__ICC)
+ #define __COMP_NPY_UNUSED __attribute__ ((__unused__))
+ #elif defined(__clang__)
+ #define __COMP_NPY_UNUSED __attribute__ ((unused))
+ #else
+ #define __COMP_NPY_UNUSED
+ #endif
+#endif
+
+#if defined(__GNUC__) || defined(__ICC) || defined(__clang__)
+ #define NPY_DECL_ALIGNED(x) __attribute__ ((aligned (x)))
+#elif defined(_MSC_VER)
+ #define NPY_DECL_ALIGNED(x) __declspec(align(x))
+#else
+ #define NPY_DECL_ALIGNED(x)
+#endif
+
+/* Use this to tag a variable as not used. It will remove unused variable
+ * warning on support platforms (see __COM_NPY_UNUSED) and mangle the variable
+ * to avoid accidental use */
+#define NPY_UNUSED(x) __NPY_UNUSED_TAGGED ## x __COMP_NPY_UNUSED
+#define NPY_EXPAND(x) x
+
+#define NPY_STRINGIFY(x) #x
+#define NPY_TOSTRING(x) NPY_STRINGIFY(x)
+
+#define NPY_CAT__(a, b) a ## b
+#define NPY_CAT_(a, b) NPY_CAT__(a, b)
+#define NPY_CAT(a, b) NPY_CAT_(a, b)
+
+#endif /* NUMPY_CORE_INCLUDE_NUMPY_UTILS_H_ */
diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/lib/libnpymath.a b/.venv/lib/python3.12/site-packages/numpy/_core/lib/libnpymath.a
new file mode 100644
index 0000000..f8d561d
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/_core/lib/libnpymath.a
Binary files differ
diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/lib/npy-pkg-config/mlib.ini b/.venv/lib/python3.12/site-packages/numpy/_core/lib/npy-pkg-config/mlib.ini
new file mode 100644
index 0000000..5840f5e
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/_core/lib/npy-pkg-config/mlib.ini
@@ -0,0 +1,12 @@
+[meta]
+Name = mlib
+Description = Math library used with this version of numpy
+Version = 1.0
+
+[default]
+Libs=-lm
+Cflags=
+
+[msvc]
+Libs=m.lib
+Cflags=
diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/lib/npy-pkg-config/npymath.ini b/.venv/lib/python3.12/site-packages/numpy/_core/lib/npy-pkg-config/npymath.ini
new file mode 100644
index 0000000..8d879e3
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/_core/lib/npy-pkg-config/npymath.ini
@@ -0,0 +1,20 @@
+[meta]
+Name=npymath
+Description=Portable, core math library implementing C99 standard
+Version=0.1
+
+[variables]
+pkgname=numpy._core
+prefix=${pkgdir}
+libdir=${prefix}/lib
+includedir=${prefix}/include
+
+[default]
+Libs=-L${libdir} -lnpymath
+Cflags=-I${includedir}
+Requires=mlib
+
+[msvc]
+Libs=/LIBPATH:${libdir} npymath.lib
+Cflags=/INCLUDE:${includedir}
+Requires=mlib
diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/lib/pkgconfig/numpy.pc b/.venv/lib/python3.12/site-packages/numpy/_core/lib/pkgconfig/numpy.pc
new file mode 100644
index 0000000..3a4fdbc
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/_core/lib/pkgconfig/numpy.pc
@@ -0,0 +1,7 @@
+prefix=${pcfiledir}/../..
+includedir=${prefix}/include
+
+Name: numpy
+Description: NumPy is the fundamental package for scientific computing with Python.
+Version: 2.3.2
+Cflags: -I${includedir}
diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/memmap.py b/.venv/lib/python3.12/site-packages/numpy/_core/memmap.py
new file mode 100644
index 0000000..8cfa7f9
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/_core/memmap.py
@@ -0,0 +1,363 @@
+import operator
+from contextlib import nullcontext
+
+import numpy as np
+from numpy._utils import set_module
+
+from .numeric import dtype, ndarray, uint8
+
+__all__ = ['memmap']
+
+dtypedescr = dtype
+valid_filemodes = ["r", "c", "r+", "w+"]
+writeable_filemodes = ["r+", "w+"]
+
+mode_equivalents = {
+ "readonly": "r",
+ "copyonwrite": "c",
+ "readwrite": "r+",
+ "write": "w+"
+ }
+
+
+@set_module('numpy')
+class memmap(ndarray):
+ """Create a memory-map to an array stored in a *binary* file on disk.
+
+ Memory-mapped files are used for accessing small segments of large files
+ on disk, without reading the entire file into memory. NumPy's
+ memmap's are array-like objects. This differs from Python's ``mmap``
+ module, which uses file-like objects.
+
+ This subclass of ndarray has some unpleasant interactions with
+ some operations, because it doesn't quite fit properly as a subclass.
+ An alternative to using this subclass is to create the ``mmap``
+ object yourself, then create an ndarray with ndarray.__new__ directly,
+ passing the object created in its 'buffer=' parameter.
+
+ This class may at some point be turned into a factory function
+ which returns a view into an mmap buffer.
+
+ Flush the memmap instance to write the changes to the file. Currently there
+ is no API to close the underlying ``mmap``. It is tricky to ensure the
+ resource is actually closed, since it may be shared between different
+ memmap instances.
+
+
+ Parameters
+ ----------
+ filename : str, file-like object, or pathlib.Path instance
+ The file name or file object to be used as the array data buffer.
+ dtype : data-type, optional
+ The data-type used to interpret the file contents.
+ Default is `uint8`.
+ mode : {'r+', 'r', 'w+', 'c'}, optional
+ The file is opened in this mode:
+
+ +------+-------------------------------------------------------------+
+ | 'r' | Open existing file for reading only. |
+ +------+-------------------------------------------------------------+
+ | 'r+' | Open existing file for reading and writing. |
+ +------+-------------------------------------------------------------+
+ | 'w+' | Create or overwrite existing file for reading and writing. |
+ | | If ``mode == 'w+'`` then `shape` must also be specified. |
+ +------+-------------------------------------------------------------+
+ | 'c' | Copy-on-write: assignments affect data in memory, but |
+ | | changes are not saved to disk. The file on disk is |
+ | | read-only. |
+ +------+-------------------------------------------------------------+
+
+ Default is 'r+'.
+ offset : int, optional
+ In the file, array data starts at this offset. Since `offset` is
+ measured in bytes, it should normally be a multiple of the byte-size
+ of `dtype`. When ``mode != 'r'``, even positive offsets beyond end of
+ file are valid; The file will be extended to accommodate the
+ additional data. By default, ``memmap`` will start at the beginning of
+ the file, even if ``filename`` is a file pointer ``fp`` and
+ ``fp.tell() != 0``.
+ shape : int or sequence of ints, optional
+ The desired shape of the array. If ``mode == 'r'`` and the number
+ of remaining bytes after `offset` is not a multiple of the byte-size
+ of `dtype`, you must specify `shape`. By default, the returned array
+ will be 1-D with the number of elements determined by file size
+ and data-type.
+
+ .. versionchanged:: 2.0
+ The shape parameter can now be any integer sequence type, previously
+ types were limited to tuple and int.
+
+ order : {'C', 'F'}, optional
+ Specify the order of the ndarray memory layout:
+ :term:`row-major`, C-style or :term:`column-major`,
+ Fortran-style. This only has an effect if the shape is
+ greater than 1-D. The default order is 'C'.
+
+ Attributes
+ ----------
+ filename : str or pathlib.Path instance
+ Path to the mapped file.
+ offset : int
+ Offset position in the file.
+ mode : str
+ File mode.
+
+ Methods
+ -------
+ flush
+ Flush any changes in memory to file on disk.
+ When you delete a memmap object, flush is called first to write
+ changes to disk.
+
+
+ See also
+ --------
+ lib.format.open_memmap : Create or load a memory-mapped ``.npy`` file.
+
+ Notes
+ -----
+ The memmap object can be used anywhere an ndarray is accepted.
+ Given a memmap ``fp``, ``isinstance(fp, numpy.ndarray)`` returns
+ ``True``.
+
+ Memory-mapped files cannot be larger than 2GB on 32-bit systems.
+
+ When a memmap causes a file to be created or extended beyond its
+ current size in the filesystem, the contents of the new part are
+ unspecified. On systems with POSIX filesystem semantics, the extended
+ part will be filled with zero bytes.
+
+ Examples
+ --------
+ >>> import numpy as np
+ >>> data = np.arange(12, dtype='float32')
+ >>> data.resize((3,4))
+
+ This example uses a temporary file so that doctest doesn't write
+ files to your directory. You would use a 'normal' filename.
+
+ >>> from tempfile import mkdtemp
+ >>> import os.path as path
+ >>> filename = path.join(mkdtemp(), 'newfile.dat')
+
+ Create a memmap with dtype and shape that matches our data:
+
+ >>> fp = np.memmap(filename, dtype='float32', mode='w+', shape=(3,4))
+ >>> fp
+ memmap([[0., 0., 0., 0.],
+ [0., 0., 0., 0.],
+ [0., 0., 0., 0.]], dtype=float32)
+
+ Write data to memmap array:
+
+ >>> fp[:] = data[:]
+ >>> fp
+ memmap([[ 0., 1., 2., 3.],
+ [ 4., 5., 6., 7.],
+ [ 8., 9., 10., 11.]], dtype=float32)
+
+ >>> fp.filename == path.abspath(filename)
+ True
+
+ Flushes memory changes to disk in order to read them back
+
+ >>> fp.flush()
+
+ Load the memmap and verify data was stored:
+
+ >>> newfp = np.memmap(filename, dtype='float32', mode='r', shape=(3,4))
+ >>> newfp
+ memmap([[ 0., 1., 2., 3.],
+ [ 4., 5., 6., 7.],
+ [ 8., 9., 10., 11.]], dtype=float32)
+
+ Read-only memmap:
+
+ >>> fpr = np.memmap(filename, dtype='float32', mode='r', shape=(3,4))
+ >>> fpr.flags.writeable
+ False
+
+ Copy-on-write memmap:
+
+ >>> fpc = np.memmap(filename, dtype='float32', mode='c', shape=(3,4))
+ >>> fpc.flags.writeable
+ True
+
+ It's possible to assign to copy-on-write array, but values are only
+ written into the memory copy of the array, and not written to disk:
+
+ >>> fpc
+ memmap([[ 0., 1., 2., 3.],
+ [ 4., 5., 6., 7.],
+ [ 8., 9., 10., 11.]], dtype=float32)
+ >>> fpc[0,:] = 0
+ >>> fpc
+ memmap([[ 0., 0., 0., 0.],
+ [ 4., 5., 6., 7.],
+ [ 8., 9., 10., 11.]], dtype=float32)
+
+ File on disk is unchanged:
+
+ >>> fpr
+ memmap([[ 0., 1., 2., 3.],
+ [ 4., 5., 6., 7.],
+ [ 8., 9., 10., 11.]], dtype=float32)
+
+ Offset into a memmap:
+
+ >>> fpo = np.memmap(filename, dtype='float32', mode='r', offset=16)
+ >>> fpo
+ memmap([ 4., 5., 6., 7., 8., 9., 10., 11.], dtype=float32)
+
+ """
+
+ __array_priority__ = -100.0
+
+ def __new__(subtype, filename, dtype=uint8, mode='r+', offset=0,
+ shape=None, order='C'):
+ # Import here to minimize 'import numpy' overhead
+ import mmap
+ import os.path
+ try:
+ mode = mode_equivalents[mode]
+ except KeyError as e:
+ if mode not in valid_filemodes:
+ all_modes = valid_filemodes + list(mode_equivalents.keys())
+ raise ValueError(
+ f"mode must be one of {all_modes!r} (got {mode!r})"
+ ) from None
+
+ if mode == 'w+' and shape is None:
+ raise ValueError("shape must be given if mode == 'w+'")
+
+ if hasattr(filename, 'read'):
+ f_ctx = nullcontext(filename)
+ else:
+ f_ctx = open(
+ os.fspath(filename),
+ ('r' if mode == 'c' else mode) + 'b'
+ )
+
+ with f_ctx as fid:
+ fid.seek(0, 2)
+ flen = fid.tell()
+ descr = dtypedescr(dtype)
+ _dbytes = descr.itemsize
+
+ if shape is None:
+ bytes = flen - offset
+ if bytes % _dbytes:
+ raise ValueError("Size of available data is not a "
+ "multiple of the data-type size.")
+ size = bytes // _dbytes
+ shape = (size,)
+ else:
+ if not isinstance(shape, (tuple, list)):
+ try:
+ shape = [operator.index(shape)]
+ except TypeError:
+ pass
+ shape = tuple(shape)
+ size = np.intp(1) # avoid overflows
+ for k in shape:
+ size *= k
+
+ bytes = int(offset + size * _dbytes)
+
+ if mode in ('w+', 'r+'):
+ # gh-27723
+ # if bytes == 0, we write out 1 byte to allow empty memmap.
+ bytes = max(bytes, 1)
+ if flen < bytes:
+ fid.seek(bytes - 1, 0)
+ fid.write(b'\0')
+ fid.flush()
+
+ if mode == 'c':
+ acc = mmap.ACCESS_COPY
+ elif mode == 'r':
+ acc = mmap.ACCESS_READ
+ else:
+ acc = mmap.ACCESS_WRITE
+
+ start = offset - offset % mmap.ALLOCATIONGRANULARITY
+ bytes -= start
+ # bytes == 0 is problematic as in mmap length=0 maps the full file.
+ # See PR gh-27723 for a more detailed explanation.
+ if bytes == 0 and start > 0:
+ bytes += mmap.ALLOCATIONGRANULARITY
+ start -= mmap.ALLOCATIONGRANULARITY
+ array_offset = offset - start
+ mm = mmap.mmap(fid.fileno(), bytes, access=acc, offset=start)
+
+ self = ndarray.__new__(subtype, shape, dtype=descr, buffer=mm,
+ offset=array_offset, order=order)
+ self._mmap = mm
+ self.offset = offset
+ self.mode = mode
+
+ if isinstance(filename, os.PathLike):
+ # special case - if we were constructed with a pathlib.path,
+ # then filename is a path object, not a string
+ self.filename = filename.resolve()
+ elif hasattr(fid, "name") and isinstance(fid.name, str):
+ # py3 returns int for TemporaryFile().name
+ self.filename = os.path.abspath(fid.name)
+ # same as memmap copies (e.g. memmap + 1)
+ else:
+ self.filename = None
+
+ return self
+
+ def __array_finalize__(self, obj):
+ if hasattr(obj, '_mmap') and np.may_share_memory(self, obj):
+ self._mmap = obj._mmap
+ self.filename = obj.filename
+ self.offset = obj.offset
+ self.mode = obj.mode
+ else:
+ self._mmap = None
+ self.filename = None
+ self.offset = None
+ self.mode = None
+
+ def flush(self):
+ """
+ Write any changes in the array to the file on disk.
+
+ For further information, see `memmap`.
+
+ Parameters
+ ----------
+ None
+
+ See Also
+ --------
+ memmap
+
+ """
+ if self.base is not None and hasattr(self.base, 'flush'):
+ self.base.flush()
+
+ def __array_wrap__(self, arr, context=None, return_scalar=False):
+ arr = super().__array_wrap__(arr, context)
+
+ # Return a memmap if a memmap was given as the output of the
+ # ufunc. Leave the arr class unchanged if self is not a memmap
+ # to keep original memmap subclasses behavior
+ if self is arr or type(self) is not memmap:
+ return arr
+
+ # Return scalar instead of 0d memmap, e.g. for np.sum with
+ # axis=None (note that subclasses will not reach here)
+ if return_scalar:
+ return arr[()]
+
+ # Return ndarray otherwise
+ return arr.view(np.ndarray)
+
+ def __getitem__(self, index):
+ res = super().__getitem__(index)
+ if type(res) is memmap and res._mmap is None:
+ return res.view(type=ndarray)
+ return res
diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/memmap.pyi b/.venv/lib/python3.12/site-packages/numpy/_core/memmap.pyi
new file mode 100644
index 0000000..0b31328
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/_core/memmap.pyi
@@ -0,0 +1,3 @@
+from numpy import memmap
+
+__all__ = ["memmap"]
diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/multiarray.py b/.venv/lib/python3.12/site-packages/numpy/_core/multiarray.py
new file mode 100644
index 0000000..236ca7e
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/_core/multiarray.py
@@ -0,0 +1,1762 @@
+"""
+Create the numpy._core.multiarray namespace for backward compatibility.
+In v1.16 the multiarray and umath c-extension modules were merged into
+a single _multiarray_umath extension module. So we replicate the old
+namespace by importing from the extension module.
+
+"""
+
+import functools
+
+from . import _multiarray_umath, overrides
+from ._multiarray_umath import * # noqa: F403
+
+# These imports are needed for backward compatibility,
+# do not change them. issue gh-15518
+# _get_ndarray_c_version is semi-public, on purpose not added to __all__
+from ._multiarray_umath import ( # noqa: F401
+ _ARRAY_API,
+ _flagdict,
+ _get_madvise_hugepage,
+ _get_ndarray_c_version,
+ _monotonicity,
+ _place,
+ _reconstruct,
+ _set_madvise_hugepage,
+ _vec_string,
+ from_dlpack,
+)
+
+__all__ = [
+ '_ARRAY_API', 'ALLOW_THREADS', 'BUFSIZE', 'CLIP', 'DATETIMEUNITS',
+ 'ITEM_HASOBJECT', 'ITEM_IS_POINTER', 'LIST_PICKLE', 'MAXDIMS',
+ 'MAY_SHARE_BOUNDS', 'MAY_SHARE_EXACT', 'NEEDS_INIT', 'NEEDS_PYAPI',
+ 'RAISE', 'USE_GETITEM', 'USE_SETITEM', 'WRAP',
+ '_flagdict', 'from_dlpack', '_place', '_reconstruct', '_vec_string',
+ '_monotonicity', 'add_docstring', 'arange', 'array', 'asarray',
+ 'asanyarray', 'ascontiguousarray', 'asfortranarray', 'bincount',
+ 'broadcast', 'busday_count', 'busday_offset', 'busdaycalendar', 'can_cast',
+ 'compare_chararrays', 'concatenate', 'copyto', 'correlate', 'correlate2',
+ 'count_nonzero', 'c_einsum', 'datetime_as_string', 'datetime_data',
+ 'dot', 'dragon4_positional', 'dragon4_scientific', 'dtype',
+ 'empty', 'empty_like', 'error', 'flagsobj', 'flatiter', 'format_longfloat',
+ 'frombuffer', 'fromfile', 'fromiter', 'fromstring',
+ 'get_handler_name', 'get_handler_version', 'inner', 'interp',
+ 'interp_complex', 'is_busday', 'lexsort', 'matmul', 'vecdot',
+ 'may_share_memory', 'min_scalar_type', 'ndarray', 'nditer', 'nested_iters',
+ 'normalize_axis_index', 'packbits', 'promote_types', 'putmask',
+ 'ravel_multi_index', 'result_type', 'scalar', 'set_datetimeparse_function',
+ 'set_typeDict', 'shares_memory', 'typeinfo',
+ 'unpackbits', 'unravel_index', 'vdot', 'where', 'zeros']
+
+# For backward compatibility, make sure pickle imports
+# these functions from here
+_reconstruct.__module__ = 'numpy._core.multiarray'
+scalar.__module__ = 'numpy._core.multiarray'
+
+
+from_dlpack.__module__ = 'numpy'
+arange.__module__ = 'numpy'
+array.__module__ = 'numpy'
+asarray.__module__ = 'numpy'
+asanyarray.__module__ = 'numpy'
+ascontiguousarray.__module__ = 'numpy'
+asfortranarray.__module__ = 'numpy'
+datetime_data.__module__ = 'numpy'
+empty.__module__ = 'numpy'
+frombuffer.__module__ = 'numpy'
+fromfile.__module__ = 'numpy'
+fromiter.__module__ = 'numpy'
+frompyfunc.__module__ = 'numpy'
+fromstring.__module__ = 'numpy'
+may_share_memory.__module__ = 'numpy'
+nested_iters.__module__ = 'numpy'
+promote_types.__module__ = 'numpy'
+zeros.__module__ = 'numpy'
+normalize_axis_index.__module__ = 'numpy.lib.array_utils'
+add_docstring.__module__ = 'numpy.lib'
+compare_chararrays.__module__ = 'numpy.char'
+
+
+def _override___module__():
+ namespace_names = globals()
+ for ufunc_name in [
+ 'absolute', 'arccos', 'arccosh', 'add', 'arcsin', 'arcsinh', 'arctan',
+ 'arctan2', 'arctanh', 'bitwise_and', 'bitwise_count', 'invert',
+ 'left_shift', 'bitwise_or', 'right_shift', 'bitwise_xor', 'cbrt',
+ 'ceil', 'conjugate', 'copysign', 'cos', 'cosh', 'deg2rad', 'degrees',
+ 'divide', 'divmod', 'equal', 'exp', 'exp2', 'expm1', 'fabs',
+ 'float_power', 'floor', 'floor_divide', 'fmax', 'fmin', 'fmod',
+ 'frexp', 'gcd', 'greater', 'greater_equal', 'heaviside', 'hypot',
+ 'isfinite', 'isinf', 'isnan', 'isnat', 'lcm', 'ldexp', 'less',
+ 'less_equal', 'log', 'log10', 'log1p', 'log2', 'logaddexp',
+ 'logaddexp2', 'logical_and', 'logical_not', 'logical_or',
+ 'logical_xor', 'matmul', 'matvec', 'maximum', 'minimum', 'remainder',
+ 'modf', 'multiply', 'negative', 'nextafter', 'not_equal', 'positive',
+ 'power', 'rad2deg', 'radians', 'reciprocal', 'rint', 'sign', 'signbit',
+ 'sin', 'sinh', 'spacing', 'sqrt', 'square', 'subtract', 'tan', 'tanh',
+ 'trunc', 'vecdot', 'vecmat',
+ ]:
+ ufunc = namespace_names[ufunc_name]
+ ufunc.__module__ = "numpy"
+ ufunc.__qualname__ = ufunc_name
+
+
+_override___module__()
+
+
+# We can't verify dispatcher signatures because NumPy's C functions don't
+# support introspection.
+array_function_from_c_func_and_dispatcher = functools.partial(
+ overrides.array_function_from_dispatcher,
+ module='numpy', docs_from_dispatcher=True, verify=False)
+
+
+@array_function_from_c_func_and_dispatcher(_multiarray_umath.empty_like)
+def empty_like(
+ prototype, dtype=None, order=None, subok=None, shape=None, *, device=None
+):
+ """
+ empty_like(prototype, dtype=None, order='K', subok=True, shape=None, *,
+ device=None)
+
+ Return a new array with the same shape and type as a given array.
+
+ Parameters
+ ----------
+ prototype : array_like
+ The shape and data-type of `prototype` define these same attributes
+ of the returned array.
+ dtype : data-type, optional
+ Overrides the data type of the result.
+ order : {'C', 'F', 'A', or 'K'}, optional
+ Overrides the memory layout of the result. 'C' means C-order,
+ 'F' means F-order, 'A' means 'F' if `prototype` is Fortran
+ contiguous, 'C' otherwise. 'K' means match the layout of `prototype`
+ as closely as possible.
+ subok : bool, optional.
+ If True, then the newly created array will use the sub-class
+ type of `prototype`, otherwise it will be a base-class array. Defaults
+ to True.
+ shape : int or sequence of ints, optional.
+ Overrides the shape of the result. If order='K' and the number of
+ dimensions is unchanged, will try to keep order, otherwise,
+ order='C' is implied.
+ device : str, optional
+ The device on which to place the created array. Default: None.
+ For Array-API interoperability only, so must be ``"cpu"`` if passed.
+
+ .. versionadded:: 2.0.0
+
+ Returns
+ -------
+ out : ndarray
+ Array of uninitialized (arbitrary) data with the same
+ shape and type as `prototype`.
+
+ See Also
+ --------
+ ones_like : Return an array of ones with shape and type of input.
+ zeros_like : Return an array of zeros with shape and type of input.
+ full_like : Return a new array with shape of input filled with value.
+ empty : Return a new uninitialized array.
+
+ Notes
+ -----
+ Unlike other array creation functions (e.g. `zeros_like`, `ones_like`,
+ `full_like`), `empty_like` does not initialize the values of the array,
+ and may therefore be marginally faster. However, the values stored in the
+ newly allocated array are arbitrary. For reproducible behavior, be sure
+ to set each element of the array before reading.
+
+ Examples
+ --------
+ >>> import numpy as np
+ >>> a = ([1,2,3], [4,5,6]) # a is array-like
+ >>> np.empty_like(a)
+ array([[-1073741821, -1073741821, 3], # uninitialized
+ [ 0, 0, -1073741821]])
+ >>> a = np.array([[1., 2., 3.],[4.,5.,6.]])
+ >>> np.empty_like(a)
+ array([[ -2.00000715e+000, 1.48219694e-323, -2.00000572e+000], # uninitialized
+ [ 4.38791518e-305, -2.00000715e+000, 4.17269252e-309]])
+
+ """
+ return (prototype,)
+
+
+@array_function_from_c_func_and_dispatcher(_multiarray_umath.concatenate)
+def concatenate(arrays, axis=None, out=None, *, dtype=None, casting=None):
+ """
+ concatenate(
+ (a1, a2, ...),
+ axis=0,
+ out=None,
+ dtype=None,
+ casting="same_kind"
+ )
+
+ Join a sequence of arrays along an existing axis.
+
+ Parameters
+ ----------
+ a1, a2, ... : sequence of array_like
+ The arrays must have the same shape, except in the dimension
+ corresponding to `axis` (the first, by default).
+ axis : int, optional
+ The axis along which the arrays will be joined. If axis is None,
+ arrays are flattened before use. Default is 0.
+ out : ndarray, optional
+ If provided, the destination to place the result. The shape must be
+ correct, matching that of what concatenate would have returned if no
+ out argument were specified.
+ dtype : str or dtype
+ If provided, the destination array will have this dtype. Cannot be
+ provided together with `out`.
+
+ .. versionadded:: 1.20.0
+
+ casting : {'no', 'equiv', 'safe', 'same_kind', 'unsafe'}, optional
+ Controls what kind of data casting may occur. Defaults to 'same_kind'.
+ For a description of the options, please see :term:`casting`.
+
+ .. versionadded:: 1.20.0
+
+ Returns
+ -------
+ res : ndarray
+ The concatenated array.
+
+ See Also
+ --------
+ ma.concatenate : Concatenate function that preserves input masks.
+ array_split : Split an array into multiple sub-arrays of equal or
+ near-equal size.
+ split : Split array into a list of multiple sub-arrays of equal size.
+ hsplit : Split array into multiple sub-arrays horizontally (column wise).
+ vsplit : Split array into multiple sub-arrays vertically (row wise).
+ dsplit : Split array into multiple sub-arrays along the 3rd axis (depth).
+ stack : Stack a sequence of arrays along a new axis.
+ block : Assemble arrays from blocks.
+ hstack : Stack arrays in sequence horizontally (column wise).
+ vstack : Stack arrays in sequence vertically (row wise).
+ dstack : Stack arrays in sequence depth wise (along third dimension).
+ column_stack : Stack 1-D arrays as columns into a 2-D array.
+
+ Notes
+ -----
+ When one or more of the arrays to be concatenated is a MaskedArray,
+ this function will return a MaskedArray object instead of an ndarray,
+ but the input masks are *not* preserved. In cases where a MaskedArray
+ is expected as input, use the ma.concatenate function from the masked
+ array module instead.
+
+ Examples
+ --------
+ >>> import numpy as np
+ >>> a = np.array([[1, 2], [3, 4]])
+ >>> b = np.array([[5, 6]])
+ >>> np.concatenate((a, b), axis=0)
+ array([[1, 2],
+ [3, 4],
+ [5, 6]])
+ >>> np.concatenate((a, b.T), axis=1)
+ array([[1, 2, 5],
+ [3, 4, 6]])
+ >>> np.concatenate((a, b), axis=None)
+ array([1, 2, 3, 4, 5, 6])
+
+ This function will not preserve masking of MaskedArray inputs.
+
+ >>> a = np.ma.arange(3)
+ >>> a[1] = np.ma.masked
+ >>> b = np.arange(2, 5)
+ >>> a
+ masked_array(data=[0, --, 2],
+ mask=[False, True, False],
+ fill_value=999999)
+ >>> b
+ array([2, 3, 4])
+ >>> np.concatenate([a, b])
+ masked_array(data=[0, 1, 2, 2, 3, 4],
+ mask=False,
+ fill_value=999999)
+ >>> np.ma.concatenate([a, b])
+ masked_array(data=[0, --, 2, 2, 3, 4],
+ mask=[False, True, False, False, False, False],
+ fill_value=999999)
+
+ """
+ if out is not None:
+ # optimize for the typical case where only arrays is provided
+ arrays = list(arrays)
+ arrays.append(out)
+ return arrays
+
+
+@array_function_from_c_func_and_dispatcher(_multiarray_umath.inner)
+def inner(a, b):
+ """
+ inner(a, b, /)
+
+ Inner product of two arrays.
+
+ Ordinary inner product of vectors for 1-D arrays (without complex
+ conjugation), in higher dimensions a sum product over the last axes.
+
+ Parameters
+ ----------
+ a, b : array_like
+ If `a` and `b` are nonscalar, their last dimensions must match.
+
+ Returns
+ -------
+ out : ndarray
+ If `a` and `b` are both
+ scalars or both 1-D arrays then a scalar is returned; otherwise
+ an array is returned.
+ ``out.shape = (*a.shape[:-1], *b.shape[:-1])``
+
+ Raises
+ ------
+ ValueError
+ If both `a` and `b` are nonscalar and their last dimensions have
+ different sizes.
+
+ See Also
+ --------
+ tensordot : Sum products over arbitrary axes.
+ dot : Generalised matrix product, using second last dimension of `b`.
+ vecdot : Vector dot product of two arrays.
+ einsum : Einstein summation convention.
+
+ Notes
+ -----
+ For vectors (1-D arrays) it computes the ordinary inner-product::
+
+ np.inner(a, b) = sum(a[:]*b[:])
+
+ More generally, if ``ndim(a) = r > 0`` and ``ndim(b) = s > 0``::
+
+ np.inner(a, b) = np.tensordot(a, b, axes=(-1,-1))
+
+ or explicitly::
+
+ np.inner(a, b)[i0,...,ir-2,j0,...,js-2]
+ = sum(a[i0,...,ir-2,:]*b[j0,...,js-2,:])
+
+ In addition `a` or `b` may be scalars, in which case::
+
+ np.inner(a,b) = a*b
+
+ Examples
+ --------
+ Ordinary inner product for vectors:
+
+ >>> import numpy as np
+ >>> a = np.array([1,2,3])
+ >>> b = np.array([0,1,0])
+ >>> np.inner(a, b)
+ 2
+
+ Some multidimensional examples:
+
+ >>> a = np.arange(24).reshape((2,3,4))
+ >>> b = np.arange(4)
+ >>> c = np.inner(a, b)
+ >>> c.shape
+ (2, 3)
+ >>> c
+ array([[ 14, 38, 62],
+ [ 86, 110, 134]])
+
+ >>> a = np.arange(2).reshape((1,1,2))
+ >>> b = np.arange(6).reshape((3,2))
+ >>> c = np.inner(a, b)
+ >>> c.shape
+ (1, 1, 3)
+ >>> c
+ array([[[1, 3, 5]]])
+
+ An example where `b` is a scalar:
+
+ >>> np.inner(np.eye(2), 7)
+ array([[7., 0.],
+ [0., 7.]])
+
+ """
+ return (a, b)
+
+
+@array_function_from_c_func_and_dispatcher(_multiarray_umath.where)
+def where(condition, x=None, y=None):
+ """
+ where(condition, [x, y], /)
+
+ Return elements chosen from `x` or `y` depending on `condition`.
+
+ .. note::
+ When only `condition` is provided, this function is a shorthand for
+ ``np.asarray(condition).nonzero()``. Using `nonzero` directly should be
+ preferred, as it behaves correctly for subclasses. The rest of this
+ documentation covers only the case where all three arguments are
+ provided.
+
+ Parameters
+ ----------
+ condition : array_like, bool
+ Where True, yield `x`, otherwise yield `y`.
+ x, y : array_like
+ Values from which to choose. `x`, `y` and `condition` need to be
+ broadcastable to some shape.
+
+ Returns
+ -------
+ out : ndarray
+ An array with elements from `x` where `condition` is True, and elements
+ from `y` elsewhere.
+
+ See Also
+ --------
+ choose
+ nonzero : The function that is called when x and y are omitted
+
+ Notes
+ -----
+ If all the arrays are 1-D, `where` is equivalent to::
+
+ [xv if c else yv
+ for c, xv, yv in zip(condition, x, y)]
+
+ Examples
+ --------
+ >>> import numpy as np
+ >>> a = np.arange(10)
+ >>> a
+ array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
+ >>> np.where(a < 5, a, 10*a)
+ array([ 0, 1, 2, 3, 4, 50, 60, 70, 80, 90])
+
+ This can be used on multidimensional arrays too:
+
+ >>> np.where([[True, False], [True, True]],
+ ... [[1, 2], [3, 4]],
+ ... [[9, 8], [7, 6]])
+ array([[1, 8],
+ [3, 4]])
+
+ The shapes of x, y, and the condition are broadcast together:
+
+ >>> x, y = np.ogrid[:3, :4]
+ >>> np.where(x < y, x, 10 + y) # both x and 10+y are broadcast
+ array([[10, 0, 0, 0],
+ [10, 11, 1, 1],
+ [10, 11, 12, 2]])
+
+ >>> a = np.array([[0, 1, 2],
+ ... [0, 2, 4],
+ ... [0, 3, 6]])
+ >>> np.where(a < 4, a, -1) # -1 is broadcast
+ array([[ 0, 1, 2],
+ [ 0, 2, -1],
+ [ 0, 3, -1]])
+ """
+ return (condition, x, y)
+
+
+@array_function_from_c_func_and_dispatcher(_multiarray_umath.lexsort)
+def lexsort(keys, axis=None):
+ """
+ lexsort(keys, axis=-1)
+
+ Perform an indirect stable sort using a sequence of keys.
+
+ Given multiple sorting keys, lexsort returns an array of integer indices
+ that describes the sort order by multiple keys. The last key in the
+ sequence is used for the primary sort order, ties are broken by the
+ second-to-last key, and so on.
+
+ Parameters
+ ----------
+ keys : (k, m, n, ...) array-like
+ The `k` keys to be sorted. The *last* key (e.g, the last
+ row if `keys` is a 2D array) is the primary sort key.
+ Each element of `keys` along the zeroth axis must be
+ an array-like object of the same shape.
+ axis : int, optional
+ Axis to be indirectly sorted. By default, sort over the last axis
+ of each sequence. Separate slices along `axis` sorted over
+ independently; see last example.
+
+ Returns
+ -------
+ indices : (m, n, ...) ndarray of ints
+ Array of indices that sort the keys along the specified axis.
+
+ See Also
+ --------
+ argsort : Indirect sort.
+ ndarray.sort : In-place sort.
+ sort : Return a sorted copy of an array.
+
+ Examples
+ --------
+ Sort names: first by surname, then by name.
+
+ >>> import numpy as np
+ >>> surnames = ('Hertz', 'Galilei', 'Hertz')
+ >>> first_names = ('Heinrich', 'Galileo', 'Gustav')
+ >>> ind = np.lexsort((first_names, surnames))
+ >>> ind
+ array([1, 2, 0])
+
+ >>> [surnames[i] + ", " + first_names[i] for i in ind]
+ ['Galilei, Galileo', 'Hertz, Gustav', 'Hertz, Heinrich']
+
+ Sort according to two numerical keys, first by elements
+ of ``a``, then breaking ties according to elements of ``b``:
+
+ >>> a = [1, 5, 1, 4, 3, 4, 4] # First sequence
+ >>> b = [9, 4, 0, 4, 0, 2, 1] # Second sequence
+ >>> ind = np.lexsort((b, a)) # Sort by `a`, then by `b`
+ >>> ind
+ array([2, 0, 4, 6, 5, 3, 1])
+ >>> [(a[i], b[i]) for i in ind]
+ [(1, 0), (1, 9), (3, 0), (4, 1), (4, 2), (4, 4), (5, 4)]
+
+ Compare against `argsort`, which would sort each key independently.
+
+ >>> np.argsort((b, a), kind='stable')
+ array([[2, 4, 6, 5, 1, 3, 0],
+ [0, 2, 4, 3, 5, 6, 1]])
+
+ To sort lexicographically with `argsort`, we would need to provide a
+ structured array.
+
+ >>> x = np.array([(ai, bi) for ai, bi in zip(a, b)],
+ ... dtype = np.dtype([('x', int), ('y', int)]))
+ >>> np.argsort(x) # or np.argsort(x, order=('x', 'y'))
+ array([2, 0, 4, 6, 5, 3, 1])
+
+ The zeroth axis of `keys` always corresponds with the sequence of keys,
+ so 2D arrays are treated just like other sequences of keys.
+
+ >>> arr = np.asarray([b, a])
+ >>> ind2 = np.lexsort(arr)
+ >>> np.testing.assert_equal(ind2, ind)
+
+ Accordingly, the `axis` parameter refers to an axis of *each* key, not of
+ the `keys` argument itself. For instance, the array ``arr`` is treated as
+ a sequence of two 1-D keys, so specifying ``axis=0`` is equivalent to
+ using the default axis, ``axis=-1``.
+
+ >>> np.testing.assert_equal(np.lexsort(arr, axis=0),
+ ... np.lexsort(arr, axis=-1))
+
+ For higher-dimensional arrays, the axis parameter begins to matter. The
+ resulting array has the same shape as each key, and the values are what
+ we would expect if `lexsort` were performed on corresponding slices
+ of the keys independently. For instance,
+
+ >>> x = [[1, 2, 3, 4],
+ ... [4, 3, 2, 1],
+ ... [2, 1, 4, 3]]
+ >>> y = [[2, 2, 1, 1],
+ ... [1, 2, 1, 2],
+ ... [1, 1, 2, 1]]
+ >>> np.lexsort((x, y), axis=1)
+ array([[2, 3, 0, 1],
+ [2, 0, 3, 1],
+ [1, 0, 3, 2]])
+
+ Each row of the result is what we would expect if we were to perform
+ `lexsort` on the corresponding row of the keys:
+
+ >>> for i in range(3):
+ ... print(np.lexsort((x[i], y[i])))
+ [2 3 0 1]
+ [2 0 3 1]
+ [1 0 3 2]
+
+ """
+ if isinstance(keys, tuple):
+ return keys
+ else:
+ return (keys,)
+
+
+@array_function_from_c_func_and_dispatcher(_multiarray_umath.can_cast)
+def can_cast(from_, to, casting=None):
+ """
+ can_cast(from_, to, casting='safe')
+
+ Returns True if cast between data types can occur according to the
+ casting rule.
+
+ Parameters
+ ----------
+ from_ : dtype, dtype specifier, NumPy scalar, or array
+ Data type, NumPy scalar, or array to cast from.
+ to : dtype or dtype specifier
+ Data type to cast to.
+ casting : {'no', 'equiv', 'safe', 'same_kind', 'unsafe'}, optional
+ Controls what kind of data casting may occur.
+
+ * 'no' means the data types should not be cast at all.
+ * 'equiv' means only byte-order changes are allowed.
+ * 'safe' means only casts which can preserve values are allowed.
+ * 'same_kind' means only safe casts or casts within a kind,
+ like float64 to float32, are allowed.
+ * 'unsafe' means any data conversions may be done.
+
+ Returns
+ -------
+ out : bool
+ True if cast can occur according to the casting rule.
+
+ Notes
+ -----
+ .. versionchanged:: 2.0
+ This function does not support Python scalars anymore and does not
+ apply any value-based logic for 0-D arrays and NumPy scalars.
+
+ See also
+ --------
+ dtype, result_type
+
+ Examples
+ --------
+ Basic examples
+
+ >>> import numpy as np
+ >>> np.can_cast(np.int32, np.int64)
+ True
+ >>> np.can_cast(np.float64, complex)
+ True
+ >>> np.can_cast(complex, float)
+ False
+
+ >>> np.can_cast('i8', 'f8')
+ True
+ >>> np.can_cast('i8', 'f4')
+ False
+ >>> np.can_cast('i4', 'S4')
+ False
+
+ """
+ return (from_,)
+
+
+@array_function_from_c_func_and_dispatcher(_multiarray_umath.min_scalar_type)
+def min_scalar_type(a):
+ """
+ min_scalar_type(a, /)
+
+ For scalar ``a``, returns the data type with the smallest size
+ and smallest scalar kind which can hold its value. For non-scalar
+ array ``a``, returns the vector's dtype unmodified.
+
+ Floating point values are not demoted to integers,
+ and complex values are not demoted to floats.
+
+ Parameters
+ ----------
+ a : scalar or array_like
+ The value whose minimal data type is to be found.
+
+ Returns
+ -------
+ out : dtype
+ The minimal data type.
+
+ See Also
+ --------
+ result_type, promote_types, dtype, can_cast
+
+ Examples
+ --------
+ >>> import numpy as np
+ >>> np.min_scalar_type(10)
+ dtype('uint8')
+
+ >>> np.min_scalar_type(-260)
+ dtype('int16')
+
+ >>> np.min_scalar_type(3.1)
+ dtype('float16')
+
+ >>> np.min_scalar_type(1e50)
+ dtype('float64')
+
+ >>> np.min_scalar_type(np.arange(4,dtype='f8'))
+ dtype('float64')
+
+ """
+ return (a,)
+
+
+@array_function_from_c_func_and_dispatcher(_multiarray_umath.result_type)
+def result_type(*arrays_and_dtypes):
+ """
+ result_type(*arrays_and_dtypes)
+
+ Returns the type that results from applying the NumPy
+ type promotion rules to the arguments.
+
+ Type promotion in NumPy works similarly to the rules in languages
+ like C++, with some slight differences. When both scalars and
+ arrays are used, the array's type takes precedence and the actual value
+ of the scalar is taken into account.
+
+ For example, calculating 3*a, where a is an array of 32-bit floats,
+ intuitively should result in a 32-bit float output. If the 3 is a
+ 32-bit integer, the NumPy rules indicate it can't convert losslessly
+ into a 32-bit float, so a 64-bit float should be the result type.
+ By examining the value of the constant, '3', we see that it fits in
+ an 8-bit integer, which can be cast losslessly into the 32-bit float.
+
+ Parameters
+ ----------
+ arrays_and_dtypes : list of arrays and dtypes
+ The operands of some operation whose result type is needed.
+
+ Returns
+ -------
+ out : dtype
+ The result type.
+
+ See also
+ --------
+ dtype, promote_types, min_scalar_type, can_cast
+
+ Notes
+ -----
+ The specific algorithm used is as follows.
+
+ Categories are determined by first checking which of boolean,
+ integer (int/uint), or floating point (float/complex) the maximum
+ kind of all the arrays and the scalars are.
+
+ If there are only scalars or the maximum category of the scalars
+ is higher than the maximum category of the arrays,
+ the data types are combined with :func:`promote_types`
+ to produce the return value.
+
+ Otherwise, `min_scalar_type` is called on each scalar, and
+ the resulting data types are all combined with :func:`promote_types`
+ to produce the return value.
+
+ The set of int values is not a subset of the uint values for types
+ with the same number of bits, something not reflected in
+ :func:`min_scalar_type`, but handled as a special case in `result_type`.
+
+ Examples
+ --------
+ >>> import numpy as np
+ >>> np.result_type(3, np.arange(7, dtype='i1'))
+ dtype('int8')
+
+ >>> np.result_type('i4', 'c8')
+ dtype('complex128')
+
+ >>> np.result_type(3.0, -2)
+ dtype('float64')
+
+ """
+ return arrays_and_dtypes
+
+
+@array_function_from_c_func_and_dispatcher(_multiarray_umath.dot)
+def dot(a, b, out=None):
+ """
+ dot(a, b, out=None)
+
+ Dot product of two arrays. Specifically,
+
+ - If both `a` and `b` are 1-D arrays, it is inner product of vectors
+ (without complex conjugation).
+
+ - If both `a` and `b` are 2-D arrays, it is matrix multiplication,
+ but using :func:`matmul` or ``a @ b`` is preferred.
+
+ - If either `a` or `b` is 0-D (scalar), it is equivalent to
+ :func:`multiply` and using ``numpy.multiply(a, b)`` or ``a * b`` is
+ preferred.
+
+ - If `a` is an N-D array and `b` is a 1-D array, it is a sum product over
+ the last axis of `a` and `b`.
+
+ - If `a` is an N-D array and `b` is an M-D array (where ``M>=2``), it is a
+ sum product over the last axis of `a` and the second-to-last axis of
+ `b`::
+
+ dot(a, b)[i,j,k,m] = sum(a[i,j,:] * b[k,:,m])
+
+ It uses an optimized BLAS library when possible (see `numpy.linalg`).
+
+ Parameters
+ ----------
+ a : array_like
+ First argument.
+ b : array_like
+ Second argument.
+ out : ndarray, optional
+ Output argument. This must have the exact kind that would be returned
+ if it was not used. In particular, it must have the right type, must be
+ C-contiguous, and its dtype must be the dtype that would be returned
+ for `dot(a,b)`. This is a performance feature. Therefore, if these
+ conditions are not met, an exception is raised, instead of attempting
+ to be flexible.
+
+ Returns
+ -------
+ output : ndarray
+ Returns the dot product of `a` and `b`. If `a` and `b` are both
+ scalars or both 1-D arrays then a scalar is returned; otherwise
+ an array is returned.
+ If `out` is given, then it is returned.
+
+ Raises
+ ------
+ ValueError
+ If the last dimension of `a` is not the same size as
+ the second-to-last dimension of `b`.
+
+ See Also
+ --------
+ vdot : Complex-conjugating dot product.
+ vecdot : Vector dot product of two arrays.
+ tensordot : Sum products over arbitrary axes.
+ einsum : Einstein summation convention.
+ matmul : '@' operator as method with out parameter.
+ linalg.multi_dot : Chained dot product.
+
+ Examples
+ --------
+ >>> import numpy as np
+ >>> np.dot(3, 4)
+ 12
+
+ Neither argument is complex-conjugated:
+
+ >>> np.dot([2j, 3j], [2j, 3j])
+ (-13+0j)
+
+ For 2-D arrays it is the matrix product:
+
+ >>> a = [[1, 0], [0, 1]]
+ >>> b = [[4, 1], [2, 2]]
+ >>> np.dot(a, b)
+ array([[4, 1],
+ [2, 2]])
+
+ >>> a = np.arange(3*4*5*6).reshape((3,4,5,6))
+ >>> b = np.arange(3*4*5*6)[::-1].reshape((5,4,6,3))
+ >>> np.dot(a, b)[2,3,2,1,2,2]
+ 499128
+ >>> sum(a[2,3,2,:] * b[1,2,:,2])
+ 499128
+
+ """
+ return (a, b, out)
+
+
+@array_function_from_c_func_and_dispatcher(_multiarray_umath.vdot)
+def vdot(a, b):
+ r"""
+ vdot(a, b, /)
+
+ Return the dot product of two vectors.
+
+ The `vdot` function handles complex numbers differently than `dot`:
+ if the first argument is complex, it is replaced by its complex conjugate
+ in the dot product calculation. `vdot` also handles multidimensional
+ arrays differently than `dot`: it does not perform a matrix product, but
+ flattens the arguments to 1-D arrays before taking a vector dot product.
+
+ Consequently, when the arguments are 2-D arrays of the same shape, this
+ function effectively returns their
+ `Frobenius inner product <https://en.wikipedia.org/wiki/Frobenius_inner_product>`_
+ (also known as the *trace inner product* or the *standard inner product*
+ on a vector space of matrices).
+
+ Parameters
+ ----------
+ a : array_like
+ If `a` is complex the complex conjugate is taken before calculation
+ of the dot product.
+ b : array_like
+ Second argument to the dot product.
+
+ Returns
+ -------
+ output : ndarray
+ Dot product of `a` and `b`. Can be an int, float, or
+ complex depending on the types of `a` and `b`.
+
+ See Also
+ --------
+ dot : Return the dot product without using the complex conjugate of the
+ first argument.
+
+ Examples
+ --------
+ >>> import numpy as np
+ >>> a = np.array([1+2j,3+4j])
+ >>> b = np.array([5+6j,7+8j])
+ >>> np.vdot(a, b)
+ (70-8j)
+ >>> np.vdot(b, a)
+ (70+8j)
+
+ Note that higher-dimensional arrays are flattened!
+
+ >>> a = np.array([[1, 4], [5, 6]])
+ >>> b = np.array([[4, 1], [2, 2]])
+ >>> np.vdot(a, b)
+ 30
+ >>> np.vdot(b, a)
+ 30
+ >>> 1*4 + 4*1 + 5*2 + 6*2
+ 30
+
+ """ # noqa: E501
+ return (a, b)
+
+
+@array_function_from_c_func_and_dispatcher(_multiarray_umath.bincount)
+def bincount(x, weights=None, minlength=None):
+ """
+ bincount(x, /, weights=None, minlength=0)
+
+ Count number of occurrences of each value in array of non-negative ints.
+
+ The number of bins (of size 1) is one larger than the largest value in
+ `x`. If `minlength` is specified, there will be at least this number
+ of bins in the output array (though it will be longer if necessary,
+ depending on the contents of `x`).
+ Each bin gives the number of occurrences of its index value in `x`.
+ If `weights` is specified the input array is weighted by it, i.e. if a
+ value ``n`` is found at position ``i``, ``out[n] += weight[i]`` instead
+ of ``out[n] += 1``.
+
+ Parameters
+ ----------
+ x : array_like, 1 dimension, nonnegative ints
+ Input array.
+ weights : array_like, optional
+ Weights, array of the same shape as `x`.
+ minlength : int, optional
+ A minimum number of bins for the output array.
+
+ Returns
+ -------
+ out : ndarray of ints
+ The result of binning the input array.
+ The length of `out` is equal to ``np.amax(x)+1``.
+
+ Raises
+ ------
+ ValueError
+ If the input is not 1-dimensional, or contains elements with negative
+ values, or if `minlength` is negative.
+ TypeError
+ If the type of the input is float or complex.
+
+ See Also
+ --------
+ histogram, digitize, unique
+
+ Examples
+ --------
+ >>> import numpy as np
+ >>> np.bincount(np.arange(5))
+ array([1, 1, 1, 1, 1])
+ >>> np.bincount(np.array([0, 1, 1, 3, 2, 1, 7]))
+ array([1, 3, 1, 1, 0, 0, 0, 1])
+
+ >>> x = np.array([0, 1, 1, 3, 2, 1, 7, 23])
+ >>> np.bincount(x).size == np.amax(x)+1
+ True
+
+ The input array needs to be of integer dtype, otherwise a
+ TypeError is raised:
+
+ >>> np.bincount(np.arange(5, dtype=float))
+ Traceback (most recent call last):
+ ...
+ TypeError: Cannot cast array data from dtype('float64') to dtype('int64')
+ according to the rule 'safe'
+
+ A possible use of ``bincount`` is to perform sums over
+ variable-size chunks of an array, using the ``weights`` keyword.
+
+ >>> w = np.array([0.3, 0.5, 0.2, 0.7, 1., -0.6]) # weights
+ >>> x = np.array([0, 1, 1, 2, 2, 2])
+ >>> np.bincount(x, weights=w)
+ array([ 0.3, 0.7, 1.1])
+
+ """
+ return (x, weights)
+
+
+@array_function_from_c_func_and_dispatcher(_multiarray_umath.ravel_multi_index)
+def ravel_multi_index(multi_index, dims, mode=None, order=None):
+ """
+ ravel_multi_index(multi_index, dims, mode='raise', order='C')
+
+ Converts a tuple of index arrays into an array of flat
+ indices, applying boundary modes to the multi-index.
+
+ Parameters
+ ----------
+ multi_index : tuple of array_like
+ A tuple of integer arrays, one array for each dimension.
+ dims : tuple of ints
+ The shape of array into which the indices from ``multi_index`` apply.
+ mode : {'raise', 'wrap', 'clip'}, optional
+ Specifies how out-of-bounds indices are handled. Can specify
+ either one mode or a tuple of modes, one mode per index.
+
+ * 'raise' -- raise an error (default)
+ * 'wrap' -- wrap around
+ * 'clip' -- clip to the range
+
+ In 'clip' mode, a negative index which would normally
+ wrap will clip to 0 instead.
+ order : {'C', 'F'}, optional
+ Determines whether the multi-index should be viewed as
+ indexing in row-major (C-style) or column-major
+ (Fortran-style) order.
+
+ Returns
+ -------
+ raveled_indices : ndarray
+ An array of indices into the flattened version of an array
+ of dimensions ``dims``.
+
+ See Also
+ --------
+ unravel_index
+
+ Examples
+ --------
+ >>> import numpy as np
+ >>> arr = np.array([[3,6,6],[4,5,1]])
+ >>> np.ravel_multi_index(arr, (7,6))
+ array([22, 41, 37])
+ >>> np.ravel_multi_index(arr, (7,6), order='F')
+ array([31, 41, 13])
+ >>> np.ravel_multi_index(arr, (4,6), mode='clip')
+ array([22, 23, 19])
+ >>> np.ravel_multi_index(arr, (4,4), mode=('clip','wrap'))
+ array([12, 13, 13])
+
+ >>> np.ravel_multi_index((3,1,4,1), (6,7,8,9))
+ 1621
+ """
+ return multi_index
+
+
+@array_function_from_c_func_and_dispatcher(_multiarray_umath.unravel_index)
+def unravel_index(indices, shape=None, order=None):
+ """
+ unravel_index(indices, shape, order='C')
+
+ Converts a flat index or array of flat indices into a tuple
+ of coordinate arrays.
+
+ Parameters
+ ----------
+ indices : array_like
+ An integer array whose elements are indices into the flattened
+ version of an array of dimensions ``shape``. Before version 1.6.0,
+ this function accepted just one index value.
+ shape : tuple of ints
+ The shape of the array to use for unraveling ``indices``.
+ order : {'C', 'F'}, optional
+ Determines whether the indices should be viewed as indexing in
+ row-major (C-style) or column-major (Fortran-style) order.
+
+ Returns
+ -------
+ unraveled_coords : tuple of ndarray
+ Each array in the tuple has the same shape as the ``indices``
+ array.
+
+ See Also
+ --------
+ ravel_multi_index
+
+ Examples
+ --------
+ >>> import numpy as np
+ >>> np.unravel_index([22, 41, 37], (7,6))
+ (array([3, 6, 6]), array([4, 5, 1]))
+ >>> np.unravel_index([31, 41, 13], (7,6), order='F')
+ (array([3, 6, 6]), array([4, 5, 1]))
+
+ >>> np.unravel_index(1621, (6,7,8,9))
+ (3, 1, 4, 1)
+
+ """
+ return (indices,)
+
+
+@array_function_from_c_func_and_dispatcher(_multiarray_umath.copyto)
+def copyto(dst, src, casting=None, where=None):
+ """
+ copyto(dst, src, casting='same_kind', where=True)
+
+ Copies values from one array to another, broadcasting as necessary.
+
+ Raises a TypeError if the `casting` rule is violated, and if
+ `where` is provided, it selects which elements to copy.
+
+ Parameters
+ ----------
+ dst : ndarray
+ The array into which values are copied.
+ src : array_like
+ The array from which values are copied.
+ casting : {'no', 'equiv', 'safe', 'same_kind', 'unsafe'}, optional
+ Controls what kind of data casting may occur when copying.
+
+ * 'no' means the data types should not be cast at all.
+ * 'equiv' means only byte-order changes are allowed.
+ * 'safe' means only casts which can preserve values are allowed.
+ * 'same_kind' means only safe casts or casts within a kind,
+ like float64 to float32, are allowed.
+ * 'unsafe' means any data conversions may be done.
+ where : array_like of bool, optional
+ A boolean array which is broadcasted to match the dimensions
+ of `dst`, and selects elements to copy from `src` to `dst`
+ wherever it contains the value True.
+
+ Examples
+ --------
+ >>> import numpy as np
+ >>> A = np.array([4, 5, 6])
+ >>> B = [1, 2, 3]
+ >>> np.copyto(A, B)
+ >>> A
+ array([1, 2, 3])
+
+ >>> A = np.array([[1, 2, 3], [4, 5, 6]])
+ >>> B = [[4, 5, 6], [7, 8, 9]]
+ >>> np.copyto(A, B)
+ >>> A
+ array([[4, 5, 6],
+ [7, 8, 9]])
+
+ """
+ return (dst, src, where)
+
+
+@array_function_from_c_func_and_dispatcher(_multiarray_umath.putmask)
+def putmask(a, /, mask, values):
+ """
+ putmask(a, mask, values)
+
+ Changes elements of an array based on conditional and input values.
+
+ Sets ``a.flat[n] = values[n]`` for each n where ``mask.flat[n]==True``.
+
+ If `values` is not the same size as `a` and `mask` then it will repeat.
+ This gives behavior different from ``a[mask] = values``.
+
+ Parameters
+ ----------
+ a : ndarray
+ Target array.
+ mask : array_like
+ Boolean mask array. It has to be the same shape as `a`.
+ values : array_like
+ Values to put into `a` where `mask` is True. If `values` is smaller
+ than `a` it will be repeated.
+
+ See Also
+ --------
+ place, put, take, copyto
+
+ Examples
+ --------
+ >>> import numpy as np
+ >>> x = np.arange(6).reshape(2, 3)
+ >>> np.putmask(x, x>2, x**2)
+ >>> x
+ array([[ 0, 1, 2],
+ [ 9, 16, 25]])
+
+ If `values` is smaller than `a` it is repeated:
+
+ >>> x = np.arange(5)
+ >>> np.putmask(x, x>1, [-33, -44])
+ >>> x
+ array([ 0, 1, -33, -44, -33])
+
+ """
+ return (a, mask, values)
+
+
+@array_function_from_c_func_and_dispatcher(_multiarray_umath.packbits)
+def packbits(a, axis=None, bitorder='big'):
+ """
+ packbits(a, /, axis=None, bitorder='big')
+
+ Packs the elements of a binary-valued array into bits in a uint8 array.
+
+ The result is padded to full bytes by inserting zero bits at the end.
+
+ Parameters
+ ----------
+ a : array_like
+ An array of integers or booleans whose elements should be packed to
+ bits.
+ axis : int, optional
+ The dimension over which bit-packing is done.
+ ``None`` implies packing the flattened array.
+ bitorder : {'big', 'little'}, optional
+ The order of the input bits. 'big' will mimic bin(val),
+ ``[0, 0, 0, 0, 0, 0, 1, 1] => 3 = 0b00000011``, 'little' will
+ reverse the order so ``[1, 1, 0, 0, 0, 0, 0, 0] => 3``.
+ Defaults to 'big'.
+
+ Returns
+ -------
+ packed : ndarray
+ Array of type uint8 whose elements represent bits corresponding to the
+ logical (0 or nonzero) value of the input elements. The shape of
+ `packed` has the same number of dimensions as the input (unless `axis`
+ is None, in which case the output is 1-D).
+
+ See Also
+ --------
+ unpackbits: Unpacks elements of a uint8 array into a binary-valued output
+ array.
+
+ Examples
+ --------
+ >>> import numpy as np
+ >>> a = np.array([[[1,0,1],
+ ... [0,1,0]],
+ ... [[1,1,0],
+ ... [0,0,1]]])
+ >>> b = np.packbits(a, axis=-1)
+ >>> b
+ array([[[160],
+ [ 64]],
+ [[192],
+ [ 32]]], dtype=uint8)
+
+ Note that in binary 160 = 1010 0000, 64 = 0100 0000, 192 = 1100 0000,
+ and 32 = 0010 0000.
+
+ """
+ return (a,)
+
+
+@array_function_from_c_func_and_dispatcher(_multiarray_umath.unpackbits)
+def unpackbits(a, axis=None, count=None, bitorder='big'):
+ """
+ unpackbits(a, /, axis=None, count=None, bitorder='big')
+
+ Unpacks elements of a uint8 array into a binary-valued output array.
+
+ Each element of `a` represents a bit-field that should be unpacked
+ into a binary-valued output array. The shape of the output array is
+ either 1-D (if `axis` is ``None``) or the same shape as the input
+ array with unpacking done along the axis specified.
+
+ Parameters
+ ----------
+ a : ndarray, uint8 type
+ Input array.
+ axis : int, optional
+ The dimension over which bit-unpacking is done.
+ ``None`` implies unpacking the flattened array.
+ count : int or None, optional
+ The number of elements to unpack along `axis`, provided as a way
+ of undoing the effect of packing a size that is not a multiple
+ of eight. A non-negative number means to only unpack `count`
+ bits. A negative number means to trim off that many bits from
+ the end. ``None`` means to unpack the entire array (the
+ default). Counts larger than the available number of bits will
+ add zero padding to the output. Negative counts must not
+ exceed the available number of bits.
+ bitorder : {'big', 'little'}, optional
+ The order of the returned bits. 'big' will mimic bin(val),
+ ``3 = 0b00000011 => [0, 0, 0, 0, 0, 0, 1, 1]``, 'little' will reverse
+ the order to ``[1, 1, 0, 0, 0, 0, 0, 0]``.
+ Defaults to 'big'.
+
+ Returns
+ -------
+ unpacked : ndarray, uint8 type
+ The elements are binary-valued (0 or 1).
+
+ See Also
+ --------
+ packbits : Packs the elements of a binary-valued array into bits in
+ a uint8 array.
+
+ Examples
+ --------
+ >>> import numpy as np
+ >>> a = np.array([[2], [7], [23]], dtype=np.uint8)
+ >>> a
+ array([[ 2],
+ [ 7],
+ [23]], dtype=uint8)
+ >>> b = np.unpackbits(a, axis=1)
+ >>> b
+ array([[0, 0, 0, 0, 0, 0, 1, 0],
+ [0, 0, 0, 0, 0, 1, 1, 1],
+ [0, 0, 0, 1, 0, 1, 1, 1]], dtype=uint8)
+ >>> c = np.unpackbits(a, axis=1, count=-3)
+ >>> c
+ array([[0, 0, 0, 0, 0],
+ [0, 0, 0, 0, 0],
+ [0, 0, 0, 1, 0]], dtype=uint8)
+
+ >>> p = np.packbits(b, axis=0)
+ >>> np.unpackbits(p, axis=0)
+ array([[0, 0, 0, 0, 0, 0, 1, 0],
+ [0, 0, 0, 0, 0, 1, 1, 1],
+ [0, 0, 0, 1, 0, 1, 1, 1],
+ [0, 0, 0, 0, 0, 0, 0, 0],
+ [0, 0, 0, 0, 0, 0, 0, 0],
+ [0, 0, 0, 0, 0, 0, 0, 0],
+ [0, 0, 0, 0, 0, 0, 0, 0],
+ [0, 0, 0, 0, 0, 0, 0, 0]], dtype=uint8)
+ >>> np.array_equal(b, np.unpackbits(p, axis=0, count=b.shape[0]))
+ True
+
+ """
+ return (a,)
+
+
+@array_function_from_c_func_and_dispatcher(_multiarray_umath.shares_memory)
+def shares_memory(a, b, max_work=None):
+ """
+ shares_memory(a, b, /, max_work=None)
+
+ Determine if two arrays share memory.
+
+ .. warning::
+
+ This function can be exponentially slow for some inputs, unless
+ `max_work` is set to zero or a positive integer.
+ If in doubt, use `numpy.may_share_memory` instead.
+
+ Parameters
+ ----------
+ a, b : ndarray
+ Input arrays
+ max_work : int, optional
+ Effort to spend on solving the overlap problem (maximum number
+ of candidate solutions to consider). The following special
+ values are recognized:
+
+ max_work=-1 (default)
+ The problem is solved exactly. In this case, the function returns
+ True only if there is an element shared between the arrays. Finding
+ the exact solution may take extremely long in some cases.
+ max_work=0
+ Only the memory bounds of a and b are checked.
+ This is equivalent to using ``may_share_memory()``.
+
+ Raises
+ ------
+ numpy.exceptions.TooHardError
+ Exceeded max_work.
+
+ Returns
+ -------
+ out : bool
+
+ See Also
+ --------
+ may_share_memory
+
+ Examples
+ --------
+ >>> import numpy as np
+ >>> x = np.array([1, 2, 3, 4])
+ >>> np.shares_memory(x, np.array([5, 6, 7]))
+ False
+ >>> np.shares_memory(x[::2], x)
+ True
+ >>> np.shares_memory(x[::2], x[1::2])
+ False
+
+ Checking whether two arrays share memory is NP-complete, and
+ runtime may increase exponentially in the number of
+ dimensions. Hence, `max_work` should generally be set to a finite
+ number, as it is possible to construct examples that take
+ extremely long to run:
+
+ >>> from numpy.lib.stride_tricks import as_strided
+ >>> x = np.zeros([192163377], dtype=np.int8)
+ >>> x1 = as_strided(
+ ... x, strides=(36674, 61119, 85569), shape=(1049, 1049, 1049))
+ >>> x2 = as_strided(
+ ... x[64023025:], strides=(12223, 12224, 1), shape=(1049, 1049, 1))
+ >>> np.shares_memory(x1, x2, max_work=1000)
+ Traceback (most recent call last):
+ ...
+ numpy.exceptions.TooHardError: Exceeded max_work
+
+ Running ``np.shares_memory(x1, x2)`` without `max_work` set takes
+ around 1 minute for this case. It is possible to find problems
+ that take still significantly longer.
+
+ """
+ return (a, b)
+
+
+@array_function_from_c_func_and_dispatcher(_multiarray_umath.may_share_memory)
+def may_share_memory(a, b, max_work=None):
+ """
+ may_share_memory(a, b, /, max_work=None)
+
+ Determine if two arrays might share memory
+
+ A return of True does not necessarily mean that the two arrays
+ share any element. It just means that they *might*.
+
+ Only the memory bounds of a and b are checked by default.
+
+ Parameters
+ ----------
+ a, b : ndarray
+ Input arrays
+ max_work : int, optional
+ Effort to spend on solving the overlap problem. See
+ `shares_memory` for details. Default for ``may_share_memory``
+ is to do a bounds check.
+
+ Returns
+ -------
+ out : bool
+
+ See Also
+ --------
+ shares_memory
+
+ Examples
+ --------
+ >>> import numpy as np
+ >>> np.may_share_memory(np.array([1,2]), np.array([5,8,9]))
+ False
+ >>> x = np.zeros([3, 4])
+ >>> np.may_share_memory(x[:,0], x[:,1])
+ True
+
+ """
+ return (a, b)
+
+
+@array_function_from_c_func_and_dispatcher(_multiarray_umath.is_busday)
+def is_busday(dates, weekmask=None, holidays=None, busdaycal=None, out=None):
+ """
+ is_busday(
+ dates,
+ weekmask='1111100',
+ holidays=None,
+ busdaycal=None,
+ out=None
+ )
+
+ Calculates which of the given dates are valid days, and which are not.
+
+ Parameters
+ ----------
+ dates : array_like of datetime64[D]
+ The array of dates to process.
+ weekmask : str or array_like of bool, optional
+ A seven-element array indicating which of Monday through Sunday are
+ valid days. May be specified as a length-seven list or array, like
+ [1,1,1,1,1,0,0]; a length-seven string, like '1111100'; or a string
+ like "Mon Tue Wed Thu Fri", made up of 3-character abbreviations for
+ weekdays, optionally separated by white space. Valid abbreviations
+ are: Mon Tue Wed Thu Fri Sat Sun
+ holidays : array_like of datetime64[D], optional
+ An array of dates to consider as invalid dates. They may be
+ specified in any order, and NaT (not-a-time) dates are ignored.
+ This list is saved in a normalized form that is suited for
+ fast calculations of valid days.
+ busdaycal : busdaycalendar, optional
+ A `busdaycalendar` object which specifies the valid days. If this
+ parameter is provided, neither weekmask nor holidays may be
+ provided.
+ out : array of bool, optional
+ If provided, this array is filled with the result.
+
+ Returns
+ -------
+ out : array of bool
+ An array with the same shape as ``dates``, containing True for
+ each valid day, and False for each invalid day.
+
+ See Also
+ --------
+ busdaycalendar : An object that specifies a custom set of valid days.
+ busday_offset : Applies an offset counted in valid days.
+ busday_count : Counts how many valid days are in a half-open date range.
+
+ Examples
+ --------
+ >>> import numpy as np
+ >>> # The weekdays are Friday, Saturday, and Monday
+ ... np.is_busday(['2011-07-01', '2011-07-02', '2011-07-18'],
+ ... holidays=['2011-07-01', '2011-07-04', '2011-07-17'])
+ array([False, False, True])
+ """
+ return (dates, weekmask, holidays, out)
+
+
+@array_function_from_c_func_and_dispatcher(_multiarray_umath.busday_offset)
+def busday_offset(dates, offsets, roll=None, weekmask=None, holidays=None,
+ busdaycal=None, out=None):
+ """
+ busday_offset(
+ dates,
+ offsets,
+ roll='raise',
+ weekmask='1111100',
+ holidays=None,
+ busdaycal=None,
+ out=None
+ )
+
+ First adjusts the date to fall on a valid day according to
+ the ``roll`` rule, then applies offsets to the given dates
+ counted in valid days.
+
+ Parameters
+ ----------
+ dates : array_like of datetime64[D]
+ The array of dates to process.
+ offsets : array_like of int
+ The array of offsets, which is broadcast with ``dates``.
+ roll : {'raise', 'nat', 'forward', 'following', 'backward', 'preceding', \
+ 'modifiedfollowing', 'modifiedpreceding'}, optional
+ How to treat dates that do not fall on a valid day. The default
+ is 'raise'.
+
+ * 'raise' means to raise an exception for an invalid day.
+ * 'nat' means to return a NaT (not-a-time) for an invalid day.
+ * 'forward' and 'following' mean to take the first valid day
+ later in time.
+ * 'backward' and 'preceding' mean to take the first valid day
+ earlier in time.
+ * 'modifiedfollowing' means to take the first valid day
+ later in time unless it is across a Month boundary, in which
+ case to take the first valid day earlier in time.
+ * 'modifiedpreceding' means to take the first valid day
+ earlier in time unless it is across a Month boundary, in which
+ case to take the first valid day later in time.
+ weekmask : str or array_like of bool, optional
+ A seven-element array indicating which of Monday through Sunday are
+ valid days. May be specified as a length-seven list or array, like
+ [1,1,1,1,1,0,0]; a length-seven string, like '1111100'; or a string
+ like "Mon Tue Wed Thu Fri", made up of 3-character abbreviations for
+ weekdays, optionally separated by white space. Valid abbreviations
+ are: Mon Tue Wed Thu Fri Sat Sun
+ holidays : array_like of datetime64[D], optional
+ An array of dates to consider as invalid dates. They may be
+ specified in any order, and NaT (not-a-time) dates are ignored.
+ This list is saved in a normalized form that is suited for
+ fast calculations of valid days.
+ busdaycal : busdaycalendar, optional
+ A `busdaycalendar` object which specifies the valid days. If this
+ parameter is provided, neither weekmask nor holidays may be
+ provided.
+ out : array of datetime64[D], optional
+ If provided, this array is filled with the result.
+
+ Returns
+ -------
+ out : array of datetime64[D]
+ An array with a shape from broadcasting ``dates`` and ``offsets``
+ together, containing the dates with offsets applied.
+
+ See Also
+ --------
+ busdaycalendar : An object that specifies a custom set of valid days.
+ is_busday : Returns a boolean array indicating valid days.
+ busday_count : Counts how many valid days are in a half-open date range.
+
+ Examples
+ --------
+ >>> import numpy as np
+ >>> # First business day in October 2011 (not accounting for holidays)
+ ... np.busday_offset('2011-10', 0, roll='forward')
+ np.datetime64('2011-10-03')
+ >>> # Last business day in February 2012 (not accounting for holidays)
+ ... np.busday_offset('2012-03', -1, roll='forward')
+ np.datetime64('2012-02-29')
+ >>> # Third Wednesday in January 2011
+ ... np.busday_offset('2011-01', 2, roll='forward', weekmask='Wed')
+ np.datetime64('2011-01-19')
+ >>> # 2012 Mother's Day in Canada and the U.S.
+ ... np.busday_offset('2012-05', 1, roll='forward', weekmask='Sun')
+ np.datetime64('2012-05-13')
+
+ >>> # First business day on or after a date
+ ... np.busday_offset('2011-03-20', 0, roll='forward')
+ np.datetime64('2011-03-21')
+ >>> np.busday_offset('2011-03-22', 0, roll='forward')
+ np.datetime64('2011-03-22')
+ >>> # First business day after a date
+ ... np.busday_offset('2011-03-20', 1, roll='backward')
+ np.datetime64('2011-03-21')
+ >>> np.busday_offset('2011-03-22', 1, roll='backward')
+ np.datetime64('2011-03-23')
+ """
+ return (dates, offsets, weekmask, holidays, out)
+
+
+@array_function_from_c_func_and_dispatcher(_multiarray_umath.busday_count)
+def busday_count(begindates, enddates, weekmask=None, holidays=None,
+ busdaycal=None, out=None):
+ """
+ busday_count(
+ begindates,
+ enddates,
+ weekmask='1111100',
+ holidays=[],
+ busdaycal=None,
+ out=None
+ )
+
+ Counts the number of valid days between `begindates` and
+ `enddates`, not including the day of `enddates`.
+
+ If ``enddates`` specifies a date value that is earlier than the
+ corresponding ``begindates`` date value, the count will be negative.
+
+ Parameters
+ ----------
+ begindates : array_like of datetime64[D]
+ The array of the first dates for counting.
+ enddates : array_like of datetime64[D]
+ The array of the end dates for counting, which are excluded
+ from the count themselves.
+ weekmask : str or array_like of bool, optional
+ A seven-element array indicating which of Monday through Sunday are
+ valid days. May be specified as a length-seven list or array, like
+ [1,1,1,1,1,0,0]; a length-seven string, like '1111100'; or a string
+ like "Mon Tue Wed Thu Fri", made up of 3-character abbreviations for
+ weekdays, optionally separated by white space. Valid abbreviations
+ are: Mon Tue Wed Thu Fri Sat Sun
+ holidays : array_like of datetime64[D], optional
+ An array of dates to consider as invalid dates. They may be
+ specified in any order, and NaT (not-a-time) dates are ignored.
+ This list is saved in a normalized form that is suited for
+ fast calculations of valid days.
+ busdaycal : busdaycalendar, optional
+ A `busdaycalendar` object which specifies the valid days. If this
+ parameter is provided, neither weekmask nor holidays may be
+ provided.
+ out : array of int, optional
+ If provided, this array is filled with the result.
+
+ Returns
+ -------
+ out : array of int
+ An array with a shape from broadcasting ``begindates`` and ``enddates``
+ together, containing the number of valid days between
+ the begin and end dates.
+
+ See Also
+ --------
+ busdaycalendar : An object that specifies a custom set of valid days.
+ is_busday : Returns a boolean array indicating valid days.
+ busday_offset : Applies an offset counted in valid days.
+
+ Examples
+ --------
+ >>> import numpy as np
+ >>> # Number of weekdays in January 2011
+ ... np.busday_count('2011-01', '2011-02')
+ 21
+ >>> # Number of weekdays in 2011
+ >>> np.busday_count('2011', '2012')
+ 260
+ >>> # Number of Saturdays in 2011
+ ... np.busday_count('2011', '2012', weekmask='Sat')
+ 53
+ """
+ return (begindates, enddates, weekmask, holidays, out)
+
+
+@array_function_from_c_func_and_dispatcher(
+ _multiarray_umath.datetime_as_string)
+def datetime_as_string(arr, unit=None, timezone=None, casting=None):
+ """
+ datetime_as_string(arr, unit=None, timezone='naive', casting='same_kind')
+
+ Convert an array of datetimes into an array of strings.
+
+ Parameters
+ ----------
+ arr : array_like of datetime64
+ The array of UTC timestamps to format.
+ unit : str
+ One of None, 'auto', or
+ a :ref:`datetime unit <arrays.dtypes.dateunits>`.
+ timezone : {'naive', 'UTC', 'local'} or tzinfo
+ Timezone information to use when displaying the datetime. If 'UTC',
+ end with a Z to indicate UTC time. If 'local', convert to the local
+ timezone first, and suffix with a +-#### timezone offset. If a tzinfo
+ object, then do as with 'local', but use the specified timezone.
+ casting : {'no', 'equiv', 'safe', 'same_kind', 'unsafe'}
+ Casting to allow when changing between datetime units.
+
+ Returns
+ -------
+ str_arr : ndarray
+ An array of strings the same shape as `arr`.
+
+ Examples
+ --------
+ >>> import numpy as np
+ >>> import pytz
+ >>> d = np.arange('2002-10-27T04:30', 4*60, 60, dtype='M8[m]')
+ >>> d
+ array(['2002-10-27T04:30', '2002-10-27T05:30', '2002-10-27T06:30',
+ '2002-10-27T07:30'], dtype='datetime64[m]')
+
+ Setting the timezone to UTC shows the same information, but with a Z suffix
+
+ >>> np.datetime_as_string(d, timezone='UTC')
+ array(['2002-10-27T04:30Z', '2002-10-27T05:30Z', '2002-10-27T06:30Z',
+ '2002-10-27T07:30Z'], dtype='<U35')
+
+ Note that we picked datetimes that cross a DST boundary. Passing in a
+ ``pytz`` timezone object will print the appropriate offset
+
+ >>> np.datetime_as_string(d, timezone=pytz.timezone('US/Eastern'))
+ array(['2002-10-27T00:30-0400', '2002-10-27T01:30-0400',
+ '2002-10-27T01:30-0500', '2002-10-27T02:30-0500'], dtype='<U39')
+
+ Passing in a unit will change the precision
+
+ >>> np.datetime_as_string(d, unit='h')
+ array(['2002-10-27T04', '2002-10-27T05', '2002-10-27T06', '2002-10-27T07'],
+ dtype='<U32')
+ >>> np.datetime_as_string(d, unit='s')
+ array(['2002-10-27T04:30:00', '2002-10-27T05:30:00', '2002-10-27T06:30:00',
+ '2002-10-27T07:30:00'], dtype='<U38')
+
+ 'casting' can be used to specify whether precision can be changed
+
+ >>> np.datetime_as_string(d, unit='h', casting='safe')
+ Traceback (most recent call last):
+ ...
+ TypeError: Cannot create a datetime string as units 'h' from a NumPy
+ datetime with units 'm' according to the rule 'safe'
+ """
+ return (arr,)
diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/multiarray.pyi b/.venv/lib/python3.12/site-packages/numpy/_core/multiarray.pyi
new file mode 100644
index 0000000..13a3f00
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/_core/multiarray.pyi
@@ -0,0 +1,1285 @@
+# TODO: Sort out any and all missing functions in this namespace
+import datetime as dt
+from collections.abc import Callable, Iterable, Sequence
+from typing import (
+ Any,
+ ClassVar,
+ Final,
+ Protocol,
+ SupportsIndex,
+ TypeAlias,
+ TypedDict,
+ TypeVar,
+ Unpack,
+ final,
+ overload,
+ type_check_only,
+)
+from typing import (
+ Literal as L,
+)
+
+from _typeshed import StrOrBytesPath, SupportsLenAndGetItem
+from typing_extensions import CapsuleType
+
+import numpy as np
+from numpy import ( # type: ignore[attr-defined]
+ _AnyShapeT,
+ _CastingKind,
+ _CopyMode,
+ _ModeKind,
+ _NDIterFlagsKind,
+ _NDIterFlagsOp,
+ _OrderCF,
+ _OrderKACF,
+ _SupportsBuffer,
+ _SupportsFileMethods,
+ broadcast,
+ # Re-exports
+ busdaycalendar,
+ complexfloating,
+ correlate,
+ count_nonzero,
+ datetime64,
+ dtype,
+ flatiter,
+ float64,
+ floating,
+ from_dlpack,
+ generic,
+ int_,
+ interp,
+ intp,
+ matmul,
+ ndarray,
+ nditer,
+ signedinteger,
+ str_,
+ timedelta64,
+ # The rest
+ ufunc,
+ uint8,
+ unsignedinteger,
+ vecdot,
+)
+from numpy import (
+ einsum as c_einsum,
+)
+from numpy._typing import (
+ ArrayLike,
+ # DTypes
+ DTypeLike,
+ # Arrays
+ NDArray,
+ _ArrayLike,
+ _ArrayLikeBool_co,
+ _ArrayLikeBytes_co,
+ _ArrayLikeComplex_co,
+ _ArrayLikeDT64_co,
+ _ArrayLikeFloat_co,
+ _ArrayLikeInt_co,
+ _ArrayLikeObject_co,
+ _ArrayLikeStr_co,
+ _ArrayLikeTD64_co,
+ _ArrayLikeUInt_co,
+ _DTypeLike,
+ _FloatLike_co,
+ _IntLike_co,
+ _NestedSequence,
+ _ScalarLike_co,
+ # Shapes
+ _Shape,
+ _ShapeLike,
+ _SupportsArrayFunc,
+ _SupportsDType,
+ _TD64Like_co,
+)
+from numpy._typing._ufunc import (
+ _2PTuple,
+ _PyFunc_Nin1_Nout1,
+ _PyFunc_Nin1P_Nout2P,
+ _PyFunc_Nin2_Nout1,
+ _PyFunc_Nin3P_Nout1,
+)
+from numpy.lib._array_utils_impl import normalize_axis_index
+
+__all__ = [
+ "_ARRAY_API",
+ "ALLOW_THREADS",
+ "BUFSIZE",
+ "CLIP",
+ "DATETIMEUNITS",
+ "ITEM_HASOBJECT",
+ "ITEM_IS_POINTER",
+ "LIST_PICKLE",
+ "MAXDIMS",
+ "MAY_SHARE_BOUNDS",
+ "MAY_SHARE_EXACT",
+ "NEEDS_INIT",
+ "NEEDS_PYAPI",
+ "RAISE",
+ "USE_GETITEM",
+ "USE_SETITEM",
+ "WRAP",
+ "_flagdict",
+ "from_dlpack",
+ "_place",
+ "_reconstruct",
+ "_vec_string",
+ "_monotonicity",
+ "add_docstring",
+ "arange",
+ "array",
+ "asarray",
+ "asanyarray",
+ "ascontiguousarray",
+ "asfortranarray",
+ "bincount",
+ "broadcast",
+ "busday_count",
+ "busday_offset",
+ "busdaycalendar",
+ "can_cast",
+ "compare_chararrays",
+ "concatenate",
+ "copyto",
+ "correlate",
+ "correlate2",
+ "count_nonzero",
+ "c_einsum",
+ "datetime_as_string",
+ "datetime_data",
+ "dot",
+ "dragon4_positional",
+ "dragon4_scientific",
+ "dtype",
+ "empty",
+ "empty_like",
+ "error",
+ "flagsobj",
+ "flatiter",
+ "format_longfloat",
+ "frombuffer",
+ "fromfile",
+ "fromiter",
+ "fromstring",
+ "get_handler_name",
+ "get_handler_version",
+ "inner",
+ "interp",
+ "interp_complex",
+ "is_busday",
+ "lexsort",
+ "matmul",
+ "vecdot",
+ "may_share_memory",
+ "min_scalar_type",
+ "ndarray",
+ "nditer",
+ "nested_iters",
+ "normalize_axis_index",
+ "packbits",
+ "promote_types",
+ "putmask",
+ "ravel_multi_index",
+ "result_type",
+ "scalar",
+ "set_datetimeparse_function",
+ "set_typeDict",
+ "shares_memory",
+ "typeinfo",
+ "unpackbits",
+ "unravel_index",
+ "vdot",
+ "where",
+ "zeros",
+]
+
+_ScalarT = TypeVar("_ScalarT", bound=generic)
+_DTypeT = TypeVar("_DTypeT", bound=np.dtype)
+_ArrayT = TypeVar("_ArrayT", bound=ndarray[Any, Any])
+_ArrayT_co = TypeVar(
+ "_ArrayT_co",
+ bound=ndarray[Any, Any],
+ covariant=True,
+)
+_ReturnType = TypeVar("_ReturnType")
+_IDType = TypeVar("_IDType")
+_Nin = TypeVar("_Nin", bound=int)
+_Nout = TypeVar("_Nout", bound=int)
+
+_ShapeT = TypeVar("_ShapeT", bound=_Shape)
+_Array: TypeAlias = ndarray[_ShapeT, dtype[_ScalarT]]
+_Array1D: TypeAlias = ndarray[tuple[int], dtype[_ScalarT]]
+
+# Valid time units
+_UnitKind: TypeAlias = L[
+ "Y",
+ "M",
+ "D",
+ "h",
+ "m",
+ "s",
+ "ms",
+ "us", "μs",
+ "ns",
+ "ps",
+ "fs",
+ "as",
+]
+_RollKind: TypeAlias = L[ # `raise` is deliberately excluded
+ "nat",
+ "forward",
+ "following",
+ "backward",
+ "preceding",
+ "modifiedfollowing",
+ "modifiedpreceding",
+]
+
+@type_check_only
+class _SupportsArray(Protocol[_ArrayT_co]):
+ def __array__(self, /) -> _ArrayT_co: ...
+
+@type_check_only
+class _KwargsEmpty(TypedDict, total=False):
+ device: L["cpu"] | None
+ like: _SupportsArrayFunc | None
+
+@type_check_only
+class _ConstructorEmpty(Protocol):
+ # 1-D shape
+ @overload
+ def __call__(
+ self,
+ /,
+ shape: SupportsIndex,
+ dtype: None = ...,
+ order: _OrderCF = ...,
+ **kwargs: Unpack[_KwargsEmpty],
+ ) -> _Array1D[float64]: ...
+ @overload
+ def __call__(
+ self,
+ /,
+ shape: SupportsIndex,
+ dtype: _DTypeT | _SupportsDType[_DTypeT],
+ order: _OrderCF = ...,
+ **kwargs: Unpack[_KwargsEmpty],
+ ) -> ndarray[tuple[int], _DTypeT]: ...
+ @overload
+ def __call__(
+ self,
+ /,
+ shape: SupportsIndex,
+ dtype: type[_ScalarT],
+ order: _OrderCF = ...,
+ **kwargs: Unpack[_KwargsEmpty],
+ ) -> _Array1D[_ScalarT]: ...
+ @overload
+ def __call__(
+ self,
+ /,
+ shape: SupportsIndex,
+ dtype: DTypeLike | None = ...,
+ order: _OrderCF = ...,
+ **kwargs: Unpack[_KwargsEmpty],
+ ) -> _Array1D[Any]: ...
+
+ # known shape
+ @overload
+ def __call__(
+ self,
+ /,
+ shape: _AnyShapeT,
+ dtype: None = ...,
+ order: _OrderCF = ...,
+ **kwargs: Unpack[_KwargsEmpty],
+ ) -> _Array[_AnyShapeT, float64]: ...
+ @overload
+ def __call__(
+ self,
+ /,
+ shape: _AnyShapeT,
+ dtype: _DTypeT | _SupportsDType[_DTypeT],
+ order: _OrderCF = ...,
+ **kwargs: Unpack[_KwargsEmpty],
+ ) -> ndarray[_AnyShapeT, _DTypeT]: ...
+ @overload
+ def __call__(
+ self,
+ /,
+ shape: _AnyShapeT,
+ dtype: type[_ScalarT],
+ order: _OrderCF = ...,
+ **kwargs: Unpack[_KwargsEmpty],
+ ) -> _Array[_AnyShapeT, _ScalarT]: ...
+ @overload
+ def __call__(
+ self,
+ /,
+ shape: _AnyShapeT,
+ dtype: DTypeLike | None = ...,
+ order: _OrderCF = ...,
+ **kwargs: Unpack[_KwargsEmpty],
+ ) -> _Array[_AnyShapeT, Any]: ...
+
+ # unknown shape
+ @overload
+ def __call__(
+ self, /,
+ shape: _ShapeLike,
+ dtype: None = ...,
+ order: _OrderCF = ...,
+ **kwargs: Unpack[_KwargsEmpty],
+ ) -> NDArray[float64]: ...
+ @overload
+ def __call__(
+ self, /,
+ shape: _ShapeLike,
+ dtype: _DTypeT | _SupportsDType[_DTypeT],
+ order: _OrderCF = ...,
+ **kwargs: Unpack[_KwargsEmpty],
+ ) -> ndarray[Any, _DTypeT]: ...
+ @overload
+ def __call__(
+ self, /,
+ shape: _ShapeLike,
+ dtype: type[_ScalarT],
+ order: _OrderCF = ...,
+ **kwargs: Unpack[_KwargsEmpty],
+ ) -> NDArray[_ScalarT]: ...
+ @overload
+ def __call__(
+ self,
+ /,
+ shape: _ShapeLike,
+ dtype: DTypeLike | None = ...,
+ order: _OrderCF = ...,
+ **kwargs: Unpack[_KwargsEmpty],
+ ) -> NDArray[Any]: ...
+
+# using `Final` or `TypeAlias` will break stubtest
+error = Exception
+
+# from ._multiarray_umath
+ITEM_HASOBJECT: Final = 1
+LIST_PICKLE: Final = 2
+ITEM_IS_POINTER: Final = 4
+NEEDS_INIT: Final = 8
+NEEDS_PYAPI: Final = 16
+USE_GETITEM: Final = 32
+USE_SETITEM: Final = 64
+DATETIMEUNITS: Final[CapsuleType]
+_ARRAY_API: Final[CapsuleType]
+_flagdict: Final[dict[str, int]]
+_monotonicity: Final[Callable[..., object]]
+_place: Final[Callable[..., object]]
+_reconstruct: Final[Callable[..., object]]
+_vec_string: Final[Callable[..., object]]
+correlate2: Final[Callable[..., object]]
+dragon4_positional: Final[Callable[..., object]]
+dragon4_scientific: Final[Callable[..., object]]
+interp_complex: Final[Callable[..., object]]
+set_datetimeparse_function: Final[Callable[..., object]]
+def get_handler_name(a: NDArray[Any] = ..., /) -> str | None: ...
+def get_handler_version(a: NDArray[Any] = ..., /) -> int | None: ...
+def format_longfloat(x: np.longdouble, precision: int) -> str: ...
+def scalar(dtype: _DTypeT, object: bytes | object = ...) -> ndarray[tuple[()], _DTypeT]: ...
+def set_typeDict(dict_: dict[str, np.dtype], /) -> None: ...
+typeinfo: Final[dict[str, np.dtype[np.generic]]]
+
+ALLOW_THREADS: Final[int] # 0 or 1 (system-specific)
+BUFSIZE: L[8192]
+CLIP: L[0]
+WRAP: L[1]
+RAISE: L[2]
+MAXDIMS: L[32]
+MAY_SHARE_BOUNDS: L[0]
+MAY_SHARE_EXACT: L[-1]
+tracemalloc_domain: L[389047]
+
+zeros: Final[_ConstructorEmpty]
+empty: Final[_ConstructorEmpty]
+
+@overload
+def empty_like(
+ prototype: _ArrayT,
+ dtype: None = ...,
+ order: _OrderKACF = ...,
+ subok: bool = ...,
+ shape: _ShapeLike | None = ...,
+ *,
+ device: L["cpu"] | None = ...,
+) -> _ArrayT: ...
+@overload
+def empty_like(
+ prototype: _ArrayLike[_ScalarT],
+ dtype: None = ...,
+ order: _OrderKACF = ...,
+ subok: bool = ...,
+ shape: _ShapeLike | None = ...,
+ *,
+ device: L["cpu"] | None = ...,
+) -> NDArray[_ScalarT]: ...
+@overload
+def empty_like(
+ prototype: Any,
+ dtype: _DTypeLike[_ScalarT],
+ order: _OrderKACF = ...,
+ subok: bool = ...,
+ shape: _ShapeLike | None = ...,
+ *,
+ device: L["cpu"] | None = ...,
+) -> NDArray[_ScalarT]: ...
+@overload
+def empty_like(
+ prototype: Any,
+ dtype: DTypeLike | None = ...,
+ order: _OrderKACF = ...,
+ subok: bool = ...,
+ shape: _ShapeLike | None = ...,
+ *,
+ device: L["cpu"] | None = ...,
+) -> NDArray[Any]: ...
+
+@overload
+def array(
+ object: _ArrayT,
+ dtype: None = ...,
+ *,
+ copy: bool | _CopyMode | None = ...,
+ order: _OrderKACF = ...,
+ subok: L[True],
+ ndmin: int = ...,
+ like: _SupportsArrayFunc | None = ...,
+) -> _ArrayT: ...
+@overload
+def array(
+ object: _SupportsArray[_ArrayT],
+ dtype: None = ...,
+ *,
+ copy: bool | _CopyMode | None = ...,
+ order: _OrderKACF = ...,
+ subok: L[True],
+ ndmin: L[0] = ...,
+ like: _SupportsArrayFunc | None = ...,
+) -> _ArrayT: ...
+@overload
+def array(
+ object: _ArrayLike[_ScalarT],
+ dtype: None = ...,
+ *,
+ copy: bool | _CopyMode | None = ...,
+ order: _OrderKACF = ...,
+ subok: bool = ...,
+ ndmin: int = ...,
+ like: _SupportsArrayFunc | None = ...,
+) -> NDArray[_ScalarT]: ...
+@overload
+def array(
+ object: Any,
+ dtype: _DTypeLike[_ScalarT],
+ *,
+ copy: bool | _CopyMode | None = ...,
+ order: _OrderKACF = ...,
+ subok: bool = ...,
+ ndmin: int = ...,
+ like: _SupportsArrayFunc | None = ...,
+) -> NDArray[_ScalarT]: ...
+@overload
+def array(
+ object: Any,
+ dtype: DTypeLike | None = ...,
+ *,
+ copy: bool | _CopyMode | None = ...,
+ order: _OrderKACF = ...,
+ subok: bool = ...,
+ ndmin: int = ...,
+ like: _SupportsArrayFunc | None = ...,
+) -> NDArray[Any]: ...
+
+#
+@overload
+def ravel_multi_index(
+ multi_index: SupportsLenAndGetItem[_IntLike_co],
+ dims: _ShapeLike,
+ mode: _ModeKind | tuple[_ModeKind, ...] = "raise",
+ order: _OrderCF = "C",
+) -> intp: ...
+@overload
+def ravel_multi_index(
+ multi_index: SupportsLenAndGetItem[_ArrayLikeInt_co],
+ dims: _ShapeLike,
+ mode: _ModeKind | tuple[_ModeKind, ...] = "raise",
+ order: _OrderCF = "C",
+) -> NDArray[intp]: ...
+
+#
+@overload
+def unravel_index(indices: _IntLike_co, shape: _ShapeLike, order: _OrderCF = "C") -> tuple[intp, ...]: ...
+@overload
+def unravel_index(indices: _ArrayLikeInt_co, shape: _ShapeLike, order: _OrderCF = "C") -> tuple[NDArray[intp], ...]: ...
+
+# NOTE: Allow any sequence of array-like objects
+@overload
+def concatenate( # type: ignore[misc]
+ arrays: _ArrayLike[_ScalarT],
+ /,
+ axis: SupportsIndex | None = ...,
+ out: None = ...,
+ *,
+ dtype: None = ...,
+ casting: _CastingKind | None = ...
+) -> NDArray[_ScalarT]: ...
+@overload
+@overload
+def concatenate( # type: ignore[misc]
+ arrays: SupportsLenAndGetItem[ArrayLike],
+ /,
+ axis: SupportsIndex | None = ...,
+ out: None = ...,
+ *,
+ dtype: _DTypeLike[_ScalarT],
+ casting: _CastingKind | None = ...
+) -> NDArray[_ScalarT]: ...
+@overload
+def concatenate( # type: ignore[misc]
+ arrays: SupportsLenAndGetItem[ArrayLike],
+ /,
+ axis: SupportsIndex | None = ...,
+ out: None = ...,
+ *,
+ dtype: DTypeLike | None = None,
+ casting: _CastingKind | None = ...
+) -> NDArray[Any]: ...
+@overload
+def concatenate(
+ arrays: SupportsLenAndGetItem[ArrayLike],
+ /,
+ axis: SupportsIndex | None = ...,
+ out: _ArrayT = ...,
+ *,
+ dtype: DTypeLike = ...,
+ casting: _CastingKind | None = ...
+) -> _ArrayT: ...
+
+def inner(
+ a: ArrayLike,
+ b: ArrayLike,
+ /,
+) -> Any: ...
+
+@overload
+def where(
+ condition: ArrayLike,
+ /,
+) -> tuple[NDArray[intp], ...]: ...
+@overload
+def where(
+ condition: ArrayLike,
+ x: ArrayLike,
+ y: ArrayLike,
+ /,
+) -> NDArray[Any]: ...
+
+def lexsort(
+ keys: ArrayLike,
+ axis: SupportsIndex | None = ...,
+) -> Any: ...
+
+def can_cast(
+ from_: ArrayLike | DTypeLike,
+ to: DTypeLike,
+ casting: _CastingKind | None = ...,
+) -> bool: ...
+
+def min_scalar_type(a: ArrayLike, /) -> dtype: ...
+
+def result_type(*arrays_and_dtypes: ArrayLike | DTypeLike) -> dtype: ...
+
+@overload
+def dot(a: ArrayLike, b: ArrayLike, out: None = ...) -> Any: ...
+@overload
+def dot(a: ArrayLike, b: ArrayLike, out: _ArrayT) -> _ArrayT: ...
+
+@overload
+def vdot(a: _ArrayLikeBool_co, b: _ArrayLikeBool_co, /) -> np.bool: ... # type: ignore[misc]
+@overload
+def vdot(a: _ArrayLikeUInt_co, b: _ArrayLikeUInt_co, /) -> unsignedinteger: ... # type: ignore[misc]
+@overload
+def vdot(a: _ArrayLikeInt_co, b: _ArrayLikeInt_co, /) -> signedinteger: ... # type: ignore[misc]
+@overload
+def vdot(a: _ArrayLikeFloat_co, b: _ArrayLikeFloat_co, /) -> floating: ... # type: ignore[misc]
+@overload
+def vdot(a: _ArrayLikeComplex_co, b: _ArrayLikeComplex_co, /) -> complexfloating: ... # type: ignore[misc]
+@overload
+def vdot(a: _ArrayLikeTD64_co, b: _ArrayLikeTD64_co, /) -> timedelta64: ...
+@overload
+def vdot(a: _ArrayLikeObject_co, b: Any, /) -> Any: ...
+@overload
+def vdot(a: Any, b: _ArrayLikeObject_co, /) -> Any: ...
+
+def bincount(
+ x: ArrayLike,
+ /,
+ weights: ArrayLike | None = ...,
+ minlength: SupportsIndex = ...,
+) -> NDArray[intp]: ...
+
+def copyto(
+ dst: NDArray[Any],
+ src: ArrayLike,
+ casting: _CastingKind | None = ...,
+ where: _ArrayLikeBool_co | None = ...,
+) -> None: ...
+
+def putmask(
+ a: NDArray[Any],
+ /,
+ mask: _ArrayLikeBool_co,
+ values: ArrayLike,
+) -> None: ...
+
+def packbits(
+ a: _ArrayLikeInt_co,
+ /,
+ axis: SupportsIndex | None = ...,
+ bitorder: L["big", "little"] = ...,
+) -> NDArray[uint8]: ...
+
+def unpackbits(
+ a: _ArrayLike[uint8],
+ /,
+ axis: SupportsIndex | None = ...,
+ count: SupportsIndex | None = ...,
+ bitorder: L["big", "little"] = ...,
+) -> NDArray[uint8]: ...
+
+def shares_memory(
+ a: object,
+ b: object,
+ /,
+ max_work: int | None = ...,
+) -> bool: ...
+
+def may_share_memory(
+ a: object,
+ b: object,
+ /,
+ max_work: int | None = ...,
+) -> bool: ...
+
+@overload
+def asarray(
+ a: _ArrayLike[_ScalarT],
+ dtype: None = ...,
+ order: _OrderKACF = ...,
+ *,
+ device: L["cpu"] | None = ...,
+ copy: bool | None = ...,
+ like: _SupportsArrayFunc | None = ...,
+) -> NDArray[_ScalarT]: ...
+@overload
+def asarray(
+ a: Any,
+ dtype: _DTypeLike[_ScalarT],
+ order: _OrderKACF = ...,
+ *,
+ device: L["cpu"] | None = ...,
+ copy: bool | None = ...,
+ like: _SupportsArrayFunc | None = ...,
+) -> NDArray[_ScalarT]: ...
+@overload
+def asarray(
+ a: Any,
+ dtype: DTypeLike | None = ...,
+ order: _OrderKACF = ...,
+ *,
+ device: L["cpu"] | None = ...,
+ copy: bool | None = ...,
+ like: _SupportsArrayFunc | None = ...,
+) -> NDArray[Any]: ...
+
+@overload
+def asanyarray(
+ a: _ArrayT, # Preserve subclass-information
+ dtype: None = ...,
+ order: _OrderKACF = ...,
+ *,
+ device: L["cpu"] | None = ...,
+ copy: bool | None = ...,
+ like: _SupportsArrayFunc | None = ...,
+) -> _ArrayT: ...
+@overload
+def asanyarray(
+ a: _ArrayLike[_ScalarT],
+ dtype: None = ...,
+ order: _OrderKACF = ...,
+ *,
+ device: L["cpu"] | None = ...,
+ copy: bool | None = ...,
+ like: _SupportsArrayFunc | None = ...,
+) -> NDArray[_ScalarT]: ...
+@overload
+def asanyarray(
+ a: Any,
+ dtype: _DTypeLike[_ScalarT],
+ order: _OrderKACF = ...,
+ *,
+ device: L["cpu"] | None = ...,
+ copy: bool | None = ...,
+ like: _SupportsArrayFunc | None = ...,
+) -> NDArray[_ScalarT]: ...
+@overload
+def asanyarray(
+ a: Any,
+ dtype: DTypeLike | None = ...,
+ order: _OrderKACF = ...,
+ *,
+ device: L["cpu"] | None = ...,
+ copy: bool | None = ...,
+ like: _SupportsArrayFunc | None = ...,
+) -> NDArray[Any]: ...
+
+@overload
+def ascontiguousarray(
+ a: _ArrayLike[_ScalarT],
+ dtype: None = ...,
+ *,
+ like: _SupportsArrayFunc | None = ...,
+) -> NDArray[_ScalarT]: ...
+@overload
+def ascontiguousarray(
+ a: Any,
+ dtype: _DTypeLike[_ScalarT],
+ *,
+ like: _SupportsArrayFunc | None = ...,
+) -> NDArray[_ScalarT]: ...
+@overload
+def ascontiguousarray(
+ a: Any,
+ dtype: DTypeLike | None = ...,
+ *,
+ like: _SupportsArrayFunc | None = ...,
+) -> NDArray[Any]: ...
+
+@overload
+def asfortranarray(
+ a: _ArrayLike[_ScalarT],
+ dtype: None = ...,
+ *,
+ like: _SupportsArrayFunc | None = ...,
+) -> NDArray[_ScalarT]: ...
+@overload
+def asfortranarray(
+ a: Any,
+ dtype: _DTypeLike[_ScalarT],
+ *,
+ like: _SupportsArrayFunc | None = ...,
+) -> NDArray[_ScalarT]: ...
+@overload
+def asfortranarray(
+ a: Any,
+ dtype: DTypeLike | None = ...,
+ *,
+ like: _SupportsArrayFunc | None = ...,
+) -> NDArray[Any]: ...
+
+def promote_types(__type1: DTypeLike, __type2: DTypeLike) -> dtype: ...
+
+# `sep` is a de facto mandatory argument, as its default value is deprecated
+@overload
+def fromstring(
+ string: str | bytes,
+ dtype: None = ...,
+ count: SupportsIndex = ...,
+ *,
+ sep: str,
+ like: _SupportsArrayFunc | None = ...,
+) -> NDArray[float64]: ...
+@overload
+def fromstring(
+ string: str | bytes,
+ dtype: _DTypeLike[_ScalarT],
+ count: SupportsIndex = ...,
+ *,
+ sep: str,
+ like: _SupportsArrayFunc | None = ...,
+) -> NDArray[_ScalarT]: ...
+@overload
+def fromstring(
+ string: str | bytes,
+ dtype: DTypeLike | None = ...,
+ count: SupportsIndex = ...,
+ *,
+ sep: str,
+ like: _SupportsArrayFunc | None = ...,
+) -> NDArray[Any]: ...
+
+@overload
+def frompyfunc( # type: ignore[overload-overlap]
+ func: Callable[[Any], _ReturnType], /,
+ nin: L[1],
+ nout: L[1],
+ *,
+ identity: None = ...,
+) -> _PyFunc_Nin1_Nout1[_ReturnType, None]: ...
+@overload
+def frompyfunc( # type: ignore[overload-overlap]
+ func: Callable[[Any], _ReturnType], /,
+ nin: L[1],
+ nout: L[1],
+ *,
+ identity: _IDType,
+) -> _PyFunc_Nin1_Nout1[_ReturnType, _IDType]: ...
+@overload
+def frompyfunc( # type: ignore[overload-overlap]
+ func: Callable[[Any, Any], _ReturnType], /,
+ nin: L[2],
+ nout: L[1],
+ *,
+ identity: None = ...,
+) -> _PyFunc_Nin2_Nout1[_ReturnType, None]: ...
+@overload
+def frompyfunc( # type: ignore[overload-overlap]
+ func: Callable[[Any, Any], _ReturnType], /,
+ nin: L[2],
+ nout: L[1],
+ *,
+ identity: _IDType,
+) -> _PyFunc_Nin2_Nout1[_ReturnType, _IDType]: ...
+@overload
+def frompyfunc( # type: ignore[overload-overlap]
+ func: Callable[..., _ReturnType], /,
+ nin: _Nin,
+ nout: L[1],
+ *,
+ identity: None = ...,
+) -> _PyFunc_Nin3P_Nout1[_ReturnType, None, _Nin]: ...
+@overload
+def frompyfunc( # type: ignore[overload-overlap]
+ func: Callable[..., _ReturnType], /,
+ nin: _Nin,
+ nout: L[1],
+ *,
+ identity: _IDType,
+) -> _PyFunc_Nin3P_Nout1[_ReturnType, _IDType, _Nin]: ...
+@overload
+def frompyfunc(
+ func: Callable[..., _2PTuple[_ReturnType]], /,
+ nin: _Nin,
+ nout: _Nout,
+ *,
+ identity: None = ...,
+) -> _PyFunc_Nin1P_Nout2P[_ReturnType, None, _Nin, _Nout]: ...
+@overload
+def frompyfunc(
+ func: Callable[..., _2PTuple[_ReturnType]], /,
+ nin: _Nin,
+ nout: _Nout,
+ *,
+ identity: _IDType,
+) -> _PyFunc_Nin1P_Nout2P[_ReturnType, _IDType, _Nin, _Nout]: ...
+@overload
+def frompyfunc(
+ func: Callable[..., Any], /,
+ nin: SupportsIndex,
+ nout: SupportsIndex,
+ *,
+ identity: object | None = ...,
+) -> ufunc: ...
+
+@overload
+def fromfile(
+ file: StrOrBytesPath | _SupportsFileMethods,
+ dtype: None = ...,
+ count: SupportsIndex = ...,
+ sep: str = ...,
+ offset: SupportsIndex = ...,
+ *,
+ like: _SupportsArrayFunc | None = ...,
+) -> NDArray[float64]: ...
+@overload
+def fromfile(
+ file: StrOrBytesPath | _SupportsFileMethods,
+ dtype: _DTypeLike[_ScalarT],
+ count: SupportsIndex = ...,
+ sep: str = ...,
+ offset: SupportsIndex = ...,
+ *,
+ like: _SupportsArrayFunc | None = ...,
+) -> NDArray[_ScalarT]: ...
+@overload
+def fromfile(
+ file: StrOrBytesPath | _SupportsFileMethods,
+ dtype: DTypeLike | None = ...,
+ count: SupportsIndex = ...,
+ sep: str = ...,
+ offset: SupportsIndex = ...,
+ *,
+ like: _SupportsArrayFunc | None = ...,
+) -> NDArray[Any]: ...
+
+@overload
+def fromiter(
+ iter: Iterable[Any],
+ dtype: _DTypeLike[_ScalarT],
+ count: SupportsIndex = ...,
+ *,
+ like: _SupportsArrayFunc | None = ...,
+) -> NDArray[_ScalarT]: ...
+@overload
+def fromiter(
+ iter: Iterable[Any],
+ dtype: DTypeLike,
+ count: SupportsIndex = ...,
+ *,
+ like: _SupportsArrayFunc | None = ...,
+) -> NDArray[Any]: ...
+
+@overload
+def frombuffer(
+ buffer: _SupportsBuffer,
+ dtype: None = ...,
+ count: SupportsIndex = ...,
+ offset: SupportsIndex = ...,
+ *,
+ like: _SupportsArrayFunc | None = ...,
+) -> NDArray[float64]: ...
+@overload
+def frombuffer(
+ buffer: _SupportsBuffer,
+ dtype: _DTypeLike[_ScalarT],
+ count: SupportsIndex = ...,
+ offset: SupportsIndex = ...,
+ *,
+ like: _SupportsArrayFunc | None = ...,
+) -> NDArray[_ScalarT]: ...
+@overload
+def frombuffer(
+ buffer: _SupportsBuffer,
+ dtype: DTypeLike | None = ...,
+ count: SupportsIndex = ...,
+ offset: SupportsIndex = ...,
+ *,
+ like: _SupportsArrayFunc | None = ...,
+) -> NDArray[Any]: ...
+
+@overload
+def arange( # type: ignore[misc]
+ stop: _IntLike_co,
+ /, *,
+ dtype: None = ...,
+ device: L["cpu"] | None = ...,
+ like: _SupportsArrayFunc | None = ...,
+) -> _Array1D[signedinteger]: ...
+@overload
+def arange( # type: ignore[misc]
+ start: _IntLike_co,
+ stop: _IntLike_co,
+ step: _IntLike_co = ...,
+ dtype: None = ...,
+ *,
+ device: L["cpu"] | None = ...,
+ like: _SupportsArrayFunc | None = ...,
+) -> _Array1D[signedinteger]: ...
+@overload
+def arange( # type: ignore[misc]
+ stop: _FloatLike_co,
+ /, *,
+ dtype: None = ...,
+ device: L["cpu"] | None = ...,
+ like: _SupportsArrayFunc | None = ...,
+) -> _Array1D[floating]: ...
+@overload
+def arange( # type: ignore[misc]
+ start: _FloatLike_co,
+ stop: _FloatLike_co,
+ step: _FloatLike_co = ...,
+ dtype: None = ...,
+ *,
+ device: L["cpu"] | None = ...,
+ like: _SupportsArrayFunc | None = ...,
+) -> _Array1D[floating]: ...
+@overload
+def arange(
+ stop: _TD64Like_co,
+ /, *,
+ dtype: None = ...,
+ device: L["cpu"] | None = ...,
+ like: _SupportsArrayFunc | None = ...,
+) -> _Array1D[timedelta64]: ...
+@overload
+def arange(
+ start: _TD64Like_co,
+ stop: _TD64Like_co,
+ step: _TD64Like_co = ...,
+ dtype: None = ...,
+ *,
+ device: L["cpu"] | None = ...,
+ like: _SupportsArrayFunc | None = ...,
+) -> _Array1D[timedelta64]: ...
+@overload
+def arange( # both start and stop must always be specified for datetime64
+ start: datetime64,
+ stop: datetime64,
+ step: datetime64 = ...,
+ dtype: None = ...,
+ *,
+ device: L["cpu"] | None = ...,
+ like: _SupportsArrayFunc | None = ...,
+) -> _Array1D[datetime64]: ...
+@overload
+def arange(
+ stop: Any,
+ /, *,
+ dtype: _DTypeLike[_ScalarT],
+ device: L["cpu"] | None = ...,
+ like: _SupportsArrayFunc | None = ...,
+) -> _Array1D[_ScalarT]: ...
+@overload
+def arange(
+ start: Any,
+ stop: Any,
+ step: Any = ...,
+ dtype: _DTypeLike[_ScalarT] = ...,
+ *,
+ device: L["cpu"] | None = ...,
+ like: _SupportsArrayFunc | None = ...,
+) -> _Array1D[_ScalarT]: ...
+@overload
+def arange(
+ stop: Any, /,
+ *,
+ dtype: DTypeLike | None = ...,
+ device: L["cpu"] | None = ...,
+ like: _SupportsArrayFunc | None = ...,
+) -> _Array1D[Any]: ...
+@overload
+def arange(
+ start: Any,
+ stop: Any,
+ step: Any = ...,
+ dtype: DTypeLike | None = ...,
+ *,
+ device: L["cpu"] | None = ...,
+ like: _SupportsArrayFunc | None = ...,
+) -> _Array1D[Any]: ...
+
+def datetime_data(
+ dtype: str | _DTypeLike[datetime64] | _DTypeLike[timedelta64], /,
+) -> tuple[str, int]: ...
+
+# The datetime functions perform unsafe casts to `datetime64[D]`,
+# so a lot of different argument types are allowed here
+
+@overload
+def busday_count( # type: ignore[misc]
+ begindates: _ScalarLike_co | dt.date,
+ enddates: _ScalarLike_co | dt.date,
+ weekmask: ArrayLike = ...,
+ holidays: ArrayLike | dt.date | _NestedSequence[dt.date] | None = ...,
+ busdaycal: busdaycalendar | None = ...,
+ out: None = ...,
+) -> int_: ...
+@overload
+def busday_count( # type: ignore[misc]
+ begindates: ArrayLike | dt.date | _NestedSequence[dt.date],
+ enddates: ArrayLike | dt.date | _NestedSequence[dt.date],
+ weekmask: ArrayLike = ...,
+ holidays: ArrayLike | dt.date | _NestedSequence[dt.date] | None = ...,
+ busdaycal: busdaycalendar | None = ...,
+ out: None = ...,
+) -> NDArray[int_]: ...
+@overload
+def busday_count(
+ begindates: ArrayLike | dt.date | _NestedSequence[dt.date],
+ enddates: ArrayLike | dt.date | _NestedSequence[dt.date],
+ weekmask: ArrayLike = ...,
+ holidays: ArrayLike | dt.date | _NestedSequence[dt.date] | None = ...,
+ busdaycal: busdaycalendar | None = ...,
+ out: _ArrayT = ...,
+) -> _ArrayT: ...
+
+# `roll="raise"` is (more or less?) equivalent to `casting="safe"`
+@overload
+def busday_offset( # type: ignore[misc]
+ dates: datetime64 | dt.date,
+ offsets: _TD64Like_co | dt.timedelta,
+ roll: L["raise"] = ...,
+ weekmask: ArrayLike = ...,
+ holidays: ArrayLike | dt.date | _NestedSequence[dt.date] | None = ...,
+ busdaycal: busdaycalendar | None = ...,
+ out: None = ...,
+) -> datetime64: ...
+@overload
+def busday_offset( # type: ignore[misc]
+ dates: _ArrayLike[datetime64] | dt.date | _NestedSequence[dt.date],
+ offsets: _ArrayLikeTD64_co | dt.timedelta | _NestedSequence[dt.timedelta],
+ roll: L["raise"] = ...,
+ weekmask: ArrayLike = ...,
+ holidays: ArrayLike | dt.date | _NestedSequence[dt.date] | None = ...,
+ busdaycal: busdaycalendar | None = ...,
+ out: None = ...,
+) -> NDArray[datetime64]: ...
+@overload
+def busday_offset( # type: ignore[misc]
+ dates: _ArrayLike[datetime64] | dt.date | _NestedSequence[dt.date],
+ offsets: _ArrayLikeTD64_co | dt.timedelta | _NestedSequence[dt.timedelta],
+ roll: L["raise"] = ...,
+ weekmask: ArrayLike = ...,
+ holidays: ArrayLike | dt.date | _NestedSequence[dt.date] | None = ...,
+ busdaycal: busdaycalendar | None = ...,
+ out: _ArrayT = ...,
+) -> _ArrayT: ...
+@overload
+def busday_offset( # type: ignore[misc]
+ dates: _ScalarLike_co | dt.date,
+ offsets: _ScalarLike_co | dt.timedelta,
+ roll: _RollKind,
+ weekmask: ArrayLike = ...,
+ holidays: ArrayLike | dt.date | _NestedSequence[dt.date] | None = ...,
+ busdaycal: busdaycalendar | None = ...,
+ out: None = ...,
+) -> datetime64: ...
+@overload
+def busday_offset( # type: ignore[misc]
+ dates: ArrayLike | dt.date | _NestedSequence[dt.date],
+ offsets: ArrayLike | dt.timedelta | _NestedSequence[dt.timedelta],
+ roll: _RollKind,
+ weekmask: ArrayLike = ...,
+ holidays: ArrayLike | dt.date | _NestedSequence[dt.date] | None = ...,
+ busdaycal: busdaycalendar | None = ...,
+ out: None = ...,
+) -> NDArray[datetime64]: ...
+@overload
+def busday_offset(
+ dates: ArrayLike | dt.date | _NestedSequence[dt.date],
+ offsets: ArrayLike | dt.timedelta | _NestedSequence[dt.timedelta],
+ roll: _RollKind,
+ weekmask: ArrayLike = ...,
+ holidays: ArrayLike | dt.date | _NestedSequence[dt.date] | None = ...,
+ busdaycal: busdaycalendar | None = ...,
+ out: _ArrayT = ...,
+) -> _ArrayT: ...
+
+@overload
+def is_busday( # type: ignore[misc]
+ dates: _ScalarLike_co | dt.date,
+ weekmask: ArrayLike = ...,
+ holidays: ArrayLike | dt.date | _NestedSequence[dt.date] | None = ...,
+ busdaycal: busdaycalendar | None = ...,
+ out: None = ...,
+) -> np.bool: ...
+@overload
+def is_busday( # type: ignore[misc]
+ dates: ArrayLike | _NestedSequence[dt.date],
+ weekmask: ArrayLike = ...,
+ holidays: ArrayLike | dt.date | _NestedSequence[dt.date] | None = ...,
+ busdaycal: busdaycalendar | None = ...,
+ out: None = ...,
+) -> NDArray[np.bool]: ...
+@overload
+def is_busday(
+ dates: ArrayLike | _NestedSequence[dt.date],
+ weekmask: ArrayLike = ...,
+ holidays: ArrayLike | dt.date | _NestedSequence[dt.date] | None = ...,
+ busdaycal: busdaycalendar | None = ...,
+ out: _ArrayT = ...,
+) -> _ArrayT: ...
+
+@overload
+def datetime_as_string( # type: ignore[misc]
+ arr: datetime64 | dt.date,
+ unit: L["auto"] | _UnitKind | None = ...,
+ timezone: L["naive", "UTC", "local"] | dt.tzinfo = ...,
+ casting: _CastingKind = ...,
+) -> str_: ...
+@overload
+def datetime_as_string(
+ arr: _ArrayLikeDT64_co | _NestedSequence[dt.date],
+ unit: L["auto"] | _UnitKind | None = ...,
+ timezone: L["naive", "UTC", "local"] | dt.tzinfo = ...,
+ casting: _CastingKind = ...,
+) -> NDArray[str_]: ...
+
+@overload
+def compare_chararrays(
+ a1: _ArrayLikeStr_co,
+ a2: _ArrayLikeStr_co,
+ cmp: L["<", "<=", "==", ">=", ">", "!="],
+ rstrip: bool,
+) -> NDArray[np.bool]: ...
+@overload
+def compare_chararrays(
+ a1: _ArrayLikeBytes_co,
+ a2: _ArrayLikeBytes_co,
+ cmp: L["<", "<=", "==", ">=", ">", "!="],
+ rstrip: bool,
+) -> NDArray[np.bool]: ...
+
+def add_docstring(obj: Callable[..., Any], docstring: str, /) -> None: ...
+
+_GetItemKeys: TypeAlias = L[
+ "C", "CONTIGUOUS", "C_CONTIGUOUS",
+ "F", "FORTRAN", "F_CONTIGUOUS",
+ "W", "WRITEABLE",
+ "B", "BEHAVED",
+ "O", "OWNDATA",
+ "A", "ALIGNED",
+ "X", "WRITEBACKIFCOPY",
+ "CA", "CARRAY",
+ "FA", "FARRAY",
+ "FNC",
+ "FORC",
+]
+_SetItemKeys: TypeAlias = L[
+ "A", "ALIGNED",
+ "W", "WRITEABLE",
+ "X", "WRITEBACKIFCOPY",
+]
+
+@final
+class flagsobj:
+ __hash__: ClassVar[None] # type: ignore[assignment]
+ aligned: bool
+ # NOTE: deprecated
+ # updateifcopy: bool
+ writeable: bool
+ writebackifcopy: bool
+ @property
+ def behaved(self) -> bool: ...
+ @property
+ def c_contiguous(self) -> bool: ...
+ @property
+ def carray(self) -> bool: ...
+ @property
+ def contiguous(self) -> bool: ...
+ @property
+ def f_contiguous(self) -> bool: ...
+ @property
+ def farray(self) -> bool: ...
+ @property
+ def fnc(self) -> bool: ...
+ @property
+ def forc(self) -> bool: ...
+ @property
+ def fortran(self) -> bool: ...
+ @property
+ def num(self) -> int: ...
+ @property
+ def owndata(self) -> bool: ...
+ def __getitem__(self, key: _GetItemKeys) -> bool: ...
+ def __setitem__(self, key: _SetItemKeys, value: bool) -> None: ...
+
+def nested_iters(
+ op: ArrayLike | Sequence[ArrayLike],
+ axes: Sequence[Sequence[SupportsIndex]],
+ flags: Sequence[_NDIterFlagsKind] | None = ...,
+ op_flags: Sequence[Sequence[_NDIterFlagsOp]] | None = ...,
+ op_dtypes: DTypeLike | Sequence[DTypeLike] = ...,
+ order: _OrderKACF = ...,
+ casting: _CastingKind = ...,
+ buffersize: SupportsIndex = ...,
+) -> tuple[nditer, ...]: ...
diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/numeric.py b/.venv/lib/python3.12/site-packages/numpy/_core/numeric.py
new file mode 100644
index 0000000..964447f
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/_core/numeric.py
@@ -0,0 +1,2760 @@
+import builtins
+import functools
+import itertools
+import math
+import numbers
+import operator
+import sys
+import warnings
+
+import numpy as np
+from numpy.exceptions import AxisError
+
+from . import multiarray, numerictypes, overrides, shape_base, umath
+from . import numerictypes as nt
+from ._ufunc_config import errstate
+from .multiarray import ( # noqa: F401
+ ALLOW_THREADS,
+ BUFSIZE,
+ CLIP,
+ MAXDIMS,
+ MAY_SHARE_BOUNDS,
+ MAY_SHARE_EXACT,
+ RAISE,
+ WRAP,
+ arange,
+ array,
+ asanyarray,
+ asarray,
+ ascontiguousarray,
+ asfortranarray,
+ broadcast,
+ can_cast,
+ concatenate,
+ copyto,
+ dot,
+ dtype,
+ empty,
+ empty_like,
+ flatiter,
+ from_dlpack,
+ frombuffer,
+ fromfile,
+ fromiter,
+ fromstring,
+ inner,
+ lexsort,
+ matmul,
+ may_share_memory,
+ min_scalar_type,
+ ndarray,
+ nditer,
+ nested_iters,
+ normalize_axis_index,
+ promote_types,
+ putmask,
+ result_type,
+ shares_memory,
+ vdot,
+ vecdot,
+ where,
+ zeros,
+)
+from .overrides import finalize_array_function_like, set_module
+from .umath import NAN, PINF, invert, multiply, sin
+
+bitwise_not = invert
+ufunc = type(sin)
+newaxis = None
+
+array_function_dispatch = functools.partial(
+ overrides.array_function_dispatch, module='numpy')
+
+
+__all__ = [
+ 'newaxis', 'ndarray', 'flatiter', 'nditer', 'nested_iters', 'ufunc',
+ 'arange', 'array', 'asarray', 'asanyarray', 'ascontiguousarray',
+ 'asfortranarray', 'zeros', 'count_nonzero', 'empty', 'broadcast', 'dtype',
+ 'fromstring', 'fromfile', 'frombuffer', 'from_dlpack', 'where',
+ 'argwhere', 'copyto', 'concatenate', 'lexsort', 'astype',
+ 'can_cast', 'promote_types', 'min_scalar_type',
+ 'result_type', 'isfortran', 'empty_like', 'zeros_like', 'ones_like',
+ 'correlate', 'convolve', 'inner', 'dot', 'outer', 'vdot', 'roll',
+ 'rollaxis', 'moveaxis', 'cross', 'tensordot', 'little_endian',
+ 'fromiter', 'array_equal', 'array_equiv', 'indices', 'fromfunction',
+ 'isclose', 'isscalar', 'binary_repr', 'base_repr', 'ones',
+ 'identity', 'allclose', 'putmask',
+ 'flatnonzero', 'inf', 'nan', 'False_', 'True_', 'bitwise_not',
+ 'full', 'full_like', 'matmul', 'vecdot', 'shares_memory',
+ 'may_share_memory']
+
+
+def _zeros_like_dispatcher(
+ a, dtype=None, order=None, subok=None, shape=None, *, device=None
+):
+ return (a,)
+
+
+@array_function_dispatch(_zeros_like_dispatcher)
+def zeros_like(
+ a, dtype=None, order='K', subok=True, shape=None, *, device=None
+):
+ """
+ Return an array of zeros with the same shape and type as a given array.
+
+ Parameters
+ ----------
+ a : array_like
+ The shape and data-type of `a` define these same attributes of
+ the returned array.
+ dtype : data-type, optional
+ Overrides the data type of the result.
+ order : {'C', 'F', 'A', or 'K'}, optional
+ Overrides the memory layout of the result. 'C' means C-order,
+ 'F' means F-order, 'A' means 'F' if `a` is Fortran contiguous,
+ 'C' otherwise. 'K' means match the layout of `a` as closely
+ as possible.
+ subok : bool, optional.
+ If True, then the newly created array will use the sub-class
+ type of `a`, otherwise it will be a base-class array. Defaults
+ to True.
+ shape : int or sequence of ints, optional.
+ Overrides the shape of the result. If order='K' and the number of
+ dimensions is unchanged, will try to keep order, otherwise,
+ order='C' is implied.
+ device : str, optional
+ The device on which to place the created array. Default: None.
+ For Array-API interoperability only, so must be ``"cpu"`` if passed.
+
+ .. versionadded:: 2.0.0
+
+ Returns
+ -------
+ out : ndarray
+ Array of zeros with the same shape and type as `a`.
+
+ See Also
+ --------
+ empty_like : Return an empty array with shape and type of input.
+ ones_like : Return an array of ones with shape and type of input.
+ full_like : Return a new array with shape of input filled with value.
+ zeros : Return a new array setting values to zero.
+
+ Examples
+ --------
+ >>> import numpy as np
+ >>> x = np.arange(6)
+ >>> x = x.reshape((2, 3))
+ >>> x
+ array([[0, 1, 2],
+ [3, 4, 5]])
+ >>> np.zeros_like(x)
+ array([[0, 0, 0],
+ [0, 0, 0]])
+
+ >>> y = np.arange(3, dtype=float)
+ >>> y
+ array([0., 1., 2.])
+ >>> np.zeros_like(y)
+ array([0., 0., 0.])
+
+ """
+ res = empty_like(
+ a, dtype=dtype, order=order, subok=subok, shape=shape, device=device
+ )
+ # needed instead of a 0 to get same result as zeros for string dtypes
+ z = zeros(1, dtype=res.dtype)
+ multiarray.copyto(res, z, casting='unsafe')
+ return res
+
+
+@finalize_array_function_like
+@set_module('numpy')
+def ones(shape, dtype=None, order='C', *, device=None, like=None):
+ """
+ Return a new array of given shape and type, filled with ones.
+
+ Parameters
+ ----------
+ shape : int or sequence of ints
+ Shape of the new array, e.g., ``(2, 3)`` or ``2``.
+ dtype : data-type, optional
+ The desired data-type for the array, e.g., `numpy.int8`. Default is
+ `numpy.float64`.
+ order : {'C', 'F'}, optional, default: C
+ Whether to store multi-dimensional data in row-major
+ (C-style) or column-major (Fortran-style) order in
+ memory.
+ device : str, optional
+ The device on which to place the created array. Default: None.
+ For Array-API interoperability only, so must be ``"cpu"`` if passed.
+
+ .. versionadded:: 2.0.0
+ ${ARRAY_FUNCTION_LIKE}
+
+ .. versionadded:: 1.20.0
+
+ Returns
+ -------
+ out : ndarray
+ Array of ones with the given shape, dtype, and order.
+
+ See Also
+ --------
+ ones_like : Return an array of ones with shape and type of input.
+ empty : Return a new uninitialized array.
+ zeros : Return a new array setting values to zero.
+ full : Return a new array of given shape filled with value.
+
+ Examples
+ --------
+ >>> import numpy as np
+ >>> np.ones(5)
+ array([1., 1., 1., 1., 1.])
+
+ >>> np.ones((5,), dtype=int)
+ array([1, 1, 1, 1, 1])
+
+ >>> np.ones((2, 1))
+ array([[1.],
+ [1.]])
+
+ >>> s = (2,2)
+ >>> np.ones(s)
+ array([[1., 1.],
+ [1., 1.]])
+
+ """
+ if like is not None:
+ return _ones_with_like(
+ like, shape, dtype=dtype, order=order, device=device
+ )
+
+ a = empty(shape, dtype, order, device=device)
+ multiarray.copyto(a, 1, casting='unsafe')
+ return a
+
+
+_ones_with_like = array_function_dispatch()(ones)
+
+
+def _ones_like_dispatcher(
+ a, dtype=None, order=None, subok=None, shape=None, *, device=None
+):
+ return (a,)
+
+
+@array_function_dispatch(_ones_like_dispatcher)
+def ones_like(
+ a, dtype=None, order='K', subok=True, shape=None, *, device=None
+):
+ """
+ Return an array of ones with the same shape and type as a given array.
+
+ Parameters
+ ----------
+ a : array_like
+ The shape and data-type of `a` define these same attributes of
+ the returned array.
+ dtype : data-type, optional
+ Overrides the data type of the result.
+ order : {'C', 'F', 'A', or 'K'}, optional
+ Overrides the memory layout of the result. 'C' means C-order,
+ 'F' means F-order, 'A' means 'F' if `a` is Fortran contiguous,
+ 'C' otherwise. 'K' means match the layout of `a` as closely
+ as possible.
+ subok : bool, optional.
+ If True, then the newly created array will use the sub-class
+ type of `a`, otherwise it will be a base-class array. Defaults
+ to True.
+ shape : int or sequence of ints, optional.
+ Overrides the shape of the result. If order='K' and the number of
+ dimensions is unchanged, will try to keep order, otherwise,
+ order='C' is implied.
+ device : str, optional
+ The device on which to place the created array. Default: None.
+ For Array-API interoperability only, so must be ``"cpu"`` if passed.
+
+ .. versionadded:: 2.0.0
+
+ Returns
+ -------
+ out : ndarray
+ Array of ones with the same shape and type as `a`.
+
+ See Also
+ --------
+ empty_like : Return an empty array with shape and type of input.
+ zeros_like : Return an array of zeros with shape and type of input.
+ full_like : Return a new array with shape of input filled with value.
+ ones : Return a new array setting values to one.
+
+ Examples
+ --------
+ >>> import numpy as np
+ >>> x = np.arange(6)
+ >>> x = x.reshape((2, 3))
+ >>> x
+ array([[0, 1, 2],
+ [3, 4, 5]])
+ >>> np.ones_like(x)
+ array([[1, 1, 1],
+ [1, 1, 1]])
+
+ >>> y = np.arange(3, dtype=float)
+ >>> y
+ array([0., 1., 2.])
+ >>> np.ones_like(y)
+ array([1., 1., 1.])
+
+ """
+ res = empty_like(
+ a, dtype=dtype, order=order, subok=subok, shape=shape, device=device
+ )
+ multiarray.copyto(res, 1, casting='unsafe')
+ return res
+
+
+def _full_dispatcher(
+ shape, fill_value, dtype=None, order=None, *, device=None, like=None
+):
+ return (like,)
+
+
+@finalize_array_function_like
+@set_module('numpy')
+def full(shape, fill_value, dtype=None, order='C', *, device=None, like=None):
+ """
+ Return a new array of given shape and type, filled with `fill_value`.
+
+ Parameters
+ ----------
+ shape : int or sequence of ints
+ Shape of the new array, e.g., ``(2, 3)`` or ``2``.
+ fill_value : scalar or array_like
+ Fill value.
+ dtype : data-type, optional
+ The desired data-type for the array The default, None, means
+ ``np.array(fill_value).dtype``.
+ order : {'C', 'F'}, optional
+ Whether to store multidimensional data in C- or Fortran-contiguous
+ (row- or column-wise) order in memory.
+ device : str, optional
+ The device on which to place the created array. Default: None.
+ For Array-API interoperability only, so must be ``"cpu"`` if passed.
+
+ .. versionadded:: 2.0.0
+ ${ARRAY_FUNCTION_LIKE}
+
+ .. versionadded:: 1.20.0
+
+ Returns
+ -------
+ out : ndarray
+ Array of `fill_value` with the given shape, dtype, and order.
+
+ See Also
+ --------
+ full_like : Return a new array with shape of input filled with value.
+ empty : Return a new uninitialized array.
+ ones : Return a new array setting values to one.
+ zeros : Return a new array setting values to zero.
+
+ Examples
+ --------
+ >>> import numpy as np
+ >>> np.full((2, 2), np.inf)
+ array([[inf, inf],
+ [inf, inf]])
+ >>> np.full((2, 2), 10)
+ array([[10, 10],
+ [10, 10]])
+
+ >>> np.full((2, 2), [1, 2])
+ array([[1, 2],
+ [1, 2]])
+
+ """
+ if like is not None:
+ return _full_with_like(
+ like, shape, fill_value, dtype=dtype, order=order, device=device
+ )
+
+ if dtype is None:
+ fill_value = asarray(fill_value)
+ dtype = fill_value.dtype
+ a = empty(shape, dtype, order, device=device)
+ multiarray.copyto(a, fill_value, casting='unsafe')
+ return a
+
+
+_full_with_like = array_function_dispatch()(full)
+
+
+def _full_like_dispatcher(
+ a, fill_value, dtype=None, order=None, subok=None, shape=None,
+ *, device=None
+):
+ return (a,)
+
+
+@array_function_dispatch(_full_like_dispatcher)
+def full_like(
+ a, fill_value, dtype=None, order='K', subok=True, shape=None,
+ *, device=None
+):
+ """
+ Return a full array with the same shape and type as a given array.
+
+ Parameters
+ ----------
+ a : array_like
+ The shape and data-type of `a` define these same attributes of
+ the returned array.
+ fill_value : array_like
+ Fill value.
+ dtype : data-type, optional
+ Overrides the data type of the result.
+ order : {'C', 'F', 'A', or 'K'}, optional
+ Overrides the memory layout of the result. 'C' means C-order,
+ 'F' means F-order, 'A' means 'F' if `a` is Fortran contiguous,
+ 'C' otherwise. 'K' means match the layout of `a` as closely
+ as possible.
+ subok : bool, optional.
+ If True, then the newly created array will use the sub-class
+ type of `a`, otherwise it will be a base-class array. Defaults
+ to True.
+ shape : int or sequence of ints, optional.
+ Overrides the shape of the result. If order='K' and the number of
+ dimensions is unchanged, will try to keep order, otherwise,
+ order='C' is implied.
+ device : str, optional
+ The device on which to place the created array. Default: None.
+ For Array-API interoperability only, so must be ``"cpu"`` if passed.
+
+ .. versionadded:: 2.0.0
+
+ Returns
+ -------
+ out : ndarray
+ Array of `fill_value` with the same shape and type as `a`.
+
+ See Also
+ --------
+ empty_like : Return an empty array with shape and type of input.
+ ones_like : Return an array of ones with shape and type of input.
+ zeros_like : Return an array of zeros with shape and type of input.
+ full : Return a new array of given shape filled with value.
+
+ Examples
+ --------
+ >>> import numpy as np
+ >>> x = np.arange(6, dtype=int)
+ >>> np.full_like(x, 1)
+ array([1, 1, 1, 1, 1, 1])
+ >>> np.full_like(x, 0.1)
+ array([0, 0, 0, 0, 0, 0])
+ >>> np.full_like(x, 0.1, dtype=np.double)
+ array([0.1, 0.1, 0.1, 0.1, 0.1, 0.1])
+ >>> np.full_like(x, np.nan, dtype=np.double)
+ array([nan, nan, nan, nan, nan, nan])
+
+ >>> y = np.arange(6, dtype=np.double)
+ >>> np.full_like(y, 0.1)
+ array([0.1, 0.1, 0.1, 0.1, 0.1, 0.1])
+
+ >>> y = np.zeros([2, 2, 3], dtype=int)
+ >>> np.full_like(y, [0, 0, 255])
+ array([[[ 0, 0, 255],
+ [ 0, 0, 255]],
+ [[ 0, 0, 255],
+ [ 0, 0, 255]]])
+ """
+ res = empty_like(
+ a, dtype=dtype, order=order, subok=subok, shape=shape, device=device
+ )
+ multiarray.copyto(res, fill_value, casting='unsafe')
+ return res
+
+
+def _count_nonzero_dispatcher(a, axis=None, *, keepdims=None):
+ return (a,)
+
+
+@array_function_dispatch(_count_nonzero_dispatcher)
+def count_nonzero(a, axis=None, *, keepdims=False):
+ """
+ Counts the number of non-zero values in the array ``a``.
+
+ The word "non-zero" is in reference to the Python 2.x
+ built-in method ``__nonzero__()`` (renamed ``__bool__()``
+ in Python 3.x) of Python objects that tests an object's
+ "truthfulness". For example, any number is considered
+ truthful if it is nonzero, whereas any string is considered
+ truthful if it is not the empty string. Thus, this function
+ (recursively) counts how many elements in ``a`` (and in
+ sub-arrays thereof) have their ``__nonzero__()`` or ``__bool__()``
+ method evaluated to ``True``.
+
+ Parameters
+ ----------
+ a : array_like
+ The array for which to count non-zeros.
+ axis : int or tuple, optional
+ Axis or tuple of axes along which to count non-zeros.
+ Default is None, meaning that non-zeros will be counted
+ along a flattened version of ``a``.
+ keepdims : bool, optional
+ If this is set to True, the axes that are counted are left
+ in the result as dimensions with size one. With this option,
+ the result will broadcast correctly against the input array.
+
+ Returns
+ -------
+ count : int or array of int
+ Number of non-zero values in the array along a given axis.
+ Otherwise, the total number of non-zero values in the array
+ is returned.
+
+ See Also
+ --------
+ nonzero : Return the coordinates of all the non-zero values.
+
+ Examples
+ --------
+ >>> import numpy as np
+ >>> np.count_nonzero(np.eye(4))
+ 4
+ >>> a = np.array([[0, 1, 7, 0],
+ ... [3, 0, 2, 19]])
+ >>> np.count_nonzero(a)
+ 5
+ >>> np.count_nonzero(a, axis=0)
+ array([1, 1, 2, 1])
+ >>> np.count_nonzero(a, axis=1)
+ array([2, 3])
+ >>> np.count_nonzero(a, axis=1, keepdims=True)
+ array([[2],
+ [3]])
+ """
+ if axis is None and not keepdims:
+ return multiarray.count_nonzero(a)
+
+ a = asanyarray(a)
+
+ # TODO: this works around .astype(bool) not working properly (gh-9847)
+ if np.issubdtype(a.dtype, np.character):
+ a_bool = a != a.dtype.type()
+ else:
+ a_bool = a.astype(np.bool, copy=False)
+
+ return a_bool.sum(axis=axis, dtype=np.intp, keepdims=keepdims)
+
+
+@set_module('numpy')
+def isfortran(a):
+ """
+ Check if the array is Fortran contiguous but *not* C contiguous.
+
+ This function is obsolete. If you only want to check if an array is Fortran
+ contiguous use ``a.flags.f_contiguous`` instead.
+
+ Parameters
+ ----------
+ a : ndarray
+ Input array.
+
+ Returns
+ -------
+ isfortran : bool
+ Returns True if the array is Fortran contiguous but *not* C contiguous.
+
+
+ Examples
+ --------
+
+ np.array allows to specify whether the array is written in C-contiguous
+ order (last index varies the fastest), or FORTRAN-contiguous order in
+ memory (first index varies the fastest).
+
+ >>> import numpy as np
+ >>> a = np.array([[1, 2, 3], [4, 5, 6]], order='C')
+ >>> a
+ array([[1, 2, 3],
+ [4, 5, 6]])
+ >>> np.isfortran(a)
+ False
+
+ >>> b = np.array([[1, 2, 3], [4, 5, 6]], order='F')
+ >>> b
+ array([[1, 2, 3],
+ [4, 5, 6]])
+ >>> np.isfortran(b)
+ True
+
+
+ The transpose of a C-ordered array is a FORTRAN-ordered array.
+
+ >>> a = np.array([[1, 2, 3], [4, 5, 6]], order='C')
+ >>> a
+ array([[1, 2, 3],
+ [4, 5, 6]])
+ >>> np.isfortran(a)
+ False
+ >>> b = a.T
+ >>> b
+ array([[1, 4],
+ [2, 5],
+ [3, 6]])
+ >>> np.isfortran(b)
+ True
+
+ C-ordered arrays evaluate as False even if they are also FORTRAN-ordered.
+
+ >>> np.isfortran(np.array([1, 2], order='F'))
+ False
+
+ """
+ return a.flags.fnc
+
+
+def _argwhere_dispatcher(a):
+ return (a,)
+
+
+@array_function_dispatch(_argwhere_dispatcher)
+def argwhere(a):
+ """
+ Find the indices of array elements that are non-zero, grouped by element.
+
+ Parameters
+ ----------
+ a : array_like
+ Input data.
+
+ Returns
+ -------
+ index_array : (N, a.ndim) ndarray
+ Indices of elements that are non-zero. Indices are grouped by element.
+ This array will have shape ``(N, a.ndim)`` where ``N`` is the number of
+ non-zero items.
+
+ See Also
+ --------
+ where, nonzero
+
+ Notes
+ -----
+ ``np.argwhere(a)`` is almost the same as ``np.transpose(np.nonzero(a))``,
+ but produces a result of the correct shape for a 0D array.
+
+ The output of ``argwhere`` is not suitable for indexing arrays.
+ For this purpose use ``nonzero(a)`` instead.
+
+ Examples
+ --------
+ >>> import numpy as np
+ >>> x = np.arange(6).reshape(2,3)
+ >>> x
+ array([[0, 1, 2],
+ [3, 4, 5]])
+ >>> np.argwhere(x>1)
+ array([[0, 2],
+ [1, 0],
+ [1, 1],
+ [1, 2]])
+
+ """
+ # nonzero does not behave well on 0d, so promote to 1d
+ if np.ndim(a) == 0:
+ a = shape_base.atleast_1d(a)
+ # then remove the added dimension
+ return argwhere(a)[:, :0]
+ return transpose(nonzero(a))
+
+
+def _flatnonzero_dispatcher(a):
+ return (a,)
+
+
+@array_function_dispatch(_flatnonzero_dispatcher)
+def flatnonzero(a):
+ """
+ Return indices that are non-zero in the flattened version of a.
+
+ This is equivalent to ``np.nonzero(np.ravel(a))[0]``.
+
+ Parameters
+ ----------
+ a : array_like
+ Input data.
+
+ Returns
+ -------
+ res : ndarray
+ Output array, containing the indices of the elements of ``a.ravel()``
+ that are non-zero.
+
+ See Also
+ --------
+ nonzero : Return the indices of the non-zero elements of the input array.
+ ravel : Return a 1-D array containing the elements of the input array.
+
+ Examples
+ --------
+ >>> import numpy as np
+ >>> x = np.arange(-2, 3)
+ >>> x
+ array([-2, -1, 0, 1, 2])
+ >>> np.flatnonzero(x)
+ array([0, 1, 3, 4])
+
+ Use the indices of the non-zero elements as an index array to extract
+ these elements:
+
+ >>> x.ravel()[np.flatnonzero(x)]
+ array([-2, -1, 1, 2])
+
+ """
+ return np.nonzero(np.ravel(a))[0]
+
+
+def _correlate_dispatcher(a, v, mode=None):
+ return (a, v)
+
+
+@array_function_dispatch(_correlate_dispatcher)
+def correlate(a, v, mode='valid'):
+ r"""
+ Cross-correlation of two 1-dimensional sequences.
+
+ This function computes the correlation as generally defined in signal
+ processing texts [1]_:
+
+ .. math:: c_k = \sum_n a_{n+k} \cdot \overline{v}_n
+
+ with a and v sequences being zero-padded where necessary and
+ :math:`\overline v` denoting complex conjugation.
+
+ Parameters
+ ----------
+ a, v : array_like
+ Input sequences.
+ mode : {'valid', 'same', 'full'}, optional
+ Refer to the `convolve` docstring. Note that the default
+ is 'valid', unlike `convolve`, which uses 'full'.
+
+ Returns
+ -------
+ out : ndarray
+ Discrete cross-correlation of `a` and `v`.
+
+ See Also
+ --------
+ convolve : Discrete, linear convolution of two one-dimensional sequences.
+ scipy.signal.correlate : uses FFT which has superior performance
+ on large arrays.
+
+ Notes
+ -----
+ The definition of correlation above is not unique and sometimes
+ correlation may be defined differently. Another common definition is [1]_:
+
+ .. math:: c'_k = \sum_n a_{n} \cdot \overline{v_{n+k}}
+
+ which is related to :math:`c_k` by :math:`c'_k = c_{-k}`.
+
+ `numpy.correlate` may perform slowly in large arrays (i.e. n = 1e5)
+ because it does not use the FFT to compute the convolution; in that case,
+ `scipy.signal.correlate` might be preferable.
+
+ References
+ ----------
+ .. [1] Wikipedia, "Cross-correlation",
+ https://en.wikipedia.org/wiki/Cross-correlation
+
+ Examples
+ --------
+ >>> import numpy as np
+ >>> np.correlate([1, 2, 3], [0, 1, 0.5])
+ array([3.5])
+ >>> np.correlate([1, 2, 3], [0, 1, 0.5], "same")
+ array([2. , 3.5, 3. ])
+ >>> np.correlate([1, 2, 3], [0, 1, 0.5], "full")
+ array([0.5, 2. , 3.5, 3. , 0. ])
+
+ Using complex sequences:
+
+ >>> np.correlate([1+1j, 2, 3-1j], [0, 1, 0.5j], 'full')
+ array([ 0.5-0.5j, 1.0+0.j , 1.5-1.5j, 3.0-1.j , 0.0+0.j ])
+
+ Note that you get the time reversed, complex conjugated result
+ (:math:`\overline{c_{-k}}`) when the two input sequences a and v change
+ places:
+
+ >>> np.correlate([0, 1, 0.5j], [1+1j, 2, 3-1j], 'full')
+ array([ 0.0+0.j , 3.0+1.j , 1.5+1.5j, 1.0+0.j , 0.5+0.5j])
+
+ """
+ return multiarray.correlate2(a, v, mode)
+
+
+def _convolve_dispatcher(a, v, mode=None):
+ return (a, v)
+
+
+@array_function_dispatch(_convolve_dispatcher)
+def convolve(a, v, mode='full'):
+ """
+ Returns the discrete, linear convolution of two one-dimensional sequences.
+
+ The convolution operator is often seen in signal processing, where it
+ models the effect of a linear time-invariant system on a signal [1]_. In
+ probability theory, the sum of two independent random variables is
+ distributed according to the convolution of their individual
+ distributions.
+
+ If `v` is longer than `a`, the arrays are swapped before computation.
+
+ Parameters
+ ----------
+ a : (N,) array_like
+ First one-dimensional input array.
+ v : (M,) array_like
+ Second one-dimensional input array.
+ mode : {'full', 'valid', 'same'}, optional
+ 'full':
+ By default, mode is 'full'. This returns the convolution
+ at each point of overlap, with an output shape of (N+M-1,). At
+ the end-points of the convolution, the signals do not overlap
+ completely, and boundary effects may be seen.
+
+ 'same':
+ Mode 'same' returns output of length ``max(M, N)``. Boundary
+ effects are still visible.
+
+ 'valid':
+ Mode 'valid' returns output of length
+ ``max(M, N) - min(M, N) + 1``. The convolution product is only given
+ for points where the signals overlap completely. Values outside
+ the signal boundary have no effect.
+
+ Returns
+ -------
+ out : ndarray
+ Discrete, linear convolution of `a` and `v`.
+
+ See Also
+ --------
+ scipy.signal.fftconvolve : Convolve two arrays using the Fast Fourier
+ Transform.
+ scipy.linalg.toeplitz : Used to construct the convolution operator.
+ polymul : Polynomial multiplication. Same output as convolve, but also
+ accepts poly1d objects as input.
+
+ Notes
+ -----
+ The discrete convolution operation is defined as
+
+ .. math:: (a * v)_n = \\sum_{m = -\\infty}^{\\infty} a_m v_{n - m}
+
+ It can be shown that a convolution :math:`x(t) * y(t)` in time/space
+ is equivalent to the multiplication :math:`X(f) Y(f)` in the Fourier
+ domain, after appropriate padding (padding is necessary to prevent
+ circular convolution). Since multiplication is more efficient (faster)
+ than convolution, the function `scipy.signal.fftconvolve` exploits the
+ FFT to calculate the convolution of large data-sets.
+
+ References
+ ----------
+ .. [1] Wikipedia, "Convolution",
+ https://en.wikipedia.org/wiki/Convolution
+
+ Examples
+ --------
+ Note how the convolution operator flips the second array
+ before "sliding" the two across one another:
+
+ >>> import numpy as np
+ >>> np.convolve([1, 2, 3], [0, 1, 0.5])
+ array([0. , 1. , 2.5, 4. , 1.5])
+
+ Only return the middle values of the convolution.
+ Contains boundary effects, where zeros are taken
+ into account:
+
+ >>> np.convolve([1,2,3],[0,1,0.5], 'same')
+ array([1. , 2.5, 4. ])
+
+ The two arrays are of the same length, so there
+ is only one position where they completely overlap:
+
+ >>> np.convolve([1,2,3],[0,1,0.5], 'valid')
+ array([2.5])
+
+ """
+ a, v = array(a, copy=None, ndmin=1), array(v, copy=None, ndmin=1)
+ if (len(v) > len(a)):
+ a, v = v, a
+ if len(a) == 0:
+ raise ValueError('a cannot be empty')
+ if len(v) == 0:
+ raise ValueError('v cannot be empty')
+ return multiarray.correlate(a, v[::-1], mode)
+
+
+def _outer_dispatcher(a, b, out=None):
+ return (a, b, out)
+
+
+@array_function_dispatch(_outer_dispatcher)
+def outer(a, b, out=None):
+ """
+ Compute the outer product of two vectors.
+
+ Given two vectors `a` and `b` of length ``M`` and ``N``, respectively,
+ the outer product [1]_ is::
+
+ [[a_0*b_0 a_0*b_1 ... a_0*b_{N-1} ]
+ [a_1*b_0 .
+ [ ... .
+ [a_{M-1}*b_0 a_{M-1}*b_{N-1} ]]
+
+ Parameters
+ ----------
+ a : (M,) array_like
+ First input vector. Input is flattened if
+ not already 1-dimensional.
+ b : (N,) array_like
+ Second input vector. Input is flattened if
+ not already 1-dimensional.
+ out : (M, N) ndarray, optional
+ A location where the result is stored
+
+ Returns
+ -------
+ out : (M, N) ndarray
+ ``out[i, j] = a[i] * b[j]``
+
+ See also
+ --------
+ inner
+ einsum : ``einsum('i,j->ij', a.ravel(), b.ravel())`` is the equivalent.
+ ufunc.outer : A generalization to dimensions other than 1D and other
+ operations. ``np.multiply.outer(a.ravel(), b.ravel())``
+ is the equivalent.
+ linalg.outer : An Array API compatible variation of ``np.outer``,
+ which accepts 1-dimensional inputs only.
+ tensordot : ``np.tensordot(a.ravel(), b.ravel(), axes=((), ()))``
+ is the equivalent.
+
+ References
+ ----------
+ .. [1] G. H. Golub and C. F. Van Loan, *Matrix Computations*, 3rd
+ ed., Baltimore, MD, Johns Hopkins University Press, 1996,
+ pg. 8.
+
+ Examples
+ --------
+ Make a (*very* coarse) grid for computing a Mandelbrot set:
+
+ >>> import numpy as np
+ >>> rl = np.outer(np.ones((5,)), np.linspace(-2, 2, 5))
+ >>> rl
+ array([[-2., -1., 0., 1., 2.],
+ [-2., -1., 0., 1., 2.],
+ [-2., -1., 0., 1., 2.],
+ [-2., -1., 0., 1., 2.],
+ [-2., -1., 0., 1., 2.]])
+ >>> im = np.outer(1j*np.linspace(2, -2, 5), np.ones((5,)))
+ >>> im
+ array([[0.+2.j, 0.+2.j, 0.+2.j, 0.+2.j, 0.+2.j],
+ [0.+1.j, 0.+1.j, 0.+1.j, 0.+1.j, 0.+1.j],
+ [0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j],
+ [0.-1.j, 0.-1.j, 0.-1.j, 0.-1.j, 0.-1.j],
+ [0.-2.j, 0.-2.j, 0.-2.j, 0.-2.j, 0.-2.j]])
+ >>> grid = rl + im
+ >>> grid
+ array([[-2.+2.j, -1.+2.j, 0.+2.j, 1.+2.j, 2.+2.j],
+ [-2.+1.j, -1.+1.j, 0.+1.j, 1.+1.j, 2.+1.j],
+ [-2.+0.j, -1.+0.j, 0.+0.j, 1.+0.j, 2.+0.j],
+ [-2.-1.j, -1.-1.j, 0.-1.j, 1.-1.j, 2.-1.j],
+ [-2.-2.j, -1.-2.j, 0.-2.j, 1.-2.j, 2.-2.j]])
+
+ An example using a "vector" of letters:
+
+ >>> x = np.array(['a', 'b', 'c'], dtype=object)
+ >>> np.outer(x, [1, 2, 3])
+ array([['a', 'aa', 'aaa'],
+ ['b', 'bb', 'bbb'],
+ ['c', 'cc', 'ccc']], dtype=object)
+
+ """
+ a = asarray(a)
+ b = asarray(b)
+ return multiply(a.ravel()[:, newaxis], b.ravel()[newaxis, :], out)
+
+
+def _tensordot_dispatcher(a, b, axes=None):
+ return (a, b)
+
+
+@array_function_dispatch(_tensordot_dispatcher)
+def tensordot(a, b, axes=2):
+ """
+ Compute tensor dot product along specified axes.
+
+ Given two tensors, `a` and `b`, and an array_like object containing
+ two array_like objects, ``(a_axes, b_axes)``, sum the products of
+ `a`'s and `b`'s elements (components) over the axes specified by
+ ``a_axes`` and ``b_axes``. The third argument can be a single non-negative
+ integer_like scalar, ``N``; if it is such, then the last ``N`` dimensions
+ of `a` and the first ``N`` dimensions of `b` are summed over.
+
+ Parameters
+ ----------
+ a, b : array_like
+ Tensors to "dot".
+
+ axes : int or (2,) array_like
+ * integer_like
+ If an int N, sum over the last N axes of `a` and the first N axes
+ of `b` in order. The sizes of the corresponding axes must match.
+ * (2,) array_like
+ Or, a list of axes to be summed over, first sequence applying to `a`,
+ second to `b`. Both elements array_like must be of the same length.
+
+ Returns
+ -------
+ output : ndarray
+ The tensor dot product of the input.
+
+ See Also
+ --------
+ dot, einsum
+
+ Notes
+ -----
+ Three common use cases are:
+ * ``axes = 0`` : tensor product :math:`a\\otimes b`
+ * ``axes = 1`` : tensor dot product :math:`a\\cdot b`
+ * ``axes = 2`` : (default) tensor double contraction :math:`a:b`
+
+ When `axes` is integer_like, the sequence of axes for evaluation
+ will be: from the -Nth axis to the -1th axis in `a`,
+ and from the 0th axis to (N-1)th axis in `b`.
+ For example, ``axes = 2`` is the equal to
+ ``axes = [[-2, -1], [0, 1]]``.
+ When N-1 is smaller than 0, or when -N is larger than -1,
+ the element of `a` and `b` are defined as the `axes`.
+
+ When there is more than one axis to sum over - and they are not the last
+ (first) axes of `a` (`b`) - the argument `axes` should consist of
+ two sequences of the same length, with the first axis to sum over given
+ first in both sequences, the second axis second, and so forth.
+ The calculation can be referred to ``numpy.einsum``.
+
+ The shape of the result consists of the non-contracted axes of the
+ first tensor, followed by the non-contracted axes of the second.
+
+ Examples
+ --------
+ An example on integer_like:
+
+ >>> a_0 = np.array([[1, 2], [3, 4]])
+ >>> b_0 = np.array([[5, 6], [7, 8]])
+ >>> c_0 = np.tensordot(a_0, b_0, axes=0)
+ >>> c_0.shape
+ (2, 2, 2, 2)
+ >>> c_0
+ array([[[[ 5, 6],
+ [ 7, 8]],
+ [[10, 12],
+ [14, 16]]],
+ [[[15, 18],
+ [21, 24]],
+ [[20, 24],
+ [28, 32]]]])
+
+ An example on array_like:
+
+ >>> a = np.arange(60.).reshape(3,4,5)
+ >>> b = np.arange(24.).reshape(4,3,2)
+ >>> c = np.tensordot(a,b, axes=([1,0],[0,1]))
+ >>> c.shape
+ (5, 2)
+ >>> c
+ array([[4400., 4730.],
+ [4532., 4874.],
+ [4664., 5018.],
+ [4796., 5162.],
+ [4928., 5306.]])
+
+ A slower but equivalent way of computing the same...
+
+ >>> d = np.zeros((5,2))
+ >>> for i in range(5):
+ ... for j in range(2):
+ ... for k in range(3):
+ ... for n in range(4):
+ ... d[i,j] += a[k,n,i] * b[n,k,j]
+ >>> c == d
+ array([[ True, True],
+ [ True, True],
+ [ True, True],
+ [ True, True],
+ [ True, True]])
+
+ An extended example taking advantage of the overloading of + and \\*:
+
+ >>> a = np.array(range(1, 9))
+ >>> a.shape = (2, 2, 2)
+ >>> A = np.array(('a', 'b', 'c', 'd'), dtype=object)
+ >>> A.shape = (2, 2)
+ >>> a; A
+ array([[[1, 2],
+ [3, 4]],
+ [[5, 6],
+ [7, 8]]])
+ array([['a', 'b'],
+ ['c', 'd']], dtype=object)
+
+ >>> np.tensordot(a, A) # third argument default is 2 for double-contraction
+ array(['abbcccdddd', 'aaaaabbbbbbcccccccdddddddd'], dtype=object)
+
+ >>> np.tensordot(a, A, 1)
+ array([[['acc', 'bdd'],
+ ['aaacccc', 'bbbdddd']],
+ [['aaaaacccccc', 'bbbbbdddddd'],
+ ['aaaaaaacccccccc', 'bbbbbbbdddddddd']]], dtype=object)
+
+ >>> np.tensordot(a, A, 0) # tensor product (result too long to incl.)
+ array([[[[['a', 'b'],
+ ['c', 'd']],
+ ...
+
+ >>> np.tensordot(a, A, (0, 1))
+ array([[['abbbbb', 'cddddd'],
+ ['aabbbbbb', 'ccdddddd']],
+ [['aaabbbbbbb', 'cccddddddd'],
+ ['aaaabbbbbbbb', 'ccccdddddddd']]], dtype=object)
+
+ >>> np.tensordot(a, A, (2, 1))
+ array([[['abb', 'cdd'],
+ ['aaabbbb', 'cccdddd']],
+ [['aaaaabbbbbb', 'cccccdddddd'],
+ ['aaaaaaabbbbbbbb', 'cccccccdddddddd']]], dtype=object)
+
+ >>> np.tensordot(a, A, ((0, 1), (0, 1)))
+ array(['abbbcccccddddddd', 'aabbbbccccccdddddddd'], dtype=object)
+
+ >>> np.tensordot(a, A, ((2, 1), (1, 0)))
+ array(['acccbbdddd', 'aaaaacccccccbbbbbbdddddddd'], dtype=object)
+
+ """
+ try:
+ iter(axes)
+ except Exception:
+ axes_a = list(range(-axes, 0))
+ axes_b = list(range(axes))
+ else:
+ axes_a, axes_b = axes
+ try:
+ na = len(axes_a)
+ axes_a = list(axes_a)
+ except TypeError:
+ axes_a = [axes_a]
+ na = 1
+ try:
+ nb = len(axes_b)
+ axes_b = list(axes_b)
+ except TypeError:
+ axes_b = [axes_b]
+ nb = 1
+
+ a, b = asarray(a), asarray(b)
+ as_ = a.shape
+ nda = a.ndim
+ bs = b.shape
+ ndb = b.ndim
+ equal = True
+ if na != nb:
+ equal = False
+ else:
+ for k in range(na):
+ if as_[axes_a[k]] != bs[axes_b[k]]:
+ equal = False
+ break
+ if axes_a[k] < 0:
+ axes_a[k] += nda
+ if axes_b[k] < 0:
+ axes_b[k] += ndb
+ if not equal:
+ raise ValueError("shape-mismatch for sum")
+
+ # Move the axes to sum over to the end of "a"
+ # and to the front of "b"
+ notin = [k for k in range(nda) if k not in axes_a]
+ newaxes_a = notin + axes_a
+ N2 = math.prod(as_[axis] for axis in axes_a)
+ newshape_a = (math.prod(as_[ax] for ax in notin), N2)
+ olda = [as_[axis] for axis in notin]
+
+ notin = [k for k in range(ndb) if k not in axes_b]
+ newaxes_b = axes_b + notin
+ N2 = math.prod(bs[axis] for axis in axes_b)
+ newshape_b = (N2, math.prod(bs[ax] for ax in notin))
+ oldb = [bs[axis] for axis in notin]
+
+ at = a.transpose(newaxes_a).reshape(newshape_a)
+ bt = b.transpose(newaxes_b).reshape(newshape_b)
+ res = dot(at, bt)
+ return res.reshape(olda + oldb)
+
+
+def _roll_dispatcher(a, shift, axis=None):
+ return (a,)
+
+
+@array_function_dispatch(_roll_dispatcher)
+def roll(a, shift, axis=None):
+ """
+ Roll array elements along a given axis.
+
+ Elements that roll beyond the last position are re-introduced at
+ the first.
+
+ Parameters
+ ----------
+ a : array_like
+ Input array.
+ shift : int or tuple of ints
+ The number of places by which elements are shifted. If a tuple,
+ then `axis` must be a tuple of the same size, and each of the
+ given axes is shifted by the corresponding number. If an int
+ while `axis` is a tuple of ints, then the same value is used for
+ all given axes.
+ axis : int or tuple of ints, optional
+ Axis or axes along which elements are shifted. By default, the
+ array is flattened before shifting, after which the original
+ shape is restored.
+
+ Returns
+ -------
+ res : ndarray
+ Output array, with the same shape as `a`.
+
+ See Also
+ --------
+ rollaxis : Roll the specified axis backwards, until it lies in a
+ given position.
+
+ Notes
+ -----
+ Supports rolling over multiple dimensions simultaneously.
+
+ Examples
+ --------
+ >>> import numpy as np
+ >>> x = np.arange(10)
+ >>> np.roll(x, 2)
+ array([8, 9, 0, 1, 2, 3, 4, 5, 6, 7])
+ >>> np.roll(x, -2)
+ array([2, 3, 4, 5, 6, 7, 8, 9, 0, 1])
+
+ >>> x2 = np.reshape(x, (2, 5))
+ >>> x2
+ array([[0, 1, 2, 3, 4],
+ [5, 6, 7, 8, 9]])
+ >>> np.roll(x2, 1)
+ array([[9, 0, 1, 2, 3],
+ [4, 5, 6, 7, 8]])
+ >>> np.roll(x2, -1)
+ array([[1, 2, 3, 4, 5],
+ [6, 7, 8, 9, 0]])
+ >>> np.roll(x2, 1, axis=0)
+ array([[5, 6, 7, 8, 9],
+ [0, 1, 2, 3, 4]])
+ >>> np.roll(x2, -1, axis=0)
+ array([[5, 6, 7, 8, 9],
+ [0, 1, 2, 3, 4]])
+ >>> np.roll(x2, 1, axis=1)
+ array([[4, 0, 1, 2, 3],
+ [9, 5, 6, 7, 8]])
+ >>> np.roll(x2, -1, axis=1)
+ array([[1, 2, 3, 4, 0],
+ [6, 7, 8, 9, 5]])
+ >>> np.roll(x2, (1, 1), axis=(1, 0))
+ array([[9, 5, 6, 7, 8],
+ [4, 0, 1, 2, 3]])
+ >>> np.roll(x2, (2, 1), axis=(1, 0))
+ array([[8, 9, 5, 6, 7],
+ [3, 4, 0, 1, 2]])
+
+ """
+ a = asanyarray(a)
+ if axis is None:
+ return roll(a.ravel(), shift, 0).reshape(a.shape)
+
+ else:
+ axis = normalize_axis_tuple(axis, a.ndim, allow_duplicate=True)
+ broadcasted = broadcast(shift, axis)
+ if broadcasted.ndim > 1:
+ raise ValueError(
+ "'shift' and 'axis' should be scalars or 1D sequences")
+ shifts = dict.fromkeys(range(a.ndim), 0)
+ for sh, ax in broadcasted:
+ shifts[ax] += int(sh)
+
+ rolls = [((slice(None), slice(None)),)] * a.ndim
+ for ax, offset in shifts.items():
+ offset %= a.shape[ax] or 1 # If `a` is empty, nothing matters.
+ if offset:
+ # (original, result), (original, result)
+ rolls[ax] = ((slice(None, -offset), slice(offset, None)),
+ (slice(-offset, None), slice(None, offset)))
+
+ result = empty_like(a)
+ for indices in itertools.product(*rolls):
+ arr_index, res_index = zip(*indices)
+ result[res_index] = a[arr_index]
+
+ return result
+
+
+def _rollaxis_dispatcher(a, axis, start=None):
+ return (a,)
+
+
+@array_function_dispatch(_rollaxis_dispatcher)
+def rollaxis(a, axis, start=0):
+ """
+ Roll the specified axis backwards, until it lies in a given position.
+
+ This function continues to be supported for backward compatibility, but you
+ should prefer `moveaxis`. The `moveaxis` function was added in NumPy
+ 1.11.
+
+ Parameters
+ ----------
+ a : ndarray
+ Input array.
+ axis : int
+ The axis to be rolled. The positions of the other axes do not
+ change relative to one another.
+ start : int, optional
+ When ``start <= axis``, the axis is rolled back until it lies in
+ this position. When ``start > axis``, the axis is rolled until it
+ lies before this position. The default, 0, results in a "complete"
+ roll. The following table describes how negative values of ``start``
+ are interpreted:
+
+ .. table::
+ :align: left
+
+ +-------------------+----------------------+
+ | ``start`` | Normalized ``start`` |
+ +===================+======================+
+ | ``-(arr.ndim+1)`` | raise ``AxisError`` |
+ +-------------------+----------------------+
+ | ``-arr.ndim`` | 0 |
+ +-------------------+----------------------+
+ | |vdots| | |vdots| |
+ +-------------------+----------------------+
+ | ``-1`` | ``arr.ndim-1`` |
+ +-------------------+----------------------+
+ | ``0`` | ``0`` |
+ +-------------------+----------------------+
+ | |vdots| | |vdots| |
+ +-------------------+----------------------+
+ | ``arr.ndim`` | ``arr.ndim`` |
+ +-------------------+----------------------+
+ | ``arr.ndim + 1`` | raise ``AxisError`` |
+ +-------------------+----------------------+
+
+ .. |vdots| unicode:: U+22EE .. Vertical Ellipsis
+
+ Returns
+ -------
+ res : ndarray
+ For NumPy >= 1.10.0 a view of `a` is always returned. For earlier
+ NumPy versions a view of `a` is returned only if the order of the
+ axes is changed, otherwise the input array is returned.
+
+ See Also
+ --------
+ moveaxis : Move array axes to new positions.
+ roll : Roll the elements of an array by a number of positions along a
+ given axis.
+
+ Examples
+ --------
+ >>> import numpy as np
+ >>> a = np.ones((3,4,5,6))
+ >>> np.rollaxis(a, 3, 1).shape
+ (3, 6, 4, 5)
+ >>> np.rollaxis(a, 2).shape
+ (5, 3, 4, 6)
+ >>> np.rollaxis(a, 1, 4).shape
+ (3, 5, 6, 4)
+
+ """
+ n = a.ndim
+ axis = normalize_axis_index(axis, n)
+ if start < 0:
+ start += n
+ msg = "'%s' arg requires %d <= %s < %d, but %d was passed in"
+ if not (0 <= start < n + 1):
+ raise AxisError(msg % ('start', -n, 'start', n + 1, start))
+ if axis < start:
+ # it's been removed
+ start -= 1
+ if axis == start:
+ return a[...]
+ axes = list(range(n))
+ axes.remove(axis)
+ axes.insert(start, axis)
+ return a.transpose(axes)
+
+
+@set_module("numpy.lib.array_utils")
+def normalize_axis_tuple(axis, ndim, argname=None, allow_duplicate=False):
+ """
+ Normalizes an axis argument into a tuple of non-negative integer axes.
+
+ This handles shorthands such as ``1`` and converts them to ``(1,)``,
+ as well as performing the handling of negative indices covered by
+ `normalize_axis_index`.
+
+ By default, this forbids axes from being specified multiple times.
+
+ Used internally by multi-axis-checking logic.
+
+ Parameters
+ ----------
+ axis : int, iterable of int
+ The un-normalized index or indices of the axis.
+ ndim : int
+ The number of dimensions of the array that `axis` should be normalized
+ against.
+ argname : str, optional
+ A prefix to put before the error message, typically the name of the
+ argument.
+ allow_duplicate : bool, optional
+ If False, the default, disallow an axis from being specified twice.
+
+ Returns
+ -------
+ normalized_axes : tuple of int
+ The normalized axis index, such that `0 <= normalized_axis < ndim`
+
+ Raises
+ ------
+ AxisError
+ If any axis provided is out of range
+ ValueError
+ If an axis is repeated
+
+ See also
+ --------
+ normalize_axis_index : normalizing a single scalar axis
+ """
+ # Optimization to speed-up the most common cases.
+ if not isinstance(axis, (tuple, list)):
+ try:
+ axis = [operator.index(axis)]
+ except TypeError:
+ pass
+ # Going via an iterator directly is slower than via list comprehension.
+ axis = tuple(normalize_axis_index(ax, ndim, argname) for ax in axis)
+ if not allow_duplicate and len(set(axis)) != len(axis):
+ if argname:
+ raise ValueError(f'repeated axis in `{argname}` argument')
+ else:
+ raise ValueError('repeated axis')
+ return axis
+
+
+def _moveaxis_dispatcher(a, source, destination):
+ return (a,)
+
+
+@array_function_dispatch(_moveaxis_dispatcher)
+def moveaxis(a, source, destination):
+ """
+ Move axes of an array to new positions.
+
+ Other axes remain in their original order.
+
+ Parameters
+ ----------
+ a : np.ndarray
+ The array whose axes should be reordered.
+ source : int or sequence of int
+ Original positions of the axes to move. These must be unique.
+ destination : int or sequence of int
+ Destination positions for each of the original axes. These must also be
+ unique.
+
+ Returns
+ -------
+ result : np.ndarray
+ Array with moved axes. This array is a view of the input array.
+
+ See Also
+ --------
+ transpose : Permute the dimensions of an array.
+ swapaxes : Interchange two axes of an array.
+
+ Examples
+ --------
+ >>> import numpy as np
+ >>> x = np.zeros((3, 4, 5))
+ >>> np.moveaxis(x, 0, -1).shape
+ (4, 5, 3)
+ >>> np.moveaxis(x, -1, 0).shape
+ (5, 3, 4)
+
+ These all achieve the same result:
+
+ >>> np.transpose(x).shape
+ (5, 4, 3)
+ >>> np.swapaxes(x, 0, -1).shape
+ (5, 4, 3)
+ >>> np.moveaxis(x, [0, 1], [-1, -2]).shape
+ (5, 4, 3)
+ >>> np.moveaxis(x, [0, 1, 2], [-1, -2, -3]).shape
+ (5, 4, 3)
+
+ """
+ try:
+ # allow duck-array types if they define transpose
+ transpose = a.transpose
+ except AttributeError:
+ a = asarray(a)
+ transpose = a.transpose
+
+ source = normalize_axis_tuple(source, a.ndim, 'source')
+ destination = normalize_axis_tuple(destination, a.ndim, 'destination')
+ if len(source) != len(destination):
+ raise ValueError('`source` and `destination` arguments must have '
+ 'the same number of elements')
+
+ order = [n for n in range(a.ndim) if n not in source]
+
+ for dest, src in sorted(zip(destination, source)):
+ order.insert(dest, src)
+
+ result = transpose(order)
+ return result
+
+
+def _cross_dispatcher(a, b, axisa=None, axisb=None, axisc=None, axis=None):
+ return (a, b)
+
+
+@array_function_dispatch(_cross_dispatcher)
+def cross(a, b, axisa=-1, axisb=-1, axisc=-1, axis=None):
+ """
+ Return the cross product of two (arrays of) vectors.
+
+ The cross product of `a` and `b` in :math:`R^3` is a vector perpendicular
+ to both `a` and `b`. If `a` and `b` are arrays of vectors, the vectors
+ are defined by the last axis of `a` and `b` by default, and these axes
+ can have dimensions 2 or 3. Where the dimension of either `a` or `b` is
+ 2, the third component of the input vector is assumed to be zero and the
+ cross product calculated accordingly. In cases where both input vectors
+ have dimension 2, the z-component of the cross product is returned.
+
+ Parameters
+ ----------
+ a : array_like
+ Components of the first vector(s).
+ b : array_like
+ Components of the second vector(s).
+ axisa : int, optional
+ Axis of `a` that defines the vector(s). By default, the last axis.
+ axisb : int, optional
+ Axis of `b` that defines the vector(s). By default, the last axis.
+ axisc : int, optional
+ Axis of `c` containing the cross product vector(s). Ignored if
+ both input vectors have dimension 2, as the return is scalar.
+ By default, the last axis.
+ axis : int, optional
+ If defined, the axis of `a`, `b` and `c` that defines the vector(s)
+ and cross product(s). Overrides `axisa`, `axisb` and `axisc`.
+
+ Returns
+ -------
+ c : ndarray
+ Vector cross product(s).
+
+ Raises
+ ------
+ ValueError
+ When the dimension of the vector(s) in `a` and/or `b` does not
+ equal 2 or 3.
+
+ See Also
+ --------
+ inner : Inner product
+ outer : Outer product.
+ linalg.cross : An Array API compatible variation of ``np.cross``,
+ which accepts (arrays of) 3-element vectors only.
+ ix_ : Construct index arrays.
+
+ Notes
+ -----
+ Supports full broadcasting of the inputs.
+
+ Dimension-2 input arrays were deprecated in 2.0.0. If you do need this
+ functionality, you can use::
+
+ def cross2d(x, y):
+ return x[..., 0] * y[..., 1] - x[..., 1] * y[..., 0]
+
+ Examples
+ --------
+ Vector cross-product.
+
+ >>> import numpy as np
+ >>> x = [1, 2, 3]
+ >>> y = [4, 5, 6]
+ >>> np.cross(x, y)
+ array([-3, 6, -3])
+
+ One vector with dimension 2.
+
+ >>> x = [1, 2]
+ >>> y = [4, 5, 6]
+ >>> np.cross(x, y)
+ array([12, -6, -3])
+
+ Equivalently:
+
+ >>> x = [1, 2, 0]
+ >>> y = [4, 5, 6]
+ >>> np.cross(x, y)
+ array([12, -6, -3])
+
+ Both vectors with dimension 2.
+
+ >>> x = [1,2]
+ >>> y = [4,5]
+ >>> np.cross(x, y)
+ array(-3)
+
+ Multiple vector cross-products. Note that the direction of the cross
+ product vector is defined by the *right-hand rule*.
+
+ >>> x = np.array([[1,2,3], [4,5,6]])
+ >>> y = np.array([[4,5,6], [1,2,3]])
+ >>> np.cross(x, y)
+ array([[-3, 6, -3],
+ [ 3, -6, 3]])
+
+ The orientation of `c` can be changed using the `axisc` keyword.
+
+ >>> np.cross(x, y, axisc=0)
+ array([[-3, 3],
+ [ 6, -6],
+ [-3, 3]])
+
+ Change the vector definition of `x` and `y` using `axisa` and `axisb`.
+
+ >>> x = np.array([[1,2,3], [4,5,6], [7, 8, 9]])
+ >>> y = np.array([[7, 8, 9], [4,5,6], [1,2,3]])
+ >>> np.cross(x, y)
+ array([[ -6, 12, -6],
+ [ 0, 0, 0],
+ [ 6, -12, 6]])
+ >>> np.cross(x, y, axisa=0, axisb=0)
+ array([[-24, 48, -24],
+ [-30, 60, -30],
+ [-36, 72, -36]])
+
+ """
+ if axis is not None:
+ axisa, axisb, axisc = (axis,) * 3
+ a = asarray(a)
+ b = asarray(b)
+
+ if (a.ndim < 1) or (b.ndim < 1):
+ raise ValueError("At least one array has zero dimension")
+
+ # Check axisa and axisb are within bounds
+ axisa = normalize_axis_index(axisa, a.ndim, msg_prefix='axisa')
+ axisb = normalize_axis_index(axisb, b.ndim, msg_prefix='axisb')
+
+ # Move working axis to the end of the shape
+ a = moveaxis(a, axisa, -1)
+ b = moveaxis(b, axisb, -1)
+ msg = ("incompatible dimensions for cross product\n"
+ "(dimension must be 2 or 3)")
+ if a.shape[-1] not in (2, 3) or b.shape[-1] not in (2, 3):
+ raise ValueError(msg)
+ if a.shape[-1] == 2 or b.shape[-1] == 2:
+ # Deprecated in NumPy 2.0, 2023-09-26
+ warnings.warn(
+ "Arrays of 2-dimensional vectors are deprecated. Use arrays of "
+ "3-dimensional vectors instead. (deprecated in NumPy 2.0)",
+ DeprecationWarning, stacklevel=2
+ )
+
+ # Create the output array
+ shape = broadcast(a[..., 0], b[..., 0]).shape
+ if a.shape[-1] == 3 or b.shape[-1] == 3:
+ shape += (3,)
+ # Check axisc is within bounds
+ axisc = normalize_axis_index(axisc, len(shape), msg_prefix='axisc')
+ dtype = promote_types(a.dtype, b.dtype)
+ cp = empty(shape, dtype)
+
+ # recast arrays as dtype
+ a = a.astype(dtype)
+ b = b.astype(dtype)
+
+ # create local aliases for readability
+ a0 = a[..., 0]
+ a1 = a[..., 1]
+ if a.shape[-1] == 3:
+ a2 = a[..., 2]
+ b0 = b[..., 0]
+ b1 = b[..., 1]
+ if b.shape[-1] == 3:
+ b2 = b[..., 2]
+ if cp.ndim != 0 and cp.shape[-1] == 3:
+ cp0 = cp[..., 0]
+ cp1 = cp[..., 1]
+ cp2 = cp[..., 2]
+
+ if a.shape[-1] == 2:
+ if b.shape[-1] == 2:
+ # a0 * b1 - a1 * b0
+ multiply(a0, b1, out=cp)
+ cp -= a1 * b0
+ return cp
+ else:
+ assert b.shape[-1] == 3
+ # cp0 = a1 * b2 - 0 (a2 = 0)
+ # cp1 = 0 - a0 * b2 (a2 = 0)
+ # cp2 = a0 * b1 - a1 * b0
+ multiply(a1, b2, out=cp0)
+ multiply(a0, b2, out=cp1)
+ negative(cp1, out=cp1)
+ multiply(a0, b1, out=cp2)
+ cp2 -= a1 * b0
+ else:
+ assert a.shape[-1] == 3
+ if b.shape[-1] == 3:
+ # cp0 = a1 * b2 - a2 * b1
+ # cp1 = a2 * b0 - a0 * b2
+ # cp2 = a0 * b1 - a1 * b0
+ multiply(a1, b2, out=cp0)
+ tmp = np.multiply(a2, b1, out=...)
+ cp0 -= tmp
+ multiply(a2, b0, out=cp1)
+ multiply(a0, b2, out=tmp)
+ cp1 -= tmp
+ multiply(a0, b1, out=cp2)
+ multiply(a1, b0, out=tmp)
+ cp2 -= tmp
+ else:
+ assert b.shape[-1] == 2
+ # cp0 = 0 - a2 * b1 (b2 = 0)
+ # cp1 = a2 * b0 - 0 (b2 = 0)
+ # cp2 = a0 * b1 - a1 * b0
+ multiply(a2, b1, out=cp0)
+ negative(cp0, out=cp0)
+ multiply(a2, b0, out=cp1)
+ multiply(a0, b1, out=cp2)
+ cp2 -= a1 * b0
+
+ return moveaxis(cp, -1, axisc)
+
+
+little_endian = (sys.byteorder == 'little')
+
+
+@set_module('numpy')
+def indices(dimensions, dtype=int, sparse=False):
+ """
+ Return an array representing the indices of a grid.
+
+ Compute an array where the subarrays contain index values 0, 1, ...
+ varying only along the corresponding axis.
+
+ Parameters
+ ----------
+ dimensions : sequence of ints
+ The shape of the grid.
+ dtype : dtype, optional
+ Data type of the result.
+ sparse : boolean, optional
+ Return a sparse representation of the grid instead of a dense
+ representation. Default is False.
+
+ Returns
+ -------
+ grid : one ndarray or tuple of ndarrays
+ If sparse is False:
+ Returns one array of grid indices,
+ ``grid.shape = (len(dimensions),) + tuple(dimensions)``.
+ If sparse is True:
+ Returns a tuple of arrays, with
+ ``grid[i].shape = (1, ..., 1, dimensions[i], 1, ..., 1)`` with
+ dimensions[i] in the ith place
+
+ See Also
+ --------
+ mgrid, ogrid, meshgrid
+
+ Notes
+ -----
+ The output shape in the dense case is obtained by prepending the number
+ of dimensions in front of the tuple of dimensions, i.e. if `dimensions`
+ is a tuple ``(r0, ..., rN-1)`` of length ``N``, the output shape is
+ ``(N, r0, ..., rN-1)``.
+
+ The subarrays ``grid[k]`` contains the N-D array of indices along the
+ ``k-th`` axis. Explicitly::
+
+ grid[k, i0, i1, ..., iN-1] = ik
+
+ Examples
+ --------
+ >>> import numpy as np
+ >>> grid = np.indices((2, 3))
+ >>> grid.shape
+ (2, 2, 3)
+ >>> grid[0] # row indices
+ array([[0, 0, 0],
+ [1, 1, 1]])
+ >>> grid[1] # column indices
+ array([[0, 1, 2],
+ [0, 1, 2]])
+
+ The indices can be used as an index into an array.
+
+ >>> x = np.arange(20).reshape(5, 4)
+ >>> row, col = np.indices((2, 3))
+ >>> x[row, col]
+ array([[0, 1, 2],
+ [4, 5, 6]])
+
+ Note that it would be more straightforward in the above example to
+ extract the required elements directly with ``x[:2, :3]``.
+
+ If sparse is set to true, the grid will be returned in a sparse
+ representation.
+
+ >>> i, j = np.indices((2, 3), sparse=True)
+ >>> i.shape
+ (2, 1)
+ >>> j.shape
+ (1, 3)
+ >>> i # row indices
+ array([[0],
+ [1]])
+ >>> j # column indices
+ array([[0, 1, 2]])
+
+ """
+ dimensions = tuple(dimensions)
+ N = len(dimensions)
+ shape = (1,) * N
+ if sparse:
+ res = ()
+ else:
+ res = empty((N,) + dimensions, dtype=dtype)
+ for i, dim in enumerate(dimensions):
+ idx = arange(dim, dtype=dtype).reshape(
+ shape[:i] + (dim,) + shape[i + 1:]
+ )
+ if sparse:
+ res = res + (idx,)
+ else:
+ res[i] = idx
+ return res
+
+
+@finalize_array_function_like
+@set_module('numpy')
+def fromfunction(function, shape, *, dtype=float, like=None, **kwargs):
+ """
+ Construct an array by executing a function over each coordinate.
+
+ The resulting array therefore has a value ``fn(x, y, z)`` at
+ coordinate ``(x, y, z)``.
+
+ Parameters
+ ----------
+ function : callable
+ The function is called with N parameters, where N is the rank of
+ `shape`. Each parameter represents the coordinates of the array
+ varying along a specific axis. For example, if `shape`
+ were ``(2, 2)``, then the parameters would be
+ ``array([[0, 0], [1, 1]])`` and ``array([[0, 1], [0, 1]])``
+ shape : (N,) tuple of ints
+ Shape of the output array, which also determines the shape of
+ the coordinate arrays passed to `function`.
+ dtype : data-type, optional
+ Data-type of the coordinate arrays passed to `function`.
+ By default, `dtype` is float.
+ ${ARRAY_FUNCTION_LIKE}
+
+ .. versionadded:: 1.20.0
+
+ Returns
+ -------
+ fromfunction : any
+ The result of the call to `function` is passed back directly.
+ Therefore the shape of `fromfunction` is completely determined by
+ `function`. If `function` returns a scalar value, the shape of
+ `fromfunction` would not match the `shape` parameter.
+
+ See Also
+ --------
+ indices, meshgrid
+
+ Notes
+ -----
+ Keywords other than `dtype` and `like` are passed to `function`.
+
+ Examples
+ --------
+ >>> import numpy as np
+ >>> np.fromfunction(lambda i, j: i, (2, 2), dtype=float)
+ array([[0., 0.],
+ [1., 1.]])
+
+ >>> np.fromfunction(lambda i, j: j, (2, 2), dtype=float)
+ array([[0., 1.],
+ [0., 1.]])
+
+ >>> np.fromfunction(lambda i, j: i == j, (3, 3), dtype=int)
+ array([[ True, False, False],
+ [False, True, False],
+ [False, False, True]])
+
+ >>> np.fromfunction(lambda i, j: i + j, (3, 3), dtype=int)
+ array([[0, 1, 2],
+ [1, 2, 3],
+ [2, 3, 4]])
+
+ """
+ if like is not None:
+ return _fromfunction_with_like(
+ like, function, shape, dtype=dtype, **kwargs)
+
+ args = indices(shape, dtype=dtype)
+ return function(*args, **kwargs)
+
+
+_fromfunction_with_like = array_function_dispatch()(fromfunction)
+
+
+def _frombuffer(buf, dtype, shape, order, axis_order=None):
+ array = frombuffer(buf, dtype=dtype)
+ if order == 'K' and axis_order is not None:
+ return array.reshape(shape, order='C').transpose(axis_order)
+ return array.reshape(shape, order=order)
+
+
+@set_module('numpy')
+def isscalar(element):
+ """
+ Returns True if the type of `element` is a scalar type.
+
+ Parameters
+ ----------
+ element : any
+ Input argument, can be of any type and shape.
+
+ Returns
+ -------
+ val : bool
+ True if `element` is a scalar type, False if it is not.
+
+ See Also
+ --------
+ ndim : Get the number of dimensions of an array
+
+ Notes
+ -----
+ If you need a stricter way to identify a *numerical* scalar, use
+ ``isinstance(x, numbers.Number)``, as that returns ``False`` for most
+ non-numerical elements such as strings.
+
+ In most cases ``np.ndim(x) == 0`` should be used instead of this function,
+ as that will also return true for 0d arrays. This is how numpy overloads
+ functions in the style of the ``dx`` arguments to `gradient` and
+ the ``bins`` argument to `histogram`. Some key differences:
+
+ +------------------------------------+---------------+-------------------+
+ | x |``isscalar(x)``|``np.ndim(x) == 0``|
+ +====================================+===============+===================+
+ | PEP 3141 numeric objects | ``True`` | ``True`` |
+ | (including builtins) | | |
+ +------------------------------------+---------------+-------------------+
+ | builtin string and buffer objects | ``True`` | ``True`` |
+ +------------------------------------+---------------+-------------------+
+ | other builtin objects, like | ``False`` | ``True`` |
+ | `pathlib.Path`, `Exception`, | | |
+ | the result of `re.compile` | | |
+ +------------------------------------+---------------+-------------------+
+ | third-party objects like | ``False`` | ``True`` |
+ | `matplotlib.figure.Figure` | | |
+ +------------------------------------+---------------+-------------------+
+ | zero-dimensional numpy arrays | ``False`` | ``True`` |
+ +------------------------------------+---------------+-------------------+
+ | other numpy arrays | ``False`` | ``False`` |
+ +------------------------------------+---------------+-------------------+
+ | `list`, `tuple`, and other | ``False`` | ``False`` |
+ | sequence objects | | |
+ +------------------------------------+---------------+-------------------+
+
+ Examples
+ --------
+ >>> import numpy as np
+
+ >>> np.isscalar(3.1)
+ True
+
+ >>> np.isscalar(np.array(3.1))
+ False
+
+ >>> np.isscalar([3.1])
+ False
+
+ >>> np.isscalar(False)
+ True
+
+ >>> np.isscalar('numpy')
+ True
+
+ NumPy supports PEP 3141 numbers:
+
+ >>> from fractions import Fraction
+ >>> np.isscalar(Fraction(5, 17))
+ True
+ >>> from numbers import Number
+ >>> np.isscalar(Number())
+ True
+
+ """
+ return (isinstance(element, generic)
+ or type(element) in ScalarType
+ or isinstance(element, numbers.Number))
+
+
+@set_module('numpy')
+def binary_repr(num, width=None):
+ """
+ Return the binary representation of the input number as a string.
+
+ For negative numbers, if width is not given, a minus sign is added to the
+ front. If width is given, the two's complement of the number is
+ returned, with respect to that width.
+
+ In a two's-complement system negative numbers are represented by the two's
+ complement of the absolute value. This is the most common method of
+ representing signed integers on computers [1]_. A N-bit two's-complement
+ system can represent every integer in the range
+ :math:`-2^{N-1}` to :math:`+2^{N-1}-1`.
+
+ Parameters
+ ----------
+ num : int
+ Only an integer decimal number can be used.
+ width : int, optional
+ The length of the returned string if `num` is positive, or the length
+ of the two's complement if `num` is negative, provided that `width` is
+ at least a sufficient number of bits for `num` to be represented in
+ the designated form. If the `width` value is insufficient, an error is
+ raised.
+
+ Returns
+ -------
+ bin : str
+ Binary representation of `num` or two's complement of `num`.
+
+ See Also
+ --------
+ base_repr: Return a string representation of a number in the given base
+ system.
+ bin: Python's built-in binary representation generator of an integer.
+
+ Notes
+ -----
+ `binary_repr` is equivalent to using `base_repr` with base 2, but about 25x
+ faster.
+
+ References
+ ----------
+ .. [1] Wikipedia, "Two's complement",
+ https://en.wikipedia.org/wiki/Two's_complement
+
+ Examples
+ --------
+ >>> import numpy as np
+ >>> np.binary_repr(3)
+ '11'
+ >>> np.binary_repr(-3)
+ '-11'
+ >>> np.binary_repr(3, width=4)
+ '0011'
+
+ The two's complement is returned when the input number is negative and
+ width is specified:
+
+ >>> np.binary_repr(-3, width=3)
+ '101'
+ >>> np.binary_repr(-3, width=5)
+ '11101'
+
+ """
+ def err_if_insufficient(width, binwidth):
+ if width is not None and width < binwidth:
+ raise ValueError(
+ f"Insufficient bit {width=} provided for {binwidth=}"
+ )
+
+ # Ensure that num is a Python integer to avoid overflow or unwanted
+ # casts to floating point.
+ num = operator.index(num)
+
+ if num == 0:
+ return '0' * (width or 1)
+
+ elif num > 0:
+ binary = f'{num:b}'
+ binwidth = len(binary)
+ outwidth = (binwidth if width is None
+ else builtins.max(binwidth, width))
+ err_if_insufficient(width, binwidth)
+ return binary.zfill(outwidth)
+
+ elif width is None:
+ return f'-{-num:b}'
+
+ else:
+ poswidth = len(f'{-num:b}')
+
+ # See gh-8679: remove extra digit
+ # for numbers at boundaries.
+ if 2**(poswidth - 1) == -num:
+ poswidth -= 1
+
+ twocomp = 2**(poswidth + 1) + num
+ binary = f'{twocomp:b}'
+ binwidth = len(binary)
+
+ outwidth = builtins.max(binwidth, width)
+ err_if_insufficient(width, binwidth)
+ return '1' * (outwidth - binwidth) + binary
+
+
+@set_module('numpy')
+def base_repr(number, base=2, padding=0):
+ """
+ Return a string representation of a number in the given base system.
+
+ Parameters
+ ----------
+ number : int
+ The value to convert. Positive and negative values are handled.
+ base : int, optional
+ Convert `number` to the `base` number system. The valid range is 2-36,
+ the default value is 2.
+ padding : int, optional
+ Number of zeros padded on the left. Default is 0 (no padding).
+
+ Returns
+ -------
+ out : str
+ String representation of `number` in `base` system.
+
+ See Also
+ --------
+ binary_repr : Faster version of `base_repr` for base 2.
+
+ Examples
+ --------
+ >>> import numpy as np
+ >>> np.base_repr(5)
+ '101'
+ >>> np.base_repr(6, 5)
+ '11'
+ >>> np.base_repr(7, base=5, padding=3)
+ '00012'
+
+ >>> np.base_repr(10, base=16)
+ 'A'
+ >>> np.base_repr(32, base=16)
+ '20'
+
+ """
+ digits = '0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ'
+ if base > len(digits):
+ raise ValueError("Bases greater than 36 not handled in base_repr.")
+ elif base < 2:
+ raise ValueError("Bases less than 2 not handled in base_repr.")
+
+ num = abs(int(number))
+ res = []
+ while num:
+ res.append(digits[num % base])
+ num //= base
+ if padding:
+ res.append('0' * padding)
+ if number < 0:
+ res.append('-')
+ return ''.join(reversed(res or '0'))
+
+
+# These are all essentially abbreviations
+# These might wind up in a special abbreviations module
+
+
+def _maketup(descr, val):
+ dt = dtype(descr)
+ # Place val in all scalar tuples:
+ fields = dt.fields
+ if fields is None:
+ return val
+ else:
+ res = [_maketup(fields[name][0], val) for name in dt.names]
+ return tuple(res)
+
+
+@finalize_array_function_like
+@set_module('numpy')
+def identity(n, dtype=None, *, like=None):
+ """
+ Return the identity array.
+
+ The identity array is a square array with ones on
+ the main diagonal.
+
+ Parameters
+ ----------
+ n : int
+ Number of rows (and columns) in `n` x `n` output.
+ dtype : data-type, optional
+ Data-type of the output. Defaults to ``float``.
+ ${ARRAY_FUNCTION_LIKE}
+
+ .. versionadded:: 1.20.0
+
+ Returns
+ -------
+ out : ndarray
+ `n` x `n` array with its main diagonal set to one,
+ and all other elements 0.
+
+ Examples
+ --------
+ >>> import numpy as np
+ >>> np.identity(3)
+ array([[1., 0., 0.],
+ [0., 1., 0.],
+ [0., 0., 1.]])
+
+ """
+ if like is not None:
+ return _identity_with_like(like, n, dtype=dtype)
+
+ from numpy import eye
+ return eye(n, dtype=dtype, like=like)
+
+
+_identity_with_like = array_function_dispatch()(identity)
+
+
+def _allclose_dispatcher(a, b, rtol=None, atol=None, equal_nan=None):
+ return (a, b, rtol, atol)
+
+
+@array_function_dispatch(_allclose_dispatcher)
+def allclose(a, b, rtol=1.e-5, atol=1.e-8, equal_nan=False):
+ """
+ Returns True if two arrays are element-wise equal within a tolerance.
+
+ The tolerance values are positive, typically very small numbers. The
+ relative difference (`rtol` * abs(`b`)) and the absolute difference
+ `atol` are added together to compare against the absolute difference
+ between `a` and `b`.
+
+ .. warning:: The default `atol` is not appropriate for comparing numbers
+ with magnitudes much smaller than one (see Notes).
+
+ NaNs are treated as equal if they are in the same place and if
+ ``equal_nan=True``. Infs are treated as equal if they are in the same
+ place and of the same sign in both arrays.
+
+ Parameters
+ ----------
+ a, b : array_like
+ Input arrays to compare.
+ rtol : array_like
+ The relative tolerance parameter (see Notes).
+ atol : array_like
+ The absolute tolerance parameter (see Notes).
+ equal_nan : bool
+ Whether to compare NaN's as equal. If True, NaN's in `a` will be
+ considered equal to NaN's in `b` in the output array.
+
+ Returns
+ -------
+ allclose : bool
+ Returns True if the two arrays are equal within the given
+ tolerance; False otherwise.
+
+ See Also
+ --------
+ isclose, all, any, equal
+
+ Notes
+ -----
+ If the following equation is element-wise True, then allclose returns
+ True.::
+
+ absolute(a - b) <= (atol + rtol * absolute(b))
+
+ The above equation is not symmetric in `a` and `b`, so that
+ ``allclose(a, b)`` might be different from ``allclose(b, a)`` in
+ some rare cases.
+
+ The default value of `atol` is not appropriate when the reference value
+ `b` has magnitude smaller than one. For example, it is unlikely that
+ ``a = 1e-9`` and ``b = 2e-9`` should be considered "close", yet
+ ``allclose(1e-9, 2e-9)`` is ``True`` with default settings. Be sure
+ to select `atol` for the use case at hand, especially for defining the
+ threshold below which a non-zero value in `a` will be considered "close"
+ to a very small or zero value in `b`.
+
+ The comparison of `a` and `b` uses standard broadcasting, which
+ means that `a` and `b` need not have the same shape in order for
+ ``allclose(a, b)`` to evaluate to True. The same is true for
+ `equal` but not `array_equal`.
+
+ `allclose` is not defined for non-numeric data types.
+ `bool` is considered a numeric data-type for this purpose.
+
+ Examples
+ --------
+ >>> import numpy as np
+ >>> np.allclose([1e10,1e-7], [1.00001e10,1e-8])
+ False
+
+ >>> np.allclose([1e10,1e-8], [1.00001e10,1e-9])
+ True
+
+ >>> np.allclose([1e10,1e-8], [1.0001e10,1e-9])
+ False
+
+ >>> np.allclose([1.0, np.nan], [1.0, np.nan])
+ False
+
+ >>> np.allclose([1.0, np.nan], [1.0, np.nan], equal_nan=True)
+ True
+
+
+ """
+ res = all(isclose(a, b, rtol=rtol, atol=atol, equal_nan=equal_nan))
+ return builtins.bool(res)
+
+
+def _isclose_dispatcher(a, b, rtol=None, atol=None, equal_nan=None):
+ return (a, b, rtol, atol)
+
+
+@array_function_dispatch(_isclose_dispatcher)
+def isclose(a, b, rtol=1.e-5, atol=1.e-8, equal_nan=False):
+ """
+ Returns a boolean array where two arrays are element-wise equal within a
+ tolerance.
+
+ The tolerance values are positive, typically very small numbers. The
+ relative difference (`rtol` * abs(`b`)) and the absolute difference
+ `atol` are added together to compare against the absolute difference
+ between `a` and `b`.
+
+ .. warning:: The default `atol` is not appropriate for comparing numbers
+ with magnitudes much smaller than one (see Notes).
+
+ Parameters
+ ----------
+ a, b : array_like
+ Input arrays to compare.
+ rtol : array_like
+ The relative tolerance parameter (see Notes).
+ atol : array_like
+ The absolute tolerance parameter (see Notes).
+ equal_nan : bool
+ Whether to compare NaN's as equal. If True, NaN's in `a` will be
+ considered equal to NaN's in `b` in the output array.
+
+ Returns
+ -------
+ y : array_like
+ Returns a boolean array of where `a` and `b` are equal within the
+ given tolerance. If both `a` and `b` are scalars, returns a single
+ boolean value.
+
+ See Also
+ --------
+ allclose
+ math.isclose
+
+ Notes
+ -----
+ For finite values, isclose uses the following equation to test whether
+ two floating point values are equivalent.::
+
+ absolute(a - b) <= (atol + rtol * absolute(b))
+
+ Unlike the built-in `math.isclose`, the above equation is not symmetric
+ in `a` and `b` -- it assumes `b` is the reference value -- so that
+ `isclose(a, b)` might be different from `isclose(b, a)`.
+
+ The default value of `atol` is not appropriate when the reference value
+ `b` has magnitude smaller than one. For example, it is unlikely that
+ ``a = 1e-9`` and ``b = 2e-9`` should be considered "close", yet
+ ``isclose(1e-9, 2e-9)`` is ``True`` with default settings. Be sure
+ to select `atol` for the use case at hand, especially for defining the
+ threshold below which a non-zero value in `a` will be considered "close"
+ to a very small or zero value in `b`.
+
+ `isclose` is not defined for non-numeric data types.
+ :class:`bool` is considered a numeric data-type for this purpose.
+
+ Examples
+ --------
+ >>> import numpy as np
+ >>> np.isclose([1e10,1e-7], [1.00001e10,1e-8])
+ array([ True, False])
+
+ >>> np.isclose([1e10,1e-8], [1.00001e10,1e-9])
+ array([ True, True])
+
+ >>> np.isclose([1e10,1e-8], [1.0001e10,1e-9])
+ array([False, True])
+
+ >>> np.isclose([1.0, np.nan], [1.0, np.nan])
+ array([ True, False])
+
+ >>> np.isclose([1.0, np.nan], [1.0, np.nan], equal_nan=True)
+ array([ True, True])
+
+ >>> np.isclose([1e-8, 1e-7], [0.0, 0.0])
+ array([ True, False])
+
+ >>> np.isclose([1e-100, 1e-7], [0.0, 0.0], atol=0.0)
+ array([False, False])
+
+ >>> np.isclose([1e-10, 1e-10], [1e-20, 0.0])
+ array([ True, True])
+
+ >>> np.isclose([1e-10, 1e-10], [1e-20, 0.999999e-10], atol=0.0)
+ array([False, True])
+
+ """
+ # Turn all but python scalars into arrays.
+ x, y, atol, rtol = (
+ a if isinstance(a, (int, float, complex)) else asanyarray(a)
+ for a in (a, b, atol, rtol))
+
+ # Make sure y is an inexact type to avoid bad behavior on abs(MIN_INT).
+ # This will cause casting of x later. Also, make sure to allow subclasses
+ # (e.g., for numpy.ma).
+ # NOTE: We explicitly allow timedelta, which used to work. This could
+ # possibly be deprecated. See also gh-18286.
+ # timedelta works if `atol` is an integer or also a timedelta.
+ # Although, the default tolerances are unlikely to be useful
+ if (dtype := getattr(y, "dtype", None)) is not None and dtype.kind != "m":
+ dt = multiarray.result_type(y, 1.)
+ y = asanyarray(y, dtype=dt)
+ elif isinstance(y, int):
+ y = float(y)
+
+ # atol and rtol can be arrays
+ if not (np.all(np.isfinite(atol)) and np.all(np.isfinite(rtol))):
+ err_s = np.geterr()["invalid"]
+ err_msg = f"One of rtol or atol is not valid, atol: {atol}, rtol: {rtol}"
+
+ if err_s == "warn":
+ warnings.warn(err_msg, RuntimeWarning, stacklevel=2)
+ elif err_s == "raise":
+ raise FloatingPointError(err_msg)
+ elif err_s == "print":
+ print(err_msg)
+
+ with errstate(invalid='ignore'):
+
+ result = (less_equal(abs(x - y), atol + rtol * abs(y))
+ & isfinite(y)
+ | (x == y))
+ if equal_nan:
+ result |= isnan(x) & isnan(y)
+
+ return result[()] # Flatten 0d arrays to scalars
+
+
+def _array_equal_dispatcher(a1, a2, equal_nan=None):
+ return (a1, a2)
+
+
+_no_nan_types = {
+ # should use np.dtype.BoolDType, but as of writing
+ # that fails the reloading test.
+ type(dtype(nt.bool)),
+ type(dtype(nt.int8)),
+ type(dtype(nt.int16)),
+ type(dtype(nt.int32)),
+ type(dtype(nt.int64)),
+}
+
+
+def _dtype_cannot_hold_nan(dtype):
+ return type(dtype) in _no_nan_types
+
+
+@array_function_dispatch(_array_equal_dispatcher)
+def array_equal(a1, a2, equal_nan=False):
+ """
+ True if two arrays have the same shape and elements, False otherwise.
+
+ Parameters
+ ----------
+ a1, a2 : array_like
+ Input arrays.
+ equal_nan : bool
+ Whether to compare NaN's as equal. If the dtype of a1 and a2 is
+ complex, values will be considered equal if either the real or the
+ imaginary component of a given value is ``nan``.
+
+ Returns
+ -------
+ b : bool
+ Returns True if the arrays are equal.
+
+ See Also
+ --------
+ allclose: Returns True if two arrays are element-wise equal within a
+ tolerance.
+ array_equiv: Returns True if input arrays are shape consistent and all
+ elements equal.
+
+ Examples
+ --------
+ >>> import numpy as np
+
+ >>> np.array_equal([1, 2], [1, 2])
+ True
+
+ >>> np.array_equal(np.array([1, 2]), np.array([1, 2]))
+ True
+
+ >>> np.array_equal([1, 2], [1, 2, 3])
+ False
+
+ >>> np.array_equal([1, 2], [1, 4])
+ False
+
+ >>> a = np.array([1, np.nan])
+ >>> np.array_equal(a, a)
+ False
+
+ >>> np.array_equal(a, a, equal_nan=True)
+ True
+
+ When ``equal_nan`` is True, complex values with nan components are
+ considered equal if either the real *or* the imaginary components are nan.
+
+ >>> a = np.array([1 + 1j])
+ >>> b = a.copy()
+ >>> a.real = np.nan
+ >>> b.imag = np.nan
+ >>> np.array_equal(a, b, equal_nan=True)
+ True
+ """
+ try:
+ a1, a2 = asarray(a1), asarray(a2)
+ except Exception:
+ return False
+ if a1.shape != a2.shape:
+ return False
+ if not equal_nan:
+ return builtins.bool((asanyarray(a1 == a2)).all())
+
+ if a1 is a2:
+ # nan will compare equal so an array will compare equal to itself.
+ return True
+
+ cannot_have_nan = (_dtype_cannot_hold_nan(a1.dtype)
+ and _dtype_cannot_hold_nan(a2.dtype))
+ if cannot_have_nan:
+ return builtins.bool(asarray(a1 == a2).all())
+
+ # Handling NaN values if equal_nan is True
+ a1nan, a2nan = isnan(a1), isnan(a2)
+ # NaN's occur at different locations
+ if not (a1nan == a2nan).all():
+ return False
+ # Shapes of a1, a2 and masks are guaranteed to be consistent by this point
+ return builtins.bool((a1[~a1nan] == a2[~a1nan]).all())
+
+
+def _array_equiv_dispatcher(a1, a2):
+ return (a1, a2)
+
+
+@array_function_dispatch(_array_equiv_dispatcher)
+def array_equiv(a1, a2):
+ """
+ Returns True if input arrays are shape consistent and all elements equal.
+
+ Shape consistent means they are either the same shape, or one input array
+ can be broadcasted to create the same shape as the other one.
+
+ Parameters
+ ----------
+ a1, a2 : array_like
+ Input arrays.
+
+ Returns
+ -------
+ out : bool
+ True if equivalent, False otherwise.
+
+ Examples
+ --------
+ >>> import numpy as np
+ >>> np.array_equiv([1, 2], [1, 2])
+ True
+ >>> np.array_equiv([1, 2], [1, 3])
+ False
+
+ Showing the shape equivalence:
+
+ >>> np.array_equiv([1, 2], [[1, 2], [1, 2]])
+ True
+ >>> np.array_equiv([1, 2], [[1, 2, 1, 2], [1, 2, 1, 2]])
+ False
+
+ >>> np.array_equiv([1, 2], [[1, 2], [1, 3]])
+ False
+
+ """
+ try:
+ a1, a2 = asarray(a1), asarray(a2)
+ except Exception:
+ return False
+ try:
+ multiarray.broadcast(a1, a2)
+ except Exception:
+ return False
+
+ return builtins.bool(asanyarray(a1 == a2).all())
+
+
+def _astype_dispatcher(x, dtype, /, *, copy=None, device=None):
+ return (x, dtype)
+
+
+@array_function_dispatch(_astype_dispatcher)
+def astype(x, dtype, /, *, copy=True, device=None):
+ """
+ Copies an array to a specified data type.
+
+ This function is an Array API compatible alternative to
+ `numpy.ndarray.astype`.
+
+ Parameters
+ ----------
+ x : ndarray
+ Input NumPy array to cast. ``array_likes`` are explicitly not
+ supported here.
+ dtype : dtype
+ Data type of the result.
+ copy : bool, optional
+ Specifies whether to copy an array when the specified dtype matches
+ the data type of the input array ``x``. If ``True``, a newly allocated
+ array must always be returned. If ``False`` and the specified dtype
+ matches the data type of the input array, the input array must be
+ returned; otherwise, a newly allocated array must be returned.
+ Defaults to ``True``.
+ device : str, optional
+ The device on which to place the returned array. Default: None.
+ For Array-API interoperability only, so must be ``"cpu"`` if passed.
+
+ .. versionadded:: 2.1.0
+
+ Returns
+ -------
+ out : ndarray
+ An array having the specified data type.
+
+ See Also
+ --------
+ ndarray.astype
+
+ Examples
+ --------
+ >>> import numpy as np
+ >>> arr = np.array([1, 2, 3]); arr
+ array([1, 2, 3])
+ >>> np.astype(arr, np.float64)
+ array([1., 2., 3.])
+
+ Non-copy case:
+
+ >>> arr = np.array([1, 2, 3])
+ >>> arr_noncpy = np.astype(arr, arr.dtype, copy=False)
+ >>> np.shares_memory(arr, arr_noncpy)
+ True
+
+ """
+ if not (isinstance(x, np.ndarray) or isscalar(x)):
+ raise TypeError(
+ "Input should be a NumPy array or scalar. "
+ f"It is a {type(x)} instead."
+ )
+ if device is not None and device != "cpu":
+ raise ValueError(
+ 'Device not understood. Only "cpu" is allowed, but received:'
+ f' {device}'
+ )
+ return x.astype(dtype, copy=copy)
+
+
+inf = PINF
+nan = NAN
+False_ = nt.bool(False)
+True_ = nt.bool(True)
+
+
+def extend_all(module):
+ existing = set(__all__)
+ mall = module.__all__
+ for a in mall:
+ if a not in existing:
+ __all__.append(a)
+
+
+from . import _asarray, _ufunc_config, arrayprint, fromnumeric
+from ._asarray import *
+from ._ufunc_config import *
+from .arrayprint import *
+from .fromnumeric import *
+from .numerictypes import *
+from .umath import *
+
+extend_all(fromnumeric)
+extend_all(umath)
+extend_all(numerictypes)
+extend_all(arrayprint)
+extend_all(_asarray)
+extend_all(_ufunc_config)
diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/numeric.pyi b/.venv/lib/python3.12/site-packages/numpy/_core/numeric.pyi
new file mode 100644
index 0000000..919fe19
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/_core/numeric.pyi
@@ -0,0 +1,882 @@
+from collections.abc import Callable, Sequence
+from typing import (
+ Any,
+ Final,
+ Never,
+ NoReturn,
+ SupportsAbs,
+ SupportsIndex,
+ TypeAlias,
+ TypeGuard,
+ TypeVar,
+ Unpack,
+ overload,
+)
+from typing import Literal as L
+
+import numpy as np
+from numpy import (
+ False_,
+ True_,
+ _OrderCF,
+ _OrderKACF,
+ # re-exports
+ bitwise_not,
+ broadcast,
+ complexfloating,
+ dtype,
+ flatiter,
+ float64,
+ floating,
+ from_dlpack,
+ # other
+ generic,
+ inf,
+ int_,
+ intp,
+ little_endian,
+ matmul,
+ nan,
+ ndarray,
+ nditer,
+ newaxis,
+ object_,
+ signedinteger,
+ timedelta64,
+ ufunc,
+ unsignedinteger,
+ vecdot,
+)
+from numpy._typing import (
+ ArrayLike,
+ DTypeLike,
+ NDArray,
+ _ArrayLike,
+ _ArrayLikeBool_co,
+ _ArrayLikeComplex_co,
+ _ArrayLikeFloat_co,
+ _ArrayLikeInt_co,
+ _ArrayLikeObject_co,
+ _ArrayLikeTD64_co,
+ _ArrayLikeUInt_co,
+ _DTypeLike,
+ _NestedSequence,
+ _ScalarLike_co,
+ _Shape,
+ _ShapeLike,
+ _SupportsArrayFunc,
+ _SupportsDType,
+)
+
+from .fromnumeric import all as all
+from .fromnumeric import any as any
+from .fromnumeric import argpartition as argpartition
+from .fromnumeric import matrix_transpose as matrix_transpose
+from .fromnumeric import mean as mean
+from .multiarray import (
+ # other
+ _Array,
+ _ConstructorEmpty,
+ _KwargsEmpty,
+ # re-exports
+ arange,
+ array,
+ asanyarray,
+ asarray,
+ ascontiguousarray,
+ asfortranarray,
+ can_cast,
+ concatenate,
+ copyto,
+ dot,
+ empty,
+ empty_like,
+ frombuffer,
+ fromfile,
+ fromiter,
+ fromstring,
+ inner,
+ lexsort,
+ may_share_memory,
+ min_scalar_type,
+ nested_iters,
+ promote_types,
+ putmask,
+ result_type,
+ shares_memory,
+ vdot,
+ where,
+ zeros,
+)
+
+__all__ = [
+ "newaxis",
+ "ndarray",
+ "flatiter",
+ "nditer",
+ "nested_iters",
+ "ufunc",
+ "arange",
+ "array",
+ "asarray",
+ "asanyarray",
+ "ascontiguousarray",
+ "asfortranarray",
+ "zeros",
+ "count_nonzero",
+ "empty",
+ "broadcast",
+ "dtype",
+ "fromstring",
+ "fromfile",
+ "frombuffer",
+ "from_dlpack",
+ "where",
+ "argwhere",
+ "copyto",
+ "concatenate",
+ "lexsort",
+ "astype",
+ "can_cast",
+ "promote_types",
+ "min_scalar_type",
+ "result_type",
+ "isfortran",
+ "empty_like",
+ "zeros_like",
+ "ones_like",
+ "correlate",
+ "convolve",
+ "inner",
+ "dot",
+ "outer",
+ "vdot",
+ "roll",
+ "rollaxis",
+ "moveaxis",
+ "cross",
+ "tensordot",
+ "little_endian",
+ "fromiter",
+ "array_equal",
+ "array_equiv",
+ "indices",
+ "fromfunction",
+ "isclose",
+ "isscalar",
+ "binary_repr",
+ "base_repr",
+ "ones",
+ "identity",
+ "allclose",
+ "putmask",
+ "flatnonzero",
+ "inf",
+ "nan",
+ "False_",
+ "True_",
+ "bitwise_not",
+ "full",
+ "full_like",
+ "matmul",
+ "vecdot",
+ "shares_memory",
+ "may_share_memory",
+]
+
+_T = TypeVar("_T")
+_ScalarT = TypeVar("_ScalarT", bound=generic)
+_DTypeT = TypeVar("_DTypeT", bound=np.dtype)
+_ArrayT = TypeVar("_ArrayT", bound=np.ndarray[Any, Any])
+_ShapeT = TypeVar("_ShapeT", bound=_Shape)
+_AnyShapeT = TypeVar(
+ "_AnyShapeT",
+ tuple[()],
+ tuple[int],
+ tuple[int, int],
+ tuple[int, int, int],
+ tuple[int, int, int, int],
+ tuple[int, ...],
+)
+
+_CorrelateMode: TypeAlias = L["valid", "same", "full"]
+
+@overload
+def zeros_like(
+ a: _ArrayT,
+ dtype: None = ...,
+ order: _OrderKACF = ...,
+ subok: L[True] = ...,
+ shape: None = ...,
+ *,
+ device: L["cpu"] | None = ...,
+) -> _ArrayT: ...
+@overload
+def zeros_like(
+ a: _ArrayLike[_ScalarT],
+ dtype: None = ...,
+ order: _OrderKACF = ...,
+ subok: bool = ...,
+ shape: _ShapeLike | None = ...,
+ *,
+ device: L["cpu"] | None = ...,
+) -> NDArray[_ScalarT]: ...
+@overload
+def zeros_like(
+ a: Any,
+ dtype: _DTypeLike[_ScalarT],
+ order: _OrderKACF = ...,
+ subok: bool = ...,
+ shape: _ShapeLike | None = ...,
+ *,
+ device: L["cpu"] | None = ...,
+) -> NDArray[_ScalarT]: ...
+@overload
+def zeros_like(
+ a: Any,
+ dtype: DTypeLike | None = ...,
+ order: _OrderKACF = ...,
+ subok: bool = ...,
+ shape: _ShapeLike | None = ...,
+ *,
+ device: L["cpu"] | None = ...,
+) -> NDArray[Any]: ...
+
+ones: Final[_ConstructorEmpty]
+
+@overload
+def ones_like(
+ a: _ArrayT,
+ dtype: None = ...,
+ order: _OrderKACF = ...,
+ subok: L[True] = ...,
+ shape: None = ...,
+ *,
+ device: L["cpu"] | None = ...,
+) -> _ArrayT: ...
+@overload
+def ones_like(
+ a: _ArrayLike[_ScalarT],
+ dtype: None = ...,
+ order: _OrderKACF = ...,
+ subok: bool = ...,
+ shape: _ShapeLike | None = ...,
+ *,
+ device: L["cpu"] | None = ...,
+) -> NDArray[_ScalarT]: ...
+@overload
+def ones_like(
+ a: Any,
+ dtype: _DTypeLike[_ScalarT],
+ order: _OrderKACF = ...,
+ subok: bool = ...,
+ shape: _ShapeLike | None = ...,
+ *,
+ device: L["cpu"] | None = ...,
+) -> NDArray[_ScalarT]: ...
+@overload
+def ones_like(
+ a: Any,
+ dtype: DTypeLike | None = ...,
+ order: _OrderKACF = ...,
+ subok: bool = ...,
+ shape: _ShapeLike | None = ...,
+ *,
+ device: L["cpu"] | None = ...,
+) -> NDArray[Any]: ...
+
+# TODO: Add overloads for bool, int, float, complex, str, bytes, and memoryview
+# 1-D shape
+@overload
+def full(
+ shape: SupportsIndex,
+ fill_value: _ScalarT,
+ dtype: None = ...,
+ order: _OrderCF = ...,
+ **kwargs: Unpack[_KwargsEmpty],
+) -> _Array[tuple[int], _ScalarT]: ...
+@overload
+def full(
+ shape: SupportsIndex,
+ fill_value: Any,
+ dtype: _DTypeT | _SupportsDType[_DTypeT],
+ order: _OrderCF = ...,
+ **kwargs: Unpack[_KwargsEmpty],
+) -> np.ndarray[tuple[int], _DTypeT]: ...
+@overload
+def full(
+ shape: SupportsIndex,
+ fill_value: Any,
+ dtype: type[_ScalarT],
+ order: _OrderCF = ...,
+ **kwargs: Unpack[_KwargsEmpty],
+) -> _Array[tuple[int], _ScalarT]: ...
+@overload
+def full(
+ shape: SupportsIndex,
+ fill_value: Any,
+ dtype: DTypeLike | None = ...,
+ order: _OrderCF = ...,
+ **kwargs: Unpack[_KwargsEmpty],
+) -> _Array[tuple[int], Any]: ...
+# known shape
+@overload
+def full(
+ shape: _AnyShapeT,
+ fill_value: _ScalarT,
+ dtype: None = ...,
+ order: _OrderCF = ...,
+ **kwargs: Unpack[_KwargsEmpty],
+) -> _Array[_AnyShapeT, _ScalarT]: ...
+@overload
+def full(
+ shape: _AnyShapeT,
+ fill_value: Any,
+ dtype: _DTypeT | _SupportsDType[_DTypeT],
+ order: _OrderCF = ...,
+ **kwargs: Unpack[_KwargsEmpty],
+) -> np.ndarray[_AnyShapeT, _DTypeT]: ...
+@overload
+def full(
+ shape: _AnyShapeT,
+ fill_value: Any,
+ dtype: type[_ScalarT],
+ order: _OrderCF = ...,
+ **kwargs: Unpack[_KwargsEmpty],
+) -> _Array[_AnyShapeT, _ScalarT]: ...
+@overload
+def full(
+ shape: _AnyShapeT,
+ fill_value: Any,
+ dtype: DTypeLike | None = ...,
+ order: _OrderCF = ...,
+ **kwargs: Unpack[_KwargsEmpty],
+) -> _Array[_AnyShapeT, Any]: ...
+# unknown shape
+@overload
+def full(
+ shape: _ShapeLike,
+ fill_value: _ScalarT,
+ dtype: None = ...,
+ order: _OrderCF = ...,
+ **kwargs: Unpack[_KwargsEmpty],
+) -> NDArray[_ScalarT]: ...
+@overload
+def full(
+ shape: _ShapeLike,
+ fill_value: Any,
+ dtype: _DTypeT | _SupportsDType[_DTypeT],
+ order: _OrderCF = ...,
+ **kwargs: Unpack[_KwargsEmpty],
+) -> np.ndarray[Any, _DTypeT]: ...
+@overload
+def full(
+ shape: _ShapeLike,
+ fill_value: Any,
+ dtype: type[_ScalarT],
+ order: _OrderCF = ...,
+ **kwargs: Unpack[_KwargsEmpty],
+) -> NDArray[_ScalarT]: ...
+@overload
+def full(
+ shape: _ShapeLike,
+ fill_value: Any,
+ dtype: DTypeLike | None = ...,
+ order: _OrderCF = ...,
+ **kwargs: Unpack[_KwargsEmpty],
+) -> NDArray[Any]: ...
+
+@overload
+def full_like(
+ a: _ArrayT,
+ fill_value: Any,
+ dtype: None = ...,
+ order: _OrderKACF = ...,
+ subok: L[True] = ...,
+ shape: None = ...,
+ *,
+ device: L["cpu"] | None = ...,
+) -> _ArrayT: ...
+@overload
+def full_like(
+ a: _ArrayLike[_ScalarT],
+ fill_value: Any,
+ dtype: None = ...,
+ order: _OrderKACF = ...,
+ subok: bool = ...,
+ shape: _ShapeLike | None = ...,
+ *,
+ device: L["cpu"] | None = ...,
+) -> NDArray[_ScalarT]: ...
+@overload
+def full_like(
+ a: Any,
+ fill_value: Any,
+ dtype: _DTypeLike[_ScalarT],
+ order: _OrderKACF = ...,
+ subok: bool = ...,
+ shape: _ShapeLike | None = ...,
+ *,
+ device: L["cpu"] | None = ...,
+) -> NDArray[_ScalarT]: ...
+@overload
+def full_like(
+ a: Any,
+ fill_value: Any,
+ dtype: DTypeLike | None = ...,
+ order: _OrderKACF = ...,
+ subok: bool = ...,
+ shape: _ShapeLike | None = ...,
+ *,
+ device: L["cpu"] | None = ...,
+) -> NDArray[Any]: ...
+
+#
+@overload
+def count_nonzero(a: ArrayLike, axis: None = None, *, keepdims: L[False] = False) -> np.intp: ...
+@overload
+def count_nonzero(a: _ScalarLike_co, axis: _ShapeLike | None = None, *, keepdims: L[True]) -> np.intp: ...
+@overload
+def count_nonzero(
+ a: NDArray[Any] | _NestedSequence[ArrayLike], axis: _ShapeLike | None = None, *, keepdims: L[True]
+) -> NDArray[np.intp]: ...
+@overload
+def count_nonzero(a: ArrayLike, axis: _ShapeLike | None = None, *, keepdims: bool = False) -> Any: ...
+
+#
+def isfortran(a: NDArray[Any] | generic) -> bool: ...
+
+def argwhere(a: ArrayLike) -> NDArray[intp]: ...
+
+def flatnonzero(a: ArrayLike) -> NDArray[intp]: ...
+
+@overload
+def correlate(
+ a: _ArrayLike[Never],
+ v: _ArrayLike[Never],
+ mode: _CorrelateMode = ...,
+) -> NDArray[Any]: ...
+@overload
+def correlate(
+ a: _ArrayLikeBool_co,
+ v: _ArrayLikeBool_co,
+ mode: _CorrelateMode = ...,
+) -> NDArray[np.bool]: ...
+@overload
+def correlate(
+ a: _ArrayLikeUInt_co,
+ v: _ArrayLikeUInt_co,
+ mode: _CorrelateMode = ...,
+) -> NDArray[unsignedinteger]: ...
+@overload
+def correlate(
+ a: _ArrayLikeInt_co,
+ v: _ArrayLikeInt_co,
+ mode: _CorrelateMode = ...,
+) -> NDArray[signedinteger]: ...
+@overload
+def correlate(
+ a: _ArrayLikeFloat_co,
+ v: _ArrayLikeFloat_co,
+ mode: _CorrelateMode = ...,
+) -> NDArray[floating]: ...
+@overload
+def correlate(
+ a: _ArrayLikeComplex_co,
+ v: _ArrayLikeComplex_co,
+ mode: _CorrelateMode = ...,
+) -> NDArray[complexfloating]: ...
+@overload
+def correlate(
+ a: _ArrayLikeTD64_co,
+ v: _ArrayLikeTD64_co,
+ mode: _CorrelateMode = ...,
+) -> NDArray[timedelta64]: ...
+@overload
+def correlate(
+ a: _ArrayLikeObject_co,
+ v: _ArrayLikeObject_co,
+ mode: _CorrelateMode = ...,
+) -> NDArray[object_]: ...
+
+@overload
+def convolve(
+ a: _ArrayLike[Never],
+ v: _ArrayLike[Never],
+ mode: _CorrelateMode = ...,
+) -> NDArray[Any]: ...
+@overload
+def convolve(
+ a: _ArrayLikeBool_co,
+ v: _ArrayLikeBool_co,
+ mode: _CorrelateMode = ...,
+) -> NDArray[np.bool]: ...
+@overload
+def convolve(
+ a: _ArrayLikeUInt_co,
+ v: _ArrayLikeUInt_co,
+ mode: _CorrelateMode = ...,
+) -> NDArray[unsignedinteger]: ...
+@overload
+def convolve(
+ a: _ArrayLikeInt_co,
+ v: _ArrayLikeInt_co,
+ mode: _CorrelateMode = ...,
+) -> NDArray[signedinteger]: ...
+@overload
+def convolve(
+ a: _ArrayLikeFloat_co,
+ v: _ArrayLikeFloat_co,
+ mode: _CorrelateMode = ...,
+) -> NDArray[floating]: ...
+@overload
+def convolve(
+ a: _ArrayLikeComplex_co,
+ v: _ArrayLikeComplex_co,
+ mode: _CorrelateMode = ...,
+) -> NDArray[complexfloating]: ...
+@overload
+def convolve(
+ a: _ArrayLikeTD64_co,
+ v: _ArrayLikeTD64_co,
+ mode: _CorrelateMode = ...,
+) -> NDArray[timedelta64]: ...
+@overload
+def convolve(
+ a: _ArrayLikeObject_co,
+ v: _ArrayLikeObject_co,
+ mode: _CorrelateMode = ...,
+) -> NDArray[object_]: ...
+
+@overload
+def outer(
+ a: _ArrayLike[Never],
+ b: _ArrayLike[Never],
+ out: None = ...,
+) -> NDArray[Any]: ...
+@overload
+def outer(
+ a: _ArrayLikeBool_co,
+ b: _ArrayLikeBool_co,
+ out: None = ...,
+) -> NDArray[np.bool]: ...
+@overload
+def outer(
+ a: _ArrayLikeUInt_co,
+ b: _ArrayLikeUInt_co,
+ out: None = ...,
+) -> NDArray[unsignedinteger]: ...
+@overload
+def outer(
+ a: _ArrayLikeInt_co,
+ b: _ArrayLikeInt_co,
+ out: None = ...,
+) -> NDArray[signedinteger]: ...
+@overload
+def outer(
+ a: _ArrayLikeFloat_co,
+ b: _ArrayLikeFloat_co,
+ out: None = ...,
+) -> NDArray[floating]: ...
+@overload
+def outer(
+ a: _ArrayLikeComplex_co,
+ b: _ArrayLikeComplex_co,
+ out: None = ...,
+) -> NDArray[complexfloating]: ...
+@overload
+def outer(
+ a: _ArrayLikeTD64_co,
+ b: _ArrayLikeTD64_co,
+ out: None = ...,
+) -> NDArray[timedelta64]: ...
+@overload
+def outer(
+ a: _ArrayLikeObject_co,
+ b: _ArrayLikeObject_co,
+ out: None = ...,
+) -> NDArray[object_]: ...
+@overload
+def outer(
+ a: _ArrayLikeComplex_co | _ArrayLikeTD64_co | _ArrayLikeObject_co,
+ b: _ArrayLikeComplex_co | _ArrayLikeTD64_co | _ArrayLikeObject_co,
+ out: _ArrayT,
+) -> _ArrayT: ...
+
+@overload
+def tensordot(
+ a: _ArrayLike[Never],
+ b: _ArrayLike[Never],
+ axes: int | tuple[_ShapeLike, _ShapeLike] = ...,
+) -> NDArray[Any]: ...
+@overload
+def tensordot(
+ a: _ArrayLikeBool_co,
+ b: _ArrayLikeBool_co,
+ axes: int | tuple[_ShapeLike, _ShapeLike] = ...,
+) -> NDArray[np.bool]: ...
+@overload
+def tensordot(
+ a: _ArrayLikeUInt_co,
+ b: _ArrayLikeUInt_co,
+ axes: int | tuple[_ShapeLike, _ShapeLike] = ...,
+) -> NDArray[unsignedinteger]: ...
+@overload
+def tensordot(
+ a: _ArrayLikeInt_co,
+ b: _ArrayLikeInt_co,
+ axes: int | tuple[_ShapeLike, _ShapeLike] = ...,
+) -> NDArray[signedinteger]: ...
+@overload
+def tensordot(
+ a: _ArrayLikeFloat_co,
+ b: _ArrayLikeFloat_co,
+ axes: int | tuple[_ShapeLike, _ShapeLike] = ...,
+) -> NDArray[floating]: ...
+@overload
+def tensordot(
+ a: _ArrayLikeComplex_co,
+ b: _ArrayLikeComplex_co,
+ axes: int | tuple[_ShapeLike, _ShapeLike] = ...,
+) -> NDArray[complexfloating]: ...
+@overload
+def tensordot(
+ a: _ArrayLikeTD64_co,
+ b: _ArrayLikeTD64_co,
+ axes: int | tuple[_ShapeLike, _ShapeLike] = ...,
+) -> NDArray[timedelta64]: ...
+@overload
+def tensordot(
+ a: _ArrayLikeObject_co,
+ b: _ArrayLikeObject_co,
+ axes: int | tuple[_ShapeLike, _ShapeLike] = ...,
+) -> NDArray[object_]: ...
+
+@overload
+def roll(
+ a: _ArrayLike[_ScalarT],
+ shift: _ShapeLike,
+ axis: _ShapeLike | None = ...,
+) -> NDArray[_ScalarT]: ...
+@overload
+def roll(
+ a: ArrayLike,
+ shift: _ShapeLike,
+ axis: _ShapeLike | None = ...,
+) -> NDArray[Any]: ...
+
+def rollaxis(
+ a: NDArray[_ScalarT],
+ axis: int,
+ start: int = ...,
+) -> NDArray[_ScalarT]: ...
+
+def moveaxis(
+ a: NDArray[_ScalarT],
+ source: _ShapeLike,
+ destination: _ShapeLike,
+) -> NDArray[_ScalarT]: ...
+
+@overload
+def cross(
+ a: _ArrayLike[Never],
+ b: _ArrayLike[Never],
+ axisa: int = ...,
+ axisb: int = ...,
+ axisc: int = ...,
+ axis: int | None = ...,
+) -> NDArray[Any]: ...
+@overload
+def cross(
+ a: _ArrayLikeBool_co,
+ b: _ArrayLikeBool_co,
+ axisa: int = ...,
+ axisb: int = ...,
+ axisc: int = ...,
+ axis: int | None = ...,
+) -> NoReturn: ...
+@overload
+def cross(
+ a: _ArrayLikeUInt_co,
+ b: _ArrayLikeUInt_co,
+ axisa: int = ...,
+ axisb: int = ...,
+ axisc: int = ...,
+ axis: int | None = ...,
+) -> NDArray[unsignedinteger]: ...
+@overload
+def cross(
+ a: _ArrayLikeInt_co,
+ b: _ArrayLikeInt_co,
+ axisa: int = ...,
+ axisb: int = ...,
+ axisc: int = ...,
+ axis: int | None = ...,
+) -> NDArray[signedinteger]: ...
+@overload
+def cross(
+ a: _ArrayLikeFloat_co,
+ b: _ArrayLikeFloat_co,
+ axisa: int = ...,
+ axisb: int = ...,
+ axisc: int = ...,
+ axis: int | None = ...,
+) -> NDArray[floating]: ...
+@overload
+def cross(
+ a: _ArrayLikeComplex_co,
+ b: _ArrayLikeComplex_co,
+ axisa: int = ...,
+ axisb: int = ...,
+ axisc: int = ...,
+ axis: int | None = ...,
+) -> NDArray[complexfloating]: ...
+@overload
+def cross(
+ a: _ArrayLikeObject_co,
+ b: _ArrayLikeObject_co,
+ axisa: int = ...,
+ axisb: int = ...,
+ axisc: int = ...,
+ axis: int | None = ...,
+) -> NDArray[object_]: ...
+
+@overload
+def indices(
+ dimensions: Sequence[int],
+ dtype: type[int] = ...,
+ sparse: L[False] = ...,
+) -> NDArray[int_]: ...
+@overload
+def indices(
+ dimensions: Sequence[int],
+ dtype: type[int],
+ sparse: L[True],
+) -> tuple[NDArray[int_], ...]: ...
+@overload
+def indices(
+ dimensions: Sequence[int],
+ dtype: type[int] = ...,
+ *,
+ sparse: L[True],
+) -> tuple[NDArray[int_], ...]: ...
+@overload
+def indices(
+ dimensions: Sequence[int],
+ dtype: _DTypeLike[_ScalarT],
+ sparse: L[False] = ...,
+) -> NDArray[_ScalarT]: ...
+@overload
+def indices(
+ dimensions: Sequence[int],
+ dtype: _DTypeLike[_ScalarT],
+ sparse: L[True],
+) -> tuple[NDArray[_ScalarT], ...]: ...
+@overload
+def indices(
+ dimensions: Sequence[int],
+ dtype: DTypeLike = ...,
+ sparse: L[False] = ...,
+) -> NDArray[Any]: ...
+@overload
+def indices(
+ dimensions: Sequence[int],
+ dtype: DTypeLike,
+ sparse: L[True],
+) -> tuple[NDArray[Any], ...]: ...
+@overload
+def indices(
+ dimensions: Sequence[int],
+ dtype: DTypeLike = ...,
+ *,
+ sparse: L[True],
+) -> tuple[NDArray[Any], ...]: ...
+
+def fromfunction(
+ function: Callable[..., _T],
+ shape: Sequence[int],
+ *,
+ dtype: DTypeLike = ...,
+ like: _SupportsArrayFunc | None = ...,
+ **kwargs: Any,
+) -> _T: ...
+
+def isscalar(element: object) -> TypeGuard[generic | complex | str | bytes | memoryview]: ...
+
+def binary_repr(num: SupportsIndex, width: int | None = ...) -> str: ...
+
+def base_repr(
+ number: SupportsAbs[float],
+ base: float = ...,
+ padding: SupportsIndex | None = ...,
+) -> str: ...
+
+@overload
+def identity(
+ n: int,
+ dtype: None = ...,
+ *,
+ like: _SupportsArrayFunc | None = ...,
+) -> NDArray[float64]: ...
+@overload
+def identity(
+ n: int,
+ dtype: _DTypeLike[_ScalarT],
+ *,
+ like: _SupportsArrayFunc | None = ...,
+) -> NDArray[_ScalarT]: ...
+@overload
+def identity(
+ n: int,
+ dtype: DTypeLike | None = ...,
+ *,
+ like: _SupportsArrayFunc | None = ...,
+) -> NDArray[Any]: ...
+
+def allclose(
+ a: ArrayLike,
+ b: ArrayLike,
+ rtol: ArrayLike = ...,
+ atol: ArrayLike = ...,
+ equal_nan: bool = ...,
+) -> bool: ...
+
+@overload
+def isclose(
+ a: _ScalarLike_co,
+ b: _ScalarLike_co,
+ rtol: ArrayLike = ...,
+ atol: ArrayLike = ...,
+ equal_nan: bool = ...,
+) -> np.bool: ...
+@overload
+def isclose(
+ a: ArrayLike,
+ b: ArrayLike,
+ rtol: ArrayLike = ...,
+ atol: ArrayLike = ...,
+ equal_nan: bool = ...,
+) -> NDArray[np.bool]: ...
+
+def array_equal(a1: ArrayLike, a2: ArrayLike, equal_nan: bool = ...) -> bool: ...
+
+def array_equiv(a1: ArrayLike, a2: ArrayLike) -> bool: ...
+
+@overload
+def astype(
+ x: ndarray[_ShapeT, dtype],
+ dtype: _DTypeLike[_ScalarT],
+ /,
+ *,
+ copy: bool = ...,
+ device: L["cpu"] | None = ...,
+) -> ndarray[_ShapeT, dtype[_ScalarT]]: ...
+@overload
+def astype(
+ x: ndarray[_ShapeT, dtype],
+ dtype: DTypeLike,
+ /,
+ *,
+ copy: bool = ...,
+ device: L["cpu"] | None = ...,
+) -> ndarray[_ShapeT, dtype]: ...
diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/numerictypes.py b/.venv/lib/python3.12/site-packages/numpy/_core/numerictypes.py
new file mode 100644
index 0000000..135dc1b
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/_core/numerictypes.py
@@ -0,0 +1,633 @@
+"""
+numerictypes: Define the numeric type objects
+
+This module is designed so "from numerictypes import \\*" is safe.
+Exported symbols include:
+
+ Dictionary with all registered number types (including aliases):
+ sctypeDict
+
+ Type objects (not all will be available, depends on platform):
+ see variable sctypes for which ones you have
+
+ Bit-width names
+
+ int8 int16 int32 int64
+ uint8 uint16 uint32 uint64
+ float16 float32 float64 float96 float128
+ complex64 complex128 complex192 complex256
+ datetime64 timedelta64
+
+ c-based names
+
+ bool
+
+ object_
+
+ void, str_
+
+ byte, ubyte,
+ short, ushort
+ intc, uintc,
+ intp, uintp,
+ int_, uint,
+ longlong, ulonglong,
+
+ single, csingle,
+ double, cdouble,
+ longdouble, clongdouble,
+
+ As part of the type-hierarchy: xx -- is bit-width
+
+ generic
+ +-> bool (kind=b)
+ +-> number
+ | +-> integer
+ | | +-> signedinteger (intxx) (kind=i)
+ | | | byte
+ | | | short
+ | | | intc
+ | | | intp
+ | | | int_
+ | | | longlong
+ | | \\-> unsignedinteger (uintxx) (kind=u)
+ | | ubyte
+ | | ushort
+ | | uintc
+ | | uintp
+ | | uint
+ | | ulonglong
+ | +-> inexact
+ | +-> floating (floatxx) (kind=f)
+ | | half
+ | | single
+ | | double
+ | | longdouble
+ | \\-> complexfloating (complexxx) (kind=c)
+ | csingle
+ | cdouble
+ | clongdouble
+ +-> flexible
+ | +-> character
+ | | bytes_ (kind=S)
+ | | str_ (kind=U)
+ | |
+ | \\-> void (kind=V)
+ \\-> object_ (not used much) (kind=O)
+
+"""
+import numbers
+import warnings
+
+from numpy._utils import set_module
+
+from . import multiarray as ma
+from .multiarray import (
+ busday_count,
+ busday_offset,
+ busdaycalendar,
+ datetime_as_string,
+ datetime_data,
+ dtype,
+ is_busday,
+ ndarray,
+)
+
+# we add more at the bottom
+__all__ = [
+ 'ScalarType', 'typecodes', 'issubdtype', 'datetime_data',
+ 'datetime_as_string', 'busday_offset', 'busday_count',
+ 'is_busday', 'busdaycalendar', 'isdtype'
+]
+
+# we don't need all these imports, but we need to keep them for compatibility
+# for users using np._core.numerictypes.UPPER_TABLE
+# we don't export these for import *, but we do want them accessible
+# as numerictypes.bool, etc.
+from builtins import bool, bytes, complex, float, int, object, str # noqa: F401, UP029
+
+from ._dtype import _kind_name
+from ._string_helpers import ( # noqa: F401
+ LOWER_TABLE,
+ UPPER_TABLE,
+ english_capitalize,
+ english_lower,
+ english_upper,
+)
+from ._type_aliases import allTypes, sctypeDict, sctypes
+
+# We use this later
+generic = allTypes['generic']
+
+genericTypeRank = ['bool', 'int8', 'uint8', 'int16', 'uint16',
+ 'int32', 'uint32', 'int64', 'uint64',
+ 'float16', 'float32', 'float64', 'float96', 'float128',
+ 'complex64', 'complex128', 'complex192', 'complex256',
+ 'object']
+
+@set_module('numpy')
+def maximum_sctype(t):
+ """
+ Return the scalar type of highest precision of the same kind as the input.
+
+ .. deprecated:: 2.0
+ Use an explicit dtype like int64 or float64 instead.
+
+ Parameters
+ ----------
+ t : dtype or dtype specifier
+ The input data type. This can be a `dtype` object or an object that
+ is convertible to a `dtype`.
+
+ Returns
+ -------
+ out : dtype
+ The highest precision data type of the same kind (`dtype.kind`) as `t`.
+
+ See Also
+ --------
+ obj2sctype, mintypecode, sctype2char
+ dtype
+
+ Examples
+ --------
+ >>> from numpy._core.numerictypes import maximum_sctype
+ >>> maximum_sctype(int)
+ <class 'numpy.int64'>
+ >>> maximum_sctype(np.uint8)
+ <class 'numpy.uint64'>
+ >>> maximum_sctype(complex)
+ <class 'numpy.complex256'> # may vary
+
+ >>> maximum_sctype(str)
+ <class 'numpy.str_'>
+
+ >>> maximum_sctype('i2')
+ <class 'numpy.int64'>
+ >>> maximum_sctype('f4')
+ <class 'numpy.float128'> # may vary
+
+ """
+
+ # Deprecated in NumPy 2.0, 2023-07-11
+ warnings.warn(
+ "`maximum_sctype` is deprecated. Use an explicit dtype like int64 "
+ "or float64 instead. (deprecated in NumPy 2.0)",
+ DeprecationWarning,
+ stacklevel=2
+ )
+
+ g = obj2sctype(t)
+ if g is None:
+ return t
+ t = g
+ base = _kind_name(dtype(t))
+ if base in sctypes:
+ return sctypes[base][-1]
+ else:
+ return t
+
+
+@set_module('numpy')
+def issctype(rep):
+ """
+ Determines whether the given object represents a scalar data-type.
+
+ Parameters
+ ----------
+ rep : any
+ If `rep` is an instance of a scalar dtype, True is returned. If not,
+ False is returned.
+
+ Returns
+ -------
+ out : bool
+ Boolean result of check whether `rep` is a scalar dtype.
+
+ See Also
+ --------
+ issubsctype, issubdtype, obj2sctype, sctype2char
+
+ Examples
+ --------
+ >>> from numpy._core.numerictypes import issctype
+ >>> issctype(np.int32)
+ True
+ >>> issctype(list)
+ False
+ >>> issctype(1.1)
+ False
+
+ Strings are also a scalar type:
+
+ >>> issctype(np.dtype('str'))
+ True
+
+ """
+ if not isinstance(rep, (type, dtype)):
+ return False
+ try:
+ res = obj2sctype(rep)
+ if res and res != object_:
+ return True
+ else:
+ return False
+ except Exception:
+ return False
+
+
+def obj2sctype(rep, default=None):
+ """
+ Return the scalar dtype or NumPy equivalent of Python type of an object.
+
+ Parameters
+ ----------
+ rep : any
+ The object of which the type is returned.
+ default : any, optional
+ If given, this is returned for objects whose types can not be
+ determined. If not given, None is returned for those objects.
+
+ Returns
+ -------
+ dtype : dtype or Python type
+ The data type of `rep`.
+
+ See Also
+ --------
+ sctype2char, issctype, issubsctype, issubdtype
+
+ Examples
+ --------
+ >>> from numpy._core.numerictypes import obj2sctype
+ >>> obj2sctype(np.int32)
+ <class 'numpy.int32'>
+ >>> obj2sctype(np.array([1., 2.]))
+ <class 'numpy.float64'>
+ >>> obj2sctype(np.array([1.j]))
+ <class 'numpy.complex128'>
+
+ >>> obj2sctype(dict)
+ <class 'numpy.object_'>
+ >>> obj2sctype('string')
+
+ >>> obj2sctype(1, default=list)
+ <class 'list'>
+
+ """
+ # prevent abstract classes being upcast
+ if isinstance(rep, type) and issubclass(rep, generic):
+ return rep
+ # extract dtype from arrays
+ if isinstance(rep, ndarray):
+ return rep.dtype.type
+ # fall back on dtype to convert
+ try:
+ res = dtype(rep)
+ except Exception:
+ return default
+ else:
+ return res.type
+
+
+@set_module('numpy')
+def issubclass_(arg1, arg2):
+ """
+ Determine if a class is a subclass of a second class.
+
+ `issubclass_` is equivalent to the Python built-in ``issubclass``,
+ except that it returns False instead of raising a TypeError if one
+ of the arguments is not a class.
+
+ Parameters
+ ----------
+ arg1 : class
+ Input class. True is returned if `arg1` is a subclass of `arg2`.
+ arg2 : class or tuple of classes.
+ Input class. If a tuple of classes, True is returned if `arg1` is a
+ subclass of any of the tuple elements.
+
+ Returns
+ -------
+ out : bool
+ Whether `arg1` is a subclass of `arg2` or not.
+
+ See Also
+ --------
+ issubsctype, issubdtype, issctype
+
+ Examples
+ --------
+ >>> np.issubclass_(np.int32, int)
+ False
+ >>> np.issubclass_(np.int32, float)
+ False
+ >>> np.issubclass_(np.float64, float)
+ True
+
+ """
+ try:
+ return issubclass(arg1, arg2)
+ except TypeError:
+ return False
+
+
+@set_module('numpy')
+def issubsctype(arg1, arg2):
+ """
+ Determine if the first argument is a subclass of the second argument.
+
+ Parameters
+ ----------
+ arg1, arg2 : dtype or dtype specifier
+ Data-types.
+
+ Returns
+ -------
+ out : bool
+ The result.
+
+ See Also
+ --------
+ issctype, issubdtype, obj2sctype
+
+ Examples
+ --------
+ >>> from numpy._core import issubsctype
+ >>> issubsctype('S8', str)
+ False
+ >>> issubsctype(np.array([1]), int)
+ True
+ >>> issubsctype(np.array([1]), float)
+ False
+
+ """
+ return issubclass(obj2sctype(arg1), obj2sctype(arg2))
+
+
+class _PreprocessDTypeError(Exception):
+ pass
+
+
+def _preprocess_dtype(dtype):
+ """
+ Preprocess dtype argument by:
+ 1. fetching type from a data type
+ 2. verifying that types are built-in NumPy dtypes
+ """
+ if isinstance(dtype, ma.dtype):
+ dtype = dtype.type
+ if isinstance(dtype, ndarray) or dtype not in allTypes.values():
+ raise _PreprocessDTypeError
+ return dtype
+
+
+@set_module('numpy')
+def isdtype(dtype, kind):
+ """
+ Determine if a provided dtype is of a specified data type ``kind``.
+
+ This function only supports built-in NumPy's data types.
+ Third-party dtypes are not yet supported.
+
+ Parameters
+ ----------
+ dtype : dtype
+ The input dtype.
+ kind : dtype or str or tuple of dtypes/strs.
+ dtype or dtype kind. Allowed dtype kinds are:
+ * ``'bool'`` : boolean kind
+ * ``'signed integer'`` : signed integer data types
+ * ``'unsigned integer'`` : unsigned integer data types
+ * ``'integral'`` : integer data types
+ * ``'real floating'`` : real-valued floating-point data types
+ * ``'complex floating'`` : complex floating-point data types
+ * ``'numeric'`` : numeric data types
+
+ Returns
+ -------
+ out : bool
+
+ See Also
+ --------
+ issubdtype
+
+ Examples
+ --------
+ >>> import numpy as np
+ >>> np.isdtype(np.float32, np.float64)
+ False
+ >>> np.isdtype(np.float32, "real floating")
+ True
+ >>> np.isdtype(np.complex128, ("real floating", "complex floating"))
+ True
+
+ """
+ try:
+ dtype = _preprocess_dtype(dtype)
+ except _PreprocessDTypeError:
+ raise TypeError(
+ "dtype argument must be a NumPy dtype, "
+ f"but it is a {type(dtype)}."
+ ) from None
+
+ input_kinds = kind if isinstance(kind, tuple) else (kind,)
+
+ processed_kinds = set()
+
+ for kind in input_kinds:
+ if kind == "bool":
+ processed_kinds.add(allTypes["bool"])
+ elif kind == "signed integer":
+ processed_kinds.update(sctypes["int"])
+ elif kind == "unsigned integer":
+ processed_kinds.update(sctypes["uint"])
+ elif kind == "integral":
+ processed_kinds.update(sctypes["int"] + sctypes["uint"])
+ elif kind == "real floating":
+ processed_kinds.update(sctypes["float"])
+ elif kind == "complex floating":
+ processed_kinds.update(sctypes["complex"])
+ elif kind == "numeric":
+ processed_kinds.update(
+ sctypes["int"] + sctypes["uint"] +
+ sctypes["float"] + sctypes["complex"]
+ )
+ elif isinstance(kind, str):
+ raise ValueError(
+ "kind argument is a string, but"
+ f" {kind!r} is not a known kind name."
+ )
+ else:
+ try:
+ kind = _preprocess_dtype(kind)
+ except _PreprocessDTypeError:
+ raise TypeError(
+ "kind argument must be comprised of "
+ "NumPy dtypes or strings only, "
+ f"but is a {type(kind)}."
+ ) from None
+ processed_kinds.add(kind)
+
+ return dtype in processed_kinds
+
+
+@set_module('numpy')
+def issubdtype(arg1, arg2):
+ r"""
+ Returns True if first argument is a typecode lower/equal in type hierarchy.
+
+ This is like the builtin :func:`issubclass`, but for `dtype`\ s.
+
+ Parameters
+ ----------
+ arg1, arg2 : dtype_like
+ `dtype` or object coercible to one
+
+ Returns
+ -------
+ out : bool
+
+ See Also
+ --------
+ :ref:`arrays.scalars` : Overview of the numpy type hierarchy.
+
+ Examples
+ --------
+ `issubdtype` can be used to check the type of arrays:
+
+ >>> ints = np.array([1, 2, 3], dtype=np.int32)
+ >>> np.issubdtype(ints.dtype, np.integer)
+ True
+ >>> np.issubdtype(ints.dtype, np.floating)
+ False
+
+ >>> floats = np.array([1, 2, 3], dtype=np.float32)
+ >>> np.issubdtype(floats.dtype, np.integer)
+ False
+ >>> np.issubdtype(floats.dtype, np.floating)
+ True
+
+ Similar types of different sizes are not subdtypes of each other:
+
+ >>> np.issubdtype(np.float64, np.float32)
+ False
+ >>> np.issubdtype(np.float32, np.float64)
+ False
+
+ but both are subtypes of `floating`:
+
+ >>> np.issubdtype(np.float64, np.floating)
+ True
+ >>> np.issubdtype(np.float32, np.floating)
+ True
+
+ For convenience, dtype-like objects are allowed too:
+
+ >>> np.issubdtype('S1', np.bytes_)
+ True
+ >>> np.issubdtype('i4', np.signedinteger)
+ True
+
+ """
+ if not issubclass_(arg1, generic):
+ arg1 = dtype(arg1).type
+ if not issubclass_(arg2, generic):
+ arg2 = dtype(arg2).type
+
+ return issubclass(arg1, arg2)
+
+
+@set_module('numpy')
+def sctype2char(sctype):
+ """
+ Return the string representation of a scalar dtype.
+
+ Parameters
+ ----------
+ sctype : scalar dtype or object
+ If a scalar dtype, the corresponding string character is
+ returned. If an object, `sctype2char` tries to infer its scalar type
+ and then return the corresponding string character.
+
+ Returns
+ -------
+ typechar : str
+ The string character corresponding to the scalar type.
+
+ Raises
+ ------
+ ValueError
+ If `sctype` is an object for which the type can not be inferred.
+
+ See Also
+ --------
+ obj2sctype, issctype, issubsctype, mintypecode
+
+ Examples
+ --------
+ >>> from numpy._core.numerictypes import sctype2char
+ >>> for sctype in [np.int32, np.double, np.cdouble, np.bytes_, np.ndarray]:
+ ... print(sctype2char(sctype))
+ l # may vary
+ d
+ D
+ S
+ O
+
+ >>> x = np.array([1., 2-1.j])
+ >>> sctype2char(x)
+ 'D'
+ >>> sctype2char(list)
+ 'O'
+
+ """
+ sctype = obj2sctype(sctype)
+ if sctype is None:
+ raise ValueError("unrecognized type")
+ if sctype not in sctypeDict.values():
+ # for compatibility
+ raise KeyError(sctype)
+ return dtype(sctype).char
+
+
+def _scalar_type_key(typ):
+ """A ``key`` function for `sorted`."""
+ dt = dtype(typ)
+ return (dt.kind.lower(), dt.itemsize)
+
+
+ScalarType = [int, float, complex, bool, bytes, str, memoryview]
+ScalarType += sorted(set(sctypeDict.values()), key=_scalar_type_key)
+ScalarType = tuple(ScalarType)
+
+
+# Now add the types we've determined to this module
+for key in allTypes:
+ globals()[key] = allTypes[key]
+ __all__.append(key)
+
+del key
+
+typecodes = {'Character': 'c',
+ 'Integer': 'bhilqnp',
+ 'UnsignedInteger': 'BHILQNP',
+ 'Float': 'efdg',
+ 'Complex': 'FDG',
+ 'AllInteger': 'bBhHiIlLqQnNpP',
+ 'AllFloat': 'efdgFDG',
+ 'Datetime': 'Mm',
+ 'All': '?bhilqnpBHILQNPefdgFDGSUVOMm'}
+
+# backwards compatibility --- deprecated name
+# Formal deprecation: Numpy 1.20.0, 2020-10-19 (see numpy/__init__.py)
+typeDict = sctypeDict
+
+def _register_types():
+ numbers.Integral.register(integer)
+ numbers.Complex.register(inexact)
+ numbers.Real.register(floating)
+ numbers.Number.register(number)
+
+
+_register_types()
diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/numerictypes.pyi b/.venv/lib/python3.12/site-packages/numpy/_core/numerictypes.pyi
new file mode 100644
index 0000000..753fe34
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/_core/numerictypes.pyi
@@ -0,0 +1,192 @@
+import builtins
+from typing import Any, TypedDict, type_check_only
+from typing import Literal as L
+
+import numpy as np
+from numpy import (
+ bool,
+ bool_,
+ byte,
+ bytes_,
+ cdouble,
+ character,
+ clongdouble,
+ complex64,
+ complex128,
+ complexfloating,
+ csingle,
+ datetime64,
+ double,
+ dtype,
+ flexible,
+ float16,
+ float32,
+ float64,
+ floating,
+ generic,
+ half,
+ inexact,
+ int8,
+ int16,
+ int32,
+ int64,
+ int_,
+ intc,
+ integer,
+ intp,
+ long,
+ longdouble,
+ longlong,
+ number,
+ object_,
+ short,
+ signedinteger,
+ single,
+ str_,
+ timedelta64,
+ ubyte,
+ uint,
+ uint8,
+ uint16,
+ uint32,
+ uint64,
+ uintc,
+ uintp,
+ ulong,
+ ulonglong,
+ unsignedinteger,
+ ushort,
+ void,
+)
+from numpy._typing import DTypeLike
+from numpy._typing._extended_precision import complex192, complex256, float96, float128
+
+from ._type_aliases import sctypeDict # noqa: F401
+from .multiarray import (
+ busday_count,
+ busday_offset,
+ busdaycalendar,
+ datetime_as_string,
+ datetime_data,
+ is_busday,
+)
+
+__all__ = [
+ "ScalarType",
+ "typecodes",
+ "issubdtype",
+ "datetime_data",
+ "datetime_as_string",
+ "busday_offset",
+ "busday_count",
+ "is_busday",
+ "busdaycalendar",
+ "isdtype",
+ "generic",
+ "unsignedinteger",
+ "character",
+ "inexact",
+ "number",
+ "integer",
+ "flexible",
+ "complexfloating",
+ "signedinteger",
+ "floating",
+ "bool",
+ "float16",
+ "float32",
+ "float64",
+ "longdouble",
+ "complex64",
+ "complex128",
+ "clongdouble",
+ "bytes_",
+ "str_",
+ "void",
+ "object_",
+ "datetime64",
+ "timedelta64",
+ "int8",
+ "byte",
+ "uint8",
+ "ubyte",
+ "int16",
+ "short",
+ "uint16",
+ "ushort",
+ "int32",
+ "intc",
+ "uint32",
+ "uintc",
+ "int64",
+ "long",
+ "uint64",
+ "ulong",
+ "longlong",
+ "ulonglong",
+ "intp",
+ "uintp",
+ "double",
+ "cdouble",
+ "single",
+ "csingle",
+ "half",
+ "bool_",
+ "int_",
+ "uint",
+ "float96",
+ "float128",
+ "complex192",
+ "complex256",
+]
+
+@type_check_only
+class _TypeCodes(TypedDict):
+ Character: L['c']
+ Integer: L['bhilqnp']
+ UnsignedInteger: L['BHILQNP']
+ Float: L['efdg']
+ Complex: L['FDG']
+ AllInteger: L['bBhHiIlLqQnNpP']
+ AllFloat: L['efdgFDG']
+ Datetime: L['Mm']
+ All: L['?bhilqnpBHILQNPefdgFDGSUVOMm']
+
+def isdtype(dtype: dtype | type[Any], kind: DTypeLike | tuple[DTypeLike, ...]) -> builtins.bool: ...
+
+def issubdtype(arg1: DTypeLike, arg2: DTypeLike) -> builtins.bool: ...
+
+typecodes: _TypeCodes
+ScalarType: tuple[
+ type[int],
+ type[float],
+ type[complex],
+ type[builtins.bool],
+ type[bytes],
+ type[str],
+ type[memoryview],
+ type[np.bool],
+ type[csingle],
+ type[cdouble],
+ type[clongdouble],
+ type[half],
+ type[single],
+ type[double],
+ type[longdouble],
+ type[byte],
+ type[short],
+ type[intc],
+ type[long],
+ type[longlong],
+ type[timedelta64],
+ type[datetime64],
+ type[object_],
+ type[bytes_],
+ type[str_],
+ type[ubyte],
+ type[ushort],
+ type[uintc],
+ type[ulong],
+ type[ulonglong],
+ type[void],
+]
diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/overrides.py b/.venv/lib/python3.12/site-packages/numpy/_core/overrides.py
new file mode 100644
index 0000000..6414710
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/_core/overrides.py
@@ -0,0 +1,183 @@
+"""Implementation of __array_function__ overrides from NEP-18."""
+import collections
+import functools
+
+from numpy._core._multiarray_umath import (
+ _ArrayFunctionDispatcher,
+ _get_implementing_args,
+ add_docstring,
+)
+from numpy._utils import set_module # noqa: F401
+from numpy._utils._inspect import getargspec
+
+ARRAY_FUNCTIONS = set()
+
+array_function_like_doc = (
+ """like : array_like, optional
+ Reference object to allow the creation of arrays which are not
+ NumPy arrays. If an array-like passed in as ``like`` supports
+ the ``__array_function__`` protocol, the result will be defined
+ by it. In this case, it ensures the creation of an array object
+ compatible with that passed in via this argument."""
+)
+
+def get_array_function_like_doc(public_api, docstring_template=""):
+ ARRAY_FUNCTIONS.add(public_api)
+ docstring = public_api.__doc__ or docstring_template
+ return docstring.replace("${ARRAY_FUNCTION_LIKE}", array_function_like_doc)
+
+def finalize_array_function_like(public_api):
+ public_api.__doc__ = get_array_function_like_doc(public_api)
+ return public_api
+
+
+add_docstring(
+ _ArrayFunctionDispatcher,
+ """
+ Class to wrap functions with checks for __array_function__ overrides.
+
+ All arguments are required, and can only be passed by position.
+
+ Parameters
+ ----------
+ dispatcher : function or None
+ The dispatcher function that returns a single sequence-like object
+ of all arguments relevant. It must have the same signature (except
+ the default values) as the actual implementation.
+ If ``None``, this is a ``like=`` dispatcher and the
+ ``_ArrayFunctionDispatcher`` must be called with ``like`` as the
+ first (additional and positional) argument.
+ implementation : function
+ Function that implements the operation on NumPy arrays without
+ overrides. Arguments passed calling the ``_ArrayFunctionDispatcher``
+ will be forwarded to this (and the ``dispatcher``) as if using
+ ``*args, **kwargs``.
+
+ Attributes
+ ----------
+ _implementation : function
+ The original implementation passed in.
+ """)
+
+
+# exposed for testing purposes; used internally by _ArrayFunctionDispatcher
+add_docstring(
+ _get_implementing_args,
+ """
+ Collect arguments on which to call __array_function__.
+
+ Parameters
+ ----------
+ relevant_args : iterable of array-like
+ Iterable of possibly array-like arguments to check for
+ __array_function__ methods.
+
+ Returns
+ -------
+ Sequence of arguments with __array_function__ methods, in the order in
+ which they should be called.
+ """)
+
+
+ArgSpec = collections.namedtuple('ArgSpec', 'args varargs keywords defaults')
+
+
+def verify_matching_signatures(implementation, dispatcher):
+ """Verify that a dispatcher function has the right signature."""
+ implementation_spec = ArgSpec(*getargspec(implementation))
+ dispatcher_spec = ArgSpec(*getargspec(dispatcher))
+
+ if (implementation_spec.args != dispatcher_spec.args or
+ implementation_spec.varargs != dispatcher_spec.varargs or
+ implementation_spec.keywords != dispatcher_spec.keywords or
+ (bool(implementation_spec.defaults) !=
+ bool(dispatcher_spec.defaults)) or
+ (implementation_spec.defaults is not None and
+ len(implementation_spec.defaults) !=
+ len(dispatcher_spec.defaults))):
+ raise RuntimeError('implementation and dispatcher for %s have '
+ 'different function signatures' % implementation)
+
+ if implementation_spec.defaults is not None:
+ if dispatcher_spec.defaults != (None,) * len(dispatcher_spec.defaults):
+ raise RuntimeError('dispatcher functions can only use None for '
+ 'default argument values')
+
+
+def array_function_dispatch(dispatcher=None, module=None, verify=True,
+ docs_from_dispatcher=False):
+ """Decorator for adding dispatch with the __array_function__ protocol.
+
+ See NEP-18 for example usage.
+
+ Parameters
+ ----------
+ dispatcher : callable or None
+ Function that when called like ``dispatcher(*args, **kwargs)`` with
+ arguments from the NumPy function call returns an iterable of
+ array-like arguments to check for ``__array_function__``.
+
+ If `None`, the first argument is used as the single `like=` argument
+ and not passed on. A function implementing `like=` must call its
+ dispatcher with `like` as the first non-keyword argument.
+ module : str, optional
+ __module__ attribute to set on new function, e.g., ``module='numpy'``.
+ By default, module is copied from the decorated function.
+ verify : bool, optional
+ If True, verify the that the signature of the dispatcher and decorated
+ function signatures match exactly: all required and optional arguments
+ should appear in order with the same names, but the default values for
+ all optional arguments should be ``None``. Only disable verification
+ if the dispatcher's signature needs to deviate for some particular
+ reason, e.g., because the function has a signature like
+ ``func(*args, **kwargs)``.
+ docs_from_dispatcher : bool, optional
+ If True, copy docs from the dispatcher function onto the dispatched
+ function, rather than from the implementation. This is useful for
+ functions defined in C, which otherwise don't have docstrings.
+
+ Returns
+ -------
+ Function suitable for decorating the implementation of a NumPy function.
+
+ """
+ def decorator(implementation):
+ if verify:
+ if dispatcher is not None:
+ verify_matching_signatures(implementation, dispatcher)
+ else:
+ # Using __code__ directly similar to verify_matching_signature
+ co = implementation.__code__
+ last_arg = co.co_argcount + co.co_kwonlyargcount - 1
+ last_arg = co.co_varnames[last_arg]
+ if last_arg != "like" or co.co_kwonlyargcount == 0:
+ raise RuntimeError(
+ "__array_function__ expects `like=` to be the last "
+ "argument and a keyword-only argument. "
+ f"{implementation} does not seem to comply.")
+
+ if docs_from_dispatcher:
+ add_docstring(implementation, dispatcher.__doc__)
+
+ public_api = _ArrayFunctionDispatcher(dispatcher, implementation)
+ public_api = functools.wraps(implementation)(public_api)
+
+ if module is not None:
+ public_api.__module__ = module
+
+ ARRAY_FUNCTIONS.add(public_api)
+
+ return public_api
+
+ return decorator
+
+
+def array_function_from_dispatcher(
+ implementation, module=None, verify=True, docs_from_dispatcher=True):
+ """Like array_function_dispatcher, but with function arguments flipped."""
+
+ def decorator(dispatcher):
+ return array_function_dispatch(
+ dispatcher, module, verify=verify,
+ docs_from_dispatcher=docs_from_dispatcher)(implementation)
+ return decorator
diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/overrides.pyi b/.venv/lib/python3.12/site-packages/numpy/_core/overrides.pyi
new file mode 100644
index 0000000..0545319
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/_core/overrides.pyi
@@ -0,0 +1,48 @@
+from collections.abc import Callable, Iterable
+from typing import Any, Final, NamedTuple, ParamSpec, TypeVar
+
+from numpy._typing import _SupportsArrayFunc
+
+_T = TypeVar("_T")
+_Tss = ParamSpec("_Tss")
+_FuncT = TypeVar("_FuncT", bound=Callable[..., object])
+
+###
+
+ARRAY_FUNCTIONS: set[Callable[..., Any]] = ...
+array_function_like_doc: Final[str] = ...
+
+class ArgSpec(NamedTuple):
+ args: list[str]
+ varargs: str | None
+ keywords: str | None
+ defaults: tuple[Any, ...]
+
+def get_array_function_like_doc(public_api: Callable[..., Any], docstring_template: str = "") -> str: ...
+def finalize_array_function_like(public_api: _FuncT) -> _FuncT: ...
+
+#
+def verify_matching_signatures(
+ implementation: Callable[_Tss, object],
+ dispatcher: Callable[_Tss, Iterable[_SupportsArrayFunc]],
+) -> None: ...
+
+# NOTE: This actually returns a `_ArrayFunctionDispatcher` callable wrapper object, with
+# the original wrapped callable stored in the `._implementation` attribute. It checks
+# for any `__array_function__` of the values of specific arguments that the dispatcher
+# specifies. Since the dispatcher only returns an iterable of passed array-like args,
+# this overridable behaviour is impossible to annotate.
+def array_function_dispatch(
+ dispatcher: Callable[_Tss, Iterable[_SupportsArrayFunc]] | None = None,
+ module: str | None = None,
+ verify: bool = True,
+ docs_from_dispatcher: bool = False,
+) -> Callable[[_FuncT], _FuncT]: ...
+
+#
+def array_function_from_dispatcher(
+ implementation: Callable[_Tss, _T],
+ module: str | None = None,
+ verify: bool = True,
+ docs_from_dispatcher: bool = True,
+) -> Callable[[Callable[_Tss, Iterable[_SupportsArrayFunc]]], Callable[_Tss, _T]]: ...
diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/printoptions.py b/.venv/lib/python3.12/site-packages/numpy/_core/printoptions.py
new file mode 100644
index 0000000..5d6f963
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/_core/printoptions.py
@@ -0,0 +1,32 @@
+"""
+Stores and defines the low-level format_options context variable.
+
+This is defined in its own file outside of the arrayprint module
+so we can import it from C while initializing the multiarray
+C module during import without introducing circular dependencies.
+"""
+
+import sys
+from contextvars import ContextVar
+
+__all__ = ["format_options"]
+
+default_format_options_dict = {
+ "edgeitems": 3, # repr N leading and trailing items of each dimension
+ "threshold": 1000, # total items > triggers array summarization
+ "floatmode": "maxprec",
+ "precision": 8, # precision of floating point representations
+ "suppress": False, # suppress printing small floating values in exp format
+ "linewidth": 75,
+ "nanstr": "nan",
+ "infstr": "inf",
+ "sign": "-",
+ "formatter": None,
+ # Internally stored as an int to simplify comparisons; converted from/to
+ # str/False on the way in/out.
+ 'legacy': sys.maxsize,
+ 'override_repr': None,
+}
+
+format_options = ContextVar(
+ "format_options", default=default_format_options_dict)
diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/printoptions.pyi b/.venv/lib/python3.12/site-packages/numpy/_core/printoptions.pyi
new file mode 100644
index 0000000..bd7c7b4
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/_core/printoptions.pyi
@@ -0,0 +1,28 @@
+from collections.abc import Callable
+from contextvars import ContextVar
+from typing import Any, Final, TypedDict
+
+from .arrayprint import _FormatDict
+
+__all__ = ["format_options"]
+
+###
+
+class _FormatOptionsDict(TypedDict):
+ edgeitems: int
+ threshold: int
+ floatmode: str
+ precision: int
+ suppress: bool
+ linewidth: int
+ nanstr: str
+ infstr: str
+ sign: str
+ formatter: _FormatDict | None
+ legacy: int
+ override_repr: Callable[[Any], str] | None
+
+###
+
+default_format_options_dict: Final[_FormatOptionsDict] = ...
+format_options: ContextVar[_FormatOptionsDict]
diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/records.py b/.venv/lib/python3.12/site-packages/numpy/_core/records.py
new file mode 100644
index 0000000..39bcf4b
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/_core/records.py
@@ -0,0 +1,1089 @@
+"""
+This module contains a set of functions for record arrays.
+"""
+import os
+import warnings
+from collections import Counter
+from contextlib import nullcontext
+
+from numpy._utils import set_module
+
+from . import numeric as sb
+from . import numerictypes as nt
+from .arrayprint import _get_legacy_print_mode
+
+# All of the functions allow formats to be a dtype
+__all__ = [
+ 'record', 'recarray', 'format_parser', 'fromarrays', 'fromrecords',
+ 'fromstring', 'fromfile', 'array', 'find_duplicate',
+]
+
+
+ndarray = sb.ndarray
+
+_byteorderconv = {'b': '>',
+ 'l': '<',
+ 'n': '=',
+ 'B': '>',
+ 'L': '<',
+ 'N': '=',
+ 'S': 's',
+ 's': 's',
+ '>': '>',
+ '<': '<',
+ '=': '=',
+ '|': '|',
+ 'I': '|',
+ 'i': '|'}
+
+# formats regular expression
+# allows multidimensional spec with a tuple syntax in front
+# of the letter code '(2,3)f4' and ' ( 2 , 3 ) f4 '
+# are equally allowed
+
+numfmt = nt.sctypeDict
+
+
+@set_module('numpy.rec')
+def find_duplicate(list):
+ """Find duplication in a list, return a list of duplicated elements"""
+ return [
+ item
+ for item, counts in Counter(list).items()
+ if counts > 1
+ ]
+
+
+@set_module('numpy.rec')
+class format_parser:
+ """
+ Class to convert formats, names, titles description to a dtype.
+
+ After constructing the format_parser object, the dtype attribute is
+ the converted data-type:
+ ``dtype = format_parser(formats, names, titles).dtype``
+
+ Attributes
+ ----------
+ dtype : dtype
+ The converted data-type.
+
+ Parameters
+ ----------
+ formats : str or list of str
+ The format description, either specified as a string with
+ comma-separated format descriptions in the form ``'f8, i4, S5'``, or
+ a list of format description strings in the form
+ ``['f8', 'i4', 'S5']``.
+ names : str or list/tuple of str
+ The field names, either specified as a comma-separated string in the
+ form ``'col1, col2, col3'``, or as a list or tuple of strings in the
+ form ``['col1', 'col2', 'col3']``.
+ An empty list can be used, in that case default field names
+ ('f0', 'f1', ...) are used.
+ titles : sequence
+ Sequence of title strings. An empty list can be used to leave titles
+ out.
+ aligned : bool, optional
+ If True, align the fields by padding as the C-compiler would.
+ Default is False.
+ byteorder : str, optional
+ If specified, all the fields will be changed to the
+ provided byte-order. Otherwise, the default byte-order is
+ used. For all available string specifiers, see `dtype.newbyteorder`.
+
+ See Also
+ --------
+ numpy.dtype, numpy.typename
+
+ Examples
+ --------
+ >>> import numpy as np
+ >>> np.rec.format_parser(['<f8', '<i4'], ['col1', 'col2'],
+ ... ['T1', 'T2']).dtype
+ dtype([(('T1', 'col1'), '<f8'), (('T2', 'col2'), '<i4')])
+
+ `names` and/or `titles` can be empty lists. If `titles` is an empty list,
+ titles will simply not appear. If `names` is empty, default field names
+ will be used.
+
+ >>> np.rec.format_parser(['f8', 'i4', 'a5'], ['col1', 'col2', 'col3'],
+ ... []).dtype
+ dtype([('col1', '<f8'), ('col2', '<i4'), ('col3', '<S5')])
+ >>> np.rec.format_parser(['<f8', '<i4', '<a5'], [], []).dtype
+ dtype([('f0', '<f8'), ('f1', '<i4'), ('f2', 'S5')])
+
+ """
+
+ def __init__(self, formats, names, titles, aligned=False, byteorder=None):
+ self._parseFormats(formats, aligned)
+ self._setfieldnames(names, titles)
+ self._createdtype(byteorder)
+
+ def _parseFormats(self, formats, aligned=False):
+ """ Parse the field formats """
+
+ if formats is None:
+ raise ValueError("Need formats argument")
+ if isinstance(formats, list):
+ dtype = sb.dtype(
+ [
+ (f'f{i}', format_)
+ for i, format_ in enumerate(formats)
+ ],
+ aligned,
+ )
+ else:
+ dtype = sb.dtype(formats, aligned)
+ fields = dtype.fields
+ if fields is None:
+ dtype = sb.dtype([('f1', dtype)], aligned)
+ fields = dtype.fields
+ keys = dtype.names
+ self._f_formats = [fields[key][0] for key in keys]
+ self._offsets = [fields[key][1] for key in keys]
+ self._nfields = len(keys)
+
+ def _setfieldnames(self, names, titles):
+ """convert input field names into a list and assign to the _names
+ attribute """
+
+ if names:
+ if type(names) in [list, tuple]:
+ pass
+ elif isinstance(names, str):
+ names = names.split(',')
+ else:
+ raise NameError(f"illegal input names {repr(names)}")
+
+ self._names = [n.strip() for n in names[:self._nfields]]
+ else:
+ self._names = []
+
+ # if the names are not specified, they will be assigned as
+ # "f0, f1, f2,..."
+ # if not enough names are specified, they will be assigned as "f[n],
+ # f[n+1],..." etc. where n is the number of specified names..."
+ self._names += ['f%d' % i for i in range(len(self._names),
+ self._nfields)]
+ # check for redundant names
+ _dup = find_duplicate(self._names)
+ if _dup:
+ raise ValueError(f"Duplicate field names: {_dup}")
+
+ if titles:
+ self._titles = [n.strip() for n in titles[:self._nfields]]
+ else:
+ self._titles = []
+ titles = []
+
+ if self._nfields > len(titles):
+ self._titles += [None] * (self._nfields - len(titles))
+
+ def _createdtype(self, byteorder):
+ dtype = sb.dtype({
+ 'names': self._names,
+ 'formats': self._f_formats,
+ 'offsets': self._offsets,
+ 'titles': self._titles,
+ })
+ if byteorder is not None:
+ byteorder = _byteorderconv[byteorder[0]]
+ dtype = dtype.newbyteorder(byteorder)
+
+ self.dtype = dtype
+
+
+class record(nt.void):
+ """A data-type scalar that allows field access as attribute lookup.
+ """
+
+ # manually set name and module so that this class's type shows up
+ # as numpy.record when printed
+ __name__ = 'record'
+ __module__ = 'numpy'
+
+ def __repr__(self):
+ if _get_legacy_print_mode() <= 113:
+ return self.__str__()
+ return super().__repr__()
+
+ def __str__(self):
+ if _get_legacy_print_mode() <= 113:
+ return str(self.item())
+ return super().__str__()
+
+ def __getattribute__(self, attr):
+ if attr in ('setfield', 'getfield', 'dtype'):
+ return nt.void.__getattribute__(self, attr)
+ try:
+ return nt.void.__getattribute__(self, attr)
+ except AttributeError:
+ pass
+ fielddict = nt.void.__getattribute__(self, 'dtype').fields
+ res = fielddict.get(attr, None)
+ if res:
+ obj = self.getfield(*res[:2])
+ # if it has fields return a record,
+ # otherwise return the object
+ try:
+ dt = obj.dtype
+ except AttributeError:
+ # happens if field is Object type
+ return obj
+ if dt.names is not None:
+ return obj.view((self.__class__, obj.dtype))
+ return obj
+ else:
+ raise AttributeError(f"'record' object has no attribute '{attr}'")
+
+ def __setattr__(self, attr, val):
+ if attr in ('setfield', 'getfield', 'dtype'):
+ raise AttributeError(f"Cannot set '{attr}' attribute")
+ fielddict = nt.void.__getattribute__(self, 'dtype').fields
+ res = fielddict.get(attr, None)
+ if res:
+ return self.setfield(val, *res[:2])
+ elif getattr(self, attr, None):
+ return nt.void.__setattr__(self, attr, val)
+ else:
+ raise AttributeError(f"'record' object has no attribute '{attr}'")
+
+ def __getitem__(self, indx):
+ obj = nt.void.__getitem__(self, indx)
+
+ # copy behavior of record.__getattribute__,
+ if isinstance(obj, nt.void) and obj.dtype.names is not None:
+ return obj.view((self.__class__, obj.dtype))
+ else:
+ # return a single element
+ return obj
+
+ def pprint(self):
+ """Pretty-print all fields."""
+ # pretty-print all fields
+ names = self.dtype.names
+ maxlen = max(len(name) for name in names)
+ fmt = '%% %ds: %%s' % maxlen
+ rows = [fmt % (name, getattr(self, name)) for name in names]
+ return "\n".join(rows)
+
+# The recarray is almost identical to a standard array (which supports
+# named fields already) The biggest difference is that it can use
+# attribute-lookup to find the fields and it is constructed using
+# a record.
+
+# If byteorder is given it forces a particular byteorder on all
+# the fields (and any subfields)
+
+
+@set_module("numpy.rec")
+class recarray(ndarray):
+ """Construct an ndarray that allows field access using attributes.
+
+ Arrays may have a data-types containing fields, analogous
+ to columns in a spread sheet. An example is ``[(x, int), (y, float)]``,
+ where each entry in the array is a pair of ``(int, float)``. Normally,
+ these attributes are accessed using dictionary lookups such as ``arr['x']``
+ and ``arr['y']``. Record arrays allow the fields to be accessed as members
+ of the array, using ``arr.x`` and ``arr.y``.
+
+ Parameters
+ ----------
+ shape : tuple
+ Shape of output array.
+ dtype : data-type, optional
+ The desired data-type. By default, the data-type is determined
+ from `formats`, `names`, `titles`, `aligned` and `byteorder`.
+ formats : list of data-types, optional
+ A list containing the data-types for the different columns, e.g.
+ ``['i4', 'f8', 'i4']``. `formats` does *not* support the new
+ convention of using types directly, i.e. ``(int, float, int)``.
+ Note that `formats` must be a list, not a tuple.
+ Given that `formats` is somewhat limited, we recommend specifying
+ `dtype` instead.
+ names : tuple of str, optional
+ The name of each column, e.g. ``('x', 'y', 'z')``.
+ buf : buffer, optional
+ By default, a new array is created of the given shape and data-type.
+ If `buf` is specified and is an object exposing the buffer interface,
+ the array will use the memory from the existing buffer. In this case,
+ the `offset` and `strides` keywords are available.
+
+ Other Parameters
+ ----------------
+ titles : tuple of str, optional
+ Aliases for column names. For example, if `names` were
+ ``('x', 'y', 'z')`` and `titles` is
+ ``('x_coordinate', 'y_coordinate', 'z_coordinate')``, then
+ ``arr['x']`` is equivalent to both ``arr.x`` and ``arr.x_coordinate``.
+ byteorder : {'<', '>', '='}, optional
+ Byte-order for all fields.
+ aligned : bool, optional
+ Align the fields in memory as the C-compiler would.
+ strides : tuple of ints, optional
+ Buffer (`buf`) is interpreted according to these strides (strides
+ define how many bytes each array element, row, column, etc.
+ occupy in memory).
+ offset : int, optional
+ Start reading buffer (`buf`) from this offset onwards.
+ order : {'C', 'F'}, optional
+ Row-major (C-style) or column-major (Fortran-style) order.
+
+ Returns
+ -------
+ rec : recarray
+ Empty array of the given shape and type.
+
+ See Also
+ --------
+ numpy.rec.fromrecords : Construct a record array from data.
+ numpy.record : fundamental data-type for `recarray`.
+ numpy.rec.format_parser : determine data-type from formats, names, titles.
+
+ Notes
+ -----
+ This constructor can be compared to ``empty``: it creates a new record
+ array but does not fill it with data. To create a record array from data,
+ use one of the following methods:
+
+ 1. Create a standard ndarray and convert it to a record array,
+ using ``arr.view(np.recarray)``
+ 2. Use the `buf` keyword.
+ 3. Use `np.rec.fromrecords`.
+
+ Examples
+ --------
+ Create an array with two fields, ``x`` and ``y``:
+
+ >>> import numpy as np
+ >>> x = np.array([(1.0, 2), (3.0, 4)], dtype=[('x', '<f8'), ('y', '<i8')])
+ >>> x
+ array([(1., 2), (3., 4)], dtype=[('x', '<f8'), ('y', '<i8')])
+
+ >>> x['x']
+ array([1., 3.])
+
+ View the array as a record array:
+
+ >>> x = x.view(np.recarray)
+
+ >>> x.x
+ array([1., 3.])
+
+ >>> x.y
+ array([2, 4])
+
+ Create a new, empty record array:
+
+ >>> np.recarray((2,),
+ ... dtype=[('x', int), ('y', float), ('z', int)]) #doctest: +SKIP
+ rec.array([(-1073741821, 1.2249118382103472e-301, 24547520),
+ (3471280, 1.2134086255804012e-316, 0)],
+ dtype=[('x', '<i4'), ('y', '<f8'), ('z', '<i4')])
+
+ """
+
+ def __new__(subtype, shape, dtype=None, buf=None, offset=0, strides=None,
+ formats=None, names=None, titles=None,
+ byteorder=None, aligned=False, order='C'):
+
+ if dtype is not None:
+ descr = sb.dtype(dtype)
+ else:
+ descr = format_parser(
+ formats, names, titles, aligned, byteorder
+ ).dtype
+
+ if buf is None:
+ self = ndarray.__new__(
+ subtype, shape, (record, descr), order=order
+ )
+ else:
+ self = ndarray.__new__(
+ subtype, shape, (record, descr), buffer=buf,
+ offset=offset, strides=strides, order=order
+ )
+ return self
+
+ def __array_finalize__(self, obj):
+ if self.dtype.type is not record and self.dtype.names is not None:
+ # if self.dtype is not np.record, invoke __setattr__ which will
+ # convert it to a record if it is a void dtype.
+ self.dtype = self.dtype
+
+ def __getattribute__(self, attr):
+ # See if ndarray has this attr, and return it if so. (note that this
+ # means a field with the same name as an ndarray attr cannot be
+ # accessed by attribute).
+ try:
+ return object.__getattribute__(self, attr)
+ except AttributeError: # attr must be a fieldname
+ pass
+
+ # look for a field with this name
+ fielddict = ndarray.__getattribute__(self, 'dtype').fields
+ try:
+ res = fielddict[attr][:2]
+ except (TypeError, KeyError) as e:
+ raise AttributeError(f"recarray has no attribute {attr}") from e
+ obj = self.getfield(*res)
+
+ # At this point obj will always be a recarray, since (see
+ # PyArray_GetField) the type of obj is inherited. Next, if obj.dtype is
+ # non-structured, convert it to an ndarray. Then if obj is structured
+ # with void type convert it to the same dtype.type (eg to preserve
+ # numpy.record type if present), since nested structured fields do not
+ # inherit type. Don't do this for non-void structures though.
+ if obj.dtype.names is not None:
+ if issubclass(obj.dtype.type, nt.void):
+ return obj.view(dtype=(self.dtype.type, obj.dtype))
+ return obj
+ else:
+ return obj.view(ndarray)
+
+ # Save the dictionary.
+ # If the attr is a field name and not in the saved dictionary
+ # Undo any "setting" of the attribute and do a setfield
+ # Thus, you can't create attributes on-the-fly that are field names.
+ def __setattr__(self, attr, val):
+
+ # Automatically convert (void) structured types to records
+ # (but not non-void structures, subarrays, or non-structured voids)
+ if (
+ attr == 'dtype' and
+ issubclass(val.type, nt.void) and
+ val.names is not None
+ ):
+ val = sb.dtype((record, val))
+
+ newattr = attr not in self.__dict__
+ try:
+ ret = object.__setattr__(self, attr, val)
+ except Exception:
+ fielddict = ndarray.__getattribute__(self, 'dtype').fields or {}
+ if attr not in fielddict:
+ raise
+ else:
+ fielddict = ndarray.__getattribute__(self, 'dtype').fields or {}
+ if attr not in fielddict:
+ return ret
+ if newattr:
+ # We just added this one or this setattr worked on an
+ # internal attribute.
+ try:
+ object.__delattr__(self, attr)
+ except Exception:
+ return ret
+ try:
+ res = fielddict[attr][:2]
+ except (TypeError, KeyError) as e:
+ raise AttributeError(
+ f"record array has no attribute {attr}"
+ ) from e
+ return self.setfield(val, *res)
+
+ def __getitem__(self, indx):
+ obj = super().__getitem__(indx)
+
+ # copy behavior of getattr, except that here
+ # we might also be returning a single element
+ if isinstance(obj, ndarray):
+ if obj.dtype.names is not None:
+ obj = obj.view(type(self))
+ if issubclass(obj.dtype.type, nt.void):
+ return obj.view(dtype=(self.dtype.type, obj.dtype))
+ return obj
+ else:
+ return obj.view(type=ndarray)
+ else:
+ # return a single element
+ return obj
+
+ def __repr__(self):
+
+ repr_dtype = self.dtype
+ if (
+ self.dtype.type is record or
+ not issubclass(self.dtype.type, nt.void)
+ ):
+ # If this is a full record array (has numpy.record dtype),
+ # or if it has a scalar (non-void) dtype with no records,
+ # represent it using the rec.array function. Since rec.array
+ # converts dtype to a numpy.record for us, convert back
+ # to non-record before printing
+ if repr_dtype.type is record:
+ repr_dtype = sb.dtype((nt.void, repr_dtype))
+ prefix = "rec.array("
+ fmt = 'rec.array(%s,%sdtype=%s)'
+ else:
+ # otherwise represent it using np.array plus a view
+ # This should only happen if the user is playing
+ # strange games with dtypes.
+ prefix = "array("
+ fmt = 'array(%s,%sdtype=%s).view(numpy.recarray)'
+
+ # get data/shape string. logic taken from numeric.array_repr
+ if self.size > 0 or self.shape == (0,):
+ lst = sb.array2string(
+ self, separator=', ', prefix=prefix, suffix=',')
+ else:
+ # show zero-length shape unless it is (0,)
+ lst = f"[], shape={repr(self.shape)}"
+
+ lf = '\n' + ' ' * len(prefix)
+ if _get_legacy_print_mode() <= 113:
+ lf = ' ' + lf # trailing space
+ return fmt % (lst, lf, repr_dtype)
+
+ def field(self, attr, val=None):
+ if isinstance(attr, int):
+ names = ndarray.__getattribute__(self, 'dtype').names
+ attr = names[attr]
+
+ fielddict = ndarray.__getattribute__(self, 'dtype').fields
+
+ res = fielddict[attr][:2]
+
+ if val is None:
+ obj = self.getfield(*res)
+ if obj.dtype.names is not None:
+ return obj
+ return obj.view(ndarray)
+ else:
+ return self.setfield(val, *res)
+
+
+def _deprecate_shape_0_as_None(shape):
+ if shape == 0:
+ warnings.warn(
+ "Passing `shape=0` to have the shape be inferred is deprecated, "
+ "and in future will be equivalent to `shape=(0,)`. To infer "
+ "the shape and suppress this warning, pass `shape=None` instead.",
+ FutureWarning, stacklevel=3)
+ return None
+ else:
+ return shape
+
+
+@set_module("numpy.rec")
+def fromarrays(arrayList, dtype=None, shape=None, formats=None,
+ names=None, titles=None, aligned=False, byteorder=None):
+ """Create a record array from a (flat) list of arrays
+
+ Parameters
+ ----------
+ arrayList : list or tuple
+ List of array-like objects (such as lists, tuples,
+ and ndarrays).
+ dtype : data-type, optional
+ valid dtype for all arrays
+ shape : int or tuple of ints, optional
+ Shape of the resulting array. If not provided, inferred from
+ ``arrayList[0]``.
+ formats, names, titles, aligned, byteorder :
+ If `dtype` is ``None``, these arguments are passed to
+ `numpy.rec.format_parser` to construct a dtype. See that function for
+ detailed documentation.
+
+ Returns
+ -------
+ np.recarray
+ Record array consisting of given arrayList columns.
+
+ Examples
+ --------
+ >>> x1=np.array([1,2,3,4])
+ >>> x2=np.array(['a','dd','xyz','12'])
+ >>> x3=np.array([1.1,2,3,4])
+ >>> r = np.rec.fromarrays([x1,x2,x3],names='a,b,c')
+ >>> print(r[1])
+ (2, 'dd', 2.0) # may vary
+ >>> x1[1]=34
+ >>> r.a
+ array([1, 2, 3, 4])
+
+ >>> x1 = np.array([1, 2, 3, 4])
+ >>> x2 = np.array(['a', 'dd', 'xyz', '12'])
+ >>> x3 = np.array([1.1, 2, 3,4])
+ >>> r = np.rec.fromarrays(
+ ... [x1, x2, x3],
+ ... dtype=np.dtype([('a', np.int32), ('b', 'S3'), ('c', np.float32)]))
+ >>> r
+ rec.array([(1, b'a', 1.1), (2, b'dd', 2. ), (3, b'xyz', 3. ),
+ (4, b'12', 4. )],
+ dtype=[('a', '<i4'), ('b', 'S3'), ('c', '<f4')])
+ """
+
+ arrayList = [sb.asarray(x) for x in arrayList]
+
+ # NumPy 1.19.0, 2020-01-01
+ shape = _deprecate_shape_0_as_None(shape)
+
+ if shape is None:
+ shape = arrayList[0].shape
+ elif isinstance(shape, int):
+ shape = (shape,)
+
+ if formats is None and dtype is None:
+ # go through each object in the list to see if it is an ndarray
+ # and determine the formats.
+ formats = [obj.dtype for obj in arrayList]
+
+ if dtype is not None:
+ descr = sb.dtype(dtype)
+ else:
+ descr = format_parser(formats, names, titles, aligned, byteorder).dtype
+ _names = descr.names
+
+ # Determine shape from data-type.
+ if len(descr) != len(arrayList):
+ raise ValueError("mismatch between the number of fields "
+ "and the number of arrays")
+
+ d0 = descr[0].shape
+ nn = len(d0)
+ if nn > 0:
+ shape = shape[:-nn]
+
+ _array = recarray(shape, descr)
+
+ # populate the record array (makes a copy)
+ for k, obj in enumerate(arrayList):
+ nn = descr[k].ndim
+ testshape = obj.shape[:obj.ndim - nn]
+ name = _names[k]
+ if testshape != shape:
+ raise ValueError(f'array-shape mismatch in array {k} ("{name}")')
+
+ _array[name] = obj
+
+ return _array
+
+
+@set_module("numpy.rec")
+def fromrecords(recList, dtype=None, shape=None, formats=None, names=None,
+ titles=None, aligned=False, byteorder=None):
+ """Create a recarray from a list of records in text form.
+
+ Parameters
+ ----------
+ recList : sequence
+ data in the same field may be heterogeneous - they will be promoted
+ to the highest data type.
+ dtype : data-type, optional
+ valid dtype for all arrays
+ shape : int or tuple of ints, optional
+ shape of each array.
+ formats, names, titles, aligned, byteorder :
+ If `dtype` is ``None``, these arguments are passed to
+ `numpy.format_parser` to construct a dtype. See that function for
+ detailed documentation.
+
+ If both `formats` and `dtype` are None, then this will auto-detect
+ formats. Use list of tuples rather than list of lists for faster
+ processing.
+
+ Returns
+ -------
+ np.recarray
+ record array consisting of given recList rows.
+
+ Examples
+ --------
+ >>> r=np.rec.fromrecords([(456,'dbe',1.2),(2,'de',1.3)],
+ ... names='col1,col2,col3')
+ >>> print(r[0])
+ (456, 'dbe', 1.2)
+ >>> r.col1
+ array([456, 2])
+ >>> r.col2
+ array(['dbe', 'de'], dtype='<U3')
+ >>> import pickle
+ >>> pickle.loads(pickle.dumps(r))
+ rec.array([(456, 'dbe', 1.2), ( 2, 'de', 1.3)],
+ dtype=[('col1', '<i8'), ('col2', '<U3'), ('col3', '<f8')])
+ """
+
+ if formats is None and dtype is None: # slower
+ obj = sb.array(recList, dtype=object)
+ arrlist = [
+ sb.array(obj[..., i].tolist()) for i in range(obj.shape[-1])
+ ]
+ return fromarrays(arrlist, formats=formats, shape=shape, names=names,
+ titles=titles, aligned=aligned, byteorder=byteorder)
+
+ if dtype is not None:
+ descr = sb.dtype((record, dtype))
+ else:
+ descr = format_parser(
+ formats, names, titles, aligned, byteorder
+ ).dtype
+
+ try:
+ retval = sb.array(recList, dtype=descr)
+ except (TypeError, ValueError):
+ # NumPy 1.19.0, 2020-01-01
+ shape = _deprecate_shape_0_as_None(shape)
+ if shape is None:
+ shape = len(recList)
+ if isinstance(shape, int):
+ shape = (shape,)
+ if len(shape) > 1:
+ raise ValueError("Can only deal with 1-d array.")
+ _array = recarray(shape, descr)
+ for k in range(_array.size):
+ _array[k] = tuple(recList[k])
+ # list of lists instead of list of tuples ?
+ # 2018-02-07, 1.14.1
+ warnings.warn(
+ "fromrecords expected a list of tuples, may have received a list "
+ "of lists instead. In the future that will raise an error",
+ FutureWarning, stacklevel=2)
+ return _array
+ else:
+ if shape is not None and retval.shape != shape:
+ retval.shape = shape
+
+ res = retval.view(recarray)
+
+ return res
+
+
+@set_module("numpy.rec")
+def fromstring(datastring, dtype=None, shape=None, offset=0, formats=None,
+ names=None, titles=None, aligned=False, byteorder=None):
+ r"""Create a record array from binary data
+
+ Note that despite the name of this function it does not accept `str`
+ instances.
+
+ Parameters
+ ----------
+ datastring : bytes-like
+ Buffer of binary data
+ dtype : data-type, optional
+ Valid dtype for all arrays
+ shape : int or tuple of ints, optional
+ Shape of each array.
+ offset : int, optional
+ Position in the buffer to start reading from.
+ formats, names, titles, aligned, byteorder :
+ If `dtype` is ``None``, these arguments are passed to
+ `numpy.format_parser` to construct a dtype. See that function for
+ detailed documentation.
+
+
+ Returns
+ -------
+ np.recarray
+ Record array view into the data in datastring. This will be readonly
+ if `datastring` is readonly.
+
+ See Also
+ --------
+ numpy.frombuffer
+
+ Examples
+ --------
+ >>> a = b'\x01\x02\x03abc'
+ >>> np.rec.fromstring(a, dtype='u1,u1,u1,S3')
+ rec.array([(1, 2, 3, b'abc')],
+ dtype=[('f0', 'u1'), ('f1', 'u1'), ('f2', 'u1'), ('f3', 'S3')])
+
+ >>> grades_dtype = [('Name', (np.str_, 10)), ('Marks', np.float64),
+ ... ('GradeLevel', np.int32)]
+ >>> grades_array = np.array([('Sam', 33.3, 3), ('Mike', 44.4, 5),
+ ... ('Aadi', 66.6, 6)], dtype=grades_dtype)
+ >>> np.rec.fromstring(grades_array.tobytes(), dtype=grades_dtype)
+ rec.array([('Sam', 33.3, 3), ('Mike', 44.4, 5), ('Aadi', 66.6, 6)],
+ dtype=[('Name', '<U10'), ('Marks', '<f8'), ('GradeLevel', '<i4')])
+
+ >>> s = '\x01\x02\x03abc'
+ >>> np.rec.fromstring(s, dtype='u1,u1,u1,S3')
+ Traceback (most recent call last):
+ ...
+ TypeError: a bytes-like object is required, not 'str'
+ """
+
+ if dtype is None and formats is None:
+ raise TypeError("fromstring() needs a 'dtype' or 'formats' argument")
+
+ if dtype is not None:
+ descr = sb.dtype(dtype)
+ else:
+ descr = format_parser(formats, names, titles, aligned, byteorder).dtype
+
+ itemsize = descr.itemsize
+
+ # NumPy 1.19.0, 2020-01-01
+ shape = _deprecate_shape_0_as_None(shape)
+
+ if shape in (None, -1):
+ shape = (len(datastring) - offset) // itemsize
+
+ _array = recarray(shape, descr, buf=datastring, offset=offset)
+ return _array
+
+def get_remaining_size(fd):
+ pos = fd.tell()
+ try:
+ fd.seek(0, 2)
+ return fd.tell() - pos
+ finally:
+ fd.seek(pos, 0)
+
+
+@set_module("numpy.rec")
+def fromfile(fd, dtype=None, shape=None, offset=0, formats=None,
+ names=None, titles=None, aligned=False, byteorder=None):
+ """Create an array from binary file data
+
+ Parameters
+ ----------
+ fd : str or file type
+ If file is a string or a path-like object then that file is opened,
+ else it is assumed to be a file object. The file object must
+ support random access (i.e. it must have tell and seek methods).
+ dtype : data-type, optional
+ valid dtype for all arrays
+ shape : int or tuple of ints, optional
+ shape of each array.
+ offset : int, optional
+ Position in the file to start reading from.
+ formats, names, titles, aligned, byteorder :
+ If `dtype` is ``None``, these arguments are passed to
+ `numpy.format_parser` to construct a dtype. See that function for
+ detailed documentation
+
+ Returns
+ -------
+ np.recarray
+ record array consisting of data enclosed in file.
+
+ Examples
+ --------
+ >>> from tempfile import TemporaryFile
+ >>> a = np.empty(10,dtype='f8,i4,a5')
+ >>> a[5] = (0.5,10,'abcde')
+ >>>
+ >>> fd=TemporaryFile()
+ >>> a = a.view(a.dtype.newbyteorder('<'))
+ >>> a.tofile(fd)
+ >>>
+ >>> _ = fd.seek(0)
+ >>> r=np.rec.fromfile(fd, formats='f8,i4,a5', shape=10,
+ ... byteorder='<')
+ >>> print(r[5])
+ (0.5, 10, b'abcde')
+ >>> r.shape
+ (10,)
+ """
+
+ if dtype is None and formats is None:
+ raise TypeError("fromfile() needs a 'dtype' or 'formats' argument")
+
+ # NumPy 1.19.0, 2020-01-01
+ shape = _deprecate_shape_0_as_None(shape)
+
+ if shape is None:
+ shape = (-1,)
+ elif isinstance(shape, int):
+ shape = (shape,)
+
+ if hasattr(fd, 'readinto'):
+ # GH issue 2504. fd supports io.RawIOBase or io.BufferedIOBase
+ # interface. Example of fd: gzip, BytesIO, BufferedReader
+ # file already opened
+ ctx = nullcontext(fd)
+ else:
+ # open file
+ ctx = open(os.fspath(fd), 'rb')
+
+ with ctx as fd:
+ if offset > 0:
+ fd.seek(offset, 1)
+ size = get_remaining_size(fd)
+
+ if dtype is not None:
+ descr = sb.dtype(dtype)
+ else:
+ descr = format_parser(
+ formats, names, titles, aligned, byteorder
+ ).dtype
+
+ itemsize = descr.itemsize
+
+ shapeprod = sb.array(shape).prod(dtype=nt.intp)
+ shapesize = shapeprod * itemsize
+ if shapesize < 0:
+ shape = list(shape)
+ shape[shape.index(-1)] = size // -shapesize
+ shape = tuple(shape)
+ shapeprod = sb.array(shape).prod(dtype=nt.intp)
+
+ nbytes = shapeprod * itemsize
+
+ if nbytes > size:
+ raise ValueError(
+ "Not enough bytes left in file for specified "
+ "shape and type."
+ )
+
+ # create the array
+ _array = recarray(shape, descr)
+ nbytesread = fd.readinto(_array.data)
+ if nbytesread != nbytes:
+ raise OSError("Didn't read as many bytes as expected")
+
+ return _array
+
+
+@set_module("numpy.rec")
+def array(obj, dtype=None, shape=None, offset=0, strides=None, formats=None,
+ names=None, titles=None, aligned=False, byteorder=None, copy=True):
+ """
+ Construct a record array from a wide-variety of objects.
+
+ A general-purpose record array constructor that dispatches to the
+ appropriate `recarray` creation function based on the inputs (see Notes).
+
+ Parameters
+ ----------
+ obj : any
+ Input object. See Notes for details on how various input types are
+ treated.
+ dtype : data-type, optional
+ Valid dtype for array.
+ shape : int or tuple of ints, optional
+ Shape of each array.
+ offset : int, optional
+ Position in the file or buffer to start reading from.
+ strides : tuple of ints, optional
+ Buffer (`buf`) is interpreted according to these strides (strides
+ define how many bytes each array element, row, column, etc.
+ occupy in memory).
+ formats, names, titles, aligned, byteorder :
+ If `dtype` is ``None``, these arguments are passed to
+ `numpy.format_parser` to construct a dtype. See that function for
+ detailed documentation.
+ copy : bool, optional
+ Whether to copy the input object (True), or to use a reference instead.
+ This option only applies when the input is an ndarray or recarray.
+ Defaults to True.
+
+ Returns
+ -------
+ np.recarray
+ Record array created from the specified object.
+
+ Notes
+ -----
+ If `obj` is ``None``, then call the `~numpy.recarray` constructor. If
+ `obj` is a string, then call the `fromstring` constructor. If `obj` is a
+ list or a tuple, then if the first object is an `~numpy.ndarray`, call
+ `fromarrays`, otherwise call `fromrecords`. If `obj` is a
+ `~numpy.recarray`, then make a copy of the data in the recarray
+ (if ``copy=True``) and use the new formats, names, and titles. If `obj`
+ is a file, then call `fromfile`. Finally, if obj is an `ndarray`, then
+ return ``obj.view(recarray)``, making a copy of the data if ``copy=True``.
+
+ Examples
+ --------
+ >>> a = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
+ >>> a
+ array([[1, 2, 3],
+ [4, 5, 6],
+ [7, 8, 9]])
+
+ >>> np.rec.array(a)
+ rec.array([[1, 2, 3],
+ [4, 5, 6],
+ [7, 8, 9]],
+ dtype=int64)
+
+ >>> b = [(1, 1), (2, 4), (3, 9)]
+ >>> c = np.rec.array(b, formats = ['i2', 'f2'], names = ('x', 'y'))
+ >>> c
+ rec.array([(1, 1.), (2, 4.), (3, 9.)],
+ dtype=[('x', '<i2'), ('y', '<f2')])
+
+ >>> c.x
+ array([1, 2, 3], dtype=int16)
+
+ >>> c.y
+ array([1., 4., 9.], dtype=float16)
+
+ >>> r = np.rec.array(['abc','def'], names=['col1','col2'])
+ >>> print(r.col1)
+ abc
+
+ >>> r.col1
+ array('abc', dtype='<U3')
+
+ >>> r.col2
+ array('def', dtype='<U3')
+ """
+
+ if ((isinstance(obj, (type(None), str)) or hasattr(obj, 'readinto')) and
+ formats is None and dtype is None):
+ raise ValueError("Must define formats (or dtype) if object is "
+ "None, string, or an open file")
+
+ kwds = {}
+ if dtype is not None:
+ dtype = sb.dtype(dtype)
+ elif formats is not None:
+ dtype = format_parser(formats, names, titles,
+ aligned, byteorder).dtype
+ else:
+ kwds = {'formats': formats,
+ 'names': names,
+ 'titles': titles,
+ 'aligned': aligned,
+ 'byteorder': byteorder
+ }
+
+ if obj is None:
+ if shape is None:
+ raise ValueError("Must define a shape if obj is None")
+ return recarray(shape, dtype, buf=obj, offset=offset, strides=strides)
+
+ elif isinstance(obj, bytes):
+ return fromstring(obj, dtype, shape=shape, offset=offset, **kwds)
+
+ elif isinstance(obj, (list, tuple)):
+ if isinstance(obj[0], (tuple, list)):
+ return fromrecords(obj, dtype=dtype, shape=shape, **kwds)
+ else:
+ return fromarrays(obj, dtype=dtype, shape=shape, **kwds)
+
+ elif isinstance(obj, recarray):
+ if dtype is not None and (obj.dtype != dtype):
+ new = obj.view(dtype)
+ else:
+ new = obj
+ if copy:
+ new = new.copy()
+ return new
+
+ elif hasattr(obj, 'readinto'):
+ return fromfile(obj, dtype=dtype, shape=shape, offset=offset)
+
+ elif isinstance(obj, ndarray):
+ if dtype is not None and (obj.dtype != dtype):
+ new = obj.view(dtype)
+ else:
+ new = obj
+ if copy:
+ new = new.copy()
+ return new.view(recarray)
+
+ else:
+ interface = getattr(obj, "__array_interface__", None)
+ if interface is None or not isinstance(interface, dict):
+ raise ValueError("Unknown input type")
+ obj = sb.array(obj)
+ if dtype is not None and (obj.dtype != dtype):
+ obj = obj.view(dtype)
+ return obj.view(recarray)
diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/records.pyi b/.venv/lib/python3.12/site-packages/numpy/_core/records.pyi
new file mode 100644
index 0000000..93177b2
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/_core/records.pyi
@@ -0,0 +1,333 @@
+# ruff: noqa: ANN401
+# pyright: reportSelfClsParameterName=false
+from collections.abc import Iterable, Sequence
+from typing import (
+ Any,
+ ClassVar,
+ Literal,
+ Protocol,
+ SupportsIndex,
+ TypeAlias,
+ overload,
+ type_check_only,
+)
+
+from _typeshed import StrOrBytesPath
+from typing_extensions import TypeVar
+
+import numpy as np
+from numpy import _ByteOrder, _OrderKACF, _SupportsBuffer
+from numpy._typing import (
+ ArrayLike,
+ DTypeLike,
+ NDArray,
+ _AnyShape,
+ _ArrayLikeVoid_co,
+ _NestedSequence,
+ _Shape,
+ _ShapeLike,
+)
+
+__all__ = [
+ "array",
+ "find_duplicate",
+ "format_parser",
+ "fromarrays",
+ "fromfile",
+ "fromrecords",
+ "fromstring",
+ "recarray",
+ "record",
+]
+
+_T = TypeVar("_T")
+_ScalarT = TypeVar("_ScalarT", bound=np.generic)
+_DTypeT_co = TypeVar("_DTypeT_co", bound=np.dtype, default=np.dtype, covariant=True)
+_ShapeT_co = TypeVar("_ShapeT_co", bound=_Shape, default=_AnyShape, covariant=True)
+
+_RecArray: TypeAlias = recarray[_AnyShape, np.dtype[_ScalarT]]
+
+@type_check_only
+class _SupportsReadInto(Protocol):
+ def seek(self, offset: int, whence: int, /) -> object: ...
+ def tell(self, /) -> int: ...
+ def readinto(self, buffer: memoryview, /) -> int: ...
+
+###
+
+# exported in `numpy.rec`
+class record(np.void):
+ def __getattribute__(self, attr: str) -> Any: ...
+ def __setattr__(self, attr: str, val: ArrayLike) -> None: ...
+ def pprint(self) -> str: ...
+ @overload
+ def __getitem__(self, key: str | SupportsIndex) -> Any: ...
+ @overload
+ def __getitem__(self, key: list[str]) -> record: ...
+
+# exported in `numpy.rec`
+class recarray(np.ndarray[_ShapeT_co, _DTypeT_co]):
+ __name__: ClassVar[Literal["record"]] = "record"
+ __module__: Literal["numpy"] = "numpy"
+ @overload
+ def __new__(
+ subtype,
+ shape: _ShapeLike,
+ dtype: None = None,
+ buf: _SupportsBuffer | None = None,
+ offset: SupportsIndex = 0,
+ strides: _ShapeLike | None = None,
+ *,
+ formats: DTypeLike,
+ names: str | Sequence[str] | None = None,
+ titles: str | Sequence[str] | None = None,
+ byteorder: _ByteOrder | None = None,
+ aligned: bool = False,
+ order: _OrderKACF = "C",
+ ) -> _RecArray[record]: ...
+ @overload
+ def __new__(
+ subtype,
+ shape: _ShapeLike,
+ dtype: DTypeLike,
+ buf: _SupportsBuffer | None = None,
+ offset: SupportsIndex = 0,
+ strides: _ShapeLike | None = None,
+ formats: None = None,
+ names: None = None,
+ titles: None = None,
+ byteorder: None = None,
+ aligned: Literal[False] = False,
+ order: _OrderKACF = "C",
+ ) -> _RecArray[Any]: ...
+ def __array_finalize__(self, /, obj: object) -> None: ...
+ def __getattribute__(self, attr: str, /) -> Any: ...
+ def __setattr__(self, attr: str, val: ArrayLike, /) -> None: ...
+
+ #
+ @overload
+ def field(self, /, attr: int | str, val: ArrayLike) -> None: ...
+ @overload
+ def field(self, /, attr: int | str, val: None = None) -> Any: ...
+
+# exported in `numpy.rec`
+class format_parser:
+ dtype: np.dtype[np.void]
+ def __init__(
+ self,
+ /,
+ formats: DTypeLike,
+ names: str | Sequence[str] | None,
+ titles: str | Sequence[str] | None,
+ aligned: bool = False,
+ byteorder: _ByteOrder | None = None,
+ ) -> None: ...
+
+# exported in `numpy.rec`
+@overload
+def fromarrays(
+ arrayList: Iterable[ArrayLike],
+ dtype: DTypeLike | None = None,
+ shape: _ShapeLike | None = None,
+ formats: None = None,
+ names: None = None,
+ titles: None = None,
+ aligned: bool = False,
+ byteorder: None = None,
+) -> _RecArray[Any]: ...
+@overload
+def fromarrays(
+ arrayList: Iterable[ArrayLike],
+ dtype: None = None,
+ shape: _ShapeLike | None = None,
+ *,
+ formats: DTypeLike,
+ names: str | Sequence[str] | None = None,
+ titles: str | Sequence[str] | None = None,
+ aligned: bool = False,
+ byteorder: _ByteOrder | None = None,
+) -> _RecArray[record]: ...
+
+@overload
+def fromrecords(
+ recList: _ArrayLikeVoid_co | tuple[object, ...] | _NestedSequence[tuple[object, ...]],
+ dtype: DTypeLike | None = None,
+ shape: _ShapeLike | None = None,
+ formats: None = None,
+ names: None = None,
+ titles: None = None,
+ aligned: bool = False,
+ byteorder: None = None,
+) -> _RecArray[record]: ...
+@overload
+def fromrecords(
+ recList: _ArrayLikeVoid_co | tuple[object, ...] | _NestedSequence[tuple[object, ...]],
+ dtype: None = None,
+ shape: _ShapeLike | None = None,
+ *,
+ formats: DTypeLike,
+ names: str | Sequence[str] | None = None,
+ titles: str | Sequence[str] | None = None,
+ aligned: bool = False,
+ byteorder: _ByteOrder | None = None,
+) -> _RecArray[record]: ...
+
+# exported in `numpy.rec`
+@overload
+def fromstring(
+ datastring: _SupportsBuffer,
+ dtype: DTypeLike,
+ shape: _ShapeLike | None = None,
+ offset: int = 0,
+ formats: None = None,
+ names: None = None,
+ titles: None = None,
+ aligned: bool = False,
+ byteorder: None = None,
+) -> _RecArray[record]: ...
+@overload
+def fromstring(
+ datastring: _SupportsBuffer,
+ dtype: None = None,
+ shape: _ShapeLike | None = None,
+ offset: int = 0,
+ *,
+ formats: DTypeLike,
+ names: str | Sequence[str] | None = None,
+ titles: str | Sequence[str] | None = None,
+ aligned: bool = False,
+ byteorder: _ByteOrder | None = None,
+) -> _RecArray[record]: ...
+
+# exported in `numpy.rec`
+@overload
+def fromfile(
+ fd: StrOrBytesPath | _SupportsReadInto,
+ dtype: DTypeLike,
+ shape: _ShapeLike | None = None,
+ offset: int = 0,
+ formats: None = None,
+ names: None = None,
+ titles: None = None,
+ aligned: bool = False,
+ byteorder: None = None,
+) -> _RecArray[Any]: ...
+@overload
+def fromfile(
+ fd: StrOrBytesPath | _SupportsReadInto,
+ dtype: None = None,
+ shape: _ShapeLike | None = None,
+ offset: int = 0,
+ *,
+ formats: DTypeLike,
+ names: str | Sequence[str] | None = None,
+ titles: str | Sequence[str] | None = None,
+ aligned: bool = False,
+ byteorder: _ByteOrder | None = None,
+) -> _RecArray[record]: ...
+
+# exported in `numpy.rec`
+@overload
+def array(
+ obj: _ScalarT | NDArray[_ScalarT],
+ dtype: None = None,
+ shape: _ShapeLike | None = None,
+ offset: int = 0,
+ strides: tuple[int, ...] | None = None,
+ formats: None = None,
+ names: None = None,
+ titles: None = None,
+ aligned: bool = False,
+ byteorder: None = None,
+ copy: bool = True,
+) -> _RecArray[_ScalarT]: ...
+@overload
+def array(
+ obj: ArrayLike,
+ dtype: DTypeLike,
+ shape: _ShapeLike | None = None,
+ offset: int = 0,
+ strides: tuple[int, ...] | None = None,
+ formats: None = None,
+ names: None = None,
+ titles: None = None,
+ aligned: bool = False,
+ byteorder: None = None,
+ copy: bool = True,
+) -> _RecArray[Any]: ...
+@overload
+def array(
+ obj: ArrayLike,
+ dtype: None = None,
+ shape: _ShapeLike | None = None,
+ offset: int = 0,
+ strides: tuple[int, ...] | None = None,
+ *,
+ formats: DTypeLike,
+ names: str | Sequence[str] | None = None,
+ titles: str | Sequence[str] | None = None,
+ aligned: bool = False,
+ byteorder: _ByteOrder | None = None,
+ copy: bool = True,
+) -> _RecArray[record]: ...
+@overload
+def array(
+ obj: None,
+ dtype: DTypeLike,
+ shape: _ShapeLike,
+ offset: int = 0,
+ strides: tuple[int, ...] | None = None,
+ formats: None = None,
+ names: None = None,
+ titles: None = None,
+ aligned: bool = False,
+ byteorder: None = None,
+ copy: bool = True,
+) -> _RecArray[Any]: ...
+@overload
+def array(
+ obj: None,
+ dtype: None = None,
+ *,
+ shape: _ShapeLike,
+ offset: int = 0,
+ strides: tuple[int, ...] | None = None,
+ formats: DTypeLike,
+ names: str | Sequence[str] | None = None,
+ titles: str | Sequence[str] | None = None,
+ aligned: bool = False,
+ byteorder: _ByteOrder | None = None,
+ copy: bool = True,
+) -> _RecArray[record]: ...
+@overload
+def array(
+ obj: _SupportsReadInto,
+ dtype: DTypeLike,
+ shape: _ShapeLike | None = None,
+ offset: int = 0,
+ strides: tuple[int, ...] | None = None,
+ formats: None = None,
+ names: None = None,
+ titles: None = None,
+ aligned: bool = False,
+ byteorder: None = None,
+ copy: bool = True,
+) -> _RecArray[Any]: ...
+@overload
+def array(
+ obj: _SupportsReadInto,
+ dtype: None = None,
+ shape: _ShapeLike | None = None,
+ offset: int = 0,
+ strides: tuple[int, ...] | None = None,
+ *,
+ formats: DTypeLike,
+ names: str | Sequence[str] | None = None,
+ titles: str | Sequence[str] | None = None,
+ aligned: bool = False,
+ byteorder: _ByteOrder | None = None,
+ copy: bool = True,
+) -> _RecArray[record]: ...
+
+# exported in `numpy.rec`
+def find_duplicate(list: Iterable[_T]) -> list[_T]: ...
diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/shape_base.py b/.venv/lib/python3.12/site-packages/numpy/_core/shape_base.py
new file mode 100644
index 0000000..c2a0f0d
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/_core/shape_base.py
@@ -0,0 +1,998 @@
+__all__ = ['atleast_1d', 'atleast_2d', 'atleast_3d', 'block', 'hstack',
+ 'stack', 'unstack', 'vstack']
+
+import functools
+import itertools
+import operator
+
+from . import fromnumeric as _from_nx
+from . import numeric as _nx
+from . import overrides
+from .multiarray import array, asanyarray, normalize_axis_index
+
+array_function_dispatch = functools.partial(
+ overrides.array_function_dispatch, module='numpy')
+
+
+def _atleast_1d_dispatcher(*arys):
+ return arys
+
+
+@array_function_dispatch(_atleast_1d_dispatcher)
+def atleast_1d(*arys):
+ """
+ Convert inputs to arrays with at least one dimension.
+
+ Scalar inputs are converted to 1-dimensional arrays, whilst
+ higher-dimensional inputs are preserved.
+
+ Parameters
+ ----------
+ arys1, arys2, ... : array_like
+ One or more input arrays.
+
+ Returns
+ -------
+ ret : ndarray
+ An array, or tuple of arrays, each with ``a.ndim >= 1``.
+ Copies are made only if necessary.
+
+ See Also
+ --------
+ atleast_2d, atleast_3d
+
+ Examples
+ --------
+ >>> import numpy as np
+ >>> np.atleast_1d(1.0)
+ array([1.])
+
+ >>> x = np.arange(9.0).reshape(3,3)
+ >>> np.atleast_1d(x)
+ array([[0., 1., 2.],
+ [3., 4., 5.],
+ [6., 7., 8.]])
+ >>> np.atleast_1d(x) is x
+ True
+
+ >>> np.atleast_1d(1, [3, 4])
+ (array([1]), array([3, 4]))
+
+ """
+ if len(arys) == 1:
+ result = asanyarray(arys[0])
+ if result.ndim == 0:
+ result = result.reshape(1)
+ return result
+ res = []
+ for ary in arys:
+ result = asanyarray(ary)
+ if result.ndim == 0:
+ result = result.reshape(1)
+ res.append(result)
+ return tuple(res)
+
+
+def _atleast_2d_dispatcher(*arys):
+ return arys
+
+
+@array_function_dispatch(_atleast_2d_dispatcher)
+def atleast_2d(*arys):
+ """
+ View inputs as arrays with at least two dimensions.
+
+ Parameters
+ ----------
+ arys1, arys2, ... : array_like
+ One or more array-like sequences. Non-array inputs are converted
+ to arrays. Arrays that already have two or more dimensions are
+ preserved.
+
+ Returns
+ -------
+ res, res2, ... : ndarray
+ An array, or tuple of arrays, each with ``a.ndim >= 2``.
+ Copies are avoided where possible, and views with two or more
+ dimensions are returned.
+
+ See Also
+ --------
+ atleast_1d, atleast_3d
+
+ Examples
+ --------
+ >>> import numpy as np
+ >>> np.atleast_2d(3.0)
+ array([[3.]])
+
+ >>> x = np.arange(3.0)
+ >>> np.atleast_2d(x)
+ array([[0., 1., 2.]])
+ >>> np.atleast_2d(x).base is x
+ True
+
+ >>> np.atleast_2d(1, [1, 2], [[1, 2]])
+ (array([[1]]), array([[1, 2]]), array([[1, 2]]))
+
+ """
+ res = []
+ for ary in arys:
+ ary = asanyarray(ary)
+ if ary.ndim == 0:
+ result = ary.reshape(1, 1)
+ elif ary.ndim == 1:
+ result = ary[_nx.newaxis, :]
+ else:
+ result = ary
+ res.append(result)
+ if len(res) == 1:
+ return res[0]
+ else:
+ return tuple(res)
+
+
+def _atleast_3d_dispatcher(*arys):
+ return arys
+
+
+@array_function_dispatch(_atleast_3d_dispatcher)
+def atleast_3d(*arys):
+ """
+ View inputs as arrays with at least three dimensions.
+
+ Parameters
+ ----------
+ arys1, arys2, ... : array_like
+ One or more array-like sequences. Non-array inputs are converted to
+ arrays. Arrays that already have three or more dimensions are
+ preserved.
+
+ Returns
+ -------
+ res1, res2, ... : ndarray
+ An array, or tuple of arrays, each with ``a.ndim >= 3``. Copies are
+ avoided where possible, and views with three or more dimensions are
+ returned. For example, a 1-D array of shape ``(N,)`` becomes a view
+ of shape ``(1, N, 1)``, and a 2-D array of shape ``(M, N)`` becomes a
+ view of shape ``(M, N, 1)``.
+
+ See Also
+ --------
+ atleast_1d, atleast_2d
+
+ Examples
+ --------
+ >>> import numpy as np
+ >>> np.atleast_3d(3.0)
+ array([[[3.]]])
+
+ >>> x = np.arange(3.0)
+ >>> np.atleast_3d(x).shape
+ (1, 3, 1)
+
+ >>> x = np.arange(12.0).reshape(4,3)
+ >>> np.atleast_3d(x).shape
+ (4, 3, 1)
+ >>> np.atleast_3d(x).base is x.base # x is a reshape, so not base itself
+ True
+
+ >>> for arr in np.atleast_3d([1, 2], [[1, 2]], [[[1, 2]]]):
+ ... print(arr, arr.shape) # doctest: +SKIP
+ ...
+ [[[1]
+ [2]]] (1, 2, 1)
+ [[[1]
+ [2]]] (1, 2, 1)
+ [[[1 2]]] (1, 1, 2)
+
+ """
+ res = []
+ for ary in arys:
+ ary = asanyarray(ary)
+ if ary.ndim == 0:
+ result = ary.reshape(1, 1, 1)
+ elif ary.ndim == 1:
+ result = ary[_nx.newaxis, :, _nx.newaxis]
+ elif ary.ndim == 2:
+ result = ary[:, :, _nx.newaxis]
+ else:
+ result = ary
+ res.append(result)
+ if len(res) == 1:
+ return res[0]
+ else:
+ return tuple(res)
+
+
+def _arrays_for_stack_dispatcher(arrays):
+ if not hasattr(arrays, "__getitem__"):
+ raise TypeError('arrays to stack must be passed as a "sequence" type '
+ 'such as list or tuple.')
+
+ return tuple(arrays)
+
+
+def _vhstack_dispatcher(tup, *, dtype=None, casting=None):
+ return _arrays_for_stack_dispatcher(tup)
+
+
+@array_function_dispatch(_vhstack_dispatcher)
+def vstack(tup, *, dtype=None, casting="same_kind"):
+ """
+ Stack arrays in sequence vertically (row wise).
+
+ This is equivalent to concatenation along the first axis after 1-D arrays
+ of shape `(N,)` have been reshaped to `(1,N)`. Rebuilds arrays divided by
+ `vsplit`.
+
+ This function makes most sense for arrays with up to 3 dimensions. For
+ instance, for pixel-data with a height (first axis), width (second axis),
+ and r/g/b channels (third axis). The functions `concatenate`, `stack` and
+ `block` provide more general stacking and concatenation operations.
+
+ Parameters
+ ----------
+ tup : sequence of ndarrays
+ The arrays must have the same shape along all but the first axis.
+ 1-D arrays must have the same length. In the case of a single
+ array_like input, it will be treated as a sequence of arrays; i.e.,
+ each element along the zeroth axis is treated as a separate array.
+
+ dtype : str or dtype
+ If provided, the destination array will have this dtype. Cannot be
+ provided together with `out`.
+
+ .. versionadded:: 1.24
+
+ casting : {'no', 'equiv', 'safe', 'same_kind', 'unsafe'}, optional
+ Controls what kind of data casting may occur. Defaults to 'same_kind'.
+
+ .. versionadded:: 1.24
+
+ Returns
+ -------
+ stacked : ndarray
+ The array formed by stacking the given arrays, will be at least 2-D.
+
+ See Also
+ --------
+ concatenate : Join a sequence of arrays along an existing axis.
+ stack : Join a sequence of arrays along a new axis.
+ block : Assemble an nd-array from nested lists of blocks.
+ hstack : Stack arrays in sequence horizontally (column wise).
+ dstack : Stack arrays in sequence depth wise (along third axis).
+ column_stack : Stack 1-D arrays as columns into a 2-D array.
+ vsplit : Split an array into multiple sub-arrays vertically (row-wise).
+ unstack : Split an array into a tuple of sub-arrays along an axis.
+
+ Examples
+ --------
+ >>> import numpy as np
+ >>> a = np.array([1, 2, 3])
+ >>> b = np.array([4, 5, 6])
+ >>> np.vstack((a,b))
+ array([[1, 2, 3],
+ [4, 5, 6]])
+
+ >>> a = np.array([[1], [2], [3]])
+ >>> b = np.array([[4], [5], [6]])
+ >>> np.vstack((a,b))
+ array([[1],
+ [2],
+ [3],
+ [4],
+ [5],
+ [6]])
+
+ """
+ arrs = atleast_2d(*tup)
+ if not isinstance(arrs, tuple):
+ arrs = (arrs,)
+ return _nx.concatenate(arrs, 0, dtype=dtype, casting=casting)
+
+
+@array_function_dispatch(_vhstack_dispatcher)
+def hstack(tup, *, dtype=None, casting="same_kind"):
+ """
+ Stack arrays in sequence horizontally (column wise).
+
+ This is equivalent to concatenation along the second axis, except for 1-D
+ arrays where it concatenates along the first axis. Rebuilds arrays divided
+ by `hsplit`.
+
+ This function makes most sense for arrays with up to 3 dimensions. For
+ instance, for pixel-data with a height (first axis), width (second axis),
+ and r/g/b channels (third axis). The functions `concatenate`, `stack` and
+ `block` provide more general stacking and concatenation operations.
+
+ Parameters
+ ----------
+ tup : sequence of ndarrays
+ The arrays must have the same shape along all but the second axis,
+ except 1-D arrays which can be any length. In the case of a single
+ array_like input, it will be treated as a sequence of arrays; i.e.,
+ each element along the zeroth axis is treated as a separate array.
+
+ dtype : str or dtype
+ If provided, the destination array will have this dtype. Cannot be
+ provided together with `out`.
+
+ .. versionadded:: 1.24
+
+ casting : {'no', 'equiv', 'safe', 'same_kind', 'unsafe'}, optional
+ Controls what kind of data casting may occur. Defaults to 'same_kind'.
+
+ .. versionadded:: 1.24
+
+ Returns
+ -------
+ stacked : ndarray
+ The array formed by stacking the given arrays.
+
+ See Also
+ --------
+ concatenate : Join a sequence of arrays along an existing axis.
+ stack : Join a sequence of arrays along a new axis.
+ block : Assemble an nd-array from nested lists of blocks.
+ vstack : Stack arrays in sequence vertically (row wise).
+ dstack : Stack arrays in sequence depth wise (along third axis).
+ column_stack : Stack 1-D arrays as columns into a 2-D array.
+ hsplit : Split an array into multiple sub-arrays
+ horizontally (column-wise).
+ unstack : Split an array into a tuple of sub-arrays along an axis.
+
+ Examples
+ --------
+ >>> import numpy as np
+ >>> a = np.array((1,2,3))
+ >>> b = np.array((4,5,6))
+ >>> np.hstack((a,b))
+ array([1, 2, 3, 4, 5, 6])
+ >>> a = np.array([[1],[2],[3]])
+ >>> b = np.array([[4],[5],[6]])
+ >>> np.hstack((a,b))
+ array([[1, 4],
+ [2, 5],
+ [3, 6]])
+
+ """
+ arrs = atleast_1d(*tup)
+ if not isinstance(arrs, tuple):
+ arrs = (arrs,)
+ # As a special case, dimension 0 of 1-dimensional arrays is "horizontal"
+ if arrs and arrs[0].ndim == 1:
+ return _nx.concatenate(arrs, 0, dtype=dtype, casting=casting)
+ else:
+ return _nx.concatenate(arrs, 1, dtype=dtype, casting=casting)
+
+
+def _stack_dispatcher(arrays, axis=None, out=None, *,
+ dtype=None, casting=None):
+ arrays = _arrays_for_stack_dispatcher(arrays)
+ if out is not None:
+ # optimize for the typical case where only arrays is provided
+ arrays = list(arrays)
+ arrays.append(out)
+ return arrays
+
+
+@array_function_dispatch(_stack_dispatcher)
+def stack(arrays, axis=0, out=None, *, dtype=None, casting="same_kind"):
+ """
+ Join a sequence of arrays along a new axis.
+
+ The ``axis`` parameter specifies the index of the new axis in the
+ dimensions of the result. For example, if ``axis=0`` it will be the first
+ dimension and if ``axis=-1`` it will be the last dimension.
+
+ Parameters
+ ----------
+ arrays : sequence of ndarrays
+ Each array must have the same shape. In the case of a single ndarray
+ array_like input, it will be treated as a sequence of arrays; i.e.,
+ each element along the zeroth axis is treated as a separate array.
+
+ axis : int, optional
+ The axis in the result array along which the input arrays are stacked.
+
+ out : ndarray, optional
+ If provided, the destination to place the result. The shape must be
+ correct, matching that of what stack would have returned if no
+ out argument were specified.
+
+ dtype : str or dtype
+ If provided, the destination array will have this dtype. Cannot be
+ provided together with `out`.
+
+ .. versionadded:: 1.24
+
+ casting : {'no', 'equiv', 'safe', 'same_kind', 'unsafe'}, optional
+ Controls what kind of data casting may occur. Defaults to 'same_kind'.
+
+ .. versionadded:: 1.24
+
+
+ Returns
+ -------
+ stacked : ndarray
+ The stacked array has one more dimension than the input arrays.
+
+ See Also
+ --------
+ concatenate : Join a sequence of arrays along an existing axis.
+ block : Assemble an nd-array from nested lists of blocks.
+ split : Split array into a list of multiple sub-arrays of equal size.
+ unstack : Split an array into a tuple of sub-arrays along an axis.
+
+ Examples
+ --------
+ >>> import numpy as np
+ >>> rng = np.random.default_rng()
+ >>> arrays = [rng.normal(size=(3,4)) for _ in range(10)]
+ >>> np.stack(arrays, axis=0).shape
+ (10, 3, 4)
+
+ >>> np.stack(arrays, axis=1).shape
+ (3, 10, 4)
+
+ >>> np.stack(arrays, axis=2).shape
+ (3, 4, 10)
+
+ >>> a = np.array([1, 2, 3])
+ >>> b = np.array([4, 5, 6])
+ >>> np.stack((a, b))
+ array([[1, 2, 3],
+ [4, 5, 6]])
+
+ >>> np.stack((a, b), axis=-1)
+ array([[1, 4],
+ [2, 5],
+ [3, 6]])
+
+ """
+ arrays = [asanyarray(arr) for arr in arrays]
+ if not arrays:
+ raise ValueError('need at least one array to stack')
+
+ shapes = {arr.shape for arr in arrays}
+ if len(shapes) != 1:
+ raise ValueError('all input arrays must have the same shape')
+
+ result_ndim = arrays[0].ndim + 1
+ axis = normalize_axis_index(axis, result_ndim)
+
+ sl = (slice(None),) * axis + (_nx.newaxis,)
+ expanded_arrays = [arr[sl] for arr in arrays]
+ return _nx.concatenate(expanded_arrays, axis=axis, out=out,
+ dtype=dtype, casting=casting)
+
+def _unstack_dispatcher(x, /, *, axis=None):
+ return (x,)
+
+@array_function_dispatch(_unstack_dispatcher)
+def unstack(x, /, *, axis=0):
+ """
+ Split an array into a sequence of arrays along the given axis.
+
+ The ``axis`` parameter specifies the dimension along which the array will
+ be split. For example, if ``axis=0`` (the default) it will be the first
+ dimension and if ``axis=-1`` it will be the last dimension.
+
+ The result is a tuple of arrays split along ``axis``.
+
+ .. versionadded:: 2.1.0
+
+ Parameters
+ ----------
+ x : ndarray
+ The array to be unstacked.
+ axis : int, optional
+ Axis along which the array will be split. Default: ``0``.
+
+ Returns
+ -------
+ unstacked : tuple of ndarrays
+ The unstacked arrays.
+
+ See Also
+ --------
+ stack : Join a sequence of arrays along a new axis.
+ concatenate : Join a sequence of arrays along an existing axis.
+ block : Assemble an nd-array from nested lists of blocks.
+ split : Split array into a list of multiple sub-arrays of equal size.
+
+ Notes
+ -----
+ ``unstack`` serves as the reverse operation of :py:func:`stack`, i.e.,
+ ``stack(unstack(x, axis=axis), axis=axis) == x``.
+
+ This function is equivalent to ``tuple(np.moveaxis(x, axis, 0))``, since
+ iterating on an array iterates along the first axis.
+
+ Examples
+ --------
+ >>> arr = np.arange(24).reshape((2, 3, 4))
+ >>> np.unstack(arr)
+ (array([[ 0, 1, 2, 3],
+ [ 4, 5, 6, 7],
+ [ 8, 9, 10, 11]]),
+ array([[12, 13, 14, 15],
+ [16, 17, 18, 19],
+ [20, 21, 22, 23]]))
+ >>> np.unstack(arr, axis=1)
+ (array([[ 0, 1, 2, 3],
+ [12, 13, 14, 15]]),
+ array([[ 4, 5, 6, 7],
+ [16, 17, 18, 19]]),
+ array([[ 8, 9, 10, 11],
+ [20, 21, 22, 23]]))
+ >>> arr2 = np.stack(np.unstack(arr, axis=1), axis=1)
+ >>> arr2.shape
+ (2, 3, 4)
+ >>> np.all(arr == arr2)
+ np.True_
+
+ """
+ if x.ndim == 0:
+ raise ValueError("Input array must be at least 1-d.")
+ return tuple(_nx.moveaxis(x, axis, 0))
+
+
+# Internal functions to eliminate the overhead of repeated dispatch in one of
+# the two possible paths inside np.block.
+# Use getattr to protect against __array_function__ being disabled.
+_size = getattr(_from_nx.size, '__wrapped__', _from_nx.size)
+_ndim = getattr(_from_nx.ndim, '__wrapped__', _from_nx.ndim)
+_concatenate = getattr(_from_nx.concatenate,
+ '__wrapped__', _from_nx.concatenate)
+
+
+def _block_format_index(index):
+ """
+ Convert a list of indices ``[0, 1, 2]`` into ``"arrays[0][1][2]"``.
+ """
+ idx_str = ''.join(f'[{i}]' for i in index if i is not None)
+ return 'arrays' + idx_str
+
+
+def _block_check_depths_match(arrays, parent_index=[]):
+ """
+ Recursive function checking that the depths of nested lists in `arrays`
+ all match. Mismatch raises a ValueError as described in the block
+ docstring below.
+
+ The entire index (rather than just the depth) needs to be calculated
+ for each innermost list, in case an error needs to be raised, so that
+ the index of the offending list can be printed as part of the error.
+
+ Parameters
+ ----------
+ arrays : nested list of arrays
+ The arrays to check
+ parent_index : list of int
+ The full index of `arrays` within the nested lists passed to
+ `_block_check_depths_match` at the top of the recursion.
+
+ Returns
+ -------
+ first_index : list of int
+ The full index of an element from the bottom of the nesting in
+ `arrays`. If any element at the bottom is an empty list, this will
+ refer to it, and the last index along the empty axis will be None.
+ max_arr_ndim : int
+ The maximum of the ndims of the arrays nested in `arrays`.
+ final_size: int
+ The number of elements in the final array. This is used the motivate
+ the choice of algorithm used using benchmarking wisdom.
+
+ """
+ if isinstance(arrays, tuple):
+ # not strictly necessary, but saves us from:
+ # - more than one way to do things - no point treating tuples like
+ # lists
+ # - horribly confusing behaviour that results when tuples are
+ # treated like ndarray
+ raise TypeError(
+ f'{_block_format_index(parent_index)} is a tuple. '
+ 'Only lists can be used to arrange blocks, and np.block does '
+ 'not allow implicit conversion from tuple to ndarray.'
+ )
+ elif isinstance(arrays, list) and len(arrays) > 0:
+ idxs_ndims = (_block_check_depths_match(arr, parent_index + [i])
+ for i, arr in enumerate(arrays))
+
+ first_index, max_arr_ndim, final_size = next(idxs_ndims)
+ for index, ndim, size in idxs_ndims:
+ final_size += size
+ if ndim > max_arr_ndim:
+ max_arr_ndim = ndim
+ if len(index) != len(first_index):
+ raise ValueError(
+ "List depths are mismatched. First element was at "
+ f"depth {len(first_index)}, but there is an element at "
+ f"depth {len(index)} ({_block_format_index(index)})"
+ )
+ # propagate our flag that indicates an empty list at the bottom
+ if index[-1] is None:
+ first_index = index
+
+ return first_index, max_arr_ndim, final_size
+ elif isinstance(arrays, list) and len(arrays) == 0:
+ # We've 'bottomed out' on an empty list
+ return parent_index + [None], 0, 0
+ else:
+ # We've 'bottomed out' - arrays is either a scalar or an array
+ size = _size(arrays)
+ return parent_index, _ndim(arrays), size
+
+
+def _atleast_nd(a, ndim):
+ # Ensures `a` has at least `ndim` dimensions by prepending
+ # ones to `a.shape` as necessary
+ return array(a, ndmin=ndim, copy=None, subok=True)
+
+
+def _accumulate(values):
+ return list(itertools.accumulate(values))
+
+
+def _concatenate_shapes(shapes, axis):
+ """Given array shapes, return the resulting shape and slices prefixes.
+
+ These help in nested concatenation.
+
+ Returns
+ -------
+ shape: tuple of int
+ This tuple satisfies::
+
+ shape, _ = _concatenate_shapes([arr.shape for shape in arrs], axis)
+ shape == concatenate(arrs, axis).shape
+
+ slice_prefixes: tuple of (slice(start, end), )
+ For a list of arrays being concatenated, this returns the slice
+ in the larger array at axis that needs to be sliced into.
+
+ For example, the following holds::
+
+ ret = concatenate([a, b, c], axis)
+ _, (sl_a, sl_b, sl_c) = concatenate_slices([a, b, c], axis)
+
+ ret[(slice(None),) * axis + sl_a] == a
+ ret[(slice(None),) * axis + sl_b] == b
+ ret[(slice(None),) * axis + sl_c] == c
+
+ These are called slice prefixes since they are used in the recursive
+ blocking algorithm to compute the left-most slices during the
+ recursion. Therefore, they must be prepended to rest of the slice
+ that was computed deeper in the recursion.
+
+ These are returned as tuples to ensure that they can quickly be added
+ to existing slice tuple without creating a new tuple every time.
+
+ """
+ # Cache a result that will be reused.
+ shape_at_axis = [shape[axis] for shape in shapes]
+
+ # Take a shape, any shape
+ first_shape = shapes[0]
+ first_shape_pre = first_shape[:axis]
+ first_shape_post = first_shape[axis + 1:]
+
+ if any(shape[:axis] != first_shape_pre or
+ shape[axis + 1:] != first_shape_post for shape in shapes):
+ raise ValueError(
+ f'Mismatched array shapes in block along axis {axis}.')
+
+ shape = (first_shape_pre + (sum(shape_at_axis),) + first_shape[axis + 1:])
+
+ offsets_at_axis = _accumulate(shape_at_axis)
+ slice_prefixes = [(slice(start, end),)
+ for start, end in zip([0] + offsets_at_axis,
+ offsets_at_axis)]
+ return shape, slice_prefixes
+
+
+def _block_info_recursion(arrays, max_depth, result_ndim, depth=0):
+ """
+ Returns the shape of the final array, along with a list
+ of slices and a list of arrays that can be used for assignment inside the
+ new array
+
+ Parameters
+ ----------
+ arrays : nested list of arrays
+ The arrays to check
+ max_depth : list of int
+ The number of nested lists
+ result_ndim : int
+ The number of dimensions in thefinal array.
+
+ Returns
+ -------
+ shape : tuple of int
+ The shape that the final array will take on.
+ slices: list of tuple of slices
+ The slices into the full array required for assignment. These are
+ required to be prepended with ``(Ellipsis, )`` to obtain to correct
+ final index.
+ arrays: list of ndarray
+ The data to assign to each slice of the full array
+
+ """
+ if depth < max_depth:
+ shapes, slices, arrays = zip(
+ *[_block_info_recursion(arr, max_depth, result_ndim, depth + 1)
+ for arr in arrays])
+
+ axis = result_ndim - max_depth + depth
+ shape, slice_prefixes = _concatenate_shapes(shapes, axis)
+
+ # Prepend the slice prefix and flatten the slices
+ slices = [slice_prefix + the_slice
+ for slice_prefix, inner_slices in zip(slice_prefixes, slices)
+ for the_slice in inner_slices]
+
+ # Flatten the array list
+ arrays = functools.reduce(operator.add, arrays)
+
+ return shape, slices, arrays
+ else:
+ # We've 'bottomed out' - arrays is either a scalar or an array
+ # type(arrays) is not list
+ # Return the slice and the array inside a list to be consistent with
+ # the recursive case.
+ arr = _atleast_nd(arrays, result_ndim)
+ return arr.shape, [()], [arr]
+
+
+def _block(arrays, max_depth, result_ndim, depth=0):
+ """
+ Internal implementation of block based on repeated concatenation.
+ `arrays` is the argument passed to
+ block. `max_depth` is the depth of nested lists within `arrays` and
+ `result_ndim` is the greatest of the dimensions of the arrays in
+ `arrays` and the depth of the lists in `arrays` (see block docstring
+ for details).
+ """
+ if depth < max_depth:
+ arrs = [_block(arr, max_depth, result_ndim, depth + 1)
+ for arr in arrays]
+ return _concatenate(arrs, axis=-(max_depth - depth))
+ else:
+ # We've 'bottomed out' - arrays is either a scalar or an array
+ # type(arrays) is not list
+ return _atleast_nd(arrays, result_ndim)
+
+
+def _block_dispatcher(arrays):
+ # Use type(...) is list to match the behavior of np.block(), which special
+ # cases list specifically rather than allowing for generic iterables or
+ # tuple. Also, we know that list.__array_function__ will never exist.
+ if isinstance(arrays, list):
+ for subarrays in arrays:
+ yield from _block_dispatcher(subarrays)
+ else:
+ yield arrays
+
+
+@array_function_dispatch(_block_dispatcher)
+def block(arrays):
+ """
+ Assemble an nd-array from nested lists of blocks.
+
+ Blocks in the innermost lists are concatenated (see `concatenate`) along
+ the last dimension (-1), then these are concatenated along the
+ second-last dimension (-2), and so on until the outermost list is reached.
+
+ Blocks can be of any dimension, but will not be broadcasted using
+ the normal rules. Instead, leading axes of size 1 are inserted,
+ to make ``block.ndim`` the same for all blocks. This is primarily useful
+ for working with scalars, and means that code like ``np.block([v, 1])``
+ is valid, where ``v.ndim == 1``.
+
+ When the nested list is two levels deep, this allows block matrices to be
+ constructed from their components.
+
+ Parameters
+ ----------
+ arrays : nested list of array_like or scalars (but not tuples)
+ If passed a single ndarray or scalar (a nested list of depth 0), this
+ is returned unmodified (and not copied).
+
+ Elements shapes must match along the appropriate axes (without
+ broadcasting), but leading 1s will be prepended to the shape as
+ necessary to make the dimensions match.
+
+ Returns
+ -------
+ block_array : ndarray
+ The array assembled from the given blocks.
+
+ The dimensionality of the output is equal to the greatest of:
+
+ * the dimensionality of all the inputs
+ * the depth to which the input list is nested
+
+ Raises
+ ------
+ ValueError
+ * If list depths are mismatched - for instance, ``[[a, b], c]`` is
+ illegal, and should be spelt ``[[a, b], [c]]``
+ * If lists are empty - for instance, ``[[a, b], []]``
+
+ See Also
+ --------
+ concatenate : Join a sequence of arrays along an existing axis.
+ stack : Join a sequence of arrays along a new axis.
+ vstack : Stack arrays in sequence vertically (row wise).
+ hstack : Stack arrays in sequence horizontally (column wise).
+ dstack : Stack arrays in sequence depth wise (along third axis).
+ column_stack : Stack 1-D arrays as columns into a 2-D array.
+ vsplit : Split an array into multiple sub-arrays vertically (row-wise).
+ unstack : Split an array into a tuple of sub-arrays along an axis.
+
+ Notes
+ -----
+ When called with only scalars, ``np.block`` is equivalent to an ndarray
+ call. So ``np.block([[1, 2], [3, 4]])`` is equivalent to
+ ``np.array([[1, 2], [3, 4]])``.
+
+ This function does not enforce that the blocks lie on a fixed grid.
+ ``np.block([[a, b], [c, d]])`` is not restricted to arrays of the form::
+
+ AAAbb
+ AAAbb
+ cccDD
+
+ But is also allowed to produce, for some ``a, b, c, d``::
+
+ AAAbb
+ AAAbb
+ cDDDD
+
+ Since concatenation happens along the last axis first, `block` is *not*
+ capable of producing the following directly::
+
+ AAAbb
+ cccbb
+ cccDD
+
+ Matlab's "square bracket stacking", ``[A, B, ...; p, q, ...]``, is
+ equivalent to ``np.block([[A, B, ...], [p, q, ...]])``.
+
+ Examples
+ --------
+ The most common use of this function is to build a block matrix:
+
+ >>> import numpy as np
+ >>> A = np.eye(2) * 2
+ >>> B = np.eye(3) * 3
+ >>> np.block([
+ ... [A, np.zeros((2, 3))],
+ ... [np.ones((3, 2)), B ]
+ ... ])
+ array([[2., 0., 0., 0., 0.],
+ [0., 2., 0., 0., 0.],
+ [1., 1., 3., 0., 0.],
+ [1., 1., 0., 3., 0.],
+ [1., 1., 0., 0., 3.]])
+
+ With a list of depth 1, `block` can be used as `hstack`:
+
+ >>> np.block([1, 2, 3]) # hstack([1, 2, 3])
+ array([1, 2, 3])
+
+ >>> a = np.array([1, 2, 3])
+ >>> b = np.array([4, 5, 6])
+ >>> np.block([a, b, 10]) # hstack([a, b, 10])
+ array([ 1, 2, 3, 4, 5, 6, 10])
+
+ >>> A = np.ones((2, 2), int)
+ >>> B = 2 * A
+ >>> np.block([A, B]) # hstack([A, B])
+ array([[1, 1, 2, 2],
+ [1, 1, 2, 2]])
+
+ With a list of depth 2, `block` can be used in place of `vstack`:
+
+ >>> a = np.array([1, 2, 3])
+ >>> b = np.array([4, 5, 6])
+ >>> np.block([[a], [b]]) # vstack([a, b])
+ array([[1, 2, 3],
+ [4, 5, 6]])
+
+ >>> A = np.ones((2, 2), int)
+ >>> B = 2 * A
+ >>> np.block([[A], [B]]) # vstack([A, B])
+ array([[1, 1],
+ [1, 1],
+ [2, 2],
+ [2, 2]])
+
+ It can also be used in place of `atleast_1d` and `atleast_2d`:
+
+ >>> a = np.array(0)
+ >>> b = np.array([1])
+ >>> np.block([a]) # atleast_1d(a)
+ array([0])
+ >>> np.block([b]) # atleast_1d(b)
+ array([1])
+
+ >>> np.block([[a]]) # atleast_2d(a)
+ array([[0]])
+ >>> np.block([[b]]) # atleast_2d(b)
+ array([[1]])
+
+
+ """
+ arrays, list_ndim, result_ndim, final_size = _block_setup(arrays)
+
+ # It was found through benchmarking that making an array of final size
+ # around 256x256 was faster by straight concatenation on a
+ # i7-7700HQ processor and dual channel ram 2400MHz.
+ # It didn't seem to matter heavily on the dtype used.
+ #
+ # A 2D array using repeated concatenation requires 2 copies of the array.
+ #
+ # The fastest algorithm will depend on the ratio of CPU power to memory
+ # speed.
+ # One can monitor the results of the benchmark
+ # https://pv.github.io/numpy-bench/#bench_shape_base.Block2D.time_block2d
+ # to tune this parameter until a C version of the `_block_info_recursion`
+ # algorithm is implemented which would likely be faster than the python
+ # version.
+ if list_ndim * final_size > (2 * 512 * 512):
+ return _block_slicing(arrays, list_ndim, result_ndim)
+ else:
+ return _block_concatenate(arrays, list_ndim, result_ndim)
+
+
+# These helper functions are mostly used for testing.
+# They allow us to write tests that directly call `_block_slicing`
+# or `_block_concatenate` without blocking large arrays to force the wisdom
+# to trigger the desired path.
+def _block_setup(arrays):
+ """
+ Returns
+ (`arrays`, list_ndim, result_ndim, final_size)
+ """
+ bottom_index, arr_ndim, final_size = _block_check_depths_match(arrays)
+ list_ndim = len(bottom_index)
+ if bottom_index and bottom_index[-1] is None:
+ raise ValueError(
+ f'List at {_block_format_index(bottom_index)} cannot be empty'
+ )
+ result_ndim = max(arr_ndim, list_ndim)
+ return arrays, list_ndim, result_ndim, final_size
+
+
+def _block_slicing(arrays, list_ndim, result_ndim):
+ shape, slices, arrays = _block_info_recursion(
+ arrays, list_ndim, result_ndim)
+ dtype = _nx.result_type(*[arr.dtype for arr in arrays])
+
+ # Test preferring F only in the case that all input arrays are F
+ F_order = all(arr.flags['F_CONTIGUOUS'] for arr in arrays)
+ C_order = all(arr.flags['C_CONTIGUOUS'] for arr in arrays)
+ order = 'F' if F_order and not C_order else 'C'
+ result = _nx.empty(shape=shape, dtype=dtype, order=order)
+ # Note: In a c implementation, the function
+ # PyArray_CreateMultiSortedStridePerm could be used for more advanced
+ # guessing of the desired order.
+
+ for the_slice, arr in zip(slices, arrays):
+ result[(Ellipsis,) + the_slice] = arr
+ return result
+
+
+def _block_concatenate(arrays, list_ndim, result_ndim):
+ result = _block(arrays, list_ndim, result_ndim)
+ if list_ndim == 0:
+ # Catch an edge case where _block returns a view because
+ # `arrays` is a single numpy array and not a list of numpy arrays.
+ # This might copy scalars or lists twice, but this isn't a likely
+ # usecase for those interested in performance
+ result = result.copy()
+ return result
diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/shape_base.pyi b/.venv/lib/python3.12/site-packages/numpy/_core/shape_base.pyi
new file mode 100644
index 0000000..c2c9c96
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/_core/shape_base.pyi
@@ -0,0 +1,175 @@
+from collections.abc import Sequence
+from typing import Any, SupportsIndex, TypeVar, overload
+
+from numpy import _CastingKind, generic
+from numpy._typing import ArrayLike, DTypeLike, NDArray, _ArrayLike, _DTypeLike
+
+__all__ = [
+ "atleast_1d",
+ "atleast_2d",
+ "atleast_3d",
+ "block",
+ "hstack",
+ "stack",
+ "unstack",
+ "vstack",
+]
+
+_ScalarT = TypeVar("_ScalarT", bound=generic)
+_ScalarT1 = TypeVar("_ScalarT1", bound=generic)
+_ScalarT2 = TypeVar("_ScalarT2", bound=generic)
+_ArrayT = TypeVar("_ArrayT", bound=NDArray[Any])
+
+###
+
+@overload
+def atleast_1d(a0: _ArrayLike[_ScalarT], /) -> NDArray[_ScalarT]: ...
+@overload
+def atleast_1d(a0: _ArrayLike[_ScalarT1], a1: _ArrayLike[_ScalarT2], /) -> tuple[NDArray[_ScalarT1], NDArray[_ScalarT2]]: ...
+@overload
+def atleast_1d(a0: _ArrayLike[_ScalarT], a1: _ArrayLike[_ScalarT], /, *arys: _ArrayLike[_ScalarT]) -> tuple[NDArray[_ScalarT], ...]: ...
+@overload
+def atleast_1d(a0: ArrayLike, /) -> NDArray[Any]: ...
+@overload
+def atleast_1d(a0: ArrayLike, a1: ArrayLike, /) -> tuple[NDArray[Any], NDArray[Any]]: ...
+@overload
+def atleast_1d(a0: ArrayLike, a1: ArrayLike, /, *ai: ArrayLike) -> tuple[NDArray[Any], ...]: ...
+
+#
+@overload
+def atleast_2d(a0: _ArrayLike[_ScalarT], /) -> NDArray[_ScalarT]: ...
+@overload
+def atleast_2d(a0: _ArrayLike[_ScalarT1], a1: _ArrayLike[_ScalarT2], /) -> tuple[NDArray[_ScalarT1], NDArray[_ScalarT2]]: ...
+@overload
+def atleast_2d(a0: _ArrayLike[_ScalarT], a1: _ArrayLike[_ScalarT], /, *arys: _ArrayLike[_ScalarT]) -> tuple[NDArray[_ScalarT], ...]: ...
+@overload
+def atleast_2d(a0: ArrayLike, /) -> NDArray[Any]: ...
+@overload
+def atleast_2d(a0: ArrayLike, a1: ArrayLike, /) -> tuple[NDArray[Any], NDArray[Any]]: ...
+@overload
+def atleast_2d(a0: ArrayLike, a1: ArrayLike, /, *ai: ArrayLike) -> tuple[NDArray[Any], ...]: ...
+
+#
+@overload
+def atleast_3d(a0: _ArrayLike[_ScalarT], /) -> NDArray[_ScalarT]: ...
+@overload
+def atleast_3d(a0: _ArrayLike[_ScalarT1], a1: _ArrayLike[_ScalarT2], /) -> tuple[NDArray[_ScalarT1], NDArray[_ScalarT2]]: ...
+@overload
+def atleast_3d(a0: _ArrayLike[_ScalarT], a1: _ArrayLike[_ScalarT], /, *arys: _ArrayLike[_ScalarT]) -> tuple[NDArray[_ScalarT], ...]: ...
+@overload
+def atleast_3d(a0: ArrayLike, /) -> NDArray[Any]: ...
+@overload
+def atleast_3d(a0: ArrayLike, a1: ArrayLike, /) -> tuple[NDArray[Any], NDArray[Any]]: ...
+@overload
+def atleast_3d(a0: ArrayLike, a1: ArrayLike, /, *ai: ArrayLike) -> tuple[NDArray[Any], ...]: ...
+
+#
+@overload
+def vstack(
+ tup: Sequence[_ArrayLike[_ScalarT]],
+ *,
+ dtype: None = ...,
+ casting: _CastingKind = ...
+) -> NDArray[_ScalarT]: ...
+@overload
+def vstack(
+ tup: Sequence[ArrayLike],
+ *,
+ dtype: _DTypeLike[_ScalarT],
+ casting: _CastingKind = ...
+) -> NDArray[_ScalarT]: ...
+@overload
+def vstack(
+ tup: Sequence[ArrayLike],
+ *,
+ dtype: DTypeLike = ...,
+ casting: _CastingKind = ...
+) -> NDArray[Any]: ...
+
+@overload
+def hstack(
+ tup: Sequence[_ArrayLike[_ScalarT]],
+ *,
+ dtype: None = ...,
+ casting: _CastingKind = ...
+) -> NDArray[_ScalarT]: ...
+@overload
+def hstack(
+ tup: Sequence[ArrayLike],
+ *,
+ dtype: _DTypeLike[_ScalarT],
+ casting: _CastingKind = ...
+) -> NDArray[_ScalarT]: ...
+@overload
+def hstack(
+ tup: Sequence[ArrayLike],
+ *,
+ dtype: DTypeLike = ...,
+ casting: _CastingKind = ...
+) -> NDArray[Any]: ...
+
+@overload
+def stack(
+ arrays: Sequence[_ArrayLike[_ScalarT]],
+ axis: SupportsIndex = ...,
+ out: None = ...,
+ *,
+ dtype: None = ...,
+ casting: _CastingKind = ...
+) -> NDArray[_ScalarT]: ...
+@overload
+def stack(
+ arrays: Sequence[ArrayLike],
+ axis: SupportsIndex = ...,
+ out: None = ...,
+ *,
+ dtype: _DTypeLike[_ScalarT],
+ casting: _CastingKind = ...
+) -> NDArray[_ScalarT]: ...
+@overload
+def stack(
+ arrays: Sequence[ArrayLike],
+ axis: SupportsIndex = ...,
+ out: None = ...,
+ *,
+ dtype: DTypeLike = ...,
+ casting: _CastingKind = ...
+) -> NDArray[Any]: ...
+@overload
+def stack(
+ arrays: Sequence[ArrayLike],
+ axis: SupportsIndex,
+ out: _ArrayT,
+ *,
+ dtype: DTypeLike | None = None,
+ casting: _CastingKind = "same_kind",
+) -> _ArrayT: ...
+@overload
+def stack(
+ arrays: Sequence[ArrayLike],
+ axis: SupportsIndex = 0,
+ *,
+ out: _ArrayT,
+ dtype: DTypeLike | None = None,
+ casting: _CastingKind = "same_kind",
+) -> _ArrayT: ...
+
+@overload
+def unstack(
+ array: _ArrayLike[_ScalarT],
+ /,
+ *,
+ axis: int = ...,
+) -> tuple[NDArray[_ScalarT], ...]: ...
+@overload
+def unstack(
+ array: ArrayLike,
+ /,
+ *,
+ axis: int = ...,
+) -> tuple[NDArray[Any], ...]: ...
+
+@overload
+def block(arrays: _ArrayLike[_ScalarT]) -> NDArray[_ScalarT]: ...
+@overload
+def block(arrays: ArrayLike) -> NDArray[Any]: ...
diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/strings.py b/.venv/lib/python3.12/site-packages/numpy/_core/strings.py
new file mode 100644
index 0000000..b4dc165
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/_core/strings.py
@@ -0,0 +1,1823 @@
+"""
+This module contains a set of functions for vectorized string
+operations.
+"""
+
+import functools
+import sys
+
+import numpy as np
+from numpy import (
+ add,
+ equal,
+ greater,
+ greater_equal,
+ less,
+ less_equal,
+ not_equal,
+)
+from numpy import (
+ multiply as _multiply_ufunc,
+)
+from numpy._core.multiarray import _vec_string
+from numpy._core.overrides import array_function_dispatch, set_module
+from numpy._core.umath import (
+ _center,
+ _expandtabs,
+ _expandtabs_length,
+ _ljust,
+ _lstrip_chars,
+ _lstrip_whitespace,
+ _partition,
+ _partition_index,
+ _replace,
+ _rjust,
+ _rpartition,
+ _rpartition_index,
+ _rstrip_chars,
+ _rstrip_whitespace,
+ _slice,
+ _strip_chars,
+ _strip_whitespace,
+ _zfill,
+ isalnum,
+ isalpha,
+ isdecimal,
+ isdigit,
+ islower,
+ isnumeric,
+ isspace,
+ istitle,
+ isupper,
+ str_len,
+)
+from numpy._core.umath import (
+ count as _count_ufunc,
+)
+from numpy._core.umath import (
+ endswith as _endswith_ufunc,
+)
+from numpy._core.umath import (
+ find as _find_ufunc,
+)
+from numpy._core.umath import (
+ index as _index_ufunc,
+)
+from numpy._core.umath import (
+ rfind as _rfind_ufunc,
+)
+from numpy._core.umath import (
+ rindex as _rindex_ufunc,
+)
+from numpy._core.umath import (
+ startswith as _startswith_ufunc,
+)
+
+
+def _override___module__():
+ for ufunc in [
+ isalnum, isalpha, isdecimal, isdigit, islower, isnumeric, isspace,
+ istitle, isupper, str_len,
+ ]:
+ ufunc.__module__ = "numpy.strings"
+ ufunc.__qualname__ = ufunc.__name__
+
+
+_override___module__()
+
+
+__all__ = [
+ # UFuncs
+ "equal", "not_equal", "less", "less_equal", "greater", "greater_equal",
+ "add", "multiply", "isalpha", "isdigit", "isspace", "isalnum", "islower",
+ "isupper", "istitle", "isdecimal", "isnumeric", "str_len", "find",
+ "rfind", "index", "rindex", "count", "startswith", "endswith", "lstrip",
+ "rstrip", "strip", "replace", "expandtabs", "center", "ljust", "rjust",
+ "zfill", "partition", "rpartition", "slice",
+
+ # _vec_string - Will gradually become ufuncs as well
+ "upper", "lower", "swapcase", "capitalize", "title",
+
+ # _vec_string - Will probably not become ufuncs
+ "mod", "decode", "encode", "translate",
+
+ # Removed from namespace until behavior has been crystallized
+ # "join", "split", "rsplit", "splitlines",
+]
+
+
+MAX = np.iinfo(np.int64).max
+
+array_function_dispatch = functools.partial(
+ array_function_dispatch, module='numpy.strings')
+
+
+def _get_num_chars(a):
+ """
+ Helper function that returns the number of characters per field in
+ a string or unicode array. This is to abstract out the fact that
+ for a unicode array this is itemsize / 4.
+ """
+ if issubclass(a.dtype.type, np.str_):
+ return a.itemsize // 4
+ return a.itemsize
+
+
+def _to_bytes_or_str_array(result, output_dtype_like):
+ """
+ Helper function to cast a result back into an array
+ with the appropriate dtype if an object array must be used
+ as an intermediary.
+ """
+ output_dtype_like = np.asarray(output_dtype_like)
+ if result.size == 0:
+ # Calling asarray & tolist in an empty array would result
+ # in losing shape information
+ return result.astype(output_dtype_like.dtype)
+ ret = np.asarray(result.tolist())
+ if isinstance(output_dtype_like.dtype, np.dtypes.StringDType):
+ return ret.astype(type(output_dtype_like.dtype))
+ return ret.astype(type(output_dtype_like.dtype)(_get_num_chars(ret)))
+
+
+def _clean_args(*args):
+ """
+ Helper function for delegating arguments to Python string
+ functions.
+
+ Many of the Python string operations that have optional arguments
+ do not use 'None' to indicate a default value. In these cases,
+ we need to remove all None arguments, and those following them.
+ """
+ newargs = []
+ for chk in args:
+ if chk is None:
+ break
+ newargs.append(chk)
+ return newargs
+
+
+def _multiply_dispatcher(a, i):
+ return (a,)
+
+
+@set_module("numpy.strings")
+@array_function_dispatch(_multiply_dispatcher)
+def multiply(a, i):
+ """
+ Return (a * i), that is string multiple concatenation,
+ element-wise.
+
+ Values in ``i`` of less than 0 are treated as 0 (which yields an
+ empty string).
+
+ Parameters
+ ----------
+ a : array_like, with ``StringDType``, ``bytes_`` or ``str_`` dtype
+
+ i : array_like, with any integer dtype
+
+ Returns
+ -------
+ out : ndarray
+ Output array of ``StringDType``, ``bytes_`` or ``str_`` dtype,
+ depending on input types
+
+ Examples
+ --------
+ >>> import numpy as np
+ >>> a = np.array(["a", "b", "c"])
+ >>> np.strings.multiply(a, 3)
+ array(['aaa', 'bbb', 'ccc'], dtype='<U3')
+ >>> i = np.array([1, 2, 3])
+ >>> np.strings.multiply(a, i)
+ array(['a', 'bb', 'ccc'], dtype='<U3')
+ >>> np.strings.multiply(np.array(['a']), i)
+ array(['a', 'aa', 'aaa'], dtype='<U3')
+ >>> a = np.array(['a', 'b', 'c', 'd', 'e', 'f']).reshape((2, 3))
+ >>> np.strings.multiply(a, 3)
+ array([['aaa', 'bbb', 'ccc'],
+ ['ddd', 'eee', 'fff']], dtype='<U3')
+ >>> np.strings.multiply(a, i)
+ array([['a', 'bb', 'ccc'],
+ ['d', 'ee', 'fff']], dtype='<U3')
+
+ """
+ a = np.asanyarray(a)
+
+ i = np.asanyarray(i)
+ if not np.issubdtype(i.dtype, np.integer):
+ raise TypeError(f"unsupported type {i.dtype} for operand 'i'")
+ i = np.maximum(i, 0)
+
+ # delegate to stringdtype loops that also do overflow checking
+ if a.dtype.char == "T":
+ return a * i
+
+ a_len = str_len(a)
+
+ # Ensure we can do a_len * i without overflow.
+ if np.any(a_len > sys.maxsize / np.maximum(i, 1)):
+ raise OverflowError("Overflow encountered in string multiply")
+
+ buffersizes = a_len * i
+ out_dtype = f"{a.dtype.char}{buffersizes.max()}"
+ out = np.empty_like(a, shape=buffersizes.shape, dtype=out_dtype)
+ return _multiply_ufunc(a, i, out=out)
+
+
+def _mod_dispatcher(a, values):
+ return (a, values)
+
+
+@set_module("numpy.strings")
+@array_function_dispatch(_mod_dispatcher)
+def mod(a, values):
+ """
+ Return (a % i), that is pre-Python 2.6 string formatting
+ (interpolation), element-wise for a pair of array_likes of str
+ or unicode.
+
+ Parameters
+ ----------
+ a : array_like, with `np.bytes_` or `np.str_` dtype
+
+ values : array_like of values
+ These values will be element-wise interpolated into the string.
+
+ Returns
+ -------
+ out : ndarray
+ Output array of ``StringDType``, ``bytes_`` or ``str_`` dtype,
+ depending on input types
+
+ Examples
+ --------
+ >>> import numpy as np
+ >>> a = np.array(["NumPy is a %s library"])
+ >>> np.strings.mod(a, values=["Python"])
+ array(['NumPy is a Python library'], dtype='<U25')
+
+ >>> a = np.array([b'%d bytes', b'%d bits'])
+ >>> values = np.array([8, 64])
+ >>> np.strings.mod(a, values)
+ array([b'8 bytes', b'64 bits'], dtype='|S7')
+
+ """
+ return _to_bytes_or_str_array(
+ _vec_string(a, np.object_, '__mod__', (values,)), a)
+
+
+@set_module("numpy.strings")
+def find(a, sub, start=0, end=None):
+ """
+ For each element, return the lowest index in the string where
+ substring ``sub`` is found, such that ``sub`` is contained in the
+ range [``start``, ``end``).
+
+ Parameters
+ ----------
+ a : array_like, with ``StringDType``, ``bytes_`` or ``str_`` dtype
+
+ sub : array_like, with `np.bytes_` or `np.str_` dtype
+ The substring to search for.
+
+ start, end : array_like, with any integer dtype
+ The range to look in, interpreted as in slice notation.
+
+ Returns
+ -------
+ y : ndarray
+ Output array of ints
+
+ See Also
+ --------
+ str.find
+
+ Examples
+ --------
+ >>> import numpy as np
+ >>> a = np.array(["NumPy is a Python library"])
+ >>> np.strings.find(a, "Python")
+ array([11])
+
+ """
+ end = end if end is not None else MAX
+ return _find_ufunc(a, sub, start, end)
+
+
+@set_module("numpy.strings")
+def rfind(a, sub, start=0, end=None):
+ """
+ For each element, return the highest index in the string where
+ substring ``sub`` is found, such that ``sub`` is contained in the
+ range [``start``, ``end``).
+
+ Parameters
+ ----------
+ a : array-like, with ``StringDType``, ``bytes_``, or ``str_`` dtype
+
+ sub : array-like, with ``StringDType``, ``bytes_``, or ``str_`` dtype
+ The substring to search for.
+
+ start, end : array_like, with any integer dtype
+ The range to look in, interpreted as in slice notation.
+
+ Returns
+ -------
+ y : ndarray
+ Output array of ints
+
+ See Also
+ --------
+ str.rfind
+
+ Examples
+ --------
+ >>> import numpy as np
+ >>> a = np.array(["Computer Science"])
+ >>> np.strings.rfind(a, "Science", start=0, end=None)
+ array([9])
+ >>> np.strings.rfind(a, "Science", start=0, end=8)
+ array([-1])
+ >>> b = np.array(["Computer Science", "Science"])
+ >>> np.strings.rfind(b, "Science", start=0, end=None)
+ array([9, 0])
+
+ """
+ end = end if end is not None else MAX
+ return _rfind_ufunc(a, sub, start, end)
+
+
+@set_module("numpy.strings")
+def index(a, sub, start=0, end=None):
+ """
+ Like `find`, but raises :exc:`ValueError` when the substring is not found.
+
+ Parameters
+ ----------
+ a : array-like, with ``StringDType``, ``bytes_``, or ``str_`` dtype
+
+ sub : array-like, with ``StringDType``, ``bytes_``, or ``str_`` dtype
+
+ start, end : array_like, with any integer dtype, optional
+
+ Returns
+ -------
+ out : ndarray
+ Output array of ints.
+
+ See Also
+ --------
+ find, str.index
+
+ Examples
+ --------
+ >>> import numpy as np
+ >>> a = np.array(["Computer Science"])
+ >>> np.strings.index(a, "Science", start=0, end=None)
+ array([9])
+
+ """
+ end = end if end is not None else MAX
+ return _index_ufunc(a, sub, start, end)
+
+
+@set_module("numpy.strings")
+def rindex(a, sub, start=0, end=None):
+ """
+ Like `rfind`, but raises :exc:`ValueError` when the substring `sub` is
+ not found.
+
+ Parameters
+ ----------
+ a : array-like, with `np.bytes_` or `np.str_` dtype
+
+ sub : array-like, with `np.bytes_` or `np.str_` dtype
+
+ start, end : array-like, with any integer dtype, optional
+
+ Returns
+ -------
+ out : ndarray
+ Output array of ints.
+
+ See Also
+ --------
+ rfind, str.rindex
+
+ Examples
+ --------
+ >>> a = np.array(["Computer Science"])
+ >>> np.strings.rindex(a, "Science", start=0, end=None)
+ array([9])
+
+ """
+ end = end if end is not None else MAX
+ return _rindex_ufunc(a, sub, start, end)
+
+
+@set_module("numpy.strings")
+def count(a, sub, start=0, end=None):
+ """
+ Returns an array with the number of non-overlapping occurrences of
+ substring ``sub`` in the range [``start``, ``end``).
+
+ Parameters
+ ----------
+ a : array-like, with ``StringDType``, ``bytes_``, or ``str_`` dtype
+
+ sub : array-like, with ``StringDType``, ``bytes_``, or ``str_`` dtype
+ The substring to search for.
+
+ start, end : array_like, with any integer dtype
+ The range to look in, interpreted as in slice notation.
+
+ Returns
+ -------
+ y : ndarray
+ Output array of ints
+
+ See Also
+ --------
+ str.count
+
+ Examples
+ --------
+ >>> import numpy as np
+ >>> c = np.array(['aAaAaA', ' aA ', 'abBABba'])
+ >>> c
+ array(['aAaAaA', ' aA ', 'abBABba'], dtype='<U7')
+ >>> np.strings.count(c, 'A')
+ array([3, 1, 1])
+ >>> np.strings.count(c, 'aA')
+ array([3, 1, 0])
+ >>> np.strings.count(c, 'A', start=1, end=4)
+ array([2, 1, 1])
+ >>> np.strings.count(c, 'A', start=1, end=3)
+ array([1, 0, 0])
+
+ """
+ end = end if end is not None else MAX
+ return _count_ufunc(a, sub, start, end)
+
+
+@set_module("numpy.strings")
+def startswith(a, prefix, start=0, end=None):
+ """
+ Returns a boolean array which is `True` where the string element
+ in ``a`` starts with ``prefix``, otherwise `False`.
+
+ Parameters
+ ----------
+ a : array-like, with ``StringDType``, ``bytes_``, or ``str_`` dtype
+
+ prefix : array-like, with ``StringDType``, ``bytes_``, or ``str_`` dtype
+
+ start, end : array_like, with any integer dtype
+ With ``start``, test beginning at that position. With ``end``,
+ stop comparing at that position.
+
+ Returns
+ -------
+ out : ndarray
+ Output array of bools
+
+ See Also
+ --------
+ str.startswith
+
+ Examples
+ --------
+ >>> import numpy as np
+ >>> s = np.array(['foo', 'bar'])
+ >>> s
+ array(['foo', 'bar'], dtype='<U3')
+ >>> np.strings.startswith(s, 'fo')
+ array([True, False])
+ >>> np.strings.startswith(s, 'o', start=1, end=2)
+ array([True, False])
+
+ """
+ end = end if end is not None else MAX
+ return _startswith_ufunc(a, prefix, start, end)
+
+
+@set_module("numpy.strings")
+def endswith(a, suffix, start=0, end=None):
+ """
+ Returns a boolean array which is `True` where the string element
+ in ``a`` ends with ``suffix``, otherwise `False`.
+
+ Parameters
+ ----------
+ a : array-like, with ``StringDType``, ``bytes_``, or ``str_`` dtype
+
+ suffix : array-like, with ``StringDType``, ``bytes_``, or ``str_`` dtype
+
+ start, end : array_like, with any integer dtype
+ With ``start``, test beginning at that position. With ``end``,
+ stop comparing at that position.
+
+ Returns
+ -------
+ out : ndarray
+ Output array of bools
+
+ See Also
+ --------
+ str.endswith
+
+ Examples
+ --------
+ >>> import numpy as np
+ >>> s = np.array(['foo', 'bar'])
+ >>> s
+ array(['foo', 'bar'], dtype='<U3')
+ >>> np.strings.endswith(s, 'ar')
+ array([False, True])
+ >>> np.strings.endswith(s, 'a', start=1, end=2)
+ array([False, True])
+
+ """
+ end = end if end is not None else MAX
+ return _endswith_ufunc(a, suffix, start, end)
+
+
+def _code_dispatcher(a, encoding=None, errors=None):
+ return (a,)
+
+
+@set_module("numpy.strings")
+@array_function_dispatch(_code_dispatcher)
+def decode(a, encoding=None, errors=None):
+ r"""
+ Calls :meth:`bytes.decode` element-wise.
+
+ The set of available codecs comes from the Python standard library,
+ and may be extended at runtime. For more information, see the
+ :mod:`codecs` module.
+
+ Parameters
+ ----------
+ a : array_like, with ``bytes_`` dtype
+
+ encoding : str, optional
+ The name of an encoding
+
+ errors : str, optional
+ Specifies how to handle encoding errors
+
+ Returns
+ -------
+ out : ndarray
+
+ See Also
+ --------
+ :py:meth:`bytes.decode`
+
+ Notes
+ -----
+ The type of the result will depend on the encoding specified.
+
+ Examples
+ --------
+ >>> import numpy as np
+ >>> c = np.array([b'\x81\xc1\x81\xc1\x81\xc1', b'@@\x81\xc1@@',
+ ... b'\x81\x82\xc2\xc1\xc2\x82\x81'])
+ >>> c
+ array([b'\x81\xc1\x81\xc1\x81\xc1', b'@@\x81\xc1@@',
+ b'\x81\x82\xc2\xc1\xc2\x82\x81'], dtype='|S7')
+ >>> np.strings.decode(c, encoding='cp037')
+ array(['aAaAaA', ' aA ', 'abBABba'], dtype='<U7')
+
+ """
+ return _to_bytes_or_str_array(
+ _vec_string(a, np.object_, 'decode', _clean_args(encoding, errors)),
+ np.str_(''))
+
+
+@set_module("numpy.strings")
+@array_function_dispatch(_code_dispatcher)
+def encode(a, encoding=None, errors=None):
+ """
+ Calls :meth:`str.encode` element-wise.
+
+ The set of available codecs comes from the Python standard library,
+ and may be extended at runtime. For more information, see the
+ :mod:`codecs` module.
+
+ Parameters
+ ----------
+ a : array_like, with ``StringDType`` or ``str_`` dtype
+
+ encoding : str, optional
+ The name of an encoding
+
+ errors : str, optional
+ Specifies how to handle encoding errors
+
+ Returns
+ -------
+ out : ndarray
+
+ See Also
+ --------
+ str.encode
+
+ Notes
+ -----
+ The type of the result will depend on the encoding specified.
+
+ Examples
+ --------
+ >>> import numpy as np
+ >>> a = np.array(['aAaAaA', ' aA ', 'abBABba'])
+ >>> np.strings.encode(a, encoding='cp037')
+ array([b'\x81\xc1\x81\xc1\x81\xc1', b'@@\x81\xc1@@',
+ b'\x81\x82\xc2\xc1\xc2\x82\x81'], dtype='|S7')
+
+ """
+ return _to_bytes_or_str_array(
+ _vec_string(a, np.object_, 'encode', _clean_args(encoding, errors)),
+ np.bytes_(b''))
+
+
+def _expandtabs_dispatcher(a, tabsize=None):
+ return (a,)
+
+
+@set_module("numpy.strings")
+@array_function_dispatch(_expandtabs_dispatcher)
+def expandtabs(a, tabsize=8):
+ """
+ Return a copy of each string element where all tab characters are
+ replaced by one or more spaces.
+
+ Calls :meth:`str.expandtabs` element-wise.
+
+ Return a copy of each string element where all tab characters are
+ replaced by one or more spaces, depending on the current column
+ and the given `tabsize`. The column number is reset to zero after
+ each newline occurring in the string. This doesn't understand other
+ non-printing characters or escape sequences.
+
+ Parameters
+ ----------
+ a : array-like, with ``StringDType``, ``bytes_``, or ``str_`` dtype
+ Input array
+ tabsize : int, optional
+ Replace tabs with `tabsize` number of spaces. If not given defaults
+ to 8 spaces.
+
+ Returns
+ -------
+ out : ndarray
+ Output array of ``StringDType``, ``bytes_`` or ``str_`` dtype,
+ depending on input type
+
+ See Also
+ --------
+ str.expandtabs
+
+ Examples
+ --------
+ >>> import numpy as np
+ >>> a = np.array(['\t\tHello\tworld'])
+ >>> np.strings.expandtabs(a, tabsize=4) # doctest: +SKIP
+ array([' Hello world'], dtype='<U21') # doctest: +SKIP
+
+ """
+ a = np.asanyarray(a)
+ tabsize = np.asanyarray(tabsize)
+
+ if a.dtype.char == "T":
+ return _expandtabs(a, tabsize)
+
+ buffersizes = _expandtabs_length(a, tabsize)
+ out_dtype = f"{a.dtype.char}{buffersizes.max()}"
+ out = np.empty_like(a, shape=buffersizes.shape, dtype=out_dtype)
+ return _expandtabs(a, tabsize, out=out)
+
+
+def _just_dispatcher(a, width, fillchar=None):
+ return (a,)
+
+
+@set_module("numpy.strings")
+@array_function_dispatch(_just_dispatcher)
+def center(a, width, fillchar=' '):
+ """
+ Return a copy of `a` with its elements centered in a string of
+ length `width`.
+
+ Parameters
+ ----------
+ a : array-like, with ``StringDType``, ``bytes_``, or ``str_`` dtype
+
+ width : array_like, with any integer dtype
+ The length of the resulting strings, unless ``width < str_len(a)``.
+ fillchar : array-like, with ``StringDType``, ``bytes_``, or ``str_`` dtype
+ Optional padding character to use (default is space).
+
+ Returns
+ -------
+ out : ndarray
+ Output array of ``StringDType``, ``bytes_`` or ``str_`` dtype,
+ depending on input types
+
+ See Also
+ --------
+ str.center
+
+ Notes
+ -----
+ While it is possible for ``a`` and ``fillchar`` to have different dtypes,
+ passing a non-ASCII character in ``fillchar`` when ``a`` is of dtype "S"
+ is not allowed, and a ``ValueError`` is raised.
+
+ Examples
+ --------
+ >>> import numpy as np
+ >>> c = np.array(['a1b2','1b2a','b2a1','2a1b']); c
+ array(['a1b2', '1b2a', 'b2a1', '2a1b'], dtype='<U4')
+ >>> np.strings.center(c, width=9)
+ array([' a1b2 ', ' 1b2a ', ' b2a1 ', ' 2a1b '], dtype='<U9')
+ >>> np.strings.center(c, width=9, fillchar='*')
+ array(['***a1b2**', '***1b2a**', '***b2a1**', '***2a1b**'], dtype='<U9')
+ >>> np.strings.center(c, width=1)
+ array(['a1b2', '1b2a', 'b2a1', '2a1b'], dtype='<U4')
+
+ """
+ width = np.asanyarray(width)
+
+ if not np.issubdtype(width.dtype, np.integer):
+ raise TypeError(f"unsupported type {width.dtype} for operand 'width'")
+
+ a = np.asanyarray(a)
+ fillchar = np.asanyarray(fillchar)
+
+ if np.any(str_len(fillchar) != 1):
+ raise TypeError(
+ "The fill character must be exactly one character long")
+
+ if np.result_type(a, fillchar).char == "T":
+ return _center(a, width, fillchar)
+
+ fillchar = fillchar.astype(a.dtype, copy=False)
+ width = np.maximum(str_len(a), width)
+ out_dtype = f"{a.dtype.char}{width.max()}"
+ shape = np.broadcast_shapes(a.shape, width.shape, fillchar.shape)
+ out = np.empty_like(a, shape=shape, dtype=out_dtype)
+
+ return _center(a, width, fillchar, out=out)
+
+
+@set_module("numpy.strings")
+@array_function_dispatch(_just_dispatcher)
+def ljust(a, width, fillchar=' '):
+ """
+ Return an array with the elements of `a` left-justified in a
+ string of length `width`.
+
+ Parameters
+ ----------
+ a : array-like, with ``StringDType``, ``bytes_``, or ``str_`` dtype
+
+ width : array_like, with any integer dtype
+ The length of the resulting strings, unless ``width < str_len(a)``.
+ fillchar : array-like, with ``StringDType``, ``bytes_``, or ``str_`` dtype
+ Optional character to use for padding (default is space).
+
+ Returns
+ -------
+ out : ndarray
+ Output array of ``StringDType``, ``bytes_`` or ``str_`` dtype,
+ depending on input types
+
+ See Also
+ --------
+ str.ljust
+
+ Notes
+ -----
+ While it is possible for ``a`` and ``fillchar`` to have different dtypes,
+ passing a non-ASCII character in ``fillchar`` when ``a`` is of dtype "S"
+ is not allowed, and a ``ValueError`` is raised.
+
+ Examples
+ --------
+ >>> import numpy as np
+ >>> c = np.array(['aAaAaA', ' aA ', 'abBABba'])
+ >>> np.strings.ljust(c, width=3)
+ array(['aAaAaA', ' aA ', 'abBABba'], dtype='<U7')
+ >>> np.strings.ljust(c, width=9)
+ array(['aAaAaA ', ' aA ', 'abBABba '], dtype='<U9')
+
+ """
+ width = np.asanyarray(width)
+ if not np.issubdtype(width.dtype, np.integer):
+ raise TypeError(f"unsupported type {width.dtype} for operand 'width'")
+
+ a = np.asanyarray(a)
+ fillchar = np.asanyarray(fillchar)
+
+ if np.any(str_len(fillchar) != 1):
+ raise TypeError(
+ "The fill character must be exactly one character long")
+
+ if np.result_type(a, fillchar).char == "T":
+ return _ljust(a, width, fillchar)
+
+ fillchar = fillchar.astype(a.dtype, copy=False)
+ width = np.maximum(str_len(a), width)
+ shape = np.broadcast_shapes(a.shape, width.shape, fillchar.shape)
+ out_dtype = f"{a.dtype.char}{width.max()}"
+ out = np.empty_like(a, shape=shape, dtype=out_dtype)
+
+ return _ljust(a, width, fillchar, out=out)
+
+
+@set_module("numpy.strings")
+@array_function_dispatch(_just_dispatcher)
+def rjust(a, width, fillchar=' '):
+ """
+ Return an array with the elements of `a` right-justified in a
+ string of length `width`.
+
+ Parameters
+ ----------
+ a : array-like, with ``StringDType``, ``bytes_``, or ``str_`` dtype
+
+ width : array_like, with any integer dtype
+ The length of the resulting strings, unless ``width < str_len(a)``.
+ fillchar : array-like, with ``StringDType``, ``bytes_``, or ``str_`` dtype
+ Optional padding character to use (default is space).
+
+ Returns
+ -------
+ out : ndarray
+ Output array of ``StringDType``, ``bytes_`` or ``str_`` dtype,
+ depending on input types
+
+ See Also
+ --------
+ str.rjust
+
+ Notes
+ -----
+ While it is possible for ``a`` and ``fillchar`` to have different dtypes,
+ passing a non-ASCII character in ``fillchar`` when ``a`` is of dtype "S"
+ is not allowed, and a ``ValueError`` is raised.
+
+ Examples
+ --------
+ >>> import numpy as np
+ >>> a = np.array(['aAaAaA', ' aA ', 'abBABba'])
+ >>> np.strings.rjust(a, width=3)
+ array(['aAaAaA', ' aA ', 'abBABba'], dtype='<U7')
+ >>> np.strings.rjust(a, width=9)
+ array([' aAaAaA', ' aA ', ' abBABba'], dtype='<U9')
+
+ """
+ width = np.asanyarray(width)
+ if not np.issubdtype(width.dtype, np.integer):
+ raise TypeError(f"unsupported type {width.dtype} for operand 'width'")
+
+ a = np.asanyarray(a)
+ fillchar = np.asanyarray(fillchar)
+
+ if np.any(str_len(fillchar) != 1):
+ raise TypeError(
+ "The fill character must be exactly one character long")
+
+ if np.result_type(a, fillchar).char == "T":
+ return _rjust(a, width, fillchar)
+
+ fillchar = fillchar.astype(a.dtype, copy=False)
+ width = np.maximum(str_len(a), width)
+ shape = np.broadcast_shapes(a.shape, width.shape, fillchar.shape)
+ out_dtype = f"{a.dtype.char}{width.max()}"
+ out = np.empty_like(a, shape=shape, dtype=out_dtype)
+
+ return _rjust(a, width, fillchar, out=out)
+
+
+def _zfill_dispatcher(a, width):
+ return (a,)
+
+
+@set_module("numpy.strings")
+@array_function_dispatch(_zfill_dispatcher)
+def zfill(a, width):
+ """
+ Return the numeric string left-filled with zeros. A leading
+ sign prefix (``+``/``-``) is handled by inserting the padding
+ after the sign character rather than before.
+
+ Parameters
+ ----------
+ a : array-like, with ``StringDType``, ``bytes_``, or ``str_`` dtype
+
+ width : array_like, with any integer dtype
+ Width of string to left-fill elements in `a`.
+
+ Returns
+ -------
+ out : ndarray
+ Output array of ``StringDType``, ``bytes_`` or ``str_`` dtype,
+ depending on input type
+
+ See Also
+ --------
+ str.zfill
+
+ Examples
+ --------
+ >>> import numpy as np
+ >>> np.strings.zfill(['1', '-1', '+1'], 3)
+ array(['001', '-01', '+01'], dtype='<U3')
+
+ """
+ width = np.asanyarray(width)
+ if not np.issubdtype(width.dtype, np.integer):
+ raise TypeError(f"unsupported type {width.dtype} for operand 'width'")
+
+ a = np.asanyarray(a)
+
+ if a.dtype.char == "T":
+ return _zfill(a, width)
+
+ width = np.maximum(str_len(a), width)
+ shape = np.broadcast_shapes(a.shape, width.shape)
+ out_dtype = f"{a.dtype.char}{width.max()}"
+ out = np.empty_like(a, shape=shape, dtype=out_dtype)
+ return _zfill(a, width, out=out)
+
+
+@set_module("numpy.strings")
+def lstrip(a, chars=None):
+ """
+ For each element in `a`, return a copy with the leading characters
+ removed.
+
+ Parameters
+ ----------
+ a : array-like, with ``StringDType``, ``bytes_``, or ``str_`` dtype
+ chars : scalar with the same dtype as ``a``, optional
+ The ``chars`` argument is a string specifying the set of
+ characters to be removed. If ``None``, the ``chars``
+ argument defaults to removing whitespace. The ``chars`` argument
+ is not a prefix or suffix; rather, all combinations of its
+ values are stripped.
+
+ Returns
+ -------
+ out : ndarray
+ Output array of ``StringDType``, ``bytes_`` or ``str_`` dtype,
+ depending on input types
+
+ See Also
+ --------
+ str.lstrip
+
+ Examples
+ --------
+ >>> import numpy as np
+ >>> c = np.array(['aAaAaA', ' aA ', 'abBABba'])
+ >>> c
+ array(['aAaAaA', ' aA ', 'abBABba'], dtype='<U7')
+ # The 'a' variable is unstripped from c[1] because of leading whitespace.
+ >>> np.strings.lstrip(c, 'a')
+ array(['AaAaA', ' aA ', 'bBABba'], dtype='<U7')
+ >>> np.strings.lstrip(c, 'A') # leaves c unchanged
+ array(['aAaAaA', ' aA ', 'abBABba'], dtype='<U7')
+ >>> (np.strings.lstrip(c, ' ') == np.strings.lstrip(c, '')).all()
+ np.False_
+ >>> (np.strings.lstrip(c, ' ') == np.strings.lstrip(c)).all()
+ np.True_
+
+ """
+ if chars is None:
+ return _lstrip_whitespace(a)
+ return _lstrip_chars(a, chars)
+
+
+@set_module("numpy.strings")
+def rstrip(a, chars=None):
+ """
+ For each element in `a`, return a copy with the trailing characters
+ removed.
+
+ Parameters
+ ----------
+ a : array-like, with ``StringDType``, ``bytes_``, or ``str_`` dtype
+ chars : scalar with the same dtype as ``a``, optional
+ The ``chars`` argument is a string specifying the set of
+ characters to be removed. If ``None``, the ``chars``
+ argument defaults to removing whitespace. The ``chars`` argument
+ is not a prefix or suffix; rather, all combinations of its
+ values are stripped.
+
+ Returns
+ -------
+ out : ndarray
+ Output array of ``StringDType``, ``bytes_`` or ``str_`` dtype,
+ depending on input types
+
+ See Also
+ --------
+ str.rstrip
+
+ Examples
+ --------
+ >>> import numpy as np
+ >>> c = np.array(['aAaAaA', 'abBABba'])
+ >>> c
+ array(['aAaAaA', 'abBABba'], dtype='<U7')
+ >>> np.strings.rstrip(c, 'a')
+ array(['aAaAaA', 'abBABb'], dtype='<U7')
+ >>> np.strings.rstrip(c, 'A')
+ array(['aAaAa', 'abBABba'], dtype='<U7')
+
+ """
+ if chars is None:
+ return _rstrip_whitespace(a)
+ return _rstrip_chars(a, chars)
+
+
+@set_module("numpy.strings")
+def strip(a, chars=None):
+ """
+ For each element in `a`, return a copy with the leading and
+ trailing characters removed.
+
+ Parameters
+ ----------
+ a : array-like, with ``StringDType``, ``bytes_``, or ``str_`` dtype
+ chars : scalar with the same dtype as ``a``, optional
+ The ``chars`` argument is a string specifying the set of
+ characters to be removed. If ``None``, the ``chars``
+ argument defaults to removing whitespace. The ``chars`` argument
+ is not a prefix or suffix; rather, all combinations of its
+ values are stripped.
+
+ Returns
+ -------
+ out : ndarray
+ Output array of ``StringDType``, ``bytes_`` or ``str_`` dtype,
+ depending on input types
+
+ See Also
+ --------
+ str.strip
+
+ Examples
+ --------
+ >>> import numpy as np
+ >>> c = np.array(['aAaAaA', ' aA ', 'abBABba'])
+ >>> c
+ array(['aAaAaA', ' aA ', 'abBABba'], dtype='<U7')
+ >>> np.strings.strip(c)
+ array(['aAaAaA', 'aA', 'abBABba'], dtype='<U7')
+ # 'a' unstripped from c[1] because of leading whitespace.
+ >>> np.strings.strip(c, 'a')
+ array(['AaAaA', ' aA ', 'bBABb'], dtype='<U7')
+ # 'A' unstripped from c[1] because of trailing whitespace.
+ >>> np.strings.strip(c, 'A')
+ array(['aAaAa', ' aA ', 'abBABba'], dtype='<U7')
+
+ """
+ if chars is None:
+ return _strip_whitespace(a)
+ return _strip_chars(a, chars)
+
+
+def _unary_op_dispatcher(a):
+ return (a,)
+
+
+@set_module("numpy.strings")
+@array_function_dispatch(_unary_op_dispatcher)
+def upper(a):
+ """
+ Return an array with the elements converted to uppercase.
+
+ Calls :meth:`str.upper` element-wise.
+
+ For 8-bit strings, this method is locale-dependent.
+
+ Parameters
+ ----------
+ a : array-like, with ``StringDType``, ``bytes_``, or ``str_`` dtype
+ Input array.
+
+ Returns
+ -------
+ out : ndarray
+ Output array of ``StringDType``, ``bytes_`` or ``str_`` dtype,
+ depending on input types
+
+ See Also
+ --------
+ str.upper
+
+ Examples
+ --------
+ >>> import numpy as np
+ >>> c = np.array(['a1b c', '1bca', 'bca1']); c
+ array(['a1b c', '1bca', 'bca1'], dtype='<U5')
+ >>> np.strings.upper(c)
+ array(['A1B C', '1BCA', 'BCA1'], dtype='<U5')
+
+ """
+ a_arr = np.asarray(a)
+ return _vec_string(a_arr, a_arr.dtype, 'upper')
+
+
+@set_module("numpy.strings")
+@array_function_dispatch(_unary_op_dispatcher)
+def lower(a):
+ """
+ Return an array with the elements converted to lowercase.
+
+ Call :meth:`str.lower` element-wise.
+
+ For 8-bit strings, this method is locale-dependent.
+
+ Parameters
+ ----------
+ a : array-like, with ``StringDType``, ``bytes_``, or ``str_`` dtype
+ Input array.
+
+ Returns
+ -------
+ out : ndarray
+ Output array of ``StringDType``, ``bytes_`` or ``str_`` dtype,
+ depending on input types
+
+ See Also
+ --------
+ str.lower
+
+ Examples
+ --------
+ >>> import numpy as np
+ >>> c = np.array(['A1B C', '1BCA', 'BCA1']); c
+ array(['A1B C', '1BCA', 'BCA1'], dtype='<U5')
+ >>> np.strings.lower(c)
+ array(['a1b c', '1bca', 'bca1'], dtype='<U5')
+
+ """
+ a_arr = np.asarray(a)
+ return _vec_string(a_arr, a_arr.dtype, 'lower')
+
+
+@set_module("numpy.strings")
+@array_function_dispatch(_unary_op_dispatcher)
+def swapcase(a):
+ """
+ Return element-wise a copy of the string with
+ uppercase characters converted to lowercase and vice versa.
+
+ Calls :meth:`str.swapcase` element-wise.
+
+ For 8-bit strings, this method is locale-dependent.
+
+ Parameters
+ ----------
+ a : array-like, with ``StringDType``, ``bytes_``, or ``str_`` dtype
+ Input array.
+
+ Returns
+ -------
+ out : ndarray
+ Output array of ``StringDType``, ``bytes_`` or ``str_`` dtype,
+ depending on input types
+
+ See Also
+ --------
+ str.swapcase
+
+ Examples
+ --------
+ >>> import numpy as np
+ >>> c=np.array(['a1B c','1b Ca','b Ca1','cA1b'],'S5'); c
+ array(['a1B c', '1b Ca', 'b Ca1', 'cA1b'],
+ dtype='|S5')
+ >>> np.strings.swapcase(c)
+ array(['A1b C', '1B cA', 'B cA1', 'Ca1B'],
+ dtype='|S5')
+
+ """
+ a_arr = np.asarray(a)
+ return _vec_string(a_arr, a_arr.dtype, 'swapcase')
+
+
+@set_module("numpy.strings")
+@array_function_dispatch(_unary_op_dispatcher)
+def capitalize(a):
+ """
+ Return a copy of ``a`` with only the first character of each element
+ capitalized.
+
+ Calls :meth:`str.capitalize` element-wise.
+
+ For byte strings, this method is locale-dependent.
+
+ Parameters
+ ----------
+ a : array-like, with ``StringDType``, ``bytes_``, or ``str_`` dtype
+ Input array of strings to capitalize.
+
+ Returns
+ -------
+ out : ndarray
+ Output array of ``StringDType``, ``bytes_`` or ``str_`` dtype,
+ depending on input types
+
+ See Also
+ --------
+ str.capitalize
+
+ Examples
+ --------
+ >>> import numpy as np
+ >>> c = np.array(['a1b2','1b2a','b2a1','2a1b'],'S4'); c
+ array(['a1b2', '1b2a', 'b2a1', '2a1b'],
+ dtype='|S4')
+ >>> np.strings.capitalize(c)
+ array(['A1b2', '1b2a', 'B2a1', '2a1b'],
+ dtype='|S4')
+
+ """
+ a_arr = np.asarray(a)
+ return _vec_string(a_arr, a_arr.dtype, 'capitalize')
+
+
+@set_module("numpy.strings")
+@array_function_dispatch(_unary_op_dispatcher)
+def title(a):
+ """
+ Return element-wise title cased version of string or unicode.
+
+ Title case words start with uppercase characters, all remaining cased
+ characters are lowercase.
+
+ Calls :meth:`str.title` element-wise.
+
+ For 8-bit strings, this method is locale-dependent.
+
+ Parameters
+ ----------
+ a : array-like, with ``StringDType``, ``bytes_``, or ``str_`` dtype
+ Input array.
+
+ Returns
+ -------
+ out : ndarray
+ Output array of ``StringDType``, ``bytes_`` or ``str_`` dtype,
+ depending on input types
+
+ See Also
+ --------
+ str.title
+
+ Examples
+ --------
+ >>> import numpy as np
+ >>> c=np.array(['a1b c','1b ca','b ca1','ca1b'],'S5'); c
+ array(['a1b c', '1b ca', 'b ca1', 'ca1b'],
+ dtype='|S5')
+ >>> np.strings.title(c)
+ array(['A1B C', '1B Ca', 'B Ca1', 'Ca1B'],
+ dtype='|S5')
+
+ """
+ a_arr = np.asarray(a)
+ return _vec_string(a_arr, a_arr.dtype, 'title')
+
+
+def _replace_dispatcher(a, old, new, count=None):
+ return (a,)
+
+
+@set_module("numpy.strings")
+@array_function_dispatch(_replace_dispatcher)
+def replace(a, old, new, count=-1):
+ """
+ For each element in ``a``, return a copy of the string with
+ occurrences of substring ``old`` replaced by ``new``.
+
+ Parameters
+ ----------
+ a : array_like, with ``bytes_`` or ``str_`` dtype
+
+ old, new : array_like, with ``bytes_`` or ``str_`` dtype
+
+ count : array_like, with ``int_`` dtype
+ If the optional argument ``count`` is given, only the first
+ ``count`` occurrences are replaced.
+
+ Returns
+ -------
+ out : ndarray
+ Output array of ``StringDType``, ``bytes_`` or ``str_`` dtype,
+ depending on input types
+
+ See Also
+ --------
+ str.replace
+
+ Examples
+ --------
+ >>> import numpy as np
+ >>> a = np.array(["That is a mango", "Monkeys eat mangos"])
+ >>> np.strings.replace(a, 'mango', 'banana')
+ array(['That is a banana', 'Monkeys eat bananas'], dtype='<U19')
+
+ >>> a = np.array(["The dish is fresh", "This is it"])
+ >>> np.strings.replace(a, 'is', 'was')
+ array(['The dwash was fresh', 'Thwas was it'], dtype='<U19')
+
+ """
+ count = np.asanyarray(count)
+ if not np.issubdtype(count.dtype, np.integer):
+ raise TypeError(f"unsupported type {count.dtype} for operand 'count'")
+
+ arr = np.asanyarray(a)
+ old_dtype = getattr(old, 'dtype', None)
+ old = np.asanyarray(old)
+ new_dtype = getattr(new, 'dtype', None)
+ new = np.asanyarray(new)
+
+ if np.result_type(arr, old, new).char == "T":
+ return _replace(arr, old, new, count)
+
+ a_dt = arr.dtype
+ old = old.astype(old_dtype or a_dt, copy=False)
+ new = new.astype(new_dtype or a_dt, copy=False)
+ max_int64 = np.iinfo(np.int64).max
+ counts = _count_ufunc(arr, old, 0, max_int64)
+ counts = np.where(count < 0, counts, np.minimum(counts, count))
+ buffersizes = str_len(arr) + counts * (str_len(new) - str_len(old))
+ out_dtype = f"{arr.dtype.char}{buffersizes.max()}"
+ out = np.empty_like(arr, shape=buffersizes.shape, dtype=out_dtype)
+
+ return _replace(arr, old, new, counts, out=out)
+
+
+def _join_dispatcher(sep, seq):
+ return (sep, seq)
+
+
+@array_function_dispatch(_join_dispatcher)
+def _join(sep, seq):
+ """
+ Return a string which is the concatenation of the strings in the
+ sequence `seq`.
+
+ Calls :meth:`str.join` element-wise.
+
+ Parameters
+ ----------
+ sep : array-like, with ``StringDType``, ``bytes_``, or ``str_`` dtype
+ seq : array-like, with ``StringDType``, ``bytes_``, or ``str_`` dtype
+
+ Returns
+ -------
+ out : ndarray
+ Output array of ``StringDType``, ``bytes_`` or ``str_`` dtype,
+ depending on input types
+
+ See Also
+ --------
+ str.join
+
+ Examples
+ --------
+ >>> import numpy as np
+ >>> np.strings.join('-', 'osd') # doctest: +SKIP
+ array('o-s-d', dtype='<U5') # doctest: +SKIP
+
+ >>> np.strings.join(['-', '.'], ['ghc', 'osd']) # doctest: +SKIP
+ array(['g-h-c', 'o.s.d'], dtype='<U5') # doctest: +SKIP
+
+ """
+ return _to_bytes_or_str_array(
+ _vec_string(sep, np.object_, 'join', (seq,)), seq)
+
+
+def _split_dispatcher(a, sep=None, maxsplit=None):
+ return (a,)
+
+
+@array_function_dispatch(_split_dispatcher)
+def _split(a, sep=None, maxsplit=None):
+ """
+ For each element in `a`, return a list of the words in the
+ string, using `sep` as the delimiter string.
+
+ Calls :meth:`str.split` element-wise.
+
+ Parameters
+ ----------
+ a : array-like, with ``StringDType``, ``bytes_``, or ``str_`` dtype
+
+ sep : str or unicode, optional
+ If `sep` is not specified or None, any whitespace string is a
+ separator.
+
+ maxsplit : int, optional
+ If `maxsplit` is given, at most `maxsplit` splits are done.
+
+ Returns
+ -------
+ out : ndarray
+ Array of list objects
+
+ Examples
+ --------
+ >>> import numpy as np
+ >>> x = np.array("Numpy is nice!")
+ >>> np.strings.split(x, " ") # doctest: +SKIP
+ array(list(['Numpy', 'is', 'nice!']), dtype=object) # doctest: +SKIP
+
+ >>> np.strings.split(x, " ", 1) # doctest: +SKIP
+ array(list(['Numpy', 'is nice!']), dtype=object) # doctest: +SKIP
+
+ See Also
+ --------
+ str.split, rsplit
+
+ """
+ # This will return an array of lists of different sizes, so we
+ # leave it as an object array
+ return _vec_string(
+ a, np.object_, 'split', [sep] + _clean_args(maxsplit))
+
+
+@array_function_dispatch(_split_dispatcher)
+def _rsplit(a, sep=None, maxsplit=None):
+ """
+ For each element in `a`, return a list of the words in the
+ string, using `sep` as the delimiter string.
+
+ Calls :meth:`str.rsplit` element-wise.
+
+ Except for splitting from the right, `rsplit`
+ behaves like `split`.
+
+ Parameters
+ ----------
+ a : array-like, with ``StringDType``, ``bytes_``, or ``str_`` dtype
+
+ sep : str or unicode, optional
+ If `sep` is not specified or None, any whitespace string
+ is a separator.
+ maxsplit : int, optional
+ If `maxsplit` is given, at most `maxsplit` splits are done,
+ the rightmost ones.
+
+ Returns
+ -------
+ out : ndarray
+ Array of list objects
+
+ See Also
+ --------
+ str.rsplit, split
+
+ Examples
+ --------
+ >>> import numpy as np
+ >>> a = np.array(['aAaAaA', 'abBABba'])
+ >>> np.strings.rsplit(a, 'A') # doctest: +SKIP
+ array([list(['a', 'a', 'a', '']), # doctest: +SKIP
+ list(['abB', 'Bba'])], dtype=object) # doctest: +SKIP
+
+ """
+ # This will return an array of lists of different sizes, so we
+ # leave it as an object array
+ return _vec_string(
+ a, np.object_, 'rsplit', [sep] + _clean_args(maxsplit))
+
+
+def _splitlines_dispatcher(a, keepends=None):
+ return (a,)
+
+
+@array_function_dispatch(_splitlines_dispatcher)
+def _splitlines(a, keepends=None):
+ """
+ For each element in `a`, return a list of the lines in the
+ element, breaking at line boundaries.
+
+ Calls :meth:`str.splitlines` element-wise.
+
+ Parameters
+ ----------
+ a : array-like, with ``StringDType``, ``bytes_``, or ``str_`` dtype
+
+ keepends : bool, optional
+ Line breaks are not included in the resulting list unless
+ keepends is given and true.
+
+ Returns
+ -------
+ out : ndarray
+ Array of list objects
+
+ See Also
+ --------
+ str.splitlines
+
+ Examples
+ --------
+ >>> np.char.splitlines("first line\\nsecond line")
+ array(list(['first line', 'second line']), dtype=object)
+ >>> a = np.array(["first\\nsecond", "third\\nfourth"])
+ >>> np.char.splitlines(a)
+ array([list(['first', 'second']), list(['third', 'fourth'])], dtype=object)
+
+ """
+ return _vec_string(
+ a, np.object_, 'splitlines', _clean_args(keepends))
+
+
+def _partition_dispatcher(a, sep):
+ return (a,)
+
+
+@set_module("numpy.strings")
+@array_function_dispatch(_partition_dispatcher)
+def partition(a, sep):
+ """
+ Partition each element in ``a`` around ``sep``.
+
+ For each element in ``a``, split the element at the first
+ occurrence of ``sep``, and return a 3-tuple containing the part
+ before the separator, the separator itself, and the part after
+ the separator. If the separator is not found, the first item of
+ the tuple will contain the whole string, and the second and third
+ ones will be the empty string.
+
+ Parameters
+ ----------
+ a : array-like, with ``StringDType``, ``bytes_``, or ``str_`` dtype
+ Input array
+ sep : array-like, with ``StringDType``, ``bytes_``, or ``str_`` dtype
+ Separator to split each string element in ``a``.
+
+ Returns
+ -------
+ out : 3-tuple:
+ - array with ``StringDType``, ``bytes_`` or ``str_`` dtype with the
+ part before the separator
+ - array with ``StringDType``, ``bytes_`` or ``str_`` dtype with the
+ separator
+ - array with ``StringDType``, ``bytes_`` or ``str_`` dtype with the
+ part after the separator
+
+ See Also
+ --------
+ str.partition
+
+ Examples
+ --------
+ >>> import numpy as np
+ >>> x = np.array(["Numpy is nice!"])
+ >>> np.strings.partition(x, " ")
+ (array(['Numpy'], dtype='<U5'),
+ array([' '], dtype='<U1'),
+ array(['is nice!'], dtype='<U8'))
+
+ """
+ a = np.asanyarray(a)
+ sep = np.asanyarray(sep)
+
+ if np.result_type(a, sep).char == "T":
+ return _partition(a, sep)
+
+ sep = sep.astype(a.dtype, copy=False)
+ pos = _find_ufunc(a, sep, 0, MAX)
+ a_len = str_len(a)
+ sep_len = str_len(sep)
+
+ not_found = pos < 0
+ buffersizes1 = np.where(not_found, a_len, pos)
+ buffersizes3 = np.where(not_found, 0, a_len - pos - sep_len)
+
+ out_dtype = ",".join([f"{a.dtype.char}{n}" for n in (
+ buffersizes1.max(),
+ 1 if np.all(not_found) else sep_len.max(),
+ buffersizes3.max(),
+ )])
+ shape = np.broadcast_shapes(a.shape, sep.shape)
+ out = np.empty_like(a, shape=shape, dtype=out_dtype)
+ return _partition_index(a, sep, pos, out=(out["f0"], out["f1"], out["f2"]))
+
+
+@set_module("numpy.strings")
+@array_function_dispatch(_partition_dispatcher)
+def rpartition(a, sep):
+ """
+ Partition (split) each element around the right-most separator.
+
+ For each element in ``a``, split the element at the last
+ occurrence of ``sep``, and return a 3-tuple containing the part
+ before the separator, the separator itself, and the part after
+ the separator. If the separator is not found, the third item of
+ the tuple will contain the whole string, and the first and second
+ ones will be the empty string.
+
+ Parameters
+ ----------
+ a : array-like, with ``StringDType``, ``bytes_``, or ``str_`` dtype
+ Input array
+ sep : array-like, with ``StringDType``, ``bytes_``, or ``str_`` dtype
+ Separator to split each string element in ``a``.
+
+ Returns
+ -------
+ out : 3-tuple:
+ - array with ``StringDType``, ``bytes_`` or ``str_`` dtype with the
+ part before the separator
+ - array with ``StringDType``, ``bytes_`` or ``str_`` dtype with the
+ separator
+ - array with ``StringDType``, ``bytes_`` or ``str_`` dtype with the
+ part after the separator
+
+ See Also
+ --------
+ str.rpartition
+
+ Examples
+ --------
+ >>> import numpy as np
+ >>> a = np.array(['aAaAaA', ' aA ', 'abBABba'])
+ >>> np.strings.rpartition(a, 'A')
+ (array(['aAaAa', ' a', 'abB'], dtype='<U5'),
+ array(['A', 'A', 'A'], dtype='<U1'),
+ array(['', ' ', 'Bba'], dtype='<U3'))
+
+ """
+ a = np.asanyarray(a)
+ sep = np.asanyarray(sep)
+
+ if np.result_type(a, sep).char == "T":
+ return _rpartition(a, sep)
+
+ sep = sep.astype(a.dtype, copy=False)
+ pos = _rfind_ufunc(a, sep, 0, MAX)
+ a_len = str_len(a)
+ sep_len = str_len(sep)
+
+ not_found = pos < 0
+ buffersizes1 = np.where(not_found, 0, pos)
+ buffersizes3 = np.where(not_found, a_len, a_len - pos - sep_len)
+
+ out_dtype = ",".join([f"{a.dtype.char}{n}" for n in (
+ buffersizes1.max(),
+ 1 if np.all(not_found) else sep_len.max(),
+ buffersizes3.max(),
+ )])
+ shape = np.broadcast_shapes(a.shape, sep.shape)
+ out = np.empty_like(a, shape=shape, dtype=out_dtype)
+ return _rpartition_index(
+ a, sep, pos, out=(out["f0"], out["f1"], out["f2"]))
+
+
+def _translate_dispatcher(a, table, deletechars=None):
+ return (a,)
+
+
+@set_module("numpy.strings")
+@array_function_dispatch(_translate_dispatcher)
+def translate(a, table, deletechars=None):
+ """
+ For each element in `a`, return a copy of the string where all
+ characters occurring in the optional argument `deletechars` are
+ removed, and the remaining characters have been mapped through the
+ given translation table.
+
+ Calls :meth:`str.translate` element-wise.
+
+ Parameters
+ ----------
+ a : array-like, with `np.bytes_` or `np.str_` dtype
+
+ table : str of length 256
+
+ deletechars : str
+
+ Returns
+ -------
+ out : ndarray
+ Output array of str or unicode, depending on input type
+
+ See Also
+ --------
+ str.translate
+
+ Examples
+ --------
+ >>> import numpy as np
+ >>> a = np.array(['a1b c', '1bca', 'bca1'])
+ >>> table = a[0].maketrans('abc', '123')
+ >>> deletechars = ' '
+ >>> np.char.translate(a, table, deletechars)
+ array(['112 3', '1231', '2311'], dtype='<U5')
+
+ """
+ a_arr = np.asarray(a)
+ if issubclass(a_arr.dtype.type, np.str_):
+ return _vec_string(
+ a_arr, a_arr.dtype, 'translate', (table,))
+ else:
+ return _vec_string(
+ a_arr,
+ a_arr.dtype,
+ 'translate',
+ [table] + _clean_args(deletechars)
+ )
+
+@set_module("numpy.strings")
+def slice(a, start=None, stop=None, step=None, /):
+ """
+ Slice the strings in `a` by slices specified by `start`, `stop`, `step`.
+ Like in the regular Python `slice` object, if only `start` is
+ specified then it is interpreted as the `stop`.
+
+ Parameters
+ ----------
+ a : array-like, with ``StringDType``, ``bytes_``, or ``str_`` dtype
+ Input array
+
+ start : None, an integer or an array of integers
+ The start of the slice, broadcasted to `a`'s shape
+
+ stop : None, an integer or an array of integers
+ The end of the slice, broadcasted to `a`'s shape
+
+ step : None, an integer or an array of integers
+ The step for the slice, broadcasted to `a`'s shape
+
+ Returns
+ -------
+ out : ndarray
+ Output array of ``StringDType``, ``bytes_`` or ``str_`` dtype,
+ depending on input type
+
+ Examples
+ --------
+ >>> import numpy as np
+ >>> a = np.array(['hello', 'world'])
+ >>> np.strings.slice(a, 2)
+ array(['he', 'wo'], dtype='<U5')
+
+ >>> np.strings.slice(a, 1, 5, 2)
+ array(['el', 'ol'], dtype='<U5')
+
+ One can specify different start/stop/step for different array entries:
+
+ >>> np.strings.slice(a, np.array([1, 2]), np.array([4, 5]))
+ array(['ell', 'rld'], dtype='<U5')
+
+ Negative slices have the same meaning as in regular Python:
+
+ >>> b = np.array(['hello world', 'γεια σου κόσμε', '你好世界', '👋 🌍'],
+ ... dtype=np.dtypes.StringDType())
+ >>> np.strings.slice(b, -2)
+ array(['hello wor', 'γεια σου κόσ', '你好', '👋'], dtype=StringDType())
+
+ >>> np.strings.slice(b, [3, -10, 2, -3], [-1, -2, -1, 3])
+ array(['lo worl', ' σου κόσ', '世', '👋 🌍'], dtype=StringDType())
+
+ >>> np.strings.slice(b, None, None, -1)
+ array(['dlrow olleh', 'εμσόκ υοσ αιεγ', '界世好你', '🌍 👋'],
+ dtype=StringDType())
+
+ """
+ # Just like in the construction of a regular slice object, if only start
+ # is specified then start will become stop, see logic in slice_new.
+ if stop is None:
+ stop = start
+ start = None
+
+ # adjust start, stop, step to be integers, see logic in PySlice_Unpack
+ if step is None:
+ step = 1
+ step = np.asanyarray(step)
+ if not np.issubdtype(step.dtype, np.integer):
+ raise TypeError(f"unsupported type {step.dtype} for operand 'step'")
+ if np.any(step == 0):
+ raise ValueError("slice step cannot be zero")
+
+ if start is None:
+ start = np.where(step < 0, np.iinfo(np.intp).max, 0)
+
+ if stop is None:
+ stop = np.where(step < 0, np.iinfo(np.intp).min, np.iinfo(np.intp).max)
+
+ return _slice(a, start, stop, step)
diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/strings.pyi b/.venv/lib/python3.12/site-packages/numpy/_core/strings.pyi
new file mode 100644
index 0000000..b187ce7
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/_core/strings.pyi
@@ -0,0 +1,511 @@
+from typing import TypeAlias, overload
+
+import numpy as np
+from numpy._typing import NDArray, _AnyShape, _SupportsArray
+from numpy._typing import _ArrayLikeAnyString_co as UST_co
+from numpy._typing import _ArrayLikeBytes_co as S_co
+from numpy._typing import _ArrayLikeInt_co as i_co
+from numpy._typing import _ArrayLikeStr_co as U_co
+from numpy._typing import _ArrayLikeString_co as T_co
+
+__all__ = [
+ "add",
+ "capitalize",
+ "center",
+ "count",
+ "decode",
+ "encode",
+ "endswith",
+ "equal",
+ "expandtabs",
+ "find",
+ "greater",
+ "greater_equal",
+ "index",
+ "isalnum",
+ "isalpha",
+ "isdecimal",
+ "isdigit",
+ "islower",
+ "isnumeric",
+ "isspace",
+ "istitle",
+ "isupper",
+ "less",
+ "less_equal",
+ "ljust",
+ "lower",
+ "lstrip",
+ "mod",
+ "multiply",
+ "not_equal",
+ "partition",
+ "replace",
+ "rfind",
+ "rindex",
+ "rjust",
+ "rpartition",
+ "rstrip",
+ "startswith",
+ "str_len",
+ "strip",
+ "swapcase",
+ "title",
+ "translate",
+ "upper",
+ "zfill",
+ "slice",
+]
+
+_StringDTypeArray: TypeAlias = np.ndarray[_AnyShape, np.dtypes.StringDType]
+_StringDTypeSupportsArray: TypeAlias = _SupportsArray[np.dtypes.StringDType]
+_StringDTypeOrUnicodeArray: TypeAlias = np.ndarray[_AnyShape, np.dtype[np.str_]] | _StringDTypeArray
+
+@overload
+def equal(x1: U_co, x2: U_co) -> NDArray[np.bool]: ...
+@overload
+def equal(x1: S_co, x2: S_co) -> NDArray[np.bool]: ...
+@overload
+def equal(x1: T_co, x2: T_co) -> NDArray[np.bool]: ...
+
+@overload
+def not_equal(x1: U_co, x2: U_co) -> NDArray[np.bool]: ...
+@overload
+def not_equal(x1: S_co, x2: S_co) -> NDArray[np.bool]: ...
+@overload
+def not_equal(x1: T_co, x2: T_co) -> NDArray[np.bool]: ...
+
+@overload
+def greater_equal(x1: U_co, x2: U_co) -> NDArray[np.bool]: ...
+@overload
+def greater_equal(x1: S_co, x2: S_co) -> NDArray[np.bool]: ...
+@overload
+def greater_equal(x1: T_co, x2: T_co) -> NDArray[np.bool]: ...
+
+@overload
+def less_equal(x1: U_co, x2: U_co) -> NDArray[np.bool]: ...
+@overload
+def less_equal(x1: S_co, x2: S_co) -> NDArray[np.bool]: ...
+@overload
+def less_equal(x1: T_co, x2: T_co) -> NDArray[np.bool]: ...
+
+@overload
+def greater(x1: U_co, x2: U_co) -> NDArray[np.bool]: ...
+@overload
+def greater(x1: S_co, x2: S_co) -> NDArray[np.bool]: ...
+@overload
+def greater(x1: T_co, x2: T_co) -> NDArray[np.bool]: ...
+
+@overload
+def less(x1: U_co, x2: U_co) -> NDArray[np.bool]: ...
+@overload
+def less(x1: S_co, x2: S_co) -> NDArray[np.bool]: ...
+@overload
+def less(x1: T_co, x2: T_co) -> NDArray[np.bool]: ...
+
+@overload
+def add(x1: U_co, x2: U_co) -> NDArray[np.str_]: ...
+@overload
+def add(x1: S_co, x2: S_co) -> NDArray[np.bytes_]: ...
+@overload
+def add(x1: _StringDTypeSupportsArray, x2: _StringDTypeSupportsArray) -> _StringDTypeArray: ...
+@overload
+def add(x1: T_co, x2: T_co) -> _StringDTypeOrUnicodeArray: ...
+
+@overload
+def multiply(a: U_co, i: i_co) -> NDArray[np.str_]: ...
+@overload
+def multiply(a: S_co, i: i_co) -> NDArray[np.bytes_]: ...
+@overload
+def multiply(a: _StringDTypeSupportsArray, i: i_co) -> _StringDTypeArray: ...
+@overload
+def multiply(a: T_co, i: i_co) -> _StringDTypeOrUnicodeArray: ...
+
+@overload
+def mod(a: U_co, value: object) -> NDArray[np.str_]: ...
+@overload
+def mod(a: S_co, value: object) -> NDArray[np.bytes_]: ...
+@overload
+def mod(a: _StringDTypeSupportsArray, value: object) -> _StringDTypeArray: ...
+@overload
+def mod(a: T_co, value: object) -> _StringDTypeOrUnicodeArray: ...
+
+def isalpha(x: UST_co) -> NDArray[np.bool]: ...
+def isalnum(a: UST_co) -> NDArray[np.bool]: ...
+def isdigit(x: UST_co) -> NDArray[np.bool]: ...
+def isspace(x: UST_co) -> NDArray[np.bool]: ...
+def isdecimal(x: U_co | T_co) -> NDArray[np.bool]: ...
+def isnumeric(x: U_co | T_co) -> NDArray[np.bool]: ...
+def islower(a: UST_co) -> NDArray[np.bool]: ...
+def istitle(a: UST_co) -> NDArray[np.bool]: ...
+def isupper(a: UST_co) -> NDArray[np.bool]: ...
+
+def str_len(x: UST_co) -> NDArray[np.int_]: ...
+
+@overload
+def find(
+ a: U_co,
+ sub: U_co,
+ start: i_co = ...,
+ end: i_co | None = ...,
+) -> NDArray[np.int_]: ...
+@overload
+def find(
+ a: S_co,
+ sub: S_co,
+ start: i_co = ...,
+ end: i_co | None = ...,
+) -> NDArray[np.int_]: ...
+@overload
+def find(
+ a: T_co,
+ sub: T_co,
+ start: i_co = ...,
+ end: i_co | None = ...,
+) -> NDArray[np.int_]: ...
+
+@overload
+def rfind(
+ a: U_co,
+ sub: U_co,
+ start: i_co = ...,
+ end: i_co | None = ...,
+) -> NDArray[np.int_]: ...
+@overload
+def rfind(
+ a: S_co,
+ sub: S_co,
+ start: i_co = ...,
+ end: i_co | None = ...,
+) -> NDArray[np.int_]: ...
+@overload
+def rfind(
+ a: T_co,
+ sub: T_co,
+ start: i_co = ...,
+ end: i_co | None = ...,
+) -> NDArray[np.int_]: ...
+
+@overload
+def index(
+ a: U_co,
+ sub: U_co,
+ start: i_co = ...,
+ end: i_co | None = ...,
+) -> NDArray[np.int_]: ...
+@overload
+def index(
+ a: S_co,
+ sub: S_co,
+ start: i_co = ...,
+ end: i_co | None = ...,
+) -> NDArray[np.int_]: ...
+@overload
+def index(
+ a: T_co,
+ sub: T_co,
+ start: i_co = ...,
+ end: i_co | None = ...,
+) -> NDArray[np.int_]: ...
+
+@overload
+def rindex(
+ a: U_co,
+ sub: U_co,
+ start: i_co = ...,
+ end: i_co | None = ...,
+) -> NDArray[np.int_]: ...
+@overload
+def rindex(
+ a: S_co,
+ sub: S_co,
+ start: i_co = ...,
+ end: i_co | None = ...,
+) -> NDArray[np.int_]: ...
+@overload
+def rindex(
+ a: T_co,
+ sub: T_co,
+ start: i_co = ...,
+ end: i_co | None = ...,
+) -> NDArray[np.int_]: ...
+
+@overload
+def count(
+ a: U_co,
+ sub: U_co,
+ start: i_co = ...,
+ end: i_co | None = ...,
+) -> NDArray[np.int_]: ...
+@overload
+def count(
+ a: S_co,
+ sub: S_co,
+ start: i_co = ...,
+ end: i_co | None = ...,
+) -> NDArray[np.int_]: ...
+@overload
+def count(
+ a: T_co,
+ sub: T_co,
+ start: i_co = ...,
+ end: i_co | None = ...,
+) -> NDArray[np.int_]: ...
+
+@overload
+def startswith(
+ a: U_co,
+ prefix: U_co,
+ start: i_co = ...,
+ end: i_co | None = ...,
+) -> NDArray[np.bool]: ...
+@overload
+def startswith(
+ a: S_co,
+ prefix: S_co,
+ start: i_co = ...,
+ end: i_co | None = ...,
+) -> NDArray[np.bool]: ...
+@overload
+def startswith(
+ a: T_co,
+ prefix: T_co,
+ start: i_co = ...,
+ end: i_co | None = ...,
+) -> NDArray[np.bool]: ...
+
+@overload
+def endswith(
+ a: U_co,
+ suffix: U_co,
+ start: i_co = ...,
+ end: i_co | None = ...,
+) -> NDArray[np.bool]: ...
+@overload
+def endswith(
+ a: S_co,
+ suffix: S_co,
+ start: i_co = ...,
+ end: i_co | None = ...,
+) -> NDArray[np.bool]: ...
+@overload
+def endswith(
+ a: T_co,
+ suffix: T_co,
+ start: i_co = ...,
+ end: i_co | None = ...,
+) -> NDArray[np.bool]: ...
+
+def decode(
+ a: S_co,
+ encoding: str | None = None,
+ errors: str | None = None,
+) -> NDArray[np.str_]: ...
+def encode(
+ a: U_co | T_co,
+ encoding: str | None = None,
+ errors: str | None = None,
+) -> NDArray[np.bytes_]: ...
+
+@overload
+def expandtabs(a: U_co, tabsize: i_co = ...) -> NDArray[np.str_]: ...
+@overload
+def expandtabs(a: S_co, tabsize: i_co = ...) -> NDArray[np.bytes_]: ...
+@overload
+def expandtabs(a: _StringDTypeSupportsArray, tabsize: i_co = ...) -> _StringDTypeArray: ...
+@overload
+def expandtabs(a: T_co, tabsize: i_co = ...) -> _StringDTypeOrUnicodeArray: ...
+
+@overload
+def center(a: U_co, width: i_co, fillchar: UST_co = " ") -> NDArray[np.str_]: ...
+@overload
+def center(a: S_co, width: i_co, fillchar: UST_co = " ") -> NDArray[np.bytes_]: ...
+@overload
+def center(a: _StringDTypeSupportsArray, width: i_co, fillchar: UST_co = " ") -> _StringDTypeArray: ...
+@overload
+def center(a: T_co, width: i_co, fillchar: UST_co = " ") -> _StringDTypeOrUnicodeArray: ...
+
+@overload
+def ljust(a: U_co, width: i_co, fillchar: UST_co = " ") -> NDArray[np.str_]: ...
+@overload
+def ljust(a: S_co, width: i_co, fillchar: UST_co = " ") -> NDArray[np.bytes_]: ...
+@overload
+def ljust(a: _StringDTypeSupportsArray, width: i_co, fillchar: UST_co = " ") -> _StringDTypeArray: ...
+@overload
+def ljust(a: T_co, width: i_co, fillchar: UST_co = " ") -> _StringDTypeOrUnicodeArray: ...
+
+@overload
+def rjust(a: U_co, width: i_co, fillchar: UST_co = " ") -> NDArray[np.str_]: ...
+@overload
+def rjust(a: S_co, width: i_co, fillchar: UST_co = " ") -> NDArray[np.bytes_]: ...
+@overload
+def rjust(a: _StringDTypeSupportsArray, width: i_co, fillchar: UST_co = " ") -> _StringDTypeArray: ...
+@overload
+def rjust(a: T_co, width: i_co, fillchar: UST_co = " ") -> _StringDTypeOrUnicodeArray: ...
+
+@overload
+def lstrip(a: U_co, chars: U_co | None = None) -> NDArray[np.str_]: ...
+@overload
+def lstrip(a: S_co, chars: S_co | None = None) -> NDArray[np.bytes_]: ...
+@overload
+def lstrip(a: _StringDTypeSupportsArray, chars: T_co | None = None) -> _StringDTypeArray: ...
+@overload
+def lstrip(a: T_co, chars: T_co | None = None) -> _StringDTypeOrUnicodeArray: ...
+
+@overload
+def rstrip(a: U_co, chars: U_co | None = None) -> NDArray[np.str_]: ...
+@overload
+def rstrip(a: S_co, chars: S_co | None = None) -> NDArray[np.bytes_]: ...
+@overload
+def rstrip(a: _StringDTypeSupportsArray, chars: T_co | None = None) -> _StringDTypeArray: ...
+@overload
+def rstrip(a: T_co, chars: T_co | None = None) -> _StringDTypeOrUnicodeArray: ...
+
+@overload
+def strip(a: U_co, chars: U_co | None = None) -> NDArray[np.str_]: ...
+@overload
+def strip(a: S_co, chars: S_co | None = None) -> NDArray[np.bytes_]: ...
+@overload
+def strip(a: _StringDTypeSupportsArray, chars: T_co | None = None) -> _StringDTypeArray: ...
+@overload
+def strip(a: T_co, chars: T_co | None = None) -> _StringDTypeOrUnicodeArray: ...
+
+@overload
+def zfill(a: U_co, width: i_co) -> NDArray[np.str_]: ...
+@overload
+def zfill(a: S_co, width: i_co) -> NDArray[np.bytes_]: ...
+@overload
+def zfill(a: _StringDTypeSupportsArray, width: i_co) -> _StringDTypeArray: ...
+@overload
+def zfill(a: T_co, width: i_co) -> _StringDTypeOrUnicodeArray: ...
+
+@overload
+def upper(a: U_co) -> NDArray[np.str_]: ...
+@overload
+def upper(a: S_co) -> NDArray[np.bytes_]: ...
+@overload
+def upper(a: _StringDTypeSupportsArray) -> _StringDTypeArray: ...
+@overload
+def upper(a: T_co) -> _StringDTypeOrUnicodeArray: ...
+
+@overload
+def lower(a: U_co) -> NDArray[np.str_]: ...
+@overload
+def lower(a: S_co) -> NDArray[np.bytes_]: ...
+@overload
+def lower(a: _StringDTypeSupportsArray) -> _StringDTypeArray: ...
+@overload
+def lower(a: T_co) -> _StringDTypeOrUnicodeArray: ...
+
+@overload
+def swapcase(a: U_co) -> NDArray[np.str_]: ...
+@overload
+def swapcase(a: S_co) -> NDArray[np.bytes_]: ...
+@overload
+def swapcase(a: _StringDTypeSupportsArray) -> _StringDTypeArray: ...
+@overload
+def swapcase(a: T_co) -> _StringDTypeOrUnicodeArray: ...
+
+@overload
+def capitalize(a: U_co) -> NDArray[np.str_]: ...
+@overload
+def capitalize(a: S_co) -> NDArray[np.bytes_]: ...
+@overload
+def capitalize(a: _StringDTypeSupportsArray) -> _StringDTypeArray: ...
+@overload
+def capitalize(a: T_co) -> _StringDTypeOrUnicodeArray: ...
+
+@overload
+def title(a: U_co) -> NDArray[np.str_]: ...
+@overload
+def title(a: S_co) -> NDArray[np.bytes_]: ...
+@overload
+def title(a: _StringDTypeSupportsArray) -> _StringDTypeArray: ...
+@overload
+def title(a: T_co) -> _StringDTypeOrUnicodeArray: ...
+
+@overload
+def replace(
+ a: U_co,
+ old: U_co,
+ new: U_co,
+ count: i_co = ...,
+) -> NDArray[np.str_]: ...
+@overload
+def replace(
+ a: S_co,
+ old: S_co,
+ new: S_co,
+ count: i_co = ...,
+) -> NDArray[np.bytes_]: ...
+@overload
+def replace(
+ a: _StringDTypeSupportsArray,
+ old: _StringDTypeSupportsArray,
+ new: _StringDTypeSupportsArray,
+ count: i_co = ...,
+) -> _StringDTypeArray: ...
+@overload
+def replace(
+ a: T_co,
+ old: T_co,
+ new: T_co,
+ count: i_co = ...,
+) -> _StringDTypeOrUnicodeArray: ...
+
+@overload
+def partition(a: U_co, sep: U_co) -> NDArray[np.str_]: ...
+@overload
+def partition(a: S_co, sep: S_co) -> NDArray[np.bytes_]: ...
+@overload
+def partition(a: _StringDTypeSupportsArray, sep: _StringDTypeSupportsArray) -> _StringDTypeArray: ...
+@overload
+def partition(a: T_co, sep: T_co) -> _StringDTypeOrUnicodeArray: ...
+
+@overload
+def rpartition(a: U_co, sep: U_co) -> NDArray[np.str_]: ...
+@overload
+def rpartition(a: S_co, sep: S_co) -> NDArray[np.bytes_]: ...
+@overload
+def rpartition(a: _StringDTypeSupportsArray, sep: _StringDTypeSupportsArray) -> _StringDTypeArray: ...
+@overload
+def rpartition(a: T_co, sep: T_co) -> _StringDTypeOrUnicodeArray: ...
+
+@overload
+def translate(
+ a: U_co,
+ table: str,
+ deletechars: str | None = None,
+) -> NDArray[np.str_]: ...
+@overload
+def translate(
+ a: S_co,
+ table: str,
+ deletechars: str | None = None,
+) -> NDArray[np.bytes_]: ...
+@overload
+def translate(
+ a: _StringDTypeSupportsArray,
+ table: str,
+ deletechars: str | None = None,
+) -> _StringDTypeArray: ...
+@overload
+def translate(
+ a: T_co,
+ table: str,
+ deletechars: str | None = None,
+) -> _StringDTypeOrUnicodeArray: ...
+
+#
+@overload
+def slice(a: U_co, start: i_co | None = None, stop: i_co | None = None, step: i_co | None = None, /) -> NDArray[np.str_]: ... # type: ignore[overload-overlap]
+@overload
+def slice(a: S_co, start: i_co | None = None, stop: i_co | None = None, step: i_co | None = None, /) -> NDArray[np.bytes_]: ...
+@overload
+def slice(
+ a: _StringDTypeSupportsArray, start: i_co | None = None, stop: i_co | None = None, step: i_co | None = None, /
+) -> _StringDTypeArray: ...
+@overload
+def slice(
+ a: T_co, start: i_co | None = None, stop: i_co | None = None, step: i_co | None = None, /
+) -> _StringDTypeOrUnicodeArray: ...
diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/_locales.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/_locales.cpython-312.pyc
new file mode 100644
index 0000000..2ff2bc1
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/_locales.cpython-312.pyc
Binary files differ
diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/_natype.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/_natype.cpython-312.pyc
new file mode 100644
index 0000000..3c399d9
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/_natype.cpython-312.pyc
Binary files differ
diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test__exceptions.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test__exceptions.cpython-312.pyc
new file mode 100644
index 0000000..c699888
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test__exceptions.cpython-312.pyc
Binary files differ
diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_abc.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_abc.cpython-312.pyc
new file mode 100644
index 0000000..40e9375
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_abc.cpython-312.pyc
Binary files differ
diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_api.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_api.cpython-312.pyc
new file mode 100644
index 0000000..a58ff81
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_api.cpython-312.pyc
Binary files differ
diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_argparse.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_argparse.cpython-312.pyc
new file mode 100644
index 0000000..7719c19
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_argparse.cpython-312.pyc
Binary files differ
diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_array_api_info.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_array_api_info.cpython-312.pyc
new file mode 100644
index 0000000..51fb4f5
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_array_api_info.cpython-312.pyc
Binary files differ
diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_array_coercion.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_array_coercion.cpython-312.pyc
new file mode 100644
index 0000000..e945dff
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_array_coercion.cpython-312.pyc
Binary files differ
diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_array_interface.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_array_interface.cpython-312.pyc
new file mode 100644
index 0000000..f5dc08a
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_array_interface.cpython-312.pyc
Binary files differ
diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_arraymethod.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_arraymethod.cpython-312.pyc
new file mode 100644
index 0000000..c429d91
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_arraymethod.cpython-312.pyc
Binary files differ
diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_arrayobject.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_arrayobject.cpython-312.pyc
new file mode 100644
index 0000000..f609ac4
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_arrayobject.cpython-312.pyc
Binary files differ
diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_arrayprint.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_arrayprint.cpython-312.pyc
new file mode 100644
index 0000000..207c4fd
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_arrayprint.cpython-312.pyc
Binary files differ
diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_casting_floatingpoint_errors.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_casting_floatingpoint_errors.cpython-312.pyc
new file mode 100644
index 0000000..d824fdf
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_casting_floatingpoint_errors.cpython-312.pyc
Binary files differ
diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_casting_unittests.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_casting_unittests.cpython-312.pyc
new file mode 100644
index 0000000..ae0cfba
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_casting_unittests.cpython-312.pyc
Binary files differ
diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_conversion_utils.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_conversion_utils.cpython-312.pyc
new file mode 100644
index 0000000..4701a48
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_conversion_utils.cpython-312.pyc
Binary files differ
diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_cpu_dispatcher.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_cpu_dispatcher.cpython-312.pyc
new file mode 100644
index 0000000..2147ee6
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_cpu_dispatcher.cpython-312.pyc
Binary files differ
diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_cpu_features.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_cpu_features.cpython-312.pyc
new file mode 100644
index 0000000..986635b
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_cpu_features.cpython-312.pyc
Binary files differ
diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_custom_dtypes.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_custom_dtypes.cpython-312.pyc
new file mode 100644
index 0000000..7b8947c
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_custom_dtypes.cpython-312.pyc
Binary files differ
diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_cython.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_cython.cpython-312.pyc
new file mode 100644
index 0000000..111302f
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_cython.cpython-312.pyc
Binary files differ
diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_datetime.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_datetime.cpython-312.pyc
new file mode 100644
index 0000000..25d54fb
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_datetime.cpython-312.pyc
Binary files differ
diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_defchararray.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_defchararray.cpython-312.pyc
new file mode 100644
index 0000000..eea0d51
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_defchararray.cpython-312.pyc
Binary files differ
diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_deprecations.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_deprecations.cpython-312.pyc
new file mode 100644
index 0000000..5a5df17
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_deprecations.cpython-312.pyc
Binary files differ
diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_dlpack.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_dlpack.cpython-312.pyc
new file mode 100644
index 0000000..06d72d1
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_dlpack.cpython-312.pyc
Binary files differ
diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_dtype.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_dtype.cpython-312.pyc
new file mode 100644
index 0000000..6c7ad88
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_dtype.cpython-312.pyc
Binary files differ
diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_einsum.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_einsum.cpython-312.pyc
new file mode 100644
index 0000000..35cb55a
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_einsum.cpython-312.pyc
Binary files differ
diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_errstate.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_errstate.cpython-312.pyc
new file mode 100644
index 0000000..604b57e
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_errstate.cpython-312.pyc
Binary files differ
diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_extint128.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_extint128.cpython-312.pyc
new file mode 100644
index 0000000..aa90f69
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_extint128.cpython-312.pyc
Binary files differ
diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_function_base.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_function_base.cpython-312.pyc
new file mode 100644
index 0000000..31c8c22
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_function_base.cpython-312.pyc
Binary files differ
diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_getlimits.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_getlimits.cpython-312.pyc
new file mode 100644
index 0000000..6a52fff
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_getlimits.cpython-312.pyc
Binary files differ
diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_half.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_half.cpython-312.pyc
new file mode 100644
index 0000000..df043c2
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_half.cpython-312.pyc
Binary files differ
diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_hashtable.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_hashtable.cpython-312.pyc
new file mode 100644
index 0000000..d465e90
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_hashtable.cpython-312.pyc
Binary files differ
diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_indexerrors.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_indexerrors.cpython-312.pyc
new file mode 100644
index 0000000..d522867
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_indexerrors.cpython-312.pyc
Binary files differ
diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_indexing.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_indexing.cpython-312.pyc
new file mode 100644
index 0000000..773f201
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_indexing.cpython-312.pyc
Binary files differ
diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_item_selection.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_item_selection.cpython-312.pyc
new file mode 100644
index 0000000..b75140e
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_item_selection.cpython-312.pyc
Binary files differ
diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_limited_api.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_limited_api.cpython-312.pyc
new file mode 100644
index 0000000..41fc8fa
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_limited_api.cpython-312.pyc
Binary files differ
diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_longdouble.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_longdouble.cpython-312.pyc
new file mode 100644
index 0000000..99e0d83
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_longdouble.cpython-312.pyc
Binary files differ
diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_machar.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_machar.cpython-312.pyc
new file mode 100644
index 0000000..790d2e0
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_machar.cpython-312.pyc
Binary files differ
diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_mem_overlap.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_mem_overlap.cpython-312.pyc
new file mode 100644
index 0000000..7f0fb6f
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_mem_overlap.cpython-312.pyc
Binary files differ
diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_mem_policy.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_mem_policy.cpython-312.pyc
new file mode 100644
index 0000000..064f3ca
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_mem_policy.cpython-312.pyc
Binary files differ
diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_memmap.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_memmap.cpython-312.pyc
new file mode 100644
index 0000000..574af4a
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_memmap.cpython-312.pyc
Binary files differ
diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_multiarray.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_multiarray.cpython-312.pyc
new file mode 100644
index 0000000..9532db8
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_multiarray.cpython-312.pyc
Binary files differ
diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_multithreading.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_multithreading.cpython-312.pyc
new file mode 100644
index 0000000..fedc155
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_multithreading.cpython-312.pyc
Binary files differ
diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_nditer.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_nditer.cpython-312.pyc
new file mode 100644
index 0000000..a33cd89
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_nditer.cpython-312.pyc
Binary files differ
diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_nep50_promotions.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_nep50_promotions.cpython-312.pyc
new file mode 100644
index 0000000..5325076
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_nep50_promotions.cpython-312.pyc
Binary files differ
diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_numeric.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_numeric.cpython-312.pyc
new file mode 100644
index 0000000..22d62b8
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_numeric.cpython-312.pyc
Binary files differ
diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_numerictypes.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_numerictypes.cpython-312.pyc
new file mode 100644
index 0000000..fd3ae3d
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_numerictypes.cpython-312.pyc
Binary files differ
diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_overrides.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_overrides.cpython-312.pyc
new file mode 100644
index 0000000..7115dcb
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_overrides.cpython-312.pyc
Binary files differ
diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_print.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_print.cpython-312.pyc
new file mode 100644
index 0000000..68530ec
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_print.cpython-312.pyc
Binary files differ
diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_protocols.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_protocols.cpython-312.pyc
new file mode 100644
index 0000000..4610ff8
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_protocols.cpython-312.pyc
Binary files differ
diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_records.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_records.cpython-312.pyc
new file mode 100644
index 0000000..a700a7f
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_records.cpython-312.pyc
Binary files differ
diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_regression.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_regression.cpython-312.pyc
new file mode 100644
index 0000000..996363b
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_regression.cpython-312.pyc
Binary files differ
diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_scalar_ctors.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_scalar_ctors.cpython-312.pyc
new file mode 100644
index 0000000..67d8c55
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_scalar_ctors.cpython-312.pyc
Binary files differ
diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_scalar_methods.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_scalar_methods.cpython-312.pyc
new file mode 100644
index 0000000..9efa210
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_scalar_methods.cpython-312.pyc
Binary files differ
diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_scalarbuffer.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_scalarbuffer.cpython-312.pyc
new file mode 100644
index 0000000..d0b6eed
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_scalarbuffer.cpython-312.pyc
Binary files differ
diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_scalarinherit.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_scalarinherit.cpython-312.pyc
new file mode 100644
index 0000000..5f57cb4
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_scalarinherit.cpython-312.pyc
Binary files differ
diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_scalarmath.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_scalarmath.cpython-312.pyc
new file mode 100644
index 0000000..d5509d0
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_scalarmath.cpython-312.pyc
Binary files differ
diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_scalarprint.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_scalarprint.cpython-312.pyc
new file mode 100644
index 0000000..585a575
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_scalarprint.cpython-312.pyc
Binary files differ
diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_shape_base.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_shape_base.cpython-312.pyc
new file mode 100644
index 0000000..b06fceb
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_shape_base.cpython-312.pyc
Binary files differ
diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_simd.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_simd.cpython-312.pyc
new file mode 100644
index 0000000..7f2c07d
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_simd.cpython-312.pyc
Binary files differ
diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_simd_module.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_simd_module.cpython-312.pyc
new file mode 100644
index 0000000..b05f5f9
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_simd_module.cpython-312.pyc
Binary files differ
diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_stringdtype.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_stringdtype.cpython-312.pyc
new file mode 100644
index 0000000..5484abe
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_stringdtype.cpython-312.pyc
Binary files differ
diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_strings.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_strings.cpython-312.pyc
new file mode 100644
index 0000000..f2f2ee6
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_strings.cpython-312.pyc
Binary files differ
diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_ufunc.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_ufunc.cpython-312.pyc
new file mode 100644
index 0000000..168a209
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_ufunc.cpython-312.pyc
Binary files differ
diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_umath.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_umath.cpython-312.pyc
new file mode 100644
index 0000000..a4b0db6
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_umath.cpython-312.pyc
Binary files differ
diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_umath_accuracy.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_umath_accuracy.cpython-312.pyc
new file mode 100644
index 0000000..2af157b
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_umath_accuracy.cpython-312.pyc
Binary files differ
diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_umath_complex.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_umath_complex.cpython-312.pyc
new file mode 100644
index 0000000..6c038d1
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_umath_complex.cpython-312.pyc
Binary files differ
diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_unicode.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_unicode.cpython-312.pyc
new file mode 100644
index 0000000..0fcf3c8
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_unicode.cpython-312.pyc
Binary files differ
diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/tests/_locales.py b/.venv/lib/python3.12/site-packages/numpy/_core/tests/_locales.py
new file mode 100644
index 0000000..debda96
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/_core/tests/_locales.py
@@ -0,0 +1,72 @@
+"""Provide class for testing in French locale
+
+"""
+import locale
+import sys
+
+import pytest
+
+__ALL__ = ['CommaDecimalPointLocale']
+
+
+def find_comma_decimal_point_locale():
+ """See if platform has a decimal point as comma locale.
+
+ Find a locale that uses a comma instead of a period as the
+ decimal point.
+
+ Returns
+ -------
+ old_locale: str
+ Locale when the function was called.
+ new_locale: {str, None)
+ First French locale found, None if none found.
+
+ """
+ if sys.platform == 'win32':
+ locales = ['FRENCH']
+ else:
+ locales = ['fr_FR', 'fr_FR.UTF-8', 'fi_FI', 'fi_FI.UTF-8']
+
+ old_locale = locale.getlocale(locale.LC_NUMERIC)
+ new_locale = None
+ try:
+ for loc in locales:
+ try:
+ locale.setlocale(locale.LC_NUMERIC, loc)
+ new_locale = loc
+ break
+ except locale.Error:
+ pass
+ finally:
+ locale.setlocale(locale.LC_NUMERIC, locale=old_locale)
+ return old_locale, new_locale
+
+
+class CommaDecimalPointLocale:
+ """Sets LC_NUMERIC to a locale with comma as decimal point.
+
+ Classes derived from this class have setup and teardown methods that run
+ tests with locale.LC_NUMERIC set to a locale where commas (',') are used as
+ the decimal point instead of periods ('.'). On exit the locale is restored
+ to the initial locale. It also serves as context manager with the same
+ effect. If no such locale is available, the test is skipped.
+
+ """
+ (cur_locale, tst_locale) = find_comma_decimal_point_locale()
+
+ def setup_method(self):
+ if self.tst_locale is None:
+ pytest.skip("No French locale available")
+ locale.setlocale(locale.LC_NUMERIC, locale=self.tst_locale)
+
+ def teardown_method(self):
+ locale.setlocale(locale.LC_NUMERIC, locale=self.cur_locale)
+
+ def __enter__(self):
+ if self.tst_locale is None:
+ pytest.skip("No French locale available")
+ locale.setlocale(locale.LC_NUMERIC, locale=self.tst_locale)
+
+ def __exit__(self, type, value, traceback):
+ locale.setlocale(locale.LC_NUMERIC, locale=self.cur_locale)
diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/tests/_natype.py b/.venv/lib/python3.12/site-packages/numpy/_core/tests/_natype.py
new file mode 100644
index 0000000..1c2175b
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/_core/tests/_natype.py
@@ -0,0 +1,205 @@
+# Vendored implementation of pandas.NA, adapted from pandas/_libs/missing.pyx
+#
+# This is vendored to avoid adding pandas as a test dependency.
+
+__all__ = ["pd_NA"]
+
+import numbers
+
+import numpy as np
+
+
+def _create_binary_propagating_op(name, is_divmod=False):
+ is_cmp = name.strip("_") in ["eq", "ne", "le", "lt", "ge", "gt"]
+
+ def method(self, other):
+ if (
+ other is pd_NA
+ or isinstance(other, (str, bytes, numbers.Number, np.bool))
+ or (isinstance(other, np.ndarray) and not other.shape)
+ ):
+ # Need the other.shape clause to handle NumPy scalars,
+ # since we do a setitem on `out` below, which
+ # won't work for NumPy scalars.
+ if is_divmod:
+ return pd_NA, pd_NA
+ else:
+ return pd_NA
+
+ elif isinstance(other, np.ndarray):
+ out = np.empty(other.shape, dtype=object)
+ out[:] = pd_NA
+
+ if is_divmod:
+ return out, out.copy()
+ else:
+ return out
+
+ elif is_cmp and isinstance(other, (np.datetime64, np.timedelta64)):
+ return pd_NA
+
+ elif isinstance(other, np.datetime64):
+ if name in ["__sub__", "__rsub__"]:
+ return pd_NA
+
+ elif isinstance(other, np.timedelta64):
+ if name in ["__sub__", "__rsub__", "__add__", "__radd__"]:
+ return pd_NA
+
+ return NotImplemented
+
+ method.__name__ = name
+ return method
+
+
+def _create_unary_propagating_op(name: str):
+ def method(self):
+ return pd_NA
+
+ method.__name__ = name
+ return method
+
+
+class NAType:
+ def __repr__(self) -> str:
+ return "<NA>"
+
+ def __format__(self, format_spec) -> str:
+ try:
+ return self.__repr__().__format__(format_spec)
+ except ValueError:
+ return self.__repr__()
+
+ def __bool__(self):
+ raise TypeError("boolean value of NA is ambiguous")
+
+ def __hash__(self):
+ exponent = 31 if is_32bit else 61
+ return 2**exponent - 1
+
+ def __reduce__(self):
+ return "pd_NA"
+
+ # Binary arithmetic and comparison ops -> propagate
+
+ __add__ = _create_binary_propagating_op("__add__")
+ __radd__ = _create_binary_propagating_op("__radd__")
+ __sub__ = _create_binary_propagating_op("__sub__")
+ __rsub__ = _create_binary_propagating_op("__rsub__")
+ __mul__ = _create_binary_propagating_op("__mul__")
+ __rmul__ = _create_binary_propagating_op("__rmul__")
+ __matmul__ = _create_binary_propagating_op("__matmul__")
+ __rmatmul__ = _create_binary_propagating_op("__rmatmul__")
+ __truediv__ = _create_binary_propagating_op("__truediv__")
+ __rtruediv__ = _create_binary_propagating_op("__rtruediv__")
+ __floordiv__ = _create_binary_propagating_op("__floordiv__")
+ __rfloordiv__ = _create_binary_propagating_op("__rfloordiv__")
+ __mod__ = _create_binary_propagating_op("__mod__")
+ __rmod__ = _create_binary_propagating_op("__rmod__")
+ __divmod__ = _create_binary_propagating_op("__divmod__", is_divmod=True)
+ __rdivmod__ = _create_binary_propagating_op("__rdivmod__", is_divmod=True)
+ # __lshift__ and __rshift__ are not implemented
+
+ __eq__ = _create_binary_propagating_op("__eq__")
+ __ne__ = _create_binary_propagating_op("__ne__")
+ __le__ = _create_binary_propagating_op("__le__")
+ __lt__ = _create_binary_propagating_op("__lt__")
+ __gt__ = _create_binary_propagating_op("__gt__")
+ __ge__ = _create_binary_propagating_op("__ge__")
+
+ # Unary ops
+
+ __neg__ = _create_unary_propagating_op("__neg__")
+ __pos__ = _create_unary_propagating_op("__pos__")
+ __abs__ = _create_unary_propagating_op("__abs__")
+ __invert__ = _create_unary_propagating_op("__invert__")
+
+ # pow has special
+ def __pow__(self, other):
+ if other is pd_NA:
+ return pd_NA
+ elif isinstance(other, (numbers.Number, np.bool)):
+ if other == 0:
+ # returning positive is correct for +/- 0.
+ return type(other)(1)
+ else:
+ return pd_NA
+ elif util.is_array(other):
+ return np.where(other == 0, other.dtype.type(1), pd_NA)
+
+ return NotImplemented
+
+ def __rpow__(self, other):
+ if other is pd_NA:
+ return pd_NA
+ elif isinstance(other, (numbers.Number, np.bool)):
+ if other == 1:
+ return other
+ else:
+ return pd_NA
+ elif util.is_array(other):
+ return np.where(other == 1, other, pd_NA)
+ return NotImplemented
+
+ # Logical ops using Kleene logic
+
+ def __and__(self, other):
+ if other is False:
+ return False
+ elif other is True or other is pd_NA:
+ return pd_NA
+ return NotImplemented
+
+ __rand__ = __and__
+
+ def __or__(self, other):
+ if other is True:
+ return True
+ elif other is False or other is pd_NA:
+ return pd_NA
+ return NotImplemented
+
+ __ror__ = __or__
+
+ def __xor__(self, other):
+ if other is False or other is True or other is pd_NA:
+ return pd_NA
+ return NotImplemented
+
+ __rxor__ = __xor__
+
+ __array_priority__ = 1000
+ _HANDLED_TYPES = (np.ndarray, numbers.Number, str, np.bool)
+
+ def __array_ufunc__(self, ufunc, method, *inputs, **kwargs):
+ types = self._HANDLED_TYPES + (NAType,)
+ for x in inputs:
+ if not isinstance(x, types):
+ return NotImplemented
+
+ if method != "__call__":
+ raise ValueError(f"ufunc method '{method}' not supported for NA")
+ result = maybe_dispatch_ufunc_to_dunder_op(
+ self, ufunc, method, *inputs, **kwargs
+ )
+ if result is NotImplemented:
+ # For a NumPy ufunc that's not a binop, like np.logaddexp
+ index = next(i for i, x in enumerate(inputs) if x is pd_NA)
+ result = np.broadcast_arrays(*inputs)[index]
+ if result.ndim == 0:
+ result = result.item()
+ if ufunc.nout > 1:
+ result = (pd_NA,) * ufunc.nout
+
+ return result
+
+
+pd_NA = NAType()
+
+
+def get_stringdtype_dtype(na_object, coerce=True):
+ # explicit is check for pd_NA because != with pd_NA returns pd_NA
+ if na_object is pd_NA or na_object != "unset":
+ return np.dtypes.StringDType(na_object=na_object, coerce=coerce)
+ else:
+ return np.dtypes.StringDType(coerce=coerce)
diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/tests/data/astype_copy.pkl b/.venv/lib/python3.12/site-packages/numpy/_core/tests/data/astype_copy.pkl
new file mode 100644
index 0000000..7397c97
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/_core/tests/data/astype_copy.pkl
Binary files differ
diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/tests/data/generate_umath_validation_data.cpp b/.venv/lib/python3.12/site-packages/numpy/_core/tests/data/generate_umath_validation_data.cpp
new file mode 100644
index 0000000..88ff45e
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/_core/tests/data/generate_umath_validation_data.cpp
@@ -0,0 +1,170 @@
+#include <algorithm>
+#include <fstream>
+#include <iostream>
+#include <math.h>
+#include <random>
+#include <cstdio>
+#include <ctime>
+#include <vector>
+
+struct ufunc {
+ std::string name;
+ double (*f32func)(double);
+ long double (*f64func)(long double);
+ float f32ulp;
+ float f64ulp;
+};
+
+template <typename T>
+T
+RandomFloat(T a, T b)
+{
+ T random = ((T)rand()) / (T)RAND_MAX;
+ T diff = b - a;
+ T r = random * diff;
+ return a + r;
+}
+
+template <typename T>
+void
+append_random_array(std::vector<T> &arr, T min, T max, size_t N)
+{
+ for (size_t ii = 0; ii < N; ++ii)
+ arr.emplace_back(RandomFloat<T>(min, max));
+}
+
+template <typename T1, typename T2>
+std::vector<T1>
+computeTrueVal(const std::vector<T1> &in, T2 (*mathfunc)(T2))
+{
+ std::vector<T1> out;
+ for (T1 elem : in) {
+ T2 elem_d = (T2)elem;
+ T1 out_elem = (T1)mathfunc(elem_d);
+ out.emplace_back(out_elem);
+ }
+ return out;
+}
+
+/*
+ * FP range:
+ * [-inf, -maxflt, -1., -minflt, -minden, 0., minden, minflt, 1., maxflt, inf]
+ */
+
+#define MINDEN std::numeric_limits<T>::denorm_min()
+#define MINFLT std::numeric_limits<T>::min()
+#define MAXFLT std::numeric_limits<T>::max()
+#define INF std::numeric_limits<T>::infinity()
+#define qNAN std::numeric_limits<T>::quiet_NaN()
+#define sNAN std::numeric_limits<T>::signaling_NaN()
+
+template <typename T>
+std::vector<T>
+generate_input_vector(std::string func)
+{
+ std::vector<T> input = {MINDEN, -MINDEN, MINFLT, -MINFLT, MAXFLT,
+ -MAXFLT, INF, -INF, qNAN, sNAN,
+ -1.0, 1.0, 0.0, -0.0};
+
+ // [-1.0, 1.0]
+ if ((func == "arcsin") || (func == "arccos") || (func == "arctanh")) {
+ append_random_array<T>(input, -1.0, 1.0, 700);
+ }
+ // (0.0, INF]
+ else if ((func == "log2") || (func == "log10")) {
+ append_random_array<T>(input, 0.0, 1.0, 200);
+ append_random_array<T>(input, MINDEN, MINFLT, 200);
+ append_random_array<T>(input, MINFLT, 1.0, 200);
+ append_random_array<T>(input, 1.0, MAXFLT, 200);
+ }
+ // (-1.0, INF]
+ else if (func == "log1p") {
+ append_random_array<T>(input, -1.0, 1.0, 200);
+ append_random_array<T>(input, -MINFLT, -MINDEN, 100);
+ append_random_array<T>(input, -1.0, -MINFLT, 100);
+ append_random_array<T>(input, MINDEN, MINFLT, 100);
+ append_random_array<T>(input, MINFLT, 1.0, 100);
+ append_random_array<T>(input, 1.0, MAXFLT, 100);
+ }
+ // [1.0, INF]
+ else if (func == "arccosh") {
+ append_random_array<T>(input, 1.0, 2.0, 400);
+ append_random_array<T>(input, 2.0, MAXFLT, 300);
+ }
+ // [-INF, INF]
+ else {
+ append_random_array<T>(input, -1.0, 1.0, 100);
+ append_random_array<T>(input, MINDEN, MINFLT, 100);
+ append_random_array<T>(input, -MINFLT, -MINDEN, 100);
+ append_random_array<T>(input, MINFLT, 1.0, 100);
+ append_random_array<T>(input, -1.0, -MINFLT, 100);
+ append_random_array<T>(input, 1.0, MAXFLT, 100);
+ append_random_array<T>(input, -MAXFLT, -100.0, 100);
+ }
+
+ std::random_shuffle(input.begin(), input.end());
+ return input;
+}
+
+int
+main()
+{
+ srand(42);
+ std::vector<struct ufunc> umathfunc = {
+ {"sin", sin, sin, 1.49, 1.00},
+ {"cos", cos, cos, 1.49, 1.00},
+ {"tan", tan, tan, 3.91, 1.00},
+ {"arcsin", asin, asin, 3.12, 1.00},
+ {"arccos", acos, acos, 2.1, 1.00},
+ {"arctan", atan, atan, 2.3, 1.00},
+ {"sinh", sinh, sinh, 1.55, 1.00},
+ {"cosh", cosh, cosh, 2.48, 1.00},
+ {"tanh", tanh, tanh, 1.38, 2.00},
+ {"arcsinh", asinh, asinh, 1.01, 1.00},
+ {"arccosh", acosh, acosh, 1.16, 1.00},
+ {"arctanh", atanh, atanh, 1.45, 1.00},
+ {"cbrt", cbrt, cbrt, 1.94, 2.00},
+ //{"exp",exp,exp,3.76,1.00},
+ {"exp2", exp2, exp2, 1.01, 1.00},
+ {"expm1", expm1, expm1, 2.62, 1.00},
+ //{"log",log,log,1.84,1.00},
+ {"log10", log10, log10, 3.5, 1.00},
+ {"log1p", log1p, log1p, 1.96, 1.0},
+ {"log2", log2, log2, 2.12, 1.00},
+ };
+
+ for (int ii = 0; ii < umathfunc.size(); ++ii) {
+ // ignore sin/cos
+ if ((umathfunc[ii].name != "sin") && (umathfunc[ii].name != "cos")) {
+ std::string fileName =
+ "umath-validation-set-" + umathfunc[ii].name + ".csv";
+ std::ofstream txtOut;
+ txtOut.open(fileName, std::ofstream::trunc);
+ txtOut << "dtype,input,output,ulperrortol" << std::endl;
+
+ // Single Precision
+ auto f32in = generate_input_vector<float>(umathfunc[ii].name);
+ auto f32out = computeTrueVal<float, double>(f32in,
+ umathfunc[ii].f32func);
+ for (int jj = 0; jj < f32in.size(); ++jj) {
+ txtOut << "np.float32" << std::hex << ",0x"
+ << *reinterpret_cast<uint32_t *>(&f32in[jj]) << ",0x"
+ << *reinterpret_cast<uint32_t *>(&f32out[jj]) << ","
+ << ceil(umathfunc[ii].f32ulp) << std::endl;
+ }
+
+ // Double Precision
+ auto f64in = generate_input_vector<double>(umathfunc[ii].name);
+ auto f64out = computeTrueVal<double, long double>(
+ f64in, umathfunc[ii].f64func);
+ for (int jj = 0; jj < f64in.size(); ++jj) {
+ txtOut << "np.float64" << std::hex << ",0x"
+ << *reinterpret_cast<uint64_t *>(&f64in[jj]) << ",0x"
+ << *reinterpret_cast<uint64_t *>(&f64out[jj]) << ","
+ << ceil(umathfunc[ii].f64ulp) << std::endl;
+ }
+ txtOut.close();
+ }
+ }
+ return 0;
+}
diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/tests/data/recarray_from_file.fits b/.venv/lib/python3.12/site-packages/numpy/_core/tests/data/recarray_from_file.fits
new file mode 100644
index 0000000..ca48ee8
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/_core/tests/data/recarray_from_file.fits
Binary files differ
diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/tests/data/umath-validation-set-README.txt b/.venv/lib/python3.12/site-packages/numpy/_core/tests/data/umath-validation-set-README.txt
new file mode 100644
index 0000000..cfc9e41
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/_core/tests/data/umath-validation-set-README.txt
@@ -0,0 +1,15 @@
+Steps to validate transcendental functions:
+1) Add a file 'umath-validation-set-<ufuncname>.txt', where ufuncname is name of
+ the function in NumPy you want to validate
+2) The file should contain 4 columns: dtype,input,expected output,ulperror
+ a. dtype: one of np.float16, np.float32, np.float64
+ b. input: floating point input to ufunc in hex. Example: 0x414570a4
+ represents 12.340000152587890625
+ c. expected output: floating point output for the corresponding input in hex.
+ This should be computed using a high(er) precision library and then rounded to
+ same format as the input.
+ d. ulperror: expected maximum ulp error of the function. This
+ should be same across all rows of the same dtype. Otherwise, the function is
+ tested for the maximum ulp error among all entries of that dtype.
+3) Add file umath-validation-set-<ufuncname>.txt to the test file test_umath_accuracy.py
+ which will then validate your ufunc.
diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/tests/data/umath-validation-set-arccos.csv b/.venv/lib/python3.12/site-packages/numpy/_core/tests/data/umath-validation-set-arccos.csv
new file mode 100644
index 0000000..82c8595
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/_core/tests/data/umath-validation-set-arccos.csv
@@ -0,0 +1,1429 @@
+dtype,input,output,ulperrortol
+np.float32,0xbddd7f50,0x3fd6eec2,3
+np.float32,0xbe32a20c,0x3fdf8182,3
+np.float32,0xbf607c09,0x4028f84f,3
+np.float32,0x3f25d906,0x3f5db544,3
+np.float32,0x3f01cec8,0x3f84febf,3
+np.float32,0x3f1d5c6e,0x3f68a735,3
+np.float32,0xbf0cab89,0x4009c36d,3
+np.float32,0xbf176b40,0x400d0941,3
+np.float32,0x3f3248b2,0x3f4ce6d4,3
+np.float32,0x3f390b48,0x3f434e0d,3
+np.float32,0xbe261698,0x3fddea43,3
+np.float32,0x3f0e1154,0x3f7b848b,3
+np.float32,0xbf379a3c,0x4017b764,3
+np.float32,0xbeda6f2c,0x4000bd62,3
+np.float32,0xbf6a0c3f,0x402e5d5a,3
+np.float32,0x3ef1d700,0x3f8a17b7,3
+np.float32,0xbf6f4f65,0x4031d30d,3
+np.float32,0x3f2c9eee,0x3f54adfd,3
+np.float32,0x3f3cfb18,0x3f3d8a1e,3
+np.float32,0x3ba80800,0x3fc867d2,3
+np.float32,0x3e723b08,0x3faa7e4d,3
+np.float32,0xbf65820f,0x402bb054,3
+np.float32,0xbee64e7a,0x40026410,3
+np.float32,0x3cb15140,0x3fc64a87,3
+np.float32,0x3f193660,0x3f6ddf2a,3
+np.float32,0xbf0e5b52,0x400a44f7,3
+np.float32,0x3ed55f14,0x3f920a4b,3
+np.float32,0x3dd11a80,0x3fbbf85c,3
+np.float32,0xbf4f5c4b,0x4020f4f9,3
+np.float32,0x3f787532,0x3e792e87,3
+np.float32,0x3f40e6ac,0x3f37a74f,3
+np.float32,0x3f1c1318,0x3f6a47b6,3
+np.float32,0xbe3c48d8,0x3fe0bb70,3
+np.float32,0xbe94d4bc,0x3feed08e,3
+np.float32,0xbe5c3688,0x3fe4ce26,3
+np.float32,0xbf6fe026,0x403239cb,3
+np.float32,0x3ea5983c,0x3f9ee7bf,3
+np.float32,0x3f1471e6,0x3f73c5bb,3
+np.float32,0x3f0e2622,0x3f7b6b87,3
+np.float32,0xbf597180,0x40257ad1,3
+np.float32,0xbeb5321c,0x3ff75d34,3
+np.float32,0x3f5afcd2,0x3f0b6012,3
+np.float32,0xbef2ff88,0x40042e14,3
+np.float32,0xbedc747e,0x400104f5,3
+np.float32,0xbee0c2f4,0x40019dfc,3
+np.float32,0xbf152cd8,0x400c57dc,3
+np.float32,0xbf6cf9e2,0x40303bbe,3
+np.float32,0x3ed9cd74,0x3f90d1a1,3
+np.float32,0xbf754406,0x4036767f,3
+np.float32,0x3f59c5c2,0x3f0db42f,3
+np.float32,0x3f2eefd8,0x3f518684,3
+np.float32,0xbf156bf9,0x400c6b49,3
+np.float32,0xbd550790,0x3fcfb8dc,3
+np.float32,0x3ede58fc,0x3f8f8f77,3
+np.float32,0xbf00ac19,0x40063c4b,3
+np.float32,0x3f4d25ba,0x3f24280e,3
+np.float32,0xbe9568be,0x3feef73c,3
+np.float32,0x3f67d154,0x3ee05547,3
+np.float32,0x3f617226,0x3efcb4f4,3
+np.float32,0xbf3ab41a,0x4018d6cc,3
+np.float32,0xbf3186fe,0x401592cd,3
+np.float32,0x3de3ba50,0x3fbacca9,3
+np.float32,0x3e789f98,0x3fa9ab97,3
+np.float32,0x3f016e08,0x3f8536d8,3
+np.float32,0x3e8b618c,0x3fa5c571,3
+np.float32,0x3eff97bc,0x3f8628a9,3
+np.float32,0xbf6729f0,0x402ca32f,3
+np.float32,0xbebec146,0x3ff9eddc,3
+np.float32,0x3ddb2e60,0x3fbb563a,3
+np.float32,0x3caa8e40,0x3fc66595,3
+np.float32,0xbf5973f2,0x40257bfa,3
+np.float32,0xbdd82c70,0x3fd69916,3
+np.float32,0xbedf4c82,0x400169ef,3
+np.float32,0x3ef8f22c,0x3f881184,3
+np.float32,0xbf1d74d4,0x400eedc9,3
+np.float32,0x3f2e10a6,0x3f52b790,3
+np.float32,0xbf08ecc0,0x4008a628,3
+np.float32,0x3ecb7db4,0x3f94be9f,3
+np.float32,0xbf052ded,0x40078bfc,3
+np.float32,0x3f2ee78a,0x3f5191e4,3
+np.float32,0xbf56f4e1,0x40245194,3
+np.float32,0x3f600a3e,0x3f014a25,3
+np.float32,0x3f3836f8,0x3f44808b,3
+np.float32,0x3ecabfbc,0x3f94f25c,3
+np.float32,0x3c70f500,0x3fc72dec,3
+np.float32,0x3f17c444,0x3f6fabf0,3
+np.float32,0xbf4c22a5,0x401f9a09,3
+np.float32,0xbe4205dc,0x3fe1765a,3
+np.float32,0x3ea49138,0x3f9f2d36,3
+np.float32,0xbece0082,0x3ffe106b,3
+np.float32,0xbe387578,0x3fe03eef,3
+np.float32,0xbf2b6466,0x40137a30,3
+np.float32,0xbe9dadb2,0x3ff12204,3
+np.float32,0xbf56b3f2,0x402433bb,3
+np.float32,0xbdf9b4d8,0x3fd8b51f,3
+np.float32,0x3f58a596,0x3f0fd4b4,3
+np.float32,0xbedf5748,0x40016b6e,3
+np.float32,0x3f446442,0x3f32476f,3
+np.float32,0x3f5be886,0x3f099658,3
+np.float32,0x3ea1e44c,0x3f9fe1de,3
+np.float32,0xbf11e9b8,0x400b585f,3
+np.float32,0xbf231f8f,0x4010befb,3
+np.float32,0xbf4395ea,0x401c2dd0,3
+np.float32,0x3e9e7784,0x3fa0c8a6,3
+np.float32,0xbe255184,0x3fddd14c,3
+np.float32,0x3f70d25e,0x3eb13148,3
+np.float32,0x3f220cdc,0x3f62a722,3
+np.float32,0xbd027bf0,0x3fcd23e7,3
+np.float32,0x3e4ef8b8,0x3faf02d2,3
+np.float32,0xbf76fc6b,0x40380728,3
+np.float32,0xbf57e761,0x4024c1cd,3
+np.float32,0x3ed4fc20,0x3f922580,3
+np.float32,0xbf09b64a,0x4008e1db,3
+np.float32,0x3f21ca62,0x3f62fcf5,3
+np.float32,0xbe55f610,0x3fe40170,3
+np.float32,0xbc0def80,0x3fca2bbb,3
+np.float32,0xbebc8764,0x3ff9547b,3
+np.float32,0x3ec1b200,0x3f9766d1,3
+np.float32,0xbf4ee44e,0x4020c1ee,3
+np.float32,0xbea85852,0x3ff3f22a,3
+np.float32,0xbf195c0c,0x400da3d3,3
+np.float32,0xbf754b5d,0x40367ce8,3
+np.float32,0xbdcbfe50,0x3fd5d52b,3
+np.float32,0xbf1adb87,0x400e1be3,3
+np.float32,0xbf6f8491,0x4031f898,3
+np.float32,0xbf6f9ae7,0x4032086e,3
+np.float32,0xbf52b3f0,0x40226790,3
+np.float32,0xbf698452,0x402e09f4,3
+np.float32,0xbf43dc9a,0x401c493a,3
+np.float32,0xbf165f7f,0x400cb664,3
+np.float32,0x3e635468,0x3fac682f,3
+np.float32,0xbe8cf2b6,0x3fecc28a,3
+np.float32,0x7f7fffff,0x7fc00000,3
+np.float32,0xbf4c6513,0x401fb597,3
+np.float32,0xbf02b8f8,0x4006d47e,3
+np.float32,0x3ed3759c,0x3f9290c8,3
+np.float32,0xbf2a7a5f,0x40132b98,3
+np.float32,0xbae65000,0x3fc9496f,3
+np.float32,0x3f65f5ea,0x3ee8ef07,3
+np.float32,0xbe7712fc,0x3fe84106,3
+np.float32,0xbb9ff700,0x3fc9afd2,3
+np.float32,0x3d8d87a0,0x3fc03592,3
+np.float32,0xbefc921c,0x40058c23,3
+np.float32,0xbf286566,0x401279d8,3
+np.float32,0x3f53857e,0x3f192eaf,3
+np.float32,0xbee9b0f4,0x4002dd90,3
+np.float32,0x3f4041f8,0x3f38a14a,3
+np.float32,0x3f54ea96,0x3f16b02d,3
+np.float32,0x3ea50ef8,0x3f9f0c01,3
+np.float32,0xbeaad2dc,0x3ff49a4a,3
+np.float32,0xbec428c8,0x3ffb636f,3
+np.float32,0xbda46178,0x3fd358c7,3
+np.float32,0xbefacfc4,0x40054b7f,3
+np.float32,0xbf7068f9,0x40329c85,3
+np.float32,0x3f70b850,0x3eb1caa7,3
+np.float32,0x7fa00000,0x7fe00000,3
+np.float32,0x80000000,0x3fc90fdb,3
+np.float32,0x3f68d5c8,0x3edb7cf3,3
+np.float32,0x3d9443d0,0x3fbfc98a,3
+np.float32,0xff7fffff,0x7fc00000,3
+np.float32,0xbeee7ba8,0x40038a5e,3
+np.float32,0xbf0aaaba,0x40092a73,3
+np.float32,0x3f36a4e8,0x3f46c0ee,3
+np.float32,0x3ed268e4,0x3f92da82,3
+np.float32,0xbee6002c,0x4002591b,3
+np.float32,0xbe8f2752,0x3fed5576,3
+np.float32,0x3f525912,0x3f1b40e0,3
+np.float32,0xbe8e151e,0x3fed0e16,3
+np.float32,0x1,0x3fc90fdb,3
+np.float32,0x3ee23b84,0x3f8e7ae1,3
+np.float32,0xbf5961ca,0x40257361,3
+np.float32,0x3f6bbca0,0x3ecd14cd,3
+np.float32,0x3e27b230,0x3fb4014d,3
+np.float32,0xbf183bb8,0x400d49fc,3
+np.float32,0x3f57759c,0x3f120b68,3
+np.float32,0xbd6994c0,0x3fd05d84,3
+np.float32,0xbf1dd684,0x400f0cc8,3
+np.float32,0xbececc1c,0x3ffe480a,3
+np.float32,0xbf48855f,0x401e206d,3
+np.float32,0x3f28c922,0x3f59d382,3
+np.float32,0xbf65c094,0x402bd3b0,3
+np.float32,0x3f657d42,0x3eeb11dd,3
+np.float32,0xbed32d4e,0x3fff7b15,3
+np.float32,0xbf31af02,0x4015a0b1,3
+np.float32,0x3d89eb00,0x3fc06f7f,3
+np.float32,0x3dac2830,0x3fbe4a17,3
+np.float32,0x3f7f7cb6,0x3d81a7df,3
+np.float32,0xbedbb570,0x4000ea82,3
+np.float32,0x3db37830,0x3fbdd4a8,3
+np.float32,0xbf376f48,0x4017a7fd,3
+np.float32,0x3f319f12,0x3f4dd2c9,3
+np.float32,0x7fc00000,0x7fc00000,3
+np.float32,0x3f1b4f70,0x3f6b3e31,3
+np.float32,0x3e33c880,0x3fb278d1,3
+np.float32,0x3f2796e0,0x3f5b69bd,3
+np.float32,0x3f4915d6,0x3f2ad4d0,3
+np.float32,0x3e4db120,0x3faf2ca0,3
+np.float32,0x3ef03dd4,0x3f8a8ba9,3
+np.float32,0x3e96ca88,0x3fa2cbf7,3
+np.float32,0xbeb136ce,0x3ff64d2b,3
+np.float32,0xbf2f3938,0x4014c75e,3
+np.float32,0x3f769dde,0x3e8b0d76,3
+np.float32,0x3f67cec8,0x3ee06148,3
+np.float32,0x3f0a1ade,0x3f80204e,3
+np.float32,0x3e4b9718,0x3faf7144,3
+np.float32,0x3cccb480,0x3fc5dcf3,3
+np.float32,0x3caeb740,0x3fc654f0,3
+np.float32,0x3f684e0e,0x3ede0678,3
+np.float32,0x3f0ba93c,0x3f7e6663,3
+np.float32,0xbf12bbc4,0x400b985e,3
+np.float32,0xbf2a8e1a,0x40133235,3
+np.float32,0x3f42029c,0x3f35f5c5,3
+np.float32,0x3eed1728,0x3f8b6f9c,3
+np.float32,0xbe5779ac,0x3fe432fd,3
+np.float32,0x3f6ed8b8,0x3ebc7e4b,3
+np.float32,0x3eea25b0,0x3f8c43c7,3
+np.float32,0x3f1988a4,0x3f6d786b,3
+np.float32,0xbe751674,0x3fe7ff8a,3
+np.float32,0xbe9f7418,0x3ff1997d,3
+np.float32,0x3dca11d0,0x3fbc6979,3
+np.float32,0x3f795226,0x3e6a6cab,3
+np.float32,0xbea780e0,0x3ff3b926,3
+np.float32,0xbed92770,0x4000901e,3
+np.float32,0xbf3e9f8c,0x401a49f8,3
+np.float32,0x3f0f7054,0x3f79ddb2,3
+np.float32,0x3a99d400,0x3fc8e966,3
+np.float32,0xbef082b0,0x4003d3c6,3
+np.float32,0xbf0d0790,0x4009defb,3
+np.float32,0xbf1649da,0x400cafb4,3
+np.float32,0xbea5aca8,0x3ff33d5c,3
+np.float32,0xbf4e1843,0x40206ba1,3
+np.float32,0xbe3d7d5c,0x3fe0e2ad,3
+np.float32,0xbf0e802d,0x400a500e,3
+np.float32,0xbf0de8f0,0x400a2295,3
+np.float32,0xbf3016ba,0x4015137e,3
+np.float32,0x3f36b1ea,0x3f46ae5d,3
+np.float32,0xbd27f170,0x3fce4fc7,3
+np.float32,0x3e96ec54,0x3fa2c31f,3
+np.float32,0x3eb4dfdc,0x3f9ad87d,3
+np.float32,0x3f5cac6c,0x3f0815cc,3
+np.float32,0xbf0489aa,0x40075bf1,3
+np.float32,0x3df010c0,0x3fba05f5,3
+np.float32,0xbf229f4a,0x4010956a,3
+np.float32,0x3f75e474,0x3e905a99,3
+np.float32,0xbcece6a0,0x3fccc397,3
+np.float32,0xbdb41528,0x3fd454e7,3
+np.float32,0x3ec8b2f8,0x3f958118,3
+np.float32,0x3f5eaa70,0x3f041a1d,3
+np.float32,0xbf32e1cc,0x40160b91,3
+np.float32,0xbe8e6026,0x3fed219c,3
+np.float32,0x3e6b3160,0x3fab65e3,3
+np.float32,0x3e6d7460,0x3fab1b81,3
+np.float32,0xbf13fbde,0x400bfa3b,3
+np.float32,0xbe8235ec,0x3fe9f9e3,3
+np.float32,0x3d71c4a0,0x3fc18096,3
+np.float32,0x3eb769d0,0x3f9a2aa0,3
+np.float32,0xbf68cb3b,0x402d99e4,3
+np.float32,0xbd917610,0x3fd22932,3
+np.float32,0x3d3cba60,0x3fc3297f,3
+np.float32,0xbf383cbe,0x4017f1cc,3
+np.float32,0xbeee96d0,0x40038e34,3
+np.float32,0x3ec89cb4,0x3f958725,3
+np.float32,0x3ebf92d8,0x3f97f95f,3
+np.float32,0x3f30f3da,0x3f4ec021,3
+np.float32,0xbd26b560,0x3fce45e4,3
+np.float32,0xbec0eb12,0x3ffa8330,3
+np.float32,0x3f6d592a,0x3ec4a6c1,3
+np.float32,0x3ea6d39c,0x3f9e9463,3
+np.float32,0x3e884184,0x3fa6951e,3
+np.float32,0x3ea566c4,0x3f9ef4d1,3
+np.float32,0x3f0c8f4c,0x3f7d5380,3
+np.float32,0x3f28e1ba,0x3f59b2cb,3
+np.float32,0x3f798538,0x3e66e1c3,3
+np.float32,0xbe2889b8,0x3fde39b8,3
+np.float32,0x3f3da05e,0x3f3c949c,3
+np.float32,0x3f24d700,0x3f5f073e,3
+np.float32,0xbe5b5768,0x3fe4b198,3
+np.float32,0xbed3b03a,0x3fff9f05,3
+np.float32,0x3e8a1c4c,0x3fa619eb,3
+np.float32,0xbf075d24,0x40083030,3
+np.float32,0x3f765648,0x3e8d1f52,3
+np.float32,0xbf70fc5e,0x403308bb,3
+np.float32,0x3f557ae8,0x3f15ab76,3
+np.float32,0x3f02f7ea,0x3f84521c,3
+np.float32,0x3f7ebbde,0x3dcbc5c5,3
+np.float32,0xbefbdfc6,0x40057285,3
+np.float32,0x3ec687ac,0x3f9617d9,3
+np.float32,0x3e4831c8,0x3fafe01b,3
+np.float32,0x3e25cde0,0x3fb43ea8,3
+np.float32,0x3e4f2ab8,0x3faefc70,3
+np.float32,0x3ea60ae4,0x3f9ec973,3
+np.float32,0xbf1ed55f,0x400f5dde,3
+np.float32,0xbf5ad4aa,0x40262479,3
+np.float32,0x3e8b3594,0x3fa5d0de,3
+np.float32,0x3f3a77aa,0x3f413c80,3
+np.float32,0xbf07512b,0x40082ca9,3
+np.float32,0x3f33d990,0x3f4ab5e5,3
+np.float32,0x3f521556,0x3f1bb78f,3
+np.float32,0xbecf6036,0x3ffe7086,3
+np.float32,0x3db91bd0,0x3fbd7a11,3
+np.float32,0x3ef63a74,0x3f88d839,3
+np.float32,0xbf2f1116,0x4014b99c,3
+np.float32,0xbf17fdc0,0x400d36b9,3
+np.float32,0xbe87df2c,0x3feb7117,3
+np.float32,0x80800000,0x3fc90fdb,3
+np.float32,0x3ee24c1c,0x3f8e7641,3
+np.float32,0x3f688dce,0x3edcd644,3
+np.float32,0xbf0f4e1c,0x400a8e1b,3
+np.float32,0x0,0x3fc90fdb,3
+np.float32,0x3f786eba,0x3e7999d4,3
+np.float32,0xbf404f80,0x401aeca8,3
+np.float32,0xbe9ffb6a,0x3ff1bd18,3
+np.float32,0x3f146bfc,0x3f73ccfd,3
+np.float32,0xbe47d630,0x3fe233ee,3
+np.float32,0xbe95847c,0x3feefe7c,3
+np.float32,0xbf135df0,0x400bc9e5,3
+np.float32,0x3ea19f3c,0x3f9ff411,3
+np.float32,0x3f235e20,0x3f60f247,3
+np.float32,0xbec789ec,0x3ffc4def,3
+np.float32,0x3f04b656,0x3f834db6,3
+np.float32,0x3dfaf440,0x3fb95679,3
+np.float32,0xbe4a7f28,0x3fe28abe,3
+np.float32,0x3ed4850c,0x3f92463b,3
+np.float32,0x3ec4ba5c,0x3f9694dd,3
+np.float32,0xbce24ca0,0x3fcc992b,3
+np.float32,0xbf5b7c6e,0x402675a0,3
+np.float32,0xbea3ce2a,0x3ff2bf04,3
+np.float32,0x3db02c60,0x3fbe0998,3
+np.float32,0x3c47b780,0x3fc78069,3
+np.float32,0x3ed33b20,0x3f92a0d5,3
+np.float32,0xbf4556d7,0x401cdcde,3
+np.float32,0xbe1b6e28,0x3fdc90ec,3
+np.float32,0xbf3289b7,0x4015ecd0,3
+np.float32,0x3df3f240,0x3fb9c76d,3
+np.float32,0x3eefa7d0,0x3f8ab61d,3
+np.float32,0xbe945838,0x3feeb006,3
+np.float32,0xbf0b1386,0x400949a3,3
+np.float32,0x3f77e546,0x3e812cc1,3
+np.float32,0x3e804ba0,0x3fa8a480,3
+np.float32,0x3f43dcea,0x3f331a06,3
+np.float32,0x3eb87450,0x3f99e33c,3
+np.float32,0x3e5f4898,0x3facecea,3
+np.float32,0x3f646640,0x3eeff10e,3
+np.float32,0x3f1aa832,0x3f6c1051,3
+np.float32,0xbebf6bfa,0x3ffa1bdc,3
+np.float32,0xbb77f300,0x3fc98bd4,3
+np.float32,0x3f3587fe,0x3f485645,3
+np.float32,0x3ef85f34,0x3f883b8c,3
+np.float32,0x3f50e584,0x3f1dc82c,3
+np.float32,0x3f1d30a8,0x3f68deb0,3
+np.float32,0x3ee75a78,0x3f8d0c86,3
+np.float32,0x3f2c023a,0x3f5581e1,3
+np.float32,0xbf074e34,0x40082bca,3
+np.float32,0xbead71f0,0x3ff54c6d,3
+np.float32,0xbf39ed88,0x40188e69,3
+np.float32,0x3f5d2fe6,0x3f07118b,3
+np.float32,0xbf1f79f8,0x400f9267,3
+np.float32,0x3e900c58,0x3fa48e99,3
+np.float32,0xbf759cb2,0x4036c47b,3
+np.float32,0x3f63329c,0x3ef5359c,3
+np.float32,0xbf5d6755,0x40276709,3
+np.float32,0x3f2ce31c,0x3f54519a,3
+np.float32,0x7f800000,0x7fc00000,3
+np.float32,0x3f1bf50e,0x3f6a6d9a,3
+np.float32,0x3f258334,0x3f5e25d8,3
+np.float32,0xbf661a3f,0x402c06ac,3
+np.float32,0x3d1654c0,0x3fc45cef,3
+np.float32,0xbef14a36,0x4003f009,3
+np.float32,0xbf356051,0x4016ec3a,3
+np.float32,0x3f6ccc42,0x3ec79193,3
+np.float32,0xbf2fe3d6,0x401501f9,3
+np.float32,0x3deedc80,0x3fba195b,3
+np.float32,0x3f2e5a28,0x3f52533e,3
+np.float32,0x3e6b68b8,0x3fab5ec8,3
+np.float32,0x3e458240,0x3fb037b7,3
+np.float32,0xbf24bab0,0x401144cb,3
+np.float32,0x3f600f4c,0x3f013fb2,3
+np.float32,0x3f021a04,0x3f84d316,3
+np.float32,0x3f741732,0x3e9cc948,3
+np.float32,0x3f0788aa,0x3f81a5b0,3
+np.float32,0x3f28802c,0x3f5a347c,3
+np.float32,0x3c9eb400,0x3fc69500,3
+np.float32,0x3e5d11e8,0x3fad357a,3
+np.float32,0x3d921250,0x3fbfecb9,3
+np.float32,0x3f354866,0x3f48b066,3
+np.float32,0xbf72cf43,0x40346d84,3
+np.float32,0x3eecdbb8,0x3f8b805f,3
+np.float32,0xbee585d0,0x400247fd,3
+np.float32,0x3e3607a8,0x3fb22fc6,3
+np.float32,0xbf0cb7d6,0x4009c71c,3
+np.float32,0xbf56b230,0x402432ec,3
+np.float32,0xbf4ced02,0x401fee29,3
+np.float32,0xbf3a325c,0x4018a776,3
+np.float32,0x3ecae8bc,0x3f94e732,3
+np.float32,0xbe48c7e8,0x3fe252bd,3
+np.float32,0xbe175d7c,0x3fdc0d5b,3
+np.float32,0x3ea78dac,0x3f9e632d,3
+np.float32,0xbe7434a8,0x3fe7e279,3
+np.float32,0x3f1f9e02,0x3f65c7b9,3
+np.float32,0xbe150f2c,0x3fdbc2c2,3
+np.float32,0x3ee13480,0x3f8ec423,3
+np.float32,0x3ecb7d54,0x3f94beb9,3
+np.float32,0x3f1cef42,0x3f693181,3
+np.float32,0xbf1ec06a,0x400f5730,3
+np.float32,0xbe112acc,0x3fdb44e8,3
+np.float32,0xbe77b024,0x3fe85545,3
+np.float32,0x3ec86fe0,0x3f959353,3
+np.float32,0x3f36b326,0x3f46ac9a,3
+np.float32,0x3e581a70,0x3fadd829,3
+np.float32,0xbf032c0c,0x4006f5f9,3
+np.float32,0xbf43b1fd,0x401c38b1,3
+np.float32,0x3f3701b4,0x3f463c5c,3
+np.float32,0x3f1a995a,0x3f6c22f1,3
+np.float32,0xbf05de0b,0x4007bf97,3
+np.float32,0x3d4bd960,0x3fc2b063,3
+np.float32,0x3f0e1618,0x3f7b7ed0,3
+np.float32,0x3edfd420,0x3f8f2628,3
+np.float32,0xbf6662fe,0x402c3047,3
+np.float32,0x3ec0690c,0x3f97bf9b,3
+np.float32,0xbeaf4146,0x3ff5c7a0,3
+np.float32,0x3f5e7764,0x3f04816d,3
+np.float32,0xbedd192c,0x40011bc5,3
+np.float32,0x3eb76350,0x3f9a2c5e,3
+np.float32,0xbed8108c,0x400069a5,3
+np.float32,0xbe59f31c,0x3fe48401,3
+np.float32,0xbea3e1e6,0x3ff2c439,3
+np.float32,0x3e26d1f8,0x3fb41db5,3
+np.float32,0x3f3a0a7c,0x3f41dba5,3
+np.float32,0x3ebae068,0x3f993ce4,3
+np.float32,0x3f2d8e30,0x3f536942,3
+np.float32,0xbe838bbe,0x3fea5247,3
+np.float32,0x3ebe4420,0x3f98538f,3
+np.float32,0xbcc59b80,0x3fcc265c,3
+np.float32,0x3eebb5c8,0x3f8bd334,3
+np.float32,0xbafc3400,0x3fc94ee8,3
+np.float32,0xbf63ddc1,0x402ac683,3
+np.float32,0xbeabdf80,0x3ff4e18f,3
+np.float32,0x3ea863f0,0x3f9e2a78,3
+np.float32,0x3f45b292,0x3f303bc1,3
+np.float32,0xbe68aa60,0x3fe666bf,3
+np.float32,0x3eb9de18,0x3f998239,3
+np.float32,0xbf719d85,0x4033815e,3
+np.float32,0x3edef9a8,0x3f8f62db,3
+np.float32,0xbd7781c0,0x3fd0cd1e,3
+np.float32,0x3f0b3b90,0x3f7ee92a,3
+np.float32,0xbe3eb3b4,0x3fe10a27,3
+np.float32,0xbf31a4c4,0x40159d23,3
+np.float32,0x3e929434,0x3fa3e5b0,3
+np.float32,0xbeb1a90e,0x3ff66b9e,3
+np.float32,0xbeba9b5e,0x3ff8d048,3
+np.float32,0xbf272a84,0x4012119e,3
+np.float32,0x3f1ebbd0,0x3f66e889,3
+np.float32,0x3ed3cdc8,0x3f927893,3
+np.float32,0xbf50dfce,0x40219b58,3
+np.float32,0x3f0c02de,0x3f7dfb62,3
+np.float32,0xbf694de3,0x402de8d2,3
+np.float32,0xbeaeb13e,0x3ff5a14f,3
+np.float32,0xbf61aa7a,0x40299702,3
+np.float32,0xbf13d159,0x400bed35,3
+np.float32,0xbeecd034,0x40034e0b,3
+np.float32,0xbe50c2e8,0x3fe35761,3
+np.float32,0x3f714406,0x3eae8e57,3
+np.float32,0xbf1ca486,0x400eabd8,3
+np.float32,0x3f5858cc,0x3f106497,3
+np.float32,0x3f670288,0x3ee41c84,3
+np.float32,0xbf20bd2c,0x400ff9f5,3
+np.float32,0xbe29afd8,0x3fde5eff,3
+np.float32,0xbf635e6a,0x402a80f3,3
+np.float32,0x3e82b7b0,0x3fa80446,3
+np.float32,0x3e982e7c,0x3fa26ece,3
+np.float32,0x3d9f0e00,0x3fbf1c6a,3
+np.float32,0x3e8299b4,0x3fa80c07,3
+np.float32,0xbf0529c1,0x40078ac3,3
+np.float32,0xbf403b8a,0x401ae519,3
+np.float32,0xbe57e09c,0x3fe44027,3
+np.float32,0x3ea1c8f4,0x3f9fe913,3
+np.float32,0xbe216a94,0x3fdd52d0,3
+np.float32,0x3f59c442,0x3f0db709,3
+np.float32,0xbd636260,0x3fd02bdd,3
+np.float32,0xbdbbc788,0x3fd4d08d,3
+np.float32,0x3dd19560,0x3fbbf0a3,3
+np.float32,0x3f060ad4,0x3f828641,3
+np.float32,0x3b102e00,0x3fc8c7c4,3
+np.float32,0x3f42b3b8,0x3f34e5a6,3
+np.float32,0x3f0255ac,0x3f84b071,3
+np.float32,0xbf014898,0x40066996,3
+np.float32,0x3e004dc0,0x3fb8fb51,3
+np.float32,0xbf594ff8,0x40256af2,3
+np.float32,0x3efafddc,0x3f877b80,3
+np.float32,0xbf5f0780,0x40283899,3
+np.float32,0x3ee95e54,0x3f8c7bcc,3
+np.float32,0x3eba2f0c,0x3f996c80,3
+np.float32,0x3f37721c,0x3f459b68,3
+np.float32,0x3e2be780,0x3fb378bf,3
+np.float32,0x3e550270,0x3fae3d69,3
+np.float32,0x3e0f9500,0x3fb70e0a,3
+np.float32,0xbf51974a,0x4021eaf4,3
+np.float32,0x3f393832,0x3f430d05,3
+np.float32,0x3f3df16a,0x3f3c1bd8,3
+np.float32,0xbd662340,0x3fd041ed,3
+np.float32,0x3f7e8418,0x3ddc9fce,3
+np.float32,0xbf392734,0x40184672,3
+np.float32,0x3ee3b278,0x3f8e124e,3
+np.float32,0x3eed4808,0x3f8b61d2,3
+np.float32,0xbf6fccbd,0x40322beb,3
+np.float32,0x3e3ecdd0,0x3fb1123b,3
+np.float32,0x3f4419e0,0x3f32bb45,3
+np.float32,0x3f595e00,0x3f0e7914,3
+np.float32,0xbe8c1486,0x3fec88c6,3
+np.float32,0xbf800000,0x40490fdb,3
+np.float32,0xbdaf5020,0x3fd4084d,3
+np.float32,0xbf407660,0x401afb63,3
+np.float32,0x3f0c3aa8,0x3f7db8b8,3
+np.float32,0xbcdb5980,0x3fcc7d5b,3
+np.float32,0x3f4738d4,0x3f2dd1ed,3
+np.float32,0x3f4d7064,0x3f23ab14,3
+np.float32,0xbeb1d576,0x3ff67774,3
+np.float32,0xbf507166,0x40216bb3,3
+np.float32,0x3e86484c,0x3fa71813,3
+np.float32,0x3f09123e,0x3f80bd35,3
+np.float32,0xbe9abe0e,0x3ff05cb2,3
+np.float32,0x3f3019dc,0x3f4fed21,3
+np.float32,0xbe99e00e,0x3ff0227d,3
+np.float32,0xbf155ec5,0x400c6739,3
+np.float32,0x3f5857ba,0x3f106698,3
+np.float32,0x3edf619c,0x3f8f45fb,3
+np.float32,0xbf5ab76a,0x40261664,3
+np.float32,0x3e54b5a8,0x3fae4738,3
+np.float32,0xbee92772,0x4002ca40,3
+np.float32,0x3f2fd610,0x3f504a7a,3
+np.float32,0xbf38521c,0x4017f97e,3
+np.float32,0xff800000,0x7fc00000,3
+np.float32,0x3e2da348,0x3fb34077,3
+np.float32,0x3f2f85fa,0x3f50b894,3
+np.float32,0x3e88f9c8,0x3fa66551,3
+np.float32,0xbf61e570,0x4029b648,3
+np.float32,0xbeab362c,0x3ff4b4a1,3
+np.float32,0x3ec6c310,0x3f9607bd,3
+np.float32,0x3f0d7bda,0x3f7c3810,3
+np.float32,0xbeba5d36,0x3ff8bf99,3
+np.float32,0x3f4b0554,0x3f27adda,3
+np.float32,0x3f60f5dc,0x3efebfb3,3
+np.float32,0x3f36ce2c,0x3f468603,3
+np.float32,0xbe70afac,0x3fe76e8e,3
+np.float32,0x3f673350,0x3ee339b5,3
+np.float32,0xbe124cf0,0x3fdb698c,3
+np.float32,0xbf1243dc,0x400b73d0,3
+np.float32,0x3f3c8850,0x3f3e3407,3
+np.float32,0x3ea02f24,0x3fa05500,3
+np.float32,0xbeffed34,0x400607db,3
+np.float32,0x3f5c75c2,0x3f08817c,3
+np.float32,0x3f4b2fbe,0x3f27682d,3
+np.float32,0x3ee47c34,0x3f8dd9f9,3
+np.float32,0x3f50d48c,0x3f1de584,3
+np.float32,0x3f12dc5e,0x3f75b628,3
+np.float32,0xbefe7e4a,0x4005d2f4,3
+np.float32,0xbec2e846,0x3ffb0cbc,3
+np.float32,0xbedc3036,0x4000fb80,3
+np.float32,0xbf48aedc,0x401e311f,3
+np.float32,0x3f6e032e,0x3ec11363,3
+np.float32,0xbf60de15,0x40292b72,3
+np.float32,0x3f06585e,0x3f8258ba,3
+np.float32,0x3ef49b98,0x3f894e66,3
+np.float32,0x3cc5fe00,0x3fc5f7cf,3
+np.float32,0xbf7525c5,0x40365c2c,3
+np.float32,0x3f64f9f8,0x3eed5fb2,3
+np.float32,0x3e8849c0,0x3fa692fb,3
+np.float32,0x3e50c878,0x3faec79e,3
+np.float32,0x3ed61530,0x3f91d831,3
+np.float32,0xbf54872e,0x40233724,3
+np.float32,0xbf52ee7f,0x4022815e,3
+np.float32,0xbe708c24,0x3fe769fc,3
+np.float32,0xbf26fc54,0x40120260,3
+np.float32,0x3f226e8a,0x3f6228db,3
+np.float32,0xbef30406,0x40042eb8,3
+np.float32,0x3f5d996c,0x3f063f5f,3
+np.float32,0xbf425f9c,0x401bb618,3
+np.float32,0x3e4bb260,0x3faf6dc9,3
+np.float32,0xbe52d5a4,0x3fe39b29,3
+np.float32,0xbe169cf0,0x3fdbf505,3
+np.float32,0xbedfc422,0x40017a8e,3
+np.float32,0x3d8ffef0,0x3fc00e05,3
+np.float32,0xbf12bdab,0x400b98f2,3
+np.float32,0x3f295d0a,0x3f590e88,3
+np.float32,0x3f49d8e4,0x3f2998aa,3
+np.float32,0xbef914f4,0x40050c12,3
+np.float32,0xbf4ea2b5,0x4020a61e,3
+np.float32,0xbf3a89e5,0x4018c762,3
+np.float32,0x3e8707b4,0x3fa6e67a,3
+np.float32,0x3ac55400,0x3fc8de86,3
+np.float32,0x800000,0x3fc90fdb,3
+np.float32,0xbeb9762c,0x3ff8819b,3
+np.float32,0xbebbe23c,0x3ff92815,3
+np.float32,0xbf598c88,0x402587a1,3
+np.float32,0x3e95d864,0x3fa30b4a,3
+np.float32,0x3f7f6f40,0x3d882486,3
+np.float32,0xbf53658c,0x4022b604,3
+np.float32,0xbf2a35f2,0x401314ad,3
+np.float32,0x3eb14380,0x3f9bcf28,3
+np.float32,0x3f0e0c64,0x3f7b8a7a,3
+np.float32,0x3d349920,0x3fc36a9a,3
+np.float32,0xbec2092c,0x3ffad071,3
+np.float32,0xbe1d08e8,0x3fdcc4e0,3
+np.float32,0xbf008968,0x40063243,3
+np.float32,0xbefad582,0x40054c51,3
+np.float32,0xbe52d010,0x3fe39a72,3
+np.float32,0x3f4afdac,0x3f27ba6b,3
+np.float32,0x3f6c483c,0x3eca4408,3
+np.float32,0xbef3cb68,0x40044b0c,3
+np.float32,0x3e94687c,0x3fa36b6f,3
+np.float32,0xbf64ae5c,0x402b39bb,3
+np.float32,0xbf0022b4,0x40061497,3
+np.float32,0x80000001,0x3fc90fdb,3
+np.float32,0x3f25bcd0,0x3f5dda4b,3
+np.float32,0x3ed91b40,0x3f9102d7,3
+np.float32,0x3f800000,0x0,3
+np.float32,0xbebc6aca,0x3ff94cca,3
+np.float32,0x3f239e9a,0x3f609e7d,3
+np.float32,0xbf7312be,0x4034a305,3
+np.float32,0x3efd16d0,0x3f86e148,3
+np.float32,0x3f52753a,0x3f1b0f72,3
+np.float32,0xbde58960,0x3fd7702c,3
+np.float32,0x3ef88580,0x3f883099,3
+np.float32,0x3eebaefc,0x3f8bd51e,3
+np.float32,0x3e877d2c,0x3fa6c807,3
+np.float32,0x3f1a0324,0x3f6cdf32,3
+np.float32,0xbedfe20a,0x40017eb6,3
+np.float32,0x3f205a3c,0x3f64d69d,3
+np.float32,0xbeed5b7c,0x400361b0,3
+np.float32,0xbf69ba10,0x402e2ad0,3
+np.float32,0x3c4fe200,0x3fc77014,3
+np.float32,0x3f043310,0x3f839a69,3
+np.float32,0xbeaf359a,0x3ff5c485,3
+np.float32,0x3db3f110,0x3fbdcd12,3
+np.float32,0x3e24af88,0x3fb462ed,3
+np.float32,0xbf34e858,0x4016c1c8,3
+np.float32,0x3f3334f2,0x3f4b9cd0,3
+np.float32,0xbf145882,0x400c16a2,3
+np.float32,0xbf541c38,0x40230748,3
+np.float32,0x3eba7e10,0x3f99574b,3
+np.float32,0xbe34c6e0,0x3fdfc731,3
+np.float32,0xbe957abe,0x3feefbf0,3
+np.float32,0xbf595a59,0x40256fdb,3
+np.float32,0xbdedc7b8,0x3fd7f4f0,3
+np.float32,0xbf627c02,0x402a06a9,3
+np.float32,0x3f339b78,0x3f4b0d18,3
+np.float32,0xbf2df6d2,0x40145929,3
+np.float32,0x3f617726,0x3efc9fd8,3
+np.float32,0xbee3a8fc,0x40020561,3
+np.float32,0x3efe9f68,0x3f867043,3
+np.float32,0xbf2c3e76,0x4013c3ba,3
+np.float32,0xbf218f28,0x40103d84,3
+np.float32,0xbf1ea847,0x400f4f7f,3
+np.float32,0x3ded9160,0x3fba2e31,3
+np.float32,0x3bce1b00,0x3fc841bf,3
+np.float32,0xbe90566e,0x3feda46a,3
+np.float32,0xbf5ea2ba,0x4028056b,3
+np.float32,0x3f538e62,0x3f191ee6,3
+np.float32,0xbf59e054,0x4025af74,3
+np.float32,0xbe8c98ba,0x3fecab24,3
+np.float32,0x3ee7bdb0,0x3f8cf0b7,3
+np.float32,0xbf2eb828,0x40149b2b,3
+np.float32,0xbe5eb904,0x3fe52068,3
+np.float32,0xbf16b422,0x400cd08d,3
+np.float32,0x3f1ab9b4,0x3f6bfa58,3
+np.float32,0x3dc23040,0x3fbce82a,3
+np.float32,0xbf29d9e7,0x4012f5e5,3
+np.float32,0xbf38f30a,0x40183393,3
+np.float32,0x3e88e798,0x3fa66a09,3
+np.float32,0x3f1d07e6,0x3f69124f,3
+np.float32,0xbe1d3d34,0x3fdccb7e,3
+np.float32,0xbf1715be,0x400ceec2,3
+np.float32,0x3f7a0eac,0x3e5d11f7,3
+np.float32,0xbe764924,0x3fe82707,3
+np.float32,0xbf01a1f8,0x4006837c,3
+np.float32,0x3f2be730,0x3f55a661,3
+np.float32,0xbf7bb070,0x403d4ce5,3
+np.float32,0xbd602110,0x3fd011c9,3
+np.float32,0x3f5d080c,0x3f07609d,3
+np.float32,0xbda20400,0x3fd332d1,3
+np.float32,0x3f1c62da,0x3f69e308,3
+np.float32,0xbf2c6916,0x4013d223,3
+np.float32,0xbf44f8fd,0x401cb816,3
+np.float32,0x3f4da392,0x3f235539,3
+np.float32,0x3e9e8aa0,0x3fa0c3a0,3
+np.float32,0x3e9633c4,0x3fa2f366,3
+np.float32,0xbf0422ab,0x40073ddd,3
+np.float32,0x3f518386,0x3f1cb603,3
+np.float32,0x3f24307a,0x3f5fe096,3
+np.float32,0xbdfb4220,0x3fd8ce24,3
+np.float32,0x3f179d28,0x3f6fdc7d,3
+np.float32,0xbecc2df0,0x3ffd911e,3
+np.float32,0x3f3dff0c,0x3f3c0782,3
+np.float32,0xbf58c4d8,0x4025295b,3
+np.float32,0xbdcf8438,0x3fd60dd3,3
+np.float32,0xbeeaf1b2,0x40030aa7,3
+np.float32,0xbf298a28,0x4012db45,3
+np.float32,0x3f6c4dec,0x3eca2678,3
+np.float32,0x3f4d1ac8,0x3f243a59,3
+np.float32,0x3f62cdfa,0x3ef6e8f8,3
+np.float32,0xbee8acce,0x4002b909,3
+np.float32,0xbd5f2af0,0x3fd00a15,3
+np.float32,0x3f5fde8e,0x3f01a453,3
+np.float32,0x3e95233c,0x3fa33aa4,3
+np.float32,0x3ecd2a60,0x3f9449be,3
+np.float32,0x3f10aa86,0x3f78619d,3
+np.float32,0x3f3888e8,0x3f440a70,3
+np.float32,0x3eeb5bfc,0x3f8bec7d,3
+np.float32,0xbe12d654,0x3fdb7ae6,3
+np.float32,0x3eca3110,0x3f951931,3
+np.float32,0xbe2d1b7c,0x3fdece05,3
+np.float32,0xbf29e9db,0x4012fb3a,3
+np.float32,0xbf0c50b8,0x4009a845,3
+np.float32,0xbed9f0e4,0x4000abef,3
+np.float64,0x3fd078ec5ba0f1d8,0x3ff4f7c00595a4d3,1
+np.float64,0xbfdbc39743b7872e,0x400027f85bce43b2,1
+np.float64,0xbfacd2707c39a4e0,0x3ffa08ae1075d766,1
+np.float64,0xbfc956890f32ad14,0x3ffc52308e7285fd,1
+np.float64,0xbf939c2298273840,0x3ff9706d18e6ea6b,1
+np.float64,0xbfe0d7048961ae09,0x4000fff4406bd395,1
+np.float64,0xbfe9d19b86f3a337,0x4004139bc683a69f,1
+np.float64,0x3fd35c7f90a6b900,0x3ff437220e9123f8,1
+np.float64,0x3fdddca171bbb944,0x3ff15da61e61ec08,1
+np.float64,0x3feb300de9f6601c,0x3fe1c6fadb68cdca,1
+np.float64,0xbfef1815327e302a,0x400739808fc6f964,1
+np.float64,0xbfe332d78e6665af,0x4001b6c4ef922f7c,1
+np.float64,0xbfedbf4dfb7b7e9c,0x40061cefed62a58b,1
+np.float64,0xbfd8dcc7e3b1b990,0x3fff84307713c2c3,1
+np.float64,0xbfedaf161c7b5e2c,0x400612027c1b2b25,1
+np.float64,0xbfed9bde897b37bd,0x4006053f05bd7d26,1
+np.float64,0xbfe081ebc26103d8,0x4000e70755eb66e0,1
+np.float64,0xbfe0366f9c606cdf,0x4000d11212f29afd,1
+np.float64,0xbfc7c115212f822c,0x3ffc1e8c9d58f7db,1
+np.float64,0x3fd8dd9a78b1bb34,0x3ff2bf8d0f4c9376,1
+np.float64,0xbfe54eff466a9dfe,0x4002655950b611f4,1
+np.float64,0xbfe4aad987e955b3,0x40022efb19882518,1
+np.float64,0x3f70231ca0204600,0x3ff911d834e7abf4,1
+np.float64,0x3fede01d047bc03a,0x3fd773cecbd8561b,1
+np.float64,0xbfd6a00d48ad401a,0x3ffee9fd7051633f,1
+np.float64,0x3fd44f3d50a89e7c,0x3ff3f74dd0fc9c91,1
+np.float64,0x3fe540f0d0ea81e2,0x3feb055a7c7d43d6,1
+np.float64,0xbf3ba2e200374800,0x3ff923b582650c6c,1
+np.float64,0x3fe93b2d3f72765a,0x3fe532fa15331072,1
+np.float64,0x3fee8ce5a17d19cc,0x3fd35666eefbe336,1
+np.float64,0x3fe55d5f8feabac0,0x3feadf3dcfe251d4,1
+np.float64,0xbfd1d2ede8a3a5dc,0x3ffda600041ac884,1
+np.float64,0xbfee41186e7c8231,0x40067a625cc6f64d,1
+np.float64,0x3fe521a8b9ea4352,0x3feb2f1a6c8084e5,1
+np.float64,0x3fc65378ef2ca6f0,0x3ff653dfe81ee9f2,1
+np.float64,0x3fdaba0fbcb57420,0x3ff23d630995c6ba,1
+np.float64,0xbfe6b7441d6d6e88,0x4002e182539a2994,1
+np.float64,0x3fda00b6dcb4016c,0x3ff2703d516f28e7,1
+np.float64,0xbfe8699f01f0d33e,0x400382326920ea9e,1
+np.float64,0xbfef5889367eb112,0x4007832af5983793,1
+np.float64,0x3fefb57c8aff6afa,0x3fc14700ab38dcef,1
+np.float64,0xbfda0dfdaab41bfc,0x3fffd75b6fd497f6,1
+np.float64,0xbfb059c36620b388,0x3ffa27c528b97a42,1
+np.float64,0xbfdd450ab1ba8a16,0x40005dcac6ab50fd,1
+np.float64,0xbfe54d6156ea9ac2,0x400264ce9f3f0fb9,1
+np.float64,0xbfe076e94760edd2,0x4000e3d1374884da,1
+np.float64,0xbfc063286720c650,0x3ffb2fd1d6bff0ef,1
+np.float64,0xbfe24680f2e48d02,0x40016ddfbb5bcc0e,1
+np.float64,0xbfdc9351d2b926a4,0x400044e3756fb765,1
+np.float64,0x3fefb173d8ff62e8,0x3fc1bd5626f80850,1
+np.float64,0x3fe77c117a6ef822,0x3fe7e57089bad2ec,1
+np.float64,0xbfddbcebf7bb79d8,0x40006eadb60406b3,1
+np.float64,0xbfecf6625ff9ecc5,0x40059e6c6961a6db,1
+np.float64,0x3fdc8950b8b912a0,0x3ff1bcfb2e27795b,1
+np.float64,0xbfeb2fa517765f4a,0x4004b00aee3e6888,1
+np.float64,0x3fd0efc88da1df90,0x3ff4d8f7cbd8248a,1
+np.float64,0xbfe6641a2becc834,0x4002c43362c1bd0f,1
+np.float64,0xbfe28aec0fe515d8,0x400182c91d4df039,1
+np.float64,0xbfd5ede8d0abdbd2,0x3ffeba7baef05ae8,1
+np.float64,0xbfbd99702a3b32e0,0x3ffafca21c1053f1,1
+np.float64,0x3f96f043f82de080,0x3ff8c6384d5eb610,1
+np.float64,0xbfe5badbc9eb75b8,0x400289c8cd5873d1,1
+np.float64,0x3fe5c6bf95eb8d80,0x3fea5093e9a3e43e,1
+np.float64,0x3fb1955486232ab0,0x3ff8086d4c3e71d5,1
+np.float64,0xbfea145f397428be,0x4004302237a35871,1
+np.float64,0xbfdabe685db57cd0,0x400003e2e29725fb,1
+np.float64,0xbfefc79758ff8f2f,0x400831814e23bfc8,1
+np.float64,0x3fd7edb66cafdb6c,0x3ff3006c5123bfaf,1
+np.float64,0xbfeaf7644bf5eec8,0x400495a7963ce4ed,1
+np.float64,0x3fdf838d78bf071c,0x3ff0e527eed73800,1
+np.float64,0xbfd1a0165ba3402c,0x3ffd98c5ab76d375,1
+np.float64,0x3fd75b67a9aeb6d0,0x3ff327c8d80b17cf,1
+np.float64,0x3fc2aa9647255530,0x3ff6ca854b157df1,1
+np.float64,0xbfe0957fd4612b00,0x4000ecbf3932becd,1
+np.float64,0x3fda1792c0b42f24,0x3ff269fbb2360487,1
+np.float64,0x3fd480706ca900e0,0x3ff3ea53a6aa3ae8,1
+np.float64,0xbfd0780ed9a0f01e,0x3ffd4bfd544c7d47,1
+np.float64,0x3feeec0cd77dd81a,0x3fd0a8a241fdb441,1
+np.float64,0x3fcfa933e93f5268,0x3ff5223478621a6b,1
+np.float64,0x3fdad2481fb5a490,0x3ff236b86c6b2b49,1
+np.float64,0x3fe03b129de07626,0x3ff09f21fb868451,1
+np.float64,0xbfc01212cd202424,0x3ffb259a07159ae9,1
+np.float64,0x3febdb912df7b722,0x3fe0768e20dac8c9,1
+np.float64,0xbfbf2148763e4290,0x3ffb154c361ce5bf,1
+np.float64,0xbfb1a7eb1e234fd8,0x3ffa3cb37ac4a176,1
+np.float64,0xbfe26ad1ec64d5a4,0x400178f480ecce8d,1
+np.float64,0x3fe6d1cd1b6da39a,0x3fe8dc20ec4dad3b,1
+np.float64,0xbfede0e53dfbc1ca,0x4006340d3bdd7c97,1
+np.float64,0xbfe8fd1bd9f1fa38,0x4003bc3477f93f40,1
+np.float64,0xbfe329d0f26653a2,0x4001b3f345af5648,1
+np.float64,0xbfe4bb20eee97642,0x40023451404d6d08,1
+np.float64,0x3fb574832e2ae900,0x3ff7ca4bed0c7110,1
+np.float64,0xbfdf3c098fbe7814,0x4000a525bb72d659,1
+np.float64,0x3fa453e6d428a7c0,0x3ff87f512bb9b0c6,1
+np.float64,0x3faaec888435d920,0x3ff84a7d9e4def63,1
+np.float64,0xbfcdc240df3b8480,0x3ffce30ece754e7f,1
+np.float64,0xbf8c3220f0386440,0x3ff95a600ae6e157,1
+np.float64,0x3fe806076c700c0e,0x3fe71784a96c76eb,1
+np.float64,0x3fedf9b0e17bf362,0x3fd6e35fc0a7b6c3,1
+np.float64,0xbfe1b48422636908,0x400141bd8ed251bc,1
+np.float64,0xbfe82e2817705c50,0x40036b5a5556d021,1
+np.float64,0xbfc8ef8ff931df20,0x3ffc450ffae7ce58,1
+np.float64,0xbfe919fa94f233f5,0x4003c7cce4697fe8,1
+np.float64,0xbfc3ace4a72759c8,0x3ffb9a197bb22651,1
+np.float64,0x3fe479f71ee8f3ee,0x3fec0bd2f59097aa,1
+np.float64,0xbfeeb54a967d6a95,0x4006da12c83649c5,1
+np.float64,0x3fe5e74ea8ebce9e,0x3fea2407cef0f08c,1
+np.float64,0x3fb382baf2270570,0x3ff7e98213b921ba,1
+np.float64,0xbfdd86fd3cbb0dfa,0x40006712952ddbcf,1
+np.float64,0xbfd250eb52a4a1d6,0x3ffdc6d56253b1cd,1
+np.float64,0x3fea30c4ed74618a,0x3fe3962deba4f30e,1
+np.float64,0x3fc895963d312b30,0x3ff60a5d52fcbccc,1
+np.float64,0x3fe9cc4f6273989e,0x3fe442740942c80f,1
+np.float64,0xbfe8769f5cf0ed3f,0x4003873b4cb5bfce,1
+np.float64,0xbfe382f3726705e7,0x4001cfeb3204d110,1
+np.float64,0x3fbfe9a9163fd350,0x3ff7220bd2b97c8f,1
+np.float64,0xbfca6162bb34c2c4,0x3ffc743f939358f1,1
+np.float64,0x3fe127a014e24f40,0x3ff0147c4bafbc39,1
+np.float64,0x3fee9cdd2a7d39ba,0x3fd2e9ef45ab122f,1
+np.float64,0x3fa9ffb97c33ff80,0x3ff851e69fa3542c,1
+np.float64,0x3fd378f393a6f1e8,0x3ff42faafa77de56,1
+np.float64,0xbfe4df1e1669be3c,0x400240284df1c321,1
+np.float64,0x3fed0ed79bfa1db0,0x3fdba89060aa96fb,1
+np.float64,0x3fdef2ee52bde5dc,0x3ff10e942244f4f1,1
+np.float64,0xbfdab38f3ab5671e,0x40000264d8d5b49b,1
+np.float64,0x3fbe95a96e3d2b50,0x3ff73774cb59ce2d,1
+np.float64,0xbfe945653af28aca,0x4003d9657bf129c2,1
+np.float64,0xbfb18f3f2a231e80,0x3ffa3b27cba23f50,1
+np.float64,0xbfef50bf22fea17e,0x40077998a850082c,1
+np.float64,0xbfc52b8c212a5718,0x3ffbca8d6560a2da,1
+np.float64,0x7ff8000000000000,0x7ff8000000000000,1
+np.float64,0x3fc1e3a02d23c740,0x3ff6e3a5fcac12a4,1
+np.float64,0xbfeb5e4ea5f6bc9d,0x4004c65abef9426f,1
+np.float64,0xbfe425b132684b62,0x400203c29608b00d,1
+np.float64,0xbfbfa1c19e3f4380,0x3ffb1d6367711158,1
+np.float64,0x3fbba2776e3744f0,0x3ff766f6df586fad,1
+np.float64,0xbfb5d0951e2ba128,0x3ffa7f712480b25e,1
+np.float64,0xbfe949fdab7293fb,0x4003db4530a18507,1
+np.float64,0xbfcf13519b3e26a4,0x3ffd0e6f0a6c38ee,1
+np.float64,0x3f91e6d72823cdc0,0x3ff8da5f08909b6e,1
+np.float64,0x3f78a2e360314600,0x3ff909586727caef,1
+np.float64,0xbfe1ae7e8fe35cfd,0x40013fef082caaa3,1
+np.float64,0x3fe97a6dd1f2f4dc,0x3fe4cb4b99863478,1
+np.float64,0xbfcc1e1e69383c3c,0x3ffcad250a949843,1
+np.float64,0x3faccb797c399700,0x3ff83b8066b49330,1
+np.float64,0x3fe7a2647a6f44c8,0x3fe7acceae6ec425,1
+np.float64,0xbfec3bfcf0f877fa,0x4005366af5a7175b,1
+np.float64,0xbfe2310b94646217,0x400167588fceb228,1
+np.float64,0x3feb167372762ce6,0x3fe1f74c0288fad8,1
+np.float64,0xbfb722b4ee2e4568,0x3ffa94a81b94dfca,1
+np.float64,0x3fc58da9712b1b50,0x3ff66cf8f072aa14,1
+np.float64,0xbfe7fff9d6effff4,0x400359d01b8141de,1
+np.float64,0xbfd56691c5aacd24,0x3ffe9686697797e8,1
+np.float64,0x3fe3ab0557e7560a,0x3fed1593959ef8e8,1
+np.float64,0x3fdd458995ba8b14,0x3ff1883d6f22a322,1
+np.float64,0x3fe7bbed2cef77da,0x3fe786d618094cda,1
+np.float64,0x3fa31a30c4263460,0x3ff88920b936fd79,1
+np.float64,0x8010000000000000,0x3ff921fb54442d18,1
+np.float64,0xbfdc5effbdb8be00,0x40003d95fe0dff11,1
+np.float64,0x3febfdad7e77fb5a,0x3fe030b5297dbbdd,1
+np.float64,0x3fe4f3f3b2e9e7e8,0x3feb6bc59eeb2be2,1
+np.float64,0xbfe44469fd6888d4,0x40020daa5488f97a,1
+np.float64,0xbfe19fddb0e33fbc,0x40013b8c902b167b,1
+np.float64,0x3fa36ad17c26d5a0,0x3ff8869b3e828134,1
+np.float64,0x3fcf23e6c93e47d0,0x3ff5336491a65d1e,1
+np.float64,0xffefffffffffffff,0x7ff8000000000000,1
+np.float64,0xbfe375f4cee6ebea,0x4001cbd2ba42e8b5,1
+np.float64,0xbfaef1215c3de240,0x3ffa19ab02081189,1
+np.float64,0xbfec39c59c78738b,0x4005353dc38e3d78,1
+np.float64,0x7ff4000000000000,0x7ffc000000000000,1
+np.float64,0xbfec09bb7b781377,0x40051c0a5754cb3a,1
+np.float64,0x3fe8301f2870603e,0x3fe6d783c5ef0944,1
+np.float64,0xbfed418c987a8319,0x4005cbae1b8693d1,1
+np.float64,0xbfdc16e7adb82dd0,0x4000338b634eaf03,1
+np.float64,0x3fd5d361bdaba6c4,0x3ff390899300a54c,1
+np.float64,0xbff0000000000000,0x400921fb54442d18,1
+np.float64,0x3fd5946232ab28c4,0x3ff3a14767813f29,1
+np.float64,0x3fe833e5fef067cc,0x3fe6d1be720edf2d,1
+np.float64,0x3fedf746a67bee8e,0x3fd6f127fdcadb7b,1
+np.float64,0x3fd90353d3b206a8,0x3ff2b54f7d369ba9,1
+np.float64,0x3fec4b4b72f89696,0x3fdf1b38d2e93532,1
+np.float64,0xbfe9c67596f38ceb,0x40040ee5f524ce03,1
+np.float64,0x3fd350d91aa6a1b4,0x3ff43a303c0da27f,1
+np.float64,0x3fd062603ba0c4c0,0x3ff4fd9514b935d8,1
+np.float64,0xbfe24c075f64980e,0x40016f8e9f2663b3,1
+np.float64,0x3fdaa546eeb54a8c,0x3ff2431a88fef1d5,1
+np.float64,0x3fe92b8151f25702,0x3fe54c67e005cbf9,1
+np.float64,0xbfe1be8b8a637d17,0x400144c078f67c6e,1
+np.float64,0xbfe468a1d7e8d144,0x40021964b118cbf4,1
+np.float64,0xbfdc6de4fab8dbca,0x40003fa9e27893d8,1
+np.float64,0xbfe3c2788ae784f1,0x4001e407ba3aa956,1
+np.float64,0xbfe2bf1542e57e2a,0x400192d4a9072016,1
+np.float64,0xbfe6982f4c6d305e,0x4002d681b1991bbb,1
+np.float64,0x3fdbceb1c4b79d64,0x3ff1f0f117b9d354,1
+np.float64,0x3fdb3705e7b66e0c,0x3ff21af01ca27ace,1
+np.float64,0x3fe3e6358ee7cc6c,0x3fecca4585053983,1
+np.float64,0xbfe16d6a9a62dad5,0x40012c7988aee247,1
+np.float64,0xbfce66e4413ccdc8,0x3ffcf83b08043a0c,1
+np.float64,0xbfeb6cd46876d9a9,0x4004cd61733bfb79,1
+np.float64,0xbfdb1cdd64b639ba,0x400010e6cf087cb7,1
+np.float64,0xbfe09e4e30e13c9c,0x4000ef5277c47721,1
+np.float64,0xbfee88dd127d11ba,0x4006b3cd443643ac,1
+np.float64,0xbf911e06c8223c00,0x3ff966744064fb05,1
+np.float64,0xbfe8f22bc471e458,0x4003b7d5513af295,1
+np.float64,0x3fe3d7329567ae66,0x3fecdd6c241f83ee,1
+np.float64,0x3fc8a9404b315280,0x3ff607dc175edf3f,1
+np.float64,0x3fe7eb80ad6fd702,0x3fe73f8fdb3e6a6c,1
+np.float64,0x3fef0931e37e1264,0x3fcf7fde80a3c5ab,1
+np.float64,0x3fe2ed3c3fe5da78,0x3fee038334cd1860,1
+np.float64,0x3fe251fdb8e4a3fc,0x3feec26dc636ac31,1
+np.float64,0x3feb239436764728,0x3fe1de9462455da7,1
+np.float64,0xbfe63fd7eeec7fb0,0x4002b78cfa3d2fa6,1
+np.float64,0x3fdd639cb5bac738,0x3ff17fc7d92b3eee,1
+np.float64,0x3fd0a7a13fa14f44,0x3ff4eba95c559c84,1
+np.float64,0x3fe804362d70086c,0x3fe71a44cd91ffa4,1
+np.float64,0xbfe0fecf6e61fd9f,0x40010bac8edbdc4f,1
+np.float64,0x3fcb74acfd36e958,0x3ff5ac84437f1b7c,1
+np.float64,0x3fe55053e1eaa0a8,0x3feaf0bf76304c30,1
+np.float64,0x3fc06b508d20d6a0,0x3ff7131da17f3902,1
+np.float64,0x3fdd78750fbaf0ec,0x3ff179e97fbf7f65,1
+np.float64,0x3fe44cb946689972,0x3fec46859b5da6be,1
+np.float64,0xbfeb165a7ff62cb5,0x4004a41c9cc9589e,1
+np.float64,0x3fe01ffb2b603ff6,0x3ff0aed52bf1c3c1,1
+np.float64,0x3f983c60a83078c0,0x3ff8c107805715ab,1
+np.float64,0x3fd8b5ff13b16c00,0x3ff2ca4a837a476a,1
+np.float64,0x3fc80510a1300a20,0x3ff61cc3b4af470b,1
+np.float64,0xbfd3935b06a726b6,0x3ffe1b3a2066f473,1
+np.float64,0xbfdd4a1f31ba943e,0x40005e81979ed445,1
+np.float64,0xbfa76afdd42ed600,0x3ff9dd63ffba72d2,1
+np.float64,0x3fe7e06d496fc0da,0x3fe7503773566707,1
+np.float64,0xbfea5fbfe874bf80,0x40045106af6c538f,1
+np.float64,0x3fee000c487c0018,0x3fd6bef1f8779d88,1
+np.float64,0xbfb39f4ee2273ea0,0x3ffa5c3f2b3888ab,1
+np.float64,0x3feb9247b0772490,0x3fe1092d2905efce,1
+np.float64,0x3fdaa39b4cb54738,0x3ff243901da0da17,1
+np.float64,0x3fcd5b2b493ab658,0x3ff56e262e65b67d,1
+np.float64,0x3fcf82512f3f04a0,0x3ff52738847c55f2,1
+np.float64,0x3fe2af5e0c655ebc,0x3fee4ffab0c82348,1
+np.float64,0xbfec0055d0f800ac,0x4005172d325933e8,1
+np.float64,0x3fe71da9336e3b52,0x3fe86f2e12f6e303,1
+np.float64,0x3fbefab0723df560,0x3ff731188ac716ec,1
+np.float64,0xbfe11dca28623b94,0x400114d3d4ad370d,1
+np.float64,0x3fbcbda8ca397b50,0x3ff755281078abd4,1
+np.float64,0x3fe687c7126d0f8e,0x3fe945099a7855cc,1
+np.float64,0xbfecde510579bca2,0x400590606e244591,1
+np.float64,0xbfd72de681ae5bce,0x3fff0ff797ad1755,1
+np.float64,0xbfe7c0f7386f81ee,0x40034226e0805309,1
+np.float64,0x3fd8d55619b1aaac,0x3ff2c1cb3267b14e,1
+np.float64,0x3fecd7a2ad79af46,0x3fdcabbffeaa279e,1
+np.float64,0x3fee7fb1a8fcff64,0x3fd3ae620286fe19,1
+np.float64,0xbfc5f3a3592be748,0x3ffbe3ed204d9842,1
+np.float64,0x3fec9e5527793caa,0x3fddb00bc8687e4b,1
+np.float64,0x3fc35dc70f26bb90,0x3ff6b3ded7191e33,1
+np.float64,0x3fda91c07ab52380,0x3ff24878848fec8f,1
+np.float64,0xbfe12cde1fe259bc,0x4001194ab99d5134,1
+np.float64,0xbfd35ab736a6b56e,0x3ffe0c5ce8356d16,1
+np.float64,0x3fc9c94123339280,0x3ff5e3239f3ad795,1
+np.float64,0xbfe72f54926e5ea9,0x40030c95d1d02b56,1
+np.float64,0xbfee283186fc5063,0x40066786bd0feb79,1
+np.float64,0xbfe7b383f56f6708,0x40033d23ef0e903d,1
+np.float64,0x3fd6037327ac06e8,0x3ff383bf2f311ddb,1
+np.float64,0x3fe0e344b561c68a,0x3ff03cd90fd4ba65,1
+np.float64,0xbfef0ff54b7e1feb,0x400730fa5fce381e,1
+np.float64,0x3fd269929da4d324,0x3ff476b230136d32,1
+np.float64,0xbfbc5fb9f638bf70,0x3ffae8e63a4e3234,1
+np.float64,0xbfe2e8bc84e5d179,0x40019fb5874f4310,1
+np.float64,0xbfd7017413ae02e8,0x3fff040d843c1531,1
+np.float64,0x3fefd362fa7fa6c6,0x3fbababc3ddbb21d,1
+np.float64,0x3fecb62ed3f96c5e,0x3fdd44ba77ccff94,1
+np.float64,0xbfb16fad5222df58,0x3ffa392d7f02b522,1
+np.float64,0x3fbcf4abc639e950,0x3ff751b23c40e27f,1
+np.float64,0x3fe128adbce2515c,0x3ff013dc91db04b5,1
+np.float64,0x3fa5dd9d842bbb40,0x3ff87300c88d512f,1
+np.float64,0xbfe61efcaf6c3dfa,0x4002ac27117f87c9,1
+np.float64,0x3feffe1233fffc24,0x3f9638d3796a4954,1
+np.float64,0xbfe78548b66f0a92,0x40032c0447b7bfe2,1
+np.float64,0x3fe7bd38416f7a70,0x3fe784e86d6546b6,1
+np.float64,0x3fe0d6bc5961ad78,0x3ff0443899e747ac,1
+np.float64,0xbfd0bb6e47a176dc,0x3ffd5d6dff390d41,1
+np.float64,0xbfec1d16b8f83a2e,0x40052620378d3b78,1
+np.float64,0x3fe9bbec20f377d8,0x3fe45e167c7a3871,1
+np.float64,0xbfeed81d9dfdb03b,0x4006f9dec2db7310,1
+np.float64,0xbfe1e35179e3c6a3,0x40014fd1b1186ac0,1
+np.float64,0xbfc9c7e605338fcc,0x3ffc60a6bd1a7126,1
+np.float64,0x3feec92810fd9250,0x3fd1afde414ab338,1
+np.float64,0xbfeb9f1d90773e3b,0x4004e606b773f5b0,1
+np.float64,0x3fcbabdf6b3757c0,0x3ff5a573866404af,1
+np.float64,0x3fe9f4e1fff3e9c4,0x3fe3fd7b6712dd7b,1
+np.float64,0xbfe6c0175ded802e,0x4002e4a4dc12f3fe,1
+np.float64,0xbfeefc96f37df92e,0x40071d367cd721ff,1
+np.float64,0xbfeaab58dc7556b2,0x400472ce37e31e50,1
+np.float64,0xbfc62668772c4cd0,0x3ffbea5e6c92010a,1
+np.float64,0x3fafe055fc3fc0a0,0x3ff822ce6502519a,1
+np.float64,0x3fd7b648ffaf6c90,0x3ff30f5a42f11418,1
+np.float64,0xbfe934fe827269fd,0x4003d2b9fed9e6ad,1
+np.float64,0xbfe6d691f2edad24,0x4002eca6a4b1797b,1
+np.float64,0x3fc7e62ced2fcc58,0x3ff620b1f44398b7,1
+np.float64,0xbfc89be9f33137d4,0x3ffc3a67a497f59c,1
+np.float64,0xbfe7793d536ef27a,0x40032794bf14dd64,1
+np.float64,0x3fde55a02dbcab40,0x3ff13b5f82d223e4,1
+np.float64,0xbfc8eabd7b31d57c,0x3ffc4472a81cb6d0,1
+np.float64,0x3fddcb5468bb96a8,0x3ff162899c381f2e,1
+np.float64,0xbfec7554d8f8eaaa,0x40055550e18ec463,1
+np.float64,0x3fd0b6e8b6a16dd0,0x3ff4e7b4781a50e3,1
+np.float64,0x3fedaae01b7b55c0,0x3fd8964916cdf53d,1
+np.float64,0x3fe0870f8a610e20,0x3ff072e7db95c2a2,1
+np.float64,0xbfec3e3ce2787c7a,0x4005379d0f6be873,1
+np.float64,0xbfe65502586caa04,0x4002beecff89147f,1
+np.float64,0xbfe0df39a961be74,0x4001025e36d1c061,1
+np.float64,0xbfb5d8edbe2bb1d8,0x3ffa7ff72b7d6a2b,1
+np.float64,0xbfde89574bbd12ae,0x40008ba4cd74544d,1
+np.float64,0xbfe72938f0ee5272,0x40030a5efd1acb6d,1
+np.float64,0xbfcd500d133aa01c,0x3ffcd462f9104689,1
+np.float64,0x3fe0350766606a0e,0x3ff0a2a3664e2c14,1
+np.float64,0xbfc892fb573125f8,0x3ffc3944641cc69d,1
+np.float64,0xbfba7dc7c634fb90,0x3ffaca9a6a0ffe61,1
+np.float64,0xbfeac94478759289,0x40048068a8b83e45,1
+np.float64,0xbfe8f60c1af1ec18,0x4003b961995b6e51,1
+np.float64,0x3fea1c0817743810,0x3fe3ba28c1643cf7,1
+np.float64,0xbfe42a0fefe85420,0x4002052aadd77f01,1
+np.float64,0x3fd2c61c56a58c38,0x3ff45e84cb9a7fa9,1
+np.float64,0xbfd83fb7cdb07f70,0x3fff59ab4790074c,1
+np.float64,0x3fd95e630fb2bcc8,0x3ff29c8bee1335ad,1
+np.float64,0x3feee88f387dd11e,0x3fd0c3ad3ded4094,1
+np.float64,0x3fe061291160c252,0x3ff0890010199bbc,1
+np.float64,0xbfdc7db3b5b8fb68,0x400041dea3759443,1
+np.float64,0x3fee23b320fc4766,0x3fd5ee73d7aa5c56,1
+np.float64,0xbfdc25c590b84b8c,0x4000359cf98a00b4,1
+np.float64,0xbfd63cbfd2ac7980,0x3ffecf7b9cf99b3c,1
+np.float64,0xbfbeb3c29a3d6788,0x3ffb0e66ecc0fc3b,1
+np.float64,0xbfd2f57fd6a5eb00,0x3ffdf1d7c79e1532,1
+np.float64,0xbfab3eda9c367db0,0x3ff9fc0c875f42e9,1
+np.float64,0xbfe12df1c6e25be4,0x4001199c673e698c,1
+np.float64,0x3fef8ab23a7f1564,0x3fc5aff358c59f1c,1
+np.float64,0x3fe562f50feac5ea,0x3fead7bce205f7d9,1
+np.float64,0x3fdc41adbeb8835c,0x3ff1d0f71341b8f2,1
+np.float64,0x3fe2748967e4e912,0x3fee9837f970ff9e,1
+np.float64,0xbfdaa89d57b5513a,0x400000e3889ba4cf,1
+np.float64,0x3fdf2a137dbe5428,0x3ff0fecfbecbbf86,1
+np.float64,0xbfea1fdcd2f43fba,0x4004351974b32163,1
+np.float64,0xbfe34a93a3e69528,0x4001be323946a3e0,1
+np.float64,0x3fe929bacff25376,0x3fe54f47bd7f4cf2,1
+np.float64,0xbfd667fbd6accff8,0x3ffedb04032b3a1a,1
+np.float64,0xbfeb695796f6d2af,0x4004cbb08ec6f525,1
+np.float64,0x3fd204df2ea409c0,0x3ff490f51e6670f5,1
+np.float64,0xbfd89a2757b1344e,0x3fff722127b988c4,1
+np.float64,0xbfd0787187a0f0e4,0x3ffd4c16dbe94f32,1
+np.float64,0x3fd44239bfa88474,0x3ff3fabbfb24b1fa,1
+np.float64,0xbfeb0b3489f61669,0x40049ee33d811d33,1
+np.float64,0x3fdcf04eaab9e09c,0x3ff1a02a29996c4e,1
+np.float64,0x3fd4c51e4fa98a3c,0x3ff3d8302c68fc9a,1
+np.float64,0x3fd1346645a268cc,0x3ff4c72b4970ecaf,1
+np.float64,0x3fd6a89d09ad513c,0x3ff357af6520afac,1
+np.float64,0xbfba0f469a341e90,0x3ffac3a8f41bed23,1
+np.float64,0xbfe13f8ddce27f1c,0x40011ed557719fd6,1
+np.float64,0x3fd43e5e26a87cbc,0x3ff3fbc040fc30dc,1
+np.float64,0x3fe838125a707024,0x3fe6cb5c987248f3,1
+np.float64,0x3fe128c30c625186,0x3ff013cff238dd1b,1
+np.float64,0xbfcd4718833a8e30,0x3ffcd33c96bde6f9,1
+np.float64,0x3fe43fcd08e87f9a,0x3fec573997456ec1,1
+np.float64,0xbfe9a29104734522,0x4003ffd502a1b57f,1
+np.float64,0xbfe4709d7968e13b,0x40021bfc5cd55af4,1
+np.float64,0x3fd21c3925a43874,0x3ff48adf48556cbb,1
+np.float64,0x3fe9a521b2734a44,0x3fe4844fc054e839,1
+np.float64,0xbfdfa6a912bf4d52,0x4000b4730ad8521e,1
+np.float64,0x3fe3740702e6e80e,0x3fed5b106283b6ed,1
+np.float64,0x3fd0a3aa36a14754,0x3ff4ecb02a5e3f49,1
+np.float64,0x3fdcb903d0b97208,0x3ff1afa5d692c5b9,1
+np.float64,0xbfe7d67839efacf0,0x40034a3146abf6f2,1
+np.float64,0x3f9981c6d8330380,0x3ff8bbf1853d7b90,1
+np.float64,0xbfe9d4191673a832,0x400414a9ab453c5d,1
+np.float64,0x3fef0a1e5c7e143c,0x3fcf70b02a54c415,1
+np.float64,0xbfd996dee6b32dbe,0x3fffb6cf707ad8e4,1
+np.float64,0x3fe19bef17e337de,0x3fef9e70d4fcedae,1
+np.float64,0x3fe34a59716694b2,0x3fed8f6d5cfba474,1
+np.float64,0x3fdf27e27cbe4fc4,0x3ff0ff70500e0c7c,1
+np.float64,0xbfe19df87fe33bf1,0x40013afb401de24c,1
+np.float64,0xbfbdfd97ba3bfb30,0x3ffb02ef8c225e57,1
+np.float64,0xbfe3d3417267a683,0x4001e95ed240b0f8,1
+np.float64,0x3fe566498b6acc94,0x3fead342957d4910,1
+np.float64,0x3ff0000000000000,0x0,1
+np.float64,0x3feb329bd8766538,0x3fe1c2225aafe3b4,1
+np.float64,0xbfc19ca703233950,0x3ffb575b5df057b9,1
+np.float64,0x3fe755027d6eaa04,0x3fe81eb99c262e00,1
+np.float64,0xbfe6c2b8306d8570,0x4002e594199f9eec,1
+np.float64,0x3fd69438e6ad2870,0x3ff35d2275ae891d,1
+np.float64,0x3fda3e7285b47ce4,0x3ff25f5573dd47ae,1
+np.float64,0x3fe7928a166f2514,0x3fe7c4490ef4b9a9,1
+np.float64,0xbfd4eb71b9a9d6e4,0x3ffe75e8ccb74be1,1
+np.float64,0xbfcc3a07f1387410,0x3ffcb0b8af914a5b,1
+np.float64,0xbfe6e80225edd004,0x4002f2e26eae8999,1
+np.float64,0xbfb347728a268ee8,0x3ffa56bd526a12db,1
+np.float64,0x3fe5140ead6a281e,0x3feb4132c9140a1c,1
+np.float64,0xbfc147f125228fe4,0x3ffb4cab18b9050f,1
+np.float64,0xbfcb9145b537228c,0x3ffc9b1b6227a8c9,1
+np.float64,0xbfda84ef4bb509de,0x3ffff7f8a674e17d,1
+np.float64,0x3fd2eb6bbfa5d6d8,0x3ff454c225529d7e,1
+np.float64,0x3fe18c95f1e3192c,0x3fefb0cf0efba75a,1
+np.float64,0x3fe78606efef0c0e,0x3fe7d6c3a092d64c,1
+np.float64,0x3fbad5119a35aa20,0x3ff773dffe3ce660,1
+np.float64,0x3fd0cf5903a19eb4,0x3ff4e15fd21fdb42,1
+np.float64,0xbfd85ce90bb0b9d2,0x3fff618ee848e974,1
+np.float64,0x3fe90e11b9f21c24,0x3fe57be62f606f4a,1
+np.float64,0x3fd7a2040faf4408,0x3ff314ce85457ec2,1
+np.float64,0xbfd73fba69ae7f74,0x3fff14bff3504811,1
+np.float64,0x3fa04b4bd42096a0,0x3ff89f9b52f521a2,1
+np.float64,0xbfd7219ce5ae433a,0x3fff0cac0b45cc18,1
+np.float64,0xbfe0cf4661e19e8d,0x4000fdadb14e3c22,1
+np.float64,0x3fd07469fea0e8d4,0x3ff4f8eaa9b2394a,1
+np.float64,0x3f9b05c5d8360b80,0x3ff8b5e10672db5c,1
+np.float64,0x3fe4c25b916984b8,0x3febad29bd0e25e2,1
+np.float64,0xbfde8b4891bd1692,0x40008beb88d5c409,1
+np.float64,0xbfe199a7efe33350,0x400139b089aee21c,1
+np.float64,0x3fecdad25cf9b5a4,0x3fdc9d062867e8c3,1
+np.float64,0xbfe979b277f2f365,0x4003eedb061e25a4,1
+np.float64,0x3fc8c7311f318e60,0x3ff6040b9aeaad9d,1
+np.float64,0x3fd2b605b8a56c0c,0x3ff462b9a955c224,1
+np.float64,0x3fc073b6ad20e770,0x3ff7120e9f2fd63c,1
+np.float64,0xbfec60ede678c1dc,0x40054a3863e24dc2,1
+np.float64,0x3fe225171be44a2e,0x3feef910dca420ea,1
+np.float64,0xbfd7529762aea52e,0x3fff19d00661f650,1
+np.float64,0xbfd781783daf02f0,0x3fff2667b90be461,1
+np.float64,0x3fe3f6ec6d67edd8,0x3fecb4e814a2e33a,1
+np.float64,0x3fece6702df9cce0,0x3fdc6719d92a50d2,1
+np.float64,0xbfb5c602ce2b8c08,0x3ffa7ec761ba856a,1
+np.float64,0xbfd61f0153ac3e02,0x3ffec78e3b1a6c4d,1
+np.float64,0xbfec3462b2f868c5,0x400532630bbd7050,1
+np.float64,0xbfdd248485ba490a,0x400059391c07c1bb,1
+np.float64,0xbfd424921fa84924,0x3ffe416a85d1dcdf,1
+np.float64,0x3fbb23a932364750,0x3ff76eef79209f7f,1
+np.float64,0x3fca248b0f344918,0x3ff5d77c5c1b4e5e,1
+np.float64,0xbfe69af4a4ed35ea,0x4002d77c2e4fbd4e,1
+np.float64,0x3fdafe3cdcb5fc78,0x3ff22a9be6efbbf2,1
+np.float64,0xbfebba3377f77467,0x4004f3836e1fe71a,1
+np.float64,0xbfe650fae06ca1f6,0x4002bd851406377c,1
+np.float64,0x3fda630007b4c600,0x3ff2554f1832bd94,1
+np.float64,0xbfda8107d9b50210,0x3ffff6e6209659f3,1
+np.float64,0x3fea759a02f4eb34,0x3fe31d1a632c9aae,1
+np.float64,0x3fbf88149e3f1030,0x3ff728313aa12ccb,1
+np.float64,0x3f7196d2a0232e00,0x3ff910647e1914c1,1
+np.float64,0x3feeae51d17d5ca4,0x3fd2709698d31f6f,1
+np.float64,0xbfd73cd663ae79ac,0x3fff13f96300b55a,1
+np.float64,0x3fd4fc5f06a9f8c0,0x3ff3c99359854b97,1
+np.float64,0x3fb29f5d6e253ec0,0x3ff7f7c20e396b20,1
+np.float64,0xbfd757c82aaeaf90,0x3fff1b34c6141e98,1
+np.float64,0x3fc56fd4cf2adfa8,0x3ff670c145122909,1
+np.float64,0x3fc609a2f52c1348,0x3ff65d3ef3cade2c,1
+np.float64,0xbfe1de631163bcc6,0x40014e5528fadb73,1
+np.float64,0xbfe7eb4a726fd695,0x40035202f49d95c4,1
+np.float64,0xbfc9223771324470,0x3ffc4b84d5e263b9,1
+np.float64,0x3fee91a8a87d2352,0x3fd3364befde8de6,1
+np.float64,0x3fbc9784fe392f10,0x3ff7578e29f6a1b2,1
+np.float64,0xbfec627c2c78c4f8,0x40054b0ff2cb9c55,1
+np.float64,0xbfb8b406a6316810,0x3ffaadd97062fb8c,1
+np.float64,0xbfecf98384f9f307,0x4005a043d9110d79,1
+np.float64,0xbfe5834bab6b0698,0x400276f114aebee4,1
+np.float64,0xbfd90f391eb21e72,0x3fff91e26a8f48f3,1
+np.float64,0xbfee288ce2fc511a,0x400667cb09aa04b3,1
+np.float64,0x3fd5aa5e32ab54bc,0x3ff39b7080a52214,1
+np.float64,0xbfee7ef907fcfdf2,0x4006ab96a8eba4c5,1
+np.float64,0x3fd6097973ac12f4,0x3ff3822486978bd1,1
+np.float64,0xbfe02d14b8e05a2a,0x4000ce5be53047b1,1
+np.float64,0xbf9c629a6838c540,0x3ff993897728c3f9,1
+np.float64,0xbfee2024667c4049,0x40066188782fb1f0,1
+np.float64,0xbfa42a88fc285510,0x3ff9c35a4bbce104,1
+np.float64,0x3fa407af5c280f60,0x3ff881b360d8eea1,1
+np.float64,0x3fed0ba42cfa1748,0x3fdbb7d55609175f,1
+np.float64,0xbfdd0b5844ba16b0,0x400055b0bb59ebb2,1
+np.float64,0x3fd88d97e6b11b30,0x3ff2d53c1ecb8f8c,1
+np.float64,0xbfeb7a915ef6f523,0x4004d410812eb84c,1
+np.float64,0xbfb5f979ca2bf2f0,0x3ffa8201d73cd4ca,1
+np.float64,0x3fb3b65dd6276cc0,0x3ff7e64576199505,1
+np.float64,0x3fcd47a7793a8f50,0x3ff570a7b672f160,1
+np.float64,0xbfa41dd30c283ba0,0x3ff9c2f488127eb3,1
+np.float64,0x3fe4b1ea1f6963d4,0x3febc2bed7760427,1
+np.float64,0xbfdd0f81d2ba1f04,0x400056463724b768,1
+np.float64,0x3fd15d93f7a2bb28,0x3ff4bc7a24eacfd7,1
+np.float64,0xbfe3213af8e64276,0x4001b14579dfded3,1
+np.float64,0x3fd90dfbeab21bf8,0x3ff2b26a6c2c3bb3,1
+np.float64,0xbfd02d54bca05aaa,0x3ffd38ab3886b203,1
+np.float64,0x3fc218dcad2431b8,0x3ff6dced56d5b417,1
+np.float64,0x3fea5edf71f4bdbe,0x3fe3455ee09f27e6,1
+np.float64,0x3fa74319042e8640,0x3ff867d224545438,1
+np.float64,0x3fd970ad92b2e15c,0x3ff2979084815dc1,1
+np.float64,0x3fce0a4bf73c1498,0x3ff557a4df32df3e,1
+np.float64,0x3fef5c8e10feb91c,0x3fc99ca0eeaaebe4,1
+np.float64,0xbfedae997ffb5d33,0x400611af18f407ab,1
+np.float64,0xbfbcf07d6239e0f8,0x3ffaf201177a2d36,1
+np.float64,0xbfc3c52541278a4c,0x3ffb9d2af0408e4a,1
+np.float64,0x3fe4ef44e4e9de8a,0x3feb71f7331255e5,1
+np.float64,0xbfccd9f5f539b3ec,0x3ffcc53a99339592,1
+np.float64,0xbfda32c745b4658e,0x3fffe16e8727ef89,1
+np.float64,0xbfef54932a7ea926,0x40077e4605e61ca1,1
+np.float64,0x3fe9d4ae3573a95c,0x3fe4344a069a3fd0,1
+np.float64,0x3fda567e73b4acfc,0x3ff258bd77a663c7,1
+np.float64,0xbfd5bcac5eab7958,0x3ffead6379c19c52,1
+np.float64,0xbfee5e56f97cbcae,0x40069131fc54018d,1
+np.float64,0x3fc2d4413925a880,0x3ff6c54163816298,1
+np.float64,0xbfe9ddf6e873bbee,0x400418d8c722f7c5,1
+np.float64,0x3fdaf2a683b5e54c,0x3ff22dcda599d69c,1
+np.float64,0xbfca69789f34d2f0,0x3ffc7547ff10b1a6,1
+np.float64,0x3fed076f62fa0ede,0x3fdbcbda03c1d72a,1
+np.float64,0xbfcb38326f367064,0x3ffc8fb55dadeae5,1
+np.float64,0x3fe1938705e3270e,0x3fefa88130c5adda,1
+np.float64,0x3feaffae3b75ff5c,0x3fe221e3da537c7e,1
+np.float64,0x3fefc94acb7f9296,0x3fbd9a360ace67b4,1
+np.float64,0xbfe8bddeb0f17bbe,0x4003a316685c767e,1
+np.float64,0x3fbe10fbee3c21f0,0x3ff73fceb10650f5,1
+np.float64,0x3fde9126c1bd224c,0x3ff12a742f734d0a,1
+np.float64,0xbfe9686c91f2d0d9,0x4003e7bc6ee77906,1
+np.float64,0xbfb1ba4892237490,0x3ffa3dda064c2509,1
+np.float64,0xbfe2879100e50f22,0x400181c1a5b16f0f,1
+np.float64,0x3fd1cd40b6a39a80,0x3ff49f70e3064e95,1
+np.float64,0xbfc965869132cb0c,0x3ffc5419f3b43701,1
+np.float64,0x3fea7a6f2874f4de,0x3fe31480fb2dd862,1
+np.float64,0x3fc3bc56892778b0,0x3ff6a7e8fa0e8b0e,1
+np.float64,0x3fec1ed451f83da8,0x3fdfd78e564b8ad7,1
+np.float64,0x3feb77d16df6efa2,0x3fe13d083344e45e,1
+np.float64,0xbfe822e7c67045d0,0x400367104a830cf6,1
+np.float64,0x8000000000000001,0x3ff921fb54442d18,1
+np.float64,0xbfd4900918a92012,0x3ffe5dc0e19737b4,1
+np.float64,0x3fed184187fa3084,0x3fdb7b7a39f234f4,1
+np.float64,0x3fecef846179df08,0x3fdc3cb2228c3682,1
+np.float64,0xbfe2d2aed165a55e,0x400198e21c5b861b,1
+np.float64,0x7ff0000000000000,0x7ff8000000000000,1
+np.float64,0xbfee9409a07d2813,0x4006bd358232d073,1
+np.float64,0xbfecedc2baf9db86,0x4005995df566fc21,1
+np.float64,0x3fe6d857396db0ae,0x3fe8d2cb8794aa99,1
+np.float64,0xbf9a579e7834af40,0x3ff98b5cc8021e1c,1
+np.float64,0x3fc664fefb2cca00,0x3ff651a664ccf8fa,1
+np.float64,0xbfe8a7aa0e714f54,0x40039a5b4df938a0,1
+np.float64,0xbfdf27d380be4fa8,0x4000a241074dbae6,1
+np.float64,0x3fe00ddf55e01bbe,0x3ff0b94eb1ea1851,1
+np.float64,0x3feb47edbff68fdc,0x3fe199822d075959,1
+np.float64,0x3fb4993822293270,0x3ff7d80c838186d0,1
+np.float64,0xbfca2cd1473459a4,0x3ffc6d88c8de3d0d,1
+np.float64,0xbfea7d9c7674fb39,0x40045e4559e9e52d,1
+np.float64,0x3fe0dce425e1b9c8,0x3ff04099cab23289,1
+np.float64,0x3fd6bb7e97ad76fc,0x3ff352a30434499c,1
+np.float64,0x3fd4a4f16da949e4,0x3ff3e0b07432c9aa,1
+np.float64,0x8000000000000000,0x3ff921fb54442d18,1
+np.float64,0x3fe688f5b56d11ec,0x3fe9435f63264375,1
+np.float64,0xbfdf5a427ebeb484,0x4000a97a6c5d4abc,1
+np.float64,0xbfd1f3483fa3e690,0x3ffdae6c8a299383,1
+np.float64,0xbfeac920db759242,0x4004805862be51ec,1
+np.float64,0x3fef5bc711feb78e,0x3fc9ac40fba5b93b,1
+np.float64,0x3fe4bd9e12e97b3c,0x3febb363c787d381,1
+np.float64,0x3fef6a59ab7ed4b4,0x3fc880f1324eafce,1
+np.float64,0x3fc07a362120f470,0x3ff7113cf2c672b3,1
+np.float64,0xbfe4d6dbe2e9adb8,0x40023d6f6bea44b7,1
+np.float64,0xbfec2d6a15785ad4,0x40052eb425cc37a2,1
+np.float64,0x3fc90dae05321b60,0x3ff5fb10015d2934,1
+np.float64,0xbfa9239f74324740,0x3ff9eb2d057068ea,1
+np.float64,0xbfeb4fc8baf69f92,0x4004bf5e17fb08a4,1
+np.float64,0x0,0x3ff921fb54442d18,1
+np.float64,0x3faaf1884c35e320,0x3ff84a5591dbe1f3,1
+np.float64,0xbfed842561fb084b,0x4005f5c0a19116ce,1
+np.float64,0xbfc64850c32c90a0,0x3ffbeeac2ee70f9a,1
+np.float64,0x3fd7d879f5afb0f4,0x3ff306254c453436,1
+np.float64,0xbfdabaa586b5754c,0x4000035e6ac83a2b,1
+np.float64,0xbfebfeefa977fddf,0x4005167446fb9faf,1
+np.float64,0xbfe9383462727069,0x4003d407aa6a1577,1
+np.float64,0x3fe108dfb6e211c0,0x3ff026ac924b281d,1
+np.float64,0xbf85096df02a12c0,0x3ff94c0e60a22ede,1
+np.float64,0xbfe3121cd566243a,0x4001ac8f90db5882,1
+np.float64,0xbfd227f62aa44fec,0x3ffdbc26bb175dcc,1
+np.float64,0x3fd931af2cb26360,0x3ff2a8b62dfe003c,1
+np.float64,0xbfd9b794e3b36f2a,0x3fffbfbc89ec013d,1
+np.float64,0x3fc89b2e6f313660,0x3ff609a6e67f15f2,1
+np.float64,0x3fc0b14a8f216298,0x3ff70a4b6905aad2,1
+np.float64,0xbfeda11a657b4235,0x400608b3f9fff574,1
+np.float64,0xbfed2ee9ec7a5dd4,0x4005c040b7c02390,1
+np.float64,0xbfef7819d8fef034,0x4007ac6bf75cf09d,1
+np.float64,0xbfcc4720fb388e40,0x3ffcb2666a00b336,1
+np.float64,0xbfe05dec4be0bbd8,0x4000dc8a25ca3760,1
+np.float64,0x3fb093416e212680,0x3ff81897b6d8b374,1
+np.float64,0xbfc6ab89332d5714,0x3ffbfb4559d143e7,1
+np.float64,0x3fc51948512a3290,0x3ff67bb9df662c0a,1
+np.float64,0x3fed4d94177a9b28,0x3fda76c92f0c0132,1
+np.float64,0x3fdd195fbeba32c0,0x3ff194a5586dd18e,1
+np.float64,0x3fe3f82799e7f050,0x3fecb354c2faf55c,1
+np.float64,0x3fecac2169f95842,0x3fdd7222296cb7a7,1
+np.float64,0x3fe3d3f36fe7a7e6,0x3fece18f45e30dd7,1
+np.float64,0x3fe31ff63d663fec,0x3fedc46c77d30c6a,1
+np.float64,0xbfe3120c83e62419,0x4001ac8a7c4aa742,1
+np.float64,0x3fe7c1a7976f8350,0x3fe77e4a9307c9f8,1
+np.float64,0x3fe226fe9de44dfe,0x3feef6c0f3cb00fa,1
+np.float64,0x3fd5c933baab9268,0x3ff3933e8a37de42,1
+np.float64,0x3feaa98496f5530a,0x3fe2c003832ebf21,1
+np.float64,0xbfc6f80a2f2df014,0x3ffc04fd54cb1317,1
+np.float64,0x3fde5e18d0bcbc30,0x3ff138f7b32a2ca3,1
+np.float64,0xbfe30c8dd566191c,0x4001aad4af935a78,1
+np.float64,0x3fbe8d196e3d1a30,0x3ff737fec8149ecc,1
+np.float64,0x3feaee6731f5dcce,0x3fe241fa42cce22d,1
+np.float64,0x3fef9cc46cff3988,0x3fc3f17b708dbdbb,1
+np.float64,0xbfdb181bdeb63038,0x4000103ecf405602,1
+np.float64,0xbfc58de0ed2b1bc0,0x3ffbd704c14e15cd,1
+np.float64,0xbfee05d5507c0bab,0x40064e480faba6d8,1
+np.float64,0x3fe27d0ffa64fa20,0x3fee8dc71ef79f2c,1
+np.float64,0xbfe4f7ad4c69ef5a,0x400248456cd09a07,1
+np.float64,0xbfe4843e91e9087d,0x4002225f3e139c84,1
+np.float64,0x3fe7158b9c6e2b18,0x3fe87ae845c5ba96,1
+np.float64,0xbfea64316074c863,0x400452fd2bc23a44,1
+np.float64,0xbfc9f3ae4133e75c,0x3ffc663d482afa42,1
+np.float64,0xbfd5e18513abc30a,0x3ffeb72fc76d7071,1
+np.float64,0xbfd52f6438aa5ec8,0x3ffe87e5b18041e5,1
+np.float64,0xbfea970650f52e0d,0x400469a4a6758154,1
+np.float64,0xbfe44321b7e88644,0x40020d404a2141b1,1
+np.float64,0x3fdf5a39bbbeb474,0x3ff0f10453059dbd,1
+np.float64,0xbfa1d4069423a810,0x3ff9b0a2eacd2ce2,1
+np.float64,0xbfc36d16a326da2c,0x3ffb92077d41d26a,1
+np.float64,0x1,0x3ff921fb54442d18,1
+np.float64,0x3feb232a79764654,0x3fe1df5beeb249d0,1
+np.float64,0xbfed2003d5fa4008,0x4005b737c2727583,1
+np.float64,0x3fd5b093a3ab6128,0x3ff399ca2db1d96d,1
+np.float64,0x3fca692c3d34d258,0x3ff5ceb86b79223e,1
+np.float64,0x3fd6bbdf89ad77c0,0x3ff3528916df652d,1
+np.float64,0xbfefdadd46ffb5bb,0x40085ee735e19f19,1
+np.float64,0x3feb69fb2676d3f6,0x3fe157ee0c15691e,1
+np.float64,0x3fe44c931f689926,0x3fec46b6f5e3f265,1
+np.float64,0xbfc43ddbcb287bb8,0x3ffbac71d268d74d,1
+np.float64,0x3fe6e16d43edc2da,0x3fe8c5cf0f0daa66,1
+np.float64,0x3fe489efc76913e0,0x3febf704ca1ac2a6,1
+np.float64,0xbfe590aadceb2156,0x40027b764205cf78,1
+np.float64,0xbf782e8aa0305d00,0x3ff93a29e81928ab,1
+np.float64,0x3fedcb80cffb9702,0x3fd7e5d1f98a418b,1
+np.float64,0x3fe075858060eb0c,0x3ff07d23ab46b60f,1
+np.float64,0x3fe62a68296c54d0,0x3fe9c77f7068043b,1
+np.float64,0x3feff16a3c7fe2d4,0x3fae8e8a739cc67a,1
+np.float64,0xbfd6ed93e3addb28,0x3ffefebab206fa99,1
+np.float64,0x3fe40d8ccf681b1a,0x3fec97e9cd29966d,1
+np.float64,0x3fd6408210ac8104,0x3ff3737a7d374107,1
+np.float64,0x3fec8023b8f90048,0x3fde35ebfb2b3afd,1
+np.float64,0xbfe13babd4627758,0x40011dae5c07c56b,1
+np.float64,0xbfd2183e61a4307c,0x3ffdb80dd747cfbe,1
+np.float64,0x3feae8eb1d75d1d6,0x3fe24c1f6e42ae77,1
+np.float64,0xbfea559b9c74ab37,0x40044c8e5e123b20,1
+np.float64,0xbfd12c9d57a2593a,0x3ffd7ac6222f561c,1
+np.float64,0x3fe32eb697e65d6e,0x3fedb202693875b6,1
+np.float64,0xbfde0808c3bc1012,0x4000794bd8616ea3,1
+np.float64,0x3fe14958a06292b2,0x3ff0007b40ac648a,1
+np.float64,0x3fe3d388a6e7a712,0x3fece21751a6dd7c,1
+np.float64,0x3fe7ad7897ef5af2,0x3fe79c5b3da302a7,1
+np.float64,0x3fec75527e78eaa4,0x3fde655de0cf0508,1
+np.float64,0x3fea920d4c75241a,0x3fe2ea48f031d908,1
+np.float64,0x7fefffffffffffff,0x7ff8000000000000,1
+np.float64,0xbfc17a68cb22f4d0,0x3ffb530925f41aa0,1
+np.float64,0xbfe1c93166e39263,0x400147f3cb435dec,1
+np.float64,0x3feb97c402f72f88,0x3fe0fe5b561bf869,1
+np.float64,0x3fb58ff5162b1ff0,0x3ff7c8933fa969dc,1
+np.float64,0x3fe68e2beded1c58,0x3fe93c075283703b,1
+np.float64,0xbf94564cc828aca0,0x3ff97355e5ee35db,1
+np.float64,0x3fd31061c9a620c4,0x3ff44b150ec96998,1
+np.float64,0xbfc7d0c89f2fa190,0x3ffc208bf4eddc4d,1
+np.float64,0x3fe5736f1d6ae6de,0x3feac18f84992d1e,1
+np.float64,0x3fdb62e480b6c5c8,0x3ff20ecfdc4afe7c,1
+np.float64,0xbfc417228b282e44,0x3ffba78afea35979,1
+np.float64,0x3f8f5ba1303eb780,0x3ff8e343714630ff,1
+np.float64,0x3fe8e99126f1d322,0x3fe5b6511d4c0798,1
+np.float64,0xbfe2ec08a1e5d812,0x4001a0bb28a85875,1
+np.float64,0x3fea3b46cf74768e,0x3fe383dceaa74296,1
+np.float64,0xbfe008b5ed60116c,0x4000c3d62c275d40,1
+np.float64,0xbfcd9f8a4b3b3f14,0x3ffcde98d6484202,1
+np.float64,0xbfdb5fb112b6bf62,0x40001a22137ef1c9,1
+np.float64,0xbfe9079565f20f2b,0x4003c0670c92e401,1
+np.float64,0xbfce250dc53c4a1c,0x3ffcefc2b3dc3332,1
+np.float64,0x3fe9ba85d373750c,0x3fe4607131b28773,1
+np.float64,0x10000000000000,0x3ff921fb54442d18,1
+np.float64,0xbfeb9ef42c773de8,0x4004e5f239203ad8,1
+np.float64,0xbfd6bf457dad7e8a,0x3ffef2563d87b18d,1
+np.float64,0x3fe4de9aa5e9bd36,0x3feb87f97defb04a,1
+np.float64,0x3fedb4f67cfb69ec,0x3fd8603c465bffac,1
+np.float64,0x3fe7b6d9506f6db2,0x3fe78e670c7bdb67,1
+np.float64,0x3fe071717460e2e2,0x3ff07f84472d9cc5,1
+np.float64,0xbfed2e79dbfa5cf4,0x4005bffc6f9ad24f,1
+np.float64,0x3febb8adc377715c,0x3fe0bcebfbd45900,1
+np.float64,0xbfee2cffd87c5a00,0x40066b20a037c478,1
+np.float64,0x3fef7e358d7efc6c,0x3fc6d0ba71a542a8,1
+np.float64,0xbfef027eef7e04fe,0x400723291cb00a7a,1
+np.float64,0x3fac96da34392dc0,0x3ff83d260a936c6a,1
+np.float64,0x3fe9dba94a73b752,0x3fe428736b94885e,1
+np.float64,0x3fed37581efa6eb0,0x3fdae49dcadf1d90,1
+np.float64,0xbfe6e61037edcc20,0x4002f23031b8d522,1
+np.float64,0xbfdea7204dbd4e40,0x40008fe1f37918b7,1
+np.float64,0x3feb9f8edb773f1e,0x3fe0eef20bd4387b,1
+np.float64,0x3feeb0b6ed7d616e,0x3fd25fb3b7a525d6,1
+np.float64,0xbfd7ce9061af9d20,0x3fff3b25d531aa2b,1
+np.float64,0xbfc806b509300d6c,0x3ffc2768743a8360,1
+np.float64,0xbfa283882c250710,0x3ff9b61fda28914a,1
+np.float64,0x3fdec70050bd8e00,0x3ff11b1d769b578f,1
+np.float64,0xbfc858a44930b148,0x3ffc31d6758b4721,1
+np.float64,0x3fdc321150b86424,0x3ff1d5504c3c91e4,1
+np.float64,0x3fd9416870b282d0,0x3ff2a46f3a850f5b,1
+np.float64,0x3fdd756968baead4,0x3ff17ac510a5573f,1
+np.float64,0xbfedfd632cfbfac6,0x400648345a2f89b0,1
+np.float64,0x3fd6874285ad0e84,0x3ff36098ebff763f,1
+np.float64,0x3fe6daacc9edb55a,0x3fe8cf75fae1e35f,1
+np.float64,0x3fe53f19766a7e32,0x3feb07d0e97cd55b,1
+np.float64,0x3fd13cc36ca27988,0x3ff4c4ff801b1faa,1
+np.float64,0x3fe4f21cbce9e43a,0x3feb6e34a72ef529,1
+np.float64,0xbfc21c1cc9243838,0x3ffb67726394ca89,1
+np.float64,0x3fe947a3f2728f48,0x3fe51eae4660e23c,1
+np.float64,0xbfce78cd653cf19c,0x3ffcfa89194b3f5e,1
+np.float64,0x3fe756f049eeade0,0x3fe81be7f2d399e2,1
+np.float64,0xbfcc727cf138e4f8,0x3ffcb7f547841bb0,1
+np.float64,0xbfc2d8d58f25b1ac,0x3ffb7f496cc72458,1
+np.float64,0xbfcfd0e4653fa1c8,0x3ffd26e1309bc80b,1
+np.float64,0xbfe2126c106424d8,0x40015e0e01db6a4a,1
+np.float64,0x3fe580e4306b01c8,0x3feaaf683ce51aa5,1
+np.float64,0x3fcea8a1b93d5140,0x3ff543456c0d28c7,1
+np.float64,0xfff0000000000000,0x7ff8000000000000,1
+np.float64,0xbfd9d5da72b3abb4,0x3fffc8013113f968,1
+np.float64,0xbfe1fdfcea63fbfa,0x400157def2e4808d,1
+np.float64,0xbfc0022e0720045c,0x3ffb239963e7cbf2,1
diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/tests/data/umath-validation-set-arccosh.csv b/.venv/lib/python3.12/site-packages/numpy/_core/tests/data/umath-validation-set-arccosh.csv
new file mode 100644
index 0000000..1b3eda4
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/_core/tests/data/umath-validation-set-arccosh.csv
@@ -0,0 +1,1429 @@
+dtype,input,output,ulperrortol
+np.float32,0x3f83203f,0x3e61d9d6,2
+np.float32,0x3f98dea1,0x3f1d1af6,2
+np.float32,0x7fa00000,0x7fe00000,2
+np.float32,0x7eba99af,0x42b0d032,2
+np.float32,0x3fc95a13,0x3f833650,2
+np.float32,0x3fce9a45,0x3f8771e1,2
+np.float32,0x3fc1bd96,0x3f797811,2
+np.float32,0x7eba2391,0x42b0ceed,2
+np.float32,0x7d4e8f15,0x42acdb8c,2
+np.float32,0x3feca42e,0x3f9cc88e,2
+np.float32,0x7e2b314e,0x42af412e,2
+np.float32,0x7f7fffff,0x42b2d4fc,2
+np.float32,0x3f803687,0x3d6c4380,2
+np.float32,0x3fa0edbd,0x3f33e706,2
+np.float32,0x3faa8074,0x3f4b3d3c,2
+np.float32,0x3fa0c49e,0x3f337af3,2
+np.float32,0x3f8c9ec4,0x3ee18812,2
+np.float32,0x7efef78e,0x42b17006,2
+np.float32,0x3fc75720,0x3f818aa4,2
+np.float32,0x7f52d4c8,0x42b27198,2
+np.float32,0x3f88f21e,0x3ebe52b0,2
+np.float32,0x3ff7a042,0x3fa3a07a,2
+np.float32,0x7f52115c,0x42b26fbd,2
+np.float32,0x3fc6bf6f,0x3f810b42,2
+np.float32,0x3fd105d0,0x3f895649,2
+np.float32,0x3fee7c2a,0x3f9df66e,2
+np.float32,0x7f0ff9a5,0x42b1ae4f,2
+np.float32,0x7e81f075,0x42b016e7,2
+np.float32,0x3fa57d65,0x3f3f70c6,2
+np.float32,0x80800000,0xffc00000,2
+np.float32,0x7da239f5,0x42adc2bf,2
+np.float32,0x3f9e432c,0x3f2cbd80,2
+np.float32,0x3ff2839b,0x3fa07ee4,2
+np.float32,0x3fec8aef,0x3f9cb850,2
+np.float32,0x7d325893,0x42ac905b,2
+np.float32,0x3fa27431,0x3f37dade,2
+np.float32,0x3fce7408,0x3f8753ae,2
+np.float32,0x3fde6684,0x3f93353f,2
+np.float32,0x3feb9a3e,0x3f9c1cff,2
+np.float32,0x7deb34bb,0x42ae80f0,2
+np.float32,0x3fed9300,0x3f9d61b7,2
+np.float32,0x7f35e253,0x42b225fb,2
+np.float32,0x7e6db57f,0x42afe93f,2
+np.float32,0x3fa41f08,0x3f3c10bc,2
+np.float32,0x3fb0d4da,0x3f590de3,2
+np.float32,0x3fb5c690,0x3f632351,2
+np.float32,0x3fcde9ce,0x3f86e638,2
+np.float32,0x3f809c7b,0x3dc81161,2
+np.float32,0x3fd77291,0x3f8e3226,2
+np.float32,0x3fc21a06,0x3f7a1a82,2
+np.float32,0x3fba177e,0x3f6b8139,2
+np.float32,0x7f370dff,0x42b22944,2
+np.float32,0x3fe5bfcc,0x3f9841c1,2
+np.float32,0x3feb0caa,0x3f9bc139,2
+np.float32,0x7f4fe5c3,0x42b26a6c,2
+np.float32,0x7f1e1419,0x42b1de28,2
+np.float32,0x7f5e3c96,0x42b28c92,2
+np.float32,0x3f8cd313,0x3ee3521e,2
+np.float32,0x3fa97824,0x3f48e049,2
+np.float32,0x7d8ca281,0x42ad799e,2
+np.float32,0x3f96b51b,0x3f165193,2
+np.float32,0x3f81328a,0x3e0bf504,2
+np.float32,0x3ff60bf3,0x3fa2ab45,2
+np.float32,0x3ff9b629,0x3fa4e107,2
+np.float32,0x3fecacfc,0x3f9cce37,2
+np.float32,0x3fba8804,0x3f6c5600,2
+np.float32,0x3f81f752,0x3e333fdd,2
+np.float32,0x3fb5b262,0x3f62fb46,2
+np.float32,0x3fa21bc0,0x3f36f7e6,2
+np.float32,0x3fbc87bb,0x3f7011dc,2
+np.float32,0x3fe18b32,0x3f9565ae,2
+np.float32,0x7dfb6dd5,0x42aea316,2
+np.float32,0x3fb7c602,0x3f670ee3,2
+np.float32,0x7efeb6a2,0x42b16f84,2
+np.float32,0x3fa56180,0x3f3f2ca4,2
+np.float32,0x3f8dcaff,0x3eeb9ac0,2
+np.float32,0x7e876238,0x42b02beb,2
+np.float32,0x7f0bb67d,0x42b19eec,2
+np.float32,0x3faca01c,0x3f4fffa5,2
+np.float32,0x3fdb57ee,0x3f9108b8,2
+np.float32,0x3fe3bade,0x3f96e4b7,2
+np.float32,0x7f7aa2dd,0x42b2ca25,2
+np.float32,0x3fed92ec,0x3f9d61aa,2
+np.float32,0x7eb789b1,0x42b0c7b9,2
+np.float32,0x7f7f16e4,0x42b2d329,2
+np.float32,0x3fb6647e,0x3f645b84,2
+np.float32,0x3f99335e,0x3f1e1d96,2
+np.float32,0x7e690a11,0x42afdf17,2
+np.float32,0x7dff2f95,0x42aeaaae,2
+np.float32,0x7f70adfd,0x42b2b564,2
+np.float32,0x3fe92252,0x3f9a80fe,2
+np.float32,0x3fef54ce,0x3f9e7fe5,2
+np.float32,0x3ff24eaa,0x3fa05df9,2
+np.float32,0x7f04565a,0x42b18328,2
+np.float32,0x3fcb8b80,0x3f85007f,2
+np.float32,0x3fcd4d0a,0x3f866983,2
+np.float32,0x3fbe7d82,0x3f73a911,2
+np.float32,0x3f8a7a8a,0x3ecdc8f6,2
+np.float32,0x3f912441,0x3f030d56,2
+np.float32,0x3f9b29d6,0x3f23f663,2
+np.float32,0x3fab7f36,0x3f4d7c6c,2
+np.float32,0x7dfedafc,0x42aeaa04,2
+np.float32,0x3fe190c0,0x3f956982,2
+np.float32,0x3f927515,0x3f07e0bb,2
+np.float32,0x3ff6442a,0x3fa2cd7e,2
+np.float32,0x7f6656d0,0x42b29ee8,2
+np.float32,0x3fe29aa0,0x3f96201f,2
+np.float32,0x3fa4a247,0x3f3d5687,2
+np.float32,0x3fa1cf19,0x3f363226,2
+np.float32,0x3fc20037,0x3f79ed36,2
+np.float32,0x7cc1241a,0x42ab5645,2
+np.float32,0x3fafd540,0x3f56f25a,2
+np.float32,0x7e5b3f5f,0x42afbfdb,2
+np.float32,0x7f48de5f,0x42b258d0,2
+np.float32,0x3fce1ca0,0x3f870e85,2
+np.float32,0x7ee40bb2,0x42b136e4,2
+np.float32,0x7ecdb133,0x42b10212,2
+np.float32,0x3f9f181c,0x3f2f02ca,2
+np.float32,0x3f936cbf,0x3f0b4f63,2
+np.float32,0x3fa4f8ea,0x3f3e2c2f,2
+np.float32,0x3fcc03e2,0x3f8561ac,2
+np.float32,0x3fb801f2,0x3f67831b,2
+np.float32,0x7e141dad,0x42aef70c,2
+np.float32,0x3fe8c04e,0x3f9a4087,2
+np.float32,0x3f8548d5,0x3e929f37,2
+np.float32,0x7f148d7d,0x42b1be56,2
+np.float32,0x3fd2c9a2,0x3f8ab1ed,2
+np.float32,0x7eb374fd,0x42b0bc36,2
+np.float32,0x7f296d36,0x42b201a7,2
+np.float32,0x3ff138e2,0x3f9fb09d,2
+np.float32,0x3ff42898,0x3fa18347,2
+np.float32,0x7da8c5e1,0x42add700,2
+np.float32,0x7dcf72c4,0x42ae40a4,2
+np.float32,0x7ea571fc,0x42b09296,2
+np.float32,0x3fc0953d,0x3f776ba3,2
+np.float32,0x7f1773dd,0x42b1c83c,2
+np.float32,0x7ef53b68,0x42b15c17,2
+np.float32,0x3f85d69f,0x3e9a0f3a,2
+np.float32,0x7e8b9a05,0x42b03ba0,2
+np.float32,0x3ff07d20,0x3f9f3ad2,2
+np.float32,0x7e8da32c,0x42b0430a,2
+np.float32,0x7ef96004,0x42b164ab,2
+np.float32,0x3fdfaa62,0x3f941837,2
+np.float32,0x7f0057c5,0x42b17377,2
+np.float32,0x3fb2663f,0x3f5c5065,2
+np.float32,0x3fd3d8c3,0x3f8b8055,2
+np.float32,0x1,0xffc00000,2
+np.float32,0x3fd536c1,0x3f8c8862,2
+np.float32,0x3f91b953,0x3f053619,2
+np.float32,0x3fb3305c,0x3f5deee1,2
+np.float32,0x7ecd86b9,0x42b101a8,2
+np.float32,0x3fbf71c5,0x3f75624d,2
+np.float32,0x3ff5f0f4,0x3fa29ad2,2
+np.float32,0x3fe50389,0x3f97c328,2
+np.float32,0x3fa325a1,0x3f399e69,2
+np.float32,0x3fe4397a,0x3f973a9f,2
+np.float32,0x3f8684c6,0x3ea2b784,2
+np.float32,0x7f25ae00,0x42b1f634,2
+np.float32,0x3ff7cbf7,0x3fa3badb,2
+np.float32,0x7f73f0e0,0x42b2bc48,2
+np.float32,0x3fc88b70,0x3f828b92,2
+np.float32,0x3fb01c16,0x3f578886,2
+np.float32,0x7e557623,0x42afb229,2
+np.float32,0x3fcbcd5b,0x3f8535b4,2
+np.float32,0x7f7157e4,0x42b2b6cd,2
+np.float32,0x7f51d9d4,0x42b26f36,2
+np.float32,0x7f331a3b,0x42b21e17,2
+np.float32,0x7f777fb5,0x42b2c3b2,2
+np.float32,0x3f832001,0x3e61d11f,2
+np.float32,0x7f2cd055,0x42b20bca,2
+np.float32,0x3f89831f,0x3ec42f76,2
+np.float32,0x7f21da33,0x42b1ea3d,2
+np.float32,0x3f99e416,0x3f20330a,2
+np.float32,0x7f2c8ea1,0x42b20b07,2
+np.float32,0x7f462c98,0x42b251e6,2
+np.float32,0x7f4fdb3f,0x42b26a52,2
+np.float32,0x3fcc1338,0x3f856e07,2
+np.float32,0x3f823673,0x3e3e20da,2
+np.float32,0x7dbfe89d,0x42ae18c6,2
+np.float32,0x3fc9b04c,0x3f837d38,2
+np.float32,0x7dba3213,0x42ae094d,2
+np.float32,0x7ec5a483,0x42b0eda1,2
+np.float32,0x3fbc4d14,0x3f6fa543,2
+np.float32,0x3fc85ce2,0x3f8264f1,2
+np.float32,0x7f77c816,0x42b2c447,2
+np.float32,0x3f9c9281,0x3f280492,2
+np.float32,0x7f49b3e2,0x42b25aef,2
+np.float32,0x3fa7e4da,0x3f45347c,2
+np.float32,0x7e0c9df5,0x42aedc72,2
+np.float32,0x7f21fd1a,0x42b1eaab,2
+np.float32,0x7f7c63ad,0x42b2cdb6,2
+np.float32,0x7f4eb80a,0x42b26783,2
+np.float32,0x7e98038c,0x42b0673c,2
+np.float32,0x7e89ba08,0x42b034b4,2
+np.float32,0x3ffc06ba,0x3fa64094,2
+np.float32,0x3fae63f6,0x3f53db36,2
+np.float32,0x3fbc2d30,0x3f6f6a1c,2
+np.float32,0x7de0e5e5,0x42ae69fe,2
+np.float32,0x7e09ed18,0x42aed28d,2
+np.float32,0x3fea78f8,0x3f9b6129,2
+np.float32,0x7dfe0bcc,0x42aea863,2
+np.float32,0x7ee21d03,0x42b13289,2
+np.float32,0x3fcc3aed,0x3f858dfc,2
+np.float32,0x3fe6b3ba,0x3f98e4ea,2
+np.float32,0x3f90f25f,0x3f025225,2
+np.float32,0x7f1bcaf4,0x42b1d6b3,2
+np.float32,0x3f83ac81,0x3e74c20e,2
+np.float32,0x3f98681d,0x3f1bae16,2
+np.float32,0x3fe1f2d9,0x3f95ad08,2
+np.float32,0x3fa279d7,0x3f37e951,2
+np.float32,0x3feb922a,0x3f9c17c4,2
+np.float32,0x7f1c72e8,0x42b1d8da,2
+np.float32,0x3fea156b,0x3f9b2038,2
+np.float32,0x3fed6bda,0x3f9d48aa,2
+np.float32,0x3fa86142,0x3f46589c,2
+np.float32,0x3ff16bc2,0x3f9fd072,2
+np.float32,0x3fbebf65,0x3f74207b,2
+np.float32,0x7e7b78b5,0x42b00610,2
+np.float32,0x3ff51ab8,0x3fa217f0,2
+np.float32,0x3f8361bb,0x3e6adf07,2
+np.float32,0x7edbceed,0x42b1240e,2
+np.float32,0x7f10e2c0,0x42b1b18a,2
+np.float32,0x3fa7bc58,0x3f44d4ef,2
+np.float32,0x3f813bde,0x3e0e1138,2
+np.float32,0x7f30d5b9,0x42b21791,2
+np.float32,0x3fb4f450,0x3f61806a,2
+np.float32,0x7eee02c4,0x42b14cca,2
+np.float32,0x7ec74b62,0x42b0f1e4,2
+np.float32,0x3ff96bca,0x3fa4b498,2
+np.float32,0x7f50e304,0x42b26cda,2
+np.float32,0x7eb14c57,0x42b0b603,2
+np.float32,0x7c3f0733,0x42a9edbf,2
+np.float32,0x7ea57acb,0x42b092b1,2
+np.float32,0x7f2788dc,0x42b1fbe7,2
+np.float32,0x3fa39f14,0x3f3ad09b,2
+np.float32,0x3fc3a7e0,0x3f7ccfa0,2
+np.float32,0x3fe70a73,0x3f991eb0,2
+np.float32,0x7f4831f7,0x42b25718,2
+np.float32,0x3fe947d0,0x3f9a999c,2
+np.float32,0x7ef2b1c7,0x42b156c4,2
+np.float32,0x3fede0ea,0x3f9d937f,2
+np.float32,0x3f9fef8e,0x3f314637,2
+np.float32,0x3fc313c5,0x3f7bcebd,2
+np.float32,0x7ee99337,0x42b14328,2
+np.float32,0x7eb9042e,0x42b0cbd5,2
+np.float32,0x3fc9d3dc,0x3f839a69,2
+np.float32,0x3fb2c018,0x3f5d091d,2
+np.float32,0x3fcc4e8f,0x3f859dc5,2
+np.float32,0x3fa9363b,0x3f484819,2
+np.float32,0x7f72ce2e,0x42b2b9e4,2
+np.float32,0x7e639326,0x42afd2f1,2
+np.float32,0x7f4595d3,0x42b25060,2
+np.float32,0x7f6d0ac4,0x42b2ad97,2
+np.float32,0x7f1bda0d,0x42b1d6e5,2
+np.float32,0x3fd85ffd,0x3f8ee0ed,2
+np.float32,0x3f91d53f,0x3f059c8e,2
+np.float32,0x7d06e103,0x42ac0155,2
+np.float32,0x3fb83126,0x3f67de6e,2
+np.float32,0x7d81ce1f,0x42ad5097,2
+np.float32,0x7f79cb3b,0x42b2c86b,2
+np.float32,0x7f800000,0x7f800000,2
+np.float32,0x3fdbfffd,0x3f918137,2
+np.float32,0x7f4ecb1c,0x42b267b2,2
+np.float32,0x3fc2c122,0x3f7b3ed3,2
+np.float32,0x7f415854,0x42b24544,2
+np.float32,0x7e3d988b,0x42af7575,2
+np.float32,0x3f83ca99,0x3e789fcb,2
+np.float32,0x7f274f70,0x42b1fb38,2
+np.float32,0x7f0d20e6,0x42b1a416,2
+np.float32,0x3fdf3a1d,0x3f93c9c1,2
+np.float32,0x7efaa13e,0x42b1673d,2
+np.float32,0x3fb20b15,0x3f5b9434,2
+np.float32,0x3f86af9f,0x3ea4c664,2
+np.float32,0x3fe4fcb0,0x3f97be8a,2
+np.float32,0x3f920683,0x3f065085,2
+np.float32,0x3fa4b278,0x3f3d7e8b,2
+np.float32,0x3f8077a8,0x3daef77f,2
+np.float32,0x7e865be4,0x42b02807,2
+np.float32,0x3fcea7e2,0x3f877c9f,2
+np.float32,0x7e7e9db1,0x42b00c6d,2
+np.float32,0x3f9819aa,0x3f1aba7e,2
+np.float32,0x7f2b6c4b,0x42b207a7,2
+np.float32,0x7ef85e3e,0x42b16299,2
+np.float32,0x3fbd8290,0x3f71df8b,2
+np.float32,0x3fbbb615,0x3f6e8c8c,2
+np.float32,0x7f1bc7f5,0x42b1d6a9,2
+np.float32,0x3fbb4fea,0x3f6dcdad,2
+np.float32,0x3fb67e09,0x3f648dd1,2
+np.float32,0x3fc83495,0x3f824374,2
+np.float32,0x3fe52980,0x3f97dcbc,2
+np.float32,0x3f87d893,0x3eb25d7c,2
+np.float32,0x3fdb805a,0x3f9125c0,2
+np.float32,0x3fb33f0f,0x3f5e0ce1,2
+np.float32,0x3facc524,0x3f50516b,2
+np.float32,0x3ff40484,0x3fa16d0e,2
+np.float32,0x3ff078bf,0x3f9f3811,2
+np.float32,0x7f736747,0x42b2bb27,2
+np.float32,0x7f55768b,0x42b277f3,2
+np.float32,0x80000001,0xffc00000,2
+np.float32,0x7f6463d1,0x42b29a8e,2
+np.float32,0x3f8f8b59,0x3ef9d792,2
+np.float32,0x3f8a6f4d,0x3ecd5bf4,2
+np.float32,0x3fe958d9,0x3f9aa4ca,2
+np.float32,0x7f1e2ce2,0x42b1de78,2
+np.float32,0x3fb8584a,0x3f682a05,2
+np.float32,0x7dea3dc6,0x42ae7ed5,2
+np.float32,0x7f53a815,0x42b27399,2
+np.float32,0x7e0cf986,0x42aeddbf,2
+np.float32,0x7f3afb71,0x42b23422,2
+np.float32,0x3fd87d6e,0x3f8ef685,2
+np.float32,0x3ffcaa46,0x3fa6a0d7,2
+np.float32,0x7eecd276,0x42b14a3a,2
+np.float32,0x3ffc30b4,0x3fa65951,2
+np.float32,0x7e9c85e2,0x42b07634,2
+np.float32,0x3f95d862,0x3f1383de,2
+np.float32,0x7ef21410,0x42b15577,2
+np.float32,0x3fbfa1b5,0x3f75b86e,2
+np.float32,0x3fd6d90f,0x3f8dc086,2
+np.float32,0x0,0xffc00000,2
+np.float32,0x7e885dcd,0x42b02f9f,2
+np.float32,0x3fb3e057,0x3f5f54bf,2
+np.float32,0x7f40afdd,0x42b24385,2
+np.float32,0x3fb795c2,0x3f66b120,2
+np.float32,0x3fba7c11,0x3f6c3f73,2
+np.float32,0x3ffef620,0x3fa7f828,2
+np.float32,0x7d430508,0x42acbe1e,2
+np.float32,0x3f8d2892,0x3ee6369f,2
+np.float32,0x3fbea139,0x3f73e9d5,2
+np.float32,0x3ffaa928,0x3fa571b9,2
+np.float32,0x7fc00000,0x7fc00000,2
+np.float32,0x7f16f9ce,0x42b1c69f,2
+np.float32,0x3fa8f753,0x3f47b657,2
+np.float32,0x3fd48a63,0x3f8c06ac,2
+np.float32,0x7f13419e,0x42b1b9d9,2
+np.float32,0x3fdf1526,0x3f93afde,2
+np.float32,0x3f903c8b,0x3eff3be8,2
+np.float32,0x7f085323,0x42b1925b,2
+np.float32,0x7cdbe309,0x42ab98ac,2
+np.float32,0x3fba2cfd,0x3f6ba9f1,2
+np.float32,0x7f5a805d,0x42b283e4,2
+np.float32,0x7f6753dd,0x42b2a119,2
+np.float32,0x3fed9f02,0x3f9d6964,2
+np.float32,0x3f96422c,0x3f14ddba,2
+np.float32,0x7f22f2a9,0x42b1edb1,2
+np.float32,0x3fe3fcfd,0x3f97119d,2
+np.float32,0x7e018ad0,0x42aeb271,2
+np.float32,0x7db896f5,0x42ae04de,2
+np.float32,0x7e55c795,0x42afb2ec,2
+np.float32,0x7f58ef8d,0x42b28036,2
+np.float32,0x7f24a16a,0x42b1f2f3,2
+np.float32,0x3fcf714c,0x3f881b09,2
+np.float32,0x3fcdd056,0x3f86d200,2
+np.float32,0x7f02fad0,0x42b17de0,2
+np.float32,0x7eeab877,0x42b145a9,2
+np.float32,0x3fd6029d,0x3f8d20f7,2
+np.float32,0x3fd4f8cd,0x3f8c59d6,2
+np.float32,0x3fb29d4a,0x3f5cc1a5,2
+np.float32,0x3fb11e2d,0x3f59a77a,2
+np.float32,0x7eded576,0x42b12b0e,2
+np.float32,0x7f26c2a5,0x42b1f988,2
+np.float32,0x3fb6165b,0x3f63c151,2
+np.float32,0x7f3bca47,0x42b23657,2
+np.float32,0x7d8c93bf,0x42ad7968,2
+np.float32,0x3f8ede02,0x3ef47176,2
+np.float32,0x3fbef762,0x3f7485b9,2
+np.float32,0x7f1419af,0x42b1bcc6,2
+np.float32,0x7d9e8c79,0x42adb701,2
+np.float32,0x3fa26336,0x3f37af63,2
+np.float32,0x7f5f5590,0x42b28f18,2
+np.float32,0x3fddc93a,0x3f92c651,2
+np.float32,0x3ff0a5fc,0x3f9f547f,2
+np.float32,0x3fb2f6b8,0x3f5d790e,2
+np.float32,0x3ffe59a4,0x3fa79d2c,2
+np.float32,0x7e4df848,0x42af9fde,2
+np.float32,0x3fb0ab3b,0x3f58b678,2
+np.float32,0x7ea54d47,0x42b09225,2
+np.float32,0x3fdd6404,0x3f927eb2,2
+np.float32,0x3f846dc0,0x3e864caa,2
+np.float32,0x7d046aee,0x42abf7e7,2
+np.float32,0x7f7c5a05,0x42b2cda3,2
+np.float32,0x3faf6126,0x3f55fb21,2
+np.float32,0x7f36a910,0x42b22829,2
+np.float32,0x3fdc7b36,0x3f91d938,2
+np.float32,0x3fff443e,0x3fa82577,2
+np.float32,0x7ee7154a,0x42b13daa,2
+np.float32,0x3f944742,0x3f0e435c,2
+np.float32,0x7f5b510a,0x42b285cc,2
+np.float32,0x3f9bc940,0x3f25c4d2,2
+np.float32,0x3fee4782,0x3f9dd4ea,2
+np.float32,0x3fcfc2dd,0x3f885aea,2
+np.float32,0x7eab65cf,0x42b0a4af,2
+np.float32,0x3f9cf908,0x3f292689,2
+np.float32,0x7ed35501,0x42b10feb,2
+np.float32,0x7dabb70a,0x42addfd9,2
+np.float32,0x7f348919,0x42b2222b,2
+np.float32,0x3fb137d4,0x3f59dd17,2
+np.float32,0x7e7b36c9,0x42b0058a,2
+np.float32,0x7e351fa4,0x42af5e0d,2
+np.float32,0x3f973c0c,0x3f18011e,2
+np.float32,0xff800000,0xffc00000,2
+np.float32,0x3f9b0a4b,0x3f239a33,2
+np.float32,0x3f87c4cf,0x3eb17e7e,2
+np.float32,0x7ef67760,0x42b15eaa,2
+np.float32,0x3fc4d2c8,0x3f7ed20f,2
+np.float32,0x7e940dac,0x42b059b8,2
+np.float32,0x7f6e6a52,0x42b2b08d,2
+np.float32,0x3f838752,0x3e6fe4b2,2
+np.float32,0x3fd8f046,0x3f8f4a94,2
+np.float32,0x3fa82112,0x3f45c223,2
+np.float32,0x3fd49b16,0x3f8c1345,2
+np.float32,0x7f02a941,0x42b17ca1,2
+np.float32,0x3f8a9d2c,0x3ecf1768,2
+np.float32,0x7c9372e3,0x42aacc0f,2
+np.float32,0x3fd260b3,0x3f8a619a,2
+np.float32,0x3f8a1b88,0x3eca27cb,2
+np.float32,0x7d25d510,0x42ac6b1c,2
+np.float32,0x7ef5a578,0x42b15cf5,2
+np.float32,0x3fe6625d,0x3f98ae9a,2
+np.float32,0x3ff53240,0x3fa22658,2
+np.float32,0x3f8bb2e6,0x3ed944cf,2
+np.float32,0x7f4679b1,0x42b252ad,2
+np.float32,0x3fa8db30,0x3f4774fc,2
+np.float32,0x7ee5fafd,0x42b13b37,2
+np.float32,0x3fc405e0,0x3f7d71fb,2
+np.float32,0x3f9303cd,0x3f09ddfd,2
+np.float32,0x7f486e67,0x42b257b2,2
+np.float32,0x7e73f12b,0x42aff680,2
+np.float32,0x3fe80f8b,0x3f99cbe4,2
+np.float32,0x3f84200a,0x3e81a3f3,2
+np.float32,0x3fa14e5c,0x3f34e3ce,2
+np.float32,0x3fda22ec,0x3f9029bb,2
+np.float32,0x3f801772,0x3d1aef98,2
+np.float32,0x7eaa1428,0x42b0a0bb,2
+np.float32,0x3feae0b3,0x3f9ba4aa,2
+np.float32,0x7ea439b4,0x42b08ecc,2
+np.float32,0x3fa28b1c,0x3f381579,2
+np.float32,0x7e8af247,0x42b03937,2
+np.float32,0x3fd19216,0x3f89c2b7,2
+np.float32,0x7f6ea033,0x42b2b100,2
+np.float32,0x3fad4fbf,0x3f518224,2
+np.float32,0x3febd940,0x3f9c45bd,2
+np.float32,0x7f4643a3,0x42b25221,2
+np.float32,0x7ec34478,0x42b0e771,2
+np.float32,0x7f18c83b,0x42b1ccb5,2
+np.float32,0x3fc665ad,0x3f80bf94,2
+np.float32,0x3ff0a999,0x3f9f56c4,2
+np.float32,0x3faf1cd2,0x3f5568fe,2
+np.float32,0x7ecd9dc6,0x42b101e1,2
+np.float32,0x3faad282,0x3f4bf754,2
+np.float32,0x3ff905a0,0x3fa47771,2
+np.float32,0x7f596481,0x42b28149,2
+np.float32,0x7f1cb31f,0x42b1d9ac,2
+np.float32,0x7e266719,0x42af32a6,2
+np.float32,0x7eccce06,0x42b0ffdb,2
+np.float32,0x3f9b6f71,0x3f24c102,2
+np.float32,0x3f80e4ba,0x3df1d6bc,2
+np.float32,0x3f843d51,0x3e836a60,2
+np.float32,0x7f70bd88,0x42b2b585,2
+np.float32,0x3fe4cc96,0x3f979e18,2
+np.float32,0x3ff737c7,0x3fa36151,2
+np.float32,0x3ff1197e,0x3f9f9cf4,2
+np.float32,0x7f08e190,0x42b19471,2
+np.float32,0x3ff1542e,0x3f9fc1b2,2
+np.float32,0x3ff6673c,0x3fa2e2d2,2
+np.float32,0xbf800000,0xffc00000,2
+np.float32,0x7e3f9ba7,0x42af7add,2
+np.float32,0x7f658ff6,0x42b29d2d,2
+np.float32,0x3f93441c,0x3f0ac0d9,2
+np.float32,0x7f526a74,0x42b27096,2
+np.float32,0x7f5b00c8,0x42b28511,2
+np.float32,0x3ff212f8,0x3fa038cf,2
+np.float32,0x7e0bd60d,0x42aed998,2
+np.float32,0x7f71ef7f,0x42b2b80e,2
+np.float32,0x7f7a897e,0x42b2c9f1,2
+np.float32,0x7e8b76a6,0x42b03b1e,2
+np.float32,0x7efa0da3,0x42b1660f,2
+np.float32,0x3fce9166,0x3f876ae0,2
+np.float32,0x3fc4163d,0x3f7d8e30,2
+np.float32,0x3fdb3784,0x3f90f16b,2
+np.float32,0x7c5f177b,0x42aa3d30,2
+np.float32,0x3fc6276d,0x3f808af5,2
+np.float32,0x7bac9cc2,0x42a856f4,2
+np.float32,0x3fe5876f,0x3f981bea,2
+np.float32,0x3fef60e3,0x3f9e878a,2
+np.float32,0x3fb23cd8,0x3f5bfb06,2
+np.float32,0x3fe114e2,0x3f951402,2
+np.float32,0x7ca8ef04,0x42ab11b4,2
+np.float32,0x7d93c2ad,0x42ad92ec,2
+np.float32,0x3fe5bb8a,0x3f983ee6,2
+np.float32,0x7f0182fd,0x42b1781b,2
+np.float32,0x7da63bb2,0x42adcf3d,2
+np.float32,0x3fac46b7,0x3f4f399e,2
+np.float32,0x7f7a5d8f,0x42b2c997,2
+np.float32,0x7f76572e,0x42b2c14b,2
+np.float32,0x7f42d53e,0x42b24931,2
+np.float32,0x7f7ffd00,0x42b2d4f6,2
+np.float32,0x3fc346c3,0x3f7c2756,2
+np.float32,0x7f1f6ae3,0x42b1e27a,2
+np.float32,0x3f87fb56,0x3eb3e2ee,2
+np.float32,0x3fed17a2,0x3f9d12b4,2
+np.float32,0x7f5ea903,0x42b28d8c,2
+np.float32,0x3f967f82,0x3f15a4ab,2
+np.float32,0x7d3b540c,0x42aca984,2
+np.float32,0x7f56711a,0x42b27a4a,2
+np.float32,0x7f122223,0x42b1b5ee,2
+np.float32,0x3fd6fa34,0x3f8dd919,2
+np.float32,0x3fadd62e,0x3f52a7b3,2
+np.float32,0x3fb7bf0c,0x3f67015f,2
+np.float32,0x7edf4ba7,0x42b12c1d,2
+np.float32,0x7e33cc65,0x42af5a4b,2
+np.float32,0x3fa6be17,0x3f427831,2
+np.float32,0x3fa07aa8,0x3f32b7d4,2
+np.float32,0x3fa4a3af,0x3f3d5a01,2
+np.float32,0x3fdbb267,0x3f9149a8,2
+np.float32,0x7ed45e25,0x42b1126c,2
+np.float32,0x3fe3f432,0x3f970ba6,2
+np.float32,0x7f752080,0x42b2bec3,2
+np.float32,0x3f872747,0x3eaa62ea,2
+np.float32,0x7e52175d,0x42afaa03,2
+np.float32,0x3fdc766c,0x3f91d5ce,2
+np.float32,0x7ecd6841,0x42b1015c,2
+np.float32,0x7f3d6c40,0x42b23ac6,2
+np.float32,0x3fb80c14,0x3f6796b9,2
+np.float32,0x3ff6ad56,0x3fa30d68,2
+np.float32,0x3fda44c3,0x3f90423e,2
+np.float32,0x3fdcba0c,0x3f9205fc,2
+np.float32,0x7e14a720,0x42aef8e6,2
+np.float32,0x3fe9e489,0x3f9b0047,2
+np.float32,0x7e69f933,0x42afe123,2
+np.float32,0x3ff3ee6d,0x3fa15f71,2
+np.float32,0x3f8538cd,0x3e91c1a7,2
+np.float32,0x3fdc3f07,0x3f91ae46,2
+np.float32,0x3fba2ef0,0x3f6bada2,2
+np.float32,0x7da64cd8,0x42adcf71,2
+np.float32,0x3fc34bd2,0x3f7c301d,2
+np.float32,0x3fa273aa,0x3f37d984,2
+np.float32,0x3ff0338c,0x3f9f0c86,2
+np.float32,0x7ed62cef,0x42b116c3,2
+np.float32,0x3f911e7e,0x3f02f7c6,2
+np.float32,0x7c8514c9,0x42aa9792,2
+np.float32,0x3fea2a74,0x3f9b2df5,2
+np.float32,0x3fe036f8,0x3f947a25,2
+np.float32,0x7c5654bf,0x42aa28ad,2
+np.float32,0x3fd9e423,0x3f8ffc32,2
+np.float32,0x7eec0439,0x42b1487b,2
+np.float32,0x3fc580f4,0x3f7ffb62,2
+np.float32,0x3fb0e316,0x3f592bbe,2
+np.float32,0x7c4cfb7d,0x42aa11d8,2
+np.float32,0x3faf9704,0x3f566e00,2
+np.float32,0x3fa7cf8a,0x3f45023d,2
+np.float32,0x7f7b724d,0x42b2cbcc,2
+np.float32,0x7f05bfe3,0x42b18897,2
+np.float32,0x3f90bde3,0x3f018bf3,2
+np.float32,0x7c565479,0x42aa28ad,2
+np.float32,0x3f94b517,0x3f0fb8e5,2
+np.float32,0x3fd6aadd,0x3f8d9e3c,2
+np.float32,0x7f09b37c,0x42b1977f,2
+np.float32,0x7f2b45ea,0x42b20734,2
+np.float32,0x3ff1d15e,0x3fa00fe9,2
+np.float32,0x3f99bce6,0x3f1fbd6c,2
+np.float32,0x7ecd1f76,0x42b100a7,2
+np.float32,0x7f443e2b,0x42b24ce2,2
+np.float32,0x7da7d6a5,0x42add428,2
+np.float32,0x7ebe0193,0x42b0d975,2
+np.float32,0x7ee13c43,0x42b1308b,2
+np.float32,0x3f8adf1b,0x3ed18e0c,2
+np.float32,0x7f76ce65,0x42b2c242,2
+np.float32,0x7e34f43d,0x42af5d92,2
+np.float32,0x7f306b76,0x42b2165d,2
+np.float32,0x7e1fd07f,0x42af1df7,2
+np.float32,0x3fab9a41,0x3f4db909,2
+np.float32,0x3fc23d1a,0x3f7a5803,2
+np.float32,0x3f8b7403,0x3ed70245,2
+np.float32,0x3f8c4dd6,0x3edebbae,2
+np.float32,0x3fe5f411,0x3f9864cd,2
+np.float32,0x3f88128b,0x3eb4e508,2
+np.float32,0x3fcb09de,0x3f84976f,2
+np.float32,0x7f32f2f5,0x42b21da6,2
+np.float32,0x3fe75610,0x3f9950f6,2
+np.float32,0x3f993edf,0x3f1e408d,2
+np.float32,0x3fc4a9d7,0x3f7e8be9,2
+np.float32,0x7f74551a,0x42b2bd1a,2
+np.float32,0x7de87129,0x42ae7ae2,2
+np.float32,0x7f18bbbd,0x42b1cc8c,2
+np.float32,0x7e7e1dd4,0x42b00b6c,2
+np.float32,0x3ff6e55b,0x3fa32f64,2
+np.float32,0x3fa634c8,0x3f412df3,2
+np.float32,0x3fd0fb7c,0x3f894e49,2
+np.float32,0x3ff4f6a6,0x3fa201d7,2
+np.float32,0x7f69d418,0x42b2a69a,2
+np.float32,0x7cb9632d,0x42ab414a,2
+np.float32,0x3fc57d36,0x3f7ff503,2
+np.float32,0x7e9e2ed7,0x42b07b9b,2
+np.float32,0x7f2e6868,0x42b2107d,2
+np.float32,0x3fa3169a,0x3f39785d,2
+np.float32,0x7f03cde0,0x42b18117,2
+np.float32,0x7f6d75d2,0x42b2ae7f,2
+np.float32,0x3ff483f2,0x3fa1bb75,2
+np.float32,0x7f1b39f7,0x42b1d4d6,2
+np.float32,0x3f8c7a7d,0x3ee0481e,2
+np.float32,0x3f989095,0x3f1c2b19,2
+np.float32,0x3fa4cbfd,0x3f3dbd87,2
+np.float32,0x7f75b00f,0x42b2bfef,2
+np.float32,0x3f940724,0x3f0d6756,2
+np.float32,0x7f5e5a1a,0x42b28cd6,2
+np.float32,0x800000,0xffc00000,2
+np.float32,0x7edd1d29,0x42b12716,2
+np.float32,0x3fa3e9e4,0x3f3b8c16,2
+np.float32,0x7e46d70e,0x42af8dd5,2
+np.float32,0x3f824745,0x3e40ec1e,2
+np.float32,0x3fd67623,0x3f8d770a,2
+np.float32,0x3fe9a6f3,0x3f9ad7fa,2
+np.float32,0x3fdda67c,0x3f92adc1,2
+np.float32,0x7ccb6c9a,0x42ab70d4,2
+np.float32,0x3ffd364a,0x3fa6f2fe,2
+np.float32,0x7e02424c,0x42aeb545,2
+np.float32,0x3fb6d2f2,0x3f6534a1,2
+np.float32,0x3fe1fe26,0x3f95b4cc,2
+np.float32,0x7e93ac57,0x42b05867,2
+np.float32,0x7f7b3433,0x42b2cb4d,2
+np.float32,0x3fb76803,0x3f66580d,2
+np.float32,0x3f9af881,0x3f23661b,2
+np.float32,0x3fd58062,0x3f8cbf98,2
+np.float32,0x80000000,0xffc00000,2
+np.float32,0x7f1af8f4,0x42b1d3ff,2
+np.float32,0x3fe66bba,0x3f98b4dc,2
+np.float32,0x7f6bd7bf,0x42b2aaff,2
+np.float32,0x3f84f79a,0x3e8e2e49,2
+np.float32,0x7e475b06,0x42af8f28,2
+np.float32,0x3faff89b,0x3f573d5e,2
+np.float32,0x7de5aa77,0x42ae74bb,2
+np.float32,0x3f8e9e42,0x3ef26cd2,2
+np.float32,0x3fb1cec3,0x3f5b1740,2
+np.float32,0x3f8890d6,0x3eba4821,2
+np.float32,0x3f9b39e9,0x3f242547,2
+np.float32,0x3fc895a4,0x3f829407,2
+np.float32,0x7f77943c,0x42b2c3dc,2
+np.float32,0x7f390d58,0x42b22ed2,2
+np.float32,0x3fe7e160,0x3f99ad58,2
+np.float32,0x3f93d2a0,0x3f0cb205,2
+np.float32,0x7f29499b,0x42b2013c,2
+np.float32,0x3f8c11b2,0x3edca10f,2
+np.float32,0x7e898ef8,0x42b03413,2
+np.float32,0x3fdff942,0x3f944f34,2
+np.float32,0x7f3d602f,0x42b23aa5,2
+np.float32,0x3f8a50f3,0x3ecc345b,2
+np.float32,0x3fa1f86d,0x3f369ce4,2
+np.float32,0x3f97ad95,0x3f19681d,2
+np.float32,0x3ffad1e0,0x3fa589e5,2
+np.float32,0x3fa70590,0x3f432311,2
+np.float32,0x7e6840cb,0x42afdd5c,2
+np.float32,0x3fd4036d,0x3f8ba0aa,2
+np.float32,0x7f7cc953,0x42b2ce84,2
+np.float32,0x7f228e1e,0x42b1ec74,2
+np.float32,0x7e37a866,0x42af652a,2
+np.float32,0x3fda22d0,0x3f9029a7,2
+np.float32,0x7f736bff,0x42b2bb31,2
+np.float32,0x3f9833b6,0x3f1b0b8e,2
+np.float32,0x7f466001,0x42b2526a,2
+np.float32,0xff7fffff,0xffc00000,2
+np.float32,0x7dd62bcd,0x42ae50f8,2
+np.float32,0x7f1d2bfe,0x42b1db36,2
+np.float32,0x7ecffe9e,0x42b107c5,2
+np.float32,0x7ebefe0a,0x42b0dc1b,2
+np.float32,0x7f45c63d,0x42b250dd,2
+np.float32,0x7f601af0,0x42b290db,2
+np.float32,0x3fcbb88a,0x3f8524e5,2
+np.float32,0x7ede55ff,0x42b129e8,2
+np.float32,0x7ea5dd5a,0x42b093e2,2
+np.float32,0x3ff53857,0x3fa22a12,2
+np.float32,0x3f8dbd6a,0x3eeb28a4,2
+np.float32,0x3fd1b467,0x3f89dd2c,2
+np.float32,0x3fe0423f,0x3f9481fc,2
+np.float32,0x3f84b421,0x3e8a6174,2
+np.float32,0x7f4efc97,0x42b2682c,2
+np.float32,0x7f601b33,0x42b290dc,2
+np.float32,0x3f94f240,0x3f108719,2
+np.float32,0x7decd251,0x42ae8471,2
+np.float32,0x3fdc457c,0x3f91b2e2,2
+np.float32,0x3f92a966,0x3f089c5a,2
+np.float32,0x3fc9732f,0x3f834afc,2
+np.float32,0x3f97948f,0x3f19194e,2
+np.float32,0x7f0824a1,0x42b191ac,2
+np.float32,0x7f0365a5,0x42b17f81,2
+np.float32,0x3f800000,0x0,2
+np.float32,0x7f0054c6,0x42b1736b,2
+np.float32,0x3fe86544,0x3f9a0484,2
+np.float32,0x7e95f844,0x42b0604e,2
+np.float32,0x3fce8602,0x3f8761e2,2
+np.float32,0x3fc726c8,0x3f81621d,2
+np.float32,0x3fcf6b03,0x3f88161b,2
+np.float32,0x3fceb843,0x3f87898a,2
+np.float32,0x3fe2f8b2,0x3f966071,2
+np.float32,0x7f3c8e7f,0x42b2386d,2
+np.float32,0x3fcee13a,0x3f87a9d2,2
+np.float32,0x3fc4df27,0x3f7ee73c,2
+np.float32,0x3ffde486,0x3fa758e3,2
+np.float32,0x3fa91be0,0x3f480b17,2
+np.float32,0x7f2a5a7d,0x42b20472,2
+np.float32,0x7e278d80,0x42af362d,2
+np.float32,0x3f96d091,0x3f16a9d5,2
+np.float32,0x7e925225,0x42b053b2,2
+np.float32,0x7f7ef83a,0x42b2d2ec,2
+np.float32,0x7eb4923a,0x42b0bf61,2
+np.float32,0x7e98bf19,0x42b069b3,2
+np.float32,0x3fac93a2,0x3f4fe410,2
+np.float32,0x7f46389c,0x42b25205,2
+np.float32,0x3f9fd447,0x3f30fd54,2
+np.float32,0x3fef42d4,0x3f9e7483,2
+np.float32,0x7f482174,0x42b256ed,2
+np.float32,0x3f97aedb,0x3f196c1e,2
+np.float32,0x7f764edd,0x42b2c13a,2
+np.float32,0x3f9117b5,0x3f02de5c,2
+np.float32,0x3fc7984e,0x3f81c12d,2
+np.float64,0x3ff1e2cb7463c597,0x3fdec6caf39e0c0e,1
+np.float64,0x3ffe4f89789c9f13,0x3ff40f4b1da0f3e9,1
+np.float64,0x7f6a5c9ac034b935,0x408605e51703c145,1
+np.float64,0x7fdcb6ece3b96dd9,0x40862d6521e16d60,1
+np.float64,0x3ff6563e182cac7c,0x3feb9d8210f3fa88,1
+np.float64,0x7fde32025f3c6404,0x40862dcc1d1a9b7f,1
+np.float64,0x7fd755ed35aeabd9,0x40862bbc5522b779,1
+np.float64,0x3ff5c81f4bcb903e,0x3fea71f10b954ea3,1
+np.float64,0x3fffe805d35fd00c,0x3ff50463a1ba2938,1
+np.float64,0x7fd045a1c1a08b43,0x408628d9f431f2f5,1
+np.float64,0x3ff49f7dd9893efc,0x3fe7c6736e17ea8e,1
+np.float64,0x7fccfbc1fd39f783,0x408627eca79acf51,1
+np.float64,0x3ff1af0a00035e14,0x3fdd1c0e7d5706ea,1
+np.float64,0x7fe7bd17162f7a2d,0x4086316af683502b,1
+np.float64,0x3ff0941b8d012837,0x3fd128d274065ac0,1
+np.float64,0x3ffa0c5d98b418bb,0x3ff11af9c8edd17f,1
+np.float64,0x3ffad9733355b2e6,0x3ff1b6d1307acb42,1
+np.float64,0x3ffabb2a33d57654,0x3ff1a0442b034e50,1
+np.float64,0x3ff36118b0c6c231,0x3fe472b7dfb23516,1
+np.float64,0x3ff2441d3664883a,0x3fe0d61145608f0c,1
+np.float64,0x7fe039862d20730b,0x40862e5f8ed752d3,1
+np.float64,0x7fb1dde24023bbc4,0x40861e824cdb0664,1
+np.float64,0x7face6335839cc66,0x40861ccf90a26e16,1
+np.float64,0x3ffb5d0e1af6ba1c,0x3ff2170f6f42fafe,1
+np.float64,0x3ff5c2c6a50b858d,0x3fea665aabf04407,1
+np.float64,0x3ffabb409db57681,0x3ff1a054ea32bfc3,1
+np.float64,0x3ff1e054e983c0aa,0x3fdeb30c17286cb6,1
+np.float64,0x7fe467f73268cfed,0x4086303529e52e9b,1
+np.float64,0x7fe0e86bf961d0d7,0x40862eb40788b04a,1
+np.float64,0x3ffb743542f6e86a,0x3ff227b4ea5acee0,1
+np.float64,0x3ff2de6826e5bcd0,0x3fe2e31fcde0a96c,1
+np.float64,0x7fd6b27ccfad64f9,0x40862b8385697c31,1
+np.float64,0x7fe0918e8d21231c,0x40862e8a82d9517a,1
+np.float64,0x7fd0ca0395a19406,0x4086291a0696ed33,1
+np.float64,0x3ffb042496960849,0x3ff1d658c928abfc,1
+np.float64,0x3ffcd0409799a081,0x3ff31877df0cb245,1
+np.float64,0x7fe429bd06685379,0x4086301c9f259934,1
+np.float64,0x3ff933076092660f,0x3ff06d2e5f4d9ab7,1
+np.float64,0x7feaefcb28f5df95,0x4086326dccf88e6f,1
+np.float64,0x7fb5f2c1f82be583,0x40862027ac02a39d,1
+np.float64,0x3ffb5d9e3bd6bb3c,0x3ff21777501d097e,1
+np.float64,0x10000000000000,0xfff8000000000000,1
+np.float64,0x3ff70361596e06c3,0x3fecf675ceda7e19,1
+np.float64,0x3ff71a21b5ee3444,0x3fed224fa048d9a9,1
+np.float64,0x3ffb102b86762057,0x3ff1df2cc9390518,1
+np.float64,0x7feaaeb35c355d66,0x4086325a60704a90,1
+np.float64,0x7fd9a3d0a93347a0,0x40862c7d300fc076,1
+np.float64,0x7fabcf159c379e2a,0x40861c80cdbbff27,1
+np.float64,0x7fd1c066ec2380cd,0x4086298c3006fee6,1
+np.float64,0x3ff3d5ae2d67ab5c,0x3fe5bc16447428db,1
+np.float64,0x3ff4b76add696ed6,0x3fe800f5bbf21376,1
+np.float64,0x3ff60d89ee0c1b14,0x3feb063fdebe1a68,1
+np.float64,0x7f1d2648003a4c8f,0x4085eaf9238af95a,1
+np.float64,0x7fe8b45f6df168be,0x408631bca5abf6d6,1
+np.float64,0x7fe9ea5308f3d4a5,0x4086321ea2bd3af9,1
+np.float64,0x7fcb6ba5a636d74a,0x4086277b208075ed,1
+np.float64,0x3ff621cfd74c43a0,0x3feb30d59baf5919,1
+np.float64,0x3ff7bc8ca0af7919,0x3fee524da8032896,1
+np.float64,0x7fda22dd0c3445b9,0x40862ca47326d063,1
+np.float64,0x7fd02ed4b2a05da8,0x408628ceb6919421,1
+np.float64,0x3ffe64309fdcc861,0x3ff41c1b18940709,1
+np.float64,0x3ffee4042abdc808,0x3ff46a6005bccb41,1
+np.float64,0x3ff078145b00f029,0x3fceeb3d6bfae0eb,1
+np.float64,0x7fda20fd20b441f9,0x40862ca3e03b990b,1
+np.float64,0x3ffa9e9e9af53d3d,0x3ff18ade3cbee789,1
+np.float64,0x3ff0a1062501420c,0x3fd1e32de6d18c0d,1
+np.float64,0x3ff3bdf118477be2,0x3fe57ad89b7fdf8b,1
+np.float64,0x3ff101c0d5c20382,0x3fd6965d3539be47,1
+np.float64,0x7feba3b53b774769,0x408632a28c7aca4d,1
+np.float64,0x3ff598db5d4b31b7,0x3fea0aa65c0b421a,1
+np.float64,0x3ff5fdfbb72bfbf8,0x3feae55accde4a5e,1
+np.float64,0x7fe5bae53aab75c9,0x408630b5e7a5b92a,1
+np.float64,0x3ff8f668afd1ecd2,0x3ff03af686666c9c,1
+np.float64,0x3ff5ba72dd2b74e6,0x3fea5441f223c093,1
+np.float64,0x3ff8498147109302,0x3fef4e45d501601d,1
+np.float64,0x7feddcfa5efbb9f4,0x4086334106a6e76b,1
+np.float64,0x7fd1a30200234603,0x4086297ee5cc562c,1
+np.float64,0x3ffffa8ee07ff51e,0x3ff50f1dc46f1303,1
+np.float64,0x7fef7ed00ebefd9f,0x408633ae01dabe52,1
+np.float64,0x3ffb6e062276dc0c,0x3ff22344c58c2016,1
+np.float64,0x7fcf2b59943e56b2,0x4086288190dd5eeb,1
+np.float64,0x3ffa589f9254b13f,0x3ff155cc081eee0b,1
+np.float64,0x3ff05415ca60a82c,0x3fc9e45565baef0a,1
+np.float64,0x7feb34bed576697d,0x408632822d5a178c,1
+np.float64,0x3ff3993845c73270,0x3fe51423baf246c3,1
+np.float64,0x3ff88367aaf106d0,0x3fefb2d9ca9f1192,1
+np.float64,0x7fef364304fe6c85,0x4086339b7ed82997,1
+np.float64,0x7fcba2c317374585,0x4086278b24e42934,1
+np.float64,0x3ff1aef885e35df1,0x3fdd1b79f55b20c0,1
+np.float64,0x7fe19367886326ce,0x40862f035f867445,1
+np.float64,0x3ff3c8295e279053,0x3fe5970aa670d32e,1
+np.float64,0x3ff6edda164ddbb4,0x3feccca9eb59d6b9,1
+np.float64,0x7fdeaea940bd5d52,0x40862dece02d151b,1
+np.float64,0x7fea9d6324353ac5,0x408632552ddf0d4f,1
+np.float64,0x7fe60e39e66c1c73,0x408630d45b1ad0c4,1
+np.float64,0x7fde06325abc0c64,0x40862dc07910038c,1
+np.float64,0x7f9ec89d303d9139,0x408617c55ea4c576,1
+np.float64,0x3ff9801930530032,0x3ff0abe5be046051,1
+np.float64,0x3ff4d5859689ab0b,0x3fe849a7f7a19fa3,1
+np.float64,0x3ff38afbc48715f8,0x3fe4ebb7710cbab9,1
+np.float64,0x3ffd88a0e77b1142,0x3ff3916964407e21,1
+np.float64,0x1,0xfff8000000000000,1
+np.float64,0x3ff5db59e58bb6b4,0x3fea9b6b5ccc116f,1
+np.float64,0x3ffd4b05b15a960c,0x3ff369792f661a90,1
+np.float64,0x7fdcebc4fb39d789,0x40862d73cd623378,1
+np.float64,0x3ff5b56f944b6adf,0x3fea4955d6b06ca3,1
+np.float64,0x7fd4e4abf2a9c957,0x40862ad9e9da3c61,1
+np.float64,0x7fe08e0d6aa11c1a,0x40862e88d17ef277,1
+np.float64,0x3ff0dfc97da1bf93,0x3fd50f9004136d8f,1
+np.float64,0x7fdec38eaebd871c,0x40862df2511e26b4,1
+np.float64,0x7ff8000000000000,0x7ff8000000000000,1
+np.float64,0x3ff21865504430cb,0x3fe033fe3cf3947a,1
+np.float64,0x7fdc139708b8272d,0x40862d371cfbad03,1
+np.float64,0x7fe1fe3be3a3fc77,0x40862f336e3ba63a,1
+np.float64,0x7fd9fa2493b3f448,0x40862c97f2960be9,1
+np.float64,0x3ff0a027db414050,0x3fd1d6e54a707c87,1
+np.float64,0x3ff568b16f4ad163,0x3fe99f5c6d7b6e18,1
+np.float64,0x3ffe2f82877c5f05,0x3ff3fb54bd0da753,1
+np.float64,0x7fbaf5778435eaee,0x408621ccc9e2c1be,1
+np.float64,0x7fc5aaf8362b55ef,0x40862598e7072a49,1
+np.float64,0x7fe0ebfdd4a1d7fb,0x40862eb5b7bf99d5,1
+np.float64,0x7fd8efeb5931dfd6,0x40862c444636f408,1
+np.float64,0x3ff361a308c6c346,0x3fe4744cae63e6df,1
+np.float64,0x7fef287d39be50f9,0x40863397f65c807e,1
+np.float64,0x7fe72c4a14ae5893,0x4086313992e52082,1
+np.float64,0x3ffd1be44cba37c8,0x3ff34a9a45239eb9,1
+np.float64,0x3ff50369c18a06d4,0x3fe8b69319f091f1,1
+np.float64,0x3ffb333c25766678,0x3ff1f8c78eeb28f1,1
+np.float64,0x7fe12050416240a0,0x40862ece4e2f2f24,1
+np.float64,0x7fe348f5526691ea,0x40862fc16fbe7b6c,1
+np.float64,0x3ff343cc4d068799,0x3fe41c2a30cab7d2,1
+np.float64,0x7fd1b0daaa2361b4,0x408629852b3104ff,1
+np.float64,0x3ff6a41f37ad483e,0x3fec3b36ee6c6d4a,1
+np.float64,0x3ffad9439435b287,0x3ff1b6add9a1b3d7,1
+np.float64,0x7fbeb9a2f23d7345,0x408622d89ac1eaba,1
+np.float64,0x3ffab3d39fb567a7,0x3ff19ac75b4427f3,1
+np.float64,0x3ff890003ed12000,0x3fefc8844471c6ad,1
+np.float64,0x3ffc9f595e593eb2,0x3ff2f7a8699f06d8,1
+np.float64,0x7fe2224ef6e4449d,0x40862f43684a154a,1
+np.float64,0x3ffa67ba08d4cf74,0x3ff161525778df99,1
+np.float64,0x7fe87e24b570fc48,0x408631ab02b159fb,1
+np.float64,0x7fd6e99be92dd337,0x40862b96dba73685,1
+np.float64,0x7fe90f39fdf21e73,0x408631d9dbd36c1e,1
+np.float64,0x3ffb7806abd6f00e,0x3ff22a719b0f4c46,1
+np.float64,0x3ffa511ba3d4a238,0x3ff1500c124f6e17,1
+np.float64,0x3ff5d7a569abaf4b,0x3fea937391c280e8,1
+np.float64,0x7fc4279d20284f39,0x40862504a5cdcb96,1
+np.float64,0x3ffe8791b1fd0f24,0x3ff431f1ed7eaba0,1
+np.float64,0x7fe3b2f5276765e9,0x40862fecf15e2535,1
+np.float64,0x7feeab0e7abd561c,0x408633778044cfbc,1
+np.float64,0x7fdba88531375109,0x40862d1860306d7a,1
+np.float64,0x7fe7b19b3def6335,0x4086316716d6890b,1
+np.float64,0x3ff9e9437413d287,0x3ff0ff89431c748c,1
+np.float64,0x3ff960716a52c0e3,0x3ff092498028f802,1
+np.float64,0x3ff271bf56a4e37f,0x3fe1786fc8dd775d,1
+np.float64,0x3fff2a6578be54cb,0x3ff494bbe303eeb5,1
+np.float64,0x3ffd842eb5fb085e,0x3ff38e8b7ba42bc5,1
+np.float64,0x3ff91600e5d22c02,0x3ff0553c6a6b3d93,1
+np.float64,0x3ff9153f45f22a7e,0x3ff0549c0eaecf95,1
+np.float64,0x7fe0ab319da15662,0x40862e96da3b19f9,1
+np.float64,0x3ff06acd1f60d59a,0x3fcd2aca543d2772,1
+np.float64,0x3ffb3e7a54d67cf4,0x3ff200f288cd391b,1
+np.float64,0x3ffd01356f1a026b,0x3ff339003462a56c,1
+np.float64,0x3ffacd35def59a6c,0x3ff1adb8d32b3ec0,1
+np.float64,0x3ff6f953264df2a6,0x3fece2f992948d6e,1
+np.float64,0x3ff0fa91f5a1f524,0x3fd64609a28f1590,1
+np.float64,0x7fd1b7610ca36ec1,0x408629881e03dc7d,1
+np.float64,0x3ff4317fb7c86300,0x3fe6b086ed265887,1
+np.float64,0x3ff3856198070ac3,0x3fe4dbb6bc88b9e3,1
+np.float64,0x7fed7fc4573aff88,0x40863327e7013a81,1
+np.float64,0x3ffe53cbbf5ca798,0x3ff411f07a29b1f4,1
+np.float64,0x3ff092195b012433,0x3fd10b1c0b4b14fe,1
+np.float64,0x3ff1a3171163462e,0x3fdcb5c301d5d40d,1
+np.float64,0x3ffa1401f1742804,0x3ff120eb319e9faa,1
+np.float64,0x7fd352f6f426a5ed,0x40862a3a048feb6d,1
+np.float64,0x7fd4ee246fa9dc48,0x40862add895d808f,1
+np.float64,0x3ff0675cfa00ceba,0x3fccb2222c5493ca,1
+np.float64,0x3ffe5cb38f3cb967,0x3ff417773483d161,1
+np.float64,0x7fe11469ea2228d3,0x40862ec8bd3e497f,1
+np.float64,0x3fff13cba67e2798,0x3ff4872fe2c26104,1
+np.float64,0x3ffb73d3d316e7a8,0x3ff2276f08612ea2,1
+np.float64,0x7febfb70f237f6e1,0x408632bbc9450721,1
+np.float64,0x3ff84a0d87b0941b,0x3fef4f3b707e3145,1
+np.float64,0x7fd71fd5082e3fa9,0x40862ba9b4091172,1
+np.float64,0x3ff560737d8ac0e7,0x3fe98cc9c9ba2f61,1
+np.float64,0x3ff46a266ae8d44d,0x3fe74190e5234822,1
+np.float64,0x7fe8cc9225719923,0x408631c477db9708,1
+np.float64,0x3ff871de5930e3bc,0x3fef948f7d00fbef,1
+np.float64,0x3ffd0bc7895a178f,0x3ff33ffc18357721,1
+np.float64,0x3ff66099f9ccc134,0x3febb2bc775b4720,1
+np.float64,0x7fe91f1be9723e37,0x408631deec3a5c9e,1
+np.float64,0x7fd60462f12c08c5,0x40862b4537e1c1c6,1
+np.float64,0x3ff053100ba0a620,0x3fc9bc0c21e2284f,1
+np.float64,0x7fd864c611b0c98b,0x40862c1724506255,1
+np.float64,0x7fd191decb2323bd,0x408629771bfb68cc,1
+np.float64,0x3ff792a1656f2543,0x3fee054f2e135fcf,1
+np.float64,0x7fd03625cea06c4b,0x408628d253b840e3,1
+np.float64,0x7fc3967716272ced,0x408624ca35451042,1
+np.float64,0x7fe6636cb32cc6d8,0x408630f3073a22a7,1
+np.float64,0x3ffc2d3976585a73,0x3ff2a9d4c0dae607,1
+np.float64,0x3fffd10ee79fa21e,0x3ff4f70db69888be,1
+np.float64,0x3ff1d4fcae23a9f9,0x3fde57675007b23c,1
+np.float64,0x3ffa5da19e14bb43,0x3ff1599f74d1c113,1
+np.float64,0x3ff7f4eb0d6fe9d6,0x3feeb85189659e99,1
+np.float64,0x7fbcca44d8399489,0x408622536234f7c1,1
+np.float64,0x7fef5f97ec3ebf2f,0x408633a60fdde0d7,1
+np.float64,0x7fde4a66da3c94cd,0x40862dd290ebc184,1
+np.float64,0x3ff072957a40e52b,0x3fce34d913d87613,1
+np.float64,0x3ff2bc4c9dc57899,0x3fe27497e6ebe27d,1
+np.float64,0x7fd7d152b4afa2a4,0x40862be63469eecd,1
+np.float64,0x3ff957d768f2afaf,0x3ff08b4ad8062a73,1
+np.float64,0x7fe4bc5f45a978be,0x40863055fd66e4eb,1
+np.float64,0x7fc90de345321bc6,0x408626c24ce7e370,1
+np.float64,0x3ff2d7a37d85af47,0x3fe2cd6a40b544a0,1
+np.float64,0x7fe536ea1f6a6dd3,0x40863084bade76a3,1
+np.float64,0x3fff970c9cdf2e19,0x3ff4d524572356dd,1
+np.float64,0x3ffe173ae63c2e76,0x3ff3ec1ee35ad28c,1
+np.float64,0x3ff714025cce2805,0x3fed168aedff4a2b,1
+np.float64,0x7fce7b414c3cf682,0x40862853dcdd19d4,1
+np.float64,0x3ff019623f2032c4,0x3fbc7c602df0bbaf,1
+np.float64,0x3ff72f57fd0e5eb0,0x3fed4ae75f697432,1
+np.float64,0x3ff283778e8506ef,0x3fe1b5c5725b0dfd,1
+np.float64,0x3ff685a29aed0b45,0x3febfdfdedd581e2,1
+np.float64,0x3ff942d24fb285a4,0x3ff07a224c3ecfaf,1
+np.float64,0x3ff2e4a9f465c954,0x3fe2f71905399e8f,1
+np.float64,0x7fdfa1c7fa3f438f,0x40862e2b4e06f098,1
+np.float64,0x3ff49b59c26936b4,0x3fe7bc41c8c1e59d,1
+np.float64,0x3ff2102d3704205a,0x3fe014bf7e28924e,1
+np.float64,0x3ff88de3b8311bc8,0x3fefc4e3e0a15a89,1
+np.float64,0x7fea5ba25374b744,0x40863241519c9b66,1
+np.float64,0x3fffe5df637fcbbf,0x3ff5032488f570f9,1
+np.float64,0x7fe67cfefe6cf9fd,0x408630fc25333cb4,1
+np.float64,0x3ff090bf2b01217e,0x3fd0f6fcf1092b4a,1
+np.float64,0x7fecd75bc5f9aeb7,0x408632f9b6c2e013,1
+np.float64,0x7fe15df38c62bbe6,0x40862eeae5ac944b,1
+np.float64,0x3ff4757875a8eaf1,0x3fe75e0eafbe28ce,1
+np.float64,0x7fecca8a51b99514,0x408632f627c23923,1
+np.float64,0x3ff91ca529d2394a,0x3ff05abb327fd1ca,1
+np.float64,0x3ffb962993b72c53,0x3ff23ff831717579,1
+np.float64,0x3ffd548a2c7aa914,0x3ff36fac7f56d716,1
+np.float64,0x7fbafb5cb035f6b8,0x408621ce898a02fb,1
+np.float64,0x3ff1d86daca3b0db,0x3fde73536c29218c,1
+np.float64,0x7fa8d0f8f431a1f1,0x40861b97a03c3a18,1
+np.float64,0x3ff44f1067489e21,0x3fe6fcbd8144ab2a,1
+np.float64,0x7fec062b07380c55,0x408632bed9c6ce85,1
+np.float64,0x3ff7e11e0fcfc23c,0x3fee94ada7efaac4,1
+np.float64,0x7fe77505c1aeea0b,0x4086315287dda0ba,1
+np.float64,0x7fc465af2728cb5d,0x4086251d236107f7,1
+np.float64,0x3ffe811c4a7d0238,0x3ff42df7e8b6cf2d,1
+np.float64,0x7fe05a471260b48d,0x40862e6fa502738b,1
+np.float64,0x7fec32cd9778659a,0x408632cb8d98c5a3,1
+np.float64,0x7fd203a220a40743,0x408629aa43b010c0,1
+np.float64,0x7fed71f7d17ae3ef,0x4086332428207101,1
+np.float64,0x3ff3918999e72313,0x3fe4fe5e8991402f,1
+np.float64,0x3ff3ecae38c7d95c,0x3fe5fa787d887981,1
+np.float64,0x7fd65345b82ca68a,0x40862b61aed8c64e,1
+np.float64,0x3ff1efdd01c3dfba,0x3fdf2eae36139204,1
+np.float64,0x3ffba9344f375268,0x3ff24d7fdcfc313b,1
+np.float64,0x7fd0469b35208d35,0x408628da6ed24bdd,1
+np.float64,0x7fe525782daa4aef,0x4086307e240c8b30,1
+np.float64,0x3ff8e473d371c8e8,0x3ff02beebd4171c7,1
+np.float64,0x3ff59a43898b3487,0x3fea0dc0a6acea0a,1
+np.float64,0x7fef50c7263ea18d,0x408633a247d7cd42,1
+np.float64,0x7fe8b5a301f16b45,0x408631bd0e71c855,1
+np.float64,0x3ff209369de4126d,0x3fdff4264334446b,1
+np.float64,0x3ffbe2ff4437c5fe,0x3ff2763b356814c7,1
+np.float64,0x3ff55938156ab270,0x3fe97c70514f91bf,1
+np.float64,0x3fff5d8bf81ebb18,0x3ff4b333b230672a,1
+np.float64,0x3ff16a317bc2d463,0x3fdab84e7faa468f,1
+np.float64,0x3ff7e64f8dafcc9f,0x3fee9e0bd57e9566,1
+np.float64,0x7fef4dc065be9b80,0x408633a181e25abb,1
+np.float64,0x3ff64a24a62c9449,0x3feb849ced76437e,1
+np.float64,0x7fc3cb85ef27970b,0x408624dfc39c8f74,1
+np.float64,0x7fec2162a77842c4,0x408632c69b0d43b6,1
+np.float64,0x7feccee6dc399dcd,0x408632f75de98c46,1
+np.float64,0x7faff4f5f43fe9eb,0x40861d9d89be14c9,1
+np.float64,0x7fee82df60fd05be,0x4086336cfdeb7317,1
+np.float64,0x3ffe54588d9ca8b1,0x3ff41247eb2f75ca,1
+np.float64,0x3ffe5615b55cac2c,0x3ff4135c4eb11620,1
+np.float64,0x3ffdaf9a6a1b5f35,0x3ff3aa70e50d1692,1
+np.float64,0x3ff69c045f4d3809,0x3fec2b00734e2cde,1
+np.float64,0x7fd049239aa09246,0x408628dbad6dd995,1
+np.float64,0x3ff2acbe8465597d,0x3fe24138652195e1,1
+np.float64,0x3ffb288302365106,0x3ff1f0f86ca7e5d1,1
+np.float64,0x3fff6fe8d87edfd2,0x3ff4be136acf53c5,1
+np.float64,0x3ffc87c8bfb90f92,0x3ff2e7bbd65867cb,1
+np.float64,0x3ff173327ca2e665,0x3fdb0b945abb00d7,1
+np.float64,0x3ff9a5cf7a134b9f,0x3ff0ca2450f07c78,1
+np.float64,0x7faf782b043ef055,0x40861d7e0e9b35ef,1
+np.float64,0x3ffa0874975410e9,0x3ff117ee3dc8f5ba,1
+np.float64,0x7fc710fc7f2e21f8,0x40862618fed167fb,1
+np.float64,0x7feb73f4c876e7e9,0x40863294ae3ac1eb,1
+np.float64,0x8000000000000000,0xfff8000000000000,1
+np.float64,0x7fb46615c028cc2b,0x40861f91bade4dad,1
+np.float64,0x7fc26b064624d60c,0x4086244c1b76c938,1
+np.float64,0x3ff06ab9fa40d574,0x3fcd282fd971d1b4,1
+np.float64,0x3ff61da7410c3b4e,0x3feb28201031af02,1
+np.float64,0x3ffec7ba1b9d8f74,0x3ff459342511f952,1
+np.float64,0x7ff4000000000000,0x7ffc000000000000,1
+np.float64,0x7fe5d570422baae0,0x408630bfa75008c9,1
+np.float64,0x3ffa895832f512b0,0x3ff17ad41555dccb,1
+np.float64,0x7fd343ac21a68757,0x40862a33ad59947a,1
+np.float64,0x3ffc1eeb37383dd6,0x3ff29ff29e55a006,1
+np.float64,0x7fee3c5c507c78b8,0x4086335a6b768090,1
+np.float64,0x7fe96d774a32daee,0x408631f7b9937e36,1
+np.float64,0x7fb878362430f06b,0x40862106603497b6,1
+np.float64,0x7fec0a79c03814f3,0x408632c01479905e,1
+np.float64,0x3ffa2f143c145e28,0x3ff135e25d902e1a,1
+np.float64,0x3ff14ccff80299a0,0x3fd9a0cd3397b14c,1
+np.float64,0x3ff97980dcb2f302,0x3ff0a6942a8133ab,1
+np.float64,0x3ff872e2d1f0e5c6,0x3fef96526eb2f756,1
+np.float64,0x7fdf1c9b46be3936,0x40862e0957fee329,1
+np.float64,0x7fcab6525d356ca4,0x408627458791f029,1
+np.float64,0x3ff964e74a52c9ce,0x3ff095e8845d523c,1
+np.float64,0x3ffb3aa23c967544,0x3ff1fe282d897c13,1
+np.float64,0x7fdd8a36afbb146c,0x40862d9f2b05f61b,1
+np.float64,0x3ffea39f42fd473e,0x3ff4432a48176399,1
+np.float64,0x7fea614f68b4c29e,0x408632430a750385,1
+np.float64,0x7feeafb86abd5f70,0x40863378b79f70cf,1
+np.float64,0x3ff80bc94eb01792,0x3feee138e9d626bd,1
+np.float64,0x7fcaca74743594e8,0x4086274b8ce4d1e1,1
+np.float64,0x3ff8b14815316290,0x3ff000b3526c8321,1
+np.float64,0x7fc698eb5f2d31d6,0x408625eeec86cd2b,1
+np.float64,0x7fe15429a3e2a852,0x40862ee6621205b8,1
+np.float64,0x7fee37f81b7c6fef,0x4086335941ed80dd,1
+np.float64,0x3ff8097ab3f012f6,0x3feedd1bafc3196e,1
+np.float64,0x7fe7c889ceaf9113,0x4086316ed13f2394,1
+np.float64,0x7fceca94513d9528,0x4086286893a06824,1
+np.float64,0x3ff593a103cb2742,0x3fe9ff1af4f63cc9,1
+np.float64,0x7fee237d24bc46f9,0x40863353d4142c87,1
+np.float64,0x3ffbf71e4777ee3c,0x3ff2844c0ed9f4d9,1
+np.float64,0x3ff490c65c09218d,0x3fe7a2216d9f69fd,1
+np.float64,0x3fff5ceaf1feb9d6,0x3ff4b2d430a90110,1
+np.float64,0x3ff55baecceab75e,0x3fe98203980666c4,1
+np.float64,0x3ff511bc306a2378,0x3fe8d81ce7be7b50,1
+np.float64,0x3ff38f83dcc71f08,0x3fe4f89f130d5f87,1
+np.float64,0x3ff73a3676ee746d,0x3fed5f98a65107ee,1
+np.float64,0x7fc27e50c824fca1,0x408624547828bc49,1
+np.float64,0xfff0000000000000,0xfff8000000000000,1
+np.float64,0x3fff38959ebe712b,0x3ff49d362c7ba16a,1
+np.float64,0x3ffad6d23a75ada4,0x3ff1b4dda6394ed0,1
+np.float64,0x3ffe77c6c2dcef8e,0x3ff4283698835ecb,1
+np.float64,0x3fff5feb413ebfd6,0x3ff4b49bcbdb3aa9,1
+np.float64,0x3ff0d30aa161a615,0x3fd4751bcdd7d727,1
+np.float64,0x3ff51e07e00a3c10,0x3fe8f4bd1408d694,1
+np.float64,0x8010000000000000,0xfff8000000000000,1
+np.float64,0x7fd231d2fe2463a5,0x408629beaceafcba,1
+np.float64,0x3fff6b4aee1ed696,0x3ff4bb58544bf8eb,1
+np.float64,0x3ff91fcd2f323f9a,0x3ff05d56e33db6b3,1
+np.float64,0x3ff3b889ab477113,0x3fe56bdeab74cce5,1
+np.float64,0x3ff99bfe30d337fc,0x3ff0c24bbf265561,1
+np.float64,0x3ffbe9e5eaf7d3cc,0x3ff27b0fe60f827a,1
+np.float64,0x7fd65678e92cacf1,0x40862b62d44fe8b6,1
+np.float64,0x7fd9cc477233988e,0x40862c89c638ee48,1
+np.float64,0x3ffc123c72d82479,0x3ff297294d05cbc0,1
+np.float64,0x3ff58abad58b1576,0x3fe9eb65da2a867a,1
+np.float64,0x7fe534887b2a6910,0x40863083d4ec2877,1
+np.float64,0x7fe1d3dcb123a7b8,0x40862f208116c55e,1
+np.float64,0x7fd4d570dba9aae1,0x40862ad412c413cd,1
+np.float64,0x3fffce7d3fdf9cfa,0x3ff4f58f02451928,1
+np.float64,0x3ffa76901c74ed20,0x3ff16c9a5851539c,1
+np.float64,0x7fdd88ffa23b11fe,0x40862d9ed6c6f426,1
+np.float64,0x3ff09fdbb9e13fb7,0x3fd1d2ae4fcbf713,1
+np.float64,0x7fe64567772c8ace,0x408630e845dbc290,1
+np.float64,0x7fb1a849ba235092,0x40861e6a291535b2,1
+np.float64,0x3ffaddb105f5bb62,0x3ff1b9f68f4c419b,1
+np.float64,0x7fd2fc3d5025f87a,0x40862a15cbc1df75,1
+np.float64,0x7fdea7d872bd4fb0,0x40862deb190b2c50,1
+np.float64,0x7fd50ea97eaa1d52,0x40862ae9edc4c812,1
+np.float64,0x3fff659c245ecb38,0x3ff4b7fb18b31aea,1
+np.float64,0x3ff3f1fbb7c7e3f7,0x3fe608bd9d76268c,1
+np.float64,0x3ff76869d9aed0d4,0x3fedb6c23d3a317b,1
+np.float64,0x7fedd4efe93ba9df,0x4086333edeecaa43,1
+np.float64,0x3ff9a5bd4eb34b7a,0x3ff0ca15d02bc960,1
+np.float64,0x3ffd9359cc5b26b4,0x3ff39850cb1a6b6c,1
+np.float64,0x7fe912d0427225a0,0x408631db00e46272,1
+np.float64,0x3ffb3802fe567006,0x3ff1fc4093646465,1
+np.float64,0x3ff02cc38a205987,0x3fc2e8182802a07b,1
+np.float64,0x3ffda953dd1b52a8,0x3ff3a66c504cf207,1
+np.float64,0x7fe0a487e4a1490f,0x40862e93a6f20152,1
+np.float64,0x7fed265ed1fa4cbd,0x4086330f838ae431,1
+np.float64,0x7fd0000114200001,0x408628b76ec48b5c,1
+np.float64,0x3ff2c262786584c5,0x3fe288860d354b0f,1
+np.float64,0x8000000000000001,0xfff8000000000000,1
+np.float64,0x3ffdae9f075b5d3e,0x3ff3a9d006ae55c1,1
+np.float64,0x3ffb69c72156d38e,0x3ff22037cbb85e5b,1
+np.float64,0x7feeae255f7d5c4a,0x408633784e89bc05,1
+np.float64,0x7feb13927c362724,0x408632786630c55d,1
+np.float64,0x7fef49e072be93c0,0x408633a08451d476,1
+np.float64,0x3fff23d6337e47ac,0x3ff490ceb6e634ae,1
+np.float64,0x3ffba82cf8f7505a,0x3ff24cc51c73234d,1
+np.float64,0x7fe948719ef290e2,0x408631ec0b36476e,1
+np.float64,0x3ff41926c5e8324e,0x3fe670e14bbda8cd,1
+np.float64,0x3ff91f09c1523e14,0x3ff05cb5731878da,1
+np.float64,0x3ff6ae6afccd5cd6,0x3fec4fbeca764086,1
+np.float64,0x3ff927f7e0f24ff0,0x3ff06413eeb8eb1e,1
+np.float64,0x3ff19dd2b9e33ba5,0x3fdc882f97994600,1
+np.float64,0x7fe8e502c5b1ca05,0x408631cc56526fff,1
+np.float64,0x7feb49f70fb693ed,0x4086328868486fcd,1
+np.float64,0x3ffd942d535b285a,0x3ff398d8d89f52ca,1
+np.float64,0x7fc3b9c5c627738b,0x408624d893e692ca,1
+np.float64,0x7fea0780ff340f01,0x408632279fa46704,1
+np.float64,0x7fe4c90066a99200,0x4086305adb47a598,1
+np.float64,0x7fdb209113364121,0x40862cf0ab64fd7d,1
+np.float64,0x3ff38617e5470c30,0x3fe4ddc0413b524f,1
+np.float64,0x7fea1b5b803436b6,0x4086322db767f091,1
+np.float64,0x7fe2004898e40090,0x40862f3457795dc5,1
+np.float64,0x3ff3c4360ac7886c,0x3fe58c29843a4c75,1
+np.float64,0x3ff504bc168a0978,0x3fe8b9ada7f698e6,1
+np.float64,0x3ffd3e936fda7d27,0x3ff3615912c5b4ac,1
+np.float64,0x3ffbdc52fb97b8a6,0x3ff2718dae5f1f2b,1
+np.float64,0x3fffef6d84ffdedb,0x3ff508adbc8556cf,1
+np.float64,0x3ff23b65272476ca,0x3fe0b646ed2579eb,1
+np.float64,0x7fe4633068a8c660,0x408630334a4b7ff7,1
+np.float64,0x3ff769b754aed36f,0x3fedb932af0223f9,1
+np.float64,0x7fe7482d92ee905a,0x408631432de1b057,1
+np.float64,0x3ff5dd682aabbad0,0x3fea9fd5e506a86d,1
+np.float64,0x7fd68399a2ad0732,0x40862b72ed89805d,1
+np.float64,0x3ffad7acc3d5af5a,0x3ff1b57fe632c948,1
+np.float64,0x3ffc68e43698d1c8,0x3ff2d2be6f758761,1
+np.float64,0x3ff4e517fbc9ca30,0x3fe86eddf5e63a58,1
+np.float64,0x3ff34c63c56698c8,0x3fe435b74ccd6a13,1
+np.float64,0x7fea9456c17528ad,0x4086325275237015,1
+np.float64,0x7fee6573f2fccae7,0x4086336543760346,1
+np.float64,0x7fd5496fb9aa92de,0x40862b0023235667,1
+np.float64,0x7ff0000000000000,0x7ff0000000000000,1
+np.float64,0x3ffb70e31256e1c6,0x3ff22552f54b13e0,1
+np.float64,0x3ff66a33988cd467,0x3febc656da46a1ca,1
+np.float64,0x3fff0af2eb1e15e6,0x3ff481dec325f5c8,1
+np.float64,0x3ff6a0233d0d4046,0x3fec33400958eda1,1
+np.float64,0x7fdb11e2d5b623c5,0x40862cec55e405f9,1
+np.float64,0x3ffb8a015ad71402,0x3ff2374d7b563a72,1
+np.float64,0x3ff1807d8ce300fb,0x3fdb849e4bce8335,1
+np.float64,0x3ffefd535e3dfaa6,0x3ff479aaac6ffe79,1
+np.float64,0x3ff701e23a6e03c4,0x3fecf39072d96fc7,1
+np.float64,0x3ff4ac809f895901,0x3fe7e6598f2335a5,1
+np.float64,0x3ff0309f26a0613e,0x3fc3b3f4b2783690,1
+np.float64,0x3ff241dd0ce483ba,0x3fe0cde2cb639144,1
+np.float64,0x3ffabce63fb579cc,0x3ff1a18fe2a2da59,1
+np.float64,0x3ffd84b967db0973,0x3ff38ee4f240645d,1
+np.float64,0x7fc3f88b9a27f116,0x408624f1e10cdf3f,1
+np.float64,0x7fe1d5fd5923abfa,0x40862f2175714a3a,1
+np.float64,0x7fe487b145690f62,0x4086304190700183,1
+np.float64,0x7fe7997feaef32ff,0x4086315eeefdddd2,1
+np.float64,0x3ff8f853b671f0a8,0x3ff03c907353a8da,1
+np.float64,0x7fca4c23b5349846,0x408627257ace5778,1
+np.float64,0x7fe0c9bf3a21937d,0x40862ea576c3ea43,1
+np.float64,0x7fc442b389288566,0x4086250f5f126ec9,1
+np.float64,0x7fc6d382ed2da705,0x40862603900431b0,1
+np.float64,0x7fe40b069068160c,0x4086301066468124,1
+np.float64,0x3ff7f62a146fec54,0x3feeba8dfc4363fe,1
+np.float64,0x3ff721e8e94e43d2,0x3fed313a6755d34f,1
+np.float64,0x7fe579feaf2af3fc,0x4086309ddefb6112,1
+np.float64,0x3ffe2c6bde5c58d8,0x3ff3f9665dc9a16e,1
+np.float64,0x7fcf9998ed3f3331,0x4086289dab274788,1
+np.float64,0x7fdb03af2236075d,0x40862ce82252e490,1
+np.float64,0x7fe72799392e4f31,0x40863137f428ee71,1
+np.float64,0x7f9f2190603e4320,0x408617dc5b3b3c3c,1
+np.float64,0x3ff69c56d52d38ae,0x3fec2ba59fe938b2,1
+np.float64,0x7fdcde27bf39bc4e,0x40862d70086cd06d,1
+np.float64,0x3ff654d6b8eca9ae,0x3feb9aa0107609a6,1
+np.float64,0x7fdf69d967bed3b2,0x40862e1d1c2b94c2,1
+np.float64,0xffefffffffffffff,0xfff8000000000000,1
+np.float64,0x7fedfd073f3bfa0d,0x40863349980c2c8b,1
+np.float64,0x7f7c1856803830ac,0x40860bf312b458c7,1
+np.float64,0x7fe9553f1bb2aa7d,0x408631f0173eadd5,1
+np.float64,0x3ff6e92efc2dd25e,0x3fecc38f98e7e1a7,1
+np.float64,0x7fe9719ac532e335,0x408631f906cd79c3,1
+np.float64,0x3ff60e56ae4c1cad,0x3feb07ef8637ec7e,1
+np.float64,0x3ff0d0803501a100,0x3fd455c0af195a9c,1
+np.float64,0x7fe75248a3eea490,0x40863146a614aec1,1
+np.float64,0x7fdff61ead3fec3c,0x40862e408643d7aa,1
+np.float64,0x7fed4ac7a4fa958e,0x408633197b5cf6ea,1
+np.float64,0x7fe58d44562b1a88,0x408630a5098d1bbc,1
+np.float64,0x7fd89dcdb1b13b9a,0x40862c29c2979288,1
+np.float64,0x3ff205deda240bbe,0x3fdfda67c84fd3a8,1
+np.float64,0x7fdf84c15abf0982,0x40862e23f361923d,1
+np.float64,0x3ffe012b3afc0256,0x3ff3de3dfa5f47ce,1
+np.float64,0x3ffe2f3512dc5e6a,0x3ff3fb245206398e,1
+np.float64,0x7fed6174c2bac2e9,0x4086331faa699617,1
+np.float64,0x3ff1f30f8783e61f,0x3fdf47e06f2c40d1,1
+np.float64,0x3ff590da9eab21b5,0x3fe9f8f7b4baf3c2,1
+np.float64,0x3ffb3ca1eb967944,0x3ff1ff9baf66d704,1
+np.float64,0x7fe50ba9a5aa1752,0x408630745ab7fd3c,1
+np.float64,0x3ff43743a4a86e87,0x3fe6bf7ae80b1dda,1
+np.float64,0x3ff47e1a24e8fc34,0x3fe773acca44c7d6,1
+np.float64,0x3ff589ede9eb13dc,0x3fe9e99f28fab3a4,1
+np.float64,0x3ff72f2cbf8e5e5a,0x3fed4a94e7edbf24,1
+np.float64,0x3ffa4f9bbc549f38,0x3ff14ee60aea45d3,1
+np.float64,0x3ff975dae732ebb6,0x3ff0a3a1fbd7284a,1
+np.float64,0x7fbcf14ee039e29d,0x4086225e33f3793e,1
+np.float64,0x3ff10e027f621c05,0x3fd71cce2452b4e0,1
+np.float64,0x3ff33ea193067d43,0x3fe40cbac4daaddc,1
+np.float64,0x7fbef8f2263df1e3,0x408622e905c8e1b4,1
+np.float64,0x3fff7f5bfe3efeb8,0x3ff4c732e83df253,1
+np.float64,0x3ff5700a6b4ae015,0x3fe9afdd7b8b82b0,1
+np.float64,0x3ffd5099da5aa134,0x3ff36d1bf26e55bf,1
+np.float64,0x3ffed8e0f89db1c2,0x3ff4639ff065107a,1
+np.float64,0x3fff9d0c463f3a18,0x3ff4d8a9f297cf52,1
+np.float64,0x3ff23db5b2e47b6b,0x3fe0bebdd48f961a,1
+np.float64,0x3ff042bff1e08580,0x3fc713bf24cc60ef,1
+np.float64,0x7feb4fe97a769fd2,0x4086328a26675646,1
+np.float64,0x3ffeafbfeedd5f80,0x3ff44a955a553b1c,1
+np.float64,0x3ff83fb524507f6a,0x3fef3d1729ae0976,1
+np.float64,0x3ff1992294433245,0x3fdc5f5ce53dd197,1
+np.float64,0x7fe89fe629b13fcb,0x408631b601a83867,1
+np.float64,0x7fe53e4d74aa7c9a,0x40863087839b52f1,1
+np.float64,0x3ff113713e6226e2,0x3fd757631ca7cd09,1
+np.float64,0x7fd4a0b7a629416e,0x40862abfba27a09b,1
+np.float64,0x3ff184c6e2a3098e,0x3fdbab2e3966ae57,1
+np.float64,0x3ffafbbf77f5f77f,0x3ff1d02bb331d9f9,1
+np.float64,0x3ffc6099a358c134,0x3ff2cd16941613d1,1
+np.float64,0x3ffb7c441ef6f888,0x3ff22d7b12e31432,1
+np.float64,0x3ff625ba5eec4b75,0x3feb39060e55fb79,1
+np.float64,0x7fde879acbbd0f35,0x40862de2aab4d72d,1
+np.float64,0x7f930aed982615da,0x408613edb6df8528,1
+np.float64,0x7fa4b82dac29705a,0x40861a261c0a9aae,1
+np.float64,0x7fced5c16b3dab82,0x4086286b7a73e611,1
+np.float64,0x7fe133749d2266e8,0x40862ed73a41b112,1
+np.float64,0x3ff2d8146ea5b029,0x3fe2ced55dbf997d,1
+np.float64,0x3ff60dac77ac1b59,0x3feb0688b0e54c7b,1
+np.float64,0x3ff275d9b024ebb3,0x3fe186b87258b834,1
+np.float64,0x3ff533e6500a67cd,0x3fe92746c8b50ddd,1
+np.float64,0x7fe370896666e112,0x40862fd1ca144736,1
+np.float64,0x7fee7695357ced29,0x40863369c459420e,1
+np.float64,0x7fd1e0528023c0a4,0x4086299a85caffd0,1
+np.float64,0x7fd05c7b24a0b8f5,0x408628e52824386f,1
+np.float64,0x3ff11dcc3b023b98,0x3fd7c56c8cef1be1,1
+np.float64,0x7fc9d9fae933b3f5,0x408627027404bc5f,1
+np.float64,0x7fe2359981246b32,0x40862f4be675e90d,1
+np.float64,0x3ffb10a949962152,0x3ff1df88f83b8cde,1
+np.float64,0x3ffa65b53654cb6a,0x3ff15fc8956ccc87,1
+np.float64,0x3ff0000000000000,0x0,1
+np.float64,0x7fad97ef703b2fde,0x40861d002f3d02da,1
+np.float64,0x3ff57aaf93aaf55f,0x3fe9c7b01f194edb,1
+np.float64,0x7fe9ecd73f33d9ad,0x4086321f69917205,1
+np.float64,0x3ff0dcb79c61b96f,0x3fd4eac86a7a9c38,1
+np.float64,0x7fee9c12ffbd3825,0x4086337396cd706d,1
+np.float64,0x3ff52c40af4a5881,0x3fe915a8a7de8f00,1
+np.float64,0x3ffbcfff59779ffe,0x3ff268e523fe8dda,1
+np.float64,0x7fe014cb4b602996,0x40862e4d5de42a03,1
+np.float64,0x7fae2370e83c46e1,0x40861d258dd5b3ee,1
+np.float64,0x7fe9e33602f3c66b,0x4086321c704ac2bb,1
+np.float64,0x3ff648acd74c915a,0x3feb8195ca53bcaa,1
+np.float64,0x7fe385f507670be9,0x40862fda95ebaf44,1
+np.float64,0x3ffb0e382c361c70,0x3ff1ddbea963e0a7,1
+np.float64,0x3ff47d6b6ae8fad7,0x3fe771f80ad37cd2,1
+np.float64,0x3ffca7d538f94faa,0x3ff2fd5f62e851ac,1
+np.float64,0x3ff83e949c107d29,0x3fef3b1c5bbac99b,1
+np.float64,0x7fc6fb933a2df725,0x408626118e51a286,1
+np.float64,0x7fe43a1454e87428,0x4086302318512d9b,1
+np.float64,0x7fe51fe32aaa3fc5,0x4086307c07271348,1
+np.float64,0x3ff35e563966bcac,0x3fe46aa2856ef85f,1
+np.float64,0x3ff84dd4e4909baa,0x3fef55d86d1d5c2e,1
+np.float64,0x7febe3d84077c7b0,0x408632b507686f03,1
+np.float64,0x3ff6aca2e32d5946,0x3fec4c32a2368ee3,1
+np.float64,0x7fe7070e3e6e0e1b,0x4086312caddb0454,1
+np.float64,0x7fd3657f2aa6cafd,0x40862a41acf47e70,1
+np.float64,0x3ff61534456c2a68,0x3feb1663900af13b,1
+np.float64,0x3ff8bc556eb178ab,0x3ff00a16b5403f88,1
+np.float64,0x3ffa7782e3f4ef06,0x3ff16d529c94a438,1
+np.float64,0x7fc15785ed22af0b,0x408623d0cd94fb86,1
+np.float64,0x3ff2e3eeb6e5c7dd,0x3fe2f4c4876d3edf,1
+np.float64,0x3ff2e4e17e85c9c3,0x3fe2f7c9e437b22e,1
+np.float64,0x7feb3aaf67f6755e,0x40863283ec4a0d76,1
+np.float64,0x7fe89efcf7313df9,0x408631b5b5e41263,1
+np.float64,0x3ffcc6fad4f98df6,0x3ff31245778dff6d,1
+np.float64,0x3ff356114466ac22,0x3fe45253d040a024,1
+np.float64,0x3ff81c70d2d038e2,0x3feefed71ebac776,1
+np.float64,0x7fdb75c96136eb92,0x40862d09a603f03e,1
+np.float64,0x3ff340f91b8681f2,0x3fe413bb6e6d4a54,1
+np.float64,0x3fff906079df20c1,0x3ff4d13869d16bc7,1
+np.float64,0x3ff226a42d644d48,0x3fe0698d316f1ac0,1
+np.float64,0x3ff948abc3b29158,0x3ff07eeb0b3c81ba,1
+np.float64,0x3ffc25df1fb84bbe,0x3ff2a4c13ad4edad,1
+np.float64,0x7fe07ea3b960fd46,0x40862e815b4cf43d,1
+np.float64,0x3ff497d3dae92fa8,0x3fe7b3917bf10311,1
+np.float64,0x7fea561db1f4ac3a,0x4086323fa4aef2a9,1
+np.float64,0x7fd1b49051236920,0x40862986d8759ce5,1
+np.float64,0x7f7ba3bd6037477a,0x40860bd19997fd90,1
+np.float64,0x3ff01126dd00224e,0x3fb76b67938dfb11,1
+np.float64,0x3ff29e1105053c22,0x3fe2102a4c5fa102,1
+np.float64,0x3ff9de2a6553bc55,0x3ff0f6cfe4dea30e,1
+np.float64,0x7fc558e7d42ab1cf,0x4086257a608fc055,1
+np.float64,0x3ff79830a74f3061,0x3fee0f93db153d65,1
+np.float64,0x7fe2661648e4cc2c,0x40862f6117a71eb2,1
+np.float64,0x3ff140cf4262819e,0x3fd92aefedae1ab4,1
+np.float64,0x3ff5f36251abe6c5,0x3feaced481ceaee3,1
+np.float64,0x7fc80911d5301223,0x4086266d4757f768,1
+np.float64,0x3ff9079a6c320f35,0x3ff04949d21ebe1e,1
+np.float64,0x3ffde8d2e09bd1a6,0x3ff3cedca8a5db5d,1
+np.float64,0x3ffadd1de375ba3c,0x3ff1b989790e8d93,1
+np.float64,0x3ffdbc40ee1b7882,0x3ff3b286b1c7da57,1
+np.float64,0x3ff8ff514771fea2,0x3ff04264add00971,1
+np.float64,0x7fefd7d0e63fafa1,0x408633c47d9f7ae4,1
+np.float64,0x3ffc47798c588ef3,0x3ff2bbe441fa783a,1
+np.float64,0x7fe6ebc55b6dd78a,0x408631232d9abf31,1
+np.float64,0xbff0000000000000,0xfff8000000000000,1
+np.float64,0x7fd378e4afa6f1c8,0x40862a49a8f98cb4,1
+np.float64,0x0,0xfff8000000000000,1
+np.float64,0x3ffe88ed7efd11db,0x3ff432c7ecb95492,1
+np.float64,0x3ff4f5509289eaa1,0x3fe8955a11656323,1
+np.float64,0x7fda255b41344ab6,0x40862ca53676a23e,1
+np.float64,0x3ffebe85b9bd7d0c,0x3ff453992cd55dea,1
+np.float64,0x3ff5d6180b8bac30,0x3fea901c2160c3bc,1
+np.float64,0x3ffcdfb8fcf9bf72,0x3ff322c83b3bc735,1
+np.float64,0x3ff3c91c26679238,0x3fe599a652b7cf59,1
+np.float64,0x7fc389f7a62713ee,0x408624c518edef93,1
+np.float64,0x3ffe1245ba1c248c,0x3ff3e901b2c4a47a,1
+np.float64,0x7fe1e76e95e3cedc,0x40862f29446f9eff,1
+np.float64,0x3ff02ae4f92055ca,0x3fc28221abd63daa,1
+np.float64,0x7fbf648a143ec913,0x40862304a0619d03,1
+np.float64,0x3ff2be7ef8657cfe,0x3fe27bcc6c97522e,1
+np.float64,0x3ffa7595e514eb2c,0x3ff16bdc64249ad1,1
+np.float64,0x3ff4ee130049dc26,0x3fe884354cbad8c9,1
+np.float64,0x3ff19211fc232424,0x3fdc2160bf3eae40,1
+np.float64,0x3ffec215aedd842c,0x3ff455c4cdd50c32,1
+np.float64,0x7fe7cb50ffaf96a1,0x4086316fc06a53af,1
+np.float64,0x3fffa679161f4cf2,0x3ff4de30ba7ac5b8,1
+np.float64,0x7fdcb459763968b2,0x40862d646a21011d,1
+np.float64,0x3ff9f338d6d3e672,0x3ff1075835d8f64e,1
+np.float64,0x3ff8de3319d1bc66,0x3ff026ae858c0458,1
+np.float64,0x7fee0199d33c0333,0x4086334ad03ac683,1
+np.float64,0x3ffc06076c380c0f,0x3ff28eaec3814faa,1
+np.float64,0x3ffe9e2e235d3c5c,0x3ff43fd4d2191a7f,1
+np.float64,0x3ffd93b06adb2761,0x3ff398888239cde8,1
+np.float64,0x7fefe4b71cffc96d,0x408633c7ba971b92,1
+np.float64,0x7fb2940352252806,0x40861ed244bcfed6,1
+np.float64,0x3ffba4647e3748c9,0x3ff24a15f02e11b9,1
+np.float64,0x7fd2d9543725b2a7,0x40862a0708446596,1
+np.float64,0x7fc04997f120932f,0x4086235055d35251,1
+np.float64,0x3ff6d14313ada286,0x3fec94b177f5d3fc,1
+np.float64,0x3ff279fc8684f3f9,0x3fe19511c3e5b9a8,1
+np.float64,0x3ff42f4609085e8c,0x3fe6aabe526ce2bc,1
+np.float64,0x7fc1c6c62a238d8b,0x408624037de7f6ec,1
+np.float64,0x7fe31ff4b8e63fe8,0x40862fb05b40fd16,1
+np.float64,0x7fd2a8825fa55104,0x408629f234d460d6,1
+np.float64,0x3ffe8c1d725d183b,0x3ff434bdc444143f,1
+np.float64,0x3ff0e9dc3e21d3b8,0x3fd58676e2c13fc9,1
+np.float64,0x3ffed03172fda063,0x3ff45e59f7aa6c8b,1
+np.float64,0x7fd74621962e8c42,0x40862bb6e90d66f8,1
+np.float64,0x3ff1faa29663f545,0x3fdf833a2c5efde1,1
+np.float64,0x7fda02834db40506,0x40862c9a860d6747,1
+np.float64,0x7f709b2fc021365f,0x408607be328eb3eb,1
+np.float64,0x7fec0d58aa381ab0,0x408632c0e61a1af6,1
+np.float64,0x3ff524d1720a49a3,0x3fe90479968d40fd,1
+np.float64,0x7fd64cb3b32c9966,0x40862b5f53c4b0b4,1
+np.float64,0x3ff9593e3ed2b27c,0x3ff08c6eea5f6e8b,1
+np.float64,0x3ff7de8b1f6fbd16,0x3fee9007abcfdf7b,1
+np.float64,0x7fe8d816d6b1b02d,0x408631c82e38a894,1
+np.float64,0x7fd726bbe22e4d77,0x40862bac16ee8d52,1
+np.float64,0x7fa70b07d42e160f,0x40861affcc4265e2,1
+np.float64,0x7fe18b4091e31680,0x40862effa8bce66f,1
+np.float64,0x3ff830253010604a,0x3fef21b2eaa75758,1
+np.float64,0x3fffcade407f95bc,0x3ff4f3734b24c419,1
+np.float64,0x3ff8c17cecb182fa,0x3ff00e75152d7bda,1
+np.float64,0x7fdad9b9d035b373,0x40862cdbabb793ba,1
+np.float64,0x3ff9f9e154f3f3c2,0x3ff10c8dfdbd2510,1
+np.float64,0x3ff465e162e8cbc3,0x3fe736c751c75b73,1
+np.float64,0x3ff9b4cd8493699b,0x3ff0d616235544b8,1
+np.float64,0x7fe557c4a56aaf88,0x4086309114ed12d9,1
+np.float64,0x7fe5999133eb3321,0x408630a9991a9b54,1
+np.float64,0x7fe7c9009e2f9200,0x4086316ef9359a47,1
+np.float64,0x3ff8545cabd0a8ba,0x3fef6141f1030c36,1
+np.float64,0x3ffa1f1712943e2e,0x3ff129849d492ce3,1
+np.float64,0x7fea803a14750073,0x4086324c652c276c,1
+np.float64,0x3ff5b6f97fcb6df3,0x3fea4cb0b97b18e9,1
+np.float64,0x7fc2efdfc425dfbf,0x40862485036a5c6e,1
+np.float64,0x7fe2c78e5be58f1c,0x40862f8b0a5e7baf,1
+np.float64,0x7fe80d7fff301aff,0x40863185e234060a,1
+np.float64,0x3ffd895d457b12ba,0x3ff391e2cac7a3f8,1
+np.float64,0x3ff44c9764a8992f,0x3fe6f6690396c232,1
+np.float64,0x3ff731688b8e62d1,0x3fed4ed70fac3839,1
+np.float64,0x3ff060200460c040,0x3fcbad4a07d97f0e,1
+np.float64,0x3ffbd2f70a17a5ee,0x3ff26afb46ade929,1
+np.float64,0x7febe9e841f7d3d0,0x408632b6c465ddd9,1
+np.float64,0x3ff2532f8be4a65f,0x3fe10c6cd8d64cf4,1
+np.float64,0x7fefffffffffffff,0x408633ce8fb9f87e,1
+np.float64,0x3ff3a1ae3a47435c,0x3fe52c00210cc459,1
+np.float64,0x7fe9c34ae6b38695,0x408632128d150149,1
+np.float64,0x3fff311029fe6220,0x3ff498b852f30bff,1
+np.float64,0x3ffd4485a1ba890c,0x3ff3653b6fa701cd,1
+np.float64,0x7fd52718b1aa4e30,0x40862af330d9c68c,1
+np.float64,0x3ff10b695a4216d3,0x3fd7009294e367b7,1
+np.float64,0x3ffdf73de59bee7c,0x3ff3d7fa96d2c1ae,1
+np.float64,0x3ff2f1c75965e38f,0x3fe320aaff3db882,1
+np.float64,0x3ff2a56a5a854ad5,0x3fe228cc4ad7e7a5,1
+np.float64,0x7fe60cd1cf6c19a3,0x408630d3d87a04b3,1
+np.float64,0x3ff89fa65c113f4c,0x3fefe3543773180c,1
+np.float64,0x3ffd253130ba4a62,0x3ff350b76ba692a0,1
+np.float64,0x7feaad7051f55ae0,0x40863259ff932d62,1
+np.float64,0x7fd9cc37cf33986f,0x40862c89c15f963b,1
+np.float64,0x3ff8c08de771811c,0x3ff00daa9c17acd7,1
+np.float64,0x7fea58b25d34b164,0x408632406d54cc6f,1
+np.float64,0x7fe5f161fd2be2c3,0x408630c9ddf272a5,1
+np.float64,0x3ff5840dbf8b081c,0x3fe9dc9117b4cbc7,1
+np.float64,0x3ff3fd762307faec,0x3fe6277cd530c640,1
+np.float64,0x3ff9095c98b212b9,0x3ff04abff170ac24,1
+np.float64,0x7feaac66017558cb,0x40863259afb4f8ce,1
+np.float64,0x7fd78f96bcaf1f2c,0x40862bd00175fdf9,1
+np.float64,0x3ffaca27e0959450,0x3ff1ab72b8f8633e,1
+np.float64,0x3ffb7f18cb96fe32,0x3ff22f81bcb8907b,1
+np.float64,0x3ffcce48d1199c92,0x3ff317276f62c0b2,1
+np.float64,0x3ffcb9a7f3797350,0x3ff30958e0d6a34d,1
+np.float64,0x7fda569ef6b4ad3d,0x40862cb43b33275a,1
+np.float64,0x7fde9f0893bd3e10,0x40862de8cc036283,1
+np.float64,0x3ff428be3928517c,0x3fe699bb5ab58904,1
+np.float64,0x7fa4d3344029a668,0x40861a3084989291,1
+np.float64,0x3ff03607bd006c0f,0x3fc4c4840cf35f48,1
+np.float64,0x3ff2b1335c056267,0x3fe25000846b75a2,1
+np.float64,0x7fe0cb8bd8e19717,0x40862ea65237d496,1
+np.float64,0x3fff4b1b7b9e9637,0x3ff4a83fb08e7b24,1
+np.float64,0x7fe7526140aea4c2,0x40863146ae86069c,1
+np.float64,0x7fbfcfb7c23f9f6f,0x4086231fc246ede5,1
diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/tests/data/umath-validation-set-arcsin.csv b/.venv/lib/python3.12/site-packages/numpy/_core/tests/data/umath-validation-set-arcsin.csv
new file mode 100644
index 0000000..75d5707
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/_core/tests/data/umath-validation-set-arcsin.csv
@@ -0,0 +1,1429 @@
+dtype,input,output,ulperrortol
+np.float32,0xbe7d3a7c,0xbe7fe217,4
+np.float32,0x3dc102f0,0x3dc14c60,4
+np.float32,0xbe119c28,0xbe121aef,4
+np.float32,0xbe51cd68,0xbe534c75,4
+np.float32,0x3c04a300,0x3c04a35f,4
+np.float32,0xbf4f0b62,0xbf712a69,4
+np.float32,0x3ef61a5c,0x3f005cf6,4
+np.float32,0xbf13024c,0xbf1c97df,4
+np.float32,0x3e93b580,0x3e95d6b5,4
+np.float32,0x3e44e7b8,0x3e4623a5,4
+np.float32,0xbe35df20,0xbe36d773,4
+np.float32,0x3eecd2c0,0x3ef633cf,4
+np.float32,0x3f2772ba,0x3f36862a,4
+np.float32,0x3e211ea8,0x3e21cac5,4
+np.float32,0x3e3b3d90,0x3e3c4cc6,4
+np.float32,0x3f37c962,0x3f4d018c,4
+np.float32,0x3e92ad88,0x3e94c31a,4
+np.float32,0x3f356ffc,0x3f49a766,4
+np.float32,0x3f487ba2,0x3f665254,4
+np.float32,0x3f061c46,0x3f0d27ae,4
+np.float32,0xbee340a2,0xbeeb7722,4
+np.float32,0xbe85aede,0xbe874026,4
+np.float32,0x3f34cf9a,0x3f48c474,4
+np.float32,0x3e29a690,0x3e2a6fbd,4
+np.float32,0xbeb29428,0xbeb669d1,4
+np.float32,0xbe606d40,0xbe624370,4
+np.float32,0x3dae6860,0x3dae9e85,4
+np.float32,0xbf04872b,0xbf0b4d25,4
+np.float32,0x3f2080e2,0x3f2d7ab0,4
+np.float32,0xbec77dcc,0xbecceb27,4
+np.float32,0x3e0dda10,0x3e0e4f38,4
+np.float32,0xbefaf970,0xbf03262c,4
+np.float32,0x3f576a0c,0x3f7ffee6,4
+np.float32,0x3f222382,0x3f2f95d6,4
+np.float32,0x7fc00000,0x7fc00000,4
+np.float32,0x3e41c468,0x3e42f14e,4
+np.float32,0xbf2f64dd,0xbf4139a8,4
+np.float32,0xbf60ef90,0xbf895956,4
+np.float32,0xbf67c855,0xbf90eff0,4
+np.float32,0xbed35aee,0xbed9df00,4
+np.float32,0xbf2c7d92,0xbf3d448f,4
+np.float32,0x3f7b1604,0x3faff122,4
+np.float32,0xbf7c758b,0xbfb3bf87,4
+np.float32,0x3ecda1c8,0x3ed39acf,4
+np.float32,0x3f3af8ae,0x3f519fcb,4
+np.float32,0xbf16e6a3,0xbf2160fd,4
+np.float32,0x3f0c97d2,0x3f14d668,4
+np.float32,0x3f0a8060,0x3f1257b9,4
+np.float32,0x3f27905a,0x3f36ad57,4
+np.float32,0x3eeaeba4,0x3ef40efe,4
+np.float32,0x3e58dde0,0x3e5a8580,4
+np.float32,0xbf0cabe2,0xbf14ee6b,4
+np.float32,0xbe805ca8,0xbe81bf03,4
+np.float32,0x3f5462ba,0x3f7a7b85,4
+np.float32,0xbee235d0,0xbeea4d8b,4
+np.float32,0xbe880cb0,0xbe89b426,4
+np.float32,0x80000001,0x80000001,4
+np.float32,0x3f208c00,0x3f2d88f6,4
+np.float32,0xbf34f3d2,0xbf48f7a2,4
+np.float32,0x3f629428,0x3f8b1763,4
+np.float32,0xbf52a900,0xbf776b4a,4
+np.float32,0xbd17f8d0,0xbd1801be,4
+np.float32,0xbef7cada,0xbf0153d1,4
+np.float32,0x3f7d3b90,0x3fb63967,4
+np.float32,0xbd6a20b0,0xbd6a4160,4
+np.float32,0x3f740496,0x3fa1beb7,4
+np.float32,0x3ed8762c,0x3edf7dd9,4
+np.float32,0x3f53b066,0x3f793d42,4
+np.float32,0xbe9de718,0xbea084f9,4
+np.float32,0x3ea3ae90,0x3ea69b4b,4
+np.float32,0x3f1b8f00,0x3f273183,4
+np.float32,0x3f5cd6ac,0x3f852ead,4
+np.float32,0x3f29d510,0x3f39b169,4
+np.float32,0x3ee2a934,0x3eeace33,4
+np.float32,0x3eecac94,0x3ef608c2,4
+np.float32,0xbea915e2,0xbeac5203,4
+np.float32,0xbd316e90,0xbd317cc8,4
+np.float32,0xbf70b495,0xbf9c97b6,4
+np.float32,0xbe80d976,0xbe823ff3,4
+np.float32,0x3e9205f8,0x3e94143f,4
+np.float32,0x3f49247e,0x3f676296,4
+np.float32,0x3d9030c0,0x3d904f50,4
+np.float32,0x3e4df058,0x3e4f5a5c,4
+np.float32,0xbe1fd360,0xbe207b58,4
+np.float32,0xbf69dc7c,0xbf937006,4
+np.float32,0x3f36babe,0x3f4b7df3,4
+np.float32,0xbe8c9758,0xbe8e6bb7,4
+np.float32,0xbf4de72d,0xbf6f3c20,4
+np.float32,0xbecdad68,0xbed3a780,4
+np.float32,0xbf73e2cf,0xbfa18702,4
+np.float32,0xbece16a8,0xbed41a75,4
+np.float32,0x3f618a96,0x3f89fc6d,4
+np.float32,0xbf325853,0xbf454ea9,4
+np.float32,0x3f138568,0x3f1d3828,4
+np.float32,0xbf56a6e9,0xbf7e9748,4
+np.float32,0x3ef5d594,0x3f0035bf,4
+np.float32,0xbf408220,0xbf59dfaa,4
+np.float32,0xbed120e6,0xbed76dd5,4
+np.float32,0xbf6dbda5,0xbf986cee,4
+np.float32,0x3f744a38,0x3fa23282,4
+np.float32,0xbe4b56d8,0xbe4cb329,4
+np.float32,0x3f54c5f2,0x3f7b2d97,4
+np.float32,0xbd8b1c90,0xbd8b3801,4
+np.float32,0x3ee19a48,0x3ee9a03b,4
+np.float32,0x3f48460e,0x3f65fc3d,4
+np.float32,0x3eb541c0,0x3eb9461e,4
+np.float32,0xbea7d098,0xbeaaf98c,4
+np.float32,0xbda99e40,0xbda9d00c,4
+np.float32,0xbefb2ca6,0xbf03438d,4
+np.float32,0x3f4256be,0x3f5cab0b,4
+np.float32,0xbdbdb198,0xbdbdf74d,4
+np.float32,0xbf325b5f,0xbf4552e9,4
+np.float32,0xbf704d1a,0xbf9c00b4,4
+np.float32,0x3ebb1d04,0x3ebf8cf8,4
+np.float32,0xbed03566,0xbed66bf1,4
+np.float32,0x3e8fcee8,0x3e91c501,4
+np.float32,0xbf2e1eec,0xbf3f7b9d,4
+np.float32,0x3f33c4d2,0x3f474cac,4
+np.float32,0x3f598ef4,0x3f8201b4,4
+np.float32,0x3e09bb30,0x3e0a2660,4
+np.float32,0x3ed4e228,0x3edb8cdb,4
+np.float32,0x3eb7a190,0x3ebbd0a1,4
+np.float32,0xbd9ae630,0xbd9b0c18,4
+np.float32,0x3f43020e,0x3f5db2d7,4
+np.float32,0xbec06ac0,0xbec542d4,4
+np.float32,0x3f3dfde0,0x3f561674,4
+np.float32,0xbf64084a,0xbf8cabe6,4
+np.float32,0xbd6f95b0,0xbd6fb8b7,4
+np.float32,0x3f268640,0x3f354e2d,4
+np.float32,0xbe72b4bc,0xbe7509b2,4
+np.float32,0xbf3414fa,0xbf47bd5a,4
+np.float32,0xbf375218,0xbf4c566b,4
+np.float32,0x3f203c1a,0x3f2d2273,4
+np.float32,0xbd503530,0xbd504c2b,4
+np.float32,0xbc45e540,0xbc45e67b,4
+np.float32,0xbf175c4f,0xbf21f2c6,4
+np.float32,0x3f7432a6,0x3fa20b2b,4
+np.float32,0xbf43367f,0xbf5e03d8,4
+np.float32,0x3eb3997c,0x3eb780c4,4
+np.float32,0x3e5574c8,0x3e570878,4
+np.float32,0xbf04b57b,0xbf0b8349,4
+np.float32,0x3f6216d8,0x3f8a914b,4
+np.float32,0xbf57a237,0xbf80337d,4
+np.float32,0xbee1403a,0xbee93bee,4
+np.float32,0xbeaf9b9a,0xbeb33f3b,4
+np.float32,0xbf109374,0xbf19a223,4
+np.float32,0xbeae6824,0xbeb1f810,4
+np.float32,0xbcff9320,0xbcff9dbe,4
+np.float32,0x3ed205c0,0x3ed868a9,4
+np.float32,0x3d897c30,0x3d8996ad,4
+np.float32,0xbf2899d2,0xbf380d4c,4
+np.float32,0xbf54cb0b,0xbf7b36c2,4
+np.float32,0x3ea8e8ec,0x3eac2262,4
+np.float32,0x3ef5e1a0,0x3f003c9d,4
+np.float32,0xbf00c81e,0xbf06f1e2,4
+np.float32,0xbf346775,0xbf483181,4
+np.float32,0x3f7a4fe4,0x3fae077c,4
+np.float32,0x3f00776e,0x3f06948f,4
+np.float32,0xbe0a3078,0xbe0a9cbc,4
+np.float32,0xbeba0b06,0xbebe66be,4
+np.float32,0xbdff4e38,0xbdfff8b2,4
+np.float32,0xbe927f70,0xbe9492ff,4
+np.float32,0x3ebb07e0,0x3ebf7642,4
+np.float32,0x3ebcf8e0,0x3ec18c95,4
+np.float32,0x3f49bdfc,0x3f685b51,4
+np.float32,0x3cbc29c0,0x3cbc2dfd,4
+np.float32,0xbe9e951a,0xbea13bf1,4
+np.float32,0xbe8c237c,0xbe8df33d,4
+np.float32,0x3e17f198,0x3e1881c4,4
+np.float32,0xbd0b5220,0xbd0b5902,4
+np.float32,0xbf34c4a2,0xbf48b4f5,4
+np.float32,0xbedaa814,0xbee1ea94,4
+np.float32,0x3ebf5d6c,0x3ec42053,4
+np.float32,0x3cd04b40,0x3cd050ff,4
+np.float32,0xbec33fe0,0xbec85244,4
+np.float32,0xbf00b27a,0xbf06d8d8,4
+np.float32,0x3f15d7be,0x3f201243,4
+np.float32,0xbe3debd0,0xbe3f06f7,4
+np.float32,0xbea81704,0xbeab4418,4
+np.float32,0x1,0x1,4
+np.float32,0x3f49e6ba,0x3f689d8b,4
+np.float32,0x3f351030,0x3f491fc0,4
+np.float32,0x3e607de8,0x3e625482,4
+np.float32,0xbe8dbbe4,0xbe8f9c0e,4
+np.float32,0x3edbf350,0x3ee35924,4
+np.float32,0xbf0c84c4,0xbf14bf9c,4
+np.float32,0x3eb218b0,0x3eb5e61a,4
+np.float32,0x3e466dd0,0x3e47b138,4
+np.float32,0xbe8ece94,0xbe90ba01,4
+np.float32,0xbe82ec2a,0xbe84649a,4
+np.float32,0xbf7e1f10,0xbfb98b9e,4
+np.float32,0xbf2d00ea,0xbf3df688,4
+np.float32,0x3db7cdd0,0x3db80d36,4
+np.float32,0xbe388b98,0xbe398f25,4
+np.float32,0xbd86cb40,0xbd86e436,4
+np.float32,0x7f7fffff,0x7fc00000,4
+np.float32,0x3f472a60,0x3f6436c6,4
+np.float32,0xbf5b2c1d,0xbf838d87,4
+np.float32,0x3f0409ea,0x3f0abad8,4
+np.float32,0x3f47dd0e,0x3f6553f0,4
+np.float32,0x3e3eab00,0x3e3fc98a,4
+np.float32,0xbf7c2a7f,0xbfb2e19b,4
+np.float32,0xbeda0048,0xbee13112,4
+np.float32,0x3f46600a,0x3f62f5b2,4
+np.float32,0x3f45aef4,0x3f61de43,4
+np.float32,0x3dd40a50,0x3dd46bc4,4
+np.float32,0xbf6cdd0b,0xbf974191,4
+np.float32,0x3f78de4c,0x3faac725,4
+np.float32,0x3f3c39a4,0x3f53777f,4
+np.float32,0xbe2a30ec,0xbe2afc0b,4
+np.float32,0xbf3c0ef0,0xbf533887,4
+np.float32,0x3ecb6548,0x3ed12a53,4
+np.float32,0x3eb994e8,0x3ebde7fc,4
+np.float32,0x3d4c1ee0,0x3d4c3487,4
+np.float32,0xbf52cb6d,0xbf77a7eb,4
+np.float32,0x3eb905d4,0x3ebd4e80,4
+np.float32,0x3e712428,0x3e736d72,4
+np.float32,0xbf79ee6e,0xbfad22be,4
+np.float32,0x3de6f8b0,0x3de776c1,4
+np.float32,0x3e9b2898,0x3e9da325,4
+np.float32,0x3ea09b20,0x3ea35d20,4
+np.float32,0x3d0ea9a0,0x3d0eb103,4
+np.float32,0xbd911500,0xbd913423,4
+np.float32,0x3e004618,0x3e009c97,4
+np.float32,0x3f5e0e5a,0x3f86654c,4
+np.float32,0x3f2e6300,0x3f3fd88b,4
+np.float32,0x3e0cf5d0,0x3e0d68c3,4
+np.float32,0x3d6a16c0,0x3d6a376c,4
+np.float32,0x3f7174aa,0x3f9db53c,4
+np.float32,0xbe04bba0,0xbe051b81,4
+np.float32,0xbe6fdcb4,0xbe721c92,4
+np.float32,0x3f4379f0,0x3f5e6c31,4
+np.float32,0xbf680098,0xbf913257,4
+np.float32,0xbf3c31ca,0xbf536bea,4
+np.float32,0x3f59db58,0x3f824a4e,4
+np.float32,0xbf3ffc84,0xbf591554,4
+np.float32,0x3d1d5160,0x3d1d5b48,4
+np.float32,0x3f6c64ae,0x3f96a3da,4
+np.float32,0xbf1b49fd,0xbf26daaa,4
+np.float32,0x3ec80be0,0x3ecd8576,4
+np.float32,0x3f3becc0,0x3f530629,4
+np.float32,0xbea93890,0xbeac76c1,4
+np.float32,0x3f5b3acc,0x3f839bbd,4
+np.float32,0xbf5d6818,0xbf85bef9,4
+np.float32,0x3f794266,0x3fab9fa6,4
+np.float32,0xbee8eb7c,0xbef1cf3b,4
+np.float32,0xbf360a06,0xbf4a821e,4
+np.float32,0x3f441cf6,0x3f5f693d,4
+np.float32,0x3e60de40,0x3e62b742,4
+np.float32,0xbebb3d7e,0xbebfafdc,4
+np.float32,0x3e56a3a0,0x3e583e28,4
+np.float32,0x3f375bfe,0x3f4c6499,4
+np.float32,0xbf384d7d,0xbf4dbf9a,4
+np.float32,0x3efb03a4,0x3f032c06,4
+np.float32,0x3f1d5d10,0x3f29794d,4
+np.float32,0xbe25f7dc,0xbe26b41d,4
+np.float32,0x3f6d2f88,0x3f97aebb,4
+np.float32,0xbe9fa100,0xbea255cb,4
+np.float32,0xbf21dafa,0xbf2f382a,4
+np.float32,0x3d3870e0,0x3d3880d9,4
+np.float32,0x3eeaf00c,0x3ef413f4,4
+np.float32,0xbc884ea0,0xbc88503c,4
+np.float32,0xbf7dbdad,0xbfb80b6d,4
+np.float32,0xbf4eb713,0xbf709b46,4
+np.float32,0xbf1c0ad4,0xbf27cd92,4
+np.float32,0x3f323088,0x3f451737,4
+np.float32,0x3e405d88,0x3e4183e1,4
+np.float32,0x3d7ad580,0x3d7afdb4,4
+np.float32,0xbf207338,0xbf2d6927,4
+np.float32,0xbecf7948,0xbed59e1a,4
+np.float32,0x3f16ff94,0x3f217fde,4
+np.float32,0xbdf19588,0xbdf225dd,4
+np.float32,0xbf4d9654,0xbf6eb442,4
+np.float32,0xbf390b9b,0xbf4ed220,4
+np.float32,0xbe155a74,0xbe15e354,4
+np.float32,0x3f519e4c,0x3f759850,4
+np.float32,0xbee3f08c,0xbeec3b84,4
+np.float32,0xbf478be7,0xbf64d23b,4
+np.float32,0xbefdee50,0xbf04d92a,4
+np.float32,0x3e8def78,0x3e8fd1bc,4
+np.float32,0x3e3df2a8,0x3e3f0dee,4
+np.float32,0xbf413e22,0xbf5afd97,4
+np.float32,0xbf1b8bc4,0xbf272d71,4
+np.float32,0xbf31e5be,0xbf44af22,4
+np.float32,0x3de7e080,0x3de86010,4
+np.float32,0xbf5ddf7e,0xbf863645,4
+np.float32,0x3f3eba6a,0x3f57306e,4
+np.float32,0xff7fffff,0x7fc00000,4
+np.float32,0x3ec22d5c,0x3ec72973,4
+np.float32,0x80800000,0x80800000,4
+np.float32,0x3f032e0c,0x3f09ba82,4
+np.float32,0x3d74bd60,0x3d74e2b7,4
+np.float32,0xbea0d61e,0xbea39b42,4
+np.float32,0xbefdfa78,0xbf04e02a,4
+np.float32,0x3e5cb220,0x3e5e70ec,4
+np.float32,0xbe239e54,0xbe2452a4,4
+np.float32,0x3f452738,0x3f61090e,4
+np.float32,0x3e99a2e0,0x3e9c0a66,4
+np.float32,0x3e4394d8,0x3e44ca5f,4
+np.float32,0x3f4472e2,0x3f5fef14,4
+np.float32,0xbf46bc70,0xbf638814,4
+np.float32,0xbf0b910f,0xbf139c7a,4
+np.float32,0x3f36b4a6,0x3f4b753f,4
+np.float32,0x3e0bf478,0x3e0c64f6,4
+np.float32,0x3ce02480,0x3ce02ba9,4
+np.float32,0xbd904b10,0xbd9069b1,4
+np.float32,0xbf7f5d72,0xbfc00b70,4
+np.float32,0x3f62127e,0x3f8a8ca8,4
+np.float32,0xbf320253,0xbf44d6e4,4
+np.float32,0x3f2507be,0x3f335833,4
+np.float32,0x3f299284,0x3f395887,4
+np.float32,0xbd8211b0,0xbd82281d,4
+np.float32,0xbd3374c0,0xbd338376,4
+np.float32,0x3f36c56a,0x3f4b8d30,4
+np.float32,0xbf51f704,0xbf76331f,4
+np.float32,0xbe9871ca,0xbe9acab2,4
+np.float32,0xbe818d8c,0xbe82fa0f,4
+np.float32,0x3f08b958,0x3f103c18,4
+np.float32,0x3f22559a,0x3f2fd698,4
+np.float32,0xbf11f388,0xbf1b4db8,4
+np.float32,0x3ebe1990,0x3ec2c359,4
+np.float32,0xbe75ab38,0xbe7816b6,4
+np.float32,0x3e96102c,0x3e984c99,4
+np.float32,0xbe80d9d2,0xbe824052,4
+np.float32,0x3ef47588,0x3efeda7f,4
+np.float32,0xbe45e524,0xbe4725ea,4
+np.float32,0x3f7f9e7a,0x3fc213ff,4
+np.float32,0x3f1d3c36,0x3f294faa,4
+np.float32,0xbf3c58db,0xbf53a591,4
+np.float32,0x3f0d3d20,0x3f159c69,4
+np.float32,0x3f744be6,0x3fa23552,4
+np.float32,0x3f2e0cea,0x3f3f630e,4
+np.float32,0x3e193c10,0x3e19cff7,4
+np.float32,0xbf4150ac,0xbf5b19dd,4
+np.float32,0xbf145f72,0xbf1e4355,4
+np.float32,0xbb76cc00,0xbb76cc26,4
+np.float32,0x3f756780,0x3fa41b3e,4
+np.float32,0x3ea9b868,0x3eacfe3c,4
+np.float32,0x3d07c920,0x3d07cf7f,4
+np.float32,0xbf2263d4,0xbf2fe8ff,4
+np.float32,0x3e53b3f8,0x3e553daa,4
+np.float32,0xbf785be8,0xbfa9b5ba,4
+np.float32,0x3f324f7a,0x3f454254,4
+np.float32,0xbf2188f2,0xbf2ece5b,4
+np.float32,0xbe33781c,0xbe3466a2,4
+np.float32,0xbd3cf120,0xbd3d024c,4
+np.float32,0x3f06b18a,0x3f0dd70f,4
+np.float32,0x3f40d63e,0x3f5a5f6a,4
+np.float32,0x3f752340,0x3fa3a41e,4
+np.float32,0xbe1cf1c0,0xbe1d90bc,4
+np.float32,0xbf02d948,0xbf0957d7,4
+np.float32,0x3f73bed0,0x3fa14bf7,4
+np.float32,0x3d914920,0x3d916864,4
+np.float32,0x7fa00000,0x7fe00000,4
+np.float32,0xbe67a5d8,0xbe69aba7,4
+np.float32,0x3f689c4a,0x3f91eb9f,4
+np.float32,0xbf196e00,0xbf248601,4
+np.float32,0xbf50dacb,0xbf7444fe,4
+np.float32,0x3f628b86,0x3f8b0e1e,4
+np.float32,0x3f6ee2f2,0x3f99fe7f,4
+np.float32,0x3ee5df40,0x3eee6492,4
+np.float32,0x3f501746,0x3f72f41b,4
+np.float32,0xbf1f0f18,0xbf2ba164,4
+np.float32,0xbf1a8bfd,0xbf25ec01,4
+np.float32,0xbd4926f0,0xbd493ba9,4
+np.float32,0xbf4e364f,0xbf6fc17b,4
+np.float32,0x3e50c578,0x3e523ed4,4
+np.float32,0x3f65bf10,0x3f8e95ce,4
+np.float32,0xbe8d75a2,0xbe8f52f2,4
+np.float32,0xbf3f557e,0xbf581962,4
+np.float32,0xbeff2bfc,0xbf05903a,4
+np.float32,0x3f5e8bde,0x3f86e3d8,4
+np.float32,0xbf7a0012,0xbfad4b9b,4
+np.float32,0x3edefce0,0x3ee6b790,4
+np.float32,0xbf0003de,0xbf060f09,4
+np.float32,0x3efc4650,0x3f03e548,4
+np.float32,0x3f4582e4,0x3f6198f5,4
+np.float32,0x3f10086c,0x3f18f9d0,4
+np.float32,0x3f1cd304,0x3f28ca77,4
+np.float32,0x3f683366,0x3f916e8d,4
+np.float32,0xbed49392,0xbedb3675,4
+np.float32,0xbf6fe5f6,0xbf9b6c0e,4
+np.float32,0xbf59b416,0xbf8224f6,4
+np.float32,0x3d20c960,0x3d20d3f4,4
+np.float32,0x3f6b00d6,0x3f94dbe7,4
+np.float32,0x3f6c26ae,0x3f965352,4
+np.float32,0xbf370ea6,0xbf4bf5dd,4
+np.float32,0x3dfe7230,0x3dff1af1,4
+np.float32,0xbefc21a8,0xbf03d038,4
+np.float32,0x3f16a990,0x3f21156a,4
+np.float32,0xbef8ac0c,0xbf01d48f,4
+np.float32,0x3f170de8,0x3f21919d,4
+np.float32,0x3db9ef80,0x3dba3122,4
+np.float32,0x3d696400,0x3d698461,4
+np.float32,0x3f007aa2,0x3f069843,4
+np.float32,0x3f22827c,0x3f3010a9,4
+np.float32,0x3f3650dc,0x3f4ae6f1,4
+np.float32,0xbf1d8037,0xbf29a5e1,4
+np.float32,0xbf08fdc4,0xbf108d0e,4
+np.float32,0xbd8df350,0xbd8e1079,4
+np.float32,0xbf36bb32,0xbf4b7e98,4
+np.float32,0x3f2e3756,0x3f3f9ced,4
+np.float32,0x3d5a6f20,0x3d5a89aa,4
+np.float32,0x3f55d568,0x3f7d1889,4
+np.float32,0x3e1ed110,0x3e1f75d9,4
+np.float32,0x3e7386b8,0x3e75e1dc,4
+np.float32,0x3f48ea0e,0x3f670434,4
+np.float32,0x3e921fb0,0x3e942f14,4
+np.float32,0xbf0d4d0b,0xbf15af7f,4
+np.float32,0x3f179ed2,0x3f224549,4
+np.float32,0xbf3a328e,0xbf507e6d,4
+np.float32,0xbf74591a,0xbfa24b6e,4
+np.float32,0x3ec7d1c4,0x3ecd4657,4
+np.float32,0xbf6ecbed,0xbf99de85,4
+np.float32,0x3db0bd00,0x3db0f559,4
+np.float32,0x7f800000,0x7fc00000,4
+np.float32,0x3e0373b8,0x3e03d0d6,4
+np.float32,0xbf439784,0xbf5e9a04,4
+np.float32,0xbef97a9e,0xbf024ac6,4
+np.float32,0x3e4d71a8,0x3e4ed90a,4
+np.float32,0xbf14d868,0xbf1ed7e3,4
+np.float32,0xbf776870,0xbfa7ce37,4
+np.float32,0xbe32a500,0xbe339038,4
+np.float32,0xbf326d8a,0xbf456c3d,4
+np.float32,0xbe9b758c,0xbe9df3e7,4
+np.float32,0x3d9515a0,0x3d95376a,4
+np.float32,0x3e3f7320,0x3e40953e,4
+np.float32,0xbee57e7e,0xbeedf84f,4
+np.float32,0x3e821e94,0x3e838ffd,4
+np.float32,0x3f74beaa,0x3fa2f721,4
+np.float32,0xbe9b7672,0xbe9df4d9,4
+np.float32,0x3f4041fc,0x3f597e71,4
+np.float32,0xbe9ea7c4,0xbea14f92,4
+np.float32,0xbf800000,0xbfc90fdb,4
+np.float32,0x3e04fb90,0x3e055bfd,4
+np.float32,0xbf14d3d6,0xbf1ed245,4
+np.float32,0xbe84ebec,0xbe86763e,4
+np.float32,0x3f08e568,0x3f107039,4
+np.float32,0x3d8dc9e0,0x3d8de6ef,4
+np.float32,0x3ea4549c,0x3ea74a94,4
+np.float32,0xbebd2806,0xbec1bf51,4
+np.float32,0x3f311a26,0x3f439498,4
+np.float32,0xbf3d2222,0xbf54cf7e,4
+np.float32,0x3e00c500,0x3e011c81,4
+np.float32,0xbe35ed1c,0xbe36e5a9,4
+np.float32,0xbd4ec020,0xbd4ed6a0,4
+np.float32,0x3e1eb088,0x3e1f54eb,4
+np.float32,0x3cf94840,0x3cf9521a,4
+np.float32,0xbf010c5d,0xbf0740e0,4
+np.float32,0xbf3bd63b,0xbf52e502,4
+np.float32,0x3f233f30,0x3f310542,4
+np.float32,0x3ea24128,0x3ea519d7,4
+np.float32,0x3f478b38,0x3f64d124,4
+np.float32,0x3f1e0c6c,0x3f2a57ec,4
+np.float32,0xbf3ad294,0xbf51680a,4
+np.float32,0x3ede0554,0x3ee5a4b4,4
+np.float32,0x3e451a98,0x3e46577d,4
+np.float32,0x3f520164,0x3f764542,4
+np.float32,0x0,0x0,4
+np.float32,0xbd056cd0,0xbd0572db,4
+np.float32,0xbf58b018,0xbf812f5e,4
+np.float32,0x3e036eb0,0x3e03cbc3,4
+np.float32,0x3d1377a0,0x3d137fc9,4
+np.float32,0xbf692d3a,0xbf929a2c,4
+np.float32,0xbec60fb8,0xbecb5dea,4
+np.float32,0x3ed23340,0x3ed89a8e,4
+np.float32,0x3c87f040,0x3c87f1d9,4
+np.float32,0x3dac62f0,0x3dac9737,4
+np.float32,0xbed97c16,0xbee09f02,4
+np.float32,0xbf2d5f3c,0xbf3e769c,4
+np.float32,0xbc3b7c40,0xbc3b7d4c,4
+np.float32,0x3ed998ec,0x3ee0bedd,4
+np.float32,0x3dd86630,0x3dd8cdcb,4
+np.float32,0x3e8b4304,0x3e8d09ea,4
+np.float32,0x3f51e6b0,0x3f761697,4
+np.float32,0x3ec51f24,0x3eca5923,4
+np.float32,0xbf647430,0xbf8d2307,4
+np.float32,0x3f253d9c,0x3f339eb2,4
+np.float32,0x3dc969d0,0x3dc9bd4b,4
+np.float32,0xbc2f1300,0xbc2f13da,4
+np.float32,0xbf170007,0xbf21806d,4
+np.float32,0x3f757d10,0x3fa4412e,4
+np.float32,0xbe7864ac,0xbe7ae564,4
+np.float32,0x3f2ffe90,0x3f420cfb,4
+np.float32,0xbe576138,0xbe590012,4
+np.float32,0xbf517a21,0xbf755959,4
+np.float32,0xbf159cfe,0xbf1fc9d5,4
+np.float32,0xbf638b2a,0xbf8c22cf,4
+np.float32,0xff800000,0x7fc00000,4
+np.float32,0x3ed19ca0,0x3ed7f569,4
+np.float32,0x3f7c4460,0x3fb32d26,4
+np.float32,0x3ebfae6c,0x3ec477ab,4
+np.float32,0x3dd452d0,0x3dd4b4a8,4
+np.float32,0x3f471482,0x3f6413fb,4
+np.float32,0xbf49d704,0xbf6883fe,4
+np.float32,0xbd42c4e0,0xbd42d7af,4
+np.float32,0xbeb02994,0xbeb3d668,4
+np.float32,0x3f4d1fd8,0x3f6dedd2,4
+np.float32,0x3efb591c,0x3f035d11,4
+np.float32,0x80000000,0x80000000,4
+np.float32,0xbf50f782,0xbf7476ad,4
+np.float32,0x3d7232c0,0x3d7256f0,4
+np.float32,0x3f649460,0x3f8d46bb,4
+np.float32,0x3f5561bc,0x3f7c46a9,4
+np.float32,0x3e64f6a0,0x3e66ea5d,4
+np.float32,0x3e5b0470,0x3e5cb8f9,4
+np.float32,0xbe9b6b2c,0xbe9de904,4
+np.float32,0x3f6c33f4,0x3f966486,4
+np.float32,0x3f5cee54,0x3f854613,4
+np.float32,0x3ed3e044,0x3eda716e,4
+np.float32,0xbf3cac7f,0xbf542131,4
+np.float32,0x3c723500,0x3c723742,4
+np.float32,0x3de59900,0x3de614d3,4
+np.float32,0xbdf292f8,0xbdf32517,4
+np.float32,0x3f05c8b2,0x3f0cc59b,4
+np.float32,0xbf1ab182,0xbf261b14,4
+np.float32,0xbda396f0,0xbda3c39a,4
+np.float32,0xbf270ed0,0xbf360231,4
+np.float32,0x3f2063e6,0x3f2d557e,4
+np.float32,0x3c550280,0x3c550409,4
+np.float32,0xbe103b48,0xbe10b679,4
+np.float32,0xbebae390,0xbebf4f40,4
+np.float32,0x3f3bc868,0x3f52d0aa,4
+np.float32,0xbd62f880,0xbd631647,4
+np.float32,0xbe7a38f4,0xbe7cc833,4
+np.float32,0x3f09d796,0x3f118f39,4
+np.float32,0xbf5fa558,0xbf8802d0,4
+np.float32,0x3f111cc8,0x3f1a48b0,4
+np.float32,0x3e831958,0x3e849356,4
+np.float32,0xbf614dbd,0xbf89bc3b,4
+np.float32,0xbd521510,0xbd522cac,4
+np.float32,0x3f05af22,0x3f0ca7a0,4
+np.float32,0xbf1ac60e,0xbf2634df,4
+np.float32,0xbf6bd05e,0xbf95e3fe,4
+np.float32,0xbd1fa6e0,0xbd1fb13b,4
+np.float32,0xbeb82f7a,0xbebc68b1,4
+np.float32,0xbd92aaf8,0xbd92cb23,4
+np.float32,0xbe073a54,0xbe079fbf,4
+np.float32,0xbf198655,0xbf24a468,4
+np.float32,0x3f62f6d8,0x3f8b81ba,4
+np.float32,0x3eef4310,0x3ef8f4f9,4
+np.float32,0x3e8988e0,0x3e8b3eae,4
+np.float32,0xbf3ddba5,0xbf55e367,4
+np.float32,0x3dc6d2e0,0x3dc7232b,4
+np.float32,0xbf31040e,0xbf437601,4
+np.float32,0x3f1bb74a,0x3f276442,4
+np.float32,0xbf0075d2,0xbf0692b3,4
+np.float32,0xbf606ce0,0xbf88d0ff,4
+np.float32,0xbf083856,0xbf0fa39d,4
+np.float32,0xbdb25b20,0xbdb2950a,4
+np.float32,0xbeb86860,0xbebca5ae,4
+np.float32,0x3de83160,0x3de8b176,4
+np.float32,0xbf33a98f,0xbf472664,4
+np.float32,0x3e7795f8,0x3e7a1058,4
+np.float32,0x3e0ca6f8,0x3e0d192a,4
+np.float32,0xbf1aef60,0xbf2668c3,4
+np.float32,0xbda53b58,0xbda5695e,4
+np.float32,0xbf178096,0xbf221fc5,4
+np.float32,0xbf0a4159,0xbf120ccf,4
+np.float32,0x3f7bca36,0x3fb1d0df,4
+np.float32,0xbef94360,0xbf022b26,4
+np.float32,0xbef16f36,0xbefb6ad6,4
+np.float32,0x3f53a7e6,0x3f792e25,4
+np.float32,0xbf7c536f,0xbfb35993,4
+np.float32,0xbe84aaa0,0xbe8632a2,4
+np.float32,0x3ecb3998,0x3ed0fab9,4
+np.float32,0x3f539304,0x3f79090a,4
+np.float32,0xbf3c7816,0xbf53d3b3,4
+np.float32,0xbe7a387c,0xbe7cc7b7,4
+np.float32,0x3f7000e4,0x3f9b92b1,4
+np.float32,0x3e08fd70,0x3e0966e5,4
+np.float32,0x3db97ba0,0x3db9bcc8,4
+np.float32,0xbee99056,0xbef2886a,4
+np.float32,0xbf0668da,0xbf0d819e,4
+np.float32,0x3e58a408,0x3e5a4a51,4
+np.float32,0x3f3440b8,0x3f47faed,4
+np.float32,0xbf19a2ce,0xbf24c7ff,4
+np.float32,0xbe75e990,0xbe7856ee,4
+np.float32,0x3f3c865c,0x3f53e8cb,4
+np.float32,0x3e5e03d0,0x3e5fcac9,4
+np.float32,0x3edb8e34,0x3ee2e932,4
+np.float32,0xbf7e1f5f,0xbfb98ce4,4
+np.float32,0xbf7372ff,0xbfa0d0ae,4
+np.float32,0xbf3ee850,0xbf577548,4
+np.float32,0x3ef19658,0x3efb9737,4
+np.float32,0xbe8088de,0xbe81ecaf,4
+np.float32,0x800000,0x800000,4
+np.float32,0xbde39dd8,0xbde4167a,4
+np.float32,0xbf065d7a,0xbf0d7441,4
+np.float32,0xbde52c78,0xbde5a79b,4
+np.float32,0xbe3a28c0,0xbe3b333e,4
+np.float32,0x3f6e8b3c,0x3f998516,4
+np.float32,0x3f3485c2,0x3f485c39,4
+np.float32,0x3e6f2c68,0x3e71673e,4
+np.float32,0xbe4ec9cc,0xbe50385e,4
+np.float32,0xbf1c3bb0,0xbf280b39,4
+np.float32,0x3ec8ea18,0x3ece76f7,4
+np.float32,0x3e26b5f8,0x3e2774c9,4
+np.float32,0x3e1e4a38,0x3e1eed5c,4
+np.float32,0xbee7a106,0xbef05c6b,4
+np.float32,0xbf305928,0xbf4289d8,4
+np.float32,0x3f0c431c,0x3f147118,4
+np.float32,0xbe57ba6c,0xbe595b52,4
+np.float32,0x3eabc9cc,0x3eaf2fc7,4
+np.float32,0xbef1ed24,0xbefbf9ae,4
+np.float32,0xbf61b576,0xbf8a29cc,4
+np.float32,0x3e9c1ff4,0x3e9ea6cb,4
+np.float32,0x3f6c53b2,0x3f968dbe,4
+np.float32,0x3e2d1b80,0x3e2df156,4
+np.float32,0x3e9f2f70,0x3ea1de4a,4
+np.float32,0xbf5861ee,0xbf80e61a,4
+np.float32,0x3f429144,0x3f5d0505,4
+np.float32,0x3e235cc8,0x3e24103e,4
+np.float32,0xbf354879,0xbf496f6a,4
+np.float32,0xbf20a146,0xbf2da447,4
+np.float32,0x3e8d8968,0x3e8f6785,4
+np.float32,0x3f3fbc94,0x3f58b4c1,4
+np.float32,0x3f2c5f50,0x3f3d1b9f,4
+np.float32,0x3f7bf0f8,0x3fb23d23,4
+np.float32,0xbf218282,0xbf2ec60f,4
+np.float32,0x3f2545aa,0x3f33a93e,4
+np.float32,0xbf4b17be,0xbf6a9018,4
+np.float32,0xbb9df700,0xbb9df728,4
+np.float32,0x3f685d54,0x3f91a06c,4
+np.float32,0x3efdfe2c,0x3f04e24c,4
+np.float32,0x3ef1c5a0,0x3efbccd9,4
+np.float32,0xbf41d731,0xbf5be76e,4
+np.float32,0x3ebd1360,0x3ec1a919,4
+np.float32,0xbf706bd4,0xbf9c2d58,4
+np.float32,0x3ea525e4,0x3ea8279d,4
+np.float32,0xbe51f1b0,0xbe537186,4
+np.float32,0x3f5e8cf6,0x3f86e4f4,4
+np.float32,0xbdad2520,0xbdad5a19,4
+np.float32,0xbf5c5704,0xbf84b0e5,4
+np.float32,0x3f47b54e,0x3f65145e,4
+np.float32,0x3eb4fc78,0x3eb8fc0c,4
+np.float32,0x3dca1450,0x3dca68a1,4
+np.float32,0x3eb02a74,0x3eb3d757,4
+np.float32,0x3f74ae6a,0x3fa2db75,4
+np.float32,0x3f800000,0x3fc90fdb,4
+np.float32,0xbdb46a00,0xbdb4a5f2,4
+np.float32,0xbe9f2ba6,0xbea1da4e,4
+np.float32,0x3f0afa70,0x3f12e8f7,4
+np.float32,0xbf677b20,0xbf909547,4
+np.float32,0x3eff9188,0x3f05cacf,4
+np.float32,0x3f720562,0x3f9e911b,4
+np.float32,0xbf7180d8,0xbf9dc794,4
+np.float32,0xbee7d076,0xbef0919d,4
+np.float32,0x3f0432ce,0x3f0aea95,4
+np.float32,0x3f3bc4c8,0x3f52cb54,4
+np.float32,0xbea72f30,0xbeaa4ebe,4
+np.float32,0x3e90ed00,0x3e92ef33,4
+np.float32,0xbda63670,0xbda6654a,4
+np.float32,0xbf5a6f85,0xbf82d7e0,4
+np.float32,0x3e6e8808,0x3e70be34,4
+np.float32,0xbf4f3822,0xbf71768f,4
+np.float32,0x3e5c8a68,0x3e5e483f,4
+np.float32,0xbf0669d4,0xbf0d82c4,4
+np.float32,0xbf79f77c,0xbfad37b0,4
+np.float32,0x3f25c82c,0x3f345453,4
+np.float32,0x3f1b2948,0x3f26b188,4
+np.float32,0x3ef7e288,0x3f016159,4
+np.float32,0x3c274280,0x3c27433e,4
+np.float32,0xbf4c8fa0,0xbf6cfd5e,4
+np.float32,0x3ea4ccb4,0x3ea7c966,4
+np.float32,0xbf7b157e,0xbfafefca,4
+np.float32,0xbee4c2b0,0xbeed264d,4
+np.float32,0xbc1fd640,0xbc1fd6e6,4
+np.float32,0x3e892308,0x3e8ad4f6,4
+np.float32,0xbf3f69c7,0xbf5837ed,4
+np.float32,0x3ec879e8,0x3ecdfd05,4
+np.float32,0x3f07a8c6,0x3f0efa30,4
+np.float32,0x3f67b880,0x3f90dd4d,4
+np.float32,0x3e8a11c8,0x3e8bccd5,4
+np.float32,0x3f7df6fc,0x3fb8e935,4
+np.float32,0xbef3e498,0xbefe3599,4
+np.float32,0xbf18ad7d,0xbf2395d8,4
+np.float32,0x3f2bce74,0x3f3c57f5,4
+np.float32,0xbf38086e,0xbf4d5c2e,4
+np.float32,0x3f772d7a,0x3fa75c35,4
+np.float32,0xbf3b6e24,0xbf524c00,4
+np.float32,0xbdd39108,0xbdd3f1d4,4
+np.float32,0xbf691f6b,0xbf928974,4
+np.float32,0x3f146188,0x3f1e45e4,4
+np.float32,0xbf56045b,0xbf7d6e03,4
+np.float32,0xbf4b2ee4,0xbf6ab622,4
+np.float32,0xbf3fa3f6,0xbf588f9d,4
+np.float32,0x3f127bb0,0x3f1bf398,4
+np.float32,0x3ed858a0,0x3edf5d3e,4
+np.float32,0xbd6de3b0,0xbd6e05fa,4
+np.float32,0xbecc662c,0xbed24261,4
+np.float32,0xbd6791d0,0xbd67b170,4
+np.float32,0xbf146016,0xbf1e441e,4
+np.float32,0xbf61f04c,0xbf8a6841,4
+np.float32,0xbe7f16d0,0xbe80e6e7,4
+np.float32,0xbebf93e6,0xbec45b10,4
+np.float32,0xbe8a59fc,0xbe8c17d1,4
+np.float32,0xbebc7a0c,0xbec10426,4
+np.float32,0xbf2a682e,0xbf3a7649,4
+np.float32,0xbe18d0cc,0xbe19637b,4
+np.float32,0x3d7f5100,0x3d7f7b66,4
+np.float32,0xbf10f5fa,0xbf1a1998,4
+np.float32,0x3f25e956,0x3f347fdc,4
+np.float32,0x3e6e8658,0x3e70bc78,4
+np.float32,0x3f21a5de,0x3f2ef3a5,4
+np.float32,0xbf4e71d4,0xbf702607,4
+np.float32,0xbf49d6b6,0xbf688380,4
+np.float32,0xbdb729c0,0xbdb7687c,4
+np.float32,0xbf63e1f4,0xbf8c81c7,4
+np.float32,0x3dda6cb0,0x3ddad73e,4
+np.float32,0x3ee1bc40,0x3ee9c612,4
+np.float32,0x3ebdb5f8,0x3ec2581b,4
+np.float32,0x3f7d9576,0x3fb77646,4
+np.float32,0x3e087140,0x3e08d971,4
+np.float64,0xbfdba523cfb74a48,0xbfdc960ddd9c0506,1
+np.float64,0x3fb51773622a2ee0,0x3fb51d93f77089d5,1
+np.float64,0x3fc839f6d33073f0,0x3fc85f9a47dfe8e6,1
+np.float64,0xbfecba2d82f9745b,0xbff1d55416c6c993,1
+np.float64,0x3fd520fe47aa41fc,0x3fd58867f1179634,1
+np.float64,0x3fe1b369c56366d4,0x3fe2c1ac9dd2c45a,1
+np.float64,0xbfec25a7cd784b50,0xbff133417389b12d,1
+np.float64,0xbfd286342ea50c68,0xbfd2cb0bca22e66d,1
+np.float64,0x3fd5f6fe5eabedfc,0x3fd66bad16680d08,1
+np.float64,0xbfe863a87570c751,0xbfebbb9b637eb6dc,1
+np.float64,0x3fc97f5b4d32feb8,0x3fc9ab5066d8eaec,1
+np.float64,0xbfcb667af936ccf4,0xbfcb9d3017047a1d,1
+np.float64,0xbfd1b7b9afa36f74,0xbfd1f3c175706154,1
+np.float64,0x3fef97385b7f2e70,0x3ff6922a1a6c709f,1
+np.float64,0xbfd13e4205a27c84,0xbfd1757c993cdb74,1
+np.float64,0xbfd18d88aca31b12,0xbfd1c7dd75068f7d,1
+np.float64,0x3fe040ce0f60819c,0x3fe10c59d2a27089,1
+np.float64,0xbfddc7deddbb8fbe,0xbfdef9de5baecdda,1
+np.float64,0xbfcf6e96193edd2c,0xbfcfc1bb7396b9a3,1
+np.float64,0x3fd544f494aa89e8,0x3fd5ae850e2b37dd,1
+np.float64,0x3fe15b381fe2b670,0x3fe25841c7bfe2af,1
+np.float64,0xbfde793420bcf268,0xbfdfc2ddc7b4a341,1
+np.float64,0x3fd0d5db30a1abb8,0x3fd1092cef4aa4fb,1
+np.float64,0x3fe386a08c670d42,0x3fe50059bbf7f491,1
+np.float64,0xbfe0aae3a96155c8,0xbfe1880ef13e95ce,1
+np.float64,0xbfe80eeb03f01dd6,0xbfeb39e9f107e944,1
+np.float64,0xbfd531af3caa635e,0xbfd59a178f17552a,1
+np.float64,0x3fcced14ab39da28,0x3fcd2d9a806337ef,1
+np.float64,0xbfdb4c71bcb698e4,0xbfdc33d9d9daf708,1
+np.float64,0xbfde7375ecbce6ec,0xbfdfbc5611bc48ff,1
+np.float64,0x3fecc5707a798ae0,0x3ff1e2268d778017,1
+np.float64,0x3fe8f210a1f1e422,0x3fec9b3349a5baa2,1
+np.float64,0x3fe357f9b8e6aff4,0x3fe4c5a0b89a9228,1
+np.float64,0xbfe0f863b761f0c8,0xbfe1e3283494c3d4,1
+np.float64,0x3fd017c395a02f88,0x3fd044761f2f4a66,1
+np.float64,0x3febeb4746f7d68e,0x3ff0f6b955e7feb6,1
+np.float64,0xbfbdaaeeae3b55e0,0xbfbdbc0950109261,1
+np.float64,0xbfea013095f40261,0xbfee5b8fe8ad8593,1
+np.float64,0xbfe9f87b7973f0f7,0xbfee4ca3a8438d72,1
+np.float64,0x3fd37f77cfa6fef0,0x3fd3d018c825f057,1
+np.float64,0x3fb0799cee20f340,0x3fb07c879e7cb63f,1
+np.float64,0xbfdcfd581cb9fab0,0xbfde15e35314b52d,1
+np.float64,0xbfd49781b8a92f04,0xbfd4f6fa1516fefc,1
+np.float64,0x3fb3fcb6d627f970,0x3fb401ed44a713a8,1
+np.float64,0x3fd5737ef8aae6fc,0x3fd5dfe42d4416c7,1
+np.float64,0x7ff4000000000000,0x7ffc000000000000,1
+np.float64,0xbfe56ae780ead5cf,0xbfe776ea5721b900,1
+np.float64,0x3fd4567786a8acf0,0x3fd4b255421c161a,1
+np.float64,0x3fef6fb58cfedf6c,0x3ff62012dfcf0a33,1
+np.float64,0xbfd1dbcd3da3b79a,0xbfd2194fd628f74d,1
+np.float64,0x3fd9350016b26a00,0x3fd9e8b01eb023e9,1
+np.float64,0xbfe4fb3a69e9f675,0xbfe6e1d2c9eca56c,1
+np.float64,0x3fe9fe0f73f3fc1e,0x3fee5631cfd39772,1
+np.float64,0xbfd51c1bc6aa3838,0xbfd5833b3bd53543,1
+np.float64,0x3fc64158e12c82b0,0x3fc65e7352f237d7,1
+np.float64,0x3fd0d8ee1ba1b1dc,0x3fd10c5c99a16f0e,1
+np.float64,0x3fd5554e15aaaa9c,0x3fd5bfdb9ec9e873,1
+np.float64,0x3fe61ce209ec39c4,0x3fe869bc4c28437d,1
+np.float64,0xbfe4e42c8c69c859,0xbfe6c356dac7e2db,1
+np.float64,0xbfe157021062ae04,0xbfe2533ed39f4212,1
+np.float64,0x3fe844066cf0880c,0x3feb8aea0b7bd0a4,1
+np.float64,0x3fe55016586aa02c,0x3fe752e4b2a67b9f,1
+np.float64,0x3fdabce619b579cc,0x3fdb95809bc789d9,1
+np.float64,0x3fee03bae37c0776,0x3ff3778ba38ca882,1
+np.float64,0xbfeb2f5844f65eb0,0xbff03dd1b767d3c8,1
+np.float64,0x3fedcfdbaffb9fb8,0x3ff32e81d0639164,1
+np.float64,0x3fe06fc63ee0df8c,0x3fe142fc27f92eaf,1
+np.float64,0x3fe7ce90fd6f9d22,0x3fead8f832bbbf5d,1
+np.float64,0xbfbc0015ce380028,0xbfbc0e7470e06e86,1
+np.float64,0xbfe9b3de90f367bd,0xbfedd857931dfc6b,1
+np.float64,0xbfcb588f5936b120,0xbfcb8ef0124a4f21,1
+np.float64,0x3f8d376a503a6f00,0x3f8d37ab43e7988d,1
+np.float64,0xbfdb123a40b62474,0xbfdbf38b6cf5db92,1
+np.float64,0xbfee7da6be7cfb4e,0xbff433042cd9d5eb,1
+np.float64,0xbfc4c9e01b2993c0,0xbfc4e18dbafe37ef,1
+np.float64,0x3fedd42faffba860,0x3ff334790cd18a19,1
+np.float64,0x3fe9cdf772f39bee,0x3fee044f87b856ab,1
+np.float64,0x3fe0245881e048b2,0x3fe0eb5a1f739c8d,1
+np.float64,0xbfe4712bd9e8e258,0xbfe62cb3d82034aa,1
+np.float64,0x3fe9a16b46f342d6,0x3fedb972b2542551,1
+np.float64,0xbfe57ab4536af568,0xbfe78c34b03569c2,1
+np.float64,0x3fb6d6ceb22dada0,0x3fb6de976964d6dd,1
+np.float64,0x3fc3ac23a3275848,0x3fc3c02de53919b8,1
+np.float64,0xbfccb531e7396a64,0xbfccf43ec69f6281,1
+np.float64,0xbfd2f07fc8a5e100,0xbfd33a35a8c41b62,1
+np.float64,0xbfe3e5dd04e7cbba,0xbfe57940157c27ba,1
+np.float64,0x3feefe40757dfc80,0x3ff51bc72b846af6,1
+np.float64,0x8000000000000001,0x8000000000000001,1
+np.float64,0x3fecb7b766796f6e,0x3ff1d28972a0fc7e,1
+np.float64,0xbfea1bf1357437e2,0xbfee89a6532bfd71,1
+np.float64,0xbfca3983b7347308,0xbfca696463b791ef,1
+np.float64,0x10000000000000,0x10000000000000,1
+np.float64,0xbf886b45d030d680,0xbf886b6bbc04314b,1
+np.float64,0x3fd5224bb5aa4498,0x3fd589c92e82218f,1
+np.float64,0xbfec799874f8f331,0xbff18d5158b8e640,1
+np.float64,0xbf88124410302480,0xbf88126863350a16,1
+np.float64,0xbfe37feaaa66ffd6,0xbfe4f7e24382e79d,1
+np.float64,0x3fd777eca1aeefd8,0x3fd8076ead6d55dc,1
+np.float64,0x3fecaaeb3af955d6,0x3ff1c4159fa3e965,1
+np.float64,0xbfeb81e4e6f703ca,0xbff08d4e4c77fada,1
+np.float64,0xbfd7d0a0edafa142,0xbfd866e37010312e,1
+np.float64,0x3feda48c00fb4918,0x3ff2f3fd33c36307,1
+np.float64,0x3feb87ecc4770fda,0x3ff09336e490deda,1
+np.float64,0xbfefd78ad27faf16,0xbff78abbafb50ac1,1
+np.float64,0x3fe58e918c6b1d24,0x3fe7a70b38cbf016,1
+np.float64,0x3fda163b95b42c78,0x3fdade86b88ba4ee,1
+np.float64,0x3fe8fc1aaf71f836,0x3fecab3f93b59df5,1
+np.float64,0xbf8de56f903bcac0,0xbf8de5b527cec797,1
+np.float64,0xbfec112db2f8225b,0xbff11dd648de706f,1
+np.float64,0x3fc3214713264290,0x3fc333b1c862f7d0,1
+np.float64,0xbfeb5e5836f6bcb0,0xbff06ac364b49177,1
+np.float64,0x3fc23d9777247b30,0x3fc24d8ae3bcb615,1
+np.float64,0xbfdf0eed65be1dda,0xbfe036cea9b9dfb6,1
+np.float64,0xbfb2d5c85a25ab90,0xbfb2da24bb409ff3,1
+np.float64,0xbfecdda0c3f9bb42,0xbff1fdf94fc6e89e,1
+np.float64,0x3fdfe79154bfcf24,0x3fe0b338e0476a9d,1
+np.float64,0xbfd712ac6bae2558,0xbfd79abde21f287b,1
+np.float64,0x3fea3f148a747e2a,0x3feec6bed9d4fa04,1
+np.float64,0x3fd4879e4ca90f3c,0x3fd4e632fa4e2edd,1
+np.float64,0x3fe9137a9e7226f6,0x3fecd0c441088d6a,1
+np.float64,0xbfc75bf4ef2eb7e8,0xbfc77da8347d742d,1
+np.float64,0xbfd94090a0b28122,0xbfd9f5458816ed5a,1
+np.float64,0x3fde439cbcbc8738,0x3fdf85fbf496b61f,1
+np.float64,0xbfe18bacdce3175a,0xbfe29210e01237f7,1
+np.float64,0xbfd58ec413ab1d88,0xbfd5fcd838f0a934,1
+np.float64,0xbfeae5af2d75cb5e,0xbfeff1de1b4a06be,1
+np.float64,0x3fb64d1a162c9a30,0x3fb65458fb831354,1
+np.float64,0x3fc18b1e15231640,0x3fc1994c6ffd7a6a,1
+np.float64,0xbfd7b881bcaf7104,0xbfd84ce89a9ee8c7,1
+np.float64,0x3feb916a40f722d4,0x3ff09c8aa851d7c4,1
+np.float64,0x3fdab5fbb5b56bf8,0x3fdb8de43961bbde,1
+np.float64,0x3fe4f35402e9e6a8,0x3fe6d75dc5082894,1
+np.float64,0x3fe2fdb2e5e5fb66,0x3fe454e32a5d2182,1
+np.float64,0x3fe8607195f0c0e4,0x3febb6a4c3bf6a5c,1
+np.float64,0x3fd543ca9aaa8794,0x3fd5ad49203ae572,1
+np.float64,0x3fe8e05ca1f1c0ba,0x3fec7eff123dcc58,1
+np.float64,0x3fe298b6ca65316e,0x3fe3d81d2927c4dd,1
+np.float64,0x3fcfecea733fd9d8,0x3fd0220f1d0faf78,1
+np.float64,0xbfe2e739f065ce74,0xbfe439004e73772a,1
+np.float64,0xbfd1ae6b82a35cd8,0xbfd1ea129a5ee756,1
+np.float64,0xbfeb7edff576fdc0,0xbff08a5a638b8a8b,1
+np.float64,0x3fe5b645ff6b6c8c,0x3fe7dcee1faefe3f,1
+np.float64,0xbfd478427ba8f084,0xbfd4d5fc7c239e60,1
+np.float64,0xbfe39904e3e7320a,0xbfe517972b30b1e5,1
+np.float64,0xbfd3b75b6ba76eb6,0xbfd40acf20a6e074,1
+np.float64,0x3fd596267aab2c4c,0x3fd604b01faeaf75,1
+np.float64,0x3fe134463762688c,0x3fe229fc36784a72,1
+np.float64,0x3fd25dadf7a4bb5c,0x3fd2a0b9e04ea060,1
+np.float64,0xbfc05d3e0b20ba7c,0xbfc068bd2bb9966f,1
+np.float64,0x3f8cf517b039ea00,0x3f8cf556ed74b163,1
+np.float64,0x3fda87361cb50e6c,0x3fdb5a75af897e7f,1
+np.float64,0x3fe53e1926ea7c32,0x3fe73acf01b8ff31,1
+np.float64,0x3fe2e94857e5d290,0x3fe43b8cc820f9c7,1
+np.float64,0x3fd81fe6acb03fcc,0x3fd8bc623c0068cf,1
+np.float64,0xbfddf662c3bbecc6,0xbfdf2e76dc90786e,1
+np.float64,0x3fece174fbf9c2ea,0x3ff2026a1a889580,1
+np.float64,0xbfdc83c5b8b9078c,0xbfdd8dcf6ee3b7da,1
+np.float64,0x3feaf5448f75ea8a,0x3ff0075b108bcd0d,1
+np.float64,0xbfebf32f7ef7e65f,0xbff0fed42aaa826a,1
+np.float64,0x3fe389e5e8e713cc,0x3fe5047ade055ccb,1
+np.float64,0x3f635cdcc026ba00,0x3f635cddeea082ce,1
+np.float64,0x3fae580f543cb020,0x3fae5c9d5108a796,1
+np.float64,0x3fec9fafce793f60,0x3ff1b77bec654f00,1
+np.float64,0x3fb19d226e233a40,0x3fb1a0b32531f7ee,1
+np.float64,0xbfdf9a71e7bf34e4,0xbfe086cef88626c7,1
+np.float64,0x8010000000000000,0x8010000000000000,1
+np.float64,0xbfef170ba2fe2e17,0xbff54ed4675f5b8a,1
+np.float64,0xbfcc6e2f8f38dc60,0xbfccab65fc34d183,1
+np.float64,0x3fee756c4bfcead8,0x3ff4258782c137e6,1
+np.float64,0xbfd461c218a8c384,0xbfd4be3e391f0ff4,1
+np.float64,0xbfe3b64686e76c8d,0xbfe53caa16d6c90f,1
+np.float64,0xbfc1c65d8d238cbc,0xbfc1d51e58f82403,1
+np.float64,0x3fe6e06c63edc0d8,0x3fe97cb832eeb6a2,1
+np.float64,0xbfc9fc20b933f840,0xbfca2ab004312d85,1
+np.float64,0xbfe29aa6df65354e,0xbfe3da7ecf3ba466,1
+np.float64,0x3fea4df7d1749bf0,0x3feee0d448bd4746,1
+np.float64,0xbfedec6161fbd8c3,0xbff3563e1d943aa2,1
+np.float64,0x3fdb6f0437b6de08,0x3fdc5a1888b1213d,1
+np.float64,0xbfe270cbd3e4e198,0xbfe3a72ac27a0b0c,1
+np.float64,0xbfdfff8068bfff00,0xbfe0c1088e3b8983,1
+np.float64,0xbfd28edbe6a51db8,0xbfd2d416c8ed363e,1
+np.float64,0xbfb4e35f9229c6c0,0xbfb4e9531d2a737f,1
+np.float64,0xbfee6727e97cce50,0xbff40e7717576e46,1
+np.float64,0xbfddb5fbddbb6bf8,0xbfdee5aad78f5361,1
+np.float64,0xbfdf9d3e9dbf3a7e,0xbfe0886b191f2957,1
+np.float64,0x3fa57e77042afce0,0x3fa5801518ea9342,1
+np.float64,0x3f95c4e4882b89c0,0x3f95c55003c8e714,1
+np.float64,0x3fd9b10f61b36220,0x3fda6fe5d635a8aa,1
+np.float64,0xbfe2973411652e68,0xbfe3d641fe9885fd,1
+np.float64,0xbfee87bd5a7d0f7b,0xbff443bea81b3fff,1
+np.float64,0x3f9ea064c83d40c0,0x3f9ea19025085b2f,1
+np.float64,0xbfe4b823dfe97048,0xbfe689623d30dc75,1
+np.float64,0xbfa06a326c20d460,0xbfa06aeacbcd3eb8,1
+np.float64,0x3fe1e5c4c1e3cb8a,0x3fe2fe44b822f20e,1
+np.float64,0x3f99dafaa833b600,0x3f99dbaec10a1a0a,1
+np.float64,0xbfed7cb3877af967,0xbff2bfe9e556aaf9,1
+np.float64,0x3fd604f2e2ac09e4,0x3fd67a89408ce6ba,1
+np.float64,0x3fec57b60f78af6c,0x3ff16881f46d60f7,1
+np.float64,0xbfea2e3a17745c74,0xbfeea95c7190fd42,1
+np.float64,0xbfd60a7c37ac14f8,0xbfd6806ed642de35,1
+np.float64,0xbfe544b9726a8973,0xbfe743ac399d81d7,1
+np.float64,0xbfd13520faa26a42,0xbfd16c02034a8fe0,1
+np.float64,0xbfea9ea59ff53d4b,0xbfef70538ee12e00,1
+np.float64,0x3fd66633f8accc68,0x3fd6e23c13ab0e9e,1
+np.float64,0xbfe4071bd3e80e38,0xbfe5a3c9ba897d81,1
+np.float64,0xbfbe1659fa3c2cb0,0xbfbe2831d4fed196,1
+np.float64,0xbfd3312777a6624e,0xbfd37df09b9baeba,1
+np.float64,0x3fd13997caa27330,0x3fd170a4900c8907,1
+np.float64,0xbfe7cbc235ef9784,0xbfead4c4d6cbf129,1
+np.float64,0xbfe1456571628acb,0xbfe23e4ec768c8e2,1
+np.float64,0xbfedf1a044fbe340,0xbff35da96773e176,1
+np.float64,0x3fce38b1553c7160,0x3fce8270709774f9,1
+np.float64,0xbfecb01761f9602f,0xbff1c9e9d382f1f8,1
+np.float64,0xbfe0a03560e1406b,0xbfe17b8d5a1ca662,1
+np.float64,0x3fe50f37cbea1e70,0x3fe6fc55e1ae7da6,1
+np.float64,0xbfe12d64a0625aca,0xbfe221d3a7834e43,1
+np.float64,0xbf6fb288403f6500,0xbf6fb28d6f389db6,1
+np.float64,0x3fda831765b50630,0x3fdb55eecae58ca9,1
+np.float64,0x3fe1a0fe4c6341fc,0x3fe2ab9564304425,1
+np.float64,0xbfef2678a77e4cf1,0xbff56ff42b2797bb,1
+np.float64,0xbfab269c1c364d40,0xbfab29df1cd48779,1
+np.float64,0x3fe8ec82a271d906,0x3fec92567d7a6675,1
+np.float64,0xbfc235115f246a24,0xbfc244ee567682ea,1
+np.float64,0x3feef5bf8d7deb80,0x3ff50ad4875ee9bd,1
+np.float64,0x3fe768b5486ed16a,0x3fea421356160e65,1
+np.float64,0xbfd4255684a84aae,0xbfd47e8baf7ec7f6,1
+np.float64,0x3fc7f67f2b2fed00,0x3fc81ae83cf92dd5,1
+np.float64,0x3fe9b1b19a736364,0x3fedd4b0e24ee741,1
+np.float64,0x3fb27eb9e624fd70,0x3fb282dacd89ce28,1
+np.float64,0xbfd490b710a9216e,0xbfd4efcdeb213458,1
+np.float64,0xbfd1347b2ca268f6,0xbfd16b55dece2d38,1
+np.float64,0x3fc6a5668d2d4ad0,0x3fc6c41452c0c087,1
+np.float64,0xbfca7b209f34f640,0xbfcaac710486f6bd,1
+np.float64,0x3fc23a1a47247438,0x3fc24a047fd4c27a,1
+np.float64,0x3fdb1413a8b62828,0x3fdbf595e2d994bc,1
+np.float64,0xbfea69b396f4d367,0xbfef11bdd2b0709a,1
+np.float64,0x3fd14c9958a29934,0x3fd1846161b10422,1
+np.float64,0xbfe205f44be40be8,0xbfe325283aa3c6a8,1
+np.float64,0x3fecd03c9ef9a07a,0x3ff1ee85aaf52a01,1
+np.float64,0x3fe34281d7e68504,0x3fe4aab63e6de816,1
+np.float64,0xbfe120e2376241c4,0xbfe213023ab03939,1
+np.float64,0xbfe951edc4f2a3dc,0xbfed3615e38576f8,1
+np.float64,0x3fe5a2286f6b4450,0x3fe7c196e0ec10ed,1
+np.float64,0xbfed7a3e1f7af47c,0xbff2bcc0793555d2,1
+np.float64,0x3fe050274960a04e,0x3fe11e2e256ea5cc,1
+np.float64,0xbfcfa71f653f4e40,0xbfcffc11483d6a06,1
+np.float64,0x3f6ead2e403d5a00,0x3f6ead32f314c052,1
+np.float64,0x3fe3a2a026674540,0x3fe523bfe085f6ec,1
+np.float64,0xbfe294a62e65294c,0xbfe3d31ebd0b4ca2,1
+np.float64,0xbfb4894d06291298,0xbfb48ef4b8e256b8,1
+np.float64,0xbfc0c042c1218084,0xbfc0cc98ac2767c4,1
+np.float64,0xbfc6a32cb52d4658,0xbfc6c1d1597ed06b,1
+np.float64,0xbfd30f7777a61eee,0xbfd35aa39fee34eb,1
+np.float64,0x3fe7fc2c2eeff858,0x3feb1d8a558b5537,1
+np.float64,0x7fefffffffffffff,0x7ff8000000000000,1
+np.float64,0xbfdadf917bb5bf22,0xbfdbbbae9a9f67a0,1
+np.float64,0xbfcf0395e13e072c,0xbfcf5366015f7362,1
+np.float64,0xbfe8644c9170c899,0xbfebbc98e74a227d,1
+np.float64,0x3fc3b2d8e52765b0,0x3fc3c6f7d44cffaa,1
+np.float64,0x3fc57407b92ae810,0x3fc58e12ccdd47a1,1
+np.float64,0x3fd56a560daad4ac,0x3fd5d62b8dfcc058,1
+np.float64,0x3fd595deefab2bbc,0x3fd6046420b2f79b,1
+np.float64,0xbfd5360f50aa6c1e,0xbfd59ebaacd815b8,1
+np.float64,0x3fdfb6aababf6d54,0x3fe0970b8aac9f61,1
+np.float64,0x3ff0000000000000,0x3ff921fb54442d18,1
+np.float64,0xbfeb3a8958f67513,0xbff04872e8278c79,1
+np.float64,0x3f9e1ea6683c3d40,0x3f9e1fc326186705,1
+np.float64,0x3fe6b6d5986d6dac,0x3fe94175bd60b19d,1
+np.float64,0xbfee4d90b77c9b21,0xbff3e60e9134edc2,1
+np.float64,0x3fd806ce0cb00d9c,0x3fd8a14c4855a8f5,1
+np.float64,0x3fd54acc75aa9598,0x3fd5b4b72fcbb5df,1
+np.float64,0xbfe59761f16b2ec4,0xbfe7b2fa5d0244ac,1
+np.float64,0xbfcd4fa3513a9f48,0xbfcd92d0814a5383,1
+np.float64,0xbfdc827523b904ea,0xbfdd8c577b53053c,1
+np.float64,0xbfd4bb7f34a976fe,0xbfd51d00d9a99360,1
+np.float64,0xbfe818bc87f03179,0xbfeb48d1ea0199c5,1
+np.float64,0xbfa8a2e15c3145c0,0xbfa8a5510ba0e45c,1
+np.float64,0xbfb6d15f422da2c0,0xbfb6d922689da015,1
+np.float64,0x3fcd04eaab3a09d8,0x3fcd46131746ef08,1
+np.float64,0x3fcfb5cfbb3f6ba0,0x3fd0059d308237f3,1
+np.float64,0x3fe8dcf609f1b9ec,0x3fec7997973010b6,1
+np.float64,0xbfdf1834d7be306a,0xbfe03c1d4e2b48f0,1
+np.float64,0x3fee82ae50fd055c,0x3ff43b545066fe1a,1
+np.float64,0xbfde039c08bc0738,0xbfdf3d6ed4d2ee5c,1
+np.float64,0x3fec07389bf80e72,0x3ff1137ed0acd161,1
+np.float64,0xbfef44c010fe8980,0xbff5b488ad22a4c5,1
+np.float64,0x3f76e722e02dce00,0x3f76e72ab2759d88,1
+np.float64,0xbfcaa9e6053553cc,0xbfcadc41125fca93,1
+np.float64,0x3fed6088147ac110,0x3ff29c06c4ef35fc,1
+np.float64,0x3fd32bd836a657b0,0x3fd3785fdb75909f,1
+np.float64,0xbfeedbb1d97db764,0xbff4d87f6c82a93c,1
+np.float64,0xbfe40f31d5e81e64,0xbfe5ae292cf258a2,1
+np.float64,0x7ff8000000000000,0x7ff8000000000000,1
+np.float64,0xbfeb2b25bc76564c,0xbff039d81388550c,1
+np.float64,0x3fec5008fa78a012,0x3ff1604195801da3,1
+np.float64,0x3fce2d4f293c5aa0,0x3fce76b99c2db4da,1
+np.float64,0xbfdc435412b886a8,0xbfdd45e7b7813f1e,1
+np.float64,0x3fdf2c9d06be593c,0x3fe047cb03c141b6,1
+np.float64,0x3fddefc61ebbdf8c,0x3fdf26fb8fad9fae,1
+np.float64,0x3fab50218436a040,0x3fab537395eaf3bb,1
+np.float64,0xbfd5b95a8fab72b6,0xbfd62a191a59343a,1
+np.float64,0x3fdbf803b4b7f008,0x3fdcf211578e98c3,1
+np.float64,0xbfec8c255979184b,0xbff1a1bee108ed30,1
+np.float64,0x3fe33cdaffe679b6,0x3fe4a3a318cd994f,1
+np.float64,0x3fd8cf585cb19eb0,0x3fd97a408bf3c38c,1
+np.float64,0x3fe919dde07233bc,0x3fecdb0ea13a2455,1
+np.float64,0xbfd5ba35e4ab746c,0xbfd62b024805542d,1
+np.float64,0x3fd2f933e7a5f268,0x3fd343527565e97c,1
+np.float64,0xbfe5b9f8ddeb73f2,0xbfe7e1f772c3e438,1
+np.float64,0x3fe843cd92f0879c,0x3feb8a92d68eae3e,1
+np.float64,0xbfd096b234a12d64,0xbfd0c7beca2c6605,1
+np.float64,0xbfef3363da7e66c8,0xbff58c98dde6c27c,1
+np.float64,0x3fd51b01ddaa3604,0x3fd582109d89ead1,1
+np.float64,0x3fea0f10ff741e22,0x3fee736c2d2a2067,1
+np.float64,0x3fc276e7b724edd0,0x3fc28774520bc6d4,1
+np.float64,0xbfef9abc9f7f3579,0xbff69d49762b1889,1
+np.float64,0x3fe1539ec0e2a73e,0x3fe24f370b7687d0,1
+np.float64,0x3fad72350c3ae460,0x3fad765e7766682a,1
+np.float64,0x3fa289a47c251340,0x3fa28aae12f41646,1
+np.float64,0xbfe5c488e5eb8912,0xbfe7f05d7e7dcddb,1
+np.float64,0xbfc22ef1d7245de4,0xbfc23ebeb990a1b8,1
+np.float64,0x3fe59a0b80eb3418,0x3fe7b695fdcba1de,1
+np.float64,0xbfe9cad619f395ac,0xbfedff0514d91e2c,1
+np.float64,0x3fc8bc74eb3178e8,0x3fc8e48cb22da666,1
+np.float64,0xbfc5389a3f2a7134,0xbfc551cd6febc544,1
+np.float64,0x3fce82feb33d0600,0x3fceceecce2467ef,1
+np.float64,0x3fda346791b468d0,0x3fdaff95154a4ca6,1
+np.float64,0x3fd04501fea08a04,0x3fd073397b32607e,1
+np.float64,0xbfb6be498a2d7c90,0xbfb6c5f93aeb0e57,1
+np.float64,0x3fe1f030dd63e062,0x3fe30ad8fb97cce0,1
+np.float64,0xbfee3fb36dfc7f67,0xbff3d0a5e380b86f,1
+np.float64,0xbfa876773c30ecf0,0xbfa878d9d3df6a3f,1
+np.float64,0x3fdb58296eb6b054,0x3fdc40ceffb17f82,1
+np.float64,0xbfea16b5d8742d6c,0xbfee809b99fd6adc,1
+np.float64,0xbfdc5062b6b8a0c6,0xbfdd547623275fdb,1
+np.float64,0x3fef6db242fedb64,0x3ff61ab4cdaef467,1
+np.float64,0xbfc9f778f933eef0,0xbfca25eef1088167,1
+np.float64,0xbfd22063eba440c8,0xbfd260c8766c69cf,1
+np.float64,0x3fdd2379f2ba46f4,0x3fde40b025cb1ffa,1
+np.float64,0xbfea967af2f52cf6,0xbfef61a178774636,1
+np.float64,0x3fe4f5b49fe9eb6a,0x3fe6da8311a5520e,1
+np.float64,0x3feccde17b799bc2,0x3ff1ebd0ea228b71,1
+np.float64,0x3fe1bb76506376ec,0x3fe2cb56fca01840,1
+np.float64,0xbfef94e583ff29cb,0xbff68aeab8ba75a2,1
+np.float64,0x3fed024a55fa0494,0x3ff228ea5d456e9d,1
+np.float64,0xbfe877b2a8f0ef65,0xbfebdaa1a4712459,1
+np.float64,0x3fef687a8d7ed0f6,0x3ff60cf5fef8d448,1
+np.float64,0xbfeeb2dc8afd65b9,0xbff48dda6a906cd6,1
+np.float64,0x3fdb2e28aeb65c50,0x3fdc12620655eb7a,1
+np.float64,0x3fedc1863afb830c,0x3ff31ae823315e83,1
+np.float64,0xbfe6b1bb546d6376,0xbfe93a38163e3a59,1
+np.float64,0x3fe479c78468f390,0x3fe637e5c0fc5730,1
+np.float64,0x3fbad1fade35a3f0,0x3fbade9a43ca05cf,1
+np.float64,0xbfe2d1c563e5a38b,0xbfe41e712785900c,1
+np.float64,0xbfc08c33ed211868,0xbfc09817a752d500,1
+np.float64,0xbfecce0935f99c12,0xbff1ebfe84524037,1
+np.float64,0x3fce4ef0e73c9de0,0x3fce995638a3dc48,1
+np.float64,0xbfd2fb2343a5f646,0xbfd345592517ca18,1
+np.float64,0x3fd848f7cdb091f0,0x3fd8e8bee5f7b49a,1
+np.float64,0x3fe532b7d2ea6570,0x3fe72b9ac747926a,1
+np.float64,0x3fd616aadcac2d54,0x3fd68d692c5cad42,1
+np.float64,0x3fd7720eb3aee41c,0x3fd801206a0e1e43,1
+np.float64,0x3fee835a35fd06b4,0x3ff43c7175eb7a54,1
+np.float64,0xbfe2e8f70b65d1ee,0xbfe43b2800a947a7,1
+np.float64,0xbfed38f45d7a71e9,0xbff26acd6bde7174,1
+np.float64,0xbfc0c62661218c4c,0xbfc0d28964d66120,1
+np.float64,0x3fe97940bef2f282,0x3fed76b986a74ee3,1
+np.float64,0x3fc96f7dc532def8,0x3fc99b20044c8fcf,1
+np.float64,0xbfd60201eeac0404,0xbfd677675efaaedc,1
+np.float64,0x3fe63c0867ec7810,0x3fe894f060200140,1
+np.float64,0xbfef6144b37ec289,0xbff5fa589a515ba8,1
+np.float64,0xbfde2da0c8bc5b42,0xbfdf6d0b59e3232a,1
+np.float64,0xbfd7401612ae802c,0xbfd7cb74ddd413b9,1
+np.float64,0x3fe41c012de83802,0x3fe5be9d87da3f82,1
+np.float64,0x3fdf501609bea02c,0x3fe05c1d96a2270b,1
+np.float64,0x3fcf9fa1233f3f40,0x3fcff45598e72f07,1
+np.float64,0x3fd4e3895ea9c714,0x3fd547580d8392a2,1
+np.float64,0x3fe1e8ff5fe3d1fe,0x3fe3022a0b86a2ab,1
+np.float64,0xbfe0aa55956154ab,0xbfe18768823da589,1
+np.float64,0x3fb2a0aa26254150,0x3fb2a4e1faff1c93,1
+np.float64,0x3fd3823417a70468,0x3fd3d2f808dbb167,1
+np.float64,0xbfaed323643da640,0xbfaed7e9bef69811,1
+np.float64,0x3fe661e8c4ecc3d2,0x3fe8c9c535f43c16,1
+np.float64,0xbfa429777c2852f0,0xbfa42acd38ba02a6,1
+np.float64,0x3fb5993ea22b3280,0x3fb59fd353e47397,1
+np.float64,0x3fee62d21efcc5a4,0x3ff40788f9278ade,1
+np.float64,0xbf813fb810227f80,0xbf813fc56d8f3c53,1
+np.float64,0x3fd56205deaac40c,0x3fd5cd59671ef193,1
+np.float64,0x3fd31a4de5a6349c,0x3fd365fe401b66e8,1
+np.float64,0xbfec7cc7a478f98f,0xbff190cf69703ca4,1
+np.float64,0xbf755881a02ab100,0xbf755887f52e7794,1
+np.float64,0x3fdd1c92e6ba3924,0x3fde38efb4e8605c,1
+np.float64,0x3fdf49da80be93b4,0x3fe0588af8dd4a34,1
+np.float64,0x3fe1fcdbf2e3f9b8,0x3fe31a27b9d273f2,1
+np.float64,0x3fe2a0f18be541e4,0x3fe3e23b159ce20f,1
+np.float64,0xbfed0f1561fa1e2b,0xbff23820fc0a54ca,1
+np.float64,0x3fe34a006c669400,0x3fe4b419b9ed2b83,1
+np.float64,0xbfd51be430aa37c8,0xbfd583005a4d62e7,1
+np.float64,0x3fe5ec4e336bd89c,0x3fe826caad6b0f65,1
+np.float64,0xbfdad71b1fb5ae36,0xbfdbb25bef8b53d8,1
+np.float64,0xbfe8eac2d871d586,0xbfec8f8cac7952f9,1
+np.float64,0xbfe1d5aef663ab5e,0xbfe2eae14b7ccdfd,1
+np.float64,0x3fec11d3157823a6,0x3ff11e8279506753,1
+np.float64,0xbfe67ff1166cffe2,0xbfe8f3e61c1dfd32,1
+np.float64,0xbfd101eecda203de,0xbfd136e0e9557022,1
+np.float64,0x3fde6c9e5cbcd93c,0x3fdfb48ee7efe134,1
+np.float64,0x3fec3ede9c787dbe,0x3ff14dead1e5cc1c,1
+np.float64,0x3fe7a022086f4044,0x3fea93ce2980b161,1
+np.float64,0xbfc3b2b1b7276564,0xbfc3c6d02d60bb21,1
+np.float64,0x7ff0000000000000,0x7ff8000000000000,1
+np.float64,0x3fe60b5647ec16ac,0x3fe8517ef0544b40,1
+np.float64,0xbfd20ab654a4156c,0xbfd24a2f1b8e4932,1
+np.float64,0xbfe4aa1e2f69543c,0xbfe677005cbd2646,1
+np.float64,0xbfc831cc0b306398,0xbfc8574910d0b86d,1
+np.float64,0xbfc3143495262868,0xbfc3267961b79198,1
+np.float64,0x3fc14d64c1229ac8,0x3fc15afea90a319d,1
+np.float64,0x3fc0a5a207214b48,0x3fc0b1bd2f15c1b0,1
+np.float64,0xbfc0b8351521706c,0xbfc0c4792672d6db,1
+np.float64,0xbfdc383600b8706c,0xbfdd398429e163bd,1
+np.float64,0x3fd9e17321b3c2e8,0x3fdaa4c4d140a622,1
+np.float64,0xbfd44f079ea89e10,0xbfd4aa7d6deff4ab,1
+np.float64,0xbfc3de52a927bca4,0xbfc3f2f8f65f4c3f,1
+np.float64,0x3fe7779d566eef3a,0x3fea57f8592dbaad,1
+np.float64,0xbfe309039e661207,0xbfe462f47f9a64e5,1
+np.float64,0x3fd8e06d08b1c0dc,0x3fd98cc946e440a6,1
+np.float64,0x3fdde66c9ebbccd8,0x3fdf1c68009a8dc1,1
+np.float64,0x3fd4369c6ba86d38,0x3fd490bf460a69e4,1
+np.float64,0xbfe132252fe2644a,0xbfe22775e109cc2e,1
+np.float64,0x3fee15483c7c2a90,0x3ff39111de89036f,1
+np.float64,0xbfc1d5ee8123abdc,0xbfc1e4d66c6871a5,1
+np.float64,0x3fc851c52b30a388,0x3fc877d93fb4ae1a,1
+np.float64,0x3fdaade707b55bd0,0x3fdb85001661fffe,1
+np.float64,0xbfe79fb7f96f3f70,0xbfea9330ec27ac10,1
+np.float64,0xbfe8b0f725f161ee,0xbfec3411c0e4517a,1
+np.float64,0xbfea79f5f374f3ec,0xbfef2e9dd9270488,1
+np.float64,0x3fe0b5fe5b616bfc,0x3fe19512a36a4534,1
+np.float64,0xbfad7c622c3af8c0,0xbfad808fea96a804,1
+np.float64,0xbfe3e24dbce7c49c,0xbfe574b4c1ea9818,1
+np.float64,0xbfe80b038af01607,0xbfeb33fec279576a,1
+np.float64,0xbfef69e2ea7ed3c6,0xbff610a5593a18bc,1
+np.float64,0x3fdcc0bb39b98178,0x3fddd1f8c9a46430,1
+np.float64,0xbfba39976a347330,0xbfba4563bb5369a4,1
+np.float64,0xbfebf9768ef7f2ed,0xbff10548ab725f74,1
+np.float64,0xbfec21c066f84381,0xbff12f2803ba052f,1
+np.float64,0xbfca216a6b3442d4,0xbfca50c5e1e5748e,1
+np.float64,0x3fd5e40da4abc81c,0x3fd65783f9a22946,1
+np.float64,0x3fc235ca17246b98,0x3fc245a8f453173f,1
+np.float64,0x3fecb5b867796b70,0x3ff1d046a0bfda69,1
+np.float64,0x3fcb457fef368b00,0x3fcb7b6daa8165a7,1
+np.float64,0xbfa5ed6f7c2bdae0,0xbfa5ef27244e2e42,1
+np.float64,0x3fecf618a1f9ec32,0x3ff21a86cc104542,1
+np.float64,0x3fe9d95413f3b2a8,0x3fee178dcafa11fc,1
+np.float64,0xbfe93a5357f274a7,0xbfed0f9a565da84a,1
+np.float64,0xbfeb9e45ff773c8c,0xbff0a93cab8e258d,1
+np.float64,0x3fcbd9d0bd37b3a0,0x3fcc134e87cae241,1
+np.float64,0x3fe55d4db76aba9c,0x3fe764a0e028475a,1
+np.float64,0xbfc8a6fc71314df8,0xbfc8ceaafbfc59a7,1
+np.float64,0x3fe0615fa660c2c0,0x3fe1323611c4cbc2,1
+np.float64,0x3fb965558632cab0,0x3fb9700b84de20ab,1
+np.float64,0x8000000000000000,0x8000000000000000,1
+np.float64,0x3fe76776c6eeceee,0x3fea40403e24a9f1,1
+np.float64,0x3fe3b7f672676fec,0x3fe53ece71a1a1b1,1
+np.float64,0xbfa9b82ba4337050,0xbfa9baf15394ca64,1
+np.float64,0xbfe31faf49663f5e,0xbfe47f31b1ca73dc,1
+np.float64,0xbfcc4c6beb3898d8,0xbfcc88c5f814b2c1,1
+np.float64,0x3fd481530aa902a8,0x3fd4df8df03bc155,1
+np.float64,0x3fd47593b8a8eb28,0x3fd4d327ab78a1a8,1
+np.float64,0x3fd70e6ccbae1cd8,0x3fd7962fe8b63d46,1
+np.float64,0x3fd25191f7a4a324,0x3fd2941623c88e02,1
+np.float64,0x3fd0603ef0a0c07c,0x3fd08f64e97588dc,1
+np.float64,0xbfc653bae52ca774,0xbfc6711e5e0d8ea9,1
+np.float64,0xbfd11db8fea23b72,0xbfd153b63c6e8812,1
+np.float64,0xbfea9bde25f537bc,0xbfef6b52268e139a,1
+np.float64,0x1,0x1,1
+np.float64,0xbfefd3806d7fa701,0xbff776dcef9583ca,1
+np.float64,0xbfe0fb8cfde1f71a,0xbfe1e6e2e774a8f8,1
+np.float64,0x3fea384534f4708a,0x3feebadaa389be0d,1
+np.float64,0x3feff761c97feec4,0x3ff866157b9d072d,1
+np.float64,0x3fe7131ccb6e263a,0x3fe9c58b4389f505,1
+np.float64,0x3fe9084f7872109e,0x3fecbed0355dbc8f,1
+np.float64,0x3f708e89e0211d00,0x3f708e8cd4946b9e,1
+np.float64,0xbfe39185f067230c,0xbfe50e1cd178244d,1
+np.float64,0x3fd67cc1a9acf984,0x3fd6fa514784b48c,1
+np.float64,0xbfecaef005f95de0,0xbff1c89c9c3ef94a,1
+np.float64,0xbfe12eec81e25dd9,0xbfe223a4285bba9a,1
+np.float64,0x3fbe7f9faa3cff40,0x3fbe92363525068d,1
+np.float64,0xbfe1950b2b632a16,0xbfe29d45fc1e4ce9,1
+np.float64,0x3fe45049e6e8a094,0x3fe6020de759e383,1
+np.float64,0x3fe4d10c8969a21a,0x3fe6aa1fe42cbeb9,1
+np.float64,0xbfe9d04658f3a08d,0xbfee08370a0dbf0c,1
+np.float64,0x3fe14fb314e29f66,0x3fe24a8d73663521,1
+np.float64,0xbfef4abfe4fe9580,0xbff5c2c1ff1250ca,1
+np.float64,0xbfe6162b366c2c56,0xbfe86073ac3c6243,1
+np.float64,0x3feffe781e7ffcf0,0x3ff8d2cbedd6a1b5,1
+np.float64,0xbff0000000000000,0xbff921fb54442d18,1
+np.float64,0x3fc1dc45ad23b888,0x3fc1eb3d9bddda58,1
+np.float64,0xbfe793f6fcef27ee,0xbfea81c93d65aa64,1
+np.float64,0x3fdef6d2bbbdeda4,0x3fe029079d42efb5,1
+np.float64,0xbfdf0ac479be1588,0xbfe0346dbc95963f,1
+np.float64,0xbfd33927d7a67250,0xbfd38653f90a5b73,1
+np.float64,0xbfe248b072e49161,0xbfe37631ef6572e1,1
+np.float64,0xbfc8ceb6af319d6c,0xbfc8f7288657f471,1
+np.float64,0x3fdd7277fcbae4f0,0x3fde99886e6766ef,1
+np.float64,0xbfe0d30c6561a619,0xbfe1b72f90bf53d6,1
+np.float64,0xbfcb0fe07d361fc0,0xbfcb448e2eae9542,1
+np.float64,0xbfe351f57fe6a3eb,0xbfe4be13eef250f2,1
+np.float64,0x3fe85ec02cf0bd80,0x3febb407e2e52e4c,1
+np.float64,0x3fc8bc59b53178b0,0x3fc8e470f65800ec,1
+np.float64,0xbfd278d447a4f1a8,0xbfd2bd133c9c0620,1
+np.float64,0x3feda5cfd87b4ba0,0x3ff2f5ab4324f43f,1
+np.float64,0xbfd2b32a36a56654,0xbfd2fa09c36afd34,1
+np.float64,0xbfed4a81cb7a9504,0xbff28077a4f4fff4,1
+np.float64,0x3fdf079bf9be0f38,0x3fe0329f7fb13f54,1
+np.float64,0x3fd14097f6a28130,0x3fd177e9834ec23f,1
+np.float64,0xbfaeab11843d5620,0xbfaeafc5531eb6b5,1
+np.float64,0xbfac3f8c14387f20,0xbfac433893d53360,1
+np.float64,0xbfc139d7ed2273b0,0xbfc14743adbbe660,1
+np.float64,0x3fe78cb02cef1960,0x3fea7707f76edba9,1
+np.float64,0x3fefe16b41ffc2d6,0x3ff7bff36a7aa7b8,1
+np.float64,0x3fec5260d378a4c2,0x3ff162c588b0da38,1
+np.float64,0x3fedb146f17b628e,0x3ff304f90d3a15d1,1
+np.float64,0x3fd1fd45f7a3fa8c,0x3fd23c2dc3929e20,1
+np.float64,0x3fe0898a5ee11314,0x3fe1610c63e726eb,1
+np.float64,0x3fe7719946eee332,0x3fea4f205eecb59f,1
+np.float64,0x3fe955218972aa44,0x3fed3b530c1f7651,1
+np.float64,0x3fe0ccbf4461997e,0x3fe1afc7b4587836,1
+np.float64,0xbfe9204314f24086,0xbfece5605780e346,1
+np.float64,0xbfe552017feaa403,0xbfe755773cbd74d5,1
+np.float64,0x3fd8ce4b32b19c98,0x3fd9791c8dd44eae,1
+np.float64,0x3fef89acd9ff135a,0x3ff668f78adf7ced,1
+np.float64,0x3fc9d713ad33ae28,0x3fca04da6c293bbd,1
+np.float64,0xbfe22d9c4de45b38,0xbfe3553effadcf92,1
+np.float64,0x3fa5cda38c2b9b40,0x3fa5cf53c5787482,1
+np.float64,0x3fa878ebdc30f1e0,0x3fa87b4f2bf1d4c3,1
+np.float64,0x3fe8030353700606,0x3feb27e196928789,1
+np.float64,0x3fb50607222a0c10,0x3fb50c188ce391e6,1
+np.float64,0x3fd9ba4ab4b37494,0x3fda79fa8bd40f45,1
+np.float64,0x3fb564598e2ac8b0,0x3fb56abe42d1ba13,1
+np.float64,0xbfd1177c83a22efa,0xbfd14d3d7ef30cc4,1
+np.float64,0xbfd952cec7b2a59e,0xbfda09215d17c0ac,1
+np.float64,0x3fe1d8066663b00c,0x3fe2edb35770b8dd,1
+np.float64,0xbfc89427a3312850,0xbfc8bb7a7c389497,1
+np.float64,0xbfe86ebfd3f0dd80,0xbfebccc2ba0f506c,1
+np.float64,0x3fc390578b2720b0,0x3fc3a40cb7f5f728,1
+np.float64,0xbfd122f9b8a245f4,0xbfd15929dc57a897,1
+np.float64,0x3f8d0636d03a0c80,0x3f8d06767de576df,1
+np.float64,0xbfe4b55d8b696abb,0xbfe685be537a9637,1
+np.float64,0xbfdfd51cf9bfaa3a,0xbfe0a894fcff0c76,1
+np.float64,0xbfd37c1f52a6f83e,0xbfd3cc9593c37aad,1
+np.float64,0x3fd0e8283ea1d050,0x3fd11c25c800785a,1
+np.float64,0x3fd3160784a62c10,0x3fd36183a6c2880c,1
+np.float64,0x3fd4c66e57a98cdc,0x3fd5288fe3394eff,1
+np.float64,0x3fee2f7e3afc5efc,0x3ff3b8063eb30cdc,1
+np.float64,0xbfe526773a6a4cee,0xbfe71b4364215b18,1
+np.float64,0x3fea01181e740230,0x3fee5b65eccfd130,1
+np.float64,0xbfe51c03f76a3808,0xbfe70d5919d37587,1
+np.float64,0x3fd97e1375b2fc28,0x3fda3845da40b22b,1
+np.float64,0x3fd5c14a14ab8294,0x3fd632890d07ed03,1
+np.float64,0xbfec9b474279368e,0xbff1b28f50584fe3,1
+np.float64,0x3fe0139ca860273a,0x3fe0d7fc377f001c,1
+np.float64,0x3fdb080c9db61018,0x3fdbe85056358fa0,1
+np.float64,0xbfdd72ceb1bae59e,0xbfde99ea171661eb,1
+np.float64,0xbfe64e934fec9d26,0xbfe8aec2ef24be63,1
+np.float64,0x3fd1036a93a206d4,0x3fd1386adabe01bd,1
+np.float64,0x3febc9d4a5f793aa,0x3ff0d4c069f1e67d,1
+np.float64,0xbfe547a16fea8f43,0xbfe747902fe6fb4d,1
+np.float64,0x3fc289b0f9251360,0x3fc29a709de6bdd9,1
+np.float64,0xbfe694494a6d2892,0xbfe9108f3dc133e2,1
+np.float64,0x3fd827dfe4b04fc0,0x3fd8c4fe40532b91,1
+np.float64,0xbfe8b89418f17128,0xbfec400c5a334b2e,1
+np.float64,0x3fed5605147aac0a,0x3ff28ed1f612814a,1
+np.float64,0xbfed36af31fa6d5e,0xbff26804e1f71af0,1
+np.float64,0x3fdbb01c02b76038,0x3fdca2381558bbf0,1
+np.float64,0x3fe2a951666552a2,0x3fe3ec88f780f9e6,1
+np.float64,0x3fe662defbecc5be,0x3fe8cb1dbfca98ab,1
+np.float64,0x3fd098b1b3a13164,0x3fd0c9d064e4eaf2,1
+np.float64,0x3fefa10edeff421e,0x3ff6b1c6187b18a8,1
+np.float64,0xbfec4feb7a789fd7,0xbff16021ef37a219,1
+np.float64,0x3fd8e415bbb1c82c,0x3fd990c1f8b786bd,1
+np.float64,0xbfead5a09275ab41,0xbfefd44fab5b4f6e,1
+np.float64,0xbfe8666c16f0ccd8,0xbfebbfe0c9f2a9ae,1
+np.float64,0x3fdc962132b92c44,0x3fdda2525a6f406c,1
+np.float64,0xbfe2037f03e406fe,0xbfe3222ec2a3449e,1
+np.float64,0xbfec82c27e790585,0xbff197626ea9df1e,1
+np.float64,0x3fd2b4e03ca569c0,0x3fd2fbd3c7fda23e,1
+np.float64,0xbfe9b0dee5f361be,0xbfedd34f6d3dfe8a,1
+np.float64,0x3feef45cd17de8ba,0x3ff508180687b591,1
+np.float64,0x3f82c39bf0258700,0x3f82c3ad24c3b3f1,1
+np.float64,0xbfca848cfd350918,0xbfcab612ce258546,1
+np.float64,0x3fd6442aaaac8854,0x3fd6bdea54016e48,1
+np.float64,0x3fe550799e6aa0f4,0x3fe75369c9ea5b1e,1
+np.float64,0xbfe0e9d5a361d3ac,0xbfe1d20011139d89,1
+np.float64,0x3fbfc9ff1e3f9400,0x3fbfdf0ea6885c80,1
+np.float64,0xbfa187e8b4230fd0,0xbfa188c95072092e,1
+np.float64,0x3fcd28c9533a5190,0x3fcd6ae879c21b47,1
+np.float64,0x3fc6227ec52c4500,0x3fc63f1fbb441d29,1
+np.float64,0x3fe9b7a2ed736f46,0x3feddeab49b2d176,1
+np.float64,0x3fd4aee93da95dd4,0x3fd50fb3b71e0339,1
+np.float64,0xbfe164dacf62c9b6,0xbfe263bb2f7dd5d9,1
+np.float64,0x3fec62e525f8c5ca,0x3ff17496416d9921,1
+np.float64,0x3fdd363ee0ba6c7c,0x3fde55c6a49a5f86,1
+np.float64,0x3fe65cbf75ecb97e,0x3fe8c28d31ff3ebd,1
+np.float64,0xbfe76d27ca6eda50,0xbfea4899e3661425,1
+np.float64,0xbfc305738d260ae8,0xbfc3178dcfc9d30f,1
+np.float64,0xbfd3aa2a54a75454,0xbfd3fcf1e1ce8328,1
+np.float64,0x3fd1609fc9a2c140,0x3fd1992efa539b9f,1
+np.float64,0xbfac1291bc382520,0xbfac162cc7334b4d,1
+np.float64,0xbfedb461ea7b68c4,0xbff309247850455d,1
+np.float64,0xbfe8d2adf8f1a55c,0xbfec6947be90ba92,1
+np.float64,0xbfd7128965ae2512,0xbfd79a9855bcfc5a,1
+np.float64,0x3fe8deb09471bd62,0x3fec7c56b3aee531,1
+np.float64,0xbfe5f4d329ebe9a6,0xbfe8327ea8189af8,1
+np.float64,0xbfd3b46ac9a768d6,0xbfd407b80b12ff17,1
+np.float64,0x3fec899d7cf9133a,0x3ff19ef26baca36f,1
+np.float64,0xbfec192fd5783260,0xbff126306e507fd0,1
+np.float64,0x3fe945bdaef28b7c,0x3fed222f787310bf,1
+np.float64,0xbfeff9635d7ff2c7,0xbff87d6773f318eb,1
+np.float64,0xbfd604b81cac0970,0xbfd67a4aa852559a,1
+np.float64,0x3fcd1cc9d53a3990,0x3fcd5e962e237c24,1
+np.float64,0xbfed77b0fffaef62,0xbff2b97a1c9b6483,1
+np.float64,0xbfc9c69325338d28,0xbfc9f401500402fb,1
+np.float64,0xbfdf97e246bf2fc4,0xbfe0855601ea9db3,1
+np.float64,0x3fc7e6304f2fcc60,0x3fc80a4e718504cd,1
+np.float64,0x3fec3b599e7876b4,0x3ff14a2d1b9c68e6,1
+np.float64,0xbfe98618e1f30c32,0xbfed8bfbb31c394a,1
+np.float64,0xbfe59b3c0feb3678,0xbfe7b832d6df81de,1
+np.float64,0xbfe54ce2fe6a99c6,0xbfe74e9a85be4116,1
+np.float64,0x3fc9db49cb33b690,0x3fca092737ef500a,1
+np.float64,0xbfb4a922ae295248,0xbfb4aee4e39078a9,1
+np.float64,0xbfd0e542e0a1ca86,0xbfd11925208d66af,1
+np.float64,0x3fd70543f2ae0a88,0x3fd78c5e9238a3ee,1
+np.float64,0x3fd67f7a7facfef4,0x3fd6fd3998df8545,1
+np.float64,0xbfe40b643d6816c8,0xbfe5a947e427f298,1
+np.float64,0xbfcd85f69b3b0bec,0xbfcdcaa24b75f1a3,1
+np.float64,0x3fec705fb4f8e0c0,0x3ff1833c82163ee2,1
+np.float64,0x3fb37650ea26eca0,0x3fb37b20c16fb717,1
+np.float64,0x3fe5ebfa55ebd7f4,0x3fe826578d716e70,1
+np.float64,0x3fe991dfe5f323c0,0x3fed9f8a4bf1f588,1
+np.float64,0xbfd658bd0aacb17a,0xbfd6d3dd06e54900,1
+np.float64,0xbfc24860252490c0,0xbfc258701a0b9290,1
+np.float64,0xbfefb8d763ff71af,0xbff705b6ea4a569d,1
+np.float64,0x3fb8fcb4ae31f970,0x3fb906e809e7899f,1
+np.float64,0x3fce6343cb3cc688,0x3fceae41d1629625,1
+np.float64,0xbfd43d5a11a87ab4,0xbfd497da25687e07,1
+np.float64,0xbfe9568851f2ad11,0xbfed3d9e5fe83a76,1
+np.float64,0x3fe1b66153e36cc2,0x3fe2c53c7e016271,1
+np.float64,0x3fef27452bfe4e8a,0x3ff571b3486ed416,1
+np.float64,0x3fca87c0a7350f80,0x3fcab958a7bb82d4,1
+np.float64,0xbfd8776a8fb0eed6,0xbfd91afaf2f50edf,1
+np.float64,0x3fe9522a76f2a454,0x3fed3679264e1525,1
+np.float64,0x3fea14ff2cf429fe,0x3fee7da6431cc316,1
+np.float64,0x3fe970618bf2e0c4,0x3fed68154d54dd97,1
+np.float64,0x3fd3410cfca68218,0x3fd38e9b21792240,1
+np.float64,0xbf6a8070c0350100,0xbf6a8073c7c34517,1
+np.float64,0xbfbe449de23c8938,0xbfbe56c8e5e4d98b,1
+np.float64,0x3fedbc92e27b7926,0x3ff314313216d8e6,1
+np.float64,0xbfe3be4706677c8e,0xbfe546d3ceb85aea,1
+np.float64,0x3fe30cd6d76619ae,0x3fe467b6f2664a8d,1
+np.float64,0x3fd7d69b21afad38,0x3fd86d54284d05ad,1
+np.float64,0xbfe501001fea0200,0xbfe6e978afcff4d9,1
+np.float64,0xbfe44ba3d8e89748,0xbfe5fc0a31cd1e3e,1
+np.float64,0x3fec52f7c078a5f0,0x3ff16367acb209b2,1
+np.float64,0xbfcb19efcb3633e0,0xbfcb4ed9235a7d47,1
+np.float64,0xbfab86796c370cf0,0xbfab89df7bf15710,1
+np.float64,0xbfb962feda32c600,0xbfb96db1e1679c98,1
+np.float64,0x3fe0dd14e861ba2a,0x3fe1c2fc72810567,1
+np.float64,0x3fe41bcc6de83798,0x3fe5be59b7f9003b,1
+np.float64,0x3fc82f4c4f305e98,0x3fc854bd9798939f,1
+np.float64,0xbfcd143a613a2874,0xbfcd55cbd1619d84,1
+np.float64,0xbfd52da61baa5b4c,0xbfd595d0b3543439,1
+np.float64,0xbfb71b4a8e2e3698,0xbfb7235a4ab8432f,1
+np.float64,0xbfec141a19782834,0xbff120e1e39fc856,1
+np.float64,0xbfdba9319db75264,0xbfdc9a8ca2578bb2,1
+np.float64,0xbfbce5d74639cbb0,0xbfbcf5a4878cfa51,1
+np.float64,0x3fde67f7b3bccff0,0x3fdfaf45a9f843ad,1
+np.float64,0xbfe12d87bc625b10,0xbfe221fd4476eb71,1
+np.float64,0x3fe35b8f6be6b71e,0x3fe4ca20f65179e1,1
+np.float64,0xbfdbada1d3b75b44,0xbfdc9f78b19f93d1,1
+np.float64,0xbfc60159c52c02b4,0xbfc61d79b879f598,1
+np.float64,0x3fd6b81c38ad7038,0x3fd739c27bfa16d8,1
+np.float64,0xbfd646a253ac8d44,0xbfd6c08c19612bbb,1
+np.float64,0xbfe6babef0ed757e,0xbfe94703d0bfa311,1
+np.float64,0xbfed5671f1faace4,0xbff28f5a3f3683d0,1
+np.float64,0x3fc01d1e85203a40,0x3fc02817ec0dfd38,1
+np.float64,0xbfe9188a61f23115,0xbfecd8eb5da84223,1
+np.float64,0x3fdca3bab9b94774,0x3fddb1868660c239,1
+np.float64,0xbfa255750c24aaf0,0xbfa25675f7b36343,1
+np.float64,0x3fb3602db626c060,0x3fb364ed2d5b2876,1
+np.float64,0xbfd30a14bda6142a,0xbfd354ff703b8862,1
+np.float64,0xbfe1cfe381639fc7,0xbfe2e3e720b968c8,1
+np.float64,0xbfd2af6a4fa55ed4,0xbfd2f61e190bcd1f,1
+np.float64,0xbfe93c50937278a1,0xbfed12d64bb10d73,1
+np.float64,0x3fddd8bc44bbb178,0x3fdf0ced7f9005cc,1
+np.float64,0x3fdb2bc73cb65790,0x3fdc0fc0e18e425e,1
+np.float64,0xbfd073f6aba0e7ee,0xbfd0a3cb5468a961,1
+np.float64,0x3fed4bad7b7a975a,0x3ff281ebeb75e414,1
+np.float64,0xbfdc75b50bb8eb6a,0xbfdd7e1a7631cb22,1
+np.float64,0x3fd458a90fa8b154,0x3fd4b4a5817248ce,1
+np.float64,0x3feead5db57d5abc,0x3ff484286fab55ff,1
+np.float64,0x3fb3894382271280,0x3fb38e217b4e7905,1
+np.float64,0xffefffffffffffff,0x7ff8000000000000,1
+np.float64,0xbfe428212ae85042,0xbfe5ce36f226bea8,1
+np.float64,0xbfc08b39f7211674,0xbfc0971b93ebc7ad,1
+np.float64,0xbfc2e7cf5525cfa0,0xbfc2f994eb72b623,1
+np.float64,0xbfdb0d85afb61b0c,0xbfdbee5a2de3c5db,1
+np.float64,0xfff0000000000000,0x7ff8000000000000,1
+np.float64,0xbfd0d36af7a1a6d6,0xbfd106a5f05ef6ff,1
+np.float64,0xbfc333d0912667a0,0xbfc3467162b7289a,1
+np.float64,0x3fcdababc53b5758,0x3fcdf16458c20fa8,1
+np.float64,0x3fd0821b38a10438,0x3fd0b26e3e0b9185,1
+np.float64,0x0,0x0,1
+np.float64,0x3feb7f70edf6fee2,0x3ff08ae81854bf20,1
+np.float64,0x3fe6e075716dc0ea,0x3fe97cc5254be6ff,1
+np.float64,0x3fea13b682f4276e,0x3fee7b6f18073b5b,1
diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/tests/data/umath-validation-set-arcsinh.csv b/.venv/lib/python3.12/site-packages/numpy/_core/tests/data/umath-validation-set-arcsinh.csv
new file mode 100644
index 0000000..9eedb1a
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/_core/tests/data/umath-validation-set-arcsinh.csv
@@ -0,0 +1,1429 @@
+dtype,input,output,ulperrortol
+np.float32,0xbf24142a,0xbf1a85ef,2
+np.float32,0x3e71cf91,0x3e6f9e37,2
+np.float32,0xe52a7,0xe52a7,2
+np.float32,0x3ef1e074,0x3ee9add9,2
+np.float32,0x806160ac,0x806160ac,2
+np.float32,0x7e2d59a2,0x42af4798,2
+np.float32,0xbf32cac9,0xbf26bf96,2
+np.float32,0x3f081701,0x3f026142,2
+np.float32,0x3f23cc88,0x3f1a499c,2
+np.float32,0xbf090d94,0xbf033ad0,2
+np.float32,0x803af2fc,0x803af2fc,2
+np.float32,0x807eb17e,0x807eb17e,2
+np.float32,0x5c0d8e,0x5c0d8e,2
+np.float32,0x3f7b79d2,0x3f5e6b1d,2
+np.float32,0x806feeae,0x806feeae,2
+np.float32,0x3e4b423a,0x3e49f274,2
+np.float32,0x3f49e5ac,0x3f394a41,2
+np.float32,0x3f18cd4e,0x3f10ef35,2
+np.float32,0xbed75734,0xbed17322,2
+np.float32,0x7f591151,0x42b28085,2
+np.float32,0xfefe9da6,0xc2b16f51,2
+np.float32,0xfeac90fc,0xc2b0a82a,2
+np.float32,0x805c198e,0x805c198e,2
+np.float32,0x7f66d6df,0x42b2a004,2
+np.float32,0x505438,0x505438,2
+np.float32,0xbf39a209,0xbf2c5255,2
+np.float32,0x7fa00000,0x7fe00000,2
+np.float32,0xc84cb,0xc84cb,2
+np.float32,0x7f07d6f5,0x42b19088,2
+np.float32,0x79d7e4,0x79d7e4,2
+np.float32,0xff32f6a0,0xc2b21db1,2
+np.float32,0x7c005c05,0x42a9222e,2
+np.float32,0x3ec449aa,0x3ebfc5ae,2
+np.float32,0x800ec323,0x800ec323,2
+np.float32,0xff1c904c,0xc2b1d93a,2
+np.float32,0x7f4eca52,0x42b267b0,2
+np.float32,0x3ee06540,0x3ed9c514,2
+np.float32,0x6aab4,0x6aab4,2
+np.float32,0x3e298d8c,0x3e28c99e,2
+np.float32,0xbf38d162,0xbf2ba94a,2
+np.float32,0x2d9083,0x2d9083,2
+np.float32,0x7eae5032,0x42b0ad52,2
+np.float32,0x3ead5b3c,0x3eaa3443,2
+np.float32,0x806fef66,0x806fef66,2
+np.float32,0x3f5b614e,0x3f46ca71,2
+np.float32,0xbf4c906a,0xbf3b60fc,2
+np.float32,0x8049453e,0x8049453e,2
+np.float32,0x3d305220,0x3d304432,2
+np.float32,0x2e1a89,0x2e1a89,2
+np.float32,0xbf4e74ec,0xbf3cdacf,2
+np.float32,0x807a827a,0x807a827a,2
+np.float32,0x80070745,0x80070745,2
+np.float32,0xbe1ba2fc,0xbe1b0b28,2
+np.float32,0xbe5131d0,0xbe4fc421,2
+np.float32,0x5bfd98,0x5bfd98,2
+np.float32,0xbd8e1a48,0xbd8dfd27,2
+np.float32,0x8006c160,0x8006c160,2
+np.float32,0x346490,0x346490,2
+np.float32,0xbdbdf060,0xbdbdaaf0,2
+np.float32,0x3ea9d0c4,0x3ea6d8c7,2
+np.float32,0xbf2aaa28,0xbf200916,2
+np.float32,0xbf160c26,0xbf0e9047,2
+np.float32,0x80081fd4,0x80081fd4,2
+np.float32,0x7db44283,0x42adf8b6,2
+np.float32,0xbf1983f8,0xbf118bf5,2
+np.float32,0x2c4a35,0x2c4a35,2
+np.float32,0x6165a7,0x6165a7,2
+np.float32,0xbe776b44,0xbe75129f,2
+np.float32,0xfe81841a,0xc2b0153b,2
+np.float32,0xbf7d1b2f,0xbf5f9461,2
+np.float32,0x80602d36,0x80602d36,2
+np.float32,0xfe8d5046,0xc2b041dd,2
+np.float32,0xfe5037bc,0xc2afa56d,2
+np.float32,0x4bbea6,0x4bbea6,2
+np.float32,0xfea039de,0xc2b0822d,2
+np.float32,0x7ea627a4,0x42b094c7,2
+np.float32,0x3f556198,0x3f423591,2
+np.float32,0xfedbae04,0xc2b123c1,2
+np.float32,0xbe30432c,0xbe2f6744,2
+np.float32,0x80202c77,0x80202c77,2
+np.float32,0xff335cc1,0xc2b21ed5,2
+np.float32,0x3e1e1ebe,0x3e1d7f95,2
+np.float32,0x8021c9c0,0x8021c9c0,2
+np.float32,0x7dc978,0x7dc978,2
+np.float32,0xff6cfabc,0xc2b2ad75,2
+np.float32,0x7f2bd542,0x42b208e0,2
+np.float32,0x53bf33,0x53bf33,2
+np.float32,0x804e04bb,0x804e04bb,2
+np.float32,0x3f30d2f9,0x3f2521ca,2
+np.float32,0x3dfde876,0x3dfd4316,2
+np.float32,0x46f8b1,0x46f8b1,2
+np.float32,0xbd5f9e20,0xbd5f81ba,2
+np.float32,0x807d6a22,0x807d6a22,2
+np.float32,0xff3881da,0xc2b22d50,2
+np.float32,0x1b1cb5,0x1b1cb5,2
+np.float32,0x3f75f2d0,0x3f5a7435,2
+np.float32,0xfee39c1a,0xc2b135e9,2
+np.float32,0x7f79f14a,0x42b2c8b9,2
+np.float32,0x8000e2d1,0x8000e2d1,2
+np.float32,0xab779,0xab779,2
+np.float32,0xbede6690,0xbed7f102,2
+np.float32,0x76e20d,0x76e20d,2
+np.float32,0x3ed714cb,0x3ed135e9,2
+np.float32,0xbeaa6f44,0xbea76f31,2
+np.float32,0x7f7dc8b1,0x42b2d089,2
+np.float32,0x108cb2,0x108cb2,2
+np.float32,0x7d37ba82,0x42ac9f94,2
+np.float32,0x3f31d068,0x3f25f221,2
+np.float32,0x8010a331,0x8010a331,2
+np.float32,0x3f2fdc7c,0x3f2456cd,2
+np.float32,0x7f7a9a67,0x42b2ca13,2
+np.float32,0x3f2acb31,0x3f202492,2
+np.float32,0x7f54fa94,0x42b276c9,2
+np.float32,0x3ebf8a70,0x3ebb553c,2
+np.float32,0x7f75b1a7,0x42b2bff2,2
+np.float32,0x7daebe07,0x42ade8cc,2
+np.float32,0xbd3a3ef0,0xbd3a2e86,2
+np.float32,0x8078ec9e,0x8078ec9e,2
+np.float32,0x3eda206a,0x3ed403ec,2
+np.float32,0x3f7248f2,0x3f57cd77,2
+np.float32,0x805d55ba,0x805d55ba,2
+np.float32,0xff30dc3e,0xc2b217a3,2
+np.float32,0xbe12b27c,0xbe123333,2
+np.float32,0xbf6ed9cf,0xbf554cd0,2
+np.float32,0xbed9eb5c,0xbed3d31c,2
+np.float32,0xbf1c9aea,0xbf14307b,2
+np.float32,0x3f540ac4,0x3f412de2,2
+np.float32,0x800333ac,0x800333ac,2
+np.float32,0x3f74cdb4,0x3f59a09a,2
+np.float32,0xbf41dc41,0xbf32ee6f,2
+np.float32,0xff2c7804,0xc2b20ac4,2
+np.float32,0x514493,0x514493,2
+np.float32,0xbddf1220,0xbddea1cf,2
+np.float32,0xfeaf74de,0xc2b0b0ab,2
+np.float32,0xfe5dfb30,0xc2afc633,2
+np.float32,0xbf4785c4,0xbf376bdb,2
+np.float32,0x80191cd3,0x80191cd3,2
+np.float32,0xfe44f708,0xc2af88fb,2
+np.float32,0x3d4cd8a0,0x3d4cc2ca,2
+np.float32,0x7f572eff,0x42b27c0f,2
+np.float32,0x8031bacb,0x8031bacb,2
+np.float32,0x7f2ea684,0x42b21133,2
+np.float32,0xbea1976a,0xbe9f05bb,2
+np.float32,0x3d677b41,0x3d675bc1,2
+np.float32,0x3f61bf24,0x3f4b9870,2
+np.float32,0x7ef55ddf,0x42b15c5f,2
+np.float32,0x3eabcb20,0x3ea8b91c,2
+np.float32,0xff73d9ec,0xc2b2bc18,2
+np.float32,0x77b9f5,0x77b9f5,2
+np.float32,0x4c6c6c,0x4c6c6c,2
+np.float32,0x7ed09c94,0x42b10949,2
+np.float32,0xdeeec,0xdeeec,2
+np.float32,0x7eac5858,0x42b0a782,2
+np.float32,0x7e190658,0x42af07bd,2
+np.float32,0xbe3c8980,0xbe3b7ce2,2
+np.float32,0x8059e86e,0x8059e86e,2
+np.float32,0xff201836,0xc2b1e4a5,2
+np.float32,0xbeac109c,0xbea8fafb,2
+np.float32,0x7edd1e2b,0x42b12718,2
+np.float32,0x639cd8,0x639cd8,2
+np.float32,0x3f5e4cae,0x3f490059,2
+np.float32,0x3d84c185,0x3d84a9c4,2
+np.float32,0xbe8c1130,0xbe8a605b,2
+np.float32,0x80000000,0x80000000,2
+np.float32,0x3f1da5e4,0x3f151404,2
+np.float32,0x7f75a873,0x42b2bfdf,2
+np.float32,0xbd873540,0xbd871c28,2
+np.float32,0xbe8e5e10,0xbe8c9808,2
+np.float32,0x7f004bf2,0x42b17347,2
+np.float32,0x800000,0x800000,2
+np.float32,0xbf6d6b79,0xbf544095,2
+np.float32,0x7ed7b563,0x42b11a6a,2
+np.float32,0x80693745,0x80693745,2
+np.float32,0x3ee0f608,0x3eda49a8,2
+np.float32,0xfe1285a4,0xc2aef181,2
+np.float32,0x72d946,0x72d946,2
+np.float32,0x6a0dca,0x6a0dca,2
+np.float32,0x3f5c9df6,0x3f47ba99,2
+np.float32,0xff002af6,0xc2b172c4,2
+np.float32,0x3f4ac98f,0x3f39fd0a,2
+np.float32,0x8066acf7,0x8066acf7,2
+np.float32,0xbcaa4e60,0xbcaa4b3c,2
+np.float32,0x80162813,0x80162813,2
+np.float32,0xff34b318,0xc2b222a2,2
+np.float32,0x7f1ce33c,0x42b1da49,2
+np.float32,0x3f0e55ab,0x3f07ddb0,2
+np.float32,0x7c75d996,0x42aa6eec,2
+np.float32,0xbf221bc6,0xbf18dc89,2
+np.float32,0x3f5a1a4c,0x3f45d1d4,2
+np.float32,0x7f2451b8,0x42b1f1fb,2
+np.float32,0x3ec55ca0,0x3ec0c655,2
+np.float32,0x3f752dc2,0x3f59e600,2
+np.float32,0xbe33f638,0xbe330c4d,2
+np.float32,0x3e2a9148,0x3e29c9d8,2
+np.float32,0x3f3362a1,0x3f273c01,2
+np.float32,0x5f83b3,0x5f83b3,2
+np.float32,0x3e362488,0x3e353216,2
+np.float32,0x140bcf,0x140bcf,2
+np.float32,0x7e3e96df,0x42af7822,2
+np.float32,0xbebc7082,0xbeb86ce6,2
+np.float32,0xbe92a92e,0xbe90b9d2,2
+np.float32,0xff3d8afc,0xc2b23b19,2
+np.float32,0x804125e3,0x804125e3,2
+np.float32,0x3f3675d1,0x3f29bedb,2
+np.float32,0xff70bb09,0xc2b2b57f,2
+np.float32,0x3f29681c,0x3f1efcd2,2
+np.float32,0xbdc70380,0xbdc6b3a8,2
+np.float32,0x54e0dd,0x54e0dd,2
+np.float32,0x3d545de0,0x3d54458c,2
+np.float32,0x7f800000,0x7f800000,2
+np.float32,0x8014a4c2,0x8014a4c2,2
+np.float32,0xbe93f58a,0xbe91f938,2
+np.float32,0x17de33,0x17de33,2
+np.float32,0xfefb679a,0xc2b168d2,2
+np.float32,0xbf23423e,0xbf19d511,2
+np.float32,0x7e893fa1,0x42b032ec,2
+np.float32,0x3f44fe2d,0x3f356bda,2
+np.float32,0xbebb2e78,0xbeb73e8f,2
+np.float32,0x3f5632e0,0x3f42d633,2
+np.float32,0x3ddd8698,0x3ddd1896,2
+np.float32,0x80164ea7,0x80164ea7,2
+np.float32,0x80087b37,0x80087b37,2
+np.float32,0xbf06ab1e,0xbf011f95,2
+np.float32,0x3db95524,0x3db9149f,2
+np.float32,0x7aa1fbb3,0x42a570a1,2
+np.float32,0xbd84fc48,0xbd84e467,2
+np.float32,0x3d65c6f5,0x3d65a826,2
+np.float32,0xfe987800,0xc2b068c4,2
+np.float32,0x7ec59532,0x42b0ed7a,2
+np.float32,0x3ea0232c,0x3e9da29a,2
+np.float32,0x80292a08,0x80292a08,2
+np.float32,0x734cfe,0x734cfe,2
+np.float32,0x3f3b6d63,0x3f2dc596,2
+np.float32,0x3f27bcc1,0x3f1d97e6,2
+np.float32,0xfe1da554,0xc2af16f9,2
+np.float32,0x7c91f5,0x7c91f5,2
+np.float32,0xfe4e78cc,0xc2afa11e,2
+np.float32,0x7e4b4e08,0x42af9933,2
+np.float32,0xfe0949ec,0xc2aed02e,2
+np.float32,0x7e2f057f,0x42af4c81,2
+np.float32,0xbf200ae0,0xbf171ce1,2
+np.float32,0x3ebcc244,0x3eb8b99e,2
+np.float32,0xbf68f58d,0xbf50f7aa,2
+np.float32,0x4420b1,0x4420b1,2
+np.float32,0x3f5b61bf,0x3f46cac7,2
+np.float32,0x3fec78,0x3fec78,2
+np.float32,0x7f4183c8,0x42b245b7,2
+np.float32,0xbf10587c,0xbf099ee2,2
+np.float32,0x0,0x0,2
+np.float32,0x7ec84dc3,0x42b0f47a,2
+np.float32,0x3f5fbd7b,0x3f4a166d,2
+np.float32,0xbd884eb8,0xbd883502,2
+np.float32,0xfe3f10a4,0xc2af7969,2
+np.float32,0xff3f4920,0xc2b23fc9,2
+np.float32,0x8013900f,0x8013900f,2
+np.float32,0x8003529d,0x8003529d,2
+np.float32,0xbf032384,0xbefbfb3c,2
+np.float32,0xff418c7c,0xc2b245ce,2
+np.float32,0xbec0aad0,0xbebc633b,2
+np.float32,0xfdbff178,0xc2ae18de,2
+np.float32,0x68ab15,0x68ab15,2
+np.float32,0xbdfc4a88,0xbdfba848,2
+np.float32,0xbf5adec6,0xbf466747,2
+np.float32,0x807d5dcc,0x807d5dcc,2
+np.float32,0x61d144,0x61d144,2
+np.float32,0x807e3a03,0x807e3a03,2
+np.float32,0x1872f2,0x1872f2,2
+np.float32,0x7f2a272c,0x42b203d8,2
+np.float32,0xfe7f8314,0xc2b00e3a,2
+np.float32,0xbe42aeac,0xbe418737,2
+np.float32,0x8024b614,0x8024b614,2
+np.float32,0xbe41b6b8,0xbe40939a,2
+np.float32,0xa765c,0xa765c,2
+np.float32,0x7ea74f4b,0x42b09853,2
+np.float32,0x7f7ef631,0x42b2d2e7,2
+np.float32,0x7eaef5e6,0x42b0af38,2
+np.float32,0xff733d85,0xc2b2bacf,2
+np.float32,0x537ac0,0x537ac0,2
+np.float32,0xbeca4790,0xbec55b1d,2
+np.float32,0x80117314,0x80117314,2
+np.float32,0xfe958536,0xc2b05ec5,2
+np.float32,0x8066ecc2,0x8066ecc2,2
+np.float32,0xbf56baf3,0xbf433e82,2
+np.float32,0x1f7fd7,0x1f7fd7,2
+np.float32,0x3e942104,0x3e9222fc,2
+np.float32,0xfeaffe82,0xc2b0b23c,2
+np.float32,0xfe0e02b0,0xc2aee17e,2
+np.float32,0xbf800000,0xbf61a1b3,2
+np.float32,0x800b7e49,0x800b7e49,2
+np.float32,0x6c514f,0x6c514f,2
+np.float32,0xff800000,0xff800000,2
+np.float32,0x7f7d9a45,0x42b2d02b,2
+np.float32,0x800c9c69,0x800c9c69,2
+np.float32,0x274b14,0x274b14,2
+np.float32,0xbf4b22b0,0xbf3a42e2,2
+np.float32,0x63e5ae,0x63e5ae,2
+np.float32,0xbe18facc,0xbe186a90,2
+np.float32,0x7e137351,0x42aef4bd,2
+np.float32,0x80518ffd,0x80518ffd,2
+np.float32,0xbf0a8ffc,0xbf048f0d,2
+np.float32,0x841d,0x841d,2
+np.float32,0x7edfdc9e,0x42b12d69,2
+np.float32,0xfd1092b0,0xc2ac24de,2
+np.float32,0x7e2c9bdf,0x42af4566,2
+np.float32,0x7f7fffff,0x42b2d4fc,2
+np.float32,0x3f4954a6,0x3f38d853,2
+np.float32,0xbe83efd2,0xbe8284c3,2
+np.float32,0x800e8e02,0x800e8e02,2
+np.float32,0x78ad39,0x78ad39,2
+np.float32,0x7eb0f967,0x42b0b514,2
+np.float32,0xbe39aa94,0xbe38a9ee,2
+np.float32,0x80194e7b,0x80194e7b,2
+np.float32,0x3cf3a340,0x3cf39a0f,2
+np.float32,0x3ed3117a,0x3ecd8173,2
+np.float32,0x7f530b11,0x42b2721c,2
+np.float32,0xff756ba2,0xc2b2bf60,2
+np.float32,0x15ea25,0x15ea25,2
+np.float32,0x803cbb64,0x803cbb64,2
+np.float32,0x3f34722d,0x3f281a2c,2
+np.float32,0x3ddd88e0,0x3ddd1adb,2
+np.float32,0x3f54244c,0x3f41418b,2
+np.float32,0x3e0adb98,0x3e0a6f8b,2
+np.float32,0x80800000,0x80800000,2
+np.float32,0x58902b,0x58902b,2
+np.float32,0xfe3b50b8,0xc2af6f43,2
+np.float32,0xfe0846d0,0xc2aecc64,2
+np.float32,0xbe0299d0,0xbe023fd4,2
+np.float32,0x18dde6,0x18dde6,2
+np.float32,0x8039fe8b,0x8039fe8b,2
+np.float32,0x8015d179,0x8015d179,2
+np.float32,0x3f551322,0x3f41f947,2
+np.float32,0x2ab387,0x2ab387,2
+np.float32,0xbf7e311e,0xbf6059d0,2
+np.float32,0xbdba58a8,0xbdba1713,2
+np.float32,0xbf1d008a,0xbf148724,2
+np.float32,0xbf6b9c97,0xbf52ec98,2
+np.float32,0x802acf04,0x802acf04,2
+np.float32,0x1,0x1,2
+np.float32,0xbe9e16d6,0xbe9bade3,2
+np.float32,0xbf048a14,0xbefe78c7,2
+np.float32,0x7e432ad3,0x42af8449,2
+np.float32,0xbdcc7fe0,0xbdcc2944,2
+np.float32,0x6dfc27,0x6dfc27,2
+np.float32,0xfef6eed8,0xc2b15fa1,2
+np.float32,0xbeeff6e8,0xbee7f2e4,2
+np.float32,0x7e3a6ca8,0x42af6cd2,2
+np.float32,0xff2c82e8,0xc2b20ae4,2
+np.float32,0x3e9f8d74,0x3e9d13b0,2
+np.float32,0x7ea36191,0x42b08c29,2
+np.float32,0x7f734bed,0x42b2baed,2
+np.float32,0x7f2df96d,0x42b20f37,2
+np.float32,0x5036fd,0x5036fd,2
+np.float32,0x806eab38,0x806eab38,2
+np.float32,0xbe9db90e,0xbe9b5446,2
+np.float32,0xfeef6fac,0xc2b14fd9,2
+np.float32,0xc2bf7,0xc2bf7,2
+np.float32,0xff53ec3d,0xc2b2743d,2
+np.float32,0x7e837637,0x42b01cde,2
+np.float32,0xbefb5934,0xbef23662,2
+np.float32,0x3f6cec80,0x3f53e371,2
+np.float32,0x3e86e7de,0x3e85643f,2
+np.float32,0x3f09cb42,0x3f03e1ef,2
+np.float32,0xbec3d236,0xbebf5620,2
+np.float32,0xfedef246,0xc2b12b50,2
+np.float32,0xbf08d6a8,0xbf030a62,2
+np.float32,0x8036cbf9,0x8036cbf9,2
+np.float32,0x3f74d3e3,0x3f59a512,2
+np.float32,0x6a600c,0x6a600c,2
+np.float32,0xfd1295b0,0xc2ac2bf1,2
+np.float32,0xbeb61142,0xbeb26efa,2
+np.float32,0x80216556,0x80216556,2
+np.float32,0xbf1fa0f6,0xbf16c30a,2
+np.float32,0x3e0af8e1,0x3e0a8c90,2
+np.float32,0x80434709,0x80434709,2
+np.float32,0x49efd9,0x49efd9,2
+np.float32,0x7f7cce6c,0x42b2ce8f,2
+np.float32,0x6e5450,0x6e5450,2
+np.float32,0x7f0fc115,0x42b1ad86,2
+np.float32,0x632db0,0x632db0,2
+np.float32,0x3f6f4c2a,0x3f55a064,2
+np.float32,0x7ec4f273,0x42b0ebd3,2
+np.float32,0x61ae1e,0x61ae1e,2
+np.float32,0x5f47c4,0x5f47c4,2
+np.float32,0xbf3c8f62,0xbf2eaf54,2
+np.float32,0xfca38900,0xc2ab0113,2
+np.float32,0x3ec89d52,0x3ec3ce78,2
+np.float32,0xbe0e3f70,0xbe0dcb53,2
+np.float32,0x805d3156,0x805d3156,2
+np.float32,0x3eee33f8,0x3ee65a4e,2
+np.float32,0xbeda7e9a,0xbed45a90,2
+np.float32,0x7e2fac7b,0x42af4e69,2
+np.float32,0x7efd0e28,0x42b16c2c,2
+np.float32,0x3f0c7b17,0x3f063e46,2
+np.float32,0xbf395bec,0xbf2c198f,2
+np.float32,0xfdf1c3f8,0xc2ae8f05,2
+np.float32,0xbe11f4e4,0xbe117783,2
+np.float32,0x7eddc901,0x42b128a3,2
+np.float32,0x3f4bad09,0x3f3aaf33,2
+np.float32,0xfefb5d76,0xc2b168bd,2
+np.float32,0x3ed3a4cf,0x3ece09a3,2
+np.float32,0x7ec582e4,0x42b0ed4a,2
+np.float32,0x3dc2268a,0x3dc1dc64,2
+np.float32,0x3ef9b17c,0x3ef0b9c9,2
+np.float32,0x2748ac,0x2748ac,2
+np.float32,0xfed6a602,0xc2b117e4,2
+np.float32,0xbefc9c36,0xbef35832,2
+np.float32,0x7e0476,0x7e0476,2
+np.float32,0x804be1a0,0x804be1a0,2
+np.float32,0xbefbc1c2,0xbef2943a,2
+np.float32,0xbd4698f0,0xbd46850a,2
+np.float32,0x688627,0x688627,2
+np.float32,0x3f7f7685,0x3f61406f,2
+np.float32,0x827fb,0x827fb,2
+np.float32,0x3f503264,0x3f3e34fd,2
+np.float32,0x7f5458d1,0x42b27543,2
+np.float32,0x800ac01f,0x800ac01f,2
+np.float32,0x6188dd,0x6188dd,2
+np.float32,0x806ac0ba,0x806ac0ba,2
+np.float32,0xbe14493c,0xbe13c5cc,2
+np.float32,0x3f77542c,0x3f5b72ae,2
+np.float32,0xfeaacab6,0xc2b0a2df,2
+np.float32,0x7f2893d5,0x42b1ff15,2
+np.float32,0x66b528,0x66b528,2
+np.float32,0xbf653e24,0xbf4e3573,2
+np.float32,0x801a2853,0x801a2853,2
+np.float32,0x3f3d8c98,0x3f2f7b04,2
+np.float32,0xfdffbad8,0xc2aeabc5,2
+np.float32,0x3dd50f,0x3dd50f,2
+np.float32,0x3f325a4c,0x3f266353,2
+np.float32,0xfcc48ec0,0xc2ab5f3f,2
+np.float32,0x3e6f5b9a,0x3e6d3ae5,2
+np.float32,0x3dbcd62b,0x3dbc91ee,2
+np.float32,0xbf7458d9,0xbf594c1c,2
+np.float32,0xff5adb24,0xc2b284b9,2
+np.float32,0x807b246d,0x807b246d,2
+np.float32,0x3f800000,0x3f61a1b3,2
+np.float32,0x231a28,0x231a28,2
+np.float32,0xbdc66258,0xbdc61341,2
+np.float32,0x3c84b4b4,0x3c84b338,2
+np.float32,0xbf215894,0xbf183783,2
+np.float32,0xff4ee298,0xc2b267ec,2
+np.float32,0x801ef52e,0x801ef52e,2
+np.float32,0x1040b0,0x1040b0,2
+np.float32,0xff545582,0xc2b2753b,2
+np.float32,0x3f3b9dda,0x3f2decaf,2
+np.float32,0x730f99,0x730f99,2
+np.float32,0xff7fffff,0xc2b2d4fc,2
+np.float32,0xff24cc5e,0xc2b1f379,2
+np.float32,0xbe9b456a,0xbe98fc0b,2
+np.float32,0x188fb,0x188fb,2
+np.float32,0x3f5c7ce2,0x3f47a18a,2
+np.float32,0x7fc00000,0x7fc00000,2
+np.float32,0x806ea4da,0x806ea4da,2
+np.float32,0xfe810570,0xc2b01345,2
+np.float32,0x8036af89,0x8036af89,2
+np.float32,0x8043cec6,0x8043cec6,2
+np.float32,0x80342bb3,0x80342bb3,2
+np.float32,0x1a2bd4,0x1a2bd4,2
+np.float32,0x3f6248c2,0x3f4bff9a,2
+np.float32,0x8024eb35,0x8024eb35,2
+np.float32,0x7ea55872,0x42b09247,2
+np.float32,0x806d6e56,0x806d6e56,2
+np.float32,0x25c21a,0x25c21a,2
+np.float32,0x3f4e95f3,0x3f3cf483,2
+np.float32,0x15ca38,0x15ca38,2
+np.float32,0x803f01b2,0x803f01b2,2
+np.float32,0xbe731634,0xbe70dc10,2
+np.float32,0x3e80cee4,0x3e7ef933,2
+np.float32,0x3ef6dda5,0x3eee2e7b,2
+np.float32,0x3f3dfdc2,0x3f2fd5ed,2
+np.float32,0xff0492a7,0xc2b18411,2
+np.float32,0xbf1d0adf,0xbf148ff3,2
+np.float32,0xfcf75460,0xc2abd4e3,2
+np.float32,0x3f46fca6,0x3f36ffa6,2
+np.float32,0xbe63b5c0,0xbe61dfb3,2
+np.float32,0xff019bec,0xc2b1787d,2
+np.float32,0x801f14a9,0x801f14a9,2
+np.float32,0x3f176cfa,0x3f0fc051,2
+np.float32,0x3f69d976,0x3f51a015,2
+np.float32,0x3f4917cb,0x3f38a87a,2
+np.float32,0x3b2a0bea,0x3b2a0bdd,2
+np.float32,0xbf41d857,0xbf32eb50,2
+np.float32,0xbf08841a,0xbf02c18f,2
+np.float32,0x7ec86f14,0x42b0f4d0,2
+np.float32,0xbf7d15d1,0xbf5f9090,2
+np.float32,0xbd080550,0xbd07feea,2
+np.float32,0xbf6f1bef,0xbf557d26,2
+np.float32,0xfebc282c,0xc2b0d473,2
+np.float32,0x3e68d2f5,0x3e66dd03,2
+np.float32,0x3f3ed8fe,0x3f3085d5,2
+np.float32,0xff2f78ae,0xc2b2139a,2
+np.float32,0xff647a70,0xc2b29ac1,2
+np.float32,0xfd0859a0,0xc2ac06e2,2
+np.float32,0x3ea578a8,0x3ea2b7e1,2
+np.float32,0x6c58c6,0x6c58c6,2
+np.float32,0xff23f26a,0xc2b1f0d2,2
+np.float32,0x800902a4,0x800902a4,2
+np.float32,0xfe8ba64e,0xc2b03bcd,2
+np.float32,0x3f091143,0x3f033e0f,2
+np.float32,0x8017c4bd,0x8017c4bd,2
+np.float32,0xbf708fd4,0xbf568c8c,2
+np.float32,0x3be1d8,0x3be1d8,2
+np.float32,0x80091f07,0x80091f07,2
+np.float32,0x68eabe,0x68eabe,2
+np.float32,0xfe9ab2c8,0xc2b07033,2
+np.float32,0x3eabe752,0x3ea8d3d7,2
+np.float32,0xbf7adcb2,0xbf5dfaf5,2
+np.float32,0x801ecc01,0x801ecc01,2
+np.float32,0xbf5570a9,0xbf424123,2
+np.float32,0x3e89eecd,0x3e88510e,2
+np.float32,0xfeb2feee,0xc2b0bae4,2
+np.float32,0xbeb25ec2,0xbeaef22b,2
+np.float32,0x201e49,0x201e49,2
+np.float32,0x800a35f6,0x800a35f6,2
+np.float32,0xbf02d449,0xbefb6e2a,2
+np.float32,0x3f062bea,0x3f00aef6,2
+np.float32,0x7f5219ff,0x42b26fd2,2
+np.float32,0xbd4561d0,0xbd454e47,2
+np.float32,0x3f6c4789,0x3f536a4b,2
+np.float32,0x7f58b06d,0x42b27fa1,2
+np.float32,0x7f132f39,0x42b1b999,2
+np.float32,0x3e05dcb4,0x3e057bd8,2
+np.float32,0x7f526045,0x42b2707d,2
+np.float32,0x3f6117d0,0x3f4b1adb,2
+np.float32,0xbf21f47d,0xbf18bb57,2
+np.float32,0x1a26d6,0x1a26d6,2
+np.float32,0x46b114,0x46b114,2
+np.float32,0x3eb24518,0x3eaed9ef,2
+np.float32,0xfe2139c8,0xc2af2278,2
+np.float32,0xbf7c36fb,0xbf5ef1f6,2
+np.float32,0x3f193834,0x3f114af7,2
+np.float32,0xff3ea650,0xc2b23e14,2
+np.float32,0xfeeb3bca,0xc2b146c7,2
+np.float32,0x7e8b8ca0,0x42b03b6f,2
+np.float32,0x3eed903d,0x3ee5c5d2,2
+np.float32,0xbdc73740,0xbdc6e72a,2
+np.float32,0x7e500307,0x42afa4ec,2
+np.float32,0xe003c,0xe003c,2
+np.float32,0x3e612bb4,0x3e5f64fd,2
+np.float32,0xfd81e248,0xc2ad50e6,2
+np.float32,0x766a4f,0x766a4f,2
+np.float32,0x3e8708c9,0x3e858414,2
+np.float32,0xbf206c58,0xbf176f7f,2
+np.float32,0x7e93aeb0,0x42b0586f,2
+np.float32,0xfd9d36b8,0xc2adb2ad,2
+np.float32,0xff1f4e0e,0xc2b1e21d,2
+np.float32,0x3f22bd5a,0x3f1964f8,2
+np.float32,0x7f6a517a,0x42b2a7ad,2
+np.float32,0xff6ca773,0xc2b2acc1,2
+np.float32,0x7f6bf453,0x42b2ab3d,2
+np.float32,0x3edfdd64,0x3ed9489f,2
+np.float32,0xbeafc5ba,0xbeac7daa,2
+np.float32,0x7d862039,0x42ad615b,2
+np.float32,0xbe9d2002,0xbe9ac1fc,2
+np.float32,0xbdcc54c0,0xbdcbfe5b,2
+np.float32,0xbf1bc0aa,0xbf13762a,2
+np.float32,0xbf4679ce,0xbf36984b,2
+np.float32,0x3ef45696,0x3eebe713,2
+np.float32,0xff6eb999,0xc2b2b137,2
+np.float32,0xbe4b2e4c,0xbe49dee8,2
+np.float32,0x3f498951,0x3f3901b7,2
+np.float32,0xbe9692f4,0xbe947be1,2
+np.float32,0xbf44ce26,0xbf3545c8,2
+np.float32,0x805787a8,0x805787a8,2
+np.float32,0xbf342650,0xbf27dc26,2
+np.float32,0x3edafbf0,0x3ed4cdd2,2
+np.float32,0x3f6fb858,0x3f55ef63,2
+np.float32,0xff227d0a,0xc2b1ec3f,2
+np.float32,0xfeb9a202,0xc2b0cd89,2
+np.float32,0x7f5b12c1,0x42b2853b,2
+np.float32,0x584578,0x584578,2
+np.float32,0x7ec0b76f,0x42b0e0b5,2
+np.float32,0x3f57f54b,0x3f442f10,2
+np.float32,0x7eef3620,0x42b14f5d,2
+np.float32,0x4525b5,0x4525b5,2
+np.float32,0x801bd407,0x801bd407,2
+np.float32,0xbed1f166,0xbecc7703,2
+np.float32,0x3f57e732,0x3f442449,2
+np.float32,0x80767cd5,0x80767cd5,2
+np.float32,0xbef1a7d2,0xbee97aa3,2
+np.float32,0x3dd5b1af,0x3dd54ee6,2
+np.float32,0x960c,0x960c,2
+np.float32,0x7c392d41,0x42a9ddd1,2
+np.float32,0x3f5c9a34,0x3f47b7c1,2
+np.float32,0x3f5cecee,0x3f47f667,2
+np.float32,0xbee482ce,0xbedd8899,2
+np.float32,0x8066ba7e,0x8066ba7e,2
+np.float32,0x7ed76127,0x42b119a2,2
+np.float32,0x805ca40b,0x805ca40b,2
+np.float32,0x7f5ed5d1,0x42b28df3,2
+np.float32,0xfe9e1b1e,0xc2b07b5b,2
+np.float32,0x3f0201a2,0x3ef9f6c4,2
+np.float32,0xbf2e6430,0xbf232039,2
+np.float32,0x80326b4d,0x80326b4d,2
+np.float32,0x3f11dc7c,0x3f0af06e,2
+np.float32,0xbe89c42e,0xbe8827e6,2
+np.float32,0x3f3c69f8,0x3f2e9133,2
+np.float32,0x806326a9,0x806326a9,2
+np.float32,0x3f1c5286,0x3f13f2b6,2
+np.float32,0xff5c0ead,0xc2b28786,2
+np.float32,0xff32b952,0xc2b21d01,2
+np.float32,0x7dd27c4e,0x42ae4815,2
+np.float32,0xbf7a6816,0xbf5da7a2,2
+np.float32,0xfeac72f8,0xc2b0a7d1,2
+np.float32,0x335ad7,0x335ad7,2
+np.float32,0xbe682da4,0xbe663bcc,2
+np.float32,0x3f2df244,0x3f22c208,2
+np.float32,0x80686e8e,0x80686e8e,2
+np.float32,0x7f50120f,0x42b26ad9,2
+np.float32,0x3dbc596a,0x3dbc15b3,2
+np.float32,0xbf4f2868,0xbf3d666d,2
+np.float32,0x80000001,0x80000001,2
+np.float32,0xff66c059,0xc2b29fd2,2
+np.float32,0xfe8bbcaa,0xc2b03c1f,2
+np.float32,0x3ece6a51,0x3ec93271,2
+np.float32,0x7f06cd26,0x42b18c9a,2
+np.float32,0x7e41e6dc,0x42af80f5,2
+np.float32,0x7d878334,0x42ad669f,2
+np.float32,0xfe8c5c4c,0xc2b03e67,2
+np.float32,0x337a05,0x337a05,2
+np.float32,0x3e63801d,0x3e61ab58,2
+np.float32,0x62c315,0x62c315,2
+np.float32,0x802aa888,0x802aa888,2
+np.float32,0x80038b43,0x80038b43,2
+np.float32,0xff5c1271,0xc2b2878f,2
+np.float32,0xff4184a5,0xc2b245b9,2
+np.float32,0x7ef58f4b,0x42b15cc6,2
+np.float32,0x7f42d8ac,0x42b2493a,2
+np.float32,0x806609f2,0x806609f2,2
+np.float32,0x801e763b,0x801e763b,2
+np.float32,0x7f2bc073,0x42b208a2,2
+np.float32,0x801d7d7f,0x801d7d7f,2
+np.float32,0x7d415dc1,0x42acb9c2,2
+np.float32,0xbf624ff9,0xbf4c0502,2
+np.float32,0xbf603afd,0xbf4a74e2,2
+np.float32,0x8007fe42,0x8007fe42,2
+np.float32,0x800456db,0x800456db,2
+np.float32,0x620871,0x620871,2
+np.float32,0x3e9c6c1e,0x3e9a15fa,2
+np.float32,0x4245d,0x4245d,2
+np.float32,0x8035bde9,0x8035bde9,2
+np.float32,0xbf597418,0xbf45533c,2
+np.float32,0x3c730f80,0x3c730d38,2
+np.float32,0x3f7cd8ed,0x3f5f6540,2
+np.float32,0x807e49c3,0x807e49c3,2
+np.float32,0x3d6584c0,0x3d65660c,2
+np.float32,0xff42a744,0xc2b248b8,2
+np.float32,0xfedc6f56,0xc2b12583,2
+np.float32,0x806263a4,0x806263a4,2
+np.float32,0x175a17,0x175a17,2
+np.float32,0x3f1e8537,0x3f15d208,2
+np.float32,0x4055b5,0x4055b5,2
+np.float32,0x438aa6,0x438aa6,2
+np.float32,0x8038507f,0x8038507f,2
+np.float32,0xbed75348,0xbed16f85,2
+np.float32,0x7f07b7d6,0x42b19012,2
+np.float32,0xfe8b9d30,0xc2b03bac,2
+np.float32,0x805c501c,0x805c501c,2
+np.float32,0x3ef22b1d,0x3ee9f159,2
+np.float32,0x802b6759,0x802b6759,2
+np.float32,0x45281a,0x45281a,2
+np.float32,0xbf7e9970,0xbf60a3cf,2
+np.float32,0xbf14d152,0xbf0d8062,2
+np.float32,0x3d9ff950,0x3d9fcfc8,2
+np.float32,0x7865d9,0x7865d9,2
+np.float32,0xbee67fa4,0xbedf58eb,2
+np.float32,0x7dc822d1,0x42ae2e44,2
+np.float32,0x3f3af0fe,0x3f2d612c,2
+np.float32,0xbefea106,0xbef5274e,2
+np.float32,0xbf758a3f,0xbf5a28c5,2
+np.float32,0xbf331bdd,0xbf270209,2
+np.float32,0x7f51c901,0x42b26f0d,2
+np.float32,0x3f67c33b,0x3f5014d8,2
+np.float32,0xbbc9d980,0xbbc9d92c,2
+np.float32,0xbc407540,0xbc40741e,2
+np.float32,0x7eed9a3c,0x42b14be9,2
+np.float32,0x1be0fe,0x1be0fe,2
+np.float32,0xbf6b4913,0xbf52af1f,2
+np.float32,0xbda8eba8,0xbda8bac6,2
+np.float32,0x8004bcea,0x8004bcea,2
+np.float32,0xff6f6afe,0xc2b2b2b3,2
+np.float32,0xbf205810,0xbf175e50,2
+np.float32,0x80651944,0x80651944,2
+np.float32,0xbec73016,0xbec27a3f,2
+np.float32,0x5701b9,0x5701b9,2
+np.float32,0xbf1062ce,0xbf09a7df,2
+np.float32,0x3e0306ae,0x3e02abd1,2
+np.float32,0x7bfc62,0x7bfc62,2
+np.float32,0xbf48dd3c,0xbf387a6b,2
+np.float32,0x8009573e,0x8009573e,2
+np.float32,0x660a2c,0x660a2c,2
+np.float32,0xff2280da,0xc2b1ec4b,2
+np.float32,0xbf7034fe,0xbf564a54,2
+np.float32,0xbeeb448e,0xbee3b045,2
+np.float32,0xff4e949c,0xc2b2672b,2
+np.float32,0xbf3c4486,0xbf2e7309,2
+np.float32,0x7eb086d8,0x42b0b3c8,2
+np.float32,0x7eac8aca,0x42b0a817,2
+np.float32,0xfd3d2d60,0xc2acae8b,2
+np.float32,0xbf363226,0xbf2987bd,2
+np.float32,0x7f02e524,0x42b17d8c,2
+np.float32,0x8049a148,0x8049a148,2
+np.float32,0x147202,0x147202,2
+np.float32,0x8031d3f6,0x8031d3f6,2
+np.float32,0xfe78bf68,0xc2b0007d,2
+np.float32,0x7ebd16d0,0x42b0d6fb,2
+np.float32,0xbdaed2e8,0xbdae9cbb,2
+np.float32,0x802833ae,0x802833ae,2
+np.float32,0x7f62adf6,0x42b296b5,2
+np.float32,0xff2841c0,0xc2b1fe1b,2
+np.float32,0xbeb2c47e,0xbeaf523b,2
+np.float32,0x7e42a36e,0x42af82e6,2
+np.float32,0x41ea29,0x41ea29,2
+np.float32,0xbcaaa800,0xbcaaa4d7,2
+np.float64,0x3fed71f27ebae3e5,0x3fea5c6095012ca6,1
+np.float64,0x224dc392449b9,0x224dc392449b9,1
+np.float64,0x3fdf897a7d3f12f5,0x3fde620339360992,1
+np.float64,0xbfe1f99a5123f334,0xbfe124a57cfaf556,1
+np.float64,0xbfd9725c3bb2e4b8,0xbfd8d1e3f75110c7,1
+np.float64,0x3fe38977546712ee,0x3fe27d9d37f4b91f,1
+np.float64,0xbfc36c29e526d854,0xbfc3594743ee45c4,1
+np.float64,0xbfe5cbec332b97d8,0xbfe4638802316849,1
+np.float64,0x2ff35efe5fe6d,0x2ff35efe5fe6d,1
+np.float64,0x7fd3f828e227f051,0x40862a7d4a40b1e0,1
+np.float64,0xffd06fc11620df82,0xc08628ee8f1bf6c8,1
+np.float64,0x3fe5321bf4aa6438,0x3fe3e3d9fa453199,1
+np.float64,0xffd07a323ca0f464,0xc08628f3a2930f8c,1
+np.float64,0x3fdf7abe7abef57c,0x3fde54cb193d49cb,1
+np.float64,0x40941f1881285,0x40941f1881285,1
+np.float64,0xffef18defc7e31bd,0xc0863393f2c9f061,1
+np.float64,0xbfe379f871e6f3f1,0xbfe270620cb68347,1
+np.float64,0xffec829848f90530,0xc08632e210edaa2b,1
+np.float64,0x80070c00574e1801,0x80070c00574e1801,1
+np.float64,0xffce7654b23ceca8,0xc086285291e89975,1
+np.float64,0x7fc9932daa33265a,0x408626ec6cc2b807,1
+np.float64,0x355ee98c6abde,0x355ee98c6abde,1
+np.float64,0x3fac54962c38a920,0x3fac50e40b6c19f2,1
+np.float64,0x800857984af0af31,0x800857984af0af31,1
+np.float64,0x7fea6a3d55f4d47a,0x40863245bf39f179,1
+np.float64,0x3fdb8fab33371f56,0x3fdac5ffc9e1c347,1
+np.float64,0x800a887a7bf510f5,0x800a887a7bf510f5,1
+np.float64,0xbfbdbda3c63b7b48,0xbfbdac9dd5a2d3e8,1
+np.float64,0xbfd4a2457b29448a,0xbfd44acb3b316d6d,1
+np.float64,0x7fd5329a502a6534,0x40862af789b528b5,1
+np.float64,0x3fd96a7bceb2d4f8,0x3fd8ca92104d6cd6,1
+np.float64,0x3fde6a0cd6bcd41a,0x3fdd5f4b85abf749,1
+np.float64,0xbfc7faaff32ff560,0xbfc7d7560b8c4a52,1
+np.float64,0x7fec381b2f787035,0x408632cd0e9c095c,1
+np.float64,0x1fc2eb543f85e,0x1fc2eb543f85e,1
+np.float64,0x7ac6000af58c1,0x7ac6000af58c1,1
+np.float64,0xffe060a87920c150,0xc0862e72c37d5a4e,1
+np.float64,0xbfb7d8c89e2fb190,0xbfb7cffd3c3f8e3a,1
+np.float64,0x3fd91033deb22068,0x3fd87695b067aa1e,1
+np.float64,0x3fec1aff01b835fe,0x3fe95d5cbd729af7,1
+np.float64,0x7fb97f69ec32fed3,0x4086215aaae5c697,1
+np.float64,0x7feaf1e4e5f5e3c9,0x4086326e6ca6a2bb,1
+np.float64,0x800537e44d0a6fc9,0x800537e44d0a6fc9,1
+np.float64,0x800b2a0d0d36541a,0x800b2a0d0d36541a,1
+np.float64,0x3fe2193846e43270,0x3fe140308550138e,1
+np.float64,0x5e2a0a32bc542,0x5e2a0a32bc542,1
+np.float64,0xffe5888b09eb1116,0xc08630a348783aa3,1
+np.float64,0xbfceb9b5033d736c,0xbfce701049c10435,1
+np.float64,0x7fe5d68589abad0a,0x408630c00ce63f23,1
+np.float64,0x8009b5457ff36a8b,0x8009b5457ff36a8b,1
+np.float64,0xbfb5518c2e2aa318,0xbfb54b42638ca718,1
+np.float64,0x3f9c58469838b080,0x3f9c575974fbcd7b,1
+np.float64,0x3fe8db4b4731b697,0x3fe6dc9231587966,1
+np.float64,0x8007d0f77f4fa1f0,0x8007d0f77f4fa1f0,1
+np.float64,0x7fe79eef542f3dde,0x40863160c673c67f,1
+np.float64,0xffbdc0b6163b8170,0xc0862296be4bf032,1
+np.float64,0x3fbb8d3312371a66,0x3fbb7fa76fb4cf8d,1
+np.float64,0xffd8a0eedbb141de,0xc0862c2ac6e512f0,1
+np.float64,0x7fee99d8d87d33b1,0x4086337301c4c8df,1
+np.float64,0xffe7479b552e8f36,0xc0863142fba0f0ec,1
+np.float64,0xffedf8ef4abbf1de,0xc08633488068fe69,1
+np.float64,0x895c4d9f12b8a,0x895c4d9f12b8a,1
+np.float64,0x29b4caf05369a,0x29b4caf05369a,1
+np.float64,0xbfefb90d657f721b,0xbfec01efa2425b35,1
+np.float64,0xde07c3bdbc0f9,0xde07c3bdbc0f9,1
+np.float64,0x7feae9fd02f5d3f9,0x4086326c1368ed5a,1
+np.float64,0x3feab792da756f26,0x3fe84f6e15338ed7,1
+np.float64,0xbfeff8ed72fff1db,0xbfec2f35da06daaf,1
+np.float64,0x8004b2c132896583,0x8004b2c132896583,1
+np.float64,0xbf9fcb00103f9600,0xbf9fc9b1751c569e,1
+np.float64,0x4182b72e83058,0x4182b72e83058,1
+np.float64,0x90820d812105,0x90820d812105,1
+np.float64,0xbfdec9a0ba3d9342,0xbfddb585df607ce1,1
+np.float64,0x7fdc0a69a03814d2,0x40862d347f201b63,1
+np.float64,0xbfef0708937e0e11,0xbfeb82d27f8ea97f,1
+np.float64,0xffda57e4ddb4afca,0xc0862cb49e2e0c4c,1
+np.float64,0xbfa30b9af4261730,0xbfa30a7b4a633060,1
+np.float64,0x7feb57fcc4b6aff9,0x4086328c83957a0b,1
+np.float64,0x7fe6759153eceb22,0x408630f980433963,1
+np.float64,0x7fdd3278c8ba64f1,0x40862d87445243e9,1
+np.float64,0xd3b8e6b9a771d,0xd3b8e6b9a771d,1
+np.float64,0x6267dc88c4cfc,0x6267dc88c4cfc,1
+np.float64,0x7fedd3cf00bba79d,0x4086333e91712ff5,1
+np.float64,0xffbe512ce03ca258,0xc08622bd39314cea,1
+np.float64,0xbfe71742ca6e2e86,0xbfe572ccbf2d010d,1
+np.float64,0x8002fb048c65f60a,0x8002fb048c65f60a,1
+np.float64,0x800d9d9ddf7b3b3c,0x800d9d9ddf7b3b3c,1
+np.float64,0xbfeaf6230df5ec46,0xbfe87f5d751ec3d5,1
+np.float64,0xbfe69973a42d32e8,0xbfe50c680f7002fe,1
+np.float64,0x3fe309cf87e613a0,0x3fe21048714ce1ac,1
+np.float64,0x800435d17a286ba4,0x800435d17a286ba4,1
+np.float64,0x7fefffffffffffff,0x408633ce8fb9f87e,1
+np.float64,0x3fe36ade1766d5bc,0x3fe26379fb285dde,1
+np.float64,0x3f98d8d94831b1c0,0x3f98d839885dc527,1
+np.float64,0xbfd08f7ae5211ef6,0xbfd0618ab5293e1e,1
+np.float64,0xbfcf630bd53ec618,0xbfcf14a0cd20704d,1
+np.float64,0xbfe58f0ca6eb1e1a,0xbfe4312225df8e28,1
+np.float64,0xffef4f6406be9ec7,0xc08633a1ed1d27e5,1
+np.float64,0x7fe10120b3e20240,0x40862ebfaf94e6e8,1
+np.float64,0xffe96c52fbb2d8a5,0xc08631f75d9a59a0,1
+np.float64,0xbfe448a333e89146,0xbfe31fee44c3ec43,1
+np.float64,0x80045ff4e788bfeb,0x80045ff4e788bfeb,1
+np.float64,0x7fefaa2f823f545e,0x408633b8fea29524,1
+np.float64,0xffea6b8bf234d717,0xc0863246248e5960,1
+np.float64,0xbfdb085d80b610bc,0xbfda498b15b43eec,1
+np.float64,0xbfd5e12da3abc25c,0xbfd57970e2b8aecc,1
+np.float64,0x3fcc84928a390925,0x3fcc497c417a89f3,1
+np.float64,0xbfdcb713bf396e28,0xbfdbd46c5e731fd9,1
+np.float64,0xffdf50c0453ea180,0xc0862e16b5562f25,1
+np.float64,0x800342c2f7268587,0x800342c2f7268587,1
+np.float64,0x7feb8b6d743716da,0x4086329b8248de2c,1
+np.float64,0x800a9b18b4953632,0x800a9b18b4953632,1
+np.float64,0xffedaf0d12fb5e19,0xc0863334af82de1a,1
+np.float64,0x800aebda4ab5d7b5,0x800aebda4ab5d7b5,1
+np.float64,0xbfa9f5848433eb10,0xbfa9f2ac7ac065d4,1
+np.float64,0x3fea375928f46eb2,0x3fe7ec9f10eeac7d,1
+np.float64,0x3fd6c213fead8428,0x3fd64dcc1eff5f1b,1
+np.float64,0xbfa0476f44208ee0,0xbfa046bb986007ac,1
+np.float64,0x6c8e18aed91c4,0x6c8e18aed91c4,1
+np.float64,0x8000000000000001,0x8000000000000001,1
+np.float64,0x7fea86b5ba350d6a,0x4086324e59f13027,1
+np.float64,0x2316c3b0462d9,0x2316c3b0462d9,1
+np.float64,0x3fec4e3281389c65,0x3fe983c5c9d65940,1
+np.float64,0x3fbb87c47f772,0x3fbb87c47f772,1
+np.float64,0x8004af00fdc95e03,0x8004af00fdc95e03,1
+np.float64,0xbfd316db9ba62db8,0xbfd2d12765b9d155,1
+np.float64,0x3fec1a7a99f834f6,0x3fe95cf941889b3d,1
+np.float64,0x3feff7e1477fefc3,0x3fec2e782392d4b9,1
+np.float64,0xbfc683ea042d07d4,0xbfc66698cfa5026e,1
+np.float64,0x3fdbc8aaa9b79154,0x3fdafa50e6fc3fff,1
+np.float64,0xfb3b630ff676d,0xfb3b630ff676d,1
+np.float64,0x7fe715ef8eae2bde,0x40863131d794b41f,1
+np.float64,0x7fefa06c11bf40d7,0x408633b686c7996a,1
+np.float64,0x80002a40f5205483,0x80002a40f5205483,1
+np.float64,0x7fe95f3c74b2be78,0x408631f33e37bf76,1
+np.float64,0x3fb2977b32252ef0,0x3fb2934eaf5a4be8,1
+np.float64,0x3fc0f3dbc821e7b8,0x3fc0e745288c84c3,1
+np.float64,0x3fda98da56b531b5,0x3fd9e2b19447dacc,1
+np.float64,0x3f95b9d5202b73aa,0x3f95b96a53282949,1
+np.float64,0x3fdc1ace7738359d,0x3fdb4597d31df7ff,1
+np.float64,0xffeac5bb2e358b76,0xc0863261452ab66c,1
+np.float64,0xbfefb1b78f7f636f,0xbfebfcb9be100ced,1
+np.float64,0xf5c9e191eb93c,0xf5c9e191eb93c,1
+np.float64,0x3fe83a977630752f,0x3fe65d0df90ff6ef,1
+np.float64,0x3fc317515d262ea0,0x3fc3056072b719f0,1
+np.float64,0x7fe2dcfab225b9f4,0x40862f94257c28a2,1
+np.float64,0xca2b115794562,0xca2b115794562,1
+np.float64,0x3fd495301aa92a60,0x3fd43e57108761d5,1
+np.float64,0x800ccc4293199885,0x800ccc4293199885,1
+np.float64,0xc8d3173d91a63,0xc8d3173d91a63,1
+np.float64,0xbf2541bb7e4a8,0xbf2541bb7e4a8,1
+np.float64,0xbfe9a330df334662,0xbfe779816573f5be,1
+np.float64,0xffd5e4c8252bc990,0xc0862b39b3ca5d72,1
+np.float64,0x3fe90f3a53721e75,0x3fe70585ae09531d,1
+np.float64,0xbfe2b5ddc7a56bbc,0xbfe1c7fa91a675ed,1
+np.float64,0xbf981a0360303400,0xbf9819719345073a,1
+np.float64,0x19174b0e322ea,0x19174b0e322ea,1
+np.float64,0xbfd2f71a1725ee34,0xbfd2b2b6f7cd10b1,1
+np.float64,0x80056e83236add07,0x80056e83236add07,1
+np.float64,0x7fe4bc41d9697883,0x40863055f20ce0cb,1
+np.float64,0xffe76e06c46edc0d,0xc086315024b25559,1
+np.float64,0x3fe3c4f0f96789e2,0x3fe2b04b584609bf,1
+np.float64,0x3fe6cfc533ed9f8a,0x3fe538b4d784d5ee,1
+np.float64,0x7fd234a640a4694c,0x408629bfead4f0b2,1
+np.float64,0x3fdbc49c9ab78939,0x3fdaf698a83d08e2,1
+np.float64,0x3fe4c5336ee98a66,0x3fe388c6ddb60e0a,1
+np.float64,0xf4b9497be9729,0xf4b9497be9729,1
+np.float64,0x3fb312be12262580,0x3fb30e3c847c1d16,1
+np.float64,0x3fe9554218f2aa84,0x3fe73c8b311c7a98,1
+np.float64,0xff899816a0333040,0xc08610bfb2cd8559,1
+np.float64,0x8006008ad52c0116,0x8006008ad52c0116,1
+np.float64,0x3fd7d47be4afa8f8,0x3fd74fa71ec17fd0,1
+np.float64,0x8010000000000000,0x8010000000000000,1
+np.float64,0xdf2a9943be553,0xdf2a9943be553,1
+np.float64,0xbfeb86bf1eb70d7e,0xbfe8ed797580ba5c,1
+np.float64,0x800e2c0c28bc5818,0x800e2c0c28bc5818,1
+np.float64,0xbfe2be65d4657ccc,0xbfe1cf578dec2323,1
+np.float64,0xbfedea3a5afbd475,0xbfeab490bf05e585,1
+np.float64,0xbfe04b1583a0962b,0xbfdf523dfd7be25c,1
+np.float64,0x75929bb4eb254,0x75929bb4eb254,1
+np.float64,0x3fd7b4968caf692d,0x3fd731c0938ff97c,1
+np.float64,0x60bd8fd2c17b3,0x60bd8fd2c17b3,1
+np.float64,0xbfdaf15e70b5e2bc,0xbfda345a95ce18fe,1
+np.float64,0x7fdd7c35c2baf86b,0x40862d9b5f40c6b2,1
+np.float64,0x7feeb4d2ab7d69a4,0x4086337a0c0dffaf,1
+np.float64,0xffe65b5a1decb6b4,0xc08630f024420efb,1
+np.float64,0x7feb272b30764e55,0x4086327e2e553aa2,1
+np.float64,0x3fd27513e8a4ea28,0x3fd235ea49670f6a,1
+np.float64,0x3fe6541a6aeca834,0x3fe4d3a5b69fd1b6,1
+np.float64,0xbfe0c6ca0f618d94,0xbfe017058259efdb,1
+np.float64,0x7fc1bf07b7237e0e,0x4086240000fa5a52,1
+np.float64,0x7fe96af9c0f2d5f3,0x408631f6f0f4faa2,1
+np.float64,0x3fe0728be7a0e518,0x3fdf9881a5869de9,1
+np.float64,0xffe8ea4441b1d488,0xc08631ce0685ae7e,1
+np.float64,0xffd0b973f02172e8,0xc08629121e7fdf85,1
+np.float64,0xffe37b907a26f720,0xc0862fd6529401a0,1
+np.float64,0x3fe0ee826461dd05,0x3fe03a2a424a1b40,1
+np.float64,0xbfe8073c92300e79,0xbfe6340cbd179ac1,1
+np.float64,0x800768383f8ed071,0x800768383f8ed071,1
+np.float64,0x8002e467c7c5c8d0,0x8002e467c7c5c8d0,1
+np.float64,0xbfd8d53ea5b1aa7e,0xbfd83fa7243289d7,1
+np.float64,0xffebefce2bb7df9c,0xc08632b874f4f8dc,1
+np.float64,0xffe3be9eb9277d3d,0xc0862ff1ac70ad0b,1
+np.float64,0xffe2f8a82e65f150,0xc0862f9fd9e77d86,1
+np.float64,0xbfa01d151c203a30,0xbfa01c66dc13a70a,1
+np.float64,0x800877062d30ee0d,0x800877062d30ee0d,1
+np.float64,0xaade16a755bc3,0xaade16a755bc3,1
+np.float64,0xbfeb1abc70363579,0xbfe89b52c3b003aa,1
+np.float64,0x80097d0b2ad2fa17,0x80097d0b2ad2fa17,1
+np.float64,0x8001499907429333,0x8001499907429333,1
+np.float64,0x3fe8db2aaf71b656,0x3fe6dc7873f1b235,1
+np.float64,0x5cfeadc4b9fd6,0x5cfeadc4b9fd6,1
+np.float64,0xff3f77d1fe7ef,0xff3f77d1fe7ef,1
+np.float64,0xffeecd56f9bd9aad,0xc08633806cb1163d,1
+np.float64,0xbf96f3ca582de7a0,0xbf96f34c6b8e1c85,1
+np.float64,0x7ed6b44afdad7,0x7ed6b44afdad7,1
+np.float64,0x80071808da4e3012,0x80071808da4e3012,1
+np.float64,0x3feb8aee2bf715dc,0x3fe8f0a55516615c,1
+np.float64,0x800038f62e2071ed,0x800038f62e2071ed,1
+np.float64,0x3fb13f9af2227f30,0x3fb13c456ced8e08,1
+np.float64,0xffd584d1812b09a4,0xc0862b165558ec0c,1
+np.float64,0x800b20c30fb64186,0x800b20c30fb64186,1
+np.float64,0x80024f9646e49f2d,0x80024f9646e49f2d,1
+np.float64,0xffefffffffffffff,0xc08633ce8fb9f87e,1
+np.float64,0x3fdddbcb5bbbb797,0x3fdcde981111f650,1
+np.float64,0xffed14077f3a280e,0xc086330a795ad634,1
+np.float64,0x800fec2da7ffd85b,0x800fec2da7ffd85b,1
+np.float64,0x3fe8205ffc7040c0,0x3fe6482318d217f9,1
+np.float64,0x3013e5226027d,0x3013e5226027d,1
+np.float64,0xffe4e5aad469cb55,0xc0863065dc2fb4e3,1
+np.float64,0x5cb0f7b2b9620,0x5cb0f7b2b9620,1
+np.float64,0xbfeb4537d2768a70,0xbfe8bbb2c1d3bff9,1
+np.float64,0xbfd859e297b0b3c6,0xbfd7cc807948bf9d,1
+np.float64,0x71f00b8ce3e02,0x71f00b8ce3e02,1
+np.float64,0xf5c1b875eb837,0xf5c1b875eb837,1
+np.float64,0xa0f35c8141e8,0xa0f35c8141e8,1
+np.float64,0xffe24860b42490c1,0xc0862f54222f616e,1
+np.float64,0xffcd9ae8583b35d0,0xc08628181e643a42,1
+np.float64,0x7fe9b710c7736e21,0x4086320ec033490f,1
+np.float64,0x3fd2b9ca1d257394,0x3fd277e631f0c0b3,1
+np.float64,0x23559bfc46ab4,0x23559bfc46ab4,1
+np.float64,0x8002adf75e455bef,0x8002adf75e455bef,1
+np.float64,0xbfefa4d75cbf49af,0xbfebf392e51d6a1a,1
+np.float64,0xffcfef263e3fde4c,0xc08628b336adb611,1
+np.float64,0x80061acaa8ec3596,0x80061acaa8ec3596,1
+np.float64,0x7fc1b33be0236677,0x408623faaddcc17e,1
+np.float64,0x7fe3a84083675080,0x40862fe8972e41e1,1
+np.float64,0xbfe756c1276ead82,0xbfe5a6318b061e1b,1
+np.float64,0xbfae4b71b43c96e0,0xbfae46ed0b6203a4,1
+np.float64,0x800421c6d0a8438e,0x800421c6d0a8438e,1
+np.float64,0x8009ad56fe335aae,0x8009ad56fe335aae,1
+np.float64,0xbfe71afc976e35f9,0xbfe575d21f3d7193,1
+np.float64,0x7fec0bbe4c38177c,0x408632c0710f1d8a,1
+np.float64,0x750e1daeea1c4,0x750e1daeea1c4,1
+np.float64,0x800501d4240a03a9,0x800501d4240a03a9,1
+np.float64,0x800794955cef292b,0x800794955cef292b,1
+np.float64,0x3fdf8a87f5bf1510,0x3fde62f4f00cfa19,1
+np.float64,0xbfebebdbc7f7d7b8,0xbfe939e51ba1340c,1
+np.float64,0xbfe3a16217a742c4,0xbfe292039dd08a71,1
+np.float64,0x3fed6cd04c3ad9a1,0x3fea58995973f74b,1
+np.float64,0xffcad8787335b0f0,0xc086274fbb35dd37,1
+np.float64,0x3fcb178e3d362f1c,0x3fcae4c9f3e6dddc,1
+np.float64,0xbfcadc669435b8cc,0xbfcaaae7cf075420,1
+np.float64,0x7fe0e3906321c720,0x40862eb1bacc5c43,1
+np.float64,0xff8ad5edb035abc0,0xc0861120b6404d0b,1
+np.float64,0x3fe175a21562eb44,0x3fe0b13120a46549,1
+np.float64,0xbfeb4c4a5f769895,0xbfe8c1147f1c9d8f,1
+np.float64,0x7fca22f4e63445e9,0x40862718e9b4094e,1
+np.float64,0x3fe4269d0c684d3a,0x3fe3032aa2015c53,1
+np.float64,0x3fef551c09beaa38,0x3febbabe03f49c83,1
+np.float64,0xffd843df9fb087c0,0xc0862c0c52d5e5d9,1
+np.float64,0x7fc497e2ca292fc5,0x40862530bbd9fcc7,1
+np.float64,0x3fee02919efc0523,0x3feac655588a4acd,1
+np.float64,0x7fed1e52c0fa3ca5,0x4086330d4ddd8a2c,1
+np.float64,0xba04d4ef7409b,0xba04d4ef7409b,1
+np.float64,0x3fee22d0937c45a2,0x3feaddd4ca66b447,1
+np.float64,0xffeb2558cf764ab1,0xc086327da4e84053,1
+np.float64,0xbfe103d987e207b3,0xbfe04d04818ad1ff,1
+np.float64,0x3f9fd7fed03faffe,0x3f9fd6ae9a45be84,1
+np.float64,0x800a53ec4c34a7d9,0x800a53ec4c34a7d9,1
+np.float64,0xbfe2feb17f65fd63,0xbfe206b9d33a78a2,1
+np.float64,0x989bdd613139,0x989bdd613139,1
+np.float64,0xbfdd0ad3fb3a15a8,0xbfdc20c32a530741,1
+np.float64,0xbfc4222163284444,0xbfc40d1c612784b5,1
+np.float64,0xc30cf5c78619f,0xc30cf5c78619f,1
+np.float64,0x3fe913bd6732277b,0x3fe70912f76bad71,1
+np.float64,0x98f175f531e2f,0x98f175f531e2f,1
+np.float64,0x3fed8c1f717b183f,0x3fea6f9fb3af3423,1
+np.float64,0x7fee46b085bc8d60,0x4086335d269eb7e9,1
+np.float64,0x8007480f564e901f,0x8007480f564e901f,1
+np.float64,0xc9b96e179372e,0xc9b96e179372e,1
+np.float64,0x3fe44deac4289bd6,0x3fe32463a74a69e7,1
+np.float64,0x80021d6c5c243ad9,0x80021d6c5c243ad9,1
+np.float64,0xbfebc805a6f7900b,0xbfe91edcf65a1c19,1
+np.float64,0x80044748adc88e92,0x80044748adc88e92,1
+np.float64,0x4007ee44800fe,0x4007ee44800fe,1
+np.float64,0xbfe24307a4648610,0xbfe1648ad5c47b6f,1
+np.float64,0xbfee6d3a93fcda75,0xbfeb13e1a3196e78,1
+np.float64,0x3fe49a287f293451,0x3fe364a11b9f0068,1
+np.float64,0x80052b37ceaa5670,0x80052b37ceaa5670,1
+np.float64,0xbfd42be893a857d2,0xbfd3da05dac7c286,1
+np.float64,0xffb4bbe4ac2977c8,0xc0861fb31bda6956,1
+np.float64,0xbfc732a4142e6548,0xbfc7129a4eafa399,1
+np.float64,0x7fd0696791a0d2ce,0x408628eb7756cb9c,1
+np.float64,0x3fe46c8f8d68d91f,0x3fe33e3df16187c1,1
+np.float64,0x3fe3a28f1ce7451e,0x3fe293043238d08c,1
+np.float64,0xffedc4eb723b89d6,0xc086333a92258c15,1
+np.float64,0x8000d15b4c41a2b7,0x8000d15b4c41a2b7,1
+np.float64,0xffeb73450236e689,0xc08632947b0148ab,1
+np.float64,0xffe68cf4722d19e8,0xc0863101d08d77bd,1
+np.float64,0x800c70eb4698e1d7,0x800c70eb4698e1d7,1
+np.float64,0xffa94387ff529,0xffa94387ff529,1
+np.float64,0x7fe3835d996706ba,0x40862fd985ff8e7d,1
+np.float64,0x3fe55e476feabc8e,0x3fe408a15594ec52,1
+np.float64,0xffc69672222d2ce4,0xc08625ee0c4c0f6a,1
+np.float64,0xbf9d900b883b2020,0xbf9d8efe811d36df,1
+np.float64,0xbfdb9b9755b7372e,0xbfdad0f2aa2cb110,1
+np.float64,0xffeade6073b5bcc0,0xc08632689f17a25d,1
+np.float64,0xffd1d6a6baa3ad4e,0xc086299630a93a7b,1
+np.float64,0x7fd05ba25620b744,0x408628e4be1ef845,1
+np.float64,0xbfc7d422d52fa844,0xbfc7b170a61531bf,1
+np.float64,0x3fd5196797aa32d0,0x3fd4bc0f0e7d8e1d,1
+np.float64,0x617594a4c2eb3,0x617594a4c2eb3,1
+np.float64,0x7fd779bc4caef378,0x40862bc89271b882,1
+np.float64,0xffd2fb262ba5f64c,0xc0862a15561e9524,1
+np.float64,0x72fd661ae5fad,0x72fd661ae5fad,1
+np.float64,0x3fecf441f339e884,0x3fe9ff880d584f64,1
+np.float64,0x7fc3a8968827512c,0x408624d198b05c61,1
+np.float64,0x3fe7a25c56ef44b9,0x3fe5e32509a7c32d,1
+np.float64,0x7fd117d514222fa9,0x4086293ec640d5f2,1
+np.float64,0x3fe37dfe5ee6fbfc,0x3fe273d1bcaa1ef0,1
+np.float64,0xbfed4cd19d7a99a3,0xbfea41064cba4c8b,1
+np.float64,0x8003ff12aaa7fe26,0x8003ff12aaa7fe26,1
+np.float64,0x3fcbc3d1193787a2,0x3fcb8d39e3e88264,1
+np.float64,0xe9ba1a91d3744,0xe9ba1a91d3744,1
+np.float64,0x8002ab71998556e4,0x8002ab71998556e4,1
+np.float64,0x800110057922200c,0x800110057922200c,1
+np.float64,0xbfe3b7af19a76f5e,0xbfe2a502fc0a2882,1
+np.float64,0x7fd9de9d5e33bd3a,0x40862c8f73cccabf,1
+np.float64,0xbfba0f0a86341e18,0xbfba0392f44c2771,1
+np.float64,0x8000000000000000,0x8000000000000000,1
+np.float64,0x7fe5d162e96ba2c5,0x408630be2b15e01b,1
+np.float64,0x800b7f0eac76fe1e,0x800b7f0eac76fe1e,1
+np.float64,0xff98bed150317da0,0xc086160633164f5f,1
+np.float64,0x3fef91fd70ff23fb,0x3febe629709d0ae7,1
+np.float64,0x7fe5bea7f16b7d4f,0x408630b749f445e9,1
+np.float64,0xbfe3dc428467b885,0xbfe2c41ea93fab07,1
+np.float64,0xbfeba1fbfcf743f8,0xbfe9021b52851bb9,1
+np.float64,0x7fd2fb2108a5f641,0x40862a1553f45830,1
+np.float64,0x7feb8199a4370332,0x40863298a7169dad,1
+np.float64,0x800f97ff8d7f2fff,0x800f97ff8d7f2fff,1
+np.float64,0x3fd5e20b6b2bc417,0x3fd57a42bd1c0993,1
+np.float64,0x8006b4072dad680f,0x8006b4072dad680f,1
+np.float64,0x605dccf2c0bba,0x605dccf2c0bba,1
+np.float64,0x3fc705ed142e0bda,0x3fc6e69971d86f73,1
+np.float64,0xffd2ba1aad257436,0xc08629f9bc918f8b,1
+np.float64,0x8002954e23c52a9d,0x8002954e23c52a9d,1
+np.float64,0xbfecc65da7798cbb,0xbfe9dd745be18562,1
+np.float64,0x7fc66110482cc220,0x408625db0db57ef8,1
+np.float64,0x3fcd09446d3a1289,0x3fcccaf2dd0a41ea,1
+np.float64,0x3febe7095437ce13,0x3fe93642d1e73b2a,1
+np.float64,0x8004773c7da8ee7a,0x8004773c7da8ee7a,1
+np.float64,0x8001833241230665,0x8001833241230665,1
+np.float64,0x3fe6a262db6d44c6,0x3fe513b3dab5adce,1
+np.float64,0xe6282cc1cc506,0xe6282cc1cc506,1
+np.float64,0x800b9d8553973b0b,0x800b9d8553973b0b,1
+np.float64,0x3fdfbe0c7b3f7c19,0x3fde912375d867a8,1
+np.float64,0x7fd5ac11ebab5823,0x40862b24dfc6d08e,1
+np.float64,0x800e4b7cb1fc96f9,0x800e4b7cb1fc96f9,1
+np.float64,0x3fe14706da628e0e,0x3fe0883aec2a917a,1
+np.float64,0x7fc963f97532c7f2,0x408626dd9b0cafe1,1
+np.float64,0xbfe9c250b5b384a2,0xbfe791c5eabcb05d,1
+np.float64,0x3fe8d16e6c71a2dd,0x3fe6d4c7a33a0bf4,1
+np.float64,0x3fe474ae4628e95d,0x3fe34515c93f4733,1
+np.float64,0x3fbf3257ee3e64b0,0x3fbf1eb530e126ea,1
+np.float64,0x8005f089b3abe114,0x8005f089b3abe114,1
+np.float64,0x3fece07bccf9c0f8,0x3fe9f0dc228124d5,1
+np.float64,0xbfc52521632a4a44,0xbfc50ccebdf59c2c,1
+np.float64,0x7fdf53beb13ea77c,0x40862e177918195e,1
+np.float64,0x8003d9f6ad07b3ee,0x8003d9f6ad07b3ee,1
+np.float64,0xffeacf96bbb59f2d,0xc086326436b38b1a,1
+np.float64,0xdccaea29b995e,0xdccaea29b995e,1
+np.float64,0x5948d21eb291b,0x5948d21eb291b,1
+np.float64,0x10000000000000,0x10000000000000,1
+np.float64,0x7fef6d2c543eda58,0x408633a98593cdf5,1
+np.float64,0x7feda454f47b48a9,0x40863331cb6dc9f7,1
+np.float64,0x3fdd377cecba6ef8,0x3fdc4968f74a9c83,1
+np.float64,0x800644096d4c8814,0x800644096d4c8814,1
+np.float64,0xbfe33ca15ae67942,0xbfe23be5de832bd8,1
+np.float64,0xffce9582bd3d2b04,0xc086285abdf9bf9d,1
+np.float64,0x3fe6621e86acc43d,0x3fe4df231bfa93e1,1
+np.float64,0xee7d19e9dcfa3,0xee7d19e9dcfa3,1
+np.float64,0x800be5997277cb33,0x800be5997277cb33,1
+np.float64,0x82069041040e,0x82069041040e,1
+np.float64,0x800d6efdc19addfc,0x800d6efdc19addfc,1
+np.float64,0x7fb27770ee24eee1,0x40861ec5ed91b839,1
+np.float64,0x3fd506064caa0c0d,0x3fd4a9a66353fefd,1
+np.float64,0xbfeca9b36bf95367,0xbfe9c81f03ba37b8,1
+np.float64,0xffeab1b7bab5636f,0xc086325b47f61f2b,1
+np.float64,0xffc99f5b2e333eb8,0xc08626f03b08b412,1
+np.float64,0x3fbf1a71bc3e34e3,0x3fbf06fbcaa5de58,1
+np.float64,0x3fe75015736ea02b,0x3fe5a0cd8d763d8d,1
+np.float64,0xffe6a7442fad4e88,0xc086310b20addba4,1
+np.float64,0x3fe5d62ff86bac60,0x3fe46c033195bf28,1
+np.float64,0x7fd0b1f0362163df,0x4086290e857dc1be,1
+np.float64,0xbe0353737c06b,0xbe0353737c06b,1
+np.float64,0x7fec912d8739225a,0x408632e627704635,1
+np.float64,0xded8ba2fbdb18,0xded8ba2fbdb18,1
+np.float64,0x7fec0b53fdf816a7,0x408632c052bc1bd2,1
+np.float64,0x7fe9640d12b2c819,0x408631f4c2ba54d8,1
+np.float64,0x800be714eeb7ce2a,0x800be714eeb7ce2a,1
+np.float64,0xbfcf444a793e8894,0xbfcef6c126b54853,1
+np.float64,0xffeb20cf1bf6419e,0xc086327c4e6ffe80,1
+np.float64,0xc07de22180fd,0xc07de22180fd,1
+np.float64,0xffed129d387a253a,0xc086330a15ad0adb,1
+np.float64,0x3fd9e94fedb3d2a0,0x3fd94049924706a8,1
+np.float64,0x7fe6ba488c2d7490,0x40863111d51e7861,1
+np.float64,0xbfebbdf25db77be5,0xbfe91740ad7ba521,1
+np.float64,0x7fbc6c3c4838d878,0x40862239160cb613,1
+np.float64,0xbfefa82ecebf505e,0xbfebf5f31957dffd,1
+np.float64,0x800bebeb7ad7d7d7,0x800bebeb7ad7d7d7,1
+np.float64,0x7fecccc6f8f9998d,0x408632f6c6da8aac,1
+np.float64,0xcbe4926197ca,0xcbe4926197ca,1
+np.float64,0x2c5d9fd858bb5,0x2c5d9fd858bb5,1
+np.float64,0xbfe9fb021073f604,0xbfe7bddc61f1151a,1
+np.float64,0xbfebb18572f7630b,0xbfe90ddc5002313f,1
+np.float64,0x13bb0d3227763,0x13bb0d3227763,1
+np.float64,0x3feefa5e5cbdf4bd,0x3feb79b9e8ce16bf,1
+np.float64,0x3fc97f086132fe10,0x3fc9549fc8e15ecb,1
+np.float64,0xffe70887c06e110f,0xc086312d30fd31cf,1
+np.float64,0xa00c113540182,0xa00c113540182,1
+np.float64,0x800950984772a131,0x800950984772a131,1
+np.float64,0x1,0x1,1
+np.float64,0x3fd83b4026b07680,0x3fd7afdc659d9a34,1
+np.float64,0xbfe32348fbe64692,0xbfe226292a706a1a,1
+np.float64,0x800b894dcc77129c,0x800b894dcc77129c,1
+np.float64,0xeb2ca419d6595,0xeb2ca419d6595,1
+np.float64,0xbff0000000000000,0xbfec34366179d427,1
+np.float64,0x3feb269e99f64d3d,0x3fe8a4634b927a21,1
+np.float64,0xbfe83149d7706294,0xbfe655a2b245254e,1
+np.float64,0xbfe6eef3ca6ddde8,0xbfe5521310e24d16,1
+np.float64,0x3fea89a4b7b51349,0x3fe82c1fc69edcec,1
+np.float64,0x800f2a8bf17e5518,0x800f2a8bf17e5518,1
+np.float64,0x800f71fac29ee3f6,0x800f71fac29ee3f6,1
+np.float64,0xe7cb31f1cf966,0xe7cb31f1cf966,1
+np.float64,0x3b0f8752761f2,0x3b0f8752761f2,1
+np.float64,0x3fea27dea3744fbd,0x3fe7e0a4705476b2,1
+np.float64,0xbfa97c019c32f800,0xbfa97950c1257b92,1
+np.float64,0xffeff13647ffe26c,0xc08633cadc7105ed,1
+np.float64,0x3feee162353dc2c4,0x3feb67c2da0fbce8,1
+np.float64,0x80088c0807911810,0x80088c0807911810,1
+np.float64,0x3fe936ab1db26d56,0x3fe72489bc69719d,1
+np.float64,0xa2f84bd545f0a,0xa2f84bd545f0a,1
+np.float64,0xbfed445ed27a88be,0xbfea3acac0aaf482,1
+np.float64,0x800faf3e69df5e7d,0x800faf3e69df5e7d,1
+np.float64,0x3fc145a330228b46,0x3fc13853f11b1c90,1
+np.float64,0xbfe25ec5abe4bd8c,0xbfe17c9e9b486f07,1
+np.float64,0x3fe119b160e23363,0x3fe0604b10178966,1
+np.float64,0x7fe0cbf2836197e4,0x40862ea6831e5f4a,1
+np.float64,0x3fe75dd3b4eebba8,0x3fe5abe80fd628fb,1
+np.float64,0x3f7c391000387220,0x3f7c39015d8f3a36,1
+np.float64,0x899d9cad133b4,0x899d9cad133b4,1
+np.float64,0x3fe5f0e34febe1c6,0x3fe4820cefe138fc,1
+np.float64,0x7fe060dfdba0c1bf,0x40862e72de8afcd0,1
+np.float64,0xbfae42f7103c85f0,0xbfae3e7630819c60,1
+np.float64,0x35f1f2c06be5,0x35f1f2c06be5,1
+np.float64,0xffc5194d362a329c,0xc086256266c8b7ad,1
+np.float64,0xbfda034f1b34069e,0xbfd95860a44c43ad,1
+np.float64,0x32bcebca6579e,0x32bcebca6579e,1
+np.float64,0xbfd1751ebca2ea3e,0xbfd13f79f45bf75c,1
+np.float64,0x3fee4fa1e5bc9f44,0x3feafe69e0d6c1c7,1
+np.float64,0x7f9c03cd5038079a,0x4086170459172900,1
+np.float64,0x7fc5fb6d6d2bf6da,0x408625b6651cfc73,1
+np.float64,0x7ff8000000000000,0x7ff8000000000000,1
+np.float64,0xffd1a8162ca3502c,0xc0862981333931ad,1
+np.float64,0x7fc415c198282b82,0x408624fd8c155d1b,1
+np.float64,0xffda37fbe7b46ff8,0xc0862caae7865c43,1
+np.float64,0xbfef4312257e8624,0xbfebadd89f3ee31c,1
+np.float64,0xbfec45e1fd788bc4,0xbfe97d8b14db6274,1
+np.float64,0xbfe6fdcfd26dfba0,0xbfe55e25b770d00a,1
+np.float64,0x7feb66d424f6cda7,0x40863290d9ff7ea2,1
+np.float64,0x8b08a29916115,0x8b08a29916115,1
+np.float64,0xffe12ca25c625944,0xc0862ed40d769f72,1
+np.float64,0x7ff4000000000000,0x7ffc000000000000,1
+np.float64,0x804925e100925,0x804925e100925,1
+np.float64,0xcebf3e019d9,0xcebf3e019d9,1
+np.float64,0xbfd5d75d4aabaeba,0xbfd57027671dedf7,1
+np.float64,0x800b829ecd37053e,0x800b829ecd37053e,1
+np.float64,0x800b1205daf6240c,0x800b1205daf6240c,1
+np.float64,0x3fdf7e9889befd31,0x3fde583fdff406c3,1
+np.float64,0x7ff0000000000000,0x7ff0000000000000,1
+np.float64,0x3fdc09760d3812ec,0x3fdb35b55c8090c6,1
+np.float64,0x800c4d99e4f89b34,0x800c4d99e4f89b34,1
+np.float64,0xffbaa6772e354cf0,0xc08621b535badb2f,1
+np.float64,0xbfc91188fd322310,0xbfc8e933b5d25ea7,1
+np.float64,0xffc1b947f4237290,0xc08623fd69164251,1
+np.float64,0x3fc6ab3b252d5678,0x3fc68d50bbac106d,1
+np.float64,0xffac8eb968391d70,0xc0861cb734833355,1
+np.float64,0xffe29a35c365346b,0xc0862f77a1aed6d8,1
+np.float64,0x3fde14b9543c2973,0x3fdd122697779015,1
+np.float64,0xbf10f5400021e000,0xbf10f53fffef1383,1
+np.float64,0xffe0831aa3e10635,0xc0862e838553d0ca,1
+np.float64,0x3fccbadbcf3975b8,0x3fcc7e768d0154ec,1
+np.float64,0x3fe092ef66e125df,0x3fdfd212a7116c9b,1
+np.float64,0xbfd727f039ae4fe0,0xbfd6adad040b2334,1
+np.float64,0xbfe4223b93a84477,0xbfe2ff7587364db4,1
+np.float64,0x3f4e5c3a003cb874,0x3f4e5c39b75c70f7,1
+np.float64,0x800e76b1a87ced63,0x800e76b1a87ced63,1
+np.float64,0x3fed2b7368fa56e7,0x3fea2863b9131b8c,1
+np.float64,0xffadb76ec43b6ee0,0xc0861d08ae79f20c,1
+np.float64,0x800b6a0cd1f6d41a,0x800b6a0cd1f6d41a,1
+np.float64,0xffee6aa943fcd552,0xc0863366a24250d5,1
+np.float64,0xbfe68cbc4e6d1978,0xbfe502040591aa5b,1
+np.float64,0xff859a38002b3480,0xc0860f64726235cc,1
+np.float64,0x3474d13e68e9b,0x3474d13e68e9b,1
+np.float64,0xffc11d49f6223a94,0xc08623b5c2df9712,1
+np.float64,0x800d82d019bb05a0,0x800d82d019bb05a0,1
+np.float64,0xbfe2af0192255e03,0xbfe1c20e38106388,1
+np.float64,0x3fe97d13c032fa28,0x3fe75bba11a65f86,1
+np.float64,0x7fcd457e133a8afb,0x40862800e80f5863,1
+np.float64,0x9d7254cf3ae4b,0x9d7254cf3ae4b,1
+np.float64,0x8003047675a608ee,0x8003047675a608ee,1
+np.float64,0x3fead6cd7d75ad9a,0x3fe8676138e5ff93,1
+np.float64,0x3fea6ee3b0f4ddc7,0x3fe817838a2bcbe3,1
+np.float64,0x3feed0edea7da1dc,0x3feb5bea3cb12fe2,1
+np.float64,0x88003fe510008,0x88003fe510008,1
+np.float64,0x3fe64cadc56c995c,0x3fe4cd8ead87fc79,1
+np.float64,0xaae30c5955c62,0xaae30c5955c62,1
+np.float64,0x7fc8c97cae3192f8,0x408626ac579f4fc5,1
+np.float64,0xbfc2bc0e8b25781c,0xbfc2ab188fdab7dc,1
+np.float64,0xc8f8e5e791f1d,0xc8f8e5e791f1d,1
+np.float64,0x3fecfaa5d6f9f54c,0x3fea0444dabe5a15,1
+np.float64,0xbfeb93740ff726e8,0xbfe8f71a9ab13baf,1
+np.float64,0xffd951236c32a246,0xc0862c633a4661eb,1
+np.float64,0x3fddbc5fcd3b78c0,0x3fdcc21c1a0a9246,1
+np.float64,0xbfd242443da48488,0xbfd20512d91f7924,1
+np.float64,0x2a3689b2546d2,0x2a3689b2546d2,1
+np.float64,0xffe24c67382498ce,0xc0862f55e4ea6283,1
+np.float64,0x800cbfce22197f9c,0x800cbfce22197f9c,1
+np.float64,0x8002269428044d29,0x8002269428044d29,1
+np.float64,0x7fd44babbd289756,0x40862a9e79b51c3b,1
+np.float64,0x3feea056a27d40ad,0x3feb38dcddb682f0,1
+np.float64,0xffeca8174b39502e,0xc08632ec8f88a5b2,1
+np.float64,0x7fbe0853a03c10a6,0x408622a9e8d53a9e,1
+np.float64,0xbfa9704b2432e090,0xbfa96d9dfc8c0cc2,1
+np.float64,0x800bda28fab7b452,0x800bda28fab7b452,1
+np.float64,0xbfb0ffa2f621ff48,0xbfb0fc71f405e82a,1
+np.float64,0xbfe66c04216cd808,0xbfe4e73ea3b58cf6,1
+np.float64,0x3fe336ea5d266dd5,0x3fe236ffcf078c62,1
+np.float64,0xbfe7729ae6aee536,0xbfe5bcad4b8ac62d,1
+np.float64,0x558cfc96ab1a0,0x558cfc96ab1a0,1
+np.float64,0xbfe7d792aaefaf26,0xbfe60de1b8f0279d,1
+np.float64,0xffd19ef6bda33dee,0xc086297d0ffee3c7,1
+np.float64,0x666b3ab4ccd68,0x666b3ab4ccd68,1
+np.float64,0xffa3d89e3c27b140,0xc08619cdeb2c1e49,1
+np.float64,0xbfb1728f7f62f,0xbfb1728f7f62f,1
+np.float64,0x3fc76319f32ec634,0x3fc74247bd005e20,1
+np.float64,0xbfbf1caee23e3960,0xbfbf0934c13d70e2,1
+np.float64,0x7fe79626f32f2c4d,0x4086315dcc68a5cb,1
+np.float64,0xffee78c4603cf188,0xc086336a572c05c2,1
+np.float64,0x3fce546eda3ca8de,0x3fce0d8d737fd31d,1
+np.float64,0xa223644d4446d,0xa223644d4446d,1
+np.float64,0x3fecea878b79d510,0x3fe9f850d50973f6,1
+np.float64,0x3fc20e0ea1241c1d,0x3fc1fedda87c5e75,1
+np.float64,0xffd1c5a99ca38b54,0xc086298e8e94cd47,1
+np.float64,0x7feb2c299d765852,0x4086327fa6db2808,1
+np.float64,0xcaf9d09595f3a,0xcaf9d09595f3a,1
+np.float64,0xbfe293bf21e5277e,0xbfe1aa7f6ac274ef,1
+np.float64,0xbfbaa3c8ce354790,0xbfba97891df19c01,1
+np.float64,0x3faf5784543eaf09,0x3faf5283acc7d71d,1
+np.float64,0x7fc014f8f62029f1,0x40862336531c662d,1
+np.float64,0xbfe0d9ac2d61b358,0xbfe027bce36699ca,1
+np.float64,0x8003e112ff27c227,0x8003e112ff27c227,1
+np.float64,0xffec0d4151381a82,0xc08632c0df718dd0,1
+np.float64,0x7fa2156fb0242ade,0x4086190f7587d708,1
+np.float64,0xd698358dad307,0xd698358dad307,1
+np.float64,0xbfed8d1b0efb1a36,0xbfea70588ef9ba18,1
+np.float64,0xbfd2cae6a92595ce,0xbfd28851e2185dee,1
+np.float64,0xffe7a36764ef46ce,0xc086316249c9287a,1
+np.float64,0xbfdb8ad8e5b715b2,0xbfdac19213c14315,1
+np.float64,0x3b5dba6076bc,0x3b5dba6076bc,1
+np.float64,0x800e6e8347bcdd07,0x800e6e8347bcdd07,1
+np.float64,0x800bea9f3fb7d53f,0x800bea9f3fb7d53f,1
+np.float64,0x7fb6d0e5fc2da1cb,0x4086207714c4ab85,1
+np.float64,0x0,0x0,1
+np.float64,0xbfe2aa1e1465543c,0xbfe1bdd550ef2966,1
+np.float64,0x7fd3f6a47fa7ed48,0x40862a7caea33055,1
+np.float64,0x800094e292c129c6,0x800094e292c129c6,1
+np.float64,0x800e1500ecbc2a02,0x800e1500ecbc2a02,1
+np.float64,0xbfd8ff6f97b1fee0,0xbfd866f84346ecdc,1
+np.float64,0x681457d0d028c,0x681457d0d028c,1
+np.float64,0x3feed0b5987da16b,0x3feb5bc1ab424984,1
+np.float64,0x3fdbcb34cdb79668,0x3fdafca540f32c06,1
+np.float64,0xbfdc9eacdcb93d5a,0xbfdbbe274aa8aeb0,1
+np.float64,0xffe6e35d526dc6ba,0xc08631203df38ed2,1
+np.float64,0x3fcac1cc65358398,0x3fca90de41889613,1
+np.float64,0xbfebf07a55b7e0f5,0xbfe93d6007db0c67,1
+np.float64,0xbfd7a7b1e7af4f64,0xbfd725a9081c22cb,1
+np.float64,0x800232bd7de4657c,0x800232bd7de4657c,1
+np.float64,0x7fb1dae43c23b5c7,0x40861e80f5c0a64e,1
+np.float64,0x8013ded70027c,0x8013ded70027c,1
+np.float64,0x7fc4373a59286e74,0x4086250ad60575d0,1
+np.float64,0xbfe9980fd6733020,0xbfe770d1352d0ed3,1
+np.float64,0x8008a66b8dd14cd7,0x8008a66b8dd14cd7,1
+np.float64,0xbfaebc67f83d78d0,0xbfaeb7b015848478,1
+np.float64,0xffd0c52762218a4e,0xc0862917b564afc6,1
+np.float64,0xbfd503860aaa070c,0xbfd4a74618441561,1
+np.float64,0x5bdacabcb7b5a,0x5bdacabcb7b5a,1
+np.float64,0xf3623cffe6c48,0xf3623cffe6c48,1
+np.float64,0x7fe16c6c7ea2d8d8,0x40862ef18d90201f,1
+np.float64,0x3ff0000000000000,0x3fec34366179d427,1
+np.float64,0x7fe19cbc84233978,0x40862f079dcbc169,1
+np.float64,0x3fcfd3d6933fa7ad,0x3fcf822187907f6b,1
+np.float64,0x8007d65d672facbc,0x8007d65d672facbc,1
+np.float64,0xffca6115aa34c22c,0xc086272bd7728750,1
+np.float64,0xbfe77ab1556ef562,0xbfe5c332fb55b66e,1
+np.float64,0x8001ed797c23daf4,0x8001ed797c23daf4,1
+np.float64,0x7fdd3d16cb3a7a2d,0x40862d8a2c869281,1
+np.float64,0x75f36beaebe6e,0x75f36beaebe6e,1
+np.float64,0xffda3c2798b47850,0xc0862cac2d3435df,1
+np.float64,0xbfa37cc3c426f980,0xbfa37b8f9d3ec4b7,1
+np.float64,0x80030ea8bd061d52,0x80030ea8bd061d52,1
+np.float64,0xffe41f7617683eec,0xc08630188a3e135e,1
+np.float64,0x800e40590dfc80b2,0x800e40590dfc80b2,1
+np.float64,0x3fea950d80f52a1c,0x3fe834e74481e66f,1
+np.float64,0xffec95e39a792bc6,0xc08632e779150084,1
+np.float64,0xbfd54310ecaa8622,0xbfd4e39c4d767002,1
+np.float64,0xffd40c9971a81932,0xc0862a85764eb2f4,1
+np.float64,0xb0a2230761445,0xb0a2230761445,1
+np.float64,0x80092973661252e7,0x80092973661252e7,1
+np.float64,0x7fb13b030a227605,0x40861e380aeb5549,1
+np.float64,0x3fbd5d8db23abb1b,0x3fbd4d2a0b94af36,1
+np.float64,0xbfd6cb8567ad970a,0xbfd656b19ab8fa61,1
+np.float64,0xbfe7c0fd346f81fa,0xbfe5fbc28807c794,1
+np.float64,0xffd586579eab0cb0,0xc0862b16e65c0754,1
+np.float64,0x8000e52da461ca5c,0x8000e52da461ca5c,1
+np.float64,0x3fc69d17112d3a2e,0x3fc67f63fe1fea1c,1
+np.float64,0x3fd36ba892a6d750,0x3fd3225be1fa87af,1
+np.float64,0x7fe2850598e50a0a,0x40862f6e7fcd6c1a,1
+np.float64,0x80074a4dacce949c,0x80074a4dacce949c,1
+np.float64,0x3fe25eea4d64bdd5,0x3fe17cbe5fefbd4e,1
+np.float64,0xbfe250c08be4a181,0xbfe17074c520e5de,1
+np.float64,0x8000f5665481eacd,0x8000f5665481eacd,1
+np.float64,0x7fdb3172f83662e5,0x40862cf5a46764f1,1
+np.float64,0x7fd8ed82d631db05,0x40862c4380658afa,1
+np.float64,0xffec5163feb8a2c7,0xc08632d4366aab06,1
+np.float64,0x800ff14ac6ffe296,0x800ff14ac6ffe296,1
+np.float64,0xbfc7cc7aea2f98f4,0xbfc7a9e9cb38f023,1
+np.float64,0xbfd50cdfc32a19c0,0xbfd4b0282b452fb2,1
+np.float64,0xbfec256d75b84adb,0xbfe965328c1860b2,1
+np.float64,0xffe860c4cdb0c189,0xc08631a164b7059a,1
+np.float64,0xbfe23de164247bc3,0xbfe16011bffa4651,1
+np.float64,0xcc96b39d992d7,0xcc96b39d992d7,1
+np.float64,0xbfec43acf938875a,0xbfe97be3a13b50c3,1
+np.float64,0xc4f587bb89eb1,0xc4f587bb89eb1,1
+np.float64,0xbfcd971d9a3b2e3c,0xbfcd5537ad15dab4,1
+np.float64,0xffcaf00d8035e01c,0xc0862756bf2cdf8f,1
+np.float64,0x8008c26f93f184e0,0x8008c26f93f184e0,1
+np.float64,0xfff0000000000000,0xfff0000000000000,1
+np.float64,0xbfd13552c3a26aa6,0xbfd101e5e252eb7b,1
+np.float64,0x7fe497235e292e46,0x4086304792fb423a,1
+np.float64,0x7fd6dc0192adb802,0x40862b921a5e935d,1
+np.float64,0xf16d49a1e2da9,0xf16d49a1e2da9,1
+np.float64,0xffef6b1b71bed636,0xc08633a8feed0178,1
+np.float64,0x7fe15ec62f62bd8b,0x40862eeb46b193dc,1
+np.float64,0x3fef4369ec7e86d4,0x3febae1768be52cc,1
+np.float64,0x4f84e8e89f09e,0x4f84e8e89f09e,1
+np.float64,0xbfe19e71ade33ce4,0xbfe0d4fad05e0ebc,1
+np.float64,0xbfe7e1df1defc3be,0xbfe616233e15b3d0,1
+np.float64,0x7fe9349afdb26935,0x408631e5c1c5c6cd,1
+np.float64,0xff90c35ac82186c0,0xc08612e896a06467,1
+np.float64,0xbfe88bf8807117f1,0xbfe69dc786464422,1
+np.float64,0x3feaf9ff6475f3fe,0x3fe8825132410d18,1
+np.float64,0x9ff487a33fe91,0x9ff487a33fe91,1
+np.float64,0x7fedb30159bb6602,0x40863335c0419322,1
+np.float64,0x800bddf6ed77bbee,0x800bddf6ed77bbee,1
+np.float64,0x3fd919df133233be,0x3fd87f963b9584ce,1
+np.float64,0x7fd64da3b52c9b46,0x40862b5fa9dd3b6d,1
+np.float64,0xbfce288db43c511c,0xbfcde2d953407ae8,1
+np.float64,0x3fe88bc72771178e,0x3fe69da05e9e9b4e,1
+np.float64,0x800feafe259fd5fc,0x800feafe259fd5fc,1
+np.float64,0x3febbbff4a7777ff,0x3fe915c78f6a280f,1
+np.float64,0xbfefbde4417f7bc9,0xbfec055f4fb2cd21,1
+np.float64,0xf13ca103e2794,0xf13ca103e2794,1
+np.float64,0x3fe6423884ec8471,0x3fe4c4f97eaa876a,1
+np.float64,0x800ca01c8cb94039,0x800ca01c8cb94039,1
+np.float64,0x3fbc5073f638a0e0,0x3fbc41c163ac0001,1
+np.float64,0xbfda0d83cfb41b08,0xbfd961d4cacc82cf,1
+np.float64,0x800f37b8f17e6f72,0x800f37b8f17e6f72,1
+np.float64,0x7fe0b08cd7216119,0x40862e996becb771,1
+np.float64,0xffd4222a40a84454,0xc0862a8e0c984917,1
+np.float64,0x7feb3df98ff67bf2,0x40863284e3a86ee6,1
+np.float64,0x8001d5d291e3aba6,0x8001d5d291e3aba6,1
+np.float64,0xbfd3c21629a7842c,0xbfd3750095a5894a,1
+np.float64,0xbfd069eb48a0d3d6,0xbfd03d2b1c2ae9db,1
+np.float64,0xffeb1be2973637c4,0xc086327ada954662,1
+np.float64,0x3fc659f97e2cb3f3,0x3fc63d497a451f10,1
+np.float64,0xbfeb624bc776c498,0xbfe8d1cf7c0626ca,1
+np.float64,0xffeedf26e23dbe4d,0xc08633850baab425,1
+np.float64,0xffe70da48a6e1b48,0xc086312ef75d5036,1
+np.float64,0x2b4f4830569ea,0x2b4f4830569ea,1
+np.float64,0xffe82e7fcfb05cff,0xc0863190d4771f75,1
+np.float64,0x3fcc2c1fd5385840,0x3fcbf3211ddc5123,1
+np.float64,0x7fe22ced5a6459da,0x40862f481629ee6a,1
+np.float64,0x7fe13d2895e27a50,0x40862edbbc411899,1
+np.float64,0x3fd54c4280aa9884,0x3fd4ec55a946c5d7,1
+np.float64,0xffd75b8e01aeb71c,0xc0862bbe42d76e5e,1
+np.float64,0x7f1d5376fe3ab,0x7f1d5376fe3ab,1
+np.float64,0x3fe6ec6c902dd8d9,0x3fe55004f35192bd,1
+np.float64,0x5634504aac68b,0x5634504aac68b,1
+np.float64,0x3feedb0d83bdb61b,0x3feb633467467ce6,1
+np.float64,0x3fddb1c0dcbb6380,0x3fdcb87a02daf1fa,1
+np.float64,0xbfa832da443065b0,0xbfa8308c70257209,1
+np.float64,0x87a9836b0f531,0x87a9836b0f531,1
diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/tests/data/umath-validation-set-arctan.csv b/.venv/lib/python3.12/site-packages/numpy/_core/tests/data/umath-validation-set-arctan.csv
new file mode 100644
index 0000000..c03e144
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/_core/tests/data/umath-validation-set-arctan.csv
@@ -0,0 +1,1429 @@
+dtype,input,output,ulperrortol
+np.float32,0x3f338252,0x3f1c8d9c,3
+np.float32,0x7e569df2,0x3fc90fdb,3
+np.float32,0xbf347e25,0xbf1d361f,3
+np.float32,0xbf0a654e,0xbefdbfd2,3
+np.float32,0x8070968e,0x8070968e,3
+np.float32,0x803cfb27,0x803cfb27,3
+np.float32,0x8024362e,0x8024362e,3
+np.float32,0xfd55dca0,0xbfc90fdb,3
+np.float32,0x592b82,0x592b82,3
+np.float32,0x802eb8e1,0x802eb8e1,3
+np.float32,0xbc5fef40,0xbc5febae,3
+np.float32,0x3f1f6ce8,0x3f0e967c,3
+np.float32,0x20bedc,0x20bedc,3
+np.float32,0xbf058860,0xbef629c7,3
+np.float32,0x311504,0x311504,3
+np.float32,0xbd23f560,0xbd23defa,3
+np.float32,0x800ff4e8,0x800ff4e8,3
+np.float32,0x355009,0x355009,3
+np.float32,0x3f7be42e,0x3f46fdb3,3
+np.float32,0xbf225f7c,0xbf10b364,3
+np.float32,0x8074fa9e,0x8074fa9e,3
+np.float32,0xbea4b418,0xbe9f59ce,3
+np.float32,0xbe909c14,0xbe8cf045,3
+np.float32,0x80026bee,0x80026bee,3
+np.float32,0x3d789c20,0x3d784e25,3
+np.float32,0x7f56a4ba,0x3fc90fdb,3
+np.float32,0xbf70d141,0xbf413db7,3
+np.float32,0xbf2c4886,0xbf17a505,3
+np.float32,0x7e2993bf,0x3fc90fdb,3
+np.float32,0xbe2c8a30,0xbe2aef28,3
+np.float32,0x803f82d9,0x803f82d9,3
+np.float32,0x3f062fbc,0x3ef730a1,3
+np.float32,0x3f349ee0,0x3f1d4bfa,3
+np.float32,0x3eccfb69,0x3ec2f9e8,3
+np.float32,0x7e8a85dd,0x3fc90fdb,3
+np.float32,0x25331,0x25331,3
+np.float32,0x464f19,0x464f19,3
+np.float32,0x8035c818,0x8035c818,3
+np.float32,0x802e5799,0x802e5799,3
+np.float32,0x64e1c0,0x64e1c0,3
+np.float32,0x701cc2,0x701cc2,3
+np.float32,0x265c57,0x265c57,3
+np.float32,0x807a053f,0x807a053f,3
+np.float32,0x3bd2c412,0x3bd2c354,3
+np.float32,0xff28f1c8,0xbfc90fdb,3
+np.float32,0x7f08f08b,0x3fc90fdb,3
+np.float32,0x800c50e4,0x800c50e4,3
+np.float32,0x369674,0x369674,3
+np.float32,0xbf5b7db3,0xbf3571bf,3
+np.float32,0x7edcf5e2,0x3fc90fdb,3
+np.float32,0x800e5d4b,0x800e5d4b,3
+np.float32,0x80722554,0x80722554,3
+np.float32,0x693f33,0x693f33,3
+np.float32,0x800844e4,0x800844e4,3
+np.float32,0xbf111b82,0xbf0402ec,3
+np.float32,0x7df9c9ac,0x3fc90fdb,3
+np.float32,0xbf6619a6,0xbf3b6f57,3
+np.float32,0x8002fafe,0x8002fafe,3
+np.float32,0xfe1e67f8,0xbfc90fdb,3
+np.float32,0x3f7f4bf8,0x3f48b5b7,3
+np.float32,0x7f017b20,0x3fc90fdb,3
+np.float32,0x2d9b07,0x2d9b07,3
+np.float32,0x803aa174,0x803aa174,3
+np.float32,0x7d530336,0x3fc90fdb,3
+np.float32,0x80662195,0x80662195,3
+np.float32,0xfd5ebcf0,0xbfc90fdb,3
+np.float32,0xbe7b8dcc,0xbe76ab59,3
+np.float32,0x7f2bacaf,0x3fc90fdb,3
+np.float32,0x3f194fc4,0x3f0a229e,3
+np.float32,0x7ee21cdf,0x3fc90fdb,3
+np.float32,0x3f5a17fc,0x3f34a307,3
+np.float32,0x7f100c58,0x3fc90fdb,3
+np.float32,0x7e9128f5,0x3fc90fdb,3
+np.float32,0xbf2107c6,0xbf0fbdb4,3
+np.float32,0xbd29c800,0xbd29af22,3
+np.float32,0xbf5af499,0xbf3522a6,3
+np.float32,0x801bde44,0x801bde44,3
+np.float32,0xfeb4761a,0xbfc90fdb,3
+np.float32,0x3d88aa1b,0x3d887650,3
+np.float32,0x7eba5e0b,0x3fc90fdb,3
+np.float32,0x803906bd,0x803906bd,3
+np.float32,0x80101512,0x80101512,3
+np.float32,0x7e898f83,0x3fc90fdb,3
+np.float32,0x806406d3,0x806406d3,3
+np.float32,0x7ed20fc0,0x3fc90fdb,3
+np.float32,0x20827d,0x20827d,3
+np.float32,0x3f361359,0x3f1e43fe,3
+np.float32,0xfe4ef8d8,0xbfc90fdb,3
+np.float32,0x805e7d2d,0x805e7d2d,3
+np.float32,0xbe4316b0,0xbe40c745,3
+np.float32,0xbf0a1c06,0xbefd4e5a,3
+np.float32,0x3e202860,0x3e1edee1,3
+np.float32,0xbeb32a2c,0xbeac5899,3
+np.float32,0xfe528838,0xbfc90fdb,3
+np.float32,0x2f73e2,0x2f73e2,3
+np.float32,0xbe16e010,0xbe15cc27,3
+np.float32,0x3f50d6c5,0x3f2f2d75,3
+np.float32,0xbe88a6a2,0xbe8589c7,3
+np.float32,0x3ee36060,0x3ed5fb36,3
+np.float32,0x6c978b,0x6c978b,3
+np.float32,0x7f1b735f,0x3fc90fdb,3
+np.float32,0x3dad8256,0x3dad1885,3
+np.float32,0x807f5094,0x807f5094,3
+np.float32,0x65c358,0x65c358,3
+np.float32,0xff315ce4,0xbfc90fdb,3
+np.float32,0x7411a6,0x7411a6,3
+np.float32,0x80757b04,0x80757b04,3
+np.float32,0x3eec73a6,0x3edd82f4,3
+np.float32,0xfe9f69e8,0xbfc90fdb,3
+np.float32,0x801f4fa8,0x801f4fa8,3
+np.float32,0xbf6f2fae,0xbf405f79,3
+np.float32,0xfea206b6,0xbfc90fdb,3
+np.float32,0x3f257301,0x3f12e1ee,3
+np.float32,0x7ea6a506,0x3fc90fdb,3
+np.float32,0x80800000,0x80800000,3
+np.float32,0xff735c2d,0xbfc90fdb,3
+np.float32,0x80197f95,0x80197f95,3
+np.float32,0x7f4a354f,0x3fc90fdb,3
+np.float32,0xff320c00,0xbfc90fdb,3
+np.float32,0x3f2659de,0x3f138484,3
+np.float32,0xbe5451bc,0xbe515a52,3
+np.float32,0x3f6e228c,0x3f3fcf7c,3
+np.float32,0x66855a,0x66855a,3
+np.float32,0x8034b3a3,0x8034b3a3,3
+np.float32,0xbe21a2fc,0xbe20505d,3
+np.float32,0x7f79e2dc,0x3fc90fdb,3
+np.float32,0xbe19a8e0,0xbe18858c,3
+np.float32,0x10802c,0x10802c,3
+np.float32,0xfeee579e,0xbfc90fdb,3
+np.float32,0x3f3292c8,0x3f1becc0,3
+np.float32,0xbf595a71,0xbf34350a,3
+np.float32,0xbf7c3373,0xbf4725f4,3
+np.float32,0xbdd30938,0xbdd24b36,3
+np.float32,0x153a17,0x153a17,3
+np.float32,0x807282a0,0x807282a0,3
+np.float32,0xfe817322,0xbfc90fdb,3
+np.float32,0x3f1b3628,0x3f0b8771,3
+np.float32,0x41be8f,0x41be8f,3
+np.float32,0x7f4a8343,0x3fc90fdb,3
+np.float32,0x3dc4ea2b,0x3dc44fae,3
+np.float32,0x802aac25,0x802aac25,3
+np.float32,0xbf20e1d7,0xbf0fa284,3
+np.float32,0xfd91a1b0,0xbfc90fdb,3
+np.float32,0x3f0d5476,0x3f012265,3
+np.float32,0x21c916,0x21c916,3
+np.float32,0x807df399,0x807df399,3
+np.float32,0x7e207b4c,0x3fc90fdb,3
+np.float32,0x8055f8ff,0x8055f8ff,3
+np.float32,0x7edf3b01,0x3fc90fdb,3
+np.float32,0x803a8df3,0x803a8df3,3
+np.float32,0x3ce3b002,0x3ce3a101,3
+np.float32,0x3f62dd54,0x3f39a248,3
+np.float32,0xff33ae10,0xbfc90fdb,3
+np.float32,0x7e3de69d,0x3fc90fdb,3
+np.float32,0x8024581e,0x8024581e,3
+np.float32,0xbf4ac99d,0xbf2b807a,3
+np.float32,0x3f157d19,0x3f074d8c,3
+np.float32,0xfed383f4,0xbfc90fdb,3
+np.float32,0xbf5a39fa,0xbf34b6b8,3
+np.float32,0x800d757d,0x800d757d,3
+np.float32,0x807d606b,0x807d606b,3
+np.float32,0x3e828f89,0x3e7fac2d,3
+np.float32,0x7a6604,0x7a6604,3
+np.float32,0x7dc7e72b,0x3fc90fdb,3
+np.float32,0x80144146,0x80144146,3
+np.float32,0x7c2eed69,0x3fc90fdb,3
+np.float32,0x3f5b4d8c,0x3f3555fc,3
+np.float32,0xfd8b7778,0xbfc90fdb,3
+np.float32,0xfc9d9140,0xbfc90fdb,3
+np.float32,0xbea265d4,0xbe9d4232,3
+np.float32,0xbe9344d0,0xbe8f65da,3
+np.float32,0x3f71f19a,0x3f41d65b,3
+np.float32,0x804a3f59,0x804a3f59,3
+np.float32,0x3e596290,0x3e563476,3
+np.float32,0x3e994ee4,0x3e94f546,3
+np.float32,0xbc103e00,0xbc103d0c,3
+np.float32,0xbf1cd896,0xbf0cb889,3
+np.float32,0x7f52b080,0x3fc90fdb,3
+np.float32,0xff584452,0xbfc90fdb,3
+np.float32,0x58b26b,0x58b26b,3
+np.float32,0x3f23cd4c,0x3f11b799,3
+np.float32,0x707d7,0x707d7,3
+np.float32,0xff732cff,0xbfc90fdb,3
+np.float32,0x3e41c2a6,0x3e3f7f0f,3
+np.float32,0xbf7058e9,0xbf40fdcf,3
+np.float32,0x7dca9857,0x3fc90fdb,3
+np.float32,0x7f0eb44b,0x3fc90fdb,3
+np.float32,0x8000405c,0x8000405c,3
+np.float32,0x4916ab,0x4916ab,3
+np.float32,0x4811a8,0x4811a8,3
+np.float32,0x3d69bf,0x3d69bf,3
+np.float32,0xfeadcf1e,0xbfc90fdb,3
+np.float32,0x3e08dbbf,0x3e080d58,3
+np.float32,0xff031f88,0xbfc90fdb,3
+np.float32,0xbe09cab8,0xbe08f818,3
+np.float32,0x21d7cd,0x21d7cd,3
+np.float32,0x3f23230d,0x3f113ea9,3
+np.float32,0x7e8a48d4,0x3fc90fdb,3
+np.float32,0x413869,0x413869,3
+np.float32,0x7e832990,0x3fc90fdb,3
+np.float32,0x800f5c09,0x800f5c09,3
+np.float32,0x7f5893b6,0x3fc90fdb,3
+np.float32,0x7f06b5b1,0x3fc90fdb,3
+np.float32,0xbe1cbee8,0xbe1b89d6,3
+np.float32,0xbf279f14,0xbf1468a8,3
+np.float32,0xfea86060,0xbfc90fdb,3
+np.float32,0x3e828174,0x3e7f91bb,3
+np.float32,0xff682c82,0xbfc90fdb,3
+np.float32,0x4e20f3,0x4e20f3,3
+np.float32,0x7f17d7e9,0x3fc90fdb,3
+np.float32,0x80671f92,0x80671f92,3
+np.float32,0x7f6dd100,0x3fc90fdb,3
+np.float32,0x3f219a4d,0x3f102695,3
+np.float32,0x803c9808,0x803c9808,3
+np.float32,0x3c432ada,0x3c43287d,3
+np.float32,0xbd3db450,0xbd3d91a2,3
+np.float32,0x3baac135,0x3baac0d0,3
+np.float32,0xff7fffe1,0xbfc90fdb,3
+np.float32,0xfe38a6f4,0xbfc90fdb,3
+np.float32,0x3dfb0a04,0x3df9cb04,3
+np.float32,0x800b05c2,0x800b05c2,3
+np.float32,0x644163,0x644163,3
+np.float32,0xff03a025,0xbfc90fdb,3
+np.float32,0x3f7d506c,0x3f47b641,3
+np.float32,0xff0e682a,0xbfc90fdb,3
+np.float32,0x3e09b7b0,0x3e08e567,3
+np.float32,0x7f72a216,0x3fc90fdb,3
+np.float32,0x7f800000,0x3fc90fdb,3
+np.float32,0x8050a281,0x8050a281,3
+np.float32,0x7edafa2f,0x3fc90fdb,3
+np.float32,0x3f4e0df6,0x3f2d7f2f,3
+np.float32,0xbf6728e0,0xbf3c050f,3
+np.float32,0x3e904ce4,0x3e8ca6eb,3
+np.float32,0x0,0x0,3
+np.float32,0xfd215070,0xbfc90fdb,3
+np.float32,0x7e406b15,0x3fc90fdb,3
+np.float32,0xbf2803c9,0xbf14af18,3
+np.float32,0x5950c8,0x5950c8,3
+np.float32,0xbeddcec8,0xbed14faa,3
+np.float32,0xbec6457e,0xbebd2aa5,3
+np.float32,0xbf42843c,0xbf2656db,3
+np.float32,0x3ee9cba8,0x3edb5163,3
+np.float32,0xbe30c954,0xbe2f0f90,3
+np.float32,0xbeee6b44,0xbedf216f,3
+np.float32,0xbe35d818,0xbe33f7cd,3
+np.float32,0xbe47c630,0xbe454bc6,3
+np.float32,0x801b146f,0x801b146f,3
+np.float32,0x7f6788da,0x3fc90fdb,3
+np.float32,0x3eaef088,0x3ea8927d,3
+np.float32,0x3eb5983e,0x3eae81fc,3
+np.float32,0x40b51d,0x40b51d,3
+np.float32,0xfebddd04,0xbfc90fdb,3
+np.float32,0x3e591aee,0x3e55efea,3
+np.float32,0xbe2b6b48,0xbe29d81f,3
+np.float32,0xff4a8826,0xbfc90fdb,3
+np.float32,0x3e791df0,0x3e745eac,3
+np.float32,0x7c8f681f,0x3fc90fdb,3
+np.float32,0xfe7a15c4,0xbfc90fdb,3
+np.float32,0x3c8963,0x3c8963,3
+np.float32,0x3f0afa0a,0x3efea5cc,3
+np.float32,0xbf0d2680,0xbf00ff29,3
+np.float32,0x3dc306b0,0x3dc27096,3
+np.float32,0x7f4cf105,0x3fc90fdb,3
+np.float32,0xbe196060,0xbe183ea4,3
+np.float32,0x5caf1c,0x5caf1c,3
+np.float32,0x801f2852,0x801f2852,3
+np.float32,0xbe01aa0c,0xbe00fa53,3
+np.float32,0x3f0cfd32,0x3f00df7a,3
+np.float32,0x7d82038e,0x3fc90fdb,3
+np.float32,0x7f7b927f,0x3fc90fdb,3
+np.float32,0xbe93b2e4,0xbe8fcb7f,3
+np.float32,0x1ffe8c,0x1ffe8c,3
+np.float32,0x3faaf6,0x3faaf6,3
+np.float32,0x3e32b1b8,0x3e30e9ab,3
+np.float32,0x802953c0,0x802953c0,3
+np.float32,0xfe5d9844,0xbfc90fdb,3
+np.float32,0x3e1a59d0,0x3e193292,3
+np.float32,0x801c6edc,0x801c6edc,3
+np.float32,0x1ecf41,0x1ecf41,3
+np.float32,0xfe56b09c,0xbfc90fdb,3
+np.float32,0x7e878351,0x3fc90fdb,3
+np.float32,0x3f401e2c,0x3f24cfcb,3
+np.float32,0xbf204a40,0xbf0f35bb,3
+np.float32,0x3e155a98,0x3e144ee1,3
+np.float32,0xbf34f929,0xbf1d8838,3
+np.float32,0x801bbf70,0x801bbf70,3
+np.float32,0x7e7c9730,0x3fc90fdb,3
+np.float32,0x7cc23432,0x3fc90fdb,3
+np.float32,0xbf351638,0xbf1d9b97,3
+np.float32,0x80152094,0x80152094,3
+np.float32,0x3f2d731c,0x3f187219,3
+np.float32,0x804ab0b7,0x804ab0b7,3
+np.float32,0x37d6db,0x37d6db,3
+np.float32,0xbf3ccc56,0xbf22acbf,3
+np.float32,0x3e546f8c,0x3e5176e7,3
+np.float32,0xbe90e87e,0xbe8d3707,3
+np.float32,0x48256c,0x48256c,3
+np.float32,0x7e2468d0,0x3fc90fdb,3
+np.float32,0x807af47e,0x807af47e,3
+np.float32,0x3ed4b221,0x3ec996f0,3
+np.float32,0x3d3b1956,0x3d3af811,3
+np.float32,0xbe69d93c,0xbe65e7f0,3
+np.float32,0xff03ff14,0xbfc90fdb,3
+np.float32,0x801e79dc,0x801e79dc,3
+np.float32,0x3f467c53,0x3f28d63d,3
+np.float32,0x3eab6baa,0x3ea56a1c,3
+np.float32,0xbf15519c,0xbf072d1c,3
+np.float32,0x7f0bd8e8,0x3fc90fdb,3
+np.float32,0xbe1e0d1c,0xbe1cd053,3
+np.float32,0x8016edab,0x8016edab,3
+np.float32,0x7ecaa09b,0x3fc90fdb,3
+np.float32,0x3f72e6d9,0x3f4257a8,3
+np.float32,0xbefe787e,0xbeec29a4,3
+np.float32,0xbee989e8,0xbedb1af9,3
+np.float32,0xbe662db0,0xbe626a45,3
+np.float32,0x495bf7,0x495bf7,3
+np.float32,0x26c379,0x26c379,3
+np.float32,0x7f54d41a,0x3fc90fdb,3
+np.float32,0x801e7dd9,0x801e7dd9,3
+np.float32,0x80000000,0x80000000,3
+np.float32,0xfa3d3000,0xbfc90fdb,3
+np.float32,0xfa3cb800,0xbfc90fdb,3
+np.float32,0x264894,0x264894,3
+np.float32,0xff6de011,0xbfc90fdb,3
+np.float32,0x7e9045b2,0x3fc90fdb,3
+np.float32,0x3f2253a8,0x3f10aaf4,3
+np.float32,0xbd462bf0,0xbd460469,3
+np.float32,0x7f1796af,0x3fc90fdb,3
+np.float32,0x3e718858,0x3e6d3279,3
+np.float32,0xff437d7e,0xbfc90fdb,3
+np.float32,0x805ae7cb,0x805ae7cb,3
+np.float32,0x807e32e9,0x807e32e9,3
+np.float32,0x3ee0bafc,0x3ed3c453,3
+np.float32,0xbf721dee,0xbf41edc3,3
+np.float32,0xfec9f792,0xbfc90fdb,3
+np.float32,0x7f050720,0x3fc90fdb,3
+np.float32,0x182261,0x182261,3
+np.float32,0x3e39e678,0x3e37e5be,3
+np.float32,0x7e096e4b,0x3fc90fdb,3
+np.float32,0x103715,0x103715,3
+np.float32,0x3f7e7741,0x3f484ae4,3
+np.float32,0x3e29aea5,0x3e28277c,3
+np.float32,0x58c183,0x58c183,3
+np.float32,0xff72fdb2,0xbfc90fdb,3
+np.float32,0xbd9a9420,0xbd9a493c,3
+np.float32,0x7f1e07e7,0x3fc90fdb,3
+np.float32,0xff79f522,0xbfc90fdb,3
+np.float32,0x7c7d0e96,0x3fc90fdb,3
+np.float32,0xbeba9e8e,0xbeb2f504,3
+np.float32,0xfd880a80,0xbfc90fdb,3
+np.float32,0xff7f2a33,0xbfc90fdb,3
+np.float32,0x3e861ae0,0x3e83289c,3
+np.float32,0x7f0161c1,0x3fc90fdb,3
+np.float32,0xfe844ff8,0xbfc90fdb,3
+np.float32,0xbebf4b98,0xbeb7128e,3
+np.float32,0x652bee,0x652bee,3
+np.float32,0xff188a4b,0xbfc90fdb,3
+np.float32,0xbf800000,0xbf490fdb,3
+np.float32,0x80418711,0x80418711,3
+np.float32,0xbeb712d4,0xbeafd1f6,3
+np.float32,0xbf7cee28,0xbf478491,3
+np.float32,0xfe66c59c,0xbfc90fdb,3
+np.float32,0x4166a2,0x4166a2,3
+np.float32,0x3dfa1a2c,0x3df8deb5,3
+np.float32,0xbdbfbcb8,0xbdbf2e0f,3
+np.float32,0xfe60ef70,0xbfc90fdb,3
+np.float32,0xfe009444,0xbfc90fdb,3
+np.float32,0xfeb27aa0,0xbfc90fdb,3
+np.float32,0xbe99f7bc,0xbe95902b,3
+np.float32,0x8043d28d,0x8043d28d,3
+np.float32,0xfe5328c4,0xbfc90fdb,3
+np.float32,0x8017b27e,0x8017b27e,3
+np.float32,0x3ef1d2cf,0x3ee1ebd7,3
+np.float32,0x805ddd90,0x805ddd90,3
+np.float32,0xbf424263,0xbf262d17,3
+np.float32,0xfc99dde0,0xbfc90fdb,3
+np.float32,0xbf7ec13b,0xbf487015,3
+np.float32,0xbef727ea,0xbee64377,3
+np.float32,0xff15ce95,0xbfc90fdb,3
+np.float32,0x1fbba4,0x1fbba4,3
+np.float32,0x3f3b2368,0x3f2198a9,3
+np.float32,0xfefda26e,0xbfc90fdb,3
+np.float32,0x801519ad,0x801519ad,3
+np.float32,0x80473fa2,0x80473fa2,3
+np.float32,0x7e7a8bc1,0x3fc90fdb,3
+np.float32,0x3e8a9289,0x3e87548a,3
+np.float32,0x3ed68987,0x3ecb2872,3
+np.float32,0x805bca66,0x805bca66,3
+np.float32,0x8079c4e3,0x8079c4e3,3
+np.float32,0x3a2510,0x3a2510,3
+np.float32,0x7eedc598,0x3fc90fdb,3
+np.float32,0x80681956,0x80681956,3
+np.float32,0xff64c778,0xbfc90fdb,3
+np.float32,0x806bbc46,0x806bbc46,3
+np.float32,0x433643,0x433643,3
+np.float32,0x705b92,0x705b92,3
+np.float32,0xff359392,0xbfc90fdb,3
+np.float32,0xbee78672,0xbed96fa7,3
+np.float32,0x3e21717b,0x3e202010,3
+np.float32,0xfea13c34,0xbfc90fdb,3
+np.float32,0x2c8895,0x2c8895,3
+np.float32,0x3ed33290,0x3ec84f7c,3
+np.float32,0x3e63031e,0x3e5f662e,3
+np.float32,0x7e30907b,0x3fc90fdb,3
+np.float32,0xbe293708,0xbe27b310,3
+np.float32,0x3ed93738,0x3ecd6ea3,3
+np.float32,0x9db7e,0x9db7e,3
+np.float32,0x3f7cd1b8,0x3f47762c,3
+np.float32,0x3eb5143c,0x3eae0cb0,3
+np.float32,0xbe69b234,0xbe65c2d7,3
+np.float32,0x3f6e74de,0x3f3ffb97,3
+np.float32,0x5d0559,0x5d0559,3
+np.float32,0x3e1e8c30,0x3e1d4c70,3
+np.float32,0xbf2d1878,0xbf1833ef,3
+np.float32,0xff2adf82,0xbfc90fdb,3
+np.float32,0x8012e2c1,0x8012e2c1,3
+np.float32,0x7f031be3,0x3fc90fdb,3
+np.float32,0x805ff94e,0x805ff94e,3
+np.float32,0x3e9d5b27,0x3e98aa31,3
+np.float32,0x3f56d5cf,0x3f32bc9e,3
+np.float32,0x3eaa0412,0x3ea4267f,3
+np.float32,0xbe899ea4,0xbe86712f,3
+np.float32,0x800f2f48,0x800f2f48,3
+np.float32,0x3f1c2269,0x3f0c33ea,3
+np.float32,0x3f4a5f64,0x3f2b3f28,3
+np.float32,0x80739318,0x80739318,3
+np.float32,0x806e9b47,0x806e9b47,3
+np.float32,0x3c8cd300,0x3c8ccf73,3
+np.float32,0x7f39a39d,0x3fc90fdb,3
+np.float32,0x3ec95d61,0x3ebfd9dc,3
+np.float32,0xff351ff8,0xbfc90fdb,3
+np.float32,0xff3a8f58,0xbfc90fdb,3
+np.float32,0x7f313ec0,0x3fc90fdb,3
+np.float32,0x803aed13,0x803aed13,3
+np.float32,0x7f771d9b,0x3fc90fdb,3
+np.float32,0x8045a6d6,0x8045a6d6,3
+np.float32,0xbc85f280,0xbc85ef72,3
+np.float32,0x7e9c68f5,0x3fc90fdb,3
+np.float32,0xbf0f9379,0xbf02d975,3
+np.float32,0x7e97bcb1,0x3fc90fdb,3
+np.float32,0x804a07d5,0x804a07d5,3
+np.float32,0x802e6117,0x802e6117,3
+np.float32,0x7ed5e388,0x3fc90fdb,3
+np.float32,0x80750455,0x80750455,3
+np.float32,0xff4a8325,0xbfc90fdb,3
+np.float32,0xbedb6866,0xbecf497c,3
+np.float32,0x52ea3b,0x52ea3b,3
+np.float32,0xff773172,0xbfc90fdb,3
+np.float32,0xbeaa8ff0,0xbea4a46e,3
+np.float32,0x7eef2058,0x3fc90fdb,3
+np.float32,0x3f712472,0x3f4169d3,3
+np.float32,0xff6c8608,0xbfc90fdb,3
+np.float32,0xbf6eaa41,0xbf40182a,3
+np.float32,0x3eb03c24,0x3ea9bb34,3
+np.float32,0xfe118cd4,0xbfc90fdb,3
+np.float32,0x3e5b03b0,0x3e57c378,3
+np.float32,0x7f34d92d,0x3fc90fdb,3
+np.float32,0x806c3418,0x806c3418,3
+np.float32,0x7f3074e3,0x3fc90fdb,3
+np.float32,0x8002df02,0x8002df02,3
+np.float32,0x3f6df63a,0x3f3fb7b7,3
+np.float32,0xfd2b4100,0xbfc90fdb,3
+np.float32,0x80363d5c,0x80363d5c,3
+np.float32,0xbeac1f98,0xbea60bd6,3
+np.float32,0xff7fffff,0xbfc90fdb,3
+np.float32,0x80045097,0x80045097,3
+np.float32,0xfe011100,0xbfc90fdb,3
+np.float32,0x80739ef5,0x80739ef5,3
+np.float32,0xff3976ed,0xbfc90fdb,3
+np.float32,0xbe18e3a0,0xbe17c49e,3
+np.float32,0xbe289294,0xbe2712f6,3
+np.float32,0x3f1d41e7,0x3f0d050e,3
+np.float32,0x39364a,0x39364a,3
+np.float32,0x8072b77e,0x8072b77e,3
+np.float32,0x3f7cfec0,0x3f478cf6,3
+np.float32,0x2f68f6,0x2f68f6,3
+np.float32,0xbf031fb8,0xbef25c84,3
+np.float32,0xbf0b842c,0xbeff7afc,3
+np.float32,0x3f081e7e,0x3efa3676,3
+np.float32,0x7f7fffff,0x3fc90fdb,3
+np.float32,0xff15da0e,0xbfc90fdb,3
+np.float32,0x3d2001b2,0x3d1fece1,3
+np.float32,0x7f76efef,0x3fc90fdb,3
+np.float32,0x3f2405dd,0x3f11dfb7,3
+np.float32,0xa0319,0xa0319,3
+np.float32,0x3e23d2bd,0x3e227255,3
+np.float32,0xbd4d4c50,0xbd4d205e,3
+np.float32,0x382344,0x382344,3
+np.float32,0x21bbf,0x21bbf,3
+np.float32,0xbf209e82,0xbf0f7239,3
+np.float32,0xff03bf9f,0xbfc90fdb,3
+np.float32,0x7b1789,0x7b1789,3
+np.float32,0xff314944,0xbfc90fdb,3
+np.float32,0x1a63eb,0x1a63eb,3
+np.float32,0x803dc983,0x803dc983,3
+np.float32,0x3f0ff558,0x3f0323dc,3
+np.float32,0x3f544f2c,0x3f313f58,3
+np.float32,0xff032948,0xbfc90fdb,3
+np.float32,0x7f4933cc,0x3fc90fdb,3
+np.float32,0x7f14c5ed,0x3fc90fdb,3
+np.float32,0x803aeebf,0x803aeebf,3
+np.float32,0xbf0d4c0f,0xbf011bf5,3
+np.float32,0xbeaf8de2,0xbea91f57,3
+np.float32,0xff3ae030,0xbfc90fdb,3
+np.float32,0xbb362d00,0xbb362ce1,3
+np.float32,0x3d1f79e0,0x3d1f6544,3
+np.float32,0x3f56e9d9,0x3f32c860,3
+np.float32,0x3f723e5e,0x3f41fee2,3
+np.float32,0x4c0179,0x4c0179,3
+np.float32,0xfee36132,0xbfc90fdb,3
+np.float32,0x619ae6,0x619ae6,3
+np.float32,0xfde5d670,0xbfc90fdb,3
+np.float32,0xff079ac5,0xbfc90fdb,3
+np.float32,0x3e974fbd,0x3e931fae,3
+np.float32,0x8020ae6b,0x8020ae6b,3
+np.float32,0x6b5af1,0x6b5af1,3
+np.float32,0xbeb57cd6,0xbeae69a3,3
+np.float32,0x806e7eb2,0x806e7eb2,3
+np.float32,0x7e666edb,0x3fc90fdb,3
+np.float32,0xbf458c18,0xbf283ff0,3
+np.float32,0x3e50518e,0x3e4d8399,3
+np.float32,0x3e9ce224,0x3e983b98,3
+np.float32,0x3e6bc067,0x3e67b6c6,3
+np.float32,0x13783d,0x13783d,3
+np.float32,0xff3d518c,0xbfc90fdb,3
+np.float32,0xfeba5968,0xbfc90fdb,3
+np.float32,0xbf0b9f76,0xbeffa50f,3
+np.float32,0xfe174900,0xbfc90fdb,3
+np.float32,0x3f38bb0a,0x3f200527,3
+np.float32,0x7e94a77d,0x3fc90fdb,3
+np.float32,0x29d776,0x29d776,3
+np.float32,0xbf4e058d,0xbf2d7a15,3
+np.float32,0xbd94abc8,0xbd946923,3
+np.float32,0xbee62db0,0xbed85124,3
+np.float32,0x800000,0x800000,3
+np.float32,0xbef1df7e,0xbee1f636,3
+np.float32,0xbcf3cd20,0xbcf3bab5,3
+np.float32,0x80007b05,0x80007b05,3
+np.float32,0x3d9b3f2e,0x3d9af351,3
+np.float32,0xbf714a68,0xbf417dee,3
+np.float32,0xbf2a2d37,0xbf163069,3
+np.float32,0x8055104f,0x8055104f,3
+np.float32,0x7f5c40d7,0x3fc90fdb,3
+np.float32,0x1,0x1,3
+np.float32,0xff35f3a6,0xbfc90fdb,3
+np.float32,0xd9c7c,0xd9c7c,3
+np.float32,0xbf440cfc,0xbf274f22,3
+np.float32,0x8050ac43,0x8050ac43,3
+np.float32,0x63ee16,0x63ee16,3
+np.float32,0x7d90419b,0x3fc90fdb,3
+np.float32,0xfee22198,0xbfc90fdb,3
+np.float32,0xc2ead,0xc2ead,3
+np.float32,0x7f5cd6a6,0x3fc90fdb,3
+np.float32,0x3f6fab7e,0x3f40a184,3
+np.float32,0x3ecf998c,0x3ec53a73,3
+np.float32,0x7e5271f0,0x3fc90fdb,3
+np.float32,0x67c016,0x67c016,3
+np.float32,0x2189c8,0x2189c8,3
+np.float32,0x27d892,0x27d892,3
+np.float32,0x3f0d02c4,0x3f00e3c0,3
+np.float32,0xbf69ebca,0xbf3d8862,3
+np.float32,0x3e60c0d6,0x3e5d3ebb,3
+np.float32,0x3f45206c,0x3f27fc66,3
+np.float32,0xbf6b47dc,0xbf3e4592,3
+np.float32,0xfe9be2e2,0xbfc90fdb,3
+np.float32,0x7fa00000,0x7fe00000,3
+np.float32,0xff271562,0xbfc90fdb,3
+np.float32,0x3e2e5270,0x3e2caaaf,3
+np.float32,0x80222934,0x80222934,3
+np.float32,0xbd01d220,0xbd01c701,3
+np.float32,0x223aa0,0x223aa0,3
+np.float32,0x3f4b5a7e,0x3f2bd967,3
+np.float32,0x3f217d85,0x3f101200,3
+np.float32,0xbf57663a,0xbf331144,3
+np.float32,0x3f219862,0x3f102536,3
+np.float32,0x28a28c,0x28a28c,3
+np.float32,0xbf3f55f4,0xbf244f86,3
+np.float32,0xbf3de287,0xbf236092,3
+np.float32,0xbf1c1ce2,0xbf0c2fe3,3
+np.float32,0x80000001,0x80000001,3
+np.float32,0x3db695d0,0x3db61a90,3
+np.float32,0x6c39bf,0x6c39bf,3
+np.float32,0x7e33a12f,0x3fc90fdb,3
+np.float32,0x67623a,0x67623a,3
+np.float32,0x3e45dc54,0x3e4373b6,3
+np.float32,0x7f62fa68,0x3fc90fdb,3
+np.float32,0x3f0e1d01,0x3f01bbe5,3
+np.float32,0x3f13dc69,0x3f0615f5,3
+np.float32,0x246703,0x246703,3
+np.float32,0xbf1055b5,0xbf036d07,3
+np.float32,0x7f46d3d0,0x3fc90fdb,3
+np.float32,0x3d2b8086,0x3d2b66e5,3
+np.float32,0xbf03be44,0xbef35776,3
+np.float32,0x3f800000,0x3f490fdb,3
+np.float32,0xbec8d226,0xbebf613d,3
+np.float32,0x3d8faf00,0x3d8f72d4,3
+np.float32,0x170c4e,0x170c4e,3
+np.float32,0xff14c0f0,0xbfc90fdb,3
+np.float32,0xff16245d,0xbfc90fdb,3
+np.float32,0x7f44ce6d,0x3fc90fdb,3
+np.float32,0xbe8175d8,0xbe7d9aeb,3
+np.float32,0x3df7a4a1,0x3df67254,3
+np.float32,0xfe2cc46c,0xbfc90fdb,3
+np.float32,0x3f284e63,0x3f14e335,3
+np.float32,0x7e46e5d6,0x3fc90fdb,3
+np.float32,0x397be4,0x397be4,3
+np.float32,0xbf2560bc,0xbf12d50b,3
+np.float32,0x3ed9b8c1,0x3ecddc60,3
+np.float32,0xfec18c5a,0xbfc90fdb,3
+np.float32,0x64894d,0x64894d,3
+np.float32,0x36a65d,0x36a65d,3
+np.float32,0x804ffcd7,0x804ffcd7,3
+np.float32,0x800f79e4,0x800f79e4,3
+np.float32,0x5d45ac,0x5d45ac,3
+np.float32,0x6cdda0,0x6cdda0,3
+np.float32,0xbf7f2077,0xbf489fe5,3
+np.float32,0xbf152f78,0xbf0713a1,3
+np.float32,0x807bf344,0x807bf344,3
+np.float32,0x3f775023,0x3f44a4d8,3
+np.float32,0xbf3edf67,0xbf240365,3
+np.float32,0x7eed729c,0x3fc90fdb,3
+np.float32,0x14cc29,0x14cc29,3
+np.float32,0x7edd7b6b,0x3fc90fdb,3
+np.float32,0xbf3c6e2c,0xbf226fb7,3
+np.float32,0x51b9ad,0x51b9ad,3
+np.float32,0x3f617ee8,0x3f38dd7c,3
+np.float32,0xff800000,0xbfc90fdb,3
+np.float32,0x7f440ea0,0x3fc90fdb,3
+np.float32,0x3e639893,0x3e5ff49e,3
+np.float32,0xbd791bb0,0xbd78cd3c,3
+np.float32,0x8059fcbc,0x8059fcbc,3
+np.float32,0xbf7d1214,0xbf4796bd,3
+np.float32,0x3ef368fa,0x3ee33788,3
+np.float32,0xbecec0f4,0xbec48055,3
+np.float32,0xbc83d940,0xbc83d656,3
+np.float32,0xbce01220,0xbce003d4,3
+np.float32,0x803192a5,0x803192a5,3
+np.float32,0xbe40e0c0,0xbe3ea4f0,3
+np.float32,0xfb692600,0xbfc90fdb,3
+np.float32,0x3f1bec65,0x3f0c0c88,3
+np.float32,0x7f042798,0x3fc90fdb,3
+np.float32,0xbe047374,0xbe03b83b,3
+np.float32,0x7f7c6630,0x3fc90fdb,3
+np.float32,0x7f58dae3,0x3fc90fdb,3
+np.float32,0x80691c92,0x80691c92,3
+np.float32,0x7dbe76,0x7dbe76,3
+np.float32,0xbf231384,0xbf11339d,3
+np.float32,0xbef4acf8,0xbee43f8b,3
+np.float32,0x3ee9f9d0,0x3edb7793,3
+np.float32,0x3f0064f6,0x3eee04a8,3
+np.float32,0x313732,0x313732,3
+np.float32,0xfd58cf80,0xbfc90fdb,3
+np.float32,0x3f7a2bc9,0x3f461d30,3
+np.float32,0x7f7681af,0x3fc90fdb,3
+np.float32,0x7f504211,0x3fc90fdb,3
+np.float32,0xfeae0c00,0xbfc90fdb,3
+np.float32,0xbee14396,0xbed436d1,3
+np.float32,0x7fc00000,0x7fc00000,3
+np.float32,0x693406,0x693406,3
+np.float32,0x3eb4a679,0x3eadab1b,3
+np.float32,0x550505,0x550505,3
+np.float32,0xfd493d10,0xbfc90fdb,3
+np.float32,0x3f4fc907,0x3f2e8b2c,3
+np.float32,0x80799aa4,0x80799aa4,3
+np.float32,0xff1ea89b,0xbfc90fdb,3
+np.float32,0xff424510,0xbfc90fdb,3
+np.float32,0x7f68d026,0x3fc90fdb,3
+np.float32,0xbea230ca,0xbe9d1200,3
+np.float32,0x7ea585da,0x3fc90fdb,3
+np.float32,0x3f3db211,0x3f23414c,3
+np.float32,0xfea4d964,0xbfc90fdb,3
+np.float32,0xbf17fe18,0xbf092984,3
+np.float32,0x7cc8a2,0x7cc8a2,3
+np.float32,0xff0330ba,0xbfc90fdb,3
+np.float32,0x3f769835,0x3f444592,3
+np.float32,0xeb0ac,0xeb0ac,3
+np.float32,0x7f7e45de,0x3fc90fdb,3
+np.float32,0xbdb510a8,0xbdb49873,3
+np.float32,0x3ebf900b,0x3eb74e9c,3
+np.float32,0xbf21bbce,0xbf103e89,3
+np.float32,0xbf3f4682,0xbf24459d,3
+np.float32,0x7eb6e9c8,0x3fc90fdb,3
+np.float32,0xbf42532d,0xbf2637be,3
+np.float32,0xbd3b2600,0xbd3b04b4,3
+np.float32,0x3f1fa9aa,0x3f0ec23e,3
+np.float32,0x7ed6a0f1,0x3fc90fdb,3
+np.float32,0xff4759a1,0xbfc90fdb,3
+np.float32,0x6d26e3,0x6d26e3,3
+np.float32,0xfe1108e0,0xbfc90fdb,3
+np.float32,0xfdf76900,0xbfc90fdb,3
+np.float32,0xfec66f22,0xbfc90fdb,3
+np.float32,0xbf3d097f,0xbf22d458,3
+np.float32,0x3d85be25,0x3d858d99,3
+np.float32,0x7f36739f,0x3fc90fdb,3
+np.float32,0x7bc0a304,0x3fc90fdb,3
+np.float32,0xff48dd90,0xbfc90fdb,3
+np.float32,0x48cab0,0x48cab0,3
+np.float32,0x3ed3943c,0x3ec8a2ef,3
+np.float32,0xbf61488e,0xbf38bede,3
+np.float32,0x3f543df5,0x3f313525,3
+np.float32,0x5cf2ca,0x5cf2ca,3
+np.float32,0x572686,0x572686,3
+np.float32,0x80369c7c,0x80369c7c,3
+np.float32,0xbd2c1d20,0xbd2c0338,3
+np.float32,0x3e255428,0x3e23ea0b,3
+np.float32,0xbeba9ee0,0xbeb2f54c,3
+np.float32,0x8015c165,0x8015c165,3
+np.float32,0x3d31f488,0x3d31d7e6,3
+np.float32,0x3f68591c,0x3f3cac43,3
+np.float32,0xf5ed5,0xf5ed5,3
+np.float32,0xbf3b1d34,0xbf21949e,3
+np.float32,0x1f0343,0x1f0343,3
+np.float32,0x3f0e52b5,0x3f01e4ef,3
+np.float32,0x7f57c596,0x3fc90fdb,3
+np.float64,0x7fd8e333ddb1c667,0x3ff921fb54442d18,1
+np.float64,0x800bcc9cdad7993a,0x800bcc9cdad7993a,1
+np.float64,0x3fcd6f81df3adf00,0x3fcceebbafc5d55e,1
+np.float64,0x3fed7338a57ae671,0x3fe7ce3e5811fc0a,1
+np.float64,0x7fe64994fcac9329,0x3ff921fb54442d18,1
+np.float64,0xfa5a6345f4b4d,0xfa5a6345f4b4d,1
+np.float64,0xe9dcd865d3b9b,0xe9dcd865d3b9b,1
+np.float64,0x7fea6cffabf4d9fe,0x3ff921fb54442d18,1
+np.float64,0xa9e1de6153c3c,0xa9e1de6153c3c,1
+np.float64,0xab6bdc5356d7c,0xab6bdc5356d7c,1
+np.float64,0x80062864a02c50ca,0x80062864a02c50ca,1
+np.float64,0xbfdac03aa7b58076,0xbfd9569f3230128d,1
+np.float64,0xbfe61b77752c36ef,0xbfe3588f51b8be8f,1
+np.float64,0x800bc854c8d790aa,0x800bc854c8d790aa,1
+np.float64,0x3feed1a2da3da346,0x3fe887f9b8ea031f,1
+np.float64,0x3fe910d3697221a7,0x3fe54365a53d840e,1
+np.float64,0x7fe7ab4944ef5692,0x3ff921fb54442d18,1
+np.float64,0x3fa462f1a028c5e3,0x3fa460303a6a4e69,1
+np.float64,0x800794f1a3af29e4,0x800794f1a3af29e4,1
+np.float64,0x3fee6fe7fafcdfd0,0x3fe854f863816d55,1
+np.float64,0x8000000000000000,0x8000000000000000,1
+np.float64,0x7f336472fe66d,0x7f336472fe66d,1
+np.float64,0xffb1623ac822c478,0xbff921fb54442d18,1
+np.float64,0x3fbacd68ce359ad2,0x3fbab480b3638846,1
+np.float64,0xffd5c02706ab804e,0xbff921fb54442d18,1
+np.float64,0xbfd4daf03d29b5e0,0xbfd42928f069c062,1
+np.float64,0x800c6e85dbd8dd0c,0x800c6e85dbd8dd0c,1
+np.float64,0x800e3599c5bc6b34,0x800e3599c5bc6b34,1
+np.float64,0x2c0d654c581ad,0x2c0d654c581ad,1
+np.float64,0xbfdd3eb13fba7d62,0xbfdb6e8143302de7,1
+np.float64,0x800b60cb8776c197,0x800b60cb8776c197,1
+np.float64,0x80089819ad113034,0x80089819ad113034,1
+np.float64,0x29fe721453fcf,0x29fe721453fcf,1
+np.float64,0x3fe8722f4df0e45f,0x3fe4e026d9eadb4d,1
+np.float64,0xffd1fbcd01a3f79a,0xbff921fb54442d18,1
+np.float64,0x7fc74e1e982e9c3c,0x3ff921fb54442d18,1
+np.float64,0x800c09d3d15813a8,0x800c09d3d15813a8,1
+np.float64,0xbfeee4578b3dc8af,0xbfe891ab3d6c3ce4,1
+np.float64,0xffdd01a6f33a034e,0xbff921fb54442d18,1
+np.float64,0x7fcc130480382608,0x3ff921fb54442d18,1
+np.float64,0xffcbb6bd1d376d7c,0xbff921fb54442d18,1
+np.float64,0xc068a53780d15,0xc068a53780d15,1
+np.float64,0xbfc974f15532e9e4,0xbfc92100b355f3e7,1
+np.float64,0x3fe6da79442db4f3,0x3fe3d87393b082e7,1
+np.float64,0xd9d9be4db3b38,0xd9d9be4db3b38,1
+np.float64,0x5ea50a20bd4a2,0x5ea50a20bd4a2,1
+np.float64,0xbfe5597f7d2ab2ff,0xbfe2d3ccc544b52b,1
+np.float64,0x80019364e4e326cb,0x80019364e4e326cb,1
+np.float64,0x3fed2902c3fa5206,0x3fe7a5e1df07e5c1,1
+np.float64,0xbfa7b72b5c2f6e50,0xbfa7b2d545b3cc1f,1
+np.float64,0xffdb60dd43b6c1ba,0xbff921fb54442d18,1
+np.float64,0x81a65d8b034cc,0x81a65d8b034cc,1
+np.float64,0x8000c30385818608,0x8000c30385818608,1
+np.float64,0x6022f5f4c045f,0x6022f5f4c045f,1
+np.float64,0x8007a2bb810f4578,0x8007a2bb810f4578,1
+np.float64,0x7fdc68893238d111,0x3ff921fb54442d18,1
+np.float64,0x7fd443454ea8868a,0x3ff921fb54442d18,1
+np.float64,0xffe6b04209ed6084,0xbff921fb54442d18,1
+np.float64,0x7fcd9733d13b2e67,0x3ff921fb54442d18,1
+np.float64,0xf5ee80a9ebdd0,0xf5ee80a9ebdd0,1
+np.float64,0x3fe3788e8de6f11e,0x3fe17dec7e6843a0,1
+np.float64,0x3fee36f62f7c6dec,0x3fe836f832515b43,1
+np.float64,0xf6cb49aded969,0xf6cb49aded969,1
+np.float64,0x3fd2b15ea4a562bc,0x3fd22fdc09920e67,1
+np.float64,0x7fccf6aef139ed5d,0x3ff921fb54442d18,1
+np.float64,0x3fd396b8ce272d72,0x3fd3026118857bd4,1
+np.float64,0x7fe53d3c80ea7a78,0x3ff921fb54442d18,1
+np.float64,0x3feae88fc4f5d120,0x3fe65fb04b18ef7a,1
+np.float64,0x3fedc643747b8c86,0x3fe7fafa6c20e25a,1
+np.float64,0xffdb2dc0df365b82,0xbff921fb54442d18,1
+np.float64,0xbfa2af3658255e70,0xbfa2ad17348f4253,1
+np.float64,0x3f8aa77b30354ef6,0x3f8aa71892336a69,1
+np.float64,0xbfdd1b1efbba363e,0xbfdb510dcd186820,1
+np.float64,0x800f50d99c5ea1b3,0x800f50d99c5ea1b3,1
+np.float64,0xff6ed602403dac00,0xbff921fb54442d18,1
+np.float64,0x800477d71aa8efaf,0x800477d71aa8efaf,1
+np.float64,0xbfe729a9e86e5354,0xbfe40ca78d9eefcf,1
+np.float64,0x3fd81ab2d4303566,0x3fd70d7e3937ea22,1
+np.float64,0xb617cbab6c2fa,0xb617cbab6c2fa,1
+np.float64,0x7fefffffffffffff,0x3ff921fb54442d18,1
+np.float64,0xffa40933ac281260,0xbff921fb54442d18,1
+np.float64,0xbfe1ede621e3dbcc,0xbfe057bb2b341ced,1
+np.float64,0xbfec700f03b8e01e,0xbfe73fb190bc722e,1
+np.float64,0x6e28af02dc517,0x6e28af02dc517,1
+np.float64,0x3fe37ad37ae6f5a7,0x3fe17f94674818a9,1
+np.float64,0x8000cbdeeae197bf,0x8000cbdeeae197bf,1
+np.float64,0x3fe8fd1f01f1fa3e,0x3fe5372bbec5d72c,1
+np.float64,0x3f8f9229103f2452,0x3f8f918531894256,1
+np.float64,0x800536858e0a6d0c,0x800536858e0a6d0c,1
+np.float64,0x7fe82bb4f9f05769,0x3ff921fb54442d18,1
+np.float64,0xffc1c2fb592385f8,0xbff921fb54442d18,1
+np.float64,0x7f924ddfc0249bbf,0x3ff921fb54442d18,1
+np.float64,0xffd5e125c52bc24c,0xbff921fb54442d18,1
+np.float64,0xbfef0d8738be1b0e,0xbfe8a6ef17b16c10,1
+np.float64,0x3fc9c8875233910f,0x3fc9715e708503cb,1
+np.float64,0xbfe2d926f4e5b24e,0xbfe108956e61cbb3,1
+np.float64,0x7fd61c496dac3892,0x3ff921fb54442d18,1
+np.float64,0x7fed545c6b7aa8b8,0x3ff921fb54442d18,1
+np.float64,0x8003746fea86e8e1,0x8003746fea86e8e1,1
+np.float64,0x3fdf515e75bea2bd,0x3fdd201a5585caa3,1
+np.float64,0xffda87c8ee350f92,0xbff921fb54442d18,1
+np.float64,0xffc675d8e22cebb0,0xbff921fb54442d18,1
+np.float64,0xffcdc173433b82e8,0xbff921fb54442d18,1
+np.float64,0xffed9df1517b3be2,0xbff921fb54442d18,1
+np.float64,0x3fd6a2eec72d45de,0x3fd5c1f1d7dcddcf,1
+np.float64,0xffec116a66f822d4,0xbff921fb54442d18,1
+np.float64,0x8007c2a2458f8545,0x8007c2a2458f8545,1
+np.float64,0x3fe4ee80d969dd02,0x3fe2895076094668,1
+np.float64,0x3fe3cae7116795ce,0x3fe1b9c07e0d03a7,1
+np.float64,0xbfd81bf8d8b037f2,0xbfd70e9bbbb4ca57,1
+np.float64,0x800c88ccd1f9119a,0x800c88ccd1f9119a,1
+np.float64,0xffdab2aee2b5655e,0xbff921fb54442d18,1
+np.float64,0x3fe743d227ee87a4,0x3fe41dcaef186d96,1
+np.float64,0x3fb060fd0220c1fa,0x3fb05b47f56ebbb4,1
+np.float64,0xbfd3f03772a7e06e,0xbfd3541522377291,1
+np.float64,0x190a5ae03216,0x190a5ae03216,1
+np.float64,0x3fe48c71916918e4,0x3fe24442f45b3183,1
+np.float64,0x800862470590c48e,0x800862470590c48e,1
+np.float64,0x7fd3ced89d279db0,0x3ff921fb54442d18,1
+np.float64,0x3feb3d9b4ab67b37,0x3fe69140cf2623f7,1
+np.float64,0xbc3f296b787e5,0xbc3f296b787e5,1
+np.float64,0xbfed6b905dfad721,0xbfe7ca1881a8c0fd,1
+np.float64,0xbfe621c2aaac4386,0xbfe35cd1969a82db,1
+np.float64,0x8009e7b17593cf63,0x8009e7b17593cf63,1
+np.float64,0x80045f580ca8beb1,0x80045f580ca8beb1,1
+np.float64,0xbfea2e177e745c2f,0xbfe5f13971633339,1
+np.float64,0x3fee655787fccab0,0x3fe84f6b98b6de26,1
+np.float64,0x3fc9cde92f339bd0,0x3fc9768a88b2c97c,1
+np.float64,0x3fc819c3b3303388,0x3fc7d25e1526e731,1
+np.float64,0x3fd3e848d2a7d090,0x3fd34cd9e6af558f,1
+np.float64,0x3fe19dacac633b5a,0x3fe01a6b4d27adc2,1
+np.float64,0x800b190da316321c,0x800b190da316321c,1
+np.float64,0xd5c69711ab8d3,0xd5c69711ab8d3,1
+np.float64,0xbfdc31bed7b8637e,0xbfda8ea3c1309d6d,1
+np.float64,0xbfd02ba007a05740,0xbfcfad86f0d756dc,1
+np.float64,0x3fe874473d70e88e,0x3fe4e1793cd82123,1
+np.float64,0xffb465585c28cab0,0xbff921fb54442d18,1
+np.float64,0xbfb5d8e13e2bb1c0,0xbfb5cb5c7807fc4d,1
+np.float64,0xffe80f933bf01f26,0xbff921fb54442d18,1
+np.float64,0x7feea783f5fd4f07,0x3ff921fb54442d18,1
+np.float64,0xbfae6665f43cccd0,0xbfae5d45b0a6f90a,1
+np.float64,0x800bd6ef5a77addf,0x800bd6ef5a77addf,1
+np.float64,0x800d145babda28b8,0x800d145babda28b8,1
+np.float64,0x39de155473bc3,0x39de155473bc3,1
+np.float64,0x3fefbd6bb1ff7ad8,0x3fe9008e73a3296e,1
+np.float64,0x3fc40bca3d281798,0x3fc3e2710e167007,1
+np.float64,0x3fcae0918335c120,0x3fca7e09e704a678,1
+np.float64,0x51287fbea2511,0x51287fbea2511,1
+np.float64,0x7fa6bc33a82d7866,0x3ff921fb54442d18,1
+np.float64,0xe72a2bebce546,0xe72a2bebce546,1
+np.float64,0x3fe1c8fd686391fa,0x3fe03b9622aeb4e3,1
+np.float64,0x3fe2a73ac3654e76,0x3fe0e36bc1ee4ac4,1
+np.float64,0x59895218b312b,0x59895218b312b,1
+np.float64,0xc6dc25c78db85,0xc6dc25c78db85,1
+np.float64,0xbfc06cfac520d9f4,0xbfc0561f85d2c907,1
+np.float64,0xbfea912dc4f5225c,0xbfe62c3b1c01c793,1
+np.float64,0x3fb78ce89a2f19d0,0x3fb77bfcb65a67d3,1
+np.float64,0xbfece5cdea39cb9c,0xbfe78103d24099e5,1
+np.float64,0x30d3054e61a61,0x30d3054e61a61,1
+np.float64,0xbfd3fe26fba7fc4e,0xbfd360c8447c4f7a,1
+np.float64,0x800956072a92ac0f,0x800956072a92ac0f,1
+np.float64,0x7fe639b3b6ec7366,0x3ff921fb54442d18,1
+np.float64,0x800ee30240bdc605,0x800ee30240bdc605,1
+np.float64,0x7fef6af0d2bed5e1,0x3ff921fb54442d18,1
+np.float64,0xffefce8725ff9d0d,0xbff921fb54442d18,1
+np.float64,0x3fe2e311da65c624,0x3fe10ff1623089dc,1
+np.float64,0xbfe7e5cbe56fcb98,0xbfe486c3daeda67c,1
+np.float64,0x80095bc14472b783,0x80095bc14472b783,1
+np.float64,0xffef0cb4553e1968,0xbff921fb54442d18,1
+np.float64,0xe3e60567c7cc1,0xe3e60567c7cc1,1
+np.float64,0xffde919f06bd233e,0xbff921fb54442d18,1
+np.float64,0x3fe3f9632e27f2c6,0x3fe1db49ebd21c4e,1
+np.float64,0x9dee9a233bdd4,0x9dee9a233bdd4,1
+np.float64,0xbfe3bb0602e7760c,0xbfe1ae41b6d4c488,1
+np.float64,0x3fc46945a128d288,0x3fc43da54c6c6a2a,1
+np.float64,0x7fdef149ac3de292,0x3ff921fb54442d18,1
+np.float64,0x800a96c76d752d8f,0x800a96c76d752d8f,1
+np.float64,0x3f971a32382e3464,0x3f9719316b9e9baf,1
+np.float64,0x7fe97bcf15b2f79d,0x3ff921fb54442d18,1
+np.float64,0x7fea894558f5128a,0x3ff921fb54442d18,1
+np.float64,0x3fc9e3be1933c780,0x3fc98b847c3923eb,1
+np.float64,0x3f7accac40359959,0x3f7acc9330741b64,1
+np.float64,0xa80c136950183,0xa80c136950183,1
+np.float64,0x3fe408732b2810e6,0x3fe1e61e7cbc8824,1
+np.float64,0xffa775bc042eeb80,0xbff921fb54442d18,1
+np.float64,0x3fbf04bd223e0980,0x3fbede37b8fc697e,1
+np.float64,0x7fd999b34c333366,0x3ff921fb54442d18,1
+np.float64,0xe72146dfce429,0xe72146dfce429,1
+np.float64,0x4f511ee49ea24,0x4f511ee49ea24,1
+np.float64,0xffb3e6e58827cdc8,0xbff921fb54442d18,1
+np.float64,0x3fd1f180cfa3e300,0x3fd17e85b2871de2,1
+np.float64,0x97c8e45b2f91d,0x97c8e45b2f91d,1
+np.float64,0xbfeeb20e88fd641d,0xbfe8778f878440bf,1
+np.float64,0xbfe1fc6dee23f8dc,0xbfe062c815a93cde,1
+np.float64,0xab4bf71f5697f,0xab4bf71f5697f,1
+np.float64,0xa9675a2952cec,0xa9675a2952cec,1
+np.float64,0xbfef3ea4a33e7d49,0xbfe8c02743ebc1b6,1
+np.float64,0x3fe22a2eafa4545d,0x3fe08577afca52a9,1
+np.float64,0x3fe8a08daaf1411c,0x3fe4fd5a34f05305,1
+np.float64,0xbfc6cda77b2d9b50,0xbfc6910bcfa0cf4f,1
+np.float64,0x3fec398394387307,0x3fe7211dd5276500,1
+np.float64,0x3fe36c95c626d92c,0x3fe1752e5aa2357b,1
+np.float64,0xffd8b9e7073173ce,0xbff921fb54442d18,1
+np.float64,0xffe19f043ae33e08,0xbff921fb54442d18,1
+np.float64,0x800e3640709c6c81,0x800e3640709c6c81,1
+np.float64,0x3fe7d6c20aafad84,0x3fe47d1a3307d9c8,1
+np.float64,0x80093fd63b727fad,0x80093fd63b727fad,1
+np.float64,0xffe1a671a4634ce3,0xbff921fb54442d18,1
+np.float64,0xbfe53a6b386a74d6,0xbfe2be41859cb10d,1
+np.float64,0xbfed149a097a2934,0xbfe79ab7e3e93c1c,1
+np.float64,0x7fc2769a5724ed34,0x3ff921fb54442d18,1
+np.float64,0xffd01e4e99a03c9e,0xbff921fb54442d18,1
+np.float64,0xa61f38434c3e7,0xa61f38434c3e7,1
+np.float64,0x800ad4ac5195a959,0x800ad4ac5195a959,1
+np.float64,0x7ff8000000000000,0x7ff8000000000000,1
+np.float64,0x80034a45b6c6948c,0x80034a45b6c6948c,1
+np.float64,0x6350b218c6a17,0x6350b218c6a17,1
+np.float64,0xfff0000000000000,0xbff921fb54442d18,1
+np.float64,0x3fe363e759e6c7cf,0x3fe16ed58d80f9ce,1
+np.float64,0xffe3b98e59e7731c,0xbff921fb54442d18,1
+np.float64,0x3fdbf7b40337ef68,0x3fda5df7ad3c80f9,1
+np.float64,0xbfe9cdf784739bef,0xbfe5b74f346ef93d,1
+np.float64,0xbfc321bea326437c,0xbfc2fdc0d4ff7561,1
+np.float64,0xbfe40f77d2a81ef0,0xbfe1eb28c4ae4dde,1
+np.float64,0x7fe071806960e300,0x3ff921fb54442d18,1
+np.float64,0x7fd269006ea4d200,0x3ff921fb54442d18,1
+np.float64,0x80017a56e0e2f4af,0x80017a56e0e2f4af,1
+np.float64,0x8004b4ea09a969d5,0x8004b4ea09a969d5,1
+np.float64,0xbfedbb01e63b7604,0xbfe7f4f0e84297df,1
+np.float64,0x3fe44454826888a9,0x3fe210ff6d005706,1
+np.float64,0xbfe0e77e6ea1cefd,0xbfdf1a977da33402,1
+np.float64,0xbfed6d4c8c3ada99,0xbfe7cb0932093f60,1
+np.float64,0x1d74cb9e3ae9a,0x1d74cb9e3ae9a,1
+np.float64,0x80082a785d1054f1,0x80082a785d1054f1,1
+np.float64,0x3fe58393266b0726,0x3fe2f0d8e91d4887,1
+np.float64,0xffe4028899680510,0xbff921fb54442d18,1
+np.float64,0x783a2e5af0746,0x783a2e5af0746,1
+np.float64,0x7fcdce88e73b9d11,0x3ff921fb54442d18,1
+np.float64,0x3fc58672a72b0ce5,0x3fc5535e090e56e2,1
+np.float64,0x800889c839b11391,0x800889c839b11391,1
+np.float64,0xffe5e05c466bc0b8,0xbff921fb54442d18,1
+np.float64,0xbfcbef6ebe37dedc,0xbfcb810752468f49,1
+np.float64,0xffe9408563b2810a,0xbff921fb54442d18,1
+np.float64,0xbfee4738367c8e70,0xbfe83f8e5dd7602f,1
+np.float64,0xbfe4aeb587295d6b,0xbfe25c7a0c76a454,1
+np.float64,0xffc9aea0a7335d40,0xbff921fb54442d18,1
+np.float64,0xe1e02199c3c04,0xe1e02199c3c04,1
+np.float64,0xbfbd9400783b2800,0xbfbd729345d1d14f,1
+np.float64,0x7a5418bcf4a84,0x7a5418bcf4a84,1
+np.float64,0x3fdc1c2fa5b83860,0x3fda7c935965ae72,1
+np.float64,0x80076a9f58ced53f,0x80076a9f58ced53f,1
+np.float64,0x3fedc4bf957b897f,0x3fe7fa2a83148f1c,1
+np.float64,0x800981b8a9d30372,0x800981b8a9d30372,1
+np.float64,0xffe1082311621046,0xbff921fb54442d18,1
+np.float64,0xe0091f89c0124,0xe0091f89c0124,1
+np.float64,0xbfce8d674f3d1ad0,0xbfcdfdbf2ddaa0ca,1
+np.float64,0x800516e72eaa2dcf,0x800516e72eaa2dcf,1
+np.float64,0xffe61ee64c6c3dcc,0xbff921fb54442d18,1
+np.float64,0x7fed2683cafa4d07,0x3ff921fb54442d18,1
+np.float64,0xffd4faf27729f5e4,0xbff921fb54442d18,1
+np.float64,0x7fe308fa842611f4,0x3ff921fb54442d18,1
+np.float64,0x3fc612a62b2c2550,0x3fc5db9ddbd4e159,1
+np.float64,0xbfe5b01e766b603d,0xbfe30f72a875e988,1
+np.float64,0x3fc2dd8b9a25bb17,0x3fc2bb06246b9f78,1
+np.float64,0x8170908102e12,0x8170908102e12,1
+np.float64,0x800c1c8a8a583915,0x800c1c8a8a583915,1
+np.float64,0xffe5d91e8b6bb23c,0xbff921fb54442d18,1
+np.float64,0xffd140adee22815c,0xbff921fb54442d18,1
+np.float64,0xbfe2f1f5f8e5e3ec,0xbfe11afa5d749952,1
+np.float64,0xbfed6d1d587ada3b,0xbfe7caef9ecf7651,1
+np.float64,0x3fe9b85e67f370bd,0x3fe5aa3474768982,1
+np.float64,0x7fdc8932edb91265,0x3ff921fb54442d18,1
+np.float64,0x7fd136bc54a26d78,0x3ff921fb54442d18,1
+np.float64,0x800a1ea12a343d43,0x800a1ea12a343d43,1
+np.float64,0x3fec6a5c1b78d4b8,0x3fe73c82235c3f8f,1
+np.float64,0x800fbf6a00df7ed4,0x800fbf6a00df7ed4,1
+np.float64,0xbfd0e6e0cda1cdc2,0xbfd0864bf8cad294,1
+np.float64,0x3fc716df482e2dbf,0x3fc6d7fbfd4a8470,1
+np.float64,0xbfe75990936eb321,0xbfe42bffec3fa0d7,1
+np.float64,0x3fd58e54a02b1ca9,0x3fd4cace1107a5cc,1
+np.float64,0xbfc9c04136338084,0xbfc9696ad2591d54,1
+np.float64,0xdd1f0147ba3e0,0xdd1f0147ba3e0,1
+np.float64,0x5c86a940b90e,0x5c86a940b90e,1
+np.float64,0xbfecae3b8e795c77,0xbfe7624d4988c612,1
+np.float64,0xffd0370595206e0c,0xbff921fb54442d18,1
+np.float64,0xbfdc26d443384da8,0xbfda857ecd33ba9f,1
+np.float64,0xbfd1c849d9a39094,0xbfd15849449cc378,1
+np.float64,0xffee04acdb3c0959,0xbff921fb54442d18,1
+np.float64,0xbfded1056dbda20a,0xbfdcb83b30e1528c,1
+np.float64,0x7fb7b826622f704c,0x3ff921fb54442d18,1
+np.float64,0xbfee4df8ae7c9bf1,0xbfe8431df9dfd05d,1
+np.float64,0x7fe7f3670e2fe6cd,0x3ff921fb54442d18,1
+np.float64,0x8008ac9ae0d15936,0x8008ac9ae0d15936,1
+np.float64,0x800dce9f3b3b9d3f,0x800dce9f3b3b9d3f,1
+np.float64,0x7fbb19db203633b5,0x3ff921fb54442d18,1
+np.float64,0x3fe56c7f302ad8fe,0x3fe2e0eec3ad45fd,1
+np.float64,0x7fe82c05c570580b,0x3ff921fb54442d18,1
+np.float64,0xc0552b7780aa6,0xc0552b7780aa6,1
+np.float64,0x39d40e3073a83,0x39d40e3073a83,1
+np.float64,0x3fd8db54d731b6aa,0x3fd7b589b3ee9b20,1
+np.float64,0xffcdd355233ba6ac,0xbff921fb54442d18,1
+np.float64,0x3fbe97b3a43d2f67,0x3fbe72bca9be0348,1
+np.float64,0xbff0000000000000,0xbfe921fb54442d18,1
+np.float64,0xbfb4f55e6229eac0,0xbfb4e96df18a75a7,1
+np.float64,0xbfc66399ba2cc734,0xbfc62a3298bd96fc,1
+np.float64,0x3fd00988bb201311,0x3fcf6d67a9374c38,1
+np.float64,0x7fe471867d28e30c,0x3ff921fb54442d18,1
+np.float64,0xbfe38e0e64271c1d,0xbfe18d9888b7523b,1
+np.float64,0x8009dc127573b825,0x8009dc127573b825,1
+np.float64,0x800047bde4608f7d,0x800047bde4608f7d,1
+np.float64,0xffeede42c77dbc85,0xbff921fb54442d18,1
+np.float64,0xd8cf6d13b19ee,0xd8cf6d13b19ee,1
+np.float64,0xbfd08fb302a11f66,0xbfd034b1f8235e23,1
+np.float64,0x7fdb404c0b368097,0x3ff921fb54442d18,1
+np.float64,0xbfd6ba0438ad7408,0xbfd5d673e3276ec1,1
+np.float64,0xffd9568027b2ad00,0xbff921fb54442d18,1
+np.float64,0xbfb313b73e262770,0xbfb30ab4acb4fa67,1
+np.float64,0xbfe2dc1a15e5b834,0xbfe10ac5f8f3acd3,1
+np.float64,0xbfee426bf4bc84d8,0xbfe83d061df91edd,1
+np.float64,0xd9142c2fb2286,0xd9142c2fb2286,1
+np.float64,0x7feb0d11dff61a23,0x3ff921fb54442d18,1
+np.float64,0x800fea5b509fd4b7,0x800fea5b509fd4b7,1
+np.float64,0x3fe1a8818da35103,0x3fe022ba1bdf366e,1
+np.float64,0x8010000000000000,0x8010000000000000,1
+np.float64,0xbfd8fc6de6b1f8dc,0xbfd7d24726ed8dcc,1
+np.float64,0xf4b3dc2de967c,0xf4b3dc2de967c,1
+np.float64,0x8af0409b15e08,0x8af0409b15e08,1
+np.float64,0x3fb21e6934243cd2,0x3fb216b065f8709a,1
+np.float64,0x3fc53069392a60d2,0x3fc4ffa931211fb9,1
+np.float64,0xffc955812c32ab04,0xbff921fb54442d18,1
+np.float64,0xbfe3de42b1a7bc86,0xbfe1c7bd1324de75,1
+np.float64,0x1dc149a03b82a,0x1dc149a03b82a,1
+np.float64,0x8001bc5a24a378b5,0x8001bc5a24a378b5,1
+np.float64,0x3da14c407b44,0x3da14c407b44,1
+np.float64,0x80025e8da924bd1c,0x80025e8da924bd1c,1
+np.float64,0xbfcb0141c9360284,0xbfca9d572ea5e1f3,1
+np.float64,0xc90036fd92007,0xc90036fd92007,1
+np.float64,0x138312c427063,0x138312c427063,1
+np.float64,0x800dda3a963bb475,0x800dda3a963bb475,1
+np.float64,0x3fe9339934f26732,0x3fe558e723291f78,1
+np.float64,0xbfea8357027506ae,0xbfe6240826faaf48,1
+np.float64,0x7fe04735cae08e6b,0x3ff921fb54442d18,1
+np.float64,0x3fe29aca3c653594,0x3fe0da214c8bc6a4,1
+np.float64,0x3fbe1f09a03c3e13,0x3fbdfbbefef0155b,1
+np.float64,0x816ee4ad02ddd,0x816ee4ad02ddd,1
+np.float64,0xffddd1b31d3ba366,0xbff921fb54442d18,1
+np.float64,0x3fe2e01e0625c03c,0x3fe10dc0bd6677c2,1
+np.float64,0x3fec6bcf1978d79e,0x3fe73d518cddeb7c,1
+np.float64,0x7fe01aaaf8603555,0x3ff921fb54442d18,1
+np.float64,0xdf300cc5be602,0xdf300cc5be602,1
+np.float64,0xbfe71c01a36e3804,0xbfe403af80ce47b8,1
+np.float64,0xffa5be00ac2b7c00,0xbff921fb54442d18,1
+np.float64,0xbfda9ba711b5374e,0xbfd93775e3ac6bda,1
+np.float64,0xbfe56d8a27eadb14,0xbfe2e1a7185e8e6d,1
+np.float64,0x800f1bc937be3792,0x800f1bc937be3792,1
+np.float64,0x800a61d93c74c3b3,0x800a61d93c74c3b3,1
+np.float64,0x7fe71a52fcae34a5,0x3ff921fb54442d18,1
+np.float64,0x7fb4aef256295de4,0x3ff921fb54442d18,1
+np.float64,0x3fe6c1e861ed83d1,0x3fe3c828f281a7ef,1
+np.float64,0x3fba128402342508,0x3fb9fb94cf141860,1
+np.float64,0x3fee55a7ecfcab50,0x3fe8472a9af893ee,1
+np.float64,0x3fe586f31b2b0de6,0x3fe2f32bce9e91bc,1
+np.float64,0xbfbb1d1442363a28,0xbfbb034c7729d5f2,1
+np.float64,0xc78b4d3f8f16a,0xc78b4d3f8f16a,1
+np.float64,0x7fdbc277d4b784ef,0x3ff921fb54442d18,1
+np.float64,0xbfa728ca2c2e5190,0xbfa724c04e73ccbd,1
+np.float64,0x7fefc7b2143f8f63,0x3ff921fb54442d18,1
+np.float64,0x3fd153a3dda2a748,0x3fd0ebccd33a4dca,1
+np.float64,0xbfe18a6eace314de,0xbfe00ba32ec89d30,1
+np.float64,0x7feef518537dea30,0x3ff921fb54442d18,1
+np.float64,0x8005f007cd4be010,0x8005f007cd4be010,1
+np.float64,0x7fd890b840b12170,0x3ff921fb54442d18,1
+np.float64,0x7feed0582ebda0af,0x3ff921fb54442d18,1
+np.float64,0x1013f53220280,0x1013f53220280,1
+np.float64,0xbfe77273986ee4e7,0xbfe43c375a8bf6de,1
+np.float64,0x7fe3ab8918675711,0x3ff921fb54442d18,1
+np.float64,0xbfc6ad515b2d5aa4,0xbfc671b2f7f86624,1
+np.float64,0x7fcd86231d3b0c45,0x3ff921fb54442d18,1
+np.float64,0xffe2523299a4a464,0xbff921fb54442d18,1
+np.float64,0x7fcadc5a1b35b8b3,0x3ff921fb54442d18,1
+np.float64,0x3fe5e020c4ebc042,0x3fe330418eec75bd,1
+np.float64,0x7fe332a9dc266553,0x3ff921fb54442d18,1
+np.float64,0xfa11dc21f425,0xfa11dc21f425,1
+np.float64,0xbec800177d900,0xbec800177d900,1
+np.float64,0x3fcadd057835ba0b,0x3fca7aa42face8bc,1
+np.float64,0xbfe6b9a206ad7344,0xbfe3c2a9719803de,1
+np.float64,0x3fbb4250b63684a0,0x3fbb281e9cefc519,1
+np.float64,0x7fef8787517f0f0e,0x3ff921fb54442d18,1
+np.float64,0x8001315c2d6262b9,0x8001315c2d6262b9,1
+np.float64,0xbfd94e3cf2b29c7a,0xbfd819257d36f56c,1
+np.float64,0xf1f325abe3e65,0xf1f325abe3e65,1
+np.float64,0x7fd6c07079ad80e0,0x3ff921fb54442d18,1
+np.float64,0x7fe328b075a65160,0x3ff921fb54442d18,1
+np.float64,0x7fe7998f812f331e,0x3ff921fb54442d18,1
+np.float64,0xffe026bb65604d76,0xbff921fb54442d18,1
+np.float64,0xffd6c06de8ad80dc,0xbff921fb54442d18,1
+np.float64,0x3fcd5a37bf3ab46f,0x3fccda82935d98ce,1
+np.float64,0xffc3e5a45227cb48,0xbff921fb54442d18,1
+np.float64,0x3febf7dd8177efbc,0x3fe6fc0bb999883e,1
+np.float64,0x7fd7047ea92e08fc,0x3ff921fb54442d18,1
+np.float64,0x35b3fc406b680,0x35b3fc406b680,1
+np.float64,0x7fd52e97632a5d2e,0x3ff921fb54442d18,1
+np.float64,0x3fd464d401a8c9a8,0x3fd3be2967fc97c3,1
+np.float64,0x800e815b2ebd02b6,0x800e815b2ebd02b6,1
+np.float64,0x3fca8428af350850,0x3fca257b466b8970,1
+np.float64,0x8007b7526f6f6ea6,0x8007b7526f6f6ea6,1
+np.float64,0x82f60a8f05ec2,0x82f60a8f05ec2,1
+np.float64,0x3fb71a5d0a2e34c0,0x3fb70a629ef8e2a2,1
+np.float64,0x7fc8570c7d30ae18,0x3ff921fb54442d18,1
+np.float64,0x7fe5528e77eaa51c,0x3ff921fb54442d18,1
+np.float64,0xffc20dbbf1241b78,0xbff921fb54442d18,1
+np.float64,0xeb13368fd6267,0xeb13368fd6267,1
+np.float64,0x7fe7d529056faa51,0x3ff921fb54442d18,1
+np.float64,0x3fecd02eabf9a05d,0x3fe77516f0ba1ac4,1
+np.float64,0x800fcba6a09f974d,0x800fcba6a09f974d,1
+np.float64,0x7fe7e8e015afd1bf,0x3ff921fb54442d18,1
+np.float64,0xbfd271a382a4e348,0xbfd1f513a191c595,1
+np.float64,0x9f1014013e21,0x9f1014013e21,1
+np.float64,0x3fc05da47f20bb49,0x3fc04708a13a3a47,1
+np.float64,0x3fe0f427dda1e850,0x3fdf2e60ba8678b9,1
+np.float64,0xbfecb29fa539653f,0xbfe764bc791c45dd,1
+np.float64,0x45881ec68b104,0x45881ec68b104,1
+np.float64,0x8000000000000001,0x8000000000000001,1
+np.float64,0x3fe9c67ee1338cfe,0x3fe5b2c7b3df6ce8,1
+np.float64,0x7fedb8fef6bb71fd,0x3ff921fb54442d18,1
+np.float64,0x3fe54f6aaaea9ed6,0x3fe2ccd1df2abaa9,1
+np.float64,0x7feff58a1bbfeb13,0x3ff921fb54442d18,1
+np.float64,0x7fe3b62827276c4f,0x3ff921fb54442d18,1
+np.float64,0x3fe5feb682ebfd6d,0x3fe345105bc6d980,1
+np.float64,0x3fe49f38d9693e72,0x3fe2518b2824757f,1
+np.float64,0x8006bfd27c6d7fa6,0x8006bfd27c6d7fa6,1
+np.float64,0x3fc13409e2226814,0x3fc119ce0c01a5a2,1
+np.float64,0x95f8c7212bf19,0x95f8c7212bf19,1
+np.float64,0x3fd9f0fa6133e1f5,0x3fd8a567515edecf,1
+np.float64,0x3fef95cbe5ff2b98,0x3fe8ec88c768ba0b,1
+np.float64,0x3fbed28bba3da510,0x3fbeacbf136e51c2,1
+np.float64,0xbfd3987aeca730f6,0xbfd303fca58e3e60,1
+np.float64,0xbfed0f90cbfa1f22,0xbfe797f59249410d,1
+np.float64,0xffe55d8cbf2abb19,0xbff921fb54442d18,1
+np.float64,0x3feb4d9fc6769b40,0x3fe69a88131a1f1f,1
+np.float64,0x80085569acd0aad4,0x80085569acd0aad4,1
+np.float64,0x20557a6e40ab0,0x20557a6e40ab0,1
+np.float64,0x3fead2fd5df5a5fb,0x3fe653091f33b27f,1
+np.float64,0x3fe7b9983eaf7330,0x3fe46a50c4b5235e,1
+np.float64,0xffdad237ffb5a470,0xbff921fb54442d18,1
+np.float64,0xbfe5cc39a4eb9874,0xbfe322ad3a903f93,1
+np.float64,0x800ad6eecb35adde,0x800ad6eecb35adde,1
+np.float64,0xffec620f6438c41e,0xbff921fb54442d18,1
+np.float64,0xbfe5ef29122bde52,0xbfe33a7dfcc255e2,1
+np.float64,0x3fd451e7d0a8a3d0,0x3fd3acfa4939af10,1
+np.float64,0x8003ea93c127d528,0x8003ea93c127d528,1
+np.float64,0x800b48d37c9691a7,0x800b48d37c9691a7,1
+np.float64,0x3fe7e202acafc405,0x3fe484558246069b,1
+np.float64,0x80070c9b686e1938,0x80070c9b686e1938,1
+np.float64,0xbfda90bbc6352178,0xbfd92e25fcd12288,1
+np.float64,0x800e1ffebb1c3ffe,0x800e1ffebb1c3ffe,1
+np.float64,0x3ff0000000000000,0x3fe921fb54442d18,1
+np.float64,0xffd8cfdd46319fba,0xbff921fb54442d18,1
+np.float64,0x7fd8cd4182319a82,0x3ff921fb54442d18,1
+np.float64,0x3fed8bb778bb176f,0x3fe7db7c77c4c694,1
+np.float64,0x3fc74a70302e94e0,0x3fc709e95d6defec,1
+np.float64,0x3fe87269d070e4d4,0x3fe4e04bcc4a2137,1
+np.float64,0x7fb48223f6290447,0x3ff921fb54442d18,1
+np.float64,0xffe8ec444b71d888,0xbff921fb54442d18,1
+np.float64,0x7fde17d280bc2fa4,0x3ff921fb54442d18,1
+np.float64,0x3fd1cbde01a397bc,0x3fd15b9bb7b3147b,1
+np.float64,0x800883a64451074d,0x800883a64451074d,1
+np.float64,0x7fe3160a3f262c13,0x3ff921fb54442d18,1
+np.float64,0xbfe051d4d9a0a3aa,0xbfde2ecf14dc75fb,1
+np.float64,0xbfd89de689b13bce,0xbfd780176d1a28a3,1
+np.float64,0x3fecde2bf779bc58,0x3fe77ccf10bdd8e2,1
+np.float64,0xffe75774dc6eaee9,0xbff921fb54442d18,1
+np.float64,0x7fe834414d706882,0x3ff921fb54442d18,1
+np.float64,0x1,0x1,1
+np.float64,0xbfea5e4e4a74bc9c,0xbfe60e0601711835,1
+np.float64,0xffec248d4cb8491a,0xbff921fb54442d18,1
+np.float64,0xffd9942c2c332858,0xbff921fb54442d18,1
+np.float64,0xa9db36a553b67,0xa9db36a553b67,1
+np.float64,0x7fec630718b8c60d,0x3ff921fb54442d18,1
+np.float64,0xbfd062188f20c432,0xbfd009ecd652be89,1
+np.float64,0x8001b84e3023709d,0x8001b84e3023709d,1
+np.float64,0xbfe9e26d7cb3c4db,0xbfe5c3b157ecf668,1
+np.float64,0xbfef66ddf33ecdbc,0xbfe8d4b1f6410a24,1
+np.float64,0x3fd8d7109431ae21,0x3fd7b1d4860719a2,1
+np.float64,0xffee0f53107c1ea5,0xbff921fb54442d18,1
+np.float64,0x80000b4fd60016a0,0x80000b4fd60016a0,1
+np.float64,0xbfd99ff6e5333fee,0xbfd85fb3cbdaa049,1
+np.float64,0xbfe9cfd268339fa5,0xbfe5b86ef021a1b1,1
+np.float64,0xe32eace1c65d6,0xe32eace1c65d6,1
+np.float64,0xffc81f6627303ecc,0xbff921fb54442d18,1
+np.float64,0x7fe98dadde331b5b,0x3ff921fb54442d18,1
+np.float64,0xbfbcebd11e39d7a0,0xbfbccc8ec47883c7,1
+np.float64,0x7fe164880f22c90f,0x3ff921fb54442d18,1
+np.float64,0x800467c0cae8cf82,0x800467c0cae8cf82,1
+np.float64,0x800071e4b140e3ca,0x800071e4b140e3ca,1
+np.float64,0xbfc87a7eae30f4fc,0xbfc82fbc55bb0f24,1
+np.float64,0xffb2e0e23225c1c8,0xbff921fb54442d18,1
+np.float64,0x20ef338041df,0x20ef338041df,1
+np.float64,0x7fe6de71ca6dbce3,0x3ff921fb54442d18,1
+np.float64,0x5d1fa026ba3f5,0x5d1fa026ba3f5,1
+np.float64,0xffd112a9ce222554,0xbff921fb54442d18,1
+np.float64,0x3fb351f66626a3ed,0x3fb3489ab578c452,1
+np.float64,0x7fef7b2bd3bef657,0x3ff921fb54442d18,1
+np.float64,0xffe144f5d4e289eb,0xbff921fb54442d18,1
+np.float64,0xffd63a6750ac74ce,0xbff921fb54442d18,1
+np.float64,0x7fd2d8bb25a5b175,0x3ff921fb54442d18,1
+np.float64,0x3fec5920a078b242,0x3fe732dcffcf6521,1
+np.float64,0x80009a8b7f813518,0x80009a8b7f813518,1
+np.float64,0x3fdea220893d4441,0x3fdc921edf6bf3d8,1
+np.float64,0x8006cee2208d9dc5,0x8006cee2208d9dc5,1
+np.float64,0xdd0b0081ba17,0xdd0b0081ba17,1
+np.float64,0x7ff4000000000000,0x7ffc000000000000,1
+np.float64,0xbfdac33955358672,0xbfd9592bce7daf1f,1
+np.float64,0x7fe8301d7170603a,0x3ff921fb54442d18,1
+np.float64,0xbfc1d34d8523a69c,0xbfc1b62449af9684,1
+np.float64,0x800c62239458c447,0x800c62239458c447,1
+np.float64,0xffd398c009a73180,0xbff921fb54442d18,1
+np.float64,0xbfe0c6d9ee218db4,0xbfdee777557f4401,1
+np.float64,0x3feccdd373799ba7,0x3fe773c9c2263f89,1
+np.float64,0xbfd21898bda43132,0xbfd1a2be8545fcc5,1
+np.float64,0x3fd77019b62ee033,0x3fd67793cabdf267,1
+np.float64,0x7fa609cad42c1395,0x3ff921fb54442d18,1
+np.float64,0x7fb4eaea5a29d5d4,0x3ff921fb54442d18,1
+np.float64,0x3fc570dc9a2ae1b9,0x3fc53e5f6218a799,1
+np.float64,0x800344ae8466895e,0x800344ae8466895e,1
+np.float64,0xbfc7c985252f930c,0xbfc784d60fa27bac,1
+np.float64,0xffaa2929fc345250,0xbff921fb54442d18,1
+np.float64,0xffe63e5ee9ac7cbe,0xbff921fb54442d18,1
+np.float64,0x73f0280ce7e06,0x73f0280ce7e06,1
+np.float64,0xffc525f8822a4bf0,0xbff921fb54442d18,1
+np.float64,0x7fd744d00aae899f,0x3ff921fb54442d18,1
+np.float64,0xbfe0fe590761fcb2,0xbfdf3e493e8b1f32,1
+np.float64,0xfae04ae7f5c0a,0xfae04ae7f5c0a,1
+np.float64,0xef821939df043,0xef821939df043,1
+np.float64,0x7fef6135843ec26a,0x3ff921fb54442d18,1
+np.float64,0xbfebf34dcbf7e69c,0xbfe6f97588a8f911,1
+np.float64,0xbfeec0b498fd8169,0xbfe87f2eceeead12,1
+np.float64,0x7fb67161b42ce2c2,0x3ff921fb54442d18,1
+np.float64,0x3fdcfd998639fb33,0x3fdb38934927c096,1
+np.float64,0xffda5960bc34b2c2,0xbff921fb54442d18,1
+np.float64,0xbfe11f8c71223f19,0xbfdf71fe770c96ab,1
+np.float64,0x3fe4ac1bab695838,0x3fe25aa4517b8322,1
+np.float64,0x3f730458a02608b1,0x3f73044fabb5e999,1
+np.float64,0x3fdb14ffcdb62a00,0x3fd99ea6c241a3ed,1
+np.float64,0xbfc93208cd326410,0xbfc8e09d78b6d4db,1
+np.float64,0x19e734dc33ce8,0x19e734dc33ce8,1
+np.float64,0x3fe5e98428abd308,0x3fe336a6a085eb55,1
+np.float64,0x7fec672a1378ce53,0x3ff921fb54442d18,1
+np.float64,0x800f8bd8d4ff17b2,0x800f8bd8d4ff17b2,1
+np.float64,0xbfe5a12e4e6b425c,0xbfe30533f99d5d06,1
+np.float64,0x75a34cb0eb46a,0x75a34cb0eb46a,1
+np.float64,0x7fe1d21d16a3a439,0x3ff921fb54442d18,1
+np.float64,0x7ff0000000000000,0x3ff921fb54442d18,1
+np.float64,0xffe0f50db261ea1b,0xbff921fb54442d18,1
+np.float64,0xbfd9dc22feb3b846,0xbfd8937ec965a501,1
+np.float64,0x8009d68e48d3ad1d,0x8009d68e48d3ad1d,1
+np.float64,0xbfe2eba620e5d74c,0xbfe1164d7d273c60,1
+np.float64,0x992efa09325e0,0x992efa09325e0,1
+np.float64,0x3fdab640ea356c82,0x3fd94e20cab88db2,1
+np.float64,0x69a6f04ad34df,0x69a6f04ad34df,1
+np.float64,0x3fe397df25272fbe,0x3fe194bd1a3a6192,1
+np.float64,0xebcce9fdd799d,0xebcce9fdd799d,1
+np.float64,0x3fbb49490c369292,0x3fbb2f02eccc497d,1
+np.float64,0xffd871f980b0e3f4,0xbff921fb54442d18,1
+np.float64,0x800348f6966691ee,0x800348f6966691ee,1
+np.float64,0xbfebc270a7f784e1,0xbfe6dda8d0d80f26,1
+np.float64,0xffd6d559b1adaab4,0xbff921fb54442d18,1
+np.float64,0x3fec3635c0b86c6c,0x3fe71f420256e43e,1
+np.float64,0x7fbc82ad7039055a,0x3ff921fb54442d18,1
+np.float64,0x7f873050602e60a0,0x3ff921fb54442d18,1
+np.float64,0x3fca44b8c3348970,0x3fc9e8a1a1a2d96e,1
+np.float64,0x3fe0fc308fe1f861,0x3fdf3aeb469ea225,1
+np.float64,0x7fefc27de8bf84fb,0x3ff921fb54442d18,1
+np.float64,0x8005f3f3916be7e8,0x8005f3f3916be7e8,1
+np.float64,0xbfd4278c7c284f18,0xbfd38678988873b6,1
+np.float64,0x435eafc486bd7,0x435eafc486bd7,1
+np.float64,0xbfd01f5199203ea4,0xbfcf96631f2108a3,1
+np.float64,0xffd5ee9185abdd24,0xbff921fb54442d18,1
+np.float64,0xffedb363257b66c5,0xbff921fb54442d18,1
+np.float64,0x800d68e6e11ad1ce,0x800d68e6e11ad1ce,1
+np.float64,0xbfcf687f8e3ed100,0xbfceccb771b0d39a,1
+np.float64,0x7feb3b9ef2f6773d,0x3ff921fb54442d18,1
+np.float64,0x3fe15ec5ca62bd8c,0x3fdfd3fab9d96f81,1
+np.float64,0x10000000000000,0x10000000000000,1
+np.float64,0xd2386f81a470e,0xd2386f81a470e,1
+np.float64,0xb9feed4573fde,0xb9feed4573fde,1
+np.float64,0x3fe7ed25c9efda4c,0x3fe48b7b72db4014,1
+np.float64,0xbfe01478726028f1,0xbfddcd1f5a2efc59,1
+np.float64,0x9946d02f328da,0x9946d02f328da,1
+np.float64,0xbfe3bb67f06776d0,0xbfe1ae88aa81c5a6,1
+np.float64,0xbfd3fd8a4c27fb14,0xbfd3603982e3b78d,1
+np.float64,0xffd5c3ab912b8758,0xbff921fb54442d18,1
+np.float64,0xffd5f502b12bea06,0xbff921fb54442d18,1
+np.float64,0xbfc64981ec2c9304,0xbfc610e0382b1fa6,1
+np.float64,0xffec42e3413885c6,0xbff921fb54442d18,1
+np.float64,0x80084eb4ed109d6a,0x80084eb4ed109d6a,1
+np.float64,0xbfd17cac9fa2f95a,0xbfd112020588a4b3,1
+np.float64,0xbfd06c1359a0d826,0xbfd0134a28aa9a66,1
+np.float64,0x7fdc3d7c03b87af7,0x3ff921fb54442d18,1
+np.float64,0x7bdf5aaaf7bec,0x7bdf5aaaf7bec,1
+np.float64,0xbfee3cd966fc79b3,0xbfe83a14bc07ac3b,1
+np.float64,0x7fec910da3f9221a,0x3ff921fb54442d18,1
+np.float64,0xffb4ea667029d4d0,0xbff921fb54442d18,1
+np.float64,0x800103d7cce207b0,0x800103d7cce207b0,1
+np.float64,0x7fbb229a6c364534,0x3ff921fb54442d18,1
+np.float64,0x0,0x0,1
+np.float64,0xffd8fccd0331f99a,0xbff921fb54442d18,1
+np.float64,0xbfd0784ae1a0f096,0xbfd01ebff62e39ad,1
+np.float64,0xbfed2ec9b3ba5d93,0xbfe7a9099410bc76,1
+np.float64,0x800690b8d16d2172,0x800690b8d16d2172,1
+np.float64,0x7fc061b26520c364,0x3ff921fb54442d18,1
+np.float64,0x8007ec47054fd88f,0x8007ec47054fd88f,1
+np.float64,0x775546b6eeaa9,0x775546b6eeaa9,1
+np.float64,0x8005e00fb56bc020,0x8005e00fb56bc020,1
+np.float64,0xbfe510f8d0ea21f2,0xbfe2a16862b5a37f,1
+np.float64,0xffd87a6bf3b0f4d8,0xbff921fb54442d18,1
+np.float64,0x800906e3d0520dc8,0x800906e3d0520dc8,1
+np.float64,0x2296f000452f,0x2296f000452f,1
+np.float64,0xbfe3189fa2e63140,0xbfe1378c0e005be4,1
+np.float64,0xb4d2447f69a49,0xb4d2447f69a49,1
+np.float64,0xffd056a24a20ad44,0xbff921fb54442d18,1
+np.float64,0xbfe3b23fe4e76480,0xbfe1a7e5840fcbeb,1
+np.float64,0x80018ee270831dc6,0x80018ee270831dc6,1
+np.float64,0x800df89f245bf13e,0x800df89f245bf13e,1
+np.float64,0x3fee1409d7bc2814,0x3fe824779d133232,1
+np.float64,0xbfef8d81667f1b03,0xbfe8e85523620368,1
+np.float64,0xffd8a6519b314ca4,0xbff921fb54442d18,1
+np.float64,0x7fc7bc86f32f790d,0x3ff921fb54442d18,1
+np.float64,0xffea6159e674c2b3,0xbff921fb54442d18,1
+np.float64,0x3fe153c3fba2a788,0x3fdfc2f74769d300,1
+np.float64,0xffc4261ef3284c3c,0xbff921fb54442d18,1
+np.float64,0x7fe8a8961ff1512b,0x3ff921fb54442d18,1
+np.float64,0xbfe3fb1fd167f640,0xbfe1dc89dcb7ecdf,1
+np.float64,0x3fd88577c2b10af0,0x3fd76acc09660704,1
+np.float64,0x3fe128ec27e251d8,0x3fdf808fc7ebcd8f,1
+np.float64,0xbfed6ca7c4fad950,0xbfe7caafe9a3e213,1
+np.float64,0xbf9a3912b8347220,0xbf9a379b3349352e,1
+np.float64,0xbfd724d7bcae49b0,0xbfd6351efa2a5fc5,1
+np.float64,0xbfed59700a7ab2e0,0xbfe7c043014c694c,1
+np.float64,0x8002ad435bc55a87,0x8002ad435bc55a87,1
+np.float64,0xffe46ed345a8dda6,0xbff921fb54442d18,1
+np.float64,0x7fd2f1d1d825e3a3,0x3ff921fb54442d18,1
+np.float64,0xbfea0265e23404cc,0xbfe5d6fb3fd30464,1
+np.float64,0xbfd17e049122fc0a,0xbfd113421078bbae,1
+np.float64,0xffea03b986b40772,0xbff921fb54442d18,1
+np.float64,0x800b55331a16aa67,0x800b55331a16aa67,1
+np.float64,0xbfc6fcafbf2df960,0xbfc6be9ecd0ebc1f,1
+np.float64,0xd6a36017ad46c,0xd6a36017ad46c,1
+np.float64,0xbfe9ba86dfb3750e,0xbfe5ab840cb0ef86,1
+np.float64,0x75c4a108eb895,0x75c4a108eb895,1
+np.float64,0x8008d6bc8051ad79,0x8008d6bc8051ad79,1
+np.float64,0xbfd3dc5984a7b8b4,0xbfd341f78e0528ec,1
+np.float64,0xffe1cbb01aa39760,0xbff921fb54442d18,1
+np.float64,0x3fc7e292f52fc526,0x3fc79d0ce9365767,1
+np.float64,0xbfcbeae2bd37d5c4,0xbfcb7cb034f82467,1
+np.float64,0x8000f0c62e21e18d,0x8000f0c62e21e18d,1
+np.float64,0xbfe23d8bc6247b18,0xbfe09418ee35c3c7,1
+np.float64,0x717394bae2e73,0x717394bae2e73,1
+np.float64,0xffa2ef1cc425de40,0xbff921fb54442d18,1
+np.float64,0x3fd938c229b27184,0x3fd806900735c99d,1
+np.float64,0x800bf3ec8a77e7d9,0x800bf3ec8a77e7d9,1
+np.float64,0xffeef41dd57de83b,0xbff921fb54442d18,1
+np.float64,0x8008df97e5b1bf30,0x8008df97e5b1bf30,1
+np.float64,0xffe9ab9d0db35739,0xbff921fb54442d18,1
+np.float64,0x99ff391333fe7,0x99ff391333fe7,1
+np.float64,0x3fb864b4a630c969,0x3fb851e883ea2cf9,1
+np.float64,0x22c1230a45825,0x22c1230a45825,1
+np.float64,0xff2336fbfe467,0xff2336fbfe467,1
+np.float64,0xbfd488f4cea911ea,0xbfd3def0490f5414,1
+np.float64,0x3fa379c78426f38f,0x3fa377607370800b,1
+np.float64,0xbfb0873302210e68,0xbfb08155b78dfd53,1
+np.float64,0xbfdf9ff7c2bf3ff0,0xbfdd5f658e357ad2,1
+np.float64,0x800978719192f0e4,0x800978719192f0e4,1
+np.float64,0xbfba8759ea350eb0,0xbfba6f325013b9e5,1
+np.float64,0xbfdd3e6b06ba7cd6,0xbfdb6e472b6091b0,1
+np.float64,0x7fe0c334a7a18668,0x3ff921fb54442d18,1
+np.float64,0xbfeb971feb772e40,0xbfe6c4e0f61404d1,1
+np.float64,0x3fe2a50968e54a13,0x3fe0e1c8b8d96e85,1
+np.float64,0x800fa9c5515f538b,0x800fa9c5515f538b,1
+np.float64,0x800f8532fbbf0a66,0x800f8532fbbf0a66,1
+np.float64,0x167d6f1e2cfaf,0x167d6f1e2cfaf,1
+np.float64,0xffee88e769fd11ce,0xbff921fb54442d18,1
+np.float64,0xbfeecc8529fd990a,0xbfe885520cdad8ea,1
+np.float64,0xffefffffffffffff,0xbff921fb54442d18,1
+np.float64,0xbfef6a566afed4ad,0xbfe8d6767b4c4235,1
+np.float64,0xffec12415af82482,0xbff921fb54442d18,1
+np.float64,0x3678a20a6cf15,0x3678a20a6cf15,1
+np.float64,0xffe468d54ee8d1aa,0xbff921fb54442d18,1
+np.float64,0x800ad6006795ac01,0x800ad6006795ac01,1
+np.float64,0x8001d5b61063ab6d,0x8001d5b61063ab6d,1
+np.float64,0x800dfcd1863bf9a3,0x800dfcd1863bf9a3,1
+np.float64,0xc9fbff6f93f80,0xc9fbff6f93f80,1
+np.float64,0xffe55c20f9eab842,0xbff921fb54442d18,1
+np.float64,0xbfcb596b6536b2d8,0xbfcaf1b339c5c615,1
+np.float64,0xbfe092689ea124d1,0xbfde94fa58946e51,1
+np.float64,0x3fe9ec733af3d8e6,0x3fe5c9bf5dee2623,1
+np.float64,0x3fe30f3d83261e7b,0x3fe1309fd6620e03,1
+np.float64,0xffd31d7f84263b00,0xbff921fb54442d18,1
+np.float64,0xbfe88d2d3e711a5a,0xbfe4f12b5a136178,1
+np.float64,0xffc81e4ce1303c98,0xbff921fb54442d18,1
+np.float64,0xffe5b96ebfab72dd,0xbff921fb54442d18,1
+np.float64,0x512f0502a25e1,0x512f0502a25e1,1
+np.float64,0x7fa3a376982746ec,0x3ff921fb54442d18,1
+np.float64,0x80005b5f2f60b6bf,0x80005b5f2f60b6bf,1
+np.float64,0xc337cc69866fa,0xc337cc69866fa,1
+np.float64,0x3fe7719c4caee339,0x3fe43bab42b19e64,1
+np.float64,0x7fde7ec1d93cfd83,0x3ff921fb54442d18,1
+np.float64,0x3fd2f38f3825e71e,0x3fd26cc7b1dd0acb,1
+np.float64,0x7fce298b993c5316,0x3ff921fb54442d18,1
+np.float64,0x56ae3b2cad5c8,0x56ae3b2cad5c8,1
+np.float64,0x3fe9299f2bf2533e,0x3fe552bddd999e72,1
+np.float64,0x7feff3a4823fe748,0x3ff921fb54442d18,1
+np.float64,0xbfd05c670aa0b8ce,0xbfd00494d78e9e97,1
+np.float64,0xffe745323eae8a64,0xbff921fb54442d18,1
diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/tests/data/umath-validation-set-arctanh.csv b/.venv/lib/python3.12/site-packages/numpy/_core/tests/data/umath-validation-set-arctanh.csv
new file mode 100644
index 0000000..68ecaab
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/_core/tests/data/umath-validation-set-arctanh.csv
@@ -0,0 +1,1429 @@
+dtype,input,output,ulperrortol
+np.float32,0x3ee82930,0x3efa60fd,2
+np.float32,0x3f0aa640,0x3f1b3e13,2
+np.float32,0x3ec1a21c,0x3ecbbf8d,2
+np.float32,0x3cdb1740,0x3cdb24a1,2
+np.float32,0xbf28b6f3,0xbf4a86ac,2
+np.float32,0xbe490dcc,0xbe4bb2eb,2
+np.float32,0x80000001,0x80000001,2
+np.float32,0xbf44f9dd,0xbf826ce1,2
+np.float32,0xbf1d66c4,0xbf37786b,2
+np.float32,0x3f0ad26a,0x3f1b7c9b,2
+np.float32,0x3f7b6c54,0x4016aab0,2
+np.float32,0xbf715bb8,0xbfe1a0bc,2
+np.float32,0xbee8a562,0xbefafd6a,2
+np.float32,0x3db94d00,0x3db9cf16,2
+np.float32,0x3ee2970c,0x3ef368b3,2
+np.float32,0x3f3f8614,0x3f77fdca,2
+np.float32,0xbf1fb5f0,0xbf3b3789,2
+np.float32,0x3f798dc0,0x400b96bb,2
+np.float32,0x3e975d64,0x3e9c0573,2
+np.float32,0xbe3f1908,0xbe415d1f,2
+np.float32,0x3f2cea38,0x3f52192e,2
+np.float32,0x3e82f1ac,0x3e85eaa1,2
+np.float32,0x3eab6b30,0x3eb24acd,2
+np.float32,0xbe9bb90c,0xbea0cf5f,2
+np.float32,0xbf43e847,0xbf81202f,2
+np.float32,0xbd232fa0,0xbd2345c0,2
+np.float32,0xbbabbc00,0xbbabbc67,2
+np.float32,0xbf0b2975,0xbf1bf808,2
+np.float32,0xbef5ab0a,0xbf05d305,2
+np.float32,0x3f2cad16,0x3f51a8e2,2
+np.float32,0xbef75940,0xbf06eb08,2
+np.float32,0xbf0c1216,0xbf1d4325,2
+np.float32,0x3e7bdc08,0x3e8090c2,2
+np.float32,0x3da14e10,0x3da1a3c5,2
+np.float32,0x3f627412,0x3fb2bf21,2
+np.float32,0xbd6d08c0,0xbd6d4ca0,2
+np.float32,0x3f3e2368,0x3f74df8b,2
+np.float32,0xbe0df104,0xbe0edc77,2
+np.float32,0x3e8a265c,0x3e8da833,2
+np.float32,0xbdccdbb0,0xbdcd8ba8,2
+np.float32,0x3eb080c4,0x3eb80a44,2
+np.float32,0x3e627800,0x3e6645fe,2
+np.float32,0xbd8be0b0,0xbd8c1886,2
+np.float32,0xbf3282ac,0xbf5cae8c,2
+np.float32,0xbe515910,0xbe545707,2
+np.float32,0xbf2e64ac,0xbf54d637,2
+np.float32,0x3e0fc230,0x3e10b6de,2
+np.float32,0x3eb13ca0,0x3eb8df94,2
+np.float32,0x3f07a3ca,0x3f170572,2
+np.float32,0x3f2c7026,0x3f513935,2
+np.float32,0x3f3c4ec8,0x3f70d67c,2
+np.float32,0xbee9cce8,0xbefc724f,2
+np.float32,0xbe53ca60,0xbe56e3f3,2
+np.float32,0x3dd9e9a0,0x3ddabd98,2
+np.float32,0x3f38b8d4,0x3f69319b,2
+np.float32,0xbe176dc4,0xbe188c1d,2
+np.float32,0xbf322f2e,0xbf5c0c51,2
+np.float32,0xbe9b8676,0xbea097a2,2
+np.float32,0xbca44280,0xbca44823,2
+np.float32,0xbe2b0248,0xbe2ca036,2
+np.float32,0x3d101e80,0x3d102dbd,2
+np.float32,0xbf4eb610,0xbf8f526d,2
+np.float32,0xbec32a50,0xbecd89d1,2
+np.float32,0x3d549100,0x3d54c1ee,2
+np.float32,0x3f78e55e,0x40087025,2
+np.float32,0x3e592798,0x3e5c802d,2
+np.float32,0x3de045d0,0x3de12cfb,2
+np.float32,0xbdad28e0,0xbdad92f7,2
+np.float32,0x3e9a69e0,0x3e9f5e59,2
+np.float32,0x3e809778,0x3e836716,2
+np.float32,0xbf3278d9,0xbf5c9b6d,2
+np.float32,0x3f39fa00,0x3f6bd4a5,2
+np.float32,0xbec8143c,0xbed34ffa,2
+np.float32,0x3ddb7f40,0x3ddc57e6,2
+np.float32,0x3f0e8342,0x3f20c634,2
+np.float32,0x3f353dda,0x3f6213a4,2
+np.float32,0xbe96b400,0xbe9b4bea,2
+np.float32,0x3e626580,0x3e66328a,2
+np.float32,0xbde091c8,0xbde179df,2
+np.float32,0x3eb47b5c,0x3ebc91ca,2
+np.float32,0xbf282182,0xbf497f2f,2
+np.float32,0x3ea9f64c,0x3eb0a748,2
+np.float32,0x3f28dd4e,0x3f4aca86,2
+np.float32,0xbf71de18,0xbfe3f587,2
+np.float32,0x7fa00000,0x7fe00000,2
+np.float32,0xbf6696a6,0xbfbcf11a,2
+np.float32,0xbc853ae0,0xbc853de2,2
+np.float32,0xbeced246,0xbedb51b8,2
+np.float32,0x3f3472a4,0x3f607e00,2
+np.float32,0xbee90124,0xbefb7117,2
+np.float32,0x3eb45b90,0x3ebc6d7c,2
+np.float32,0xbe53ead0,0xbe5705d6,2
+np.float32,0x3f630c80,0x3fb420e2,2
+np.float32,0xbf408cd0,0xbf7a56a2,2
+np.float32,0x3dda4ed0,0x3ddb23f1,2
+np.float32,0xbf37ae88,0xbf67096b,2
+np.float32,0xbdd48c28,0xbdd550c9,2
+np.float32,0xbf5745b0,0xbf9cb4a4,2
+np.float32,0xbf44e6fc,0xbf8255c1,2
+np.float32,0x3f5c8e6a,0x3fa65020,2
+np.float32,0xbea45fe8,0xbeaa6630,2
+np.float32,0x3f08bdee,0x3f188ef5,2
+np.float32,0x3ec77e74,0x3ed29f4b,2
+np.float32,0xbf1a1d3c,0xbf324029,2
+np.float32,0x3cad7340,0x3cad79e3,2
+np.float32,0xbf4fac2e,0xbf90b72a,2
+np.float32,0x3f58516e,0x3f9e8330,2
+np.float32,0x3f442008,0x3f816391,2
+np.float32,0xbf6e0c6c,0xbfd42854,2
+np.float32,0xbf266f7a,0xbf4689b2,2
+np.float32,0x3eb7e2f0,0x3ec077ba,2
+np.float32,0xbf320fd0,0xbf5bcf83,2
+np.float32,0xbf6a76b9,0xbfc80a11,2
+np.float32,0xbf2a91b4,0xbf4dd526,2
+np.float32,0x3f176e30,0x3f2e150e,2
+np.float32,0xbdcccad0,0xbdcd7a9c,2
+np.float32,0x3f60a8a4,0x3faebbf7,2
+np.float32,0x3d9706f0,0x3d974d40,2
+np.float32,0x3ef3cd34,0x3f049d58,2
+np.float32,0xbf73c615,0xbfed79fe,2
+np.float32,0x3df1b170,0x3df2d31b,2
+np.float32,0x3f632a46,0x3fb466c7,2
+np.float32,0xbf3ea18e,0xbf75f9ce,2
+np.float32,0xbf3ea05c,0xbf75f71f,2
+np.float32,0xbdd76750,0xbdd83403,2
+np.float32,0xbca830c0,0xbca836cd,2
+np.float32,0x3f1d4162,0x3f373c59,2
+np.float32,0x3c115700,0x3c1157fa,2
+np.float32,0x3dae8ab0,0x3daef758,2
+np.float32,0xbcad5020,0xbcad56bf,2
+np.float32,0x3ee299c4,0x3ef36c15,2
+np.float32,0xbf7f566c,0xc054c3bd,2
+np.float32,0x3f0cc698,0x3f1e4557,2
+np.float32,0xbe75c648,0xbe7aaa04,2
+np.float32,0x3ea29238,0x3ea86417,2
+np.float32,0x3f09d9c0,0x3f1a1d61,2
+np.float32,0x3f67275c,0x3fbe74b3,2
+np.float32,0x3e1a4e18,0x3e1b7d3a,2
+np.float32,0xbef6e3fc,0xbf069e98,2
+np.float32,0xbf6038ac,0xbfadc9fd,2
+np.float32,0xbe46bdd4,0xbe494b7f,2
+np.float32,0xbf4df1f4,0xbf8e3a98,2
+np.float32,0x3d094dc0,0x3d095aed,2
+np.float32,0x3f44c7d2,0x3f822fa3,2
+np.float32,0xbea30816,0xbea8e737,2
+np.float32,0xbe3c27c4,0xbe3e511b,2
+np.float32,0x3f3bb47c,0x3f6f8789,2
+np.float32,0xbe423760,0xbe4498c3,2
+np.float32,0x3ece1a74,0x3eda7634,2
+np.float32,0x3f14d1f6,0x3f2a1a89,2
+np.float32,0xbf4d9e8f,0xbf8dc4c1,2
+np.float32,0xbe92968e,0xbe96cd7f,2
+np.float32,0x3e99e6c0,0x3e9ece26,2
+np.float32,0xbf397361,0xbf6ab878,2
+np.float32,0xbf4fcea4,0xbf90e99f,2
+np.float32,0x3de37640,0x3de46779,2
+np.float32,0x3eb1b604,0x3eb9698c,2
+np.float32,0xbf52d0a2,0xbf957361,2
+np.float32,0xbe20435c,0xbe21975a,2
+np.float32,0x3f437a58,0x3f809bf1,2
+np.float32,0x3f27d1cc,0x3f48f335,2
+np.float32,0x3f7d4ff2,0x4027d1e2,2
+np.float32,0xbef732e4,0xbf06d205,2
+np.float32,0x3f4a0ae6,0x3f88e18e,2
+np.float32,0x3f800000,0x7f800000,2
+np.float32,0x3e3e56a0,0x3e4093ba,2
+np.float32,0xbed2fcfa,0xbee0517d,2
+np.float32,0xbe0e0114,0xbe0eecd7,2
+np.float32,0xbe808574,0xbe8353db,2
+np.float32,0x3f572e2a,0x3f9c8c86,2
+np.float32,0x80800000,0x80800000,2
+np.float32,0x3f3f3c82,0x3f775703,2
+np.float32,0xbf6e2482,0xbfd4818b,2
+np.float32,0xbf3943b0,0xbf6a5439,2
+np.float32,0x3f6e42ac,0x3fd4f1ea,2
+np.float32,0x3eb676c4,0x3ebed619,2
+np.float32,0xbe5e56c4,0xbe61ef6c,2
+np.float32,0x3eea200c,0x3efcdb65,2
+np.float32,0x3e3d2c78,0x3e3f5ef8,2
+np.float32,0xbdfd8fb0,0xbdfede71,2
+np.float32,0xbee69c8a,0xbef86e89,2
+np.float32,0x3e9efca0,0x3ea46a1c,2
+np.float32,0x3e4c2498,0x3e4ee9ee,2
+np.float32,0xbf3cc93c,0xbf71e21d,2
+np.float32,0x3ee0d77c,0x3ef13d2b,2
+np.float32,0xbefbcd2a,0xbf09d6a3,2
+np.float32,0x3f6dbe5c,0x3fd30a3e,2
+np.float32,0x3dae63e0,0x3daed03f,2
+np.float32,0xbd5001e0,0xbd502fb9,2
+np.float32,0x3f59632a,0x3fa067c8,2
+np.float32,0x3f0d355a,0x3f1ee452,2
+np.float32,0x3f2cbe5c,0x3f51c896,2
+np.float32,0x3c5e6e80,0x3c5e7200,2
+np.float32,0xbe8ac49c,0xbe8e52f0,2
+np.float32,0x3f54e576,0x3f98c0e6,2
+np.float32,0xbeaa0762,0xbeb0ba7c,2
+np.float32,0x3ec81e88,0x3ed35c21,2
+np.float32,0x3f5a6738,0x3fa23fb6,2
+np.float32,0xbf24a682,0xbf43784a,2
+np.float32,0x1,0x1,2
+np.float32,0x3ee6bc24,0x3ef89630,2
+np.float32,0x3f19444a,0x3f30ecf5,2
+np.float32,0x3ec1fc70,0x3ecc28fc,2
+np.float32,0xbf706e14,0xbfdd92fb,2
+np.float32,0x3eccb630,0x3ed8cd98,2
+np.float32,0xbcdf7aa0,0xbcdf88d3,2
+np.float32,0xbe450da8,0xbe478a8e,2
+np.float32,0x3ec9c210,0x3ed54c0b,2
+np.float32,0xbf3b86ca,0xbf6f24d1,2
+np.float32,0x3edcc7a0,0x3eec3a5c,2
+np.float32,0x3f075d5c,0x3f16a39a,2
+np.float32,0xbf5719ce,0xbf9c69de,2
+np.float32,0x3f62cb22,0x3fb3885a,2
+np.float32,0x3f639216,0x3fb55c93,2
+np.float32,0xbf473ee7,0xbf85413a,2
+np.float32,0xbf01b66c,0xbf0eea86,2
+np.float32,0x3e872d80,0x3e8a74f8,2
+np.float32,0xbf60957e,0xbfae925c,2
+np.float32,0xbf6847b2,0xbfc1929b,2
+np.float32,0x3f78bb94,0x4007b363,2
+np.float32,0xbf47efdb,0xbf8622db,2
+np.float32,0xbe1f2308,0xbe206fd6,2
+np.float32,0xbf414926,0xbf7c0a7e,2
+np.float32,0x3eecc268,0x3f00194d,2
+np.float32,0x3eb086d0,0x3eb81120,2
+np.float32,0xbef1af80,0xbf033ff5,2
+np.float32,0xbf454e56,0xbf82d4aa,2
+np.float32,0x3e622560,0x3e65ef20,2
+np.float32,0x3f50d2b2,0x3f926a83,2
+np.float32,0x3eb2c45c,0x3eba9d2c,2
+np.float32,0x3e42d1a0,0x3e4538c9,2
+np.float32,0xbf24cc5c,0xbf43b8e3,2
+np.float32,0x3e8c6464,0x3e90141a,2
+np.float32,0xbf3abff2,0xbf6d79c5,2
+np.float32,0xbec8f2e6,0xbed456fa,2
+np.float32,0xbf787b38,0xc00698b4,2
+np.float32,0xbf58d5cd,0xbf9f6c03,2
+np.float32,0x3df4ee20,0x3df61ba8,2
+np.float32,0xbf34581e,0xbf604951,2
+np.float32,0xbeba5cf4,0xbec35119,2
+np.float32,0xbf76c22d,0xbfffc51c,2
+np.float32,0x3ef63b2c,0x3f0630b4,2
+np.float32,0x3eeadb64,0x3efdc877,2
+np.float32,0x3dfd8c70,0x3dfedb24,2
+np.float32,0x3f441600,0x3f81576d,2
+np.float32,0x3f23a0d8,0x3f41bbf6,2
+np.float32,0x3cb84d40,0x3cb85536,2
+np.float32,0xbf25cb5c,0xbf456e38,2
+np.float32,0xbc108540,0xbc108636,2
+np.float32,0xbc5b9140,0xbc5b949e,2
+np.float32,0xbf62ff40,0xbfb401dd,2
+np.float32,0x3e8e0710,0x3e91d93e,2
+np.float32,0x3f1b6ae0,0x3f344dfd,2
+np.float32,0xbf4dbbbe,0xbf8dedea,2
+np.float32,0x3f1a5fb2,0x3f32a880,2
+np.float32,0xbe56bd00,0xbe59f8cb,2
+np.float32,0xbf490a5c,0xbf87902d,2
+np.float32,0xbf513072,0xbf92f717,2
+np.float32,0x3e73ee28,0x3e78b542,2
+np.float32,0x3f0a4c7a,0x3f1abf2c,2
+np.float32,0x3e10d5c8,0x3e11d00b,2
+np.float32,0xbf771aac,0xc001207e,2
+np.float32,0x3efe2f54,0x3f0b6a46,2
+np.float32,0xbea5f3ea,0xbeac291f,2
+np.float32,0xbf1a73e8,0xbf32c845,2
+np.float32,0x3ebcc82c,0x3ec61c4f,2
+np.float32,0xbf24f492,0xbf43fd9a,2
+np.float32,0x3ecbd908,0x3ed7c691,2
+np.float32,0x3f461c5e,0x3f83d3f0,2
+np.float32,0x3eed0524,0x3f0043c1,2
+np.float32,0x3d06e840,0x3d06f4bf,2
+np.float32,0x3eb6c974,0x3ebf34d7,2
+np.float32,0xbf1c85e1,0xbf36100f,2
+np.float32,0x3ed697d0,0x3ee4ad04,2
+np.float32,0x3eab0484,0x3eb1d733,2
+np.float32,0xbf3b02f2,0xbf6e0935,2
+np.float32,0xbeeab154,0xbefd9334,2
+np.float32,0xbf695372,0xbfc49881,2
+np.float32,0x3e8aaa7c,0x3e8e36be,2
+np.float32,0xbf208754,0xbf3c8f7b,2
+np.float32,0xbe0dbf28,0xbe0ea9a1,2
+np.float32,0x3ca780c0,0x3ca786ba,2
+np.float32,0xbeb320b4,0xbebb065e,2
+np.float32,0x3f13c698,0x3f288821,2
+np.float32,0xbe8cbbec,0xbe9072c4,2
+np.float32,0x3f1ed534,0x3f39c8df,2
+np.float32,0x3e1ca450,0x3e1de190,2
+np.float32,0x3f54be1c,0x3f988134,2
+np.float32,0x3f34e4ee,0x3f6161b4,2
+np.float32,0xbf7e6913,0xc038b246,2
+np.float32,0x3d3c3f20,0x3d3c6119,2
+np.float32,0x3ca9dc80,0x3ca9e2bc,2
+np.float32,0xbf577ea2,0xbf9d161a,2
+np.float32,0xbedb22c8,0xbeea3644,2
+np.float32,0x3f22a044,0x3f400bfa,2
+np.float32,0xbe214b8c,0xbe22a637,2
+np.float32,0x3e8cd300,0x3e908bbc,2
+np.float32,0xbec4d214,0xbecf7a58,2
+np.float32,0x3e9399a4,0x3e97e7e4,2
+np.float32,0xbee6a1a2,0xbef874ed,2
+np.float32,0xbf323742,0xbf5c1bfd,2
+np.float32,0x3f48b882,0x3f8725ac,2
+np.float32,0xbf4d4dba,0xbf8d532e,2
+np.float32,0xbf59640a,0xbfa0695a,2
+np.float32,0xbf2ad562,0xbf4e4f03,2
+np.float32,0x3e317d98,0x3e334d03,2
+np.float32,0xbf6a5b71,0xbfc7b5a2,2
+np.float32,0x3e87b434,0x3e8b05cf,2
+np.float32,0xbf1c344c,0xbf358dee,2
+np.float32,0x3e449428,0x3e470c65,2
+np.float32,0xbf2c0f2f,0xbf508808,2
+np.float32,0xbec5b5ac,0xbed0859c,2
+np.float32,0xbf4aa956,0xbf89b4b1,2
+np.float32,0x3f6dd374,0x3fd35717,2
+np.float32,0x3f45f76c,0x3f83a5ef,2
+np.float32,0xbed1fba8,0xbedf1bd5,2
+np.float32,0xbd26b2d0,0xbd26ca66,2
+np.float32,0xbe9817c2,0xbe9cd1c3,2
+np.float32,0x3e725988,0x3e770875,2
+np.float32,0xbf1a8ded,0xbf32f132,2
+np.float32,0xbe695860,0xbe6d83d3,2
+np.float32,0x3d8cecd0,0x3d8d25ea,2
+np.float32,0x3f574706,0x3f9cb6ec,2
+np.float32,0xbf5c5a1f,0xbfa5eaf3,2
+np.float32,0x3e7a7c88,0x3e7fab83,2
+np.float32,0xff800000,0xffc00000,2
+np.float32,0x3f66396a,0x3fbbfbb0,2
+np.float32,0x3ed6e588,0x3ee50b53,2
+np.float32,0xbb56d500,0xbb56d532,2
+np.float32,0x3ebd23fc,0x3ec6869a,2
+np.float32,0xbf70d490,0xbfdf4af5,2
+np.float32,0x3e514f88,0x3e544d15,2
+np.float32,0x3e660f98,0x3e6a0dac,2
+np.float32,0xbf034da1,0xbf1110bb,2
+np.float32,0xbf60d9be,0xbfaf2714,2
+np.float32,0x3df67b10,0x3df7ae64,2
+np.float32,0xbeeedc0a,0xbf017010,2
+np.float32,0xbe149224,0xbe15a072,2
+np.float32,0x3f455084,0x3f82d759,2
+np.float32,0x3f210f9e,0x3f3d7093,2
+np.float32,0xbeaea3e0,0xbeb5edd3,2
+np.float32,0x3e0724b0,0x3e07efad,2
+np.float32,0x3f09a784,0x3f19d6ac,2
+np.float32,0xbf044340,0xbf125ee8,2
+np.float32,0xbf71adc9,0xbfe315fe,2
+np.float32,0x3efd3870,0x3f0ac6a8,2
+np.float32,0xbf53c7a6,0xbf96f6df,2
+np.float32,0xbf3cf784,0xbf7247af,2
+np.float32,0x3e0ce9e0,0x3e0dd035,2
+np.float32,0xbd3051a0,0xbd306d89,2
+np.float32,0x3ecab804,0x3ed66f77,2
+np.float32,0x3e984350,0x3e9d0189,2
+np.float32,0x3edd1c00,0x3eeca20b,2
+np.float32,0xbe8e22a0,0xbe91f71b,2
+np.float32,0x3ebebc18,0x3ec85fd6,2
+np.float32,0xba275c00,0xba275c01,2
+np.float32,0x3f1d8190,0x3f37a385,2
+np.float32,0x3f17343e,0x3f2dbbfe,2
+np.float32,0x3caa8000,0x3caa864e,2
+np.float32,0x3e7a7308,0x3e7fa168,2
+np.float32,0x3f7359a6,0x3feb3e1a,2
+np.float32,0xbf7ad15a,0xc012a743,2
+np.float32,0xbf122efb,0xbf262812,2
+np.float32,0xbf03ba04,0xbf11a3fa,2
+np.float32,0x3ed7a90c,0x3ee5f8d4,2
+np.float32,0xbe23e318,0xbe254eed,2
+np.float32,0xbe2866f4,0xbe29f20a,2
+np.float32,0xbeaedff2,0xbeb631d0,2
+np.float32,0x0,0x0,2
+np.float32,0x3ef2a034,0x3f03dafd,2
+np.float32,0x3f35806c,0x3f62994e,2
+np.float32,0xbf655e19,0xbfb9c718,2
+np.float32,0x3f5d54ce,0x3fa7d4f4,2
+np.float32,0x3f33e64a,0x3f5f67e3,2
+np.float32,0x3ebf4010,0x3ec8f923,2
+np.float32,0xbe050dc8,0xbe05cf70,2
+np.float32,0x3f61693e,0x3fb063b0,2
+np.float32,0xbd94ac00,0xbd94ef12,2
+np.float32,0x3e9de008,0x3ea32f61,2
+np.float32,0xbe3d042c,0xbe3f3540,2
+np.float32,0x3e8fdfc0,0x3e93d9e4,2
+np.float32,0x3f28bc48,0x3f4a9019,2
+np.float32,0x3edea928,0x3eee8b09,2
+np.float32,0xbf05f673,0xbf14b362,2
+np.float32,0xbf360730,0xbf63a914,2
+np.float32,0xbe3fb454,0xbe41fe0a,2
+np.float32,0x3f6d99a8,0x3fd28552,2
+np.float32,0xbf3ae866,0xbf6dd052,2
+np.float32,0x3f5b1164,0x3fa37aec,2
+np.float32,0xbf64a451,0xbfb7f61b,2
+np.float32,0xbdd79bd0,0xbdd86919,2
+np.float32,0x3e89fc00,0x3e8d7a85,2
+np.float32,0x3f4bf690,0x3f8b77ea,2
+np.float32,0x3cbdf280,0x3cbdfb38,2
+np.float32,0x3f138f98,0x3f2835b4,2
+np.float32,0xbe33967c,0xbe3576bc,2
+np.float32,0xbf298164,0xbf4bedda,2
+np.float32,0x3e9955cc,0x3e9e2edb,2
+np.float32,0xbf79b383,0xc00c56c0,2
+np.float32,0x3ea0834c,0x3ea61aea,2
+np.float32,0xbf511184,0xbf92c89a,2
+np.float32,0x3f4d9fba,0x3f8dc666,2
+np.float32,0x3f3387c2,0x3f5ead80,2
+np.float32,0x3e3f7360,0x3e41babb,2
+np.float32,0xbf3cc4d6,0xbf71d879,2
+np.float32,0x3f2e4402,0x3f54994e,2
+np.float32,0x3e6a7118,0x3e6eabff,2
+np.float32,0xbf05d83e,0xbf1489cc,2
+np.float32,0xbdce4fd8,0xbdcf039a,2
+np.float32,0xbf03e2f4,0xbf11dbaf,2
+np.float32,0x3f1ea0a0,0x3f397375,2
+np.float32,0x3f7aff54,0x4013cb1b,2
+np.float32,0x3f5ef158,0x3fab1801,2
+np.float32,0xbe33bcc8,0xbe359e40,2
+np.float32,0xbf04dd0e,0xbf133111,2
+np.float32,0xbf14f887,0xbf2a54d1,2
+np.float32,0x3f75c37a,0x3ff9196e,2
+np.float32,0x3f35c3c8,0x3f6320f2,2
+np.float32,0x3f53bb94,0x3f96e3c3,2
+np.float32,0x3f4d473e,0x3f8d4a19,2
+np.float32,0xbdfe19e0,0xbdff6ac9,2
+np.float32,0xbf7f0cc4,0xc049342d,2
+np.float32,0xbdbfc778,0xbdc057bb,2
+np.float32,0xbf7575b7,0xbff73067,2
+np.float32,0xbe9df488,0xbea34609,2
+np.float32,0xbefbd3c6,0xbf09daff,2
+np.float32,0x3f19962c,0x3f316cbd,2
+np.float32,0x3f7acec6,0x40129732,2
+np.float32,0xbf5db7de,0xbfa89a21,2
+np.float32,0x3f62f444,0x3fb3e830,2
+np.float32,0xbf522adb,0xbf94737f,2
+np.float32,0xbef6ceb2,0xbf0690ba,2
+np.float32,0xbf57c41e,0xbf9d8db0,2
+np.float32,0x3eb3360c,0x3ebb1eb0,2
+np.float32,0x3f29327e,0x3f4b618e,2
+np.float32,0xbf08d099,0xbf18a916,2
+np.float32,0x3ea21014,0x3ea7d369,2
+np.float32,0x3f39e516,0x3f6ba861,2
+np.float32,0x3e7c4f28,0x3e80ce08,2
+np.float32,0xbec5a7f8,0xbed07582,2
+np.float32,0xbf0b1b46,0xbf1be3e7,2
+np.float32,0xbef0e0ec,0xbf02bb2e,2
+np.float32,0x3d835a30,0x3d838869,2
+np.float32,0x3f08aa40,0x3f18736e,2
+np.float32,0x3eb0e4c8,0x3eb87bcd,2
+np.float32,0x3eb3821c,0x3ebb7564,2
+np.float32,0xbe3a7320,0xbe3c8d5a,2
+np.float32,0x3e43f8c0,0x3e466b10,2
+np.float32,0x3e914288,0x3e955b69,2
+np.float32,0x3ec7d800,0x3ed308e7,2
+np.float32,0x3e603df8,0x3e63eef2,2
+np.float32,0x3f225cac,0x3f3f9ac6,2
+np.float32,0x3e3db8f0,0x3e3ff06b,2
+np.float32,0x3f358d78,0x3f62b38c,2
+np.float32,0xbed9bd64,0xbee88158,2
+np.float32,0x800000,0x800000,2
+np.float32,0x3f1adfce,0x3f337230,2
+np.float32,0xbefdc346,0xbf0b229d,2
+np.float32,0xbf091018,0xbf190208,2
+np.float32,0xbf800000,0xff800000,2
+np.float32,0x3f27c2c4,0x3f48d8db,2
+np.float32,0x3ef59c80,0x3f05c993,2
+np.float32,0x3e18a340,0x3e19c893,2
+np.float32,0x3f209610,0x3f3ca7c5,2
+np.float32,0x3f69cc22,0x3fc60087,2
+np.float32,0xbf66cf07,0xbfbd8721,2
+np.float32,0xbf768098,0xbffdfcc4,2
+np.float32,0x3df27a40,0x3df39ec4,2
+np.float32,0x3daf5bd0,0x3dafca02,2
+np.float32,0x3f53f2be,0x3f973b41,2
+np.float32,0xbf7edcbc,0xc0436ce3,2
+np.float32,0xbdf61db8,0xbdf74fae,2
+np.float32,0x3e2c9328,0x3e2e3cb2,2
+np.float32,0x3f1a4570,0x3f327f41,2
+np.float32,0xbf766306,0xbffd32f1,2
+np.float32,0xbf468b9d,0xbf845f0f,2
+np.float32,0x3e398970,0x3e3b9bb1,2
+np.float32,0xbbefa900,0xbbefaa18,2
+np.float32,0xbf54c989,0xbf9893ad,2
+np.float32,0x3f262cf6,0x3f46169d,2
+np.float32,0x3f638a8a,0x3fb54a98,2
+np.float32,0xbeb36c78,0xbebb5cb8,2
+np.float32,0xbeac4d42,0xbeb34993,2
+np.float32,0x3f1d1942,0x3f36fbf2,2
+np.float32,0xbf5d49ba,0xbfa7bf07,2
+np.float32,0xbf182b5c,0xbf2f38d0,2
+np.float32,0x3f41a742,0x3f7ce5ef,2
+np.float32,0x3f0b9a6c,0x3f1c9898,2
+np.float32,0x3e847494,0x3e8788f3,2
+np.float32,0xbde41608,0xbde50941,2
+np.float32,0x3f693944,0x3fc44b5a,2
+np.float32,0x3f0386b2,0x3f115e37,2
+np.float32,0x3f3a08b0,0x3f6bf3c1,2
+np.float32,0xbf78ee64,0xc0089977,2
+np.float32,0xbf013a11,0xbf0e436e,2
+np.float32,0x3f00668e,0x3f0d2836,2
+np.float32,0x3e6d9850,0x3e720081,2
+np.float32,0x3eacf578,0x3eb4075d,2
+np.float32,0x3f18aef8,0x3f3004b4,2
+np.float32,0x3de342f0,0x3de43385,2
+np.float32,0x3e56cee8,0x3e5a0b85,2
+np.float32,0xbf287912,0xbf4a1966,2
+np.float32,0x3e92c948,0x3e9704c2,2
+np.float32,0x3c07d080,0x3c07d14c,2
+np.float32,0xbe90f6a0,0xbe9508e0,2
+np.float32,0x3e8b4f28,0x3e8ee884,2
+np.float32,0xbf35b56c,0xbf6303ff,2
+np.float32,0xbef512b8,0xbf057027,2
+np.float32,0x3e36c630,0x3e38c0cd,2
+np.float32,0x3f0b3ca8,0x3f1c134a,2
+np.float32,0x3e4cd610,0x3e4fa2c5,2
+np.float32,0xbf5a8372,0xbfa273a3,2
+np.float32,0xbecaad3c,0xbed662ae,2
+np.float32,0xbec372d2,0xbecddeac,2
+np.float32,0x3f6fb2b2,0x3fda8a22,2
+np.float32,0x3f365f28,0x3f645b5a,2
+np.float32,0xbecd00fa,0xbed926a4,2
+np.float32,0xbebafa32,0xbec40672,2
+np.float32,0xbf235b73,0xbf4146c4,2
+np.float32,0x3f7a4658,0x400f6e2c,2
+np.float32,0x3f35e824,0x3f636a54,2
+np.float32,0x3cb87640,0x3cb87e3c,2
+np.float32,0xbf296288,0xbf4bb6ee,2
+np.float32,0x7f800000,0xffc00000,2
+np.float32,0xbf4de86e,0xbf8e2d1a,2
+np.float32,0xbf4ace12,0xbf89e5f3,2
+np.float32,0x3d65a300,0x3d65e0b5,2
+np.float32,0xbe10c534,0xbe11bf21,2
+np.float32,0xbeba3c1c,0xbec32b3e,2
+np.float32,0x3e87eaf8,0x3e8b40b8,2
+np.float32,0x3d5c3bc0,0x3d5c722d,2
+np.float32,0x3e8c14b8,0x3e8fbdf8,2
+np.float32,0xbf06c6f0,0xbf15d327,2
+np.float32,0xbe0f1e30,0xbe100f96,2
+np.float32,0xbee244b0,0xbef30251,2
+np.float32,0x3f2a21b0,0x3f4d0c1d,2
+np.float32,0xbf5f7f81,0xbfac408e,2
+np.float32,0xbe3dba2c,0xbe3ff1b2,2
+np.float32,0x3f3ffc22,0x3f790abf,2
+np.float32,0x3edc3dac,0x3eeb90fd,2
+np.float32,0x7f7fffff,0xffc00000,2
+np.float32,0x3ecfaaac,0x3edc5485,2
+np.float32,0x3f0affbe,0x3f1bbcd9,2
+np.float32,0x3f5f2264,0x3fab7dca,2
+np.float32,0x3f37394c,0x3f66186c,2
+np.float32,0xbe6b2f6c,0xbe6f74e3,2
+np.float32,0x3f284772,0x3f49c1f1,2
+np.float32,0xbdf27bc8,0xbdf3a051,2
+np.float32,0xbc8b14e0,0xbc8b184c,2
+np.float32,0x3f6a867c,0x3fc83b07,2
+np.float32,0x3f1ec876,0x3f39b429,2
+np.float32,0x3f6fd9a8,0x3fdb28d6,2
+np.float32,0xbf473cca,0xbf853e8c,2
+np.float32,0x3e23eff8,0x3e255c23,2
+np.float32,0x3ebefdfc,0x3ec8ac5d,2
+np.float32,0x3f6c8c22,0x3fced2b1,2
+np.float32,0x3f168388,0x3f2cad44,2
+np.float32,0xbece2410,0xbeda81ac,2
+np.float32,0x3f5532f0,0x3f993eea,2
+np.float32,0x3ef1938c,0x3f032dfa,2
+np.float32,0xbef05268,0xbf025fba,2
+np.float32,0x3f552e4a,0x3f993754,2
+np.float32,0x3e9ed068,0x3ea4392d,2
+np.float32,0xbe1a0c24,0xbe1b39be,2
+np.float32,0xbf2623aa,0xbf46068c,2
+np.float32,0xbe1cc300,0xbe1e00fc,2
+np.float32,0xbe9c0576,0xbea12397,2
+np.float32,0xbd827338,0xbd82a07e,2
+np.float32,0x3f0fc31a,0x3f229786,2
+np.float32,0x3e577810,0x3e5abc7d,2
+np.float32,0x3e0e1cb8,0x3e0f0906,2
+np.float32,0x3e84d344,0x3e87ee73,2
+np.float32,0xbf39c45e,0xbf6b6337,2
+np.float32,0x3edfb25c,0x3eefd273,2
+np.float32,0x3e016398,0x3e021596,2
+np.float32,0xbefeb1be,0xbf0bc0de,2
+np.float32,0x3f37e104,0x3f677196,2
+np.float32,0x3f545316,0x3f97d500,2
+np.float32,0xbefc165a,0xbf0a06ed,2
+np.float32,0xbf0923e6,0xbf191dcd,2
+np.float32,0xbf386508,0xbf68831f,2
+np.float32,0xbf3d4630,0xbf72f4e1,2
+np.float32,0x3f3dbe82,0x3f73ff13,2
+np.float32,0xbf703de4,0xbfdcc7e2,2
+np.float32,0xbf531482,0xbf95dd1a,2
+np.float32,0xbf0af1b6,0xbf1ba8f4,2
+np.float32,0xbec8fd9c,0xbed463a4,2
+np.float32,0xbe230320,0xbe24691a,2
+np.float32,0xbf7de541,0xc02faf38,2
+np.float32,0x3efd2360,0x3f0ab8b7,2
+np.float32,0x3db7f350,0x3db87291,2
+np.float32,0x3e74c510,0x3e799924,2
+np.float32,0x3da549c0,0x3da5a5fc,2
+np.float32,0x3e8a3bc4,0x3e8dbf4a,2
+np.float32,0xbf69f086,0xbfc66e84,2
+np.float32,0x3f323f8e,0x3f5c2c17,2
+np.float32,0x3ec0ae3c,0x3ecaa334,2
+np.float32,0xbebe8966,0xbec824fc,2
+np.float32,0x3f34691e,0x3f606b13,2
+np.float32,0x3f13790e,0x3f2813f5,2
+np.float32,0xbf61c027,0xbfb12618,2
+np.float32,0x3e90c690,0x3e94d4a1,2
+np.float32,0xbefce8f0,0xbf0a920e,2
+np.float32,0xbf5c0e8a,0xbfa559a7,2
+np.float32,0x3f374f60,0x3f6645b6,2
+np.float32,0x3f25f6fa,0x3f45b967,2
+np.float32,0x3f2421aa,0x3f42963a,2
+np.float32,0x3ebfa328,0x3ec96c57,2
+np.float32,0x3e3bef28,0x3e3e1685,2
+np.float32,0x3ea3fa3c,0x3ea9f4dd,2
+np.float32,0x3f362b8e,0x3f63f2b2,2
+np.float32,0xbedcef18,0xbeec6ada,2
+np.float32,0xbdd29c88,0xbdd35bd0,2
+np.float32,0x3f261aea,0x3f45f76f,2
+np.float32,0xbe62c470,0xbe66965e,2
+np.float32,0x7fc00000,0x7fc00000,2
+np.float32,0xbee991aa,0xbefc277b,2
+np.float32,0xbf571960,0xbf9c6923,2
+np.float32,0xbe6fb410,0xbe743b41,2
+np.float32,0x3eb1bed0,0x3eb9738d,2
+np.float32,0x80000000,0x80000000,2
+np.float32,0x3eddcbe4,0x3eed7a69,2
+np.float32,0xbf2a81ba,0xbf4db86d,2
+np.float32,0x3f74da54,0x3ff38737,2
+np.float32,0xbeb6bff4,0xbebf29f4,2
+np.float32,0x3f445752,0x3f81a698,2
+np.float32,0x3ed081b4,0x3edd5618,2
+np.float32,0xbee73802,0xbef931b4,2
+np.float32,0xbd13f2a0,0xbd14031c,2
+np.float32,0xbb4d1200,0xbb4d122c,2
+np.float32,0xbee8777a,0xbefac393,2
+np.float32,0x3f42047c,0x3f7dc06c,2
+np.float32,0xbd089270,0xbd089f67,2
+np.float32,0xbf628c16,0xbfb2f66b,2
+np.float32,0x3e72e098,0x3e77978d,2
+np.float32,0x3ed967cc,0x3ee818e4,2
+np.float32,0x3e284c80,0x3e29d6d9,2
+np.float32,0x3f74e8ba,0x3ff3dbef,2
+np.float32,0x3f013e86,0x3f0e4969,2
+np.float32,0xbf610d4f,0xbfaf983c,2
+np.float32,0xbf3c8d36,0xbf715eba,2
+np.float32,0xbedbc756,0xbeeaffdb,2
+np.float32,0x3e143ec8,0x3e154b4c,2
+np.float32,0xbe1c9808,0xbe1dd4fc,2
+np.float32,0xbe887a1e,0xbe8bdac5,2
+np.float32,0xbe85c4bc,0xbe88f17a,2
+np.float32,0x3f35967e,0x3f62c5b4,2
+np.float32,0x3ea2c4a4,0x3ea89c2d,2
+np.float32,0xbc8703c0,0xbc8706e1,2
+np.float32,0xbf13d52c,0xbf289dff,2
+np.float32,0xbf63bb56,0xbfb5bf29,2
+np.float32,0xbf61c5ef,0xbfb13319,2
+np.float32,0xbf128410,0xbf26a675,2
+np.float32,0x3f03fcf2,0x3f11ff13,2
+np.float32,0xbe49c924,0xbe4c75cd,2
+np.float32,0xbf211a9c,0xbf3d82c5,2
+np.float32,0x3f7e9d52,0x403d1b42,2
+np.float32,0x3edfefd4,0x3ef01e71,2
+np.float32,0x3ebc5bd8,0x3ec59efb,2
+np.float32,0x3d7b02e0,0x3d7b537f,2
+np.float32,0xbf1163ba,0xbf24fb43,2
+np.float32,0x3f5072f2,0x3f91dbf1,2
+np.float32,0xbee700ce,0xbef8ec60,2
+np.float32,0x3f534168,0x3f962359,2
+np.float32,0x3e6d6c40,0x3e71d1ef,2
+np.float32,0x3def9d70,0x3df0b7a8,2
+np.float32,0x3e89cf80,0x3e8d4a8a,2
+np.float32,0xbf687ca7,0xbfc2290f,2
+np.float32,0x3f35e134,0x3f635c51,2
+np.float32,0x3e59eef8,0x3e5d50fa,2
+np.float32,0xbf65c9e1,0xbfbada61,2
+np.float32,0xbf759292,0xbff7e43d,2
+np.float32,0x3f4635a0,0x3f83f372,2
+np.float32,0x3f29baaa,0x3f4c53f1,2
+np.float32,0x3f6b15a6,0x3fc9fe04,2
+np.float32,0x3edabc88,0x3ee9b922,2
+np.float32,0x3ef382e0,0x3f046d4d,2
+np.float32,0xbe351310,0xbe36ff7f,2
+np.float32,0xbf05c935,0xbf14751c,2
+np.float32,0xbf0e7c50,0xbf20bc24,2
+np.float32,0xbf69bc94,0xbfc5d1b8,2
+np.float32,0xbed41aca,0xbee1aa23,2
+np.float32,0x3f518c08,0x3f938162,2
+np.float32,0xbf3d7974,0xbf73661a,2
+np.float32,0x3f1951a6,0x3f3101c9,2
+np.float32,0xbeb3f436,0xbebbf787,2
+np.float32,0xbf77a190,0xc0031d43,2
+np.float32,0x3eb5b3cc,0x3ebdf6e7,2
+np.float32,0xbed534b4,0xbee2fed2,2
+np.float32,0xbe53e1b8,0xbe56fc56,2
+np.float32,0x3f679e20,0x3fbfb91c,2
+np.float32,0xff7fffff,0xffc00000,2
+np.float32,0xbf7b9bcb,0xc0180073,2
+np.float32,0xbf5635e8,0xbf9aea15,2
+np.float32,0xbe5a3318,0xbe5d9856,2
+np.float32,0xbe003284,0xbe00df9a,2
+np.float32,0x3eb119a4,0x3eb8b7d6,2
+np.float32,0xbf3bccf8,0xbf6fbc84,2
+np.float32,0x3f36f600,0x3f658ea8,2
+np.float32,0x3f1ea834,0x3f397fc2,2
+np.float32,0xbe7cfb54,0xbe8129b3,2
+np.float32,0xbe9b3746,0xbea0406a,2
+np.float32,0x3edc0f90,0x3eeb586c,2
+np.float32,0x3e1842e8,0x3e19660c,2
+np.float32,0xbd8f10b0,0xbd8f4c70,2
+np.float32,0xbf064aca,0xbf1527a2,2
+np.float32,0x3e632e58,0x3e6705be,2
+np.float32,0xbef28ba4,0xbf03cdbb,2
+np.float32,0x3f27b21e,0x3f48bbaf,2
+np.float32,0xbe6f30d4,0xbe73b06e,2
+np.float32,0x3f3e6cb0,0x3f75834b,2
+np.float32,0xbf264aa5,0xbf4649f0,2
+np.float32,0xbf690775,0xbfc3b978,2
+np.float32,0xbf3e4a38,0xbf753632,2
+np.float64,0x3fe12bbe8c62577e,0x3fe32de8e5f961b0,1
+np.float64,0x3fc9b8909b337120,0x3fca1366da00efff,1
+np.float64,0x3feaee4245f5dc84,0x3ff3a011ea0432f3,1
+np.float64,0xbfe892c000f12580,0xbff03e5adaed6f0c,1
+np.float64,0xbf9be8de4837d1c0,0xbf9beaa367756bd1,1
+np.float64,0x3fe632e58fec65cc,0x3feb5ccc5114ca38,1
+np.float64,0x3fe78a0ef7ef141e,0x3fee1b4521d8eb6c,1
+np.float64,0x3feec27a65fd84f4,0x3fff643c8318e81e,1
+np.float64,0x3fbed6efce3dade0,0x3fbefd76cff00111,1
+np.float64,0xbfe3a05fab6740c0,0xbfe6db078aeeb0ca,1
+np.float64,0x3fdca11a56b94234,0x3fdece9e6eacff1b,1
+np.float64,0x3fe0fb15aae1f62c,0x3fe2e9e095ec2089,1
+np.float64,0x3fede12abf7bc256,0x3ffafd0ff4142807,1
+np.float64,0x3feb919edcf7233e,0x3ff4c9aa0bc2432f,1
+np.float64,0x3fd39633b5a72c68,0x3fd43c2e6d5f441c,1
+np.float64,0x3fd9efcbfeb3df98,0x3fdb83f03e58f91c,1
+np.float64,0x3fe2867a36650cf4,0x3fe525858c8ce72e,1
+np.float64,0x3fdacbb8f3b59770,0x3fdc8cd431b6e3ff,1
+np.float64,0x3fcc120503382408,0x3fcc88a8fa43e1c6,1
+np.float64,0xbfd99ff4eab33fea,0xbfdb24a20ae3687d,1
+np.float64,0xbfe8caf0157195e0,0xbff083b8dd0941d3,1
+np.float64,0x3fddc9bf92bb9380,0x3fe022aac0f761d5,1
+np.float64,0x3fe2dbb66e65b76c,0x3fe5a6e7caf3f1f2,1
+np.float64,0x3fe95f5c4a72beb8,0x3ff1444697e96138,1
+np.float64,0xbfc6b163d92d62c8,0xbfc6ef6e006658a1,1
+np.float64,0x3fdf1b2616be364c,0x3fe0fcbd2848c9e8,1
+np.float64,0xbfdca1ccf7b9439a,0xbfdecf7dc0eaa663,1
+np.float64,0x3fe078d6a260f1ae,0x3fe236a7c66ef6c2,1
+np.float64,0x3fdf471bb9be8e38,0x3fe11990ec74e704,1
+np.float64,0xbfe417626be82ec5,0xbfe79c9aa5ed2e2f,1
+np.float64,0xbfeb9cf5677739eb,0xbff4dfc24c012c90,1
+np.float64,0x3f8d9142b03b2280,0x3f8d91c9559d4779,1
+np.float64,0x3fb052c67220a590,0x3fb05873c90d1cd6,1
+np.float64,0x3fd742e2c7ae85c4,0x3fd860128947d15d,1
+np.float64,0x3fec2e2a2bf85c54,0x3ff60eb554bb8d71,1
+np.float64,0xbfeb2b8bc8f65718,0xbff40b734679497a,1
+np.float64,0x3fe25f8e0d64bf1c,0x3fe4eb381d077803,1
+np.float64,0x3fe56426256ac84c,0x3fe9dafbe79370f0,1
+np.float64,0x3feecc1e5d7d983c,0x3fffa49bedc7aa25,1
+np.float64,0xbfc88ce94b3119d4,0xbfc8dbba0fdee2d2,1
+np.float64,0xbfabcf51ac379ea0,0xbfabd6552aa63da3,1
+np.float64,0xbfccc8b849399170,0xbfcd48d6ff057a4d,1
+np.float64,0x3fd2f831e8a5f064,0x3fd38e67b0dda905,1
+np.float64,0x3fcafdcd6135fb98,0x3fcb670ae2ef4d36,1
+np.float64,0x3feda6042efb4c08,0x3ffa219442ac4ea5,1
+np.float64,0x3fed382b157a7056,0x3ff8bc01bc6d10bc,1
+np.float64,0x3fed858a50fb0b14,0x3ff9b1c05cb6cc0f,1
+np.float64,0x3fcc3960653872c0,0x3fccb2045373a3d1,1
+np.float64,0xbfec5177e478a2f0,0xbff65eb4557d94eb,1
+np.float64,0x3feafe0d5e75fc1a,0x3ff3bb4a260a0dcb,1
+np.float64,0x3fe08bc87ee11790,0x3fe25078aac99d31,1
+np.float64,0xffefffffffffffff,0xfff8000000000000,1
+np.float64,0x3f79985ce0333100,0x3f799872b591d1cb,1
+np.float64,0xbfd4001cf9a8003a,0xbfd4b14b9035b94f,1
+np.float64,0x3fe54a17e6ea9430,0x3fe9ac0f18682343,1
+np.float64,0xbfb4e07fea29c100,0xbfb4ec6520dd0689,1
+np.float64,0xbfed2b6659fa56cd,0xbff895ed57dc1450,1
+np.float64,0xbfe81fc8b5f03f92,0xbfef6b95e72a7a7c,1
+np.float64,0xbfe6aced16ed59da,0xbfec4ce131ee3704,1
+np.float64,0xbfe599f30ceb33e6,0xbfea3d07c1cd78e2,1
+np.float64,0xbfe0ff278b61fe4f,0xbfe2ef8b5efa89ed,1
+np.float64,0xbfe3e9406467d281,0xbfe750e43e841736,1
+np.float64,0x3fcc6b52cf38d6a8,0x3fcce688f4fb2cf1,1
+np.float64,0xbfc890e8133121d0,0xbfc8dfdfee72d258,1
+np.float64,0x3fe46e81dbe8dd04,0x3fe82e09783811a8,1
+np.float64,0x3fd94455e5b288ac,0x3fdab7cef2de0b1f,1
+np.float64,0xbfe82151fff042a4,0xbfef6f254c9696ca,1
+np.float64,0x3fcee1ac1d3dc358,0x3fcf80a6ed07070a,1
+np.float64,0x3fcce8f90939d1f0,0x3fcd6ad18d34f8b5,1
+np.float64,0x3fd6afe56fad5fcc,0x3fd7b7567526b1fb,1
+np.float64,0x3fb1a77092234ee0,0x3fb1ae9fe0d176fc,1
+np.float64,0xbfeb758b0d76eb16,0xbff493d105652edc,1
+np.float64,0xbfb857c24e30af88,0xbfb86aa4da3be53f,1
+np.float64,0x3fe89064eff120ca,0x3ff03b7c5b3339a8,1
+np.float64,0xbfc1bd2fef237a60,0xbfc1da99893473ed,1
+np.float64,0xbfe5ad6e2eeb5adc,0xbfea60ed181b5c05,1
+np.float64,0x3fd5a66358ab4cc8,0x3fd6899e640aeb1f,1
+np.float64,0xbfe198e832e331d0,0xbfe3c8c9496d0de5,1
+np.float64,0xbfdaa5c0d7b54b82,0xbfdc5ed7d3c5ce49,1
+np.float64,0x3fcceccb6939d998,0x3fcd6ed88c2dd3a5,1
+np.float64,0xbfe44413eae88828,0xbfe7e6cd32b34046,1
+np.float64,0xbfc7cbeccf2f97d8,0xbfc8139a2626edae,1
+np.float64,0x3fbf31e4fa3e63d0,0x3fbf59c6e863255e,1
+np.float64,0x3fdf03fa05be07f4,0x3fe0ed953f7989ad,1
+np.float64,0x3fe7f4eaceefe9d6,0x3fef092ca7e2ac39,1
+np.float64,0xbfc084e9d92109d4,0xbfc09ca10fd6aaea,1
+np.float64,0xbf88cfbf70319f80,0xbf88d00effa6d897,1
+np.float64,0x7ff4000000000000,0x7ffc000000000000,1
+np.float64,0xbfa0176e9c202ee0,0xbfa018ca0a6ceef3,1
+np.float64,0xbfd88d0815b11a10,0xbfd9dfc6c6bcbe4e,1
+np.float64,0x3fe89f7730713eee,0x3ff04de52fb536f3,1
+np.float64,0xbfedc9707bfb92e1,0xbffaa25fcf9dd6da,1
+np.float64,0x3fe936d1a6726da4,0x3ff10e40c2d94bc9,1
+np.float64,0x3fdb64aec7b6c95c,0x3fdd473177317b3f,1
+np.float64,0xbfee4f9aaefc9f35,0xbffcdd212667003c,1
+np.float64,0x3fe3730067e6e600,0x3fe692b0a0babf5f,1
+np.float64,0xbfc257e58924afcc,0xbfc27871f8c218d7,1
+np.float64,0x3fe62db12dec5b62,0x3feb52c61b97d9f6,1
+np.float64,0xbfe3ff491367fe92,0xbfe774f1b3a96fd6,1
+np.float64,0x3fea43255274864a,0x3ff28b0c4b7b8d21,1
+np.float64,0xbfea37923c746f24,0xbff27962159f2072,1
+np.float64,0x3fcd0ac3c73a1588,0x3fcd8e6f8de41755,1
+np.float64,0xbfdccafde6b995fc,0xbfdf030fea8a0630,1
+np.float64,0x3fdba35268b746a4,0x3fdd94094f6f50c1,1
+np.float64,0x3fc68ea1d92d1d40,0x3fc6cb8d07cbb0e4,1
+np.float64,0xbfb88b1f6e311640,0xbfb89e7af4e58778,1
+np.float64,0xbfedc7cadffb8f96,0xbffa9c3766227956,1
+np.float64,0x3fe7928d3eef251a,0x3fee2dcf2ac7961b,1
+np.float64,0xbfeff42ede7fe85e,0xc00cef6b0f1e8323,1
+np.float64,0xbfebf07fa477e0ff,0xbff5893f99e15236,1
+np.float64,0x3fe3002ab9660056,0x3fe5defba550c583,1
+np.float64,0x3feb8f4307f71e86,0x3ff4c517ec8d6de9,1
+np.float64,0x3fd3c16f49a782e0,0x3fd46becaacf74da,1
+np.float64,0x3fc7613df12ec278,0x3fc7a52b2a3c3368,1
+np.float64,0xbfe33af560e675eb,0xbfe63a6528ff1587,1
+np.float64,0xbfde86495abd0c92,0xbfe09bd7ba05b461,1
+np.float64,0x3fe1e7fb4ee3cff6,0x3fe43b04311c0ab6,1
+np.float64,0xbfc528b6bd2a516c,0xbfc55ae0a0c184c8,1
+np.float64,0xbfd81025beb0204c,0xbfd94dd72d804613,1
+np.float64,0x10000000000000,0x10000000000000,1
+np.float64,0x3fc1151c47222a38,0x3fc12f5aad80a6bf,1
+np.float64,0x3feafa136775f426,0x3ff3b46854da0b3a,1
+np.float64,0x3fed2da0747a5b40,0x3ff89c85b658459e,1
+np.float64,0x3fda2a4b51b45498,0x3fdbca0d908ddbbd,1
+np.float64,0xbfd04cf518a099ea,0xbfd0aae0033b9e4c,1
+np.float64,0xbfb9065586320ca8,0xbfb91adb7e31f322,1
+np.float64,0xbfd830b428b06168,0xbfd973ca3c484d8d,1
+np.float64,0x3fc952f7ed32a5f0,0x3fc9a9994561fc1a,1
+np.float64,0xbfeb06c83c760d90,0xbff3ca77b326df20,1
+np.float64,0xbfeb1c98ac763931,0xbff3f0d0900f6149,1
+np.float64,0x3fdf061dbebe0c3c,0x3fe0eefb32b48d17,1
+np.float64,0xbf9acbaf28359760,0xbf9acd4024be9fec,1
+np.float64,0x3fec0adde2f815bc,0x3ff5c1628423794d,1
+np.float64,0xbfc4bc750d2978ec,0xbfc4eba43f590b94,1
+np.float64,0x3fdbe47878b7c8f0,0x3fdde44a2b500d73,1
+np.float64,0x3fe160d18162c1a4,0x3fe378cff08f18f0,1
+np.float64,0x3fc3b58dfd276b18,0x3fc3de01d3802de9,1
+np.float64,0x3fa860343430c060,0x3fa864ecd07ec962,1
+np.float64,0x3fcaebfb4b35d7f8,0x3fcb546512d1b4c7,1
+np.float64,0x3fe3fda558e7fb4a,0x3fe772412e5776de,1
+np.float64,0xbfe8169f2c702d3e,0xbfef5666c9a10f6d,1
+np.float64,0x3feda78e9efb4f1e,0x3ffa270712ded769,1
+np.float64,0xbfda483161b49062,0xbfdbedfbf2e850ba,1
+np.float64,0x3fd7407cf3ae80f8,0x3fd85d4f52622743,1
+np.float64,0xbfd63de4d4ac7bca,0xbfd73550a33e3c32,1
+np.float64,0xbfd9c30b90b38618,0xbfdb4e7695c856f3,1
+np.float64,0x3fcd70c00b3ae180,0x3fcdfa0969e0a119,1
+np.float64,0x3feb4f127f769e24,0x3ff44bf42514e0f4,1
+np.float64,0xbfec1db44af83b69,0xbff5ea54aed1f8e9,1
+np.float64,0x3fd68ff051ad1fe0,0x3fd792d0ed6d6122,1
+np.float64,0x3fe0a048a5614092,0x3fe26c80a826b2a2,1
+np.float64,0x3fd59f3742ab3e70,0x3fd6818563fcaf80,1
+np.float64,0x3fca26ecf9344dd8,0x3fca867ceb5d7ba8,1
+np.float64,0x3fdc1d547ab83aa8,0x3fde2a9cea866484,1
+np.float64,0xbfc78df6312f1bec,0xbfc7d3719b698a39,1
+np.float64,0x3fe754e72b6ea9ce,0x3feda89ea844a2e5,1
+np.float64,0x3fe740c1a4ee8184,0x3fed7dc56ec0c425,1
+np.float64,0x3fe77566a9eeeace,0x3fedee6f408df6de,1
+np.float64,0xbfbbf5bf8e37eb80,0xbfbc126a223781b4,1
+np.float64,0xbfe0acb297615965,0xbfe27d86681ca2b5,1
+np.float64,0xbfc20a0487241408,0xbfc228f5f7d52ce8,1
+np.float64,0xfff0000000000000,0xfff8000000000000,1
+np.float64,0x3fef98a4dbff314a,0x40043cfb60bd46fa,1
+np.float64,0x3fd059102ca0b220,0x3fd0b7d2be6d7822,1
+np.float64,0x3fe89f18a1f13e32,0x3ff04d714bbbf400,1
+np.float64,0x3fd45b6275a8b6c4,0x3fd516a44a276a4b,1
+np.float64,0xbfe04463e86088c8,0xbfe1ef9dfc9f9a53,1
+np.float64,0xbfe086e279610dc5,0xbfe249c9c1040a13,1
+np.float64,0x3f89c9b110339380,0x3f89ca0a641454b5,1
+np.float64,0xbfb5f5b4322beb68,0xbfb6038dc3fd1516,1
+np.float64,0x3fe6eae76f6dd5ce,0x3feccabae04d5c14,1
+np.float64,0x3fa9ef6c9c33dee0,0x3fa9f51c9a8c8a2f,1
+np.float64,0xbfe171b45f62e368,0xbfe390ccc4c01bf6,1
+np.float64,0x3fb2999442253330,0x3fb2a1fc006804b5,1
+np.float64,0x3fd124bf04a24980,0x3fd1927abb92472d,1
+np.float64,0xbfe6e05938edc0b2,0xbfecb519ba78114f,1
+np.float64,0x3fed466ee6fa8cde,0x3ff8e75405b50490,1
+np.float64,0xbfb999aa92333358,0xbfb9afa4f19f80a2,1
+np.float64,0xbfe98969ed7312d4,0xbff17d887b0303e7,1
+np.float64,0x3fe782843e6f0508,0x3fee0adbeebe3486,1
+np.float64,0xbfe232fcc26465fa,0xbfe4a90a68d46040,1
+np.float64,0x3fd190a90fa32154,0x3fd206f56ffcdca2,1
+np.float64,0xbfc4f8b75929f170,0xbfc5298b2d4e7740,1
+np.float64,0xbfba3a63d63474c8,0xbfba520835c2fdc2,1
+np.float64,0xbfb7708eea2ee120,0xbfb781695ec17846,1
+np.float64,0x3fed9fb7a5fb3f70,0x3ffa0b717bcd1609,1
+np.float64,0xbfc1b158cd2362b0,0xbfc1ce87345f3473,1
+np.float64,0x3f963478082c6900,0x3f96355c3000953b,1
+np.float64,0x3fc5050e532a0a20,0x3fc536397f38f616,1
+np.float64,0x3fe239f9eee473f4,0x3fe4b360da3b2faa,1
+np.float64,0xbfd66bd80eacd7b0,0xbfd769a29fd784c0,1
+np.float64,0x3fc57cdad52af9b8,0x3fc5b16b937f5f72,1
+np.float64,0xbfd3c36a0aa786d4,0xbfd46e1cd0b4eddc,1
+np.float64,0x3feff433487fe866,0x400cf0ea1def3161,1
+np.float64,0xbfed5577807aaaef,0xbff915e8f6bfdf22,1
+np.float64,0xbfca0dd3eb341ba8,0xbfca6c4d11836cb6,1
+np.float64,0x7ff8000000000000,0x7ff8000000000000,1
+np.float64,0xbf974deaa82e9be0,0xbf974ef26a3130d1,1
+np.float64,0xbfe7f425e1efe84c,0xbfef076cb00d649d,1
+np.float64,0xbfe4413605e8826c,0xbfe7e20448b8a4b1,1
+np.float64,0xbfdfad202cbf5a40,0xbfe15cd9eb2be707,1
+np.float64,0xbfe43261ee6864c4,0xbfe7c952c951fe33,1
+np.float64,0xbfec141225782824,0xbff5d54d33861d98,1
+np.float64,0x3fd0f47abaa1e8f4,0x3fd15e8691a7f1c2,1
+np.float64,0x3fd378f0baa6f1e0,0x3fd41bea4a599081,1
+np.float64,0xbfb52523462a4a48,0xbfb5317fa7f436e2,1
+np.float64,0x3fcb30797d3660f0,0x3fcb9c174ea401ff,1
+np.float64,0xbfd48480dea90902,0xbfd5446e02c8b329,1
+np.float64,0xbfee4ae3ab7c95c7,0xbffcc650340ba274,1
+np.float64,0xbfeab086d075610e,0xbff3387f4e83ae26,1
+np.float64,0x3fa17cddf422f9c0,0x3fa17e9bf1b25736,1
+np.float64,0xbfe3064536e60c8a,0xbfe5e86aa5244319,1
+np.float64,0x3feb2882c5765106,0x3ff40604c7d97d44,1
+np.float64,0xbfa6923ff42d2480,0xbfa695ff57b2fc3f,1
+np.float64,0xbfa8bdbdcc317b80,0xbfa8c2ada0d94aa7,1
+np.float64,0x3fe7f16b8e6fe2d8,0x3fef013948c391a6,1
+np.float64,0x3fe4e7169f69ce2e,0x3fe8fceef835050a,1
+np.float64,0x3fed877638fb0eec,0x3ff9b83694127959,1
+np.float64,0xbfe0cc9ecf61993e,0xbfe2a978234cbde5,1
+np.float64,0xbfe977e79672efcf,0xbff16589ea494a38,1
+np.float64,0xbfe240130ae48026,0xbfe4bc69113e0d7f,1
+np.float64,0x3feb1e9b70763d36,0x3ff3f4615938a491,1
+np.float64,0xbfdf197dfcbe32fc,0xbfe0fba78a0fc816,1
+np.float64,0xbfee0f8543fc1f0a,0xbffbb9d9a4ee5387,1
+np.float64,0x3fe88d2191f11a44,0x3ff037843b5b6313,1
+np.float64,0xbfd11bb850a23770,0xbfd188c1cef40007,1
+np.float64,0xbfa1b36e9c2366e0,0xbfa1b53d1d8a8bc4,1
+np.float64,0xbfea2d70d9f45ae2,0xbff26a0629e36b3e,1
+np.float64,0xbfd9188703b2310e,0xbfda83f9ddc18348,1
+np.float64,0xbfee194894fc3291,0xbffbe3c83b61e7cb,1
+np.float64,0xbfe093b4a9e1276a,0xbfe25b4ad6f8f83d,1
+np.float64,0x3fea031489f4062a,0x3ff22accc000082e,1
+np.float64,0xbfc6c0827b2d8104,0xbfc6ff0a94326381,1
+np.float64,0x3fef5cd340feb9a6,0x4002659c5a1b34af,1
+np.float64,0x8010000000000000,0x8010000000000000,1
+np.float64,0x3fd97cb533b2f96c,0x3fdafab28aaae8e3,1
+np.float64,0x3fe2123334642466,0x3fe478bd83a8ce02,1
+np.float64,0xbfd9a69637b34d2c,0xbfdb2c87c6b6fb8c,1
+np.float64,0x3fc58def7f2b1be0,0x3fc5c2ff724a9f61,1
+np.float64,0xbfedd5da1f7babb4,0xbffad15949b7fb22,1
+np.float64,0x3fe90e92a0721d26,0x3ff0d9b64323efb8,1
+np.float64,0x3fd34b9442a69728,0x3fd3e9f8fe80654e,1
+np.float64,0xbfc5f509ab2bea14,0xbfc62d2ad325c59f,1
+np.float64,0x3feb245634f648ac,0x3ff3fe91a46acbe1,1
+np.float64,0x3fd101e539a203cc,0x3fd16cf52ae6d203,1
+np.float64,0xbfc51e9ba72a3d38,0xbfc5507d00521ba3,1
+np.float64,0x3fe5fe1683ebfc2e,0x3feaf7dd8b1f92b0,1
+np.float64,0x3fc362e59126c5c8,0x3fc389601814170b,1
+np.float64,0x3fea34dbd77469b8,0x3ff27542eb721e7e,1
+np.float64,0xbfc13ed241227da4,0xbfc159d42c0a35a9,1
+np.float64,0xbfe6df118cedbe23,0xbfecb27bb5d3f784,1
+np.float64,0x3fd92895f6b2512c,0x3fda96f5f94b625e,1
+np.float64,0xbfe7ea3aa76fd476,0xbfeef0e93939086e,1
+np.float64,0xbfc855498330aa94,0xbfc8a1ff690c9533,1
+np.float64,0x3fd9f27b3ab3e4f8,0x3fdb8726979afc3b,1
+np.float64,0x3fc65d52232cbaa8,0x3fc698ac4367afba,1
+np.float64,0x3fd1271dd0a24e3c,0x3fd195087649d54e,1
+np.float64,0xbfe983445df30689,0xbff175158b773b90,1
+np.float64,0xbfe0d9b13261b362,0xbfe2bb8908fc9e6e,1
+np.float64,0x3fd7671f2aaece40,0x3fd889dccbf21629,1
+np.float64,0x3fe748aebfee915e,0x3fed8e970d94c17d,1
+np.float64,0x3fea756e4e74eadc,0x3ff2d947ef3a54f4,1
+np.float64,0x3fde22311cbc4464,0x3fe05b4ce9df1fdd,1
+np.float64,0x3fe2b55ec1e56abe,0x3fe56c6849e3985a,1
+np.float64,0x3fed7b47437af68e,0x3ff98f8e82de99a0,1
+np.float64,0x3fec8184b179030a,0x3ff6d03aaf0135ba,1
+np.float64,0x3fc9ea825533d508,0x3fca4776d7190e71,1
+np.float64,0xbfe8ddd58b71bbab,0xbff09b770ed7bc9a,1
+np.float64,0xbfed41741bfa82e8,0xbff8d81c2a9fc615,1
+np.float64,0x3fe0a73888e14e72,0x3fe27602ad9a3726,1
+np.float64,0xbfe9d0a565f3a14b,0xbff1e1897b628f66,1
+np.float64,0x3fda12b381b42568,0x3fdbadbec22fbd5a,1
+np.float64,0x3fef0081187e0102,0x4000949eff8313c2,1
+np.float64,0x3fef6942b67ed286,0x4002b7913eb1ee76,1
+np.float64,0x3fda10f882b421f0,0x3fdbababa2d6659d,1
+np.float64,0x3fe5828971eb0512,0x3fea122b5088315a,1
+np.float64,0x3fe9d4b53ff3a96a,0x3ff1e75c148bda01,1
+np.float64,0x3fe95d246bf2ba48,0x3ff1414a61a136ec,1
+np.float64,0x3f9e575eb83caec0,0x3f9e59a4f17179e3,1
+np.float64,0x3fdb0a20b5b61440,0x3fdcd8a56178a17f,1
+np.float64,0xbfdef425e3bde84c,0xbfe0e33eeacf3861,1
+np.float64,0x3fd6afcf6bad5fa0,0x3fd7b73d47288347,1
+np.float64,0x3fe89256367124ac,0x3ff03dd9f36ce40e,1
+np.float64,0x3fe7e560fcefcac2,0x3feee5ef8688b60b,1
+np.float64,0x3fedef55e1fbdeac,0x3ffb350ee1df986b,1
+np.float64,0xbfe44b926de89725,0xbfe7f3539910c41f,1
+np.float64,0x3fc58310f32b0620,0x3fc5b7cfdba15bd0,1
+np.float64,0x3f736d256026da00,0x3f736d2eebe91a90,1
+np.float64,0x3feb012d2076025a,0x3ff3c0b5d21a7259,1
+np.float64,0xbfe466a6c468cd4e,0xbfe820c9c197601f,1
+np.float64,0x3fe1aba8aa635752,0x3fe3e3b73920f64c,1
+np.float64,0x3fe5597c336ab2f8,0x3fe9c7bc4b765b15,1
+np.float64,0x3fe1004ac5e20096,0x3fe2f12116e99821,1
+np.float64,0x3fecbc67477978ce,0x3ff76377434dbdad,1
+np.float64,0x3fe0e64515e1cc8a,0x3fe2ccf5447c1579,1
+np.float64,0x3febcfa874f79f50,0x3ff54528f0822144,1
+np.float64,0x3fc36915ed26d228,0x3fc38fb5b28d3f72,1
+np.float64,0xbfe01213e5e02428,0xbfe1ac0e1e7418f1,1
+np.float64,0x3fcd97875b3b2f10,0x3fce22fe3fc98702,1
+np.float64,0xbfe30383c5e60708,0xbfe5e427e62cc957,1
+np.float64,0xbfde339bf9bc6738,0xbfe0667f337924f5,1
+np.float64,0xbfda7c1c49b4f838,0xbfdc2c8801ce654a,1
+np.float64,0x3fb6b3489e2d6690,0x3fb6c29650387b92,1
+np.float64,0xbfe1fd4d76e3fa9b,0xbfe45a1f60077678,1
+np.float64,0xbf67c5e0402f8c00,0xbf67c5e49fce115a,1
+np.float64,0xbfd4f9aa2da9f354,0xbfd5c759603d0b9b,1
+np.float64,0x3fe83c227bf07844,0x3fefada9f1bd7fa9,1
+np.float64,0xbf97f717982fee20,0xbf97f836701a8cd5,1
+np.float64,0x3fe9688a2472d114,0x3ff150aa575e7d51,1
+np.float64,0xbfc5a9779d2b52f0,0xbfc5df56509c48b1,1
+np.float64,0xbfe958d5f472b1ac,0xbff13b813f9bee20,1
+np.float64,0xbfd7b3b944af6772,0xbfd8e276c2b2920f,1
+np.float64,0x3fed10198e7a2034,0x3ff8469c817572f0,1
+np.float64,0xbfeeecc4517dd989,0xc000472b1f858be3,1
+np.float64,0xbfdbcce47eb799c8,0xbfddc734aa67812b,1
+np.float64,0xbfd013ee24a027dc,0xbfd06df3089384ca,1
+np.float64,0xbfd215f2bfa42be6,0xbfd29774ffe26a74,1
+np.float64,0x3fdfd0ae67bfa15c,0x3fe1746e3a963a9f,1
+np.float64,0xbfc84aa10b309544,0xbfc896f0d25b723a,1
+np.float64,0xbfcd0c627d3a18c4,0xbfcd9024c73747a9,1
+np.float64,0x3fd87df6dbb0fbec,0x3fd9ce1dde757f31,1
+np.float64,0xbfdad85e05b5b0bc,0xbfdc9c2addb6ce47,1
+np.float64,0xbfee4f8977fc9f13,0xbffcdccd68e514b3,1
+np.float64,0x3fa5c290542b8520,0x3fa5c5ebdf09ca70,1
+np.float64,0xbfd7e401d2afc804,0xbfd91a7e4eb5a026,1
+np.float64,0xbfe33ff73b667fee,0xbfe6423cc6eb07d7,1
+np.float64,0x3fdfb7d6c4bf6fac,0x3fe163f2e8175177,1
+np.float64,0xbfd515d69eaa2bae,0xbfd5e6eedd6a1598,1
+np.float64,0x3fb322232e264440,0x3fb32b49d91c3cbe,1
+np.float64,0xbfe20ac39e641587,0xbfe46dd4b3803f19,1
+np.float64,0x3fe282dc18e505b8,0x3fe520152120c297,1
+np.float64,0xbfc905a4cd320b48,0xbfc95929b74865fb,1
+np.float64,0x3fe0ae3b83615c78,0x3fe27fa1dafc825b,1
+np.float64,0xbfc1bfed0f237fdc,0xbfc1dd6466225cdf,1
+np.float64,0xbfeca4d47d7949a9,0xbff72761a34fb682,1
+np.float64,0xbfe8cf8c48f19f18,0xbff0897ebc003626,1
+np.float64,0xbfe1aaf0a36355e2,0xbfe3e2ae7b17a286,1
+np.float64,0x3fe2ca442e659488,0x3fe58c3a2fb4f14a,1
+np.float64,0xbfda3c2deeb4785c,0xbfdbdf89fe96a243,1
+np.float64,0xbfdc12bfecb82580,0xbfde1d81dea3c221,1
+np.float64,0xbfe2d6d877e5adb1,0xbfe59f73e22c1fc7,1
+np.float64,0x3fe5f930636bf260,0x3feaee96a462e4de,1
+np.float64,0x3fcf3c0ea53e7820,0x3fcfe0b0f92be7e9,1
+np.float64,0xbfa5bb90f42b7720,0xbfa5bee9424004cc,1
+np.float64,0xbfe2fb3a3265f674,0xbfe5d75b988bb279,1
+np.float64,0x3fcaec7aab35d8f8,0x3fcb54ea582fff6f,1
+np.float64,0xbfd8d3228db1a646,0xbfda322297747fbc,1
+np.float64,0x3fedd2e0ad7ba5c2,0x3ffac6002b65c424,1
+np.float64,0xbfd9edeca2b3dbda,0xbfdb81b2b7785e33,1
+np.float64,0xbfef5febb17ebfd7,0xc002796b15950960,1
+np.float64,0x3fde22f787bc45f0,0x3fe05bcc624b9ba2,1
+np.float64,0xbfc716a4ab2e2d48,0xbfc758073839dd44,1
+np.float64,0xbf9bed852837db00,0xbf9bef4b2a3f3bdc,1
+np.float64,0x3fef8f88507f1f10,0x4003e5e566444571,1
+np.float64,0xbfdc1bbed6b8377e,0xbfde28a64e174e60,1
+np.float64,0x3fe02d30eae05a62,0x3fe1d064ec027cd3,1
+np.float64,0x3fd9dbb500b3b76c,0x3fdb6bea40162279,1
+np.float64,0x3fe353ff1d66a7fe,0x3fe661b3358c925e,1
+np.float64,0x3fac3ebfb4387d80,0x3fac4618effff2b0,1
+np.float64,0x3fe63cf0ba6c79e2,0x3feb7030cff5f434,1
+np.float64,0x3fd0e915f8a1d22c,0x3fd152464597b510,1
+np.float64,0xbfd36987cda6d310,0xbfd40af049d7621e,1
+np.float64,0xbfdc5b4dc7b8b69c,0xbfde7790a35da2bc,1
+np.float64,0x3feee7ff4a7dcffe,0x40003545989e07c7,1
+np.float64,0xbfeb2c8308765906,0xbff40d2e6469249e,1
+np.float64,0x3fe535a894ea6b52,0x3fe98781648550d0,1
+np.float64,0xbfef168eb9fe2d1d,0xc000f274ed3cd312,1
+np.float64,0x3fc3e2d98927c5b0,0x3fc40c6991b8900c,1
+np.float64,0xbfcd8fe3e73b1fc8,0xbfce1aec7f9b7f7d,1
+np.float64,0xbfd55d8c3aaabb18,0xbfd6378132ee4892,1
+np.float64,0xbfe424a66168494d,0xbfe7b289d72c98b3,1
+np.float64,0x3fd81af13eb035e4,0x3fd95a6a9696ab45,1
+np.float64,0xbfe3016722e602ce,0xbfe5e0e46db228cd,1
+np.float64,0x3fe9a20beff34418,0x3ff19faca17fc468,1
+np.float64,0xbfe2124bc7e42498,0xbfe478e19927e723,1
+np.float64,0x3fd96f8622b2df0c,0x3fdaeb08da6b08ae,1
+np.float64,0x3fecd6796579acf2,0x3ff7a7d02159e181,1
+np.float64,0x3fe60015df6c002c,0x3feafba6f2682a61,1
+np.float64,0x3fc7181cf72e3038,0x3fc7598c2cc3c3b4,1
+np.float64,0xbfce6e2e0b3cdc5c,0xbfcf0621b3e37115,1
+np.float64,0xbfe52a829e6a5505,0xbfe973a785980af9,1
+np.float64,0x3fed4bbac37a9776,0x3ff8f7a0e68a2bbe,1
+np.float64,0x3fabdfaacc37bf60,0x3fabe6bab42bd246,1
+np.float64,0xbfcd9598cb3b2b30,0xbfce20f3c4c2c261,1
+np.float64,0x3fd717d859ae2fb0,0x3fd82e88eca09ab1,1
+np.float64,0x3fe28ccb18e51996,0x3fe52f071d2694fd,1
+np.float64,0xbfe43f064ae87e0c,0xbfe7de5eab36b5b9,1
+np.float64,0x7fefffffffffffff,0xfff8000000000000,1
+np.float64,0xbfb39b045a273608,0xbfb3a4dd3395fdd5,1
+np.float64,0xbfb3358bae266b18,0xbfb33ece5e95970a,1
+np.float64,0xbfeeafb6717d5f6d,0xbffeec3f9695b575,1
+np.float64,0xbfe7a321afef4644,0xbfee522dd80f41f4,1
+np.float64,0x3fe3a17e5be742fc,0x3fe6dcd32af51e92,1
+np.float64,0xbfc61694bd2c2d28,0xbfc64fbbd835f6e7,1
+np.float64,0xbfd795906faf2b20,0xbfd8bf89b370655c,1
+np.float64,0xbfe4b39b59e96736,0xbfe8a3c5c645b6e3,1
+np.float64,0x3fd310af3ba62160,0x3fd3a9442e825e1c,1
+np.float64,0xbfd45198a6a8a332,0xbfd50bc10311a0a3,1
+np.float64,0x3fd0017eaaa002fc,0x3fd05a472a837999,1
+np.float64,0xbfea974d98752e9b,0xbff30f67f1835183,1
+np.float64,0xbf978f60582f1ec0,0xbf979070e1c2b59d,1
+np.float64,0x3fe1c715d4e38e2c,0x3fe40b479e1241a2,1
+np.float64,0xbfccb965cd3972cc,0xbfcd38b40c4a352d,1
+np.float64,0xbfd9897048b312e0,0xbfdb09d55624c2a3,1
+np.float64,0x3fe7f5de4befebbc,0x3fef0b56be259f9c,1
+np.float64,0x3fcc6c6d4338d8d8,0x3fcce7b20ed68a78,1
+np.float64,0xbfe63884046c7108,0xbfeb67a3b945c3ee,1
+np.float64,0xbfce64e2ad3cc9c4,0xbfcefc47fae2e81f,1
+np.float64,0x3fefeb57b27fd6b0,0x400ab2eac6321cfb,1
+np.float64,0x3fe679627e6cf2c4,0x3febe6451b6ee0c4,1
+np.float64,0x3fc5f710172bee20,0x3fc62f40f85cb040,1
+np.float64,0x3fc34975e52692e8,0x3fc36f58588c7fa2,1
+np.float64,0x3fe8a3784cf146f0,0x3ff052ced9bb9406,1
+np.float64,0x3fd11a607ca234c0,0x3fd1874f876233fe,1
+np.float64,0x3fb2d653f625aca0,0x3fb2df0f4c9633f3,1
+np.float64,0x3fe555f39eeaabe8,0x3fe9c15ee962a28c,1
+np.float64,0xbfea297e3bf452fc,0xbff264107117f709,1
+np.float64,0x3fe1581cdde2b03a,0x3fe36c79acedf99c,1
+np.float64,0x3fd4567063a8ace0,0x3fd51123dbd9106f,1
+np.float64,0x3fa3883aec271080,0x3fa38aa86ec71218,1
+np.float64,0x3fe40e5d7de81cba,0x3fe78dbb9b568850,1
+np.float64,0xbfe9a2f7347345ee,0xbff1a0f4faa05041,1
+np.float64,0x3f9eef03a83dde00,0x3f9ef16caa0c1478,1
+np.float64,0xbfcb4641d1368c84,0xbfcbb2e7ff8c266d,1
+np.float64,0xbfa8403b2c308070,0xbfa844e148b735b7,1
+np.float64,0xbfe1875cd6e30eba,0xbfe3afadc08369f5,1
+np.float64,0xbfdd3c3d26ba787a,0xbfdf919b3e296766,1
+np.float64,0x3fcd6c4c853ad898,0x3fcdf55647b518b8,1
+np.float64,0xbfe360a173e6c143,0xbfe6759eb3a08cf2,1
+np.float64,0x3fe5a13147eb4262,0x3fea4a5a060f5adb,1
+np.float64,0x3feb3cdd7af679ba,0x3ff42aae0cf61234,1
+np.float64,0x3fe5205128ea40a2,0x3fe9618f3d0c54af,1
+np.float64,0x3fce35343f3c6a68,0x3fcec9c4e612b050,1
+np.float64,0xbfc345724d268ae4,0xbfc36b3ce6338e6a,1
+np.float64,0x3fedc4fc0e7b89f8,0x3ffa91c1d775c1f7,1
+np.float64,0x3fe41fbf21683f7e,0x3fe7aa6c174a0e65,1
+np.float64,0xbfc7a1a5d32f434c,0xbfc7e7d27a4c5241,1
+np.float64,0x3fd3e33eaca7c67c,0x3fd4915264441e2f,1
+np.float64,0x3feb3f02f6f67e06,0x3ff42e942249e596,1
+np.float64,0x3fdb75fcb0b6ebf8,0x3fdd5c63f98b6275,1
+np.float64,0x3fd6476603ac8ecc,0x3fd74020b164cf38,1
+np.float64,0x3fed535372faa6a6,0x3ff90f3791821841,1
+np.float64,0x3fe8648ead70c91e,0x3ff006a62befd7ed,1
+np.float64,0x3fd0f90760a1f210,0x3fd1636b39bb1525,1
+np.float64,0xbfca052443340a48,0xbfca633d6e777ae0,1
+np.float64,0xbfa6a5e3342d4bc0,0xbfa6a9ac6a488f5f,1
+np.float64,0x3fd5598038aab300,0x3fd632f35c0c3d52,1
+np.float64,0xbfdf66218fbecc44,0xbfe12df83b19f300,1
+np.float64,0x3fe78e15b56f1c2c,0x3fee240d12489cd1,1
+np.float64,0x3fe3d6a7b3e7ad50,0x3fe7329dcf7401e2,1
+np.float64,0xbfddb8e97bbb71d2,0xbfe017ed6d55a673,1
+np.float64,0xbfd57afd55aaf5fa,0xbfd658a9607c3370,1
+np.float64,0xbfdba4c9abb74994,0xbfdd95d69e5e8814,1
+np.float64,0xbfe71d8090ee3b01,0xbfed3390be6d2eef,1
+np.float64,0xbfc738ac0f2e7158,0xbfc77b3553b7c026,1
+np.float64,0x3f873656302e6c80,0x3f873697556ae011,1
+np.float64,0x3fe559491d6ab292,0x3fe9c7603b12c608,1
+np.float64,0xbfe262776864c4ef,0xbfe4ef905dda8599,1
+np.float64,0x3fe59d8917eb3b12,0x3fea439f44b7573f,1
+np.float64,0xbfd4b5afb5a96b60,0xbfd57b4e3df4dbc8,1
+np.float64,0x3fe81158447022b0,0x3fef4a3cea3eb6a9,1
+np.float64,0xbfeb023441f60468,0xbff3c27f0fc1a4dc,1
+np.float64,0x3fefb212eaff6426,0x40055fc6d949cf44,1
+np.float64,0xbfe1300ac1e26016,0xbfe333f297a1260e,1
+np.float64,0xbfeae0a2f575c146,0xbff388d58c380b8c,1
+np.float64,0xbfeddd8e55fbbb1d,0xbffaef045b2e21d9,1
+np.float64,0x3fec7c6c1d78f8d8,0x3ff6c3ebb019a8e5,1
+np.float64,0xbfe27e071f64fc0e,0xbfe518d2ff630f33,1
+np.float64,0x8000000000000001,0x8000000000000001,1
+np.float64,0x3fc5872abf2b0e58,0x3fc5bc083105db76,1
+np.float64,0x3fe65114baeca22a,0x3feb9745b82ef15a,1
+np.float64,0xbfc783abe52f0758,0xbfc7c8cb23f93e79,1
+np.float64,0x3fe4b7a5dd696f4c,0x3fe8aab9d492f0ca,1
+np.float64,0xbf91a8e8a82351e0,0xbf91a95b6ae806f1,1
+np.float64,0xbfee482eb77c905d,0xbffcb952830e715a,1
+np.float64,0x3fba0eee2a341de0,0x3fba261d495e3a1b,1
+np.float64,0xbfeb8876ae7710ed,0xbff4b7f7f4343506,1
+np.float64,0xbfe4d29e46e9a53c,0xbfe8d9547a601ba7,1
+np.float64,0xbfe12413b8e24828,0xbfe3232656541d10,1
+np.float64,0x3fc0bd8f61217b20,0x3fc0d63f937f0aa4,1
+np.float64,0xbfd3debafda7bd76,0xbfd48c534e5329e4,1
+np.float64,0x3fc0f92de921f258,0x3fc112eb7d47349b,1
+np.float64,0xbfe576b95f6aed72,0xbfe9fca859239b3c,1
+np.float64,0x3fd10e520da21ca4,0x3fd17a546e4152f7,1
+np.float64,0x3fcef917eb3df230,0x3fcf998677a8fa8f,1
+np.float64,0x3fdfcf863abf9f0c,0x3fe173a98af1cb13,1
+np.float64,0x3fc28c4b4f251898,0x3fc2adf43792e917,1
+np.float64,0x3fceb837ad3d7070,0x3fcf54a63b7d8c5c,1
+np.float64,0x3fc0140a05202818,0x3fc029e4f75330cb,1
+np.float64,0xbfd76c3362aed866,0xbfd88fb9e790b4e8,1
+np.float64,0xbfe475300868ea60,0xbfe8395334623e1f,1
+np.float64,0x3fea70b9b4f4e174,0x3ff2d1dad92173ba,1
+np.float64,0xbfe2edbd4965db7a,0xbfe5c29449a9365d,1
+np.float64,0xbfddf86f66bbf0de,0xbfe0408439cada9b,1
+np.float64,0xbfb443cdfa288798,0xbfb44eae796ad3ea,1
+np.float64,0xbf96a8a0482d5140,0xbf96a992b6ef073b,1
+np.float64,0xbfd279db2fa4f3b6,0xbfd3043db6acbd9e,1
+np.float64,0x3fe5d99088ebb322,0x3feab30be14e1605,1
+np.float64,0xbfe1a917abe35230,0xbfe3e0063d0f5f63,1
+np.float64,0x3fc77272f52ee4e8,0x3fc7b6f8ab6f4591,1
+np.float64,0x3fd6b62146ad6c44,0x3fd7be77eef8390a,1
+np.float64,0xbfe39fd9bc673fb4,0xbfe6da30dc4eadde,1
+np.float64,0x3fe35545c066aa8c,0x3fe663b5873e4d4b,1
+np.float64,0xbfcbbeffb3377e00,0xbfcc317edf7f6992,1
+np.float64,0xbfe28a58366514b0,0xbfe52b5734579ffa,1
+np.float64,0xbfbf0c87023e1910,0xbfbf33d970a0dfa5,1
+np.float64,0xbfd31144cba6228a,0xbfd3a9e84f9168f9,1
+np.float64,0xbfe5c044056b8088,0xbfea83d607c1a88a,1
+np.float64,0x3fdaabdf18b557c0,0x3fdc663ee8eddc83,1
+np.float64,0xbfeb883006f71060,0xbff4b76feff615be,1
+np.float64,0xbfebaef41d775de8,0xbff5034111440754,1
+np.float64,0x3fd9b6eb3bb36dd8,0x3fdb3fff5071dacf,1
+np.float64,0x3fe4e33c45e9c678,0x3fe8f637779ddedf,1
+np.float64,0x3fe52213a06a4428,0x3fe964adeff5c14e,1
+np.float64,0x3fe799254cef324a,0x3fee3c3ecfd3cdc5,1
+np.float64,0x3fd0533f35a0a680,0x3fd0b19a003469d3,1
+np.float64,0x3fec7ef5c7f8fdec,0x3ff6ca0abe055048,1
+np.float64,0xbfd1b5da82a36bb6,0xbfd22f357acbee79,1
+np.float64,0xbfd8f9c652b1f38c,0xbfda5faacbce9cf9,1
+np.float64,0x3fc8fc818b31f900,0x3fc94fa9a6aa53c8,1
+np.float64,0x3fcf42cc613e8598,0x3fcfe7dc128f33f2,1
+np.float64,0x3fd393a995a72754,0x3fd4396127b19305,1
+np.float64,0x3fec7b7df9f8f6fc,0x3ff6c1ae51753ef2,1
+np.float64,0x3fc07f175b20fe30,0x3fc096b55c11568c,1
+np.float64,0xbf979170082f22e0,0xbf979280d9555f44,1
+np.float64,0xbfb9d110c633a220,0xbfb9e79ba19b3c4a,1
+np.float64,0x3fedcd7d417b9afa,0x3ffab19734e86d58,1
+np.float64,0xbfec116f27f822de,0xbff5cf9425cb415b,1
+np.float64,0xbfec4fa0bef89f42,0xbff65a771982c920,1
+np.float64,0x3f94d4452829a880,0x3f94d501789ad11c,1
+np.float64,0xbfefe5ede27fcbdc,0xc009c440d3c2a4ce,1
+np.float64,0xbfe7e5f7b5efcbf0,0xbfeee74449aee1db,1
+np.float64,0xbfeb71dc8976e3b9,0xbff48cd84ea54ed2,1
+np.float64,0xbfe4cdb65f699b6c,0xbfe8d0d3bce901ef,1
+np.float64,0x3fb78ef1ee2f1de0,0x3fb7a00e7d183c48,1
+np.float64,0x3fb681864a2d0310,0x3fb6906fe64b4cd7,1
+np.float64,0xbfd2ad3b31a55a76,0xbfd33c57b5985399,1
+np.float64,0x3fdcdaaa95b9b554,0x3fdf16b99628db1e,1
+np.float64,0x3fa4780b7428f020,0x3fa47ad6ce9b8081,1
+np.float64,0x3fc546b0ad2a8d60,0x3fc579b361b3b18f,1
+np.float64,0x3feaf98dd6f5f31c,0x3ff3b38189c3539c,1
+np.float64,0x3feb0b2eca76165e,0x3ff3d22797083f9a,1
+np.float64,0xbfdc02ae3ab8055c,0xbfde099ecb5dbacf,1
+np.float64,0x3fd248bf17a49180,0x3fd2ceb77b346d1d,1
+np.float64,0x3fe349d666e693ac,0x3fe651b9933a8853,1
+np.float64,0xbfca526fc534a4e0,0xbfcab3e83f0d9b93,1
+np.float64,0x3fc156421722ac88,0x3fc171b38826563b,1
+np.float64,0xbfe4244569e8488b,0xbfe7b1e93e7d4f92,1
+np.float64,0x3fe010faabe021f6,0x3fe1aa961338886d,1
+np.float64,0xbfc52dacb72a5b58,0xbfc55ffa50eba380,1
+np.float64,0x8000000000000000,0x8000000000000000,1
+np.float64,0x3fea1d4865f43a90,0x3ff251b839eb4817,1
+np.float64,0xbfa0f65c8421ecc0,0xbfa0f7f37c91be01,1
+np.float64,0x3fcab29c0b356538,0x3fcb1863edbee184,1
+np.float64,0x3fe7949162ef2922,0x3fee323821958b88,1
+np.float64,0x3fdaf9288ab5f250,0x3fdcc400190a4839,1
+np.float64,0xbfe13ece6be27d9d,0xbfe348ba07553179,1
+np.float64,0x3f8a0c4fd0341880,0x3f8a0cabdf710185,1
+np.float64,0x3fdd0442a2ba0884,0x3fdf4b016c4da452,1
+np.float64,0xbfaf06d2343e0da0,0xbfaf1090b1600422,1
+np.float64,0xbfd3b65225a76ca4,0xbfd45fa49ae76cca,1
+np.float64,0x3fef5d75fefebaec,0x400269a5e7c11891,1
+np.float64,0xbfe048e35ce091c6,0xbfe1f5af45dd64f8,1
+np.float64,0xbfe27d4599e4fa8b,0xbfe517b07843d04c,1
+np.float64,0xbfe6f2a637ede54c,0xbfecdaa730462576,1
+np.float64,0x3fc63fbb752c7f78,0x3fc67a2854974109,1
+np.float64,0x3fedda6bfbfbb4d8,0x3ffae2e6131f3475,1
+np.float64,0x3fe7a6f5286f4dea,0x3fee5a9b1ef46016,1
+np.float64,0xbfd4ea8bcea9d518,0xbfd5b66ab7e5cf00,1
+np.float64,0x3fdc116568b822cc,0x3fde1bd4d0d9fd6c,1
+np.float64,0x3fdc45cb1bb88b98,0x3fde5cd1d2751032,1
+np.float64,0x3feabd932f757b26,0x3ff34e06e56a62a1,1
+np.float64,0xbfae5dbe0c3cbb80,0xbfae66e062ac0d65,1
+np.float64,0xbfdb385a00b670b4,0xbfdd10fedf3a58a7,1
+np.float64,0xbfebb14755f7628f,0xbff507e123a2b47c,1
+np.float64,0x3fe6de2fdfedbc60,0x3fecb0ae6e131da2,1
+np.float64,0xbfd86de640b0dbcc,0xbfd9bb4dbf0bf6af,1
+np.float64,0x3fe39e86d9e73d0e,0x3fe6d811c858d5d9,1
+np.float64,0x7ff0000000000000,0xfff8000000000000,1
+np.float64,0x3fa8101684302020,0x3fa814a12176e937,1
+np.float64,0x3fefdd5ad37fbab6,0x4008a08c0b76fbb5,1
+np.float64,0x3fe645c727ec8b8e,0x3feb814ebc470940,1
+np.float64,0x3fe3ba79dce774f4,0x3fe70500db564cb6,1
+np.float64,0xbfe0e5a254e1cb44,0xbfe2cc13940c6d9a,1
+np.float64,0x3fe2cac62465958c,0x3fe58d008c5e31f8,1
+np.float64,0xbfd3ffb531a7ff6a,0xbfd4b0d88cff2040,1
+np.float64,0x3fe0929104612522,0x3fe259bc42dce788,1
+np.float64,0x1,0x1,1
+np.float64,0xbfe7db77e6efb6f0,0xbfeecf93e8a61cb3,1
+np.float64,0xbfe37e9559e6fd2a,0xbfe6a514e29cb7aa,1
+np.float64,0xbfc53a843f2a7508,0xbfc56d2e9ad8b716,1
+np.float64,0xbfedb04485fb6089,0xbffa4615d4334ec3,1
+np.float64,0xbfc44349b1288694,0xbfc46f484b6f1cd6,1
+np.float64,0xbfe265188264ca31,0xbfe4f37d61cd9e17,1
+np.float64,0xbfd030351da0606a,0xbfd08c2537287ee1,1
+np.float64,0x3fd8fb131db1f628,0x3fda613363ca601e,1
+np.float64,0xbff0000000000000,0xfff0000000000000,1
+np.float64,0xbfe48d9a60691b35,0xbfe862c02d8fec1e,1
+np.float64,0x3fd185e050a30bc0,0x3fd1fb4c614ddb07,1
+np.float64,0xbfe4a5807e694b01,0xbfe88b8ff2d6caa7,1
+np.float64,0xbfc934d7ad3269b0,0xbfc98a405d25a666,1
+np.float64,0xbfea0e3c62741c79,0xbff23b4bd3a7b15d,1
+np.float64,0x3fe7244071ee4880,0x3fed41b27ba6bb22,1
+np.float64,0xbfd419f81ba833f0,0xbfd4cdf71b4533a3,1
+np.float64,0xbfe1e73a34e3ce74,0xbfe439eb15fa6baf,1
+np.float64,0x3fcdd9a63f3bb350,0x3fce68e1c401eff0,1
+np.float64,0x3fd1b5960ba36b2c,0x3fd22eeb566f1976,1
+np.float64,0x3fe9ad18e0735a32,0x3ff1af23c534260d,1
+np.float64,0xbfd537918aaa6f24,0xbfd60ccc8df0962b,1
+np.float64,0x3fcba3d3c73747a8,0x3fcc14fd5e5c49ad,1
+np.float64,0x3fd367e3c0a6cfc8,0x3fd40921b14e288e,1
+np.float64,0x3fe94303c6f28608,0x3ff11e62db2db6ac,1
+np.float64,0xbfcc5f77fd38bef0,0xbfccda110c087519,1
+np.float64,0xbfd63b74d7ac76ea,0xbfd7328af9f37402,1
+np.float64,0xbfe5321289ea6425,0xbfe9811ce96609ad,1
+np.float64,0xbfde910879bd2210,0xbfe0a2cd0ed1d368,1
+np.float64,0xbfcc9d9bad393b38,0xbfcd1b722a0b1371,1
+np.float64,0xbfe6dd39e16dba74,0xbfecaeb7c8c069f6,1
+np.float64,0xbfe98316eff3062e,0xbff174d7347d48bf,1
+np.float64,0xbfda88f8d1b511f2,0xbfdc3c0e75dad903,1
+np.float64,0x3fd400d8c2a801b0,0x3fd4b21bacff1f5d,1
+np.float64,0xbfe1ed335863da66,0xbfe4429e45e99779,1
+np.float64,0xbf3423a200284800,0xbf3423a20acb0342,1
+np.float64,0xbfe97bc59672f78b,0xbff16ad1adc44a33,1
+np.float64,0xbfeeca60d7fd94c2,0xbfff98d7f18f7728,1
+np.float64,0x3fd1eb13b2a3d628,0x3fd268e6ff4d56ce,1
+np.float64,0xbfa5594c242ab2a0,0xbfa55c77d6740a39,1
+np.float64,0x3fe72662006e4cc4,0x3fed462a9dedbfee,1
+np.float64,0x3fef4bb221fe9764,0x4001fe4f4cdfedb2,1
+np.float64,0xbfe938d417f271a8,0xbff110e78724ca2b,1
+np.float64,0xbfcc29ab2f385358,0xbfcca182140ef541,1
+np.float64,0x3fe18cd42c6319a8,0x3fe3b77e018165e7,1
+np.float64,0xbfec6c5cae78d8b9,0xbff69d8e01309b48,1
+np.float64,0xbfd5723da7aae47c,0xbfd64ecde17da471,1
+np.float64,0xbfe3096722e612ce,0xbfe5ed43634f37ff,1
+np.float64,0xbfdacaceb1b5959e,0xbfdc8bb826bbed39,1
+np.float64,0x3fc59a57cb2b34b0,0x3fc5cfc4a7c9bac8,1
+np.float64,0x3f84adce10295b80,0x3f84adfc1f1f6e97,1
+np.float64,0x3fdd5b28bbbab650,0x3fdfb8b906d77df4,1
+np.float64,0x3fdebf94c6bd7f28,0x3fe0c10188e1bc7c,1
+np.float64,0x3fdb30c612b6618c,0x3fdd07bf18597821,1
+np.float64,0x3fe7eeb3176fdd66,0x3feefb0be694b855,1
+np.float64,0x0,0x0,1
+np.float64,0xbfe10057e9e200b0,0xbfe2f13365e5b1c9,1
+np.float64,0xbfeb61a82376c350,0xbff46e665d3a60f5,1
+np.float64,0xbfe7f54aec6fea96,0xbfef0a0759f726dc,1
+np.float64,0xbfe4f6da3de9edb4,0xbfe9187d85bd1ab5,1
+np.float64,0xbfeb8be1b3f717c4,0xbff4be8efaab2e75,1
+np.float64,0x3fed40bc31fa8178,0x3ff8d5ec4a7f3e9b,1
+np.float64,0xbfe40f8711681f0e,0xbfe78fa5c62b191b,1
+np.float64,0x3fd1034d94a2069c,0x3fd16e78e9efb85b,1
+np.float64,0x3fc74db15b2e9b60,0x3fc790f26e894098,1
+np.float64,0x3fd912a88cb22550,0x3fda7d0ab3b21308,1
+np.float64,0x3fd8948a3bb12914,0x3fd9e8950c7874c8,1
+np.float64,0xbfa7ada5242f5b50,0xbfa7b1f8db50c104,1
+np.float64,0x3feeb2e1c27d65c4,0x3fff000b7d09c9b7,1
+np.float64,0x3fe9d46cbbf3a8da,0x3ff1e6f405265a6e,1
+np.float64,0xbfe2480b77e49017,0xbfe4c83b9b37bf0c,1
+np.float64,0x3fe950ea9372a1d6,0x3ff130e62468bf2c,1
+np.float64,0x3fefa7272a7f4e4e,0x4004d8c9bf31ab58,1
+np.float64,0xbfe7309209ee6124,0xbfed5b94acef917a,1
+np.float64,0x3fd05e8c64a0bd18,0x3fd0bdb11e0903c6,1
+np.float64,0x3fd9236043b246c0,0x3fda90ccbe4bab1e,1
+np.float64,0xbfdc3d6805b87ad0,0xbfde5266e17154c3,1
+np.float64,0x3fe5e6bad76bcd76,0x3feacbc306c63445,1
+np.float64,0x3ff0000000000000,0x7ff0000000000000,1
+np.float64,0xbfde3d7390bc7ae8,0xbfe06cd480bd0196,1
+np.float64,0xbfd3e2e3c0a7c5c8,0xbfd490edc0a45e26,1
+np.float64,0x3fe39871d76730e4,0x3fe6ce54d1719953,1
+np.float64,0x3fdff00ebcbfe01c,0x3fe1894b6655a6d0,1
+np.float64,0x3f91b7ad58236f40,0x3f91b8213bcb8b0b,1
+np.float64,0xbfd99f48f7b33e92,0xbfdb23d544f62591,1
+np.float64,0x3fae3512cc3c6a20,0x3fae3e10939fd7b5,1
+np.float64,0x3fcc4cf3db3899e8,0x3fccc698a15176d6,1
+np.float64,0xbfd0927e39a124fc,0xbfd0f5522e2bc030,1
+np.float64,0x3fcee859633dd0b0,0x3fcf87bdef7a1e82,1
+np.float64,0xbfe2a8b69565516d,0xbfe5593437b6659a,1
+np.float64,0x3fecf61e20f9ec3c,0x3ff7fda16b0209d4,1
+np.float64,0xbfbf37571e3e6eb0,0xbfbf5f4e1379a64c,1
+np.float64,0xbfd54e1b75aa9c36,0xbfd626223b68971a,1
+np.float64,0x3fe1035a56e206b4,0x3fe2f5651ca0f4b0,1
+np.float64,0x3fe4992989e93254,0x3fe876751afa70dc,1
+np.float64,0x3fc8c313d3318628,0x3fc913faf15d1562,1
+np.float64,0x3f99f6ba8833ed80,0x3f99f8274fb94828,1
+np.float64,0xbfd4a58af0a94b16,0xbfd56947c276e04f,1
+np.float64,0x3fc66f8c872cdf18,0x3fc6ab7a14372a73,1
+np.float64,0x3fc41eee0d283de0,0x3fc449ff1ff0e7a6,1
+np.float64,0x3fefd04d287fa09a,0x4007585010cfa9b0,1
+np.float64,0x3fce9e746f3d3ce8,0x3fcf39514bbe5070,1
+np.float64,0xbfe8056f72700adf,0xbfef2ee2c13e67ba,1
+np.float64,0x3fdd6b1ec0bad63c,0x3fdfccf2ba144fa8,1
+np.float64,0x3fd92ee432b25dc8,0x3fda9e6b96b2b142,1
+np.float64,0xbfc4d18f9529a320,0xbfc50150fb4de0cc,1
+np.float64,0xbfe09939a7613274,0xbfe262d703c317af,1
+np.float64,0xbfd130b132a26162,0xbfd19f5a00ae29c4,1
+np.float64,0x3fa06e21d420dc40,0x3fa06f93aba415fb,1
+np.float64,0x3fc5c48fbd2b8920,0x3fc5fb3bfad3bf55,1
+np.float64,0xbfdfa2bacbbf4576,0xbfe155f839825308,1
+np.float64,0x3fe3e1fa0f67c3f4,0x3fe745081dd4fd03,1
+np.float64,0x3fdae58289b5cb04,0x3fdcac1f6789130a,1
+np.float64,0xbf8ed3ba103da780,0xbf8ed452a9cc1442,1
+np.float64,0xbfec06b46f780d69,0xbff5b86f30d70908,1
+np.float64,0xbfe990c13b732182,0xbff187a90ae611f8,1
+np.float64,0xbfdd46c738ba8d8e,0xbfdf9eee0a113230,1
+np.float64,0x3fe08b83f3611708,0x3fe2501b1c77035c,1
+np.float64,0xbfd501b65baa036c,0xbfd5d05de3fceac8,1
+np.float64,0xbfcf4fa21f3e9f44,0xbfcff5829582c0b6,1
+np.float64,0xbfefbc0bfbff7818,0xc005eca1a2c56b38,1
+np.float64,0xbfe1ba6959e374d2,0xbfe3f8f88d128ce5,1
+np.float64,0xbfd4e74ee3a9ce9e,0xbfd5b2cabeb45e6c,1
+np.float64,0xbfe77c38eaeef872,0xbfedfd332d6f1c75,1
+np.float64,0x3fa9b5e4fc336bc0,0x3fa9bb6f6b80b4af,1
+np.float64,0xbfecba63917974c7,0xbff75e44df7f8e81,1
+np.float64,0x3fd6cf17b2ad9e30,0x3fd7db0b93b7f2b5,1
diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/tests/data/umath-validation-set-cbrt.csv b/.venv/lib/python3.12/site-packages/numpy/_core/tests/data/umath-validation-set-cbrt.csv
new file mode 100644
index 0000000..ad141cb
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/_core/tests/data/umath-validation-set-cbrt.csv
@@ -0,0 +1,1429 @@
+dtype,input,output,ulperrortol
+np.float32,0x3ee7054c,0x3f4459ea,2
+np.float32,0x7d1e2489,0x54095925,2
+np.float32,0x7ee5edf5,0x549b992b,2
+np.float32,0x380607,0x2a425e72,2
+np.float32,0x34a8f3,0x2a3e6603,2
+np.float32,0x3eee2844,0x3f465a45,2
+np.float32,0x59e49c,0x2a638d0a,2
+np.float32,0xbf72c77a,0xbf7b83d4,2
+np.float32,0x7f2517b4,0x54af8bf0,2
+np.float32,0x80068a69,0xa9bdfe8b,2
+np.float32,0xbe8e3578,0xbf270775,2
+np.float32,0xbe4224dc,0xbf131119,2
+np.float32,0xbe0053b8,0xbf001be2,2
+np.float32,0x70e8d,0x29c2ddc5,2
+np.float32,0xff63f7b5,0xd4c37b7f,2
+np.float32,0x3f00bbed,0x3f4b9335,2
+np.float32,0x3f135f4e,0x3f54f5d4,2
+np.float32,0xbe13a488,0xbf063d13,2
+np.float32,0x3f14ec78,0x3f55b478,2
+np.float32,0x7ec35cfb,0x54935fbf,2
+np.float32,0x7d41c589,0x5412f904,2
+np.float32,0x3ef8a16e,0x3f4937f7,2
+np.float32,0x3f5d8464,0x3f73f279,2
+np.float32,0xbeec85ac,0xbf45e5cb,2
+np.float32,0x7f11f722,0x54a87cb1,2
+np.float32,0x8032c085,0xaa3c1219,2
+np.float32,0x80544bac,0xaa5eb9f2,2
+np.float32,0x3e944a10,0x3f296065,2
+np.float32,0xbf29fe50,0xbf5f5796,2
+np.float32,0x7e204d8d,0x545b03d5,2
+np.float32,0xfe1d0254,0xd4598127,2
+np.float32,0x80523129,0xaa5cdba9,2
+np.float32,0x806315fa,0xaa6b0eaf,2
+np.float32,0x3ed3d2a4,0x3f3ec117,2
+np.float32,0x7ee15007,0x549a8cc0,2
+np.float32,0x801ffb5e,0xaa213d4f,2
+np.float32,0x807f9f4a,0xaa7fbf76,2
+np.float32,0xbe45e854,0xbf1402d3,2
+np.float32,0x3d9e2e70,0x3eda0b64,2
+np.float32,0x51f404,0x2a5ca4d7,2
+np.float32,0xbe26a8b0,0xbf0bc54d,2
+np.float32,0x22c99a,0x2a25d2a7,2
+np.float32,0xbf71248b,0xbf7af2d5,2
+np.float32,0x7219fe,0x2a76608e,2
+np.float32,0x7f16fd7d,0x54aa6610,2
+np.float32,0x80716faa,0xaa75e5b9,2
+np.float32,0xbe24f9a4,0xbf0b4c65,2
+np.float32,0x800000,0x2a800000,2
+np.float32,0x80747456,0xaa780f27,2
+np.float32,0x68f9e8,0x2a6fa035,2
+np.float32,0x3f6a297e,0x3f7880d8,2
+np.float32,0x3f28b973,0x3f5ec8f6,2
+np.float32,0x7f58c577,0x54c03a70,2
+np.float32,0x804befcc,0xaa571b4f,2
+np.float32,0x3e2be027,0x3f0d36cf,2
+np.float32,0xfe7e80a4,0xd47f7ff7,2
+np.float32,0xfe9d444a,0xd489181b,2
+np.float32,0x3db3e790,0x3ee399d6,2
+np.float32,0xbf154c3e,0xbf55e23e,2
+np.float32,0x3d1096b7,0x3ea7f4aa,2
+np.float32,0x7fc00000,0x7fc00000,2
+np.float32,0x804e2521,0xaa592c06,2
+np.float32,0xbeda2f00,0xbf40a513,2
+np.float32,0x3f191788,0x3f57ae30,2
+np.float32,0x3ed24ade,0x3f3e4b34,2
+np.float32,0x807fadb4,0xaa7fc917,2
+np.float32,0xbe0a06dc,0xbf034234,2
+np.float32,0x3f250bba,0x3f5d276d,2
+np.float32,0x7e948b00,0x548682c8,2
+np.float32,0xfe65ecdc,0xd476fed2,2
+np.float32,0x6fdbdd,0x2a74c095,2
+np.float32,0x800112de,0xa9500fa6,2
+np.float32,0xfe63225c,0xd475fdee,2
+np.float32,0x7f3d9acd,0x54b7d648,2
+np.float32,0xfc46f480,0xd3bacf87,2
+np.float32,0xfe5deaac,0xd47417ff,2
+np.float32,0x60ce53,0x2a693d93,2
+np.float32,0x6a6e2f,0x2a70ba2c,2
+np.float32,0x7f43f0f1,0x54b9dcd0,2
+np.float32,0xbf6170c9,0xbf756104,2
+np.float32,0xbe5c9f74,0xbf197852,2
+np.float32,0xff1502b0,0xd4a9a693,2
+np.float32,0x8064f6af,0xaa6c886e,2
+np.float32,0xbf380564,0xbf6552e5,2
+np.float32,0xfeb9b7dc,0xd490e85f,2
+np.float32,0x7f34f941,0x54b5010d,2
+np.float32,0xbe9d4ca0,0xbf2cbd5f,2
+np.float32,0x3f6e43d2,0x3f79f240,2
+np.float32,0xbdad0530,0xbee0a8f2,2
+np.float32,0x3da18459,0x3edb9105,2
+np.float32,0xfd968340,0xd42a3808,2
+np.float32,0x3ea03e64,0x3f2dcf96,2
+np.float32,0x801d2f5b,0xaa1c6525,2
+np.float32,0xbf47d92d,0xbf6bb7e9,2
+np.float32,0x55a6b9,0x2a5fe9fb,2
+np.float32,0x77a7c2,0x2a7a4fb8,2
+np.float32,0xfebbc16e,0xd4916f88,2
+np.float32,0x3f5d3d6e,0x3f73d86a,2
+np.float32,0xfccd2b60,0xd3edcacb,2
+np.float32,0xbd026460,0xbea244b0,2
+np.float32,0x3e55bd,0x2a4968e4,2
+np.float32,0xbe7b5708,0xbf20490d,2
+np.float32,0xfe413cf4,0xd469171f,2
+np.float32,0x7710e3,0x2a79e657,2
+np.float32,0xfc932520,0xd3d4d9ca,2
+np.float32,0xbf764a1b,0xbf7cb8aa,2
+np.float32,0x6b1923,0x2a713aca,2
+np.float32,0xfe4dcd04,0xd46e092d,2
+np.float32,0xff3085ac,0xd4b381f8,2
+np.float32,0x3f72c438,0x3f7b82b4,2
+np.float32,0xbf6f0c6e,0xbf7a3852,2
+np.float32,0x801d2b1b,0xaa1c5d8d,2
+np.float32,0x3e9db91e,0x3f2ce50d,2
+np.float32,0x3f684f9d,0x3f77d8c5,2
+np.float32,0x7dc784,0x2a7e82cc,2
+np.float32,0x7d2c88e9,0x540d64f8,2
+np.float32,0x807fb708,0xaa7fcf51,2
+np.float32,0x8003c49a,0xa99e16e0,2
+np.float32,0x3ee4f5b8,0x3f43c3ff,2
+np.float32,0xfe992c5e,0xd487e4ec,2
+np.float32,0x4b4dfa,0x2a568216,2
+np.float32,0x3d374c80,0x3eb5c6a8,2
+np.float32,0xbd3a4700,0xbeb6c15c,2
+np.float32,0xbf13cb80,0xbf5529e5,2
+np.float32,0xbe7306d4,0xbf1e7f91,2
+np.float32,0xbf800000,0xbf800000,2
+np.float32,0xbea42efe,0xbf2f394e,2
+np.float32,0x3e1981d0,0x3f07fe2c,2
+np.float32,0x3f17ea1d,0x3f572047,2
+np.float32,0x7dc1e0,0x2a7e7efe,2
+np.float32,0x80169c08,0xaa0fa320,2
+np.float32,0x3f3e1972,0x3f67d248,2
+np.float32,0xfe5d3c88,0xd473d815,2
+np.float32,0xbf677448,0xbf778aac,2
+np.float32,0x7e799b7d,0x547dd9e4,2
+np.float32,0x3f00bb2c,0x3f4b92cf,2
+np.float32,0xbeb29f9c,0xbf343798,2
+np.float32,0xbd6b7830,0xbec59a86,2
+np.float32,0x807a524a,0xaa7c282a,2
+np.float32,0xbe0a7a04,0xbf0366ab,2
+np.float32,0x80237470,0xaa26e061,2
+np.float32,0x3ccbc0f6,0x3e95744f,2
+np.float32,0x3edec6bc,0x3f41fcb6,2
+np.float32,0x3f635198,0x3f760efa,2
+np.float32,0x800eca4f,0xa9f960d8,2
+np.float32,0x3f800000,0x3f800000,2
+np.float32,0xff4eeb9e,0xd4bd456a,2
+np.float32,0x56f4e,0x29b29e70,2
+np.float32,0xff5383a0,0xd4bea95c,2
+np.float32,0x3f4c3a77,0x3f6d6d94,2
+np.float32,0x3f6c324a,0x3f79388c,2
+np.float32,0xbebdc092,0xbf37e27c,2
+np.float32,0xff258956,0xd4afb42e,2
+np.float32,0xdc78c,0x29f39012,2
+np.float32,0xbf2db06a,0xbf60f2f5,2
+np.float32,0xbe3c5808,0xbf119660,2
+np.float32,0xbf1ba866,0xbf58e0f4,2
+np.float32,0x80377640,0xaa41b79d,2
+np.float32,0x4fdc4d,0x2a5abfea,2
+np.float32,0x7f5e7560,0x54c1e516,2
+np.float32,0xfeb4d3f2,0xd48f9fde,2
+np.float32,0x3f12a622,0x3f549c7d,2
+np.float32,0x7f737ed7,0x54c7d2dc,2
+np.float32,0xa0ddc,0x29db456d,2
+np.float32,0xfe006740,0xd44b6689,2
+np.float32,0x3f17dfd4,0x3f571b6c,2
+np.float32,0x67546e,0x2a6e5dd1,2
+np.float32,0xff0d0f11,0xd4a693e2,2
+np.float32,0xbd170090,0xbeaa6738,2
+np.float32,0x5274a0,0x2a5d1806,2
+np.float32,0x3e154fe0,0x3f06be1a,2
+np.float32,0x7ddb302e,0x5440f0a7,2
+np.float32,0x3f579d10,0x3f71c2af,2
+np.float32,0xff2bc5bb,0xd4b1e20c,2
+np.float32,0xfee8fa6a,0xd49c4872,2
+np.float32,0xbea551b0,0xbf2fa07b,2
+np.float32,0xfeabc75c,0xd48d3004,2
+np.float32,0x7f50a5a8,0x54bdcbd1,2
+np.float32,0x50354b,0x2a5b110d,2
+np.float32,0x7d139f13,0x54063b6b,2
+np.float32,0xbeee1b08,0xbf465699,2
+np.float32,0xfe5e1650,0xd47427fe,2
+np.float32,0x7f7fffff,0x54cb2ff5,2
+np.float32,0xbf52ede8,0xbf6fff35,2
+np.float32,0x804bba81,0xaa56e8f1,2
+np.float32,0x6609e2,0x2a6d5e94,2
+np.float32,0x692621,0x2a6fc1d6,2
+np.float32,0xbf288bb6,0xbf5eb4d3,2
+np.float32,0x804f28c4,0xaa5a1b82,2
+np.float32,0xbdaad2a8,0xbedfb46e,2
+np.float32,0x5e04f8,0x2a66fb13,2
+np.float32,0x804c10da,0xaa573a81,2
+np.float32,0xbe412764,0xbf12d0fd,2
+np.float32,0x801c35cc,0xaa1aa250,2
+np.float32,0x6364d4,0x2a6b4cf9,2
+np.float32,0xbf6d3cea,0xbf79962f,2
+np.float32,0x7e5a9935,0x5472defb,2
+np.float32,0xbe73a38c,0xbf1ea19c,2
+np.float32,0xbd35e950,0xbeb550f2,2
+np.float32,0x46cc16,0x2a5223d6,2
+np.float32,0x3f005288,0x3f4b5b97,2
+np.float32,0x8034e8b7,0xaa3eb2be,2
+np.float32,0xbea775fc,0xbf3061cf,2
+np.float32,0xea0e9,0x29f87751,2
+np.float32,0xbf38faaf,0xbf65b89d,2
+np.float32,0xbedf3184,0xbf421bb0,2
+np.float32,0xbe04250c,0xbf015def,2
+np.float32,0x7f56dae8,0x54bfa901,2
+np.float32,0xfebe3e04,0xd492132e,2
+np.float32,0x3e4dc326,0x3f15f19e,2
+np.float32,0x803da197,0xaa48a621,2
+np.float32,0x7eeb35aa,0x549cc7c6,2
+np.float32,0xfebb3eb6,0xd4914dc0,2
+np.float32,0xfed17478,0xd496d5e2,2
+np.float32,0x80243694,0xaa280ed2,2
+np.float32,0x8017e666,0xaa1251d3,2
+np.float32,0xbf07e942,0xbf4f4a3e,2
+np.float32,0xbf578fa6,0xbf71bdab,2
+np.float32,0x7ed8d80f,0x549896b6,2
+np.float32,0x3f2277ae,0x3f5bff11,2
+np.float32,0x7e6f195b,0x547a3cd4,2
+np.float32,0xbf441559,0xbf6a3a91,2
+np.float32,0x7f1fb427,0x54ad9d8d,2
+np.float32,0x71695f,0x2a75e12d,2
+np.float32,0xbd859588,0xbece19a1,2
+np.float32,0x7f5702fc,0x54bfb4eb,2
+np.float32,0x3f040008,0x3f4d4842,2
+np.float32,0x3de00ca5,0x3ef4df89,2
+np.float32,0x3eeabb03,0x3f45658c,2
+np.float32,0x3dfe5e65,0x3eff7480,2
+np.float32,0x1,0x26a14518,2
+np.float32,0x8065e400,0xaa6d4130,2
+np.float32,0xff50e1bb,0xd4bdde07,2
+np.float32,0xbe88635a,0xbf24b7e9,2
+np.float32,0x3f46bfab,0x3f6b4908,2
+np.float32,0xbd85c3c8,0xbece3168,2
+np.float32,0xbe633f64,0xbf1afdb1,2
+np.float32,0xff2c7706,0xd4b21f2a,2
+np.float32,0xbf02816c,0xbf4c812a,2
+np.float32,0x80653aeb,0xaa6cbdab,2
+np.float32,0x3eef1d10,0x3f469e24,2
+np.float32,0x3d9944bf,0x3ed7c36a,2
+np.float32,0x1b03d4,0x2a186b2b,2
+np.float32,0x3f251b7c,0x3f5d2e76,2
+np.float32,0x3edebab0,0x3f41f937,2
+np.float32,0xfefc2148,0xd4a073ff,2
+np.float32,0x7448ee,0x2a77f051,2
+np.float32,0x3bb8a400,0x3e3637ee,2
+np.float32,0x57df36,0x2a61d527,2
+np.float32,0xfd8b9098,0xd425fccb,2
+np.float32,0x7f67627e,0x54c4744d,2
+np.float32,0x801165d7,0xaa039fba,2
+np.float32,0x53aae5,0x2a5e2bfd,2
+np.float32,0x8014012b,0xaa09e4f1,2
+np.float32,0x3f7a2d53,0x3f7e0b4b,2
+np.float32,0x3f5fb700,0x3f74c052,2
+np.float32,0x7f192a06,0x54ab366c,2
+np.float32,0x3f569611,0x3f71603b,2
+np.float32,0x25e2dc,0x2a2a9b65,2
+np.float32,0x8036465e,0xaa405342,2
+np.float32,0x804118e1,0xaa4c5785,2
+np.float32,0xbef08d3e,0xbf4703e1,2
+np.float32,0x3447e2,0x2a3df0be,2
+np.float32,0xbf2a350b,0xbf5f6f8c,2
+np.float32,0xbec87e3e,0xbf3b4a73,2
+np.float32,0xbe99a4a8,0xbf2b6412,2
+np.float32,0x2ea2ae,0x2a36d77e,2
+np.float32,0xfcb69600,0xd3e4b9e3,2
+np.float32,0x717700,0x2a75eb06,2
+np.float32,0xbf4e81ce,0xbf6e4ecc,2
+np.float32,0xbe2021ac,0xbf09ebee,2
+np.float32,0xfef94eee,0xd49fda31,2
+np.float32,0x8563e,0x29ce0015,2
+np.float32,0x7f5d0ca5,0x54c17c0f,2
+np.float32,0x3f16459a,0x3f56590f,2
+np.float32,0xbe12f7bc,0xbf0608a0,2
+np.float32,0x3f10fd3d,0x3f53ce5f,2
+np.float32,0x3ca5e1b0,0x3e8b8d96,2
+np.float32,0xbe5288e0,0xbf17181f,2
+np.float32,0xbf7360f6,0xbf7bb8c9,2
+np.float32,0x7e989d33,0x5487ba88,2
+np.float32,0x3ea7b5dc,0x3f307839,2
+np.float32,0x7e8da0c9,0x548463f0,2
+np.float32,0xfeaf7888,0xd48e3122,2
+np.float32,0x7d90402d,0x5427d321,2
+np.float32,0x72e309,0x2a76f0ee,2
+np.float32,0xbe1faa34,0xbf09c998,2
+np.float32,0xbf2b1652,0xbf5fd1f4,2
+np.float32,0x8051eb0c,0xaa5c9cca,2
+np.float32,0x7edf02bf,0x549a058e,2
+np.float32,0x7fa00000,0x7fe00000,2
+np.float32,0x3f67f873,0x3f77b9c1,2
+np.float32,0x3f276b63,0x3f5e358c,2
+np.float32,0x7eeb4bf2,0x549cccb9,2
+np.float32,0x3bfa2c,0x2a46d675,2
+np.float32,0x3e133c50,0x3f061d75,2
+np.float32,0x3ca302c0,0x3e8abe4a,2
+np.float32,0x802e152e,0xaa361dd5,2
+np.float32,0x3f504810,0x3f6efd0a,2
+np.float32,0xbf43e0b5,0xbf6a2599,2
+np.float32,0x80800000,0xaa800000,2
+np.float32,0x3f1c0980,0x3f590e03,2
+np.float32,0xbf0084f6,0xbf4b7638,2
+np.float32,0xfee72d32,0xd49be10d,2
+np.float32,0x3f3c00ed,0x3f66f763,2
+np.float32,0x80511e81,0xaa5be492,2
+np.float32,0xfdd1b8a0,0xd43e1f0d,2
+np.float32,0x7d877474,0x54245785,2
+np.float32,0x7f110bfe,0x54a82207,2
+np.float32,0xff800000,0xff800000,2
+np.float32,0x6b6a2,0x29bfa706,2
+np.float32,0xbf5bdfd9,0xbf7357b7,2
+np.float32,0x8025bfa3,0xaa2a6676,2
+np.float32,0x3a3581,0x2a44dd3a,2
+np.float32,0x542c2a,0x2a5e9e2f,2
+np.float32,0xbe1d5650,0xbf091d57,2
+np.float32,0x3e97760d,0x3f2a935e,2
+np.float32,0x7f5dcde2,0x54c1b460,2
+np.float32,0x800bde1e,0xa9e7bbaf,2
+np.float32,0x3e6b9e61,0x3f1cdf07,2
+np.float32,0x7d46c003,0x54143884,2
+np.float32,0x80073fbb,0xa9c49e67,2
+np.float32,0x503c23,0x2a5b1748,2
+np.float32,0x7eb7b070,0x549060c8,2
+np.float32,0xe9d8f,0x29f86456,2
+np.float32,0xbeedd4f0,0xbf464320,2
+np.float32,0x3f40d5d6,0x3f68eda1,2
+np.float32,0xff201f28,0xd4adc44b,2
+np.float32,0xbdf61e98,0xbefca9c7,2
+np.float32,0x3e8a0dc9,0x3f2562e3,2
+np.float32,0xbc0c0c80,0xbe515f61,2
+np.float32,0x2b3c15,0x2a3248e3,2
+np.float32,0x42a7bb,0x2a4df592,2
+np.float32,0x7f337947,0x54b480af,2
+np.float32,0xfec21db4,0xd4930f4b,2
+np.float32,0x7f4fdbf3,0x54bd8e94,2
+np.float32,0x1e2253,0x2a1e1286,2
+np.float32,0x800c4c80,0xa9ea819e,2
+np.float32,0x7e96f5b7,0x54873c88,2
+np.float32,0x7ce4e131,0x53f69ed4,2
+np.float32,0xbead8372,0xbf327b63,2
+np.float32,0x3e15ca7e,0x3f06e2f3,2
+np.float32,0xbf63e17b,0xbf7642da,2
+np.float32,0xff5bdbdb,0xd4c122f9,2
+np.float32,0x3f44411e,0x3f6a4bfd,2
+np.float32,0xfd007da0,0xd40029d2,2
+np.float32,0xbe940168,0xbf2944b7,2
+np.float32,0x80000000,0x80000000,2
+np.float32,0x3d28e356,0x3eb0e1b8,2
+np.float32,0x3eb9fcd8,0x3f36a918,2
+np.float32,0x4f6410,0x2a5a51eb,2
+np.float32,0xbdf18e30,0xbefb1775,2
+np.float32,0x32edbd,0x2a3c49e3,2
+np.float32,0x801f70a5,0xaa2052da,2
+np.float32,0x8045a045,0xaa50f98c,2
+np.float32,0xbdd6cb00,0xbef17412,2
+np.float32,0x3f118f2c,0x3f541557,2
+np.float32,0xbe65c378,0xbf1b8f95,2
+np.float32,0xfd9a9060,0xd42bbb8b,2
+np.float32,0x3f04244f,0x3f4d5b0f,2
+np.float32,0xff05214b,0xd4a3656f,2
+np.float32,0xfe342cd0,0xd463b706,2
+np.float32,0x3f3409a8,0x3f63a836,2
+np.float32,0x80205db2,0xaa21e1e5,2
+np.float32,0xbf37c982,0xbf653a03,2
+np.float32,0x3f36ce8f,0x3f64d17e,2
+np.float32,0x36ffda,0x2a412d61,2
+np.float32,0xff569752,0xd4bf94e6,2
+np.float32,0x802fdb0f,0xaa386c3a,2
+np.float32,0x7ec55a87,0x5493df71,2
+np.float32,0x7f2234c7,0x54ae847e,2
+np.float32,0xbf02df76,0xbf4cb23d,2
+np.float32,0x3d68731a,0x3ec4c156,2
+np.float32,0x8146,0x2921cd8e,2
+np.float32,0x80119364,0xaa041235,2
+np.float32,0xfe6c1c00,0xd47930b5,2
+np.float32,0x8070da44,0xaa757996,2
+np.float32,0xfefbf50c,0xd4a06a9d,2
+np.float32,0xbf01b6a8,0xbf4c170a,2
+np.float32,0x110702,0x2a02aedb,2
+np.float32,0xbf063cd4,0xbf4e6f87,2
+np.float32,0x3f1ff178,0x3f5ad9dd,2
+np.float32,0xbf76dcd4,0xbf7cead0,2
+np.float32,0x80527281,0xaa5d1620,2
+np.float32,0xfea96df8,0xd48c8a7f,2
+np.float32,0x68db02,0x2a6f88b0,2
+np.float32,0x62d971,0x2a6adec7,2
+np.float32,0x3e816fe0,0x3f21df04,2
+np.float32,0x3f586379,0x3f720cc0,2
+np.float32,0x804a3718,0xaa5577ff,2
+np.float32,0x2e2506,0x2a3632b2,2
+np.float32,0x3f297d,0x2a4a4bf3,2
+np.float32,0xbe37aba8,0xbf105f88,2
+np.float32,0xbf18b264,0xbf577ea7,2
+np.float32,0x7f50d02d,0x54bdd8b5,2
+np.float32,0xfee296dc,0xd49ad757,2
+np.float32,0x7ec5137e,0x5493cdb1,2
+np.float32,0x3f4811f4,0x3f6bce3a,2
+np.float32,0xfdff32a0,0xd44af991,2
+np.float32,0x3f6ef140,0x3f7a2ed6,2
+np.float32,0x250838,0x2a2950b5,2
+np.float32,0x25c28e,0x2a2a6ada,2
+np.float32,0xbe875e50,0xbf244e90,2
+np.float32,0x3e3bdff8,0x3f11776a,2
+np.float32,0x3e9fe493,0x3f2daf17,2
+np.float32,0x804d8599,0xaa5897d9,2
+np.float32,0x3f0533da,0x3f4de759,2
+np.float32,0xbe63023c,0xbf1aefc8,2
+np.float32,0x80636e5e,0xaa6b547f,2
+np.float32,0xff112958,0xd4a82d5d,2
+np.float32,0x3e924112,0x3f28991f,2
+np.float32,0xbe996ffc,0xbf2b507a,2
+np.float32,0x802a7cda,0xaa314081,2
+np.float32,0x8022b524,0xaa25b21e,2
+np.float32,0x3f0808c8,0x3f4f5a43,2
+np.float32,0xbef0ec2a,0xbf471e0b,2
+np.float32,0xff4c2345,0xd4bc6b3c,2
+np.float32,0x25ccc8,0x2a2a7a3b,2
+np.float32,0x7f4467d6,0x54ba0260,2
+np.float32,0x7f506539,0x54bdb846,2
+np.float32,0x412ab4,0x2a4c6a2a,2
+np.float32,0x80672c4a,0xaa6e3ef0,2
+np.float32,0xbddfb7f8,0xbef4c0ac,2
+np.float32,0xbf250bb9,0xbf5d276c,2
+np.float32,0x807dca65,0xaa7e84bd,2
+np.float32,0xbf63b8e0,0xbf763438,2
+np.float32,0xbeed1b0c,0xbf460f6b,2
+np.float32,0x8021594f,0xaa238136,2
+np.float32,0xbebc74c8,0xbf377710,2
+np.float32,0x3e9f8e3b,0x3f2d8fce,2
+np.float32,0x7f50ca09,0x54bdd6d8,2
+np.float32,0x805797c1,0xaa6197df,2
+np.float32,0x3de198f9,0x3ef56f98,2
+np.float32,0xf154d,0x29fb0392,2
+np.float32,0xff7fffff,0xd4cb2ff5,2
+np.float32,0xfed22fa8,0xd49702c4,2
+np.float32,0xbf733736,0xbf7baa64,2
+np.float32,0xbf206a8a,0xbf5b1108,2
+np.float32,0xbca49680,0xbe8b3078,2
+np.float32,0xfecba794,0xd4956e1a,2
+np.float32,0x80126582,0xaa061886,2
+np.float32,0xfee5cc82,0xd49b919f,2
+np.float32,0xbf7ad6ae,0xbf7e4491,2
+np.float32,0x7ea88c81,0x548c4c0c,2
+np.float32,0xbf493a0d,0xbf6c4255,2
+np.float32,0xbf06dda0,0xbf4ec1d4,2
+np.float32,0xff3f6e84,0xd4b86cf6,2
+np.float32,0x3e4fe093,0x3f1674b0,2
+np.float32,0x8048ad60,0xaa53fbde,2
+np.float32,0x7ebb7112,0x54915ac5,2
+np.float32,0x5bd191,0x2a652a0d,2
+np.float32,0xfe3121d0,0xd4626cfb,2
+np.float32,0x7e4421c6,0x546a3f83,2
+np.float32,0x19975b,0x2a15b14f,2
+np.float32,0x801c8087,0xaa1b2a64,2
+np.float32,0xfdf6e950,0xd448c0f6,2
+np.float32,0x74e711,0x2a786083,2
+np.float32,0xbf2b2f2e,0xbf5fdccb,2
+np.float32,0x7ed19ece,0x5496e00b,2
+np.float32,0x7f6f8322,0x54c6ba63,2
+np.float32,0x3e90316d,0x3f27cd69,2
+np.float32,0x7ecb42ce,0x54955571,2
+np.float32,0x3f6d49be,0x3f799aaf,2
+np.float32,0x8053d327,0xaa5e4f9a,2
+np.float32,0x7ebd7361,0x5491df3e,2
+np.float32,0xfdb6eed0,0xd435a7aa,2
+np.float32,0x7f3e79f4,0x54b81e4b,2
+np.float32,0xfe83afa6,0xd4813794,2
+np.float32,0x37c443,0x2a421246,2
+np.float32,0xff075a10,0xd4a44cd8,2
+np.float32,0x3ebc5fe0,0x3f377047,2
+np.float32,0x739694,0x2a77714e,2
+np.float32,0xfe832946,0xd4810b91,2
+np.float32,0x7f2638e6,0x54aff235,2
+np.float32,0xfe87f7a6,0xd4829a3f,2
+np.float32,0x3f50f3f8,0x3f6f3eb8,2
+np.float32,0x3eafa3d0,0x3f333548,2
+np.float32,0xbec26ee6,0xbf39626f,2
+np.float32,0x7e6f924f,0x547a66ff,2
+np.float32,0x7f0baa46,0x54a606f8,2
+np.float32,0xbf6dfc49,0xbf79d939,2
+np.float32,0x7f005709,0x54a1699d,2
+np.float32,0x7ee3d7ef,0x549b2057,2
+np.float32,0x803709a4,0xaa4138d7,2
+np.float32,0x3f7bf49a,0x3f7ea509,2
+np.float32,0x509db7,0x2a5b6ff5,2
+np.float32,0x7eb1b0d4,0x548ec9ff,2
+np.float32,0x7eb996ec,0x5490dfce,2
+np.float32,0xbf1fcbaa,0xbf5ac89e,2
+np.float32,0x3e2c9a98,0x3f0d69cc,2
+np.float32,0x3ea77994,0x3f306312,2
+np.float32,0x3f3cbfe4,0x3f67457c,2
+np.float32,0x8422a,0x29cd5a30,2
+np.float32,0xbd974558,0xbed6d264,2
+np.float32,0xfecee77a,0xd496387f,2
+np.float32,0x3f51876b,0x3f6f76f1,2
+np.float32,0x3b1a25,0x2a45ddad,2
+np.float32,0xfe9912f0,0xd487dd67,2
+np.float32,0x3f3ab13d,0x3f666d99,2
+np.float32,0xbf35565a,0xbf64341b,2
+np.float32,0x7d4e84aa,0x54162091,2
+np.float32,0x4c2570,0x2a574dea,2
+np.float32,0x7e82dca6,0x5480f26b,2
+np.float32,0x7f5503e7,0x54bf1c8d,2
+np.float32,0xbeb85034,0xbf361c59,2
+np.float32,0x80460a69,0xaa516387,2
+np.float32,0x805fbbab,0xaa68602c,2
+np.float32,0x7d4b4c1b,0x541557b8,2
+np.float32,0xbefa9a0a,0xbf49bfbc,2
+np.float32,0x3dbd233f,0x3ee76e09,2
+np.float32,0x58b6df,0x2a628d50,2
+np.float32,0xfcdcc180,0xd3f3aad9,2
+np.float32,0x423a37,0x2a4d8487,2
+np.float32,0xbed8b32a,0xbf403507,2
+np.float32,0x3f68e85d,0x3f780f0b,2
+np.float32,0x7ee13c4b,0x549a883d,2
+np.float32,0xff2ed4c5,0xd4b2eec1,2
+np.float32,0xbf54dadc,0xbf70b99a,2
+np.float32,0x3f78b0af,0x3f7d8a32,2
+np.float32,0x3f377372,0x3f651635,2
+np.float32,0xfdaa6178,0xd43166bc,2
+np.float32,0x8060c337,0xaa6934a6,2
+np.float32,0x7ec752c2,0x54945cf6,2
+np.float32,0xbd01a760,0xbea1f624,2
+np.float32,0x6f6599,0x2a746a35,2
+np.float32,0x3f6315b0,0x3f75f95b,2
+np.float32,0x7f2baf32,0x54b1da44,2
+np.float32,0x3e400353,0x3f1286d8,2
+np.float32,0x40d3bf,0x2a4c0f15,2
+np.float32,0x7f733aca,0x54c7c03d,2
+np.float32,0x7e5c5407,0x5473828b,2
+np.float32,0x80191703,0xaa14b56a,2
+np.float32,0xbf4fc144,0xbf6ec970,2
+np.float32,0xbf1137a7,0xbf53eacd,2
+np.float32,0x80575410,0xaa615db3,2
+np.float32,0xbd0911d0,0xbea4fe07,2
+np.float32,0x3e98534a,0x3f2ae643,2
+np.float32,0x3f3b089a,0x3f669185,2
+np.float32,0x4fc752,0x2a5aacc1,2
+np.float32,0xbef44ddc,0xbf480b6e,2
+np.float32,0x80464217,0xaa519af4,2
+np.float32,0x80445fae,0xaa4fb6de,2
+np.float32,0x80771cf4,0xaa79eec8,2
+np.float32,0xfd9182e8,0xd4284fed,2
+np.float32,0xff0a5d16,0xd4a58288,2
+np.float32,0x3f33e169,0x3f63973e,2
+np.float32,0x8021a247,0xaa23f820,2
+np.float32,0xbf362522,0xbf648ab8,2
+np.float32,0x3f457cd7,0x3f6ac95e,2
+np.float32,0xbcadf400,0xbe8dc7e2,2
+np.float32,0x80237210,0xaa26dca7,2
+np.float32,0xbf1293c9,0xbf54939f,2
+np.float32,0xbc5e73c0,0xbe744a37,2
+np.float32,0x3c03f980,0x3e4d44df,2
+np.float32,0x7da46f,0x2a7e6b20,2
+np.float32,0x5d4570,0x2a665dd0,2
+np.float32,0x3e93fbac,0x3f294287,2
+np.float32,0x7e6808fd,0x5477bfa4,2
+np.float32,0xff5aa9a6,0xd4c0c925,2
+np.float32,0xbf5206ba,0xbf6fa767,2
+np.float32,0xbf6e513e,0xbf79f6f1,2
+np.float32,0x3ed01c0f,0x3f3da20f,2
+np.float32,0xff47d93d,0xd4bb1704,2
+np.float32,0x7f466cfd,0x54baa514,2
+np.float32,0x665e10,0x2a6d9fc8,2
+np.float32,0x804d0629,0xaa5820e8,2
+np.float32,0x7e0beaa0,0x54514e7e,2
+np.float32,0xbf7fcb6c,0xbf7fee78,2
+np.float32,0x3f6c5b03,0x3f7946dd,2
+np.float32,0x3e941504,0x3f294c30,2
+np.float32,0xbf2749ad,0xbf5e26a1,2
+np.float32,0xfec2a00a,0xd493302d,2
+np.float32,0x3f15a358,0x3f560bce,2
+np.float32,0x3f15c4e7,0x3f561bcd,2
+np.float32,0xfedc8692,0xd499728c,2
+np.float32,0x7e8f6902,0x5484f180,2
+np.float32,0x7f663d62,0x54c42136,2
+np.float32,0x8027ea62,0xaa2d99b4,2
+np.float32,0x3f3d093d,0x3f67636d,2
+np.float32,0x7f118c33,0x54a85382,2
+np.float32,0x803e866a,0xaa499d43,2
+np.float32,0x80053632,0xa9b02407,2
+np.float32,0xbf36dd66,0xbf64d7af,2
+np.float32,0xbf560358,0xbf71292b,2
+np.float32,0x139a8,0x29596bc0,2
+np.float32,0xbe04f75c,0xbf01a26c,2
+np.float32,0xfe1c3268,0xd45920fa,2
+np.float32,0x7ec77f72,0x5494680c,2
+np.float32,0xbedde724,0xbf41bbba,2
+np.float32,0x3e81dbe0,0x3f220bfd,2
+np.float32,0x800373ac,0xa99989d4,2
+np.float32,0x3f7f859a,0x3f7fd72d,2
+np.float32,0x3eb9dc7e,0x3f369e80,2
+np.float32,0xff5f8eb7,0xd4c236b1,2
+np.float32,0xff1c03cb,0xd4ac44ac,2
+np.float32,0x18cfe1,0x2a14285b,2
+np.float32,0x7f21b075,0x54ae54fd,2
+np.float32,0xff490bd8,0xd4bb7680,2
+np.float32,0xbf15dc22,0xbf5626de,2
+np.float32,0xfe1d5a10,0xd459a9a3,2
+np.float32,0x750544,0x2a7875e4,2
+np.float32,0x8023d5df,0xaa2778b3,2
+np.float32,0x3e42aa08,0x3f1332b2,2
+np.float32,0x3ecaa751,0x3f3bf60d,2
+np.float32,0x0,0x0,2
+np.float32,0x80416da6,0xaa4cb011,2
+np.float32,0x3f4ea9ae,0x3f6e5e22,2
+np.float32,0x2113f4,0x2a230f8e,2
+np.float32,0x3f35c2e6,0x3f64619a,2
+np.float32,0xbf50db8a,0xbf6f3564,2
+np.float32,0xff4d5cea,0xd4bccb8a,2
+np.float32,0x7ee54420,0x549b72d2,2
+np.float32,0x64ee68,0x2a6c81f7,2
+np.float32,0x5330da,0x2a5dbfc2,2
+np.float32,0x80047f88,0xa9a7b467,2
+np.float32,0xbda01078,0xbedae800,2
+np.float32,0xfe96d05a,0xd487315f,2
+np.float32,0x8003cc10,0xa99e7ef4,2
+np.float32,0x8007b4ac,0xa9c8aa3d,2
+np.float32,0x5d4bcf,0x2a66630e,2
+np.float32,0xfdd0c0b0,0xd43dd403,2
+np.float32,0xbf7a1d82,0xbf7e05f0,2
+np.float32,0x74ca33,0x2a784c0f,2
+np.float32,0x804f45e5,0xaa5a3640,2
+np.float32,0x7e6d16aa,0x547988c4,2
+np.float32,0x807d5762,0xaa7e3714,2
+np.float32,0xfecf93d0,0xd4966229,2
+np.float32,0xfecbd25c,0xd4957890,2
+np.float32,0xff7db31c,0xd4ca93b0,2
+np.float32,0x3dac9e18,0x3ee07c4a,2
+np.float32,0xbf4b2d28,0xbf6d0509,2
+np.float32,0xbd4f4c50,0xbebd62e0,2
+np.float32,0xbd2eac40,0xbeb2e0ee,2
+np.float32,0x3d01b69b,0x3ea1fc7b,2
+np.float32,0x7ec63902,0x549416ed,2
+np.float32,0xfcc47700,0xd3ea616d,2
+np.float32,0xbf5ddec2,0xbf7413a1,2
+np.float32,0xff6a6110,0xd4c54c52,2
+np.float32,0xfdfae2a0,0xd449d335,2
+np.float32,0x7e54868c,0x547099cd,2
+np.float32,0x802b5b88,0xaa327413,2
+np.float32,0x80440e72,0xaa4f647a,2
+np.float32,0x3e313c94,0x3f0eaad5,2
+np.float32,0x3ebb492a,0x3f3715a2,2
+np.float32,0xbef56286,0xbf4856d5,2
+np.float32,0x3f0154ba,0x3f4be3a0,2
+np.float32,0xff2df86c,0xd4b2a376,2
+np.float32,0x3ef6a850,0x3f48af57,2
+np.float32,0x3d8d33e1,0x3ed1f22d,2
+np.float32,0x4dd9b9,0x2a58e615,2
+np.float32,0x7f1caf83,0x54ac83c9,2
+np.float32,0xbf7286b3,0xbf7b6d73,2
+np.float32,0x80064f88,0xa9bbbd9f,2
+np.float32,0xbf1f55fa,0xbf5a92db,2
+np.float32,0x546a81,0x2a5ed516,2
+np.float32,0xbe912880,0xbf282d0a,2
+np.float32,0x5df587,0x2a66ee6e,2
+np.float32,0x801f706c,0xaa205279,2
+np.float32,0x58cb6d,0x2a629ece,2
+np.float32,0xfe754f8c,0xd47c62da,2
+np.float32,0xbefb6f4c,0xbf49f8e7,2
+np.float32,0x80000001,0xa6a14518,2
+np.float32,0xbf067837,0xbf4e8df4,2
+np.float32,0x3e8e715c,0x3f271ee4,2
+np.float32,0x8009de9b,0xa9d9ebc8,2
+np.float32,0xbf371ff1,0xbf64f36e,2
+np.float32,0x7f5ce661,0x54c170e4,2
+np.float32,0x3f3c47d1,0x3f671467,2
+np.float32,0xfea5e5a6,0xd48b8eb2,2
+np.float32,0xff62b17f,0xd4c31e15,2
+np.float32,0xff315932,0xd4b3c98f,2
+np.float32,0xbf1c3ca8,0xbf5925b9,2
+np.float32,0x7f800000,0x7f800000,2
+np.float32,0xfdf20868,0xd4476c3b,2
+np.float32,0x5b790e,0x2a64e052,2
+np.float32,0x3f5ddf4e,0x3f7413d4,2
+np.float32,0x7f1a3182,0x54ab9861,2
+np.float32,0x3f4b906e,0x3f6d2b9d,2
+np.float32,0x7ebac760,0x54912edb,2
+np.float32,0x7f626d3f,0x54c30a7e,2
+np.float32,0x3e27b058,0x3f0c0edc,2
+np.float32,0x8041e69c,0xaa4d2de8,2
+np.float32,0x3f42cee0,0x3f69b84a,2
+np.float32,0x7ec5fe83,0x5494085b,2
+np.float32,0x9d3e6,0x29d99cde,2
+np.float32,0x3edc50c0,0x3f41452d,2
+np.float32,0xbf2c463a,0xbf60562c,2
+np.float32,0x800bfa33,0xa9e871e8,2
+np.float32,0x7c9f2c,0x2a7dba4d,2
+np.float32,0x7f2ef9fd,0x54b2fb73,2
+np.float32,0x80741847,0xaa77cdb9,2
+np.float32,0x7e9c462a,0x5488ce1b,2
+np.float32,0x3ea47ec1,0x3f2f55a9,2
+np.float32,0x7f311c43,0x54b3b4f5,2
+np.float32,0x3d8f4c73,0x3ed2facd,2
+np.float32,0x806d7bd2,0xaa7301ef,2
+np.float32,0xbf633d24,0xbf760799,2
+np.float32,0xff4f9a3f,0xd4bd7a99,2
+np.float32,0x3f6021ca,0x3f74e73d,2
+np.float32,0x7e447015,0x546a5eac,2
+np.float32,0x6bff3c,0x2a71e711,2
+np.float32,0xe9c9f,0x29f85f06,2
+np.float32,0x8009fe14,0xa9dad277,2
+np.float32,0x807cf79c,0xaa7df644,2
+np.float32,0xff440e1b,0xd4b9e608,2
+np.float32,0xbddf9a50,0xbef4b5db,2
+np.float32,0x7f3b1c39,0x54b706fc,2
+np.float32,0x3c7471a0,0x3e7c16a7,2
+np.float32,0x8065b02b,0xaa6d18ee,2
+np.float32,0x7f63a3b2,0x54c36379,2
+np.float32,0xbe9c9d92,0xbf2c7d33,2
+np.float32,0x3d93aad3,0x3ed51a2e,2
+np.float32,0xbf41b040,0xbf694571,2
+np.float32,0x80396b9e,0xaa43f899,2
+np.float64,0x800fa025695f404b,0xaaa4000ff64bb00c,2
+np.float64,0xbfecc00198f98003,0xbfeee0b623fbd94b,2
+np.float64,0x7f9eeb60b03dd6c0,0x55291bf8554bb303,2
+np.float64,0x3fba74485634e890,0x3fde08710bdb148d,2
+np.float64,0xbfdd9a75193b34ea,0xbfe8bf711660a2f5,2
+np.float64,0xbfcf92e17a3f25c4,0xbfe4119eda6f3773,2
+np.float64,0xbfe359e2ba66b3c6,0xbfeb0f7ae97ea142,2
+np.float64,0x20791a5640f24,0x2a9441f13d262bed,2
+np.float64,0x3fe455fbfae8abf8,0x3feb830d63e1022c,2
+np.float64,0xbd112b7b7a226,0x2aa238c097ec269a,2
+np.float64,0x93349ba126694,0x2aa0c363cd74465a,2
+np.float64,0x20300cd440602,0x2a9432b4f4081209,2
+np.float64,0x3fdcfae677b9f5cc,0x3fe892a9ee56fe8d,2
+np.float64,0xbfefaae3f7bf55c8,0xbfefe388066132c4,2
+np.float64,0x1a7d6eb634faf,0x2a92ed9851d29ab5,2
+np.float64,0x7fd5308d39aa6119,0x553be444e30326c6,2
+np.float64,0xff811c7390223900,0xd5205cb404952fa7,2
+np.float64,0x80083d24aff07a4a,0xaaa0285cf764d898,2
+np.float64,0x800633810ccc6703,0xaa9d65341419586b,2
+np.float64,0x800ff456223fe8ac,0xaaa423bbcc24dff1,2
+np.float64,0x7fde5c99aebcb932,0x553f71be7d6d9daa,2
+np.float64,0x3fed961c4b3b2c39,0x3fef2ca146270cac,2
+np.float64,0x7fe744d30c6e89a5,0x554220a4cdc78e62,2
+np.float64,0x3fd8f527c7b1ea50,0x3fe76101085be1cb,2
+np.float64,0xbfc96a14b232d428,0xbfe2ab1a8962606c,2
+np.float64,0xffe85f540cf0bea7,0xd54268dff964519a,2
+np.float64,0x800e3be0fe7c77c2,0xaaa3634efd7f020b,2
+np.float64,0x3feb90d032f721a0,0x3fee72a4579e8b12,2
+np.float64,0xffe05674aaa0ace9,0xd5401c9e3fb4abcf,2
+np.float64,0x3fefc2e32c3f85c6,0x3fefeb940924bf42,2
+np.float64,0xbfecfd89e9f9fb14,0xbfeef6addf73ee49,2
+np.float64,0xf5862717eb0c5,0x2aa3e1428780382d,2
+np.float64,0xffc3003b32260078,0xd53558f92202dcdb,2
+np.float64,0x3feb4c152c36982a,0x3fee5940f7da0825,2
+np.float64,0x3fe7147b002e28f6,0x3fecb2948f46d1e3,2
+np.float64,0x7fe00ad9b4a015b2,0x5540039d15e1da54,2
+np.float64,0x8010000000000000,0xaaa428a2f98d728b,2
+np.float64,0xbfd3a41bfea74838,0xbfe595ab45b1be91,2
+np.float64,0x7fdbfd6e5537fadc,0x553e9a6e1107b8d0,2
+np.float64,0x800151d9d9a2a3b4,0xaa918cd8fb63f40f,2
+np.float64,0x7fe6828401ad0507,0x5541eda05dcd1fcf,2
+np.float64,0x3fdae1e7a1b5c3d0,0x3fe7f711e72ecc35,2
+np.float64,0x7fdf4936133e926b,0x553fc29c8d5edea3,2
+np.float64,0x80079de12d4f3bc3,0xaa9f7b06a9286da4,2
+np.float64,0x3fe1261cade24c39,0x3fe9fe09488e417a,2
+np.float64,0xbfc20dce21241b9c,0xbfe0a842fb207a28,2
+np.float64,0x3fe3285dfa2650bc,0x3feaf85215f59ef9,2
+np.float64,0x7fe42b93aea85726,0x554148c3c3bb35e3,2
+np.float64,0xffe6c74e7f6d8e9c,0xd541ffd13fa36dbd,2
+np.float64,0x3fe73ea139ee7d42,0x3fecc402242ab7d3,2
+np.float64,0xffbd4b46be3a9690,0xd53392de917c72e4,2
+np.float64,0x800caed8df395db2,0xaaa2a811a02e6be4,2
+np.float64,0x800aacdb6c9559b7,0xaaa19d6fbc8feebf,2
+np.float64,0x839fb4eb073f7,0x2aa0264b98327c12,2
+np.float64,0xffd0157ba9a02af8,0xd5397157a11c0d05,2
+np.float64,0x7fddc8ff173b91fd,0x553f3e7663fb2ac7,2
+np.float64,0x67b365facf66d,0x2a9dd4d838b0d853,2
+np.float64,0xffe12e7fc7225cff,0xd5406272a83a8e1b,2
+np.float64,0x7fea5b19a034b632,0x5542e567658b3e36,2
+np.float64,0x124989d824932,0x2a90ba8dc7a39532,2
+np.float64,0xffe12ef098225de0,0xd54062968450a078,2
+np.float64,0x3fea2f44a3f45e8a,0x3fedee3c461f4716,2
+np.float64,0x3fe6b033e66d6068,0x3fec88c8035e06b1,2
+np.float64,0x3fe928a2ccf25146,0x3fed88d4cde7a700,2
+np.float64,0x3feead27e97d5a50,0x3fef8d7537d82e60,2
+np.float64,0x8003ab80b6875702,0xaa98adfedd7715a9,2
+np.float64,0x45a405828b481,0x2a9a1fa99a4eff1e,2
+np.float64,0x8002ddebad85bbd8,0xaa96babfda4e0031,2
+np.float64,0x3fc278c32824f186,0x3fe0c8e7c979fbd5,2
+np.float64,0x2e10fffc5c221,0x2a96c30a766d06fa,2
+np.float64,0xffd6ba8c2ead7518,0xd53c8d1d92bc2788,2
+np.float64,0xbfeb5ec3a036bd87,0xbfee602bbf0a0d01,2
+np.float64,0x3fed5bd58f7ab7ab,0x3fef181bf591a4a7,2
+np.float64,0x7feb5274a5b6a4e8,0x55431fcf81876218,2
+np.float64,0xaf8fd6cf5f1fb,0x2aa1c6edbb1e2aaf,2
+np.float64,0x7fece718f179ce31,0x55437c74efb90933,2
+np.float64,0xbfa3c42d0c278860,0xbfd5a16407c77e73,2
+np.float64,0x800b5cff0576b9fe,0xaaa1fc4ecb0dec4f,2
+np.float64,0x800be89ae557d136,0xaaa244d115fc0963,2
+np.float64,0x800d2578f5ba4af2,0xaaa2e18a3a3fc134,2
+np.float64,0x80090ff93e321ff3,0xaaa0add578e3cc3c,2
+np.float64,0x28c5a240518c,0x2a81587cccd7e202,2
+np.float64,0x7fec066929780cd1,0x55434971435d1069,2
+np.float64,0x7fc84d4d15309a99,0x55372c204515694f,2
+np.float64,0xffe070a75de0e14e,0xd54025365046dad2,2
+np.float64,0x7fe5b27cc36b64f9,0x5541b5b822f0b6ca,2
+np.float64,0x3fdea35ac8bd46b6,0x3fe9086a0fb792c2,2
+np.float64,0xbfe79996f7af332e,0xbfece9571d37a5b3,2
+np.float64,0xffdfb47f943f6900,0xd53fe6c14c3366db,2
+np.float64,0xc015cf63802ba,0x2aa2517164d075f4,2
+np.float64,0x7feba98948375312,0x5543340b5b1f1181,2
+np.float64,0x8008678e6550cf1d,0xaaa043e7cea90da5,2
+np.float64,0x3fb11b92fa223726,0x3fd9f8b53be4d90b,2
+np.float64,0x7fc9b18cf0336319,0x55379b42da882047,2
+np.float64,0xbfe5043e736a087d,0xbfebd0c67db7a8e3,2
+np.float64,0x7fde88546a3d10a8,0x553f80cfe5bcf5fe,2
+np.float64,0x8006a6c82dcd4d91,0xaa9e171d182ba049,2
+np.float64,0xbfa0f707ac21ee10,0xbfd48e5d3faa1699,2
+np.float64,0xbfe7716bffaee2d8,0xbfecd8e6abfb8964,2
+np.float64,0x9511ccab2a23a,0x2aa0d56d748f0313,2
+np.float64,0x8003ddb9b847bb74,0xaa991ca06fd9d308,2
+np.float64,0x80030710fac60e23,0xaa9725845ac95fe8,2
+np.float64,0xffece5bbaeb9cb76,0xd5437c2670f894f4,2
+np.float64,0x3fd9be5c72b37cb9,0x3fe79f2e932a5708,2
+np.float64,0x1f050cca3e0a3,0x2a93f36499fe5228,2
+np.float64,0x3fd5422becaa8458,0x3fe6295d6150df58,2
+np.float64,0xffd72c050e2e580a,0xd53cbc52d73b495f,2
+np.float64,0xbfe66d5235ecdaa4,0xbfec6ca27e60bf23,2
+np.float64,0x17ac49a42f58a,0x2a923b5b757087a0,2
+np.float64,0xffd39edc40273db8,0xd53b2f7bb99b96bf,2
+np.float64,0x7fde6cf009bcd9df,0x553f77614eb30d75,2
+np.float64,0x80042b4c3fa85699,0xaa99c05fbdd057db,2
+np.float64,0xbfde5547f8bcaa90,0xbfe8f3147d67a940,2
+np.float64,0xbfdd02f9bf3a05f4,0xbfe894f2048aa3fe,2
+np.float64,0xbfa20ec82c241d90,0xbfd4fd02ee55aac7,2
+np.float64,0x8002f670f8c5ece3,0xaa96fad7e53dd479,2
+np.float64,0x80059f24d7eb3e4a,0xaa9c7312dae0d7bc,2
+np.float64,0x7fe6ae7423ad5ce7,0x5541f9430be53062,2
+np.float64,0xe135ea79c26be,0x2aa350d8f8c526e1,2
+np.float64,0x3fec188ce4f8311a,0x3feea44d21c23f68,2
+np.float64,0x800355688286aad2,0xaa97e6ca51eb8357,2
+np.float64,0xa2d6530b45acb,0x2aa15635bbd366e8,2
+np.float64,0x600e0150c01c1,0x2a9d1456ea6c239c,2
+np.float64,0x8009c30863338611,0xaaa118f94b188bcf,2
+np.float64,0x3fe7e4c0dfefc982,0x3fed07e8480b8c07,2
+np.float64,0xbfddac6407bb58c8,0xbfe8c46f63a50225,2
+np.float64,0xbc85e977790bd,0x2aa2344636ed713d,2
+np.float64,0xfff0000000000000,0xfff0000000000000,2
+np.float64,0xffcd1570303a2ae0,0xd5389a27d5148701,2
+np.float64,0xbf937334d026e660,0xbfd113762e4e29a7,2
+np.float64,0x3fdbfdaa9b37fb55,0x3fe84a425fdff7df,2
+np.float64,0xffc10800f5221000,0xd5349535ffe12030,2
+np.float64,0xaf40f3755e81f,0x2aa1c443af16cd27,2
+np.float64,0x800f7da34f7efb47,0xaaa3f14bf25fc89f,2
+np.float64,0xffe4a60125a94c02,0xd5416b764a294128,2
+np.float64,0xbf8e25aa903c4b40,0xbfcf5ebc275b4789,2
+np.float64,0x3fca681bbb34d038,0x3fe2e882bcaee320,2
+np.float64,0xbfd0f3c9c1a1e794,0xbfe48d0df7b47572,2
+np.float64,0xffeb99b49d373368,0xd5433060dc641910,2
+np.float64,0x3fe554fb916aa9f8,0x3febf437cf30bd67,2
+np.float64,0x80079518d0af2a32,0xaa9f6ee87044745a,2
+np.float64,0x5e01a8a0bc036,0x2a9cdf0badf222c3,2
+np.float64,0xbfea9831b3f53064,0xbfee1601ee953ab3,2
+np.float64,0xbfc369d1a826d3a4,0xbfe110b675c311e0,2
+np.float64,0xa82e640d505cd,0x2aa1863d4e523b9c,2
+np.float64,0x3fe506d70a2a0dae,0x3febd1eba3aa83fa,2
+np.float64,0xcbacba7197598,0x2aa2adeb9927f1f2,2
+np.float64,0xc112d6038225b,0x2aa25978f12038b0,2
+np.float64,0xffa7f5f44c2febf0,0xd52d0ede02d4e18b,2
+np.float64,0x8006f218e34de433,0xaa9e870cf373b4eb,2
+np.float64,0xffe6d9a5d06db34b,0xd54204a4adc608c7,2
+np.float64,0x7fe717210eae2e41,0x554214bf3e2b5228,2
+np.float64,0xbfdd4b45cdba968c,0xbfe8a94c7f225f8e,2
+np.float64,0x883356571066b,0x2aa055ab0b2a8833,2
+np.float64,0x3fe307fc02a60ff8,0x3feae9175053288f,2
+np.float64,0x3fefa985f77f530c,0x3fefe31289446615,2
+np.float64,0x8005698a98aad316,0xaa9c17814ff7d630,2
+np.float64,0x3fea77333c74ee66,0x3fee098ba70e10fd,2
+np.float64,0xbfd1d00b0023a016,0xbfe4e497fd1cbea1,2
+np.float64,0x80009b0c39813619,0xaa8b130a6909cc3f,2
+np.float64,0x3fdbeb896fb7d714,0x3fe84502ba5437f8,2
+np.float64,0x3fb6e7e3562dcfc7,0x3fdca00d35c389ad,2
+np.float64,0xb2d46ebf65a8e,0x2aa1e2fe158d0838,2
+np.float64,0xbfd5453266aa8a64,0xbfe62a6a74c8ef6e,2
+np.float64,0x7fe993aa07732753,0x5542b5438bf31cb7,2
+np.float64,0xbfda5a098cb4b414,0xbfe7ce6d4d606203,2
+np.float64,0xbfe40c3ce068187a,0xbfeb61a32c57a6d0,2
+np.float64,0x3fcf17671d3e2ed0,0x3fe3f753170ab686,2
+np.float64,0xbfe4f814b6e9f02a,0xbfebcb67c60b7b08,2
+np.float64,0x800efedf59fdfdbf,0xaaa3ba4ed44ad45a,2
+np.float64,0x800420b556e8416b,0xaa99aa7fb14edeab,2
+np.float64,0xbf6e4ae6403c9600,0xbfc3cb2b29923989,2
+np.float64,0x3fda5c760a34b8ec,0x3fe7cf2821c52391,2
+np.float64,0x7f898faac0331f55,0x5522b44a01408188,2
+np.float64,0x3fd55af4b7aab5e9,0x3fe631f6d19503b3,2
+np.float64,0xbfa30a255c261450,0xbfd55caf0826361d,2
+np.float64,0x7fdfb801343f7001,0x553fe7ee50b9199a,2
+np.float64,0x7fa89ee91c313dd1,0x552d528ca2a4d659,2
+np.float64,0xffea72921d34e524,0xd542eb01af2e470d,2
+np.float64,0x3feddf0f33fbbe1e,0x3fef462b67fc0a91,2
+np.float64,0x3fe36700b566ce01,0x3feb1596caa8eff7,2
+np.float64,0x7fe6284a25ac5093,0x5541d58be3956601,2
+np.float64,0xffda16f7c8b42df0,0xd53de4f722485205,2
+np.float64,0x7f9355b94026ab72,0x552578cdeb41d2ca,2
+np.float64,0xffd3a9b022275360,0xd53b347b02dcea21,2
+np.float64,0x3fcb7f4f4a36fe9f,0x3fe32a40e9f6c1aa,2
+np.float64,0x7fdb958836372b0f,0x553e746103f92111,2
+np.float64,0x3fd37761c0a6eec4,0x3fe5853c5654027e,2
+np.float64,0x3fe449f1a2e893e4,0x3feb7d9e4eacc356,2
+np.float64,0x80077dfbef0efbf9,0xaa9f4ed788d2fadd,2
+np.float64,0x4823aa7890476,0x2a9a6eb4b653bad5,2
+np.float64,0xbfede01a373bc034,0xbfef468895fbcd29,2
+np.float64,0xbfe2bac5f125758c,0xbfeac4811c4dd66f,2
+np.float64,0x3fec10373af8206e,0x3feea14529e0f178,2
+np.float64,0x3fe305e30ca60bc6,0x3feae81a2f9d0302,2
+np.float64,0xa9668c5f52cd2,0x2aa1910e3a8f2113,2
+np.float64,0xbfd98b1717b3162e,0xbfe78f75995335d2,2
+np.float64,0x800fa649c35f4c94,0xaaa402ae79026a8f,2
+np.float64,0xbfb07dacf620fb58,0xbfd9a7d33d93a30f,2
+np.float64,0x80015812f382b027,0xaa91a843e9c85c0e,2
+np.float64,0x3fc687d96c2d0fb3,0x3fe1ef0ac16319c5,2
+np.float64,0xbfecad2ecd795a5e,0xbfeed9f786697af0,2
+np.float64,0x1608c1242c119,0x2a91cd11e9b4ccd2,2
+np.float64,0x6df775e8dbeef,0x2a9e6ba8c71130eb,2
+np.float64,0xffe96e9332b2dd26,0xd542ac342d06299b,2
+np.float64,0x7fecb6a3b8396d46,0x5543718af8162472,2
+np.float64,0x800d379f893a6f3f,0xaaa2ea36bbcb9308,2
+np.float64,0x3f924cdb202499b6,0x3fd0bb90af8d1f79,2
+np.float64,0x0,0x0,2
+np.float64,0x7feaf3b365f5e766,0x5543099a160e2427,2
+np.float64,0x3fea169ed0742d3e,0x3fede4d526e404f8,2
+np.float64,0x7feaf5f2f775ebe5,0x55430a2196c5f35a,2
+np.float64,0xbfc80d4429301a88,0xbfe2541f2ddd3334,2
+np.float64,0xffc75203b32ea408,0xd536db2837068689,2
+np.float64,0xffed2850e63a50a1,0xd5438b1217b72b8a,2
+np.float64,0x7fc16b0e7f22d61c,0x5534bcd0bfddb6f0,2
+np.float64,0x7feee8ed09fdd1d9,0x5543ed5b3ca483ab,2
+np.float64,0x7fb6c7ee662d8fdc,0x5531fffb5d46dafb,2
+np.float64,0x3fd77cebf8aef9d8,0x3fe6e9242e2bd29d,2
+np.float64,0x3f81c33f70238680,0x3fca4c7f3c9848f7,2
+np.float64,0x3fd59fea92ab3fd5,0x3fe649c1558cadd5,2
+np.float64,0xffeba82d4bf7505a,0xd54333bad387f7bd,2
+np.float64,0xffd37630e1a6ec62,0xd53b1ca62818c670,2
+np.float64,0xffec2c1e70b8583c,0xd5435213dcd27c22,2
+np.float64,0x7fec206971f840d2,0x55434f6660a8ae41,2
+np.float64,0x3fed2964adba52c9,0x3fef0642fe72e894,2
+np.float64,0xffd08e30d6211c62,0xd539b060e0ae02da,2
+np.float64,0x3e5f976c7cbf4,0x2a992e6ff991a122,2
+np.float64,0xffe6eee761adddce,0xd5420a393c67182f,2
+np.float64,0xbfe8ec9a31f1d934,0xbfed714426f58147,2
+np.float64,0x7fefffffffffffff,0x554428a2f98d728b,2
+np.float64,0x3fb3ae8b2c275d16,0x3fdb36b81b18a546,2
+np.float64,0x800f73df4dfee7bf,0xaaa3ed1a3e2cf49c,2
+np.float64,0xffd0c8873b21910e,0xd539ce6a3eab5dfd,2
+np.float64,0x3facd6c49439ad80,0x3fd8886f46335df1,2
+np.float64,0x3935859c726b2,0x2a98775f6438dbb1,2
+np.float64,0x7feed879fbfdb0f3,0x5543e9d1ac239469,2
+np.float64,0xbfe84dd990f09bb3,0xbfed323af09543b1,2
+np.float64,0xbfe767cc5a6ecf98,0xbfecd4f39aedbacb,2
+np.float64,0xffd8bd91d5b17b24,0xd53d5eb3734a2609,2
+np.float64,0xbfe13edeb2a27dbe,0xbfea0a856f0b9656,2
+np.float64,0xd933dd53b267c,0x2aa3158784e428c9,2
+np.float64,0xbfef6fef987edfdf,0xbfefcfb1c160462b,2
+np.float64,0x8009eeda4893ddb5,0xaaa13268a41045b1,2
+np.float64,0xab48c7a156919,0x2aa1a1a9c124c87d,2
+np.float64,0xa997931d532f3,0x2aa192bfe5b7bbb4,2
+np.float64,0xffe39ce8b1e739d1,0xd5411fa1c5c2cbd8,2
+np.float64,0x7e7ac2f6fcf59,0x2a9fdf6f263a9e9f,2
+np.float64,0xbfee1e35a6fc3c6b,0xbfef5c25d32b4047,2
+np.float64,0xffe5589c626ab138,0xd5419d220cc9a6da,2
+np.float64,0x7fe12509bf224a12,0x55405f7036dc5932,2
+np.float64,0xa6f15ba94de2c,0x2aa17b3367b1fc1b,2
+np.float64,0x3fca8adbfa3515b8,0x3fe2f0ca775749e5,2
+np.float64,0xbfcb03aa21360754,0xbfe30d5b90ca41f7,2
+np.float64,0x3fefafb2da7f5f66,0x3fefe5251aead4e7,2
+np.float64,0xffd90a59d23214b4,0xd53d7cf63a644f0e,2
+np.float64,0x3fba499988349333,0x3fddf84154fab7e5,2
+np.float64,0x800a76a0bc54ed42,0xaaa17f68cf67f2fa,2
+np.float64,0x3fea33d15bb467a3,0x3fedeff7f445b2ff,2
+np.float64,0x8005d9b0726bb362,0xaa9cd48624afeca9,2
+np.float64,0x7febf42e9a77e85c,0x55434541d8073376,2
+np.float64,0xbfedfc4469bbf889,0xbfef505989f7ee7d,2
+np.float64,0x8001211f1422423f,0xaa90a9889d865349,2
+np.float64,0x800e852f7fdd0a5f,0xaaa3845f11917f8e,2
+np.float64,0xffefd613c87fac27,0xd5441fd17ec669b4,2
+np.float64,0x7fed2a74543a54e8,0x55438b8c637da8b8,2
+np.float64,0xb83d50ff707aa,0x2aa210b4fc11e4b2,2
+np.float64,0x10000000000000,0x2aa428a2f98d728b,2
+np.float64,0x474ad9208e97,0x2a84e5a31530368a,2
+np.float64,0xffd0c5498ea18a94,0xd539ccc0e5cb425e,2
+np.float64,0x8001a8e9c82351d4,0xaa92f1aee6ca5b7c,2
+np.float64,0xd28db1e5a51b6,0x2aa2e328c0788f4a,2
+np.float64,0x3bf734ac77ee7,0x2a98da65c014b761,2
+np.float64,0x3fe56e17c96adc30,0x3febff2b6b829b7a,2
+np.float64,0x7783113eef063,0x2a9f46c3f09eb42c,2
+np.float64,0x3fd69d4e42ad3a9d,0x3fe69f83a21679f4,2
+np.float64,0x3fd34f4841a69e90,0x3fe5766b3c771616,2
+np.float64,0x3febb49895b76931,0x3fee7fcb603416c9,2
+np.float64,0x7fe8d6cb55f1ad96,0x554286c3b3bf4313,2
+np.float64,0xbfe67c6ba36cf8d8,0xbfec730218f2e284,2
+np.float64,0xffef9d97723f3b2e,0xd54413e38b6c29be,2
+np.float64,0x12d8cd2a25b1b,0x2a90e5ccd37b8563,2
+np.float64,0x81fe019103fc0,0x2aa01524155e73c5,2
+np.float64,0x7fe95d546f72baa8,0x5542a7fabfd425ff,2
+np.float64,0x800e742f1f9ce85e,0xaaa37cbe09e1f874,2
+np.float64,0xffd96bd3a732d7a8,0xd53da3086071264a,2
+np.float64,0x4ef2691e9de4e,0x2a9b3d316047fd6d,2
+np.float64,0x1a91684c3522e,0x2a92f25913c213de,2
+np.float64,0x3d5151b87aa2b,0x2a9909dbd9a44a84,2
+np.float64,0x800d9049435b2093,0xaaa31424e32d94a2,2
+np.float64,0xffe5b25fcc2b64bf,0xd541b5b0416b40b5,2
+np.float64,0xffe0eb784c21d6f0,0xd5404d083c3d6bc6,2
+np.float64,0x8007ceefbf0f9de0,0xaa9fbe0d739368b4,2
+np.float64,0xb78529416f0b,0x2a8ca3b29b5b3f18,2
+np.float64,0x7fba61130034c225,0x5532e6d4ca0f2918,2
+np.float64,0x3fba8d67ae351acf,0x3fde11efd6239b09,2
+np.float64,0x3fe7f24c576fe498,0x3fed0d63947a854d,2
+np.float64,0x2bb58dec576b3,0x2a965de7fca12aff,2
+np.float64,0xbfe86ceec4f0d9de,0xbfed3ea7f1d084e2,2
+np.float64,0x7fd1a7f7bca34fee,0x553a3f01b67fad2a,2
+np.float64,0x3fd9a43acfb34874,0x3fe7972dc5d8dfd6,2
+np.float64,0x7fd9861acdb30c35,0x553dad3b1bbb3b4d,2
+np.float64,0xffecc0c388398186,0xd54373d3b903deec,2
+np.float64,0x3fa6f86e9c2df0e0,0x3fd6bdbe40fcf710,2
+np.float64,0x800ddd99815bbb33,0xaaa33820d2f889bb,2
+np.float64,0x7fe087089b610e10,0x55402c868348a6d3,2
+np.float64,0x3fdf43d249be87a5,0x3fe933d29fbf7c23,2
+np.float64,0x7fe4f734c7a9ee69,0x5541822e56c40725,2
+np.float64,0x3feb39a9d3b67354,0x3fee526bf1f69f0e,2
+np.float64,0x3fe61454a0ec28a9,0x3fec46d7c36f7566,2
+np.float64,0xbfeafaa0a375f541,0xbfee3af2e49d457a,2
+np.float64,0x3fda7378e1b4e6f0,0x3fe7d613a3f92c40,2
+np.float64,0xe3e31c5fc7c64,0x2aa3645c12e26171,2
+np.float64,0xbfe97a556df2f4ab,0xbfeda8aa84cf3544,2
+np.float64,0xff612f9c80225f00,0xd514a51e5a2a8a97,2
+np.float64,0x800c51c8a0f8a391,0xaaa279fe7d40b50b,2
+np.float64,0xffd6f9d2312df3a4,0xd53ca783a5f8d110,2
+np.float64,0xbfead48bd7f5a918,0xbfee2cb2f89c5e57,2
+np.float64,0x800f5949e89eb294,0xaaa3e1a67a10cfef,2
+np.float64,0x800faf292b7f5e52,0xaaa40675e0c96cfd,2
+np.float64,0xbfedc238453b8470,0xbfef3c179d2d0209,2
+np.float64,0x3feb0443c5760888,0x3fee3e8bf29089c2,2
+np.float64,0xb26f69e164ded,0x2aa1df9f3dd7d765,2
+np.float64,0x3fcacdc053359b80,0x3fe300a67765b667,2
+np.float64,0x3fe8b274647164e8,0x3fed5a4cd4da8155,2
+np.float64,0x291e6782523ce,0x2a95ea7ac1b13a68,2
+np.float64,0xbfc4fc094e29f814,0xbfe1838671fc8513,2
+np.float64,0x3fbf1301f23e2600,0x3fdfb03a6f13e597,2
+np.float64,0xffeb36554ab66caa,0xd543193d8181e4f9,2
+np.float64,0xbfd969a52db2d34a,0xbfe78528ae61f16d,2
+np.float64,0x800cccd04d3999a1,0xaaa2b6b7a2d2d2d6,2
+np.float64,0x808eb4cb011d7,0x2aa005effecb2b4a,2
+np.float64,0x7fe839b3f9b07367,0x55425f61e344cd6d,2
+np.float64,0xbfeb25b6ed764b6e,0xbfee4b0234fee365,2
+np.float64,0xffefffffffffffff,0xd54428a2f98d728b,2
+np.float64,0xbfe01305da60260c,0xbfe9700b784af7e9,2
+np.float64,0xffcbf36b0a37e6d8,0xd538474b1d74ffe1,2
+np.float64,0xffaeebe3e83dd7c0,0xd52fa2e8dabf7209,2
+np.float64,0xbfd9913bf0b32278,0xbfe7915907aab13c,2
+np.float64,0xbfe7d125d9efa24c,0xbfecfff563177706,2
+np.float64,0xbfee98d23cbd31a4,0xbfef867ae393e446,2
+np.float64,0x3fe30efb67e61df6,0x3feaec6344633d11,2
+np.float64,0x1,0x2990000000000000,2
+np.float64,0x7fd5524fd3aaa49f,0x553bf30d18ab877e,2
+np.float64,0xc98b403f93168,0x2aa29d2fadb13c07,2
+np.float64,0xffe57080046ae100,0xd541a3b1b687360e,2
+np.float64,0x7fe20bade5e4175b,0x5540a79b94294f40,2
+np.float64,0x3fe155400a22aa80,0x3fea15c45f5b5837,2
+np.float64,0x7fe428dc8f6851b8,0x554147fd2ce93cc1,2
+np.float64,0xffefb77eb67f6efc,0xd544195dcaff4980,2
+np.float64,0x3fe49e733b293ce6,0x3feba394b833452a,2
+np.float64,0x38e01e3e71c05,0x2a986b2c955bad21,2
+np.float64,0x7fe735eb376e6bd5,0x55421cc51290d92d,2
+np.float64,0xbfd81d8644b03b0c,0xbfe71ce6d6fbd51a,2
+np.float64,0x8009a32325134647,0xaaa10645d0e6b0d7,2
+np.float64,0x56031ab8ac064,0x2a9c074be40b1f80,2
+np.float64,0xff8989aa30331340,0xd522b2d319a0ac6e,2
+np.float64,0xbfd6c183082d8306,0xbfe6ab8ffb3a8293,2
+np.float64,0x7ff8000000000000,0x7ff8000000000000,2
+np.float64,0xbfe17b68b1e2f6d2,0xbfea28dac8e0c457,2
+np.float64,0x3fbb50e42236a1c8,0x3fde5b090d51e3bd,2
+np.float64,0xffc2bb7cbf2576f8,0xd5353f1b3571c17f,2
+np.float64,0xbfe7576bca6eaed8,0xbfecce388241f47c,2
+np.float64,0x3fe7b52b04ef6a56,0x3fecf495bef99e7e,2
+np.float64,0xffe5511af82aa236,0xd5419b11524e8350,2
+np.float64,0xbfe66d5edf2cdabe,0xbfec6ca7d7b5be8c,2
+np.float64,0xc84a0ba790942,0x2aa29346f16a2cb4,2
+np.float64,0x6db5e7a0db6be,0x2a9e659c0e8244a0,2
+np.float64,0x7fef8f7b647f1ef6,0x554410e67af75d27,2
+np.float64,0xbfe2b4ada7e5695c,0xbfeac1997ec5a064,2
+np.float64,0xbfe99372e03326e6,0xbfedb2662b287543,2
+np.float64,0x3fa45d352428ba6a,0x3fd5d8a895423abb,2
+np.float64,0x3fa029695c2052d3,0x3fd439f858998886,2
+np.float64,0xffe0a9bd3261537a,0xd54037d0cd8bfcda,2
+np.float64,0xbfef83e09a7f07c1,0xbfefd66a4070ce73,2
+np.float64,0x7fee3dcc31fc7b97,0x5543c8503869407e,2
+np.float64,0xffbd16f1603a2de0,0xd533872fa5be978b,2
+np.float64,0xbfe8173141b02e62,0xbfed1c478614c6f4,2
+np.float64,0xbfef57aa277eaf54,0xbfefc77fdab27771,2
+np.float64,0x7fe883a02f31073f,0x554271ff0e3208da,2
+np.float64,0xe3adb63bc75b7,0x2aa362d833d0e41c,2
+np.float64,0x8001c430bac38862,0xaa93575026d26510,2
+np.float64,0x12fb347225f67,0x2a90f00eb9edb3fe,2
+np.float64,0x3fe53f83cbaa7f08,0x3febead40de452c2,2
+np.float64,0xbfe7f67227efece4,0xbfed0f10e32ad220,2
+np.float64,0xb8c5b45d718b7,0x2aa2152912cda86d,2
+np.float64,0x3fd23bb734a4776e,0x3fe50e5d3008c095,2
+np.float64,0x8001fd558ee3faac,0xaa941faa1f7ed450,2
+np.float64,0xffe6bbeda9ed77db,0xd541fcd185a63afa,2
+np.float64,0x4361d79086c3c,0x2a99d692237c30b7,2
+np.float64,0xbfd012f004a025e0,0xbfe43093e290fd0d,2
+np.float64,0xffe1d8850423b10a,0xd54097cf79d8d01e,2
+np.float64,0x3fccf4df7939e9bf,0x3fe37f8cf8be6436,2
+np.float64,0x8000546bc6c0a8d8,0xaa861bb3588556f2,2
+np.float64,0xbfecb4d6ba7969ae,0xbfeedcb6239135fe,2
+np.float64,0xbfaeb425cc3d6850,0xbfd90cfc103bb896,2
+np.float64,0x800ec037ec7d8070,0xaaa39eae8bde9774,2
+np.float64,0xbfeeaf863dfd5f0c,0xbfef8e4514772a8a,2
+np.float64,0xffec67c6c4b8cf8d,0xd5435fad89f900cf,2
+np.float64,0x3fda4498da348932,0x3fe7c7f6b3f84048,2
+np.float64,0xbfd05fd3dea0bfa8,0xbfe4509265a9b65f,2
+np.float64,0x3fe42cc713a8598e,0x3feb706ba9cd533c,2
+np.float64,0xec22d4d7d845b,0x2aa39f8cccb9711c,2
+np.float64,0x7fda30606c3460c0,0x553deea865065196,2
+np.float64,0xbfd58cba8bab1976,0xbfe64327ce32d611,2
+np.float64,0xadd521c75baa4,0x2aa1b7efce201a98,2
+np.float64,0x7fed43c1027a8781,0x55439131832b6429,2
+np.float64,0x800bee278fb7dc4f,0xaaa247a71e776db4,2
+np.float64,0xbfe9be5dd2737cbc,0xbfedc2f9501755b0,2
+np.float64,0x8003f4854447e90b,0xaa994d9b5372b13b,2
+np.float64,0xbfe5d0f867eba1f1,0xbfec29f8dd8b33a4,2
+np.float64,0x3fd79102d5af2206,0x3fe6efaa7a1efddb,2
+np.float64,0xbfeae783c835cf08,0xbfee33cdb4a44e81,2
+np.float64,0x3fcf1713e83e2e28,0x3fe3f7414753ddfb,2
+np.float64,0xffe5ab3cff2b567a,0xd541b3bf0213274a,2
+np.float64,0x7fe0fc65d8a1f8cb,0x554052761ac96386,2
+np.float64,0x7e81292efd026,0x2a9fdff8c01ae86f,2
+np.float64,0x80091176039222ec,0xaaa0aebf0565dfa6,2
+np.float64,0x800d2bf5ab5a57ec,0xaaa2e4a4c31e7e29,2
+np.float64,0xffd1912ea923225e,0xd53a33b2856726ab,2
+np.float64,0x800869918ed0d323,0xaaa0453408e1295d,2
+np.float64,0xffba0898fa341130,0xd532d19b202a9646,2
+np.float64,0xbfe09fac29613f58,0xbfe9b9687b5811a1,2
+np.float64,0xbfbd4ae82e3a95d0,0xbfdf1220f6f0fdfa,2
+np.float64,0xffea11d27bb423a4,0xd542d3d3e1522474,2
+np.float64,0xbfe6b05705ad60ae,0xbfec88d6bcab2683,2
+np.float64,0x3fe624a3f2ec4948,0x3fec4dcc78ddf871,2
+np.float64,0x53483018a6907,0x2a9bba8f92006b69,2
+np.float64,0xbfec0a6eeb7814de,0xbfee9f2a741248d7,2
+np.float64,0x3fe8c8ce6371919d,0x3fed63250c643482,2
+np.float64,0xbfe26b0ef964d61e,0xbfea9e511db83437,2
+np.float64,0xffa0408784208110,0xd52987f62c369ae9,2
+np.float64,0xffc153abc322a758,0xd534b384b5c5fe63,2
+np.float64,0xbfbdce88a63b9d10,0xbfdf4065ef0b01d4,2
+np.float64,0xffed4a4136fa9482,0xd54392a450f8b0af,2
+np.float64,0x8007aa18748f5432,0xaa9f8bd2226d4299,2
+np.float64,0xbfdab4d3e8b569a8,0xbfe7e9a5402540e5,2
+np.float64,0x7fe68914f92d1229,0x5541ef5e78fa35de,2
+np.float64,0x800a538bb1b4a718,0xaaa16bc487711295,2
+np.float64,0xffe02edbc8605db7,0xd5400f8f713df890,2
+np.float64,0xffe8968053712d00,0xd54276b9cc7f460a,2
+np.float64,0x800a4ce211d499c5,0xaaa1680491deb40c,2
+np.float64,0x3f988080f8310102,0x3fd2713691e99329,2
+np.float64,0xf64e42a7ec9c9,0x2aa3e6a7af780878,2
+np.float64,0xff73cc7100279900,0xd51b4478c3409618,2
+np.float64,0x71e6722ce3ccf,0x2a9ec76ddf296ce0,2
+np.float64,0x8006ca16ab0d942e,0xaa9e4bfd862af570,2
+np.float64,0x8000000000000000,0x8000000000000000,2
+np.float64,0xbfed373e02ba6e7c,0xbfef0b2b7bb767b3,2
+np.float64,0xa6cb0f694d962,0x2aa179dd16b0242b,2
+np.float64,0x7fec14626cf828c4,0x55434ca55b7c85d5,2
+np.float64,0x3fcda404513b4808,0x3fe3a68e8d977752,2
+np.float64,0xbfeb94995f772933,0xbfee74091d288b81,2
+np.float64,0x3fce2299a13c4530,0x3fe3c2603f28d23b,2
+np.float64,0xffd07f4534a0fe8a,0xd539a8a6ebc5a603,2
+np.float64,0x7fdb1c651e3638c9,0x553e478a6385c86b,2
+np.float64,0x3fec758336f8eb06,0x3feec5f3b92c8b28,2
+np.float64,0x796fc87cf2dfa,0x2a9f7184a4ad8c49,2
+np.float64,0x3fef9ba866ff3750,0x3fefde6a446fc2cd,2
+np.float64,0x964d26c72c9a5,0x2aa0e143f1820179,2
+np.float64,0xbfef6af750bed5ef,0xbfefce04870a97bd,2
+np.float64,0x3fe2f3961aa5e72c,0x3feadf769321a3ff,2
+np.float64,0xbfd6b706e9ad6e0e,0xbfe6a8141c5c3b5d,2
+np.float64,0x7fe0ecc40a21d987,0x55404d72c2b46a82,2
+np.float64,0xbfe560d19deac1a3,0xbfebf962681a42a4,2
+np.float64,0xbfea37170ab46e2e,0xbfedf136ee9df02b,2
+np.float64,0xbfebf78947b7ef12,0xbfee9847ef160257,2
+np.float64,0x800551f8312aa3f1,0xaa9bee7d3aa5491b,2
+np.float64,0xffed2513897a4a26,0xd5438a58c4ae28ec,2
+np.float64,0x7fd962d75cb2c5ae,0x553d9f8a0c2016f3,2
+np.float64,0x3fefdd8512bfbb0a,0x3feff47d8da7424d,2
+np.float64,0xbfefa5b43bff4b68,0xbfefe1ca42867af0,2
+np.float64,0xbfc8a2853531450c,0xbfe279bb7b965729,2
+np.float64,0x800c8843bc391088,0xaaa2951344e7b29b,2
+np.float64,0x7fe22587bae44b0e,0x5540af8bb58cfe86,2
+np.float64,0xbfe159fae822b3f6,0xbfea182394eafd8d,2
+np.float64,0xbfe6fdfd50edfbfa,0xbfeca93f2a3597d0,2
+np.float64,0xbfe5cd5afaeb9ab6,0xbfec286a8ce0470f,2
+np.float64,0xbfc84bb97f309774,0xbfe263ef0f8f1f6e,2
+np.float64,0x7fd9c1e548b383ca,0x553dc4556874ecb9,2
+np.float64,0x7fda43d33bb487a5,0x553df60f61532fc0,2
+np.float64,0xbfe774bd25eee97a,0xbfecda42e8578c1f,2
+np.float64,0x800df1f5ab9be3ec,0xaaa34184712e69db,2
+np.float64,0xbff0000000000000,0xbff0000000000000,2
+np.float64,0x3fe14ec21b629d84,0x3fea128244215713,2
+np.float64,0x7fc1ce7843239cf0,0x5534e3fa8285b7b8,2
+np.float64,0xbfe922b204724564,0xbfed86818687d649,2
+np.float64,0x3fc58924fb2b1248,0x3fe1aa715ff6ebbf,2
+np.float64,0x8008b637e4d16c70,0xaaa0760b53abcf46,2
+np.float64,0xffbf55bd4c3eab78,0xd53404a23091a842,2
+np.float64,0x9f6b4a753ed6a,0x2aa136ef9fef9596,2
+np.float64,0xbfd11da7f8a23b50,0xbfe49deb493710d8,2
+np.float64,0x800a2f07fcd45e10,0xaaa157237c98b4f6,2
+np.float64,0x3fdd4defa4ba9bdf,0x3fe8aa0bcf895f4f,2
+np.float64,0x7fe9b0ab05f36155,0x5542bc5335414473,2
+np.float64,0x3fe89c97de313930,0x3fed51a1189b8982,2
+np.float64,0x3fdd45c8773a8b91,0x3fe8a7c2096fbf5a,2
+np.float64,0xbfeb6f64daf6deca,0xbfee665167ef43ad,2
+np.float64,0xffdf9da1c4bf3b44,0xd53fdf141944a983,2
+np.float64,0x3fde092ed0bc125c,0x3fe8de25bfbfc2db,2
+np.float64,0xbfcb21f96b3643f4,0xbfe3147904c258cf,2
+np.float64,0x800c9c934f993927,0xaaa29f17c43f021b,2
+np.float64,0x9b91814d37230,0x2aa11329e59bf6b0,2
+np.float64,0x3fe28a7e0b6514fc,0x3feaad6d23e2eadd,2
+np.float64,0xffecf38395f9e706,0xd5437f3ee1cd61e4,2
+np.float64,0x3fcade92a935bd25,0x3fe3049f4c1da1d0,2
+np.float64,0x800ab25d95d564bc,0xaaa1a076d7c66e04,2
+np.float64,0xffc0989e1e21313c,0xd53467f3b8158298,2
+np.float64,0x3fd81523eeb02a48,0x3fe71a38d2da8a82,2
+np.float64,0x7fe5b9dd402b73ba,0x5541b7b9b8631010,2
+np.float64,0x2c160d94582c3,0x2a966e51b503a3d1,2
+np.float64,0x2c416ffa5882f,0x2a9675aaef8b29c4,2
+np.float64,0x7fefe2ff01bfc5fd,0x55442289faf22b86,2
+np.float64,0xbfd469bf5d28d37e,0xbfe5dd239ffdc7eb,2
+np.float64,0xbfdd56f3eabaade8,0xbfe8ac93244ca17b,2
+np.float64,0xbfe057b89160af71,0xbfe9941557340bb3,2
+np.float64,0x800c50e140b8a1c3,0xaaa2798ace9097ee,2
+np.float64,0xbfda5a8984b4b514,0xbfe7ce93d65a56b0,2
+np.float64,0xbfcd6458323ac8b0,0xbfe39872514127bf,2
+np.float64,0x3fefb1f5ebff63ec,0x3fefe5e761b49b89,2
+np.float64,0x3fea3abc1df47578,0x3fedf29a1c997863,2
+np.float64,0x7fcb4a528e3694a4,0x553815f169667213,2
+np.float64,0x8c77da7b18efc,0x2aa080e52bdedb54,2
+np.float64,0x800e5dde4c5cbbbd,0xaaa372b16fd8b1ad,2
+np.float64,0x3fd2976038a52ec0,0x3fe5316b4f79fdbc,2
+np.float64,0x69413a0ed2828,0x2a9dfacd9cb44286,2
+np.float64,0xbfebbac0bdb77582,0xbfee820d9288b631,2
+np.float64,0x1a12aa7c34256,0x2a92d407e073bbfe,2
+np.float64,0xbfc41a27c3283450,0xbfe143c8665b0d3c,2
+np.float64,0xffe4faa41369f548,0xd54183230e0ce613,2
+np.float64,0xbfdeae81f23d5d04,0xbfe90b734bf35b68,2
+np.float64,0x3fc984ba58330975,0x3fe2b19e9052008e,2
+np.float64,0x7fe6e51b8d2dca36,0x554207a74ae2bb39,2
+np.float64,0x80081a58a81034b2,0xaaa0117d4aff11c8,2
+np.float64,0x7fde3fddfe3c7fbb,0x553f67d0082acc67,2
+np.float64,0x3fac7c999038f933,0x3fd86ec2f5dc3aa4,2
+np.float64,0x7fa26b4c4c24d698,0x552a9e6ea8545c18,2
+np.float64,0x3fdacd06e6b59a0e,0x3fe7f0dc0e8f9c6d,2
+np.float64,0x80064b62cbec96c6,0xaa9d8ac0506fdd05,2
+np.float64,0xb858116170b1,0x2a8caea703d9ccc8,2
+np.float64,0xbfe8d94ccef1b29a,0xbfed69a8782cbf3d,2
+np.float64,0x8005607d6a6ac0fc,0xaa9c07cf8620b037,2
+np.float64,0xbfe66a52daacd4a6,0xbfec6b5e403e6864,2
+np.float64,0x7fc398c2e0273185,0x5535918245894606,2
+np.float64,0x74b2d7dce965c,0x2a9f077020defdbc,2
+np.float64,0x7fe8f7a4d9b1ef49,0x55428eeae210e8eb,2
+np.float64,0x80027deddc84fbdc,0xaa95b11ff9089745,2
+np.float64,0xffeba2a94e774552,0xd5433273f6568902,2
+np.float64,0x80002f8259405f05,0xaa8240b68d7b9dc4,2
+np.float64,0xbfdf0d84883e1b0a,0xbfe92532c69c5802,2
+np.float64,0xbfcdfa7b6b3bf4f8,0xbfe3b997a84d0914,2
+np.float64,0x800c18b04e183161,0xaaa25d46d60b15c6,2
+np.float64,0xffeaf1e37c35e3c6,0xd543092cd929ac19,2
+np.float64,0xbfc5aa07752b5410,0xbfe1b36ab5ec741f,2
+np.float64,0x3fe5c491d1eb8924,0x3fec24a1c3f6a178,2
+np.float64,0xbfeb736937f6e6d2,0xbfee67cd296e6fa9,2
+np.float64,0xffec3d5718787aad,0xd5435602e1a2cc43,2
+np.float64,0x7fe71e1da86e3c3a,0x55421691ead882cb,2
+np.float64,0x3fdd6ed0c93adda2,0x3fe8b341d066c43c,2
+np.float64,0x7fbe3d7a203c7af3,0x5533c83e53283430,2
+np.float64,0x3fdc20cb56384197,0x3fe854676360aba9,2
+np.float64,0xb7a1ac636f436,0x2aa20b9d40d66e78,2
+np.float64,0x3fb1491bb8229237,0x3fda0fabad1738ee,2
+np.float64,0xbfdf9c0ce73f381a,0xbfe94b716dbe35ee,2
+np.float64,0xbfbd4f0ad23a9e18,0xbfdf1397329a2dce,2
+np.float64,0xbfe4e0caac69c196,0xbfebc119b8a181cd,2
+np.float64,0x5753641aaea6d,0x2a9c2ba3e92b0cd2,2
+np.float64,0x72bb814ae5771,0x2a9eda92fada66de,2
+np.float64,0x57ed8f5aafdb3,0x2a9c3c2e1d42e609,2
+np.float64,0xffec33359c38666a,0xd54353b2acd0daf1,2
+np.float64,0x3fa5fe6e8c2bfce0,0x3fd66a0b3bf2720a,2
+np.float64,0xffe2dc8d7ca5b91a,0xd540e6ebc097d601,2
+np.float64,0x7fd99d260eb33a4b,0x553db626c9c75f78,2
+np.float64,0xbfe2dd73e425bae8,0xbfead4fc4b93a727,2
+np.float64,0xdcd4a583b9a95,0x2aa33094c9a17ad7,2
+np.float64,0x7fb0af6422215ec7,0x553039a606e8e64f,2
+np.float64,0x7fdfab6227bf56c3,0x553fe3b26164aeda,2
+np.float64,0x1e4d265e3c9a6,0x2a93cba8a1a8ae6d,2
+np.float64,0xbfdc7d097238fa12,0xbfe86ee2f24fd473,2
+np.float64,0x7fe5d35d29eba6b9,0x5541bea5878bce2b,2
+np.float64,0xffcb886a903710d4,0xd53828281710aab5,2
+np.float64,0xffe058c7ffe0b190,0xd5401d61e9a7cbcf,2
+np.float64,0x3ff0000000000000,0x3ff0000000000000,2
+np.float64,0xffd5b1c1132b6382,0xd53c1c839c098340,2
+np.float64,0x3fe2e7956725cf2b,0x3fead9c907b9d041,2
+np.float64,0x800a8ee293951dc6,0xaaa18ce3f079f118,2
+np.float64,0x7febcd3085b79a60,0x55433c47e1f822ad,2
+np.float64,0x3feb0e14cd761c2a,0x3fee423542102546,2
+np.float64,0x3fb45e6d0628bcda,0x3fdb86db67d0c992,2
+np.float64,0x7fa836e740306dce,0x552d2907cb8118b2,2
+np.float64,0x3fd15ba25b22b745,0x3fe4b6b018409d78,2
+np.float64,0xbfb59980ce2b3300,0xbfdc1206274cb51d,2
+np.float64,0x3fdef1b87fbde371,0x3fe91dafc62124a1,2
+np.float64,0x7fed37a4337a6f47,0x55438e7e0b50ae37,2
+np.float64,0xffe6c87633ad90ec,0xd542001f216ab448,2
+np.float64,0x8008d2548ab1a4a9,0xaaa087ad272d8e17,2
+np.float64,0xbfd1d6744da3ace8,0xbfe4e71965adda74,2
+np.float64,0xbfb27f751224fee8,0xbfdaa82132775406,2
+np.float64,0x3fe2b336ae65666d,0x3feac0e6b13ec2d2,2
+np.float64,0xffc6bac2262d7584,0xd536a951a2eecb49,2
+np.float64,0x7fdb661321b6cc25,0x553e62dfd7fcd3f3,2
+np.float64,0xffe83567d5706acf,0xd5425e4bb5027568,2
+np.float64,0xbf7f0693e03e0d00,0xbfc9235314d53f82,2
+np.float64,0x3feb32b218766564,0x3fee4fd5847f3722,2
+np.float64,0x3fec25d33df84ba6,0x3feea91fcd4aebab,2
+np.float64,0x7fe17abecb22f57d,0x55407a8ba661207c,2
+np.float64,0xbfe5674b1eeace96,0xbfebfc351708dc70,2
+np.float64,0xbfe51a2d2f6a345a,0xbfebda702c9d302a,2
+np.float64,0x3fec05584af80ab0,0x3fee9d502a7bf54d,2
+np.float64,0xffda8871dcb510e4,0xd53e10105f0365b5,2
+np.float64,0xbfc279c31824f388,0xbfe0c9354d871484,2
+np.float64,0x1cbed61e397dc,0x2a937364712cd518,2
+np.float64,0x800787d198af0fa4,0xaa9f5c847affa1d2,2
+np.float64,0x80079f6d65af3edc,0xaa9f7d2863368bbd,2
+np.float64,0xb942f1e97285e,0x2aa2193e0c513b7f,2
+np.float64,0x7fe9078263320f04,0x554292d85dee2c18,2
+np.float64,0xbfe4de0761a9bc0f,0xbfebbfe04116b829,2
+np.float64,0xbfdbe6f3fc37cde8,0xbfe843aea59a0749,2
+np.float64,0xffcb6c0de136d81c,0xd5381fd9c525b813,2
+np.float64,0x9b6bda9336d7c,0x2aa111c924c35386,2
+np.float64,0x3fe17eece422fdda,0x3fea2a9bacd78607,2
+np.float64,0xd8011c49b0024,0x2aa30c87574fc0c6,2
+np.float64,0xbfc0a08b3f214118,0xbfe034d48f0d8dc0,2
+np.float64,0x3fd60adb1eac15b8,0x3fe66e42e4e7e6b5,2
+np.float64,0x80011d68ea023ad3,0xaa909733befbb962,2
+np.float64,0xffb35ac32426b588,0xd5310c4be1c37270,2
+np.float64,0x3fee8b56c9bd16ae,0x3fef81d8d15f6939,2
+np.float64,0x3fdc10a45e382149,0x3fe84fbe4cf11e68,2
+np.float64,0xbfc85dc45e30bb88,0xbfe2687b5518abde,2
+np.float64,0x3fd53b85212a770a,0x3fe6270d6d920d0f,2
+np.float64,0x800fc158927f82b1,0xaaa40e303239586f,2
+np.float64,0x11af5e98235ed,0x2a908b04a790083f,2
+np.float64,0xbfe2a097afe54130,0xbfeab80269eece99,2
+np.float64,0xbfd74ac588ae958c,0xbfe6d8ca3828d0b8,2
+np.float64,0xffea18ab2ef43156,0xd542d579ab31df1e,2
+np.float64,0xbfecda7058f9b4e1,0xbfeeea29c33b7913,2
+np.float64,0x3fc4ac56ed2958b0,0x3fe16d3e2bd7806d,2
+np.float64,0x3feccc898cb99913,0x3feee531f217dcfa,2
+np.float64,0xffeb3a64c5b674c9,0xd5431a30a41f0905,2
+np.float64,0x3fe5a7ee212b4fdc,0x3fec1844af9076fc,2
+np.float64,0x80080fdb52301fb7,0xaaa00a8b4274db67,2
+np.float64,0x800b3e7e47d67cfd,0xaaa1ec2876959852,2
+np.float64,0x80063fb8ee2c7f73,0xaa9d7875c9f20d6f,2
+np.float64,0x7fdacf80d0b59f01,0x553e2acede4c62a8,2
+np.float64,0x401e9b24803d4,0x2a996a0a75d0e093,2
+np.float64,0x3fe6c29505ed852a,0x3fec907a6d8c10af,2
+np.float64,0x8005c04ee2cb809f,0xaa9caa9813faef46,2
+np.float64,0xbfe1360f21e26c1e,0xbfea06155d6985b6,2
+np.float64,0xffc70606682e0c0c,0xd536c239b9d4be0a,2
+np.float64,0x800e639afefcc736,0xaaa37547d0229a26,2
+np.float64,0x3fe5589290aab125,0x3febf5c925c4e6db,2
+np.float64,0x8003b59330276b27,0xaa98c47e44524335,2
+np.float64,0x800d67ec22dacfd8,0xaaa301251b6a730a,2
+np.float64,0x7fdaeb5025b5d69f,0x553e35397dfe87eb,2
+np.float64,0x3fdae32a24b5c654,0x3fe7f771bc108f6c,2
+np.float64,0xffe6c1fc93ad83f8,0xd541fe6a6a716756,2
+np.float64,0xbfd7b9c1d32f7384,0xbfe6fcdae563d638,2
+np.float64,0x800e1bea06fc37d4,0xaaa354c0bf61449c,2
+np.float64,0xbfd78f097aaf1e12,0xbfe6ef068329bdf4,2
+np.float64,0x7fea6a400874d47f,0x5542e905978ad722,2
+np.float64,0x8008b4377cb1686f,0xaaa074c87eee29f9,2
+np.float64,0x8002f3fb8d45e7f8,0xaa96f47ac539b614,2
+np.float64,0xbfcf2b3fd13e5680,0xbfe3fb91c0cc66ad,2
+np.float64,0xffecca2f5279945e,0xd54375f361075927,2
+np.float64,0x7ff0000000000000,0x7ff0000000000000,2
+np.float64,0x7f84d5a5a029ab4a,0x552178d1d4e8640e,2
+np.float64,0x3fea8a4b64351497,0x3fee10c332440eb2,2
+np.float64,0x800fe01ac1dfc036,0xaaa41b34d91a4bee,2
+np.float64,0x3fc0b3d8872167b1,0x3fe03b178d354f8d,2
+np.float64,0x5ee8b0acbdd17,0x2a9cf69f2e317729,2
+np.float64,0x8006ef0407adde09,0xaa9e82888f3dd83e,2
+np.float64,0x7fdbb08a07b76113,0x553e7e4e35b938b9,2
+np.float64,0x49663f9c92cc9,0x2a9a95e0affe5108,2
+np.float64,0x7fd9b87e79b370fc,0x553dc0b5cff3dc7d,2
+np.float64,0xbfd86ae657b0d5cc,0xbfe73584d02bdd2b,2
+np.float64,0x3fd4d4a13729a942,0x3fe6030a962aaaf8,2
+np.float64,0x7fcc246bcb3848d7,0x5538557309449bba,2
+np.float64,0xbfdc86a7d5b90d50,0xbfe871a2983c2a29,2
+np.float64,0xd2a6e995a54dd,0x2aa2e3e9c0fdd6c0,2
+np.float64,0x3f92eb447825d680,0x3fd0eb4fd2ba16d2,2
+np.float64,0x800d4001697a8003,0xaaa2ee358661b75c,2
+np.float64,0x3fd3705fd1a6e0c0,0x3fe582a6f321d7d6,2
+np.float64,0xbfcfdf51533fbea4,0xbfe421c3bdd9f2a3,2
+np.float64,0x3fe268e87964d1d1,0x3fea9d47e08aad8a,2
+np.float64,0x24b8901e49713,0x2a951adeefe7b31b,2
+np.float64,0x3fedb35d687b66bb,0x3fef36e440850bf8,2
+np.float64,0x3fb7ab5cbe2f56c0,0x3fdcf097380721c6,2
+np.float64,0x3f8c4eaa10389d54,0x3fceb7ecb605b73b,2
+np.float64,0xbfed831ed6fb063e,0xbfef25f462a336f1,2
+np.float64,0x7fd8c52112318a41,0x553d61b0ee609f58,2
+np.float64,0xbfe71c4ff76e38a0,0xbfecb5d32e789771,2
+np.float64,0xbfe35fb7b166bf70,0xbfeb12328e75ee6b,2
+np.float64,0x458e1a3a8b1c4,0x2a9a1cebadc81342,2
+np.float64,0x8003c1b3ad478368,0xaa98df5ed060b28c,2
+np.float64,0x7ff4000000000000,0x7ffc000000000000,2
+np.float64,0x7fe17098c162e131,0x5540775a9a3a104f,2
+np.float64,0xbfd95cb71732b96e,0xbfe7812acf7ea511,2
+np.float64,0x8000000000000001,0xa990000000000000,2
+np.float64,0xbfde0e7d9ebc1cfc,0xbfe8df9ca9e49a5b,2
+np.float64,0xffef4f67143e9ecd,0xd5440348a6a2f231,2
+np.float64,0x7fe37d23c826fa47,0x5541165de17caa03,2
+np.float64,0xbfcc0e5f85381cc0,0xbfe34b44b0deefe9,2
+np.float64,0x3fe858f1c470b1e4,0x3fed36ab90557d89,2
+np.float64,0x800e857278fd0ae5,0xaaa3847d13220545,2
+np.float64,0x3febd31a66f7a635,0x3fee8af90e66b043,2
+np.float64,0x7fd3fde1b127fbc2,0x553b5b186a49b968,2
+np.float64,0x3fd3dabb8b27b577,0x3fe5a99b446bed26,2
+np.float64,0xffeb4500f1768a01,0xd5431cab828e254a,2
+np.float64,0xffccca8fc6399520,0xd53884f8b505e79e,2
+np.float64,0xffeee9406b7dd280,0xd543ed6d27a1a899,2
+np.float64,0xffecdde0f0f9bbc1,0xd5437a6258b14092,2
+np.float64,0xe6b54005cd6a8,0x2aa378c25938dfda,2
+np.float64,0x7fe610f1022c21e1,0x5541cf460b972925,2
+np.float64,0xbfe5a170ec6b42e2,0xbfec1576081e3232,2
diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/tests/data/umath-validation-set-cos.csv b/.venv/lib/python3.12/site-packages/numpy/_core/tests/data/umath-validation-set-cos.csv
new file mode 100644
index 0000000..258ae48
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/_core/tests/data/umath-validation-set-cos.csv
@@ -0,0 +1,1375 @@
+dtype,input,output,ulperrortol
+## +ve denormals ##
+np.float32,0x004b4716,0x3f800000,2
+np.float32,0x007b2490,0x3f800000,2
+np.float32,0x007c99fa,0x3f800000,2
+np.float32,0x00734a0c,0x3f800000,2
+np.float32,0x0070de24,0x3f800000,2
+np.float32,0x007fffff,0x3f800000,2
+np.float32,0x00000001,0x3f800000,2
+## -ve denormals ##
+np.float32,0x80495d65,0x3f800000,2
+np.float32,0x806894f6,0x3f800000,2
+np.float32,0x80555a76,0x3f800000,2
+np.float32,0x804e1fb8,0x3f800000,2
+np.float32,0x80687de9,0x3f800000,2
+np.float32,0x807fffff,0x3f800000,2
+np.float32,0x80000001,0x3f800000,2
+## +/-0.0f, +/-FLT_MIN +/-FLT_MAX ##
+np.float32,0x00000000,0x3f800000,2
+np.float32,0x80000000,0x3f800000,2
+np.float32,0x00800000,0x3f800000,2
+np.float32,0x80800000,0x3f800000,2
+## 1.00f + 0x00000001 ##
+np.float32,0x3f800000,0x3f0a5140,2
+np.float32,0x3f800001,0x3f0a513f,2
+np.float32,0x3f800002,0x3f0a513d,2
+np.float32,0xc090a8b0,0xbe4332ce,2
+np.float32,0x41ce3184,0x3f4d1de1,2
+np.float32,0xc1d85848,0xbeaa8980,2
+np.float32,0x402b8820,0xbf653aa3,2
+np.float32,0x42b4e454,0xbf4a338b,2
+np.float32,0x42a67a60,0x3c58202e,2
+np.float32,0x41d92388,0xbed987c7,2
+np.float32,0x422dd66c,0x3f5dcab3,2
+np.float32,0xc28f5be6,0xbf5688d8,2
+np.float32,0x41ab2674,0xbf53aa3b,2
+np.float32,0x3f490fdb,0x3f3504f3,2
+np.float32,0xbf490fdb,0x3f3504f3,2
+np.float32,0x3fc90fdb,0xb33bbd2e,2
+np.float32,0xbfc90fdb,0xb33bbd2e,2
+np.float32,0x40490fdb,0xbf800000,2
+np.float32,0xc0490fdb,0xbf800000,2
+np.float32,0x3fc90fdb,0xb33bbd2e,2
+np.float32,0xbfc90fdb,0xb33bbd2e,2
+np.float32,0x40490fdb,0xbf800000,2
+np.float32,0xc0490fdb,0xbf800000,2
+np.float32,0x40c90fdb,0x3f800000,2
+np.float32,0xc0c90fdb,0x3f800000,2
+np.float32,0x4016cbe4,0xbf3504f3,2
+np.float32,0xc016cbe4,0xbf3504f3,2
+np.float32,0x4096cbe4,0x324cde2e,2
+np.float32,0xc096cbe4,0x324cde2e,2
+np.float32,0x4116cbe4,0xbf800000,2
+np.float32,0xc116cbe4,0xbf800000,2
+np.float32,0x40490fdb,0xbf800000,2
+np.float32,0xc0490fdb,0xbf800000,2
+np.float32,0x40c90fdb,0x3f800000,2
+np.float32,0xc0c90fdb,0x3f800000,2
+np.float32,0x41490fdb,0x3f800000,2
+np.float32,0xc1490fdb,0x3f800000,2
+np.float32,0x407b53d2,0xbf3504f1,2
+np.float32,0xc07b53d2,0xbf3504f1,2
+np.float32,0x40fb53d2,0xb4b5563d,2
+np.float32,0xc0fb53d2,0xb4b5563d,2
+np.float32,0x417b53d2,0xbf800000,2
+np.float32,0xc17b53d2,0xbf800000,2
+np.float32,0x4096cbe4,0x324cde2e,2
+np.float32,0xc096cbe4,0x324cde2e,2
+np.float32,0x4116cbe4,0xbf800000,2
+np.float32,0xc116cbe4,0xbf800000,2
+np.float32,0x4196cbe4,0x3f800000,2
+np.float32,0xc196cbe4,0x3f800000,2
+np.float32,0x40afede0,0x3f3504f7,2
+np.float32,0xc0afede0,0x3f3504f7,2
+np.float32,0x412fede0,0x353222c4,2
+np.float32,0xc12fede0,0x353222c4,2
+np.float32,0x41afede0,0xbf800000,2
+np.float32,0xc1afede0,0xbf800000,2
+np.float32,0x40c90fdb,0x3f800000,2
+np.float32,0xc0c90fdb,0x3f800000,2
+np.float32,0x41490fdb,0x3f800000,2
+np.float32,0xc1490fdb,0x3f800000,2
+np.float32,0x41c90fdb,0x3f800000,2
+np.float32,0xc1c90fdb,0x3f800000,2
+np.float32,0x40e231d6,0x3f3504f3,2
+np.float32,0xc0e231d6,0x3f3504f3,2
+np.float32,0x416231d6,0xb319a6a2,2
+np.float32,0xc16231d6,0xb319a6a2,2
+np.float32,0x41e231d6,0xbf800000,2
+np.float32,0xc1e231d6,0xbf800000,2
+np.float32,0x40fb53d2,0xb4b5563d,2
+np.float32,0xc0fb53d2,0xb4b5563d,2
+np.float32,0x417b53d2,0xbf800000,2
+np.float32,0xc17b53d2,0xbf800000,2
+np.float32,0x41fb53d2,0x3f800000,2
+np.float32,0xc1fb53d2,0x3f800000,2
+np.float32,0x410a3ae7,0xbf3504fb,2
+np.float32,0xc10a3ae7,0xbf3504fb,2
+np.float32,0x418a3ae7,0x35b08908,2
+np.float32,0xc18a3ae7,0x35b08908,2
+np.float32,0x420a3ae7,0xbf800000,2
+np.float32,0xc20a3ae7,0xbf800000,2
+np.float32,0x4116cbe4,0xbf800000,2
+np.float32,0xc116cbe4,0xbf800000,2
+np.float32,0x4196cbe4,0x3f800000,2
+np.float32,0xc196cbe4,0x3f800000,2
+np.float32,0x4216cbe4,0x3f800000,2
+np.float32,0xc216cbe4,0x3f800000,2
+np.float32,0x41235ce2,0xbf3504ef,2
+np.float32,0xc1235ce2,0xbf3504ef,2
+np.float32,0x41a35ce2,0xb53889b6,2
+np.float32,0xc1a35ce2,0xb53889b6,2
+np.float32,0x42235ce2,0xbf800000,2
+np.float32,0xc2235ce2,0xbf800000,2
+np.float32,0x412fede0,0x353222c4,2
+np.float32,0xc12fede0,0x353222c4,2
+np.float32,0x41afede0,0xbf800000,2
+np.float32,0xc1afede0,0xbf800000,2
+np.float32,0x422fede0,0x3f800000,2
+np.float32,0xc22fede0,0x3f800000,2
+np.float32,0x413c7edd,0x3f3504f4,2
+np.float32,0xc13c7edd,0x3f3504f4,2
+np.float32,0x41bc7edd,0x33800add,2
+np.float32,0xc1bc7edd,0x33800add,2
+np.float32,0x423c7edd,0xbf800000,2
+np.float32,0xc23c7edd,0xbf800000,2
+np.float32,0x41490fdb,0x3f800000,2
+np.float32,0xc1490fdb,0x3f800000,2
+np.float32,0x41c90fdb,0x3f800000,2
+np.float32,0xc1c90fdb,0x3f800000,2
+np.float32,0x42490fdb,0x3f800000,2
+np.float32,0xc2490fdb,0x3f800000,2
+np.float32,0x4155a0d9,0x3f3504eb,2
+np.float32,0xc155a0d9,0x3f3504eb,2
+np.float32,0x41d5a0d9,0xb5b3bc81,2
+np.float32,0xc1d5a0d9,0xb5b3bc81,2
+np.float32,0x4255a0d9,0xbf800000,2
+np.float32,0xc255a0d9,0xbf800000,2
+np.float32,0x416231d6,0xb319a6a2,2
+np.float32,0xc16231d6,0xb319a6a2,2
+np.float32,0x41e231d6,0xbf800000,2
+np.float32,0xc1e231d6,0xbf800000,2
+np.float32,0x426231d6,0x3f800000,2
+np.float32,0xc26231d6,0x3f800000,2
+np.float32,0x416ec2d4,0xbf3504f7,2
+np.float32,0xc16ec2d4,0xbf3504f7,2
+np.float32,0x41eec2d4,0x353ef0a7,2
+np.float32,0xc1eec2d4,0x353ef0a7,2
+np.float32,0x426ec2d4,0xbf800000,2
+np.float32,0xc26ec2d4,0xbf800000,2
+np.float32,0x417b53d2,0xbf800000,2
+np.float32,0xc17b53d2,0xbf800000,2
+np.float32,0x41fb53d2,0x3f800000,2
+np.float32,0xc1fb53d2,0x3f800000,2
+np.float32,0x427b53d2,0x3f800000,2
+np.float32,0xc27b53d2,0x3f800000,2
+np.float32,0x4183f268,0xbf3504e7,2
+np.float32,0xc183f268,0xbf3504e7,2
+np.float32,0x4203f268,0xb6059a13,2
+np.float32,0xc203f268,0xb6059a13,2
+np.float32,0x4283f268,0xbf800000,2
+np.float32,0xc283f268,0xbf800000,2
+np.float32,0x418a3ae7,0x35b08908,2
+np.float32,0xc18a3ae7,0x35b08908,2
+np.float32,0x420a3ae7,0xbf800000,2
+np.float32,0xc20a3ae7,0xbf800000,2
+np.float32,0x428a3ae7,0x3f800000,2
+np.float32,0xc28a3ae7,0x3f800000,2
+np.float32,0x41908365,0x3f3504f0,2
+np.float32,0xc1908365,0x3f3504f0,2
+np.float32,0x42108365,0xb512200d,2
+np.float32,0xc2108365,0xb512200d,2
+np.float32,0x42908365,0xbf800000,2
+np.float32,0xc2908365,0xbf800000,2
+np.float32,0x4196cbe4,0x3f800000,2
+np.float32,0xc196cbe4,0x3f800000,2
+np.float32,0x4216cbe4,0x3f800000,2
+np.float32,0xc216cbe4,0x3f800000,2
+np.float32,0x4296cbe4,0x3f800000,2
+np.float32,0xc296cbe4,0x3f800000,2
+np.float32,0x419d1463,0x3f3504ef,2
+np.float32,0xc19d1463,0x3f3504ef,2
+np.float32,0x421d1463,0xb5455799,2
+np.float32,0xc21d1463,0xb5455799,2
+np.float32,0x429d1463,0xbf800000,2
+np.float32,0xc29d1463,0xbf800000,2
+np.float32,0x41a35ce2,0xb53889b6,2
+np.float32,0xc1a35ce2,0xb53889b6,2
+np.float32,0x42235ce2,0xbf800000,2
+np.float32,0xc2235ce2,0xbf800000,2
+np.float32,0x42a35ce2,0x3f800000,2
+np.float32,0xc2a35ce2,0x3f800000,2
+np.float32,0x41a9a561,0xbf3504ff,2
+np.float32,0xc1a9a561,0xbf3504ff,2
+np.float32,0x4229a561,0x360733d0,2
+np.float32,0xc229a561,0x360733d0,2
+np.float32,0x42a9a561,0xbf800000,2
+np.float32,0xc2a9a561,0xbf800000,2
+np.float32,0x41afede0,0xbf800000,2
+np.float32,0xc1afede0,0xbf800000,2
+np.float32,0x422fede0,0x3f800000,2
+np.float32,0xc22fede0,0x3f800000,2
+np.float32,0x42afede0,0x3f800000,2
+np.float32,0xc2afede0,0x3f800000,2
+np.float32,0x41b6365e,0xbf3504f6,2
+np.float32,0xc1b6365e,0xbf3504f6,2
+np.float32,0x4236365e,0x350bb91c,2
+np.float32,0xc236365e,0x350bb91c,2
+np.float32,0x42b6365e,0xbf800000,2
+np.float32,0xc2b6365e,0xbf800000,2
+np.float32,0x41bc7edd,0x33800add,2
+np.float32,0xc1bc7edd,0x33800add,2
+np.float32,0x423c7edd,0xbf800000,2
+np.float32,0xc23c7edd,0xbf800000,2
+np.float32,0x42bc7edd,0x3f800000,2
+np.float32,0xc2bc7edd,0x3f800000,2
+np.float32,0x41c2c75c,0x3f3504f8,2
+np.float32,0xc1c2c75c,0x3f3504f8,2
+np.float32,0x4242c75c,0x354bbe8a,2
+np.float32,0xc242c75c,0x354bbe8a,2
+np.float32,0x42c2c75c,0xbf800000,2
+np.float32,0xc2c2c75c,0xbf800000,2
+np.float32,0x41c90fdb,0x3f800000,2
+np.float32,0xc1c90fdb,0x3f800000,2
+np.float32,0x42490fdb,0x3f800000,2
+np.float32,0xc2490fdb,0x3f800000,2
+np.float32,0x42c90fdb,0x3f800000,2
+np.float32,0xc2c90fdb,0x3f800000,2
+np.float32,0x41cf585a,0x3f3504e7,2
+np.float32,0xc1cf585a,0x3f3504e7,2
+np.float32,0x424f585a,0xb608cd8c,2
+np.float32,0xc24f585a,0xb608cd8c,2
+np.float32,0x42cf585a,0xbf800000,2
+np.float32,0xc2cf585a,0xbf800000,2
+np.float32,0x41d5a0d9,0xb5b3bc81,2
+np.float32,0xc1d5a0d9,0xb5b3bc81,2
+np.float32,0x4255a0d9,0xbf800000,2
+np.float32,0xc255a0d9,0xbf800000,2
+np.float32,0x42d5a0d9,0x3f800000,2
+np.float32,0xc2d5a0d9,0x3f800000,2
+np.float32,0x41dbe958,0xbf350507,2
+np.float32,0xc1dbe958,0xbf350507,2
+np.float32,0x425be958,0x365eab75,2
+np.float32,0xc25be958,0x365eab75,2
+np.float32,0x42dbe958,0xbf800000,2
+np.float32,0xc2dbe958,0xbf800000,2
+np.float32,0x41e231d6,0xbf800000,2
+np.float32,0xc1e231d6,0xbf800000,2
+np.float32,0x426231d6,0x3f800000,2
+np.float32,0xc26231d6,0x3f800000,2
+np.float32,0x42e231d6,0x3f800000,2
+np.float32,0xc2e231d6,0x3f800000,2
+np.float32,0x41e87a55,0xbf3504ef,2
+np.float32,0xc1e87a55,0xbf3504ef,2
+np.float32,0x42687a55,0xb552257b,2
+np.float32,0xc2687a55,0xb552257b,2
+np.float32,0x42e87a55,0xbf800000,2
+np.float32,0xc2e87a55,0xbf800000,2
+np.float32,0x41eec2d4,0x353ef0a7,2
+np.float32,0xc1eec2d4,0x353ef0a7,2
+np.float32,0x426ec2d4,0xbf800000,2
+np.float32,0xc26ec2d4,0xbf800000,2
+np.float32,0x42eec2d4,0x3f800000,2
+np.float32,0xc2eec2d4,0x3f800000,2
+np.float32,0x41f50b53,0x3f3504ff,2
+np.float32,0xc1f50b53,0x3f3504ff,2
+np.float32,0x42750b53,0x360a6748,2
+np.float32,0xc2750b53,0x360a6748,2
+np.float32,0x42f50b53,0xbf800000,2
+np.float32,0xc2f50b53,0xbf800000,2
+np.float32,0x41fb53d2,0x3f800000,2
+np.float32,0xc1fb53d2,0x3f800000,2
+np.float32,0x427b53d2,0x3f800000,2
+np.float32,0xc27b53d2,0x3f800000,2
+np.float32,0x42fb53d2,0x3f800000,2
+np.float32,0xc2fb53d2,0x3f800000,2
+np.float32,0x4200ce28,0x3f3504f6,2
+np.float32,0xc200ce28,0x3f3504f6,2
+np.float32,0x4280ce28,0x34fdd672,2
+np.float32,0xc280ce28,0x34fdd672,2
+np.float32,0x4300ce28,0xbf800000,2
+np.float32,0xc300ce28,0xbf800000,2
+np.float32,0x4203f268,0xb6059a13,2
+np.float32,0xc203f268,0xb6059a13,2
+np.float32,0x4283f268,0xbf800000,2
+np.float32,0xc283f268,0xbf800000,2
+np.float32,0x4303f268,0x3f800000,2
+np.float32,0xc303f268,0x3f800000,2
+np.float32,0x420716a7,0xbf3504f8,2
+np.float32,0xc20716a7,0xbf3504f8,2
+np.float32,0x428716a7,0x35588c6d,2
+np.float32,0xc28716a7,0x35588c6d,2
+np.float32,0x430716a7,0xbf800000,2
+np.float32,0xc30716a7,0xbf800000,2
+np.float32,0x420a3ae7,0xbf800000,2
+np.float32,0xc20a3ae7,0xbf800000,2
+np.float32,0x428a3ae7,0x3f800000,2
+np.float32,0xc28a3ae7,0x3f800000,2
+np.float32,0x430a3ae7,0x3f800000,2
+np.float32,0xc30a3ae7,0x3f800000,2
+np.float32,0x420d5f26,0xbf3504e7,2
+np.float32,0xc20d5f26,0xbf3504e7,2
+np.float32,0x428d5f26,0xb60c0105,2
+np.float32,0xc28d5f26,0xb60c0105,2
+np.float32,0x430d5f26,0xbf800000,2
+np.float32,0xc30d5f26,0xbf800000,2
+np.float32,0x42108365,0xb512200d,2
+np.float32,0xc2108365,0xb512200d,2
+np.float32,0x42908365,0xbf800000,2
+np.float32,0xc2908365,0xbf800000,2
+np.float32,0x43108365,0x3f800000,2
+np.float32,0xc3108365,0x3f800000,2
+np.float32,0x4213a7a5,0x3f350507,2
+np.float32,0xc213a7a5,0x3f350507,2
+np.float32,0x4293a7a5,0x3661deee,2
+np.float32,0xc293a7a5,0x3661deee,2
+np.float32,0x4313a7a5,0xbf800000,2
+np.float32,0xc313a7a5,0xbf800000,2
+np.float32,0x4216cbe4,0x3f800000,2
+np.float32,0xc216cbe4,0x3f800000,2
+np.float32,0x4296cbe4,0x3f800000,2
+np.float32,0xc296cbe4,0x3f800000,2
+np.float32,0x4316cbe4,0x3f800000,2
+np.float32,0xc316cbe4,0x3f800000,2
+np.float32,0x4219f024,0x3f3504d8,2
+np.float32,0xc219f024,0x3f3504d8,2
+np.float32,0x4299f024,0xb69bde6c,2
+np.float32,0xc299f024,0xb69bde6c,2
+np.float32,0x4319f024,0xbf800000,2
+np.float32,0xc319f024,0xbf800000,2
+np.float32,0x421d1463,0xb5455799,2
+np.float32,0xc21d1463,0xb5455799,2
+np.float32,0x429d1463,0xbf800000,2
+np.float32,0xc29d1463,0xbf800000,2
+np.float32,0x431d1463,0x3f800000,2
+np.float32,0xc31d1463,0x3f800000,2
+np.float32,0x422038a3,0xbf350516,2
+np.float32,0xc22038a3,0xbf350516,2
+np.float32,0x42a038a3,0x36c6cd61,2
+np.float32,0xc2a038a3,0x36c6cd61,2
+np.float32,0x432038a3,0xbf800000,2
+np.float32,0xc32038a3,0xbf800000,2
+np.float32,0x42235ce2,0xbf800000,2
+np.float32,0xc2235ce2,0xbf800000,2
+np.float32,0x42a35ce2,0x3f800000,2
+np.float32,0xc2a35ce2,0x3f800000,2
+np.float32,0x43235ce2,0x3f800000,2
+np.float32,0xc3235ce2,0x3f800000,2
+np.float32,0x42268121,0xbf3504f6,2
+np.float32,0xc2268121,0xbf3504f6,2
+np.float32,0x42a68121,0x34e43aac,2
+np.float32,0xc2a68121,0x34e43aac,2
+np.float32,0x43268121,0xbf800000,2
+np.float32,0xc3268121,0xbf800000,2
+np.float32,0x4229a561,0x360733d0,2
+np.float32,0xc229a561,0x360733d0,2
+np.float32,0x42a9a561,0xbf800000,2
+np.float32,0xc2a9a561,0xbf800000,2
+np.float32,0x4329a561,0x3f800000,2
+np.float32,0xc329a561,0x3f800000,2
+np.float32,0x422cc9a0,0x3f3504f8,2
+np.float32,0xc22cc9a0,0x3f3504f8,2
+np.float32,0x42acc9a0,0x35655a50,2
+np.float32,0xc2acc9a0,0x35655a50,2
+np.float32,0x432cc9a0,0xbf800000,2
+np.float32,0xc32cc9a0,0xbf800000,2
+np.float32,0x422fede0,0x3f800000,2
+np.float32,0xc22fede0,0x3f800000,2
+np.float32,0x42afede0,0x3f800000,2
+np.float32,0xc2afede0,0x3f800000,2
+np.float32,0x432fede0,0x3f800000,2
+np.float32,0xc32fede0,0x3f800000,2
+np.float32,0x4233121f,0x3f3504e7,2
+np.float32,0xc233121f,0x3f3504e7,2
+np.float32,0x42b3121f,0xb60f347d,2
+np.float32,0xc2b3121f,0xb60f347d,2
+np.float32,0x4333121f,0xbf800000,2
+np.float32,0xc333121f,0xbf800000,2
+np.float32,0x4236365e,0x350bb91c,2
+np.float32,0xc236365e,0x350bb91c,2
+np.float32,0x42b6365e,0xbf800000,2
+np.float32,0xc2b6365e,0xbf800000,2
+np.float32,0x4336365e,0x3f800000,2
+np.float32,0xc336365e,0x3f800000,2
+np.float32,0x42395a9e,0xbf350507,2
+np.float32,0xc2395a9e,0xbf350507,2
+np.float32,0x42b95a9e,0x36651267,2
+np.float32,0xc2b95a9e,0x36651267,2
+np.float32,0x43395a9e,0xbf800000,2
+np.float32,0xc3395a9e,0xbf800000,2
+np.float32,0x423c7edd,0xbf800000,2
+np.float32,0xc23c7edd,0xbf800000,2
+np.float32,0x42bc7edd,0x3f800000,2
+np.float32,0xc2bc7edd,0x3f800000,2
+np.float32,0x433c7edd,0x3f800000,2
+np.float32,0xc33c7edd,0x3f800000,2
+np.float32,0x423fa31d,0xbf3504d7,2
+np.float32,0xc23fa31d,0xbf3504d7,2
+np.float32,0x42bfa31d,0xb69d7828,2
+np.float32,0xc2bfa31d,0xb69d7828,2
+np.float32,0x433fa31d,0xbf800000,2
+np.float32,0xc33fa31d,0xbf800000,2
+np.float32,0x4242c75c,0x354bbe8a,2
+np.float32,0xc242c75c,0x354bbe8a,2
+np.float32,0x42c2c75c,0xbf800000,2
+np.float32,0xc2c2c75c,0xbf800000,2
+np.float32,0x4342c75c,0x3f800000,2
+np.float32,0xc342c75c,0x3f800000,2
+np.float32,0x4245eb9c,0x3f350517,2
+np.float32,0xc245eb9c,0x3f350517,2
+np.float32,0x42c5eb9c,0x36c8671d,2
+np.float32,0xc2c5eb9c,0x36c8671d,2
+np.float32,0x4345eb9c,0xbf800000,2
+np.float32,0xc345eb9c,0xbf800000,2
+np.float32,0x42490fdb,0x3f800000,2
+np.float32,0xc2490fdb,0x3f800000,2
+np.float32,0x42c90fdb,0x3f800000,2
+np.float32,0xc2c90fdb,0x3f800000,2
+np.float32,0x43490fdb,0x3f800000,2
+np.float32,0xc3490fdb,0x3f800000,2
+np.float32,0x424c341a,0x3f3504f5,2
+np.float32,0xc24c341a,0x3f3504f5,2
+np.float32,0x42cc341a,0x34ca9ee6,2
+np.float32,0xc2cc341a,0x34ca9ee6,2
+np.float32,0x434c341a,0xbf800000,2
+np.float32,0xc34c341a,0xbf800000,2
+np.float32,0x424f585a,0xb608cd8c,2
+np.float32,0xc24f585a,0xb608cd8c,2
+np.float32,0x42cf585a,0xbf800000,2
+np.float32,0xc2cf585a,0xbf800000,2
+np.float32,0x434f585a,0x3f800000,2
+np.float32,0xc34f585a,0x3f800000,2
+np.float32,0x42527c99,0xbf3504f9,2
+np.float32,0xc2527c99,0xbf3504f9,2
+np.float32,0x42d27c99,0x35722833,2
+np.float32,0xc2d27c99,0x35722833,2
+np.float32,0x43527c99,0xbf800000,2
+np.float32,0xc3527c99,0xbf800000,2
+np.float32,0x4255a0d9,0xbf800000,2
+np.float32,0xc255a0d9,0xbf800000,2
+np.float32,0x42d5a0d9,0x3f800000,2
+np.float32,0xc2d5a0d9,0x3f800000,2
+np.float32,0x4355a0d9,0x3f800000,2
+np.float32,0xc355a0d9,0x3f800000,2
+np.float32,0x4258c518,0xbf3504e6,2
+np.float32,0xc258c518,0xbf3504e6,2
+np.float32,0x42d8c518,0xb61267f6,2
+np.float32,0xc2d8c518,0xb61267f6,2
+np.float32,0x4358c518,0xbf800000,2
+np.float32,0xc358c518,0xbf800000,2
+np.float32,0x425be958,0x365eab75,2
+np.float32,0xc25be958,0x365eab75,2
+np.float32,0x42dbe958,0xbf800000,2
+np.float32,0xc2dbe958,0xbf800000,2
+np.float32,0x435be958,0x3f800000,2
+np.float32,0xc35be958,0x3f800000,2
+np.float32,0x425f0d97,0x3f350508,2
+np.float32,0xc25f0d97,0x3f350508,2
+np.float32,0x42df0d97,0x366845e0,2
+np.float32,0xc2df0d97,0x366845e0,2
+np.float32,0x435f0d97,0xbf800000,2
+np.float32,0xc35f0d97,0xbf800000,2
+np.float32,0x426231d6,0x3f800000,2
+np.float32,0xc26231d6,0x3f800000,2
+np.float32,0x42e231d6,0x3f800000,2
+np.float32,0xc2e231d6,0x3f800000,2
+np.float32,0x436231d6,0x3f800000,2
+np.float32,0xc36231d6,0x3f800000,2
+np.float32,0x42655616,0x3f3504d7,2
+np.float32,0xc2655616,0x3f3504d7,2
+np.float32,0x42e55616,0xb69f11e5,2
+np.float32,0xc2e55616,0xb69f11e5,2
+np.float32,0x43655616,0xbf800000,2
+np.float32,0xc3655616,0xbf800000,2
+np.float32,0x42687a55,0xb552257b,2
+np.float32,0xc2687a55,0xb552257b,2
+np.float32,0x42e87a55,0xbf800000,2
+np.float32,0xc2e87a55,0xbf800000,2
+np.float32,0x43687a55,0x3f800000,2
+np.float32,0xc3687a55,0x3f800000,2
+np.float32,0x426b9e95,0xbf350517,2
+np.float32,0xc26b9e95,0xbf350517,2
+np.float32,0x42eb9e95,0x36ca00d9,2
+np.float32,0xc2eb9e95,0x36ca00d9,2
+np.float32,0x436b9e95,0xbf800000,2
+np.float32,0xc36b9e95,0xbf800000,2
+np.float32,0x426ec2d4,0xbf800000,2
+np.float32,0xc26ec2d4,0xbf800000,2
+np.float32,0x42eec2d4,0x3f800000,2
+np.float32,0xc2eec2d4,0x3f800000,2
+np.float32,0x436ec2d4,0x3f800000,2
+np.float32,0xc36ec2d4,0x3f800000,2
+np.float32,0x4271e713,0xbf3504f5,2
+np.float32,0xc271e713,0xbf3504f5,2
+np.float32,0x42f1e713,0x34b10321,2
+np.float32,0xc2f1e713,0x34b10321,2
+np.float32,0x4371e713,0xbf800000,2
+np.float32,0xc371e713,0xbf800000,2
+np.float32,0x42750b53,0x360a6748,2
+np.float32,0xc2750b53,0x360a6748,2
+np.float32,0x42f50b53,0xbf800000,2
+np.float32,0xc2f50b53,0xbf800000,2
+np.float32,0x43750b53,0x3f800000,2
+np.float32,0xc3750b53,0x3f800000,2
+np.float32,0x42782f92,0x3f3504f9,2
+np.float32,0xc2782f92,0x3f3504f9,2
+np.float32,0x42f82f92,0x357ef616,2
+np.float32,0xc2f82f92,0x357ef616,2
+np.float32,0x43782f92,0xbf800000,2
+np.float32,0xc3782f92,0xbf800000,2
+np.float32,0x427b53d2,0x3f800000,2
+np.float32,0xc27b53d2,0x3f800000,2
+np.float32,0x42fb53d2,0x3f800000,2
+np.float32,0xc2fb53d2,0x3f800000,2
+np.float32,0x437b53d2,0x3f800000,2
+np.float32,0xc37b53d2,0x3f800000,2
+np.float32,0x427e7811,0x3f3504e6,2
+np.float32,0xc27e7811,0x3f3504e6,2
+np.float32,0x42fe7811,0xb6159b6f,2
+np.float32,0xc2fe7811,0xb6159b6f,2
+np.float32,0x437e7811,0xbf800000,2
+np.float32,0xc37e7811,0xbf800000,2
+np.float32,0x4280ce28,0x34fdd672,2
+np.float32,0xc280ce28,0x34fdd672,2
+np.float32,0x4300ce28,0xbf800000,2
+np.float32,0xc300ce28,0xbf800000,2
+np.float32,0x4380ce28,0x3f800000,2
+np.float32,0xc380ce28,0x3f800000,2
+np.float32,0x42826048,0xbf350508,2
+np.float32,0xc2826048,0xbf350508,2
+np.float32,0x43026048,0x366b7958,2
+np.float32,0xc3026048,0x366b7958,2
+np.float32,0x43826048,0xbf800000,2
+np.float32,0xc3826048,0xbf800000,2
+np.float32,0x4283f268,0xbf800000,2
+np.float32,0xc283f268,0xbf800000,2
+np.float32,0x4303f268,0x3f800000,2
+np.float32,0xc303f268,0x3f800000,2
+np.float32,0x4383f268,0x3f800000,2
+np.float32,0xc383f268,0x3f800000,2
+np.float32,0x42858487,0xbf350504,2
+np.float32,0xc2858487,0xbf350504,2
+np.float32,0x43058487,0x363ea8be,2
+np.float32,0xc3058487,0x363ea8be,2
+np.float32,0x43858487,0xbf800000,2
+np.float32,0xc3858487,0xbf800000,2
+np.float32,0x428716a7,0x35588c6d,2
+np.float32,0xc28716a7,0x35588c6d,2
+np.float32,0x430716a7,0xbf800000,2
+np.float32,0xc30716a7,0xbf800000,2
+np.float32,0x438716a7,0x3f800000,2
+np.float32,0xc38716a7,0x3f800000,2
+np.float32,0x4288a8c7,0x3f350517,2
+np.float32,0xc288a8c7,0x3f350517,2
+np.float32,0x4308a8c7,0x36cb9a96,2
+np.float32,0xc308a8c7,0x36cb9a96,2
+np.float32,0x4388a8c7,0xbf800000,2
+np.float32,0xc388a8c7,0xbf800000,2
+np.float32,0x428a3ae7,0x3f800000,2
+np.float32,0xc28a3ae7,0x3f800000,2
+np.float32,0x430a3ae7,0x3f800000,2
+np.float32,0xc30a3ae7,0x3f800000,2
+np.float32,0x438a3ae7,0x3f800000,2
+np.float32,0xc38a3ae7,0x3f800000,2
+np.float32,0x428bcd06,0x3f3504f5,2
+np.float32,0xc28bcd06,0x3f3504f5,2
+np.float32,0x430bcd06,0x3497675b,2
+np.float32,0xc30bcd06,0x3497675b,2
+np.float32,0x438bcd06,0xbf800000,2
+np.float32,0xc38bcd06,0xbf800000,2
+np.float32,0x428d5f26,0xb60c0105,2
+np.float32,0xc28d5f26,0xb60c0105,2
+np.float32,0x430d5f26,0xbf800000,2
+np.float32,0xc30d5f26,0xbf800000,2
+np.float32,0x438d5f26,0x3f800000,2
+np.float32,0xc38d5f26,0x3f800000,2
+np.float32,0x428ef146,0xbf350526,2
+np.float32,0xc28ef146,0xbf350526,2
+np.float32,0x430ef146,0x3710bc40,2
+np.float32,0xc30ef146,0x3710bc40,2
+np.float32,0x438ef146,0xbf800000,2
+np.float32,0xc38ef146,0xbf800000,2
+np.float32,0x42908365,0xbf800000,2
+np.float32,0xc2908365,0xbf800000,2
+np.float32,0x43108365,0x3f800000,2
+np.float32,0xc3108365,0x3f800000,2
+np.float32,0x43908365,0x3f800000,2
+np.float32,0xc3908365,0x3f800000,2
+np.float32,0x42921585,0xbf3504e6,2
+np.float32,0xc2921585,0xbf3504e6,2
+np.float32,0x43121585,0xb618cee8,2
+np.float32,0xc3121585,0xb618cee8,2
+np.float32,0x43921585,0xbf800000,2
+np.float32,0xc3921585,0xbf800000,2
+np.float32,0x4293a7a5,0x3661deee,2
+np.float32,0xc293a7a5,0x3661deee,2
+np.float32,0x4313a7a5,0xbf800000,2
+np.float32,0xc313a7a5,0xbf800000,2
+np.float32,0x4393a7a5,0x3f800000,2
+np.float32,0xc393a7a5,0x3f800000,2
+np.float32,0x429539c5,0x3f350536,2
+np.float32,0xc29539c5,0x3f350536,2
+np.float32,0x431539c5,0x373bab34,2
+np.float32,0xc31539c5,0x373bab34,2
+np.float32,0x439539c5,0xbf800000,2
+np.float32,0xc39539c5,0xbf800000,2
+np.float32,0x4296cbe4,0x3f800000,2
+np.float32,0xc296cbe4,0x3f800000,2
+np.float32,0x4316cbe4,0x3f800000,2
+np.float32,0xc316cbe4,0x3f800000,2
+np.float32,0x4396cbe4,0x3f800000,2
+np.float32,0xc396cbe4,0x3f800000,2
+np.float32,0x42985e04,0x3f3504d7,2
+np.float32,0xc2985e04,0x3f3504d7,2
+np.float32,0x43185e04,0xb6a2455d,2
+np.float32,0xc3185e04,0xb6a2455d,2
+np.float32,0x43985e04,0xbf800000,2
+np.float32,0xc3985e04,0xbf800000,2
+np.float32,0x4299f024,0xb69bde6c,2
+np.float32,0xc299f024,0xb69bde6c,2
+np.float32,0x4319f024,0xbf800000,2
+np.float32,0xc319f024,0xbf800000,2
+np.float32,0x4399f024,0x3f800000,2
+np.float32,0xc399f024,0x3f800000,2
+np.float32,0x429b8243,0xbf3504ea,2
+np.float32,0xc29b8243,0xbf3504ea,2
+np.float32,0x431b8243,0xb5cb2eb8,2
+np.float32,0xc31b8243,0xb5cb2eb8,2
+np.float32,0x439b8243,0xbf800000,2
+np.float32,0xc39b8243,0xbf800000,2
+np.float32,0x435b2047,0x3f3504c1,2
+np.float32,0x42a038a2,0xb5e4ca7e,2
+np.float32,0x432038a2,0xbf800000,2
+np.float32,0x4345eb9b,0xbf800000,2
+np.float32,0x42c5eb9b,0xb5de638c,2
+np.float32,0x42eb9e94,0xb5d7fc9b,2
+np.float32,0x4350ea79,0x3631dadb,2
+np.float32,0x42dbe957,0xbf800000,2
+np.float32,0x425be957,0xb505522a,2
+np.float32,0x435be957,0x3f800000,2
+np.float32,0x46027eb2,0x3e7d94c9,2
+np.float32,0x4477baed,0xbe7f1824,2
+np.float32,0x454b8024,0x3e7f5268,2
+np.float32,0x455d2c09,0x3e7f40cb,2
+np.float32,0x4768d3de,0xba14b4af,2
+np.float32,0x46c1e7cd,0x3e7fb102,2
+np.float32,0x44a52949,0xbe7dc9d5,2
+np.float32,0x4454633a,0x3e7dbc7d,2
+np.float32,0x4689810b,0x3e7eb02b,2
+np.float32,0x473473cd,0xbe7eef6f,2
+np.float32,0x44a5193f,0x3e7e1b1f,2
+np.float32,0x46004b36,0x3e7dac59,2
+np.float32,0x467f604b,0x3d7ffd3a,2
+np.float32,0x45ea1805,0x3dffd2e0,2
+np.float32,0x457b6af3,0x3dff7831,2
+np.float32,0x44996159,0xbe7d85f4,2
+np.float32,0x47883553,0xbb80584e,2
+np.float32,0x44e19f0c,0xbdffcfe6,2
+np.float32,0x472b3bf6,0xbe7f7a82,2
+np.float32,0x4600bb4e,0x3a135e33,2
+np.float32,0x449f4556,0x3e7e42e5,2
+np.float32,0x474e9420,0x3dff77b2,2
+np.float32,0x45cbdb23,0x3dff7240,2
+np.float32,0x44222747,0x3dffb039,2
+np.float32,0x4772e419,0xbdff74b8,2
+np.float64,0x1,0x3ff0000000000000,1
+np.float64,0x8000000000000001,0x3ff0000000000000,1
+np.float64,0x10000000000000,0x3ff0000000000000,1
+np.float64,0x8010000000000000,0x3ff0000000000000,1
+np.float64,0x7fefffffffffffff,0xbfefffe62ecfab75,1
+np.float64,0xffefffffffffffff,0xbfefffe62ecfab75,1
+np.float64,0x7ff0000000000000,0xfff8000000000000,1
+np.float64,0xfff0000000000000,0xfff8000000000000,1
+np.float64,0x7ff8000000000000,0x7ff8000000000000,1
+np.float64,0x7ff4000000000000,0x7ffc000000000000,1
+np.float64,0xbfc28bd9dd2517b4,0x3fefaa28ba13a702,1
+np.float64,0x3fb673c62e2ce790,0x3fefe083847a717f,1
+np.float64,0xbfe3e1dac7e7c3b6,0x3fea0500ba099f3a,1
+np.float64,0xbfbe462caa3c8c58,0x3fefc6c8b9c1c87c,1
+np.float64,0xbfb9353576326a68,0x3fefd8513e50e6b1,1
+np.float64,0xbfc05e798520bcf4,0x3fefbd1ad81cf089,1
+np.float64,0xbfe3ca3be2e79478,0x3fea12b995ea6574,1
+np.float64,0xbfde875d46bd0eba,0x3fec6d888662a824,1
+np.float64,0x3fafc4e02c3f89c0,0x3feff03c34bffd69,1
+np.float64,0xbf98855848310ac0,0x3feffda6c1588bdb,1
+np.float64,0x3fe66c51186cd8a2,0x3fe875c61c630ecb,1
+np.float64,0xbfedff1c3b7bfe38,0x3fe2f0c8c9e8fa39,1
+np.float64,0x3fd6082267ac1044,0x3fee1f6023695050,1
+np.float64,0xbfe78449b06f0894,0x3fe7bda2b223850e,1
+np.float64,0x3feedb8e63fdb71c,0x3fe23d5dfd2dd33f,1
+np.float64,0xbfc0a9de3d2153bc,0x3fefbaadf5e5285e,1
+np.float64,0x3fc04c67432098d0,0x3fefbdae07b7de8d,1
+np.float64,0xbfeeef84c4fddf0a,0x3fe22cf37f309d88,1
+np.float64,0x3fc04bb025209760,0x3fefbdb3d7d34ecf,1
+np.float64,0x3fd6b84d48ad709c,0x3fee013403da6e2a,1
+np.float64,0x3fec1ae25d7835c4,0x3fe46e62195cf274,1
+np.float64,0xbfdc6fdf9bb8dfc0,0x3fece48dc78bbb2e,1
+np.float64,0x3fb4db2c9229b660,0x3fefe4d42f79bf49,1
+np.float64,0xbfc0ed698521dad4,0x3fefb8785ea658c9,1
+np.float64,0xbfee82772b7d04ee,0x3fe2864a80efe8e9,1
+np.float64,0x3fd575b664aaeb6c,0x3fee37c669a12879,1
+np.float64,0x3fe4afb1c5e95f64,0x3fe98b177194439c,1
+np.float64,0x3fd93962f9b272c4,0x3fed8bef61876294,1
+np.float64,0x3fd97ae025b2f5c0,0x3fed7f4cfbf4d300,1
+np.float64,0xbfd9afdb1bb35fb6,0x3fed74fdc44dabb1,1
+np.float64,0x3f8ae65e3035cc80,0x3fefff4b1a0ea62b,1
+np.float64,0xbfe7e58664efcb0d,0x3fe77c02a1cbb670,1
+np.float64,0x3fe5f68b37ebed16,0x3fe8c10f849a5d4d,1
+np.float64,0x3fd9137d61b226fc,0x3fed9330eb4815a1,1
+np.float64,0x3fc146d019228da0,0x3fefb57e2d4d52f8,1
+np.float64,0xbfda6036edb4c06e,0x3fed521b2b578679,1
+np.float64,0xbfe78ddfb0ef1bc0,0x3fe7b734319a77e4,1
+np.float64,0x3fe0877823610ef0,0x3febd33a993dd786,1
+np.float64,0x3fbc61af2e38c360,0x3fefcdb4f889756d,1
+np.float64,0x3fd4dcdca4a9b9b8,0x3fee50962ffea5ae,1
+np.float64,0xbfe03cb29f607965,0x3febf7dbf640a75a,1
+np.float64,0xbfc81de407303bc8,0x3fef6f066cef64bc,1
+np.float64,0x3fd8dea42db1bd48,0x3fed9d3e00dbe0b3,1
+np.float64,0x3feac75e94f58ebe,0x3fe56f1f47f97896,1
+np.float64,0x3fb3a1ea6e2743d0,0x3fefe7ec1247cdaa,1
+np.float64,0x3fd695c0f4ad2b80,0x3fee0730bd40883d,1
+np.float64,0xbfd2c631f5a58c64,0x3feea20cbd1105d7,1
+np.float64,0xbfe978a8e1f2f152,0x3fe663014d40ad7a,1
+np.float64,0x3fd8b6b76ab16d70,0x3feda4c879aacc19,1
+np.float64,0x3feaafd30e755fa6,0x3fe5809514c28453,1
+np.float64,0x3fe1e37dc263c6fc,0x3feb20f9ad1f3f5c,1
+np.float64,0x3fd0ec7c24a1d8f8,0x3feee34048f43b75,1
+np.float64,0xbfe3881cbf67103a,0x3fea38d7886e6f53,1
+np.float64,0xbfd7023957ae0472,0x3fedf4471c765a1c,1
+np.float64,0xbfebc51c4ef78a38,0x3fe4b01c424e297b,1
+np.float64,0xbfe20a93eae41528,0x3feb0c2aa321d2e0,1
+np.float64,0x3fef39be867e737e,0x3fe1efaba9164d27,1
+np.float64,0x3fe8ea9576f1d52a,0x3fe6c7a8826ce1be,1
+np.float64,0x3fea921d91f5243c,0x3fe5968c6cf78963,1
+np.float64,0x3fd7ee5d31afdcbc,0x3fedc9f19d43fe61,1
+np.float64,0xbfe3ed581767dab0,0x3fe9fe4ee2f2b1cd,1
+np.float64,0xbfc40923d5281248,0x3fef9bd8ee9f6e68,1
+np.float64,0x3fe411a834682350,0x3fe9e9103854f057,1
+np.float64,0xbfedf6ccdf7bed9a,0x3fe2f77ad6543246,1
+np.float64,0xbfe8788a44f0f114,0x3fe7172f3aa0c742,1
+np.float64,0xbfce728f173ce520,0x3fef1954083bea04,1
+np.float64,0xbfd64dd0acac9ba2,0x3fee138c3293c246,1
+np.float64,0xbfe00669f5600cd4,0x3fec121443945350,1
+np.float64,0xbfe7152ba2ee2a58,0x3fe8079465d09846,1
+np.float64,0x3fe8654d8f70ca9c,0x3fe7247c94f09596,1
+np.float64,0x3fea68045cf4d008,0x3fe5b58cfe81a243,1
+np.float64,0xbfcd4779073a8ef4,0x3fef2a9d78153fa5,1
+np.float64,0xbfdb4456e5b688ae,0x3fed23b11614203f,1
+np.float64,0x3fcb5d59cd36bab0,0x3fef45818216a515,1
+np.float64,0xbfd914ff5ab229fe,0x3fed92e73746fea8,1
+np.float64,0x3fe4d211db69a424,0x3fe97653f433d15f,1
+np.float64,0xbfdbbb9224b77724,0x3fed0adb593dde80,1
+np.float64,0x3fd424ceafa8499c,0x3fee6d9124795d33,1
+np.float64,0x3feb5968f976b2d2,0x3fe501d116efbf54,1
+np.float64,0x3fee7d92a2fcfb26,0x3fe28a479b6a9dcf,1
+np.float64,0x3fc308e9972611d0,0x3fefa595f4df0c89,1
+np.float64,0x3fda79cd77b4f39c,0x3fed4cf8e69ba1f8,1
+np.float64,0x3fcbcf42d5379e88,0x3fef3f6a6a77c187,1
+np.float64,0x3fe13a1da662743c,0x3feb79504faea888,1
+np.float64,0xbfee4435f07c886c,0x3fe2b8ea98d2fc29,1
+np.float64,0x3fd65d68ccacbad0,0x3fee10e1ac7ada89,1
+np.float64,0x3fef2f89bb7e5f14,0x3fe1f81e882cc3f4,1
+np.float64,0xbfef0a7769fe14ef,0x3fe216bf384fc646,1
+np.float64,0x3fc065277320ca50,0x3fefbce44835c193,1
+np.float64,0x3fe9c1a74d73834e,0x3fe62e9ee0c2f2bf,1
+np.float64,0x3fd9d96e5db3b2dc,0x3fed6cd88eb51f6a,1
+np.float64,0x3fe02bf1c56057e4,0x3febfffc24b5a7ba,1
+np.float64,0xbfd6814350ad0286,0x3fee0ab9ad318b84,1
+np.float64,0x3f9fcbec583f97c0,0x3feffc0d0f1d8e75,1
+np.float64,0x3fe23524e5e46a4a,0x3feaf55372949a06,1
+np.float64,0xbfbdc95f6a3b92c0,0x3fefc89c21d44995,1
+np.float64,0x3fe961bb9cf2c378,0x3fe6735d6e1cca58,1
+np.float64,0xbfe8f1c370f1e387,0x3fe6c29d1be8bee9,1
+np.float64,0x3fd880d43ab101a8,0x3fedaee3c7ccfc96,1
+np.float64,0xbfedb37005fb66e0,0x3fe32d91ef2e3bd3,1
+np.float64,0xfdce287bfb9c5,0x3ff0000000000000,1
+np.float64,0x9aa1b9e735437,0x3ff0000000000000,1
+np.float64,0x6beac6e0d7d59,0x3ff0000000000000,1
+np.float64,0x47457aae8e8b0,0x3ff0000000000000,1
+np.float64,0x35ff13b46bfe3,0x3ff0000000000000,1
+np.float64,0xb9c0c82b73819,0x3ff0000000000000,1
+np.float64,0x1a8dc21a351b9,0x3ff0000000000000,1
+np.float64,0x7e87ef6afd0ff,0x3ff0000000000000,1
+np.float64,0x620a6588c414d,0x3ff0000000000000,1
+np.float64,0x7f366000fe6e,0x3ff0000000000000,1
+np.float64,0x787e39f4f0fc8,0x3ff0000000000000,1
+np.float64,0xf5134f1fea26a,0x3ff0000000000000,1
+np.float64,0xbce700ef79ce0,0x3ff0000000000000,1
+np.float64,0x144d7cc8289b1,0x3ff0000000000000,1
+np.float64,0xb9fbc5b973f79,0x3ff0000000000000,1
+np.float64,0xc3d6292d87ac5,0x3ff0000000000000,1
+np.float64,0xc1084e618210a,0x3ff0000000000000,1
+np.float64,0xb6b9eca56d73e,0x3ff0000000000000,1
+np.float64,0xc7ac4b858f58a,0x3ff0000000000000,1
+np.float64,0x516d75d2a2daf,0x3ff0000000000000,1
+np.float64,0x9dc089d93b811,0x3ff0000000000000,1
+np.float64,0x7b5f2840f6be6,0x3ff0000000000000,1
+np.float64,0x121d3ce8243a9,0x3ff0000000000000,1
+np.float64,0xf0be0337e17c1,0x3ff0000000000000,1
+np.float64,0xff58a5cbfeb15,0x3ff0000000000000,1
+np.float64,0xdaf1d07fb5e3a,0x3ff0000000000000,1
+np.float64,0x61d95382c3b2b,0x3ff0000000000000,1
+np.float64,0xe4df943fc9bf3,0x3ff0000000000000,1
+np.float64,0xf72ac2bdee559,0x3ff0000000000000,1
+np.float64,0x12dafbf625b60,0x3ff0000000000000,1
+np.float64,0xee11d427dc23b,0x3ff0000000000000,1
+np.float64,0xf4f8eb37e9f1e,0x3ff0000000000000,1
+np.float64,0xad7cb5df5af97,0x3ff0000000000000,1
+np.float64,0x59fc9b06b3f94,0x3ff0000000000000,1
+np.float64,0x3c3e65e4787ce,0x3ff0000000000000,1
+np.float64,0xe37bc993c6f79,0x3ff0000000000000,1
+np.float64,0x13bd6330277ad,0x3ff0000000000000,1
+np.float64,0x56cc2800ad986,0x3ff0000000000000,1
+np.float64,0x6203b8fcc4078,0x3ff0000000000000,1
+np.float64,0x75c7c8b8eb8fa,0x3ff0000000000000,1
+np.float64,0x5ebf8e00bd7f2,0x3ff0000000000000,1
+np.float64,0xda81f2f1b503f,0x3ff0000000000000,1
+np.float64,0x6adb17d6d5b64,0x3ff0000000000000,1
+np.float64,0x1ba68eee374d3,0x3ff0000000000000,1
+np.float64,0xeecf6fbbdd9ee,0x3ff0000000000000,1
+np.float64,0x24d6dd8e49add,0x3ff0000000000000,1
+np.float64,0xdf7cb81bbef97,0x3ff0000000000000,1
+np.float64,0xafd7be1b5faf8,0x3ff0000000000000,1
+np.float64,0xdb90ca35b721a,0x3ff0000000000000,1
+np.float64,0xa72903a14e521,0x3ff0000000000000,1
+np.float64,0x14533ee028a7,0x3ff0000000000000,1
+np.float64,0x7951540cf2a2b,0x3ff0000000000000,1
+np.float64,0x22882be045106,0x3ff0000000000000,1
+np.float64,0x136270d626c4f,0x3ff0000000000000,1
+np.float64,0x6a0f5744d41ec,0x3ff0000000000000,1
+np.float64,0x21e0d1aa43c1b,0x3ff0000000000000,1
+np.float64,0xee544155dca88,0x3ff0000000000000,1
+np.float64,0xcbe8aac797d16,0x3ff0000000000000,1
+np.float64,0x6c065e80d80e,0x3ff0000000000000,1
+np.float64,0xe57f0411cafe1,0x3ff0000000000000,1
+np.float64,0xdec3a6bdbd875,0x3ff0000000000000,1
+np.float64,0xf4d23a0fe9a48,0x3ff0000000000000,1
+np.float64,0xda77ef47b4efe,0x3ff0000000000000,1
+np.float64,0x8c405c9b1880c,0x3ff0000000000000,1
+np.float64,0x4eced5149d9db,0x3ff0000000000000,1
+np.float64,0x16b6552c2d6cc,0x3ff0000000000000,1
+np.float64,0x6fbc262cdf785,0x3ff0000000000000,1
+np.float64,0x628c3844c5188,0x3ff0000000000000,1
+np.float64,0x6d827d2cdb050,0x3ff0000000000000,1
+np.float64,0xd1bfdf29a37fc,0x3ff0000000000000,1
+np.float64,0xd85400fdb0a80,0x3ff0000000000000,1
+np.float64,0xcc420b2d98842,0x3ff0000000000000,1
+np.float64,0xac41d21b5883b,0x3ff0000000000000,1
+np.float64,0x432f18d4865e4,0x3ff0000000000000,1
+np.float64,0xe7e89a1bcfd14,0x3ff0000000000000,1
+np.float64,0x9b1141d536228,0x3ff0000000000000,1
+np.float64,0x6805f662d00bf,0x3ff0000000000000,1
+np.float64,0xc76552358ecab,0x3ff0000000000000,1
+np.float64,0x4ae8ffee95d21,0x3ff0000000000000,1
+np.float64,0x4396c096872d9,0x3ff0000000000000,1
+np.float64,0x6e8e55d4dd1cb,0x3ff0000000000000,1
+np.float64,0x4c2e33dc985c7,0x3ff0000000000000,1
+np.float64,0xbce814a579d03,0x3ff0000000000000,1
+np.float64,0x911681b5222d0,0x3ff0000000000000,1
+np.float64,0x5f90a4b2bf215,0x3ff0000000000000,1
+np.float64,0x26f76be84deee,0x3ff0000000000000,1
+np.float64,0xb2f7536165eeb,0x3ff0000000000000,1
+np.float64,0x4de4e6089bc9d,0x3ff0000000000000,1
+np.float64,0xf2e016afe5c03,0x3ff0000000000000,1
+np.float64,0xb9b7b949736f7,0x3ff0000000000000,1
+np.float64,0x3363ea1866c7e,0x3ff0000000000000,1
+np.float64,0xd1a3bd6ba3478,0x3ff0000000000000,1
+np.float64,0xae89f3595d13f,0x3ff0000000000000,1
+np.float64,0xddbd9601bb7c,0x3ff0000000000000,1
+np.float64,0x5de41a06bbc84,0x3ff0000000000000,1
+np.float64,0xfd58c86dfab19,0x3ff0000000000000,1
+np.float64,0x24922e8c49247,0x3ff0000000000000,1
+np.float64,0xcda040339b408,0x3ff0000000000000,1
+np.float64,0x5fe500b2bfca1,0x3ff0000000000000,1
+np.float64,0x9214abb924296,0x3ff0000000000000,1
+np.float64,0x800609fe0a2c13fd,0x3ff0000000000000,1
+np.float64,0x800c7c6fe518f8e0,0x3ff0000000000000,1
+np.float64,0x800a1a9491b4352a,0x3ff0000000000000,1
+np.float64,0x800b45e0e8968bc2,0x3ff0000000000000,1
+np.float64,0x8008497e57d092fd,0x3ff0000000000000,1
+np.float64,0x800b9c0af0173816,0x3ff0000000000000,1
+np.float64,0x800194cccb43299a,0x3ff0000000000000,1
+np.float64,0x8001c91ef183923f,0x3ff0000000000000,1
+np.float64,0x800f25b5ccde4b6c,0x3ff0000000000000,1
+np.float64,0x800ce63ccc79cc7a,0x3ff0000000000000,1
+np.float64,0x800d8fb2e83b1f66,0x3ff0000000000000,1
+np.float64,0x80083cd06f7079a1,0x3ff0000000000000,1
+np.float64,0x800823598e9046b3,0x3ff0000000000000,1
+np.float64,0x8001c1319de38264,0x3ff0000000000000,1
+np.float64,0x800f2b68543e56d1,0x3ff0000000000000,1
+np.float64,0x80022a4f4364549f,0x3ff0000000000000,1
+np.float64,0x800f51badf7ea376,0x3ff0000000000000,1
+np.float64,0x8003fbf31e27f7e7,0x3ff0000000000000,1
+np.float64,0x800d4c00e2fa9802,0x3ff0000000000000,1
+np.float64,0x800023b974804774,0x3ff0000000000000,1
+np.float64,0x800860778990c0ef,0x3ff0000000000000,1
+np.float64,0x800a15c241542b85,0x3ff0000000000000,1
+np.float64,0x8003097d9dc612fc,0x3ff0000000000000,1
+np.float64,0x800d77d8541aefb1,0x3ff0000000000000,1
+np.float64,0x80093804ab52700a,0x3ff0000000000000,1
+np.float64,0x800d2b3bfd7a5678,0x3ff0000000000000,1
+np.float64,0x800da24bcd5b4498,0x3ff0000000000000,1
+np.float64,0x8006eee1c28dddc4,0x3ff0000000000000,1
+np.float64,0x80005137fa40a271,0x3ff0000000000000,1
+np.float64,0x8007a3fbc22f47f8,0x3ff0000000000000,1
+np.float64,0x800dcd97071b9b2e,0x3ff0000000000000,1
+np.float64,0x80065b36048cb66d,0x3ff0000000000000,1
+np.float64,0x8004206ba72840d8,0x3ff0000000000000,1
+np.float64,0x8007e82b98cfd058,0x3ff0000000000000,1
+np.float64,0x8001a116ed23422f,0x3ff0000000000000,1
+np.float64,0x800c69e9ff18d3d4,0x3ff0000000000000,1
+np.float64,0x8003843688e7086e,0x3ff0000000000000,1
+np.float64,0x800335e3b8866bc8,0x3ff0000000000000,1
+np.float64,0x800e3308f0bc6612,0x3ff0000000000000,1
+np.float64,0x8002a9ec55c553d9,0x3ff0000000000000,1
+np.float64,0x80001c2084e03842,0x3ff0000000000000,1
+np.float64,0x800bc2bbd8d78578,0x3ff0000000000000,1
+np.float64,0x800ae6bcc555cd7a,0x3ff0000000000000,1
+np.float64,0x80083f7a13907ef5,0x3ff0000000000000,1
+np.float64,0x800d83ed76db07db,0x3ff0000000000000,1
+np.float64,0x800a12251974244b,0x3ff0000000000000,1
+np.float64,0x800a69c95714d393,0x3ff0000000000000,1
+np.float64,0x800cd5a85639ab51,0x3ff0000000000000,1
+np.float64,0x800e0e1837bc1c31,0x3ff0000000000000,1
+np.float64,0x8007b5ca39ef6b95,0x3ff0000000000000,1
+np.float64,0x800cf961cad9f2c4,0x3ff0000000000000,1
+np.float64,0x80066e8fc14cdd20,0x3ff0000000000000,1
+np.float64,0x8001cb8c7b43971a,0x3ff0000000000000,1
+np.float64,0x800002df68a005c0,0x3ff0000000000000,1
+np.float64,0x8003e6681567ccd1,0x3ff0000000000000,1
+np.float64,0x800b039126b60723,0x3ff0000000000000,1
+np.float64,0x800d2e1b663a5c37,0x3ff0000000000000,1
+np.float64,0x800188b3e2a31169,0x3ff0000000000000,1
+np.float64,0x8001f272e943e4e7,0x3ff0000000000000,1
+np.float64,0x800d7f53607afea7,0x3ff0000000000000,1
+np.float64,0x80092cafa4f25960,0x3ff0000000000000,1
+np.float64,0x800fc009f07f8014,0x3ff0000000000000,1
+np.float64,0x8003da896507b514,0x3ff0000000000000,1
+np.float64,0x800d4d1b4c3a9a37,0x3ff0000000000000,1
+np.float64,0x8007a835894f506c,0x3ff0000000000000,1
+np.float64,0x80057ba0522af741,0x3ff0000000000000,1
+np.float64,0x8009b7054b336e0b,0x3ff0000000000000,1
+np.float64,0x800b2c6c125658d9,0x3ff0000000000000,1
+np.float64,0x8008b1840ad16308,0x3ff0000000000000,1
+np.float64,0x8007ea0e3befd41d,0x3ff0000000000000,1
+np.float64,0x800dd658683bacb1,0x3ff0000000000000,1
+np.float64,0x8008cda48fd19b49,0x3ff0000000000000,1
+np.float64,0x8003acca14c75995,0x3ff0000000000000,1
+np.float64,0x8008bd152d717a2b,0x3ff0000000000000,1
+np.float64,0x80010d1ea3621a3e,0x3ff0000000000000,1
+np.float64,0x800130b78b826170,0x3ff0000000000000,1
+np.float64,0x8002cf3a46e59e75,0x3ff0000000000000,1
+np.float64,0x800b76e7fa76edd0,0x3ff0000000000000,1
+np.float64,0x800e065fe1dc0cc0,0x3ff0000000000000,1
+np.float64,0x8000dd527ea1baa6,0x3ff0000000000000,1
+np.float64,0x80032cb234665965,0x3ff0000000000000,1
+np.float64,0x800affc1acb5ff84,0x3ff0000000000000,1
+np.float64,0x80074be23fee97c5,0x3ff0000000000000,1
+np.float64,0x8004f83eafc9f07e,0x3ff0000000000000,1
+np.float64,0x800b02a115560543,0x3ff0000000000000,1
+np.float64,0x800b324a55766495,0x3ff0000000000000,1
+np.float64,0x800ffbcfd69ff7a0,0x3ff0000000000000,1
+np.float64,0x800830bc7b906179,0x3ff0000000000000,1
+np.float64,0x800cbafe383975fd,0x3ff0000000000000,1
+np.float64,0x8001ee42bfe3dc86,0x3ff0000000000000,1
+np.float64,0x8005b00fdc0b6020,0x3ff0000000000000,1
+np.float64,0x8005e7addd0bcf5c,0x3ff0000000000000,1
+np.float64,0x8001ae4cb0635c9a,0x3ff0000000000000,1
+np.float64,0x80098a9941131533,0x3ff0000000000000,1
+np.float64,0x800334c929466993,0x3ff0000000000000,1
+np.float64,0x8009568239d2ad05,0x3ff0000000000000,1
+np.float64,0x800f0639935e0c73,0x3ff0000000000000,1
+np.float64,0x800cebce7499d79d,0x3ff0000000000000,1
+np.float64,0x800482ee4c2905dd,0x3ff0000000000000,1
+np.float64,0x8007b7bd9e2f6f7c,0x3ff0000000000000,1
+np.float64,0x3fe654469f2ca88d,0x3fe8853f6c01ffb3,1
+np.float64,0x3feb4d7297369ae5,0x3fe50ad5bb621408,1
+np.float64,0x3feef53ba43dea77,0x3fe2283f356f8658,1
+np.float64,0x3fddf564eabbeaca,0x3fec8ec0e0dead9c,1
+np.float64,0x3fd3a69078274d21,0x3fee80e05c320000,1
+np.float64,0x3fecdafe5d39b5fd,0x3fe3d91a5d440fd9,1
+np.float64,0x3fd93286bc32650d,0x3fed8d40696cd10e,1
+np.float64,0x3fc0d34eb821a69d,0x3fefb954023d4284,1
+np.float64,0x3fc7b4b9a02f6973,0x3fef73e8739787ce,1
+np.float64,0x3fe08c839a611907,0x3febd0bc6f5641cd,1
+np.float64,0x3fb3d1758627a2eb,0x3fefe776f6183f96,1
+np.float64,0x3fef93c9ff3f2794,0x3fe1a4d2f622627d,1
+np.float64,0x3fea8d0041351a01,0x3fe59a52a1c78c9e,1
+np.float64,0x3fe3e26a30e7c4d4,0x3fea04ad3e0bbf8d,1
+np.float64,0x3fe5a34c9f6b4699,0x3fe8f57c5ccd1eab,1
+np.float64,0x3fc21ef859243df1,0x3fefae0b68a3a2e7,1
+np.float64,0x3fed7dd585fafbab,0x3fe35860041e5b0d,1
+np.float64,0x3fe5abacf22b575a,0x3fe8f03d8b6ef0f2,1
+np.float64,0x3fe426451f284c8a,0x3fe9dcf21f13205b,1
+np.float64,0x3fc01f6456203ec9,0x3fefbf19e2a8e522,1
+np.float64,0x3fe1cf2772239e4f,0x3feb2bbd645c7697,1
+np.float64,0x3fd18c4ace231896,0x3feecdfdd086c110,1
+np.float64,0x3fe8387d5b7070fb,0x3fe74358f2ec4910,1
+np.float64,0x3fdce51c2239ca38,0x3feccb2ae5459632,1
+np.float64,0x3fe5b0f2e4eb61e6,0x3fe8ecef4dbe4277,1
+np.float64,0x3fe1ceeb08a39dd6,0x3feb2bdd4dcfb3df,1
+np.float64,0x3febc5899d778b13,0x3fe4afc8dd8ad228,1
+np.float64,0x3fe7a47fbe2f48ff,0x3fe7a7fd9b352ea5,1
+np.float64,0x3fe7f74e1fafee9c,0x3fe76feb2755b247,1
+np.float64,0x3fe2bfad04e57f5a,0x3feaa9b46adddaeb,1
+np.float64,0x3fd06a090320d412,0x3feef40c334f8fba,1
+np.float64,0x3fdc97297d392e53,0x3fecdc16a3e22fcb,1
+np.float64,0x3fdc1a3f3838347e,0x3fecf6db2769d404,1
+np.float64,0x3fcca90096395201,0x3fef338156fcd218,1
+np.float64,0x3fed464733fa8c8e,0x3fe38483f0465d91,1
+np.float64,0x3fe7e067d82fc0d0,0x3fe77f7c8c9de896,1
+np.float64,0x3fc014fa0b2029f4,0x3fefbf6d84c933f8,1
+np.float64,0x3fd3bf1524277e2a,0x3fee7d2997b74dec,1
+np.float64,0x3fec153b86782a77,0x3fe472bb5497bb2a,1
+np.float64,0x3fd3e4d9d5a7c9b4,0x3fee776842691902,1
+np.float64,0x3fea6c0e2c74d81c,0x3fe5b2954cb458d9,1
+np.float64,0x3fee8f6a373d1ed4,0x3fe27bb9e348125b,1
+np.float64,0x3fd30c6dd42618dc,0x3fee97d2cab2b0bc,1
+np.float64,0x3fe4f90e6d69f21d,0x3fe95ea3dd4007f2,1
+np.float64,0x3fe271d467e4e3a9,0x3fead470d6d4008b,1
+np.float64,0x3fef2983897e5307,0x3fe1fd1a4debe33b,1
+np.float64,0x3fe980cc83b30199,0x3fe65d2fb8a0eb46,1
+np.float64,0x3fdfdf53db3fbea8,0x3fec1cf95b2a1cc7,1
+np.float64,0x3fe4d5307ba9aa61,0x3fe974701b4156cb,1
+np.float64,0x3fdb4e2345b69c47,0x3fed21aa6c146512,1
+np.float64,0x3fe3f7830327ef06,0x3fe9f85f6c88c2a8,1
+np.float64,0x3fca915fb63522bf,0x3fef502b73a52ecf,1
+np.float64,0x3fe66d3709ecda6e,0x3fe87531d7372d7a,1
+np.float64,0x3fd86000bcb0c001,0x3fedb5018dd684ca,1
+np.float64,0x3fe516e5feea2dcc,0x3fe94c68b111404e,1
+np.float64,0x3fd83c53dd3078a8,0x3fedbb9e5dd9e165,1
+np.float64,0x3fedfeeb673bfdd7,0x3fe2f0f0253c5d5d,1
+np.float64,0x3fe0dc6f9c21b8df,0x3feba8e2452410c2,1
+np.float64,0x3fbe154d643c2a9b,0x3fefc780a9357457,1
+np.float64,0x3fe5f63986abec73,0x3fe8c1434951a40a,1
+np.float64,0x3fbce0e50839c1ca,0x3fefcbeeaa27de75,1
+np.float64,0x3fd7ef5c5c2fdeb9,0x3fedc9c3022495b3,1
+np.float64,0x3fc1073914220e72,0x3fefb79de80fc0fd,1
+np.float64,0x3fe1a93c3d235278,0x3feb3fb21f86ac67,1
+np.float64,0x3fe321ee53e643dd,0x3fea72e2999f1e22,1
+np.float64,0x3fa881578c3102af,0x3feff69e6e51e0d6,1
+np.float64,0x3fd313482a262690,0x3fee96d161199495,1
+np.float64,0x3fe7272cd6ae4e5a,0x3fe7fbacbd0d8f43,1
+np.float64,0x3fd6cf4015ad9e80,0x3fedfd3513d544b8,1
+np.float64,0x3fc67b7e6d2cf6fd,0x3fef81f5c16923a4,1
+np.float64,0x3fa1999c14233338,0x3feffb2913a14184,1
+np.float64,0x3fc74eb8dd2e9d72,0x3fef78909a138e3c,1
+np.float64,0x3fc0b9274921724f,0x3fefba2ebd5f3e1c,1
+np.float64,0x3fd53fa156aa7f43,0x3fee40a18e952e88,1
+np.float64,0x3feaccbca4b59979,0x3fe56b22b33eb713,1
+np.float64,0x3fe6a01e3a2d403c,0x3fe8543fbd820ecc,1
+np.float64,0x3fd392a869a72551,0x3fee83e0ffe0e8de,1
+np.float64,0x3fe44d8928689b12,0x3fe9c5bf3c8fffdb,1
+np.float64,0x3fca3f209f347e41,0x3fef5461b6fa0924,1
+np.float64,0x3fee9e84b07d3d09,0x3fe26f638f733549,1
+np.float64,0x3faf49acb03e9359,0x3feff0b583cd8c48,1
+np.float64,0x3fea874b2af50e96,0x3fe59e882fa6febf,1
+np.float64,0x3fc50b72772a16e5,0x3fef918777dc41be,1
+np.float64,0x3fe861d1d4f0c3a4,0x3fe726e44d9d42c2,1
+np.float64,0x3fcadd2e2535ba5c,0x3fef4c3e2b56da38,1
+np.float64,0x3fea59c29cb4b385,0x3fe5c0043e586439,1
+np.float64,0x3fc1ffef0d23ffde,0x3fefaf22be452d13,1
+np.float64,0x3fc2d8dbc125b1b8,0x3fefa75b646d8e4e,1
+np.float64,0x3fd66c6471acd8c9,0x3fee0e5038b895c0,1
+np.float64,0x3fd0854adfa10a96,0x3feef0945bcc5c99,1
+np.float64,0x3feaac7076f558e1,0x3fe58316c23a82ad,1
+np.float64,0x3fdda49db3bb493b,0x3feca0e347c0ad6f,1
+np.float64,0x3fe43a539de874a7,0x3fe9d11d722d4822,1
+np.float64,0x3feeee3ebbfddc7d,0x3fe22dffd251e9af,1
+np.float64,0x3f8ee2c5b03dc58b,0x3fefff11855a7b6c,1
+np.float64,0x3fcd7107c63ae210,0x3fef2840bb55ca52,1
+np.float64,0x3f8d950d203b2a1a,0x3fefff253a08e40e,1
+np.float64,0x3fd40a5e57a814bd,0x3fee71a633c761fc,1
+np.float64,0x3fee836ec83d06de,0x3fe28580975be2fd,1
+np.float64,0x3fd7bbe87f2f77d1,0x3fedd31f661890cc,1
+np.float64,0xbfe05bf138a0b7e2,0x3febe8a000d96e47,1
+np.float64,0xbf88bddd90317bc0,0x3fefff66f6e2ff26,1
+np.float64,0xbfdc9cbb12393976,0x3fecdae2982335db,1
+np.float64,0xbfd85b4eccb0b69e,0x3fedb5e0dd87f702,1
+np.float64,0xbfe5c326cb2b864e,0x3fe8e180f525fa12,1
+np.float64,0xbfe381a0e4a70342,0x3fea3c8e5e3ab78e,1
+np.float64,0xbfe58d892c2b1b12,0x3fe9031551617aed,1
+np.float64,0xbfd7f3a52cafe74a,0x3fedc8fa97edd080,1
+np.float64,0xbfef3417bc7e682f,0x3fe1f45989f6a009,1
+np.float64,0xbfddfb8208bbf704,0x3fec8d5fa9970773,1
+np.float64,0xbfdab69bcc356d38,0x3fed40b2f6c347c6,1
+np.float64,0xbfed3f7cf17a7efa,0x3fe389e4ff4d9235,1
+np.float64,0xbfe47675d9a8ecec,0x3fe9ad6829a69e94,1
+np.float64,0xbfd030e2902061c6,0x3feefb3f811e024f,1
+np.float64,0xbfc376ac7226ed58,0x3fefa1798712b37e,1
+np.float64,0xbfdb7e54a0b6fcaa,0x3fed17a974c4bc28,1
+np.float64,0xbfdb7d5d5736faba,0x3fed17dcf31a8d84,1
+np.float64,0xbf876bd6502ed7c0,0x3fefff76dce6232c,1
+np.float64,0xbfd211e6c02423ce,0x3feebba41f0a1764,1
+np.float64,0xbfb443e3962887c8,0x3fefe658953629d4,1
+np.float64,0xbfe81b09e9b03614,0x3fe757882e4fdbae,1
+np.float64,0xbfdcb905d2b9720c,0x3fecd4c22cfe84e5,1
+np.float64,0xbfe3b62d99276c5b,0x3fea1e5520b3098d,1
+np.float64,0xbfbf05b25c3e0b68,0x3fefc3ecc04bca8e,1
+np.float64,0xbfdedc885b3db910,0x3fec59e22feb49f3,1
+np.float64,0xbfe33aa282667545,0x3fea64f2d55ec471,1
+np.float64,0xbfec84745a3908e9,0x3fe41cb3214e7044,1
+np.float64,0xbfddefdff1bbdfc0,0x3fec8fff88d4d0ec,1
+np.float64,0xbfd26ae6aca4d5ce,0x3feeaf208c7fedf6,1
+np.float64,0xbfee010591fc020b,0x3fe2ef3e57211a5e,1
+np.float64,0xbfb8cfddca319fb8,0x3fefd98d8f7918ed,1
+np.float64,0xbfe991648f3322c9,0x3fe6514e54670bae,1
+np.float64,0xbfee63fd087cc7fa,0x3fe29f1bfa3297cc,1
+np.float64,0xbfe1685942a2d0b2,0x3feb617f5f839eee,1
+np.float64,0xbfc6fc2fd62df860,0x3fef7c4698fd58cf,1
+np.float64,0xbfe42723d3a84e48,0x3fe9dc6ef7243e90,1
+np.float64,0xbfc3a7e89d274fd0,0x3fef9f99e3314e77,1
+np.float64,0xbfeb4c9521f6992a,0x3fe50b7c919bc6d8,1
+np.float64,0xbf707b34e020f680,0x3fefffef05e30264,1
+np.float64,0xbfc078478e20f090,0x3fefbc479305d5aa,1
+np.float64,0xbfd494ac4ca92958,0x3fee5c11f1cd8269,1
+np.float64,0xbfdaf888a035f112,0x3fed3346ae600469,1
+np.float64,0xbfa5d8ed502bb1e0,0x3feff88b0f262609,1
+np.float64,0xbfeec0cbfffd8198,0x3fe253543b2371cb,1
+np.float64,0xbfe594b5986b296b,0x3fe8fe9b39fb3940,1
+np.float64,0xbfc8ece7c631d9d0,0x3fef652bd0611ac7,1
+np.float64,0xbfd8ffeca0b1ffda,0x3fed96ebdf9b65cb,1
+np.float64,0xbfba9b221e353648,0x3fefd3cc21e2f15c,1
+np.float64,0xbfca63a52c34c74c,0x3fef52848eb9ed3b,1
+np.float64,0xbfe588e9b06b11d4,0x3fe905f7403e8881,1
+np.float64,0xbfc76f82db2edf04,0x3fef77138fe9bbc2,1
+np.float64,0xbfeeb3f334bd67e6,0x3fe25ddadb1096d6,1
+np.float64,0xbfbf2b64ce3e56c8,0x3fefc35a9555f6df,1
+np.float64,0xbfe9920e4ff3241c,0x3fe650d4ab8f5c42,1
+np.float64,0xbfb4a54c02294a98,0x3fefe55fc85ae5e9,1
+np.float64,0xbfe353b0c766a762,0x3fea56c02d17e4b7,1
+np.float64,0xbfd99961a4b332c4,0x3fed795fcd00dbf9,1
+np.float64,0xbfef191ddabe323c,0x3fe20aa79524f636,1
+np.float64,0xbfb25d060224ba10,0x3fefeaeee5cc8c0b,1
+np.float64,0xbfe6022428ec0448,0x3fe8b9b46e776194,1
+np.float64,0xbfed1a236cba3447,0x3fe3a76bee0d9861,1
+np.float64,0xbfc59671e72b2ce4,0x3fef8bc4daef6f14,1
+np.float64,0xbfdf2711703e4e22,0x3fec4886a8c9ceb5,1
+np.float64,0xbfeb7e207536fc41,0x3fe4e610c783f168,1
+np.float64,0xbfe6cdf5bcad9bec,0x3fe8365f8a59bc81,1
+np.float64,0xbfe55294adaaa52a,0x3fe927b0af5ccd09,1
+np.float64,0xbfdf4a88913e9512,0x3fec4036df58ba74,1
+np.float64,0xbfebb7efe4376fe0,0x3fe4ba276006992d,1
+np.float64,0xbfe09f29cfa13e54,0x3febc77f4f9c95e7,1
+np.float64,0xbfdf8c75653f18ea,0x3fec30ac924e4f46,1
+np.float64,0xbfefd601c7ffac04,0x3fe16d6f21bcb9c1,1
+np.float64,0xbfeae97ff5f5d300,0x3fe555bb5b87efe9,1
+np.float64,0xbfed427f02fa84fe,0x3fe387830db093bc,1
+np.float64,0xbfa33909cc267210,0x3feffa3a1bcb50dd,1
+np.float64,0xbfe9aa4bf5f35498,0x3fe63f6e98f6aa0f,1
+np.float64,0xbfe2d7349b25ae69,0x3fea9caa7c331e7e,1
+np.float64,0xbfcdbb2a3a3b7654,0x3fef2401c9659e4b,1
+np.float64,0xbfc8a90919315214,0x3fef686fe7fc0513,1
+np.float64,0xbfe62a98df2c5532,0x3fe89ff22a02cc6b,1
+np.float64,0xbfdc0f67b3b81ed0,0x3fecf928b637798f,1
+np.float64,0xbfebb32bf6f76658,0x3fe4bdc893c09698,1
+np.float64,0xbfec067996380cf3,0x3fe47e132741db97,1
+np.float64,0xbfd9774e1d32ee9c,0x3fed7ffe1e87c434,1
+np.float64,0xbfef989890bf3131,0x3fe1a0d025c80cf4,1
+np.float64,0xbfe59887e62b3110,0x3fe8fc382a3d4197,1
+np.float64,0xbfdea0a11e3d4142,0x3fec67b987e236ec,1
+np.float64,0xbfe2ec495825d892,0x3fea90efb231602d,1
+np.float64,0xbfb329c5c2265388,0x3fefe90f1b8209c3,1
+np.float64,0xbfdcd2dcd339a5ba,0x3feccf24c60b1478,1
+np.float64,0xbfe537ea18aa6fd4,0x3fe938237e217fe0,1
+np.float64,0xbfe8675ce170ceba,0x3fe723105925ce3a,1
+np.float64,0xbfd70723acae0e48,0x3fedf369ac070e65,1
+np.float64,0xbfea9d8692b53b0d,0x3fe58e1ee42e3fdb,1
+np.float64,0xbfcfeb96653fd72c,0x3fef029770033bdc,1
+np.float64,0xbfcc06c92d380d94,0x3fef3c69797d9b0a,1
+np.float64,0xbfe16b7c4f62d6f8,0x3feb5fdf9f0a9a07,1
+np.float64,0xbfed4d7a473a9af4,0x3fe37ecee27b1eb7,1
+np.float64,0xbfe6a6f6942d4ded,0x3fe84fccdf762b19,1
+np.float64,0xbfda46d867348db0,0x3fed572d928fa657,1
+np.float64,0xbfdbd9482db7b290,0x3fed049b5f907b52,1
+np.float64,0x7fe992ceb933259c,0xbfeb15af92aad70e,1
+np.float64,0x7fe3069204a60d23,0xbfe5eeff454240e9,1
+np.float64,0x7fe729dbf32e53b7,0xbfefe0528a330e4c,1
+np.float64,0x7fec504fb638a09e,0x3fd288e95dbedf65,1
+np.float64,0x7fe1d30167a3a602,0xbfeffc41f946fd02,1
+np.float64,0x7fed7f8ffd3aff1f,0x3fefe68ec604a19d,1
+np.float64,0x7fd2f23635a5e46b,0x3fea63032efbb447,1
+np.float64,0x7fd4c86db1a990da,0x3fdf6b9f7888db5d,1
+np.float64,0x7fe7554db6eeaa9a,0x3fe1b41476861bb0,1
+np.float64,0x7fe34e823ba69d03,0x3fefc435532e6294,1
+np.float64,0x7fec5c82fef8b905,0x3fef8f0c6473034f,1
+np.float64,0x7feba221bff74442,0xbfea95b81eb19b47,1
+np.float64,0x7fe74808a5ae9010,0xbfd3aa322917c3e5,1
+np.float64,0x7fdf41b7e0be836f,0x3fd14283c7147282,1
+np.float64,0x7fec09892f381311,0x3fe5240376ae484b,1
+np.float64,0x7faaf80bf435f017,0x3fe20227fa811423,1
+np.float64,0x7f8422d8402845b0,0x3fe911714593b8a0,1
+np.float64,0x7fd23a7fada474fe,0x3feff9f40aa37e9c,1
+np.float64,0x7fef4a4806fe948f,0x3fec6eca89cb4a62,1
+np.float64,0x7fe1e71cf763ce39,0xbfea6ac63f9ba457,1
+np.float64,0x7fe3e555be27caaa,0xbfe75b305d0dbbfd,1
+np.float64,0x7fcb8bac96371758,0xbfe8b126077f9d4c,1
+np.float64,0x7fc98e2c84331c58,0x3fef9092eb0bc85a,1
+np.float64,0x7fe947cf2b728f9d,0xbfebfff2c5b7d198,1
+np.float64,0x7feee8058c3dd00a,0xbfef21ebaae2eb17,1
+np.float64,0x7fef61d8d5bec3b1,0xbfdf1a032fb1c864,1
+np.float64,0x7fcf714b6f3ee296,0x3fe6fc89a8084098,1
+np.float64,0x7fa9a8b44c335168,0xbfeb16c149cea943,1
+np.float64,0x7fd175c482a2eb88,0xbfef64d341e73f88,1
+np.float64,0x7feab8e6a87571cc,0x3feb10069c397464,1
+np.float64,0x7fe3ade72de75bcd,0x3fd1753e333d5790,1
+np.float64,0x7fb26d87d224db0f,0xbfe753d36b18f4ca,1
+np.float64,0x7fdb7ef159b6fde2,0x3fe5c0a6044d3607,1
+np.float64,0x7fd5af86422b5f0c,0x3fe77193c95f6484,1
+np.float64,0x7fee9e00b07d3c00,0x3fe864d494596845,1
+np.float64,0x7fef927a147f24f3,0xbfe673b14715693d,1
+np.float64,0x7fd0aea63c215d4b,0xbfeff435f119fce9,1
+np.float64,0x7fd02e3796a05c6e,0x3fe4f7e3706e9a3d,1
+np.float64,0x7fd3ed61da27dac3,0xbfefef2f057f168c,1
+np.float64,0x7fefaca0d4ff5941,0x3fd3e8ad205cd4ab,1
+np.float64,0x7feb659e06f6cb3b,0x3fd64d803203e027,1
+np.float64,0x7fc94ccfaf32999e,0x3fee04922209369a,1
+np.float64,0x7feb4ec294f69d84,0xbfd102763a056c89,1
+np.float64,0x7fe2ada6ac655b4c,0x3fef4f6792aa6093,1
+np.float64,0x7fe5f40fdc2be81f,0xbfb4a6327186eee8,1
+np.float64,0x7fe7584bc3eeb097,0xbfd685b8ff94651d,1
+np.float64,0x7fe45d276be8ba4e,0x3fee53b13f7e442f,1
+np.float64,0x7fe6449b3d6c8935,0xbfe7e08bafa75251,1
+np.float64,0x7f8d62e6b03ac5cc,0x3fe73d30762f38fd,1
+np.float64,0x7fe3a76f72a74ede,0xbfeb48a28bc60968,1
+np.float64,0x7fd057706920aee0,0x3fdece8fa06f626c,1
+np.float64,0x7fe45ae158e8b5c2,0x3fe7a70f47b4d349,1
+np.float64,0x7fea8a5a983514b4,0x3fefb053d5f9ddd7,1
+np.float64,0x7fdd1e86ab3a3d0c,0x3fe3cded1b93816b,1
+np.float64,0x7fdb456108b68ac1,0xbfe37574c0b9bf8f,1
+np.float64,0x7fe972602432e4bf,0x3fef9a26e65ec01c,1
+np.float64,0x7fdbe2385637c470,0x3fed541df57969e1,1
+np.float64,0x7fe57f03602afe06,0x3fbd90f595cbbd94,1
+np.float64,0x7feb0ceb68f619d6,0xbfeae9cb8ee5261f,1
+np.float64,0x7fe6abfe6c6d57fc,0xbfef40a6edaca26f,1
+np.float64,0x7fe037ea08606fd3,0xbfda817d75858597,1
+np.float64,0x7fdd75a52dbaeb49,0x3feef2a0d91d6aa1,1
+np.float64,0x7fe8f9af66b1f35e,0xbfedfceef2a3bfc9,1
+np.float64,0x7fedf762b53beec4,0x3fd8b4f21ef69ee3,1
+np.float64,0x7fe99295b7f3252a,0x3feffc24d970383e,1
+np.float64,0x7fe797b0172f2f5f,0x3fee089aa56f7ce8,1
+np.float64,0x7fed89dcc97b13b9,0xbfcfa2bb0c3ea41f,1
+np.float64,0x7fae9e8d5c3d3d1a,0xbfe512ffe16c6b08,1
+np.float64,0x7fefaecbe27f5d97,0x3fbfc718a5e972f1,1
+np.float64,0x7fce0236d93c046d,0xbfa9b7cd790db256,1
+np.float64,0x7fa9689aac32d134,0x3feced501946628a,1
+np.float64,0x7feb1469e93628d3,0x3fef2a988e7673ed,1
+np.float64,0x7fdba78344b74f06,0xbfe092e78965b30c,1
+np.float64,0x7fece54c3fb9ca97,0x3fd3cfd184bed2e6,1
+np.float64,0x7fdb84212b370841,0xbfe25ebf2db6ee55,1
+np.float64,0x7fbe3e8bf23c7d17,0x3fe2ee72df573345,1
+np.float64,0x7fe43d9803687b2f,0xbfed2eff6a9e66a0,1
+np.float64,0x7fb0f9c00a21f37f,0x3feff70f3276fdb7,1
+np.float64,0x7fea0c6cbbb418d8,0xbfefa612494798b2,1
+np.float64,0x7fe4b3239e296646,0xbfe74dd959af8cdc,1
+np.float64,0x7fe5c6a773eb8d4e,0xbfd06944048f8d2b,1
+np.float64,0x7fb1c1278223824e,0xbfeb533a34655bde,1
+np.float64,0x7fd21c09ee243813,0xbfe921ccbc9255c3,1
+np.float64,0x7fe051020c20a203,0x3fbd519d700c1f2f,1
+np.float64,0x7fe0c76845e18ed0,0x3fefb9595191a31b,1
+np.float64,0x7fe6b0b57b6d616a,0xbf8c59a8ba5fcd9a,1
+np.float64,0x7fd386c460270d88,0x3fe8ffea5d1a5c46,1
+np.float64,0x7feeb884713d7108,0x3fee9b2247ef6c0d,1
+np.float64,0x7fd85f71b6b0bee2,0xbfefc30ec3e28f07,1
+np.float64,0x7fc341366426826c,0x3fd4234d35386d3b,1
+np.float64,0x7fe56482dd6ac905,0x3fe7189de6a50668,1
+np.float64,0x7fec67a2e3f8cf45,0xbfef86d0b940f37f,1
+np.float64,0x7fe38b202fe7163f,0x3feb90b75caa2030,1
+np.float64,0x7fdcbc64883978c8,0x3fed4f758fbf64d4,1
+np.float64,0x7fea5f0598f4be0a,0x3fdd503a417b3d4d,1
+np.float64,0x7fda3b6bcf3476d7,0x3fea6e9af3f7f9f5,1
+np.float64,0x7fc7d7896c2faf12,0x3fda2bebc36a2363,1
+np.float64,0x7fe7e8e2626fd1c4,0xbfe7d5e390c4cc3f,1
+np.float64,0x7fde0f3d7abc1e7a,0xbfede7a0ecfa3606,1
+np.float64,0x7fc692b8f52d2571,0x3feff0cd7ab6f61b,1
+np.float64,0xff92d1fce825a400,0xbfc921c36fc014fa,1
+np.float64,0xffdec3af2fbd875e,0xbfed6a77e6a0364e,1
+np.float64,0xffef46e7d9be8dcf,0xbfed7d39476f7e27,1
+np.float64,0xffe2c2ce4525859c,0x3fe1757261316bc9,1
+np.float64,0xffe27c8b5864f916,0xbfefe017c0d43457,1
+np.float64,0xffe184d7442309ae,0x3fa1fb8c49dba596,1
+np.float64,0xffddf5f98d3bebf4,0x3fee4f8eaa5f847e,1
+np.float64,0xffee3ef354fc7de6,0xbfebfd60fa51b2ba,1
+np.float64,0xffdecb3e85bd967e,0x3fbfad2667a8b468,1
+np.float64,0xffe4ee900b29dd20,0xbfdc02dc626f91cd,1
+np.float64,0xffd3179f6da62f3e,0xbfe2cfe442511776,1
+np.float64,0xffe99ef7cef33def,0x3f50994542a7f303,1
+np.float64,0xffe2b66b1ae56cd6,0xbfefe3e066eb6329,1
+np.float64,0xff8f72aff03ee540,0x3fe9c46224cf5003,1
+np.float64,0xffd29beb85a537d8,0x3fefcb0b6166be71,1
+np.float64,0xffaef02d4c3de060,0xbfef5fb71028fc72,1
+np.float64,0xffd39a2a89273456,0x3fe6d4b183205dca,1
+np.float64,0xffef8a9392ff1526,0x3fedb99fbf402468,1
+np.float64,0xffb9b3f31e3367e8,0x3fee1005270fcf80,1
+np.float64,0xffed9d5c693b3ab8,0x3fd110f4b02365d5,1
+np.float64,0xffeaba45f9f5748b,0x3fe499e0a6f4afb2,1
+np.float64,0xffdba3f70d3747ee,0xbfca0c30493ae519,1
+np.float64,0xffa35b985426b730,0xbfdb625df56bcf45,1
+np.float64,0xffccbc9728397930,0x3fc53cbc59020704,1
+np.float64,0xffef73c942bee792,0xbfdc647a7a5e08be,1
+np.float64,0xffcb5acfb236b5a0,0x3feeb4ec038c39fc,1
+np.float64,0xffea116fe2b422df,0x3fefe03b6ae0b435,1
+np.float64,0xffe97de6e7b2fbcd,0xbfd2025698fab9eb,1
+np.float64,0xffdddba314bbb746,0x3fd31f0fdb8f93be,1
+np.float64,0xffd613a24a2c2744,0xbfebbb1efae884b3,1
+np.float64,0xffe3d938aa67b271,0xbfc2099cead3d3be,1
+np.float64,0xffdf08c2e33e1186,0xbfefd236839b900d,1
+np.float64,0xffea6ba8bd34d751,0x3fe8dfc032114719,1
+np.float64,0xffe3202083e64040,0x3fed513b81432a22,1
+np.float64,0xffb2397db62472f8,0xbfee7d7fe1c3f76c,1
+np.float64,0xffd9d0682ab3a0d0,0x3fe0bcf9e531ad79,1
+np.float64,0xffc293df202527c0,0xbfe58d0bdece5e64,1
+np.float64,0xffe1422c7da28458,0xbf81bd72595f2341,1
+np.float64,0xffd64e4ed4ac9c9e,0x3fa4334cc011c703,1
+np.float64,0xffe40a970ae8152e,0x3fead3d258b55b7d,1
+np.float64,0xffc8c2f2223185e4,0xbfef685f07c8b9fd,1
+np.float64,0xffe4b2f7216965ee,0x3fe3861d3d896a83,1
+np.float64,0xffdb531db3b6a63c,0x3fe18cb8332dd59d,1
+np.float64,0xffe8e727a3b1ce4e,0xbfe57b15abb677b9,1
+np.float64,0xffe530c1e12a6184,0xbfb973ea5535e48f,1
+np.float64,0xffe6f7849cedef08,0x3fd39a37ec5af4b6,1
+np.float64,0xffead62a78b5ac54,0x3fe69b3f6c7aa24b,1
+np.float64,0xffeefdd725fdfbad,0xbfc08a456111fdd5,1
+np.float64,0xffe682182fed0430,0x3fecc7c1292761d2,1
+np.float64,0xffee0ca8dcbc1951,0x3fef6cc361ef2c19,1
+np.float64,0xffec9b338f393666,0x3fefa9ab8e0471b5,1
+np.float64,0xffe13c5e29a278bc,0xbfef8da74ad83398,1
+np.float64,0xffd7bd48c62f7a92,0x3fe3468cd4ac9d34,1
+np.float64,0xffedd0ed14bba1d9,0xbfd563a83477077b,1
+np.float64,0xffe86b83f3f0d707,0x3fe9eb3c658e4b2d,1
+np.float64,0xffd6a4db4bad49b6,0xbfc7e11276166e17,1
+np.float64,0xffc29e8404253d08,0x3fd35971961c789f,1
+np.float64,0xffe27cf3d664f9e7,0xbfeca0f73c72f810,1
+np.float64,0xffc34152352682a4,0x3fef384e564c002c,1
+np.float64,0xffe395728ba72ae4,0x3f8fe18c2de86eba,1
+np.float64,0xffed86c4fbbb0d89,0x3fef709db881c672,1
+np.float64,0xffe8a98d37f1531a,0x3fd4879c8f73c3dc,1
+np.float64,0xffb8ce9fea319d40,0xbfb853c8fe46b08d,1
+np.float64,0xffe7f26db8efe4db,0xbfec1cfd3e5c2ac1,1
+np.float64,0xffd7935b77af26b6,0x3fb7368c89b2a460,1
+np.float64,0xffc5840ed02b081c,0x3fd92220b56631f3,1
+np.float64,0xffc36a873926d510,0x3fa84d61baf61811,1
+np.float64,0xffe06ea583e0dd4a,0x3feb647e348b9e39,1
+np.float64,0xffe6a33031ed4660,0xbfe096b851dc1a0a,1
+np.float64,0xffe001c938e00392,0x3fe4eece77623e7a,1
+np.float64,0xffc1e4f23b23c9e4,0xbfdb9bb1f83f6ac4,1
+np.float64,0xffecd3ecbab9a7d9,0x3fbafb1f800f177d,1
+np.float64,0xffc2d3016825a604,0xbfef650e8b0d6afb,1
+np.float64,0xffe222cb68e44596,0x3fde3690e44de5bd,1
+np.float64,0xffe5bb145e2b7628,0x3fedbb98e23c9dc1,1
+np.float64,0xffe9e5823b73cb04,0xbfee41661016c03c,1
+np.float64,0xffd234a00ba46940,0x3fda0312cda580c2,1
+np.float64,0xffe0913ed6e1227d,0xbfed508bb529bd23,1
+np.float64,0xffe8e3596171c6b2,0xbfdc33e1c1d0310e,1
+np.float64,0xffef9c6835ff38cf,0x3fea8ce6d27dfba3,1
+np.float64,0xffdd3bcf66ba779e,0x3fe50523d2b6470e,1
+np.float64,0xffe57e8cf06afd1a,0xbfee600933347247,1
+np.float64,0xffe0d8c65fa1b18c,0x3fe75091f93d5e4c,1
+np.float64,0xffea7c8c16b4f918,0x3fee681724795198,1
+np.float64,0xffe34f7a05269ef4,0xbfe3c3e179676f13,1
+np.float64,0xffd28894a6a5112a,0xbfe5d1027aee615d,1
+np.float64,0xffc73be6f22e77cc,0x3fe469bbc08b472a,1
+np.float64,0xffe7f71b066fee36,0x3fe7ed136c8fdfaa,1
+np.float64,0xffebc13e29f7827c,0x3fefcdc6e677d314,1
+np.float64,0xffd53e9c942a7d3a,0x3fea5a02c7341749,1
+np.float64,0xffd7191b23ae3236,0x3fea419b66023443,1
+np.float64,0xffe9480325b29006,0xbfefeaff5fa38cd5,1
+np.float64,0xffba46dc0e348db8,0xbfefa54f4de28eba,1
+np.float64,0xffdd4cc31eba9986,0x3fe60bb41fe1c4da,1
+np.float64,0xffe13a70dea274e1,0xbfaa9192f7bd6c9b,1
+np.float64,0xffde25127bbc4a24,0x3f7c75f45e29be7d,1
+np.float64,0xffe4076543a80eca,0x3fea5aad50d2f687,1
+np.float64,0xffe61512acec2a25,0xbfefffeb67401649,1
+np.float64,0xffef812ec1ff025d,0xbfe919c7c073c766,1
+np.float64,0xffd5552aeaaaaa56,0x3fc89d38ab047396,1
diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/tests/data/umath-validation-set-cosh.csv b/.venv/lib/python3.12/site-packages/numpy/_core/tests/data/umath-validation-set-cosh.csv
new file mode 100644
index 0000000..af14d84
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/_core/tests/data/umath-validation-set-cosh.csv
@@ -0,0 +1,1429 @@
+dtype,input,output,ulperrortol
+np.float32,0xfe0ac238,0x7f800000,3
+np.float32,0xbf553b86,0x3faf079b,3
+np.float32,0xff4457da,0x7f800000,3
+np.float32,0xff7253f3,0x7f800000,3
+np.float32,0x5a5802,0x3f800000,3
+np.float32,0x3db03413,0x3f80795b,3
+np.float32,0x7f6795c9,0x7f800000,3
+np.float32,0x805b9142,0x3f800000,3
+np.float32,0xfeea581a,0x7f800000,3
+np.float32,0x3f7e2dba,0x3fc472f6,3
+np.float32,0x3d9c4d74,0x3f805f7a,3
+np.float32,0x7f18c665,0x7f800000,3
+np.float32,0x7f003e23,0x7f800000,3
+np.float32,0x3d936fa0,0x3f8054f3,3
+np.float32,0x3f32034f,0x3fa0368e,3
+np.float32,0xff087604,0x7f800000,3
+np.float32,0x380a5,0x3f800000,3
+np.float32,0x3f59694e,0x3fb10077,3
+np.float32,0x3e63e648,0x3f832ee4,3
+np.float32,0x80712f42,0x3f800000,3
+np.float32,0x3e169908,0x3f816302,3
+np.float32,0x3f2d766e,0x3f9e8692,3
+np.float32,0x3d6412e0,0x3f8032d0,3
+np.float32,0xbde689e8,0x3f80cfd4,3
+np.float32,0x483e2e,0x3f800000,3
+np.float32,0xff1ba2d0,0x7f800000,3
+np.float32,0x80136bff,0x3f800000,3
+np.float32,0x3f72534c,0x3fbdc1d4,3
+np.float32,0x3e9eb381,0x3f8632c6,3
+np.float32,0x3e142892,0x3f815795,3
+np.float32,0x0,0x3f800000,3
+np.float32,0x2f2528,0x3f800000,3
+np.float32,0x7f38be13,0x7f800000,3
+np.float32,0xfeee6896,0x7f800000,3
+np.float32,0x7f09095d,0x7f800000,3
+np.float32,0xbe94d,0x3f800000,3
+np.float32,0xbedcf8d4,0x3f8c1b74,3
+np.float32,0xbf694c02,0x3fb8ef07,3
+np.float32,0x3e2261f8,0x3f819cde,3
+np.float32,0xbf01d3ce,0x3f90d0e0,3
+np.float32,0xbeb7b3a2,0x3f8853de,3
+np.float32,0x8046de7b,0x3f800000,3
+np.float32,0xbcb45ea0,0x3f8007f1,3
+np.float32,0x3eef14af,0x3f8e35dd,3
+np.float32,0xbf047316,0x3f91846e,3
+np.float32,0x801cef45,0x3f800000,3
+np.float32,0x3e9ad891,0x3f85e609,3
+np.float32,0xff20e9cf,0x7f800000,3
+np.float32,0x80068434,0x3f800000,3
+np.float32,0xbe253020,0x3f81ab49,3
+np.float32,0x3f13f4b8,0x3f95fac9,3
+np.float32,0x804accd1,0x3f800000,3
+np.float32,0x3dee3e10,0x3f80ddf7,3
+np.float32,0xbe6c4690,0x3f836c29,3
+np.float32,0xff30d431,0x7f800000,3
+np.float32,0xbec82416,0x3f89e791,3
+np.float32,0x3f30bbcb,0x3f9fbbcc,3
+np.float32,0x3f5620a2,0x3faf72b8,3
+np.float32,0x807a8130,0x3f800000,3
+np.float32,0x3e3cb02d,0x3f822de0,3
+np.float32,0xff4839ac,0x7f800000,3
+np.float32,0x800a3e9c,0x3f800000,3
+np.float32,0x3dffd65b,0x3f810002,3
+np.float32,0xbf2b1492,0x3f9da987,3
+np.float32,0xbf21602c,0x3f9a48fe,3
+np.float32,0x512531,0x3f800000,3
+np.float32,0x24b99a,0x3f800000,3
+np.float32,0xbf53e345,0x3fae67b1,3
+np.float32,0xff2126ec,0x7f800000,3
+np.float32,0x7e79b49d,0x7f800000,3
+np.float32,0x3ea3cf04,0x3f869b6f,3
+np.float32,0x7f270059,0x7f800000,3
+np.float32,0x3f625b2f,0x3fb561e1,3
+np.float32,0xbf59947e,0x3fb11519,3
+np.float32,0xfe0d1c64,0x7f800000,3
+np.float32,0xbf3f3eae,0x3fa568e2,3
+np.float32,0x7c04d1,0x3f800000,3
+np.float32,0x7e66bd,0x3f800000,3
+np.float32,0x8011880d,0x3f800000,3
+np.float32,0x3f302f07,0x3f9f8759,3
+np.float32,0x4e3375,0x3f800000,3
+np.float32,0xfe67a134,0x7f800000,3
+np.float32,0xff670249,0x7f800000,3
+np.float32,0x7e19f27d,0x7f800000,3
+np.float32,0xbf36ce12,0x3fa20b81,3
+np.float32,0xbe6bcfc4,0x3f8368b5,3
+np.float32,0x76fcba,0x3f800000,3
+np.float32,0x7f30abaf,0x7f800000,3
+np.float32,0x3f4c1f6d,0x3faae43c,3
+np.float32,0x7f61f44a,0x7f800000,3
+np.float32,0xbf4bb3c9,0x3faab4af,3
+np.float32,0xbda15ee0,0x3f8065c6,3
+np.float32,0xfbb4e800,0x7f800000,3
+np.float32,0x7fa00000,0x7fe00000,3
+np.float32,0x80568501,0x3f800000,3
+np.float32,0xfeb285e4,0x7f800000,3
+np.float32,0x804423a7,0x3f800000,3
+np.float32,0x7e6c0f21,0x7f800000,3
+np.float32,0x7f136b3c,0x7f800000,3
+np.float32,0x3f2d08e6,0x3f9e5e9c,3
+np.float32,0xbf6b454e,0x3fb9f7e6,3
+np.float32,0x3e6bceb0,0x3f8368ad,3
+np.float32,0xff1ad16a,0x7f800000,3
+np.float32,0x7cce1a04,0x7f800000,3
+np.float32,0xff7bcf95,0x7f800000,3
+np.float32,0x8049788d,0x3f800000,3
+np.float32,0x7ec45918,0x7f800000,3
+np.float32,0xff7fffff,0x7f800000,3
+np.float32,0x8039a1a0,0x3f800000,3
+np.float32,0x7e90cd72,0x7f800000,3
+np.float32,0xbf7dfd53,0x3fc456cc,3
+np.float32,0x3eeeb664,0x3f8e2a76,3
+np.float32,0x8055ef9b,0x3f800000,3
+np.float32,0x7ee06ddd,0x7f800000,3
+np.float32,0xba2cc000,0x3f800002,3
+np.float32,0x806da632,0x3f800000,3
+np.float32,0x7ecfaaf5,0x7f800000,3
+np.float32,0x3ddd12e6,0x3f80bf19,3
+np.float32,0xbf754394,0x3fbf60b1,3
+np.float32,0x6f3f19,0x3f800000,3
+np.float32,0x800a9af0,0x3f800000,3
+np.float32,0xfeef13ea,0x7f800000,3
+np.float32,0x7f74841f,0x7f800000,3
+np.float32,0xbeb9a2f0,0x3f888181,3
+np.float32,0x77cbb,0x3f800000,3
+np.float32,0xbf587f84,0x3fb0911b,3
+np.float32,0x210ba5,0x3f800000,3
+np.float32,0x3ee60a28,0x3f8d2367,3
+np.float32,0xbe3731ac,0x3f820dc7,3
+np.float32,0xbee8cfee,0x3f8d765e,3
+np.float32,0x7b2ef179,0x7f800000,3
+np.float32,0xfe81377c,0x7f800000,3
+np.float32,0x6ac98c,0x3f800000,3
+np.float32,0x3f51f144,0x3fad8288,3
+np.float32,0x80785750,0x3f800000,3
+np.float32,0x3f46615a,0x3fa864ff,3
+np.float32,0xbf35ac9e,0x3fa19b8e,3
+np.float32,0x7f0982ac,0x7f800000,3
+np.float32,0x1b2610,0x3f800000,3
+np.float32,0x3ed8bb25,0x3f8ba3df,3
+np.float32,0xbeb41bac,0x3f88006d,3
+np.float32,0xff48e89d,0x7f800000,3
+np.float32,0x3ed0ab8c,0x3f8ac755,3
+np.float32,0xbe64671c,0x3f833282,3
+np.float32,0x64bce4,0x3f800000,3
+np.float32,0x284f79,0x3f800000,3
+np.float32,0x7e09faa7,0x7f800000,3
+np.float32,0x4376c1,0x3f800000,3
+np.float32,0x805ca8c0,0x3f800000,3
+np.float32,0xff0859d5,0x7f800000,3
+np.float32,0xbed2f3b2,0x3f8b04dd,3
+np.float32,0x8045bd0c,0x3f800000,3
+np.float32,0x3f0e6216,0x3f94503f,3
+np.float32,0x3f41e3ae,0x3fa68035,3
+np.float32,0x80088ccc,0x3f800000,3
+np.float32,0x3f37fc19,0x3fa2812f,3
+np.float32,0x71c87d,0x3f800000,3
+np.float32,0x8024f4b2,0x3f800000,3
+np.float32,0xff78dd88,0x7f800000,3
+np.float32,0xbda66c90,0x3f806c40,3
+np.float32,0x7f33ef0d,0x7f800000,3
+np.float32,0x46a343,0x3f800000,3
+np.float32,0xff1dce38,0x7f800000,3
+np.float32,0x1b935d,0x3f800000,3
+np.float32,0x3ebec598,0x3f88fd0e,3
+np.float32,0xff115530,0x7f800000,3
+np.float32,0x803916aa,0x3f800000,3
+np.float32,0xff60a3e2,0x7f800000,3
+np.float32,0x3b8ddd48,0x3f80004f,3
+np.float32,0x3f761b6e,0x3fbfd8ea,3
+np.float32,0xbdf55b88,0x3f80eb70,3
+np.float32,0x37374,0x3f800000,3
+np.float32,0x3de150e0,0x3f80c682,3
+np.float32,0x3f343278,0x3fa10a83,3
+np.float32,0xbe9baefa,0x3f85f68b,3
+np.float32,0x3d8d43,0x3f800000,3
+np.float32,0x3e80994b,0x3f840f0c,3
+np.float32,0xbe573c6c,0x3f82d685,3
+np.float32,0x805b83b4,0x3f800000,3
+np.float32,0x683d88,0x3f800000,3
+np.float32,0x692465,0x3f800000,3
+np.float32,0xbdc345f8,0x3f809511,3
+np.float32,0x3f7c1c5a,0x3fc3406f,3
+np.float32,0xbf40bef3,0x3fa606df,3
+np.float32,0xff1e25b9,0x7f800000,3
+np.float32,0x3e4481e0,0x3f825d37,3
+np.float32,0x75d188,0x3f800000,3
+np.float32,0x3ea53cec,0x3f86b956,3
+np.float32,0xff105a54,0x7f800000,3
+np.float32,0x7f800000,0x7f800000,3
+np.float32,0x7f11f0b0,0x7f800000,3
+np.float32,0xbf58a57d,0x3fb0a328,3
+np.float32,0xbdd11e38,0x3f80aaf8,3
+np.float32,0xbea94adc,0x3f870fa0,3
+np.float32,0x3e9dd780,0x3f862180,3
+np.float32,0xff1786b9,0x7f800000,3
+np.float32,0xfec46aa2,0x7f800000,3
+np.float32,0x7f4300c1,0x7f800000,3
+np.float32,0x29ba2b,0x3f800000,3
+np.float32,0x3f4112e2,0x3fa62993,3
+np.float32,0xbe6c9224,0x3f836e5d,3
+np.float32,0x7f0e42a3,0x7f800000,3
+np.float32,0xff6390ad,0x7f800000,3
+np.float32,0x3f54e374,0x3faede94,3
+np.float32,0x7f2642a2,0x7f800000,3
+np.float32,0x7f46b2be,0x7f800000,3
+np.float32,0xfe59095c,0x7f800000,3
+np.float32,0x7146a0,0x3f800000,3
+np.float32,0x3f07763d,0x3f925786,3
+np.float32,0x3d172780,0x3f801651,3
+np.float32,0xff66f1c5,0x7f800000,3
+np.float32,0xff025349,0x7f800000,3
+np.float32,0x6ce99d,0x3f800000,3
+np.float32,0xbf7e4f50,0x3fc48685,3
+np.float32,0xbeff8ca2,0x3f904708,3
+np.float32,0x3e6c8,0x3f800000,3
+np.float32,0x7f7153dc,0x7f800000,3
+np.float32,0xbedcf612,0x3f8c1b26,3
+np.float32,0xbbc2f180,0x3f800094,3
+np.float32,0xbf397399,0x3fa314b8,3
+np.float32,0x6c6e35,0x3f800000,3
+np.float32,0x7f50a88b,0x7f800000,3
+np.float32,0xfe84093e,0x7f800000,3
+np.float32,0x3f737b9d,0x3fbe6478,3
+np.float32,0x7f6a5340,0x7f800000,3
+np.float32,0xbde83c20,0x3f80d2e7,3
+np.float32,0xff769ce9,0x7f800000,3
+np.float32,0xfdd33c30,0x7f800000,3
+np.float32,0xbc95cb60,0x3f80057a,3
+np.float32,0x8007a40d,0x3f800000,3
+np.float32,0x3f55d90c,0x3faf5132,3
+np.float32,0x80282082,0x3f800000,3
+np.float32,0xbf43b1f2,0x3fa7418c,3
+np.float32,0x3f1dc7cb,0x3f991731,3
+np.float32,0xbd4346a0,0x3f80253f,3
+np.float32,0xbf5aa82a,0x3fb19946,3
+np.float32,0x3f4b8c22,0x3faaa333,3
+np.float32,0x3d13468c,0x3f80152f,3
+np.float32,0x7db77097,0x7f800000,3
+np.float32,0x4a00df,0x3f800000,3
+np.float32,0xbedea5e0,0x3f8c4b64,3
+np.float32,0x80482543,0x3f800000,3
+np.float32,0xbef344fe,0x3f8eb8dd,3
+np.float32,0x7ebd4044,0x7f800000,3
+np.float32,0xbf512c0e,0x3fad287e,3
+np.float32,0x3db28cce,0x3f807c9c,3
+np.float32,0xbd0f5ae0,0x3f801412,3
+np.float32,0xfe7ed9ac,0x7f800000,3
+np.float32,0x3eb1aa82,0x3f87c8b4,3
+np.float32,0xfef1679e,0x7f800000,3
+np.float32,0xff3629f2,0x7f800000,3
+np.float32,0xff3562b4,0x7f800000,3
+np.float32,0x3dcafe1d,0x3f80a118,3
+np.float32,0xfedf242a,0x7f800000,3
+np.float32,0xbf43102a,0x3fa6fda4,3
+np.float32,0x8028834e,0x3f800000,3
+np.float32,0x805c8513,0x3f800000,3
+np.float32,0x3f59306a,0x3fb0e550,3
+np.float32,0x3eda2c9c,0x3f8bcc4a,3
+np.float32,0x80023524,0x3f800000,3
+np.float32,0x7ef72879,0x7f800000,3
+np.float32,0x661c8a,0x3f800000,3
+np.float32,0xfec3ba6c,0x7f800000,3
+np.float32,0x805aaca6,0x3f800000,3
+np.float32,0xff5c1f13,0x7f800000,3
+np.float32,0x3f6ab3f4,0x3fb9ab6b,3
+np.float32,0x3f014896,0x3f90ac20,3
+np.float32,0x3f030584,0x3f91222a,3
+np.float32,0xbf74853d,0x3fbef71d,3
+np.float32,0xbf534ee0,0x3fae2323,3
+np.float32,0x2c90c3,0x3f800000,3
+np.float32,0x7f62ad25,0x7f800000,3
+np.float32,0x1c8847,0x3f800000,3
+np.float32,0x7e2a8d43,0x7f800000,3
+np.float32,0x807a09cd,0x3f800000,3
+np.float32,0x413871,0x3f800000,3
+np.float32,0x80063692,0x3f800000,3
+np.float32,0x3edaf29b,0x3f8be211,3
+np.float32,0xbf64a7ab,0x3fb68b2d,3
+np.float32,0xfe56a720,0x7f800000,3
+np.float32,0xbf54a8d4,0x3faec350,3
+np.float32,0x3ecbaef7,0x3f8a4350,3
+np.float32,0x3f413714,0x3fa63890,3
+np.float32,0x7d3aa8,0x3f800000,3
+np.float32,0xbea9a13c,0x3f8716e7,3
+np.float32,0x7ef7553e,0x7f800000,3
+np.float32,0x8056f29f,0x3f800000,3
+np.float32,0xff1f7ffe,0x7f800000,3
+np.float32,0x3f41953b,0x3fa65f9c,3
+np.float32,0x3daa2f,0x3f800000,3
+np.float32,0xff0893e4,0x7f800000,3
+np.float32,0xbefc7ec6,0x3f8fe207,3
+np.float32,0xbb026800,0x3f800011,3
+np.float32,0x341e4f,0x3f800000,3
+np.float32,0x3e7b708a,0x3f83e0d1,3
+np.float32,0xa18cb,0x3f800000,3
+np.float32,0x7e290239,0x7f800000,3
+np.float32,0xbf4254f2,0x3fa6af62,3
+np.float32,0x80000000,0x3f800000,3
+np.float32,0x3f0a6c,0x3f800000,3
+np.float32,0xbec44d28,0x3f898609,3
+np.float32,0xf841f,0x3f800000,3
+np.float32,0x7f01a693,0x7f800000,3
+np.float32,0x8053340b,0x3f800000,3
+np.float32,0xfd4e7990,0x7f800000,3
+np.float32,0xbf782f1f,0x3fc10356,3
+np.float32,0xbe962118,0x3f858acc,3
+np.float32,0xfe8cd702,0x7f800000,3
+np.float32,0x7ecd986f,0x7f800000,3
+np.float32,0x3ebe775f,0x3f88f59b,3
+np.float32,0x8065524f,0x3f800000,3
+np.float32,0x3ede7fc4,0x3f8c471e,3
+np.float32,0x7f5e15ea,0x7f800000,3
+np.float32,0xbe871ada,0x3f847b78,3
+np.float32,0x3f21958b,0x3f9a5af7,3
+np.float32,0x3f64d480,0x3fb6a1fa,3
+np.float32,0xff18b0e9,0x7f800000,3
+np.float32,0xbf0840dd,0x3f928fd9,3
+np.float32,0x80104f5d,0x3f800000,3
+np.float32,0x643b94,0x3f800000,3
+np.float32,0xbc560a80,0x3f8002cc,3
+np.float32,0x3f5c75d6,0x3fb2786e,3
+np.float32,0x7f365fc9,0x7f800000,3
+np.float32,0x54e965,0x3f800000,3
+np.float32,0x6dcd4d,0x3f800000,3
+np.float32,0x3f2057a0,0x3f99f04d,3
+np.float32,0x272fa3,0x3f800000,3
+np.float32,0xff423dc9,0x7f800000,3
+np.float32,0x80273463,0x3f800000,3
+np.float32,0xfe21cc78,0x7f800000,3
+np.float32,0x7fc00000,0x7fc00000,3
+np.float32,0x802feb65,0x3f800000,3
+np.float32,0x3dc733d0,0x3f809b21,3
+np.float32,0x65d56b,0x3f800000,3
+np.float32,0x80351d8e,0x3f800000,3
+np.float32,0xbf244247,0x3f9b43dd,3
+np.float32,0x7f328e7e,0x7f800000,3
+np.float32,0x7f4d9712,0x7f800000,3
+np.float32,0x2c505d,0x3f800000,3
+np.float32,0xbf232ebe,0x3f9ae5a0,3
+np.float32,0x804a363a,0x3f800000,3
+np.float32,0x80417102,0x3f800000,3
+np.float32,0xbf48b170,0x3fa963d4,3
+np.float32,0x7ea3e3b6,0x7f800000,3
+np.float32,0xbf41415b,0x3fa63cd2,3
+np.float32,0xfe3af7c8,0x7f800000,3
+np.float32,0x7f478010,0x7f800000,3
+np.float32,0x80143113,0x3f800000,3
+np.float32,0x3f7626a7,0x3fbfdf2e,3
+np.float32,0xfea20b0a,0x7f800000,3
+np.float32,0x80144d64,0x3f800000,3
+np.float32,0x7db9ba47,0x7f800000,3
+np.float32,0x7f7fffff,0x7f800000,3
+np.float32,0xbe410834,0x3f8247ef,3
+np.float32,0x14a7af,0x3f800000,3
+np.float32,0x7eaebf9e,0x7f800000,3
+np.float32,0xff800000,0x7f800000,3
+np.float32,0x3f0a7d8e,0x3f9330fd,3
+np.float32,0x3ef780,0x3f800000,3
+np.float32,0x3f62253e,0x3fb546d1,3
+np.float32,0x3f4cbeac,0x3fab2acc,3
+np.float32,0x25db1,0x3f800000,3
+np.float32,0x65c54a,0x3f800000,3
+np.float32,0x800f0645,0x3f800000,3
+np.float32,0x3ed28c78,0x3f8af9f0,3
+np.float32,0x8040c6ce,0x3f800000,3
+np.float32,0x5e4e9a,0x3f800000,3
+np.float32,0xbd3fd2b0,0x3f8023f1,3
+np.float32,0xbf5d2d3f,0x3fb2d1b6,3
+np.float32,0x7ead999f,0x7f800000,3
+np.float32,0xbf30dc86,0x3f9fc805,3
+np.float32,0xff2b0a62,0x7f800000,3
+np.float32,0x3d5180e9,0x3f802adf,3
+np.float32,0x3f62716f,0x3fb56d0d,3
+np.float32,0x7e82ae9c,0x7f800000,3
+np.float32,0xfe2d4bdc,0x7f800000,3
+np.float32,0x805cc7d4,0x3f800000,3
+np.float32,0xfb50f700,0x7f800000,3
+np.float32,0xff57b684,0x7f800000,3
+np.float32,0x80344f01,0x3f800000,3
+np.float32,0x7f2af372,0x7f800000,3
+np.float32,0xfeab6204,0x7f800000,3
+np.float32,0x30b251,0x3f800000,3
+np.float32,0x3eed8cc4,0x3f8e0698,3
+np.float32,0x7eeb1c6a,0x7f800000,3
+np.float32,0x3f17ece6,0x3f9735b0,3
+np.float32,0x21e985,0x3f800000,3
+np.float32,0x3f3a7df3,0x3fa37e34,3
+np.float32,0x802a14a2,0x3f800000,3
+np.float32,0x807d4d5b,0x3f800000,3
+np.float32,0x7f6093ce,0x7f800000,3
+np.float32,0x3f800000,0x3fc583ab,3
+np.float32,0x3da2c26e,0x3f806789,3
+np.float32,0xfe05f278,0x7f800000,3
+np.float32,0x800000,0x3f800000,3
+np.float32,0xbee63342,0x3f8d282e,3
+np.float32,0xbf225586,0x3f9a9bd4,3
+np.float32,0xbed60e86,0x3f8b59ba,3
+np.float32,0xbec99484,0x3f8a0ca3,3
+np.float32,0x3e967c71,0x3f859199,3
+np.float32,0x7f26ab62,0x7f800000,3
+np.float32,0xca7f4,0x3f800000,3
+np.float32,0xbf543790,0x3fae8ebc,3
+np.float32,0x3e4c1ed9,0x3f828d2d,3
+np.float32,0xbdf37f88,0x3f80e7e1,3
+np.float32,0xff0cc44e,0x7f800000,3
+np.float32,0x5dea48,0x3f800000,3
+np.float32,0x31023c,0x3f800000,3
+np.float32,0x3ea10733,0x3f866208,3
+np.float32,0x3e11e6f2,0x3f814d2e,3
+np.float32,0x80641960,0x3f800000,3
+np.float32,0x3ef779a8,0x3f8f3edb,3
+np.float32,0x3f2a5062,0x3f9d632a,3
+np.float32,0x2b7d34,0x3f800000,3
+np.float32,0x3eeb95c5,0x3f8dca67,3
+np.float32,0x805c1357,0x3f800000,3
+np.float32,0x3db3a79d,0x3f807e29,3
+np.float32,0xfded1900,0x7f800000,3
+np.float32,0x45f362,0x3f800000,3
+np.float32,0x451f38,0x3f800000,3
+np.float32,0x801d3ae5,0x3f800000,3
+np.float32,0x458d45,0x3f800000,3
+np.float32,0xfda9d298,0x7f800000,3
+np.float32,0x467439,0x3f800000,3
+np.float32,0x7f66554a,0x7f800000,3
+np.float32,0xfef2375a,0x7f800000,3
+np.float32,0xbf33fc47,0x3fa0f5d7,3
+np.float32,0x3f75ba69,0x3fbfa2d0,3
+np.float32,0xfeb625b2,0x7f800000,3
+np.float32,0x8066b371,0x3f800000,3
+np.float32,0x3f5cb4e9,0x3fb29718,3
+np.float32,0x7f3b6a58,0x7f800000,3
+np.float32,0x7f6b35ea,0x7f800000,3
+np.float32,0xbf6ee555,0x3fbbe5be,3
+np.float32,0x3d836e21,0x3f804380,3
+np.float32,0xff43cd0c,0x7f800000,3
+np.float32,0xff55c1fa,0x7f800000,3
+np.float32,0xbf0dfccc,0x3f9432a6,3
+np.float32,0x3ed92121,0x3f8baf00,3
+np.float32,0x80068cc1,0x3f800000,3
+np.float32,0xff0103f9,0x7f800000,3
+np.float32,0x7e51b175,0x7f800000,3
+np.float32,0x8012f214,0x3f800000,3
+np.float32,0x62d298,0x3f800000,3
+np.float32,0xbf3e1525,0x3fa4ef8d,3
+np.float32,0x806b4882,0x3f800000,3
+np.float32,0xbf38c146,0x3fa2ce7c,3
+np.float32,0xbed59c30,0x3f8b4d70,3
+np.float32,0x3d1910c0,0x3f8016e2,3
+np.float32,0x7f33d55b,0x7f800000,3
+np.float32,0x7f5800e3,0x7f800000,3
+np.float32,0x5b2c5d,0x3f800000,3
+np.float32,0x807be750,0x3f800000,3
+np.float32,0x7eb297c1,0x7f800000,3
+np.float32,0x7dafee62,0x7f800000,3
+np.float32,0x7d9e23f0,0x7f800000,3
+np.float32,0x3e580537,0x3f82dbd8,3
+np.float32,0xbf800000,0x3fc583ab,3
+np.float32,0x7f40f880,0x7f800000,3
+np.float32,0x775ad3,0x3f800000,3
+np.float32,0xbedacd36,0x3f8bddf3,3
+np.float32,0x2138f6,0x3f800000,3
+np.float32,0x52c3b7,0x3f800000,3
+np.float32,0x8041cfdd,0x3f800000,3
+np.float32,0x7bf16791,0x7f800000,3
+np.float32,0xbe95869c,0x3f857f55,3
+np.float32,0xbf199796,0x3f97bcaf,3
+np.float32,0x3ef8da38,0x3f8f6b45,3
+np.float32,0x803f3648,0x3f800000,3
+np.float32,0x80026fd2,0x3f800000,3
+np.float32,0x7eb3ac26,0x7f800000,3
+np.float32,0x3e49921b,0x3f827ce8,3
+np.float32,0xbf689aed,0x3fb892de,3
+np.float32,0x3f253509,0x3f9b9779,3
+np.float32,0xff17894a,0x7f800000,3
+np.float32,0x3cd12639,0x3f800aae,3
+np.float32,0x1db14b,0x3f800000,3
+np.float32,0x39a0bf,0x3f800000,3
+np.float32,0xfdfe1d08,0x7f800000,3
+np.float32,0xff416cd2,0x7f800000,3
+np.float32,0x8070d818,0x3f800000,3
+np.float32,0x3e516e12,0x3f82afb8,3
+np.float32,0x80536651,0x3f800000,3
+np.float32,0xbf2903d2,0x3f9cecb7,3
+np.float32,0x3e896ae4,0x3f84a353,3
+np.float32,0xbd6ba2c0,0x3f80363d,3
+np.float32,0x80126d3e,0x3f800000,3
+np.float32,0xfd9d43d0,0x7f800000,3
+np.float32,0x7b56b6,0x3f800000,3
+np.float32,0xff04718e,0x7f800000,3
+np.float32,0x31440f,0x3f800000,3
+np.float32,0xbf7a1313,0x3fc215c9,3
+np.float32,0x7f43d6a0,0x7f800000,3
+np.float32,0x3f566503,0x3faf92cc,3
+np.float32,0xbf39eb0e,0x3fa343f1,3
+np.float32,0xbe35fd70,0x3f8206df,3
+np.float32,0x800c36ac,0x3f800000,3
+np.float32,0x60d061,0x3f800000,3
+np.float32,0x80453e12,0x3f800000,3
+np.float32,0xfe17c36c,0x7f800000,3
+np.float32,0x3d8c72,0x3f800000,3
+np.float32,0xfe8e9134,0x7f800000,3
+np.float32,0xff5d89de,0x7f800000,3
+np.float32,0x7f45020e,0x7f800000,3
+np.float32,0x3f28225e,0x3f9c9d01,3
+np.float32,0xbf3b6900,0x3fa3dbdd,3
+np.float32,0x80349023,0x3f800000,3
+np.float32,0xbf14d780,0x3f964042,3
+np.float32,0x3f56b5d2,0x3fafb8c3,3
+np.float32,0x800c639c,0x3f800000,3
+np.float32,0x7f7a19c8,0x7f800000,3
+np.float32,0xbf7a0815,0x3fc20f86,3
+np.float32,0xbec55926,0x3f89a06e,3
+np.float32,0x4b2cd2,0x3f800000,3
+np.float32,0xbf271eb2,0x3f9c41c8,3
+np.float32,0xff26e168,0x7f800000,3
+np.float32,0x800166b2,0x3f800000,3
+np.float32,0xbde97e38,0x3f80d532,3
+np.float32,0xbf1f93ec,0x3f99af1a,3
+np.float32,0x7f2896ed,0x7f800000,3
+np.float32,0x3da7d96d,0x3f806e1d,3
+np.float32,0x802b7237,0x3f800000,3
+np.float32,0xfdca6bc0,0x7f800000,3
+np.float32,0xbed2e300,0x3f8b0318,3
+np.float32,0x8079d9e8,0x3f800000,3
+np.float32,0x3f388c81,0x3fa2b9c2,3
+np.float32,0x3ed2607c,0x3f8af54a,3
+np.float32,0xff287de6,0x7f800000,3
+np.float32,0x3f55ed89,0x3faf5ac9,3
+np.float32,0x7f5b6af7,0x7f800000,3
+np.float32,0xbeb24730,0x3f87d698,3
+np.float32,0x1,0x3f800000,3
+np.float32,0x3f3a2350,0x3fa35a3b,3
+np.float32,0x8013b422,0x3f800000,3
+np.float32,0x3e9a6560,0x3f85dd35,3
+np.float32,0x80510631,0x3f800000,3
+np.float32,0xfeae39d6,0x7f800000,3
+np.float32,0x7eb437ad,0x7f800000,3
+np.float32,0x8047545b,0x3f800000,3
+np.float32,0x806a1c71,0x3f800000,3
+np.float32,0xbe5543f0,0x3f82c93b,3
+np.float32,0x40e8d,0x3f800000,3
+np.float32,0x63d18b,0x3f800000,3
+np.float32,0x1fa1ea,0x3f800000,3
+np.float32,0x801944e0,0x3f800000,3
+np.float32,0xbf4c7ac6,0x3fab0cae,3
+np.float32,0x7f2679d4,0x7f800000,3
+np.float32,0x3f0102fc,0x3f9099d0,3
+np.float32,0x7e44bdc1,0x7f800000,3
+np.float32,0xbf2072f6,0x3f99f970,3
+np.float32,0x5c7d38,0x3f800000,3
+np.float32,0x30a2e6,0x3f800000,3
+np.float32,0x805b9ca3,0x3f800000,3
+np.float32,0x7cc24ad5,0x7f800000,3
+np.float32,0x3f4f7920,0x3fac6357,3
+np.float32,0x111d62,0x3f800000,3
+np.float32,0xbf4de40a,0x3fabad77,3
+np.float32,0x805d0354,0x3f800000,3
+np.float32,0xbb3d2b00,0x3f800023,3
+np.float32,0x3ef229e7,0x3f8e960b,3
+np.float32,0x3f15754e,0x3f9670e0,3
+np.float32,0xbf689c6b,0x3fb893a5,3
+np.float32,0xbf3796c6,0x3fa2599b,3
+np.float32,0xbe95303c,0x3f8578f2,3
+np.float32,0xfee330de,0x7f800000,3
+np.float32,0xff0d9705,0x7f800000,3
+np.float32,0xbeb0ebd0,0x3f87b7dd,3
+np.float32,0xbf4d5a13,0x3fab6fe7,3
+np.float32,0x80142f5a,0x3f800000,3
+np.float32,0x7e01a87b,0x7f800000,3
+np.float32,0xbe45e5ec,0x3f8265d7,3
+np.float32,0x7f4ac255,0x7f800000,3
+np.float32,0x3ebf6a60,0x3f890ccb,3
+np.float32,0x7f771e16,0x7f800000,3
+np.float32,0x3f41834e,0x3fa6582b,3
+np.float32,0x3f7f6f98,0x3fc52ef0,3
+np.float32,0x7e4ad775,0x7f800000,3
+np.float32,0x3eb39991,0x3f87f4c4,3
+np.float32,0x1e3f4,0x3f800000,3
+np.float32,0x7e84ba19,0x7f800000,3
+np.float32,0x80640be4,0x3f800000,3
+np.float32,0x3f459fc8,0x3fa81272,3
+np.float32,0x3f554ed0,0x3faf109b,3
+np.float32,0x3c6617,0x3f800000,3
+np.float32,0x7f441158,0x7f800000,3
+np.float32,0x7f66e6d8,0x7f800000,3
+np.float32,0x7f565152,0x7f800000,3
+np.float32,0x7f16d550,0x7f800000,3
+np.float32,0xbd4f1950,0x3f8029e5,3
+np.float32,0xcf722,0x3f800000,3
+np.float32,0x3f37d6fd,0x3fa272ad,3
+np.float32,0xff7324ea,0x7f800000,3
+np.float32,0x804bc246,0x3f800000,3
+np.float32,0x7f099ef8,0x7f800000,3
+np.float32,0x5f838b,0x3f800000,3
+np.float32,0x80523534,0x3f800000,3
+np.float32,0x3f595e84,0x3fb0fb50,3
+np.float32,0xfdef8ac8,0x7f800000,3
+np.float32,0x3d9a07,0x3f800000,3
+np.float32,0x410f61,0x3f800000,3
+np.float32,0xbf715dbb,0x3fbd3bcb,3
+np.float32,0xbedd4734,0x3f8c242f,3
+np.float32,0x7e86739a,0x7f800000,3
+np.float32,0x3e81f144,0x3f8424fe,3
+np.float32,0x7f6342d1,0x7f800000,3
+np.float32,0xff6919a3,0x7f800000,3
+np.float32,0xff051878,0x7f800000,3
+np.float32,0x800ba28f,0x3f800000,3
+np.float32,0xfefab3d8,0x7f800000,3
+np.float32,0xff612a84,0x7f800000,3
+np.float32,0x800cd5ab,0x3f800000,3
+np.float32,0x802a07ae,0x3f800000,3
+np.float32,0xfef6ee3a,0x7f800000,3
+np.float32,0x8037e896,0x3f800000,3
+np.float32,0x3ef2d86f,0x3f8eab7d,3
+np.float32,0x3eafe53d,0x3f87a0cb,3
+np.float32,0xba591c00,0x3f800003,3
+np.float32,0x3e9ed028,0x3f863508,3
+np.float32,0x4a12a8,0x3f800000,3
+np.float32,0xbee55c84,0x3f8d0f45,3
+np.float32,0x8038a8d3,0x3f800000,3
+np.float32,0xff055243,0x7f800000,3
+np.float32,0xbf659067,0x3fb701ca,3
+np.float32,0xbee36a86,0x3f8cd5e0,3
+np.float32,0x7f1d74c1,0x7f800000,3
+np.float32,0xbf7657df,0x3fbffaad,3
+np.float32,0x7e37ee34,0x7f800000,3
+np.float32,0xff04bc74,0x7f800000,3
+np.float32,0x806d194e,0x3f800000,3
+np.float32,0x7f5596c3,0x7f800000,3
+np.float32,0xbe09d268,0x3f81293e,3
+np.float32,0x79ff75,0x3f800000,3
+np.float32,0xbf55479c,0x3faf0d3e,3
+np.float32,0xbe5428ec,0x3f82c1d4,3
+np.float32,0x3f624134,0x3fb554d7,3
+np.float32,0x2ccb8a,0x3f800000,3
+np.float32,0xfc082040,0x7f800000,3
+np.float32,0xff315467,0x7f800000,3
+np.float32,0x3e6ea2d2,0x3f837dd5,3
+np.float32,0x8020fdd1,0x3f800000,3
+np.float32,0x7f0416a1,0x7f800000,3
+np.float32,0x710a1b,0x3f800000,3
+np.float32,0x3dfcd050,0x3f80f9fc,3
+np.float32,0xfe995e96,0x7f800000,3
+np.float32,0x3f020d00,0x3f90e006,3
+np.float32,0x8064263e,0x3f800000,3
+np.float32,0xfcee4160,0x7f800000,3
+np.float32,0x801b3a18,0x3f800000,3
+np.float32,0x3f62c984,0x3fb59955,3
+np.float32,0x806e8355,0x3f800000,3
+np.float32,0x7e94f65d,0x7f800000,3
+np.float32,0x1173de,0x3f800000,3
+np.float32,0x3e3ff3b7,0x3f824166,3
+np.float32,0x803b4aea,0x3f800000,3
+np.float32,0x804c5bcc,0x3f800000,3
+np.float32,0x509fe5,0x3f800000,3
+np.float32,0xbf33b5ee,0x3fa0db0b,3
+np.float32,0x3f2ac15c,0x3f9d8ba4,3
+np.float32,0x7f2c54f8,0x7f800000,3
+np.float32,0x7f33d933,0x7f800000,3
+np.float32,0xbf09b2b4,0x3f92f795,3
+np.float32,0x805db8d6,0x3f800000,3
+np.float32,0x6d6e66,0x3f800000,3
+np.float32,0x3ddfea92,0x3f80c40c,3
+np.float32,0xfda719b8,0x7f800000,3
+np.float32,0x5d657f,0x3f800000,3
+np.float32,0xbf005ba3,0x3f906df6,3
+np.float32,0xbf45e606,0x3fa8305c,3
+np.float32,0x5e9fd1,0x3f800000,3
+np.float32,0x8079dc45,0x3f800000,3
+np.float32,0x7e9c40e3,0x7f800000,3
+np.float32,0x6bd5f6,0x3f800000,3
+np.float32,0xbea14a0e,0x3f866761,3
+np.float32,0x7e7323f3,0x7f800000,3
+np.float32,0x7f0c0a79,0x7f800000,3
+np.float32,0xbf7d7aeb,0x3fc40b0f,3
+np.float32,0x437588,0x3f800000,3
+np.float32,0xbf356376,0x3fa17f63,3
+np.float32,0x7f129921,0x7f800000,3
+np.float32,0x7f47a52e,0x7f800000,3
+np.float32,0xba8cb400,0x3f800005,3
+np.float32,0x802284e0,0x3f800000,3
+np.float32,0xbe820f56,0x3f8426ec,3
+np.float32,0x7f2ef6cf,0x7f800000,3
+np.float32,0xbf70a090,0x3fbcd501,3
+np.float32,0xbf173fea,0x3f96ff6d,3
+np.float32,0x3e19c489,0x3f817224,3
+np.float32,0x7f429b30,0x7f800000,3
+np.float32,0xbdae4118,0x3f8076af,3
+np.float32,0x3e70ad30,0x3f838d41,3
+np.float32,0x335fed,0x3f800000,3
+np.float32,0xff5359cf,0x7f800000,3
+np.float32,0xbf17e42b,0x3f9732f1,3
+np.float32,0xff3a950b,0x7f800000,3
+np.float32,0xbcca70c0,0x3f800a02,3
+np.float32,0x3f2cda62,0x3f9e4dad,3
+np.float32,0x3f50c185,0x3facf805,3
+np.float32,0x80000001,0x3f800000,3
+np.float32,0x807b86d2,0x3f800000,3
+np.float32,0x8010c2cf,0x3f800000,3
+np.float32,0x3f130fb8,0x3f95b519,3
+np.float32,0x807dc546,0x3f800000,3
+np.float32,0xbee20740,0x3f8cad3f,3
+np.float32,0x80800000,0x3f800000,3
+np.float32,0x3cbd90c0,0x3f8008c6,3
+np.float32,0x3e693488,0x3f835571,3
+np.float32,0xbe70cd44,0x3f838e35,3
+np.float32,0xbe348dc8,0x3f81feb1,3
+np.float32,0x3f31ea90,0x3fa02d3f,3
+np.float32,0xfcd7e180,0x7f800000,3
+np.float32,0xbe30a75c,0x3f81e8d0,3
+np.float32,0x3e552c5a,0x3f82c89d,3
+np.float32,0xff513f74,0x7f800000,3
+np.float32,0xbdb16248,0x3f807afd,3
+np.float64,0x7fbbf954e437f2a9,0x7ff0000000000000,1
+np.float64,0x581bbf0cb0379,0x3ff0000000000000,1
+np.float64,0x7ff8000000000000,0x7ff8000000000000,1
+np.float64,0xffb959a2a632b348,0x7ff0000000000000,1
+np.float64,0xbfdbd6baebb7ad76,0x3ff189a5ca25a6e1,1
+np.float64,0xbfd094ec9aa129da,0x3ff08a3f6b918065,1
+np.float64,0x3fe236753f646cea,0x3ff2a982660b8b43,1
+np.float64,0xbfe537fadfaa6ff6,0x3ff3a5f1c49c31bf,1
+np.float64,0xbfe31fa7dc663f50,0x3ff2f175374aef0e,1
+np.float64,0x3fc4b6569f296cb0,0x3ff035bde801bb53,1
+np.float64,0x800ce3c00f99c780,0x3ff0000000000000,1
+np.float64,0xbfebcde33e779bc6,0x3ff66de82cd30fc5,1
+np.float64,0x800dc09d3b7b813b,0x3ff0000000000000,1
+np.float64,0x80067d4c450cfa99,0x3ff0000000000000,1
+np.float64,0x1f6ade203ed7,0x3ff0000000000000,1
+np.float64,0xbfd4e311eca9c624,0x3ff0dc1383d6c3db,1
+np.float64,0x800649b3a54c9368,0x3ff0000000000000,1
+np.float64,0xcc14d1ab9829a,0x3ff0000000000000,1
+np.float64,0x3fc290c5bb25218b,0x3ff02b290f46dd6d,1
+np.float64,0x3fe78eb8376f1d70,0x3ff488f3bc259537,1
+np.float64,0xffc60f58e82c1eb0,0x7ff0000000000000,1
+np.float64,0x3fd35666ad26accd,0x3ff0bc6573da6bcd,1
+np.float64,0x7fc20257a62404ae,0x7ff0000000000000,1
+np.float64,0x80076d842e0edb09,0x3ff0000000000000,1
+np.float64,0x3fd8e44b08b1c898,0x3ff139b9a1f8428e,1
+np.float64,0x7fd6f6fc7a2dedf8,0x7ff0000000000000,1
+np.float64,0x3fa01b9f0820373e,0x3ff00206f8ad0f1b,1
+np.float64,0x69ed190ed3da4,0x3ff0000000000000,1
+np.float64,0xbfd997eb34b32fd6,0x3ff14be65a5db4a0,1
+np.float64,0x7feada2d0935b459,0x7ff0000000000000,1
+np.float64,0xbf80987120213100,0x3ff000226d29a9fc,1
+np.float64,0xbfef203e37fe407c,0x3ff82f51f04e8821,1
+np.float64,0xffe3dcf91fa7b9f2,0x7ff0000000000000,1
+np.float64,0x9a367283346cf,0x3ff0000000000000,1
+np.float64,0x800feb09f7bfd614,0x3ff0000000000000,1
+np.float64,0xbfe0319f9520633f,0x3ff217c5205c403f,1
+np.float64,0xbfa91eabd4323d50,0x3ff004ee4347f627,1
+np.float64,0x3fd19cbf7d23397f,0x3ff09c13e8e43571,1
+np.float64,0xffeb8945f0b7128b,0x7ff0000000000000,1
+np.float64,0x800a0eb4f2141d6a,0x3ff0000000000000,1
+np.float64,0xffe83e7312f07ce6,0x7ff0000000000000,1
+np.float64,0xffca53fee834a7fc,0x7ff0000000000000,1
+np.float64,0x800881cbf1710398,0x3ff0000000000000,1
+np.float64,0x80003e6abbe07cd6,0x3ff0000000000000,1
+np.float64,0xbfef6a998afed533,0x3ff859b7852d1b4d,1
+np.float64,0x3fd4eb7577a9d6eb,0x3ff0dcc601261aab,1
+np.float64,0xbfc9c12811338250,0x3ff05331268b05c8,1
+np.float64,0x7fddf84e5e3bf09c,0x7ff0000000000000,1
+np.float64,0xbfd4d6fbbc29adf8,0x3ff0db12db19d187,1
+np.float64,0x80077892bfaef126,0x3ff0000000000000,1
+np.float64,0xffae9d49543d3a90,0x7ff0000000000000,1
+np.float64,0xbfd8bef219317de4,0x3ff136034e5d2f1b,1
+np.float64,0xffe89c74ddb138e9,0x7ff0000000000000,1
+np.float64,0x8003b6bbb7e76d78,0x3ff0000000000000,1
+np.float64,0x315a4e8462b4b,0x3ff0000000000000,1
+np.float64,0x800ee616edddcc2e,0x3ff0000000000000,1
+np.float64,0xdfb27f97bf650,0x3ff0000000000000,1
+np.float64,0x8004723dc328e47c,0x3ff0000000000000,1
+np.float64,0xbfe529500daa52a0,0x3ff3a0b9b33fc84c,1
+np.float64,0xbfe4e46a7ce9c8d5,0x3ff3886ce0f92612,1
+np.float64,0xbf52003680240000,0x3ff00000a203d61a,1
+np.float64,0xffd3400458268008,0x7ff0000000000000,1
+np.float64,0x80076deb444edbd7,0x3ff0000000000000,1
+np.float64,0xa612f6c14c27,0x3ff0000000000000,1
+np.float64,0xbfd41c74c9a838ea,0x3ff0cbe61e16aecf,1
+np.float64,0x43f464a887e8d,0x3ff0000000000000,1
+np.float64,0x800976e748b2edcf,0x3ff0000000000000,1
+np.float64,0xffc79d6ba12f3ad8,0x7ff0000000000000,1
+np.float64,0xffd6dbcb022db796,0x7ff0000000000000,1
+np.float64,0xffd6a9672a2d52ce,0x7ff0000000000000,1
+np.float64,0x3fe95dcfa632bb9f,0x3ff54bbad2ee919e,1
+np.float64,0x3febadd2e1375ba6,0x3ff65e336c47c018,1
+np.float64,0x7fd47c37d828f86f,0x7ff0000000000000,1
+np.float64,0xbfd4ea59e0a9d4b4,0x3ff0dcae6af3e443,1
+np.float64,0x2c112afc58226,0x3ff0000000000000,1
+np.float64,0x8008122bced02458,0x3ff0000000000000,1
+np.float64,0x7fe7105ab3ee20b4,0x7ff0000000000000,1
+np.float64,0x80089634df312c6a,0x3ff0000000000000,1
+np.float64,0x68e9fbc8d1d40,0x3ff0000000000000,1
+np.float64,0xbfec1e1032f83c20,0x3ff69590b9f18ea8,1
+np.float64,0xbfedf181623be303,0x3ff787ef48935dc6,1
+np.float64,0xffe8600457f0c008,0x7ff0000000000000,1
+np.float64,0x7a841ec6f5084,0x3ff0000000000000,1
+np.float64,0x459a572e8b34c,0x3ff0000000000000,1
+np.float64,0x3fe8a232bef14465,0x3ff4fac1780f731e,1
+np.float64,0x3fcb37597d366eb3,0x3ff05cf08ab14ebd,1
+np.float64,0xbfb0261d00204c38,0x3ff00826fb86ca8a,1
+np.float64,0x3fc6e7a6dd2dcf4e,0x3ff041c1222ffa79,1
+np.float64,0xee65dd03dccbc,0x3ff0000000000000,1
+np.float64,0xffe26fdc23e4dfb8,0x7ff0000000000000,1
+np.float64,0x7fe8d6c8cab1ad91,0x7ff0000000000000,1
+np.float64,0xbfeb64bf2676c97e,0x3ff63abb8607828c,1
+np.float64,0x3fd28417b425082f,0x3ff0ac9eb22a732b,1
+np.float64,0xbfd26835b3a4d06c,0x3ff0aa94c48fb6d2,1
+np.float64,0xffec617a01b8c2f3,0x7ff0000000000000,1
+np.float64,0xe1bfff01c3800,0x3ff0000000000000,1
+np.float64,0x3fd4def913a9bdf4,0x3ff0dbbc7271046f,1
+np.float64,0x94f4c17129e98,0x3ff0000000000000,1
+np.float64,0x8009b2eaa33365d6,0x3ff0000000000000,1
+np.float64,0x3fd9633b41b2c678,0x3ff1468388bdfb65,1
+np.float64,0xffe0ae5c80e15cb8,0x7ff0000000000000,1
+np.float64,0x7fdfc35996bf86b2,0x7ff0000000000000,1
+np.float64,0x3fcfc5bdc23f8b7c,0x3ff07ed5caa4545c,1
+np.float64,0xd48b4907a9169,0x3ff0000000000000,1
+np.float64,0xbfe0a2cc52614598,0x3ff2361665895d95,1
+np.float64,0xbfe9068f90720d1f,0x3ff525b82491a1a5,1
+np.float64,0x4238b9208472,0x3ff0000000000000,1
+np.float64,0x800e6b2bf69cd658,0x3ff0000000000000,1
+np.float64,0x7fb638b6ae2c716c,0x7ff0000000000000,1
+np.float64,0x7fe267641764cec7,0x7ff0000000000000,1
+np.float64,0xffc0933d3521267c,0x7ff0000000000000,1
+np.float64,0x7fddfdfb533bfbf6,0x7ff0000000000000,1
+np.float64,0xced2a8e99da55,0x3ff0000000000000,1
+np.float64,0x2a80d5165501b,0x3ff0000000000000,1
+np.float64,0xbfeead2ab63d5a55,0x3ff7eeb5cbcfdcab,1
+np.float64,0x80097f6f92f2fee0,0x3ff0000000000000,1
+np.float64,0x3fee1f29b77c3e54,0x3ff7a0a58c13df62,1
+np.float64,0x3f9d06b8383a0d70,0x3ff001a54a2d8cf8,1
+np.float64,0xbfc8b41d3f31683c,0x3ff04c85379dd6b0,1
+np.float64,0xffd2a04c1e254098,0x7ff0000000000000,1
+np.float64,0xbfb71c01e02e3800,0x3ff010b34220e838,1
+np.float64,0xbfe69249ef6d2494,0x3ff425e48d1e938b,1
+np.float64,0xffefffffffffffff,0x7ff0000000000000,1
+np.float64,0x3feb1d52fbf63aa6,0x3ff618813ae922d7,1
+np.float64,0x7fb8d1a77e31a34e,0x7ff0000000000000,1
+np.float64,0xffc3cfc4ed279f88,0x7ff0000000000000,1
+np.float64,0x2164b9fc42c98,0x3ff0000000000000,1
+np.float64,0x3fbb868cee370d1a,0x3ff017b31b0d4d27,1
+np.float64,0x3fcd6dea583adbd5,0x3ff06cbd16bf44a0,1
+np.float64,0xbfecd041d479a084,0x3ff6efb25f61012d,1
+np.float64,0xbfb0552e6e20aa60,0x3ff00856ca83834a,1
+np.float64,0xe6293cbfcc528,0x3ff0000000000000,1
+np.float64,0x7fba58394034b072,0x7ff0000000000000,1
+np.float64,0x33bc96d467794,0x3ff0000000000000,1
+np.float64,0xffe90ea86bf21d50,0x7ff0000000000000,1
+np.float64,0xbfc626ea6d2c4dd4,0x3ff03d7e01ec3849,1
+np.float64,0x65b56fe4cb6af,0x3ff0000000000000,1
+np.float64,0x3fea409fb7f4813f,0x3ff5b171deab0ebd,1
+np.float64,0x3fe849c1df709384,0x3ff4d59063ff98c4,1
+np.float64,0x169073082d20f,0x3ff0000000000000,1
+np.float64,0xcc8b6add9916e,0x3ff0000000000000,1
+np.float64,0xbfef3d78d5fe7af2,0x3ff83fecc26abeea,1
+np.float64,0x3fe8c65a4a718cb4,0x3ff50a23bfeac7df,1
+np.float64,0x3fde9fa5c8bd3f4c,0x3ff1ddeb12b9d623,1
+np.float64,0xffe2af536da55ea6,0x7ff0000000000000,1
+np.float64,0x800186d0b0c30da2,0x3ff0000000000000,1
+np.float64,0x3fe9ba3c1d737478,0x3ff574ab2bf3a560,1
+np.float64,0xbfe1489c46a29138,0x3ff2641d36b30e21,1
+np.float64,0xbfe4b6b7c0e96d70,0x3ff37880ac8b0540,1
+np.float64,0x800e66ad82fccd5b,0x3ff0000000000000,1
+np.float64,0x7ff0000000000000,0x7ff0000000000000,1
+np.float64,0x7febb0fd477761fa,0x7ff0000000000000,1
+np.float64,0xbfdc433f2eb8867e,0x3ff195ec2a6cce27,1
+np.float64,0x3fe12c5a172258b4,0x3ff25c225b8a34bb,1
+np.float64,0xbfef6f116c3ede23,0x3ff85c47eaed49a0,1
+np.float64,0x800af6f60f35edec,0x3ff0000000000000,1
+np.float64,0xffe567999a2acf32,0x7ff0000000000000,1
+np.float64,0xbfc5ac5ae72b58b4,0x3ff03adb50ec04f3,1
+np.float64,0x3fea1b57e23436b0,0x3ff5a06f98541767,1
+np.float64,0x7fcc3e36fb387c6d,0x7ff0000000000000,1
+np.float64,0x8000c8dc698191ba,0x3ff0000000000000,1
+np.float64,0x3fee5085ed7ca10c,0x3ff7bb92f61245b8,1
+np.float64,0x7fbb9f803a373eff,0x7ff0000000000000,1
+np.float64,0xbfe1e5e806e3cbd0,0x3ff2918f2d773007,1
+np.float64,0x8008f8c3f3b1f188,0x3ff0000000000000,1
+np.float64,0x7fe53df515ea7be9,0x7ff0000000000000,1
+np.float64,0x7fdbb87fb3b770fe,0x7ff0000000000000,1
+np.float64,0x3fefcc0f50ff981f,0x3ff89210a6a04e6b,1
+np.float64,0x3fe33f87d0267f10,0x3ff2fb989ea4f2bc,1
+np.float64,0x1173992022e8,0x3ff0000000000000,1
+np.float64,0x3fef534632bea68c,0x3ff84c5ca9713ff9,1
+np.float64,0x3fc5991d552b3238,0x3ff03a72bfdb6e5f,1
+np.float64,0x3fdad90dc1b5b21c,0x3ff16db868180034,1
+np.float64,0xffe20b8078e41700,0x7ff0000000000000,1
+np.float64,0x7fdf409a82be8134,0x7ff0000000000000,1
+np.float64,0x3fccb7e691396fcd,0x3ff06786b6ccdbcb,1
+np.float64,0xffe416e0b7282dc1,0x7ff0000000000000,1
+np.float64,0xffe3a8a981275152,0x7ff0000000000000,1
+np.float64,0x3fd9c8bd31b3917c,0x3ff150ee6f5f692f,1
+np.float64,0xffeab6fef6356dfd,0x7ff0000000000000,1
+np.float64,0x3fe9c5e3faf38bc8,0x3ff579e18c9bd548,1
+np.float64,0x800b173e44762e7d,0x3ff0000000000000,1
+np.float64,0xffe2719db764e33b,0x7ff0000000000000,1
+np.float64,0x3fd1fcf31223f9e6,0x3ff0a2da7ad99856,1
+np.float64,0x80082c4afcd05896,0x3ff0000000000000,1
+np.float64,0xa56e5e4b4adcc,0x3ff0000000000000,1
+np.float64,0xffbbbddab2377bb8,0x7ff0000000000000,1
+np.float64,0x3b3927c076726,0x3ff0000000000000,1
+np.float64,0x3fec03fd58f807fb,0x3ff6889b8a774728,1
+np.float64,0xbfaa891fb4351240,0x3ff00580987bd914,1
+np.float64,0x7fb4800c4a290018,0x7ff0000000000000,1
+np.float64,0xffbb5d2b6036ba58,0x7ff0000000000000,1
+np.float64,0x7fd6608076acc100,0x7ff0000000000000,1
+np.float64,0x31267e4c624d1,0x3ff0000000000000,1
+np.float64,0x33272266664e5,0x3ff0000000000000,1
+np.float64,0x47bb37f28f768,0x3ff0000000000000,1
+np.float64,0x3fe134bb4ee26977,0x3ff25e7ea647a928,1
+np.float64,0xbfe2b5f42ba56be8,0x3ff2d05cbdc7344b,1
+np.float64,0xbfe0e013fd61c028,0x3ff246dfce572914,1
+np.float64,0x7fecedcda4f9db9a,0x7ff0000000000000,1
+np.float64,0x8001816c2da302d9,0x3ff0000000000000,1
+np.float64,0xffced8b65b3db16c,0x7ff0000000000000,1
+np.float64,0xffdc1d4a0b383a94,0x7ff0000000000000,1
+np.float64,0x7fe94e7339f29ce5,0x7ff0000000000000,1
+np.float64,0x33fb846667f71,0x3ff0000000000000,1
+np.float64,0x800a1380e9542702,0x3ff0000000000000,1
+np.float64,0x800b74eaa776e9d6,0x3ff0000000000000,1
+np.float64,0x5681784aad030,0x3ff0000000000000,1
+np.float64,0xbfee0eb7917c1d6f,0x3ff797b949f7f6b4,1
+np.float64,0xffe4ec5fd2a9d8bf,0x7ff0000000000000,1
+np.float64,0xbfcd7401dd3ae804,0x3ff06cea52c792c0,1
+np.float64,0x800587563beb0ead,0x3ff0000000000000,1
+np.float64,0x3fc15c6f3322b8de,0x3ff025bbd030166d,1
+np.float64,0x7feb6b4caf76d698,0x7ff0000000000000,1
+np.float64,0x7fe136ef82a26dde,0x7ff0000000000000,1
+np.float64,0xf592dac3eb25c,0x3ff0000000000000,1
+np.float64,0x7fd300baf6a60175,0x7ff0000000000000,1
+np.float64,0x7fc880de9e3101bc,0x7ff0000000000000,1
+np.float64,0x7fe7a1aa5caf4354,0x7ff0000000000000,1
+np.float64,0x2f9b8e0e5f373,0x3ff0000000000000,1
+np.float64,0xffcc9071993920e4,0x7ff0000000000000,1
+np.float64,0x8009e151b313c2a4,0x3ff0000000000000,1
+np.float64,0xbfd46e2d18a8dc5a,0x3ff0d27a7b37c1ae,1
+np.float64,0x3fe65c7961acb8f3,0x3ff4116946062a4c,1
+np.float64,0x7fd31b371626366d,0x7ff0000000000000,1
+np.float64,0x98dc924d31b93,0x3ff0000000000000,1
+np.float64,0x268bef364d17f,0x3ff0000000000000,1
+np.float64,0x7fd883ba56310774,0x7ff0000000000000,1
+np.float64,0x3fc53f01a32a7e03,0x3ff0388dea9cd63e,1
+np.float64,0xffe1ea8c0563d518,0x7ff0000000000000,1
+np.float64,0x3fd0bf0e63a17e1d,0x3ff08d0577f5ffa6,1
+np.float64,0x7fef42418f7e8482,0x7ff0000000000000,1
+np.float64,0x8000bccd38c1799b,0x3ff0000000000000,1
+np.float64,0xbfe6c48766ed890f,0x3ff43936fa4048c8,1
+np.float64,0xbfb2a38f3a254720,0x3ff00adc7f7b2822,1
+np.float64,0x3fd5262b2eaa4c56,0x3ff0e1af492c08f5,1
+np.float64,0x80065b4691ecb68e,0x3ff0000000000000,1
+np.float64,0xfb6b9e9ff6d74,0x3ff0000000000000,1
+np.float64,0x8006c71e6ecd8e3e,0x3ff0000000000000,1
+np.float64,0x3fd0a3e43ca147c8,0x3ff08b3ad7b42485,1
+np.float64,0xbfc82d8607305b0c,0x3ff04949d6733ef6,1
+np.float64,0xde048c61bc092,0x3ff0000000000000,1
+np.float64,0xffcf73e0fa3ee7c0,0x7ff0000000000000,1
+np.float64,0xbfe8639d7830c73b,0x3ff4e05f97948376,1
+np.float64,0x8010000000000000,0x3ff0000000000000,1
+np.float64,0x67f01a2acfe04,0x3ff0000000000000,1
+np.float64,0x3fe222e803e445d0,0x3ff2a3a75e5f29d8,1
+np.float64,0xffef84c6387f098b,0x7ff0000000000000,1
+np.float64,0x3fe5969c1e6b2d38,0x3ff3c80130462bb2,1
+np.float64,0x8009f56953d3ead3,0x3ff0000000000000,1
+np.float64,0x3fe05c9b6360b937,0x3ff2232e1cba5617,1
+np.float64,0x3fd8888d63b1111b,0x3ff130a5b788d52f,1
+np.float64,0xffe3a9e6f26753ce,0x7ff0000000000000,1
+np.float64,0x800e2aaa287c5554,0x3ff0000000000000,1
+np.float64,0x3fea8d6c82351ad9,0x3ff5d4d8cde9a11d,1
+np.float64,0x7feef700723dee00,0x7ff0000000000000,1
+np.float64,0x3fa5cb77242b96e0,0x3ff003b62b3e50f1,1
+np.float64,0x7fb68f0a862d1e14,0x7ff0000000000000,1
+np.float64,0x7fb97ee83432fdcf,0x7ff0000000000000,1
+np.float64,0x7fd74a78632e94f0,0x7ff0000000000000,1
+np.float64,0x7fcfe577713fcaee,0x7ff0000000000000,1
+np.float64,0xffe192ee5ea325dc,0x7ff0000000000000,1
+np.float64,0x477d6ae48efae,0x3ff0000000000000,1
+np.float64,0xffe34d5237669aa4,0x7ff0000000000000,1
+np.float64,0x7fe3ce8395a79d06,0x7ff0000000000000,1
+np.float64,0x80019c01ffa33805,0x3ff0000000000000,1
+np.float64,0x74b5b56ce96b7,0x3ff0000000000000,1
+np.float64,0x7fe05ecdeda0bd9b,0x7ff0000000000000,1
+np.float64,0xffe9693eb232d27d,0x7ff0000000000000,1
+np.float64,0xffd2be2c7da57c58,0x7ff0000000000000,1
+np.float64,0x800dbd5cbc1b7aba,0x3ff0000000000000,1
+np.float64,0xbfa36105d426c210,0x3ff002ef2e3a87f7,1
+np.float64,0x800b2d69fb765ad4,0x3ff0000000000000,1
+np.float64,0xbfdb81c9a9370394,0x3ff1802d409cbf7a,1
+np.float64,0x7fd481d014a9039f,0x7ff0000000000000,1
+np.float64,0xffe66c3c1fecd878,0x7ff0000000000000,1
+np.float64,0x3fc55865192ab0c8,0x3ff03915b51e8839,1
+np.float64,0xd6a78987ad4f1,0x3ff0000000000000,1
+np.float64,0x800c6cc80d58d990,0x3ff0000000000000,1
+np.float64,0x979435a12f29,0x3ff0000000000000,1
+np.float64,0xbfbd971e7a3b2e40,0x3ff01b647e45f5a6,1
+np.float64,0x80067565bfeceacc,0x3ff0000000000000,1
+np.float64,0x8001ad689ce35ad2,0x3ff0000000000000,1
+np.float64,0x7fa43253dc2864a7,0x7ff0000000000000,1
+np.float64,0xbfe3dda307e7bb46,0x3ff32ef99a2efe1d,1
+np.float64,0x3fe5d7b395ebaf68,0x3ff3dfd33cdc8ef4,1
+np.float64,0xd94cc9c3b2999,0x3ff0000000000000,1
+np.float64,0x3fee5a513fbcb4a2,0x3ff7c0f17b876ce5,1
+np.float64,0xffe27761fa64eec4,0x7ff0000000000000,1
+np.float64,0x3feb788119b6f102,0x3ff64446f67f4efa,1
+np.float64,0xbfed6e10dffadc22,0x3ff741d5ef610ca0,1
+np.float64,0x7fe73cf98b2e79f2,0x7ff0000000000000,1
+np.float64,0x7847d09af08fb,0x3ff0000000000000,1
+np.float64,0x29ded2da53bdb,0x3ff0000000000000,1
+np.float64,0xbfe51c1ec1aa383e,0x3ff39c0b7cf832e2,1
+np.float64,0xbfeafd5e65f5fabd,0x3ff609548a787f57,1
+np.float64,0x3fd872a26fb0e545,0x3ff12e7fbd95505c,1
+np.float64,0x7fed6b7c1b7ad6f7,0x7ff0000000000000,1
+np.float64,0xffe7ba9ec16f753d,0x7ff0000000000000,1
+np.float64,0x7f89b322f0336645,0x7ff0000000000000,1
+np.float64,0xbfad1677383a2cf0,0x3ff0069ca67e7baa,1
+np.float64,0x3fe0906d04a120da,0x3ff2311b04b7bfef,1
+np.float64,0xffe4b3c9d4296793,0x7ff0000000000000,1
+np.float64,0xbfe476bb0ce8ed76,0x3ff36277d2921a74,1
+np.float64,0x7fc35655cf26acab,0x7ff0000000000000,1
+np.float64,0x7fe9980f0373301d,0x7ff0000000000000,1
+np.float64,0x9e6e04cb3cdc1,0x3ff0000000000000,1
+np.float64,0x800b89e0afb713c2,0x3ff0000000000000,1
+np.float64,0x800bd951a3f7b2a4,0x3ff0000000000000,1
+np.float64,0x29644a9e52c8a,0x3ff0000000000000,1
+np.float64,0x3fe1be2843637c51,0x3ff285e90d8387e4,1
+np.float64,0x7fa233cce4246799,0x7ff0000000000000,1
+np.float64,0xbfcfb7bc2d3f6f78,0x3ff07e657de3e2ed,1
+np.float64,0xffd7c953e7af92a8,0x7ff0000000000000,1
+np.float64,0xbfc5bbaf772b7760,0x3ff03b2ee4febb1e,1
+np.float64,0x8007b7315a6f6e63,0x3ff0000000000000,1
+np.float64,0xbfe906d902320db2,0x3ff525d7e16acfe0,1
+np.float64,0x3fde33d8553c67b1,0x3ff1d09faa19aa53,1
+np.float64,0x61fe76a0c3fcf,0x3ff0000000000000,1
+np.float64,0xa75e355b4ebc7,0x3ff0000000000000,1
+np.float64,0x3fc9e6d86033cdb1,0x3ff05426299c7064,1
+np.float64,0x7fd83f489eb07e90,0x7ff0000000000000,1
+np.float64,0x8000000000000001,0x3ff0000000000000,1
+np.float64,0x80014434ae62886a,0x3ff0000000000000,1
+np.float64,0xbfe21af9686435f3,0x3ff2a149338bdefe,1
+np.float64,0x9354e6cd26a9d,0x3ff0000000000000,1
+np.float64,0xb42b95f768573,0x3ff0000000000000,1
+np.float64,0xbfecb4481bb96890,0x3ff6e15d269dd651,1
+np.float64,0x3f97842ae82f0840,0x3ff0011485156f28,1
+np.float64,0xffdef63d90bdec7c,0x7ff0000000000000,1
+np.float64,0x7fe511a8d36a2351,0x7ff0000000000000,1
+np.float64,0xbf8cb638a0396c80,0x3ff000670c318fb6,1
+np.float64,0x3fe467e1f668cfc4,0x3ff35d65f93ccac6,1
+np.float64,0xbfce7d88f03cfb10,0x3ff074c22475fe5b,1
+np.float64,0x6d0a4994da14a,0x3ff0000000000000,1
+np.float64,0xbfb3072580260e48,0x3ff00b51d3913e9f,1
+np.float64,0x8008fcde36b1f9bd,0x3ff0000000000000,1
+np.float64,0x3fd984df66b309c0,0x3ff149f29125eca4,1
+np.float64,0xffee2a10fe7c5421,0x7ff0000000000000,1
+np.float64,0x80039168ace722d2,0x3ff0000000000000,1
+np.float64,0xffda604379b4c086,0x7ff0000000000000,1
+np.float64,0xffdc6a405bb8d480,0x7ff0000000000000,1
+np.float64,0x3fe62888b26c5111,0x3ff3fdda754c4372,1
+np.float64,0x8008b452cb5168a6,0x3ff0000000000000,1
+np.float64,0x6165d540c2cbb,0x3ff0000000000000,1
+np.float64,0xbfee0c04d17c180a,0x3ff796431c64bcbe,1
+np.float64,0x800609b8448c1371,0x3ff0000000000000,1
+np.float64,0x800fc3fca59f87f9,0x3ff0000000000000,1
+np.float64,0x77f64848efeca,0x3ff0000000000000,1
+np.float64,0x8007cf522d8f9ea5,0x3ff0000000000000,1
+np.float64,0xbfe9fb0b93f3f617,0x3ff591cb0052e22c,1
+np.float64,0x7fd569d5f0aad3ab,0x7ff0000000000000,1
+np.float64,0x7fe5cf489d6b9e90,0x7ff0000000000000,1
+np.float64,0x7fd6e193e92dc327,0x7ff0000000000000,1
+np.float64,0xf78988a5ef131,0x3ff0000000000000,1
+np.float64,0x3fe8f97562b1f2eb,0x3ff5201080fbc12d,1
+np.float64,0x7febfd69d7b7fad3,0x7ff0000000000000,1
+np.float64,0xffc07b5c1720f6b8,0x7ff0000000000000,1
+np.float64,0xbfd966926832cd24,0x3ff146da9adf492e,1
+np.float64,0x7fef5bd9edfeb7b3,0x7ff0000000000000,1
+np.float64,0xbfd2afbc96255f7a,0x3ff0afd601febf44,1
+np.float64,0x7fdd4ea6293a9d4b,0x7ff0000000000000,1
+np.float64,0xbfe8a1e916b143d2,0x3ff4faa23c2793e5,1
+np.float64,0x800188fcd8c311fa,0x3ff0000000000000,1
+np.float64,0xbfe30803f1661008,0x3ff2e9fc729baaee,1
+np.float64,0x7fefffffffffffff,0x7ff0000000000000,1
+np.float64,0x3fd287bec3250f7e,0x3ff0ace34d3102f6,1
+np.float64,0x1f0ee9443e1de,0x3ff0000000000000,1
+np.float64,0xbfd92f73da325ee8,0x3ff14143e4fa2c5a,1
+np.float64,0x3fed7c9bdffaf938,0x3ff74984168734d3,1
+np.float64,0x8002c4d1696589a4,0x3ff0000000000000,1
+np.float64,0xfe03011bfc060,0x3ff0000000000000,1
+np.float64,0x7f7a391e6034723c,0x7ff0000000000000,1
+np.float64,0xffd6fd46f82dfa8e,0x7ff0000000000000,1
+np.float64,0xbfd7520a742ea414,0x3ff112f1ba5d4f91,1
+np.float64,0x8009389d8812713b,0x3ff0000000000000,1
+np.float64,0x7fefb846aaff708c,0x7ff0000000000000,1
+np.float64,0x3fd98a0983331413,0x3ff14a79efb8adbf,1
+np.float64,0xbfd897158db12e2c,0x3ff132137902cf3e,1
+np.float64,0xffc4048d5928091c,0x7ff0000000000000,1
+np.float64,0x80036ae46046d5ca,0x3ff0000000000000,1
+np.float64,0x7faba7ed3c374fd9,0x7ff0000000000000,1
+np.float64,0xbfec4265e1f884cc,0x3ff6a7b8602422c9,1
+np.float64,0xaa195e0b5432c,0x3ff0000000000000,1
+np.float64,0x3feac15d317582ba,0x3ff5ed115758145f,1
+np.float64,0x6c13a5bcd8275,0x3ff0000000000000,1
+np.float64,0xbfed20b8883a4171,0x3ff7194dbd0dc988,1
+np.float64,0x800cde65c899bccc,0x3ff0000000000000,1
+np.float64,0x7c72912af8e53,0x3ff0000000000000,1
+np.float64,0x3fe49d2bb4e93a57,0x3ff36fab3aba15d4,1
+np.float64,0xbfd598fa02ab31f4,0x3ff0eb72fc472025,1
+np.float64,0x8007a191712f4324,0x3ff0000000000000,1
+np.float64,0xbfdeb14872bd6290,0x3ff1e01ca83f35fd,1
+np.float64,0xbfe1da46b3e3b48e,0x3ff28e23ad2f5615,1
+np.float64,0x800a2f348e745e69,0x3ff0000000000000,1
+np.float64,0xbfee66928afccd25,0x3ff7c7ac7dbb3273,1
+np.float64,0xffd78a0a2b2f1414,0x7ff0000000000000,1
+np.float64,0x7fc5fa80b82bf500,0x7ff0000000000000,1
+np.float64,0x800e6d7260dcdae5,0x3ff0000000000000,1
+np.float64,0xbfd6cff2aaad9fe6,0x3ff106f78ee61642,1
+np.float64,0x7fe1041d1d220839,0x7ff0000000000000,1
+np.float64,0xbfdf75586cbeeab0,0x3ff1f8dbaa7e57f0,1
+np.float64,0xffdcaae410b955c8,0x7ff0000000000000,1
+np.float64,0x800fe5e0d1ffcbc2,0x3ff0000000000000,1
+np.float64,0x800d7999527af333,0x3ff0000000000000,1
+np.float64,0xbfe62c233bac5846,0x3ff3ff34220a204c,1
+np.float64,0x7fe99bbff8f3377f,0x7ff0000000000000,1
+np.float64,0x7feeaf471d3d5e8d,0x7ff0000000000000,1
+np.float64,0xd5904ff5ab20a,0x3ff0000000000000,1
+np.float64,0x3fd07aae3320f55c,0x3ff08888c227c968,1
+np.float64,0x7fea82b8dff50571,0x7ff0000000000000,1
+np.float64,0xffef2db9057e5b71,0x7ff0000000000000,1
+np.float64,0xbfe2077fef640f00,0x3ff29b7dd0d39d36,1
+np.float64,0xbfe09a4d7c61349b,0x3ff233c7e88881f4,1
+np.float64,0x3fda50c4cbb4a188,0x3ff15f28a71deee7,1
+np.float64,0x7fe7d9ee6b2fb3dc,0x7ff0000000000000,1
+np.float64,0x3febbf6faeb77edf,0x3ff666d13682ea93,1
+np.float64,0xc401a32988035,0x3ff0000000000000,1
+np.float64,0xbfeab30aa8f56615,0x3ff5e65dcc6603f8,1
+np.float64,0x92c8cea32591a,0x3ff0000000000000,1
+np.float64,0xbff0000000000000,0x3ff8b07551d9f550,1
+np.float64,0xbfbddfb4dc3bbf68,0x3ff01bebaec38faa,1
+np.float64,0xbfd8de3e2a31bc7c,0x3ff1391f4830d20b,1
+np.float64,0xffc83a8f8a307520,0x7ff0000000000000,1
+np.float64,0x3fee026ef53c04de,0x3ff7911337085827,1
+np.float64,0x7fbaf380b235e700,0x7ff0000000000000,1
+np.float64,0xffe5b89fa62b713f,0x7ff0000000000000,1
+np.float64,0xbfdc1ff54ab83fea,0x3ff191e8c0b60bb2,1
+np.float64,0x6ae3534cd5c6b,0x3ff0000000000000,1
+np.float64,0xbfea87e558750fcb,0x3ff5d24846013794,1
+np.float64,0xffe0f467bee1e8cf,0x7ff0000000000000,1
+np.float64,0x7fee3b0dc7bc761b,0x7ff0000000000000,1
+np.float64,0x3fed87521afb0ea4,0x3ff74f2f5cd36a5c,1
+np.float64,0x7b3c9882f6794,0x3ff0000000000000,1
+np.float64,0x7fdd1a62243a34c3,0x7ff0000000000000,1
+np.float64,0x800f1dc88d3e3b91,0x3ff0000000000000,1
+np.float64,0x7fc3213cfa264279,0x7ff0000000000000,1
+np.float64,0x3fe40e0f3d681c1e,0x3ff33f135e9d5ded,1
+np.float64,0x7febf14e51f7e29c,0x7ff0000000000000,1
+np.float64,0xffe96c630c72d8c5,0x7ff0000000000000,1
+np.float64,0x7fdd82fbe7bb05f7,0x7ff0000000000000,1
+np.float64,0xbf9a6a0b1034d420,0x3ff0015ce009f7d8,1
+np.float64,0xbfceb4f8153d69f0,0x3ff0766e3ecc77df,1
+np.float64,0x3fd9de31e633bc64,0x3ff15327b794a16e,1
+np.float64,0x3faa902a30352054,0x3ff00583848d1969,1
+np.float64,0x0,0x3ff0000000000000,1
+np.float64,0x3fbe3459c43c68b4,0x3ff01c8af6710ef6,1
+np.float64,0xbfa8df010031be00,0x3ff004d5632dc9f5,1
+np.float64,0x7fbcf6cf2a39ed9d,0x7ff0000000000000,1
+np.float64,0xffe4236202a846c4,0x7ff0000000000000,1
+np.float64,0x3fd35ed52e26bdaa,0x3ff0bd0b231f11f7,1
+np.float64,0x7fe7a2df532f45be,0x7ff0000000000000,1
+np.float64,0xffe32f8315665f06,0x7ff0000000000000,1
+np.float64,0x7fe1a69f03e34d3d,0x7ff0000000000000,1
+np.float64,0x7fa5542b742aa856,0x7ff0000000000000,1
+np.float64,0x3fe84e9f8ef09d3f,0x3ff4d79816359765,1
+np.float64,0x29076fe6520ef,0x3ff0000000000000,1
+np.float64,0xffd70894f7ae112a,0x7ff0000000000000,1
+np.float64,0x800188edcbe311dc,0x3ff0000000000000,1
+np.float64,0x3fe2c7acda258f5a,0x3ff2d5dad4617703,1
+np.float64,0x3f775d41a02ebb00,0x3ff000110f212445,1
+np.float64,0x7fe8a084d1714109,0x7ff0000000000000,1
+np.float64,0x3fe31562d8a62ac6,0x3ff2ee35055741cd,1
+np.float64,0xbfd195d4d1a32baa,0x3ff09b98a50c151b,1
+np.float64,0xffaae9ff0c35d400,0x7ff0000000000000,1
+np.float64,0xff819866502330c0,0x7ff0000000000000,1
+np.float64,0x7fddc64815bb8c8f,0x7ff0000000000000,1
+np.float64,0xbfd442b428288568,0x3ff0cef70aa73ae6,1
+np.float64,0x8002e7625aa5cec5,0x3ff0000000000000,1
+np.float64,0x7fe8d4f70e71a9ed,0x7ff0000000000000,1
+np.float64,0xbfc3bd015f277a04,0x3ff030cbf16f29d9,1
+np.float64,0x3fd315d5baa62bab,0x3ff0b77a551a5335,1
+np.float64,0x7fa638b4642c7168,0x7ff0000000000000,1
+np.float64,0x3fdea8b795bd516f,0x3ff1df0bb70cdb79,1
+np.float64,0xbfd78754762f0ea8,0x3ff117ee0f29abed,1
+np.float64,0x8009f6a37633ed47,0x3ff0000000000000,1
+np.float64,0x3fea1daf75343b5f,0x3ff5a1804789bf13,1
+np.float64,0x3fd044b6c0a0896e,0x3ff0850b7297d02f,1
+np.float64,0x8003547a9c86a8f6,0x3ff0000000000000,1
+np.float64,0x3fa6c2cd782d859b,0x3ff0040c4ac8f44a,1
+np.float64,0x3fe225baaae44b76,0x3ff2a47f5e1f5e85,1
+np.float64,0x8000000000000000,0x3ff0000000000000,1
+np.float64,0x3fcb53da8736a7b8,0x3ff05db45af470ac,1
+np.float64,0x80079f8f140f3f1f,0x3ff0000000000000,1
+np.float64,0xbfcd1d7e2b3a3afc,0x3ff06a6b6845d05f,1
+np.float64,0x96df93672dbf3,0x3ff0000000000000,1
+np.float64,0xdef86e43bdf0e,0x3ff0000000000000,1
+np.float64,0xbfec05a09db80b41,0x3ff6896b768eea08,1
+np.float64,0x7fe3ff91d267ff23,0x7ff0000000000000,1
+np.float64,0xffea3eaa07347d53,0x7ff0000000000000,1
+np.float64,0xbfebde1cc1f7bc3a,0x3ff675e34ac2afc2,1
+np.float64,0x629bcde8c537a,0x3ff0000000000000,1
+np.float64,0xbfdde4fcff3bc9fa,0x3ff1c7061d21f0fe,1
+np.float64,0x3fee60fd003cc1fa,0x3ff7c49af3878a51,1
+np.float64,0x3fe5c92ac32b9256,0x3ff3da7a7929588b,1
+np.float64,0xbfe249c78f64938f,0x3ff2af52a06f1a50,1
+np.float64,0xbfc6de9dbe2dbd3c,0x3ff0418d284ee29f,1
+np.float64,0xffc8ef094631de14,0x7ff0000000000000,1
+np.float64,0x3fdef05f423de0bf,0x3ff1e800caba8ab5,1
+np.float64,0xffc1090731221210,0x7ff0000000000000,1
+np.float64,0xbfedec9b5fbbd937,0x3ff7854b6792a24a,1
+np.float64,0xbfb873507630e6a0,0x3ff012b23b3b7a67,1
+np.float64,0xbfe3cd6692679acd,0x3ff3299d6936ec4b,1
+np.float64,0xbfb107c890220f90,0x3ff0091122162472,1
+np.float64,0xbfe4e6ee48e9cddc,0x3ff3894e5a5e70a6,1
+np.float64,0xffe6fa3413edf468,0x7ff0000000000000,1
+np.float64,0x3fe2faf79b65f5ef,0x3ff2e5e11fae8b54,1
+np.float64,0xbfdfeb8df9bfd71c,0x3ff208189691b15f,1
+np.float64,0x75d2d03ceba5b,0x3ff0000000000000,1
+np.float64,0x3feb48c182b69183,0x3ff62d4462eba6cb,1
+np.float64,0xffcda9f7ff3b53f0,0x7ff0000000000000,1
+np.float64,0x7fcafbdcbd35f7b8,0x7ff0000000000000,1
+np.float64,0xbfd1895523a312aa,0x3ff09aba642a78d9,1
+np.float64,0x3fe3129c3f662538,0x3ff2ed546bbfafcf,1
+np.float64,0x3fb444dee02889be,0x3ff00cd86273b964,1
+np.float64,0xbf73b32d7ee77,0x3ff0000000000000,1
+np.float64,0x3fae19904c3c3321,0x3ff00714865c498a,1
+np.float64,0x7fefbfaef5bf7f5d,0x7ff0000000000000,1
+np.float64,0x8000dc3816e1b871,0x3ff0000000000000,1
+np.float64,0x8003f957ba47f2b0,0x3ff0000000000000,1
+np.float64,0xbfe3563c7ea6ac79,0x3ff302dcebc92856,1
+np.float64,0xbfdc80fbae3901f8,0x3ff19cfe73e58092,1
+np.float64,0x8009223b04524476,0x3ff0000000000000,1
+np.float64,0x3fd95f431c32be86,0x3ff1461c21cb03f0,1
+np.float64,0x7ff4000000000000,0x7ffc000000000000,1
+np.float64,0xbfe7c12ed3ef825e,0x3ff49d59c265efcd,1
+np.float64,0x10000000000000,0x3ff0000000000000,1
+np.float64,0x7fc5e2632f2bc4c5,0x7ff0000000000000,1
+np.float64,0xffd8f6b4c7b1ed6a,0x7ff0000000000000,1
+np.float64,0x80034b93d4069728,0x3ff0000000000000,1
+np.float64,0xffdf5d4c1dbeba98,0x7ff0000000000000,1
+np.float64,0x800bc63d70178c7b,0x3ff0000000000000,1
+np.float64,0xbfeba31ea0f7463d,0x3ff658fa27073d2b,1
+np.float64,0xbfeebeede97d7ddc,0x3ff7f89a8e80dec4,1
+np.float64,0x7feb0f1f91361e3e,0x7ff0000000000000,1
+np.float64,0xffec3158d0b862b1,0x7ff0000000000000,1
+np.float64,0x3fde51cbfbbca398,0x3ff1d44c2ff15b3d,1
+np.float64,0xd58fb2b3ab1f7,0x3ff0000000000000,1
+np.float64,0x80028b9e32e5173d,0x3ff0000000000000,1
+np.float64,0x7fea77a56c74ef4a,0x7ff0000000000000,1
+np.float64,0x3fdaabbd4a35577b,0x3ff168d82edf2fe0,1
+np.float64,0xbfe69c39cc2d3874,0x3ff429b2f4cdb362,1
+np.float64,0x3b78f5d876f20,0x3ff0000000000000,1
+np.float64,0x7fa47d116428fa22,0x7ff0000000000000,1
+np.float64,0xbfe4118b0ce82316,0x3ff3403d989f780f,1
+np.float64,0x800482e793c905d0,0x3ff0000000000000,1
+np.float64,0xbfe48e5728e91cae,0x3ff36a9020bf9d20,1
+np.float64,0x7fe078ba8860f174,0x7ff0000000000000,1
+np.float64,0x3fd80843e5b01088,0x3ff1242f401e67da,1
+np.float64,0x3feb1f6965f63ed3,0x3ff6197fc590e143,1
+np.float64,0xffa41946d8283290,0x7ff0000000000000,1
+np.float64,0xffe30de129661bc2,0x7ff0000000000000,1
+np.float64,0x3fec9c8e1ab9391c,0x3ff6d542ea2f49b4,1
+np.float64,0x3fdc3e4490387c89,0x3ff1955ae18cac37,1
+np.float64,0xffef49d9c77e93b3,0x7ff0000000000000,1
+np.float64,0xfff0000000000000,0x7ff0000000000000,1
+np.float64,0x3fe0442455608849,0x3ff21cab90067d5c,1
+np.float64,0xbfed86aebd3b0d5e,0x3ff74ed8d4b75f50,1
+np.float64,0xffe4600d2b28c01a,0x7ff0000000000000,1
+np.float64,0x7fc1e8ccff23d199,0x7ff0000000000000,1
+np.float64,0x8008d49b0091a936,0x3ff0000000000000,1
+np.float64,0xbfe4139df028273c,0x3ff340ef3c86227c,1
+np.float64,0xbfe9ab4542b3568a,0x3ff56dfe32061247,1
+np.float64,0xbfd76dd365aedba6,0x3ff11589bab5fe71,1
+np.float64,0x3fd42cf829a859f0,0x3ff0cd3844bb0e11,1
+np.float64,0x7fd077cf2e20ef9d,0x7ff0000000000000,1
+np.float64,0x3fd7505760aea0b0,0x3ff112c937b3f088,1
+np.float64,0x1f93341a3f267,0x3ff0000000000000,1
+np.float64,0x7fe3c3c1b0678782,0x7ff0000000000000,1
+np.float64,0x800f85cec97f0b9e,0x3ff0000000000000,1
+np.float64,0xd93ab121b2756,0x3ff0000000000000,1
+np.float64,0xbfef8066fd7f00ce,0x3ff8663ed7d15189,1
+np.float64,0xffe31dd4af663ba9,0x7ff0000000000000,1
+np.float64,0xbfd7ff05a6affe0c,0x3ff1234c09bb686d,1
+np.float64,0xbfe718c31fee3186,0x3ff45a0c2d0ef7b0,1
+np.float64,0x800484bf33e9097f,0x3ff0000000000000,1
+np.float64,0xffd409dad02813b6,0x7ff0000000000000,1
+np.float64,0x3fe59679896b2cf4,0x3ff3c7f49e4fbbd3,1
+np.float64,0xbfd830c54d30618a,0x3ff1281729861390,1
+np.float64,0x1d4fc81c3a9fa,0x3ff0000000000000,1
+np.float64,0x3fd334e4272669c8,0x3ff0b9d5d82894f0,1
+np.float64,0xffc827e65c304fcc,0x7ff0000000000000,1
+np.float64,0xffe2d1814aa5a302,0x7ff0000000000000,1
+np.float64,0xffd7b5b8d32f6b72,0x7ff0000000000000,1
+np.float64,0xbfdbc9f077b793e0,0x3ff18836b9106ad0,1
+np.float64,0x7fc724c2082e4983,0x7ff0000000000000,1
+np.float64,0x3fa39ed72c273da0,0x3ff00302051ce17e,1
+np.float64,0xbfe3c4c209678984,0x3ff326c4fd16b5cd,1
+np.float64,0x7fe91f6d00f23ed9,0x7ff0000000000000,1
+np.float64,0x8004ee93fea9dd29,0x3ff0000000000000,1
+np.float64,0xbfe7c32d0eaf865a,0x3ff49e290ed2ca0e,1
+np.float64,0x800ea996b29d532d,0x3ff0000000000000,1
+np.float64,0x2df9ec1c5bf3e,0x3ff0000000000000,1
+np.float64,0xabb175df5762f,0x3ff0000000000000,1
+np.float64,0xffe3fc9c8e27f938,0x7ff0000000000000,1
+np.float64,0x7fb358a62826b14b,0x7ff0000000000000,1
+np.float64,0x800aedcccaf5db9a,0x3ff0000000000000,1
+np.float64,0xffca530c5234a618,0x7ff0000000000000,1
+np.float64,0x40f91e9681f24,0x3ff0000000000000,1
+np.float64,0x80098f4572f31e8b,0x3ff0000000000000,1
+np.float64,0xbfdc58c21fb8b184,0x3ff1986115f8fe92,1
+np.float64,0xbfebeafd40b7d5fa,0x3ff67c3cf34036e3,1
+np.float64,0x7fd108861a22110b,0x7ff0000000000000,1
+np.float64,0xff8e499ae03c9340,0x7ff0000000000000,1
+np.float64,0xbfd2f58caa25eb1a,0x3ff0b50b1bffafdf,1
+np.float64,0x3fa040c9bc208193,0x3ff002105e95aefa,1
+np.float64,0xbfd2ebc0a5a5d782,0x3ff0b44ed5a11584,1
+np.float64,0xffe237bc93a46f78,0x7ff0000000000000,1
+np.float64,0x3fd557c5eeaaaf8c,0x3ff0e5e0a575e1ba,1
+np.float64,0x7abb419ef5769,0x3ff0000000000000,1
+np.float64,0xffefa1fe353f43fb,0x7ff0000000000000,1
+np.float64,0x3fa6f80ba02df017,0x3ff0041f51fa0d76,1
+np.float64,0xbfdce79488b9cf2a,0x3ff1a8e32877beb4,1
+np.float64,0x2285f3e4450bf,0x3ff0000000000000,1
+np.float64,0x3bf7eb7277efe,0x3ff0000000000000,1
+np.float64,0xbfd5925fd3ab24c0,0x3ff0eae1c2ac2e78,1
+np.float64,0xbfed6325227ac64a,0x3ff73c14a2ad5bfe,1
+np.float64,0x8000429c02408539,0x3ff0000000000000,1
+np.float64,0xb67c21e76cf84,0x3ff0000000000000,1
+np.float64,0x3fec3d3462f87a69,0x3ff6a51e4c027eb7,1
+np.float64,0x3feae69cbcf5cd3a,0x3ff5fe9387314afd,1
+np.float64,0x7fd0c9a0ec219341,0x7ff0000000000000,1
+np.float64,0x8004adb7f6295b71,0x3ff0000000000000,1
+np.float64,0xffd61fe8bb2c3fd2,0x7ff0000000000000,1
+np.float64,0xffe7fb3834aff670,0x7ff0000000000000,1
+np.float64,0x7fd1eef163a3dde2,0x7ff0000000000000,1
+np.float64,0x2e84547a5d08b,0x3ff0000000000000,1
+np.float64,0x8002d8875ee5b10f,0x3ff0000000000000,1
+np.float64,0x3fe1d1c5f763a38c,0x3ff28ba524fb6de8,1
+np.float64,0x8001dea0bc43bd42,0x3ff0000000000000,1
+np.float64,0xfecfad91fd9f6,0x3ff0000000000000,1
+np.float64,0xffed7965fa3af2cb,0x7ff0000000000000,1
+np.float64,0xbfe6102ccc2c205a,0x3ff3f4c082506686,1
+np.float64,0x3feff75b777feeb6,0x3ff8ab6222578e0c,1
+np.float64,0x3fb8a97bd43152f8,0x3ff013057f0a9d89,1
+np.float64,0xffe234b5e964696c,0x7ff0000000000000,1
+np.float64,0x984d9137309b2,0x3ff0000000000000,1
+np.float64,0xbfe42e9230e85d24,0x3ff349fb7d1a7560,1
+np.float64,0xbfecc8b249f99165,0x3ff6ebd0fea0ea72,1
+np.float64,0x8000840910410813,0x3ff0000000000000,1
+np.float64,0xbfd81db9e7303b74,0x3ff126402d3539ec,1
+np.float64,0x800548eb7fea91d8,0x3ff0000000000000,1
+np.float64,0xbfe4679ad0e8cf36,0x3ff35d4db89296a3,1
+np.float64,0x3fd4c55b5a298ab7,0x3ff0d99da31081f9,1
+np.float64,0xbfa8f5b38c31eb60,0x3ff004de3a23b32d,1
+np.float64,0x80005d348e80ba6a,0x3ff0000000000000,1
+np.float64,0x800c348d6118691b,0x3ff0000000000000,1
+np.float64,0xffd6b88f84ad7120,0x7ff0000000000000,1
+np.float64,0x3fc1aaaa82235555,0x3ff027136afd08e0,1
+np.float64,0x7fca7d081b34fa0f,0x7ff0000000000000,1
+np.float64,0x1,0x3ff0000000000000,1
+np.float64,0xbfdc810d1139021a,0x3ff19d007408cfe3,1
+np.float64,0xbfe5dce05f2bb9c0,0x3ff3e1bb9234617b,1
+np.float64,0xffecfe2c32b9fc58,0x7ff0000000000000,1
+np.float64,0x95b2891b2b651,0x3ff0000000000000,1
+np.float64,0x8000b60c6c616c1a,0x3ff0000000000000,1
+np.float64,0x4944f0889289f,0x3ff0000000000000,1
+np.float64,0x3fe6e508696dca10,0x3ff445d1b94863e9,1
+np.float64,0xbfe63355d0ec66ac,0x3ff401e74f16d16f,1
+np.float64,0xbfe9b9595af372b3,0x3ff57445e1b4d670,1
+np.float64,0x800e16f7313c2dee,0x3ff0000000000000,1
+np.float64,0xffe898f5f0b131eb,0x7ff0000000000000,1
+np.float64,0x3fe91ac651f2358d,0x3ff52e787c21c004,1
+np.float64,0x7fbfaac6783f558c,0x7ff0000000000000,1
+np.float64,0xd8ef3dfbb1de8,0x3ff0000000000000,1
+np.float64,0xbfc58c13a52b1828,0x3ff03a2c19d65019,1
+np.float64,0xbfbde55e8a3bcac0,0x3ff01bf648a3e0a7,1
+np.float64,0xffc3034930260694,0x7ff0000000000000,1
+np.float64,0xea77a64dd4ef5,0x3ff0000000000000,1
+np.float64,0x800cfe7e7739fcfd,0x3ff0000000000000,1
+np.float64,0x4960f31a92c1f,0x3ff0000000000000,1
+np.float64,0x3fd9552c94b2aa58,0x3ff14515a29add09,1
+np.float64,0xffe8b3244c316648,0x7ff0000000000000,1
+np.float64,0x3fe8201e6a70403d,0x3ff4c444fa679cce,1
+np.float64,0xffe9ab7c20f356f8,0x7ff0000000000000,1
+np.float64,0x3fed8bba5f7b1774,0x3ff751853c4c95c5,1
+np.float64,0x8007639cb76ec73a,0x3ff0000000000000,1
+np.float64,0xbfe396db89672db7,0x3ff317bfd1d6fa8c,1
+np.float64,0xbfeb42f888f685f1,0x3ff62a7e0eee56b1,1
+np.float64,0x3fe894827c712904,0x3ff4f4f561d9ea13,1
+np.float64,0xb66b3caf6cd68,0x3ff0000000000000,1
+np.float64,0x800f8907fdbf1210,0x3ff0000000000000,1
+np.float64,0x7fe9b0cddb73619b,0x7ff0000000000000,1
+np.float64,0xbfda70c0e634e182,0x3ff1628c6fdffc53,1
+np.float64,0x3fe0b5f534a16bea,0x3ff23b4ed4c2b48e,1
+np.float64,0xbfe8eee93671ddd2,0x3ff51b85b3c50ae4,1
+np.float64,0xbfe8c22627f1844c,0x3ff50858787a3bfe,1
+np.float64,0x37bb83c86f771,0x3ff0000000000000,1
+np.float64,0xffb7827ffe2f0500,0x7ff0000000000000,1
+np.float64,0x64317940c864,0x3ff0000000000000,1
+np.float64,0x800430ecee6861db,0x3ff0000000000000,1
+np.float64,0x3fa4291fbc285240,0x3ff0032d0204f6dd,1
+np.float64,0xffec69f76af8d3ee,0x7ff0000000000000,1
+np.float64,0x3ff0000000000000,0x3ff8b07551d9f550,1
+np.float64,0x3fc4cf3c42299e79,0x3ff0363fb1d3c254,1
+np.float64,0x7fe0223a77e04474,0x7ff0000000000000,1
+np.float64,0x800a3d4fa4347aa0,0x3ff0000000000000,1
+np.float64,0x3fdd273f94ba4e7f,0x3ff1b05b686e6879,1
+np.float64,0x3feca79052f94f20,0x3ff6dadedfa283aa,1
+np.float64,0x5e7f6f80bcfef,0x3ff0000000000000,1
+np.float64,0xbfef035892fe06b1,0x3ff81efb39cbeba2,1
+np.float64,0x3fee6c08e07cd812,0x3ff7caad952860a1,1
+np.float64,0xffeda715877b4e2a,0x7ff0000000000000,1
+np.float64,0x800580286b0b0052,0x3ff0000000000000,1
+np.float64,0x800703a73fee074f,0x3ff0000000000000,1
+np.float64,0xbfccf96a6639f2d4,0x3ff0696330a60832,1
+np.float64,0x7feb408442368108,0x7ff0000000000000,1
+np.float64,0x3fedc87a46fb90f5,0x3ff771e3635649a9,1
+np.float64,0x3fd8297b773052f7,0x3ff12762bc0cea76,1
+np.float64,0x3fee41bb03fc8376,0x3ff7b37b2da48ab4,1
+np.float64,0xbfe2b05a226560b4,0x3ff2cea17ae7c528,1
+np.float64,0xbfd2e92cf2a5d25a,0x3ff0b41d605ced61,1
+np.float64,0x4817f03a902ff,0x3ff0000000000000,1
+np.float64,0x8c9d4f0d193aa,0x3ff0000000000000,1
diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/tests/data/umath-validation-set-exp.csv b/.venv/lib/python3.12/site-packages/numpy/_core/tests/data/umath-validation-set-exp.csv
new file mode 100644
index 0000000..7c5ef3b
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/_core/tests/data/umath-validation-set-exp.csv
@@ -0,0 +1,412 @@
+dtype,input,output,ulperrortol
+## +ve denormals ##
+np.float32,0x004b4716,0x3f800000,3
+np.float32,0x007b2490,0x3f800000,3
+np.float32,0x007c99fa,0x3f800000,3
+np.float32,0x00734a0c,0x3f800000,3
+np.float32,0x0070de24,0x3f800000,3
+np.float32,0x00495d65,0x3f800000,3
+np.float32,0x006894f6,0x3f800000,3
+np.float32,0x00555a76,0x3f800000,3
+np.float32,0x004e1fb8,0x3f800000,3
+np.float32,0x00687de9,0x3f800000,3
+## -ve denormals ##
+np.float32,0x805b59af,0x3f800000,3
+np.float32,0x807ed8ed,0x3f800000,3
+np.float32,0x807142ad,0x3f800000,3
+np.float32,0x80772002,0x3f800000,3
+np.float32,0x8062abcb,0x3f800000,3
+np.float32,0x8045e31c,0x3f800000,3
+np.float32,0x805f01c2,0x3f800000,3
+np.float32,0x80506432,0x3f800000,3
+np.float32,0x8060089d,0x3f800000,3
+np.float32,0x8071292f,0x3f800000,3
+## floats that output a denormal ##
+np.float32,0xc2cf3fc1,0x00000001,3
+np.float32,0xc2c79726,0x00000021,3
+np.float32,0xc2cb295d,0x00000005,3
+np.float32,0xc2b49e6b,0x00068c4c,3
+np.float32,0xc2ca8116,0x00000008,3
+np.float32,0xc2c23f82,0x000001d7,3
+np.float32,0xc2cb69c0,0x00000005,3
+np.float32,0xc2cc1f4d,0x00000003,3
+np.float32,0xc2ae094e,0x00affc4c,3
+np.float32,0xc2c86c44,0x00000015,3
+## random floats between -87.0f and 88.0f ##
+np.float32,0x4030d7e0,0x417d9a05,3
+np.float32,0x426f60e8,0x6aa1be2c,3
+np.float32,0x41a1b220,0x4e0efc11,3
+np.float32,0xc20cc722,0x26159da7,3
+np.float32,0x41c492bc,0x512ec79d,3
+np.float32,0x40980210,0x42e73a0e,3
+np.float32,0xbf1f7b80,0x3f094de3,3
+np.float32,0x42a678a4,0x7b87a383,3
+np.float32,0xc20f3cfd,0x25a1c304,3
+np.float32,0x423ff34c,0x6216467f,3
+np.float32,0x00000000,0x3f800000,3
+## floats that cause an overflow ##
+np.float32,0x7f06d8c1,0x7f800000,3
+np.float32,0x7f451912,0x7f800000,3
+np.float32,0x7ecceac3,0x7f800000,3
+np.float32,0x7f643b45,0x7f800000,3
+np.float32,0x7e910ea0,0x7f800000,3
+np.float32,0x7eb4756b,0x7f800000,3
+np.float32,0x7f4ec708,0x7f800000,3
+np.float32,0x7f6b4551,0x7f800000,3
+np.float32,0x7d8edbda,0x7f800000,3
+np.float32,0x7f730718,0x7f800000,3
+np.float32,0x42b17217,0x7f7fff84,3
+np.float32,0x42b17218,0x7f800000,3
+np.float32,0x42b17219,0x7f800000,3
+np.float32,0xfef2b0bc,0x00000000,3
+np.float32,0xff69f83e,0x00000000,3
+np.float32,0xff4ecb12,0x00000000,3
+np.float32,0xfeac6d86,0x00000000,3
+np.float32,0xfde0cdb8,0x00000000,3
+np.float32,0xff26aef4,0x00000000,3
+np.float32,0xff6f9277,0x00000000,3
+np.float32,0xff7adfc4,0x00000000,3
+np.float32,0xff0ad40e,0x00000000,3
+np.float32,0xff6fd8f3,0x00000000,3
+np.float32,0xc2cff1b4,0x00000001,3
+np.float32,0xc2cff1b5,0x00000000,3
+np.float32,0xc2cff1b6,0x00000000,3
+np.float32,0x7f800000,0x7f800000,3
+np.float32,0xff800000,0x00000000,3
+np.float32,0x4292f27c,0x7480000a,3
+np.float32,0x42a920be,0x7c7fff94,3
+np.float32,0x41c214c9,0x50ffffd9,3
+np.float32,0x41abe686,0x4effffd9,3
+np.float32,0x4287db5a,0x707fffd3,3
+np.float32,0x41902cbb,0x4c800078,3
+np.float32,0x42609466,0x67ffffeb,3
+np.float32,0x41a65af5,0x4e7fffd1,3
+np.float32,0x417f13ff,0x4affffc9,3
+np.float32,0x426d0e6c,0x6a3504f2,3
+np.float32,0x41bc8934,0x507fff51,3
+np.float32,0x42a7bdde,0x7c0000d6,3
+np.float32,0x4120cf66,0x46b504f6,3
+np.float32,0x4244da8f,0x62ffff1a,3
+np.float32,0x41a0cf69,0x4e000034,3
+np.float32,0x41cd2bec,0x52000005,3
+np.float32,0x42893e41,0x7100009e,3
+np.float32,0x41b437e1,0x4fb50502,3
+np.float32,0x41d8430f,0x5300001d,3
+np.float32,0x4244da92,0x62ffffda,3
+np.float32,0x41a0cf63,0x4dffffa9,3
+np.float32,0x3eb17218,0x3fb504f3,3
+np.float32,0x428729e8,0x703504dc,3
+np.float32,0x41a0cf67,0x4e000014,3
+np.float32,0x4252b77d,0x65800011,3
+np.float32,0x41902cb9,0x4c800058,3
+np.float32,0x42a0cf67,0x79800052,3
+np.float32,0x4152b77b,0x48ffffe9,3
+np.float32,0x41265af3,0x46ffffc8,3
+np.float32,0x42187e0b,0x5affff9a,3
+np.float32,0xc0d2b77c,0x3ab504f6,3
+np.float32,0xc283b2ac,0x10000072,3
+np.float32,0xc1cff1b4,0x2cb504f5,3
+np.float32,0xc05dce9e,0x3d000000,3
+np.float32,0xc28ec9d2,0x0bfffea5,3
+np.float32,0xc23c893a,0x1d7fffde,3
+np.float32,0xc2a920c0,0x027fff6c,3
+np.float32,0xc1f9886f,0x2900002b,3
+np.float32,0xc2c42920,0x000000b5,3
+np.float32,0xc2893e41,0x0dfffec5,3
+np.float32,0xc2c4da93,0x00000080,3
+np.float32,0xc17f1401,0x3400000c,3
+np.float32,0xc1902cb6,0x327fffaf,3
+np.float32,0xc27c4e3b,0x11ffffc5,3
+np.float32,0xc268e5c5,0x157ffe9d,3
+np.float32,0xc2b4e953,0x0005a826,3
+np.float32,0xc287db5a,0x0e800016,3
+np.float32,0xc207db5a,0x2700000b,3
+np.float32,0xc2b2d4fe,0x000ffff1,3
+np.float32,0xc268e5c0,0x157fffdd,3
+np.float32,0xc22920bd,0x2100003b,3
+np.float32,0xc2902caf,0x0b80011e,3
+np.float32,0xc1902cba,0x327fff2f,3
+np.float32,0xc2ca6625,0x00000008,3
+np.float32,0xc280ece8,0x10fffeb5,3
+np.float32,0xc2918f94,0x0b0000ea,3
+np.float32,0xc29b43d5,0x077ffffc,3
+np.float32,0xc1e61ff7,0x2ab504f5,3
+np.float32,0xc2867878,0x0effff15,3
+np.float32,0xc2a2324a,0x04fffff4,3
+#float64
+## near zero ##
+np.float64,0x8000000000000000,0x3ff0000000000000,1
+np.float64,0x8010000000000000,0x3ff0000000000000,1
+np.float64,0x8000000000000001,0x3ff0000000000000,1
+np.float64,0x8360000000000000,0x3ff0000000000000,1
+np.float64,0x9a70000000000000,0x3ff0000000000000,1
+np.float64,0xb9b0000000000000,0x3ff0000000000000,1
+np.float64,0xb810000000000000,0x3ff0000000000000,1
+np.float64,0xbc30000000000000,0x3ff0000000000000,1
+np.float64,0xb6a0000000000000,0x3ff0000000000000,1
+np.float64,0x0000000000000000,0x3ff0000000000000,1
+np.float64,0x0010000000000000,0x3ff0000000000000,1
+np.float64,0x0000000000000001,0x3ff0000000000000,1
+np.float64,0x0360000000000000,0x3ff0000000000000,1
+np.float64,0x1a70000000000000,0x3ff0000000000000,1
+np.float64,0x3c30000000000000,0x3ff0000000000000,1
+np.float64,0x36a0000000000000,0x3ff0000000000000,1
+np.float64,0x39b0000000000000,0x3ff0000000000000,1
+np.float64,0x3810000000000000,0x3ff0000000000000,1
+## underflow ##
+np.float64,0xc0c6276800000000,0x0000000000000000,1
+np.float64,0xc0c62d918ce2421d,0x0000000000000000,1
+np.float64,0xc0c62d918ce2421e,0x0000000000000000,1
+np.float64,0xc0c62d91a0000000,0x0000000000000000,1
+np.float64,0xc0c62d9180000000,0x0000000000000000,1
+np.float64,0xc0c62dea45ee3e06,0x0000000000000000,1
+np.float64,0xc0c62dea45ee3e07,0x0000000000000000,1
+np.float64,0xc0c62dea40000000,0x0000000000000000,1
+np.float64,0xc0c62dea60000000,0x0000000000000000,1
+np.float64,0xc0875f1120000000,0x0000000000000000,1
+np.float64,0xc0875f113c30b1c8,0x0000000000000000,1
+np.float64,0xc0875f1140000000,0x0000000000000000,1
+np.float64,0xc093480000000000,0x0000000000000000,1
+np.float64,0xffefffffffffffff,0x0000000000000000,1
+np.float64,0xc7efffffe0000000,0x0000000000000000,1
+## overflow ##
+np.float64,0x40862e52fefa39ef,0x7ff0000000000000,1
+np.float64,0x40872e42fefa39ef,0x7ff0000000000000,1
+## +/- INF, +/- NAN ##
+np.float64,0x7ff0000000000000,0x7ff0000000000000,1
+np.float64,0xfff0000000000000,0x0000000000000000,1
+np.float64,0x7ff8000000000000,0x7ff8000000000000,1
+np.float64,0xfff8000000000000,0xfff8000000000000,1
+## output denormal ##
+np.float64,0xc087438520000000,0x0000000000000001,1
+np.float64,0xc08743853f2f4461,0x0000000000000001,1
+np.float64,0xc08743853f2f4460,0x0000000000000001,1
+np.float64,0xc087438540000000,0x0000000000000001,1
+## between -745.13321910 and 709.78271289 ##
+np.float64,0xbff760cd14774bd9,0x3fcdb14ced00ceb6,1
+np.float64,0xbff760cd20000000,0x3fcdb14cd7993879,1
+np.float64,0xbff760cd00000000,0x3fcdb14d12fbd264,1
+np.float64,0xc07f1cf360000000,0x130c1b369af14fda,1
+np.float64,0xbeb0000000000000,0x3feffffe00001000,1
+np.float64,0xbd70000000000000,0x3fefffffffffe000,1
+np.float64,0xc084fd46e5c84952,0x0360000000000139,1
+np.float64,0xc084fd46e5c84953,0x035ffffffffffe71,1
+np.float64,0xc084fd46e0000000,0x0360000b9096d32c,1
+np.float64,0xc084fd4700000000,0x035fff9721d12104,1
+np.float64,0xc086232bc0000000,0x0010003af5e64635,1
+np.float64,0xc086232bdd7abcd2,0x001000000000007c,1
+np.float64,0xc086232bdd7abcd3,0x000ffffffffffe7c,1
+np.float64,0xc086232be0000000,0x000ffffaf57a6fc9,1
+np.float64,0xc086233920000000,0x000fe590e3b45eb0,1
+np.float64,0xc086233938000000,0x000fe56133493c57,1
+np.float64,0xc086233940000000,0x000fe5514deffbbc,1
+np.float64,0xc086234c98000000,0x000fbf1024c32ccb,1
+np.float64,0xc086234ca0000000,0x000fbf0065bae78d,1
+np.float64,0xc086234c80000000,0x000fbf3f623a7724,1
+np.float64,0xc086234ec0000000,0x000fbad237c846f9,1
+np.float64,0xc086234ec8000000,0x000fbac27cfdec97,1
+np.float64,0xc086234ee0000000,0x000fba934cfd3dc2,1
+np.float64,0xc086234ef0000000,0x000fba73d7f618d9,1
+np.float64,0xc086234f00000000,0x000fba54632dddc0,1
+np.float64,0xc0862356e0000000,0x000faae0945b761a,1
+np.float64,0xc0862356f0000000,0x000faac13eb9a310,1
+np.float64,0xc086235700000000,0x000faaa1e9567b0a,1
+np.float64,0xc086236020000000,0x000f98cd75c11ed7,1
+np.float64,0xc086236ca0000000,0x000f8081b4d93f89,1
+np.float64,0xc086236cb0000000,0x000f8062b3f4d6c5,1
+np.float64,0xc086236cc0000000,0x000f8043b34e6f8c,1
+np.float64,0xc086238d98000000,0x000f41220d9b0d2c,1
+np.float64,0xc086238da0000000,0x000f4112cc80a01f,1
+np.float64,0xc086238d80000000,0x000f414fd145db5b,1
+np.float64,0xc08624fd00000000,0x000cbfce8ea1e6c4,1
+np.float64,0xc086256080000000,0x000c250747fcd46e,1
+np.float64,0xc08626c480000000,0x000a34f4bd975193,1
+np.float64,0xbf50000000000000,0x3feff800ffeaac00,1
+np.float64,0xbe10000000000000,0x3fefffffff800000,1
+np.float64,0xbcd0000000000000,0x3feffffffffffff8,1
+np.float64,0xc055d589e0000000,0x38100004bf94f63e,1
+np.float64,0xc055d58a00000000,0x380ffff97f292ce8,1
+np.float64,0xbfd962d900000000,0x3fe585a4b00110e1,1
+np.float64,0x3ff4bed280000000,0x400d411e7a58a303,1
+np.float64,0x3fff0b3620000000,0x401bd7737ffffcf3,1
+np.float64,0x3ff0000000000000,0x4005bf0a8b145769,1
+np.float64,0x3eb0000000000000,0x3ff0000100000800,1
+np.float64,0x3d70000000000000,0x3ff0000000001000,1
+np.float64,0x40862e42e0000000,0x7fefff841808287f,1
+np.float64,0x40862e42fefa39ef,0x7fefffffffffff2a,1
+np.float64,0x40862e0000000000,0x7feef85a11e73f2d,1
+np.float64,0x4000000000000000,0x401d8e64b8d4ddae,1
+np.float64,0x4009242920000000,0x40372a52c383a488,1
+np.float64,0x4049000000000000,0x44719103e4080b45,1
+np.float64,0x4008000000000000,0x403415e5bf6fb106,1
+np.float64,0x3f50000000000000,0x3ff00400800aab55,1
+np.float64,0x3e10000000000000,0x3ff0000000400000,1
+np.float64,0x3cd0000000000000,0x3ff0000000000004,1
+np.float64,0x40562e40a0000000,0x47effed088821c3f,1
+np.float64,0x40562e42e0000000,0x47effff082e6c7ff,1
+np.float64,0x40562e4300000000,0x47f00000417184b8,1
+np.float64,0x3fe8000000000000,0x4000ef9db467dcf8,1
+np.float64,0x402b12e8d4f33589,0x412718f68c71a6fe,1
+np.float64,0x402b12e8d4f3358a,0x412718f68c71a70a,1
+np.float64,0x402b12e8c0000000,0x412718f59a7f472e,1
+np.float64,0x402b12e8e0000000,0x412718f70c0eac62,1
+##use 1th entry
+np.float64,0x40631659AE147CB4,0x4db3a95025a4890f,1
+np.float64,0xC061B87D2E85A4E2,0x332640c8e2de2c51,1
+np.float64,0x405A4A50BE243AF4,0x496a45e4b7f0339a,1
+np.float64,0xC0839898B98EC5C6,0x0764027828830df4,1
+#use 2th entry
+np.float64,0xC072428C44B6537C,0x2596ade838b96f3e,1
+np.float64,0xC053057C5E1AE9BF,0x3912c8fad18fdadf,1
+np.float64,0x407E89C78328BAA3,0x6bfe35d5b9a1a194,1
+np.float64,0x4083501B6DD87112,0x77a855503a38924e,1
+#use 3th entry
+np.float64,0x40832C6195F24540,0x7741e73c80e5eb2f,1
+np.float64,0xC083D4CD557C2EC9,0x06b61727c2d2508e,1
+np.float64,0x400C48F5F67C99BD,0x404128820f02b92e,1
+np.float64,0x4056E36D9B2DF26A,0x4830f52ff34a8242,1
+#use 4th entry
+np.float64,0x4080FF700D8CBD06,0x70fa70df9bc30f20,1
+np.float64,0x406C276D39E53328,0x543eb8e20a8f4741,1
+np.float64,0xC070D6159BBD8716,0x27a4a0548c904a75,1
+np.float64,0xC052EBCF8ED61F83,0x391c0e92368d15e4,1
+#use 5th entry
+np.float64,0xC061F892A8AC5FBE,0x32f807a89efd3869,1
+np.float64,0x4021D885D2DBA085,0x40bd4dc86d3e3270,1
+np.float64,0x40767AEEEE7D4FCF,0x605e22851ee2afb7,1
+np.float64,0xC0757C5D75D08C80,0x20f0751599b992a2,1
+#use 6th entry
+np.float64,0x405ACF7A284C4CE3,0x499a4e0b7a27027c,1
+np.float64,0xC085A6C9E80D7AF5,0x0175914009d62ec2,1
+np.float64,0xC07E4C02F86F1DAE,0x1439269b29a9231e,1
+np.float64,0x4080D80F9691CC87,0x7088a6cdafb041de,1
+#use 7th entry
+np.float64,0x407FDFD84FBA0AC1,0x6deb1ae6f9bc4767,1
+np.float64,0x40630C06A1A2213D,0x4dac7a9d51a838b7,1
+np.float64,0x40685FDB30BB8B4F,0x5183f5cc2cac9e79,1
+np.float64,0x408045A2208F77F4,0x6ee299e08e2aa2f0,1
+#use 8th entry
+np.float64,0xC08104E391F5078B,0x0ed397b7cbfbd230,1
+np.float64,0xC031501CAEFAE395,0x3e6040fd1ea35085,1
+np.float64,0xC079229124F6247C,0x1babf4f923306b1e,1
+np.float64,0x407FB65F44600435,0x6db03beaf2512b8a,1
+#use 9th entry
+np.float64,0xC07EDEE8E8E8A5AC,0x136536cec9cbef48,1
+np.float64,0x4072BB4086099A14,0x5af4d3c3008b56cc,1
+np.float64,0x4050442A2EC42CB4,0x45cd393bd8fad357,1
+np.float64,0xC06AC28FB3D419B4,0x2ca1b9d3437df85f,1
+#use 10th entry
+np.float64,0x40567FC6F0A68076,0x480c977fd5f3122e,1
+np.float64,0x40620A2F7EDA59BB,0x4cf278e96f4ce4d7,1
+np.float64,0xC085044707CD557C,0x034aad6c968a045a,1
+np.float64,0xC07374EA5AC516AA,0x23dd6afdc03e83d5,1
+#use 11th entry
+np.float64,0x4073CC95332619C1,0x5c804b1498bbaa54,1
+np.float64,0xC0799FEBBE257F31,0x1af6a954c43b87d2,1
+np.float64,0x408159F19EA424F6,0x7200858efcbfc84d,1
+np.float64,0x404A81F6F24C0792,0x44b664a07ce5bbfa,1
+#use 12th entry
+np.float64,0x40295FF1EFB9A741,0x4113c0e74c52d7b0,1
+np.float64,0x4073975F4CC411DA,0x5c32be40b4fec2c1,1
+np.float64,0x406E9DE52E82A77E,0x56049c9a3f1ae089,1
+np.float64,0x40748C2F52560ED9,0x5d93bc14fd4cd23b,1
+#use 13th entry
+np.float64,0x4062A553CDC4D04C,0x4d6266bfde301318,1
+np.float64,0xC079EC1D63598AB7,0x1a88cb184dab224c,1
+np.float64,0xC0725C1CB3167427,0x25725b46f8a081f6,1
+np.float64,0x407888771D9B45F9,0x6353b1ec6bd7ce80,1
+#use 14th entry
+np.float64,0xC082CBA03AA89807,0x09b383723831ce56,1
+np.float64,0xC083A8961BB67DD7,0x0735b118d5275552,1
+np.float64,0xC076BC6ECA12E7E3,0x1f2222679eaef615,1
+np.float64,0xC072752503AA1A5B,0x254eb832242c77e1,1
+#use 15th entry
+np.float64,0xC058800792125DEC,0x371882372a0b48d4,1
+np.float64,0x4082909FD863E81C,0x7580d5f386920142,1
+np.float64,0xC071616F8FB534F9,0x26dbe20ef64a412b,1
+np.float64,0x406D1AB571CAA747,0x54ee0d55cb38ac20,1
+#use 16th entry
+np.float64,0x406956428B7DAD09,0x52358682c271237f,1
+np.float64,0xC07EFC2D9D17B621,0x133b3e77c27a4d45,1
+np.float64,0xC08469BAC5BA3CCA,0x050863e5f42cc52f,1
+np.float64,0x407189D9626386A5,0x593cb1c0b3b5c1d3,1
+#use 17th entry
+np.float64,0x4077E652E3DEB8C6,0x6269a10dcbd3c752,1
+np.float64,0x407674C97DB06878,0x605485dcc2426ec2,1
+np.float64,0xC07CE9969CF4268D,0x16386cf8996669f2,1
+np.float64,0x40780EE32D5847C4,0x62a436bd1abe108d,1
+#use 18th entry
+np.float64,0x4076C3AA5E1E8DA1,0x60c62f56a5e72e24,1
+np.float64,0xC0730AFC7239B9BE,0x24758ead095cec1e,1
+np.float64,0xC085CC2B9C420DDB,0x0109cdaa2e5694c1,1
+np.float64,0x406D0765CB6D7AA4,0x54e06f8dd91bd945,1
+#use 19th entry
+np.float64,0xC082D011F3B495E7,0x09a6647661d279c2,1
+np.float64,0xC072826AF8F6AFBC,0x253acd3cd224507e,1
+np.float64,0x404EB9C4810CEA09,0x457933dbf07e8133,1
+np.float64,0x408284FBC97C58CE,0x755f6eb234aa4b98,1
+#use 20th entry
+np.float64,0x40856008CF6EDC63,0x7d9c0b3c03f4f73c,1
+np.float64,0xC077CB2E9F013B17,0x1d9b3d3a166a55db,1
+np.float64,0xC0479CA3C20AD057,0x3bad40e081555b99,1
+np.float64,0x40844CD31107332A,0x7a821d70aea478e2,1
+#use 21th entry
+np.float64,0xC07C8FCC0BFCC844,0x16ba1cc8c539d19b,1
+np.float64,0xC085C4E9A3ABA488,0x011ff675ba1a2217,1
+np.float64,0x4074D538B32966E5,0x5dfd9d78043c6ad9,1
+np.float64,0xC0630CA16902AD46,0x3231a446074cede6,1
+#use 22th entry
+np.float64,0xC06C826733D7D0B7,0x2b5f1078314d41e1,1
+np.float64,0xC0520DF55B2B907F,0x396c13a6ce8e833e,1
+np.float64,0xC080712072B0F437,0x107eae02d11d98ea,1
+np.float64,0x40528A6150E19EFB,0x469fdabda02228c5,1
+#use 23th entry
+np.float64,0xC07B1D74B6586451,0x18d1253883ae3b48,1
+np.float64,0x4045AFD7867DAEC0,0x43d7d634fc4c5d98,1
+np.float64,0xC07A08B91F9ED3E2,0x1a60973e6397fc37,1
+np.float64,0x407B3ECF0AE21C8C,0x673e03e9d98d7235,1
+#use 24th entry
+np.float64,0xC078AEB6F30CEABF,0x1c530b93ab54a1b3,1
+np.float64,0x4084495006A41672,0x7a775b6dc7e63064,1
+np.float64,0x40830B1C0EBF95DD,0x76e1e6eed77cfb89,1
+np.float64,0x407D93E8F33D8470,0x6a9adbc9e1e4f1e5,1
+#use 25th entry
+np.float64,0x4066B11A09EFD9E8,0x504dd528065c28a7,1
+np.float64,0x408545823723AEEB,0x7d504a9b1844f594,1
+np.float64,0xC068C711F2CA3362,0x2e104f3496ea118e,1
+np.float64,0x407F317FCC3CA873,0x6cf0732c9948ebf4,1
+#use 26th entry
+np.float64,0x407AFB3EBA2ED50F,0x66dc28a129c868d5,1
+np.float64,0xC075377037708ADE,0x21531a329f3d793e,1
+np.float64,0xC07C30066A1F3246,0x174448baa16ded2b,1
+np.float64,0xC06689A75DE2ABD3,0x2fad70662fae230b,1
+#use 27th entry
+np.float64,0x4081514E9FCCF1E0,0x71e673b9efd15f44,1
+np.float64,0xC0762C710AF68460,0x1ff1ed7d8947fe43,1
+np.float64,0xC0468102FF70D9C4,0x3be0c3a8ff3419a3,1
+np.float64,0xC07EA4CEEF02A83E,0x13b908f085102c61,1
+#use 28th entry
+np.float64,0xC06290B04AE823C4,0x328a83da3c2e3351,1
+np.float64,0xC0770EB1D1C395FB,0x1eab281c1f1db5fe,1
+np.float64,0xC06F5D4D838A5BAE,0x29500ea32fb474ea,1
+np.float64,0x40723B3133B54C5D,0x5a3c82c7c3a2b848,1
+#use 29th entry
+np.float64,0x4085E6454CE3B4AA,0x7f20319b9638d06a,1
+np.float64,0x408389F2A0585D4B,0x7850667c58aab3d0,1
+np.float64,0xC0382798F9C8AE69,0x3dc1c79fe8739d6d,1
+np.float64,0xC08299D827608418,0x0a4335f76cdbaeb5,1
+#use 30th entry
+np.float64,0xC06F3DED43301BF1,0x2965670ae46750a8,1
+np.float64,0xC070CAF6BDD577D9,0x27b4aa4ffdd29981,1
+np.float64,0x4078529AD4B2D9F2,0x6305c12755d5e0a6,1
+np.float64,0xC055B14E75A31B96,0x381c2eda6d111e5d,1
+#use 31th entry
+np.float64,0x407B13EE414FA931,0x6700772c7544564d,1
+np.float64,0x407EAFDE9DE3EC54,0x6c346a0e49724a3c,1
+np.float64,0xC08362F398B9530D,0x07ffeddbadf980cb,1
+np.float64,0x407E865CDD9EEB86,0x6bf866cac5e0d126,1
+#use 32th entry
+np.float64,0x407FB62DBC794C86,0x6db009f708ac62cb,1
+np.float64,0xC063D0BAA68CDDDE,0x31a3b2a51ce50430,1
+np.float64,0xC05E7706A2231394,0x34f24bead6fab5c9,1
+np.float64,0x4083E3A06FDE444E,0x79527b7a386d1937,1
diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/tests/data/umath-validation-set-exp2.csv b/.venv/lib/python3.12/site-packages/numpy/_core/tests/data/umath-validation-set-exp2.csv
new file mode 100644
index 0000000..4e0a63e
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/_core/tests/data/umath-validation-set-exp2.csv
@@ -0,0 +1,1429 @@
+dtype,input,output,ulperrortol
+np.float32,0xbdfe94b0,0x3f6adda6,2
+np.float32,0x3f20f8f8,0x3fc5ec69,2
+np.float32,0x7040b5,0x3f800000,2
+np.float32,0x30ec5,0x3f800000,2
+np.float32,0x3eb63070,0x3fa3ce29,2
+np.float32,0xff4dda3d,0x0,2
+np.float32,0x805b832f,0x3f800000,2
+np.float32,0x3e883fb7,0x3f99ed8c,2
+np.float32,0x3f14d71f,0x3fbf8708,2
+np.float32,0xff7b1e55,0x0,2
+np.float32,0xbf691ac6,0x3f082fa2,2
+np.float32,0x7ee3e6ab,0x7f800000,2
+np.float32,0xbec6e2b4,0x3f439248,2
+np.float32,0xbf5f5ec2,0x3f0bd2c0,2
+np.float32,0x8025cc2c,0x3f800000,2
+np.float32,0x7e0d7672,0x7f800000,2
+np.float32,0xff4bbc5c,0x0,2
+np.float32,0xbd94fb30,0x3f73696b,2
+np.float32,0x6cc079,0x3f800000,2
+np.float32,0x803cf080,0x3f800000,2
+np.float32,0x71d418,0x3f800000,2
+np.float32,0xbf24a442,0x3f23ec1e,2
+np.float32,0xbe6c9510,0x3f5a1e1d,2
+np.float32,0xbe8fb284,0x3f52be38,2
+np.float32,0x7ea64754,0x7f800000,2
+np.float32,0x7fc00000,0x7fc00000,2
+np.float32,0x80620cfd,0x3f800000,2
+np.float32,0x3f3e20e8,0x3fd62e72,2
+np.float32,0x3f384600,0x3fd2d00e,2
+np.float32,0xff362150,0x0,2
+np.float32,0xbf349fa8,0x3f1cfaef,2
+np.float32,0xbf776cf2,0x3f0301a6,2
+np.float32,0x8021fc60,0x3f800000,2
+np.float32,0xbdb75280,0x3f70995c,2
+np.float32,0x7e9363a6,0x7f800000,2
+np.float32,0x7e728422,0x7f800000,2
+np.float32,0xfe91edc2,0x0,2
+np.float32,0x3f5f438c,0x3fea491d,2
+np.float32,0x3f2afae9,0x3fcb5c1f,2
+np.float32,0xbef8e766,0x3f36c448,2
+np.float32,0xba522c00,0x3f7fdb97,2
+np.float32,0xff18ee8c,0x0,2
+np.float32,0xbee8c5f4,0x3f3acd44,2
+np.float32,0x3e790448,0x3f97802c,2
+np.float32,0x3e8c9541,0x3f9ad571,2
+np.float32,0xbf03fa9f,0x3f331460,2
+np.float32,0x801ee053,0x3f800000,2
+np.float32,0xbf773230,0x3f03167f,2
+np.float32,0x356fd9,0x3f800000,2
+np.float32,0x8009cd88,0x3f800000,2
+np.float32,0x7f2bac51,0x7f800000,2
+np.float32,0x4d9eeb,0x3f800000,2
+np.float32,0x3133,0x3f800000,2
+np.float32,0x7f4290e0,0x7f800000,2
+np.float32,0xbf5e6523,0x3f0c3161,2
+np.float32,0x3f19182e,0x3fc1bf10,2
+np.float32,0x7e1248bb,0x7f800000,2
+np.float32,0xff5f7aae,0x0,2
+np.float32,0x7e8557b5,0x7f800000,2
+np.float32,0x26fc7f,0x3f800000,2
+np.float32,0x80397d61,0x3f800000,2
+np.float32,0x3cb1825d,0x3f81efe0,2
+np.float32,0x3ed808d0,0x3fab7c45,2
+np.float32,0xbf6f668a,0x3f05e259,2
+np.float32,0x3e3c7802,0x3f916abd,2
+np.float32,0xbd5ac5a0,0x3f76b21b,2
+np.float32,0x805aa6c9,0x3f800000,2
+np.float32,0xbe4d6f68,0x3f5ec3e1,2
+np.float32,0x3f3108b2,0x3fceb87f,2
+np.float32,0x3ec385cc,0x3fa6c9fb,2
+np.float32,0xbe9fc1ce,0x3f4e35e8,2
+np.float32,0x43b68,0x3f800000,2
+np.float32,0x3ef0cdcc,0x3fb15557,2
+np.float32,0x3e3f729b,0x3f91b5e1,2
+np.float32,0x7f52a4df,0x7f800000,2
+np.float32,0xbf56da96,0x3f0f15b9,2
+np.float32,0xbf161d2b,0x3f2a7faf,2
+np.float32,0x3e8df763,0x3f9b1fbe,2
+np.float32,0xff4f0780,0x0,2
+np.float32,0x8048f594,0x3f800000,2
+np.float32,0x3e62bb1d,0x3f953b7e,2
+np.float32,0xfe58e764,0x0,2
+np.float32,0x3dd2c922,0x3f897718,2
+np.float32,0x7fa00000,0x7fe00000,2
+np.float32,0xff07b4b2,0x0,2
+np.float32,0x7f6231a0,0x7f800000,2
+np.float32,0xb8d1d,0x3f800000,2
+np.float32,0x3ee01d24,0x3fad5f16,2
+np.float32,0xbf43f59f,0x3f169869,2
+np.float32,0x801f5257,0x3f800000,2
+np.float32,0x803c15d8,0x3f800000,2
+np.float32,0x3f171a08,0x3fc0b42a,2
+np.float32,0x127aef,0x3f800000,2
+np.float32,0xfd1c6,0x3f800000,2
+np.float32,0x3f1ed13e,0x3fc4c59a,2
+np.float32,0x57fd4f,0x3f800000,2
+np.float32,0x6e8c61,0x3f800000,2
+np.float32,0x804019ab,0x3f800000,2
+np.float32,0x3ef4e5c6,0x3fb251a1,2
+np.float32,0x5044c3,0x3f800000,2
+np.float32,0x3f04460f,0x3fb7204b,2
+np.float32,0x7e326b47,0x7f800000,2
+np.float32,0x800a7e4c,0x3f800000,2
+np.float32,0xbf47ec82,0x3f14fccc,2
+np.float32,0xbedb1b3e,0x3f3e4a4d,2
+np.float32,0x3f741d86,0x3ff7e4b0,2
+np.float32,0xbe249d20,0x3f6501a6,2
+np.float32,0xbf2ea152,0x3f1f8c68,2
+np.float32,0x3ec6dbcc,0x3fa78b3f,2
+np.float32,0x7ebd9bb4,0x7f800000,2
+np.float32,0x3f61b574,0x3febd77a,2
+np.float32,0x3f3dfb2b,0x3fd61891,2
+np.float32,0x3c7d95,0x3f800000,2
+np.float32,0x8071e840,0x3f800000,2
+np.float32,0x15c6fe,0x3f800000,2
+np.float32,0xbf096601,0x3f307893,2
+np.float32,0x7f5c2ef9,0x7f800000,2
+np.float32,0xbe79f750,0x3f582689,2
+np.float32,0x1eb692,0x3f800000,2
+np.float32,0xbd8024f0,0x3f75226d,2
+np.float32,0xbf5a8be8,0x3f0da950,2
+np.float32,0xbf4d28f3,0x3f12e3e1,2
+np.float32,0x7f800000,0x7f800000,2
+np.float32,0xfea8a758,0x0,2
+np.float32,0x8075d2cf,0x3f800000,2
+np.float32,0xfd99af58,0x0,2
+np.float32,0x9e6a,0x3f800000,2
+np.float32,0x2fa19f,0x3f800000,2
+np.float32,0x3e9f4206,0x3f9ecc56,2
+np.float32,0xbee0b666,0x3f3cd9fc,2
+np.float32,0xbec558c4,0x3f43fab1,2
+np.float32,0x7e9a77df,0x7f800000,2
+np.float32,0xff3a9694,0x0,2
+np.float32,0x3f3b3708,0x3fd47f9a,2
+np.float32,0x807cd6d4,0x3f800000,2
+np.float32,0x804aa422,0x3f800000,2
+np.float32,0xfead7a70,0x0,2
+np.float32,0x3f08c610,0x3fb95efe,2
+np.float32,0xff390126,0x0,2
+np.float32,0x5d2d47,0x3f800000,2
+np.float32,0x8006849c,0x3f800000,2
+np.float32,0x654f6e,0x3f800000,2
+np.float32,0xff478a16,0x0,2
+np.float32,0x3f480b0c,0x3fdc024c,2
+np.float32,0xbc3b96c0,0x3f7df9f4,2
+np.float32,0xbcc96460,0x3f7bacb5,2
+np.float32,0x7f349f30,0x7f800000,2
+np.float32,0xbe08fa98,0x3f6954a1,2
+np.float32,0x4f3a13,0x3f800000,2
+np.float32,0x7f6a5ab4,0x7f800000,2
+np.float32,0x7eb85247,0x7f800000,2
+np.float32,0xbf287246,0x3f223e08,2
+np.float32,0x801584d0,0x3f800000,2
+np.float32,0x7ec25371,0x7f800000,2
+np.float32,0x3f002165,0x3fb51552,2
+np.float32,0x3e1108a8,0x3f8d3429,2
+np.float32,0x4f0f88,0x3f800000,2
+np.float32,0x7f67c1ce,0x7f800000,2
+np.float32,0xbf4348f8,0x3f16dedf,2
+np.float32,0xbe292b64,0x3f644d24,2
+np.float32,0xbf2bfa36,0x3f20b2d6,2
+np.float32,0xbf2a6e58,0x3f215f71,2
+np.float32,0x3e97d5d3,0x3f9d35df,2
+np.float32,0x31f597,0x3f800000,2
+np.float32,0x100544,0x3f800000,2
+np.float32,0x10a197,0x3f800000,2
+np.float32,0x3f44df50,0x3fda20d2,2
+np.float32,0x59916d,0x3f800000,2
+np.float32,0x707472,0x3f800000,2
+np.float32,0x8054194e,0x3f800000,2
+np.float32,0x80627b01,0x3f800000,2
+np.float32,0x7f4d5a5b,0x7f800000,2
+np.float32,0xbcecad00,0x3f7aeca5,2
+np.float32,0xff69c541,0x0,2
+np.float32,0xbe164e20,0x3f673c3a,2
+np.float32,0x3dd321de,0x3f897b39,2
+np.float32,0x3c9c4900,0x3f81b431,2
+np.float32,0x7f0efae3,0x7f800000,2
+np.float32,0xbf1b3ee6,0x3f282567,2
+np.float32,0x3ee858ac,0x3faf5083,2
+np.float32,0x3f0e6a39,0x3fbc3965,2
+np.float32,0x7f0c06d8,0x7f800000,2
+np.float32,0x801dd236,0x3f800000,2
+np.float32,0x564245,0x3f800000,2
+np.float32,0x7e99d3ad,0x7f800000,2
+np.float32,0xff3b0164,0x0,2
+np.float32,0x3f386f18,0x3fd2e785,2
+np.float32,0x7f603c39,0x7f800000,2
+np.float32,0x3cbd9b00,0x3f8211f0,2
+np.float32,0x2178e2,0x3f800000,2
+np.float32,0x5db226,0x3f800000,2
+np.float32,0xfec78d62,0x0,2
+np.float32,0x7f40bc1e,0x7f800000,2
+np.float32,0x80325064,0x3f800000,2
+np.float32,0x3f6068dc,0x3feb0377,2
+np.float32,0xfe8b95c6,0x0,2
+np.float32,0xbe496894,0x3f5f5f87,2
+np.float32,0xbf18722a,0x3f296cf4,2
+np.float32,0x332d0e,0x3f800000,2
+np.float32,0x3f6329dc,0x3fecc5c0,2
+np.float32,0x807d1802,0x3f800000,2
+np.float32,0x3e8afcee,0x3f9a7ff1,2
+np.float32,0x26a0a7,0x3f800000,2
+np.float32,0x7f13085d,0x7f800000,2
+np.float32,0x68d547,0x3f800000,2
+np.float32,0x7e9b04ae,0x7f800000,2
+np.float32,0x3f3ecdfe,0x3fd692ea,2
+np.float32,0x805256f4,0x3f800000,2
+np.float32,0x3f312dc8,0x3fcecd42,2
+np.float32,0x23ca15,0x3f800000,2
+np.float32,0x3f53c455,0x3fe31ad6,2
+np.float32,0xbf21186c,0x3f2580fd,2
+np.float32,0x803b9bb1,0x3f800000,2
+np.float32,0xff6ae1fc,0x0,2
+np.float32,0x2103cf,0x3f800000,2
+np.float32,0xbedcec6c,0x3f3dd29d,2
+np.float32,0x7f520afa,0x7f800000,2
+np.float32,0x7e8b44f2,0x7f800000,2
+np.float32,0xfef7f6ce,0x0,2
+np.float32,0xbd5e7c30,0x3f768a6f,2
+np.float32,0xfeb36848,0x0,2
+np.float32,0xff49effb,0x0,2
+np.float32,0xbec207c0,0x3f44dc74,2
+np.float32,0x3e91147f,0x3f9bc77f,2
+np.float32,0xfe784cd4,0x0,2
+np.float32,0xfd1a7250,0x0,2
+np.float32,0xff3b3f48,0x0,2
+np.float32,0x3f685db5,0x3ff0219f,2
+np.float32,0x3f370976,0x3fd21bae,2
+np.float32,0xfed4cc20,0x0,2
+np.float32,0xbf41e337,0x3f17714a,2
+np.float32,0xbf4e8638,0x3f12593a,2
+np.float32,0x3edaf0f1,0x3fac295e,2
+np.float32,0x803cbb4f,0x3f800000,2
+np.float32,0x7f492043,0x7f800000,2
+np.float32,0x2cabcf,0x3f800000,2
+np.float32,0x17f8ac,0x3f800000,2
+np.float32,0x3e846478,0x3f99205a,2
+np.float32,0x76948f,0x3f800000,2
+np.float32,0x1,0x3f800000,2
+np.float32,0x7ea6419e,0x7f800000,2
+np.float32,0xa5315,0x3f800000,2
+np.float32,0xff3a8e32,0x0,2
+np.float32,0xbe5714e8,0x3f5d50b7,2
+np.float32,0xfeadf960,0x0,2
+np.float32,0x3ebbd1a8,0x3fa50efc,2
+np.float32,0x7f31dce7,0x7f800000,2
+np.float32,0x80314999,0x3f800000,2
+np.float32,0x8017f41b,0x3f800000,2
+np.float32,0x7ed6d051,0x7f800000,2
+np.float32,0x7f525688,0x7f800000,2
+np.float32,0x7f7fffff,0x7f800000,2
+np.float32,0x3e8b0461,0x3f9a8180,2
+np.float32,0x3d9fe46e,0x3f871e1f,2
+np.float32,0x5e6d8f,0x3f800000,2
+np.float32,0xbf09ae55,0x3f305608,2
+np.float32,0xfe7028c4,0x0,2
+np.float32,0x7f3ade56,0x7f800000,2
+np.float32,0xff4c9ef9,0x0,2
+np.float32,0x7e3199cf,0x7f800000,2
+np.float32,0x8048652f,0x3f800000,2
+np.float32,0x805e1237,0x3f800000,2
+np.float32,0x189ed8,0x3f800000,2
+np.float32,0xbea7c094,0x3f4bfd98,2
+np.float32,0xbf2f109c,0x3f1f5c5c,2
+np.float32,0xbf0e7f4c,0x3f2e0d2c,2
+np.float32,0x8005981f,0x3f800000,2
+np.float32,0xbf762005,0x3f0377f3,2
+np.float32,0xbf0f60ab,0x3f2da317,2
+np.float32,0xbf4aa3e7,0x3f13e54e,2
+np.float32,0xbf348fd2,0x3f1d01aa,2
+np.float32,0x3e530b50,0x3f93a7fb,2
+np.float32,0xbf0b05a4,0x3f2fb26a,2
+np.float32,0x3eea416c,0x3fafc4aa,2
+np.float32,0x805ad04d,0x3f800000,2
+np.float32,0xbf6328d8,0x3f0a655e,2
+np.float32,0x3f7347b9,0x3ff75558,2
+np.float32,0xfda3ca68,0x0,2
+np.float32,0x80497d21,0x3f800000,2
+np.float32,0x3e740452,0x3f96fd22,2
+np.float32,0x3e528e57,0x3f939b7e,2
+np.float32,0x3e9e19fa,0x3f9e8cbd,2
+np.float32,0x8078060b,0x3f800000,2
+np.float32,0x3f3fea7a,0x3fd73872,2
+np.float32,0xfcfa30a0,0x0,2
+np.float32,0x7f4eb4bf,0x7f800000,2
+np.float32,0x3f712618,0x3ff5e900,2
+np.float32,0xbf668f0e,0x3f0920c6,2
+np.float32,0x3f3001e9,0x3fce259d,2
+np.float32,0xbe9b6fac,0x3f4f6b9c,2
+np.float32,0xbf61fcf3,0x3f0ad5ec,2
+np.float32,0xff08a55c,0x0,2
+np.float32,0x3e805014,0x3f984872,2
+np.float32,0x6ce04c,0x3f800000,2
+np.float32,0x7f7cbc07,0x7f800000,2
+np.float32,0x3c87dc,0x3f800000,2
+np.float32,0x3f2ee498,0x3fcd869a,2
+np.float32,0x4b1116,0x3f800000,2
+np.float32,0x3d382d06,0x3f840d5f,2
+np.float32,0xff7de21e,0x0,2
+np.float32,0x3f2f1d6d,0x3fcda63c,2
+np.float32,0xbf1c1618,0x3f27c38a,2
+np.float32,0xff4264b1,0x0,2
+np.float32,0x8026e5e7,0x3f800000,2
+np.float32,0xbe6fa180,0x3f59ab02,2
+np.float32,0xbe923c02,0x3f52053b,2
+np.float32,0xff3aa453,0x0,2
+np.float32,0x3f77a7ac,0x3ffa47d0,2
+np.float32,0xbed15f36,0x3f40d08a,2
+np.float32,0xa62d,0x3f800000,2
+np.float32,0xbf342038,0x3f1d3123,2
+np.float32,0x7f2f7f80,0x7f800000,2
+np.float32,0x7f2b6fc1,0x7f800000,2
+np.float32,0xff323540,0x0,2
+np.float32,0x3f1a2b6e,0x3fc24faa,2
+np.float32,0x800cc1d2,0x3f800000,2
+np.float32,0xff38fa01,0x0,2
+np.float32,0x80800000,0x3f800000,2
+np.float32,0xbf3d22e0,0x3f196745,2
+np.float32,0x7f40fd62,0x7f800000,2
+np.float32,0x7e1785c7,0x7f800000,2
+np.float32,0x807408c4,0x3f800000,2
+np.float32,0xbf300192,0x3f1ef485,2
+np.float32,0x351e3d,0x3f800000,2
+np.float32,0x7f5ab736,0x7f800000,2
+np.float32,0x2f1696,0x3f800000,2
+np.float32,0x806ac5d7,0x3f800000,2
+np.float32,0x42ec59,0x3f800000,2
+np.float32,0x7f79f52d,0x7f800000,2
+np.float32,0x44ad28,0x3f800000,2
+np.float32,0xbf49dc9c,0x3f143532,2
+np.float32,0x3f6c1f1f,0x3ff295e7,2
+np.float32,0x1589b3,0x3f800000,2
+np.float32,0x3f49b44e,0x3fdd0031,2
+np.float32,0x7f5942c9,0x7f800000,2
+np.float32,0x3f2dab28,0x3fccd877,2
+np.float32,0xff7fffff,0x0,2
+np.float32,0x80578eb2,0x3f800000,2
+np.float32,0x3f39ba67,0x3fd3a50b,2
+np.float32,0x8020340d,0x3f800000,2
+np.float32,0xbf6025b2,0x3f0b8783,2
+np.float32,0x8015ccfe,0x3f800000,2
+np.float32,0x3f6b9762,0x3ff23cd0,2
+np.float32,0xfeeb0c86,0x0,2
+np.float32,0x802779bc,0x3f800000,2
+np.float32,0xbf32bf64,0x3f1dc796,2
+np.float32,0xbf577eb6,0x3f0ed631,2
+np.float32,0x0,0x3f800000,2
+np.float32,0xfe99de6c,0x0,2
+np.float32,0x7a4e53,0x3f800000,2
+np.float32,0x1a15d3,0x3f800000,2
+np.float32,0x8035fe16,0x3f800000,2
+np.float32,0x3e845784,0x3f991dab,2
+np.float32,0x43d688,0x3f800000,2
+np.float32,0xbd447cc0,0x3f77a0b7,2
+np.float32,0x3f83fa,0x3f800000,2
+np.float32,0x3f141df2,0x3fbf2719,2
+np.float32,0x805c586a,0x3f800000,2
+np.float32,0x14c47e,0x3f800000,2
+np.float32,0x3d3bed00,0x3f8422d4,2
+np.float32,0x7f6f4ecd,0x7f800000,2
+np.float32,0x3f0a5e5a,0x3fba2c5c,2
+np.float32,0x523ecf,0x3f800000,2
+np.float32,0xbef4a6e8,0x3f37d262,2
+np.float32,0xff54eb58,0x0,2
+np.float32,0xff3fc875,0x0,2
+np.float32,0x8067c392,0x3f800000,2
+np.float32,0xfedae910,0x0,2
+np.float32,0x80595979,0x3f800000,2
+np.float32,0x3ee87d1d,0x3faf5929,2
+np.float32,0x7f5bad33,0x7f800000,2
+np.float32,0xbf45b868,0x3f15e109,2
+np.float32,0x3ef2277d,0x3fb1a868,2
+np.float32,0x3ca5a950,0x3f81ce8c,2
+np.float32,0x3e70f4e6,0x3f96ad25,2
+np.float32,0xfe3515bc,0x0,2
+np.float32,0xfe4af088,0x0,2
+np.float32,0xff3c78b2,0x0,2
+np.float32,0x7f50f51a,0x7f800000,2
+np.float32,0x3e3a232a,0x3f913009,2
+np.float32,0x7dfec6ff,0x7f800000,2
+np.float32,0x3e1bbaec,0x3f8e3ad6,2
+np.float32,0xbd658fa0,0x3f763ee7,2
+np.float32,0xfe958684,0x0,2
+np.float32,0x503670,0x3f800000,2
+np.float32,0x3f800000,0x40000000,2
+np.float32,0x1bbec6,0x3f800000,2
+np.float32,0xbea7bb7c,0x3f4bff00,2
+np.float32,0xff3a24a2,0x0,2
+np.float32,0xbf416240,0x3f17a635,2
+np.float32,0xbf800000,0x3f000000,2
+np.float32,0xff0c965c,0x0,2
+np.float32,0x80000000,0x3f800000,2
+np.float32,0xbec2c69a,0x3f44a99e,2
+np.float32,0x5b68d4,0x3f800000,2
+np.float32,0xb9a93000,0x3f7ff158,2
+np.float32,0x3d5a0dd8,0x3f84cfbc,2
+np.float32,0xbeaf7a28,0x3f49de4e,2
+np.float32,0x3ee83555,0x3faf4820,2
+np.float32,0xfd320330,0x0,2
+np.float32,0xe1af2,0x3f800000,2
+np.float32,0x7cf28caf,0x7f800000,2
+np.float32,0x80781009,0x3f800000,2
+np.float32,0xbf1e0baf,0x3f26e04d,2
+np.float32,0x7edb05b1,0x7f800000,2
+np.float32,0x3de004,0x3f800000,2
+np.float32,0xff436af6,0x0,2
+np.float32,0x802a9408,0x3f800000,2
+np.float32,0x7ed82205,0x7f800000,2
+np.float32,0x3e3f8212,0x3f91b767,2
+np.float32,0x16a2b2,0x3f800000,2
+np.float32,0xff1e5af3,0x0,2
+np.float32,0xbf1c860c,0x3f2790b7,2
+np.float32,0x3f3bc5da,0x3fd4d1d6,2
+np.float32,0x7f5f7085,0x7f800000,2
+np.float32,0x7f68e409,0x7f800000,2
+np.float32,0x7f4b3388,0x7f800000,2
+np.float32,0x7ecaf440,0x7f800000,2
+np.float32,0x80078785,0x3f800000,2
+np.float32,0x3ebd800d,0x3fa56f45,2
+np.float32,0xbe39a140,0x3f61c58e,2
+np.float32,0x803b587e,0x3f800000,2
+np.float32,0xbeaaa418,0x3f4b31c4,2
+np.float32,0xff7e2b9f,0x0,2
+np.float32,0xff5180a3,0x0,2
+np.float32,0xbf291394,0x3f21f73c,2
+np.float32,0x7f7b9698,0x7f800000,2
+np.float32,0x4218da,0x3f800000,2
+np.float32,0x7f135262,0x7f800000,2
+np.float32,0x804c10e8,0x3f800000,2
+np.float32,0xbf1c2a54,0x3f27ba5a,2
+np.float32,0x7f41fd32,0x7f800000,2
+np.float32,0x3e5cc464,0x3f94a195,2
+np.float32,0xff7a2fa7,0x0,2
+np.float32,0x3e05dc30,0x3f8c23c9,2
+np.float32,0x7f206d99,0x7f800000,2
+np.float32,0xbe9ae520,0x3f4f9287,2
+np.float32,0xfe4f4d58,0x0,2
+np.float32,0xbf44db42,0x3f163ae3,2
+np.float32,0x3f65ac48,0x3fee6300,2
+np.float32,0x3ebfaf36,0x3fa5ecb0,2
+np.float32,0x3f466719,0x3fdb08b0,2
+np.float32,0x80000001,0x3f800000,2
+np.float32,0xff4b3c7b,0x0,2
+np.float32,0x3df44374,0x3f8b0819,2
+np.float32,0xfea4b540,0x0,2
+np.float32,0x7f358e3d,0x7f800000,2
+np.float32,0x801f5e63,0x3f800000,2
+np.float32,0x804ae77e,0x3f800000,2
+np.float32,0xdbb5,0x3f800000,2
+np.float32,0x7f0a7e3b,0x7f800000,2
+np.float32,0xbe4152e4,0x3f609953,2
+np.float32,0x4b9579,0x3f800000,2
+np.float32,0x3ece0bd4,0x3fa92ea5,2
+np.float32,0x7e499d9a,0x7f800000,2
+np.float32,0x80637d8a,0x3f800000,2
+np.float32,0x3e50a425,0x3f936a8b,2
+np.float32,0xbf0e8cb0,0x3f2e06dd,2
+np.float32,0x802763e2,0x3f800000,2
+np.float32,0xff73041b,0x0,2
+np.float32,0xfea466da,0x0,2
+np.float32,0x80064c73,0x3f800000,2
+np.float32,0xbef29222,0x3f385728,2
+np.float32,0x8029c215,0x3f800000,2
+np.float32,0xbd3994e0,0x3f7815d1,2
+np.float32,0xbe6ac9e4,0x3f5a61f3,2
+np.float32,0x804b58b0,0x3f800000,2
+np.float32,0xbdb83be0,0x3f70865c,2
+np.float32,0x7ee18da2,0x7f800000,2
+np.float32,0xfd4ca010,0x0,2
+np.float32,0x807c668b,0x3f800000,2
+np.float32,0xbd40ed90,0x3f77c6e9,2
+np.float32,0x7efc6881,0x7f800000,2
+np.float32,0xfe633bfc,0x0,2
+np.float32,0x803ce363,0x3f800000,2
+np.float32,0x7ecba81e,0x7f800000,2
+np.float32,0xfdcb2378,0x0,2
+np.float32,0xbebc5524,0x3f4662b2,2
+np.float32,0xfaa30000,0x0,2
+np.float32,0x805d451b,0x3f800000,2
+np.float32,0xbee85600,0x3f3ae996,2
+np.float32,0xfefb0a54,0x0,2
+np.float32,0xbdfc6690,0x3f6b0a08,2
+np.float32,0x58a57,0x3f800000,2
+np.float32,0x3b41b7,0x3f800000,2
+np.float32,0x7c99812d,0x7f800000,2
+np.float32,0xbd3ae740,0x3f78079d,2
+np.float32,0xbf4a48a7,0x3f1409dd,2
+np.float32,0xfdeaad58,0x0,2
+np.float32,0xbe9aa65a,0x3f4fa42c,2
+np.float32,0x3f79d78c,0x3ffbc458,2
+np.float32,0x805e7389,0x3f800000,2
+np.float32,0x7ebb3612,0x7f800000,2
+np.float32,0x2e27dc,0x3f800000,2
+np.float32,0x80726dec,0x3f800000,2
+np.float32,0xfe8fb738,0x0,2
+np.float32,0xff1ff3bd,0x0,2
+np.float32,0x7f5264a2,0x7f800000,2
+np.float32,0x3f5a6893,0x3fe739ca,2
+np.float32,0xbec4029c,0x3f44558d,2
+np.float32,0xbef65cfa,0x3f37657e,2
+np.float32,0x63aba1,0x3f800000,2
+np.float32,0xfbb6e200,0x0,2
+np.float32,0xbf3466fc,0x3f1d1307,2
+np.float32,0x3f258844,0x3fc861d7,2
+np.float32,0xbf5f29a7,0x3f0be6dc,2
+np.float32,0x802b51cd,0x3f800000,2
+np.float32,0xbe9094dc,0x3f527dae,2
+np.float32,0xfec2e68c,0x0,2
+np.float32,0x807b38bd,0x3f800000,2
+np.float32,0xbf594662,0x3f0e2663,2
+np.float32,0x7cbcf747,0x7f800000,2
+np.float32,0xbe4b88f0,0x3f5f0d47,2
+np.float32,0x3c53c4,0x3f800000,2
+np.float32,0xbe883562,0x3f54e3f7,2
+np.float32,0xbf1efaf0,0x3f267456,2
+np.float32,0x3e22cd3e,0x3f8ee98b,2
+np.float32,0x80434875,0x3f800000,2
+np.float32,0xbf000b44,0x3f34ff6e,2
+np.float32,0x7f311c3a,0x7f800000,2
+np.float32,0x802f7f3f,0x3f800000,2
+np.float32,0x805155fe,0x3f800000,2
+np.float32,0x7f5d7485,0x7f800000,2
+np.float32,0x80119197,0x3f800000,2
+np.float32,0x3f445b8b,0x3fd9d30d,2
+np.float32,0xbf638eb3,0x3f0a3f38,2
+np.float32,0x402410,0x3f800000,2
+np.float32,0xbc578a40,0x3f7dad1d,2
+np.float32,0xbeecbf8a,0x3f39cc9e,2
+np.float32,0x7f2935a4,0x7f800000,2
+np.float32,0x3f570fea,0x3fe523e2,2
+np.float32,0xbf06bffa,0x3f31bdb6,2
+np.float32,0xbf2afdfd,0x3f2120ba,2
+np.float32,0x7f76f7ab,0x7f800000,2
+np.float32,0xfee2d1e8,0x0,2
+np.float32,0x800b026d,0x3f800000,2
+np.float32,0xff0eda75,0x0,2
+np.float32,0x3d4c,0x3f800000,2
+np.float32,0xbed538a2,0x3f3fcffb,2
+np.float32,0x3f73f4f9,0x3ff7c979,2
+np.float32,0x2aa9fc,0x3f800000,2
+np.float32,0x806a45b3,0x3f800000,2
+np.float32,0xff770d35,0x0,2
+np.float32,0x7e999be3,0x7f800000,2
+np.float32,0x80741128,0x3f800000,2
+np.float32,0xff6aac34,0x0,2
+np.float32,0x470f74,0x3f800000,2
+np.float32,0xff423b7b,0x0,2
+np.float32,0x17dfdd,0x3f800000,2
+np.float32,0x7f029e12,0x7f800000,2
+np.float32,0x803fcb9d,0x3f800000,2
+np.float32,0x3f3dc3,0x3f800000,2
+np.float32,0x7f3a27bc,0x7f800000,2
+np.float32,0x3e473108,0x3f9279ec,2
+np.float32,0x7f4add5d,0x7f800000,2
+np.float32,0xfd9736e0,0x0,2
+np.float32,0x805f1df2,0x3f800000,2
+np.float32,0x6c49c1,0x3f800000,2
+np.float32,0x7ec733c7,0x7f800000,2
+np.float32,0x804c1abf,0x3f800000,2
+np.float32,0x3de2e887,0x3f8a37a5,2
+np.float32,0x3f51630a,0x3fe1a561,2
+np.float32,0x3de686a8,0x3f8a62ff,2
+np.float32,0xbedb3538,0x3f3e439c,2
+np.float32,0xbf3aa892,0x3f1a6f9e,2
+np.float32,0x7ee5fb32,0x7f800000,2
+np.float32,0x7e916c9b,0x7f800000,2
+np.float32,0x3f033f1c,0x3fb69e19,2
+np.float32,0x25324b,0x3f800000,2
+np.float32,0x3f348d1d,0x3fd0b2e2,2
+np.float32,0x3f5797e8,0x3fe57851,2
+np.float32,0xbf69c316,0x3f07f1a0,2
+np.float32,0xbe8b7fb0,0x3f53f1bf,2
+np.float32,0xbdbbc190,0x3f703d00,2
+np.float32,0xff6c4fc0,0x0,2
+np.float32,0x7f29fcbe,0x7f800000,2
+np.float32,0x3f678d19,0x3fef9a23,2
+np.float32,0x73d140,0x3f800000,2
+np.float32,0x3e25bdd2,0x3f8f326b,2
+np.float32,0xbeb775ec,0x3f47b2c6,2
+np.float32,0xff451c4d,0x0,2
+np.float32,0x8072c466,0x3f800000,2
+np.float32,0x3f65e836,0x3fee89b2,2
+np.float32,0x52ca7a,0x3f800000,2
+np.float32,0x62cfed,0x3f800000,2
+np.float32,0xbf583dd0,0x3f0e8c5c,2
+np.float32,0xbf683842,0x3f088342,2
+np.float32,0x3f1a7828,0x3fc2780c,2
+np.float32,0x800ea979,0x3f800000,2
+np.float32,0xbeb9133c,0x3f474328,2
+np.float32,0x3ef09fc7,0x3fb14a4b,2
+np.float32,0x7ebbcb75,0x7f800000,2
+np.float32,0xff316c0e,0x0,2
+np.float32,0x805b84e3,0x3f800000,2
+np.float32,0x3d6a55e0,0x3f852d8a,2
+np.float32,0x3e755788,0x3f971fd1,2
+np.float32,0x3ee7aacb,0x3faf2743,2
+np.float32,0x7f714039,0x7f800000,2
+np.float32,0xff70bad8,0x0,2
+np.float32,0xbe0b74c8,0x3f68f08c,2
+np.float32,0xbf6cb170,0x3f06de86,2
+np.float32,0x7ec1fbff,0x7f800000,2
+np.float32,0x8014b1f6,0x3f800000,2
+np.float32,0xfe8b45fe,0x0,2
+np.float32,0x6e2220,0x3f800000,2
+np.float32,0x3ed1777d,0x3fa9f7ab,2
+np.float32,0xff48e467,0x0,2
+np.float32,0xff76c5aa,0x0,2
+np.float32,0x3e9bd330,0x3f9e0fd7,2
+np.float32,0x3f17de4f,0x3fc11aae,2
+np.float32,0x7eeaa2fd,0x7f800000,2
+np.float32,0xbf572746,0x3f0ef806,2
+np.float32,0x7e235554,0x7f800000,2
+np.float32,0xfe24fc1c,0x0,2
+np.float32,0x7daf71ad,0x7f800000,2
+np.float32,0x800d4a6b,0x3f800000,2
+np.float32,0xbf6fc31d,0x3f05c0ce,2
+np.float32,0x1c4d93,0x3f800000,2
+np.float32,0x7ee9200c,0x7f800000,2
+np.float32,0x3f54b4da,0x3fe3aeec,2
+np.float32,0x2b37b1,0x3f800000,2
+np.float32,0x3f7468bd,0x3ff81731,2
+np.float32,0x3f2850ea,0x3fc9e5f4,2
+np.float32,0xbe0d47ac,0x3f68a6f9,2
+np.float32,0x314877,0x3f800000,2
+np.float32,0x802700c3,0x3f800000,2
+np.float32,0x7e2c915f,0x7f800000,2
+np.float32,0x800d0059,0x3f800000,2
+np.float32,0x3f7f3c25,0x3fff7862,2
+np.float32,0xff735d31,0x0,2
+np.float32,0xff7e339e,0x0,2
+np.float32,0xbef96cf0,0x3f36a340,2
+np.float32,0x3db6ea21,0x3f882cb2,2
+np.float32,0x67cb3d,0x3f800000,2
+np.float32,0x801f349d,0x3f800000,2
+np.float32,0x3f1390ec,0x3fbede29,2
+np.float32,0x7f13644a,0x7f800000,2
+np.float32,0x804a369b,0x3f800000,2
+np.float32,0x80262666,0x3f800000,2
+np.float32,0x7e850fbc,0x7f800000,2
+np.float32,0x18b002,0x3f800000,2
+np.float32,0x8051f1ed,0x3f800000,2
+np.float32,0x3eba48f6,0x3fa4b753,2
+np.float32,0xbf3f4130,0x3f1886a9,2
+np.float32,0xbedac006,0x3f3e61cf,2
+np.float32,0xbf097c70,0x3f306ddc,2
+np.float32,0x4aba6d,0x3f800000,2
+np.float32,0x580078,0x3f800000,2
+np.float32,0x3f64d82e,0x3fedda40,2
+np.float32,0x7f781fd6,0x7f800000,2
+np.float32,0x6aff3d,0x3f800000,2
+np.float32,0xff25e074,0x0,2
+np.float32,0x7ea9ec89,0x7f800000,2
+np.float32,0xbf63b816,0x3f0a2fbb,2
+np.float32,0x133f07,0x3f800000,2
+np.float32,0xff800000,0x0,2
+np.float32,0x8013dde7,0x3f800000,2
+np.float32,0xff770b95,0x0,2
+np.float32,0x806154e8,0x3f800000,2
+np.float32,0x3f1e7bce,0x3fc4981a,2
+np.float32,0xff262c78,0x0,2
+np.float32,0x3f59a652,0x3fe6c04c,2
+np.float32,0x7f220166,0x7f800000,2
+np.float32,0x7eb24939,0x7f800000,2
+np.float32,0xbed58bb0,0x3f3fba6a,2
+np.float32,0x3c2ad000,0x3f80eda7,2
+np.float32,0x2adb2e,0x3f800000,2
+np.float32,0xfe8b213e,0x0,2
+np.float32,0xbf2e0c1e,0x3f1fccea,2
+np.float32,0x7e1716be,0x7f800000,2
+np.float32,0x80184e73,0x3f800000,2
+np.float32,0xbf254743,0x3f23a3d5,2
+np.float32,0x8063a722,0x3f800000,2
+np.float32,0xbe50adf0,0x3f5e46c7,2
+np.float32,0x3f614158,0x3feb8d60,2
+np.float32,0x8014bbc8,0x3f800000,2
+np.float32,0x283bc7,0x3f800000,2
+np.float32,0x3ffb5c,0x3f800000,2
+np.float32,0xfe8de6bc,0x0,2
+np.float32,0xbea6e086,0x3f4c3b82,2
+np.float32,0xfee64b92,0x0,2
+np.float32,0x506c1a,0x3f800000,2
+np.float32,0xff342af8,0x0,2
+np.float32,0x6b6f4c,0x3f800000,2
+np.float32,0xfeb42b1e,0x0,2
+np.float32,0x3e49384a,0x3f92ad71,2
+np.float32,0x152d08,0x3f800000,2
+np.float32,0x804c8f09,0x3f800000,2
+np.float32,0xff5e927d,0x0,2
+np.float32,0x6374da,0x3f800000,2
+np.float32,0x3f48f011,0x3fdc8ae4,2
+np.float32,0xbf446a30,0x3f1668e8,2
+np.float32,0x3ee77073,0x3faf196e,2
+np.float32,0xff4caa40,0x0,2
+np.float32,0x7efc9363,0x7f800000,2
+np.float32,0xbf706dcc,0x3f05830d,2
+np.float32,0xfe29c7e8,0x0,2
+np.float32,0x803cfe58,0x3f800000,2
+np.float32,0x3ec34c7c,0x3fa6bd0a,2
+np.float32,0x3eb85b62,0x3fa44968,2
+np.float32,0xfda1b9d8,0x0,2
+np.float32,0x802932cd,0x3f800000,2
+np.float32,0xbf5cde78,0x3f0cc5fa,2
+np.float32,0x3f31bf44,0x3fcf1ec8,2
+np.float32,0x803a0882,0x3f800000,2
+np.float32,0x800000,0x3f800000,2
+np.float32,0x3f54110e,0x3fe34a08,2
+np.float32,0x80645ea9,0x3f800000,2
+np.float32,0xbd8c1070,0x3f7425c3,2
+np.float32,0x801a006a,0x3f800000,2
+np.float32,0x7f5d161e,0x7f800000,2
+np.float32,0x805b5df3,0x3f800000,2
+np.float32,0xbf71a7c0,0x3f0511be,2
+np.float32,0xbe9a55c0,0x3f4fbad6,2
+np.float64,0xde7e2fd9bcfc6,0x3ff0000000000000,1
+np.float64,0xbfd8cd88eb319b12,0x3fe876349efbfa2b,1
+np.float64,0x3fe4fa13ace9f428,0x3ff933fbb117d196,1
+np.float64,0x475b3d048eb68,0x3ff0000000000000,1
+np.float64,0x7fef39ed07be73d9,0x7ff0000000000000,1
+np.float64,0x80026b84d904d70a,0x3ff0000000000000,1
+np.float64,0xebd60627d7ac1,0x3ff0000000000000,1
+np.float64,0xbfd7cbefdbaf97e0,0x3fe8bad30f6cf8e1,1
+np.float64,0x7fc17c605a22f8c0,0x7ff0000000000000,1
+np.float64,0x8cdac05119b58,0x3ff0000000000000,1
+np.float64,0x3fc45cd60a28b9ac,0x3ff1dd8028ec3f41,1
+np.float64,0x7fef4fce137e9f9b,0x7ff0000000000000,1
+np.float64,0xe5a2b819cb457,0x3ff0000000000000,1
+np.float64,0xe3bcfd4dc77a0,0x3ff0000000000000,1
+np.float64,0x68f0b670d1e17,0x3ff0000000000000,1
+np.float64,0xae69a6455cd35,0x3ff0000000000000,1
+np.float64,0xffe7007a0c6e00f4,0x0,1
+np.float64,0x59fc57a8b3f8c,0x3ff0000000000000,1
+np.float64,0xbfeee429c0bdc854,0x3fe0638fa62bed9f,1
+np.float64,0x80030bb6e206176f,0x3ff0000000000000,1
+np.float64,0x8006967a36ad2cf5,0x3ff0000000000000,1
+np.float64,0x3fe128176a22502f,0x3ff73393301e5dc8,1
+np.float64,0x218de20c431bd,0x3ff0000000000000,1
+np.float64,0x3fe7dbc48aafb789,0x3ffad38989b5955c,1
+np.float64,0xffda1ef411343de8,0x0,1
+np.float64,0xc6b392838d673,0x3ff0000000000000,1
+np.float64,0x7fe6d080c1ada101,0x7ff0000000000000,1
+np.float64,0xbfed36dd67fa6dbb,0x3fe0fec342c4ee89,1
+np.float64,0x3fee2bb6a3fc576e,0x3ffec1c149f1f092,1
+np.float64,0xbfd1f785eb23ef0c,0x3fea576eb01233cb,1
+np.float64,0x7fdad29a1f35a533,0x7ff0000000000000,1
+np.float64,0xffe8928c4fb12518,0x0,1
+np.float64,0x7fb123160022462b,0x7ff0000000000000,1
+np.float64,0x8007ab56cfaf56ae,0x3ff0000000000000,1
+np.float64,0x7fda342d6634685a,0x7ff0000000000000,1
+np.float64,0xbfe3b7e42c676fc8,0x3fe4e05cf8685b8a,1
+np.float64,0xffa708be7c2e1180,0x0,1
+np.float64,0xbfe8ffbece31ff7e,0x3fe29eb84077a34a,1
+np.float64,0xbf91002008220040,0x3fefa245058f05cb,1
+np.float64,0x8000281f0ee0503f,0x3ff0000000000000,1
+np.float64,0x8005617adc2ac2f6,0x3ff0000000000000,1
+np.float64,0x7fa84fec60309fd8,0x7ff0000000000000,1
+np.float64,0x8d00c0231a018,0x3ff0000000000000,1
+np.float64,0xbfdfe52ca63fca5a,0x3fe6a7324cc00d57,1
+np.float64,0x7fcc81073d39020d,0x7ff0000000000000,1
+np.float64,0x800134ff5a6269ff,0x3ff0000000000000,1
+np.float64,0xffc7fff98d2ffff4,0x0,1
+np.float64,0x8000925ce50124bb,0x3ff0000000000000,1
+np.float64,0xffe2530c66a4a618,0x0,1
+np.float64,0x7fc99070673320e0,0x7ff0000000000000,1
+np.float64,0xbfddd5c1f13bab84,0x3fe72a0c80f8df39,1
+np.float64,0x3fe1c220fee38442,0x3ff7817ec66aa55b,1
+np.float64,0x3fb9a1e1043343c2,0x3ff1265e575e6404,1
+np.float64,0xffef72e0833ee5c0,0x0,1
+np.float64,0x3fe710c0416e2181,0x3ffa5e93588aaa69,1
+np.float64,0xbfd8d23cbab1a47a,0x3fe874f5b9d99885,1
+np.float64,0x7fe9628ebd72c51c,0x7ff0000000000000,1
+np.float64,0xdd5fa611babf5,0x3ff0000000000000,1
+np.float64,0x8002bafac86575f6,0x3ff0000000000000,1
+np.float64,0x68acea44d159e,0x3ff0000000000000,1
+np.float64,0xffd776695eaeecd2,0x0,1
+np.float64,0x80059b59bb4b36b4,0x3ff0000000000000,1
+np.float64,0xbdcdd2af7b9bb,0x3ff0000000000000,1
+np.float64,0x8002b432ee856867,0x3ff0000000000000,1
+np.float64,0xcbc72f09978e6,0x3ff0000000000000,1
+np.float64,0xbfee8f4bf6fd1e98,0x3fe081cc0318b170,1
+np.float64,0xffc6e2892d2dc514,0x0,1
+np.float64,0x7feb682e4db6d05c,0x7ff0000000000000,1
+np.float64,0x8004b70a04296e15,0x3ff0000000000000,1
+np.float64,0x42408a4284812,0x3ff0000000000000,1
+np.float64,0xbfe9b8b197f37163,0x3fe254b4c003ce0a,1
+np.float64,0x3fcaadf5f5355bec,0x3ff27ca7876a8d20,1
+np.float64,0xfff0000000000000,0x0,1
+np.float64,0x7fea8376d33506ed,0x7ff0000000000000,1
+np.float64,0xffef73c2d63ee785,0x0,1
+np.float64,0xffe68b2bae2d1657,0x0,1
+np.float64,0x3fd8339cb2306739,0x3ff4cb774d616f90,1
+np.float64,0xbfc6d1db4d2da3b8,0x3fec47bb873a309c,1
+np.float64,0x7fe858016230b002,0x7ff0000000000000,1
+np.float64,0x7fe74cb99d2e9972,0x7ff0000000000000,1
+np.float64,0xffec2e96dc385d2d,0x0,1
+np.float64,0xb762a9876ec55,0x3ff0000000000000,1
+np.float64,0x3feca230c5794462,0x3ffdbfe62a572f52,1
+np.float64,0xbfb5ebad3a2bd758,0x3fee27eed86dcc39,1
+np.float64,0x471c705a8e38f,0x3ff0000000000000,1
+np.float64,0x7fc79bb5cf2f376b,0x7ff0000000000000,1
+np.float64,0xbfe53d6164ea7ac3,0x3fe4331b3beb73bd,1
+np.float64,0xbfe375a3f766eb48,0x3fe4fe67edb516e6,1
+np.float64,0x3fe1c7686ca38ed1,0x3ff7842f04770ba9,1
+np.float64,0x242e74dc485cf,0x3ff0000000000000,1
+np.float64,0x8009c06ab71380d6,0x3ff0000000000000,1
+np.float64,0x3fd08505efa10a0c,0x3ff3227b735b956d,1
+np.float64,0xffe3dfcecda7bf9d,0x0,1
+np.float64,0x8001f079bbc3e0f4,0x3ff0000000000000,1
+np.float64,0x3fddc706b6bb8e0c,0x3ff616d927987363,1
+np.float64,0xbfd151373ea2a26e,0x3fea870ba53ec126,1
+np.float64,0x7fe89533bfb12a66,0x7ff0000000000000,1
+np.float64,0xffed302cbc3a6059,0x0,1
+np.float64,0x3fd871cc28b0e398,0x3ff4d97d58c16ae2,1
+np.float64,0x7fbe9239683d2472,0x7ff0000000000000,1
+np.float64,0x848a445909149,0x3ff0000000000000,1
+np.float64,0x8007b104ce2f620a,0x3ff0000000000000,1
+np.float64,0x7fc2cd6259259ac4,0x7ff0000000000000,1
+np.float64,0xbfeadb640df5b6c8,0x3fe1e2b068de10af,1
+np.float64,0x800033b2f1a06767,0x3ff0000000000000,1
+np.float64,0x7fe54e5b7caa9cb6,0x7ff0000000000000,1
+np.float64,0x4f928f209f26,0x3ff0000000000000,1
+np.float64,0x8003c3dc6f2787ba,0x3ff0000000000000,1
+np.float64,0xbfd55a59daaab4b4,0x3fe9649d57b32b5d,1
+np.float64,0xffe3e2968d67c52c,0x0,1
+np.float64,0x80087434d550e86a,0x3ff0000000000000,1
+np.float64,0xffdde800083bd000,0x0,1
+np.float64,0xffe291f0542523e0,0x0,1
+np.float64,0xbfe1419bc3e28338,0x3fe6051d4f95a34a,1
+np.float64,0x3fd9d00ee1b3a01e,0x3ff5292bb8d5f753,1
+np.float64,0x3fdb720b60b6e417,0x3ff589d133625374,1
+np.float64,0xbfe3e21f0967c43e,0x3fe4cd4d02e3ef9a,1
+np.float64,0x7fd7e27f3dafc4fd,0x7ff0000000000000,1
+np.float64,0x3fd1cc2620a3984c,0x3ff366befbc38e3e,1
+np.float64,0x3fe78d05436f1a0b,0x3ffaa5ee4ea54b79,1
+np.float64,0x7e2acc84fc55a,0x3ff0000000000000,1
+np.float64,0x800ffb861c5ff70c,0x3ff0000000000000,1
+np.float64,0xffb2b0db1a2561b8,0x0,1
+np.float64,0xbfe80c2363701847,0x3fe301fdfe789576,1
+np.float64,0x7fe383c1c3e70783,0x7ff0000000000000,1
+np.float64,0xbfeefc02e6fdf806,0x3fe05b1a8528bf6c,1
+np.float64,0xbfe42c9268285925,0x3fe4abdc14793cb8,1
+np.float64,0x1,0x3ff0000000000000,1
+np.float64,0xa71c7ce94e390,0x3ff0000000000000,1
+np.float64,0x800ed4e6777da9cd,0x3ff0000000000000,1
+np.float64,0x3fde11b35d3c2367,0x3ff628bdc6dd1b78,1
+np.float64,0x3fef3964dbfe72ca,0x3fff777cae357608,1
+np.float64,0x3fefe369b7ffc6d4,0x3fffec357be508a3,1
+np.float64,0xbfdef1855f3de30a,0x3fe6e348c58e3fed,1
+np.float64,0x3fee0e2bc13c1c58,0x3ffeae1909c1b973,1
+np.float64,0xbfd31554ffa62aaa,0x3fea06628b2f048a,1
+np.float64,0x800dc56bcc7b8ad8,0x3ff0000000000000,1
+np.float64,0x7fbba01b8e374036,0x7ff0000000000000,1
+np.float64,0x7fd9737a92b2e6f4,0x7ff0000000000000,1
+np.float64,0x3feeae0fac3d5c1f,0x3fff1913705f1f07,1
+np.float64,0x3fdcc64fcdb98ca0,0x3ff5d9c3e5862972,1
+np.float64,0x3fdad9f83db5b3f0,0x3ff56674e81c1bd1,1
+np.float64,0x32b8797065710,0x3ff0000000000000,1
+np.float64,0x3fd20deae6241bd6,0x3ff37495bc057394,1
+np.float64,0x7fc899f0763133e0,0x7ff0000000000000,1
+np.float64,0x80045805fc08b00d,0x3ff0000000000000,1
+np.float64,0xbfcd8304cb3b0608,0x3feb4611f1eaa30c,1
+np.float64,0x3fd632a2fcac6544,0x3ff4592e1ea14fb0,1
+np.float64,0xffeeb066007d60cb,0x0,1
+np.float64,0x800bb12a42b76255,0x3ff0000000000000,1
+np.float64,0xbfe060fe1760c1fc,0x3fe6714640ab2574,1
+np.float64,0x80067ed737acfdaf,0x3ff0000000000000,1
+np.float64,0x3fd5ec3211abd864,0x3ff449adea82e73e,1
+np.float64,0x7fc4b2fdc22965fb,0x7ff0000000000000,1
+np.float64,0xff656afd002ad600,0x0,1
+np.float64,0xffeadefcdcb5bdf9,0x0,1
+np.float64,0x80052f18610a5e32,0x3ff0000000000000,1
+np.float64,0xbfd5b75c78ab6eb8,0x3fe94b15e0f39194,1
+np.float64,0xa4d3de2b49a7c,0x3ff0000000000000,1
+np.float64,0xbfe321c93de64392,0x3fe524ac7bbee401,1
+np.float64,0x3feb32f5def665ec,0x3ffcd6e4e5f9c271,1
+np.float64,0x7fe6b07e4ced60fc,0x7ff0000000000000,1
+np.float64,0x3fe013bb2de02776,0x3ff6aa4c32ab5ba4,1
+np.float64,0xbfeadd81d375bb04,0x3fe1e1de89b4aebf,1
+np.float64,0xffece7678079cece,0x0,1
+np.float64,0x3fe3d87b8467b0f8,0x3ff897cf22505e4d,1
+np.float64,0xffc4e3a05129c740,0x0,1
+np.float64,0xbfddee6b03bbdcd6,0x3fe723dd83ab49bd,1
+np.float64,0x3fcc4e2672389c4d,0x3ff2a680db769116,1
+np.float64,0x3fd8ed221ab1da44,0x3ff4f569aec8b850,1
+np.float64,0x80000a3538a0146b,0x3ff0000000000000,1
+np.float64,0x8004832eb109065e,0x3ff0000000000000,1
+np.float64,0xffdca83c60395078,0x0,1
+np.float64,0xffef551cda3eaa39,0x0,1
+np.float64,0x800fd95dd65fb2bc,0x3ff0000000000000,1
+np.float64,0x3ff0000000000000,0x4000000000000000,1
+np.float64,0xbfc06f5c4f20deb8,0x3fed466c17305ad8,1
+np.float64,0xbfeb01b5f476036c,0x3fe1d3de0f4211f4,1
+np.float64,0xbfdb2b9284365726,0x3fe7d7b02f790b05,1
+np.float64,0xff76ba83202d7500,0x0,1
+np.float64,0x3fd3f1c59ea7e38c,0x3ff3db96b3a0aaad,1
+np.float64,0x8b99ff6d17340,0x3ff0000000000000,1
+np.float64,0xbfeb383aa0f67075,0x3fe1bedcf2531c08,1
+np.float64,0x3fe321e35fa643c7,0x3ff83749a5d686ee,1
+np.float64,0xbfd863eb2130c7d6,0x3fe8923fcc39bac7,1
+np.float64,0x9e71dd333ce3c,0x3ff0000000000000,1
+np.float64,0x9542962b2a853,0x3ff0000000000000,1
+np.float64,0xba2c963b74593,0x3ff0000000000000,1
+np.float64,0x80019f4d0ca33e9b,0x3ff0000000000000,1
+np.float64,0xffde3e39a73c7c74,0x0,1
+np.float64,0x800258ae02c4b15d,0x3ff0000000000000,1
+np.float64,0xbfd99a535a3334a6,0x3fe8402f3a0662a5,1
+np.float64,0xe6c62143cd8c4,0x3ff0000000000000,1
+np.float64,0x7fbcc828f0399051,0x7ff0000000000000,1
+np.float64,0xbfe42e3596285c6b,0x3fe4ab2066d66071,1
+np.float64,0xffe2ee42d365dc85,0x0,1
+np.float64,0x3fe1f98abea3f315,0x3ff79dc68002a80b,1
+np.float64,0x7fd7225891ae44b0,0x7ff0000000000000,1
+np.float64,0x477177408ee30,0x3ff0000000000000,1
+np.float64,0xbfe16a7e2162d4fc,0x3fe5f1a5c745385d,1
+np.float64,0xbf98aaee283155e0,0x3fef785952e9c089,1
+np.float64,0x7fd7c14a8daf8294,0x7ff0000000000000,1
+np.float64,0xf7e7713defcee,0x3ff0000000000000,1
+np.float64,0x800769aa11aed355,0x3ff0000000000000,1
+np.float64,0xbfed30385e3a6071,0x3fe10135a3bd9ae6,1
+np.float64,0x3fe6dd7205edbae4,0x3ffa4155899efd70,1
+np.float64,0x800d705d26bae0ba,0x3ff0000000000000,1
+np.float64,0xa443ac1f48876,0x3ff0000000000000,1
+np.float64,0xbfec8cfec43919fe,0x3fe13dbf966e6633,1
+np.float64,0x7fd246efaa248dde,0x7ff0000000000000,1
+np.float64,0x800f2ad14afe55a3,0x3ff0000000000000,1
+np.float64,0x800487a894c90f52,0x3ff0000000000000,1
+np.float64,0x80014c4f19e2989f,0x3ff0000000000000,1
+np.float64,0x3fc11f265f223e4d,0x3ff18def05c971e5,1
+np.float64,0xffeb6d565776daac,0x0,1
+np.float64,0x7fd5ca5df8ab94bb,0x7ff0000000000000,1
+np.float64,0xbfe33de4fde67bca,0x3fe517d0e212cd1c,1
+np.float64,0xbfd1c738e5a38e72,0x3fea6539e9491693,1
+np.float64,0xbfec1d8c33b83b18,0x3fe16790fbca0c65,1
+np.float64,0xbfeecb464b7d968d,0x3fe06c67e2aefa55,1
+np.float64,0xbfd621dbf1ac43b8,0x3fe92dfa32d93846,1
+np.float64,0x80069a02860d3406,0x3ff0000000000000,1
+np.float64,0xbfe84f650e309eca,0x3fe2e661300f1975,1
+np.float64,0x7fc1d2cec523a59d,0x7ff0000000000000,1
+np.float64,0x3fd7706d79aee0db,0x3ff49fb033353dfe,1
+np.float64,0xffd94ba458329748,0x0,1
+np.float64,0x7fea98ba1a753173,0x7ff0000000000000,1
+np.float64,0xbfe756ba092ead74,0x3fe34d428d1857bc,1
+np.float64,0xffecfbd836b9f7b0,0x0,1
+np.float64,0x3fd211fbe5a423f8,0x3ff375711a3641e0,1
+np.float64,0x7fee24f7793c49ee,0x7ff0000000000000,1
+np.float64,0x7fe6a098886d4130,0x7ff0000000000000,1
+np.float64,0xbfd4ade909a95bd2,0x3fe99436524db1f4,1
+np.float64,0xbfeb704e6476e09d,0x3fe1a95be4a21bc6,1
+np.float64,0xffefc0f6627f81ec,0x0,1
+np.float64,0x7feff3f896ffe7f0,0x7ff0000000000000,1
+np.float64,0xa3f74edb47eea,0x3ff0000000000000,1
+np.float64,0xbfe0a551cf214aa4,0x3fe65027a7ff42e3,1
+np.float64,0x3fe164b23622c964,0x3ff7521c6225f51d,1
+np.float64,0x7fc258752324b0e9,0x7ff0000000000000,1
+np.float64,0x4739b3348e737,0x3ff0000000000000,1
+np.float64,0xb0392b1d60726,0x3ff0000000000000,1
+np.float64,0x7fe26f42e5e4de85,0x7ff0000000000000,1
+np.float64,0x8004601f87e8c040,0x3ff0000000000000,1
+np.float64,0xffe92ce37b3259c6,0x0,1
+np.float64,0x3fe620da3a6c41b4,0x3ff9d6ee3d005466,1
+np.float64,0x3fd850cfa2b0a1a0,0x3ff4d20bd249d411,1
+np.float64,0xffdcdfdfb5b9bfc0,0x0,1
+np.float64,0x800390297d672054,0x3ff0000000000000,1
+np.float64,0x3fde5864f6bcb0ca,0x3ff639bb9321f5ef,1
+np.float64,0x3fee484cec7c909a,0x3ffed4d2c6274219,1
+np.float64,0x7fe9b9a064b37340,0x7ff0000000000000,1
+np.float64,0xffe50028b8aa0051,0x0,1
+np.float64,0x3fe37774ade6eee9,0x3ff864558498a9a8,1
+np.float64,0x7fef83c724bf078d,0x7ff0000000000000,1
+np.float64,0xbfeb58450fb6b08a,0x3fe1b290556be73d,1
+np.float64,0x7fd7161475ae2c28,0x7ff0000000000000,1
+np.float64,0x3fece09621f9c12c,0x3ffde836a583bbdd,1
+np.float64,0x3fd045790ea08af2,0x3ff31554778fd4e2,1
+np.float64,0xbfe7c7dd6cef8fbb,0x3fe31e2eeda857fc,1
+np.float64,0xffe9632f5372c65e,0x0,1
+np.float64,0x800d4f3a703a9e75,0x3ff0000000000000,1
+np.float64,0xffea880e4df5101c,0x0,1
+np.float64,0xbfeb7edc4ff6fdb8,0x3fe1a3cb5dc33594,1
+np.float64,0xbfcaae4bab355c98,0x3febb1ee65e16b58,1
+np.float64,0xbfde598a19bcb314,0x3fe709145eafaaf8,1
+np.float64,0x3feefb6d78fdf6db,0x3fff4d5c8c68e39a,1
+np.float64,0x13efc75427dfa,0x3ff0000000000000,1
+np.float64,0xffe26f65c064decb,0x0,1
+np.float64,0xbfed5c1addfab836,0x3fe0f1133bd2189a,1
+np.float64,0x7fe7a7cf756f4f9e,0x7ff0000000000000,1
+np.float64,0xffc681702e2d02e0,0x0,1
+np.float64,0x8003d6ab5067ad57,0x3ff0000000000000,1
+np.float64,0xffa695f1342d2be0,0x0,1
+np.float64,0xbfcf8857db3f10b0,0x3feafa14da8c29a4,1
+np.float64,0xbfe8ca06be71940e,0x3fe2b46f6d2c64b4,1
+np.float64,0x3451c74468a3a,0x3ff0000000000000,1
+np.float64,0x3fde47d5f6bc8fac,0x3ff635bf8e024716,1
+np.float64,0xffda159d5db42b3a,0x0,1
+np.float64,0x7fef9fecaa3f3fd8,0x7ff0000000000000,1
+np.float64,0x3fd4e745e3a9ce8c,0x3ff410a9cb6fd8bf,1
+np.float64,0xffef57019b3eae02,0x0,1
+np.float64,0xbfe6604f4f6cc09e,0x3fe3b55de43c626d,1
+np.float64,0xffe066a424a0cd48,0x0,1
+np.float64,0x3fd547de85aa8fbc,0x3ff425b2a7a16675,1
+np.float64,0xffb3c69280278d28,0x0,1
+np.float64,0xffebe0b759f7c16e,0x0,1
+np.float64,0x3fefc84106ff9082,0x3fffd973687337d8,1
+np.float64,0x501c42a4a0389,0x3ff0000000000000,1
+np.float64,0x7feb45d13eb68ba1,0x7ff0000000000000,1
+np.float64,0xbfb16a8c2e22d518,0x3fee86a9c0f9291a,1
+np.float64,0x3be327b877c66,0x3ff0000000000000,1
+np.float64,0x7fe4a58220694b03,0x7ff0000000000000,1
+np.float64,0x3fe0286220a050c4,0x3ff6b472157ab8f2,1
+np.float64,0x3fc9381825327030,0x3ff2575fbea2bf5d,1
+np.float64,0xbfd1af7ee8a35efe,0x3fea6c032cf7e669,1
+np.float64,0xbfea9b0f39b5361e,0x3fe1fbae14b40b4d,1
+np.float64,0x39efe4aa73dfd,0x3ff0000000000000,1
+np.float64,0xffeb06fdc8360dfb,0x0,1
+np.float64,0xbfda481e72b4903c,0x3fe812b4b08d4884,1
+np.float64,0xbfd414ba5ba82974,0x3fe9bec9474bdfe6,1
+np.float64,0x7fe707177b6e0e2e,0x7ff0000000000000,1
+np.float64,0x8000000000000001,0x3ff0000000000000,1
+np.float64,0xbfede6a75bbbcd4f,0x3fe0be874cccd399,1
+np.float64,0x8006cdb577cd9b6c,0x3ff0000000000000,1
+np.float64,0x800051374f20a26f,0x3ff0000000000000,1
+np.float64,0x3fe5cba8c96b9752,0x3ff9a76b3adcc122,1
+np.float64,0xbfee3933487c7267,0x3fe0a0b190f9609a,1
+np.float64,0x3fd574b8d8aae970,0x3ff42f7e83de1af9,1
+np.float64,0xba5db72b74bb7,0x3ff0000000000000,1
+np.float64,0x3fa9bf512c337ea0,0x3ff0914a7f743a94,1
+np.float64,0xffe8cb736c3196e6,0x0,1
+np.float64,0x3761b2f06ec37,0x3ff0000000000000,1
+np.float64,0x8b4d4433169a9,0x3ff0000000000000,1
+np.float64,0x800f0245503e048b,0x3ff0000000000000,1
+np.float64,0x7fb20d54ac241aa8,0x7ff0000000000000,1
+np.float64,0x3fdf26666b3e4ccd,0x3ff66b8995142017,1
+np.float64,0xbfcbf2a83737e550,0x3feb8173a7b9d6b5,1
+np.float64,0x3fd31572a0a62ae5,0x3ff3ac6c94313dcd,1
+np.float64,0x7fb6c2807a2d8500,0x7ff0000000000000,1
+np.float64,0x800799758f2f32ec,0x3ff0000000000000,1
+np.float64,0xe72f1f6bce5e4,0x3ff0000000000000,1
+np.float64,0x3fe0e0f223a1c1e4,0x3ff70fed5b761673,1
+np.float64,0x3fe6d4f133eda9e2,0x3ffa3c8000c169eb,1
+np.float64,0xbfe1ccc3d8639988,0x3fe5c32148bedbda,1
+np.float64,0x3fea71c53574e38a,0x3ffc5f31201fe9be,1
+np.float64,0x9e0323eb3c065,0x3ff0000000000000,1
+np.float64,0x8005cc79a5cb98f4,0x3ff0000000000000,1
+np.float64,0x1dace1f83b59d,0x3ff0000000000000,1
+np.float64,0x10000000000000,0x3ff0000000000000,1
+np.float64,0xbfdef50830bdea10,0x3fe6e269fc17ebef,1
+np.float64,0x8010000000000000,0x3ff0000000000000,1
+np.float64,0xbfdfa82192bf5044,0x3fe6b6313ee0a095,1
+np.float64,0x3fd9398fe2b27320,0x3ff506ca2093c060,1
+np.float64,0x8002721fe664e441,0x3ff0000000000000,1
+np.float64,0x800c04166ad8082d,0x3ff0000000000000,1
+np.float64,0xffec3918b3387230,0x0,1
+np.float64,0x3fec62d5dfb8c5ac,0x3ffd972ea4a54b32,1
+np.float64,0x3fe7e42a0b6fc854,0x3ffad86b0443181d,1
+np.float64,0x3fc0aff5f3215fec,0x3ff1836058d4d210,1
+np.float64,0xbf82ff68a025fec0,0x3fefcb7f06862dce,1
+np.float64,0xae2e35195c5c7,0x3ff0000000000000,1
+np.float64,0x3fece3bddf79c77c,0x3ffdea41fb1ba8fa,1
+np.float64,0xbfa97b947832f730,0x3feeea34ebedbbd2,1
+np.float64,0xbfdfb1b1ce3f6364,0x3fe6b3d72871335c,1
+np.float64,0xbfe61a4f24ac349e,0x3fe3d356bf991b06,1
+np.float64,0x7fe23117a5e4622e,0x7ff0000000000000,1
+np.float64,0x800552a8cccaa552,0x3ff0000000000000,1
+np.float64,0x625b4d0ac4b6a,0x3ff0000000000000,1
+np.float64,0x3f86cf15702d9e00,0x3ff01fbe0381676d,1
+np.float64,0x800d7d1b685afa37,0x3ff0000000000000,1
+np.float64,0x3fe2cb6e40a596dd,0x3ff80a1a562f7fc9,1
+np.float64,0x3fe756eb8e2eadd7,0x3ffa86c638aad07d,1
+np.float64,0x800dc9a5513b934b,0x3ff0000000000000,1
+np.float64,0xbfbbdd118a37ba20,0x3fedacb4624f3cee,1
+np.float64,0x800de01f8efbc03f,0x3ff0000000000000,1
+np.float64,0x800da1a3fe9b4348,0x3ff0000000000000,1
+np.float64,0xbf87d8c7602fb180,0x3fefbe2614998ab6,1
+np.float64,0xbfdfff6141bffec2,0x3fe6a0c54d9f1bc8,1
+np.float64,0xee8fbba5dd1f8,0x3ff0000000000000,1
+np.float64,0x3fe79dc93e6f3b92,0x3ffaaf9d7d955b2c,1
+np.float64,0xffedd4b3d07ba967,0x0,1
+np.float64,0x800905dfc1720bc0,0x3ff0000000000000,1
+np.float64,0x3fd9e483b8b3c907,0x3ff52ddc6c950e7f,1
+np.float64,0xe34ffefdc6a00,0x3ff0000000000000,1
+np.float64,0x2168e62242d1e,0x3ff0000000000000,1
+np.float64,0x800349950e26932b,0x3ff0000000000000,1
+np.float64,0x7fc50da8532a1b50,0x7ff0000000000000,1
+np.float64,0xae1a4d115c34a,0x3ff0000000000000,1
+np.float64,0xa020f0b74041e,0x3ff0000000000000,1
+np.float64,0x3fd2aa2f77a5545f,0x3ff3959f09519a25,1
+np.float64,0x3fbfefc3223fdf86,0x3ff171f3df2d408b,1
+np.float64,0xbfea9fc340b53f86,0x3fe1f9d92b712654,1
+np.float64,0xffe9b920a5337240,0x0,1
+np.float64,0xbfe2eb0265e5d605,0x3fe53dd195782de3,1
+np.float64,0x7fb932c70e32658d,0x7ff0000000000000,1
+np.float64,0x3fda816bfcb502d8,0x3ff551f8d5c84c82,1
+np.float64,0x3fed68cbe9fad198,0x3ffe40f6692d5693,1
+np.float64,0x32df077665be2,0x3ff0000000000000,1
+np.float64,0x7fdc9c2f3539385d,0x7ff0000000000000,1
+np.float64,0x7fe71091a2ee2122,0x7ff0000000000000,1
+np.float64,0xbfe68106c46d020e,0x3fe3a76b56024c2c,1
+np.float64,0xffcf0572823e0ae4,0x0,1
+np.float64,0xbfeeab341fbd5668,0x3fe077d496941cda,1
+np.float64,0x7fe7ada0d2af5b41,0x7ff0000000000000,1
+np.float64,0xffacdef2a439bde0,0x0,1
+np.float64,0x3fe4200f3128401e,0x3ff8be0ddf30fd1e,1
+np.float64,0xffd9022a69320454,0x0,1
+np.float64,0xbfe8e06914f1c0d2,0x3fe2ab5fe7fffb5a,1
+np.float64,0x3fc4b976602972ed,0x3ff1e6786fa7a890,1
+np.float64,0xbfd784c105af0982,0x3fe8cdeb1cdbd57e,1
+np.float64,0x7feb20a20eb64143,0x7ff0000000000000,1
+np.float64,0xbfc87dd83630fbb0,0x3fec067c1e7e6983,1
+np.float64,0x7fe5400cbe6a8018,0x7ff0000000000000,1
+np.float64,0xbfb4a1f5e22943e8,0x3fee42e6c81559a9,1
+np.float64,0x3fe967c575f2cf8a,0x3ffbbd8bc0d5c50d,1
+np.float64,0xbfeb059cf4760b3a,0x3fe1d25c592c4dab,1
+np.float64,0xbfeef536d5bdea6e,0x3fe05d832c15c64a,1
+np.float64,0x3fa90b3f6432167f,0x3ff08d410dd732cc,1
+np.float64,0xbfeaff265e75fe4d,0x3fe1d4db3fb3208d,1
+np.float64,0x6d93d688db27b,0x3ff0000000000000,1
+np.float64,0x800ab9b4ea55736a,0x3ff0000000000000,1
+np.float64,0x3fd444b39d288967,0x3ff3ed749d48d444,1
+np.float64,0xbfd5f2c0d0abe582,0x3fe93ad6124d88e7,1
+np.float64,0x3fea8fd915f51fb2,0x3ffc71b32cb92d60,1
+np.float64,0xbfd23d6491a47aca,0x3fea43875709b0f0,1
+np.float64,0xffe76f75ce6edeeb,0x0,1
+np.float64,0x1f5670da3eacf,0x3ff0000000000000,1
+np.float64,0x8000d89c9621b13a,0x3ff0000000000000,1
+np.float64,0x3fedb51c52bb6a39,0x3ffe732279c228ff,1
+np.float64,0x7f99215ac83242b5,0x7ff0000000000000,1
+np.float64,0x742a6864e854e,0x3ff0000000000000,1
+np.float64,0xbfe02fb340205f66,0x3fe689495f9164e3,1
+np.float64,0x7fef4c12b0fe9824,0x7ff0000000000000,1
+np.float64,0x3fd40e17c2a81c30,0x3ff3e1aee8ed972f,1
+np.float64,0x7fdcd264e939a4c9,0x7ff0000000000000,1
+np.float64,0x3fdb675838b6ceb0,0x3ff587526241c550,1
+np.float64,0x3fdf1a4081be3480,0x3ff66896a18c2385,1
+np.float64,0xbfea5082b874a106,0x3fe218cf8f11be13,1
+np.float64,0xffe1a0ebf7e341d8,0x0,1
+np.float64,0x3fed0a2222ba1444,0x3ffe032ce928ae7d,1
+np.float64,0xffeae036da75c06d,0x0,1
+np.float64,0x5b05fc8ab60c0,0x3ff0000000000000,1
+np.float64,0x7fd8aae5f03155cb,0x7ff0000000000000,1
+np.float64,0xbfd0b4d9fda169b4,0x3feab41e58b6ccb7,1
+np.float64,0xffdcaffa57395ff4,0x0,1
+np.float64,0xbfcbf1455437e28c,0x3feb81a884182c5d,1
+np.float64,0x3f9d6700b83ace01,0x3ff0525657db35d4,1
+np.float64,0x4fd5b0b29fab7,0x3ff0000000000000,1
+np.float64,0x3fe9af2df5b35e5c,0x3ffbe895684df916,1
+np.float64,0x800dfd41f9dbfa84,0x3ff0000000000000,1
+np.float64,0xbf2a30457e546,0x3ff0000000000000,1
+np.float64,0x7fc6be37182d7c6d,0x7ff0000000000000,1
+np.float64,0x800e0f9788dc1f2f,0x3ff0000000000000,1
+np.float64,0x8006890c704d121a,0x3ff0000000000000,1
+np.float64,0xffecb1a7cbb9634f,0x0,1
+np.float64,0xffb35c330426b868,0x0,1
+np.float64,0x7fe8f2ba8a71e574,0x7ff0000000000000,1
+np.float64,0xf3ccff8fe79a0,0x3ff0000000000000,1
+np.float64,0x3fdf19a84e3e3351,0x3ff66871b17474c1,1
+np.float64,0x80049a662d0934cd,0x3ff0000000000000,1
+np.float64,0xdf5bb4bbbeb77,0x3ff0000000000000,1
+np.float64,0x8005eca030cbd941,0x3ff0000000000000,1
+np.float64,0xffe5f239586be472,0x0,1
+np.float64,0xbfc4526a0728a4d4,0x3fecaa52fbf5345e,1
+np.float64,0xbfe8f1ecda31e3da,0x3fe2a44c080848b3,1
+np.float64,0x3feebd32f4bd7a66,0x3fff234788938c3e,1
+np.float64,0xffd6ca04e9ad940a,0x0,1
+np.float64,0x7ff0000000000000,0x7ff0000000000000,1
+np.float64,0xbfd4c560a9a98ac2,0x3fe98db6d97442fc,1
+np.float64,0x8005723471cae46a,0x3ff0000000000000,1
+np.float64,0xbfeb278299764f05,0x3fe1c54b48f8ba4b,1
+np.float64,0x8007907b376f20f7,0x3ff0000000000000,1
+np.float64,0x7fe9c2fd01b385f9,0x7ff0000000000000,1
+np.float64,0x7fdaa37368b546e6,0x7ff0000000000000,1
+np.float64,0xbfe6d0f3786da1e7,0x3fe38582271cada7,1
+np.float64,0xbfea9b77823536ef,0x3fe1fb8575cd1b7d,1
+np.float64,0xbfe90ac38bf21587,0x3fe29a471b47a2e8,1
+np.float64,0xbfe9c51844738a30,0x3fe24fc8de03ea84,1
+np.float64,0x3fe45a9013a8b520,0x3ff8dd7c80f1cf75,1
+np.float64,0xbfe5780551eaf00a,0x3fe419832a6a4c56,1
+np.float64,0xffefffffffffffff,0x0,1
+np.float64,0x7fe3778c84a6ef18,0x7ff0000000000000,1
+np.float64,0xbfdc8a60413914c0,0x3fe77dc55b85028f,1
+np.float64,0xef47ae2fde8f6,0x3ff0000000000000,1
+np.float64,0x8001269fa4c24d40,0x3ff0000000000000,1
+np.float64,0x3fe9d2d39e73a5a7,0x3ffbfe2a66c4148e,1
+np.float64,0xffee61f528fcc3e9,0x0,1
+np.float64,0x3fe8a259ab7144b3,0x3ffb47e797a34bd2,1
+np.float64,0x3f906d610820dac0,0x3ff02dccda8e1a75,1
+np.float64,0x3fe70739f32e0e74,0x3ffa59232f4fcd07,1
+np.float64,0x3fe6b7f5e6ad6fec,0x3ffa2c0cc54f2c16,1
+np.float64,0x95a91a792b524,0x3ff0000000000000,1
+np.float64,0xbfedf6fcf57bedfa,0x3fe0b89bb40081cc,1
+np.float64,0xbfa4d2de9c29a5c0,0x3fef1c485678d657,1
+np.float64,0x3fe130470d22608e,0x3ff737b0be409a38,1
+np.float64,0x3fcf8035423f006b,0x3ff2f9d7c3c6a302,1
+np.float64,0xffe5995a3eab32b4,0x0,1
+np.float64,0xffca68c63034d18c,0x0,1
+np.float64,0xff9d53af903aa760,0x0,1
+np.float64,0x800563f1de6ac7e4,0x3ff0000000000000,1
+np.float64,0x7fce284fa63c509e,0x7ff0000000000000,1
+np.float64,0x7fb2a3959a25472a,0x7ff0000000000000,1
+np.float64,0x7fdbe2652f37c4c9,0x7ff0000000000000,1
+np.float64,0x800d705bbc1ae0b8,0x3ff0000000000000,1
+np.float64,0x7fd9bd2347b37a46,0x7ff0000000000000,1
+np.float64,0x3fcac3c0fb358782,0x3ff27ed62d6c8221,1
+np.float64,0x800110691ec220d3,0x3ff0000000000000,1
+np.float64,0x3fef79a8157ef350,0x3fffa368513eb909,1
+np.float64,0x7fe8bd2f0e317a5d,0x7ff0000000000000,1
+np.float64,0x7fd3040e60a6081c,0x7ff0000000000000,1
+np.float64,0xffea50723234a0e4,0x0,1
+np.float64,0xbfe6220054ac4400,0x3fe3d00961238a93,1
+np.float64,0x3f9eddd8c83dbbc0,0x3ff0567b0c73005a,1
+np.float64,0xbfa4a062c42940c0,0x3fef1e68badde324,1
+np.float64,0xbfd077ad4720ef5a,0x3feac5d577581d07,1
+np.float64,0x7fdfd4b025bfa95f,0x7ff0000000000000,1
+np.float64,0xd00d3cf3a01a8,0x3ff0000000000000,1
+np.float64,0x7fe3010427260207,0x7ff0000000000000,1
+np.float64,0x22ea196645d44,0x3ff0000000000000,1
+np.float64,0x7fd747e8cd2e8fd1,0x7ff0000000000000,1
+np.float64,0xd50665e7aa0cd,0x3ff0000000000000,1
+np.float64,0x7fe1da580ae3b4af,0x7ff0000000000000,1
+np.float64,0xffeb218ecfb6431d,0x0,1
+np.float64,0xbf887d0dd030fa00,0x3fefbc6252c8b354,1
+np.float64,0x3fcaa31067354621,0x3ff27b904c07e07f,1
+np.float64,0x7fe698cc4ded3198,0x7ff0000000000000,1
+np.float64,0x1c40191a38804,0x3ff0000000000000,1
+np.float64,0x80086fd20e30dfa4,0x3ff0000000000000,1
+np.float64,0x7fed34d5eaba69ab,0x7ff0000000000000,1
+np.float64,0xffd00b52622016a4,0x0,1
+np.float64,0x3f80abcdb021579b,0x3ff0172d27945851,1
+np.float64,0x3fe614cfd66c29a0,0x3ff9d031e1839191,1
+np.float64,0x80021d71c8843ae4,0x3ff0000000000000,1
+np.float64,0x800bc2adc657855c,0x3ff0000000000000,1
+np.float64,0x6b9fec1cd73fe,0x3ff0000000000000,1
+np.float64,0xffd9093b5f321276,0x0,1
+np.float64,0x800d3c6c77fa78d9,0x3ff0000000000000,1
+np.float64,0xffe80fc1cbf01f83,0x0,1
+np.float64,0xffbffbaf2a3ff760,0x0,1
+np.float64,0x3fea1ed29eb43da5,0x3ffc2c64ec0e17a3,1
+np.float64,0x7ff4000000000000,0x7ffc000000000000,1
+np.float64,0x3fd944a052328941,0x3ff5094f4c43ecca,1
+np.float64,0x800b1f9416163f29,0x3ff0000000000000,1
+np.float64,0x800f06bf33de0d7e,0x3ff0000000000000,1
+np.float64,0xbfdbf0d226b7e1a4,0x3fe7a4f73793d95b,1
+np.float64,0xffe7306c30ae60d8,0x0,1
+np.float64,0x7fe991accfb32359,0x7ff0000000000000,1
+np.float64,0x3fcc0040d2380082,0x3ff29ea47e4f07d4,1
+np.float64,0x7fefffffffffffff,0x7ff0000000000000,1
+np.float64,0x0,0x3ff0000000000000,1
+np.float64,0x3fe1423f7be2847e,0x3ff740bc1d3b20f8,1
+np.float64,0xbfeae3a3cab5c748,0x3fe1df7e936f8504,1
+np.float64,0x800b2da7d6165b50,0x3ff0000000000000,1
+np.float64,0x800b2404fcd6480a,0x3ff0000000000000,1
+np.float64,0x6fcbcf88df97b,0x3ff0000000000000,1
+np.float64,0xa248c0e14492,0x3ff0000000000000,1
+np.float64,0xffd255776824aaee,0x0,1
+np.float64,0x80057b3effeaf67f,0x3ff0000000000000,1
+np.float64,0x3feb0b07d7761610,0x3ffcbdfe1be5a594,1
+np.float64,0x924e1019249c2,0x3ff0000000000000,1
+np.float64,0x80074307e80e8611,0x3ff0000000000000,1
+np.float64,0xffb207fa46240ff8,0x0,1
+np.float64,0x95ac388d2b587,0x3ff0000000000000,1
+np.float64,0xbff0000000000000,0x3fe0000000000000,1
+np.float64,0x3fd38b6a492716d5,0x3ff3c59f62b5add5,1
+np.float64,0x7fe49362c3e926c5,0x7ff0000000000000,1
+np.float64,0x7fe842889db08510,0x7ff0000000000000,1
+np.float64,0xbfba6003e834c008,0x3fedcb620a2d9856,1
+np.float64,0xffe7e782bd6fcf05,0x0,1
+np.float64,0x7fd9b93d9433727a,0x7ff0000000000000,1
+np.float64,0x7fc8fcb61d31f96b,0x7ff0000000000000,1
+np.float64,0xbfef9be8db3f37d2,0x3fe022d603b81dc2,1
+np.float64,0x6f4fc766de9fa,0x3ff0000000000000,1
+np.float64,0xbfe93016f132602e,0x3fe28b42d782d949,1
+np.float64,0x3fe10e52b8e21ca5,0x3ff726a38b0bb895,1
+np.float64,0x3fbbba0ae6377416,0x3ff13f56084a9da3,1
+np.float64,0x3fe09e42ece13c86,0x3ff6eeb57e775e24,1
+np.float64,0x800942e39fb285c8,0x3ff0000000000000,1
+np.float64,0xffe5964370eb2c86,0x0,1
+np.float64,0x3fde479f32bc8f3e,0x3ff635b2619ba53a,1
+np.float64,0x3fe826e187f04dc3,0x3ffaff52b79c3a08,1
+np.float64,0x3febcbf1eab797e4,0x3ffd37152e5e2598,1
+np.float64,0x3fa0816a202102d4,0x3ff05c8e6a8b00d5,1
+np.float64,0xbd005ccb7a00c,0x3ff0000000000000,1
+np.float64,0x44c12fdc89827,0x3ff0000000000000,1
+np.float64,0xffc8fdffa431fc00,0x0,1
+np.float64,0xffeb4f5a87b69eb4,0x0,1
+np.float64,0xbfb07e7f8420fd00,0x3fee9a32924fe6a0,1
+np.float64,0xbfbd9d1bb63b3a38,0x3fed88ca81e5771c,1
+np.float64,0x8008682a74f0d055,0x3ff0000000000000,1
+np.float64,0x3fdeedbc7b3ddb79,0x3ff65dcb7c55f4dc,1
+np.float64,0x8009e889c613d114,0x3ff0000000000000,1
+np.float64,0x3faea831f43d5064,0x3ff0ad935e890e49,1
+np.float64,0xf0af1703e15e3,0x3ff0000000000000,1
+np.float64,0xffec06c4a5f80d88,0x0,1
+np.float64,0x53a1cc0ca743a,0x3ff0000000000000,1
+np.float64,0x7fd10c9eea22193d,0x7ff0000000000000,1
+np.float64,0xbfd48a6bf0a914d8,0x3fe99e0d109f2bac,1
+np.float64,0x3fd6dfe931adbfd4,0x3ff47f81c2dfc5d3,1
+np.float64,0x3fed20e86b7a41d0,0x3ffe11fecc7bc686,1
+np.float64,0xbfea586818b4b0d0,0x3fe215b7747d5cb8,1
+np.float64,0xbfd4ad3e20295a7c,0x3fe99465ab8c3275,1
+np.float64,0x3fd6619ee4acc33e,0x3ff4638b7b80c08a,1
+np.float64,0x3fdf6fcb63bedf97,0x3ff67d62fd3d560c,1
+np.float64,0x800a9191e7152324,0x3ff0000000000000,1
+np.float64,0x3fd2ff3c0da5fe78,0x3ff3a7b17e892a28,1
+np.float64,0x8003dbf1f327b7e5,0x3ff0000000000000,1
+np.float64,0xffea6b89a934d712,0x0,1
+np.float64,0x7fcfb879043f70f1,0x7ff0000000000000,1
+np.float64,0xea6a84dbd4d51,0x3ff0000000000000,1
+np.float64,0x800ec97a815d92f5,0x3ff0000000000000,1
+np.float64,0xffe304c3a8660987,0x0,1
+np.float64,0xbfefe24dd3ffc49c,0x3fe00a4e065be96d,1
+np.float64,0xffd3cc8c00a79918,0x0,1
+np.float64,0x95be8b7b2b7d2,0x3ff0000000000000,1
+np.float64,0x7fe20570cba40ae1,0x7ff0000000000000,1
+np.float64,0x7f97a06da02f40da,0x7ff0000000000000,1
+np.float64,0xffe702b9522e0572,0x0,1
+np.float64,0x3fada2d8543b45b1,0x3ff0a7adc4201e08,1
+np.float64,0x235e6acc46bce,0x3ff0000000000000,1
+np.float64,0x3fea6bc28ef4d786,0x3ffc5b7fc68fddac,1
+np.float64,0xffdbc9f505b793ea,0x0,1
+np.float64,0xffe98b137ff31626,0x0,1
+np.float64,0x800e26c6721c4d8d,0x3ff0000000000000,1
+np.float64,0x80080de445301bc9,0x3ff0000000000000,1
+np.float64,0x37e504a86fca1,0x3ff0000000000000,1
+np.float64,0x8002f5f60325ebed,0x3ff0000000000000,1
+np.float64,0x5c8772feb90ef,0x3ff0000000000000,1
+np.float64,0xbfe021abb4604358,0x3fe69023a51d22b8,1
+np.float64,0x3fde744f8fbce8a0,0x3ff64074dc84edd7,1
+np.float64,0xbfdd92899f3b2514,0x3fe73aefd9701858,1
+np.float64,0x7fc1ad5c51235ab8,0x7ff0000000000000,1
+np.float64,0xaae2f98955c5f,0x3ff0000000000000,1
+np.float64,0x7f9123d5782247aa,0x7ff0000000000000,1
+np.float64,0xbfe3f8e94b67f1d2,0x3fe4c30ab28e9cb7,1
+np.float64,0x7fdaba8b4cb57516,0x7ff0000000000000,1
+np.float64,0x7fefc85cfeff90b9,0x7ff0000000000000,1
+np.float64,0xffb83b4f523076a0,0x0,1
+np.float64,0xbfe888a68c71114d,0x3fe2ceff17c203d1,1
+np.float64,0x800de1dac4bbc3b6,0x3ff0000000000000,1
+np.float64,0xbfe4f27f09e9e4fe,0x3fe453f9af407eac,1
+np.float64,0xffe3d2713467a4e2,0x0,1
+np.float64,0xbfebaab840375570,0x3fe1931131b98842,1
+np.float64,0x93892a1b27126,0x3ff0000000000000,1
+np.float64,0x1e8e7f983d1d1,0x3ff0000000000000,1
+np.float64,0x3fecc950627992a0,0x3ffdd926f036add0,1
+np.float64,0xbfd41dfb1aa83bf6,0x3fe9bc34ece35b94,1
+np.float64,0x800aebfc6555d7f9,0x3ff0000000000000,1
+np.float64,0x7fe33ba52ca67749,0x7ff0000000000000,1
+np.float64,0xffe57c9b3feaf936,0x0,1
+np.float64,0x3fdd12464fba248c,0x3ff5ebc5598e6bd0,1
+np.float64,0xffe06d7f0fe0dafe,0x0,1
+np.float64,0x800e55b7fe9cab70,0x3ff0000000000000,1
+np.float64,0x3fd33803c8267008,0x3ff3b3cb78b2d642,1
+np.float64,0xe9cab8a1d3957,0x3ff0000000000000,1
+np.float64,0x3fb38ac166271580,0x3ff0de906947c0f0,1
+np.float64,0xbfd67aa552acf54a,0x3fe915cf64a389fd,1
+np.float64,0x1db96daa3b72f,0x3ff0000000000000,1
+np.float64,0xbfee9f08f4fd3e12,0x3fe07c2c615add3c,1
+np.float64,0xf14f6d65e29ee,0x3ff0000000000000,1
+np.float64,0x800bce089e179c12,0x3ff0000000000000,1
+np.float64,0xffc42dcc37285b98,0x0,1
+np.float64,0x7fd5f37063abe6e0,0x7ff0000000000000,1
+np.float64,0xbfd943c2cbb28786,0x3fe856f6452ec753,1
+np.float64,0x8ddfbc091bbf8,0x3ff0000000000000,1
+np.float64,0xbfe153491e22a692,0x3fe5fcb075dbbd5d,1
+np.float64,0xffe7933999ef2672,0x0,1
+np.float64,0x7ff8000000000000,0x7ff8000000000000,1
+np.float64,0x8000000000000000,0x3ff0000000000000,1
+np.float64,0xbfe9154580b22a8b,0x3fe2960bac3a8220,1
+np.float64,0x800dc6dda21b8dbb,0x3ff0000000000000,1
+np.float64,0xbfb26225a824c448,0x3fee7239a457df81,1
+np.float64,0xbfd7b68c83af6d1a,0x3fe8c08e351ab468,1
+np.float64,0xffde01f7213c03ee,0x0,1
+np.float64,0x3fe54cbe0faa997c,0x3ff9614527191d72,1
+np.float64,0xbfd6bec3732d7d86,0x3fe90354909493de,1
+np.float64,0xbfef3c85bd7e790b,0x3fe0444f8c489ca6,1
+np.float64,0x899501b7132a0,0x3ff0000000000000,1
+np.float64,0xbfe17a456462f48b,0x3fe5ea2719a9a84b,1
+np.float64,0xffe34003b8668007,0x0,1
+np.float64,0x7feff6a3633fed46,0x7ff0000000000000,1
+np.float64,0x3fba597ecc34b2fe,0x3ff12ee72e4de474,1
+np.float64,0x4084c7b68109a,0x3ff0000000000000,1
+np.float64,0x3fad23bf4c3a4780,0x3ff0a4d06193ff6d,1
+np.float64,0xffd0fe2707a1fc4e,0x0,1
+np.float64,0xb96cb43f72d97,0x3ff0000000000000,1
+np.float64,0x7fc4d684d829ad09,0x7ff0000000000000,1
+np.float64,0x7fdc349226b86923,0x7ff0000000000000,1
+np.float64,0x7fd82851cd3050a3,0x7ff0000000000000,1
+np.float64,0x800cde0041b9bc01,0x3ff0000000000000,1
+np.float64,0x4e8caa1e9d196,0x3ff0000000000000,1
+np.float64,0xbfed06a6d2fa0d4e,0x3fe1108c3682b05a,1
+np.float64,0xffe8908122312102,0x0,1
+np.float64,0xffe56ed6d9aaddad,0x0,1
+np.float64,0x3fedd6db00fbadb6,0x3ffe896c68c4b26e,1
+np.float64,0x3fde31f9b4bc63f4,0x3ff6307e08f8b6ba,1
+np.float64,0x6bb963c2d772d,0x3ff0000000000000,1
+np.float64,0x787b7142f0f6f,0x3ff0000000000000,1
+np.float64,0x3fe6e4147c6dc829,0x3ffa451bbdece240,1
+np.float64,0x8003857401470ae9,0x3ff0000000000000,1
+np.float64,0xbfeae82c3c75d058,0x3fe1ddbd66e65aab,1
+np.float64,0x7fe174707c62e8e0,0x7ff0000000000000,1
+np.float64,0x80008d2545e11a4b,0x3ff0000000000000,1
+np.float64,0xbfecc2dce17985ba,0x3fe129ad4325985a,1
+np.float64,0xbfe1fa1daf63f43c,0x3fe5adcb0731a44b,1
+np.float64,0x7fcf2530203e4a5f,0x7ff0000000000000,1
+np.float64,0xbfea5cefe874b9e0,0x3fe213f134b61f4a,1
+np.float64,0x800103729f2206e6,0x3ff0000000000000,1
+np.float64,0xbfe8442ff7708860,0x3fe2eaf850faa169,1
+np.float64,0x8006c78e19ed8f1d,0x3ff0000000000000,1
+np.float64,0x3fc259589c24b2b1,0x3ff1abe6a4d28816,1
+np.float64,0xffed02b7b5ba056e,0x0,1
+np.float64,0xbfce0aa4fe3c1548,0x3feb32115d92103e,1
+np.float64,0x7fec06e78bf80dce,0x7ff0000000000000,1
+np.float64,0xbfe0960bbc612c18,0x3fe6578ab29b70d4,1
+np.float64,0x3fee45841cbc8b08,0x3ffed2f6ca808ad3,1
+np.float64,0xbfeb0f8ebef61f1e,0x3fe1ce86003044cd,1
+np.float64,0x8002c357358586af,0x3ff0000000000000,1
+np.float64,0x3fe9aa10cc735422,0x3ffbe57e294ce68b,1
+np.float64,0x800256c0a544ad82,0x3ff0000000000000,1
+np.float64,0x4de6e1449bcdd,0x3ff0000000000000,1
+np.float64,0x65e9bc9ccbd38,0x3ff0000000000000,1
+np.float64,0xbfe53b0fa9aa7620,0x3fe4341f0aa29bbc,1
+np.float64,0xbfcdd94cd13bb298,0x3feb3956acd2e2dd,1
+np.float64,0x8004a49b65a94938,0x3ff0000000000000,1
+np.float64,0x800d3d05deba7a0c,0x3ff0000000000000,1
+np.float64,0x3fe4e05bce69c0b8,0x3ff925f55602a7e0,1
+np.float64,0xffe391e3256723c6,0x0,1
+np.float64,0xbfe92f0f37b25e1e,0x3fe28bacc76ae753,1
+np.float64,0x3f990238d8320472,0x3ff045edd36e2d62,1
+np.float64,0xffed8d15307b1a2a,0x0,1
+np.float64,0x3fee82e01afd05c0,0x3ffefc09e8b9c2b7,1
+np.float64,0xffb2d94b2225b298,0x0,1
diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/tests/data/umath-validation-set-expm1.csv b/.venv/lib/python3.12/site-packages/numpy/_core/tests/data/umath-validation-set-expm1.csv
new file mode 100644
index 0000000..dcbc7cd
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/_core/tests/data/umath-validation-set-expm1.csv
@@ -0,0 +1,1429 @@
+dtype,input,output,ulperrortol
+np.float32,0x80606724,0x80606724,3
+np.float32,0xbf16790f,0xbee38e14,3
+np.float32,0xbf1778a1,0xbee4a97f,3
+np.float32,0x7d4fc610,0x7f800000,3
+np.float32,0xbec30a20,0xbea230d5,3
+np.float32,0x3eae8a36,0x3ecffac5,3
+np.float32,0xbf1f08f1,0xbeece93c,3
+np.float32,0x80374376,0x80374376,3
+np.float32,0x3f2e04ca,0x3f793115,3
+np.float32,0x7e2c7e36,0x7f800000,3
+np.float32,0xbf686cae,0xbf18bcf0,3
+np.float32,0xbf5518cd,0xbf10a3da,3
+np.float32,0x807e233c,0x807e233c,3
+np.float32,0x7f4edd54,0x7f800000,3
+np.float32,0x7ed70088,0x7f800000,3
+np.float32,0x801675da,0x801675da,3
+np.float32,0x806735d5,0x806735d5,3
+np.float32,0xfe635fec,0xbf800000,3
+np.float32,0xfed88a0a,0xbf800000,3
+np.float32,0xff52c052,0xbf800000,3
+np.float32,0x7fc00000,0x7fc00000,3
+np.float32,0xff4f65f9,0xbf800000,3
+np.float32,0xfe0f6c20,0xbf800000,3
+np.float32,0x80322b30,0x80322b30,3
+np.float32,0xfb757000,0xbf800000,3
+np.float32,0x3c81e0,0x3c81e0,3
+np.float32,0x79d56a,0x79d56a,3
+np.float32,0x8029d7af,0x8029d7af,3
+np.float32,0x8058a593,0x8058a593,3
+np.float32,0x3f3a13c7,0x3f88c75c,3
+np.float32,0x2a6b05,0x2a6b05,3
+np.float32,0xbd64c960,0xbd5e83ae,3
+np.float32,0x80471052,0x80471052,3
+np.float32,0xbe5dd950,0xbe47766c,3
+np.float32,0xfd8f88f0,0xbf800000,3
+np.float32,0x75a4b7,0x75a4b7,3
+np.float32,0x3f726f2e,0x3fc9fb7d,3
+np.float32,0x3ed6795c,0x3f053115,3
+np.float32,0x17d7f5,0x17d7f5,3
+np.float32,0xbf4cf19b,0xbf0d094f,3
+np.float32,0x3e0ec532,0x3e1933c6,3
+np.float32,0xff084016,0xbf800000,3
+np.float32,0x800829aa,0x800829aa,3
+np.float32,0x806d7302,0x806d7302,3
+np.float32,0x7f59d9da,0x7f800000,3
+np.float32,0x15f8b9,0x15f8b9,3
+np.float32,0x803befb3,0x803befb3,3
+np.float32,0x525043,0x525043,3
+np.float32,0x51a647,0x51a647,3
+np.float32,0xbf1cfce4,0xbeeab3d9,3
+np.float32,0x3f1f27a4,0x3f5cb1d2,3
+np.float32,0xbebc3a04,0xbe9d8142,3
+np.float32,0xbeea548c,0xbebc07e5,3
+np.float32,0x3f47401c,0x3f96c2a3,3
+np.float32,0x806b1ea3,0x806b1ea3,3
+np.float32,0x3ea56bb8,0x3ec3450c,3
+np.float32,0x3f7b4963,0x3fd597b5,3
+np.float32,0x7f051fa0,0x7f800000,3
+np.float32,0x1d411c,0x1d411c,3
+np.float32,0xff0b6a35,0xbf800000,3
+np.float32,0xbead63c0,0xbe9314f7,3
+np.float32,0x3738be,0x3738be,3
+np.float32,0x3f138cc8,0x3f479155,3
+np.float32,0x800a539f,0x800a539f,3
+np.float32,0x801b0ebd,0x801b0ebd,3
+np.float32,0x318fcd,0x318fcd,3
+np.float32,0x3ed67556,0x3f052e06,3
+np.float32,0x702886,0x702886,3
+np.float32,0x80000001,0x80000001,3
+np.float32,0x70a174,0x70a174,3
+np.float32,0x4f9c66,0x4f9c66,3
+np.float32,0x3e3e1927,0x3e50e351,3
+np.float32,0x7eac9a4d,0x7f800000,3
+np.float32,0x4b7407,0x4b7407,3
+np.float32,0x7f5bd2fd,0x7f800000,3
+np.float32,0x3eaafc58,0x3ecaffbd,3
+np.float32,0xbc989360,0xbc9729e2,3
+np.float32,0x3f470e5c,0x3f968c7b,3
+np.float32,0x4c5672,0x4c5672,3
+np.float32,0xff2b2ee2,0xbf800000,3
+np.float32,0xbf28a104,0xbef7079b,3
+np.float32,0x2c6175,0x2c6175,3
+np.float32,0x3d7e4fb0,0x3d832f9f,3
+np.float32,0x763276,0x763276,3
+np.float32,0x3cf364,0x3cf364,3
+np.float32,0xbf7ace75,0xbf1fe48c,3
+np.float32,0xff19e858,0xbf800000,3
+np.float32,0x80504c70,0x80504c70,3
+np.float32,0xff390210,0xbf800000,3
+np.float32,0x8046a743,0x8046a743,3
+np.float32,0x80000000,0x80000000,3
+np.float32,0x806c51da,0x806c51da,3
+np.float32,0x806ab38f,0x806ab38f,3
+np.float32,0x3f3de863,0x3f8cc538,3
+np.float32,0x7f6d45bb,0x7f800000,3
+np.float32,0xfd16ec60,0xbf800000,3
+np.float32,0x80513cba,0x80513cba,3
+np.float32,0xbf68996b,0xbf18cefa,3
+np.float32,0xfe039f2c,0xbf800000,3
+np.float32,0x3f013207,0x3f280c55,3
+np.float32,0x7ef4bc07,0x7f800000,3
+np.float32,0xbe8b65ac,0xbe741069,3
+np.float32,0xbf7a8186,0xbf1fc7a6,3
+np.float32,0x802532e5,0x802532e5,3
+np.float32,0x32c7df,0x32c7df,3
+np.float32,0x3ce4dceb,0x3ce81701,3
+np.float32,0xfe801118,0xbf800000,3
+np.float32,0x3d905f20,0x3d9594fb,3
+np.float32,0xbe11ed28,0xbe080168,3
+np.float32,0x59e773,0x59e773,3
+np.float32,0x3e9a2547,0x3eb3dd57,3
+np.float32,0x7ecb7c67,0x7f800000,3
+np.float32,0x7f69a67e,0x7f800000,3
+np.float32,0xff121e11,0xbf800000,3
+np.float32,0x3f7917cb,0x3fd2ad8c,3
+np.float32,0xbf1a7da8,0xbee7fc0c,3
+np.float32,0x3f077e66,0x3f329c40,3
+np.float32,0x3ce8e040,0x3cec37b3,3
+np.float32,0xbf3f0b8e,0xbf069f4d,3
+np.float32,0x3f52f194,0x3fa3c9d6,3
+np.float32,0xbf0e7422,0xbeda80f2,3
+np.float32,0xfd67e230,0xbf800000,3
+np.float32,0xff14d9a9,0xbf800000,3
+np.float32,0x3f3546e3,0x3f83dc2b,3
+np.float32,0x3e152e3a,0x3e20983d,3
+np.float32,0x4a89a3,0x4a89a3,3
+np.float32,0x63217,0x63217,3
+np.float32,0xbeb9e2a8,0xbe9be153,3
+np.float32,0x7e9fa049,0x7f800000,3
+np.float32,0x7f58110c,0x7f800000,3
+np.float32,0x3e88290c,0x3e9bfba9,3
+np.float32,0xbf2cb206,0xbefb3494,3
+np.float32,0xff5880c4,0xbf800000,3
+np.float32,0x7ecff3ac,0x7f800000,3
+np.float32,0x3f4b3de6,0x3f9b23fd,3
+np.float32,0xbebd2048,0xbe9e208c,3
+np.float32,0xff08f7a2,0xbf800000,3
+np.float32,0xff473330,0xbf800000,3
+np.float32,0x1,0x1,3
+np.float32,0xbf5dc239,0xbf14584b,3
+np.float32,0x458e3f,0x458e3f,3
+np.float32,0xbdb8a650,0xbdb091f8,3
+np.float32,0xff336ffc,0xbf800000,3
+np.float32,0x3c60bd00,0x3c624966,3
+np.float32,0xbe16a4f8,0xbe0c1664,3
+np.float32,0x3f214246,0x3f60a0f0,3
+np.float32,0x7fa00000,0x7fe00000,3
+np.float32,0x7e08737e,0x7f800000,3
+np.float32,0x3f70574c,0x3fc74b8e,3
+np.float32,0xbed5745c,0xbeae8c77,3
+np.float32,0x361752,0x361752,3
+np.float32,0x3eb276d6,0x3ed584ea,3
+np.float32,0x3f03fc1e,0x3f2cb1a5,3
+np.float32,0x3fafd1,0x3fafd1,3
+np.float32,0x7e50d74c,0x7f800000,3
+np.float32,0x3eeca5,0x3eeca5,3
+np.float32,0x5dc963,0x5dc963,3
+np.float32,0x7f0e63ae,0x7f800000,3
+np.float32,0x8021745f,0x8021745f,3
+np.float32,0xbf5881a9,0xbf121d07,3
+np.float32,0x7dadc7fd,0x7f800000,3
+np.float32,0xbf2c0798,0xbefa86bb,3
+np.float32,0x3e635f50,0x3e7e97a9,3
+np.float32,0xbf2053fa,0xbeee4c0e,3
+np.float32,0x3e8eee2b,0x3ea4dfcc,3
+np.float32,0xfc8a03c0,0xbf800000,3
+np.float32,0xfd9e4948,0xbf800000,3
+np.float32,0x801e817e,0x801e817e,3
+np.float32,0xbf603a27,0xbf1560c3,3
+np.float32,0x7f729809,0x7f800000,3
+np.float32,0x3f5a1864,0x3fac0e04,3
+np.float32,0x3e7648b8,0x3e8b3677,3
+np.float32,0x3edade24,0x3f088bc1,3
+np.float32,0x65e16e,0x65e16e,3
+np.float32,0x3f24aa50,0x3f671117,3
+np.float32,0x803cb1d0,0x803cb1d0,3
+np.float32,0xbe7b1858,0xbe5eadcc,3
+np.float32,0xbf19bb27,0xbee726fb,3
+np.float32,0xfd1f6e60,0xbf800000,3
+np.float32,0xfeb0de60,0xbf800000,3
+np.float32,0xff511a52,0xbf800000,3
+np.float32,0xff7757f7,0xbf800000,3
+np.float32,0x463ff5,0x463ff5,3
+np.float32,0x3f770d12,0x3fcffcc2,3
+np.float32,0xbf208562,0xbeee80dc,3
+np.float32,0x6df204,0x6df204,3
+np.float32,0xbf62d24f,0xbf1673fb,3
+np.float32,0x3dfcf210,0x3e069d5f,3
+np.float32,0xbef26002,0xbec114d7,3
+np.float32,0x7f800000,0x7f800000,3
+np.float32,0x7f30fb85,0x7f800000,3
+np.float32,0x7ee5dfef,0x7f800000,3
+np.float32,0x3f317829,0x3f800611,3
+np.float32,0x3f4b0bbd,0x3f9aec88,3
+np.float32,0x7edf708c,0x7f800000,3
+np.float32,0xff071260,0xbf800000,3
+np.float32,0x3e7b8c30,0x3e8e9198,3
+np.float32,0x3f33778b,0x3f82077f,3
+np.float32,0x3e8cd11d,0x3ea215fd,3
+np.float32,0x8004483d,0x8004483d,3
+np.float32,0x801633e3,0x801633e3,3
+np.float32,0x7e76eb15,0x7f800000,3
+np.float32,0x3c1571,0x3c1571,3
+np.float32,0x7de3de52,0x7f800000,3
+np.float32,0x804ae906,0x804ae906,3
+np.float32,0x7f3a2616,0x7f800000,3
+np.float32,0xff7fffff,0xbf800000,3
+np.float32,0xff5d17e4,0xbf800000,3
+np.float32,0xbeaa6704,0xbe90f252,3
+np.float32,0x7e6a43af,0x7f800000,3
+np.float32,0x2a0f35,0x2a0f35,3
+np.float32,0xfd8fece0,0xbf800000,3
+np.float32,0xfeef2e2a,0xbf800000,3
+np.float32,0xff800000,0xbf800000,3
+np.float32,0xbeefcc52,0xbebf78e4,3
+np.float32,0x3db6c490,0x3dbf2bd5,3
+np.float32,0x8290f,0x8290f,3
+np.float32,0xbeace648,0xbe92bb7f,3
+np.float32,0x801fea79,0x801fea79,3
+np.float32,0x3ea6c230,0x3ec51ebf,3
+np.float32,0x3e5f2ca3,0x3e795c8a,3
+np.float32,0x3eb6f634,0x3edbeb9f,3
+np.float32,0xff790b45,0xbf800000,3
+np.float32,0x3d82e240,0x3d872816,3
+np.float32,0x3f0d6a57,0x3f3cc7db,3
+np.float32,0x7f08531a,0x7f800000,3
+np.float32,0x702b6d,0x702b6d,3
+np.float32,0x7d3a3c38,0x7f800000,3
+np.float32,0x3d0a7fb3,0x3d0cddf3,3
+np.float32,0xff28084c,0xbf800000,3
+np.float32,0xfeee8804,0xbf800000,3
+np.float32,0x804094eb,0x804094eb,3
+np.float32,0x7acb39,0x7acb39,3
+np.float32,0x3f01c07a,0x3f28f88c,3
+np.float32,0x3e05c500,0x3e0ee674,3
+np.float32,0xbe6f7c38,0xbe558ac1,3
+np.float32,0x803b1f4b,0x803b1f4b,3
+np.float32,0xbf76561f,0xbf1e332b,3
+np.float32,0xff30d368,0xbf800000,3
+np.float32,0x7e2e1f38,0x7f800000,3
+np.float32,0x3ee085b8,0x3f0ce7c0,3
+np.float32,0x8064c4a7,0x8064c4a7,3
+np.float32,0xa7c1d,0xa7c1d,3
+np.float32,0x3f27498a,0x3f6c14bc,3
+np.float32,0x137ca,0x137ca,3
+np.float32,0x3d0a5c60,0x3d0cb969,3
+np.float32,0x80765f1f,0x80765f1f,3
+np.float32,0x80230a71,0x80230a71,3
+np.float32,0x3f321ed2,0x3f80acf4,3
+np.float32,0x7d61e7f4,0x7f800000,3
+np.float32,0xbf39f7f2,0xbf0430f7,3
+np.float32,0xbe2503f8,0xbe1867e8,3
+np.float32,0x29333d,0x29333d,3
+np.float32,0x7edc5a0e,0x7f800000,3
+np.float32,0xbe81a8a2,0xbe651663,3
+np.float32,0x7f76ab6d,0x7f800000,3
+np.float32,0x7f46111f,0x7f800000,3
+np.float32,0xff0fc888,0xbf800000,3
+np.float32,0x805ece89,0x805ece89,3
+np.float32,0xc390b,0xc390b,3
+np.float32,0xff64bdee,0xbf800000,3
+np.float32,0x3dd07e4e,0x3ddb79bd,3
+np.float32,0xfecc1f10,0xbf800000,3
+np.float32,0x803f5177,0x803f5177,3
+np.float32,0x802a24d2,0x802a24d2,3
+np.float32,0x7f27d0cc,0x7f800000,3
+np.float32,0x3ef57c98,0x3f1d7e88,3
+np.float32,0x7b848d,0x7b848d,3
+np.float32,0x7f7fffff,0x7f800000,3
+np.float32,0xfe889c46,0xbf800000,3
+np.float32,0xff2d6dc5,0xbf800000,3
+np.float32,0x3f53a186,0x3fa492a6,3
+np.float32,0xbf239c94,0xbef1c90c,3
+np.float32,0xff7c0f4e,0xbf800000,3
+np.float32,0x3e7c69a9,0x3e8f1f3a,3
+np.float32,0xbf47c9e9,0xbf0ab2a9,3
+np.float32,0xbc1eaf00,0xbc1deae9,3
+np.float32,0x3f4a6d39,0x3f9a3d8e,3
+np.float32,0x3f677930,0x3fbc26eb,3
+np.float32,0x3f45eea1,0x3f955418,3
+np.float32,0x7f61a1f8,0x7f800000,3
+np.float32,0xff58c7c6,0xbf800000,3
+np.float32,0x80239801,0x80239801,3
+np.float32,0xff56e616,0xbf800000,3
+np.float32,0xff62052c,0xbf800000,3
+np.float32,0x8009b615,0x8009b615,3
+np.float32,0x293d6b,0x293d6b,3
+np.float32,0xfe9e585c,0xbf800000,3
+np.float32,0x7f58ff4b,0x7f800000,3
+np.float32,0x10937c,0x10937c,3
+np.float32,0x7f5cc13f,0x7f800000,3
+np.float32,0x110c5d,0x110c5d,3
+np.float32,0x805e51fc,0x805e51fc,3
+np.float32,0xbedcf70a,0xbeb3766c,3
+np.float32,0x3f4d5e42,0x3f9d8091,3
+np.float32,0xff5925a0,0xbf800000,3
+np.float32,0x7e87cafa,0x7f800000,3
+np.float32,0xbf6474b2,0xbf171fee,3
+np.float32,0x4b39b2,0x4b39b2,3
+np.float32,0x8020cc28,0x8020cc28,3
+np.float32,0xff004ed8,0xbf800000,3
+np.float32,0xbf204cf5,0xbeee448d,3
+np.float32,0x3e30cf10,0x3e40fdb1,3
+np.float32,0x80202bee,0x80202bee,3
+np.float32,0xbf55a985,0xbf10e2bc,3
+np.float32,0xbe297dd8,0xbe1c351c,3
+np.float32,0x5780d9,0x5780d9,3
+np.float32,0x7ef729fa,0x7f800000,3
+np.float32,0x8039a3b5,0x8039a3b5,3
+np.float32,0x7cdd3f,0x7cdd3f,3
+np.float32,0x7ef0145a,0x7f800000,3
+np.float32,0x807ad7ae,0x807ad7ae,3
+np.float32,0x7f6c2643,0x7f800000,3
+np.float32,0xbec56124,0xbea3c929,3
+np.float32,0x512c3b,0x512c3b,3
+np.float32,0xbed3effe,0xbead8c1e,3
+np.float32,0x7f5e0a4d,0x7f800000,3
+np.float32,0x3f315316,0x3f7fc200,3
+np.float32,0x7eca5727,0x7f800000,3
+np.float32,0x7f4834f3,0x7f800000,3
+np.float32,0x8004af6d,0x8004af6d,3
+np.float32,0x3f223ca4,0x3f6277e3,3
+np.float32,0x7eea4fdd,0x7f800000,3
+np.float32,0x3e7143e8,0x3e880763,3
+np.float32,0xbf737008,0xbf1d160e,3
+np.float32,0xfc408b00,0xbf800000,3
+np.float32,0x803912ca,0x803912ca,3
+np.float32,0x7db31f4e,0x7f800000,3
+np.float32,0xff578b54,0xbf800000,3
+np.float32,0x3f068ec4,0x3f31062b,3
+np.float32,0x35f64f,0x35f64f,3
+np.float32,0x80437df4,0x80437df4,3
+np.float32,0x568059,0x568059,3
+np.float32,0x8005f8ba,0x8005f8ba,3
+np.float32,0x6824ad,0x6824ad,3
+np.float32,0xff3fdf30,0xbf800000,3
+np.float32,0xbf6f7682,0xbf1b89d6,3
+np.float32,0x3dcea8a0,0x3dd971f5,3
+np.float32,0x3ee32a62,0x3f0ef5a9,3
+np.float32,0xbf735bcd,0xbf1d0e3d,3
+np.float32,0x7e8c7c28,0x7f800000,3
+np.float32,0x3ed552bc,0x3f045161,3
+np.float32,0xfed90a8a,0xbf800000,3
+np.float32,0xbe454368,0xbe336d2a,3
+np.float32,0xbf171d26,0xbee4442d,3
+np.float32,0x80652bf9,0x80652bf9,3
+np.float32,0xbdbaaa20,0xbdb26914,3
+np.float32,0x3f56063d,0x3fa7522e,3
+np.float32,0x3d3d4fd3,0x3d41c13f,3
+np.float32,0x80456040,0x80456040,3
+np.float32,0x3dc15586,0x3dcac0ef,3
+np.float32,0x7f753060,0x7f800000,3
+np.float32,0x7f7d8039,0x7f800000,3
+np.float32,0xfdebf280,0xbf800000,3
+np.float32,0xbf1892c3,0xbee5e116,3
+np.float32,0xbf0f1468,0xbedb3878,3
+np.float32,0x40d85c,0x40d85c,3
+np.float32,0x3f93dd,0x3f93dd,3
+np.float32,0xbf5730fd,0xbf118c24,3
+np.float32,0xfe17aa44,0xbf800000,3
+np.float32,0x3dc0baf4,0x3dca1716,3
+np.float32,0xbf3433d8,0xbf015efb,3
+np.float32,0x1c59f5,0x1c59f5,3
+np.float32,0x802b1540,0x802b1540,3
+np.float32,0xbe47df6c,0xbe35936e,3
+np.float32,0xbe8e7070,0xbe78af32,3
+np.float32,0xfe7057f4,0xbf800000,3
+np.float32,0x80668b69,0x80668b69,3
+np.float32,0xbe677810,0xbe4f2c2d,3
+np.float32,0xbe7a2f1c,0xbe5df733,3
+np.float32,0xfeb79e3c,0xbf800000,3
+np.float32,0xbeb6e320,0xbe99c9e8,3
+np.float32,0xfea188f2,0xbf800000,3
+np.float32,0x7dcaeb15,0x7f800000,3
+np.float32,0x1be567,0x1be567,3
+np.float32,0xbf4041cc,0xbf07320d,3
+np.float32,0x3f721aa7,0x3fc98e9a,3
+np.float32,0x7f5aa835,0x7f800000,3
+np.float32,0x15180e,0x15180e,3
+np.float32,0x3f73d739,0x3fcbccdb,3
+np.float32,0xbeecd380,0xbebd9b36,3
+np.float32,0x3f2caec7,0x3f768fea,3
+np.float32,0xbeaf65f2,0xbe9482bb,3
+np.float32,0xfe6aa384,0xbf800000,3
+np.float32,0xbf4f2c0a,0xbf0e085e,3
+np.float32,0xbf2b5907,0xbef9d431,3
+np.float32,0x3e855e0d,0x3e985960,3
+np.float32,0x8056cc64,0x8056cc64,3
+np.float32,0xff746bb5,0xbf800000,3
+np.float32,0x3e0332f6,0x3e0bf986,3
+np.float32,0xff637720,0xbf800000,3
+np.float32,0xbf330676,0xbf00c990,3
+np.float32,0x3ec449a1,0x3eef3862,3
+np.float32,0x766541,0x766541,3
+np.float32,0xfe2edf6c,0xbf800000,3
+np.float32,0xbebb28ca,0xbe9cc3e2,3
+np.float32,0x3f16c930,0x3f4d5ce4,3
+np.float32,0x7f1a9a4a,0x7f800000,3
+np.float32,0x3e9ba1,0x3e9ba1,3
+np.float32,0xbf73d5f6,0xbf1d3d69,3
+np.float32,0xfdc8a8b0,0xbf800000,3
+np.float32,0x50f051,0x50f051,3
+np.float32,0xff0add02,0xbf800000,3
+np.float32,0x1e50bf,0x1e50bf,3
+np.float32,0x3f04d287,0x3f2e1948,3
+np.float32,0x7f1e50,0x7f1e50,3
+np.float32,0x2affb3,0x2affb3,3
+np.float32,0x80039f07,0x80039f07,3
+np.float32,0x804ba79e,0x804ba79e,3
+np.float32,0x7b5a8eed,0x7f800000,3
+np.float32,0x3e1a8b28,0x3e26d0a7,3
+np.float32,0x3ea95f29,0x3ec8bfa4,3
+np.float32,0x7e09fa55,0x7f800000,3
+np.float32,0x7eacb1b3,0x7f800000,3
+np.float32,0x3e8ad7c0,0x3e9f7dec,3
+np.float32,0x7e0e997c,0x7f800000,3
+np.float32,0x3f4422b4,0x3f936398,3
+np.float32,0x806bd222,0x806bd222,3
+np.float32,0x677ae6,0x677ae6,3
+np.float32,0x62cf68,0x62cf68,3
+np.float32,0x7e4e594e,0x7f800000,3
+np.float32,0x80445fd1,0x80445fd1,3
+np.float32,0xff3a0d04,0xbf800000,3
+np.float32,0x8052b256,0x8052b256,3
+np.float32,0x3cb34440,0x3cb53e11,3
+np.float32,0xbf0e3865,0xbeda3c6d,3
+np.float32,0x3f49f5df,0x3f99ba17,3
+np.float32,0xbed75a22,0xbeafcc09,3
+np.float32,0xbf7aec64,0xbf1fefc8,3
+np.float32,0x7f35a62d,0x7f800000,3
+np.float32,0xbf787b03,0xbf1f03fc,3
+np.float32,0x8006a62a,0x8006a62a,3
+np.float32,0x3f6419e7,0x3fb803c7,3
+np.float32,0x3ecea2e5,0x3efe8f01,3
+np.float32,0x80603577,0x80603577,3
+np.float32,0xff73198c,0xbf800000,3
+np.float32,0x7def110a,0x7f800000,3
+np.float32,0x544efd,0x544efd,3
+np.float32,0x3f052340,0x3f2ea0fc,3
+np.float32,0xff306666,0xbf800000,3
+np.float32,0xbf800000,0xbf21d2a7,3
+np.float32,0xbed3e150,0xbead826a,3
+np.float32,0x3f430c99,0x3f92390f,3
+np.float32,0xbf4bffa4,0xbf0c9c73,3
+np.float32,0xfd97a710,0xbf800000,3
+np.float32,0x3cadf0fe,0x3cafcd1a,3
+np.float32,0x807af7b4,0x807af7b4,3
+np.float32,0xbc508600,0xbc4f33bc,3
+np.float32,0x7f3e0ec7,0x7f800000,3
+np.float32,0xbe51334c,0xbe3d36f7,3
+np.float32,0xfe7b7fb4,0xbf800000,3
+np.float32,0xfed9c45e,0xbf800000,3
+np.float32,0x3da024eb,0x3da6926a,3
+np.float32,0x7eed9e76,0x7f800000,3
+np.float32,0xbf2b8f1f,0xbefa0b91,3
+np.float32,0x3f2b9286,0x3f746318,3
+np.float32,0xfe8af49c,0xbf800000,3
+np.float32,0x9c4f7,0x9c4f7,3
+np.float32,0x801d7543,0x801d7543,3
+np.float32,0xbf66474a,0xbf17de66,3
+np.float32,0xbf562155,0xbf1116b1,3
+np.float32,0x46a8de,0x46a8de,3
+np.float32,0x8053fe6b,0x8053fe6b,3
+np.float32,0xbf6ee842,0xbf1b51f3,3
+np.float32,0xbf6ad78e,0xbf19b565,3
+np.float32,0xbf012574,0xbecad7ff,3
+np.float32,0x748364,0x748364,3
+np.float32,0x8073f59b,0x8073f59b,3
+np.float32,0xff526825,0xbf800000,3
+np.float32,0xfeb02dc4,0xbf800000,3
+np.float32,0x8033eb1c,0x8033eb1c,3
+np.float32,0x3f3685ea,0x3f8520cc,3
+np.float32,0x7f657902,0x7f800000,3
+np.float32,0xbf75eac4,0xbf1e0a1f,3
+np.float32,0xfe67f384,0xbf800000,3
+np.float32,0x3f56d3cc,0x3fa83faf,3
+np.float32,0x44a4ce,0x44a4ce,3
+np.float32,0x1dc4b3,0x1dc4b3,3
+np.float32,0x4fb3b2,0x4fb3b2,3
+np.float32,0xbea904a4,0xbe8ff3ed,3
+np.float32,0x7e668f16,0x7f800000,3
+np.float32,0x7f538378,0x7f800000,3
+np.float32,0x80541709,0x80541709,3
+np.float32,0x80228040,0x80228040,3
+np.float32,0x7ef9694e,0x7f800000,3
+np.float32,0x3f5fca9b,0x3fb2ce54,3
+np.float32,0xbe9c43c2,0xbe86ab84,3
+np.float32,0xfecee000,0xbf800000,3
+np.float32,0x5a65c2,0x5a65c2,3
+np.float32,0x3f736572,0x3fcb3985,3
+np.float32,0xbf2a03f7,0xbef87600,3
+np.float32,0xfe96b488,0xbf800000,3
+np.float32,0xfedd8800,0xbf800000,3
+np.float32,0x80411804,0x80411804,3
+np.float32,0x7edcb0a6,0x7f800000,3
+np.float32,0x2bb882,0x2bb882,3
+np.float32,0x3f800000,0x3fdbf0a9,3
+np.float32,0x764b27,0x764b27,3
+np.float32,0x7e92035d,0x7f800000,3
+np.float32,0x3e80facb,0x3e92ae1d,3
+np.float32,0x8040b81a,0x8040b81a,3
+np.float32,0x7f487fe4,0x7f800000,3
+np.float32,0xbc641780,0xbc6282ed,3
+np.float32,0x804b0bb9,0x804b0bb9,3
+np.float32,0x7d0b7c39,0x7f800000,3
+np.float32,0xff072080,0xbf800000,3
+np.float32,0xbed7aff8,0xbeb00462,3
+np.float32,0x35e247,0x35e247,3
+np.float32,0xbf7edd19,0xbf216766,3
+np.float32,0x8004a539,0x8004a539,3
+np.float32,0xfdfc1790,0xbf800000,3
+np.float32,0x8037a841,0x8037a841,3
+np.float32,0xfed0a8a8,0xbf800000,3
+np.float32,0x7f1f1697,0x7f800000,3
+np.float32,0x3f2ccc6e,0x3f76ca23,3
+np.float32,0x35eada,0x35eada,3
+np.float32,0xff111f42,0xbf800000,3
+np.float32,0x3ee1ab7f,0x3f0dcbbe,3
+np.float32,0xbf6e89ee,0xbf1b2cd4,3
+np.float32,0x3f58611c,0x3faa0cdc,3
+np.float32,0x1ac6a6,0x1ac6a6,3
+np.float32,0xbf1286fa,0xbedf2312,3
+np.float32,0x7e451137,0x7f800000,3
+np.float32,0xbe92c326,0xbe7f3405,3
+np.float32,0x3f2fdd16,0x3f7cd87b,3
+np.float32,0xbe5c0ea0,0xbe4604c2,3
+np.float32,0xbdb29968,0xbdab0883,3
+np.float32,0x3964,0x3964,3
+np.float32,0x3f0dc236,0x3f3d60a0,3
+np.float32,0x7c3faf06,0x7f800000,3
+np.float32,0xbef41f7a,0xbec22b16,3
+np.float32,0x3f4c0289,0x3f9bfdcc,3
+np.float32,0x806084e9,0x806084e9,3
+np.float32,0x3ed1d8dd,0x3f01b0c1,3
+np.float32,0x806d8d8b,0x806d8d8b,3
+np.float32,0x3f052180,0x3f2e9e0a,3
+np.float32,0x803d85d5,0x803d85d5,3
+np.float32,0x3e0afd70,0x3e14dd48,3
+np.float32,0x2fbc63,0x2fbc63,3
+np.float32,0x2e436f,0x2e436f,3
+np.float32,0xbf7b19e6,0xbf2000da,3
+np.float32,0x3f34022e,0x3f829362,3
+np.float32,0x3d2b40e0,0x3d2ee246,3
+np.float32,0x3f5298b4,0x3fa3649b,3
+np.float32,0xbdb01328,0xbda8b7de,3
+np.float32,0x7f693c81,0x7f800000,3
+np.float32,0xbeb1abc0,0xbe961edc,3
+np.float32,0x801d9b5d,0x801d9b5d,3
+np.float32,0x80628668,0x80628668,3
+np.float32,0x800f57dd,0x800f57dd,3
+np.float32,0x8017c94f,0x8017c94f,3
+np.float32,0xbf16f5f4,0xbee418b8,3
+np.float32,0x3e686476,0x3e827022,3
+np.float32,0xbf256796,0xbef3abd9,3
+np.float32,0x7f1b4485,0x7f800000,3
+np.float32,0xbea0b3cc,0xbe89ed21,3
+np.float32,0xfee08b2e,0xbf800000,3
+np.float32,0x523cb4,0x523cb4,3
+np.float32,0x3daf2cb2,0x3db6e273,3
+np.float32,0xbd531c40,0xbd4dc323,3
+np.float32,0x80078fe5,0x80078fe5,3
+np.float32,0x80800000,0x80800000,3
+np.float32,0x3f232438,0x3f642d1a,3
+np.float32,0x3ec29446,0x3eecb7c0,3
+np.float32,0x3dbcd2a4,0x3dc5cd1d,3
+np.float32,0x7f045b0d,0x7f800000,3
+np.float32,0x7f22e6d1,0x7f800000,3
+np.float32,0xbf5d3430,0xbf141c80,3
+np.float32,0xbe03ec70,0xbdf78ee6,3
+np.float32,0x3e93ec9a,0x3eab822f,3
+np.float32,0x7f3b9262,0x7f800000,3
+np.float32,0x65ac6a,0x65ac6a,3
+np.float32,0x3db9a8,0x3db9a8,3
+np.float32,0xbf37ab59,0xbf031306,3
+np.float32,0x33c40e,0x33c40e,3
+np.float32,0x7f7a478f,0x7f800000,3
+np.float32,0xbe8532d0,0xbe6a906f,3
+np.float32,0x801c081d,0x801c081d,3
+np.float32,0xbe4212a0,0xbe30ca73,3
+np.float32,0xff0b603e,0xbf800000,3
+np.float32,0x4554dc,0x4554dc,3
+np.float32,0x3dd324be,0x3dde695e,3
+np.float32,0x3f224c44,0x3f629557,3
+np.float32,0x8003cd79,0x8003cd79,3
+np.float32,0xbf31351c,0xbeffc2fd,3
+np.float32,0x8034603a,0x8034603a,3
+np.float32,0xbf6fcb70,0xbf1bab24,3
+np.float32,0x804eb67e,0x804eb67e,3
+np.float32,0xff05c00e,0xbf800000,3
+np.float32,0x3eb5b36f,0x3eda1ec7,3
+np.float32,0x3f1ed7f9,0x3f5c1d90,3
+np.float32,0x3f052d8a,0x3f2eb24b,3
+np.float32,0x5ddf51,0x5ddf51,3
+np.float32,0x7e50c11c,0x7f800000,3
+np.float32,0xff74f55a,0xbf800000,3
+np.float32,0x4322d,0x4322d,3
+np.float32,0x3f16f8a9,0x3f4db27a,3
+np.float32,0x3f4f23d6,0x3f9f7c2c,3
+np.float32,0xbf706c1e,0xbf1bea0a,3
+np.float32,0x3f2cbd52,0x3f76ac77,3
+np.float32,0xf3043,0xf3043,3
+np.float32,0xfee79de0,0xbf800000,3
+np.float32,0x7e942f69,0x7f800000,3
+np.float32,0x180139,0x180139,3
+np.float32,0xff69c678,0xbf800000,3
+np.float32,0x3f46773f,0x3f95e840,3
+np.float32,0x804aae1c,0x804aae1c,3
+np.float32,0x3eb383b4,0x3ed7024c,3
+np.float32,0x8032624e,0x8032624e,3
+np.float32,0xbd0a0f80,0xbd07c27d,3
+np.float32,0xbf1c9b98,0xbeea4a61,3
+np.float32,0x7f370999,0x7f800000,3
+np.float32,0x801931f9,0x801931f9,3
+np.float32,0x3f6f45ce,0x3fc5eea0,3
+np.float32,0xff0ab4cc,0xbf800000,3
+np.float32,0x4c043d,0x4c043d,3
+np.float32,0x8002a599,0x8002a599,3
+np.float32,0xbc4a6080,0xbc4921d7,3
+np.float32,0x3f008d14,0x3f26fb72,3
+np.float32,0x7f48b3d9,0x7f800000,3
+np.float32,0x7cb2ec7e,0x7f800000,3
+np.float32,0xbf1338bd,0xbedfeb61,3
+np.float32,0x0,0x0,3
+np.float32,0xbf2f5b64,0xbefde71c,3
+np.float32,0xbe422974,0xbe30dd56,3
+np.float32,0x3f776be8,0x3fd07950,3
+np.float32,0xbf3e97a1,0xbf06684a,3
+np.float32,0x7d28cb26,0x7f800000,3
+np.float32,0x801618d2,0x801618d2,3
+np.float32,0x807e4f83,0x807e4f83,3
+np.float32,0x8006b07d,0x8006b07d,3
+np.float32,0xfea1c042,0xbf800000,3
+np.float32,0xff24ef74,0xbf800000,3
+np.float32,0xfef7ab16,0xbf800000,3
+np.float32,0x70b771,0x70b771,3
+np.float32,0x7daeb64e,0x7f800000,3
+np.float32,0xbe66e378,0xbe4eb59c,3
+np.float32,0xbead1534,0xbe92dcf7,3
+np.float32,0x7e6769b8,0x7f800000,3
+np.float32,0x7ecd0890,0x7f800000,3
+np.float32,0xbe7380d8,0xbe58b747,3
+np.float32,0x3efa6f2f,0x3f218265,3
+np.float32,0x3f59dada,0x3fabc5eb,3
+np.float32,0xff0f2d20,0xbf800000,3
+np.float32,0x8060210e,0x8060210e,3
+np.float32,0x3ef681e8,0x3f1e51c8,3
+np.float32,0x77a6dd,0x77a6dd,3
+np.float32,0xbebfdd0e,0xbea00399,3
+np.float32,0xfe889b72,0xbf800000,3
+np.float32,0x8049ed2c,0x8049ed2c,3
+np.float32,0x3b089dc4,0x3b08c23e,3
+np.float32,0xbf13c7c4,0xbee08c28,3
+np.float32,0x3efa13b9,0x3f2137d7,3
+np.float32,0x3e9385dc,0x3eaaf914,3
+np.float32,0x7e0e6a43,0x7f800000,3
+np.float32,0x7df6d63f,0x7f800000,3
+np.float32,0x3f3efead,0x3f8dea03,3
+np.float32,0xff52548c,0xbf800000,3
+np.float32,0x803ff9d8,0x803ff9d8,3
+np.float32,0x3c825823,0x3c836303,3
+np.float32,0xfc9e97a0,0xbf800000,3
+np.float32,0xfe644f48,0xbf800000,3
+np.float32,0x802f5017,0x802f5017,3
+np.float32,0x3d5753b9,0x3d5d1661,3
+np.float32,0x7f2a55d2,0x7f800000,3
+np.float32,0x7f4dabfe,0x7f800000,3
+np.float32,0x3f49492a,0x3f98fc47,3
+np.float32,0x3f4d1589,0x3f9d2f82,3
+np.float32,0xff016208,0xbf800000,3
+np.float32,0xbf571cb7,0xbf118365,3
+np.float32,0xbf1ef297,0xbeecd136,3
+np.float32,0x36266b,0x36266b,3
+np.float32,0xbed07b0e,0xbeab4129,3
+np.float32,0x7f553365,0x7f800000,3
+np.float32,0xfe9bb8c6,0xbf800000,3
+np.float32,0xbeb497d6,0xbe982e19,3
+np.float32,0xbf27af6c,0xbef60d16,3
+np.float32,0x55cf51,0x55cf51,3
+np.float32,0x3eab1db0,0x3ecb2e4f,3
+np.float32,0x3e777603,0x3e8bf62f,3
+np.float32,0x7f10e374,0x7f800000,3
+np.float32,0xbf1f6480,0xbeed4b8d,3
+np.float32,0x40479d,0x40479d,3
+np.float32,0x156259,0x156259,3
+np.float32,0x3d852e30,0x3d899b2d,3
+np.float32,0x80014ff3,0x80014ff3,3
+np.float32,0xbd812fa8,0xbd7a645c,3
+np.float32,0x800ab780,0x800ab780,3
+np.float32,0x3ea02ff4,0x3ebc13bd,3
+np.float32,0x7e858b8e,0x7f800000,3
+np.float32,0x75d63b,0x75d63b,3
+np.float32,0xbeb15c94,0xbe95e6e3,3
+np.float32,0x3da0cee0,0x3da74a39,3
+np.float32,0xff21c01c,0xbf800000,3
+np.float32,0x8049b5eb,0x8049b5eb,3
+np.float32,0x80177ab0,0x80177ab0,3
+np.float32,0xff137a50,0xbf800000,3
+np.float32,0x3f7febba,0x3fdbd51c,3
+np.float32,0x8041e4dd,0x8041e4dd,3
+np.float32,0x99b8c,0x99b8c,3
+np.float32,0x5621ba,0x5621ba,3
+np.float32,0x14b534,0x14b534,3
+np.float32,0xbe2eb3a8,0xbe209c95,3
+np.float32,0x7e510c28,0x7f800000,3
+np.float32,0x804ec2f2,0x804ec2f2,3
+np.float32,0x3f662406,0x3fba82b0,3
+np.float32,0x800000,0x800000,3
+np.float32,0x3f3120d6,0x3f7f5d96,3
+np.float32,0x7f179b8e,0x7f800000,3
+np.float32,0x7f65278e,0x7f800000,3
+np.float32,0xfeb50f52,0xbf800000,3
+np.float32,0x7f051bd1,0x7f800000,3
+np.float32,0x7ea0558d,0x7f800000,3
+np.float32,0xbd0a96c0,0xbd08453f,3
+np.float64,0xee82da5ddd05c,0xee82da5ddd05c,1
+np.float64,0x800c3a22d7f87446,0x800c3a22d7f87446,1
+np.float64,0xbfd34b20eaa69642,0xbfd0a825e7688d3e,1
+np.float64,0x3fd6a0f2492d41e5,0x3fdb253b906057b3,1
+np.float64,0xbfda13d8783427b0,0xbfd56b1d76684332,1
+np.float64,0xbfe50b5a99ea16b5,0xbfded7dd82c6f746,1
+np.float64,0x3f82468fc0248d20,0x3f825b7fa9378ee9,1
+np.float64,0x7ff0000000000000,0x7ff0000000000000,1
+np.float64,0x856e50290adca,0x856e50290adca,1
+np.float64,0x7fde55a5fa3cab4b,0x7ff0000000000000,1
+np.float64,0x7fcf2c8dd93e591b,0x7ff0000000000000,1
+np.float64,0x8001b3a0e3236743,0x8001b3a0e3236743,1
+np.float64,0x8000fdb14821fb63,0x8000fdb14821fb63,1
+np.float64,0xbfe3645e08e6c8bc,0xbfdd161362a5e9ef,1
+np.float64,0x7feb34d28b3669a4,0x7ff0000000000000,1
+np.float64,0x80099dd810933bb1,0x80099dd810933bb1,1
+np.float64,0xbfedbcc1097b7982,0xbfe35d86414d53dc,1
+np.float64,0x7fdc406fbdb880de,0x7ff0000000000000,1
+np.float64,0x800c4bf85ab897f1,0x800c4bf85ab897f1,1
+np.float64,0x3fd8f7b0e0b1ef60,0x3fde89b497ae20d8,1
+np.float64,0xffe4fced5c69f9da,0xbff0000000000000,1
+np.float64,0xbfe54d421fea9a84,0xbfdf1be0cbfbfcba,1
+np.float64,0x800af72f3535ee5f,0x800af72f3535ee5f,1
+np.float64,0x3fe24e6570e49ccb,0x3fe8b3a86d970411,1
+np.float64,0xbfdd7b22d0baf646,0xbfd79fac2e4f7558,1
+np.float64,0xbfe6a7654c6d4eca,0xbfe03c1f13f3b409,1
+np.float64,0x3fe2c3eb662587d7,0x3fe98566e625d4f5,1
+np.float64,0x3b1ef71e763e0,0x3b1ef71e763e0,1
+np.float64,0xffed03c6baba078d,0xbff0000000000000,1
+np.float64,0x3febac19d0b75834,0x3ff5fdacc9d51bcd,1
+np.float64,0x800635d6794c6bae,0x800635d6794c6bae,1
+np.float64,0xbfe8cafc827195f9,0xbfe1411438608ae1,1
+np.float64,0x7feeb616a83d6c2c,0x7ff0000000000000,1
+np.float64,0x3fd52d62a2aa5ac5,0x3fd91a07a7f18f44,1
+np.float64,0x80036996b8a6d32e,0x80036996b8a6d32e,1
+np.float64,0x2b1945965632a,0x2b1945965632a,1
+np.float64,0xbfecb5e8c9796bd2,0xbfe2f40fca276aa2,1
+np.float64,0x3fe8669ed4f0cd3e,0x3ff24c89fc9cdbff,1
+np.float64,0x71e9f65ee3d3f,0x71e9f65ee3d3f,1
+np.float64,0xbfd5ab262bab564c,0xbfd261ae108ef79e,1
+np.float64,0xbfe7091342ee1226,0xbfe06bf5622d75f6,1
+np.float64,0x49e888d093d12,0x49e888d093d12,1
+np.float64,0x2272f3dc44e5f,0x2272f3dc44e5f,1
+np.float64,0x7fe98736e0b30e6d,0x7ff0000000000000,1
+np.float64,0x30fa9cde61f54,0x30fa9cde61f54,1
+np.float64,0x7fdc163fc0382c7f,0x7ff0000000000000,1
+np.float64,0xffb40d04ee281a08,0xbff0000000000000,1
+np.float64,0xffe624617f2c48c2,0xbff0000000000000,1
+np.float64,0x3febb582bd376b05,0x3ff608da584d1716,1
+np.float64,0xfc30a5a5f8615,0xfc30a5a5f8615,1
+np.float64,0x3fef202efd7e405e,0x3ffa52009319b069,1
+np.float64,0x8004d0259829a04c,0x8004d0259829a04c,1
+np.float64,0x800622dc71ec45ba,0x800622dc71ec45ba,1
+np.float64,0xffefffffffffffff,0xbff0000000000000,1
+np.float64,0x800e89113c9d1223,0x800e89113c9d1223,1
+np.float64,0x7fba7fde3034ffbb,0x7ff0000000000000,1
+np.float64,0xbfeea31e807d463d,0xbfe3b7369b725915,1
+np.float64,0x3feb7c9589f6f92c,0x3ff5c56cf71b0dff,1
+np.float64,0x3fd52d3b59aa5a77,0x3fd919d0f683fd07,1
+np.float64,0x800de90a43fbd215,0x800de90a43fbd215,1
+np.float64,0x3fe7eb35a9efd66b,0x3ff1c940dbfc6ef9,1
+np.float64,0xbda0adcb7b416,0xbda0adcb7b416,1
+np.float64,0x7fc5753e3a2aea7b,0x7ff0000000000000,1
+np.float64,0xffdd101d103a203a,0xbff0000000000000,1
+np.float64,0x7fcb54f56836a9ea,0x7ff0000000000000,1
+np.float64,0xbfd61c8d6eac391a,0xbfd2b23bc0a2cef4,1
+np.float64,0x3feef55de37deabc,0x3ffa198639a0161d,1
+np.float64,0x7fe4ffbfaea9ff7e,0x7ff0000000000000,1
+np.float64,0x9d1071873a20e,0x9d1071873a20e,1
+np.float64,0x3fef1ecb863e3d97,0x3ffa502a81e09cfc,1
+np.float64,0xad2da12b5a5b4,0xad2da12b5a5b4,1
+np.float64,0xffe614b74c6c296e,0xbff0000000000000,1
+np.float64,0xffe60d3f286c1a7e,0xbff0000000000000,1
+np.float64,0x7fda7d91f4b4fb23,0x7ff0000000000000,1
+np.float64,0x800023f266a047e6,0x800023f266a047e6,1
+np.float64,0x7fdf5f9ad23ebf35,0x7ff0000000000000,1
+np.float64,0x3fa7459f002e8b3e,0x3fa7cf178dcf0af6,1
+np.float64,0x3fe9938d61f3271b,0x3ff39516a13caec3,1
+np.float64,0xbfd59314c3ab262a,0xbfd250830f73efd2,1
+np.float64,0xbfc7e193f72fc328,0xbfc5c924339dd7a8,1
+np.float64,0x7fec1965f17832cb,0x7ff0000000000000,1
+np.float64,0xbfd932908eb26522,0xbfd4d4312d272580,1
+np.float64,0xbfdf2d08e2be5a12,0xbfd8add1413b0b1b,1
+np.float64,0x7fdcf7cc74b9ef98,0x7ff0000000000000,1
+np.float64,0x7fc79300912f2600,0x7ff0000000000000,1
+np.float64,0xffd4bd8f23297b1e,0xbff0000000000000,1
+np.float64,0x41869ce0830e,0x41869ce0830e,1
+np.float64,0x3fe5dcec91ebb9da,0x3fef5e213598cbd4,1
+np.float64,0x800815d9c2902bb4,0x800815d9c2902bb4,1
+np.float64,0x800ba1a4b877434a,0x800ba1a4b877434a,1
+np.float64,0x80069d7bdc4d3af8,0x80069d7bdc4d3af8,1
+np.float64,0xcf00d4339e01b,0xcf00d4339e01b,1
+np.float64,0x80072b71bd4e56e4,0x80072b71bd4e56e4,1
+np.float64,0x80059ca6fbab394f,0x80059ca6fbab394f,1
+np.float64,0x3fe522fc092a45f8,0x3fedf212682bf894,1
+np.float64,0x7fe17f384ea2fe70,0x7ff0000000000000,1
+np.float64,0x0,0x0,1
+np.float64,0x3f72bb4c20257698,0x3f72c64766b52069,1
+np.float64,0x7fbc97c940392f92,0x7ff0000000000000,1
+np.float64,0xffc5904ebd2b209c,0xbff0000000000000,1
+np.float64,0xbfe34fb55b669f6a,0xbfdcff81dd30a49d,1
+np.float64,0x8007ccda006f99b5,0x8007ccda006f99b5,1
+np.float64,0x3fee50e4c8fca1ca,0x3ff9434c7750ad0f,1
+np.float64,0x7fee7b07c67cf60f,0x7ff0000000000000,1
+np.float64,0x3fdcce4a5a399c95,0x3fe230c83f28218a,1
+np.float64,0x7fee5187b37ca30e,0x7ff0000000000000,1
+np.float64,0x3fc48f6a97291ed8,0x3fc64db6200a9833,1
+np.float64,0xc7fec3498ffd9,0xc7fec3498ffd9,1
+np.float64,0x800769c59d2ed38c,0x800769c59d2ed38c,1
+np.float64,0xffe69ede782d3dbc,0xbff0000000000000,1
+np.float64,0x3fecd9770979b2ee,0x3ff76a1f2f0f08f2,1
+np.float64,0x5aa358a8b546c,0x5aa358a8b546c,1
+np.float64,0xbfe795a0506f2b40,0xbfe0afcc52c0166b,1
+np.float64,0xffd4ada1e8a95b44,0xbff0000000000000,1
+np.float64,0xffcac1dc213583b8,0xbff0000000000000,1
+np.float64,0xffe393c15fa72782,0xbff0000000000000,1
+np.float64,0xbfcd6a3c113ad478,0xbfca47a2157b9cdd,1
+np.float64,0xffedde20647bbc40,0xbff0000000000000,1
+np.float64,0x3fd0d011b1a1a024,0x3fd33a57945559f4,1
+np.float64,0x3fef27e29f7e4fc6,0x3ffa5c314e0e3d69,1
+np.float64,0xffe96ff71f72dfee,0xbff0000000000000,1
+np.float64,0xffe762414f2ec482,0xbff0000000000000,1
+np.float64,0x3fc2dcfd3d25b9fa,0x3fc452f41682a12e,1
+np.float64,0xbfbdb125b63b6248,0xbfbc08e6553296d4,1
+np.float64,0x7b915740f724,0x7b915740f724,1
+np.float64,0x60b502b2c16a1,0x60b502b2c16a1,1
+np.float64,0xbfeb38b0be367162,0xbfe254f6782cfc47,1
+np.float64,0x800dc39a3edb8735,0x800dc39a3edb8735,1
+np.float64,0x3fea4fb433349f68,0x3ff468b97cf699f5,1
+np.float64,0xbfd49967962932d0,0xbfd19ceb41ff4cd0,1
+np.float64,0xbfebf75cd377eeba,0xbfe2a576bdbccccc,1
+np.float64,0xbfb653d65c2ca7b0,0xbfb561ab8fcb3f26,1
+np.float64,0xffe3f34b8727e696,0xbff0000000000000,1
+np.float64,0x3fdd798064baf301,0x3fe2b7c130a6fc63,1
+np.float64,0x3febe027e6b7c050,0x3ff63bac1b22e12d,1
+np.float64,0x7fcaa371af3546e2,0x7ff0000000000000,1
+np.float64,0xbfe6ee980a2ddd30,0xbfe05f0bc5dc80d2,1
+np.float64,0xc559c33f8ab39,0xc559c33f8ab39,1
+np.float64,0x84542c2b08a86,0x84542c2b08a86,1
+np.float64,0xbfe5645e046ac8bc,0xbfdf3398dc3cc1bd,1
+np.float64,0x3fee8c48ae7d1892,0x3ff9902899480526,1
+np.float64,0x3fb706471c2e0c8e,0x3fb817787aace8db,1
+np.float64,0x7fefe78f91ffcf1e,0x7ff0000000000000,1
+np.float64,0xbfcf6d560b3edaac,0xbfcbddc72a2130df,1
+np.float64,0x7fd282bfd925057f,0x7ff0000000000000,1
+np.float64,0x3fb973dbee32e7b8,0x3fbac2c87cbd0215,1
+np.float64,0x3fd1ce38ff239c72,0x3fd4876de5164420,1
+np.float64,0x8008ac2e3c31585d,0x8008ac2e3c31585d,1
+np.float64,0x3fa05e06dc20bc00,0x3fa0a1b7de904dce,1
+np.float64,0x7fd925f215324be3,0x7ff0000000000000,1
+np.float64,0x3f949d95d0293b2c,0x3f94d31197d51874,1
+np.float64,0xffdded9e67bbdb3c,0xbff0000000000000,1
+np.float64,0x3fed390dcfba721c,0x3ff7e08c7a709240,1
+np.float64,0x7fe6e62300adcc45,0x7ff0000000000000,1
+np.float64,0xbfd779bc312ef378,0xbfd3a6cb64bb0181,1
+np.float64,0x3fe43e9877287d31,0x3fec3e100ef935fd,1
+np.float64,0x210b68e44216e,0x210b68e44216e,1
+np.float64,0x3fcdffc1e73bff84,0x3fd0e729d02ec539,1
+np.float64,0xcea10c0f9d422,0xcea10c0f9d422,1
+np.float64,0x7feb97a82d772f4f,0x7ff0000000000000,1
+np.float64,0x9b4b4d953696a,0x9b4b4d953696a,1
+np.float64,0x3fd1bd8e95237b1d,0x3fd4716dd34cf828,1
+np.float64,0x800fc273841f84e7,0x800fc273841f84e7,1
+np.float64,0xbfd2aef167255de2,0xbfd0340f30d82f18,1
+np.float64,0x800d021a551a0435,0x800d021a551a0435,1
+np.float64,0xffebf934a8b7f268,0xbff0000000000000,1
+np.float64,0x3fd819849fb03308,0x3fdd43bca0aac749,1
+np.float64,0x7ff8000000000000,0x7ff8000000000000,1
+np.float64,0x27c34b064f86a,0x27c34b064f86a,1
+np.float64,0x7fef4f5a373e9eb3,0x7ff0000000000000,1
+np.float64,0x7fd92fccce325f99,0x7ff0000000000000,1
+np.float64,0x800520869d6a410e,0x800520869d6a410e,1
+np.float64,0x3fccbcaddf397958,0x3fd01bf6b0c4d97f,1
+np.float64,0x80039ebfc4273d80,0x80039ebfc4273d80,1
+np.float64,0xbfed1f0b3c7a3e16,0xbfe31ea6e4c69141,1
+np.float64,0x7fee1bb7c4bc376f,0x7ff0000000000000,1
+np.float64,0xbfa8bee1d8317dc0,0xbfa8283b7dbf95a9,1
+np.float64,0x3fe797db606f2fb6,0x3ff171b1c2bc8fe5,1
+np.float64,0xbfee2ecfdbbc5da0,0xbfe38a3f0a43d14e,1
+np.float64,0x3fe815c7f1302b90,0x3ff1f65165c45d71,1
+np.float64,0xbfbb265c94364cb8,0xbfb9c27ec61a9a1d,1
+np.float64,0x3fcf1cab5d3e3957,0x3fd19c07444642f9,1
+np.float64,0xbfe6ae753f6d5cea,0xbfe03f99666dbe17,1
+np.float64,0xbfd18a2a73a31454,0xbfceaee204aca016,1
+np.float64,0x3fb8a1dffc3143c0,0x3fb9db38341ab1a3,1
+np.float64,0x7fd2a0376025406e,0x7ff0000000000000,1
+np.float64,0x7fe718c0e3ae3181,0x7ff0000000000000,1
+np.float64,0x3fb264d42424c9a8,0x3fb3121f071d4db4,1
+np.float64,0xd27190a7a4e32,0xd27190a7a4e32,1
+np.float64,0xbfe467668c68cecd,0xbfde2c4616738d5e,1
+np.float64,0x800ab9a2b9357346,0x800ab9a2b9357346,1
+np.float64,0x7fcbd108d537a211,0x7ff0000000000000,1
+np.float64,0x3fb79bba6e2f3770,0x3fb8bb2c140d3445,1
+np.float64,0xffefa7165e3f4e2c,0xbff0000000000000,1
+np.float64,0x7fb40185a428030a,0x7ff0000000000000,1
+np.float64,0xbfe9e3d58e73c7ab,0xbfe1c04d51c83d69,1
+np.float64,0x7fef5b97b17eb72e,0x7ff0000000000000,1
+np.float64,0x800a2957683452af,0x800a2957683452af,1
+np.float64,0x800f54f1925ea9e3,0x800f54f1925ea9e3,1
+np.float64,0xeffa4e77dff4a,0xeffa4e77dff4a,1
+np.float64,0xffbe501aa03ca038,0xbff0000000000000,1
+np.float64,0x8006c651bced8ca4,0x8006c651bced8ca4,1
+np.float64,0x3fe159faff22b3f6,0x3fe708f78efbdbed,1
+np.float64,0x800e7d59a31cfab3,0x800e7d59a31cfab3,1
+np.float64,0x3fe6ac2f272d585e,0x3ff07ee5305385c3,1
+np.float64,0x7fd014c054202980,0x7ff0000000000000,1
+np.float64,0xbfe4800b11e90016,0xbfde4648c6f29ce5,1
+np.float64,0xbfe6738470ece709,0xbfe0227b5b42b713,1
+np.float64,0x3fed052add3a0a56,0x3ff7a01819e65c6e,1
+np.float64,0xffe03106f120620e,0xbff0000000000000,1
+np.float64,0x7fe11df4d4e23be9,0x7ff0000000000000,1
+np.float64,0xbfcea25d7b3d44bc,0xbfcb3e808e7ce852,1
+np.float64,0xd0807b03a1010,0xd0807b03a1010,1
+np.float64,0x8004eda4fec9db4b,0x8004eda4fec9db4b,1
+np.float64,0x3fceb5c98d3d6b90,0x3fd15a894b15dd9f,1
+np.float64,0xbfee27228afc4e45,0xbfe38741702f3c0b,1
+np.float64,0xbfe606278c6c0c4f,0xbfdfd7cb6093652d,1
+np.float64,0xbfd66f59bc2cdeb4,0xbfd2ecb2297f6afc,1
+np.float64,0x4aee390095dc8,0x4aee390095dc8,1
+np.float64,0xbfe391355d67226a,0xbfdd46ddc0997014,1
+np.float64,0xffd27765e7a4eecc,0xbff0000000000000,1
+np.float64,0xbfe795e20a2f2bc4,0xbfe0afebc66c4dbd,1
+np.float64,0x7fc9a62e81334c5c,0x7ff0000000000000,1
+np.float64,0xffe4e57e52a9cafc,0xbff0000000000000,1
+np.float64,0x7fac326c8c3864d8,0x7ff0000000000000,1
+np.float64,0x3fe8675f6370cebf,0x3ff24d5863029c15,1
+np.float64,0x7fcf4745e73e8e8b,0x7ff0000000000000,1
+np.float64,0x7fcc9aec9f3935d8,0x7ff0000000000000,1
+np.float64,0x3fec2e8fcab85d20,0x3ff699ccd0b2fed6,1
+np.float64,0x3fd110a968222153,0x3fd38e81a88c2d13,1
+np.float64,0xffb3a68532274d08,0xbff0000000000000,1
+np.float64,0xf0e562bbe1cad,0xf0e562bbe1cad,1
+np.float64,0xbfe815b9e5f02b74,0xbfe0ec9f5023aebc,1
+np.float64,0xbf5151d88022a400,0xbf514f80c465feea,1
+np.float64,0x2547e3144a8fd,0x2547e3144a8fd,1
+np.float64,0x3fedcc0c28fb9818,0x3ff899612fbeb4c5,1
+np.float64,0x3fdc3d1c0f387a38,0x3fe1bf6e2d39bd75,1
+np.float64,0x7fe544dbe62a89b7,0x7ff0000000000000,1
+np.float64,0x8001500e48e2a01d,0x8001500e48e2a01d,1
+np.float64,0xbfed3b2b09fa7656,0xbfe329f3e7bada64,1
+np.float64,0xbfe76a943aeed528,0xbfe09b24e3aa3f79,1
+np.float64,0x3fe944330e328866,0x3ff33d472dee70c5,1
+np.float64,0x8004bbbd6cc9777c,0x8004bbbd6cc9777c,1
+np.float64,0xbfe28133fb650268,0xbfdc1ac230ac4ef5,1
+np.float64,0xc1370af7826e2,0xc1370af7826e2,1
+np.float64,0x7fcfa47f5f3f48fe,0x7ff0000000000000,1
+np.float64,0xbfa3002a04260050,0xbfa2a703a538b54e,1
+np.float64,0xffef44f3903e89e6,0xbff0000000000000,1
+np.float64,0xc32cce298659a,0xc32cce298659a,1
+np.float64,0x7b477cc2f68f0,0x7b477cc2f68f0,1
+np.float64,0x40a7f4ec814ff,0x40a7f4ec814ff,1
+np.float64,0xffee38edf67c71db,0xbff0000000000000,1
+np.float64,0x3fe23f6f1ce47ede,0x3fe8992b8bb03499,1
+np.float64,0x7fc8edfe7f31dbfc,0x7ff0000000000000,1
+np.float64,0x800bb8e6fb3771ce,0x800bb8e6fb3771ce,1
+np.float64,0xbfe11d364ee23a6c,0xbfda82a0c2ef9e46,1
+np.float64,0xbfeb993cb4b7327a,0xbfe27df565da85dc,1
+np.float64,0x10000000000000,0x10000000000000,1
+np.float64,0x3fc1f997d723f330,0x3fc34c5cff060af1,1
+np.float64,0x6e326fa0dc64f,0x6e326fa0dc64f,1
+np.float64,0x800fa30c2c5f4618,0x800fa30c2c5f4618,1
+np.float64,0x7fed16ad603a2d5a,0x7ff0000000000000,1
+np.float64,0x9411cf172823a,0x9411cf172823a,1
+np.float64,0xffece51d4cb9ca3a,0xbff0000000000000,1
+np.float64,0x3fdda3d1453b47a3,0x3fe2d954f7849890,1
+np.float64,0xffd58330172b0660,0xbff0000000000000,1
+np.float64,0xbfc6962ae52d2c54,0xbfc4b4bdf0069f17,1
+np.float64,0xbfb4010a8e280218,0xbfb33e1236f7efa0,1
+np.float64,0x7fd0444909208891,0x7ff0000000000000,1
+np.float64,0xbfe027a24de04f44,0xbfd95e9064101e7c,1
+np.float64,0xa6f3f3214de9,0xa6f3f3214de9,1
+np.float64,0xbfe112eb0fe225d6,0xbfda768f7cbdf346,1
+np.float64,0xbfe99e90d4b33d22,0xbfe1a153e45a382a,1
+np.float64,0xffecb34f8e79669e,0xbff0000000000000,1
+np.float64,0xbfdf32c9653e6592,0xbfd8b159caf5633d,1
+np.float64,0x3fe9519829b2a330,0x3ff34c0a8152e20f,1
+np.float64,0xffd08ec8a7a11d92,0xbff0000000000000,1
+np.float64,0xffd19b71b6a336e4,0xbff0000000000000,1
+np.float64,0x7feda6b9377b4d71,0x7ff0000000000000,1
+np.float64,0x800fda2956bfb453,0x800fda2956bfb453,1
+np.float64,0x3fe54f601bea9ec0,0x3fee483cb03cbde4,1
+np.float64,0xbfe2a8ad5ee5515a,0xbfdc46ee7a10bf0d,1
+np.float64,0xbfd336c8bd266d92,0xbfd09916d432274a,1
+np.float64,0xfff0000000000000,0xbff0000000000000,1
+np.float64,0x3fd9a811a9b35024,0x3fdf8fa68cc048e3,1
+np.float64,0x3fe078c68520f18d,0x3fe58aecc1f9649b,1
+np.float64,0xbfc6d5aa3a2dab54,0xbfc4e9ea84f3d73c,1
+np.float64,0xf9682007f2d04,0xf9682007f2d04,1
+np.float64,0x3fee54523dbca8a4,0x3ff947b826de81f4,1
+np.float64,0x80461e5d008c4,0x80461e5d008c4,1
+np.float64,0x3fdd6d12d5bada26,0x3fe2ade8dee2fa02,1
+np.float64,0x3fcd5f0dfd3abe18,0x3fd081d6cd25731d,1
+np.float64,0x7fa36475c826c8eb,0x7ff0000000000000,1
+np.float64,0xbfdf3ce052be79c0,0xbfd8b78baccfb908,1
+np.float64,0x7fcd890dd13b121b,0x7ff0000000000000,1
+np.float64,0x8000000000000001,0x8000000000000001,1
+np.float64,0x800ec0f4281d81e8,0x800ec0f4281d81e8,1
+np.float64,0xbfba960116352c00,0xbfb94085424496d9,1
+np.float64,0x3fdddedc9bbbbdb8,0x3fe30853fe4ef5ce,1
+np.float64,0x238092a847013,0x238092a847013,1
+np.float64,0xbfe38d4803271a90,0xbfdd429a955c46af,1
+np.float64,0xbfd4c9067329920c,0xbfd1bf6255ed91a4,1
+np.float64,0xbfbee213923dc428,0xbfbd17ce1bda6088,1
+np.float64,0xffd5a2d337ab45a6,0xbff0000000000000,1
+np.float64,0x7fe21bfcf82437f9,0x7ff0000000000000,1
+np.float64,0x3fe2a2714da544e3,0x3fe949594a74ea25,1
+np.float64,0x800e05cf8ebc0b9f,0x800e05cf8ebc0b9f,1
+np.float64,0x559a1526ab343,0x559a1526ab343,1
+np.float64,0xffe6a1b7906d436e,0xbff0000000000000,1
+np.float64,0xffef27d6253e4fab,0xbff0000000000000,1
+np.float64,0xbfe0f90ab0a1f216,0xbfda5828a1edde48,1
+np.float64,0x9675d2ab2cebb,0x9675d2ab2cebb,1
+np.float64,0xffee0f7eecfc1efd,0xbff0000000000000,1
+np.float64,0x2ec005625d801,0x2ec005625d801,1
+np.float64,0x7fde35ff14bc6bfd,0x7ff0000000000000,1
+np.float64,0xffe03f36d9e07e6d,0xbff0000000000000,1
+np.float64,0x7fe09ff7c4213fef,0x7ff0000000000000,1
+np.float64,0xffeac29dd1b5853b,0xbff0000000000000,1
+np.float64,0x3fb63120aa2c6241,0x3fb72ea3de98a853,1
+np.float64,0xffd079eb84a0f3d8,0xbff0000000000000,1
+np.float64,0xbfd3c2cc75a78598,0xbfd1005996880b3f,1
+np.float64,0x7fb80507ee300a0f,0x7ff0000000000000,1
+np.float64,0xffe8006105f000c1,0xbff0000000000000,1
+np.float64,0x8009138b0ab22716,0x8009138b0ab22716,1
+np.float64,0xbfd6dfb40b2dbf68,0xbfd33b8e4008e3b0,1
+np.float64,0xbfe7c2cf9bef859f,0xbfe0c55c807460df,1
+np.float64,0xbfe75fe4da6ebfca,0xbfe09600256d3b81,1
+np.float64,0xffd662fc73acc5f8,0xbff0000000000000,1
+np.float64,0x20b99dbc41735,0x20b99dbc41735,1
+np.float64,0x3fe10b38ade21671,0x3fe68229a9bbeefc,1
+np.float64,0x3743b99c6e878,0x3743b99c6e878,1
+np.float64,0xff9eb5ed903d6be0,0xbff0000000000000,1
+np.float64,0x3ff0000000000000,0x3ffb7e151628aed3,1
+np.float64,0xffb9e0569e33c0b0,0xbff0000000000000,1
+np.float64,0x7fd39c804fa73900,0x7ff0000000000000,1
+np.float64,0x3fe881ef67f103df,0x3ff269dd704b7129,1
+np.float64,0x1b6eb40236dd7,0x1b6eb40236dd7,1
+np.float64,0xbfe734ea432e69d4,0xbfe0813e6355d02f,1
+np.float64,0xffcf48f3743e91e8,0xbff0000000000000,1
+np.float64,0xffed10bcf6fa2179,0xbff0000000000000,1
+np.float64,0x3fef07723b7e0ee4,0x3ffa3156123f3c15,1
+np.float64,0xffe45c704aa8b8e0,0xbff0000000000000,1
+np.float64,0xb7b818d96f703,0xb7b818d96f703,1
+np.float64,0x42fcc04085f99,0x42fcc04085f99,1
+np.float64,0xbfda7ced01b4f9da,0xbfd5b0ce1e5524ae,1
+np.float64,0xbfe1e5963d63cb2c,0xbfdb6a87b6c09185,1
+np.float64,0x7fdfa18003bf42ff,0x7ff0000000000000,1
+np.float64,0xbfe3790a43e6f214,0xbfdd2c9a38b4f089,1
+np.float64,0xffe0ff5b9ae1feb6,0xbff0000000000000,1
+np.float64,0x80085a7d3110b4fb,0x80085a7d3110b4fb,1
+np.float64,0xffd6bfa6622d7f4c,0xbff0000000000000,1
+np.float64,0xbfef5ddc7cfebbb9,0xbfe3fe170521593e,1
+np.float64,0x3fc21773fa242ee8,0x3fc36ebda1f91a72,1
+np.float64,0x7fc04d98da209b31,0x7ff0000000000000,1
+np.float64,0xbfeba3b535b7476a,0xbfe282602e3c322e,1
+np.float64,0xffd41fb5c1a83f6c,0xbff0000000000000,1
+np.float64,0xf87d206df0fa4,0xf87d206df0fa4,1
+np.float64,0x800060946fc0c12a,0x800060946fc0c12a,1
+np.float64,0x3fe69d5f166d3abe,0x3ff06fdddcf4ca93,1
+np.float64,0x7fe9b5793b336af1,0x7ff0000000000000,1
+np.float64,0x7fe0dd4143e1ba82,0x7ff0000000000000,1
+np.float64,0xbfa8eaea3c31d5d0,0xbfa8522e397da3bd,1
+np.float64,0x119f0078233e1,0x119f0078233e1,1
+np.float64,0xbfd78a207aaf1440,0xbfd3b225bbf2ab4f,1
+np.float64,0xc66a6d4d8cd4e,0xc66a6d4d8cd4e,1
+np.float64,0xe7fc4b57cff8a,0xe7fc4b57cff8a,1
+np.float64,0x800883e8091107d0,0x800883e8091107d0,1
+np.float64,0x3fa6520c842ca419,0x3fa6d06e1041743a,1
+np.float64,0x3fa563182c2ac630,0x3fa5d70e27a84c97,1
+np.float64,0xe6a30b61cd462,0xe6a30b61cd462,1
+np.float64,0x3fee85dac37d0bb6,0x3ff987cfa41a9778,1
+np.float64,0x3fe8f621db71ec44,0x3ff2e7b768a2e9d0,1
+np.float64,0x800f231d861e463b,0x800f231d861e463b,1
+np.float64,0xbfe22eb07c645d61,0xbfdbbdbb853ab4c6,1
+np.float64,0x7fd2dda2dea5bb45,0x7ff0000000000000,1
+np.float64,0xbfd09b79a0a136f4,0xbfcd4147606ffd27,1
+np.float64,0xca039cc394074,0xca039cc394074,1
+np.float64,0x8000000000000000,0x8000000000000000,1
+np.float64,0xcb34575d9668b,0xcb34575d9668b,1
+np.float64,0x3fea62c1f3f4c584,0x3ff47e6dc67ec89f,1
+np.float64,0x7fe544c8606a8990,0x7ff0000000000000,1
+np.float64,0xffe0a980c4615301,0xbff0000000000000,1
+np.float64,0x3fdd67d5f8bacfac,0x3fe2a9c3421830f1,1
+np.float64,0xffe41d3dda283a7b,0xbff0000000000000,1
+np.float64,0xffeed59e5ffdab3c,0xbff0000000000000,1
+np.float64,0xffeeae8326fd5d05,0xbff0000000000000,1
+np.float64,0x800d70b4fa7ae16a,0x800d70b4fa7ae16a,1
+np.float64,0xffec932e6839265c,0xbff0000000000000,1
+np.float64,0xee30b185dc616,0xee30b185dc616,1
+np.float64,0x7fc3cf4397279e86,0x7ff0000000000000,1
+np.float64,0xbfeab34f1875669e,0xbfe21b868229de7d,1
+np.float64,0xf45f5f7de8bec,0xf45f5f7de8bec,1
+np.float64,0x3fad2c4b203a5896,0x3fae0528b568f3cf,1
+np.float64,0xbfe2479543e48f2a,0xbfdbd9e57cf64028,1
+np.float64,0x3fd41a1473283429,0x3fd79df2bc60debb,1
+np.float64,0x3febb5155ef76a2a,0x3ff608585afd698b,1
+np.float64,0xffe21f5303e43ea6,0xbff0000000000000,1
+np.float64,0x7fe9ef390833de71,0x7ff0000000000000,1
+np.float64,0xffe8ee873d71dd0e,0xbff0000000000000,1
+np.float64,0x7fd7cbc55e2f978a,0x7ff0000000000000,1
+np.float64,0x80081f9080d03f21,0x80081f9080d03f21,1
+np.float64,0x7fecbafc8b3975f8,0x7ff0000000000000,1
+np.float64,0x800b6c4b0b16d896,0x800b6c4b0b16d896,1
+np.float64,0xbfaa0fc2d4341f80,0xbfa968cdf32b98ad,1
+np.float64,0x3fec79fe4078f3fc,0x3ff6f5361a4a5d93,1
+np.float64,0xbfb14b79de2296f0,0xbfb0b93b75ecec11,1
+np.float64,0x800009d084c013a2,0x800009d084c013a2,1
+np.float64,0x4a4cdfe29499d,0x4a4cdfe29499d,1
+np.float64,0xbfe721c2d56e4386,0xbfe077f541987d76,1
+np.float64,0x3e5f539e7cbeb,0x3e5f539e7cbeb,1
+np.float64,0x3fd23f044c247e09,0x3fd51ceafcdd64aa,1
+np.float64,0x3fc70785b02e0f0b,0x3fc93b2a37eb342a,1
+np.float64,0xbfe7ab4ec7af569e,0xbfe0ba28eecbf6b0,1
+np.float64,0x800c1d4134583a83,0x800c1d4134583a83,1
+np.float64,0xffd9a73070334e60,0xbff0000000000000,1
+np.float64,0x68a4bf24d1499,0x68a4bf24d1499,1
+np.float64,0x7feba9d9507753b2,0x7ff0000000000000,1
+np.float64,0xbfe9d747db73ae90,0xbfe1bab53d932010,1
+np.float64,0x800a9a4aed953496,0x800a9a4aed953496,1
+np.float64,0xffcb89b0ad371360,0xbff0000000000000,1
+np.float64,0xbfc62388b82c4710,0xbfc4547be442a38c,1
+np.float64,0x800a006d187400db,0x800a006d187400db,1
+np.float64,0x3fcef2fbd33de5f8,0x3fd18177b2150148,1
+np.float64,0x8000b74e3da16e9d,0x8000b74e3da16e9d,1
+np.float64,0x25be536e4b7cb,0x25be536e4b7cb,1
+np.float64,0x3fa86e189430dc31,0x3fa905b4684c9f01,1
+np.float64,0xa7584b114eb0a,0xa7584b114eb0a,1
+np.float64,0x800331133c866227,0x800331133c866227,1
+np.float64,0x3fb52b48142a5690,0x3fb611a6f6e7c664,1
+np.float64,0x3fe825797cf04af2,0x3ff206fd60e98116,1
+np.float64,0x3fd0bec4e5217d8a,0x3fd323db3ffd59b2,1
+np.float64,0x907b43a120f7,0x907b43a120f7,1
+np.float64,0x3fed31eb1d3a63d6,0x3ff7d7a91c6930a4,1
+np.float64,0x7f97a13d782f427a,0x7ff0000000000000,1
+np.float64,0xffc7121a702e2434,0xbff0000000000000,1
+np.float64,0xbfe8bb4cbbf1769a,0xbfe139d7f46f1fb1,1
+np.float64,0xbfe3593cc5a6b27a,0xbfdd09ec91d6cd48,1
+np.float64,0x7fcff218ff9ff,0x7fcff218ff9ff,1
+np.float64,0x3fe73651d4ae6ca4,0x3ff10c5c1d21d127,1
+np.float64,0x80054e396eaa9c74,0x80054e396eaa9c74,1
+np.float64,0x3fe527d5f9aa4fac,0x3fedfb7743db9b53,1
+np.float64,0x7fec6f28c5f8de51,0x7ff0000000000000,1
+np.float64,0x3fcd2bbff53a5780,0x3fd061987416b49b,1
+np.float64,0xffd1f0046423e008,0xbff0000000000000,1
+np.float64,0x80034d97fac69b31,0x80034d97fac69b31,1
+np.float64,0x3faa803f14350080,0x3fab32e3f8073be4,1
+np.float64,0x3fcf8da0163f1b40,0x3fd1e42ba2354c8e,1
+np.float64,0x3fd573c2632ae785,0x3fd97c37609d18d7,1
+np.float64,0x7f922960482452c0,0x7ff0000000000000,1
+np.float64,0x800ebd0c5d3d7a19,0x800ebd0c5d3d7a19,1
+np.float64,0xbfee63b7807cc76f,0xbfe39ec7981035db,1
+np.float64,0xffdc023f8e380480,0xbff0000000000000,1
+np.float64,0x3fe3ffa02c67ff40,0x3febc7f8b900ceba,1
+np.float64,0x36c508b86d8a2,0x36c508b86d8a2,1
+np.float64,0x3fc9fbb0f133f760,0x3fcccee9f6ba801c,1
+np.float64,0x3fd75c1d5faeb83b,0x3fdc3150f9eff99e,1
+np.float64,0x3fe9a8d907b351b2,0x3ff3accc78a31df8,1
+np.float64,0x3fdd8fdcafbb1fb8,0x3fe2c97c97757994,1
+np.float64,0x3fb10c34ca22186a,0x3fb1a0cc42c76b86,1
+np.float64,0xbff0000000000000,0xbfe43a54e4e98864,1
+np.float64,0xffd046aefda08d5e,0xbff0000000000000,1
+np.float64,0x80067989758cf314,0x80067989758cf314,1
+np.float64,0x3fee9d77763d3aef,0x3ff9a67ff0841ba5,1
+np.float64,0xffe4d3cbf8e9a798,0xbff0000000000000,1
+np.float64,0x800f9cab273f3956,0x800f9cab273f3956,1
+np.float64,0x800a5c84f9f4b90a,0x800a5c84f9f4b90a,1
+np.float64,0x4fd377009fa8,0x4fd377009fa8,1
+np.float64,0xbfe7ba26af6f744e,0xbfe0c13ce45d6f95,1
+np.float64,0x609c8a86c1392,0x609c8a86c1392,1
+np.float64,0x7fe4d0296ea9a052,0x7ff0000000000000,1
+np.float64,0x59847bccb3090,0x59847bccb3090,1
+np.float64,0xbfdf944157bf2882,0xbfd8ed092bacad43,1
+np.float64,0xbfe7560a632eac15,0xbfe091405ec34973,1
+np.float64,0x3fea0699f4340d34,0x3ff415eb72089230,1
+np.float64,0x800a5533f374aa68,0x800a5533f374aa68,1
+np.float64,0xbf8e8cdb103d19c0,0xbf8e52cffcb83774,1
+np.float64,0x3fe87d9e52f0fb3d,0x3ff2653952344b81,1
+np.float64,0x7fca3950f73472a1,0x7ff0000000000000,1
+np.float64,0xffd5d1068aaba20e,0xbff0000000000000,1
+np.float64,0x3fd1a5f169a34be4,0x3fd4524b6ef17f91,1
+np.float64,0x3fdc4b95a8b8972c,0x3fe1caafd8652bf7,1
+np.float64,0x3fe333f65a6667ed,0x3fea502fb1f8a578,1
+np.float64,0xbfc117aaac222f54,0xbfc00018a4b84b6e,1
+np.float64,0x7fecf2efdf39e5df,0x7ff0000000000000,1
+np.float64,0x4e99d83e9d33c,0x4e99d83e9d33c,1
+np.float64,0x800d18937bda3127,0x800d18937bda3127,1
+np.float64,0x3fd6c67778ad8cef,0x3fdb5aba70a3ea9e,1
+np.float64,0x3fdbb71770b76e2f,0x3fe157ae8da20bc5,1
+np.float64,0xbfe9faf6ebf3f5ee,0xbfe1ca963d83f17f,1
+np.float64,0x80038850ac0710a2,0x80038850ac0710a2,1
+np.float64,0x8006beb72f8d7d6f,0x8006beb72f8d7d6f,1
+np.float64,0x3feead67bffd5acf,0x3ff9bb43e8b15e2f,1
+np.float64,0xbfd1174b89222e98,0xbfcdff9972799907,1
+np.float64,0x7fee2c077cfc580e,0x7ff0000000000000,1
+np.float64,0xbfbdbd904e3b7b20,0xbfbc13f4916ed466,1
+np.float64,0xffee47b8fe3c8f71,0xbff0000000000000,1
+np.float64,0xffd161884222c310,0xbff0000000000000,1
+np.float64,0xbfd42f27c4a85e50,0xbfd14fa8d67ba5ee,1
+np.float64,0x7fefffffffffffff,0x7ff0000000000000,1
+np.float64,0x8008151791b02a30,0x8008151791b02a30,1
+np.float64,0xbfba79029234f208,0xbfb926616cf41755,1
+np.float64,0x8004c486be29890e,0x8004c486be29890e,1
+np.float64,0x7fe5325a252a64b3,0x7ff0000000000000,1
+np.float64,0x5a880f04b5103,0x5a880f04b5103,1
+np.float64,0xbfe6f4b7702de96f,0xbfe06209002dd72c,1
+np.float64,0xbfdf8b3739bf166e,0xbfd8e783efe3c30f,1
+np.float64,0xbfe32571c8e64ae4,0xbfdcd128b9aa49a1,1
+np.float64,0xbfe97c98c172f932,0xbfe1920ac0fc040f,1
+np.float64,0x3fd0b513a2a16a28,0x3fd31744e3a1bf0a,1
+np.float64,0xffe3ab70832756e0,0xbff0000000000000,1
+np.float64,0x80030f055ce61e0b,0x80030f055ce61e0b,1
+np.float64,0xffd5f3b21b2be764,0xbff0000000000000,1
+np.float64,0x800c1f2d6c783e5b,0x800c1f2d6c783e5b,1
+np.float64,0x80075f4f148ebe9f,0x80075f4f148ebe9f,1
+np.float64,0xbfa5a046f42b4090,0xbfa52cfbf8992256,1
+np.float64,0xffd6702583ace04c,0xbff0000000000000,1
+np.float64,0x800dc0a5cf1b814c,0x800dc0a5cf1b814c,1
+np.float64,0x14f2203a29e45,0x14f2203a29e45,1
+np.float64,0x800421a40ee84349,0x800421a40ee84349,1
+np.float64,0xbfea7c279df4f84f,0xbfe2037fff3ed877,1
+np.float64,0xbfe9b41ddcf3683c,0xbfe1aafe18a44bf8,1
+np.float64,0xffe7b037022f606e,0xbff0000000000000,1
+np.float64,0x800bafb648775f6d,0x800bafb648775f6d,1
+np.float64,0x800b81681d5702d1,0x800b81681d5702d1,1
+np.float64,0x3fe29f8dc8653f1c,0x3fe9442da1c32c6b,1
+np.float64,0xffef9a05dc7f340b,0xbff0000000000000,1
+np.float64,0x800c8c65a65918cb,0x800c8c65a65918cb,1
+np.float64,0xffe99df0d5f33be1,0xbff0000000000000,1
+np.float64,0x9afeb22535fd7,0x9afeb22535fd7,1
+np.float64,0x7fc620dd822c41ba,0x7ff0000000000000,1
+np.float64,0x29c2cdf25385b,0x29c2cdf25385b,1
+np.float64,0x2d92284e5b246,0x2d92284e5b246,1
+np.float64,0xffc794aa942f2954,0xbff0000000000000,1
+np.float64,0xbfe7ed907eafdb21,0xbfe0d9a7b1442497,1
+np.float64,0xbfd4e0d4aea9c1aa,0xbfd1d09366dba2a7,1
+np.float64,0xa70412c34e083,0xa70412c34e083,1
+np.float64,0x41dc0ee083b9,0x41dc0ee083b9,1
+np.float64,0x8000ece20da1d9c5,0x8000ece20da1d9c5,1
+np.float64,0x3fdf3dae103e7b5c,0x3fe42314bf826bc5,1
+np.float64,0x3fe972533c72e4a6,0x3ff3703761e70f04,1
+np.float64,0xffba1d2b82343a58,0xbff0000000000000,1
+np.float64,0xe0086c83c010e,0xe0086c83c010e,1
+np.float64,0x3fe6fb0dde6df61c,0x3ff0cf5fae01aa08,1
+np.float64,0x3fcfaf057e3f5e0b,0x3fd1f98c1fd20139,1
+np.float64,0xbfdca19d9239433c,0xbfd7158745192ca9,1
+np.float64,0xffb17f394e22fe70,0xbff0000000000000,1
+np.float64,0x7fe40f05c7681e0b,0x7ff0000000000000,1
+np.float64,0x800b3c575d5678af,0x800b3c575d5678af,1
+np.float64,0x7fa4ab20ac295640,0x7ff0000000000000,1
+np.float64,0xbfd2fff4f6a5ffea,0xbfd07069bb50e1a6,1
+np.float64,0xbfef81b9147f0372,0xbfe40b845a749787,1
+np.float64,0x7fd7400e54ae801c,0x7ff0000000000000,1
+np.float64,0x3fd4401a17a88034,0x3fd7d20fb76a4f3d,1
+np.float64,0xbfd3e907fd27d210,0xbfd11c64b7577fc5,1
+np.float64,0x7fe34bed9ae697da,0x7ff0000000000000,1
+np.float64,0x80039119c0472234,0x80039119c0472234,1
+np.float64,0xbfe2e36ac565c6d6,0xbfdc88454ee997b3,1
+np.float64,0xbfec57204478ae40,0xbfe2cd3183de1d2d,1
+np.float64,0x7fed7e2a12fafc53,0x7ff0000000000000,1
+np.float64,0x7fd5c5fa7d2b8bf4,0x7ff0000000000000,1
+np.float64,0x3fdcf368d6b9e6d0,0x3fe24decce1ebd35,1
+np.float64,0xbfe0ebfcf2e1d7fa,0xbfda48c9247ae8cf,1
+np.float64,0xbfe10dbea2e21b7e,0xbfda707d68b59674,1
+np.float64,0xbfdf201b6ebe4036,0xbfd8a5df27742fdf,1
+np.float64,0xffe16555be62caab,0xbff0000000000000,1
+np.float64,0xffc23a5db22474bc,0xbff0000000000000,1
+np.float64,0xffe1cbb3f8a39768,0xbff0000000000000,1
+np.float64,0x8007b823be0f7048,0x8007b823be0f7048,1
+np.float64,0xbfa5d1f3042ba3e0,0xbfa55c97cd77bf6e,1
+np.float64,0xbfe316a074662d41,0xbfdcc0da4e7334d0,1
+np.float64,0xbfdfab2bf2bf5658,0xbfd8fb046b88b51f,1
+np.float64,0xfacc9dabf5994,0xfacc9dabf5994,1
+np.float64,0xffe7e420a4efc841,0xbff0000000000000,1
+np.float64,0x800bb986cd57730e,0x800bb986cd57730e,1
+np.float64,0xbfe314fa38e629f4,0xbfdcbf09302c3bf5,1
+np.float64,0x7fc56b17772ad62e,0x7ff0000000000000,1
+np.float64,0x8006a87d54ad50fb,0x8006a87d54ad50fb,1
+np.float64,0xbfe6633e4a6cc67c,0xbfe01a67c3b3ff32,1
+np.float64,0x3fe0ff56eb21feae,0x3fe66df01defb0fb,1
+np.float64,0xffc369cfc126d3a0,0xbff0000000000000,1
+np.float64,0x7fe8775d9a30eeba,0x7ff0000000000000,1
+np.float64,0x3fb53db13e2a7b60,0x3fb625a7279cdac3,1
+np.float64,0xffee76e7e6fcedcf,0xbff0000000000000,1
+np.float64,0xb45595b568ab3,0xb45595b568ab3,1
+np.float64,0xffa09a1d50213440,0xbff0000000000000,1
+np.float64,0x7d11dc16fa23c,0x7d11dc16fa23c,1
+np.float64,0x7fd4cc2928299851,0x7ff0000000000000,1
+np.float64,0x6a30e0ead461d,0x6a30e0ead461d,1
+np.float64,0x7fd3ee735a27dce6,0x7ff0000000000000,1
+np.float64,0x8008d7084b31ae11,0x8008d7084b31ae11,1
+np.float64,0x3fe469353fe8d26a,0x3fec8e7e2df38590,1
+np.float64,0x3fcecef2743d9de5,0x3fd16a888b715dfd,1
+np.float64,0x460130d68c027,0x460130d68c027,1
+np.float64,0xbfd76510c62eca22,0xbfd398766b741d6e,1
+np.float64,0x800ec88c2a5d9118,0x800ec88c2a5d9118,1
+np.float64,0x3fac969c6c392d40,0x3fad66ca6a1e583c,1
+np.float64,0x3fe5c616bf6b8c2e,0x3fef30f931e8dde5,1
+np.float64,0xb4cb6cd56996e,0xb4cb6cd56996e,1
+np.float64,0xffc3eacf8827d5a0,0xbff0000000000000,1
+np.float64,0x3fe1ceaf60e39d5f,0x3fe7d31e0a627cf9,1
+np.float64,0xffea69b42ff4d368,0xbff0000000000000,1
+np.float64,0x800ff8aef99ff15e,0x800ff8aef99ff15e,1
+np.float64,0x6c3953f0d872b,0x6c3953f0d872b,1
+np.float64,0x8007ca5a0d0f94b5,0x8007ca5a0d0f94b5,1
+np.float64,0x800993ce3ad3279d,0x800993ce3ad3279d,1
+np.float64,0x3fe5a4d1516b49a2,0x3feeef67b22ac65b,1
+np.float64,0x8003d7512a67aea3,0x8003d7512a67aea3,1
+np.float64,0x33864430670c9,0x33864430670c9,1
+np.float64,0xbfdbf477e3b7e8f0,0xbfd6a63f1b36f424,1
+np.float64,0x3fb5da92582bb525,0x3fb6d04ef1a1d31a,1
+np.float64,0xe38aae71c7156,0xe38aae71c7156,1
+np.float64,0x3fcaf5590a35eab2,0x3fce01ed6eb6188e,1
+np.float64,0x800deba9b05bd754,0x800deba9b05bd754,1
+np.float64,0x7fee0cde287c19bb,0x7ff0000000000000,1
+np.float64,0xbfe0c2ae70e1855d,0xbfda17fa64d84fcf,1
+np.float64,0x518618faa30c4,0x518618faa30c4,1
+np.float64,0xbfeb4c49b8769894,0xbfe25d52cd7e529f,1
+np.float64,0xbfeb3aa21b367544,0xbfe255cae1df4cfd,1
+np.float64,0xffd23f1c5d247e38,0xbff0000000000000,1
+np.float64,0xff9a75132034ea20,0xbff0000000000000,1
+np.float64,0xbfef9d96307f3b2c,0xbfe415e8b6ce0e50,1
+np.float64,0x8004046f2f0808df,0x8004046f2f0808df,1
+np.float64,0x3fe15871aea2b0e3,0x3fe706532ea5c770,1
+np.float64,0x7fd86b1576b0d62a,0x7ff0000000000000,1
+np.float64,0xbfc240a5c724814c,0xbfc102c7971ca455,1
+np.float64,0xffd8ea670bb1d4ce,0xbff0000000000000,1
+np.float64,0xbfeb1ddd1ff63bba,0xbfe2497c4e27bb8e,1
+np.float64,0x3fcd47e0a33a8fc1,0x3fd0734444150d83,1
+np.float64,0xe00b6a65c016e,0xe00b6a65c016e,1
+np.float64,0xbfc7d582142fab04,0xbfc5bf1fbe755a4c,1
+np.float64,0x8cc91ca11993,0x8cc91ca11993,1
+np.float64,0x7fdbc530e3b78a61,0x7ff0000000000000,1
+np.float64,0x7fee437522bc86e9,0x7ff0000000000000,1
+np.float64,0xffe9e09ae2b3c135,0xbff0000000000000,1
+np.float64,0x8002841cada5083a,0x8002841cada5083a,1
+np.float64,0x3fd6b485f8ad690c,0x3fdb412135932699,1
+np.float64,0x80070e8d0b0e1d1b,0x80070e8d0b0e1d1b,1
+np.float64,0x7fed5df165babbe2,0x7ff0000000000000,1
+np.float64,0x7ff4000000000000,0x7ffc000000000000,1
+np.float64,0x7fe99d08cd333a11,0x7ff0000000000000,1
+np.float64,0xdfff4201bfff,0xdfff4201bfff,1
+np.float64,0x800ccf7aaf999ef6,0x800ccf7aaf999ef6,1
+np.float64,0x3fddb05aad3b60b5,0x3fe2e34bdd1dd9d5,1
+np.float64,0xbfe5e1c60e6bc38c,0xbfdfb3275cc1675f,1
+np.float64,0x8004fe674269fccf,0x8004fe674269fccf,1
+np.float64,0x7fe9280363325006,0x7ff0000000000000,1
+np.float64,0xf605b9f1ec0b7,0xf605b9f1ec0b7,1
+np.float64,0x800c7c214018f843,0x800c7c214018f843,1
+np.float64,0x7fd97eb6b9b2fd6c,0x7ff0000000000000,1
+np.float64,0x7fd03f8fb6207f1e,0x7ff0000000000000,1
+np.float64,0x7fc526b64d2a4d6c,0x7ff0000000000000,1
+np.float64,0xbfef1a7c42fe34f9,0xbfe3e4b4399e0fcf,1
+np.float64,0xffdde10a2fbbc214,0xbff0000000000000,1
+np.float64,0xbfdd274f72ba4e9e,0xbfd76aa73788863c,1
+np.float64,0xbfecf7f77af9efef,0xbfe30ee2ae03fed1,1
+np.float64,0xffde709322bce126,0xbff0000000000000,1
+np.float64,0x268b5dac4d16d,0x268b5dac4d16d,1
+np.float64,0x8005c099606b8134,0x8005c099606b8134,1
+np.float64,0xffcf54c1593ea984,0xbff0000000000000,1
+np.float64,0xbfee9b8ebabd371d,0xbfe3b44f2663139d,1
+np.float64,0x3faf0330643e0661,0x3faff88fab74b447,1
+np.float64,0x7fe1c6011be38c01,0x7ff0000000000000,1
+np.float64,0xbfe9d58053b3ab01,0xbfe1b9ea12242485,1
+np.float64,0xbfe15a80fee2b502,0xbfdaca2aa7d1231a,1
+np.float64,0x7fe0d766d8a1aecd,0x7ff0000000000000,1
+np.float64,0x800f65e6a21ecbcd,0x800f65e6a21ecbcd,1
+np.float64,0x7fc85e45a530bc8a,0x7ff0000000000000,1
+np.float64,0x3fcc240e5438481d,0x3fcf7954fc080ac3,1
+np.float64,0xffddd49da2bba93c,0xbff0000000000000,1
+np.float64,0x1376f36c26edf,0x1376f36c26edf,1
+np.float64,0x3feffb7af17ff6f6,0x3ffb77f0ead2f881,1
+np.float64,0x3fd9354ea9b26a9d,0x3fdee4e4c8db8239,1
+np.float64,0xffdf7beed4bef7de,0xbff0000000000000,1
+np.float64,0xbfdef256ecbde4ae,0xbfd889b0e213a019,1
+np.float64,0x800d78bd1e7af17a,0x800d78bd1e7af17a,1
+np.float64,0xb66d66276cdad,0xb66d66276cdad,1
+np.float64,0x7fd8f51138b1ea21,0x7ff0000000000000,1
+np.float64,0xffe8c9c302b19385,0xbff0000000000000,1
+np.float64,0x8000be4cf5417c9b,0x8000be4cf5417c9b,1
+np.float64,0xbfe2293a25645274,0xbfdbb78a8c547c68,1
+np.float64,0xce8392c19d08,0xce8392c19d08,1
+np.float64,0xbfe075736b60eae7,0xbfd9bc0f6e34a283,1
+np.float64,0xbfe8d6fe6a71adfd,0xbfe1469ba80b4915,1
+np.float64,0xffe0c7993fa18f32,0xbff0000000000000,1
+np.float64,0x3fce5210fd3ca422,0x3fd11b40a1270a95,1
+np.float64,0x6c0534a8d80a7,0x6c0534a8d80a7,1
+np.float64,0x23c1823647831,0x23c1823647831,1
+np.float64,0x3fc901253732024a,0x3fcb9d264accb07c,1
+np.float64,0x3fe42b8997685714,0x3fec1a39e207b6e4,1
+np.float64,0x3fec4fd00fb89fa0,0x3ff6c1fdd0c262c8,1
+np.float64,0x8007b333caaf6668,0x8007b333caaf6668,1
+np.float64,0x800f9275141f24ea,0x800f9275141f24ea,1
+np.float64,0xffbba361a23746c0,0xbff0000000000000,1
+np.float64,0xbfee4effa9fc9dff,0xbfe396c11d0cd524,1
+np.float64,0x3e47e84c7c8fe,0x3e47e84c7c8fe,1
+np.float64,0x3fe80eb7b1301d6f,0x3ff1eed318a00153,1
+np.float64,0x7fd3f4c5b4a7e98a,0x7ff0000000000000,1
+np.float64,0x158abab02b158,0x158abab02b158,1
+np.float64,0x1,0x1,1
+np.float64,0x1f1797883e2f4,0x1f1797883e2f4,1
+np.float64,0x3feec055d03d80ac,0x3ff9d3fb0394de33,1
+np.float64,0x8010000000000000,0x8010000000000000,1
+np.float64,0xbfd070860ea0e10c,0xbfccfeec2828efef,1
+np.float64,0x80015c8b3e82b917,0x80015c8b3e82b917,1
+np.float64,0xffef9956d9ff32ad,0xbff0000000000000,1
+np.float64,0x7fe7f087dd2fe10f,0x7ff0000000000000,1
+np.float64,0x8002e7718665cee4,0x8002e7718665cee4,1
+np.float64,0x3fdfb9adb2bf735c,0x3fe4887a86214c1e,1
+np.float64,0xffc7747dfb2ee8fc,0xbff0000000000000,1
+np.float64,0x3fec309bb5386137,0x3ff69c44e1738547,1
+np.float64,0xffdbe2bf9ab7c580,0xbff0000000000000,1
+np.float64,0xbfe6a274daed44ea,0xbfe039aff2be9d48,1
+np.float64,0x7fd5a4e4efab49c9,0x7ff0000000000000,1
+np.float64,0xffbe6aaeb03cd560,0xbff0000000000000,1
diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/tests/data/umath-validation-set-log.csv b/.venv/lib/python3.12/site-packages/numpy/_core/tests/data/umath-validation-set-log.csv
new file mode 100644
index 0000000..b8f6b08
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/_core/tests/data/umath-validation-set-log.csv
@@ -0,0 +1,271 @@
+dtype,input,output,ulperrortol
+## +ve denormals ##
+np.float32,0x004b4716,0xc2afbc1b,4
+np.float32,0x007b2490,0xc2aec01e,4
+np.float32,0x007c99fa,0xc2aeba17,4
+np.float32,0x00734a0c,0xc2aee1dc,4
+np.float32,0x0070de24,0xc2aeecba,4
+np.float32,0x007fffff,0xc2aeac50,4
+np.float32,0x00000001,0xc2ce8ed0,4
+## -ve denormals ##
+np.float32,0x80495d65,0xffc00000,4
+np.float32,0x806894f6,0xffc00000,4
+np.float32,0x80555a76,0xffc00000,4
+np.float32,0x804e1fb8,0xffc00000,4
+np.float32,0x80687de9,0xffc00000,4
+np.float32,0x807fffff,0xffc00000,4
+np.float32,0x80000001,0xffc00000,4
+## +/-0.0f, +/-FLT_MIN +/-FLT_MAX ##
+np.float32,0x00000000,0xff800000,4
+np.float32,0x80000000,0xff800000,4
+np.float32,0x7f7fffff,0x42b17218,4
+np.float32,0x80800000,0xffc00000,4
+np.float32,0xff7fffff,0xffc00000,4
+## 1.00f + 0x00000001 ##
+np.float32,0x3f800000,0x00000000,4
+np.float32,0x3f800001,0x33ffffff,4
+np.float32,0x3f800002,0x347ffffe,4
+np.float32,0x3f7fffff,0xb3800000,4
+np.float32,0x3f7ffffe,0xb4000000,4
+np.float32,0x3f7ffffd,0xb4400001,4
+np.float32,0x402df853,0x3f7ffffe,4
+np.float32,0x402df854,0x3f7fffff,4
+np.float32,0x402df855,0x3f800000,4
+np.float32,0x402df856,0x3f800001,4
+np.float32,0x3ebc5ab0,0xbf800001,4
+np.float32,0x3ebc5ab1,0xbf800000,4
+np.float32,0x3ebc5ab2,0xbf800000,4
+np.float32,0x3ebc5ab3,0xbf7ffffe,4
+np.float32,0x423ef575,0x407768ab,4
+np.float32,0x427b8c61,0x408485dd,4
+np.float32,0x4211e9ee,0x406630b0,4
+np.float32,0x424d5c41,0x407c0fed,4
+np.float32,0x42be722a,0x4091cc91,4
+np.float32,0x42b73d30,0x4090908b,4
+np.float32,0x427e48e2,0x4084de7f,4
+np.float32,0x428f759b,0x4088bba3,4
+np.float32,0x41629069,0x4029a0cc,4
+np.float32,0x4272c99d,0x40836379,4
+np.float32,0x4d1b7458,0x4197463d,4
+np.float32,0x4f10c594,0x41ace2b2,4
+np.float32,0x4ea397c2,0x41a85171,4
+np.float32,0x4fefa9d1,0x41b6769c,4
+np.float32,0x4ebac6ab,0x41a960dc,4
+np.float32,0x4f6efb42,0x41b0e535,4
+np.float32,0x4e9ab8e7,0x41a7df44,4
+np.float32,0x4e81b5d1,0x41a67625,4
+np.float32,0x5014d9f2,0x41b832bd,4
+np.float32,0x4f02175c,0x41ac07b8,4
+np.float32,0x7f034f89,0x42b01c47,4
+np.float32,0x7f56d00e,0x42b11849,4
+np.float32,0x7f1cd5f6,0x42b0773a,4
+np.float32,0x7e979174,0x42af02d7,4
+np.float32,0x7f23369f,0x42b08ba2,4
+np.float32,0x7f0637ae,0x42b0277d,4
+np.float32,0x7efcb6e8,0x42b00897,4
+np.float32,0x7f7907c8,0x42b163f6,4
+np.float32,0x7e95c4c2,0x42aefcba,4
+np.float32,0x7f4577b2,0x42b0ed2d,4
+np.float32,0x3f49c92e,0xbe73ae84,4
+np.float32,0x3f4a23d1,0xbe71e2f8,4
+np.float32,0x3f4abb67,0xbe6ee430,4
+np.float32,0x3f48169a,0xbe7c5532,4
+np.float32,0x3f47f5fa,0xbe7cfc37,4
+np.float32,0x3f488309,0xbe7a2ad8,4
+np.float32,0x3f479df4,0xbe7ebf5f,4
+np.float32,0x3f47cfff,0xbe7dbec9,4
+np.float32,0x3f496704,0xbe75a125,4
+np.float32,0x3f478ee8,0xbe7f0c92,4
+np.float32,0x3f4a763b,0xbe7041ce,4
+np.float32,0x3f47a108,0xbe7eaf94,4
+np.float32,0x3f48136c,0xbe7c6578,4
+np.float32,0x3f481c17,0xbe7c391c,4
+np.float32,0x3f47cd28,0xbe7dcd56,4
+np.float32,0x3f478be8,0xbe7f1bf7,4
+np.float32,0x3f4c1f8e,0xbe67e367,4
+np.float32,0x3f489b0c,0xbe79b03f,4
+np.float32,0x3f4934cf,0xbe76a08a,4
+np.float32,0x3f4954df,0xbe75fd6a,4
+np.float32,0x3f47a3f5,0xbe7ea093,4
+np.float32,0x3f4ba4fc,0xbe6a4b02,4
+np.float32,0x3f47a0e1,0xbe7eb05c,4
+np.float32,0x3f48c30a,0xbe78e42f,4
+np.float32,0x3f48cab8,0xbe78bd05,4
+np.float32,0x3f4b0569,0xbe6d6ea4,4
+np.float32,0x3f47de32,0xbe7d7607,4
+np.float32,0x3f477328,0xbe7f9b00,4
+np.float32,0x3f496dab,0xbe757f52,4
+np.float32,0x3f47662c,0xbe7fddac,4
+np.float32,0x3f48ddd8,0xbe785b80,4
+np.float32,0x3f481866,0xbe7c4bff,4
+np.float32,0x3f48b119,0xbe793fb6,4
+np.float32,0x3f48c7e8,0xbe78cb5c,4
+np.float32,0x3f4985f6,0xbe7503da,4
+np.float32,0x3f483fdf,0xbe7b8212,4
+np.float32,0x3f4b1c76,0xbe6cfa67,4
+np.float32,0x3f480b2e,0xbe7c8fa8,4
+np.float32,0x3f48745f,0xbe7a75bf,4
+np.float32,0x3f485bda,0xbe7af308,4
+np.float32,0x3f47a660,0xbe7e942c,4
+np.float32,0x3f47d4d5,0xbe7da600,4
+np.float32,0x3f4b0a26,0xbe6d56be,4
+np.float32,0x3f4a4883,0xbe712924,4
+np.float32,0x3f4769e7,0xbe7fca84,4
+np.float32,0x3f499702,0xbe74ad3f,4
+np.float32,0x3f494ab1,0xbe763131,4
+np.float32,0x3f476b69,0xbe7fc2c6,4
+np.float32,0x3f4884e8,0xbe7a214a,4
+np.float32,0x3f486945,0xbe7aae76,4
+#float64
+## +ve denormal ##
+np.float64,0x0000000000000001,0xc0874385446d71c3,1
+np.float64,0x0001000000000000,0xc086395a2079b70c,1
+np.float64,0x000fffffffffffff,0xc086232bdd7abcd2,1
+np.float64,0x0007ad63e2168cb6,0xc086290bc0b2980f,1
+## -ve denormal ##
+np.float64,0x8000000000000001,0xfff8000000000001,1
+np.float64,0x8001000000000000,0xfff8000000000001,1
+np.float64,0x800fffffffffffff,0xfff8000000000001,1
+np.float64,0x8007ad63e2168cb6,0xfff8000000000001,1
+## +/-0.0f, MAX, MIN##
+np.float64,0x0000000000000000,0xfff0000000000000,1
+np.float64,0x8000000000000000,0xfff0000000000000,1
+np.float64,0x7fefffffffffffff,0x40862e42fefa39ef,1
+np.float64,0xffefffffffffffff,0xfff8000000000001,1
+## near 1.0f ##
+np.float64,0x3ff0000000000000,0x0000000000000000,1
+np.float64,0x3fe8000000000000,0xbfd269621134db92,1
+np.float64,0x3ff0000000000001,0x3cafffffffffffff,1
+np.float64,0x3ff0000020000000,0x3e7fffffe000002b,1
+np.float64,0x3ff0000000000001,0x3cafffffffffffff,1
+np.float64,0x3fefffffe0000000,0xbe70000008000005,1
+np.float64,0x3fefffffffffffff,0xbca0000000000000,1
+## random numbers ##
+np.float64,0x02500186f3d9da56,0xc0855b8abf135773,1
+np.float64,0x09200815a3951173,0xc082ff1ad7131bdc,1
+np.float64,0x0da029623b0243d4,0xc0816fc994695bb5,1
+np.float64,0x48703b8ac483a382,0x40579213a313490b,1
+np.float64,0x09207b74c87c9860,0xc082fee20ff349ef,1
+np.float64,0x62c077698e8df947,0x407821c996d110f0,1
+np.float64,0x2350b45e87c3cfb0,0xc073d6b16b51d072,1
+np.float64,0x3990a23f9ff2b623,0xc051aa60eadd8c61,1
+np.float64,0x0d011386a116c348,0xc081a6cc7ea3b8fb,1
+np.float64,0x1fe0f0303ebe273a,0xc0763870b78a81ca,1
+np.float64,0x0cd1260121d387da,0xc081b7668d61a9d1,1
+np.float64,0x1e6135a8f581d422,0xc077425ac10f08c2,1
+np.float64,0x622168db5fe52d30,0x4077b3c669b9fadb,1
+np.float64,0x69f188e1ec6d1718,0x407d1e2f18c63889,1
+np.float64,0x3aa1bf1d9c4dd1a3,0xc04d682e24bde479,1
+np.float64,0x6c81c4011ce4f683,0x407ee5190e8a8e6a,1
+np.float64,0x2191fa55aa5a5095,0xc0750c0c318b5e2d,1
+np.float64,0x32a1f602a32bf360,0xc06270caa493fc17,1
+np.float64,0x16023c90ba93249b,0xc07d0f88e0801638,1
+np.float64,0x1c525fe6d71fa9ff,0xc078af49c66a5d63,1
+np.float64,0x1a927675815d65b7,0xc079e5bdd7fe376e,1
+np.float64,0x41227b8fe70da028,0x402aa0c9f9a84c71,1
+np.float64,0x4962bb6e853fe87d,0x405a34aa04c83747,1
+np.float64,0x23d2cda00b26b5a4,0xc0737c13a06d00ea,1
+np.float64,0x2d13083fd62987fa,0xc06a25055aeb474e,1
+np.float64,0x10e31e4c9b4579a1,0xc0804e181929418e,1
+np.float64,0x26d3247d556a86a9,0xc0716774171da7e8,1
+np.float64,0x6603379398d0d4ac,0x407a64f51f8a887b,1
+np.float64,0x02d38af17d9442ba,0xc0852d955ac9dd68,1
+np.float64,0x6a2382b4818dd967,0x407d4129d688e5d4,1
+np.float64,0x2ee3c403c79b3934,0xc067a091fefaf8b6,1
+np.float64,0x6493a699acdbf1a4,0x4079663c8602bfc5,1
+np.float64,0x1c8413c4f0de3100,0xc0788c99697059b6,1
+np.float64,0x4573f1ed350d9622,0x404e9bd1e4c08920,1
+np.float64,0x2f34265c9200b69c,0xc067310cfea4e986,1
+np.float64,0x19b43e65fa22029b,0xc07a7f8877de22d6,1
+np.float64,0x0af48ab7925ed6bc,0xc0825c4fbc0e5ade,1
+np.float64,0x4fa49699cad82542,0x4065c76d2a318235,1
+np.float64,0x7204a15e56ade492,0x40815bb87484dffb,1
+np.float64,0x4734aa08a230982d,0x40542a4bf7a361a9,1
+np.float64,0x1ae4ed296c2fd749,0xc079ac4921f20abb,1
+np.float64,0x472514ea4370289c,0x4053ff372bd8f18f,1
+np.float64,0x53a54b3f73820430,0x406b5411fc5f2e33,1
+np.float64,0x64754de5a15684fa,0x407951592e99a5ab,1
+np.float64,0x69358e279868a7c3,0x407c9c671a882c31,1
+np.float64,0x284579ec61215945,0xc0706688e55f0927,1
+np.float64,0x68b5c58806447adc,0x407c43d6f4eff760,1
+np.float64,0x1945a83f98b0e65d,0xc07acc15eeb032cc,1
+np.float64,0x0fc5eb98a16578bf,0xc080b0d02eddca0e,1
+np.float64,0x6a75e208f5784250,0x407d7a7383bf8f05,1
+np.float64,0x0fe63a029c47645d,0xc080a59ca1e98866,1
+np.float64,0x37963ac53f065510,0xc057236281f7bdb6,1
+np.float64,0x135661bb07067ff7,0xc07ee924930c21e4,1
+np.float64,0x4b4699469d458422,0x405f73843756e887,1
+np.float64,0x1a66d73e4bf4881b,0xc07a039ba1c63adf,1
+np.float64,0x12a6b9b119a7da59,0xc07f62e49c6431f3,1
+np.float64,0x24c719aa8fd1bdb5,0xc072d26da4bf84d3,1
+np.float64,0x0fa6ff524ffef314,0xc080bb8514662e77,1
+np.float64,0x1db751d66fdd4a9a,0xc077b77cb50d7c92,1
+np.float64,0x4947374c516da82c,0x4059e9acfc7105bf,1
+np.float64,0x1b1771ab98f3afc8,0xc07989326b8e1f66,1
+np.float64,0x25e78805baac8070,0xc0720a818e6ef080,1
+np.float64,0x4bd7a148225d3687,0x406082d004ea3ee7,1
+np.float64,0x53d7d6b2bbbda00a,0x406b9a398967cbd5,1
+np.float64,0x6997fb9f4e1c685f,0x407ce0a703413eba,1
+np.float64,0x069802c2ff71b951,0xc083df39bf7acddc,1
+np.float64,0x4d683ac9890f66d8,0x4062ae21d8c2acf0,1
+np.float64,0x5a2825863ec14f4c,0x40722d718d549552,1
+np.float64,0x0398799a88f4db80,0xc084e93dab8e2158,1
+np.float64,0x5ed87a8b77e135a5,0x40756d7051777b33,1
+np.float64,0x5828cd6d79b9bede,0x4070cafb22fc6ca1,1
+np.float64,0x7b18ba2a5ec6f068,0x408481386b3ed6fe,1
+np.float64,0x4938fd60922198fe,0x4059c206b762ea7e,1
+np.float64,0x31b8f44fcdd1a46e,0xc063b2faa8b6434e,1
+np.float64,0x5729341c0d918464,0x407019cac0c4a7d7,1
+np.float64,0x13595e9228ee878e,0xc07ee7235a7d8088,1
+np.float64,0x17698b0dc9dd4135,0xc07c1627e3a5ad5f,1
+np.float64,0x63b977c283abb0cc,0x4078cf1ec6ed65be,1
+np.float64,0x7349cc0d4dc16943,0x4081cc697ce4cb53,1
+np.float64,0x4e49a80b732fb28d,0x4063e67e3c5cbe90,1
+np.float64,0x07ba14b848a8ae02,0xc0837ac032a094e0,1
+np.float64,0x3da9f17b691bfddc,0xc03929c25366acda,1
+np.float64,0x02ea39aa6c3ac007,0xc08525af6f21e1c4,1
+np.float64,0x3a6a42f04ed9563d,0xc04e98e825dca46b,1
+np.float64,0x1afa877cd7900be7,0xc0799d6648cb34a9,1
+np.float64,0x58ea986649e052c6,0x4071512e939ad790,1
+np.float64,0x691abbc04647f536,0x407c89aaae0fcb83,1
+np.float64,0x43aabc5063e6f284,0x4044b45d18106fd2,1
+np.float64,0x488b003c893e0bea,0x4057df012a2dafbe,1
+np.float64,0x77eb076ed67caee5,0x40836720de94769e,1
+np.float64,0x5c1b46974aba46f4,0x40738731ba256007,1
+np.float64,0x1a5b29ecb5d3c261,0xc07a0becc77040d6,1
+np.float64,0x5d8b6ccf868c6032,0x4074865c1865e2db,1
+np.float64,0x4cfb6690b4aaf5af,0x406216cd8c7e8ddb,1
+np.float64,0x76cbd8eb5c5fc39e,0x4083038dc66d682b,1
+np.float64,0x28bbd1fec5012814,0xc07014c2dd1b9711,1
+np.float64,0x33dc1b3a4fd6bf7a,0xc060bd0756e07d8a,1
+np.float64,0x52bbe89b37de99f3,0x406a10041aa7d343,1
+np.float64,0x07bc479d15eb2dd3,0xc0837a1a6e3a3b61,1
+np.float64,0x18fc5275711a901d,0xc07aff3e9d62bc93,1
+np.float64,0x114c9758e247dc71,0xc080299a7cf15b05,1
+np.float64,0x25ac8f6d60755148,0xc07233c4c0c511d4,1
+np.float64,0x260cae2bb9e9fd7e,0xc071f128c7e82eac,1
+np.float64,0x572ccdfe0241de82,0x40701bedc84bb504,1
+np.float64,0x0ddcef6c8d41f5ee,0xc0815a7e16d07084,1
+np.float64,0x6dad1d59c988af68,0x407fb4a0bc0142b1,1
+np.float64,0x025d200580d8b6d1,0xc08556c0bc32b1b2,1
+np.float64,0x7aad344b6aa74c18,0x40845bbc453f22be,1
+np.float64,0x5b5d9d6ad9d14429,0x4073036d2d21f382,1
+np.float64,0x49cd8d8dcdf19954,0x405b5c034f5c7353,1
+np.float64,0x63edb9483335c1e6,0x4078f2dd21378786,1
+np.float64,0x7b1dd64c9d2c26bd,0x408482b922017bc9,1
+np.float64,0x782e13e0b574be5f,0x40837e2a0090a5ad,1
+np.float64,0x592dfe18b9d6db2f,0x40717f777fbcb1ec,1
+np.float64,0x654e3232ac60d72c,0x4079e71a95a70446,1
+np.float64,0x7b8e42ad22091456,0x4084a9a6f1e61722,1
+np.float64,0x570e88dfd5860ae6,0x407006ae6c0d137a,1
+np.float64,0x294e98346cb98ef1,0xc06f5edaac12bd44,1
+np.float64,0x1adeaa4ab792e642,0xc079b1431d5e2633,1
+np.float64,0x7b6ead3377529ac8,0x40849eabc8c7683c,1
+np.float64,0x2b8eedae8a9b2928,0xc06c400054deef11,1
+np.float64,0x65defb45b2dcf660,0x407a4b53f181c05a,1
+np.float64,0x1baf582d475e7701,0xc07920bcad4a502c,1
+np.float64,0x461f39cf05a0f15a,0x405126368f984fa1,1
+np.float64,0x7e5f6f5dcfff005b,0x4085a37d610439b4,1
+np.float64,0x136f66e4d09bd662,0xc07ed8a2719f2511,1
+np.float64,0x65afd8983fb6ca1f,0x407a2a7f48bf7fc1,1
+np.float64,0x572fa7f95ed22319,0x40701d706cf82e6f,1
diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/tests/data/umath-validation-set-log10.csv b/.venv/lib/python3.12/site-packages/numpy/_core/tests/data/umath-validation-set-log10.csv
new file mode 100644
index 0000000..c765777
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/_core/tests/data/umath-validation-set-log10.csv
@@ -0,0 +1,1629 @@
+dtype,input,output,ulperrortol
+np.float32,0x3f6fd5c8,0xbce80e8e,4
+np.float32,0x3ea4ab17,0xbefc3deb,4
+np.float32,0x3e87a133,0xbf13b0b7,4
+np.float32,0x3f0d9069,0xbe83bb19,4
+np.float32,0x3f7b9269,0xbbf84f47,4
+np.float32,0x3f7a9ffa,0xbc16fd97,4
+np.float32,0x7f535d34,0x4219cb66,4
+np.float32,0x3e79ad7c,0xbf1ce857,4
+np.float32,0x7e8bfd3b,0x4217dfe9,4
+np.float32,0x3f2d2ee9,0xbe2dcec6,4
+np.float32,0x572e04,0xc21862e4,4
+np.float32,0x7f36f8,0xc217bad5,4
+np.float32,0x3f7982fb,0xbc36aaed,4
+np.float32,0x45b019,0xc218c67c,4
+np.float32,0x3f521c46,0xbdafb3e3,4
+np.float32,0x80000001,0x7fc00000,4
+np.float32,0x3f336c81,0xbe1e107f,4
+np.float32,0x3eac92d7,0xbef1d0bb,4
+np.float32,0x47bdfc,0xc218b990,4
+np.float32,0x7f2d94c8,0x421973d1,4
+np.float32,0x7d53ff8d,0x4214fbb6,4
+np.float32,0x3f581e4e,0xbd96a079,4
+np.float32,0x7ddaf20d,0x42163e4e,4
+np.float32,0x3f341d3c,0xbe1c5b4c,4
+np.float32,0x7ef04ba9,0x4218d032,4
+np.float32,0x620ed2,0xc2182e99,4
+np.float32,0x507850,0xc2188682,4
+np.float32,0x7d08f9,0xc217c284,4
+np.float32,0x7f0cf2aa,0x42191734,4
+np.float32,0x3f109a17,0xbe7e04fe,4
+np.float32,0x7f426152,0x4219a625,4
+np.float32,0x7f32d5a3,0x42198113,4
+np.float32,0x2e14b2,0xc2197e6f,4
+np.float32,0x3a5acd,0xc219156a,4
+np.float32,0x50a565,0xc2188589,4
+np.float32,0x5b751c,0xc2184d97,4
+np.float32,0x7e4149f6,0x42173b22,4
+np.float32,0x3dc34bf9,0xbf82a42a,4
+np.float32,0x3d12bc28,0xbfb910d6,4
+np.float32,0x7ebd2584,0x421865c1,4
+np.float32,0x7f6b3375,0x4219faeb,4
+np.float32,0x7fa00000,0x7fe00000,4
+np.float32,0x3f35fe7d,0xbe17bd33,4
+np.float32,0x7db45c87,0x4215e818,4
+np.float32,0x3efff366,0xbe9a2b8d,4
+np.float32,0x3eb331d0,0xbee971a3,4
+np.float32,0x3f259d5f,0xbe41ae2e,4
+np.float32,0x3eab85ec,0xbef32c4a,4
+np.float32,0x7f194b8a,0x42193c8c,4
+np.float32,0x3f11a614,0xbe7acfc7,4
+np.float32,0x5b17,0xc221f16b,4
+np.float32,0x3f33dadc,0xbe1cff4d,4
+np.float32,0x3cda1506,0xbfc9920f,4
+np.float32,0x3f6856f1,0xbd2c8290,4
+np.float32,0x7f3357fb,0x42198257,4
+np.float32,0x7f56f329,0x4219d2e1,4
+np.float32,0x3ef84108,0xbea0f595,4
+np.float32,0x3f72340f,0xbcc51916,4
+np.float32,0x3daf28,0xc218fcbd,4
+np.float32,0x131035,0xc21b06f4,4
+np.float32,0x3f275c3b,0xbe3d0487,4
+np.float32,0x3ef06130,0xbea82069,4
+np.float32,0x3f57f3b0,0xbd974fef,4
+np.float32,0x7f6c4a78,0x4219fcfa,4
+np.float32,0x7e8421d0,0x4217c639,4
+np.float32,0x3f17a479,0xbe68e08e,4
+np.float32,0x7f03774e,0x4218f83b,4
+np.float32,0x441a33,0xc218d0b8,4
+np.float32,0x539158,0xc21875b6,4
+np.float32,0x3e8fcc75,0xbf0d3018,4
+np.float32,0x7ef74130,0x4218dce4,4
+np.float32,0x3ea6f4fa,0xbef92c38,4
+np.float32,0x7f3948ab,0x421990d5,4
+np.float32,0x7db6f8f5,0x4215ee7c,4
+np.float32,0x3ee44a2f,0xbeb399e5,4
+np.float32,0x156c59,0xc21ad30d,4
+np.float32,0x3f21ee53,0xbe4baf16,4
+np.float32,0x3f2c08f4,0xbe30c424,4
+np.float32,0x3f49885c,0xbdd4c6a9,4
+np.float32,0x3eae0b9c,0xbeefed54,4
+np.float32,0x1b5c1f,0xc21a6646,4
+np.float32,0x3e7330e2,0xbf1fd592,4
+np.float32,0x3ebbeb4c,0xbededf82,4
+np.float32,0x427154,0xc218dbb1,4
+np.float32,0x3f6b8b4b,0xbd142498,4
+np.float32,0x8e769,0xc21c5981,4
+np.float32,0x3e9db557,0xbf02ec1c,4
+np.float32,0x3f001bef,0xbe99f019,4
+np.float32,0x3e58b48c,0xbf2ca77a,4
+np.float32,0x3d46c16b,0xbfa8327c,4
+np.float32,0x7eeeb305,0x4218cd3b,4
+np.float32,0x3e3f163d,0xbf3aa446,4
+np.float32,0x3f66c872,0xbd3877d9,4
+np.float32,0x7f7162f8,0x421a0677,4
+np.float32,0x3edca3bc,0xbebb2e28,4
+np.float32,0x3dc1055b,0xbf834afa,4
+np.float32,0x12b16f,0xc21b0fad,4
+np.float32,0x3f733898,0xbcb62e16,4
+np.float32,0x3e617af8,0xbf283db0,4
+np.float32,0x7e86577a,0x4217cd99,4
+np.float32,0x3f0ba3c7,0xbe86c633,4
+np.float32,0x3f4cad25,0xbdc70247,4
+np.float32,0xb6cdf,0xc21bea9f,4
+np.float32,0x3f42971a,0xbdf3f49e,4
+np.float32,0x3e6ccad2,0xbf22cc78,4
+np.float32,0x7f2121b2,0x421952b8,4
+np.float32,0x3f6d3f55,0xbd075366,4
+np.float32,0x3f524f,0xc218f117,4
+np.float32,0x3e95b5d9,0xbf08b56a,4
+np.float32,0x7f6ae47d,0x4219fa56,4
+np.float32,0x267539,0xc219ceda,4
+np.float32,0x3ef72f6d,0xbea1eb2e,4
+np.float32,0x2100b2,0xc21a12e2,4
+np.float32,0x3d9777d1,0xbf90c4e7,4
+np.float32,0x44c6f5,0xc218cc56,4
+np.float32,0x7f2a613d,0x42196b8a,4
+np.float32,0x390a25,0xc2191f8d,4
+np.float32,0x3f1de5ad,0xbe56e703,4
+np.float32,0x2f59ce,0xc2197258,4
+np.float32,0x7f3b12a1,0x4219951b,4
+np.float32,0x3ecb66d4,0xbecd44ca,4
+np.float32,0x7e74ff,0xc217bd7d,4
+np.float32,0x7ed83f78,0x4218a14d,4
+np.float32,0x685994,0xc21812f1,4
+np.float32,0xbf800000,0x7fc00000,4
+np.float32,0x736f47,0xc217e60b,4
+np.float32,0x7f09c371,0x42190d0a,4
+np.float32,0x3f7ca51d,0xbbbbbce0,4
+np.float32,0x7f4b4d3b,0x4219ba1a,4
+np.float32,0x3f6c4471,0xbd0eb076,4
+np.float32,0xd944e,0xc21b9dcf,4
+np.float32,0x7cb06ffc,0x421375cd,4
+np.float32,0x586187,0xc2185cce,4
+np.float32,0x3f3cbf5b,0xbe078911,4
+np.float32,0x3f30b504,0xbe24d983,4
+np.float32,0x3f0a16ba,0xbe8941fd,4
+np.float32,0x5c43b0,0xc21849af,4
+np.float32,0x3dad74f6,0xbf893bd5,4
+np.float32,0x3c586958,0xbff087a6,4
+np.float32,0x3e8307a8,0xbf1786ba,4
+np.float32,0x7dcd1776,0x4216213d,4
+np.float32,0x3f44d107,0xbde9d662,4
+np.float32,0x3e2e6823,0xbf44cbec,4
+np.float32,0x3d87ea27,0xbf96caca,4
+np.float32,0x3e0c715b,0xbf5ce07e,4
+np.float32,0x7ec9cd5a,0x4218828e,4
+np.float32,0x3e26c0b4,0xbf49c93e,4
+np.float32,0x75b94e,0xc217dd50,4
+np.float32,0x3df7b9f5,0xbf6ad7f4,4
+np.float32,0x0,0xff800000,4
+np.float32,0x3f284795,0xbe3a94da,4
+np.float32,0x7ee49092,0x4218b9f0,4
+np.float32,0x7f4c20e0,0x4219bbe8,4
+np.float32,0x3efbbce8,0xbe9ddc4b,4
+np.float32,0x12274a,0xc21b1cb4,4
+np.float32,0x5fa1b1,0xc21839be,4
+np.float32,0x7f0b210e,0x4219116d,4
+np.float32,0x3f67092a,0xbd368545,4
+np.float32,0x3d572721,0xbfa3ca5b,4
+np.float32,0x3f7913ce,0xbc431028,4
+np.float32,0x3b0613,0xc2191059,4
+np.float32,0x3e1d16c0,0xbf506c6f,4
+np.float32,0xab130,0xc21c081d,4
+np.float32,0x3e23ac97,0xbf4bdb9d,4
+np.float32,0x7ef52368,0x4218d911,4
+np.float32,0x7f38e686,0x42198fe9,4
+np.float32,0x3f106a21,0xbe7e9897,4
+np.float32,0x3ecef8d5,0xbec96644,4
+np.float32,0x3ec37e02,0xbed61683,4
+np.float32,0x3efbd063,0xbe9dcb17,4
+np.float32,0x3f318fe3,0xbe22b402,4
+np.float32,0x7e5e5228,0x4217795d,4
+np.float32,0x72a046,0xc217e92c,4
+np.float32,0x7f6f970b,0x421a0324,4
+np.float32,0x3ed871b4,0xbebf72fb,4
+np.float32,0x7a2eaa,0xc217ccc8,4
+np.float32,0x3e819655,0xbf18c1d7,4
+np.float32,0x80800000,0x7fc00000,4
+np.float32,0x7eab0719,0x421838f9,4
+np.float32,0x7f0763cb,0x4219054f,4
+np.float32,0x3f191672,0xbe64a8af,4
+np.float32,0x7d4327,0xc217c1b6,4
+np.float32,0x3f724ba6,0xbcc3bea3,4
+np.float32,0x60fe06,0xc2183375,4
+np.float32,0x48cd59,0xc218b30b,4
+np.float32,0x3f7fec2b,0xb909d3f3,4
+np.float32,0x1c7bb9,0xc21a5460,4
+np.float32,0x24d8a8,0xc219e1e4,4
+np.float32,0x3e727c52,0xbf20283c,4
+np.float32,0x4bc460,0xc218a14a,4
+np.float32,0x63e313,0xc2182661,4
+np.float32,0x7f625581,0x4219e9d4,4
+np.float32,0x3eeb3e77,0xbeacedc0,4
+np.float32,0x7ef27a47,0x4218d437,4
+np.float32,0x27105a,0xc219c7e6,4
+np.float32,0x22a10b,0xc219fd7d,4
+np.float32,0x3f41e907,0xbdf711ab,4
+np.float32,0x7c1fbf95,0x4212155b,4
+np.float32,0x7e5acceb,0x42177244,4
+np.float32,0x3e0892fa,0xbf5ffb83,4
+np.float32,0x3ea0e51d,0xbf00b2c0,4
+np.float32,0x3e56fc29,0xbf2d8a51,4
+np.float32,0x7ee724ed,0x4218beed,4
+np.float32,0x7ebf142b,0x42186a46,4
+np.float32,0x7f6cf35c,0x4219fe37,4
+np.float32,0x3f11abf7,0xbe7abdcd,4
+np.float32,0x588d7a,0xc2185bf1,4
+np.float32,0x3f6e81d2,0xbcfbcf97,4
+np.float32,0x3f1b6be8,0xbe5dee2b,4
+np.float32,0x7f3815e0,0x42198df2,4
+np.float32,0x3f5bfc88,0xbd86d93d,4
+np.float32,0x3f3775d0,0xbe142bbc,4
+np.float32,0x78a958,0xc217d25a,4
+np.float32,0x2ff7c3,0xc2196c96,4
+np.float32,0x4b9c0,0xc21d733c,4
+np.float32,0x3ec025af,0xbed9ecf3,4
+np.float32,0x6443f0,0xc21824b3,4
+np.float32,0x3f754e28,0xbc97d299,4
+np.float32,0x3eaa91d3,0xbef4699d,4
+np.float32,0x3e5f2837,0xbf296478,4
+np.float32,0xe5676,0xc21b85a4,4
+np.float32,0x3f6859f2,0xbd2c6b90,4
+np.float32,0x3f68686b,0xbd2bfcc6,4
+np.float32,0x4b39b8,0xc218a47b,4
+np.float32,0x630ac4,0xc2182a28,4
+np.float32,0x160980,0xc21ac67d,4
+np.float32,0x3ed91c4d,0xbebec3fd,4
+np.float32,0x7ec27b0d,0x4218721f,4
+np.float32,0x3f3c0a5f,0xbe09344b,4
+np.float32,0x3dbff9c1,0xbf839841,4
+np.float32,0x7f0e8ea7,0x42191c40,4
+np.float32,0x3f36b162,0xbe1608e4,4
+np.float32,0x228bb3,0xc219fe90,4
+np.float32,0x2fdd30,0xc2196d8c,4
+np.float32,0x3e8fce8e,0xbf0d2e79,4
+np.float32,0x3f36acc7,0xbe16141a,4
+np.float32,0x7f44b51c,0x4219ab70,4
+np.float32,0x3ec3371c,0xbed66736,4
+np.float32,0x4388a2,0xc218d473,4
+np.float32,0x3f5aa6c3,0xbd8c4344,4
+np.float32,0x7f09fce4,0x42190dc3,4
+np.float32,0x7ed7854a,0x42189fce,4
+np.float32,0x7f4da83a,0x4219bf3a,4
+np.float32,0x3db8da28,0xbf85b25a,4
+np.float32,0x7f449686,0x4219ab2b,4
+np.float32,0x2eb25,0xc21e498c,4
+np.float32,0x3f2bcc08,0xbe3161bd,4
+np.float32,0x36c923,0xc219317b,4
+np.float32,0x3d52a866,0xbfa4f6d2,4
+np.float32,0x3f7d6688,0xbb913e4e,4
+np.float32,0x3f5a6ba4,0xbd8d33e3,4
+np.float32,0x719740,0xc217ed35,4
+np.float32,0x78a472,0xc217d26c,4
+np.float32,0x7ee33d0c,0x4218b759,4
+np.float32,0x7f668c1d,0x4219f208,4
+np.float32,0x3e29c600,0xbf47ca46,4
+np.float32,0x3f3cefc3,0xbe071712,4
+np.float32,0x3e224ebd,0xbf4cca41,4
+np.float32,0x7f1417be,0x42192d31,4
+np.float32,0x7f29d7d5,0x42196a23,4
+np.float32,0x3338ce,0xc2194f65,4
+np.float32,0x2a7897,0xc219a2b6,4
+np.float32,0x3d6bc3d8,0xbf9eb468,4
+np.float32,0x3f6bd7bf,0xbd11e392,4
+np.float32,0x7f6d26bf,0x4219fe98,4
+np.float32,0x3f52d378,0xbdacadb5,4
+np.float32,0x3efac453,0xbe9eb84a,4
+np.float32,0x3f692eb7,0xbd261184,4
+np.float32,0x3f6a0bb5,0xbd1f7ec1,4
+np.float32,0x3f037a49,0xbe942aa8,4
+np.float32,0x3f465bd4,0xbde2e530,4
+np.float32,0x7ef0f47b,0x4218d16a,4
+np.float32,0x637127,0xc218285e,4
+np.float32,0x3f41e511,0xbdf723d7,4
+np.float32,0x7f800000,0x7f800000,4
+np.float32,0x3f3342d5,0xbe1e77d5,4
+np.float32,0x7f57cfe6,0x4219d4a9,4
+np.float32,0x3e4358ed,0xbf3830a7,4
+np.float32,0x3ce25f15,0xbfc77f2b,4
+np.float32,0x7ed057e7,0x421890be,4
+np.float32,0x7ce154d9,0x4213e295,4
+np.float32,0x3ee91984,0xbeaef703,4
+np.float32,0x7e4e919c,0x421758af,4
+np.float32,0x6830e7,0xc218139e,4
+np.float32,0x3f12f08e,0xbe76e328,4
+np.float32,0x7f0a7a32,0x42190f56,4
+np.float32,0x7f38e,0xc21c8bd3,4
+np.float32,0x3e01def9,0xbf6593e3,4
+np.float32,0x3f5c8c6d,0xbd849432,4
+np.float32,0x3eed8747,0xbeaac7a3,4
+np.float32,0x3cadaa0e,0xbfd63b21,4
+np.float32,0x3f7532a9,0xbc996178,4
+np.float32,0x31f3ac,0xc2195a8f,4
+np.float32,0x3f0e0f97,0xbe82f3af,4
+np.float32,0x3f2a1f35,0xbe35bd3f,4
+np.float32,0x3f4547b2,0xbde7bebd,4
+np.float32,0x3f7988a6,0xbc36094c,4
+np.float32,0x74464c,0xc217e2d2,4
+np.float32,0x7f7518be,0x421a0d3f,4
+np.float32,0x7e97fa0a,0x42180473,4
+np.float32,0x584e3a,0xc2185d2f,4
+np.float32,0x3e7291f3,0xbf201e52,4
+np.float32,0xc0a05,0xc21bd359,4
+np.float32,0x3a3177,0xc21916a6,4
+np.float32,0x4f417f,0xc2188d45,4
+np.float32,0x263fce,0xc219d145,4
+np.float32,0x7e1d58,0xc217beb1,4
+np.float32,0x7f056af3,0x4218fec9,4
+np.float32,0x3f21c181,0xbe4c2a3f,4
+np.float32,0x7eca4956,0x4218839f,4
+np.float32,0x3e58afa8,0xbf2ca9fd,4
+np.float32,0x3f40d583,0xbdfc04ef,4
+np.float32,0x7f432fbb,0x4219a7fc,4
+np.float32,0x43aaa4,0xc218d393,4
+np.float32,0x7f2c9b62,0x42197150,4
+np.float32,0x5c3876,0xc21849e5,4
+np.float32,0x7f2034e8,0x42195029,4
+np.float32,0x7e5be772,0x42177481,4
+np.float32,0x80000000,0xff800000,4
+np.float32,0x3f5be03b,0xbd874bb0,4
+np.float32,0x3e32494f,0xbf4259be,4
+np.float32,0x3e1f4671,0xbf4ee30b,4
+np.float32,0x4606cc,0xc218c454,4
+np.float32,0x425cbc,0xc218dc3b,4
+np.float32,0x7dd9b8bf,0x42163bd0,4
+np.float32,0x3f0465d0,0xbe929db7,4
+np.float32,0x3f735077,0xbcb4d0fa,4
+np.float32,0x4d6a43,0xc21897b8,4
+np.float32,0x3e27d600,0xbf4910f5,4
+np.float32,0x3f06e0cc,0xbe8e7d24,4
+np.float32,0x3f3fd064,0xbe005e45,4
+np.float32,0x176f1,0xc21f7c2d,4
+np.float32,0x3eb64e6f,0xbee59d9c,4
+np.float32,0x7f0f075d,0x42191db8,4
+np.float32,0x3f718cbe,0xbcceb621,4
+np.float32,0x3ead7bda,0xbef0a54a,4
+np.float32,0x7f77c1a8,0x421a120c,4
+np.float32,0x3f6a79c5,0xbd1c3afd,4
+np.float32,0x3e992d1f,0xbf062a02,4
+np.float32,0x3e6f6335,0xbf219639,4
+np.float32,0x7f6d9a3e,0x4219ff70,4
+np.float32,0x557ed1,0xc2186b91,4
+np.float32,0x3f13a456,0xbe74c457,4
+np.float32,0x15c2dc,0xc21acc17,4
+np.float32,0x71f36f,0xc217ebcc,4
+np.float32,0x748dea,0xc217e1c1,4
+np.float32,0x7f0f32e0,0x42191e3f,4
+np.float32,0x5b1da8,0xc2184f41,4
+np.float32,0x3d865d3a,0xbf976e11,4
+np.float32,0x3f800000,0x0,4
+np.float32,0x7f67b56d,0x4219f444,4
+np.float32,0x6266a1,0xc2182d0c,4
+np.float32,0x3ec9c5e4,0xbecf0e6b,4
+np.float32,0x6a6a0e,0xc2180a3b,4
+np.float32,0x7e9db6fd,0x421814ef,4
+np.float32,0x3e7458f7,0xbf1f4e88,4
+np.float32,0x3ead8016,0xbef09fdc,4
+np.float32,0x3e263d1c,0xbf4a211e,4
+np.float32,0x7f6b3329,0x4219faeb,4
+np.float32,0x800000,0xc217b818,4
+np.float32,0x3f0654c7,0xbe8f6471,4
+np.float32,0x3f281b71,0xbe3b0990,4
+np.float32,0x7c4c8e,0xc217c524,4
+np.float32,0x7d113a87,0x4214537d,4
+np.float32,0x734b5f,0xc217e696,4
+np.float32,0x7f079d05,0x4219060b,4
+np.float32,0x3ee830b1,0xbeafd58b,4
+np.float32,0x3f1c3b8b,0xbe5b9d96,4
+np.float32,0x3f2bf0c6,0xbe3102aa,4
+np.float32,0x7ddffe22,0x42164871,4
+np.float32,0x3f1e58b4,0xbe55a37f,4
+np.float32,0x5f3edf,0xc2183b8a,4
+np.float32,0x7f1fb6ec,0x42194eca,4
+np.float32,0x3f78718e,0xbc55311e,4
+np.float32,0x3e574b7d,0xbf2d6152,4
+np.float32,0x7eab27c6,0x4218394e,4
+np.float32,0x7f34603c,0x421984e5,4
+np.float32,0x3f3a8b57,0xbe0cc1ca,4
+np.float32,0x3f744181,0xbca7134e,4
+np.float32,0x3f7e3bc4,0xbb45156b,4
+np.float32,0x93ab4,0xc21c498b,4
+np.float32,0x7ed5541e,0x42189b42,4
+np.float32,0x6bf8ec,0xc21803c4,4
+np.float32,0x757395,0xc217de58,4
+np.float32,0x7f177214,0x42193726,4
+np.float32,0x59935f,0xc21856d6,4
+np.float32,0x2cd9ba,0xc2198a78,4
+np.float32,0x3ef6fd5c,0xbea2183c,4
+np.float32,0x3ebb6c63,0xbedf75e0,4
+np.float32,0x7f43272c,0x4219a7e9,4
+np.float32,0x7f42e67d,0x4219a755,4
+np.float32,0x3f3f744f,0xbe0133f6,4
+np.float32,0x7f5fddaa,0x4219e4f4,4
+np.float32,0x3dc9874f,0xbf80e529,4
+np.float32,0x3f2efe64,0xbe292ec8,4
+np.float32,0x3e0406a6,0xbf63bf7c,4
+np.float32,0x3cdbb0aa,0xbfc92984,4
+np.float32,0x3e6597e7,0xbf263b30,4
+np.float32,0x3f0c1153,0xbe861807,4
+np.float32,0x7fce16,0xc217b8c6,4
+np.float32,0x3f5f4e5f,0xbd730dc6,4
+np.float32,0x3ed41ffa,0xbec3ee69,4
+np.float32,0x3f216c78,0xbe4d1446,4
+np.float32,0x3f123ed7,0xbe78fe4b,4
+np.float32,0x7f7e0ca9,0x421a1d34,4
+np.float32,0x7e318af4,0x42171558,4
+np.float32,0x7f1e1659,0x42194a3d,4
+np.float32,0x34d12a,0xc21941c2,4
+np.float32,0x3d9566ad,0xbf918870,4
+np.float32,0x3e799a47,0xbf1cf0e5,4
+np.float32,0x3e89dd6f,0xbf11df76,4
+np.float32,0x32f0d3,0xc21951d8,4
+np.float32,0x7e89d17e,0x4217d8f6,4
+np.float32,0x1f3b38,0xc21a2b6b,4
+np.float32,0x7ee9e060,0x4218c427,4
+np.float32,0x31a673,0xc2195d41,4
+np.float32,0x5180f1,0xc21880d5,4
+np.float32,0x3cd36f,0xc21902f8,4
+np.float32,0x3bb63004,0xc01050cb,4
+np.float32,0x3e8ee9d1,0xbf0ddfde,4
+np.float32,0x3d2a7da3,0xbfb0b970,4
+np.float32,0x3ea58107,0xbefb1dc3,4
+np.float32,0x7f6760b0,0x4219f3a2,4
+np.float32,0x7f7f9e08,0x421a1ff0,4
+np.float32,0x37e7f1,0xc219287b,4
+np.float32,0x3ef7eb53,0xbea14267,4
+np.float32,0x3e2eb581,0xbf449aa5,4
+np.float32,0x3da7671c,0xbf8b3568,4
+np.float32,0x7af36f7b,0x420f33ee,4
+np.float32,0x3eb3602c,0xbee93823,4
+np.float32,0x3f68bcff,0xbd2975de,4
+np.float32,0x3ea7cefb,0xbef80a9d,4
+np.float32,0x3f329689,0xbe202414,4
+np.float32,0x7f0c7c80,0x421915be,4
+np.float32,0x7f4739b8,0x4219b118,4
+np.float32,0x73af58,0xc217e515,4
+np.float32,0x7f13eb2a,0x42192cab,4
+np.float32,0x30f2d9,0xc2196395,4
+np.float32,0x7ea7066c,0x42182e71,4
+np.float32,0x669fec,0xc2181a5b,4
+np.float32,0x3f7d6876,0xbb90d1ef,4
+np.float32,0x3f08a4ef,0xbe8b9897,4
+np.float32,0x7f2a906c,0x42196c05,4
+np.float32,0x3ed3ca42,0xbec44856,4
+np.float32,0x9d27,0xc220fee2,4
+np.float32,0x3e4508a1,0xbf373c03,4
+np.float32,0x3e41f8de,0xbf38f9bb,4
+np.float32,0x3e912714,0xbf0c255b,4
+np.float32,0xff800000,0x7fc00000,4
+np.float32,0x7eefd13d,0x4218cf4f,4
+np.float32,0x3f491674,0xbdd6bded,4
+np.float32,0x3ef49512,0xbea445c9,4
+np.float32,0x3f045b79,0xbe92af15,4
+np.float32,0x3ef6c412,0xbea24bd5,4
+np.float32,0x3e6f3c28,0xbf21a85d,4
+np.float32,0x3ef71839,0xbea2000e,4
+np.float32,0x1,0xc23369f4,4
+np.float32,0x3e3fcfe4,0xbf3a3876,4
+np.float32,0x3e9d7a65,0xbf0315b2,4
+np.float32,0x20b7c4,0xc21a16bd,4
+np.float32,0x7f707b10,0x421a04cb,4
+np.float32,0x7fc00000,0x7fc00000,4
+np.float32,0x3f285ebd,0xbe3a57ac,4
+np.float32,0x74c9ea,0xc217e0dc,4
+np.float32,0x3f6501f2,0xbd4634ab,4
+np.float32,0x3f248959,0xbe4495cc,4
+np.float32,0x7e915ff0,0x4217f0b3,4
+np.float32,0x7edbb910,0x4218a864,4
+np.float32,0x3f7042dd,0xbce1bddb,4
+np.float32,0x6f08c9,0xc217f754,4
+np.float32,0x7f423993,0x4219a5ca,4
+np.float32,0x3f125704,0xbe78b4cd,4
+np.float32,0x7ef7f5ae,0x4218de28,4
+np.float32,0x3f2dd940,0xbe2c1a33,4
+np.float32,0x3f1ca78e,0xbe5a6a8b,4
+np.float32,0x244863,0xc219e8be,4
+np.float32,0x3f2614fe,0xbe406d6b,4
+np.float32,0x3e75e7a3,0xbf1e99b5,4
+np.float32,0x2bdd6e,0xc2199459,4
+np.float32,0x7e49e279,0x42174e7b,4
+np.float32,0x3e3bb09a,0xbf3ca2cd,4
+np.float32,0x649f06,0xc2182320,4
+np.float32,0x7f4a44e1,0x4219b7d6,4
+np.float32,0x400473,0xc218ec3a,4
+np.float32,0x3edb19ad,0xbebcbcad,4
+np.float32,0x3d8ee956,0xbf94006c,4
+np.float32,0x7e91c603,0x4217f1eb,4
+np.float32,0x221384,0xc21a04a6,4
+np.float32,0x7f7dd660,0x421a1cd5,4
+np.float32,0x7ef34609,0x4218d5ac,4
+np.float32,0x7f5ed529,0x4219e2e5,4
+np.float32,0x7f1bf685,0x42194438,4
+np.float32,0x3cdd094a,0xbfc8d294,4
+np.float32,0x7e87fc8e,0x4217d303,4
+np.float32,0x7f53d971,0x4219cc6b,4
+np.float32,0xabc8b,0xc21c0646,4
+np.float32,0x7f5011e6,0x4219c46a,4
+np.float32,0x7e460638,0x421745e5,4
+np.float32,0xa8126,0xc21c0ffd,4
+np.float32,0x3eec2a66,0xbeac0f2d,4
+np.float32,0x3f3a1213,0xbe0de340,4
+np.float32,0x7f5908db,0x4219d72c,4
+np.float32,0x7e0ad3c5,0x4216a7f3,4
+np.float32,0x3f2de40e,0xbe2bfe90,4
+np.float32,0x3d0463c5,0xbfbec8e4,4
+np.float32,0x7c7cde0b,0x4212e19a,4
+np.float32,0x74c24f,0xc217e0f9,4
+np.float32,0x3f14b4cb,0xbe71929b,4
+np.float32,0x3e94e192,0xbf09537f,4
+np.float32,0x3eebde71,0xbeac56bd,4
+np.float32,0x3f65e413,0xbd3f5b8a,4
+np.float32,0x7e109199,0x4216b9f9,4
+np.float32,0x3f22f5d0,0xbe48ddc0,4
+np.float32,0x3e22d3bc,0xbf4c6f4d,4
+np.float32,0x3f7a812f,0xbc1a680b,4
+np.float32,0x3f67f361,0xbd2f7d7c,4
+np.float32,0x3f1caa63,0xbe5a6281,4
+np.float32,0x3f306fde,0xbe2587ab,4
+np.float32,0x3e8df9d3,0xbf0e9b2f,4
+np.float32,0x3eaaccc4,0xbef41cd4,4
+np.float32,0x7f3f65ec,0x42199f45,4
+np.float32,0x3dc706e0,0xbf8196ec,4
+np.float32,0x3e14eaba,0xbf565cf6,4
+np.float32,0xcc60,0xc2208a09,4
+np.float32,0x358447,0xc2193be7,4
+np.float32,0x3dcecade,0xbf7eec70,4
+np.float32,0x3f20b4f8,0xbe4f0ef0,4
+np.float32,0x7e7c979f,0x4217b222,4
+np.float32,0x7f2387b9,0x4219594a,4
+np.float32,0x3f6f6e5c,0xbcee0e05,4
+np.float32,0x7f19ad81,0x42193da8,4
+np.float32,0x5635e1,0xc21867dd,4
+np.float32,0x4c5e97,0xc2189dc4,4
+np.float32,0x7f35f97f,0x421988d1,4
+np.float32,0x7f685224,0x4219f571,4
+np.float32,0x3eca0616,0xbecec7b8,4
+np.float32,0x3f436d0d,0xbdf024ca,4
+np.float32,0x12a97d,0xc21b106a,4
+np.float32,0x7f0fdc93,0x4219204d,4
+np.float32,0x3debfb42,0xbf703e65,4
+np.float32,0x3c6c54d2,0xbfeba291,4
+np.float32,0x7e5d7491,0x421777a1,4
+np.float32,0x3f4bd2f0,0xbdcab87d,4
+np.float32,0x3f7517f4,0xbc9ae510,4
+np.float32,0x3f71a59a,0xbccd480d,4
+np.float32,0x3f514653,0xbdb33f61,4
+np.float32,0x3f4e6ea4,0xbdbf694b,4
+np.float32,0x3eadadec,0xbef06526,4
+np.float32,0x3f3b41c1,0xbe0b0fbf,4
+np.float32,0xc35a,0xc2209e1e,4
+np.float32,0x384982,0xc2192575,4
+np.float32,0x3464c3,0xc2194556,4
+np.float32,0x7f5e20d9,0x4219e17d,4
+np.float32,0x3ea18b62,0xbf004016,4
+np.float32,0x63a02b,0xc218278c,4
+np.float32,0x7ef547ba,0x4218d953,4
+np.float32,0x3f2496fb,0xbe4470f4,4
+np.float32,0x7ea0c8c6,0x42181d81,4
+np.float32,0x3f42ba60,0xbdf35372,4
+np.float32,0x7e40d9,0xc217be34,4
+np.float32,0x3e95883b,0xbf08d750,4
+np.float32,0x3e0cddf3,0xbf5c8aa8,4
+np.float32,0x3f2305d5,0xbe48b20a,4
+np.float32,0x7f0d0941,0x4219177b,4
+np.float32,0x3f7b98d3,0xbbf6e477,4
+np.float32,0x3f687cdc,0xbd2b6057,4
+np.float32,0x3f42ce91,0xbdf2f73d,4
+np.float32,0x3ee00fc0,0xbeb7c217,4
+np.float32,0x7f3d483a,0x42199a53,4
+np.float32,0x3e1e08eb,0xbf4fc18d,4
+np.float32,0x7e202ff5,0x4216e798,4
+np.float32,0x582898,0xc2185ded,4
+np.float32,0x3e3552b1,0xbf40790c,4
+np.float32,0x3d3f7c87,0xbfaa44b6,4
+np.float32,0x669d8e,0xc2181a65,4
+np.float32,0x3f0e21b4,0xbe82d757,4
+np.float32,0x686f95,0xc2181293,4
+np.float32,0x3f48367f,0xbdda9ead,4
+np.float32,0x3dc27802,0xbf82e0a0,4
+np.float32,0x3f6ac40c,0xbd1a07d4,4
+np.float32,0x3bba6d,0xc2190b12,4
+np.float32,0x3ec7b6b0,0xbed15665,4
+np.float32,0x3f1f9ca4,0xbe521955,4
+np.float32,0x3ef2f147,0xbea5c4b8,4
+np.float32,0x7c65f769,0x4212b762,4
+np.float32,0x7e98e162,0x42180716,4
+np.float32,0x3f0f0c09,0xbe8169ea,4
+np.float32,0x3d67f03b,0xbf9f9d48,4
+np.float32,0x7f3751e4,0x42198c18,4
+np.float32,0x7f1fac61,0x42194ead,4
+np.float32,0x3e9b698b,0xbf048d89,4
+np.float32,0x7e66507b,0x42178913,4
+np.float32,0x7f5cb680,0x4219dea5,4
+np.float32,0x234700,0xc219f53e,4
+np.float32,0x3d9984ad,0xbf900591,4
+np.float32,0x3f33a3f2,0xbe1d872a,4
+np.float32,0x3eaf52b6,0xbeee4cf4,4
+np.float32,0x7f078930,0x421905ca,4
+np.float32,0x3f083b39,0xbe8c44df,4
+np.float32,0x3e3823f8,0xbf3ec231,4
+np.float32,0x3eef6f5d,0xbea9008c,4
+np.float32,0x6145e1,0xc218322c,4
+np.float32,0x16d9ae,0xc21ab65f,4
+np.float32,0x7e543376,0x421764a5,4
+np.float32,0x3ef77ccb,0xbea1a5a0,4
+np.float32,0x3f4a443f,0xbdd18af5,4
+np.float32,0x8f209,0xc21c5770,4
+np.float32,0x3ecac126,0xbecdfa33,4
+np.float32,0x3e8662f9,0xbf14b6c7,4
+np.float32,0x23759a,0xc219f2f4,4
+np.float32,0xf256d,0xc21b6d3f,4
+np.float32,0x3f579f93,0xbd98aaa2,4
+np.float32,0x3ed4cc8e,0xbec339cb,4
+np.float32,0x3ed25400,0xbec5d2a1,4
+np.float32,0x3ed6f8ba,0xbec0f795,4
+np.float32,0x7f36efd9,0x42198b2a,4
+np.float32,0x7f5169dd,0x4219c746,4
+np.float32,0x7de18a20,0x42164b80,4
+np.float32,0x3e8de526,0xbf0eab61,4
+np.float32,0x3de0cbcd,0xbf75a47e,4
+np.float32,0xe265f,0xc21b8b82,4
+np.float32,0x3df3cdbd,0xbf6c9e40,4
+np.float32,0x3f38a25a,0xbe115589,4
+np.float32,0x7f01f2c0,0x4218f311,4
+np.float32,0x3da7d5f4,0xbf8b10a5,4
+np.float32,0x4d4fe8,0xc2189850,4
+np.float32,0x3cc96d9d,0xbfcdfc8d,4
+np.float32,0x259a88,0xc219d8d7,4
+np.float32,0x7f1d5102,0x42194810,4
+np.float32,0x7e17ca91,0x4216cfa7,4
+np.float32,0x3f73d110,0xbcad7a8f,4
+np.float32,0x3f009383,0xbe9920ed,4
+np.float32,0x7e22af,0xc217be9f,4
+np.float32,0x3f7de2ce,0xbb6c0394,4
+np.float32,0x3edd0cd2,0xbebac45a,4
+np.float32,0x3ec9b5c1,0xbecf2035,4
+np.float32,0x3168c5,0xc2195f6b,4
+np.float32,0x3e935522,0xbf0a7d18,4
+np.float32,0x3e494077,0xbf34e120,4
+np.float32,0x3f52ed06,0xbdac41ec,4
+np.float32,0x3f73d51e,0xbcad3f65,4
+np.float32,0x3f03d453,0xbe939295,4
+np.float32,0x7ef4ee68,0x4218d8b1,4
+np.float32,0x3ed0e2,0xc218f4a7,4
+np.float32,0x4efab8,0xc2188ed3,4
+np.float32,0x3dbd5632,0xbf845d3b,4
+np.float32,0x7eecad4f,0x4218c972,4
+np.float32,0x9d636,0xc21c2d32,4
+np.float32,0x3e5f3b6b,0xbf295ae7,4
+np.float32,0x7f4932df,0x4219b57a,4
+np.float32,0x4b59b5,0xc218a3be,4
+np.float32,0x3e5de97f,0xbf2a03b4,4
+np.float32,0x3f1c479d,0xbe5b7b3c,4
+np.float32,0x3f42e7e4,0xbdf283a5,4
+np.float32,0x2445,0xc2238af2,4
+np.float32,0x7aa71b43,0x420e8c9e,4
+np.float32,0x3ede6e4e,0xbeb961e1,4
+np.float32,0x7f05dd3b,0x42190045,4
+np.float32,0x3ef5b55c,0xbea3404b,4
+np.float32,0x7f738624,0x421a0a62,4
+np.float32,0x3e7d50a1,0xbf1b4cb4,4
+np.float32,0x3f44cc4a,0xbde9ebcc,4
+np.float32,0x7e1a7b0b,0x4216d777,4
+np.float32,0x3f1d9868,0xbe57c0da,4
+np.float32,0x1ebee2,0xc21a3263,4
+np.float32,0x31685f,0xc2195f6e,4
+np.float32,0x368a8e,0xc2193379,4
+np.float32,0xa9847,0xc21c0c2e,4
+np.float32,0x3bd3b3,0xc2190a56,4
+np.float32,0x3961e4,0xc2191ce3,4
+np.float32,0x7e13a243,0x4216c34e,4
+np.float32,0x7f7b1790,0x421a17ff,4
+np.float32,0x3e55f020,0xbf2e1545,4
+np.float32,0x3f513861,0xbdb37aa8,4
+np.float32,0x3dd9e754,0xbf791ad2,4
+np.float32,0x5e8d86,0xc2183ec9,4
+np.float32,0x26b796,0xc219cbdd,4
+np.float32,0x429daa,0xc218da89,4
+np.float32,0x3f477caa,0xbdddd9ba,4
+np.float32,0x3f0e5114,0xbe828d45,4
+np.float32,0x3f54f362,0xbda3c286,4
+np.float32,0x6eac1c,0xc217f8c8,4
+np.float32,0x3f04c479,0xbe91fef5,4
+np.float32,0x3e993765,0xbf06228e,4
+np.float32,0x3eafd99f,0xbeeda21b,4
+np.float32,0x3f2a759e,0xbe34db96,4
+np.float32,0x3f05adfb,0xbe907937,4
+np.float32,0x3f6e2dfc,0xbd005980,4
+np.float32,0x3f2f2daa,0xbe28b6b5,4
+np.float32,0x15e746,0xc21ac931,4
+np.float32,0x7d34ca26,0x4214b4e5,4
+np.float32,0x7ebd175c,0x4218659f,4
+np.float32,0x7f1ed26b,0x42194c4c,4
+np.float32,0x2588b,0xc21eaab0,4
+np.float32,0x3f0065e3,0xbe996fe2,4
+np.float32,0x3f610376,0xbd658122,4
+np.float32,0x451995,0xc218ca41,4
+np.float32,0x70e083,0xc217f002,4
+np.float32,0x7e19821a,0x4216d4a8,4
+np.float32,0x3e7cd9a0,0xbf1b80fb,4
+np.float32,0x7f1a8f18,0x42194033,4
+np.float32,0x3f008fee,0xbe99271f,4
+np.float32,0xff7fffff,0x7fc00000,4
+np.float32,0x7f31d826,0x42197e9b,4
+np.float32,0x3f18cf12,0xbe657838,4
+np.float32,0x3e5c1bc7,0xbf2aebf9,4
+np.float32,0x3e3d3993,0xbf3bbaf8,4
+np.float32,0x68457a,0xc2181347,4
+np.float32,0x7ddf7561,0x42164761,4
+np.float32,0x7f47341b,0x4219b10c,4
+np.float32,0x4d3ecd,0xc21898b2,4
+np.float32,0x7f43dee8,0x4219a98b,4
+np.float32,0x3f0def7c,0xbe8325f5,4
+np.float32,0x3d5a551f,0xbfa2f994,4
+np.float32,0x7ed26602,0x4218951b,4
+np.float32,0x3ee7fa5b,0xbeb0099a,4
+np.float32,0x7ef74ea8,0x4218dcfc,4
+np.float32,0x6a3bb2,0xc2180afd,4
+np.float32,0x7f4c1e6e,0x4219bbe3,4
+np.float32,0x3e26f625,0xbf49a5a2,4
+np.float32,0xb8482,0xc21be70b,4
+np.float32,0x3f32f077,0xbe1f445b,4
+np.float32,0x7dd694b6,0x4216355a,4
+np.float32,0x7f3d62fd,0x42199a92,4
+np.float32,0x3f48e41a,0xbdd79cbf,4
+np.float32,0x338fc3,0xc2194c75,4
+np.float32,0x3e8355f0,0xbf174462,4
+np.float32,0x7f487e83,0x4219b3eb,4
+np.float32,0x2227f7,0xc21a039b,4
+np.float32,0x7e4383dd,0x4217403a,4
+np.float32,0x52d28b,0xc21879b2,4
+np.float32,0x12472c,0xc21b19a9,4
+np.float32,0x353530,0xc2193e7b,4
+np.float32,0x3f4e4728,0xbdc0137a,4
+np.float32,0x3bf169,0xc2190979,4
+np.float32,0x3eb3ee2e,0xbee8885f,4
+np.float32,0x3f03e3c0,0xbe937892,4
+np.float32,0x3c9f8408,0xbfdaf47f,4
+np.float32,0x40e792,0xc218e61b,4
+np.float32,0x5a6b29,0xc21852ab,4
+np.float32,0x7f268b83,0x4219616a,4
+np.float32,0x3ee25997,0xbeb57fa7,4
+np.float32,0x3f175324,0xbe69cf53,4
+np.float32,0x3f781d91,0xbc5e9827,4
+np.float32,0x7dba5210,0x4215f68c,4
+np.float32,0x7f1e66,0xc217bb2b,4
+np.float32,0x7f7fffff,0x421a209b,4
+np.float32,0x3f646202,0xbd4b10b8,4
+np.float32,0x575248,0xc218622b,4
+np.float32,0x7c67faa1,0x4212bb42,4
+np.float32,0x7f1683f2,0x42193469,4
+np.float32,0x1a3864,0xc21a7931,4
+np.float32,0x7f30ad75,0x42197bae,4
+np.float32,0x7f1c9d05,0x42194612,4
+np.float32,0x3e791795,0xbf1d2b2c,4
+np.float32,0x7e9ebc19,0x421817cd,4
+np.float32,0x4999b7,0xc218ae31,4
+np.float32,0x3d130e2c,0xbfb8f1cc,4
+np.float32,0x3f7e436f,0xbb41bb07,4
+np.float32,0x3ee00241,0xbeb7cf7d,4
+np.float32,0x7e496181,0x42174d5f,4
+np.float32,0x7efe58be,0x4218e978,4
+np.float32,0x3f5e5b0c,0xbd7aa43f,4
+np.float32,0x7ee4c6ab,0x4218ba59,4
+np.float32,0x3f6da8c6,0xbd043d7e,4
+np.float32,0x3e3e6e0f,0xbf3b064b,4
+np.float32,0x3f0143b3,0xbe97f10a,4
+np.float32,0x79170f,0xc217d0c6,4
+np.float32,0x517645,0xc218810f,4
+np.float32,0x3f1f9960,0xbe52226e,4
+np.float32,0x2a8df9,0xc219a1d6,4
+np.float32,0x2300a6,0xc219f8b8,4
+np.float32,0x3ee31355,0xbeb4c97a,4
+np.float32,0x3f20b05f,0xbe4f1ba9,4
+np.float32,0x3ee64249,0xbeb1b0ff,4
+np.float32,0x3a94b7,0xc21913b2,4
+np.float32,0x7ef7ef43,0x4218de1d,4
+np.float32,0x3f1abb5d,0xbe5fe872,4
+np.float32,0x7f65360b,0x4219ef72,4
+np.float32,0x3d315d,0xc219004c,4
+np.float32,0x3f26bbc4,0xbe3eafb9,4
+np.float32,0x3ee8c6e9,0xbeaf45de,4
+np.float32,0x7e5f1452,0x42177ae1,4
+np.float32,0x3f32e777,0xbe1f5aba,4
+np.float32,0x4d39a1,0xc21898d0,4
+np.float32,0x3e59ad15,0xbf2c2841,4
+np.float32,0x3f4be746,0xbdca5fc4,4
+np.float32,0x72e4fd,0xc217e821,4
+np.float32,0x1af0b8,0xc21a6d25,4
+np.float32,0x3f311147,0xbe23f18d,4
+np.float32,0x3f1ecebb,0xbe545880,4
+np.float32,0x7e90d293,0x4217ef02,4
+np.float32,0x3e3b366a,0xbf3ceb46,4
+np.float32,0x3f133239,0xbe761c96,4
+np.float32,0x7541ab,0xc217df15,4
+np.float32,0x3d8c8275,0xbf94f1a1,4
+np.float32,0x483b92,0xc218b689,4
+np.float32,0x3eb0dbed,0xbeec5c6b,4
+np.float32,0x3f00c676,0xbe98c8e2,4
+np.float32,0x3f445ac2,0xbdebed7c,4
+np.float32,0x3d2af4,0xc219007a,4
+np.float32,0x7f196ee1,0x42193cf2,4
+np.float32,0x290c94,0xc219b1db,4
+np.float32,0x3f5dbdc9,0xbd7f9019,4
+np.float32,0x3e80c62e,0xbf1974fc,4
+np.float32,0x3ec9ed2c,0xbecee326,4
+np.float32,0x7f469d60,0x4219afbb,4
+np.float32,0x3f698413,0xbd2386ce,4
+np.float32,0x42163f,0xc218de14,4
+np.float32,0x67a554,0xc21815f4,4
+np.float32,0x3f4bff74,0xbdc9f651,4
+np.float32,0x16a743,0xc21aba39,4
+np.float32,0x2eb8b0,0xc219784b,4
+np.float32,0x3eed9be1,0xbeaab45b,4
+np.float64,0x7fe0d76873e1aed0,0x40733f9d783bad7a,1
+np.float64,0x3fe22626bb244c4d,0xbfcf86a59864eea2,1
+np.float64,0x7f874113d02e8227,0x407324f54c4015b8,1
+np.float64,0x3fe40a46a9e8148d,0xbfca0411f533fcb9,1
+np.float64,0x3fd03932eea07266,0xbfe312bc9cf5649e,1
+np.float64,0x7fee5d2a1b3cba53,0x407343b5f56367a0,1
+np.float64,0x3feb7bda4a76f7b5,0xbfb0ea2c6edc784a,1
+np.float64,0x3fd6cd831a2d9b06,0xbfdcaf2e1a5faf51,1
+np.float64,0x98324e273064a,0xc0733e0e4c6d11c6,1
+np.float64,0x7fe1dd63b363bac6,0x4073400667c405c3,1
+np.float64,0x3fec5971f178b2e4,0xbfaaef32a7d94563,1
+np.float64,0x17abc07e2f579,0xc0734afca4da721e,1
+np.float64,0x3feec6ab5cfd8d57,0xbf9157f3545a8235,1
+np.float64,0x3fe3ae9622a75d2c,0xbfcb04b5ad254581,1
+np.float64,0x7fea73d854b4e7b0,0x407342c0a548f4c5,1
+np.float64,0x7fe29babf4653757,0x4073404eeb5fe714,1
+np.float64,0x7fd3a55d85a74aba,0x40733bde72e86c27,1
+np.float64,0x3fe83ce305f079c6,0xbfbee3511e85e0f1,1
+np.float64,0x3fd72087ea2e4110,0xbfdc4ab30802d7c2,1
+np.float64,0x7feb54ddab76a9ba,0x407342facb6f3ede,1
+np.float64,0xc57e34a18afd,0xc0734f82ec815baa,1
+np.float64,0x7a8cb97ef5198,0xc0733f8fb3777a67,1
+np.float64,0x7fe801032c300205,0x40734213dbe4eda9,1
+np.float64,0x3aefb1f475df7,0xc07344a5f08a0584,1
+np.float64,0x7fee85f1dd3d0be3,0x407343bf4441c2a7,1
+np.float64,0x3fdc7f1055b8fe21,0xbfd67d300630e893,1
+np.float64,0xe8ecddb3d1d9c,0xc0733b194f18f466,1
+np.float64,0x3fdf2b23c73e5648,0xbfd3ff6872c1f887,1
+np.float64,0x3fdba4aef2b7495e,0xbfd7557205e18b7b,1
+np.float64,0x3fe2ac34c6e5586a,0xbfcdf1dac69bfa08,1
+np.float64,0x3fc9852628330a4c,0xbfe66914f0fb9b0a,1
+np.float64,0x7fda211acf344235,0x40733dd9c2177aeb,1
+np.float64,0x3fe9420eb432841d,0xbfba4dd969a32575,1
+np.float64,0xb2f9d1ed65f3a,0xc0733cedfb6527ff,1
+np.float64,0x3fe9768a68f2ed15,0xbfb967c39c35c435,1
+np.float64,0x7fe8268462b04d08,0x4073421eaed32734,1
+np.float64,0x3fcf331f063e663e,0xbfe39e2f4b427ca9,1
+np.float64,0x7fd4eb9e2b29d73b,0x40733c4e4141418d,1
+np.float64,0x7fd2bba658a5774c,0x40733b89cd53d5b1,1
+np.float64,0x3fdfdf04913fbe09,0xbfd360c7fd9d251b,1
+np.float64,0x3fca5bfd0534b7fa,0xbfe5f5f844b2b20c,1
+np.float64,0x3feacd5032f59aa0,0xbfb3b5234ba8bf7b,1
+np.float64,0x7fe9241cec724839,0x4073426631362cec,1
+np.float64,0x3fe57aca20eaf594,0xbfc628e3ac2c6387,1
+np.float64,0x3fec6553ca38caa8,0xbfaa921368d3b222,1
+np.float64,0x3fe1e9676563d2cf,0xbfd020f866ba9b24,1
+np.float64,0x3fd5590667aab20d,0xbfde8458af5a4fd6,1
+np.float64,0x3fdf7528f43eea52,0xbfd3bdb438d6ba5e,1
+np.float64,0xb8dddc5571bbc,0xc0733cb4601e5bb2,1
+np.float64,0xe6d4e1fbcda9c,0xc0733b295ef4a4ba,1
+np.float64,0x3fe7019d962e033b,0xbfc257c0a6e8de16,1
+np.float64,0x3f94ef585029deb1,0xbffb07e5dfb0e936,1
+np.float64,0x7fc863b08030c760,0x4073388e28d7b354,1
+np.float64,0xf684443bed089,0xc0733ab46cfbff9a,1
+np.float64,0x7fe00e901d201d1f,0x40733f489c05a0f0,1
+np.float64,0x9e5c0a273cb82,0xc0733dc7af797e19,1
+np.float64,0x7fe49734f0692e69,0x4073410303680df0,1
+np.float64,0x7fb7b584442f6b08,0x4073338acff72502,1
+np.float64,0x3f99984c30333098,0xbff9a2642a6ed8cc,1
+np.float64,0x7fea2fcda8745f9a,0x407342aeae7f5e64,1
+np.float64,0xe580caadcb01a,0xc0733b33a3639217,1
+np.float64,0x1899ab3831336,0xc0734ab823729417,1
+np.float64,0x39bd4c76737aa,0xc07344ca6fac6d21,1
+np.float64,0xd755b2dbaeab7,0xc0733ba4fe19f2cc,1
+np.float64,0x3f952bebf82a57d8,0xbffaf3e7749c2512,1
+np.float64,0x3fe62ee5d72c5dcc,0xbfc45e3cb5baad08,1
+np.float64,0xb1264a7d624ca,0xc0733d003a1d0a66,1
+np.float64,0x3fc4bd1bcd297a38,0xbfe94b3058345c46,1
+np.float64,0x7fc5758bb32aeb16,0x407337aa7805497f,1
+np.float64,0x3fb0edcaf421db96,0xbff2dfb09c405294,1
+np.float64,0x3fd240fceaa481fa,0xbfe16f356bb36134,1
+np.float64,0x38c0c62a7181a,0xc07344e916d1e9b7,1
+np.float64,0x3fe98f2b3bf31e56,0xbfb8fc6eb622a820,1
+np.float64,0x3fe2bdf99c257bf3,0xbfcdbd0dbbae4d0b,1
+np.float64,0xce4b390d9c967,0xc0733bf14ada3134,1
+np.float64,0x3fd2ad607ba55ac1,0xbfe11da15167b37b,1
+np.float64,0x3fd8154f11b02a9e,0xbfdb2a6fabb9a026,1
+np.float64,0xf37849fde6f09,0xc0733aca8c64344c,1
+np.float64,0x3fcbae43b2375c87,0xbfe547f267c8e570,1
+np.float64,0x3fcd46fd7d3a8dfb,0xbfe48070f7232929,1
+np.float64,0x7fcdd245273ba489,0x407339f3d907b101,1
+np.float64,0x3fac75cd0838eb9a,0xbff4149d177b057b,1
+np.float64,0x7fe8ff3fd7f1fe7f,0x4073425bf968ba6f,1
+np.float64,0x7febadaa4df75b54,0x407343113a91f0e9,1
+np.float64,0x7fd5e4649c2bc8c8,0x40733c9f0620b065,1
+np.float64,0x903429812069,0xc07351b255e27887,1
+np.float64,0x3fe1d8c51c63b18a,0xbfd03ad448c1f1ee,1
+np.float64,0x3fe573ea646ae7d5,0xbfc63ab0bfd0e601,1
+np.float64,0x3f83b3f3c02767e8,0xc00022677e310649,1
+np.float64,0x7fd15d1582a2ba2a,0x40733b02c469c1d6,1
+np.float64,0x3fe63d3dabec7a7b,0xbfc43a56ee97b27e,1
+np.float64,0x7fe3a452fb2748a5,0x407340af1973c228,1
+np.float64,0x3fafac6b303f58d6,0xbff35651703ae9f2,1
+np.float64,0x513ddd24a27bc,0xc073426af96aaebb,1
+np.float64,0x3fef152246be2a45,0xbf89df79d7719282,1
+np.float64,0x3fe8c923e9f19248,0xbfbc67228e8db5f6,1
+np.float64,0x3fd6e2325fadc465,0xbfdc9602fb0b950f,1
+np.float64,0x3fe9616815f2c2d0,0xbfb9c4311a3b415b,1
+np.float64,0x2fe4e4005fc9d,0xc0734616fe294395,1
+np.float64,0x3fbceb02dc39d606,0xbfee4e68f1c7886f,1
+np.float64,0x7fe35e843d66bd07,0x407340963b066ad6,1
+np.float64,0x7fecd6c648f9ad8c,0x4073435a4c176e94,1
+np.float64,0x7fcbd72bf437ae57,0x4073397994b85665,1
+np.float64,0x3feff6443b3fec88,0xbf40eb380d5318ae,1
+np.float64,0x7fb9373cf6326e79,0x407333f869edef08,1
+np.float64,0x63790d9cc6f22,0xc0734102d4793cda,1
+np.float64,0x3f9de6efe83bcde0,0xbff88db6f0a6b56e,1
+np.float64,0xe00f2dc1c01f,0xc0734ea26ab84ff2,1
+np.float64,0xd7a9aa8baf536,0xc0733ba248fa33ab,1
+np.float64,0x3fee0089ea7c0114,0xbf9cab936ac31c4b,1
+np.float64,0x3fdec0d51cbd81aa,0xbfd45ed8878c5860,1
+np.float64,0x7fe91bf5e9f237eb,0x40734263f005081d,1
+np.float64,0x34ea7d1e69d50,0xc07345659dde7444,1
+np.float64,0x7fe67321a3ace642,0x4073419cc8130d95,1
+np.float64,0x9d1aeb2f3a35e,0xc0733dd5d506425c,1
+np.float64,0x7fbb01df003603bd,0x4073347282f1391d,1
+np.float64,0x42b945b285729,0xc07343c92d1bbef9,1
+np.float64,0x7fc92799b8324f32,0x407338c51e3f0733,1
+np.float64,0x3fe119c19b223383,0xbfd16ab707f65686,1
+np.float64,0x3fc9f9ac5333f359,0xbfe62a2f91ec0dff,1
+np.float64,0x3fd820d5a8b041ab,0xbfdb1d2586fe7b18,1
+np.float64,0x10000000000000,0xc0733a7146f72a42,1
+np.float64,0x3fe7e1543eafc2a8,0xbfc045362889592d,1
+np.float64,0xcbc0e1819783,0xc0734f4b68e05b1c,1
+np.float64,0xeb57e411d6afd,0xc0733b06efec001a,1
+np.float64,0xa9b74b47536ea,0xc0733d4c7bd06ddc,1
+np.float64,0x3fe56d4022eada80,0xbfc64bf8c7e3dd59,1
+np.float64,0x3fd445ca27288b94,0xbfdff40aecd0f882,1
+np.float64,0x3fe5af1cf5ab5e3a,0xbfc5a21d83699a04,1
+np.float64,0x7fed3431eb7a6863,0x40734370aa6131e1,1
+np.float64,0x3fd878dea1b0f1bd,0xbfdab8730dc00517,1
+np.float64,0x7ff8000000000000,0x7ff8000000000000,1
+np.float64,0x3feba9fcc1f753fa,0xbfb03027dcecbf65,1
+np.float64,0x7fca4feed6349fdd,0x4073391526327eb0,1
+np.float64,0x3fe7748ddbaee91c,0xbfc144b438218065,1
+np.float64,0x3fb5fbd94c2bf7b3,0xbff10ee6342c21a0,1
+np.float64,0x3feb603b97f6c077,0xbfb15a1f99d6d25e,1
+np.float64,0x3fe2e6fc8ce5cdf9,0xbfcd43edd7f3b4e6,1
+np.float64,0x7feb2b31f7765663,0x407342f02b306688,1
+np.float64,0x3fe290e2282521c4,0xbfce436deb8dbcf3,1
+np.float64,0x3fe3d5adf9e7ab5c,0xbfca96b8aa55d942,1
+np.float64,0x691899f2d2314,0xc07340a1026897c8,1
+np.float64,0x7fe468b008e8d15f,0x407340f33eadc628,1
+np.float64,0x3fb3a4c416274988,0xbff1d71da539a56e,1
+np.float64,0x3fe2442b29e48856,0xbfcf2b0037322661,1
+np.float64,0x3f376fbc7e6ef,0xc073442939a84643,1
+np.float64,0x3fe7c78d65ef8f1b,0xbfc08157cff411de,1
+np.float64,0xd4f27acba9e50,0xc0733bb8d38daa50,1
+np.float64,0x5198919ea3313,0xc07342633ba7cbea,1
+np.float64,0x7fd09f66f0a13ecd,0x40733ab5310b4385,1
+np.float64,0x3fdfe5531dbfcaa6,0xbfd35b487c7e739f,1
+np.float64,0x3fc4b0fecc2961fe,0xbfe95350c38c1640,1
+np.float64,0x7fd5ae21962b5c42,0x40733c8db78b7250,1
+np.float64,0x3fa4a8fcd42951fa,0xbff64e62fe602b72,1
+np.float64,0x7fc8e0e25831c1c4,0x407338b179b91223,1
+np.float64,0x7fdde1df6f3bc3be,0x40733ec87f9f027e,1
+np.float64,0x3fd8b9ad86b1735b,0xbfda6f385532c41b,1
+np.float64,0x3fd9f20ee933e41e,0xbfd91872fd858597,1
+np.float64,0x7feb35332df66a65,0x407342f2b9c715f0,1
+np.float64,0x7fe783dc7eaf07b8,0x407341ef41873706,1
+np.float64,0x7fceee929f3ddd24,0x40733a34e3c660fd,1
+np.float64,0x985b58d730b6b,0xc0733e0c6cfbb6f8,1
+np.float64,0x3fef4bb55cfe976b,0xbf83cb246c6f2a78,1
+np.float64,0x3fe218014f243003,0xbfcfb20ac683e1f6,1
+np.float64,0x7fe43b9fbea8773e,0x407340e3d5d5d29e,1
+np.float64,0x7fe148c74c62918e,0x40733fcba4367b8b,1
+np.float64,0x3feea4ad083d495a,0xbf93443917f3c991,1
+np.float64,0x8bcf6311179ed,0xc0733ea54d59dd31,1
+np.float64,0xf4b7a2dbe96f5,0xc0733ac175182401,1
+np.float64,0x543338baa8668,0xc073422b59165fe4,1
+np.float64,0x3fdb467317368ce6,0xbfd7b4d515929635,1
+np.float64,0x7fe3bbbc89e77778,0x407340b75cdf3de7,1
+np.float64,0x7fe693377aad266e,0x407341a6af60a0f1,1
+np.float64,0x3fc66210502cc421,0xbfe83bb940610a24,1
+np.float64,0x7fa75638982eac70,0x40732e9da476b816,1
+np.float64,0x3fe0d72a4761ae55,0xbfd1d7c82c479fab,1
+np.float64,0x97dec0dd2fbd8,0xc0733e121e072804,1
+np.float64,0x3fef33ec8c7e67d9,0xbf86701be6be8df1,1
+np.float64,0x7fcfca9b423f9536,0x40733a65a51efb94,1
+np.float64,0x9f2215633e443,0xc0733dbf043de9ed,1
+np.float64,0x2469373e48d28,0xc07347fe9e904b77,1
+np.float64,0x7fecc2e18cb985c2,0x407343557f58dfa2,1
+np.float64,0x3fde4acbfdbc9598,0xbfd4ca559e575e74,1
+np.float64,0x3fd6b11cf1ad623a,0xbfdcd1e17ef36114,1
+np.float64,0x3fc19ec494233d89,0xbfeb8ef228e8826a,1
+np.float64,0x4c89ee389913e,0xc07342d50c904f61,1
+np.float64,0x88c2046f11841,0xc0733ecc91369431,1
+np.float64,0x7fc88c13fd311827,0x40733899a125b392,1
+np.float64,0x3fcebd893a3d7b12,0xbfe3d2f35ab93765,1
+np.float64,0x3feb582a1476b054,0xbfb17ae8ec6a0465,1
+np.float64,0x7fd4369e5da86d3c,0x40733c1118b8cd67,1
+np.float64,0x3fda013fc1340280,0xbfd90831b85e98b2,1
+np.float64,0x7fed33d73fba67ad,0x4073437094ce1bd9,1
+np.float64,0x3fed3191053a6322,0xbfa468cc26a8f685,1
+np.float64,0x3fc04ed51c209daa,0xbfeca24a6f093bca,1
+np.float64,0x3fee4ac8763c9591,0xbf986458abbb90b5,1
+np.float64,0xa2d39dd145a74,0xc0733d9633651fbc,1
+np.float64,0x3fe7d9f86f2fb3f1,0xbfc0565a0b059f1c,1
+np.float64,0x3fe3250144e64a03,0xbfcc8eb2b9ae494b,1
+np.float64,0x7fe2b29507a56529,0x4073405774492075,1
+np.float64,0x7fdcdfcbe2b9bf97,0x40733e8b736b1bd8,1
+np.float64,0x3fc832730f3064e6,0xbfe7267ac9b2e7c3,1
+np.float64,0x3fc7e912e52fd226,0xbfe750dfc0aeae57,1
+np.float64,0x7fc960472f32c08d,0x407338d4b4cb3957,1
+np.float64,0x3fbdf182ea3be306,0xbfedd27150283ffb,1
+np.float64,0x3fd1e9359823d26b,0xbfe1b2ac7fd25f8d,1
+np.float64,0x7fbcf75f6039eebe,0x407334ef13eb16f8,1
+np.float64,0x3fe5a3c910eb4792,0xbfc5bf2f57c5d643,1
+np.float64,0x3fcf4f2a6e3e9e55,0xbfe391b6f065c4b8,1
+np.float64,0x3fee067873fc0cf1,0xbf9c53af0373fc0e,1
+np.float64,0xd3f08b85a7e12,0xc0733bc14357e686,1
+np.float64,0x7ff0000000000000,0x7ff0000000000000,1
+np.float64,0x3fc8635f6430c6bf,0xbfe70a7dc77749a7,1
+np.float64,0x3fe3ff5c52a7feb9,0xbfca22617c6636d5,1
+np.float64,0x3fbbae91fa375d24,0xbfeee9d4c300543f,1
+np.float64,0xe3f71b59c7ee4,0xc0733b3f99187375,1
+np.float64,0x7fca93d3be3527a6,0x40733926fd48ecd6,1
+np.float64,0x3fcd29f7223a53ee,0xbfe48e3edf32fe57,1
+np.float64,0x7fdc4ef6f8389ded,0x40733e68401cf2a6,1
+np.float64,0xe009bc81c014,0xc0734ea295ee3e5b,1
+np.float64,0x61f56c78c3eae,0xc073411e1dbd7c54,1
+np.float64,0x3fde131928bc2632,0xbfd4fda024f6927c,1
+np.float64,0x3fb21ee530243dca,0xbff266aaf0358129,1
+np.float64,0x7feaac82a4f55904,0x407342cf7809d9f9,1
+np.float64,0x3fe66ab177ecd563,0xbfc3c92d4d522819,1
+np.float64,0xfe9f9c2bfd3f4,0xc0733a7ade3a88a7,1
+np.float64,0x7fd0c5217c218a42,0x40733ac4e4c6dfa5,1
+np.float64,0x430f4ae6861ea,0xc07343c03d8a9442,1
+np.float64,0x494bff2a92981,0xc073432209d2fd16,1
+np.float64,0x3f8860e9d030c1d4,0xbffeca059ebf5e89,1
+np.float64,0x3fe43732dc286e66,0xbfc98800388bad2e,1
+np.float64,0x6443b60ec8877,0xc07340f4bab11827,1
+np.float64,0x3feda9be6d7b537d,0xbfa0dcb9a6914069,1
+np.float64,0x3fc5ceb6772b9d6d,0xbfe89868c881db70,1
+np.float64,0x3fbdf153023be2a6,0xbfedd2878c3b4949,1
+np.float64,0x7fe8f6b8e8f1ed71,0x407342599a30b273,1
+np.float64,0x3fea6fbdb8b4df7b,0xbfb53bf66f71ee96,1
+np.float64,0xc7ac3dbb8f588,0xc0733c2b525b7963,1
+np.float64,0x3fef3a91f77e7524,0xbf85b2bd3adbbe31,1
+np.float64,0x3f887cb97030f973,0xbffec21ccbb5d22a,1
+np.float64,0x8b2f1c9f165e4,0xc0733ead49300951,1
+np.float64,0x2c1cb32058397,0xc07346a951bd8d2b,1
+np.float64,0x3fe057edd620afdc,0xbfd2acf1881b7e99,1
+np.float64,0x7f82e9530025d2a5,0x4073238591dd52ce,1
+np.float64,0x3fe4e03dff69c07c,0xbfc7be96c5c006fc,1
+np.float64,0x52727b4aa4e50,0xc0734250c58ebbc1,1
+np.float64,0x3f99a62160334c43,0xbff99ea3ca09d8f9,1
+np.float64,0x3fd5314b4faa6297,0xbfdeb843daf01e03,1
+np.float64,0x3fefde89e13fbd14,0xbf5d1facb7a1e9de,1
+np.float64,0x7fb460f1a228c1e2,0x4073327d8cbc5f86,1
+np.float64,0xeb93efb3d727e,0xc0733b052a4990e4,1
+np.float64,0x3fe884baecf10976,0xbfbd9ba9cfe23713,1
+np.float64,0x7fefffffffffffff,0x40734413509f79ff,1
+np.float64,0x149dc7c6293ba,0xc0734bf26b1df025,1
+np.float64,0x64188f88c8313,0xc07340f7b8e6f4b5,1
+np.float64,0x3fdfac314abf5863,0xbfd38d3e9dba1b0e,1
+np.float64,0x3fd72052a42e40a5,0xbfdc4af30ee0b245,1
+np.float64,0x7fdd951f743b2a3e,0x40733eb68fafa838,1
+np.float64,0x65a2dd5acb45c,0xc07340dc8ed625e1,1
+np.float64,0x7fe89a79997134f2,0x4073423fbceb1cbe,1
+np.float64,0x3fe70a000d6e1400,0xbfc24381e09d02f7,1
+np.float64,0x3fe2cec160259d83,0xbfcd8b5e92354129,1
+np.float64,0x3feb9ef77a773def,0xbfb05c7b2ee6f388,1
+np.float64,0xe0d66689c1acd,0xc0733b582c779620,1
+np.float64,0x3fee86bd0ffd0d7a,0xbf94f7870502c325,1
+np.float64,0x186afc6230d60,0xc0734ac55fb66d5d,1
+np.float64,0xc0631f4b80c64,0xc0733c6d7149d373,1
+np.float64,0x3fdad1b87735a371,0xbfd82cca73ec663b,1
+np.float64,0x7fe7f6d313efeda5,0x40734210e84576ab,1
+np.float64,0x7fd7b7fce6af6ff9,0x40733d2d92ffdaaf,1
+np.float64,0x3fe6f35a28ade6b4,0xbfc27a4239b540c3,1
+np.float64,0x7fdb0b834eb61706,0x40733e17073a61f3,1
+np.float64,0x82f4661105e8d,0xc0733f19b34adeed,1
+np.float64,0x3fc77230112ee460,0xbfe796a7603c0d16,1
+np.float64,0x8000000000000000,0xfff0000000000000,1
+np.float64,0x7fb8317bc63062f7,0x407333aec761a739,1
+np.float64,0x7fd165609a22cac0,0x40733b061541ff15,1
+np.float64,0x3fed394768fa728f,0xbfa42e1596e1faf6,1
+np.float64,0x7febab693d7756d1,0x40734310a9ac828e,1
+np.float64,0x7fe809a69230134c,0x407342165b9acb69,1
+np.float64,0x3fc091d38f2123a7,0xbfec69a70fc23548,1
+np.float64,0x3fb2a8f5dc2551ec,0xbff2327f2641dd0d,1
+np.float64,0x7fc60b6fe02c16df,0x407337da5adc342c,1
+np.float64,0x3fefa53c3bbf4a78,0xbf73d1be15b73b00,1
+np.float64,0x7fee09c1717c1382,0x407343a2c479e1cb,1
+np.float64,0x8000000000000001,0x7ff8000000000000,1
+np.float64,0x3fede0b2733bc165,0xbf9e848ac2ecf604,1
+np.float64,0x3fee2ac331bc5586,0xbf9a3b699b721c9a,1
+np.float64,0x3fd4db12d829b626,0xbfdf2a413d1e453a,1
+np.float64,0x7fe605230dec0a45,0x4073417a67db06be,1
+np.float64,0x3fe378b2bf26f165,0xbfcb9dbb2b6d6832,1
+np.float64,0xc1d4c1ab83a98,0xc0733c60244cadbf,1
+np.float64,0x3feb15500e762aa0,0xbfb28c071d5efc22,1
+np.float64,0x3fe36225a626c44b,0xbfcbde4259e9047e,1
+np.float64,0x3fe7c586a72f8b0d,0xbfc08614b13ed4b2,1
+np.float64,0x7fb0f2d8cc21e5b1,0x40733135b2c7dd99,1
+np.float64,0x5957f3feb2aff,0xc07341c1df75638c,1
+np.float64,0x3fca4851bd3490a3,0xbfe6005ae5279485,1
+np.float64,0x824217d904843,0xc0733f232fd58f0f,1
+np.float64,0x4f9332269f267,0xc073428fd8e9cb32,1
+np.float64,0x3fea6f087374de11,0xbfb53ef0d03918b2,1
+np.float64,0x3fd9409ab4328135,0xbfd9d9231381e2b8,1
+np.float64,0x3fdba03b00374076,0xbfd759ec94a7ab5b,1
+np.float64,0x3fe0ce3766619c6f,0xbfd1e6912582ccf0,1
+np.float64,0x3fabd45ddc37a8bc,0xbff43c78d3188423,1
+np.float64,0x3fc3cadd592795bb,0xbfe9f1576c9b2c79,1
+np.float64,0x3fe10df049621be1,0xbfd17df2f2c28022,1
+np.float64,0x945b5d1328b6c,0xc0733e3bc06f1e75,1
+np.float64,0x7fc1c3742b2386e7,0x4073365a403d1051,1
+np.float64,0x7fdc957138b92ae1,0x40733e7977717586,1
+np.float64,0x7f943fa1a0287f42,0x407328d01de143f5,1
+np.float64,0x3fec9631c4392c64,0xbfa914b176d8f9d2,1
+np.float64,0x3fd8e7c008b1cf80,0xbfda3b9d9b6da8f4,1
+np.float64,0x7222f9fee4460,0xc073400e371516cc,1
+np.float64,0x3fe890e43eb121c8,0xbfbd64921462e823,1
+np.float64,0x3fcfd7fe2a3faffc,0xbfe3557e2f207800,1
+np.float64,0x3fed5dd1c1babba4,0xbfa318bb20db64e6,1
+np.float64,0x3fe6aa34c66d546a,0xbfc32c8a8991c11e,1
+np.float64,0x8ca79801196,0xc0736522bd5adf6a,1
+np.float64,0x3feb274079364e81,0xbfb2427b24b0ca20,1
+np.float64,0x7fe04927e4a0924f,0x40733f61c96f7f89,1
+np.float64,0x7c05f656f80bf,0xc0733f7a70555b4e,1
+np.float64,0x7fe97819eff2f033,0x4073427d4169b0f8,1
+np.float64,0x9def86e33bdf1,0xc0733dcc740b7175,1
+np.float64,0x7fedd1ef3f3ba3dd,0x40734395ceab8238,1
+np.float64,0x77bed86cef7dc,0xc0733fb8e0e9bf73,1
+np.float64,0x9274b41b24e97,0xc0733e52b16dff71,1
+np.float64,0x8010000000000000,0x7ff8000000000000,1
+np.float64,0x9c977855392ef,0xc0733ddba7d421d9,1
+np.float64,0xfb4560a3f68ac,0xc0733a9271e6a118,1
+np.float64,0xa67d9f394cfb4,0xc0733d6e9d58cc94,1
+np.float64,0x3fbfa766b03f4ecd,0xbfed0cccfecfc900,1
+np.float64,0x3fe177417522ee83,0xbfd0d45803bff01a,1
+np.float64,0x7fe85e077bb0bc0e,0x4073422e957a4aa3,1
+np.float64,0x7feeb0a6883d614c,0x407343c8f6568f7c,1
+np.float64,0xbab82edb75706,0xc0733ca2a2b20094,1
+np.float64,0xfadb44bdf5b69,0xc0733a9561b7ec04,1
+np.float64,0x3fefb9b82b3f7370,0xbf6ea776b2dcc3a9,1
+np.float64,0x7fe080ba8a610174,0x40733f795779b220,1
+np.float64,0x3f87faa1c02ff544,0xbffee76acafc92b7,1
+np.float64,0x7fed474108fa8e81,0x4073437531d4313e,1
+np.float64,0x3fdb7b229336f645,0xbfd77f583a4a067f,1
+np.float64,0x256dbf0c4adb9,0xc07347cd94e6fa81,1
+np.float64,0x3fd034ae25a0695c,0xbfe3169c15decdac,1
+np.float64,0x3a72177274e44,0xc07344b4cf7d68cd,1
+np.float64,0x7fa2522d5c24a45a,0x40732cef2f793470,1
+np.float64,0x3fb052bdde20a57c,0xbff3207fd413c848,1
+np.float64,0x3fdccfecbbb99fd9,0xbfd62ec04a1a687a,1
+np.float64,0x3fd403ac53280759,0xbfe027a31df2c8cc,1
+np.float64,0x3fab708e4036e11d,0xbff45591df4f2e8b,1
+np.float64,0x7fcfc001993f8002,0x40733a63539acf9d,1
+np.float64,0x3fd2b295dfa5652c,0xbfe119c1b476c536,1
+np.float64,0x7fe8061262b00c24,0x4073421552ae4538,1
+np.float64,0xffefffffffffffff,0x7ff8000000000000,1
+np.float64,0x7fed52093ffaa411,0x40734377c072a7e8,1
+np.float64,0xf3df902fe7bf2,0xc0733ac79a75ff7a,1
+np.float64,0x7fe13d382e227a6f,0x40733fc6fd0486bd,1
+np.float64,0x3621d5086c43b,0xc073453d31effbcd,1
+np.float64,0x3ff0000000000000,0x0,1
+np.float64,0x3fdaffea27b5ffd4,0xbfd7fd139dc1c2c5,1
+np.float64,0x7fea6536dc34ca6d,0x407342bccc564fdd,1
+np.float64,0x7fd478f00c28f1df,0x40733c27c0072fde,1
+np.float64,0x7fa72ef0502e5de0,0x40732e91e83db75c,1
+np.float64,0x7fd302970626052d,0x40733ba3ec6775f6,1
+np.float64,0x7fbb57ab0036af55,0x407334887348e613,1
+np.float64,0x3fda0ff722b41fee,0xbfd8f87b77930330,1
+np.float64,0x1e983ce23d309,0xc073493438f57e61,1
+np.float64,0x7fc90de97c321bd2,0x407338be01ffd4bd,1
+np.float64,0x7fe074b09c20e960,0x40733f7443f0dbe1,1
+np.float64,0x3fed5dec9fbabbd9,0xbfa317efb1fe8a95,1
+np.float64,0x7fdb877632b70eeb,0x40733e3697c88ba8,1
+np.float64,0x7fe4fb0067e9f600,0x40734124604b99e8,1
+np.float64,0x7fd447dc96288fb8,0x40733c1703ab2cce,1
+np.float64,0x3feb2d1e64f65a3d,0xbfb22a781df61c05,1
+np.float64,0xb6c8e6676d91d,0xc0733cc8859a0b91,1
+np.float64,0x3fdc3c2418387848,0xbfd6bec3a3c3cdb5,1
+np.float64,0x3fdecb9ccdbd973a,0xbfd4551c05721a8e,1
+np.float64,0x3feb1100e7762202,0xbfb29db911fe6768,1
+np.float64,0x3fe0444bc2a08898,0xbfd2ce69582e78c1,1
+np.float64,0x7fda403218b48063,0x40733de201d8340c,1
+np.float64,0x3fdc70421238e084,0xbfd68ba4bd48322b,1
+np.float64,0x3fe06e747c60dce9,0xbfd286bcac34a981,1
+np.float64,0x7fc1931d9623263a,0x407336473da54de4,1
+np.float64,0x229914da45323,0xc073485979ff141c,1
+np.float64,0x3fe142f92da285f2,0xbfd1280909992cb6,1
+np.float64,0xf1d02fa9e3a06,0xc0733ad6b19d71a0,1
+np.float64,0x3fb1fe9b0023fd36,0xbff27317d8252c16,1
+np.float64,0x3fa544b9242a8972,0xbff61ac38569bcfc,1
+np.float64,0x3feeb129d4fd6254,0xbf928f23ad20c1ee,1
+np.float64,0xa2510b7f44a22,0xc0733d9bc81ea0a1,1
+np.float64,0x3fca75694d34ead3,0xbfe5e8975b3646c2,1
+np.float64,0x7fece10621b9c20b,0x4073435cc3dd9a1b,1
+np.float64,0x7fe98a57d3b314af,0x4073428239b6a135,1
+np.float64,0x3fe259c62a64b38c,0xbfcee96682a0f355,1
+np.float64,0x3feaaa9b9d755537,0xbfb445779f3359af,1
+np.float64,0xdaadecfdb55be,0xc0733b899338432a,1
+np.float64,0x3fed00eae4fa01d6,0xbfa5dc8d77be5991,1
+np.float64,0x7fcc96c773392d8e,0x407339a8c5cd786e,1
+np.float64,0x3fef7b8b203ef716,0xbf7cff655ecb6424,1
+np.float64,0x7fd4008113a80101,0x40733bfe6552acb7,1
+np.float64,0x7fe99ff035b33fdf,0x407342881753ee2e,1
+np.float64,0x3ee031e87dc07,0xc0734432d736e492,1
+np.float64,0x3fddfe390f3bfc72,0xbfd510f1d9ec3e36,1
+np.float64,0x3fd9ddce74b3bb9d,0xbfd92e2d75a061bb,1
+np.float64,0x7fe5f742edebee85,0x40734176058e3a77,1
+np.float64,0x3fdb04185b360831,0xbfd7f8c63aa5e1c4,1
+np.float64,0xea2b0f43d4562,0xc0733b0fd77c8118,1
+np.float64,0x7fc3f4973527e92d,0x407337293bbb22c4,1
+np.float64,0x3fb9adfb38335bf6,0xbfeff4f3ea85821a,1
+np.float64,0x87fb98750ff73,0xc0733ed6ad83c269,1
+np.float64,0x3fe005721a200ae4,0xbfd33a9f1ebfb0ac,1
+np.float64,0xd9e04fe7b3c0a,0xc0733b901ee257f3,1
+np.float64,0x2c39102658723,0xc07346a4db63bf55,1
+np.float64,0x3f7dc28e003b851c,0xc0011c1d1233d948,1
+np.float64,0x3430fd3868620,0xc073457e24e0b70d,1
+np.float64,0xbff0000000000000,0x7ff8000000000000,1
+np.float64,0x3fd23e45e0247c8c,0xbfe17146bcf87b57,1
+np.float64,0x6599df3ecb33d,0xc07340dd2c41644c,1
+np.float64,0x3fdf074f31be0e9e,0xbfd41f6e9dbb68a5,1
+np.float64,0x7fdd6233f3bac467,0x40733eaa8f674b72,1
+np.float64,0x7fe03e8481607d08,0x40733f5d3df3b087,1
+np.float64,0x3fcc3b79f13876f4,0xbfe501bf3b379b77,1
+np.float64,0xe5d97ae3cbb30,0xc0733b30f47cbd12,1
+np.float64,0x8acbc4a115979,0xc0733eb240a4d2c6,1
+np.float64,0x3fedbdbc48bb7b79,0xbfa0470fd70c4359,1
+np.float64,0x3fde1611103c2c22,0xbfd4fae1fa8e7e5e,1
+np.float64,0x3fe09478bd2128f1,0xbfd246b7e85711dc,1
+np.float64,0x3fd6dfe8f3adbfd2,0xbfdc98ca2f32c1ad,1
+np.float64,0x72ccf274e599f,0xc0734003e5b0da63,1
+np.float64,0xe27c7265c4f8f,0xc0733b4b2d808566,1
+np.float64,0x7fee3161703c62c2,0x407343abe90f5649,1
+np.float64,0xf54fb5c1eaa0,0xc0734e01384fcf78,1
+np.float64,0xcde5924d9bcb3,0xc0733bf4b83c66c2,1
+np.float64,0x3fc46fdbe528dfb8,0xbfe97f55ef5e9683,1
+np.float64,0x7fe513528a2a26a4,0x4073412c69baceca,1
+np.float64,0x3fd29eca4aa53d95,0xbfe128801cd33ed0,1
+np.float64,0x7febb21718b7642d,0x4073431256def857,1
+np.float64,0x3fcab536c0356a6e,0xbfe5c73c59f41578,1
+np.float64,0x7fc7e9f0d82fd3e1,0x4073386b213e5dfe,1
+np.float64,0xb5b121276b624,0xc0733cd33083941c,1
+np.float64,0x7e0dd9bcfc1bc,0xc0733f5d8bf35050,1
+np.float64,0x3fd1c75106238ea2,0xbfe1cd11cccda0f4,1
+np.float64,0x9f060e673e0c2,0xc0733dc03da71909,1
+np.float64,0x7fd915a2f3322b45,0x40733d912af07189,1
+np.float64,0x3fd8cbae4431975d,0xbfda5b02ca661139,1
+np.float64,0x3fde8b411f3d1682,0xbfd48f6f710a53b6,1
+np.float64,0x3fc17a780622f4f0,0xbfebabb10c55255f,1
+np.float64,0x3fde5cbe5f3cb97d,0xbfd4b9e2e0101fb1,1
+np.float64,0x7fd859036530b206,0x40733d5c2252ff81,1
+np.float64,0xb0f5040f61ea1,0xc0733d02292f527b,1
+np.float64,0x3fde5c49ae3cb893,0xbfd4ba4db3ce2cf3,1
+np.float64,0x3fecc4518df988a3,0xbfa7af0bfc98bc65,1
+np.float64,0x3feffee03cbffdc0,0xbf0f3ede6ca7d695,1
+np.float64,0xbc5eac9b78bd6,0xc0733c92fb51c8ae,1
+np.float64,0x3fe2bb4ef765769e,0xbfcdc4f70a65dadc,1
+np.float64,0x5089443ca1129,0xc073427a7d0cde4a,1
+np.float64,0x3fd0d6e29121adc5,0xbfe28e28ece1db86,1
+np.float64,0xbe171e397c2e4,0xc0733c82cede5d02,1
+np.float64,0x4ede27be9dbc6,0xc073429fba1a4af1,1
+np.float64,0x3fe2aff3af655fe7,0xbfcde6b52a8ed3c1,1
+np.float64,0x7fd85ca295b0b944,0x40733d5d2adcccf1,1
+np.float64,0x24919bba49234,0xc07347f6ed704a6f,1
+np.float64,0x7fd74bc1eeae9783,0x40733d0d94a89011,1
+np.float64,0x3fc1cd12cb239a26,0xbfeb6a9c25c2a11d,1
+np.float64,0x3fdafbc0ac35f781,0xbfd8015ccf1f1b51,1
+np.float64,0x3fee01327c3c0265,0xbf9ca1d0d762dc18,1
+np.float64,0x3fe65bd7702cb7af,0xbfc3ee0de5c36b8d,1
+np.float64,0x7349c82ee693a,0xc0733ffc5b6eccf2,1
+np.float64,0x3fdc5906f738b20e,0xbfd6a26288eb5933,1
+np.float64,0x1,0xc07434e6420f4374,1
+np.float64,0x3fb966128a32cc25,0xbff00e0aa7273838,1
+np.float64,0x3fd501ff9a2a03ff,0xbfdef69133482121,1
+np.float64,0x194d4f3c329ab,0xc0734a861b44cfbe,1
+np.float64,0x3fec5d34f8f8ba6a,0xbfaad1b31510e70b,1
+np.float64,0x1635e4c22c6be,0xc0734b6dec650943,1
+np.float64,0x3fead2f8edb5a5f2,0xbfb39dac30a962cf,1
+np.float64,0x3f7dfa4ce03bf49a,0xc00115a112141aa7,1
+np.float64,0x3fef6827223ed04e,0xbf80a42c9edebfe9,1
+np.float64,0xe771f303cee3f,0xc0733b24a6269fe4,1
+np.float64,0x1160ccc622c1b,0xc0734d22604eacb9,1
+np.float64,0x3fc485cd08290b9a,0xbfe970723008c8c9,1
+np.float64,0x7fef99c518bf3389,0x407343fcf9ed202f,1
+np.float64,0x7fd8c1447a318288,0x40733d79a440b44d,1
+np.float64,0xaf219f955e434,0xc0733d149c13f440,1
+np.float64,0xcf45f6239e8bf,0xc0733be8ddda045d,1
+np.float64,0x7599394aeb328,0xc0733fd90fdbb0ea,1
+np.float64,0xc7f6390f8fec7,0xc0733c28bfbc66a3,1
+np.float64,0x3fd39ae96c2735d3,0xbfe0712274a8742b,1
+np.float64,0xa4d6c18f49ad8,0xc0733d805a0528f7,1
+np.float64,0x7fd9ea78d7b3d4f1,0x40733dcb2b74802a,1
+np.float64,0x3fecd251cb39a4a4,0xbfa742ed41d4ae57,1
+np.float64,0x7fed7a07cd7af40f,0x407343813476027e,1
+np.float64,0x3fd328ae7f26515d,0xbfe0c30b56a83c64,1
+np.float64,0x7fc937ff7a326ffe,0x407338c9a45b9140,1
+np.float64,0x3fcf1d31143e3a62,0xbfe3a7f760fbd6a8,1
+np.float64,0x7fb911dcbc3223b8,0x407333ee158cccc7,1
+np.float64,0x3fd352fc83a6a5f9,0xbfe0a47d2f74d283,1
+np.float64,0x7fd310753fa620e9,0x40733ba8fc4300dd,1
+np.float64,0x3febd64b4577ac97,0xbfaefd4a79f95c4b,1
+np.float64,0x6a6961a4d4d2d,0xc073408ae1687943,1
+np.float64,0x3fe4ba73d16974e8,0xbfc8239341b9e457,1
+np.float64,0x3fed8e7cac3b1cf9,0xbfa1a96a0cc5fcdc,1
+np.float64,0x7fd505ec04aa0bd7,0x40733c56f86e3531,1
+np.float64,0x3fdf166e9abe2cdd,0xbfd411e5f8569d70,1
+np.float64,0x7fe1bc6434e378c7,0x40733ff9861bdabb,1
+np.float64,0x3fd3b0b175a76163,0xbfe061ba5703f3c8,1
+np.float64,0x7fed75d7ffbaebaf,0x4073438037ba6f19,1
+np.float64,0x5a9e109cb53c3,0xc07341a8b04819c8,1
+np.float64,0x3fe14786b4e28f0d,0xbfd120b541bb880e,1
+np.float64,0x3fed4948573a9291,0xbfa3b471ff91614b,1
+np.float64,0x66aac5d8cd559,0xc07340ca9b18af46,1
+np.float64,0x3fdb48efd23691e0,0xbfd7b24c5694838b,1
+np.float64,0x7fe6da7d1eadb4f9,0x407341bc7d1fae43,1
+np.float64,0x7feb702cf336e059,0x40734301b96cc3c0,1
+np.float64,0x3fd1e60987a3cc13,0xbfe1b522cfcc3d0e,1
+np.float64,0x3feca57f50794aff,0xbfa89dc90625d39c,1
+np.float64,0x7fdc46dc56b88db8,0x40733e664294a0f9,1
+np.float64,0x8dc8fd811b920,0xc0733e8c5955df06,1
+np.float64,0xf01634abe02c7,0xc0733ae370a76d0c,1
+np.float64,0x3fc6f8d8ab2df1b1,0xbfe7df5093829464,1
+np.float64,0xda3d7597b47af,0xc0733b8d2702727a,1
+np.float64,0x7feefd53227dfaa5,0x407343da3d04db28,1
+np.float64,0x3fe2fbca3525f794,0xbfcd06e134417c08,1
+np.float64,0x7fd36d3ce226da79,0x40733bca7c322df1,1
+np.float64,0x7fec37e00b786fbf,0x4073433397b48a5b,1
+np.float64,0x3fbf133f163e267e,0xbfed4e72f1362a77,1
+np.float64,0x3fc11efbb9223df7,0xbfebf53002a561fe,1
+np.float64,0x3fc89c0e5431381d,0xbfe6ea562364bf81,1
+np.float64,0x3f9cd45da839a8bb,0xbff8ceb14669ee4b,1
+np.float64,0x23dc8fa647b93,0xc0734819aaa9b0ee,1
+np.float64,0x3fe829110d305222,0xbfbf3e60c45e2399,1
+np.float64,0x7fed8144e57b0289,0x40734382e917a02a,1
+np.float64,0x7fe033fbf7a067f7,0x40733f58bb00b20f,1
+np.float64,0xe3807f45c7010,0xc0733b43379415d1,1
+np.float64,0x3fd708fb342e11f6,0xbfdc670ef9793782,1
+np.float64,0x3fe88c924b311925,0xbfbd78210d9e7164,1
+np.float64,0x3fe0a2a7c7614550,0xbfd22efaf0472c4a,1
+np.float64,0x7fe3a37501a746e9,0x407340aecaeade41,1
+np.float64,0x3fd05077ec20a0f0,0xbfe2fedbf07a5302,1
+np.float64,0x7fd33bf61da677eb,0x40733bb8c58912aa,1
+np.float64,0x3feb29bdae76537b,0xbfb2384a8f61b5f9,1
+np.float64,0x3fec0fc14ff81f83,0xbfad3423e7ade174,1
+np.float64,0x3fd0f8b1a1a1f163,0xbfe2725dd4ccea8b,1
+np.float64,0x3fe382d26a6705a5,0xbfcb80dba4218bdf,1
+np.float64,0x3fa873f2cc30e7e6,0xbff522911cb34279,1
+np.float64,0x7fed7fd7377affad,0x4073438292f6829b,1
+np.float64,0x3feeacd8067d59b0,0xbf92cdbeda94b35e,1
+np.float64,0x7fe464d62228c9ab,0x407340f1eee19aa9,1
+np.float64,0xe997648bd32ed,0xc0733b143aa0fad3,1
+np.float64,0x7fea4869f13490d3,0x407342b5333b54f7,1
+np.float64,0x935b871926b71,0xc0733e47c6683319,1
+np.float64,0x28a9d0c05155,0xc0735a7e3532af83,1
+np.float64,0x79026548f204d,0xc0733fa6339ffa2f,1
+np.float64,0x3fdb1daaabb63b55,0xbfd7de839c240ace,1
+np.float64,0x3fc0db73b421b6e7,0xbfec2c6e36c4f416,1
+np.float64,0xb8b50ac1716b,0xc0734ff9fc60ebce,1
+np.float64,0x7fdf13e0c6be27c1,0x40733f0e44f69437,1
+np.float64,0x3fcd0cb97b3a1973,0xbfe49c34ff531273,1
+np.float64,0x3fcbac034b375807,0xbfe54913d73f180d,1
+np.float64,0x3fe091d2a2e123a5,0xbfd24b290a9218de,1
+np.float64,0xede43627dbc87,0xc0733af3c7c7f716,1
+np.float64,0x7fc037e7ed206fcf,0x407335b85fb0fedb,1
+np.float64,0x3fce7ae4c63cf5ca,0xbfe3f1350fe03f28,1
+np.float64,0x7fcdd862263bb0c3,0x407339f5458bb20e,1
+np.float64,0x4d7adf709af5d,0xc07342bf4edfadb2,1
+np.float64,0xdc6c03f3b8d81,0xc0733b7b74d6a635,1
+np.float64,0x3fe72ae0a4ee55c1,0xbfc1f4665608b21f,1
+np.float64,0xcd62f19d9ac5e,0xc0733bf92235e4d8,1
+np.float64,0xe3a7b8fdc74f7,0xc0733b4204f8e166,1
+np.float64,0x3fdafd35adb5fa6b,0xbfd7ffdca0753b36,1
+np.float64,0x3fa023e8702047d1,0xbff8059150ea1464,1
+np.float64,0x99ff336933fe7,0xc0733df961197517,1
+np.float64,0x7feeb365b9bd66ca,0x407343c995864091,1
+np.float64,0x7fe449b49f689368,0x407340e8aa3369e3,1
+np.float64,0x7faf5843043eb085,0x407330aa700136ca,1
+np.float64,0x3fd47b2922a8f652,0xbfdfab3de86f09ee,1
+np.float64,0x7fd9fc3248b3f864,0x40733dcfea6f9b3e,1
+np.float64,0xe20b0d8dc4162,0xc0733b4ea8fe7b3f,1
+np.float64,0x7feff8e0e23ff1c1,0x40734411c490ed70,1
+np.float64,0x7fa58382d02b0705,0x40732e0cf28e14fe,1
+np.float64,0xb8ad9a1b715b4,0xc0733cb630b8f2d4,1
+np.float64,0xe90abcf1d2158,0xc0733b186b04eeee,1
+np.float64,0x7fd6aa6f32ad54dd,0x40733cdccc636604,1
+np.float64,0x3fd8f84eedb1f09e,0xbfda292909a5298a,1
+np.float64,0x7fecd6b1d9f9ad63,0x4073435a472b05b5,1
+np.float64,0x3fd9f47604b3e8ec,0xbfd915e028cbf4a6,1
+np.float64,0x3fd20d9398241b27,0xbfe19691363dd508,1
+np.float64,0x3fe5ed09bbabda13,0xbfc5043dfc9c8081,1
+np.float64,0x7fbe5265363ca4c9,0x407335406f8e4fac,1
+np.float64,0xac2878af5850f,0xc0733d3311be9786,1
+np.float64,0xac2074555840f,0xc0733d3364970018,1
+np.float64,0x3fcd49b96b3a9373,0xbfe47f24c8181d9c,1
+np.float64,0x3fd10caca6a21959,0xbfe2620ae5594f9a,1
+np.float64,0xec5b87e9d8b71,0xc0733aff499e72ca,1
+np.float64,0x9d5e9fad3abd4,0xc0733dd2d70eeb4a,1
+np.float64,0x7fe3d3a24227a744,0x407340bfc2072fdb,1
+np.float64,0x3fc5f7a77c2bef4f,0xbfe87e69d502d784,1
+np.float64,0x33161a66662c4,0xc07345a436308244,1
+np.float64,0xa27acdc744f5a,0xc0733d99feb3d8ea,1
+np.float64,0x3fe2d9301565b260,0xbfcd6c914e204437,1
+np.float64,0x7fd5d111e12ba223,0x40733c98e14a6fd0,1
+np.float64,0x6c3387bed8672,0xc073406d3648171a,1
+np.float64,0x24d89fe849b15,0xc07347e97bec008c,1
+np.float64,0x3fefd763677faec7,0xbf61ae69caa9cad9,1
+np.float64,0x7fe0a4684ba148d0,0x40733f884d32c464,1
+np.float64,0x3fd5c3c939ab8792,0xbfddfaaefc1c7fca,1
+np.float64,0x3fec9b87a6b9370f,0xbfa8eb34efcc6b9b,1
+np.float64,0x3feb062431f60c48,0xbfb2ca6036698877,1
+np.float64,0x3fef97f6633f2fed,0xbf76bc742860a340,1
+np.float64,0x74477490e88ef,0xc0733fed220986bc,1
+np.float64,0x3fe4bea67ce97d4d,0xbfc818525292b0f6,1
+np.float64,0x3fc6add3a92d5ba7,0xbfe80cfdc9a90bda,1
+np.float64,0x847c9ce308f94,0xc0733f05026f5965,1
+np.float64,0x7fea53fd2eb4a7f9,0x407342b841fc4723,1
+np.float64,0x3fc55a16fc2ab42e,0xbfe8e3849130da34,1
+np.float64,0x3fbdf7d07c3befa1,0xbfedcf84b9c6c161,1
+np.float64,0x3fe5fb25aa6bf64b,0xbfc4e083ff96b116,1
+np.float64,0x61c776a8c38ef,0xc0734121611d84d7,1
+np.float64,0x3fec413164f88263,0xbfabadbd05131546,1
+np.float64,0x9bf06fe137e0e,0xc0733de315469ee0,1
+np.float64,0x2075eefc40ebf,0xc07348cae84de924,1
+np.float64,0x3fdd42e0143a85c0,0xbfd5c0b6f60b3cea,1
+np.float64,0xdbb1ab45b7636,0xc0733b8157329daf,1
+np.float64,0x3feac6d56bf58dab,0xbfb3d00771b28621,1
+np.float64,0x7fb2dc825025b904,0x407331f3e950751a,1
+np.float64,0x3fecea6efd79d4de,0xbfa689309cc0e3fe,1
+np.float64,0x3fd83abec7b0757e,0xbfdaff5c674a9c59,1
+np.float64,0x3fd396f7c0272df0,0xbfe073ee75c414ba,1
+np.float64,0x3fe10036c162006e,0xbfd1945a38342ae1,1
+np.float64,0x3fd5bbded52b77be,0xbfde04cca40d4156,1
+np.float64,0x3fe870945ab0e129,0xbfbdf72f0e6206fa,1
+np.float64,0x3fef72fddcbee5fc,0xbf7ee2dba88b1bad,1
+np.float64,0x4e111aa09c224,0xc07342b1e2b29643,1
+np.float64,0x3fd926d8b5b24db1,0xbfd9f58b78d6b061,1
+np.float64,0x3fc55679172aacf2,0xbfe8e5df687842e2,1
+np.float64,0x7f5f1749803e2e92,0x40731886e16cfc4d,1
+np.float64,0x7fea082b53b41056,0x407342a42227700e,1
+np.float64,0x3fece1d1d039c3a4,0xbfa6cb780988a469,1
+np.float64,0x3b2721d8764e5,0xc073449f6a5a4832,1
+np.float64,0x365cb7006cba,0xc0735879ba5f0b6e,1
+np.float64,0x7ff4000000000000,0x7ffc000000000000,1
+np.float64,0x7fe606ce92ac0d9c,0x4073417aeebe97e8,1
+np.float64,0x3fe237b544a46f6b,0xbfcf50f8f76d7df9,1
+np.float64,0x3fe7265e5eee4cbd,0xbfc1ff39089ec8d0,1
+np.float64,0x7fe2bb3c5ea57678,0x4073405aaad81cf2,1
+np.float64,0x3fd811df84b023bf,0xbfdb2e670ea8d8de,1
+np.float64,0x3f6a0efd00341dfa,0xc003fac1ae831241,1
+np.float64,0x3fd0d214afa1a429,0xbfe2922080a91c72,1
+np.float64,0x3feca6a350b94d47,0xbfa894eea3a96809,1
+np.float64,0x7fe23e5c76247cb8,0x4073402bbaaf71c7,1
+np.float64,0x3fe739a1fdae7344,0xbfc1d109f66efb5d,1
+np.float64,0x3fdf4b8e283e971c,0xbfd3e28f46169cc5,1
+np.float64,0x38f2535271e4b,0xc07344e3085219fa,1
+np.float64,0x7fd263a0f9a4c741,0x40733b68d945dae0,1
+np.float64,0x7fdd941863bb2830,0x40733eb651e3dca9,1
+np.float64,0xace7279159ce5,0xc0733d2b63b5947e,1
+np.float64,0x7fe34670b2268ce0,0x4073408d92770cb5,1
+np.float64,0x7fd11fa6dfa23f4d,0x40733aea02e76ea3,1
+np.float64,0x3fe6d9cbca6db398,0xbfc2b84b5c8c7eab,1
+np.float64,0x3fd69a0274ad3405,0xbfdcee3c7e52c463,1
+np.float64,0x3feb5af671f6b5ed,0xbfb16f88d739477f,1
+np.float64,0x3feea400163d4800,0xbf934e071c64fd0b,1
+np.float64,0x3fefd6bcf17fad7a,0xbf61f711c392b119,1
+np.float64,0x3fe148d43da291a8,0xbfd11e9cd3f91cd3,1
+np.float64,0x7fedf1308b7be260,0x4073439d135656da,1
+np.float64,0x3fe614c99c6c2993,0xbfc49fd1984dfd6d,1
+np.float64,0xd6e8d4e5add1b,0xc0733ba88256026e,1
+np.float64,0xfff0000000000000,0x7ff8000000000000,1
+np.float64,0x3fb530b5562a616b,0xbff1504bcc5c8f73,1
+np.float64,0xb7da68396fb4d,0xc0733cbe2790f52e,1
+np.float64,0x7fad78e26c3af1c4,0x4073303cdbfb0a15,1
+np.float64,0x7fee5698447cad30,0x407343b474573a8b,1
+np.float64,0x3fd488325c291065,0xbfdf999296d901e7,1
+np.float64,0x2669283a4cd26,0xc073479f823109a4,1
+np.float64,0x7fef3b090afe7611,0x407343e805a3b264,1
+np.float64,0x7fe8b96ae0f172d5,0x4073424874a342ab,1
+np.float64,0x7fef409f56fe813e,0x407343e943c3cd44,1
+np.float64,0x3fed28073dfa500e,0xbfa4b17e4cd31a3a,1
+np.float64,0x7f87ecc4802fd988,0x40732527e027b24b,1
+np.float64,0x3fdda24da0bb449b,0xbfd566a43ac035af,1
+np.float64,0x179fc9e62f3fa,0xc0734b0028c80fc1,1
+np.float64,0x3fef85b0927f0b61,0xbf7ac27565d5ab4f,1
+np.float64,0x5631501aac62b,0xc0734201be12c5d4,1
+np.float64,0x3fd782e424af05c8,0xbfdbd57544f8a7c3,1
+np.float64,0x3fe603a9a6ac0753,0xbfc4caff04dc3caf,1
+np.float64,0x7fbd5225163aa449,0x40733504b88f0a56,1
+np.float64,0x3fecd27506b9a4ea,0xbfa741dd70e6b08c,1
+np.float64,0x9c99603b3932c,0xc0733ddb922dc5db,1
+np.float64,0x3fbeb57f1a3d6afe,0xbfed789ff217aa08,1
+np.float64,0x3fef9c0f85bf381f,0xbf75d5c3d6cb281a,1
+np.float64,0x3fde4afb613c95f7,0xbfd4ca2a231c9005,1
+np.float64,0x396233d472c47,0xc07344d56ee70631,1
+np.float64,0x3fb31ea1c6263d44,0xbff207356152138d,1
+np.float64,0x3fe50bdf78aa17bf,0xbfc74ae0cbffb735,1
+np.float64,0xef74c701dee99,0xc0733ae81e4bb443,1
+np.float64,0x9a3e13a1347c3,0xc0733df68b60afc7,1
+np.float64,0x33ba4f886774b,0xc073458e03f0c13e,1
+np.float64,0x3fe8ba0e9931741d,0xbfbcaadf974e8f64,1
+np.float64,0x3fe090a4cd61214a,0xbfd24d236cf365d6,1
+np.float64,0x7fd87d992930fb31,0x40733d668b73b820,1
+np.float64,0x3fe6422b296c8456,0xbfc42e070b695d01,1
+np.float64,0x3febe9334677d267,0xbfae667864606cfe,1
+np.float64,0x771a3ce4ee348,0xc0733fc274d12c97,1
+np.float64,0x3fe0413542e0826b,0xbfd2d3b08fb5b8a6,1
+np.float64,0x3fd00870ea2010e2,0xbfe33cc04cbd42e0,1
+np.float64,0x3fe74fb817ae9f70,0xbfc19c45dbf919e1,1
+np.float64,0x40382fa08071,0xc07357514ced5577,1
+np.float64,0xa14968474292d,0xc0733da71a990f3a,1
+np.float64,0x5487c740a90fa,0xc0734224622d5801,1
+np.float64,0x3fed7d8d14fafb1a,0xbfa228f7ecc2ac03,1
+np.float64,0x3fe39bb485e73769,0xbfcb3a235a722960,1
+np.float64,0x3fd01090b2202121,0xbfe335b752589a22,1
+np.float64,0x3fd21a3e7da4347d,0xbfe18cd435a7c582,1
+np.float64,0x3fe7fa855a2ff50b,0xbfc00ab0665709fe,1
+np.float64,0x3fedc0d4577b81a9,0xbfa02fef3ff553fc,1
+np.float64,0x3fe99d4906333a92,0xbfb8bf18220e5e8e,1
+np.float64,0x3fd944ee3c3289dc,0xbfd9d46071675e73,1
+np.float64,0x3fe3ed8d52e7db1b,0xbfca53f8d4aef484,1
+np.float64,0x7fe748623a6e90c3,0x407341dd97c9dd79,1
+np.float64,0x3fea1b4b98343697,0xbfb6a1560a56927f,1
+np.float64,0xe1215715c242b,0xc0733b55dbf1f0a8,1
+np.float64,0x3fd0d5bccca1ab7a,0xbfe28f1b66d7a470,1
+np.float64,0x881a962710353,0xc0733ed51848a30d,1
+np.float64,0x3fcf022afe3e0456,0xbfe3b40eabf24501,1
+np.float64,0x3fdf1ac6bbbe358d,0xbfd40e03e888288d,1
+np.float64,0x3fa51a5eac2a34bd,0xbff628a7c34d51b3,1
+np.float64,0x3fdbaf408d375e81,0xbfd74ad39d97c92a,1
+np.float64,0x3fcd2418ea3a4832,0xbfe4910b009d8b11,1
+np.float64,0x3fc7b3062a2f660c,0xbfe7706dc47993e1,1
+np.float64,0x7fb8232218304643,0x407333aaa7041a9f,1
+np.float64,0x7fd5f186362be30b,0x40733ca32fdf9cc6,1
+np.float64,0x3fe57ef1d6aafde4,0xbfc61e23d00210c7,1
+np.float64,0x7c6830baf8d07,0xc0733f74f19e9dad,1
+np.float64,0xcacbfd5595980,0xc0733c0fb49edca7,1
+np.float64,0x3fdfdeac873fbd59,0xbfd36114c56bed03,1
+np.float64,0x3fd31f0889263e11,0xbfe0ca0cc1250169,1
+np.float64,0x3fe839fbe47073f8,0xbfbef0a2abc3d63f,1
+np.float64,0x3fc36af57e26d5eb,0xbfea3553f38770b7,1
+np.float64,0x3fe73dbc44ee7b79,0xbfc1c738f8fa6b3d,1
+np.float64,0x3fd3760e4da6ec1d,0xbfe08b5b609d11e5,1
+np.float64,0x3fee1cfa297c39f4,0xbf9b06d081bc9d5b,1
+np.float64,0xdfb01561bf61,0xc0734ea55e559888,1
+np.float64,0x687bd01cd0f7b,0xc07340ab67fe1816,1
+np.float64,0x3fefc88f4cbf911f,0xbf6828c359cf19dc,1
+np.float64,0x8ad34adb15a6a,0xc0733eb1e03811e5,1
+np.float64,0x3fe2b49c12e56938,0xbfcdd8dbdbc0ce59,1
+np.float64,0x6e05037adc0a1,0xc073404f91261635,1
+np.float64,0x3fe2fd737fe5fae7,0xbfcd020407ef4d78,1
+np.float64,0x3fd0f3c0dc21e782,0xbfe2766a1ab02eae,1
+np.float64,0x28564d9850acb,0xc073474875f87c5e,1
+np.float64,0x3fe4758015a8eb00,0xbfc8ddb45134a1bd,1
+np.float64,0x7fe7f19306efe325,0x4073420f626141a7,1
+np.float64,0x7fd27f34c0a4fe69,0x40733b733d2a5b50,1
+np.float64,0x92c2366325847,0xc0733e4f04f8195a,1
+np.float64,0x3fc21f8441243f09,0xbfeb2ad23bc1ab0b,1
+np.float64,0x3fc721d3e42e43a8,0xbfe7c69bb47b40c2,1
+np.float64,0x3fe2f11a1625e234,0xbfcd26363b9c36c3,1
+np.float64,0x3fdcb585acb96b0b,0xbfd648446237cb55,1
+np.float64,0x3fd4060bf2280c18,0xbfe025fd4c8a658b,1
+np.float64,0x7fb8ae2750315c4e,0x407333d23b025d08,1
+np.float64,0x3fe3a03119a74062,0xbfcb2d6c91b38552,1
+np.float64,0x7fdd2af92bba55f1,0x40733e9d737e16e6,1
+np.float64,0x3fe50b05862a160b,0xbfc74d20815fe36b,1
+np.float64,0x164409f82c882,0xc0734b6980e19c03,1
+np.float64,0x3fe4093712a8126e,0xbfca070367fda5e3,1
+np.float64,0xae3049935c609,0xc0733d1e3608797b,1
+np.float64,0x3fd71df4b4ae3be9,0xbfdc4dcb7637600d,1
+np.float64,0x7fca01e8023403cf,0x407339006c521c49,1
+np.float64,0x3fb0c5c43e218b88,0xbff2f03211c63f25,1
+np.float64,0x3fee757af83ceaf6,0xbf95f33a6e56b454,1
+np.float64,0x3f865f1f402cbe3f,0xbfff62d9c9072bd7,1
+np.float64,0x89864e95130ca,0xc0733ec29f1e32c6,1
+np.float64,0x3fe51482bcea2905,0xbfc73414ddc8f1b7,1
+np.float64,0x7fd802f8fa3005f1,0x40733d43684e460a,1
+np.float64,0x3fbeb86ca63d70d9,0xbfed774ccca9b8f5,1
+np.float64,0x3fb355dcc826abba,0xbff1f33f9339e7a3,1
+np.float64,0x3fe506c61eaa0d8c,0xbfc7585a3f7565a6,1
+np.float64,0x7fe393f25ba727e4,0x407340a94bcea73b,1
+np.float64,0xf66f532decdeb,0xc0733ab5041feb0f,1
+np.float64,0x3fe26e872be4dd0e,0xbfceaaab466f32e0,1
+np.float64,0x3fefd9e290bfb3c5,0xbf60977d24496295,1
+np.float64,0x7fe19c5f692338be,0x40733fecef53ad95,1
+np.float64,0x3fe80365ab3006cb,0xbfbfec4090ef76ec,1
+np.float64,0x3fe88ab39eb11567,0xbfbd8099388d054d,1
+np.float64,0x3fe68fb09fad1f61,0xbfc36db9de38c2c0,1
+np.float64,0x3fe9051883b20a31,0xbfbb5b75b8cb8f24,1
+np.float64,0x3fd4708683a8e10d,0xbfdfb9b085dd8a83,1
+np.float64,0x3fe00ac11a601582,0xbfd3316af3e43500,1
+np.float64,0xd16af30ba2d5f,0xc0733bd68e8252f9,1
+np.float64,0x3fb97d654632facb,0xbff007ac1257f575,1
+np.float64,0x7fd637c10fac6f81,0x40733cb949d76546,1
+np.float64,0x7fed2cab6dba5956,0x4073436edfc3764e,1
+np.float64,0x3fed04afbbba095f,0xbfa5bfaa5074b7f4,1
+np.float64,0x0,0xfff0000000000000,1
+np.float64,0x389a1dc671345,0xc07344edd4206338,1
+np.float64,0x3fbc9ba25a393745,0xbfee74c34f49b921,1
+np.float64,0x3feee749947dce93,0xbf8f032d9cf6b5ae,1
+np.float64,0xedc4cf89db89a,0xc0733af4b2a57920,1
+np.float64,0x3fe41629eba82c54,0xbfc9e321faf79e1c,1
+np.float64,0x3feb0bcbf7b61798,0xbfb2b31e5d952869,1
+np.float64,0xad60654b5ac0d,0xc0733d26860df676,1
+np.float64,0x3fe154e1ff22a9c4,0xbfd10b416e58c867,1
+np.float64,0x7fb20e9c8a241d38,0x407331a66453b8bc,1
+np.float64,0x7fcbbaaf7d37755e,0x4073397274f28008,1
+np.float64,0x187d0fbc30fa3,0xc0734ac03cc98cc9,1
+np.float64,0x7fd153afeaa2a75f,0x40733aff00b4311d,1
+np.float64,0x3fe05310a5e0a621,0xbfd2b5386aeecaac,1
+np.float64,0x7fea863b2b750c75,0x407342c57807f700,1
+np.float64,0x3fed5f0c633abe19,0xbfa30f6cfbc4bf94,1
+np.float64,0xf227c8b3e44f9,0xc0733ad42daaec9f,1
+np.float64,0x3fe956524772aca5,0xbfb9f4cabed7081d,1
+np.float64,0xefd11af7dfa24,0xc0733ae570ed2552,1
+np.float64,0x1690fff02d221,0xc0734b51a56c2980,1
+np.float64,0x7fd2e547a825ca8e,0x40733b992d6d9635,1
diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/tests/data/umath-validation-set-log1p.csv b/.venv/lib/python3.12/site-packages/numpy/_core/tests/data/umath-validation-set-log1p.csv
new file mode 100644
index 0000000..094e052
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/_core/tests/data/umath-validation-set-log1p.csv
@@ -0,0 +1,1429 @@
+dtype,input,output,ulperrortol
+np.float32,0x3e10aca8,0x3e075347,2
+np.float32,0x3f776e66,0x3f2d2003,2
+np.float32,0xbf34e8ce,0xbf9cfd5c,2
+np.float32,0xbf0260ee,0xbf363f69,2
+np.float32,0x3ed285e8,0x3eb05870,2
+np.float32,0x262b88,0x262b88,2
+np.float32,0x3eeffd6c,0x3ec4cfdb,2
+np.float32,0x3ee86808,0x3ebf9f54,2
+np.float32,0x3f36eba8,0x3f0a0524,2
+np.float32,0xbf1c047a,0xbf70afc7,2
+np.float32,0x3ead2916,0x3e952902,2
+np.float32,0x61c9c9,0x61c9c9,2
+np.float32,0xff7fffff,0xffc00000,2
+np.float32,0x7f64ee52,0x42b138e0,2
+np.float32,0x7ed00b1e,0x42afa4ff,2
+np.float32,0x3db53340,0x3dada0b2,2
+np.float32,0x3e6b0a4a,0x3e5397a4,2
+np.float32,0x7ed5d64f,0x42afb310,2
+np.float32,0xbf12bc5f,0xbf59f5ee,2
+np.float32,0xbda12710,0xbda7d8b5,2
+np.float32,0xbe2e89d8,0xbe3f5a9f,2
+np.float32,0x3f5bee75,0x3f1ebea4,2
+np.float32,0x9317a,0x9317a,2
+np.float32,0x7ee00130,0x42afcad8,2
+np.float32,0x7ef0d16d,0x42afefe7,2
+np.float32,0xbec7463a,0xbefc6a44,2
+np.float32,0xbf760ecc,0xc04fe59c,2
+np.float32,0xbecacb3c,0xbf011ae3,2
+np.float32,0x3ead92be,0x3e9577f0,2
+np.float32,0xbf41510d,0xbfb41b3a,2
+np.float32,0x7f71d489,0x42b154f1,2
+np.float32,0x8023bcd5,0x8023bcd5,2
+np.float32,0x801d33d8,0x801d33d8,2
+np.float32,0x3f3f545d,0x3f0ee0d4,2
+np.float32,0xbf700682,0xc0318c25,2
+np.float32,0xbe54e990,0xbe6eb0a3,2
+np.float32,0x7f0289bf,0x42b01941,2
+np.float32,0xbd61ac90,0xbd682113,2
+np.float32,0xbf2ff310,0xbf94cd6f,2
+np.float32,0x7f10064a,0x42b04b98,2
+np.float32,0x804d0d6d,0x804d0d6d,2
+np.float32,0x80317b0a,0x80317b0a,2
+np.float32,0xbddfef18,0xbded2640,2
+np.float32,0x3f00c9ab,0x3ed0a5bd,2
+np.float32,0x7f04b905,0x42b021c1,2
+np.float32,0x7fc00000,0x7fc00000,2
+np.float32,0x6524c4,0x6524c4,2
+np.float32,0x3da08ae0,0x3d9a8f88,2
+np.float32,0x293ea9,0x293ea9,2
+np.float32,0x71499e,0x71499e,2
+np.float32,0xbf14f54d,0xbf5f38a5,2
+np.float32,0x806e60f5,0x806e60f5,2
+np.float32,0x3f5f34bb,0x3f207fff,2
+np.float32,0x80513427,0x80513427,2
+np.float32,0x7f379670,0x42b0c7dc,2
+np.float32,0x3efba888,0x3eccb20b,2
+np.float32,0x3eeadd1b,0x3ec14f4b,2
+np.float32,0x7ec5a27f,0x42af8ab8,2
+np.float32,0x3f2afe4e,0x3f02f7a2,2
+np.float32,0x5591c8,0x5591c8,2
+np.float32,0x3dbb7240,0x3db35bab,2
+np.float32,0x805b911b,0x805b911b,2
+np.float32,0x800000,0x800000,2
+np.float32,0x7e784c04,0x42ae9cab,2
+np.float32,0x7ebaae14,0x42af6d86,2
+np.float32,0xbec84f7a,0xbefe1d42,2
+np.float32,0x7cea8281,0x42aa56bf,2
+np.float32,0xbf542cf6,0xbfe1eb1b,2
+np.float32,0xbf6bfb13,0xc0231a5b,2
+np.float32,0x7d6eeaef,0x42abc32c,2
+np.float32,0xbf062f6b,0xbf3e2000,2
+np.float32,0x8073d8e9,0x8073d8e9,2
+np.float32,0xbea4db14,0xbec6f485,2
+np.float32,0x7d7e8d62,0x42abe3a0,2
+np.float32,0x7e8fc34e,0x42aee7c6,2
+np.float32,0x7dcbb0c3,0x42acd464,2
+np.float32,0x7e123c,0x7e123c,2
+np.float32,0x3d77af62,0x3d707c34,2
+np.float32,0x498cc8,0x498cc8,2
+np.float32,0x7f4e2206,0x42b1032a,2
+np.float32,0x3f734e0a,0x3f2b04a1,2
+np.float32,0x8053a9d0,0x8053a9d0,2
+np.float32,0xbe8a67e0,0xbea15be9,2
+np.float32,0xbf78e0ea,0xc065409e,2
+np.float32,0x352bdd,0x352bdd,2
+np.float32,0x3ee42be7,0x3ebcb38a,2
+np.float32,0x7f482d10,0x42b0f427,2
+np.float32,0xbf23155e,0xbf81b993,2
+np.float32,0x594920,0x594920,2
+np.float32,0x63f53f,0x63f53f,2
+np.float32,0x363592,0x363592,2
+np.float32,0x7dafbb78,0x42ac88cc,2
+np.float32,0x7f69516c,0x42b14298,2
+np.float32,0x3e1d5be2,0x3e126131,2
+np.float32,0x410c23,0x410c23,2
+np.float32,0x7ec9563c,0x42af9439,2
+np.float32,0xbedd3a0e,0xbf10d705,2
+np.float32,0x7f7c4f1f,0x42b16aa8,2
+np.float32,0xbe99b34e,0xbeb6c2d3,2
+np.float32,0x6cdc84,0x6cdc84,2
+np.float32,0x5b3bbe,0x5b3bbe,2
+np.float32,0x252178,0x252178,2
+np.float32,0x7d531865,0x42ab83c8,2
+np.float32,0xbf565b44,0xbfe873bf,2
+np.float32,0x5977ce,0x5977ce,2
+np.float32,0x588a58,0x588a58,2
+np.float32,0x3eae7054,0x3e961d51,2
+np.float32,0x725049,0x725049,2
+np.float32,0x7f2b9386,0x42b0a538,2
+np.float32,0xbe674714,0xbe831245,2
+np.float32,0x8044f0d8,0x8044f0d8,2
+np.float32,0x800a3c21,0x800a3c21,2
+np.float32,0x807b275b,0x807b275b,2
+np.float32,0xbf2463b6,0xbf83896e,2
+np.float32,0x801cca42,0x801cca42,2
+np.float32,0xbf28f2d0,0xbf8a121a,2
+np.float32,0x3f4168c2,0x3f1010ce,2
+np.float32,0x6f91a1,0x6f91a1,2
+np.float32,0xbf2b9eeb,0xbf8e0fc5,2
+np.float32,0xbea4c858,0xbec6d8e4,2
+np.float32,0xbf7abba0,0xc0788e88,2
+np.float32,0x802f18f7,0x802f18f7,2
+np.float32,0xbf7f6c75,0xc0c3145c,2
+np.float32,0xbe988210,0xbeb50f5e,2
+np.float32,0xbf219b7e,0xbf7f6a3b,2
+np.float32,0x7f800000,0x7f800000,2
+np.float32,0x7f7fffff,0x42b17218,2
+np.float32,0xbdca8d90,0xbdd5487e,2
+np.float32,0xbef683b0,0xbf2821b0,2
+np.float32,0x8043e648,0x8043e648,2
+np.float32,0xbf4319a4,0xbfb7cd1b,2
+np.float32,0x62c2b2,0x62c2b2,2
+np.float32,0xbf479ccd,0xbfc1a7b1,2
+np.float32,0x806c8a32,0x806c8a32,2
+np.float32,0x7f004447,0x42b01045,2
+np.float32,0x3f737d36,0x3f2b1ccf,2
+np.float32,0x3ee71f24,0x3ebebced,2
+np.float32,0x3ea0b6b4,0x3e8bc606,2
+np.float32,0x358fd7,0x358fd7,2
+np.float32,0xbe69780c,0xbe847d17,2
+np.float32,0x7f6bed18,0x42b14849,2
+np.float32,0xbf6a5113,0xc01dfe1d,2
+np.float32,0xbf255693,0xbf84de88,2
+np.float32,0x7f34acac,0x42b0bfac,2
+np.float32,0xbe8a3b6a,0xbea11efe,2
+np.float32,0x3f470d84,0x3f1342ab,2
+np.float32,0xbf2cbde3,0xbf8fc602,2
+np.float32,0x47c103,0x47c103,2
+np.float32,0xe3c94,0xe3c94,2
+np.float32,0xbec07afa,0xbef1693a,2
+np.float32,0x6a9cfe,0x6a9cfe,2
+np.float32,0xbe4339e0,0xbe5899da,2
+np.float32,0x7ea9bf1e,0x42af3cd6,2
+np.float32,0x3f6378b4,0x3f22c4c4,2
+np.float32,0xbd989ff0,0xbd9e9c77,2
+np.float32,0xbe6f2f50,0xbe88343d,2
+np.float32,0x3f7f2ac5,0x3f310764,2
+np.float32,0x3f256704,0x3eff2fb2,2
+np.float32,0x80786aca,0x80786aca,2
+np.float32,0x65d02f,0x65d02f,2
+np.float32,0x50d1c3,0x50d1c3,2
+np.float32,0x3f4a9d76,0x3f1541b4,2
+np.float32,0x802cf491,0x802cf491,2
+np.float32,0x3e935cec,0x3e81829b,2
+np.float32,0x3e2ad478,0x3e1dfd81,2
+np.float32,0xbf107cbd,0xbf54bef2,2
+np.float32,0xbf58c02e,0xbff007fe,2
+np.float32,0x80090808,0x80090808,2
+np.float32,0x805d1f66,0x805d1f66,2
+np.float32,0x6aec95,0x6aec95,2
+np.float32,0xbee3fc6e,0xbf16dc73,2
+np.float32,0x7f63314b,0x42b134f9,2
+np.float32,0x550443,0x550443,2
+np.float32,0xbefa8174,0xbf2c026e,2
+np.float32,0x3f7fb380,0x3f314bd5,2
+np.float32,0x80171f2c,0x80171f2c,2
+np.float32,0x3f2f56ae,0x3f058f2d,2
+np.float32,0x3eacaecb,0x3e94cd97,2
+np.float32,0xbe0c4f0c,0xbe16e69d,2
+np.float32,0x3f48e4cb,0x3f144b42,2
+np.float32,0x7f03efe2,0x42b01eb7,2
+np.float32,0xbf1019ac,0xbf53dbe9,2
+np.float32,0x3e958524,0x3e832eb5,2
+np.float32,0xbf1b23c6,0xbf6e72f2,2
+np.float32,0x12c554,0x12c554,2
+np.float32,0x7dee588c,0x42ad24d6,2
+np.float32,0xbe8c216c,0xbea3ba70,2
+np.float32,0x804553cb,0x804553cb,2
+np.float32,0xbe446324,0xbe5a0966,2
+np.float32,0xbef7150a,0xbf28adff,2
+np.float32,0xbf087282,0xbf42ec6e,2
+np.float32,0x3eeef15c,0x3ec41937,2
+np.float32,0x61bbd2,0x61bbd2,2
+np.float32,0x3e51b28d,0x3e3ec538,2
+np.float32,0x57e869,0x57e869,2
+np.float32,0x7e5e7711,0x42ae646c,2
+np.float32,0x8050b173,0x8050b173,2
+np.float32,0xbf63c90c,0xc00d2438,2
+np.float32,0xbeba774c,0xbee7dcf8,2
+np.float32,0x8016faac,0x8016faac,2
+np.float32,0xbe8b448c,0xbea28aaf,2
+np.float32,0x3e8cd448,0x3e78d29e,2
+np.float32,0x80484e02,0x80484e02,2
+np.float32,0x3f63ba68,0x3f22e78c,2
+np.float32,0x2e87bb,0x2e87bb,2
+np.float32,0x230496,0x230496,2
+np.float32,0x1327b2,0x1327b2,2
+np.float32,0xbf046c56,0xbf3a72d2,2
+np.float32,0x3ecefe60,0x3eadd69a,2
+np.float32,0x49c56e,0x49c56e,2
+np.float32,0x3df22d60,0x3de4e550,2
+np.float32,0x3f67c19d,0x3f250707,2
+np.float32,0x3f20eb9c,0x3ef9b624,2
+np.float32,0x3f05ca75,0x3ed742fa,2
+np.float32,0xbe8514f8,0xbe9a1d45,2
+np.float32,0x8070a003,0x8070a003,2
+np.float32,0x7e49650e,0x42ae317a,2
+np.float32,0x3de16ce9,0x3dd5dc3e,2
+np.float32,0xbf4ae952,0xbfc95f1f,2
+np.float32,0xbe44dd84,0xbe5aa0db,2
+np.float32,0x803c3bc0,0x803c3bc0,2
+np.float32,0x3eebb9e8,0x3ec1e692,2
+np.float32,0x80588275,0x80588275,2
+np.float32,0xbea1e69a,0xbec29d86,2
+np.float32,0x3f7b4bf8,0x3f2f154c,2
+np.float32,0x7eb47ecc,0x42af5c46,2
+np.float32,0x3d441e00,0x3d3f911a,2
+np.float32,0x7f54d40e,0x42b11388,2
+np.float32,0xbf47f17e,0xbfc26882,2
+np.float32,0x3ea7da57,0x3e912db4,2
+np.float32,0x3f59cc7b,0x3f1d984e,2
+np.float32,0x570e08,0x570e08,2
+np.float32,0x3e99560c,0x3e8620a2,2
+np.float32,0x3ecfbd14,0x3eae5e55,2
+np.float32,0x7e86be08,0x42aec698,2
+np.float32,0x3f10f28a,0x3ee5b5d3,2
+np.float32,0x7f228722,0x42b0897a,2
+np.float32,0x3f4b979b,0x3f15cd30,2
+np.float32,0xbf134283,0xbf5b30f9,2
+np.float32,0x3f2ae16a,0x3f02e64f,2
+np.float32,0x3e98e158,0x3e85c6cc,2
+np.float32,0x7ec39f27,0x42af857a,2
+np.float32,0x3effedb0,0x3ecf8cea,2
+np.float32,0xbd545620,0xbd5a09c1,2
+np.float32,0x503a28,0x503a28,2
+np.float32,0x3f712744,0x3f29e9a1,2
+np.float32,0x3edc6194,0x3eb748b1,2
+np.float32,0xbf4ec1e5,0xbfd2ff5f,2
+np.float32,0x3f46669e,0x3f12e4b5,2
+np.float32,0xabad3,0xabad3,2
+np.float32,0x80000000,0x80000000,2
+np.float32,0x803f2e6d,0x803f2e6d,2
+np.float32,0xbf431542,0xbfb7c3e6,2
+np.float32,0x3f6f2d53,0x3f28e496,2
+np.float32,0x546bd8,0x546bd8,2
+np.float32,0x25c80a,0x25c80a,2
+np.float32,0x3e50883c,0x3e3dcd7e,2
+np.float32,0xbf5fa2ba,0xc0045c14,2
+np.float32,0x80271c07,0x80271c07,2
+np.float32,0x8043755d,0x8043755d,2
+np.float32,0xbf3c5cea,0xbfaa5ee9,2
+np.float32,0x3f2fea38,0x3f05e6af,2
+np.float32,0x6da3dc,0x6da3dc,2
+np.float32,0xbf095945,0xbf44dc70,2
+np.float32,0xbe33d584,0xbe45c1f5,2
+np.float32,0x7eb41b2e,0x42af5b2b,2
+np.float32,0xbf0feb74,0xbf537242,2
+np.float32,0xbe96225a,0xbeb1b0b1,2
+np.float32,0x3f63b95f,0x3f22e700,2
+np.float32,0x0,0x0,2
+np.float32,0x3e20b0cc,0x3e154374,2
+np.float32,0xbf79880c,0xc06b6801,2
+np.float32,0xbea690b6,0xbec97b93,2
+np.float32,0xbf3e11ca,0xbfada449,2
+np.float32,0x7e7e6292,0x42aea912,2
+np.float32,0x3e793350,0x3e5f0b7b,2
+np.float32,0x802e7183,0x802e7183,2
+np.float32,0x3f1b3695,0x3ef2a788,2
+np.float32,0x801efa20,0x801efa20,2
+np.float32,0x3f1ec43a,0x3ef70f42,2
+np.float32,0xbf12c5ed,0xbf5a0c52,2
+np.float32,0x8005e99c,0x8005e99c,2
+np.float32,0xbf79f5e7,0xc06fcca5,2
+np.float32,0x3ecbaf50,0x3eab7a03,2
+np.float32,0x46b0fd,0x46b0fd,2
+np.float32,0x3edb9023,0x3eb6b631,2
+np.float32,0x7f24bc41,0x42b09063,2
+np.float32,0xbd8d9328,0xbd92b4c6,2
+np.float32,0x3f2c5d7f,0x3f03c9d9,2
+np.float32,0x807bebc9,0x807bebc9,2
+np.float32,0x7f797a99,0x42b164e2,2
+np.float32,0x756e3c,0x756e3c,2
+np.float32,0x80416f8a,0x80416f8a,2
+np.float32,0x3e0d512a,0x3e04611a,2
+np.float32,0x3f7be3e6,0x3f2f61ec,2
+np.float32,0x80075c41,0x80075c41,2
+np.float32,0xbe850294,0xbe9a046c,2
+np.float32,0x684679,0x684679,2
+np.float32,0x3eb393c4,0x3e99eed2,2
+np.float32,0x3f4177c6,0x3f10195b,2
+np.float32,0x3dd1f402,0x3dc7dfe5,2
+np.float32,0x3ef484d4,0x3ec7e2e1,2
+np.float32,0x53eb8f,0x53eb8f,2
+np.float32,0x7f072cb6,0x42b02b20,2
+np.float32,0xbf1b6b55,0xbf6f28d4,2
+np.float32,0xbd8a98d8,0xbd8f827d,2
+np.float32,0x3eafb418,0x3e970e96,2
+np.float32,0x6555af,0x6555af,2
+np.float32,0x7dd5118e,0x42aceb6f,2
+np.float32,0x800a13f7,0x800a13f7,2
+np.float32,0x331a9d,0x331a9d,2
+np.float32,0x8063773f,0x8063773f,2
+np.float32,0x3e95e068,0x3e837553,2
+np.float32,0x80654b32,0x80654b32,2
+np.float32,0x3dabe0e0,0x3da50bb3,2
+np.float32,0xbf6283c3,0xc00a5280,2
+np.float32,0x80751cc5,0x80751cc5,2
+np.float32,0x3f668eb6,0x3f2465c0,2
+np.float32,0x3e13c058,0x3e0a048c,2
+np.float32,0x77780c,0x77780c,2
+np.float32,0x3f7d6e48,0x3f302868,2
+np.float32,0x7e31f9e3,0x42adf22f,2
+np.float32,0x246c7b,0x246c7b,2
+np.float32,0xbe915bf0,0xbeaafa6c,2
+np.float32,0xbf800000,0xff800000,2
+np.float32,0x3f698f42,0x3f25f8e0,2
+np.float32,0x7e698885,0x42ae7d48,2
+np.float32,0x3f5bbd42,0x3f1ea42c,2
+np.float32,0x5b8444,0x5b8444,2
+np.float32,0xbf6065f6,0xc005e2c6,2
+np.float32,0xbeb95036,0xbee60dad,2
+np.float32,0xbf44f846,0xbfbbcade,2
+np.float32,0xc96e5,0xc96e5,2
+np.float32,0xbf213e90,0xbf7e6eae,2
+np.float32,0xbeb309cc,0xbedc4fe6,2
+np.float32,0xbe781cf4,0xbe8e0fe6,2
+np.float32,0x7f0cf0db,0x42b04083,2
+np.float32,0xbf7b6143,0xc08078f9,2
+np.float32,0x80526fc6,0x80526fc6,2
+np.float32,0x3f092bf3,0x3edbaeec,2
+np.float32,0x3ecdf154,0x3ead16df,2
+np.float32,0x2fe85b,0x2fe85b,2
+np.float32,0xbf5100a0,0xbfd8f871,2
+np.float32,0xbec09d40,0xbef1a028,2
+np.float32,0x5e6a85,0x5e6a85,2
+np.float32,0xbec0e2a0,0xbef20f6b,2
+np.float32,0x3f72e788,0x3f2ad00d,2
+np.float32,0x880a6,0x880a6,2
+np.float32,0x3d9e90bf,0x3d98b9fc,2
+np.float32,0x15cf25,0x15cf25,2
+np.float32,0x10171b,0x10171b,2
+np.float32,0x805cf1aa,0x805cf1aa,2
+np.float32,0x3f19bd36,0x3ef0d0d2,2
+np.float32,0x3ebe2bda,0x3ea1b774,2
+np.float32,0xbecd8192,0xbf035c49,2
+np.float32,0x3e2ce508,0x3e1fc21b,2
+np.float32,0x290f,0x290f,2
+np.float32,0x803b679f,0x803b679f,2
+np.float32,0x1,0x1,2
+np.float32,0x807a9c76,0x807a9c76,2
+np.float32,0xbf65fced,0xc01257f8,2
+np.float32,0x3f783414,0x3f2d8475,2
+np.float32,0x3f2d9d92,0x3f0488da,2
+np.float32,0xbddb5798,0xbde80018,2
+np.float32,0x3e91afb8,0x3e8034e7,2
+np.float32,0xbf1b775a,0xbf6f476d,2
+np.float32,0xbf73a32c,0xc041f3ba,2
+np.float32,0xbea39364,0xbec5121b,2
+np.float32,0x80375b94,0x80375b94,2
+np.float32,0x3f331252,0x3f07c3e9,2
+np.float32,0xbf285774,0xbf892e74,2
+np.float32,0x3e699bb8,0x3e526d55,2
+np.float32,0x3f08208a,0x3eda523a,2
+np.float32,0xbf42fb4a,0xbfb78d60,2
+np.float32,0x8029c894,0x8029c894,2
+np.float32,0x3e926c0c,0x3e80c76e,2
+np.float32,0x801e4715,0x801e4715,2
+np.float32,0x3e4b36d8,0x3e395ffd,2
+np.float32,0x8041556b,0x8041556b,2
+np.float32,0xbf2d99ba,0xbf9119bd,2
+np.float32,0x3ed83ea8,0x3eb46250,2
+np.float32,0xbe94a280,0xbeaf92b4,2
+np.float32,0x7f4c7a64,0x42b0ff0a,2
+np.float32,0x806d4022,0x806d4022,2
+np.float32,0xbed382f8,0xbf086d26,2
+np.float32,0x1846fe,0x1846fe,2
+np.float32,0xbe702558,0xbe88d4d8,2
+np.float32,0xbe650ee0,0xbe81a3cc,2
+np.float32,0x3ee9d088,0x3ec0970c,2
+np.float32,0x7f6d4498,0x42b14b30,2
+np.float32,0xbef9f9e6,0xbf2b7ddb,2
+np.float32,0xbf70c384,0xc0349370,2
+np.float32,0xbeff9e9e,0xbf3110c8,2
+np.float32,0xbef06372,0xbf224aa9,2
+np.float32,0xbf15a692,0xbf60e1fa,2
+np.float32,0x8058c117,0x8058c117,2
+np.float32,0xbd9f74b8,0xbda6017b,2
+np.float32,0x801bf130,0x801bf130,2
+np.float32,0x805da84c,0x805da84c,2
+np.float32,0xff800000,0xffc00000,2
+np.float32,0xbeb01de2,0xbed7d6d6,2
+np.float32,0x8077de08,0x8077de08,2
+np.float32,0x3e327668,0x3e2482c1,2
+np.float32,0xbe7add88,0xbe8fe1ab,2
+np.float32,0x805a3c2e,0x805a3c2e,2
+np.float32,0x80326a73,0x80326a73,2
+np.float32,0x800b8a34,0x800b8a34,2
+np.float32,0x8048c83a,0x8048c83a,2
+np.float32,0xbf3799d6,0xbfa1a975,2
+np.float32,0x807649c7,0x807649c7,2
+np.float32,0x3dfdbf90,0x3def3798,2
+np.float32,0xbf1b538a,0xbf6eec4c,2
+np.float32,0xbf1e5989,0xbf76baa0,2
+np.float32,0xc7a80,0xc7a80,2
+np.float32,0x8001be54,0x8001be54,2
+np.float32,0x3f435bbc,0x3f112c6d,2
+np.float32,0xbeabcff8,0xbed151d1,2
+np.float32,0x7de20c78,0x42ad09b7,2
+np.float32,0x3f0e6d2e,0x3ee27b1e,2
+np.float32,0xbf0cb352,0xbf4c3267,2
+np.float32,0x7f6ec06f,0x42b14e61,2
+np.float32,0x7f6fa8ef,0x42b15053,2
+np.float32,0xbf3d2a6a,0xbfabe623,2
+np.float32,0x7f077a4c,0x42b02c46,2
+np.float32,0xbf2a68dc,0xbf8c3cc4,2
+np.float32,0x802a5dbe,0x802a5dbe,2
+np.float32,0x807f631c,0x807f631c,2
+np.float32,0x3dc9b8,0x3dc9b8,2
+np.float32,0x3ebdc1b7,0x3ea16a0a,2
+np.float32,0x7ef29dab,0x42aff3b5,2
+np.float32,0x3e8ab1cc,0x3e757806,2
+np.float32,0x3f27e88e,0x3f011c6d,2
+np.float32,0x3cfd1455,0x3cf93fb5,2
+np.float32,0x7f7eebf5,0x42b16fef,2
+np.float32,0x3c9b2140,0x3c99ade9,2
+np.float32,0x7e928601,0x42aef183,2
+np.float32,0xbd7d2db0,0xbd82abae,2
+np.float32,0x3e6f0df3,0x3e56da20,2
+np.float32,0x7d36a2fc,0x42ab39a3,2
+np.float32,0xbf49d3a2,0xbfc6c859,2
+np.float32,0x7ee541d3,0x42afd6b6,2
+np.float32,0x80753dc0,0x80753dc0,2
+np.float32,0x3f4ce486,0x3f16865d,2
+np.float32,0x39e701,0x39e701,2
+np.float32,0x3f3d9ede,0x3f0de5fa,2
+np.float32,0x7fafb2,0x7fafb2,2
+np.float32,0x3e013fdc,0x3df37090,2
+np.float32,0x807b6a2c,0x807b6a2c,2
+np.float32,0xbe86800a,0xbe9c08c7,2
+np.float32,0x7f40f080,0x42b0e14d,2
+np.float32,0x7eef5afe,0x42afecc8,2
+np.float32,0x7ec30052,0x42af83da,2
+np.float32,0x3eacf768,0x3e9503e1,2
+np.float32,0x7f13ef0e,0x42b0594e,2
+np.float32,0x80419f4a,0x80419f4a,2
+np.float32,0xbf485932,0xbfc3562a,2
+np.float32,0xbe8a24d6,0xbea10011,2
+np.float32,0xbda791c0,0xbdaed2bc,2
+np.float32,0x3e9b5169,0x3e87a67d,2
+np.float32,0x807dd882,0x807dd882,2
+np.float32,0x7f40170e,0x42b0df0a,2
+np.float32,0x7f02f7f9,0x42b01af1,2
+np.float32,0x3ea38bf9,0x3e8decde,2
+np.float32,0x3e2e7ce8,0x3e211ed4,2
+np.float32,0x70a7a6,0x70a7a6,2
+np.float32,0x7d978592,0x42ac3ce7,2
+np.float32,0x804d12d0,0x804d12d0,2
+np.float32,0x80165dc8,0x80165dc8,2
+np.float32,0x80000001,0x80000001,2
+np.float32,0x3e325da0,0x3e246da6,2
+np.float32,0xbe063bb8,0xbe0fe281,2
+np.float32,0x160b8,0x160b8,2
+np.float32,0xbe5687a4,0xbe70bbef,2
+np.float32,0x7f11ab34,0x42b05168,2
+np.float32,0xc955c,0xc955c,2
+np.float32,0xbea0003a,0xbebfd826,2
+np.float32,0x3f7fbdd9,0x3f315102,2
+np.float32,0xbe61aefc,0xbe7ef121,2
+np.float32,0xbf1b9873,0xbf6f9bc3,2
+np.float32,0x3a6d14,0x3a6d14,2
+np.float32,0xbf1ad3b4,0xbf6da808,2
+np.float32,0x3ed2dd24,0x3eb0963d,2
+np.float32,0xbe81a4ca,0xbe957d52,2
+np.float32,0x7f1be3e9,0x42b07421,2
+np.float32,0x7f5ce943,0x42b1269e,2
+np.float32,0x7eebcbdf,0x42afe51d,2
+np.float32,0x807181b5,0x807181b5,2
+np.float32,0xbecb03ba,0xbf0149ad,2
+np.float32,0x42edb8,0x42edb8,2
+np.float32,0xbf3aeec8,0xbfa7b13f,2
+np.float32,0xbd0c4f00,0xbd0ec4a0,2
+np.float32,0x3e48d260,0x3e376070,2
+np.float32,0x1a9731,0x1a9731,2
+np.float32,0x7f323be4,0x42b0b8b5,2
+np.float32,0x1a327f,0x1a327f,2
+np.float32,0x17f1fc,0x17f1fc,2
+np.float32,0xbf2f4f9b,0xbf93c91a,2
+np.float32,0x3ede8934,0x3eb8c9c3,2
+np.float32,0xbf56aaac,0xbfe968bb,2
+np.float32,0x3e22cb5a,0x3e17148c,2
+np.float32,0x7d9def,0x7d9def,2
+np.float32,0x8045b963,0x8045b963,2
+np.float32,0x77404f,0x77404f,2
+np.float32,0x7e2c9efb,0x42ade28b,2
+np.float32,0x8058ad89,0x8058ad89,2
+np.float32,0x7f4139,0x7f4139,2
+np.float32,0x8020e12a,0x8020e12a,2
+np.float32,0x800c9daa,0x800c9daa,2
+np.float32,0x7f2c5ac5,0x42b0a789,2
+np.float32,0x3f04a47b,0x3ed5c043,2
+np.float32,0x804692d5,0x804692d5,2
+np.float32,0xbf6e7fa4,0xc02bb493,2
+np.float32,0x80330756,0x80330756,2
+np.float32,0x7f3e29ad,0x42b0d9e1,2
+np.float32,0xbebf689a,0xbeefb24d,2
+np.float32,0x3f29a86c,0x3f022a56,2
+np.float32,0x3e3bd1c0,0x3e2c72b3,2
+np.float32,0x3f78f2e8,0x3f2de546,2
+np.float32,0x3f3709be,0x3f0a16af,2
+np.float32,0x3e11f150,0x3e086f97,2
+np.float32,0xbf5867ad,0xbfeee8a0,2
+np.float32,0xbebfb328,0xbef0296c,2
+np.float32,0x2f7f15,0x2f7f15,2
+np.float32,0x805cfe84,0x805cfe84,2
+np.float32,0xbf504e01,0xbfd71589,2
+np.float32,0x3ee0903c,0x3eba330c,2
+np.float32,0xbd838990,0xbd87f399,2
+np.float32,0x3f14444e,0x3ee9ee7d,2
+np.float32,0x7e352583,0x42adfb3a,2
+np.float32,0x7e76f824,0x42ae99ec,2
+np.float32,0x3f772d00,0x3f2cfebf,2
+np.float32,0x801f7763,0x801f7763,2
+np.float32,0x3f760bf5,0x3f2c6b87,2
+np.float32,0xbf0bb696,0xbf4a03a5,2
+np.float32,0x3f175d2c,0x3eedd6d2,2
+np.float32,0xbf5723f8,0xbfeae288,2
+np.float32,0x24de0a,0x24de0a,2
+np.float32,0x3cd73f80,0x3cd47801,2
+np.float32,0x7f013305,0x42b013fa,2
+np.float32,0x3e3ad425,0x3e2b9c50,2
+np.float32,0x7d3d16,0x7d3d16,2
+np.float32,0x3ef49738,0x3ec7ef54,2
+np.float32,0x3f5b8612,0x3f1e8678,2
+np.float32,0x7f0eeb5c,0x42b047a7,2
+np.float32,0x7e9d7cb0,0x42af1675,2
+np.float32,0xbdd1cfb0,0xbddd5aa0,2
+np.float32,0xbf645dba,0xc00e78fe,2
+np.float32,0x3f511174,0x3f18d56c,2
+np.float32,0x3d91ad00,0x3d8cba62,2
+np.float32,0x805298da,0x805298da,2
+np.float32,0xbedb6af4,0xbf0f4090,2
+np.float32,0x3d23b1ba,0x3d208205,2
+np.float32,0xbea5783e,0xbec7dc87,2
+np.float32,0x79d191,0x79d191,2
+np.float32,0x3e894413,0x3e7337da,2
+np.float32,0x80800000,0x80800000,2
+np.float32,0xbf34a8d3,0xbf9c907b,2
+np.float32,0x3bae779a,0x3bae011f,2
+np.float32,0x8049284d,0x8049284d,2
+np.float32,0x3eb42cc4,0x3e9a600b,2
+np.float32,0x3da1e2d0,0x3d9bce5f,2
+np.float32,0x3f364b8a,0x3f09a7af,2
+np.float32,0x3d930b10,0x3d8e0118,2
+np.float32,0x8061f8d7,0x8061f8d7,2
+np.float32,0x3f473213,0x3f13573b,2
+np.float32,0x3f1e2a38,0x3ef65102,2
+np.float32,0x8068f7d9,0x8068f7d9,2
+np.float32,0x3f181ef8,0x3eeeca2c,2
+np.float32,0x3eeb6168,0x3ec1a9f5,2
+np.float32,0xc2db6,0xc2db6,2
+np.float32,0x3ef7b578,0x3eca0a69,2
+np.float32,0xbf5b5a84,0xbff8d075,2
+np.float32,0x7f479d5f,0x42b0f2b7,2
+np.float32,0x3e6f3c24,0x3e56ff92,2
+np.float32,0x3f45543a,0x3f1249f0,2
+np.float32,0xbea7c1fa,0xbecb40d2,2
+np.float32,0x7de082,0x7de082,2
+np.float32,0x383729,0x383729,2
+np.float32,0xbd91cb90,0xbd973eb3,2
+np.float32,0x7f320218,0x42b0b80f,2
+np.float32,0x5547f2,0x5547f2,2
+np.float32,0x291fe4,0x291fe4,2
+np.float32,0xbe078ba0,0xbe11655f,2
+np.float32,0x7e0c0658,0x42ad7764,2
+np.float32,0x7e129a2b,0x42ad8ee5,2
+np.float32,0x3f7c96d4,0x3f2fbc0c,2
+np.float32,0x3f800000,0x3f317218,2
+np.float32,0x7f131754,0x42b05662,2
+np.float32,0x15f833,0x15f833,2
+np.float32,0x80392ced,0x80392ced,2
+np.float32,0x3f7c141a,0x3f2f7a36,2
+np.float32,0xbf71c03f,0xc038dcfd,2
+np.float32,0xbe14fb2c,0xbe20fff3,2
+np.float32,0xbee0bac6,0xbf13f14c,2
+np.float32,0x801a32dd,0x801a32dd,2
+np.float32,0x8e12d,0x8e12d,2
+np.float32,0x3f48c606,0x3f143a04,2
+np.float32,0x7f418af5,0x42b0e2e6,2
+np.float32,0x3f1f2918,0x3ef78bb7,2
+np.float32,0x11141b,0x11141b,2
+np.float32,0x3e9fc9e8,0x3e8b11ad,2
+np.float32,0xbea5447a,0xbec79010,2
+np.float32,0xbe31d904,0xbe4359db,2
+np.float32,0x80184667,0x80184667,2
+np.float32,0xbf00503c,0xbf3212c2,2
+np.float32,0x3e0328cf,0x3df6d425,2
+np.float32,0x7ee8e1b7,0x42afdebe,2
+np.float32,0xbef95e24,0xbf2ae5db,2
+np.float32,0x7f3e4eed,0x42b0da45,2
+np.float32,0x3f43ee85,0x3f117fa0,2
+np.float32,0xbcfa2ac0,0xbcfe10fe,2
+np.float32,0x80162774,0x80162774,2
+np.float32,0x372e8b,0x372e8b,2
+np.float32,0x3f263802,0x3f0016b0,2
+np.float32,0x8008725f,0x8008725f,2
+np.float32,0x800beb40,0x800beb40,2
+np.float32,0xbe93308e,0xbead8a77,2
+np.float32,0x3d8a4240,0x3d85cab8,2
+np.float32,0x80179de0,0x80179de0,2
+np.float32,0x7f4a98f2,0x42b0fa4f,2
+np.float32,0x3f0d214e,0x3ee0cff1,2
+np.float32,0x80536c2c,0x80536c2c,2
+np.float32,0x7e7038ed,0x42ae8bbe,2
+np.float32,0x7f345af9,0x42b0bec4,2
+np.float32,0xbf243219,0xbf83442f,2
+np.float32,0x7e0d5555,0x42ad7c27,2
+np.float32,0x762e95,0x762e95,2
+np.float32,0x7ebf4548,0x42af79f6,2
+np.float32,0x8079639e,0x8079639e,2
+np.float32,0x3ef925c0,0x3ecb0260,2
+np.float32,0x3f708695,0x3f2996d6,2
+np.float32,0xfca9f,0xfca9f,2
+np.float32,0x8060dbf4,0x8060dbf4,2
+np.float32,0x4c8840,0x4c8840,2
+np.float32,0xbea922ee,0xbecd4ed5,2
+np.float32,0xbf4f28a9,0xbfd40b98,2
+np.float32,0xbe25ad48,0xbe34ba1b,2
+np.float32,0x3f2fb254,0x3f05c58c,2
+np.float32,0x3f73bcc2,0x3f2b3d5f,2
+np.float32,0xbf479a07,0xbfc1a165,2
+np.float32,0xbeb9a808,0xbee69763,2
+np.float32,0x7eb16a65,0x42af5376,2
+np.float32,0xbeb3e442,0xbedda042,2
+np.float32,0x3d8f439c,0x3d8a79ac,2
+np.float32,0x80347516,0x80347516,2
+np.float32,0x3e8a0c5d,0x3e74738c,2
+np.float32,0xbf0383a4,0xbf389289,2
+np.float32,0x806be8f5,0x806be8f5,2
+np.float32,0x8023f0c5,0x8023f0c5,2
+np.float32,0x2060e9,0x2060e9,2
+np.float32,0xbf759eba,0xc04d239f,2
+np.float32,0x3d84cc5a,0x3d80ab96,2
+np.float32,0xbf57746b,0xbfebdf87,2
+np.float32,0x3e418417,0x3e31401f,2
+np.float32,0xaecce,0xaecce,2
+np.float32,0x3cd1766f,0x3cced45c,2
+np.float32,0x53724a,0x53724a,2
+np.float32,0x3f773710,0x3f2d03de,2
+np.float32,0x8013d040,0x8013d040,2
+np.float32,0x4d0eb2,0x4d0eb2,2
+np.float32,0x8014364a,0x8014364a,2
+np.float32,0x7f3c56c9,0x42b0d4f2,2
+np.float32,0x3eee1e1c,0x3ec3891a,2
+np.float32,0xbdda3eb8,0xbde6c5a0,2
+np.float32,0x26ef4a,0x26ef4a,2
+np.float32,0x7ed3370c,0x42afacbf,2
+np.float32,0xbf06e31b,0xbf3f9ab7,2
+np.float32,0xbe3185f0,0xbe42f556,2
+np.float32,0x3dcf9abe,0x3dc5be41,2
+np.float32,0xbf3696d9,0xbf9fe2bd,2
+np.float32,0x3e68ee50,0x3e51e01a,2
+np.float32,0x3f3d4cc2,0x3f0db6ca,2
+np.float32,0x7fa00000,0x7fe00000,2
+np.float32,0xbf03070c,0xbf3792d0,2
+np.float32,0x3ea79e6c,0x3e910092,2
+np.float32,0xbf1a393a,0xbf6c2251,2
+np.float32,0x3f41eb0e,0x3f105afc,2
+np.float32,0x3ceadb2f,0x3ce78d79,2
+np.float32,0xbf5dc105,0xc000be2c,2
+np.float32,0x7ebb5a0e,0x42af6f5c,2
+np.float32,0xbf7c44eb,0xc0875058,2
+np.float32,0x6aaaf4,0x6aaaf4,2
+np.float32,0x807d8f23,0x807d8f23,2
+np.float32,0xbee6b142,0xbf194fef,2
+np.float32,0xbe83f256,0xbe989526,2
+np.float32,0x7d588e,0x7d588e,2
+np.float32,0x7cc80131,0x42aa0542,2
+np.float32,0x3e0ab198,0x3e02124f,2
+np.float32,0xbf6e64db,0xc02b52eb,2
+np.float32,0x3d238b56,0x3d205d1b,2
+np.float32,0xbeb408e2,0xbeddd8bc,2
+np.float32,0x3f78340d,0x3f2d8471,2
+np.float32,0x806162a3,0x806162a3,2
+np.float32,0x804e484f,0x804e484f,2
+np.float32,0xbeb8c576,0xbee53466,2
+np.float32,0x807aab15,0x807aab15,2
+np.float32,0x3f523e20,0x3f197ab8,2
+np.float32,0xbf009190,0xbf3295de,2
+np.float32,0x3df43da5,0x3de6bd82,2
+np.float32,0x7f639aea,0x42b135e6,2
+np.float32,0x3f1e638a,0x3ef697da,2
+np.float32,0xbf4884de,0xbfc3bac3,2
+np.float32,0xbe9336b6,0xbead931b,2
+np.float32,0x6daf7f,0x6daf7f,2
+np.float32,0xbf1fc152,0xbf7a70b1,2
+np.float32,0x3f103720,0x3ee4c649,2
+np.float32,0x3eeaa227,0x3ec126df,2
+np.float32,0x7f7ea945,0x42b16f69,2
+np.float32,0x3d3cd800,0x3d389ead,2
+np.float32,0x3f3d7268,0x3f0dcc6e,2
+np.float32,0xbf3c1b41,0xbfa9e2e3,2
+np.float32,0x3ecf3818,0x3eadffb2,2
+np.float32,0x3f1af312,0x3ef25372,2
+np.float32,0x48fae4,0x48fae4,2
+np.float64,0x7fedaa1ee4fb543d,0x40862da7ca7c308e,1
+np.float64,0x8007d2d810efa5b1,0x8007d2d810efa5b1,1
+np.float64,0x3fc385e069270bc0,0x3fc22b8884cf2c3b,1
+np.float64,0x68ed4130d1da9,0x68ed4130d1da9,1
+np.float64,0x8008e93e58d1d27d,0x8008e93e58d1d27d,1
+np.float64,0xbfd3d62852a7ac50,0xbfd7be3a7ad1af02,1
+np.float64,0xbfc1fa0ba923f418,0xbfc35f0f19447df7,1
+np.float64,0xbfe01b8cec20371a,0xbfe6658c7e6c8e50,1
+np.float64,0xbfeda81a147b5034,0xc004e9c94f2b91c1,1
+np.float64,0xbfe1c36a97e386d5,0xbfe9ead4d6beaa92,1
+np.float64,0x3fe50be51f2a17ca,0x3fe02c8067d9e5c5,1
+np.float64,0x3febed4d3337da9a,0x3fe413956466134f,1
+np.float64,0x80068ea59ced1d4c,0x80068ea59ced1d4c,1
+np.float64,0x3febe77d5877cefb,0x3fe4107ac088bc71,1
+np.float64,0x800ae77617d5ceed,0x800ae77617d5ceed,1
+np.float64,0x3fd0546b60a0a8d7,0x3fcd16c2e995ab23,1
+np.float64,0xbfe33e1476667c29,0xbfed6d7faec4db2f,1
+np.float64,0x3fe9d2fd51b3a5fb,0x3fe2eef834310219,1
+np.float64,0x8004249878284932,0x8004249878284932,1
+np.float64,0xbfd5b485c72b690c,0xbfda828ccc6a7a5c,1
+np.float64,0x7fcd6e6b6b3adcd6,0x408622807f04768e,1
+np.float64,0x3fd7f9c32caff386,0x3fd45d024514b8da,1
+np.float64,0x7f87eb9d702fd73a,0x40860aa99fcff27f,1
+np.float64,0xbfc5d1f6fb2ba3ec,0xbfc7ec367cb3fecc,1
+np.float64,0x8008316a44d062d5,0x8008316a44d062d5,1
+np.float64,0xbfd54e4358aa9c86,0xbfd9e889d2998a4a,1
+np.float64,0xda65facdb4cc0,0xda65facdb4cc0,1
+np.float64,0x3fc5b4f6f32b69f0,0x3fc40d13aa8e248b,1
+np.float64,0x3fd825a5d5b04b4c,0x3fd47ce73e04d3ff,1
+np.float64,0x7ac9d56ef593b,0x7ac9d56ef593b,1
+np.float64,0xbfd0a51977214a32,0xbfd34702071428be,1
+np.float64,0x3fd21f620b243ec4,0x3fcfea0c02193640,1
+np.float64,0x3fe6fb3f1b2df67e,0x3fe151ffb18c983b,1
+np.float64,0x700de022e01bd,0x700de022e01bd,1
+np.float64,0xbfbb76b81236ed70,0xbfbd0d31deea1ec7,1
+np.float64,0x3fecfc3856f9f870,0x3fe4a2fcadf221e0,1
+np.float64,0x3fede286517bc50c,0x3fe51af2fbd6ef63,1
+np.float64,0x7fdc8da96c391b52,0x408627ce09cfef2b,1
+np.float64,0x8000edfcfb81dbfb,0x8000edfcfb81dbfb,1
+np.float64,0x8009ebc42af3d789,0x8009ebc42af3d789,1
+np.float64,0x7fd658aaf8acb155,0x408625d80cd1ccc9,1
+np.float64,0x3feea584a37d4b09,0x3fe57f29a73729cd,1
+np.float64,0x4cfe494699fca,0x4cfe494699fca,1
+np.float64,0xbfe9d96460b3b2c9,0xbffa62ecfa026c77,1
+np.float64,0x7fdb3852c3b670a5,0x4086276c191dc9b1,1
+np.float64,0xbfe4d1fc9ee9a3f9,0xbff0d37ce37cf479,1
+np.float64,0xffefffffffffffff,0xfff8000000000000,1
+np.float64,0xbfd1c43d7fa3887a,0xbfd4cfbefb5f2c43,1
+np.float64,0x3fec4a8e0d78951c,0x3fe4453a82ca2570,1
+np.float64,0x7fafed74583fdae8,0x4086181017b8dac9,1
+np.float64,0x80076c4ebcced89e,0x80076c4ebcced89e,1
+np.float64,0x8001a9aa7b235356,0x8001a9aa7b235356,1
+np.float64,0x121260fe2424d,0x121260fe2424d,1
+np.float64,0x3fddd028e3bba052,0x3fd87998c4c43c5b,1
+np.float64,0x800ed1cf4a9da39f,0x800ed1cf4a9da39f,1
+np.float64,0xbfef2e63d7fe5cc8,0xc00d53480b16971b,1
+np.float64,0xbfedde3309fbbc66,0xc005ab55b7a7c127,1
+np.float64,0x3fda3e1e85b47c3d,0x3fd5fddafd8d6729,1
+np.float64,0x8007c6443c6f8c89,0x8007c6443c6f8c89,1
+np.float64,0xbfe101705f2202e0,0xbfe8420817665121,1
+np.float64,0x7fe0bff3c1e17fe7,0x4086291539c56d80,1
+np.float64,0x7fe6001dab6c003a,0x40862b43aa7cb060,1
+np.float64,0x7fbdecf7de3bd9ef,0x40861d170b1c51a5,1
+np.float64,0xbfc0fd508c21faa0,0xbfc23a5876e99fa3,1
+np.float64,0xbfcf6eb14f3edd64,0xbfd208cbf742c8ea,1
+np.float64,0x3f6d40ea403a81d5,0x3f6d33934ab8e799,1
+np.float64,0x7fc32600b6264c00,0x40861f10302357e0,1
+np.float64,0x3fd05870baa0b0e0,0x3fcd1d2af420fac7,1
+np.float64,0x80051d5120aa3aa3,0x80051d5120aa3aa3,1
+np.float64,0x3fdb783fcfb6f080,0x3fd6db229658c083,1
+np.float64,0x3fe0b61199e16c24,0x3fdae41e277be2eb,1
+np.float64,0x3daf62167b5ed,0x3daf62167b5ed,1
+np.float64,0xbfec3c53b6f878a7,0xc0011f0ce7a78a2a,1
+np.float64,0x800fc905161f920a,0x800fc905161f920a,1
+np.float64,0x3fdc7b9cc138f73a,0x3fd78f9c2360e661,1
+np.float64,0x7fe4079e97a80f3c,0x40862a83795f2443,1
+np.float64,0x8010000000000000,0x8010000000000000,1
+np.float64,0x7fe6da5345adb4a6,0x40862b9183c1e4b0,1
+np.float64,0xbfd0a76667214ecc,0xbfd34a1e0c1f6186,1
+np.float64,0x37fb0b906ff62,0x37fb0b906ff62,1
+np.float64,0x7fe170e59fa2e1ca,0x408629680a55e5c5,1
+np.float64,0x3fea900c77752019,0x3fe356eec75aa345,1
+np.float64,0x3fc575c63a2aeb8c,0x3fc3d701167d76b5,1
+np.float64,0x3fe8b45da87168bc,0x3fe24ecbb778fd44,1
+np.float64,0xbfcb990ab5373214,0xbfcf1596c076813c,1
+np.float64,0xf146fdfbe28e0,0xf146fdfbe28e0,1
+np.float64,0x8001fcd474c3f9aa,0x8001fcd474c3f9aa,1
+np.float64,0xbfe9b555eeb36aac,0xbffa0630c3bb485b,1
+np.float64,0x800f950be83f2a18,0x800f950be83f2a18,1
+np.float64,0x7feb0e03ab761c06,0x40862ceb30e36887,1
+np.float64,0x7fca51bd4a34a37a,0x4086219b9dfd35c9,1
+np.float64,0xbfdc27c34cb84f86,0xbfe28ccde8d6bc08,1
+np.float64,0x80009ce1714139c4,0x80009ce1714139c4,1
+np.float64,0x8005290fb1ea5220,0x8005290fb1ea5220,1
+np.float64,0xbfee81e6473d03cd,0xc00885972ca1699b,1
+np.float64,0x7fcfb11a373f6233,0x408623180b8f75d9,1
+np.float64,0xbfcb9c4bfd373898,0xbfcf19bd25881928,1
+np.float64,0x7feaec5885f5d8b0,0x40862ce136050e6c,1
+np.float64,0x8009e17a4a53c2f5,0x8009e17a4a53c2f5,1
+np.float64,0xbfe1cceb9e6399d7,0xbfea0038bd3def20,1
+np.float64,0x8009170bd7122e18,0x8009170bd7122e18,1
+np.float64,0xb2b6f7f1656df,0xb2b6f7f1656df,1
+np.float64,0x3fc75bfd1f2eb7f8,0x3fc574c858332265,1
+np.float64,0x3fa24c06ec249800,0x3fa1fa462ffcb8ec,1
+np.float64,0xaa9a4d2d5534a,0xaa9a4d2d5534a,1
+np.float64,0xbfd7b76208af6ec4,0xbfdda0c3200dcc9f,1
+np.float64,0x7f8cbab73039756d,0x40860c20cba57a94,1
+np.float64,0x3fdbcf9f48b79f3f,0x3fd71827a60e8b6d,1
+np.float64,0xbfdd60f71a3ac1ee,0xbfe3a94bc8cf134d,1
+np.float64,0xb9253589724a7,0xb9253589724a7,1
+np.float64,0xbfcf28e37e3e51c8,0xbfd1da9977b741e3,1
+np.float64,0x80011457f7e228b1,0x80011457f7e228b1,1
+np.float64,0x7fec33df737867be,0x40862d404a897122,1
+np.float64,0xae55f8f95cabf,0xae55f8f95cabf,1
+np.float64,0xbfc1ab9397235728,0xbfc303e5533d4a5f,1
+np.float64,0x7fef0f84b3be1f08,0x40862e05f9ba7118,1
+np.float64,0x7fdc94f328b929e5,0x408627d01449d825,1
+np.float64,0x3fee1b598c7c36b3,0x3fe53847be166834,1
+np.float64,0x3fee8326f37d064e,0x3fe56d96f3fbcf43,1
+np.float64,0x3fe7b18a83ef6316,0x3fe1bb6a6d48c675,1
+np.float64,0x3fe5db969c6bb72e,0x3fe0a8d7d151996c,1
+np.float64,0x3e3391d27c673,0x3e3391d27c673,1
+np.float64,0x3fe79a46d76f348e,0x3fe1ae09a96ea628,1
+np.float64,0x7ff4000000000000,0x7ffc000000000000,1
+np.float64,0x7fe57d6505aafac9,0x40862b13925547f1,1
+np.float64,0x3fc433371d28666e,0x3fc2c196a764c47b,1
+np.float64,0x8008dbf69cd1b7ee,0x8008dbf69cd1b7ee,1
+np.float64,0xbfe744f459ee89e8,0xbff4c847ad3ee152,1
+np.float64,0x80098aa245331545,0x80098aa245331545,1
+np.float64,0x6747112ece8e3,0x6747112ece8e3,1
+np.float64,0x5d342a40ba69,0x5d342a40ba69,1
+np.float64,0xf7a17739ef42f,0xf7a17739ef42f,1
+np.float64,0x3fe1b34a9d236695,0x3fdc2d7c4e2c347a,1
+np.float64,0x7fb53bf5ec2a77eb,0x40861a585ec8f7ff,1
+np.float64,0xbfe6256f1cec4ade,0xbff2d89a36be65ae,1
+np.float64,0xb783bc9b6f078,0xb783bc9b6f078,1
+np.float64,0xbfedf74a3bfbee94,0xc0060bb6f2bc11ef,1
+np.float64,0x3fda2a5eccb454be,0x3fd5efd7f18b8e81,1
+np.float64,0xbfb3838ab2270718,0xbfb44c337fbca3c3,1
+np.float64,0x3fb4ac6dc22958e0,0x3fb3e194ca01a502,1
+np.float64,0x76c11aaaed824,0x76c11aaaed824,1
+np.float64,0x80025bb1af04b764,0x80025bb1af04b764,1
+np.float64,0x3fdc02740ab804e8,0x3fd73b8cd6f95f19,1
+np.float64,0x3fe71856f5ee30ae,0x3fe162e9fafb4428,1
+np.float64,0x800236f332646de7,0x800236f332646de7,1
+np.float64,0x7fe13fd9d2e27fb3,0x408629516b42a317,1
+np.float64,0x7fdf6bbd34bed779,0x40862892069d805c,1
+np.float64,0x3fd4727beba8e4f8,0x3fd1be5b48d9e282,1
+np.float64,0x800e0fac9e5c1f59,0x800e0fac9e5c1f59,1
+np.float64,0xfb54423ff6a89,0xfb54423ff6a89,1
+np.float64,0x800fbf7ed47f7efe,0x800fbf7ed47f7efe,1
+np.float64,0x3fe9d41fa2f3a840,0x3fe2ef98dc1fd463,1
+np.float64,0x800d733e805ae67d,0x800d733e805ae67d,1
+np.float64,0x3feebe4c46fd7c98,0x3fe58bcf7f47264e,1
+np.float64,0x7fe1ab77b5e356ee,0x40862982bb3dce34,1
+np.float64,0xbfdddac05abbb580,0xbfe41aa45f72d5a2,1
+np.float64,0x3fe14219dee28434,0x3fdb9b137d1f1220,1
+np.float64,0x3fe25d3d5a24ba7b,0x3fdd06e1cf32d35a,1
+np.float64,0x8000fa4fbe81f4a0,0x8000fa4fbe81f4a0,1
+np.float64,0x3fe303e23e6607c4,0x3fddd94982efa9f1,1
+np.float64,0x3fe89cf5d83139ec,0x3fe24193a2e12f75,1
+np.float64,0x3fe9b36ef87366de,0x3fe2dd7cdc25a4a5,1
+np.float64,0xbfdb8b38f8371672,0xbfe2023ba7e002bb,1
+np.float64,0xafc354955f86b,0xafc354955f86b,1
+np.float64,0xbfe2f3d49e65e7a9,0xbfecb557a94123d3,1
+np.float64,0x800496617c092cc4,0x800496617c092cc4,1
+np.float64,0x32db0cfa65b62,0x32db0cfa65b62,1
+np.float64,0xbfd893bfa2b12780,0xbfdf02a8c1e545aa,1
+np.float64,0x7fd5ac927d2b5924,0x408625997e7c1f9b,1
+np.float64,0x3fde9defb8bd3be0,0x3fd9056190986349,1
+np.float64,0x80030cfeb54619fe,0x80030cfeb54619fe,1
+np.float64,0x3fcba85b273750b8,0x3fc90a5ca976594f,1
+np.float64,0x3fe98f6f5cf31edf,0x3fe2c97fcb4eca25,1
+np.float64,0x3fe33dbf90667b80,0x3fde21b83321b993,1
+np.float64,0x3fe4686636e8d0cc,0x3fdf928cdca751b3,1
+np.float64,0x80018ade6ce315be,0x80018ade6ce315be,1
+np.float64,0x7fa9af70c8335ee1,0x408616528cd5a906,1
+np.float64,0x3fbeb460aa3d68c0,0x3fbcff96b00a2193,1
+np.float64,0x7fa82c869830590c,0x408615d6598d9368,1
+np.float64,0xd08c0e6fa1182,0xd08c0e6fa1182,1
+np.float64,0x3fef4eb750fe9d6f,0x3fe5d522fd4e7f64,1
+np.float64,0xbfc586f5492b0dec,0xbfc791eaae92aad1,1
+np.float64,0x7fede64ac7bbcc95,0x40862db7f444fa7b,1
+np.float64,0x3fe540003d6a8000,0x3fe04bdfc2916a0b,1
+np.float64,0x8009417fe6f28300,0x8009417fe6f28300,1
+np.float64,0x3fe6959cf16d2b3a,0x3fe116a1ce01887b,1
+np.float64,0x3fb0a40036214800,0x3fb01f447778219a,1
+np.float64,0x3feff26e91ffe4dd,0x3fe627798fc859a7,1
+np.float64,0x7fed8e46cd7b1c8d,0x40862da044a1d102,1
+np.float64,0x7fec4eb774f89d6e,0x40862d47e43edb53,1
+np.float64,0x3fe800e5e07001cc,0x3fe1e8e2b9105fc2,1
+np.float64,0x800f4eb2f9be9d66,0x800f4eb2f9be9d66,1
+np.float64,0x800611659bcc22cc,0x800611659bcc22cc,1
+np.float64,0x3fd66e65d2acdccc,0x3fd33ad63a5e1000,1
+np.float64,0x800a9085b7f5210c,0x800a9085b7f5210c,1
+np.float64,0x7fdf933a3fbf2673,0x4086289c0e292f2b,1
+np.float64,0x1cd1ba7a39a38,0x1cd1ba7a39a38,1
+np.float64,0xbfefd0b10fffa162,0xc0149ded900ed851,1
+np.float64,0xbfe8c63485b18c69,0xbff7cf3078b1574f,1
+np.float64,0x3fecde56ca79bcae,0x3fe4934afbd7dda9,1
+np.float64,0x8006cd6888cd9ad2,0x8006cd6888cd9ad2,1
+np.float64,0x3fd7a391c2af4724,0x3fd41e2f74df2329,1
+np.float64,0x3fe6a8ad58ed515a,0x3fe121ccfb28e6f5,1
+np.float64,0x7fe18a80dd631501,0x40862973c09086b9,1
+np.float64,0xbf74fd6d8029fb00,0xbf750b3e368ebe6b,1
+np.float64,0x3fdd35e93dba6bd4,0x3fd810071faaffad,1
+np.float64,0x3feb0d8f57361b1f,0x3fe39b3abdef8b7a,1
+np.float64,0xbfd5ec7288abd8e6,0xbfdad764df0d2ca1,1
+np.float64,0x7fdc848272b90904,0x408627cb78f3fb9e,1
+np.float64,0x800ed3eda91da7db,0x800ed3eda91da7db,1
+np.float64,0x3fefac64857f58c9,0x3fe60459dbaad1ba,1
+np.float64,0x3fd1df7a5ba3bef4,0x3fcf864a39b926ff,1
+np.float64,0xfe26ca4bfc4da,0xfe26ca4bfc4da,1
+np.float64,0xbfd1099f8da21340,0xbfd3cf6e6efe934b,1
+np.float64,0xbfe15de9a7a2bbd4,0xbfe909cc895f8795,1
+np.float64,0x3fe89714ed712e2a,0x3fe23e40d31242a4,1
+np.float64,0x800387113e470e23,0x800387113e470e23,1
+np.float64,0x3fe4f80730e9f00e,0x3fe0208219314cf1,1
+np.float64,0x2f95a97c5f2b6,0x2f95a97c5f2b6,1
+np.float64,0x800ea7cdd87d4f9c,0x800ea7cdd87d4f9c,1
+np.float64,0xbf64b967c0297300,0xbf64c020a145b7a5,1
+np.float64,0xbfc5a91a342b5234,0xbfc7bafd77a61d81,1
+np.float64,0xbfe2226fe76444e0,0xbfeac33eb1d1b398,1
+np.float64,0x3fc6aaa8d42d5552,0x3fc4de79f5c68cd4,1
+np.float64,0x3fe54fd4c1ea9faa,0x3fe05561a9a5922b,1
+np.float64,0x80029c1f75653840,0x80029c1f75653840,1
+np.float64,0xbfcb4a84a2369508,0xbfceb1a23bac3995,1
+np.float64,0x80010abeff02157f,0x80010abeff02157f,1
+np.float64,0x7f92d12cf825a259,0x40860e49bde3a5b6,1
+np.float64,0x800933e7027267ce,0x800933e7027267ce,1
+np.float64,0x3fc022b12e204562,0x3fbe64acc53ed887,1
+np.float64,0xbfe35f938de6bf27,0xbfedc1f3e443c016,1
+np.float64,0x1f8d9bae3f1b4,0x1f8d9bae3f1b4,1
+np.float64,0x3fe552f22ceaa5e4,0x3fe057404072350f,1
+np.float64,0xbfa73753442e6ea0,0xbfa7c24a100190f1,1
+np.float64,0x7fb3e2982827c52f,0x408619d1efa676b6,1
+np.float64,0xbfd80cb7a5301970,0xbfde28e65f344f33,1
+np.float64,0xbfcde835973bd06c,0xbfd10806fba46c8f,1
+np.float64,0xbfd4e3c749a9c78e,0xbfd949aff65de39c,1
+np.float64,0x3fcb4b9d6f36973b,0x3fc8be02ad6dc0d3,1
+np.float64,0x1a63000034c7,0x1a63000034c7,1
+np.float64,0x7fdc9c751e3938e9,0x408627d22df71959,1
+np.float64,0x3fd74f3f712e9e7f,0x3fd3e07df0c37ec1,1
+np.float64,0xbfceab74d33d56e8,0xbfd187e99bf82903,1
+np.float64,0x7ff0000000000000,0x7ff0000000000000,1
+np.float64,0xbfb2cca466259948,0xbfb3868208e8de30,1
+np.float64,0x800204688b8408d2,0x800204688b8408d2,1
+np.float64,0x3e4547407c8aa,0x3e4547407c8aa,1
+np.float64,0xbfe4668846e8cd10,0xbff03c85189f3818,1
+np.float64,0x800dd350245ba6a0,0x800dd350245ba6a0,1
+np.float64,0xbfbc13c160382780,0xbfbdbd56ce996d16,1
+np.float64,0x7fe25a628a24b4c4,0x408629d06eb2d64d,1
+np.float64,0x3fd19dabbc233b57,0x3fcf1f3ed1d34c8c,1
+np.float64,0x547e20faa8fc5,0x547e20faa8fc5,1
+np.float64,0xbfe19392c6232726,0xbfe97ffe4f303335,1
+np.float64,0x3f87f9f6702ff400,0x3f87d64fb471bb04,1
+np.float64,0x9dfc52db3bf8b,0x9dfc52db3bf8b,1
+np.float64,0x800e1f5a9adc3eb5,0x800e1f5a9adc3eb5,1
+np.float64,0xbfddbd09c8bb7a14,0xbfe3fed7d7cffc70,1
+np.float64,0xbfeda71af87b4e36,0xc004e6631c514544,1
+np.float64,0xbfdbfcfe1bb7f9fc,0xbfe266b5d4a56265,1
+np.float64,0x3fe4ee78cd69dcf2,0x3fe01abba4e81fc9,1
+np.float64,0x800f13b820de2770,0x800f13b820de2770,1
+np.float64,0x3f861e09702c3c00,0x3f85ffae83b02c4f,1
+np.float64,0xbfc0972479212e48,0xbfc1c4bf70b30cbc,1
+np.float64,0x7fef057ef57e0afd,0x40862e036479f6a9,1
+np.float64,0x8bdbabe517b76,0x8bdbabe517b76,1
+np.float64,0xbfec495417f892a8,0xc0013ade88746d18,1
+np.float64,0x3fec680ab3f8d015,0x3fe454dd304b560d,1
+np.float64,0xbfae7ce60c3cf9d0,0xbfaf6eef15bbe56b,1
+np.float64,0x3fec314124786282,0x3fe437ca06294f5a,1
+np.float64,0x7fd5ed05b82bda0a,0x408625b125518e58,1
+np.float64,0x3feac9f02f3593e0,0x3fe3768104dd5cb7,1
+np.float64,0x0,0x0,1
+np.float64,0xbfddd2abd5bba558,0xbfe41312b8ea20de,1
+np.float64,0xbfedf9558c7bf2ab,0xc00613c53e0bb33a,1
+np.float64,0x3fef245ffefe48c0,0x3fe5bfb4dfe3b7a5,1
+np.float64,0x7fe178604922f0c0,0x4086296b77d5eaef,1
+np.float64,0x10000000000000,0x10000000000000,1
+np.float64,0x7fed026766ba04ce,0x40862d7a0dc45643,1
+np.float64,0xbfde27d8c3bc4fb2,0xbfe46336b6447697,1
+np.float64,0x3fe9485d9cb290bb,0x3fe2a1e4b6419423,1
+np.float64,0xbfe27b8a7464f715,0xbfeb9382f5b16f65,1
+np.float64,0x5c34d274b869b,0x5c34d274b869b,1
+np.float64,0xbfeee0b7453dc16f,0xc00acdb46459b6e6,1
+np.float64,0x7fe3dfb4d4e7bf69,0x40862a73785fdf12,1
+np.float64,0xb4635eef68c6c,0xb4635eef68c6c,1
+np.float64,0xbfe522a2c82a4546,0xbff148912a59a1d6,1
+np.float64,0x8009ba38a9737472,0x8009ba38a9737472,1
+np.float64,0xbfc056ff3820ae00,0xbfc17b2205fa180d,1
+np.float64,0x7fe1c8b8a0239170,0x4086298feeee6133,1
+np.float64,0x3fe2d2c6b9e5a58e,0x3fdd9b907471031b,1
+np.float64,0x3fa0a161bc2142c0,0x3fa05db36f6a073b,1
+np.float64,0x3fdef4268ebde84c,0x3fd93f980794d1e7,1
+np.float64,0x800ecd9fe2fd9b40,0x800ecd9fe2fd9b40,1
+np.float64,0xbfc9fbd45e33f7a8,0xbfcd0afc47c340f6,1
+np.float64,0x3fe8c3035b718606,0x3fe2570eb65551a1,1
+np.float64,0xbfe78c4ad2ef1896,0xbff54d25b3328742,1
+np.float64,0x8006f5dcf8adebbb,0x8006f5dcf8adebbb,1
+np.float64,0x800301dca2a603ba,0x800301dca2a603ba,1
+np.float64,0xad4289e55a851,0xad4289e55a851,1
+np.float64,0x80037764f9e6eecb,0x80037764f9e6eecb,1
+np.float64,0xbfe73575b26e6aec,0xbff4abfb5e985c62,1
+np.float64,0xbfc6cb91652d9724,0xbfc91a8001b33ec2,1
+np.float64,0xbfe3a918ffe75232,0xbfee7e6e4fd34c53,1
+np.float64,0x9bc84e2b3790a,0x9bc84e2b3790a,1
+np.float64,0x7fdeec303cbdd85f,0x408628714a49d996,1
+np.float64,0x3fe1d1dcb763a3ba,0x3fdc54ce060dc7f4,1
+np.float64,0x8008ae6432b15cc9,0x8008ae6432b15cc9,1
+np.float64,0x3fd8022fa2b00460,0x3fd46322bf02a609,1
+np.float64,0xbfc55b64472ab6c8,0xbfc75d9568f462e0,1
+np.float64,0xbfe8b165437162ca,0xbff7a15e2ead645f,1
+np.float64,0x7f759330feeb3,0x7f759330feeb3,1
+np.float64,0xbfd504f68eaa09ee,0xbfd97b06c01d7473,1
+np.float64,0x54702d5aa8e06,0x54702d5aa8e06,1
+np.float64,0xbfed1779337a2ef2,0xc0032f7109ef5a51,1
+np.float64,0xe248bd4dc4918,0xe248bd4dc4918,1
+np.float64,0xbfd8c59150318b22,0xbfdf53bca6ca8b1e,1
+np.float64,0xbfe3b9d942e773b2,0xbfeea9fcad277ba7,1
+np.float64,0x800934ec127269d9,0x800934ec127269d9,1
+np.float64,0xbfbb7f535a36fea8,0xbfbd16d61b6c52b8,1
+np.float64,0xccb185a199631,0xccb185a199631,1
+np.float64,0x3fe3dda76fe7bb4e,0x3fdee83bc6094301,1
+np.float64,0xbfe0c902f5e19206,0xbfe7ca7c0e888006,1
+np.float64,0xbfefeed08cbfdda1,0xc018aadc483c8724,1
+np.float64,0x7fd0c05c52a180b8,0x40862389daf64aac,1
+np.float64,0xbfd28e3323a51c66,0xbfd5e9ba278fb685,1
+np.float64,0xbef4103b7de82,0xbef4103b7de82,1
+np.float64,0x3fe7661fd12ecc40,0x3fe18ff7dfb696e2,1
+np.float64,0x3fddd5f2f0bbabe4,0x3fd87d8bb6719c3b,1
+np.float64,0x800b3914cfd6722a,0x800b3914cfd6722a,1
+np.float64,0xf3f09a97e7e14,0xf3f09a97e7e14,1
+np.float64,0x7f97092b502e1256,0x40860fe8054cf54e,1
+np.float64,0xbfdbec7917b7d8f2,0xbfe2580b4b792c79,1
+np.float64,0x7fe7ff215aaffe42,0x40862bf5887fa062,1
+np.float64,0x80080186e570030e,0x80080186e570030e,1
+np.float64,0xbfc27f05e624fe0c,0xbfc3fa214be4adc4,1
+np.float64,0x3fe4481be1689038,0x3fdf6b11e9c4ca72,1
+np.float64,0x3fd642cc9cac8598,0x3fd31a857fe70227,1
+np.float64,0xbef8782d7df0f,0xbef8782d7df0f,1
+np.float64,0x8003077dc2e60efc,0x8003077dc2e60efc,1
+np.float64,0x80083eb5a2507d6c,0x80083eb5a2507d6c,1
+np.float64,0x800e8d1eb77d1a3e,0x800e8d1eb77d1a3e,1
+np.float64,0xbfc7737cd22ee6f8,0xbfc9e7716f03f1fc,1
+np.float64,0xbfe9a2b4ddf3456a,0xbff9d71664a8fc78,1
+np.float64,0x7fe67c7d322cf8f9,0x40862b7066465194,1
+np.float64,0x3fec080ce2b8101a,0x3fe421dac225be46,1
+np.float64,0xbfe6d27beb6da4f8,0xbff3fbb1add521f7,1
+np.float64,0x3fdd4f96ceba9f2e,0x3fd821a638986dbe,1
+np.float64,0x3fbd89f1303b13e2,0x3fbbf49223a9d002,1
+np.float64,0xbfe94e2b9d329c57,0xbff907e549c534f5,1
+np.float64,0x3fe2f2cc51e5e599,0x3fddc3d6b4a834a1,1
+np.float64,0xfdcb5b49fb96c,0xfdcb5b49fb96c,1
+np.float64,0xbfea7108fa74e212,0xbffc01b392f4897b,1
+np.float64,0x3fd38baef7a7175c,0x3fd10e7fd3b958dd,1
+np.float64,0x3fa75bf9cc2eb800,0x3fa6d792ecdedb8e,1
+np.float64,0x7fd19fd20aa33fa3,0x408623f1e2cd04c3,1
+np.float64,0x3fd62c708dac58e0,0x3fd309ec7818d16e,1
+np.float64,0x3fdf489047be9120,0x3fd978640617c758,1
+np.float64,0x1,0x1,1
+np.float64,0xbfe21e7c3ea43cf8,0xbfeaba21320697d3,1
+np.float64,0xbfd3649047a6c920,0xbfd71a6f14223744,1
+np.float64,0xbfd68ca68c2d194e,0xbfdbcce6784e5d44,1
+np.float64,0x3fdb26b0ea364d62,0x3fd6a1f86f64ff74,1
+np.float64,0xbfd843821cb08704,0xbfde80e90805ab3f,1
+np.float64,0x3fd508a27aaa1144,0x3fd22fc203a7b9d8,1
+np.float64,0xbfdb951c7eb72a38,0xbfe20aeaec13699b,1
+np.float64,0x3fef556ba57eaad7,0x3fe5d8865cce0a6d,1
+np.float64,0x3fd0d224b3a1a448,0x3fcdde7be5d7e21e,1
+np.float64,0x8007ff272baffe4f,0x8007ff272baffe4f,1
+np.float64,0x3fe1c7bddf638f7c,0x3fdc47cc6cf2f5cd,1
+np.float64,0x7ff8000000000000,0x7ff8000000000000,1
+np.float64,0x2016d560402f,0x2016d560402f,1
+np.float64,0xbfcca10be9394218,0xbfd033f36b94fc54,1
+np.float64,0xbfdb833628b7066c,0xbfe1fb344b840c70,1
+np.float64,0x3fd8529cb3b0a539,0x3fd49d847fe77218,1
+np.float64,0xbfc0b0ebab2161d8,0xbfc1e260c60ffd1b,1
+np.float64,0xbfea8b9a79f51735,0xbffc4ee6be8a0fa2,1
+np.float64,0x7feca8fab7f951f4,0x40862d613e454646,1
+np.float64,0x7fd8c52d82318a5a,0x408626aaf37423a3,1
+np.float64,0xbfe364ad4526c95a,0xbfedcee39bc93ff5,1
+np.float64,0x800b78161256f02d,0x800b78161256f02d,1
+np.float64,0xbfd55f0153aabe02,0xbfda01a78f72d494,1
+np.float64,0x800315a5f0662b4d,0x800315a5f0662b4d,1
+np.float64,0x7fe4c0dca02981b8,0x40862acc27e4819f,1
+np.float64,0x8009825c703304b9,0x8009825c703304b9,1
+np.float64,0x3fe6e94e1cadd29c,0x3fe1478ccc634f49,1
+np.float64,0x7fe622d8586c45b0,0x40862b504177827e,1
+np.float64,0x3fe4458600688b0c,0x3fdf67e79a84b953,1
+np.float64,0xbfdd75d8a1baebb2,0xbfe3bc9e6ca1bbb5,1
+np.float64,0x3fde789c6bbcf138,0x3fd8ec1d435531b3,1
+np.float64,0x3fe7052b94ee0a58,0x3fe157c5c4418dc1,1
+np.float64,0x7fef31652abe62c9,0x40862e0eaeabcfc0,1
+np.float64,0x3fe279691ee4f2d2,0x3fdd2aa41eb43cd4,1
+np.float64,0xbfd533fa95aa67f6,0xbfd9c12f516d29d7,1
+np.float64,0x3fe6d057f96da0b0,0x3fe138fd96693a6a,1
+np.float64,0x800bad984f775b31,0x800bad984f775b31,1
+np.float64,0x7fdd6fdba4badfb6,0x4086280c73d8ef97,1
+np.float64,0x7fe9b5c0eef36b81,0x40862c82c6f57a53,1
+np.float64,0x8000bc02ece17807,0x8000bc02ece17807,1
+np.float64,0xbff0000000000000,0xfff0000000000000,1
+np.float64,0xbfed430be3fa8618,0xc003aaf338c75b3c,1
+np.float64,0x3fee17b759fc2f6f,0x3fe53668696bf48b,1
+np.float64,0x3f8d4cf9d03a9a00,0x3f8d17d2f532afdc,1
+np.float64,0x8005d6257b8bac4c,0x8005d6257b8bac4c,1
+np.float64,0xbfd17a6df9a2f4dc,0xbfd469e3848adc6e,1
+np.float64,0xb28a293965145,0xb28a293965145,1
+np.float64,0xbfe7d011e42fa024,0xbff5cf818998c8ec,1
+np.float64,0xbfe74f0f136e9e1e,0xbff4dad6ebb0443c,1
+np.float64,0x800f249fc9be4940,0x800f249fc9be4940,1
+np.float64,0x2542f8fe4a860,0x2542f8fe4a860,1
+np.float64,0xc48d40cd891a8,0xc48d40cd891a8,1
+np.float64,0x3fe4e64bc8e9cc98,0x3fe015c9eb3caa53,1
+np.float64,0x3fd33881eca67104,0x3fd0cea886be2457,1
+np.float64,0xbfd01748fba02e92,0xbfd28875959e6901,1
+np.float64,0x7fb7ab01f22f5603,0x40861b369927bf53,1
+np.float64,0xbfe340274ce6804e,0xbfed72b39f0ebb24,1
+np.float64,0x7fc16c0c3422d817,0x40861e4eaf1a286c,1
+np.float64,0x3fc26944a324d288,0x3fc133a77b356ac4,1
+np.float64,0xa149d7134293b,0xa149d7134293b,1
+np.float64,0x800837382d106e71,0x800837382d106e71,1
+np.float64,0x797d1740f2fa4,0x797d1740f2fa4,1
+np.float64,0xc3f15b7787e2c,0xc3f15b7787e2c,1
+np.float64,0x80cad1b90195a,0x80cad1b90195a,1
+np.float64,0x3fdd8f1142bb1e23,0x3fd84d21490d1ce6,1
+np.float64,0xbfbde6c9123bcd90,0xbfbfcc030a86836a,1
+np.float64,0x8007f77e032feefd,0x8007f77e032feefd,1
+np.float64,0x3fe74fed1c6e9fda,0x3fe18322cf19cb61,1
+np.float64,0xbfd8a40bbcb14818,0xbfdf1d23520ba74b,1
+np.float64,0xbfeb7a0e6076f41d,0xbfff4ddfb926efa5,1
+np.float64,0xbfcb8c5f663718c0,0xbfcf0570f702bda9,1
+np.float64,0xf668cd97ecd1a,0xf668cd97ecd1a,1
+np.float64,0xbfe92accf572559a,0xbff8b4393878ffdb,1
+np.float64,0xbfeaa955567552ab,0xbffca70c7d73eee5,1
+np.float64,0xbfe083a14f610742,0xbfe739d84bc35077,1
+np.float64,0x78290568f0521,0x78290568f0521,1
+np.float64,0x3fe94bae2372975c,0x3fe2a3beac5c9858,1
+np.float64,0x3fca4fbab9349f78,0x3fc7edbca2492acb,1
+np.float64,0x8000000000000000,0x8000000000000000,1
+np.float64,0x7fb9eb505433d6a0,0x40861bf0adedb74d,1
+np.float64,0x7fdc66f72a38cded,0x408627c32aeecf0f,1
+np.float64,0x2e8e6f445d1cf,0x2e8e6f445d1cf,1
+np.float64,0xbfec43195af88633,0xc0012d7e3f91b7e8,1
+np.float64,0x7fcdb971e93b72e3,0x40862294c9e3a7bc,1
+np.float64,0x800cabc461195789,0x800cabc461195789,1
+np.float64,0x2c79709c58f2f,0x2c79709c58f2f,1
+np.float64,0x8005d772d3cbaee6,0x8005d772d3cbaee6,1
+np.float64,0x3fe84d8c03709b18,0x3fe21490ce3673dd,1
+np.float64,0x7fe5578adc2aaf15,0x40862b056e8437d4,1
+np.float64,0xbf91298c58225320,0xbf914ec86c32d11f,1
+np.float64,0xc7ed2b6d8fda6,0xc7ed2b6d8fda6,1
+np.float64,0x2761404c4ec29,0x2761404c4ec29,1
+np.float64,0x3fbad3c48835a789,0x3fb9833c02385305,1
+np.float64,0x3fa46fee5428dfe0,0x3fa40a357fb24c23,1
+np.float64,0xbfe3900c6fe72019,0xbfee3dba29dd9d43,1
+np.float64,0x3fe7a9e41a6f53c8,0x3fe1b704dfb9884b,1
+np.float64,0xbfe74a7a1eee94f4,0xbff4d269cacb1f29,1
+np.float64,0xbfee609c72fcc139,0xc007da8499d34123,1
+np.float64,0x3fef2d5fc23e5ac0,0x3fe5c44414e59cb4,1
+np.float64,0xbfd7bdc0402f7b80,0xbfddaae1e7bb78fb,1
+np.float64,0xd71ee01dae3dc,0xd71ee01dae3dc,1
+np.float64,0x3fe98cbcdef3197a,0x3fe2c7ffe33c4541,1
+np.float64,0x8000f8dbb3a1f1b8,0x8000f8dbb3a1f1b8,1
+np.float64,0x3fe3e98ad567d316,0x3fdef6e58058313f,1
+np.float64,0x41ad0bfc835a2,0x41ad0bfc835a2,1
+np.float64,0x7fdcc2dc0d3985b7,0x408627dce39f77af,1
+np.float64,0xbfe47b980de8f730,0xbff059acdccd6e2b,1
+np.float64,0xbfef49b6577e936d,0xc00e714f46b2ccc1,1
+np.float64,0x3fac31816c386300,0x3fab71cb92b0db8f,1
+np.float64,0x3fe59097e76b2130,0x3fe07c299fd1127c,1
+np.float64,0xbfecf0df5cf9e1bf,0xc002c7ebdd65039c,1
+np.float64,0x3fd2b7d0b6a56fa1,0x3fd06b638990ae02,1
+np.float64,0xbfeb68deecf6d1be,0xbfff1187e042d3e4,1
+np.float64,0x3fd44a9771a8952f,0x3fd1a01867c5e302,1
+np.float64,0xf79a9dedef354,0xf79a9dedef354,1
+np.float64,0x800c25a170d84b43,0x800c25a170d84b43,1
+np.float64,0x3ff0000000000000,0x3fe62e42fefa39ef,1
+np.float64,0x3fbff4f7623fe9f0,0x3fbe1d3878f4c417,1
+np.float64,0xd284c845a5099,0xd284c845a5099,1
+np.float64,0xbfe3c7815f678f02,0xbfeecdab5ca2e651,1
+np.float64,0x3fc19c934e233927,0x3fc08036104b1f23,1
+np.float64,0x800b6096de16c12e,0x800b6096de16c12e,1
+np.float64,0xbfe962a67e32c54d,0xbff9392313a112a1,1
+np.float64,0x2b9d0116573a1,0x2b9d0116573a1,1
+np.float64,0x3fcab269ed3564d4,0x3fc83f7e1c3095b7,1
+np.float64,0x3fc8c78d86318f1b,0x3fc6a6cde5696f99,1
+np.float64,0xd5b1e9b5ab63d,0xd5b1e9b5ab63d,1
+np.float64,0xbfed802a47fb0054,0xc00465cad3b5b0ef,1
+np.float64,0xbfd73aaf08ae755e,0xbfdcdbd62b8af271,1
+np.float64,0xbfd4f13c0229e278,0xbfd95dacff79e570,1
+np.float64,0xbfe9622808f2c450,0xbff937f13c397e8d,1
+np.float64,0xbfeddfa62efbbf4c,0xc005b0c835eed829,1
+np.float64,0x3fd65663d4acacc8,0x3fd3290cd0e675dc,1
+np.float64,0x8005e890f1abd123,0x8005e890f1abd123,1
+np.float64,0xbfe924919fb24923,0xbff8a5a827a28756,1
+np.float64,0x3fe8cdf490719be9,0x3fe25d39535e8366,1
+np.float64,0x7fc229e6ff2453cd,0x40861ea40ef87a5a,1
+np.float64,0x3fe5cf53ceeb9ea8,0x3fe0a18e0b65f27e,1
+np.float64,0xa79cf6fb4f39f,0xa79cf6fb4f39f,1
+np.float64,0x7fddbb3c0f3b7677,0x40862820d5edf310,1
+np.float64,0x3e1011de7c203,0x3e1011de7c203,1
+np.float64,0x3fc0b59a83216b38,0x3fbf6916510ff411,1
+np.float64,0x8647f98d0c8ff,0x8647f98d0c8ff,1
+np.float64,0x8005dad33ecbb5a7,0x8005dad33ecbb5a7,1
+np.float64,0x8a80d0631501a,0x8a80d0631501a,1
+np.float64,0xbfe18f7d6ee31efb,0xbfe976f06713afc1,1
+np.float64,0xbfe06eaed560dd5e,0xbfe70eac696933e6,1
+np.float64,0xbfed8ef93c7b1df2,0xc00495bfa3195b53,1
+np.float64,0x3febe9c24677d385,0x3fe411b10db16c42,1
+np.float64,0x7fd5d80c1fabb017,0x408625a97a7787ba,1
+np.float64,0x3fca79b59334f368,0x3fc8108a521341dc,1
+np.float64,0xbfccf8db4339f1b8,0xbfd06c9a5424aadb,1
+np.float64,0xbfea5ac5a574b58b,0xbffbc21d1405d840,1
+np.float64,0x800ce2bf4b19c57f,0x800ce2bf4b19c57f,1
+np.float64,0xbfe8df896d31bf13,0xbff807ab38ac41ab,1
+np.float64,0x3feab83da9f5707c,0x3fe36cdd827c0eff,1
+np.float64,0x3fee717683bce2ed,0x3fe564879171719b,1
+np.float64,0x80025e5577c4bcac,0x80025e5577c4bcac,1
+np.float64,0x3fe3e5378e67ca70,0x3fdef1902c5d1efd,1
+np.float64,0x3fa014bb7c202980,0x3f9faacf9238d499,1
+np.float64,0x3fddbf5e16bb7ebc,0x3fd86e2311cb0f6d,1
+np.float64,0x3fd24e50e6a49ca0,0x3fd0198f04f82186,1
+np.float64,0x656b5214cad6b,0x656b5214cad6b,1
+np.float64,0x8b0a4bfd1614a,0x8b0a4bfd1614a,1
+np.float64,0xbfeeb6bd9e7d6d7b,0xc009b669285e319e,1
+np.float64,0x8000000000000001,0x8000000000000001,1
+np.float64,0xbfe719feceee33fe,0xbff47a4c8cbf0cca,1
+np.float64,0xbfd14fa8c8a29f52,0xbfd42f27b1aced39,1
+np.float64,0x7fec9dcb80f93b96,0x40862d5e1e70bbb9,1
+np.float64,0x7fecacb826f9596f,0x40862d6249746915,1
+np.float64,0x973459f52e68b,0x973459f52e68b,1
+np.float64,0x7f40a59e00214b3b,0x4085f194f45f82b1,1
+np.float64,0x7fc5dbaec32bb75d,0x4086201f3e7065d9,1
+np.float64,0x82d0801305a10,0x82d0801305a10,1
+np.float64,0x7fec81c0f4790381,0x40862d5643c0fc85,1
+np.float64,0xbfe2d81e9ee5b03d,0xbfec71a8e864ea40,1
+np.float64,0x6c545c9ad8a8c,0x6c545c9ad8a8c,1
+np.float64,0x3f9be95a5037d2b5,0x3f9b89b48ac8f5d8,1
+np.float64,0x8000cae9702195d4,0x8000cae9702195d4,1
+np.float64,0xbfd375f45126ebe8,0xbfd733677e54a80d,1
+np.float64,0x3fd29a5b81a534b7,0x3fd05494bf200278,1
+np.float64,0xfff0000000000000,0xfff8000000000000,1
+np.float64,0x7fca8fc195351f82,0x408621ae61aa6c13,1
+np.float64,0x1b28e2ae3651d,0x1b28e2ae3651d,1
+np.float64,0x3fe7fdbd14effb7a,0x3fe1e714884b46a8,1
+np.float64,0x3fdf1ce068be39c0,0x3fd95b054e0fad3d,1
+np.float64,0x3fe79f9a636f3f34,0x3fe1b11a40c00b3e,1
+np.float64,0x3fe60eb7036c1d6e,0x3fe0c72a02176874,1
+np.float64,0x229da17e453b5,0x229da17e453b5,1
+np.float64,0x3fc1a921b5235240,0x3fc08b3f35e47fb1,1
+np.float64,0xbb92d2af7725b,0xbb92d2af7725b,1
+np.float64,0x3fe4110cb1e8221a,0x3fdf2787de6c73f7,1
+np.float64,0xbfbc87771a390ef0,0xbfbe3f6e95622363,1
+np.float64,0xbfe74025dfee804c,0xbff4bf7b1895e697,1
+np.float64,0x964eb6592c9d7,0x964eb6592c9d7,1
+np.float64,0x3f951689b82a2d00,0x3f94dfb38d746fdf,1
+np.float64,0x800356271be6ac4f,0x800356271be6ac4f,1
+np.float64,0x7fefffffffffffff,0x40862e42fefa39ef,1
+np.float64,0xbfed5ce250fab9c5,0xc003f7ddfeb94345,1
+np.float64,0x3fec3d5dc1387abc,0x3fe43e39c02d86f4,1
+np.float64,0x3999897e73332,0x3999897e73332,1
+np.float64,0xbfdcb57744b96aee,0xbfe30c4b98f3d088,1
+np.float64,0x7f961fb0b82c3f60,0x40860f9549c3a380,1
+np.float64,0x67d6efcacfadf,0x67d6efcacfadf,1
+np.float64,0x8002c9498f859294,0x8002c9498f859294,1
+np.float64,0xbfa3033800260670,0xbfa35fe3bf43e188,1
+np.float64,0xbfeab2fc157565f8,0xbffcc413c486b4eb,1
+np.float64,0x3fe25e62f364bcc6,0x3fdd0856e19e3430,1
+np.float64,0x7fb2f42dda25e85b,0x4086196fb34a65fd,1
+np.float64,0x3fe0f1a5af61e34c,0x3fdb3235a1786efb,1
+np.float64,0x800a340ca1f4681a,0x800a340ca1f4681a,1
+np.float64,0x7c20b9def8418,0x7c20b9def8418,1
+np.float64,0xdf0842a1be109,0xdf0842a1be109,1
+np.float64,0x3fe9f22cc2f3e45a,0x3fe300359b842bf0,1
+np.float64,0x3fe389ed73e713da,0x3fde809780fe4432,1
+np.float64,0x9500fb932a020,0x9500fb932a020,1
+np.float64,0x3fd8a21ffdb14440,0x3fd4d70862345d86,1
+np.float64,0x800d99c15cbb3383,0x800d99c15cbb3383,1
+np.float64,0x3fd96c98c932d932,0x3fd568959c9b028f,1
+np.float64,0x7fc228483a24508f,0x40861ea358420976,1
+np.float64,0x7fc6737bef2ce6f7,0x408620560ffc6a98,1
+np.float64,0xbfb2c27cee2584f8,0xbfb37b8cc7774b5f,1
+np.float64,0xbfd18409f9230814,0xbfd4771d1a9a24fb,1
+np.float64,0x3fb53cb3f42a7968,0x3fb466f06f88044b,1
+np.float64,0x3fef61d0187ec3a0,0x3fe5dec8a9d13dd9,1
+np.float64,0x3fe59a6ffd2b34e0,0x3fe0820a99c6143d,1
+np.float64,0x3fce18aff43c3160,0x3fcb07c7b523f0d1,1
+np.float64,0xbfb1319a62226338,0xbfb1cc62f31b2b40,1
+np.float64,0xa00cce6d4019a,0xa00cce6d4019a,1
+np.float64,0x80068ae8e0ed15d3,0x80068ae8e0ed15d3,1
+np.float64,0x3fecef353239de6a,0x3fe49c280adc607b,1
+np.float64,0x3fdf1a7fb0be34ff,0x3fd9596bafe2d766,1
+np.float64,0x3feb5e12eeb6bc26,0x3fe3c6be3ede8d07,1
+np.float64,0x3fdeff5cd43dfeba,0x3fd947262ec96b05,1
+np.float64,0x3f995e75e832bd00,0x3f990f511f4c7f1c,1
+np.float64,0xbfeb5b3ed0b6b67e,0xbffee24fc0fc2881,1
+np.float64,0x7fb82aad0a305559,0x40861b614d901182,1
+np.float64,0xbfe5c3a4926b8749,0xbff23cd0ad144fe6,1
+np.float64,0x3fef47da373e8fb4,0x3fe5d1aaa4031993,1
+np.float64,0x7fc6a8c3872d5186,0x40862068f5ca84be,1
+np.float64,0x7fc0c2276221844e,0x40861dff2566d001,1
+np.float64,0x7fc9ce7d28339cf9,0x40862173541f84d1,1
+np.float64,0x3fce2c34933c5869,0x3fcb179428ad241d,1
+np.float64,0xbfcf864c293f0c98,0xbfd21872c4821cfc,1
+np.float64,0x3fc51fd1f82a3fa4,0x3fc38d4f1685c166,1
+np.float64,0xbfe2707b70a4e0f7,0xbfeb795fbd5bb444,1
+np.float64,0x46629b568cc54,0x46629b568cc54,1
+np.float64,0x7fe5f821f32bf043,0x40862b40c2cdea3f,1
+np.float64,0x3fedd2c9457ba592,0x3fe512ce92394526,1
+np.float64,0x7fe6dcb8ceadb971,0x40862b925a7dc05d,1
+np.float64,0x3fd1b983b4a37307,0x3fcf4ae2545cf64e,1
+np.float64,0xbfe1c93104639262,0xbfe9f7d28e4c0c82,1
+np.float64,0x995ebc2932bd8,0x995ebc2932bd8,1
+np.float64,0x800a4c3ee614987e,0x800a4c3ee614987e,1
+np.float64,0x3fbb58766e36b0f0,0x3fb9fb3b9810ec16,1
+np.float64,0xbfe36d636666dac7,0xbfede5080f69053c,1
+np.float64,0x3f4feee1003fddc2,0x3f4feae5f05443d1,1
+np.float64,0x3fed0b772ffa16ee,0x3fe4aafb924903c6,1
+np.float64,0x800bb3faef3767f6,0x800bb3faef3767f6,1
+np.float64,0x3fe285cda5e50b9c,0x3fdd3a58df06c427,1
+np.float64,0x7feb9d560bb73aab,0x40862d152362bb94,1
+np.float64,0x3fecd1f447f9a3e9,0x3fe48cc78288cb3f,1
+np.float64,0x3fca927b0c3524f6,0x3fc8250f49ba28df,1
+np.float64,0x7fcc19944e383328,0x40862221b02fcf43,1
+np.float64,0xbfd8ddf41db1bbe8,0xbfdf7b92073ff2fd,1
+np.float64,0x80006fe736e0dfcf,0x80006fe736e0dfcf,1
+np.float64,0x800bbeb66d577d6d,0x800bbeb66d577d6d,1
+np.float64,0xbfe4329353e86526,0xbfefeaf19ab92b42,1
+np.float64,0x2fad72805f5af,0x2fad72805f5af,1
+np.float64,0x3fe1b827aa637050,0x3fdc33bf46012c0d,1
+np.float64,0x3fc3f3f8e227e7f2,0x3fc28aeb86d65278,1
+np.float64,0x3fec018933780312,0x3fe41e619aa4285c,1
+np.float64,0xbfd92428e0b24852,0xbfdfeecb08d154df,1
+np.float64,0x2d7046845ae0a,0x2d7046845ae0a,1
+np.float64,0x7fde7fd2233cffa3,0x408628550f8a948f,1
+np.float64,0x8000a32cd241465a,0x8000a32cd241465a,1
+np.float64,0x8004267a45084cf5,0x8004267a45084cf5,1
+np.float64,0xbfe6b422556d6844,0xbff3c71f67661e6e,1
+np.float64,0x3fe3a37d922746fb,0x3fdea04e04d6195c,1
+np.float64,0xbfddcc54b53b98aa,0xbfe40d2389cdb848,1
+np.float64,0x3fe18b4b92a31697,0x3fdbf9e68cbf5794,1
+np.float64,0x7fc9c5b2ee338b65,0x408621709a17a47a,1
+np.float64,0x1ebd1ce03d7b,0x1ebd1ce03d7b,1
+np.float64,0x8008a6fc39d14df9,0x8008a6fc39d14df9,1
+np.float64,0x3fec11384c782270,0x3fe426bdaedd2965,1
+np.float64,0x3fefc28344ff8507,0x3fe60f75d34fc3d2,1
+np.float64,0xc35f379786be7,0xc35f379786be7,1
+np.float64,0x3feef51f4a7dea3e,0x3fe5a7b95d7786b5,1
+np.float64,0x3fec9b9f0379373e,0x3fe4702477abbb63,1
+np.float64,0x3fde94f8cdbd29f0,0x3fd8ff50f7df0a6f,1
+np.float64,0xbfed32d1cdfa65a4,0xc0037c1470f6f979,1
+np.float64,0x800d3ba44f5a7749,0x800d3ba44f5a7749,1
+np.float64,0x3fe3c56c8fe78ad9,0x3fdeca4eb9bb8918,1
+np.float64,0xbfe7c97242ef92e4,0xbff5c2950dfd6f69,1
+np.float64,0xbd9440057b288,0xbd9440057b288,1
+np.float64,0x7feb2fc111f65f81,0x40862cf524bd2001,1
+np.float64,0x800a431e2df4863d,0x800a431e2df4863d,1
+np.float64,0x80038a3b79e71478,0x80038a3b79e71478,1
+np.float64,0x80000c93d4601928,0x80000c93d4601928,1
+np.float64,0x7fe9fec022f3fd7f,0x40862c995db8ada0,1
+np.float64,0x3fead0129c35a025,0x3fe379d7a92c8f79,1
+np.float64,0x3fdd8cbaf7bb1974,0x3fd84b87ff0c26c7,1
+np.float64,0x3fe8fb7c60b1f6f9,0x3fe276d5339e7135,1
+np.float64,0x85a255e10b44b,0x85a255e10b44b,1
+np.float64,0xbfe507c23fea0f84,0xbff1212d2260022a,1
+np.float64,0x3fc5487c7b2a90f9,0x3fc3b03222d3d148,1
+np.float64,0x7fec0bdcb8f817b8,0x40862d34e8fd11e7,1
+np.float64,0xbfc5f34b4f2be698,0xbfc8146a899c7a0c,1
+np.float64,0xbfa2a49c14254940,0xbfa2fdab2eae3826,1
+np.float64,0x800ec52f15dd8a5e,0x800ec52f15dd8a5e,1
+np.float64,0xbfe3ba4b12a77496,0xbfeeab256b3e9422,1
+np.float64,0x80034d6c7ba69ada,0x80034d6c7ba69ada,1
+np.float64,0x7fd394d4202729a7,0x408624c98a216742,1
+np.float64,0xbfd4493a38289274,0xbfd865d67af2de91,1
+np.float64,0xe47d6203c8fad,0xe47d6203c8fad,1
+np.float64,0x98eb4e4b31d6a,0x98eb4e4b31d6a,1
+np.float64,0x4507fb128a100,0x4507fb128a100,1
+np.float64,0xbfc77032e42ee064,0xbfc9e36ab747a14d,1
+np.float64,0xa1f8a03b43f14,0xa1f8a03b43f14,1
+np.float64,0xbfc3d4da8527a9b4,0xbfc58c27af2476b0,1
+np.float64,0x3fc0eb7d6921d6fb,0x3fbfc858a077ed61,1
+np.float64,0x7fddb2e9403b65d2,0x4086281e98443709,1
+np.float64,0xbfa7ea62942fd4c0,0xbfa87dfd06b05d2a,1
+np.float64,0xbfe7d5c5426fab8a,0xbff5daa969c6d9e5,1
+np.float64,0x3fbf7cba0c3ef974,0x3fbdb23cd8fe875b,1
+np.float64,0x7fe92021eb324043,0x40862c53aee8b154,1
+np.float64,0x7fefbaa1827f7542,0x40862e3194737072,1
+np.float64,0x3fc6f82c402df059,0x3fc520432cbc533f,1
+np.float64,0x7fb37679a826ecf2,0x408619a5f857e27f,1
+np.float64,0x79ec1528f3d83,0x79ec1528f3d83,1
+np.float64,0x3fbefe1d0c3dfc3a,0x3fbd41650ba2c893,1
+np.float64,0x3fc3e5e11827cbc2,0x3fc27eb9b47c9c42,1
+np.float64,0x16aed1922d5db,0x16aed1922d5db,1
+np.float64,0x800124f7e58249f1,0x800124f7e58249f1,1
+np.float64,0x8004f7d12489efa3,0x8004f7d12489efa3,1
+np.float64,0x3fef80b8e27f0172,0x3fe5ee5fd43322c6,1
+np.float64,0xbfe7740c88eee819,0xbff51f823c8da14d,1
+np.float64,0xbfe6e1f1f6edc3e4,0xbff416bcb1302e7c,1
+np.float64,0x8001a2c4a7e3458a,0x8001a2c4a7e3458a,1
+np.float64,0x3fe861e155f0c3c2,0x3fe2201d3000c329,1
+np.float64,0x3fd00a101a201420,0x3fcca01087dbd728,1
+np.float64,0x7fdf0eb1133e1d61,0x4086287a327839b8,1
+np.float64,0x95e3ffdb2bc80,0x95e3ffdb2bc80,1
+np.float64,0x3fd87a1e8230f43d,0x3fd4ba1eb9be1270,1
+np.float64,0x3fedc4792afb88f2,0x3fe50b6529080f73,1
+np.float64,0x7fc9e81fa833d03e,0x4086217b428cc6ff,1
+np.float64,0xbfd21f1ba5a43e38,0xbfd54e048b988e09,1
+np.float64,0xbfbf52af5a3ea560,0xbfc0b4ab3b81fafc,1
+np.float64,0x7fe475f8e268ebf1,0x40862aaf14fee029,1
+np.float64,0x3fcf56899f3ead10,0x3fcc081de28ae9cf,1
+np.float64,0x917d407122fa8,0x917d407122fa8,1
+np.float64,0x22e23e3245c49,0x22e23e3245c49,1
+np.float64,0xbfeec2814f3d8503,0xc00a00ecca27b426,1
+np.float64,0xbfd97fee1c32ffdc,0xbfe04351dfe306ec,1
diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/tests/data/umath-validation-set-log2.csv b/.venv/lib/python3.12/site-packages/numpy/_core/tests/data/umath-validation-set-log2.csv
new file mode 100644
index 0000000..26921ef
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/_core/tests/data/umath-validation-set-log2.csv
@@ -0,0 +1,1629 @@
+dtype,input,output,ulperrortol
+np.float32,0x80000000,0xff800000,3
+np.float32,0x7f12870a,0x42fe63db,3
+np.float32,0x3ef29cf5,0xbf89eb12,3
+np.float32,0x3d6ba8fb,0xc083d26c,3
+np.float32,0x3d9907e8,0xc06f8230,3
+np.float32,0x4ee592,0xc2fd656e,3
+np.float32,0x58d8b1,0xc2fd0db3,3
+np.float32,0x7ba103,0xc2fc19aa,3
+np.float32,0x7f52e90e,0x42ff70e4,3
+np.float32,0x7fcb15,0xc2fc0132,3
+np.float32,0x7cb7129f,0x42f50855,3
+np.float32,0x9faba,0xc301ae59,3
+np.float32,0x7f300a,0xc2fc04b4,3
+np.float32,0x3f0bf047,0xbf5f10cb,3
+np.float32,0x2fb1fb,0xc2fed934,3
+np.float32,0x3eedb0d1,0xbf8db417,3
+np.float32,0x3d7a0b40,0xc0811638,3
+np.float32,0x2e0bac,0xc2fef334,3
+np.float32,0x6278c1,0xc2fcc1b9,3
+np.float32,0x7f61ab2e,0x42ffa2d9,3
+np.float32,0x8fe7c,0xc301d4be,3
+np.float32,0x3f25e6ee,0xbf203536,3
+np.float32,0x7efc78f0,0x42fdf5c0,3
+np.float32,0x6d7304,0xc2fc73a7,3
+np.float32,0x7f1a472a,0x42fe89ed,3
+np.float32,0x7dd029a6,0x42f96734,3
+np.float32,0x3e9b9327,0xbfdbf8f7,3
+np.float32,0x3f4eefc1,0xbe9d2942,3
+np.float32,0x7f5b9b64,0x42ff8ebc,3
+np.float32,0x3e458ee1,0xc017ed6e,3
+np.float32,0x3f7b766b,0xbcd35acf,3
+np.float32,0x3e616070,0xc00bc378,3
+np.float32,0x7f20e633,0x42fea8f8,3
+np.float32,0x3ee3b461,0xbf95a126,3
+np.float32,0x7e7722ba,0x42fbe5f8,3
+np.float32,0x3f0873d7,0xbf6861fa,3
+np.float32,0x7b4cb2,0xc2fc1ba3,3
+np.float32,0x3f0b6b02,0xbf60712e,3
+np.float32,0x9bff4,0xc301b6f2,3
+np.float32,0x3f07be25,0xbf6a4f0c,3
+np.float32,0x3ef10e57,0xbf8b1b75,3
+np.float32,0x46ad75,0xc2fdb6b1,3
+np.float32,0x3f7bc542,0xbcc4e3a9,3
+np.float32,0x3f6673d4,0xbe1b509c,3
+np.float32,0x7f19fe59,0x42fe8890,3
+np.float32,0x7f800000,0x7f800000,3
+np.float32,0x7f2fe696,0x42feead0,3
+np.float32,0x3dc9432d,0xc0563655,3
+np.float32,0x3ee47623,0xbf950446,3
+np.float32,0x3f1f8817,0xbf2eab51,3
+np.float32,0x7f220ec5,0x42feae44,3
+np.float32,0x2325e3,0xc2ffbab1,3
+np.float32,0x29dfc8,0xc2ff395a,3
+np.float32,0x7f524950,0x42ff6eb3,3
+np.float32,0x3e2234e0,0xc02a21c8,3
+np.float32,0x7f1c6f5a,0x42fe942f,3
+np.float32,0x3b6a61,0xc2fe36e7,3
+np.float32,0x3f1df90e,0xbf324ba9,3
+np.float32,0xb57f0,0xc3017f07,3
+np.float32,0x7d0eba,0xc2fc112e,3
+np.float32,0x403aa9,0xc2fdfd5c,3
+np.float32,0x3e74ecc7,0xc004155f,3
+np.float32,0x17509c,0xc30074f2,3
+np.float32,0x7f62196b,0x42ffa442,3
+np.float32,0x3ecef9a9,0xbfa7417a,3
+np.float32,0x7f14b158,0x42fe6eb1,3
+np.float32,0x3ede12be,0xbf9a40fe,3
+np.float32,0x42cfaa,0xc2fde03f,3
+np.float32,0x3f407b0f,0xbed2a6f5,3
+np.float32,0x7f7fffff,0x43000000,3
+np.float32,0x5467c6,0xc2fd3394,3
+np.float32,0x7ea6b80f,0x42fcc336,3
+np.float32,0x3f21e7b2,0xbf293704,3
+np.float32,0x3dc7e9eb,0xc056d542,3
+np.float32,0x7f3e6e67,0x42ff2571,3
+np.float32,0x3e3e809d,0xc01b4911,3
+np.float32,0x3f800000,0x0,3
+np.float32,0x3d8fd238,0xc0753d52,3
+np.float32,0x3f74aa65,0xbd85cd0e,3
+np.float32,0x7ec30305,0x42fd36ff,3
+np.float32,0x3e97bb93,0xbfe0971d,3
+np.float32,0x3e109d9c,0xc034bb1b,3
+np.float32,0x3f4a0b67,0xbeaed537,3
+np.float32,0x3f25a7aa,0xbf20c228,3
+np.float32,0x3ebc05eb,0xbfb8fd6b,3
+np.float32,0x3eebe749,0xbf8f18e5,3
+np.float32,0x3e9dc479,0xbfd96356,3
+np.float32,0x7f245200,0x42feb882,3
+np.float32,0x1573a8,0xc30093b5,3
+np.float32,0x3e66c4b9,0xc00994a6,3
+np.float32,0x3e73bffc,0xc0048709,3
+np.float32,0x3dfef8e5,0xc0405f16,3
+np.float32,0x403750,0xc2fdfd83,3
+np.float32,0x3ebedf17,0xbfb636a4,3
+np.float32,0x15cae6,0xc3008de2,3
+np.float32,0x3edf4d4e,0xbf993c24,3
+np.float32,0x3f7cc41e,0xbc963fb3,3
+np.float32,0x3e9e12a4,0xbfd907ee,3
+np.float32,0x7ded7b59,0x42f9c889,3
+np.float32,0x7f034878,0x42fe12b5,3
+np.float32,0x7ddce43f,0x42f9930b,3
+np.float32,0x3d82b257,0xc07e1333,3
+np.float32,0x3dae89c1,0xc0635dd4,3
+np.float32,0x6b1d00,0xc2fc8396,3
+np.float32,0x449a5a,0xc2fdccb3,3
+np.float32,0x4e89d2,0xc2fd68cb,3
+np.float32,0x7e1ae83f,0x42fa8cef,3
+np.float32,0x7e4bb22c,0x42fb572e,3
+np.float32,0x3de308ea,0xc04b1634,3
+np.float32,0x7f238c7a,0x42feb508,3
+np.float32,0x3f6c62a3,0xbdeb86f3,3
+np.float32,0x3e58cba6,0xc00f5908,3
+np.float32,0x7f7dd91f,0x42fff9c4,3
+np.float32,0x3d989376,0xc06fc88d,3
+np.float32,0x3dd013c5,0xc0532339,3
+np.float32,0x4b17e6,0xc2fd89ed,3
+np.float32,0x7f67f287,0x42ffb71e,3
+np.float32,0x3f69365e,0xbe09ba3c,3
+np.float32,0x3e4b8b21,0xc0152bf1,3
+np.float32,0x3a75b,0xc3032171,3
+np.float32,0x7f303676,0x42feec1f,3
+np.float32,0x7f6570e5,0x42ffaf18,3
+np.float32,0x3f5ed61e,0xbe4cf676,3
+np.float32,0x3e9b22f9,0xbfdc7e4f,3
+np.float32,0x2c095e,0xc2ff1428,3
+np.float32,0x3f1b17c1,0xbf391754,3
+np.float32,0x422dc6,0xc2fde746,3
+np.float32,0x3f677c8d,0xbe14b365,3
+np.float32,0x3ef85d0c,0xbf8597a9,3
+np.float32,0x3ecaaa6b,0xbfab2430,3
+np.float32,0x3f0607d1,0xbf6eff3d,3
+np.float32,0x3f011fdb,0xbf7cc50d,3
+np.float32,0x6ed7c1,0xc2fc6a4e,3
+np.float32,0x7ec2d1a2,0x42fd3644,3
+np.float32,0x3f75b7fe,0xbd7238a2,3
+np.float32,0x3ef2d146,0xbf89c344,3
+np.float32,0x7ec2cd27,0x42fd3633,3
+np.float32,0x7ee1e55a,0x42fda397,3
+np.float32,0x7f464d6a,0x42ff435c,3
+np.float32,0x7f469a93,0x42ff447b,3
+np.float32,0x7ece752f,0x42fd6121,3
+np.float32,0x2ed878,0xc2fee67b,3
+np.float32,0x75b23,0xc3021eff,3
+np.float32,0x3e0f4be4,0xc03593b8,3
+np.float32,0x2778e1,0xc2ff64fc,3
+np.float32,0x5fe2b7,0xc2fcd561,3
+np.float32,0x19b8a9,0xc30050ab,3
+np.float32,0x7df303e5,0x42f9d98d,3
+np.float32,0x608b8d,0xc2fcd051,3
+np.float32,0x588f46,0xc2fd1017,3
+np.float32,0x3eec6a11,0xbf8eb2a1,3
+np.float32,0x3f714121,0xbdaf4906,3
+np.float32,0x7f4f7b9e,0x42ff64c9,3
+np.float32,0x3c271606,0xc0d3b29c,3
+np.float32,0x3f002fe0,0xbf7f75f6,3
+np.float32,0x7efa4798,0x42fdef4f,3
+np.float32,0x3f61a865,0xbe3a601a,3
+np.float32,0x7e8087aa,0x42fc030d,3
+np.float32,0x3f70f0c7,0xbdb321ba,3
+np.float32,0x5db898,0xc2fce63f,3
+np.float32,0x7a965f,0xc2fc1fea,3
+np.float32,0x7f68b112,0x42ffb97c,3
+np.float32,0x7ef0ed3d,0x42fdd32d,3
+np.float32,0x7f3156a1,0x42fef0d3,3
+np.float32,0x3f1d405f,0xbf33fc6e,3
+np.float32,0x3e3494cf,0xc0203945,3
+np.float32,0x6018de,0xc2fcd3c1,3
+np.float32,0x623e49,0xc2fcc370,3
+np.float32,0x3ea29f0f,0xbfd3cad4,3
+np.float32,0xa514,0xc305a20c,3
+np.float32,0x3e1b2ab1,0xc02e3a8f,3
+np.float32,0x3f450b6f,0xbec1578f,3
+np.float32,0x7eb12908,0x42fcf015,3
+np.float32,0x3f10b720,0xbf52ab48,3
+np.float32,0x3e0a93,0xc2fe16f6,3
+np.float32,0x93845,0xc301cb96,3
+np.float32,0x7f4e9ce3,0x42ff61af,3
+np.float32,0x3f6d4296,0xbde09ceb,3
+np.float32,0x6ddede,0xc2fc70d0,3
+np.float32,0x3f4fb6fd,0xbe9a636d,3
+np.float32,0x3f6d08de,0xbde36c0b,3
+np.float32,0x3f56f057,0xbe8122ad,3
+np.float32,0x334e95,0xc2fea349,3
+np.float32,0x7efadbcd,0x42fdf104,3
+np.float32,0x3db02e88,0xc0628046,3
+np.float32,0x3f3309d1,0xbf041066,3
+np.float32,0x2d8722,0xc2fefb8f,3
+np.float32,0x7e926cac,0x42fc6356,3
+np.float32,0x3e3674ab,0xc01f452e,3
+np.float32,0x1b46ce,0xc3003afc,3
+np.float32,0x3f06a338,0xbf6d53fc,3
+np.float32,0x1b1ba7,0xc3003d46,3
+np.float32,0x319dfb,0xc2febc06,3
+np.float32,0x3e2f126a,0xc02315a5,3
+np.float32,0x3f40fe65,0xbed0af9e,3
+np.float32,0x3f1d842f,0xbf335d4b,3
+np.float32,0x3d044e4f,0xc09e78f8,3
+np.float32,0x7f272674,0x42fec51f,3
+np.float32,0x3cda6d8f,0xc0a753db,3
+np.float32,0x3eb92f12,0xbfbbccbb,3
+np.float32,0x7e4318f4,0x42fb3752,3
+np.float32,0x3c5890,0xc2fe2b6d,3
+np.float32,0x3d1993c9,0xc09796f8,3
+np.float32,0x7f18ef24,0x42fe8377,3
+np.float32,0x3e30c3a0,0xc0223244,3
+np.float32,0x3f27cd27,0xbf1c00ef,3
+np.float32,0x3f150957,0xbf47cd6c,3
+np.float32,0x7e7178a3,0x42fbd4d8,3
+np.float32,0x3f298db8,0xbf182ac3,3
+np.float32,0x7cb3be,0xc2fc1348,3
+np.float32,0x3ef64266,0xbf8729de,3
+np.float32,0x3eeb06ce,0xbf8fc8f2,3
+np.float32,0x3f406e36,0xbed2d845,3
+np.float32,0x7f1e1bd3,0x42fe9c0b,3
+np.float32,0x478dcc,0xc2fdad97,3
+np.float32,0x7f7937b5,0x42ffec2b,3
+np.float32,0x3f20f350,0xbf2b6624,3
+np.float32,0x7f13661a,0x42fe683c,3
+np.float32,0x208177,0xc2fff46b,3
+np.float32,0x263cfb,0xc2ff7c72,3
+np.float32,0x7f0bd28c,0x42fe4141,3
+np.float32,0x7230d8,0xc2fc5453,3
+np.float32,0x3f261bbf,0xbf1fbfb4,3
+np.float32,0x737b56,0xc2fc4c05,3
+np.float32,0x3ef88f33,0xbf857263,3
+np.float32,0x7e036464,0x42fa1352,3
+np.float32,0x4b5c4f,0xc2fd874d,3
+np.float32,0x3f77984d,0xbd454596,3
+np.float32,0x3f674202,0xbe162932,3
+np.float32,0x3e7157d9,0xc0057197,3
+np.float32,0x3f3f21da,0xbed7d861,3
+np.float32,0x7f1fb40f,0x42fea375,3
+np.float32,0x7ef0157f,0x42fdd096,3
+np.float32,0x3f71e88d,0xbda74962,3
+np.float32,0x3f174855,0xbf424728,3
+np.float32,0x3f3fdd2c,0xbed505d5,3
+np.float32,0x7b95d1,0xc2fc19ed,3
+np.float32,0x7f23f4e5,0x42feb6df,3
+np.float32,0x7d741925,0x42f7dcd6,3
+np.float32,0x60f81d,0xc2fccd14,3
+np.float32,0x3f17d267,0xbf40f6ae,3
+np.float32,0x3f036fc8,0xbf7636f8,3
+np.float32,0x167653,0xc30082b5,3
+np.float32,0x256d05,0xc2ff8c4f,3
+np.float32,0x3eccc63d,0xbfa93adb,3
+np.float32,0x7f6c91ea,0x42ffc5b2,3
+np.float32,0x2ee52a,0xc2fee5b3,3
+np.float32,0x3dc3579e,0xc058f80d,3
+np.float32,0x4c7170,0xc2fd7cc4,3
+np.float32,0x7f737f20,0x42ffdb03,3
+np.float32,0x3f2f9dbf,0xbf0b3119,3
+np.float32,0x3f4d0c54,0xbea3eec5,3
+np.float32,0x7e380862,0x42fb0c32,3
+np.float32,0x5d637f,0xc2fce8df,3
+np.float32,0x3f0aa623,0xbf627c27,3
+np.float32,0x3e4d5896,0xc0145b88,3
+np.float32,0x3f6cacdc,0xbde7e7ca,3
+np.float32,0x63a2c3,0xc2fcb90a,3
+np.float32,0x6c138c,0xc2fc7cfa,3
+np.float32,0x2063c,0xc303fb88,3
+np.float32,0x7e9e5a3e,0x42fc9d2f,3
+np.float32,0x56ec64,0xc2fd1ddd,3
+np.float32,0x7f1d6a35,0x42fe98cc,3
+np.float32,0x73dc96,0xc2fc4998,3
+np.float32,0x3e5d74e5,0xc00d6238,3
+np.float32,0x7f033cbb,0x42fe1273,3
+np.float32,0x3f5143fc,0xbe94e4e7,3
+np.float32,0x1d56d9,0xc3002010,3
+np.float32,0x2bf3e4,0xc2ff1591,3
+np.float32,0x3f2a6ef1,0xbf164170,3
+np.float32,0x3f33238b,0xbf03db58,3
+np.float32,0x22780e,0xc2ffc91a,3
+np.float32,0x7f00b873,0x42fe0425,3
+np.float32,0x3f7f6145,0xbb654706,3
+np.float32,0x7fc00000,0x7fc00000,3
+np.float32,0x63895a,0xc2fcb9c7,3
+np.float32,0x18a1b2,0xc30060a8,3
+np.float32,0x7e43c6a6,0x42fb39e3,3
+np.float32,0x78676e,0xc2fc2d30,3
+np.float32,0x3f16d839,0xbf435940,3
+np.float32,0x7eff78ba,0x42fdfe79,3
+np.float32,0x3f2e152c,0xbf0e6e54,3
+np.float32,0x3db20ced,0xc06186e1,3
+np.float32,0x3f0cd1d8,0xbf5cbf57,3
+np.float32,0x3fd7a8,0xc2fe01d2,3
+np.float32,0x3ebb075e,0xbfb9f816,3
+np.float32,0x7f94ef,0xc2fc026b,3
+np.float32,0x3d80ba0e,0xc07f7a2b,3
+np.float32,0x7f227e15,0x42feb03f,3
+np.float32,0x792264bf,0x42e6afcc,3
+np.float32,0x7f501576,0x42ff66ec,3
+np.float32,0x223629,0xc2ffcea3,3
+np.float32,0x40a79e,0xc2fdf87b,3
+np.float32,0x449483,0xc2fdccf2,3
+np.float32,0x3f4fa978,0xbe9a9382,3
+np.float32,0x7f148c53,0x42fe6df9,3
+np.float32,0x3ec98b3c,0xbfac2a98,3
+np.float32,0x3e4da320,0xc0143a0a,3
+np.float32,0x3d1d94bb,0xc09666d0,3
+np.float32,0x3c8e624e,0xc0bb155b,3
+np.float32,0x66a9af,0xc2fca2ef,3
+np.float32,0x3ec76ed7,0xbfae1c57,3
+np.float32,0x3f4b52f3,0xbeaa2b81,3
+np.float32,0x7e99bbb5,0x42fc8750,3
+np.float32,0x3f69a46b,0xbe0701be,3
+np.float32,0x3f775400,0xbd4ba495,3
+np.float32,0x131e56,0xc300be3c,3
+np.float32,0x3f30abb4,0xbf08fb10,3
+np.float32,0x7f7e528c,0x42fffb25,3
+np.float32,0x3eb89515,0xbfbc668a,3
+np.float32,0x7e9191b6,0x42fc5f02,3
+np.float32,0x7e80c7e9,0x42fc047e,3
+np.float32,0x3f77ef58,0xbd3d2995,3
+np.float32,0x7ddb1f8a,0x42f98d1b,3
+np.float32,0x7ebc6c4f,0x42fd1d9c,3
+np.float32,0x3f6638e0,0xbe1ccab8,3
+np.float32,0x7f4c45,0xc2fc0410,3
+np.float32,0x3e7d8aad,0xc000e414,3
+np.float32,0x3f4d148b,0xbea3d12e,3
+np.float32,0x3e98c45c,0xbfdf55f4,3
+np.float32,0x3d754c78,0xc081f8a9,3
+np.float32,0x17e4cf,0xc3006be3,3
+np.float32,0x7eb65814,0x42fd0563,3
+np.float32,0x3f65e0d8,0xbe1f0008,3
+np.float32,0x3e99541f,0xbfdea87e,3
+np.float32,0x3f3cb80e,0xbee13b27,3
+np.float32,0x3e99f0c0,0xbfddec3b,3
+np.float32,0x3f43903e,0xbec6ea66,3
+np.float32,0x7e211cd4,0x42faa9f2,3
+np.float32,0x824af,0xc301f971,3
+np.float32,0x3e16a56e,0xc030f56c,3
+np.float32,0x542b3b,0xc2fd35a6,3
+np.float32,0x3eeea2d1,0xbf8cf873,3
+np.float32,0x232e93,0xc2ffb9fa,3
+np.float32,0x3e8c52b9,0xbfef06aa,3
+np.float32,0x7f69c7e3,0x42ffbcef,3
+np.float32,0x3f573e43,0xbe801714,3
+np.float32,0x43b009,0xc2fdd69f,3
+np.float32,0x3ee571ab,0xbf943966,3
+np.float32,0x3ee3d5d8,0xbf958604,3
+np.float32,0x338b12,0xc2fe9fe4,3
+np.float32,0x29cb1f,0xc2ff3ac6,3
+np.float32,0x3f0892b4,0xbf680e7a,3
+np.float32,0x3e8c4f7f,0xbfef0ae9,3
+np.float32,0x7c9d3963,0x42f497e6,3
+np.float32,0x3f26ba84,0xbf1e5f59,3
+np.float32,0x3dd0acc0,0xc052df6f,3
+np.float32,0x3e43fbda,0xc018aa8c,3
+np.float32,0x3ec4fd0f,0xbfb0635d,3
+np.float32,0x3f52c8c6,0xbe8f8d85,3
+np.float32,0x3f5fdc5d,0xbe462fdb,3
+np.float32,0x3f461920,0xbebd6743,3
+np.float32,0x6161ff,0xc2fcc9ef,3
+np.float32,0x7f7ed306,0x42fffc9a,3
+np.float32,0x3d212263,0xc0955f46,3
+np.float32,0x3eca5826,0xbfab6f36,3
+np.float32,0x7d6317ac,0x42f7a77e,3
+np.float32,0x3eb02063,0xbfc50f60,3
+np.float32,0x7f71a6f8,0x42ffd565,3
+np.float32,0x1a3efe,0xc3004935,3
+np.float32,0x3dc599c9,0xc057e856,3
+np.float32,0x3f3e1301,0xbedbf205,3
+np.float32,0xf17d4,0xc301158d,3
+np.float32,0x3f615f84,0xbe3c3d85,3
+np.float32,0x3de63be1,0xc049cb77,3
+np.float32,0x3e8d2f51,0xbfede541,3
+np.float32,0x3a5cdd,0xc2fe441c,3
+np.float32,0x3f443ec0,0xbec4586a,3
+np.float32,0x3eacbd00,0xbfc8a5ad,3
+np.float32,0x3f600f6a,0xbe44df1b,3
+np.float32,0x5f77a6,0xc2fcd89c,3
+np.float32,0x476706,0xc2fdaf28,3
+np.float32,0x2f469,0xc3036fde,3
+np.float32,0x7dc4ba24,0x42f93d77,3
+np.float32,0x3e2d6080,0xc023fb9b,3
+np.float32,0x7e8d7135,0x42fc49c3,3
+np.float32,0x3f589065,0xbe77247b,3
+np.float32,0x3f59e210,0xbe6e2c05,3
+np.float32,0x7f51d388,0x42ff6d15,3
+np.float32,0x7d9a5fda,0x42f88a63,3
+np.float32,0x3e67d5bc,0xc00927ab,3
+np.float32,0x61d72c,0xc2fcc679,3
+np.float32,0x3ef3351d,0xbf897766,3
+np.float32,0x1,0xc3150000,3
+np.float32,0x7f653429,0x42ffae54,3
+np.float32,0x7e1ad3e5,0x42fa8c8e,3
+np.float32,0x3f4ca01d,0xbea57500,3
+np.float32,0x3f7606db,0xbd6ad13e,3
+np.float32,0x7ec4a27d,0x42fd3d1f,3
+np.float32,0x3efe4fd5,0xbf8138c7,3
+np.float32,0x77c2f1,0xc2fc3124,3
+np.float32,0x7e4d3251,0x42fb5c9a,3
+np.float32,0x3f543ac7,0xbe8a8154,3
+np.float32,0x7c3dbe29,0x42f322c4,3
+np.float32,0x408e01,0xc2fdf9a0,3
+np.float32,0x45069b,0xc2fdc829,3
+np.float32,0x3d7ecab7,0xc08037e8,3
+np.float32,0xf8c22,0xc3010a99,3
+np.float32,0x7f69af63,0x42ffbca2,3
+np.float32,0x7ec7d228,0x42fd48fe,3
+np.float32,0xff800000,0xffc00000,3
+np.float32,0xdd7c5,0xc301357c,3
+np.float32,0x143f38,0xc300a90e,3
+np.float32,0x7e65c176,0x42fbb01b,3
+np.float32,0x2c1a9e,0xc2ff1307,3
+np.float32,0x7f6e9224,0x42ffcbeb,3
+np.float32,0x3d32ab39,0xc0909a77,3
+np.float32,0x3e150b42,0xc031f22b,3
+np.float32,0x1f84b4,0xc300059a,3
+np.float32,0x3f71ce21,0xbda88c2a,3
+np.float32,0x2625c4,0xc2ff7e33,3
+np.float32,0x3dd0b293,0xc052dcdc,3
+np.float32,0x625c11,0xc2fcc290,3
+np.float32,0x3f610297,0xbe3e9f24,3
+np.float32,0x7ebdd5e5,0x42fd2320,3
+np.float32,0x3e883458,0xbff486ff,3
+np.float32,0x782313,0xc2fc2ed4,3
+np.float32,0x7f39c843,0x42ff132f,3
+np.float32,0x7f326aa7,0x42fef54d,3
+np.float32,0x4d2c71,0xc2fd75be,3
+np.float32,0x3f55747c,0xbe86409e,3
+np.float32,0x7f7f0867,0x42fffd34,3
+np.float32,0x321316,0xc2feb53f,3
+np.float32,0x3e1b37ed,0xc02e32b0,3
+np.float32,0x80edf,0xc301fd54,3
+np.float32,0x3f0b08ad,0xbf617607,3
+np.float32,0x7f3f4174,0x42ff28a2,3
+np.float32,0x3d79306d,0xc0813eb0,3
+np.float32,0x3f5f657a,0xbe49413d,3
+np.float32,0x3f56c63a,0xbe81b376,3
+np.float32,0x7f667123,0x42ffb24f,3
+np.float32,0x3f71021b,0xbdb24d43,3
+np.float32,0x7f434ab1,0x42ff380f,3
+np.float32,0x3dcae496,0xc055779c,3
+np.float32,0x3f5a7d88,0xbe6a0f5b,3
+np.float32,0x3cdf5c32,0xc0a64bf5,3
+np.float32,0x3e56222c,0xc0107d11,3
+np.float32,0x561a3a,0xc2fd24df,3
+np.float32,0x7ddd953c,0x42f9955a,3
+np.float32,0x7e35d839,0x42fb035c,3
+np.float32,0x3ec1816c,0xbfb3aeb2,3
+np.float32,0x7c87cfcd,0x42f42bc2,3
+np.float32,0xd9cd,0xc3053baf,3
+np.float32,0x3f388234,0xbef1e5b7,3
+np.float32,0x3edfcaca,0xbf98d47b,3
+np.float32,0x3ef28852,0xbf89fac8,3
+np.float32,0x7f7525df,0x42ffe001,3
+np.float32,0x7f6c33ef,0x42ffc48c,3
+np.float32,0x3ea4a881,0xbfd17e61,3
+np.float32,0x3f3e379f,0xbedb63c6,3
+np.float32,0x3f0524c1,0xbf717301,3
+np.float32,0x3db3e7f0,0xc06091d3,3
+np.float32,0x800000,0xc2fc0000,3
+np.float32,0x3f2f2897,0xbf0c27ce,3
+np.float32,0x7eb1776d,0x42fcf15c,3
+np.float32,0x3f039018,0xbf75dc37,3
+np.float32,0x3c4055,0xc2fe2c96,3
+np.float32,0x3f603653,0xbe43dea5,3
+np.float32,0x7f700d24,0x42ffd07c,3
+np.float32,0x3f4741a3,0xbeb918dc,3
+np.float32,0x3f5fe959,0xbe45da2d,3
+np.float32,0x3f3e4401,0xbedb33b1,3
+np.float32,0x7f0705ff,0x42fe2775,3
+np.float32,0x3ea85662,0xbfcd69b0,3
+np.float32,0x3f15f49f,0xbf458829,3
+np.float32,0x3f17c50e,0xbf411728,3
+np.float32,0x3e483f60,0xc016add2,3
+np.float32,0x3f1ab9e5,0xbf39f71b,3
+np.float32,0x3de0b6fb,0xc04c08fe,3
+np.float32,0x7e671225,0x42fbb452,3
+np.float32,0x80800000,0xffc00000,3
+np.float32,0xe2df3,0xc3012c9d,3
+np.float32,0x3ede1e3c,0xbf9a3770,3
+np.float32,0x3df2ffde,0xc044cfec,3
+np.float32,0x3eed8da5,0xbf8dcf6c,3
+np.float32,0x3ead15c3,0xbfc846e1,3
+np.float32,0x7ef3750a,0x42fddae4,3
+np.float32,0x7e6ab7c0,0x42fbbfe4,3
+np.float32,0x7ea4bbe5,0x42fcba5d,3
+np.float32,0x3f227706,0xbf27f0a1,3
+np.float32,0x3ef39bfd,0xbf89295a,3
+np.float32,0x3f289a20,0xbf1a3edd,3
+np.float32,0x7f225f82,0x42feafb4,3
+np.float32,0x768963,0xc2fc38bc,3
+np.float32,0x3f493c00,0xbeb1ccfc,3
+np.float32,0x3f4e7249,0xbe9ee9a7,3
+np.float32,0x1d0c3a,0xc30023c0,3
+np.float32,0x7f3c5f78,0x42ff1d6a,3
+np.float32,0xff7fffff,0xffc00000,3
+np.float32,0x3ee7896a,0xbf928c2a,3
+np.float32,0x3e788479,0xc002bd2e,3
+np.float32,0x3ee4df17,0xbf94af84,3
+np.float32,0x5e06d7,0xc2fce3d7,3
+np.float32,0x3d7b2776,0xc080e1dc,3
+np.float32,0x3e3d39d3,0xc01be7fd,3
+np.float32,0x7c81dece,0x42f40ab7,3
+np.float32,0x3f7d2085,0xbc856255,3
+np.float32,0x7f7f6627,0x42fffe44,3
+np.float32,0x7f5f2e94,0x42ff9aaa,3
+np.float32,0x7f5835f2,0x42ff8339,3
+np.float32,0x3f6a0e32,0xbe046580,3
+np.float32,0x7e16f586,0x42fa79dd,3
+np.float32,0x3f04a2f2,0xbf72dbc5,3
+np.float32,0x3f35e334,0xbefc7740,3
+np.float32,0x3f0d056e,0xbf5c3824,3
+np.float32,0x7ebeb95e,0x42fd2693,3
+np.float32,0x3c6192,0xc2fe2aff,3
+np.float32,0x3e892b4f,0xbff33958,3
+np.float32,0x3f61d694,0xbe3931df,3
+np.float32,0x29d183,0xc2ff3a56,3
+np.float32,0x7f0b0598,0x42fe3d04,3
+np.float32,0x7f743b28,0x42ffdd3d,3
+np.float32,0x3a2ed6,0xc2fe4663,3
+np.float32,0x3e27403a,0xc0274de8,3
+np.float32,0x3f58ee78,0xbe74a349,3
+np.float32,0x3eaa4b,0xc2fe0f92,3
+np.float32,0x3ecb613b,0xbfaa7de8,3
+np.float32,0x7f637d81,0x42ffa8c9,3
+np.float32,0x3f026e96,0xbf790c73,3
+np.float32,0x386cdf,0xc2fe5d0c,3
+np.float32,0x35abd1,0xc2fe8202,3
+np.float32,0x3eac3cd1,0xbfc92ee8,3
+np.float32,0x3f567869,0xbe82bf47,3
+np.float32,0x3f65c643,0xbe1faae6,3
+np.float32,0x7f5422b9,0x42ff752b,3
+np.float32,0x7c26e9,0xc2fc168c,3
+np.float32,0x7eff5cfd,0x42fdfe29,3
+np.float32,0x3f728e7f,0xbd9f6142,3
+np.float32,0x3f10fd43,0xbf51f874,3
+np.float32,0x7e7ada08,0x42fbf0fe,3
+np.float32,0x3e82a611,0xbffc37be,3
+np.float32,0xbf800000,0xffc00000,3
+np.float32,0x3dbe2e12,0xc05b711c,3
+np.float32,0x7e768fa9,0x42fbe440,3
+np.float32,0x5e44e8,0xc2fce1f0,3
+np.float32,0x7f25071a,0x42febbae,3
+np.float32,0x3f54db5e,0xbe885339,3
+np.float32,0x3f0f2c26,0xbf56a0b8,3
+np.float32,0x22f9a7,0xc2ffbe55,3
+np.float32,0x7ed63dcb,0x42fd7c77,3
+np.float32,0x7ea4fae2,0x42fcbb78,3
+np.float32,0x3f1d7766,0xbf337b47,3
+np.float32,0x7f16d59f,0x42fe7941,3
+np.float32,0x3f3a1bb6,0xbeeb855c,3
+np.float32,0x3ef57128,0xbf87c709,3
+np.float32,0xb24ff,0xc3018591,3
+np.float32,0x3ef99e27,0xbf84a983,3
+np.float32,0x3eac2ccf,0xbfc94013,3
+np.float32,0x3e9d3e1e,0xbfda00dc,3
+np.float32,0x718213,0xc2fc58c1,3
+np.float32,0x7edbf509,0x42fd8fea,3
+np.float32,0x70c7f1,0xc2fc5d80,3
+np.float32,0x3f7012f5,0xbdbdc6cd,3
+np.float32,0x12cba,0xc304c487,3
+np.float32,0x7f5d445d,0x42ff944c,3
+np.float32,0x7f3e30bd,0x42ff2481,3
+np.float32,0x63b110,0xc2fcb8a0,3
+np.float32,0x3f39f728,0xbeec1680,3
+np.float32,0x3f5bea58,0xbe6074b1,3
+np.float32,0x3f350749,0xbefff679,3
+np.float32,0x3e91ab2c,0xbfe81f3e,3
+np.float32,0x7ec53fe0,0x42fd3f6d,3
+np.float32,0x3f6cbbdc,0xbde72c8e,3
+np.float32,0x3f4df49f,0xbea0abcf,3
+np.float32,0x3e9c9638,0xbfdac674,3
+np.float32,0x7f3b82ec,0x42ff1a07,3
+np.float32,0x7f612a09,0x42ffa132,3
+np.float32,0x7ea26650,0x42fcafd3,3
+np.float32,0x3a615138,0xc122f26d,3
+np.float32,0x3f1108bd,0xbf51db39,3
+np.float32,0x6f80f6,0xc2fc65ea,3
+np.float32,0x3f7cb578,0xbc98ecb1,3
+np.float32,0x7f54d31a,0x42ff7790,3
+np.float32,0x196868,0xc3005532,3
+np.float32,0x3f01ee0a,0xbf7a7925,3
+np.float32,0x3e184013,0xc02ffb11,3
+np.float32,0xadde3,0xc3018ee3,3
+np.float32,0x252a91,0xc2ff9173,3
+np.float32,0x3f0382c2,0xbf7601a9,3
+np.float32,0x6d818c,0xc2fc7345,3
+np.float32,0x3bfbfd,0xc2fe2fdd,3
+np.float32,0x7f3cad19,0x42ff1e9a,3
+np.float32,0x4169a7,0xc2fdefdf,3
+np.float32,0x3f615d96,0xbe3c4a2b,3
+np.float32,0x3f036480,0xbf7656ac,3
+np.float32,0x7f5fbda3,0x42ff9c83,3
+np.float32,0x3d202d,0xc2fe21f1,3
+np.float32,0x3d0f5e5d,0xc09ac3e9,3
+np.float32,0x3f0fff6e,0xbf548142,3
+np.float32,0x7f11ed32,0x42fe60d2,3
+np.float32,0x3e6f856b,0xc00624b6,3
+np.float32,0x7f7c4dd7,0x42fff542,3
+np.float32,0x3e76fb86,0xc0034fa0,3
+np.float32,0x3e8a0d6e,0xbff209e7,3
+np.float32,0x3eacad19,0xbfc8b6ad,3
+np.float32,0xa7776,0xc3019cbe,3
+np.float32,0x3dc84d74,0xc056a754,3
+np.float32,0x3efb8052,0xbf834626,3
+np.float32,0x3f0e55fc,0xbf58cacc,3
+np.float32,0x7e0e71e3,0x42fa4efb,3
+np.float32,0x3ed5a800,0xbfa1639c,3
+np.float32,0x3f33335b,0xbf03babf,3
+np.float32,0x38cad7,0xc2fe5842,3
+np.float32,0x3bc21256,0xc0ecc927,3
+np.float32,0x3f09522d,0xbf660a19,3
+np.float32,0xcbd5d,0xc3015428,3
+np.float32,0x492752,0xc2fd9d42,3
+np.float32,0x3f2b9b32,0xbf13b904,3
+np.float32,0x6544ac,0xc2fcad09,3
+np.float32,0x52eb12,0xc2fd40b5,3
+np.float32,0x3f66a7c0,0xbe1a03e8,3
+np.float32,0x7ab289,0xc2fc1f41,3
+np.float32,0x62af5e,0xc2fcc020,3
+np.float32,0x7f73e9cf,0x42ffdc46,3
+np.float32,0x3e5eca,0xc2fe130e,3
+np.float32,0x3e3a10f4,0xc01d7602,3
+np.float32,0x3f04db46,0xbf723f0d,3
+np.float32,0x18fc4a,0xc3005b63,3
+np.float32,0x525bcb,0xc2fd45b6,3
+np.float32,0x3f6b9108,0xbdf5c769,3
+np.float32,0x3e992e8c,0xbfded5c5,3
+np.float32,0x7efea647,0x42fdfc18,3
+np.float32,0x7e8371db,0x42fc139e,3
+np.float32,0x3f397cfb,0xbeedfc69,3
+np.float32,0x7e46d233,0x42fb454a,3
+np.float32,0x7d5281ad,0x42f76f79,3
+np.float32,0x7f4c1878,0x42ff58a1,3
+np.float32,0x3e96ca5e,0xbfe1bd97,3
+np.float32,0x6a2743,0xc2fc8a3d,3
+np.float32,0x7f688781,0x42ffb8f8,3
+np.float32,0x7814b7,0xc2fc2f2d,3
+np.float32,0x3f2ffdc9,0xbf0a6756,3
+np.float32,0x3f766fa8,0xbd60fe24,3
+np.float32,0x4dc64e,0xc2fd7003,3
+np.float32,0x3a296f,0xc2fe46a8,3
+np.float32,0x3f2af942,0xbf15162e,3
+np.float32,0x7f702c32,0x42ffd0dc,3
+np.float32,0x7e61e318,0x42fba390,3
+np.float32,0x7f7d3bdb,0x42fff7fa,3
+np.float32,0x3ee87f3f,0xbf91c881,3
+np.float32,0x2bbc28,0xc2ff193c,3
+np.float32,0x3e01f918,0xc03e966e,3
+np.float32,0x7f0b39f4,0x42fe3e1a,3
+np.float32,0x3eaa4d64,0xbfcb4516,3
+np.float32,0x3e53901e,0xc0119a88,3
+np.float32,0x603cb,0xc3026957,3
+np.float32,0x7e81f926,0x42fc0b4d,3
+np.float32,0x5dab7c,0xc2fce6a6,3
+np.float32,0x3f46fefd,0xbeba1018,3
+np.float32,0x648448,0xc2fcb28a,3
+np.float32,0x3ec49470,0xbfb0c58b,3
+np.float32,0x3e8a5393,0xbff1ac2b,3
+np.float32,0x3f27ccfc,0xbf1c014e,3
+np.float32,0x3ed886e6,0xbf9eeca8,3
+np.float32,0x7cfbe06e,0x42f5f401,3
+np.float32,0x3f5aa7ba,0xbe68f229,3
+np.float32,0x9500d,0xc301c7e3,3
+np.float32,0x3f4861,0xc2fe0853,3
+np.float32,0x3e5ae104,0xc00e76f5,3
+np.float32,0x71253a,0xc2fc5b1e,3
+np.float32,0xcf7b8,0xc3014d9c,3
+np.float32,0x7f7edd2d,0x42fffcb7,3
+np.float32,0x3e9039ee,0xbfe9f5ab,3
+np.float32,0x2fd54e,0xc2fed712,3
+np.float32,0x3f600752,0xbe45147a,3
+np.float32,0x3f4da8f6,0xbea1bb5c,3
+np.float32,0x3f2d34a9,0xbf104bd9,3
+np.float32,0x3e1e66dd,0xc02c52d2,3
+np.float32,0x798276,0xc2fc2670,3
+np.float32,0xd55e2,0xc3014347,3
+np.float32,0x80000001,0xffc00000,3
+np.float32,0x3e7a5ead,0xc0020da6,3
+np.float32,0x7ec4c744,0x42fd3da9,3
+np.float32,0x597e00,0xc2fd085a,3
+np.float32,0x3dff6bf4,0xc0403575,3
+np.float32,0x5d6f1a,0xc2fce883,3
+np.float32,0x7e21faff,0x42faadea,3
+np.float32,0x3e570fea,0xc01016c6,3
+np.float32,0x28e6b6,0xc2ff4ab7,3
+np.float32,0x7e77062d,0x42fbe5a3,3
+np.float32,0x74cac4,0xc2fc43b0,3
+np.float32,0x3f707273,0xbdb93078,3
+np.float32,0x228e96,0xc2ffc737,3
+np.float32,0x686ac1,0xc2fc966b,3
+np.float32,0x3d76400d,0xc081cae8,3
+np.float32,0x3e9f502f,0xbfd7966b,3
+np.float32,0x3f6bc656,0xbdf32b1f,3
+np.float32,0x3edb828b,0xbf9c65d4,3
+np.float32,0x6c6e56,0xc2fc7a8e,3
+np.float32,0x3f04552e,0xbf73b48f,3
+np.float32,0x3f39cb69,0xbeecc457,3
+np.float32,0x7f681c44,0x42ffb7a3,3
+np.float32,0x7f5b44ee,0x42ff8d99,3
+np.float32,0x3e71430a,0xc005798d,3
+np.float32,0x3edcfde3,0xbf9b27c6,3
+np.float32,0x3f616a5a,0xbe3bf67f,3
+np.float32,0x3f523936,0xbe918548,3
+np.float32,0x3f39ce3a,0xbeecb925,3
+np.float32,0x3eac589a,0xbfc91120,3
+np.float32,0x7efc8d3d,0x42fdf5fc,3
+np.float32,0x5704b0,0xc2fd1d0f,3
+np.float32,0x7e7972e9,0x42fbecda,3
+np.float32,0x3eb0811c,0xbfc4aa13,3
+np.float32,0x7f1efcbb,0x42fea023,3
+np.float32,0x3e0b9e32,0xc037fa6b,3
+np.float32,0x7eef6a48,0x42fdce87,3
+np.float32,0x3cc0a373,0xc0ad20c0,3
+np.float32,0x3f2a75bb,0xbf1632ba,3
+np.float32,0x0,0xff800000,3
+np.float32,0x7ecdb6f4,0x42fd5e77,3
+np.float32,0x7f2e2dfd,0x42fee38d,3
+np.float32,0x3ee17f6e,0xbf976d8c,3
+np.float32,0x3f51e7ee,0xbe92a319,3
+np.float32,0x3f06942f,0xbf6d7d3c,3
+np.float32,0x3f7ba528,0xbccac6f1,3
+np.float32,0x3f413787,0xbecfd513,3
+np.float32,0x3e085e48,0xc03a2716,3
+np.float32,0x7e4c5e0e,0x42fb599c,3
+np.float32,0x306f76,0xc2fecdd4,3
+np.float32,0x7f5c2203,0x42ff9081,3
+np.float32,0x3d5355b4,0xc088da05,3
+np.float32,0x9a2a,0xc305bb4f,3
+np.float32,0x3db93a1f,0xc05de0db,3
+np.float32,0x4e50c6,0xc2fd6ae4,3
+np.float32,0x7ec4afed,0x42fd3d51,3
+np.float32,0x3a8f27,0xc2fe41a0,3
+np.float32,0x7f213caf,0x42feaa84,3
+np.float32,0x7e7b5f00,0x42fbf286,3
+np.float32,0x7e367194,0x42fb05ca,3
+np.float32,0x7f56e6de,0x42ff7ebd,3
+np.float32,0x3ed7383e,0xbfa00aef,3
+np.float32,0x7e844752,0x42fc184a,3
+np.float32,0x15157,0xc3049a19,3
+np.float32,0x3f78cd92,0xbd28824a,3
+np.float32,0x7ecddb16,0x42fd5ef9,3
+np.float32,0x3e479f16,0xc016f7d8,3
+np.float32,0x3f5cb418,0xbe5b2bd3,3
+np.float32,0x7c0934cb,0x42f2334e,3
+np.float32,0x3ebe5505,0xbfb6bc69,3
+np.float32,0x3eb1335a,0xbfc3eff5,3
+np.float32,0x3f2488a3,0xbf234444,3
+np.float32,0x642906,0xc2fcb52a,3
+np.float32,0x3da635fa,0xc067e15a,3
+np.float32,0x7e0d80db,0x42fa4a15,3
+np.float32,0x4f0b9d,0xc2fd640a,3
+np.float32,0x7e083806,0x42fa2df8,3
+np.float32,0x7f77f8c6,0x42ffe877,3
+np.float32,0x3e7bb46a,0xc0018ff5,3
+np.float32,0x3f06eb2e,0xbf6c8eca,3
+np.float32,0x7eae8f7c,0x42fce52a,3
+np.float32,0x3de481a0,0xc04a7d7f,3
+np.float32,0x3eed4311,0xbf8e096f,3
+np.float32,0x3f7b0300,0xbce8903d,3
+np.float32,0x3811b,0xc30330dd,3
+np.float32,0x3eb6f8e1,0xbfbe04bc,3
+np.float32,0x3ec35210,0xbfb1f55a,3
+np.float32,0x3d386916,0xc08f24a5,3
+np.float32,0x3f1fa197,0xbf2e704d,3
+np.float32,0x7f2020a5,0x42fea56a,3
+np.float32,0x7e1ea53f,0x42fa9e8c,3
+np.float32,0x3f148903,0xbf490bf9,3
+np.float32,0x3f2f56a0,0xbf0bc6c9,3
+np.float32,0x7da9fc,0xc2fc0d9b,3
+np.float32,0x3d802134,0xc07fe810,3
+np.float32,0x3f6cb927,0xbde74e57,3
+np.float32,0x7e05b125,0x42fa2023,3
+np.float32,0x3f3307f9,0xbf041433,3
+np.float32,0x5666bf,0xc2fd2250,3
+np.float32,0x3f51c93b,0xbe930f28,3
+np.float32,0x3eb5dcfe,0xbfbf241e,3
+np.float32,0xb2773,0xc301853f,3
+np.float32,0x7f4dee96,0x42ff5f3f,3
+np.float32,0x3e3f5c33,0xc01adee1,3
+np.float32,0x3f2ed29a,0xbf0cdd4a,3
+np.float32,0x3e3c01ef,0xc01c80ab,3
+np.float32,0x3ec2236e,0xbfb31458,3
+np.float32,0x7e841dc4,0x42fc1761,3
+np.float32,0x3df2cd8e,0xc044e30c,3
+np.float32,0x3f010901,0xbf7d0670,3
+np.float32,0x3c05ceaa,0xc0ddf39b,3
+np.float32,0x3f517226,0xbe944206,3
+np.float32,0x3f23c83d,0xbf24f522,3
+np.float32,0x7fc9da,0xc2fc0139,3
+np.float32,0x7f1bde53,0x42fe9181,3
+np.float32,0x3ea3786c,0xbfd2d4a5,3
+np.float32,0x3e83a71b,0xbffacdd2,3
+np.float32,0x3f6f0d4f,0xbdca61d5,3
+np.float32,0x7f5ab613,0x42ff8bb7,3
+np.float32,0x3ab1ec,0xc2fe3fea,3
+np.float32,0x4fbf58,0xc2fd5d82,3
+np.float32,0x3dea141b,0xc0484403,3
+np.float32,0x7d86ad3b,0x42f8258f,3
+np.float32,0x7f345315,0x42fefd29,3
+np.float32,0x3f3752fe,0xbef6a780,3
+np.float32,0x64830d,0xc2fcb293,3
+np.float32,0x3d9dc1eb,0xc06cb32a,3
+np.float32,0x3f2f935a,0xbf0b46f6,3
+np.float32,0xb90a4,0xc30177e3,3
+np.float32,0x4111dd,0xc2fdf3c1,3
+np.float32,0x3d4cd078,0xc08a4c68,3
+np.float32,0x3e95c3f1,0xbfe30011,3
+np.float32,0x3ec9f356,0xbfabcb4e,3
+np.float32,0x1b90d5,0xc3003717,3
+np.float32,0xee70f,0xc3011a3e,3
+np.float32,0x7fa00000,0x7fe00000,3
+np.float32,0x3f74cdb6,0xbd8422af,3
+np.float32,0x3d9b56fe,0xc06e2037,3
+np.float32,0x3f1853df,0xbf3fbc40,3
+np.float32,0x7d86a011,0x42f82547,3
+np.float32,0x3dff9629,0xc0402634,3
+np.float32,0x46f8c9,0xc2fdb39f,3
+np.float32,0x3e9b410b,0xbfdc5a87,3
+np.float32,0x3f5aed42,0xbe671cac,3
+np.float32,0x3b739886,0xc101257f,3
+np.float64,0x3fe2f58d6565eb1b,0xbfe82a641138e19a,1
+np.float64,0x3fee7f0642fcfe0d,0xbfb1c702f6974932,1
+np.float64,0x25b71f244b6e5,0xc090030d3b3c5d2b,1
+np.float64,0x8c9cc8e1193b,0xc0900b752a678fa8,1
+np.float64,0x3fd329b5d326536c,0xbffbd607f6db945c,1
+np.float64,0x3fb5109b3a2a2136,0xc00cd36bd15dfb18,1
+np.float64,0x3fd5393ae12a7276,0xbff97a7e4a157154,1
+np.float64,0x3fd374d1b926e9a3,0xbffb7c3e1a3a7ed3,1
+np.float64,0x3fe2c7f4e2658fea,0xbfe899f15ca78fcb,1
+np.float64,0x7fe3d6b81ee7ad6f,0x408ffa7b63d407ee,1
+np.float64,0x3fe086d097e10da1,0xbfee81456ce8dd03,1
+np.float64,0x7fd374a64ca6e94c,0x408ff241c7306d39,1
+np.float64,0x3fc0709a5b20e135,0xc007afdede31b29c,1
+np.float64,0x3fd4218f4b28431f,0xbffab2c696966e2d,1
+np.float64,0x143134c828628,0xc09006a8372c4d8a,1
+np.float64,0x3f8bd0aa0037a154,0xc018cf0e8b9c3107,1
+np.float64,0x7fe0ce905ee19d20,0x408ff8915e71bd67,1
+np.float64,0x3fda0f5f32b41ebe,0xbff4bd5e0869e820,1
+np.float64,0x7fe9ae63d0b35cc7,0x408ffd760ca4f292,1
+np.float64,0x3fe75abd9eeeb57b,0xbfdd1476fc8b3089,1
+np.float64,0x786c3110f0d87,0xc08ff8b44cedbeea,1
+np.float64,0x22c5fe80458d,0xc09013853591c2f2,1
+np.float64,0x3fdc250797384a0f,0xbff2f6a02c961f0b,1
+np.float64,0x3fa2b367b02566cf,0xc013199238485054,1
+np.float64,0x3fd26a910ca4d522,0xbffcc0e2089b1c0c,1
+np.float64,0x8068d3b300d1b,0xc08ff7f690210aac,1
+np.float64,0x3fe663bfa9ecc77f,0xbfe07cd95a43a5ce,1
+np.float64,0x3fd0ddb07321bb61,0xbffec886665e895e,1
+np.float64,0x3f91c730b0238e61,0xc0176452badc8d22,1
+np.float64,0x4dd10d309ba22,0xc08ffdbe738b1d8d,1
+np.float64,0x7fe322afa4a6455e,0x408ffa10c038f9de,1
+np.float64,0x7fdf7f7c42befef8,0x408ff7d147ddaad5,1
+np.float64,0x7fd673f386ace7e6,0x408ff3e920d00eef,1
+np.float64,0x3feaebfcadb5d7f9,0xbfcfe8ec27083478,1
+np.float64,0x3fdc6dc23738db84,0xbff2bb46794f07b8,1
+np.float64,0xcd8819599b103,0xc08ff288c5b2cf0f,1
+np.float64,0xfda00e77fb402,0xc08ff01b895d2236,1
+np.float64,0x840b02ff08161,0xc08ff7a41e41114c,1
+np.float64,0x3fbdce3a383b9c74,0xc008d1e61903a289,1
+np.float64,0x3fd24ed3c4a49da8,0xbffce3c12136b6d3,1
+np.float64,0x3fe8d0834131a107,0xbfd77b194e7051d4,1
+np.float64,0x3fdd0cb11aba1962,0xbff23b9dbd554455,1
+np.float64,0x1a32d97e3465c,0xc090052781a37271,1
+np.float64,0x3fdb09d2b1b613a5,0xbff3e396b862bd83,1
+np.float64,0x3fe04c848aa09909,0xbfef2540dd90103a,1
+np.float64,0x3fce0c48613c1891,0xc000b9f76877d744,1
+np.float64,0x3fc37109a226e213,0xc005c05d8b2b9a2f,1
+np.float64,0x81cf3837039e7,0xc08ff7d686517dff,1
+np.float64,0xd9342c29b2686,0xc08ff1e591c9a895,1
+np.float64,0x7fec731b0638e635,0x408ffea4884550a9,1
+np.float64,0x3fba0fc138341f82,0xc00a5e839b085f64,1
+np.float64,0x7fdda893b03b5126,0x408ff71f7c5a2797,1
+np.float64,0xd2a4bb03a5498,0xc08ff2402f7a907c,1
+np.float64,0x3fea61fb0d34c3f6,0xbfd1d293fbe76183,1
+np.float64,0x3fed5cf486fab9e9,0xbfbfc2e01a7ffff1,1
+np.float64,0x3fcbabc2bf375785,0xc001ad7750c9dbdf,1
+np.float64,0x3fdb5fff53b6bfff,0xbff39a7973a0c6a5,1
+np.float64,0x7feef05a00bde0b3,0x408fff9c5cbc8651,1
+np.float64,0xb1cf24f1639e5,0xc08ff434de10fffb,1
+np.float64,0x3fa583989c2b0731,0xc0124a8a3bbf18ce,1
+np.float64,0x7feae90bf9f5d217,0x408ffe002e7bbbea,1
+np.float64,0x3fe9ef41c4b3de84,0xbfd367878ae4528e,1
+np.float64,0x9be24ce337c4a,0xc08ff5b9b1c31cf9,1
+np.float64,0x3fe916894cb22d13,0xbfd677f915d58503,1
+np.float64,0x3fec1bab20f83756,0xbfc7f2777aabe8ee,1
+np.float64,0x3feaabf2873557e5,0xbfd0d11f28341233,1
+np.float64,0x3fd4d3c3b529a787,0xbff9e9e47acc8ca9,1
+np.float64,0x3fe4cfe96c699fd3,0xbfe3dc53fa739169,1
+np.float64,0xccfdb97399fb7,0xc08ff2908d893400,1
+np.float64,0x3fec7598be78eb31,0xbfc5a750f8f3441a,1
+np.float64,0x355be5fc6ab7e,0xc090010ca315b50b,1
+np.float64,0x3fba9f9074353f21,0xc00a1f80eaf5e581,1
+np.float64,0x7fdcaff189395fe2,0x408ff6bd1c5b90d9,1
+np.float64,0x3fd94d3b64b29a77,0xbff56be1b43d25f3,1
+np.float64,0x4e5f29949cbe6,0xc08ffda972da1d73,1
+np.float64,0x3fe654e2d9aca9c6,0xbfe09b88dcd8f15d,1
+np.float64,0x7fdc130190b82602,0x408ff67d496c1a27,1
+np.float64,0x3fbcd4701e39a8e0,0xc009343e36627e80,1
+np.float64,0x7fdaa4d38f3549a6,0x408ff5e2c6d8678f,1
+np.float64,0x3febe95e5237d2bd,0xbfc93e16d453fe3a,1
+np.float64,0x9ef5ca553deba,0xc08ff57ff4f7883d,1
+np.float64,0x7fe878e91170f1d1,0x408ffce795868fc8,1
+np.float64,0x3fe63dff466c7bff,0xbfe0caf2b79c9e5f,1
+np.float64,0x6561446ccac29,0xc08ffab0e383834c,1
+np.float64,0x30c6c2ae618d9,0xc09001914b30381b,1
+np.float64,0x7ff0000000000000,0x7ff0000000000000,1
+np.float64,0x3fe5c9daf1ab93b6,0xbfe1be81baf4dbdb,1
+np.float64,0x3fe0a03e24a1407c,0xbfee3a73c4c0e8f8,1
+np.float64,0xff2a2cf3fe546,0xc08ff009a7e6e782,1
+np.float64,0x7fcf0332213e0663,0x408fefa36235e210,1
+np.float64,0x3fb612affc2c2560,0xc00c494be9c8c33b,1
+np.float64,0x3fd2b259702564b3,0xbffc67967f077e75,1
+np.float64,0x7fcb63685d36c6d0,0x408fee343343f913,1
+np.float64,0x3fe369f1d5a6d3e4,0xbfe71251139939ad,1
+np.float64,0x3fdd17c618ba2f8c,0xbff232d11c986251,1
+np.float64,0x3f92cc8040259901,0xc01711d8e06b52ee,1
+np.float64,0x69a81dc2d3504,0xc08ffa36cdaf1141,1
+np.float64,0x3fea0fad99b41f5b,0xbfd2f4625a652645,1
+np.float64,0xd1cd5799a39ab,0xc08ff24c02b90d26,1
+np.float64,0x324e59ce649cc,0xc0900163ad091c76,1
+np.float64,0x3fc3d460a227a8c1,0xc00585f903dc7a7f,1
+np.float64,0xa7185ec74e30c,0xc08ff4ec7d65ccd9,1
+np.float64,0x3fa254eaac24a9d5,0xc01337053963321a,1
+np.float64,0x3feaeb112435d622,0xbfcfef3be17f81f6,1
+np.float64,0x60144c3ac028a,0xc08ffb4f8eb94595,1
+np.float64,0x7fa4d2ec6829a5d8,0x408fdb0a9670ab83,1
+np.float64,0x3fed1372f97a26e6,0xbfc1b1fe50d48a55,1
+np.float64,0x3fd5ade5972b5bcb,0xbff8fcf28f525031,1
+np.float64,0x7fe72e335bee5c66,0x408ffc4759236437,1
+np.float64,0x7fdfafab143f5f55,0x408ff7e2e22a8129,1
+np.float64,0x3fe90d0db9321a1b,0xbfd69ae5fe10eb9e,1
+np.float64,0x7fe20a59072414b1,0x408ff962a2492484,1
+np.float64,0x3fed853690bb0a6d,0xbfbdc9dc5f199d2b,1
+np.float64,0x3fd709d469ae13a9,0xbff795a218deb700,1
+np.float64,0x3fe21c35f5e4386c,0xbfea47d71789329b,1
+np.float64,0x9ea5ec053d4be,0xc08ff585c2f6b7a3,1
+np.float64,0x3fc0580f9e20b01f,0xc007c1268f49d037,1
+np.float64,0xd99127abb3225,0xc08ff1e0a1ff339d,1
+np.float64,0x3fdc8c9bbfb91937,0xbff2a2478354effb,1
+np.float64,0x3fe15fc6b162bf8d,0xbfec323ac358e008,1
+np.float64,0xffefffffffffffff,0x7ff8000000000000,1
+np.float64,0x3fee341afb3c6836,0xbfb556b6faee9a84,1
+np.float64,0x3fe4b64c56296c99,0xbfe4154835ad2afe,1
+np.float64,0x85de22810bbc5,0xc08ff77b914fe5b5,1
+np.float64,0x3fd22c72e3a458e6,0xbffd0f4269d20bb9,1
+np.float64,0xc090e5218123,0xc09009a4a65a8a8f,1
+np.float64,0x7fd9641692b2c82c,0x408ff5547782bdfc,1
+np.float64,0x3fd9b9cb28b37396,0xbff509a8fb59a9f1,1
+np.float64,0x3fcd2726f93a4e4e,0xc001135059a22117,1
+np.float64,0x3fa4b493d4296928,0xc0128323c7a55f4a,1
+np.float64,0x47455e788e8ac,0xc08ffec2101c1e82,1
+np.float64,0x3fe0d7e2e261afc6,0xbfeda0f1e2d0f4bd,1
+np.float64,0x3fe860fc5b70c1f9,0xbfd91dc42eaf72c2,1
+np.float64,0xa5d7805b4baf0,0xc08ff502bc819ff6,1
+np.float64,0xd83395b1b0673,0xc08ff1f33c3f94c2,1
+np.float64,0x3f865972e02cb2e6,0xc01a1243651565c8,1
+np.float64,0x52fc6952a5f8e,0xc08ffd006b158179,1
+np.float64,0x7fecac6c793958d8,0x408ffebbb1c09a70,1
+np.float64,0x7fe621ff606c43fe,0x408ffbbeb2b1473a,1
+np.float64,0x3fdb9f3f9db73e7f,0xbff365610c52bda7,1
+np.float64,0x7feab92992757252,0x408ffdeb92a04813,1
+np.float64,0xcc46c79f988d9,0xc08ff29adf03fb7c,1
+np.float64,0x3fe3156a03262ad4,0xbfe7dd0f598781c7,1
+np.float64,0x3fc00e3a61201c75,0xc007f5c121a87302,1
+np.float64,0x3fdce8e9f739d1d4,0xbff2581d41ef50ef,1
+np.float64,0x0,0xfff0000000000000,1
+np.float64,0x7d373ac4fa6e8,0xc08ff840fa8beaec,1
+np.float64,0x3fee41e0653c83c1,0xbfb4ae786f2a0d54,1
+np.float64,0x3ff0000000000000,0x0,1
+np.float64,0x7feca6fff9794dff,0x408ffeb982a70556,1
+np.float64,0x7fc532716d2a64e2,0x408feb3f0f6c095b,1
+np.float64,0x3fe4ec2954a9d853,0xbfe39dd44aa5a040,1
+np.float64,0x7fd3321d52a6643a,0x408ff21a0ab9cd85,1
+np.float64,0x7fd8f1b2dfb1e365,0x408ff52001fa7922,1
+np.float64,0x3fee5e58cabcbcb2,0xbfb3539734a24d8b,1
+np.float64,0x3feebf6e7dfd7edd,0xbfad7c648f025102,1
+np.float64,0x6008026ec0101,0xc08ffb5108b54a93,1
+np.float64,0x3fea06f5e2340dec,0xbfd3134a48283360,1
+np.float64,0x41cad13c8395b,0xc08fffae654b2426,1
+np.float64,0x7fedb5c9353b6b91,0x408fff249f1f32b6,1
+np.float64,0xe00c5af9c018c,0xc08ff189e68c655f,1
+np.float64,0x7feac398ddf58731,0x408ffdf01374de9f,1
+np.float64,0x3fed21127c7a4225,0xbfc15b8cf55628fa,1
+np.float64,0x3fd3446711a688ce,0xbffbb5f7252a9fa3,1
+np.float64,0x7fe75fa07a6ebf40,0x408ffc5fdb096018,1
+np.float64,0x3feeb1618cbd62c3,0xbfaece3bd0863070,1
+np.float64,0x7f5226e180244dc2,0x408fb174d506e52f,1
+np.float64,0x3fcd67deca3acfbe,0xc000f9cd7a490749,1
+np.float64,0xdc6f30efb8de6,0xc08ff1b9f2a22d2e,1
+np.float64,0x9c14931338293,0xc08ff5b5f975ec5d,1
+np.float64,0x7fe93e802df27cff,0x408ffd4354eba0e0,1
+np.float64,0x3feb92ae5077255d,0xbfcb7f2084e44dbb,1
+np.float64,0xd78dbfddaf1b8,0xc08ff1fc19fa5a13,1
+np.float64,0x7fe14c301fa2985f,0x408ff8e666cb6592,1
+np.float64,0xbda3d8b77b47b,0xc08ff37689f4b2e5,1
+np.float64,0x8a42953b14853,0xc08ff71c2db3b8cf,1
+np.float64,0x7fe4ca7e186994fb,0x408ffb05e94254a7,1
+np.float64,0x7fe92ffc5e325ff8,0x408ffd3cb0265b12,1
+np.float64,0x91b262912364d,0xc08ff681619be214,1
+np.float64,0x33fe2b0667fc6,0xc0900132f3fab55e,1
+np.float64,0x3fde10e9183c21d2,0xbff17060fb4416c7,1
+np.float64,0xb6b811cb6d702,0xc08ff3e46303b541,1
+np.float64,0x3fe4a7bda0a94f7b,0xbfe435c6481cd0e3,1
+np.float64,0x7fd9fe6057b3fcc0,0x408ff599c79a822c,1
+np.float64,0x3fef44bf917e897f,0xbfa11484e351a6e9,1
+np.float64,0x3fe57d701daafae0,0xbfe2618ab40fc01b,1
+np.float64,0x7fe52d2adbaa5a55,0x408ffb3c2fb1c99d,1
+np.float64,0xb432f66d6865f,0xc08ff40d6b4084fe,1
+np.float64,0xbff0000000000000,0x7ff8000000000000,1
+np.float64,0x7fecd2292bf9a451,0x408ffecad860de6f,1
+np.float64,0x3fddd2ae153ba55c,0xbff1a059adaca33e,1
+np.float64,0x3fee55d6e5bcabae,0xbfb3bb1c6179d820,1
+np.float64,0x7fc1d0085623a010,0x408fe93d16ada7a7,1
+np.float64,0x829b000105360,0xc08ff7c47629a68f,1
+np.float64,0x7fe1e0257523c04a,0x408ff94782cf0717,1
+np.float64,0x7fd652f9ad2ca5f2,0x408ff3d820ec892e,1
+np.float64,0x3fef2246203e448c,0xbfa444ab6209d8cd,1
+np.float64,0x3fec6c0ae178d816,0xbfc5e559ebd4e790,1
+np.float64,0x3fe6ddfee92dbbfe,0xbfdf06dd7d3fa7a8,1
+np.float64,0x3fb7fbcbea2ff798,0xc00b5404d859d148,1
+np.float64,0x7feb9a154d37342a,0x408ffe4b26c29e55,1
+np.float64,0x3fe4db717aa9b6e3,0xbfe3c2c6b3ef13bc,1
+np.float64,0x3fbae17dda35c2fc,0xc00a030f7f4b37e7,1
+np.float64,0x7fd632b9082c6571,0x408ff3c76826ef19,1
+np.float64,0x7fc4184a15283093,0x408feaa14adf00be,1
+np.float64,0x3fe052d19920a5a3,0xbfef136b5df81a3e,1
+np.float64,0x7fe38b872b67170d,0x408ffa4f51aafc86,1
+np.float64,0x3fef9842d03f3086,0xbf92d3d2a21d4be2,1
+np.float64,0x9cea662139d4d,0xc08ff5a634810daa,1
+np.float64,0x3fe35f0855e6be11,0xbfe72c4b564e62aa,1
+np.float64,0x3fecee3d3779dc7a,0xbfc29ee942f8729e,1
+np.float64,0x3fe7903fd72f2080,0xbfdc41db9b5f4048,1
+np.float64,0xb958889572b11,0xc08ff3ba366cf84b,1
+np.float64,0x3fcb3a67c53674d0,0xc001dd21081ad1ea,1
+np.float64,0xe3b1b53fc7637,0xc08ff15a3505e1ce,1
+np.float64,0xe5954ae9cb2aa,0xc08ff141cbbf0ae4,1
+np.float64,0x3fe394af74e7295f,0xbfe6ad1d13f206e8,1
+np.float64,0x7fe21dd704643bad,0x408ff96f13f80c1a,1
+np.float64,0x3fd23a7cf02474fa,0xbffcfd7454117a05,1
+np.float64,0x7fe257515e24aea2,0x408ff99378764d52,1
+np.float64,0x7fe4c5d0a6e98ba0,0x408ffb03503cf939,1
+np.float64,0x3fadc2c1603b8583,0xc0106b2c17550e3a,1
+np.float64,0x3fc0f7f02421efe0,0xc007525ac446864c,1
+np.float64,0x3feaf0b27275e165,0xbfcfc8a03eaa32ad,1
+np.float64,0x5ce7503cb9ceb,0xc08ffbb2de365fa8,1
+np.float64,0x2a0014f654003,0xc090026e41761a0d,1
+np.float64,0x7fe2c848a8e59090,0x408ff9d9b723ee89,1
+np.float64,0x7f66f54bc02dea97,0x408fbc2ae0ec5623,1
+np.float64,0xa35a890146b6,0xc0900a97b358ddbd,1
+np.float64,0x7fee267ded7c4cfb,0x408fff501560c9f5,1
+np.float64,0x3fe07c328520f865,0xbfee9ef7c3435b58,1
+np.float64,0x3fe67122cf6ce246,0xbfe06147001932ba,1
+np.float64,0x3fdacc8925359912,0xbff41824cece219e,1
+np.float64,0xffa3047fff461,0xc08ff00431ec9be3,1
+np.float64,0x3e1af43e7c35f,0xc090002c6573d29b,1
+np.float64,0x86fa94590df53,0xc08ff7632525ed92,1
+np.float64,0x7fec4c76227898eb,0x408ffe94d032c657,1
+np.float64,0x7fe2274ce1e44e99,0x408ff975194cfdff,1
+np.float64,0x7fe670e1b4ace1c2,0x408ffbe78cc451de,1
+np.float64,0x7fe853871db0a70d,0x408ffcd5e6a6ff47,1
+np.float64,0x3fcbf265db37e4cc,0xc0019026336e1176,1
+np.float64,0x3fef033cef3e067a,0xbfa726712eaae7f0,1
+np.float64,0x5d74973abae94,0xc08ffba15e6bb992,1
+np.float64,0x7fdd9c99b6bb3932,0x408ff71ad24a7ae0,1
+np.float64,0xbdc8e09b7b91c,0xc08ff3744939e9a3,1
+np.float64,0xdbfcff71b7fa0,0xc08ff1bfeecc9dfb,1
+np.float64,0xf9b38cf5f3672,0xc08ff0499af34a43,1
+np.float64,0x3fea820aa6b50415,0xbfd162a38e1927b1,1
+np.float64,0x3fe67f59a12cfeb3,0xbfe04412adca49dc,1
+np.float64,0x3feb301d9c76603b,0xbfce17e6edeb92d5,1
+np.float64,0x828ce00b0519c,0xc08ff7c5b5c57cde,1
+np.float64,0x4f935e229f26c,0xc08ffd7c67c1c54f,1
+np.float64,0x7fcd139e023a273b,0x408feee4f12ff11e,1
+np.float64,0x666a9944ccd54,0xc08ffa92d5e5cd64,1
+np.float64,0x3fe792f0fa6f25e2,0xbfdc374fda28f470,1
+np.float64,0xe996029bd32c1,0xc08ff10eb9b47a11,1
+np.float64,0x3fe7b0dd1eef61ba,0xbfdbc2676dc77db0,1
+np.float64,0x7fd3ec0127a7d801,0x408ff287bf47e27d,1
+np.float64,0x3fe793a8ea6f2752,0xbfdc347f7717e48d,1
+np.float64,0x7fdb89d15e3713a2,0x408ff64457a13ea2,1
+np.float64,0x3fe35b3cbbe6b679,0xbfe73557c8321b70,1
+np.float64,0x66573c94ccae8,0xc08ffa9504af7eb5,1
+np.float64,0x3fc620a2302c4144,0xc00442036b944a67,1
+np.float64,0x49b2fe0693660,0xc08ffe5f131c3c7e,1
+np.float64,0x7fda936cdfb526d9,0x408ff5db3ab3f701,1
+np.float64,0xc774ceef8ee9a,0xc08ff2e16d082fa1,1
+np.float64,0x4da9f8a09b55,0xc0900ee2206d0c88,1
+np.float64,0x3fe2ca5d5ae594bb,0xbfe89406611a5f1a,1
+np.float64,0x7fe0832497e10648,0x408ff85d1de6056e,1
+np.float64,0x3fe6a9e3222d53c6,0xbfdfda35a9bc2de1,1
+np.float64,0x3fed3d92c8ba7b26,0xbfc0a73620db8b98,1
+np.float64,0x3fdd2ec093ba5d81,0xbff2209cf78ce3f1,1
+np.float64,0x62fcb968c5f98,0xc08ffaf775a593c7,1
+np.float64,0xfcfb019ff9f60,0xc08ff0230e95bd16,1
+np.float64,0x3fd7a63e8f2f4c7d,0xbff6faf4fff7dbe0,1
+np.float64,0x3fef23b0ec3e4762,0xbfa4230cb176f917,1
+np.float64,0x340d1e6a681a5,0xc09001314b68a0a2,1
+np.float64,0x7fc0b85ba02170b6,0x408fe8821487b802,1
+np.float64,0x7fe9976e84f32edc,0x408ffd6bb6aaf467,1
+np.float64,0x329a0e9e65343,0xc090015b044e3270,1
+np.float64,0x3fea4928d3f49252,0xbfd2299b05546eab,1
+np.float64,0x3f188c70003118e0,0xc02ac3ce23bc5d5a,1
+np.float64,0x3fecce5020b99ca0,0xbfc36b23153d5f50,1
+np.float64,0x3fe203873e24070e,0xbfea86edb3690830,1
+np.float64,0x3fe02d9eaa205b3d,0xbfef7d18c54a76d2,1
+np.float64,0xef7537ebdeea7,0xc08ff0c55e9d89e7,1
+np.float64,0x3fedf7572efbeeae,0xbfb840af357cf07c,1
+np.float64,0xd1a97a61a354,0xc0900926fdfb96cc,1
+np.float64,0x7fe6a0daeced41b5,0x408ffc001edf1407,1
+np.float64,0x3fe5063625aa0c6c,0xbfe3647cfb949d62,1
+np.float64,0x7fe9b28d31736519,0x408ffd77eb4a922b,1
+np.float64,0x7feea90d033d5219,0x408fff81a4bbff62,1
+np.float64,0x3fe9494d17f2929a,0xbfd5bde02eb5287a,1
+np.float64,0x7feee17a8cbdc2f4,0x408fff96cf0dc16a,1
+np.float64,0xb2ad18ef655a3,0xc08ff4267eda8af8,1
+np.float64,0x3fad3b52683a76a5,0xc01085ab75b797ce,1
+np.float64,0x2300a65846016,0xc090037b81ce9500,1
+np.float64,0x3feb1041f9b62084,0xbfcef0c87d8b3249,1
+np.float64,0x3fdd887d3e3b10fa,0xbff1da0e1ede6db2,1
+np.float64,0x3fd3e410eb27c822,0xbffaf9b5fc9cc8cc,1
+np.float64,0x3fe0aa53e3e154a8,0xbfee1e7b5c486578,1
+np.float64,0x7fe33e389aa67c70,0x408ffa214fe50961,1
+np.float64,0x3fd27e3a43a4fc75,0xbffca84a79e8adeb,1
+np.float64,0x3fb309e0082613c0,0xc00dfe407b77a508,1
+np.float64,0x7feaf2ed8cf5e5da,0x408ffe046a9d1ba9,1
+np.float64,0x1e76167a3cec4,0xc0900448cd35ec67,1
+np.float64,0x3fe0a18e1721431c,0xbfee36cf1165a0d4,1
+np.float64,0x3fa73b78c02e76f2,0xc011d9069823b172,1
+np.float64,0x3fef6d48287eda90,0xbf9ab2d08722c101,1
+np.float64,0x8fdf0da31fbe2,0xc08ff6a6a2accaa1,1
+np.float64,0x3fc3638db826c71b,0xc005c86191688826,1
+np.float64,0xaa9c09c555381,0xc08ff4aefe1d9473,1
+np.float64,0x7fccb0f4523961e8,0x408feebd84773f23,1
+np.float64,0xede75dcfdbcec,0xc08ff0d89ba887d1,1
+np.float64,0x7f8a051520340a29,0x408fcd9cc17f0d95,1
+np.float64,0x3fef5ca2babeb945,0xbf9dc221f3618e6a,1
+np.float64,0x7fea0ff4bcf41fe8,0x408ffda193359f22,1
+np.float64,0x7fe05c53fd20b8a7,0x408ff841dc7123e8,1
+np.float64,0x3fc625664b2c4acd,0xc0043f8749b9a1d8,1
+np.float64,0x7fed58f98f7ab1f2,0x408fff00585f48c2,1
+np.float64,0x3fb3e5e51427cbca,0xc00d7bcb6528cafe,1
+np.float64,0x3fe728bd3d6e517a,0xbfdddafa72bd0f60,1
+np.float64,0x3fe3f005dd27e00c,0xbfe5d7b3ec93bca0,1
+np.float64,0x3fd74fbd1a2e9f7a,0xbff750001b63ce81,1
+np.float64,0x3fd3af6d85a75edb,0xbffb371d678d11b4,1
+np.float64,0x7fa690ad8c2d215a,0x408fdbf7db9c7640,1
+np.float64,0x3fbdfd38e23bfa72,0xc008bfc1c5c9b89e,1
+np.float64,0x3fe2374684a46e8d,0xbfea030c4595dfba,1
+np.float64,0x7fc0806c372100d7,0x408fe85b36fee334,1
+np.float64,0x3fef3ac47b7e7589,0xbfa2007195c5213f,1
+np.float64,0x3fb55473922aa8e7,0xc00cae7af8230e0c,1
+np.float64,0x7fe018dc152031b7,0x408ff811e0d712fa,1
+np.float64,0x3fe3b3fca56767f9,0xbfe6638ae2c99c62,1
+np.float64,0x7fac79818c38f302,0x408fdea720b39c3c,1
+np.float64,0x7fefffffffffffff,0x4090000000000000,1
+np.float64,0xd2b290cba5652,0xc08ff23f6d7152a6,1
+np.float64,0x7fc5848eb52b091c,0x408feb6b6f8b77d0,1
+np.float64,0xf399f62de733f,0xc08ff092ae319ad8,1
+np.float64,0x7fdec56c12bd8ad7,0x408ff78c4ddbc667,1
+np.float64,0x3fca640f1e34c81e,0xc0023969c5cbfa4c,1
+np.float64,0x3fd55225db2aa44c,0xbff95f7442a2189e,1
+np.float64,0x7fefa009a97f4012,0x408fffdd2f42ef9f,1
+np.float64,0x4a3b70609478,0xc0900f24e449bc3d,1
+np.float64,0x7fe3738b1ba6e715,0x408ffa411f2cb5e7,1
+np.float64,0x7fe5e53f0b6bca7d,0x408ffb9ed8d95cea,1
+np.float64,0x3fe274dd24a4e9ba,0xbfe967fb114b2a83,1
+np.float64,0x3fcbc58b8c378b17,0xc001a2bb1e158bcc,1
+np.float64,0x3fefc2c0043f8580,0xbf862c9b464dcf38,1
+np.float64,0xc2c4fafd858a0,0xc08ff327aecc409b,1
+np.float64,0x3fd8bc39a9b17873,0xbff5f1ad46e5a51c,1
+np.float64,0x3fdf341656be682d,0xbff094f41e7cb4c4,1
+np.float64,0x3fef8495c13f092c,0xbf966cf6313bae4c,1
+np.float64,0x3fe14e0f05229c1e,0xbfec6166f26b7161,1
+np.float64,0x3fed42d3b2ba85a7,0xbfc0860b773d35d8,1
+np.float64,0x7fd92bbac5b25775,0x408ff53abcb3fe0c,1
+np.float64,0xb1635b6f62c6c,0xc08ff43bdf47accf,1
+np.float64,0x4a3a2dbc94746,0xc08ffe49fabddb36,1
+np.float64,0x87d831290fb06,0xc08ff750419dc6fb,1
+np.float64,0x3fec4713f7f88e28,0xbfc6d6217c9f5cf9,1
+np.float64,0x7fed43ba2d3a8773,0x408ffef7fa2fc303,1
+np.float64,0x7fd1ec5b56a3d8b6,0x408ff14f62615f1e,1
+np.float64,0x3fee534b6c7ca697,0xbfb3da1951aa3e68,1
+np.float64,0x3febb564c2b76aca,0xbfca9737062e55e7,1
+np.float64,0x943e6b0f287ce,0xc08ff64e2d09335c,1
+np.float64,0xf177d957e2efb,0xc08ff0acab2999fa,1
+np.float64,0x7fb5b881a82b7102,0x408fe3872b4fde5e,1
+np.float64,0x3fdb2b4a97b65695,0xbff3c715c91359bc,1
+np.float64,0x3fac0a17e4381430,0xc010c330967309fb,1
+np.float64,0x7fd8057990b00af2,0x408ff4b0a287a348,1
+np.float64,0x1f9026a23f206,0xc09004144f3a19dd,1
+np.float64,0x3fdb2977243652ee,0xbff3c8a2fd05803d,1
+np.float64,0x3fe0f6e74b21edcf,0xbfed4c3bb956bae0,1
+np.float64,0xde9cc3bbbd399,0xc08ff19ce5c1e762,1
+np.float64,0x3fe72ce106ae59c2,0xbfddca7ab14ceba2,1
+np.float64,0x3fa8ee14e031dc2a,0xc01170d54ca88e86,1
+np.float64,0x3fe0b09bbb216137,0xbfee0d189a95b877,1
+np.float64,0x7fdfdcb157bfb962,0x408ff7f33cf2afea,1
+np.float64,0x3fef84d5f53f09ac,0xbf966134e2a154f4,1
+np.float64,0x3fea0e0b1bb41c16,0xbfd2fa2d36637d19,1
+np.float64,0x1ab76fd6356ef,0xc090050a9616ffbd,1
+np.float64,0x7fd0ccf79a2199ee,0x408ff09045af2dee,1
+np.float64,0x7fea929345f52526,0x408ffddadc322b07,1
+np.float64,0x3fe9ef629cf3dec5,0xbfd367129c166838,1
+np.float64,0x3feedf0ea2fdbe1d,0xbfaa862afca44c00,1
+np.float64,0x7fce725f723ce4be,0x408fef6cfd2769a8,1
+np.float64,0x7fe4313b3ca86275,0x408ffaaf9557ef8c,1
+np.float64,0xe2d46463c5a8d,0xc08ff165725c6b08,1
+np.float64,0x7fbacb4ace359695,0x408fe5f3647bd0d5,1
+np.float64,0x3fbafd009635fa01,0xc009f745a7a5c5d5,1
+np.float64,0x3fe3cea66ce79d4d,0xbfe6253b895e2838,1
+np.float64,0x7feaa71484354e28,0x408ffde3c0bad2a6,1
+np.float64,0x3fd755b8b42eab71,0xbff74a1444c6e654,1
+np.float64,0x3fc313e2172627c4,0xc005f830e77940c3,1
+np.float64,0x12d699a225ad4,0xc090070ec00f2338,1
+np.float64,0x3fa975fe8432ebfd,0xc01151b3da48b3f9,1
+np.float64,0x7fdce3103b39c61f,0x408ff6d19b3326fa,1
+np.float64,0x7fd341cbba268396,0x408ff2237490fdca,1
+np.float64,0x3fd8405885b080b1,0xbff6666d8802a7d5,1
+np.float64,0x3fe0f0cca3a1e199,0xbfed5cdb3e600791,1
+np.float64,0x7fbd56680c3aaccf,0x408fe6ff55bf378d,1
+np.float64,0x3f939c4f3027389e,0xc016d364dd6313fb,1
+np.float64,0x3fe9e87fac73d0ff,0xbfd37f9a2be4fe38,1
+np.float64,0x7fc93c6a883278d4,0x408fed4260e614f1,1
+np.float64,0x7fa88c0ff031181f,0x408fdcf09a46bd3a,1
+np.float64,0xd5487f99aa910,0xc08ff21b6390ab3b,1
+np.float64,0x3fe34acc96e69599,0xbfe75c9d290428fb,1
+np.float64,0x3fd17f5964a2feb3,0xbffdef50b524137b,1
+np.float64,0xe23dec0dc47be,0xc08ff16d1ce61dcb,1
+np.float64,0x3fec8bd64fb917ad,0xbfc5173941614b8f,1
+np.float64,0x3fc81d97d7303b30,0xc00343ccb791401d,1
+np.float64,0x7fe79ad18e2f35a2,0x408ffc7cf0ab0f2a,1
+np.float64,0x3f96306b402c60d7,0xc0161ce54754cac1,1
+np.float64,0xfb09fc97f6140,0xc08ff039d1d30123,1
+np.float64,0x3fec9c4afa793896,0xbfc4ace43ee46079,1
+np.float64,0x3f9262dac824c5b6,0xc01732a3a7eeb598,1
+np.float64,0x3fa5cd33f42b9a68,0xc01236ed4d315a3a,1
+np.float64,0x3fe7bb336caf7667,0xbfdb9a268a82e267,1
+np.float64,0xc6c338f98d867,0xc08ff2ebb8475bbc,1
+np.float64,0x3fd50714482a0e29,0xbff9b14a9f84f2c2,1
+np.float64,0xfff0000000000000,0x7ff8000000000000,1
+np.float64,0x3fde2cd0f93c59a2,0xbff15afe35a43a37,1
+np.float64,0xf1719cb9e2e34,0xc08ff0acf77b06d3,1
+np.float64,0xfd3caaf9fa796,0xc08ff020101771bd,1
+np.float64,0x7f750d63a02a1ac6,0x408fc32ad0caa362,1
+np.float64,0x7fcc50f4e238a1e9,0x408fee96a5622f1a,1
+np.float64,0x421d1da0843a4,0xc08fff9ffe62d869,1
+np.float64,0x3fd9e17023b3c2e0,0xbff4e631d687ee8e,1
+np.float64,0x3fe4999a09693334,0xbfe4556b3734c215,1
+np.float64,0xd619ef03ac33e,0xc08ff21013c85529,1
+np.float64,0x3fc4da522229b4a4,0xc004f150b2c573aa,1
+np.float64,0x3feb04b053b60961,0xbfcf3fc9e00ebc40,1
+np.float64,0x3fbedec5ea3dbd8c,0xc0086a33dc22fab5,1
+np.float64,0x7fec3b217ab87642,0x408ffe8dbc8ca041,1
+np.float64,0xdb257d33b64b0,0xc08ff1cb42d3c182,1
+np.float64,0x7fa2d92ec025b25d,0x408fd9e414d11cb0,1
+np.float64,0x3fa425c550284b8b,0xc012ab7cbf83be12,1
+np.float64,0x10b4869021692,0xc09007c0487d648a,1
+np.float64,0x7f97918c902f2318,0x408fd47867806574,1
+np.float64,0x3fe4f91238e9f224,0xbfe38160b4e99919,1
+np.float64,0x3fc2b1af6125635f,0xc00634343bc58461,1
+np.float64,0x3fc2a98071255301,0xc0063942bc8301be,1
+np.float64,0x3fe4cfc585299f8b,0xbfe3dca39f114f34,1
+np.float64,0x3fd1ea75b3a3d4eb,0xbffd63acd02c5406,1
+np.float64,0x3fd6bf48492d7e91,0xbff7e0cd249f80f9,1
+np.float64,0x76643d36ecc88,0xc08ff8e68f13b38c,1
+np.float64,0x7feeabab3e7d5755,0x408fff82a0fd4501,1
+np.float64,0x46c0d4a68d81b,0xc08ffed79abaddc9,1
+np.float64,0x3fd088d57ca111ab,0xbfff3dd0ed7128ea,1
+np.float64,0x3fed25887cba4b11,0xbfc13f47639bd645,1
+np.float64,0x7fd90984b4b21308,0x408ff52b022c7fb4,1
+np.float64,0x3fe6ef31daadde64,0xbfdec185760cbf21,1
+np.float64,0x3fe48dbe83291b7d,0xbfe47005b99920bd,1
+np.float64,0x3fdce8422f39d084,0xbff258a33a96cc8e,1
+np.float64,0xb8ecdef771d9c,0xc08ff3c0eca61b10,1
+np.float64,0x3fe9bbf9a03377f3,0xbfd41ecfdcc336b9,1
+np.float64,0x7fe2565339a4aca5,0x408ff992d8851eaf,1
+np.float64,0x3fe1693e3822d27c,0xbfec1919da2ca697,1
+np.float64,0x3fd3680488a6d009,0xbffb8b7330275947,1
+np.float64,0x7fbe4f3d2c3c9e79,0x408fe75fa3f4e600,1
+np.float64,0x7fd4cfef3ca99fdd,0x408ff308ee3ab50f,1
+np.float64,0x3fd9c9a51cb3934a,0xbff4fb7440055ce6,1
+np.float64,0x3fe08a9640a1152d,0xbfee76bd1bfbf5c2,1
+np.float64,0x3fef012c41fe0259,0xbfa757a2da7f9707,1
+np.float64,0x3fee653fe2fcca80,0xbfb2ffae0c95025c,1
+np.float64,0x7fd0776933a0eed1,0x408ff054e7b43d41,1
+np.float64,0x4c94e5c09929d,0xc08ffdedb7f49e5e,1
+np.float64,0xca3e3d17947c8,0xc08ff2b86dce2f7a,1
+np.float64,0x3fb528e1342a51c2,0xc00cc626c8e2d9ba,1
+np.float64,0xd774df81aee9c,0xc08ff1fd6f0a7548,1
+np.float64,0x3fc47a9b6128f537,0xc00526c577b80849,1
+np.float64,0x3fe29a6f6a6534df,0xbfe90a5f83644911,1
+np.float64,0x3fecda4f59f9b49f,0xbfc31e4a80c4cbb6,1
+np.float64,0x7fe51d44f5aa3a89,0x408ffb3382437426,1
+np.float64,0x3fd677fc412ceff9,0xbff82999086977e7,1
+np.float64,0x3fe2a3c7e7254790,0xbfe8f33415cdba9d,1
+np.float64,0x3fe6d8d1dc6db1a4,0xbfdf1bc61bc24dff,1
+np.float64,0x7febb32d8ef7665a,0x408ffe55a043ded1,1
+np.float64,0x60677860c0d0,0xc0900da2caa7d571,1
+np.float64,0x7390c2e0e7219,0xc08ff92df18bb5d2,1
+np.float64,0x3fca53711b34a6e2,0xc00240b07a9b529b,1
+np.float64,0x7fe7ce6dd8ef9cdb,0x408ffc961164ead9,1
+np.float64,0x7fc0c9de0d2193bb,0x408fe88e245767f6,1
+np.float64,0xc0ee217981dc4,0xc08ff343b77ea770,1
+np.float64,0x72bd4668e57a9,0xc08ff94323fd74fc,1
+np.float64,0x7fd6970e252d2e1b,0x408ff3fb1e2fead2,1
+np.float64,0x7fdcb61040396c20,0x408ff6bf926bc98f,1
+np.float64,0xda4faa25b49f6,0xc08ff1d68b3877f0,1
+np.float64,0x3feb344749f6688f,0xbfcdfba2d66c72c5,1
+np.float64,0x3fe2aa4284e55485,0xbfe8e32ae0683f57,1
+np.float64,0x3f8e8fcfd03d1fa0,0xc01843efb2129908,1
+np.float64,0x8000000000000000,0xfff0000000000000,1
+np.float64,0x3fd8e01155b1c023,0xbff5d0529dae9515,1
+np.float64,0x3fe8033f3370067e,0xbfda837c80b87e7c,1
+np.float64,0x7fc5bf831e2b7f05,0x408feb8ae3b039a0,1
+np.float64,0x3fd8dcdf5331b9bf,0xbff5d349e1ed422a,1
+np.float64,0x3fe58b4e302b169c,0xbfe243c9cbccde44,1
+np.float64,0x3fea8a2e47b5145d,0xbfd1464e37221894,1
+np.float64,0x75cd1e88eb9a4,0xc08ff8f553ef0475,1
+np.float64,0x7fcfc876e23f90ed,0x408fefebe6cc95e6,1
+np.float64,0x7f51aceb002359d5,0x408fb1263f9003fb,1
+np.float64,0x7fc2a1b877254370,0x408fe9c1ec52f8b9,1
+np.float64,0x7fd495810e292b01,0x408ff2e859414d31,1
+np.float64,0x7fd72048632e4090,0x408ff440690cebdb,1
+np.float64,0x7fd7aafaffaf6,0xc08ff803a390779f,1
+np.float64,0x7fe18067d4a300cf,0x408ff9090a02693f,1
+np.float64,0x3fdc1080f8b82102,0xbff3077bf44a89bd,1
+np.float64,0x3fc34a462f26948c,0xc005d777b3cdf139,1
+np.float64,0x3fe21e4a1fe43c94,0xbfea428acfbc6ea9,1
+np.float64,0x1f0d79083e1b0,0xc090042c65a7abf2,1
+np.float64,0x3fe8d0d15931a1a3,0xbfd779f6bbd4db78,1
+np.float64,0x3fe74578022e8af0,0xbfdd68b6c15e9f5e,1
+np.float64,0x50995dd0a132c,0xc08ffd56a5c8accf,1
+np.float64,0x3f9a6342b034c685,0xc0151ce1973c62bd,1
+np.float64,0x3f30856a00210ad4,0xc027e852f4d1fcbc,1
+np.float64,0x3febcf7646b79eed,0xbfc9e9cc9d12425c,1
+np.float64,0x8010000000000000,0x7ff8000000000000,1
+np.float64,0x3fdf520c02bea418,0xbff07ed5013f3062,1
+np.float64,0x3fe5433ecbea867e,0xbfe2df38968b6d14,1
+np.float64,0x3fb933a84e326751,0xc00ac1a144ad26c5,1
+np.float64,0x7b6d72c2f6daf,0xc08ff86b7a67f962,1
+np.float64,0xaef5dae75debc,0xc08ff46496bb2932,1
+np.float64,0x522d869aa45b1,0xc08ffd1d55281e98,1
+np.float64,0xa2462b05448c6,0xc08ff542fe0ac5fd,1
+np.float64,0x3fe2b71dd6e56e3c,0xbfe8c3690cf15415,1
+np.float64,0x3fe5778231aaef04,0xbfe26e495d09b783,1
+np.float64,0x3fe9b8d564f371ab,0xbfd42a161132970d,1
+np.float64,0x3f89ebc34033d787,0xc019373f90bfc7f1,1
+np.float64,0x3fe438ddc6e871bc,0xbfe53039341b0a93,1
+np.float64,0x873c75250e78f,0xc08ff75d8478dccd,1
+np.float64,0x807134cb00e27,0xc08ff7f5cf59c57a,1
+np.float64,0x3fac459878388b31,0xc010b6fe803bcdc2,1
+np.float64,0xca9dc7eb953b9,0xc08ff2b2fb480784,1
+np.float64,0x7feb38587bb670b0,0x408ffe21ff6d521e,1
+np.float64,0x7fd70e9b782e1d36,0x408ff437936b393a,1
+np.float64,0x3fa4037bbc2806f7,0xc012b55744c65ab2,1
+np.float64,0x3fd3d4637427a8c7,0xbffb0beebf4311ef,1
+np.float64,0x7fdabbda5db577b4,0x408ff5ecbc0d4428,1
+np.float64,0x7fda9be0a2b537c0,0x408ff5dee5d03d5a,1
+np.float64,0x7fe9c74396338e86,0x408ffd813506a18a,1
+np.float64,0x3fd058243e20b048,0xbfff822ffd8a7f21,1
+np.float64,0x3fe6aa6ca9ed54d9,0xbfdfd805629ff49e,1
+np.float64,0x3fd91431d5322864,0xbff5a025eea8c78b,1
+np.float64,0x7fe4d7f02329afdf,0x408ffb0d5d9b7878,1
+np.float64,0x3fe2954a12252a94,0xbfe917266e3e22d5,1
+np.float64,0x3fb25f7c8224bef9,0xc00e6764c81b3718,1
+np.float64,0x3fda4bddeeb497bc,0xbff4880638908c81,1
+np.float64,0x55dfd12eabbfb,0xc08ffc9b54ff4002,1
+np.float64,0x3fe8f399e031e734,0xbfd6f8e5c4dcd93f,1
+np.float64,0x3fd954a24832a945,0xbff56521f4707a06,1
+np.float64,0x3fdea911f2bd5224,0xbff0fcb2d0c2b2e2,1
+np.float64,0x3fe6b4ff8a2d69ff,0xbfdfacfc85cafeab,1
+np.float64,0x3fc7fa02042ff404,0xc00354e13b0767ad,1
+np.float64,0x3fe955088c72aa11,0xbfd593130f29949e,1
+np.float64,0xd7e74ec1afcea,0xc08ff1f74f61721c,1
+np.float64,0x3fe9d69c1ab3ad38,0xbfd3bf710a337e06,1
+np.float64,0x3fd85669a2b0acd3,0xbff65176143ccc1e,1
+np.float64,0x3fea99b285353365,0xbfd11062744783f2,1
+np.float64,0x3fe2c79f80a58f3f,0xbfe89ac33f990289,1
+np.float64,0x3f8332ba30266574,0xc01af2cb7b635783,1
+np.float64,0x30d0150061a1,0xc090119030f74c5d,1
+np.float64,0x3fdbf4cb06b7e996,0xbff31e5207aaa754,1
+np.float64,0x3fe6b56c216d6ad8,0xbfdfab42fb2941c5,1
+np.float64,0x7fc4dc239829b846,0x408feb0fb0e13fbe,1
+np.float64,0x3fd0ab85ef21570c,0xbfff0d95d6c7a35c,1
+np.float64,0x7fe13d75e5e27aeb,0x408ff8dc8efa476b,1
+np.float64,0x3fece3b832f9c770,0xbfc2e21b165d583f,1
+np.float64,0x3fe3a279c4e744f4,0xbfe68ca4fbb55dbf,1
+np.float64,0x3feb64659ef6c8cb,0xbfccb6204b6bf724,1
+np.float64,0x2279a6bc44f36,0xc0900391eeeb3e7c,1
+np.float64,0xb88046d571009,0xc08ff3c7b5b45300,1
+np.float64,0x7ff4000000000000,0x7ffc000000000000,1
+np.float64,0x3fe49af059a935e1,0xbfe4526c294f248f,1
+np.float64,0xa3e5508147cc,0xc0900a92ce5924b1,1
+np.float64,0x7fc56def3d2adbdd,0x408feb5f46c360e8,1
+np.float64,0x7fd99f3574333e6a,0x408ff56f3807987c,1
+np.float64,0x3fdc38d56fb871ab,0xbff2e667cad8f36a,1
+np.float64,0xd0b03507a1607,0xc08ff25bbcf8aa9d,1
+np.float64,0xc493f9078927f,0xc08ff30c5fa4e759,1
+np.float64,0x3fc86ddbcb30dbb8,0xc0031da1fcb56d75,1
+np.float64,0x7fe75dc395aebb86,0x408ffc5eef841491,1
+np.float64,0x1647618a2c8ed,0xc0900616ef9479c1,1
+np.float64,0xdf144763be289,0xc08ff196b527f3c9,1
+np.float64,0x3fe0b29da6a1653b,0xbfee078b5f4d7744,1
+np.float64,0x3feb055852b60ab1,0xbfcf3b4db5779a7a,1
+np.float64,0x3fe8bc1625f1782c,0xbfd7c739ade904bc,1
+np.float64,0x7fd19bfb8ea337f6,0x408ff11b2b55699c,1
+np.float64,0x3fed1d80d1ba3b02,0xbfc1722e8d3ce094,1
+np.float64,0x2d9c65925b38e,0xc09001f46bcd3bc5,1
+np.float64,0x7fed6f4d857ade9a,0x408fff091cf6a3b4,1
+np.float64,0x3fd070cd6ba0e19b,0xbfff5f7609ca29e8,1
+np.float64,0x7fea3508b8f46a10,0x408ffdb1f30bd6be,1
+np.float64,0x508b897ca1172,0xc08ffd58a0eb3583,1
+np.float64,0x7feba367b07746ce,0x408ffe4f0bf4bd4e,1
+np.float64,0x3fefebd5c4bfd7ac,0xbf6d20b4fcf21b69,1
+np.float64,0x3fd8ef07b8b1de0f,0xbff5c2745c0795a5,1
+np.float64,0x3fd38ed518271daa,0xbffb5d75f00f6900,1
+np.float64,0x6de0fecedbc20,0xc08ff9c307bbc647,1
+np.float64,0xafc0ffc35f820,0xc08ff45737e5d6b4,1
+np.float64,0x7fd282097ca50412,0x408ff1ae3b27bf3b,1
+np.float64,0x3fe2f2d50b65e5aa,0xbfe831042e6a1e99,1
+np.float64,0x3faa437bac3486f7,0xc01123d8d962205a,1
+np.float64,0x3feea54434fd4a88,0xbfaff202cc456647,1
+np.float64,0x3fc9e65b8633ccb7,0xc00270e77ffd19da,1
+np.float64,0x7fee15af61fc2b5e,0x408fff49a49154a3,1
+np.float64,0x7fefe670a73fcce0,0x408ffff6c44c1005,1
+np.float64,0x3fc0832d0f21065a,0xc007a2dc2f25384a,1
+np.float64,0x3fecfc96bcb9f92d,0xbfc24367c3912620,1
+np.float64,0x3feb705682b6e0ad,0xbfcc65b1bb16f9c5,1
+np.float64,0x3fe185c4f9630b8a,0xbfebcdb401af67a4,1
+np.float64,0x3fb0a5a9f6214b54,0xc00f8ada2566a047,1
+np.float64,0x7fe2908cdda52119,0x408ff9b744861fb1,1
+np.float64,0x7fee776e183ceedb,0x408fff6ee7c2f86e,1
+np.float64,0x3fce1d608f3c3ac1,0xc000b3685d006474,1
+np.float64,0x7fecf92aa339f254,0x408ffeda6c998267,1
+np.float64,0xce13cb519c27a,0xc08ff280f02882a9,1
+np.float64,0x1,0xc090c80000000000,1
+np.float64,0x3fe485a8afa90b51,0xbfe4823265d5a50a,1
+np.float64,0x3feea60908bd4c12,0xbfafdf7ad7fe203f,1
+np.float64,0x3fd2253033a44a60,0xbffd187d0ec8d5b9,1
+np.float64,0x435338fc86a68,0xc08fff6a591059dd,1
+np.float64,0x7fce8763a73d0ec6,0x408fef74f1e715ff,1
+np.float64,0x3fbe5ddb783cbbb7,0xc0089acc5afa794b,1
+np.float64,0x7fe4cf19ada99e32,0x408ffb0877ca302b,1
+np.float64,0x3fe94c9ea1b2993d,0xbfd5b1c2e867b911,1
+np.float64,0x3fe75541c72eaa84,0xbfdd2a27aa117699,1
+np.float64,0x8000000000000001,0x7ff8000000000000,1
+np.float64,0x7fdbec7f2c37d8fd,0x408ff66d69a7f818,1
+np.float64,0x8ef10d091de22,0xc08ff6b9ca5094f8,1
+np.float64,0x3fea69025b74d205,0xbfd1b9fe2c252c70,1
+np.float64,0x562376d0ac46f,0xc08ffc924111cd31,1
+np.float64,0x8e8097ab1d013,0xc08ff6c2e2706f67,1
+np.float64,0x3fca6803ed34d008,0xc00237aef808825b,1
+np.float64,0x7fe8fe9067b1fd20,0x408ffd25f459a7d1,1
+np.float64,0x3f918e8c7f233,0xc0900009fe011d54,1
+np.float64,0x3fdfe773833fcee7,0xbff011bc1af87bb9,1
+np.float64,0xefffef6fdfffe,0xc08ff0beb0f09eb0,1
+np.float64,0x7fe64610282c8c1f,0x408ffbd17209db18,1
+np.float64,0xe66be8c1ccd7d,0xc08ff13706c056e1,1
+np.float64,0x2837e570506fd,0xc09002ae4dae0c1a,1
+np.float64,0x3febe3a081f7c741,0xbfc964171f2a5a47,1
+np.float64,0x3fe21ed09a243da1,0xbfea41342d29c3ff,1
+np.float64,0x3fe1596c8162b2d9,0xbfec431eee30823a,1
+np.float64,0x8f2b9a131e574,0xc08ff6b51104ed4e,1
+np.float64,0x3fe88ed179711da3,0xbfd870d08a4a4b0c,1
+np.float64,0x34159bc2682b4,0xc09001305a885f94,1
+np.float64,0x1ed31e543da65,0xc0900437481577f8,1
+np.float64,0x3feafbe9de75f7d4,0xbfcf7bcdbacf1c61,1
+np.float64,0xfb16fb27f62e0,0xc08ff03938e682a2,1
+np.float64,0x3fe5cd5ba7eb9ab7,0xbfe1b7165771af3c,1
+np.float64,0x7fe72905e76e520b,0x408ffc44c4e7e80c,1
+np.float64,0x7fb7136e2e2e26db,0x408fe439fd383fb7,1
+np.float64,0x8fa585e11f4c,0xc0900b55a08a486b,1
+np.float64,0x7fed985ce47b30b9,0x408fff192b596821,1
+np.float64,0x3feaaf0869755e11,0xbfd0c671571b3764,1
+np.float64,0x3fa40fd4ec281faa,0xc012b1c8dc0b9e5f,1
+np.float64,0x7fda2a70993454e0,0x408ff5ad47b0c68a,1
+np.float64,0x3fe5f7e931abefd2,0xbfe15d52b3605abf,1
+np.float64,0x3fe9fc6d3533f8da,0xbfd338b06a790994,1
+np.float64,0x3fe060649420c0c9,0xbfeeed1756111891,1
+np.float64,0x3fce8435e33d086c,0xc0008c41cea9ed40,1
+np.float64,0x7ff8000000000000,0x7ff8000000000000,1
+np.float64,0x617820aec2f05,0xc08ffb251e9af0f0,1
+np.float64,0x7fcc4ab6ee38956d,0x408fee9419c8f77d,1
+np.float64,0x7fdefda2fc3dfb45,0x408ff7a15063bc05,1
+np.float64,0x7fe5138ccaaa2719,0x408ffb2e30f3a46e,1
+np.float64,0x3fe3817a836702f5,0xbfe6da7c2b25e35a,1
+np.float64,0x3fb8a7dafa314fb6,0xc00b025bc0784ebe,1
+np.float64,0x349dc420693d,0xc09011215825d2c8,1
+np.float64,0x6b0e504ad61cb,0xc08ffa0fee9c5cd6,1
+np.float64,0x273987644e732,0xc09002d34294ed79,1
+np.float64,0x3fc0bd8a6e217b15,0xc0077a5828b4d2f5,1
+np.float64,0x758b48c4eb16a,0xc08ff8fbc8fbe46a,1
+np.float64,0x3fc8a9a52631534a,0xc00301854ec0ef81,1
+np.float64,0x7fe79d29a76f3a52,0x408ffc7e1607a4c1,1
+np.float64,0x3fd7d3ebce2fa7d8,0xbff6ce8a94aebcda,1
+np.float64,0x7fd1cb68a52396d0,0x408ff13a17533b2b,1
+np.float64,0x7fda514a5d34a294,0x408ff5be5e081578,1
+np.float64,0x3fc40b4382281687,0xc0056632c8067228,1
+np.float64,0x7feff1208c3fe240,0x408ffffaa180fa0d,1
+np.float64,0x8f58739f1eb0f,0xc08ff6b17402689d,1
+np.float64,0x1fdbe9a23fb7e,0xc090040685b2d24f,1
+np.float64,0xcb1d0e87963a2,0xc08ff2abbd903b82,1
+np.float64,0x3fc45a6a1a28b4d4,0xc00538f86c4aeaee,1
+np.float64,0x3fe61885b1ac310b,0xbfe118fd2251d2ec,1
+np.float64,0x3fedf584c8fbeb0a,0xbfb8572433ff67a9,1
+np.float64,0x7fb0bddd1a217bb9,0x408fe085e0d621db,1
+np.float64,0x72d8d3e0e5b3,0xc0900ca02f68c7a1,1
+np.float64,0x5cca6ff6b994f,0xc08ffbb6751fda01,1
+np.float64,0x7fe3197839a632ef,0x408ffa0b2fccfb68,1
+np.float64,0x3fcce4d9c139c9b4,0xc0012dae05baa91b,1
+np.float64,0x3fe76d00f62eda02,0xbfdccc5f12799be1,1
+np.float64,0x3fc53c22f72a7846,0xc004bbaa9cbc7958,1
+np.float64,0x7fdda02f1ebb405d,0x408ff71c37c71659,1
+np.float64,0x3fe0844eaba1089d,0xbfee884722762583,1
+np.float64,0x3febb438dc776872,0xbfca9f05e1c691f1,1
+np.float64,0x3fdf4170cdbe82e2,0xbff08b1561c8d848,1
+np.float64,0x3fce1b8d6f3c371b,0xc000b41b69507671,1
+np.float64,0x8370e60706e1d,0xc08ff7b19ea0b4ca,1
+np.float64,0x7fa5bf92382b7f23,0x408fdb8aebb3df87,1
+np.float64,0x7fe4a59979a94b32,0x408ffaf15c1358cd,1
+np.float64,0x3faa66086034cc11,0xc0111c466b7835d6,1
+np.float64,0x7fb7a958262f52af,0x408fe48408b1e093,1
+np.float64,0x3fdaacc5f635598c,0xbff43390d06b5614,1
+np.float64,0x3fd2825b9e2504b7,0xbffca3234264f109,1
+np.float64,0x3fcede160a3dbc2c,0xc0006a759e29060c,1
+np.float64,0x7fd3b19603a7632b,0x408ff265b528371c,1
+np.float64,0x7fcf8a86ea3f150d,0x408fefd552e7f3b2,1
+np.float64,0xedbcc0f7db798,0xc08ff0daad12096b,1
+np.float64,0xf1e1683de3c2d,0xc08ff0a7a0a37e00,1
+np.float64,0xb6ebd9bf6dd7b,0xc08ff3e11e28378d,1
+np.float64,0x3fec8090d6f90122,0xbfc56031b72194cc,1
+np.float64,0x3fd3e10e37a7c21c,0xbffafd34a3ebc933,1
+np.float64,0x7fbb1c96aa36392c,0x408fe616347b3342,1
+np.float64,0x3fe2f3996f25e733,0xbfe82f25bc5d1bbd,1
+np.float64,0x7fe8709da870e13a,0x408ffce3ab6ce59a,1
+np.float64,0x7fea3233d1b46467,0x408ffdb0b3bbc6de,1
+np.float64,0x65fa4112cbf49,0xc08ffa9f85eb72b9,1
+np.float64,0x3fca2cae9f34595d,0xc00251bb275afb87,1
+np.float64,0x8135fd9f026c0,0xc08ff7e42e14dce7,1
+np.float64,0x7fe0a6f057e14de0,0x408ff876081a4bfe,1
+np.float64,0x10000000000000,0xc08ff00000000000,1
+np.float64,0x3fe1fd506263faa1,0xbfea96dd8c543b72,1
+np.float64,0xa5532c554aa66,0xc08ff50bf5bfc66d,1
+np.float64,0xc239d00b8473a,0xc08ff32ff0ea3f92,1
+np.float64,0x7fdb5314e336a629,0x408ff62d4ff60d82,1
+np.float64,0x3fe5f506e2abea0e,0xbfe16362a4682120,1
+np.float64,0x3fa20c60202418c0,0xc0134e08d82608b6,1
+np.float64,0x7fe03864b22070c8,0x408ff82866d65e9a,1
+np.float64,0x3fe72cf5656e59eb,0xbfddca298969effa,1
+np.float64,0x5c295386b852b,0xc08ffbca90b136c9,1
+np.float64,0x7fd71e5020ae3c9f,0x408ff43f6d58eb7c,1
+np.float64,0x3fd1905a842320b5,0xbffdd8ecd288159c,1
+np.float64,0x3fe6bddb256d7bb6,0xbfdf88fee1a820bb,1
+np.float64,0xe061b967c0c37,0xc08ff18581951561,1
+np.float64,0x3fe534f65cea69ed,0xbfe2fe45fe7d3040,1
+np.float64,0xdc7dae07b8fb6,0xc08ff1b93074ea76,1
+np.float64,0x3fd0425082a084a1,0xbfffa11838b21633,1
+np.float64,0xba723fc974e48,0xc08ff3a8b8d01c58,1
+np.float64,0x3fce42ffc73c8600,0xc000a5062678406e,1
+np.float64,0x3f2e6d3c7e5ce,0xc090001304cfd1c7,1
+np.float64,0x3fd4b2e5f7a965cc,0xbffa0e6e6bae0a68,1
+np.float64,0x3fe6db1d18edb63a,0xbfdf128158ee92d9,1
+np.float64,0x7fe4e5792f29caf1,0x408ffb14d9dbf133,1
+np.float64,0x3fc11cdf992239bf,0xc00739569619cd77,1
+np.float64,0x3fc05ea11220bd42,0xc007bc841b48a890,1
+np.float64,0x4bd592d497ab3,0xc08ffe0ab1c962e2,1
+np.float64,0x280068fc5000e,0xc09002b64955e865,1
+np.float64,0x7fe2f2637065e4c6,0x408ff9f379c1253a,1
+np.float64,0x3fefc38467ff8709,0xbf85e53e64b9a424,1
+np.float64,0x2d78ec5a5af1e,0xc09001f8ea8601e0,1
+np.float64,0x7feeef2b957dde56,0x408fff9bebe995f7,1
+np.float64,0x2639baf44c738,0xc09002f9618d623b,1
+np.float64,0x3fc562964d2ac52d,0xc004a6d76959ef78,1
+np.float64,0x3fe21b071fe4360e,0xbfea4adb2cd96ade,1
+np.float64,0x7fe56aa6802ad54c,0x408ffb5d81d1a898,1
+np.float64,0x4296b452852d7,0xc08fff8ad7fbcbe1,1
+np.float64,0x7fe3fac4ff27f589,0x408ffa9049eec479,1
+np.float64,0x7fe7a83e6caf507c,0x408ffc837f436604,1
+np.float64,0x3fc4ac5b872958b7,0xc0050add72381ac3,1
+np.float64,0x3fd6d697c02dad30,0xbff7c931a3eefb01,1
+np.float64,0x3f61e391c023c724,0xc021ad91e754f94b,1
+np.float64,0x10817f9c21031,0xc09007d20434d7bc,1
+np.float64,0x3fdb9c4c4cb73899,0xbff367d8615c5ece,1
+np.float64,0x3fe26ead6b64dd5b,0xbfe977771def5989,1
+np.float64,0x3fc43ea5c3287d4c,0xc00548c2163ae631,1
+np.float64,0x3fe05bd8bba0b7b1,0xbfeef9ea0db91abc,1
+np.float64,0x3feac78369358f07,0xbfd071e2b0aeab39,1
+np.float64,0x7fe254922ca4a923,0x408ff991bdd4e5d3,1
+np.float64,0x3fe5a2f5842b45eb,0xbfe21135c9a71666,1
+np.float64,0x3fd5daf98c2bb5f3,0xbff8cd24f7c07003,1
+np.float64,0x3fcb2a1384365427,0xc001e40f0d04299a,1
+np.float64,0x3fe073974360e72f,0xbfeeb7183a9930b7,1
+np.float64,0xcf3440819e688,0xc08ff270d3a71001,1
+np.float64,0x3fd35656cda6acae,0xbffba083fba4939d,1
+np.float64,0x7fe6c59b4ded8b36,0x408ffc12ce725425,1
+np.float64,0x3fba896f943512df,0xc00a291cb6947701,1
+np.float64,0x7fe54917e86a922f,0x408ffb4b5e0fb848,1
+np.float64,0x7fed2a3f51ba547e,0x408ffeede945a948,1
+np.float64,0x3fdc72bd5038e57b,0xbff2b73b7e93e209,1
+np.float64,0x7fefdb3f9f3fb67e,0x408ffff2b702a768,1
+np.float64,0x3fb0184430203088,0xc00fee8c1351763c,1
+np.float64,0x7d6c3668fad87,0xc08ff83c195f2cca,1
+np.float64,0x3fd5aa254aab544b,0xbff900f16365991b,1
+np.float64,0x3f963daab02c7b55,0xc0161974495b1b71,1
+np.float64,0x3fa7a9c5982f538b,0xc011bde0f6052a89,1
+np.float64,0xb3a5a74b674b5,0xc08ff4167bc97c81,1
+np.float64,0x7fad0c14503a1828,0x408fdee1f2d56cd7,1
+np.float64,0x43e0e9d887c1e,0xc08fff522837b13b,1
+np.float64,0x3fe513b20aea2764,0xbfe346ea994100e6,1
+np.float64,0x7fe4e10393e9c206,0x408ffb12630f6a06,1
+np.float64,0x68b286e2d1651,0xc08ffa51c0d795d4,1
+np.float64,0x7fe8de453331bc89,0x408ffd17012b75ac,1
+np.float64,0x1b3d77d4367b0,0xc09004edea60aa36,1
+np.float64,0x3fd351cbc326a398,0xbffba5f0f4d5fdba,1
+np.float64,0x3fd264951b24c92a,0xbffcc8636788b9bf,1
+np.float64,0xd2465761a48cb,0xc08ff2455c9c53e5,1
+np.float64,0x7fe46a0ef028d41d,0x408ffacfe32c6f5d,1
+np.float64,0x3fafd8ac4c3fb159,0xc010071bf33195d0,1
+np.float64,0x902aec5d2055e,0xc08ff6a08e28aabc,1
+np.float64,0x3fcea61bb03d4c37,0xc0007f76e509b657,1
+np.float64,0x7fe8d90f9571b21e,0x408ffd1495f952e7,1
+np.float64,0x7fa650c9442ca192,0x408fdbd6ff22fdd8,1
+np.float64,0x3fe8ecfdf171d9fc,0xbfd7115df40e8580,1
+np.float64,0x7fd4e6fe7f29cdfc,0x408ff315b0dae183,1
+np.float64,0x77df4c52efbea,0xc08ff8c1d5c1df33,1
+np.float64,0xe200b0cfc4016,0xc08ff1703cfb8e79,1
+np.float64,0x3fe230ea7e2461d5,0xbfea132d2385160e,1
+np.float64,0x7fd1f7ced723ef9d,0x408ff156bfbf92a4,1
+np.float64,0x3fea762818f4ec50,0xbfd18c12a88e5f79,1
+np.float64,0x7feea4ba7c7d4974,0x408fff8004164054,1
+np.float64,0x833ec605067d9,0xc08ff7b606383841,1
+np.float64,0x7fd0c2d7fea185af,0x408ff0894f3a0cf4,1
+np.float64,0x3fe1d7d61d23afac,0xbfeaf76fee875d3e,1
+np.float64,0x65adecb0cb5be,0xc08ffaa82cb09d68,1
diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/tests/data/umath-validation-set-sin.csv b/.venv/lib/python3.12/site-packages/numpy/_core/tests/data/umath-validation-set-sin.csv
new file mode 100644
index 0000000..03e76ff
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/_core/tests/data/umath-validation-set-sin.csv
@@ -0,0 +1,1370 @@
+dtype,input,output,ulperrortol
+## +ve denormals ##
+np.float32,0x004b4716,0x004b4716,2
+np.float32,0x007b2490,0x007b2490,2
+np.float32,0x007c99fa,0x007c99fa,2
+np.float32,0x00734a0c,0x00734a0c,2
+np.float32,0x0070de24,0x0070de24,2
+np.float32,0x007fffff,0x007fffff,2
+np.float32,0x00000001,0x00000001,2
+## -ve denormals ##
+np.float32,0x80495d65,0x80495d65,2
+np.float32,0x806894f6,0x806894f6,2
+np.float32,0x80555a76,0x80555a76,2
+np.float32,0x804e1fb8,0x804e1fb8,2
+np.float32,0x80687de9,0x80687de9,2
+np.float32,0x807fffff,0x807fffff,2
+np.float32,0x80000001,0x80000001,2
+## +/-0.0f, +/-FLT_MIN +/-FLT_MAX ##
+np.float32,0x00000000,0x00000000,2
+np.float32,0x80000000,0x80000000,2
+np.float32,0x00800000,0x00800000,2
+np.float32,0x80800000,0x80800000,2
+## 1.00f ##
+np.float32,0x3f800000,0x3f576aa4,2
+np.float32,0x3f800001,0x3f576aa6,2
+np.float32,0x3f800002,0x3f576aa7,2
+np.float32,0xc090a8b0,0x3f7b4e48,2
+np.float32,0x41ce3184,0x3f192d43,2
+np.float32,0xc1d85848,0xbf7161cb,2
+np.float32,0x402b8820,0x3ee3f29f,2
+np.float32,0x42b4e454,0x3f1d0151,2
+np.float32,0x42a67a60,0x3f7ffa4c,2
+np.float32,0x41d92388,0x3f67beef,2
+np.float32,0x422dd66c,0xbeffb0c1,2
+np.float32,0xc28f5be6,0xbf0bae79,2
+np.float32,0x41ab2674,0x3f0ffe2b,2
+np.float32,0x3f490fdb,0x3f3504f3,2
+np.float32,0xbf490fdb,0xbf3504f3,2
+np.float32,0x3fc90fdb,0x3f800000,2
+np.float32,0xbfc90fdb,0xbf800000,2
+np.float32,0x40490fdb,0xb3bbbd2e,2
+np.float32,0xc0490fdb,0x33bbbd2e,2
+np.float32,0x3fc90fdb,0x3f800000,2
+np.float32,0xbfc90fdb,0xbf800000,2
+np.float32,0x40490fdb,0xb3bbbd2e,2
+np.float32,0xc0490fdb,0x33bbbd2e,2
+np.float32,0x40c90fdb,0x343bbd2e,2
+np.float32,0xc0c90fdb,0xb43bbd2e,2
+np.float32,0x4016cbe4,0x3f3504f3,2
+np.float32,0xc016cbe4,0xbf3504f3,2
+np.float32,0x4096cbe4,0xbf800000,2
+np.float32,0xc096cbe4,0x3f800000,2
+np.float32,0x4116cbe4,0xb2ccde2e,2
+np.float32,0xc116cbe4,0x32ccde2e,2
+np.float32,0x40490fdb,0xb3bbbd2e,2
+np.float32,0xc0490fdb,0x33bbbd2e,2
+np.float32,0x40c90fdb,0x343bbd2e,2
+np.float32,0xc0c90fdb,0xb43bbd2e,2
+np.float32,0x41490fdb,0x34bbbd2e,2
+np.float32,0xc1490fdb,0xb4bbbd2e,2
+np.float32,0x407b53d2,0xbf3504f5,2
+np.float32,0xc07b53d2,0x3f3504f5,2
+np.float32,0x40fb53d2,0x3f800000,2
+np.float32,0xc0fb53d2,0xbf800000,2
+np.float32,0x417b53d2,0xb535563d,2
+np.float32,0xc17b53d2,0x3535563d,2
+np.float32,0x4096cbe4,0xbf800000,2
+np.float32,0xc096cbe4,0x3f800000,2
+np.float32,0x4116cbe4,0xb2ccde2e,2
+np.float32,0xc116cbe4,0x32ccde2e,2
+np.float32,0x4196cbe4,0x334cde2e,2
+np.float32,0xc196cbe4,0xb34cde2e,2
+np.float32,0x40afede0,0xbf3504ef,2
+np.float32,0xc0afede0,0x3f3504ef,2
+np.float32,0x412fede0,0xbf800000,2
+np.float32,0xc12fede0,0x3f800000,2
+np.float32,0x41afede0,0xb5b222c4,2
+np.float32,0xc1afede0,0x35b222c4,2
+np.float32,0x40c90fdb,0x343bbd2e,2
+np.float32,0xc0c90fdb,0xb43bbd2e,2
+np.float32,0x41490fdb,0x34bbbd2e,2
+np.float32,0xc1490fdb,0xb4bbbd2e,2
+np.float32,0x41c90fdb,0x353bbd2e,2
+np.float32,0xc1c90fdb,0xb53bbd2e,2
+np.float32,0x40e231d6,0x3f3504f3,2
+np.float32,0xc0e231d6,0xbf3504f3,2
+np.float32,0x416231d6,0x3f800000,2
+np.float32,0xc16231d6,0xbf800000,2
+np.float32,0x41e231d6,0xb399a6a2,2
+np.float32,0xc1e231d6,0x3399a6a2,2
+np.float32,0x40fb53d2,0x3f800000,2
+np.float32,0xc0fb53d2,0xbf800000,2
+np.float32,0x417b53d2,0xb535563d,2
+np.float32,0xc17b53d2,0x3535563d,2
+np.float32,0x41fb53d2,0x35b5563d,2
+np.float32,0xc1fb53d2,0xb5b5563d,2
+np.float32,0x410a3ae7,0x3f3504eb,2
+np.float32,0xc10a3ae7,0xbf3504eb,2
+np.float32,0x418a3ae7,0xbf800000,2
+np.float32,0xc18a3ae7,0x3f800000,2
+np.float32,0x420a3ae7,0xb6308908,2
+np.float32,0xc20a3ae7,0x36308908,2
+np.float32,0x4116cbe4,0xb2ccde2e,2
+np.float32,0xc116cbe4,0x32ccde2e,2
+np.float32,0x4196cbe4,0x334cde2e,2
+np.float32,0xc196cbe4,0xb34cde2e,2
+np.float32,0x4216cbe4,0x33ccde2e,2
+np.float32,0xc216cbe4,0xb3ccde2e,2
+np.float32,0x41235ce2,0xbf3504f7,2
+np.float32,0xc1235ce2,0x3f3504f7,2
+np.float32,0x41a35ce2,0x3f800000,2
+np.float32,0xc1a35ce2,0xbf800000,2
+np.float32,0x42235ce2,0xb5b889b6,2
+np.float32,0xc2235ce2,0x35b889b6,2
+np.float32,0x412fede0,0xbf800000,2
+np.float32,0xc12fede0,0x3f800000,2
+np.float32,0x41afede0,0xb5b222c4,2
+np.float32,0xc1afede0,0x35b222c4,2
+np.float32,0x422fede0,0x363222c4,2
+np.float32,0xc22fede0,0xb63222c4,2
+np.float32,0x413c7edd,0xbf3504f3,2
+np.float32,0xc13c7edd,0x3f3504f3,2
+np.float32,0x41bc7edd,0xbf800000,2
+np.float32,0xc1bc7edd,0x3f800000,2
+np.float32,0x423c7edd,0xb4000add,2
+np.float32,0xc23c7edd,0x34000add,2
+np.float32,0x41490fdb,0x34bbbd2e,2
+np.float32,0xc1490fdb,0xb4bbbd2e,2
+np.float32,0x41c90fdb,0x353bbd2e,2
+np.float32,0xc1c90fdb,0xb53bbd2e,2
+np.float32,0x42490fdb,0x35bbbd2e,2
+np.float32,0xc2490fdb,0xb5bbbd2e,2
+np.float32,0x4155a0d9,0x3f3504fb,2
+np.float32,0xc155a0d9,0xbf3504fb,2
+np.float32,0x41d5a0d9,0x3f800000,2
+np.float32,0xc1d5a0d9,0xbf800000,2
+np.float32,0x4255a0d9,0xb633bc81,2
+np.float32,0xc255a0d9,0x3633bc81,2
+np.float32,0x416231d6,0x3f800000,2
+np.float32,0xc16231d6,0xbf800000,2
+np.float32,0x41e231d6,0xb399a6a2,2
+np.float32,0xc1e231d6,0x3399a6a2,2
+np.float32,0x426231d6,0x3419a6a2,2
+np.float32,0xc26231d6,0xb419a6a2,2
+np.float32,0x416ec2d4,0x3f3504ef,2
+np.float32,0xc16ec2d4,0xbf3504ef,2
+np.float32,0x41eec2d4,0xbf800000,2
+np.float32,0xc1eec2d4,0x3f800000,2
+np.float32,0x426ec2d4,0xb5bef0a7,2
+np.float32,0xc26ec2d4,0x35bef0a7,2
+np.float32,0x417b53d2,0xb535563d,2
+np.float32,0xc17b53d2,0x3535563d,2
+np.float32,0x41fb53d2,0x35b5563d,2
+np.float32,0xc1fb53d2,0xb5b5563d,2
+np.float32,0x427b53d2,0x3635563d,2
+np.float32,0xc27b53d2,0xb635563d,2
+np.float32,0x4183f268,0xbf3504ff,2
+np.float32,0xc183f268,0x3f3504ff,2
+np.float32,0x4203f268,0x3f800000,2
+np.float32,0xc203f268,0xbf800000,2
+np.float32,0x4283f268,0xb6859a13,2
+np.float32,0xc283f268,0x36859a13,2
+np.float32,0x418a3ae7,0xbf800000,2
+np.float32,0xc18a3ae7,0x3f800000,2
+np.float32,0x420a3ae7,0xb6308908,2
+np.float32,0xc20a3ae7,0x36308908,2
+np.float32,0x428a3ae7,0x36b08908,2
+np.float32,0xc28a3ae7,0xb6b08908,2
+np.float32,0x41908365,0xbf3504f6,2
+np.float32,0xc1908365,0x3f3504f6,2
+np.float32,0x42108365,0xbf800000,2
+np.float32,0xc2108365,0x3f800000,2
+np.float32,0x42908365,0x3592200d,2
+np.float32,0xc2908365,0xb592200d,2
+np.float32,0x4196cbe4,0x334cde2e,2
+np.float32,0xc196cbe4,0xb34cde2e,2
+np.float32,0x4216cbe4,0x33ccde2e,2
+np.float32,0xc216cbe4,0xb3ccde2e,2
+np.float32,0x4296cbe4,0x344cde2e,2
+np.float32,0xc296cbe4,0xb44cde2e,2
+np.float32,0x419d1463,0x3f3504f8,2
+np.float32,0xc19d1463,0xbf3504f8,2
+np.float32,0x421d1463,0x3f800000,2
+np.float32,0xc21d1463,0xbf800000,2
+np.float32,0x429d1463,0xb5c55799,2
+np.float32,0xc29d1463,0x35c55799,2
+np.float32,0x41a35ce2,0x3f800000,2
+np.float32,0xc1a35ce2,0xbf800000,2
+np.float32,0x42235ce2,0xb5b889b6,2
+np.float32,0xc2235ce2,0x35b889b6,2
+np.float32,0x42a35ce2,0x363889b6,2
+np.float32,0xc2a35ce2,0xb63889b6,2
+np.float32,0x41a9a561,0x3f3504e7,2
+np.float32,0xc1a9a561,0xbf3504e7,2
+np.float32,0x4229a561,0xbf800000,2
+np.float32,0xc229a561,0x3f800000,2
+np.float32,0x42a9a561,0xb68733d0,2
+np.float32,0xc2a9a561,0x368733d0,2
+np.float32,0x41afede0,0xb5b222c4,2
+np.float32,0xc1afede0,0x35b222c4,2
+np.float32,0x422fede0,0x363222c4,2
+np.float32,0xc22fede0,0xb63222c4,2
+np.float32,0x42afede0,0x36b222c4,2
+np.float32,0xc2afede0,0xb6b222c4,2
+np.float32,0x41b6365e,0xbf3504f0,2
+np.float32,0xc1b6365e,0x3f3504f0,2
+np.float32,0x4236365e,0x3f800000,2
+np.float32,0xc236365e,0xbf800000,2
+np.float32,0x42b6365e,0x358bb91c,2
+np.float32,0xc2b6365e,0xb58bb91c,2
+np.float32,0x41bc7edd,0xbf800000,2
+np.float32,0xc1bc7edd,0x3f800000,2
+np.float32,0x423c7edd,0xb4000add,2
+np.float32,0xc23c7edd,0x34000add,2
+np.float32,0x42bc7edd,0x34800add,2
+np.float32,0xc2bc7edd,0xb4800add,2
+np.float32,0x41c2c75c,0xbf3504ef,2
+np.float32,0xc1c2c75c,0x3f3504ef,2
+np.float32,0x4242c75c,0xbf800000,2
+np.float32,0xc242c75c,0x3f800000,2
+np.float32,0x42c2c75c,0xb5cbbe8a,2
+np.float32,0xc2c2c75c,0x35cbbe8a,2
+np.float32,0x41c90fdb,0x353bbd2e,2
+np.float32,0xc1c90fdb,0xb53bbd2e,2
+np.float32,0x42490fdb,0x35bbbd2e,2
+np.float32,0xc2490fdb,0xb5bbbd2e,2
+np.float32,0x42c90fdb,0x363bbd2e,2
+np.float32,0xc2c90fdb,0xb63bbd2e,2
+np.float32,0x41cf585a,0x3f3504ff,2
+np.float32,0xc1cf585a,0xbf3504ff,2
+np.float32,0x424f585a,0x3f800000,2
+np.float32,0xc24f585a,0xbf800000,2
+np.float32,0x42cf585a,0xb688cd8c,2
+np.float32,0xc2cf585a,0x3688cd8c,2
+np.float32,0x41d5a0d9,0x3f800000,2
+np.float32,0xc1d5a0d9,0xbf800000,2
+np.float32,0x4255a0d9,0xb633bc81,2
+np.float32,0xc255a0d9,0x3633bc81,2
+np.float32,0x42d5a0d9,0x36b3bc81,2
+np.float32,0xc2d5a0d9,0xb6b3bc81,2
+np.float32,0x41dbe958,0x3f3504e0,2
+np.float32,0xc1dbe958,0xbf3504e0,2
+np.float32,0x425be958,0xbf800000,2
+np.float32,0xc25be958,0x3f800000,2
+np.float32,0x42dbe958,0xb6deab75,2
+np.float32,0xc2dbe958,0x36deab75,2
+np.float32,0x41e231d6,0xb399a6a2,2
+np.float32,0xc1e231d6,0x3399a6a2,2
+np.float32,0x426231d6,0x3419a6a2,2
+np.float32,0xc26231d6,0xb419a6a2,2
+np.float32,0x42e231d6,0x3499a6a2,2
+np.float32,0xc2e231d6,0xb499a6a2,2
+np.float32,0x41e87a55,0xbf3504f8,2
+np.float32,0xc1e87a55,0x3f3504f8,2
+np.float32,0x42687a55,0x3f800000,2
+np.float32,0xc2687a55,0xbf800000,2
+np.float32,0x42e87a55,0xb5d2257b,2
+np.float32,0xc2e87a55,0x35d2257b,2
+np.float32,0x41eec2d4,0xbf800000,2
+np.float32,0xc1eec2d4,0x3f800000,2
+np.float32,0x426ec2d4,0xb5bef0a7,2
+np.float32,0xc26ec2d4,0x35bef0a7,2
+np.float32,0x42eec2d4,0x363ef0a7,2
+np.float32,0xc2eec2d4,0xb63ef0a7,2
+np.float32,0x41f50b53,0xbf3504e7,2
+np.float32,0xc1f50b53,0x3f3504e7,2
+np.float32,0x42750b53,0xbf800000,2
+np.float32,0xc2750b53,0x3f800000,2
+np.float32,0x42f50b53,0xb68a6748,2
+np.float32,0xc2f50b53,0x368a6748,2
+np.float32,0x41fb53d2,0x35b5563d,2
+np.float32,0xc1fb53d2,0xb5b5563d,2
+np.float32,0x427b53d2,0x3635563d,2
+np.float32,0xc27b53d2,0xb635563d,2
+np.float32,0x42fb53d2,0x36b5563d,2
+np.float32,0xc2fb53d2,0xb6b5563d,2
+np.float32,0x4200ce28,0x3f3504f0,2
+np.float32,0xc200ce28,0xbf3504f0,2
+np.float32,0x4280ce28,0x3f800000,2
+np.float32,0xc280ce28,0xbf800000,2
+np.float32,0x4300ce28,0x357dd672,2
+np.float32,0xc300ce28,0xb57dd672,2
+np.float32,0x4203f268,0x3f800000,2
+np.float32,0xc203f268,0xbf800000,2
+np.float32,0x4283f268,0xb6859a13,2
+np.float32,0xc283f268,0x36859a13,2
+np.float32,0x4303f268,0x37059a13,2
+np.float32,0xc303f268,0xb7059a13,2
+np.float32,0x420716a7,0x3f3504ee,2
+np.float32,0xc20716a7,0xbf3504ee,2
+np.float32,0x428716a7,0xbf800000,2
+np.float32,0xc28716a7,0x3f800000,2
+np.float32,0x430716a7,0xb5d88c6d,2
+np.float32,0xc30716a7,0x35d88c6d,2
+np.float32,0x420a3ae7,0xb6308908,2
+np.float32,0xc20a3ae7,0x36308908,2
+np.float32,0x428a3ae7,0x36b08908,2
+np.float32,0xc28a3ae7,0xb6b08908,2
+np.float32,0x430a3ae7,0x37308908,2
+np.float32,0xc30a3ae7,0xb7308908,2
+np.float32,0x420d5f26,0xbf350500,2
+np.float32,0xc20d5f26,0x3f350500,2
+np.float32,0x428d5f26,0x3f800000,2
+np.float32,0xc28d5f26,0xbf800000,2
+np.float32,0x430d5f26,0xb68c0105,2
+np.float32,0xc30d5f26,0x368c0105,2
+np.float32,0x42108365,0xbf800000,2
+np.float32,0xc2108365,0x3f800000,2
+np.float32,0x42908365,0x3592200d,2
+np.float32,0xc2908365,0xb592200d,2
+np.float32,0x43108365,0xb612200d,2
+np.float32,0xc3108365,0x3612200d,2
+np.float32,0x4213a7a5,0xbf3504df,2
+np.float32,0xc213a7a5,0x3f3504df,2
+np.float32,0x4293a7a5,0xbf800000,2
+np.float32,0xc293a7a5,0x3f800000,2
+np.float32,0x4313a7a5,0xb6e1deee,2
+np.float32,0xc313a7a5,0x36e1deee,2
+np.float32,0x4216cbe4,0x33ccde2e,2
+np.float32,0xc216cbe4,0xb3ccde2e,2
+np.float32,0x4296cbe4,0x344cde2e,2
+np.float32,0xc296cbe4,0xb44cde2e,2
+np.float32,0x4316cbe4,0x34ccde2e,2
+np.float32,0xc316cbe4,0xb4ccde2e,2
+np.float32,0x4219f024,0x3f35050f,2
+np.float32,0xc219f024,0xbf35050f,2
+np.float32,0x4299f024,0x3f800000,2
+np.float32,0xc299f024,0xbf800000,2
+np.float32,0x4319f024,0xb71bde6c,2
+np.float32,0xc319f024,0x371bde6c,2
+np.float32,0x421d1463,0x3f800000,2
+np.float32,0xc21d1463,0xbf800000,2
+np.float32,0x429d1463,0xb5c55799,2
+np.float32,0xc29d1463,0x35c55799,2
+np.float32,0x431d1463,0x36455799,2
+np.float32,0xc31d1463,0xb6455799,2
+np.float32,0x422038a3,0x3f3504d0,2
+np.float32,0xc22038a3,0xbf3504d0,2
+np.float32,0x42a038a3,0xbf800000,2
+np.float32,0xc2a038a3,0x3f800000,2
+np.float32,0x432038a3,0xb746cd61,2
+np.float32,0xc32038a3,0x3746cd61,2
+np.float32,0x42235ce2,0xb5b889b6,2
+np.float32,0xc2235ce2,0x35b889b6,2
+np.float32,0x42a35ce2,0x363889b6,2
+np.float32,0xc2a35ce2,0xb63889b6,2
+np.float32,0x43235ce2,0x36b889b6,2
+np.float32,0xc3235ce2,0xb6b889b6,2
+np.float32,0x42268121,0xbf3504f1,2
+np.float32,0xc2268121,0x3f3504f1,2
+np.float32,0x42a68121,0x3f800000,2
+np.float32,0xc2a68121,0xbf800000,2
+np.float32,0x43268121,0x35643aac,2
+np.float32,0xc3268121,0xb5643aac,2
+np.float32,0x4229a561,0xbf800000,2
+np.float32,0xc229a561,0x3f800000,2
+np.float32,0x42a9a561,0xb68733d0,2
+np.float32,0xc2a9a561,0x368733d0,2
+np.float32,0x4329a561,0x370733d0,2
+np.float32,0xc329a561,0xb70733d0,2
+np.float32,0x422cc9a0,0xbf3504ee,2
+np.float32,0xc22cc9a0,0x3f3504ee,2
+np.float32,0x42acc9a0,0xbf800000,2
+np.float32,0xc2acc9a0,0x3f800000,2
+np.float32,0x432cc9a0,0xb5e55a50,2
+np.float32,0xc32cc9a0,0x35e55a50,2
+np.float32,0x422fede0,0x363222c4,2
+np.float32,0xc22fede0,0xb63222c4,2
+np.float32,0x42afede0,0x36b222c4,2
+np.float32,0xc2afede0,0xb6b222c4,2
+np.float32,0x432fede0,0x373222c4,2
+np.float32,0xc32fede0,0xb73222c4,2
+np.float32,0x4233121f,0x3f350500,2
+np.float32,0xc233121f,0xbf350500,2
+np.float32,0x42b3121f,0x3f800000,2
+np.float32,0xc2b3121f,0xbf800000,2
+np.float32,0x4333121f,0xb68f347d,2
+np.float32,0xc333121f,0x368f347d,2
+np.float32,0x4236365e,0x3f800000,2
+np.float32,0xc236365e,0xbf800000,2
+np.float32,0x42b6365e,0x358bb91c,2
+np.float32,0xc2b6365e,0xb58bb91c,2
+np.float32,0x4336365e,0xb60bb91c,2
+np.float32,0xc336365e,0x360bb91c,2
+np.float32,0x42395a9e,0x3f3504df,2
+np.float32,0xc2395a9e,0xbf3504df,2
+np.float32,0x42b95a9e,0xbf800000,2
+np.float32,0xc2b95a9e,0x3f800000,2
+np.float32,0x43395a9e,0xb6e51267,2
+np.float32,0xc3395a9e,0x36e51267,2
+np.float32,0x423c7edd,0xb4000add,2
+np.float32,0xc23c7edd,0x34000add,2
+np.float32,0x42bc7edd,0x34800add,2
+np.float32,0xc2bc7edd,0xb4800add,2
+np.float32,0x433c7edd,0x35000add,2
+np.float32,0xc33c7edd,0xb5000add,2
+np.float32,0x423fa31d,0xbf35050f,2
+np.float32,0xc23fa31d,0x3f35050f,2
+np.float32,0x42bfa31d,0x3f800000,2
+np.float32,0xc2bfa31d,0xbf800000,2
+np.float32,0x433fa31d,0xb71d7828,2
+np.float32,0xc33fa31d,0x371d7828,2
+np.float32,0x4242c75c,0xbf800000,2
+np.float32,0xc242c75c,0x3f800000,2
+np.float32,0x42c2c75c,0xb5cbbe8a,2
+np.float32,0xc2c2c75c,0x35cbbe8a,2
+np.float32,0x4342c75c,0x364bbe8a,2
+np.float32,0xc342c75c,0xb64bbe8a,2
+np.float32,0x4245eb9c,0xbf3504d0,2
+np.float32,0xc245eb9c,0x3f3504d0,2
+np.float32,0x42c5eb9c,0xbf800000,2
+np.float32,0xc2c5eb9c,0x3f800000,2
+np.float32,0x4345eb9c,0xb748671d,2
+np.float32,0xc345eb9c,0x3748671d,2
+np.float32,0x42490fdb,0x35bbbd2e,2
+np.float32,0xc2490fdb,0xb5bbbd2e,2
+np.float32,0x42c90fdb,0x363bbd2e,2
+np.float32,0xc2c90fdb,0xb63bbd2e,2
+np.float32,0x43490fdb,0x36bbbd2e,2
+np.float32,0xc3490fdb,0xb6bbbd2e,2
+np.float32,0x424c341a,0x3f3504f1,2
+np.float32,0xc24c341a,0xbf3504f1,2
+np.float32,0x42cc341a,0x3f800000,2
+np.float32,0xc2cc341a,0xbf800000,2
+np.float32,0x434c341a,0x354a9ee6,2
+np.float32,0xc34c341a,0xb54a9ee6,2
+np.float32,0x424f585a,0x3f800000,2
+np.float32,0xc24f585a,0xbf800000,2
+np.float32,0x42cf585a,0xb688cd8c,2
+np.float32,0xc2cf585a,0x3688cd8c,2
+np.float32,0x434f585a,0x3708cd8c,2
+np.float32,0xc34f585a,0xb708cd8c,2
+np.float32,0x42527c99,0x3f3504ee,2
+np.float32,0xc2527c99,0xbf3504ee,2
+np.float32,0x42d27c99,0xbf800000,2
+np.float32,0xc2d27c99,0x3f800000,2
+np.float32,0x43527c99,0xb5f22833,2
+np.float32,0xc3527c99,0x35f22833,2
+np.float32,0x4255a0d9,0xb633bc81,2
+np.float32,0xc255a0d9,0x3633bc81,2
+np.float32,0x42d5a0d9,0x36b3bc81,2
+np.float32,0xc2d5a0d9,0xb6b3bc81,2
+np.float32,0x4355a0d9,0x3733bc81,2
+np.float32,0xc355a0d9,0xb733bc81,2
+np.float32,0x4258c518,0xbf350500,2
+np.float32,0xc258c518,0x3f350500,2
+np.float32,0x42d8c518,0x3f800000,2
+np.float32,0xc2d8c518,0xbf800000,2
+np.float32,0x4358c518,0xb69267f6,2
+np.float32,0xc358c518,0x369267f6,2
+np.float32,0x425be958,0xbf800000,2
+np.float32,0xc25be958,0x3f800000,2
+np.float32,0x42dbe958,0xb6deab75,2
+np.float32,0xc2dbe958,0x36deab75,2
+np.float32,0x435be958,0x375eab75,2
+np.float32,0xc35be958,0xb75eab75,2
+np.float32,0x425f0d97,0xbf3504df,2
+np.float32,0xc25f0d97,0x3f3504df,2
+np.float32,0x42df0d97,0xbf800000,2
+np.float32,0xc2df0d97,0x3f800000,2
+np.float32,0x435f0d97,0xb6e845e0,2
+np.float32,0xc35f0d97,0x36e845e0,2
+np.float32,0x426231d6,0x3419a6a2,2
+np.float32,0xc26231d6,0xb419a6a2,2
+np.float32,0x42e231d6,0x3499a6a2,2
+np.float32,0xc2e231d6,0xb499a6a2,2
+np.float32,0x436231d6,0x3519a6a2,2
+np.float32,0xc36231d6,0xb519a6a2,2
+np.float32,0x42655616,0x3f35050f,2
+np.float32,0xc2655616,0xbf35050f,2
+np.float32,0x42e55616,0x3f800000,2
+np.float32,0xc2e55616,0xbf800000,2
+np.float32,0x43655616,0xb71f11e5,2
+np.float32,0xc3655616,0x371f11e5,2
+np.float32,0x42687a55,0x3f800000,2
+np.float32,0xc2687a55,0xbf800000,2
+np.float32,0x42e87a55,0xb5d2257b,2
+np.float32,0xc2e87a55,0x35d2257b,2
+np.float32,0x43687a55,0x3652257b,2
+np.float32,0xc3687a55,0xb652257b,2
+np.float32,0x426b9e95,0x3f3504cf,2
+np.float32,0xc26b9e95,0xbf3504cf,2
+np.float32,0x42eb9e95,0xbf800000,2
+np.float32,0xc2eb9e95,0x3f800000,2
+np.float32,0x436b9e95,0xb74a00d9,2
+np.float32,0xc36b9e95,0x374a00d9,2
+np.float32,0x426ec2d4,0xb5bef0a7,2
+np.float32,0xc26ec2d4,0x35bef0a7,2
+np.float32,0x42eec2d4,0x363ef0a7,2
+np.float32,0xc2eec2d4,0xb63ef0a7,2
+np.float32,0x436ec2d4,0x36bef0a7,2
+np.float32,0xc36ec2d4,0xb6bef0a7,2
+np.float32,0x4271e713,0xbf3504f1,2
+np.float32,0xc271e713,0x3f3504f1,2
+np.float32,0x42f1e713,0x3f800000,2
+np.float32,0xc2f1e713,0xbf800000,2
+np.float32,0x4371e713,0x35310321,2
+np.float32,0xc371e713,0xb5310321,2
+np.float32,0x42750b53,0xbf800000,2
+np.float32,0xc2750b53,0x3f800000,2
+np.float32,0x42f50b53,0xb68a6748,2
+np.float32,0xc2f50b53,0x368a6748,2
+np.float32,0x43750b53,0x370a6748,2
+np.float32,0xc3750b53,0xb70a6748,2
+np.float32,0x42782f92,0xbf3504ee,2
+np.float32,0xc2782f92,0x3f3504ee,2
+np.float32,0x42f82f92,0xbf800000,2
+np.float32,0xc2f82f92,0x3f800000,2
+np.float32,0x43782f92,0xb5fef616,2
+np.float32,0xc3782f92,0x35fef616,2
+np.float32,0x427b53d2,0x3635563d,2
+np.float32,0xc27b53d2,0xb635563d,2
+np.float32,0x42fb53d2,0x36b5563d,2
+np.float32,0xc2fb53d2,0xb6b5563d,2
+np.float32,0x437b53d2,0x3735563d,2
+np.float32,0xc37b53d2,0xb735563d,2
+np.float32,0x427e7811,0x3f350500,2
+np.float32,0xc27e7811,0xbf350500,2
+np.float32,0x42fe7811,0x3f800000,2
+np.float32,0xc2fe7811,0xbf800000,2
+np.float32,0x437e7811,0xb6959b6f,2
+np.float32,0xc37e7811,0x36959b6f,2
+np.float32,0x4280ce28,0x3f800000,2
+np.float32,0xc280ce28,0xbf800000,2
+np.float32,0x4300ce28,0x357dd672,2
+np.float32,0xc300ce28,0xb57dd672,2
+np.float32,0x4380ce28,0xb5fdd672,2
+np.float32,0xc380ce28,0x35fdd672,2
+np.float32,0x42826048,0x3f3504de,2
+np.float32,0xc2826048,0xbf3504de,2
+np.float32,0x43026048,0xbf800000,2
+np.float32,0xc3026048,0x3f800000,2
+np.float32,0x43826048,0xb6eb7958,2
+np.float32,0xc3826048,0x36eb7958,2
+np.float32,0x4283f268,0xb6859a13,2
+np.float32,0xc283f268,0x36859a13,2
+np.float32,0x4303f268,0x37059a13,2
+np.float32,0xc303f268,0xb7059a13,2
+np.float32,0x4383f268,0x37859a13,2
+np.float32,0xc383f268,0xb7859a13,2
+np.float32,0x42858487,0xbf3504e2,2
+np.float32,0xc2858487,0x3f3504e2,2
+np.float32,0x43058487,0x3f800000,2
+np.float32,0xc3058487,0xbf800000,2
+np.float32,0x43858487,0x36bea8be,2
+np.float32,0xc3858487,0xb6bea8be,2
+np.float32,0x428716a7,0xbf800000,2
+np.float32,0xc28716a7,0x3f800000,2
+np.float32,0x430716a7,0xb5d88c6d,2
+np.float32,0xc30716a7,0x35d88c6d,2
+np.float32,0x438716a7,0x36588c6d,2
+np.float32,0xc38716a7,0xb6588c6d,2
+np.float32,0x4288a8c7,0xbf3504cf,2
+np.float32,0xc288a8c7,0x3f3504cf,2
+np.float32,0x4308a8c7,0xbf800000,2
+np.float32,0xc308a8c7,0x3f800000,2
+np.float32,0x4388a8c7,0xb74b9a96,2
+np.float32,0xc388a8c7,0x374b9a96,2
+np.float32,0x428a3ae7,0x36b08908,2
+np.float32,0xc28a3ae7,0xb6b08908,2
+np.float32,0x430a3ae7,0x37308908,2
+np.float32,0xc30a3ae7,0xb7308908,2
+np.float32,0x438a3ae7,0x37b08908,2
+np.float32,0xc38a3ae7,0xb7b08908,2
+np.float32,0x428bcd06,0x3f3504f2,2
+np.float32,0xc28bcd06,0xbf3504f2,2
+np.float32,0x430bcd06,0x3f800000,2
+np.float32,0xc30bcd06,0xbf800000,2
+np.float32,0x438bcd06,0x3517675b,2
+np.float32,0xc38bcd06,0xb517675b,2
+np.float32,0x428d5f26,0x3f800000,2
+np.float32,0xc28d5f26,0xbf800000,2
+np.float32,0x430d5f26,0xb68c0105,2
+np.float32,0xc30d5f26,0x368c0105,2
+np.float32,0x438d5f26,0x370c0105,2
+np.float32,0xc38d5f26,0xb70c0105,2
+np.float32,0x428ef146,0x3f3504c0,2
+np.float32,0xc28ef146,0xbf3504c0,2
+np.float32,0x430ef146,0xbf800000,2
+np.float32,0xc30ef146,0x3f800000,2
+np.float32,0x438ef146,0xb790bc40,2
+np.float32,0xc38ef146,0x3790bc40,2
+np.float32,0x42908365,0x3592200d,2
+np.float32,0xc2908365,0xb592200d,2
+np.float32,0x43108365,0xb612200d,2
+np.float32,0xc3108365,0x3612200d,2
+np.float32,0x43908365,0xb692200d,2
+np.float32,0xc3908365,0x3692200d,2
+np.float32,0x42921585,0xbf350501,2
+np.float32,0xc2921585,0x3f350501,2
+np.float32,0x43121585,0x3f800000,2
+np.float32,0xc3121585,0xbf800000,2
+np.float32,0x43921585,0xb698cee8,2
+np.float32,0xc3921585,0x3698cee8,2
+np.float32,0x4293a7a5,0xbf800000,2
+np.float32,0xc293a7a5,0x3f800000,2
+np.float32,0x4313a7a5,0xb6e1deee,2
+np.float32,0xc313a7a5,0x36e1deee,2
+np.float32,0x4393a7a5,0x3761deee,2
+np.float32,0xc393a7a5,0xb761deee,2
+np.float32,0x429539c5,0xbf3504b1,2
+np.float32,0xc29539c5,0x3f3504b1,2
+np.float32,0x431539c5,0xbf800000,2
+np.float32,0xc31539c5,0x3f800000,2
+np.float32,0x439539c5,0xb7bbab34,2
+np.float32,0xc39539c5,0x37bbab34,2
+np.float32,0x4296cbe4,0x344cde2e,2
+np.float32,0xc296cbe4,0xb44cde2e,2
+np.float32,0x4316cbe4,0x34ccde2e,2
+np.float32,0xc316cbe4,0xb4ccde2e,2
+np.float32,0x4396cbe4,0x354cde2e,2
+np.float32,0xc396cbe4,0xb54cde2e,2
+np.float32,0x42985e04,0x3f350510,2
+np.float32,0xc2985e04,0xbf350510,2
+np.float32,0x43185e04,0x3f800000,2
+np.float32,0xc3185e04,0xbf800000,2
+np.float32,0x43985e04,0xb722455d,2
+np.float32,0xc3985e04,0x3722455d,2
+np.float32,0x4299f024,0x3f800000,2
+np.float32,0xc299f024,0xbf800000,2
+np.float32,0x4319f024,0xb71bde6c,2
+np.float32,0xc319f024,0x371bde6c,2
+np.float32,0x4399f024,0x379bde6c,2
+np.float32,0xc399f024,0xb79bde6c,2
+np.float32,0x429b8243,0x3f3504fc,2
+np.float32,0xc29b8243,0xbf3504fc,2
+np.float32,0x431b8243,0xbf800000,2
+np.float32,0xc31b8243,0x3f800000,2
+np.float32,0x439b8243,0x364b2eb8,2
+np.float32,0xc39b8243,0xb64b2eb8,2
+np.float32,0x435b2047,0xbf350525,2
+np.float32,0x42a038a2,0xbf800000,2
+np.float32,0x432038a2,0x3664ca7e,2
+np.float32,0x4345eb9b,0x365e638c,2
+np.float32,0x42c5eb9b,0xbf800000,2
+np.float32,0x42eb9e94,0xbf800000,2
+np.float32,0x4350ea79,0x3f800000,2
+np.float32,0x42dbe957,0x3585522a,2
+np.float32,0x425be957,0xbf800000,2
+np.float32,0x435be957,0xb605522a,2
+np.float32,0x476362a2,0xbd7ff911,2
+np.float32,0x464c99a4,0x3e7f4d41,2
+np.float32,0x4471f73d,0x3e7fe1b0,2
+np.float32,0x445a6752,0x3e7ef367,2
+np.float32,0x474fa400,0x3e7f9fcd,2
+np.float32,0x45c1e72f,0xbe7fc7af,2
+np.float32,0x4558c91d,0x3e7e9f31,2
+np.float32,0x43784f94,0xbdff6654,2
+np.float32,0x466e8500,0xbe7ea0a3,2
+np.float32,0x468e1c25,0x3e7e22fb,2
+np.float32,0x44ea6cfc,0x3dff70c3,2
+np.float32,0x4605126c,0x3e7f89ef,2
+np.float32,0x4788b3c6,0xbb87d853,2
+np.float32,0x4531b042,0x3dffd163,2
+np.float32,0x43f1f71d,0x3dfff387,2
+np.float32,0x462c3fa5,0xbd7fe13d,2
+np.float32,0x441c5354,0xbdff76b4,2
+np.float32,0x44908b69,0x3e7dcf0d,2
+np.float32,0x478813ad,0xbe7e9d80,2
+np.float32,0x441c4351,0x3dff937b,2
+np.float64,0x1,0x1,1
+np.float64,0x8000000000000001,0x8000000000000001,1
+np.float64,0x10000000000000,0x10000000000000,1
+np.float64,0x8010000000000000,0x8010000000000000,1
+np.float64,0x7fefffffffffffff,0x3f7452fc98b34e97,1
+np.float64,0xffefffffffffffff,0xbf7452fc98b34e97,1
+np.float64,0x7ff0000000000000,0xfff8000000000000,1
+np.float64,0xfff0000000000000,0xfff8000000000000,1
+np.float64,0x7ff8000000000000,0x7ff8000000000000,1
+np.float64,0x7ff4000000000000,0x7ffc000000000000,1
+np.float64,0xbfda51b226b4a364,0xbfd9956328ff876c,1
+np.float64,0xbfb4a65aee294cb8,0xbfb4a09fd744f8a5,1
+np.float64,0xbfd73b914fae7722,0xbfd6b9cce55af379,1
+np.float64,0xbfd90c12b4b21826,0xbfd869a3867b51c2,1
+np.float64,0x3fe649bb3d6c9376,0x3fe48778d9b48a21,1
+np.float64,0xbfd5944532ab288a,0xbfd52c30e1951b42,1
+np.float64,0x3fb150c45222a190,0x3fb14d633eb8275d,1
+np.float64,0x3fe4a6ffa9e94e00,0x3fe33f8a95c33299,1
+np.float64,0x3fe8d2157171a42a,0x3fe667d904ac95a6,1
+np.float64,0xbfa889f52c3113f0,0xbfa8878d90a23fa5,1
+np.float64,0x3feb3234bef6646a,0x3fe809d541d9017a,1
+np.float64,0x3fc6de266f2dbc50,0x3fc6bf0ee80a0d86,1
+np.float64,0x3fe8455368f08aa6,0x3fe6028254338ed5,1
+np.float64,0xbfe5576079eaaec1,0xbfe3cb4a8f6bc3f5,1
+np.float64,0xbfe9f822ff73f046,0xbfe7360d7d5cb887,1
+np.float64,0xbfb1960e7e232c20,0xbfb1928438258602,1
+np.float64,0xbfca75938d34eb28,0xbfca4570979bf2fa,1
+np.float64,0x3fd767dd15aecfbc,0x3fd6e33039018bab,1
+np.float64,0xbfe987750ef30eea,0xbfe6e7ed30ce77f0,1
+np.float64,0xbfe87f95a1f0ff2b,0xbfe62ca7e928bb2a,1
+np.float64,0xbfd2465301a48ca6,0xbfd2070245775d76,1
+np.float64,0xbfb1306ed22260e0,0xbfb12d2088eaa4f9,1
+np.float64,0xbfd8089010b01120,0xbfd778f9db77f2f3,1
+np.float64,0x3fbf9cf4ee3f39f0,0x3fbf88674fde1ca2,1
+np.float64,0x3fe6d8468a6db08e,0x3fe4f403f38b7bec,1
+np.float64,0xbfd9e5deefb3cbbe,0xbfd932692c722351,1
+np.float64,0x3fd1584d55a2b09c,0x3fd122253eeecc2e,1
+np.float64,0x3fe857979cf0af30,0x3fe60fc12b5ba8db,1
+np.float64,0x3fe3644149e6c882,0x3fe239f47013cfe6,1
+np.float64,0xbfe22ea62be45d4c,0xbfe13834c17d56fe,1
+np.float64,0xbfe8d93e1df1b27c,0xbfe66cf4ee467fd2,1
+np.float64,0xbfe9c497c9f38930,0xbfe7127417da4204,1
+np.float64,0x3fd6791cecacf238,0x3fd6039ccb5a7fde,1
+np.float64,0xbfc1dc1b1523b838,0xbfc1cd48edd9ae19,1
+np.float64,0xbfc92a8491325508,0xbfc901176e0158a5,1
+np.float64,0x3fa8649b3430c940,0x3fa8623e82d9504f,1
+np.float64,0x3fe0bed6a1617dae,0x3fdffbb307fb1abe,1
+np.float64,0x3febdf7765f7beee,0x3fe87ad01a89b74a,1
+np.float64,0xbfd3a56d46a74ada,0xbfd356cf41bf83cd,1
+np.float64,0x3fd321d824a643b0,0x3fd2d93846a224b3,1
+np.float64,0xbfc6a49fb52d4940,0xbfc686704906e7d3,1
+np.float64,0xbfdd4103c9ba8208,0xbfdc3ef0c03615b4,1
+np.float64,0xbfe0b78a51e16f14,0xbfdfef0d9ffc38b5,1
+np.float64,0xbfdac7a908b58f52,0xbfda0158956ceecf,1
+np.float64,0xbfbfbf12f23f7e28,0xbfbfaa428989258c,1
+np.float64,0xbfd55f5aa2aabeb6,0xbfd4fa39de65f33a,1
+np.float64,0x3fe06969abe0d2d4,0x3fdf6744fafdd9cf,1
+np.float64,0x3fe56ab8be6ad572,0x3fe3da7a1986d543,1
+np.float64,0xbfeefbbec67df77e,0xbfea5d426132f4aa,1
+np.float64,0x3fe6e1f49cedc3ea,0x3fe4fb53f3d8e3d5,1
+np.float64,0x3feceb231c79d646,0x3fe923d3efa55414,1
+np.float64,0xbfd03dd08ea07ba2,0xbfd011549aa1998a,1
+np.float64,0xbfd688327aad1064,0xbfd611c61b56adbe,1
+np.float64,0xbfde3249d8bc6494,0xbfdd16a7237a39d5,1
+np.float64,0x3febd4b65677a96c,0x3fe873e1a401ef03,1
+np.float64,0xbfe46bd2b368d7a6,0xbfe31023c2467749,1
+np.float64,0x3fbf9f5cde3f3ec0,0x3fbf8aca8ec53c45,1
+np.float64,0x3fc20374032406e8,0x3fc1f43f1f2f4d5e,1
+np.float64,0xbfec143b16f82876,0xbfe89caa42582381,1
+np.float64,0xbfd14fa635a29f4c,0xbfd119ced11da669,1
+np.float64,0x3fe25236d4e4a46e,0x3fe156242d644b7a,1
+np.float64,0xbfe4ed793469daf2,0xbfe377a88928fd77,1
+np.float64,0xbfb363572626c6b0,0xbfb35e98d8fe87ae,1
+np.float64,0xbfb389d5aa2713a8,0xbfb384fae55565a7,1
+np.float64,0x3fca6e001934dc00,0x3fca3e0661eaca84,1
+np.float64,0x3fe748f3f76e91e8,0x3fe548ab2168aea6,1
+np.float64,0x3fef150efdfe2a1e,0x3fea6b92d74f60d3,1
+np.float64,0xbfd14b52b1a296a6,0xbfd115a387c0fa93,1
+np.float64,0x3fe3286b5ce650d6,0x3fe208a6469a7527,1
+np.float64,0xbfd57b4f4baaf69e,0xbfd514a12a9f7ab0,1
+np.float64,0xbfef14bd467e297b,0xbfea6b64bbfd42ce,1
+np.float64,0xbfe280bc90650179,0xbfe17d2c49955dba,1
+np.float64,0x3fca8759d7350eb0,0x3fca56d5c17bbc14,1
+np.float64,0xbfdf988f30bf311e,0xbfde53f96f69b05f,1
+np.float64,0x3f6b6eeb4036de00,0x3f6b6ee7e3f86f9a,1
+np.float64,0xbfed560be8faac18,0xbfe9656c5cf973d8,1
+np.float64,0x3fc6102c592c2058,0x3fc5f43efad5396d,1
+np.float64,0xbfdef64ed2bdec9e,0xbfddc4b7fbd45aea,1
+np.float64,0x3fe814acd570295a,0x3fe5df183d543bfe,1
+np.float64,0x3fca21313f344260,0x3fc9f2d47f64fbe2,1
+np.float64,0xbfe89932cc713266,0xbfe63f186a2f60ce,1
+np.float64,0x3fe4ffcff169ffa0,0x3fe386336115ee21,1
+np.float64,0x3fee6964087cd2c8,0x3fea093d31e2c2c5,1
+np.float64,0xbfbeea604e3dd4c0,0xbfbed72734852669,1
+np.float64,0xbfea1954fb7432aa,0xbfe74cdad8720032,1
+np.float64,0x3fea3e1a5ef47c34,0x3fe765ffba65a11d,1
+np.float64,0x3fcedb850b3db708,0x3fce8f39d92f00ba,1
+np.float64,0x3fd3b52d41a76a5c,0x3fd365d22b0003f9,1
+np.float64,0xbfa4108a0c282110,0xbfa40f397fcd844f,1
+np.float64,0x3fd7454c57ae8a98,0x3fd6c2e5542c6c83,1
+np.float64,0xbfeecd3c7a7d9a79,0xbfea42ca943a1695,1
+np.float64,0xbfdddda397bbbb48,0xbfdccb27283d4c4c,1
+np.float64,0x3fe6b52cf76d6a5a,0x3fe4d96ff32925ff,1
+np.float64,0xbfa39a75ec2734f0,0xbfa3993c0da84f87,1
+np.float64,0x3fdd3fe6fdba7fcc,0x3fdc3df12fe9e525,1
+np.float64,0xbfb57a98162af530,0xbfb5742525d5fbe2,1
+np.float64,0xbfd3e166cfa7c2ce,0xbfd38ff2891be9b0,1
+np.float64,0x3fdb6a04f9b6d408,0x3fda955e5018e9dc,1
+np.float64,0x3fe4ab03a4e95608,0x3fe342bfa76e1aa8,1
+np.float64,0xbfe6c8480b6d9090,0xbfe4e7eaa935b3f5,1
+np.float64,0xbdd6b5a17bae,0xbdd6b5a17bae,1
+np.float64,0xd6591979acb23,0xd6591979acb23,1
+np.float64,0x5adbed90b5b7e,0x5adbed90b5b7e,1
+np.float64,0xa664c5314cc99,0xa664c5314cc99,1
+np.float64,0x1727fb162e500,0x1727fb162e500,1
+np.float64,0xdb49a93db6935,0xdb49a93db6935,1
+np.float64,0xb10c958d62193,0xb10c958d62193,1
+np.float64,0xad38276f5a705,0xad38276f5a705,1
+np.float64,0x1d5d0b983aba2,0x1d5d0b983aba2,1
+np.float64,0x915f48e122be9,0x915f48e122be9,1
+np.float64,0x475958ae8eb2c,0x475958ae8eb2c,1
+np.float64,0x3af8406675f09,0x3af8406675f09,1
+np.float64,0x655e88a4cabd2,0x655e88a4cabd2,1
+np.float64,0x40fee8ce81fde,0x40fee8ce81fde,1
+np.float64,0xab83103f57062,0xab83103f57062,1
+np.float64,0x7cf934b8f9f27,0x7cf934b8f9f27,1
+np.float64,0x29f7524853eeb,0x29f7524853eeb,1
+np.float64,0x4a5e954894bd3,0x4a5e954894bd3,1
+np.float64,0x24638f3a48c73,0x24638f3a48c73,1
+np.float64,0xa4f32fc749e66,0xa4f32fc749e66,1
+np.float64,0xf8e92df7f1d26,0xf8e92df7f1d26,1
+np.float64,0x292e9d50525d4,0x292e9d50525d4,1
+np.float64,0xe937e897d26fd,0xe937e897d26fd,1
+np.float64,0xd3bde1d5a77bc,0xd3bde1d5a77bc,1
+np.float64,0xa447ffd548900,0xa447ffd548900,1
+np.float64,0xa3b7b691476f7,0xa3b7b691476f7,1
+np.float64,0x490095c892013,0x490095c892013,1
+np.float64,0xfc853235f90a7,0xfc853235f90a7,1
+np.float64,0x5a8bc082b5179,0x5a8bc082b5179,1
+np.float64,0x1baca45a37595,0x1baca45a37595,1
+np.float64,0x2164120842c83,0x2164120842c83,1
+np.float64,0x66692bdeccd26,0x66692bdeccd26,1
+np.float64,0xf205bdd3e40b8,0xf205bdd3e40b8,1
+np.float64,0x7c3fff98f8801,0x7c3fff98f8801,1
+np.float64,0xccdf10e199bf,0xccdf10e199bf,1
+np.float64,0x92db8e8125b8,0x92db8e8125b8,1
+np.float64,0x5789a8d6af136,0x5789a8d6af136,1
+np.float64,0xbdda869d7bb51,0xbdda869d7bb51,1
+np.float64,0xb665e0596ccbc,0xb665e0596ccbc,1
+np.float64,0x74e6b46ee9cd7,0x74e6b46ee9cd7,1
+np.float64,0x4f39cf7c9e73b,0x4f39cf7c9e73b,1
+np.float64,0xfdbf3907fb7e7,0xfdbf3907fb7e7,1
+np.float64,0xafdef4d55fbdf,0xafdef4d55fbdf,1
+np.float64,0xb49858236930b,0xb49858236930b,1
+np.float64,0x3ebe21d47d7c5,0x3ebe21d47d7c5,1
+np.float64,0x5b620512b6c41,0x5b620512b6c41,1
+np.float64,0x31918cda63232,0x31918cda63232,1
+np.float64,0x68b5741ed16af,0x68b5741ed16af,1
+np.float64,0xa5c09a5b4b814,0xa5c09a5b4b814,1
+np.float64,0x55f51c14abea4,0x55f51c14abea4,1
+np.float64,0xda8a3e41b515,0xda8a3e41b515,1
+np.float64,0x9ea9c8513d539,0x9ea9c8513d539,1
+np.float64,0x7f23b964fe478,0x7f23b964fe478,1
+np.float64,0xf6e08c7bedc12,0xf6e08c7bedc12,1
+np.float64,0x7267aa24e4cf6,0x7267aa24e4cf6,1
+np.float64,0x236bb93a46d78,0x236bb93a46d78,1
+np.float64,0x9a98430b35309,0x9a98430b35309,1
+np.float64,0xbb683fef76d08,0xbb683fef76d08,1
+np.float64,0x1ff0eb6e3fe1e,0x1ff0eb6e3fe1e,1
+np.float64,0xf524038fea481,0xf524038fea481,1
+np.float64,0xd714e449ae29d,0xd714e449ae29d,1
+np.float64,0x4154fd7682aa0,0x4154fd7682aa0,1
+np.float64,0x5b8d2f6cb71a7,0x5b8d2f6cb71a7,1
+np.float64,0xc91aa21d92355,0xc91aa21d92355,1
+np.float64,0xbd94fd117b2a0,0xbd94fd117b2a0,1
+np.float64,0x685b207ad0b65,0x685b207ad0b65,1
+np.float64,0xd2485b05a490c,0xd2485b05a490c,1
+np.float64,0x151ea5e62a3d6,0x151ea5e62a3d6,1
+np.float64,0x2635a7164c6b6,0x2635a7164c6b6,1
+np.float64,0x88ae3b5d115c8,0x88ae3b5d115c8,1
+np.float64,0x8a055a55140ac,0x8a055a55140ac,1
+np.float64,0x756f7694eadef,0x756f7694eadef,1
+np.float64,0x866d74630cdaf,0x866d74630cdaf,1
+np.float64,0x39e44f2873c8b,0x39e44f2873c8b,1
+np.float64,0x2a07ceb6540fb,0x2a07ceb6540fb,1
+np.float64,0xc52b96398a573,0xc52b96398a573,1
+np.float64,0x9546543b2a8cb,0x9546543b2a8cb,1
+np.float64,0x5b995b90b732c,0x5b995b90b732c,1
+np.float64,0x2de10a565bc22,0x2de10a565bc22,1
+np.float64,0x3b06ee94760df,0x3b06ee94760df,1
+np.float64,0xb18e77a5631cf,0xb18e77a5631cf,1
+np.float64,0x3b89ae3a77137,0x3b89ae3a77137,1
+np.float64,0xd9b0b6e5b3617,0xd9b0b6e5b3617,1
+np.float64,0x30b2310861647,0x30b2310861647,1
+np.float64,0x326a3ab464d48,0x326a3ab464d48,1
+np.float64,0x4c18610a9830d,0x4c18610a9830d,1
+np.float64,0x541dea42a83be,0x541dea42a83be,1
+np.float64,0xcd027dbf9a050,0xcd027dbf9a050,1
+np.float64,0x780a0f80f015,0x780a0f80f015,1
+np.float64,0x740ed5b2e81db,0x740ed5b2e81db,1
+np.float64,0xc226814d844d0,0xc226814d844d0,1
+np.float64,0xde958541bd2b1,0xde958541bd2b1,1
+np.float64,0xb563d3296ac7b,0xb563d3296ac7b,1
+np.float64,0x1db3b0b83b677,0x1db3b0b83b677,1
+np.float64,0xa7b0275d4f605,0xa7b0275d4f605,1
+np.float64,0x72f8d038e5f1b,0x72f8d038e5f1b,1
+np.float64,0x860ed1350c1da,0x860ed1350c1da,1
+np.float64,0x79f88262f3f11,0x79f88262f3f11,1
+np.float64,0x8817761f102ef,0x8817761f102ef,1
+np.float64,0xac44784b5888f,0xac44784b5888f,1
+np.float64,0x800fd594241fab28,0x800fd594241fab28,1
+np.float64,0x800ede32f8ddbc66,0x800ede32f8ddbc66,1
+np.float64,0x800de4c1121bc982,0x800de4c1121bc982,1
+np.float64,0x80076ebcddcedd7a,0x80076ebcddcedd7a,1
+np.float64,0x800b3fee06567fdc,0x800b3fee06567fdc,1
+np.float64,0x800b444426b68889,0x800b444426b68889,1
+np.float64,0x800b1c037a563807,0x800b1c037a563807,1
+np.float64,0x8001eb88c2a3d712,0x8001eb88c2a3d712,1
+np.float64,0x80058aae6dab155e,0x80058aae6dab155e,1
+np.float64,0x80083df2d4f07be6,0x80083df2d4f07be6,1
+np.float64,0x800e3b19d97c7634,0x800e3b19d97c7634,1
+np.float64,0x800a71c6f374e38e,0x800a71c6f374e38e,1
+np.float64,0x80048557f1490ab1,0x80048557f1490ab1,1
+np.float64,0x8000a00e6b01401e,0x8000a00e6b01401e,1
+np.float64,0x800766a3e2cecd49,0x800766a3e2cecd49,1
+np.float64,0x80015eb44602bd69,0x80015eb44602bd69,1
+np.float64,0x800bde885a77bd11,0x800bde885a77bd11,1
+np.float64,0x800224c53ea4498b,0x800224c53ea4498b,1
+np.float64,0x80048e8c6a291d1a,0x80048e8c6a291d1a,1
+np.float64,0x800b667e4af6ccfd,0x800b667e4af6ccfd,1
+np.float64,0x800ae3d7e395c7b0,0x800ae3d7e395c7b0,1
+np.float64,0x80086c245550d849,0x80086c245550d849,1
+np.float64,0x800d7d25f6fafa4c,0x800d7d25f6fafa4c,1
+np.float64,0x800f8d9ab0ff1b35,0x800f8d9ab0ff1b35,1
+np.float64,0x800690e949cd21d3,0x800690e949cd21d3,1
+np.float64,0x8003022381060448,0x8003022381060448,1
+np.float64,0x80085e0dad70bc1c,0x80085e0dad70bc1c,1
+np.float64,0x800e2ffc369c5ff9,0x800e2ffc369c5ff9,1
+np.float64,0x800b629b5af6c537,0x800b629b5af6c537,1
+np.float64,0x800fdc964b7fb92d,0x800fdc964b7fb92d,1
+np.float64,0x80036bb4b1c6d76a,0x80036bb4b1c6d76a,1
+np.float64,0x800b382f7f16705f,0x800b382f7f16705f,1
+np.float64,0x800ebac9445d7593,0x800ebac9445d7593,1
+np.float64,0x80015075c3e2a0ec,0x80015075c3e2a0ec,1
+np.float64,0x8002a6ec5ce54dd9,0x8002a6ec5ce54dd9,1
+np.float64,0x8009fab74a93f56f,0x8009fab74a93f56f,1
+np.float64,0x800c94b9ea992974,0x800c94b9ea992974,1
+np.float64,0x800dc2efd75b85e0,0x800dc2efd75b85e0,1
+np.float64,0x800be6400d57cc80,0x800be6400d57cc80,1
+np.float64,0x80021f6858443ed1,0x80021f6858443ed1,1
+np.float64,0x800600e2ac4c01c6,0x800600e2ac4c01c6,1
+np.float64,0x800a2159e6b442b4,0x800a2159e6b442b4,1
+np.float64,0x800c912f4bb9225f,0x800c912f4bb9225f,1
+np.float64,0x800a863a9db50c76,0x800a863a9db50c76,1
+np.float64,0x800ac16851d582d1,0x800ac16851d582d1,1
+np.float64,0x8003f7d32e87efa7,0x8003f7d32e87efa7,1
+np.float64,0x800be4eee3d7c9de,0x800be4eee3d7c9de,1
+np.float64,0x80069ff0ac4d3fe2,0x80069ff0ac4d3fe2,1
+np.float64,0x80061c986d4c3932,0x80061c986d4c3932,1
+np.float64,0x8000737b4de0e6f7,0x8000737b4de0e6f7,1
+np.float64,0x8002066ef7440cdf,0x8002066ef7440cdf,1
+np.float64,0x8001007050c200e1,0x8001007050c200e1,1
+np.float64,0x8008df9fa351bf40,0x8008df9fa351bf40,1
+np.float64,0x800f8394ee5f072a,0x800f8394ee5f072a,1
+np.float64,0x80008e0b01c11c17,0x80008e0b01c11c17,1
+np.float64,0x800f7088ed3ee112,0x800f7088ed3ee112,1
+np.float64,0x800285b86f650b72,0x800285b86f650b72,1
+np.float64,0x8008ec18af51d832,0x8008ec18af51d832,1
+np.float64,0x800da08523bb410a,0x800da08523bb410a,1
+np.float64,0x800de853ca7bd0a8,0x800de853ca7bd0a8,1
+np.float64,0x8008c8aefad1915e,0x8008c8aefad1915e,1
+np.float64,0x80010c39d5821874,0x80010c39d5821874,1
+np.float64,0x8009208349724107,0x8009208349724107,1
+np.float64,0x800783783f0f06f1,0x800783783f0f06f1,1
+np.float64,0x80025caf9984b960,0x80025caf9984b960,1
+np.float64,0x800bc76fa6778ee0,0x800bc76fa6778ee0,1
+np.float64,0x80017e2f89a2fc60,0x80017e2f89a2fc60,1
+np.float64,0x800ef169843de2d3,0x800ef169843de2d3,1
+np.float64,0x80098a5f7db314bf,0x80098a5f7db314bf,1
+np.float64,0x800d646f971ac8df,0x800d646f971ac8df,1
+np.float64,0x800110d1dc6221a4,0x800110d1dc6221a4,1
+np.float64,0x800f8b422a1f1684,0x800f8b422a1f1684,1
+np.float64,0x800785c97dcf0b94,0x800785c97dcf0b94,1
+np.float64,0x800da201283b4403,0x800da201283b4403,1
+np.float64,0x800a117cc7b422fa,0x800a117cc7b422fa,1
+np.float64,0x80024731cfa48e64,0x80024731cfa48e64,1
+np.float64,0x800199d456c333a9,0x800199d456c333a9,1
+np.float64,0x8005f66bab8becd8,0x8005f66bab8becd8,1
+np.float64,0x8008e7227c11ce45,0x8008e7227c11ce45,1
+np.float64,0x8007b66cc42f6cda,0x8007b66cc42f6cda,1
+np.float64,0x800669e6f98cd3cf,0x800669e6f98cd3cf,1
+np.float64,0x800aed917375db23,0x800aed917375db23,1
+np.float64,0x8008b6dd15116dbb,0x8008b6dd15116dbb,1
+np.float64,0x800f49869cfe930d,0x800f49869cfe930d,1
+np.float64,0x800a712661b4e24d,0x800a712661b4e24d,1
+np.float64,0x800944e816f289d1,0x800944e816f289d1,1
+np.float64,0x800eba0f8a1d741f,0x800eba0f8a1d741f,1
+np.float64,0x800cf6ded139edbe,0x800cf6ded139edbe,1
+np.float64,0x80023100c6246202,0x80023100c6246202,1
+np.float64,0x800c5a94add8b52a,0x800c5a94add8b52a,1
+np.float64,0x800adf329b95be66,0x800adf329b95be66,1
+np.float64,0x800af9afc115f360,0x800af9afc115f360,1
+np.float64,0x800d66ce837acd9d,0x800d66ce837acd9d,1
+np.float64,0x8003ffb5e507ff6d,0x8003ffb5e507ff6d,1
+np.float64,0x80027d280024fa51,0x80027d280024fa51,1
+np.float64,0x800fc37e1d1f86fc,0x800fc37e1d1f86fc,1
+np.float64,0x800fc7258b9f8e4b,0x800fc7258b9f8e4b,1
+np.float64,0x8003fb5789e7f6b0,0x8003fb5789e7f6b0,1
+np.float64,0x800eb4e7a13d69cf,0x800eb4e7a13d69cf,1
+np.float64,0x800951850952a30a,0x800951850952a30a,1
+np.float64,0x3fed4071be3a80e3,0x3fe95842074431df,1
+np.float64,0x3f8d2341203a4682,0x3f8d2300b453bd9f,1
+np.float64,0x3fdc8ce332b919c6,0x3fdb9cdf1440c28f,1
+np.float64,0x3fdc69bd84b8d37b,0x3fdb7d25c8166b7b,1
+np.float64,0x3fc4c22ad0298456,0x3fc4aae73e231b4f,1
+np.float64,0x3fea237809f446f0,0x3fe753cc6ca96193,1
+np.float64,0x3fd34cf6462699ed,0x3fd30268909bb47e,1
+np.float64,0x3fafce20643f9c41,0x3fafc8e41a240e35,1
+np.float64,0x3fdc6d416538da83,0x3fdb805262292863,1
+np.float64,0x3fe7d8362aefb06c,0x3fe5b2ce659db7fd,1
+np.float64,0x3fe290087de52011,0x3fe189f9a3eb123d,1
+np.float64,0x3fa62d2bf82c5a58,0x3fa62b65958ca2b8,1
+np.float64,0x3fafd134403fa269,0x3fafcbf670f8a6f3,1
+np.float64,0x3fa224e53c2449ca,0x3fa223ec5de1631b,1
+np.float64,0x3fb67e2c2c2cfc58,0x3fb676c445fb70a0,1
+np.float64,0x3fda358d01346b1a,0x3fd97b9441666eb2,1
+np.float64,0x3fdd30fc4bba61f9,0x3fdc308da423778d,1
+np.float64,0x3fc56e99c52add34,0x3fc5550004492621,1
+np.float64,0x3fe32d08de265a12,0x3fe20c761a73cec2,1
+np.float64,0x3fd46cf932a8d9f2,0x3fd414a7f3db03df,1
+np.float64,0x3fd94cfa2b3299f4,0x3fd8a5961b3e4bdd,1
+np.float64,0x3fed6ea3a6fadd47,0x3fe9745b2f6c9204,1
+np.float64,0x3fe4431d1768863a,0x3fe2ef61d0481de0,1
+np.float64,0x3fe1d8e00ea3b1c0,0x3fe0efab5050ee78,1
+np.float64,0x3fe56f37dcaade70,0x3fe3de00b0f392e0,1
+np.float64,0x3fde919a2dbd2334,0x3fdd6b6d2dcf2396,1
+np.float64,0x3fe251e3d4a4a3c8,0x3fe155de69605d60,1
+np.float64,0x3fe5e0ecc5abc1da,0x3fe436a5de5516cf,1
+np.float64,0x3fcd48780c3a90f0,0x3fcd073fa907ba9b,1
+np.float64,0x3fe4e8149229d029,0x3fe37360801d5b66,1
+np.float64,0x3fb9ef159633de2b,0x3fb9e3bc05a15d1d,1
+np.float64,0x3fc24a3f0424947e,0x3fc23a5432ca0e7c,1
+np.float64,0x3fe55ca196aab943,0x3fe3cf6b3143435a,1
+np.float64,0x3fe184544c2308a9,0x3fe0a7b49fa80aec,1
+np.float64,0x3fe2c76e83658edd,0x3fe1b8355c1ea771,1
+np.float64,0x3fea8d2c4ab51a59,0x3fe79ba85aabc099,1
+np.float64,0x3fd74f98abae9f31,0x3fd6cc85005d0593,1
+np.float64,0x3fec6de9a678dbd3,0x3fe8d59a1d23cdd1,1
+np.float64,0x3fec8a0e50f9141d,0x3fe8e7500f6f6a00,1
+np.float64,0x3fe9de6d08b3bcda,0x3fe7245319508767,1
+np.float64,0x3fe4461fd1688c40,0x3fe2f1cf0b93aba6,1
+np.float64,0x3fde342d9d3c685b,0x3fdd185609d5719d,1
+np.float64,0x3feb413fc8368280,0x3fe813c091d2519a,1
+np.float64,0x3fe64333156c8666,0x3fe48275b9a6a358,1
+np.float64,0x3fe03c65226078ca,0x3fdf18b26786be35,1
+np.float64,0x3fee11054dbc220b,0x3fe9d579a1cfa7ad,1
+np.float64,0x3fbaefccae35df99,0x3fbae314fef7c7ea,1
+np.float64,0x3feed4e3487da9c7,0x3fea4729241c8811,1
+np.float64,0x3fbb655df836cabc,0x3fbb57fcf9a097be,1
+np.float64,0x3fe68b0273ed1605,0x3fe4b96109afdf76,1
+np.float64,0x3fd216bfc3242d80,0x3fd1d957363f6a43,1
+np.float64,0x3fe01328d4a02652,0x3fded083bbf94aba,1
+np.float64,0x3fe3f9a61ae7f34c,0x3fe2b3f701b79028,1
+np.float64,0x3fed4e7cf8fa9cfa,0x3fe960d27084fb40,1
+np.float64,0x3faec08e343d811c,0x3faebbd2aa07ac1f,1
+np.float64,0x3fd2d1bbeea5a378,0x3fd28c9aefcf48ad,1
+np.float64,0x3fd92e941fb25d28,0x3fd889857f88410d,1
+np.float64,0x3fe43decb7e87bd9,0x3fe2eb32b4ee4667,1
+np.float64,0x3fef49cabcfe9395,0x3fea892f9a233f76,1
+np.float64,0x3fe3e96812e7d2d0,0x3fe2a6c6b45dd6ee,1
+np.float64,0x3fd24c0293a49805,0x3fd20c76d54473cb,1
+np.float64,0x3fb43d6b7e287ad7,0x3fb438060772795a,1
+np.float64,0x3fe87bf7d3f0f7f0,0x3fe62a0c47411c62,1
+np.float64,0x3fee82a2e07d0546,0x3fea17e27e752b7b,1
+np.float64,0x3fe40c01bbe81803,0x3fe2c2d9483f44d8,1
+np.float64,0x3fd686ccae2d0d99,0x3fd610763fb61097,1
+np.float64,0x3fe90fcf2af21f9e,0x3fe693c12df59ba9,1
+np.float64,0x3fefb3ce11ff679c,0x3feac3dd4787529d,1
+np.float64,0x3fcec53ff63d8a80,0x3fce79992af00c58,1
+np.float64,0x3fe599dd7bab33bb,0x3fe3ff5da7575d85,1
+np.float64,0x3fe9923b1a732476,0x3fe6ef71d13db456,1
+np.float64,0x3febf76fcef7eee0,0x3fe88a3952e11373,1
+np.float64,0x3fc2cfd128259fa2,0x3fc2be7fd47fd811,1
+np.float64,0x3fe4d37ae269a6f6,0x3fe36300d45e3745,1
+np.float64,0x3fe23aa2e4247546,0x3fe1424e172f756f,1
+np.float64,0x3fe4f0596ca9e0b3,0x3fe379f0c49de7ef,1
+np.float64,0x3fe2e4802fe5c900,0x3fe1d062a8812601,1
+np.float64,0x3fe5989c79eb3139,0x3fe3fe6308552dec,1
+np.float64,0x3fe3c53cb4e78a79,0x3fe28956e573aca4,1
+np.float64,0x3fe6512beeeca258,0x3fe48d2d5ece979f,1
+np.float64,0x3fd8473ddb308e7c,0x3fd7b33e38adc6ad,1
+np.float64,0x3fecd09c9679a139,0x3fe91361fa0c5bcb,1
+np.float64,0x3fc991530e3322a6,0x3fc965e2c514a9e9,1
+np.float64,0x3f6d4508403a8a11,0x3f6d45042b68acc5,1
+np.float64,0x3fea1f198f743e33,0x3fe750ce918d9330,1
+np.float64,0x3fd0a0bb4da14177,0x3fd07100f9c71e1c,1
+np.float64,0x3fd30c45ffa6188c,0x3fd2c499f9961f66,1
+np.float64,0x3fcad98e7c35b31d,0x3fcaa74293cbc52e,1
+np.float64,0x3fec8e4a5eb91c95,0x3fe8e9f898d118db,1
+np.float64,0x3fd19fdb79233fb7,0x3fd1670c00febd24,1
+np.float64,0x3fea9fcbb1f53f97,0x3fe7a836b29c4075,1
+np.float64,0x3fc6d12ea12da25d,0x3fc6b24bd2f89f59,1
+np.float64,0x3fd6af3658ad5e6d,0x3fd636613e08df3f,1
+np.float64,0x3fe31bc385a63787,0x3fe1fe3081621213,1
+np.float64,0x3fc0dbba2221b774,0x3fc0cf42c9313dba,1
+np.float64,0x3fef639ce87ec73a,0x3fea9795454f1036,1
+np.float64,0x3fee5f29dcbcbe54,0x3fea0349b288f355,1
+np.float64,0x3fed46bdb37a8d7b,0x3fe95c199f5aa569,1
+np.float64,0x3fef176afa3e2ed6,0x3fea6ce78b2aa3aa,1
+np.float64,0x3fc841e7683083cf,0x3fc81cccb84848cc,1
+np.float64,0xbfda3ec9a2347d94,0xbfd9840d180e9de3,1
+np.float64,0xbfcd5967ae3ab2d0,0xbfcd17be13142bb9,1
+np.float64,0xbfedf816573bf02d,0xbfe9c6bb06476c60,1
+np.float64,0xbfd0d6e10e21adc2,0xbfd0a54f99d2f3dc,1
+np.float64,0xbfe282df096505be,0xbfe17ef5e2e80760,1
+np.float64,0xbfd77ae6e62ef5ce,0xbfd6f4f6b603ad8a,1
+np.float64,0xbfe37b171aa6f62e,0xbfe24cb4b2d0ade4,1
+np.float64,0xbfef9e5ed9bf3cbe,0xbfeab817b41000bd,1
+np.float64,0xbfe624d6f96c49ae,0xbfe46b1e9c9aff86,1
+np.float64,0xbfefb5da65ff6bb5,0xbfeac4fc9c982772,1
+np.float64,0xbfd29a65d52534cc,0xbfd2579df8ff87b9,1
+np.float64,0xbfd40270172804e0,0xbfd3af6471104aef,1
+np.float64,0xbfb729ee7a2e53e0,0xbfb721d7dbd2705e,1
+np.float64,0xbfb746f1382e8de0,0xbfb73ebc1207f8e3,1
+np.float64,0xbfd3c7e606a78fcc,0xbfd377a8aa1b0dd9,1
+np.float64,0xbfd18c4880231892,0xbfd1543506584ad5,1
+np.float64,0xbfea988080753101,0xbfe7a34cba0d0fa1,1
+np.float64,0xbf877400e02ee800,0xbf8773df47fa7e35,1
+np.float64,0xbfb07e050820fc08,0xbfb07b198d4a52c9,1
+np.float64,0xbfee0a3621fc146c,0xbfe9d1745a05ba77,1
+np.float64,0xbfe78de246ef1bc4,0xbfe57bf2baab91c8,1
+np.float64,0xbfcdbfd3bd3b7fa8,0xbfcd7b728a955a06,1
+np.float64,0xbfe855ea79b0abd5,0xbfe60e8a4a17b921,1
+np.float64,0xbfd86c8e3530d91c,0xbfd7d5e36c918dc1,1
+np.float64,0xbfe4543169e8a863,0xbfe2fd23d42f552e,1
+np.float64,0xbfe41efbf1283df8,0xbfe2d235a2faed1a,1
+np.float64,0xbfd9a55464b34aa8,0xbfd8f7083f7281e5,1
+np.float64,0xbfe5f5078d6bea0f,0xbfe44637d910c270,1
+np.float64,0xbfe6d83e3dedb07c,0xbfe4f3fdadd10552,1
+np.float64,0xbfdb767e70b6ecfc,0xbfdaa0b6c17f3fb1,1
+np.float64,0xbfdfc91b663f9236,0xbfde7eb0dfbeaa26,1
+np.float64,0xbfbfbd18783f7a30,0xbfbfa84bf2fa1c8d,1
+np.float64,0xbfe51199242a2332,0xbfe39447dbe066ae,1
+np.float64,0xbfdbb94814b77290,0xbfdadd63bd796972,1
+np.float64,0xbfd8c6272cb18c4e,0xbfd828f2d9e8607e,1
+np.float64,0xbfce51e0b63ca3c0,0xbfce097ee908083a,1
+np.float64,0xbfe99a177d73342f,0xbfe6f4ec776a57ae,1
+np.float64,0xbfefde2ab0ffbc55,0xbfeadafdcbf54733,1
+np.float64,0xbfcccb5c1c3996b8,0xbfcc8d586a73d126,1
+np.float64,0xbfdf7ddcedbefbba,0xbfde3c749a906de7,1
+np.float64,0xbfef940516ff280a,0xbfeab26429e89f4b,1
+np.float64,0xbfe08009f1e10014,0xbfdf8eab352997eb,1
+np.float64,0xbfe9c02682b3804d,0xbfe70f5fd05f79ee,1
+np.float64,0xbfb3ca1732279430,0xbfb3c50bec5b453a,1
+np.float64,0xbfe368e81926d1d0,0xbfe23dc704d0887c,1
+np.float64,0xbfbd20cc2e3a4198,0xbfbd10b7e6d81c6c,1
+np.float64,0xbfd67ece4d2cfd9c,0xbfd608f527dcc5e7,1
+np.float64,0xbfdc02d1333805a2,0xbfdb20104454b79f,1
+np.float64,0xbfc007a626200f4c,0xbfbff9dc9dc70193,1
+np.float64,0xbfda9e4f8fb53ca0,0xbfd9db8af35dc630,1
+np.float64,0xbfd8173d77302e7a,0xbfd786a0cf3e2914,1
+np.float64,0xbfeb8fcbd0b71f98,0xbfe84734debc10fb,1
+np.float64,0xbfe4bf1cb7697e3a,0xbfe352c891113f29,1
+np.float64,0xbfc18624d5230c48,0xbfc178248e863b64,1
+np.float64,0xbfcf184bac3e3098,0xbfceca3b19be1ebe,1
+np.float64,0xbfd2269c42a44d38,0xbfd1e8920d72b694,1
+np.float64,0xbfe8808526b1010a,0xbfe62d5497292495,1
+np.float64,0xbfe498bd1da9317a,0xbfe334245eadea93,1
+np.float64,0xbfef0855aebe10ab,0xbfea6462f29aeaf9,1
+np.float64,0xbfdeb186c93d630e,0xbfdd87c37943c602,1
+np.float64,0xbfb29fe2ae253fc8,0xbfb29bae3c87efe4,1
+np.float64,0xbfddd9c6c3bbb38e,0xbfdcc7b400bf384b,1
+np.float64,0xbfe3506673e6a0cd,0xbfe2299f26295553,1
+np.float64,0xbfe765957a2ecb2b,0xbfe55e03cf22edab,1
+np.float64,0xbfecc9876c79930f,0xbfe90efaf15b6207,1
+np.float64,0xbfefb37a0a7f66f4,0xbfeac3af3898e7c2,1
+np.float64,0xbfeefa0da7bdf41b,0xbfea5c4cde53c1c3,1
+np.float64,0xbfe6639ee9ecc73e,0xbfe49b4e28a72482,1
+np.float64,0xbfef91a4bb7f2349,0xbfeab114ac9e25dd,1
+np.float64,0xbfc8b392bb316724,0xbfc88c657f4441a3,1
+np.float64,0xbfc88a358231146c,0xbfc863cb900970fe,1
+np.float64,0xbfef25a9d23e4b54,0xbfea74eda432aabe,1
+np.float64,0xbfe6aceea0ed59de,0xbfe4d32e54a3fd01,1
+np.float64,0xbfefe2b3e37fc568,0xbfeadd74f4605835,1
+np.float64,0xbfa9eecb8833dd90,0xbfa9ebf4f4cb2591,1
+np.float64,0xbfd42bad7428575a,0xbfd3d69de8e52d0a,1
+np.float64,0xbfbc366b4a386cd8,0xbfbc27ceee8f3019,1
+np.float64,0xbfd9bca7be337950,0xbfd90c80e6204e57,1
+np.float64,0xbfe8173f53f02e7f,0xbfe5e0f8d8ed329c,1
+np.float64,0xbfce22dbcb3c45b8,0xbfcddbc8159b63af,1
+np.float64,0xbfea2d7ba7345af7,0xbfe75aa62ad5b80a,1
+np.float64,0xbfc08b783e2116f0,0xbfc07faf8d501558,1
+np.float64,0xbfb8c4161c318830,0xbfb8ba33950748ec,1
+np.float64,0xbfddd930bcbbb262,0xbfdcc72dffdf51bb,1
+np.float64,0xbfd108ce8a22119e,0xbfd0d5801e7698bd,1
+np.float64,0xbfd5bd2b5dab7a56,0xbfd552c52c468c76,1
+np.float64,0xbfe7ffe67fefffcd,0xbfe5cfe96e35e6e5,1
+np.float64,0xbfa04ec6bc209d90,0xbfa04e120a2c25cc,1
+np.float64,0xbfef7752cc7eeea6,0xbfeaa28715addc4f,1
+np.float64,0xbfe7083c2eae1078,0xbfe5182bf8ddfc8e,1
+np.float64,0xbfe05dafd0a0bb60,0xbfdf52d397cfe5f6,1
+np.float64,0xbfacb4f2243969e0,0xbfacb118991ea235,1
+np.float64,0xbfc7d47e422fa8fc,0xbfc7b1504714a4fd,1
+np.float64,0xbfbd70b2243ae168,0xbfbd60182efb61de,1
+np.float64,0xbfe930e49cb261c9,0xbfe6ab272b3f9cfc,1
+np.float64,0xbfb5f537e62bea70,0xbfb5ee540dcdc635,1
+np.float64,0xbfbb0c8278361908,0xbfbaffa1f7642a87,1
+np.float64,0xbfe82af2447055e4,0xbfe5ef54ca8db9e8,1
+np.float64,0xbfe92245e6f2448c,0xbfe6a0d32168040b,1
+np.float64,0xbfb799a8522f3350,0xbfb7911a7ada3640,1
+np.float64,0x7faa8290c8350521,0x3fe5916f67209cd6,1
+np.float64,0x7f976597082ecb2d,0x3fcf94dce396bd37,1
+np.float64,0x7fede721237bce41,0x3fe3e7b1575b005f,1
+np.float64,0x7fd5f674d72bece9,0x3fe3210628eba199,1
+np.float64,0x7f9b0f1aa0361e34,0x3feffd34d15d1da7,1
+np.float64,0x7fec48346ab89068,0x3fe93dd84253d9a2,1
+np.float64,0x7f9cac76283958eb,0xbfec4cd999653868,1
+np.float64,0x7fed51ab6bbaa356,0x3fecc27fb5f37bca,1
+np.float64,0x7fded3c116bda781,0xbfda473efee47cf1,1
+np.float64,0x7fd19c48baa33890,0xbfe25700cbfc0326,1
+np.float64,0x7fe5c8f478ab91e8,0xbfee4ab6d84806be,1
+np.float64,0x7fe53c64e46a78c9,0x3fee19c3f227f4e1,1
+np.float64,0x7fc2ad1936255a31,0xbfe56db9b877f807,1
+np.float64,0x7fe2b071b52560e2,0xbfce3990a8d390a9,1
+np.float64,0x7fc93f3217327e63,0xbfd1f6d7ef838d2b,1
+np.float64,0x7fec26df08784dbd,0x3fd5397be41c93d9,1
+np.float64,0x7fcf4770183e8edf,0x3fe6354f5a785016,1
+np.float64,0x7fdc9fcc0bb93f97,0xbfeeeae952e8267d,1
+np.float64,0x7feb21f29c7643e4,0x3fec20122e33f1bf,1
+np.float64,0x7fd0b51273216a24,0x3fefb09f8daba00b,1
+np.float64,0x7fe747a9d76e8f53,0x3feb46a3232842a4,1
+np.float64,0x7fd58885972b110a,0xbfce5ea57c186221,1
+np.float64,0x7fca3ce85c3479d0,0x3fef93a24548e8ca,1
+np.float64,0x7fe1528a46a2a514,0xbfb54bb578d9da91,1
+np.float64,0x7fcc58b21b38b163,0x3feffb5b741ffc2d,1
+np.float64,0x7fdabcaaf5357955,0x3fecbf855db524d1,1
+np.float64,0x7fdd27c6933a4f8c,0xbfef2f41bb80144b,1
+np.float64,0x7fbda4e1be3b49c2,0x3fdb9b33f84f5381,1
+np.float64,0x7fe53363362a66c5,0x3fe4daff3a6a4ed0,1
+np.float64,0x7fe5719d62eae33a,0xbfef761d98f625d5,1
+np.float64,0x7f982ce5a83059ca,0x3fd0b27c3365f0a8,1
+np.float64,0x7fe6db8c42edb718,0x3fe786f4b1fe11a6,1
+np.float64,0x7fe62cca1b2c5993,0x3fd425b6c4c9714a,1
+np.float64,0x7feea88850bd5110,0xbfd7bbb432017175,1
+np.float64,0x7fad6c6ae43ad8d5,0x3fe82e49098bc6de,1
+np.float64,0x7fe70542f02e0a85,0x3fec3017960b4822,1
+np.float64,0x7feaf0bcbb35e178,0xbfc3aac74dd322d5,1
+np.float64,0x7fb5e152fe2bc2a5,0x3fd4b27a4720614c,1
+np.float64,0x7fe456ee5be8addc,0xbfe9e15ab5cff229,1
+np.float64,0x7fd4b53a8d296a74,0xbfefff450f503326,1
+np.float64,0x7fd7149d7a2e293a,0x3fef4ef0a9009096,1
+np.float64,0x7fd43fc5a8a87f8a,0x3fe0c929fee9dce7,1
+np.float64,0x7fef97022aff2e03,0x3fd4ea52a813da20,1
+np.float64,0x7fe035950ae06b29,0x3fef4e125394fb05,1
+np.float64,0x7fecd0548979a0a8,0x3fe89d226244037b,1
+np.float64,0x7fc79b3ac22f3675,0xbfee9c9cf78c8270,1
+np.float64,0x7fd8b8e8263171cf,0x3fe8e24437961db0,1
+np.float64,0x7fc288c23e251183,0xbfbaf8eca50986ca,1
+np.float64,0x7fe436b4b6686d68,0xbfecd661741931c4,1
+np.float64,0x7fcdf99abe3bf334,0x3feaa75c90830b92,1
+np.float64,0x7fd9f9739233f2e6,0xbfebbfcb301b0da5,1
+np.float64,0x7fd6fcbd1b2df979,0xbfccf2c77cb65f56,1
+np.float64,0x7fe242a97b248552,0xbfe5b0f13bcbabc8,1
+np.float64,0x7fe38bf3e06717e7,0x3fbc8fa9004d2668,1
+np.float64,0x7fecd0e8d479a1d1,0xbfe886a6b4f73a4a,1
+np.float64,0x7fe958d60232b1ab,0xbfeb7c4cf0cee2dd,1
+np.float64,0x7f9d492b583a9256,0xbfebe975d00221cb,1
+np.float64,0x7fd6c9983bad932f,0xbfefe817621a31f6,1
+np.float64,0x7fed0d7239fa1ae3,0x3feac7e1b6455b4b,1
+np.float64,0x7fe61dac90ec3b58,0x3fef845b9efe8421,1
+np.float64,0x7f9acd3010359a5f,0xbfe460d376200130,1
+np.float64,0x7fedced9673b9db2,0xbfeeaf23445e1944,1
+np.float64,0x7fd9f271a733e4e2,0xbfd41544535ecb78,1
+np.float64,0x7fe703339bee0666,0x3fef93334626b56c,1
+np.float64,0x7fec7761b7b8eec2,0xbfe6da9179e8e714,1
+np.float64,0x7fdd9fff043b3ffd,0xbfc0761dfb8d94f9,1
+np.float64,0x7fdc10ed17b821d9,0x3fe1481e2a26c77f,1
+np.float64,0x7fe7681e72aed03c,0x3fefff94a6d47c84,1
+np.float64,0x7fe18c29e1e31853,0x3fe86ebd2fd89456,1
+np.float64,0x7fb2fb273c25f64d,0xbfefc136f57e06de,1
+np.float64,0x7fac2bbb90385776,0x3fe25d8e3cdae7e3,1
+np.float64,0x7fed16789efa2cf0,0x3fe94555091fdfd9,1
+np.float64,0x7fd8fe8f7831fd1e,0xbfed58d520361902,1
+np.float64,0x7fa59bde3c2b37bb,0x3fef585391c077ff,1
+np.float64,0x7fda981b53353036,0x3fde02ca08737b5f,1
+np.float64,0x7fd29f388aa53e70,0xbfe04f5499246df2,1
+np.float64,0x7fcd0232513a0464,0xbfd9737f2f565829,1
+np.float64,0x7fe9a881bcf35102,0xbfe079cf285b35dd,1
+np.float64,0x7fdbe399a9b7c732,0x3fe965bc4220f340,1
+np.float64,0x7feb77414af6ee82,0xbfb7df2fcd491f55,1
+np.float64,0x7fa26e86c424dd0d,0xbfea474c3d65b9be,1
+np.float64,0x7feaee869e35dd0c,0xbfd7b333a888cd14,1
+np.float64,0x7fcbd67f6137acfe,0xbfe15a7a15dfcee6,1
+np.float64,0x7fe36991e766d323,0xbfeb288077c4ed9f,1
+np.float64,0x7fdcf4f4fcb9e9e9,0xbfea331ef7a75e7b,1
+np.float64,0x7fbe3445643c688a,0x3fedf21b94ae8e37,1
+np.float64,0x7fd984cfd2b3099f,0x3fc0d3ade71c395e,1
+np.float64,0x7fdec987b23d930e,0x3fe4af5e48f6c26e,1
+np.float64,0x7fde56a9953cad52,0x3fc8e7762cefb8b0,1
+np.float64,0x7fd39fb446273f68,0xbfe6c3443208f44d,1
+np.float64,0x7fc609c1a72c1382,0x3fe884e639571baa,1
+np.float64,0x7fe001be4b20037c,0xbfed0d90cbcb6010,1
+np.float64,0x7fce7ace283cf59b,0xbfd0303792e51f49,1
+np.float64,0x7fe27ba93da4f751,0x3fe548b5ce740d71,1
+np.float64,0x7fcc13c79b38278e,0xbfe2e14f5b64a1e9,1
+np.float64,0x7fc058550620b0a9,0x3fe44bb55ebd0590,1
+np.float64,0x7fa4ba8bf8297517,0x3fee59b39f9d08c4,1
+np.float64,0x7fe50d6872ea1ad0,0xbfea1eaa2d059e13,1
+np.float64,0x7feb7e33b476fc66,0xbfeff28a4424dd3e,1
+np.float64,0x7fe2d7d2a165afa4,0xbfdbaff0ba1ea460,1
+np.float64,0xffd126654b224cca,0xbfef0cd3031fb97c,1
+np.float64,0xffb5f884942bf108,0x3fe0de589bea2e4c,1
+np.float64,0xffe011b4bfe02369,0xbfe805a0edf1e1f2,1
+np.float64,0xffec13eae9b827d5,0x3fb5f30347d78447,1
+np.float64,0xffa6552ae82caa50,0x3fb1ecee60135f2f,1
+np.float64,0xffb62d38b02c5a70,0x3fbd35903148fd12,1
+np.float64,0xffe2c44ea425889d,0xbfd7616547f99a7d,1
+np.float64,0xffea24c61a74498c,0x3fef4a1b15ae9005,1
+np.float64,0xffd23a4ab2a47496,0x3fe933bfaa569ae9,1
+np.float64,0xffc34a073d269410,0xbfeec0f510bb7474,1
+np.float64,0xffeead84cfbd5b09,0x3feb2d635e5a78bd,1
+np.float64,0xffcfd8f3b43fb1e8,0xbfdd59625801771b,1
+np.float64,0xffd3c7f662a78fec,0x3f9cf3209edfbc4e,1
+np.float64,0xffe7b7e4f72f6fca,0xbfefdcff4925632c,1
+np.float64,0xffe48cab05e91956,0x3fe6b41217948423,1
+np.float64,0xffeb6980b336d301,0xbfca5de148f69324,1
+np.float64,0xffe3f15c4aa7e2b8,0xbfeb18efae892081,1
+np.float64,0xffcf290c713e5218,0x3fefe6f1a513ed26,1
+np.float64,0xffd80979b43012f4,0xbfde6c8df91af976,1
+np.float64,0xffc3181e0026303c,0x3fe7448f681def38,1
+np.float64,0xffedfa68f97bf4d1,0xbfeca6efb802d109,1
+np.float64,0xffca0931c0341264,0x3fe31b9f073b08cd,1
+np.float64,0xffe4c44934e98892,0x3feda393a2e8a0f7,1
+np.float64,0xffe65bb56f2cb76a,0xbfeffaf638a4b73e,1
+np.float64,0xffe406a332a80d46,0x3fe8151dadb853c1,1
+np.float64,0xffdb7eae9c36fd5e,0xbfeff89abf5ab16e,1
+np.float64,0xffe245a02da48b40,0x3fef1fb43e85f4b8,1
+np.float64,0xffe2bafa732575f4,0x3fcbab115c6fd86e,1
+np.float64,0xffe8b1eedb7163dd,0x3feff263df6f6b12,1
+np.float64,0xffe6c76c796d8ed8,0xbfe61a8668511293,1
+np.float64,0xffefe327d1ffc64f,0xbfd9b92887a84827,1
+np.float64,0xffa452180c28a430,0xbfa9b9e578a4e52f,1
+np.float64,0xffe9867d0bf30cf9,0xbfca577867588408,1
+np.float64,0xffdfe9b923bfd372,0x3fdab5c15f085c2d,1
+np.float64,0xffed590c6abab218,0xbfd7e7b6c5a120e6,1
+np.float64,0xffeaebcfbab5d79f,0x3fed58be8a9e2c3b,1
+np.float64,0xffe2ba83a8257507,0x3fe6c42a4ac1d4d9,1
+np.float64,0xffe01d5b0ee03ab6,0xbfe5dad6c9247db7,1
+np.float64,0xffe51095d52a212b,0x3fef822cebc32d8e,1
+np.float64,0xffebd7a901b7af51,0xbfe5e63f3e3b1185,1
+np.float64,0xffe4efdcde29dfb9,0xbfe811294dfa758f,1
+np.float64,0xffe3be1aa4a77c35,0x3fdd8dcfcd409bb1,1
+np.float64,0xffbe6f2f763cde60,0x3fd13766e43bd622,1
+np.float64,0xffeed3d80fbda7af,0x3fec10a23c1b7a4a,1
+np.float64,0xffd6ebff37add7fe,0xbfe6177411607c86,1
+np.float64,0xffe85a90f4b0b521,0x3fc09fdd66c8fde9,1
+np.float64,0xffea3d58c2b47ab1,0x3feb5bd4a04b3562,1
+np.float64,0xffef675be6beceb7,0x3fecd840683d1044,1
+np.float64,0xff726a088024d400,0x3feff2b4f47b5214,1
+np.float64,0xffc90856733210ac,0xbfe3c6ffbf6840a5,1
+np.float64,0xffc0b58d9a216b1c,0xbfe10314267d0611,1
+np.float64,0xffee1f3d0abc3e79,0xbfd12ea7efea9067,1
+np.float64,0xffd988c41a331188,0x3febe83802d8a32e,1
+np.float64,0xffe8f1ac9bb1e358,0xbfdbf5fa7e84f2f2,1
+np.float64,0xffe47af279e8f5e4,0x3fef11e339e5fa78,1
+np.float64,0xff9960a7f832c140,0xbfa150363f8ec5b2,1
+np.float64,0xffcac40fa7358820,0xbfec3d5847a3df1d,1
+np.float64,0xffcb024a9d360494,0xbfd060fa31fd6b6a,1
+np.float64,0xffe385ffb3270bff,0xbfee6859e8dcd9e8,1
+np.float64,0xffef62f2c53ec5e5,0x3fe0a71ffddfc718,1
+np.float64,0xffed87ff20fb0ffd,0xbfe661db7c4098e3,1
+np.float64,0xffe369278526d24e,0x3fd64d89a41822fc,1
+np.float64,0xff950288c02a0520,0x3fe1df91d1ad7d5c,1
+np.float64,0xffe70e7c2cee1cf8,0x3fc9fece08df2fd8,1
+np.float64,0xffbaf020b635e040,0xbfc68c43ff9911a7,1
+np.float64,0xffee0120b0fc0240,0x3f9f792e17b490b0,1
+np.float64,0xffe1fa4be7a3f498,0xbfef4b18ab4b319e,1
+np.float64,0xffe61887bf2c310f,0x3fe846714826cb32,1
+np.float64,0xffdc3cf77f3879ee,0x3fe033b948a36125,1
+np.float64,0xffcc2b86f238570c,0xbfefdcceac3f220f,1
+np.float64,0xffe1f030c0a3e061,0x3fef502a808c359a,1
+np.float64,0xffb872c4ee30e588,0x3fef66ed8d3e6175,1
+np.float64,0xffeac8fc617591f8,0xbfe5d8448602aac9,1
+np.float64,0xffe5be16afab7c2d,0x3fee75ccde3cd14d,1
+np.float64,0xffae230ad83c4610,0xbfe49bbe6074d459,1
+np.float64,0xffc8fbeff531f7e0,0x3f77201e0c927f97,1
+np.float64,0xffdc314f48b8629e,0x3fef810dfc5db118,1
+np.float64,0xffec1f8970783f12,0x3fe15567102e042a,1
+np.float64,0xffc6995f902d32c0,0xbfecd5d2eedf342c,1
+np.float64,0xffdc7af76b38f5ee,0xbfd6e754476ab320,1
+np.float64,0xffb30cf8682619f0,0x3fd5ac3dfc4048d0,1
+np.float64,0xffd3a77695a74eee,0xbfefb5d6889e36e9,1
+np.float64,0xffd8b971803172e4,0xbfeb7f62f0b6c70b,1
+np.float64,0xffde4c0234bc9804,0xbfed50ba9e16d5e0,1
+np.float64,0xffb62b3f342c5680,0xbfeabc0de4069b84,1
+np.float64,0xff9af5674035eac0,0xbfed6c198b6b1bd8,1
+np.float64,0xffdfe20cb43fc41a,0x3fb11f8238f66306,1
+np.float64,0xffd2ecd7a0a5d9b0,0xbfec17ef1a62b1e3,1
+np.float64,0xffce60f7863cc1f0,0x3fe6dbcad3e3a006,1
+np.float64,0xffbbb8306a377060,0xbfbfd0fbef485c4c,1
+np.float64,0xffd1b2bd2b23657a,0xbfda3e046d987b99,1
+np.float64,0xffc480f4092901e8,0xbfeeff0427f6897b,1
+np.float64,0xffe6e02d926dc05a,0xbfcd59552778890b,1
+np.float64,0xffd302e5b7a605cc,0xbfee7c08641366b0,1
+np.float64,0xffec2eb92f785d72,0xbfef5c9c7f771050,1
+np.float64,0xffea3e31a9747c62,0xbfc49cd54755faf0,1
+np.float64,0xffce0a4e333c149c,0x3feeb9a6d0db4aee,1
+np.float64,0xffdc520a2db8a414,0x3fefc7b72613dcd0,1
+np.float64,0xffe056b968a0ad72,0xbfe47a9fe1f827fb,1
+np.float64,0xffe5a10f4cab421e,0x3fec2b1f74b73dec,1
diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/tests/data/umath-validation-set-sinh.csv b/.venv/lib/python3.12/site-packages/numpy/_core/tests/data/umath-validation-set-sinh.csv
new file mode 100644
index 0000000..1ef7b6e
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/_core/tests/data/umath-validation-set-sinh.csv
@@ -0,0 +1,1429 @@
+dtype,input,output,ulperrortol
+np.float32,0xfee27582,0xff800000,2
+np.float32,0xff19f092,0xff800000,2
+np.float32,0xbf393576,0xbf49cb31,2
+np.float32,0x8020fdea,0x8020fdea,2
+np.float32,0x455f4e,0x455f4e,2
+np.float32,0xff718c35,0xff800000,2
+np.float32,0x3f3215e3,0x3f40cce5,2
+np.float32,0x19e833,0x19e833,2
+np.float32,0xff2dcd49,0xff800000,2
+np.float32,0x7e8f6c95,0x7f800000,2
+np.float32,0xbf159dac,0xbf1e47a5,2
+np.float32,0x100d3d,0x100d3d,2
+np.float32,0xff673441,0xff800000,2
+np.float32,0x80275355,0x80275355,2
+np.float32,0x4812d0,0x4812d0,2
+np.float32,0x8072b956,0x8072b956,2
+np.float32,0xff3bb918,0xff800000,2
+np.float32,0x0,0x0,2
+np.float32,0xfe327798,0xff800000,2
+np.float32,0x41d4e2,0x41d4e2,2
+np.float32,0xfe34b1b8,0xff800000,2
+np.float32,0x80199f72,0x80199f72,2
+np.float32,0x807242ce,0x807242ce,2
+np.float32,0x3ef4202d,0x3efd7b48,2
+np.float32,0x763529,0x763529,2
+np.float32,0x4f6662,0x4f6662,2
+np.float32,0x3f18efe9,0x3f2232b5,2
+np.float32,0x80701846,0x80701846,2
+np.float32,0x3f599948,0x3f74c393,2
+np.float32,0x5a3d69,0x5a3d69,2
+np.float32,0xbf4a7e65,0xbf6047a3,2
+np.float32,0xff0d4c82,0xff800000,2
+np.float32,0x7a74db,0x7a74db,2
+np.float32,0x803388e6,0x803388e6,2
+np.float32,0x7f4430bb,0x7f800000,2
+np.float32,0x14c5b1,0x14c5b1,2
+np.float32,0xfa113400,0xff800000,2
+np.float32,0x7f4b3209,0x7f800000,2
+np.float32,0x8038d88c,0x8038d88c,2
+np.float32,0xbef2f9de,0xbefc330b,2
+np.float32,0xbe147b38,0xbe15008f,2
+np.float32,0x2b61e6,0x2b61e6,2
+np.float32,0x80000001,0x80000001,2
+np.float32,0x8060456c,0x8060456c,2
+np.float32,0x3f30fa82,0x3f3f6a99,2
+np.float32,0xfd1f0220,0xff800000,2
+np.float32,0xbf2b7555,0xbf389151,2
+np.float32,0xff100b7a,0xff800000,2
+np.float32,0x70d3cd,0x70d3cd,2
+np.float32,0x2a8d4a,0x2a8d4a,2
+np.float32,0xbf7b733f,0xbf92f05f,2
+np.float32,0x3f7106dc,0x3f8b1fc6,2
+np.float32,0x3f39da7a,0x3f4a9d79,2
+np.float32,0x3f5dd73f,0x3f7aaab5,2
+np.float32,0xbe8c8754,0xbe8e4cba,2
+np.float32,0xbf6c74c9,0xbf87c556,2
+np.float32,0x800efbbb,0x800efbbb,2
+np.float32,0xff054ab5,0xff800000,2
+np.float32,0x800b4b46,0x800b4b46,2
+np.float32,0xff77fd74,0xff800000,2
+np.float32,0x257d0,0x257d0,2
+np.float32,0x7caa0c,0x7caa0c,2
+np.float32,0x8025d24d,0x8025d24d,2
+np.float32,0x3d9f1b60,0x3d9f445c,2
+np.float32,0xbe3bf6e8,0xbe3d0595,2
+np.float32,0x54bb93,0x54bb93,2
+np.float32,0xbf3e6a45,0xbf507716,2
+np.float32,0x3f4bb26e,0x3f61e1cd,2
+np.float32,0x3f698edc,0x3f85aac5,2
+np.float32,0xff7bd0ef,0xff800000,2
+np.float32,0xbed07b68,0xbed64a8e,2
+np.float32,0xbf237c72,0xbf2ed3d2,2
+np.float32,0x27b0fa,0x27b0fa,2
+np.float32,0x3f7606d1,0x3f8ed7d6,2
+np.float32,0x790dc0,0x790dc0,2
+np.float32,0x7f68f3ac,0x7f800000,2
+np.float32,0xbed39288,0xbed9a52f,2
+np.float32,0x3f6f8266,0x3f8a0187,2
+np.float32,0x3fbdca,0x3fbdca,2
+np.float32,0xbf7c3e5d,0xbf938b2c,2
+np.float32,0x802321a8,0x802321a8,2
+np.float32,0x3eecab66,0x3ef53031,2
+np.float32,0x62b324,0x62b324,2
+np.float32,0x3f13afac,0x3f1c03fe,2
+np.float32,0xff315ad7,0xff800000,2
+np.float32,0xbf1fac0d,0xbf2a3a63,2
+np.float32,0xbf543984,0xbf6d61d6,2
+np.float32,0x71a212,0x71a212,2
+np.float32,0x114fbe,0x114fbe,2
+np.float32,0x3f5b6ff2,0x3f77505f,2
+np.float32,0xff6ff89e,0xff800000,2
+np.float32,0xff4527a1,0xff800000,2
+np.float32,0x22cb3,0x22cb3,2
+np.float32,0x7f53bb6b,0x7f800000,2
+np.float32,0xff3d2dea,0xff800000,2
+np.float32,0xfd21dac0,0xff800000,2
+np.float32,0xfc486140,0xff800000,2
+np.float32,0x7e2b693a,0x7f800000,2
+np.float32,0x8022a9fb,0x8022a9fb,2
+np.float32,0x80765de0,0x80765de0,2
+np.float32,0x13d299,0x13d299,2
+np.float32,0x7ee53713,0x7f800000,2
+np.float32,0xbde1c770,0xbde23c96,2
+np.float32,0xbd473fc0,0xbd4753de,2
+np.float32,0x3f1cb455,0x3f26acf3,2
+np.float32,0x683e49,0x683e49,2
+np.float32,0x3ed5a9fc,0x3edbeb79,2
+np.float32,0x3f4fe3f6,0x3f67814f,2
+np.float32,0x802a2bce,0x802a2bce,2
+np.float32,0x7e951b4c,0x7f800000,2
+np.float32,0xbe6eb260,0xbe70dd44,2
+np.float32,0xbe3daca8,0xbe3ec2cb,2
+np.float32,0xbe9c38b2,0xbe9ea822,2
+np.float32,0xff2e29dc,0xff800000,2
+np.float32,0x7f62c7cc,0x7f800000,2
+np.float32,0xbf6799a4,0xbf84416c,2
+np.float32,0xbe30a7f0,0xbe318898,2
+np.float32,0xc83d9,0xc83d9,2
+np.float32,0x3f05abf4,0x3f0bd447,2
+np.float32,0x7e9b018a,0x7f800000,2
+np.float32,0xbf0ed72e,0xbf165e5b,2
+np.float32,0x8011ac8c,0x8011ac8c,2
+np.float32,0xbeb7c706,0xbebbbfcb,2
+np.float32,0x803637f9,0x803637f9,2
+np.float32,0xfe787cc8,0xff800000,2
+np.float32,0x3f533d4b,0x3f6c0a50,2
+np.float32,0x3f5c0f1c,0x3f782dde,2
+np.float32,0x3f301f36,0x3f3e590d,2
+np.float32,0x2dc929,0x2dc929,2
+np.float32,0xff15018a,0xff800000,2
+np.float32,0x3f4d0c56,0x3f63afeb,2
+np.float32,0xbf7a2ae3,0xbf91f6e4,2
+np.float32,0xbe771b84,0xbe798346,2
+np.float32,0x80800000,0x80800000,2
+np.float32,0x7f5689ba,0x7f800000,2
+np.float32,0x3f1c3177,0x3f2610df,2
+np.float32,0x3f1b9664,0x3f255825,2
+np.float32,0x3f7e5066,0x3f9520d4,2
+np.float32,0xbf1935f8,0xbf2285ab,2
+np.float32,0x3f096cc7,0x3f101ef9,2
+np.float32,0x8030c180,0x8030c180,2
+np.float32,0x6627ed,0x6627ed,2
+np.float32,0x454595,0x454595,2
+np.float32,0x7de66a33,0x7f800000,2
+np.float32,0xbf800000,0xbf966cfe,2
+np.float32,0xbf35c0a8,0xbf456939,2
+np.float32,0x3f6a6266,0x3f8643e0,2
+np.float32,0x3f0cbcee,0x3f13ef6a,2
+np.float32,0x7efd1e58,0x7f800000,2
+np.float32,0xfe9a74c6,0xff800000,2
+np.float32,0x807ebe6c,0x807ebe6c,2
+np.float32,0x80656736,0x80656736,2
+np.float32,0x800e0608,0x800e0608,2
+np.float32,0xbf30e39a,0xbf3f4e00,2
+np.float32,0x802015fd,0x802015fd,2
+np.float32,0x3e3ce26d,0x3e3df519,2
+np.float32,0x7ec142ac,0x7f800000,2
+np.float32,0xbf68c9ce,0xbf851c78,2
+np.float32,0xfede8356,0xff800000,2
+np.float32,0xbf1507ce,0xbf1d978d,2
+np.float32,0x3e53914c,0x3e551374,2
+np.float32,0x7f3e1c14,0x7f800000,2
+np.float32,0x8070d2ba,0x8070d2ba,2
+np.float32,0xbf4eb793,0xbf65ecee,2
+np.float32,0x7365a6,0x7365a6,2
+np.float32,0x8045cba2,0x8045cba2,2
+np.float32,0x7e4af521,0x7f800000,2
+np.float32,0xbf228625,0xbf2da9e1,2
+np.float32,0x7ee0536c,0x7f800000,2
+np.float32,0x3e126607,0x3e12e5d5,2
+np.float32,0x80311d92,0x80311d92,2
+np.float32,0xbf386b8b,0xbf48ca54,2
+np.float32,0x7f800000,0x7f800000,2
+np.float32,0x8049ec7a,0x8049ec7a,2
+np.float32,0xbf1dfde4,0xbf2836be,2
+np.float32,0x7e719a8c,0x7f800000,2
+np.float32,0x3eb9c856,0x3ebde2e6,2
+np.float32,0xfe3efda8,0xff800000,2
+np.float32,0xbe89d60c,0xbe8b81d1,2
+np.float32,0x3eaad338,0x3eae0317,2
+np.float32,0x7f4e5217,0x7f800000,2
+np.float32,0x3e9d0f40,0x3e9f88ce,2
+np.float32,0xbe026708,0xbe02c155,2
+np.float32,0x5fc22f,0x5fc22f,2
+np.float32,0x1c4572,0x1c4572,2
+np.float32,0xbed89d96,0xbedf22c5,2
+np.float32,0xbf3debee,0xbf4fd441,2
+np.float32,0xbf465520,0xbf5ac6e5,2
+np.float32,0x3f797081,0x3f9169b3,2
+np.float32,0xbf250734,0xbf30b2aa,2
+np.float32,0x7f5068e9,0x7f800000,2
+np.float32,0x3f1b814e,0x3f253f0c,2
+np.float32,0xbf27c5d3,0xbf340b05,2
+np.float32,0x3f1b78ae,0x3f2534c8,2
+np.float32,0x8059b51a,0x8059b51a,2
+np.float32,0x8059f182,0x8059f182,2
+np.float32,0xbf1bb36e,0xbf257ab8,2
+np.float32,0x41ac35,0x41ac35,2
+np.float32,0x68f41f,0x68f41f,2
+np.float32,0xbea504dc,0xbea7e40f,2
+np.float32,0x1,0x1,2
+np.float32,0x3e96b5b0,0x3e98e542,2
+np.float32,0x7f7fffff,0x7f800000,2
+np.float32,0x3c557a80,0x3c557c0c,2
+np.float32,0x800ca3ec,0x800ca3ec,2
+np.float32,0x8077d4aa,0x8077d4aa,2
+np.float32,0x3f000af0,0x3f0572d6,2
+np.float32,0x3e0434dd,0x3e0492f8,2
+np.float32,0x7d1a710a,0x7f800000,2
+np.float32,0x3f70f996,0x3f8b15f8,2
+np.float32,0x8033391d,0x8033391d,2
+np.float32,0x11927c,0x11927c,2
+np.float32,0x7f7784be,0x7f800000,2
+np.float32,0x7acb22af,0x7f800000,2
+np.float32,0x7e8b153c,0x7f800000,2
+np.float32,0x66d402,0x66d402,2
+np.float32,0xfed6e7b0,0xff800000,2
+np.float32,0x7f6872d3,0x7f800000,2
+np.float32,0x1bd49c,0x1bd49c,2
+np.float32,0xfdc4f1b8,0xff800000,2
+np.float32,0xbed8a466,0xbedf2a33,2
+np.float32,0x7ee789,0x7ee789,2
+np.float32,0xbece94b4,0xbed43b52,2
+np.float32,0x3cf3f734,0x3cf4006f,2
+np.float32,0x7e44aa00,0x7f800000,2
+np.float32,0x7f19e99c,0x7f800000,2
+np.float32,0x806ff1bc,0x806ff1bc,2
+np.float32,0x80296934,0x80296934,2
+np.float32,0x7f463363,0x7f800000,2
+np.float32,0xbf212ac3,0xbf2c06bb,2
+np.float32,0x3dc63778,0x3dc686ba,2
+np.float32,0x7f1b4328,0x7f800000,2
+np.float32,0x6311f6,0x6311f6,2
+np.float32,0xbf6b6fb6,0xbf870751,2
+np.float32,0xbf2c44cf,0xbf399155,2
+np.float32,0x3e7a67bc,0x3e7ce887,2
+np.float32,0x7f57c5f7,0x7f800000,2
+np.float32,0x7f2bb4ff,0x7f800000,2
+np.float32,0xbe9d448e,0xbe9fc0a4,2
+np.float32,0xbf4840f0,0xbf5d4f6b,2
+np.float32,0x7f1e1176,0x7f800000,2
+np.float32,0xff76638e,0xff800000,2
+np.float32,0xff055555,0xff800000,2
+np.float32,0x3f32b82b,0x3f419834,2
+np.float32,0xff363aa8,0xff800000,2
+np.float32,0x7f737fd0,0x7f800000,2
+np.float32,0x3da5d798,0x3da60602,2
+np.float32,0x3f1cc126,0x3f26bc3e,2
+np.float32,0x7eb07541,0x7f800000,2
+np.float32,0x3f7b2ff2,0x3f92bd2a,2
+np.float32,0x474f7,0x474f7,2
+np.float32,0x7fc00000,0x7fc00000,2
+np.float32,0xff2b0a4e,0xff800000,2
+np.float32,0xfeb24f16,0xff800000,2
+np.float32,0x2cb9fc,0x2cb9fc,2
+np.float32,0x67189d,0x67189d,2
+np.float32,0x8033d854,0x8033d854,2
+np.float32,0xbe85e94c,0xbe87717a,2
+np.float32,0x80767c6c,0x80767c6c,2
+np.float32,0x7ea84d65,0x7f800000,2
+np.float32,0x3f024bc7,0x3f07fead,2
+np.float32,0xbdcb0100,0xbdcb5625,2
+np.float32,0x3f160a9e,0x3f1ec7c9,2
+np.float32,0xff1734c8,0xff800000,2
+np.float32,0x7f424d5e,0x7f800000,2
+np.float32,0xbf75b215,0xbf8e9862,2
+np.float32,0x3f262a42,0x3f3214c4,2
+np.float32,0xbf4cfb53,0xbf639927,2
+np.float32,0x3f4ac8b8,0x3f60aa7c,2
+np.float32,0x3e90e593,0x3e92d6b3,2
+np.float32,0xbf66bccf,0xbf83a2d8,2
+np.float32,0x7d3d851a,0x7f800000,2
+np.float32,0x7bac783c,0x7f800000,2
+np.float32,0x8001c626,0x8001c626,2
+np.float32,0xbdffd480,0xbe003f7b,2
+np.float32,0x7f6680bf,0x7f800000,2
+np.float32,0xbecf448e,0xbed4f9bb,2
+np.float32,0x584c7,0x584c7,2
+np.float32,0x3f3e8ea0,0x3f50a5fb,2
+np.float32,0xbf5a5f04,0xbf75d56e,2
+np.float32,0x8065ae47,0x8065ae47,2
+np.float32,0xbf48dce3,0xbf5e1dba,2
+np.float32,0xbe8dae2e,0xbe8f7ed8,2
+np.float32,0x3f7ca6ab,0x3f93dace,2
+np.float32,0x4c3e81,0x4c3e81,2
+np.float32,0x80000000,0x80000000,2
+np.float32,0x3ee1f7d9,0x3ee96033,2
+np.float32,0x80588c6f,0x80588c6f,2
+np.float32,0x5ba34e,0x5ba34e,2
+np.float32,0x80095d28,0x80095d28,2
+np.float32,0xbe7ba198,0xbe7e2bdd,2
+np.float32,0xbe0bdcb4,0xbe0c4c22,2
+np.float32,0x1776f7,0x1776f7,2
+np.float32,0x80328b2a,0x80328b2a,2
+np.float32,0x3e978d37,0x3e99c63e,2
+np.float32,0x7ed50906,0x7f800000,2
+np.float32,0x3f776a54,0x3f8fe2bd,2
+np.float32,0xbed624c4,0xbedc7120,2
+np.float32,0x7f0b6a31,0x7f800000,2
+np.float32,0x7eb13913,0x7f800000,2
+np.float32,0xbe733684,0xbe758190,2
+np.float32,0x80016474,0x80016474,2
+np.float32,0x7a51ee,0x7a51ee,2
+np.float32,0x3f6cb91e,0x3f87f729,2
+np.float32,0xbd99b050,0xbd99d540,2
+np.float32,0x7c6e3cba,0x7f800000,2
+np.float32,0xbf00179a,0xbf05811e,2
+np.float32,0x3e609b29,0x3e626954,2
+np.float32,0xff3fd71a,0xff800000,2
+np.float32,0x5d8c2,0x5d8c2,2
+np.float32,0x7ee93662,0x7f800000,2
+np.float32,0x4b0b31,0x4b0b31,2
+np.float32,0x3ec243b7,0x3ec6f594,2
+np.float32,0x804d60f1,0x804d60f1,2
+np.float32,0xbf0cb784,0xbf13e929,2
+np.float32,0x3f13b74d,0x3f1c0cee,2
+np.float32,0xfe37cb64,0xff800000,2
+np.float32,0x1a88,0x1a88,2
+np.float32,0x3e22a472,0x3e2353ba,2
+np.float32,0x7f07d6a0,0x7f800000,2
+np.float32,0x3f78f435,0x3f910bb5,2
+np.float32,0x555a4a,0x555a4a,2
+np.float32,0x3e306c1f,0x3e314be3,2
+np.float32,0x8005877c,0x8005877c,2
+np.float32,0x4df389,0x4df389,2
+np.float32,0x8069ffc7,0x8069ffc7,2
+np.float32,0x3f328f24,0x3f4164c6,2
+np.float32,0x53a31b,0x53a31b,2
+np.float32,0xbe4d6768,0xbe4ec8be,2
+np.float32,0x7fa00000,0x7fe00000,2
+np.float32,0x3f484c1b,0x3f5d5e2f,2
+np.float32,0x8038be05,0x8038be05,2
+np.float32,0x58ac0f,0x58ac0f,2
+np.float32,0x7ed7fb72,0x7f800000,2
+np.float32,0x5a22e1,0x5a22e1,2
+np.float32,0xbebb7394,0xbebfaad6,2
+np.float32,0xbda98160,0xbda9b2ef,2
+np.float32,0x7f3e5c42,0x7f800000,2
+np.float32,0xfed204ae,0xff800000,2
+np.float32,0xbf5ef782,0xbf7c3ec5,2
+np.float32,0xbef7a0a8,0xbf00b292,2
+np.float32,0xfee6e176,0xff800000,2
+np.float32,0xfe121140,0xff800000,2
+np.float32,0xfe9e13be,0xff800000,2
+np.float32,0xbf3c98b1,0xbf4e2003,2
+np.float32,0x77520d,0x77520d,2
+np.float32,0xf17b2,0xf17b2,2
+np.float32,0x724d2f,0x724d2f,2
+np.float32,0x7eb326f5,0x7f800000,2
+np.float32,0x3edd6bf2,0x3ee4636e,2
+np.float32,0x350f57,0x350f57,2
+np.float32,0xff7d4435,0xff800000,2
+np.float32,0x802b2b9d,0x802b2b9d,2
+np.float32,0xbf7fbeee,0xbf963acf,2
+np.float32,0x804f3100,0x804f3100,2
+np.float32,0x7c594a71,0x7f800000,2
+np.float32,0x3ef49340,0x3efdfbb6,2
+np.float32,0x2e0659,0x2e0659,2
+np.float32,0x8006d5fe,0x8006d5fe,2
+np.float32,0xfd2a00b0,0xff800000,2
+np.float32,0xbee1c016,0xbee922ed,2
+np.float32,0x3e3b7de8,0x3e3c8a8b,2
+np.float32,0x805e6bba,0x805e6bba,2
+np.float32,0x1a7da2,0x1a7da2,2
+np.float32,0x6caba4,0x6caba4,2
+np.float32,0x802f7eab,0x802f7eab,2
+np.float32,0xff68b16b,0xff800000,2
+np.float32,0x8064f5e5,0x8064f5e5,2
+np.float32,0x2e39b4,0x2e39b4,2
+np.float32,0x800000,0x800000,2
+np.float32,0xfd0334c0,0xff800000,2
+np.float32,0x3e952fc4,0x3e974e7e,2
+np.float32,0x80057d33,0x80057d33,2
+np.float32,0x3ed3ddc4,0x3ed9f6f1,2
+np.float32,0x3f74ce18,0x3f8dedf4,2
+np.float32,0xff6bb7c0,0xff800000,2
+np.float32,0xff43bc21,0xff800000,2
+np.float32,0x80207570,0x80207570,2
+np.float32,0x7e1dda75,0x7f800000,2
+np.float32,0x3efe335c,0x3f0462ff,2
+np.float32,0xbf252c0c,0xbf30df70,2
+np.float32,0x3ef4b8e3,0x3efe25ba,2
+np.float32,0x7c33938d,0x7f800000,2
+np.float32,0x3eb1593c,0x3eb4ea95,2
+np.float32,0xfe1d0068,0xff800000,2
+np.float32,0xbf10da9b,0xbf18b551,2
+np.float32,0xfeb65748,0xff800000,2
+np.float32,0xfe8c6014,0xff800000,2
+np.float32,0x3f0503e2,0x3f0b14e3,2
+np.float32,0xfe5e5248,0xff800000,2
+np.float32,0xbd10afa0,0xbd10b754,2
+np.float32,0xff64b609,0xff800000,2
+np.float32,0xbf674a96,0xbf84089c,2
+np.float32,0x7f5d200d,0x7f800000,2
+np.float32,0x3cf44900,0x3cf45245,2
+np.float32,0x8044445a,0x8044445a,2
+np.float32,0xff35b676,0xff800000,2
+np.float32,0x806452cd,0x806452cd,2
+np.float32,0xbf2930fb,0xbf35c7b4,2
+np.float32,0x7e500617,0x7f800000,2
+np.float32,0x543719,0x543719,2
+np.float32,0x3ed11068,0x3ed6ec1d,2
+np.float32,0xbd8db068,0xbd8dcd59,2
+np.float32,0x3ede62c8,0x3ee571d0,2
+np.float32,0xbf00a410,0xbf061f9c,2
+np.float32,0xbf44fa39,0xbf58ff5b,2
+np.float32,0x3f1c3114,0x3f261069,2
+np.float32,0xbdea6210,0xbdeae521,2
+np.float32,0x80059f6d,0x80059f6d,2
+np.float32,0xbdba15f8,0xbdba578c,2
+np.float32,0x6d8a61,0x6d8a61,2
+np.float32,0x6f5428,0x6f5428,2
+np.float32,0x18d0e,0x18d0e,2
+np.float32,0x50e131,0x50e131,2
+np.float32,0x3f2f52be,0x3f3d5a7e,2
+np.float32,0x7399d8,0x7399d8,2
+np.float32,0x106524,0x106524,2
+np.float32,0x7ebf1c53,0x7f800000,2
+np.float32,0x80276458,0x80276458,2
+np.float32,0x3ebbde67,0x3ec01ceb,2
+np.float32,0x80144d9d,0x80144d9d,2
+np.float32,0x8017ea6b,0x8017ea6b,2
+np.float32,0xff38f201,0xff800000,2
+np.float32,0x7f2daa82,0x7f800000,2
+np.float32,0x3f3cb7c7,0x3f4e47ed,2
+np.float32,0x7f08c779,0x7f800000,2
+np.float32,0xbecc907a,0xbed20cec,2
+np.float32,0x7d440002,0x7f800000,2
+np.float32,0xbd410d80,0xbd411fcd,2
+np.float32,0x3d63ae07,0x3d63cc0c,2
+np.float32,0x805a9c13,0x805a9c13,2
+np.float32,0x803bdcdc,0x803bdcdc,2
+np.float32,0xbe88b354,0xbe8a5497,2
+np.float32,0x3f4eaf43,0x3f65e1c2,2
+np.float32,0x3f15e5b8,0x3f1e9c60,2
+np.float32,0x3e8a870c,0x3e8c394e,2
+np.float32,0x7e113de9,0x7f800000,2
+np.float32,0x7ee5ba41,0x7f800000,2
+np.float32,0xbe73d178,0xbe7620eb,2
+np.float32,0xfe972e6a,0xff800000,2
+np.float32,0xbf65567d,0xbf82a25a,2
+np.float32,0x3f38247e,0x3f487010,2
+np.float32,0xbece1c62,0xbed3b918,2
+np.float32,0x442c8d,0x442c8d,2
+np.float32,0x2dc52,0x2dc52,2
+np.float32,0x802ed923,0x802ed923,2
+np.float32,0x788cf8,0x788cf8,2
+np.float32,0x8024888e,0x8024888e,2
+np.float32,0x3f789bde,0x3f90c8fc,2
+np.float32,0x3f5de620,0x3f7abf88,2
+np.float32,0x3f0ffc45,0x3f17b2a7,2
+np.float32,0xbf709678,0xbf8accd4,2
+np.float32,0x12181f,0x12181f,2
+np.float32,0xfe54bbe4,0xff800000,2
+np.float32,0x7f1daba0,0x7f800000,2
+np.float32,0xbf6226df,0xbf805e3c,2
+np.float32,0xbd120610,0xbd120dfb,2
+np.float32,0x7f75e951,0x7f800000,2
+np.float32,0x80068048,0x80068048,2
+np.float32,0x45f04a,0x45f04a,2
+np.float32,0xff4c4f58,0xff800000,2
+np.float32,0x311604,0x311604,2
+np.float32,0x805e809c,0x805e809c,2
+np.float32,0x3d1d62c0,0x3d1d6caa,2
+np.float32,0x7f14ccf9,0x7f800000,2
+np.float32,0xff10017c,0xff800000,2
+np.float32,0xbf43ec48,0xbf579df4,2
+np.float32,0xff64da57,0xff800000,2
+np.float32,0x7f0622c5,0x7f800000,2
+np.float32,0x7f5460cd,0x7f800000,2
+np.float32,0xff0ef1c6,0xff800000,2
+np.float32,0xbece1146,0xbed3ad13,2
+np.float32,0x3f4d457f,0x3f63fc70,2
+np.float32,0xbdc1da28,0xbdc2244b,2
+np.float32,0xbe46d3f4,0xbe481463,2
+np.float32,0xff36b3d6,0xff800000,2
+np.float32,0xbec2e76c,0xbec7a540,2
+np.float32,0x8078fb81,0x8078fb81,2
+np.float32,0x7ec819cb,0x7f800000,2
+np.float32,0x39c4d,0x39c4d,2
+np.float32,0xbe8cddc2,0xbe8ea670,2
+np.float32,0xbf36dffb,0xbf46d48b,2
+np.float32,0xbf2302a3,0xbf2e4065,2
+np.float32,0x3e7b34a2,0x3e7dbb9a,2
+np.float32,0x3e3d87e1,0x3e3e9d62,2
+np.float32,0x7f3c94b1,0x7f800000,2
+np.float32,0x80455a85,0x80455a85,2
+np.float32,0xfd875568,0xff800000,2
+np.float32,0xbf618103,0xbf7fd1c8,2
+np.float32,0xbe332e3c,0xbe3418ac,2
+np.float32,0x80736b79,0x80736b79,2
+np.float32,0x3f705d9a,0x3f8aa2e6,2
+np.float32,0xbf3a36d2,0xbf4b134b,2
+np.float32,0xfddc55c0,0xff800000,2
+np.float32,0x805606fd,0x805606fd,2
+np.float32,0x3f4f0bc4,0x3f665e25,2
+np.float32,0xfebe7494,0xff800000,2
+np.float32,0xff0c541b,0xff800000,2
+np.float32,0xff0b8e7f,0xff800000,2
+np.float32,0xbcc51640,0xbcc51b1e,2
+np.float32,0x7ec1c4d0,0x7f800000,2
+np.float32,0xfc5c8e00,0xff800000,2
+np.float32,0x7f48d682,0x7f800000,2
+np.float32,0x7d5c7d8d,0x7f800000,2
+np.float32,0x8052ed03,0x8052ed03,2
+np.float32,0x7d4db058,0x7f800000,2
+np.float32,0xff3a65ee,0xff800000,2
+np.float32,0x806eeb93,0x806eeb93,2
+np.float32,0x803f9733,0x803f9733,2
+np.float32,0xbf2d1388,0xbf3a90e3,2
+np.float32,0x68e260,0x68e260,2
+np.float32,0x3e47a69f,0x3e48eb0e,2
+np.float32,0x3f0c4623,0x3f136646,2
+np.float32,0x3f37a831,0x3f47d249,2
+np.float32,0xff153a0c,0xff800000,2
+np.float32,0x2e8086,0x2e8086,2
+np.float32,0xc3f5e,0xc3f5e,2
+np.float32,0x7f31dc14,0x7f800000,2
+np.float32,0xfee37d68,0xff800000,2
+np.float32,0x711d4,0x711d4,2
+np.float32,0x7ede2ce4,0x7f800000,2
+np.float32,0xbf5d76d0,0xbf7a23d0,2
+np.float32,0xbe2b9eb4,0xbe2c6cac,2
+np.float32,0x2b14d7,0x2b14d7,2
+np.float32,0x3ea1db72,0x3ea4910e,2
+np.float32,0x7f3f03f7,0x7f800000,2
+np.float32,0x92de5,0x92de5,2
+np.float32,0x80322e1b,0x80322e1b,2
+np.float32,0xbf5eb214,0xbf7bdd55,2
+np.float32,0xbf21bf87,0xbf2cba14,2
+np.float32,0xbf5d4b78,0xbf79e73a,2
+np.float32,0xbc302840,0xbc30291e,2
+np.float32,0xfee567c6,0xff800000,2
+np.float32,0x7f70ee14,0x7f800000,2
+np.float32,0x7e5c4b33,0x7f800000,2
+np.float32,0x3f1e7b64,0x3f28ccfd,2
+np.float32,0xbf6309f7,0xbf80ff3e,2
+np.float32,0x1c2fe3,0x1c2fe3,2
+np.float32,0x8e78d,0x8e78d,2
+np.float32,0x7f2fce73,0x7f800000,2
+np.float32,0x7f25f690,0x7f800000,2
+np.float32,0x8074cba5,0x8074cba5,2
+np.float32,0x16975f,0x16975f,2
+np.float32,0x8012cf5c,0x8012cf5c,2
+np.float32,0x7da72138,0x7f800000,2
+np.float32,0xbf563f35,0xbf7025be,2
+np.float32,0x3f69d3f5,0x3f85dcbe,2
+np.float32,0xbf15c148,0xbf1e7184,2
+np.float32,0xbe7a077c,0xbe7c8564,2
+np.float32,0x3ebb6ef1,0x3ebfa5e3,2
+np.float32,0xbe41fde4,0xbe43277b,2
+np.float32,0x7f10b479,0x7f800000,2
+np.float32,0x3e021ace,0x3e02747d,2
+np.float32,0x3e93d984,0x3e95e9be,2
+np.float32,0xfe17e924,0xff800000,2
+np.float32,0xfe21a7cc,0xff800000,2
+np.float32,0x8019b660,0x8019b660,2
+np.float32,0x7e954631,0x7f800000,2
+np.float32,0x7e7330d1,0x7f800000,2
+np.float32,0xbe007d98,0xbe00d3fb,2
+np.float32,0x3ef3870e,0x3efcd077,2
+np.float32,0x7f5bbde8,0x7f800000,2
+np.float32,0x14a5b3,0x14a5b3,2
+np.float32,0x3e84d23f,0x3e8650e8,2
+np.float32,0x80763017,0x80763017,2
+np.float32,0xfe871f36,0xff800000,2
+np.float32,0x7ed43150,0x7f800000,2
+np.float32,0x3cc44547,0x3cc44a16,2
+np.float32,0x3ef0c0fa,0x3ef9b97d,2
+np.float32,0xbede9944,0xbee5ad86,2
+np.float32,0xbf10f0b2,0xbf18cf0a,2
+np.float32,0x3ecdaa78,0x3ed33dd9,2
+np.float32,0x3f7cc058,0x3f93ee6b,2
+np.float32,0x2d952f,0x2d952f,2
+np.float32,0x3f2cf2de,0x3f3a687a,2
+np.float32,0x8029b33c,0x8029b33c,2
+np.float32,0xbf22c737,0xbf2df888,2
+np.float32,0xff53c84a,0xff800000,2
+np.float32,0x40a509,0x40a509,2
+np.float32,0x56abce,0x56abce,2
+np.float32,0xff7fffff,0xff800000,2
+np.float32,0xbf3e67f6,0xbf50741c,2
+np.float32,0xfde67580,0xff800000,2
+np.float32,0x3f103e9b,0x3f17ffc7,2
+np.float32,0x3f3f7232,0x3f51cbe2,2
+np.float32,0x803e6d78,0x803e6d78,2
+np.float32,0x3a61da,0x3a61da,2
+np.float32,0xbc04de80,0xbc04dedf,2
+np.float32,0x7f1e7c52,0x7f800000,2
+np.float32,0x8058ee88,0x8058ee88,2
+np.float32,0x806dd660,0x806dd660,2
+np.float32,0x7e4af9,0x7e4af9,2
+np.float32,0x80702d27,0x80702d27,2
+np.float32,0x802cdad1,0x802cdad1,2
+np.float32,0x3e9b5c23,0x3e9dc149,2
+np.float32,0x7f076e89,0x7f800000,2
+np.float32,0x7f129d68,0x7f800000,2
+np.float32,0x7f6f0b0a,0x7f800000,2
+np.float32,0x7eafafb5,0x7f800000,2
+np.float32,0xbf2ef2ca,0xbf3ce332,2
+np.float32,0xff34c000,0xff800000,2
+np.float32,0x7f559274,0x7f800000,2
+np.float32,0xfed08556,0xff800000,2
+np.float32,0xbf014621,0xbf06d6ad,2
+np.float32,0xff23086a,0xff800000,2
+np.float32,0x6cb33f,0x6cb33f,2
+np.float32,0xfe6e3ffc,0xff800000,2
+np.float32,0x3e6bbec0,0x3e6dd546,2
+np.float32,0x8036afa6,0x8036afa6,2
+np.float32,0xff800000,0xff800000,2
+np.float32,0x3e0ed05c,0x3e0f46ff,2
+np.float32,0x3ec9215c,0x3ece57e6,2
+np.float32,0xbf449fa4,0xbf5888aa,2
+np.float32,0xff2c6640,0xff800000,2
+np.float32,0x7f08f4a7,0x7f800000,2
+np.float32,0xbf4f63e5,0xbf66d4c1,2
+np.float32,0x3f800000,0x3f966cfe,2
+np.float32,0xfe86c7d2,0xff800000,2
+np.float32,0x3f63f969,0x3f81a970,2
+np.float32,0xbd7022d0,0xbd704609,2
+np.float32,0xbead906c,0xbeb0e853,2
+np.float32,0x7ef149ee,0x7f800000,2
+np.float32,0xff0b9ff7,0xff800000,2
+np.float32,0x3f38380d,0x3f4888e7,2
+np.float32,0x3ef3a3e2,0x3efcf09e,2
+np.float32,0xff616477,0xff800000,2
+np.float32,0x3f3f83e4,0x3f51e2c3,2
+np.float32,0xbf79963c,0xbf918642,2
+np.float32,0x801416f4,0x801416f4,2
+np.float32,0xff75ce6d,0xff800000,2
+np.float32,0xbdbf3588,0xbdbf7cad,2
+np.float32,0xbe6ea938,0xbe70d3dc,2
+np.float32,0x8066f977,0x8066f977,2
+np.float32,0x3f5b5362,0x3f7728aa,2
+np.float32,0xbf72052c,0xbf8bdbd8,2
+np.float32,0xbe21ed74,0xbe229a6f,2
+np.float32,0x8062d19c,0x8062d19c,2
+np.float32,0x3ed8d01f,0x3edf59e6,2
+np.float32,0x803ed42b,0x803ed42b,2
+np.float32,0xbe099a64,0xbe0a0481,2
+np.float32,0xbe173eb4,0xbe17cba2,2
+np.float32,0xbebdcf02,0xbec22faf,2
+np.float32,0x7e3ff29e,0x7f800000,2
+np.float32,0x367c92,0x367c92,2
+np.float32,0xbf5c9db8,0xbf78f4a4,2
+np.float32,0xff0b49ea,0xff800000,2
+np.float32,0x3f4f9bc4,0x3f672001,2
+np.float32,0x85d4a,0x85d4a,2
+np.float32,0x80643e33,0x80643e33,2
+np.float32,0x8013aabd,0x8013aabd,2
+np.float32,0xff6997c3,0xff800000,2
+np.float32,0x3f4dd43c,0x3f64bbb6,2
+np.float32,0xff13bbb9,0xff800000,2
+np.float32,0x3f34efa2,0x3f446187,2
+np.float32,0x3e4b2f10,0x3e4c850d,2
+np.float32,0xfef695c6,0xff800000,2
+np.float32,0x7f7e0057,0x7f800000,2
+np.float32,0x3f6e1b9c,0x3f88fa40,2
+np.float32,0x806e46cf,0x806e46cf,2
+np.float32,0x3f15a88a,0x3f1e546c,2
+np.float32,0xbd2de7d0,0xbd2df530,2
+np.float32,0xbf63cae0,0xbf818854,2
+np.float32,0xbdc3e1a0,0xbdc42e1e,2
+np.float32,0xbf11a038,0xbf199b98,2
+np.float32,0xbec13706,0xbec5d56b,2
+np.float32,0x3f1c5f54,0x3f26478d,2
+np.float32,0x3e9ea97e,0x3ea136b4,2
+np.float32,0xfeb5a508,0xff800000,2
+np.float32,0x7f4698f4,0x7f800000,2
+np.float32,0xff51ee2c,0xff800000,2
+np.float32,0xff5994df,0xff800000,2
+np.float32,0x4b9fb9,0x4b9fb9,2
+np.float32,0xfda10d98,0xff800000,2
+np.float32,0x525555,0x525555,2
+np.float32,0x7ed571ef,0x7f800000,2
+np.float32,0xbf600d18,0xbf7dc50c,2
+np.float32,0x3ec674ca,0x3ecb768b,2
+np.float32,0x3cb69115,0x3cb694f3,2
+np.float32,0x7eac75f2,0x7f800000,2
+np.float32,0x804d4d75,0x804d4d75,2
+np.float32,0xfed5292e,0xff800000,2
+np.float32,0x800ed06a,0x800ed06a,2
+np.float32,0xfec37584,0xff800000,2
+np.float32,0x3ef96ac7,0x3f01b326,2
+np.float32,0x42f743,0x42f743,2
+np.float32,0x3f56f442,0x3f711e39,2
+np.float32,0xbf7ea726,0xbf956375,2
+np.float32,0x806c7202,0x806c7202,2
+np.float32,0xbd8ee980,0xbd8f0733,2
+np.float32,0xbdf2e930,0xbdf37b18,2
+np.float32,0x3f103910,0x3f17f955,2
+np.float32,0xff123e8f,0xff800000,2
+np.float32,0x806e4b5d,0x806e4b5d,2
+np.float32,0xbf4f3bfc,0xbf669f07,2
+np.float32,0xbf070c16,0xbf0d6609,2
+np.float32,0xff00e0ba,0xff800000,2
+np.float32,0xff49d828,0xff800000,2
+np.float32,0x7e47f04a,0x7f800000,2
+np.float32,0x7e984dac,0x7f800000,2
+np.float32,0x3f77473c,0x3f8fc858,2
+np.float32,0x3f017439,0x3f070ac8,2
+np.float32,0x118417,0x118417,2
+np.float32,0xbcf7a2c0,0xbcf7ac68,2
+np.float32,0xfee46fee,0xff800000,2
+np.float32,0x3e42a648,0x3e43d2e9,2
+np.float32,0x80131916,0x80131916,2
+np.float32,0x806209d3,0x806209d3,2
+np.float32,0x807c1f12,0x807c1f12,2
+np.float32,0x2f3696,0x2f3696,2
+np.float32,0xff28722b,0xff800000,2
+np.float32,0x7f1416a1,0x7f800000,2
+np.float32,0x8054e7a1,0x8054e7a1,2
+np.float32,0xbddc39a0,0xbddca656,2
+np.float32,0x7dc60175,0x7f800000,2
+np.float64,0x7fd0ae584da15cb0,0x7ff0000000000000,1
+np.float64,0x7fd41d68e5283ad1,0x7ff0000000000000,1
+np.float64,0x7fe93073bb7260e6,0x7ff0000000000000,1
+np.float64,0x3fb4fd19d229fa34,0x3fb5031f57dbac0f,1
+np.float64,0x85609ce10ac2,0x85609ce10ac2,1
+np.float64,0xbfd7aa12ccaf5426,0xbfd8351003a320e2,1
+np.float64,0x8004487c9b4890fa,0x8004487c9b4890fa,1
+np.float64,0x7fe7584cfd2eb099,0x7ff0000000000000,1
+np.float64,0x800ea8edc6dd51dc,0x800ea8edc6dd51dc,1
+np.float64,0x3fe0924aa5a12495,0x3fe15276e271c6dc,1
+np.float64,0x3feb1abf6d36357f,0x3fee76b4d3d06964,1
+np.float64,0x3fa8c14534318280,0x3fa8c3bd5ce5923c,1
+np.float64,0x800b9f5915d73eb3,0x800b9f5915d73eb3,1
+np.float64,0xffc05aaa7820b554,0xfff0000000000000,1
+np.float64,0x800157eda8c2afdc,0x800157eda8c2afdc,1
+np.float64,0xffe8d90042b1b200,0xfff0000000000000,1
+np.float64,0x3feda02ea93b405d,0x3ff1057e61d08d59,1
+np.float64,0xffd03b7361a076e6,0xfff0000000000000,1
+np.float64,0x3fe1a8ecd7e351da,0x3fe291eda9080847,1
+np.float64,0xffc5bfdff82b7fc0,0xfff0000000000000,1
+np.float64,0xbfe6fb3d386df67a,0xbfe9022c05df0565,1
+np.float64,0x7fefffffffffffff,0x7ff0000000000000,1
+np.float64,0x7fa10c340c221867,0x7ff0000000000000,1
+np.float64,0x3fe55cbf1daab97e,0x3fe6fc1648258b75,1
+np.float64,0xbfddeb5f60bbd6be,0xbfdf056d4fb5825f,1
+np.float64,0xffddb1a8213b6350,0xfff0000000000000,1
+np.float64,0xbfb20545e4240a88,0xbfb2091579375176,1
+np.float64,0x3f735ded2026bbda,0x3f735df1dad4ee3a,1
+np.float64,0xbfd1eb91efa3d724,0xbfd227c044dead61,1
+np.float64,0xffd737c588ae6f8c,0xfff0000000000000,1
+np.float64,0x3fc46818ec28d032,0x3fc47e416c4237a6,1
+np.float64,0x0,0x0,1
+np.float64,0xffb632097a2c6410,0xfff0000000000000,1
+np.float64,0xbfcb5ae84b36b5d0,0xbfcb905613af55b8,1
+np.float64,0xbfe7b926402f724c,0xbfe9f4f0be6aacc3,1
+np.float64,0x80081840b3f03082,0x80081840b3f03082,1
+np.float64,0x3fe767a656eecf4d,0x3fe98c53b4779de7,1
+np.float64,0x8005834c088b0699,0x8005834c088b0699,1
+np.float64,0x80074e92658e9d26,0x80074e92658e9d26,1
+np.float64,0x80045d60c268bac2,0x80045d60c268bac2,1
+np.float64,0xffb9aecfe8335da0,0xfff0000000000000,1
+np.float64,0x7fcad3e1cd35a7c3,0x7ff0000000000000,1
+np.float64,0xbf881853d03030c0,0xbf8818783e28fc87,1
+np.float64,0xe18c6d23c318e,0xe18c6d23c318e,1
+np.float64,0x7fcb367b8f366cf6,0x7ff0000000000000,1
+np.float64,0x5c13436cb8269,0x5c13436cb8269,1
+np.float64,0xffe5399938aa7332,0xfff0000000000000,1
+np.float64,0xbfdc45dbc3b88bb8,0xbfdd33958222c27e,1
+np.float64,0xbfd714691bae28d2,0xbfd7954edbef810b,1
+np.float64,0xbfdf18b02b3e3160,0xbfe02ad13634c651,1
+np.float64,0x8003e6f276e7cde6,0x8003e6f276e7cde6,1
+np.float64,0x3febb6b412776d68,0x3fef4f753def31f9,1
+np.float64,0x7fe016a3b4a02d46,0x7ff0000000000000,1
+np.float64,0x3fdc899ac7b91336,0x3fdd7e1cee1cdfc8,1
+np.float64,0x800219271e24324f,0x800219271e24324f,1
+np.float64,0x1529d93e2a53c,0x1529d93e2a53c,1
+np.float64,0x800d5bc827fab790,0x800d5bc827fab790,1
+np.float64,0x3e1495107c293,0x3e1495107c293,1
+np.float64,0x3fe89da0f2b13b42,0x3feb1dc1f3015ad7,1
+np.float64,0x800ba8c17b975183,0x800ba8c17b975183,1
+np.float64,0x8002dacf0265b59f,0x8002dacf0265b59f,1
+np.float64,0xffe6d0a4cc2da149,0xfff0000000000000,1
+np.float64,0x3fdf23fe82be47fc,0x3fe03126d8e2b309,1
+np.float64,0xffe41b1f1c28363e,0xfff0000000000000,1
+np.float64,0xbfd635c634ac6b8c,0xbfd6a8966da6adaa,1
+np.float64,0x800755bc08eeab79,0x800755bc08eeab79,1
+np.float64,0x800ba4c47c374989,0x800ba4c47c374989,1
+np.float64,0x7fec9f7649793eec,0x7ff0000000000000,1
+np.float64,0x7fdbf45738b7e8ad,0x7ff0000000000000,1
+np.float64,0x3f5597f07eab4,0x3f5597f07eab4,1
+np.float64,0xbfbf4599183e8b30,0xbfbf5985d8c65097,1
+np.float64,0xbf5b200580364000,0xbf5b2006501b21ae,1
+np.float64,0x7f91868370230d06,0x7ff0000000000000,1
+np.float64,0x3838e2a67071d,0x3838e2a67071d,1
+np.float64,0xffefe3ff5d3fc7fe,0xfff0000000000000,1
+np.float64,0xffe66b26d06cd64d,0xfff0000000000000,1
+np.float64,0xbfd830a571b0614a,0xbfd8c526927c742c,1
+np.float64,0x7fe8442122f08841,0x7ff0000000000000,1
+np.float64,0x800efa8c637df519,0x800efa8c637df519,1
+np.float64,0xf0026835e004d,0xf0026835e004d,1
+np.float64,0xffb11beefe2237e0,0xfff0000000000000,1
+np.float64,0x3fef9bbb327f3776,0x3ff2809f10641c32,1
+np.float64,0x350595306a0b3,0x350595306a0b3,1
+np.float64,0xf7f6538befecb,0xf7f6538befecb,1
+np.float64,0xffe36379c4a6c6f3,0xfff0000000000000,1
+np.float64,0x28b1d82e5163c,0x28b1d82e5163c,1
+np.float64,0x70a3d804e147c,0x70a3d804e147c,1
+np.float64,0xffd96c1bc9b2d838,0xfff0000000000000,1
+np.float64,0xffce8e00893d1c00,0xfff0000000000000,1
+np.float64,0x800f2bdcb25e57b9,0x800f2bdcb25e57b9,1
+np.float64,0xbfe0d9c63361b38c,0xbfe1a3eb02192b76,1
+np.float64,0xbfdc7b8711b8f70e,0xbfdd6e9db3a01e51,1
+np.float64,0x99e22ec133c46,0x99e22ec133c46,1
+np.float64,0xffeaef6ddab5dedb,0xfff0000000000000,1
+np.float64,0x7fe89c22c0f13845,0x7ff0000000000000,1
+np.float64,0x8002d5207de5aa42,0x8002d5207de5aa42,1
+np.float64,0x3fd1b13353236267,0x3fd1eb1b9345dfca,1
+np.float64,0x800ccae0a41995c1,0x800ccae0a41995c1,1
+np.float64,0x3fdbdaba38b7b574,0x3fdcbdfcbca37ce6,1
+np.float64,0x5b06d12cb60db,0x5b06d12cb60db,1
+np.float64,0xffd52262752a44c4,0xfff0000000000000,1
+np.float64,0x5a17f050b42ff,0x5a17f050b42ff,1
+np.float64,0x3d24205e7a485,0x3d24205e7a485,1
+np.float64,0x7fbed4dec63da9bd,0x7ff0000000000000,1
+np.float64,0xbfe56e9776aadd2f,0xbfe71212863c284f,1
+np.float64,0x7fea0bc952341792,0x7ff0000000000000,1
+np.float64,0x800f692d139ed25a,0x800f692d139ed25a,1
+np.float64,0xffdb63feab36c7fe,0xfff0000000000000,1
+np.float64,0x3fe1c2297fe38452,0x3fe2af21293c9571,1
+np.float64,0x7fede384747bc708,0x7ff0000000000000,1
+np.float64,0x800440169288802e,0x800440169288802e,1
+np.float64,0xffe3241eeb26483e,0xfff0000000000000,1
+np.float64,0xffe28f3879651e70,0xfff0000000000000,1
+np.float64,0xa435cbc1486d,0xa435cbc1486d,1
+np.float64,0x7fe55e08db6abc11,0x7ff0000000000000,1
+np.float64,0x1405e624280be,0x1405e624280be,1
+np.float64,0x3fd861bdf0b0c37c,0x3fd8f9d2e33e45e5,1
+np.float64,0x3feeb67cdc3d6cfa,0x3ff1d337d81d1c14,1
+np.float64,0x3fd159a10e22b342,0x3fd1903be7c2ea0c,1
+np.float64,0x3fd84626bc308c4d,0x3fd8dc373645e65b,1
+np.float64,0xffd3da81d9a7b504,0xfff0000000000000,1
+np.float64,0xbfd4a768b8294ed2,0xbfd503aa7c240051,1
+np.float64,0x3fe3059f2a660b3e,0x3fe42983e0c6bb2e,1
+np.float64,0x3fe3b8353827706a,0x3fe4fdd635c7269b,1
+np.float64,0xbfe4af0399695e07,0xbfe6277d9002b46c,1
+np.float64,0xbfd7e18a92afc316,0xbfd87066b54c4fe6,1
+np.float64,0x800432bcab48657a,0x800432bcab48657a,1
+np.float64,0x80033d609d267ac2,0x80033d609d267ac2,1
+np.float64,0x7fef5f758e7ebeea,0x7ff0000000000000,1
+np.float64,0xbfed7833dbfaf068,0xbff0e85bf45a5ebc,1
+np.float64,0x3fe2283985a45073,0x3fe325b0a9099c74,1
+np.float64,0xe820b4b3d0417,0xe820b4b3d0417,1
+np.float64,0x8003ecb72aa7d96f,0x8003ecb72aa7d96f,1
+np.float64,0xbfeab2c755b5658f,0xbfede7c83e92a625,1
+np.float64,0xbfc7b287f72f6510,0xbfc7d53ef2ffe9dc,1
+np.float64,0xffd9a41d0f33483a,0xfff0000000000000,1
+np.float64,0x3fd3a5b6e3a74b6c,0x3fd3f516f39a4725,1
+np.float64,0x800bc72091578e42,0x800bc72091578e42,1
+np.float64,0x800ff405ce9fe80c,0x800ff405ce9fe80c,1
+np.float64,0x57918600af24,0x57918600af24,1
+np.float64,0x2a5be7fa54b7e,0x2a5be7fa54b7e,1
+np.float64,0xbfdca7886bb94f10,0xbfdd9f142b5b43e4,1
+np.float64,0xbfe216993ee42d32,0xbfe3112936590995,1
+np.float64,0xbfe06bd9cf20d7b4,0xbfe126cd353ab42f,1
+np.float64,0x8003e6c31827cd87,0x8003e6c31827cd87,1
+np.float64,0x8005f37d810be6fc,0x8005f37d810be6fc,1
+np.float64,0x800715b081ae2b62,0x800715b081ae2b62,1
+np.float64,0x3fef94c35bff2986,0x3ff27b4bed2f4051,1
+np.float64,0x6f5798e0deb0,0x6f5798e0deb0,1
+np.float64,0x3fcef1f05c3de3e1,0x3fcf3f557550598f,1
+np.float64,0xbf9a91c400352380,0xbf9a92876273b85c,1
+np.float64,0x3fc9143f7f322880,0x3fc93d678c05d26b,1
+np.float64,0x78ad847af15b1,0x78ad847af15b1,1
+np.float64,0x8000fdc088c1fb82,0x8000fdc088c1fb82,1
+np.float64,0x800200fd304401fb,0x800200fd304401fb,1
+np.float64,0x7fb8ab09dc315613,0x7ff0000000000000,1
+np.float64,0x3fe949771b7292ee,0x3fec00891c3fc5a2,1
+np.float64,0xbfc54cae0e2a995c,0xbfc565e0f3d0e3af,1
+np.float64,0xffd546161e2a8c2c,0xfff0000000000000,1
+np.float64,0x800fe1d1279fc3a2,0x800fe1d1279fc3a2,1
+np.float64,0x3fd9c45301b388a8,0x3fda77fa1f4c79bf,1
+np.float64,0x7fe10ff238221fe3,0x7ff0000000000000,1
+np.float64,0xbfbc2181ae384300,0xbfbc3002229155c4,1
+np.float64,0xbfe7bbfae4ef77f6,0xbfe9f895e91f468d,1
+np.float64,0x800d3d994f7a7b33,0x800d3d994f7a7b33,1
+np.float64,0xffe6e15a896dc2b4,0xfff0000000000000,1
+np.float64,0x800e6b6c8abcd6d9,0x800e6b6c8abcd6d9,1
+np.float64,0xbfd862c938b0c592,0xbfd8faf1cdcb09db,1
+np.float64,0xffe2411f8464823e,0xfff0000000000000,1
+np.float64,0xffd0b32efaa1665e,0xfff0000000000000,1
+np.float64,0x3ac4ace475896,0x3ac4ace475896,1
+np.float64,0xf9c3a7ebf3875,0xf9c3a7ebf3875,1
+np.float64,0xdb998ba5b7332,0xdb998ba5b7332,1
+np.float64,0xbfe438a14fe87142,0xbfe5981751e4c5cd,1
+np.float64,0xbfbcf48cbc39e918,0xbfbd045d60e65d3a,1
+np.float64,0x7fde499615bc932b,0x7ff0000000000000,1
+np.float64,0x800bba269057744e,0x800bba269057744e,1
+np.float64,0x3fc9bb1ba3337638,0x3fc9e78fdb6799c1,1
+np.float64,0xffd9f974fbb3f2ea,0xfff0000000000000,1
+np.float64,0x7fcf1ad1693e35a2,0x7ff0000000000000,1
+np.float64,0x7fe5dcedd32bb9db,0x7ff0000000000000,1
+np.float64,0xeb06500bd60ca,0xeb06500bd60ca,1
+np.float64,0x7fd73e7b592e7cf6,0x7ff0000000000000,1
+np.float64,0xbfe9d91ae873b236,0xbfecc08482849bcd,1
+np.float64,0xffc85338b730a670,0xfff0000000000000,1
+np.float64,0x7fbba41eee37483d,0x7ff0000000000000,1
+np.float64,0x3fed5624fb7aac4a,0x3ff0cf9f0de1fd54,1
+np.float64,0xffe566d80d6acdb0,0xfff0000000000000,1
+np.float64,0x3fd4477884a88ef1,0x3fd49ec7acdd25a0,1
+np.float64,0x3fcb98c5fd37318c,0x3fcbcfa20e2c2712,1
+np.float64,0xffdeba71d5bd74e4,0xfff0000000000000,1
+np.float64,0x8001edc59dc3db8c,0x8001edc59dc3db8c,1
+np.float64,0x3fe6b09e896d613e,0x3fe8a3bb541ec0e3,1
+np.float64,0x3fe8694b4970d296,0x3fead94d271d05cf,1
+np.float64,0xb52c27bf6a585,0xb52c27bf6a585,1
+np.float64,0x7fcb0a21d9361443,0x7ff0000000000000,1
+np.float64,0xbfd9efc68cb3df8e,0xbfdaa7058c0ccbd1,1
+np.float64,0x8007cd170fef9a2f,0x8007cd170fef9a2f,1
+np.float64,0x3fe83325e770664c,0x3fea92c55c9d567e,1
+np.float64,0x800bd0085537a011,0x800bd0085537a011,1
+np.float64,0xffe05b9e7820b73c,0xfff0000000000000,1
+np.float64,0x3fea4ce4347499c8,0x3fed5cea9fdc541b,1
+np.float64,0x7fe08aae1921155b,0x7ff0000000000000,1
+np.float64,0x3fe7a5e7deef4bd0,0x3fe9dc2e20cfb61c,1
+np.float64,0xbfe0ccc8e6e19992,0xbfe195175f32ee3f,1
+np.float64,0xbfe8649717f0c92e,0xbfead3298974dcf0,1
+np.float64,0x7fed6c5308bad8a5,0x7ff0000000000000,1
+np.float64,0xffdbd8c7af37b190,0xfff0000000000000,1
+np.float64,0xbfb2bc4d06257898,0xbfb2c09569912839,1
+np.float64,0x3fc62eca512c5d95,0x3fc64b4251bce8f9,1
+np.float64,0xbfcae2ddbd35c5bc,0xbfcb15971fc61312,1
+np.float64,0x18d26ce831a4f,0x18d26ce831a4f,1
+np.float64,0x7fe38b279267164e,0x7ff0000000000000,1
+np.float64,0x97e1d9ab2fc3b,0x97e1d9ab2fc3b,1
+np.float64,0xbfee8e4785fd1c8f,0xbff1b52d16807627,1
+np.float64,0xbfb189b4a6231368,0xbfb18d37e83860ee,1
+np.float64,0xffd435761ea86aec,0xfff0000000000000,1
+np.float64,0x3fe6c48ebced891e,0x3fe8bcea189c3867,1
+np.float64,0x7fdadd3678b5ba6c,0x7ff0000000000000,1
+np.float64,0x7fea8f15b7b51e2a,0x7ff0000000000000,1
+np.float64,0xbff0000000000000,0xbff2cd9fc44eb982,1
+np.float64,0x80004c071120980f,0x80004c071120980f,1
+np.float64,0x8005367adfea6cf6,0x8005367adfea6cf6,1
+np.float64,0x3fbdc9139a3b9220,0x3fbdda4aba667ce5,1
+np.float64,0x7fed5ee3ad7abdc6,0x7ff0000000000000,1
+np.float64,0x51563fb2a2ac9,0x51563fb2a2ac9,1
+np.float64,0xbfba7d26ce34fa50,0xbfba894229c50ea1,1
+np.float64,0x6c10db36d821c,0x6c10db36d821c,1
+np.float64,0xbfbdaec0d03b5d80,0xbfbdbfca6ede64f4,1
+np.float64,0x800a1cbe7414397d,0x800a1cbe7414397d,1
+np.float64,0x800ae6e7f2d5cdd0,0x800ae6e7f2d5cdd0,1
+np.float64,0x3fea63d3fef4c7a8,0x3fed7c1356688ddc,1
+np.float64,0xbfde1e3a88bc3c76,0xbfdf3dfb09cc2260,1
+np.float64,0xbfd082d75a2105ae,0xbfd0b1e28c84877b,1
+np.float64,0x7fea1e5e85f43cbc,0x7ff0000000000000,1
+np.float64,0xffe2237a1a6446f4,0xfff0000000000000,1
+np.float64,0x3fd1e2be8523c57d,0x3fd21e93dfd1bbc4,1
+np.float64,0x3fd1acd428a359a8,0x3fd1e6916a42bc3a,1
+np.float64,0x61a152f0c342b,0x61a152f0c342b,1
+np.float64,0xbfc61a6b902c34d8,0xbfc6369557690ba0,1
+np.float64,0x7fd1a84b1f235095,0x7ff0000000000000,1
+np.float64,0x1c5cc7e638b9a,0x1c5cc7e638b9a,1
+np.float64,0x8008039755f0072f,0x8008039755f0072f,1
+np.float64,0x80097532d6f2ea66,0x80097532d6f2ea66,1
+np.float64,0xbfc6d979a12db2f4,0xbfc6f89777c53f8f,1
+np.float64,0x8004293ab1085276,0x8004293ab1085276,1
+np.float64,0x3fc2af5c21255eb8,0x3fc2c05dc0652554,1
+np.float64,0xbfd9a5ab87b34b58,0xbfda56d1076abc98,1
+np.float64,0xbfebd360ba77a6c2,0xbfef779fd6595f9b,1
+np.float64,0xffd5313c43aa6278,0xfff0000000000000,1
+np.float64,0xbfe994a262b32945,0xbfec64b969852ed5,1
+np.float64,0x3fce01a52e3c034a,0x3fce48324eb29c31,1
+np.float64,0x56bd74b2ad7af,0x56bd74b2ad7af,1
+np.float64,0xb84093ff70813,0xb84093ff70813,1
+np.float64,0x7fe776df946eedbe,0x7ff0000000000000,1
+np.float64,0xbfe294ac2e652958,0xbfe3a480938afa26,1
+np.float64,0x7fe741b4d0ee8369,0x7ff0000000000000,1
+np.float64,0x800b7e8a1056fd15,0x800b7e8a1056fd15,1
+np.float64,0x7fd28f1269251e24,0x7ff0000000000000,1
+np.float64,0x8009d4492e73a893,0x8009d4492e73a893,1
+np.float64,0x3fe3f27fca67e500,0x3fe543aff825e244,1
+np.float64,0x3fd12447e5a24890,0x3fd158efe43c0452,1
+np.float64,0xbfd58df0f2ab1be2,0xbfd5f6d908e3ebce,1
+np.float64,0xffc0a8e4642151c8,0xfff0000000000000,1
+np.float64,0xbfedb197787b632f,0xbff112367ec9d3e7,1
+np.float64,0xffdde07a7f3bc0f4,0xfff0000000000000,1
+np.float64,0x3fe91f3e5b723e7d,0x3febc886a1d48364,1
+np.float64,0x3fe50415236a082a,0x3fe68f43a5468d8c,1
+np.float64,0xd9a0c875b3419,0xd9a0c875b3419,1
+np.float64,0xbfee04ccf4bc099a,0xbff14f4740a114cf,1
+np.float64,0xbfd2bcc6a125798e,0xbfd30198b1e7d7ed,1
+np.float64,0xbfeb3c16f8f6782e,0xbfeea4ce47d09f58,1
+np.float64,0xffd3ba19e4a77434,0xfff0000000000000,1
+np.float64,0x8010000000000000,0x8010000000000000,1
+np.float64,0x3fdef0a642bde14d,0x3fe0146677b3a488,1
+np.float64,0x3fdc3dd0a2b87ba0,0x3fdd2abe65651487,1
+np.float64,0x3fdbb1fd47b763fb,0x3fdc915a2fd19f4b,1
+np.float64,0x7fbaa375e63546eb,0x7ff0000000000000,1
+np.float64,0x433ef8ee867e0,0x433ef8ee867e0,1
+np.float64,0xf5345475ea68b,0xf5345475ea68b,1
+np.float64,0xa126419b424c8,0xa126419b424c8,1
+np.float64,0x3fe0057248200ae5,0x3fe0b2f488339709,1
+np.float64,0xffc5e3b82f2bc770,0xfff0000000000000,1
+np.float64,0xffb215c910242b90,0xfff0000000000000,1
+np.float64,0xbfeba4ae0837495c,0xbfef3642e4b54aac,1
+np.float64,0xffbb187ebe363100,0xfff0000000000000,1
+np.float64,0x3fe4c6a496a98d49,0x3fe64440cdf06aab,1
+np.float64,0x800767a28f6ecf46,0x800767a28f6ecf46,1
+np.float64,0x3fdbed63b1b7dac8,0x3fdcd27318c0b683,1
+np.float64,0x80006d8339e0db07,0x80006d8339e0db07,1
+np.float64,0x8000b504f0416a0b,0x8000b504f0416a0b,1
+np.float64,0xbfe88055bfb100ac,0xbfeaf767bd2767b9,1
+np.float64,0x3fefe503317fca06,0x3ff2b8d4057240c8,1
+np.float64,0x7fe307538b660ea6,0x7ff0000000000000,1
+np.float64,0x944963c12892d,0x944963c12892d,1
+np.float64,0xbfd2c20b38a58416,0xbfd30717900f8233,1
+np.float64,0x7feed04e3e3da09b,0x7ff0000000000000,1
+np.float64,0x3fe639619cac72c3,0x3fe80de7b8560a8d,1
+np.float64,0x3fde066c66bc0cd9,0x3fdf237fb759a652,1
+np.float64,0xbfc56b22b52ad644,0xbfc584c267a47ebd,1
+np.float64,0x3fc710d5b12e21ab,0x3fc730d817ba0d0c,1
+np.float64,0x3fee1dfc347c3bf8,0x3ff161d9c3e15f68,1
+np.float64,0x3fde400954bc8013,0x3fdf639e5cc9e7a9,1
+np.float64,0x56e701f8adce1,0x56e701f8adce1,1
+np.float64,0xbfe33bbc89e67779,0xbfe46996b39381fe,1
+np.float64,0x7fec89e2f87913c5,0x7ff0000000000000,1
+np.float64,0xbfdad58b40b5ab16,0xbfdba098cc0ad5d3,1
+np.float64,0x3fe99c76a13338ed,0x3fec6f31bae613e7,1
+np.float64,0x3fe4242a29a84854,0x3fe57f6b45e5c0ef,1
+np.float64,0xbfe79d3199ef3a63,0xbfe9d0fb96c846ba,1
+np.float64,0x7ff8000000000000,0x7ff8000000000000,1
+np.float64,0xbfeb35a6cf766b4e,0xbfee9be4e7e943f7,1
+np.float64,0x3e047f267c091,0x3e047f267c091,1
+np.float64,0x4bf1376a97e28,0x4bf1376a97e28,1
+np.float64,0x800ef419685de833,0x800ef419685de833,1
+np.float64,0x3fe0efa61a21df4c,0x3fe1bce98baf2f0f,1
+np.float64,0x3fcc13c4d738278a,0x3fcc4d8c778bcaf7,1
+np.float64,0x800f1d291afe3a52,0x800f1d291afe3a52,1
+np.float64,0x3fd3f10e6da7e21d,0x3fd444106761ea1d,1
+np.float64,0x800706d6d76e0dae,0x800706d6d76e0dae,1
+np.float64,0xffa1ffbc9023ff80,0xfff0000000000000,1
+np.float64,0xbfe098f26d6131e5,0xbfe15a08a5f3eac0,1
+np.float64,0x3fe984f9cc7309f4,0x3fec4fcdbdb1cb9b,1
+np.float64,0x7fd7c2f1eaaf85e3,0x7ff0000000000000,1
+np.float64,0x800a8adb64f515b7,0x800a8adb64f515b7,1
+np.float64,0x80060d3ffc8c1a81,0x80060d3ffc8c1a81,1
+np.float64,0xbfec37e4aef86fc9,0xbff0029a6a1d61e2,1
+np.float64,0x800b21bcfcf6437a,0x800b21bcfcf6437a,1
+np.float64,0xbfc08facc1211f58,0xbfc09b8380ea8032,1
+np.float64,0xffebb4b52577696a,0xfff0000000000000,1
+np.float64,0x800b08096df61013,0x800b08096df61013,1
+np.float64,0x8000000000000000,0x8000000000000000,1
+np.float64,0xffd2f0c9c8a5e194,0xfff0000000000000,1
+np.float64,0xffe78b2299af1644,0xfff0000000000000,1
+np.float64,0x7fd0444794a0888e,0x7ff0000000000000,1
+np.float64,0x307c47b460f8a,0x307c47b460f8a,1
+np.float64,0xffe6b4c851ad6990,0xfff0000000000000,1
+np.float64,0xffe1877224a30ee4,0xfff0000000000000,1
+np.float64,0x48d7b5c091af7,0x48d7b5c091af7,1
+np.float64,0xbfa1dc6b1c23b8d0,0xbfa1dd5889e1b7da,1
+np.float64,0x3fe5004737ea008e,0x3fe68a9c310b08c1,1
+np.float64,0x7fec5f0742b8be0e,0x7ff0000000000000,1
+np.float64,0x3fd0a86285a150c5,0x3fd0d8b238d557fa,1
+np.float64,0x7fed60380efac06f,0x7ff0000000000000,1
+np.float64,0xeeca74dfdd94f,0xeeca74dfdd94f,1
+np.float64,0x3fda05aaa8b40b54,0x3fdabebdbf405e84,1
+np.float64,0x800e530ceb1ca61a,0x800e530ceb1ca61a,1
+np.float64,0x800b3866379670cd,0x800b3866379670cd,1
+np.float64,0xffedb3e7fa3b67cf,0xfff0000000000000,1
+np.float64,0xffdfa4c0713f4980,0xfff0000000000000,1
+np.float64,0x7fe4679e0728cf3b,0x7ff0000000000000,1
+np.float64,0xffe978611ef2f0c2,0xfff0000000000000,1
+np.float64,0x7fc9f4601f33e8bf,0x7ff0000000000000,1
+np.float64,0x3fd4942de6a9285c,0x3fd4ef6e089357dd,1
+np.float64,0x3faafe064435fc00,0x3fab0139cd6564dc,1
+np.float64,0x800d145a519a28b5,0x800d145a519a28b5,1
+np.float64,0xbfd82636f2304c6e,0xbfd8b9f75ddd2f02,1
+np.float64,0xbfdf2e975e3e5d2e,0xbfe037174280788c,1
+np.float64,0x7fd7051d7c2e0a3a,0x7ff0000000000000,1
+np.float64,0x8007933d452f267b,0x8007933d452f267b,1
+np.float64,0xb2043beb64088,0xb2043beb64088,1
+np.float64,0x3febfd9708f7fb2e,0x3fefb2ef090f18d2,1
+np.float64,0xffd9bc6bc83378d8,0xfff0000000000000,1
+np.float64,0xc10f9fd3821f4,0xc10f9fd3821f4,1
+np.float64,0x3fe3c83413a79068,0x3fe510fa1dd8edf7,1
+np.float64,0x3fbe26ccda3c4da0,0x3fbe38a892279975,1
+np.float64,0x3fcc1873103830e6,0x3fcc5257a6ae168d,1
+np.float64,0xe7e000e9cfc00,0xe7e000e9cfc00,1
+np.float64,0xffda73852bb4e70a,0xfff0000000000000,1
+np.float64,0xbfe831be19f0637c,0xbfea90f1b34da3e5,1
+np.float64,0xbfeb568f3076ad1e,0xbfeec97eebfde862,1
+np.float64,0x510a6ad0a214e,0x510a6ad0a214e,1
+np.float64,0x3fe6ba7e35ed74fc,0x3fe8b032a9a28c6a,1
+np.float64,0xffeb5cdcff76b9b9,0xfff0000000000000,1
+np.float64,0x4f0a23e89e145,0x4f0a23e89e145,1
+np.float64,0x446ec20288dd9,0x446ec20288dd9,1
+np.float64,0x7fe2521b02e4a435,0x7ff0000000000000,1
+np.float64,0x8001cd2969e39a54,0x8001cd2969e39a54,1
+np.float64,0x3fdfe90600bfd20c,0x3fe09fdcca10001c,1
+np.float64,0x7fd660c5762cc18a,0x7ff0000000000000,1
+np.float64,0xbfb11b23aa223648,0xbfb11e661949b377,1
+np.float64,0x800e025285fc04a5,0x800e025285fc04a5,1
+np.float64,0xffb180bb18230178,0xfff0000000000000,1
+np.float64,0xaaf590df55eb2,0xaaf590df55eb2,1
+np.float64,0xbfe8637d9df0c6fb,0xbfead1ba429462ec,1
+np.float64,0x7fd2577866a4aef0,0x7ff0000000000000,1
+np.float64,0xbfcfb2ab5a3f6558,0xbfd002ee87f272b9,1
+np.float64,0x7fdd64ae2f3ac95b,0x7ff0000000000000,1
+np.float64,0xffd1a502c9234a06,0xfff0000000000000,1
+np.float64,0x7fc4be4b60297c96,0x7ff0000000000000,1
+np.float64,0xbfb46b712a28d6e0,0xbfb470fca9919172,1
+np.float64,0xffdef913033df226,0xfff0000000000000,1
+np.float64,0x3fd94a3545b2946b,0x3fd9f40431ce9f9c,1
+np.float64,0x7fef88a0b6ff1140,0x7ff0000000000000,1
+np.float64,0xbfbcc81876399030,0xbfbcd7a0ab6cb388,1
+np.float64,0x800a4acfdd9495a0,0x800a4acfdd9495a0,1
+np.float64,0xffe270b3d5e4e167,0xfff0000000000000,1
+np.float64,0xbfd23f601e247ec0,0xbfd27eeca50a49eb,1
+np.float64,0x7fec6e796a78dcf2,0x7ff0000000000000,1
+np.float64,0x3fb85e0c9630bc19,0x3fb867791ccd6c72,1
+np.float64,0x7fe49fc424a93f87,0x7ff0000000000000,1
+np.float64,0xbfe75a99fbaeb534,0xbfe97ba37663de4c,1
+np.float64,0xffe85011b630a023,0xfff0000000000000,1
+np.float64,0xffe5962e492b2c5c,0xfff0000000000000,1
+np.float64,0x6f36ed4cde6de,0x6f36ed4cde6de,1
+np.float64,0x3feb72170af6e42e,0x3feeefbe6f1a2084,1
+np.float64,0x80014d8d60629b1c,0x80014d8d60629b1c,1
+np.float64,0xbfe0eb40d321d682,0xbfe1b7e31f252bf1,1
+np.float64,0x31fe305663fc7,0x31fe305663fc7,1
+np.float64,0x3fd2cd6381a59ac7,0x3fd312edc9868a4d,1
+np.float64,0xffcf0720793e0e40,0xfff0000000000000,1
+np.float64,0xbfeef1ef133de3de,0xbff1ffd5e1a3b648,1
+np.float64,0xbfd01c787aa038f0,0xbfd0482be3158a01,1
+np.float64,0x3fda3607c5b46c10,0x3fdaf3301e217301,1
+np.float64,0xffda9a9911b53532,0xfff0000000000000,1
+np.float64,0x3fc0b37c392166f8,0x3fc0bfa076f3c43e,1
+np.float64,0xbfe06591c760cb24,0xbfe11fad179ea12c,1
+np.float64,0x8006e369c20dc6d4,0x8006e369c20dc6d4,1
+np.float64,0x3fdf2912a8be5224,0x3fe033ff74b92f4d,1
+np.float64,0xffc0feb07821fd60,0xfff0000000000000,1
+np.float64,0xa4b938c949727,0xa4b938c949727,1
+np.float64,0x8008fe676571fccf,0x8008fe676571fccf,1
+np.float64,0xbfdda68459bb4d08,0xbfdeb8faab34fcbc,1
+np.float64,0xbfda18b419343168,0xbfdad360ca52ec7c,1
+np.float64,0x3febcbae35b7975c,0x3fef6cd51c9ebc15,1
+np.float64,0x3fbec615f63d8c30,0x3fbed912ba729926,1
+np.float64,0x7f99a831c8335063,0x7ff0000000000000,1
+np.float64,0x3fe663e8826cc7d1,0x3fe84330bd9aada8,1
+np.float64,0x70a9f9e6e1540,0x70a9f9e6e1540,1
+np.float64,0x8a13a5db14275,0x8a13a5db14275,1
+np.float64,0x7fc4330a3b286613,0x7ff0000000000000,1
+np.float64,0xbfe580c6136b018c,0xbfe728806cc7a99a,1
+np.float64,0x8000000000000001,0x8000000000000001,1
+np.float64,0xffec079d5df80f3a,0xfff0000000000000,1
+np.float64,0x8e1173c31c22f,0x8e1173c31c22f,1
+np.float64,0x3fe088456d21108b,0x3fe14712ca414103,1
+np.float64,0x3fe1b76f73636edf,0x3fe2a2b658557112,1
+np.float64,0xbfd4a1dd162943ba,0xbfd4fdd45cae8fb8,1
+np.float64,0x7fd60b46c8ac168d,0x7ff0000000000000,1
+np.float64,0xffe36cc3b166d987,0xfff0000000000000,1
+np.float64,0x3fdc2ae0cfb855c0,0x3fdd15f026773151,1
+np.float64,0xbfc41aa203283544,0xbfc42fd1b145fdd5,1
+np.float64,0xffed90c55fbb218a,0xfff0000000000000,1
+np.float64,0x3fe67e3a9aecfc75,0x3fe86440db65b4f6,1
+np.float64,0x7fd12dbeaba25b7c,0x7ff0000000000000,1
+np.float64,0xbfe1267c0de24cf8,0xbfe1fbb611bdf1e9,1
+np.float64,0x22e5619645cad,0x22e5619645cad,1
+np.float64,0x7fe327c72ea64f8d,0x7ff0000000000000,1
+np.float64,0x7fd2c3f545a587ea,0x7ff0000000000000,1
+np.float64,0x7fc7b689372f6d11,0x7ff0000000000000,1
+np.float64,0xc5e140bd8bc28,0xc5e140bd8bc28,1
+np.float64,0x3fccb3627a3966c5,0x3fccf11b44fa4102,1
+np.float64,0xbfd2cf725c259ee4,0xbfd315138d0e5dca,1
+np.float64,0x10000000000000,0x10000000000000,1
+np.float64,0xbfd3dfa8b627bf52,0xbfd431d17b235477,1
+np.float64,0xbfb82124e6304248,0xbfb82a4b6d9c2663,1
+np.float64,0x3fdcd590d9b9ab22,0x3fddd1d548806347,1
+np.float64,0x7fdee0cd1b3dc199,0x7ff0000000000000,1
+np.float64,0x8004ebfc60a9d7fa,0x8004ebfc60a9d7fa,1
+np.float64,0x3fe8eb818b71d704,0x3feb842679806108,1
+np.float64,0xffdd5e8fe63abd20,0xfff0000000000000,1
+np.float64,0xbfe3efcbd9e7df98,0xbfe54071436645ee,1
+np.float64,0x3fd5102557aa204b,0x3fd57203d31a05b8,1
+np.float64,0x3fe6318af7ec6316,0x3fe8041a177cbf96,1
+np.float64,0x3fdf3cecdabe79da,0x3fe03f2084ffbc78,1
+np.float64,0x7fe0ab6673a156cc,0x7ff0000000000000,1
+np.float64,0x800037d5c6c06fac,0x800037d5c6c06fac,1
+np.float64,0xffce58b86a3cb170,0xfff0000000000000,1
+np.float64,0xbfe3455d6ce68abb,0xbfe475034cecb2b8,1
+np.float64,0x991b663d3236d,0x991b663d3236d,1
+np.float64,0x3fda82d37c3505a7,0x3fdb46973da05c12,1
+np.float64,0x3f9b736fa036e6df,0x3f9b74471c234411,1
+np.float64,0x8001c96525e392cb,0x8001c96525e392cb,1
+np.float64,0x7ff0000000000000,0x7ff0000000000000,1
+np.float64,0xbfaf59122c3eb220,0xbfaf5e15f8b272b0,1
+np.float64,0xbf9aa7d288354fa0,0xbf9aa897d2a40cb5,1
+np.float64,0x8004a43428694869,0x8004a43428694869,1
+np.float64,0x7feead476dbd5a8e,0x7ff0000000000000,1
+np.float64,0xffca150f81342a20,0xfff0000000000000,1
+np.float64,0x80047ec3bc88fd88,0x80047ec3bc88fd88,1
+np.float64,0xbfee3e5b123c7cb6,0xbff179c8b8334278,1
+np.float64,0x3fd172359f22e46b,0x3fd1a9ba6b1420a1,1
+np.float64,0x3fe8e5e242f1cbc5,0x3feb7cbcaefc4d5c,1
+np.float64,0x8007fb059a6ff60c,0x8007fb059a6ff60c,1
+np.float64,0xe3899e71c7134,0xe3899e71c7134,1
+np.float64,0x7fe3b98326a77305,0x7ff0000000000000,1
+np.float64,0x7fec4e206cb89c40,0x7ff0000000000000,1
+np.float64,0xbfa3b012c4276020,0xbfa3b150c13b3cc5,1
+np.float64,0xffefffffffffffff,0xfff0000000000000,1
+np.float64,0xffe28a5b9aa514b6,0xfff0000000000000,1
+np.float64,0xbfd76a6cc2aed4da,0xbfd7f10f4d04e7f6,1
+np.float64,0xbc2b1c0178564,0xbc2b1c0178564,1
+np.float64,0x6d9d444adb3a9,0x6d9d444adb3a9,1
+np.float64,0xbfdcadd368395ba6,0xbfdda6037b5c429c,1
+np.float64,0x3fe11891fde23124,0x3fe1ebc1c204b14b,1
+np.float64,0x3fdd66c3eebacd88,0x3fde72526b5304c4,1
+np.float64,0xbfe79d85612f3b0b,0xbfe9d1673bd1f6d6,1
+np.float64,0x3fed60abdabac158,0x3ff0d7426b3800a2,1
+np.float64,0xbfb0ffa54021ff48,0xbfb102d81073a9f0,1
+np.float64,0xd2452af5a48a6,0xd2452af5a48a6,1
+np.float64,0xf4b835c1e971,0xf4b835c1e971,1
+np.float64,0x7e269cdafc4d4,0x7e269cdafc4d4,1
+np.float64,0x800097a21d812f45,0x800097a21d812f45,1
+np.float64,0x3fdfcc85e8bf990c,0x3fe08fcf770fd456,1
+np.float64,0xd8d53155b1aa6,0xd8d53155b1aa6,1
+np.float64,0x7fb8ed658831daca,0x7ff0000000000000,1
+np.float64,0xbfec865415b90ca8,0xbff03a4584d719f9,1
+np.float64,0xffd8cda62a319b4c,0xfff0000000000000,1
+np.float64,0x273598d84e6b4,0x273598d84e6b4,1
+np.float64,0x7fd566b5c32acd6b,0x7ff0000000000000,1
+np.float64,0xff61d9d48023b400,0xfff0000000000000,1
+np.float64,0xbfec5c3bf4f8b878,0xbff01c594243337c,1
+np.float64,0x7fd1be0561a37c0a,0x7ff0000000000000,1
+np.float64,0xffeaee3271b5dc64,0xfff0000000000000,1
+np.float64,0x800c0e1931b81c33,0x800c0e1931b81c33,1
+np.float64,0xbfad1171583a22e0,0xbfad1570e5c466d2,1
+np.float64,0x7fd783b0fe2f0761,0x7ff0000000000000,1
+np.float64,0x7fc39903e6273207,0x7ff0000000000000,1
+np.float64,0xffe00003c5600007,0xfff0000000000000,1
+np.float64,0x35a7b9c06b50,0x35a7b9c06b50,1
+np.float64,0x7fee441a22bc8833,0x7ff0000000000000,1
+np.float64,0xff6e47fbc03c9000,0xfff0000000000000,1
+np.float64,0xbfd3c3c9c8a78794,0xbfd41499b1912534,1
+np.float64,0x82c9c87f05939,0x82c9c87f05939,1
+np.float64,0xbfedeb0fe4fbd620,0xbff13c573ce9d3d0,1
+np.float64,0x2b79298656f26,0x2b79298656f26,1
+np.float64,0xbf5ee44f003dc800,0xbf5ee4503353c0ba,1
+np.float64,0xbfe1dd264e63ba4c,0xbfe2ce68116c7bf6,1
+np.float64,0x3fece10b7579c217,0x3ff07b21b11799c6,1
+np.float64,0x3fba47143a348e28,0x3fba52e601adf24c,1
+np.float64,0xffe9816e7a7302dc,0xfff0000000000000,1
+np.float64,0x8009a8047fd35009,0x8009a8047fd35009,1
+np.float64,0x800ac28e4e95851d,0x800ac28e4e95851d,1
+np.float64,0x80093facf4f27f5a,0x80093facf4f27f5a,1
+np.float64,0x3ff0000000000000,0x3ff2cd9fc44eb982,1
+np.float64,0x3fe76a9857eed530,0x3fe99018a5895a4f,1
+np.float64,0xbfd13c59a3a278b4,0xbfd171e133df0b16,1
+np.float64,0x7feb43bc83368778,0x7ff0000000000000,1
+np.float64,0xbfe2970c5fa52e18,0xbfe3a74a434c6efe,1
+np.float64,0xffd091c380212388,0xfff0000000000000,1
+np.float64,0x3febb3b9d2f76774,0x3fef4b4af2bd8580,1
+np.float64,0x7fec66787ef8ccf0,0x7ff0000000000000,1
+np.float64,0xbf935e185826bc40,0xbf935e640557a354,1
+np.float64,0x979df1552f3be,0x979df1552f3be,1
+np.float64,0x7fc096ee73212ddc,0x7ff0000000000000,1
+np.float64,0xbfe9de88faf3bd12,0xbfecc7d1ae691d1b,1
+np.float64,0x7fdc733f06b8e67d,0x7ff0000000000000,1
+np.float64,0xffd71be1a0ae37c4,0xfff0000000000000,1
+np.float64,0xb50dabd36a1b6,0xb50dabd36a1b6,1
+np.float64,0x7fce3d94d63c7b29,0x7ff0000000000000,1
+np.float64,0x7fbaf95e4435f2bc,0x7ff0000000000000,1
+np.float64,0x81a32a6f03466,0x81a32a6f03466,1
+np.float64,0xa99b5b4d5336c,0xa99b5b4d5336c,1
+np.float64,0x7f97c1eeb82f83dc,0x7ff0000000000000,1
+np.float64,0x3fe761636d6ec2c6,0x3fe98451160d2ffb,1
+np.float64,0xbfe3224ef5e6449e,0xbfe44b73eeadac52,1
+np.float64,0x7fde6feb0dbcdfd5,0x7ff0000000000000,1
+np.float64,0xbfee87f9ca7d0ff4,0xbff1b079e9d7f706,1
+np.float64,0x3fe46f4c9828de99,0x3fe5da2ab9609ea5,1
+np.float64,0xffb92fe882325fd0,0xfff0000000000000,1
+np.float64,0x80054bc63cea978d,0x80054bc63cea978d,1
+np.float64,0x3d988bea7b312,0x3d988bea7b312,1
+np.float64,0x3fe6468e1d6c8d1c,0x3fe81e64d37d39a8,1
+np.float64,0x3fd68eefc22d1de0,0x3fd7074264faeead,1
+np.float64,0xffb218a074243140,0xfff0000000000000,1
+np.float64,0x3fdbcb3b6cb79678,0x3fdcad011de40b7d,1
+np.float64,0x7fe3c161772782c2,0x7ff0000000000000,1
+np.float64,0x25575c904aaec,0x25575c904aaec,1
+np.float64,0x800fa43a8f5f4875,0x800fa43a8f5f4875,1
+np.float64,0x3fe41fc9e1e83f94,0x3fe57a25dd1a37f1,1
+np.float64,0x3fd895f4a7b12be9,0x3fd931e7b721a08a,1
+np.float64,0xce31469f9c629,0xce31469f9c629,1
+np.float64,0xffea0f55ca341eab,0xfff0000000000000,1
+np.float64,0xffe831c9ba306393,0xfff0000000000000,1
+np.float64,0x7fe2056f03a40add,0x7ff0000000000000,1
+np.float64,0x7fd6b075e02d60eb,0x7ff0000000000000,1
+np.float64,0x3fdfbef4273f7de8,0x3fe0882c1f59efc0,1
+np.float64,0x8005b9e094ab73c2,0x8005b9e094ab73c2,1
+np.float64,0x3fea881ac6351036,0x3fedad7a319b887c,1
+np.float64,0xbfe2c61c7ee58c39,0xbfe3de9a99d8a9c6,1
+np.float64,0x30b0d3786161b,0x30b0d3786161b,1
+np.float64,0x3fa51d56a02a3aad,0x3fa51edee2d2ecef,1
+np.float64,0x79745732f2e8c,0x79745732f2e8c,1
+np.float64,0x800d55b4907aab69,0x800d55b4907aab69,1
+np.float64,0xbfbe8fcf0a3d1fa0,0xbfbea267fbb5bfdf,1
+np.float64,0xbfd04e2756a09c4e,0xbfd07b74d079f9a2,1
+np.float64,0x3fc65170552ca2e1,0x3fc66e6eb00c82ed,1
+np.float64,0xbfb0674b8020ce98,0xbfb06a2b4771b64c,1
+np.float64,0x2059975840b34,0x2059975840b34,1
+np.float64,0x33d1385467a28,0x33d1385467a28,1
+np.float64,0x3fea41b74ff4836f,0x3fed4dc1a09e53cc,1
+np.float64,0xbfe8e08c9d71c119,0xbfeb75b4c59a6bec,1
+np.float64,0x7fdbbf14d6377e29,0x7ff0000000000000,1
+np.float64,0x3fcd8b71513b16e0,0x3fcdcec80174f9ad,1
+np.float64,0x5c50bc94b8a18,0x5c50bc94b8a18,1
+np.float64,0x969a18f52d343,0x969a18f52d343,1
+np.float64,0x3fd7ae44462f5c89,0x3fd8398bc34e395c,1
+np.float64,0xffdd0f8617ba1f0c,0xfff0000000000000,1
+np.float64,0xfff0000000000000,0xfff0000000000000,1
+np.float64,0xbfe2f9badb65f376,0xbfe41b771320ece8,1
+np.float64,0x3fd140bc7fa29,0x3fd140bc7fa29,1
+np.float64,0xbfe14523b5628a48,0xbfe21ee850972043,1
+np.float64,0x3feedd0336bdba06,0x3ff1f01afc1f3a06,1
+np.float64,0x800de423ad7bc848,0x800de423ad7bc848,1
+np.float64,0x4cef857c99df1,0x4cef857c99df1,1
+np.float64,0xbfea55e0e374abc2,0xbfed691e41d648dd,1
+np.float64,0x3fe70d7a18ae1af4,0x3fe91955a34d8094,1
+np.float64,0xbfc62fc3032c5f88,0xbfc64c3ec25decb8,1
+np.float64,0x3fc915abb5322b58,0x3fc93edac5cc73fe,1
+np.float64,0x69aaff66d3561,0x69aaff66d3561,1
+np.float64,0x5c6a90f2b8d53,0x5c6a90f2b8d53,1
+np.float64,0x3fefe30dc1bfc61c,0x3ff2b752257bdacd,1
+np.float64,0x3fef15db15fe2bb6,0x3ff21aea05601396,1
+np.float64,0xbfe353e5ac66a7cc,0xbfe48644e6553d1a,1
+np.float64,0x3fe6d30cffada61a,0x3fe8cf3e4c61ddac,1
+np.float64,0x7fb7857eb62f0afc,0x7ff0000000000000,1
+np.float64,0xbfdd9b53d23b36a8,0xbfdeac91a7af1340,1
+np.float64,0x3fd1456357228ac7,0x3fd17b3f7d39b27a,1
+np.float64,0x3fb57d10ae2afa21,0x3fb5838702b806f4,1
+np.float64,0x800c59c96c98b393,0x800c59c96c98b393,1
+np.float64,0x7fc1f2413823e481,0x7ff0000000000000,1
+np.float64,0xbfa3983624273070,0xbfa3996fa26c419a,1
+np.float64,0x7fb28874ae2510e8,0x7ff0000000000000,1
+np.float64,0x3fe826d02a304da0,0x3fea82bec50bc0b6,1
+np.float64,0x8008d6f0d3d1ade2,0x8008d6f0d3d1ade2,1
+np.float64,0xffe7c970ca2f92e1,0xfff0000000000000,1
+np.float64,0x7fcf42bcaa3e8578,0x7ff0000000000000,1
+np.float64,0x7fda1ab517343569,0x7ff0000000000000,1
+np.float64,0xbfe7926a65ef24d5,0xbfe9c323dd890d5b,1
+np.float64,0xbfcaf6282d35ec50,0xbfcb294f36a0a33d,1
+np.float64,0x800ca49df8d9493c,0x800ca49df8d9493c,1
+np.float64,0xffea18d26af431a4,0xfff0000000000000,1
+np.float64,0x3fb72f276e2e5e50,0x3fb7374539fd1221,1
+np.float64,0xffa6b613842d6c20,0xfff0000000000000,1
+np.float64,0xbfeb3c7263f678e5,0xbfeea54cdb60b54c,1
+np.float64,0x3fc976d2ba32eda5,0x3fc9a1e83a058de4,1
+np.float64,0xbfe4acd4b0e959aa,0xbfe624d5d4f9b9a6,1
+np.float64,0x7fca410a0f348213,0x7ff0000000000000,1
+np.float64,0xbfde368f77bc6d1e,0xbfdf5910c8c8bcb0,1
+np.float64,0xbfed7412937ae825,0xbff0e55afc428453,1
+np.float64,0xffef6b7b607ed6f6,0xfff0000000000000,1
+np.float64,0xbfb936f17e326de0,0xbfb941629a53c694,1
+np.float64,0x800dbb0c469b7619,0x800dbb0c469b7619,1
+np.float64,0x800f68b0581ed161,0x800f68b0581ed161,1
+np.float64,0x3fe25b2aad64b656,0x3fe361266fa9c5eb,1
+np.float64,0xbfb87e445a30fc88,0xbfb887d676910c3f,1
+np.float64,0x6e6ba9b6dcd76,0x6e6ba9b6dcd76,1
+np.float64,0x3fad27ce583a4f9d,0x3fad2bd72782ffdb,1
+np.float64,0xbfec0bc5d638178c,0xbfefc6e8c8f9095f,1
+np.float64,0x7fcba4a296374944,0x7ff0000000000000,1
+np.float64,0x8004ca237cc99448,0x8004ca237cc99448,1
+np.float64,0xffe85b8c3270b718,0xfff0000000000000,1
+np.float64,0x7fe7ee3eddafdc7d,0x7ff0000000000000,1
+np.float64,0xffd275967ca4eb2c,0xfff0000000000000,1
+np.float64,0xbfa95bc3a032b780,0xbfa95e6b288ecf43,1
+np.float64,0x3fc9e3214b33c643,0x3fca10667e7e7ff4,1
+np.float64,0x8001b89c5d837139,0x8001b89c5d837139,1
+np.float64,0xbf8807dfc0300fc0,0xbf880803e3badfbd,1
+np.float64,0x800aca94b895952a,0x800aca94b895952a,1
+np.float64,0x7fd79534a02f2a68,0x7ff0000000000000,1
+np.float64,0x3fe1b81179e37023,0x3fe2a371d8cc26f0,1
+np.float64,0x800699539d6d32a8,0x800699539d6d32a8,1
+np.float64,0xffe51dfbb3aa3bf7,0xfff0000000000000,1
+np.float64,0xbfdfb775abbf6eec,0xbfe083f48be2f98f,1
+np.float64,0x3fe87979d7b0f2f4,0x3feaee701d959079,1
+np.float64,0x3fd8e4e6a731c9cd,0x3fd986d29f25f982,1
+np.float64,0x3fe3dadaaf67b5b6,0x3fe527520fb02920,1
+np.float64,0x8003c2262bc7844d,0x8003c2262bc7844d,1
+np.float64,0x800c930add392616,0x800c930add392616,1
+np.float64,0xffb7a152a22f42a8,0xfff0000000000000,1
+np.float64,0x80028fe03dc51fc1,0x80028fe03dc51fc1,1
+np.float64,0xffe32ae60c6655cc,0xfff0000000000000,1
+np.float64,0x3fea3527e4746a50,0x3fed3cbbf47f18eb,1
+np.float64,0x800a53059e14a60c,0x800a53059e14a60c,1
+np.float64,0xbfd79e3b202f3c76,0xbfd828672381207b,1
+np.float64,0xffeed7e2eb7dafc5,0xfff0000000000000,1
+np.float64,0x3fec51ed6778a3db,0x3ff01509e34df61d,1
+np.float64,0xbfd84bc577b0978a,0xbfd8e23ec55e42e8,1
+np.float64,0x2483aff849077,0x2483aff849077,1
+np.float64,0x6f57883adeaf2,0x6f57883adeaf2,1
+np.float64,0xffd3fd74d927faea,0xfff0000000000000,1
+np.float64,0x7fca49ec773493d8,0x7ff0000000000000,1
+np.float64,0x7fd08fe2e8211fc5,0x7ff0000000000000,1
+np.float64,0x800852086db0a411,0x800852086db0a411,1
+np.float64,0x3fe5b1f2c9eb63e6,0x3fe7654f511bafc6,1
+np.float64,0xbfe01e2a58e03c54,0xbfe0cedb68f021e6,1
+np.float64,0x800988421d331085,0x800988421d331085,1
+np.float64,0xffd5038b18aa0716,0xfff0000000000000,1
+np.float64,0x8002c9264c85924d,0x8002c9264c85924d,1
+np.float64,0x3fd21ca302243946,0x3fd25ac653a71aab,1
+np.float64,0xbfea60d6e6f4c1ae,0xbfed78031d9dfa2b,1
+np.float64,0xffef97b6263f2f6b,0xfff0000000000000,1
+np.float64,0xbfd524732faa48e6,0xbfd5876ecc415dcc,1
+np.float64,0x660387e8cc072,0x660387e8cc072,1
+np.float64,0x7fcfc108a33f8210,0x7ff0000000000000,1
+np.float64,0x7febe5b0f877cb61,0x7ff0000000000000,1
+np.float64,0xbfa55fdfac2abfc0,0xbfa56176991851a8,1
+np.float64,0x25250f4c4a4a3,0x25250f4c4a4a3,1
+np.float64,0xffe2f6a2f2a5ed46,0xfff0000000000000,1
+np.float64,0x7fa754fcc02ea9f9,0x7ff0000000000000,1
+np.float64,0x3febd19dea37a33c,0x3fef75279f75d3b8,1
+np.float64,0xc5ed55218bdab,0xc5ed55218bdab,1
+np.float64,0x3fe72ff6b3ee5fed,0x3fe945388b979882,1
+np.float64,0xbfe16b854e22d70a,0xbfe24b10fc0dff14,1
+np.float64,0xffb22cbe10245980,0xfff0000000000000,1
+np.float64,0xa54246b54a849,0xa54246b54a849,1
+np.float64,0x3fe7f4cda76fe99c,0x3fea41edc74888b6,1
+np.float64,0x1,0x1,1
+np.float64,0x800d84acce9b095a,0x800d84acce9b095a,1
+np.float64,0xb0eef04761dde,0xb0eef04761dde,1
+np.float64,0x7ff4000000000000,0x7ffc000000000000,1
+np.float64,0xffecaf1dbb795e3b,0xfff0000000000000,1
+np.float64,0x90dbab8d21b76,0x90dbab8d21b76,1
+np.float64,0x3fe79584a9ef2b09,0x3fe9c71fa9e40eb5,1
diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/tests/data/umath-validation-set-tan.csv b/.venv/lib/python3.12/site-packages/numpy/_core/tests/data/umath-validation-set-tan.csv
new file mode 100644
index 0000000..ac97624
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/_core/tests/data/umath-validation-set-tan.csv
@@ -0,0 +1,1429 @@
+dtype,input,output,ulperrortol
+np.float32,0xfd97ece0,0xc11186e9,4
+np.float32,0x8013bb34,0x8013bb34,4
+np.float32,0x316389,0x316389,4
+np.float32,0x7f7fffff,0xbf1c9eca,4
+np.float32,0x3f7674bb,0x3fb7e450,4
+np.float32,0x80800000,0x80800000,4
+np.float32,0x7f5995e8,0xbf94106c,4
+np.float32,0x74527,0x74527,4
+np.float32,0x7f08caea,0xbeceddb6,4
+np.float32,0x2d49b2,0x2d49b2,4
+np.float32,0x3f74e5e4,0x3fb58695,4
+np.float32,0x3f3fcd51,0x3f6e1e81,4
+np.float32,0xbf4f3608,0xbf864d3d,4
+np.float32,0xbed974a0,0xbee78c70,4
+np.float32,0xff5f483c,0x3ecf3cb2,4
+np.float32,0x7f4532f4,0xc0b96f7b,4
+np.float32,0x3f0a4f7c,0x3f198cc0,4
+np.float32,0x210193,0x210193,4
+np.float32,0xfeebad7a,0xbf92eba8,4
+np.float32,0xfed29f74,0xc134cab6,4
+np.float32,0x803433a0,0x803433a0,4
+np.float32,0x64eb46,0x64eb46,4
+np.float32,0xbf54ef22,0xbf8c757b,4
+np.float32,0x3f3d5fdd,0x3f69a17b,4
+np.float32,0x80000001,0x80000001,4
+np.float32,0x800a837a,0x800a837a,4
+np.float32,0x6ff0be,0x6ff0be,4
+np.float32,0xfe8f1186,0x3f518820,4
+np.float32,0x804963e5,0x804963e5,4
+np.float32,0xfebaa59a,0x3fa1dbb0,4
+np.float32,0x637970,0x637970,4
+np.float32,0x3e722a6b,0x3e76c89a,4
+np.float32,0xff2b0478,0xbddccb5f,4
+np.float32,0xbf7bd85b,0xbfc06821,4
+np.float32,0x3ec33600,0x3ecd4126,4
+np.float32,0x3e0a43b9,0x3e0b1c69,4
+np.float32,0x7f7511b6,0xbe427083,4
+np.float32,0x3f28c114,0x3f465a73,4
+np.float32,0x3f179e1c,0x3f2c3e7c,4
+np.float32,0x7b2963,0x7b2963,4
+np.float32,0x3f423d06,0x3f72b442,4
+np.float32,0x3f5a24c6,0x3f925508,4
+np.float32,0xff18c834,0xbf79b5c8,4
+np.float32,0x3f401ece,0x3f6eb6ac,4
+np.float32,0x7b8a3013,0xbffab968,4
+np.float32,0x80091ff0,0x80091ff0,4
+np.float32,0x3f389c51,0x3f610b47,4
+np.float32,0x5ea174,0x5ea174,4
+np.float32,0x807a9eb2,0x807a9eb2,4
+np.float32,0x806ce61e,0x806ce61e,4
+np.float32,0xbe956acc,0xbe99cefc,4
+np.float32,0x7e60e247,0xbf5e64a5,4
+np.float32,0x7f398e24,0x404d12ed,4
+np.float32,0x3d9049f8,0x3d908735,4
+np.float32,0x7db17ffc,0xbf5b3d87,4
+np.float32,0xff453f78,0xc0239c9f,4
+np.float32,0x3f024aac,0x3f0ed802,4
+np.float32,0xbe781c30,0xbe7d1508,4
+np.float32,0x3f77962a,0x3fb9a28e,4
+np.float32,0xff7fffff,0x3f1c9eca,4
+np.float32,0x3f7152e3,0x3fb03f9d,4
+np.float32,0xff7cb167,0x3f9ce831,4
+np.float32,0x3e763e30,0x3e7b1a10,4
+np.float32,0xbf126527,0xbf24c253,4
+np.float32,0x803f6660,0x803f6660,4
+np.float32,0xbf79de38,0xbfbd38b1,4
+np.float32,0x8046c2f0,0x8046c2f0,4
+np.float32,0x6dc74e,0x6dc74e,4
+np.float32,0xbec9c45e,0xbed4e768,4
+np.float32,0x3f0eedb6,0x3f1fe610,4
+np.float32,0x7e031999,0xbcc13026,4
+np.float32,0x7efc2fd7,0x41e4b284,4
+np.float32,0xbeab7454,0xbeb22a1b,4
+np.float32,0x805ee67b,0x805ee67b,4
+np.float32,0x7f76e58e,0xc2436659,4
+np.float32,0xbe62b024,0xbe667718,4
+np.float32,0x3eea0808,0x3efbd182,4
+np.float32,0xbf7fd00c,0xbfc70719,4
+np.float32,0x7f27b640,0xbf0d97e0,4
+np.float32,0x3f1b58a4,0x3f31b6f4,4
+np.float32,0x252a9f,0x252a9f,4
+np.float32,0x7f65f95a,0xbead5de3,4
+np.float32,0xfc6ea780,0x42d15801,4
+np.float32,0x7eac4c52,0xc0682424,4
+np.float32,0xbe8a3f5a,0xbe8db54d,4
+np.float32,0xbf1644e2,0xbf2a4abd,4
+np.float32,0x3fc96a,0x3fc96a,4
+np.float32,0x7f38c0e4,0x3cc04af8,4
+np.float32,0x3f623d75,0x3f9c065d,4
+np.float32,0x3ee6a51a,0x3ef7a058,4
+np.float32,0x3dd11020,0x3dd1cacf,4
+np.float32,0xb6918,0xb6918,4
+np.float32,0xfdd7a540,0x3f22f081,4
+np.float32,0x80798563,0x80798563,4
+np.float32,0x3e9a8b7a,0x3e9f6a7e,4
+np.float32,0xbea515d4,0xbeab0df5,4
+np.float32,0xbea9b9f4,0xbeb03abe,4
+np.float32,0xbf11a5fa,0xbf23b478,4
+np.float32,0xfd6cadf0,0xbfa2a878,4
+np.float32,0xbf6edd07,0xbfacbb78,4
+np.float32,0xff5c5328,0x3e2d1552,4
+np.float32,0xbea2f788,0xbea8b3f5,4
+np.float32,0x802efaeb,0x802efaeb,4
+np.float32,0xff1c85e5,0x41f8560e,4
+np.float32,0x3f53b123,0x3f8b18e1,4
+np.float32,0xff798c4a,0x4092e66f,4
+np.float32,0x7f2e6fe7,0xbdcbd58f,4
+np.float32,0xfe8a8196,0x3fd7fc56,4
+np.float32,0x5e7ad4,0x5e7ad4,4
+np.float32,0xbf23a02d,0xbf3e4533,4
+np.float32,0x3f31c55c,0x3f5531bf,4
+np.float32,0x80331be3,0x80331be3,4
+np.float32,0x8056960a,0x8056960a,4
+np.float32,0xff1c06ae,0xbfd26992,4
+np.float32,0xbe0cc4b0,0xbe0da96c,4
+np.float32,0x7e925ad5,0xbf8dba54,4
+np.float32,0x2c8cec,0x2c8cec,4
+np.float32,0x8011951e,0x8011951e,4
+np.float32,0x3f2caf84,0x3f4cb89f,4
+np.float32,0xbd32c220,0xbd32df33,4
+np.float32,0xbec358d6,0xbecd6996,4
+np.float32,0x3f6e4930,0x3fabeb92,4
+np.float32,0xbf6a3afd,0xbfa65a3a,4
+np.float32,0x80067764,0x80067764,4
+np.float32,0x3d8df1,0x3d8df1,4
+np.float32,0x7ee51cf2,0x409e4061,4
+np.float32,0x435f5d,0x435f5d,4
+np.float32,0xbf5b17f7,0xbf936ebe,4
+np.float32,0x3ecaacb5,0x3ed5f81f,4
+np.float32,0x807b0aa5,0x807b0aa5,4
+np.float32,0x52b40b,0x52b40b,4
+np.float32,0x146a97,0x146a97,4
+np.float32,0x7f42b952,0xbfdcb413,4
+np.float32,0xbf1a1af2,0xbf2fe1bb,4
+np.float32,0x3f312034,0x3f541aa2,4
+np.float32,0x3f281d60,0x3f4554f9,4
+np.float32,0x50e451,0x50e451,4
+np.float32,0xbe45838c,0xbe480016,4
+np.float32,0xff7d0aeb,0x3eb0746e,4
+np.float32,0x7f32a489,0xbf96af6d,4
+np.float32,0xbf1b4e27,0xbf31a769,4
+np.float32,0x3f242936,0x3f3f1a44,4
+np.float32,0xbf7482ff,0xbfb4f201,4
+np.float32,0x4bda38,0x4bda38,4
+np.float32,0xbf022208,0xbf0ea2bb,4
+np.float32,0x7d08ca95,0xbe904602,4
+np.float32,0x7ed2f356,0xc02b55ad,4
+np.float32,0xbf131204,0xbf25b734,4
+np.float32,0xff3464b4,0x3fb23706,4
+np.float32,0x5a97cf,0x5a97cf,4
+np.float32,0xbe52db70,0xbe55e388,4
+np.float32,0x3f52934f,0x3f89e2aa,4
+np.float32,0xfeea866a,0x40a2b33f,4
+np.float32,0x80333925,0x80333925,4
+np.float32,0xfef5d13e,0xc00139ec,4
+np.float32,0x3f4750ab,0x3f7c87ad,4
+np.float32,0x3e41bfdd,0x3e44185a,4
+np.float32,0xbf5b0572,0xbf935935,4
+np.float32,0xbe93c9da,0xbe9808d8,4
+np.float32,0x7f501f33,0xc0f9973c,4
+np.float32,0x800af035,0x800af035,4
+np.float32,0x3f29faf8,0x3f4852a8,4
+np.float32,0xbe1e4c20,0xbe1f920c,4
+np.float32,0xbf7e8616,0xbfc4d79d,4
+np.float32,0x43ffbf,0x43ffbf,4
+np.float32,0x7f28e8a9,0xbfa1ac24,4
+np.float32,0xbf1f9f92,0xbf3820bc,4
+np.float32,0x3f07e004,0x3f1641c4,4
+np.float32,0x3ef7ea7f,0x3f06a64a,4
+np.float32,0x7e013101,0x3f6080e6,4
+np.float32,0x7f122a4f,0xbf0a796f,4
+np.float32,0xfe096960,0x3ed7273a,4
+np.float32,0x3f06abf1,0x3f14a4b2,4
+np.float32,0x3e50ded3,0x3e53d0f1,4
+np.float32,0x7f50b346,0x3eabb536,4
+np.float32,0xff5adb0f,0xbd441972,4
+np.float32,0xbecefe46,0xbedb0f66,4
+np.float32,0x7da70bd4,0xbec66273,4
+np.float32,0x169811,0x169811,4
+np.float32,0xbee4dfee,0xbef5721a,4
+np.float32,0x3efbeae3,0x3f0936e6,4
+np.float32,0x8031bd61,0x8031bd61,4
+np.float32,0x8048e443,0x8048e443,4
+np.float32,0xff209aa6,0xbeb364cb,4
+np.float32,0xff477499,0x3c1b0041,4
+np.float32,0x803fe929,0x803fe929,4
+np.float32,0x3f70158b,0x3fae7725,4
+np.float32,0x7f795723,0x3e8e850a,4
+np.float32,0x3cba99,0x3cba99,4
+np.float32,0x80588d2a,0x80588d2a,4
+np.float32,0x805d1f05,0x805d1f05,4
+np.float32,0xff4ac09a,0xbefe614d,4
+np.float32,0x804af084,0x804af084,4
+np.float32,0x7c64ae63,0xc1a8b563,4
+np.float32,0x8078d793,0x8078d793,4
+np.float32,0x7f3e2436,0xbf8bf9d3,4
+np.float32,0x7ccec1,0x7ccec1,4
+np.float32,0xbf6462c7,0xbf9eb830,4
+np.float32,0x3f1002ca,0x3f216843,4
+np.float32,0xfe878ca6,0x409e73a5,4
+np.float32,0x3bd841d9,0x3bd842a7,4
+np.float32,0x7d406f41,0xbd9dcfa3,4
+np.float32,0x7c6d6,0x7c6d6,4
+np.float32,0x3f4ef360,0x3f86074b,4
+np.float32,0x805f534a,0x805f534a,4
+np.float32,0x1,0x1,4
+np.float32,0x3f739ee2,0x3fb39db2,4
+np.float32,0x3d0c2352,0x3d0c3153,4
+np.float32,0xfe8a4f2c,0x3edd8add,4
+np.float32,0x3e52eaa0,0x3e55f362,4
+np.float32,0x7bde9758,0xbf5ba5cf,4
+np.float32,0xff422654,0xbf41e487,4
+np.float32,0x385e5b,0x385e5b,4
+np.float32,0x5751dd,0x5751dd,4
+np.float32,0xff6c671c,0xc03e2d6d,4
+np.float32,0x1458be,0x1458be,4
+np.float32,0x80153d4d,0x80153d4d,4
+np.float32,0x7efd2adb,0x3e25458f,4
+np.float32,0xbe161880,0xbe172e12,4
+np.float32,0x7ecea1aa,0x40a66d79,4
+np.float32,0xbf5b02a2,0xbf9355f0,4
+np.float32,0x15d9ab,0x15d9ab,4
+np.float32,0x2dc7c7,0x2dc7c7,4
+np.float32,0xfebbf81a,0x4193f6e6,4
+np.float32,0xfe8e3594,0xc00a6695,4
+np.float32,0x185aa8,0x185aa8,4
+np.float32,0x3daea156,0x3daf0e00,4
+np.float32,0x3e071688,0x3e07e08e,4
+np.float32,0x802db9e6,0x802db9e6,4
+np.float32,0x7f7be2c4,0x3f1363dd,4
+np.float32,0x7eba3f5e,0xc13eb497,4
+np.float32,0x3de04a00,0x3de130a9,4
+np.float32,0xbf1022bc,0xbf2194eb,4
+np.float32,0xbf5b547e,0xbf93b53b,4
+np.float32,0x3e867bd6,0x3e89aa10,4
+np.float32,0xbea5eb5c,0xbeabfb73,4
+np.float32,0x7f1efae9,0x3ffca038,4
+np.float32,0xff5d0344,0xbe55dbbb,4
+np.float32,0x805167e7,0x805167e7,4
+np.float32,0xbdb3a020,0xbdb41667,4
+np.float32,0xbedea6b4,0xbeedd5fd,4
+np.float32,0x8053b45c,0x8053b45c,4
+np.float32,0x7ed370e9,0x3d90eba5,4
+np.float32,0xbefcd7da,0xbf09cf91,4
+np.float32,0x78b9ac,0x78b9ac,4
+np.float32,0xbf2f6dc0,0xbf5141ef,4
+np.float32,0x802d3a7b,0x802d3a7b,4
+np.float32,0xfd45d120,0x3fec31cc,4
+np.float32,0xbf7e7020,0xbfc4b2af,4
+np.float32,0xf04da,0xf04da,4
+np.float32,0xbe9819d4,0xbe9cbd35,4
+np.float32,0x8075ab35,0x8075ab35,4
+np.float32,0xbf052fdc,0xbf12aa2c,4
+np.float32,0x3f1530d0,0x3f28bd9f,4
+np.float32,0x80791881,0x80791881,4
+np.float32,0x67f309,0x67f309,4
+np.float32,0x3f12f16a,0x3f2588f5,4
+np.float32,0x3ecdac47,0x3ed97ff8,4
+np.float32,0xbf297fb7,0xbf478c39,4
+np.float32,0x8069fa80,0x8069fa80,4
+np.float32,0x807f940e,0x807f940e,4
+np.float32,0xbf648dc8,0xbf9eeecb,4
+np.float32,0x3de873b0,0x3de9748d,4
+np.float32,0x3f1aa645,0x3f30af1f,4
+np.float32,0xff227a62,0x3d8283cc,4
+np.float32,0xbf37187d,0xbf5e5f4c,4
+np.float32,0x803b1b1f,0x803b1b1f,4
+np.float32,0x3f58142a,0x3f8ff8da,4
+np.float32,0x8004339e,0x8004339e,4
+np.float32,0xbf0f5654,0xbf2077a4,4
+np.float32,0x3f17e509,0x3f2ca598,4
+np.float32,0x3f800000,0x3fc75923,4
+np.float32,0xfdf79980,0x42f13047,4
+np.float32,0x7f111381,0x3f13c4c9,4
+np.float32,0xbea40c70,0xbea9e724,4
+np.float32,0x110520,0x110520,4
+np.float32,0x60490d,0x60490d,4
+np.float32,0x3f6703ec,0x3fa21951,4
+np.float32,0xbf098256,0xbf187652,4
+np.float32,0x658951,0x658951,4
+np.float32,0x3f53bf16,0x3f8b2818,4
+np.float32,0xff451811,0xc0026068,4
+np.float32,0x80777ee0,0x80777ee0,4
+np.float32,0x3e4fcc19,0x3e52b286,4
+np.float32,0x7f387ee0,0x3ce93eb6,4
+np.float32,0xff51181f,0xbfca3ee4,4
+np.float32,0xbf5655ae,0xbf8e0304,4
+np.float32,0xff2f1dcd,0x40025471,4
+np.float32,0x7f6e58e5,0xbe9930d5,4
+np.float32,0x7adf11,0x7adf11,4
+np.float32,0xbe9a2bc2,0xbe9f0185,4
+np.float32,0x8065d3a0,0x8065d3a0,4
+np.float32,0x3ed6e826,0x3ee47c45,4
+np.float32,0x80598ea0,0x80598ea0,4
+np.float32,0x7f10b90a,0x40437bd0,4
+np.float32,0x27b447,0x27b447,4
+np.float32,0x7ecd861c,0x3fce250f,4
+np.float32,0x0,0x0,4
+np.float32,0xbeba82d6,0xbec3394c,4
+np.float32,0xbf4958b0,0xbf8048ea,4
+np.float32,0x7c643e,0x7c643e,4
+np.float32,0x580770,0x580770,4
+np.float32,0x805bf54a,0x805bf54a,4
+np.float32,0x7f1f3cee,0xbe1a54d6,4
+np.float32,0xfefefdea,0x3fa84576,4
+np.float32,0x7f007b7a,0x3e8a6d25,4
+np.float32,0xbf177959,0xbf2c0919,4
+np.float32,0xbf30fda0,0xbf53e058,4
+np.float32,0x3f0576be,0x3f130861,4
+np.float32,0x3f49380e,0x3f80283a,4
+np.float32,0xebc56,0xebc56,4
+np.float32,0x654e3b,0x654e3b,4
+np.float32,0x14a4d8,0x14a4d8,4
+np.float32,0xff69b3cb,0xbf822a88,4
+np.float32,0xbe9b6c1c,0xbea06109,4
+np.float32,0xbefddd7e,0xbf0a787b,4
+np.float32,0x4c4ebb,0x4c4ebb,4
+np.float32,0x7d0a74,0x7d0a74,4
+np.float32,0xbebb5f80,0xbec43635,4
+np.float32,0x7ee79723,0xc1c7f3f3,4
+np.float32,0x7f2be4c7,0xbfa6c693,4
+np.float32,0x805bc7d5,0x805bc7d5,4
+np.float32,0x8042f12c,0x8042f12c,4
+np.float32,0x3ef91be8,0x3f07697b,4
+np.float32,0x3cf37ac0,0x3cf38d1c,4
+np.float32,0x800000,0x800000,4
+np.float32,0xbe1ebf4c,0xbe200806,4
+np.float32,0x7f380862,0xbeb512e8,4
+np.float32,0xbe320064,0xbe33d0fc,4
+np.float32,0xff300b0c,0xbfadb805,4
+np.float32,0x308a06,0x308a06,4
+np.float32,0xbf084f6e,0xbf16d7b6,4
+np.float32,0xff47cab6,0x3f892b65,4
+np.float32,0xbed99f4a,0xbee7bfd5,4
+np.float32,0xff7d74c0,0x3ee88c9a,4
+np.float32,0x3c3d23,0x3c3d23,4
+np.float32,0x8074bde8,0x8074bde8,4
+np.float32,0x80042164,0x80042164,4
+np.float32,0x3e97c92a,0x3e9c6500,4
+np.float32,0x3b80e0,0x3b80e0,4
+np.float32,0xbf16646a,0xbf2a783d,4
+np.float32,0x7f3b4cb1,0xc01339be,4
+np.float32,0xbf31f36e,0xbf557fd0,4
+np.float32,0x7f540618,0xbe5f6fc1,4
+np.float32,0x7eee47d0,0x40a27e94,4
+np.float32,0x7f12f389,0xbebed654,4
+np.float32,0x56cff5,0x56cff5,4
+np.float32,0x8056032b,0x8056032b,4
+np.float32,0x3ed34e40,0x3ee02e38,4
+np.float32,0x7d51a908,0xbf19a90e,4
+np.float32,0x80000000,0x80000000,4
+np.float32,0xfdf73fd0,0xbf0f8cad,4
+np.float32,0x7ee4fe6d,0xbf1ea7e4,4
+np.float32,0x1f15ba,0x1f15ba,4
+np.float32,0xd18c3,0xd18c3,4
+np.float32,0x80797705,0x80797705,4
+np.float32,0x7ef07091,0x3f2f3b9a,4
+np.float32,0x7f552f41,0x3faf608c,4
+np.float32,0x3f779977,0x3fb9a7ad,4
+np.float32,0xfe1a7a50,0xbdadc4d1,4
+np.float32,0xbf449cf0,0xbf7740db,4
+np.float32,0xbe44e620,0xbe475cad,4
+np.float32,0x3f63a098,0x3f9dc2b5,4
+np.float32,0xfed40a12,0x4164533a,4
+np.float32,0x7a2bbb,0x7a2bbb,4
+np.float32,0xff7f7b9e,0xbeee8740,4
+np.float32,0x7ee27f8b,0x4233f53b,4
+np.float32,0xbf044c06,0xbf117c28,4
+np.float32,0xbeffde54,0xbf0bc49f,4
+np.float32,0xfeaef2e8,0x3ff258fe,4
+np.float32,0x527451,0x527451,4
+np.float32,0xbcef8d00,0xbcef9e7c,4
+np.float32,0xbf0e20c0,0xbf1ec9b2,4
+np.float32,0x8024afda,0x8024afda,4
+np.float32,0x7ef6cb3e,0x422cad0b,4
+np.float32,0x3c120,0x3c120,4
+np.float32,0xbf125c8f,0xbf24b62c,4
+np.float32,0x7e770a93,0x402c9d86,4
+np.float32,0xbd30a4e0,0xbd30c0ee,4
+np.float32,0xbf4d3388,0xbf843530,4
+np.float32,0x3f529072,0x3f89df92,4
+np.float32,0xff0270b1,0xbf81be9a,4
+np.float32,0x5e07e7,0x5e07e7,4
+np.float32,0x7bec32,0x7bec32,4
+np.float32,0x7fc00000,0x7fc00000,4
+np.float32,0x3e3ba5e0,0x3e3dc6e9,4
+np.float32,0x3ecb62d4,0x3ed6ce2c,4
+np.float32,0x3eb3dde8,0x3ebba68f,4
+np.float32,0x8063f952,0x8063f952,4
+np.float32,0x7f204aeb,0x3e88614e,4
+np.float32,0xbeae1ddc,0xbeb5278e,4
+np.float32,0x6829e9,0x6829e9,4
+np.float32,0xbf361a99,0xbf5ca354,4
+np.float32,0xbf24fbe6,0xbf406326,4
+np.float32,0x3f329d41,0x3f56a061,4
+np.float32,0xfed6d666,0x3e8f71a5,4
+np.float32,0x337f92,0x337f92,4
+np.float32,0xbe1c4970,0xbe1d8305,4
+np.float32,0xbe6b7e18,0xbe6fbbde,4
+np.float32,0x3f2267b9,0x3f3c61da,4
+np.float32,0xbee1ee94,0xbef1d628,4
+np.float32,0x7ecffc1a,0x3f02987e,4
+np.float32,0xbe9b1306,0xbe9fff3b,4
+np.float32,0xbeffacae,0xbf0ba468,4
+np.float32,0x7f800000,0xffc00000,4
+np.float32,0xfefc9aa8,0xc19de2a3,4
+np.float32,0x7d7185bb,0xbf9090ec,4
+np.float32,0x7edfbafd,0x3fe9352f,4
+np.float32,0x4ef2ec,0x4ef2ec,4
+np.float32,0x7f4cab2e,0xbff4e5dd,4
+np.float32,0xff3b1788,0x3e3c22e9,4
+np.float32,0x4e15ee,0x4e15ee,4
+np.float32,0xbf5451e6,0xbf8bc8a7,4
+np.float32,0x3f7f6d2e,0x3fc65e8b,4
+np.float32,0xbf1d9184,0xbf35071b,4
+np.float32,0xbf3a81cf,0xbf646d9b,4
+np.float32,0xbe71acc4,0xbe7643ab,4
+np.float32,0x528b7d,0x528b7d,4
+np.float32,0x2cb1d0,0x2cb1d0,4
+np.float32,0x3f324bf8,0x3f56161a,4
+np.float32,0x80709a21,0x80709a21,4
+np.float32,0x4bc448,0x4bc448,4
+np.float32,0x3e8bd600,0x3e8f6b7a,4
+np.float32,0xbeb97d30,0xbec20dd6,4
+np.float32,0x2a5669,0x2a5669,4
+np.float32,0x805f2689,0x805f2689,4
+np.float32,0xfe569f50,0x3fc51952,4
+np.float32,0x1de44c,0x1de44c,4
+np.float32,0x3ec7036c,0x3ed1ae67,4
+np.float32,0x8052b8e5,0x8052b8e5,4
+np.float32,0xff740a6b,0x3f4981a8,4
+np.float32,0xfee9bb70,0xc05e23be,4
+np.float32,0xff4e12c9,0x4002b4ad,4
+np.float32,0x803de0c2,0x803de0c2,4
+np.float32,0xbf433a07,0xbf74966f,4
+np.float32,0x803e60ca,0x803e60ca,4
+np.float32,0xbf19ee98,0xbf2fa07a,4
+np.float32,0x92929,0x92929,4
+np.float32,0x7f709c27,0x4257ba2d,4
+np.float32,0x803167c6,0x803167c6,4
+np.float32,0xbf095ead,0xbf184607,4
+np.float32,0x617060,0x617060,4
+np.float32,0x2d85b3,0x2d85b3,4
+np.float32,0x53d20b,0x53d20b,4
+np.float32,0x3e046838,0x3e052666,4
+np.float32,0xbe7c5fdc,0xbe80ce4b,4
+np.float32,0x3d18d060,0x3d18e289,4
+np.float32,0x804dc031,0x804dc031,4
+np.float32,0x3f224166,0x3f3c26cd,4
+np.float32,0x7d683e3c,0xbea24f25,4
+np.float32,0xbf3a92aa,0xbf648be4,4
+np.float32,0x8072670b,0x8072670b,4
+np.float32,0xbe281aec,0xbe29a1bc,4
+np.float32,0x7f09d918,0xc0942490,4
+np.float32,0x7ca9fd07,0x4018b990,4
+np.float32,0x7d36ac5d,0x3cf57184,4
+np.float32,0x8039b62f,0x8039b62f,4
+np.float32,0x6cad7b,0x6cad7b,4
+np.float32,0x3c0fd9ab,0x3c0fda9d,4
+np.float32,0x80299883,0x80299883,4
+np.float32,0x3c2d0e3e,0x3c2d0fe4,4
+np.float32,0x8002cf62,0x8002cf62,4
+np.float32,0x801dde97,0x801dde97,4
+np.float32,0x80411856,0x80411856,4
+np.float32,0x6ebce8,0x6ebce8,4
+np.float32,0x7b7d1a,0x7b7d1a,4
+np.float32,0x8031d3de,0x8031d3de,4
+np.float32,0x8005c4ab,0x8005c4ab,4
+np.float32,0xbf7dd803,0xbfc3b3ef,4
+np.float32,0x8017ae60,0x8017ae60,4
+np.float32,0xfe9316ce,0xbfe0544a,4
+np.float32,0x3f136bfe,0x3f2636ff,4
+np.float32,0x3df87b80,0x3df9b57d,4
+np.float32,0xff44c356,0xbf11c7ad,4
+np.float32,0x4914ae,0x4914ae,4
+np.float32,0x80524c21,0x80524c21,4
+np.float32,0x805c7dc8,0x805c7dc8,4
+np.float32,0xfed3c0aa,0xbff0c0ab,4
+np.float32,0x7eb2bfbb,0xbf4600bc,4
+np.float32,0xfec8df84,0x3f5bd350,4
+np.float32,0x3e5431a4,0x3e5748c3,4
+np.float32,0xbee6a3a0,0xbef79e86,4
+np.float32,0xbf6cc9b2,0xbfa9d61a,4
+np.float32,0x3f132bd5,0x3f25dbd9,4
+np.float32,0x7e6d2e48,0x3f9d025b,4
+np.float32,0x3edf430c,0x3eee942d,4
+np.float32,0x3f0d1b8a,0x3f1d60e1,4
+np.float32,0xbdf2f688,0xbdf41bfb,4
+np.float32,0xbe47a284,0xbe4a33ff,4
+np.float32,0x3eaa9fbc,0x3eb13be7,4
+np.float32,0xfe98d45e,0x3eb84517,4
+np.float32,0x7efc23b3,0x3dcc1c99,4
+np.float32,0x3ca36242,0x3ca367ce,4
+np.float32,0x3f76a944,0x3fb834e3,4
+np.float32,0xbf45207c,0xbf783f9b,4
+np.float32,0x3e7c1220,0x3e80a4f8,4
+np.float32,0x3f018200,0x3f0dd14e,4
+np.float32,0x3f53cdde,0x3f8b3839,4
+np.float32,0xbdbacb58,0xbdbb5063,4
+np.float32,0x804af68d,0x804af68d,4
+np.float32,0x3e2c12fc,0x3e2db65b,4
+np.float32,0x3f039433,0x3f10895a,4
+np.float32,0x7ef5193d,0x3f4115f7,4
+np.float32,0x8030afbe,0x8030afbe,4
+np.float32,0x3f06fa2a,0x3f150d5d,4
+np.float32,0x3f124442,0x3f2493d2,4
+np.float32,0xbeb5b792,0xbebdc090,4
+np.float32,0xbedc90a4,0xbeeb4de9,4
+np.float32,0x3f3ff8,0x3f3ff8,4
+np.float32,0x3ee75bc5,0x3ef881e4,4
+np.float32,0xfe80e3de,0xbf5cd535,4
+np.float32,0xf52eb,0xf52eb,4
+np.float32,0x80660ee8,0x80660ee8,4
+np.float32,0x3e173a58,0x3e185648,4
+np.float32,0xfe49520c,0xbf728d7c,4
+np.float32,0xbecbb8ec,0xbed73373,4
+np.float32,0xbf027ae0,0xbf0f173e,4
+np.float32,0xbcab6740,0xbcab6da8,4
+np.float32,0xbf2a15e2,0xbf487e11,4
+np.float32,0x3b781b,0x3b781b,4
+np.float32,0x44f559,0x44f559,4
+np.float32,0xff6a0ca6,0xc174d7c3,4
+np.float32,0x6460ef,0x6460ef,4
+np.float32,0xfe58009c,0x3ee2bb30,4
+np.float32,0xfec3c038,0x3e30d617,4
+np.float32,0x7f0687c0,0xbf62c820,4
+np.float32,0xbf44655e,0xbf76d589,4
+np.float32,0xbf42968c,0xbf735e78,4
+np.float32,0x80385503,0x80385503,4
+np.float32,0xbea7e3a2,0xbeae2d59,4
+np.float32,0x3dd0b770,0x3dd17131,4
+np.float32,0xbf4bc185,0xbf82b907,4
+np.float32,0xfefd7d64,0xbee05650,4
+np.float32,0xfaac3c00,0xbff23bc9,4
+np.float32,0xbf562f0d,0xbf8dd7f4,4
+np.float32,0x7fa00000,0x7fe00000,4
+np.float32,0x3e01bdb8,0x3e027098,4
+np.float32,0x3e2868ab,0x3e29f19e,4
+np.float32,0xfec55f2e,0x3f39f304,4
+np.float32,0xed4e,0xed4e,4
+np.float32,0x3e2b7330,0x3e2d11fa,4
+np.float32,0x7f738542,0x40cbbe16,4
+np.float32,0x3f123521,0x3f247e71,4
+np.float32,0x73572c,0x73572c,4
+np.float32,0x804936c8,0x804936c8,4
+np.float32,0x803b80d8,0x803b80d8,4
+np.float32,0x7f566c57,0xbee2855a,4
+np.float32,0xff0e3bd8,0xbff0543f,4
+np.float32,0x7d2b2fe7,0xbf94ba4c,4
+np.float32,0xbf0da470,0xbf1e1dc2,4
+np.float32,0xbd276500,0xbd277ce0,4
+np.float32,0xfcd15dc0,0x403ccc2a,4
+np.float32,0x80071e59,0x80071e59,4
+np.float32,0xbe9b0c34,0xbe9ff7be,4
+np.float32,0x3f4f9069,0x3f86ac50,4
+np.float32,0x80042a95,0x80042a95,4
+np.float32,0x7de28e39,0x3bc9b7f4,4
+np.float32,0xbf641935,0xbf9e5af8,4
+np.float32,0x8034f068,0x8034f068,4
+np.float32,0xff33a3d2,0xbf408e75,4
+np.float32,0xbcc51540,0xbcc51efc,4
+np.float32,0xff6d1ddf,0x3ef58f0e,4
+np.float32,0xbf64dfc4,0xbf9f5725,4
+np.float32,0xff068a06,0x3eea8987,4
+np.float32,0xff01c0af,0x3f24cdfe,4
+np.float32,0x3f4def7e,0x3f84f802,4
+np.float32,0xbf1b4ae7,0xbf31a299,4
+np.float32,0x8077df2d,0x8077df2d,4
+np.float32,0x3f0155c5,0x3f0d9785,4
+np.float32,0x5a54b2,0x5a54b2,4
+np.float32,0x7f271f9e,0x3efb2ef3,4
+np.float32,0xbf0ff2ec,0xbf215217,4
+np.float32,0x7f500130,0xbf8a7fdd,4
+np.float32,0xfed9891c,0xbf65c872,4
+np.float32,0xfecbfaae,0x403bdbc2,4
+np.float32,0x3f3a5aba,0x3f642772,4
+np.float32,0x7ebc681e,0xbd8df059,4
+np.float32,0xfe05e400,0xbfe35d74,4
+np.float32,0xbf295ace,0xbf4750ea,4
+np.float32,0x7ea055b2,0x3f62d6be,4
+np.float32,0xbd00b520,0xbd00bff9,4
+np.float32,0xbf7677aa,0xbfb7e8cf,4
+np.float32,0x3e83f788,0x3e86f816,4
+np.float32,0x801f6710,0x801f6710,4
+np.float32,0x801133cc,0x801133cc,4
+np.float32,0x41da2a,0x41da2a,4
+np.float32,0xff1622fd,0x3f023650,4
+np.float32,0x806c7a72,0x806c7a72,4
+np.float32,0x3f10779c,0x3f220bb4,4
+np.float32,0xbf08cf94,0xbf17848d,4
+np.float32,0xbecb55b4,0xbed6bebd,4
+np.float32,0xbf0a1528,0xbf193d7b,4
+np.float32,0x806a16bd,0x806a16bd,4
+np.float32,0xc222a,0xc222a,4
+np.float32,0x3930de,0x3930de,4
+np.float32,0x3f5c3588,0x3f94bca2,4
+np.float32,0x1215ad,0x1215ad,4
+np.float32,0x3ed15030,0x3eddcf67,4
+np.float32,0x7da83b2e,0x3fce0d39,4
+np.float32,0x32b0a8,0x32b0a8,4
+np.float32,0x805aed6b,0x805aed6b,4
+np.float32,0x3ef8e02f,0x3f074346,4
+np.float32,0xbdeb6780,0xbdec7250,4
+np.float32,0x3f6e3cec,0x3fabda61,4
+np.float32,0xfefd467a,0x3ef7821a,4
+np.float32,0xfef090fe,0x3bb752a2,4
+np.float32,0x8019c538,0x8019c538,4
+np.float32,0x3e8cf284,0x3e909e81,4
+np.float32,0xbe6c6618,0xbe70b0a2,4
+np.float32,0x7f50a539,0x3f367be1,4
+np.float32,0x8019fe2f,0x8019fe2f,4
+np.float32,0x800c3f48,0x800c3f48,4
+np.float32,0xfd054cc0,0xc0f52802,4
+np.float32,0x3d0cca20,0x3d0cd853,4
+np.float32,0xbf4a7c44,0xbf816e74,4
+np.float32,0x3f46fc40,0x3f7be153,4
+np.float32,0x807c5849,0x807c5849,4
+np.float32,0xd7e41,0xd7e41,4
+np.float32,0x70589b,0x70589b,4
+np.float32,0x80357b95,0x80357b95,4
+np.float32,0x3de239f0,0x3de326a5,4
+np.float32,0x800b08e3,0x800b08e3,4
+np.float32,0x807ec946,0x807ec946,4
+np.float32,0x3e2e4b83,0x3e2fff76,4
+np.float32,0x3f198e0f,0x3f2f12a6,4
+np.float32,0xbecb1aca,0xbed67979,4
+np.float32,0x80134082,0x80134082,4
+np.float32,0x3f3a269f,0x3f63ca05,4
+np.float32,0x3f1381e4,0x3f265622,4
+np.float32,0xff293080,0xbf10be6f,4
+np.float32,0xff800000,0xffc00000,4
+np.float32,0x37d196,0x37d196,4
+np.float32,0x7e57eea7,0x3e7d8138,4
+np.float32,0x804b1dae,0x804b1dae,4
+np.float32,0x7d9508f9,0xc1075b35,4
+np.float32,0x3f7bf468,0x3fc095e0,4
+np.float32,0x55472c,0x55472c,4
+np.float32,0x3ecdcd86,0x3ed9a738,4
+np.float32,0x3ed9be0f,0x3ee7e4e9,4
+np.float32,0x3e7e0ddb,0x3e81b2fe,4
+np.float32,0x7ee6c1d3,0x3f850634,4
+np.float32,0x800f6fad,0x800f6fad,4
+np.float32,0xfefb3bd6,0xbff68ecc,4
+np.float32,0x8013d6e2,0x8013d6e2,4
+np.float32,0x3f3a2cb6,0x3f63d4ee,4
+np.float32,0xff383c84,0x3e7854bb,4
+np.float32,0x3f21946e,0x3f3b1cea,4
+np.float32,0xff322ea2,0x3fb22f31,4
+np.float32,0x8065a024,0x8065a024,4
+np.float32,0x7f395e30,0xbefe0de1,4
+np.float32,0x5b52db,0x5b52db,4
+np.float32,0x7f7caea7,0x3dac8ded,4
+np.float32,0xbf0431f8,0xbf1159b2,4
+np.float32,0x7f15b25b,0xc02a3833,4
+np.float32,0x80131abc,0x80131abc,4
+np.float32,0x7e829d81,0xbeb2e93d,4
+np.float32,0x3f2c64d7,0x3f4c3e4d,4
+np.float32,0x7f228d48,0xc1518c74,4
+np.float32,0xfc3c6f40,0xbf00d585,4
+np.float32,0x7f754f0f,0x3e2152f5,4
+np.float32,0xff65d32b,0xbe8bd56c,4
+np.float32,0xfea6b8c0,0x41608655,4
+np.float32,0x3f7d4b05,0x3fc2c96a,4
+np.float32,0x3f463230,0x3f7a54da,4
+np.float32,0x805117bb,0x805117bb,4
+np.float32,0xbf2ad4f7,0xbf49b30e,4
+np.float32,0x3eaa01ff,0x3eb08b56,4
+np.float32,0xff7a02bb,0x3f095f73,4
+np.float32,0x759176,0x759176,4
+np.float32,0x803c18d5,0x803c18d5,4
+np.float32,0xbe0722d8,0xbe07ed16,4
+np.float32,0x3f4b4a99,0x3f823fc6,4
+np.float32,0x3f7d0451,0x3fc25463,4
+np.float32,0xfee31e40,0xbfb41091,4
+np.float32,0xbf733d2c,0xbfb30cf1,4
+np.float32,0x7ed81015,0x417c380c,4
+np.float32,0x7daafc3e,0xbe2a37ed,4
+np.float32,0x3e44f82b,0x3e476f67,4
+np.float32,0x7c8d99,0x7c8d99,4
+np.float32,0x3f7aec5a,0x3fbee991,4
+np.float32,0xff09fd55,0x3e0709d3,4
+np.float32,0xff4ba4df,0x4173c01f,4
+np.float32,0x3f43d944,0x3f75c7bd,4
+np.float32,0xff6a9106,0x40a10eff,4
+np.float32,0x3bc8341c,0x3bc834bf,4
+np.float32,0x3eea82,0x3eea82,4
+np.float32,0xfea36a3c,0x435729b2,4
+np.float32,0x7dcc1fb0,0x3e330053,4
+np.float32,0x3f616ae6,0x3f9b01ae,4
+np.float32,0x8030963f,0x8030963f,4
+np.float32,0x10d1e2,0x10d1e2,4
+np.float32,0xfeb9a8a6,0x40e6daac,4
+np.float32,0xbe1aba00,0xbe1bea3a,4
+np.float32,0x3cb6b4ea,0x3cb6bcac,4
+np.float32,0x3d8b0b64,0x3d8b422f,4
+np.float32,0x7b6894,0x7b6894,4
+np.float32,0x3e89dcde,0x3e8d4b4b,4
+np.float32,0x3f12b952,0x3f253974,4
+np.float32,0x1c316c,0x1c316c,4
+np.float32,0x7e2da535,0x3f95fe6b,4
+np.float32,0x3ae9a494,0x3ae9a4a4,4
+np.float32,0xbc5f5500,0xbc5f588b,4
+np.float32,0x3e7850fc,0x3e7d4d0e,4
+np.float32,0xbf800000,0xbfc75923,4
+np.float32,0x3e652d69,0x3e691502,4
+np.float32,0xbf6bdd26,0xbfa89129,4
+np.float32,0x3f441cfc,0x3f764a02,4
+np.float32,0x7f5445ff,0xc0906191,4
+np.float32,0x807b2ee3,0x807b2ee3,4
+np.float32,0xbeb6cab8,0xbebef9c0,4
+np.float32,0xff737277,0xbf327011,4
+np.float32,0xfc832aa0,0x402fd52e,4
+np.float32,0xbf0c7538,0xbf1c7c0f,4
+np.float32,0x7e1301c7,0xbf0ee63e,4
+np.float64,0xbfe0ef7df7a1defc,0xbfe2b76a8d8aeb35,1
+np.float64,0x7fdd9c2eae3b385c,0xbfc00d6885485039,1
+np.float64,0xbfb484c710290990,0xbfb4900e0a527555,1
+np.float64,0x7fe73e5d6cee7cba,0x3fefbf70a56b60d3,1
+np.float64,0x800a110aa8d42216,0x800a110aa8d42216,1
+np.float64,0xffedd4f3f3bba9e7,0xbff076f8c4124919,1
+np.float64,0x800093407f812682,0x800093407f812682,1
+np.float64,0x800a23150e54462a,0x800a23150e54462a,1
+np.float64,0xbfb1076864220ed0,0xbfb10dd95a74b733,1
+np.float64,0x3fed1f8b37fa3f16,0x3ff496100985211f,1
+np.float64,0x3fdf762f84beec5f,0x3fe1223eb04a17e0,1
+np.float64,0x53fd4e0aa7faa,0x53fd4e0aa7faa,1
+np.float64,0x3fdbd283bdb7a507,0x3fddb7ec9856a546,1
+np.float64,0xbfe43f449d687e89,0xbfe77724a0d3072b,1
+np.float64,0x618b73bcc316f,0x618b73bcc316f,1
+np.float64,0x67759424ceeb3,0x67759424ceeb3,1
+np.float64,0xbfe4b6f7d9a96df0,0xbfe831371f3bd7a8,1
+np.float64,0x800a531b8b74a637,0x800a531b8b74a637,1
+np.float64,0xffeeffd5c37dffab,0x3fea140cbc2c3726,1
+np.float64,0x3fe648e2002c91c4,0x3feac1b8816f972a,1
+np.float64,0x800f16242a1e2c48,0x800f16242a1e2c48,1
+np.float64,0xffeeff8e1dbdff1b,0xc000b555f117dce7,1
+np.float64,0x3fdf1cf73fbe39f0,0x3fe0e9032401135b,1
+np.float64,0x7fe19c388b633870,0x3fd5271b69317d5b,1
+np.float64,0x918f226d231e5,0x918f226d231e5,1
+np.float64,0x4cc19ab499834,0x4cc19ab499834,1
+np.float64,0xbd3121d57a624,0xbd3121d57a624,1
+np.float64,0xbfd145d334a28ba6,0xbfd1b468866124d6,1
+np.float64,0x8bdbf41517b7f,0x8bdbf41517b7f,1
+np.float64,0x3fd1b8cb3ea37198,0x3fd2306b13396cae,1
+np.float64,0xbfd632a959ac6552,0xbfd7220fcfb5ef78,1
+np.float64,0x1cdaafc639b57,0x1cdaafc639b57,1
+np.float64,0x3febdcce1577b99c,0x3ff2fe076195a2bc,1
+np.float64,0x7fca6e945934dd28,0x3ff43040df7024e8,1
+np.float64,0x3fbe08e78e3c11cf,0x3fbe2c60e6b48f75,1
+np.float64,0x7fc1ed0d0523da19,0x3ff55f8dcad9440f,1
+np.float64,0xbfdc729b8cb8e538,0xbfde7b6e15dd60c4,1
+np.float64,0x3fd219404f243281,0x3fd298d7b3546531,1
+np.float64,0x3fe715c3f56e2b88,0x3fec255b5a59456e,1
+np.float64,0x7fe8b88e74b1711c,0x3ff60efd2c81d13d,1
+np.float64,0xa1d2b9fd43a57,0xa1d2b9fd43a57,1
+np.float64,0xffc1818223230304,0xbfb85c6c1e8018e7,1
+np.float64,0x3fde38ac8b3c7159,0x3fe0580c7e228576,1
+np.float64,0x8008faf7b491f5f0,0x8008faf7b491f5f0,1
+np.float64,0xffe7a1d751af43ae,0xbf7114cd7bbcd981,1
+np.float64,0xffec2db1b4b85b62,0xbff5cae759667f83,1
+np.float64,0x7fefce1ae27f9c35,0x3ff4b8b88f4876cf,1
+np.float64,0x7fd1ff56a523feac,0xbff342ce192f14dd,1
+np.float64,0x80026b3e3f84d67d,0x80026b3e3f84d67d,1
+np.float64,0xffedee5879bbdcb0,0xc02fae11508b2be0,1
+np.float64,0x8003c0dc822781ba,0x8003c0dc822781ba,1
+np.float64,0xffe38a79eca714f4,0xc008aa23b7a63980,1
+np.float64,0xbfda70411eb4e082,0xbfdc0d7e29c89010,1
+np.float64,0x800a5e34f574bc6a,0x800a5e34f574bc6a,1
+np.float64,0x3fc19fac6e233f59,0x3fc1bc66ac0d73d4,1
+np.float64,0x3a8a61ea7514d,0x3a8a61ea7514d,1
+np.float64,0x3fb57b536e2af6a0,0x3fb588451f72f44c,1
+np.float64,0x7fd68c6d082d18d9,0xc032ac926b665c9a,1
+np.float64,0xd5b87cfdab710,0xd5b87cfdab710,1
+np.float64,0xfe80b20bfd017,0xfe80b20bfd017,1
+np.float64,0x3fef8781e37f0f04,0x3ff8215fe2c1315a,1
+np.float64,0xffedddbb9c3bbb76,0x3fd959b82258a32a,1
+np.float64,0x3fc7d41f382fa83e,0x3fc81b94c3a091ba,1
+np.float64,0xffc3275dcf264ebc,0x3fb2b3d4985c6078,1
+np.float64,0x7fe34d2b7ba69a56,0x40001f3618e3c7c9,1
+np.float64,0x3fd64ae35fac95c7,0x3fd73d77e0b730f8,1
+np.float64,0x800e53bf6b3ca77f,0x800e53bf6b3ca77f,1
+np.float64,0xbfddf7c9083bef92,0xbfe02f392744d2d1,1
+np.float64,0x1c237cc038471,0x1c237cc038471,1
+np.float64,0x3fe4172beea82e58,0x3fe739b4bf16bc7e,1
+np.float64,0xfa950523f52a1,0xfa950523f52a1,1
+np.float64,0xffc839a2c5307344,0xbff70ff8a3c9247f,1
+np.float64,0x264f828c4c9f1,0x264f828c4c9f1,1
+np.float64,0x148a650a2914e,0x148a650a2914e,1
+np.float64,0x3fe8d255c0b1a4ac,0x3fef623c3ea8d6e3,1
+np.float64,0x800f4fbb28be9f76,0x800f4fbb28be9f76,1
+np.float64,0x7fdca57bcfb94af7,0x3ff51207563fb6cb,1
+np.float64,0x3fe4944107692882,0x3fe7fad593235364,1
+np.float64,0x800119b4f1a2336b,0x800119b4f1a2336b,1
+np.float64,0xbfe734075e6e680e,0xbfec5b35381069f2,1
+np.float64,0xffeb3c00db767801,0xbfbbd7d22df7b4b3,1
+np.float64,0xbfe95c658cb2b8cb,0xbff03ad5e0bc888a,1
+np.float64,0xffeefeb58fbdfd6a,0xbfd5c9264deb0e11,1
+np.float64,0x7fccc80fde39901f,0xc012c60f914f3ca2,1
+np.float64,0x3fe5da289c2bb451,0x3fea07ad00a0ca63,1
+np.float64,0x800e364b0a5c6c96,0x800e364b0a5c6c96,1
+np.float64,0x3fcf9ea7d23f3d50,0x3fd023b72e8c9dcf,1
+np.float64,0x800a475cfc948eba,0x800a475cfc948eba,1
+np.float64,0xffd4e0d757a9c1ae,0xbfa89d573352e011,1
+np.float64,0xbfd4dbec8229b7da,0xbfd5a165f12c7c40,1
+np.float64,0xffe307ab51260f56,0x3fe6b1639da58c3f,1
+np.float64,0xbfe6955a546d2ab4,0xbfeb44ae2183fee9,1
+np.float64,0xbfca1f18f5343e30,0xbfca7d804ccccdf4,1
+np.float64,0xe9f4dfebd3e9c,0xe9f4dfebd3e9c,1
+np.float64,0xfff0000000000000,0xfff8000000000000,1
+np.float64,0x8008e69c0fb1cd38,0x8008e69c0fb1cd38,1
+np.float64,0xbfead1ccf975a39a,0xbff1c84b3db8ca93,1
+np.float64,0x25a982424b531,0x25a982424b531,1
+np.float64,0x8010000000000000,0x8010000000000000,1
+np.float64,0x80056204ea0ac40b,0x80056204ea0ac40b,1
+np.float64,0x800d1442d07a2886,0x800d1442d07a2886,1
+np.float64,0xbfaef3dadc3de7b0,0xbfaefd85ae6205f0,1
+np.float64,0x7fe969ce4b32d39c,0xbff3c4364fc6778f,1
+np.float64,0x7fe418bac0a83175,0x402167d16b1efe0b,1
+np.float64,0x3fd7c82a25af9054,0x3fd8f0c701315672,1
+np.float64,0x80013782a7826f06,0x80013782a7826f06,1
+np.float64,0x7fc031c7ee20638f,0x400747ab705e6904,1
+np.float64,0x3fe8cf327ff19e65,0x3fef5c14f8aafa89,1
+np.float64,0xbfe331a416a66348,0xbfe5e2290a098dd4,1
+np.float64,0x800607b2116c0f65,0x800607b2116c0f65,1
+np.float64,0x7fb40448f0280891,0xbfd43d4f0ffa1d64,1
+np.float64,0x7fefffffffffffff,0xbf74530cfe729484,1
+np.float64,0x3fe39b5444a736a9,0x3fe67eaa0b6acf27,1
+np.float64,0x3fee4733c4fc8e68,0x3ff631eabeef9696,1
+np.float64,0xbfec840f3b79081e,0xbff3cc8563ab2e74,1
+np.float64,0xbfc8f6854c31ed0c,0xbfc948caacb3bba0,1
+np.float64,0xffbcf754a639eea8,0xbfc88d17cad3992b,1
+np.float64,0x8000bd3163417a64,0x8000bd3163417a64,1
+np.float64,0x3fe766d0eaeecda2,0x3fecb660882f7024,1
+np.float64,0xb6cc30156d986,0xb6cc30156d986,1
+np.float64,0xffc0161f9f202c40,0x3fe19bdefe5cf8b1,1
+np.float64,0xffe1e462caa3c8c5,0x3fe392c47feea17b,1
+np.float64,0x30a36a566146e,0x30a36a566146e,1
+np.float64,0x3fa996f580332deb,0x3fa99c6b4f2abebe,1
+np.float64,0x3fba71716e34e2e0,0x3fba899f35edba1d,1
+np.float64,0xbfe8f7e5e971efcc,0xbfefac431a0e3d55,1
+np.float64,0xf48f1803e91e3,0xf48f1803e91e3,1
+np.float64,0x7fe3edc0a127db80,0xc03d1a579a5d74a8,1
+np.float64,0xffeba82056375040,0x3fdfd701308700db,1
+np.float64,0xbfeb5a924cf6b524,0xbff2640de7cd107f,1
+np.float64,0xfa4cd1a9f499a,0xfa4cd1a9f499a,1
+np.float64,0x800de1be7b9bc37d,0x800de1be7b9bc37d,1
+np.float64,0xffd44e56ad289cae,0x3fdf4b8085db9b67,1
+np.float64,0xbfe4fb3aea69f676,0xbfe89d2cc46fcc50,1
+np.float64,0xbfe596495d6b2c92,0xbfe997a589a1f632,1
+np.float64,0x6f55a2b8deab5,0x6f55a2b8deab5,1
+np.float64,0x7fe72dc4712e5b88,0x4039c4586b28c2bc,1
+np.float64,0x89348bd712692,0x89348bd712692,1
+np.float64,0xffe062156120c42a,0x4005f0580973bc77,1
+np.float64,0xbfeabc714d7578e2,0xbff1b07e2fa57dc0,1
+np.float64,0x8003a56b3e874ad7,0x8003a56b3e874ad7,1
+np.float64,0x800eeadfb85dd5c0,0x800eeadfb85dd5c0,1
+np.float64,0x46d77a4c8daf0,0x46d77a4c8daf0,1
+np.float64,0x8000c06e7dc180de,0x8000c06e7dc180de,1
+np.float64,0x3fe428d211e851a4,0x3fe754b1c00a89bc,1
+np.float64,0xc5be11818b7c2,0xc5be11818b7c2,1
+np.float64,0x7fefc244893f8488,0x401133dc54f52de5,1
+np.float64,0x3fde30eee93c61de,0x3fe0532b827543a6,1
+np.float64,0xbfd447f48b288fea,0xbfd4fd0654f90718,1
+np.float64,0xbfde98dc7b3d31b8,0xbfe094df12f84a06,1
+np.float64,0x3fed2c1a1dfa5834,0x3ff4a6c4f3470a65,1
+np.float64,0xbfe992165073242d,0xbff071ab039c9177,1
+np.float64,0x3fd0145d1b2028ba,0x3fd06d3867b703dc,1
+np.float64,0x3fe179457362f28b,0x3fe3722f1d045fda,1
+np.float64,0x800e28964fbc512d,0x800e28964fbc512d,1
+np.float64,0x8004a5d785294bb0,0x8004a5d785294bb0,1
+np.float64,0xbfd652f2272ca5e4,0xbfd7469713125120,1
+np.float64,0x7fe61f49036c3e91,0xbf9b6ccdf2d87e70,1
+np.float64,0xffb7d47dd02fa8f8,0xc004449a82320b13,1
+np.float64,0x3feb82f996b705f3,0x3ff29336c738a4c5,1
+np.float64,0x3fbb7fceea36ffa0,0x3fbb9b02c8ad7f93,1
+np.float64,0x80004519fb208a35,0x80004519fb208a35,1
+np.float64,0xbfe0539114e0a722,0xbfe1e86dc5aa039c,1
+np.float64,0x0,0x0,1
+np.float64,0xbfe99d1125f33a22,0xbff07cf8ec04300f,1
+np.float64,0xffd4fbeecc29f7de,0x3ffab76775a8455f,1
+np.float64,0xbfbf1c618e3e38c0,0xbfbf43d2764a8333,1
+np.float64,0x800cae02a9d95c06,0x800cae02a9d95c06,1
+np.float64,0x3febc47d3bf788fa,0x3ff2e0d7cf8ef509,1
+np.float64,0x3fef838f767f071f,0x3ff81aeac309bca0,1
+np.float64,0xbfd5e70716abce0e,0xbfd6ccb033ef7a35,1
+np.float64,0x3f9116fa60222df5,0x3f9117625f008e0b,1
+np.float64,0xffe02b1e5f20563c,0xbfe6b2ec293520b7,1
+np.float64,0xbf9b5aec3036b5e0,0xbf9b5c96c4c7f951,1
+np.float64,0xfdb0169bfb603,0xfdb0169bfb603,1
+np.float64,0x7fcdd1d51c3ba3a9,0x401f0e12fa0b7570,1
+np.float64,0xbfd088103fa11020,0xbfd0e8c4a333ffb2,1
+np.float64,0x3fe22df82ee45bf0,0x3fe46d03a7c14de2,1
+np.float64,0xbfd57b0c28aaf618,0xbfd65349a6191de5,1
+np.float64,0x3fe0a42f50a1485f,0x3fe252e26775d9a4,1
+np.float64,0x800fab4e363f569c,0x800fab4e363f569c,1
+np.float64,0xffe9f0ed63f3e1da,0xbfe278c341b171d5,1
+np.float64,0x7fe26c244664d848,0xbfb325269dad1996,1
+np.float64,0xffe830410bf06081,0xc00181a39f606e96,1
+np.float64,0x800c548a0c78a914,0x800c548a0c78a914,1
+np.float64,0x800f94761ebf28ec,0x800f94761ebf28ec,1
+np.float64,0x3fe5984845eb3091,0x3fe99aeb653c666d,1
+np.float64,0x7fe93e5bf8f27cb7,0xc010d159fa27396a,1
+np.float64,0xffefffffffffffff,0x3f74530cfe729484,1
+np.float64,0x4c83f1269907f,0x4c83f1269907f,1
+np.float64,0x3fde0065a8bc00cc,0x3fe034a1cdf026d4,1
+np.float64,0x800743810d6e8703,0x800743810d6e8703,1
+np.float64,0x80040662d5280cc6,0x80040662d5280cc6,1
+np.float64,0x3fed20b2c5ba4166,0x3ff497988519d7aa,1
+np.float64,0xffe8fa15e5f1f42b,0x3fff82ca76d797b4,1
+np.float64,0xbb72e22f76e5d,0xbb72e22f76e5d,1
+np.float64,0x7fc18ffa7c231ff4,0xbff4b8b4c3315026,1
+np.float64,0xbfe8d1ac44f1a358,0xbfef60efc4f821e3,1
+np.float64,0x3fd38c1fe8271840,0x3fd42dc37ff7262b,1
+np.float64,0xe577bee5caef8,0xe577bee5caef8,1
+np.float64,0xbff0000000000000,0xbff8eb245cbee3a6,1
+np.float64,0xffcb3a9dd436753c,0x3fcd1a3aff1c3fc7,1
+np.float64,0x7fe44bf2172897e3,0x3ff60bfe82a379f4,1
+np.float64,0x8009203823924071,0x8009203823924071,1
+np.float64,0x7fef8e0abc7f1c14,0x3fe90e4962d47ce5,1
+np.float64,0xffda50004434a000,0x3fb50dee03e1418b,1
+np.float64,0x7fe2ff276ea5fe4e,0xc0355b7d2a0a8d9d,1
+np.float64,0x3fd0711ba5a0e238,0x3fd0d03823d2d259,1
+np.float64,0xe7625b03cec4c,0xe7625b03cec4c,1
+np.float64,0xbfd492c8d7a92592,0xbfd55006cde8d300,1
+np.float64,0x8001fee99f23fdd4,0x8001fee99f23fdd4,1
+np.float64,0x7ff4000000000000,0x7ffc000000000000,1
+np.float64,0xfa15df97f42bc,0xfa15df97f42bc,1
+np.float64,0xbfec3fdca9787fb9,0xbff377164b13c7a9,1
+np.float64,0xbcec10e579d82,0xbcec10e579d82,1
+np.float64,0xbfc3b4e2132769c4,0xbfc3dd1fcc7150a6,1
+np.float64,0x80045b149ee8b62a,0x80045b149ee8b62a,1
+np.float64,0xffe044554c2088aa,0xbff741436d558785,1
+np.float64,0xffcc65f09f38cbe0,0xc0172b4adc2d317d,1
+np.float64,0xf68b2d3bed166,0xf68b2d3bed166,1
+np.float64,0x7fc7f44c572fe898,0x3fec69f3b1eca790,1
+np.float64,0x3fac51f61438a3ec,0x3fac595d34156002,1
+np.float64,0xbfeaa9f256f553e5,0xbff19bfdf5984326,1
+np.float64,0x800e4742149c8e84,0x800e4742149c8e84,1
+np.float64,0xbfc493df132927c0,0xbfc4c1ba4268ead9,1
+np.float64,0xbfbf0c56383e18b0,0xbfbf3389fcf50c72,1
+np.float64,0xbf978a0e082f1420,0xbf978b1dd1da3d3c,1
+np.float64,0xbfe04375356086ea,0xbfe1d34c57314dd1,1
+np.float64,0x3feaeeb29b75dd65,0x3ff1e8b772374979,1
+np.float64,0xbfe15e42c3a2bc86,0xbfe34d45d56c5c15,1
+np.float64,0x3fe507429a6a0e85,0x3fe8b058176b3225,1
+np.float64,0x3feee2b26c3dc565,0x3ff71b73203de921,1
+np.float64,0xbfd496577aa92cae,0xbfd553fa7fe15a5f,1
+np.float64,0x7fe2c10953e58212,0x3fc8ead6a0d14bbf,1
+np.float64,0x800035b77aa06b70,0x800035b77aa06b70,1
+np.float64,0x2329201e46525,0x2329201e46525,1
+np.float64,0xbfe6225c9a6c44b9,0xbfea80861590fa02,1
+np.float64,0xbfd6925030ad24a0,0xbfd78e70b1c2215d,1
+np.float64,0xbfd82225c4b0444c,0xbfd958a60f845b39,1
+np.float64,0xbb03d8a17609,0xbb03d8a17609,1
+np.float64,0x7fc33967b12672ce,0x40001e00c9af4002,1
+np.float64,0xff9373c6d026e780,0xbff308654a459d3d,1
+np.float64,0x3feab1f9c5f563f4,0x3ff1a4e0fd2f093d,1
+np.float64,0xbf993ef768327de0,0xbf994046b64e308b,1
+np.float64,0xffb87382fc30e708,0xbfde0accb83c891b,1
+np.float64,0x800bb3a118176743,0x800bb3a118176743,1
+np.float64,0x800c810250d90205,0x800c810250d90205,1
+np.float64,0xbfd2c4eb9ba589d8,0xbfd3539508b4a4a8,1
+np.float64,0xbee1f5437dc3f,0xbee1f5437dc3f,1
+np.float64,0x3fc07aeab520f5d8,0x3fc0926272f9d8e2,1
+np.float64,0xbfe23747a3246e90,0xbfe47a20a6e98687,1
+np.float64,0x3fde1296debc252c,0x3fe0401143ff6b5c,1
+np.float64,0xbfcec8c2f73d9184,0xbfcf644e25ed3b74,1
+np.float64,0xff9314f2c82629e0,0x40559a0f9099dfd1,1
+np.float64,0xbfe27487afa4e910,0xbfe4d0e01200bde6,1
+np.float64,0xffb3d6637627acc8,0x3fe326d4b1e1834f,1
+np.float64,0xffe6f84d642df09a,0x3fc73fa9f57c3acb,1
+np.float64,0xffe67cf76fecf9ee,0xc01cf48c97937ef9,1
+np.float64,0x7fdc73fc12b8e7f7,0xbfcfcecde9331104,1
+np.float64,0xffdcf8789239f0f2,0x3fe345e3b8e28776,1
+np.float64,0x800a70af5314e15f,0x800a70af5314e15f,1
+np.float64,0xffc862300730c460,0x3fc4e9ea813beca7,1
+np.float64,0xbfcc6961bd38d2c4,0xbfcce33bfa6c6bd1,1
+np.float64,0xbfc9b76bbf336ed8,0xbfca117456ac37e5,1
+np.float64,0x7fb86e829430dd04,0x400a5bd7a18e302d,1
+np.float64,0x7fb9813ef833027d,0xbfe5a6494f143625,1
+np.float64,0x8005085e2c2a10bd,0x8005085e2c2a10bd,1
+np.float64,0xffe5af099d6b5e12,0x40369bbe31e03e06,1
+np.float64,0xffde03b1fd3c0764,0x3ff061120aa1f52a,1
+np.float64,0x7fa4eb6cdc29d6d9,0x3fe9defbe9010322,1
+np.float64,0x800803f4b11007ea,0x800803f4b11007ea,1
+np.float64,0x7febd50f6df7aa1e,0xbffcf540ccf220dd,1
+np.float64,0x7fed454f08fa8a9d,0xbffc2a8b81079403,1
+np.float64,0xbfed7e8c69bafd19,0xbff5161e51ba6634,1
+np.float64,0xffef92e78eff25ce,0xbffefeecddae0ad3,1
+np.float64,0x7fe5b9b413ab7367,0xbfc681ba29704176,1
+np.float64,0x29284e805252,0x29284e805252,1
+np.float64,0xffed3955bcfa72ab,0xbfc695acb5f468de,1
+np.float64,0x3fe464ee1ca8c9dc,0x3fe7b140ce50fdca,1
+np.float64,0xffe522ae4bea455c,0x3feb957c146e66ef,1
+np.float64,0x8000000000000000,0x8000000000000000,1
+np.float64,0x3fd0c353a2a186a8,0x3fd1283aaa43a411,1
+np.float64,0x3fdb30a749b6614f,0x3fdcf40df006ed10,1
+np.float64,0x800109213cc21243,0x800109213cc21243,1
+np.float64,0xbfe72aa0c5ee5542,0xbfec4a713f513bc5,1
+np.float64,0x800865344ad0ca69,0x800865344ad0ca69,1
+np.float64,0x7feb7df60eb6fbeb,0x3fb1df06a67aa22f,1
+np.float64,0x3fe83a5dd93074bc,0x3fee3d63cda72636,1
+np.float64,0xbfde70e548bce1ca,0xbfe07b8e19c9dac6,1
+np.float64,0xbfeea38d537d471b,0xbff6bb18c230c0be,1
+np.float64,0x3fefeebbc47fdd78,0x3ff8cdaa53b7c7b4,1
+np.float64,0x7fe6512e20eca25b,0xbff623cee44a22b5,1
+np.float64,0xf8fa5ca3f1f4c,0xf8fa5ca3f1f4c,1
+np.float64,0x7fd12d00ed225a01,0xbfe90d518ea61faf,1
+np.float64,0x80027db43504fb69,0x80027db43504fb69,1
+np.float64,0xffc10a01aa221404,0x3fcc2065b3d0157b,1
+np.float64,0xbfef8286e87f050e,0xbff8193a54449b59,1
+np.float64,0xbfc73178092e62f0,0xbfc7735072ba4593,1
+np.float64,0x3fc859d70630b3ae,0x3fc8a626522af1c0,1
+np.float64,0x3fe4654c4268ca99,0x3fe7b1d2913eda1a,1
+np.float64,0xbfce93cd843d279c,0xbfcf2c2ef16a0957,1
+np.float64,0xffbcaa16d4395430,0xbfd511ced032d784,1
+np.float64,0xbfe91f980e723f30,0xbfeffb39cf8c7746,1
+np.float64,0x800556fb6f0aadf8,0x800556fb6f0aadf8,1
+np.float64,0xffd009cde520139c,0x3fe4fa83b1e93d28,1
+np.float64,0x7febc0675e3780ce,0x3feb53930c004dae,1
+np.float64,0xbfe7f975bdeff2ec,0xbfedc36e6729b010,1
+np.float64,0x45aff57c8b5ff,0x45aff57c8b5ff,1
+np.float64,0xbfec7ebd0138fd7a,0xbff3c5cab680aae0,1
+np.float64,0x8009448003b28900,0x8009448003b28900,1
+np.float64,0x3fca4b992d349732,0x3fcaabebcc86aa9c,1
+np.float64,0x3fca069161340d20,0x3fca63ecc742ff3a,1
+np.float64,0x80063bc80bec7791,0x80063bc80bec7791,1
+np.float64,0xbfe1764bffe2ec98,0xbfe36e1cb30cec94,1
+np.float64,0xffd0dba72f21b74e,0x3fb1834964d57ef6,1
+np.float64,0xbfe31848fc263092,0xbfe5bd066445cbc3,1
+np.float64,0xbfd1fb227323f644,0xbfd278334e27f02d,1
+np.float64,0xffdc59069fb8b20e,0xbfdfc363f559ea2c,1
+np.float64,0x3fdea52a52bd4a55,0x3fe09cada4e5344c,1
+np.float64,0x3f715e55a022bd00,0x3f715e5c72a2809e,1
+np.float64,0x1d1ac6023a35a,0x1d1ac6023a35a,1
+np.float64,0x7feacc71627598e2,0x400486b82121da19,1
+np.float64,0xa0287fa340510,0xa0287fa340510,1
+np.float64,0xffe352c5abe6a58b,0xc002623346060543,1
+np.float64,0x7fed577a23baaef3,0x3fda19bc8fa3b21f,1
+np.float64,0x3fde8dd5263d1baa,0x3fe08de0fedf7029,1
+np.float64,0x3feddd3be2bbba78,0x3ff599b2f3e018cc,1
+np.float64,0xc7a009f58f401,0xc7a009f58f401,1
+np.float64,0xbfef03d5a4fe07ab,0xbff74ee08681f47b,1
+np.float64,0x7fe2cf60eea59ec1,0x3fe905fb44f8cc60,1
+np.float64,0xbfe498fcab6931fa,0xbfe8023a6ff8becf,1
+np.float64,0xbfef7142acfee285,0xbff7fd196133a595,1
+np.float64,0xd214ffdba42a0,0xd214ffdba42a0,1
+np.float64,0x8006de7d78cdbcfc,0x8006de7d78cdbcfc,1
+np.float64,0xb247d34f648fb,0xb247d34f648fb,1
+np.float64,0xbfdd5bece6bab7da,0xbfdf9ba63ca2c5b2,1
+np.float64,0x7fe874650af0e8c9,0x3fe74204e122c10f,1
+np.float64,0x800768c49baed18a,0x800768c49baed18a,1
+np.float64,0x3fb4c0a192298140,0x3fb4cc4c8aa43300,1
+np.float64,0xbfa740531c2e80a0,0xbfa7446b7c74ae8e,1
+np.float64,0x7fe10d6edf221add,0x3fedbcd2eae26657,1
+np.float64,0xbfe9175d0f722eba,0xbfefeaca7f32c6e3,1
+np.float64,0x953e11d32a7c2,0x953e11d32a7c2,1
+np.float64,0x80032df90c465bf3,0x80032df90c465bf3,1
+np.float64,0xffec5b799638b6f2,0xbfe95cd2c69be12c,1
+np.float64,0xffe0c3cfa9a1879f,0x3fe20b99b0c108ce,1
+np.float64,0x3fb610d8e22c21b2,0x3fb61ee0d6c16df8,1
+np.float64,0xffe16bb39962d766,0xc016d370381b6b42,1
+np.float64,0xbfdc72edb238e5dc,0xbfde7bd2de10717a,1
+np.float64,0xffed52dee3baa5bd,0xc01994c08899129a,1
+np.float64,0xffa92aab08325550,0xbff2b881ce363cbd,1
+np.float64,0x7fe028282de0504f,0xc0157ff96c69a9c7,1
+np.float64,0xbfdb2151bf3642a4,0xbfdce196fcc35857,1
+np.float64,0x3fcffbd13c3ff7a2,0x3fd0554b5f0371ac,1
+np.float64,0x800d206bff1a40d8,0x800d206bff1a40d8,1
+np.float64,0x458f818c8b1f1,0x458f818c8b1f1,1
+np.float64,0x800a7b56a234f6ae,0x800a7b56a234f6ae,1
+np.float64,0xffe3d86161e7b0c2,0xbff58d0dbde9f188,1
+np.float64,0xe8ed82e3d1db1,0xe8ed82e3d1db1,1
+np.float64,0x3fe234e0176469c0,0x3fe476bd36b96a75,1
+np.float64,0xbfc7cb9c132f9738,0xbfc812c46e185e0b,1
+np.float64,0xbfeba116c1f7422e,0xbff2b6b7563ad854,1
+np.float64,0x7fe7041de62e083b,0x3f5d2b42aca47274,1
+np.float64,0xbfcf60f4ff3ec1e8,0xbfd002eb83406436,1
+np.float64,0xbfc06067a520c0d0,0xbfc0776e5839ecda,1
+np.float64,0x4384965a87093,0x4384965a87093,1
+np.float64,0xd2ed9d01a5db4,0xd2ed9d01a5db4,1
+np.float64,0x3fbea88cb63d5119,0x3fbece49cc34a379,1
+np.float64,0x3fe7e982ebefd306,0x3feda5bd4c435d43,1
+np.float64,0xffdb60a3e036c148,0xbfcb7ed21e7a8f49,1
+np.float64,0x7fdba9231eb75245,0xbfd750cab1536398,1
+np.float64,0x800d593534dab26b,0x800d593534dab26b,1
+np.float64,0xffdf15fb683e2bf6,0x3fb3aaea23357f06,1
+np.float64,0xbfd6f8a2e5adf146,0xbfd802e509d67c67,1
+np.float64,0x3feeaa31513d5463,0x3ff6c52147dc053c,1
+np.float64,0xf2f6dfd3e5edc,0xf2f6dfd3e5edc,1
+np.float64,0x7fd58d8279ab1b04,0x403243f23d02af2a,1
+np.float64,0x8000000000000001,0x8000000000000001,1
+np.float64,0x3fdffb8e0ebff71c,0x3fe1786cb0a6b0f3,1
+np.float64,0xc999826b93331,0xc999826b93331,1
+np.float64,0xffc4966f19292ce0,0x3ff0836c75c56cc7,1
+np.float64,0x7fef95a4b2ff2b48,0xbfbbe2c27c78154f,1
+np.float64,0xb8f1307f71e26,0xb8f1307f71e26,1
+np.float64,0x3fe807bc7eb00f79,0x3fedde19f2d3c42d,1
+np.float64,0x5e4b6580bc98,0x5e4b6580bc98,1
+np.float64,0xffe19353576326a6,0xc0278c51fee07d36,1
+np.float64,0xbfb0ca6f3e2194e0,0xbfb0d09be673fa72,1
+np.float64,0x3fea724211b4e484,0x3ff15ee06f0a0a13,1
+np.float64,0xbfda21e1c4b443c4,0xbfdbb041f3c86832,1
+np.float64,0x8008082b24901057,0x8008082b24901057,1
+np.float64,0xbfd031aa4ea06354,0xbfd08c77729634bb,1
+np.float64,0xbfc407e153280fc4,0xbfc432275711df5f,1
+np.float64,0xbb4fa4b5769f5,0xbb4fa4b5769f5,1
+np.float64,0x7fed6d1daffada3a,0xc037a14bc7b41fab,1
+np.float64,0xffeee589943dcb12,0x3ff2abfe47037778,1
+np.float64,0x301379d260270,0x301379d260270,1
+np.float64,0xbfec2fefc2b85fe0,0xbff36362c0363e06,1
+np.float64,0xbfe0b1c82e216390,0xbfe264f503f7c22c,1
+np.float64,0xbfea2bce78f4579d,0xbff112d6f07935ea,1
+np.float64,0x18508ef230a13,0x18508ef230a13,1
+np.float64,0x800667a74d6ccf4f,0x800667a74d6ccf4f,1
+np.float64,0x79ce5c8cf39cc,0x79ce5c8cf39cc,1
+np.float64,0x3feda61c8efb4c39,0x3ff54c9ade076f54,1
+np.float64,0x3fe27e06b0e4fc0d,0x3fe4de665c1dc3ca,1
+np.float64,0xbfd15fea2722bfd4,0xbfd1d081c55813b0,1
+np.float64,0xbfe5222c4cea4458,0xbfe8db62deb7d2ad,1
+np.float64,0xbfe8a16c33b142d8,0xbfef02d5831592a8,1
+np.float64,0x3fdb60e7c4b6c1d0,0x3fdd2e4265c4c3b6,1
+np.float64,0x800076d62b60edad,0x800076d62b60edad,1
+np.float64,0xbfec8f1527791e2a,0xbff3da7ed3641e8d,1
+np.float64,0x2af03bfe55e08,0x2af03bfe55e08,1
+np.float64,0xa862ee0950c5e,0xa862ee0950c5e,1
+np.float64,0x7fea5a7c1eb4b4f7,0xbffa6f07d28ef211,1
+np.float64,0x90e118fb21c23,0x90e118fb21c23,1
+np.float64,0xbfead0721bf5a0e4,0xbff1c6c7a771a128,1
+np.float64,0x3f63f4a4c027e94a,0x3f63f4a75665da67,1
+np.float64,0x3fece0efa579c1e0,0x3ff443bec52f021e,1
+np.float64,0xbfdbe743b737ce88,0xbfddd129bff89c15,1
+np.float64,0x3fd48c9b8fa91938,0x3fd5492a630a8cb5,1
+np.float64,0x3ff0000000000000,0x3ff8eb245cbee3a6,1
+np.float64,0xbfd51ea33baa3d46,0xbfd5ebd5dc710204,1
+np.float64,0x3fcfbab0183f7560,0x3fd032a054580b00,1
+np.float64,0x8007abce13cf579d,0x8007abce13cf579d,1
+np.float64,0xbfef0f4723be1e8e,0xbff760c7008e8913,1
+np.float64,0x8006340f524c681f,0x8006340f524c681f,1
+np.float64,0x87b7d7010f71,0x87b7d7010f71,1
+np.float64,0x3fe9422da9b2845b,0x3ff02052e6148c45,1
+np.float64,0x7fddd259b93ba4b2,0xc000731aa33d84b6,1
+np.float64,0x3fe0156d12202ada,0x3fe1972ba309cb29,1
+np.float64,0x8004f1264b89e24d,0x8004f1264b89e24d,1
+np.float64,0x3fececdcacb9d9b9,0x3ff4534d5861f731,1
+np.float64,0x3fd1790ab822f215,0x3fd1eb97b1bb6fb4,1
+np.float64,0xffce5d11863cba24,0xbfcb4f38c17210da,1
+np.float64,0x800a30c32a546187,0x800a30c32a546187,1
+np.float64,0x3fa58cc61c2b198c,0x3fa59008add7233e,1
+np.float64,0xbfe0ac77d62158f0,0xbfe25de3dba0bc4a,1
+np.float64,0xeb8c5753d718b,0xeb8c5753d718b,1
+np.float64,0x3fee5438dafca872,0x3ff644fef7e7adb5,1
+np.float64,0x3faad1eb2c35a3e0,0x3faad83499f94057,1
+np.float64,0x3fe39152c46722a6,0x3fe66fba0b96ab6e,1
+np.float64,0xffd6fd17712dfa2e,0xc010d697d1ab8731,1
+np.float64,0x5214a888a4296,0x5214a888a4296,1
+np.float64,0x8000127a5da024f5,0x8000127a5da024f5,1
+np.float64,0x7feb3a366cb6746c,0x3fbe49bd8d5f213a,1
+np.float64,0xca479501948f3,0xca479501948f3,1
+np.float64,0x7fe7c799ce6f8f33,0xbfd796cd98dc620c,1
+np.float64,0xffe20bcf30a4179e,0xbff8ca5453fa088f,1
+np.float64,0x3fe624638a6c48c7,0x3fea83f123832c3c,1
+np.float64,0xbfe5f1377c6be26f,0xbfea2e143a2d522c,1
+np.float64,0x7fd193f9f8a327f3,0xbfb04ee2602574d4,1
+np.float64,0xbfe7419d2fee833a,0xbfec737f140d363d,1
+np.float64,0x1,0x1,1
+np.float64,0x7fe2ac246c655848,0x3fd14fee3237727a,1
+np.float64,0xa459b42948b37,0xa459b42948b37,1
+np.float64,0x3fb26155ae24c2ab,0x3fb2696fc446d4c6,1
+np.float64,0xbfdd7b332e3af666,0xbfdfc296c21f1aa8,1
+np.float64,0xbfe00dbda4a01b7c,0xbfe18d2b060f0506,1
+np.float64,0x8003bb22d3e77646,0x8003bb22d3e77646,1
+np.float64,0x3fee21b0a57c4361,0x3ff5fb6a21dc911c,1
+np.float64,0x80ca69270194d,0x80ca69270194d,1
+np.float64,0xbfd6d80350adb006,0xbfd7ddb501edbde0,1
+np.float64,0xd2f8b801a5f2,0xd2f8b801a5f2,1
+np.float64,0xbfe856b3f170ad68,0xbfee7334fdc49296,1
+np.float64,0x3fed5c1b20bab836,0x3ff4e73ee5d5c7f3,1
+np.float64,0xbfd58085a5ab010c,0xbfd6596ddc381ffa,1
+np.float64,0x3fe4f0134b29e027,0x3fe88b70602fbd21,1
+np.float64,0xffc9098fdc321320,0x4011c334a74a92cf,1
+np.float64,0x794749bef28ea,0x794749bef28ea,1
+np.float64,0xbfc86b547f30d6a8,0xbfc8b84a4fafe0af,1
+np.float64,0x7fe1356b9da26ad6,0x3fd270bca208d899,1
+np.float64,0x7fca0ef1aa341de2,0xbff851044c0734fa,1
+np.float64,0x80064cb8b62c9972,0x80064cb8b62c9972,1
+np.float64,0xffd3a09a83a74136,0x3ffb66dae0accdf5,1
+np.float64,0x800e301aa15c6035,0x800e301aa15c6035,1
+np.float64,0x800e51f323bca3e6,0x800e51f323bca3e6,1
+np.float64,0x7ff0000000000000,0xfff8000000000000,1
+np.float64,0x800c4278c87884f2,0x800c4278c87884f2,1
+np.float64,0xbfe8481649f0902c,0xbfee576772695096,1
+np.float64,0xffe2344e3fa4689c,0x3fb10442ec0888de,1
+np.float64,0xbfeada313d75b462,0xbff1d1aee3fab3a9,1
+np.float64,0x8009ddfb1333bbf7,0x8009ddfb1333bbf7,1
+np.float64,0x7fed3314c93a6629,0x3ff7a9b12dc1cd37,1
+np.float64,0x3fd55c26da2ab84e,0x3fd630a7b8aac78a,1
+np.float64,0x800cdb5203f9b6a4,0x800cdb5203f9b6a4,1
+np.float64,0xffd04a875da0950e,0x4009a13810ab121d,1
+np.float64,0x800f1acb527e3597,0x800f1acb527e3597,1
+np.float64,0xbf9519bf282a3380,0xbf951a82e9b955ff,1
+np.float64,0x3fcd7a42fa3af486,0x3fce028f3c51072d,1
+np.float64,0xbfdd3e21b73a7c44,0xbfdf769f2ff2480b,1
+np.float64,0xffd4361e2aa86c3c,0xbfc211ce8e9f792c,1
+np.float64,0x7fccf97f6939f2fe,0xbff8464bad830f06,1
+np.float64,0x800ce47fb939c900,0x800ce47fb939c900,1
+np.float64,0xffe9e51df173ca3b,0xbfceaf990d652c4e,1
+np.float64,0x3fe05bba5b20b775,0x3fe1f326e4455442,1
+np.float64,0x800a29b4b134536a,0x800a29b4b134536a,1
+np.float64,0xe6f794b7cdef3,0xe6f794b7cdef3,1
+np.float64,0xffb5b688ce2b6d10,0x3ff924bb97ae2f6d,1
+np.float64,0x7fa74105d82e820b,0x3fd49643aaa9eee4,1
+np.float64,0x80020d15f7a41a2d,0x80020d15f7a41a2d,1
+np.float64,0x3fd6a983d5ad5308,0x3fd7a8cc8835b5b8,1
+np.float64,0x7fcd9798f03b2f31,0x3fc534c2f7bf4721,1
+np.float64,0xffdd31873a3a630e,0xbfe3171fcdffb3f7,1
+np.float64,0x80075183234ea307,0x80075183234ea307,1
+np.float64,0x82f3132505e63,0x82f3132505e63,1
+np.float64,0x3febfd9cb837fb39,0x3ff325bbf812515d,1
+np.float64,0xbfb4630fda28c620,0xbfb46e1f802ec278,1
+np.float64,0x3feeed7c89fddafa,0x3ff72c20ce5a9ee4,1
+np.float64,0x7fd3dcb3c127b967,0x40123d27ec9ec31d,1
+np.float64,0xbfe923450c72468a,0xbff00149c5742725,1
+np.float64,0x7fdef7f91abdeff1,0xbfe02ceb21f7923d,1
+np.float64,0x7fdd70d28fbae1a4,0xbfefcc5c9d10cdfd,1
+np.float64,0x800ca445a8d9488c,0x800ca445a8d9488c,1
+np.float64,0x7fec2754e1f84ea9,0x40173f6c1c97f825,1
+np.float64,0x7fcbca31f7379463,0x401e26bd2667075b,1
+np.float64,0x8003fa1d0847f43b,0x8003fa1d0847f43b,1
+np.float64,0xffe95cf85932b9f0,0xc01308e60278aa11,1
+np.float64,0x8009c53948f38a73,0x8009c53948f38a73,1
+np.float64,0x3fdcca9226b99524,0x3fdee7a008f75d41,1
+np.float64,0xbfe9ee241f33dc48,0xbff0d16bfff6c8e9,1
+np.float64,0xbfb3365058266ca0,0xbfb33f9176ebb51d,1
+np.float64,0x7fa98e10f4331c21,0x3fdee04ffd31314e,1
+np.float64,0xbfe1a11aea634236,0xbfe3a8e3d84fda38,1
+np.float64,0xbfd8df051131be0a,0xbfda342805d1948b,1
+np.float64,0x3d49a2407a935,0x3d49a2407a935,1
+np.float64,0xfc51eefff8a3e,0xfc51eefff8a3e,1
+np.float64,0xda63950bb4c73,0xda63950bb4c73,1
+np.float64,0x80050f3d4fea1e7b,0x80050f3d4fea1e7b,1
+np.float64,0x3fcdbd6e453b7ae0,0x3fce497478c28e77,1
+np.float64,0x7ebd4932fd7aa,0x7ebd4932fd7aa,1
+np.float64,0x7fa3904eac27209c,0xc0015f3125efc151,1
+np.float64,0x7fc59f956b2b3f2a,0xc00c012e7a2c281f,1
+np.float64,0xbfd436d716a86dae,0xbfd4ea13533a942b,1
+np.float64,0x9347ae3d268f6,0x9347ae3d268f6,1
+np.float64,0xffd001764d2002ec,0xbffab3462e515623,1
+np.float64,0x3fe6f406662de80d,0x3febe9bac3954999,1
+np.float64,0x3f943ecaf8287d96,0x3f943f77dee5e77f,1
+np.float64,0x3fd6250efcac4a1c,0x3fd712afa947d56f,1
+np.float64,0xbfe849ff777093ff,0xbfee5b089d03391f,1
+np.float64,0xffd3b8ef8f2771e0,0x4000463ff7f29214,1
+np.float64,0xbfc3bae9252775d4,0xbfc3e34c133f1933,1
+np.float64,0xbfea93943df52728,0xbff18355e4fc341d,1
+np.float64,0x3fc4d922ad29b245,0x3fc508d66869ef29,1
+np.float64,0x4329694a8652e,0x4329694a8652e,1
+np.float64,0x8834f1a71069e,0x8834f1a71069e,1
+np.float64,0xe0e5be8dc1cb8,0xe0e5be8dc1cb8,1
+np.float64,0x7fef4d103afe9a1f,0xc0047b88b94554fe,1
+np.float64,0x3fe9b57af4f36af6,0x3ff0963831d51c3f,1
+np.float64,0x3fe081e2fa6103c6,0x3fe22572e41be655,1
+np.float64,0x3fd78cf7b42f19ef,0x3fd8acafa1ad776a,1
+np.float64,0x7fbffd58d43ffab1,0x3fb16092c7de6036,1
+np.float64,0xbfe1e8bfae23d180,0xbfe40c1c6277dd52,1
+np.float64,0x800a9f59fb153eb4,0x800a9f59fb153eb4,1
+np.float64,0xffebe14e33b7c29c,0x3fe0ec532f4deedd,1
+np.float64,0xffc36ca00426d940,0xc000806a712d6e83,1
+np.float64,0xbfcc2be82d3857d0,0xbfcca2a7d372ec64,1
+np.float64,0x800c03b908780772,0x800c03b908780772,1
+np.float64,0xf315a64be62b5,0xf315a64be62b5,1
+np.float64,0xbfe644043cec8808,0xbfeab974d3dc6d80,1
+np.float64,0x3fedb7de3cbb6fbc,0x3ff56549a5acd324,1
+np.float64,0xbfb1a875522350e8,0xbfb1afa41dee338d,1
+np.float64,0xffee8d4a407d1a94,0x3fead1749a636ff6,1
+np.float64,0x8004061c13080c39,0x8004061c13080c39,1
+np.float64,0x3fe650ae7feca15c,0x3feacefb8bc25f64,1
+np.float64,0x3fda8340e6b50682,0x3fdc24275cab1df8,1
+np.float64,0x8009084344321087,0x8009084344321087,1
+np.float64,0x7fdd19cb823a3396,0xbfd1d8fb35d89e3f,1
+np.float64,0xbfe893172571262e,0xbfeee716b592b93c,1
+np.float64,0x8ff5acc11fec,0x8ff5acc11fec,1
+np.float64,0xbfdca0c57cb9418a,0xbfdeb42465a1b59e,1
+np.float64,0xffd77bd2a3aef7a6,0x4012cd69e85b82d8,1
+np.float64,0xbfe6ea78982dd4f1,0xbfebd8ec61fb9e1f,1
+np.float64,0x7fe14b1d80a2963a,0xc02241642102cf71,1
+np.float64,0x3fe712bf286e257e,0x3fec20012329a7fb,1
+np.float64,0x7fcb6fa4d636df49,0x400b899d14a886b3,1
+np.float64,0x3fb82cb39a305960,0x3fb83f29c5f0822e,1
+np.float64,0x7fed694c8b3ad298,0xbfe2724373c69808,1
+np.float64,0xbfcd21229f3a4244,0xbfcda497fc3e1245,1
+np.float64,0x564d3770ac9a8,0x564d3770ac9a8,1
+np.float64,0xf4409e13e8814,0xf4409e13e8814,1
+np.float64,0x80068dca9a8d1b96,0x80068dca9a8d1b96,1
+np.float64,0xbfe13f82afe27f06,0xbfe3236ddded353f,1
+np.float64,0x80023f8114647f03,0x80023f8114647f03,1
+np.float64,0xeafba7dfd5f75,0xeafba7dfd5f75,1
+np.float64,0x3feca74ddeb94e9c,0x3ff3f95dcce5a227,1
+np.float64,0x10000000000000,0x10000000000000,1
+np.float64,0xbfebdb4141f7b682,0xbff2fc29823ac64a,1
+np.float64,0xbfcd75ee2f3aebdc,0xbfcdfdfd87cc6a29,1
+np.float64,0x7fc010cda420219a,0x3fae4ca2cf1f2657,1
+np.float64,0x1a90209e35205,0x1a90209e35205,1
+np.float64,0x8008057d01900afa,0x8008057d01900afa,1
+np.float64,0x3f9cb5f280396be5,0x3f9cb7dfb4e4be4e,1
+np.float64,0xffe1bbb60b63776c,0xc00011b1ffcb2561,1
+np.float64,0xffda883f6fb5107e,0x4044238ef4e2a198,1
+np.float64,0x3fc07c0b4a20f817,0x3fc09387de9eebcf,1
+np.float64,0x8003a9ebc0c753d8,0x8003a9ebc0c753d8,1
+np.float64,0x1d7fd5923affc,0x1d7fd5923affc,1
+np.float64,0xbfe9cd8cf9b39b1a,0xbff0af43e567ba4a,1
+np.float64,0x11285cb42250c,0x11285cb42250c,1
+np.float64,0xffe81ae1ccb035c3,0xbfe038be7eb563a6,1
+np.float64,0xbfe56473b1eac8e8,0xbfe94654d8ab9e75,1
+np.float64,0x3fee904619fd208c,0x3ff69e198152fe17,1
+np.float64,0xbfeeb9a2cbfd7346,0xbff6dc8d96da78cd,1
+np.float64,0x8006cdfa59ed9bf5,0x8006cdfa59ed9bf5,1
+np.float64,0x8008f2366d31e46d,0x8008f2366d31e46d,1
+np.float64,0x8008d5f91e31abf3,0x8008d5f91e31abf3,1
+np.float64,0x3fe85886f8b0b10e,0x3fee76af16f5a126,1
+np.float64,0x3fefb9b2b73f7365,0x3ff8745128fa3e3b,1
+np.float64,0x7fdf3e721f3e7ce3,0xbfb19381541ca2a8,1
+np.float64,0x3fd2768c41a4ed18,0x3fd2fe2f85a3f3a6,1
+np.float64,0xbfcabe3c6a357c78,0xbfcb239fb88bc260,1
+np.float64,0xffdffb6a3dbff6d4,0xbff7af4759fd557c,1
+np.float64,0x800817f75f302fef,0x800817f75f302fef,1
+np.float64,0xbfe6a1d1762d43a3,0xbfeb5a399a095ef3,1
+np.float64,0x7fd6f32f912de65e,0x40016dedc51aabd0,1
+np.float64,0x3fc6cb26652d964d,0x3fc7099f047d924a,1
+np.float64,0x3fe8b975d67172ec,0x3fef31946123c0e7,1
+np.float64,0xffe44a09d1e89413,0x3fdee9e5eac6e540,1
+np.float64,0xbfece76d4cb9cedb,0xbff44c34849d07ba,1
+np.float64,0x7feb76027036ec04,0x3fe08595a5e263ac,1
+np.float64,0xffe194f591a329ea,0x3fbe5bd626400a70,1
+np.float64,0xbfc170698122e0d4,0xbfc18c3de8b63565,1
+np.float64,0x3fc82b2c0f305658,0x3fc875c3b5fbcd08,1
+np.float64,0x3fd5015634aa02ac,0x3fd5cb1df07213c3,1
+np.float64,0x7fe640884b6c8110,0xbff66255a420abb5,1
+np.float64,0x5a245206b448b,0x5a245206b448b,1
+np.float64,0xffe9d9fa2f73b3f4,0xc0272b0dd34ab9bf,1
+np.float64,0x3fd990e8aab321d0,0x3fdb04cd3a29bcc3,1
+np.float64,0xde9dda8bbd3bc,0xde9dda8bbd3bc,1
+np.float64,0xbfe81b32b4703666,0xbfee029937fa9f5a,1
+np.float64,0xbfe68116886d022d,0xbfeb21c62081cb73,1
+np.float64,0x3fb8da191231b432,0x3fb8ee28c71507d3,1
+np.float64,0x3fb111395a222273,0x3fb117b57de3dea4,1
+np.float64,0xffbafadc6a35f5b8,0x3ffcc6d2370297b9,1
+np.float64,0x8002ca475b05948f,0x8002ca475b05948f,1
+np.float64,0xbfeafef57875fdeb,0xbff1fb1315676f24,1
+np.float64,0x7fcda427d73b484f,0xbff9f70212694d17,1
+np.float64,0xffe2517b3ba4a2f6,0xc029ca6707305bf4,1
+np.float64,0x7fc5ee156b2bdc2a,0xbff8384b59e9056e,1
+np.float64,0xbfec22af3278455e,0xbff3530fe25816b4,1
+np.float64,0x6b5a8c2cd6b52,0x6b5a8c2cd6b52,1
+np.float64,0xffdaf6c4b935ed8a,0x4002f00ce58affcf,1
+np.float64,0x800a41813c748303,0x800a41813c748303,1
+np.float64,0xbfd09a1269213424,0xbfd0fc0a0c5de8eb,1
+np.float64,0x7fa2cb74d42596e9,0x3fc3d40e000fa69d,1
+np.float64,0x7ff8000000000000,0x7ff8000000000000,1
+np.float64,0x3fbfbf8ed63f7f1e,0x3fbfe97bcad9f53a,1
+np.float64,0x7fe0ebba65a1d774,0x401b0f17b28618df,1
+np.float64,0x3fd02c3a25a05874,0x3fd086aa55b19c9c,1
+np.float64,0xec628f95d8c52,0xec628f95d8c52,1
+np.float64,0x3fd319329fa63264,0x3fd3afb04e0dec63,1
+np.float64,0x180e0ade301c2,0x180e0ade301c2,1
+np.float64,0xbfe8d78324f1af06,0xbfef6c66153064ee,1
+np.float64,0xffb89fa200313f48,0xbfeb96ff2d9358dc,1
+np.float64,0x7fe6abcf86ed579e,0xc0269f4de86365ec,1
+np.float64,0x7fdff8cd65bff19a,0xbfd0f7c6b9052c9a,1
+np.float64,0xbfd2e3a53d25c74a,0xbfd37520cda5f6b2,1
+np.float64,0x7fe844b096708960,0x3ff696a6182e5a7a,1
+np.float64,0x7fdce0c7a3b9c18e,0x3fd42875d69ed379,1
+np.float64,0xffba5a91cc34b520,0x4001b571e8991951,1
+np.float64,0xffe78fe4a6ef1fc9,0x3ff4507b31f5b3bc,1
+np.float64,0xbfd7047493ae08ea,0xbfd810618a53fffb,1
+np.float64,0xc6559def8cab4,0xc6559def8cab4,1
+np.float64,0x3fe75d67a76ebacf,0x3feca56817de65e4,1
+np.float64,0xffd24adbd6a495b8,0xc012c491addf2df5,1
+np.float64,0x7fed35e28dba6bc4,0x403a0fa555ff7ec6,1
+np.float64,0x80078c4afa0f1897,0x80078c4afa0f1897,1
+np.float64,0xa6ec39114dd87,0xa6ec39114dd87,1
+np.float64,0x7fb1bd33ba237a66,0x4010092bb6810fd4,1
+np.float64,0x800ecf215edd9e43,0x800ecf215edd9e43,1
+np.float64,0x3fb7c169242f82d2,0x3fb7d2ed30c462e6,1
+np.float64,0xbf71b46d60236900,0xbf71b4749a10c112,1
+np.float64,0x800d7851787af0a3,0x800d7851787af0a3,1
+np.float64,0x3fcb4a45e7369488,0x3fcbb61701a1bcec,1
+np.float64,0x3fd4e3682429c6d0,0x3fd5a9bcb916eb94,1
+np.float64,0x800497564c292ead,0x800497564c292ead,1
+np.float64,0xbfca3737a1346e70,0xbfca96a86ae5d687,1
+np.float64,0x19aa87e03356,0x19aa87e03356,1
+np.float64,0xffb2593fe624b280,0xc05fedb99b467ced,1
+np.float64,0xbfdd8748fbbb0e92,0xbfdfd1a7df17252c,1
+np.float64,0x8004c7afc7098f60,0x8004c7afc7098f60,1
+np.float64,0x7fde48b2bf3c9164,0xbfe36ef1158ed420,1
+np.float64,0xbfec8e0eb0f91c1d,0xbff3d9319705a602,1
+np.float64,0xffea1be204f437c3,0xc0144f67298c3e6f,1
+np.float64,0x7fdb906b593720d6,0xbfce99233396eda7,1
+np.float64,0x3fef0f114ffe1e22,0x3ff76072a258a51b,1
+np.float64,0x3fe3e284c8e7c50a,0x3fe6e9b05e17c999,1
+np.float64,0xbfbda9eef23b53e0,0xbfbdcc1abb443597,1
+np.float64,0x3feb6454d4f6c8aa,0x3ff26f65a85baba4,1
+np.float64,0x3fea317439f462e8,0x3ff118e2187ef33f,1
+np.float64,0x376ad0646ed5b,0x376ad0646ed5b,1
+np.float64,0x7fdd461a1c3a8c33,0x3f7ba20fb79e785f,1
+np.float64,0xebc520a3d78a4,0xebc520a3d78a4,1
+np.float64,0x3fca90fe53352200,0x3fcaf45c7fae234d,1
+np.float64,0xbfe80dd1de701ba4,0xbfede97e12cde9de,1
+np.float64,0x3fd242b00ea48560,0x3fd2c5cf9bf69a31,1
+np.float64,0x7fe46c057828d80a,0xbfe2f76837488f94,1
+np.float64,0x3fc162bea322c580,0x3fc17e517c958867,1
+np.float64,0xffebf0452ff7e08a,0x3ffc3fd95c257b54,1
+np.float64,0xffd88043c6310088,0x4008b05598d0d95f,1
+np.float64,0x800d8c49da5b1894,0x800d8c49da5b1894,1
+np.float64,0xbfed33b487ba6769,0xbff4b0ea941f8a6a,1
+np.float64,0x16b881e22d711,0x16b881e22d711,1
+np.float64,0x288bae0051177,0x288bae0051177,1
+np.float64,0xffc83a0fe8307420,0x4006eff03da17f86,1
+np.float64,0x3fc7868b252f0d18,0x3fc7cb4954290324,1
+np.float64,0xbfe195514b232aa2,0xbfe398aae6c8ed76,1
+np.float64,0x800c001ae7f80036,0x800c001ae7f80036,1
+np.float64,0x7feb82abe7370557,0xbff1e13fe6fad23c,1
+np.float64,0xffecf609cdf9ec13,0xc0112aa1805ae59e,1
+np.float64,0xffddd654f63bacaa,0x3fe46cce899f710d,1
+np.float64,0x3fe2163138642c62,0x3fe44b9c760acd4c,1
+np.float64,0x4e570dc09cae2,0x4e570dc09cae2,1
+np.float64,0x7fe9e8d091f3d1a0,0xc000fe20f8e9a4b5,1
+np.float64,0x7fe60042952c0084,0x3fd0aa740f394c2a,1
diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/tests/data/umath-validation-set-tanh.csv b/.venv/lib/python3.12/site-packages/numpy/_core/tests/data/umath-validation-set-tanh.csv
new file mode 100644
index 0000000..9e3ddc6
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/_core/tests/data/umath-validation-set-tanh.csv
@@ -0,0 +1,1429 @@
+dtype,input,output,ulperrortol
+np.float32,0xbe26ebb0,0xbe25752f,2
+np.float32,0xbe22ecc0,0xbe219054,2
+np.float32,0x8010a6b3,0x8010a6b3,2
+np.float32,0x3135da,0x3135da,2
+np.float32,0xbe982afc,0xbe93d727,2
+np.float32,0x16a51f,0x16a51f,2
+np.float32,0x491e56,0x491e56,2
+np.float32,0x4bf7ca,0x4bf7ca,2
+np.float32,0x3eebc21c,0x3edc65b2,2
+np.float32,0x80155c94,0x80155c94,2
+np.float32,0x3e14f626,0x3e13eb6a,2
+np.float32,0x801a238f,0x801a238f,2
+np.float32,0xbde33a80,0xbde24cf9,2
+np.float32,0xbef8439c,0xbee67a51,2
+np.float32,0x7f60d0a5,0x3f800000,2
+np.float32,0x190ee3,0x190ee3,2
+np.float32,0x80759113,0x80759113,2
+np.float32,0x800afa9f,0x800afa9f,2
+np.float32,0x7110cf,0x7110cf,2
+np.float32,0x3cf709f0,0x3cf6f6c6,2
+np.float32,0x3ef58da4,0x3ee44fa7,2
+np.float32,0xbf220ff2,0xbf0f662c,2
+np.float32,0xfd888078,0xbf800000,2
+np.float32,0xbe324734,0xbe307f9b,2
+np.float32,0x3eb5cb4f,0x3eae8560,2
+np.float32,0xbf7e7d02,0xbf425493,2
+np.float32,0x3ddcdcf0,0x3ddc02c2,2
+np.float32,0x8026d27a,0x8026d27a,2
+np.float32,0x3d4c0fb1,0x3d4be484,2
+np.float32,0xbf27d2c9,0xbf134d7c,2
+np.float32,0x8029ff80,0x8029ff80,2
+np.float32,0x7f046d2c,0x3f800000,2
+np.float32,0x13f94b,0x13f94b,2
+np.float32,0x7f4ff922,0x3f800000,2
+np.float32,0x3f4ea2ed,0x3f2b03e4,2
+np.float32,0x3e7211f0,0x3e6da8cf,2
+np.float32,0x7f39d0cf,0x3f800000,2
+np.float32,0xfee57fc6,0xbf800000,2
+np.float32,0xff6fb326,0xbf800000,2
+np.float32,0xff800000,0xbf800000,2
+np.float32,0x3f0437a4,0x3ef32fcd,2
+np.float32,0xff546d1e,0xbf800000,2
+np.float32,0x3eb5645b,0x3eae2a5c,2
+np.float32,0x3f08a6e5,0x3ef9ff8f,2
+np.float32,0x80800000,0x80800000,2
+np.float32,0x7f3413da,0x3f800000,2
+np.float32,0xfd760140,0xbf800000,2
+np.float32,0x7f3ad24a,0x3f800000,2
+np.float32,0xbf56e812,0xbf2f7f14,2
+np.float32,0xbece0338,0xbec3920a,2
+np.float32,0xbeede54a,0xbede22ae,2
+np.float32,0x7eaeb215,0x3f800000,2
+np.float32,0x3c213c00,0x3c213aab,2
+np.float32,0x7eaac217,0x3f800000,2
+np.float32,0xbf2f740e,0xbf1851a6,2
+np.float32,0x7f6ca5b8,0x3f800000,2
+np.float32,0xff42ce95,0xbf800000,2
+np.float32,0x802e4189,0x802e4189,2
+np.float32,0x80000001,0x80000001,2
+np.float32,0xbf31f298,0xbf19ebbe,2
+np.float32,0x3dcb0e6c,0x3dca64c1,2
+np.float32,0xbf29599c,0xbf145204,2
+np.float32,0x2e33f2,0x2e33f2,2
+np.float32,0x1c11e7,0x1c11e7,2
+np.float32,0x3f3b188d,0x3f1fa302,2
+np.float32,0x113300,0x113300,2
+np.float32,0x8054589e,0x8054589e,2
+np.float32,0x2a9e69,0x2a9e69,2
+np.float32,0xff513af7,0xbf800000,2
+np.float32,0x7f2e987a,0x3f800000,2
+np.float32,0x807cd426,0x807cd426,2
+np.float32,0x7f0dc4e4,0x3f800000,2
+np.float32,0x7e7c0d56,0x3f800000,2
+np.float32,0x5cb076,0x5cb076,2
+np.float32,0x80576426,0x80576426,2
+np.float32,0xff616222,0xbf800000,2
+np.float32,0xbf7accb5,0xbf40c005,2
+np.float32,0xfe4118c8,0xbf800000,2
+np.float32,0x804b9327,0x804b9327,2
+np.float32,0x3ed2b428,0x3ec79026,2
+np.float32,0x3f4a048f,0x3f286d41,2
+np.float32,0x800000,0x800000,2
+np.float32,0x7efceb9f,0x3f800000,2
+np.float32,0xbf5fe2d3,0xbf34246f,2
+np.float32,0x807e086a,0x807e086a,2
+np.float32,0x7ef5e856,0x3f800000,2
+np.float32,0xfc546f00,0xbf800000,2
+np.float32,0x3a65b890,0x3a65b88c,2
+np.float32,0x800cfa70,0x800cfa70,2
+np.float32,0x80672ea7,0x80672ea7,2
+np.float32,0x3f2bf3f2,0x3f160a12,2
+np.float32,0xbf0ab67e,0xbefd2004,2
+np.float32,0x3f2a0bb4,0x3f14c824,2
+np.float32,0xbeff5374,0xbeec12d7,2
+np.float32,0xbf221b58,0xbf0f6dff,2
+np.float32,0x7cc1f3,0x7cc1f3,2
+np.float32,0x7f234e3c,0x3f800000,2
+np.float32,0x3f60ff10,0x3f34b37d,2
+np.float32,0xbdd957f0,0xbdd887fe,2
+np.float32,0x801ce048,0x801ce048,2
+np.float32,0x7f3a8f76,0x3f800000,2
+np.float32,0xfdd13d08,0xbf800000,2
+np.float32,0x3e9af4a4,0x3e966445,2
+np.float32,0x1e55f3,0x1e55f3,2
+np.float32,0x327905,0x327905,2
+np.float32,0xbf03cf0b,0xbef28dad,2
+np.float32,0x3f0223d3,0x3eeff4f4,2
+np.float32,0xfdd96ff8,0xbf800000,2
+np.float32,0x428db8,0x428db8,2
+np.float32,0xbd74a200,0xbd7457a5,2
+np.float32,0x2a63a3,0x2a63a3,2
+np.float32,0x7e8aa9d7,0x3f800000,2
+np.float32,0x7f50b810,0x3f800000,2
+np.float32,0xbce5ec80,0xbce5dd0d,2
+np.float32,0x54711,0x54711,2
+np.float32,0x8074212a,0x8074212a,2
+np.float32,0xbf13d0ec,0xbf0551b5,2
+np.float32,0x80217f89,0x80217f89,2
+np.float32,0x3f300824,0x3f18b12f,2
+np.float32,0x7d252462,0x3f800000,2
+np.float32,0x807a154c,0x807a154c,2
+np.float32,0x8064d4b9,0x8064d4b9,2
+np.float32,0x804543b4,0x804543b4,2
+np.float32,0x4c269e,0x4c269e,2
+np.float32,0xff39823b,0xbf800000,2
+np.float32,0x3f5040b1,0x3f2be80b,2
+np.float32,0xbf7028c1,0xbf3bfee5,2
+np.float32,0x3e94eb78,0x3e90db93,2
+np.float32,0x3ccc1b40,0x3ccc1071,2
+np.float32,0xbe8796f0,0xbe8481a1,2
+np.float32,0xfc767bc0,0xbf800000,2
+np.float32,0xbdd81ed0,0xbdd75259,2
+np.float32,0xbed31bfc,0xbec7e82d,2
+np.float32,0xbf350a9e,0xbf1be1c6,2
+np.float32,0x33d41f,0x33d41f,2
+np.float32,0x3f73e076,0x3f3db0b5,2
+np.float32,0x3f800000,0x3f42f7d6,2
+np.float32,0xfee27c14,0xbf800000,2
+np.float32,0x7f6e4388,0x3f800000,2
+np.float32,0x4ea19b,0x4ea19b,2
+np.float32,0xff2d75f2,0xbf800000,2
+np.float32,0x7ee225ca,0x3f800000,2
+np.float32,0x3f31cb4b,0x3f19d2a4,2
+np.float32,0x80554a9d,0x80554a9d,2
+np.float32,0x3f4d57fa,0x3f2a4c03,2
+np.float32,0x3eac6a88,0x3ea62e72,2
+np.float32,0x773520,0x773520,2
+np.float32,0x8079c20a,0x8079c20a,2
+np.float32,0xfeb1eb94,0xbf800000,2
+np.float32,0xfe8d81c0,0xbf800000,2
+np.float32,0xfeed6902,0xbf800000,2
+np.float32,0x8066bb65,0x8066bb65,2
+np.float32,0x7f800000,0x3f800000,2
+np.float32,0x1,0x1,2
+np.float32,0x3f2c66a4,0x3f16554a,2
+np.float32,0x3cd231,0x3cd231,2
+np.float32,0x3e932a64,0x3e8f3e0c,2
+np.float32,0xbf3ab1c3,0xbf1f6420,2
+np.float32,0xbc902b20,0xbc902751,2
+np.float32,0x7dac0a5b,0x3f800000,2
+np.float32,0x3f2b7e06,0x3f15bc93,2
+np.float32,0x75de0,0x75de0,2
+np.float32,0x8020b7bc,0x8020b7bc,2
+np.float32,0x3f257cda,0x3f11bb6b,2
+np.float32,0x807480e5,0x807480e5,2
+np.float32,0xfe00d758,0xbf800000,2
+np.float32,0xbd9b54e0,0xbd9b08cd,2
+np.float32,0x4dfbe3,0x4dfbe3,2
+np.float32,0xff645788,0xbf800000,2
+np.float32,0xbe92c80a,0xbe8ee360,2
+np.float32,0x3eb9b400,0x3eb1f77c,2
+np.float32,0xff20b69c,0xbf800000,2
+np.float32,0x623c28,0x623c28,2
+np.float32,0xff235748,0xbf800000,2
+np.float32,0xbf3bbc56,0xbf2006f3,2
+np.float32,0x7e6f78b1,0x3f800000,2
+np.float32,0x7e1584e9,0x3f800000,2
+np.float32,0xff463423,0xbf800000,2
+np.float32,0x8002861e,0x8002861e,2
+np.float32,0xbf0491d8,0xbef3bb6a,2
+np.float32,0x7ea3bc17,0x3f800000,2
+np.float32,0xbedde7ea,0xbed0fb49,2
+np.float32,0xbf4bac48,0xbf295c8b,2
+np.float32,0xff28e276,0xbf800000,2
+np.float32,0x7e8f3bf5,0x3f800000,2
+np.float32,0xbf0a4a73,0xbefc7c9d,2
+np.float32,0x7ec5bd96,0x3f800000,2
+np.float32,0xbf4c22e8,0xbf299f2c,2
+np.float32,0x3e3970a0,0x3e377064,2
+np.float32,0x3ecb1118,0x3ec10c88,2
+np.float32,0xff548a7a,0xbf800000,2
+np.float32,0xfe8ec550,0xbf800000,2
+np.float32,0x3e158985,0x3e147bb2,2
+np.float32,0x7eb79ad7,0x3f800000,2
+np.float32,0xbe811384,0xbe7cd1ab,2
+np.float32,0xbdc4b9e8,0xbdc41f94,2
+np.float32,0xe0fd5,0xe0fd5,2
+np.float32,0x3f2485f2,0x3f11142b,2
+np.float32,0xfdd3c3d8,0xbf800000,2
+np.float32,0xfe8458e6,0xbf800000,2
+np.float32,0x3f06e398,0x3ef74dd8,2
+np.float32,0xff4752cf,0xbf800000,2
+np.float32,0x6998e3,0x6998e3,2
+np.float32,0x626751,0x626751,2
+np.float32,0x806631d6,0x806631d6,2
+np.float32,0xbf0c3cf4,0xbeff6c54,2
+np.float32,0x802860f8,0x802860f8,2
+np.float32,0xff2952cb,0xbf800000,2
+np.float32,0xff31d40b,0xbf800000,2
+np.float32,0x7c389473,0x3f800000,2
+np.float32,0x3dcd2f1b,0x3dcc8010,2
+np.float32,0x3d70c29f,0x3d707bbc,2
+np.float32,0x3f6bd386,0x3f39f979,2
+np.float32,0x1efec9,0x1efec9,2
+np.float32,0x3f675518,0x3f37d338,2
+np.float32,0x5fdbe3,0x5fdbe3,2
+np.float32,0x5d684e,0x5d684e,2
+np.float32,0xbedfe748,0xbed2a4c7,2
+np.float32,0x3f0cb07a,0x3f000cdc,2
+np.float32,0xbf77151e,0xbf3f1f5d,2
+np.float32,0x7f038ea0,0x3f800000,2
+np.float32,0x3ea91be9,0x3ea3376f,2
+np.float32,0xbdf20738,0xbdf0e861,2
+np.float32,0x807ea380,0x807ea380,2
+np.float32,0x2760ca,0x2760ca,2
+np.float32,0x7f20a544,0x3f800000,2
+np.float32,0x76ed83,0x76ed83,2
+np.float32,0x15a441,0x15a441,2
+np.float32,0x74c76d,0x74c76d,2
+np.float32,0xff3d5c2a,0xbf800000,2
+np.float32,0x7f6a76a6,0x3f800000,2
+np.float32,0x3eb87067,0x3eb0dabe,2
+np.float32,0xbf515cfa,0xbf2c83af,2
+np.float32,0xbdececc0,0xbdebdf9d,2
+np.float32,0x7f51b7c2,0x3f800000,2
+np.float32,0x3eb867ac,0x3eb0d30d,2
+np.float32,0xff50fd84,0xbf800000,2
+np.float32,0x806945e9,0x806945e9,2
+np.float32,0x298eed,0x298eed,2
+np.float32,0x441f53,0x441f53,2
+np.float32,0x8066d4b0,0x8066d4b0,2
+np.float32,0x3f6a479c,0x3f393dae,2
+np.float32,0xbf6ce2a7,0xbf3a7921,2
+np.float32,0x8064c3cf,0x8064c3cf,2
+np.float32,0xbf2d8146,0xbf170dfd,2
+np.float32,0x3b0e82,0x3b0e82,2
+np.float32,0xbea97574,0xbea387dc,2
+np.float32,0x67ad15,0x67ad15,2
+np.float32,0xbf68478f,0xbf38485a,2
+np.float32,0xff6f593b,0xbf800000,2
+np.float32,0xbeda26f2,0xbecdd806,2
+np.float32,0xbd216d50,0xbd2157ee,2
+np.float32,0x7a8544db,0x3f800000,2
+np.float32,0x801df20b,0x801df20b,2
+np.float32,0xbe14ba24,0xbe13b0a8,2
+np.float32,0xfdc6d8a8,0xbf800000,2
+np.float32,0x1d6b49,0x1d6b49,2
+np.float32,0x7f5ff1b8,0x3f800000,2
+np.float32,0x3f75e032,0x3f3e9625,2
+np.float32,0x7f2c5687,0x3f800000,2
+np.float32,0x3d95fb6c,0x3d95b6ee,2
+np.float32,0xbea515e4,0xbe9f97c8,2
+np.float32,0x7f2b2cd7,0x3f800000,2
+np.float32,0x3f076f7a,0x3ef8241e,2
+np.float32,0x5178ca,0x5178ca,2
+np.float32,0xbeb5976a,0xbeae5781,2
+np.float32,0x3e3c3563,0x3e3a1e13,2
+np.float32,0xbd208530,0xbd20702a,2
+np.float32,0x3eb03b04,0x3ea995ef,2
+np.float32,0x17fb9c,0x17fb9c,2
+np.float32,0xfca68e40,0xbf800000,2
+np.float32,0xbf5e7433,0xbf336a9f,2
+np.float32,0xff5b8d3d,0xbf800000,2
+np.float32,0x8003121d,0x8003121d,2
+np.float32,0xbe6dd344,0xbe69a3b0,2
+np.float32,0x67cc4,0x67cc4,2
+np.float32,0x9b01d,0x9b01d,2
+np.float32,0x127c13,0x127c13,2
+np.float32,0xfea5e3d6,0xbf800000,2
+np.float32,0xbdf5c610,0xbdf499c1,2
+np.float32,0x3aff4c00,0x3aff4beb,2
+np.float32,0x3b00afd0,0x3b00afc5,2
+np.float32,0x479618,0x479618,2
+np.float32,0x801cbd05,0x801cbd05,2
+np.float32,0x3ec9249f,0x3ebf6579,2
+np.float32,0x3535c4,0x3535c4,2
+np.float32,0xbeb4f662,0xbeadc915,2
+np.float32,0x8006fda6,0x8006fda6,2
+np.float32,0xbf4f3097,0xbf2b5239,2
+np.float32,0xbf3cb9a8,0xbf20a0e9,2
+np.float32,0x32ced0,0x32ced0,2
+np.float32,0x7ea34e76,0x3f800000,2
+np.float32,0x80063046,0x80063046,2
+np.float32,0x80727e8b,0x80727e8b,2
+np.float32,0xfd6b5780,0xbf800000,2
+np.float32,0x80109815,0x80109815,2
+np.float32,0xfdcc8a78,0xbf800000,2
+np.float32,0x81562,0x81562,2
+np.float32,0x803dfacc,0x803dfacc,2
+np.float32,0xbe204318,0xbe1ef75f,2
+np.float32,0xbf745d34,0xbf3de8e2,2
+np.float32,0xff13fdcc,0xbf800000,2
+np.float32,0x7f75ba8c,0x3f800000,2
+np.float32,0x806c04b4,0x806c04b4,2
+np.float32,0x3ec61ca6,0x3ebcc877,2
+np.float32,0xbeaea984,0xbea8301f,2
+np.float32,0xbf4dcd0e,0xbf2a8d34,2
+np.float32,0x802a01d3,0x802a01d3,2
+np.float32,0xbf747be5,0xbf3df6ad,2
+np.float32,0xbf75cbd2,0xbf3e8d0f,2
+np.float32,0x7db86576,0x3f800000,2
+np.float32,0xff49a2c3,0xbf800000,2
+np.float32,0xbedc5314,0xbecfa978,2
+np.float32,0x8078877b,0x8078877b,2
+np.float32,0xbead4824,0xbea6f499,2
+np.float32,0xbf3926e3,0xbf1e716c,2
+np.float32,0x807f4a1c,0x807f4a1c,2
+np.float32,0x7f2cd8fd,0x3f800000,2
+np.float32,0x806cfcca,0x806cfcca,2
+np.float32,0xff1aa048,0xbf800000,2
+np.float32,0x7eb9ea08,0x3f800000,2
+np.float32,0xbf1034bc,0xbf02ab3a,2
+np.float32,0xbd087830,0xbd086b44,2
+np.float32,0x7e071034,0x3f800000,2
+np.float32,0xbefcc9de,0xbeea122f,2
+np.float32,0x80796d7a,0x80796d7a,2
+np.float32,0x33ce46,0x33ce46,2
+np.float32,0x8074a783,0x8074a783,2
+np.float32,0xbe95a56a,0xbe918691,2
+np.float32,0xbf2ff3f4,0xbf18a42d,2
+np.float32,0x1633e9,0x1633e9,2
+np.float32,0x7f0f104b,0x3f800000,2
+np.float32,0xbf800000,0xbf42f7d6,2
+np.float32,0x3d2cd6,0x3d2cd6,2
+np.float32,0xfed43e16,0xbf800000,2
+np.float32,0x3ee6faec,0x3ed87d2c,2
+np.float32,0x3f2c32d0,0x3f163352,2
+np.float32,0xff4290c0,0xbf800000,2
+np.float32,0xbf66500e,0xbf37546a,2
+np.float32,0x7dfb8fe3,0x3f800000,2
+np.float32,0x3f20ba5d,0x3f0e7b16,2
+np.float32,0xff30c7ae,0xbf800000,2
+np.float32,0x1728a4,0x1728a4,2
+np.float32,0x340d82,0x340d82,2
+np.float32,0xff7870b7,0xbf800000,2
+np.float32,0xbeac6ac4,0xbea62ea7,2
+np.float32,0xbef936fc,0xbee73c36,2
+np.float32,0x3ec7e12c,0x3ebe4ef8,2
+np.float32,0x80673488,0x80673488,2
+np.float32,0xfdf14c90,0xbf800000,2
+np.float32,0x3f182568,0x3f08726e,2
+np.float32,0x7ed7dcd0,0x3f800000,2
+np.float32,0x3de4da34,0x3de3e790,2
+np.float32,0xff7fffff,0xbf800000,2
+np.float32,0x4ff90c,0x4ff90c,2
+np.float32,0x3efb0d1c,0x3ee8b1d6,2
+np.float32,0xbf66e952,0xbf379ef4,2
+np.float32,0xba9dc,0xba9dc,2
+np.float32,0xff67c766,0xbf800000,2
+np.float32,0x7f1ffc29,0x3f800000,2
+np.float32,0x3f51c906,0x3f2cbe99,2
+np.float32,0x3f2e5792,0x3f179968,2
+np.float32,0x3ecb9750,0x3ec17fa0,2
+np.float32,0x7f3fcefc,0x3f800000,2
+np.float32,0xbe4e30fc,0xbe4b72f9,2
+np.float32,0x7e9bc4ce,0x3f800000,2
+np.float32,0x7e70aa1f,0x3f800000,2
+np.float32,0x14c6e9,0x14c6e9,2
+np.float32,0xbcf327c0,0xbcf3157a,2
+np.float32,0xff1fd204,0xbf800000,2
+np.float32,0x7d934a03,0x3f800000,2
+np.float32,0x8028bf1e,0x8028bf1e,2
+np.float32,0x7f0800b7,0x3f800000,2
+np.float32,0xfe04825c,0xbf800000,2
+np.float32,0x807210ac,0x807210ac,2
+np.float32,0x3f7faf7c,0x3f42d5fd,2
+np.float32,0x3e04a543,0x3e03e899,2
+np.float32,0x3e98ea15,0x3e94863e,2
+np.float32,0x3d2a2e48,0x3d2a153b,2
+np.float32,0x7fa00000,0x7fe00000,2
+np.float32,0x20a488,0x20a488,2
+np.float32,0x3f6ba86a,0x3f39e51a,2
+np.float32,0x0,0x0,2
+np.float32,0x3e892ddd,0x3e85fcfe,2
+np.float32,0x3e2da627,0x3e2c00e0,2
+np.float32,0xff000a50,0xbf800000,2
+np.float32,0x3eb749f4,0x3eafd739,2
+np.float32,0x8024c0ae,0x8024c0ae,2
+np.float32,0xfc8f3b40,0xbf800000,2
+np.float32,0xbf685fc7,0xbf385405,2
+np.float32,0x3f1510e6,0x3f063a4f,2
+np.float32,0x3f68e8ad,0x3f3895d8,2
+np.float32,0x3dba8608,0x3dba0271,2
+np.float32,0xbf16ea10,0xbf079017,2
+np.float32,0xb3928,0xb3928,2
+np.float32,0xfe447c00,0xbf800000,2
+np.float32,0x3db9cd57,0x3db94b45,2
+np.float32,0x803b66b0,0x803b66b0,2
+np.float32,0x805b5e02,0x805b5e02,2
+np.float32,0x7ec93f61,0x3f800000,2
+np.float32,0x8005a126,0x8005a126,2
+np.float32,0x6d8888,0x6d8888,2
+np.float32,0x3e21b7de,0x3e206314,2
+np.float32,0xbec9c31e,0xbebfedc2,2
+np.float32,0xbea88aa8,0xbea2b4e5,2
+np.float32,0x3d8fc310,0x3d8f86bb,2
+np.float32,0xbf3cc68a,0xbf20a8b8,2
+np.float32,0x432690,0x432690,2
+np.float32,0xbe51d514,0xbe4ef1a3,2
+np.float32,0xbcda6d20,0xbcda5fe1,2
+np.float32,0xfe24e458,0xbf800000,2
+np.float32,0xfedc8c14,0xbf800000,2
+np.float32,0x7f7e9bd4,0x3f800000,2
+np.float32,0x3ebcc880,0x3eb4ab44,2
+np.float32,0xbe0aa490,0xbe09cd44,2
+np.float32,0x3dc9158c,0x3dc870c3,2
+np.float32,0x3e5c319e,0x3e58dc90,2
+np.float32,0x1d4527,0x1d4527,2
+np.float32,0x2dbf5,0x2dbf5,2
+np.float32,0xbf1f121f,0xbf0d5534,2
+np.float32,0x7e3e9ab5,0x3f800000,2
+np.float32,0x7f74b5c1,0x3f800000,2
+np.float32,0xbf6321ba,0xbf35c42b,2
+np.float32,0xbe5c7488,0xbe591c79,2
+np.float32,0x7e7b02cd,0x3f800000,2
+np.float32,0xfe7cbfa4,0xbf800000,2
+np.float32,0xbeace360,0xbea69a86,2
+np.float32,0x7e149b00,0x3f800000,2
+np.float32,0xbf61a700,0xbf35079a,2
+np.float32,0x7eb592a7,0x3f800000,2
+np.float32,0x3f2105e6,0x3f0eaf30,2
+np.float32,0xfd997a88,0xbf800000,2
+np.float32,0xff5d093b,0xbf800000,2
+np.float32,0x63aede,0x63aede,2
+np.float32,0x6907ee,0x6907ee,2
+np.float32,0xbf7578ee,0xbf3e680f,2
+np.float32,0xfea971e8,0xbf800000,2
+np.float32,0x3f21d0f5,0x3f0f3aed,2
+np.float32,0x3a50e2,0x3a50e2,2
+np.float32,0x7f0f5b1e,0x3f800000,2
+np.float32,0x805b9765,0x805b9765,2
+np.float32,0xbe764ab8,0xbe71a664,2
+np.float32,0x3eafac7f,0x3ea91701,2
+np.float32,0x807f4130,0x807f4130,2
+np.float32,0x7c5f31,0x7c5f31,2
+np.float32,0xbdbe0e30,0xbdbd8300,2
+np.float32,0x7ecfe4e0,0x3f800000,2
+np.float32,0xff7cb628,0xbf800000,2
+np.float32,0xff1842bc,0xbf800000,2
+np.float32,0xfd4163c0,0xbf800000,2
+np.float32,0x800e11f7,0x800e11f7,2
+np.float32,0x7f3adec8,0x3f800000,2
+np.float32,0x7f597514,0x3f800000,2
+np.float32,0xbe986e14,0xbe9414a4,2
+np.float32,0x800fa9d7,0x800fa9d7,2
+np.float32,0xff5b79c4,0xbf800000,2
+np.float32,0x80070565,0x80070565,2
+np.float32,0xbee5628e,0xbed72d60,2
+np.float32,0x3f438ef2,0x3f24b3ca,2
+np.float32,0xcda91,0xcda91,2
+np.float32,0x7e64151a,0x3f800000,2
+np.float32,0xbe95d584,0xbe91b2c7,2
+np.float32,0x8022c2a1,0x8022c2a1,2
+np.float32,0x7e7097bf,0x3f800000,2
+np.float32,0x80139035,0x80139035,2
+np.float32,0x804de2cb,0x804de2cb,2
+np.float32,0xfde5d178,0xbf800000,2
+np.float32,0x6d238,0x6d238,2
+np.float32,0x807abedc,0x807abedc,2
+np.float32,0x3f450a12,0x3f259129,2
+np.float32,0x3ef1c120,0x3ee141f2,2
+np.float32,0xfeb64dae,0xbf800000,2
+np.float32,0x8001732c,0x8001732c,2
+np.float32,0x3f76062e,0x3f3ea711,2
+np.float32,0x3eddd550,0x3ed0ebc8,2
+np.float32,0xff5ca1d4,0xbf800000,2
+np.float32,0xbf49dc5e,0xbf285673,2
+np.float32,0x7e9e5438,0x3f800000,2
+np.float32,0x7e83625e,0x3f800000,2
+np.float32,0x3f5dc41c,0x3f3310da,2
+np.float32,0x3f583efa,0x3f30342f,2
+np.float32,0xbe26bf88,0xbe254a2d,2
+np.float32,0xff1e0beb,0xbf800000,2
+np.float32,0xbe2244c8,0xbe20ec86,2
+np.float32,0xff0b1630,0xbf800000,2
+np.float32,0xff338dd6,0xbf800000,2
+np.float32,0x3eafc22c,0x3ea92a51,2
+np.float32,0x800ea07f,0x800ea07f,2
+np.float32,0x3f46f006,0x3f26aa7e,2
+np.float32,0x3e5f57cd,0x3e5bde16,2
+np.float32,0xbf1b2d8e,0xbf0a9a93,2
+np.float32,0xfeacdbe0,0xbf800000,2
+np.float32,0x7e5ea4bc,0x3f800000,2
+np.float32,0xbf51cbe2,0xbf2cc027,2
+np.float32,0x8073644c,0x8073644c,2
+np.float32,0xff2d6bfe,0xbf800000,2
+np.float32,0x3f65f0f6,0x3f37260a,2
+np.float32,0xff4b37a6,0xbf800000,2
+np.float32,0x712df7,0x712df7,2
+np.float32,0x7f71ef17,0x3f800000,2
+np.float32,0x8042245c,0x8042245c,2
+np.float32,0x3e5dde7b,0x3e5a760d,2
+np.float32,0x8069317d,0x8069317d,2
+np.float32,0x807932dd,0x807932dd,2
+np.float32,0x802f847e,0x802f847e,2
+np.float32,0x7e9300,0x7e9300,2
+np.float32,0x8040b4ab,0x8040b4ab,2
+np.float32,0xff76ef8e,0xbf800000,2
+np.float32,0x4aae3a,0x4aae3a,2
+np.float32,0x8058de73,0x8058de73,2
+np.float32,0x7e4d58c0,0x3f800000,2
+np.float32,0x3d811b30,0x3d80ef79,2
+np.float32,0x7ec952cc,0x3f800000,2
+np.float32,0xfe162b1c,0xbf800000,2
+np.float32,0x3f0f1187,0x3f01d367,2
+np.float32,0xbf2f3458,0xbf182878,2
+np.float32,0x5ceb14,0x5ceb14,2
+np.float32,0xbec29476,0xbeb9b939,2
+np.float32,0x3e71f943,0x3e6d9176,2
+np.float32,0x3ededefc,0x3ed1c909,2
+np.float32,0x805df6ac,0x805df6ac,2
+np.float32,0x3e5ae2c8,0x3e579ca8,2
+np.float32,0x3f6ad2c3,0x3f397fdf,2
+np.float32,0x7d5f94d3,0x3f800000,2
+np.float32,0xbeec7fe4,0xbedd0037,2
+np.float32,0x3f645304,0x3f365b0d,2
+np.float32,0xbf69a087,0xbf38edef,2
+np.float32,0x8025102e,0x8025102e,2
+np.float32,0x800db486,0x800db486,2
+np.float32,0x4df6c7,0x4df6c7,2
+np.float32,0x806d8cdd,0x806d8cdd,2
+np.float32,0x7f0c78cc,0x3f800000,2
+np.float32,0x7e1cf70b,0x3f800000,2
+np.float32,0x3e0ae570,0x3e0a0cf7,2
+np.float32,0x80176ef8,0x80176ef8,2
+np.float32,0x3f38b60c,0x3f1e2bbb,2
+np.float32,0x3d3071e0,0x3d3055f5,2
+np.float32,0x3ebfcfdd,0x3eb750a9,2
+np.float32,0xfe2cdec0,0xbf800000,2
+np.float32,0x7eeb2eed,0x3f800000,2
+np.float32,0x8026c904,0x8026c904,2
+np.float32,0xbec79bde,0xbebe133a,2
+np.float32,0xbf7dfab6,0xbf421d47,2
+np.float32,0x805b3cfd,0x805b3cfd,2
+np.float32,0xfdfcfb68,0xbf800000,2
+np.float32,0xbd537ec0,0xbd534eaf,2
+np.float32,0x52ce73,0x52ce73,2
+np.float32,0xfeac6ea6,0xbf800000,2
+np.float32,0x3f2c2990,0x3f162d41,2
+np.float32,0x3e3354e0,0x3e318539,2
+np.float32,0x802db22b,0x802db22b,2
+np.float32,0x7f0faa83,0x3f800000,2
+np.float32,0x7f10e161,0x3f800000,2
+np.float32,0x7f165c60,0x3f800000,2
+np.float32,0xbf5a756f,0xbf315c82,2
+np.float32,0x7f5a4b68,0x3f800000,2
+np.float32,0xbd77fbf0,0xbd77ae7c,2
+np.float32,0x65d83c,0x65d83c,2
+np.float32,0x3e5f28,0x3e5f28,2
+np.float32,0x8040ec92,0x8040ec92,2
+np.float32,0xbf2b41a6,0xbf1594d5,2
+np.float32,0x7f2f88f1,0x3f800000,2
+np.float32,0xfdb64ab8,0xbf800000,2
+np.float32,0xbf7a3ff1,0xbf4082f5,2
+np.float32,0x1948fc,0x1948fc,2
+np.float32,0x802c1039,0x802c1039,2
+np.float32,0x80119274,0x80119274,2
+np.float32,0x7e885d7b,0x3f800000,2
+np.float32,0xfaf6a,0xfaf6a,2
+np.float32,0x3eba28c4,0x3eb25e1d,2
+np.float32,0x3e4df370,0x3e4b37da,2
+np.float32,0xbf19eff6,0xbf09b97d,2
+np.float32,0xbeddd3c6,0xbed0ea7f,2
+np.float32,0xff6fc971,0xbf800000,2
+np.float32,0x7e93de29,0x3f800000,2
+np.float32,0x3eb12332,0x3eaa6485,2
+np.float32,0x3eb7c6e4,0x3eb04563,2
+np.float32,0x4a67ee,0x4a67ee,2
+np.float32,0xff1cafde,0xbf800000,2
+np.float32,0x3f5e2812,0x3f3343da,2
+np.float32,0x3f060e04,0x3ef605d4,2
+np.float32,0x3e9027d8,0x3e8c76a6,2
+np.float32,0xe2d33,0xe2d33,2
+np.float32,0xff4c94fc,0xbf800000,2
+np.float32,0xbf574908,0xbf2fb26b,2
+np.float32,0xbf786c08,0xbf3fb68e,2
+np.float32,0x8011ecab,0x8011ecab,2
+np.float32,0xbf061c6a,0xbef61bfa,2
+np.float32,0x7eea5f9d,0x3f800000,2
+np.float32,0x3ea2e19c,0x3e9d99a5,2
+np.float32,0x8071550c,0x8071550c,2
+np.float32,0x41c70b,0x41c70b,2
+np.float32,0x80291fc8,0x80291fc8,2
+np.float32,0x43b1ec,0x43b1ec,2
+np.float32,0x32f5a,0x32f5a,2
+np.float32,0xbe9310ec,0xbe8f2692,2
+np.float32,0x7f75f6bf,0x3f800000,2
+np.float32,0x3e6642a6,0x3e6274d2,2
+np.float32,0x3ecb88e0,0x3ec1733f,2
+np.float32,0x804011b6,0x804011b6,2
+np.float32,0x80629cca,0x80629cca,2
+np.float32,0x8016b914,0x8016b914,2
+np.float32,0xbdd05fc0,0xbdcfa870,2
+np.float32,0x807b824d,0x807b824d,2
+np.float32,0xfeec2576,0xbf800000,2
+np.float32,0xbf54bf22,0xbf2e584c,2
+np.float32,0xbf185eb0,0xbf089b6b,2
+np.float32,0xfbc09480,0xbf800000,2
+np.float32,0x3f413054,0x3f234e25,2
+np.float32,0x7e9e32b8,0x3f800000,2
+np.float32,0x266296,0x266296,2
+np.float32,0x460284,0x460284,2
+np.float32,0x3eb0b056,0x3ea9fe5a,2
+np.float32,0x1a7be5,0x1a7be5,2
+np.float32,0x7f099895,0x3f800000,2
+np.float32,0x3f3614f0,0x3f1c88ef,2
+np.float32,0x7e757dc2,0x3f800000,2
+np.float32,0x801fc91e,0x801fc91e,2
+np.float32,0x3f5ce37d,0x3f329ddb,2
+np.float32,0x3e664d70,0x3e627f15,2
+np.float32,0xbf38ed78,0xbf1e4dfa,2
+np.float32,0xbf5c563d,0xbf325543,2
+np.float32,0xbe91cc54,0xbe8dfb24,2
+np.float32,0x3d767fbe,0x3d7633ac,2
+np.float32,0xbf6aeb40,0xbf398b7f,2
+np.float32,0x7f40508b,0x3f800000,2
+np.float32,0x2650df,0x2650df,2
+np.float32,0xbe8cea3c,0xbe897628,2
+np.float32,0x80515af8,0x80515af8,2
+np.float32,0x7f423986,0x3f800000,2
+np.float32,0xbdf250e8,0xbdf1310c,2
+np.float32,0xfe89288a,0xbf800000,2
+np.float32,0x397b3b,0x397b3b,2
+np.float32,0x7e5e91b0,0x3f800000,2
+np.float32,0x6866e2,0x6866e2,2
+np.float32,0x7f4d8877,0x3f800000,2
+np.float32,0x3e6c4a21,0x3e682ee3,2
+np.float32,0xfc3d5980,0xbf800000,2
+np.float32,0x7eae2cd0,0x3f800000,2
+np.float32,0xbf241222,0xbf10c579,2
+np.float32,0xfebc02de,0xbf800000,2
+np.float32,0xff6e0645,0xbf800000,2
+np.float32,0x802030b6,0x802030b6,2
+np.float32,0x7ef9a441,0x3f800000,2
+np.float32,0x3fcf9f,0x3fcf9f,2
+np.float32,0xbf0ccf13,0xbf0023cc,2
+np.float32,0xfefee688,0xbf800000,2
+np.float32,0xbf6c8e0c,0xbf3a5160,2
+np.float32,0xfe749c28,0xbf800000,2
+np.float32,0x7f7fffff,0x3f800000,2
+np.float32,0x58c1a0,0x58c1a0,2
+np.float32,0x3f2de0a1,0x3f174c17,2
+np.float32,0xbf5f7138,0xbf33eb03,2
+np.float32,0x3da15270,0x3da0fd3c,2
+np.float32,0x3da66560,0x3da607e4,2
+np.float32,0xbf306f9a,0xbf18f3c6,2
+np.float32,0x3e81a4de,0x3e7de293,2
+np.float32,0xbebb5fb8,0xbeb36f1a,2
+np.float32,0x14bf64,0x14bf64,2
+np.float32,0xbeac46c6,0xbea60e73,2
+np.float32,0xbdcdf210,0xbdcd4111,2
+np.float32,0x3f7e3cd9,0x3f42395e,2
+np.float32,0xbc4be640,0xbc4be38e,2
+np.float32,0xff5f53b4,0xbf800000,2
+np.float32,0xbf1315ae,0xbf04c90b,2
+np.float32,0x80000000,0x80000000,2
+np.float32,0xbf6a4149,0xbf393aaa,2
+np.float32,0x3f66b8ee,0x3f378772,2
+np.float32,0xff29293e,0xbf800000,2
+np.float32,0xbcc989c0,0xbcc97f58,2
+np.float32,0xbd9a1b70,0xbd99d125,2
+np.float32,0xfef353cc,0xbf800000,2
+np.float32,0xbdc30cf0,0xbdc27683,2
+np.float32,0xfdfd6768,0xbf800000,2
+np.float32,0x7ebac44c,0x3f800000,2
+np.float32,0xff453cd6,0xbf800000,2
+np.float32,0x3ef07720,0x3ee03787,2
+np.float32,0x80219c14,0x80219c14,2
+np.float32,0x805553a8,0x805553a8,2
+np.float32,0x80703928,0x80703928,2
+np.float32,0xff16d3a7,0xbf800000,2
+np.float32,0x3f1472bc,0x3f05c77b,2
+np.float32,0x3eeea37a,0x3edebcf9,2
+np.float32,0x3db801e6,0x3db7838d,2
+np.float32,0x800870d2,0x800870d2,2
+np.float32,0xbea1172c,0xbe9bfa32,2
+np.float32,0x3f1f5e7c,0x3f0d8a42,2
+np.float32,0x123cdb,0x123cdb,2
+np.float32,0x7f6e6b06,0x3f800000,2
+np.float32,0x3ed80573,0x3ecc0def,2
+np.float32,0xfea31b82,0xbf800000,2
+np.float32,0x6744e0,0x6744e0,2
+np.float32,0x695e8b,0x695e8b,2
+np.float32,0xbee3888a,0xbed5a67d,2
+np.float32,0x7f64bc2a,0x3f800000,2
+np.float32,0x7f204244,0x3f800000,2
+np.float32,0x7f647102,0x3f800000,2
+np.float32,0x3dd8ebc0,0x3dd81d03,2
+np.float32,0x801e7ab1,0x801e7ab1,2
+np.float32,0x7d034b56,0x3f800000,2
+np.float32,0x7fc00000,0x7fc00000,2
+np.float32,0x80194193,0x80194193,2
+np.float32,0xfe31c8d4,0xbf800000,2
+np.float32,0x7fc0c4,0x7fc0c4,2
+np.float32,0xd95bf,0xd95bf,2
+np.float32,0x7e4f991d,0x3f800000,2
+np.float32,0x7fc563,0x7fc563,2
+np.float32,0xbe3fcccc,0xbe3d968a,2
+np.float32,0xfdaaa1c8,0xbf800000,2
+np.float32,0xbf48e449,0xbf27c949,2
+np.float32,0x3eb6c584,0x3eaf625e,2
+np.float32,0xbea35a74,0xbe9e0702,2
+np.float32,0x3eeab47a,0x3edb89d5,2
+np.float32,0xbed99556,0xbecd5de5,2
+np.float64,0xbfb94a81e0329500,0xbfb935867ba761fe,2
+np.float64,0xbfec132f1678265e,0xbfe6900eb097abc3,2
+np.float64,0x5685ea72ad0be,0x5685ea72ad0be,2
+np.float64,0xbfd74d3169ae9a62,0xbfd652e09b9daf32,2
+np.float64,0xbfe28df53d651bea,0xbfe0b8a7f50ab433,2
+np.float64,0x0,0x0,2
+np.float64,0xbfed912738bb224e,0xbfe749e3732831ae,2
+np.float64,0x7fcc6faed838df5d,0x3ff0000000000000,2
+np.float64,0xbfe95fe9a432bfd3,0xbfe51f6349919910,2
+np.float64,0xbfc4d5900b29ab20,0xbfc4a6f496179b8b,2
+np.float64,0xbfcd6025033ac04c,0xbfccded7b34b49b0,2
+np.float64,0xbfdfa655b43f4cac,0xbfdd4ca1e5bb9db8,2
+np.float64,0xe7ea5c7fcfd4c,0xe7ea5c7fcfd4c,2
+np.float64,0xffa5449ca42a8940,0xbff0000000000000,2
+np.float64,0xffe63294c1ac6529,0xbff0000000000000,2
+np.float64,0x7feb9cbae7f73975,0x3ff0000000000000,2
+np.float64,0x800eb07c3e3d60f9,0x800eb07c3e3d60f9,2
+np.float64,0x3fc95777e932aef0,0x3fc9040391e20c00,2
+np.float64,0x800736052dee6c0b,0x800736052dee6c0b,2
+np.float64,0x3fe9ae4afd335c96,0x3fe54b569bab45c7,2
+np.float64,0x7fee4c94217c9927,0x3ff0000000000000,2
+np.float64,0x80094b594bd296b3,0x80094b594bd296b3,2
+np.float64,0xffe5adbcee6b5b7a,0xbff0000000000000,2
+np.float64,0x3fecb8eab47971d5,0x3fe6e236be6f27e9,2
+np.float64,0x44956914892ae,0x44956914892ae,2
+np.float64,0xbfe3bd18ef677a32,0xbfe190bf1e07200c,2
+np.float64,0x800104e5b46209cc,0x800104e5b46209cc,2
+np.float64,0x8008fbcecf71f79e,0x8008fbcecf71f79e,2
+np.float64,0x800f0a46a0be148d,0x800f0a46a0be148d,2
+np.float64,0x7fe657a0702caf40,0x3ff0000000000000,2
+np.float64,0xffd3ff1a9027fe36,0xbff0000000000000,2
+np.float64,0x3fe78bc87bef1790,0x3fe40d2e63aaf029,2
+np.float64,0x7feeabdc4c7d57b8,0x3ff0000000000000,2
+np.float64,0xbfabd28d8437a520,0xbfabcb8ce03a0e56,2
+np.float64,0xbfddc3a133bb8742,0xbfdbc9fdb2594451,2
+np.float64,0x7fec911565b9222a,0x3ff0000000000000,2
+np.float64,0x71302604e2605,0x71302604e2605,2
+np.float64,0xee919d2bdd234,0xee919d2bdd234,2
+np.float64,0xbfc04fcff3209fa0,0xbfc0395a739a2ce4,2
+np.float64,0xffe4668a36e8cd14,0xbff0000000000000,2
+np.float64,0xbfeeafeebefd5fde,0xbfe7cd5f3d61a3ec,2
+np.float64,0x7fddb34219bb6683,0x3ff0000000000000,2
+np.float64,0xbfd2cac6cba5958e,0xbfd24520abb2ff36,2
+np.float64,0xbfb857e49630afc8,0xbfb8452d5064dec2,2
+np.float64,0x3fd2dbf90b25b7f2,0x3fd254eaf48484c2,2
+np.float64,0x800af65c94f5ecba,0x800af65c94f5ecba,2
+np.float64,0xa0eef4bf41ddf,0xa0eef4bf41ddf,2
+np.float64,0xffd8e0a4adb1c14a,0xbff0000000000000,2
+np.float64,0xffe858f6e870b1ed,0xbff0000000000000,2
+np.float64,0x3f94c2c308298580,0x3f94c208a4bb006d,2
+np.float64,0xffb45f0d7428be18,0xbff0000000000000,2
+np.float64,0x800ed4f43dbda9e9,0x800ed4f43dbda9e9,2
+np.float64,0x8002dd697e85bad4,0x8002dd697e85bad4,2
+np.float64,0x787ceab2f0f9e,0x787ceab2f0f9e,2
+np.float64,0xbfdff5fcc2bfebfa,0xbfdd8b736b128589,2
+np.float64,0x7fdb2b4294365684,0x3ff0000000000000,2
+np.float64,0xffe711e5e92e23cc,0xbff0000000000000,2
+np.float64,0x800b1c93f1163928,0x800b1c93f1163928,2
+np.float64,0x7fc524d2f22a49a5,0x3ff0000000000000,2
+np.float64,0x7fc88013b5310026,0x3ff0000000000000,2
+np.float64,0x3fe1a910c5e35222,0x3fe00fd779ebaa2a,2
+np.float64,0xbfb57ec9ca2afd90,0xbfb571e47ecb9335,2
+np.float64,0x7fd7594b20aeb295,0x3ff0000000000000,2
+np.float64,0x7fba4641ca348c83,0x3ff0000000000000,2
+np.float64,0xffe61393706c2726,0xbff0000000000000,2
+np.float64,0x7fd54f3c7baa9e78,0x3ff0000000000000,2
+np.float64,0xffe65ffb12ecbff6,0xbff0000000000000,2
+np.float64,0xbfba3b0376347608,0xbfba239cbbbd1b11,2
+np.float64,0x800200886d640112,0x800200886d640112,2
+np.float64,0xbfecf0ba4679e174,0xbfe6fd59de44a3ec,2
+np.float64,0xffe5c57e122b8afc,0xbff0000000000000,2
+np.float64,0x7fdaad0143355a02,0x3ff0000000000000,2
+np.float64,0x46ab32c08d567,0x46ab32c08d567,2
+np.float64,0x7ff8000000000000,0x7ff8000000000000,2
+np.float64,0xbfda7980fdb4f302,0xbfd90fa9c8066109,2
+np.float64,0x3fe237703c646ee0,0x3fe07969f8d8805a,2
+np.float64,0x8000e9fcfc21d3fb,0x8000e9fcfc21d3fb,2
+np.float64,0xbfdfe6e958bfcdd2,0xbfdd7f952fe87770,2
+np.float64,0xbd7baf217af8,0xbd7baf217af8,2
+np.float64,0xbfceba9e4b3d753c,0xbfce26e54359869a,2
+np.float64,0xb95a2caf72b46,0xb95a2caf72b46,2
+np.float64,0x3fb407e25a280fc5,0x3fb3fd71e457b628,2
+np.float64,0xa1da09d943b41,0xa1da09d943b41,2
+np.float64,0xbfe9c7271cf38e4e,0xbfe559296b471738,2
+np.float64,0x3fefae6170ff5cc3,0x3fe83c70ba82f0e1,2
+np.float64,0x7fe7375348ae6ea6,0x3ff0000000000000,2
+np.float64,0xffe18c9cc6e31939,0xbff0000000000000,2
+np.float64,0x800483d13a6907a3,0x800483d13a6907a3,2
+np.float64,0x7fe772a18caee542,0x3ff0000000000000,2
+np.float64,0xffefff64e7bffec9,0xbff0000000000000,2
+np.float64,0x7fcffc31113ff861,0x3ff0000000000000,2
+np.float64,0x3fd91e067e323c0d,0x3fd7e70bf365a7b3,2
+np.float64,0xb0a6673d614cd,0xb0a6673d614cd,2
+np.float64,0xffef9a297e3f3452,0xbff0000000000000,2
+np.float64,0xffe87cc15e70f982,0xbff0000000000000,2
+np.float64,0xffefd6ad8e7fad5a,0xbff0000000000000,2
+np.float64,0x7fe3aaa3a8a75546,0x3ff0000000000000,2
+np.float64,0xddab0341bb561,0xddab0341bb561,2
+np.float64,0x3fe996d6d7332dae,0x3fe53e3ed5be2922,2
+np.float64,0x3fdbe66a18b7ccd4,0x3fda41e6053c1512,2
+np.float64,0x8914775d1228f,0x8914775d1228f,2
+np.float64,0x3fe44621d4688c44,0x3fe1ef9c7225f8bd,2
+np.float64,0xffab29a2a4365340,0xbff0000000000000,2
+np.float64,0xffc8d4a0c431a940,0xbff0000000000000,2
+np.float64,0xbfd426e085284dc2,0xbfd382e2a9617b87,2
+np.float64,0xbfd3b0a525a7614a,0xbfd3176856faccf1,2
+np.float64,0x80036dedcb06dbdc,0x80036dedcb06dbdc,2
+np.float64,0x3feb13823b762704,0x3fe60ca3facdb696,2
+np.float64,0x3fd7246b7bae48d8,0x3fd62f08afded155,2
+np.float64,0x1,0x1,2
+np.float64,0x3fe8ade4b9715bc9,0x3fe4b97cc1387d27,2
+np.float64,0x3fdf2dbec53e5b7e,0x3fdcecfeee33de95,2
+np.float64,0x3fe4292bf9685258,0x3fe1dbb5a6704090,2
+np.float64,0xbfd21acbb8243598,0xbfd1a2ff42174cae,2
+np.float64,0xdd0d2d01ba1a6,0xdd0d2d01ba1a6,2
+np.float64,0x3fa3f3d2f427e7a0,0x3fa3f13d6f101555,2
+np.float64,0x7fdabf4aceb57e95,0x3ff0000000000000,2
+np.float64,0xd4d9e39ba9b3d,0xd4d9e39ba9b3d,2
+np.float64,0xffec773396f8ee66,0xbff0000000000000,2
+np.float64,0x3fa88cc79031198f,0x3fa887f7ade722ba,2
+np.float64,0xffe63a92066c7524,0xbff0000000000000,2
+np.float64,0xbfcf514e2e3ea29c,0xbfceb510e99aaa19,2
+np.float64,0x9d78c19d3af18,0x9d78c19d3af18,2
+np.float64,0x7fdd748bfbbae917,0x3ff0000000000000,2
+np.float64,0xffb3594c4626b298,0xbff0000000000000,2
+np.float64,0x80068ce5b32d19cc,0x80068ce5b32d19cc,2
+np.float64,0x3fec63d60e78c7ac,0x3fe6b85536e44217,2
+np.float64,0x80080bad4dd0175b,0x80080bad4dd0175b,2
+np.float64,0xbfec6807baf8d010,0xbfe6ba69740f9687,2
+np.float64,0x7fedbae0bbfb75c0,0x3ff0000000000000,2
+np.float64,0x8001cb7aa3c396f6,0x8001cb7aa3c396f6,2
+np.float64,0x7fe1f1f03563e3df,0x3ff0000000000000,2
+np.float64,0x7fd83d3978307a72,0x3ff0000000000000,2
+np.float64,0xbfc05ffe9d20bffc,0xbfc049464e3f0af2,2
+np.float64,0xfe6e053ffcdc1,0xfe6e053ffcdc1,2
+np.float64,0xbfd3bdf39d277be8,0xbfd32386edf12726,2
+np.float64,0x800f41b27bde8365,0x800f41b27bde8365,2
+np.float64,0xbfe2c98390e59307,0xbfe0e3c9260fe798,2
+np.float64,0xffdd6206bcbac40e,0xbff0000000000000,2
+np.float64,0x67f35ef4cfe6c,0x67f35ef4cfe6c,2
+np.float64,0x800337e02ae66fc1,0x800337e02ae66fc1,2
+np.float64,0x3fe0ff70afe1fee1,0x3fdf1f46434330df,2
+np.float64,0x3fd7e0a1df2fc144,0x3fd6d3f82c8031e4,2
+np.float64,0x8008da5cd1b1b4ba,0x8008da5cd1b1b4ba,2
+np.float64,0x80065ec9e4ccbd95,0x80065ec9e4ccbd95,2
+np.float64,0x3fe1d1e559a3a3cb,0x3fe02e4f146aa1ab,2
+np.float64,0x7feb7d2f0836fa5d,0x3ff0000000000000,2
+np.float64,0xbfcb33ce9736679c,0xbfcaccd431b205bb,2
+np.float64,0x800e6d0adf5cda16,0x800e6d0adf5cda16,2
+np.float64,0x7fe46f272ca8de4d,0x3ff0000000000000,2
+np.float64,0x4fdfc73e9fbfa,0x4fdfc73e9fbfa,2
+np.float64,0x800958a13112b143,0x800958a13112b143,2
+np.float64,0xbfea01f877f403f1,0xbfe579a541594247,2
+np.float64,0xeefaf599ddf5f,0xeefaf599ddf5f,2
+np.float64,0x80038766c5e70ece,0x80038766c5e70ece,2
+np.float64,0x7fd31bc28ba63784,0x3ff0000000000000,2
+np.float64,0xbfe4df77eee9bef0,0xbfe257abe7083b77,2
+np.float64,0x7fe6790c78acf218,0x3ff0000000000000,2
+np.float64,0xffe7c66884af8cd0,0xbff0000000000000,2
+np.float64,0x800115e36f422bc8,0x800115e36f422bc8,2
+np.float64,0x3fc601945d2c0329,0x3fc5cab917bb20bc,2
+np.float64,0x3fd6ac9546ad592b,0x3fd5c55437ec3508,2
+np.float64,0xa7bd59294f7ab,0xa7bd59294f7ab,2
+np.float64,0x8005c26c8b8b84da,0x8005c26c8b8b84da,2
+np.float64,0x8257501704aea,0x8257501704aea,2
+np.float64,0x5b12aae0b6256,0x5b12aae0b6256,2
+np.float64,0x800232fe02c465fd,0x800232fe02c465fd,2
+np.float64,0x800dae28f85b5c52,0x800dae28f85b5c52,2
+np.float64,0x3fdade1ac135bc36,0x3fd964a2000ace25,2
+np.float64,0x3fed72ca04fae594,0x3fe73b9170d809f9,2
+np.float64,0x7fc6397e2b2c72fb,0x3ff0000000000000,2
+np.float64,0x3fe1f5296d23ea53,0x3fe048802d17621e,2
+np.float64,0xffe05544b920aa89,0xbff0000000000000,2
+np.float64,0xbfdb2e1588365c2c,0xbfd9a7e4113c713e,2
+np.float64,0xbfed6a06fa3ad40e,0xbfe7376be60535f8,2
+np.float64,0xbfe31dcaf5e63b96,0xbfe120417c46cac1,2
+np.float64,0xbfb7ed67ae2fdad0,0xbfb7dba14af33b00,2
+np.float64,0xffd32bb7eb265770,0xbff0000000000000,2
+np.float64,0x80039877b04730f0,0x80039877b04730f0,2
+np.float64,0x3f832e5630265cac,0x3f832e316f47f218,2
+np.float64,0xffe7fa7f732ff4fe,0xbff0000000000000,2
+np.float64,0x9649b87f2c937,0x9649b87f2c937,2
+np.float64,0xffaee447183dc890,0xbff0000000000000,2
+np.float64,0x7fe4e02dd869c05b,0x3ff0000000000000,2
+np.float64,0x3fe1d35e7463a6bd,0x3fe02f67bd21e86e,2
+np.float64,0xffe57f40fe2afe82,0xbff0000000000000,2
+np.float64,0xbfea1362b93426c6,0xbfe5833421dba8fc,2
+np.float64,0xffe9c689fe338d13,0xbff0000000000000,2
+np.float64,0xffc592dd102b25bc,0xbff0000000000000,2
+np.float64,0x3fd283c7aba5078f,0x3fd203d61d1398c3,2
+np.float64,0x8001d6820243ad05,0x8001d6820243ad05,2
+np.float64,0x3fe0ad5991e15ab4,0x3fdea14ef0d47fbd,2
+np.float64,0x3fe3916f2ee722de,0x3fe1722684a9ffb1,2
+np.float64,0xffef9e54e03f3ca9,0xbff0000000000000,2
+np.float64,0x7fe864faebb0c9f5,0x3ff0000000000000,2
+np.float64,0xbfed3587c3fa6b10,0xbfe71e7112df8a68,2
+np.float64,0xbfdd9efc643b3df8,0xbfdbac3a16caf208,2
+np.float64,0xbfd5ac08feab5812,0xbfd4e14575a6e41b,2
+np.float64,0xffda90fae6b521f6,0xbff0000000000000,2
+np.float64,0x8001380ecf22701e,0x8001380ecf22701e,2
+np.float64,0x7fed266fa5fa4cde,0x3ff0000000000000,2
+np.float64,0xffec6c0ac3b8d815,0xbff0000000000000,2
+np.float64,0x3fe7de43c32fbc88,0x3fe43ef62821a5a6,2
+np.float64,0x800bf4ffc357ea00,0x800bf4ffc357ea00,2
+np.float64,0x3fe125c975624b93,0x3fdf59b2de3eff5d,2
+np.float64,0x8004714c1028e299,0x8004714c1028e299,2
+np.float64,0x3fef1bfbf5fe37f8,0x3fe7fd2ba1b63c8a,2
+np.float64,0x800cae15c3195c2c,0x800cae15c3195c2c,2
+np.float64,0x7fde708e083ce11b,0x3ff0000000000000,2
+np.float64,0x7fbcee5df639dcbb,0x3ff0000000000000,2
+np.float64,0x800b1467141628cf,0x800b1467141628cf,2
+np.float64,0x3fe525e0d36a4bc2,0x3fe286b6e59e30f5,2
+np.float64,0xffe987f8b8330ff1,0xbff0000000000000,2
+np.float64,0x7e0a8284fc151,0x7e0a8284fc151,2
+np.float64,0x8006f982442df305,0x8006f982442df305,2
+np.float64,0xbfd75a3cb62eb47a,0xbfd65e54cee981c9,2
+np.float64,0x258e91104b1d3,0x258e91104b1d3,2
+np.float64,0xbfecd0056779a00b,0xbfe6ed7ae97fff1b,2
+np.float64,0x7fc3a4f9122749f1,0x3ff0000000000000,2
+np.float64,0x6e2b1024dc563,0x6e2b1024dc563,2
+np.float64,0x800d575ad4daaeb6,0x800d575ad4daaeb6,2
+np.float64,0xbfceafb1073d5f64,0xbfce1c93023d8414,2
+np.float64,0xffe895cb5f312b96,0xbff0000000000000,2
+np.float64,0x7fe7811ed4ef023d,0x3ff0000000000000,2
+np.float64,0xbfd93f952f327f2a,0xbfd803e6b5576b99,2
+np.float64,0xffdd883a3fbb1074,0xbff0000000000000,2
+np.float64,0x7fee5624eefcac49,0x3ff0000000000000,2
+np.float64,0xbfe264bb2624c976,0xbfe09a9b7cc896e7,2
+np.float64,0xffef14b417be2967,0xbff0000000000000,2
+np.float64,0xbfecbd0d94397a1b,0xbfe6e43bef852d9f,2
+np.float64,0xbfe20d9e4ba41b3c,0xbfe05a98e05846d9,2
+np.float64,0x10000000000000,0x10000000000000,2
+np.float64,0x7fefde93f7bfbd27,0x3ff0000000000000,2
+np.float64,0x80076b9e232ed73d,0x80076b9e232ed73d,2
+np.float64,0xbfe80df52c701bea,0xbfe45b754b433792,2
+np.float64,0x7fe3b5a637676b4b,0x3ff0000000000000,2
+np.float64,0x2c81d14c5903b,0x2c81d14c5903b,2
+np.float64,0x80038945c767128c,0x80038945c767128c,2
+np.float64,0xffeebaf544bd75ea,0xbff0000000000000,2
+np.float64,0xffdb1867d2b630d0,0xbff0000000000000,2
+np.float64,0x3fe3376eaee66ede,0x3fe13285579763d8,2
+np.float64,0xffddf65ca43becba,0xbff0000000000000,2
+np.float64,0xffec8e3e04791c7b,0xbff0000000000000,2
+np.float64,0x80064f4bde2c9e98,0x80064f4bde2c9e98,2
+np.float64,0x7fe534a085ea6940,0x3ff0000000000000,2
+np.float64,0xbfcbabe31d3757c8,0xbfcb3f8e70adf7e7,2
+np.float64,0xbfe45ca11e28b942,0xbfe1ff04515ef809,2
+np.float64,0x65f4df02cbe9d,0x65f4df02cbe9d,2
+np.float64,0xb08b0cbb61162,0xb08b0cbb61162,2
+np.float64,0x3feae2e8b975c5d1,0x3fe5f302b5e8eda2,2
+np.float64,0x7fcf277ff93e4eff,0x3ff0000000000000,2
+np.float64,0x80010999c4821334,0x80010999c4821334,2
+np.float64,0xbfd7f65911afecb2,0xbfd6e6e9cd098f8b,2
+np.float64,0x800e0560ec3c0ac2,0x800e0560ec3c0ac2,2
+np.float64,0x7fec4152ba3882a4,0x3ff0000000000000,2
+np.float64,0xbfb5c77cd42b8ef8,0xbfb5ba1336084908,2
+np.float64,0x457ff1b68afff,0x457ff1b68afff,2
+np.float64,0x5323ec56a647e,0x5323ec56a647e,2
+np.float64,0xbfeed16cf8bda2da,0xbfe7dc49fc9ae549,2
+np.float64,0xffe8446106b088c1,0xbff0000000000000,2
+np.float64,0xffb93cd13c3279a0,0xbff0000000000000,2
+np.float64,0x7fe515c2aeea2b84,0x3ff0000000000000,2
+np.float64,0x80099df83f933bf1,0x80099df83f933bf1,2
+np.float64,0x7fb3a375562746ea,0x3ff0000000000000,2
+np.float64,0x7fcd7efa243afdf3,0x3ff0000000000000,2
+np.float64,0xffe40cddb12819bb,0xbff0000000000000,2
+np.float64,0x8008b68eecd16d1e,0x8008b68eecd16d1e,2
+np.float64,0x2aec688055d8e,0x2aec688055d8e,2
+np.float64,0xffe23750bc646ea1,0xbff0000000000000,2
+np.float64,0x5adacf60b5b7,0x5adacf60b5b7,2
+np.float64,0x7fefb29b1cbf6535,0x3ff0000000000000,2
+np.float64,0xbfeadbf90175b7f2,0xbfe5ef55e2194794,2
+np.float64,0xeaad2885d55a5,0xeaad2885d55a5,2
+np.float64,0xffd7939fba2f2740,0xbff0000000000000,2
+np.float64,0x3fd187ea3aa30fd4,0x3fd11af023472386,2
+np.float64,0xbf6eb579c03d6b00,0xbf6eb57052f47019,2
+np.float64,0x3fefb67b3bff6cf6,0x3fe83fe4499969ac,2
+np.float64,0xbfe5183aacea3076,0xbfe27da1aa0b61a0,2
+np.float64,0xbfb83e47a2307c90,0xbfb82bcb0e12db42,2
+np.float64,0x80088849b1b11094,0x80088849b1b11094,2
+np.float64,0x800ceeed7399dddb,0x800ceeed7399dddb,2
+np.float64,0x80097cd90892f9b2,0x80097cd90892f9b2,2
+np.float64,0x7ec73feefd8e9,0x7ec73feefd8e9,2
+np.float64,0x7fe3291de5a6523b,0x3ff0000000000000,2
+np.float64,0xbfd537086daa6e10,0xbfd4787af5f60653,2
+np.float64,0x800e8ed4455d1da9,0x800e8ed4455d1da9,2
+np.float64,0x800ef8d19cbdf1a3,0x800ef8d19cbdf1a3,2
+np.float64,0x800dc4fa3a5b89f5,0x800dc4fa3a5b89f5,2
+np.float64,0xaa8b85cd55171,0xaa8b85cd55171,2
+np.float64,0xffd67a5f40acf4be,0xbff0000000000000,2
+np.float64,0xbfb7496db22e92d8,0xbfb7390a48130861,2
+np.float64,0x3fd86a8e7ab0d51d,0x3fd74bfba0f72616,2
+np.float64,0xffb7f5b7fc2feb70,0xbff0000000000000,2
+np.float64,0xbfea0960a7f412c1,0xbfe57db6d0ff4191,2
+np.float64,0x375f4fc26ebeb,0x375f4fc26ebeb,2
+np.float64,0x800c537e70b8a6fd,0x800c537e70b8a6fd,2
+np.float64,0x800b3f4506d67e8a,0x800b3f4506d67e8a,2
+np.float64,0x7fe61f2d592c3e5a,0x3ff0000000000000,2
+np.float64,0xffefffffffffffff,0xbff0000000000000,2
+np.float64,0x8005d0bb84eba178,0x8005d0bb84eba178,2
+np.float64,0x800c78b0ec18f162,0x800c78b0ec18f162,2
+np.float64,0xbfc42cccfb285998,0xbfc4027392f66b0d,2
+np.float64,0x3fd8fdc73fb1fb8e,0x3fd7cb46f928153f,2
+np.float64,0x800c71754298e2eb,0x800c71754298e2eb,2
+np.float64,0x3fe4aa7a96a954f5,0x3fe233f5d3bc1352,2
+np.float64,0x7fd53841f6aa7083,0x3ff0000000000000,2
+np.float64,0x3fd0a887b8a15110,0x3fd04ac3b9c0d1ca,2
+np.float64,0x8007b8e164cf71c4,0x8007b8e164cf71c4,2
+np.float64,0xbfddc35c66bb86b8,0xbfdbc9c5dddfb014,2
+np.float64,0x6a3756fed46eb,0x6a3756fed46eb,2
+np.float64,0xffd3dcd05527b9a0,0xbff0000000000000,2
+np.float64,0xbfd7dc75632fb8ea,0xbfd6d0538b340a98,2
+np.float64,0x17501f822ea05,0x17501f822ea05,2
+np.float64,0xbfe1f98b99a3f317,0xbfe04bbf8f8b6cb3,2
+np.float64,0x66ea65d2cdd4d,0x66ea65d2cdd4d,2
+np.float64,0xbfd12241e2224484,0xbfd0bc62f46ea5e1,2
+np.float64,0x3fed6e6fb3fadcdf,0x3fe7398249097285,2
+np.float64,0x3fe0b5ebeba16bd8,0x3fdeae84b3000a47,2
+np.float64,0x66d1bce8cda38,0x66d1bce8cda38,2
+np.float64,0x3fdd728db3bae51b,0x3fdb880f28c52713,2
+np.float64,0xffb45dbe5228bb80,0xbff0000000000000,2
+np.float64,0x1ff8990c3ff14,0x1ff8990c3ff14,2
+np.float64,0x800a68e8f294d1d2,0x800a68e8f294d1d2,2
+np.float64,0xbfe4d08b84a9a117,0xbfe24da40bff6be7,2
+np.float64,0x3fe0177f0ee02efe,0x3fddb83c5971df51,2
+np.float64,0xffc56893692ad128,0xbff0000000000000,2
+np.float64,0x51b44f6aa368b,0x51b44f6aa368b,2
+np.float64,0x2258ff4e44b21,0x2258ff4e44b21,2
+np.float64,0x3fe913649e7226c9,0x3fe4f3f119530f53,2
+np.float64,0xffe3767df766ecfc,0xbff0000000000000,2
+np.float64,0xbfe62ae12fec55c2,0xbfe33108f1f22a94,2
+np.float64,0x7fb6a6308e2d4c60,0x3ff0000000000000,2
+np.float64,0xbfe00f2085e01e41,0xbfddab19b6fc77d1,2
+np.float64,0x3fb66447dc2cc890,0x3fb655b4f46844f0,2
+np.float64,0x3fd80238f6b00470,0x3fd6f143be1617d6,2
+np.float64,0xbfd05bfeb3a0b7fe,0xbfd0031ab3455e15,2
+np.float64,0xffc3a50351274a08,0xbff0000000000000,2
+np.float64,0xffd8f4241cb1e848,0xbff0000000000000,2
+np.float64,0xbfca72a88c34e550,0xbfca13ebe85f2aca,2
+np.float64,0x3fd47d683ba8fad0,0x3fd3d13f1176ed8c,2
+np.float64,0x3fb6418e642c831d,0x3fb6333ebe479ff2,2
+np.float64,0x800fde8e023fbd1c,0x800fde8e023fbd1c,2
+np.float64,0x8001fb01e323f605,0x8001fb01e323f605,2
+np.float64,0x3febb21ff9f76440,0x3fe65ed788d52fee,2
+np.float64,0x3fe47553ffe8eaa8,0x3fe20fe01f853603,2
+np.float64,0x7fca20b3f9344167,0x3ff0000000000000,2
+np.float64,0x3fe704f4ec6e09ea,0x3fe3ba7277201805,2
+np.float64,0xf864359df0c87,0xf864359df0c87,2
+np.float64,0x4d96b01c9b2d7,0x4d96b01c9b2d7,2
+np.float64,0x3fe8a09fe9f14140,0x3fe4b1c6a2d2e095,2
+np.float64,0xffc46c61b228d8c4,0xbff0000000000000,2
+np.float64,0x3fe680a837ed0150,0x3fe3679d6eeb6485,2
+np.float64,0xbfecedc20f39db84,0xbfe6fbe9ee978bf6,2
+np.float64,0x3fb2314eae24629d,0x3fb2297ba6d55d2d,2
+np.float64,0x3fe9f0b8e7b3e172,0x3fe57026eae36db3,2
+np.float64,0x80097a132ed2f427,0x80097a132ed2f427,2
+np.float64,0x800ae5a41955cb49,0x800ae5a41955cb49,2
+np.float64,0xbfd7527279aea4e4,0xbfd6577de356e1bd,2
+np.float64,0x3fe27d3e01e4fa7c,0x3fe0ac7dd96f9179,2
+np.float64,0x7fedd8cb01bbb195,0x3ff0000000000000,2
+np.float64,0x78f8695af1f0e,0x78f8695af1f0e,2
+np.float64,0x800d2d0e927a5a1d,0x800d2d0e927a5a1d,2
+np.float64,0xffe74b46fb2e968e,0xbff0000000000000,2
+np.float64,0xbfdd12d4c8ba25aa,0xbfdb39dae49e1c10,2
+np.float64,0xbfd6c14710ad828e,0xbfd5d79ef5a8d921,2
+np.float64,0x921f4e55243ea,0x921f4e55243ea,2
+np.float64,0x800b4e4c80969c99,0x800b4e4c80969c99,2
+np.float64,0x7fe08c6ab7e118d4,0x3ff0000000000000,2
+np.float64,0xbfed290014fa5200,0xbfe71871f7e859ed,2
+np.float64,0x8008c1d5c59183ac,0x8008c1d5c59183ac,2
+np.float64,0x3fd339e68c2673cd,0x3fd2aaff3f165a9d,2
+np.float64,0xbfdd20d8113a41b0,0xbfdb4553ea2cb2fb,2
+np.float64,0x3fe52a25deea544c,0x3fe2898d5bf4442c,2
+np.float64,0x498602d4930c1,0x498602d4930c1,2
+np.float64,0x3fd8c450113188a0,0x3fd799b0b2a6c43c,2
+np.float64,0xbfd72bc2f2ae5786,0xbfd6357e15ba7f70,2
+np.float64,0xbfd076188ea0ec32,0xbfd01b8fce44d1af,2
+np.float64,0x9aace1713559c,0x9aace1713559c,2
+np.float64,0x8008a730e8914e62,0x8008a730e8914e62,2
+np.float64,0x7fe9e9a3d833d347,0x3ff0000000000000,2
+np.float64,0x800d3a0d69da741b,0x800d3a0d69da741b,2
+np.float64,0xbfe3e28a29e7c514,0xbfe1aad7643a2d19,2
+np.float64,0x7fe9894c71331298,0x3ff0000000000000,2
+np.float64,0xbfe7c6acb5ef8d5a,0xbfe430c9e258ce62,2
+np.float64,0xffb5a520a62b4a40,0xbff0000000000000,2
+np.float64,0x7fc02109ae204212,0x3ff0000000000000,2
+np.float64,0xb5c58f196b8b2,0xb5c58f196b8b2,2
+np.float64,0x3feb4ee82e769dd0,0x3fe62bae9a39d8b1,2
+np.float64,0x3fec5c3cf278b87a,0x3fe6b49000f12441,2
+np.float64,0x81f64b8103eca,0x81f64b8103eca,2
+np.float64,0xbfeab00d73f5601b,0xbfe5d7f755ab73d9,2
+np.float64,0x3fd016bf28a02d7e,0x3fcf843ea23bcd3c,2
+np.float64,0xbfa1db617423b6c0,0xbfa1d9872ddeb5a8,2
+np.float64,0x3fe83c879d70790f,0x3fe4771502d8f012,2
+np.float64,0x6b267586d64cf,0x6b267586d64cf,2
+np.float64,0x3fc91b6d3f3236d8,0x3fc8ca3eb4da25a9,2
+np.float64,0x7fd4e3f8f3a9c7f1,0x3ff0000000000000,2
+np.float64,0x800a75899214eb14,0x800a75899214eb14,2
+np.float64,0x7fdb1f2e07b63e5b,0x3ff0000000000000,2
+np.float64,0xffe7805a11ef00b4,0xbff0000000000000,2
+np.float64,0x3fc8e1b88a31c371,0x3fc892af45330818,2
+np.float64,0xbfe809fe447013fc,0xbfe45918f07da4d9,2
+np.float64,0xbfeb9d7f2ab73afe,0xbfe65446bfddc792,2
+np.float64,0x3fb47f0a5c28fe15,0x3fb473db9113e880,2
+np.float64,0x800a17ae3cb42f5d,0x800a17ae3cb42f5d,2
+np.float64,0xf5540945eaa81,0xf5540945eaa81,2
+np.float64,0xbfe577fc26aaeff8,0xbfe2bcfbf2cf69ff,2
+np.float64,0xbfb99b3e06333680,0xbfb98577b88e0515,2
+np.float64,0x7fd9290391b25206,0x3ff0000000000000,2
+np.float64,0x7fe1aa62ffa354c5,0x3ff0000000000000,2
+np.float64,0x7b0189a0f604,0x7b0189a0f604,2
+np.float64,0x3f9000ed602001db,0x3f900097fe168105,2
+np.float64,0x3fd576128d2aec25,0x3fd4b1002c92286f,2
+np.float64,0xffecc98ece79931d,0xbff0000000000000,2
+np.float64,0x800a1736c7f42e6e,0x800a1736c7f42e6e,2
+np.float64,0xbfed947548bb28eb,0xbfe74b71479ae739,2
+np.float64,0xa45c032148b9,0xa45c032148b9,2
+np.float64,0xbfc13d011c227a04,0xbfc1228447de5e9f,2
+np.float64,0xffed8baa6ebb1754,0xbff0000000000000,2
+np.float64,0x800ea2de243d45bc,0x800ea2de243d45bc,2
+np.float64,0x8001396be52272d9,0x8001396be52272d9,2
+np.float64,0xd018d1cda031a,0xd018d1cda031a,2
+np.float64,0x7fe1fece1fe3fd9b,0x3ff0000000000000,2
+np.float64,0x8009ac484c135891,0x8009ac484c135891,2
+np.float64,0x3fc560ad132ac15a,0x3fc52e5a9479f08e,2
+np.float64,0x3fd6f80ebe2df01d,0x3fd607f70ce8e3f4,2
+np.float64,0xbfd3e69e82a7cd3e,0xbfd34887c2a40699,2
+np.float64,0x3fe232d9baa465b3,0x3fe0760a822ada0c,2
+np.float64,0x3fe769bbc6eed378,0x3fe3f872680f6631,2
+np.float64,0xffe63dbd952c7b7a,0xbff0000000000000,2
+np.float64,0x4e0c00da9c181,0x4e0c00da9c181,2
+np.float64,0xffeae4d89735c9b0,0xbff0000000000000,2
+np.float64,0x3fe030bcbb606179,0x3fdddfc66660bfce,2
+np.float64,0x7fe35ca40d66b947,0x3ff0000000000000,2
+np.float64,0xbfd45bd66628b7ac,0xbfd3b2e04bfe7866,2
+np.float64,0x3fd1f0be2323e17c,0x3fd17c1c340d7a48,2
+np.float64,0x3fd7123b6cae2478,0x3fd61f0675aa9ae1,2
+np.float64,0xbfe918a377723147,0xbfe4f6efe66f5714,2
+np.float64,0x7fc400356f28006a,0x3ff0000000000000,2
+np.float64,0x7fd2dead70a5bd5a,0x3ff0000000000000,2
+np.float64,0xffe9c28f81f3851e,0xbff0000000000000,2
+np.float64,0x3fd09b1ec7a1363e,0x3fd03e3894320140,2
+np.float64,0x7fe6e80c646dd018,0x3ff0000000000000,2
+np.float64,0x7fec3760a4786ec0,0x3ff0000000000000,2
+np.float64,0x309eb6ee613d8,0x309eb6ee613d8,2
+np.float64,0x800731cb0ece6397,0x800731cb0ece6397,2
+np.float64,0xbfdb0c553db618aa,0xbfd98b8a4680ee60,2
+np.float64,0x3fd603a52eac074c,0x3fd52f6b53de7455,2
+np.float64,0x9ecb821b3d971,0x9ecb821b3d971,2
+np.float64,0x3feb7d64dc36faca,0x3fe643c2754bb7f4,2
+np.float64,0xffeb94825ef72904,0xbff0000000000000,2
+np.float64,0x24267418484cf,0x24267418484cf,2
+np.float64,0xbfa6b2fbac2d65f0,0xbfa6af2dca5bfa6f,2
+np.float64,0x8010000000000000,0x8010000000000000,2
+np.float64,0xffe6873978ed0e72,0xbff0000000000000,2
+np.float64,0x800447934ba88f27,0x800447934ba88f27,2
+np.float64,0x3fef305f09fe60be,0x3fe806156b8ca47c,2
+np.float64,0xffd441c697a8838e,0xbff0000000000000,2
+np.float64,0xbfa7684f6c2ed0a0,0xbfa764238d34830c,2
+np.float64,0xffb2c976142592f0,0xbff0000000000000,2
+np.float64,0xbfcc9d1585393a2c,0xbfcc25756bcbca1f,2
+np.float64,0xbfd477bb1ba8ef76,0xbfd3cc1d2114e77e,2
+np.float64,0xbfed1559983a2ab3,0xbfe70f03afd994ee,2
+np.float64,0xbfeb51139036a227,0xbfe62ccf56bc7fff,2
+np.float64,0x7d802890fb006,0x7d802890fb006,2
+np.float64,0x800e00af777c015f,0x800e00af777c015f,2
+np.float64,0x800647ce128c8f9d,0x800647ce128c8f9d,2
+np.float64,0x800a26da91d44db6,0x800a26da91d44db6,2
+np.float64,0x3fdc727eddb8e4fe,0x3fdab5fd9db630b3,2
+np.float64,0x7fd06def2ba0dbdd,0x3ff0000000000000,2
+np.float64,0xffe23678c4a46cf1,0xbff0000000000000,2
+np.float64,0xbfe7198e42ee331c,0xbfe3c7326c9c7553,2
+np.float64,0xffae465f3c3c8cc0,0xbff0000000000000,2
+np.float64,0xff9aea7c5035d500,0xbff0000000000000,2
+np.float64,0xbfeae49c0f35c938,0xbfe5f3e9326cb08b,2
+np.float64,0x3f9a16f300342de6,0x3f9a1581212be50f,2
+np.float64,0x8d99e2c31b33d,0x8d99e2c31b33d,2
+np.float64,0xffd58af253ab15e4,0xbff0000000000000,2
+np.float64,0xbfd205cd25a40b9a,0xbfd18f97155f8b25,2
+np.float64,0xbfebe839bbf7d074,0xbfe67a6024e8fefe,2
+np.float64,0xbfe4fb3595a9f66b,0xbfe26a42f99819ea,2
+np.float64,0x800e867c739d0cf9,0x800e867c739d0cf9,2
+np.float64,0x8bc4274f17885,0x8bc4274f17885,2
+np.float64,0xaec8914b5d912,0xaec8914b5d912,2
+np.float64,0x7fd1d64473a3ac88,0x3ff0000000000000,2
+np.float64,0xbfe6d6f69cedaded,0xbfe39dd61bc7e23e,2
+np.float64,0x7fed05039d7a0a06,0x3ff0000000000000,2
+np.float64,0xbfc40eab0f281d58,0xbfc3e50d14b79265,2
+np.float64,0x45179aec8a2f4,0x45179aec8a2f4,2
+np.float64,0xbfe717e362ee2fc7,0xbfe3c62a95b07d13,2
+np.float64,0xbfe5b8df0d6b71be,0xbfe2e76c7ec5013d,2
+np.float64,0x5c67ba6eb8cf8,0x5c67ba6eb8cf8,2
+np.float64,0xbfda72ce4cb4e59c,0xbfd909fdc7ecfe20,2
+np.float64,0x7fdf59a1e2beb343,0x3ff0000000000000,2
+np.float64,0xc4f7897f89ef1,0xc4f7897f89ef1,2
+np.float64,0x8fcd0a351f9a2,0x8fcd0a351f9a2,2
+np.float64,0x3fb161761022c2ec,0x3fb15aa31c464de2,2
+np.float64,0x8008a985be71530c,0x8008a985be71530c,2
+np.float64,0x3fca4ddb5e349bb7,0x3fc9f0a3b60e49c6,2
+np.float64,0x7fcc10a2d9382145,0x3ff0000000000000,2
+np.float64,0x78902b3af1206,0x78902b3af1206,2
+np.float64,0x7fe1e2765f23c4ec,0x3ff0000000000000,2
+np.float64,0xc1d288cf83a51,0xc1d288cf83a51,2
+np.float64,0x7fe8af692bb15ed1,0x3ff0000000000000,2
+np.float64,0x80057d90fb8afb23,0x80057d90fb8afb23,2
+np.float64,0x3fdc136b8fb826d8,0x3fda6749582b2115,2
+np.float64,0x800ec8ea477d91d5,0x800ec8ea477d91d5,2
+np.float64,0x4c0f4796981ea,0x4c0f4796981ea,2
+np.float64,0xec34c4a5d8699,0xec34c4a5d8699,2
+np.float64,0x7fce343dfb3c687b,0x3ff0000000000000,2
+np.float64,0xbfc95a98a332b530,0xbfc90705b2cc2fec,2
+np.float64,0x800d118e1dba231c,0x800d118e1dba231c,2
+np.float64,0x3fd354f310a6a9e8,0x3fd2c3bb90054154,2
+np.float64,0xbfdac0d4fab581aa,0xbfd94bf37424928e,2
+np.float64,0x3fe7f5391fefea72,0x3fe44cb49d51985b,2
+np.float64,0xd4c3c329a9879,0xd4c3c329a9879,2
+np.float64,0x3fc53977692a72f0,0x3fc50835d85c9ed1,2
+np.float64,0xbfd6989538ad312a,0xbfd5b3a2c08511fe,2
+np.float64,0xbfe329f2906653e5,0xbfe128ec1525a1c0,2
+np.float64,0x7ff0000000000000,0x3ff0000000000000,2
+np.float64,0xbfea57c90974af92,0xbfe5a87b04aa3116,2
+np.float64,0x7fdfba94043f7527,0x3ff0000000000000,2
+np.float64,0x3feedabddafdb57c,0x3fe7e06c0661978d,2
+np.float64,0x4bd9f3b697b3f,0x4bd9f3b697b3f,2
+np.float64,0x3fdd15bbfc3a2b78,0x3fdb3c3b8d070f7e,2
+np.float64,0x3fbd89ccd23b13a0,0x3fbd686b825cff80,2
+np.float64,0x7ff4000000000000,0x7ffc000000000000,2
+np.float64,0x3f9baa8928375512,0x3f9ba8d01ddd5300,2
+np.float64,0x4a3ebdf2947d8,0x4a3ebdf2947d8,2
+np.float64,0x3fe698d5c06d31ac,0x3fe376dff48312c8,2
+np.float64,0xffd5323df12a647c,0xbff0000000000000,2
+np.float64,0xffea7f111174fe22,0xbff0000000000000,2
+np.float64,0x3feb4656a9b68cad,0x3fe627392eb2156f,2
+np.float64,0x7fc1260e9c224c1c,0x3ff0000000000000,2
+np.float64,0x80056e45e5eadc8d,0x80056e45e5eadc8d,2
+np.float64,0x7fd0958ef6a12b1d,0x3ff0000000000000,2
+np.float64,0x8001f85664e3f0ae,0x8001f85664e3f0ae,2
+np.float64,0x3fe553853beaa70a,0x3fe2a4f5e7c83558,2
+np.float64,0xbfeb33ce6276679d,0xbfe61d8ec9e5ff8c,2
+np.float64,0xbfd1b24e21a3649c,0xbfd14245df6065e9,2
+np.float64,0x3fe286fc40650df9,0x3fe0b395c8059429,2
+np.float64,0xffed378058fa6f00,0xbff0000000000000,2
+np.float64,0xbfd0c4a2d7a18946,0xbfd06509a434d6a0,2
+np.float64,0xbfea31d581f463ab,0xbfe593d976139f94,2
+np.float64,0xbfe0705c85e0e0b9,0xbfde42efa978eb0c,2
+np.float64,0xe4c4c339c9899,0xe4c4c339c9899,2
+np.float64,0x3fd68befa9ad17df,0x3fd5a870b3f1f83e,2
+np.float64,0x8000000000000001,0x8000000000000001,2
+np.float64,0x3fe294256965284b,0x3fe0bd271e22d86b,2
+np.float64,0x8005327a862a64f6,0x8005327a862a64f6,2
+np.float64,0xbfdb8155ce3702ac,0xbfd9ed9ef97920f8,2
+np.float64,0xbff0000000000000,0xbfe85efab514f394,2
+np.float64,0xffe66988f1ecd312,0xbff0000000000000,2
+np.float64,0x3fb178a85e22f150,0x3fb171b9fbf95f1d,2
+np.float64,0x7f829b900025371f,0x3ff0000000000000,2
+np.float64,0x8000000000000000,0x8000000000000000,2
+np.float64,0x8006cb77f60d96f1,0x8006cb77f60d96f1,2
+np.float64,0x3fe0c5d53aa18baa,0x3fdec7012ab92b42,2
+np.float64,0x77266426ee4cd,0x77266426ee4cd,2
+np.float64,0xbfec95f468392be9,0xbfe6d11428f60136,2
+np.float64,0x3fedbf532dfb7ea6,0x3fe75f8436dd1d58,2
+np.float64,0x8002fadd3f85f5bb,0x8002fadd3f85f5bb,2
+np.float64,0xbfefebaa8d3fd755,0xbfe8566c6aa90fba,2
+np.float64,0xffc7dd2b712fba58,0xbff0000000000000,2
+np.float64,0x7fe5d3a6e8aba74d,0x3ff0000000000000,2
+np.float64,0x2da061525b40d,0x2da061525b40d,2
+np.float64,0x7fcb9b9953373732,0x3ff0000000000000,2
+np.float64,0x2ca2f6fc59460,0x2ca2f6fc59460,2
+np.float64,0xffeb84b05af70960,0xbff0000000000000,2
+np.float64,0xffe551e86c6aa3d0,0xbff0000000000000,2
+np.float64,0xbfdb311311366226,0xbfd9aa6688faafb9,2
+np.float64,0xbfd4f3875629e70e,0xbfd43bcd73534c66,2
+np.float64,0x7fe95666f932accd,0x3ff0000000000000,2
+np.float64,0x3fc73dfb482e7bf7,0x3fc6fd70c20ebf60,2
+np.float64,0x800cd9e40939b3c8,0x800cd9e40939b3c8,2
+np.float64,0x3fb0c9fa422193f0,0x3fb0c3d38879a2ac,2
+np.float64,0xffd59a38372b3470,0xbff0000000000000,2
+np.float64,0x3fa8320ef4306420,0x3fa82d739e937d35,2
+np.float64,0x3fd517f16caa2fe4,0x3fd45c8de1e93b37,2
+np.float64,0xaed921655db24,0xaed921655db24,2
+np.float64,0x93478fb9268f2,0x93478fb9268f2,2
+np.float64,0x1615e28a2c2bd,0x1615e28a2c2bd,2
+np.float64,0xbfead23010f5a460,0xbfe5ea24d5d8f820,2
+np.float64,0x774a6070ee94d,0x774a6070ee94d,2
+np.float64,0x3fdf5874bd3eb0e9,0x3fdd0ef121dd915c,2
+np.float64,0x8004b25f53a964bf,0x8004b25f53a964bf,2
+np.float64,0xbfddacdd2ebb59ba,0xbfdbb78198fab36b,2
+np.float64,0x8008a3acf271475a,0x8008a3acf271475a,2
+np.float64,0xbfdb537c8736a6fa,0xbfd9c741038bb8f0,2
+np.float64,0xbfe56a133f6ad426,0xbfe2b3d5b8d259a1,2
+np.float64,0xffda1db531343b6a,0xbff0000000000000,2
+np.float64,0x3fcbe05f3a37c0be,0x3fcb71a54a64ddfb,2
+np.float64,0x7fe1ccaa7da39954,0x3ff0000000000000,2
+np.float64,0x3faeadd8343d5bb0,0x3faea475608860e6,2
+np.float64,0x3fe662ba1c2cc574,0x3fe354a6176e90df,2
+np.float64,0xffe4d49f4e69a93e,0xbff0000000000000,2
+np.float64,0xbfeadbc424f5b788,0xbfe5ef39dbe66343,2
+np.float64,0x99cf66f1339ed,0x99cf66f1339ed,2
+np.float64,0x33af77a2675f0,0x33af77a2675f0,2
+np.float64,0x7fec7b32ecf8f665,0x3ff0000000000000,2
+np.float64,0xffef3e44993e7c88,0xbff0000000000000,2
+np.float64,0xffe8f8ceac31f19c,0xbff0000000000000,2
+np.float64,0x7fe0d15b6da1a2b6,0x3ff0000000000000,2
+np.float64,0x4ba795c2974f3,0x4ba795c2974f3,2
+np.float64,0x3fe361aa37a6c354,0x3fe15079021d6b15,2
+np.float64,0xffe709714f6e12e2,0xbff0000000000000,2
+np.float64,0xffe7ea6a872fd4d4,0xbff0000000000000,2
+np.float64,0xffdb9441c8b72884,0xbff0000000000000,2
+np.float64,0xffd5e11ae9abc236,0xbff0000000000000,2
+np.float64,0xffe092a08b612540,0xbff0000000000000,2
+np.float64,0x3fe1f27e1ca3e4fc,0x3fe04685b5131207,2
+np.float64,0xbfe71ce1bdee39c4,0xbfe3c940809a7081,2
+np.float64,0xffe8c3aa68318754,0xbff0000000000000,2
+np.float64,0x800d4e2919da9c52,0x800d4e2919da9c52,2
+np.float64,0x7fe6c8bca76d9178,0x3ff0000000000000,2
+np.float64,0x7fced8751e3db0e9,0x3ff0000000000000,2
+np.float64,0xd61d0c8bac3a2,0xd61d0c8bac3a2,2
+np.float64,0x3fec57732938aee6,0x3fe6b22f15f38352,2
+np.float64,0xff9251cc7024a3a0,0xbff0000000000000,2
+np.float64,0xf4a68cb9e94d2,0xf4a68cb9e94d2,2
+np.float64,0x3feed76703bdaece,0x3fe7def0fc9a080c,2
+np.float64,0xbfe8971ff7712e40,0xbfe4ac3eb8ebff07,2
+np.float64,0x3fe4825f682904bf,0x3fe218c1952fe67d,2
+np.float64,0xbfd60f7698ac1eee,0xbfd539f0979b4b0c,2
+np.float64,0x3fcf0845993e1088,0x3fce7032f7180144,2
+np.float64,0x7fc83443f3306887,0x3ff0000000000000,2
+np.float64,0x3fe93123ae726247,0x3fe504e4fc437e89,2
+np.float64,0x3fbf9eb8363f3d70,0x3fbf75cdfa6828d5,2
+np.float64,0xbf8b45e5d0368bc0,0xbf8b457c29dfe1a9,2
+np.float64,0x8006c2853d0d850b,0x8006c2853d0d850b,2
+np.float64,0xffef26e25ffe4dc4,0xbff0000000000000,2
+np.float64,0x7fefffffffffffff,0x3ff0000000000000,2
+np.float64,0xbfde98f2c2bd31e6,0xbfdc761bfab1c4cb,2
+np.float64,0xffb725e6222e4bd0,0xbff0000000000000,2
+np.float64,0x800c63ead5d8c7d6,0x800c63ead5d8c7d6,2
+np.float64,0x3fea087e95f410fd,0x3fe57d3ab440706c,2
+np.float64,0xbfdf9f8a603f3f14,0xbfdd4742d77dfa57,2
+np.float64,0xfff0000000000000,0xbff0000000000000,2
+np.float64,0xbfcdc0841d3b8108,0xbfcd3a401debba9a,2
+np.float64,0x800f0c8f4f7e191f,0x800f0c8f4f7e191f,2
+np.float64,0x800ba6e75fd74dcf,0x800ba6e75fd74dcf,2
+np.float64,0x7fee4927e8bc924f,0x3ff0000000000000,2
+np.float64,0x3fadf141903be283,0x3fade8878d9d3551,2
+np.float64,0x3efb1a267df64,0x3efb1a267df64,2
+np.float64,0xffebf55f22b7eabe,0xbff0000000000000,2
+np.float64,0x7fbe8045663d008a,0x3ff0000000000000,2
+np.float64,0x3fefc0129f7f8026,0x3fe843f8b7d6cf38,2
+np.float64,0xbfe846b420f08d68,0xbfe47d1709e43937,2
+np.float64,0x7fe8e87043f1d0e0,0x3ff0000000000000,2
+np.float64,0x3fcfb718453f6e31,0x3fcf14ecee7b32b4,2
+np.float64,0x7fe4306b71a860d6,0x3ff0000000000000,2
+np.float64,0x7fee08459f7c108a,0x3ff0000000000000,2
+np.float64,0x3fed705165fae0a3,0x3fe73a66369c5700,2
+np.float64,0x7fd0e63f4da1cc7e,0x3ff0000000000000,2
+np.float64,0xffd1a40c2ea34818,0xbff0000000000000,2
+np.float64,0xbfa369795c26d2f0,0xbfa36718218d46b3,2
+np.float64,0xef70b9f5dee17,0xef70b9f5dee17,2
+np.float64,0x3fb50a0a6e2a1410,0x3fb4fdf27724560a,2
+np.float64,0x7fe30a0f6166141e,0x3ff0000000000000,2
+np.float64,0xbfd7b3ca7daf6794,0xbfd6accb81032b2d,2
+np.float64,0x3fc21dceb3243b9d,0x3fc1ff15d5d277a3,2
+np.float64,0x3fe483e445a907c9,0x3fe219ca0e269552,2
+np.float64,0x3fb2b1e2a22563c0,0x3fb2a96554900eaf,2
+np.float64,0x4b1ff6409641,0x4b1ff6409641,2
+np.float64,0xbfd92eabc9b25d58,0xbfd7f55d7776d64e,2
+np.float64,0x8003b8604c8770c1,0x8003b8604c8770c1,2
+np.float64,0x800d20a9df1a4154,0x800d20a9df1a4154,2
+np.float64,0xecf8a535d9f15,0xecf8a535d9f15,2
+np.float64,0x3fe92d15bab25a2b,0x3fe50296aa15ae85,2
+np.float64,0x800239c205a47385,0x800239c205a47385,2
+np.float64,0x3fc48664a9290cc8,0x3fc459d126320ef6,2
+np.float64,0x3fe7620625eec40c,0x3fe3f3bcbee3e8c6,2
+np.float64,0x3fd242ff4ca48600,0x3fd1c81ed7a971c8,2
+np.float64,0xbfe39bafcfa73760,0xbfe17959c7a279db,2
+np.float64,0x7fdcd2567239a4ac,0x3ff0000000000000,2
+np.float64,0x3fe5f2f292ebe5e6,0x3fe30d12f05e2752,2
+np.float64,0x7fda3819d1347033,0x3ff0000000000000,2
+np.float64,0xffca5b4d4334b69c,0xbff0000000000000,2
+np.float64,0xb8a2b7cd71457,0xb8a2b7cd71457,2
+np.float64,0x3fee689603fcd12c,0x3fe7ad4ace26d6dd,2
+np.float64,0x7fe26541a564ca82,0x3ff0000000000000,2
+np.float64,0x3fe6912ee66d225e,0x3fe3720d242c4d82,2
+np.float64,0xffe6580c75ecb018,0xbff0000000000000,2
+np.float64,0x7fe01a3370603466,0x3ff0000000000000,2
+np.float64,0xffe84e3f84b09c7e,0xbff0000000000000,2
+np.float64,0x3ff0000000000000,0x3fe85efab514f394,2
+np.float64,0x3fe214d4266429a8,0x3fe05fec03a3c247,2
+np.float64,0x3fd00aec5da015d8,0x3fcf6e070ad4ad62,2
+np.float64,0x800aac8631f5590d,0x800aac8631f5590d,2
+np.float64,0xbfe7c4f5f76f89ec,0xbfe42fc1c57b4a13,2
+np.float64,0xaf146c7d5e28e,0xaf146c7d5e28e,2
+np.float64,0xbfe57188b66ae312,0xbfe2b8be4615ef75,2
+np.float64,0xffef8cb8e1ff1971,0xbff0000000000000,2
+np.float64,0x8001daf8aa63b5f2,0x8001daf8aa63b5f2,2
+np.float64,0x3fdddcc339bbb986,0x3fdbde5f3783538b,2
+np.float64,0xdd8c92c3bb193,0xdd8c92c3bb193,2
+np.float64,0xbfe861a148f0c342,0xbfe48cf1d228a336,2
+np.float64,0xffe260a32e24c146,0xbff0000000000000,2
+np.float64,0x1f7474b43ee8f,0x1f7474b43ee8f,2
+np.float64,0x3fe81dbd89703b7c,0x3fe464d78df92b7b,2
+np.float64,0x7fed0101177a0201,0x3ff0000000000000,2
+np.float64,0x7fd8b419a8316832,0x3ff0000000000000,2
+np.float64,0x3fe93debccf27bd8,0x3fe50c27727917f0,2
+np.float64,0xe5ead05bcbd5a,0xe5ead05bcbd5a,2
+np.float64,0xbfebbbc4cff7778a,0xbfe663c4ca003bbf,2
+np.float64,0xbfea343eb474687e,0xbfe59529f73ea151,2
+np.float64,0x3fbe74a5963ce94b,0x3fbe50123ed05d8d,2
+np.float64,0x3fd31d3a5d263a75,0x3fd290c026cb38a5,2
+np.float64,0xbfd79908acaf3212,0xbfd695620e31c3c6,2
+np.float64,0xbfc26a350324d46c,0xbfc249f335f3e465,2
+np.float64,0xbfac38d5583871b0,0xbfac31866d12a45e,2
+np.float64,0x3fe40cea672819d5,0x3fe1c83754e72c92,2
+np.float64,0xbfa74770642e8ee0,0xbfa74355fcf67332,2
+np.float64,0x7fc60942d32c1285,0x3ff0000000000000,2
diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/tests/examples/cython/__pycache__/setup.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/_core/tests/examples/cython/__pycache__/setup.cpython-312.pyc
new file mode 100644
index 0000000..c26db55
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/_core/tests/examples/cython/__pycache__/setup.cpython-312.pyc
Binary files differ
diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/tests/examples/cython/checks.pyx b/.venv/lib/python3.12/site-packages/numpy/_core/tests/examples/cython/checks.pyx
new file mode 100644
index 0000000..57df05c
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/_core/tests/examples/cython/checks.pyx
@@ -0,0 +1,373 @@
+#cython: language_level=3
+
+"""
+Functions in this module give python-space wrappers for cython functions
+exposed in numpy/__init__.pxd, so they can be tested in test_cython.py
+"""
+cimport numpy as cnp
+cnp.import_array()
+
+
+def is_td64(obj):
+ return cnp.is_timedelta64_object(obj)
+
+
+def is_dt64(obj):
+ return cnp.is_datetime64_object(obj)
+
+
+def get_dt64_value(obj):
+ return cnp.get_datetime64_value(obj)
+
+
+def get_td64_value(obj):
+ return cnp.get_timedelta64_value(obj)
+
+
+def get_dt64_unit(obj):
+ return cnp.get_datetime64_unit(obj)
+
+
+def is_integer(obj):
+ return isinstance(obj, (cnp.integer, int))
+
+
+def get_datetime_iso_8601_strlen():
+ return cnp.get_datetime_iso_8601_strlen(0, cnp.NPY_FR_ns)
+
+
+def convert_datetime64_to_datetimestruct():
+ cdef:
+ cnp.npy_datetimestruct dts
+ cnp.PyArray_DatetimeMetaData meta
+ cnp.int64_t value = 1647374515260292
+ # i.e. (time.time() * 10**6) at 2022-03-15 20:01:55.260292 UTC
+
+ meta.base = cnp.NPY_FR_us
+ meta.num = 1
+ cnp.convert_datetime64_to_datetimestruct(&meta, value, &dts)
+ return dts
+
+
+def make_iso_8601_datetime(dt: "datetime"):
+ cdef:
+ cnp.npy_datetimestruct dts
+ char result[36] # 36 corresponds to NPY_FR_s passed below
+ int local = 0
+ int utc = 0
+ int tzoffset = 0
+
+ dts.year = dt.year
+ dts.month = dt.month
+ dts.day = dt.day
+ dts.hour = dt.hour
+ dts.min = dt.minute
+ dts.sec = dt.second
+ dts.us = dt.microsecond
+ dts.ps = dts.as = 0
+
+ cnp.make_iso_8601_datetime(
+ &dts,
+ result,
+ sizeof(result),
+ local,
+ utc,
+ cnp.NPY_FR_s,
+ tzoffset,
+ cnp.NPY_NO_CASTING,
+ )
+ return result
+
+
+cdef cnp.broadcast multiiter_from_broadcast_obj(object bcast):
+ cdef dict iter_map = {
+ 1: cnp.PyArray_MultiIterNew1,
+ 2: cnp.PyArray_MultiIterNew2,
+ 3: cnp.PyArray_MultiIterNew3,
+ 4: cnp.PyArray_MultiIterNew4,
+ 5: cnp.PyArray_MultiIterNew5,
+ }
+ arrays = [x.base for x in bcast.iters]
+ cdef cnp.broadcast result = iter_map[len(arrays)](*arrays)
+ return result
+
+
+def get_multiiter_size(bcast: "broadcast"):
+ cdef cnp.broadcast multi = multiiter_from_broadcast_obj(bcast)
+ return multi.size
+
+
+def get_multiiter_number_of_dims(bcast: "broadcast"):
+ cdef cnp.broadcast multi = multiiter_from_broadcast_obj(bcast)
+ return multi.nd
+
+
+def get_multiiter_current_index(bcast: "broadcast"):
+ cdef cnp.broadcast multi = multiiter_from_broadcast_obj(bcast)
+ return multi.index
+
+
+def get_multiiter_num_of_iterators(bcast: "broadcast"):
+ cdef cnp.broadcast multi = multiiter_from_broadcast_obj(bcast)
+ return multi.numiter
+
+
+def get_multiiter_shape(bcast: "broadcast"):
+ cdef cnp.broadcast multi = multiiter_from_broadcast_obj(bcast)
+ return tuple([multi.dimensions[i] for i in range(bcast.nd)])
+
+
+def get_multiiter_iters(bcast: "broadcast"):
+ cdef cnp.broadcast multi = multiiter_from_broadcast_obj(bcast)
+ return tuple([<cnp.flatiter>multi.iters[i] for i in range(bcast.numiter)])
+
+
+def get_default_integer():
+ if cnp.NPY_DEFAULT_INT == cnp.NPY_LONG:
+ return cnp.dtype("long")
+ if cnp.NPY_DEFAULT_INT == cnp.NPY_INTP:
+ return cnp.dtype("intp")
+ return None
+
+def get_ravel_axis():
+ return cnp.NPY_RAVEL_AXIS
+
+
+def conv_intp(cnp.intp_t val):
+ return val
+
+
+def get_dtype_flags(cnp.dtype dtype):
+ return dtype.flags
+
+
+cdef cnp.NpyIter* npyiter_from_nditer_obj(object it):
+ """A function to create a NpyIter struct from a nditer object.
+
+ This function is only meant for testing purposes and only extracts the
+ necessary info from nditer to test the functionality of NpyIter methods
+ """
+ cdef:
+ cnp.NpyIter* cit
+ cnp.PyArray_Descr* op_dtypes[3]
+ cnp.npy_uint32 op_flags[3]
+ cnp.PyArrayObject* ops[3]
+ cnp.npy_uint32 flags = 0
+
+ if it.has_index:
+ flags |= cnp.NPY_ITER_C_INDEX
+ if it.has_delayed_bufalloc:
+ flags |= cnp.NPY_ITER_BUFFERED | cnp.NPY_ITER_DELAY_BUFALLOC
+ if it.has_multi_index:
+ flags |= cnp.NPY_ITER_MULTI_INDEX
+
+ # one of READWRITE, READONLY and WRTIEONLY at the minimum must be specified for op_flags
+ for i in range(it.nop):
+ op_flags[i] = cnp.NPY_ITER_READONLY
+
+ for i in range(it.nop):
+ op_dtypes[i] = cnp.PyArray_DESCR(it.operands[i])
+ ops[i] = <cnp.PyArrayObject*>it.operands[i]
+
+ cit = cnp.NpyIter_MultiNew(it.nop, &ops[0], flags, cnp.NPY_KEEPORDER,
+ cnp.NPY_NO_CASTING, &op_flags[0],
+ <cnp.PyArray_Descr**>NULL)
+ return cit
+
+
+def get_npyiter_size(it: "nditer"):
+ cdef cnp.NpyIter* cit = npyiter_from_nditer_obj(it)
+ result = cnp.NpyIter_GetIterSize(cit)
+ cnp.NpyIter_Deallocate(cit)
+ return result
+
+
+def get_npyiter_ndim(it: "nditer"):
+ cdef cnp.NpyIter* cit = npyiter_from_nditer_obj(it)
+ result = cnp.NpyIter_GetNDim(cit)
+ cnp.NpyIter_Deallocate(cit)
+ return result
+
+
+def get_npyiter_nop(it: "nditer"):
+ cdef cnp.NpyIter* cit = npyiter_from_nditer_obj(it)
+ result = cnp.NpyIter_GetNOp(cit)
+ cnp.NpyIter_Deallocate(cit)
+ return result
+
+
+def get_npyiter_operands(it: "nditer"):
+ cdef cnp.NpyIter* cit = npyiter_from_nditer_obj(it)
+ try:
+ arr = cnp.NpyIter_GetOperandArray(cit)
+ return tuple([<cnp.ndarray>arr[i] for i in range(it.nop)])
+ finally:
+ cnp.NpyIter_Deallocate(cit)
+
+
+def get_npyiter_itviews(it: "nditer"):
+ cdef cnp.NpyIter* cit = npyiter_from_nditer_obj(it)
+ result = tuple([cnp.NpyIter_GetIterView(cit, i) for i in range(it.nop)])
+ cnp.NpyIter_Deallocate(cit)
+ return result
+
+
+def get_npyiter_dtypes(it: "nditer"):
+ cdef cnp.NpyIter* cit = npyiter_from_nditer_obj(it)
+ try:
+ arr = cnp.NpyIter_GetDescrArray(cit)
+ return tuple([<cnp.dtype>arr[i] for i in range(it.nop)])
+ finally:
+ cnp.NpyIter_Deallocate(cit)
+
+
+def npyiter_has_delayed_bufalloc(it: "nditer"):
+ cdef cnp.NpyIter* cit = npyiter_from_nditer_obj(it)
+ result = cnp.NpyIter_HasDelayedBufAlloc(cit)
+ cnp.NpyIter_Deallocate(cit)
+ return result
+
+
+def npyiter_has_index(it: "nditer"):
+ cdef cnp.NpyIter* cit = npyiter_from_nditer_obj(it)
+ result = cnp.NpyIter_HasIndex(cit)
+ cnp.NpyIter_Deallocate(cit)
+ return result
+
+
+def npyiter_has_multi_index(it: "nditer"):
+ cdef cnp.NpyIter* cit = npyiter_from_nditer_obj(it)
+ result = cnp.NpyIter_HasMultiIndex(cit)
+ cnp.NpyIter_Deallocate(cit)
+ return result
+
+
+def test_get_multi_index_iter_next(it: "nditer", cnp.ndarray[cnp.float64_t, ndim=2] arr):
+ cdef cnp.NpyIter* cit = npyiter_from_nditer_obj(it)
+ cdef cnp.NpyIter_GetMultiIndexFunc get_multi_index = \
+ cnp.NpyIter_GetGetMultiIndex(cit, NULL)
+ cdef cnp.NpyIter_IterNextFunc iternext = \
+ cnp.NpyIter_GetIterNext(cit, NULL)
+ return 1
+
+
+def npyiter_has_finished(it: "nditer"):
+ cdef cnp.NpyIter* cit
+ try:
+ cit = npyiter_from_nditer_obj(it)
+ cnp.NpyIter_GotoIterIndex(cit, it.index)
+ return not (cnp.NpyIter_GetIterIndex(cit) < cnp.NpyIter_GetIterSize(cit))
+ finally:
+ cnp.NpyIter_Deallocate(cit)
+
+def compile_fillwithbyte():
+ # Regression test for gh-25878, mostly checks it compiles.
+ cdef cnp.npy_intp dims[2]
+ dims = (1, 2)
+ pos = cnp.PyArray_ZEROS(2, dims, cnp.NPY_UINT8, 0)
+ cnp.PyArray_FILLWBYTE(pos, 1)
+ return pos
+
+def inc2_cfloat_struct(cnp.ndarray[cnp.cfloat_t] arr):
+ # This works since we compile in C mode, it will fail in cpp mode
+ arr[1].real += 1
+ arr[1].imag += 1
+ # This works in both modes
+ arr[1].real = arr[1].real + 1
+ arr[1].imag = arr[1].imag + 1
+
+
+def npystring_pack(arr):
+ cdef char *string = "Hello world"
+ cdef size_t size = 11
+
+ allocator = cnp.NpyString_acquire_allocator(
+ <cnp.PyArray_StringDTypeObject *>cnp.PyArray_DESCR(arr)
+ )
+
+ # copy string->packed_string, the pointer to the underlying array buffer
+ ret = cnp.NpyString_pack(
+ allocator, <cnp.npy_packed_static_string *>cnp.PyArray_DATA(arr), string, size,
+ )
+
+ cnp.NpyString_release_allocator(allocator)
+ return ret
+
+
+def npystring_load(arr):
+ allocator = cnp.NpyString_acquire_allocator(
+ <cnp.PyArray_StringDTypeObject *>cnp.PyArray_DESCR(arr)
+ )
+
+ cdef cnp.npy_static_string sdata
+ sdata.size = 0
+ sdata.buf = NULL
+
+ cdef cnp.npy_packed_static_string *packed_string = <cnp.npy_packed_static_string *>cnp.PyArray_DATA(arr)
+ cdef int is_null = cnp.NpyString_load(allocator, packed_string, &sdata)
+ cnp.NpyString_release_allocator(allocator)
+ if is_null == -1:
+ raise ValueError("String unpacking failed.")
+ elif is_null == 1:
+ # String in the array buffer is the null string
+ return ""
+ else:
+ # Cython syntax for copying a c string to python bytestring:
+ # slice the char * by the length of the string
+ return sdata.buf[:sdata.size].decode('utf-8')
+
+
+def npystring_pack_multiple(arr1, arr2):
+ cdef cnp.npy_string_allocator *allocators[2]
+ cdef cnp.PyArray_Descr *descrs[2]
+ descrs[0] = cnp.PyArray_DESCR(arr1)
+ descrs[1] = cnp.PyArray_DESCR(arr2)
+
+ cnp.NpyString_acquire_allocators(2, descrs, allocators)
+
+ # Write into the first element of each array
+ cdef int ret1 = cnp.NpyString_pack(
+ allocators[0], <cnp.npy_packed_static_string *>cnp.PyArray_DATA(arr1), "Hello world", 11,
+ )
+ cdef int ret2 = cnp.NpyString_pack(
+ allocators[1], <cnp.npy_packed_static_string *>cnp.PyArray_DATA(arr2), "test this", 9,
+ )
+
+ # Write a null string into the last element
+ cdef cnp.npy_intp elsize = cnp.PyArray_ITEMSIZE(arr1)
+ cdef int ret3 = cnp.NpyString_pack_null(
+ allocators[0],
+ <cnp.npy_packed_static_string *>(<char *>cnp.PyArray_DATA(arr1) + 2*elsize),
+ )
+
+ cnp.NpyString_release_allocators(2, allocators)
+ if ret1 == -1 or ret2 == -1 or ret3 == -1:
+ return -1
+
+ return 0
+
+
+def npystring_allocators_other_types(arr1, arr2):
+ cdef cnp.npy_string_allocator *allocators[2]
+ cdef cnp.PyArray_Descr *descrs[2]
+ descrs[0] = cnp.PyArray_DESCR(arr1)
+ descrs[1] = cnp.PyArray_DESCR(arr2)
+
+ cnp.NpyString_acquire_allocators(2, descrs, allocators)
+
+ # None of the dtypes here are StringDType, so every allocator
+ # should be NULL upon acquisition.
+ cdef int ret = 0
+ for allocator in allocators:
+ if allocator != NULL:
+ ret = -1
+ break
+
+ cnp.NpyString_release_allocators(2, allocators)
+ return ret
+
+
+def check_npy_uintp_type_enum():
+ # Regression test for gh-27890: cnp.NPY_UINTP was not defined.
+ # Cython would fail to compile this before gh-27890 was fixed.
+ return cnp.NPY_UINTP > 0
diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/tests/examples/cython/meson.build b/.venv/lib/python3.12/site-packages/numpy/_core/tests/examples/cython/meson.build
new file mode 100644
index 0000000..8362c33
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/_core/tests/examples/cython/meson.build
@@ -0,0 +1,43 @@
+project('checks', 'c', 'cython')
+
+py = import('python').find_installation(pure: false)
+
+cc = meson.get_compiler('c')
+cy = meson.get_compiler('cython')
+
+# Keep synced with pyproject.toml
+if not cy.version().version_compare('>=3.0.6')
+ error('tests requires Cython >= 3.0.6')
+endif
+
+cython_args = []
+if cy.version().version_compare('>=3.1.0')
+ cython_args += ['-Xfreethreading_compatible=True']
+endif
+
+npy_include_path = run_command(py, [
+ '-c',
+ 'import os; os.chdir(".."); import numpy; print(os.path.abspath(numpy.get_include()))'
+ ], check: true).stdout().strip()
+
+npy_path = run_command(py, [
+ '-c',
+ 'import os; os.chdir(".."); import numpy; print(os.path.dirname(numpy.__file__).removesuffix("numpy"))'
+ ], check: true).stdout().strip()
+
+# TODO: This is a hack due to gh-25135, where cython may not find the right
+# __init__.pyd file.
+add_project_arguments('-I', npy_path, language : 'cython')
+
+py.extension_module(
+ 'checks',
+ 'checks.pyx',
+ install: false,
+ c_args: [
+ '-DNPY_NO_DEPRECATED_API=0', # Cython still uses old NumPy C API
+ # Require 1.25+ to test datetime additions
+ '-DNPY_TARGET_VERSION=NPY_2_0_API_VERSION',
+ ],
+ include_directories: [npy_include_path],
+ cython_args: cython_args,
+)
diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/tests/examples/cython/setup.py b/.venv/lib/python3.12/site-packages/numpy/_core/tests/examples/cython/setup.py
new file mode 100644
index 0000000..eb57477
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/_core/tests/examples/cython/setup.py
@@ -0,0 +1,39 @@
+"""
+Provide python-space access to the functions exposed in numpy/__init__.pxd
+for testing.
+"""
+
+import os
+from distutils.core import setup
+
+import Cython
+from Cython.Build import cythonize
+from setuptools.extension import Extension
+
+import numpy as np
+from numpy._utils import _pep440
+
+macros = [
+ ("NPY_NO_DEPRECATED_API", 0),
+ # Require 1.25+ to test datetime additions
+ ("NPY_TARGET_VERSION", "NPY_2_0_API_VERSION"),
+]
+
+checks = Extension(
+ "checks",
+ sources=[os.path.join('.', "checks.pyx")],
+ include_dirs=[np.get_include()],
+ define_macros=macros,
+)
+
+extensions = [checks]
+
+compiler_directives = {}
+if _pep440.parse(Cython.__version__) >= _pep440.parse("3.1.0a0"):
+ compiler_directives['freethreading_compatible'] = True
+
+setup(
+ ext_modules=cythonize(
+ extensions,
+ compiler_directives=compiler_directives)
+)
diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/tests/examples/limited_api/__pycache__/setup.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/_core/tests/examples/limited_api/__pycache__/setup.cpython-312.pyc
new file mode 100644
index 0000000..0783909
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/_core/tests/examples/limited_api/__pycache__/setup.cpython-312.pyc
Binary files differ
diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/tests/examples/limited_api/limited_api1.c b/.venv/lib/python3.12/site-packages/numpy/_core/tests/examples/limited_api/limited_api1.c
new file mode 100644
index 0000000..3dbf569
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/_core/tests/examples/limited_api/limited_api1.c
@@ -0,0 +1,17 @@
+#define Py_LIMITED_API 0x03060000
+
+#include <Python.h>
+#include <numpy/arrayobject.h>
+#include <numpy/ufuncobject.h>
+
+static PyModuleDef moduledef = {
+ .m_base = PyModuleDef_HEAD_INIT,
+ .m_name = "limited_api1"
+};
+
+PyMODINIT_FUNC PyInit_limited_api1(void)
+{
+ import_array();
+ import_umath();
+ return PyModule_Create(&moduledef);
+}
diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/tests/examples/limited_api/limited_api2.pyx b/.venv/lib/python3.12/site-packages/numpy/_core/tests/examples/limited_api/limited_api2.pyx
new file mode 100644
index 0000000..327d5b0
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/_core/tests/examples/limited_api/limited_api2.pyx
@@ -0,0 +1,11 @@
+#cython: language_level=3
+
+"""
+Make sure cython can compile in limited API mode (see meson.build)
+"""
+
+cdef extern from "numpy/arrayobject.h":
+ pass
+cdef extern from "numpy/arrayscalars.h":
+ pass
+
diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/tests/examples/limited_api/limited_api_latest.c b/.venv/lib/python3.12/site-packages/numpy/_core/tests/examples/limited_api/limited_api_latest.c
new file mode 100644
index 0000000..13668f2
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/_core/tests/examples/limited_api/limited_api_latest.c
@@ -0,0 +1,19 @@
+#if Py_LIMITED_API != PY_VERSION_HEX & 0xffff0000
+ # error "Py_LIMITED_API not defined to Python major+minor version"
+#endif
+
+#include <Python.h>
+#include <numpy/arrayobject.h>
+#include <numpy/ufuncobject.h>
+
+static PyModuleDef moduledef = {
+ .m_base = PyModuleDef_HEAD_INIT,
+ .m_name = "limited_api_latest"
+};
+
+PyMODINIT_FUNC PyInit_limited_api_latest(void)
+{
+ import_array();
+ import_umath();
+ return PyModule_Create(&moduledef);
+}
diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/tests/examples/limited_api/meson.build b/.venv/lib/python3.12/site-packages/numpy/_core/tests/examples/limited_api/meson.build
new file mode 100644
index 0000000..65287d8
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/_core/tests/examples/limited_api/meson.build
@@ -0,0 +1,59 @@
+project('checks', 'c', 'cython')
+
+py = import('python').find_installation(pure: false)
+
+cc = meson.get_compiler('c')
+cy = meson.get_compiler('cython')
+
+# Keep synced with pyproject.toml
+if not cy.version().version_compare('>=3.0.6')
+ error('tests requires Cython >= 3.0.6')
+endif
+
+npy_include_path = run_command(py, [
+ '-c',
+ 'import os; os.chdir(".."); import numpy; print(os.path.abspath(numpy.get_include()))'
+ ], check: true).stdout().strip()
+
+npy_path = run_command(py, [
+ '-c',
+ 'import os; os.chdir(".."); import numpy; print(os.path.dirname(numpy.__file__).removesuffix("numpy"))'
+ ], check: true).stdout().strip()
+
+# TODO: This is a hack due to https://github.com/cython/cython/issues/5820,
+# where cython may not find the right __init__.pyd file.
+add_project_arguments('-I', npy_path, language : 'cython')
+
+py.extension_module(
+ 'limited_api1',
+ 'limited_api1.c',
+ c_args: [
+ '-DNPY_NO_DEPRECATED_API=NPY_1_21_API_VERSION',
+ ],
+ include_directories: [npy_include_path],
+ limited_api: '3.6',
+)
+
+py.extension_module(
+ 'limited_api_latest',
+ 'limited_api_latest.c',
+ c_args: [
+ '-DNPY_NO_DEPRECATED_API=NPY_1_21_API_VERSION',
+ ],
+ include_directories: [npy_include_path],
+ limited_api: py.language_version(),
+)
+
+py.extension_module(
+ 'limited_api2',
+ 'limited_api2.pyx',
+ install: false,
+ c_args: [
+ '-DNPY_NO_DEPRECATED_API=0',
+ # Require 1.25+ to test datetime additions
+ '-DNPY_TARGET_VERSION=NPY_2_0_API_VERSION',
+ '-DCYTHON_LIMITED_API=1',
+ ],
+ include_directories: [npy_include_path],
+ limited_api: '3.7',
+)
diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/tests/examples/limited_api/setup.py b/.venv/lib/python3.12/site-packages/numpy/_core/tests/examples/limited_api/setup.py
new file mode 100644
index 0000000..16adcd1
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/_core/tests/examples/limited_api/setup.py
@@ -0,0 +1,24 @@
+"""
+Build an example package using the limited Python C API.
+"""
+
+import os
+
+from setuptools import Extension, setup
+
+import numpy as np
+
+macros = [("NPY_NO_DEPRECATED_API", 0), ("Py_LIMITED_API", "0x03060000")]
+
+limited_api = Extension(
+ "limited_api",
+ sources=[os.path.join('.', "limited_api.c")],
+ include_dirs=[np.get_include()],
+ define_macros=macros,
+)
+
+extensions = [limited_api]
+
+setup(
+ ext_modules=extensions
+)
diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/tests/test__exceptions.py b/.venv/lib/python3.12/site-packages/numpy/_core/tests/test__exceptions.py
new file mode 100644
index 0000000..35782e7
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/_core/tests/test__exceptions.py
@@ -0,0 +1,90 @@
+"""
+Tests of the ._exceptions module. Primarily for exercising the __str__ methods.
+"""
+
+import pickle
+
+import pytest
+
+import numpy as np
+from numpy.exceptions import AxisError
+
+_ArrayMemoryError = np._core._exceptions._ArrayMemoryError
+_UFuncNoLoopError = np._core._exceptions._UFuncNoLoopError
+
+class TestArrayMemoryError:
+ def test_pickling(self):
+ """ Test that _ArrayMemoryError can be pickled """
+ error = _ArrayMemoryError((1023,), np.dtype(np.uint8))
+ res = pickle.loads(pickle.dumps(error))
+ assert res._total_size == error._total_size
+
+ def test_str(self):
+ e = _ArrayMemoryError((1023,), np.dtype(np.uint8))
+ str(e) # not crashing is enough
+
+ # testing these properties is easier than testing the full string repr
+ def test__size_to_string(self):
+ """ Test e._size_to_string """
+ f = _ArrayMemoryError._size_to_string
+ Ki = 1024
+ assert f(0) == '0 bytes'
+ assert f(1) == '1 bytes'
+ assert f(1023) == '1023 bytes'
+ assert f(Ki) == '1.00 KiB'
+ assert f(Ki + 1) == '1.00 KiB'
+ assert f(10 * Ki) == '10.0 KiB'
+ assert f(int(999.4 * Ki)) == '999. KiB'
+ assert f(int(1023.4 * Ki)) == '1023. KiB'
+ assert f(int(1023.5 * Ki)) == '1.00 MiB'
+ assert f(Ki * Ki) == '1.00 MiB'
+
+ # 1023.9999 Mib should round to 1 GiB
+ assert f(int(Ki * Ki * Ki * 0.9999)) == '1.00 GiB'
+ assert f(Ki * Ki * Ki * Ki * Ki * Ki) == '1.00 EiB'
+ # larger than sys.maxsize, adding larger prefixes isn't going to help
+ # anyway.
+ assert f(Ki * Ki * Ki * Ki * Ki * Ki * 123456) == '123456. EiB'
+
+ def test__total_size(self):
+ """ Test e._total_size """
+ e = _ArrayMemoryError((1,), np.dtype(np.uint8))
+ assert e._total_size == 1
+
+ e = _ArrayMemoryError((2, 4), np.dtype((np.uint64, 16)))
+ assert e._total_size == 1024
+
+
+class TestUFuncNoLoopError:
+ def test_pickling(self):
+ """ Test that _UFuncNoLoopError can be pickled """
+ assert isinstance(pickle.dumps(_UFuncNoLoopError), bytes)
+
+
+@pytest.mark.parametrize("args", [
+ (2, 1, None),
+ (2, 1, "test_prefix"),
+ ("test message",),
+])
+class TestAxisError:
+ def test_attr(self, args):
+ """Validate attribute types."""
+ exc = AxisError(*args)
+ if len(args) == 1:
+ assert exc.axis is None
+ assert exc.ndim is None
+ else:
+ axis, ndim, *_ = args
+ assert exc.axis == axis
+ assert exc.ndim == ndim
+
+ def test_pickling(self, args):
+ """Test that `AxisError` can be pickled."""
+ exc = AxisError(*args)
+ exc2 = pickle.loads(pickle.dumps(exc))
+
+ assert type(exc) is type(exc2)
+ for name in ("axis", "ndim", "args"):
+ attr1 = getattr(exc, name)
+ attr2 = getattr(exc2, name)
+ assert attr1 == attr2, name
diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_abc.py b/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_abc.py
new file mode 100644
index 0000000..aee1904
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_abc.py
@@ -0,0 +1,54 @@
+import numbers
+
+import numpy as np
+from numpy._core.numerictypes import sctypes
+from numpy.testing import assert_
+
+
+class TestABC:
+ def test_abstract(self):
+ assert_(issubclass(np.number, numbers.Number))
+
+ assert_(issubclass(np.inexact, numbers.Complex))
+ assert_(issubclass(np.complexfloating, numbers.Complex))
+ assert_(issubclass(np.floating, numbers.Real))
+
+ assert_(issubclass(np.integer, numbers.Integral))
+ assert_(issubclass(np.signedinteger, numbers.Integral))
+ assert_(issubclass(np.unsignedinteger, numbers.Integral))
+
+ def test_floats(self):
+ for t in sctypes['float']:
+ assert_(isinstance(t(), numbers.Real),
+ f"{t.__name__} is not instance of Real")
+ assert_(issubclass(t, numbers.Real),
+ f"{t.__name__} is not subclass of Real")
+ assert_(not isinstance(t(), numbers.Rational),
+ f"{t.__name__} is instance of Rational")
+ assert_(not issubclass(t, numbers.Rational),
+ f"{t.__name__} is subclass of Rational")
+
+ def test_complex(self):
+ for t in sctypes['complex']:
+ assert_(isinstance(t(), numbers.Complex),
+ f"{t.__name__} is not instance of Complex")
+ assert_(issubclass(t, numbers.Complex),
+ f"{t.__name__} is not subclass of Complex")
+ assert_(not isinstance(t(), numbers.Real),
+ f"{t.__name__} is instance of Real")
+ assert_(not issubclass(t, numbers.Real),
+ f"{t.__name__} is subclass of Real")
+
+ def test_int(self):
+ for t in sctypes['int']:
+ assert_(isinstance(t(), numbers.Integral),
+ f"{t.__name__} is not instance of Integral")
+ assert_(issubclass(t, numbers.Integral),
+ f"{t.__name__} is not subclass of Integral")
+
+ def test_uint(self):
+ for t in sctypes['uint']:
+ assert_(isinstance(t(), numbers.Integral),
+ f"{t.__name__} is not instance of Integral")
+ assert_(issubclass(t, numbers.Integral),
+ f"{t.__name__} is not subclass of Integral")
diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_api.py b/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_api.py
new file mode 100644
index 0000000..2599053
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_api.py
@@ -0,0 +1,621 @@
+import sys
+
+import pytest
+from numpy._core._rational_tests import rational
+
+import numpy as np
+import numpy._core.umath as ncu
+from numpy.testing import (
+ HAS_REFCOUNT,
+ assert_,
+ assert_array_equal,
+ assert_equal,
+ assert_raises,
+ assert_warns,
+)
+
+
+def test_array_array():
+ tobj = type(object)
+ ones11 = np.ones((1, 1), np.float64)
+ tndarray = type(ones11)
+ # Test is_ndarray
+ assert_equal(np.array(ones11, dtype=np.float64), ones11)
+ if HAS_REFCOUNT:
+ old_refcount = sys.getrefcount(tndarray)
+ np.array(ones11)
+ assert_equal(old_refcount, sys.getrefcount(tndarray))
+
+ # test None
+ assert_equal(np.array(None, dtype=np.float64),
+ np.array(np.nan, dtype=np.float64))
+ if HAS_REFCOUNT:
+ old_refcount = sys.getrefcount(tobj)
+ np.array(None, dtype=np.float64)
+ assert_equal(old_refcount, sys.getrefcount(tobj))
+
+ # test scalar
+ assert_equal(np.array(1.0, dtype=np.float64),
+ np.ones((), dtype=np.float64))
+ if HAS_REFCOUNT:
+ old_refcount = sys.getrefcount(np.float64)
+ np.array(np.array(1.0, dtype=np.float64), dtype=np.float64)
+ assert_equal(old_refcount, sys.getrefcount(np.float64))
+
+ # test string
+ S2 = np.dtype((bytes, 2))
+ S3 = np.dtype((bytes, 3))
+ S5 = np.dtype((bytes, 5))
+ assert_equal(np.array(b"1.0", dtype=np.float64),
+ np.ones((), dtype=np.float64))
+ assert_equal(np.array(b"1.0").dtype, S3)
+ assert_equal(np.array(b"1.0", dtype=bytes).dtype, S3)
+ assert_equal(np.array(b"1.0", dtype=S2), np.array(b"1."))
+ assert_equal(np.array(b"1", dtype=S5), np.ones((), dtype=S5))
+
+ # test string
+ U2 = np.dtype((str, 2))
+ U3 = np.dtype((str, 3))
+ U5 = np.dtype((str, 5))
+ assert_equal(np.array("1.0", dtype=np.float64),
+ np.ones((), dtype=np.float64))
+ assert_equal(np.array("1.0").dtype, U3)
+ assert_equal(np.array("1.0", dtype=str).dtype, U3)
+ assert_equal(np.array("1.0", dtype=U2), np.array("1."))
+ assert_equal(np.array("1", dtype=U5), np.ones((), dtype=U5))
+
+ builtins = getattr(__builtins__, '__dict__', __builtins__)
+ assert_(hasattr(builtins, 'get'))
+
+ # test memoryview
+ dat = np.array(memoryview(b'1.0'), dtype=np.float64)
+ assert_equal(dat, [49.0, 46.0, 48.0])
+ assert_(dat.dtype.type is np.float64)
+
+ dat = np.array(memoryview(b'1.0'))
+ assert_equal(dat, [49, 46, 48])
+ assert_(dat.dtype.type is np.uint8)
+
+ # test array interface
+ a = np.array(100.0, dtype=np.float64)
+ o = type("o", (object,),
+ {"__array_interface__": a.__array_interface__})
+ assert_equal(np.array(o, dtype=np.float64), a)
+
+ # test array_struct interface
+ a = np.array([(1, 4.0, 'Hello'), (2, 6.0, 'World')],
+ dtype=[('f0', int), ('f1', float), ('f2', str)])
+ o = type("o", (object,),
+ {"__array_struct__": a.__array_struct__})
+ # wasn't what I expected... is np.array(o) supposed to equal a ?
+ # instead we get a array([...], dtype=">V18")
+ assert_equal(bytes(np.array(o).data), bytes(a.data))
+
+ # test array
+ def custom__array__(self, dtype=None, copy=None):
+ return np.array(100.0, dtype=dtype, copy=copy)
+
+ o = type("o", (object,), {"__array__": custom__array__})()
+ assert_equal(np.array(o, dtype=np.float64), np.array(100.0, np.float64))
+
+ # test recursion
+ nested = 1.5
+ for i in range(ncu.MAXDIMS):
+ nested = [nested]
+
+ # no error
+ np.array(nested)
+
+ # Exceeds recursion limit
+ assert_raises(ValueError, np.array, [nested], dtype=np.float64)
+
+ # Try with lists...
+ # float32
+ assert_equal(np.array([None] * 10, dtype=np.float32),
+ np.full((10,), np.nan, dtype=np.float32))
+ assert_equal(np.array([[None]] * 10, dtype=np.float32),
+ np.full((10, 1), np.nan, dtype=np.float32))
+ assert_equal(np.array([[None] * 10], dtype=np.float32),
+ np.full((1, 10), np.nan, dtype=np.float32))
+ assert_equal(np.array([[None] * 10] * 10, dtype=np.float32),
+ np.full((10, 10), np.nan, dtype=np.float32))
+ # float64
+ assert_equal(np.array([None] * 10, dtype=np.float64),
+ np.full((10,), np.nan, dtype=np.float64))
+ assert_equal(np.array([[None]] * 10, dtype=np.float64),
+ np.full((10, 1), np.nan, dtype=np.float64))
+ assert_equal(np.array([[None] * 10], dtype=np.float64),
+ np.full((1, 10), np.nan, dtype=np.float64))
+ assert_equal(np.array([[None] * 10] * 10, dtype=np.float64),
+ np.full((10, 10), np.nan, dtype=np.float64))
+
+ assert_equal(np.array([1.0] * 10, dtype=np.float64),
+ np.ones((10,), dtype=np.float64))
+ assert_equal(np.array([[1.0]] * 10, dtype=np.float64),
+ np.ones((10, 1), dtype=np.float64))
+ assert_equal(np.array([[1.0] * 10], dtype=np.float64),
+ np.ones((1, 10), dtype=np.float64))
+ assert_equal(np.array([[1.0] * 10] * 10, dtype=np.float64),
+ np.ones((10, 10), dtype=np.float64))
+
+ # Try with tuples
+ assert_equal(np.array((None,) * 10, dtype=np.float64),
+ np.full((10,), np.nan, dtype=np.float64))
+ assert_equal(np.array([(None,)] * 10, dtype=np.float64),
+ np.full((10, 1), np.nan, dtype=np.float64))
+ assert_equal(np.array([(None,) * 10], dtype=np.float64),
+ np.full((1, 10), np.nan, dtype=np.float64))
+ assert_equal(np.array([(None,) * 10] * 10, dtype=np.float64),
+ np.full((10, 10), np.nan, dtype=np.float64))
+
+ assert_equal(np.array((1.0,) * 10, dtype=np.float64),
+ np.ones((10,), dtype=np.float64))
+ assert_equal(np.array([(1.0,)] * 10, dtype=np.float64),
+ np.ones((10, 1), dtype=np.float64))
+ assert_equal(np.array([(1.0,) * 10], dtype=np.float64),
+ np.ones((1, 10), dtype=np.float64))
+ assert_equal(np.array([(1.0,) * 10] * 10, dtype=np.float64),
+ np.ones((10, 10), dtype=np.float64))
+
+@pytest.mark.parametrize("array", [True, False])
+def test_array_impossible_casts(array):
+ # All builtin types can be forcibly cast, at least theoretically,
+ # but user dtypes cannot necessarily.
+ rt = rational(1, 2)
+ if array:
+ rt = np.array(rt)
+ with assert_raises(TypeError):
+ np.array(rt, dtype="M8")
+
+
+def test_array_astype():
+ a = np.arange(6, dtype='f4').reshape(2, 3)
+ # Default behavior: allows unsafe casts, keeps memory layout,
+ # always copies.
+ b = a.astype('i4')
+ assert_equal(a, b)
+ assert_equal(b.dtype, np.dtype('i4'))
+ assert_equal(a.strides, b.strides)
+ b = a.T.astype('i4')
+ assert_equal(a.T, b)
+ assert_equal(b.dtype, np.dtype('i4'))
+ assert_equal(a.T.strides, b.strides)
+ b = a.astype('f4')
+ assert_equal(a, b)
+ assert_(not (a is b))
+
+ # copy=False parameter skips a copy
+ b = a.astype('f4', copy=False)
+ assert_(a is b)
+
+ # order parameter allows overriding of the memory layout,
+ # forcing a copy if the layout is wrong
+ b = a.astype('f4', order='F', copy=False)
+ assert_equal(a, b)
+ assert_(not (a is b))
+ assert_(b.flags.f_contiguous)
+
+ b = a.astype('f4', order='C', copy=False)
+ assert_equal(a, b)
+ assert_(a is b)
+ assert_(b.flags.c_contiguous)
+
+ # casting parameter allows catching bad casts
+ b = a.astype('c8', casting='safe')
+ assert_equal(a, b)
+ assert_equal(b.dtype, np.dtype('c8'))
+
+ assert_raises(TypeError, a.astype, 'i4', casting='safe')
+
+ # subok=False passes through a non-subclassed array
+ b = a.astype('f4', subok=0, copy=False)
+ assert_(a is b)
+
+ class MyNDArray(np.ndarray):
+ pass
+
+ a = np.array([[0, 1, 2], [3, 4, 5]], dtype='f4').view(MyNDArray)
+
+ # subok=True passes through a subclass
+ b = a.astype('f4', subok=True, copy=False)
+ assert_(a is b)
+
+ # subok=True is default, and creates a subtype on a cast
+ b = a.astype('i4', copy=False)
+ assert_equal(a, b)
+ assert_equal(type(b), MyNDArray)
+
+ # subok=False never returns a subclass
+ b = a.astype('f4', subok=False, copy=False)
+ assert_equal(a, b)
+ assert_(not (a is b))
+ assert_(type(b) is not MyNDArray)
+
+ # Make sure converting from string object to fixed length string
+ # does not truncate.
+ a = np.array([b'a' * 100], dtype='O')
+ b = a.astype('S')
+ assert_equal(a, b)
+ assert_equal(b.dtype, np.dtype('S100'))
+ a = np.array(['a' * 100], dtype='O')
+ b = a.astype('U')
+ assert_equal(a, b)
+ assert_equal(b.dtype, np.dtype('U100'))
+
+ # Same test as above but for strings shorter than 64 characters
+ a = np.array([b'a' * 10], dtype='O')
+ b = a.astype('S')
+ assert_equal(a, b)
+ assert_equal(b.dtype, np.dtype('S10'))
+ a = np.array(['a' * 10], dtype='O')
+ b = a.astype('U')
+ assert_equal(a, b)
+ assert_equal(b.dtype, np.dtype('U10'))
+
+ a = np.array(123456789012345678901234567890, dtype='O').astype('S')
+ assert_array_equal(a, np.array(b'1234567890' * 3, dtype='S30'))
+ a = np.array(123456789012345678901234567890, dtype='O').astype('U')
+ assert_array_equal(a, np.array('1234567890' * 3, dtype='U30'))
+
+ a = np.array([123456789012345678901234567890], dtype='O').astype('S')
+ assert_array_equal(a, np.array(b'1234567890' * 3, dtype='S30'))
+ a = np.array([123456789012345678901234567890], dtype='O').astype('U')
+ assert_array_equal(a, np.array('1234567890' * 3, dtype='U30'))
+
+ a = np.array(123456789012345678901234567890, dtype='S')
+ assert_array_equal(a, np.array(b'1234567890' * 3, dtype='S30'))
+ a = np.array(123456789012345678901234567890, dtype='U')
+ assert_array_equal(a, np.array('1234567890' * 3, dtype='U30'))
+
+ a = np.array('a\u0140', dtype='U')
+ b = np.ndarray(buffer=a, dtype='uint32', shape=2)
+ assert_(b.size == 2)
+
+ a = np.array([1000], dtype='i4')
+ assert_raises(TypeError, a.astype, 'S1', casting='safe')
+
+ a = np.array(1000, dtype='i4')
+ assert_raises(TypeError, a.astype, 'U1', casting='safe')
+
+ # gh-24023
+ assert_raises(TypeError, a.astype)
+
+@pytest.mark.parametrize("dt", ["S", "U"])
+def test_array_astype_to_string_discovery_empty(dt):
+ # See also gh-19085
+ arr = np.array([""], dtype=object)
+ # Note, the itemsize is the `0 -> 1` logic, which should change.
+ # The important part the test is rather that it does not error.
+ assert arr.astype(dt).dtype.itemsize == np.dtype(f"{dt}1").itemsize
+
+ # check the same thing for `np.can_cast` (since it accepts arrays)
+ assert np.can_cast(arr, dt, casting="unsafe")
+ assert not np.can_cast(arr, dt, casting="same_kind")
+ # as well as for the object as a descriptor:
+ assert np.can_cast("O", dt, casting="unsafe")
+
+@pytest.mark.parametrize("dt", ["d", "f", "S13", "U32"])
+def test_array_astype_to_void(dt):
+ dt = np.dtype(dt)
+ arr = np.array([], dtype=dt)
+ assert arr.astype("V").dtype.itemsize == dt.itemsize
+
+def test_object_array_astype_to_void():
+ # This is different to `test_array_astype_to_void` as object arrays
+ # are inspected. The default void is "V8" (8 is the length of double)
+ arr = np.array([], dtype="O").astype("V")
+ assert arr.dtype == "V8"
+
+@pytest.mark.parametrize("t",
+ np._core.sctypes['uint'] +
+ np._core.sctypes['int'] +
+ np._core.sctypes['float']
+)
+def test_array_astype_warning(t):
+ # test ComplexWarning when casting from complex to float or int
+ a = np.array(10, dtype=np.complex128)
+ assert_warns(np.exceptions.ComplexWarning, a.astype, t)
+
+@pytest.mark.parametrize(["dtype", "out_dtype"],
+ [(np.bytes_, np.bool),
+ (np.str_, np.bool),
+ (np.dtype("S10,S9"), np.dtype("?,?")),
+ # The following also checks unaligned unicode access:
+ (np.dtype("S7,U9"), np.dtype("?,?"))])
+def test_string_to_boolean_cast(dtype, out_dtype):
+ # Only the last two (empty) strings are falsy (the `\0` is stripped):
+ arr = np.array(
+ ["10", "10\0\0\0", "0\0\0", "0", "False", " ", "", "\0"],
+ dtype=dtype)
+ expected = np.array(
+ [True, True, True, True, True, True, False, False],
+ dtype=out_dtype)
+ assert_array_equal(arr.astype(out_dtype), expected)
+ # As it's similar, check that nonzero behaves the same (structs are
+ # nonzero if all entries are)
+ assert_array_equal(np.nonzero(arr), np.nonzero(expected))
+
+@pytest.mark.parametrize("str_type", [str, bytes, np.str_])
+@pytest.mark.parametrize("scalar_type",
+ [np.complex64, np.complex128, np.clongdouble])
+def test_string_to_complex_cast(str_type, scalar_type):
+ value = scalar_type(b"1+3j")
+ assert scalar_type(value) == 1 + 3j
+ assert np.array([value], dtype=object).astype(scalar_type)[()] == 1 + 3j
+ assert np.array(value).astype(scalar_type)[()] == 1 + 3j
+ arr = np.zeros(1, dtype=scalar_type)
+ arr[0] = value
+ assert arr[0] == 1 + 3j
+
+@pytest.mark.parametrize("dtype", np.typecodes["AllFloat"])
+def test_none_to_nan_cast(dtype):
+ # Note that at the time of writing this test, the scalar constructors
+ # reject None
+ arr = np.zeros(1, dtype=dtype)
+ arr[0] = None
+ assert np.isnan(arr)[0]
+ assert np.isnan(np.array(None, dtype=dtype))[()]
+ assert np.isnan(np.array([None], dtype=dtype))[0]
+ assert np.isnan(np.array(None).astype(dtype))[()]
+
+def test_copyto_fromscalar():
+ a = np.arange(6, dtype='f4').reshape(2, 3)
+
+ # Simple copy
+ np.copyto(a, 1.5)
+ assert_equal(a, 1.5)
+ np.copyto(a.T, 2.5)
+ assert_equal(a, 2.5)
+
+ # Where-masked copy
+ mask = np.array([[0, 1, 0], [0, 0, 1]], dtype='?')
+ np.copyto(a, 3.5, where=mask)
+ assert_equal(a, [[2.5, 3.5, 2.5], [2.5, 2.5, 3.5]])
+ mask = np.array([[0, 1], [1, 1], [1, 0]], dtype='?')
+ np.copyto(a.T, 4.5, where=mask)
+ assert_equal(a, [[2.5, 4.5, 4.5], [4.5, 4.5, 3.5]])
+
+def test_copyto():
+ a = np.arange(6, dtype='i4').reshape(2, 3)
+
+ # Simple copy
+ np.copyto(a, [[3, 1, 5], [6, 2, 1]])
+ assert_equal(a, [[3, 1, 5], [6, 2, 1]])
+
+ # Overlapping copy should work
+ np.copyto(a[:, :2], a[::-1, 1::-1])
+ assert_equal(a, [[2, 6, 5], [1, 3, 1]])
+
+ # Defaults to 'same_kind' casting
+ assert_raises(TypeError, np.copyto, a, 1.5)
+
+ # Force a copy with 'unsafe' casting, truncating 1.5 to 1
+ np.copyto(a, 1.5, casting='unsafe')
+ assert_equal(a, 1)
+
+ # Copying with a mask
+ np.copyto(a, 3, where=[True, False, True])
+ assert_equal(a, [[3, 1, 3], [3, 1, 3]])
+
+ # Casting rule still applies with a mask
+ assert_raises(TypeError, np.copyto, a, 3.5, where=[True, False, True])
+
+ # Lists of integer 0's and 1's is ok too
+ np.copyto(a, 4.0, casting='unsafe', where=[[0, 1, 1], [1, 0, 0]])
+ assert_equal(a, [[3, 4, 4], [4, 1, 3]])
+
+ # Overlapping copy with mask should work
+ np.copyto(a[:, :2], a[::-1, 1::-1], where=[[0, 1], [1, 1]])
+ assert_equal(a, [[3, 4, 4], [4, 3, 3]])
+
+ # 'dst' must be an array
+ assert_raises(TypeError, np.copyto, [1, 2, 3], [2, 3, 4])
+
+
+def test_copyto_cast_safety():
+ with pytest.raises(TypeError):
+ np.copyto(np.arange(3), 3., casting="safe")
+
+ # Can put integer and float scalars safely (and equiv):
+ np.copyto(np.arange(3), 3, casting="equiv")
+ np.copyto(np.arange(3.), 3., casting="equiv")
+ # And also with less precision safely:
+ np.copyto(np.arange(3, dtype="uint8"), 3, casting="safe")
+ np.copyto(np.arange(3., dtype="float32"), 3., casting="safe")
+
+ # But not equiv:
+ with pytest.raises(TypeError):
+ np.copyto(np.arange(3, dtype="uint8"), 3, casting="equiv")
+
+ with pytest.raises(TypeError):
+ np.copyto(np.arange(3., dtype="float32"), 3., casting="equiv")
+
+ # As a special thing, object is equiv currently:
+ np.copyto(np.arange(3, dtype=object), 3, casting="equiv")
+
+ # The following raises an overflow error/gives a warning but not
+ # type error (due to casting), though:
+ with pytest.raises(OverflowError):
+ np.copyto(np.arange(3), 2**80, casting="safe")
+
+ with pytest.warns(RuntimeWarning):
+ np.copyto(np.arange(3, dtype=np.float32), 2e300, casting="safe")
+
+
+def test_copyto_permut():
+ # test explicit overflow case
+ pad = 500
+ l = [True] * pad + [True, True, True, True]
+ r = np.zeros(len(l) - pad)
+ d = np.ones(len(l) - pad)
+ mask = np.array(l)[pad:]
+ np.copyto(r, d, where=mask[::-1])
+
+ # test all permutation of possible masks, 9 should be sufficient for
+ # current 4 byte unrolled code
+ power = 9
+ d = np.ones(power)
+ for i in range(2**power):
+ r = np.zeros(power)
+ l = [(i & x) != 0 for x in range(power)]
+ mask = np.array(l)
+ np.copyto(r, d, where=mask)
+ assert_array_equal(r == 1, l)
+ assert_equal(r.sum(), sum(l))
+
+ r = np.zeros(power)
+ np.copyto(r, d, where=mask[::-1])
+ assert_array_equal(r == 1, l[::-1])
+ assert_equal(r.sum(), sum(l))
+
+ r = np.zeros(power)
+ np.copyto(r[::2], d[::2], where=mask[::2])
+ assert_array_equal(r[::2] == 1, l[::2])
+ assert_equal(r[::2].sum(), sum(l[::2]))
+
+ r = np.zeros(power)
+ np.copyto(r[::2], d[::2], where=mask[::-2])
+ assert_array_equal(r[::2] == 1, l[::-2])
+ assert_equal(r[::2].sum(), sum(l[::-2]))
+
+ for c in [0xFF, 0x7F, 0x02, 0x10]:
+ r = np.zeros(power)
+ mask = np.array(l)
+ imask = np.array(l).view(np.uint8)
+ imask[mask != 0] = c
+ np.copyto(r, d, where=mask)
+ assert_array_equal(r == 1, l)
+ assert_equal(r.sum(), sum(l))
+
+ r = np.zeros(power)
+ np.copyto(r, d, where=True)
+ assert_equal(r.sum(), r.size)
+ r = np.ones(power)
+ d = np.zeros(power)
+ np.copyto(r, d, where=False)
+ assert_equal(r.sum(), r.size)
+
+def test_copy_order():
+ a = np.arange(24).reshape(2, 1, 3, 4)
+ b = a.copy(order='F')
+ c = np.arange(24).reshape(2, 1, 4, 3).swapaxes(2, 3)
+
+ def check_copy_result(x, y, ccontig, fcontig, strides=False):
+ assert_(not (x is y))
+ assert_equal(x, y)
+ assert_equal(res.flags.c_contiguous, ccontig)
+ assert_equal(res.flags.f_contiguous, fcontig)
+
+ # Validate the initial state of a, b, and c
+ assert_(a.flags.c_contiguous)
+ assert_(not a.flags.f_contiguous)
+ assert_(not b.flags.c_contiguous)
+ assert_(b.flags.f_contiguous)
+ assert_(not c.flags.c_contiguous)
+ assert_(not c.flags.f_contiguous)
+
+ # Copy with order='C'
+ res = a.copy(order='C')
+ check_copy_result(res, a, ccontig=True, fcontig=False, strides=True)
+ res = b.copy(order='C')
+ check_copy_result(res, b, ccontig=True, fcontig=False, strides=False)
+ res = c.copy(order='C')
+ check_copy_result(res, c, ccontig=True, fcontig=False, strides=False)
+ res = np.copy(a, order='C')
+ check_copy_result(res, a, ccontig=True, fcontig=False, strides=True)
+ res = np.copy(b, order='C')
+ check_copy_result(res, b, ccontig=True, fcontig=False, strides=False)
+ res = np.copy(c, order='C')
+ check_copy_result(res, c, ccontig=True, fcontig=False, strides=False)
+
+ # Copy with order='F'
+ res = a.copy(order='F')
+ check_copy_result(res, a, ccontig=False, fcontig=True, strides=False)
+ res = b.copy(order='F')
+ check_copy_result(res, b, ccontig=False, fcontig=True, strides=True)
+ res = c.copy(order='F')
+ check_copy_result(res, c, ccontig=False, fcontig=True, strides=False)
+ res = np.copy(a, order='F')
+ check_copy_result(res, a, ccontig=False, fcontig=True, strides=False)
+ res = np.copy(b, order='F')
+ check_copy_result(res, b, ccontig=False, fcontig=True, strides=True)
+ res = np.copy(c, order='F')
+ check_copy_result(res, c, ccontig=False, fcontig=True, strides=False)
+
+ # Copy with order='K'
+ res = a.copy(order='K')
+ check_copy_result(res, a, ccontig=True, fcontig=False, strides=True)
+ res = b.copy(order='K')
+ check_copy_result(res, b, ccontig=False, fcontig=True, strides=True)
+ res = c.copy(order='K')
+ check_copy_result(res, c, ccontig=False, fcontig=False, strides=True)
+ res = np.copy(a, order='K')
+ check_copy_result(res, a, ccontig=True, fcontig=False, strides=True)
+ res = np.copy(b, order='K')
+ check_copy_result(res, b, ccontig=False, fcontig=True, strides=True)
+ res = np.copy(c, order='K')
+ check_copy_result(res, c, ccontig=False, fcontig=False, strides=True)
+
+def test_contiguous_flags():
+ a = np.ones((4, 4, 1))[::2, :, :]
+ a.strides = a.strides[:2] + (-123,)
+ b = np.ones((2, 2, 1, 2, 2)).swapaxes(3, 4)
+
+ def check_contig(a, ccontig, fcontig):
+ assert_(a.flags.c_contiguous == ccontig)
+ assert_(a.flags.f_contiguous == fcontig)
+
+ # Check if new arrays are correct:
+ check_contig(a, False, False)
+ check_contig(b, False, False)
+ check_contig(np.empty((2, 2, 0, 2, 2)), True, True)
+ check_contig(np.array([[[1], [2]]], order='F'), True, True)
+ check_contig(np.empty((2, 2)), True, False)
+ check_contig(np.empty((2, 2), order='F'), False, True)
+
+ # Check that np.array creates correct contiguous flags:
+ check_contig(np.array(a, copy=None), False, False)
+ check_contig(np.array(a, copy=None, order='C'), True, False)
+ check_contig(np.array(a, ndmin=4, copy=None, order='F'), False, True)
+
+ # Check slicing update of flags and :
+ check_contig(a[0], True, True)
+ check_contig(a[None, ::4, ..., None], True, True)
+ check_contig(b[0, 0, ...], False, True)
+ check_contig(b[:, :, 0:0, :, :], True, True)
+
+ # Test ravel and squeeze.
+ check_contig(a.ravel(), True, True)
+ check_contig(np.ones((1, 3, 1)).squeeze(), True, True)
+
+def test_broadcast_arrays():
+ # Test user defined dtypes
+ a = np.array([(1, 2, 3)], dtype='u4,u4,u4')
+ b = np.array([(1, 2, 3), (4, 5, 6), (7, 8, 9)], dtype='u4,u4,u4')
+ result = np.broadcast_arrays(a, b)
+ assert_equal(result[0], np.array([(1, 2, 3), (1, 2, 3), (1, 2, 3)], dtype='u4,u4,u4'))
+ assert_equal(result[1], np.array([(1, 2, 3), (4, 5, 6), (7, 8, 9)], dtype='u4,u4,u4'))
+
+@pytest.mark.parametrize(["shape", "fill_value", "expected_output"],
+ [((2, 2), [5.0, 6.0], np.array([[5.0, 6.0], [5.0, 6.0]])),
+ ((3, 2), [1.0, 2.0], np.array([[1.0, 2.0], [1.0, 2.0], [1.0, 2.0]]))])
+def test_full_from_list(shape, fill_value, expected_output):
+ output = np.full(shape, fill_value)
+ assert_equal(output, expected_output)
+
+def test_astype_copyflag():
+ # test the various copyflag options
+ arr = np.arange(10, dtype=np.intp)
+
+ res_true = arr.astype(np.intp, copy=True)
+ assert not np.shares_memory(arr, res_true)
+
+ res_false = arr.astype(np.intp, copy=False)
+ assert np.shares_memory(arr, res_false)
+
+ res_false_float = arr.astype(np.float64, copy=False)
+ assert not np.shares_memory(arr, res_false_float)
+
+ # _CopyMode enum isn't allowed
+ assert_raises(ValueError, arr.astype, np.float64,
+ copy=np._CopyMode.NEVER)
diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_argparse.py b/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_argparse.py
new file mode 100644
index 0000000..7f949c1
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_argparse.py
@@ -0,0 +1,92 @@
+"""
+Tests for the private NumPy argument parsing functionality.
+They mainly exists to ensure good test coverage without having to try the
+weirder cases on actual numpy functions but test them in one place.
+
+The test function is defined in C to be equivalent to (errors may not always
+match exactly, and could be adjusted):
+
+ def func(arg1, /, arg2, *, arg3):
+ i = integer(arg1) # reproducing the 'i' parsing in Python.
+ return None
+"""
+
+import threading
+
+import pytest
+from numpy._core._multiarray_tests import (
+ argparse_example_function as func,
+)
+from numpy._core._multiarray_tests import (
+ threaded_argparse_example_function as thread_func,
+)
+
+import numpy as np
+from numpy.testing import IS_WASM
+
+
+@pytest.mark.skipif(IS_WASM, reason="wasm doesn't have support for threads")
+def test_thread_safe_argparse_cache():
+ b = threading.Barrier(8)
+
+ def call_thread_func():
+ b.wait()
+ thread_func(arg1=3, arg2=None)
+
+ tasks = [threading.Thread(target=call_thread_func) for _ in range(8)]
+ [t.start() for t in tasks]
+ [t.join() for t in tasks]
+
+
+def test_invalid_integers():
+ with pytest.raises(TypeError,
+ match="integer argument expected, got float"):
+ func(1.)
+ with pytest.raises(OverflowError):
+ func(2**100)
+
+
+def test_missing_arguments():
+ with pytest.raises(TypeError,
+ match="missing required positional argument 0"):
+ func()
+ with pytest.raises(TypeError,
+ match="missing required positional argument 0"):
+ func(arg2=1, arg3=4)
+ with pytest.raises(TypeError,
+ match=r"missing required argument \'arg2\' \(pos 1\)"):
+ func(1, arg3=5)
+
+
+def test_too_many_positional():
+ # the second argument is positional but can be passed as keyword.
+ with pytest.raises(TypeError,
+ match="takes from 2 to 3 positional arguments but 4 were given"):
+ func(1, 2, 3, 4)
+
+
+def test_multiple_values():
+ with pytest.raises(TypeError,
+ match=r"given by name \('arg2'\) and position \(position 1\)"):
+ func(1, 2, arg2=3)
+
+
+def test_string_fallbacks():
+ # We can (currently?) use numpy strings to test the "slow" fallbacks
+ # that should normally not be taken due to string interning.
+ arg2 = np.str_("arg2")
+ missing_arg = np.str_("missing_arg")
+ func(1, **{arg2: 3})
+ with pytest.raises(TypeError,
+ match="got an unexpected keyword argument 'missing_arg'"):
+ func(2, **{missing_arg: 3})
+
+
+def test_too_many_arguments_method_forwarding():
+ # Not directly related to the standard argument parsing, but we sometimes
+ # forward methods to Python: arr.mean() calls np._core._methods._mean()
+ # This adds code coverage for this `npy_forward_method`.
+ arr = np.arange(3)
+ args = range(1000)
+ with pytest.raises(TypeError):
+ arr.mean(*args)
diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_array_api_info.py b/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_array_api_info.py
new file mode 100644
index 0000000..4842dbf
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_array_api_info.py
@@ -0,0 +1,113 @@
+import pytest
+
+import numpy as np
+
+info = np.__array_namespace_info__()
+
+
+def test_capabilities():
+ caps = info.capabilities()
+ assert caps["boolean indexing"] is True
+ assert caps["data-dependent shapes"] is True
+
+ # This will be added in the 2024.12 release of the array API standard.
+
+ # assert caps["max rank"] == 64
+ # np.zeros((1,)*64)
+ # with pytest.raises(ValueError):
+ # np.zeros((1,)*65)
+
+
+def test_default_device():
+ assert info.default_device() == "cpu" == np.asarray(0).device
+
+
+def test_default_dtypes():
+ dtypes = info.default_dtypes()
+ assert dtypes["real floating"] == np.float64 == np.asarray(0.0).dtype
+ assert dtypes["complex floating"] == np.complex128 == \
+ np.asarray(0.0j).dtype
+ assert dtypes["integral"] == np.intp == np.asarray(0).dtype
+ assert dtypes["indexing"] == np.intp == np.argmax(np.zeros(10)).dtype
+
+ with pytest.raises(ValueError, match="Device not understood"):
+ info.default_dtypes(device="gpu")
+
+
+def test_dtypes_all():
+ dtypes = info.dtypes()
+ assert dtypes == {
+ "bool": np.bool_,
+ "int8": np.int8,
+ "int16": np.int16,
+ "int32": np.int32,
+ "int64": np.int64,
+ "uint8": np.uint8,
+ "uint16": np.uint16,
+ "uint32": np.uint32,
+ "uint64": np.uint64,
+ "float32": np.float32,
+ "float64": np.float64,
+ "complex64": np.complex64,
+ "complex128": np.complex128,
+ }
+
+
+dtype_categories = {
+ "bool": {"bool": np.bool_},
+ "signed integer": {
+ "int8": np.int8,
+ "int16": np.int16,
+ "int32": np.int32,
+ "int64": np.int64,
+ },
+ "unsigned integer": {
+ "uint8": np.uint8,
+ "uint16": np.uint16,
+ "uint32": np.uint32,
+ "uint64": np.uint64,
+ },
+ "integral": ("signed integer", "unsigned integer"),
+ "real floating": {"float32": np.float32, "float64": np.float64},
+ "complex floating": {"complex64": np.complex64, "complex128":
+ np.complex128},
+ "numeric": ("integral", "real floating", "complex floating"),
+}
+
+
+@pytest.mark.parametrize("kind", dtype_categories)
+def test_dtypes_kind(kind):
+ expected = dtype_categories[kind]
+ if isinstance(expected, tuple):
+ assert info.dtypes(kind=kind) == info.dtypes(kind=expected)
+ else:
+ assert info.dtypes(kind=kind) == expected
+
+
+def test_dtypes_tuple():
+ dtypes = info.dtypes(kind=("bool", "integral"))
+ assert dtypes == {
+ "bool": np.bool_,
+ "int8": np.int8,
+ "int16": np.int16,
+ "int32": np.int32,
+ "int64": np.int64,
+ "uint8": np.uint8,
+ "uint16": np.uint16,
+ "uint32": np.uint32,
+ "uint64": np.uint64,
+ }
+
+
+def test_dtypes_invalid_kind():
+ with pytest.raises(ValueError, match="unsupported kind"):
+ info.dtypes(kind="invalid")
+
+
+def test_dtypes_invalid_device():
+ with pytest.raises(ValueError, match="Device not understood"):
+ info.dtypes(device="gpu")
+
+
+def test_devices():
+ assert info.devices() == ["cpu"]
diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_array_coercion.py b/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_array_coercion.py
new file mode 100644
index 0000000..883aee6
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_array_coercion.py
@@ -0,0 +1,911 @@
+"""
+Tests for array coercion, mainly through testing `np.array` results directly.
+Note that other such tests exist, e.g., in `test_api.py` and many corner-cases
+are tested (sometimes indirectly) elsewhere.
+"""
+
+from itertools import permutations, product
+
+import numpy._core._multiarray_umath as ncu
+import pytest
+from numpy._core._rational_tests import rational
+from pytest import param
+
+import numpy as np
+from numpy.testing import IS_64BIT, IS_PYPY, assert_array_equal
+
+
+def arraylikes():
+ """
+ Generator for functions converting an array into various array-likes.
+ If full is True (default) it includes array-likes not capable of handling
+ all dtypes.
+ """
+ # base array:
+ def ndarray(a):
+ return a
+
+ yield param(ndarray, id="ndarray")
+
+ # subclass:
+ class MyArr(np.ndarray):
+ pass
+
+ def subclass(a):
+ return a.view(MyArr)
+
+ yield subclass
+
+ class _SequenceLike:
+ # Older NumPy versions, sometimes cared whether a protocol array was
+ # also _SequenceLike. This shouldn't matter, but keep it for now
+ # for __array__ and not the others.
+ def __len__(self):
+ raise TypeError
+
+ def __getitem__(self, _, /):
+ raise TypeError
+
+ # Array-interface
+ class ArrayDunder(_SequenceLike):
+ def __init__(self, a):
+ self.a = a
+
+ def __array__(self, dtype=None, copy=None):
+ if dtype is None:
+ return self.a
+ return self.a.astype(dtype)
+
+ yield param(ArrayDunder, id="__array__")
+
+ # memory-view
+ yield param(memoryview, id="memoryview")
+
+ # Array-interface
+ class ArrayInterface:
+ def __init__(self, a):
+ self.a = a # need to hold on to keep interface valid
+ self.__array_interface__ = a.__array_interface__
+
+ yield param(ArrayInterface, id="__array_interface__")
+
+ # Array-Struct
+ class ArrayStruct:
+ def __init__(self, a):
+ self.a = a # need to hold on to keep struct valid
+ self.__array_struct__ = a.__array_struct__
+
+ yield param(ArrayStruct, id="__array_struct__")
+
+
+def scalar_instances(times=True, extended_precision=True, user_dtype=True):
+ # Hard-coded list of scalar instances.
+ # Floats:
+ yield param(np.sqrt(np.float16(5)), id="float16")
+ yield param(np.sqrt(np.float32(5)), id="float32")
+ yield param(np.sqrt(np.float64(5)), id="float64")
+ if extended_precision:
+ yield param(np.sqrt(np.longdouble(5)), id="longdouble")
+
+ # Complex:
+ yield param(np.sqrt(np.complex64(2 + 3j)), id="complex64")
+ yield param(np.sqrt(np.complex128(2 + 3j)), id="complex128")
+ if extended_precision:
+ yield param(np.sqrt(np.clongdouble(2 + 3j)), id="clongdouble")
+
+ # Bool:
+ # XFAIL: Bool should be added, but has some bad properties when it
+ # comes to strings, see also gh-9875
+ # yield param(np.bool(0), id="bool")
+
+ # Integers:
+ yield param(np.int8(2), id="int8")
+ yield param(np.int16(2), id="int16")
+ yield param(np.int32(2), id="int32")
+ yield param(np.int64(2), id="int64")
+
+ yield param(np.uint8(2), id="uint8")
+ yield param(np.uint16(2), id="uint16")
+ yield param(np.uint32(2), id="uint32")
+ yield param(np.uint64(2), id="uint64")
+
+ # Rational:
+ if user_dtype:
+ yield param(rational(1, 2), id="rational")
+
+ # Cannot create a structured void scalar directly:
+ structured = np.array([(1, 3)], "i,i")[0]
+ assert isinstance(structured, np.void)
+ assert structured.dtype == np.dtype("i,i")
+ yield param(structured, id="structured")
+
+ if times:
+ # Datetimes and timedelta
+ yield param(np.timedelta64(2), id="timedelta64[generic]")
+ yield param(np.timedelta64(23, "s"), id="timedelta64[s]")
+ yield param(np.timedelta64("NaT", "s"), id="timedelta64[s](NaT)")
+
+ yield param(np.datetime64("NaT"), id="datetime64[generic](NaT)")
+ yield param(np.datetime64("2020-06-07 12:43", "ms"), id="datetime64[ms]")
+
+ # Strings and unstructured void:
+ yield param(np.bytes_(b"1234"), id="bytes")
+ yield param(np.str_("2345"), id="unicode")
+ yield param(np.void(b"4321"), id="unstructured_void")
+
+
+def is_parametric_dtype(dtype):
+ """Returns True if the dtype is a parametric legacy dtype (itemsize
+ is 0, or a datetime without units)
+ """
+ if dtype.itemsize == 0:
+ return True
+ if issubclass(dtype.type, (np.datetime64, np.timedelta64)):
+ if dtype.name.endswith("64"):
+ # Generic time units
+ return True
+ return False
+
+
+class TestStringDiscovery:
+ @pytest.mark.parametrize("obj",
+ [object(), 1.2, 10**43, None, "string"],
+ ids=["object", "1.2", "10**43", "None", "string"])
+ def test_basic_stringlength(self, obj):
+ length = len(str(obj))
+ expected = np.dtype(f"S{length}")
+
+ assert np.array(obj, dtype="S").dtype == expected
+ assert np.array([obj], dtype="S").dtype == expected
+
+ # A nested array is also discovered correctly
+ arr = np.array(obj, dtype="O")
+ assert np.array(arr, dtype="S").dtype == expected
+ # Also if we use the dtype class
+ assert np.array(arr, dtype=type(expected)).dtype == expected
+ # Check that .astype() behaves identical
+ assert arr.astype("S").dtype == expected
+ # The DType class is accepted by `.astype()`
+ assert arr.astype(type(np.dtype("S"))).dtype == expected
+
+ @pytest.mark.parametrize("obj",
+ [object(), 1.2, 10**43, None, "string"],
+ ids=["object", "1.2", "10**43", "None", "string"])
+ def test_nested_arrays_stringlength(self, obj):
+ length = len(str(obj))
+ expected = np.dtype(f"S{length}")
+ arr = np.array(obj, dtype="O")
+ assert np.array([arr, arr], dtype="S").dtype == expected
+
+ @pytest.mark.parametrize("arraylike", arraylikes())
+ def test_unpack_first_level(self, arraylike):
+ # We unpack exactly one level of array likes
+ obj = np.array([None])
+ obj[0] = np.array(1.2)
+ # the length of the included item, not of the float dtype
+ length = len(str(obj[0]))
+ expected = np.dtype(f"S{length}")
+
+ obj = arraylike(obj)
+ # casting to string usually calls str(obj)
+ arr = np.array([obj], dtype="S")
+ assert arr.shape == (1, 1)
+ assert arr.dtype == expected
+
+
+class TestScalarDiscovery:
+ def test_void_special_case(self):
+ # Void dtypes with structures discover tuples as elements
+ arr = np.array((1, 2, 3), dtype="i,i,i")
+ assert arr.shape == ()
+ arr = np.array([(1, 2, 3)], dtype="i,i,i")
+ assert arr.shape == (1,)
+
+ def test_char_special_case(self):
+ arr = np.array("string", dtype="c")
+ assert arr.shape == (6,)
+ assert arr.dtype.char == "c"
+ arr = np.array(["string"], dtype="c")
+ assert arr.shape == (1, 6)
+ assert arr.dtype.char == "c"
+
+ def test_char_special_case_deep(self):
+ # Check that the character special case errors correctly if the
+ # array is too deep:
+ nested = ["string"] # 2 dimensions (due to string being sequence)
+ for i in range(ncu.MAXDIMS - 2):
+ nested = [nested]
+
+ arr = np.array(nested, dtype='c')
+ assert arr.shape == (1,) * (ncu.MAXDIMS - 1) + (6,)
+ with pytest.raises(ValueError):
+ np.array([nested], dtype="c")
+
+ def test_unknown_object(self):
+ arr = np.array(object())
+ assert arr.shape == ()
+ assert arr.dtype == np.dtype("O")
+
+ @pytest.mark.parametrize("scalar", scalar_instances())
+ def test_scalar(self, scalar):
+ arr = np.array(scalar)
+ assert arr.shape == ()
+ assert arr.dtype == scalar.dtype
+
+ arr = np.array([[scalar, scalar]])
+ assert arr.shape == (1, 2)
+ assert arr.dtype == scalar.dtype
+
+ # Additionally to string this test also runs into a corner case
+ # with datetime promotion (the difference is the promotion order).
+ @pytest.mark.filterwarnings("ignore:Promotion of numbers:FutureWarning")
+ def test_scalar_promotion(self):
+ for sc1, sc2 in product(scalar_instances(), scalar_instances()):
+ sc1, sc2 = sc1.values[0], sc2.values[0]
+ # test all combinations:
+ try:
+ arr = np.array([sc1, sc2])
+ except (TypeError, ValueError):
+ # The promotion between two times can fail
+ # XFAIL (ValueError): Some object casts are currently undefined
+ continue
+ assert arr.shape == (2,)
+ try:
+ dt1, dt2 = sc1.dtype, sc2.dtype
+ expected_dtype = np.promote_types(dt1, dt2)
+ assert arr.dtype == expected_dtype
+ except TypeError as e:
+ # Will currently always go to object dtype
+ assert arr.dtype == np.dtype("O")
+
+ @pytest.mark.parametrize("scalar", scalar_instances())
+ def test_scalar_coercion(self, scalar):
+ # This tests various scalar coercion paths, mainly for the numerical
+ # types. It includes some paths not directly related to `np.array`.
+ if isinstance(scalar, np.inexact):
+ # Ensure we have a full-precision number if available
+ scalar = type(scalar)((scalar * 2)**0.5)
+
+ if type(scalar) is rational:
+ # Rational generally fails due to a missing cast. In the future
+ # object casts should automatically be defined based on `setitem`.
+ pytest.xfail("Rational to object cast is undefined currently.")
+
+ # Use casting from object:
+ arr = np.array(scalar, dtype=object).astype(scalar.dtype)
+
+ # Test various ways to create an array containing this scalar:
+ arr1 = np.array(scalar).reshape(1)
+ arr2 = np.array([scalar])
+ arr3 = np.empty(1, dtype=scalar.dtype)
+ arr3[0] = scalar
+ arr4 = np.empty(1, dtype=scalar.dtype)
+ arr4[:] = [scalar]
+ # All of these methods should yield the same results
+ assert_array_equal(arr, arr1)
+ assert_array_equal(arr, arr2)
+ assert_array_equal(arr, arr3)
+ assert_array_equal(arr, arr4)
+
+ @pytest.mark.xfail(IS_PYPY, reason="`int(np.complex128(3))` fails on PyPy")
+ @pytest.mark.filterwarnings("ignore::numpy.exceptions.ComplexWarning")
+ @pytest.mark.parametrize("cast_to", scalar_instances())
+ def test_scalar_coercion_same_as_cast_and_assignment(self, cast_to):
+ """
+ Test that in most cases:
+ * `np.array(scalar, dtype=dtype)`
+ * `np.empty((), dtype=dtype)[()] = scalar`
+ * `np.array(scalar).astype(dtype)`
+ should behave the same. The only exceptions are parametric dtypes
+ (mainly datetime/timedelta without unit) and void without fields.
+ """
+ dtype = cast_to.dtype # use to parametrize only the target dtype
+
+ for scalar in scalar_instances(times=False):
+ scalar = scalar.values[0]
+
+ if dtype.type == np.void:
+ if scalar.dtype.fields is not None and dtype.fields is None:
+ # Here, coercion to "V6" works, but the cast fails.
+ # Since the types are identical, SETITEM takes care of
+ # this, but has different rules than the cast.
+ with pytest.raises(TypeError):
+ np.array(scalar).astype(dtype)
+ np.array(scalar, dtype=dtype)
+ np.array([scalar], dtype=dtype)
+ continue
+
+ # The main test, we first try to use casting and if it succeeds
+ # continue below testing that things are the same, otherwise
+ # test that the alternative paths at least also fail.
+ try:
+ cast = np.array(scalar).astype(dtype)
+ except (TypeError, ValueError, RuntimeError):
+ # coercion should also raise (error type may change)
+ with pytest.raises(Exception): # noqa: B017
+ np.array(scalar, dtype=dtype)
+
+ if (isinstance(scalar, rational) and
+ np.issubdtype(dtype, np.signedinteger)):
+ return
+
+ with pytest.raises(Exception): # noqa: B017
+ np.array([scalar], dtype=dtype)
+ # assignment should also raise
+ res = np.zeros((), dtype=dtype)
+ with pytest.raises(Exception): # noqa: B017
+ res[()] = scalar
+
+ return
+
+ # Non error path:
+ arr = np.array(scalar, dtype=dtype)
+ assert_array_equal(arr, cast)
+ # assignment behaves the same
+ ass = np.zeros((), dtype=dtype)
+ ass[()] = scalar
+ assert_array_equal(ass, cast)
+
+ @pytest.mark.parametrize("pyscalar", [10, 10.32, 10.14j, 10**100])
+ def test_pyscalar_subclasses(self, pyscalar):
+ """NumPy arrays are read/write which means that anything but invariant
+ behaviour is on thin ice. However, we currently are happy to discover
+ subclasses of Python float, int, complex the same as the base classes.
+ This should potentially be deprecated.
+ """
+ class MyScalar(type(pyscalar)):
+ pass
+
+ res = np.array(MyScalar(pyscalar))
+ expected = np.array(pyscalar)
+ assert_array_equal(res, expected)
+
+ @pytest.mark.parametrize("dtype_char", np.typecodes["All"])
+ def test_default_dtype_instance(self, dtype_char):
+ if dtype_char in "SU":
+ dtype = np.dtype(dtype_char + "1")
+ elif dtype_char == "V":
+ # Legacy behaviour was to use V8. The reason was float64 being the
+ # default dtype and that having 8 bytes.
+ dtype = np.dtype("V8")
+ else:
+ dtype = np.dtype(dtype_char)
+
+ discovered_dtype, _ = ncu._discover_array_parameters([], type(dtype))
+
+ assert discovered_dtype == dtype
+ assert discovered_dtype.itemsize == dtype.itemsize
+
+ @pytest.mark.parametrize("dtype", np.typecodes["Integer"])
+ @pytest.mark.parametrize(["scalar", "error"],
+ [(np.float64(np.nan), ValueError),
+ (np.array(-1).astype(np.ulonglong)[()], OverflowError)])
+ def test_scalar_to_int_coerce_does_not_cast(self, dtype, scalar, error):
+ """
+ Signed integers are currently different in that they do not cast other
+ NumPy scalar, but instead use scalar.__int__(). The hardcoded
+ exception to this rule is `np.array(scalar, dtype=integer)`.
+ """
+ dtype = np.dtype(dtype)
+
+ # This is a special case using casting logic. It warns for the NaN
+ # but allows the cast (giving undefined behaviour).
+ with np.errstate(invalid="ignore"):
+ coerced = np.array(scalar, dtype=dtype)
+ cast = np.array(scalar).astype(dtype)
+ assert_array_equal(coerced, cast)
+
+ # However these fail:
+ with pytest.raises(error):
+ np.array([scalar], dtype=dtype)
+ with pytest.raises(error):
+ cast[()] = scalar
+
+
+class TestTimeScalars:
+ @pytest.mark.parametrize("dtype", [np.int64, np.float32])
+ @pytest.mark.parametrize("scalar",
+ [param(np.timedelta64("NaT", "s"), id="timedelta64[s](NaT)"),
+ param(np.timedelta64(123, "s"), id="timedelta64[s]"),
+ param(np.datetime64("NaT", "generic"), id="datetime64[generic](NaT)"),
+ param(np.datetime64(1, "D"), id="datetime64[D]")],)
+ def test_coercion_basic(self, dtype, scalar):
+ # Note the `[scalar]` is there because np.array(scalar) uses stricter
+ # `scalar.__int__()` rules for backward compatibility right now.
+ arr = np.array(scalar, dtype=dtype)
+ cast = np.array(scalar).astype(dtype)
+ assert_array_equal(arr, cast)
+
+ ass = np.ones((), dtype=dtype)
+ if issubclass(dtype, np.integer):
+ with pytest.raises(TypeError):
+ # raises, as would np.array([scalar], dtype=dtype), this is
+ # conversion from times, but behaviour of integers.
+ ass[()] = scalar
+ else:
+ ass[()] = scalar
+ assert_array_equal(ass, cast)
+
+ @pytest.mark.parametrize("dtype", [np.int64, np.float32])
+ @pytest.mark.parametrize("scalar",
+ [param(np.timedelta64(123, "ns"), id="timedelta64[ns]"),
+ param(np.timedelta64(12, "generic"), id="timedelta64[generic]")])
+ def test_coercion_timedelta_convert_to_number(self, dtype, scalar):
+ # Only "ns" and "generic" timedeltas can be converted to numbers
+ # so these are slightly special.
+ arr = np.array(scalar, dtype=dtype)
+ cast = np.array(scalar).astype(dtype)
+ ass = np.ones((), dtype=dtype)
+ ass[()] = scalar # raises, as would np.array([scalar], dtype=dtype)
+
+ assert_array_equal(arr, cast)
+ assert_array_equal(cast, cast)
+
+ @pytest.mark.parametrize("dtype", ["S6", "U6"])
+ @pytest.mark.parametrize(["val", "unit"],
+ [param(123, "s", id="[s]"), param(123, "D", id="[D]")])
+ def test_coercion_assignment_datetime(self, val, unit, dtype):
+ # String from datetime64 assignment is currently special cased to
+ # never use casting. This is because casting will error in this
+ # case, and traditionally in most cases the behaviour is maintained
+ # like this. (`np.array(scalar, dtype="U6")` would have failed before)
+ # TODO: This discrepancy _should_ be resolved, either by relaxing the
+ # cast, or by deprecating the first part.
+ scalar = np.datetime64(val, unit)
+ dtype = np.dtype(dtype)
+ cut_string = dtype.type(str(scalar)[:6])
+
+ arr = np.array(scalar, dtype=dtype)
+ assert arr[()] == cut_string
+ ass = np.ones((), dtype=dtype)
+ ass[()] = scalar
+ assert ass[()] == cut_string
+
+ with pytest.raises(RuntimeError):
+ # However, unlike the above assignment using `str(scalar)[:6]`
+ # due to being handled by the string DType and not be casting
+ # the explicit cast fails:
+ np.array(scalar).astype(dtype)
+
+ @pytest.mark.parametrize(["val", "unit"],
+ [param(123, "s", id="[s]"), param(123, "D", id="[D]")])
+ def test_coercion_assignment_timedelta(self, val, unit):
+ scalar = np.timedelta64(val, unit)
+
+ # Unlike datetime64, timedelta allows the unsafe cast:
+ np.array(scalar, dtype="S6")
+ cast = np.array(scalar).astype("S6")
+ ass = np.ones((), dtype="S6")
+ ass[()] = scalar
+ expected = scalar.astype("S")[:6]
+ assert cast[()] == expected
+ assert ass[()] == expected
+
+class TestNested:
+ def test_nested_simple(self):
+ initial = [1.2]
+ nested = initial
+ for i in range(ncu.MAXDIMS - 1):
+ nested = [nested]
+
+ arr = np.array(nested, dtype="float64")
+ assert arr.shape == (1,) * ncu.MAXDIMS
+ with pytest.raises(ValueError):
+ np.array([nested], dtype="float64")
+
+ with pytest.raises(ValueError, match=".*would exceed the maximum"):
+ np.array([nested]) # user must ask for `object` explicitly
+
+ arr = np.array([nested], dtype=object)
+ assert arr.dtype == np.dtype("O")
+ assert arr.shape == (1,) * ncu.MAXDIMS
+ assert arr.item() is initial
+
+ def test_pathological_self_containing(self):
+ # Test that this also works for two nested sequences
+ l = []
+ l.append(l)
+ arr = np.array([l, l, l], dtype=object)
+ assert arr.shape == (3,) + (1,) * (ncu.MAXDIMS - 1)
+
+ # Also check a ragged case:
+ arr = np.array([l, [None], l], dtype=object)
+ assert arr.shape == (3, 1)
+
+ @pytest.mark.parametrize("arraylike", arraylikes())
+ def test_nested_arraylikes(self, arraylike):
+ # We try storing an array like into an array, but the array-like
+ # will have too many dimensions. This means the shape discovery
+ # decides that the array-like must be treated as an object (a special
+ # case of ragged discovery). The result will be an array with one
+ # dimension less than the maximum dimensions, and the array being
+ # assigned to it (which does work for object or if `float(arraylike)`
+ # works).
+ initial = arraylike(np.ones((1, 1)))
+
+ nested = initial
+ for i in range(ncu.MAXDIMS - 1):
+ nested = [nested]
+
+ with pytest.raises(ValueError, match=".*would exceed the maximum"):
+ # It will refuse to assign the array into
+ np.array(nested, dtype="float64")
+
+ # If this is object, we end up assigning a (1, 1) array into (1,)
+ # (due to running out of dimensions), this is currently supported but
+ # a special case which is not ideal.
+ arr = np.array(nested, dtype=object)
+ assert arr.shape == (1,) * ncu.MAXDIMS
+ assert arr.item() == np.array(initial).item()
+
+ @pytest.mark.parametrize("arraylike", arraylikes())
+ def test_uneven_depth_ragged(self, arraylike):
+ arr = np.arange(4).reshape((2, 2))
+ arr = arraylike(arr)
+
+ # Array is ragged in the second dimension already:
+ out = np.array([arr, [arr]], dtype=object)
+ assert out.shape == (2,)
+ assert out[0] is arr
+ assert type(out[1]) is list
+
+ # Array is ragged in the third dimension:
+ with pytest.raises(ValueError):
+ # This is a broadcast error during assignment, because
+ # the array shape would be (2, 2, 2) but `arr[0, 0] = arr` fails.
+ np.array([arr, [arr, arr]], dtype=object)
+
+ def test_empty_sequence(self):
+ arr = np.array([[], [1], [[1]]], dtype=object)
+ assert arr.shape == (3,)
+
+ # The empty sequence stops further dimension discovery, so the
+ # result shape will be (0,) which leads to an error during:
+ with pytest.raises(ValueError):
+ np.array([[], np.empty((0, 1))], dtype=object)
+
+ def test_array_of_different_depths(self):
+ # When multiple arrays (or array-likes) are included in a
+ # sequences and have different depth, we currently discover
+ # as many dimensions as they share. (see also gh-17224)
+ arr = np.zeros((3, 2))
+ mismatch_first_dim = np.zeros((1, 2))
+ mismatch_second_dim = np.zeros((3, 3))
+
+ dtype, shape = ncu._discover_array_parameters(
+ [arr, mismatch_second_dim], dtype=np.dtype("O"))
+ assert shape == (2, 3)
+
+ dtype, shape = ncu._discover_array_parameters(
+ [arr, mismatch_first_dim], dtype=np.dtype("O"))
+ assert shape == (2,)
+ # The second case is currently supported because the arrays
+ # can be stored as objects:
+ res = np.asarray([arr, mismatch_first_dim], dtype=np.dtype("O"))
+ assert res[0] is arr
+ assert res[1] is mismatch_first_dim
+
+
+class TestBadSequences:
+ # These are tests for bad objects passed into `np.array`, in general
+ # these have undefined behaviour. In the old code they partially worked
+ # when now they will fail. We could (and maybe should) create a copy
+ # of all sequences to be safe against bad-actors.
+
+ def test_growing_list(self):
+ # List to coerce, `mylist` will append to it during coercion
+ obj = []
+
+ class mylist(list):
+ def __len__(self):
+ obj.append([1, 2])
+ return super().__len__()
+
+ obj.append(mylist([1, 2]))
+
+ with pytest.raises(RuntimeError):
+ np.array(obj)
+
+ # Note: We do not test a shrinking list. These do very evil things
+ # and the only way to fix them would be to copy all sequences.
+ # (which may be a real option in the future).
+
+ def test_mutated_list(self):
+ # List to coerce, `mylist` will mutate the first element
+ obj = []
+
+ class mylist(list):
+ def __len__(self):
+ obj[0] = [2, 3] # replace with a different list.
+ return super().__len__()
+
+ obj.append([2, 3])
+ obj.append(mylist([1, 2]))
+ # Does not crash:
+ np.array(obj)
+
+ def test_replace_0d_array(self):
+ # List to coerce, `mylist` will mutate the first element
+ obj = []
+
+ class baditem:
+ def __len__(self):
+ obj[0][0] = 2 # replace with a different list.
+ raise ValueError("not actually a sequence!")
+
+ def __getitem__(self, _, /):
+ pass
+
+ # Runs into a corner case in the new code, the `array(2)` is cached
+ # so replacing it invalidates the cache.
+ obj.append([np.array(2), baditem()])
+ with pytest.raises(RuntimeError):
+ np.array(obj)
+
+
+class TestArrayLikes:
+ @pytest.mark.parametrize("arraylike", arraylikes())
+ def test_0d_object_special_case(self, arraylike):
+ arr = np.array(0.)
+ obj = arraylike(arr)
+ # A single array-like is always converted:
+ res = np.array(obj, dtype=object)
+ assert_array_equal(arr, res)
+
+ # But a single 0-D nested array-like never:
+ res = np.array([obj], dtype=object)
+ assert res[0] is obj
+
+ @pytest.mark.parametrize("arraylike", arraylikes())
+ @pytest.mark.parametrize("arr", [np.array(0.), np.arange(4)])
+ def test_object_assignment_special_case(self, arraylike, arr):
+ obj = arraylike(arr)
+ empty = np.arange(1, dtype=object)
+ empty[:] = [obj]
+ assert empty[0] is obj
+
+ def test_0d_generic_special_case(self):
+ class ArraySubclass(np.ndarray):
+ def __float__(self):
+ raise TypeError("e.g. quantities raise on this")
+
+ arr = np.array(0.)
+ obj = arr.view(ArraySubclass)
+ res = np.array(obj)
+ # The subclass is simply cast:
+ assert_array_equal(arr, res)
+
+ # If the 0-D array-like is included, __float__ is currently
+ # guaranteed to be used. We may want to change that, quantities
+ # and masked arrays half make use of this.
+ with pytest.raises(TypeError):
+ np.array([obj])
+
+ # The same holds for memoryview:
+ obj = memoryview(arr)
+ res = np.array(obj)
+ assert_array_equal(arr, res)
+ with pytest.raises(ValueError):
+ # The error type does not matter much here.
+ np.array([obj])
+
+ def test_arraylike_classes(self):
+ # The classes of array-likes should generally be acceptable to be
+ # stored inside a numpy (object) array. This tests all of the
+ # special attributes (since all are checked during coercion).
+ arr = np.array(np.int64)
+ assert arr[()] is np.int64
+ arr = np.array([np.int64])
+ assert arr[0] is np.int64
+
+ # This also works for properties/unbound methods:
+ class ArrayLike:
+ @property
+ def __array_interface__(self):
+ pass
+
+ @property
+ def __array_struct__(self):
+ pass
+
+ def __array__(self, dtype=None, copy=None):
+ pass
+
+ arr = np.array(ArrayLike)
+ assert arr[()] is ArrayLike
+ arr = np.array([ArrayLike])
+ assert arr[0] is ArrayLike
+
+ @pytest.mark.skipif(not IS_64BIT, reason="Needs 64bit platform")
+ def test_too_large_array_error_paths(self):
+ """Test the error paths, including for memory leaks"""
+ arr = np.array(0, dtype="uint8")
+ # Guarantees that a contiguous copy won't work:
+ arr = np.broadcast_to(arr, 2**62)
+
+ for i in range(5):
+ # repeat, to ensure caching cannot have an effect:
+ with pytest.raises(MemoryError):
+ np.array(arr)
+ with pytest.raises(MemoryError):
+ np.array([arr])
+
+ @pytest.mark.parametrize("attribute",
+ ["__array_interface__", "__array__", "__array_struct__"])
+ @pytest.mark.parametrize("error", [RecursionError, MemoryError])
+ def test_bad_array_like_attributes(self, attribute, error):
+ # RecursionError and MemoryError are considered fatal. All errors
+ # (except AttributeError) should probably be raised in the future,
+ # but shapely made use of it, so it will require a deprecation.
+
+ class BadInterface:
+ def __getattr__(self, attr):
+ if attr == attribute:
+ raise error
+ super().__getattr__(attr)
+
+ with pytest.raises(error):
+ np.array(BadInterface())
+
+ @pytest.mark.parametrize("error", [RecursionError, MemoryError])
+ def test_bad_array_like_bad_length(self, error):
+ # RecursionError and MemoryError are considered "critical" in
+ # sequences. We could expand this more generally though. (NumPy 1.20)
+ class BadSequence:
+ def __len__(self):
+ raise error
+
+ def __getitem__(self, _, /):
+ # must have getitem to be a Sequence
+ return 1
+
+ with pytest.raises(error):
+ np.array(BadSequence())
+
+ def test_array_interface_descr_optional(self):
+ # The descr should be optional regression test for gh-27249
+ arr = np.ones(10, dtype="V10")
+ iface = arr.__array_interface__
+ iface.pop("descr")
+
+ class MyClass:
+ __array_interface__ = iface
+
+ assert_array_equal(np.asarray(MyClass), arr)
+
+
+class TestAsArray:
+ """Test expected behaviors of ``asarray``."""
+
+ def test_dtype_identity(self):
+ """Confirm the intended behavior for *dtype* kwarg.
+
+ The result of ``asarray()`` should have the dtype provided through the
+ keyword argument, when used. This forces unique array handles to be
+ produced for unique np.dtype objects, but (for equivalent dtypes), the
+ underlying data (the base object) is shared with the original array
+ object.
+
+ Ref https://github.com/numpy/numpy/issues/1468
+ """
+ int_array = np.array([1, 2, 3], dtype='i')
+ assert np.asarray(int_array) is int_array
+
+ # The character code resolves to the singleton dtype object provided
+ # by the numpy package.
+ assert np.asarray(int_array, dtype='i') is int_array
+
+ # Derive a dtype from n.dtype('i'), but add a metadata object to force
+ # the dtype to be distinct.
+ unequal_type = np.dtype('i', metadata={'spam': True})
+ annotated_int_array = np.asarray(int_array, dtype=unequal_type)
+ assert annotated_int_array is not int_array
+ assert annotated_int_array.base is int_array
+ # Create an equivalent descriptor with a new and distinct dtype
+ # instance.
+ equivalent_requirement = np.dtype('i', metadata={'spam': True})
+ annotated_int_array_alt = np.asarray(annotated_int_array,
+ dtype=equivalent_requirement)
+ assert unequal_type == equivalent_requirement
+ assert unequal_type is not equivalent_requirement
+ assert annotated_int_array_alt is not annotated_int_array
+ assert annotated_int_array_alt.dtype is equivalent_requirement
+
+ # Check the same logic for a pair of C types whose equivalence may vary
+ # between computing environments.
+ # Find an equivalent pair.
+ integer_type_codes = ('i', 'l', 'q')
+ integer_dtypes = [np.dtype(code) for code in integer_type_codes]
+ typeA = None
+ typeB = None
+ for typeA, typeB in permutations(integer_dtypes, r=2):
+ if typeA == typeB:
+ assert typeA is not typeB
+ break
+ assert isinstance(typeA, np.dtype) and isinstance(typeB, np.dtype)
+
+ # These ``asarray()`` calls may produce a new view or a copy,
+ # but never the same object.
+ long_int_array = np.asarray(int_array, dtype='l')
+ long_long_int_array = np.asarray(int_array, dtype='q')
+ assert long_int_array is not int_array
+ assert long_long_int_array is not int_array
+ assert np.asarray(long_int_array, dtype='q') is not long_int_array
+ array_a = np.asarray(int_array, dtype=typeA)
+ assert typeA == typeB
+ assert typeA is not typeB
+ assert array_a.dtype is typeA
+ assert array_a is not np.asarray(array_a, dtype=typeB)
+ assert np.asarray(array_a, dtype=typeB).dtype is typeB
+ assert array_a is np.asarray(array_a, dtype=typeB).base
+
+
+class TestSpecialAttributeLookupFailure:
+ # An exception was raised while fetching the attribute
+
+ class WeirdArrayLike:
+ @property
+ def __array__(self, dtype=None, copy=None): # noqa: PLR0206
+ raise RuntimeError("oops!")
+
+ class WeirdArrayInterface:
+ @property
+ def __array_interface__(self):
+ raise RuntimeError("oops!")
+
+ def test_deprecated(self):
+ with pytest.raises(RuntimeError):
+ np.array(self.WeirdArrayLike())
+ with pytest.raises(RuntimeError):
+ np.array(self.WeirdArrayInterface())
+
+
+def test_subarray_from_array_construction():
+ # Arrays are more complex, since they "broadcast" on success:
+ arr = np.array([1, 2])
+
+ res = arr.astype("2i")
+ assert_array_equal(res, [[1, 1], [2, 2]])
+
+ res = np.array(arr, dtype="(2,)i")
+
+ assert_array_equal(res, [[1, 1], [2, 2]])
+
+ res = np.array([[(1,), (2,)], arr], dtype="2i")
+ assert_array_equal(res, [[[1, 1], [2, 2]], [[1, 1], [2, 2]]])
+
+ # Also try a multi-dimensional example:
+ arr = np.arange(5 * 2).reshape(5, 2)
+ expected = np.broadcast_to(arr[:, :, np.newaxis, np.newaxis], (5, 2, 2, 2))
+
+ res = arr.astype("(2,2)f")
+ assert_array_equal(res, expected)
+
+ res = np.array(arr, dtype="(2,2)f")
+ assert_array_equal(res, expected)
+
+
+def test_empty_string():
+ # Empty strings are unfortunately often converted to S1 and we need to
+ # make sure we are filling the S1 and not the (possibly) detected S0
+ # result. This should likely just return S0 and if not maybe the decision
+ # to return S1 should be moved.
+ res = np.array([""] * 10, dtype="S")
+ assert_array_equal(res, np.array("\0", "S1"))
+ assert res.dtype == "S1"
+
+ arr = np.array([""] * 10, dtype=object)
+
+ res = arr.astype("S")
+ assert_array_equal(res, b"")
+ assert res.dtype == "S1"
+
+ res = np.array(arr, dtype="S")
+ assert_array_equal(res, b"")
+ # TODO: This is arguably weird/wrong, but seems old:
+ assert res.dtype == f"S{np.dtype('O').itemsize}"
+
+ res = np.array([[""] * 10, arr], dtype="S")
+ assert_array_equal(res, b"")
+ assert res.shape == (2, 10)
+ assert res.dtype == "S1"
diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_array_interface.py b/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_array_interface.py
new file mode 100644
index 0000000..afb19f4
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_array_interface.py
@@ -0,0 +1,222 @@
+import sys
+import sysconfig
+
+import pytest
+
+import numpy as np
+from numpy.testing import IS_EDITABLE, IS_WASM, extbuild
+
+
+@pytest.fixture
+def get_module(tmp_path):
+ """ Some codes to generate data and manage temporary buffers use when
+ sharing with numpy via the array interface protocol.
+ """
+ if sys.platform.startswith('cygwin'):
+ pytest.skip('link fails on cygwin')
+ if IS_WASM:
+ pytest.skip("Can't build module inside Wasm")
+ if IS_EDITABLE:
+ pytest.skip("Can't build module for editable install")
+
+ prologue = '''
+ #include <Python.h>
+ #define NPY_NO_DEPRECATED_API NPY_1_7_API_VERSION
+ #include <numpy/arrayobject.h>
+ #include <stdio.h>
+ #include <math.h>
+
+ NPY_NO_EXPORT
+ void delete_array_struct(PyObject *cap) {
+
+ /* get the array interface structure */
+ PyArrayInterface *inter = (PyArrayInterface*)
+ PyCapsule_GetPointer(cap, NULL);
+
+ /* get the buffer by which data was shared */
+ double *ptr = (double*)PyCapsule_GetContext(cap);
+
+ /* for the purposes of the regression test set the elements
+ to nan */
+ for (npy_intp i = 0; i < inter->shape[0]; ++i)
+ ptr[i] = nan("");
+
+ /* free the shared buffer */
+ free(ptr);
+
+ /* free the array interface structure */
+ free(inter->shape);
+ free(inter);
+
+ fprintf(stderr, "delete_array_struct\\ncap = %ld inter = %ld"
+ " ptr = %ld\\n", (long)cap, (long)inter, (long)ptr);
+ }
+ '''
+
+ functions = [
+ ("new_array_struct", "METH_VARARGS", """
+
+ long long n_elem = 0;
+ double value = 0.0;
+
+ if (!PyArg_ParseTuple(args, "Ld", &n_elem, &value)) {
+ Py_RETURN_NONE;
+ }
+
+ /* allocate and initialize the data to share with numpy */
+ long long n_bytes = n_elem*sizeof(double);
+ double *data = (double*)malloc(n_bytes);
+
+ if (!data) {
+ PyErr_Format(PyExc_MemoryError,
+ "Failed to malloc %lld bytes", n_bytes);
+
+ Py_RETURN_NONE;
+ }
+
+ for (long long i = 0; i < n_elem; ++i) {
+ data[i] = value;
+ }
+
+ /* calculate the shape and stride */
+ int nd = 1;
+
+ npy_intp *ss = (npy_intp*)malloc(2*nd*sizeof(npy_intp));
+ npy_intp *shape = ss;
+ npy_intp *stride = ss + nd;
+
+ shape[0] = n_elem;
+ stride[0] = sizeof(double);
+
+ /* construct the array interface */
+ PyArrayInterface *inter = (PyArrayInterface*)
+ malloc(sizeof(PyArrayInterface));
+
+ memset(inter, 0, sizeof(PyArrayInterface));
+
+ inter->two = 2;
+ inter->nd = nd;
+ inter->typekind = 'f';
+ inter->itemsize = sizeof(double);
+ inter->shape = shape;
+ inter->strides = stride;
+ inter->data = data;
+ inter->flags = NPY_ARRAY_WRITEABLE | NPY_ARRAY_NOTSWAPPED |
+ NPY_ARRAY_ALIGNED | NPY_ARRAY_C_CONTIGUOUS;
+
+ /* package into a capsule */
+ PyObject *cap = PyCapsule_New(inter, NULL, delete_array_struct);
+
+ /* save the pointer to the data */
+ PyCapsule_SetContext(cap, data);
+
+ fprintf(stderr, "new_array_struct\\ncap = %ld inter = %ld"
+ " ptr = %ld\\n", (long)cap, (long)inter, (long)data);
+
+ return cap;
+ """)
+ ]
+
+ more_init = "import_array();"
+
+ try:
+ import array_interface_testing
+ return array_interface_testing
+ except ImportError:
+ pass
+
+ # if it does not exist, build and load it
+ if sysconfig.get_platform() == "win-arm64":
+ pytest.skip("Meson unable to find MSVC linker on win-arm64")
+ return extbuild.build_and_import_extension('array_interface_testing',
+ functions,
+ prologue=prologue,
+ include_dirs=[np.get_include()],
+ build_dir=tmp_path,
+ more_init=more_init)
+
+
+@pytest.mark.slow
+def test_cstruct(get_module):
+
+ class data_source:
+ """
+ This class is for testing the timing of the PyCapsule destructor
+ invoked when numpy release its reference to the shared data as part of
+ the numpy array interface protocol. If the PyCapsule destructor is
+ called early the shared data is freed and invalid memory accesses will
+ occur.
+ """
+
+ def __init__(self, size, value):
+ self.size = size
+ self.value = value
+
+ @property
+ def __array_struct__(self):
+ return get_module.new_array_struct(self.size, self.value)
+
+ # write to the same stream as the C code
+ stderr = sys.__stderr__
+
+ # used to validate the shared data.
+ expected_value = -3.1415
+ multiplier = -10000.0
+
+ # create some data to share with numpy via the array interface
+ # assign the data an expected value.
+ stderr.write(' ---- create an object to share data ---- \n')
+ buf = data_source(256, expected_value)
+ stderr.write(' ---- OK!\n\n')
+
+ # share the data
+ stderr.write(' ---- share data via the array interface protocol ---- \n')
+ arr = np.array(buf, copy=False)
+ stderr.write(f'arr.__array_interface___ = {str(arr.__array_interface__)}\n')
+ stderr.write(f'arr.base = {str(arr.base)}\n')
+ stderr.write(' ---- OK!\n\n')
+
+ # release the source of the shared data. this will not release the data
+ # that was shared with numpy, that is done in the PyCapsule destructor.
+ stderr.write(' ---- destroy the object that shared data ---- \n')
+ buf = None
+ stderr.write(' ---- OK!\n\n')
+
+ # check that we got the expected data. If the PyCapsule destructor we
+ # defined was prematurely called then this test will fail because our
+ # destructor sets the elements of the array to NaN before free'ing the
+ # buffer. Reading the values here may also cause a SEGV
+ assert np.allclose(arr, expected_value)
+
+ # read the data. If the PyCapsule destructor we defined was prematurely
+ # called then reading the values here may cause a SEGV and will be reported
+ # as invalid reads by valgrind
+ stderr.write(' ---- read shared data ---- \n')
+ stderr.write(f'arr = {str(arr)}\n')
+ stderr.write(' ---- OK!\n\n')
+
+ # write to the shared buffer. If the shared data was prematurely deleted
+ # this will may cause a SEGV and valgrind will report invalid writes
+ stderr.write(' ---- modify shared data ---- \n')
+ arr *= multiplier
+ expected_value *= multiplier
+ stderr.write(f'arr.__array_interface___ = {str(arr.__array_interface__)}\n')
+ stderr.write(f'arr.base = {str(arr.base)}\n')
+ stderr.write(' ---- OK!\n\n')
+
+ # read the data. If the shared data was prematurely deleted this
+ # will may cause a SEGV and valgrind will report invalid reads
+ stderr.write(' ---- read modified shared data ---- \n')
+ stderr.write(f'arr = {str(arr)}\n')
+ stderr.write(' ---- OK!\n\n')
+
+ # check that we got the expected data. If the PyCapsule destructor we
+ # defined was prematurely called then this test will fail because our
+ # destructor sets the elements of the array to NaN before free'ing the
+ # buffer. Reading the values here may also cause a SEGV
+ assert np.allclose(arr, expected_value)
+
+ # free the shared data, the PyCapsule destructor should run here
+ stderr.write(' ---- free shared data ---- \n')
+ arr = None
+ stderr.write(' ---- OK!\n\n')
diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_arraymethod.py b/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_arraymethod.py
new file mode 100644
index 0000000..d8baef7
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_arraymethod.py
@@ -0,0 +1,84 @@
+"""
+This file tests the generic aspects of ArrayMethod. At the time of writing
+this is private API, but when added, public API may be added here.
+"""
+
+import types
+from typing import Any
+
+import pytest
+from numpy._core._multiarray_umath import _get_castingimpl as get_castingimpl
+
+import numpy as np
+
+
+class TestResolveDescriptors:
+ # Test mainly error paths of the resolve_descriptors function,
+ # note that the `casting_unittests` tests exercise this non-error paths.
+
+ # Casting implementations are the main/only current user:
+ method = get_castingimpl(type(np.dtype("d")), type(np.dtype("f")))
+
+ @pytest.mark.parametrize("args", [
+ (True,), # Not a tuple.
+ ((None,)), # Too few elements
+ ((None, None, None),), # Too many
+ ((None, None),), # Input dtype is None, which is invalid.
+ ((np.dtype("d"), True),), # Output dtype is not a dtype
+ ((np.dtype("f"), None),), # Input dtype does not match method
+ ])
+ def test_invalid_arguments(self, args):
+ with pytest.raises(TypeError):
+ self.method._resolve_descriptors(*args)
+
+
+class TestSimpleStridedCall:
+ # Test mainly error paths of the resolve_descriptors function,
+ # note that the `casting_unittests` tests exercise this non-error paths.
+
+ # Casting implementations are the main/only current user:
+ method = get_castingimpl(type(np.dtype("d")), type(np.dtype("f")))
+
+ @pytest.mark.parametrize(["args", "error"], [
+ ((True,), TypeError), # Not a tuple
+ (((None,),), TypeError), # Too few elements
+ ((None, None), TypeError), # Inputs are not arrays.
+ (((None, None, None),), TypeError), # Too many
+ (((np.arange(3), np.arange(3)),), TypeError), # Incorrect dtypes
+ (((np.ones(3, dtype=">d"), np.ones(3, dtype="<f")),),
+ TypeError), # Does not support byte-swapping
+ (((np.ones((2, 2), dtype="d"), np.ones((2, 2), dtype="f")),),
+ ValueError), # not 1-D
+ (((np.ones(3, dtype="d"), np.ones(4, dtype="f")),),
+ ValueError), # different length
+ (((np.frombuffer(b"\0x00" * 3 * 2, dtype="d"),
+ np.frombuffer(b"\0x00" * 3, dtype="f")),),
+ ValueError), # output not writeable
+ ])
+ def test_invalid_arguments(self, args, error):
+ # This is private API, which may be modified freely
+ with pytest.raises(error):
+ self.method._simple_strided_call(*args)
+
+
+@pytest.mark.parametrize(
+ "cls", [
+ np.ndarray, np.recarray, np.char.chararray, np.matrix, np.memmap
+ ]
+)
+class TestClassGetItem:
+ def test_class_getitem(self, cls: type[np.ndarray]) -> None:
+ """Test `ndarray.__class_getitem__`."""
+ alias = cls[Any, Any]
+ assert isinstance(alias, types.GenericAlias)
+ assert alias.__origin__ is cls
+
+ @pytest.mark.parametrize("arg_len", range(4))
+ def test_subscript_tup(self, cls: type[np.ndarray], arg_len: int) -> None:
+ arg_tup = (Any,) * arg_len
+ if arg_len in (1, 2):
+ assert cls[arg_tup]
+ else:
+ match = f"Too {'few' if arg_len == 0 else 'many'} arguments"
+ with pytest.raises(TypeError, match=match):
+ cls[arg_tup]
diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_arrayobject.py b/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_arrayobject.py
new file mode 100644
index 0000000..ffa1ba0
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_arrayobject.py
@@ -0,0 +1,75 @@
+import pytest
+
+import numpy as np
+from numpy.testing import assert_array_equal
+
+
+def test_matrix_transpose_raises_error_for_1d():
+ msg = "matrix transpose with ndim < 2 is undefined"
+ arr = np.arange(48)
+ with pytest.raises(ValueError, match=msg):
+ arr.mT
+
+
+def test_matrix_transpose_equals_transpose_2d():
+ arr = np.arange(48).reshape((6, 8))
+ assert_array_equal(arr.T, arr.mT)
+
+
+ARRAY_SHAPES_TO_TEST = (
+ (5, 2),
+ (5, 2, 3),
+ (5, 2, 3, 4),
+)
+
+
+@pytest.mark.parametrize("shape", ARRAY_SHAPES_TO_TEST)
+def test_matrix_transpose_equals_swapaxes(shape):
+ num_of_axes = len(shape)
+ vec = np.arange(shape[-1])
+ arr = np.broadcast_to(vec, shape)
+ tgt = np.swapaxes(arr, num_of_axes - 2, num_of_axes - 1)
+ mT = arr.mT
+ assert_array_equal(tgt, mT)
+
+
+class MyArr(np.ndarray):
+ def __array_wrap__(self, arr, context=None, return_scalar=None):
+ return super().__array_wrap__(arr, context, return_scalar)
+
+
+class MyArrNoWrap(np.ndarray):
+ pass
+
+
+@pytest.mark.parametrize("subclass_self", [np.ndarray, MyArr, MyArrNoWrap])
+@pytest.mark.parametrize("subclass_arr", [np.ndarray, MyArr, MyArrNoWrap])
+def test_array_wrap(subclass_self, subclass_arr):
+ # NumPy should allow `__array_wrap__` to be called on arrays, it's logic
+ # is designed in a way that:
+ #
+ # * Subclasses never return scalars by default (to preserve their
+ # information). They can choose to if they wish.
+ # * NumPy returns scalars, if `return_scalar` is passed as True to allow
+ # manual calls to `arr.__array_wrap__` to do the right thing.
+ # * The type of the input should be ignored (it should be a base-class
+ # array, but I am not sure this is guaranteed).
+
+ arr = np.arange(3).view(subclass_self)
+
+ arr0d = np.array(3, dtype=np.int8).view(subclass_arr)
+ # With third argument True, ndarray allows "decay" to scalar.
+ # (I don't think NumPy would pass `None`, but it seems clear to support)
+ if subclass_self is np.ndarray:
+ assert type(arr.__array_wrap__(arr0d, None, True)) is np.int8
+ else:
+ assert type(arr.__array_wrap__(arr0d, None, True)) is type(arr)
+
+ # Otherwise, result should be viewed as the subclass
+ assert type(arr.__array_wrap__(arr0d)) is type(arr)
+ assert type(arr.__array_wrap__(arr0d, None, None)) is type(arr)
+ assert type(arr.__array_wrap__(arr0d, None, False)) is type(arr)
+
+ # Non 0-D array can't be converted to scalar, so we ignore that
+ arr1d = np.array([3], dtype=np.int8).view(subclass_arr)
+ assert type(arr.__array_wrap__(arr1d, None, True)) is type(arr)
diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_arrayprint.py b/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_arrayprint.py
new file mode 100644
index 0000000..1fd4ac2
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_arrayprint.py
@@ -0,0 +1,1328 @@
+import gc
+import sys
+import textwrap
+
+import pytest
+from hypothesis import given
+from hypothesis.extra import numpy as hynp
+
+import numpy as np
+from numpy._core.arrayprint import _typelessdata
+from numpy.testing import (
+ HAS_REFCOUNT,
+ IS_WASM,
+ assert_,
+ assert_equal,
+ assert_raises,
+ assert_raises_regex,
+ assert_warns,
+)
+from numpy.testing._private.utils import run_threaded
+
+
+class TestArrayRepr:
+ def test_nan_inf(self):
+ x = np.array([np.nan, np.inf])
+ assert_equal(repr(x), 'array([nan, inf])')
+
+ def test_subclass(self):
+ class sub(np.ndarray):
+ pass
+
+ # one dimensional
+ x1d = np.array([1, 2]).view(sub)
+ assert_equal(repr(x1d), 'sub([1, 2])')
+
+ # two dimensional
+ x2d = np.array([[1, 2], [3, 4]]).view(sub)
+ assert_equal(repr(x2d),
+ 'sub([[1, 2],\n'
+ ' [3, 4]])')
+
+ # two dimensional with flexible dtype
+ xstruct = np.ones((2, 2), dtype=[('a', '<i4')]).view(sub)
+ assert_equal(repr(xstruct),
+ "sub([[(1,), (1,)],\n"
+ " [(1,), (1,)]], dtype=[('a', '<i4')])"
+ )
+
+ @pytest.mark.xfail(reason="See gh-10544")
+ def test_object_subclass(self):
+ class sub(np.ndarray):
+ def __new__(cls, inp):
+ obj = np.asarray(inp).view(cls)
+ return obj
+
+ def __getitem__(self, ind):
+ ret = super().__getitem__(ind)
+ return sub(ret)
+
+ # test that object + subclass is OK:
+ x = sub([None, None])
+ assert_equal(repr(x), 'sub([None, None], dtype=object)')
+ assert_equal(str(x), '[None None]')
+
+ x = sub([None, sub([None, None])])
+ assert_equal(repr(x),
+ 'sub([None, sub([None, None], dtype=object)], dtype=object)')
+ assert_equal(str(x), '[None sub([None, None], dtype=object)]')
+
+ def test_0d_object_subclass(self):
+ # make sure that subclasses which return 0ds instead
+ # of scalars don't cause infinite recursion in str
+ class sub(np.ndarray):
+ def __new__(cls, inp):
+ obj = np.asarray(inp).view(cls)
+ return obj
+
+ def __getitem__(self, ind):
+ ret = super().__getitem__(ind)
+ return sub(ret)
+
+ x = sub(1)
+ assert_equal(repr(x), 'sub(1)')
+ assert_equal(str(x), '1')
+
+ x = sub([1, 1])
+ assert_equal(repr(x), 'sub([1, 1])')
+ assert_equal(str(x), '[1 1]')
+
+ # check it works properly with object arrays too
+ x = sub(None)
+ assert_equal(repr(x), 'sub(None, dtype=object)')
+ assert_equal(str(x), 'None')
+
+ # plus recursive object arrays (even depth > 1)
+ y = sub(None)
+ x[()] = y
+ y[()] = x
+ assert_equal(repr(x),
+ 'sub(sub(sub(..., dtype=object), dtype=object), dtype=object)')
+ assert_equal(str(x), '...')
+ x[()] = 0 # resolve circular references for garbage collector
+
+ # nested 0d-subclass-object
+ x = sub(None)
+ x[()] = sub(None)
+ assert_equal(repr(x), 'sub(sub(None, dtype=object), dtype=object)')
+ assert_equal(str(x), 'None')
+
+ # gh-10663
+ class DuckCounter(np.ndarray):
+ def __getitem__(self, item):
+ result = super().__getitem__(item)
+ if not isinstance(result, DuckCounter):
+ result = result[...].view(DuckCounter)
+ return result
+
+ def to_string(self):
+ return {0: 'zero', 1: 'one', 2: 'two'}.get(self.item(), 'many')
+
+ def __str__(self):
+ if self.shape == ():
+ return self.to_string()
+ else:
+ fmt = {'all': lambda x: x.to_string()}
+ return np.array2string(self, formatter=fmt)
+
+ dc = np.arange(5).view(DuckCounter)
+ assert_equal(str(dc), "[zero one two many many]")
+ assert_equal(str(dc[0]), "zero")
+
+ def test_self_containing(self):
+ arr0d = np.array(None)
+ arr0d[()] = arr0d
+ assert_equal(repr(arr0d),
+ 'array(array(..., dtype=object), dtype=object)')
+ arr0d[()] = 0 # resolve recursion for garbage collector
+
+ arr1d = np.array([None, None])
+ arr1d[1] = arr1d
+ assert_equal(repr(arr1d),
+ 'array([None, array(..., dtype=object)], dtype=object)')
+ arr1d[1] = 0 # resolve recursion for garbage collector
+
+ first = np.array(None)
+ second = np.array(None)
+ first[()] = second
+ second[()] = first
+ assert_equal(repr(first),
+ 'array(array(array(..., dtype=object), dtype=object), dtype=object)')
+ first[()] = 0 # resolve circular references for garbage collector
+
+ def test_containing_list(self):
+ # printing square brackets directly would be ambiguous
+ arr1d = np.array([None, None])
+ arr1d[0] = [1, 2]
+ arr1d[1] = [3]
+ assert_equal(repr(arr1d),
+ 'array([list([1, 2]), list([3])], dtype=object)')
+
+ def test_void_scalar_recursion(self):
+ # gh-9345
+ repr(np.void(b'test')) # RecursionError ?
+
+ def test_fieldless_structured(self):
+ # gh-10366
+ no_fields = np.dtype([])
+ arr_no_fields = np.empty(4, dtype=no_fields)
+ assert_equal(repr(arr_no_fields), 'array([(), (), (), ()], dtype=[])')
+
+
+class TestComplexArray:
+ def test_str(self):
+ rvals = [0, 1, -1, np.inf, -np.inf, np.nan]
+ cvals = [complex(rp, ip) for rp in rvals for ip in rvals]
+ dtypes = [np.complex64, np.cdouble, np.clongdouble]
+ actual = [str(np.array([c], dt)) for c in cvals for dt in dtypes]
+ wanted = [
+ '[0.+0.j]', '[0.+0.j]', '[0.+0.j]',
+ '[0.+1.j]', '[0.+1.j]', '[0.+1.j]',
+ '[0.-1.j]', '[0.-1.j]', '[0.-1.j]',
+ '[0.+infj]', '[0.+infj]', '[0.+infj]',
+ '[0.-infj]', '[0.-infj]', '[0.-infj]',
+ '[0.+nanj]', '[0.+nanj]', '[0.+nanj]',
+ '[1.+0.j]', '[1.+0.j]', '[1.+0.j]',
+ '[1.+1.j]', '[1.+1.j]', '[1.+1.j]',
+ '[1.-1.j]', '[1.-1.j]', '[1.-1.j]',
+ '[1.+infj]', '[1.+infj]', '[1.+infj]',
+ '[1.-infj]', '[1.-infj]', '[1.-infj]',
+ '[1.+nanj]', '[1.+nanj]', '[1.+nanj]',
+ '[-1.+0.j]', '[-1.+0.j]', '[-1.+0.j]',
+ '[-1.+1.j]', '[-1.+1.j]', '[-1.+1.j]',
+ '[-1.-1.j]', '[-1.-1.j]', '[-1.-1.j]',
+ '[-1.+infj]', '[-1.+infj]', '[-1.+infj]',
+ '[-1.-infj]', '[-1.-infj]', '[-1.-infj]',
+ '[-1.+nanj]', '[-1.+nanj]', '[-1.+nanj]',
+ '[inf+0.j]', '[inf+0.j]', '[inf+0.j]',
+ '[inf+1.j]', '[inf+1.j]', '[inf+1.j]',
+ '[inf-1.j]', '[inf-1.j]', '[inf-1.j]',
+ '[inf+infj]', '[inf+infj]', '[inf+infj]',
+ '[inf-infj]', '[inf-infj]', '[inf-infj]',
+ '[inf+nanj]', '[inf+nanj]', '[inf+nanj]',
+ '[-inf+0.j]', '[-inf+0.j]', '[-inf+0.j]',
+ '[-inf+1.j]', '[-inf+1.j]', '[-inf+1.j]',
+ '[-inf-1.j]', '[-inf-1.j]', '[-inf-1.j]',
+ '[-inf+infj]', '[-inf+infj]', '[-inf+infj]',
+ '[-inf-infj]', '[-inf-infj]', '[-inf-infj]',
+ '[-inf+nanj]', '[-inf+nanj]', '[-inf+nanj]',
+ '[nan+0.j]', '[nan+0.j]', '[nan+0.j]',
+ '[nan+1.j]', '[nan+1.j]', '[nan+1.j]',
+ '[nan-1.j]', '[nan-1.j]', '[nan-1.j]',
+ '[nan+infj]', '[nan+infj]', '[nan+infj]',
+ '[nan-infj]', '[nan-infj]', '[nan-infj]',
+ '[nan+nanj]', '[nan+nanj]', '[nan+nanj]']
+
+ for res, val in zip(actual, wanted):
+ assert_equal(res, val)
+
+class TestArray2String:
+ def test_basic(self):
+ """Basic test of array2string."""
+ a = np.arange(3)
+ assert_(np.array2string(a) == '[0 1 2]')
+ assert_(np.array2string(a, max_line_width=4, legacy='1.13') == '[0 1\n 2]')
+ assert_(np.array2string(a, max_line_width=4) == '[0\n 1\n 2]')
+
+ def test_unexpected_kwarg(self):
+ # ensure than an appropriate TypeError
+ # is raised when array2string receives
+ # an unexpected kwarg
+
+ with assert_raises_regex(TypeError, 'nonsense'):
+ np.array2string(np.array([1, 2, 3]),
+ nonsense=None)
+
+ def test_format_function(self):
+ """Test custom format function for each element in array."""
+ def _format_function(x):
+ if np.abs(x) < 1:
+ return '.'
+ elif np.abs(x) < 2:
+ return 'o'
+ else:
+ return 'O'
+
+ x = np.arange(3)
+ x_hex = "[0x0 0x1 0x2]"
+ x_oct = "[0o0 0o1 0o2]"
+ assert_(np.array2string(x, formatter={'all': _format_function}) ==
+ "[. o O]")
+ assert_(np.array2string(x, formatter={'int_kind': _format_function}) ==
+ "[. o O]")
+ assert_(np.array2string(x, formatter={'all': lambda x: f"{x:.4f}"}) ==
+ "[0.0000 1.0000 2.0000]")
+ assert_equal(np.array2string(x, formatter={'int': hex}),
+ x_hex)
+ assert_equal(np.array2string(x, formatter={'int': oct}),
+ x_oct)
+
+ x = np.arange(3.)
+ assert_(np.array2string(x, formatter={'float_kind': lambda x: f"{x:.2f}"}) ==
+ "[0.00 1.00 2.00]")
+ assert_(np.array2string(x, formatter={'float': lambda x: f"{x:.2f}"}) ==
+ "[0.00 1.00 2.00]")
+
+ s = np.array(['abc', 'def'])
+ assert_(np.array2string(s, formatter={'numpystr': lambda s: s * 2}) ==
+ '[abcabc defdef]')
+
+ def test_structure_format_mixed(self):
+ dt = np.dtype([('name', np.str_, 16), ('grades', np.float64, (2,))])
+ x = np.array([('Sarah', (8.0, 7.0)), ('John', (6.0, 7.0))], dtype=dt)
+ assert_equal(np.array2string(x),
+ "[('Sarah', [8., 7.]) ('John', [6., 7.])]")
+
+ np.set_printoptions(legacy='1.13')
+ try:
+ # for issue #5692
+ A = np.zeros(shape=10, dtype=[("A", "M8[s]")])
+ A[5:].fill(np.datetime64('NaT'))
+ assert_equal(
+ np.array2string(A),
+ textwrap.dedent("""\
+ [('1970-01-01T00:00:00',) ('1970-01-01T00:00:00',) ('1970-01-01T00:00:00',)
+ ('1970-01-01T00:00:00',) ('1970-01-01T00:00:00',) ('NaT',) ('NaT',)
+ ('NaT',) ('NaT',) ('NaT',)]""")
+ )
+ finally:
+ np.set_printoptions(legacy=False)
+
+ # same again, but with non-legacy behavior
+ assert_equal(
+ np.array2string(A),
+ textwrap.dedent("""\
+ [('1970-01-01T00:00:00',) ('1970-01-01T00:00:00',)
+ ('1970-01-01T00:00:00',) ('1970-01-01T00:00:00',)
+ ('1970-01-01T00:00:00',) ( 'NaT',)
+ ( 'NaT',) ( 'NaT',)
+ ( 'NaT',) ( 'NaT',)]""")
+ )
+
+ # and again, with timedeltas
+ A = np.full(10, 123456, dtype=[("A", "m8[s]")])
+ A[5:].fill(np.datetime64('NaT'))
+ assert_equal(
+ np.array2string(A),
+ textwrap.dedent("""\
+ [(123456,) (123456,) (123456,) (123456,) (123456,) ( 'NaT',) ( 'NaT',)
+ ( 'NaT',) ( 'NaT',) ( 'NaT',)]""")
+ )
+
+ def test_structure_format_int(self):
+ # See #8160
+ struct_int = np.array([([1, -1],), ([123, 1],)],
+ dtype=[('B', 'i4', 2)])
+ assert_equal(np.array2string(struct_int),
+ "[([ 1, -1],) ([123, 1],)]")
+ struct_2dint = np.array([([[0, 1], [2, 3]],), ([[12, 0], [0, 0]],)],
+ dtype=[('B', 'i4', (2, 2))])
+ assert_equal(np.array2string(struct_2dint),
+ "[([[ 0, 1], [ 2, 3]],) ([[12, 0], [ 0, 0]],)]")
+
+ def test_structure_format_float(self):
+ # See #8172
+ array_scalar = np.array(
+ (1., 2.1234567890123456789, 3.), dtype=('f8,f8,f8'))
+ assert_equal(np.array2string(array_scalar), "(1., 2.12345679, 3.)")
+
+ def test_unstructured_void_repr(self):
+ a = np.array([27, 91, 50, 75, 7, 65, 10, 8, 27, 91, 51, 49, 109, 82, 101, 100],
+ dtype='u1').view('V8')
+ assert_equal(repr(a[0]),
+ r"np.void(b'\x1B\x5B\x32\x4B\x07\x41\x0A\x08')")
+ assert_equal(str(a[0]), r"b'\x1B\x5B\x32\x4B\x07\x41\x0A\x08'")
+ assert_equal(repr(a),
+ r"array([b'\x1B\x5B\x32\x4B\x07\x41\x0A\x08',"
+ "\n"
+ r" b'\x1B\x5B\x33\x31\x6D\x52\x65\x64'], dtype='|V8')")
+
+ assert_equal(eval(repr(a), vars(np)), a)
+ assert_equal(eval(repr(a[0]), {'np': np}), a[0])
+
+ def test_edgeitems_kwarg(self):
+ # previously the global print options would be taken over the kwarg
+ arr = np.zeros(3, int)
+ assert_equal(
+ np.array2string(arr, edgeitems=1, threshold=0),
+ "[0 ... 0]"
+ )
+
+ def test_summarize_1d(self):
+ A = np.arange(1001)
+ strA = '[ 0 1 2 ... 998 999 1000]'
+ assert_equal(str(A), strA)
+
+ reprA = 'array([ 0, 1, 2, ..., 998, 999, 1000])'
+ try:
+ np.set_printoptions(legacy='2.1')
+ assert_equal(repr(A), reprA)
+ finally:
+ np.set_printoptions(legacy=False)
+
+ assert_equal(repr(A), reprA.replace(')', ', shape=(1001,))'))
+
+ def test_summarize_2d(self):
+ A = np.arange(1002).reshape(2, 501)
+ strA = '[[ 0 1 2 ... 498 499 500]\n' \
+ ' [ 501 502 503 ... 999 1000 1001]]'
+ assert_equal(str(A), strA)
+
+ reprA = 'array([[ 0, 1, 2, ..., 498, 499, 500],\n' \
+ ' [ 501, 502, 503, ..., 999, 1000, 1001]])'
+ try:
+ np.set_printoptions(legacy='2.1')
+ assert_equal(repr(A), reprA)
+ finally:
+ np.set_printoptions(legacy=False)
+
+ assert_equal(repr(A), reprA.replace(')', ', shape=(2, 501))'))
+
+ def test_summarize_2d_dtype(self):
+ A = np.arange(1002, dtype='i2').reshape(2, 501)
+ strA = '[[ 0 1 2 ... 498 499 500]\n' \
+ ' [ 501 502 503 ... 999 1000 1001]]'
+ assert_equal(str(A), strA)
+
+ reprA = ('array([[ 0, 1, 2, ..., 498, 499, 500],\n'
+ ' [ 501, 502, 503, ..., 999, 1000, 1001]],\n'
+ ' shape=(2, 501), dtype=int16)')
+ assert_equal(repr(A), reprA)
+
+ def test_summarize_structure(self):
+ A = (np.arange(2002, dtype="<i8").reshape(2, 1001)
+ .view([('i', "<i8", (1001,))]))
+ strA = ("[[([ 0, 1, 2, ..., 998, 999, 1000],)]\n"
+ " [([1001, 1002, 1003, ..., 1999, 2000, 2001],)]]")
+ assert_equal(str(A), strA)
+
+ reprA = ("array([[([ 0, 1, 2, ..., 998, 999, 1000],)],\n"
+ " [([1001, 1002, 1003, ..., 1999, 2000, 2001],)]],\n"
+ " dtype=[('i', '<i8', (1001,))])")
+ assert_equal(repr(A), reprA)
+
+ B = np.ones(2002, dtype=">i8").view([('i', ">i8", (2, 1001))])
+ strB = "[([[1, 1, 1, ..., 1, 1, 1], [1, 1, 1, ..., 1, 1, 1]],)]"
+ assert_equal(str(B), strB)
+
+ reprB = (
+ "array([([[1, 1, 1, ..., 1, 1, 1], [1, 1, 1, ..., 1, 1, 1]],)],\n"
+ " dtype=[('i', '>i8', (2, 1001))])"
+ )
+ assert_equal(repr(B), reprB)
+
+ C = (np.arange(22, dtype="<i8").reshape(2, 11)
+ .view([('i1', "<i8"), ('i10', "<i8", (10,))]))
+ strC = "[[( 0, [ 1, ..., 10])]\n [(11, [12, ..., 21])]]"
+ assert_equal(np.array2string(C, threshold=1, edgeitems=1), strC)
+
+ def test_linewidth(self):
+ a = np.full(6, 1)
+
+ def make_str(a, width, **kw):
+ return np.array2string(a, separator="", max_line_width=width, **kw)
+
+ assert_equal(make_str(a, 8, legacy='1.13'), '[111111]')
+ assert_equal(make_str(a, 7, legacy='1.13'), '[111111]')
+ assert_equal(make_str(a, 5, legacy='1.13'), '[1111\n'
+ ' 11]')
+
+ assert_equal(make_str(a, 8), '[111111]')
+ assert_equal(make_str(a, 7), '[11111\n'
+ ' 1]')
+ assert_equal(make_str(a, 5), '[111\n'
+ ' 111]')
+
+ b = a[None, None, :]
+
+ assert_equal(make_str(b, 12, legacy='1.13'), '[[[111111]]]')
+ assert_equal(make_str(b, 9, legacy='1.13'), '[[[111111]]]')
+ assert_equal(make_str(b, 8, legacy='1.13'), '[[[11111\n'
+ ' 1]]]')
+
+ assert_equal(make_str(b, 12), '[[[111111]]]')
+ assert_equal(make_str(b, 9), '[[[111\n'
+ ' 111]]]')
+ assert_equal(make_str(b, 8), '[[[11\n'
+ ' 11\n'
+ ' 11]]]')
+
+ def test_wide_element(self):
+ a = np.array(['xxxxx'])
+ assert_equal(
+ np.array2string(a, max_line_width=5),
+ "['xxxxx']"
+ )
+ assert_equal(
+ np.array2string(a, max_line_width=5, legacy='1.13'),
+ "[ 'xxxxx']"
+ )
+
+ def test_multiline_repr(self):
+ class MultiLine:
+ def __repr__(self):
+ return "Line 1\nLine 2"
+
+ a = np.array([[None, MultiLine()], [MultiLine(), None]])
+
+ assert_equal(
+ np.array2string(a),
+ '[[None Line 1\n'
+ ' Line 2]\n'
+ ' [Line 1\n'
+ ' Line 2 None]]'
+ )
+ assert_equal(
+ np.array2string(a, max_line_width=5),
+ '[[None\n'
+ ' Line 1\n'
+ ' Line 2]\n'
+ ' [Line 1\n'
+ ' Line 2\n'
+ ' None]]'
+ )
+ assert_equal(
+ repr(a),
+ 'array([[None, Line 1\n'
+ ' Line 2],\n'
+ ' [Line 1\n'
+ ' Line 2, None]], dtype=object)'
+ )
+
+ class MultiLineLong:
+ def __repr__(self):
+ return "Line 1\nLooooooooooongestLine2\nLongerLine 3"
+
+ a = np.array([[None, MultiLineLong()], [MultiLineLong(), None]])
+ assert_equal(
+ repr(a),
+ 'array([[None, Line 1\n'
+ ' LooooooooooongestLine2\n'
+ ' LongerLine 3 ],\n'
+ ' [Line 1\n'
+ ' LooooooooooongestLine2\n'
+ ' LongerLine 3 , None]], dtype=object)'
+ )
+ assert_equal(
+ np.array_repr(a, 20),
+ 'array([[None,\n'
+ ' Line 1\n'
+ ' LooooooooooongestLine2\n'
+ ' LongerLine 3 ],\n'
+ ' [Line 1\n'
+ ' LooooooooooongestLine2\n'
+ ' LongerLine 3 ,\n'
+ ' None]],\n'
+ ' dtype=object)'
+ )
+
+ def test_nested_array_repr(self):
+ a = np.empty((2, 2), dtype=object)
+ a[0, 0] = np.eye(2)
+ a[0, 1] = np.eye(3)
+ a[1, 0] = None
+ a[1, 1] = np.ones((3, 1))
+ assert_equal(
+ repr(a),
+ 'array([[array([[1., 0.],\n'
+ ' [0., 1.]]), array([[1., 0., 0.],\n'
+ ' [0., 1., 0.],\n'
+ ' [0., 0., 1.]])],\n'
+ ' [None, array([[1.],\n'
+ ' [1.],\n'
+ ' [1.]])]], dtype=object)'
+ )
+
+ @given(hynp.from_dtype(np.dtype("U")))
+ def test_any_text(self, text):
+ # This test checks that, given any value that can be represented in an
+ # array of dtype("U") (i.e. unicode string), ...
+ a = np.array([text, text, text])
+ # casting a list of them to an array does not e.g. truncate the value
+ assert_equal(a[0], text)
+ text = text.item() # use raw python strings for repr below
+ # and that np.array2string puts a newline in the expected location
+ expected_repr = f"[{text!r} {text!r}\n {text!r}]"
+ result = np.array2string(a, max_line_width=len(repr(text)) * 2 + 3)
+ assert_equal(result, expected_repr)
+
+ @pytest.mark.skipif(not HAS_REFCOUNT, reason="Python lacks refcounts")
+ def test_refcount(self):
+ # make sure we do not hold references to the array due to a recursive
+ # closure (gh-10620)
+ gc.disable()
+ a = np.arange(2)
+ r1 = sys.getrefcount(a)
+ np.array2string(a)
+ np.array2string(a)
+ r2 = sys.getrefcount(a)
+ gc.collect()
+ gc.enable()
+ assert_(r1 == r2)
+
+ def test_with_sign(self):
+ # mixed negative and positive value array
+ a = np.array([-2, 0, 3])
+ assert_equal(
+ np.array2string(a, sign='+'),
+ '[-2 +0 +3]'
+ )
+ assert_equal(
+ np.array2string(a, sign='-'),
+ '[-2 0 3]'
+ )
+ assert_equal(
+ np.array2string(a, sign=' '),
+ '[-2 0 3]'
+ )
+ # all non-negative array
+ a = np.array([2, 0, 3])
+ assert_equal(
+ np.array2string(a, sign='+'),
+ '[+2 +0 +3]'
+ )
+ assert_equal(
+ np.array2string(a, sign='-'),
+ '[2 0 3]'
+ )
+ assert_equal(
+ np.array2string(a, sign=' '),
+ '[ 2 0 3]'
+ )
+ # all negative array
+ a = np.array([-2, -1, -3])
+ assert_equal(
+ np.array2string(a, sign='+'),
+ '[-2 -1 -3]'
+ )
+ assert_equal(
+ np.array2string(a, sign='-'),
+ '[-2 -1 -3]'
+ )
+ assert_equal(
+ np.array2string(a, sign=' '),
+ '[-2 -1 -3]'
+ )
+ # 2d array mixed negative and positive
+ a = np.array([[10, -1, 1, 1], [10, 10, 10, 10]])
+ assert_equal(
+ np.array2string(a, sign='+'),
+ '[[+10 -1 +1 +1]\n [+10 +10 +10 +10]]'
+ )
+ assert_equal(
+ np.array2string(a, sign='-'),
+ '[[10 -1 1 1]\n [10 10 10 10]]'
+ )
+ assert_equal(
+ np.array2string(a, sign=' '),
+ '[[10 -1 1 1]\n [10 10 10 10]]'
+ )
+ # 2d array all positive
+ a = np.array([[10, 0, 1, 1], [10, 10, 10, 10]])
+ assert_equal(
+ np.array2string(a, sign='+'),
+ '[[+10 +0 +1 +1]\n [+10 +10 +10 +10]]'
+ )
+ assert_equal(
+ np.array2string(a, sign='-'),
+ '[[10 0 1 1]\n [10 10 10 10]]'
+ )
+ assert_equal(
+ np.array2string(a, sign=' '),
+ '[[ 10 0 1 1]\n [ 10 10 10 10]]'
+ )
+ # 2d array all negative
+ a = np.array([[-10, -1, -1, -1], [-10, -10, -10, -10]])
+ assert_equal(
+ np.array2string(a, sign='+'),
+ '[[-10 -1 -1 -1]\n [-10 -10 -10 -10]]'
+ )
+ assert_equal(
+ np.array2string(a, sign='-'),
+ '[[-10 -1 -1 -1]\n [-10 -10 -10 -10]]'
+ )
+ assert_equal(
+ np.array2string(a, sign=' '),
+ '[[-10 -1 -1 -1]\n [-10 -10 -10 -10]]'
+ )
+
+
+class TestPrintOptions:
+ """Test getting and setting global print options."""
+
+ def setup_method(self):
+ self.oldopts = np.get_printoptions()
+
+ def teardown_method(self):
+ np.set_printoptions(**self.oldopts)
+
+ def test_basic(self):
+ x = np.array([1.5, 0, 1.234567890])
+ assert_equal(repr(x), "array([1.5 , 0. , 1.23456789])")
+ ret = np.set_printoptions(precision=4)
+ assert_equal(repr(x), "array([1.5 , 0. , 1.2346])")
+ assert ret is None
+
+ def test_precision_zero(self):
+ np.set_printoptions(precision=0)
+ for values, string in (
+ ([0.], "0."), ([.3], "0."), ([-.3], "-0."), ([.7], "1."),
+ ([1.5], "2."), ([-1.5], "-2."), ([-15.34], "-15."),
+ ([100.], "100."), ([.2, -1, 122.51], " 0., -1., 123."),
+ ([0], "0"), ([-12], "-12"), ([complex(.3, -.7)], "0.-1.j")):
+ x = np.array(values)
+ assert_equal(repr(x), f"array([{string}])")
+
+ def test_formatter(self):
+ x = np.arange(3)
+ np.set_printoptions(formatter={'all': lambda x: str(x - 1)})
+ assert_equal(repr(x), "array([-1, 0, 1])")
+
+ def test_formatter_reset(self):
+ x = np.arange(3)
+ np.set_printoptions(formatter={'all': lambda x: str(x - 1)})
+ assert_equal(repr(x), "array([-1, 0, 1])")
+ np.set_printoptions(formatter={'int': None})
+ assert_equal(repr(x), "array([0, 1, 2])")
+
+ np.set_printoptions(formatter={'all': lambda x: str(x - 1)})
+ assert_equal(repr(x), "array([-1, 0, 1])")
+ np.set_printoptions(formatter={'all': None})
+ assert_equal(repr(x), "array([0, 1, 2])")
+
+ np.set_printoptions(formatter={'int': lambda x: str(x - 1)})
+ assert_equal(repr(x), "array([-1, 0, 1])")
+ np.set_printoptions(formatter={'int_kind': None})
+ assert_equal(repr(x), "array([0, 1, 2])")
+
+ x = np.arange(3.)
+ np.set_printoptions(formatter={'float': lambda x: str(x - 1)})
+ assert_equal(repr(x), "array([-1.0, 0.0, 1.0])")
+ np.set_printoptions(formatter={'float_kind': None})
+ assert_equal(repr(x), "array([0., 1., 2.])")
+
+ def test_override_repr(self):
+ x = np.arange(3)
+ np.set_printoptions(override_repr=lambda x: "FOO")
+ assert_equal(repr(x), "FOO")
+ np.set_printoptions(override_repr=None)
+ assert_equal(repr(x), "array([0, 1, 2])")
+
+ with np.printoptions(override_repr=lambda x: "BAR"):
+ assert_equal(repr(x), "BAR")
+ assert_equal(repr(x), "array([0, 1, 2])")
+
+ def test_0d_arrays(self):
+ assert_equal(str(np.array('café', '<U4')), 'café')
+
+ assert_equal(repr(np.array('café', '<U4')),
+ "array('café', dtype='<U4')")
+ assert_equal(str(np.array('test', np.str_)), 'test')
+
+ a = np.zeros(1, dtype=[('a', '<i4', (3,))])
+ assert_equal(str(a[0]), '([0, 0, 0],)')
+
+ assert_equal(repr(np.datetime64('2005-02-25')[...]),
+ "array('2005-02-25', dtype='datetime64[D]')")
+
+ assert_equal(repr(np.timedelta64('10', 'Y')[...]),
+ "array(10, dtype='timedelta64[Y]')")
+
+ # repr of 0d arrays is affected by printoptions
+ x = np.array(1)
+ np.set_printoptions(formatter={'all': lambda x: "test"})
+ assert_equal(repr(x), "array(test)")
+ # str is unaffected
+ assert_equal(str(x), "1")
+
+ # check `style` arg raises
+ assert_warns(DeprecationWarning, np.array2string,
+ np.array(1.), style=repr)
+ # but not in legacy mode
+ np.array2string(np.array(1.), style=repr, legacy='1.13')
+ # gh-10934 style was broken in legacy mode, check it works
+ np.array2string(np.array(1.), legacy='1.13')
+
+ def test_float_spacing(self):
+ x = np.array([1., 2., 3.])
+ y = np.array([1., 2., -10.])
+ z = np.array([100., 2., -1.])
+ w = np.array([-100., 2., 1.])
+
+ assert_equal(repr(x), 'array([1., 2., 3.])')
+ assert_equal(repr(y), 'array([ 1., 2., -10.])')
+ assert_equal(repr(np.array(y[0])), 'array(1.)')
+ assert_equal(repr(np.array(y[-1])), 'array(-10.)')
+ assert_equal(repr(z), 'array([100., 2., -1.])')
+ assert_equal(repr(w), 'array([-100., 2., 1.])')
+
+ assert_equal(repr(np.array([np.nan, np.inf])), 'array([nan, inf])')
+ assert_equal(repr(np.array([np.nan, -np.inf])), 'array([ nan, -inf])')
+
+ x = np.array([np.inf, 100000, 1.1234])
+ y = np.array([np.inf, 100000, -1.1234])
+ z = np.array([np.inf, 1.1234, -1e120])
+ np.set_printoptions(precision=2)
+ assert_equal(repr(x), 'array([ inf, 1.00e+05, 1.12e+00])')
+ assert_equal(repr(y), 'array([ inf, 1.00e+05, -1.12e+00])')
+ assert_equal(repr(z), 'array([ inf, 1.12e+000, -1.00e+120])')
+
+ def test_bool_spacing(self):
+ assert_equal(repr(np.array([True, True])),
+ 'array([ True, True])')
+ assert_equal(repr(np.array([True, False])),
+ 'array([ True, False])')
+ assert_equal(repr(np.array([True])),
+ 'array([ True])')
+ assert_equal(repr(np.array(True)),
+ 'array(True)')
+ assert_equal(repr(np.array(False)),
+ 'array(False)')
+
+ def test_sign_spacing(self):
+ a = np.arange(4.)
+ b = np.array([1.234e9])
+ c = np.array([1.0 + 1.0j, 1.123456789 + 1.123456789j], dtype='c16')
+
+ assert_equal(repr(a), 'array([0., 1., 2., 3.])')
+ assert_equal(repr(np.array(1.)), 'array(1.)')
+ assert_equal(repr(b), 'array([1.234e+09])')
+ assert_equal(repr(np.array([0.])), 'array([0.])')
+ assert_equal(repr(c),
+ "array([1. +1.j , 1.12345679+1.12345679j])")
+ assert_equal(repr(np.array([0., -0.])), 'array([ 0., -0.])')
+
+ np.set_printoptions(sign=' ')
+ assert_equal(repr(a), 'array([ 0., 1., 2., 3.])')
+ assert_equal(repr(np.array(1.)), 'array( 1.)')
+ assert_equal(repr(b), 'array([ 1.234e+09])')
+ assert_equal(repr(c),
+ "array([ 1. +1.j , 1.12345679+1.12345679j])")
+ assert_equal(repr(np.array([0., -0.])), 'array([ 0., -0.])')
+
+ np.set_printoptions(sign='+')
+ assert_equal(repr(a), 'array([+0., +1., +2., +3.])')
+ assert_equal(repr(np.array(1.)), 'array(+1.)')
+ assert_equal(repr(b), 'array([+1.234e+09])')
+ assert_equal(repr(c),
+ "array([+1. +1.j , +1.12345679+1.12345679j])")
+
+ np.set_printoptions(legacy='1.13')
+ assert_equal(repr(a), 'array([ 0., 1., 2., 3.])')
+ assert_equal(repr(b), 'array([ 1.23400000e+09])')
+ assert_equal(repr(-b), 'array([ -1.23400000e+09])')
+ assert_equal(repr(np.array(1.)), 'array(1.0)')
+ assert_equal(repr(np.array([0.])), 'array([ 0.])')
+ assert_equal(repr(c),
+ "array([ 1.00000000+1.j , 1.12345679+1.12345679j])")
+ # gh-10383
+ assert_equal(str(np.array([-1., 10])), "[ -1. 10.]")
+
+ assert_raises(TypeError, np.set_printoptions, wrongarg=True)
+
+ def test_float_overflow_nowarn(self):
+ # make sure internal computations in FloatingFormat don't
+ # warn about overflow
+ repr(np.array([1e4, 0.1], dtype='f2'))
+
+ def test_sign_spacing_structured(self):
+ a = np.ones(2, dtype='<f,<f')
+ assert_equal(repr(a),
+ "array([(1., 1.), (1., 1.)], dtype=[('f0', '<f4'), ('f1', '<f4')])")
+ assert_equal(repr(a[0]),
+ "np.void((1.0, 1.0), dtype=[('f0', '<f4'), ('f1', '<f4')])")
+
+ def test_floatmode(self):
+ x = np.array([0.6104, 0.922, 0.457, 0.0906, 0.3733, 0.007244,
+ 0.5933, 0.947, 0.2383, 0.4226], dtype=np.float16)
+ y = np.array([0.2918820979355541, 0.5064172631089138,
+ 0.2848750619642916, 0.4342965294660567,
+ 0.7326538397312751, 0.3459503329096204,
+ 0.0862072768214508, 0.39112753029631175],
+ dtype=np.float64)
+ z = np.arange(6, dtype=np.float16) / 10
+ c = np.array([1.0 + 1.0j, 1.123456789 + 1.123456789j], dtype='c16')
+
+ # also make sure 1e23 is right (is between two fp numbers)
+ w = np.array([f'1e{i}' for i in range(25)], dtype=np.float64)
+ # note: we construct w from the strings `1eXX` instead of doing
+ # `10.**arange(24)` because it turns out the two are not equivalent in
+ # python. On some architectures `1e23 != 10.**23`.
+ wp = np.array([1.234e1, 1e2, 1e123])
+
+ # unique mode
+ np.set_printoptions(floatmode='unique')
+ assert_equal(repr(x),
+ "array([0.6104 , 0.922 , 0.457 , 0.0906 , 0.3733 , 0.007244,\n"
+ " 0.5933 , 0.947 , 0.2383 , 0.4226 ], dtype=float16)")
+ assert_equal(repr(y),
+ "array([0.2918820979355541 , 0.5064172631089138 , 0.2848750619642916 ,\n"
+ " 0.4342965294660567 , 0.7326538397312751 , 0.3459503329096204 ,\n"
+ " 0.0862072768214508 , 0.39112753029631175])")
+ assert_equal(repr(z),
+ "array([0. , 0.1, 0.2, 0.3, 0.4, 0.5], dtype=float16)")
+ assert_equal(repr(w),
+ "array([1.e+00, 1.e+01, 1.e+02, 1.e+03, 1.e+04, 1.e+05, 1.e+06, 1.e+07,\n"
+ " 1.e+08, 1.e+09, 1.e+10, 1.e+11, 1.e+12, 1.e+13, 1.e+14, 1.e+15,\n"
+ " 1.e+16, 1.e+17, 1.e+18, 1.e+19, 1.e+20, 1.e+21, 1.e+22, 1.e+23,\n"
+ " 1.e+24])")
+ assert_equal(repr(wp), "array([1.234e+001, 1.000e+002, 1.000e+123])")
+ assert_equal(repr(c),
+ "array([1. +1.j , 1.123456789+1.123456789j])")
+
+ # maxprec mode, precision=8
+ np.set_printoptions(floatmode='maxprec', precision=8)
+ assert_equal(repr(x),
+ "array([0.6104 , 0.922 , 0.457 , 0.0906 , 0.3733 , 0.007244,\n"
+ " 0.5933 , 0.947 , 0.2383 , 0.4226 ], dtype=float16)")
+ assert_equal(repr(y),
+ "array([0.2918821 , 0.50641726, 0.28487506, 0.43429653, 0.73265384,\n"
+ " 0.34595033, 0.08620728, 0.39112753])")
+ assert_equal(repr(z),
+ "array([0. , 0.1, 0.2, 0.3, 0.4, 0.5], dtype=float16)")
+ assert_equal(repr(w[::5]),
+ "array([1.e+00, 1.e+05, 1.e+10, 1.e+15, 1.e+20])")
+ assert_equal(repr(wp), "array([1.234e+001, 1.000e+002, 1.000e+123])")
+ assert_equal(repr(c),
+ "array([1. +1.j , 1.12345679+1.12345679j])")
+
+ # fixed mode, precision=4
+ np.set_printoptions(floatmode='fixed', precision=4)
+ assert_equal(repr(x),
+ "array([0.6104, 0.9219, 0.4570, 0.0906, 0.3733, 0.0072, 0.5933, 0.9468,\n"
+ " 0.2383, 0.4226], dtype=float16)")
+ assert_equal(repr(y),
+ "array([0.2919, 0.5064, 0.2849, 0.4343, 0.7327, 0.3460, 0.0862, 0.3911])")
+ assert_equal(repr(z),
+ "array([0.0000, 0.1000, 0.2000, 0.3000, 0.3999, 0.5000], dtype=float16)")
+ assert_equal(repr(w[::5]),
+ "array([1.0000e+00, 1.0000e+05, 1.0000e+10, 1.0000e+15, 1.0000e+20])")
+ assert_equal(repr(wp), "array([1.2340e+001, 1.0000e+002, 1.0000e+123])")
+ assert_equal(repr(np.zeros(3)), "array([0.0000, 0.0000, 0.0000])")
+ assert_equal(repr(c),
+ "array([1.0000+1.0000j, 1.1235+1.1235j])")
+ # for larger precision, representation error becomes more apparent:
+ np.set_printoptions(floatmode='fixed', precision=8)
+ assert_equal(repr(z),
+ "array([0.00000000, 0.09997559, 0.19995117, 0.30004883, 0.39990234,\n"
+ " 0.50000000], dtype=float16)")
+
+ # maxprec_equal mode, precision=8
+ np.set_printoptions(floatmode='maxprec_equal', precision=8)
+ assert_equal(repr(x),
+ "array([0.610352, 0.921875, 0.457031, 0.090576, 0.373291, 0.007244,\n"
+ " 0.593262, 0.946777, 0.238281, 0.422607], dtype=float16)")
+ assert_equal(repr(y),
+ "array([0.29188210, 0.50641726, 0.28487506, 0.43429653, 0.73265384,\n"
+ " 0.34595033, 0.08620728, 0.39112753])")
+ assert_equal(repr(z),
+ "array([0.0, 0.1, 0.2, 0.3, 0.4, 0.5], dtype=float16)")
+ assert_equal(repr(w[::5]),
+ "array([1.e+00, 1.e+05, 1.e+10, 1.e+15, 1.e+20])")
+ assert_equal(repr(wp), "array([1.234e+001, 1.000e+002, 1.000e+123])")
+ assert_equal(repr(c),
+ "array([1.00000000+1.00000000j, 1.12345679+1.12345679j])")
+
+ # test unique special case (gh-18609)
+ a = np.float64.fromhex('-1p-97')
+ assert_equal(np.float64(np.array2string(a, floatmode='unique')), a)
+
+ test_cases_gh_28679 = [
+ (np.half([999, 999]), "[999. 999.]"),
+ (np.half([999, 1000]), "[9.99e+02 1.00e+03]"),
+ (np.single([999999, 999999]), "[999999. 999999.]"),
+ (np.single([999999, -1000000]), "[ 9.99999e+05 -1.00000e+06]"),
+ (
+ np.complex64([999999 + 999999j, 999999 + 999999j]),
+ "[999999.+999999.j 999999.+999999.j]"
+ ),
+ (
+ np.complex64([999999 + 999999j, 999999 + -1000000j]),
+ "[999999.+9.99999e+05j 999999.-1.00000e+06j]"
+ ),
+ ]
+
+ @pytest.mark.parametrize("input_array, expected_str", test_cases_gh_28679)
+ def test_gh_28679(self, input_array, expected_str):
+ # test cutoff to exponent notation for half, single, and complex64
+ assert_equal(str(input_array), expected_str)
+
+ test_cases_legacy_2_2 = [
+ (np.half([1.e3, 1.e4, 65504]), "[ 1000. 10000. 65504.]"),
+ (np.single([1.e6, 1.e7]), "[ 1000000. 10000000.]"),
+ (np.single([1.e7, 1.e8]), "[1.e+07 1.e+08]"),
+ ]
+
+ @pytest.mark.parametrize("input_array, expected_str", test_cases_legacy_2_2)
+ def test_legacy_2_2_mode(self, input_array, expected_str):
+ # test legacy cutoff to exponent notation for half and single
+ with np.printoptions(legacy='2.2'):
+ assert_equal(str(input_array), expected_str)
+
+ @pytest.mark.parametrize("legacy", ['1.13', '1.21', '1.25', '2.1', '2.2'])
+ def test_legacy_get_options(self, legacy):
+ # test legacy get options works okay
+ with np.printoptions(legacy=legacy):
+ p_opt = np.get_printoptions()
+ assert_equal(p_opt["legacy"], legacy)
+
+ def test_legacy_mode_scalars(self):
+ # in legacy mode, str of floats get truncated, and complex scalars
+ # use * for non-finite imaginary part
+ np.set_printoptions(legacy='1.13')
+ assert_equal(str(np.float64(1.123456789123456789)), '1.12345678912')
+ assert_equal(str(np.complex128(complex(1, np.nan))), '(1+nan*j)')
+
+ np.set_printoptions(legacy=False)
+ assert_equal(str(np.float64(1.123456789123456789)),
+ '1.1234567891234568')
+ assert_equal(str(np.complex128(complex(1, np.nan))), '(1+nanj)')
+
+ def test_legacy_stray_comma(self):
+ np.set_printoptions(legacy='1.13')
+ assert_equal(str(np.arange(10000)), '[ 0 1 2 ..., 9997 9998 9999]')
+
+ np.set_printoptions(legacy=False)
+ assert_equal(str(np.arange(10000)), '[ 0 1 2 ... 9997 9998 9999]')
+
+ def test_dtype_linewidth_wrapping(self):
+ np.set_printoptions(linewidth=75)
+ assert_equal(repr(np.arange(10, 20., dtype='f4')),
+ "array([10., 11., 12., 13., 14., 15., 16., 17., 18., 19.], dtype=float32)")
+ assert_equal(repr(np.arange(10, 23., dtype='f4')), textwrap.dedent("""\
+ array([10., 11., 12., 13., 14., 15., 16., 17., 18., 19., 20., 21., 22.],
+ dtype=float32)"""))
+
+ styp = '<U4'
+ assert_equal(repr(np.ones(3, dtype=styp)),
+ f"array(['1', '1', '1'], dtype='{styp}')")
+ assert_equal(repr(np.ones(12, dtype=styp)), textwrap.dedent(f"""\
+ array(['1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1'],
+ dtype='{styp}')"""))
+
+ @pytest.mark.parametrize(
+ ['native'],
+ [
+ ('bool',),
+ ('uint8',),
+ ('uint16',),
+ ('uint32',),
+ ('uint64',),
+ ('int8',),
+ ('int16',),
+ ('int32',),
+ ('int64',),
+ ('float16',),
+ ('float32',),
+ ('float64',),
+ ('U1',), # 4-byte width string
+ ],
+ )
+ def test_dtype_endianness_repr(self, native):
+ '''
+ there was an issue where
+ repr(array([0], dtype='<u2')) and repr(array([0], dtype='>u2'))
+ both returned the same thing:
+ array([0], dtype=uint16)
+ even though their dtypes have different endianness.
+ '''
+ native_dtype = np.dtype(native)
+ non_native_dtype = native_dtype.newbyteorder()
+ non_native_repr = repr(np.array([1], non_native_dtype))
+ native_repr = repr(np.array([1], native_dtype))
+ # preserve the sensible default of only showing dtype if nonstandard
+ assert ('dtype' in native_repr) ^ (native_dtype in _typelessdata),\
+ ("an array's repr should show dtype if and only if the type "
+ 'of the array is NOT one of the standard types '
+ '(e.g., int32, bool, float64).')
+ if non_native_dtype.itemsize > 1:
+ # if the type is >1 byte, the non-native endian version
+ # must show endianness.
+ assert non_native_repr != native_repr
+ assert f"dtype='{non_native_dtype.byteorder}" in non_native_repr
+
+ def test_linewidth_repr(self):
+ a = np.full(7, fill_value=2)
+ np.set_printoptions(linewidth=17)
+ assert_equal(
+ repr(a),
+ textwrap.dedent("""\
+ array([2, 2, 2,
+ 2, 2, 2,
+ 2])""")
+ )
+ np.set_printoptions(linewidth=17, legacy='1.13')
+ assert_equal(
+ repr(a),
+ textwrap.dedent("""\
+ array([2, 2, 2,
+ 2, 2, 2, 2])""")
+ )
+
+ a = np.full(8, fill_value=2)
+
+ np.set_printoptions(linewidth=18, legacy=False)
+ assert_equal(
+ repr(a),
+ textwrap.dedent("""\
+ array([2, 2, 2,
+ 2, 2, 2,
+ 2, 2])""")
+ )
+
+ np.set_printoptions(linewidth=18, legacy='1.13')
+ assert_equal(
+ repr(a),
+ textwrap.dedent("""\
+ array([2, 2, 2, 2,
+ 2, 2, 2, 2])""")
+ )
+
+ def test_linewidth_str(self):
+ a = np.full(18, fill_value=2)
+ np.set_printoptions(linewidth=18)
+ assert_equal(
+ str(a),
+ textwrap.dedent("""\
+ [2 2 2 2 2 2 2 2
+ 2 2 2 2 2 2 2 2
+ 2 2]""")
+ )
+ np.set_printoptions(linewidth=18, legacy='1.13')
+ assert_equal(
+ str(a),
+ textwrap.dedent("""\
+ [2 2 2 2 2 2 2 2 2
+ 2 2 2 2 2 2 2 2 2]""")
+ )
+
+ def test_edgeitems(self):
+ np.set_printoptions(edgeitems=1, threshold=1)
+ a = np.arange(27).reshape((3, 3, 3))
+ assert_equal(
+ repr(a),
+ textwrap.dedent("""\
+ array([[[ 0, ..., 2],
+ ...,
+ [ 6, ..., 8]],
+
+ ...,
+
+ [[18, ..., 20],
+ ...,
+ [24, ..., 26]]], shape=(3, 3, 3))""")
+ )
+
+ b = np.zeros((3, 3, 1, 1))
+ assert_equal(
+ repr(b),
+ textwrap.dedent("""\
+ array([[[[0.]],
+
+ ...,
+
+ [[0.]]],
+
+
+ ...,
+
+
+ [[[0.]],
+
+ ...,
+
+ [[0.]]]], shape=(3, 3, 1, 1))""")
+ )
+
+ # 1.13 had extra trailing spaces, and was missing newlines
+ try:
+ np.set_printoptions(legacy='1.13')
+ assert_equal(repr(a), (
+ "array([[[ 0, ..., 2],\n"
+ " ..., \n"
+ " [ 6, ..., 8]],\n"
+ "\n"
+ " ..., \n"
+ " [[18, ..., 20],\n"
+ " ..., \n"
+ " [24, ..., 26]]])")
+ )
+ assert_equal(repr(b), (
+ "array([[[[ 0.]],\n"
+ "\n"
+ " ..., \n"
+ " [[ 0.]]],\n"
+ "\n"
+ "\n"
+ " ..., \n"
+ " [[[ 0.]],\n"
+ "\n"
+ " ..., \n"
+ " [[ 0.]]]])")
+ )
+ finally:
+ np.set_printoptions(legacy=False)
+
+ def test_edgeitems_structured(self):
+ np.set_printoptions(edgeitems=1, threshold=1)
+ A = np.arange(5 * 2 * 3, dtype="<i8").view([('i', "<i8", (5, 2, 3))])
+ reprA = (
+ "array([([[[ 0, ..., 2], [ 3, ..., 5]], ..., "
+ "[[24, ..., 26], [27, ..., 29]]],)],\n"
+ " dtype=[('i', '<i8', (5, 2, 3))])"
+ )
+ assert_equal(repr(A), reprA)
+
+ def test_bad_args(self):
+ assert_raises(ValueError, np.set_printoptions, threshold=float('nan'))
+ assert_raises(TypeError, np.set_printoptions, threshold='1')
+ assert_raises(TypeError, np.set_printoptions, threshold=b'1')
+
+ assert_raises(TypeError, np.set_printoptions, precision='1')
+ assert_raises(TypeError, np.set_printoptions, precision=1.5)
+
+def test_unicode_object_array():
+ expected = "array(['é'], dtype=object)"
+ x = np.array(['\xe9'], dtype=object)
+ assert_equal(repr(x), expected)
+
+
+class TestContextManager:
+ def test_ctx_mgr(self):
+ # test that context manager actually works
+ with np.printoptions(precision=2):
+ s = str(np.array([2.0]) / 3)
+ assert_equal(s, '[0.67]')
+
+ def test_ctx_mgr_restores(self):
+ # test that print options are actually restored
+ opts = np.get_printoptions()
+ with np.printoptions(precision=opts['precision'] - 1,
+ linewidth=opts['linewidth'] - 4):
+ pass
+ assert_equal(np.get_printoptions(), opts)
+
+ def test_ctx_mgr_exceptions(self):
+ # test that print options are restored even if an exception is raised
+ opts = np.get_printoptions()
+ try:
+ with np.printoptions(precision=2, linewidth=11):
+ raise ValueError
+ except ValueError:
+ pass
+ assert_equal(np.get_printoptions(), opts)
+
+ def test_ctx_mgr_as_smth(self):
+ opts = {"precision": 2}
+ with np.printoptions(**opts) as ctx:
+ saved_opts = ctx.copy()
+ assert_equal({k: saved_opts[k] for k in opts}, opts)
+
+
+@pytest.mark.parametrize("dtype", "bhilqpBHILQPefdgFDG")
+@pytest.mark.parametrize("value", [0, 1])
+def test_scalar_repr_numbers(dtype, value):
+ # Test NEP 51 scalar repr (and legacy option) for numeric types
+ dtype = np.dtype(dtype)
+ scalar = np.array(value, dtype=dtype)[()]
+ assert isinstance(scalar, np.generic)
+
+ string = str(scalar)
+ repr_string = string.strip("()") # complex may have extra brackets
+ representation = repr(scalar)
+ if dtype.char == "g":
+ assert representation == f"np.longdouble('{repr_string}')"
+ elif dtype.char == 'G':
+ assert representation == f"np.clongdouble('{repr_string}')"
+ else:
+ normalized_name = np.dtype(f"{dtype.kind}{dtype.itemsize}").type.__name__
+ assert representation == f"np.{normalized_name}({repr_string})"
+
+ with np.printoptions(legacy="1.25"):
+ assert repr(scalar) == string
+
+
+@pytest.mark.parametrize("scalar, legacy_repr, representation", [
+ (np.True_, "True", "np.True_"),
+ (np.bytes_(b'a'), "b'a'", "np.bytes_(b'a')"),
+ (np.str_('a'), "'a'", "np.str_('a')"),
+ (np.datetime64("2012"),
+ "numpy.datetime64('2012')", "np.datetime64('2012')"),
+ (np.timedelta64(1), "numpy.timedelta64(1)", "np.timedelta64(1)"),
+ (np.void((True, 2), dtype="?,<i8"),
+ "(True, 2)",
+ "np.void((True, 2), dtype=[('f0', '?'), ('f1', '<i8')])"),
+ (np.void((1, 2), dtype="<f8,>f4"),
+ "(1., 2.)",
+ "np.void((1.0, 2.0), dtype=[('f0', '<f8'), ('f1', '>f4')])"),
+ (np.void(b'a'), r"void(b'\x61')", r"np.void(b'\x61')"),
+ ])
+def test_scalar_repr_special(scalar, legacy_repr, representation):
+ # Test NEP 51 scalar repr (and legacy option) for numeric types
+ assert repr(scalar) == representation
+
+ with np.printoptions(legacy="1.25"):
+ assert repr(scalar) == legacy_repr
+
+def test_scalar_void_float_str():
+ # Note that based on this currently we do not print the same as a tuple
+ # would, since the tuple would include the repr() inside for floats, but
+ # we do not do that.
+ scalar = np.void((1.0, 2.0), dtype=[('f0', '<f8'), ('f1', '>f4')])
+ assert str(scalar) == "(1.0, 2.0)"
+
+@pytest.mark.skipif(IS_WASM, reason="wasm doesn't support asyncio")
+@pytest.mark.skipif(sys.version_info < (3, 11),
+ reason="asyncio.barrier was added in Python 3.11")
+def test_printoptions_asyncio_safe():
+ asyncio = pytest.importorskip("asyncio")
+
+ b = asyncio.Barrier(2)
+
+ async def legacy_113():
+ np.set_printoptions(legacy='1.13', precision=12)
+ await b.wait()
+ po = np.get_printoptions()
+ assert po['legacy'] == '1.13'
+ assert po['precision'] == 12
+ orig_linewidth = po['linewidth']
+ with np.printoptions(linewidth=34, legacy='1.21'):
+ po = np.get_printoptions()
+ assert po['legacy'] == '1.21'
+ assert po['precision'] == 12
+ assert po['linewidth'] == 34
+ po = np.get_printoptions()
+ assert po['linewidth'] == orig_linewidth
+ assert po['legacy'] == '1.13'
+ assert po['precision'] == 12
+
+ async def legacy_125():
+ np.set_printoptions(legacy='1.25', precision=7)
+ await b.wait()
+ po = np.get_printoptions()
+ assert po['legacy'] == '1.25'
+ assert po['precision'] == 7
+ orig_linewidth = po['linewidth']
+ with np.printoptions(linewidth=6, legacy='1.13'):
+ po = np.get_printoptions()
+ assert po['legacy'] == '1.13'
+ assert po['precision'] == 7
+ assert po['linewidth'] == 6
+ po = np.get_printoptions()
+ assert po['linewidth'] == orig_linewidth
+ assert po['legacy'] == '1.25'
+ assert po['precision'] == 7
+
+ async def main():
+ await asyncio.gather(legacy_125(), legacy_125())
+
+ loop = asyncio.new_event_loop()
+ asyncio.run(main())
+ loop.close()
+
+@pytest.mark.skipif(IS_WASM, reason="wasm doesn't support threads")
+def test_multithreaded_array_printing():
+ # the dragon4 implementation uses a static scratch space for performance
+ # reasons this test makes sure it is set up in a thread-safe manner
+
+ run_threaded(TestPrintOptions().test_floatmode, 500)
diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_casting_floatingpoint_errors.py b/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_casting_floatingpoint_errors.py
new file mode 100644
index 0000000..2f9c01f
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_casting_floatingpoint_errors.py
@@ -0,0 +1,154 @@
+import pytest
+from pytest import param
+
+import numpy as np
+from numpy.testing import IS_WASM
+
+
+def values_and_dtypes():
+ """
+ Generate value+dtype pairs that generate floating point errors during
+ casts. The invalid casts to integers will generate "invalid" value
+ warnings, the float casts all generate "overflow".
+
+ (The Python int/float paths don't need to get tested in all the same
+ situations, but it does not hurt.)
+ """
+ # Casting to float16:
+ yield param(70000, "float16", id="int-to-f2")
+ yield param("70000", "float16", id="str-to-f2")
+ yield param(70000.0, "float16", id="float-to-f2")
+ yield param(np.longdouble(70000.), "float16", id="longdouble-to-f2")
+ yield param(np.float64(70000.), "float16", id="double-to-f2")
+ yield param(np.float32(70000.), "float16", id="float-to-f2")
+ # Casting to float32:
+ yield param(10**100, "float32", id="int-to-f4")
+ yield param(1e100, "float32", id="float-to-f2")
+ yield param(np.longdouble(1e300), "float32", id="longdouble-to-f2")
+ yield param(np.float64(1e300), "float32", id="double-to-f2")
+ # Casting to float64:
+ # If longdouble is double-double, its max can be rounded down to the double
+ # max. So we correct the double spacing (a bit weird, admittedly):
+ max_ld = np.finfo(np.longdouble).max
+ spacing = np.spacing(np.nextafter(np.finfo("f8").max, 0))
+ if max_ld - spacing > np.finfo("f8").max:
+ yield param(np.finfo(np.longdouble).max, "float64",
+ id="longdouble-to-f8")
+
+ # Cast to complex32:
+ yield param(2e300, "complex64", id="float-to-c8")
+ yield param(2e300 + 0j, "complex64", id="complex-to-c8")
+ yield param(2e300j, "complex64", id="complex-to-c8")
+ yield param(np.longdouble(2e300), "complex64", id="longdouble-to-c8")
+
+ # Invalid float to integer casts:
+ with np.errstate(over="ignore"):
+ for to_dt in np.typecodes["AllInteger"]:
+ for value in [np.inf, np.nan]:
+ for from_dt in np.typecodes["AllFloat"]:
+ from_dt = np.dtype(from_dt)
+ from_val = from_dt.type(value)
+
+ yield param(from_val, to_dt, id=f"{from_val}-to-{to_dt}")
+
+
+def check_operations(dtype, value):
+ """
+ There are many dedicated paths in NumPy which cast and should check for
+ floating point errors which occurred during those casts.
+ """
+ if dtype.kind != 'i':
+ # These assignments use the stricter setitem logic:
+ def assignment():
+ arr = np.empty(3, dtype=dtype)
+ arr[0] = value
+
+ yield assignment
+
+ def fill():
+ arr = np.empty(3, dtype=dtype)
+ arr.fill(value)
+
+ yield fill
+
+ def copyto_scalar():
+ arr = np.empty(3, dtype=dtype)
+ np.copyto(arr, value, casting="unsafe")
+
+ yield copyto_scalar
+
+ def copyto():
+ arr = np.empty(3, dtype=dtype)
+ np.copyto(arr, np.array([value, value, value]), casting="unsafe")
+
+ yield copyto
+
+ def copyto_scalar_masked():
+ arr = np.empty(3, dtype=dtype)
+ np.copyto(arr, value, casting="unsafe",
+ where=[True, False, True])
+
+ yield copyto_scalar_masked
+
+ def copyto_masked():
+ arr = np.empty(3, dtype=dtype)
+ np.copyto(arr, np.array([value, value, value]), casting="unsafe",
+ where=[True, False, True])
+
+ yield copyto_masked
+
+ def direct_cast():
+ np.array([value, value, value]).astype(dtype)
+
+ yield direct_cast
+
+ def direct_cast_nd_strided():
+ arr = np.full((5, 5, 5), fill_value=value)[:, ::2, :]
+ arr.astype(dtype)
+
+ yield direct_cast_nd_strided
+
+ def boolean_array_assignment():
+ arr = np.empty(3, dtype=dtype)
+ arr[[True, False, True]] = np.array([value, value])
+
+ yield boolean_array_assignment
+
+ def integer_array_assignment():
+ arr = np.empty(3, dtype=dtype)
+ values = np.array([value, value])
+
+ arr[[0, 1]] = values
+
+ yield integer_array_assignment
+
+ def integer_array_assignment_with_subspace():
+ arr = np.empty((5, 3), dtype=dtype)
+ values = np.array([value, value, value])
+
+ arr[[0, 2]] = values
+
+ yield integer_array_assignment_with_subspace
+
+ def flat_assignment():
+ arr = np.empty((3,), dtype=dtype)
+ values = np.array([value, value, value])
+ arr.flat[:] = values
+
+ yield flat_assignment
+
+@pytest.mark.skipif(IS_WASM, reason="no wasm fp exception support")
+@pytest.mark.parametrize(["value", "dtype"], values_and_dtypes())
+@pytest.mark.filterwarnings("ignore::numpy.exceptions.ComplexWarning")
+def test_floatingpoint_errors_casting(dtype, value):
+ dtype = np.dtype(dtype)
+ for operation in check_operations(dtype, value):
+ dtype = np.dtype(dtype)
+
+ match = "invalid" if dtype.kind in 'iu' else "overflow"
+ with pytest.warns(RuntimeWarning, match=match):
+ operation()
+
+ with np.errstate(all="raise"):
+ with pytest.raises(FloatingPointError, match=match):
+ operation()
diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_casting_unittests.py b/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_casting_unittests.py
new file mode 100644
index 0000000..f8441ea
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_casting_unittests.py
@@ -0,0 +1,817 @@
+"""
+The tests exercise the casting machinery in a more low-level manner.
+The reason is mostly to test a new implementation of the casting machinery.
+
+Unlike most tests in NumPy, these are closer to unit-tests rather
+than integration tests.
+"""
+
+import ctypes
+import enum
+import random
+import textwrap
+
+import pytest
+from numpy._core._multiarray_umath import _get_castingimpl as get_castingimpl
+
+import numpy as np
+from numpy.lib.stride_tricks import as_strided
+from numpy.testing import assert_array_equal
+
+# Simple skips object, parametric and long double (unsupported by struct)
+simple_dtypes = "?bhilqBHILQefdFD"
+if np.dtype("l").itemsize != np.dtype("q").itemsize:
+ # Remove l and L, the table was generated with 64bit linux in mind.
+ simple_dtypes = simple_dtypes.replace("l", "").replace("L", "")
+simple_dtypes = [type(np.dtype(c)) for c in simple_dtypes]
+
+
+def simple_dtype_instances():
+ for dtype_class in simple_dtypes:
+ dt = dtype_class()
+ yield pytest.param(dt, id=str(dt))
+ if dt.byteorder != "|":
+ dt = dt.newbyteorder()
+ yield pytest.param(dt, id=str(dt))
+
+
+def get_expected_stringlength(dtype):
+ """Returns the string length when casting the basic dtypes to strings.
+ """
+ if dtype == np.bool:
+ return 5
+ if dtype.kind in "iu":
+ if dtype.itemsize == 1:
+ length = 3
+ elif dtype.itemsize == 2:
+ length = 5
+ elif dtype.itemsize == 4:
+ length = 10
+ elif dtype.itemsize == 8:
+ length = 20
+ else:
+ raise AssertionError(f"did not find expected length for {dtype}")
+
+ if dtype.kind == "i":
+ length += 1 # adds one character for the sign
+
+ return length
+
+ # Note: Can't do dtype comparison for longdouble on windows
+ if dtype.char == "g":
+ return 48
+ elif dtype.char == "G":
+ return 48 * 2
+ elif dtype.kind == "f":
+ return 32 # also for half apparently.
+ elif dtype.kind == "c":
+ return 32 * 2
+
+ raise AssertionError(f"did not find expected length for {dtype}")
+
+
+class Casting(enum.IntEnum):
+ no = 0
+ equiv = 1
+ safe = 2
+ same_kind = 3
+ unsafe = 4
+
+
+def _get_cancast_table():
+ table = textwrap.dedent("""
+ X ? b h i l q B H I L Q e f d g F D G S U V O M m
+ ? # = = = = = = = = = = = = = = = = = = = = = . =
+ b . # = = = = . . . . . = = = = = = = = = = = . =
+ h . ~ # = = = . . . . . ~ = = = = = = = = = = . =
+ i . ~ ~ # = = . . . . . ~ ~ = = ~ = = = = = = . =
+ l . ~ ~ ~ # # . . . . . ~ ~ = = ~ = = = = = = . =
+ q . ~ ~ ~ # # . . . . . ~ ~ = = ~ = = = = = = . =
+ B . ~ = = = = # = = = = = = = = = = = = = = = . =
+ H . ~ ~ = = = ~ # = = = ~ = = = = = = = = = = . =
+ I . ~ ~ ~ = = ~ ~ # = = ~ ~ = = ~ = = = = = = . =
+ L . ~ ~ ~ ~ ~ ~ ~ ~ # # ~ ~ = = ~ = = = = = = . ~
+ Q . ~ ~ ~ ~ ~ ~ ~ ~ # # ~ ~ = = ~ = = = = = = . ~
+ e . . . . . . . . . . . # = = = = = = = = = = . .
+ f . . . . . . . . . . . ~ # = = = = = = = = = . .
+ d . . . . . . . . . . . ~ ~ # = ~ = = = = = = . .
+ g . . . . . . . . . . . ~ ~ ~ # ~ ~ = = = = = . .
+ F . . . . . . . . . . . . . . . # = = = = = = . .
+ D . . . . . . . . . . . . . . . ~ # = = = = = . .
+ G . . . . . . . . . . . . . . . ~ ~ # = = = = . .
+ S . . . . . . . . . . . . . . . . . . # = = = . .
+ U . . . . . . . . . . . . . . . . . . . # = = . .
+ V . . . . . . . . . . . . . . . . . . . . # = . .
+ O . . . . . . . . . . . . . . . . . . . . = # . .
+ M . . . . . . . . . . . . . . . . . . . . = = # .
+ m . . . . . . . . . . . . . . . . . . . . = = . #
+ """).strip().split("\n")
+ dtypes = [type(np.dtype(c)) for c in table[0][2::2]]
+
+ convert_cast = {".": Casting.unsafe, "~": Casting.same_kind,
+ "=": Casting.safe, "#": Casting.equiv,
+ " ": -1}
+
+ cancast = {}
+ for from_dt, row in zip(dtypes, table[1:]):
+ cancast[from_dt] = {}
+ for to_dt, c in zip(dtypes, row[2::2]):
+ cancast[from_dt][to_dt] = convert_cast[c]
+
+ return cancast
+
+
+CAST_TABLE = _get_cancast_table()
+
+
+class TestChanges:
+ """
+ These test cases exercise some behaviour changes
+ """
+ @pytest.mark.parametrize("string", ["S", "U"])
+ @pytest.mark.parametrize("floating", ["e", "f", "d", "g"])
+ def test_float_to_string(self, floating, string):
+ assert np.can_cast(floating, string)
+ # 100 is long enough to hold any formatted floating
+ assert np.can_cast(floating, f"{string}100")
+
+ def test_to_void(self):
+ # But in general, we do consider these safe:
+ assert np.can_cast("d", "V")
+ assert np.can_cast("S20", "V")
+
+ # Do not consider it a safe cast if the void is too smaller:
+ assert not np.can_cast("d", "V1")
+ assert not np.can_cast("S20", "V1")
+ assert not np.can_cast("U1", "V1")
+ # Structured to unstructured is just like any other:
+ assert np.can_cast("d,i", "V", casting="same_kind")
+ # Unstructured void to unstructured is actually no cast at all:
+ assert np.can_cast("V3", "V", casting="no")
+ assert np.can_cast("V0", "V", casting="no")
+
+
+class TestCasting:
+ size = 1500 # Best larger than NPY_LOWLEVEL_BUFFER_BLOCKSIZE * itemsize
+
+ def get_data(self, dtype1, dtype2):
+ if dtype2 is None or dtype1.itemsize >= dtype2.itemsize:
+ length = self.size // dtype1.itemsize
+ else:
+ length = self.size // dtype2.itemsize
+
+ # Assume that the base array is well enough aligned for all inputs.
+ arr1 = np.empty(length, dtype=dtype1)
+ assert arr1.flags.c_contiguous
+ assert arr1.flags.aligned
+
+ values = [random.randrange(-128, 128) for _ in range(length)]
+
+ for i, value in enumerate(values):
+ # Use item assignment to ensure this is not using casting:
+ if value < 0 and dtype1.kind == "u":
+ # Manually rollover unsigned integers (-1 -> int.max)
+ value = value + np.iinfo(dtype1).max + 1
+ arr1[i] = value
+
+ if dtype2 is None:
+ if dtype1.char == "?":
+ values = [bool(v) for v in values]
+ return arr1, values
+
+ if dtype2.char == "?":
+ values = [bool(v) for v in values]
+
+ arr2 = np.empty(length, dtype=dtype2)
+ assert arr2.flags.c_contiguous
+ assert arr2.flags.aligned
+
+ for i, value in enumerate(values):
+ # Use item assignment to ensure this is not using casting:
+ if value < 0 and dtype2.kind == "u":
+ # Manually rollover unsigned integers (-1 -> int.max)
+ value = value + np.iinfo(dtype2).max + 1
+ arr2[i] = value
+
+ return arr1, arr2, values
+
+ def get_data_variation(self, arr1, arr2, aligned=True, contig=True):
+ """
+ Returns a copy of arr1 that may be non-contiguous or unaligned, and a
+ matching array for arr2 (although not a copy).
+ """
+ if contig:
+ stride1 = arr1.dtype.itemsize
+ stride2 = arr2.dtype.itemsize
+ elif aligned:
+ stride1 = 2 * arr1.dtype.itemsize
+ stride2 = 2 * arr2.dtype.itemsize
+ else:
+ stride1 = arr1.dtype.itemsize + 1
+ stride2 = arr2.dtype.itemsize + 1
+
+ max_size1 = len(arr1) * 3 * arr1.dtype.itemsize + 1
+ max_size2 = len(arr2) * 3 * arr2.dtype.itemsize + 1
+ from_bytes = np.zeros(max_size1, dtype=np.uint8)
+ to_bytes = np.zeros(max_size2, dtype=np.uint8)
+
+ # Sanity check that the above is large enough:
+ assert stride1 * len(arr1) <= from_bytes.nbytes
+ assert stride2 * len(arr2) <= to_bytes.nbytes
+
+ if aligned:
+ new1 = as_strided(from_bytes[:-1].view(arr1.dtype),
+ arr1.shape, (stride1,))
+ new2 = as_strided(to_bytes[:-1].view(arr2.dtype),
+ arr2.shape, (stride2,))
+ else:
+ new1 = as_strided(from_bytes[1:].view(arr1.dtype),
+ arr1.shape, (stride1,))
+ new2 = as_strided(to_bytes[1:].view(arr2.dtype),
+ arr2.shape, (stride2,))
+
+ new1[...] = arr1
+
+ if not contig:
+ # Ensure we did not overwrite bytes that should not be written:
+ offset = arr1.dtype.itemsize if aligned else 0
+ buf = from_bytes[offset::stride1].tobytes()
+ assert buf.count(b"\0") == len(buf)
+
+ if contig:
+ assert new1.flags.c_contiguous
+ assert new2.flags.c_contiguous
+ else:
+ assert not new1.flags.c_contiguous
+ assert not new2.flags.c_contiguous
+
+ if aligned:
+ assert new1.flags.aligned
+ assert new2.flags.aligned
+ else:
+ assert not new1.flags.aligned or new1.dtype.alignment == 1
+ assert not new2.flags.aligned or new2.dtype.alignment == 1
+
+ return new1, new2
+
+ @pytest.mark.parametrize("from_Dt", simple_dtypes)
+ def test_simple_cancast(self, from_Dt):
+ for to_Dt in simple_dtypes:
+ cast = get_castingimpl(from_Dt, to_Dt)
+
+ for from_dt in [from_Dt(), from_Dt().newbyteorder()]:
+ default = cast._resolve_descriptors((from_dt, None))[1][1]
+ assert default == to_Dt()
+ del default
+
+ for to_dt in [to_Dt(), to_Dt().newbyteorder()]:
+ casting, (from_res, to_res), view_off = (
+ cast._resolve_descriptors((from_dt, to_dt)))
+ assert type(from_res) == from_Dt
+ assert type(to_res) == to_Dt
+ if view_off is not None:
+ # If a view is acceptable, this is "no" casting
+ # and byte order must be matching.
+ assert casting == Casting.no
+ # The above table lists this as "equivalent"
+ assert Casting.equiv == CAST_TABLE[from_Dt][to_Dt]
+ # Note that to_res may not be the same as from_dt
+ assert from_res.isnative == to_res.isnative
+ else:
+ if from_Dt == to_Dt:
+ # Note that to_res may not be the same as from_dt
+ assert from_res.isnative != to_res.isnative
+ assert casting == CAST_TABLE[from_Dt][to_Dt]
+
+ if from_Dt is to_Dt:
+ assert from_dt is from_res
+ assert to_dt is to_res
+
+ @pytest.mark.filterwarnings("ignore::numpy.exceptions.ComplexWarning")
+ @pytest.mark.parametrize("from_dt", simple_dtype_instances())
+ def test_simple_direct_casts(self, from_dt):
+ """
+ This test checks numeric direct casts for dtypes supported also by the
+ struct module (plus complex). It tries to be test a wide range of
+ inputs, but skips over possibly undefined behaviour (e.g. int rollover).
+ Longdouble and CLongdouble are tested, but only using double precision.
+
+ If this test creates issues, it should possibly just be simplified
+ or even removed (checking whether unaligned/non-contiguous casts give
+ the same results is useful, though).
+ """
+ for to_dt in simple_dtype_instances():
+ to_dt = to_dt.values[0]
+ cast = get_castingimpl(type(from_dt), type(to_dt))
+
+ casting, (from_res, to_res), view_off = cast._resolve_descriptors(
+ (from_dt, to_dt))
+
+ if from_res is not from_dt or to_res is not to_dt:
+ # Do not test this case, it is handled in multiple steps,
+ # each of which should is tested individually.
+ return
+
+ safe = casting <= Casting.safe
+ del from_res, to_res, casting
+
+ arr1, arr2, values = self.get_data(from_dt, to_dt)
+
+ cast._simple_strided_call((arr1, arr2))
+
+ # Check via python list
+ assert arr2.tolist() == values
+
+ # Check that the same results are achieved for strided loops
+ arr1_o, arr2_o = self.get_data_variation(arr1, arr2, True, False)
+ cast._simple_strided_call((arr1_o, arr2_o))
+
+ assert_array_equal(arr2_o, arr2)
+ assert arr2_o.tobytes() == arr2.tobytes()
+
+ # Check if alignment makes a difference, but only if supported
+ # and only if the alignment can be wrong
+ if ((from_dt.alignment == 1 and to_dt.alignment == 1) or
+ not cast._supports_unaligned):
+ return
+
+ arr1_o, arr2_o = self.get_data_variation(arr1, arr2, False, True)
+ cast._simple_strided_call((arr1_o, arr2_o))
+
+ assert_array_equal(arr2_o, arr2)
+ assert arr2_o.tobytes() == arr2.tobytes()
+
+ arr1_o, arr2_o = self.get_data_variation(arr1, arr2, False, False)
+ cast._simple_strided_call((arr1_o, arr2_o))
+
+ assert_array_equal(arr2_o, arr2)
+ assert arr2_o.tobytes() == arr2.tobytes()
+
+ del arr1_o, arr2_o, cast
+
+ @pytest.mark.parametrize("from_Dt", simple_dtypes)
+ def test_numeric_to_times(self, from_Dt):
+ # We currently only implement contiguous loops, so only need to
+ # test those.
+ from_dt = from_Dt()
+
+ time_dtypes = [np.dtype("M8"), np.dtype("M8[ms]"), np.dtype("M8[4D]"),
+ np.dtype("m8"), np.dtype("m8[ms]"), np.dtype("m8[4D]")]
+ for time_dt in time_dtypes:
+ cast = get_castingimpl(type(from_dt), type(time_dt))
+
+ casting, (from_res, to_res), view_off = cast._resolve_descriptors(
+ (from_dt, time_dt))
+
+ assert from_res is from_dt
+ assert to_res is time_dt
+ del from_res, to_res
+
+ assert casting & CAST_TABLE[from_Dt][type(time_dt)]
+ assert view_off is None
+
+ int64_dt = np.dtype(np.int64)
+ arr1, arr2, values = self.get_data(from_dt, int64_dt)
+ arr2 = arr2.view(time_dt)
+ arr2[...] = np.datetime64("NaT")
+
+ if time_dt == np.dtype("M8"):
+ # This is a bit of a strange path, and could probably be removed
+ arr1[-1] = 0 # ensure at least one value is not NaT
+
+ # The cast currently succeeds, but the values are invalid:
+ cast._simple_strided_call((arr1, arr2))
+ with pytest.raises(ValueError):
+ str(arr2[-1]) # e.g. conversion to string fails
+ return
+
+ cast._simple_strided_call((arr1, arr2))
+
+ assert [int(v) for v in arr2.tolist()] == values
+
+ # Check that the same results are achieved for strided loops
+ arr1_o, arr2_o = self.get_data_variation(arr1, arr2, True, False)
+ cast._simple_strided_call((arr1_o, arr2_o))
+
+ assert_array_equal(arr2_o, arr2)
+ assert arr2_o.tobytes() == arr2.tobytes()
+
+ @pytest.mark.parametrize(
+ ["from_dt", "to_dt", "expected_casting", "expected_view_off",
+ "nom", "denom"],
+ [("M8[ns]", None, Casting.no, 0, 1, 1),
+ (str(np.dtype("M8[ns]").newbyteorder()), None,
+ Casting.equiv, None, 1, 1),
+ ("M8", "M8[ms]", Casting.safe, 0, 1, 1),
+ # should be invalid cast:
+ ("M8[ms]", "M8", Casting.unsafe, None, 1, 1),
+ ("M8[5ms]", "M8[5ms]", Casting.no, 0, 1, 1),
+ ("M8[ns]", "M8[ms]", Casting.same_kind, None, 1, 10**6),
+ ("M8[ms]", "M8[ns]", Casting.safe, None, 10**6, 1),
+ ("M8[ms]", "M8[7ms]", Casting.same_kind, None, 1, 7),
+ ("M8[4D]", "M8[1M]", Casting.same_kind, None, None,
+ # give full values based on NumPy 1.19.x
+ [-2**63, 0, -1, 1314, -1315, 564442610]),
+ ("m8[ns]", None, Casting.no, 0, 1, 1),
+ (str(np.dtype("m8[ns]").newbyteorder()), None,
+ Casting.equiv, None, 1, 1),
+ ("m8", "m8[ms]", Casting.safe, 0, 1, 1),
+ # should be invalid cast:
+ ("m8[ms]", "m8", Casting.unsafe, None, 1, 1),
+ ("m8[5ms]", "m8[5ms]", Casting.no, 0, 1, 1),
+ ("m8[ns]", "m8[ms]", Casting.same_kind, None, 1, 10**6),
+ ("m8[ms]", "m8[ns]", Casting.safe, None, 10**6, 1),
+ ("m8[ms]", "m8[7ms]", Casting.same_kind, None, 1, 7),
+ ("m8[4D]", "m8[1M]", Casting.unsafe, None, None,
+ # give full values based on NumPy 1.19.x
+ [-2**63, 0, 0, 1314, -1315, 564442610])])
+ def test_time_to_time(self, from_dt, to_dt,
+ expected_casting, expected_view_off,
+ nom, denom):
+ from_dt = np.dtype(from_dt)
+ if to_dt is not None:
+ to_dt = np.dtype(to_dt)
+
+ # Test a few values for casting (results generated with NumPy 1.19)
+ values = np.array([-2**63, 1, 2**63 - 1, 10000, -10000, 2**32])
+ values = values.astype(np.dtype("int64").newbyteorder(from_dt.byteorder))
+ assert values.dtype.byteorder == from_dt.byteorder
+ assert np.isnat(values.view(from_dt)[0])
+
+ DType = type(from_dt)
+ cast = get_castingimpl(DType, DType)
+ casting, (from_res, to_res), view_off = cast._resolve_descriptors(
+ (from_dt, to_dt))
+ assert from_res is from_dt
+ assert to_res is to_dt or to_dt is None
+ assert casting == expected_casting
+ assert view_off == expected_view_off
+
+ if nom is not None:
+ expected_out = (values * nom // denom).view(to_res)
+ expected_out[0] = "NaT"
+ else:
+ expected_out = np.empty_like(values)
+ expected_out[...] = denom
+ expected_out = expected_out.view(to_dt)
+
+ orig_arr = values.view(from_dt)
+ orig_out = np.empty_like(expected_out)
+
+ if casting == Casting.unsafe and (to_dt == "m8" or to_dt == "M8"): # noqa: PLR1714
+ # Casting from non-generic to generic units is an error and should
+ # probably be reported as an invalid cast earlier.
+ with pytest.raises(ValueError):
+ cast._simple_strided_call((orig_arr, orig_out))
+ return
+
+ for aligned in [True, True]:
+ for contig in [True, True]:
+ arr, out = self.get_data_variation(
+ orig_arr, orig_out, aligned, contig)
+ out[...] = 0
+ cast._simple_strided_call((arr, out))
+ assert_array_equal(out.view("int64"), expected_out.view("int64"))
+
+ def string_with_modified_length(self, dtype, change_length):
+ fact = 1 if dtype.char == "S" else 4
+ length = dtype.itemsize // fact + change_length
+ return np.dtype(f"{dtype.byteorder}{dtype.char}{length}")
+
+ @pytest.mark.parametrize("other_DT", simple_dtypes)
+ @pytest.mark.parametrize("string_char", ["S", "U"])
+ def test_string_cancast(self, other_DT, string_char):
+ fact = 1 if string_char == "S" else 4
+
+ string_DT = type(np.dtype(string_char))
+ cast = get_castingimpl(other_DT, string_DT)
+
+ other_dt = other_DT()
+ expected_length = get_expected_stringlength(other_dt)
+ string_dt = np.dtype(f"{string_char}{expected_length}")
+
+ safety, (res_other_dt, res_dt), view_off = cast._resolve_descriptors(
+ (other_dt, None))
+ assert res_dt.itemsize == expected_length * fact
+ assert safety == Casting.safe # we consider to string casts "safe"
+ assert view_off is None
+ assert isinstance(res_dt, string_DT)
+
+ # These casts currently implement changing the string length, so
+ # check the cast-safety for too long/fixed string lengths:
+ for change_length in [-1, 0, 1]:
+ if change_length >= 0:
+ expected_safety = Casting.safe
+ else:
+ expected_safety = Casting.same_kind
+
+ to_dt = self.string_with_modified_length(string_dt, change_length)
+ safety, (_, res_dt), view_off = cast._resolve_descriptors(
+ (other_dt, to_dt))
+ assert res_dt is to_dt
+ assert safety == expected_safety
+ assert view_off is None
+
+ # The opposite direction is always considered unsafe:
+ cast = get_castingimpl(string_DT, other_DT)
+
+ safety, _, view_off = cast._resolve_descriptors((string_dt, other_dt))
+ assert safety == Casting.unsafe
+ assert view_off is None
+
+ cast = get_castingimpl(string_DT, other_DT)
+ safety, (_, res_dt), view_off = cast._resolve_descriptors(
+ (string_dt, None))
+ assert safety == Casting.unsafe
+ assert view_off is None
+ assert other_dt is res_dt # returns the singleton for simple dtypes
+
+ @pytest.mark.parametrize("string_char", ["S", "U"])
+ @pytest.mark.parametrize("other_dt", simple_dtype_instances())
+ def test_simple_string_casts_roundtrip(self, other_dt, string_char):
+ """
+ Tests casts from and to string by checking the roundtripping property.
+
+ The test also covers some string to string casts (but not all).
+
+ If this test creates issues, it should possibly just be simplified
+ or even removed (checking whether unaligned/non-contiguous casts give
+ the same results is useful, though).
+ """
+ string_DT = type(np.dtype(string_char))
+
+ cast = get_castingimpl(type(other_dt), string_DT)
+ cast_back = get_castingimpl(string_DT, type(other_dt))
+ _, (res_other_dt, string_dt), _ = cast._resolve_descriptors(
+ (other_dt, None))
+
+ if res_other_dt is not other_dt:
+ # do not support non-native byteorder, skip test in that case
+ assert other_dt.byteorder != res_other_dt.byteorder
+ return
+
+ orig_arr, values = self.get_data(other_dt, None)
+ str_arr = np.zeros(len(orig_arr), dtype=string_dt)
+ string_dt_short = self.string_with_modified_length(string_dt, -1)
+ str_arr_short = np.zeros(len(orig_arr), dtype=string_dt_short)
+ string_dt_long = self.string_with_modified_length(string_dt, 1)
+ str_arr_long = np.zeros(len(orig_arr), dtype=string_dt_long)
+
+ assert not cast._supports_unaligned # if support is added, should test
+ assert not cast_back._supports_unaligned
+
+ for contig in [True, False]:
+ other_arr, str_arr = self.get_data_variation(
+ orig_arr, str_arr, True, contig)
+ _, str_arr_short = self.get_data_variation(
+ orig_arr, str_arr_short.copy(), True, contig)
+ _, str_arr_long = self.get_data_variation(
+ orig_arr, str_arr_long, True, contig)
+
+ cast._simple_strided_call((other_arr, str_arr))
+
+ cast._simple_strided_call((other_arr, str_arr_short))
+ assert_array_equal(str_arr.astype(string_dt_short), str_arr_short)
+
+ cast._simple_strided_call((other_arr, str_arr_long))
+ assert_array_equal(str_arr, str_arr_long)
+
+ if other_dt.kind == "b":
+ # Booleans do not roundtrip
+ continue
+
+ other_arr[...] = 0
+ cast_back._simple_strided_call((str_arr, other_arr))
+ assert_array_equal(orig_arr, other_arr)
+
+ other_arr[...] = 0
+ cast_back._simple_strided_call((str_arr_long, other_arr))
+ assert_array_equal(orig_arr, other_arr)
+
+ @pytest.mark.parametrize("other_dt", ["S8", "<U8", ">U8"])
+ @pytest.mark.parametrize("string_char", ["S", "U"])
+ def test_string_to_string_cancast(self, other_dt, string_char):
+ other_dt = np.dtype(other_dt)
+
+ fact = 1 if string_char == "S" else 4
+ div = 1 if other_dt.char == "S" else 4
+
+ string_DT = type(np.dtype(string_char))
+ cast = get_castingimpl(type(other_dt), string_DT)
+
+ expected_length = other_dt.itemsize // div
+ string_dt = np.dtype(f"{string_char}{expected_length}")
+
+ safety, (res_other_dt, res_dt), view_off = cast._resolve_descriptors(
+ (other_dt, None))
+ assert res_dt.itemsize == expected_length * fact
+ assert isinstance(res_dt, string_DT)
+
+ expected_view_off = None
+ if other_dt.char == string_char:
+ if other_dt.isnative:
+ expected_safety = Casting.no
+ expected_view_off = 0
+ else:
+ expected_safety = Casting.equiv
+ elif string_char == "U":
+ expected_safety = Casting.safe
+ else:
+ expected_safety = Casting.unsafe
+
+ assert view_off == expected_view_off
+ assert expected_safety == safety
+
+ for change_length in [-1, 0, 1]:
+ to_dt = self.string_with_modified_length(string_dt, change_length)
+ safety, (_, res_dt), view_off = cast._resolve_descriptors(
+ (other_dt, to_dt))
+
+ assert res_dt is to_dt
+ if change_length <= 0:
+ assert view_off == expected_view_off
+ else:
+ assert view_off is None
+ if expected_safety == Casting.unsafe:
+ assert safety == expected_safety
+ elif change_length < 0:
+ assert safety == Casting.same_kind
+ elif change_length == 0:
+ assert safety == expected_safety
+ elif change_length > 0:
+ assert safety == Casting.safe
+
+ @pytest.mark.parametrize("order1", [">", "<"])
+ @pytest.mark.parametrize("order2", [">", "<"])
+ def test_unicode_byteswapped_cast(self, order1, order2):
+ # Very specific tests (not using the castingimpl directly)
+ # that tests unicode bytedwaps including for unaligned array data.
+ dtype1 = np.dtype(f"{order1}U30")
+ dtype2 = np.dtype(f"{order2}U30")
+ data1 = np.empty(30 * 4 + 1, dtype=np.uint8)[1:].view(dtype1)
+ data2 = np.empty(30 * 4 + 1, dtype=np.uint8)[1:].view(dtype2)
+ if dtype1.alignment != 1:
+ # alignment should always be >1, but skip the check if not
+ assert not data1.flags.aligned
+ assert not data2.flags.aligned
+
+ element = "this is a ünicode string‽"
+ data1[()] = element
+ # Test both `data1` and `data1.copy()` (which should be aligned)
+ for data in [data1, data1.copy()]:
+ data2[...] = data1
+ assert data2[()] == element
+ assert data2.copy()[()] == element
+
+ def test_void_to_string_special_case(self):
+ # Cover a small special case in void to string casting that could
+ # probably just as well be turned into an error (compare
+ # `test_object_to_parametric_internal_error` below).
+ assert np.array([], dtype="V5").astype("S").dtype.itemsize == 5
+ assert np.array([], dtype="V5").astype("U").dtype.itemsize == 4 * 5
+
+ def test_object_to_parametric_internal_error(self):
+ # We reject casting from object to a parametric type, without
+ # figuring out the correct instance first.
+ object_dtype = type(np.dtype(object))
+ other_dtype = type(np.dtype(str))
+ cast = get_castingimpl(object_dtype, other_dtype)
+ with pytest.raises(TypeError,
+ match="casting from object to the parametric DType"):
+ cast._resolve_descriptors((np.dtype("O"), None))
+
+ @pytest.mark.parametrize("dtype", simple_dtype_instances())
+ def test_object_and_simple_resolution(self, dtype):
+ # Simple test to exercise the cast when no instance is specified
+ object_dtype = type(np.dtype(object))
+ cast = get_castingimpl(object_dtype, type(dtype))
+
+ safety, (_, res_dt), view_off = cast._resolve_descriptors(
+ (np.dtype("O"), dtype))
+ assert safety == Casting.unsafe
+ assert view_off is None
+ assert res_dt is dtype
+
+ safety, (_, res_dt), view_off = cast._resolve_descriptors(
+ (np.dtype("O"), None))
+ assert safety == Casting.unsafe
+ assert view_off is None
+ assert res_dt == dtype.newbyteorder("=")
+
+ @pytest.mark.parametrize("dtype", simple_dtype_instances())
+ def test_simple_to_object_resolution(self, dtype):
+ # Simple test to exercise the cast when no instance is specified
+ object_dtype = type(np.dtype(object))
+ cast = get_castingimpl(type(dtype), object_dtype)
+
+ safety, (_, res_dt), view_off = cast._resolve_descriptors(
+ (dtype, None))
+ assert safety == Casting.safe
+ assert view_off is None
+ assert res_dt is np.dtype("O")
+
+ @pytest.mark.parametrize("casting", ["no", "unsafe"])
+ def test_void_and_structured_with_subarray(self, casting):
+ # test case corresponding to gh-19325
+ dtype = np.dtype([("foo", "<f4", (3, 2))])
+ expected = casting == "unsafe"
+ assert np.can_cast("V4", dtype, casting=casting) == expected
+ assert np.can_cast(dtype, "V4", casting=casting) == expected
+
+ @pytest.mark.parametrize(["to_dt", "expected_off"],
+ [ # Same as `from_dt` but with both fields shifted:
+ (np.dtype({"names": ["a", "b"], "formats": ["i4", "f4"],
+ "offsets": [0, 4]}), 2),
+ # Additional change of the names
+ (np.dtype({"names": ["b", "a"], "formats": ["i4", "f4"],
+ "offsets": [0, 4]}), 2),
+ # Incompatible field offset change
+ (np.dtype({"names": ["b", "a"], "formats": ["i4", "f4"],
+ "offsets": [0, 6]}), None)])
+ def test_structured_field_offsets(self, to_dt, expected_off):
+ # This checks the cast-safety and view offset for swapped and "shifted"
+ # fields which are viewable
+ from_dt = np.dtype({"names": ["a", "b"],
+ "formats": ["i4", "f4"],
+ "offsets": [2, 6]})
+ cast = get_castingimpl(type(from_dt), type(to_dt))
+ safety, _, view_off = cast._resolve_descriptors((from_dt, to_dt))
+ if from_dt.names == to_dt.names:
+ assert safety == Casting.equiv
+ else:
+ assert safety == Casting.safe
+ # Shifting the original data pointer by -2 will align both by
+ # effectively adding 2 bytes of spacing before `from_dt`.
+ assert view_off == expected_off
+
+ @pytest.mark.parametrize(("from_dt", "to_dt", "expected_off"), [
+ # Subarray cases:
+ ("i", "(1,1)i", 0),
+ ("(1,1)i", "i", 0),
+ ("(2,1)i", "(2,1)i", 0),
+ # field cases (field to field is tested explicitly also):
+ # Not considered viewable, because a negative offset would allow
+ # may structured dtype to indirectly access invalid memory.
+ ("i", {"names": ["a"], "formats": ["i"], "offsets": [2]}, None),
+ ({"names": ["a"], "formats": ["i"], "offsets": [2]}, "i", 2),
+ # Currently considered not viewable, due to multiple fields
+ # even though they overlap (maybe we should not allow that?)
+ ("i", {"names": ["a", "b"], "formats": ["i", "i"], "offsets": [2, 2]},
+ None),
+ # different number of fields can't work, should probably just fail
+ # so it never reports "viewable":
+ ("i,i", "i,i,i", None),
+ # Unstructured void cases:
+ ("i4", "V3", 0), # void smaller or equal
+ ("i4", "V4", 0), # void smaller or equal
+ ("i4", "V10", None), # void is larger (no view)
+ ("O", "V4", None), # currently reject objects for view here.
+ ("O", "V8", None), # currently reject objects for view here.
+ ("V4", "V3", 0),
+ ("V4", "V4", 0),
+ ("V3", "V4", None),
+ # Note that currently void-to-other cast goes via byte-strings
+ # and is not a "view" based cast like the opposite direction:
+ ("V4", "i4", None),
+ # completely invalid/impossible cast:
+ ("i,i", "i,i,i", None),
+ ])
+ def test_structured_view_offsets_parametric(
+ self, from_dt, to_dt, expected_off):
+ # TODO: While this test is fairly thorough, right now, it does not
+ # really test some paths that may have nonzero offsets (they don't
+ # really exists).
+ from_dt = np.dtype(from_dt)
+ to_dt = np.dtype(to_dt)
+ cast = get_castingimpl(type(from_dt), type(to_dt))
+ _, _, view_off = cast._resolve_descriptors((from_dt, to_dt))
+ assert view_off == expected_off
+
+ @pytest.mark.parametrize("dtype", np.typecodes["All"])
+ def test_object_casts_NULL_None_equivalence(self, dtype):
+ # None to <other> casts may succeed or fail, but a NULL'ed array must
+ # behave the same as one filled with None's.
+ arr_normal = np.array([None] * 5)
+ arr_NULLs = np.empty_like(arr_normal)
+ ctypes.memset(arr_NULLs.ctypes.data, 0, arr_NULLs.nbytes)
+ # If the check fails (maybe it should) the test would lose its purpose:
+ assert arr_NULLs.tobytes() == b"\x00" * arr_NULLs.nbytes
+
+ try:
+ expected = arr_normal.astype(dtype)
+ except TypeError:
+ with pytest.raises(TypeError):
+ arr_NULLs.astype(dtype)
+ else:
+ assert_array_equal(expected, arr_NULLs.astype(dtype))
+
+ @pytest.mark.parametrize("dtype",
+ np.typecodes["AllInteger"] + np.typecodes["AllFloat"])
+ def test_nonstandard_bool_to_other(self, dtype):
+ # simple test for casting bool_ to numeric types, which should not
+ # expose the detail that NumPy bools can sometimes take values other
+ # than 0 and 1. See also gh-19514.
+ nonstandard_bools = np.array([0, 3, -7], dtype=np.int8).view(bool)
+ res = nonstandard_bools.astype(dtype)
+ expected = [0, 1, 1]
+ assert_array_equal(res, expected)
diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_conversion_utils.py b/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_conversion_utils.py
new file mode 100644
index 0000000..03ba339
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_conversion_utils.py
@@ -0,0 +1,206 @@
+"""
+Tests for numpy/_core/src/multiarray/conversion_utils.c
+"""
+import re
+
+import numpy._core._multiarray_tests as mt
+import pytest
+
+from numpy._core.multiarray import CLIP, RAISE, WRAP
+from numpy.testing import assert_raises
+
+
+class StringConverterTestCase:
+ allow_bytes = True
+ case_insensitive = True
+ exact_match = False
+ warn = True
+
+ def _check_value_error(self, val):
+ pattern = fr'\(got {re.escape(repr(val))}\)'
+ with pytest.raises(ValueError, match=pattern) as exc:
+ self.conv(val)
+
+ def _check_conv_assert_warn(self, val, expected):
+ if self.warn:
+ with assert_raises(ValueError) as exc:
+ assert self.conv(val) == expected
+ else:
+ assert self.conv(val) == expected
+
+ def _check(self, val, expected):
+ """Takes valid non-deprecated inputs for converters,
+ runs converters on inputs, checks correctness of outputs,
+ warnings and errors"""
+ assert self.conv(val) == expected
+
+ if self.allow_bytes:
+ assert self.conv(val.encode('ascii')) == expected
+ else:
+ with pytest.raises(TypeError):
+ self.conv(val.encode('ascii'))
+
+ if len(val) != 1:
+ if self.exact_match:
+ self._check_value_error(val[:1])
+ self._check_value_error(val + '\0')
+ else:
+ self._check_conv_assert_warn(val[:1], expected)
+
+ if self.case_insensitive:
+ if val != val.lower():
+ self._check_conv_assert_warn(val.lower(), expected)
+ if val != val.upper():
+ self._check_conv_assert_warn(val.upper(), expected)
+ else:
+ if val != val.lower():
+ self._check_value_error(val.lower())
+ if val != val.upper():
+ self._check_value_error(val.upper())
+
+ def test_wrong_type(self):
+ # common cases which apply to all the below
+ with pytest.raises(TypeError):
+ self.conv({})
+ with pytest.raises(TypeError):
+ self.conv([])
+
+ def test_wrong_value(self):
+ # nonsense strings
+ self._check_value_error('')
+ self._check_value_error('\N{greek small letter pi}')
+
+ if self.allow_bytes:
+ self._check_value_error(b'')
+ # bytes which can't be converted to strings via utf8
+ self._check_value_error(b"\xFF")
+ if self.exact_match:
+ self._check_value_error("there's no way this is supported")
+
+
+class TestByteorderConverter(StringConverterTestCase):
+ """ Tests of PyArray_ByteorderConverter """
+ conv = mt.run_byteorder_converter
+ warn = False
+
+ def test_valid(self):
+ for s in ['big', '>']:
+ self._check(s, 'NPY_BIG')
+ for s in ['little', '<']:
+ self._check(s, 'NPY_LITTLE')
+ for s in ['native', '=']:
+ self._check(s, 'NPY_NATIVE')
+ for s in ['ignore', '|']:
+ self._check(s, 'NPY_IGNORE')
+ for s in ['swap']:
+ self._check(s, 'NPY_SWAP')
+
+
+class TestSortkindConverter(StringConverterTestCase):
+ """ Tests of PyArray_SortkindConverter """
+ conv = mt.run_sortkind_converter
+ warn = False
+
+ def test_valid(self):
+ self._check('quicksort', 'NPY_QUICKSORT')
+ self._check('heapsort', 'NPY_HEAPSORT')
+ self._check('mergesort', 'NPY_STABLESORT') # alias
+ self._check('stable', 'NPY_STABLESORT')
+
+
+class TestSelectkindConverter(StringConverterTestCase):
+ """ Tests of PyArray_SelectkindConverter """
+ conv = mt.run_selectkind_converter
+ case_insensitive = False
+ exact_match = True
+
+ def test_valid(self):
+ self._check('introselect', 'NPY_INTROSELECT')
+
+
+class TestSearchsideConverter(StringConverterTestCase):
+ """ Tests of PyArray_SearchsideConverter """
+ conv = mt.run_searchside_converter
+
+ def test_valid(self):
+ self._check('left', 'NPY_SEARCHLEFT')
+ self._check('right', 'NPY_SEARCHRIGHT')
+
+
+class TestOrderConverter(StringConverterTestCase):
+ """ Tests of PyArray_OrderConverter """
+ conv = mt.run_order_converter
+ warn = False
+
+ def test_valid(self):
+ self._check('c', 'NPY_CORDER')
+ self._check('f', 'NPY_FORTRANORDER')
+ self._check('a', 'NPY_ANYORDER')
+ self._check('k', 'NPY_KEEPORDER')
+
+ def test_flatten_invalid_order(self):
+ # invalid after gh-14596
+ with pytest.raises(ValueError):
+ self.conv('Z')
+ for order in [False, True, 0, 8]:
+ with pytest.raises(TypeError):
+ self.conv(order)
+
+
+class TestClipmodeConverter(StringConverterTestCase):
+ """ Tests of PyArray_ClipmodeConverter """
+ conv = mt.run_clipmode_converter
+
+ def test_valid(self):
+ self._check('clip', 'NPY_CLIP')
+ self._check('wrap', 'NPY_WRAP')
+ self._check('raise', 'NPY_RAISE')
+
+ # integer values allowed here
+ assert self.conv(CLIP) == 'NPY_CLIP'
+ assert self.conv(WRAP) == 'NPY_WRAP'
+ assert self.conv(RAISE) == 'NPY_RAISE'
+
+
+class TestCastingConverter(StringConverterTestCase):
+ """ Tests of PyArray_CastingConverter """
+ conv = mt.run_casting_converter
+ case_insensitive = False
+ exact_match = True
+
+ def test_valid(self):
+ self._check("no", "NPY_NO_CASTING")
+ self._check("equiv", "NPY_EQUIV_CASTING")
+ self._check("safe", "NPY_SAFE_CASTING")
+ self._check("same_kind", "NPY_SAME_KIND_CASTING")
+ self._check("unsafe", "NPY_UNSAFE_CASTING")
+
+
+class TestIntpConverter:
+ """ Tests of PyArray_IntpConverter """
+ conv = mt.run_intp_converter
+
+ def test_basic(self):
+ assert self.conv(1) == (1,)
+ assert self.conv((1, 2)) == (1, 2)
+ assert self.conv([1, 2]) == (1, 2)
+ assert self.conv(()) == ()
+
+ def test_none(self):
+ with pytest.raises(TypeError):
+ assert self.conv(None) == ()
+
+ def test_float(self):
+ with pytest.raises(TypeError):
+ self.conv(1.0)
+ with pytest.raises(TypeError):
+ self.conv([1, 1.0])
+
+ def test_too_large(self):
+ with pytest.raises(ValueError):
+ self.conv(2**64)
+
+ def test_too_many_dims(self):
+ assert self.conv([1] * 64) == (1,) * 64
+ with pytest.raises(ValueError):
+ self.conv([1] * 65)
diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_cpu_dispatcher.py b/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_cpu_dispatcher.py
new file mode 100644
index 0000000..0a47685
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_cpu_dispatcher.py
@@ -0,0 +1,49 @@
+from numpy._core._multiarray_umath import (
+ __cpu_baseline__,
+ __cpu_dispatch__,
+ __cpu_features__,
+)
+
+from numpy._core import _umath_tests
+from numpy.testing import assert_equal
+
+
+def test_dispatcher():
+ """
+ Testing the utilities of the CPU dispatcher
+ """
+ targets = (
+ "SSE2", "SSE41", "AVX2",
+ "VSX", "VSX2", "VSX3",
+ "NEON", "ASIMD", "ASIMDHP",
+ "VX", "VXE", "LSX"
+ )
+ highest_sfx = "" # no suffix for the baseline
+ all_sfx = []
+ for feature in reversed(targets):
+ # skip baseline features, by the default `CCompilerOpt` do not generate separated objects
+ # for the baseline, just one object combined all of them via 'baseline' option
+ # within the configuration statements.
+ if feature in __cpu_baseline__:
+ continue
+ # check compiler and running machine support
+ if feature not in __cpu_dispatch__ or not __cpu_features__[feature]:
+ continue
+
+ if not highest_sfx:
+ highest_sfx = "_" + feature
+ all_sfx.append("func" + "_" + feature)
+
+ test = _umath_tests.test_dispatch()
+ assert_equal(test["func"], "func" + highest_sfx)
+ assert_equal(test["var"], "var" + highest_sfx)
+
+ if highest_sfx:
+ assert_equal(test["func_xb"], "func" + highest_sfx)
+ assert_equal(test["var_xb"], "var" + highest_sfx)
+ else:
+ assert_equal(test["func_xb"], "nobase")
+ assert_equal(test["var_xb"], "nobase")
+
+ all_sfx.append("func") # add the baseline
+ assert_equal(test["all"], all_sfx)
diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_cpu_features.py b/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_cpu_features.py
new file mode 100644
index 0000000..d1e3dc6
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_cpu_features.py
@@ -0,0 +1,432 @@
+import os
+import pathlib
+import platform
+import re
+import subprocess
+import sys
+
+import pytest
+from numpy._core._multiarray_umath import (
+ __cpu_baseline__,
+ __cpu_dispatch__,
+ __cpu_features__,
+)
+
+
+def assert_features_equal(actual, desired, fname):
+ __tracebackhide__ = True # Hide traceback for py.test
+ actual, desired = str(actual), str(desired)
+ if actual == desired:
+ return
+ detected = str(__cpu_features__).replace("'", "")
+ try:
+ with open("/proc/cpuinfo") as fd:
+ cpuinfo = fd.read(2048)
+ except Exception as err:
+ cpuinfo = str(err)
+
+ try:
+ import subprocess
+ auxv = subprocess.check_output(['/bin/true'], env={"LD_SHOW_AUXV": "1"})
+ auxv = auxv.decode()
+ except Exception as err:
+ auxv = str(err)
+
+ import textwrap
+ error_report = textwrap.indent(
+f"""
+###########################################
+### Extra debugging information
+###########################################
+-------------------------------------------
+--- NumPy Detections
+-------------------------------------------
+{detected}
+-------------------------------------------
+--- SYS / CPUINFO
+-------------------------------------------
+{cpuinfo}....
+-------------------------------------------
+--- SYS / AUXV
+-------------------------------------------
+{auxv}
+""", prefix='\r')
+
+ raise AssertionError((
+ "Failure Detection\n"
+ " NAME: '%s'\n"
+ " ACTUAL: %s\n"
+ " DESIRED: %s\n"
+ "%s"
+ ) % (fname, actual, desired, error_report))
+
+def _text_to_list(txt):
+ out = txt.strip("][\n").replace("'", "").split(', ')
+ return None if out[0] == "" else out
+
+class AbstractTest:
+ features = []
+ features_groups = {}
+ features_map = {}
+ features_flags = set()
+
+ def load_flags(self):
+ # a hook
+ pass
+
+ def test_features(self):
+ self.load_flags()
+ for gname, features in self.features_groups.items():
+ test_features = [self.cpu_have(f) for f in features]
+ assert_features_equal(__cpu_features__.get(gname), all(test_features), gname)
+
+ for feature_name in self.features:
+ cpu_have = self.cpu_have(feature_name)
+ npy_have = __cpu_features__.get(feature_name)
+ assert_features_equal(npy_have, cpu_have, feature_name)
+
+ def cpu_have(self, feature_name):
+ map_names = self.features_map.get(feature_name, feature_name)
+ if isinstance(map_names, str):
+ return map_names in self.features_flags
+ return any(f in self.features_flags for f in map_names)
+
+ def load_flags_cpuinfo(self, magic_key):
+ self.features_flags = self.get_cpuinfo_item(magic_key)
+
+ def get_cpuinfo_item(self, magic_key):
+ values = set()
+ with open('/proc/cpuinfo') as fd:
+ for line in fd:
+ if not line.startswith(magic_key):
+ continue
+ flags_value = [s.strip() for s in line.split(':', 1)]
+ if len(flags_value) == 2:
+ values = values.union(flags_value[1].upper().split())
+ return values
+
+ def load_flags_auxv(self):
+ auxv = subprocess.check_output(['/bin/true'], env={"LD_SHOW_AUXV": "1"})
+ for at in auxv.split(b'\n'):
+ if not at.startswith(b"AT_HWCAP"):
+ continue
+ hwcap_value = [s.strip() for s in at.split(b':', 1)]
+ if len(hwcap_value) == 2:
+ self.features_flags = self.features_flags.union(
+ hwcap_value[1].upper().decode().split()
+ )
+
+@pytest.mark.skipif(
+ sys.platform == 'emscripten',
+ reason=(
+ "The subprocess module is not available on WASM platforms and"
+ " therefore this test class cannot be properly executed."
+ ),
+)
+class TestEnvPrivation:
+ cwd = pathlib.Path(__file__).parent.resolve()
+ env = os.environ.copy()
+ _enable = os.environ.pop('NPY_ENABLE_CPU_FEATURES', None)
+ _disable = os.environ.pop('NPY_DISABLE_CPU_FEATURES', None)
+ SUBPROCESS_ARGS = {"cwd": cwd, "capture_output": True, "text": True, "check": True}
+ unavailable_feats = [
+ feat for feat in __cpu_dispatch__ if not __cpu_features__[feat]
+ ]
+ UNAVAILABLE_FEAT = (
+ None if len(unavailable_feats) == 0
+ else unavailable_feats[0]
+ )
+ BASELINE_FEAT = None if len(__cpu_baseline__) == 0 else __cpu_baseline__[0]
+ SCRIPT = """
+def main():
+ from numpy._core._multiarray_umath import (
+ __cpu_features__,
+ __cpu_dispatch__
+ )
+
+ detected = [feat for feat in __cpu_dispatch__ if __cpu_features__[feat]]
+ print(detected)
+
+if __name__ == "__main__":
+ main()
+ """
+
+ @pytest.fixture(autouse=True)
+ def setup_class(self, tmp_path_factory):
+ file = tmp_path_factory.mktemp("runtime_test_script")
+ file /= "_runtime_detect.py"
+ file.write_text(self.SCRIPT)
+ self.file = file
+
+ def _run(self):
+ return subprocess.run(
+ [sys.executable, self.file],
+ env=self.env,
+ **self.SUBPROCESS_ARGS,
+ )
+
+ # Helper function mimicking pytest.raises for subprocess call
+ def _expect_error(
+ self,
+ msg,
+ err_type,
+ no_error_msg="Failed to generate error"
+ ):
+ try:
+ self._run()
+ except subprocess.CalledProcessError as e:
+ assertion_message = f"Expected: {msg}\nGot: {e.stderr}"
+ assert re.search(msg, e.stderr), assertion_message
+
+ assertion_message = (
+ f"Expected error of type: {err_type}; see full "
+ f"error:\n{e.stderr}"
+ )
+ assert re.search(err_type, e.stderr), assertion_message
+ else:
+ assert False, no_error_msg
+
+ def setup_method(self):
+ """Ensure that the environment is reset"""
+ self.env = os.environ.copy()
+
+ def test_runtime_feature_selection(self):
+ """
+ Ensure that when selecting `NPY_ENABLE_CPU_FEATURES`, only the
+ features exactly specified are dispatched.
+ """
+
+ # Capture runtime-enabled features
+ out = self._run()
+ non_baseline_features = _text_to_list(out.stdout)
+
+ if non_baseline_features is None:
+ pytest.skip(
+ "No dispatchable features outside of baseline detected."
+ )
+ feature = non_baseline_features[0]
+
+ # Capture runtime-enabled features when `NPY_ENABLE_CPU_FEATURES` is
+ # specified
+ self.env['NPY_ENABLE_CPU_FEATURES'] = feature
+ out = self._run()
+ enabled_features = _text_to_list(out.stdout)
+
+ # Ensure that only one feature is enabled, and it is exactly the one
+ # specified by `NPY_ENABLE_CPU_FEATURES`
+ assert set(enabled_features) == {feature}
+
+ if len(non_baseline_features) < 2:
+ pytest.skip("Only one non-baseline feature detected.")
+ # Capture runtime-enabled features when `NPY_ENABLE_CPU_FEATURES` is
+ # specified
+ self.env['NPY_ENABLE_CPU_FEATURES'] = ",".join(non_baseline_features)
+ out = self._run()
+ enabled_features = _text_to_list(out.stdout)
+
+ # Ensure that both features are enabled, and they are exactly the ones
+ # specified by `NPY_ENABLE_CPU_FEATURES`
+ assert set(enabled_features) == set(non_baseline_features)
+
+ @pytest.mark.parametrize("enabled, disabled",
+ [
+ ("feature", "feature"),
+ ("feature", "same"),
+ ])
+ def test_both_enable_disable_set(self, enabled, disabled):
+ """
+ Ensure that when both environment variables are set then an
+ ImportError is thrown
+ """
+ self.env['NPY_ENABLE_CPU_FEATURES'] = enabled
+ self.env['NPY_DISABLE_CPU_FEATURES'] = disabled
+ msg = "Both NPY_DISABLE_CPU_FEATURES and NPY_ENABLE_CPU_FEATURES"
+ err_type = "ImportError"
+ self._expect_error(msg, err_type)
+
+ @pytest.mark.skipif(
+ not __cpu_dispatch__,
+ reason=(
+ "NPY_*_CPU_FEATURES only parsed if "
+ "`__cpu_dispatch__` is non-empty"
+ )
+ )
+ @pytest.mark.parametrize("action", ["ENABLE", "DISABLE"])
+ def test_variable_too_long(self, action):
+ """
+ Test that an error is thrown if the environment variables are too long
+ to be processed. Current limit is 1024, but this may change later.
+ """
+ MAX_VAR_LENGTH = 1024
+ # Actual length is MAX_VAR_LENGTH + 1 due to null-termination
+ self.env[f'NPY_{action}_CPU_FEATURES'] = "t" * MAX_VAR_LENGTH
+ msg = (
+ f"Length of environment variable 'NPY_{action}_CPU_FEATURES' is "
+ f"{MAX_VAR_LENGTH + 1}, only {MAX_VAR_LENGTH} accepted"
+ )
+ err_type = "RuntimeError"
+ self._expect_error(msg, err_type)
+
+ @pytest.mark.skipif(
+ not __cpu_dispatch__,
+ reason=(
+ "NPY_*_CPU_FEATURES only parsed if "
+ "`__cpu_dispatch__` is non-empty"
+ )
+ )
+ def test_impossible_feature_disable(self):
+ """
+ Test that a RuntimeError is thrown if an impossible feature-disabling
+ request is made. This includes disabling a baseline feature.
+ """
+
+ if self.BASELINE_FEAT is None:
+ pytest.skip("There are no unavailable features to test with")
+ bad_feature = self.BASELINE_FEAT
+ self.env['NPY_DISABLE_CPU_FEATURES'] = bad_feature
+ msg = (
+ f"You cannot disable CPU feature '{bad_feature}', since it is "
+ "part of the baseline optimizations"
+ )
+ err_type = "RuntimeError"
+ self._expect_error(msg, err_type)
+
+ def test_impossible_feature_enable(self):
+ """
+ Test that a RuntimeError is thrown if an impossible feature-enabling
+ request is made. This includes enabling a feature not supported by the
+ machine, or disabling a baseline optimization.
+ """
+
+ if self.UNAVAILABLE_FEAT is None:
+ pytest.skip("There are no unavailable features to test with")
+ bad_feature = self.UNAVAILABLE_FEAT
+ self.env['NPY_ENABLE_CPU_FEATURES'] = bad_feature
+ msg = (
+ f"You cannot enable CPU features \\({bad_feature}\\), since "
+ "they are not supported by your machine."
+ )
+ err_type = "RuntimeError"
+ self._expect_error(msg, err_type)
+
+ # Ensure that it fails even when providing garbage in addition
+ feats = f"{bad_feature}, Foobar"
+ self.env['NPY_ENABLE_CPU_FEATURES'] = feats
+ msg = (
+ f"You cannot enable CPU features \\({bad_feature}\\), since they "
+ "are not supported by your machine."
+ )
+ self._expect_error(msg, err_type)
+
+ if self.BASELINE_FEAT is not None:
+ # Ensure that only the bad feature gets reported
+ feats = f"{bad_feature}, {self.BASELINE_FEAT}"
+ self.env['NPY_ENABLE_CPU_FEATURES'] = feats
+ msg = (
+ f"You cannot enable CPU features \\({bad_feature}\\), since "
+ "they are not supported by your machine."
+ )
+ self._expect_error(msg, err_type)
+
+
+is_linux = sys.platform.startswith('linux')
+is_cygwin = sys.platform.startswith('cygwin')
+machine = platform.machine()
+is_x86 = re.match(r"^(amd64|x86|i386|i686)", machine, re.IGNORECASE)
+@pytest.mark.skipif(
+ not (is_linux or is_cygwin) or not is_x86, reason="Only for Linux and x86"
+)
+class Test_X86_Features(AbstractTest):
+ features = [
+ "MMX", "SSE", "SSE2", "SSE3", "SSSE3", "SSE41", "POPCNT", "SSE42",
+ "AVX", "F16C", "XOP", "FMA4", "FMA3", "AVX2", "AVX512F", "AVX512CD",
+ "AVX512ER", "AVX512PF", "AVX5124FMAPS", "AVX5124VNNIW", "AVX512VPOPCNTDQ",
+ "AVX512VL", "AVX512BW", "AVX512DQ", "AVX512VNNI", "AVX512IFMA",
+ "AVX512VBMI", "AVX512VBMI2", "AVX512BITALG", "AVX512FP16",
+ ]
+ features_groups = {
+ "AVX512_KNL": ["AVX512F", "AVX512CD", "AVX512ER", "AVX512PF"],
+ "AVX512_KNM": ["AVX512F", "AVX512CD", "AVX512ER", "AVX512PF", "AVX5124FMAPS",
+ "AVX5124VNNIW", "AVX512VPOPCNTDQ"],
+ "AVX512_SKX": ["AVX512F", "AVX512CD", "AVX512BW", "AVX512DQ", "AVX512VL"],
+ "AVX512_CLX": ["AVX512F", "AVX512CD", "AVX512BW", "AVX512DQ", "AVX512VL", "AVX512VNNI"],
+ "AVX512_CNL": ["AVX512F", "AVX512CD", "AVX512BW", "AVX512DQ", "AVX512VL", "AVX512IFMA",
+ "AVX512VBMI"],
+ "AVX512_ICL": ["AVX512F", "AVX512CD", "AVX512BW", "AVX512DQ", "AVX512VL", "AVX512IFMA",
+ "AVX512VBMI", "AVX512VNNI", "AVX512VBMI2", "AVX512BITALG", "AVX512VPOPCNTDQ"],
+ "AVX512_SPR": ["AVX512F", "AVX512CD", "AVX512BW", "AVX512DQ",
+ "AVX512VL", "AVX512IFMA", "AVX512VBMI", "AVX512VNNI",
+ "AVX512VBMI2", "AVX512BITALG", "AVX512VPOPCNTDQ",
+ "AVX512FP16"],
+ }
+ features_map = {
+ "SSE3": "PNI", "SSE41": "SSE4_1", "SSE42": "SSE4_2", "FMA3": "FMA",
+ "AVX512VNNI": "AVX512_VNNI", "AVX512BITALG": "AVX512_BITALG",
+ "AVX512VBMI2": "AVX512_VBMI2", "AVX5124FMAPS": "AVX512_4FMAPS",
+ "AVX5124VNNIW": "AVX512_4VNNIW", "AVX512VPOPCNTDQ": "AVX512_VPOPCNTDQ",
+ "AVX512FP16": "AVX512_FP16",
+ }
+
+ def load_flags(self):
+ self.load_flags_cpuinfo("flags")
+
+
+is_power = re.match(r"^(powerpc|ppc)64", machine, re.IGNORECASE)
+@pytest.mark.skipif(not is_linux or not is_power, reason="Only for Linux and Power")
+class Test_POWER_Features(AbstractTest):
+ features = ["VSX", "VSX2", "VSX3", "VSX4"]
+ features_map = {"VSX2": "ARCH_2_07", "VSX3": "ARCH_3_00", "VSX4": "ARCH_3_1"}
+
+ def load_flags(self):
+ self.load_flags_auxv()
+
+
+is_zarch = re.match(r"^(s390x)", machine, re.IGNORECASE)
+@pytest.mark.skipif(not is_linux or not is_zarch,
+ reason="Only for Linux and IBM Z")
+class Test_ZARCH_Features(AbstractTest):
+ features = ["VX", "VXE", "VXE2"]
+
+ def load_flags(self):
+ self.load_flags_auxv()
+
+
+is_arm = re.match(r"^(arm|aarch64)", machine, re.IGNORECASE)
+@pytest.mark.skipif(not is_linux or not is_arm, reason="Only for Linux and ARM")
+class Test_ARM_Features(AbstractTest):
+ features = [
+ "SVE", "NEON", "ASIMD", "FPHP", "ASIMDHP", "ASIMDDP", "ASIMDFHM"
+ ]
+ features_groups = {
+ "NEON_FP16": ["NEON", "HALF"],
+ "NEON_VFPV4": ["NEON", "VFPV4"],
+ }
+
+ def load_flags(self):
+ self.load_flags_cpuinfo("Features")
+ arch = self.get_cpuinfo_item("CPU architecture")
+ # in case of mounting virtual filesystem of aarch64 kernel without linux32
+ is_rootfs_v8 = (
+ not re.match(r"^armv[0-9]+l$", machine) and
+ (int('0' + next(iter(arch))) > 7 if arch else 0)
+ )
+ if re.match(r"^(aarch64|AARCH64)", machine) or is_rootfs_v8:
+ self.features_map = {
+ "NEON": "ASIMD", "HALF": "ASIMD", "VFPV4": "ASIMD"
+ }
+ else:
+ self.features_map = {
+ # ELF auxiliary vector and /proc/cpuinfo on Linux kernel(armv8 aarch32)
+ # doesn't provide information about ASIMD, so we assume that ASIMD is supported
+ # if the kernel reports any one of the following ARM8 features.
+ "ASIMD": ("AES", "SHA1", "SHA2", "PMULL", "CRC32")
+ }
+
+
+is_loongarch = re.match(r"^(loongarch)", machine, re.IGNORECASE)
+@pytest.mark.skipif(not is_linux or not is_loongarch, reason="Only for Linux and LoongArch")
+class Test_LOONGARCH_Features(AbstractTest):
+ features = ["LSX"]
+
+ def load_flags(self):
+ self.load_flags_cpuinfo("Features")
diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_custom_dtypes.py b/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_custom_dtypes.py
new file mode 100644
index 0000000..66e6de3
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_custom_dtypes.py
@@ -0,0 +1,315 @@
+from tempfile import NamedTemporaryFile
+
+import pytest
+from numpy._core._multiarray_umath import (
+ _discover_array_parameters as discover_array_params,
+)
+from numpy._core._multiarray_umath import _get_sfloat_dtype
+
+import numpy as np
+from numpy.testing import assert_array_equal
+
+SF = _get_sfloat_dtype()
+
+
+class TestSFloat:
+ def _get_array(self, scaling, aligned=True):
+ if not aligned:
+ a = np.empty(3 * 8 + 1, dtype=np.uint8)[1:]
+ a = a.view(np.float64)
+ a[:] = [1., 2., 3.]
+ else:
+ a = np.array([1., 2., 3.])
+
+ a *= 1. / scaling # the casting code also uses the reciprocal.
+ return a.view(SF(scaling))
+
+ def test_sfloat_rescaled(self):
+ sf = SF(1.)
+ sf2 = sf.scaled_by(2.)
+ assert sf2.get_scaling() == 2.
+ sf6 = sf2.scaled_by(3.)
+ assert sf6.get_scaling() == 6.
+
+ def test_class_discovery(self):
+ # This does not test much, since we always discover the scaling as 1.
+ # But most of NumPy (when writing) does not understand DType classes
+ dt, _ = discover_array_params([1., 2., 3.], dtype=SF)
+ assert dt == SF(1.)
+
+ @pytest.mark.parametrize("scaling", [1., -1., 2.])
+ def test_scaled_float_from_floats(self, scaling):
+ a = np.array([1., 2., 3.], dtype=SF(scaling))
+
+ assert a.dtype.get_scaling() == scaling
+ assert_array_equal(scaling * a.view(np.float64), [1., 2., 3.])
+
+ def test_repr(self):
+ # Check the repr, mainly to cover the code paths:
+ assert repr(SF(scaling=1.)) == "_ScaledFloatTestDType(scaling=1.0)"
+
+ def test_dtype_str(self):
+ assert SF(1.).str == "_ScaledFloatTestDType(scaling=1.0)"
+
+ def test_dtype_name(self):
+ assert SF(1.).name == "_ScaledFloatTestDType64"
+
+ def test_sfloat_structured_dtype_printing(self):
+ dt = np.dtype([("id", int), ("value", SF(0.5))])
+ # repr of structured dtypes need special handling because the
+ # implementation bypasses the object repr
+ assert "('value', '_ScaledFloatTestDType64')" in repr(dt)
+
+ @pytest.mark.parametrize("scaling", [1., -1., 2.])
+ def test_sfloat_from_float(self, scaling):
+ a = np.array([1., 2., 3.]).astype(dtype=SF(scaling))
+
+ assert a.dtype.get_scaling() == scaling
+ assert_array_equal(scaling * a.view(np.float64), [1., 2., 3.])
+
+ @pytest.mark.parametrize("aligned", [True, False])
+ @pytest.mark.parametrize("scaling", [1., -1., 2.])
+ def test_sfloat_getitem(self, aligned, scaling):
+ a = self._get_array(1., aligned)
+ assert a.tolist() == [1., 2., 3.]
+
+ @pytest.mark.parametrize("aligned", [True, False])
+ def test_sfloat_casts(self, aligned):
+ a = self._get_array(1., aligned)
+
+ assert np.can_cast(a, SF(-1.), casting="equiv")
+ assert not np.can_cast(a, SF(-1.), casting="no")
+ na = a.astype(SF(-1.))
+ assert_array_equal(-1 * na.view(np.float64), a.view(np.float64))
+
+ assert np.can_cast(a, SF(2.), casting="same_kind")
+ assert not np.can_cast(a, SF(2.), casting="safe")
+ a2 = a.astype(SF(2.))
+ assert_array_equal(2 * a2.view(np.float64), a.view(np.float64))
+
+ @pytest.mark.parametrize("aligned", [True, False])
+ def test_sfloat_cast_internal_errors(self, aligned):
+ a = self._get_array(2e300, aligned)
+
+ with pytest.raises(TypeError,
+ match="error raised inside the core-loop: non-finite factor!"):
+ a.astype(SF(2e-300))
+
+ def test_sfloat_promotion(self):
+ assert np.result_type(SF(2.), SF(3.)) == SF(3.)
+ assert np.result_type(SF(3.), SF(2.)) == SF(3.)
+ # Float64 -> SF(1.) and then promotes normally, so both of this work:
+ assert np.result_type(SF(3.), np.float64) == SF(3.)
+ assert np.result_type(np.float64, SF(0.5)) == SF(1.)
+
+ # Test an undefined promotion:
+ with pytest.raises(TypeError):
+ np.result_type(SF(1.), np.int64)
+
+ def test_basic_multiply(self):
+ a = self._get_array(2.)
+ b = self._get_array(4.)
+
+ res = a * b
+ # multiplies dtype scaling and content separately:
+ assert res.dtype.get_scaling() == 8.
+ expected_view = a.view(np.float64) * b.view(np.float64)
+ assert_array_equal(res.view(np.float64), expected_view)
+
+ def test_possible_and_impossible_reduce(self):
+ # For reductions to work, the first and last operand must have the
+ # same dtype. For this parametric DType that is not necessarily true.
+ a = self._get_array(2.)
+ # Addition reduction works (as of writing requires to pass initial
+ # because setting a scaled-float from the default `0` fails).
+ res = np.add.reduce(a, initial=0.)
+ assert res == a.astype(np.float64).sum()
+
+ # But each multiplication changes the factor, so a reduction is not
+ # possible (the relaxed version of the old refusal to handle any
+ # flexible dtype).
+ with pytest.raises(TypeError,
+ match="the resolved dtypes are not compatible"):
+ np.multiply.reduce(a)
+
+ def test_basic_ufunc_at(self):
+ float_a = np.array([1., 2., 3.])
+ b = self._get_array(2.)
+
+ float_b = b.view(np.float64).copy()
+ np.multiply.at(float_b, [1, 1, 1], float_a)
+ np.multiply.at(b, [1, 1, 1], float_a)
+
+ assert_array_equal(b.view(np.float64), float_b)
+
+ def test_basic_multiply_promotion(self):
+ float_a = np.array([1., 2., 3.])
+ b = self._get_array(2.)
+
+ res1 = float_a * b
+ res2 = b * float_a
+
+ # one factor is one, so we get the factor of b:
+ assert res1.dtype == res2.dtype == b.dtype
+ expected_view = float_a * b.view(np.float64)
+ assert_array_equal(res1.view(np.float64), expected_view)
+ assert_array_equal(res2.view(np.float64), expected_view)
+
+ # Check that promotion works when `out` is used:
+ np.multiply(b, float_a, out=res2)
+ with pytest.raises(TypeError):
+ # The promoter accepts this (maybe it should not), but the SFloat
+ # result cannot be cast to integer:
+ np.multiply(b, float_a, out=np.arange(3))
+
+ def test_basic_addition(self):
+ a = self._get_array(2.)
+ b = self._get_array(4.)
+
+ res = a + b
+ # addition uses the type promotion rules for the result:
+ assert res.dtype == np.result_type(a.dtype, b.dtype)
+ expected_view = (a.astype(res.dtype).view(np.float64) +
+ b.astype(res.dtype).view(np.float64))
+ assert_array_equal(res.view(np.float64), expected_view)
+
+ def test_addition_cast_safety(self):
+ """The addition method is special for the scaled float, because it
+ includes the "cast" between different factors, thus cast-safety
+ is influenced by the implementation.
+ """
+ a = self._get_array(2.)
+ b = self._get_array(-2.)
+ c = self._get_array(3.)
+
+ # sign change is "equiv":
+ np.add(a, b, casting="equiv")
+ with pytest.raises(TypeError):
+ np.add(a, b, casting="no")
+
+ # Different factor is "same_kind" (default) so check that "safe" fails
+ with pytest.raises(TypeError):
+ np.add(a, c, casting="safe")
+
+ # Check that casting the output fails also (done by the ufunc here)
+ with pytest.raises(TypeError):
+ np.add(a, a, out=c, casting="safe")
+
+ @pytest.mark.parametrize("ufunc",
+ [np.logical_and, np.logical_or, np.logical_xor])
+ def test_logical_ufuncs_casts_to_bool(self, ufunc):
+ a = self._get_array(2.)
+ a[0] = 0. # make sure first element is considered False.
+
+ float_equiv = a.astype(float)
+ expected = ufunc(float_equiv, float_equiv)
+ res = ufunc(a, a)
+ assert_array_equal(res, expected)
+
+ # also check that the same works for reductions:
+ expected = ufunc.reduce(float_equiv)
+ res = ufunc.reduce(a)
+ assert_array_equal(res, expected)
+
+ # The output casting does not match the bool, bool -> bool loop:
+ with pytest.raises(TypeError):
+ ufunc(a, a, out=np.empty(a.shape, dtype=int), casting="equiv")
+
+ def test_wrapped_and_wrapped_reductions(self):
+ a = self._get_array(2.)
+ float_equiv = a.astype(float)
+
+ expected = np.hypot(float_equiv, float_equiv)
+ res = np.hypot(a, a)
+ assert res.dtype == a.dtype
+ res_float = res.view(np.float64) * 2
+ assert_array_equal(res_float, expected)
+
+ # Also check reduction (keepdims, due to incorrect getitem)
+ res = np.hypot.reduce(a, keepdims=True)
+ assert res.dtype == a.dtype
+ expected = np.hypot.reduce(float_equiv, keepdims=True)
+ assert res.view(np.float64) * 2 == expected
+
+ def test_astype_class(self):
+ # Very simple test that we accept `.astype()` also on the class.
+ # ScaledFloat always returns the default descriptor, but it does
+ # check the relevant code paths.
+ arr = np.array([1., 2., 3.], dtype=object)
+
+ res = arr.astype(SF) # passing the class class
+ expected = arr.astype(SF(1.)) # above will have discovered 1. scaling
+ assert_array_equal(res.view(np.float64), expected.view(np.float64))
+
+ def test_creation_class(self):
+ # passing in a dtype class should return
+ # the default descriptor
+ arr1 = np.array([1., 2., 3.], dtype=SF)
+ assert arr1.dtype == SF(1.)
+ arr2 = np.array([1., 2., 3.], dtype=SF(1.))
+ assert_array_equal(arr1.view(np.float64), arr2.view(np.float64))
+ assert arr1.dtype == arr2.dtype
+
+ assert np.empty(3, dtype=SF).dtype == SF(1.)
+ assert np.empty_like(arr1, dtype=SF).dtype == SF(1.)
+ assert np.zeros(3, dtype=SF).dtype == SF(1.)
+ assert np.zeros_like(arr1, dtype=SF).dtype == SF(1.)
+
+ def test_np_save_load(self):
+ # this monkeypatch is needed because pickle
+ # uses the repr of a type to reconstruct it
+ np._ScaledFloatTestDType = SF
+
+ arr = np.array([1.0, 2.0, 3.0], dtype=SF(1.0))
+
+ # adapted from RoundtripTest.roundtrip in np.save tests
+ with NamedTemporaryFile("wb", delete=False, suffix=".npz") as f:
+ with pytest.warns(UserWarning) as record:
+ np.savez(f.name, arr)
+
+ assert len(record) == 1
+
+ with np.load(f.name, allow_pickle=True) as data:
+ larr = data["arr_0"]
+ assert_array_equal(arr.view(np.float64), larr.view(np.float64))
+ assert larr.dtype == arr.dtype == SF(1.0)
+
+ del np._ScaledFloatTestDType
+
+ def test_flatiter(self):
+ arr = np.array([1.0, 2.0, 3.0], dtype=SF(1.0))
+
+ for i, val in enumerate(arr.flat):
+ assert arr[i] == val
+
+ @pytest.mark.parametrize(
+ "index", [
+ [1, 2], ..., slice(None, 2, None),
+ np.array([True, True, False]), np.array([0, 1])
+ ], ids=["int_list", "ellipsis", "slice", "bool_array", "int_array"])
+ def test_flatiter_index(self, index):
+ arr = np.array([1.0, 2.0, 3.0], dtype=SF(1.0))
+ np.testing.assert_array_equal(
+ arr[index].view(np.float64), arr.flat[index].view(np.float64))
+
+ arr2 = arr.copy()
+ arr[index] = 5.0
+ arr2.flat[index] = 5.0
+ np.testing.assert_array_equal(
+ arr.view(np.float64), arr2.view(np.float64))
+
+def test_type_pickle():
+ # can't actually unpickle, but we can pickle (if in namespace)
+ import pickle
+
+ np._ScaledFloatTestDType = SF
+
+ s = pickle.dumps(SF)
+ res = pickle.loads(s)
+ assert res is SF
+
+ del np._ScaledFloatTestDType
+
+
+def test_is_numeric():
+ assert SF._is_numeric
diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_cython.py b/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_cython.py
new file mode 100644
index 0000000..fb3839f
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_cython.py
@@ -0,0 +1,351 @@
+import os
+import subprocess
+import sys
+import sysconfig
+from datetime import datetime
+
+import pytest
+
+import numpy as np
+from numpy.testing import IS_EDITABLE, IS_WASM, assert_array_equal
+
+# This import is copied from random.tests.test_extending
+try:
+ import cython
+ from Cython.Compiler.Version import version as cython_version
+except ImportError:
+ cython = None
+else:
+ from numpy._utils import _pep440
+
+ # Note: keep in sync with the one in pyproject.toml
+ required_version = "3.0.6"
+ if _pep440.parse(cython_version) < _pep440.Version(required_version):
+ # too old or wrong cython, skip the test
+ cython = None
+
+pytestmark = pytest.mark.skipif(cython is None, reason="requires cython")
+
+
+if IS_EDITABLE:
+ pytest.skip(
+ "Editable install doesn't support tests with a compile step",
+ allow_module_level=True
+ )
+
+
+@pytest.fixture(scope='module')
+def install_temp(tmpdir_factory):
+ # Based in part on test_cython from random.tests.test_extending
+ if IS_WASM:
+ pytest.skip("No subprocess")
+
+ srcdir = os.path.join(os.path.dirname(__file__), 'examples', 'cython')
+ build_dir = tmpdir_factory.mktemp("cython_test") / "build"
+ os.makedirs(build_dir, exist_ok=True)
+ # Ensure we use the correct Python interpreter even when `meson` is
+ # installed in a different Python environment (see gh-24956)
+ native_file = str(build_dir / 'interpreter-native-file.ini')
+ with open(native_file, 'w') as f:
+ f.write("[binaries]\n")
+ f.write(f"python = '{sys.executable}'\n")
+ f.write(f"python3 = '{sys.executable}'")
+
+ try:
+ subprocess.check_call(["meson", "--version"])
+ except FileNotFoundError:
+ pytest.skip("No usable 'meson' found")
+ if sysconfig.get_platform() == "win-arm64":
+ pytest.skip("Meson unable to find MSVC linker on win-arm64")
+ if sys.platform == "win32":
+ subprocess.check_call(["meson", "setup",
+ "--buildtype=release",
+ "--vsenv", "--native-file", native_file,
+ str(srcdir)],
+ cwd=build_dir,
+ )
+ else:
+ subprocess.check_call(["meson", "setup",
+ "--native-file", native_file, str(srcdir)],
+ cwd=build_dir
+ )
+ try:
+ subprocess.check_call(["meson", "compile", "-vv"], cwd=build_dir)
+ except subprocess.CalledProcessError:
+ print("----------------")
+ print("meson build failed when doing")
+ print(f"'meson setup --native-file {native_file} {srcdir}'")
+ print("'meson compile -vv'")
+ print(f"in {build_dir}")
+ print("----------------")
+ raise
+
+ sys.path.append(str(build_dir))
+
+
+def test_is_timedelta64_object(install_temp):
+ import checks
+
+ assert checks.is_td64(np.timedelta64(1234))
+ assert checks.is_td64(np.timedelta64(1234, "ns"))
+ assert checks.is_td64(np.timedelta64("NaT", "ns"))
+
+ assert not checks.is_td64(1)
+ assert not checks.is_td64(None)
+ assert not checks.is_td64("foo")
+ assert not checks.is_td64(np.datetime64("now", "s"))
+
+
+def test_is_datetime64_object(install_temp):
+ import checks
+
+ assert checks.is_dt64(np.datetime64(1234, "ns"))
+ assert checks.is_dt64(np.datetime64("NaT", "ns"))
+
+ assert not checks.is_dt64(1)
+ assert not checks.is_dt64(None)
+ assert not checks.is_dt64("foo")
+ assert not checks.is_dt64(np.timedelta64(1234))
+
+
+def test_get_datetime64_value(install_temp):
+ import checks
+
+ dt64 = np.datetime64("2016-01-01", "ns")
+
+ result = checks.get_dt64_value(dt64)
+ expected = dt64.view("i8")
+
+ assert result == expected
+
+
+def test_get_timedelta64_value(install_temp):
+ import checks
+
+ td64 = np.timedelta64(12345, "h")
+
+ result = checks.get_td64_value(td64)
+ expected = td64.view("i8")
+
+ assert result == expected
+
+
+def test_get_datetime64_unit(install_temp):
+ import checks
+
+ dt64 = np.datetime64("2016-01-01", "ns")
+ result = checks.get_dt64_unit(dt64)
+ expected = 10
+ assert result == expected
+
+ td64 = np.timedelta64(12345, "h")
+ result = checks.get_dt64_unit(td64)
+ expected = 5
+ assert result == expected
+
+
+def test_abstract_scalars(install_temp):
+ import checks
+
+ assert checks.is_integer(1)
+ assert checks.is_integer(np.int8(1))
+ assert checks.is_integer(np.uint64(1))
+
+def test_default_int(install_temp):
+ import checks
+
+ assert checks.get_default_integer() is np.dtype(int)
+
+
+def test_ravel_axis(install_temp):
+ import checks
+
+ assert checks.get_ravel_axis() == np.iinfo("intc").min
+
+
+def test_convert_datetime64_to_datetimestruct(install_temp):
+ # GH#21199
+ import checks
+
+ res = checks.convert_datetime64_to_datetimestruct()
+
+ exp = {
+ "year": 2022,
+ "month": 3,
+ "day": 15,
+ "hour": 20,
+ "min": 1,
+ "sec": 55,
+ "us": 260292,
+ "ps": 0,
+ "as": 0,
+ }
+
+ assert res == exp
+
+
+class TestDatetimeStrings:
+ def test_make_iso_8601_datetime(self, install_temp):
+ # GH#21199
+ import checks
+ dt = datetime(2016, 6, 2, 10, 45, 19)
+ # uses NPY_FR_s
+ result = checks.make_iso_8601_datetime(dt)
+ assert result == b"2016-06-02T10:45:19"
+
+ def test_get_datetime_iso_8601_strlen(self, install_temp):
+ # GH#21199
+ import checks
+ # uses NPY_FR_ns
+ res = checks.get_datetime_iso_8601_strlen()
+ assert res == 48
+
+
+@pytest.mark.parametrize(
+ "arrays",
+ [
+ [np.random.rand(2)],
+ [np.random.rand(2), np.random.rand(3, 1)],
+ [np.random.rand(2), np.random.rand(2, 3, 2), np.random.rand(1, 3, 2)],
+ [np.random.rand(2, 1)] * 4 + [np.random.rand(1, 1, 1)],
+ ]
+)
+def test_multiiter_fields(install_temp, arrays):
+ import checks
+ bcast = np.broadcast(*arrays)
+
+ assert bcast.ndim == checks.get_multiiter_number_of_dims(bcast)
+ assert bcast.size == checks.get_multiiter_size(bcast)
+ assert bcast.numiter == checks.get_multiiter_num_of_iterators(bcast)
+ assert bcast.shape == checks.get_multiiter_shape(bcast)
+ assert bcast.index == checks.get_multiiter_current_index(bcast)
+ assert all(
+ x.base is y.base
+ for x, y in zip(bcast.iters, checks.get_multiiter_iters(bcast))
+ )
+
+
+def test_dtype_flags(install_temp):
+ import checks
+ dtype = np.dtype("i,O") # dtype with somewhat interesting flags
+ assert dtype.flags == checks.get_dtype_flags(dtype)
+
+
+def test_conv_intp(install_temp):
+ import checks
+
+ class myint:
+ def __int__(self):
+ return 3
+
+ # These conversion passes via `__int__`, not `__index__`:
+ assert checks.conv_intp(3.) == 3
+ assert checks.conv_intp(myint()) == 3
+
+
+def test_npyiter_api(install_temp):
+ import checks
+ arr = np.random.rand(3, 2)
+
+ it = np.nditer(arr)
+ assert checks.get_npyiter_size(it) == it.itersize == np.prod(arr.shape)
+ assert checks.get_npyiter_ndim(it) == it.ndim == 1
+ assert checks.npyiter_has_index(it) == it.has_index == False
+
+ it = np.nditer(arr, flags=["c_index"])
+ assert checks.npyiter_has_index(it) == it.has_index == True
+ assert (
+ checks.npyiter_has_delayed_bufalloc(it)
+ == it.has_delayed_bufalloc
+ == False
+ )
+
+ it = np.nditer(arr, flags=["buffered", "delay_bufalloc"])
+ assert (
+ checks.npyiter_has_delayed_bufalloc(it)
+ == it.has_delayed_bufalloc
+ == True
+ )
+
+ it = np.nditer(arr, flags=["multi_index"])
+ assert checks.get_npyiter_size(it) == it.itersize == np.prod(arr.shape)
+ assert checks.npyiter_has_multi_index(it) == it.has_multi_index == True
+ assert checks.get_npyiter_ndim(it) == it.ndim == 2
+ assert checks.test_get_multi_index_iter_next(it, arr)
+
+ arr2 = np.random.rand(2, 1, 2)
+ it = np.nditer([arr, arr2])
+ assert checks.get_npyiter_nop(it) == it.nop == 2
+ assert checks.get_npyiter_size(it) == it.itersize == 12
+ assert checks.get_npyiter_ndim(it) == it.ndim == 3
+ assert all(
+ x is y for x, y in zip(checks.get_npyiter_operands(it), it.operands)
+ )
+ assert all(
+ np.allclose(x, y)
+ for x, y in zip(checks.get_npyiter_itviews(it), it.itviews)
+ )
+
+
+def test_fillwithbytes(install_temp):
+ import checks
+
+ arr = checks.compile_fillwithbyte()
+ assert_array_equal(arr, np.ones((1, 2)))
+
+
+def test_complex(install_temp):
+ from checks import inc2_cfloat_struct
+
+ arr = np.array([0, 10 + 10j], dtype="F")
+ inc2_cfloat_struct(arr)
+ assert arr[1] == (12 + 12j)
+
+
+def test_npystring_pack(install_temp):
+ """Check that the cython API can write to a vstring array."""
+ import checks
+
+ arr = np.array(['a', 'b', 'c'], dtype='T')
+ assert checks.npystring_pack(arr) == 0
+
+ # checks.npystring_pack writes to the beginning of the array
+ assert arr[0] == "Hello world"
+
+def test_npystring_load(install_temp):
+ """Check that the cython API can load strings from a vstring array."""
+ import checks
+
+ arr = np.array(['abcd', 'b', 'c'], dtype='T')
+ result = checks.npystring_load(arr)
+ assert result == 'abcd'
+
+
+def test_npystring_multiple_allocators(install_temp):
+ """Check that the cython API can acquire/release multiple vstring allocators."""
+ import checks
+
+ dt = np.dtypes.StringDType(na_object=None)
+ arr1 = np.array(['abcd', 'b', 'c'], dtype=dt)
+ arr2 = np.array(['a', 'b', 'c'], dtype=dt)
+
+ assert checks.npystring_pack_multiple(arr1, arr2) == 0
+ assert arr1[0] == "Hello world"
+ assert arr1[-1] is None
+ assert arr2[0] == "test this"
+
+
+def test_npystring_allocators_other_dtype(install_temp):
+ """Check that allocators for non-StringDType arrays is NULL."""
+ import checks
+
+ arr1 = np.array([1, 2, 3], dtype='i')
+ arr2 = np.array([4, 5, 6], dtype='i')
+
+ assert checks.npystring_allocators_other_types(arr1, arr2) == 0
+
+
+@pytest.mark.skipif(sysconfig.get_platform() == 'win-arm64', reason='no checks module on win-arm64')
+def test_npy_uintp_type_enum():
+ import checks
+ assert checks.check_npy_uintp_type_enum()
diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_datetime.py b/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_datetime.py
new file mode 100644
index 0000000..1cbacb8
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_datetime.py
@@ -0,0 +1,2710 @@
+import datetime
+import pickle
+
+import pytest
+
+import numpy
+import numpy as np
+from numpy.testing import (
+ IS_WASM,
+ assert_,
+ assert_array_equal,
+ assert_equal,
+ assert_raises,
+ assert_raises_regex,
+ assert_warns,
+ suppress_warnings,
+)
+
+# Use pytz to test out various time zones if available
+try:
+ from pytz import timezone as tz
+ _has_pytz = True
+except ImportError:
+ _has_pytz = False
+
+try:
+ RecursionError
+except NameError:
+ RecursionError = RuntimeError # python < 3.5
+
+
+def _assert_equal_hash(v1, v2):
+ assert v1 == v2
+ assert hash(v1) == hash(v2)
+ assert v2 in {v1}
+
+
+class TestDateTime:
+
+ def test_string(self):
+ msg = "no explicit representation of timezones available for " \
+ "np.datetime64"
+ with pytest.warns(UserWarning, match=msg):
+ np.datetime64('2000-01-01T00+01')
+
+ def test_datetime(self):
+ msg = "no explicit representation of timezones available for " \
+ "np.datetime64"
+ with pytest.warns(UserWarning, match=msg):
+ t0 = np.datetime64('2023-06-09T12:18:40Z', 'ns')
+
+ t0 = np.datetime64('2023-06-09T12:18:40', 'ns')
+
+ def test_datetime_dtype_creation(self):
+ for unit in ['Y', 'M', 'W', 'D',
+ 'h', 'm', 's', 'ms', 'us',
+ 'μs', # alias for us
+ 'ns', 'ps', 'fs', 'as']:
+ dt1 = np.dtype(f'M8[750{unit}]')
+ assert_(dt1 == np.dtype(f'datetime64[750{unit}]'))
+ dt2 = np.dtype(f'm8[{unit}]')
+ assert_(dt2 == np.dtype(f'timedelta64[{unit}]'))
+
+ # Generic units shouldn't add [] to the end
+ assert_equal(str(np.dtype("M8")), "datetime64")
+
+ # Should be possible to specify the endianness
+ assert_equal(np.dtype("=M8"), np.dtype("M8"))
+ assert_equal(np.dtype("=M8[s]"), np.dtype("M8[s]"))
+ assert_(np.dtype(">M8") == np.dtype("M8") or
+ np.dtype("<M8") == np.dtype("M8"))
+ assert_(np.dtype(">M8[D]") == np.dtype("M8[D]") or
+ np.dtype("<M8[D]") == np.dtype("M8[D]"))
+ assert_(np.dtype(">M8") != np.dtype("<M8"))
+
+ assert_equal(np.dtype("=m8"), np.dtype("m8"))
+ assert_equal(np.dtype("=m8[s]"), np.dtype("m8[s]"))
+ assert_(np.dtype(">m8") == np.dtype("m8") or
+ np.dtype("<m8") == np.dtype("m8"))
+ assert_(np.dtype(">m8[D]") == np.dtype("m8[D]") or
+ np.dtype("<m8[D]") == np.dtype("m8[D]"))
+ assert_(np.dtype(">m8") != np.dtype("<m8"))
+
+ # Check that the parser rejects bad datetime types
+ assert_raises(TypeError, np.dtype, 'M8[badunit]')
+ assert_raises(TypeError, np.dtype, 'm8[badunit]')
+ assert_raises(TypeError, np.dtype, 'M8[YY]')
+ assert_raises(TypeError, np.dtype, 'm8[YY]')
+ assert_raises(TypeError, np.dtype, 'm4')
+ assert_raises(TypeError, np.dtype, 'M7')
+ assert_raises(TypeError, np.dtype, 'm7')
+ assert_raises(TypeError, np.dtype, 'M16')
+ assert_raises(TypeError, np.dtype, 'm16')
+ assert_raises(TypeError, np.dtype, 'M8[3000000000ps]')
+
+ def test_datetime_casting_rules(self):
+ # Cannot cast safely/same_kind between timedelta and datetime
+ assert_(not np.can_cast('m8', 'M8', casting='same_kind'))
+ assert_(not np.can_cast('M8', 'm8', casting='same_kind'))
+ assert_(not np.can_cast('m8', 'M8', casting='safe'))
+ assert_(not np.can_cast('M8', 'm8', casting='safe'))
+
+ # Can cast safely/same_kind from integer to timedelta
+ assert_(np.can_cast('i8', 'm8', casting='same_kind'))
+ assert_(np.can_cast('i8', 'm8', casting='safe'))
+ assert_(np.can_cast('i4', 'm8', casting='same_kind'))
+ assert_(np.can_cast('i4', 'm8', casting='safe'))
+ assert_(np.can_cast('u4', 'm8', casting='same_kind'))
+ assert_(np.can_cast('u4', 'm8', casting='safe'))
+
+ # Cannot cast safely from unsigned integer of the same size, which
+ # could overflow
+ assert_(np.can_cast('u8', 'm8', casting='same_kind'))
+ assert_(not np.can_cast('u8', 'm8', casting='safe'))
+
+ # Cannot cast safely/same_kind from float to timedelta
+ assert_(not np.can_cast('f4', 'm8', casting='same_kind'))
+ assert_(not np.can_cast('f4', 'm8', casting='safe'))
+
+ # Cannot cast safely/same_kind from integer to datetime
+ assert_(not np.can_cast('i8', 'M8', casting='same_kind'))
+ assert_(not np.can_cast('i8', 'M8', casting='safe'))
+
+ # Cannot cast safely/same_kind from bool to datetime
+ assert_(not np.can_cast('b1', 'M8', casting='same_kind'))
+ assert_(not np.can_cast('b1', 'M8', casting='safe'))
+ # Can cast safely/same_kind from bool to timedelta
+ assert_(np.can_cast('b1', 'm8', casting='same_kind'))
+ assert_(np.can_cast('b1', 'm8', casting='safe'))
+
+ # Can cast datetime safely from months/years to days
+ assert_(np.can_cast('M8[M]', 'M8[D]', casting='safe'))
+ assert_(np.can_cast('M8[Y]', 'M8[D]', casting='safe'))
+ # Cannot cast timedelta safely from months/years to days
+ assert_(not np.can_cast('m8[M]', 'm8[D]', casting='safe'))
+ assert_(not np.can_cast('m8[Y]', 'm8[D]', casting='safe'))
+ # Can cast datetime same_kind from months/years to days
+ assert_(np.can_cast('M8[M]', 'M8[D]', casting='same_kind'))
+ assert_(np.can_cast('M8[Y]', 'M8[D]', casting='same_kind'))
+ # Can't cast timedelta same_kind from months/years to days
+ assert_(not np.can_cast('m8[M]', 'm8[D]', casting='same_kind'))
+ assert_(not np.can_cast('m8[Y]', 'm8[D]', casting='same_kind'))
+ # Can cast datetime same_kind across the date/time boundary
+ assert_(np.can_cast('M8[D]', 'M8[h]', casting='same_kind'))
+ # Can cast timedelta same_kind across the date/time boundary
+ assert_(np.can_cast('m8[D]', 'm8[h]', casting='same_kind'))
+ assert_(np.can_cast('m8[h]', 'm8[D]', casting='same_kind'))
+
+ # Cannot cast safely if the integer multiplier doesn't divide
+ assert_(not np.can_cast('M8[7h]', 'M8[3h]', casting='safe'))
+ assert_(not np.can_cast('M8[3h]', 'M8[6h]', casting='safe'))
+ # But can cast same_kind
+ assert_(np.can_cast('M8[7h]', 'M8[3h]', casting='same_kind'))
+ # Can cast safely if the integer multiplier does divide
+ assert_(np.can_cast('M8[6h]', 'M8[3h]', casting='safe'))
+
+ # We can always cast types with generic units (corresponding to NaT) to
+ # more specific types
+ assert_(np.can_cast('m8', 'm8[h]', casting='same_kind'))
+ assert_(np.can_cast('m8', 'm8[h]', casting='safe'))
+ assert_(np.can_cast('M8', 'M8[h]', casting='same_kind'))
+ assert_(np.can_cast('M8', 'M8[h]', casting='safe'))
+ # but not the other way around
+ assert_(not np.can_cast('m8[h]', 'm8', casting='same_kind'))
+ assert_(not np.can_cast('m8[h]', 'm8', casting='safe'))
+ assert_(not np.can_cast('M8[h]', 'M8', casting='same_kind'))
+ assert_(not np.can_cast('M8[h]', 'M8', casting='safe'))
+
+ def test_datetime_prefix_conversions(self):
+ # regression tests related to gh-19631;
+ # test metric prefixes from seconds down to
+ # attoseconds for bidirectional conversions
+ smaller_units = ['M8[7000ms]',
+ 'M8[2000us]',
+ 'M8[1000ns]',
+ 'M8[5000ns]',
+ 'M8[2000ps]',
+ 'M8[9000fs]',
+ 'M8[1000as]',
+ 'M8[2000000ps]',
+ 'M8[1000000as]',
+ 'M8[2000000000ps]',
+ 'M8[1000000000as]']
+ larger_units = ['M8[7s]',
+ 'M8[2ms]',
+ 'M8[us]',
+ 'M8[5us]',
+ 'M8[2ns]',
+ 'M8[9ps]',
+ 'M8[1fs]',
+ 'M8[2us]',
+ 'M8[1ps]',
+ 'M8[2ms]',
+ 'M8[1ns]']
+ for larger_unit, smaller_unit in zip(larger_units, smaller_units):
+ assert np.can_cast(larger_unit, smaller_unit, casting='safe')
+ assert np.can_cast(smaller_unit, larger_unit, casting='safe')
+
+ @pytest.mark.parametrize("unit", [
+ "s", "ms", "us", "ns", "ps", "fs", "as"])
+ def test_prohibit_negative_datetime(self, unit):
+ with assert_raises(TypeError):
+ np.array([1], dtype=f"M8[-1{unit}]")
+
+ def test_compare_generic_nat(self):
+ # regression tests for gh-6452
+ assert_(np.datetime64('NaT') !=
+ np.datetime64('2000') + np.timedelta64('NaT'))
+ assert_(np.datetime64('NaT') != np.datetime64('NaT', 'us'))
+ assert_(np.datetime64('NaT', 'us') != np.datetime64('NaT'))
+
+ @pytest.mark.parametrize("size", [
+ 3, 21, 217, 1000])
+ def test_datetime_nat_argsort_stability(self, size):
+ # NaT < NaT should be False internally for
+ # sort stability
+ expected = np.arange(size)
+ arr = np.tile(np.datetime64('NaT'), size)
+ assert_equal(np.argsort(arr, kind='mergesort'), expected)
+
+ @pytest.mark.parametrize("size", [
+ 3, 21, 217, 1000])
+ def test_timedelta_nat_argsort_stability(self, size):
+ # NaT < NaT should be False internally for
+ # sort stability
+ expected = np.arange(size)
+ arr = np.tile(np.timedelta64('NaT'), size)
+ assert_equal(np.argsort(arr, kind='mergesort'), expected)
+
+ @pytest.mark.parametrize("arr, expected", [
+ # the example provided in gh-12629
+ (['NaT', 1, 2, 3],
+ [1, 2, 3, 'NaT']),
+ # multiple NaTs
+ (['NaT', 9, 'NaT', -707],
+ [-707, 9, 'NaT', 'NaT']),
+ # this sort explores another code path for NaT
+ ([1, -2, 3, 'NaT'],
+ [-2, 1, 3, 'NaT']),
+ # 2-D array
+ ([[51, -220, 'NaT'],
+ [-17, 'NaT', -90]],
+ [[-220, 51, 'NaT'],
+ [-90, -17, 'NaT']]),
+ ])
+ @pytest.mark.parametrize("dtype", [
+ 'M8[ns]', 'M8[us]',
+ 'm8[ns]', 'm8[us]'])
+ def test_datetime_timedelta_sort_nat(self, arr, expected, dtype):
+ # fix for gh-12629 and gh-15063; NaT sorting to end of array
+ arr = np.array(arr, dtype=dtype)
+ expected = np.array(expected, dtype=dtype)
+ arr.sort()
+ assert_equal(arr, expected)
+
+ def test_datetime_scalar_construction(self):
+ # Construct with different units
+ assert_equal(np.datetime64('1950-03-12', 'D'),
+ np.datetime64('1950-03-12'))
+ assert_equal(np.datetime64('1950-03-12T13', 's'),
+ np.datetime64('1950-03-12T13', 'm'))
+
+ # Default construction means NaT
+ assert_equal(np.datetime64(), np.datetime64('NaT'))
+
+ # Some basic strings and repr
+ assert_equal(str(np.datetime64('NaT')), 'NaT')
+ assert_equal(repr(np.datetime64('NaT')),
+ "np.datetime64('NaT')")
+ assert_equal(str(np.datetime64('2011-02')), '2011-02')
+ assert_equal(repr(np.datetime64('2011-02')),
+ "np.datetime64('2011-02')")
+
+ # None gets constructed as NaT
+ assert_equal(np.datetime64(None), np.datetime64('NaT'))
+
+ # Default construction of NaT is in generic units
+ assert_equal(np.datetime64().dtype, np.dtype('M8'))
+ assert_equal(np.datetime64('NaT').dtype, np.dtype('M8'))
+
+ # Construction from integers requires a specified unit
+ assert_raises(ValueError, np.datetime64, 17)
+
+ # When constructing from a scalar or zero-dimensional array,
+ # it either keeps the units or you can override them.
+ a = np.datetime64('2000-03-18T16', 'h')
+ b = np.array('2000-03-18T16', dtype='M8[h]')
+
+ assert_equal(a.dtype, np.dtype('M8[h]'))
+ assert_equal(b.dtype, np.dtype('M8[h]'))
+
+ assert_equal(np.datetime64(a), a)
+ assert_equal(np.datetime64(a).dtype, np.dtype('M8[h]'))
+
+ assert_equal(np.datetime64(b), a)
+ assert_equal(np.datetime64(b).dtype, np.dtype('M8[h]'))
+
+ assert_equal(np.datetime64(a, 's'), a)
+ assert_equal(np.datetime64(a, 's').dtype, np.dtype('M8[s]'))
+
+ assert_equal(np.datetime64(b, 's'), a)
+ assert_equal(np.datetime64(b, 's').dtype, np.dtype('M8[s]'))
+
+ # Construction from datetime.date
+ assert_equal(np.datetime64('1945-03-25'),
+ np.datetime64(datetime.date(1945, 3, 25)))
+ assert_equal(np.datetime64('2045-03-25', 'D'),
+ np.datetime64(datetime.date(2045, 3, 25), 'D'))
+ # Construction from datetime.datetime
+ assert_equal(np.datetime64('1980-01-25T14:36:22.5'),
+ np.datetime64(datetime.datetime(1980, 1, 25,
+ 14, 36, 22, 500000)))
+
+ # Construction with time units from a date is okay
+ assert_equal(np.datetime64('1920-03-13', 'h'),
+ np.datetime64('1920-03-13T00'))
+ assert_equal(np.datetime64('1920-03', 'm'),
+ np.datetime64('1920-03-01T00:00'))
+ assert_equal(np.datetime64('1920', 's'),
+ np.datetime64('1920-01-01T00:00:00'))
+ assert_equal(np.datetime64(datetime.date(2045, 3, 25), 'ms'),
+ np.datetime64('2045-03-25T00:00:00.000'))
+
+ # Construction with date units from a datetime is also okay
+ assert_equal(np.datetime64('1920-03-13T18', 'D'),
+ np.datetime64('1920-03-13'))
+ assert_equal(np.datetime64('1920-03-13T18:33:12', 'M'),
+ np.datetime64('1920-03'))
+ assert_equal(np.datetime64('1920-03-13T18:33:12.5', 'Y'),
+ np.datetime64('1920'))
+
+ def test_datetime_scalar_construction_timezone(self):
+ msg = "no explicit representation of timezones available for " \
+ "np.datetime64"
+ # verify that supplying an explicit timezone works, but is deprecated
+ with pytest.warns(UserWarning, match=msg):
+ assert_equal(np.datetime64('2000-01-01T00Z'),
+ np.datetime64('2000-01-01T00'))
+ with pytest.warns(UserWarning, match=msg):
+ assert_equal(np.datetime64('2000-01-01T00-08'),
+ np.datetime64('2000-01-01T08'))
+
+ def test_datetime_array_find_type(self):
+ dt = np.datetime64('1970-01-01', 'M')
+ arr = np.array([dt])
+ assert_equal(arr.dtype, np.dtype('M8[M]'))
+
+ # at the moment, we don't automatically convert these to datetime64
+
+ dt = datetime.date(1970, 1, 1)
+ arr = np.array([dt])
+ assert_equal(arr.dtype, np.dtype('O'))
+
+ dt = datetime.datetime(1970, 1, 1, 12, 30, 40)
+ arr = np.array([dt])
+ assert_equal(arr.dtype, np.dtype('O'))
+
+ # find "supertype" for non-dates and dates
+
+ b = np.bool(True)
+ dm = np.datetime64('1970-01-01', 'M')
+ d = datetime.date(1970, 1, 1)
+ dt = datetime.datetime(1970, 1, 1, 12, 30, 40)
+
+ arr = np.array([b, dm])
+ assert_equal(arr.dtype, np.dtype('O'))
+
+ arr = np.array([b, d])
+ assert_equal(arr.dtype, np.dtype('O'))
+
+ arr = np.array([b, dt])
+ assert_equal(arr.dtype, np.dtype('O'))
+
+ arr = np.array([d, d]).astype('datetime64')
+ assert_equal(arr.dtype, np.dtype('M8[D]'))
+
+ arr = np.array([dt, dt]).astype('datetime64')
+ assert_equal(arr.dtype, np.dtype('M8[us]'))
+
+ @pytest.mark.parametrize("unit", [
+ # test all date / time units and use
+ # "generic" to select generic unit
+ ("Y"), ("M"), ("W"), ("D"), ("h"), ("m"),
+ ("s"), ("ms"), ("us"), ("ns"), ("ps"),
+ ("fs"), ("as"), ("generic")])
+ def test_timedelta_np_int_construction(self, unit):
+ # regression test for gh-7617
+ if unit != "generic":
+ assert_equal(np.timedelta64(np.int64(123), unit),
+ np.timedelta64(123, unit))
+ else:
+ assert_equal(np.timedelta64(np.int64(123)),
+ np.timedelta64(123))
+
+ def test_timedelta_scalar_construction(self):
+ # Construct with different units
+ assert_equal(np.timedelta64(7, 'D'),
+ np.timedelta64(1, 'W'))
+ assert_equal(np.timedelta64(120, 's'),
+ np.timedelta64(2, 'm'))
+
+ # Default construction means 0
+ assert_equal(np.timedelta64(), np.timedelta64(0))
+
+ # None gets constructed as NaT
+ assert_equal(np.timedelta64(None), np.timedelta64('NaT'))
+
+ # Some basic strings and repr
+ assert_equal(str(np.timedelta64('NaT')), 'NaT')
+ assert_equal(repr(np.timedelta64('NaT')),
+ "np.timedelta64('NaT')")
+ assert_equal(str(np.timedelta64(3, 's')), '3 seconds')
+ assert_equal(repr(np.timedelta64(-3, 's')),
+ "np.timedelta64(-3,'s')")
+ assert_equal(repr(np.timedelta64(12)),
+ "np.timedelta64(12)")
+
+ # Construction from an integer produces generic units
+ assert_equal(np.timedelta64(12).dtype, np.dtype('m8'))
+
+ # When constructing from a scalar or zero-dimensional array,
+ # it either keeps the units or you can override them.
+ a = np.timedelta64(2, 'h')
+ b = np.array(2, dtype='m8[h]')
+
+ assert_equal(a.dtype, np.dtype('m8[h]'))
+ assert_equal(b.dtype, np.dtype('m8[h]'))
+
+ assert_equal(np.timedelta64(a), a)
+ assert_equal(np.timedelta64(a).dtype, np.dtype('m8[h]'))
+
+ assert_equal(np.timedelta64(b), a)
+ assert_equal(np.timedelta64(b).dtype, np.dtype('m8[h]'))
+
+ assert_equal(np.timedelta64(a, 's'), a)
+ assert_equal(np.timedelta64(a, 's').dtype, np.dtype('m8[s]'))
+
+ assert_equal(np.timedelta64(b, 's'), a)
+ assert_equal(np.timedelta64(b, 's').dtype, np.dtype('m8[s]'))
+
+ # Construction from datetime.timedelta
+ assert_equal(np.timedelta64(5, 'D'),
+ np.timedelta64(datetime.timedelta(days=5)))
+ assert_equal(np.timedelta64(102347621, 's'),
+ np.timedelta64(datetime.timedelta(seconds=102347621)))
+ assert_equal(np.timedelta64(-10234760000, 'us'),
+ np.timedelta64(datetime.timedelta(
+ microseconds=-10234760000)))
+ assert_equal(np.timedelta64(10234760000, 'us'),
+ np.timedelta64(datetime.timedelta(
+ microseconds=10234760000)))
+ assert_equal(np.timedelta64(1023476, 'ms'),
+ np.timedelta64(datetime.timedelta(milliseconds=1023476)))
+ assert_equal(np.timedelta64(10, 'm'),
+ np.timedelta64(datetime.timedelta(minutes=10)))
+ assert_equal(np.timedelta64(281, 'h'),
+ np.timedelta64(datetime.timedelta(hours=281)))
+ assert_equal(np.timedelta64(28, 'W'),
+ np.timedelta64(datetime.timedelta(weeks=28)))
+
+ # Cannot construct across nonlinear time unit boundaries
+ a = np.timedelta64(3, 's')
+ assert_raises(TypeError, np.timedelta64, a, 'M')
+ assert_raises(TypeError, np.timedelta64, a, 'Y')
+ a = np.timedelta64(6, 'M')
+ assert_raises(TypeError, np.timedelta64, a, 'D')
+ assert_raises(TypeError, np.timedelta64, a, 'h')
+ a = np.timedelta64(1, 'Y')
+ assert_raises(TypeError, np.timedelta64, a, 'D')
+ assert_raises(TypeError, np.timedelta64, a, 'm')
+ a = datetime.timedelta(seconds=3)
+ assert_raises(TypeError, np.timedelta64, a, 'M')
+ assert_raises(TypeError, np.timedelta64, a, 'Y')
+ a = datetime.timedelta(weeks=3)
+ assert_raises(TypeError, np.timedelta64, a, 'M')
+ assert_raises(TypeError, np.timedelta64, a, 'Y')
+ a = datetime.timedelta()
+ assert_raises(TypeError, np.timedelta64, a, 'M')
+ assert_raises(TypeError, np.timedelta64, a, 'Y')
+
+ def test_timedelta_object_array_conversion(self):
+ # Regression test for gh-11096
+ inputs = [datetime.timedelta(28),
+ datetime.timedelta(30),
+ datetime.timedelta(31)]
+ expected = np.array([28, 30, 31], dtype='timedelta64[D]')
+ actual = np.array(inputs, dtype='timedelta64[D]')
+ assert_equal(expected, actual)
+
+ def test_timedelta_0_dim_object_array_conversion(self):
+ # Regression test for gh-11151
+ test = np.array(datetime.timedelta(seconds=20))
+ actual = test.astype(np.timedelta64)
+ # expected value from the array constructor workaround
+ # described in above issue
+ expected = np.array(datetime.timedelta(seconds=20),
+ np.timedelta64)
+ assert_equal(actual, expected)
+
+ def test_timedelta_nat_format(self):
+ # gh-17552
+ assert_equal('NaT', f'{np.timedelta64("nat")}')
+
+ def test_timedelta_scalar_construction_units(self):
+ # String construction detecting units
+ assert_equal(np.datetime64('2010').dtype,
+ np.dtype('M8[Y]'))
+ assert_equal(np.datetime64('2010-03').dtype,
+ np.dtype('M8[M]'))
+ assert_equal(np.datetime64('2010-03-12').dtype,
+ np.dtype('M8[D]'))
+ assert_equal(np.datetime64('2010-03-12T17').dtype,
+ np.dtype('M8[h]'))
+ assert_equal(np.datetime64('2010-03-12T17:15').dtype,
+ np.dtype('M8[m]'))
+ assert_equal(np.datetime64('2010-03-12T17:15:08').dtype,
+ np.dtype('M8[s]'))
+
+ assert_equal(np.datetime64('2010-03-12T17:15:08.1').dtype,
+ np.dtype('M8[ms]'))
+ assert_equal(np.datetime64('2010-03-12T17:15:08.12').dtype,
+ np.dtype('M8[ms]'))
+ assert_equal(np.datetime64('2010-03-12T17:15:08.123').dtype,
+ np.dtype('M8[ms]'))
+
+ assert_equal(np.datetime64('2010-03-12T17:15:08.1234').dtype,
+ np.dtype('M8[us]'))
+ assert_equal(np.datetime64('2010-03-12T17:15:08.12345').dtype,
+ np.dtype('M8[us]'))
+ assert_equal(np.datetime64('2010-03-12T17:15:08.123456').dtype,
+ np.dtype('M8[us]'))
+
+ assert_equal(np.datetime64('1970-01-01T00:00:02.1234567').dtype,
+ np.dtype('M8[ns]'))
+ assert_equal(np.datetime64('1970-01-01T00:00:02.12345678').dtype,
+ np.dtype('M8[ns]'))
+ assert_equal(np.datetime64('1970-01-01T00:00:02.123456789').dtype,
+ np.dtype('M8[ns]'))
+
+ assert_equal(np.datetime64('1970-01-01T00:00:02.1234567890').dtype,
+ np.dtype('M8[ps]'))
+ assert_equal(np.datetime64('1970-01-01T00:00:02.12345678901').dtype,
+ np.dtype('M8[ps]'))
+ assert_equal(np.datetime64('1970-01-01T00:00:02.123456789012').dtype,
+ np.dtype('M8[ps]'))
+
+ assert_equal(np.datetime64(
+ '1970-01-01T00:00:02.1234567890123').dtype,
+ np.dtype('M8[fs]'))
+ assert_equal(np.datetime64(
+ '1970-01-01T00:00:02.12345678901234').dtype,
+ np.dtype('M8[fs]'))
+ assert_equal(np.datetime64(
+ '1970-01-01T00:00:02.123456789012345').dtype,
+ np.dtype('M8[fs]'))
+
+ assert_equal(np.datetime64(
+ '1970-01-01T00:00:02.1234567890123456').dtype,
+ np.dtype('M8[as]'))
+ assert_equal(np.datetime64(
+ '1970-01-01T00:00:02.12345678901234567').dtype,
+ np.dtype('M8[as]'))
+ assert_equal(np.datetime64(
+ '1970-01-01T00:00:02.123456789012345678').dtype,
+ np.dtype('M8[as]'))
+
+ # Python date object
+ assert_equal(np.datetime64(datetime.date(2010, 4, 16)).dtype,
+ np.dtype('M8[D]'))
+
+ # Python datetime object
+ assert_equal(np.datetime64(
+ datetime.datetime(2010, 4, 16, 13, 45, 18)).dtype,
+ np.dtype('M8[us]'))
+
+ # 'today' special value
+ assert_equal(np.datetime64('today').dtype,
+ np.dtype('M8[D]'))
+
+ # 'now' special value
+ assert_equal(np.datetime64('now').dtype,
+ np.dtype('M8[s]'))
+
+ def test_datetime_nat_casting(self):
+ a = np.array('NaT', dtype='M8[D]')
+ b = np.datetime64('NaT', '[D]')
+
+ # Arrays
+ assert_equal(a.astype('M8[s]'), np.array('NaT', dtype='M8[s]'))
+ assert_equal(a.astype('M8[ms]'), np.array('NaT', dtype='M8[ms]'))
+ assert_equal(a.astype('M8[M]'), np.array('NaT', dtype='M8[M]'))
+ assert_equal(a.astype('M8[Y]'), np.array('NaT', dtype='M8[Y]'))
+ assert_equal(a.astype('M8[W]'), np.array('NaT', dtype='M8[W]'))
+
+ # Scalars -> Scalars
+ assert_equal(np.datetime64(b, '[s]'), np.datetime64('NaT', '[s]'))
+ assert_equal(np.datetime64(b, '[ms]'), np.datetime64('NaT', '[ms]'))
+ assert_equal(np.datetime64(b, '[M]'), np.datetime64('NaT', '[M]'))
+ assert_equal(np.datetime64(b, '[Y]'), np.datetime64('NaT', '[Y]'))
+ assert_equal(np.datetime64(b, '[W]'), np.datetime64('NaT', '[W]'))
+
+ # Arrays -> Scalars
+ assert_equal(np.datetime64(a, '[s]'), np.datetime64('NaT', '[s]'))
+ assert_equal(np.datetime64(a, '[ms]'), np.datetime64('NaT', '[ms]'))
+ assert_equal(np.datetime64(a, '[M]'), np.datetime64('NaT', '[M]'))
+ assert_equal(np.datetime64(a, '[Y]'), np.datetime64('NaT', '[Y]'))
+ assert_equal(np.datetime64(a, '[W]'), np.datetime64('NaT', '[W]'))
+
+ # NaN -> NaT
+ nan = np.array([np.nan] * 8 + [0])
+ fnan = nan.astype('f')
+ lnan = nan.astype('g')
+ cnan = nan.astype('D')
+ cfnan = nan.astype('F')
+ clnan = nan.astype('G')
+ hnan = nan.astype(np.half)
+
+ nat = np.array([np.datetime64('NaT')] * 8 + [np.datetime64(0, 'D')])
+ assert_equal(nan.astype('M8[ns]'), nat)
+ assert_equal(fnan.astype('M8[ns]'), nat)
+ assert_equal(lnan.astype('M8[ns]'), nat)
+ assert_equal(cnan.astype('M8[ns]'), nat)
+ assert_equal(cfnan.astype('M8[ns]'), nat)
+ assert_equal(clnan.astype('M8[ns]'), nat)
+ assert_equal(hnan.astype('M8[ns]'), nat)
+
+ nat = np.array([np.timedelta64('NaT')] * 8 + [np.timedelta64(0)])
+ assert_equal(nan.astype('timedelta64[ns]'), nat)
+ assert_equal(fnan.astype('timedelta64[ns]'), nat)
+ assert_equal(lnan.astype('timedelta64[ns]'), nat)
+ assert_equal(cnan.astype('timedelta64[ns]'), nat)
+ assert_equal(cfnan.astype('timedelta64[ns]'), nat)
+ assert_equal(clnan.astype('timedelta64[ns]'), nat)
+ assert_equal(hnan.astype('timedelta64[ns]'), nat)
+
+ def test_days_creation(self):
+ assert_equal(np.array('1599', dtype='M8[D]').astype('i8'),
+ (1600 - 1970) * 365 - (1972 - 1600) / 4 + 3 - 365)
+ assert_equal(np.array('1600', dtype='M8[D]').astype('i8'),
+ (1600 - 1970) * 365 - (1972 - 1600) / 4 + 3)
+ assert_equal(np.array('1601', dtype='M8[D]').astype('i8'),
+ (1600 - 1970) * 365 - (1972 - 1600) / 4 + 3 + 366)
+ assert_equal(np.array('1900', dtype='M8[D]').astype('i8'),
+ (1900 - 1970) * 365 - (1970 - 1900) // 4)
+ assert_equal(np.array('1901', dtype='M8[D]').astype('i8'),
+ (1900 - 1970) * 365 - (1970 - 1900) // 4 + 365)
+ assert_equal(np.array('1967', dtype='M8[D]').astype('i8'), -3 * 365 - 1)
+ assert_equal(np.array('1968', dtype='M8[D]').astype('i8'), -2 * 365 - 1)
+ assert_equal(np.array('1969', dtype='M8[D]').astype('i8'), -1 * 365)
+ assert_equal(np.array('1970', dtype='M8[D]').astype('i8'), 0 * 365)
+ assert_equal(np.array('1971', dtype='M8[D]').astype('i8'), 1 * 365)
+ assert_equal(np.array('1972', dtype='M8[D]').astype('i8'), 2 * 365)
+ assert_equal(np.array('1973', dtype='M8[D]').astype('i8'), 3 * 365 + 1)
+ assert_equal(np.array('1974', dtype='M8[D]').astype('i8'), 4 * 365 + 1)
+ assert_equal(np.array('2000', dtype='M8[D]').astype('i8'),
+ (2000 - 1970) * 365 + (2000 - 1972) // 4)
+ assert_equal(np.array('2001', dtype='M8[D]').astype('i8'),
+ (2000 - 1970) * 365 + (2000 - 1972) // 4 + 366)
+ assert_equal(np.array('2400', dtype='M8[D]').astype('i8'),
+ (2400 - 1970) * 365 + (2400 - 1972) // 4 - 3)
+ assert_equal(np.array('2401', dtype='M8[D]').astype('i8'),
+ (2400 - 1970) * 365 + (2400 - 1972) // 4 - 3 + 366)
+
+ assert_equal(np.array('1600-02-29', dtype='M8[D]').astype('i8'),
+ (1600 - 1970) * 365 - (1972 - 1600) // 4 + 3 + 31 + 28)
+ assert_equal(np.array('1600-03-01', dtype='M8[D]').astype('i8'),
+ (1600 - 1970) * 365 - (1972 - 1600) // 4 + 3 + 31 + 29)
+ assert_equal(np.array('2000-02-29', dtype='M8[D]').astype('i8'),
+ (2000 - 1970) * 365 + (2000 - 1972) // 4 + 31 + 28)
+ assert_equal(np.array('2000-03-01', dtype='M8[D]').astype('i8'),
+ (2000 - 1970) * 365 + (2000 - 1972) // 4 + 31 + 29)
+ assert_equal(np.array('2001-03-22', dtype='M8[D]').astype('i8'),
+ (2000 - 1970) * 365 + (2000 - 1972) // 4 + 366 + 31 + 28 + 21)
+
+ def test_days_to_pydate(self):
+ assert_equal(np.array('1599', dtype='M8[D]').astype('O'),
+ datetime.date(1599, 1, 1))
+ assert_equal(np.array('1600', dtype='M8[D]').astype('O'),
+ datetime.date(1600, 1, 1))
+ assert_equal(np.array('1601', dtype='M8[D]').astype('O'),
+ datetime.date(1601, 1, 1))
+ assert_equal(np.array('1900', dtype='M8[D]').astype('O'),
+ datetime.date(1900, 1, 1))
+ assert_equal(np.array('1901', dtype='M8[D]').astype('O'),
+ datetime.date(1901, 1, 1))
+ assert_equal(np.array('2000', dtype='M8[D]').astype('O'),
+ datetime.date(2000, 1, 1))
+ assert_equal(np.array('2001', dtype='M8[D]').astype('O'),
+ datetime.date(2001, 1, 1))
+ assert_equal(np.array('1600-02-29', dtype='M8[D]').astype('O'),
+ datetime.date(1600, 2, 29))
+ assert_equal(np.array('1600-03-01', dtype='M8[D]').astype('O'),
+ datetime.date(1600, 3, 1))
+ assert_equal(np.array('2001-03-22', dtype='M8[D]').astype('O'),
+ datetime.date(2001, 3, 22))
+
+ def test_dtype_comparison(self):
+ assert_(not (np.dtype('M8[us]') == np.dtype('M8[ms]')))
+ assert_(np.dtype('M8[us]') != np.dtype('M8[ms]'))
+ assert_(np.dtype('M8[2D]') != np.dtype('M8[D]'))
+ assert_(np.dtype('M8[D]') != np.dtype('M8[2D]'))
+
+ def test_pydatetime_creation(self):
+ a = np.array(['1960-03-12', datetime.date(1960, 3, 12)], dtype='M8[D]')
+ assert_equal(a[0], a[1])
+ a = np.array(['1999-12-31', datetime.date(1999, 12, 31)], dtype='M8[D]')
+ assert_equal(a[0], a[1])
+ a = np.array(['2000-01-01', datetime.date(2000, 1, 1)], dtype='M8[D]')
+ assert_equal(a[0], a[1])
+ # Will fail if the date changes during the exact right moment
+ a = np.array(['today', datetime.date.today()], dtype='M8[D]')
+ assert_equal(a[0], a[1])
+ # datetime.datetime.now() returns local time, not UTC
+ #a = np.array(['now', datetime.datetime.now()], dtype='M8[s]')
+ #assert_equal(a[0], a[1])
+
+ # we can give a datetime.date time units
+ assert_equal(np.array(datetime.date(1960, 3, 12), dtype='M8[s]'),
+ np.array(np.datetime64('1960-03-12T00:00:00')))
+
+ def test_datetime_string_conversion(self):
+ a = ['2011-03-16', '1920-01-01', '2013-05-19']
+ str_a = np.array(a, dtype='S')
+ uni_a = np.array(a, dtype='U')
+ dt_a = np.array(a, dtype='M')
+
+ # String to datetime
+ assert_equal(dt_a, str_a.astype('M'))
+ assert_equal(dt_a.dtype, str_a.astype('M').dtype)
+ dt_b = np.empty_like(dt_a)
+ dt_b[...] = str_a
+ assert_equal(dt_a, dt_b)
+
+ # Datetime to string
+ assert_equal(str_a, dt_a.astype('S0'))
+ str_b = np.empty_like(str_a)
+ str_b[...] = dt_a
+ assert_equal(str_a, str_b)
+
+ # Unicode to datetime
+ assert_equal(dt_a, uni_a.astype('M'))
+ assert_equal(dt_a.dtype, uni_a.astype('M').dtype)
+ dt_b = np.empty_like(dt_a)
+ dt_b[...] = uni_a
+ assert_equal(dt_a, dt_b)
+
+ # Datetime to unicode
+ assert_equal(uni_a, dt_a.astype('U'))
+ uni_b = np.empty_like(uni_a)
+ uni_b[...] = dt_a
+ assert_equal(uni_a, uni_b)
+
+ # Datetime to long string - gh-9712
+ assert_equal(str_a, dt_a.astype((np.bytes_, 128)))
+ str_b = np.empty(str_a.shape, dtype=(np.bytes_, 128))
+ str_b[...] = dt_a
+ assert_equal(str_a, str_b)
+
+ @pytest.mark.parametrize("time_dtype", ["m8[D]", "M8[Y]"])
+ def test_time_byteswapping(self, time_dtype):
+ times = np.array(["2017", "NaT"], dtype=time_dtype)
+ times_swapped = times.astype(times.dtype.newbyteorder())
+ assert_array_equal(times, times_swapped)
+
+ unswapped = times_swapped.view(np.dtype("int64").newbyteorder())
+ assert_array_equal(unswapped, times.view(np.int64))
+
+ @pytest.mark.parametrize(["time1", "time2"],
+ [("M8[s]", "M8[D]"), ("m8[s]", "m8[ns]")])
+ def test_time_byteswapped_cast(self, time1, time2):
+ dtype1 = np.dtype(time1)
+ dtype2 = np.dtype(time2)
+ times = np.array(["2017", "NaT"], dtype=dtype1)
+ expected = times.astype(dtype2)
+
+ # Test that every byte-swapping combination also returns the same
+ # results (previous tests check that this comparison works fine).
+ res = times.astype(dtype1.newbyteorder()).astype(dtype2)
+ assert_array_equal(res, expected)
+ res = times.astype(dtype2.newbyteorder())
+ assert_array_equal(res, expected)
+ res = times.astype(dtype1.newbyteorder()).astype(dtype2.newbyteorder())
+ assert_array_equal(res, expected)
+
+ @pytest.mark.parametrize("time_dtype", ["m8[D]", "M8[Y]"])
+ @pytest.mark.parametrize("str_dtype", ["U", "S"])
+ def test_datetime_conversions_byteorders(self, str_dtype, time_dtype):
+ times = np.array(["2017", "NaT"], dtype=time_dtype)
+ # Unfortunately, timedelta does not roundtrip:
+ from_strings = np.array(["2017", "NaT"], dtype=str_dtype)
+ to_strings = times.astype(str_dtype) # assume this is correct
+
+ # Check that conversion from times to string works if src is swapped:
+ times_swapped = times.astype(times.dtype.newbyteorder())
+ res = times_swapped.astype(str_dtype)
+ assert_array_equal(res, to_strings)
+ # And also if both are swapped:
+ res = times_swapped.astype(to_strings.dtype.newbyteorder())
+ assert_array_equal(res, to_strings)
+ # only destination is swapped:
+ res = times.astype(to_strings.dtype.newbyteorder())
+ assert_array_equal(res, to_strings)
+
+ # Check that conversion from string to times works if src is swapped:
+ from_strings_swapped = from_strings.astype(
+ from_strings.dtype.newbyteorder())
+ res = from_strings_swapped.astype(time_dtype)
+ assert_array_equal(res, times)
+ # And if both are swapped:
+ res = from_strings_swapped.astype(times.dtype.newbyteorder())
+ assert_array_equal(res, times)
+ # Only destination is swapped:
+ res = from_strings.astype(times.dtype.newbyteorder())
+ assert_array_equal(res, times)
+
+ def test_datetime_array_str(self):
+ a = np.array(['2011-03-16', '1920-01-01', '2013-05-19'], dtype='M')
+ assert_equal(str(a), "['2011-03-16' '1920-01-01' '2013-05-19']")
+
+ a = np.array(['2011-03-16T13:55', '1920-01-01T03:12'], dtype='M')
+ assert_equal(np.array2string(a, separator=', ',
+ formatter={'datetime': lambda x:
+ f"'{np.datetime_as_string(x, timezone='UTC')}'"}),
+ "['2011-03-16T13:55Z', '1920-01-01T03:12Z']")
+
+ # Check that one NaT doesn't corrupt subsequent entries
+ a = np.array(['2010', 'NaT', '2030']).astype('M')
+ assert_equal(str(a), "['2010' 'NaT' '2030']")
+
+ def test_timedelta_array_str(self):
+ a = np.array([-1, 0, 100], dtype='m')
+ assert_equal(str(a), "[ -1 0 100]")
+ a = np.array(['NaT', 'NaT'], dtype='m')
+ assert_equal(str(a), "['NaT' 'NaT']")
+ # Check right-alignment with NaTs
+ a = np.array([-1, 'NaT', 0], dtype='m')
+ assert_equal(str(a), "[ -1 'NaT' 0]")
+ a = np.array([-1, 'NaT', 1234567], dtype='m')
+ assert_equal(str(a), "[ -1 'NaT' 1234567]")
+
+ # Test with other byteorder:
+ a = np.array([-1, 'NaT', 1234567], dtype='>m')
+ assert_equal(str(a), "[ -1 'NaT' 1234567]")
+ a = np.array([-1, 'NaT', 1234567], dtype='<m')
+ assert_equal(str(a), "[ -1 'NaT' 1234567]")
+
+ def test_pickle(self):
+ # Check that pickle roundtripping works
+ for proto in range(2, pickle.HIGHEST_PROTOCOL + 1):
+ dt = np.dtype('M8[7D]')
+ assert_equal(pickle.loads(pickle.dumps(dt, protocol=proto)), dt)
+ dt = np.dtype('M8[W]')
+ assert_equal(pickle.loads(pickle.dumps(dt, protocol=proto)), dt)
+ scalar = np.datetime64('2016-01-01T00:00:00.000000000')
+ assert_equal(pickle.loads(pickle.dumps(scalar, protocol=proto)),
+ scalar)
+ delta = scalar - np.datetime64('2015-01-01T00:00:00.000000000')
+ assert_equal(pickle.loads(pickle.dumps(delta, protocol=proto)),
+ delta)
+
+ # Check that loading pickles from 1.6 works
+ pkl = b"cnumpy\ndtype\np0\n(S'M8'\np1\nI0\nI1\ntp2\nRp3\n"\
+ b"(I4\nS'<'\np4\nNNNI-1\nI-1\nI0\n((dp5\n(S'D'\np6\n"\
+ b"I7\nI1\nI1\ntp7\ntp8\ntp9\nb."
+ assert_equal(pickle.loads(pkl), np.dtype('<M8[7D]'))
+ pkl = b"cnumpy\ndtype\np0\n(S'M8'\np1\nI0\nI1\ntp2\nRp3\n"\
+ b"(I4\nS'<'\np4\nNNNI-1\nI-1\nI0\n((dp5\n(S'W'\np6\n"\
+ b"I1\nI1\nI1\ntp7\ntp8\ntp9\nb."
+ assert_equal(pickle.loads(pkl), np.dtype('<M8[W]'))
+ pkl = b"cnumpy\ndtype\np0\n(S'M8'\np1\nI0\nI1\ntp2\nRp3\n"\
+ b"(I4\nS'>'\np4\nNNNI-1\nI-1\nI0\n((dp5\n(S'us'\np6\n"\
+ b"I1\nI1\nI1\ntp7\ntp8\ntp9\nb."
+ assert_equal(pickle.loads(pkl), np.dtype('>M8[us]'))
+
+ def test_setstate(self):
+ "Verify that datetime dtype __setstate__ can handle bad arguments"
+ dt = np.dtype('>M8[us]')
+ assert_raises(ValueError, dt.__setstate__, (4, '>', None, None, None, -1, -1, 0, 1))
+ assert_(dt.__reduce__()[2] == np.dtype('>M8[us]').__reduce__()[2])
+ assert_raises(TypeError, dt.__setstate__, (4, '>', None, None, None, -1, -1, 0, ({}, 'xxx')))
+ assert_(dt.__reduce__()[2] == np.dtype('>M8[us]').__reduce__()[2])
+
+ def test_dtype_promotion(self):
+ # datetime <op> datetime computes the metadata gcd
+ # timedelta <op> timedelta computes the metadata gcd
+ for mM in ['m', 'M']:
+ assert_equal(
+ np.promote_types(np.dtype(mM + '8[2Y]'), np.dtype(mM + '8[2Y]')),
+ np.dtype(mM + '8[2Y]'))
+ assert_equal(
+ np.promote_types(np.dtype(mM + '8[12Y]'), np.dtype(mM + '8[15Y]')),
+ np.dtype(mM + '8[3Y]'))
+ assert_equal(
+ np.promote_types(np.dtype(mM + '8[62M]'), np.dtype(mM + '8[24M]')),
+ np.dtype(mM + '8[2M]'))
+ assert_equal(
+ np.promote_types(np.dtype(mM + '8[1W]'), np.dtype(mM + '8[2D]')),
+ np.dtype(mM + '8[1D]'))
+ assert_equal(
+ np.promote_types(np.dtype(mM + '8[W]'), np.dtype(mM + '8[13s]')),
+ np.dtype(mM + '8[s]'))
+ assert_equal(
+ np.promote_types(np.dtype(mM + '8[13W]'), np.dtype(mM + '8[49s]')),
+ np.dtype(mM + '8[7s]'))
+ # timedelta <op> timedelta raises when there is no reasonable gcd
+ assert_raises(TypeError, np.promote_types,
+ np.dtype('m8[Y]'), np.dtype('m8[D]'))
+ assert_raises(TypeError, np.promote_types,
+ np.dtype('m8[M]'), np.dtype('m8[W]'))
+ # timedelta and float cannot be safely cast with each other
+ assert_raises(TypeError, np.promote_types, "float32", "m8")
+ assert_raises(TypeError, np.promote_types, "m8", "float32")
+ assert_raises(TypeError, np.promote_types, "uint64", "m8")
+ assert_raises(TypeError, np.promote_types, "m8", "uint64")
+
+ # timedelta <op> timedelta may overflow with big unit ranges
+ assert_raises(OverflowError, np.promote_types,
+ np.dtype('m8[W]'), np.dtype('m8[fs]'))
+ assert_raises(OverflowError, np.promote_types,
+ np.dtype('m8[s]'), np.dtype('m8[as]'))
+
+ def test_cast_overflow(self):
+ # gh-4486
+ def cast():
+ numpy.datetime64("1971-01-01 00:00:00.000000000000000").astype("<M8[D]")
+ assert_raises(OverflowError, cast)
+
+ def cast2():
+ numpy.datetime64("2014").astype("<M8[fs]")
+ assert_raises(OverflowError, cast2)
+
+ def test_pyobject_roundtrip(self):
+ # All datetime types should be able to roundtrip through object
+ a = np.array([0, 0, 0, 0, 0, 0, 0, 0, 0,
+ -1020040340, -2942398, -1, 0, 1, 234523453, 1199164176],
+ dtype=np.int64)
+ # With date units
+ for unit in ['M8[D]', 'M8[W]', 'M8[M]', 'M8[Y]']:
+ b = a.copy().view(dtype=unit)
+ b[0] = '-0001-01-01'
+ b[1] = '-0001-12-31'
+ b[2] = '0000-01-01'
+ b[3] = '0001-01-01'
+ b[4] = '1969-12-31'
+ b[5] = '1970-01-01'
+ b[6] = '9999-12-31'
+ b[7] = '10000-01-01'
+ b[8] = 'NaT'
+
+ assert_equal(b.astype(object).astype(unit), b,
+ f"Error roundtripping unit {unit}")
+ # With time units
+ for unit in ['M8[as]', 'M8[16fs]', 'M8[ps]', 'M8[us]',
+ 'M8[300as]', 'M8[20us]']:
+ b = a.copy().view(dtype=unit)
+ b[0] = '-0001-01-01T00'
+ b[1] = '-0001-12-31T00'
+ b[2] = '0000-01-01T00'
+ b[3] = '0001-01-01T00'
+ b[4] = '1969-12-31T23:59:59.999999'
+ b[5] = '1970-01-01T00'
+ b[6] = '9999-12-31T23:59:59.999999'
+ b[7] = '10000-01-01T00'
+ b[8] = 'NaT'
+
+ assert_equal(b.astype(object).astype(unit), b,
+ f"Error roundtripping unit {unit}")
+
+ def test_month_truncation(self):
+ # Make sure that months are truncating correctly
+ assert_equal(np.array('1945-03-01', dtype='M8[M]'),
+ np.array('1945-03-31', dtype='M8[M]'))
+ assert_equal(np.array('1969-11-01', dtype='M8[M]'),
+ np.array('1969-11-30T23:59:59.99999', dtype='M').astype('M8[M]'))
+ assert_equal(np.array('1969-12-01', dtype='M8[M]'),
+ np.array('1969-12-31T23:59:59.99999', dtype='M').astype('M8[M]'))
+ assert_equal(np.array('1970-01-01', dtype='M8[M]'),
+ np.array('1970-01-31T23:59:59.99999', dtype='M').astype('M8[M]'))
+ assert_equal(np.array('1980-02-01', dtype='M8[M]'),
+ np.array('1980-02-29T23:59:59.99999', dtype='M').astype('M8[M]'))
+
+ def test_different_unit_comparison(self):
+ # Check some years with date units
+ for unit1 in ['Y', 'M', 'D']:
+ dt1 = np.dtype(f'M8[{unit1}]')
+ for unit2 in ['Y', 'M', 'D']:
+ dt2 = np.dtype(f'M8[{unit2}]')
+ assert_equal(np.array('1945', dtype=dt1),
+ np.array('1945', dtype=dt2))
+ assert_equal(np.array('1970', dtype=dt1),
+ np.array('1970', dtype=dt2))
+ assert_equal(np.array('9999', dtype=dt1),
+ np.array('9999', dtype=dt2))
+ assert_equal(np.array('10000', dtype=dt1),
+ np.array('10000-01-01', dtype=dt2))
+ assert_equal(np.datetime64('1945', unit1),
+ np.datetime64('1945', unit2))
+ assert_equal(np.datetime64('1970', unit1),
+ np.datetime64('1970', unit2))
+ assert_equal(np.datetime64('9999', unit1),
+ np.datetime64('9999', unit2))
+ assert_equal(np.datetime64('10000', unit1),
+ np.datetime64('10000-01-01', unit2))
+ # Check some datetimes with time units
+ for unit1 in ['6h', 'h', 'm', 's', '10ms', 'ms', 'us']:
+ dt1 = np.dtype(f'M8[{unit1}]')
+ for unit2 in ['h', 'm', 's', 'ms', 'us']:
+ dt2 = np.dtype(f'M8[{unit2}]')
+ assert_equal(np.array('1945-03-12T18', dtype=dt1),
+ np.array('1945-03-12T18', dtype=dt2))
+ assert_equal(np.array('1970-03-12T18', dtype=dt1),
+ np.array('1970-03-12T18', dtype=dt2))
+ assert_equal(np.array('9999-03-12T18', dtype=dt1),
+ np.array('9999-03-12T18', dtype=dt2))
+ assert_equal(np.array('10000-01-01T00', dtype=dt1),
+ np.array('10000-01-01T00', dtype=dt2))
+ assert_equal(np.datetime64('1945-03-12T18', unit1),
+ np.datetime64('1945-03-12T18', unit2))
+ assert_equal(np.datetime64('1970-03-12T18', unit1),
+ np.datetime64('1970-03-12T18', unit2))
+ assert_equal(np.datetime64('9999-03-12T18', unit1),
+ np.datetime64('9999-03-12T18', unit2))
+ assert_equal(np.datetime64('10000-01-01T00', unit1),
+ np.datetime64('10000-01-01T00', unit2))
+ # Check some days with units that won't overflow
+ for unit1 in ['D', '12h', 'h', 'm', 's', '4s', 'ms', 'us']:
+ dt1 = np.dtype(f'M8[{unit1}]')
+ for unit2 in ['D', 'h', 'm', 's', 'ms', 'us']:
+ dt2 = np.dtype(f'M8[{unit2}]')
+ assert_(np.equal(np.array('1932-02-17', dtype='M').astype(dt1),
+ np.array('1932-02-17T00:00:00', dtype='M').astype(dt2),
+ casting='unsafe'))
+ assert_(np.equal(np.array('10000-04-27', dtype='M').astype(dt1),
+ np.array('10000-04-27T00:00:00', dtype='M').astype(dt2),
+ casting='unsafe'))
+
+ # Shouldn't be able to compare datetime and timedelta
+ a = np.array('2012-12-21', dtype='M8[D]')
+ b = np.array(3, dtype='m8[D]')
+ assert_raises(TypeError, np.less, a, b)
+ # not even if "unsafe"
+ assert_raises(TypeError, np.less, a, b, casting='unsafe')
+
+ def test_datetime_like(self):
+ a = np.array([3], dtype='m8[4D]')
+ b = np.array(['2012-12-21'], dtype='M8[D]')
+
+ assert_equal(np.ones_like(a).dtype, a.dtype)
+ assert_equal(np.zeros_like(a).dtype, a.dtype)
+ assert_equal(np.empty_like(a).dtype, a.dtype)
+ assert_equal(np.ones_like(b).dtype, b.dtype)
+ assert_equal(np.zeros_like(b).dtype, b.dtype)
+ assert_equal(np.empty_like(b).dtype, b.dtype)
+
+ def test_datetime_unary(self):
+ for tda, tdb, tdzero, tdone, tdmone in \
+ [
+ # One-dimensional arrays
+ (np.array([3], dtype='m8[D]'),
+ np.array([-3], dtype='m8[D]'),
+ np.array([0], dtype='m8[D]'),
+ np.array([1], dtype='m8[D]'),
+ np.array([-1], dtype='m8[D]')),
+ # NumPy scalars
+ (np.timedelta64(3, '[D]'),
+ np.timedelta64(-3, '[D]'),
+ np.timedelta64(0, '[D]'),
+ np.timedelta64(1, '[D]'),
+ np.timedelta64(-1, '[D]'))]:
+ # negative ufunc
+ assert_equal(-tdb, tda)
+ assert_equal((-tdb).dtype, tda.dtype)
+ assert_equal(np.negative(tdb), tda)
+ assert_equal(np.negative(tdb).dtype, tda.dtype)
+
+ # positive ufunc
+ assert_equal(np.positive(tda), tda)
+ assert_equal(np.positive(tda).dtype, tda.dtype)
+ assert_equal(np.positive(tdb), tdb)
+ assert_equal(np.positive(tdb).dtype, tdb.dtype)
+
+ # absolute ufunc
+ assert_equal(np.absolute(tdb), tda)
+ assert_equal(np.absolute(tdb).dtype, tda.dtype)
+
+ # sign ufunc
+ assert_equal(np.sign(tda), tdone)
+ assert_equal(np.sign(tdb), tdmone)
+ assert_equal(np.sign(tdzero), tdzero)
+ assert_equal(np.sign(tda).dtype, tda.dtype)
+
+ # The ufuncs always produce native-endian results
+ assert_
+
+ def test_datetime_add(self):
+ for dta, dtb, dtc, dtnat, tda, tdb, tdc in \
+ [
+ # One-dimensional arrays
+ (np.array(['2012-12-21'], dtype='M8[D]'),
+ np.array(['2012-12-24'], dtype='M8[D]'),
+ np.array(['2012-12-21T11'], dtype='M8[h]'),
+ np.array(['NaT'], dtype='M8[D]'),
+ np.array([3], dtype='m8[D]'),
+ np.array([11], dtype='m8[h]'),
+ np.array([3 * 24 + 11], dtype='m8[h]')),
+ # NumPy scalars
+ (np.datetime64('2012-12-21', '[D]'),
+ np.datetime64('2012-12-24', '[D]'),
+ np.datetime64('2012-12-21T11', '[h]'),
+ np.datetime64('NaT', '[D]'),
+ np.timedelta64(3, '[D]'),
+ np.timedelta64(11, '[h]'),
+ np.timedelta64(3 * 24 + 11, '[h]'))]:
+ # m8 + m8
+ assert_equal(tda + tdb, tdc)
+ assert_equal((tda + tdb).dtype, np.dtype('m8[h]'))
+ # m8 + bool
+ assert_equal(tdb + True, tdb + 1)
+ assert_equal((tdb + True).dtype, np.dtype('m8[h]'))
+ # m8 + int
+ assert_equal(tdb + 3 * 24, tdc)
+ assert_equal((tdb + 3 * 24).dtype, np.dtype('m8[h]'))
+ # bool + m8
+ assert_equal(False + tdb, tdb)
+ assert_equal((False + tdb).dtype, np.dtype('m8[h]'))
+ # int + m8
+ assert_equal(3 * 24 + tdb, tdc)
+ assert_equal((3 * 24 + tdb).dtype, np.dtype('m8[h]'))
+ # M8 + bool
+ assert_equal(dta + True, dta + 1)
+ assert_equal(dtnat + True, dtnat)
+ assert_equal((dta + True).dtype, np.dtype('M8[D]'))
+ # M8 + int
+ assert_equal(dta + 3, dtb)
+ assert_equal(dtnat + 3, dtnat)
+ assert_equal((dta + 3).dtype, np.dtype('M8[D]'))
+ # bool + M8
+ assert_equal(False + dta, dta)
+ assert_equal(False + dtnat, dtnat)
+ assert_equal((False + dta).dtype, np.dtype('M8[D]'))
+ # int + M8
+ assert_equal(3 + dta, dtb)
+ assert_equal(3 + dtnat, dtnat)
+ assert_equal((3 + dta).dtype, np.dtype('M8[D]'))
+ # M8 + m8
+ assert_equal(dta + tda, dtb)
+ assert_equal(dtnat + tda, dtnat)
+ assert_equal((dta + tda).dtype, np.dtype('M8[D]'))
+ # m8 + M8
+ assert_equal(tda + dta, dtb)
+ assert_equal(tda + dtnat, dtnat)
+ assert_equal((tda + dta).dtype, np.dtype('M8[D]'))
+
+ # In M8 + m8, the result goes to higher precision
+ assert_equal(np.add(dta, tdb, casting='unsafe'), dtc)
+ assert_equal(np.add(dta, tdb, casting='unsafe').dtype,
+ np.dtype('M8[h]'))
+ assert_equal(np.add(tdb, dta, casting='unsafe'), dtc)
+ assert_equal(np.add(tdb, dta, casting='unsafe').dtype,
+ np.dtype('M8[h]'))
+
+ # M8 + M8
+ assert_raises(TypeError, np.add, dta, dtb)
+
+ def test_datetime_subtract(self):
+ for dta, dtb, dtc, dtd, dte, dtnat, tda, tdb, tdc in \
+ [
+ # One-dimensional arrays
+ (np.array(['2012-12-21'], dtype='M8[D]'),
+ np.array(['2012-12-24'], dtype='M8[D]'),
+ np.array(['1940-12-24'], dtype='M8[D]'),
+ np.array(['1940-12-24T00'], dtype='M8[h]'),
+ np.array(['1940-12-23T13'], dtype='M8[h]'),
+ np.array(['NaT'], dtype='M8[D]'),
+ np.array([3], dtype='m8[D]'),
+ np.array([11], dtype='m8[h]'),
+ np.array([3 * 24 - 11], dtype='m8[h]')),
+ # NumPy scalars
+ (np.datetime64('2012-12-21', '[D]'),
+ np.datetime64('2012-12-24', '[D]'),
+ np.datetime64('1940-12-24', '[D]'),
+ np.datetime64('1940-12-24T00', '[h]'),
+ np.datetime64('1940-12-23T13', '[h]'),
+ np.datetime64('NaT', '[D]'),
+ np.timedelta64(3, '[D]'),
+ np.timedelta64(11, '[h]'),
+ np.timedelta64(3 * 24 - 11, '[h]'))]:
+ # m8 - m8
+ assert_equal(tda - tdb, tdc)
+ assert_equal((tda - tdb).dtype, np.dtype('m8[h]'))
+ assert_equal(tdb - tda, -tdc)
+ assert_equal((tdb - tda).dtype, np.dtype('m8[h]'))
+ # m8 - bool
+ assert_equal(tdc - True, tdc - 1)
+ assert_equal((tdc - True).dtype, np.dtype('m8[h]'))
+ # m8 - int
+ assert_equal(tdc - 3 * 24, -tdb)
+ assert_equal((tdc - 3 * 24).dtype, np.dtype('m8[h]'))
+ # int - m8
+ assert_equal(False - tdb, -tdb)
+ assert_equal((False - tdb).dtype, np.dtype('m8[h]'))
+ # int - m8
+ assert_equal(3 * 24 - tdb, tdc)
+ assert_equal((3 * 24 - tdb).dtype, np.dtype('m8[h]'))
+ # M8 - bool
+ assert_equal(dtb - True, dtb - 1)
+ assert_equal(dtnat - True, dtnat)
+ assert_equal((dtb - True).dtype, np.dtype('M8[D]'))
+ # M8 - int
+ assert_equal(dtb - 3, dta)
+ assert_equal(dtnat - 3, dtnat)
+ assert_equal((dtb - 3).dtype, np.dtype('M8[D]'))
+ # M8 - m8
+ assert_equal(dtb - tda, dta)
+ assert_equal(dtnat - tda, dtnat)
+ assert_equal((dtb - tda).dtype, np.dtype('M8[D]'))
+
+ # In M8 - m8, the result goes to higher precision
+ assert_equal(np.subtract(dtc, tdb, casting='unsafe'), dte)
+ assert_equal(np.subtract(dtc, tdb, casting='unsafe').dtype,
+ np.dtype('M8[h]'))
+
+ # M8 - M8 with different goes to higher precision
+ assert_equal(np.subtract(dtc, dtd, casting='unsafe'),
+ np.timedelta64(0, 'h'))
+ assert_equal(np.subtract(dtc, dtd, casting='unsafe').dtype,
+ np.dtype('m8[h]'))
+ assert_equal(np.subtract(dtd, dtc, casting='unsafe'),
+ np.timedelta64(0, 'h'))
+ assert_equal(np.subtract(dtd, dtc, casting='unsafe').dtype,
+ np.dtype('m8[h]'))
+
+ # m8 - M8
+ assert_raises(TypeError, np.subtract, tda, dta)
+ # bool - M8
+ assert_raises(TypeError, np.subtract, False, dta)
+ # int - M8
+ assert_raises(TypeError, np.subtract, 3, dta)
+
+ def test_datetime_multiply(self):
+ for dta, tda, tdb, tdc in \
+ [
+ # One-dimensional arrays
+ (np.array(['2012-12-21'], dtype='M8[D]'),
+ np.array([6], dtype='m8[h]'),
+ np.array([9], dtype='m8[h]'),
+ np.array([12], dtype='m8[h]')),
+ # NumPy scalars
+ (np.datetime64('2012-12-21', '[D]'),
+ np.timedelta64(6, '[h]'),
+ np.timedelta64(9, '[h]'),
+ np.timedelta64(12, '[h]'))]:
+ # m8 * int
+ assert_equal(tda * 2, tdc)
+ assert_equal((tda * 2).dtype, np.dtype('m8[h]'))
+ # int * m8
+ assert_equal(2 * tda, tdc)
+ assert_equal((2 * tda).dtype, np.dtype('m8[h]'))
+ # m8 * float
+ assert_equal(tda * 1.5, tdb)
+ assert_equal((tda * 1.5).dtype, np.dtype('m8[h]'))
+ # float * m8
+ assert_equal(1.5 * tda, tdb)
+ assert_equal((1.5 * tda).dtype, np.dtype('m8[h]'))
+
+ # m8 * m8
+ assert_raises(TypeError, np.multiply, tda, tdb)
+ # m8 * M8
+ assert_raises(TypeError, np.multiply, dta, tda)
+ # M8 * m8
+ assert_raises(TypeError, np.multiply, tda, dta)
+ # M8 * int
+ assert_raises(TypeError, np.multiply, dta, 2)
+ # int * M8
+ assert_raises(TypeError, np.multiply, 2, dta)
+ # M8 * float
+ assert_raises(TypeError, np.multiply, dta, 1.5)
+ # float * M8
+ assert_raises(TypeError, np.multiply, 1.5, dta)
+
+ # NaTs
+ with suppress_warnings() as sup:
+ sup.filter(RuntimeWarning, "invalid value encountered in multiply")
+ nat = np.timedelta64('NaT')
+
+ def check(a, b, res):
+ assert_equal(a * b, res)
+ assert_equal(b * a, res)
+ for tp in (int, float):
+ check(nat, tp(2), nat)
+ check(nat, tp(0), nat)
+ for f in (float('inf'), float('nan')):
+ check(np.timedelta64(1), f, nat)
+ check(np.timedelta64(0), f, nat)
+ check(nat, f, nat)
+
+ @pytest.mark.parametrize("op1, op2, exp", [
+ # m8 same units round down
+ (np.timedelta64(7, 's'),
+ np.timedelta64(4, 's'),
+ 1),
+ # m8 same units round down with negative
+ (np.timedelta64(7, 's'),
+ np.timedelta64(-4, 's'),
+ -2),
+ # m8 same units negative no round down
+ (np.timedelta64(8, 's'),
+ np.timedelta64(-4, 's'),
+ -2),
+ # m8 different units
+ (np.timedelta64(1, 'm'),
+ np.timedelta64(31, 's'),
+ 1),
+ # m8 generic units
+ (np.timedelta64(1890),
+ np.timedelta64(31),
+ 60),
+ # Y // M works
+ (np.timedelta64(2, 'Y'),
+ np.timedelta64('13', 'M'),
+ 1),
+ # handle 1D arrays
+ (np.array([1, 2, 3], dtype='m8'),
+ np.array([2], dtype='m8'),
+ np.array([0, 1, 1], dtype=np.int64)),
+ ])
+ def test_timedelta_floor_divide(self, op1, op2, exp):
+ assert_equal(op1 // op2, exp)
+
+ @pytest.mark.skipif(IS_WASM, reason="fp errors don't work in wasm")
+ @pytest.mark.parametrize("op1, op2", [
+ # div by 0
+ (np.timedelta64(10, 'us'),
+ np.timedelta64(0, 'us')),
+ # div with NaT
+ (np.timedelta64('NaT'),
+ np.timedelta64(50, 'us')),
+ # special case for int64 min
+ # in integer floor division
+ (np.timedelta64(np.iinfo(np.int64).min),
+ np.timedelta64(-1)),
+ ])
+ def test_timedelta_floor_div_warnings(self, op1, op2):
+ with assert_warns(RuntimeWarning):
+ actual = op1 // op2
+ assert_equal(actual, 0)
+ assert_equal(actual.dtype, np.int64)
+
+ @pytest.mark.parametrize("val1, val2", [
+ # the smallest integer that can't be represented
+ # exactly in a double should be preserved if we avoid
+ # casting to double in floordiv operation
+ (9007199254740993, 1),
+ # stress the alternate floordiv code path where
+ # operand signs don't match and remainder isn't 0
+ (9007199254740999, -2),
+ ])
+ def test_timedelta_floor_div_precision(self, val1, val2):
+ op1 = np.timedelta64(val1)
+ op2 = np.timedelta64(val2)
+ actual = op1 // op2
+ # Python reference integer floor
+ expected = val1 // val2
+ assert_equal(actual, expected)
+
+ @pytest.mark.parametrize("val1, val2", [
+ # years and months sometimes can't be unambiguously
+ # divided for floor division operation
+ (np.timedelta64(7, 'Y'),
+ np.timedelta64(3, 's')),
+ (np.timedelta64(7, 'M'),
+ np.timedelta64(1, 'D')),
+ ])
+ def test_timedelta_floor_div_error(self, val1, val2):
+ with assert_raises_regex(TypeError, "common metadata divisor"):
+ val1 // val2
+
+ @pytest.mark.parametrize("op1, op2", [
+ # reuse the test cases from floordiv
+ (np.timedelta64(7, 's'),
+ np.timedelta64(4, 's')),
+ # m8 same units round down with negative
+ (np.timedelta64(7, 's'),
+ np.timedelta64(-4, 's')),
+ # m8 same units negative no round down
+ (np.timedelta64(8, 's'),
+ np.timedelta64(-4, 's')),
+ # m8 different units
+ (np.timedelta64(1, 'm'),
+ np.timedelta64(31, 's')),
+ # m8 generic units
+ (np.timedelta64(1890),
+ np.timedelta64(31)),
+ # Y // M works
+ (np.timedelta64(2, 'Y'),
+ np.timedelta64('13', 'M')),
+ # handle 1D arrays
+ (np.array([1, 2, 3], dtype='m8'),
+ np.array([2], dtype='m8')),
+ ])
+ def test_timedelta_divmod(self, op1, op2):
+ expected = (op1 // op2, op1 % op2)
+ assert_equal(divmod(op1, op2), expected)
+
+ @pytest.mark.parametrize("op1, op2", [
+ # Y and M are incompatible with all units except Y and M
+ (np.timedelta64(1, 'Y'), np.timedelta64(1, 's')),
+ (np.timedelta64(1, 'D'), np.timedelta64(1, 'M')),
+ ])
+ def test_timedelta_divmod_typeerror(self, op1, op2):
+ assert_raises(TypeError, np.divmod, op1, op2)
+
+ @pytest.mark.skipif(IS_WASM, reason="does not work in wasm")
+ @pytest.mark.parametrize("op1, op2", [
+ # reuse cases from floordiv
+ # div by 0
+ (np.timedelta64(10, 'us'),
+ np.timedelta64(0, 'us')),
+ # div with NaT
+ (np.timedelta64('NaT'),
+ np.timedelta64(50, 'us')),
+ # special case for int64 min
+ # in integer floor division
+ (np.timedelta64(np.iinfo(np.int64).min),
+ np.timedelta64(-1)),
+ ])
+ def test_timedelta_divmod_warnings(self, op1, op2):
+ with assert_warns(RuntimeWarning):
+ expected = (op1 // op2, op1 % op2)
+ with assert_warns(RuntimeWarning):
+ actual = divmod(op1, op2)
+ assert_equal(actual, expected)
+
+ def test_datetime_divide(self):
+ for dta, tda, tdb, tdc, tdd in \
+ [
+ # One-dimensional arrays
+ (np.array(['2012-12-21'], dtype='M8[D]'),
+ np.array([6], dtype='m8[h]'),
+ np.array([9], dtype='m8[h]'),
+ np.array([12], dtype='m8[h]'),
+ np.array([6], dtype='m8[m]')),
+ # NumPy scalars
+ (np.datetime64('2012-12-21', '[D]'),
+ np.timedelta64(6, '[h]'),
+ np.timedelta64(9, '[h]'),
+ np.timedelta64(12, '[h]'),
+ np.timedelta64(6, '[m]'))]:
+ # m8 / int
+ assert_equal(tdc / 2, tda)
+ assert_equal((tdc / 2).dtype, np.dtype('m8[h]'))
+ # m8 / float
+ assert_equal(tda / 0.5, tdc)
+ assert_equal((tda / 0.5).dtype, np.dtype('m8[h]'))
+ # m8 / m8
+ assert_equal(tda / tdb, 6 / 9)
+ assert_equal(np.divide(tda, tdb), 6 / 9)
+ assert_equal(np.true_divide(tda, tdb), 6 / 9)
+ assert_equal(tdb / tda, 9 / 6)
+ assert_equal((tda / tdb).dtype, np.dtype('f8'))
+ assert_equal(tda / tdd, 60)
+ assert_equal(tdd / tda, 1 / 60)
+
+ # int / m8
+ assert_raises(TypeError, np.divide, 2, tdb)
+ # float / m8
+ assert_raises(TypeError, np.divide, 0.5, tdb)
+ # m8 / M8
+ assert_raises(TypeError, np.divide, dta, tda)
+ # M8 / m8
+ assert_raises(TypeError, np.divide, tda, dta)
+ # M8 / int
+ assert_raises(TypeError, np.divide, dta, 2)
+ # int / M8
+ assert_raises(TypeError, np.divide, 2, dta)
+ # M8 / float
+ assert_raises(TypeError, np.divide, dta, 1.5)
+ # float / M8
+ assert_raises(TypeError, np.divide, 1.5, dta)
+
+ # NaTs
+ with suppress_warnings() as sup:
+ sup.filter(RuntimeWarning, r".*encountered in divide")
+ nat = np.timedelta64('NaT')
+ for tp in (int, float):
+ assert_equal(np.timedelta64(1) / tp(0), nat)
+ assert_equal(np.timedelta64(0) / tp(0), nat)
+ assert_equal(nat / tp(0), nat)
+ assert_equal(nat / tp(2), nat)
+ # Division by inf
+ assert_equal(np.timedelta64(1) / float('inf'), np.timedelta64(0))
+ assert_equal(np.timedelta64(0) / float('inf'), np.timedelta64(0))
+ assert_equal(nat / float('inf'), nat)
+ # Division by nan
+ assert_equal(np.timedelta64(1) / float('nan'), nat)
+ assert_equal(np.timedelta64(0) / float('nan'), nat)
+ assert_equal(nat / float('nan'), nat)
+
+ def test_datetime_compare(self):
+ # Test all the comparison operators
+ a = np.datetime64('2000-03-12T18:00:00.000000')
+ b = np.array(['2000-03-12T18:00:00.000000',
+ '2000-03-12T17:59:59.999999',
+ '2000-03-12T18:00:00.000001',
+ '1970-01-11T12:00:00.909090',
+ '2016-01-11T12:00:00.909090'],
+ dtype='datetime64[us]')
+ assert_equal(np.equal(a, b), [1, 0, 0, 0, 0])
+ assert_equal(np.not_equal(a, b), [0, 1, 1, 1, 1])
+ assert_equal(np.less(a, b), [0, 0, 1, 0, 1])
+ assert_equal(np.less_equal(a, b), [1, 0, 1, 0, 1])
+ assert_equal(np.greater(a, b), [0, 1, 0, 1, 0])
+ assert_equal(np.greater_equal(a, b), [1, 1, 0, 1, 0])
+
+ def test_datetime_compare_nat(self):
+ dt_nat = np.datetime64('NaT', 'D')
+ dt_other = np.datetime64('2000-01-01')
+ td_nat = np.timedelta64('NaT', 'h')
+ td_other = np.timedelta64(1, 'h')
+
+ for op in [np.equal, np.less, np.less_equal,
+ np.greater, np.greater_equal]:
+ assert_(not op(dt_nat, dt_nat))
+ assert_(not op(dt_nat, dt_other))
+ assert_(not op(dt_other, dt_nat))
+
+ assert_(not op(td_nat, td_nat))
+ assert_(not op(td_nat, td_other))
+ assert_(not op(td_other, td_nat))
+
+ assert_(np.not_equal(dt_nat, dt_nat))
+ assert_(np.not_equal(dt_nat, dt_other))
+ assert_(np.not_equal(dt_other, dt_nat))
+
+ assert_(np.not_equal(td_nat, td_nat))
+ assert_(np.not_equal(td_nat, td_other))
+ assert_(np.not_equal(td_other, td_nat))
+
+ def test_datetime_minmax(self):
+ # The metadata of the result should become the GCD
+ # of the operand metadata
+ a = np.array('1999-03-12T13', dtype='M8[2m]')
+ b = np.array('1999-03-12T12', dtype='M8[s]')
+ assert_equal(np.minimum(a, b), b)
+ assert_equal(np.minimum(a, b).dtype, np.dtype('M8[s]'))
+ assert_equal(np.fmin(a, b), b)
+ assert_equal(np.fmin(a, b).dtype, np.dtype('M8[s]'))
+ assert_equal(np.maximum(a, b), a)
+ assert_equal(np.maximum(a, b).dtype, np.dtype('M8[s]'))
+ assert_equal(np.fmax(a, b), a)
+ assert_equal(np.fmax(a, b).dtype, np.dtype('M8[s]'))
+ # Viewed as integers, the comparison is opposite because
+ # of the units chosen
+ assert_equal(np.minimum(a.view('i8'), b.view('i8')), a.view('i8'))
+
+ # Interaction with NaT
+ a = np.array('1999-03-12T13', dtype='M8[2m]')
+ dtnat = np.array('NaT', dtype='M8[h]')
+ assert_equal(np.minimum(a, dtnat), dtnat)
+ assert_equal(np.minimum(dtnat, a), dtnat)
+ assert_equal(np.maximum(a, dtnat), dtnat)
+ assert_equal(np.maximum(dtnat, a), dtnat)
+ assert_equal(np.fmin(dtnat, a), a)
+ assert_equal(np.fmin(a, dtnat), a)
+ assert_equal(np.fmax(dtnat, a), a)
+ assert_equal(np.fmax(a, dtnat), a)
+
+ # Also do timedelta
+ a = np.array(3, dtype='m8[h]')
+ b = np.array(3 * 3600 - 3, dtype='m8[s]')
+ assert_equal(np.minimum(a, b), b)
+ assert_equal(np.minimum(a, b).dtype, np.dtype('m8[s]'))
+ assert_equal(np.fmin(a, b), b)
+ assert_equal(np.fmin(a, b).dtype, np.dtype('m8[s]'))
+ assert_equal(np.maximum(a, b), a)
+ assert_equal(np.maximum(a, b).dtype, np.dtype('m8[s]'))
+ assert_equal(np.fmax(a, b), a)
+ assert_equal(np.fmax(a, b).dtype, np.dtype('m8[s]'))
+ # Viewed as integers, the comparison is opposite because
+ # of the units chosen
+ assert_equal(np.minimum(a.view('i8'), b.view('i8')), a.view('i8'))
+
+ # should raise between datetime and timedelta
+ #
+ # TODO: Allowing unsafe casting by
+ # default in ufuncs strikes again... :(
+ a = np.array(3, dtype='m8[h]')
+ b = np.array('1999-03-12T12', dtype='M8[s]')
+ #assert_raises(TypeError, np.minimum, a, b)
+ #assert_raises(TypeError, np.maximum, a, b)
+ #assert_raises(TypeError, np.fmin, a, b)
+ #assert_raises(TypeError, np.fmax, a, b)
+ assert_raises(TypeError, np.minimum, a, b, casting='same_kind')
+ assert_raises(TypeError, np.maximum, a, b, casting='same_kind')
+ assert_raises(TypeError, np.fmin, a, b, casting='same_kind')
+ assert_raises(TypeError, np.fmax, a, b, casting='same_kind')
+
+ def test_hours(self):
+ t = np.ones(3, dtype='M8[s]')
+ t[0] = 60 * 60 * 24 + 60 * 60 * 10
+ assert_(t[0].item().hour == 10)
+
+ def test_divisor_conversion_year(self):
+ assert_(np.dtype('M8[Y/4]') == np.dtype('M8[3M]'))
+ assert_(np.dtype('M8[Y/13]') == np.dtype('M8[4W]'))
+ assert_(np.dtype('M8[3Y/73]') == np.dtype('M8[15D]'))
+
+ def test_divisor_conversion_month(self):
+ assert_(np.dtype('M8[M/2]') == np.dtype('M8[2W]'))
+ assert_(np.dtype('M8[M/15]') == np.dtype('M8[2D]'))
+ assert_(np.dtype('M8[3M/40]') == np.dtype('M8[54h]'))
+
+ def test_divisor_conversion_week(self):
+ assert_(np.dtype('m8[W/7]') == np.dtype('m8[D]'))
+ assert_(np.dtype('m8[3W/14]') == np.dtype('m8[36h]'))
+ assert_(np.dtype('m8[5W/140]') == np.dtype('m8[360m]'))
+
+ def test_divisor_conversion_day(self):
+ assert_(np.dtype('M8[D/12]') == np.dtype('M8[2h]'))
+ assert_(np.dtype('M8[D/120]') == np.dtype('M8[12m]'))
+ assert_(np.dtype('M8[3D/960]') == np.dtype('M8[270s]'))
+
+ def test_divisor_conversion_hour(self):
+ assert_(np.dtype('m8[h/30]') == np.dtype('m8[2m]'))
+ assert_(np.dtype('m8[3h/300]') == np.dtype('m8[36s]'))
+
+ def test_divisor_conversion_minute(self):
+ assert_(np.dtype('m8[m/30]') == np.dtype('m8[2s]'))
+ assert_(np.dtype('m8[3m/300]') == np.dtype('m8[600ms]'))
+
+ def test_divisor_conversion_second(self):
+ assert_(np.dtype('m8[s/100]') == np.dtype('m8[10ms]'))
+ assert_(np.dtype('m8[3s/10000]') == np.dtype('m8[300us]'))
+
+ def test_divisor_conversion_fs(self):
+ assert_(np.dtype('M8[fs/100]') == np.dtype('M8[10as]'))
+ assert_raises(ValueError, lambda: np.dtype('M8[3fs/10000]'))
+
+ def test_divisor_conversion_as(self):
+ assert_raises(ValueError, lambda: np.dtype('M8[as/10]'))
+
+ def test_string_parser_variants(self):
+ msg = "no explicit representation of timezones available for " \
+ "np.datetime64"
+ # Allow space instead of 'T' between date and time
+ assert_equal(np.array(['1980-02-29T01:02:03'], np.dtype('M8[s]')),
+ np.array(['1980-02-29 01:02:03'], np.dtype('M8[s]')))
+ # Allow positive years
+ assert_equal(np.array(['+1980-02-29T01:02:03'], np.dtype('M8[s]')),
+ np.array(['+1980-02-29 01:02:03'], np.dtype('M8[s]')))
+ # Allow negative years
+ assert_equal(np.array(['-1980-02-29T01:02:03'], np.dtype('M8[s]')),
+ np.array(['-1980-02-29 01:02:03'], np.dtype('M8[s]')))
+ # UTC specifier
+ with pytest.warns(UserWarning, match=msg):
+ assert_equal(
+ np.array(['+1980-02-29T01:02:03'], np.dtype('M8[s]')),
+ np.array(['+1980-02-29 01:02:03Z'], np.dtype('M8[s]')))
+ with pytest.warns(UserWarning, match=msg):
+ assert_equal(
+ np.array(['-1980-02-29T01:02:03'], np.dtype('M8[s]')),
+ np.array(['-1980-02-29 01:02:03Z'], np.dtype('M8[s]')))
+ # Time zone offset
+ with pytest.warns(UserWarning, match=msg):
+ assert_equal(
+ np.array(['1980-02-29T02:02:03'], np.dtype('M8[s]')),
+ np.array(['1980-02-29 00:32:03-0130'], np.dtype('M8[s]')))
+ with pytest.warns(UserWarning, match=msg):
+ assert_equal(
+ np.array(['1980-02-28T22:32:03'], np.dtype('M8[s]')),
+ np.array(['1980-02-29 00:02:03+01:30'], np.dtype('M8[s]')))
+ with pytest.warns(UserWarning, match=msg):
+ assert_equal(
+ np.array(['1980-02-29T02:32:03.506'], np.dtype('M8[s]')),
+ np.array(['1980-02-29 00:32:03.506-02'], np.dtype('M8[s]')))
+ with pytest.warns(UserWarning, match=msg):
+ assert_equal(np.datetime64('1977-03-02T12:30-0230'),
+ np.datetime64('1977-03-02T15:00'))
+
+ def test_string_parser_error_check(self):
+ msg = "no explicit representation of timezones available for " \
+ "np.datetime64"
+ # Arbitrary bad string
+ assert_raises(ValueError, np.array, ['badvalue'], np.dtype('M8[us]'))
+ # Character after year must be '-'
+ assert_raises(ValueError, np.array, ['1980X'], np.dtype('M8[us]'))
+ # Cannot have trailing '-'
+ assert_raises(ValueError, np.array, ['1980-'], np.dtype('M8[us]'))
+ # Month must be in range [1,12]
+ assert_raises(ValueError, np.array, ['1980-00'], np.dtype('M8[us]'))
+ assert_raises(ValueError, np.array, ['1980-13'], np.dtype('M8[us]'))
+ # Month must have two digits
+ assert_raises(ValueError, np.array, ['1980-1'], np.dtype('M8[us]'))
+ assert_raises(ValueError, np.array, ['1980-1-02'], np.dtype('M8[us]'))
+ # 'Mor' is not a valid month
+ assert_raises(ValueError, np.array, ['1980-Mor'], np.dtype('M8[us]'))
+ # Cannot have trailing '-'
+ assert_raises(ValueError, np.array, ['1980-01-'], np.dtype('M8[us]'))
+ # Day must be in range [1,len(month)]
+ assert_raises(ValueError, np.array, ['1980-01-0'], np.dtype('M8[us]'))
+ assert_raises(ValueError, np.array, ['1980-01-00'], np.dtype('M8[us]'))
+ assert_raises(ValueError, np.array, ['1980-01-32'], np.dtype('M8[us]'))
+ assert_raises(ValueError, np.array, ['1979-02-29'], np.dtype('M8[us]'))
+ assert_raises(ValueError, np.array, ['1980-02-30'], np.dtype('M8[us]'))
+ assert_raises(ValueError, np.array, ['1980-03-32'], np.dtype('M8[us]'))
+ assert_raises(ValueError, np.array, ['1980-04-31'], np.dtype('M8[us]'))
+ assert_raises(ValueError, np.array, ['1980-05-32'], np.dtype('M8[us]'))
+ assert_raises(ValueError, np.array, ['1980-06-31'], np.dtype('M8[us]'))
+ assert_raises(ValueError, np.array, ['1980-07-32'], np.dtype('M8[us]'))
+ assert_raises(ValueError, np.array, ['1980-08-32'], np.dtype('M8[us]'))
+ assert_raises(ValueError, np.array, ['1980-09-31'], np.dtype('M8[us]'))
+ assert_raises(ValueError, np.array, ['1980-10-32'], np.dtype('M8[us]'))
+ assert_raises(ValueError, np.array, ['1980-11-31'], np.dtype('M8[us]'))
+ assert_raises(ValueError, np.array, ['1980-12-32'], np.dtype('M8[us]'))
+ # Cannot have trailing characters
+ assert_raises(ValueError, np.array, ['1980-02-03%'],
+ np.dtype('M8[us]'))
+ assert_raises(ValueError, np.array, ['1980-02-03 q'],
+ np.dtype('M8[us]'))
+
+ # Hours must be in range [0, 23]
+ assert_raises(ValueError, np.array, ['1980-02-03 25'],
+ np.dtype('M8[us]'))
+ assert_raises(ValueError, np.array, ['1980-02-03T25'],
+ np.dtype('M8[us]'))
+ assert_raises(ValueError, np.array, ['1980-02-03 24:01'],
+ np.dtype('M8[us]'))
+ assert_raises(ValueError, np.array, ['1980-02-03T24:01'],
+ np.dtype('M8[us]'))
+ assert_raises(ValueError, np.array, ['1980-02-03 -1'],
+ np.dtype('M8[us]'))
+ # No trailing ':'
+ assert_raises(ValueError, np.array, ['1980-02-03 01:'],
+ np.dtype('M8[us]'))
+ # Minutes must be in range [0, 59]
+ assert_raises(ValueError, np.array, ['1980-02-03 01:-1'],
+ np.dtype('M8[us]'))
+ assert_raises(ValueError, np.array, ['1980-02-03 01:60'],
+ np.dtype('M8[us]'))
+ # No trailing ':'
+ assert_raises(ValueError, np.array, ['1980-02-03 01:60:'],
+ np.dtype('M8[us]'))
+ # Seconds must be in range [0, 59]
+ assert_raises(ValueError, np.array, ['1980-02-03 01:10:-1'],
+ np.dtype('M8[us]'))
+ assert_raises(ValueError, np.array, ['1980-02-03 01:01:60'],
+ np.dtype('M8[us]'))
+ # Timezone offset must within a reasonable range
+ with pytest.warns(UserWarning, match=msg):
+ assert_raises(ValueError, np.array, ['1980-02-03 01:01:00+0661'],
+ np.dtype('M8[us]'))
+ with pytest.warns(UserWarning, match=msg):
+ assert_raises(ValueError, np.array, ['1980-02-03 01:01:00+2500'],
+ np.dtype('M8[us]'))
+ with pytest.warns(UserWarning, match=msg):
+ assert_raises(ValueError, np.array, ['1980-02-03 01:01:00-0070'],
+ np.dtype('M8[us]'))
+ with pytest.warns(UserWarning, match=msg):
+ assert_raises(ValueError, np.array, ['1980-02-03 01:01:00-3000'],
+ np.dtype('M8[us]'))
+ with pytest.warns(UserWarning, match=msg):
+ assert_raises(ValueError, np.array, ['1980-02-03 01:01:00-25:00'],
+ np.dtype('M8[us]'))
+
+ def test_creation_overflow(self):
+ date = '1980-03-23 20:00:00'
+ timesteps = np.array([date], dtype='datetime64[s]')[0].astype(np.int64)
+ for unit in ['ms', 'us', 'ns']:
+ timesteps *= 1000
+ x = np.array([date], dtype=f'datetime64[{unit}]')
+
+ assert_equal(timesteps, x[0].astype(np.int64),
+ err_msg=f'Datetime conversion error for unit {unit}')
+
+ assert_equal(x[0].astype(np.int64), 322689600000000000)
+
+ # gh-13062
+ with pytest.raises(OverflowError):
+ np.datetime64(2**64, 'D')
+ with pytest.raises(OverflowError):
+ np.timedelta64(2**64, 'D')
+
+ def test_datetime_as_string(self):
+ # Check all the units with default string conversion
+ date = '1959-10-13'
+ datetime = '1959-10-13T12:34:56.789012345678901234'
+
+ assert_equal(np.datetime_as_string(np.datetime64(date, 'Y')),
+ '1959')
+ assert_equal(np.datetime_as_string(np.datetime64(date, 'M')),
+ '1959-10')
+ assert_equal(np.datetime_as_string(np.datetime64(date, 'D')),
+ '1959-10-13')
+ assert_equal(np.datetime_as_string(np.datetime64(datetime, 'h')),
+ '1959-10-13T12')
+ assert_equal(np.datetime_as_string(np.datetime64(datetime, 'm')),
+ '1959-10-13T12:34')
+ assert_equal(np.datetime_as_string(np.datetime64(datetime, 's')),
+ '1959-10-13T12:34:56')
+ assert_equal(np.datetime_as_string(np.datetime64(datetime, 'ms')),
+ '1959-10-13T12:34:56.789')
+ for us in ['us', 'μs', b'us']: # check non-ascii and bytes too
+ assert_equal(np.datetime_as_string(np.datetime64(datetime, us)),
+ '1959-10-13T12:34:56.789012')
+
+ datetime = '1969-12-31T23:34:56.789012345678901234'
+
+ assert_equal(np.datetime_as_string(np.datetime64(datetime, 'ns')),
+ '1969-12-31T23:34:56.789012345')
+ assert_equal(np.datetime_as_string(np.datetime64(datetime, 'ps')),
+ '1969-12-31T23:34:56.789012345678')
+ assert_equal(np.datetime_as_string(np.datetime64(datetime, 'fs')),
+ '1969-12-31T23:34:56.789012345678901')
+
+ datetime = '1969-12-31T23:59:57.789012345678901234'
+
+ assert_equal(np.datetime_as_string(np.datetime64(datetime, 'as')),
+ datetime)
+ datetime = '1970-01-01T00:34:56.789012345678901234'
+
+ assert_equal(np.datetime_as_string(np.datetime64(datetime, 'ns')),
+ '1970-01-01T00:34:56.789012345')
+ assert_equal(np.datetime_as_string(np.datetime64(datetime, 'ps')),
+ '1970-01-01T00:34:56.789012345678')
+ assert_equal(np.datetime_as_string(np.datetime64(datetime, 'fs')),
+ '1970-01-01T00:34:56.789012345678901')
+
+ datetime = '1970-01-01T00:00:05.789012345678901234'
+
+ assert_equal(np.datetime_as_string(np.datetime64(datetime, 'as')),
+ datetime)
+
+ # String conversion with the unit= parameter
+ a = np.datetime64('2032-07-18T12:23:34.123456', 'us')
+ assert_equal(np.datetime_as_string(a, unit='Y', casting='unsafe'),
+ '2032')
+ assert_equal(np.datetime_as_string(a, unit='M', casting='unsafe'),
+ '2032-07')
+ assert_equal(np.datetime_as_string(a, unit='W', casting='unsafe'),
+ '2032-07-18')
+ assert_equal(np.datetime_as_string(a, unit='D', casting='unsafe'),
+ '2032-07-18')
+ assert_equal(np.datetime_as_string(a, unit='h'), '2032-07-18T12')
+ assert_equal(np.datetime_as_string(a, unit='m'),
+ '2032-07-18T12:23')
+ assert_equal(np.datetime_as_string(a, unit='s'),
+ '2032-07-18T12:23:34')
+ assert_equal(np.datetime_as_string(a, unit='ms'),
+ '2032-07-18T12:23:34.123')
+ assert_equal(np.datetime_as_string(a, unit='us'),
+ '2032-07-18T12:23:34.123456')
+ assert_equal(np.datetime_as_string(a, unit='ns'),
+ '2032-07-18T12:23:34.123456000')
+ assert_equal(np.datetime_as_string(a, unit='ps'),
+ '2032-07-18T12:23:34.123456000000')
+ assert_equal(np.datetime_as_string(a, unit='fs'),
+ '2032-07-18T12:23:34.123456000000000')
+ assert_equal(np.datetime_as_string(a, unit='as'),
+ '2032-07-18T12:23:34.123456000000000000')
+
+ # unit='auto' parameter
+ assert_equal(np.datetime_as_string(
+ np.datetime64('2032-07-18T12:23:34.123456', 'us'), unit='auto'),
+ '2032-07-18T12:23:34.123456')
+ assert_equal(np.datetime_as_string(
+ np.datetime64('2032-07-18T12:23:34.12', 'us'), unit='auto'),
+ '2032-07-18T12:23:34.120')
+ assert_equal(np.datetime_as_string(
+ np.datetime64('2032-07-18T12:23:34', 'us'), unit='auto'),
+ '2032-07-18T12:23:34')
+ assert_equal(np.datetime_as_string(
+ np.datetime64('2032-07-18T12:23:00', 'us'), unit='auto'),
+ '2032-07-18T12:23')
+ # 'auto' doesn't split up hour and minute
+ assert_equal(np.datetime_as_string(
+ np.datetime64('2032-07-18T12:00:00', 'us'), unit='auto'),
+ '2032-07-18T12:00')
+ assert_equal(np.datetime_as_string(
+ np.datetime64('2032-07-18T00:00:00', 'us'), unit='auto'),
+ '2032-07-18')
+ # 'auto' doesn't split up the date
+ assert_equal(np.datetime_as_string(
+ np.datetime64('2032-07-01T00:00:00', 'us'), unit='auto'),
+ '2032-07-01')
+ assert_equal(np.datetime_as_string(
+ np.datetime64('2032-01-01T00:00:00', 'us'), unit='auto'),
+ '2032-01-01')
+
+ @pytest.mark.skipif(not _has_pytz, reason="The pytz module is not available.")
+ def test_datetime_as_string_timezone(self):
+ # timezone='local' vs 'UTC'
+ a = np.datetime64('2010-03-15T06:30', 'm')
+ assert_equal(np.datetime_as_string(a),
+ '2010-03-15T06:30')
+ assert_equal(np.datetime_as_string(a, timezone='naive'),
+ '2010-03-15T06:30')
+ assert_equal(np.datetime_as_string(a, timezone='UTC'),
+ '2010-03-15T06:30Z')
+ assert_(np.datetime_as_string(a, timezone='local') !=
+ '2010-03-15T06:30')
+
+ b = np.datetime64('2010-02-15T06:30', 'm')
+
+ assert_equal(np.datetime_as_string(a, timezone=tz('US/Central')),
+ '2010-03-15T01:30-0500')
+ assert_equal(np.datetime_as_string(a, timezone=tz('US/Eastern')),
+ '2010-03-15T02:30-0400')
+ assert_equal(np.datetime_as_string(a, timezone=tz('US/Pacific')),
+ '2010-03-14T23:30-0700')
+
+ assert_equal(np.datetime_as_string(b, timezone=tz('US/Central')),
+ '2010-02-15T00:30-0600')
+ assert_equal(np.datetime_as_string(b, timezone=tz('US/Eastern')),
+ '2010-02-15T01:30-0500')
+ assert_equal(np.datetime_as_string(b, timezone=tz('US/Pacific')),
+ '2010-02-14T22:30-0800')
+
+ # Dates to strings with a timezone attached is disabled by default
+ assert_raises(TypeError, np.datetime_as_string, a, unit='D',
+ timezone=tz('US/Pacific'))
+ # Check that we can print out the date in the specified time zone
+ assert_equal(np.datetime_as_string(a, unit='D',
+ timezone=tz('US/Pacific'), casting='unsafe'),
+ '2010-03-14')
+ assert_equal(np.datetime_as_string(b, unit='D',
+ timezone=tz('US/Central'), casting='unsafe'),
+ '2010-02-15')
+
+ def test_datetime_arange(self):
+ # With two datetimes provided as strings
+ a = np.arange('2010-01-05', '2010-01-10', dtype='M8[D]')
+ assert_equal(a.dtype, np.dtype('M8[D]'))
+ assert_equal(a,
+ np.array(['2010-01-05', '2010-01-06', '2010-01-07',
+ '2010-01-08', '2010-01-09'], dtype='M8[D]'))
+
+ a = np.arange('1950-02-10', '1950-02-06', -1, dtype='M8[D]')
+ assert_equal(a.dtype, np.dtype('M8[D]'))
+ assert_equal(a,
+ np.array(['1950-02-10', '1950-02-09', '1950-02-08',
+ '1950-02-07'], dtype='M8[D]'))
+
+ # Unit should be detected as months here
+ a = np.arange('1969-05', '1970-05', 2, dtype='M8')
+ assert_equal(a.dtype, np.dtype('M8[M]'))
+ assert_equal(a,
+ np.datetime64('1969-05') + np.arange(12, step=2))
+
+ # datetime, integer|timedelta works as well
+ # produces arange (start, start + stop) in this case
+ a = np.arange('1969', 18, 3, dtype='M8')
+ assert_equal(a.dtype, np.dtype('M8[Y]'))
+ assert_equal(a,
+ np.datetime64('1969') + np.arange(18, step=3))
+ a = np.arange('1969-12-19', 22, np.timedelta64(2), dtype='M8')
+ assert_equal(a.dtype, np.dtype('M8[D]'))
+ assert_equal(a,
+ np.datetime64('1969-12-19') + np.arange(22, step=2))
+
+ # Step of 0 is disallowed
+ assert_raises(ValueError, np.arange, np.datetime64('today'),
+ np.datetime64('today') + 3, 0)
+ # Promotion across nonlinear unit boundaries is disallowed
+ assert_raises(TypeError, np.arange, np.datetime64('2011-03-01', 'D'),
+ np.timedelta64(5, 'M'))
+ assert_raises(TypeError, np.arange,
+ np.datetime64('2012-02-03T14', 's'),
+ np.timedelta64(5, 'Y'))
+
+ def test_datetime_arange_no_dtype(self):
+ d = np.array('2010-01-04', dtype="M8[D]")
+ assert_equal(np.arange(d, d + 1), d)
+ assert_raises(ValueError, np.arange, d)
+
+ def test_timedelta_arange(self):
+ a = np.arange(3, 10, dtype='m8')
+ assert_equal(a.dtype, np.dtype('m8'))
+ assert_equal(a, np.timedelta64(0) + np.arange(3, 10))
+
+ a = np.arange(np.timedelta64(3, 's'), 10, 2, dtype='m8')
+ assert_equal(a.dtype, np.dtype('m8[s]'))
+ assert_equal(a, np.timedelta64(0, 's') + np.arange(3, 10, 2))
+
+ # Step of 0 is disallowed
+ assert_raises(ValueError, np.arange, np.timedelta64(0),
+ np.timedelta64(5), 0)
+ # Promotion across nonlinear unit boundaries is disallowed
+ assert_raises(TypeError, np.arange, np.timedelta64(0, 'D'),
+ np.timedelta64(5, 'M'))
+ assert_raises(TypeError, np.arange, np.timedelta64(0, 'Y'),
+ np.timedelta64(5, 'D'))
+
+ @pytest.mark.parametrize("val1, val2, expected", [
+ # case from gh-12092
+ (np.timedelta64(7, 's'),
+ np.timedelta64(3, 's'),
+ np.timedelta64(1, 's')),
+ # negative value cases
+ (np.timedelta64(3, 's'),
+ np.timedelta64(-2, 's'),
+ np.timedelta64(-1, 's')),
+ (np.timedelta64(-3, 's'),
+ np.timedelta64(2, 's'),
+ np.timedelta64(1, 's')),
+ # larger value cases
+ (np.timedelta64(17, 's'),
+ np.timedelta64(22, 's'),
+ np.timedelta64(17, 's')),
+ (np.timedelta64(22, 's'),
+ np.timedelta64(17, 's'),
+ np.timedelta64(5, 's')),
+ # different units
+ (np.timedelta64(1, 'm'),
+ np.timedelta64(57, 's'),
+ np.timedelta64(3, 's')),
+ (np.timedelta64(1, 'us'),
+ np.timedelta64(727, 'ns'),
+ np.timedelta64(273, 'ns')),
+ # NaT is propagated
+ (np.timedelta64('NaT'),
+ np.timedelta64(50, 'ns'),
+ np.timedelta64('NaT')),
+ # Y % M works
+ (np.timedelta64(2, 'Y'),
+ np.timedelta64(22, 'M'),
+ np.timedelta64(2, 'M')),
+ ])
+ def test_timedelta_modulus(self, val1, val2, expected):
+ assert_equal(val1 % val2, expected)
+
+ @pytest.mark.parametrize("val1, val2", [
+ # years and months sometimes can't be unambiguously
+ # divided for modulus operation
+ (np.timedelta64(7, 'Y'),
+ np.timedelta64(3, 's')),
+ (np.timedelta64(7, 'M'),
+ np.timedelta64(1, 'D')),
+ ])
+ def test_timedelta_modulus_error(self, val1, val2):
+ with assert_raises_regex(TypeError, "common metadata divisor"):
+ val1 % val2
+
+ @pytest.mark.skipif(IS_WASM, reason="fp errors don't work in wasm")
+ def test_timedelta_modulus_div_by_zero(self):
+ with assert_warns(RuntimeWarning):
+ actual = np.timedelta64(10, 's') % np.timedelta64(0, 's')
+ assert_equal(actual, np.timedelta64('NaT'))
+
+ @pytest.mark.parametrize("val1, val2", [
+ # cases where one operand is not
+ # timedelta64
+ (np.timedelta64(7, 'Y'),
+ 15,),
+ (7.5,
+ np.timedelta64(1, 'D')),
+ ])
+ def test_timedelta_modulus_type_resolution(self, val1, val2):
+ # NOTE: some of the operations may be supported
+ # in the future
+ with assert_raises_regex(TypeError,
+ "'remainder' cannot use operands with types"):
+ val1 % val2
+
+ def test_timedelta_arange_no_dtype(self):
+ d = np.array(5, dtype="m8[D]")
+ assert_equal(np.arange(d, d + 1), d)
+ assert_equal(np.arange(d), np.arange(0, d))
+
+ def test_datetime_maximum_reduce(self):
+ a = np.array(['2010-01-02', '1999-03-14', '1833-03'], dtype='M8[D]')
+ assert_equal(np.maximum.reduce(a).dtype, np.dtype('M8[D]'))
+ assert_equal(np.maximum.reduce(a),
+ np.datetime64('2010-01-02'))
+
+ a = np.array([1, 4, 0, 7, 2], dtype='m8[s]')
+ assert_equal(np.maximum.reduce(a).dtype, np.dtype('m8[s]'))
+ assert_equal(np.maximum.reduce(a),
+ np.timedelta64(7, 's'))
+
+ def test_timedelta_correct_mean(self):
+ # test mainly because it worked only via a bug in that allowed:
+ # `timedelta.sum(dtype="f8")` to ignore the dtype request.
+ a = np.arange(1000, dtype="m8[s]")
+ assert_array_equal(a.mean(), a.sum() / len(a))
+
+ def test_datetime_no_subtract_reducelike(self):
+ # subtracting two datetime64 works, but we cannot reduce it, since
+ # the result of that subtraction will have a different dtype.
+ arr = np.array(["2021-12-02", "2019-05-12"], dtype="M8[ms]")
+ msg = r"the resolved dtypes are not compatible"
+
+ with pytest.raises(TypeError, match=msg):
+ np.subtract.reduce(arr)
+
+ with pytest.raises(TypeError, match=msg):
+ np.subtract.accumulate(arr)
+
+ with pytest.raises(TypeError, match=msg):
+ np.subtract.reduceat(arr, [0])
+
+ def test_datetime_busday_offset(self):
+ # First Monday in June
+ assert_equal(
+ np.busday_offset('2011-06', 0, roll='forward', weekmask='Mon'),
+ np.datetime64('2011-06-06'))
+ # Last Monday in June
+ assert_equal(
+ np.busday_offset('2011-07', -1, roll='forward', weekmask='Mon'),
+ np.datetime64('2011-06-27'))
+ assert_equal(
+ np.busday_offset('2011-07', -1, roll='forward', weekmask='Mon'),
+ np.datetime64('2011-06-27'))
+
+ # Default M-F business days, different roll modes
+ assert_equal(np.busday_offset('2010-08', 0, roll='backward'),
+ np.datetime64('2010-07-30'))
+ assert_equal(np.busday_offset('2010-08', 0, roll='preceding'),
+ np.datetime64('2010-07-30'))
+ assert_equal(np.busday_offset('2010-08', 0, roll='modifiedpreceding'),
+ np.datetime64('2010-08-02'))
+ assert_equal(np.busday_offset('2010-08', 0, roll='modifiedfollowing'),
+ np.datetime64('2010-08-02'))
+ assert_equal(np.busday_offset('2010-08', 0, roll='forward'),
+ np.datetime64('2010-08-02'))
+ assert_equal(np.busday_offset('2010-08', 0, roll='following'),
+ np.datetime64('2010-08-02'))
+ assert_equal(np.busday_offset('2010-10-30', 0, roll='following'),
+ np.datetime64('2010-11-01'))
+ assert_equal(
+ np.busday_offset('2010-10-30', 0, roll='modifiedfollowing'),
+ np.datetime64('2010-10-29'))
+ assert_equal(
+ np.busday_offset('2010-10-30', 0, roll='modifiedpreceding'),
+ np.datetime64('2010-10-29'))
+ assert_equal(
+ np.busday_offset('2010-10-16', 0, roll='modifiedfollowing'),
+ np.datetime64('2010-10-18'))
+ assert_equal(
+ np.busday_offset('2010-10-16', 0, roll='modifiedpreceding'),
+ np.datetime64('2010-10-15'))
+ # roll='raise' by default
+ assert_raises(ValueError, np.busday_offset, '2011-06-04', 0)
+
+ # Bigger offset values
+ assert_equal(np.busday_offset('2006-02-01', 25),
+ np.datetime64('2006-03-08'))
+ assert_equal(np.busday_offset('2006-03-08', -25),
+ np.datetime64('2006-02-01'))
+ assert_equal(np.busday_offset('2007-02-25', 11, weekmask='SatSun'),
+ np.datetime64('2007-04-07'))
+ assert_equal(np.busday_offset('2007-04-07', -11, weekmask='SatSun'),
+ np.datetime64('2007-02-25'))
+
+ # NaT values when roll is not raise
+ assert_equal(np.busday_offset(np.datetime64('NaT'), 1, roll='nat'),
+ np.datetime64('NaT'))
+ assert_equal(np.busday_offset(np.datetime64('NaT'), 1, roll='following'),
+ np.datetime64('NaT'))
+ assert_equal(np.busday_offset(np.datetime64('NaT'), 1, roll='preceding'),
+ np.datetime64('NaT'))
+
+ def test_datetime_busdaycalendar(self):
+ # Check that it removes NaT, duplicates, and weekends
+ # and sorts the result.
+ bdd = np.busdaycalendar(
+ holidays=['NaT', '2011-01-17', '2011-03-06', 'NaT',
+ '2011-12-26', '2011-05-30', '2011-01-17'])
+ assert_equal(bdd.holidays,
+ np.array(['2011-01-17', '2011-05-30', '2011-12-26'], dtype='M8'))
+ # Default M-F weekmask
+ assert_equal(bdd.weekmask, np.array([1, 1, 1, 1, 1, 0, 0], dtype='?'))
+
+ # Check string weekmask with varying whitespace.
+ bdd = np.busdaycalendar(weekmask="Sun TueWed Thu\tFri")
+ assert_equal(bdd.weekmask, np.array([0, 1, 1, 1, 1, 0, 1], dtype='?'))
+
+ # Check length 7 0/1 string
+ bdd = np.busdaycalendar(weekmask="0011001")
+ assert_equal(bdd.weekmask, np.array([0, 0, 1, 1, 0, 0, 1], dtype='?'))
+
+ # Check length 7 string weekmask.
+ bdd = np.busdaycalendar(weekmask="Mon Tue")
+ assert_equal(bdd.weekmask, np.array([1, 1, 0, 0, 0, 0, 0], dtype='?'))
+
+ # All-zeros weekmask should raise
+ assert_raises(ValueError, np.busdaycalendar, weekmask=[0, 0, 0, 0, 0, 0, 0])
+ # weekday names must be correct case
+ assert_raises(ValueError, np.busdaycalendar, weekmask="satsun")
+ # All-zeros weekmask should raise
+ assert_raises(ValueError, np.busdaycalendar, weekmask="")
+ # Invalid weekday name codes should raise
+ assert_raises(ValueError, np.busdaycalendar, weekmask="Mon Tue We")
+ assert_raises(ValueError, np.busdaycalendar, weekmask="Max")
+ assert_raises(ValueError, np.busdaycalendar, weekmask="Monday Tue")
+
+ def test_datetime_busday_holidays_offset(self):
+ # With exactly one holiday
+ assert_equal(
+ np.busday_offset('2011-11-10', 1, holidays=['2011-11-11']),
+ np.datetime64('2011-11-14'))
+ assert_equal(
+ np.busday_offset('2011-11-04', 5, holidays=['2011-11-11']),
+ np.datetime64('2011-11-14'))
+ assert_equal(
+ np.busday_offset('2011-11-10', 5, holidays=['2011-11-11']),
+ np.datetime64('2011-11-18'))
+ assert_equal(
+ np.busday_offset('2011-11-14', -1, holidays=['2011-11-11']),
+ np.datetime64('2011-11-10'))
+ assert_equal(
+ np.busday_offset('2011-11-18', -5, holidays=['2011-11-11']),
+ np.datetime64('2011-11-10'))
+ assert_equal(
+ np.busday_offset('2011-11-14', -5, holidays=['2011-11-11']),
+ np.datetime64('2011-11-04'))
+ # With the holiday appearing twice
+ assert_equal(
+ np.busday_offset('2011-11-10', 1,
+ holidays=['2011-11-11', '2011-11-11']),
+ np.datetime64('2011-11-14'))
+ assert_equal(
+ np.busday_offset('2011-11-14', -1,
+ holidays=['2011-11-11', '2011-11-11']),
+ np.datetime64('2011-11-10'))
+ # With a NaT holiday
+ assert_equal(
+ np.busday_offset('2011-11-10', 1,
+ holidays=['2011-11-11', 'NaT']),
+ np.datetime64('2011-11-14'))
+ assert_equal(
+ np.busday_offset('2011-11-14', -1,
+ holidays=['NaT', '2011-11-11']),
+ np.datetime64('2011-11-10'))
+ # With another holiday after
+ assert_equal(
+ np.busday_offset('2011-11-10', 1,
+ holidays=['2011-11-11', '2011-11-24']),
+ np.datetime64('2011-11-14'))
+ assert_equal(
+ np.busday_offset('2011-11-14', -1,
+ holidays=['2011-11-11', '2011-11-24']),
+ np.datetime64('2011-11-10'))
+ # With another holiday before
+ assert_equal(
+ np.busday_offset('2011-11-10', 1,
+ holidays=['2011-10-10', '2011-11-11']),
+ np.datetime64('2011-11-14'))
+ assert_equal(
+ np.busday_offset('2011-11-14', -1,
+ holidays=['2011-10-10', '2011-11-11']),
+ np.datetime64('2011-11-10'))
+ # With another holiday before and after
+ assert_equal(
+ np.busday_offset('2011-11-10', 1,
+ holidays=['2011-10-10', '2011-11-11', '2011-11-24']),
+ np.datetime64('2011-11-14'))
+ assert_equal(
+ np.busday_offset('2011-11-14', -1,
+ holidays=['2011-10-10', '2011-11-11', '2011-11-24']),
+ np.datetime64('2011-11-10'))
+
+ # A bigger forward jump across more than one week/holiday
+ holidays = ['2011-10-10', '2011-11-11', '2011-11-24',
+ '2011-12-25', '2011-05-30', '2011-02-21',
+ '2011-12-26', '2012-01-02']
+ bdd = np.busdaycalendar(weekmask='1111100', holidays=holidays)
+ assert_equal(
+ np.busday_offset('2011-10-03', 4, holidays=holidays),
+ np.busday_offset('2011-10-03', 4))
+ assert_equal(
+ np.busday_offset('2011-10-03', 5, holidays=holidays),
+ np.busday_offset('2011-10-03', 5 + 1))
+ assert_equal(
+ np.busday_offset('2011-10-03', 27, holidays=holidays),
+ np.busday_offset('2011-10-03', 27 + 1))
+ assert_equal(
+ np.busday_offset('2011-10-03', 28, holidays=holidays),
+ np.busday_offset('2011-10-03', 28 + 2))
+ assert_equal(
+ np.busday_offset('2011-10-03', 35, holidays=holidays),
+ np.busday_offset('2011-10-03', 35 + 2))
+ assert_equal(
+ np.busday_offset('2011-10-03', 36, holidays=holidays),
+ np.busday_offset('2011-10-03', 36 + 3))
+ assert_equal(
+ np.busday_offset('2011-10-03', 56, holidays=holidays),
+ np.busday_offset('2011-10-03', 56 + 3))
+ assert_equal(
+ np.busday_offset('2011-10-03', 57, holidays=holidays),
+ np.busday_offset('2011-10-03', 57 + 4))
+ assert_equal(
+ np.busday_offset('2011-10-03', 60, holidays=holidays),
+ np.busday_offset('2011-10-03', 60 + 4))
+ assert_equal(
+ np.busday_offset('2011-10-03', 61, holidays=holidays),
+ np.busday_offset('2011-10-03', 61 + 5))
+ assert_equal(
+ np.busday_offset('2011-10-03', 61, busdaycal=bdd),
+ np.busday_offset('2011-10-03', 61 + 5))
+ # A bigger backward jump across more than one week/holiday
+ assert_equal(
+ np.busday_offset('2012-01-03', -1, holidays=holidays),
+ np.busday_offset('2012-01-03', -1 - 1))
+ assert_equal(
+ np.busday_offset('2012-01-03', -4, holidays=holidays),
+ np.busday_offset('2012-01-03', -4 - 1))
+ assert_equal(
+ np.busday_offset('2012-01-03', -5, holidays=holidays),
+ np.busday_offset('2012-01-03', -5 - 2))
+ assert_equal(
+ np.busday_offset('2012-01-03', -25, holidays=holidays),
+ np.busday_offset('2012-01-03', -25 - 2))
+ assert_equal(
+ np.busday_offset('2012-01-03', -26, holidays=holidays),
+ np.busday_offset('2012-01-03', -26 - 3))
+ assert_equal(
+ np.busday_offset('2012-01-03', -33, holidays=holidays),
+ np.busday_offset('2012-01-03', -33 - 3))
+ assert_equal(
+ np.busday_offset('2012-01-03', -34, holidays=holidays),
+ np.busday_offset('2012-01-03', -34 - 4))
+ assert_equal(
+ np.busday_offset('2012-01-03', -56, holidays=holidays),
+ np.busday_offset('2012-01-03', -56 - 4))
+ assert_equal(
+ np.busday_offset('2012-01-03', -57, holidays=holidays),
+ np.busday_offset('2012-01-03', -57 - 5))
+ assert_equal(
+ np.busday_offset('2012-01-03', -57, busdaycal=bdd),
+ np.busday_offset('2012-01-03', -57 - 5))
+
+ # Can't supply both a weekmask/holidays and busdaycal
+ assert_raises(ValueError, np.busday_offset, '2012-01-03', -15,
+ weekmask='1111100', busdaycal=bdd)
+ assert_raises(ValueError, np.busday_offset, '2012-01-03', -15,
+ holidays=holidays, busdaycal=bdd)
+
+ # Roll with the holidays
+ assert_equal(
+ np.busday_offset('2011-12-25', 0,
+ roll='forward', holidays=holidays),
+ np.datetime64('2011-12-27'))
+ assert_equal(
+ np.busday_offset('2011-12-26', 0,
+ roll='forward', holidays=holidays),
+ np.datetime64('2011-12-27'))
+ assert_equal(
+ np.busday_offset('2011-12-26', 0,
+ roll='backward', holidays=holidays),
+ np.datetime64('2011-12-23'))
+ assert_equal(
+ np.busday_offset('2012-02-27', 0,
+ roll='modifiedfollowing',
+ holidays=['2012-02-27', '2012-02-26', '2012-02-28',
+ '2012-03-01', '2012-02-29']),
+ np.datetime64('2012-02-24'))
+ assert_equal(
+ np.busday_offset('2012-03-06', 0,
+ roll='modifiedpreceding',
+ holidays=['2012-03-02', '2012-03-03', '2012-03-01',
+ '2012-03-05', '2012-03-07', '2012-03-06']),
+ np.datetime64('2012-03-08'))
+
+ def test_datetime_busday_holidays_count(self):
+ holidays = ['2011-01-01', '2011-10-10', '2011-11-11', '2011-11-24',
+ '2011-12-25', '2011-05-30', '2011-02-21', '2011-01-17',
+ '2011-12-26', '2012-01-02', '2011-02-21', '2011-05-30',
+ '2011-07-01', '2011-07-04', '2011-09-05', '2011-10-10']
+ bdd = np.busdaycalendar(weekmask='1111100', holidays=holidays)
+
+ # Validate against busday_offset broadcast against
+ # a range of offsets
+ dates = np.busday_offset('2011-01-01', np.arange(366),
+ roll='forward', busdaycal=bdd)
+ assert_equal(np.busday_count('2011-01-01', dates, busdaycal=bdd),
+ np.arange(366))
+ # Returns negative value when reversed
+ # -1 since the '2011-01-01' is not a busday
+ assert_equal(np.busday_count(dates, '2011-01-01', busdaycal=bdd),
+ -np.arange(366) - 1)
+
+ # 2011-12-31 is a saturday
+ dates = np.busday_offset('2011-12-31', -np.arange(366),
+ roll='forward', busdaycal=bdd)
+ # only the first generated date is in the future of 2011-12-31
+ expected = np.arange(366)
+ expected[0] = -1
+ assert_equal(np.busday_count(dates, '2011-12-31', busdaycal=bdd),
+ expected)
+ # Returns negative value when reversed
+ expected = -np.arange(366) + 1
+ expected[0] = 0
+ assert_equal(np.busday_count('2011-12-31', dates, busdaycal=bdd),
+ expected)
+
+ # Can't supply both a weekmask/holidays and busdaycal
+ assert_raises(ValueError, np.busday_offset, '2012-01-03', '2012-02-03',
+ weekmask='1111100', busdaycal=bdd)
+ assert_raises(ValueError, np.busday_offset, '2012-01-03', '2012-02-03',
+ holidays=holidays, busdaycal=bdd)
+
+ # Number of Mondays in March 2011
+ assert_equal(np.busday_count('2011-03', '2011-04', weekmask='Mon'), 4)
+ # Returns negative value when reversed
+ assert_equal(np.busday_count('2011-04', '2011-03', weekmask='Mon'), -4)
+
+ sunday = np.datetime64('2023-03-05')
+ monday = sunday + 1
+ friday = sunday + 5
+ saturday = sunday + 6
+ assert_equal(np.busday_count(sunday, monday), 0)
+ assert_equal(np.busday_count(monday, sunday), -1)
+
+ assert_equal(np.busday_count(friday, saturday), 1)
+ assert_equal(np.busday_count(saturday, friday), 0)
+
+ def test_datetime_is_busday(self):
+ holidays = ['2011-01-01', '2011-10-10', '2011-11-11', '2011-11-24',
+ '2011-12-25', '2011-05-30', '2011-02-21', '2011-01-17',
+ '2011-12-26', '2012-01-02', '2011-02-21', '2011-05-30',
+ '2011-07-01', '2011-07-04', '2011-09-05', '2011-10-10',
+ 'NaT']
+ bdd = np.busdaycalendar(weekmask='1111100', holidays=holidays)
+
+ # Weekend/weekday tests
+ assert_equal(np.is_busday('2011-01-01'), False)
+ assert_equal(np.is_busday('2011-01-02'), False)
+ assert_equal(np.is_busday('2011-01-03'), True)
+
+ # All the holidays are not business days
+ assert_equal(np.is_busday(holidays, busdaycal=bdd),
+ np.zeros(len(holidays), dtype='?'))
+
+ def test_datetime_y2038(self):
+ msg = "no explicit representation of timezones available for " \
+ "np.datetime64"
+ # Test parsing on either side of the Y2038 boundary
+ a = np.datetime64('2038-01-19T03:14:07')
+ assert_equal(a.view(np.int64), 2**31 - 1)
+ a = np.datetime64('2038-01-19T03:14:08')
+ assert_equal(a.view(np.int64), 2**31)
+
+ # Test parsing on either side of the Y2038 boundary with
+ # a manually specified timezone offset
+ with pytest.warns(UserWarning, match=msg):
+ a = np.datetime64('2038-01-19T04:14:07+0100')
+ assert_equal(a.view(np.int64), 2**31 - 1)
+ with pytest.warns(UserWarning, match=msg):
+ a = np.datetime64('2038-01-19T04:14:08+0100')
+ assert_equal(a.view(np.int64), 2**31)
+
+ # Test parsing a date after Y2038
+ a = np.datetime64('2038-01-20T13:21:14')
+ assert_equal(str(a), '2038-01-20T13:21:14')
+
+ def test_isnat(self):
+ assert_(np.isnat(np.datetime64('NaT', 'ms')))
+ assert_(np.isnat(np.datetime64('NaT', 'ns')))
+ assert_(not np.isnat(np.datetime64('2038-01-19T03:14:07')))
+
+ assert_(np.isnat(np.timedelta64('NaT', "ms")))
+ assert_(not np.isnat(np.timedelta64(34, "ms")))
+
+ res = np.array([False, False, True])
+ for unit in ['Y', 'M', 'W', 'D',
+ 'h', 'm', 's', 'ms', 'us',
+ 'ns', 'ps', 'fs', 'as']:
+ arr = np.array([123, -321, "NaT"], dtype=f'<datetime64[{unit}]')
+ assert_equal(np.isnat(arr), res)
+ arr = np.array([123, -321, "NaT"], dtype=f'>datetime64[{unit}]')
+ assert_equal(np.isnat(arr), res)
+ arr = np.array([123, -321, "NaT"], dtype=f'<timedelta64[{unit}]')
+ assert_equal(np.isnat(arr), res)
+ arr = np.array([123, -321, "NaT"], dtype=f'>timedelta64[{unit}]')
+ assert_equal(np.isnat(arr), res)
+
+ def test_isnat_error(self):
+ # Test that only datetime dtype arrays are accepted
+ for t in np.typecodes["All"]:
+ if t in np.typecodes["Datetime"]:
+ continue
+ assert_raises(TypeError, np.isnat, np.zeros(10, t))
+
+ def test_isfinite_scalar(self):
+ assert_(not np.isfinite(np.datetime64('NaT', 'ms')))
+ assert_(not np.isfinite(np.datetime64('NaT', 'ns')))
+ assert_(np.isfinite(np.datetime64('2038-01-19T03:14:07')))
+
+ assert_(not np.isfinite(np.timedelta64('NaT', "ms")))
+ assert_(np.isfinite(np.timedelta64(34, "ms")))
+
+ @pytest.mark.parametrize('unit', ['Y', 'M', 'W', 'D', 'h', 'm', 's', 'ms',
+ 'us', 'ns', 'ps', 'fs', 'as'])
+ @pytest.mark.parametrize('dstr', ['<datetime64[%s]', '>datetime64[%s]',
+ '<timedelta64[%s]', '>timedelta64[%s]'])
+ def test_isfinite_isinf_isnan_units(self, unit, dstr):
+ '''check isfinite, isinf, isnan for all units of <M, >M, <m, >m dtypes
+ '''
+ arr_val = [123, -321, "NaT"]
+ arr = np.array(arr_val, dtype=(dstr % unit))
+ pos = np.array([True, True, False])
+ neg = np.array([False, False, True])
+ false = np.array([False, False, False])
+ assert_equal(np.isfinite(arr), pos)
+ assert_equal(np.isinf(arr), false)
+ assert_equal(np.isnan(arr), neg)
+
+ def test_assert_equal(self):
+ assert_raises(AssertionError, assert_equal,
+ np.datetime64('nat'), np.timedelta64('nat'))
+
+ def test_corecursive_input(self):
+ # construct a co-recursive list
+ a, b = [], []
+ a.append(b)
+ b.append(a)
+ obj_arr = np.array([None])
+ obj_arr[0] = a
+
+ # At some point this caused a stack overflow (gh-11154). Now raises
+ # ValueError since the nested list cannot be converted to a datetime.
+ assert_raises(ValueError, obj_arr.astype, 'M8')
+ assert_raises(ValueError, obj_arr.astype, 'm8')
+
+ @pytest.mark.parametrize("shape", [(), (1,)])
+ def test_discovery_from_object_array(self, shape):
+ arr = np.array("2020-10-10", dtype=object).reshape(shape)
+ res = np.array("2020-10-10", dtype="M8").reshape(shape)
+ assert res.dtype == np.dtype("M8[D]")
+ assert_equal(arr.astype("M8"), res)
+ arr[...] = np.bytes_("2020-10-10") # try a numpy string type
+ assert_equal(arr.astype("M8"), res)
+ arr = arr.astype("S")
+ assert_equal(arr.astype("S").astype("M8"), res)
+
+ @pytest.mark.parametrize("time_unit", [
+ "Y", "M", "W", "D", "h", "m", "s", "ms", "us", "ns", "ps", "fs", "as",
+ # compound units
+ "10D", "2M",
+ ])
+ def test_limit_symmetry(self, time_unit):
+ """
+ Dates should have symmetric limits around the unix epoch at +/-np.int64
+ """
+ epoch = np.datetime64(0, time_unit)
+ latest = np.datetime64(np.iinfo(np.int64).max, time_unit)
+ earliest = np.datetime64(-np.iinfo(np.int64).max, time_unit)
+
+ # above should not have overflowed
+ assert earliest < epoch < latest
+
+ @pytest.mark.parametrize("time_unit", [
+ "Y", "M",
+ pytest.param("W", marks=pytest.mark.xfail(reason="gh-13197")),
+ "D", "h", "m",
+ "s", "ms", "us", "ns", "ps", "fs", "as",
+ pytest.param("10D", marks=pytest.mark.xfail(reason="similar to gh-13197")),
+ ])
+ @pytest.mark.parametrize("sign", [-1, 1])
+ def test_limit_str_roundtrip(self, time_unit, sign):
+ """
+ Limits should roundtrip when converted to strings.
+
+ This tests the conversion to and from npy_datetimestruct.
+ """
+ # TODO: add absolute (gold standard) time span limit strings
+ limit = np.datetime64(np.iinfo(np.int64).max * sign, time_unit)
+
+ # Convert to string and back. Explicit unit needed since the day and
+ # week reprs are not distinguishable.
+ limit_via_str = np.datetime64(str(limit), time_unit)
+ assert limit_via_str == limit
+
+ def test_datetime_hash_nat(self):
+ nat1 = np.datetime64()
+ nat2 = np.datetime64()
+ assert nat1 is not nat2
+ assert nat1 != nat2
+ assert hash(nat1) != hash(nat2)
+
+ @pytest.mark.parametrize('unit', ('Y', 'M', 'W', 'D', 'h', 'm', 's', 'ms', 'us'))
+ def test_datetime_hash_weeks(self, unit):
+ dt = np.datetime64(2348, 'W') # 2015-01-01
+ dt2 = np.datetime64(dt, unit)
+ _assert_equal_hash(dt, dt2)
+
+ dt3 = np.datetime64(int(dt2.astype(int)) + 1, unit)
+ assert hash(dt) != hash(dt3) # doesn't collide
+
+ @pytest.mark.parametrize('unit', ('h', 'm', 's', 'ms', 'us'))
+ def test_datetime_hash_weeks_vs_pydatetime(self, unit):
+ dt = np.datetime64(2348, 'W') # 2015-01-01
+ dt2 = np.datetime64(dt, unit)
+ pydt = dt2.astype(datetime.datetime)
+ assert isinstance(pydt, datetime.datetime)
+ _assert_equal_hash(pydt, dt2)
+
+ @pytest.mark.parametrize('unit', ('Y', 'M', 'W', 'D', 'h', 'm', 's', 'ms', 'us'))
+ def test_datetime_hash_big_negative(self, unit):
+ dt = np.datetime64(-102894, 'W') # -002-01-01
+ dt2 = np.datetime64(dt, unit)
+ _assert_equal_hash(dt, dt2)
+
+ # can only go down to "fs" before integer overflow
+ @pytest.mark.parametrize('unit', ('m', 's', 'ms', 'us', 'ns', 'ps', 'fs'))
+ def test_datetime_hash_minutes(self, unit):
+ dt = np.datetime64(3, 'm')
+ dt2 = np.datetime64(dt, unit)
+ _assert_equal_hash(dt, dt2)
+
+ @pytest.mark.parametrize('unit', ('ns', 'ps', 'fs', 'as'))
+ def test_datetime_hash_ns(self, unit):
+ dt = np.datetime64(3, 'ns')
+ dt2 = np.datetime64(dt, unit)
+ _assert_equal_hash(dt, dt2)
+
+ dt3 = np.datetime64(int(dt2.astype(int)) + 1, unit)
+ assert hash(dt) != hash(dt3) # doesn't collide
+
+ @pytest.mark.parametrize('wk', range(500000, 500010)) # 11552-09-04
+ @pytest.mark.parametrize('unit', ('W', 'D', 'h', 'm', 's', 'ms', 'us'))
+ def test_datetime_hash_big_positive(self, wk, unit):
+ dt = np.datetime64(wk, 'W')
+ dt2 = np.datetime64(dt, unit)
+ _assert_equal_hash(dt, dt2)
+
+ def test_timedelta_hash_generic(self):
+ assert_raises(ValueError, hash, np.timedelta64(123)) # generic
+
+ @pytest.mark.parametrize('unit', ('Y', 'M'))
+ def test_timedelta_hash_year_month(self, unit):
+ td = np.timedelta64(45, 'Y')
+ td2 = np.timedelta64(td, unit)
+ _assert_equal_hash(td, td2)
+
+ @pytest.mark.parametrize('unit', ('W', 'D', 'h', 'm', 's', 'ms', 'us'))
+ def test_timedelta_hash_weeks(self, unit):
+ td = np.timedelta64(10, 'W')
+ td2 = np.timedelta64(td, unit)
+ _assert_equal_hash(td, td2)
+
+ td3 = np.timedelta64(int(td2.astype(int)) + 1, unit)
+ assert hash(td) != hash(td3) # doesn't collide
+
+ @pytest.mark.parametrize('unit', ('W', 'D', 'h', 'm', 's', 'ms', 'us'))
+ def test_timedelta_hash_weeks_vs_pydelta(self, unit):
+ td = np.timedelta64(10, 'W')
+ td2 = np.timedelta64(td, unit)
+ pytd = td2.astype(datetime.timedelta)
+ assert isinstance(pytd, datetime.timedelta)
+ _assert_equal_hash(pytd, td2)
+
+ @pytest.mark.parametrize('unit', ('ms', 'us', 'ns', 'ps', 'fs', 'as'))
+ def test_timedelta_hash_ms(self, unit):
+ td = np.timedelta64(3, 'ms')
+ td2 = np.timedelta64(td, unit)
+ _assert_equal_hash(td, td2)
+
+ td3 = np.timedelta64(int(td2.astype(int)) + 1, unit)
+ assert hash(td) != hash(td3) # doesn't collide
+
+ @pytest.mark.parametrize('wk', range(500000, 500010))
+ @pytest.mark.parametrize('unit', ('W', 'D', 'h', 'm', 's', 'ms', 'us'))
+ def test_timedelta_hash_big_positive(self, wk, unit):
+ td = np.timedelta64(wk, 'W')
+ td2 = np.timedelta64(td, unit)
+ _assert_equal_hash(td, td2)
+
+
+class TestDateTimeData:
+
+ def test_basic(self):
+ a = np.array(['1980-03-23'], dtype=np.datetime64)
+ assert_equal(np.datetime_data(a.dtype), ('D', 1))
+
+ def test_bytes(self):
+ # byte units are converted to unicode
+ dt = np.datetime64('2000', (b'ms', 5))
+ assert np.datetime_data(dt.dtype) == ('ms', 5)
+
+ dt = np.datetime64('2000', b'5ms')
+ assert np.datetime_data(dt.dtype) == ('ms', 5)
+
+ def test_non_ascii(self):
+ # μs is normalized to μ
+ dt = np.datetime64('2000', ('μs', 5))
+ assert np.datetime_data(dt.dtype) == ('us', 5)
+
+ dt = np.datetime64('2000', '5μs')
+ assert np.datetime_data(dt.dtype) == ('us', 5)
+
+
+def test_comparisons_return_not_implemented():
+ # GH#17017
+
+ class custom:
+ __array_priority__ = 10000
+
+ obj = custom()
+
+ dt = np.datetime64('2000', 'ns')
+ td = dt - dt
+
+ for item in [dt, td]:
+ assert item.__eq__(obj) is NotImplemented
+ assert item.__ne__(obj) is NotImplemented
+ assert item.__le__(obj) is NotImplemented
+ assert item.__lt__(obj) is NotImplemented
+ assert item.__ge__(obj) is NotImplemented
+ assert item.__gt__(obj) is NotImplemented
diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_defchararray.py b/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_defchararray.py
new file mode 100644
index 0000000..2607953
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_defchararray.py
@@ -0,0 +1,825 @@
+import pytest
+
+import numpy as np
+from numpy._core.multiarray import _vec_string
+from numpy.testing import (
+ assert_,
+ assert_array_equal,
+ assert_equal,
+ assert_raises,
+ assert_raises_regex,
+)
+
+kw_unicode_true = {'unicode': True} # make 2to3 work properly
+kw_unicode_false = {'unicode': False}
+
+class TestBasic:
+ def test_from_object_array(self):
+ A = np.array([['abc', 2],
+ ['long ', '0123456789']], dtype='O')
+ B = np.char.array(A)
+ assert_equal(B.dtype.itemsize, 10)
+ assert_array_equal(B, [[b'abc', b'2'],
+ [b'long', b'0123456789']])
+
+ def test_from_object_array_unicode(self):
+ A = np.array([['abc', 'Sigma \u03a3'],
+ ['long ', '0123456789']], dtype='O')
+ assert_raises(ValueError, np.char.array, (A,))
+ B = np.char.array(A, **kw_unicode_true)
+ assert_equal(B.dtype.itemsize, 10 * np.array('a', 'U').dtype.itemsize)
+ assert_array_equal(B, [['abc', 'Sigma \u03a3'],
+ ['long', '0123456789']])
+
+ def test_from_string_array(self):
+ A = np.array([[b'abc', b'foo'],
+ [b'long ', b'0123456789']])
+ assert_equal(A.dtype.type, np.bytes_)
+ B = np.char.array(A)
+ assert_array_equal(B, A)
+ assert_equal(B.dtype, A.dtype)
+ assert_equal(B.shape, A.shape)
+ B[0, 0] = 'changed'
+ assert_(B[0, 0] != A[0, 0])
+ C = np.char.asarray(A)
+ assert_array_equal(C, A)
+ assert_equal(C.dtype, A.dtype)
+ C[0, 0] = 'changed again'
+ assert_(C[0, 0] != B[0, 0])
+ assert_(C[0, 0] == A[0, 0])
+
+ def test_from_unicode_array(self):
+ A = np.array([['abc', 'Sigma \u03a3'],
+ ['long ', '0123456789']])
+ assert_equal(A.dtype.type, np.str_)
+ B = np.char.array(A)
+ assert_array_equal(B, A)
+ assert_equal(B.dtype, A.dtype)
+ assert_equal(B.shape, A.shape)
+ B = np.char.array(A, **kw_unicode_true)
+ assert_array_equal(B, A)
+ assert_equal(B.dtype, A.dtype)
+ assert_equal(B.shape, A.shape)
+
+ def fail():
+ np.char.array(A, **kw_unicode_false)
+
+ assert_raises(UnicodeEncodeError, fail)
+
+ def test_unicode_upconvert(self):
+ A = np.char.array(['abc'])
+ B = np.char.array(['\u03a3'])
+ assert_(issubclass((A + B).dtype.type, np.str_))
+
+ def test_from_string(self):
+ A = np.char.array(b'abc')
+ assert_equal(len(A), 1)
+ assert_equal(len(A[0]), 3)
+ assert_(issubclass(A.dtype.type, np.bytes_))
+
+ def test_from_unicode(self):
+ A = np.char.array('\u03a3')
+ assert_equal(len(A), 1)
+ assert_equal(len(A[0]), 1)
+ assert_equal(A.itemsize, 4)
+ assert_(issubclass(A.dtype.type, np.str_))
+
+class TestVecString:
+ def test_non_existent_method(self):
+
+ def fail():
+ _vec_string('a', np.bytes_, 'bogus')
+
+ assert_raises(AttributeError, fail)
+
+ def test_non_string_array(self):
+
+ def fail():
+ _vec_string(1, np.bytes_, 'strip')
+
+ assert_raises(TypeError, fail)
+
+ def test_invalid_args_tuple(self):
+
+ def fail():
+ _vec_string(['a'], np.bytes_, 'strip', 1)
+
+ assert_raises(TypeError, fail)
+
+ def test_invalid_type_descr(self):
+
+ def fail():
+ _vec_string(['a'], 'BOGUS', 'strip')
+
+ assert_raises(TypeError, fail)
+
+ def test_invalid_function_args(self):
+
+ def fail():
+ _vec_string(['a'], np.bytes_, 'strip', (1,))
+
+ assert_raises(TypeError, fail)
+
+ def test_invalid_result_type(self):
+
+ def fail():
+ _vec_string(['a'], np.int_, 'strip')
+
+ assert_raises(TypeError, fail)
+
+ def test_broadcast_error(self):
+
+ def fail():
+ _vec_string([['abc', 'def']], np.int_, 'find', (['a', 'd', 'j'],))
+
+ assert_raises(ValueError, fail)
+
+
+class TestWhitespace:
+ def setup_method(self):
+ self.A = np.array([['abc ', '123 '],
+ ['789 ', 'xyz ']]).view(np.char.chararray)
+ self.B = np.array([['abc', '123'],
+ ['789', 'xyz']]).view(np.char.chararray)
+
+ def test1(self):
+ assert_(np.all(self.A == self.B))
+ assert_(np.all(self.A >= self.B))
+ assert_(np.all(self.A <= self.B))
+ assert_(not np.any(self.A > self.B))
+ assert_(not np.any(self.A < self.B))
+ assert_(not np.any(self.A != self.B))
+
+class TestChar:
+ def setup_method(self):
+ self.A = np.array('abc1', dtype='c').view(np.char.chararray)
+
+ def test_it(self):
+ assert_equal(self.A.shape, (4,))
+ assert_equal(self.A.upper()[:2].tobytes(), b'AB')
+
+class TestComparisons:
+ def setup_method(self):
+ self.A = np.array([['abc', 'abcc', '123'],
+ ['789', 'abc', 'xyz']]).view(np.char.chararray)
+ self.B = np.array([['efg', 'efg', '123 '],
+ ['051', 'efgg', 'tuv']]).view(np.char.chararray)
+
+ def test_not_equal(self):
+ assert_array_equal((self.A != self.B),
+ [[True, True, False], [True, True, True]])
+
+ def test_equal(self):
+ assert_array_equal((self.A == self.B),
+ [[False, False, True], [False, False, False]])
+
+ def test_greater_equal(self):
+ assert_array_equal((self.A >= self.B),
+ [[False, False, True], [True, False, True]])
+
+ def test_less_equal(self):
+ assert_array_equal((self.A <= self.B),
+ [[True, True, True], [False, True, False]])
+
+ def test_greater(self):
+ assert_array_equal((self.A > self.B),
+ [[False, False, False], [True, False, True]])
+
+ def test_less(self):
+ assert_array_equal((self.A < self.B),
+ [[True, True, False], [False, True, False]])
+
+ def test_type(self):
+ out1 = np.char.equal(self.A, self.B)
+ out2 = np.char.equal('a', 'a')
+ assert_(isinstance(out1, np.ndarray))
+ assert_(isinstance(out2, np.ndarray))
+
+class TestComparisonsMixed1(TestComparisons):
+ """Ticket #1276"""
+
+ def setup_method(self):
+ TestComparisons.setup_method(self)
+ self.B = np.array(
+ [['efg', 'efg', '123 '],
+ ['051', 'efgg', 'tuv']], np.str_).view(np.char.chararray)
+
+class TestComparisonsMixed2(TestComparisons):
+ """Ticket #1276"""
+
+ def setup_method(self):
+ TestComparisons.setup_method(self)
+ self.A = np.array(
+ [['abc', 'abcc', '123'],
+ ['789', 'abc', 'xyz']], np.str_).view(np.char.chararray)
+
+class TestInformation:
+ def setup_method(self):
+ self.A = np.array([[' abc ', ''],
+ ['12345', 'MixedCase'],
+ ['123 \t 345 \0 ', 'UPPER']]) \
+ .view(np.char.chararray)
+ self.B = np.array([[' \u03a3 ', ''],
+ ['12345', 'MixedCase'],
+ ['123 \t 345 \0 ', 'UPPER']]) \
+ .view(np.char.chararray)
+ # Array with longer strings, > MEMCHR_CUT_OFF in code.
+ self.C = (np.array(['ABCDEFGHIJKLMNOPQRSTUVWXYZ',
+ '01234567890123456789012345'])
+ .view(np.char.chararray))
+
+ def test_len(self):
+ assert_(issubclass(np.char.str_len(self.A).dtype.type, np.integer))
+ assert_array_equal(np.char.str_len(self.A), [[5, 0], [5, 9], [12, 5]])
+ assert_array_equal(np.char.str_len(self.B), [[3, 0], [5, 9], [12, 5]])
+
+ def test_count(self):
+ assert_(issubclass(self.A.count('').dtype.type, np.integer))
+ assert_array_equal(self.A.count('a'), [[1, 0], [0, 1], [0, 0]])
+ assert_array_equal(self.A.count('123'), [[0, 0], [1, 0], [1, 0]])
+ # Python doesn't seem to like counting NULL characters
+ # assert_array_equal(self.A.count('\0'), [[0, 0], [0, 0], [1, 0]])
+ assert_array_equal(self.A.count('a', 0, 2), [[1, 0], [0, 0], [0, 0]])
+ assert_array_equal(self.B.count('a'), [[0, 0], [0, 1], [0, 0]])
+ assert_array_equal(self.B.count('123'), [[0, 0], [1, 0], [1, 0]])
+ # assert_array_equal(self.B.count('\0'), [[0, 0], [0, 0], [1, 0]])
+
+ def test_endswith(self):
+ assert_(issubclass(self.A.endswith('').dtype.type, np.bool))
+ assert_array_equal(self.A.endswith(' '), [[1, 0], [0, 0], [1, 0]])
+ assert_array_equal(self.A.endswith('3', 0, 3), [[0, 0], [1, 0], [1, 0]])
+
+ def fail():
+ self.A.endswith('3', 'fdjk')
+
+ assert_raises(TypeError, fail)
+
+ @pytest.mark.parametrize(
+ "dtype, encode",
+ [("U", str),
+ ("S", lambda x: x.encode('ascii')),
+ ])
+ def test_find(self, dtype, encode):
+ A = self.A.astype(dtype)
+ assert_(issubclass(A.find(encode('a')).dtype.type, np.integer))
+ assert_array_equal(A.find(encode('a')),
+ [[1, -1], [-1, 6], [-1, -1]])
+ assert_array_equal(A.find(encode('3')),
+ [[-1, -1], [2, -1], [2, -1]])
+ assert_array_equal(A.find(encode('a'), 0, 2),
+ [[1, -1], [-1, -1], [-1, -1]])
+ assert_array_equal(A.find([encode('1'), encode('P')]),
+ [[-1, -1], [0, -1], [0, 1]])
+ C = self.C.astype(dtype)
+ assert_array_equal(C.find(encode('M')), [12, -1])
+
+ def test_index(self):
+
+ def fail():
+ self.A.index('a')
+
+ assert_raises(ValueError, fail)
+ assert_(np.char.index('abcba', 'b') == 1)
+ assert_(issubclass(np.char.index('abcba', 'b').dtype.type, np.integer))
+
+ def test_isalnum(self):
+ assert_(issubclass(self.A.isalnum().dtype.type, np.bool))
+ assert_array_equal(self.A.isalnum(), [[False, False], [True, True], [False, True]])
+
+ def test_isalpha(self):
+ assert_(issubclass(self.A.isalpha().dtype.type, np.bool))
+ assert_array_equal(self.A.isalpha(), [[False, False], [False, True], [False, True]])
+
+ def test_isdigit(self):
+ assert_(issubclass(self.A.isdigit().dtype.type, np.bool))
+ assert_array_equal(self.A.isdigit(), [[False, False], [True, False], [False, False]])
+
+ def test_islower(self):
+ assert_(issubclass(self.A.islower().dtype.type, np.bool))
+ assert_array_equal(self.A.islower(), [[True, False], [False, False], [False, False]])
+
+ def test_isspace(self):
+ assert_(issubclass(self.A.isspace().dtype.type, np.bool))
+ assert_array_equal(self.A.isspace(), [[False, False], [False, False], [False, False]])
+
+ def test_istitle(self):
+ assert_(issubclass(self.A.istitle().dtype.type, np.bool))
+ assert_array_equal(self.A.istitle(), [[False, False], [False, False], [False, False]])
+
+ def test_isupper(self):
+ assert_(issubclass(self.A.isupper().dtype.type, np.bool))
+ assert_array_equal(self.A.isupper(), [[False, False], [False, False], [False, True]])
+
+ def test_rfind(self):
+ assert_(issubclass(self.A.rfind('a').dtype.type, np.integer))
+ assert_array_equal(self.A.rfind('a'), [[1, -1], [-1, 6], [-1, -1]])
+ assert_array_equal(self.A.rfind('3'), [[-1, -1], [2, -1], [6, -1]])
+ assert_array_equal(self.A.rfind('a', 0, 2), [[1, -1], [-1, -1], [-1, -1]])
+ assert_array_equal(self.A.rfind(['1', 'P']), [[-1, -1], [0, -1], [0, 2]])
+
+ def test_rindex(self):
+
+ def fail():
+ self.A.rindex('a')
+
+ assert_raises(ValueError, fail)
+ assert_(np.char.rindex('abcba', 'b') == 3)
+ assert_(issubclass(np.char.rindex('abcba', 'b').dtype.type, np.integer))
+
+ def test_startswith(self):
+ assert_(issubclass(self.A.startswith('').dtype.type, np.bool))
+ assert_array_equal(self.A.startswith(' '), [[1, 0], [0, 0], [0, 0]])
+ assert_array_equal(self.A.startswith('1', 0, 3), [[0, 0], [1, 0], [1, 0]])
+
+ def fail():
+ self.A.startswith('3', 'fdjk')
+
+ assert_raises(TypeError, fail)
+
+
+class TestMethods:
+ def setup_method(self):
+ self.A = np.array([[' abc ', ''],
+ ['12345', 'MixedCase'],
+ ['123 \t 345 \0 ', 'UPPER']],
+ dtype='S').view(np.char.chararray)
+ self.B = np.array([[' \u03a3 ', ''],
+ ['12345', 'MixedCase'],
+ ['123 \t 345 \0 ', 'UPPER']]).view(
+ np.char.chararray)
+
+ def test_capitalize(self):
+ tgt = [[b' abc ', b''],
+ [b'12345', b'Mixedcase'],
+ [b'123 \t 345 \0 ', b'Upper']]
+ assert_(issubclass(self.A.capitalize().dtype.type, np.bytes_))
+ assert_array_equal(self.A.capitalize(), tgt)
+
+ tgt = [[' \u03c3 ', ''],
+ ['12345', 'Mixedcase'],
+ ['123 \t 345 \0 ', 'Upper']]
+ assert_(issubclass(self.B.capitalize().dtype.type, np.str_))
+ assert_array_equal(self.B.capitalize(), tgt)
+
+ def test_center(self):
+ assert_(issubclass(self.A.center(10).dtype.type, np.bytes_))
+ C = self.A.center([10, 20])
+ assert_array_equal(np.char.str_len(C), [[10, 20], [10, 20], [12, 20]])
+
+ C = self.A.center(20, b'#')
+ assert_(np.all(C.startswith(b'#')))
+ assert_(np.all(C.endswith(b'#')))
+
+ C = np.char.center(b'FOO', [[10, 20], [15, 8]])
+ tgt = [[b' FOO ', b' FOO '],
+ [b' FOO ', b' FOO ']]
+ assert_(issubclass(C.dtype.type, np.bytes_))
+ assert_array_equal(C, tgt)
+
+ def test_decode(self):
+ A = np.char.array([b'\\u03a3'])
+ assert_(A.decode('unicode-escape')[0] == '\u03a3')
+
+ def test_encode(self):
+ B = self.B.encode('unicode_escape')
+ assert_(B[0][0] == ' \\u03a3 '.encode('latin1'))
+
+ def test_expandtabs(self):
+ T = self.A.expandtabs()
+ assert_(T[2, 0] == b'123 345 \0')
+
+ def test_join(self):
+ # NOTE: list(b'123') == [49, 50, 51]
+ # so that b','.join(b'123') results to an error on Py3
+ A0 = self.A.decode('ascii')
+
+ A = np.char.join([',', '#'], A0)
+ assert_(issubclass(A.dtype.type, np.str_))
+ tgt = np.array([[' ,a,b,c, ', ''],
+ ['1,2,3,4,5', 'M#i#x#e#d#C#a#s#e'],
+ ['1,2,3, ,\t, ,3,4,5, ,\x00, ', 'U#P#P#E#R']])
+ assert_array_equal(np.char.join([',', '#'], A0), tgt)
+
+ def test_ljust(self):
+ assert_(issubclass(self.A.ljust(10).dtype.type, np.bytes_))
+
+ C = self.A.ljust([10, 20])
+ assert_array_equal(np.char.str_len(C), [[10, 20], [10, 20], [12, 20]])
+
+ C = self.A.ljust(20, b'#')
+ assert_array_equal(C.startswith(b'#'), [
+ [False, True], [False, False], [False, False]])
+ assert_(np.all(C.endswith(b'#')))
+
+ C = np.char.ljust(b'FOO', [[10, 20], [15, 8]])
+ tgt = [[b'FOO ', b'FOO '],
+ [b'FOO ', b'FOO ']]
+ assert_(issubclass(C.dtype.type, np.bytes_))
+ assert_array_equal(C, tgt)
+
+ def test_lower(self):
+ tgt = [[b' abc ', b''],
+ [b'12345', b'mixedcase'],
+ [b'123 \t 345 \0 ', b'upper']]
+ assert_(issubclass(self.A.lower().dtype.type, np.bytes_))
+ assert_array_equal(self.A.lower(), tgt)
+
+ tgt = [[' \u03c3 ', ''],
+ ['12345', 'mixedcase'],
+ ['123 \t 345 \0 ', 'upper']]
+ assert_(issubclass(self.B.lower().dtype.type, np.str_))
+ assert_array_equal(self.B.lower(), tgt)
+
+ def test_lstrip(self):
+ tgt = [[b'abc ', b''],
+ [b'12345', b'MixedCase'],
+ [b'123 \t 345 \0 ', b'UPPER']]
+ assert_(issubclass(self.A.lstrip().dtype.type, np.bytes_))
+ assert_array_equal(self.A.lstrip(), tgt)
+
+ tgt = [[b' abc', b''],
+ [b'2345', b'ixedCase'],
+ [b'23 \t 345 \x00', b'UPPER']]
+ assert_array_equal(self.A.lstrip([b'1', b'M']), tgt)
+
+ tgt = [['\u03a3 ', ''],
+ ['12345', 'MixedCase'],
+ ['123 \t 345 \0 ', 'UPPER']]
+ assert_(issubclass(self.B.lstrip().dtype.type, np.str_))
+ assert_array_equal(self.B.lstrip(), tgt)
+
+ def test_partition(self):
+ P = self.A.partition([b'3', b'M'])
+ tgt = [[(b' abc ', b'', b''), (b'', b'', b'')],
+ [(b'12', b'3', b'45'), (b'', b'M', b'ixedCase')],
+ [(b'12', b'3', b' \t 345 \0 '), (b'UPPER', b'', b'')]]
+ assert_(issubclass(P.dtype.type, np.bytes_))
+ assert_array_equal(P, tgt)
+
+ def test_replace(self):
+ R = self.A.replace([b'3', b'a'],
+ [b'##########', b'@'])
+ tgt = [[b' abc ', b''],
+ [b'12##########45', b'MixedC@se'],
+ [b'12########## \t ##########45 \x00 ', b'UPPER']]
+ assert_(issubclass(R.dtype.type, np.bytes_))
+ assert_array_equal(R, tgt)
+ # Test special cases that should just return the input array,
+ # since replacements are not possible or do nothing.
+ S1 = self.A.replace(b'A very long byte string, longer than A', b'')
+ assert_array_equal(S1, self.A)
+ S2 = self.A.replace(b'', b'')
+ assert_array_equal(S2, self.A)
+ S3 = self.A.replace(b'3', b'3')
+ assert_array_equal(S3, self.A)
+ S4 = self.A.replace(b'3', b'', count=0)
+ assert_array_equal(S4, self.A)
+
+ def test_replace_count_and_size(self):
+ a = np.array(['0123456789' * i for i in range(4)]
+ ).view(np.char.chararray)
+ r1 = a.replace('5', 'ABCDE')
+ assert r1.dtype.itemsize == (3 * 10 + 3 * 4) * 4
+ assert_array_equal(r1, np.array(['01234ABCDE6789' * i
+ for i in range(4)]))
+ r2 = a.replace('5', 'ABCDE', count=1)
+ assert r2.dtype.itemsize == (3 * 10 + 4) * 4
+ r3 = a.replace('5', 'ABCDE', count=0)
+ assert r3.dtype.itemsize == a.dtype.itemsize
+ assert_array_equal(r3, a)
+ # Negative values mean to replace all.
+ r4 = a.replace('5', 'ABCDE', count=-1)
+ assert r4.dtype.itemsize == (3 * 10 + 3 * 4) * 4
+ assert_array_equal(r4, r1)
+ # We can do count on an element-by-element basis.
+ r5 = a.replace('5', 'ABCDE', count=[-1, -1, -1, 1])
+ assert r5.dtype.itemsize == (3 * 10 + 4) * 4
+ assert_array_equal(r5, np.array(
+ ['01234ABCDE6789' * i for i in range(3)]
+ + ['01234ABCDE6789' + '0123456789' * 2]))
+
+ def test_replace_broadcasting(self):
+ a = np.array('0,0,0').view(np.char.chararray)
+ r1 = a.replace('0', '1', count=np.arange(3))
+ assert r1.dtype == a.dtype
+ assert_array_equal(r1, np.array(['0,0,0', '1,0,0', '1,1,0']))
+ r2 = a.replace('0', [['1'], ['2']], count=np.arange(1, 4))
+ assert_array_equal(r2, np.array([['1,0,0', '1,1,0', '1,1,1'],
+ ['2,0,0', '2,2,0', '2,2,2']]))
+ r3 = a.replace(['0', '0,0', '0,0,0'], 'X')
+ assert_array_equal(r3, np.array(['X,X,X', 'X,0', 'X']))
+
+ def test_rjust(self):
+ assert_(issubclass(self.A.rjust(10).dtype.type, np.bytes_))
+
+ C = self.A.rjust([10, 20])
+ assert_array_equal(np.char.str_len(C), [[10, 20], [10, 20], [12, 20]])
+
+ C = self.A.rjust(20, b'#')
+ assert_(np.all(C.startswith(b'#')))
+ assert_array_equal(C.endswith(b'#'),
+ [[False, True], [False, False], [False, False]])
+
+ C = np.char.rjust(b'FOO', [[10, 20], [15, 8]])
+ tgt = [[b' FOO', b' FOO'],
+ [b' FOO', b' FOO']]
+ assert_(issubclass(C.dtype.type, np.bytes_))
+ assert_array_equal(C, tgt)
+
+ def test_rpartition(self):
+ P = self.A.rpartition([b'3', b'M'])
+ tgt = [[(b'', b'', b' abc '), (b'', b'', b'')],
+ [(b'12', b'3', b'45'), (b'', b'M', b'ixedCase')],
+ [(b'123 \t ', b'3', b'45 \0 '), (b'', b'', b'UPPER')]]
+ assert_(issubclass(P.dtype.type, np.bytes_))
+ assert_array_equal(P, tgt)
+
+ def test_rsplit(self):
+ A = self.A.rsplit(b'3')
+ tgt = [[[b' abc '], [b'']],
+ [[b'12', b'45'], [b'MixedCase']],
+ [[b'12', b' \t ', b'45 \x00 '], [b'UPPER']]]
+ assert_(issubclass(A.dtype.type, np.object_))
+ assert_equal(A.tolist(), tgt)
+
+ def test_rstrip(self):
+ assert_(issubclass(self.A.rstrip().dtype.type, np.bytes_))
+
+ tgt = [[b' abc', b''],
+ [b'12345', b'MixedCase'],
+ [b'123 \t 345', b'UPPER']]
+ assert_array_equal(self.A.rstrip(), tgt)
+
+ tgt = [[b' abc ', b''],
+ [b'1234', b'MixedCase'],
+ [b'123 \t 345 \x00', b'UPP']
+ ]
+ assert_array_equal(self.A.rstrip([b'5', b'ER']), tgt)
+
+ tgt = [[' \u03a3', ''],
+ ['12345', 'MixedCase'],
+ ['123 \t 345', 'UPPER']]
+ assert_(issubclass(self.B.rstrip().dtype.type, np.str_))
+ assert_array_equal(self.B.rstrip(), tgt)
+
+ def test_strip(self):
+ tgt = [[b'abc', b''],
+ [b'12345', b'MixedCase'],
+ [b'123 \t 345', b'UPPER']]
+ assert_(issubclass(self.A.strip().dtype.type, np.bytes_))
+ assert_array_equal(self.A.strip(), tgt)
+
+ tgt = [[b' abc ', b''],
+ [b'234', b'ixedCas'],
+ [b'23 \t 345 \x00', b'UPP']]
+ assert_array_equal(self.A.strip([b'15', b'EReM']), tgt)
+
+ tgt = [['\u03a3', ''],
+ ['12345', 'MixedCase'],
+ ['123 \t 345', 'UPPER']]
+ assert_(issubclass(self.B.strip().dtype.type, np.str_))
+ assert_array_equal(self.B.strip(), tgt)
+
+ def test_split(self):
+ A = self.A.split(b'3')
+ tgt = [
+ [[b' abc '], [b'']],
+ [[b'12', b'45'], [b'MixedCase']],
+ [[b'12', b' \t ', b'45 \x00 '], [b'UPPER']]]
+ assert_(issubclass(A.dtype.type, np.object_))
+ assert_equal(A.tolist(), tgt)
+
+ def test_splitlines(self):
+ A = np.char.array(['abc\nfds\nwer']).splitlines()
+ assert_(issubclass(A.dtype.type, np.object_))
+ assert_(A.shape == (1,))
+ assert_(len(A[0]) == 3)
+
+ def test_swapcase(self):
+ tgt = [[b' ABC ', b''],
+ [b'12345', b'mIXEDcASE'],
+ [b'123 \t 345 \0 ', b'upper']]
+ assert_(issubclass(self.A.swapcase().dtype.type, np.bytes_))
+ assert_array_equal(self.A.swapcase(), tgt)
+
+ tgt = [[' \u03c3 ', ''],
+ ['12345', 'mIXEDcASE'],
+ ['123 \t 345 \0 ', 'upper']]
+ assert_(issubclass(self.B.swapcase().dtype.type, np.str_))
+ assert_array_equal(self.B.swapcase(), tgt)
+
+ def test_title(self):
+ tgt = [[b' Abc ', b''],
+ [b'12345', b'Mixedcase'],
+ [b'123 \t 345 \0 ', b'Upper']]
+ assert_(issubclass(self.A.title().dtype.type, np.bytes_))
+ assert_array_equal(self.A.title(), tgt)
+
+ tgt = [[' \u03a3 ', ''],
+ ['12345', 'Mixedcase'],
+ ['123 \t 345 \0 ', 'Upper']]
+ assert_(issubclass(self.B.title().dtype.type, np.str_))
+ assert_array_equal(self.B.title(), tgt)
+
+ def test_upper(self):
+ tgt = [[b' ABC ', b''],
+ [b'12345', b'MIXEDCASE'],
+ [b'123 \t 345 \0 ', b'UPPER']]
+ assert_(issubclass(self.A.upper().dtype.type, np.bytes_))
+ assert_array_equal(self.A.upper(), tgt)
+
+ tgt = [[' \u03a3 ', ''],
+ ['12345', 'MIXEDCASE'],
+ ['123 \t 345 \0 ', 'UPPER']]
+ assert_(issubclass(self.B.upper().dtype.type, np.str_))
+ assert_array_equal(self.B.upper(), tgt)
+
+ def test_isnumeric(self):
+
+ def fail():
+ self.A.isnumeric()
+
+ assert_raises(TypeError, fail)
+ assert_(issubclass(self.B.isnumeric().dtype.type, np.bool))
+ assert_array_equal(self.B.isnumeric(), [
+ [False, False], [True, False], [False, False]])
+
+ def test_isdecimal(self):
+
+ def fail():
+ self.A.isdecimal()
+
+ assert_raises(TypeError, fail)
+ assert_(issubclass(self.B.isdecimal().dtype.type, np.bool))
+ assert_array_equal(self.B.isdecimal(), [
+ [False, False], [True, False], [False, False]])
+
+
+class TestOperations:
+ def setup_method(self):
+ self.A = np.array([['abc', '123'],
+ ['789', 'xyz']]).view(np.char.chararray)
+ self.B = np.array([['efg', '456'],
+ ['051', 'tuv']]).view(np.char.chararray)
+
+ def test_add(self):
+ AB = np.array([['abcefg', '123456'],
+ ['789051', 'xyztuv']]).view(np.char.chararray)
+ assert_array_equal(AB, (self.A + self.B))
+ assert_(len((self.A + self.B)[0][0]) == 6)
+
+ def test_radd(self):
+ QA = np.array([['qabc', 'q123'],
+ ['q789', 'qxyz']]).view(np.char.chararray)
+ assert_array_equal(QA, ('q' + self.A))
+
+ def test_mul(self):
+ A = self.A
+ for r in (2, 3, 5, 7, 197):
+ Ar = np.array([[A[0, 0] * r, A[0, 1] * r],
+ [A[1, 0] * r, A[1, 1] * r]]).view(np.char.chararray)
+
+ assert_array_equal(Ar, (self.A * r))
+
+ for ob in [object(), 'qrs']:
+ with assert_raises_regex(ValueError,
+ 'Can only multiply by integers'):
+ A * ob
+
+ def test_rmul(self):
+ A = self.A
+ for r in (2, 3, 5, 7, 197):
+ Ar = np.array([[A[0, 0] * r, A[0, 1] * r],
+ [A[1, 0] * r, A[1, 1] * r]]).view(np.char.chararray)
+ assert_array_equal(Ar, (r * self.A))
+
+ for ob in [object(), 'qrs']:
+ with assert_raises_regex(ValueError,
+ 'Can only multiply by integers'):
+ ob * A
+
+ def test_mod(self):
+ """Ticket #856"""
+ F = np.array([['%d', '%f'], ['%s', '%r']]).view(np.char.chararray)
+ C = np.array([[3, 7], [19, 1]], dtype=np.int64)
+ FC = np.array([['3', '7.000000'],
+ ['19', 'np.int64(1)']]).view(np.char.chararray)
+ assert_array_equal(FC, F % C)
+
+ A = np.array([['%.3f', '%d'], ['%s', '%r']]).view(np.char.chararray)
+ A1 = np.array([['1.000', '1'],
+ ['1', repr(np.array(1)[()])]]).view(np.char.chararray)
+ assert_array_equal(A1, (A % 1))
+
+ A2 = np.array([['1.000', '2'],
+ ['3', repr(np.array(4)[()])]]).view(np.char.chararray)
+ assert_array_equal(A2, (A % [[1, 2], [3, 4]]))
+
+ def test_rmod(self):
+ assert_(f"{self.A}" == str(self.A))
+ assert_(f"{self.A!r}" == repr(self.A))
+
+ for ob in [42, object()]:
+ with assert_raises_regex(
+ TypeError, "unsupported operand type.* and 'chararray'"):
+ ob % self.A
+
+ def test_slice(self):
+ """Regression test for https://github.com/numpy/numpy/issues/5982"""
+
+ arr = np.array([['abc ', 'def '], ['geh ', 'ijk ']],
+ dtype='S4').view(np.char.chararray)
+ sl1 = arr[:]
+ assert_array_equal(sl1, arr)
+ assert_(sl1.base is arr)
+ assert_(sl1.base.base is arr.base)
+
+ sl2 = arr[:, :]
+ assert_array_equal(sl2, arr)
+ assert_(sl2.base is arr)
+ assert_(sl2.base.base is arr.base)
+
+ assert_(arr[0, 0] == b'abc')
+
+ @pytest.mark.parametrize('data', [['plate', ' ', 'shrimp'],
+ [b'retro', b' ', b'encabulator']])
+ def test_getitem_length_zero_item(self, data):
+ # Regression test for gh-26375.
+ a = np.char.array(data)
+ # a.dtype.type() will be an empty string or bytes instance.
+ # The equality test will fail if a[1] has the wrong type
+ # or does not have length 0.
+ assert_equal(a[1], a.dtype.type())
+
+
+class TestMethodsEmptyArray:
+ def setup_method(self):
+ self.U = np.array([], dtype='U')
+ self.S = np.array([], dtype='S')
+
+ def test_encode(self):
+ res = np.char.encode(self.U)
+ assert_array_equal(res, [])
+ assert_(res.dtype.char == 'S')
+
+ def test_decode(self):
+ res = np.char.decode(self.S)
+ assert_array_equal(res, [])
+ assert_(res.dtype.char == 'U')
+
+ def test_decode_with_reshape(self):
+ res = np.char.decode(self.S.reshape((1, 0, 1)))
+ assert_(res.shape == (1, 0, 1))
+
+
+class TestMethodsScalarValues:
+ def test_mod(self):
+ A = np.array([[' abc ', ''],
+ ['12345', 'MixedCase'],
+ ['123 \t 345 \0 ', 'UPPER']], dtype='S')
+ tgt = [[b'123 abc ', b'123'],
+ [b'12312345', b'123MixedCase'],
+ [b'123123 \t 345 \0 ', b'123UPPER']]
+ assert_array_equal(np.char.mod(b"123%s", A), tgt)
+
+ def test_decode(self):
+ bytestring = b'\x81\xc1\x81\xc1\x81\xc1'
+ assert_equal(np.char.decode(bytestring, encoding='cp037'),
+ 'aAaAaA')
+
+ def test_encode(self):
+ unicode = 'aAaAaA'
+ assert_equal(np.char.encode(unicode, encoding='cp037'),
+ b'\x81\xc1\x81\xc1\x81\xc1')
+
+ def test_expandtabs(self):
+ s = "\tone level of indentation\n\t\ttwo levels of indentation"
+ assert_equal(
+ np.char.expandtabs(s, tabsize=2),
+ " one level of indentation\n two levels of indentation"
+ )
+
+ def test_join(self):
+ seps = np.array(['-', '_'])
+ assert_array_equal(np.char.join(seps, 'hello'),
+ ['h-e-l-l-o', 'h_e_l_l_o'])
+
+ def test_partition(self):
+ assert_equal(np.char.partition('This string', ' '),
+ ['This', ' ', 'string'])
+
+ def test_rpartition(self):
+ assert_equal(np.char.rpartition('This string here', ' '),
+ ['This string', ' ', 'here'])
+
+ def test_replace(self):
+ assert_equal(np.char.replace('Python is good', 'good', 'great'),
+ 'Python is great')
+
+
+def test_empty_indexing():
+ """Regression test for ticket 1948."""
+ # Check that indexing a chararray with an empty list/array returns an
+ # empty chararray instead of a chararray with a single empty string in it.
+ s = np.char.chararray((4,))
+ assert_(s[[]].size == 0)
diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_deprecations.py b/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_deprecations.py
new file mode 100644
index 0000000..d90c155
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_deprecations.py
@@ -0,0 +1,454 @@
+"""
+Tests related to deprecation warnings. Also a convenient place
+to document how deprecations should eventually be turned into errors.
+
+"""
+import contextlib
+import warnings
+
+import numpy._core._struct_ufunc_tests as struct_ufunc
+import pytest
+from numpy._core._multiarray_tests import fromstring_null_term_c_api # noqa: F401
+
+import numpy as np
+from numpy.testing import assert_raises, temppath
+
+try:
+ import pytz # noqa: F401
+ _has_pytz = True
+except ImportError:
+ _has_pytz = False
+
+
+class _DeprecationTestCase:
+ # Just as warning: warnings uses re.match, so the start of this message
+ # must match.
+ message = ''
+ warning_cls = DeprecationWarning
+
+ def setup_method(self):
+ self.warn_ctx = warnings.catch_warnings(record=True)
+ self.log = self.warn_ctx.__enter__()
+
+ # Do *not* ignore other DeprecationWarnings. Ignoring warnings
+ # can give very confusing results because of
+ # https://bugs.python.org/issue4180 and it is probably simplest to
+ # try to keep the tests cleanly giving only the right warning type.
+ # (While checking them set to "error" those are ignored anyway)
+ # We still have them show up, because otherwise they would be raised
+ warnings.filterwarnings("always", category=self.warning_cls)
+ warnings.filterwarnings("always", message=self.message,
+ category=self.warning_cls)
+
+ def teardown_method(self):
+ self.warn_ctx.__exit__()
+
+ def assert_deprecated(self, function, num=1, ignore_others=False,
+ function_fails=False,
+ exceptions=np._NoValue,
+ args=(), kwargs={}):
+ """Test if DeprecationWarnings are given and raised.
+
+ This first checks if the function when called gives `num`
+ DeprecationWarnings, after that it tries to raise these
+ DeprecationWarnings and compares them with `exceptions`.
+ The exceptions can be different for cases where this code path
+ is simply not anticipated and the exception is replaced.
+
+ Parameters
+ ----------
+ function : callable
+ The function to test
+ num : int
+ Number of DeprecationWarnings to expect. This should normally be 1.
+ ignore_others : bool
+ Whether warnings of the wrong type should be ignored (note that
+ the message is not checked)
+ function_fails : bool
+ If the function would normally fail, setting this will check for
+ warnings inside a try/except block.
+ exceptions : Exception or tuple of Exceptions
+ Exception to expect when turning the warnings into an error.
+ The default checks for DeprecationWarnings. If exceptions is
+ empty the function is expected to run successfully.
+ args : tuple
+ Arguments for `function`
+ kwargs : dict
+ Keyword arguments for `function`
+ """
+ __tracebackhide__ = True # Hide traceback for py.test
+
+ # reset the log
+ self.log[:] = []
+
+ if exceptions is np._NoValue:
+ exceptions = (self.warning_cls,)
+
+ if function_fails:
+ context_manager = contextlib.suppress(Exception)
+ else:
+ context_manager = contextlib.nullcontext()
+ with context_manager:
+ function(*args, **kwargs)
+
+ # just in case, clear the registry
+ num_found = 0
+ for warning in self.log:
+ if warning.category is self.warning_cls:
+ num_found += 1
+ elif not ignore_others:
+ raise AssertionError(
+ "expected %s but got: %s" %
+ (self.warning_cls.__name__, warning.category))
+ if num is not None and num_found != num:
+ msg = f"{len(self.log)} warnings found but {num} expected."
+ lst = [str(w) for w in self.log]
+ raise AssertionError("\n".join([msg] + lst))
+
+ with warnings.catch_warnings():
+ warnings.filterwarnings("error", message=self.message,
+ category=self.warning_cls)
+ try:
+ function(*args, **kwargs)
+ if exceptions != ():
+ raise AssertionError(
+ "No error raised during function call")
+ except exceptions:
+ if exceptions == ():
+ raise AssertionError(
+ "Error raised during function call")
+
+ def assert_not_deprecated(self, function, args=(), kwargs={}):
+ """Test that warnings are not raised.
+
+ This is just a shorthand for:
+
+ self.assert_deprecated(function, num=0, ignore_others=True,
+ exceptions=tuple(), args=args, kwargs=kwargs)
+ """
+ self.assert_deprecated(function, num=0, ignore_others=True,
+ exceptions=(), args=args, kwargs=kwargs)
+
+
+class _VisibleDeprecationTestCase(_DeprecationTestCase):
+ warning_cls = np.exceptions.VisibleDeprecationWarning
+
+
+class TestTestDeprecated:
+ def test_assert_deprecated(self):
+ test_case_instance = _DeprecationTestCase()
+ test_case_instance.setup_method()
+ assert_raises(AssertionError,
+ test_case_instance.assert_deprecated,
+ lambda: None)
+
+ def foo():
+ warnings.warn("foo", category=DeprecationWarning, stacklevel=2)
+
+ test_case_instance.assert_deprecated(foo)
+ test_case_instance.teardown_method()
+
+
+class TestBincount(_DeprecationTestCase):
+ # 2024-07-29, 2.1.0
+ @pytest.mark.parametrize('badlist', [[0.5, 1.2, 1.5],
+ ['0', '1', '1']])
+ def test_bincount_bad_list(self, badlist):
+ self.assert_deprecated(lambda: np.bincount(badlist))
+
+
+class TestGeneratorSum(_DeprecationTestCase):
+ # 2018-02-25, 1.15.0
+ def test_generator_sum(self):
+ self.assert_deprecated(np.sum, args=((i for i in range(5)),))
+
+
+class BuiltInRoundComplexDType(_DeprecationTestCase):
+ # 2020-03-31 1.19.0
+ deprecated_types = [np.csingle, np.cdouble, np.clongdouble]
+ not_deprecated_types = [
+ np.int8, np.int16, np.int32, np.int64,
+ np.uint8, np.uint16, np.uint32, np.uint64,
+ np.float16, np.float32, np.float64,
+ ]
+
+ def test_deprecated(self):
+ for scalar_type in self.deprecated_types:
+ scalar = scalar_type(0)
+ self.assert_deprecated(round, args=(scalar,))
+ self.assert_deprecated(round, args=(scalar, 0))
+ self.assert_deprecated(round, args=(scalar,), kwargs={'ndigits': 0})
+
+ def test_not_deprecated(self):
+ for scalar_type in self.not_deprecated_types:
+ scalar = scalar_type(0)
+ self.assert_not_deprecated(round, args=(scalar,))
+ self.assert_not_deprecated(round, args=(scalar, 0))
+ self.assert_not_deprecated(round, args=(scalar,), kwargs={'ndigits': 0})
+
+
+class FlatteningConcatenateUnsafeCast(_DeprecationTestCase):
+ # NumPy 1.20, 2020-09-03
+ message = "concatenate with `axis=None` will use same-kind casting"
+
+ def test_deprecated(self):
+ self.assert_deprecated(np.concatenate,
+ args=(([0.], [1.]),),
+ kwargs={'axis': None, 'out': np.empty(2, dtype=np.int64)})
+
+ def test_not_deprecated(self):
+ self.assert_not_deprecated(np.concatenate,
+ args=(([0.], [1.]),),
+ kwargs={'axis': None, 'out': np.empty(2, dtype=np.int64),
+ 'casting': "unsafe"})
+
+ with assert_raises(TypeError):
+ # Tests should notice if the deprecation warning is given first...
+ np.concatenate(([0.], [1.]), out=np.empty(2, dtype=np.int64),
+ casting="same_kind")
+
+
+class TestCtypesGetter(_DeprecationTestCase):
+ # Deprecated 2021-05-18, Numpy 1.21.0
+ warning_cls = DeprecationWarning
+ ctypes = np.array([1]).ctypes
+
+ @pytest.mark.parametrize(
+ "name", ["get_data", "get_shape", "get_strides", "get_as_parameter"]
+ )
+ def test_deprecated(self, name: str) -> None:
+ func = getattr(self.ctypes, name)
+ self.assert_deprecated(func)
+
+ @pytest.mark.parametrize(
+ "name", ["data", "shape", "strides", "_as_parameter_"]
+ )
+ def test_not_deprecated(self, name: str) -> None:
+ self.assert_not_deprecated(lambda: getattr(self.ctypes, name))
+
+
+class TestMachAr(_DeprecationTestCase):
+ # Deprecated 2022-11-22, NumPy 1.25
+ warning_cls = DeprecationWarning
+
+ def test_deprecated_module(self):
+ self.assert_deprecated(lambda: np._core.MachAr)
+
+
+class TestQuantileInterpolationDeprecation(_DeprecationTestCase):
+ # Deprecated 2021-11-08, NumPy 1.22
+ @pytest.mark.parametrize("func",
+ [np.percentile, np.quantile, np.nanpercentile, np.nanquantile])
+ def test_deprecated(self, func):
+ self.assert_deprecated(
+ lambda: func([0., 1.], 0., interpolation="linear"))
+ self.assert_deprecated(
+ lambda: func([0., 1.], 0., interpolation="nearest"))
+
+ @pytest.mark.parametrize("func",
+ [np.percentile, np.quantile, np.nanpercentile, np.nanquantile])
+ def test_both_passed(self, func):
+ with warnings.catch_warnings():
+ # catch the DeprecationWarning so that it does not raise:
+ warnings.simplefilter("always", DeprecationWarning)
+ with pytest.raises(TypeError):
+ func([0., 1.], 0., interpolation="nearest", method="nearest")
+
+
+class TestScalarConversion(_DeprecationTestCase):
+ # 2023-01-02, 1.25.0
+ def test_float_conversion(self):
+ self.assert_deprecated(float, args=(np.array([3.14]),))
+
+ def test_behaviour(self):
+ b = np.array([[3.14]])
+ c = np.zeros(5)
+ with pytest.warns(DeprecationWarning):
+ c[0] = b
+
+
+class TestPyIntConversion(_DeprecationTestCase):
+ message = r".*stop allowing conversion of out-of-bound.*"
+
+ @pytest.mark.parametrize("dtype", np.typecodes["AllInteger"])
+ def test_deprecated_scalar(self, dtype):
+ dtype = np.dtype(dtype)
+ info = np.iinfo(dtype)
+
+ # Cover the most common creation paths (all end up in the
+ # same place):
+ def scalar(value, dtype):
+ dtype.type(value)
+
+ def assign(value, dtype):
+ arr = np.array([0, 0, 0], dtype=dtype)
+ arr[2] = value
+
+ def create(value, dtype):
+ np.array([value], dtype=dtype)
+
+ for creation_func in [scalar, assign, create]:
+ try:
+ self.assert_deprecated(
+ lambda: creation_func(info.min - 1, dtype))
+ except OverflowError:
+ pass # OverflowErrors always happened also before and are OK.
+
+ try:
+ self.assert_deprecated(
+ lambda: creation_func(info.max + 1, dtype))
+ except OverflowError:
+ pass # OverflowErrors always happened also before and are OK.
+
+
+@pytest.mark.parametrize("name", ["str", "bytes", "object"])
+def test_future_scalar_attributes(name):
+ # FutureWarning added 2022-11-17, NumPy 1.24,
+ assert name not in dir(np) # we may want to not add them
+ with pytest.warns(FutureWarning,
+ match=f"In the future .*{name}"):
+ assert not hasattr(np, name)
+
+ # Unfortunately, they are currently still valid via `np.dtype()`
+ np.dtype(name)
+ name in np._core.sctypeDict
+
+
+# Ignore the above future attribute warning for this test.
+@pytest.mark.filterwarnings("ignore:In the future:FutureWarning")
+class TestRemovedGlobals:
+ # Removed 2023-01-12, NumPy 1.24.0
+ # Not a deprecation, but the large error was added to aid those who missed
+ # the previous deprecation, and should be removed similarly to one
+ # (or faster).
+ @pytest.mark.parametrize("name",
+ ["object", "float", "complex", "str", "int"])
+ def test_attributeerror_includes_info(self, name):
+ msg = f".*\n`np.{name}` was a deprecated alias for the builtin"
+ with pytest.raises(AttributeError, match=msg):
+ getattr(np, name)
+
+
+class TestDeprecatedFinfo(_DeprecationTestCase):
+ # Deprecated in NumPy 1.25, 2023-01-16
+ def test_deprecated_none(self):
+ self.assert_deprecated(np.finfo, args=(None,))
+
+
+class TestMathAlias(_DeprecationTestCase):
+ def test_deprecated_np_lib_math(self):
+ self.assert_deprecated(lambda: np.lib.math)
+
+
+class TestLibImports(_DeprecationTestCase):
+ # Deprecated in Numpy 1.26.0, 2023-09
+ def test_lib_functions_deprecation_call(self):
+ from numpy import in1d, row_stack, trapz
+ from numpy._core.numerictypes import maximum_sctype
+ from numpy.lib._function_base_impl import disp
+ from numpy.lib._npyio_impl import recfromcsv, recfromtxt
+ from numpy.lib._shape_base_impl import get_array_wrap
+ from numpy.lib._utils_impl import safe_eval
+ from numpy.lib.tests.test_io import TextIO
+
+ self.assert_deprecated(lambda: safe_eval("None"))
+
+ data_gen = lambda: TextIO('A,B\n0,1\n2,3')
+ kwargs = {'delimiter': ",", 'missing_values': "N/A", 'names': True}
+ self.assert_deprecated(lambda: recfromcsv(data_gen()))
+ self.assert_deprecated(lambda: recfromtxt(data_gen(), **kwargs))
+
+ self.assert_deprecated(lambda: disp("test"))
+ self.assert_deprecated(get_array_wrap)
+ self.assert_deprecated(lambda: maximum_sctype(int))
+
+ self.assert_deprecated(lambda: in1d([1], [1]))
+ self.assert_deprecated(lambda: row_stack([[]]))
+ self.assert_deprecated(lambda: trapz([1], [1]))
+ self.assert_deprecated(lambda: np.chararray)
+
+
+class TestDeprecatedDTypeAliases(_DeprecationTestCase):
+
+ def _check_for_warning(self, func):
+ with warnings.catch_warnings(record=True) as caught_warnings:
+ func()
+ assert len(caught_warnings) == 1
+ w = caught_warnings[0]
+ assert w.category is DeprecationWarning
+ assert "alias 'a' was deprecated in NumPy 2.0" in str(w.message)
+
+ def test_a_dtype_alias(self):
+ for dtype in ["a", "a10"]:
+ f = lambda: np.dtype(dtype)
+ self._check_for_warning(f)
+ self.assert_deprecated(f)
+ f = lambda: np.array(["hello", "world"]).astype("a10")
+ self._check_for_warning(f)
+ self.assert_deprecated(f)
+
+
+class TestDeprecatedArrayWrap(_DeprecationTestCase):
+ message = "__array_wrap__.*"
+
+ def test_deprecated(self):
+ class Test1:
+ def __array__(self, dtype=None, copy=None):
+ return np.arange(4)
+
+ def __array_wrap__(self, arr, context=None):
+ self.called = True
+ return 'pass context'
+
+ class Test2(Test1):
+ def __array_wrap__(self, arr):
+ self.called = True
+ return 'pass'
+
+ test1 = Test1()
+ test2 = Test2()
+ self.assert_deprecated(lambda: np.negative(test1))
+ assert test1.called
+ self.assert_deprecated(lambda: np.negative(test2))
+ assert test2.called
+
+
+class TestDeprecatedDTypeParenthesizedRepeatCount(_DeprecationTestCase):
+ message = "Passing in a parenthesized single number"
+
+ @pytest.mark.parametrize("string", ["(2)i,", "(3)3S,", "f,(2)f"])
+ def test_parenthesized_repeat_count(self, string):
+ self.assert_deprecated(np.dtype, args=(string,))
+
+
+class TestDeprecatedSaveFixImports(_DeprecationTestCase):
+ # Deprecated in Numpy 2.1, 2024-05
+ message = "The 'fix_imports' flag is deprecated and has no effect."
+
+ def test_deprecated(self):
+ with temppath(suffix='.npy') as path:
+ sample_args = (path, np.array(np.zeros((1024, 10))))
+ self.assert_not_deprecated(np.save, args=sample_args)
+ self.assert_deprecated(np.save, args=sample_args,
+ kwargs={'fix_imports': True})
+ self.assert_deprecated(np.save, args=sample_args,
+ kwargs={'fix_imports': False})
+ for allow_pickle in [True, False]:
+ self.assert_not_deprecated(np.save, args=sample_args,
+ kwargs={'allow_pickle': allow_pickle})
+ self.assert_deprecated(np.save, args=sample_args,
+ kwargs={'allow_pickle': allow_pickle,
+ 'fix_imports': True})
+ self.assert_deprecated(np.save, args=sample_args,
+ kwargs={'allow_pickle': allow_pickle,
+ 'fix_imports': False})
+
+
+class TestAddNewdocUFunc(_DeprecationTestCase):
+ # Deprecated in Numpy 2.2, 2024-11
+ def test_deprecated(self):
+ self.assert_deprecated(
+ lambda: np._core.umath._add_newdoc_ufunc(
+ struct_ufunc.add_triplet, "new docs"
+ )
+ )
diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_dlpack.py b/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_dlpack.py
new file mode 100644
index 0000000..89c2403
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_dlpack.py
@@ -0,0 +1,190 @@
+import sys
+
+import pytest
+
+import numpy as np
+from numpy.testing import IS_PYPY, assert_array_equal
+
+
+def new_and_old_dlpack():
+ yield np.arange(5)
+
+ class OldDLPack(np.ndarray):
+ # Support only the "old" version
+ def __dlpack__(self, stream=None):
+ return super().__dlpack__(stream=None)
+
+ yield np.arange(5).view(OldDLPack)
+
+
+class TestDLPack:
+ @pytest.mark.skipif(IS_PYPY, reason="PyPy can't get refcounts.")
+ @pytest.mark.parametrize("max_version", [(0, 0), None, (1, 0), (100, 3)])
+ def test_dunder_dlpack_refcount(self, max_version):
+ x = np.arange(5)
+ y = x.__dlpack__(max_version=max_version)
+ startcount = sys.getrefcount(x)
+ del y
+ assert startcount - sys.getrefcount(x) == 1
+
+ def test_dunder_dlpack_stream(self):
+ x = np.arange(5)
+ x.__dlpack__(stream=None)
+
+ with pytest.raises(RuntimeError):
+ x.__dlpack__(stream=1)
+
+ def test_dunder_dlpack_copy(self):
+ # Checks the argument parsing of __dlpack__ explicitly.
+ # Honoring the flag is tested in the from_dlpack round-tripping test.
+ x = np.arange(5)
+ x.__dlpack__(copy=True)
+ x.__dlpack__(copy=None)
+ x.__dlpack__(copy=False)
+
+ with pytest.raises(ValueError):
+ # NOTE: The copy converter should be stricter, but not just here.
+ x.__dlpack__(copy=np.array([1, 2, 3]))
+
+ def test_strides_not_multiple_of_itemsize(self):
+ dt = np.dtype([('int', np.int32), ('char', np.int8)])
+ y = np.zeros((5,), dtype=dt)
+ z = y['int']
+
+ with pytest.raises(BufferError):
+ np.from_dlpack(z)
+
+ @pytest.mark.skipif(IS_PYPY, reason="PyPy can't get refcounts.")
+ @pytest.mark.parametrize("arr", new_and_old_dlpack())
+ def test_from_dlpack_refcount(self, arr):
+ arr = arr.copy()
+ y = np.from_dlpack(arr)
+ startcount = sys.getrefcount(arr)
+ del y
+ assert startcount - sys.getrefcount(arr) == 1
+
+ @pytest.mark.parametrize("dtype", [
+ np.bool,
+ np.int8, np.int16, np.int32, np.int64,
+ np.uint8, np.uint16, np.uint32, np.uint64,
+ np.float16, np.float32, np.float64,
+ np.complex64, np.complex128
+ ])
+ @pytest.mark.parametrize("arr", new_and_old_dlpack())
+ def test_dtype_passthrough(self, arr, dtype):
+ x = arr.astype(dtype)
+ y = np.from_dlpack(x)
+
+ assert y.dtype == x.dtype
+ assert_array_equal(x, y)
+
+ def test_invalid_dtype(self):
+ x = np.asarray(np.datetime64('2021-05-27'))
+
+ with pytest.raises(BufferError):
+ np.from_dlpack(x)
+
+ def test_invalid_byte_swapping(self):
+ dt = np.dtype('=i8').newbyteorder()
+ x = np.arange(5, dtype=dt)
+
+ with pytest.raises(BufferError):
+ np.from_dlpack(x)
+
+ def test_non_contiguous(self):
+ x = np.arange(25).reshape((5, 5))
+
+ y1 = x[0]
+ assert_array_equal(y1, np.from_dlpack(y1))
+
+ y2 = x[:, 0]
+ assert_array_equal(y2, np.from_dlpack(y2))
+
+ y3 = x[1, :]
+ assert_array_equal(y3, np.from_dlpack(y3))
+
+ y4 = x[1]
+ assert_array_equal(y4, np.from_dlpack(y4))
+
+ y5 = np.diagonal(x).copy()
+ assert_array_equal(y5, np.from_dlpack(y5))
+
+ @pytest.mark.parametrize("ndim", range(33))
+ def test_higher_dims(self, ndim):
+ shape = (1,) * ndim
+ x = np.zeros(shape, dtype=np.float64)
+
+ assert shape == np.from_dlpack(x).shape
+
+ def test_dlpack_device(self):
+ x = np.arange(5)
+ assert x.__dlpack_device__() == (1, 0)
+ y = np.from_dlpack(x)
+ assert y.__dlpack_device__() == (1, 0)
+ z = y[::2]
+ assert z.__dlpack_device__() == (1, 0)
+
+ def dlpack_deleter_exception(self, max_version):
+ x = np.arange(5)
+ _ = x.__dlpack__(max_version=max_version)
+ raise RuntimeError
+
+ @pytest.mark.parametrize("max_version", [None, (1, 0)])
+ def test_dlpack_destructor_exception(self, max_version):
+ with pytest.raises(RuntimeError):
+ self.dlpack_deleter_exception(max_version=max_version)
+
+ def test_readonly(self):
+ x = np.arange(5)
+ x.flags.writeable = False
+ # Raises without max_version
+ with pytest.raises(BufferError):
+ x.__dlpack__()
+
+ # But works fine if we try with version
+ y = np.from_dlpack(x)
+ assert not y.flags.writeable
+
+ def test_writeable(self):
+ x_new, x_old = new_and_old_dlpack()
+
+ # new dlpacks respect writeability
+ y = np.from_dlpack(x_new)
+ assert y.flags.writeable
+
+ # old dlpacks are not writeable for backwards compatibility
+ y = np.from_dlpack(x_old)
+ assert not y.flags.writeable
+
+ def test_ndim0(self):
+ x = np.array(1.0)
+ y = np.from_dlpack(x)
+ assert_array_equal(x, y)
+
+ def test_size1dims_arrays(self):
+ x = np.ndarray(dtype='f8', shape=(10, 5, 1), strides=(8, 80, 4),
+ buffer=np.ones(1000, dtype=np.uint8), order='F')
+ y = np.from_dlpack(x)
+ assert_array_equal(x, y)
+
+ def test_copy(self):
+ x = np.arange(5)
+
+ y = np.from_dlpack(x)
+ assert np.may_share_memory(x, y)
+ y = np.from_dlpack(x, copy=False)
+ assert np.may_share_memory(x, y)
+ y = np.from_dlpack(x, copy=True)
+ assert not np.may_share_memory(x, y)
+
+ def test_device(self):
+ x = np.arange(5)
+ # requesting (1, 0), i.e. CPU device works in both calls:
+ x.__dlpack__(dl_device=(1, 0))
+ np.from_dlpack(x, device="cpu")
+ np.from_dlpack(x, device=None)
+
+ with pytest.raises(ValueError):
+ x.__dlpack__(dl_device=(10, 0))
+ with pytest.raises(ValueError):
+ np.from_dlpack(x, device="gpu")
diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_dtype.py b/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_dtype.py
new file mode 100644
index 0000000..684672a
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_dtype.py
@@ -0,0 +1,1995 @@
+import ctypes
+import gc
+import operator
+import pickle
+import random
+import sys
+import types
+from itertools import permutations
+from typing import Any
+
+import hypothesis
+import pytest
+from hypothesis.extra import numpy as hynp
+from numpy._core._multiarray_tests import create_custom_field_dtype
+from numpy._core._rational_tests import rational
+
+import numpy as np
+import numpy.dtypes
+from numpy.testing import (
+ HAS_REFCOUNT,
+ IS_PYSTON,
+ IS_WASM,
+ assert_,
+ assert_array_equal,
+ assert_equal,
+ assert_raises,
+)
+
+
+def assert_dtype_equal(a, b):
+ assert_equal(a, b)
+ assert_equal(hash(a), hash(b),
+ "two equivalent types do not hash to the same value !")
+
+def assert_dtype_not_equal(a, b):
+ assert_(a != b)
+ assert_(hash(a) != hash(b),
+ "two different types hash to the same value !")
+
+class TestBuiltin:
+ @pytest.mark.parametrize('t', [int, float, complex, np.int32, str, object])
+ def test_run(self, t):
+ """Only test hash runs at all."""
+ dt = np.dtype(t)
+ hash(dt)
+
+ @pytest.mark.parametrize('t', [int, float])
+ def test_dtype(self, t):
+ # Make sure equivalent byte order char hash the same (e.g. < and = on
+ # little endian)
+ dt = np.dtype(t)
+ dt2 = dt.newbyteorder("<")
+ dt3 = dt.newbyteorder(">")
+ if dt == dt2:
+ assert_(dt.byteorder != dt2.byteorder, "bogus test")
+ assert_dtype_equal(dt, dt2)
+ else:
+ assert_(dt.byteorder != dt3.byteorder, "bogus test")
+ assert_dtype_equal(dt, dt3)
+
+ def test_equivalent_dtype_hashing(self):
+ # Make sure equivalent dtypes with different type num hash equal
+ uintp = np.dtype(np.uintp)
+ if uintp.itemsize == 4:
+ left = uintp
+ right = np.dtype(np.uint32)
+ else:
+ left = uintp
+ right = np.dtype(np.ulonglong)
+ assert_(left == right)
+ assert_(hash(left) == hash(right))
+
+ def test_invalid_types(self):
+ # Make sure invalid type strings raise an error
+
+ assert_raises(TypeError, np.dtype, 'O3')
+ assert_raises(TypeError, np.dtype, 'O5')
+ assert_raises(TypeError, np.dtype, 'O7')
+ assert_raises(TypeError, np.dtype, 'b3')
+ assert_raises(TypeError, np.dtype, 'h4')
+ assert_raises(TypeError, np.dtype, 'I5')
+ assert_raises(TypeError, np.dtype, 'e3')
+ assert_raises(TypeError, np.dtype, 'f5')
+
+ if np.dtype('g').itemsize == 8 or np.dtype('g').itemsize == 16:
+ assert_raises(TypeError, np.dtype, 'g12')
+ elif np.dtype('g').itemsize == 12:
+ assert_raises(TypeError, np.dtype, 'g16')
+
+ if np.dtype('l').itemsize == 8:
+ assert_raises(TypeError, np.dtype, 'l4')
+ assert_raises(TypeError, np.dtype, 'L4')
+ else:
+ assert_raises(TypeError, np.dtype, 'l8')
+ assert_raises(TypeError, np.dtype, 'L8')
+
+ if np.dtype('q').itemsize == 8:
+ assert_raises(TypeError, np.dtype, 'q4')
+ assert_raises(TypeError, np.dtype, 'Q4')
+ else:
+ assert_raises(TypeError, np.dtype, 'q8')
+ assert_raises(TypeError, np.dtype, 'Q8')
+
+ # Make sure negative-sized dtype raises an error
+ assert_raises(TypeError, np.dtype, 'S-1')
+ assert_raises(TypeError, np.dtype, 'U-1')
+ assert_raises(TypeError, np.dtype, 'V-1')
+
+ def test_richcompare_invalid_dtype_equality(self):
+ # Make sure objects that cannot be converted to valid
+ # dtypes results in False/True when compared to valid dtypes.
+ # Here 7 cannot be converted to dtype. No exceptions should be raised
+
+ assert not np.dtype(np.int32) == 7, "dtype richcompare failed for =="
+ assert np.dtype(np.int32) != 7, "dtype richcompare failed for !="
+
+ @pytest.mark.parametrize(
+ 'operation',
+ [operator.le, operator.lt, operator.ge, operator.gt])
+ def test_richcompare_invalid_dtype_comparison(self, operation):
+ # Make sure TypeError is raised for comparison operators
+ # for invalid dtypes. Here 7 is an invalid dtype.
+
+ with pytest.raises(TypeError):
+ operation(np.dtype(np.int32), 7)
+
+ @pytest.mark.parametrize("dtype",
+ ['Bool', 'Bytes0', 'Complex32', 'Complex64',
+ 'Datetime64', 'Float16', 'Float32', 'Float64',
+ 'Int8', 'Int16', 'Int32', 'Int64',
+ 'Object0', 'Str0', 'Timedelta64',
+ 'UInt8', 'UInt16', 'Uint32', 'UInt32',
+ 'Uint64', 'UInt64', 'Void0',
+ "Float128", "Complex128"])
+ def test_numeric_style_types_are_invalid(self, dtype):
+ with assert_raises(TypeError):
+ np.dtype(dtype)
+
+ def test_expired_dtypes_with_bad_bytesize(self):
+ match: str = r".*removed in NumPy 2.0.*"
+ with pytest.raises(TypeError, match=match):
+ np.dtype("int0")
+ with pytest.raises(TypeError, match=match):
+ np.dtype("uint0")
+ with pytest.raises(TypeError, match=match):
+ np.dtype("bool8")
+ with pytest.raises(TypeError, match=match):
+ np.dtype("bytes0")
+ with pytest.raises(TypeError, match=match):
+ np.dtype("str0")
+ with pytest.raises(TypeError, match=match):
+ np.dtype("object0")
+ with pytest.raises(TypeError, match=match):
+ np.dtype("void0")
+
+ @pytest.mark.parametrize(
+ 'value',
+ ['m8', 'M8', 'datetime64', 'timedelta64',
+ 'i4, (2,3)f8, f4', 'S3, 3u8, (3,4)S10',
+ '>f', '<f', '=f', '|f',
+ ])
+ def test_dtype_bytes_str_equivalence(self, value):
+ bytes_value = value.encode('ascii')
+ from_bytes = np.dtype(bytes_value)
+ from_str = np.dtype(value)
+ assert_dtype_equal(from_bytes, from_str)
+
+ def test_dtype_from_bytes(self):
+ # Empty bytes object
+ assert_raises(TypeError, np.dtype, b'')
+ # Byte order indicator, but no type
+ assert_raises(TypeError, np.dtype, b'|')
+
+ # Single character with ordinal < NPY_NTYPES_LEGACY returns
+ # type by index into _builtin_descrs
+ assert_dtype_equal(np.dtype(bytes([0])), np.dtype('bool'))
+ assert_dtype_equal(np.dtype(bytes([17])), np.dtype(object))
+
+ # Single character where value is a valid type code
+ assert_dtype_equal(np.dtype(b'f'), np.dtype('float32'))
+
+ # Bytes with non-ascii values raise errors
+ assert_raises(TypeError, np.dtype, b'\xff')
+ assert_raises(TypeError, np.dtype, b's\xff')
+
+ def test_bad_param(self):
+ # Can't give a size that's too small
+ assert_raises(ValueError, np.dtype,
+ {'names': ['f0', 'f1'],
+ 'formats': ['i4', 'i1'],
+ 'offsets': [0, 4],
+ 'itemsize': 4})
+ # If alignment is enabled, the alignment (4) must divide the itemsize
+ assert_raises(ValueError, np.dtype,
+ {'names': ['f0', 'f1'],
+ 'formats': ['i4', 'i1'],
+ 'offsets': [0, 4],
+ 'itemsize': 9}, align=True)
+ # If alignment is enabled, the individual fields must be aligned
+ assert_raises(ValueError, np.dtype,
+ {'names': ['f0', 'f1'],
+ 'formats': ['i1', 'f4'],
+ 'offsets': [0, 2]}, align=True)
+
+ def test_field_order_equality(self):
+ x = np.dtype({'names': ['A', 'B'],
+ 'formats': ['i4', 'f4'],
+ 'offsets': [0, 4]})
+ y = np.dtype({'names': ['B', 'A'],
+ 'formats': ['i4', 'f4'],
+ 'offsets': [4, 0]})
+ assert_equal(x == y, False)
+ # This is an safe cast (not equiv) due to the different names:
+ assert np.can_cast(x, y, casting="safe")
+
+ @pytest.mark.parametrize(
+ ["type_char", "char_size", "scalar_type"],
+ [["U", 4, np.str_],
+ ["S", 1, np.bytes_]])
+ def test_create_string_dtypes_directly(
+ self, type_char, char_size, scalar_type):
+ dtype_class = type(np.dtype(type_char))
+
+ dtype = dtype_class(8)
+ assert dtype.type is scalar_type
+ assert dtype.itemsize == 8 * char_size
+
+ def test_create_invalid_string_errors(self):
+ one_too_big = np.iinfo(np.intc).max + 1
+ with pytest.raises(TypeError):
+ type(np.dtype("U"))(one_too_big // 4)
+
+ with pytest.raises(TypeError):
+ # Code coverage for very large numbers:
+ type(np.dtype("U"))(np.iinfo(np.intp).max // 4 + 1)
+
+ if one_too_big < sys.maxsize:
+ with pytest.raises(TypeError):
+ type(np.dtype("S"))(one_too_big)
+
+ with pytest.raises(ValueError):
+ type(np.dtype("U"))(-1)
+
+ # OverflowError on 32 bit
+ with pytest.raises((TypeError, OverflowError)):
+ # see gh-26556
+ type(np.dtype("S"))(2**61)
+
+ with pytest.raises(TypeError):
+ np.dtype("S1234hello")
+
+ def test_leading_zero_parsing(self):
+ dt1 = np.dtype('S010')
+ dt2 = np.dtype('S10')
+
+ assert dt1 == dt2
+ assert repr(dt1) == "dtype('S10')"
+ assert dt1.itemsize == 10
+
+
+class TestRecord:
+ def test_equivalent_record(self):
+ """Test whether equivalent record dtypes hash the same."""
+ a = np.dtype([('yo', int)])
+ b = np.dtype([('yo', int)])
+ assert_dtype_equal(a, b)
+
+ def test_different_names(self):
+ # In theory, they may hash the same (collision) ?
+ a = np.dtype([('yo', int)])
+ b = np.dtype([('ye', int)])
+ assert_dtype_not_equal(a, b)
+
+ def test_different_titles(self):
+ # In theory, they may hash the same (collision) ?
+ a = np.dtype({'names': ['r', 'b'],
+ 'formats': ['u1', 'u1'],
+ 'titles': ['Red pixel', 'Blue pixel']})
+ b = np.dtype({'names': ['r', 'b'],
+ 'formats': ['u1', 'u1'],
+ 'titles': ['RRed pixel', 'Blue pixel']})
+ assert_dtype_not_equal(a, b)
+
+ @pytest.mark.skipif(not HAS_REFCOUNT, reason="Python lacks refcounts")
+ def test_refcount_dictionary_setting(self):
+ names = ["name1"]
+ formats = ["f8"]
+ titles = ["t1"]
+ offsets = [0]
+ d = {"names": names, "formats": formats, "titles": titles, "offsets": offsets}
+ refcounts = {k: sys.getrefcount(i) for k, i in d.items()}
+ np.dtype(d)
+ refcounts_new = {k: sys.getrefcount(i) for k, i in d.items()}
+ assert refcounts == refcounts_new
+
+ def test_mutate(self):
+ # Mutating a dtype should reset the cached hash value.
+ # NOTE: Mutating should be deprecated, but new API added to replace it.
+ a = np.dtype([('yo', int)])
+ b = np.dtype([('yo', int)])
+ c = np.dtype([('ye', int)])
+ assert_dtype_equal(a, b)
+ assert_dtype_not_equal(a, c)
+ a.names = ['ye']
+ assert_dtype_equal(a, c)
+ assert_dtype_not_equal(a, b)
+ state = b.__reduce__()[2]
+ a.__setstate__(state)
+ assert_dtype_equal(a, b)
+ assert_dtype_not_equal(a, c)
+
+ def test_init_simple_structured(self):
+ dt1 = np.dtype("i, i")
+ assert dt1.names == ("f0", "f1")
+
+ dt2 = np.dtype("i,")
+ assert dt2.names == ("f0",)
+
+ def test_mutate_error(self):
+ # NOTE: Mutating should be deprecated, but new API added to replace it.
+ a = np.dtype("i,i")
+
+ with pytest.raises(ValueError, match="must replace all names at once"):
+ a.names = ["f0"]
+
+ with pytest.raises(ValueError, match=".*and not string"):
+ a.names = ["f0", b"not a unicode name"]
+
+ def test_not_lists(self):
+ """Test if an appropriate exception is raised when passing bad values to
+ the dtype constructor.
+ """
+ assert_raises(TypeError, np.dtype,
+ {"names": {'A', 'B'}, "formats": ['f8', 'i4']})
+ assert_raises(TypeError, np.dtype,
+ {"names": ['A', 'B'], "formats": {'f8', 'i4'}})
+
+ def test_aligned_size(self):
+ # Check that structured dtypes get padded to an aligned size
+ dt = np.dtype('i4, i1', align=True)
+ assert_equal(dt.itemsize, 8)
+ dt = np.dtype([('f0', 'i4'), ('f1', 'i1')], align=True)
+ assert_equal(dt.itemsize, 8)
+ dt = np.dtype({'names': ['f0', 'f1'],
+ 'formats': ['i4', 'u1'],
+ 'offsets': [0, 4]}, align=True)
+ assert_equal(dt.itemsize, 8)
+ dt = np.dtype({'f0': ('i4', 0), 'f1': ('u1', 4)}, align=True)
+ assert_equal(dt.itemsize, 8)
+ # Nesting should preserve that alignment
+ dt1 = np.dtype([('f0', 'i4'),
+ ('f1', [('f1', 'i1'), ('f2', 'i4'), ('f3', 'i1')]),
+ ('f2', 'i1')], align=True)
+ assert_equal(dt1.itemsize, 20)
+ dt2 = np.dtype({'names': ['f0', 'f1', 'f2'],
+ 'formats': ['i4',
+ [('f1', 'i1'), ('f2', 'i4'), ('f3', 'i1')],
+ 'i1'],
+ 'offsets': [0, 4, 16]}, align=True)
+ assert_equal(dt2.itemsize, 20)
+ dt3 = np.dtype({'f0': ('i4', 0),
+ 'f1': ([('f1', 'i1'), ('f2', 'i4'), ('f3', 'i1')], 4),
+ 'f2': ('i1', 16)}, align=True)
+ assert_equal(dt3.itemsize, 20)
+ assert_equal(dt1, dt2)
+ assert_equal(dt2, dt3)
+ # Nesting should preserve packing
+ dt1 = np.dtype([('f0', 'i4'),
+ ('f1', [('f1', 'i1'), ('f2', 'i4'), ('f3', 'i1')]),
+ ('f2', 'i1')], align=False)
+ assert_equal(dt1.itemsize, 11)
+ dt2 = np.dtype({'names': ['f0', 'f1', 'f2'],
+ 'formats': ['i4',
+ [('f1', 'i1'), ('f2', 'i4'), ('f3', 'i1')],
+ 'i1'],
+ 'offsets': [0, 4, 10]}, align=False)
+ assert_equal(dt2.itemsize, 11)
+ dt3 = np.dtype({'f0': ('i4', 0),
+ 'f1': ([('f1', 'i1'), ('f2', 'i4'), ('f3', 'i1')], 4),
+ 'f2': ('i1', 10)}, align=False)
+ assert_equal(dt3.itemsize, 11)
+ assert_equal(dt1, dt2)
+ assert_equal(dt2, dt3)
+ # Array of subtype should preserve alignment
+ dt1 = np.dtype([('a', '|i1'),
+ ('b', [('f0', '<i2'),
+ ('f1', '<f4')], 2)], align=True)
+ assert_equal(dt1.descr, [('a', '|i1'), ('', '|V3'),
+ ('b', [('f0', '<i2'), ('', '|V2'),
+ ('f1', '<f4')], (2,))])
+
+ def test_empty_struct_alignment(self):
+ # Empty dtypes should have an alignment of 1
+ dt = np.dtype([], align=True)
+ assert_equal(dt.alignment, 1)
+ dt = np.dtype([('f0', [])], align=True)
+ assert_equal(dt.alignment, 1)
+ dt = np.dtype({'names': [],
+ 'formats': [],
+ 'offsets': []}, align=True)
+ assert_equal(dt.alignment, 1)
+ dt = np.dtype({'names': ['f0'],
+ 'formats': [[]],
+ 'offsets': [0]}, align=True)
+ assert_equal(dt.alignment, 1)
+
+ def test_union_struct(self):
+ # Should be able to create union dtypes
+ dt = np.dtype({'names': ['f0', 'f1', 'f2'], 'formats': ['<u4', '<u2', '<u2'],
+ 'offsets': [0, 0, 2]}, align=True)
+ assert_equal(dt.itemsize, 4)
+ a = np.array([3], dtype='<u4').view(dt)
+ a['f1'] = 10
+ a['f2'] = 36
+ assert_equal(a['f0'], 10 + 36 * 256 * 256)
+ # Should be able to specify fields out of order
+ dt = np.dtype({'names': ['f0', 'f1', 'f2'], 'formats': ['<u4', '<u2', '<u2'],
+ 'offsets': [4, 0, 2]}, align=True)
+ assert_equal(dt.itemsize, 8)
+ # field name should not matter: assignment is by position
+ dt2 = np.dtype({'names': ['f2', 'f0', 'f1'],
+ 'formats': ['<u4', '<u2', '<u2'],
+ 'offsets': [4, 0, 2]}, align=True)
+ vals = [(0, 1, 2), (3, 2**15 - 1, 4)]
+ vals2 = [(0, 1, 2), (3, 2**15 - 1, 4)]
+ a = np.array(vals, dt)
+ b = np.array(vals2, dt2)
+ assert_equal(a.astype(dt2), b)
+ assert_equal(b.astype(dt), a)
+ assert_equal(a.view(dt2), b)
+ assert_equal(b.view(dt), a)
+ # Should not be able to overlap objects with other types
+ assert_raises(TypeError, np.dtype,
+ {'names': ['f0', 'f1'],
+ 'formats': ['O', 'i1'],
+ 'offsets': [0, 2]})
+ assert_raises(TypeError, np.dtype,
+ {'names': ['f0', 'f1'],
+ 'formats': ['i4', 'O'],
+ 'offsets': [0, 3]})
+ assert_raises(TypeError, np.dtype,
+ {'names': ['f0', 'f1'],
+ 'formats': [[('a', 'O')], 'i1'],
+ 'offsets': [0, 2]})
+ assert_raises(TypeError, np.dtype,
+ {'names': ['f0', 'f1'],
+ 'formats': ['i4', [('a', 'O')]],
+ 'offsets': [0, 3]})
+ # Out of order should still be ok, however
+ dt = np.dtype({'names': ['f0', 'f1'],
+ 'formats': ['i1', 'O'],
+ 'offsets': [np.dtype('intp').itemsize, 0]})
+
+ @pytest.mark.parametrize(["obj", "dtype", "expected"],
+ [([], ("2f4"), np.empty((0, 2), dtype="f4")),
+ (3, "(3,)f4", [3, 3, 3]),
+ (np.float64(2), "(2,)f4", [2, 2]),
+ ([((0, 1), (1, 2)), ((2,),)], '(2,2)f4', None),
+ (["1", "2"], "2i", None)])
+ def test_subarray_list(self, obj, dtype, expected):
+ dtype = np.dtype(dtype)
+ res = np.array(obj, dtype=dtype)
+
+ if expected is None:
+ # iterate the 1-d list to fill the array
+ expected = np.empty(len(obj), dtype=dtype)
+ for i in range(len(expected)):
+ expected[i] = obj[i]
+
+ assert_array_equal(res, expected)
+
+ def test_parenthesized_single_number(self):
+ with pytest.raises(TypeError, match="not understood"):
+ np.dtype("(2)f4")
+
+ # Deprecation also tested in
+ # test_deprecations.py::TestDeprecatedDTypeParenthesizedRepeatCount
+ # Left here to allow easy conversion to an exception check.
+ with pytest.warns(DeprecationWarning,
+ match="parenthesized single number"):
+ np.dtype("(2)f4,")
+
+ def test_comma_datetime(self):
+ dt = np.dtype('M8[D],datetime64[Y],i8')
+ assert_equal(dt, np.dtype([('f0', 'M8[D]'),
+ ('f1', 'datetime64[Y]'),
+ ('f2', 'i8')]))
+
+ def test_from_dictproxy(self):
+ # Tests for PR #5920
+ dt = np.dtype({'names': ['a', 'b'], 'formats': ['i4', 'f4']})
+ assert_dtype_equal(dt, np.dtype(dt.fields))
+ dt2 = np.dtype((np.void, dt.fields))
+ assert_equal(dt2.fields, dt.fields)
+
+ def test_from_dict_with_zero_width_field(self):
+ # Regression test for #6430 / #2196
+ dt = np.dtype([('val1', np.float32, (0,)), ('val2', int)])
+ dt2 = np.dtype({'names': ['val1', 'val2'],
+ 'formats': [(np.float32, (0,)), int]})
+
+ assert_dtype_equal(dt, dt2)
+ assert_equal(dt.fields['val1'][0].itemsize, 0)
+ assert_equal(dt.itemsize, dt.fields['val2'][0].itemsize)
+
+ def test_bool_commastring(self):
+ d = np.dtype('?,?,?') # raises?
+ assert_equal(len(d.names), 3)
+ for n in d.names:
+ assert_equal(d.fields[n][0], np.dtype('?'))
+
+ def test_nonint_offsets(self):
+ # gh-8059
+ def make_dtype(off):
+ return np.dtype({'names': ['A'], 'formats': ['i4'],
+ 'offsets': [off]})
+
+ assert_raises(TypeError, make_dtype, 'ASD')
+ assert_raises(OverflowError, make_dtype, 2**70)
+ assert_raises(TypeError, make_dtype, 2.3)
+ assert_raises(ValueError, make_dtype, -10)
+
+ # no errors here:
+ dt = make_dtype(np.uint32(0))
+ np.zeros(1, dtype=dt)[0].item()
+
+ def test_fields_by_index(self):
+ dt = np.dtype([('a', np.int8), ('b', np.float32, 3)])
+ assert_dtype_equal(dt[0], np.dtype(np.int8))
+ assert_dtype_equal(dt[1], np.dtype((np.float32, 3)))
+ assert_dtype_equal(dt[-1], dt[1])
+ assert_dtype_equal(dt[-2], dt[0])
+ assert_raises(IndexError, lambda: dt[-3])
+
+ assert_raises(TypeError, operator.getitem, dt, 3.0)
+
+ assert_equal(dt[1], dt[np.int8(1)])
+
+ @pytest.mark.parametrize('align_flag', [False, True])
+ def test_multifield_index(self, align_flag):
+ # indexing with a list produces subfields
+ # the align flag should be preserved
+ dt = np.dtype([
+ (('title', 'col1'), '<U20'), ('A', '<f8'), ('B', '<f8')
+ ], align=align_flag)
+
+ dt_sub = dt[['B', 'col1']]
+ assert_equal(
+ dt_sub,
+ np.dtype({
+ 'names': ['B', 'col1'],
+ 'formats': ['<f8', '<U20'],
+ 'offsets': [88, 0],
+ 'titles': [None, 'title'],
+ 'itemsize': 96
+ })
+ )
+ assert_equal(dt_sub.isalignedstruct, align_flag)
+
+ dt_sub = dt[['B']]
+ assert_equal(
+ dt_sub,
+ np.dtype({
+ 'names': ['B'],
+ 'formats': ['<f8'],
+ 'offsets': [88],
+ 'itemsize': 96
+ })
+ )
+ assert_equal(dt_sub.isalignedstruct, align_flag)
+
+ dt_sub = dt[[]]
+ assert_equal(
+ dt_sub,
+ np.dtype({
+ 'names': [],
+ 'formats': [],
+ 'offsets': [],
+ 'itemsize': 96
+ })
+ )
+ assert_equal(dt_sub.isalignedstruct, align_flag)
+
+ assert_raises(TypeError, operator.getitem, dt, ())
+ assert_raises(TypeError, operator.getitem, dt, [1, 2, 3])
+ assert_raises(TypeError, operator.getitem, dt, ['col1', 2])
+ assert_raises(KeyError, operator.getitem, dt, ['fake'])
+ assert_raises(KeyError, operator.getitem, dt, ['title'])
+ assert_raises(ValueError, operator.getitem, dt, ['col1', 'col1'])
+
+ def test_partial_dict(self):
+ # 'names' is missing
+ assert_raises(ValueError, np.dtype,
+ {'formats': ['i4', 'i4'], 'f0': ('i4', 0), 'f1': ('i4', 4)})
+
+ def test_fieldless_views(self):
+ a = np.zeros(2, dtype={'names': [], 'formats': [], 'offsets': [],
+ 'itemsize': 8})
+ assert_raises(ValueError, a.view, np.dtype([]))
+
+ d = np.dtype((np.dtype([]), 10))
+ assert_equal(d.shape, (10,))
+ assert_equal(d.itemsize, 0)
+ assert_equal(d.base, np.dtype([]))
+
+ arr = np.fromiter((() for i in range(10)), [])
+ assert_equal(arr.dtype, np.dtype([]))
+ assert_raises(ValueError, np.frombuffer, b'', dtype=[])
+ assert_equal(np.frombuffer(b'', dtype=[], count=2),
+ np.empty(2, dtype=[]))
+
+ assert_raises(ValueError, np.dtype, ([], 'f8'))
+ assert_raises(ValueError, np.zeros(1, dtype='i4').view, [])
+
+ assert_equal(np.zeros(2, dtype=[]) == np.zeros(2, dtype=[]),
+ np.ones(2, dtype=bool))
+
+ assert_equal(np.zeros((1, 2), dtype=[]) == a,
+ np.ones((1, 2), dtype=bool))
+
+ def test_nonstructured_with_object(self):
+ # See gh-23277, the dtype here thinks it contain objects, if the
+ # assert about that fails, the test becomes meaningless (which is OK)
+ arr = np.recarray((0,), dtype="O")
+ assert arr.dtype.names is None # no fields
+ assert arr.dtype.hasobject # but claims to contain objects
+ del arr # the deletion failed previously.
+
+
+class TestSubarray:
+ def test_single_subarray(self):
+ a = np.dtype((int, (2)))
+ b = np.dtype((int, (2,)))
+ assert_dtype_equal(a, b)
+
+ assert_equal(type(a.subdtype[1]), tuple)
+ assert_equal(type(b.subdtype[1]), tuple)
+
+ def test_equivalent_record(self):
+ """Test whether equivalent subarray dtypes hash the same."""
+ a = np.dtype((int, (2, 3)))
+ b = np.dtype((int, (2, 3)))
+ assert_dtype_equal(a, b)
+
+ def test_nonequivalent_record(self):
+ """Test whether different subarray dtypes hash differently."""
+ a = np.dtype((int, (2, 3)))
+ b = np.dtype((int, (3, 2)))
+ assert_dtype_not_equal(a, b)
+
+ a = np.dtype((int, (2, 3)))
+ b = np.dtype((int, (2, 2)))
+ assert_dtype_not_equal(a, b)
+
+ a = np.dtype((int, (1, 2, 3)))
+ b = np.dtype((int, (1, 2)))
+ assert_dtype_not_equal(a, b)
+
+ def test_shape_equal(self):
+ """Test some data types that are equal"""
+ assert_dtype_equal(np.dtype('f8'), np.dtype(('f8', ())))
+ assert_dtype_equal(np.dtype('(1,)f8'), np.dtype(('f8', 1)))
+ assert np.dtype(('f8', 1)).shape == (1,)
+ assert_dtype_equal(np.dtype((int, 2)), np.dtype((int, (2,))))
+ assert_dtype_equal(np.dtype(('<f4', (3, 2))), np.dtype(('<f4', (3, 2))))
+ d = ([('a', 'f4', (1, 2)), ('b', 'f8', (3, 1))], (3, 2))
+ assert_dtype_equal(np.dtype(d), np.dtype(d))
+
+ def test_shape_simple(self):
+ """Test some simple cases that shouldn't be equal"""
+ assert_dtype_not_equal(np.dtype('f8'), np.dtype(('f8', (1,))))
+ assert_dtype_not_equal(np.dtype(('f8', (1,))), np.dtype(('f8', (1, 1))))
+ assert_dtype_not_equal(np.dtype(('f4', (3, 2))), np.dtype(('f4', (2, 3))))
+
+ def test_shape_monster(self):
+ """Test some more complicated cases that shouldn't be equal"""
+ assert_dtype_not_equal(
+ np.dtype(([('a', 'f4', (2, 1)), ('b', 'f8', (1, 3))], (2, 2))),
+ np.dtype(([('a', 'f4', (1, 2)), ('b', 'f8', (1, 3))], (2, 2))))
+ assert_dtype_not_equal(
+ np.dtype(([('a', 'f4', (2, 1)), ('b', 'f8', (1, 3))], (2, 2))),
+ np.dtype(([('a', 'f4', (2, 1)), ('b', 'i8', (1, 3))], (2, 2))))
+ assert_dtype_not_equal(
+ np.dtype(([('a', 'f4', (2, 1)), ('b', 'f8', (1, 3))], (2, 2))),
+ np.dtype(([('e', 'f8', (1, 3)), ('d', 'f4', (2, 1))], (2, 2))))
+ assert_dtype_not_equal(
+ np.dtype(([('a', [('a', 'i4', 6)], (2, 1)), ('b', 'f8', (1, 3))], (2, 2))),
+ np.dtype(([('a', [('a', 'u4', 6)], (2, 1)), ('b', 'f8', (1, 3))], (2, 2))))
+
+ def test_shape_sequence(self):
+ # Any sequence of integers should work as shape, but the result
+ # should be a tuple (immutable) of base type integers.
+ a = np.array([1, 2, 3], dtype=np.int16)
+ l = [1, 2, 3]
+ # Array gets converted
+ dt = np.dtype([('a', 'f4', a)])
+ assert_(isinstance(dt['a'].shape, tuple))
+ assert_(isinstance(dt['a'].shape[0], int))
+ # List gets converted
+ dt = np.dtype([('a', 'f4', l)])
+ assert_(isinstance(dt['a'].shape, tuple))
+ #
+
+ class IntLike:
+ def __index__(self):
+ return 3
+
+ def __int__(self):
+ # (a PyNumber_Check fails without __int__)
+ return 3
+
+ dt = np.dtype([('a', 'f4', IntLike())])
+ assert_(isinstance(dt['a'].shape, tuple))
+ assert_(isinstance(dt['a'].shape[0], int))
+ dt = np.dtype([('a', 'f4', (IntLike(),))])
+ assert_(isinstance(dt['a'].shape, tuple))
+ assert_(isinstance(dt['a'].shape[0], int))
+
+ def test_shape_matches_ndim(self):
+ dt = np.dtype([('a', 'f4', ())])
+ assert_equal(dt['a'].shape, ())
+ assert_equal(dt['a'].ndim, 0)
+
+ dt = np.dtype([('a', 'f4')])
+ assert_equal(dt['a'].shape, ())
+ assert_equal(dt['a'].ndim, 0)
+
+ dt = np.dtype([('a', 'f4', 4)])
+ assert_equal(dt['a'].shape, (4,))
+ assert_equal(dt['a'].ndim, 1)
+
+ dt = np.dtype([('a', 'f4', (1, 2, 3))])
+ assert_equal(dt['a'].shape, (1, 2, 3))
+ assert_equal(dt['a'].ndim, 3)
+
+ def test_shape_invalid(self):
+ # Check that the shape is valid.
+ max_int = np.iinfo(np.intc).max
+ max_intp = np.iinfo(np.intp).max
+ # Too large values (the datatype is part of this)
+ assert_raises(ValueError, np.dtype, [('a', 'f4', max_int // 4 + 1)])
+ assert_raises(ValueError, np.dtype, [('a', 'f4', max_int + 1)])
+ assert_raises(ValueError, np.dtype, [('a', 'f4', (max_int, 2))])
+ # Takes a different code path (fails earlier:
+ assert_raises(ValueError, np.dtype, [('a', 'f4', max_intp + 1)])
+ # Negative values
+ assert_raises(ValueError, np.dtype, [('a', 'f4', -1)])
+ assert_raises(ValueError, np.dtype, [('a', 'f4', (-1, -1))])
+
+ def test_alignment(self):
+ # Check that subarrays are aligned
+ t1 = np.dtype('(1,)i4', align=True)
+ t2 = np.dtype('2i4', align=True)
+ assert_equal(t1.alignment, t2.alignment)
+
+ def test_aligned_empty(self):
+ # Mainly regression test for gh-19696: construction failed completely
+ dt = np.dtype([], align=True)
+ assert dt == np.dtype([])
+ dt = np.dtype({"names": [], "formats": [], "itemsize": 0}, align=True)
+ assert dt == np.dtype([])
+
+ def test_subarray_base_item(self):
+ arr = np.ones(3, dtype=[("f", "i", 3)])
+ # Extracting the field "absorbs" the subarray into a view:
+ assert arr["f"].base is arr
+ # Extract the structured item, and then check the tuple component:
+ item = arr.item(0)
+ assert type(item) is tuple and len(item) == 1
+ assert item[0].base is arr
+
+ def test_subarray_cast_copies(self):
+ # Older versions of NumPy did NOT copy, but they got the ownership
+ # wrong (not actually knowing the correct base!). Versions since 1.21
+ # (I think) crashed fairly reliable. This defines the correct behavior
+ # as a copy. Keeping the ownership would be possible (but harder)
+ arr = np.ones(3, dtype=[("f", "i", 3)])
+ cast = arr.astype(object)
+ for fields in cast:
+ assert type(fields) == tuple and len(fields) == 1
+ subarr = fields[0]
+ assert subarr.base is None
+ assert subarr.flags.owndata
+
+
+def iter_struct_object_dtypes():
+ """
+ Iterates over a few complex dtypes and object pattern which
+ fill the array with a given object (defaults to a singleton).
+
+ Yields
+ ------
+ dtype : dtype
+ pattern : tuple
+ Structured tuple for use with `np.array`.
+ count : int
+ Number of objects stored in the dtype.
+ singleton : object
+ A singleton object. The returned pattern is constructed so that
+ all objects inside the datatype are set to the singleton.
+ """
+ obj = object()
+
+ dt = np.dtype([('b', 'O', (2, 3))])
+ p = ([[obj] * 3] * 2,)
+ yield pytest.param(dt, p, 6, obj, id="<subarray>")
+
+ dt = np.dtype([('a', 'i4'), ('b', 'O', (2, 3))])
+ p = (0, [[obj] * 3] * 2)
+ yield pytest.param(dt, p, 6, obj, id="<subarray in field>")
+
+ dt = np.dtype([('a', 'i4'),
+ ('b', [('ba', 'O'), ('bb', 'i1')], (2, 3))])
+ p = (0, [[(obj, 0)] * 3] * 2)
+ yield pytest.param(dt, p, 6, obj, id="<structured subarray 1>")
+
+ dt = np.dtype([('a', 'i4'),
+ ('b', [('ba', 'O'), ('bb', 'O')], (2, 3))])
+ p = (0, [[(obj, obj)] * 3] * 2)
+ yield pytest.param(dt, p, 12, obj, id="<structured subarray 2>")
+
+
+@pytest.mark.skipif(
+ sys.version_info >= (3, 12),
+ reason="Python 3.12 has immortal refcounts, this test will no longer "
+ "work. See gh-23986"
+)
+@pytest.mark.skipif(not HAS_REFCOUNT, reason="Python lacks refcounts")
+class TestStructuredObjectRefcounting:
+ """These tests cover various uses of complicated structured types which
+ include objects and thus require reference counting.
+ """
+ @pytest.mark.parametrize(['dt', 'pat', 'count', 'singleton'],
+ iter_struct_object_dtypes())
+ @pytest.mark.parametrize(["creation_func", "creation_obj"], [
+ pytest.param(np.empty, None,
+ # None is probably used for too many things
+ marks=pytest.mark.skip("unreliable due to python's behaviour")),
+ (np.ones, 1),
+ (np.zeros, 0)])
+ def test_structured_object_create_delete(self, dt, pat, count, singleton,
+ creation_func, creation_obj):
+ """Structured object reference counting in creation and deletion"""
+ # The test assumes that 0, 1, and None are singletons.
+ gc.collect()
+ before = sys.getrefcount(creation_obj)
+ arr = creation_func(3, dt)
+
+ now = sys.getrefcount(creation_obj)
+ assert now - before == count * 3
+ del arr
+ now = sys.getrefcount(creation_obj)
+ assert now == before
+
+ @pytest.mark.parametrize(['dt', 'pat', 'count', 'singleton'],
+ iter_struct_object_dtypes())
+ def test_structured_object_item_setting(self, dt, pat, count, singleton):
+ """Structured object reference counting for simple item setting"""
+ one = 1
+
+ gc.collect()
+ before = sys.getrefcount(singleton)
+ arr = np.array([pat] * 3, dt)
+ assert sys.getrefcount(singleton) - before == count * 3
+ # Fill with `1` and check that it was replaced correctly:
+ before2 = sys.getrefcount(one)
+ arr[...] = one
+ after2 = sys.getrefcount(one)
+ assert after2 - before2 == count * 3
+ del arr
+ gc.collect()
+ assert sys.getrefcount(one) == before2
+ assert sys.getrefcount(singleton) == before
+
+ @pytest.mark.parametrize(['dt', 'pat', 'count', 'singleton'],
+ iter_struct_object_dtypes())
+ @pytest.mark.parametrize(
+ ['shape', 'index', 'items_changed'],
+ [((3,), ([0, 2],), 2),
+ ((3, 2), ([0, 2], slice(None)), 4),
+ ((3, 2), ([0, 2], [1]), 2),
+ ((3,), ([True, False, True]), 2)])
+ def test_structured_object_indexing(self, shape, index, items_changed,
+ dt, pat, count, singleton):
+ """Structured object reference counting for advanced indexing."""
+ # Use two small negative values (should be singletons, but less likely
+ # to run into race-conditions). This failed in some threaded envs
+ # When using 0 and 1. If it fails again, should remove all explicit
+ # checks, and rely on `pytest-leaks` reference count checker only.
+ val0 = -4
+ val1 = -5
+
+ arr = np.full(shape, val0, dt)
+
+ gc.collect()
+ before_val0 = sys.getrefcount(val0)
+ before_val1 = sys.getrefcount(val1)
+ # Test item getting:
+ part = arr[index]
+ after_val0 = sys.getrefcount(val0)
+ assert after_val0 - before_val0 == count * items_changed
+ del part
+ # Test item setting:
+ arr[index] = val1
+ gc.collect()
+ after_val0 = sys.getrefcount(val0)
+ after_val1 = sys.getrefcount(val1)
+ assert before_val0 - after_val0 == count * items_changed
+ assert after_val1 - before_val1 == count * items_changed
+
+ @pytest.mark.parametrize(['dt', 'pat', 'count', 'singleton'],
+ iter_struct_object_dtypes())
+ def test_structured_object_take_and_repeat(self, dt, pat, count, singleton):
+ """Structured object reference counting for specialized functions.
+ The older functions such as take and repeat use different code paths
+ then item setting (when writing this).
+ """
+ indices = [0, 1]
+
+ arr = np.array([pat] * 3, dt)
+ gc.collect()
+ before = sys.getrefcount(singleton)
+ res = arr.take(indices)
+ after = sys.getrefcount(singleton)
+ assert after - before == count * 2
+ new = res.repeat(10)
+ gc.collect()
+ after_repeat = sys.getrefcount(singleton)
+ assert after_repeat - after == count * 2 * 10
+
+
+class TestStructuredDtypeSparseFields:
+ """Tests subarray fields which contain sparse dtypes so that
+ not all memory is used by the dtype work. Such dtype's should
+ leave the underlying memory unchanged.
+ """
+ dtype = np.dtype([('a', {'names': ['aa', 'ab'], 'formats': ['f', 'f'],
+ 'offsets': [0, 4]}, (2, 3))])
+ sparse_dtype = np.dtype([('a', {'names': ['ab'], 'formats': ['f'],
+ 'offsets': [4]}, (2, 3))])
+
+ def test_sparse_field_assignment(self):
+ arr = np.zeros(3, self.dtype)
+ sparse_arr = arr.view(self.sparse_dtype)
+
+ sparse_arr[...] = np.finfo(np.float32).max
+ # dtype is reduced when accessing the field, so shape is (3, 2, 3):
+ assert_array_equal(arr["a"]["aa"], np.zeros((3, 2, 3)))
+
+ def test_sparse_field_assignment_fancy(self):
+ # Fancy assignment goes to the copyswap function for complex types:
+ arr = np.zeros(3, self.dtype)
+ sparse_arr = arr.view(self.sparse_dtype)
+
+ sparse_arr[[0, 1, 2]] = np.finfo(np.float32).max
+ # dtype is reduced when accessing the field, so shape is (3, 2, 3):
+ assert_array_equal(arr["a"]["aa"], np.zeros((3, 2, 3)))
+
+
+class TestMonsterType:
+ """Test deeply nested subtypes."""
+
+ def test1(self):
+ simple1 = np.dtype({'names': ['r', 'b'], 'formats': ['u1', 'u1'],
+ 'titles': ['Red pixel', 'Blue pixel']})
+ a = np.dtype([('yo', int), ('ye', simple1),
+ ('yi', np.dtype((int, (3, 2))))])
+ b = np.dtype([('yo', int), ('ye', simple1),
+ ('yi', np.dtype((int, (3, 2))))])
+ assert_dtype_equal(a, b)
+
+ c = np.dtype([('yo', int), ('ye', simple1),
+ ('yi', np.dtype((a, (3, 2))))])
+ d = np.dtype([('yo', int), ('ye', simple1),
+ ('yi', np.dtype((a, (3, 2))))])
+ assert_dtype_equal(c, d)
+
+ @pytest.mark.skipif(IS_PYSTON, reason="Pyston disables recursion checking")
+ @pytest.mark.skipif(IS_WASM, reason="Pyodide/WASM has limited stack size")
+ def test_list_recursion(self):
+ l = []
+ l.append(('f', l))
+ with pytest.raises(RecursionError):
+ np.dtype(l)
+
+ @pytest.mark.skipif(IS_PYSTON, reason="Pyston disables recursion checking")
+ @pytest.mark.skipif(IS_WASM, reason="Pyodide/WASM has limited stack size")
+ def test_tuple_recursion(self):
+ d = np.int32
+ for i in range(100000):
+ d = (d, (1,))
+ with pytest.raises(RecursionError):
+ np.dtype(d)
+
+ @pytest.mark.skipif(IS_PYSTON, reason="Pyston disables recursion checking")
+ @pytest.mark.skipif(IS_WASM, reason="Pyodide/WASM has limited stack size")
+ def test_dict_recursion(self):
+ d = {"names": ['self'], "formats": [None], "offsets": [0]}
+ d['formats'][0] = d
+ with pytest.raises(RecursionError):
+ np.dtype(d)
+
+
+class TestMetadata:
+ def test_no_metadata(self):
+ d = np.dtype(int)
+ assert_(d.metadata is None)
+
+ def test_metadata_takes_dict(self):
+ d = np.dtype(int, metadata={'datum': 1})
+ assert_(d.metadata == {'datum': 1})
+
+ def test_metadata_rejects_nondict(self):
+ assert_raises(TypeError, np.dtype, int, metadata='datum')
+ assert_raises(TypeError, np.dtype, int, metadata=1)
+ assert_raises(TypeError, np.dtype, int, metadata=None)
+
+ def test_nested_metadata(self):
+ d = np.dtype([('a', np.dtype(int, metadata={'datum': 1}))])
+ assert_(d['a'].metadata == {'datum': 1})
+
+ def test_base_metadata_copied(self):
+ d = np.dtype((np.void, np.dtype('i4,i4', metadata={'datum': 1})))
+ assert_(d.metadata == {'datum': 1})
+
+class TestString:
+ def test_complex_dtype_str(self):
+ dt = np.dtype([('top', [('tiles', ('>f4', (64, 64)), (1,)),
+ ('rtile', '>f4', (64, 36))], (3,)),
+ ('bottom', [('bleft', ('>f4', (8, 64)), (1,)),
+ ('bright', '>f4', (8, 36))])])
+ assert_equal(str(dt),
+ "[('top', [('tiles', ('>f4', (64, 64)), (1,)), "
+ "('rtile', '>f4', (64, 36))], (3,)), "
+ "('bottom', [('bleft', ('>f4', (8, 64)), (1,)), "
+ "('bright', '>f4', (8, 36))])]")
+
+ # If the sticky aligned flag is set to True, it makes the
+ # str() function use a dict representation with an 'aligned' flag
+ dt = np.dtype([('top', [('tiles', ('>f4', (64, 64)), (1,)),
+ ('rtile', '>f4', (64, 36))],
+ (3,)),
+ ('bottom', [('bleft', ('>f4', (8, 64)), (1,)),
+ ('bright', '>f4', (8, 36))])],
+ align=True)
+ assert_equal(str(dt),
+ "{'names': ['top', 'bottom'],"
+ " 'formats': [([('tiles', ('>f4', (64, 64)), (1,)), "
+ "('rtile', '>f4', (64, 36))], (3,)), "
+ "[('bleft', ('>f4', (8, 64)), (1,)), "
+ "('bright', '>f4', (8, 36))]],"
+ " 'offsets': [0, 76800],"
+ " 'itemsize': 80000,"
+ " 'aligned': True}")
+ with np.printoptions(legacy='1.21'):
+ assert_equal(str(dt),
+ "{'names':['top','bottom'], "
+ "'formats':[([('tiles', ('>f4', (64, 64)), (1,)), "
+ "('rtile', '>f4', (64, 36))], (3,)),"
+ "[('bleft', ('>f4', (8, 64)), (1,)), "
+ "('bright', '>f4', (8, 36))]], "
+ "'offsets':[0,76800], "
+ "'itemsize':80000, "
+ "'aligned':True}")
+ assert_equal(np.dtype(eval(str(dt))), dt)
+
+ dt = np.dtype({'names': ['r', 'g', 'b'], 'formats': ['u1', 'u1', 'u1'],
+ 'offsets': [0, 1, 2],
+ 'titles': ['Red pixel', 'Green pixel', 'Blue pixel']})
+ assert_equal(str(dt),
+ "[(('Red pixel', 'r'), 'u1'), "
+ "(('Green pixel', 'g'), 'u1'), "
+ "(('Blue pixel', 'b'), 'u1')]")
+
+ dt = np.dtype({'names': ['rgba', 'r', 'g', 'b'],
+ 'formats': ['<u4', 'u1', 'u1', 'u1'],
+ 'offsets': [0, 0, 1, 2],
+ 'titles': ['Color', 'Red pixel',
+ 'Green pixel', 'Blue pixel']})
+ assert_equal(str(dt),
+ "{'names': ['rgba', 'r', 'g', 'b'],"
+ " 'formats': ['<u4', 'u1', 'u1', 'u1'],"
+ " 'offsets': [0, 0, 1, 2],"
+ " 'titles': ['Color', 'Red pixel', "
+ "'Green pixel', 'Blue pixel'],"
+ " 'itemsize': 4}")
+
+ dt = np.dtype({'names': ['r', 'b'], 'formats': ['u1', 'u1'],
+ 'offsets': [0, 2],
+ 'titles': ['Red pixel', 'Blue pixel']})
+ assert_equal(str(dt),
+ "{'names': ['r', 'b'],"
+ " 'formats': ['u1', 'u1'],"
+ " 'offsets': [0, 2],"
+ " 'titles': ['Red pixel', 'Blue pixel'],"
+ " 'itemsize': 3}")
+
+ dt = np.dtype([('a', '<m8[D]'), ('b', '<M8[us]')])
+ assert_equal(str(dt),
+ "[('a', '<m8[D]'), ('b', '<M8[us]')]")
+
+ def test_repr_structured(self):
+ dt = np.dtype([('top', [('tiles', ('>f4', (64, 64)), (1,)),
+ ('rtile', '>f4', (64, 36))], (3,)),
+ ('bottom', [('bleft', ('>f4', (8, 64)), (1,)),
+ ('bright', '>f4', (8, 36))])])
+ assert_equal(repr(dt),
+ "dtype([('top', [('tiles', ('>f4', (64, 64)), (1,)), "
+ "('rtile', '>f4', (64, 36))], (3,)), "
+ "('bottom', [('bleft', ('>f4', (8, 64)), (1,)), "
+ "('bright', '>f4', (8, 36))])])")
+
+ dt = np.dtype({'names': ['r', 'g', 'b'], 'formats': ['u1', 'u1', 'u1'],
+ 'offsets': [0, 1, 2],
+ 'titles': ['Red pixel', 'Green pixel', 'Blue pixel']},
+ align=True)
+ assert_equal(repr(dt),
+ "dtype([(('Red pixel', 'r'), 'u1'), "
+ "(('Green pixel', 'g'), 'u1'), "
+ "(('Blue pixel', 'b'), 'u1')], align=True)")
+
+ def test_repr_structured_not_packed(self):
+ dt = np.dtype({'names': ['rgba', 'r', 'g', 'b'],
+ 'formats': ['<u4', 'u1', 'u1', 'u1'],
+ 'offsets': [0, 0, 1, 2],
+ 'titles': ['Color', 'Red pixel',
+ 'Green pixel', 'Blue pixel']}, align=True)
+ assert_equal(repr(dt),
+ "dtype({'names': ['rgba', 'r', 'g', 'b'],"
+ " 'formats': ['<u4', 'u1', 'u1', 'u1'],"
+ " 'offsets': [0, 0, 1, 2],"
+ " 'titles': ['Color', 'Red pixel', "
+ "'Green pixel', 'Blue pixel'],"
+ " 'itemsize': 4}, align=True)")
+
+ dt = np.dtype({'names': ['r', 'b'], 'formats': ['u1', 'u1'],
+ 'offsets': [0, 2],
+ 'titles': ['Red pixel', 'Blue pixel'],
+ 'itemsize': 4})
+ assert_equal(repr(dt),
+ "dtype({'names': ['r', 'b'], "
+ "'formats': ['u1', 'u1'], "
+ "'offsets': [0, 2], "
+ "'titles': ['Red pixel', 'Blue pixel'], "
+ "'itemsize': 4})")
+
+ def test_repr_structured_datetime(self):
+ dt = np.dtype([('a', '<M8[D]'), ('b', '<m8[us]')])
+ assert_equal(repr(dt),
+ "dtype([('a', '<M8[D]'), ('b', '<m8[us]')])")
+
+ def test_repr_str_subarray(self):
+ dt = np.dtype(('<i2', (1,)))
+ assert_equal(repr(dt), "dtype(('<i2', (1,)))")
+ assert_equal(str(dt), "('<i2', (1,))")
+
+ def test_base_dtype_with_object_type(self):
+ # Issue gh-2798, should not error.
+ np.array(['a'], dtype="O").astype(("O", [("name", "O")]))
+
+ def test_empty_string_to_object(self):
+ # Pull request #4722
+ np.array(["", ""]).astype(object)
+
+ def test_void_subclass_unsized(self):
+ dt = np.dtype(np.record)
+ assert_equal(repr(dt), "dtype('V')")
+ assert_equal(str(dt), '|V0')
+ assert_equal(dt.name, 'record')
+
+ def test_void_subclass_sized(self):
+ dt = np.dtype((np.record, 2))
+ assert_equal(repr(dt), "dtype('V2')")
+ assert_equal(str(dt), '|V2')
+ assert_equal(dt.name, 'record16')
+
+ def test_void_subclass_fields(self):
+ dt = np.dtype((np.record, [('a', '<u2')]))
+ assert_equal(repr(dt), "dtype((numpy.record, [('a', '<u2')]))")
+ assert_equal(str(dt), "(numpy.record, [('a', '<u2')])")
+ assert_equal(dt.name, 'record16')
+
+ def test_custom_dtype_str(self):
+ dt = np.dtypes.StringDType()
+ assert_equal(dt.str, "StringDType()")
+
+
+class TestDtypeAttributeDeletion:
+
+ def test_dtype_non_writable_attributes_deletion(self):
+ dt = np.dtype(np.double)
+ attr = ["subdtype", "descr", "str", "name", "base", "shape",
+ "isbuiltin", "isnative", "isalignedstruct", "fields",
+ "metadata", "hasobject"]
+
+ for s in attr:
+ assert_raises(AttributeError, delattr, dt, s)
+
+ def test_dtype_writable_attributes_deletion(self):
+ dt = np.dtype(np.double)
+ attr = ["names"]
+ for s in attr:
+ assert_raises(AttributeError, delattr, dt, s)
+
+
+class TestDtypeAttributes:
+ def test_descr_has_trailing_void(self):
+ # see gh-6359
+ dtype = np.dtype({
+ 'names': ['A', 'B'],
+ 'formats': ['f4', 'f4'],
+ 'offsets': [0, 8],
+ 'itemsize': 16})
+ new_dtype = np.dtype(dtype.descr)
+ assert_equal(new_dtype.itemsize, 16)
+
+ def test_name_dtype_subclass(self):
+ # Ticket #4357
+ class user_def_subcls(np.void):
+ pass
+ assert_equal(np.dtype(user_def_subcls).name, 'user_def_subcls')
+
+ def test_zero_stride(self):
+ arr = np.ones(1, dtype="i8")
+ arr = np.broadcast_to(arr, 10)
+ assert arr.strides == (0,)
+ with pytest.raises(ValueError):
+ arr.dtype = "i1"
+
+class TestDTypeMakeCanonical:
+ def check_canonical(self, dtype, canonical):
+ """
+ Check most properties relevant to "canonical" versions of a dtype,
+ which is mainly native byte order for datatypes supporting this.
+
+ The main work is checking structured dtypes with fields, where we
+ reproduce most the actual logic used in the C-code.
+ """
+ assert type(dtype) is type(canonical)
+
+ # a canonical DType should always have equivalent casting (both ways)
+ assert np.can_cast(dtype, canonical, casting="equiv")
+ assert np.can_cast(canonical, dtype, casting="equiv")
+ # a canonical dtype (and its fields) is always native (checks fields):
+ assert canonical.isnative
+
+ # Check that canonical of canonical is the same (no casting):
+ assert np.result_type(canonical) == canonical
+
+ if not dtype.names:
+ # The flags currently never change for unstructured dtypes
+ assert dtype.flags == canonical.flags
+ return
+
+ # Must have all the needs API flag set:
+ assert dtype.flags & 0b10000
+
+ # Check that the fields are identical (including titles):
+ assert dtype.fields.keys() == canonical.fields.keys()
+
+ def aligned_offset(offset, alignment):
+ # round up offset:
+ return - (-offset // alignment) * alignment
+
+ totalsize = 0
+ max_alignment = 1
+ for name in dtype.names:
+ # each field is also canonical:
+ new_field_descr = canonical.fields[name][0]
+ self.check_canonical(dtype.fields[name][0], new_field_descr)
+
+ # Must have the "inherited" object related flags:
+ expected = 0b11011 & new_field_descr.flags
+ assert (canonical.flags & expected) == expected
+
+ if canonical.isalignedstruct:
+ totalsize = aligned_offset(totalsize, new_field_descr.alignment)
+ max_alignment = max(new_field_descr.alignment, max_alignment)
+
+ assert canonical.fields[name][1] == totalsize
+ # if a title exists, they must match (otherwise empty tuple):
+ assert dtype.fields[name][2:] == canonical.fields[name][2:]
+
+ totalsize += new_field_descr.itemsize
+
+ if canonical.isalignedstruct:
+ totalsize = aligned_offset(totalsize, max_alignment)
+ assert canonical.itemsize == totalsize
+ assert canonical.alignment == max_alignment
+
+ def test_simple(self):
+ dt = np.dtype(">i4")
+ assert np.result_type(dt).isnative
+ assert np.result_type(dt).num == dt.num
+
+ # dtype with empty space:
+ struct_dt = np.dtype(">i4,<i1,i8,V3")[["f0", "f2"]]
+ canonical = np.result_type(struct_dt)
+ assert canonical.itemsize == 4 + 8
+ assert canonical.isnative
+
+ # aligned struct dtype with empty space:
+ struct_dt = np.dtype(">i1,<i4,i8,V3", align=True)[["f0", "f2"]]
+ canonical = np.result_type(struct_dt)
+ assert canonical.isalignedstruct
+ assert canonical.itemsize == np.dtype("i8").alignment + 8
+ assert canonical.isnative
+
+ def test_object_flag_not_inherited(self):
+ # The following dtype still indicates "object", because its included
+ # in the unaccessible space (maybe this could change at some point):
+ arr = np.ones(3, "i,O,i")[["f0", "f2"]]
+ assert arr.dtype.hasobject
+ canonical_dt = np.result_type(arr.dtype)
+ assert not canonical_dt.hasobject
+
+ @pytest.mark.slow
+ @hypothesis.given(dtype=hynp.nested_dtypes())
+ def test_make_canonical_hypothesis(self, dtype):
+ canonical = np.result_type(dtype)
+ self.check_canonical(dtype, canonical)
+ # result_type with two arguments should always give identical results:
+ two_arg_result = np.result_type(dtype, dtype)
+ assert np.can_cast(two_arg_result, canonical, casting="no")
+
+ @pytest.mark.slow
+ @hypothesis.given(
+ dtype=hypothesis.extra.numpy.array_dtypes(
+ subtype_strategy=hypothesis.extra.numpy.array_dtypes(),
+ min_size=5, max_size=10, allow_subarrays=True))
+ def test_structured(self, dtype):
+ # Pick 4 of the fields at random. This will leave empty space in the
+ # dtype (since we do not canonicalize it here).
+ field_subset = random.sample(dtype.names, k=4)
+ dtype_with_empty_space = dtype[field_subset]
+ assert dtype_with_empty_space.itemsize == dtype.itemsize
+ canonicalized = np.result_type(dtype_with_empty_space)
+ self.check_canonical(dtype_with_empty_space, canonicalized)
+ # promotion with two arguments should always give identical results:
+ two_arg_result = np.promote_types(
+ dtype_with_empty_space, dtype_with_empty_space)
+ assert np.can_cast(two_arg_result, canonicalized, casting="no")
+
+ # Ensure that we also check aligned struct (check the opposite, in
+ # case hypothesis grows support for `align`. Then repeat the test:
+ dtype_aligned = np.dtype(dtype.descr, align=not dtype.isalignedstruct)
+ dtype_with_empty_space = dtype_aligned[field_subset]
+ assert dtype_with_empty_space.itemsize == dtype_aligned.itemsize
+ canonicalized = np.result_type(dtype_with_empty_space)
+ self.check_canonical(dtype_with_empty_space, canonicalized)
+ # promotion with two arguments should always give identical results:
+ two_arg_result = np.promote_types(
+ dtype_with_empty_space, dtype_with_empty_space)
+ assert np.can_cast(two_arg_result, canonicalized, casting="no")
+
+
+class TestPickling:
+
+ def check_pickling(self, dtype):
+ for proto in range(pickle.HIGHEST_PROTOCOL + 1):
+ buf = pickle.dumps(dtype, proto)
+ # The dtype pickling itself pickles `np.dtype` if it is pickled
+ # as a singleton `dtype` should be stored in the buffer:
+ assert b"_DType_reconstruct" not in buf
+ assert b"dtype" in buf
+ pickled = pickle.loads(buf)
+ assert_equal(pickled, dtype)
+ assert_equal(pickled.descr, dtype.descr)
+ if dtype.metadata is not None:
+ assert_equal(pickled.metadata, dtype.metadata)
+ # Check the reconstructed dtype is functional
+ x = np.zeros(3, dtype=dtype)
+ y = np.zeros(3, dtype=pickled)
+ assert_equal(x, y)
+ assert_equal(x[0], y[0])
+
+ @pytest.mark.parametrize('t', [int, float, complex, np.int32, str, object,
+ bool])
+ def test_builtin(self, t):
+ self.check_pickling(np.dtype(t))
+
+ def test_structured(self):
+ dt = np.dtype(([('a', '>f4', (2, 1)), ('b', '<f8', (1, 3))], (2, 2)))
+ self.check_pickling(dt)
+
+ def test_structured_aligned(self):
+ dt = np.dtype('i4, i1', align=True)
+ self.check_pickling(dt)
+
+ def test_structured_unaligned(self):
+ dt = np.dtype('i4, i1', align=False)
+ self.check_pickling(dt)
+
+ def test_structured_padded(self):
+ dt = np.dtype({
+ 'names': ['A', 'B'],
+ 'formats': ['f4', 'f4'],
+ 'offsets': [0, 8],
+ 'itemsize': 16})
+ self.check_pickling(dt)
+
+ def test_structured_titles(self):
+ dt = np.dtype({'names': ['r', 'b'],
+ 'formats': ['u1', 'u1'],
+ 'titles': ['Red pixel', 'Blue pixel']})
+ self.check_pickling(dt)
+
+ @pytest.mark.parametrize('base', ['m8', 'M8'])
+ @pytest.mark.parametrize('unit', ['', 'Y', 'M', 'W', 'D', 'h', 'm', 's',
+ 'ms', 'us', 'ns', 'ps', 'fs', 'as'])
+ def test_datetime(self, base, unit):
+ dt = np.dtype(f'{base}[{unit}]' if unit else base)
+ self.check_pickling(dt)
+ if unit:
+ dt = np.dtype(f'{base}[7{unit}]')
+ self.check_pickling(dt)
+
+ def test_metadata(self):
+ dt = np.dtype(int, metadata={'datum': 1})
+ self.check_pickling(dt)
+
+ @pytest.mark.parametrize("DType",
+ [type(np.dtype(t)) for t in np.typecodes['All']] +
+ [type(np.dtype(rational)), np.dtype])
+ def test_pickle_dtype_class(self, DType):
+ # Check that DTypes (the classes/types) roundtrip when pickling
+ for proto in range(pickle.HIGHEST_PROTOCOL + 1):
+ roundtrip_DType = pickle.loads(pickle.dumps(DType, proto))
+ assert roundtrip_DType is DType
+
+ @pytest.mark.parametrize("dt",
+ [np.dtype(t) for t in np.typecodes['All']] +
+ [np.dtype(rational)])
+ def test_pickle_dtype(self, dt):
+ # Check that dtype instances roundtrip when pickling and that pickling
+ # doesn't change the hash value
+ pre_pickle_hash = hash(dt)
+ for proto in range(pickle.HIGHEST_PROTOCOL + 1):
+ roundtrip_dt = pickle.loads(pickle.dumps(dt, proto))
+ assert roundtrip_dt == dt
+ assert hash(dt) == pre_pickle_hash
+
+
+class TestPromotion:
+ """Test cases related to more complex DType promotions. Further promotion
+ tests are defined in `test_numeric.py`
+ """
+ @pytest.mark.parametrize(["other", "expected"],
+ [(2**16 - 1, np.complex64),
+ (2**32 - 1, np.complex64),
+ (np.float16(2), np.complex64),
+ (np.float32(2), np.complex64),
+ (np.longdouble(2), np.clongdouble),
+ # Base of the double value to sidestep any rounding issues:
+ (np.longdouble(np.nextafter(1.7e308, 0.)), np.clongdouble),
+ # Additionally use "nextafter" so the cast can't round down:
+ (np.longdouble(np.nextafter(1.7e308, np.inf)), np.clongdouble),
+ # repeat for complex scalars:
+ (np.complex64(2), np.complex64),
+ (np.clongdouble(2), np.clongdouble),
+ # Base of the double value to sidestep any rounding issues:
+ (np.clongdouble(np.nextafter(1.7e308, 0.) * 1j), np.clongdouble),
+ # Additionally use "nextafter" so the cast can't round down:
+ (np.clongdouble(np.nextafter(1.7e308, np.inf)), np.clongdouble),
+ ])
+ def test_complex_other_value_based(self, other, expected):
+ # This would change if we modify the value based promotion
+ min_complex = np.dtype(np.complex64)
+
+ res = np.result_type(other, min_complex)
+ assert res == expected
+ # Check the same for a simple ufunc call that uses the same logic:
+ res = np.minimum(other, np.ones(3, dtype=min_complex)).dtype
+ assert res == expected
+
+ @pytest.mark.parametrize(["other", "expected"],
+ [(np.bool, np.complex128),
+ (np.int64, np.complex128),
+ (np.float16, np.complex64),
+ (np.float32, np.complex64),
+ (np.float64, np.complex128),
+ (np.longdouble, np.clongdouble),
+ (np.complex64, np.complex64),
+ (np.complex128, np.complex128),
+ (np.clongdouble, np.clongdouble),
+ ])
+ def test_complex_scalar_value_based(self, other, expected):
+ # This would change if we modify the value based promotion
+ complex_scalar = 1j
+
+ res = np.result_type(other, complex_scalar)
+ assert res == expected
+ # Check the same for a simple ufunc call that uses the same logic:
+ res = np.minimum(np.ones(3, dtype=other), complex_scalar).dtype
+ assert res == expected
+
+ def test_complex_pyscalar_promote_rational(self):
+ with pytest.raises(TypeError,
+ match=r".* no common DType exists for the given inputs"):
+ np.result_type(1j, rational)
+
+ with pytest.raises(TypeError,
+ match=r".* no common DType exists for the given inputs"):
+ np.result_type(1j, rational(1, 2))
+
+ @pytest.mark.parametrize("val", [2, 2**32, 2**63, 2**64, 2 * 100])
+ def test_python_integer_promotion(self, val):
+ # If we only pass scalars (mainly python ones!), NEP 50 means
+ # that we get the default integer
+ expected_dtype = np.dtype(int) # the default integer
+ assert np.result_type(val, 0) == expected_dtype
+ # With NEP 50, the NumPy scalar wins though:
+ assert np.result_type(val, np.int8(0)) == np.int8
+
+ @pytest.mark.parametrize(["other", "expected"],
+ [(1, rational), (1., np.float64)])
+ def test_float_int_pyscalar_promote_rational(self, other, expected):
+ # Note that rationals are a bit awkward as they promote with float64
+ # or default ints, but not float16 or uint8/int8 (which looks
+ # inconsistent here). The new promotion fixed this (partially?)
+ assert np.result_type(other, rational) == expected
+ assert np.result_type(other, rational(1, 2)) == expected
+
+ @pytest.mark.parametrize(["dtypes", "expected"], [
+ # These promotions are not associative/commutative:
+ ([np.uint16, np.int16, np.float16], np.float32),
+ ([np.uint16, np.int8, np.float16], np.float32),
+ ([np.uint8, np.int16, np.float16], np.float32),
+ # The following promotions are not ambiguous, but cover code
+ # paths of abstract promotion (no particular logic being tested)
+ ([1, 1, np.float64], np.float64),
+ ([1, 1., np.complex128], np.complex128),
+ ([1, 1j, np.float64], np.complex128),
+ ([1., 1., np.int64], np.float64),
+ ([1., 1j, np.float64], np.complex128),
+ ([1j, 1j, np.float64], np.complex128),
+ ([1, True, np.bool], np.int_),
+ ])
+ def test_permutations_do_not_influence_result(self, dtypes, expected):
+ # Tests that most permutations do not influence the result. In the
+ # above some uint and int combinations promote to a larger integer
+ # type, which would then promote to a larger than necessary float.
+ for perm in permutations(dtypes):
+ assert np.result_type(*perm) == expected
+
+
+def test_rational_dtype():
+ # test for bug gh-5719
+ a = np.array([1111], dtype=rational).astype
+ assert_raises(OverflowError, a, 'int8')
+
+ # test that dtype detection finds user-defined types
+ x = rational(1)
+ assert_equal(np.array([x, x]).dtype, np.dtype(rational))
+
+
+def test_dtypes_are_true():
+ # test for gh-6294
+ assert bool(np.dtype('f8'))
+ assert bool(np.dtype('i8'))
+ assert bool(np.dtype([('a', 'i8'), ('b', 'f4')]))
+
+
+def test_invalid_dtype_string():
+ # test for gh-10440
+ assert_raises(TypeError, np.dtype, 'f8,i8,[f8,i8]')
+ assert_raises(TypeError, np.dtype, 'Fl\xfcgel')
+
+
+def test_keyword_argument():
+ # test for https://github.com/numpy/numpy/pull/16574#issuecomment-642660971
+ assert np.dtype(dtype=np.float64) == np.dtype(np.float64)
+
+
+class TestFromDTypeAttribute:
+ def test_simple(self):
+ class dt:
+ dtype = np.dtype("f8")
+
+ assert np.dtype(dt) == np.float64
+ assert np.dtype(dt()) == np.float64
+
+ @pytest.mark.skipif(IS_PYSTON, reason="Pyston disables recursion checking")
+ @pytest.mark.skipif(IS_WASM, reason="Pyodide/WASM has limited stack size")
+ def test_recursion(self):
+ class dt:
+ pass
+
+ dt.dtype = dt
+ with pytest.raises(RecursionError):
+ np.dtype(dt)
+
+ dt_instance = dt()
+ dt_instance.dtype = dt
+ with pytest.raises(RecursionError):
+ np.dtype(dt_instance)
+
+ def test_void_subtype(self):
+ class dt(np.void):
+ # This code path is fully untested before, so it is unclear
+ # what this should be useful for. Note that if np.void is used
+ # numpy will think we are deallocating a base type [1.17, 2019-02].
+ dtype = np.dtype("f,f")
+
+ np.dtype(dt)
+ np.dtype(dt(1))
+
+ @pytest.mark.skipif(IS_PYSTON, reason="Pyston disables recursion checking")
+ @pytest.mark.skipif(IS_WASM, reason="Pyodide/WASM has limited stack size")
+ def test_void_subtype_recursion(self):
+ class vdt(np.void):
+ pass
+
+ vdt.dtype = vdt
+
+ with pytest.raises(RecursionError):
+ np.dtype(vdt)
+
+ with pytest.raises(RecursionError):
+ np.dtype(vdt(1))
+
+
+class TestDTypeClasses:
+ @pytest.mark.parametrize("dtype", list(np.typecodes['All']) + [rational])
+ def test_basic_dtypes_subclass_properties(self, dtype):
+ # Note: Except for the isinstance and type checks, these attributes
+ # are considered currently private and may change.
+ dtype = np.dtype(dtype)
+ assert isinstance(dtype, np.dtype)
+ assert type(dtype) is not np.dtype
+ if dtype.type.__name__ != "rational":
+ dt_name = type(dtype).__name__.lower().removesuffix("dtype")
+ if dt_name in {"uint", "int"}:
+ # The scalar names has a `c` attached because "int" is Python
+ # int and that is long...
+ dt_name += "c"
+ sc_name = dtype.type.__name__
+ assert dt_name == sc_name.strip("_")
+ assert type(dtype).__module__ == "numpy.dtypes"
+
+ assert getattr(numpy.dtypes, type(dtype).__name__) is type(dtype)
+ else:
+ assert type(dtype).__name__ == "dtype[rational]"
+ assert type(dtype).__module__ == "numpy"
+
+ assert not type(dtype)._abstract
+
+ # the flexible dtypes and datetime/timedelta have additional parameters
+ # which are more than just storage information, these would need to be
+ # given when creating a dtype:
+ parametric = (np.void, np.str_, np.bytes_, np.datetime64, np.timedelta64)
+ if dtype.type not in parametric:
+ assert not type(dtype)._parametric
+ assert type(dtype)() is dtype
+ else:
+ assert type(dtype)._parametric
+ with assert_raises(TypeError):
+ type(dtype)()
+
+ def test_dtype_superclass(self):
+ assert type(np.dtype) is not type
+ assert isinstance(np.dtype, type)
+
+ assert type(np.dtype).__name__ == "_DTypeMeta"
+ assert type(np.dtype).__module__ == "numpy"
+ assert np.dtype._abstract
+
+ def test_is_numeric(self):
+ all_codes = set(np.typecodes['All'])
+ numeric_codes = set(np.typecodes['AllInteger'] +
+ np.typecodes['AllFloat'] + '?')
+ non_numeric_codes = all_codes - numeric_codes
+
+ for code in numeric_codes:
+ assert type(np.dtype(code))._is_numeric
+
+ for code in non_numeric_codes:
+ assert not type(np.dtype(code))._is_numeric
+
+ @pytest.mark.parametrize("int_", ["UInt", "Int"])
+ @pytest.mark.parametrize("size", [8, 16, 32, 64])
+ def test_integer_alias_names(self, int_, size):
+ DType = getattr(numpy.dtypes, f"{int_}{size}DType")
+ sctype = getattr(numpy, f"{int_.lower()}{size}")
+ assert DType.type is sctype
+ assert DType.__name__.lower().removesuffix("dtype") == sctype.__name__
+
+ @pytest.mark.parametrize("name",
+ ["Half", "Float", "Double", "CFloat", "CDouble"])
+ def test_float_alias_names(self, name):
+ with pytest.raises(AttributeError):
+ getattr(numpy.dtypes, name + "DType") is numpy.dtypes.Float16DType
+
+ def test_scalar_helper_all_dtypes(self):
+ for dtype in np.dtypes.__all__:
+ dt_class = getattr(np.dtypes, dtype)
+ dt = np.dtype(dt_class)
+ if dt.char not in 'OTVM':
+ assert np._core.multiarray.scalar(dt) == dt.type()
+ elif dt.char == 'V':
+ assert np._core.multiarray.scalar(dt) == dt.type(b'\x00')
+ elif dt.char == 'M':
+ # can't do anything with this without generating ValueError
+ # because 'M' has no units
+ _ = np._core.multiarray.scalar(dt)
+ else:
+ with pytest.raises(TypeError):
+ np._core.multiarray.scalar(dt)
+
+
+class TestFromCTypes:
+
+ @staticmethod
+ def check(ctype, dtype):
+ dtype = np.dtype(dtype)
+ assert np.dtype(ctype) == dtype
+ assert np.dtype(ctype()) == dtype
+ assert ctypes.sizeof(ctype) == dtype.itemsize
+
+ def test_array(self):
+ c8 = ctypes.c_uint8
+ self.check( 3 * c8, (np.uint8, (3,)))
+ self.check( 1 * c8, (np.uint8, (1,)))
+ self.check( 0 * c8, (np.uint8, (0,)))
+ self.check(1 * (3 * c8), ((np.uint8, (3,)), (1,)))
+ self.check(3 * (1 * c8), ((np.uint8, (1,)), (3,)))
+
+ def test_padded_structure(self):
+ class PaddedStruct(ctypes.Structure):
+ _fields_ = [
+ ('a', ctypes.c_uint8),
+ ('b', ctypes.c_uint16)
+ ]
+ expected = np.dtype([
+ ('a', np.uint8),
+ ('b', np.uint16)
+ ], align=True)
+ self.check(PaddedStruct, expected)
+
+ def test_bit_fields(self):
+ class BitfieldStruct(ctypes.Structure):
+ _fields_ = [
+ ('a', ctypes.c_uint8, 7),
+ ('b', ctypes.c_uint8, 1)
+ ]
+ assert_raises(TypeError, np.dtype, BitfieldStruct)
+ assert_raises(TypeError, np.dtype, BitfieldStruct())
+
+ def test_pointer(self):
+ p_uint8 = ctypes.POINTER(ctypes.c_uint8)
+ assert_raises(TypeError, np.dtype, p_uint8)
+
+ def test_size_t(self):
+ assert np.dtype(np.uintp) is np.dtype("N")
+ self.check(ctypes.c_size_t, np.uintp)
+
+ def test_void_pointer(self):
+ self.check(ctypes.c_void_p, "P")
+
+ def test_union(self):
+ class Union(ctypes.Union):
+ _fields_ = [
+ ('a', ctypes.c_uint8),
+ ('b', ctypes.c_uint16),
+ ]
+ expected = np.dtype({
+ "names": ['a', 'b'],
+ "formats": [np.uint8, np.uint16],
+ "offsets": [0, 0],
+ "itemsize": 2
+ })
+ self.check(Union, expected)
+
+ def test_union_with_struct_packed(self):
+ class Struct(ctypes.Structure):
+ _pack_ = 1
+ _fields_ = [
+ ('one', ctypes.c_uint8),
+ ('two', ctypes.c_uint32)
+ ]
+
+ class Union(ctypes.Union):
+ _fields_ = [
+ ('a', ctypes.c_uint8),
+ ('b', ctypes.c_uint16),
+ ('c', ctypes.c_uint32),
+ ('d', Struct),
+ ]
+ expected = np.dtype({
+ "names": ['a', 'b', 'c', 'd'],
+ "formats": ['u1', np.uint16, np.uint32, [('one', 'u1'), ('two', np.uint32)]],
+ "offsets": [0, 0, 0, 0],
+ "itemsize": ctypes.sizeof(Union)
+ })
+ self.check(Union, expected)
+
+ def test_union_packed(self):
+ class Struct(ctypes.Structure):
+ _fields_ = [
+ ('one', ctypes.c_uint8),
+ ('two', ctypes.c_uint32)
+ ]
+ _pack_ = 1
+
+ class Union(ctypes.Union):
+ _pack_ = 1
+ _fields_ = [
+ ('a', ctypes.c_uint8),
+ ('b', ctypes.c_uint16),
+ ('c', ctypes.c_uint32),
+ ('d', Struct),
+ ]
+ expected = np.dtype({
+ "names": ['a', 'b', 'c', 'd'],
+ "formats": ['u1', np.uint16, np.uint32, [('one', 'u1'), ('two', np.uint32)]],
+ "offsets": [0, 0, 0, 0],
+ "itemsize": ctypes.sizeof(Union)
+ })
+ self.check(Union, expected)
+
+ def test_packed_structure(self):
+ class PackedStructure(ctypes.Structure):
+ _pack_ = 1
+ _fields_ = [
+ ('a', ctypes.c_uint8),
+ ('b', ctypes.c_uint16)
+ ]
+ expected = np.dtype([
+ ('a', np.uint8),
+ ('b', np.uint16)
+ ])
+ self.check(PackedStructure, expected)
+
+ def test_large_packed_structure(self):
+ class PackedStructure(ctypes.Structure):
+ _pack_ = 2
+ _fields_ = [
+ ('a', ctypes.c_uint8),
+ ('b', ctypes.c_uint16),
+ ('c', ctypes.c_uint8),
+ ('d', ctypes.c_uint16),
+ ('e', ctypes.c_uint32),
+ ('f', ctypes.c_uint32),
+ ('g', ctypes.c_uint8)
+ ]
+ expected = np.dtype({
+ "formats": [np.uint8, np.uint16, np.uint8, np.uint16, np.uint32, np.uint32, np.uint8],
+ "offsets": [0, 2, 4, 6, 8, 12, 16],
+ "names": ['a', 'b', 'c', 'd', 'e', 'f', 'g'],
+ "itemsize": 18})
+ self.check(PackedStructure, expected)
+
+ def test_big_endian_structure_packed(self):
+ class BigEndStruct(ctypes.BigEndianStructure):
+ _fields_ = [
+ ('one', ctypes.c_uint8),
+ ('two', ctypes.c_uint32)
+ ]
+ _pack_ = 1
+ expected = np.dtype([('one', 'u1'), ('two', '>u4')])
+ self.check(BigEndStruct, expected)
+
+ def test_little_endian_structure_packed(self):
+ class LittleEndStruct(ctypes.LittleEndianStructure):
+ _fields_ = [
+ ('one', ctypes.c_uint8),
+ ('two', ctypes.c_uint32)
+ ]
+ _pack_ = 1
+ expected = np.dtype([('one', 'u1'), ('two', '<u4')])
+ self.check(LittleEndStruct, expected)
+
+ def test_little_endian_structure(self):
+ class PaddedStruct(ctypes.LittleEndianStructure):
+ _fields_ = [
+ ('a', ctypes.c_uint8),
+ ('b', ctypes.c_uint16)
+ ]
+ expected = np.dtype([
+ ('a', '<B'),
+ ('b', '<H')
+ ], align=True)
+ self.check(PaddedStruct, expected)
+
+ def test_big_endian_structure(self):
+ class PaddedStruct(ctypes.BigEndianStructure):
+ _fields_ = [
+ ('a', ctypes.c_uint8),
+ ('b', ctypes.c_uint16)
+ ]
+ expected = np.dtype([
+ ('a', '>B'),
+ ('b', '>H')
+ ], align=True)
+ self.check(PaddedStruct, expected)
+
+ def test_simple_endian_types(self):
+ self.check(ctypes.c_uint16.__ctype_le__, np.dtype('<u2'))
+ self.check(ctypes.c_uint16.__ctype_be__, np.dtype('>u2'))
+ self.check(ctypes.c_uint8.__ctype_le__, np.dtype('u1'))
+ self.check(ctypes.c_uint8.__ctype_be__, np.dtype('u1'))
+
+ all_types = set(np.typecodes['All'])
+ all_pairs = permutations(all_types, 2)
+
+ @pytest.mark.parametrize("pair", all_pairs)
+ def test_pairs(self, pair):
+ """
+ Check that np.dtype('x,y') matches [np.dtype('x'), np.dtype('y')]
+ Example: np.dtype('d,I') -> dtype([('f0', '<f8'), ('f1', '<u4')])
+ """
+ # gh-5645: check that np.dtype('i,L') can be used
+ pair_type = np.dtype('{},{}'.format(*pair))
+ expected = np.dtype([('f0', pair[0]), ('f1', pair[1])])
+ assert_equal(pair_type, expected)
+
+
+class TestUserDType:
+ @pytest.mark.leaks_references(reason="dynamically creates custom dtype.")
+ def test_custom_structured_dtype(self):
+ class mytype:
+ pass
+
+ blueprint = np.dtype([("field", object)])
+ dt = create_custom_field_dtype(blueprint, mytype, 0)
+ assert dt.type == mytype
+ # We cannot (currently) *create* this dtype with `np.dtype` because
+ # mytype does not inherit from `np.generic`. This seems like an
+ # unnecessary restriction, but one that has been around forever:
+ assert np.dtype(mytype) == np.dtype("O")
+
+ if HAS_REFCOUNT:
+ # Create an array and test that memory gets cleaned up (gh-25949)
+ o = object()
+ startcount = sys.getrefcount(o)
+ a = np.array([o], dtype=dt)
+ del a
+ assert sys.getrefcount(o) == startcount
+
+ def test_custom_structured_dtype_errors(self):
+ class mytype:
+ pass
+
+ blueprint = np.dtype([("field", object)])
+
+ with pytest.raises(ValueError):
+ # Tests what happens if fields are unset during creation
+ # which is currently rejected due to the containing object
+ # (see PyArray_RegisterDataType).
+ create_custom_field_dtype(blueprint, mytype, 1)
+
+ with pytest.raises(RuntimeError):
+ # Tests that a dtype must have its type field set up to np.dtype
+ # or in this case a builtin instance.
+ create_custom_field_dtype(blueprint, mytype, 2)
+
+
+class TestClassGetItem:
+ def test_dtype(self) -> None:
+ alias = np.dtype[Any]
+ assert isinstance(alias, types.GenericAlias)
+ assert alias.__origin__ is np.dtype
+
+ @pytest.mark.parametrize("code", np.typecodes["All"])
+ def test_dtype_subclass(self, code: str) -> None:
+ cls = type(np.dtype(code))
+ alias = cls[Any]
+ assert isinstance(alias, types.GenericAlias)
+ assert alias.__origin__ is cls
+
+ @pytest.mark.parametrize("arg_len", range(4))
+ def test_subscript_tuple(self, arg_len: int) -> None:
+ arg_tup = (Any,) * arg_len
+ if arg_len == 1:
+ assert np.dtype[arg_tup]
+ else:
+ with pytest.raises(TypeError):
+ np.dtype[arg_tup]
+
+ def test_subscript_scalar(self) -> None:
+ assert np.dtype[Any]
+
+
+def test_result_type_integers_and_unitless_timedelta64():
+ # Regression test for gh-20077. The following call of `result_type`
+ # would cause a seg. fault.
+ td = np.timedelta64(4)
+ result = np.result_type(0, td)
+ assert_dtype_equal(result, td.dtype)
+
+
+def test_creating_dtype_with_dtype_class_errors():
+ # Regression test for #25031, calling `np.dtype` with itself segfaulted.
+ with pytest.raises(TypeError, match="Cannot convert np.dtype into a"):
+ np.array(np.ones(10), dtype=np.dtype)
diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_einsum.py b/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_einsum.py
new file mode 100644
index 0000000..0bd180b
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_einsum.py
@@ -0,0 +1,1317 @@
+import itertools
+
+import pytest
+
+import numpy as np
+from numpy.testing import (
+ assert_,
+ assert_allclose,
+ assert_almost_equal,
+ assert_array_equal,
+ assert_equal,
+ assert_raises,
+ assert_raises_regex,
+ suppress_warnings,
+)
+
+# Setup for optimize einsum
+chars = 'abcdefghij'
+sizes = np.array([2, 3, 4, 5, 4, 3, 2, 6, 5, 4, 3])
+global_size_dict = dict(zip(chars, sizes))
+
+
+class TestEinsum:
+ @pytest.mark.parametrize("do_opt", [True, False])
+ @pytest.mark.parametrize("einsum_fn", [np.einsum, np.einsum_path])
+ def test_einsum_errors(self, do_opt, einsum_fn):
+ # Need enough arguments
+ assert_raises(ValueError, einsum_fn, optimize=do_opt)
+ assert_raises(ValueError, einsum_fn, "", optimize=do_opt)
+
+ # subscripts must be a string
+ assert_raises(TypeError, einsum_fn, 0, 0, optimize=do_opt)
+
+ # issue 4528 revealed a segfault with this call
+ assert_raises(TypeError, einsum_fn, *(None,) * 63, optimize=do_opt)
+
+ # number of operands must match count in subscripts string
+ assert_raises(ValueError, einsum_fn, "", 0, 0, optimize=do_opt)
+ assert_raises(ValueError, einsum_fn, ",", 0, [0], [0],
+ optimize=do_opt)
+ assert_raises(ValueError, einsum_fn, ",", [0], optimize=do_opt)
+
+ # can't have more subscripts than dimensions in the operand
+ assert_raises(ValueError, einsum_fn, "i", 0, optimize=do_opt)
+ assert_raises(ValueError, einsum_fn, "ij", [0, 0], optimize=do_opt)
+ assert_raises(ValueError, einsum_fn, "...i", 0, optimize=do_opt)
+ assert_raises(ValueError, einsum_fn, "i...j", [0, 0], optimize=do_opt)
+ assert_raises(ValueError, einsum_fn, "i...", 0, optimize=do_opt)
+ assert_raises(ValueError, einsum_fn, "ij...", [0, 0], optimize=do_opt)
+
+ # invalid ellipsis
+ assert_raises(ValueError, einsum_fn, "i..", [0, 0], optimize=do_opt)
+ assert_raises(ValueError, einsum_fn, ".i...", [0, 0], optimize=do_opt)
+ assert_raises(ValueError, einsum_fn, "j->..j", [0, 0], optimize=do_opt)
+ assert_raises(ValueError, einsum_fn, "j->.j...", [0, 0],
+ optimize=do_opt)
+
+ # invalid subscript character
+ assert_raises(ValueError, einsum_fn, "i%...", [0, 0], optimize=do_opt)
+ assert_raises(ValueError, einsum_fn, "...j$", [0, 0], optimize=do_opt)
+ assert_raises(ValueError, einsum_fn, "i->&", [0, 0], optimize=do_opt)
+
+ # output subscripts must appear in input
+ assert_raises(ValueError, einsum_fn, "i->ij", [0, 0], optimize=do_opt)
+
+ # output subscripts may only be specified once
+ assert_raises(ValueError, einsum_fn, "ij->jij", [[0, 0], [0, 0]],
+ optimize=do_opt)
+
+ # dimensions must match when being collapsed
+ assert_raises(ValueError, einsum_fn, "ii",
+ np.arange(6).reshape(2, 3), optimize=do_opt)
+ assert_raises(ValueError, einsum_fn, "ii->i",
+ np.arange(6).reshape(2, 3), optimize=do_opt)
+
+ with assert_raises_regex(ValueError, "'b'"):
+ # gh-11221 - 'c' erroneously appeared in the error message
+ a = np.ones((3, 3, 4, 5, 6))
+ b = np.ones((3, 4, 5))
+ einsum_fn('aabcb,abc', a, b)
+
+ def test_einsum_sorting_behavior(self):
+ # Case 1: 26 dimensions (all lowercase indices)
+ n1 = 26
+ x1 = np.random.random((1,) * n1)
+ path1 = np.einsum_path(x1, range(n1))[1] # Get einsum path details
+ output_indices1 = path1.split("->")[-1].strip() # Extract output indices
+ # Assert indices are only uppercase letters and sorted correctly
+ assert all(c.isupper() for c in output_indices1), (
+ "Output indices for n=26 should use uppercase letters only: "
+ f"{output_indices1}"
+ )
+ assert_equal(
+ output_indices1,
+ ''.join(sorted(output_indices1)),
+ err_msg=(
+ "Output indices for n=26 are not lexicographically sorted: "
+ f"{output_indices1}"
+ )
+ )
+
+ # Case 2: 27 dimensions (includes uppercase indices)
+ n2 = 27
+ x2 = np.random.random((1,) * n2)
+ path2 = np.einsum_path(x2, range(n2))[1]
+ output_indices2 = path2.split("->")[-1].strip()
+ # Assert indices include both uppercase and lowercase letters
+ assert any(c.islower() for c in output_indices2), (
+ "Output indices for n=27 should include uppercase letters: "
+ f"{output_indices2}"
+ )
+ # Assert output indices are sorted uppercase before lowercase
+ assert_equal(
+ output_indices2,
+ ''.join(sorted(output_indices2)),
+ err_msg=(
+ "Output indices for n=27 are not lexicographically sorted: "
+ f"{output_indices2}"
+ )
+ )
+
+ # Additional Check: Ensure dimensions correspond correctly to indices
+ # Generate expected mapping of dimensions to indices
+ expected_indices = [
+ chr(i + ord('A')) if i < 26 else chr(i - 26 + ord('a'))
+ for i in range(n2)
+ ]
+ assert_equal(
+ output_indices2,
+ ''.join(expected_indices),
+ err_msg=(
+ "Output indices do not map to the correct dimensions. Expected: "
+ f"{''.join(expected_indices)}, Got: {output_indices2}"
+ )
+ )
+
+ @pytest.mark.parametrize("do_opt", [True, False])
+ def test_einsum_specific_errors(self, do_opt):
+ # out parameter must be an array
+ assert_raises(TypeError, np.einsum, "", 0, out='test',
+ optimize=do_opt)
+
+ # order parameter must be a valid order
+ assert_raises(ValueError, np.einsum, "", 0, order='W',
+ optimize=do_opt)
+
+ # casting parameter must be a valid casting
+ assert_raises(ValueError, np.einsum, "", 0, casting='blah',
+ optimize=do_opt)
+
+ # dtype parameter must be a valid dtype
+ assert_raises(TypeError, np.einsum, "", 0, dtype='bad_data_type',
+ optimize=do_opt)
+
+ # other keyword arguments are rejected
+ assert_raises(TypeError, np.einsum, "", 0, bad_arg=0, optimize=do_opt)
+
+ # broadcasting to new dimensions must be enabled explicitly
+ assert_raises(ValueError, np.einsum, "i", np.arange(6).reshape(2, 3),
+ optimize=do_opt)
+ assert_raises(ValueError, np.einsum, "i->i", [[0, 1], [0, 1]],
+ out=np.arange(4).reshape(2, 2), optimize=do_opt)
+
+ # Check order kwarg, asanyarray allows 1d to pass through
+ assert_raises(ValueError, np.einsum, "i->i",
+ np.arange(6).reshape(-1, 1), optimize=do_opt, order='d')
+
+ def test_einsum_object_errors(self):
+ # Exceptions created by object arithmetic should
+ # successfully propagate
+
+ class CustomException(Exception):
+ pass
+
+ class DestructoBox:
+
+ def __init__(self, value, destruct):
+ self._val = value
+ self._destruct = destruct
+
+ def __add__(self, other):
+ tmp = self._val + other._val
+ if tmp >= self._destruct:
+ raise CustomException
+ else:
+ self._val = tmp
+ return self
+
+ def __radd__(self, other):
+ if other == 0:
+ return self
+ else:
+ return self.__add__(other)
+
+ def __mul__(self, other):
+ tmp = self._val * other._val
+ if tmp >= self._destruct:
+ raise CustomException
+ else:
+ self._val = tmp
+ return self
+
+ def __rmul__(self, other):
+ if other == 0:
+ return self
+ else:
+ return self.__mul__(other)
+
+ a = np.array([DestructoBox(i, 5) for i in range(1, 10)],
+ dtype='object').reshape(3, 3)
+
+ # raised from unbuffered_loop_nop1_ndim2
+ assert_raises(CustomException, np.einsum, "ij->i", a)
+
+ # raised from unbuffered_loop_nop1_ndim3
+ b = np.array([DestructoBox(i, 100) for i in range(27)],
+ dtype='object').reshape(3, 3, 3)
+ assert_raises(CustomException, np.einsum, "i...k->...", b)
+
+ # raised from unbuffered_loop_nop2_ndim2
+ b = np.array([DestructoBox(i, 55) for i in range(1, 4)],
+ dtype='object')
+ assert_raises(CustomException, np.einsum, "ij, j", a, b)
+
+ # raised from unbuffered_loop_nop2_ndim3
+ assert_raises(CustomException, np.einsum, "ij, jh", a, a)
+
+ # raised from PyArray_EinsteinSum
+ assert_raises(CustomException, np.einsum, "ij->", a)
+
+ def test_einsum_views(self):
+ # pass-through
+ for do_opt in [True, False]:
+ a = np.arange(6)
+ a.shape = (2, 3)
+
+ b = np.einsum("...", a, optimize=do_opt)
+ assert_(b.base is a)
+
+ b = np.einsum(a, [Ellipsis], optimize=do_opt)
+ assert_(b.base is a)
+
+ b = np.einsum("ij", a, optimize=do_opt)
+ assert_(b.base is a)
+ assert_equal(b, a)
+
+ b = np.einsum(a, [0, 1], optimize=do_opt)
+ assert_(b.base is a)
+ assert_equal(b, a)
+
+ # output is writeable whenever input is writeable
+ b = np.einsum("...", a, optimize=do_opt)
+ assert_(b.flags['WRITEABLE'])
+ a.flags['WRITEABLE'] = False
+ b = np.einsum("...", a, optimize=do_opt)
+ assert_(not b.flags['WRITEABLE'])
+
+ # transpose
+ a = np.arange(6)
+ a.shape = (2, 3)
+
+ b = np.einsum("ji", a, optimize=do_opt)
+ assert_(b.base is a)
+ assert_equal(b, a.T)
+
+ b = np.einsum(a, [1, 0], optimize=do_opt)
+ assert_(b.base is a)
+ assert_equal(b, a.T)
+
+ # diagonal
+ a = np.arange(9)
+ a.shape = (3, 3)
+
+ b = np.einsum("ii->i", a, optimize=do_opt)
+ assert_(b.base is a)
+ assert_equal(b, [a[i, i] for i in range(3)])
+
+ b = np.einsum(a, [0, 0], [0], optimize=do_opt)
+ assert_(b.base is a)
+ assert_equal(b, [a[i, i] for i in range(3)])
+
+ # diagonal with various ways of broadcasting an additional dimension
+ a = np.arange(27)
+ a.shape = (3, 3, 3)
+
+ b = np.einsum("...ii->...i", a, optimize=do_opt)
+ assert_(b.base is a)
+ assert_equal(b, [[x[i, i] for i in range(3)] for x in a])
+
+ b = np.einsum(a, [Ellipsis, 0, 0], [Ellipsis, 0], optimize=do_opt)
+ assert_(b.base is a)
+ assert_equal(b, [[x[i, i] for i in range(3)] for x in a])
+
+ b = np.einsum("ii...->...i", a, optimize=do_opt)
+ assert_(b.base is a)
+ assert_equal(b, [[x[i, i] for i in range(3)]
+ for x in a.transpose(2, 0, 1)])
+
+ b = np.einsum(a, [0, 0, Ellipsis], [Ellipsis, 0], optimize=do_opt)
+ assert_(b.base is a)
+ assert_equal(b, [[x[i, i] for i in range(3)]
+ for x in a.transpose(2, 0, 1)])
+
+ b = np.einsum("...ii->i...", a, optimize=do_opt)
+ assert_(b.base is a)
+ assert_equal(b, [a[:, i, i] for i in range(3)])
+
+ b = np.einsum(a, [Ellipsis, 0, 0], [0, Ellipsis], optimize=do_opt)
+ assert_(b.base is a)
+ assert_equal(b, [a[:, i, i] for i in range(3)])
+
+ b = np.einsum("jii->ij", a, optimize=do_opt)
+ assert_(b.base is a)
+ assert_equal(b, [a[:, i, i] for i in range(3)])
+
+ b = np.einsum(a, [1, 0, 0], [0, 1], optimize=do_opt)
+ assert_(b.base is a)
+ assert_equal(b, [a[:, i, i] for i in range(3)])
+
+ b = np.einsum("ii...->i...", a, optimize=do_opt)
+ assert_(b.base is a)
+ assert_equal(b, [a.transpose(2, 0, 1)[:, i, i] for i in range(3)])
+
+ b = np.einsum(a, [0, 0, Ellipsis], [0, Ellipsis], optimize=do_opt)
+ assert_(b.base is a)
+ assert_equal(b, [a.transpose(2, 0, 1)[:, i, i] for i in range(3)])
+
+ b = np.einsum("i...i->i...", a, optimize=do_opt)
+ assert_(b.base is a)
+ assert_equal(b, [a.transpose(1, 0, 2)[:, i, i] for i in range(3)])
+
+ b = np.einsum(a, [0, Ellipsis, 0], [0, Ellipsis], optimize=do_opt)
+ assert_(b.base is a)
+ assert_equal(b, [a.transpose(1, 0, 2)[:, i, i] for i in range(3)])
+
+ b = np.einsum("i...i->...i", a, optimize=do_opt)
+ assert_(b.base is a)
+ assert_equal(b, [[x[i, i] for i in range(3)]
+ for x in a.transpose(1, 0, 2)])
+
+ b = np.einsum(a, [0, Ellipsis, 0], [Ellipsis, 0], optimize=do_opt)
+ assert_(b.base is a)
+ assert_equal(b, [[x[i, i] for i in range(3)]
+ for x in a.transpose(1, 0, 2)])
+
+ # triple diagonal
+ a = np.arange(27)
+ a.shape = (3, 3, 3)
+
+ b = np.einsum("iii->i", a, optimize=do_opt)
+ assert_(b.base is a)
+ assert_equal(b, [a[i, i, i] for i in range(3)])
+
+ b = np.einsum(a, [0, 0, 0], [0], optimize=do_opt)
+ assert_(b.base is a)
+ assert_equal(b, [a[i, i, i] for i in range(3)])
+
+ # swap axes
+ a = np.arange(24)
+ a.shape = (2, 3, 4)
+
+ b = np.einsum("ijk->jik", a, optimize=do_opt)
+ assert_(b.base is a)
+ assert_equal(b, a.swapaxes(0, 1))
+
+ b = np.einsum(a, [0, 1, 2], [1, 0, 2], optimize=do_opt)
+ assert_(b.base is a)
+ assert_equal(b, a.swapaxes(0, 1))
+
+ def check_einsum_sums(self, dtype, do_opt=False):
+ dtype = np.dtype(dtype)
+ # Check various sums. Does many sizes to exercise unrolled loops.
+
+ # sum(a, axis=-1)
+ for n in range(1, 17):
+ a = np.arange(n, dtype=dtype)
+ b = np.sum(a, axis=-1)
+ if hasattr(b, 'astype'):
+ b = b.astype(dtype)
+ assert_equal(np.einsum("i->", a, optimize=do_opt), b)
+ assert_equal(np.einsum(a, [0], [], optimize=do_opt), b)
+
+ for n in range(1, 17):
+ a = np.arange(2 * 3 * n, dtype=dtype).reshape(2, 3, n)
+ b = np.sum(a, axis=-1)
+ if hasattr(b, 'astype'):
+ b = b.astype(dtype)
+ assert_equal(np.einsum("...i->...", a, optimize=do_opt), b)
+ assert_equal(np.einsum(a, [Ellipsis, 0], [Ellipsis], optimize=do_opt), b)
+
+ # sum(a, axis=0)
+ for n in range(1, 17):
+ a = np.arange(2 * n, dtype=dtype).reshape(2, n)
+ b = np.sum(a, axis=0)
+ if hasattr(b, 'astype'):
+ b = b.astype(dtype)
+ assert_equal(np.einsum("i...->...", a, optimize=do_opt), b)
+ assert_equal(np.einsum(a, [0, Ellipsis], [Ellipsis], optimize=do_opt), b)
+
+ for n in range(1, 17):
+ a = np.arange(2 * 3 * n, dtype=dtype).reshape(2, 3, n)
+ b = np.sum(a, axis=0)
+ if hasattr(b, 'astype'):
+ b = b.astype(dtype)
+ assert_equal(np.einsum("i...->...", a, optimize=do_opt), b)
+ assert_equal(np.einsum(a, [0, Ellipsis], [Ellipsis], optimize=do_opt), b)
+
+ # trace(a)
+ for n in range(1, 17):
+ a = np.arange(n * n, dtype=dtype).reshape(n, n)
+ b = np.trace(a)
+ if hasattr(b, 'astype'):
+ b = b.astype(dtype)
+ assert_equal(np.einsum("ii", a, optimize=do_opt), b)
+ assert_equal(np.einsum(a, [0, 0], optimize=do_opt), b)
+
+ # gh-15961: should accept numpy int64 type in subscript list
+ np_array = np.asarray([0, 0])
+ assert_equal(np.einsum(a, np_array, optimize=do_opt), b)
+ assert_equal(np.einsum(a, list(np_array), optimize=do_opt), b)
+
+ # multiply(a, b)
+ assert_equal(np.einsum("..., ...", 3, 4), 12) # scalar case
+ for n in range(1, 17):
+ a = np.arange(3 * n, dtype=dtype).reshape(3, n)
+ b = np.arange(2 * 3 * n, dtype=dtype).reshape(2, 3, n)
+ assert_equal(np.einsum("..., ...", a, b, optimize=do_opt),
+ np.multiply(a, b))
+ assert_equal(np.einsum(a, [Ellipsis], b, [Ellipsis], optimize=do_opt),
+ np.multiply(a, b))
+
+ # inner(a,b)
+ for n in range(1, 17):
+ a = np.arange(2 * 3 * n, dtype=dtype).reshape(2, 3, n)
+ b = np.arange(n, dtype=dtype)
+ assert_equal(np.einsum("...i, ...i", a, b, optimize=do_opt), np.inner(a, b))
+ assert_equal(np.einsum(a, [Ellipsis, 0], b, [Ellipsis, 0], optimize=do_opt),
+ np.inner(a, b))
+
+ for n in range(1, 11):
+ a = np.arange(n * 3 * 2, dtype=dtype).reshape(n, 3, 2)
+ b = np.arange(n, dtype=dtype)
+ assert_equal(np.einsum("i..., i...", a, b, optimize=do_opt),
+ np.inner(a.T, b.T).T)
+ assert_equal(np.einsum(a, [0, Ellipsis], b, [0, Ellipsis], optimize=do_opt),
+ np.inner(a.T, b.T).T)
+
+ # outer(a,b)
+ for n in range(1, 17):
+ a = np.arange(3, dtype=dtype) + 1
+ b = np.arange(n, dtype=dtype) + 1
+ assert_equal(np.einsum("i,j", a, b, optimize=do_opt),
+ np.outer(a, b))
+ assert_equal(np.einsum(a, [0], b, [1], optimize=do_opt),
+ np.outer(a, b))
+
+ # Suppress the complex warnings for the 'as f8' tests
+ with suppress_warnings() as sup:
+ sup.filter(np.exceptions.ComplexWarning)
+
+ # matvec(a,b) / a.dot(b) where a is matrix, b is vector
+ for n in range(1, 17):
+ a = np.arange(4 * n, dtype=dtype).reshape(4, n)
+ b = np.arange(n, dtype=dtype)
+ assert_equal(np.einsum("ij, j", a, b, optimize=do_opt),
+ np.dot(a, b))
+ assert_equal(np.einsum(a, [0, 1], b, [1], optimize=do_opt),
+ np.dot(a, b))
+
+ c = np.arange(4, dtype=dtype)
+ np.einsum("ij,j", a, b, out=c,
+ dtype='f8', casting='unsafe', optimize=do_opt)
+ assert_equal(c,
+ np.dot(a.astype('f8'),
+ b.astype('f8')).astype(dtype))
+ c[...] = 0
+ np.einsum(a, [0, 1], b, [1], out=c,
+ dtype='f8', casting='unsafe', optimize=do_opt)
+ assert_equal(c,
+ np.dot(a.astype('f8'),
+ b.astype('f8')).astype(dtype))
+
+ for n in range(1, 17):
+ a = np.arange(4 * n, dtype=dtype).reshape(4, n)
+ b = np.arange(n, dtype=dtype)
+ assert_equal(np.einsum("ji,j", a.T, b.T, optimize=do_opt),
+ np.dot(b.T, a.T))
+ assert_equal(np.einsum(a.T, [1, 0], b.T, [1], optimize=do_opt),
+ np.dot(b.T, a.T))
+
+ c = np.arange(4, dtype=dtype)
+ np.einsum("ji,j", a.T, b.T, out=c,
+ dtype='f8', casting='unsafe', optimize=do_opt)
+ assert_equal(c,
+ np.dot(b.T.astype('f8'),
+ a.T.astype('f8')).astype(dtype))
+ c[...] = 0
+ np.einsum(a.T, [1, 0], b.T, [1], out=c,
+ dtype='f8', casting='unsafe', optimize=do_opt)
+ assert_equal(c,
+ np.dot(b.T.astype('f8'),
+ a.T.astype('f8')).astype(dtype))
+
+ # matmat(a,b) / a.dot(b) where a is matrix, b is matrix
+ for n in range(1, 17):
+ if n < 8 or dtype != 'f2':
+ a = np.arange(4 * n, dtype=dtype).reshape(4, n)
+ b = np.arange(n * 6, dtype=dtype).reshape(n, 6)
+ assert_equal(np.einsum("ij,jk", a, b, optimize=do_opt),
+ np.dot(a, b))
+ assert_equal(np.einsum(a, [0, 1], b, [1, 2], optimize=do_opt),
+ np.dot(a, b))
+
+ for n in range(1, 17):
+ a = np.arange(4 * n, dtype=dtype).reshape(4, n)
+ b = np.arange(n * 6, dtype=dtype).reshape(n, 6)
+ c = np.arange(24, dtype=dtype).reshape(4, 6)
+ np.einsum("ij,jk", a, b, out=c, dtype='f8', casting='unsafe',
+ optimize=do_opt)
+ assert_equal(c,
+ np.dot(a.astype('f8'),
+ b.astype('f8')).astype(dtype))
+ c[...] = 0
+ np.einsum(a, [0, 1], b, [1, 2], out=c,
+ dtype='f8', casting='unsafe', optimize=do_opt)
+ assert_equal(c,
+ np.dot(a.astype('f8'),
+ b.astype('f8')).astype(dtype))
+
+ # matrix triple product (note this is not currently an efficient
+ # way to multiply 3 matrices)
+ a = np.arange(12, dtype=dtype).reshape(3, 4)
+ b = np.arange(20, dtype=dtype).reshape(4, 5)
+ c = np.arange(30, dtype=dtype).reshape(5, 6)
+ if dtype != 'f2':
+ assert_equal(np.einsum("ij,jk,kl", a, b, c, optimize=do_opt),
+ a.dot(b).dot(c))
+ assert_equal(np.einsum(a, [0, 1], b, [1, 2], c, [2, 3],
+ optimize=do_opt), a.dot(b).dot(c))
+
+ d = np.arange(18, dtype=dtype).reshape(3, 6)
+ np.einsum("ij,jk,kl", a, b, c, out=d,
+ dtype='f8', casting='unsafe', optimize=do_opt)
+ tgt = a.astype('f8').dot(b.astype('f8'))
+ tgt = tgt.dot(c.astype('f8')).astype(dtype)
+ assert_equal(d, tgt)
+
+ d[...] = 0
+ np.einsum(a, [0, 1], b, [1, 2], c, [2, 3], out=d,
+ dtype='f8', casting='unsafe', optimize=do_opt)
+ tgt = a.astype('f8').dot(b.astype('f8'))
+ tgt = tgt.dot(c.astype('f8')).astype(dtype)
+ assert_equal(d, tgt)
+
+ # tensordot(a, b)
+ if np.dtype(dtype) != np.dtype('f2'):
+ a = np.arange(60, dtype=dtype).reshape(3, 4, 5)
+ b = np.arange(24, dtype=dtype).reshape(4, 3, 2)
+ assert_equal(np.einsum("ijk, jil -> kl", a, b),
+ np.tensordot(a, b, axes=([1, 0], [0, 1])))
+ assert_equal(np.einsum(a, [0, 1, 2], b, [1, 0, 3], [2, 3]),
+ np.tensordot(a, b, axes=([1, 0], [0, 1])))
+
+ c = np.arange(10, dtype=dtype).reshape(5, 2)
+ np.einsum("ijk,jil->kl", a, b, out=c,
+ dtype='f8', casting='unsafe', optimize=do_opt)
+ assert_equal(c, np.tensordot(a.astype('f8'), b.astype('f8'),
+ axes=([1, 0], [0, 1])).astype(dtype))
+ c[...] = 0
+ np.einsum(a, [0, 1, 2], b, [1, 0, 3], [2, 3], out=c,
+ dtype='f8', casting='unsafe', optimize=do_opt)
+ assert_equal(c, np.tensordot(a.astype('f8'), b.astype('f8'),
+ axes=([1, 0], [0, 1])).astype(dtype))
+
+ # logical_and(logical_and(a!=0, b!=0), c!=0)
+ neg_val = -2 if dtype.kind != "u" else np.iinfo(dtype).max - 1
+ a = np.array([1, 3, neg_val, 0, 12, 13, 0, 1], dtype=dtype)
+ b = np.array([0, 3.5, 0., neg_val, 0, 1, 3, 12], dtype=dtype)
+ c = np.array([True, True, False, True, True, False, True, True])
+
+ assert_equal(np.einsum("i,i,i->i", a, b, c,
+ dtype='?', casting='unsafe', optimize=do_opt),
+ np.logical_and(np.logical_and(a != 0, b != 0), c != 0))
+ assert_equal(np.einsum(a, [0], b, [0], c, [0], [0],
+ dtype='?', casting='unsafe'),
+ np.logical_and(np.logical_and(a != 0, b != 0), c != 0))
+
+ a = np.arange(9, dtype=dtype)
+ assert_equal(np.einsum(",i->", 3, a), 3 * np.sum(a))
+ assert_equal(np.einsum(3, [], a, [0], []), 3 * np.sum(a))
+ assert_equal(np.einsum("i,->", a, 3), 3 * np.sum(a))
+ assert_equal(np.einsum(a, [0], 3, [], []), 3 * np.sum(a))
+
+ # Various stride0, contiguous, and SSE aligned variants
+ for n in range(1, 25):
+ a = np.arange(n, dtype=dtype)
+ if np.dtype(dtype).itemsize > 1:
+ assert_equal(np.einsum("...,...", a, a, optimize=do_opt),
+ np.multiply(a, a))
+ assert_equal(np.einsum("i,i", a, a, optimize=do_opt), np.dot(a, a))
+ assert_equal(np.einsum("i,->i", a, 2, optimize=do_opt), 2 * a)
+ assert_equal(np.einsum(",i->i", 2, a, optimize=do_opt), 2 * a)
+ assert_equal(np.einsum("i,->", a, 2, optimize=do_opt), 2 * np.sum(a))
+ assert_equal(np.einsum(",i->", 2, a, optimize=do_opt), 2 * np.sum(a))
+
+ assert_equal(np.einsum("...,...", a[1:], a[:-1], optimize=do_opt),
+ np.multiply(a[1:], a[:-1]))
+ assert_equal(np.einsum("i,i", a[1:], a[:-1], optimize=do_opt),
+ np.dot(a[1:], a[:-1]))
+ assert_equal(np.einsum("i,->i", a[1:], 2, optimize=do_opt), 2 * a[1:])
+ assert_equal(np.einsum(",i->i", 2, a[1:], optimize=do_opt), 2 * a[1:])
+ assert_equal(np.einsum("i,->", a[1:], 2, optimize=do_opt),
+ 2 * np.sum(a[1:]))
+ assert_equal(np.einsum(",i->", 2, a[1:], optimize=do_opt),
+ 2 * np.sum(a[1:]))
+
+ # An object array, summed as the data type
+ a = np.arange(9, dtype=object)
+
+ b = np.einsum("i->", a, dtype=dtype, casting='unsafe')
+ assert_equal(b, np.sum(a))
+ if hasattr(b, "dtype"):
+ # Can be a python object when dtype is object
+ assert_equal(b.dtype, np.dtype(dtype))
+
+ b = np.einsum(a, [0], [], dtype=dtype, casting='unsafe')
+ assert_equal(b, np.sum(a))
+ if hasattr(b, "dtype"):
+ # Can be a python object when dtype is object
+ assert_equal(b.dtype, np.dtype(dtype))
+
+ # A case which was failing (ticket #1885)
+ p = np.arange(2) + 1
+ q = np.arange(4).reshape(2, 2) + 3
+ r = np.arange(4).reshape(2, 2) + 7
+ assert_equal(np.einsum('z,mz,zm->', p, q, r), 253)
+
+ # singleton dimensions broadcast (gh-10343)
+ p = np.ones((10, 2))
+ q = np.ones((1, 2))
+ assert_array_equal(np.einsum('ij,ij->j', p, q, optimize=True),
+ np.einsum('ij,ij->j', p, q, optimize=False))
+ assert_array_equal(np.einsum('ij,ij->j', p, q, optimize=True),
+ [10.] * 2)
+
+ # a blas-compatible contraction broadcasting case which was failing
+ # for optimize=True (ticket #10930)
+ x = np.array([2., 3.])
+ y = np.array([4.])
+ assert_array_equal(np.einsum("i, i", x, y, optimize=False), 20.)
+ assert_array_equal(np.einsum("i, i", x, y, optimize=True), 20.)
+
+ # all-ones array was bypassing bug (ticket #10930)
+ p = np.ones((1, 5)) / 2
+ q = np.ones((5, 5)) / 2
+ for optimize in (True, False):
+ assert_array_equal(np.einsum("...ij,...jk->...ik", p, p,
+ optimize=optimize),
+ np.einsum("...ij,...jk->...ik", p, q,
+ optimize=optimize))
+ assert_array_equal(np.einsum("...ij,...jk->...ik", p, q,
+ optimize=optimize),
+ np.full((1, 5), 1.25))
+
+ # Cases which were failing (gh-10899)
+ x = np.eye(2, dtype=dtype)
+ y = np.ones(2, dtype=dtype)
+ assert_array_equal(np.einsum("ji,i->", x, y, optimize=optimize),
+ [2.]) # contig_contig_outstride0_two
+ assert_array_equal(np.einsum("i,ij->", y, x, optimize=optimize),
+ [2.]) # stride0_contig_outstride0_two
+ assert_array_equal(np.einsum("ij,i->", x, y, optimize=optimize),
+ [2.]) # contig_stride0_outstride0_two
+
+ def test_einsum_sums_int8(self):
+ self.check_einsum_sums('i1')
+
+ def test_einsum_sums_uint8(self):
+ self.check_einsum_sums('u1')
+
+ def test_einsum_sums_int16(self):
+ self.check_einsum_sums('i2')
+
+ def test_einsum_sums_uint16(self):
+ self.check_einsum_sums('u2')
+
+ def test_einsum_sums_int32(self):
+ self.check_einsum_sums('i4')
+ self.check_einsum_sums('i4', True)
+
+ def test_einsum_sums_uint32(self):
+ self.check_einsum_sums('u4')
+ self.check_einsum_sums('u4', True)
+
+ def test_einsum_sums_int64(self):
+ self.check_einsum_sums('i8')
+
+ def test_einsum_sums_uint64(self):
+ self.check_einsum_sums('u8')
+
+ def test_einsum_sums_float16(self):
+ self.check_einsum_sums('f2')
+
+ def test_einsum_sums_float32(self):
+ self.check_einsum_sums('f4')
+
+ def test_einsum_sums_float64(self):
+ self.check_einsum_sums('f8')
+ self.check_einsum_sums('f8', True)
+
+ def test_einsum_sums_longdouble(self):
+ self.check_einsum_sums(np.longdouble)
+
+ def test_einsum_sums_cfloat64(self):
+ self.check_einsum_sums('c8')
+ self.check_einsum_sums('c8', True)
+
+ def test_einsum_sums_cfloat128(self):
+ self.check_einsum_sums('c16')
+
+ def test_einsum_sums_clongdouble(self):
+ self.check_einsum_sums(np.clongdouble)
+
+ def test_einsum_sums_object(self):
+ self.check_einsum_sums('object')
+ self.check_einsum_sums('object', True)
+
+ def test_einsum_misc(self):
+ # This call used to crash because of a bug in
+ # PyArray_AssignZero
+ a = np.ones((1, 2))
+ b = np.ones((2, 2, 1))
+ assert_equal(np.einsum('ij...,j...->i...', a, b), [[[2], [2]]])
+ assert_equal(np.einsum('ij...,j...->i...', a, b, optimize=True), [[[2], [2]]])
+
+ # Regression test for issue #10369 (test unicode inputs with Python 2)
+ assert_equal(np.einsum('ij...,j...->i...', a, b), [[[2], [2]]])
+ assert_equal(np.einsum('...i,...i', [1, 2, 3], [2, 3, 4]), 20)
+ assert_equal(np.einsum('...i,...i', [1, 2, 3], [2, 3, 4],
+ optimize='greedy'), 20)
+
+ # The iterator had an issue with buffering this reduction
+ a = np.ones((5, 12, 4, 2, 3), np.int64)
+ b = np.ones((5, 12, 11), np.int64)
+ assert_equal(np.einsum('ijklm,ijn,ijn->', a, b, b),
+ np.einsum('ijklm,ijn->', a, b))
+ assert_equal(np.einsum('ijklm,ijn,ijn->', a, b, b, optimize=True),
+ np.einsum('ijklm,ijn->', a, b, optimize=True))
+
+ # Issue #2027, was a problem in the contiguous 3-argument
+ # inner loop implementation
+ a = np.arange(1, 3)
+ b = np.arange(1, 5).reshape(2, 2)
+ c = np.arange(1, 9).reshape(4, 2)
+ assert_equal(np.einsum('x,yx,zx->xzy', a, b, c),
+ [[[1, 3], [3, 9], [5, 15], [7, 21]],
+ [[8, 16], [16, 32], [24, 48], [32, 64]]])
+ assert_equal(np.einsum('x,yx,zx->xzy', a, b, c, optimize=True),
+ [[[1, 3], [3, 9], [5, 15], [7, 21]],
+ [[8, 16], [16, 32], [24, 48], [32, 64]]])
+
+ # Ensure explicitly setting out=None does not cause an error
+ # see issue gh-15776 and issue gh-15256
+ assert_equal(np.einsum('i,j', [1], [2], out=None), [[2]])
+
+ def test_object_loop(self):
+
+ class Mult:
+ def __mul__(self, other):
+ return 42
+
+ objMult = np.array([Mult()])
+ objNULL = np.ndarray(buffer=b'\0' * np.intp(0).itemsize, shape=1, dtype=object)
+
+ with pytest.raises(TypeError):
+ np.einsum("i,j", [1], objNULL)
+ with pytest.raises(TypeError):
+ np.einsum("i,j", objNULL, [1])
+ assert np.einsum("i,j", objMult, objMult) == 42
+
+ def test_subscript_range(self):
+ # Issue #7741, make sure that all letters of Latin alphabet (both uppercase & lowercase) can be used
+ # when creating a subscript from arrays
+ a = np.ones((2, 3))
+ b = np.ones((3, 4))
+ np.einsum(a, [0, 20], b, [20, 2], [0, 2], optimize=False)
+ np.einsum(a, [0, 27], b, [27, 2], [0, 2], optimize=False)
+ np.einsum(a, [0, 51], b, [51, 2], [0, 2], optimize=False)
+ assert_raises(ValueError, lambda: np.einsum(a, [0, 52], b, [52, 2], [0, 2], optimize=False))
+ assert_raises(ValueError, lambda: np.einsum(a, [-1, 5], b, [5, 2], [-1, 2], optimize=False))
+
+ def test_einsum_broadcast(self):
+ # Issue #2455 change in handling ellipsis
+ # remove the 'middle broadcast' error
+ # only use the 'RIGHT' iteration in prepare_op_axes
+ # adds auto broadcast on left where it belongs
+ # broadcast on right has to be explicit
+ # We need to test the optimized parsing as well
+
+ A = np.arange(2 * 3 * 4).reshape(2, 3, 4)
+ B = np.arange(3)
+ ref = np.einsum('ijk,j->ijk', A, B, optimize=False)
+ for opt in [True, False]:
+ assert_equal(np.einsum('ij...,j...->ij...', A, B, optimize=opt), ref)
+ assert_equal(np.einsum('ij...,...j->ij...', A, B, optimize=opt), ref)
+ assert_equal(np.einsum('ij...,j->ij...', A, B, optimize=opt), ref) # used to raise error
+
+ A = np.arange(12).reshape((4, 3))
+ B = np.arange(6).reshape((3, 2))
+ ref = np.einsum('ik,kj->ij', A, B, optimize=False)
+ for opt in [True, False]:
+ assert_equal(np.einsum('ik...,k...->i...', A, B, optimize=opt), ref)
+ assert_equal(np.einsum('ik...,...kj->i...j', A, B, optimize=opt), ref)
+ assert_equal(np.einsum('...k,kj', A, B, optimize=opt), ref) # used to raise error
+ assert_equal(np.einsum('ik,k...->i...', A, B, optimize=opt), ref) # used to raise error
+
+ dims = [2, 3, 4, 5]
+ a = np.arange(np.prod(dims)).reshape(dims)
+ v = np.arange(dims[2])
+ ref = np.einsum('ijkl,k->ijl', a, v, optimize=False)
+ for opt in [True, False]:
+ assert_equal(np.einsum('ijkl,k', a, v, optimize=opt), ref)
+ assert_equal(np.einsum('...kl,k', a, v, optimize=opt), ref) # used to raise error
+ assert_equal(np.einsum('...kl,k...', a, v, optimize=opt), ref)
+
+ J, K, M = 160, 160, 120
+ A = np.arange(J * K * M).reshape(1, 1, 1, J, K, M)
+ B = np.arange(J * K * M * 3).reshape(J, K, M, 3)
+ ref = np.einsum('...lmn,...lmno->...o', A, B, optimize=False)
+ for opt in [True, False]:
+ assert_equal(np.einsum('...lmn,lmno->...o', A, B,
+ optimize=opt), ref) # used to raise error
+
+ def test_einsum_fixedstridebug(self):
+ # Issue #4485 obscure einsum bug
+ # This case revealed a bug in nditer where it reported a stride
+ # as 'fixed' (0) when it was in fact not fixed during processing
+ # (0 or 4). The reason for the bug was that the check for a fixed
+ # stride was using the information from the 2D inner loop reuse
+ # to restrict the iteration dimensions it had to validate to be
+ # the same, but that 2D inner loop reuse logic is only triggered
+ # during the buffer copying step, and hence it was invalid to
+ # rely on those values. The fix is to check all the dimensions
+ # of the stride in question, which in the test case reveals that
+ # the stride is not fixed.
+ #
+ # NOTE: This test is triggered by the fact that the default buffersize,
+ # used by einsum, is 8192, and 3*2731 = 8193, is larger than that
+ # and results in a mismatch between the buffering and the
+ # striding for operand A.
+ A = np.arange(2 * 3).reshape(2, 3).astype(np.float32)
+ B = np.arange(2 * 3 * 2731).reshape(2, 3, 2731).astype(np.int16)
+ es = np.einsum('cl, cpx->lpx', A, B)
+ tp = np.tensordot(A, B, axes=(0, 0))
+ assert_equal(es, tp)
+ # The following is the original test case from the bug report,
+ # made repeatable by changing random arrays to aranges.
+ A = np.arange(3 * 3).reshape(3, 3).astype(np.float64)
+ B = np.arange(3 * 3 * 64 * 64).reshape(3, 3, 64, 64).astype(np.float32)
+ es = np.einsum('cl, cpxy->lpxy', A, B)
+ tp = np.tensordot(A, B, axes=(0, 0))
+ assert_equal(es, tp)
+
+ def test_einsum_fixed_collapsingbug(self):
+ # Issue #5147.
+ # The bug only occurred when output argument of einssum was used.
+ x = np.random.normal(0, 1, (5, 5, 5, 5))
+ y1 = np.zeros((5, 5))
+ np.einsum('aabb->ab', x, out=y1)
+ idx = np.arange(5)
+ y2 = x[idx[:, None], idx[:, None], idx, idx]
+ assert_equal(y1, y2)
+
+ def test_einsum_failed_on_p9_and_s390x(self):
+ # Issues gh-14692 and gh-12689
+ # Bug with signed vs unsigned char errored on power9 and s390x Linux
+ tensor = np.random.random_sample((10, 10, 10, 10))
+ x = np.einsum('ijij->', tensor)
+ y = tensor.trace(axis1=0, axis2=2).trace()
+ assert_allclose(x, y)
+
+ def test_einsum_all_contig_non_contig_output(self):
+ # Issue gh-5907, tests that the all contiguous special case
+ # actually checks the contiguity of the output
+ x = np.ones((5, 5))
+ out = np.ones(10)[::2]
+ correct_base = np.ones(10)
+ correct_base[::2] = 5
+ # Always worked (inner iteration is done with 0-stride):
+ np.einsum('mi,mi,mi->m', x, x, x, out=out)
+ assert_array_equal(out.base, correct_base)
+ # Example 1:
+ out = np.ones(10)[::2]
+ np.einsum('im,im,im->m', x, x, x, out=out)
+ assert_array_equal(out.base, correct_base)
+ # Example 2, buffering causes x to be contiguous but
+ # special cases do not catch the operation before:
+ out = np.ones((2, 2, 2))[..., 0]
+ correct_base = np.ones((2, 2, 2))
+ correct_base[..., 0] = 2
+ x = np.ones((2, 2), np.float32)
+ np.einsum('ij,jk->ik', x, x, out=out)
+ assert_array_equal(out.base, correct_base)
+
+ @pytest.mark.parametrize("dtype",
+ np.typecodes["AllFloat"] + np.typecodes["AllInteger"])
+ def test_different_paths(self, dtype):
+ # Test originally added to cover broken float16 path: gh-20305
+ # Likely most are covered elsewhere, at least partially.
+ dtype = np.dtype(dtype)
+ # Simple test, designed to exercise most specialized code paths,
+ # note the +0.5 for floats. This makes sure we use a float value
+ # where the results must be exact.
+ arr = (np.arange(7) + 0.5).astype(dtype)
+ scalar = np.array(2, dtype=dtype)
+
+ # contig -> scalar:
+ res = np.einsum('i->', arr)
+ assert res == arr.sum()
+ # contig, contig -> contig:
+ res = np.einsum('i,i->i', arr, arr)
+ assert_array_equal(res, arr * arr)
+ # noncontig, noncontig -> contig:
+ res = np.einsum('i,i->i', arr.repeat(2)[::2], arr.repeat(2)[::2])
+ assert_array_equal(res, arr * arr)
+ # contig + contig -> scalar
+ assert np.einsum('i,i->', arr, arr) == (arr * arr).sum()
+ # contig + scalar -> contig (with out)
+ out = np.ones(7, dtype=dtype)
+ res = np.einsum('i,->i', arr, dtype.type(2), out=out)
+ assert_array_equal(res, arr * dtype.type(2))
+ # scalar + contig -> contig (with out)
+ res = np.einsum(',i->i', scalar, arr)
+ assert_array_equal(res, arr * dtype.type(2))
+ # scalar + contig -> scalar
+ res = np.einsum(',i->', scalar, arr)
+ # Use einsum to compare to not have difference due to sum round-offs:
+ assert res == np.einsum('i->', scalar * arr)
+ # contig + scalar -> scalar
+ res = np.einsum('i,->', arr, scalar)
+ # Use einsum to compare to not have difference due to sum round-offs:
+ assert res == np.einsum('i->', scalar * arr)
+ # contig + contig + contig -> scalar
+ arr = np.array([0.5, 0.5, 0.25, 4.5, 3.], dtype=dtype)
+ res = np.einsum('i,i,i->', arr, arr, arr)
+ assert_array_equal(res, (arr * arr * arr).sum())
+ # four arrays:
+ res = np.einsum('i,i,i,i->', arr, arr, arr, arr)
+ assert_array_equal(res, (arr * arr * arr * arr).sum())
+
+ def test_small_boolean_arrays(self):
+ # See gh-5946.
+ # Use array of True embedded in False.
+ a = np.zeros((16, 1, 1), dtype=np.bool)[:2]
+ a[...] = True
+ out = np.zeros((16, 1, 1), dtype=np.bool)[:2]
+ tgt = np.ones((2, 1, 1), dtype=np.bool)
+ res = np.einsum('...ij,...jk->...ik', a, a, out=out)
+ assert_equal(res, tgt)
+
+ def test_out_is_res(self):
+ a = np.arange(9).reshape(3, 3)
+ res = np.einsum('...ij,...jk->...ik', a, a, out=a)
+ assert res is a
+
+ def optimize_compare(self, subscripts, operands=None):
+ # Tests all paths of the optimization function against
+ # conventional einsum
+ if operands is None:
+ args = [subscripts]
+ terms = subscripts.split('->')[0].split(',')
+ for term in terms:
+ dims = [global_size_dict[x] for x in term]
+ args.append(np.random.rand(*dims))
+ else:
+ args = [subscripts] + operands
+
+ noopt = np.einsum(*args, optimize=False)
+ opt = np.einsum(*args, optimize='greedy')
+ assert_almost_equal(opt, noopt)
+ opt = np.einsum(*args, optimize='optimal')
+ assert_almost_equal(opt, noopt)
+
+ def test_hadamard_like_products(self):
+ # Hadamard outer products
+ self.optimize_compare('a,ab,abc->abc')
+ self.optimize_compare('a,b,ab->ab')
+
+ def test_index_transformations(self):
+ # Simple index transformation cases
+ self.optimize_compare('ea,fb,gc,hd,abcd->efgh')
+ self.optimize_compare('ea,fb,abcd,gc,hd->efgh')
+ self.optimize_compare('abcd,ea,fb,gc,hd->efgh')
+
+ def test_complex(self):
+ # Long test cases
+ self.optimize_compare('acdf,jbje,gihb,hfac,gfac,gifabc,hfac')
+ self.optimize_compare('acdf,jbje,gihb,hfac,gfac,gifabc,hfac')
+ self.optimize_compare('cd,bdhe,aidb,hgca,gc,hgibcd,hgac')
+ self.optimize_compare('abhe,hidj,jgba,hiab,gab')
+ self.optimize_compare('bde,cdh,agdb,hica,ibd,hgicd,hiac')
+ self.optimize_compare('chd,bde,agbc,hiad,hgc,hgi,hiad')
+ self.optimize_compare('chd,bde,agbc,hiad,bdi,cgh,agdb')
+ self.optimize_compare('bdhe,acad,hiab,agac,hibd')
+
+ def test_collapse(self):
+ # Inner products
+ self.optimize_compare('ab,ab,c->')
+ self.optimize_compare('ab,ab,c->c')
+ self.optimize_compare('ab,ab,cd,cd->')
+ self.optimize_compare('ab,ab,cd,cd->ac')
+ self.optimize_compare('ab,ab,cd,cd->cd')
+ self.optimize_compare('ab,ab,cd,cd,ef,ef->')
+
+ def test_expand(self):
+ # Outer products
+ self.optimize_compare('ab,cd,ef->abcdef')
+ self.optimize_compare('ab,cd,ef->acdf')
+ self.optimize_compare('ab,cd,de->abcde')
+ self.optimize_compare('ab,cd,de->be')
+ self.optimize_compare('ab,bcd,cd->abcd')
+ self.optimize_compare('ab,bcd,cd->abd')
+
+ def test_edge_cases(self):
+ # Difficult edge cases for optimization
+ self.optimize_compare('eb,cb,fb->cef')
+ self.optimize_compare('dd,fb,be,cdb->cef')
+ self.optimize_compare('bca,cdb,dbf,afc->')
+ self.optimize_compare('dcc,fce,ea,dbf->ab')
+ self.optimize_compare('fdf,cdd,ccd,afe->ae')
+ self.optimize_compare('abcd,ad')
+ self.optimize_compare('ed,fcd,ff,bcf->be')
+ self.optimize_compare('baa,dcf,af,cde->be')
+ self.optimize_compare('bd,db,eac->ace')
+ self.optimize_compare('fff,fae,bef,def->abd')
+ self.optimize_compare('efc,dbc,acf,fd->abe')
+ self.optimize_compare('ba,ac,da->bcd')
+
+ def test_inner_product(self):
+ # Inner products
+ self.optimize_compare('ab,ab')
+ self.optimize_compare('ab,ba')
+ self.optimize_compare('abc,abc')
+ self.optimize_compare('abc,bac')
+ self.optimize_compare('abc,cba')
+
+ def test_random_cases(self):
+ # Randomly built test cases
+ self.optimize_compare('aab,fa,df,ecc->bde')
+ self.optimize_compare('ecb,fef,bad,ed->ac')
+ self.optimize_compare('bcf,bbb,fbf,fc->')
+ self.optimize_compare('bb,ff,be->e')
+ self.optimize_compare('bcb,bb,fc,fff->')
+ self.optimize_compare('fbb,dfd,fc,fc->')
+ self.optimize_compare('afd,ba,cc,dc->bf')
+ self.optimize_compare('adb,bc,fa,cfc->d')
+ self.optimize_compare('bbd,bda,fc,db->acf')
+ self.optimize_compare('dba,ead,cad->bce')
+ self.optimize_compare('aef,fbc,dca->bde')
+
+ def test_combined_views_mapping(self):
+ # gh-10792
+ a = np.arange(9).reshape(1, 1, 3, 1, 3)
+ b = np.einsum('bbcdc->d', a)
+ assert_equal(b, [12])
+
+ def test_broadcasting_dot_cases(self):
+ # Ensures broadcasting cases are not mistaken for GEMM
+
+ a = np.random.rand(1, 5, 4)
+ b = np.random.rand(4, 6)
+ c = np.random.rand(5, 6)
+ d = np.random.rand(10)
+
+ self.optimize_compare('ijk,kl,jl', operands=[a, b, c])
+ self.optimize_compare('ijk,kl,jl,i->i', operands=[a, b, c, d])
+
+ e = np.random.rand(1, 1, 5, 4)
+ f = np.random.rand(7, 7)
+ self.optimize_compare('abjk,kl,jl', operands=[e, b, c])
+ self.optimize_compare('abjk,kl,jl,ab->ab', operands=[e, b, c, f])
+
+ # Edge case found in gh-11308
+ g = np.arange(64).reshape(2, 4, 8)
+ self.optimize_compare('obk,ijk->ioj', operands=[g, g])
+
+ def test_output_order(self):
+ # Ensure output order is respected for optimize cases, the below
+ # contraction should yield a reshaped tensor view
+ # gh-16415
+
+ a = np.ones((2, 3, 5), order='F')
+ b = np.ones((4, 3), order='F')
+
+ for opt in [True, False]:
+ tmp = np.einsum('...ft,mf->...mt', a, b, order='a', optimize=opt)
+ assert_(tmp.flags.f_contiguous)
+
+ tmp = np.einsum('...ft,mf->...mt', a, b, order='f', optimize=opt)
+ assert_(tmp.flags.f_contiguous)
+
+ tmp = np.einsum('...ft,mf->...mt', a, b, order='c', optimize=opt)
+ assert_(tmp.flags.c_contiguous)
+
+ tmp = np.einsum('...ft,mf->...mt', a, b, order='k', optimize=opt)
+ assert_(tmp.flags.c_contiguous is False)
+ assert_(tmp.flags.f_contiguous is False)
+
+ tmp = np.einsum('...ft,mf->...mt', a, b, optimize=opt)
+ assert_(tmp.flags.c_contiguous is False)
+ assert_(tmp.flags.f_contiguous is False)
+
+ c = np.ones((4, 3), order='C')
+ for opt in [True, False]:
+ tmp = np.einsum('...ft,mf->...mt', a, c, order='a', optimize=opt)
+ assert_(tmp.flags.c_contiguous)
+
+ d = np.ones((2, 3, 5), order='C')
+ for opt in [True, False]:
+ tmp = np.einsum('...ft,mf->...mt', d, c, order='a', optimize=opt)
+ assert_(tmp.flags.c_contiguous)
+
+class TestEinsumPath:
+ def build_operands(self, string, size_dict=global_size_dict):
+
+ # Builds views based off initial operands
+ operands = [string]
+ terms = string.split('->')[0].split(',')
+ for term in terms:
+ dims = [size_dict[x] for x in term]
+ operands.append(np.random.rand(*dims))
+
+ return operands
+
+ def assert_path_equal(self, comp, benchmark):
+ # Checks if list of tuples are equivalent
+ ret = (len(comp) == len(benchmark))
+ assert_(ret)
+ for pos in range(len(comp) - 1):
+ ret &= isinstance(comp[pos + 1], tuple)
+ ret &= (comp[pos + 1] == benchmark[pos + 1])
+ assert_(ret)
+
+ def test_memory_contraints(self):
+ # Ensure memory constraints are satisfied
+
+ outer_test = self.build_operands('a,b,c->abc')
+
+ path, path_str = np.einsum_path(*outer_test, optimize=('greedy', 0))
+ self.assert_path_equal(path, ['einsum_path', (0, 1, 2)])
+
+ path, path_str = np.einsum_path(*outer_test, optimize=('optimal', 0))
+ self.assert_path_equal(path, ['einsum_path', (0, 1, 2)])
+
+ long_test = self.build_operands('acdf,jbje,gihb,hfac')
+ path, path_str = np.einsum_path(*long_test, optimize=('greedy', 0))
+ self.assert_path_equal(path, ['einsum_path', (0, 1, 2, 3)])
+
+ path, path_str = np.einsum_path(*long_test, optimize=('optimal', 0))
+ self.assert_path_equal(path, ['einsum_path', (0, 1, 2, 3)])
+
+ def test_long_paths(self):
+ # Long complex cases
+
+ # Long test 1
+ long_test1 = self.build_operands('acdf,jbje,gihb,hfac,gfac,gifabc,hfac')
+ path, path_str = np.einsum_path(*long_test1, optimize='greedy')
+ self.assert_path_equal(path, ['einsum_path',
+ (3, 6), (3, 4), (2, 4), (2, 3), (0, 2), (0, 1)])
+
+ path, path_str = np.einsum_path(*long_test1, optimize='optimal')
+ self.assert_path_equal(path, ['einsum_path',
+ (3, 6), (3, 4), (2, 4), (2, 3), (0, 2), (0, 1)])
+
+ # Long test 2
+ long_test2 = self.build_operands('chd,bde,agbc,hiad,bdi,cgh,agdb')
+ path, path_str = np.einsum_path(*long_test2, optimize='greedy')
+ self.assert_path_equal(path, ['einsum_path',
+ (3, 4), (0, 3), (3, 4), (1, 3), (1, 2), (0, 1)])
+
+ path, path_str = np.einsum_path(*long_test2, optimize='optimal')
+ self.assert_path_equal(path, ['einsum_path',
+ (0, 5), (1, 4), (3, 4), (1, 3), (1, 2), (0, 1)])
+
+ def test_edge_paths(self):
+ # Difficult edge cases
+
+ # Edge test1
+ edge_test1 = self.build_operands('eb,cb,fb->cef')
+ path, path_str = np.einsum_path(*edge_test1, optimize='greedy')
+ self.assert_path_equal(path, ['einsum_path', (0, 2), (0, 1)])
+
+ path, path_str = np.einsum_path(*edge_test1, optimize='optimal')
+ self.assert_path_equal(path, ['einsum_path', (0, 2), (0, 1)])
+
+ # Edge test2
+ edge_test2 = self.build_operands('dd,fb,be,cdb->cef')
+ path, path_str = np.einsum_path(*edge_test2, optimize='greedy')
+ self.assert_path_equal(path, ['einsum_path', (0, 3), (0, 1), (0, 1)])
+
+ path, path_str = np.einsum_path(*edge_test2, optimize='optimal')
+ self.assert_path_equal(path, ['einsum_path', (0, 3), (0, 1), (0, 1)])
+
+ # Edge test3
+ edge_test3 = self.build_operands('bca,cdb,dbf,afc->')
+ path, path_str = np.einsum_path(*edge_test3, optimize='greedy')
+ self.assert_path_equal(path, ['einsum_path', (1, 2), (0, 2), (0, 1)])
+
+ path, path_str = np.einsum_path(*edge_test3, optimize='optimal')
+ self.assert_path_equal(path, ['einsum_path', (1, 2), (0, 2), (0, 1)])
+
+ # Edge test4
+ edge_test4 = self.build_operands('dcc,fce,ea,dbf->ab')
+ path, path_str = np.einsum_path(*edge_test4, optimize='greedy')
+ self.assert_path_equal(path, ['einsum_path', (1, 2), (0, 1), (0, 1)])
+
+ path, path_str = np.einsum_path(*edge_test4, optimize='optimal')
+ self.assert_path_equal(path, ['einsum_path', (1, 2), (0, 2), (0, 1)])
+
+ # Edge test5
+ edge_test4 = self.build_operands('a,ac,ab,ad,cd,bd,bc->',
+ size_dict={"a": 20, "b": 20, "c": 20, "d": 20})
+ path, path_str = np.einsum_path(*edge_test4, optimize='greedy')
+ self.assert_path_equal(path, ['einsum_path', (0, 1), (0, 1, 2, 3, 4, 5)])
+
+ path, path_str = np.einsum_path(*edge_test4, optimize='optimal')
+ self.assert_path_equal(path, ['einsum_path', (0, 1), (0, 1, 2, 3, 4, 5)])
+
+ def test_path_type_input(self):
+ # Test explicit path handling
+ path_test = self.build_operands('dcc,fce,ea,dbf->ab')
+
+ path, path_str = np.einsum_path(*path_test, optimize=False)
+ self.assert_path_equal(path, ['einsum_path', (0, 1, 2, 3)])
+
+ path, path_str = np.einsum_path(*path_test, optimize=True)
+ self.assert_path_equal(path, ['einsum_path', (1, 2), (0, 1), (0, 1)])
+
+ exp_path = ['einsum_path', (0, 2), (0, 2), (0, 1)]
+ path, path_str = np.einsum_path(*path_test, optimize=exp_path)
+ self.assert_path_equal(path, exp_path)
+
+ # Double check einsum works on the input path
+ noopt = np.einsum(*path_test, optimize=False)
+ opt = np.einsum(*path_test, optimize=exp_path)
+ assert_almost_equal(noopt, opt)
+
+ def test_path_type_input_internal_trace(self):
+ # gh-20962
+ path_test = self.build_operands('cab,cdd->ab')
+ exp_path = ['einsum_path', (1,), (0, 1)]
+
+ path, path_str = np.einsum_path(*path_test, optimize=exp_path)
+ self.assert_path_equal(path, exp_path)
+
+ # Double check einsum works on the input path
+ noopt = np.einsum(*path_test, optimize=False)
+ opt = np.einsum(*path_test, optimize=exp_path)
+ assert_almost_equal(noopt, opt)
+
+ def test_path_type_input_invalid(self):
+ path_test = self.build_operands('ab,bc,cd,de->ae')
+ exp_path = ['einsum_path', (2, 3), (0, 1)]
+ assert_raises(RuntimeError, np.einsum, *path_test, optimize=exp_path)
+ assert_raises(
+ RuntimeError, np.einsum_path, *path_test, optimize=exp_path)
+
+ path_test = self.build_operands('a,a,a->a')
+ exp_path = ['einsum_path', (1,), (0, 1)]
+ assert_raises(RuntimeError, np.einsum, *path_test, optimize=exp_path)
+ assert_raises(
+ RuntimeError, np.einsum_path, *path_test, optimize=exp_path)
+
+ def test_spaces(self):
+ # gh-10794
+ arr = np.array([[1]])
+ for sp in itertools.product(['', ' '], repeat=4):
+ # no error for any spacing
+ np.einsum('{}...a{}->{}...a{}'.format(*sp), arr)
+
+def test_overlap():
+ a = np.arange(9, dtype=int).reshape(3, 3)
+ b = np.arange(9, dtype=int).reshape(3, 3)
+ d = np.dot(a, b)
+ # sanity check
+ c = np.einsum('ij,jk->ik', a, b)
+ assert_equal(c, d)
+ # gh-10080, out overlaps one of the operands
+ c = np.einsum('ij,jk->ik', a, b, out=b)
+ assert_equal(c, d)
+
+def test_einsum_chunking_precision():
+ """Most einsum operations are reductions and until NumPy 2.3 reductions
+ never (or almost never?) used the `GROWINNER` mechanism to increase the
+ inner loop size when no buffers are needed.
+ Because einsum reductions work roughly:
+
+ def inner(*inputs, out):
+ accumulate = 0
+ for vals in zip(*inputs):
+ accumulate += prod(vals)
+ out[0] += accumulate
+
+ Calling the inner-loop more often actually improves accuracy slightly
+ (same effect as pairwise summation but much less).
+ Without adding pairwise summation to the inner-loop it seems best to just
+ not use GROWINNER, a quick tests suggest that is maybe 1% slowdown for
+ the simplest `einsum("i,i->i", x, x)` case.
+
+ (It is not clear that we should guarantee precision to this extend.)
+ """
+ num = 1_000_000
+ value = 1. + np.finfo(np.float64).eps * 8196
+ res = np.einsum("i->", np.broadcast_to(np.array(value), num)) / num
+
+ # At with GROWINNER 11 decimals succeed (larger will be less)
+ assert_almost_equal(res, value, decimal=15)
diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_errstate.py b/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_errstate.py
new file mode 100644
index 0000000..b72fb65
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_errstate.py
@@ -0,0 +1,131 @@
+import sysconfig
+
+import pytest
+
+import numpy as np
+from numpy.testing import IS_WASM, assert_raises
+
+# The floating point emulation on ARM EABI systems lacking a hardware FPU is
+# known to be buggy. This is an attempt to identify these hosts. It may not
+# catch all possible cases, but it catches the known cases of gh-413 and
+# gh-15562.
+hosttype = sysconfig.get_config_var('HOST_GNU_TYPE')
+arm_softfloat = False if hosttype is None else hosttype.endswith('gnueabi')
+
+class TestErrstate:
+ @pytest.mark.skipif(IS_WASM, reason="fp errors don't work in wasm")
+ @pytest.mark.skipif(arm_softfloat,
+ reason='platform/cpu issue with FPU (gh-413,-15562)')
+ def test_invalid(self):
+ with np.errstate(all='raise', under='ignore'):
+ a = -np.arange(3)
+ # This should work
+ with np.errstate(invalid='ignore'):
+ np.sqrt(a)
+ # While this should fail!
+ with assert_raises(FloatingPointError):
+ np.sqrt(a)
+
+ @pytest.mark.skipif(IS_WASM, reason="fp errors don't work in wasm")
+ @pytest.mark.skipif(arm_softfloat,
+ reason='platform/cpu issue with FPU (gh-15562)')
+ def test_divide(self):
+ with np.errstate(all='raise', under='ignore'):
+ a = -np.arange(3)
+ # This should work
+ with np.errstate(divide='ignore'):
+ a // 0
+ # While this should fail!
+ with assert_raises(FloatingPointError):
+ a // 0
+ # As should this, see gh-15562
+ with assert_raises(FloatingPointError):
+ a // a
+
+ @pytest.mark.skipif(IS_WASM, reason="fp errors don't work in wasm")
+ @pytest.mark.skipif(arm_softfloat,
+ reason='platform/cpu issue with FPU (gh-15562)')
+ def test_errcall(self):
+ count = 0
+
+ def foo(*args):
+ nonlocal count
+ count += 1
+
+ olderrcall = np.geterrcall()
+ with np.errstate(call=foo):
+ assert np.geterrcall() is foo
+ with np.errstate(call=None):
+ assert np.geterrcall() is None
+ assert np.geterrcall() is olderrcall
+ assert count == 0
+
+ with np.errstate(call=foo, invalid="call"):
+ np.array(np.inf) - np.array(np.inf)
+
+ assert count == 1
+
+ def test_errstate_decorator(self):
+ @np.errstate(all='ignore')
+ def foo():
+ a = -np.arange(3)
+ a // 0
+
+ foo()
+
+ def test_errstate_enter_once(self):
+ errstate = np.errstate(invalid="warn")
+ with errstate:
+ pass
+
+ # The errstate context cannot be entered twice as that would not be
+ # thread-safe
+ with pytest.raises(TypeError,
+ match="Cannot enter `np.errstate` twice"):
+ with errstate:
+ pass
+
+ @pytest.mark.skipif(IS_WASM, reason="wasm doesn't support asyncio")
+ def test_asyncio_safe(self):
+ # asyncio may not always work, lets assume its fine if missing
+ # Pyodide/wasm doesn't support it. If this test makes problems,
+ # it should just be skipped liberally (or run differently).
+ asyncio = pytest.importorskip("asyncio")
+
+ @np.errstate(invalid="ignore")
+ def decorated():
+ # Decorated non-async function (it is not safe to decorate an
+ # async one)
+ assert np.geterr()["invalid"] == "ignore"
+
+ async def func1():
+ decorated()
+ await asyncio.sleep(0.1)
+ decorated()
+
+ async def func2():
+ with np.errstate(invalid="raise"):
+ assert np.geterr()["invalid"] == "raise"
+ await asyncio.sleep(0.125)
+ assert np.geterr()["invalid"] == "raise"
+
+ # for good sport, a third one with yet another state:
+ async def func3():
+ with np.errstate(invalid="print"):
+ assert np.geterr()["invalid"] == "print"
+ await asyncio.sleep(0.11)
+ assert np.geterr()["invalid"] == "print"
+
+ async def main():
+ # simply run all three function multiple times:
+ await asyncio.gather(
+ func1(), func2(), func3(), func1(), func2(), func3(),
+ func1(), func2(), func3(), func1(), func2(), func3())
+
+ loop = asyncio.new_event_loop()
+ with np.errstate(invalid="warn"):
+ asyncio.run(main())
+ assert np.geterr()["invalid"] == "warn"
+
+ assert np.geterr()["invalid"] == "warn" # the default
+ loop.close()
diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_extint128.py b/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_extint128.py
new file mode 100644
index 0000000..1a05151
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_extint128.py
@@ -0,0 +1,217 @@
+import contextlib
+import itertools
+import operator
+
+import numpy._core._multiarray_tests as mt
+import pytest
+
+import numpy as np
+from numpy.testing import assert_equal, assert_raises
+
+INT64_MAX = np.iinfo(np.int64).max
+INT64_MIN = np.iinfo(np.int64).min
+INT64_MID = 2**32
+
+# int128 is not two's complement, the sign bit is separate
+INT128_MAX = 2**128 - 1
+INT128_MIN = -INT128_MAX
+INT128_MID = 2**64
+
+INT64_VALUES = (
+ [INT64_MIN + j for j in range(20)] +
+ [INT64_MAX - j for j in range(20)] +
+ [INT64_MID + j for j in range(-20, 20)] +
+ [2 * INT64_MID + j for j in range(-20, 20)] +
+ [INT64_MID // 2 + j for j in range(-20, 20)] +
+ list(range(-70, 70))
+)
+
+INT128_VALUES = (
+ [INT128_MIN + j for j in range(20)] +
+ [INT128_MAX - j for j in range(20)] +
+ [INT128_MID + j for j in range(-20, 20)] +
+ [2 * INT128_MID + j for j in range(-20, 20)] +
+ [INT128_MID // 2 + j for j in range(-20, 20)] +
+ list(range(-70, 70)) +
+ [False] # negative zero
+)
+
+INT64_POS_VALUES = [x for x in INT64_VALUES if x > 0]
+
+
+@contextlib.contextmanager
+def exc_iter(*args):
+ """
+ Iterate over Cartesian product of *args, and if an exception is raised,
+ add information of the current iterate.
+ """
+
+ value = [None]
+
+ def iterate():
+ for v in itertools.product(*args):
+ value[0] = v
+ yield v
+
+ try:
+ yield iterate()
+ except Exception:
+ import traceback
+ msg = f"At: {repr(value[0])!r}\n{traceback.format_exc()}"
+ raise AssertionError(msg)
+
+
+def test_safe_binop():
+ # Test checked arithmetic routines
+
+ ops = [
+ (operator.add, 1),
+ (operator.sub, 2),
+ (operator.mul, 3)
+ ]
+
+ with exc_iter(ops, INT64_VALUES, INT64_VALUES) as it:
+ for xop, a, b in it:
+ pyop, op = xop
+ c = pyop(a, b)
+
+ if not (INT64_MIN <= c <= INT64_MAX):
+ assert_raises(OverflowError, mt.extint_safe_binop, a, b, op)
+ else:
+ d = mt.extint_safe_binop(a, b, op)
+ if c != d:
+ # assert_equal is slow
+ assert_equal(d, c)
+
+
+def test_to_128():
+ with exc_iter(INT64_VALUES) as it:
+ for a, in it:
+ b = mt.extint_to_128(a)
+ if a != b:
+ assert_equal(b, a)
+
+
+def test_to_64():
+ with exc_iter(INT128_VALUES) as it:
+ for a, in it:
+ if not (INT64_MIN <= a <= INT64_MAX):
+ assert_raises(OverflowError, mt.extint_to_64, a)
+ else:
+ b = mt.extint_to_64(a)
+ if a != b:
+ assert_equal(b, a)
+
+
+def test_mul_64_64():
+ with exc_iter(INT64_VALUES, INT64_VALUES) as it:
+ for a, b in it:
+ c = a * b
+ d = mt.extint_mul_64_64(a, b)
+ if c != d:
+ assert_equal(d, c)
+
+
+def test_add_128():
+ with exc_iter(INT128_VALUES, INT128_VALUES) as it:
+ for a, b in it:
+ c = a + b
+ if not (INT128_MIN <= c <= INT128_MAX):
+ assert_raises(OverflowError, mt.extint_add_128, a, b)
+ else:
+ d = mt.extint_add_128(a, b)
+ if c != d:
+ assert_equal(d, c)
+
+
+def test_sub_128():
+ with exc_iter(INT128_VALUES, INT128_VALUES) as it:
+ for a, b in it:
+ c = a - b
+ if not (INT128_MIN <= c <= INT128_MAX):
+ assert_raises(OverflowError, mt.extint_sub_128, a, b)
+ else:
+ d = mt.extint_sub_128(a, b)
+ if c != d:
+ assert_equal(d, c)
+
+
+def test_neg_128():
+ with exc_iter(INT128_VALUES) as it:
+ for a, in it:
+ b = -a
+ c = mt.extint_neg_128(a)
+ if b != c:
+ assert_equal(c, b)
+
+
+def test_shl_128():
+ with exc_iter(INT128_VALUES) as it:
+ for a, in it:
+ if a < 0:
+ b = -(((-a) << 1) & (2**128 - 1))
+ else:
+ b = (a << 1) & (2**128 - 1)
+ c = mt.extint_shl_128(a)
+ if b != c:
+ assert_equal(c, b)
+
+
+def test_shr_128():
+ with exc_iter(INT128_VALUES) as it:
+ for a, in it:
+ if a < 0:
+ b = -((-a) >> 1)
+ else:
+ b = a >> 1
+ c = mt.extint_shr_128(a)
+ if b != c:
+ assert_equal(c, b)
+
+
+def test_gt_128():
+ with exc_iter(INT128_VALUES, INT128_VALUES) as it:
+ for a, b in it:
+ c = a > b
+ d = mt.extint_gt_128(a, b)
+ if c != d:
+ assert_equal(d, c)
+
+
+@pytest.mark.slow
+def test_divmod_128_64():
+ with exc_iter(INT128_VALUES, INT64_POS_VALUES) as it:
+ for a, b in it:
+ if a >= 0:
+ c, cr = divmod(a, b)
+ else:
+ c, cr = divmod(-a, b)
+ c = -c
+ cr = -cr
+
+ d, dr = mt.extint_divmod_128_64(a, b)
+
+ if c != d or d != dr or b * d + dr != a:
+ assert_equal(d, c)
+ assert_equal(dr, cr)
+ assert_equal(b * d + dr, a)
+
+
+def test_floordiv_128_64():
+ with exc_iter(INT128_VALUES, INT64_POS_VALUES) as it:
+ for a, b in it:
+ c = a // b
+ d = mt.extint_floordiv_128_64(a, b)
+
+ if c != d:
+ assert_equal(d, c)
+
+
+def test_ceildiv_128_64():
+ with exc_iter(INT128_VALUES, INT64_POS_VALUES) as it:
+ for a, b in it:
+ c = (a + b - 1) // b
+ d = mt.extint_ceildiv_128_64(a, b)
+
+ if c != d:
+ assert_equal(d, c)
diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_function_base.py b/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_function_base.py
new file mode 100644
index 0000000..c925cf1
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_function_base.py
@@ -0,0 +1,503 @@
+import platform
+import sys
+
+import pytest
+
+import numpy as np
+from numpy import (
+ arange,
+ array,
+ dtype,
+ errstate,
+ geomspace,
+ isnan,
+ linspace,
+ logspace,
+ ndarray,
+ nextafter,
+ sqrt,
+ stack,
+)
+from numpy._core import sctypes
+from numpy._core.function_base import add_newdoc
+from numpy.testing import (
+ IS_PYPY,
+ assert_,
+ assert_allclose,
+ assert_array_equal,
+ assert_equal,
+ assert_raises,
+)
+
+
+def _is_armhf():
+ # Check if the current platform is ARMHF (32-bit ARM architecture)
+ return platform.machine().startswith('arm') and platform.architecture()[0] == '32bit'
+
+class PhysicalQuantity(float):
+ def __new__(cls, value):
+ return float.__new__(cls, value)
+
+ def __add__(self, x):
+ assert_(isinstance(x, PhysicalQuantity))
+ return PhysicalQuantity(float(x) + float(self))
+ __radd__ = __add__
+
+ def __sub__(self, x):
+ assert_(isinstance(x, PhysicalQuantity))
+ return PhysicalQuantity(float(self) - float(x))
+
+ def __rsub__(self, x):
+ assert_(isinstance(x, PhysicalQuantity))
+ return PhysicalQuantity(float(x) - float(self))
+
+ def __mul__(self, x):
+ return PhysicalQuantity(float(x) * float(self))
+ __rmul__ = __mul__
+
+ def __truediv__(self, x):
+ return PhysicalQuantity(float(self) / float(x))
+
+ def __rtruediv__(self, x):
+ return PhysicalQuantity(float(x) / float(self))
+
+
+class PhysicalQuantity2(ndarray):
+ __array_priority__ = 10
+
+
+class TestLogspace:
+
+ def test_basic(self):
+ y = logspace(0, 6)
+ assert_(len(y) == 50)
+ y = logspace(0, 6, num=100)
+ assert_(y[-1] == 10 ** 6)
+ y = logspace(0, 6, endpoint=False)
+ assert_(y[-1] < 10 ** 6)
+ y = logspace(0, 6, num=7)
+ assert_array_equal(y, [1, 10, 100, 1e3, 1e4, 1e5, 1e6])
+
+ def test_start_stop_array(self):
+ start = array([0., 1.])
+ stop = array([6., 7.])
+ t1 = logspace(start, stop, 6)
+ t2 = stack([logspace(_start, _stop, 6)
+ for _start, _stop in zip(start, stop)], axis=1)
+ assert_equal(t1, t2)
+ t3 = logspace(start, stop[0], 6)
+ t4 = stack([logspace(_start, stop[0], 6)
+ for _start in start], axis=1)
+ assert_equal(t3, t4)
+ t5 = logspace(start, stop, 6, axis=-1)
+ assert_equal(t5, t2.T)
+
+ @pytest.mark.parametrize("axis", [0, 1, -1])
+ def test_base_array(self, axis: int):
+ start = 1
+ stop = 2
+ num = 6
+ base = array([1, 2])
+ t1 = logspace(start, stop, num=num, base=base, axis=axis)
+ t2 = stack(
+ [logspace(start, stop, num=num, base=_base) for _base in base],
+ axis=(axis + 1) % t1.ndim,
+ )
+ assert_equal(t1, t2)
+
+ @pytest.mark.parametrize("axis", [0, 1, -1])
+ def test_stop_base_array(self, axis: int):
+ start = 1
+ stop = array([2, 3])
+ num = 6
+ base = array([1, 2])
+ t1 = logspace(start, stop, num=num, base=base, axis=axis)
+ t2 = stack(
+ [logspace(start, _stop, num=num, base=_base)
+ for _stop, _base in zip(stop, base)],
+ axis=(axis + 1) % t1.ndim,
+ )
+ assert_equal(t1, t2)
+
+ def test_dtype(self):
+ y = logspace(0, 6, dtype='float32')
+ assert_equal(y.dtype, dtype('float32'))
+ y = logspace(0, 6, dtype='float64')
+ assert_equal(y.dtype, dtype('float64'))
+ y = logspace(0, 6, dtype='int32')
+ assert_equal(y.dtype, dtype('int32'))
+
+ def test_physical_quantities(self):
+ a = PhysicalQuantity(1.0)
+ b = PhysicalQuantity(5.0)
+ assert_equal(logspace(a, b), logspace(1.0, 5.0))
+
+ def test_subclass(self):
+ a = array(1).view(PhysicalQuantity2)
+ b = array(7).view(PhysicalQuantity2)
+ ls = logspace(a, b)
+ assert type(ls) is PhysicalQuantity2
+ assert_equal(ls, logspace(1.0, 7.0))
+ ls = logspace(a, b, 1)
+ assert type(ls) is PhysicalQuantity2
+ assert_equal(ls, logspace(1.0, 7.0, 1))
+
+
+class TestGeomspace:
+
+ def test_basic(self):
+ y = geomspace(1, 1e6)
+ assert_(len(y) == 50)
+ y = geomspace(1, 1e6, num=100)
+ assert_(y[-1] == 10 ** 6)
+ y = geomspace(1, 1e6, endpoint=False)
+ assert_(y[-1] < 10 ** 6)
+ y = geomspace(1, 1e6, num=7)
+ assert_array_equal(y, [1, 10, 100, 1e3, 1e4, 1e5, 1e6])
+
+ y = geomspace(8, 2, num=3)
+ assert_allclose(y, [8, 4, 2])
+ assert_array_equal(y.imag, 0)
+
+ y = geomspace(-1, -100, num=3)
+ assert_array_equal(y, [-1, -10, -100])
+ assert_array_equal(y.imag, 0)
+
+ y = geomspace(-100, -1, num=3)
+ assert_array_equal(y, [-100, -10, -1])
+ assert_array_equal(y.imag, 0)
+
+ def test_boundaries_match_start_and_stop_exactly(self):
+ # make sure that the boundaries of the returned array exactly
+ # equal 'start' and 'stop' - this isn't obvious because
+ # np.exp(np.log(x)) isn't necessarily exactly equal to x
+ start = 0.3
+ stop = 20.3
+
+ y = geomspace(start, stop, num=1)
+ assert_equal(y[0], start)
+
+ y = geomspace(start, stop, num=1, endpoint=False)
+ assert_equal(y[0], start)
+
+ y = geomspace(start, stop, num=3)
+ assert_equal(y[0], start)
+ assert_equal(y[-1], stop)
+
+ y = geomspace(start, stop, num=3, endpoint=False)
+ assert_equal(y[0], start)
+
+ def test_nan_interior(self):
+ with errstate(invalid='ignore'):
+ y = geomspace(-3, 3, num=4)
+
+ assert_equal(y[0], -3.0)
+ assert_(isnan(y[1:-1]).all())
+ assert_equal(y[3], 3.0)
+
+ with errstate(invalid='ignore'):
+ y = geomspace(-3, 3, num=4, endpoint=False)
+
+ assert_equal(y[0], -3.0)
+ assert_(isnan(y[1:]).all())
+
+ def test_complex(self):
+ # Purely imaginary
+ y = geomspace(1j, 16j, num=5)
+ assert_allclose(y, [1j, 2j, 4j, 8j, 16j])
+ assert_array_equal(y.real, 0)
+
+ y = geomspace(-4j, -324j, num=5)
+ assert_allclose(y, [-4j, -12j, -36j, -108j, -324j])
+ assert_array_equal(y.real, 0)
+
+ y = geomspace(1 + 1j, 1000 + 1000j, num=4)
+ assert_allclose(y, [1 + 1j, 10 + 10j, 100 + 100j, 1000 + 1000j])
+
+ y = geomspace(-1 + 1j, -1000 + 1000j, num=4)
+ assert_allclose(y, [-1 + 1j, -10 + 10j, -100 + 100j, -1000 + 1000j])
+
+ # Logarithmic spirals
+ y = geomspace(-1, 1, num=3, dtype=complex)
+ assert_allclose(y, [-1, 1j, +1])
+
+ y = geomspace(0 + 3j, -3 + 0j, 3)
+ assert_allclose(y, [0 + 3j, -3 / sqrt(2) + 3j / sqrt(2), -3 + 0j])
+ y = geomspace(0 + 3j, 3 + 0j, 3)
+ assert_allclose(y, [0 + 3j, 3 / sqrt(2) + 3j / sqrt(2), 3 + 0j])
+ y = geomspace(-3 + 0j, 0 - 3j, 3)
+ assert_allclose(y, [-3 + 0j, -3 / sqrt(2) - 3j / sqrt(2), 0 - 3j])
+ y = geomspace(0 + 3j, -3 + 0j, 3)
+ assert_allclose(y, [0 + 3j, -3 / sqrt(2) + 3j / sqrt(2), -3 + 0j])
+ y = geomspace(-2 - 3j, 5 + 7j, 7)
+ assert_allclose(y, [-2 - 3j, -0.29058977 - 4.15771027j,
+ 2.08885354 - 4.34146838j, 4.58345529 - 3.16355218j,
+ 6.41401745 - 0.55233457j, 6.75707386 + 3.11795092j,
+ 5 + 7j])
+
+ # Type promotion should prevent the -5 from becoming a NaN
+ y = geomspace(3j, -5, 2)
+ assert_allclose(y, [3j, -5])
+ y = geomspace(-5, 3j, 2)
+ assert_allclose(y, [-5, 3j])
+
+ def test_complex_shortest_path(self):
+ # test the shortest logarithmic spiral is used, see gh-25644
+ x = 1.2 + 3.4j
+ y = np.exp(1j * (np.pi - .1)) * x
+ z = np.geomspace(x, y, 5)
+ expected = np.array([1.2 + 3.4j, -1.47384 + 3.2905616j,
+ -3.33577588 + 1.36842949j, -3.36011056 - 1.30753855j,
+ -1.53343861 - 3.26321406j])
+ np.testing.assert_array_almost_equal(z, expected)
+
+ def test_dtype(self):
+ y = geomspace(1, 1e6, dtype='float32')
+ assert_equal(y.dtype, dtype('float32'))
+ y = geomspace(1, 1e6, dtype='float64')
+ assert_equal(y.dtype, dtype('float64'))
+ y = geomspace(1, 1e6, dtype='int32')
+ assert_equal(y.dtype, dtype('int32'))
+
+ # Native types
+ y = geomspace(1, 1e6, dtype=float)
+ assert_equal(y.dtype, dtype('float64'))
+ y = geomspace(1, 1e6, dtype=complex)
+ assert_equal(y.dtype, dtype('complex128'))
+
+ def test_start_stop_array_scalar(self):
+ lim1 = array([120, 100], dtype="int8")
+ lim2 = array([-120, -100], dtype="int8")
+ lim3 = array([1200, 1000], dtype="uint16")
+ t1 = geomspace(lim1[0], lim1[1], 5)
+ t2 = geomspace(lim2[0], lim2[1], 5)
+ t3 = geomspace(lim3[0], lim3[1], 5)
+ t4 = geomspace(120.0, 100.0, 5)
+ t5 = geomspace(-120.0, -100.0, 5)
+ t6 = geomspace(1200.0, 1000.0, 5)
+
+ # t3 uses float32, t6 uses float64
+ assert_allclose(t1, t4, rtol=1e-2)
+ assert_allclose(t2, t5, rtol=1e-2)
+ assert_allclose(t3, t6, rtol=1e-5)
+
+ def test_start_stop_array(self):
+ # Try to use all special cases.
+ start = array([1.e0, 32., 1j, -4j, 1 + 1j, -1])
+ stop = array([1.e4, 2., 16j, -324j, 10000 + 10000j, 1])
+ t1 = geomspace(start, stop, 5)
+ t2 = stack([geomspace(_start, _stop, 5)
+ for _start, _stop in zip(start, stop)], axis=1)
+ assert_equal(t1, t2)
+ t3 = geomspace(start, stop[0], 5)
+ t4 = stack([geomspace(_start, stop[0], 5)
+ for _start in start], axis=1)
+ assert_equal(t3, t4)
+ t5 = geomspace(start, stop, 5, axis=-1)
+ assert_equal(t5, t2.T)
+
+ def test_physical_quantities(self):
+ a = PhysicalQuantity(1.0)
+ b = PhysicalQuantity(5.0)
+ assert_equal(geomspace(a, b), geomspace(1.0, 5.0))
+
+ def test_subclass(self):
+ a = array(1).view(PhysicalQuantity2)
+ b = array(7).view(PhysicalQuantity2)
+ gs = geomspace(a, b)
+ assert type(gs) is PhysicalQuantity2
+ assert_equal(gs, geomspace(1.0, 7.0))
+ gs = geomspace(a, b, 1)
+ assert type(gs) is PhysicalQuantity2
+ assert_equal(gs, geomspace(1.0, 7.0, 1))
+
+ def test_bounds(self):
+ assert_raises(ValueError, geomspace, 0, 10)
+ assert_raises(ValueError, geomspace, 10, 0)
+ assert_raises(ValueError, geomspace, 0, 0)
+
+
+class TestLinspace:
+
+ def test_basic(self):
+ y = linspace(0, 10)
+ assert_(len(y) == 50)
+ y = linspace(2, 10, num=100)
+ assert_(y[-1] == 10)
+ y = linspace(2, 10, endpoint=False)
+ assert_(y[-1] < 10)
+ assert_raises(ValueError, linspace, 0, 10, num=-1)
+
+ def test_corner(self):
+ y = list(linspace(0, 1, 1))
+ assert_(y == [0.0], y)
+ assert_raises(TypeError, linspace, 0, 1, num=2.5)
+
+ def test_type(self):
+ t1 = linspace(0, 1, 0).dtype
+ t2 = linspace(0, 1, 1).dtype
+ t3 = linspace(0, 1, 2).dtype
+ assert_equal(t1, t2)
+ assert_equal(t2, t3)
+
+ def test_dtype(self):
+ y = linspace(0, 6, dtype='float32')
+ assert_equal(y.dtype, dtype('float32'))
+ y = linspace(0, 6, dtype='float64')
+ assert_equal(y.dtype, dtype('float64'))
+ y = linspace(0, 6, dtype='int32')
+ assert_equal(y.dtype, dtype('int32'))
+
+ def test_start_stop_array_scalar(self):
+ lim1 = array([-120, 100], dtype="int8")
+ lim2 = array([120, -100], dtype="int8")
+ lim3 = array([1200, 1000], dtype="uint16")
+ t1 = linspace(lim1[0], lim1[1], 5)
+ t2 = linspace(lim2[0], lim2[1], 5)
+ t3 = linspace(lim3[0], lim3[1], 5)
+ t4 = linspace(-120.0, 100.0, 5)
+ t5 = linspace(120.0, -100.0, 5)
+ t6 = linspace(1200.0, 1000.0, 5)
+ assert_equal(t1, t4)
+ assert_equal(t2, t5)
+ assert_equal(t3, t6)
+
+ def test_start_stop_array(self):
+ start = array([-120, 120], dtype="int8")
+ stop = array([100, -100], dtype="int8")
+ t1 = linspace(start, stop, 5)
+ t2 = stack([linspace(_start, _stop, 5)
+ for _start, _stop in zip(start, stop)], axis=1)
+ assert_equal(t1, t2)
+ t3 = linspace(start, stop[0], 5)
+ t4 = stack([linspace(_start, stop[0], 5)
+ for _start in start], axis=1)
+ assert_equal(t3, t4)
+ t5 = linspace(start, stop, 5, axis=-1)
+ assert_equal(t5, t2.T)
+
+ def test_complex(self):
+ lim1 = linspace(1 + 2j, 3 + 4j, 5)
+ t1 = array([1.0 + 2.j, 1.5 + 2.5j, 2.0 + 3j, 2.5 + 3.5j, 3.0 + 4j])
+ lim2 = linspace(1j, 10, 5)
+ t2 = array([0.0 + 1.j, 2.5 + 0.75j, 5.0 + 0.5j, 7.5 + 0.25j, 10.0 + 0j])
+ assert_equal(lim1, t1)
+ assert_equal(lim2, t2)
+
+ def test_physical_quantities(self):
+ a = PhysicalQuantity(0.0)
+ b = PhysicalQuantity(1.0)
+ assert_equal(linspace(a, b), linspace(0.0, 1.0))
+
+ def test_subclass(self):
+ a = array(0).view(PhysicalQuantity2)
+ b = array(1).view(PhysicalQuantity2)
+ ls = linspace(a, b)
+ assert type(ls) is PhysicalQuantity2
+ assert_equal(ls, linspace(0.0, 1.0))
+ ls = linspace(a, b, 1)
+ assert type(ls) is PhysicalQuantity2
+ assert_equal(ls, linspace(0.0, 1.0, 1))
+
+ def test_array_interface(self):
+ # Regression test for https://github.com/numpy/numpy/pull/6659
+ # Ensure that start/stop can be objects that implement
+ # __array_interface__ and are convertible to numeric scalars
+
+ class Arrayish:
+ """
+ A generic object that supports the __array_interface__ and hence
+ can in principle be converted to a numeric scalar, but is not
+ otherwise recognized as numeric, but also happens to support
+ multiplication by floats.
+
+ Data should be an object that implements the buffer interface,
+ and contains at least 4 bytes.
+ """
+
+ def __init__(self, data):
+ self._data = data
+
+ @property
+ def __array_interface__(self):
+ return {'shape': (), 'typestr': '<i4', 'data': self._data,
+ 'version': 3}
+
+ def __mul__(self, other):
+ # For the purposes of this test any multiplication is an
+ # identity operation :)
+ return self
+
+ one = Arrayish(array(1, dtype='<i4'))
+ five = Arrayish(array(5, dtype='<i4'))
+
+ assert_equal(linspace(one, five), linspace(1, 5))
+
+ # even when not explicitly enabled via FPSCR register
+ @pytest.mark.xfail(_is_armhf(),
+ reason="ARMHF/AArch32 platforms seem to FTZ subnormals")
+ def test_denormal_numbers(self):
+ # Regression test for gh-5437. Will probably fail when compiled
+ # with ICC, which flushes denormals to zero
+ for ftype in sctypes['float']:
+ stop = nextafter(ftype(0), ftype(1)) * 5 # A denormal number
+ assert_(any(linspace(0, stop, 10, endpoint=False, dtype=ftype)))
+
+ def test_equivalent_to_arange(self):
+ for j in range(1000):
+ assert_equal(linspace(0, j, j + 1, dtype=int),
+ arange(j + 1, dtype=int))
+
+ def test_retstep(self):
+ for num in [0, 1, 2]:
+ for ept in [False, True]:
+ y = linspace(0, 1, num, endpoint=ept, retstep=True)
+ assert isinstance(y, tuple) and len(y) == 2
+ if num == 2:
+ y0_expect = [0.0, 1.0] if ept else [0.0, 0.5]
+ assert_array_equal(y[0], y0_expect)
+ assert_equal(y[1], y0_expect[1])
+ elif num == 1 and not ept:
+ assert_array_equal(y[0], [0.0])
+ assert_equal(y[1], 1.0)
+ else:
+ assert_array_equal(y[0], [0.0][:num])
+ assert isnan(y[1])
+
+ def test_object(self):
+ start = array(1, dtype='O')
+ stop = array(2, dtype='O')
+ y = linspace(start, stop, 3)
+ assert_array_equal(y, array([1., 1.5, 2.]))
+
+ def test_round_negative(self):
+ y = linspace(-1, 3, num=8, dtype=int)
+ t = array([-1, -1, 0, 0, 1, 1, 2, 3], dtype=int)
+ assert_array_equal(y, t)
+
+ def test_any_step_zero_and_not_mult_inplace(self):
+ # any_step_zero is True, _mult_inplace is False
+ start = array([0.0, 1.0])
+ stop = array([2.0, 1.0])
+ y = linspace(start, stop, 3)
+ assert_array_equal(y, array([[0.0, 1.0], [1.0, 1.0], [2.0, 1.0]]))
+
+
+class TestAdd_newdoc:
+
+ @pytest.mark.skipif(sys.flags.optimize == 2, reason="Python running -OO")
+ @pytest.mark.xfail(IS_PYPY, reason="PyPy does not modify tp_doc")
+ def test_add_doc(self):
+ # test that np.add_newdoc did attach a docstring successfully:
+ tgt = "Current flat index into the array."
+ assert_equal(np._core.flatiter.index.__doc__[:len(tgt)], tgt)
+ assert_(len(np._core.ufunc.identity.__doc__) > 300)
+ assert_(len(np.lib._index_tricks_impl.mgrid.__doc__) > 300)
+
+ @pytest.mark.skipif(sys.flags.optimize == 2, reason="Python running -OO")
+ def test_errors_are_ignored(self):
+ prev_doc = np._core.flatiter.index.__doc__
+ # nothing changed, but error ignored, this should probably
+ # give a warning (or even error) in the future.
+ add_newdoc("numpy._core", "flatiter", ("index", "bad docstring"))
+ assert prev_doc == np._core.flatiter.index.__doc__
diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_getlimits.py b/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_getlimits.py
new file mode 100644
index 0000000..721c6ac
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_getlimits.py
@@ -0,0 +1,205 @@
+""" Test functions for limits module.
+
+"""
+import types
+import warnings
+
+import pytest
+
+import numpy as np
+from numpy import double, half, longdouble, single
+from numpy._core import finfo, iinfo
+from numpy._core.getlimits import _discovered_machar, _float_ma
+from numpy.testing import assert_, assert_equal, assert_raises
+
+##################################################
+
+class TestPythonFloat:
+ def test_singleton(self):
+ ftype = finfo(float)
+ ftype2 = finfo(float)
+ assert_equal(id(ftype), id(ftype2))
+
+class TestHalf:
+ def test_singleton(self):
+ ftype = finfo(half)
+ ftype2 = finfo(half)
+ assert_equal(id(ftype), id(ftype2))
+
+class TestSingle:
+ def test_singleton(self):
+ ftype = finfo(single)
+ ftype2 = finfo(single)
+ assert_equal(id(ftype), id(ftype2))
+
+class TestDouble:
+ def test_singleton(self):
+ ftype = finfo(double)
+ ftype2 = finfo(double)
+ assert_equal(id(ftype), id(ftype2))
+
+class TestLongdouble:
+ def test_singleton(self):
+ ftype = finfo(longdouble)
+ ftype2 = finfo(longdouble)
+ assert_equal(id(ftype), id(ftype2))
+
+def assert_finfo_equal(f1, f2):
+ # assert two finfo instances have the same attributes
+ for attr in ('bits', 'eps', 'epsneg', 'iexp', 'machep',
+ 'max', 'maxexp', 'min', 'minexp', 'negep', 'nexp',
+ 'nmant', 'precision', 'resolution', 'tiny',
+ 'smallest_normal', 'smallest_subnormal'):
+ assert_equal(getattr(f1, attr), getattr(f2, attr),
+ f'finfo instances {f1} and {f2} differ on {attr}')
+
+def assert_iinfo_equal(i1, i2):
+ # assert two iinfo instances have the same attributes
+ for attr in ('bits', 'min', 'max'):
+ assert_equal(getattr(i1, attr), getattr(i2, attr),
+ f'iinfo instances {i1} and {i2} differ on {attr}')
+
+class TestFinfo:
+ def test_basic(self):
+ dts = list(zip(['f2', 'f4', 'f8', 'c8', 'c16'],
+ [np.float16, np.float32, np.float64, np.complex64,
+ np.complex128]))
+ for dt1, dt2 in dts:
+ assert_finfo_equal(finfo(dt1), finfo(dt2))
+
+ assert_raises(ValueError, finfo, 'i4')
+
+ def test_regression_gh23108(self):
+ # np.float32(1.0) and np.float64(1.0) have the same hash and are
+ # equal under the == operator
+ f1 = np.finfo(np.float32(1.0))
+ f2 = np.finfo(np.float64(1.0))
+ assert f1 != f2
+
+ def test_regression_gh23867(self):
+ class NonHashableWithDtype:
+ __hash__ = None
+ dtype = np.dtype('float32')
+
+ x = NonHashableWithDtype()
+ assert np.finfo(x) == np.finfo(x.dtype)
+
+
+class TestIinfo:
+ def test_basic(self):
+ dts = list(zip(['i1', 'i2', 'i4', 'i8',
+ 'u1', 'u2', 'u4', 'u8'],
+ [np.int8, np.int16, np.int32, np.int64,
+ np.uint8, np.uint16, np.uint32, np.uint64]))
+ for dt1, dt2 in dts:
+ assert_iinfo_equal(iinfo(dt1), iinfo(dt2))
+
+ assert_raises(ValueError, iinfo, 'f4')
+
+ def test_unsigned_max(self):
+ types = np._core.sctypes['uint']
+ for T in types:
+ with np.errstate(over="ignore"):
+ max_calculated = T(0) - T(1)
+ assert_equal(iinfo(T).max, max_calculated)
+
+class TestRepr:
+ def test_iinfo_repr(self):
+ expected = "iinfo(min=-32768, max=32767, dtype=int16)"
+ assert_equal(repr(np.iinfo(np.int16)), expected)
+
+ def test_finfo_repr(self):
+ expected = "finfo(resolution=1e-06, min=-3.4028235e+38,"\
+ " max=3.4028235e+38, dtype=float32)"
+ assert_equal(repr(np.finfo(np.float32)), expected)
+
+
+def test_instances():
+ # Test the finfo and iinfo results on numeric instances agree with
+ # the results on the corresponding types
+
+ for c in [int, np.int16, np.int32, np.int64]:
+ class_iinfo = iinfo(c)
+ instance_iinfo = iinfo(c(12))
+
+ assert_iinfo_equal(class_iinfo, instance_iinfo)
+
+ for c in [float, np.float16, np.float32, np.float64]:
+ class_finfo = finfo(c)
+ instance_finfo = finfo(c(1.2))
+ assert_finfo_equal(class_finfo, instance_finfo)
+
+ with pytest.raises(ValueError):
+ iinfo(10.)
+
+ with pytest.raises(ValueError):
+ iinfo('hi')
+
+ with pytest.raises(ValueError):
+ finfo(np.int64(1))
+
+
+def assert_ma_equal(discovered, ma_like):
+ # Check MachAr-like objects same as calculated MachAr instances
+ for key, value in discovered.__dict__.items():
+ assert_equal(value, getattr(ma_like, key))
+ if hasattr(value, 'shape'):
+ assert_equal(value.shape, getattr(ma_like, key).shape)
+ assert_equal(value.dtype, getattr(ma_like, key).dtype)
+
+
+def test_known_types():
+ # Test we are correctly compiling parameters for known types
+ for ftype, ma_like in ((np.float16, _float_ma[16]),
+ (np.float32, _float_ma[32]),
+ (np.float64, _float_ma[64])):
+ assert_ma_equal(_discovered_machar(ftype), ma_like)
+ # Suppress warning for broken discovery of double double on PPC
+ with np.errstate(all='ignore'):
+ ld_ma = _discovered_machar(np.longdouble)
+ bytes = np.dtype(np.longdouble).itemsize
+ if (ld_ma.it, ld_ma.maxexp) == (63, 16384) and bytes in (12, 16):
+ # 80-bit extended precision
+ assert_ma_equal(ld_ma, _float_ma[80])
+ elif (ld_ma.it, ld_ma.maxexp) == (112, 16384) and bytes == 16:
+ # IEE 754 128-bit
+ assert_ma_equal(ld_ma, _float_ma[128])
+
+
+def test_subnormal_warning():
+ """Test that the subnormal is zero warning is not being raised."""
+ with np.errstate(all='ignore'):
+ ld_ma = _discovered_machar(np.longdouble)
+ bytes = np.dtype(np.longdouble).itemsize
+ with warnings.catch_warnings(record=True) as w:
+ warnings.simplefilter('always')
+ if (ld_ma.it, ld_ma.maxexp) == (63, 16384) and bytes in (12, 16):
+ # 80-bit extended precision
+ ld_ma.smallest_subnormal
+ assert len(w) == 0
+ elif (ld_ma.it, ld_ma.maxexp) == (112, 16384) and bytes == 16:
+ # IEE 754 128-bit
+ ld_ma.smallest_subnormal
+ assert len(w) == 0
+ else:
+ # Double double
+ ld_ma.smallest_subnormal
+ # This test may fail on some platforms
+ assert len(w) == 0
+
+
+def test_plausible_finfo():
+ # Assert that finfo returns reasonable results for all types
+ for ftype in np._core.sctypes['float'] + np._core.sctypes['complex']:
+ info = np.finfo(ftype)
+ assert_(info.nmant > 1)
+ assert_(info.minexp < -1)
+ assert_(info.maxexp > 1)
+
+
+class TestRuntimeSubscriptable:
+ def test_finfo_generic(self):
+ assert isinstance(np.finfo[np.float64], types.GenericAlias)
+
+ def test_iinfo_generic(self):
+ assert isinstance(np.iinfo[np.int_], types.GenericAlias)
diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_half.py b/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_half.py
new file mode 100644
index 0000000..68f17b2
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_half.py
@@ -0,0 +1,568 @@
+import platform
+
+import pytest
+
+import numpy as np
+from numpy import float16, float32, float64, uint16
+from numpy.testing import IS_WASM, assert_, assert_equal
+
+
+def assert_raises_fpe(strmatch, callable, *args, **kwargs):
+ try:
+ callable(*args, **kwargs)
+ except FloatingPointError as exc:
+ assert_(str(exc).find(strmatch) >= 0,
+ f"Did not raise floating point {strmatch} error")
+ else:
+ assert_(False,
+ f"Did not raise floating point {strmatch} error")
+
+class TestHalf:
+ def setup_method(self):
+ # An array of all possible float16 values
+ self.all_f16 = np.arange(0x10000, dtype=uint16)
+ self.all_f16.dtype = float16
+
+ # NaN value can cause an invalid FP exception if HW is being used
+ with np.errstate(invalid='ignore'):
+ self.all_f32 = np.array(self.all_f16, dtype=float32)
+ self.all_f64 = np.array(self.all_f16, dtype=float64)
+
+ # An array of all non-NaN float16 values, in sorted order
+ self.nonan_f16 = np.concatenate(
+ (np.arange(0xfc00, 0x7fff, -1, dtype=uint16),
+ np.arange(0x0000, 0x7c01, 1, dtype=uint16)))
+ self.nonan_f16.dtype = float16
+ self.nonan_f32 = np.array(self.nonan_f16, dtype=float32)
+ self.nonan_f64 = np.array(self.nonan_f16, dtype=float64)
+
+ # An array of all finite float16 values, in sorted order
+ self.finite_f16 = self.nonan_f16[1:-1]
+ self.finite_f32 = self.nonan_f32[1:-1]
+ self.finite_f64 = self.nonan_f64[1:-1]
+
+ def test_half_conversions(self):
+ """Checks that all 16-bit values survive conversion
+ to/from 32-bit and 64-bit float"""
+ # Because the underlying routines preserve the NaN bits, every
+ # value is preserved when converting to/from other floats.
+
+ # Convert from float32 back to float16
+ with np.errstate(invalid='ignore'):
+ b = np.array(self.all_f32, dtype=float16)
+ # avoid testing NaNs due to differing bit patterns in Q/S NaNs
+ b_nn = b == b
+ assert_equal(self.all_f16[b_nn].view(dtype=uint16),
+ b[b_nn].view(dtype=uint16))
+
+ # Convert from float64 back to float16
+ with np.errstate(invalid='ignore'):
+ b = np.array(self.all_f64, dtype=float16)
+ b_nn = b == b
+ assert_equal(self.all_f16[b_nn].view(dtype=uint16),
+ b[b_nn].view(dtype=uint16))
+
+ # Convert float16 to longdouble and back
+ # This doesn't necessarily preserve the extra NaN bits,
+ # so exclude NaNs.
+ a_ld = np.array(self.nonan_f16, dtype=np.longdouble)
+ b = np.array(a_ld, dtype=float16)
+ assert_equal(self.nonan_f16.view(dtype=uint16),
+ b.view(dtype=uint16))
+
+ # Check the range for which all integers can be represented
+ i_int = np.arange(-2048, 2049)
+ i_f16 = np.array(i_int, dtype=float16)
+ j = np.array(i_f16, dtype=int)
+ assert_equal(i_int, j)
+
+ @pytest.mark.parametrize("string_dt", ["S", "U"])
+ def test_half_conversion_to_string(self, string_dt):
+ # Currently uses S/U32 (which is sufficient for float32)
+ expected_dt = np.dtype(f"{string_dt}32")
+ assert np.promote_types(np.float16, string_dt) == expected_dt
+ assert np.promote_types(string_dt, np.float16) == expected_dt
+
+ arr = np.ones(3, dtype=np.float16).astype(string_dt)
+ assert arr.dtype == expected_dt
+
+ @pytest.mark.parametrize("string_dt", ["S", "U"])
+ def test_half_conversion_from_string(self, string_dt):
+ string = np.array("3.1416", dtype=string_dt)
+ assert string.astype(np.float16) == np.array(3.1416, dtype=np.float16)
+
+ @pytest.mark.parametrize("offset", [None, "up", "down"])
+ @pytest.mark.parametrize("shift", [None, "up", "down"])
+ @pytest.mark.parametrize("float_t", [np.float32, np.float64])
+ def test_half_conversion_rounding(self, float_t, shift, offset):
+ # Assumes that round to even is used during casting.
+ max_pattern = np.float16(np.finfo(np.float16).max).view(np.uint16)
+
+ # Test all (positive) finite numbers, denormals are most interesting
+ # however:
+ f16s_patterns = np.arange(0, max_pattern + 1, dtype=np.uint16)
+ f16s_float = f16s_patterns.view(np.float16).astype(float_t)
+
+ # Shift the values by half a bit up or a down (or do not shift),
+ if shift == "up":
+ f16s_float = 0.5 * (f16s_float[:-1] + f16s_float[1:])[1:]
+ elif shift == "down":
+ f16s_float = 0.5 * (f16s_float[:-1] + f16s_float[1:])[:-1]
+ else:
+ f16s_float = f16s_float[1:-1]
+
+ # Increase the float by a minimal value:
+ if offset == "up":
+ f16s_float = np.nextafter(f16s_float, float_t(np.inf))
+ elif offset == "down":
+ f16s_float = np.nextafter(f16s_float, float_t(-np.inf))
+
+ # Convert back to float16 and its bit pattern:
+ res_patterns = f16s_float.astype(np.float16).view(np.uint16)
+
+ # The above calculation tries the original values, or the exact
+ # midpoints between the float16 values. It then further offsets them
+ # by as little as possible. If no offset occurs, "round to even"
+ # logic will be necessary, an arbitrarily small offset should cause
+ # normal up/down rounding always.
+
+ # Calculate the expected pattern:
+ cmp_patterns = f16s_patterns[1:-1].copy()
+
+ if shift == "down" and offset != "up":
+ shift_pattern = -1
+ elif shift == "up" and offset != "down":
+ shift_pattern = 1
+ else:
+ # There cannot be a shift, either shift is None, so all rounding
+ # will go back to original, or shift is reduced by offset too much.
+ shift_pattern = 0
+
+ # If rounding occurs, is it normal rounding or round to even?
+ if offset is None:
+ # Round to even occurs, modify only non-even, cast to allow + (-1)
+ cmp_patterns[0::2].view(np.int16)[...] += shift_pattern
+ else:
+ cmp_patterns.view(np.int16)[...] += shift_pattern
+
+ assert_equal(res_patterns, cmp_patterns)
+
+ @pytest.mark.parametrize(["float_t", "uint_t", "bits"],
+ [(np.float32, np.uint32, 23),
+ (np.float64, np.uint64, 52)])
+ def test_half_conversion_denormal_round_even(self, float_t, uint_t, bits):
+ # Test specifically that all bits are considered when deciding
+ # whether round to even should occur (i.e. no bits are lost at the
+ # end. Compare also gh-12721. The most bits can get lost for the
+ # smallest denormal:
+ smallest_value = np.uint16(1).view(np.float16).astype(float_t)
+ assert smallest_value == 2**-24
+
+ # Will be rounded to zero based on round to even rule:
+ rounded_to_zero = smallest_value / float_t(2)
+ assert rounded_to_zero.astype(np.float16) == 0
+
+ # The significand will be all 0 for the float_t, test that we do not
+ # lose the lower ones of these:
+ for i in range(bits):
+ # slightly increasing the value should make it round up:
+ larger_pattern = rounded_to_zero.view(uint_t) | uint_t(1 << i)
+ larger_value = larger_pattern.view(float_t)
+ assert larger_value.astype(np.float16) == smallest_value
+
+ def test_nans_infs(self):
+ with np.errstate(all='ignore'):
+ # Check some of the ufuncs
+ assert_equal(np.isnan(self.all_f16), np.isnan(self.all_f32))
+ assert_equal(np.isinf(self.all_f16), np.isinf(self.all_f32))
+ assert_equal(np.isfinite(self.all_f16), np.isfinite(self.all_f32))
+ assert_equal(np.signbit(self.all_f16), np.signbit(self.all_f32))
+ assert_equal(np.spacing(float16(65504)), np.inf)
+
+ # Check comparisons of all values with NaN
+ nan = float16(np.nan)
+
+ assert_(not (self.all_f16 == nan).any())
+ assert_(not (nan == self.all_f16).any())
+
+ assert_((self.all_f16 != nan).all())
+ assert_((nan != self.all_f16).all())
+
+ assert_(not (self.all_f16 < nan).any())
+ assert_(not (nan < self.all_f16).any())
+
+ assert_(not (self.all_f16 <= nan).any())
+ assert_(not (nan <= self.all_f16).any())
+
+ assert_(not (self.all_f16 > nan).any())
+ assert_(not (nan > self.all_f16).any())
+
+ assert_(not (self.all_f16 >= nan).any())
+ assert_(not (nan >= self.all_f16).any())
+
+ def test_half_values(self):
+ """Confirms a small number of known half values"""
+ a = np.array([1.0, -1.0,
+ 2.0, -2.0,
+ 0.0999755859375, 0.333251953125, # 1/10, 1/3
+ 65504, -65504, # Maximum magnitude
+ 2.0**(-14), -2.0**(-14), # Minimum normal
+ 2.0**(-24), -2.0**(-24), # Minimum subnormal
+ 0, -1 / 1e1000, # Signed zeros
+ np.inf, -np.inf])
+ b = np.array([0x3c00, 0xbc00,
+ 0x4000, 0xc000,
+ 0x2e66, 0x3555,
+ 0x7bff, 0xfbff,
+ 0x0400, 0x8400,
+ 0x0001, 0x8001,
+ 0x0000, 0x8000,
+ 0x7c00, 0xfc00], dtype=uint16)
+ b.dtype = float16
+ assert_equal(a, b)
+
+ def test_half_rounding(self):
+ """Checks that rounding when converting to half is correct"""
+ a = np.array([2.0**-25 + 2.0**-35, # Rounds to minimum subnormal
+ 2.0**-25, # Underflows to zero (nearest even mode)
+ 2.0**-26, # Underflows to zero
+ 1.0 + 2.0**-11 + 2.0**-16, # rounds to 1.0+2**(-10)
+ 1.0 + 2.0**-11, # rounds to 1.0 (nearest even mode)
+ 1.0 + 2.0**-12, # rounds to 1.0
+ 65519, # rounds to 65504
+ 65520], # rounds to inf
+ dtype=float64)
+ rounded = [2.0**-24,
+ 0.0,
+ 0.0,
+ 1.0 + 2.0**(-10),
+ 1.0,
+ 1.0,
+ 65504,
+ np.inf]
+
+ # Check float64->float16 rounding
+ with np.errstate(over="ignore"):
+ b = np.array(a, dtype=float16)
+ assert_equal(b, rounded)
+
+ # Check float32->float16 rounding
+ a = np.array(a, dtype=float32)
+ with np.errstate(over="ignore"):
+ b = np.array(a, dtype=float16)
+ assert_equal(b, rounded)
+
+ def test_half_correctness(self):
+ """Take every finite float16, and check the casting functions with
+ a manual conversion."""
+
+ # Create an array of all finite float16s
+ a_bits = self.finite_f16.view(dtype=uint16)
+
+ # Convert to 64-bit float manually
+ a_sgn = (-1.0)**((a_bits & 0x8000) >> 15)
+ a_exp = np.array((a_bits & 0x7c00) >> 10, dtype=np.int32) - 15
+ a_man = (a_bits & 0x03ff) * 2.0**(-10)
+ # Implicit bit of normalized floats
+ a_man[a_exp != -15] += 1
+ # Denormalized exponent is -14
+ a_exp[a_exp == -15] = -14
+
+ a_manual = a_sgn * a_man * 2.0**a_exp
+
+ a32_fail = np.nonzero(self.finite_f32 != a_manual)[0]
+ if len(a32_fail) != 0:
+ bad_index = a32_fail[0]
+ assert_equal(self.finite_f32, a_manual,
+ "First non-equal is half value 0x%x -> %g != %g" %
+ (a_bits[bad_index],
+ self.finite_f32[bad_index],
+ a_manual[bad_index]))
+
+ a64_fail = np.nonzero(self.finite_f64 != a_manual)[0]
+ if len(a64_fail) != 0:
+ bad_index = a64_fail[0]
+ assert_equal(self.finite_f64, a_manual,
+ "First non-equal is half value 0x%x -> %g != %g" %
+ (a_bits[bad_index],
+ self.finite_f64[bad_index],
+ a_manual[bad_index]))
+
+ def test_half_ordering(self):
+ """Make sure comparisons are working right"""
+
+ # All non-NaN float16 values in reverse order
+ a = self.nonan_f16[::-1].copy()
+
+ # 32-bit float copy
+ b = np.array(a, dtype=float32)
+
+ # Should sort the same
+ a.sort()
+ b.sort()
+ assert_equal(a, b)
+
+ # Comparisons should work
+ assert_((a[:-1] <= a[1:]).all())
+ assert_(not (a[:-1] > a[1:]).any())
+ assert_((a[1:] >= a[:-1]).all())
+ assert_(not (a[1:] < a[:-1]).any())
+ # All != except for +/-0
+ assert_equal(np.nonzero(a[:-1] < a[1:])[0].size, a.size - 2)
+ assert_equal(np.nonzero(a[1:] > a[:-1])[0].size, a.size - 2)
+
+ def test_half_funcs(self):
+ """Test the various ArrFuncs"""
+
+ # fill
+ assert_equal(np.arange(10, dtype=float16),
+ np.arange(10, dtype=float32))
+
+ # fillwithscalar
+ a = np.zeros((5,), dtype=float16)
+ a.fill(1)
+ assert_equal(a, np.ones((5,), dtype=float16))
+
+ # nonzero and copyswap
+ a = np.array([0, 0, -1, -1 / 1e20, 0, 2.0**-24, 7.629e-6], dtype=float16)
+ assert_equal(a.nonzero()[0],
+ [2, 5, 6])
+ a = a.byteswap()
+ a = a.view(a.dtype.newbyteorder())
+ assert_equal(a.nonzero()[0],
+ [2, 5, 6])
+
+ # dot
+ a = np.arange(0, 10, 0.5, dtype=float16)
+ b = np.ones((20,), dtype=float16)
+ assert_equal(np.dot(a, b),
+ 95)
+
+ # argmax
+ a = np.array([0, -np.inf, -2, 0.5, 12.55, 7.3, 2.1, 12.4], dtype=float16)
+ assert_equal(a.argmax(),
+ 4)
+ a = np.array([0, -np.inf, -2, np.inf, 12.55, np.nan, 2.1, 12.4], dtype=float16)
+ assert_equal(a.argmax(),
+ 5)
+
+ # getitem
+ a = np.arange(10, dtype=float16)
+ for i in range(10):
+ assert_equal(a.item(i), i)
+
+ def test_spacing_nextafter(self):
+ """Test np.spacing and np.nextafter"""
+ # All non-negative finite #'s
+ a = np.arange(0x7c00, dtype=uint16)
+ hinf = np.array((np.inf,), dtype=float16)
+ hnan = np.array((np.nan,), dtype=float16)
+ a_f16 = a.view(dtype=float16)
+
+ assert_equal(np.spacing(a_f16[:-1]), a_f16[1:] - a_f16[:-1])
+
+ assert_equal(np.nextafter(a_f16[:-1], hinf), a_f16[1:])
+ assert_equal(np.nextafter(a_f16[0], -hinf), -a_f16[1])
+ assert_equal(np.nextafter(a_f16[1:], -hinf), a_f16[:-1])
+
+ assert_equal(np.nextafter(hinf, a_f16), a_f16[-1])
+ assert_equal(np.nextafter(-hinf, a_f16), -a_f16[-1])
+
+ assert_equal(np.nextafter(hinf, hinf), hinf)
+ assert_equal(np.nextafter(hinf, -hinf), a_f16[-1])
+ assert_equal(np.nextafter(-hinf, hinf), -a_f16[-1])
+ assert_equal(np.nextafter(-hinf, -hinf), -hinf)
+
+ assert_equal(np.nextafter(a_f16, hnan), hnan[0])
+ assert_equal(np.nextafter(hnan, a_f16), hnan[0])
+
+ assert_equal(np.nextafter(hnan, hnan), hnan)
+ assert_equal(np.nextafter(hinf, hnan), hnan)
+ assert_equal(np.nextafter(hnan, hinf), hnan)
+
+ # switch to negatives
+ a |= 0x8000
+
+ assert_equal(np.spacing(a_f16[0]), np.spacing(a_f16[1]))
+ assert_equal(np.spacing(a_f16[1:]), a_f16[:-1] - a_f16[1:])
+
+ assert_equal(np.nextafter(a_f16[0], hinf), -a_f16[1])
+ assert_equal(np.nextafter(a_f16[1:], hinf), a_f16[:-1])
+ assert_equal(np.nextafter(a_f16[:-1], -hinf), a_f16[1:])
+
+ assert_equal(np.nextafter(hinf, a_f16), -a_f16[-1])
+ assert_equal(np.nextafter(-hinf, a_f16), a_f16[-1])
+
+ assert_equal(np.nextafter(a_f16, hnan), hnan[0])
+ assert_equal(np.nextafter(hnan, a_f16), hnan[0])
+
+ def test_half_ufuncs(self):
+ """Test the various ufuncs"""
+
+ a = np.array([0, 1, 2, 4, 2], dtype=float16)
+ b = np.array([-2, 5, 1, 4, 3], dtype=float16)
+ c = np.array([0, -1, -np.inf, np.nan, 6], dtype=float16)
+
+ assert_equal(np.add(a, b), [-2, 6, 3, 8, 5])
+ assert_equal(np.subtract(a, b), [2, -4, 1, 0, -1])
+ assert_equal(np.multiply(a, b), [0, 5, 2, 16, 6])
+ assert_equal(np.divide(a, b), [0, 0.199951171875, 2, 1, 0.66650390625])
+
+ assert_equal(np.equal(a, b), [False, False, False, True, False])
+ assert_equal(np.not_equal(a, b), [True, True, True, False, True])
+ assert_equal(np.less(a, b), [False, True, False, False, True])
+ assert_equal(np.less_equal(a, b), [False, True, False, True, True])
+ assert_equal(np.greater(a, b), [True, False, True, False, False])
+ assert_equal(np.greater_equal(a, b), [True, False, True, True, False])
+ assert_equal(np.logical_and(a, b), [False, True, True, True, True])
+ assert_equal(np.logical_or(a, b), [True, True, True, True, True])
+ assert_equal(np.logical_xor(a, b), [True, False, False, False, False])
+ assert_equal(np.logical_not(a), [True, False, False, False, False])
+
+ assert_equal(np.isnan(c), [False, False, False, True, False])
+ assert_equal(np.isinf(c), [False, False, True, False, False])
+ assert_equal(np.isfinite(c), [True, True, False, False, True])
+ assert_equal(np.signbit(b), [True, False, False, False, False])
+
+ assert_equal(np.copysign(b, a), [2, 5, 1, 4, 3])
+
+ assert_equal(np.maximum(a, b), [0, 5, 2, 4, 3])
+
+ x = np.maximum(b, c)
+ assert_(np.isnan(x[3]))
+ x[3] = 0
+ assert_equal(x, [0, 5, 1, 0, 6])
+
+ assert_equal(np.minimum(a, b), [-2, 1, 1, 4, 2])
+
+ x = np.minimum(b, c)
+ assert_(np.isnan(x[3]))
+ x[3] = 0
+ assert_equal(x, [-2, -1, -np.inf, 0, 3])
+
+ assert_equal(np.fmax(a, b), [0, 5, 2, 4, 3])
+ assert_equal(np.fmax(b, c), [0, 5, 1, 4, 6])
+ assert_equal(np.fmin(a, b), [-2, 1, 1, 4, 2])
+ assert_equal(np.fmin(b, c), [-2, -1, -np.inf, 4, 3])
+
+ assert_equal(np.floor_divide(a, b), [0, 0, 2, 1, 0])
+ assert_equal(np.remainder(a, b), [0, 1, 0, 0, 2])
+ assert_equal(np.divmod(a, b), ([0, 0, 2, 1, 0], [0, 1, 0, 0, 2]))
+ assert_equal(np.square(b), [4, 25, 1, 16, 9])
+ assert_equal(np.reciprocal(b), [-0.5, 0.199951171875, 1, 0.25, 0.333251953125])
+ assert_equal(np.ones_like(b), [1, 1, 1, 1, 1])
+ assert_equal(np.conjugate(b), b)
+ assert_equal(np.absolute(b), [2, 5, 1, 4, 3])
+ assert_equal(np.negative(b), [2, -5, -1, -4, -3])
+ assert_equal(np.positive(b), b)
+ assert_equal(np.sign(b), [-1, 1, 1, 1, 1])
+ assert_equal(np.modf(b), ([0, 0, 0, 0, 0], b))
+ assert_equal(np.frexp(b), ([-0.5, 0.625, 0.5, 0.5, 0.75], [2, 3, 1, 3, 2]))
+ assert_equal(np.ldexp(b, [0, 1, 2, 4, 2]), [-2, 10, 4, 64, 12])
+
+ def test_half_coercion(self):
+ """Test that half gets coerced properly with the other types"""
+ a16 = np.array((1,), dtype=float16)
+ a32 = np.array((1,), dtype=float32)
+ b16 = float16(1)
+ b32 = float32(1)
+
+ assert np.power(a16, 2).dtype == float16
+ assert np.power(a16, 2.0).dtype == float16
+ assert np.power(a16, b16).dtype == float16
+ assert np.power(a16, b32).dtype == float32
+ assert np.power(a16, a16).dtype == float16
+ assert np.power(a16, a32).dtype == float32
+
+ assert np.power(b16, 2).dtype == float16
+ assert np.power(b16, 2.0).dtype == float16
+ assert np.power(b16, b16).dtype, float16
+ assert np.power(b16, b32).dtype, float32
+ assert np.power(b16, a16).dtype, float16
+ assert np.power(b16, a32).dtype, float32
+
+ assert np.power(a32, a16).dtype == float32
+ assert np.power(a32, b16).dtype == float32
+ assert np.power(b32, a16).dtype == float32
+ assert np.power(b32, b16).dtype == float32
+
+ @pytest.mark.skipif(platform.machine() == "armv5tel",
+ reason="See gh-413.")
+ @pytest.mark.skipif(IS_WASM,
+ reason="fp exceptions don't work in wasm.")
+ def test_half_fpe(self):
+ with np.errstate(all='raise'):
+ sx16 = np.array((1e-4,), dtype=float16)
+ bx16 = np.array((1e4,), dtype=float16)
+ sy16 = float16(1e-4)
+ by16 = float16(1e4)
+
+ # Underflow errors
+ assert_raises_fpe('underflow', lambda a, b: a * b, sx16, sx16)
+ assert_raises_fpe('underflow', lambda a, b: a * b, sx16, sy16)
+ assert_raises_fpe('underflow', lambda a, b: a * b, sy16, sx16)
+ assert_raises_fpe('underflow', lambda a, b: a * b, sy16, sy16)
+ assert_raises_fpe('underflow', lambda a, b: a / b, sx16, bx16)
+ assert_raises_fpe('underflow', lambda a, b: a / b, sx16, by16)
+ assert_raises_fpe('underflow', lambda a, b: a / b, sy16, bx16)
+ assert_raises_fpe('underflow', lambda a, b: a / b, sy16, by16)
+ assert_raises_fpe('underflow', lambda a, b: a / b,
+ float16(2.**-14), float16(2**11))
+ assert_raises_fpe('underflow', lambda a, b: a / b,
+ float16(-2.**-14), float16(2**11))
+ assert_raises_fpe('underflow', lambda a, b: a / b,
+ float16(2.**-14 + 2**-24), float16(2))
+ assert_raises_fpe('underflow', lambda a, b: a / b,
+ float16(-2.**-14 - 2**-24), float16(2))
+ assert_raises_fpe('underflow', lambda a, b: a / b,
+ float16(2.**-14 + 2**-23), float16(4))
+
+ # Overflow errors
+ assert_raises_fpe('overflow', lambda a, b: a * b, bx16, bx16)
+ assert_raises_fpe('overflow', lambda a, b: a * b, bx16, by16)
+ assert_raises_fpe('overflow', lambda a, b: a * b, by16, bx16)
+ assert_raises_fpe('overflow', lambda a, b: a * b, by16, by16)
+ assert_raises_fpe('overflow', lambda a, b: a / b, bx16, sx16)
+ assert_raises_fpe('overflow', lambda a, b: a / b, bx16, sy16)
+ assert_raises_fpe('overflow', lambda a, b: a / b, by16, sx16)
+ assert_raises_fpe('overflow', lambda a, b: a / b, by16, sy16)
+ assert_raises_fpe('overflow', lambda a, b: a + b,
+ float16(65504), float16(17))
+ assert_raises_fpe('overflow', lambda a, b: a - b,
+ float16(-65504), float16(17))
+ assert_raises_fpe('overflow', np.nextafter, float16(65504), float16(np.inf))
+ assert_raises_fpe('overflow', np.nextafter, float16(-65504), float16(-np.inf))
+ assert_raises_fpe('overflow', np.spacing, float16(65504))
+
+ # Invalid value errors
+ assert_raises_fpe('invalid', np.divide, float16(np.inf), float16(np.inf))
+ assert_raises_fpe('invalid', np.spacing, float16(np.inf))
+ assert_raises_fpe('invalid', np.spacing, float16(np.nan))
+
+ # These should not raise
+ float16(65472) + float16(32)
+ float16(2**-13) / float16(2)
+ float16(2**-14) / float16(2**10)
+ np.spacing(float16(-65504))
+ np.nextafter(float16(65504), float16(-np.inf))
+ np.nextafter(float16(-65504), float16(np.inf))
+ np.nextafter(float16(np.inf), float16(0))
+ np.nextafter(float16(-np.inf), float16(0))
+ np.nextafter(float16(0), float16(np.nan))
+ np.nextafter(float16(np.nan), float16(0))
+ float16(2**-14) / float16(2**10)
+ float16(-2**-14) / float16(2**10)
+ float16(2**-14 + 2**-23) / float16(2)
+ float16(-2**-14 - 2**-23) / float16(2)
+
+ def test_half_array_interface(self):
+ """Test that half is compatible with __array_interface__"""
+ class Dummy:
+ pass
+
+ a = np.ones((1,), dtype=float16)
+ b = Dummy()
+ b.__array_interface__ = a.__array_interface__
+ c = np.array(b)
+ assert_(c.dtype == float16)
+ assert_equal(a, c)
diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_hashtable.py b/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_hashtable.py
new file mode 100644
index 0000000..74be521
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_hashtable.py
@@ -0,0 +1,35 @@
+import random
+
+import pytest
+from numpy._core._multiarray_tests import identityhash_tester
+
+
+@pytest.mark.parametrize("key_length", [1, 3, 6])
+@pytest.mark.parametrize("length", [1, 16, 2000])
+def test_identity_hashtable(key_length, length):
+ # use a 30 object pool for everything (duplicates will happen)
+ pool = [object() for i in range(20)]
+ keys_vals = []
+ for i in range(length):
+ keys = tuple(random.choices(pool, k=key_length))
+ keys_vals.append((keys, random.choice(pool)))
+
+ dictionary = dict(keys_vals)
+
+ # add a random item at the end:
+ keys_vals.append(random.choice(keys_vals))
+ # the expected one could be different with duplicates:
+ expected = dictionary[keys_vals[-1][0]]
+
+ res = identityhash_tester(key_length, keys_vals, replace=True)
+ assert res is expected
+
+ if length == 1:
+ return
+
+ # add a new item with a key that is already used and a new value, this
+ # should error if replace is False, see gh-26690
+ new_key = (keys_vals[1][0], object())
+ keys_vals[0] = new_key
+ with pytest.raises(RuntimeError):
+ identityhash_tester(key_length, keys_vals)
diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_indexerrors.py b/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_indexerrors.py
new file mode 100644
index 0000000..02110c2
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_indexerrors.py
@@ -0,0 +1,125 @@
+import numpy as np
+from numpy.testing import (
+ assert_raises,
+ assert_raises_regex,
+)
+
+
+class TestIndexErrors:
+ '''Tests to exercise indexerrors not covered by other tests.'''
+
+ def test_arraytypes_fasttake(self):
+ 'take from a 0-length dimension'
+ x = np.empty((2, 3, 0, 4))
+ assert_raises(IndexError, x.take, [0], axis=2)
+ assert_raises(IndexError, x.take, [1], axis=2)
+ assert_raises(IndexError, x.take, [0], axis=2, mode='wrap')
+ assert_raises(IndexError, x.take, [0], axis=2, mode='clip')
+
+ def test_take_from_object(self):
+ # Check exception taking from object array
+ d = np.zeros(5, dtype=object)
+ assert_raises(IndexError, d.take, [6])
+
+ # Check exception taking from 0-d array
+ d = np.zeros((5, 0), dtype=object)
+ assert_raises(IndexError, d.take, [1], axis=1)
+ assert_raises(IndexError, d.take, [0], axis=1)
+ assert_raises(IndexError, d.take, [0])
+ assert_raises(IndexError, d.take, [0], mode='wrap')
+ assert_raises(IndexError, d.take, [0], mode='clip')
+
+ def test_multiindex_exceptions(self):
+ a = np.empty(5, dtype=object)
+ assert_raises(IndexError, a.item, 20)
+ a = np.empty((5, 0), dtype=object)
+ assert_raises(IndexError, a.item, (0, 0))
+
+ def test_put_exceptions(self):
+ a = np.zeros((5, 5))
+ assert_raises(IndexError, a.put, 100, 0)
+ a = np.zeros((5, 5), dtype=object)
+ assert_raises(IndexError, a.put, 100, 0)
+ a = np.zeros((5, 5, 0))
+ assert_raises(IndexError, a.put, 100, 0)
+ a = np.zeros((5, 5, 0), dtype=object)
+ assert_raises(IndexError, a.put, 100, 0)
+
+ def test_iterators_exceptions(self):
+ "cases in iterators.c"
+ def assign(obj, ind, val):
+ obj[ind] = val
+
+ a = np.zeros([1, 2, 3])
+ assert_raises(IndexError, lambda: a[0, 5, None, 2])
+ assert_raises(IndexError, lambda: a[0, 5, 0, 2])
+ assert_raises(IndexError, lambda: assign(a, (0, 5, None, 2), 1))
+ assert_raises(IndexError, lambda: assign(a, (0, 5, 0, 2), 1))
+
+ a = np.zeros([1, 0, 3])
+ assert_raises(IndexError, lambda: a[0, 0, None, 2])
+ assert_raises(IndexError, lambda: assign(a, (0, 0, None, 2), 1))
+
+ a = np.zeros([1, 2, 3])
+ assert_raises(IndexError, lambda: a.flat[10])
+ assert_raises(IndexError, lambda: assign(a.flat, 10, 5))
+ a = np.zeros([1, 0, 3])
+ assert_raises(IndexError, lambda: a.flat[10])
+ assert_raises(IndexError, lambda: assign(a.flat, 10, 5))
+
+ a = np.zeros([1, 2, 3])
+ assert_raises(IndexError, lambda: a.flat[np.array(10)])
+ assert_raises(IndexError, lambda: assign(a.flat, np.array(10), 5))
+ a = np.zeros([1, 0, 3])
+ assert_raises(IndexError, lambda: a.flat[np.array(10)])
+ assert_raises(IndexError, lambda: assign(a.flat, np.array(10), 5))
+
+ a = np.zeros([1, 2, 3])
+ assert_raises(IndexError, lambda: a.flat[np.array([10])])
+ assert_raises(IndexError, lambda: assign(a.flat, np.array([10]), 5))
+ a = np.zeros([1, 0, 3])
+ assert_raises(IndexError, lambda: a.flat[np.array([10])])
+ assert_raises(IndexError, lambda: assign(a.flat, np.array([10]), 5))
+
+ def test_mapping(self):
+ "cases from mapping.c"
+
+ def assign(obj, ind, val):
+ obj[ind] = val
+
+ a = np.zeros((0, 10))
+ assert_raises(IndexError, lambda: a[12])
+
+ a = np.zeros((3, 5))
+ assert_raises(IndexError, lambda: a[(10, 20)])
+ assert_raises(IndexError, lambda: assign(a, (10, 20), 1))
+ a = np.zeros((3, 0))
+ assert_raises(IndexError, lambda: a[(1, 0)])
+ assert_raises(IndexError, lambda: assign(a, (1, 0), 1))
+
+ a = np.zeros((10,))
+ assert_raises(IndexError, lambda: assign(a, 10, 1))
+ a = np.zeros((0,))
+ assert_raises(IndexError, lambda: assign(a, 10, 1))
+
+ a = np.zeros((3, 5))
+ assert_raises(IndexError, lambda: a[(1, [1, 20])])
+ assert_raises(IndexError, lambda: assign(a, (1, [1, 20]), 1))
+ a = np.zeros((3, 0))
+ assert_raises(IndexError, lambda: a[(1, [0, 1])])
+ assert_raises(IndexError, lambda: assign(a, (1, [0, 1]), 1))
+
+ def test_mapping_error_message(self):
+ a = np.zeros((3, 5))
+ index = (1, 2, 3, 4, 5)
+ assert_raises_regex(
+ IndexError,
+ "too many indices for array: "
+ "array is 2-dimensional, but 5 were indexed",
+ lambda: a[index])
+
+ def test_methods(self):
+ "cases from methods.c"
+
+ a = np.zeros((3, 3))
+ assert_raises(IndexError, lambda: a.item(100))
diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_indexing.py b/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_indexing.py
new file mode 100644
index 0000000..e722d0c
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_indexing.py
@@ -0,0 +1,1455 @@
+import functools
+import operator
+import sys
+import warnings
+from itertools import product
+
+import pytest
+from numpy._core._multiarray_tests import array_indexing
+
+import numpy as np
+from numpy.exceptions import ComplexWarning, VisibleDeprecationWarning
+from numpy.testing import (
+ HAS_REFCOUNT,
+ assert_,
+ assert_array_equal,
+ assert_equal,
+ assert_raises,
+ assert_raises_regex,
+ assert_warns,
+)
+
+
+class TestIndexing:
+ def test_index_no_floats(self):
+ a = np.array([[[5]]])
+
+ assert_raises(IndexError, lambda: a[0.0])
+ assert_raises(IndexError, lambda: a[0, 0.0])
+ assert_raises(IndexError, lambda: a[0.0, 0])
+ assert_raises(IndexError, lambda: a[0.0, :])
+ assert_raises(IndexError, lambda: a[:, 0.0])
+ assert_raises(IndexError, lambda: a[:, 0.0, :])
+ assert_raises(IndexError, lambda: a[0.0, :, :])
+ assert_raises(IndexError, lambda: a[0, 0, 0.0])
+ assert_raises(IndexError, lambda: a[0.0, 0, 0])
+ assert_raises(IndexError, lambda: a[0, 0.0, 0])
+ assert_raises(IndexError, lambda: a[-1.4])
+ assert_raises(IndexError, lambda: a[0, -1.4])
+ assert_raises(IndexError, lambda: a[-1.4, 0])
+ assert_raises(IndexError, lambda: a[-1.4, :])
+ assert_raises(IndexError, lambda: a[:, -1.4])
+ assert_raises(IndexError, lambda: a[:, -1.4, :])
+ assert_raises(IndexError, lambda: a[-1.4, :, :])
+ assert_raises(IndexError, lambda: a[0, 0, -1.4])
+ assert_raises(IndexError, lambda: a[-1.4, 0, 0])
+ assert_raises(IndexError, lambda: a[0, -1.4, 0])
+ assert_raises(IndexError, lambda: a[0.0:, 0.0])
+ assert_raises(IndexError, lambda: a[0.0:, 0.0, :])
+
+ def test_slicing_no_floats(self):
+ a = np.array([[5]])
+
+ # start as float.
+ assert_raises(TypeError, lambda: a[0.0:])
+ assert_raises(TypeError, lambda: a[0:, 0.0:2])
+ assert_raises(TypeError, lambda: a[0.0::2, :0])
+ assert_raises(TypeError, lambda: a[0.0:1:2, :])
+ assert_raises(TypeError, lambda: a[:, 0.0:])
+ # stop as float.
+ assert_raises(TypeError, lambda: a[:0.0])
+ assert_raises(TypeError, lambda: a[:0, 1:2.0])
+ assert_raises(TypeError, lambda: a[:0.0:2, :0])
+ assert_raises(TypeError, lambda: a[:0.0, :])
+ assert_raises(TypeError, lambda: a[:, 0:4.0:2])
+ # step as float.
+ assert_raises(TypeError, lambda: a[::1.0])
+ assert_raises(TypeError, lambda: a[0:, :2:2.0])
+ assert_raises(TypeError, lambda: a[1::4.0, :0])
+ assert_raises(TypeError, lambda: a[::5.0, :])
+ assert_raises(TypeError, lambda: a[:, 0:4:2.0])
+ # mixed.
+ assert_raises(TypeError, lambda: a[1.0:2:2.0])
+ assert_raises(TypeError, lambda: a[1.0::2.0])
+ assert_raises(TypeError, lambda: a[0:, :2.0:2.0])
+ assert_raises(TypeError, lambda: a[1.0:1:4.0, :0])
+ assert_raises(TypeError, lambda: a[1.0:5.0:5.0, :])
+ assert_raises(TypeError, lambda: a[:, 0.4:4.0:2.0])
+ # should still get the DeprecationWarning if step = 0.
+ assert_raises(TypeError, lambda: a[::0.0])
+
+ def test_index_no_array_to_index(self):
+ # No non-scalar arrays.
+ a = np.array([[[1]]])
+
+ assert_raises(TypeError, lambda: a[a:a:a])
+
+ def test_none_index(self):
+ # `None` index adds newaxis
+ a = np.array([1, 2, 3])
+ assert_equal(a[None], a[np.newaxis])
+ assert_equal(a[None].ndim, a.ndim + 1)
+
+ def test_empty_tuple_index(self):
+ # Empty tuple index creates a view
+ a = np.array([1, 2, 3])
+ assert_equal(a[()], a)
+ assert_(a[()].base is a)
+ a = np.array(0)
+ assert_(isinstance(a[()], np.int_))
+
+ def test_void_scalar_empty_tuple(self):
+ s = np.zeros((), dtype='V4')
+ assert_equal(s[()].dtype, s.dtype)
+ assert_equal(s[()], s)
+ assert_equal(type(s[...]), np.ndarray)
+
+ def test_same_kind_index_casting(self):
+ # Indexes should be cast with same-kind and not safe, even if that
+ # is somewhat unsafe. So test various different code paths.
+ index = np.arange(5)
+ u_index = index.astype(np.uintp)
+ arr = np.arange(10)
+
+ assert_array_equal(arr[index], arr[u_index])
+ arr[u_index] = np.arange(5)
+ assert_array_equal(arr, np.arange(10))
+
+ arr = np.arange(10).reshape(5, 2)
+ assert_array_equal(arr[index], arr[u_index])
+
+ arr[u_index] = np.arange(5)[:, None]
+ assert_array_equal(arr, np.arange(5)[:, None].repeat(2, axis=1))
+
+ arr = np.arange(25).reshape(5, 5)
+ assert_array_equal(arr[u_index, u_index], arr[index, index])
+
+ def test_empty_fancy_index(self):
+ # Empty list index creates an empty array
+ # with the same dtype (but with weird shape)
+ a = np.array([1, 2, 3])
+ assert_equal(a[[]], [])
+ assert_equal(a[[]].dtype, a.dtype)
+
+ b = np.array([], dtype=np.intp)
+ assert_equal(a[[]], [])
+ assert_equal(a[[]].dtype, a.dtype)
+
+ b = np.array([])
+ assert_raises(IndexError, a.__getitem__, b)
+
+ def test_gh_26542(self):
+ a = np.array([0, 1, 2])
+ idx = np.array([2, 1, 0])
+ a[idx] = a
+ expected = np.array([2, 1, 0])
+ assert_equal(a, expected)
+
+ def test_gh_26542_2d(self):
+ a = np.array([[0, 1, 2]])
+ idx_row = np.zeros(3, dtype=int)
+ idx_col = np.array([2, 1, 0])
+ a[idx_row, idx_col] = a
+ expected = np.array([[2, 1, 0]])
+ assert_equal(a, expected)
+
+ def test_gh_26542_index_overlap(self):
+ arr = np.arange(100)
+ expected_vals = np.copy(arr[:-10])
+ arr[10:] = arr[:-10]
+ actual_vals = arr[10:]
+ assert_equal(actual_vals, expected_vals)
+
+ def test_gh_26844(self):
+ expected = [0, 1, 3, 3, 3]
+ a = np.arange(5)
+ a[2:][a[:-2]] = 3
+ assert_equal(a, expected)
+
+ def test_gh_26844_segfault(self):
+ # check for absence of segfault for:
+ # https://github.com/numpy/numpy/pull/26958/files#r1854589178
+ a = np.arange(5)
+ expected = [0, 1, 3, 3, 3]
+ a[2:][None, a[:-2]] = 3
+ assert_equal(a, expected)
+
+ def test_ellipsis_index(self):
+ a = np.array([[1, 2, 3],
+ [4, 5, 6],
+ [7, 8, 9]])
+ assert_(a[...] is not a)
+ assert_equal(a[...], a)
+ # `a[...]` was `a` in numpy <1.9.
+ assert_(a[...].base is a)
+
+ # Slicing with ellipsis can skip an
+ # arbitrary number of dimensions
+ assert_equal(a[0, ...], a[0])
+ assert_equal(a[0, ...], a[0, :])
+ assert_equal(a[..., 0], a[:, 0])
+
+ # Slicing with ellipsis always results
+ # in an array, not a scalar
+ assert_equal(a[0, ..., 1], np.array(2))
+
+ # Assignment with `(Ellipsis,)` on 0-d arrays
+ b = np.array(1)
+ b[(Ellipsis,)] = 2
+ assert_equal(b, 2)
+
+ def test_single_int_index(self):
+ # Single integer index selects one row
+ a = np.array([[1, 2, 3],
+ [4, 5, 6],
+ [7, 8, 9]])
+
+ assert_equal(a[0], [1, 2, 3])
+ assert_equal(a[-1], [7, 8, 9])
+
+ # Index out of bounds produces IndexError
+ assert_raises(IndexError, a.__getitem__, 1 << 30)
+ # Index overflow produces IndexError
+ assert_raises(IndexError, a.__getitem__, 1 << 64)
+
+ def test_single_bool_index(self):
+ # Single boolean index
+ a = np.array([[1, 2, 3],
+ [4, 5, 6],
+ [7, 8, 9]])
+
+ assert_equal(a[np.array(True)], a[None])
+ assert_equal(a[np.array(False)], a[None][0:0])
+
+ def test_boolean_shape_mismatch(self):
+ arr = np.ones((5, 4, 3))
+
+ index = np.array([True])
+ assert_raises(IndexError, arr.__getitem__, index)
+
+ index = np.array([False] * 6)
+ assert_raises(IndexError, arr.__getitem__, index)
+
+ index = np.zeros((4, 4), dtype=bool)
+ assert_raises(IndexError, arr.__getitem__, index)
+
+ assert_raises(IndexError, arr.__getitem__, (slice(None), index))
+
+ def test_boolean_indexing_onedim(self):
+ # Indexing a 2-dimensional array with
+ # boolean array of length one
+ a = np.array([[0., 0., 0.]])
+ b = np.array([True], dtype=bool)
+ assert_equal(a[b], a)
+ # boolean assignment
+ a[b] = 1.
+ assert_equal(a, [[1., 1., 1.]])
+
+ def test_boolean_assignment_value_mismatch(self):
+ # A boolean assignment should fail when the shape of the values
+ # cannot be broadcast to the subscription. (see also gh-3458)
+ a = np.arange(4)
+
+ def f(a, v):
+ a[a > -1] = v
+
+ assert_raises(ValueError, f, a, [])
+ assert_raises(ValueError, f, a, [1, 2, 3])
+ assert_raises(ValueError, f, a[:1], [1, 2, 3])
+
+ def test_boolean_assignment_needs_api(self):
+ # See also gh-7666
+ # This caused a segfault on Python 2 due to the GIL not being
+ # held when the iterator does not need it, but the transfer function
+ # does
+ arr = np.zeros(1000)
+ indx = np.zeros(1000, dtype=bool)
+ indx[:100] = True
+ arr[indx] = np.ones(100, dtype=object)
+
+ expected = np.zeros(1000)
+ expected[:100] = 1
+ assert_array_equal(arr, expected)
+
+ def test_boolean_indexing_twodim(self):
+ # Indexing a 2-dimensional array with
+ # 2-dimensional boolean array
+ a = np.array([[1, 2, 3],
+ [4, 5, 6],
+ [7, 8, 9]])
+ b = np.array([[ True, False, True],
+ [False, True, False],
+ [ True, False, True]])
+ assert_equal(a[b], [1, 3, 5, 7, 9])
+ assert_equal(a[b[1]], [[4, 5, 6]])
+ assert_equal(a[b[0]], a[b[2]])
+
+ # boolean assignment
+ a[b] = 0
+ assert_equal(a, [[0, 2, 0],
+ [4, 0, 6],
+ [0, 8, 0]])
+
+ def test_boolean_indexing_list(self):
+ # Regression test for #13715. It's a use-after-free bug which the
+ # test won't directly catch, but it will show up in valgrind.
+ a = np.array([1, 2, 3])
+ b = [True, False, True]
+ # Two variants of the test because the first takes a fast path
+ assert_equal(a[b], [1, 3])
+ assert_equal(a[None, b], [[1, 3]])
+
+ def test_reverse_strides_and_subspace_bufferinit(self):
+ # This tests that the strides are not reversed for simple and
+ # subspace fancy indexing.
+ a = np.ones(5)
+ b = np.zeros(5, dtype=np.intp)[::-1]
+ c = np.arange(5)[::-1]
+
+ a[b] = c
+ # If the strides are not reversed, the 0 in the arange comes last.
+ assert_equal(a[0], 0)
+
+ # This also tests that the subspace buffer is initialized:
+ a = np.ones((5, 2))
+ c = np.arange(10).reshape(5, 2)[::-1]
+ a[b, :] = c
+ assert_equal(a[0], [0, 1])
+
+ def test_reversed_strides_result_allocation(self):
+ # Test a bug when calculating the output strides for a result array
+ # when the subspace size was 1 (and test other cases as well)
+ a = np.arange(10)[:, None]
+ i = np.arange(10)[::-1]
+ assert_array_equal(a[i], a[i.copy('C')])
+
+ a = np.arange(20).reshape(-1, 2)
+
+ def test_uncontiguous_subspace_assignment(self):
+ # During development there was a bug activating a skip logic
+ # based on ndim instead of size.
+ a = np.full((3, 4, 2), -1)
+ b = np.full((3, 4, 2), -1)
+
+ a[[0, 1]] = np.arange(2 * 4 * 2).reshape(2, 4, 2).T
+ b[[0, 1]] = np.arange(2 * 4 * 2).reshape(2, 4, 2).T.copy()
+
+ assert_equal(a, b)
+
+ def test_too_many_fancy_indices_special_case(self):
+ # Just documents behaviour, this is a small limitation.
+ a = np.ones((1,) * 64) # 64 is NPY_MAXDIMS
+ assert_raises(IndexError, a.__getitem__, (np.array([0]),) * 64)
+
+ def test_scalar_array_bool(self):
+ # NumPy bools can be used as boolean index (python ones as of yet not)
+ a = np.array(1)
+ assert_equal(a[np.bool(True)], a[np.array(True)])
+ assert_equal(a[np.bool(False)], a[np.array(False)])
+
+ # After deprecating bools as integers:
+ #a = np.array([0,1,2])
+ #assert_equal(a[True, :], a[None, :])
+ #assert_equal(a[:, True], a[:, None])
+ #
+ #assert_(not np.may_share_memory(a, a[True, :]))
+
+ def test_everything_returns_views(self):
+ # Before `...` would return a itself.
+ a = np.arange(5)
+
+ assert_(a is not a[()])
+ assert_(a is not a[...])
+ assert_(a is not a[:])
+
+ def test_broaderrors_indexing(self):
+ a = np.zeros((5, 5))
+ assert_raises(IndexError, a.__getitem__, ([0, 1], [0, 1, 2]))
+ assert_raises(IndexError, a.__setitem__, ([0, 1], [0, 1, 2]), 0)
+
+ def test_trivial_fancy_out_of_bounds(self):
+ a = np.zeros(5)
+ ind = np.ones(20, dtype=np.intp)
+ ind[-1] = 10
+ assert_raises(IndexError, a.__getitem__, ind)
+ assert_raises(IndexError, a.__setitem__, ind, 0)
+ ind = np.ones(20, dtype=np.intp)
+ ind[0] = 11
+ assert_raises(IndexError, a.__getitem__, ind)
+ assert_raises(IndexError, a.__setitem__, ind, 0)
+
+ def test_trivial_fancy_not_possible(self):
+ # Test that the fast path for trivial assignment is not incorrectly
+ # used when the index is not contiguous or 1D, see also gh-11467.
+ a = np.arange(6)
+ idx = np.arange(6, dtype=np.intp).reshape(2, 1, 3)[:, :, 0]
+ assert_array_equal(a[idx], idx)
+
+ # this case must not go into the fast path, note that idx is
+ # a non-contiguous none 1D array here.
+ a[idx] = -1
+ res = np.arange(6)
+ res[0] = -1
+ res[3] = -1
+ assert_array_equal(a, res)
+
+ def test_nonbaseclass_values(self):
+ class SubClass(np.ndarray):
+ def __array_finalize__(self, old):
+ # Have array finalize do funny things
+ self.fill(99)
+
+ a = np.zeros((5, 5))
+ s = a.copy().view(type=SubClass)
+ s.fill(1)
+
+ a[[0, 1, 2, 3, 4], :] = s
+ assert_((a == 1).all())
+
+ # Subspace is last, so transposing might want to finalize
+ a[:, [0, 1, 2, 3, 4]] = s
+ assert_((a == 1).all())
+
+ a.fill(0)
+ a[...] = s
+ assert_((a == 1).all())
+
+ def test_array_like_values(self):
+ # Similar to the above test, but use a memoryview instead
+ a = np.zeros((5, 5))
+ s = np.arange(25, dtype=np.float64).reshape(5, 5)
+
+ a[[0, 1, 2, 3, 4], :] = memoryview(s)
+ assert_array_equal(a, s)
+
+ a[:, [0, 1, 2, 3, 4]] = memoryview(s)
+ assert_array_equal(a, s)
+
+ a[...] = memoryview(s)
+ assert_array_equal(a, s)
+
+ @pytest.mark.parametrize("writeable", [True, False])
+ def test_subclass_writeable(self, writeable):
+ d = np.rec.array([('NGC1001', 11), ('NGC1002', 1.), ('NGC1003', 1.)],
+ dtype=[('target', 'S20'), ('V_mag', '>f4')])
+ d.flags.writeable = writeable
+ # Advanced indexing results are always writeable:
+ ind = np.array([False, True, True], dtype=bool)
+ assert d[ind].flags.writeable
+ ind = np.array([0, 1])
+ assert d[ind].flags.writeable
+ # Views should be writeable if the original array is:
+ assert d[...].flags.writeable == writeable
+ assert d[0].flags.writeable == writeable
+
+ def test_memory_order(self):
+ # This is not necessary to preserve. Memory layouts for
+ # more complex indices are not as simple.
+ a = np.arange(10)
+ b = np.arange(10).reshape(5, 2).T
+ assert_(a[b].flags.f_contiguous)
+
+ # Takes a different implementation branch:
+ a = a.reshape(-1, 1)
+ assert_(a[b, 0].flags.f_contiguous)
+
+ def test_scalar_return_type(self):
+ # Full scalar indices should return scalars and object
+ # arrays should not call PyArray_Return on their items
+ class Zero:
+ # The most basic valid indexing
+ def __index__(self):
+ return 0
+
+ z = Zero()
+
+ class ArrayLike:
+ # Simple array, should behave like the array
+ def __array__(self, dtype=None, copy=None):
+ return np.array(0)
+
+ a = np.zeros(())
+ assert_(isinstance(a[()], np.float64))
+ a = np.zeros(1)
+ assert_(isinstance(a[z], np.float64))
+ a = np.zeros((1, 1))
+ assert_(isinstance(a[z, np.array(0)], np.float64))
+ assert_(isinstance(a[z, ArrayLike()], np.float64))
+
+ # And object arrays do not call it too often:
+ b = np.array(0)
+ a = np.array(0, dtype=object)
+ a[()] = b
+ assert_(isinstance(a[()], np.ndarray))
+ a = np.array([b, None])
+ assert_(isinstance(a[z], np.ndarray))
+ a = np.array([[b, None]])
+ assert_(isinstance(a[z, np.array(0)], np.ndarray))
+ assert_(isinstance(a[z, ArrayLike()], np.ndarray))
+
+ def test_small_regressions(self):
+ # Reference count of intp for index checks
+ a = np.array([0])
+ if HAS_REFCOUNT:
+ refcount = sys.getrefcount(np.dtype(np.intp))
+ # item setting always checks indices in separate function:
+ a[np.array([0], dtype=np.intp)] = 1
+ a[np.array([0], dtype=np.uint8)] = 1
+ assert_raises(IndexError, a.__setitem__,
+ np.array([1], dtype=np.intp), 1)
+ assert_raises(IndexError, a.__setitem__,
+ np.array([1], dtype=np.uint8), 1)
+
+ if HAS_REFCOUNT:
+ assert_equal(sys.getrefcount(np.dtype(np.intp)), refcount)
+
+ def test_unaligned(self):
+ v = (np.zeros(64, dtype=np.int8) + ord('a'))[1:-7]
+ d = v.view(np.dtype("S8"))
+ # unaligned source
+ x = (np.zeros(16, dtype=np.int8) + ord('a'))[1:-7]
+ x = x.view(np.dtype("S8"))
+ x[...] = np.array("b" * 8, dtype="S")
+ b = np.arange(d.size)
+ # trivial
+ assert_equal(d[b], d)
+ d[b] = x
+ # nontrivial
+ # unaligned index array
+ b = np.zeros(d.size + 1).view(np.int8)[1:-(np.intp(0).itemsize - 1)]
+ b = b.view(np.intp)[:d.size]
+ b[...] = np.arange(d.size)
+ assert_equal(d[b.astype(np.int16)], d)
+ d[b.astype(np.int16)] = x
+ # boolean
+ d[b % 2 == 0]
+ d[b % 2 == 0] = x[::2]
+
+ def test_tuple_subclass(self):
+ arr = np.ones((5, 5))
+
+ # A tuple subclass should also be an nd-index
+ class TupleSubclass(tuple):
+ pass
+ index = ([1], [1])
+ index = TupleSubclass(index)
+ assert_(arr[index].shape == (1,))
+ # Unlike the non nd-index:
+ assert_(arr[index,].shape != (1,))
+
+ def test_broken_sequence_not_nd_index(self):
+ # See gh-5063:
+ # If we have an object which claims to be a sequence, but fails
+ # on item getting, this should not be converted to an nd-index (tuple)
+ # If this object happens to be a valid index otherwise, it should work
+ # This object here is very dubious and probably bad though:
+ class SequenceLike:
+ def __index__(self):
+ return 0
+
+ def __len__(self):
+ return 1
+
+ def __getitem__(self, item):
+ raise IndexError('Not possible')
+
+ arr = np.arange(10)
+ assert_array_equal(arr[SequenceLike()], arr[SequenceLike(),])
+
+ # also test that field indexing does not segfault
+ # for a similar reason, by indexing a structured array
+ arr = np.zeros((1,), dtype=[('f1', 'i8'), ('f2', 'i8')])
+ assert_array_equal(arr[SequenceLike()], arr[SequenceLike(),])
+
+ def test_indexing_array_weird_strides(self):
+ # See also gh-6221
+ # the shapes used here come from the issue and create the correct
+ # size for the iterator buffering size.
+ x = np.ones(10)
+ x2 = np.ones((10, 2))
+ ind = np.arange(10)[:, None, None, None]
+ ind = np.broadcast_to(ind, (10, 55, 4, 4))
+
+ # single advanced index case
+ assert_array_equal(x[ind], x[ind.copy()])
+ # higher dimensional advanced index
+ zind = np.zeros(4, dtype=np.intp)
+ assert_array_equal(x2[ind, zind], x2[ind.copy(), zind])
+
+ def test_indexing_array_negative_strides(self):
+ # From gh-8264,
+ # core dumps if negative strides are used in iteration
+ arro = np.zeros((4, 4))
+ arr = arro[::-1, ::-1]
+
+ slices = (slice(None), [0, 1, 2, 3])
+ arr[slices] = 10
+ assert_array_equal(arr, 10.)
+
+ def test_character_assignment(self):
+ # This is an example a function going through CopyObject which
+ # used to have an untested special path for scalars
+ # (the character special dtype case, should be deprecated probably)
+ arr = np.zeros((1, 5), dtype="c")
+ arr[0] = np.str_("asdfg") # must assign as a sequence
+ assert_array_equal(arr[0], np.array("asdfg", dtype="c"))
+ assert arr[0, 1] == b"s" # make sure not all were set to "a" for both
+
+ @pytest.mark.parametrize("index",
+ [True, False, np.array([0])])
+ @pytest.mark.parametrize("num", [64, 80])
+ @pytest.mark.parametrize("original_ndim", [1, 64])
+ def test_too_many_advanced_indices(self, index, num, original_ndim):
+ # These are limitations based on the number of arguments we can process.
+ # For `num=32` (and all boolean cases), the result is actually define;
+ # but the use of NpyIter (NPY_MAXARGS) limits it for technical reasons.
+ arr = np.ones((1,) * original_ndim)
+ with pytest.raises(IndexError):
+ arr[(index,) * num]
+ with pytest.raises(IndexError):
+ arr[(index,) * num] = 1.
+
+ def test_nontuple_ndindex(self):
+ a = np.arange(25).reshape((5, 5))
+ assert_equal(a[[0, 1]], np.array([a[0], a[1]]))
+ assert_equal(a[[0, 1], [0, 1]], np.array([0, 6]))
+ assert_raises(IndexError, a.__getitem__, [slice(None)])
+
+ def test_flat_index_on_flatiter(self):
+ a = np.arange(9).reshape((3, 3))
+ b = np.array([0, 5, 6])
+ assert_equal(a.flat[b.flat], np.array([0, 5, 6]))
+
+ def test_empty_string_flat_index_on_flatiter(self):
+ a = np.arange(9).reshape((3, 3))
+ b = np.array([], dtype="S")
+ assert_equal(a.flat[b.flat], np.array([]))
+
+ def test_nonempty_string_flat_index_on_flatiter(self):
+ a = np.arange(9).reshape((3, 3))
+ b = np.array(["a"], dtype="S")
+ with pytest.raises(IndexError, match="unsupported iterator index"):
+ a.flat[b.flat]
+
+
+class TestFieldIndexing:
+ def test_scalar_return_type(self):
+ # Field access on an array should return an array, even if it
+ # is 0-d.
+ a = np.zeros((), [('a', 'f8')])
+ assert_(isinstance(a['a'], np.ndarray))
+ assert_(isinstance(a[['a']], np.ndarray))
+
+
+class TestBroadcastedAssignments:
+ def assign(self, a, ind, val):
+ a[ind] = val
+ return a
+
+ def test_prepending_ones(self):
+ a = np.zeros((3, 2))
+
+ a[...] = np.ones((1, 3, 2))
+ # Fancy with subspace with and without transpose
+ a[[0, 1, 2], :] = np.ones((1, 3, 2))
+ a[:, [0, 1]] = np.ones((1, 3, 2))
+ # Fancy without subspace (with broadcasting)
+ a[[[0], [1], [2]], [0, 1]] = np.ones((1, 3, 2))
+
+ def test_prepend_not_one(self):
+ assign = self.assign
+ s_ = np.s_
+ a = np.zeros(5)
+
+ # Too large and not only ones.
+ assert_raises(ValueError, assign, a, s_[...], np.ones((2, 1)))
+ assert_raises(ValueError, assign, a, s_[[1, 2, 3],], np.ones((2, 1)))
+ assert_raises(ValueError, assign, a, s_[[[1], [2]],], np.ones((2, 2, 1)))
+
+ def test_simple_broadcasting_errors(self):
+ assign = self.assign
+ s_ = np.s_
+ a = np.zeros((5, 1))
+
+ assert_raises(ValueError, assign, a, s_[...], np.zeros((5, 2)))
+ assert_raises(ValueError, assign, a, s_[...], np.zeros((5, 0)))
+ assert_raises(ValueError, assign, a, s_[:, [0]], np.zeros((5, 2)))
+ assert_raises(ValueError, assign, a, s_[:, [0]], np.zeros((5, 0)))
+ assert_raises(ValueError, assign, a, s_[[0], :], np.zeros((2, 1)))
+
+ @pytest.mark.parametrize("index", [
+ (..., [1, 2], slice(None)),
+ ([0, 1], ..., 0),
+ (..., [1, 2], [1, 2])])
+ def test_broadcast_error_reports_correct_shape(self, index):
+ values = np.zeros((100, 100)) # will never broadcast below
+
+ arr = np.zeros((3, 4, 5, 6, 7))
+ # We currently report without any spaces (could be changed)
+ shape_str = str(arr[index].shape).replace(" ", "")
+
+ with pytest.raises(ValueError) as e:
+ arr[index] = values
+
+ assert str(e.value).endswith(shape_str)
+
+ def test_index_is_larger(self):
+ # Simple case of fancy index broadcasting of the index.
+ a = np.zeros((5, 5))
+ a[[[0], [1], [2]], [0, 1, 2]] = [2, 3, 4]
+
+ assert_((a[:3, :3] == [2, 3, 4]).all())
+
+ def test_broadcast_subspace(self):
+ a = np.zeros((100, 100))
+ v = np.arange(100)[:, None]
+ b = np.arange(100)[::-1]
+ a[b] = v
+ assert_((a[::-1] == v).all())
+
+
+class TestSubclasses:
+ def test_basic(self):
+ # Test that indexing in various ways produces SubClass instances,
+ # and that the base is set up correctly: the original subclass
+ # instance for views, and a new ndarray for advanced/boolean indexing
+ # where a copy was made (latter a regression test for gh-11983).
+ class SubClass(np.ndarray):
+ pass
+
+ a = np.arange(5)
+ s = a.view(SubClass)
+ s_slice = s[:3]
+ assert_(type(s_slice) is SubClass)
+ assert_(s_slice.base is s)
+ assert_array_equal(s_slice, a[:3])
+
+ s_fancy = s[[0, 1, 2]]
+ assert_(type(s_fancy) is SubClass)
+ assert_(s_fancy.base is not s)
+ assert_(type(s_fancy.base) is np.ndarray)
+ assert_array_equal(s_fancy, a[[0, 1, 2]])
+ assert_array_equal(s_fancy.base, a[[0, 1, 2]])
+
+ s_bool = s[s > 0]
+ assert_(type(s_bool) is SubClass)
+ assert_(s_bool.base is not s)
+ assert_(type(s_bool.base) is np.ndarray)
+ assert_array_equal(s_bool, a[a > 0])
+ assert_array_equal(s_bool.base, a[a > 0])
+
+ def test_fancy_on_read_only(self):
+ # Test that fancy indexing on read-only SubClass does not make a
+ # read-only copy (gh-14132)
+ class SubClass(np.ndarray):
+ pass
+
+ a = np.arange(5)
+ s = a.view(SubClass)
+ s.flags.writeable = False
+ s_fancy = s[[0, 1, 2]]
+ assert_(s_fancy.flags.writeable)
+
+ def test_finalize_gets_full_info(self):
+ # Array finalize should be called on the filled array.
+ class SubClass(np.ndarray):
+ def __array_finalize__(self, old):
+ self.finalize_status = np.array(self)
+ self.old = old
+
+ s = np.arange(10).view(SubClass)
+ new_s = s[:3]
+ assert_array_equal(new_s.finalize_status, new_s)
+ assert_array_equal(new_s.old, s)
+
+ new_s = s[[0, 1, 2, 3]]
+ assert_array_equal(new_s.finalize_status, new_s)
+ assert_array_equal(new_s.old, s)
+
+ new_s = s[s > 0]
+ assert_array_equal(new_s.finalize_status, new_s)
+ assert_array_equal(new_s.old, s)
+
+
+class TestFancyIndexingCast:
+ def test_boolean_index_cast_assign(self):
+ # Setup the boolean index and float arrays.
+ shape = (8, 63)
+ bool_index = np.zeros(shape).astype(bool)
+ bool_index[0, 1] = True
+ zero_array = np.zeros(shape)
+
+ # Assigning float is fine.
+ zero_array[bool_index] = np.array([1])
+ assert_equal(zero_array[0, 1], 1)
+
+ # Fancy indexing works, although we get a cast warning.
+ assert_warns(ComplexWarning,
+ zero_array.__setitem__, ([0], [1]), np.array([2 + 1j]))
+ assert_equal(zero_array[0, 1], 2) # No complex part
+
+ # Cast complex to float, throwing away the imaginary portion.
+ assert_warns(ComplexWarning,
+ zero_array.__setitem__, bool_index, np.array([1j]))
+ assert_equal(zero_array[0, 1], 0)
+
+class TestFancyIndexingEquivalence:
+ def test_object_assign(self):
+ # Check that the field and object special case using copyto is active.
+ # The right hand side cannot be converted to an array here.
+ a = np.arange(5, dtype=object)
+ b = a.copy()
+ a[:3] = [1, (1, 2), 3]
+ b[[0, 1, 2]] = [1, (1, 2), 3]
+ assert_array_equal(a, b)
+
+ # test same for subspace fancy indexing
+ b = np.arange(5, dtype=object)[None, :]
+ b[[0], :3] = [[1, (1, 2), 3]]
+ assert_array_equal(a, b[0])
+
+ # Check that swapping of axes works.
+ # There was a bug that made the later assignment throw a ValueError
+ # do to an incorrectly transposed temporary right hand side (gh-5714)
+ b = b.T
+ b[:3, [0]] = [[1], [(1, 2)], [3]]
+ assert_array_equal(a, b[:, 0])
+
+ # Another test for the memory order of the subspace
+ arr = np.ones((3, 4, 5), dtype=object)
+ # Equivalent slicing assignment for comparison
+ cmp_arr = arr.copy()
+ cmp_arr[:1, ...] = [[[1], [2], [3], [4]]]
+ arr[[0], ...] = [[[1], [2], [3], [4]]]
+ assert_array_equal(arr, cmp_arr)
+ arr = arr.copy('F')
+ arr[[0], ...] = [[[1], [2], [3], [4]]]
+ assert_array_equal(arr, cmp_arr)
+
+ def test_cast_equivalence(self):
+ # Yes, normal slicing uses unsafe casting.
+ a = np.arange(5)
+ b = a.copy()
+
+ a[:3] = np.array(['2', '-3', '-1'])
+ b[[0, 2, 1]] = np.array(['2', '-1', '-3'])
+ assert_array_equal(a, b)
+
+ # test the same for subspace fancy indexing
+ b = np.arange(5)[None, :]
+ b[[0], :3] = np.array([['2', '-3', '-1']])
+ assert_array_equal(a, b[0])
+
+
+class TestMultiIndexingAutomated:
+ """
+ These tests use code to mimic the C-Code indexing for selection.
+
+ NOTE:
+
+ * This still lacks tests for complex item setting.
+ * If you change behavior of indexing, you might want to modify
+ these tests to try more combinations.
+ * Behavior was written to match numpy version 1.8. (though a
+ first version matched 1.7.)
+ * Only tuple indices are supported by the mimicking code.
+ (and tested as of writing this)
+ * Error types should match most of the time as long as there
+ is only one error. For multiple errors, what gets raised
+ will usually not be the same one. They are *not* tested.
+
+ Update 2016-11-30: It is probably not worth maintaining this test
+ indefinitely and it can be dropped if maintenance becomes a burden.
+
+ """
+
+ def setup_method(self):
+ self.a = np.arange(np.prod([3, 1, 5, 6])).reshape(3, 1, 5, 6)
+ self.b = np.empty((3, 0, 5, 6))
+ self.complex_indices = ['skip', Ellipsis,
+ 0,
+ # Boolean indices, up to 3-d for some special cases of eating up
+ # dimensions, also need to test all False
+ np.array([True, False, False]),
+ np.array([[True, False], [False, True]]),
+ np.array([[[False, False], [False, False]]]),
+ # Some slices:
+ slice(-5, 5, 2),
+ slice(1, 1, 100),
+ slice(4, -1, -2),
+ slice(None, None, -3),
+ # Some Fancy indexes:
+ np.empty((0, 1, 1), dtype=np.intp), # empty and can be broadcast
+ np.array([0, 1, -2]),
+ np.array([[2], [0], [1]]),
+ np.array([[0, -1], [0, 1]], dtype=np.dtype('intp').newbyteorder()),
+ np.array([2, -1], dtype=np.int8),
+ np.zeros([1] * 31, dtype=int), # trigger too large array.
+ np.array([0., 1.])] # invalid datatype
+ # Some simpler indices that still cover a bit more
+ self.simple_indices = [Ellipsis, None, -1, [1], np.array([True]),
+ 'skip']
+ # Very simple ones to fill the rest:
+ self.fill_indices = [slice(None, None), 0]
+
+ def _get_multi_index(self, arr, indices):
+ """Mimic multi dimensional indexing.
+
+ Parameters
+ ----------
+ arr : ndarray
+ Array to be indexed.
+ indices : tuple of index objects
+
+ Returns
+ -------
+ out : ndarray
+ An array equivalent to the indexing operation (but always a copy).
+ `arr[indices]` should be identical.
+ no_copy : bool
+ Whether the indexing operation requires a copy. If this is `True`,
+ `np.may_share_memory(arr, arr[indices])` should be `True` (with
+ some exceptions for scalars and possibly 0-d arrays).
+
+ Notes
+ -----
+ While the function may mostly match the errors of normal indexing this
+ is generally not the case.
+ """
+ in_indices = list(indices)
+ indices = []
+ # if False, this is a fancy or boolean index
+ no_copy = True
+ # number of fancy/scalar indexes that are not consecutive
+ num_fancy = 0
+ # number of dimensions indexed by a "fancy" index
+ fancy_dim = 0
+ # NOTE: This is a funny twist (and probably OK to change).
+ # The boolean array has illegal indexes, but this is
+ # allowed if the broadcast fancy-indices are 0-sized.
+ # This variable is to catch that case.
+ error_unless_broadcast_to_empty = False
+
+ # We need to handle Ellipsis and make arrays from indices, also
+ # check if this is fancy indexing (set no_copy).
+ ndim = 0
+ ellipsis_pos = None # define here mostly to replace all but first.
+ for i, indx in enumerate(in_indices):
+ if indx is None:
+ continue
+ if isinstance(indx, np.ndarray) and indx.dtype == bool:
+ no_copy = False
+ if indx.ndim == 0:
+ raise IndexError
+ # boolean indices can have higher dimensions
+ ndim += indx.ndim
+ fancy_dim += indx.ndim
+ continue
+ if indx is Ellipsis:
+ if ellipsis_pos is None:
+ ellipsis_pos = i
+ continue # do not increment ndim counter
+ raise IndexError
+ if isinstance(indx, slice):
+ ndim += 1
+ continue
+ if not isinstance(indx, np.ndarray):
+ # This could be open for changes in numpy.
+ # numpy should maybe raise an error if casting to intp
+ # is not safe. It rejects np.array([1., 2.]) but not
+ # [1., 2.] as index (same for ie. np.take).
+ # (Note the importance of empty lists if changing this here)
+ try:
+ indx = np.array(indx, dtype=np.intp)
+ except ValueError:
+ raise IndexError
+ in_indices[i] = indx
+ elif indx.dtype.kind not in 'bi':
+ raise IndexError('arrays used as indices must be of '
+ 'integer (or boolean) type')
+ if indx.ndim != 0:
+ no_copy = False
+ ndim += 1
+ fancy_dim += 1
+
+ if arr.ndim - ndim < 0:
+ # we can't take more dimensions then we have, not even for 0-d
+ # arrays. since a[()] makes sense, but not a[(),]. We will
+ # raise an error later on, unless a broadcasting error occurs
+ # first.
+ raise IndexError
+
+ if ndim == 0 and None not in in_indices:
+ # Well we have no indexes or one Ellipsis. This is legal.
+ return arr.copy(), no_copy
+
+ if ellipsis_pos is not None:
+ in_indices[ellipsis_pos:ellipsis_pos + 1] = ([slice(None, None)] *
+ (arr.ndim - ndim))
+
+ for ax, indx in enumerate(in_indices):
+ if isinstance(indx, slice):
+ # convert to an index array
+ indx = np.arange(*indx.indices(arr.shape[ax]))
+ indices.append(['s', indx])
+ continue
+ elif indx is None:
+ # this is like taking a slice with one element from a new axis:
+ indices.append(['n', np.array([0], dtype=np.intp)])
+ arr = arr.reshape(arr.shape[:ax] + (1,) + arr.shape[ax:])
+ continue
+ if isinstance(indx, np.ndarray) and indx.dtype == bool:
+ if indx.shape != arr.shape[ax:ax + indx.ndim]:
+ raise IndexError
+
+ try:
+ flat_indx = np.ravel_multi_index(np.nonzero(indx),
+ arr.shape[ax:ax + indx.ndim], mode='raise')
+ except Exception:
+ error_unless_broadcast_to_empty = True
+ # fill with 0s instead, and raise error later
+ flat_indx = np.array([0] * indx.sum(), dtype=np.intp)
+ # concatenate axis into a single one:
+ if indx.ndim != 0:
+ arr = arr.reshape(arr.shape[:ax]
+ + (np.prod(arr.shape[ax:ax + indx.ndim]),)
+ + arr.shape[ax + indx.ndim:])
+ indx = flat_indx
+ else:
+ # This could be changed, a 0-d boolean index can
+ # make sense (even outside the 0-d indexed array case)
+ # Note that originally this is could be interpreted as
+ # integer in the full integer special case.
+ raise IndexError
+ # If the index is a singleton, the bounds check is done
+ # before the broadcasting. This used to be different in <1.9
+ elif indx.ndim == 0 and not (
+ -arr.shape[ax] <= indx < arr.shape[ax]
+ ):
+ raise IndexError
+ if indx.ndim == 0:
+ # The index is a scalar. This used to be two fold, but if
+ # fancy indexing was active, the check was done later,
+ # possibly after broadcasting it away (1.7. or earlier).
+ # Now it is always done.
+ if indx >= arr.shape[ax] or indx < - arr.shape[ax]:
+ raise IndexError
+ if (len(indices) > 0 and
+ indices[-1][0] == 'f' and
+ ax != ellipsis_pos):
+ # NOTE: There could still have been a 0-sized Ellipsis
+ # between them. Checked that with ellipsis_pos.
+ indices[-1].append(indx)
+ else:
+ # We have a fancy index that is not after an existing one.
+ # NOTE: A 0-d array triggers this as well, while one may
+ # expect it to not trigger it, since a scalar would not be
+ # considered fancy indexing.
+ num_fancy += 1
+ indices.append(['f', indx])
+
+ if num_fancy > 1 and not no_copy:
+ # We have to flush the fancy indexes left
+ new_indices = indices[:]
+ axes = list(range(arr.ndim))
+ fancy_axes = []
+ new_indices.insert(0, ['f'])
+ ni = 0
+ ai = 0
+ for indx in indices:
+ ni += 1
+ if indx[0] == 'f':
+ new_indices[0].extend(indx[1:])
+ del new_indices[ni]
+ ni -= 1
+ for ax in range(ai, ai + len(indx[1:])):
+ fancy_axes.append(ax)
+ axes.remove(ax)
+ ai += len(indx) - 1 # axis we are at
+ indices = new_indices
+ # and now we need to transpose arr:
+ arr = arr.transpose(*(fancy_axes + axes))
+
+ # We only have one 'f' index now and arr is transposed accordingly.
+ # Now handle newaxis by reshaping...
+ ax = 0
+ for indx in indices:
+ if indx[0] == 'f':
+ if len(indx) == 1:
+ continue
+ # First of all, reshape arr to combine fancy axes into one:
+ orig_shape = arr.shape
+ orig_slice = orig_shape[ax:ax + len(indx[1:])]
+ arr = arr.reshape(arr.shape[:ax]
+ + (np.prod(orig_slice).astype(int),)
+ + arr.shape[ax + len(indx[1:]):])
+
+ # Check if broadcasting works
+ res = np.broadcast(*indx[1:])
+ # unfortunately the indices might be out of bounds. So check
+ # that first, and use mode='wrap' then. However only if
+ # there are any indices...
+ if res.size != 0:
+ if error_unless_broadcast_to_empty:
+ raise IndexError
+ for _indx, _size in zip(indx[1:], orig_slice):
+ if _indx.size == 0:
+ continue
+ if np.any(_indx >= _size) or np.any(_indx < -_size):
+ raise IndexError
+ if len(indx[1:]) == len(orig_slice):
+ if np.prod(orig_slice) == 0:
+ # Work around for a crash or IndexError with 'wrap'
+ # in some 0-sized cases.
+ try:
+ mi = np.ravel_multi_index(indx[1:], orig_slice,
+ mode='raise')
+ except Exception:
+ # This happens with 0-sized orig_slice (sometimes?)
+ # here it is a ValueError, but indexing gives a:
+ raise IndexError('invalid index into 0-sized')
+ else:
+ mi = np.ravel_multi_index(indx[1:], orig_slice,
+ mode='wrap')
+ else:
+ # Maybe never happens...
+ raise ValueError
+ arr = arr.take(mi.ravel(), axis=ax)
+ try:
+ arr = arr.reshape(arr.shape[:ax]
+ + mi.shape
+ + arr.shape[ax + 1:])
+ except ValueError:
+ # too many dimensions, probably
+ raise IndexError
+ ax += mi.ndim
+ continue
+
+ # If we are here, we have a 1D array for take:
+ arr = arr.take(indx[1], axis=ax)
+ ax += 1
+
+ return arr, no_copy
+
+ def _check_multi_index(self, arr, index):
+ """Check a multi index item getting and simple setting.
+
+ Parameters
+ ----------
+ arr : ndarray
+ Array to be indexed, must be a reshaped arange.
+ index : tuple of indexing objects
+ Index being tested.
+ """
+ # Test item getting
+ try:
+ mimic_get, no_copy = self._get_multi_index(arr, index)
+ except Exception as e:
+ if HAS_REFCOUNT:
+ prev_refcount = sys.getrefcount(arr)
+ assert_raises(type(e), arr.__getitem__, index)
+ assert_raises(type(e), arr.__setitem__, index, 0)
+ if HAS_REFCOUNT:
+ assert_equal(prev_refcount, sys.getrefcount(arr))
+ return
+
+ self._compare_index_result(arr, index, mimic_get, no_copy)
+
+ def _check_single_index(self, arr, index):
+ """Check a single index item getting and simple setting.
+
+ Parameters
+ ----------
+ arr : ndarray
+ Array to be indexed, must be an arange.
+ index : indexing object
+ Index being tested. Must be a single index and not a tuple
+ of indexing objects (see also `_check_multi_index`).
+ """
+ try:
+ mimic_get, no_copy = self._get_multi_index(arr, (index,))
+ except Exception as e:
+ if HAS_REFCOUNT:
+ prev_refcount = sys.getrefcount(arr)
+ assert_raises(type(e), arr.__getitem__, index)
+ assert_raises(type(e), arr.__setitem__, index, 0)
+ if HAS_REFCOUNT:
+ assert_equal(prev_refcount, sys.getrefcount(arr))
+ return
+
+ self._compare_index_result(arr, index, mimic_get, no_copy)
+
+ def _compare_index_result(self, arr, index, mimic_get, no_copy):
+ """Compare mimicked result to indexing result.
+ """
+ arr = arr.copy()
+ if HAS_REFCOUNT:
+ startcount = sys.getrefcount(arr)
+ indexed_arr = arr[index]
+ assert_array_equal(indexed_arr, mimic_get)
+ # Check if we got a view, unless its a 0-sized or 0-d array.
+ # (then its not a view, and that does not matter)
+ if indexed_arr.size != 0 and indexed_arr.ndim != 0:
+ assert_(np.may_share_memory(indexed_arr, arr) == no_copy)
+ # Check reference count of the original array
+ if HAS_REFCOUNT:
+ if no_copy:
+ # refcount increases by one:
+ assert_equal(sys.getrefcount(arr), startcount + 1)
+ else:
+ assert_equal(sys.getrefcount(arr), startcount)
+
+ # Test non-broadcast setitem:
+ b = arr.copy()
+ b[index] = mimic_get + 1000
+ if b.size == 0:
+ return # nothing to compare here...
+ if no_copy and indexed_arr.ndim != 0:
+ # change indexed_arr in-place to manipulate original:
+ indexed_arr += 1000
+ assert_array_equal(arr, b)
+ return
+ # Use the fact that the array is originally an arange:
+ arr.flat[indexed_arr.ravel()] += 1000
+ assert_array_equal(arr, b)
+
+ def test_boolean(self):
+ a = np.array(5)
+ assert_equal(a[np.array(True)], 5)
+ a[np.array(True)] = 1
+ assert_equal(a, 1)
+ # NOTE: This is different from normal broadcasting, as
+ # arr[boolean_array] works like in a multi index. Which means
+ # it is aligned to the left. This is probably correct for
+ # consistency with arr[boolean_array,] also no broadcasting
+ # is done at all
+ self._check_multi_index(
+ self.a, (np.zeros_like(self.a, dtype=bool),))
+ self._check_multi_index(
+ self.a, (np.zeros_like(self.a, dtype=bool)[..., 0],))
+ self._check_multi_index(
+ self.a, (np.zeros_like(self.a, dtype=bool)[None, ...],))
+
+ def test_multidim(self):
+ # Automatically test combinations with complex indexes on 2nd (or 1st)
+ # spot and the simple ones in one other spot.
+ with warnings.catch_warnings():
+ # This is so that np.array(True) is not accepted in a full integer
+ # index, when running the file separately.
+ warnings.filterwarnings('error', '', DeprecationWarning)
+ warnings.filterwarnings('error', '', VisibleDeprecationWarning)
+
+ def isskip(idx):
+ return isinstance(idx, str) and idx == "skip"
+
+ for simple_pos in [0, 2, 3]:
+ tocheck = [self.fill_indices, self.complex_indices,
+ self.fill_indices, self.fill_indices]
+ tocheck[simple_pos] = self.simple_indices
+ for index in product(*tocheck):
+ index = tuple(i for i in index if not isskip(i))
+ self._check_multi_index(self.a, index)
+ self._check_multi_index(self.b, index)
+
+ # Check very simple item getting:
+ self._check_multi_index(self.a, (0, 0, 0, 0))
+ self._check_multi_index(self.b, (0, 0, 0, 0))
+ # Also check (simple cases of) too many indices:
+ assert_raises(IndexError, self.a.__getitem__, (0, 0, 0, 0, 0))
+ assert_raises(IndexError, self.a.__setitem__, (0, 0, 0, 0, 0), 0)
+ assert_raises(IndexError, self.a.__getitem__, (0, 0, [1], 0, 0))
+ assert_raises(IndexError, self.a.__setitem__, (0, 0, [1], 0, 0), 0)
+
+ def test_1d(self):
+ a = np.arange(10)
+ for index in self.complex_indices:
+ self._check_single_index(a, index)
+
+class TestFloatNonIntegerArgument:
+ """
+ These test that ``TypeError`` is raised when you try to use
+ non-integers as arguments to for indexing and slicing e.g. ``a[0.0:5]``
+ and ``a[0.5]``, or other functions like ``array.reshape(1., -1)``.
+
+ """
+ def test_valid_indexing(self):
+ # These should raise no errors.
+ a = np.array([[[5]]])
+
+ a[np.array([0])]
+ a[[0, 0]]
+ a[:, [0, 0]]
+ a[:, 0, :]
+ a[:, :, :]
+
+ def test_valid_slicing(self):
+ # These should raise no errors.
+ a = np.array([[[5]]])
+
+ a[::]
+ a[0:]
+ a[:2]
+ a[0:2]
+ a[::2]
+ a[1::2]
+ a[:2:2]
+ a[1:2:2]
+
+ def test_non_integer_argument_errors(self):
+ a = np.array([[5]])
+
+ assert_raises(TypeError, np.reshape, a, (1., 1., -1))
+ assert_raises(TypeError, np.reshape, a, (np.array(1.), -1))
+ assert_raises(TypeError, np.take, a, [0], 1.)
+ assert_raises(TypeError, np.take, a, [0], np.float64(1.))
+
+ def test_non_integer_sequence_multiplication(self):
+ # NumPy scalar sequence multiply should not work with non-integers
+ def mult(a, b):
+ return a * b
+
+ assert_raises(TypeError, mult, [1], np.float64(3))
+ # following should be OK
+ mult([1], np.int_(3))
+
+ def test_reduce_axis_float_index(self):
+ d = np.zeros((3, 3, 3))
+ assert_raises(TypeError, np.min, d, 0.5)
+ assert_raises(TypeError, np.min, d, (0.5, 1))
+ assert_raises(TypeError, np.min, d, (1, 2.2))
+ assert_raises(TypeError, np.min, d, (.2, 1.2))
+
+
+class TestBooleanIndexing:
+ # Using a boolean as integer argument/indexing is an error.
+ def test_bool_as_int_argument_errors(self):
+ a = np.array([[[1]]])
+
+ assert_raises(TypeError, np.reshape, a, (True, -1))
+ assert_raises(TypeError, np.reshape, a, (np.bool(True), -1))
+ # Note that operator.index(np.array(True)) does not work, a boolean
+ # array is thus also deprecated, but not with the same message:
+ assert_raises(TypeError, operator.index, np.array(True))
+ assert_raises(TypeError, operator.index, np.True_)
+ assert_raises(TypeError, np.take, args=(a, [0], False))
+
+ def test_boolean_indexing_weirdness(self):
+ # Weird boolean indexing things
+ a = np.ones((2, 3, 4))
+ assert a[False, True, ...].shape == (0, 2, 3, 4)
+ assert a[True, [0, 1], True, True, [1], [[2]]].shape == (1, 2)
+ assert_raises(IndexError, lambda: a[False, [0, 1], ...])
+
+ def test_boolean_indexing_fast_path(self):
+ # These used to either give the wrong error, or incorrectly give no
+ # error.
+ a = np.ones((3, 3))
+
+ # This used to incorrectly work (and give an array of shape (0,))
+ idx1 = np.array([[False] * 9])
+ assert_raises_regex(IndexError,
+ "boolean index did not match indexed array along axis 0; "
+ "size of axis is 3 but size of corresponding boolean axis is 1",
+ lambda: a[idx1])
+
+ # This used to incorrectly give a ValueError: operands could not be broadcast together
+ idx2 = np.array([[False] * 8 + [True]])
+ assert_raises_regex(IndexError,
+ "boolean index did not match indexed array along axis 0; "
+ "size of axis is 3 but size of corresponding boolean axis is 1",
+ lambda: a[idx2])
+
+ # This is the same as it used to be. The above two should work like this.
+ idx3 = np.array([[False] * 10])
+ assert_raises_regex(IndexError,
+ "boolean index did not match indexed array along axis 0; "
+ "size of axis is 3 but size of corresponding boolean axis is 1",
+ lambda: a[idx3])
+
+ # This used to give ValueError: non-broadcastable operand
+ a = np.ones((1, 1, 2))
+ idx = np.array([[[True], [False]]])
+ assert_raises_regex(IndexError,
+ "boolean index did not match indexed array along axis 1; "
+ "size of axis is 1 but size of corresponding boolean axis is 2",
+ lambda: a[idx])
+
+
+class TestArrayToIndexDeprecation:
+ """Creating an index from array not 0-D is an error.
+
+ """
+ def test_array_to_index_error(self):
+ # so no exception is expected. The raising is effectively tested above.
+ a = np.array([[[1]]])
+
+ assert_raises(TypeError, operator.index, np.array([1]))
+ assert_raises(TypeError, np.reshape, a, (a, -1))
+ assert_raises(TypeError, np.take, a, [0], a)
+
+
+class TestNonIntegerArrayLike:
+ """Tests that array_likes only valid if can safely cast to integer.
+
+ For instance, lists give IndexError when they cannot be safely cast to
+ an integer.
+
+ """
+ def test_basic(self):
+ a = np.arange(10)
+
+ assert_raises(IndexError, a.__getitem__, [0.5, 1.5])
+ assert_raises(IndexError, a.__getitem__, (['1', '2'],))
+
+ # The following is valid
+ a.__getitem__([])
+
+
+class TestMultipleEllipsisError:
+ """An index can only have a single ellipsis.
+
+ """
+ def test_basic(self):
+ a = np.arange(10)
+ assert_raises(IndexError, lambda: a[..., ...])
+ assert_raises(IndexError, a.__getitem__, ((Ellipsis,) * 2,))
+ assert_raises(IndexError, a.__getitem__, ((Ellipsis,) * 3,))
+
+
+class TestCApiAccess:
+ def test_getitem(self):
+ subscript = functools.partial(array_indexing, 0)
+
+ # 0-d arrays don't work:
+ assert_raises(IndexError, subscript, np.ones(()), 0)
+ # Out of bound values:
+ assert_raises(IndexError, subscript, np.ones(10), 11)
+ assert_raises(IndexError, subscript, np.ones(10), -11)
+ assert_raises(IndexError, subscript, np.ones((10, 10)), 11)
+ assert_raises(IndexError, subscript, np.ones((10, 10)), -11)
+
+ a = np.arange(10)
+ assert_array_equal(a[4], subscript(a, 4))
+ a = a.reshape(5, 2)
+ assert_array_equal(a[-4], subscript(a, -4))
+
+ def test_setitem(self):
+ assign = functools.partial(array_indexing, 1)
+
+ # Deletion is impossible:
+ assert_raises(ValueError, assign, np.ones(10), 0)
+ # 0-d arrays don't work:
+ assert_raises(IndexError, assign, np.ones(()), 0, 0)
+ # Out of bound values:
+ assert_raises(IndexError, assign, np.ones(10), 11, 0)
+ assert_raises(IndexError, assign, np.ones(10), -11, 0)
+ assert_raises(IndexError, assign, np.ones((10, 10)), 11, 0)
+ assert_raises(IndexError, assign, np.ones((10, 10)), -11, 0)
+
+ a = np.arange(10)
+ assign(a, 4, 10)
+ assert_(a[4] == 10)
+
+ a = a.reshape(5, 2)
+ assign(a, 4, 10)
+ assert_array_equal(a[-1], [10, 10])
diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_item_selection.py b/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_item_selection.py
new file mode 100644
index 0000000..79fb82d
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_item_selection.py
@@ -0,0 +1,167 @@
+import sys
+
+import pytest
+
+import numpy as np
+from numpy.testing import HAS_REFCOUNT, assert_, assert_array_equal, assert_raises
+
+
+class TestTake:
+ def test_simple(self):
+ a = [[1, 2], [3, 4]]
+ a_str = [[b'1', b'2'], [b'3', b'4']]
+ modes = ['raise', 'wrap', 'clip']
+ indices = [-1, 4]
+ index_arrays = [np.empty(0, dtype=np.intp),
+ np.empty((), dtype=np.intp),
+ np.empty((1, 1), dtype=np.intp)]
+ real_indices = {'raise': {-1: 1, 4: IndexError},
+ 'wrap': {-1: 1, 4: 0},
+ 'clip': {-1: 0, 4: 1}}
+ # Currently all types but object, use the same function generation.
+ # So it should not be necessary to test all. However test also a non
+ # refcounted struct on top of object, which has a size that hits the
+ # default (non-specialized) path.
+ types = int, object, np.dtype([('', 'i2', 3)])
+ for t in types:
+ # ta works, even if the array may be odd if buffer interface is used
+ ta = np.array(a if np.issubdtype(t, np.number) else a_str, dtype=t)
+ tresult = list(ta.T.copy())
+ for index_array in index_arrays:
+ if index_array.size != 0:
+ tresult[0].shape = (2,) + index_array.shape
+ tresult[1].shape = (2,) + index_array.shape
+ for mode in modes:
+ for index in indices:
+ real_index = real_indices[mode][index]
+ if real_index is IndexError and index_array.size != 0:
+ index_array.put(0, index)
+ assert_raises(IndexError, ta.take, index_array,
+ mode=mode, axis=1)
+ elif index_array.size != 0:
+ index_array.put(0, index)
+ res = ta.take(index_array, mode=mode, axis=1)
+ assert_array_equal(res, tresult[real_index])
+ else:
+ res = ta.take(index_array, mode=mode, axis=1)
+ assert_(res.shape == (2,) + index_array.shape)
+
+ def test_refcounting(self):
+ objects = [object() for i in range(10)]
+ if HAS_REFCOUNT:
+ orig_rcs = [sys.getrefcount(o) for o in objects]
+ for mode in ('raise', 'clip', 'wrap'):
+ a = np.array(objects)
+ b = np.array([2, 2, 4, 5, 3, 5])
+ a.take(b, out=a[:6], mode=mode)
+ del a
+ if HAS_REFCOUNT:
+ assert_(all(sys.getrefcount(o) == rc + 1
+ for o, rc in zip(objects, orig_rcs)))
+ # not contiguous, example:
+ a = np.array(objects * 2)[::2]
+ a.take(b, out=a[:6], mode=mode)
+ del a
+ if HAS_REFCOUNT:
+ assert_(all(sys.getrefcount(o) == rc + 1
+ for o, rc in zip(objects, orig_rcs)))
+
+ def test_unicode_mode(self):
+ d = np.arange(10)
+ k = b'\xc3\xa4'.decode("UTF8")
+ assert_raises(ValueError, d.take, 5, mode=k)
+
+ def test_empty_partition(self):
+ # In reference to github issue #6530
+ a_original = np.array([0, 2, 4, 6, 8, 10])
+ a = a_original.copy()
+
+ # An empty partition should be a successful no-op
+ a.partition(np.array([], dtype=np.int16))
+
+ assert_array_equal(a, a_original)
+
+ def test_empty_argpartition(self):
+ # In reference to github issue #6530
+ a = np.array([0, 2, 4, 6, 8, 10])
+ a = a.argpartition(np.array([], dtype=np.int16))
+
+ b = np.array([0, 1, 2, 3, 4, 5])
+ assert_array_equal(a, b)
+
+
+class TestPutMask:
+ @pytest.mark.parametrize("dtype", list(np.typecodes["All"]) + ["i,O"])
+ def test_simple(self, dtype):
+ if dtype.lower() == "m":
+ dtype += "8[ns]"
+
+ # putmask is weird and doesn't care about value length (even shorter)
+ vals = np.arange(1001).astype(dtype=dtype)
+
+ mask = np.random.randint(2, size=1000).astype(bool)
+ # Use vals.dtype in case of flexible dtype (i.e. string)
+ arr = np.zeros(1000, dtype=vals.dtype)
+ zeros = arr.copy()
+
+ np.putmask(arr, mask, vals)
+ assert_array_equal(arr[mask], vals[:len(mask)][mask])
+ assert_array_equal(arr[~mask], zeros[~mask])
+
+ @pytest.mark.parametrize("dtype", list(np.typecodes["All"])[1:] + ["i,O"])
+ @pytest.mark.parametrize("mode", ["raise", "wrap", "clip"])
+ def test_empty(self, dtype, mode):
+ arr = np.zeros(1000, dtype=dtype)
+ arr_copy = arr.copy()
+ mask = np.random.randint(2, size=1000).astype(bool)
+
+ # Allowing empty values like this is weird...
+ np.put(arr, mask, [])
+ assert_array_equal(arr, arr_copy)
+
+
+class TestPut:
+ @pytest.mark.parametrize("dtype", list(np.typecodes["All"])[1:] + ["i,O"])
+ @pytest.mark.parametrize("mode", ["raise", "wrap", "clip"])
+ def test_simple(self, dtype, mode):
+ if dtype.lower() == "m":
+ dtype += "8[ns]"
+
+ # put is weird and doesn't care about value length (even shorter)
+ vals = np.arange(1001).astype(dtype=dtype)
+
+ # Use vals.dtype in case of flexible dtype (i.e. string)
+ arr = np.zeros(1000, dtype=vals.dtype)
+ zeros = arr.copy()
+
+ if mode == "clip":
+ # Special because 0 and -1 value are "reserved" for clip test
+ indx = np.random.permutation(len(arr) - 2)[:-500] + 1
+
+ indx[-1] = 0
+ indx[-2] = len(arr) - 1
+ indx_put = indx.copy()
+ indx_put[-1] = -1389
+ indx_put[-2] = 1321
+ else:
+ # Avoid duplicates (for simplicity) and fill half only
+ indx = np.random.permutation(len(arr) - 3)[:-500]
+ indx_put = indx
+ if mode == "wrap":
+ indx_put = indx_put + len(arr)
+
+ np.put(arr, indx_put, vals, mode=mode)
+ assert_array_equal(arr[indx], vals[:len(indx)])
+ untouched = np.ones(len(arr), dtype=bool)
+ untouched[indx] = False
+ assert_array_equal(arr[untouched], zeros[:untouched.sum()])
+
+ @pytest.mark.parametrize("dtype", list(np.typecodes["All"])[1:] + ["i,O"])
+ @pytest.mark.parametrize("mode", ["raise", "wrap", "clip"])
+ def test_empty(self, dtype, mode):
+ arr = np.zeros(1000, dtype=dtype)
+ arr_copy = arr.copy()
+
+ # Allowing empty values like this is weird...
+ np.put(arr, [1, 2, 3], [])
+ assert_array_equal(arr, arr_copy)
diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_limited_api.py b/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_limited_api.py
new file mode 100644
index 0000000..984210e
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_limited_api.py
@@ -0,0 +1,102 @@
+import os
+import subprocess
+import sys
+import sysconfig
+
+import pytest
+
+from numpy.testing import IS_EDITABLE, IS_PYPY, IS_WASM, NOGIL_BUILD
+
+# This import is copied from random.tests.test_extending
+try:
+ import cython
+ from Cython.Compiler.Version import version as cython_version
+except ImportError:
+ cython = None
+else:
+ from numpy._utils import _pep440
+
+ # Note: keep in sync with the one in pyproject.toml
+ required_version = "3.0.6"
+ if _pep440.parse(cython_version) < _pep440.Version(required_version):
+ # too old or wrong cython, skip the test
+ cython = None
+
+pytestmark = pytest.mark.skipif(cython is None, reason="requires cython")
+
+
+if IS_EDITABLE:
+ pytest.skip(
+ "Editable install doesn't support tests with a compile step",
+ allow_module_level=True
+ )
+
+
+@pytest.fixture(scope='module')
+def install_temp(tmpdir_factory):
+ # Based in part on test_cython from random.tests.test_extending
+ if IS_WASM:
+ pytest.skip("No subprocess")
+
+ srcdir = os.path.join(os.path.dirname(__file__), 'examples', 'limited_api')
+ build_dir = tmpdir_factory.mktemp("limited_api") / "build"
+ os.makedirs(build_dir, exist_ok=True)
+ # Ensure we use the correct Python interpreter even when `meson` is
+ # installed in a different Python environment (see gh-24956)
+ native_file = str(build_dir / 'interpreter-native-file.ini')
+ with open(native_file, 'w') as f:
+ f.write("[binaries]\n")
+ f.write(f"python = '{sys.executable}'\n")
+ f.write(f"python3 = '{sys.executable}'")
+
+ try:
+ subprocess.check_call(["meson", "--version"])
+ except FileNotFoundError:
+ pytest.skip("No usable 'meson' found")
+ if sysconfig.get_platform() == "win-arm64":
+ pytest.skip("Meson unable to find MSVC linker on win-arm64")
+ if sys.platform == "win32":
+ subprocess.check_call(["meson", "setup",
+ "--werror",
+ "--buildtype=release",
+ "--vsenv", "--native-file", native_file,
+ str(srcdir)],
+ cwd=build_dir,
+ )
+ else:
+ subprocess.check_call(["meson", "setup", "--werror",
+ "--native-file", native_file, str(srcdir)],
+ cwd=build_dir
+ )
+ try:
+ subprocess.check_call(
+ ["meson", "compile", "-vv"], cwd=build_dir)
+ except subprocess.CalledProcessError as p:
+ print(f"{p.stdout=}")
+ print(f"{p.stderr=}")
+ raise
+
+ sys.path.append(str(build_dir))
+
+
+@pytest.mark.skipif(IS_WASM, reason="Can't start subprocess")
+@pytest.mark.xfail(
+ sysconfig.get_config_var("Py_DEBUG"),
+ reason=(
+ "Py_LIMITED_API is incompatible with Py_DEBUG, Py_TRACE_REFS, "
+ "and Py_REF_DEBUG"
+ ),
+)
+@pytest.mark.xfail(
+ NOGIL_BUILD,
+ reason="Py_GIL_DISABLED builds do not currently support the limited API",
+)
+@pytest.mark.skipif(IS_PYPY, reason="no support for limited API in PyPy")
+def test_limited_api(install_temp):
+ """Test building a third-party C extension with the limited API
+ and building a cython extension with the limited API
+ """
+
+ import limited_api1 # Earliest (3.6) # noqa: F401
+ import limited_api2 # cython # noqa: F401
+ import limited_api_latest # Latest version (current Python) # noqa: F401
diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_longdouble.py b/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_longdouble.py
new file mode 100644
index 0000000..f7edd97
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_longdouble.py
@@ -0,0 +1,369 @@
+import platform
+import warnings
+
+import pytest
+
+import numpy as np
+from numpy._core.tests._locales import CommaDecimalPointLocale
+from numpy.testing import (
+ IS_MUSL,
+ assert_,
+ assert_array_equal,
+ assert_equal,
+ assert_raises,
+ temppath,
+)
+
+LD_INFO = np.finfo(np.longdouble)
+longdouble_longer_than_double = (LD_INFO.eps < np.finfo(np.double).eps)
+
+
+_o = 1 + LD_INFO.eps
+string_to_longdouble_inaccurate = (_o != np.longdouble(str(_o)))
+del _o
+
+
+def test_scalar_extraction():
+ """Confirm that extracting a value doesn't convert to python float"""
+ o = 1 + LD_INFO.eps
+ a = np.array([o, o, o])
+ assert_equal(a[1], o)
+
+
+# Conversions string -> long double
+
+# 0.1 not exactly representable in base 2 floating point.
+repr_precision = len(repr(np.longdouble(0.1)))
+# +2 from macro block starting around line 842 in scalartypes.c.src.
+
+
+@pytest.mark.skipif(IS_MUSL,
+ reason="test flaky on musllinux")
+@pytest.mark.skipif(LD_INFO.precision + 2 >= repr_precision,
+ reason="repr precision not enough to show eps")
+def test_str_roundtrip():
+ # We will only see eps in repr if within printing precision.
+ o = 1 + LD_INFO.eps
+ assert_equal(np.longdouble(str(o)), o, f"str was {str(o)}")
+
+
+@pytest.mark.skipif(string_to_longdouble_inaccurate, reason="Need strtold_l")
+def test_str_roundtrip_bytes():
+ o = 1 + LD_INFO.eps
+ assert_equal(np.longdouble(str(o).encode("ascii")), o)
+
+
+@pytest.mark.skipif(string_to_longdouble_inaccurate, reason="Need strtold_l")
+@pytest.mark.parametrize("strtype", (np.str_, np.bytes_, str, bytes))
+def test_array_and_stringlike_roundtrip(strtype):
+ """
+ Test that string representations of long-double roundtrip both
+ for array casting and scalar coercion, see also gh-15608.
+ """
+ o = 1 + LD_INFO.eps
+
+ if strtype in (np.bytes_, bytes):
+ o_str = strtype(str(o).encode("ascii"))
+ else:
+ o_str = strtype(str(o))
+
+ # Test that `o` is correctly coerced from the string-like
+ assert o == np.longdouble(o_str)
+
+ # Test that arrays also roundtrip correctly:
+ o_strarr = np.asarray([o] * 3, dtype=strtype)
+ assert (o == o_strarr.astype(np.longdouble)).all()
+
+ # And array coercion and casting to string give the same as scalar repr:
+ assert (o_strarr == o_str).all()
+ assert (np.asarray([o] * 3).astype(strtype) == o_str).all()
+
+
+def test_bogus_string():
+ assert_raises(ValueError, np.longdouble, "spam")
+ assert_raises(ValueError, np.longdouble, "1.0 flub")
+
+
+@pytest.mark.skipif(string_to_longdouble_inaccurate, reason="Need strtold_l")
+def test_fromstring():
+ o = 1 + LD_INFO.eps
+ s = (" " + str(o)) * 5
+ a = np.array([o] * 5)
+ assert_equal(np.fromstring(s, sep=" ", dtype=np.longdouble), a,
+ err_msg=f"reading '{s}'")
+
+
+def test_fromstring_complex():
+ for ctype in ["complex", "cdouble"]:
+ # Check spacing between separator
+ assert_equal(np.fromstring("1, 2 , 3 ,4", sep=",", dtype=ctype),
+ np.array([1., 2., 3., 4.]))
+ # Real component not specified
+ assert_equal(np.fromstring("1j, -2j, 3j, 4e1j", sep=",", dtype=ctype),
+ np.array([1.j, -2.j, 3.j, 40.j]))
+ # Both components specified
+ assert_equal(np.fromstring("1+1j,2-2j, -3+3j, -4e1+4j", sep=",", dtype=ctype),
+ np.array([1. + 1.j, 2. - 2.j, - 3. + 3.j, - 40. + 4j]))
+ # Spaces at wrong places
+ with assert_raises(ValueError):
+ np.fromstring("1+2 j,3", dtype=ctype, sep=",")
+ with assert_raises(ValueError):
+ np.fromstring("1+ 2j,3", dtype=ctype, sep=",")
+ with assert_raises(ValueError):
+ np.fromstring("1 +2j,3", dtype=ctype, sep=",")
+ with assert_raises(ValueError):
+ np.fromstring("1+j", dtype=ctype, sep=",")
+ with assert_raises(ValueError):
+ np.fromstring("1+", dtype=ctype, sep=",")
+ with assert_raises(ValueError):
+ np.fromstring("1j+1", dtype=ctype, sep=",")
+
+
+def test_fromstring_bogus():
+ with assert_raises(ValueError):
+ np.fromstring("1. 2. 3. flop 4.", dtype=float, sep=" ")
+
+
+def test_fromstring_empty():
+ with assert_raises(ValueError):
+ np.fromstring("xxxxx", sep="x")
+
+
+def test_fromstring_missing():
+ with assert_raises(ValueError):
+ np.fromstring("1xx3x4x5x6", sep="x")
+
+
+class TestFileBased:
+
+ ldbl = 1 + LD_INFO.eps
+ tgt = np.array([ldbl] * 5)
+ out = ''.join([str(t) + '\n' for t in tgt])
+
+ def test_fromfile_bogus(self):
+ with temppath() as path:
+ with open(path, 'w') as f:
+ f.write("1. 2. 3. flop 4.\n")
+
+ with assert_raises(ValueError):
+ np.fromfile(path, dtype=float, sep=" ")
+
+ def test_fromfile_complex(self):
+ for ctype in ["complex", "cdouble"]:
+ # Check spacing between separator and only real component specified
+ with temppath() as path:
+ with open(path, 'w') as f:
+ f.write("1, 2 , 3 ,4\n")
+
+ res = np.fromfile(path, dtype=ctype, sep=",")
+ assert_equal(res, np.array([1., 2., 3., 4.]))
+
+ # Real component not specified
+ with temppath() as path:
+ with open(path, 'w') as f:
+ f.write("1j, -2j, 3j, 4e1j\n")
+
+ res = np.fromfile(path, dtype=ctype, sep=",")
+ assert_equal(res, np.array([1.j, -2.j, 3.j, 40.j]))
+
+ # Both components specified
+ with temppath() as path:
+ with open(path, 'w') as f:
+ f.write("1+1j,2-2j, -3+3j, -4e1+4j\n")
+
+ res = np.fromfile(path, dtype=ctype, sep=",")
+ assert_equal(res, np.array([1. + 1.j, 2. - 2.j, - 3. + 3.j, - 40. + 4j]))
+
+ # Spaces at wrong places
+ with temppath() as path:
+ with open(path, 'w') as f:
+ f.write("1+2 j,3\n")
+
+ with assert_raises(ValueError):
+ np.fromfile(path, dtype=ctype, sep=",")
+
+ # Spaces at wrong places
+ with temppath() as path:
+ with open(path, 'w') as f:
+ f.write("1+ 2j,3\n")
+
+ with assert_raises(ValueError):
+ np.fromfile(path, dtype=ctype, sep=",")
+
+ # Spaces at wrong places
+ with temppath() as path:
+ with open(path, 'w') as f:
+ f.write("1 +2j,3\n")
+
+ with assert_raises(ValueError):
+ np.fromfile(path, dtype=ctype, sep=",")
+
+ # Wrong sep
+ with temppath() as path:
+ with open(path, 'w') as f:
+ f.write("1+j\n")
+
+ with assert_raises(ValueError):
+ np.fromfile(path, dtype=ctype, sep=",")
+
+ # Wrong sep
+ with temppath() as path:
+ with open(path, 'w') as f:
+ f.write("1+\n")
+
+ with assert_raises(ValueError):
+ np.fromfile(path, dtype=ctype, sep=",")
+
+ # Wrong sep
+ with temppath() as path:
+ with open(path, 'w') as f:
+ f.write("1j+1\n")
+
+ with assert_raises(ValueError):
+ np.fromfile(path, dtype=ctype, sep=",")
+
+ @pytest.mark.skipif(string_to_longdouble_inaccurate,
+ reason="Need strtold_l")
+ def test_fromfile(self):
+ with temppath() as path:
+ with open(path, 'w') as f:
+ f.write(self.out)
+ res = np.fromfile(path, dtype=np.longdouble, sep="\n")
+ assert_equal(res, self.tgt)
+
+ @pytest.mark.skipif(string_to_longdouble_inaccurate,
+ reason="Need strtold_l")
+ def test_genfromtxt(self):
+ with temppath() as path:
+ with open(path, 'w') as f:
+ f.write(self.out)
+ res = np.genfromtxt(path, dtype=np.longdouble)
+ assert_equal(res, self.tgt)
+
+ @pytest.mark.skipif(string_to_longdouble_inaccurate,
+ reason="Need strtold_l")
+ def test_loadtxt(self):
+ with temppath() as path:
+ with open(path, 'w') as f:
+ f.write(self.out)
+ res = np.loadtxt(path, dtype=np.longdouble)
+ assert_equal(res, self.tgt)
+
+ @pytest.mark.skipif(string_to_longdouble_inaccurate,
+ reason="Need strtold_l")
+ def test_tofile_roundtrip(self):
+ with temppath() as path:
+ self.tgt.tofile(path, sep=" ")
+ res = np.fromfile(path, dtype=np.longdouble, sep=" ")
+ assert_equal(res, self.tgt)
+
+
+# Conversions long double -> string
+
+
+def test_str_exact():
+ o = 1 + LD_INFO.eps
+ assert_(str(o) != '1')
+
+
+@pytest.mark.skipif(longdouble_longer_than_double, reason="BUG #2376")
+@pytest.mark.skipif(string_to_longdouble_inaccurate,
+ reason="Need strtold_l")
+def test_format():
+ assert_(f"{1 + LD_INFO.eps:.40g}" != '1')
+
+
+@pytest.mark.skipif(longdouble_longer_than_double, reason="BUG #2376")
+@pytest.mark.skipif(string_to_longdouble_inaccurate,
+ reason="Need strtold_l")
+def test_percent():
+ o = 1 + LD_INFO.eps
+ assert_(f"{o:.40g}" != '1')
+
+
+@pytest.mark.skipif(longdouble_longer_than_double,
+ reason="array repr problem")
+@pytest.mark.skipif(string_to_longdouble_inaccurate,
+ reason="Need strtold_l")
+def test_array_repr():
+ o = 1 + LD_INFO.eps
+ a = np.array([o])
+ b = np.array([1], dtype=np.longdouble)
+ if not np.all(a != b):
+ raise ValueError("precision loss creating arrays")
+ assert_(repr(a) != repr(b))
+
+#
+# Locale tests: scalar types formatting should be independent of the locale
+#
+
+class TestCommaDecimalPointLocale(CommaDecimalPointLocale):
+
+ def test_str_roundtrip_foreign(self):
+ o = 1.5
+ assert_equal(o, np.longdouble(str(o)))
+
+ def test_fromstring_foreign_repr(self):
+ f = 1.234
+ a = np.fromstring(repr(f), dtype=float, sep=" ")
+ assert_equal(a[0], f)
+
+ def test_fromstring_foreign(self):
+ s = "1.234"
+ a = np.fromstring(s, dtype=np.longdouble, sep=" ")
+ assert_equal(a[0], np.longdouble(s))
+
+ def test_fromstring_foreign_sep(self):
+ a = np.array([1, 2, 3, 4])
+ b = np.fromstring("1,2,3,4,", dtype=np.longdouble, sep=",")
+ assert_array_equal(a, b)
+
+ def test_fromstring_foreign_value(self):
+ with assert_raises(ValueError):
+ np.fromstring("1,234", dtype=np.longdouble, sep=" ")
+
+
+@pytest.mark.parametrize("int_val", [
+ # cases discussed in gh-10723
+ # and gh-9968
+ 2 ** 1024, 0])
+def test_longdouble_from_int(int_val):
+ # for issue gh-9968
+ str_val = str(int_val)
+ # we'll expect a RuntimeWarning on platforms
+ # with np.longdouble equivalent to np.double
+ # for large integer input
+ with warnings.catch_warnings(record=True) as w:
+ warnings.filterwarnings('always', '', RuntimeWarning)
+ # can be inf==inf on some platforms
+ assert np.longdouble(int_val) == np.longdouble(str_val)
+ # we can't directly compare the int and
+ # max longdouble value on all platforms
+ if np.allclose(np.finfo(np.longdouble).max,
+ np.finfo(np.double).max) and w:
+ assert w[0].category is RuntimeWarning
+
+@pytest.mark.parametrize("bool_val", [
+ True, False])
+def test_longdouble_from_bool(bool_val):
+ assert np.longdouble(bool_val) == np.longdouble(int(bool_val))
+
+
+@pytest.mark.skipif(
+ not (IS_MUSL and platform.machine() == "x86_64"),
+ reason="only need to run on musllinux_x86_64"
+)
+def test_musllinux_x86_64_signature():
+ # this test may fail if you're emulating musllinux_x86_64 on a different
+ # architecture, but should pass natively.
+ known_sigs = [b'\xcd\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xfb\xbf']
+ sig = (np.longdouble(-1.0) / np.longdouble(10.0))
+ sig = sig.view(sig.dtype.newbyteorder('<')).tobytes()[:10]
+ assert sig in known_sigs
+
+
+def test_eps_positive():
+ # np.finfo('g').eps should be positive on all platforms. If this isn't true
+ # then something may have gone wrong with the MachArLike, e.g. if
+ # np._core.getlimits._discovered_machar didn't work properly
+ assert np.finfo(np.longdouble).eps > 0.
diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_machar.py b/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_machar.py
new file mode 100644
index 0000000..2d772dd
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_machar.py
@@ -0,0 +1,30 @@
+"""
+Test machar. Given recent changes to hardcode type data, we might want to get
+rid of both MachAr and this test at some point.
+
+"""
+import numpy._core.numerictypes as ntypes
+from numpy import array, errstate
+from numpy._core._machar import MachAr
+
+
+class TestMachAr:
+ def _run_machar_highprec(self):
+ # Instantiate MachAr instance with high enough precision to cause
+ # underflow
+ try:
+ hiprec = ntypes.float96
+ MachAr(lambda v: array(v, hiprec))
+ except AttributeError:
+ # Fixme, this needs to raise a 'skip' exception.
+ "Skipping test: no ntypes.float96 available on this platform."
+
+ def test_underlow(self):
+ # Regression test for #759:
+ # instantiating MachAr for dtype = np.float96 raises spurious warning.
+ with errstate(all='raise'):
+ try:
+ self._run_machar_highprec()
+ except FloatingPointError as e:
+ msg = f"Caught {e} exception, should not have been raised."
+ raise AssertionError(msg)
diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_mem_overlap.py b/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_mem_overlap.py
new file mode 100644
index 0000000..d173567
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_mem_overlap.py
@@ -0,0 +1,930 @@
+import itertools
+
+import pytest
+from numpy._core._multiarray_tests import internal_overlap, solve_diophantine
+
+import numpy as np
+from numpy._core import _umath_tests
+from numpy.lib.stride_tricks import as_strided
+from numpy.testing import assert_, assert_array_equal, assert_equal, assert_raises
+
+ndims = 2
+size = 10
+shape = tuple([size] * ndims)
+
+MAY_SHARE_BOUNDS = 0
+MAY_SHARE_EXACT = -1
+
+
+def _indices_for_nelems(nelems):
+ """Returns slices of length nelems, from start onwards, in direction sign."""
+
+ if nelems == 0:
+ return [size // 2] # int index
+
+ res = []
+ for step in (1, 2):
+ for sign in (-1, 1):
+ start = size // 2 - nelems * step * sign // 2
+ stop = start + nelems * step * sign
+ res.append(slice(start, stop, step * sign))
+
+ return res
+
+
+def _indices_for_axis():
+ """Returns (src, dst) pairs of indices."""
+
+ res = []
+ for nelems in (0, 2, 3):
+ ind = _indices_for_nelems(nelems)
+ res.extend(itertools.product(ind, ind)) # all assignments of size "nelems"
+
+ return res
+
+
+def _indices(ndims):
+ """Returns ((axis0_src, axis0_dst), (axis1_src, axis1_dst), ... ) index pairs."""
+
+ ind = _indices_for_axis()
+ return itertools.product(ind, repeat=ndims)
+
+
+def _check_assignment(srcidx, dstidx):
+ """Check assignment arr[dstidx] = arr[srcidx] works."""
+
+ arr = np.arange(np.prod(shape)).reshape(shape)
+
+ cpy = arr.copy()
+
+ cpy[dstidx] = arr[srcidx]
+ arr[dstidx] = arr[srcidx]
+
+ assert_(np.all(arr == cpy),
+ f'assigning arr[{dstidx}] = arr[{srcidx}]')
+
+
+def test_overlapping_assignments():
+ # Test automatically generated assignments which overlap in memory.
+
+ inds = _indices(ndims)
+
+ for ind in inds:
+ srcidx = tuple(a[0] for a in ind)
+ dstidx = tuple(a[1] for a in ind)
+
+ _check_assignment(srcidx, dstidx)
+
+
+@pytest.mark.slow
+def test_diophantine_fuzz():
+ # Fuzz test the diophantine solver
+ rng = np.random.RandomState(1234)
+
+ max_int = np.iinfo(np.intp).max
+
+ for ndim in range(10):
+ feasible_count = 0
+ infeasible_count = 0
+
+ min_count = 500 // (ndim + 1)
+
+ while min(feasible_count, infeasible_count) < min_count:
+ # Ensure big and small integer problems
+ A_max = 1 + rng.randint(0, 11, dtype=np.intp)**6
+ U_max = rng.randint(0, 11, dtype=np.intp)**6
+
+ A_max = min(max_int, A_max)
+ U_max = min(max_int - 1, U_max)
+
+ A = tuple(int(rng.randint(1, A_max + 1, dtype=np.intp))
+ for j in range(ndim))
+ U = tuple(int(rng.randint(0, U_max + 2, dtype=np.intp))
+ for j in range(ndim))
+
+ b_ub = min(max_int - 2, sum(a * ub for a, ub in zip(A, U)))
+ b = int(rng.randint(-1, b_ub + 2, dtype=np.intp))
+
+ if ndim == 0 and feasible_count < min_count:
+ b = 0
+
+ X = solve_diophantine(A, U, b)
+
+ if X is None:
+ # Check the simplified decision problem agrees
+ X_simplified = solve_diophantine(A, U, b, simplify=1)
+ assert_(X_simplified is None, (A, U, b, X_simplified))
+
+ # Check no solution exists (provided the problem is
+ # small enough so that brute force checking doesn't
+ # take too long)
+ ranges = tuple(range(0, a * ub + 1, a) for a, ub in zip(A, U))
+
+ size = 1
+ for r in ranges:
+ size *= len(r)
+ if size < 100000:
+ assert_(not any(sum(w) == b for w in itertools.product(*ranges)))
+ infeasible_count += 1
+ else:
+ # Check the simplified decision problem agrees
+ X_simplified = solve_diophantine(A, U, b, simplify=1)
+ assert_(X_simplified is not None, (A, U, b, X_simplified))
+
+ # Check validity
+ assert_(sum(a * x for a, x in zip(A, X)) == b)
+ assert_(all(0 <= x <= ub for x, ub in zip(X, U)))
+ feasible_count += 1
+
+
+def test_diophantine_overflow():
+ # Smoke test integer overflow detection
+ max_intp = np.iinfo(np.intp).max
+ max_int64 = np.iinfo(np.int64).max
+
+ if max_int64 <= max_intp:
+ # Check that the algorithm works internally in 128-bit;
+ # solving this problem requires large intermediate numbers
+ A = (max_int64 // 2, max_int64 // 2 - 10)
+ U = (max_int64 // 2, max_int64 // 2 - 10)
+ b = 2 * (max_int64 // 2) - 10
+
+ assert_equal(solve_diophantine(A, U, b), (1, 1))
+
+
+def check_may_share_memory_exact(a, b):
+ got = np.may_share_memory(a, b, max_work=MAY_SHARE_EXACT)
+
+ assert_equal(np.may_share_memory(a, b),
+ np.may_share_memory(a, b, max_work=MAY_SHARE_BOUNDS))
+
+ a.fill(0)
+ b.fill(0)
+ a.fill(1)
+ exact = b.any()
+
+ err_msg = ""
+ if got != exact:
+ err_msg = " " + "\n ".join([
+ f"base_a - base_b = {a.__array_interface__['data'][0] - b.__array_interface__['data'][0]!r}",
+ f"shape_a = {a.shape!r}",
+ f"shape_b = {b.shape!r}",
+ f"strides_a = {a.strides!r}",
+ f"strides_b = {b.strides!r}",
+ f"size_a = {a.size!r}",
+ f"size_b = {b.size!r}"
+ ])
+
+ assert_equal(got, exact, err_msg=err_msg)
+
+
+def test_may_share_memory_manual():
+ # Manual test cases for may_share_memory
+
+ # Base arrays
+ xs0 = [
+ np.zeros([13, 21, 23, 22], dtype=np.int8),
+ np.zeros([13, 21, 23 * 2, 22], dtype=np.int8)[:, :, ::2, :]
+ ]
+
+ # Generate all negative stride combinations
+ xs = []
+ for x in xs0:
+ for ss in itertools.product(*(([slice(None), slice(None, None, -1)],) * 4)):
+ xp = x[ss]
+ xs.append(xp)
+
+ for x in xs:
+ # The default is a simple extent check
+ assert_(np.may_share_memory(x[:, 0, :], x[:, 1, :]))
+ assert_(np.may_share_memory(x[:, 0, :], x[:, 1, :], max_work=None))
+
+ # Exact checks
+ check_may_share_memory_exact(x[:, 0, :], x[:, 1, :])
+ check_may_share_memory_exact(x[:, ::7], x[:, 3::3])
+
+ try:
+ xp = x.ravel()
+ if xp.flags.owndata:
+ continue
+ xp = xp.view(np.int16)
+ except ValueError:
+ continue
+
+ # 0-size arrays cannot overlap
+ check_may_share_memory_exact(x.ravel()[6:6],
+ xp.reshape(13, 21, 23, 11)[:, ::7])
+
+ # Test itemsize is dealt with
+ check_may_share_memory_exact(x[:, ::7],
+ xp.reshape(13, 21, 23, 11))
+ check_may_share_memory_exact(x[:, ::7],
+ xp.reshape(13, 21, 23, 11)[:, 3::3])
+ check_may_share_memory_exact(x.ravel()[6:7],
+ xp.reshape(13, 21, 23, 11)[:, ::7])
+
+ # Check unit size
+ x = np.zeros([1], dtype=np.int8)
+ check_may_share_memory_exact(x, x)
+ check_may_share_memory_exact(x, x.copy())
+
+
+def iter_random_view_pairs(x, same_steps=True, equal_size=False):
+ rng = np.random.RandomState(1234)
+
+ if equal_size and same_steps:
+ raise ValueError
+
+ def random_slice(n, step):
+ start = rng.randint(0, n + 1, dtype=np.intp)
+ stop = rng.randint(start, n + 1, dtype=np.intp)
+ if rng.randint(0, 2, dtype=np.intp) == 0:
+ stop, start = start, stop
+ step *= -1
+ return slice(start, stop, step)
+
+ def random_slice_fixed_size(n, step, size):
+ start = rng.randint(0, n + 1 - size * step)
+ stop = start + (size - 1) * step + 1
+ if rng.randint(0, 2) == 0:
+ stop, start = start - 1, stop - 1
+ if stop < 0:
+ stop = None
+ step *= -1
+ return slice(start, stop, step)
+
+ # First a few regular views
+ yield x, x
+ for j in range(1, 7, 3):
+ yield x[j:], x[:-j]
+ yield x[..., j:], x[..., :-j]
+
+ # An array with zero stride internal overlap
+ strides = list(x.strides)
+ strides[0] = 0
+ xp = as_strided(x, shape=x.shape, strides=strides)
+ yield x, xp
+ yield xp, xp
+
+ # An array with non-zero stride internal overlap
+ strides = list(x.strides)
+ if strides[0] > 1:
+ strides[0] = 1
+ xp = as_strided(x, shape=x.shape, strides=strides)
+ yield x, xp
+ yield xp, xp
+
+ # Then discontiguous views
+ while True:
+ steps = tuple(rng.randint(1, 11, dtype=np.intp)
+ if rng.randint(0, 5, dtype=np.intp) == 0 else 1
+ for j in range(x.ndim))
+ s1 = tuple(random_slice(p, s) for p, s in zip(x.shape, steps))
+
+ t1 = np.arange(x.ndim)
+ rng.shuffle(t1)
+
+ if equal_size:
+ t2 = t1
+ else:
+ t2 = np.arange(x.ndim)
+ rng.shuffle(t2)
+
+ a = x[s1]
+
+ if equal_size:
+ if a.size == 0:
+ continue
+
+ steps2 = tuple(rng.randint(1, max(2, p // (1 + pa)))
+ if rng.randint(0, 5) == 0 else 1
+ for p, s, pa in zip(x.shape, s1, a.shape))
+ s2 = tuple(random_slice_fixed_size(p, s, pa)
+ for p, s, pa in zip(x.shape, steps2, a.shape))
+ elif same_steps:
+ steps2 = steps
+ else:
+ steps2 = tuple(rng.randint(1, 11, dtype=np.intp)
+ if rng.randint(0, 5, dtype=np.intp) == 0 else 1
+ for j in range(x.ndim))
+
+ if not equal_size:
+ s2 = tuple(random_slice(p, s) for p, s in zip(x.shape, steps2))
+
+ a = a.transpose(t1)
+ b = x[s2].transpose(t2)
+
+ yield a, b
+
+
+def check_may_share_memory_easy_fuzz(get_max_work, same_steps, min_count):
+ # Check that overlap problems with common strides are solved with
+ # little work.
+ x = np.zeros([17, 34, 71, 97], dtype=np.int16)
+
+ feasible = 0
+ infeasible = 0
+
+ pair_iter = iter_random_view_pairs(x, same_steps)
+
+ while min(feasible, infeasible) < min_count:
+ a, b = next(pair_iter)
+
+ bounds_overlap = np.may_share_memory(a, b)
+ may_share_answer = np.may_share_memory(a, b)
+ easy_answer = np.may_share_memory(a, b, max_work=get_max_work(a, b))
+ exact_answer = np.may_share_memory(a, b, max_work=MAY_SHARE_EXACT)
+
+ if easy_answer != exact_answer:
+ # assert_equal is slow...
+ assert_equal(easy_answer, exact_answer)
+
+ if may_share_answer != bounds_overlap:
+ assert_equal(may_share_answer, bounds_overlap)
+
+ if bounds_overlap:
+ if exact_answer:
+ feasible += 1
+ else:
+ infeasible += 1
+
+
+@pytest.mark.slow
+def test_may_share_memory_easy_fuzz():
+ # Check that overlap problems with common strides are always
+ # solved with little work.
+
+ check_may_share_memory_easy_fuzz(get_max_work=lambda a, b: 1,
+ same_steps=True,
+ min_count=2000)
+
+
+@pytest.mark.slow
+def test_may_share_memory_harder_fuzz():
+ # Overlap problems with not necessarily common strides take more
+ # work.
+ #
+ # The work bound below can't be reduced much. Harder problems can
+ # also exist but not be detected here, as the set of problems
+ # comes from RNG.
+
+ check_may_share_memory_easy_fuzz(get_max_work=lambda a, b: max(a.size, b.size) // 2,
+ same_steps=False,
+ min_count=2000)
+
+
+def test_shares_memory_api():
+ x = np.zeros([4, 5, 6], dtype=np.int8)
+
+ assert_equal(np.shares_memory(x, x), True)
+ assert_equal(np.shares_memory(x, x.copy()), False)
+
+ a = x[:, ::2, ::3]
+ b = x[:, ::3, ::2]
+ assert_equal(np.shares_memory(a, b), True)
+ assert_equal(np.shares_memory(a, b, max_work=None), True)
+ assert_raises(
+ np.exceptions.TooHardError, np.shares_memory, a, b, max_work=1
+ )
+
+
+def test_may_share_memory_bad_max_work():
+ x = np.zeros([1])
+ assert_raises(OverflowError, np.may_share_memory, x, x, max_work=10**100)
+ assert_raises(OverflowError, np.shares_memory, x, x, max_work=10**100)
+
+
+def test_internal_overlap_diophantine():
+ def check(A, U, exists=None):
+ X = solve_diophantine(A, U, 0, require_ub_nontrivial=1)
+
+ if exists is None:
+ exists = (X is not None)
+
+ if X is not None:
+ assert_(sum(a * x for a, x in zip(A, X)) == sum(a * u // 2 for a, u in zip(A, U)))
+ assert_(all(0 <= x <= u for x, u in zip(X, U)))
+ assert_(any(x != u // 2 for x, u in zip(X, U)))
+
+ if exists:
+ assert_(X is not None, repr(X))
+ else:
+ assert_(X is None, repr(X))
+
+ # Smoke tests
+ check((3, 2), (2 * 2, 3 * 2), exists=True)
+ check((3 * 2, 2), (15 * 2, (3 - 1) * 2), exists=False)
+
+
+def test_internal_overlap_slices():
+ # Slicing an array never generates internal overlap
+
+ x = np.zeros([17, 34, 71, 97], dtype=np.int16)
+
+ rng = np.random.RandomState(1234)
+
+ def random_slice(n, step):
+ start = rng.randint(0, n + 1, dtype=np.intp)
+ stop = rng.randint(start, n + 1, dtype=np.intp)
+ if rng.randint(0, 2, dtype=np.intp) == 0:
+ stop, start = start, stop
+ step *= -1
+ return slice(start, stop, step)
+
+ cases = 0
+ min_count = 5000
+
+ while cases < min_count:
+ steps = tuple(rng.randint(1, 11, dtype=np.intp)
+ if rng.randint(0, 5, dtype=np.intp) == 0 else 1
+ for j in range(x.ndim))
+ t1 = np.arange(x.ndim)
+ rng.shuffle(t1)
+ s1 = tuple(random_slice(p, s) for p, s in zip(x.shape, steps))
+ a = x[s1].transpose(t1)
+
+ assert_(not internal_overlap(a))
+ cases += 1
+
+
+def check_internal_overlap(a, manual_expected=None):
+ got = internal_overlap(a)
+
+ # Brute-force check
+ m = set()
+ ranges = tuple(range(n) for n in a.shape)
+ for v in itertools.product(*ranges):
+ offset = sum(s * w for s, w in zip(a.strides, v))
+ if offset in m:
+ expected = True
+ break
+ else:
+ m.add(offset)
+ else:
+ expected = False
+
+ # Compare
+ if got != expected:
+ assert_equal(got, expected, err_msg=repr((a.strides, a.shape)))
+ if manual_expected is not None and expected != manual_expected:
+ assert_equal(expected, manual_expected)
+ return got
+
+
+def test_internal_overlap_manual():
+ # Stride tricks can construct arrays with internal overlap
+
+ # We don't care about memory bounds, the array is not
+ # read/write accessed
+ x = np.arange(1).astype(np.int8)
+
+ # Check low-dimensional special cases
+
+ check_internal_overlap(x, False) # 1-dim
+ check_internal_overlap(x.reshape([]), False) # 0-dim
+
+ a = as_strided(x, strides=(3, 4), shape=(4, 4))
+ check_internal_overlap(a, False)
+
+ a = as_strided(x, strides=(3, 4), shape=(5, 4))
+ check_internal_overlap(a, True)
+
+ a = as_strided(x, strides=(0,), shape=(0,))
+ check_internal_overlap(a, False)
+
+ a = as_strided(x, strides=(0,), shape=(1,))
+ check_internal_overlap(a, False)
+
+ a = as_strided(x, strides=(0,), shape=(2,))
+ check_internal_overlap(a, True)
+
+ a = as_strided(x, strides=(0, -9993), shape=(87, 22))
+ check_internal_overlap(a, True)
+
+ a = as_strided(x, strides=(0, -9993), shape=(1, 22))
+ check_internal_overlap(a, False)
+
+ a = as_strided(x, strides=(0, -9993), shape=(0, 22))
+ check_internal_overlap(a, False)
+
+
+def test_internal_overlap_fuzz():
+ # Fuzz check; the brute-force check is fairly slow
+
+ x = np.arange(1).astype(np.int8)
+
+ overlap = 0
+ no_overlap = 0
+ min_count = 100
+
+ rng = np.random.RandomState(1234)
+
+ while min(overlap, no_overlap) < min_count:
+ ndim = rng.randint(1, 4, dtype=np.intp)
+
+ strides = tuple(rng.randint(-1000, 1000, dtype=np.intp)
+ for j in range(ndim))
+ shape = tuple(rng.randint(1, 30, dtype=np.intp)
+ for j in range(ndim))
+
+ a = as_strided(x, strides=strides, shape=shape)
+ result = check_internal_overlap(a)
+
+ if result:
+ overlap += 1
+ else:
+ no_overlap += 1
+
+
+def test_non_ndarray_inputs():
+ # Regression check for gh-5604
+
+ class MyArray:
+ def __init__(self, data):
+ self.data = data
+
+ @property
+ def __array_interface__(self):
+ return self.data.__array_interface__
+
+ class MyArray2:
+ def __init__(self, data):
+ self.data = data
+
+ def __array__(self, dtype=None, copy=None):
+ return self.data
+
+ for cls in [MyArray, MyArray2]:
+ x = np.arange(5)
+
+ assert_(np.may_share_memory(cls(x[::2]), x[1::2]))
+ assert_(not np.shares_memory(cls(x[::2]), x[1::2]))
+
+ assert_(np.shares_memory(cls(x[1::3]), x[::2]))
+ assert_(np.may_share_memory(cls(x[1::3]), x[::2]))
+
+
+def view_element_first_byte(x):
+ """Construct an array viewing the first byte of each element of `x`"""
+ from numpy.lib._stride_tricks_impl import DummyArray
+ interface = dict(x.__array_interface__)
+ interface['typestr'] = '|b1'
+ interface['descr'] = [('', '|b1')]
+ return np.asarray(DummyArray(interface, x))
+
+
+def assert_copy_equivalent(operation, args, out, **kwargs):
+ """
+ Check that operation(*args, out=out) produces results
+ equivalent to out[...] = operation(*args, out=out.copy())
+ """
+
+ kwargs['out'] = out
+ kwargs2 = dict(kwargs)
+ kwargs2['out'] = out.copy()
+
+ out_orig = out.copy()
+ out[...] = operation(*args, **kwargs2)
+ expected = out.copy()
+ out[...] = out_orig
+
+ got = operation(*args, **kwargs).copy()
+
+ if (got != expected).any():
+ assert_equal(got, expected)
+
+
+class TestUFunc:
+ """
+ Test ufunc call memory overlap handling
+ """
+
+ def check_unary_fuzz(self, operation, get_out_axis_size, dtype=np.int16,
+ count=5000):
+ shapes = [7, 13, 8, 21, 29, 32]
+
+ rng = np.random.RandomState(1234)
+
+ for ndim in range(1, 6):
+ x = rng.randint(0, 2**16, size=shapes[:ndim]).astype(dtype)
+
+ it = iter_random_view_pairs(x, same_steps=False, equal_size=True)
+
+ min_count = count // (ndim + 1)**2
+
+ overlapping = 0
+ while overlapping < min_count:
+ a, b = next(it)
+
+ a_orig = a.copy()
+ b_orig = b.copy()
+
+ if get_out_axis_size is None:
+ assert_copy_equivalent(operation, [a], out=b)
+
+ if np.shares_memory(a, b):
+ overlapping += 1
+ else:
+ for axis in itertools.chain(range(ndim), [None]):
+ a[...] = a_orig
+ b[...] = b_orig
+
+ # Determine size for reduction axis (None if scalar)
+ outsize, scalarize = get_out_axis_size(a, b, axis)
+ if outsize == 'skip':
+ continue
+
+ # Slice b to get an output array of the correct size
+ sl = [slice(None)] * ndim
+ if axis is None:
+ if outsize is None:
+ sl = [slice(0, 1)] + [0] * (ndim - 1)
+ else:
+ sl = [slice(0, outsize)] + [0] * (ndim - 1)
+ elif outsize is None:
+ k = b.shape[axis] // 2
+ if ndim == 1:
+ sl[axis] = slice(k, k + 1)
+ else:
+ sl[axis] = k
+ else:
+ assert b.shape[axis] >= outsize
+ sl[axis] = slice(0, outsize)
+ b_out = b[tuple(sl)]
+
+ if scalarize:
+ b_out = b_out.reshape([])
+
+ if np.shares_memory(a, b_out):
+ overlapping += 1
+
+ # Check result
+ assert_copy_equivalent(operation, [a], out=b_out, axis=axis)
+
+ @pytest.mark.slow
+ def test_unary_ufunc_call_fuzz(self):
+ self.check_unary_fuzz(np.invert, None, np.int16)
+
+ @pytest.mark.slow
+ def test_unary_ufunc_call_complex_fuzz(self):
+ # Complex typically has a smaller alignment than itemsize
+ self.check_unary_fuzz(np.negative, None, np.complex128, count=500)
+
+ def test_binary_ufunc_accumulate_fuzz(self):
+ def get_out_axis_size(a, b, axis):
+ if axis is None:
+ if a.ndim == 1:
+ return a.size, False
+ else:
+ return 'skip', False # accumulate doesn't support this
+ else:
+ return a.shape[axis], False
+
+ self.check_unary_fuzz(np.add.accumulate, get_out_axis_size,
+ dtype=np.int16, count=500)
+
+ def test_binary_ufunc_reduce_fuzz(self):
+ def get_out_axis_size(a, b, axis):
+ return None, (axis is None or a.ndim == 1)
+
+ self.check_unary_fuzz(np.add.reduce, get_out_axis_size,
+ dtype=np.int16, count=500)
+
+ def test_binary_ufunc_reduceat_fuzz(self):
+ def get_out_axis_size(a, b, axis):
+ if axis is None:
+ if a.ndim == 1:
+ return a.size, False
+ else:
+ return 'skip', False # reduceat doesn't support this
+ else:
+ return a.shape[axis], False
+
+ def do_reduceat(a, out, axis):
+ if axis is None:
+ size = len(a)
+ step = size // len(out)
+ else:
+ size = a.shape[axis]
+ step = a.shape[axis] // out.shape[axis]
+ idx = np.arange(0, size, step)
+ return np.add.reduceat(a, idx, out=out, axis=axis)
+
+ self.check_unary_fuzz(do_reduceat, get_out_axis_size,
+ dtype=np.int16, count=500)
+
+ def test_binary_ufunc_reduceat_manual(self):
+ def check(ufunc, a, ind, out):
+ c1 = ufunc.reduceat(a.copy(), ind.copy(), out=out.copy())
+ c2 = ufunc.reduceat(a, ind, out=out)
+ assert_array_equal(c1, c2)
+
+ # Exactly same input/output arrays
+ a = np.arange(10000, dtype=np.int16)
+ check(np.add, a, a[::-1].copy(), a)
+
+ # Overlap with index
+ a = np.arange(10000, dtype=np.int16)
+ check(np.add, a, a[::-1], a)
+
+ @pytest.mark.slow
+ def test_unary_gufunc_fuzz(self):
+ shapes = [7, 13, 8, 21, 29, 32]
+ gufunc = _umath_tests.euclidean_pdist
+
+ rng = np.random.RandomState(1234)
+
+ for ndim in range(2, 6):
+ x = rng.rand(*shapes[:ndim])
+
+ it = iter_random_view_pairs(x, same_steps=False, equal_size=True)
+
+ min_count = 500 // (ndim + 1)**2
+
+ overlapping = 0
+ while overlapping < min_count:
+ a, b = next(it)
+
+ if min(a.shape[-2:]) < 2 or min(b.shape[-2:]) < 2 or a.shape[-1] < 2:
+ continue
+
+ # Ensure the shapes are so that euclidean_pdist is happy
+ if b.shape[-1] > b.shape[-2]:
+ b = b[..., 0, :]
+ else:
+ b = b[..., :, 0]
+
+ n = a.shape[-2]
+ p = n * (n - 1) // 2
+ if p <= b.shape[-1] and p > 0:
+ b = b[..., :p]
+ else:
+ n = max(2, int(np.sqrt(b.shape[-1])) // 2)
+ p = n * (n - 1) // 2
+ a = a[..., :n, :]
+ b = b[..., :p]
+
+ # Call
+ if np.shares_memory(a, b):
+ overlapping += 1
+
+ with np.errstate(over='ignore', invalid='ignore'):
+ assert_copy_equivalent(gufunc, [a], out=b)
+
+ def test_ufunc_at_manual(self):
+ def check(ufunc, a, ind, b=None):
+ a0 = a.copy()
+ if b is None:
+ ufunc.at(a0, ind.copy())
+ c1 = a0.copy()
+ ufunc.at(a, ind)
+ c2 = a.copy()
+ else:
+ ufunc.at(a0, ind.copy(), b.copy())
+ c1 = a0.copy()
+ ufunc.at(a, ind, b)
+ c2 = a.copy()
+ assert_array_equal(c1, c2)
+
+ # Overlap with index
+ a = np.arange(10000, dtype=np.int16)
+ check(np.invert, a[::-1], a)
+
+ # Overlap with second data array
+ a = np.arange(100, dtype=np.int16)
+ ind = np.arange(0, 100, 2, dtype=np.int16)
+ check(np.add, a, ind, a[25:75])
+
+ def test_unary_ufunc_1d_manual(self):
+ # Exercise ufunc fast-paths (that avoid creation of an `np.nditer`)
+
+ def check(a, b):
+ a_orig = a.copy()
+ b_orig = b.copy()
+
+ b0 = b.copy()
+ c1 = ufunc(a, out=b0)
+ c2 = ufunc(a, out=b)
+ assert_array_equal(c1, c2)
+
+ # Trigger "fancy ufunc loop" code path
+ mask = view_element_first_byte(b).view(np.bool)
+
+ a[...] = a_orig
+ b[...] = b_orig
+ c1 = ufunc(a, out=b.copy(), where=mask.copy()).copy()
+
+ a[...] = a_orig
+ b[...] = b_orig
+ c2 = ufunc(a, out=b, where=mask.copy()).copy()
+
+ # Also, mask overlapping with output
+ a[...] = a_orig
+ b[...] = b_orig
+ c3 = ufunc(a, out=b, where=mask).copy()
+
+ assert_array_equal(c1, c2)
+ assert_array_equal(c1, c3)
+
+ dtypes = [np.int8, np.int16, np.int32, np.int64, np.float32,
+ np.float64, np.complex64, np.complex128]
+ dtypes = [np.dtype(x) for x in dtypes]
+
+ for dtype in dtypes:
+ if np.issubdtype(dtype, np.integer):
+ ufunc = np.invert
+ else:
+ ufunc = np.reciprocal
+
+ n = 1000
+ k = 10
+ indices = [
+ np.index_exp[:n],
+ np.index_exp[k:k + n],
+ np.index_exp[n - 1::-1],
+ np.index_exp[k + n - 1:k - 1:-1],
+ np.index_exp[:2 * n:2],
+ np.index_exp[k:k + 2 * n:2],
+ np.index_exp[2 * n - 1::-2],
+ np.index_exp[k + 2 * n - 1:k - 1:-2],
+ ]
+
+ for xi, yi in itertools.product(indices, indices):
+ v = np.arange(1, 1 + n * 2 + k, dtype=dtype)
+ x = v[xi]
+ y = v[yi]
+
+ with np.errstate(all='ignore'):
+ check(x, y)
+
+ # Scalar cases
+ check(x[:1], y)
+ check(x[-1:], y)
+ check(x[:1].reshape([]), y)
+ check(x[-1:].reshape([]), y)
+
+ def test_unary_ufunc_where_same(self):
+ # Check behavior at wheremask overlap
+ ufunc = np.invert
+
+ def check(a, out, mask):
+ c1 = ufunc(a, out=out.copy(), where=mask.copy())
+ c2 = ufunc(a, out=out, where=mask)
+ assert_array_equal(c1, c2)
+
+ # Check behavior with same input and output arrays
+ x = np.arange(100).astype(np.bool)
+ check(x, x, x)
+ check(x, x.copy(), x)
+ check(x, x, x.copy())
+
+ @pytest.mark.slow
+ def test_binary_ufunc_1d_manual(self):
+ ufunc = np.add
+
+ def check(a, b, c):
+ c0 = c.copy()
+ c1 = ufunc(a, b, out=c0)
+ c2 = ufunc(a, b, out=c)
+ assert_array_equal(c1, c2)
+
+ for dtype in [np.int8, np.int16, np.int32, np.int64,
+ np.float32, np.float64, np.complex64, np.complex128]:
+ # Check different data dependency orders
+
+ n = 1000
+ k = 10
+
+ indices = []
+ for p in [1, 2]:
+ indices.extend([
+ np.index_exp[:p * n:p],
+ np.index_exp[k:k + p * n:p],
+ np.index_exp[p * n - 1::-p],
+ np.index_exp[k + p * n - 1:k - 1:-p],
+ ])
+
+ for x, y, z in itertools.product(indices, indices, indices):
+ v = np.arange(6 * n).astype(dtype)
+ x = v[x]
+ y = v[y]
+ z = v[z]
+
+ check(x, y, z)
+
+ # Scalar cases
+ check(x[:1], y, z)
+ check(x[-1:], y, z)
+ check(x[:1].reshape([]), y, z)
+ check(x[-1:].reshape([]), y, z)
+ check(x, y[:1], z)
+ check(x, y[-1:], z)
+ check(x, y[:1].reshape([]), z)
+ check(x, y[-1:].reshape([]), z)
+
+ def test_inplace_op_simple_manual(self):
+ rng = np.random.RandomState(1234)
+ x = rng.rand(200, 200) # bigger than bufsize
+
+ x += x.T
+ assert_array_equal(x - x.T, 0)
diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_mem_policy.py b/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_mem_policy.py
new file mode 100644
index 0000000..b9f971e
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_mem_policy.py
@@ -0,0 +1,452 @@
+import asyncio
+import gc
+import os
+import sys
+import sysconfig
+import threading
+
+import pytest
+
+import numpy as np
+from numpy._core.multiarray import get_handler_name
+from numpy.testing import IS_EDITABLE, IS_WASM, assert_warns, extbuild
+
+
+@pytest.fixture
+def get_module(tmp_path):
+ """ Add a memory policy that returns a false pointer 64 bytes into the
+ actual allocation, and fill the prefix with some text. Then check at each
+ memory manipulation that the prefix exists, to make sure all alloc/realloc/
+ free/calloc go via the functions here.
+ """
+ if sys.platform.startswith('cygwin'):
+ pytest.skip('link fails on cygwin')
+ if IS_WASM:
+ pytest.skip("Can't build module inside Wasm")
+ if IS_EDITABLE:
+ pytest.skip("Can't build module for editable install")
+
+ functions = [
+ ("get_default_policy", "METH_NOARGS", """
+ Py_INCREF(PyDataMem_DefaultHandler);
+ return PyDataMem_DefaultHandler;
+ """),
+ ("set_secret_data_policy", "METH_NOARGS", """
+ PyObject *secret_data =
+ PyCapsule_New(&secret_data_handler, "mem_handler", NULL);
+ if (secret_data == NULL) {
+ return NULL;
+ }
+ PyObject *old = PyDataMem_SetHandler(secret_data);
+ Py_DECREF(secret_data);
+ return old;
+ """),
+ ("set_wrong_capsule_name_data_policy", "METH_NOARGS", """
+ PyObject *wrong_name_capsule =
+ PyCapsule_New(&secret_data_handler, "not_mem_handler", NULL);
+ if (wrong_name_capsule == NULL) {
+ return NULL;
+ }
+ PyObject *old = PyDataMem_SetHandler(wrong_name_capsule);
+ Py_DECREF(wrong_name_capsule);
+ return old;
+ """),
+ ("set_old_policy", "METH_O", """
+ PyObject *old;
+ if (args != NULL && PyCapsule_CheckExact(args)) {
+ old = PyDataMem_SetHandler(args);
+ }
+ else {
+ old = PyDataMem_SetHandler(NULL);
+ }
+ return old;
+ """),
+ ("get_array", "METH_NOARGS", """
+ char *buf = (char *)malloc(20);
+ npy_intp dims[1];
+ dims[0] = 20;
+ PyArray_Descr *descr = PyArray_DescrNewFromType(NPY_UINT8);
+ return PyArray_NewFromDescr(&PyArray_Type, descr, 1, dims, NULL,
+ buf, NPY_ARRAY_WRITEABLE, NULL);
+ """),
+ ("set_own", "METH_O", """
+ if (!PyArray_Check(args)) {
+ PyErr_SetString(PyExc_ValueError,
+ "need an ndarray");
+ return NULL;
+ }
+ PyArray_ENABLEFLAGS((PyArrayObject*)args, NPY_ARRAY_OWNDATA);
+ // Maybe try this too?
+ // PyArray_BASE(PyArrayObject *)args) = NULL;
+ Py_RETURN_NONE;
+ """),
+ ("get_array_with_base", "METH_NOARGS", """
+ char *buf = (char *)malloc(20);
+ npy_intp dims[1];
+ dims[0] = 20;
+ PyArray_Descr *descr = PyArray_DescrNewFromType(NPY_UINT8);
+ PyObject *arr = PyArray_NewFromDescr(&PyArray_Type, descr, 1, dims,
+ NULL, buf,
+ NPY_ARRAY_WRITEABLE, NULL);
+ if (arr == NULL) return NULL;
+ PyObject *obj = PyCapsule_New(buf, "buf capsule",
+ (PyCapsule_Destructor)&warn_on_free);
+ if (obj == NULL) {
+ Py_DECREF(arr);
+ return NULL;
+ }
+ if (PyArray_SetBaseObject((PyArrayObject *)arr, obj) < 0) {
+ Py_DECREF(arr);
+ Py_DECREF(obj);
+ return NULL;
+ }
+ return arr;
+
+ """),
+ ]
+ prologue = '''
+ #define NPY_TARGET_VERSION NPY_1_22_API_VERSION
+ #define NPY_NO_DEPRECATED_API NPY_1_7_API_VERSION
+ #include <numpy/arrayobject.h>
+ /*
+ * This struct allows the dynamic configuration of the allocator funcs
+ * of the `secret_data_allocator`. It is provided here for
+ * demonstration purposes, as a valid `ctx` use-case scenario.
+ */
+ typedef struct {
+ void *(*malloc)(size_t);
+ void *(*calloc)(size_t, size_t);
+ void *(*realloc)(void *, size_t);
+ void (*free)(void *);
+ } SecretDataAllocatorFuncs;
+
+ NPY_NO_EXPORT void *
+ shift_alloc(void *ctx, size_t sz) {
+ SecretDataAllocatorFuncs *funcs = (SecretDataAllocatorFuncs *)ctx;
+ char *real = (char *)funcs->malloc(sz + 64);
+ if (real == NULL) {
+ return NULL;
+ }
+ snprintf(real, 64, "originally allocated %ld", (unsigned long)sz);
+ return (void *)(real + 64);
+ }
+ NPY_NO_EXPORT void *
+ shift_zero(void *ctx, size_t sz, size_t cnt) {
+ SecretDataAllocatorFuncs *funcs = (SecretDataAllocatorFuncs *)ctx;
+ char *real = (char *)funcs->calloc(sz + 64, cnt);
+ if (real == NULL) {
+ return NULL;
+ }
+ snprintf(real, 64, "originally allocated %ld via zero",
+ (unsigned long)sz);
+ return (void *)(real + 64);
+ }
+ NPY_NO_EXPORT void
+ shift_free(void *ctx, void * p, npy_uintp sz) {
+ SecretDataAllocatorFuncs *funcs = (SecretDataAllocatorFuncs *)ctx;
+ if (p == NULL) {
+ return ;
+ }
+ char *real = (char *)p - 64;
+ if (strncmp(real, "originally allocated", 20) != 0) {
+ fprintf(stdout, "uh-oh, unmatched shift_free, "
+ "no appropriate prefix\\n");
+ /* Make C runtime crash by calling free on the wrong address */
+ funcs->free((char *)p + 10);
+ /* funcs->free(real); */
+ }
+ else {
+ npy_uintp i = (npy_uintp)atoi(real +20);
+ if (i != sz) {
+ fprintf(stderr, "uh-oh, unmatched shift_free"
+ "(ptr, %ld) but allocated %ld\\n", sz, i);
+ /* This happens in some places, only print */
+ funcs->free(real);
+ }
+ else {
+ funcs->free(real);
+ }
+ }
+ }
+ NPY_NO_EXPORT void *
+ shift_realloc(void *ctx, void * p, npy_uintp sz) {
+ SecretDataAllocatorFuncs *funcs = (SecretDataAllocatorFuncs *)ctx;
+ if (p != NULL) {
+ char *real = (char *)p - 64;
+ if (strncmp(real, "originally allocated", 20) != 0) {
+ fprintf(stdout, "uh-oh, unmatched shift_realloc\\n");
+ return realloc(p, sz);
+ }
+ return (void *)((char *)funcs->realloc(real, sz + 64) + 64);
+ }
+ else {
+ char *real = (char *)funcs->realloc(p, sz + 64);
+ if (real == NULL) {
+ return NULL;
+ }
+ snprintf(real, 64, "originally allocated "
+ "%ld via realloc", (unsigned long)sz);
+ return (void *)(real + 64);
+ }
+ }
+ /* As an example, we use the standard {m|c|re}alloc/free funcs. */
+ static SecretDataAllocatorFuncs secret_data_handler_ctx = {
+ malloc,
+ calloc,
+ realloc,
+ free
+ };
+ static PyDataMem_Handler secret_data_handler = {
+ "secret_data_allocator",
+ 1,
+ {
+ &secret_data_handler_ctx, /* ctx */
+ shift_alloc, /* malloc */
+ shift_zero, /* calloc */
+ shift_realloc, /* realloc */
+ shift_free /* free */
+ }
+ };
+ void warn_on_free(void *capsule) {
+ PyErr_WarnEx(PyExc_UserWarning, "in warn_on_free", 1);
+ void * obj = PyCapsule_GetPointer(capsule,
+ PyCapsule_GetName(capsule));
+ free(obj);
+ };
+ '''
+ more_init = "import_array();"
+ try:
+ import mem_policy
+ return mem_policy
+ except ImportError:
+ pass
+ # if it does not exist, build and load it
+ if sysconfig.get_platform() == "win-arm64":
+ pytest.skip("Meson unable to find MSVC linker on win-arm64")
+ return extbuild.build_and_import_extension('mem_policy',
+ functions,
+ prologue=prologue,
+ include_dirs=[np.get_include()],
+ build_dir=tmp_path,
+ more_init=more_init)
+
+
+def test_set_policy(get_module):
+
+ get_handler_name = np._core.multiarray.get_handler_name
+ get_handler_version = np._core.multiarray.get_handler_version
+ orig_policy_name = get_handler_name()
+
+ a = np.arange(10).reshape((2, 5)) # a doesn't own its own data
+ assert get_handler_name(a) is None
+ assert get_handler_version(a) is None
+ assert get_handler_name(a.base) == orig_policy_name
+ assert get_handler_version(a.base) == 1
+
+ orig_policy = get_module.set_secret_data_policy()
+
+ b = np.arange(10).reshape((2, 5)) # b doesn't own its own data
+ assert get_handler_name(b) is None
+ assert get_handler_version(b) is None
+ assert get_handler_name(b.base) == 'secret_data_allocator'
+ assert get_handler_version(b.base) == 1
+
+ if orig_policy_name == 'default_allocator':
+ get_module.set_old_policy(None) # tests PyDataMem_SetHandler(NULL)
+ assert get_handler_name() == 'default_allocator'
+ else:
+ get_module.set_old_policy(orig_policy)
+ assert get_handler_name() == orig_policy_name
+
+ with pytest.raises(ValueError,
+ match="Capsule must be named 'mem_handler'"):
+ get_module.set_wrong_capsule_name_data_policy()
+
+
+def test_default_policy_singleton(get_module):
+ get_handler_name = np._core.multiarray.get_handler_name
+
+ # set the policy to default
+ orig_policy = get_module.set_old_policy(None)
+
+ assert get_handler_name() == 'default_allocator'
+
+ # re-set the policy to default
+ def_policy_1 = get_module.set_old_policy(None)
+
+ assert get_handler_name() == 'default_allocator'
+
+ # set the policy to original
+ def_policy_2 = get_module.set_old_policy(orig_policy)
+
+ # since default policy is a singleton,
+ # these should be the same object
+ assert def_policy_1 is def_policy_2 is get_module.get_default_policy()
+
+
+def test_policy_propagation(get_module):
+ # The memory policy goes hand-in-hand with flags.owndata
+
+ class MyArr(np.ndarray):
+ pass
+
+ get_handler_name = np._core.multiarray.get_handler_name
+ orig_policy_name = get_handler_name()
+ a = np.arange(10).view(MyArr).reshape((2, 5))
+ assert get_handler_name(a) is None
+ assert a.flags.owndata is False
+
+ assert get_handler_name(a.base) is None
+ assert a.base.flags.owndata is False
+
+ assert get_handler_name(a.base.base) == orig_policy_name
+ assert a.base.base.flags.owndata is True
+
+
+async def concurrent_context1(get_module, orig_policy_name, event):
+ if orig_policy_name == 'default_allocator':
+ get_module.set_secret_data_policy()
+ assert get_handler_name() == 'secret_data_allocator'
+ else:
+ get_module.set_old_policy(None)
+ assert get_handler_name() == 'default_allocator'
+ event.set()
+
+
+async def concurrent_context2(get_module, orig_policy_name, event):
+ await event.wait()
+ # the policy is not affected by changes in parallel contexts
+ assert get_handler_name() == orig_policy_name
+ # change policy in the child context
+ if orig_policy_name == 'default_allocator':
+ get_module.set_secret_data_policy()
+ assert get_handler_name() == 'secret_data_allocator'
+ else:
+ get_module.set_old_policy(None)
+ assert get_handler_name() == 'default_allocator'
+
+
+async def async_test_context_locality(get_module):
+ orig_policy_name = np._core.multiarray.get_handler_name()
+
+ event = asyncio.Event()
+ # the child contexts inherit the parent policy
+ concurrent_task1 = asyncio.create_task(
+ concurrent_context1(get_module, orig_policy_name, event))
+ concurrent_task2 = asyncio.create_task(
+ concurrent_context2(get_module, orig_policy_name, event))
+ await concurrent_task1
+ await concurrent_task2
+
+ # the parent context is not affected by child policy changes
+ assert np._core.multiarray.get_handler_name() == orig_policy_name
+
+
+def test_context_locality(get_module):
+ if (sys.implementation.name == 'pypy'
+ and sys.pypy_version_info[:3] < (7, 3, 6)):
+ pytest.skip('no context-locality support in PyPy < 7.3.6')
+ asyncio.run(async_test_context_locality(get_module))
+
+
+def concurrent_thread1(get_module, event):
+ get_module.set_secret_data_policy()
+ assert np._core.multiarray.get_handler_name() == 'secret_data_allocator'
+ event.set()
+
+
+def concurrent_thread2(get_module, event):
+ event.wait()
+ # the policy is not affected by changes in parallel threads
+ assert np._core.multiarray.get_handler_name() == 'default_allocator'
+ # change policy in the child thread
+ get_module.set_secret_data_policy()
+
+
+def test_thread_locality(get_module):
+ orig_policy_name = np._core.multiarray.get_handler_name()
+
+ event = threading.Event()
+ # the child threads do not inherit the parent policy
+ concurrent_task1 = threading.Thread(target=concurrent_thread1,
+ args=(get_module, event))
+ concurrent_task2 = threading.Thread(target=concurrent_thread2,
+ args=(get_module, event))
+ concurrent_task1.start()
+ concurrent_task2.start()
+ concurrent_task1.join()
+ concurrent_task2.join()
+
+ # the parent thread is not affected by child policy changes
+ assert np._core.multiarray.get_handler_name() == orig_policy_name
+
+
+@pytest.mark.skip(reason="too slow, see gh-23975")
+def test_new_policy(get_module):
+ a = np.arange(10)
+ orig_policy_name = np._core.multiarray.get_handler_name(a)
+
+ orig_policy = get_module.set_secret_data_policy()
+
+ b = np.arange(10)
+ assert np._core.multiarray.get_handler_name(b) == 'secret_data_allocator'
+
+ # test array manipulation. This is slow
+ if orig_policy_name == 'default_allocator':
+ # when the np._core.test tests recurse into this test, the
+ # policy will be set so this "if" will be false, preventing
+ # infinite recursion
+ #
+ # if needed, debug this by
+ # - running tests with -- -s (to not capture stdout/stderr
+ # - setting verbose=2
+ # - setting extra_argv=['-vv'] here
+ assert np._core.test('full', verbose=1, extra_argv=[])
+ # also try the ma tests, the pickling test is quite tricky
+ assert np.ma.test('full', verbose=1, extra_argv=[])
+
+ get_module.set_old_policy(orig_policy)
+
+ c = np.arange(10)
+ assert np._core.multiarray.get_handler_name(c) == orig_policy_name
+
+
+@pytest.mark.xfail(sys.implementation.name == "pypy",
+ reason=("bad interaction between getenv and "
+ "os.environ inside pytest"))
+@pytest.mark.parametrize("policy", ["0", "1", None])
+def test_switch_owner(get_module, policy):
+ a = get_module.get_array()
+ assert np._core.multiarray.get_handler_name(a) is None
+ get_module.set_own(a)
+
+ if policy is None:
+ # See what we expect to be set based on the env variable
+ policy = os.getenv("NUMPY_WARN_IF_NO_MEM_POLICY", "0") == "1"
+ oldval = None
+ else:
+ policy = policy == "1"
+ oldval = np._core._multiarray_umath._set_numpy_warn_if_no_mem_policy(
+ policy)
+ try:
+ # The policy should be NULL, so we have to assume we can call
+ # "free". A warning is given if the policy == "1"
+ if policy:
+ with assert_warns(RuntimeWarning) as w:
+ del a
+ gc.collect()
+ else:
+ del a
+ gc.collect()
+
+ finally:
+ if oldval is not None:
+ np._core._multiarray_umath._set_numpy_warn_if_no_mem_policy(oldval)
+
+
+def test_owner_is_base(get_module):
+ a = get_module.get_array_with_base()
+ with pytest.warns(UserWarning, match='warn_on_free'):
+ del a
+ gc.collect()
+ gc.collect()
diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_memmap.py b/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_memmap.py
new file mode 100644
index 0000000..cbd8252
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_memmap.py
@@ -0,0 +1,246 @@
+import mmap
+import os
+import sys
+from pathlib import Path
+from tempfile import NamedTemporaryFile, TemporaryFile
+
+import pytest
+
+from numpy import (
+ add,
+ allclose,
+ arange,
+ asarray,
+ average,
+ isscalar,
+ memmap,
+ multiply,
+ ndarray,
+ prod,
+ subtract,
+ sum,
+)
+from numpy.testing import (
+ IS_PYPY,
+ assert_,
+ assert_array_equal,
+ assert_equal,
+ break_cycles,
+ suppress_warnings,
+)
+
+
+class TestMemmap:
+ def setup_method(self):
+ self.tmpfp = NamedTemporaryFile(prefix='mmap')
+ self.shape = (3, 4)
+ self.dtype = 'float32'
+ self.data = arange(12, dtype=self.dtype)
+ self.data.resize(self.shape)
+
+ def teardown_method(self):
+ self.tmpfp.close()
+ self.data = None
+ if IS_PYPY:
+ break_cycles()
+ break_cycles()
+
+ def test_roundtrip(self):
+ # Write data to file
+ fp = memmap(self.tmpfp, dtype=self.dtype, mode='w+',
+ shape=self.shape)
+ fp[:] = self.data[:]
+ del fp # Test __del__ machinery, which handles cleanup
+
+ # Read data back from file
+ newfp = memmap(self.tmpfp, dtype=self.dtype, mode='r',
+ shape=self.shape)
+ assert_(allclose(self.data, newfp))
+ assert_array_equal(self.data, newfp)
+ assert_equal(newfp.flags.writeable, False)
+
+ def test_open_with_filename(self, tmp_path):
+ tmpname = tmp_path / 'mmap'
+ fp = memmap(tmpname, dtype=self.dtype, mode='w+',
+ shape=self.shape)
+ fp[:] = self.data[:]
+ del fp
+
+ def test_unnamed_file(self):
+ with TemporaryFile() as f:
+ fp = memmap(f, dtype=self.dtype, shape=self.shape)
+ del fp
+
+ def test_attributes(self):
+ offset = 1
+ mode = "w+"
+ fp = memmap(self.tmpfp, dtype=self.dtype, mode=mode,
+ shape=self.shape, offset=offset)
+ assert_equal(offset, fp.offset)
+ assert_equal(mode, fp.mode)
+ del fp
+
+ def test_filename(self, tmp_path):
+ tmpname = tmp_path / "mmap"
+ fp = memmap(tmpname, dtype=self.dtype, mode='w+',
+ shape=self.shape)
+ abspath = Path(os.path.abspath(tmpname))
+ fp[:] = self.data[:]
+ assert_equal(abspath, fp.filename)
+ b = fp[:1]
+ assert_equal(abspath, b.filename)
+ del b
+ del fp
+
+ def test_path(self, tmp_path):
+ tmpname = tmp_path / "mmap"
+ fp = memmap(Path(tmpname), dtype=self.dtype, mode='w+',
+ shape=self.shape)
+ # os.path.realpath does not resolve symlinks on Windows
+ # see: https://bugs.python.org/issue9949
+ # use Path.resolve, just as memmap class does internally
+ abspath = str(Path(tmpname).resolve())
+ fp[:] = self.data[:]
+ assert_equal(abspath, str(fp.filename.resolve()))
+ b = fp[:1]
+ assert_equal(abspath, str(b.filename.resolve()))
+ del b
+ del fp
+
+ def test_filename_fileobj(self):
+ fp = memmap(self.tmpfp, dtype=self.dtype, mode="w+",
+ shape=self.shape)
+ assert_equal(fp.filename, self.tmpfp.name)
+
+ @pytest.mark.skipif(sys.platform == 'gnu0',
+ reason="Known to fail on hurd")
+ def test_flush(self):
+ fp = memmap(self.tmpfp, dtype=self.dtype, mode='w+',
+ shape=self.shape)
+ fp[:] = self.data[:]
+ assert_equal(fp[0], self.data[0])
+ fp.flush()
+
+ def test_del(self):
+ # Make sure a view does not delete the underlying mmap
+ fp_base = memmap(self.tmpfp, dtype=self.dtype, mode='w+',
+ shape=self.shape)
+ fp_base[0] = 5
+ fp_view = fp_base[0:1]
+ assert_equal(fp_view[0], 5)
+ del fp_view
+ # Should still be able to access and assign values after
+ # deleting the view
+ assert_equal(fp_base[0], 5)
+ fp_base[0] = 6
+ assert_equal(fp_base[0], 6)
+
+ def test_arithmetic_drops_references(self):
+ fp = memmap(self.tmpfp, dtype=self.dtype, mode='w+',
+ shape=self.shape)
+ tmp = (fp + 10)
+ if isinstance(tmp, memmap):
+ assert_(tmp._mmap is not fp._mmap)
+
+ def test_indexing_drops_references(self):
+ fp = memmap(self.tmpfp, dtype=self.dtype, mode='w+',
+ shape=self.shape)
+ tmp = fp[(1, 2), (2, 3)]
+ if isinstance(tmp, memmap):
+ assert_(tmp._mmap is not fp._mmap)
+
+ def test_slicing_keeps_references(self):
+ fp = memmap(self.tmpfp, dtype=self.dtype, mode='w+',
+ shape=self.shape)
+ assert_(fp[:2, :2]._mmap is fp._mmap)
+
+ def test_view(self):
+ fp = memmap(self.tmpfp, dtype=self.dtype, shape=self.shape)
+ new1 = fp.view()
+ new2 = new1.view()
+ assert_(new1.base is fp)
+ assert_(new2.base is fp)
+ new_array = asarray(fp)
+ assert_(new_array.base is fp)
+
+ def test_ufunc_return_ndarray(self):
+ fp = memmap(self.tmpfp, dtype=self.dtype, shape=self.shape)
+ fp[:] = self.data
+
+ with suppress_warnings() as sup:
+ sup.filter(FutureWarning, "np.average currently does not preserve")
+ for unary_op in [sum, average, prod]:
+ result = unary_op(fp)
+ assert_(isscalar(result))
+ assert_(result.__class__ is self.data[0, 0].__class__)
+
+ assert_(unary_op(fp, axis=0).__class__ is ndarray)
+ assert_(unary_op(fp, axis=1).__class__ is ndarray)
+
+ for binary_op in [add, subtract, multiply]:
+ assert_(binary_op(fp, self.data).__class__ is ndarray)
+ assert_(binary_op(self.data, fp).__class__ is ndarray)
+ assert_(binary_op(fp, fp).__class__ is ndarray)
+
+ fp += 1
+ assert fp.__class__ is memmap
+ add(fp, 1, out=fp)
+ assert fp.__class__ is memmap
+
+ def test_getitem(self):
+ fp = memmap(self.tmpfp, dtype=self.dtype, shape=self.shape)
+ fp[:] = self.data
+
+ assert_(fp[1:, :-1].__class__ is memmap)
+ # Fancy indexing returns a copy that is not memmapped
+ assert_(fp[[0, 1]].__class__ is ndarray)
+
+ def test_memmap_subclass(self):
+ class MemmapSubClass(memmap):
+ pass
+
+ fp = MemmapSubClass(self.tmpfp, dtype=self.dtype, shape=self.shape)
+ fp[:] = self.data
+
+ # We keep previous behavior for subclasses of memmap, i.e. the
+ # ufunc and __getitem__ output is never turned into a ndarray
+ assert_(sum(fp, axis=0).__class__ is MemmapSubClass)
+ assert_(sum(fp).__class__ is MemmapSubClass)
+ assert_(fp[1:, :-1].__class__ is MemmapSubClass)
+ assert fp[[0, 1]].__class__ is MemmapSubClass
+
+ def test_mmap_offset_greater_than_allocation_granularity(self):
+ size = 5 * mmap.ALLOCATIONGRANULARITY
+ offset = mmap.ALLOCATIONGRANULARITY + 1
+ fp = memmap(self.tmpfp, shape=size, mode='w+', offset=offset)
+ assert_(fp.offset == offset)
+
+ def test_empty_array_with_offset_multiple_of_allocation_granularity(self):
+ self.tmpfp.write(b'a' * mmap.ALLOCATIONGRANULARITY)
+ size = 0
+ offset = mmap.ALLOCATIONGRANULARITY
+ fp = memmap(self.tmpfp, shape=size, mode='w+', offset=offset)
+ assert_equal(fp.offset, offset)
+
+ def test_no_shape(self):
+ self.tmpfp.write(b'a' * 16)
+ mm = memmap(self.tmpfp, dtype='float64')
+ assert_equal(mm.shape, (2,))
+
+ def test_empty_array(self):
+ # gh-12653
+ with pytest.raises(ValueError, match='empty file'):
+ memmap(self.tmpfp, shape=(0, 4), mode='r')
+
+ # gh-27723
+ # empty memmap works with mode in ('w+','r+')
+ memmap(self.tmpfp, shape=(0, 4), mode='w+')
+
+ # ok now the file is not empty
+ memmap(self.tmpfp, shape=(0, 4), mode='w+')
+
+ def test_shape_type(self):
+ memmap(self.tmpfp, shape=3, mode='w+')
+ memmap(self.tmpfp, shape=self.shape, mode='w+')
+ memmap(self.tmpfp, shape=list(self.shape), mode='w+')
+ memmap(self.tmpfp, shape=asarray(self.shape), mode='w+')
diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_multiarray.py b/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_multiarray.py
new file mode 100644
index 0000000..26587b6
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_multiarray.py
@@ -0,0 +1,10563 @@
+import builtins
+import collections.abc
+import ctypes
+import functools
+import gc
+import io
+import itertools
+import mmap
+import operator
+import os
+import pathlib
+import pickle
+import re
+import sys
+import tempfile
+import warnings
+import weakref
+from contextlib import contextmanager
+
+# Need to test an object that does not fully implement math interface
+from datetime import datetime, timedelta
+from decimal import Decimal
+
+import numpy._core._multiarray_tests as _multiarray_tests
+import pytest
+from numpy._core._rational_tests import rational
+
+import numpy as np
+from numpy._core.multiarray import _get_ndarray_c_version, dot
+from numpy._core.tests._locales import CommaDecimalPointLocale
+from numpy.exceptions import AxisError, ComplexWarning
+from numpy.lib.recfunctions import repack_fields
+from numpy.testing import (
+ BLAS_SUPPORTS_FPE,
+ HAS_REFCOUNT,
+ IS_64BIT,
+ IS_PYPY,
+ IS_PYSTON,
+ IS_WASM,
+ assert_,
+ assert_allclose,
+ assert_almost_equal,
+ assert_array_almost_equal,
+ assert_array_compare,
+ assert_array_equal,
+ assert_array_less,
+ assert_equal,
+ assert_raises,
+ assert_raises_regex,
+ assert_warns,
+ break_cycles,
+ check_support_sve,
+ runstring,
+ suppress_warnings,
+ temppath,
+)
+from numpy.testing._private.utils import _no_tracing, requires_memory
+
+
+def assert_arg_sorted(arr, arg):
+ # resulting array should be sorted and arg values should be unique
+ assert_equal(arr[arg], np.sort(arr))
+ assert_equal(np.sort(arg), np.arange(len(arg)))
+
+
+def assert_arr_partitioned(kth, k, arr_part):
+ assert_equal(arr_part[k], kth)
+ assert_array_compare(operator.__le__, arr_part[:k], kth)
+ assert_array_compare(operator.__ge__, arr_part[k:], kth)
+
+
+def _aligned_zeros(shape, dtype=float, order="C", align=None):
+ """
+ Allocate a new ndarray with aligned memory.
+
+ The ndarray is guaranteed *not* aligned to twice the requested alignment.
+ Eg, if align=4, guarantees it is not aligned to 8. If align=None uses
+ dtype.alignment."""
+ dtype = np.dtype(dtype)
+ if dtype == np.dtype(object):
+ # Can't do this, fall back to standard allocation (which
+ # should always be sufficiently aligned)
+ if align is not None:
+ raise ValueError("object array alignment not supported")
+ return np.zeros(shape, dtype=dtype, order=order)
+ if align is None:
+ align = dtype.alignment
+ if not hasattr(shape, '__len__'):
+ shape = (shape,)
+ size = functools.reduce(operator.mul, shape) * dtype.itemsize
+ buf = np.empty(size + 2 * align + 1, np.uint8)
+
+ ptr = buf.__array_interface__['data'][0]
+ offset = ptr % align
+ if offset != 0:
+ offset = align - offset
+ if (ptr % (2 * align)) == 0:
+ offset += align
+
+ # Note: slices producing 0-size arrays do not necessarily change
+ # data pointer --- so we use and allocate size+1
+ buf = buf[offset:offset + size + 1][:-1]
+ buf.fill(0)
+ data = np.ndarray(shape, dtype, buf, order=order)
+ return data
+
+
+class TestFlags:
+ def setup_method(self):
+ self.a = np.arange(10)
+
+ def test_writeable(self):
+ mydict = locals()
+ self.a.flags.writeable = False
+ assert_raises(ValueError, runstring, 'self.a[0] = 3', mydict)
+ self.a.flags.writeable = True
+ self.a[0] = 5
+ self.a[0] = 0
+
+ def test_writeable_any_base(self):
+ # Ensure that any base being writeable is sufficient to change flag;
+ # this is especially interesting for arrays from an array interface.
+ arr = np.arange(10)
+
+ class subclass(np.ndarray):
+ pass
+
+ # Create subclass so base will not be collapsed, this is OK to change
+ view1 = arr.view(subclass)
+ view2 = view1[...]
+ arr.flags.writeable = False
+ view2.flags.writeable = False
+ view2.flags.writeable = True # Can be set to True again.
+
+ arr = np.arange(10)
+
+ class frominterface:
+ def __init__(self, arr):
+ self.arr = arr
+ self.__array_interface__ = arr.__array_interface__
+
+ view1 = np.asarray(frominterface)
+ view2 = view1[...]
+ view2.flags.writeable = False
+ view2.flags.writeable = True
+
+ view1.flags.writeable = False
+ view2.flags.writeable = False
+ with assert_raises(ValueError):
+ # Must assume not writeable, since only base is not:
+ view2.flags.writeable = True
+
+ def test_writeable_from_readonly(self):
+ # gh-9440 - make sure fromstring, from buffer on readonly buffers
+ # set writeable False
+ data = b'\x00' * 100
+ vals = np.frombuffer(data, 'B')
+ assert_raises(ValueError, vals.setflags, write=True)
+ types = np.dtype([('vals', 'u1'), ('res3', 'S4')])
+ values = np._core.records.fromstring(data, types)
+ vals = values['vals']
+ assert_raises(ValueError, vals.setflags, write=True)
+
+ def test_writeable_from_buffer(self):
+ data = bytearray(b'\x00' * 100)
+ vals = np.frombuffer(data, 'B')
+ assert_(vals.flags.writeable)
+ vals.setflags(write=False)
+ assert_(vals.flags.writeable is False)
+ vals.setflags(write=True)
+ assert_(vals.flags.writeable)
+ types = np.dtype([('vals', 'u1'), ('res3', 'S4')])
+ values = np._core.records.fromstring(data, types)
+ vals = values['vals']
+ assert_(vals.flags.writeable)
+ vals.setflags(write=False)
+ assert_(vals.flags.writeable is False)
+ vals.setflags(write=True)
+ assert_(vals.flags.writeable)
+
+ @pytest.mark.skipif(IS_PYPY, reason="PyPy always copies")
+ def test_writeable_pickle(self):
+ import pickle
+ # Small arrays will be copied without setting base.
+ # See condition for using PyArray_SetBaseObject in
+ # array_setstate.
+ a = np.arange(1000)
+ for v in range(pickle.HIGHEST_PROTOCOL):
+ vals = pickle.loads(pickle.dumps(a, v))
+ assert_(vals.flags.writeable)
+ assert_(isinstance(vals.base, bytes))
+
+ def test_writeable_from_c_data(self):
+ # Test that the writeable flag can be changed for an array wrapping
+ # low level C-data, but not owning its data.
+ # Also see that this is deprecated to change from python.
+ from numpy._core._multiarray_tests import get_c_wrapping_array
+
+ arr_writeable = get_c_wrapping_array(True)
+ assert not arr_writeable.flags.owndata
+ assert arr_writeable.flags.writeable
+ view = arr_writeable[...]
+
+ # Toggling the writeable flag works on the view:
+ view.flags.writeable = False
+ assert not view.flags.writeable
+ view.flags.writeable = True
+ assert view.flags.writeable
+ # Flag can be unset on the arr_writeable:
+ arr_writeable.flags.writeable = False
+
+ arr_readonly = get_c_wrapping_array(False)
+ assert not arr_readonly.flags.owndata
+ assert not arr_readonly.flags.writeable
+
+ for arr in [arr_writeable, arr_readonly]:
+ view = arr[...]
+ view.flags.writeable = False # make sure it is readonly
+ arr.flags.writeable = False
+ assert not arr.flags.writeable
+
+ with assert_raises(ValueError):
+ view.flags.writeable = True
+
+ with assert_raises(ValueError):
+ arr.flags.writeable = True
+
+ def test_warnonwrite(self):
+ a = np.arange(10)
+ a.flags._warn_on_write = True
+ with warnings.catch_warnings(record=True) as w:
+ warnings.filterwarnings('always')
+ a[1] = 10
+ a[2] = 10
+ # only warn once
+ assert_(len(w) == 1)
+
+ @pytest.mark.parametrize(["flag", "flag_value", "writeable"],
+ [("writeable", True, True),
+ # Delete _warn_on_write after deprecation and simplify
+ # the parameterization:
+ ("_warn_on_write", True, False),
+ ("writeable", False, False)])
+ def test_readonly_flag_protocols(self, flag, flag_value, writeable):
+ a = np.arange(10)
+ setattr(a.flags, flag, flag_value)
+
+ class MyArr:
+ __array_struct__ = a.__array_struct__
+
+ assert memoryview(a).readonly is not writeable
+ assert a.__array_interface__['data'][1] is not writeable
+ assert np.asarray(MyArr()).flags.writeable is writeable
+
+ def test_otherflags(self):
+ assert_equal(self.a.flags.carray, True)
+ assert_equal(self.a.flags['C'], True)
+ assert_equal(self.a.flags.farray, False)
+ assert_equal(self.a.flags.behaved, True)
+ assert_equal(self.a.flags.fnc, False)
+ assert_equal(self.a.flags.forc, True)
+ assert_equal(self.a.flags.owndata, True)
+ assert_equal(self.a.flags.writeable, True)
+ assert_equal(self.a.flags.aligned, True)
+ assert_equal(self.a.flags.writebackifcopy, False)
+ assert_equal(self.a.flags['X'], False)
+ assert_equal(self.a.flags['WRITEBACKIFCOPY'], False)
+
+ def test_string_align(self):
+ a = np.zeros(4, dtype=np.dtype('|S4'))
+ assert_(a.flags.aligned)
+ # not power of two are accessed byte-wise and thus considered aligned
+ a = np.zeros(5, dtype=np.dtype('|S4'))
+ assert_(a.flags.aligned)
+
+ def test_void_align(self):
+ a = np.zeros(4, dtype=np.dtype([("a", "i4"), ("b", "i4")]))
+ assert_(a.flags.aligned)
+
+ @pytest.mark.parametrize("row_size", [5, 1 << 16])
+ @pytest.mark.parametrize("row_count", [1, 5])
+ @pytest.mark.parametrize("ndmin", [0, 1, 2])
+ def test_xcontiguous_load_txt(self, row_size, row_count, ndmin):
+ s = io.StringIO('\n'.join(['1.0 ' * row_size] * row_count))
+ a = np.loadtxt(s, ndmin=ndmin)
+
+ assert a.flags.c_contiguous
+ x = [i for i in a.shape if i != 1]
+ assert a.flags.f_contiguous == (len(x) <= 1)
+
+
+class TestHash:
+ # see #3793
+ def test_int(self):
+ for st, ut, s in [(np.int8, np.uint8, 8),
+ (np.int16, np.uint16, 16),
+ (np.int32, np.uint32, 32),
+ (np.int64, np.uint64, 64)]:
+ for i in range(1, s):
+ assert_equal(hash(st(-2**i)), hash(-2**i),
+ err_msg="%r: -2**%d" % (st, i))
+ assert_equal(hash(st(2**(i - 1))), hash(2**(i - 1)),
+ err_msg="%r: 2**%d" % (st, i - 1))
+ assert_equal(hash(st(2**i - 1)), hash(2**i - 1),
+ err_msg="%r: 2**%d - 1" % (st, i))
+
+ i = max(i - 1, 1)
+ assert_equal(hash(ut(2**(i - 1))), hash(2**(i - 1)),
+ err_msg="%r: 2**%d" % (ut, i - 1))
+ assert_equal(hash(ut(2**i - 1)), hash(2**i - 1),
+ err_msg="%r: 2**%d - 1" % (ut, i))
+
+
+class TestAttributes:
+ def setup_method(self):
+ self.one = np.arange(10)
+ self.two = np.arange(20).reshape(4, 5)
+ self.three = np.arange(60, dtype=np.float64).reshape(2, 5, 6)
+
+ def test_attributes(self):
+ assert_equal(self.one.shape, (10,))
+ assert_equal(self.two.shape, (4, 5))
+ assert_equal(self.three.shape, (2, 5, 6))
+ self.three.shape = (10, 3, 2)
+ assert_equal(self.three.shape, (10, 3, 2))
+ self.three.shape = (2, 5, 6)
+ assert_equal(self.one.strides, (self.one.itemsize,))
+ num = self.two.itemsize
+ assert_equal(self.two.strides, (5 * num, num))
+ num = self.three.itemsize
+ assert_equal(self.three.strides, (30 * num, 6 * num, num))
+ assert_equal(self.one.ndim, 1)
+ assert_equal(self.two.ndim, 2)
+ assert_equal(self.three.ndim, 3)
+ num = self.two.itemsize
+ assert_equal(self.two.size, 20)
+ assert_equal(self.two.nbytes, 20 * num)
+ assert_equal(self.two.itemsize, self.two.dtype.itemsize)
+ assert_equal(self.two.base, np.arange(20))
+
+ def test_dtypeattr(self):
+ assert_equal(self.one.dtype, np.dtype(np.int_))
+ assert_equal(self.three.dtype, np.dtype(np.float64))
+ assert_equal(self.one.dtype.char, np.dtype(int).char)
+ assert self.one.dtype.char in "lq"
+ assert_equal(self.three.dtype.char, 'd')
+ assert_(self.three.dtype.str[0] in '<>')
+ assert_equal(self.one.dtype.str[1], 'i')
+ assert_equal(self.three.dtype.str[1], 'f')
+
+ def test_int_subclassing(self):
+ # Regression test for https://github.com/numpy/numpy/pull/3526
+
+ numpy_int = np.int_(0)
+
+ # int_ doesn't inherit from Python int, because it's not fixed-width
+ assert_(not isinstance(numpy_int, int))
+
+ def test_stridesattr(self):
+ x = self.one
+
+ def make_array(size, offset, strides):
+ return np.ndarray(size, buffer=x, dtype=int,
+ offset=offset * x.itemsize,
+ strides=strides * x.itemsize)
+
+ assert_equal(make_array(4, 4, -1), np.array([4, 3, 2, 1]))
+ assert_raises(ValueError, make_array, 4, 4, -2)
+ assert_raises(ValueError, make_array, 4, 2, -1)
+ assert_raises(ValueError, make_array, 8, 3, 1)
+ assert_equal(make_array(8, 3, 0), np.array([3] * 8))
+ # Check behavior reported in gh-2503:
+ assert_raises(ValueError, make_array, (2, 3), 5, np.array([-2, -3]))
+ make_array(0, 0, 10)
+
+ def test_set_stridesattr(self):
+ x = self.one
+
+ def make_array(size, offset, strides):
+ try:
+ r = np.ndarray([size], dtype=int, buffer=x,
+ offset=offset * x.itemsize)
+ except Exception as e:
+ raise RuntimeError(e)
+ r.strides = strides = strides * x.itemsize
+ return r
+
+ assert_equal(make_array(4, 4, -1), np.array([4, 3, 2, 1]))
+ assert_equal(make_array(7, 3, 1), np.array([3, 4, 5, 6, 7, 8, 9]))
+ assert_raises(ValueError, make_array, 4, 4, -2)
+ assert_raises(ValueError, make_array, 4, 2, -1)
+ assert_raises(RuntimeError, make_array, 8, 3, 1)
+ # Check that the true extent of the array is used.
+ # Test relies on as_strided base not exposing a buffer.
+ x = np.lib.stride_tricks.as_strided(np.arange(1), (10, 10), (0, 0))
+
+ def set_strides(arr, strides):
+ arr.strides = strides
+
+ assert_raises(ValueError, set_strides, x, (10 * x.itemsize, x.itemsize))
+
+ # Test for offset calculations:
+ x = np.lib.stride_tricks.as_strided(np.arange(10, dtype=np.int8)[-1],
+ shape=(10,), strides=(-1,))
+ assert_raises(ValueError, set_strides, x[::-1], -1)
+ a = x[::-1]
+ a.strides = 1
+ a[::2].strides = 2
+
+ # test 0d
+ arr_0d = np.array(0)
+ arr_0d.strides = ()
+ assert_raises(TypeError, set_strides, arr_0d, None)
+
+ def test_fill(self):
+ for t in "?bhilqpBHILQPfdgFDGO":
+ x = np.empty((3, 2, 1), t)
+ y = np.empty((3, 2, 1), t)
+ x.fill(1)
+ y[...] = 1
+ assert_equal(x, y)
+
+ def test_fill_max_uint64(self):
+ x = np.empty((3, 2, 1), dtype=np.uint64)
+ y = np.empty((3, 2, 1), dtype=np.uint64)
+ value = 2**64 - 1
+ y[...] = value
+ x.fill(value)
+ assert_array_equal(x, y)
+
+ def test_fill_struct_array(self):
+ # Filling from a scalar
+ x = np.array([(0, 0.0), (1, 1.0)], dtype='i4,f8')
+ x.fill(x[0])
+ assert_equal(x['f1'][1], x['f1'][0])
+ # Filling from a tuple that can be converted
+ # to a scalar
+ x = np.zeros(2, dtype=[('a', 'f8'), ('b', 'i4')])
+ x.fill((3.5, -2))
+ assert_array_equal(x['a'], [3.5, 3.5])
+ assert_array_equal(x['b'], [-2, -2])
+
+ def test_fill_readonly(self):
+ # gh-22922
+ a = np.zeros(11)
+ a.setflags(write=False)
+ with pytest.raises(ValueError, match=".*read-only"):
+ a.fill(0)
+
+ def test_fill_subarrays(self):
+ # NOTE:
+ # This is also a regression test for a crash with PYTHONMALLOC=debug
+
+ dtype = np.dtype("2<i8, 2<i8, 2<i8")
+ data = ([1, 2], [3, 4], [5, 6])
+
+ arr = np.empty(1, dtype=dtype)
+ arr.fill(data)
+
+ assert_equal(arr, np.array(data, dtype=dtype))
+
+
+class TestArrayConstruction:
+ def test_array(self):
+ d = np.ones(6)
+ r = np.array([d, d])
+ assert_equal(r, np.ones((2, 6)))
+
+ d = np.ones(6)
+ tgt = np.ones((2, 6))
+ r = np.array([d, d])
+ assert_equal(r, tgt)
+ tgt[1] = 2
+ r = np.array([d, d + 1])
+ assert_equal(r, tgt)
+
+ d = np.ones(6)
+ r = np.array([[d, d]])
+ assert_equal(r, np.ones((1, 2, 6)))
+
+ d = np.ones(6)
+ r = np.array([[d, d], [d, d]])
+ assert_equal(r, np.ones((2, 2, 6)))
+
+ d = np.ones((6, 6))
+ r = np.array([d, d])
+ assert_equal(r, np.ones((2, 6, 6)))
+
+ d = np.ones((6, ))
+ r = np.array([[d, d + 1], d + 2], dtype=object)
+ assert_equal(len(r), 2)
+ assert_equal(r[0], [d, d + 1])
+ assert_equal(r[1], d + 2)
+
+ tgt = np.ones((2, 3), dtype=bool)
+ tgt[0, 2] = False
+ tgt[1, 0:2] = False
+ r = np.array([[True, True, False], [False, False, True]])
+ assert_equal(r, tgt)
+ r = np.array([[True, False], [True, False], [False, True]])
+ assert_equal(r, tgt.T)
+
+ def test_array_empty(self):
+ assert_raises(TypeError, np.array)
+
+ def test_0d_array_shape(self):
+ assert np.ones(np.array(3)).shape == (3,)
+
+ def test_array_copy_false(self):
+ d = np.array([1, 2, 3])
+ e = np.array(d, copy=False)
+ d[1] = 3
+ assert_array_equal(e, [1, 3, 3])
+ np.array(d, copy=False, order='F')
+
+ def test_array_copy_if_needed(self):
+ d = np.array([1, 2, 3])
+ e = np.array(d, copy=None)
+ d[1] = 3
+ assert_array_equal(e, [1, 3, 3])
+ e = np.array(d, copy=None, order='F')
+ d[1] = 4
+ assert_array_equal(e, [1, 4, 3])
+ e[2] = 7
+ assert_array_equal(d, [1, 4, 7])
+
+ def test_array_copy_true(self):
+ d = np.array([[1, 2, 3], [1, 2, 3]])
+ e = np.array(d, copy=True)
+ d[0, 1] = 3
+ e[0, 2] = -7
+ assert_array_equal(e, [[1, 2, -7], [1, 2, 3]])
+ assert_array_equal(d, [[1, 3, 3], [1, 2, 3]])
+ e = np.array(d, copy=True, order='F')
+ d[0, 1] = 5
+ e[0, 2] = 7
+ assert_array_equal(e, [[1, 3, 7], [1, 2, 3]])
+ assert_array_equal(d, [[1, 5, 3], [1, 2, 3]])
+
+ def test_array_copy_str(self):
+ with pytest.raises(
+ ValueError,
+ match="strings are not allowed for 'copy' keyword. "
+ "Use True/False/None instead."
+ ):
+ np.array([1, 2, 3], copy="always")
+
+ def test_array_cont(self):
+ d = np.ones(10)[::2]
+ assert_(np.ascontiguousarray(d).flags.c_contiguous)
+ assert_(np.ascontiguousarray(d).flags.f_contiguous)
+ assert_(np.asfortranarray(d).flags.c_contiguous)
+ assert_(np.asfortranarray(d).flags.f_contiguous)
+ d = np.ones((10, 10))[::2, ::2]
+ assert_(np.ascontiguousarray(d).flags.c_contiguous)
+ assert_(np.asfortranarray(d).flags.f_contiguous)
+
+ @pytest.mark.parametrize("func",
+ [np.array,
+ np.asarray,
+ np.asanyarray,
+ np.ascontiguousarray,
+ np.asfortranarray])
+ def test_bad_arguments_error(self, func):
+ with pytest.raises(TypeError):
+ func(3, dtype="bad dtype")
+ with pytest.raises(TypeError):
+ func() # missing arguments
+ with pytest.raises(TypeError):
+ func(1, 2, 3, 4, 5, 6, 7, 8) # too many arguments
+
+ @pytest.mark.parametrize("func",
+ [np.array,
+ np.asarray,
+ np.asanyarray,
+ np.ascontiguousarray,
+ np.asfortranarray])
+ def test_array_as_keyword(self, func):
+ # This should likely be made positional only, but do not change
+ # the name accidentally.
+ if func is np.array:
+ func(object=3)
+ else:
+ func(a=3)
+
+
+class TestAssignment:
+ def test_assignment_broadcasting(self):
+ a = np.arange(6).reshape(2, 3)
+
+ # Broadcasting the input to the output
+ a[...] = np.arange(3)
+ assert_equal(a, [[0, 1, 2], [0, 1, 2]])
+ a[...] = np.arange(2).reshape(2, 1)
+ assert_equal(a, [[0, 0, 0], [1, 1, 1]])
+
+ # For compatibility with <= 1.5, a limited version of broadcasting
+ # the output to the input.
+ #
+ # This behavior is inconsistent with NumPy broadcasting
+ # in general, because it only uses one of the two broadcasting
+ # rules (adding a new "1" dimension to the left of the shape),
+ # applied to the output instead of an input. In NumPy 2.0, this kind
+ # of broadcasting assignment will likely be disallowed.
+ a[...] = np.arange(6)[::-1].reshape(1, 2, 3)
+ assert_equal(a, [[5, 4, 3], [2, 1, 0]])
+ # The other type of broadcasting would require a reduction operation.
+
+ def assign(a, b):
+ a[...] = b
+
+ assert_raises(ValueError, assign, a, np.arange(12).reshape(2, 2, 3))
+
+ def test_assignment_errors(self):
+ # Address issue #2276
+ class C:
+ pass
+ a = np.zeros(1)
+
+ def assign(v):
+ a[0] = v
+
+ assert_raises((AttributeError, TypeError), assign, C())
+ assert_raises(ValueError, assign, [1])
+
+ @pytest.mark.filterwarnings(
+ "ignore:.*set_string_function.*:DeprecationWarning"
+ )
+ def test_unicode_assignment(self):
+ # gh-5049
+ from numpy._core.arrayprint import set_printoptions
+
+ @contextmanager
+ def inject_str(s):
+ """ replace ndarray.__str__ temporarily """
+ set_printoptions(formatter={"all": lambda x: s})
+ try:
+ yield
+ finally:
+ set_printoptions()
+
+ a1d = np.array(['test'])
+ a0d = np.array('done')
+ with inject_str('bad'):
+ a1d[0] = a0d # previously this would invoke __str__
+ assert_equal(a1d[0], 'done')
+
+ # this would crash for the same reason
+ np.array([np.array('\xe5\xe4\xf6')])
+
+ def test_stringlike_empty_list(self):
+ # gh-8902
+ u = np.array(['done'])
+ b = np.array([b'done'])
+
+ class bad_sequence:
+ def __getitem__(self, _, /): pass
+ def __len__(self): raise RuntimeError
+
+ assert_raises(ValueError, operator.setitem, u, 0, [])
+ assert_raises(ValueError, operator.setitem, b, 0, [])
+
+ assert_raises(ValueError, operator.setitem, u, 0, bad_sequence())
+ assert_raises(ValueError, operator.setitem, b, 0, bad_sequence())
+
+ def test_longdouble_assignment(self):
+ # only relevant if longdouble is larger than float
+ # we're looking for loss of precision
+
+ for dtype in (np.longdouble, np.clongdouble):
+ # gh-8902
+ tinyb = np.nextafter(np.longdouble(0), 1).astype(dtype)
+ tinya = np.nextafter(np.longdouble(0), -1).astype(dtype)
+
+ # construction
+ tiny1d = np.array([tinya])
+ assert_equal(tiny1d[0], tinya)
+
+ # scalar = scalar
+ tiny1d[0] = tinyb
+ assert_equal(tiny1d[0], tinyb)
+
+ # 0d = scalar
+ tiny1d[0, ...] = tinya
+ assert_equal(tiny1d[0], tinya)
+
+ # 0d = 0d
+ tiny1d[0, ...] = tinyb[...]
+ assert_equal(tiny1d[0], tinyb)
+
+ # scalar = 0d
+ tiny1d[0] = tinyb[...]
+ assert_equal(tiny1d[0], tinyb)
+
+ arr = np.array([np.array(tinya)])
+ assert_equal(arr[0], tinya)
+
+ def test_cast_to_string(self):
+ # cast to str should do "str(scalar)", not "str(scalar.item())"
+ # When converting a float to a string via array assignment, we
+ # want to ensure that the conversion uses str(scalar) to preserve
+ # the expected precision.
+ a = np.zeros(1, dtype='S20')
+ a[:] = np.array(['1.12345678901234567890'], dtype='f8')
+ assert_equal(a[0], b"1.1234567890123457")
+
+
+class TestDtypedescr:
+ def test_construction(self):
+ d1 = np.dtype('i4')
+ assert_equal(d1, np.dtype(np.int32))
+ d2 = np.dtype('f8')
+ assert_equal(d2, np.dtype(np.float64))
+
+ def test_byteorders(self):
+ assert_(np.dtype('<i4') != np.dtype('>i4'))
+ assert_(np.dtype([('a', '<i4')]) != np.dtype([('a', '>i4')]))
+
+ def test_structured_non_void(self):
+ fields = [('a', '<i2'), ('b', '<i2')]
+ dt_int = np.dtype(('i4', fields))
+ assert_equal(str(dt_int), "(numpy.int32, [('a', '<i2'), ('b', '<i2')])")
+
+ # gh-9821
+ arr_int = np.zeros(4, dt_int)
+ assert_equal(repr(arr_int),
+ "array([0, 0, 0, 0], dtype=(numpy.int32, [('a', '<i2'), ('b', '<i2')]))")
+
+
+class TestZeroRank:
+ def setup_method(self):
+ self.d = np.array(0), np.array('x', object)
+
+ def test_ellipsis_subscript(self):
+ a, b = self.d
+ assert_equal(a[...], 0)
+ assert_equal(b[...], 'x')
+ assert_(a[...].base is a) # `a[...] is a` in numpy <1.9.
+ assert_(b[...].base is b) # `b[...] is b` in numpy <1.9.
+
+ def test_empty_subscript(self):
+ a, b = self.d
+ assert_equal(a[()], 0)
+ assert_equal(b[()], 'x')
+ assert_(type(a[()]) is a.dtype.type)
+ assert_(type(b[()]) is str)
+
+ def test_invalid_subscript(self):
+ a, b = self.d
+ assert_raises(IndexError, lambda x: x[0], a)
+ assert_raises(IndexError, lambda x: x[0], b)
+ assert_raises(IndexError, lambda x: x[np.array([], int)], a)
+ assert_raises(IndexError, lambda x: x[np.array([], int)], b)
+
+ def test_ellipsis_subscript_assignment(self):
+ a, b = self.d
+ a[...] = 42
+ assert_equal(a, 42)
+ b[...] = ''
+ assert_equal(b.item(), '')
+
+ def test_empty_subscript_assignment(self):
+ a, b = self.d
+ a[()] = 42
+ assert_equal(a, 42)
+ b[()] = ''
+ assert_equal(b.item(), '')
+
+ def test_invalid_subscript_assignment(self):
+ a, b = self.d
+
+ def assign(x, i, v):
+ x[i] = v
+
+ assert_raises(IndexError, assign, a, 0, 42)
+ assert_raises(IndexError, assign, b, 0, '')
+ assert_raises(ValueError, assign, a, (), '')
+
+ def test_newaxis(self):
+ a, b = self.d
+ assert_equal(a[np.newaxis].shape, (1,))
+ assert_equal(a[..., np.newaxis].shape, (1,))
+ assert_equal(a[np.newaxis, ...].shape, (1,))
+ assert_equal(a[..., np.newaxis].shape, (1,))
+ assert_equal(a[np.newaxis, ..., np.newaxis].shape, (1, 1))
+ assert_equal(a[..., np.newaxis, np.newaxis].shape, (1, 1))
+ assert_equal(a[np.newaxis, np.newaxis, ...].shape, (1, 1))
+ assert_equal(a[(np.newaxis,) * 10].shape, (1,) * 10)
+
+ def test_invalid_newaxis(self):
+ a, b = self.d
+
+ def subscript(x, i):
+ x[i]
+
+ assert_raises(IndexError, subscript, a, (np.newaxis, 0))
+ assert_raises(IndexError, subscript, a, (np.newaxis,) * 70)
+
+ def test_constructor(self):
+ x = np.ndarray(())
+ x[()] = 5
+ assert_equal(x[()], 5)
+ y = np.ndarray((), buffer=x)
+ y[()] = 6
+ assert_equal(x[()], 6)
+
+ # strides and shape must be the same length
+ with pytest.raises(ValueError):
+ np.ndarray((2,), strides=())
+ with pytest.raises(ValueError):
+ np.ndarray((), strides=(2,))
+
+ def test_output(self):
+ x = np.array(2)
+ assert_raises(ValueError, np.add, x, [1], x)
+
+ def test_real_imag(self):
+ # contiguity checks are for gh-11245
+ x = np.array(1j)
+ xr = x.real
+ xi = x.imag
+
+ assert_equal(xr, np.array(0))
+ assert_(type(xr) is np.ndarray)
+ assert_equal(xr.flags.contiguous, True)
+ assert_equal(xr.flags.f_contiguous, True)
+
+ assert_equal(xi, np.array(1))
+ assert_(type(xi) is np.ndarray)
+ assert_equal(xi.flags.contiguous, True)
+ assert_equal(xi.flags.f_contiguous, True)
+
+
+class TestScalarIndexing:
+ def setup_method(self):
+ self.d = np.array([0, 1])[0]
+
+ def test_ellipsis_subscript(self):
+ a = self.d
+ assert_equal(a[...], 0)
+ assert_equal(a[...].shape, ())
+
+ def test_empty_subscript(self):
+ a = self.d
+ assert_equal(a[()], 0)
+ assert_equal(a[()].shape, ())
+
+ def test_invalid_subscript(self):
+ a = self.d
+ assert_raises(IndexError, lambda x: x[0], a)
+ assert_raises(IndexError, lambda x: x[np.array([], int)], a)
+
+ def test_invalid_subscript_assignment(self):
+ a = self.d
+
+ def assign(x, i, v):
+ x[i] = v
+
+ assert_raises(TypeError, assign, a, 0, 42)
+
+ def test_newaxis(self):
+ a = self.d
+ assert_equal(a[np.newaxis].shape, (1,))
+ assert_equal(a[..., np.newaxis].shape, (1,))
+ assert_equal(a[np.newaxis, ...].shape, (1,))
+ assert_equal(a[..., np.newaxis].shape, (1,))
+ assert_equal(a[np.newaxis, ..., np.newaxis].shape, (1, 1))
+ assert_equal(a[..., np.newaxis, np.newaxis].shape, (1, 1))
+ assert_equal(a[np.newaxis, np.newaxis, ...].shape, (1, 1))
+ assert_equal(a[(np.newaxis,) * 10].shape, (1,) * 10)
+
+ def test_invalid_newaxis(self):
+ a = self.d
+
+ def subscript(x, i):
+ x[i]
+
+ assert_raises(IndexError, subscript, a, (np.newaxis, 0))
+ assert_raises(IndexError, subscript, a, (np.newaxis,) * 70)
+
+ def test_overlapping_assignment(self):
+ # With positive strides
+ a = np.arange(4)
+ a[:-1] = a[1:]
+ assert_equal(a, [1, 2, 3, 3])
+
+ a = np.arange(4)
+ a[1:] = a[:-1]
+ assert_equal(a, [0, 0, 1, 2])
+
+ # With positive and negative strides
+ a = np.arange(4)
+ a[:] = a[::-1]
+ assert_equal(a, [3, 2, 1, 0])
+
+ a = np.arange(6).reshape(2, 3)
+ a[::-1, :] = a[:, ::-1]
+ assert_equal(a, [[5, 4, 3], [2, 1, 0]])
+
+ a = np.arange(6).reshape(2, 3)
+ a[::-1, ::-1] = a[:, ::-1]
+ assert_equal(a, [[3, 4, 5], [0, 1, 2]])
+
+ # With just one element overlapping
+ a = np.arange(5)
+ a[:3] = a[2:]
+ assert_equal(a, [2, 3, 4, 3, 4])
+
+ a = np.arange(5)
+ a[2:] = a[:3]
+ assert_equal(a, [0, 1, 0, 1, 2])
+
+ a = np.arange(5)
+ a[2::-1] = a[2:]
+ assert_equal(a, [4, 3, 2, 3, 4])
+
+ a = np.arange(5)
+ a[2:] = a[2::-1]
+ assert_equal(a, [0, 1, 2, 1, 0])
+
+ a = np.arange(5)
+ a[2::-1] = a[:1:-1]
+ assert_equal(a, [2, 3, 4, 3, 4])
+
+ a = np.arange(5)
+ a[:1:-1] = a[2::-1]
+ assert_equal(a, [0, 1, 0, 1, 2])
+
+
+class TestCreation:
+ """
+ Test the np.array constructor
+ """
+ def test_from_attribute(self):
+ class x:
+ def __array__(self, dtype=None, copy=None):
+ pass
+
+ assert_raises(ValueError, np.array, x())
+
+ def test_from_string(self):
+ types = np.typecodes['AllInteger'] + np.typecodes['Float']
+ nstr = ['123', '123']
+ result = np.array([123, 123], dtype=int)
+ for type in types:
+ msg = f'String conversion for {type}'
+ assert_equal(np.array(nstr, dtype=type), result, err_msg=msg)
+
+ def test_void(self):
+ arr = np.array([], dtype='V')
+ assert arr.dtype == 'V8' # current default
+ # Same length scalars (those that go to the same void) work:
+ arr = np.array([b"1234", b"1234"], dtype="V")
+ assert arr.dtype == "V4"
+
+ # Promoting different lengths will fail (pre 1.20 this worked)
+ # by going via S5 and casting to V5.
+ with pytest.raises(TypeError):
+ np.array([b"1234", b"12345"], dtype="V")
+ with pytest.raises(TypeError):
+ np.array([b"12345", b"1234"], dtype="V")
+
+ # Check the same for the casting path:
+ arr = np.array([b"1234", b"1234"], dtype="O").astype("V")
+ assert arr.dtype == "V4"
+ with pytest.raises(TypeError):
+ np.array([b"1234", b"12345"], dtype="O").astype("V")
+
+ @pytest.mark.parametrize("idx",
+ [pytest.param(Ellipsis, id="arr"), pytest.param((), id="scalar")])
+ def test_structured_void_promotion(self, idx):
+ arr = np.array(
+ [np.array(1, dtype="i,i")[idx], np.array(2, dtype='i,i')[idx]],
+ dtype="V")
+ assert_array_equal(arr, np.array([(1, 1), (2, 2)], dtype="i,i"))
+ # The following fails to promote the two dtypes, resulting in an error
+ with pytest.raises(TypeError):
+ np.array(
+ [np.array(1, dtype="i,i")[idx], np.array(2, dtype='i,i,i')[idx]],
+ dtype="V")
+
+ def test_too_big_error(self):
+ # 45341 is the smallest integer greater than sqrt(2**31 - 1).
+ # 3037000500 is the smallest integer greater than sqrt(2**63 - 1).
+ # We want to make sure that the square byte array with those dimensions
+ # is too big on 32 or 64 bit systems respectively.
+ if np.iinfo('intp').max == 2**31 - 1:
+ shape = (46341, 46341)
+ elif np.iinfo('intp').max == 2**63 - 1:
+ shape = (3037000500, 3037000500)
+ else:
+ return
+ assert_raises(ValueError, np.empty, shape, dtype=np.int8)
+ assert_raises(ValueError, np.zeros, shape, dtype=np.int8)
+ assert_raises(ValueError, np.ones, shape, dtype=np.int8)
+
+ @pytest.mark.skipif(not IS_64BIT,
+ reason="malloc may not fail on 32 bit systems")
+ def test_malloc_fails(self):
+ # This test is guaranteed to fail due to a too large allocation
+ with assert_raises(np._core._exceptions._ArrayMemoryError):
+ np.empty(np.iinfo(np.intp).max, dtype=np.uint8)
+
+ def test_zeros(self):
+ types = np.typecodes['AllInteger'] + np.typecodes['AllFloat']
+ for dt in types:
+ d = np.zeros((13,), dtype=dt)
+ assert_equal(np.count_nonzero(d), 0)
+ # true for ieee floats
+ assert_equal(d.sum(), 0)
+ assert_(not d.any())
+
+ d = np.zeros(2, dtype='(2,4)i4')
+ assert_equal(np.count_nonzero(d), 0)
+ assert_equal(d.sum(), 0)
+ assert_(not d.any())
+
+ d = np.zeros(2, dtype='4i4')
+ assert_equal(np.count_nonzero(d), 0)
+ assert_equal(d.sum(), 0)
+ assert_(not d.any())
+
+ d = np.zeros(2, dtype='(2,4)i4, (2,4)i4')
+ assert_equal(np.count_nonzero(d), 0)
+
+ @pytest.mark.slow
+ def test_zeros_big(self):
+ # test big array as they might be allocated different by the system
+ types = np.typecodes['AllInteger'] + np.typecodes['AllFloat']
+ for dt in types:
+ d = np.zeros((30 * 1024**2,), dtype=dt)
+ assert_(not d.any())
+ # This test can fail on 32-bit systems due to insufficient
+ # contiguous memory. Deallocating the previous array increases the
+ # chance of success.
+ del d
+
+ def test_zeros_obj(self):
+ # test initialization from PyLong(0)
+ d = np.zeros((13,), dtype=object)
+ assert_array_equal(d, [0] * 13)
+ assert_equal(np.count_nonzero(d), 0)
+
+ def test_zeros_obj_obj(self):
+ d = np.zeros(10, dtype=[('k', object, 2)])
+ assert_array_equal(d['k'], 0)
+
+ def test_zeros_like_like_zeros(self):
+ # test zeros_like returns the same as zeros
+ for c in np.typecodes['All']:
+ if c == 'V':
+ continue
+ d = np.zeros((3, 3), dtype=c)
+ assert_array_equal(np.zeros_like(d), d)
+ assert_equal(np.zeros_like(d).dtype, d.dtype)
+ # explicitly check some special cases
+ d = np.zeros((3, 3), dtype='S5')
+ assert_array_equal(np.zeros_like(d), d)
+ assert_equal(np.zeros_like(d).dtype, d.dtype)
+ d = np.zeros((3, 3), dtype='U5')
+ assert_array_equal(np.zeros_like(d), d)
+ assert_equal(np.zeros_like(d).dtype, d.dtype)
+
+ d = np.zeros((3, 3), dtype='<i4')
+ assert_array_equal(np.zeros_like(d), d)
+ assert_equal(np.zeros_like(d).dtype, d.dtype)
+ d = np.zeros((3, 3), dtype='>i4')
+ assert_array_equal(np.zeros_like(d), d)
+ assert_equal(np.zeros_like(d).dtype, d.dtype)
+
+ d = np.zeros((3, 3), dtype='<M8[s]')
+ assert_array_equal(np.zeros_like(d), d)
+ assert_equal(np.zeros_like(d).dtype, d.dtype)
+ d = np.zeros((3, 3), dtype='>M8[s]')
+ assert_array_equal(np.zeros_like(d), d)
+ assert_equal(np.zeros_like(d).dtype, d.dtype)
+
+ d = np.zeros((3, 3), dtype='f4,f4')
+ assert_array_equal(np.zeros_like(d), d)
+ assert_equal(np.zeros_like(d).dtype, d.dtype)
+
+ def test_empty_unicode(self):
+ # don't throw decode errors on garbage memory
+ for i in range(5, 100, 5):
+ d = np.empty(i, dtype='U')
+ str(d)
+
+ def test_sequence_non_homogeneous(self):
+ assert_equal(np.array([4, 2**80]).dtype, object)
+ assert_equal(np.array([4, 2**80, 4]).dtype, object)
+ assert_equal(np.array([2**80, 4]).dtype, object)
+ assert_equal(np.array([2**80] * 3).dtype, object)
+ assert_equal(np.array([[1, 1], [1j, 1j]]).dtype, complex)
+ assert_equal(np.array([[1j, 1j], [1, 1]]).dtype, complex)
+ assert_equal(np.array([[1, 1, 1], [1, 1j, 1.], [1, 1, 1]]).dtype, complex)
+
+ def test_non_sequence_sequence(self):
+ """Should not segfault.
+
+ Class Fail breaks the sequence protocol for new style classes, i.e.,
+ those derived from object. Class Map is a mapping type indicated by
+ raising a ValueError. At some point we may raise a warning instead
+ of an error in the Fail case.
+
+ """
+ class Fail:
+ def __len__(self):
+ return 1
+
+ def __getitem__(self, index):
+ raise ValueError
+
+ class Map:
+ def __len__(self):
+ return 1
+
+ def __getitem__(self, index):
+ raise KeyError
+
+ a = np.array([Map()])
+ assert_(a.shape == (1,))
+ assert_(a.dtype == np.dtype(object))
+ assert_raises(ValueError, np.array, [Fail()])
+
+ def test_no_len_object_type(self):
+ # gh-5100, want object array from iterable object without len()
+ class Point2:
+ def __init__(self):
+ pass
+
+ def __getitem__(self, ind):
+ if ind in [0, 1]:
+ return ind
+ else:
+ raise IndexError
+ d = np.array([Point2(), Point2(), Point2()])
+ assert_equal(d.dtype, np.dtype(object))
+
+ def test_false_len_sequence(self):
+ # gh-7264, segfault for this example
+ class C:
+ def __getitem__(self, i):
+ raise IndexError
+
+ def __len__(self):
+ return 42
+
+ a = np.array(C()) # segfault?
+ assert_equal(len(a), 0)
+
+ def test_false_len_iterable(self):
+ # Special case where a bad __getitem__ makes us fall back on __iter__:
+ class C:
+ def __getitem__(self, x):
+ raise Exception
+
+ def __iter__(self):
+ return iter(())
+
+ def __len__(self):
+ return 2
+
+ a = np.empty(2)
+ with assert_raises(ValueError):
+ a[:] = C() # Segfault!
+
+ np.array(C()) == list(C())
+
+ def test_failed_len_sequence(self):
+ # gh-7393
+ class A:
+ def __init__(self, data):
+ self._data = data
+
+ def __getitem__(self, item):
+ return type(self)(self._data[item])
+
+ def __len__(self):
+ return len(self._data)
+
+ # len(d) should give 3, but len(d[0]) will fail
+ d = A([1, 2, 3])
+ assert_equal(len(np.array(d)), 3)
+
+ def test_array_too_big(self):
+ # Test that array creation succeeds for arrays addressable by intp
+ # on the byte level and fails for too large arrays.
+ buf = np.zeros(100)
+
+ max_bytes = np.iinfo(np.intp).max
+ for dtype in ["intp", "S20", "b"]:
+ dtype = np.dtype(dtype)
+ itemsize = dtype.itemsize
+
+ np.ndarray(buffer=buf, strides=(0,),
+ shape=(max_bytes // itemsize,), dtype=dtype)
+ assert_raises(ValueError, np.ndarray, buffer=buf, strides=(0,),
+ shape=(max_bytes // itemsize + 1,), dtype=dtype)
+
+ def _ragged_creation(self, seq):
+ # without dtype=object, the ragged object raises
+ with pytest.raises(ValueError, match=".*detected shape was"):
+ a = np.array(seq)
+
+ return np.array(seq, dtype=object)
+
+ def test_ragged_ndim_object(self):
+ # Lists of mismatching depths are treated as object arrays
+ a = self._ragged_creation([[1], 2, 3])
+ assert_equal(a.shape, (3,))
+ assert_equal(a.dtype, object)
+
+ a = self._ragged_creation([1, [2], 3])
+ assert_equal(a.shape, (3,))
+ assert_equal(a.dtype, object)
+
+ a = self._ragged_creation([1, 2, [3]])
+ assert_equal(a.shape, (3,))
+ assert_equal(a.dtype, object)
+
+ def test_ragged_shape_object(self):
+ # The ragged dimension of a list is turned into an object array
+ a = self._ragged_creation([[1, 1], [2], [3]])
+ assert_equal(a.shape, (3,))
+ assert_equal(a.dtype, object)
+
+ a = self._ragged_creation([[1], [2, 2], [3]])
+ assert_equal(a.shape, (3,))
+ assert_equal(a.dtype, object)
+
+ a = self._ragged_creation([[1], [2], [3, 3]])
+ assert a.shape == (3,)
+ assert a.dtype == object
+
+ def test_array_of_ragged_array(self):
+ outer = np.array([None, None])
+ outer[0] = outer[1] = np.array([1, 2, 3])
+ assert np.array(outer).shape == (2,)
+ assert np.array([outer]).shape == (1, 2)
+
+ outer_ragged = np.array([None, None])
+ outer_ragged[0] = np.array([1, 2, 3])
+ outer_ragged[1] = np.array([1, 2, 3, 4])
+ # should both of these emit deprecation warnings?
+ assert np.array(outer_ragged).shape == (2,)
+ assert np.array([outer_ragged]).shape == (1, 2,)
+
+ def test_deep_nonragged_object(self):
+ # None of these should raise, even though they are missing dtype=object
+ a = np.array([[[Decimal(1)]]])
+ a = np.array([1, Decimal(1)])
+ a = np.array([[1], [Decimal(1)]])
+
+ @pytest.mark.parametrize("dtype", [object, "O,O", "O,(3,)O", "(2,3)O"])
+ @pytest.mark.parametrize("function", [
+ np.ndarray, np.empty,
+ lambda shape, dtype: np.empty_like(np.empty(shape, dtype=dtype))])
+ def test_object_initialized_to_None(self, function, dtype):
+ # NumPy has support for object fields to be NULL (meaning None)
+ # but generally, we should always fill with the proper None, and
+ # downstream may rely on that. (For fully initialized arrays!)
+ arr = function(3, dtype=dtype)
+ # We expect a fill value of None, which is not NULL:
+ expected = np.array(None).tobytes()
+ expected = expected * (arr.nbytes // len(expected))
+ assert arr.tobytes() == expected
+
+ @pytest.mark.parametrize("func", [
+ np.array, np.asarray, np.asanyarray, np.ascontiguousarray,
+ np.asfortranarray])
+ def test_creation_from_dtypemeta(self, func):
+ dtype = np.dtype('i')
+ arr1 = func([1, 2, 3], dtype=dtype)
+ arr2 = func([1, 2, 3], dtype=type(dtype))
+ assert_array_equal(arr1, arr2)
+ assert arr2.dtype == dtype
+
+
+class TestStructured:
+ def test_subarray_field_access(self):
+ a = np.zeros((3, 5), dtype=[('a', ('i4', (2, 2)))])
+ a['a'] = np.arange(60).reshape(3, 5, 2, 2)
+
+ # Since the subarray is always in C-order, a transpose
+ # does not swap the subarray:
+ assert_array_equal(a.T['a'], a['a'].transpose(1, 0, 2, 3))
+
+ # In Fortran order, the subarray gets appended
+ # like in all other cases, not prepended as a special case
+ b = a.copy(order='F')
+ assert_equal(a['a'].shape, b['a'].shape)
+ assert_equal(a.T['a'].shape, a.T.copy()['a'].shape)
+
+ def test_subarray_comparison(self):
+ # Check that comparisons between record arrays with
+ # multi-dimensional field types work properly
+ a = np.rec.fromrecords(
+ [([1, 2, 3], 'a', [[1, 2], [3, 4]]), ([3, 3, 3], 'b', [[0, 0], [0, 0]])],
+ dtype=[('a', ('f4', 3)), ('b', object), ('c', ('i4', (2, 2)))])
+ b = a.copy()
+ assert_equal(a == b, [True, True])
+ assert_equal(a != b, [False, False])
+ b[1].b = 'c'
+ assert_equal(a == b, [True, False])
+ assert_equal(a != b, [False, True])
+ for i in range(3):
+ b[0].a = a[0].a
+ b[0].a[i] = 5
+ assert_equal(a == b, [False, False])
+ assert_equal(a != b, [True, True])
+ for i in range(2):
+ for j in range(2):
+ b = a.copy()
+ b[0].c[i, j] = 10
+ assert_equal(a == b, [False, True])
+ assert_equal(a != b, [True, False])
+
+ # Check that broadcasting with a subarray works, including cases that
+ # require promotion to work:
+ a = np.array([[(0,)], [(1,)]], dtype=[('a', 'f8')])
+ b = np.array([(0,), (0,), (1,)], dtype=[('a', 'f8')])
+ assert_equal(a == b, [[True, True, False], [False, False, True]])
+ assert_equal(b == a, [[True, True, False], [False, False, True]])
+ a = np.array([[(0,)], [(1,)]], dtype=[('a', 'f8', (1,))])
+ b = np.array([(0,), (0,), (1,)], dtype=[('a', 'f8', (1,))])
+ assert_equal(a == b, [[True, True, False], [False, False, True]])
+ assert_equal(b == a, [[True, True, False], [False, False, True]])
+ a = np.array([[([0, 0],)], [([1, 1],)]], dtype=[('a', 'f8', (2,))])
+ b = np.array([([0, 0],), ([0, 1],), ([1, 1],)], dtype=[('a', 'f8', (2,))])
+ assert_equal(a == b, [[True, False, False], [False, False, True]])
+ assert_equal(b == a, [[True, False, False], [False, False, True]])
+
+ # Check that broadcasting Fortran-style arrays with a subarray work
+ a = np.array([[([0, 0],)], [([1, 1],)]], dtype=[('a', 'f8', (2,))], order='F')
+ b = np.array([([0, 0],), ([0, 1],), ([1, 1],)], dtype=[('a', 'f8', (2,))])
+ assert_equal(a == b, [[True, False, False], [False, False, True]])
+ assert_equal(b == a, [[True, False, False], [False, False, True]])
+
+ # Check that incompatible sub-array shapes don't result to broadcasting
+ x = np.zeros((1,), dtype=[('a', ('f4', (1, 2))), ('b', 'i1')])
+ y = np.zeros((1,), dtype=[('a', ('f4', (2,))), ('b', 'i1')])
+ # The main importance is that it does not return True:
+ with pytest.raises(TypeError):
+ x == y
+
+ x = np.zeros((1,), dtype=[('a', ('f4', (2, 1))), ('b', 'i1')])
+ y = np.zeros((1,), dtype=[('a', ('f4', (2,))), ('b', 'i1')])
+ # The main importance is that it does not return True:
+ with pytest.raises(TypeError):
+ x == y
+
+ def test_empty_structured_array_comparison(self):
+ # Check that comparison works on empty arrays with nontrivially
+ # shaped fields
+ a = np.zeros(0, [('a', '<f8', (1, 1))])
+ assert_equal(a, a)
+ a = np.zeros(0, [('a', '<f8', (1,))])
+ assert_equal(a, a)
+ a = np.zeros((0, 0), [('a', '<f8', (1, 1))])
+ assert_equal(a, a)
+ a = np.zeros((1, 0, 1), [('a', '<f8', (1, 1))])
+ assert_equal(a, a)
+
+ @pytest.mark.parametrize("op", [operator.eq, operator.ne])
+ def test_structured_array_comparison_bad_broadcasts(self, op):
+ a = np.zeros(3, dtype='i,i')
+ b = np.array([], dtype="i,i")
+ with pytest.raises(ValueError):
+ op(a, b)
+
+ def test_structured_comparisons_with_promotion(self):
+ # Check that structured arrays can be compared so long as their
+ # dtypes promote fine:
+ a = np.array([(5, 42), (10, 1)], dtype=[('a', '>i8'), ('b', '<f8')])
+ b = np.array([(5, 43), (10, 1)], dtype=[('a', '<i8'), ('b', '>f8')])
+ assert_equal(a == b, [False, True])
+ assert_equal(a != b, [True, False])
+
+ a = np.array([(5, 42), (10, 1)], dtype=[('a', '>f8'), ('b', '<f8')])
+ b = np.array([(5, 43), (10, 1)], dtype=[('a', '<i8'), ('b', '>i8')])
+ assert_equal(a == b, [False, True])
+ assert_equal(a != b, [True, False])
+
+ # Including with embedded subarray dtype (although subarray comparison
+ # itself may still be a bit weird and compare the raw data)
+ a = np.array([(5, 42), (10, 1)], dtype=[('a', '10>f8'), ('b', '5<f8')])
+ b = np.array([(5, 43), (10, 1)], dtype=[('a', '10<i8'), ('b', '5>i8')])
+ assert_equal(a == b, [False, True])
+ assert_equal(a != b, [True, False])
+
+ @pytest.mark.parametrize("op", [
+ operator.eq, lambda x, y: operator.eq(y, x),
+ operator.ne, lambda x, y: operator.ne(y, x)])
+ def test_void_comparison_failures(self, op):
+ # In principle, one could decide to return an array of False for some
+ # if comparisons are impossible. But right now we return TypeError
+ # when "void" dtype are involved.
+ x = np.zeros(3, dtype=[('a', 'i1')])
+ y = np.zeros(3)
+ # Cannot compare non-structured to structured:
+ with pytest.raises(TypeError):
+ op(x, y)
+
+ # Added title prevents promotion, but casts are OK:
+ y = np.zeros(3, dtype=[(('title', 'a'), 'i1')])
+ assert np.can_cast(y.dtype, x.dtype)
+ with pytest.raises(TypeError):
+ op(x, y)
+
+ x = np.zeros(3, dtype="V7")
+ y = np.zeros(3, dtype="V8")
+ with pytest.raises(TypeError):
+ op(x, y)
+
+ def test_casting(self):
+ # Check that casting a structured array to change its byte order
+ # works
+ a = np.array([(1,)], dtype=[('a', '<i4')])
+ assert_(np.can_cast(a.dtype, [('a', '>i4')], casting='unsafe'))
+ b = a.astype([('a', '>i4')])
+ a_tmp = a.byteswap()
+ a_tmp = a_tmp.view(a_tmp.dtype.newbyteorder())
+ assert_equal(b, a_tmp)
+ assert_equal(a['a'][0], b['a'][0])
+
+ # Check that equality comparison works on structured arrays if
+ # they are 'equiv'-castable
+ a = np.array([(5, 42), (10, 1)], dtype=[('a', '>i4'), ('b', '<f8')])
+ b = np.array([(5, 42), (10, 1)], dtype=[('a', '<i4'), ('b', '>f8')])
+ assert_(np.can_cast(a.dtype, b.dtype, casting='equiv'))
+ assert_equal(a == b, [True, True])
+
+ # Check that 'equiv' casting can change byte order
+ assert_(np.can_cast(a.dtype, b.dtype, casting='equiv'))
+ c = a.astype(b.dtype, casting='equiv')
+ assert_equal(a == c, [True, True])
+
+ # Check that 'safe' casting can change byte order and up-cast
+ # fields
+ t = [('a', '<i8'), ('b', '>f8')]
+ assert_(np.can_cast(a.dtype, t, casting='safe'))
+ c = a.astype(t, casting='safe')
+ assert_equal((c == np.array([(5, 42), (10, 1)], dtype=t)),
+ [True, True])
+
+ # Check that 'same_kind' casting can change byte order and
+ # change field widths within a "kind"
+ t = [('a', '<i4'), ('b', '>f4')]
+ assert_(np.can_cast(a.dtype, t, casting='same_kind'))
+ c = a.astype(t, casting='same_kind')
+ assert_equal((c == np.array([(5, 42), (10, 1)], dtype=t)),
+ [True, True])
+
+ # Check that casting fails if the casting rule should fail on
+ # any of the fields
+ t = [('a', '>i8'), ('b', '<f4')]
+ assert_(not np.can_cast(a.dtype, t, casting='safe'))
+ assert_raises(TypeError, a.astype, t, casting='safe')
+ t = [('a', '>i2'), ('b', '<f8')]
+ assert_(not np.can_cast(a.dtype, t, casting='equiv'))
+ assert_raises(TypeError, a.astype, t, casting='equiv')
+ t = [('a', '>i8'), ('b', '<i2')]
+ assert_(not np.can_cast(a.dtype, t, casting='same_kind'))
+ assert_raises(TypeError, a.astype, t, casting='same_kind')
+ assert_(not np.can_cast(a.dtype, b.dtype, casting='no'))
+ assert_raises(TypeError, a.astype, b.dtype, casting='no')
+
+ # Check that non-'unsafe' casting can't change the set of field names
+ for casting in ['no', 'safe', 'equiv', 'same_kind']:
+ t = [('a', '>i4')]
+ assert_(not np.can_cast(a.dtype, t, casting=casting))
+ t = [('a', '>i4'), ('b', '<f8'), ('c', 'i4')]
+ assert_(not np.can_cast(a.dtype, t, casting=casting))
+
+ def test_objview(self):
+ # https://github.com/numpy/numpy/issues/3286
+ a = np.array([], dtype=[('a', 'f'), ('b', 'f'), ('c', 'O')])
+ a[['a', 'b']] # TypeError?
+
+ # https://github.com/numpy/numpy/issues/3253
+ dat2 = np.zeros(3, [('A', 'i'), ('B', '|O')])
+ dat2[['B', 'A']] # TypeError?
+
+ def test_setfield(self):
+ # https://github.com/numpy/numpy/issues/3126
+ struct_dt = np.dtype([('elem', 'i4', 5),])
+ dt = np.dtype([('field', 'i4', 10), ('struct', struct_dt)])
+ x = np.zeros(1, dt)
+ x[0]['field'] = np.ones(10, dtype='i4')
+ x[0]['struct'] = np.ones(1, dtype=struct_dt)
+ assert_equal(x[0]['field'], np.ones(10, dtype='i4'))
+
+ def test_setfield_object(self):
+ # make sure object field assignment with ndarray value
+ # on void scalar mimics setitem behavior
+ b = np.zeros(1, dtype=[('x', 'O')])
+ # next line should work identically to b['x'][0] = np.arange(3)
+ b[0]['x'] = np.arange(3)
+ assert_equal(b[0]['x'], np.arange(3))
+
+ # check that broadcasting check still works
+ c = np.zeros(1, dtype=[('x', 'O', 5)])
+
+ def testassign():
+ c[0]['x'] = np.arange(3)
+
+ assert_raises(ValueError, testassign)
+
+ def test_zero_width_string(self):
+ # Test for PR #6430 / issues #473, #4955, #2585
+
+ dt = np.dtype([('I', int), ('S', 'S0')])
+
+ x = np.zeros(4, dtype=dt)
+
+ assert_equal(x['S'], [b'', b'', b'', b''])
+ assert_equal(x['S'].itemsize, 0)
+
+ x['S'] = ['a', 'b', 'c', 'd']
+ assert_equal(x['S'], [b'', b'', b'', b''])
+ assert_equal(x['I'], [0, 0, 0, 0])
+
+ # Variation on test case from #4955
+ x['S'][x['I'] == 0] = 'hello'
+ assert_equal(x['S'], [b'', b'', b'', b''])
+ assert_equal(x['I'], [0, 0, 0, 0])
+
+ # Variation on test case from #2585
+ x['S'] = 'A'
+ assert_equal(x['S'], [b'', b'', b'', b''])
+ assert_equal(x['I'], [0, 0, 0, 0])
+
+ # Allow zero-width dtypes in ndarray constructor
+ y = np.ndarray(4, dtype=x['S'].dtype)
+ assert_equal(y.itemsize, 0)
+ assert_equal(x['S'], y)
+
+ # More tests for indexing an array with zero-width fields
+ assert_equal(np.zeros(4, dtype=[('a', 'S0,S0'),
+ ('b', 'u1')])['a'].itemsize, 0)
+ assert_equal(np.empty(3, dtype='S0,S0').itemsize, 0)
+ assert_equal(np.zeros(4, dtype='S0,u1')['f0'].itemsize, 0)
+
+ xx = x['S'].reshape((2, 2))
+ assert_equal(xx.itemsize, 0)
+ assert_equal(xx, [[b'', b''], [b'', b'']])
+ # check for no uninitialized memory due to viewing S0 array
+ assert_equal(xx[:].dtype, xx.dtype)
+ assert_array_equal(eval(repr(xx), {"np": np, "array": np.array}), xx)
+
+ b = io.BytesIO()
+ np.save(b, xx)
+
+ b.seek(0)
+ yy = np.load(b)
+ assert_equal(yy.itemsize, 0)
+ assert_equal(xx, yy)
+
+ with temppath(suffix='.npy') as tmp:
+ np.save(tmp, xx)
+ yy = np.load(tmp)
+ assert_equal(yy.itemsize, 0)
+ assert_equal(xx, yy)
+
+ def test_base_attr(self):
+ a = np.zeros(3, dtype='i4,f4')
+ b = a[0]
+ assert_(b.base is a)
+
+ def test_assignment(self):
+ def testassign(arr, v):
+ c = arr.copy()
+ c[0] = v # assign using setitem
+ c[1:] = v # assign using "dtype_transfer" code paths
+ return c
+
+ dt = np.dtype([('foo', 'i8'), ('bar', 'i8')])
+ arr = np.ones(2, dt)
+ v1 = np.array([(2, 3)], dtype=[('foo', 'i8'), ('bar', 'i8')])
+ v2 = np.array([(2, 3)], dtype=[('bar', 'i8'), ('foo', 'i8')])
+ v3 = np.array([(2, 3)], dtype=[('bar', 'i8'), ('baz', 'i8')])
+ v4 = np.array([(2,)], dtype=[('bar', 'i8')])
+ v5 = np.array([(2, 3)], dtype=[('foo', 'f8'), ('bar', 'f8')])
+ w = arr.view({'names': ['bar'], 'formats': ['i8'], 'offsets': [8]})
+
+ ans = np.array([(2, 3), (2, 3)], dtype=dt)
+ assert_equal(testassign(arr, v1), ans)
+ assert_equal(testassign(arr, v2), ans)
+ assert_equal(testassign(arr, v3), ans)
+ assert_raises(TypeError, lambda: testassign(arr, v4))
+ assert_equal(testassign(arr, v5), ans)
+ w[:] = 4
+ assert_equal(arr, np.array([(1, 4), (1, 4)], dtype=dt))
+
+ # test field-reordering, assignment by position, and self-assignment
+ a = np.array([(1, 2, 3)],
+ dtype=[('foo', 'i8'), ('bar', 'i8'), ('baz', 'f4')])
+ a[['foo', 'bar']] = a[['bar', 'foo']]
+ assert_equal(a[0].item(), (2, 1, 3))
+
+ # test that this works even for 'simple_unaligned' structs
+ # (ie, that PyArray_EquivTypes cares about field order too)
+ a = np.array([(1, 2)], dtype=[('a', 'i4'), ('b', 'i4')])
+ a[['a', 'b']] = a[['b', 'a']]
+ assert_equal(a[0].item(), (2, 1))
+
+ def test_structuredscalar_indexing(self):
+ # test gh-7262
+ x = np.empty(shape=1, dtype="(2,)3S,(2,)3U")
+ assert_equal(x[["f0", "f1"]][0], x[0][["f0", "f1"]])
+ assert_equal(x[0], x[0][()])
+
+ def test_multiindex_titles(self):
+ a = np.zeros(4, dtype=[(('a', 'b'), 'i'), ('c', 'i'), ('d', 'i')])
+ assert_raises(KeyError, lambda: a[['a', 'c']])
+ assert_raises(KeyError, lambda: a[['a', 'a']])
+ assert_raises(ValueError, lambda: a[['b', 'b']]) # field exists, but repeated
+ a[['b', 'c']] # no exception
+
+ def test_structured_cast_promotion_fieldorder(self):
+ # gh-15494
+ # dtypes with different field names are not promotable
+ A = ("a", "<i8")
+ B = ("b", ">i8")
+ ab = np.array([(1, 2)], dtype=[A, B])
+ ba = np.array([(1, 2)], dtype=[B, A])
+ assert_raises(TypeError, np.concatenate, ab, ba)
+ assert_raises(TypeError, np.result_type, ab.dtype, ba.dtype)
+ assert_raises(TypeError, np.promote_types, ab.dtype, ba.dtype)
+
+ # dtypes with same field names/order but different memory offsets
+ # and byte-order are promotable to packed nbo.
+ assert_equal(np.promote_types(ab.dtype, ba[['a', 'b']].dtype),
+ repack_fields(ab.dtype.newbyteorder('N')))
+
+ # gh-13667
+ # dtypes with different fieldnames but castable field types are castable
+ assert_equal(np.can_cast(ab.dtype, ba.dtype), True)
+ assert_equal(ab.astype(ba.dtype).dtype, ba.dtype)
+ assert_equal(np.can_cast('f8,i8', [('f0', 'f8'), ('f1', 'i8')]), True)
+ assert_equal(np.can_cast('f8,i8', [('f1', 'f8'), ('f0', 'i8')]), True)
+ assert_equal(np.can_cast('f8,i8', [('f1', 'i8'), ('f0', 'f8')]), False)
+ assert_equal(np.can_cast('f8,i8', [('f1', 'i8'), ('f0', 'f8')],
+ casting='unsafe'), True)
+
+ ab[:] = ba # make sure assignment still works
+
+ # tests of type-promotion of corresponding fields
+ dt1 = np.dtype([("", "i4")])
+ dt2 = np.dtype([("", "i8")])
+ assert_equal(np.promote_types(dt1, dt2), np.dtype([('f0', 'i8')]))
+ assert_equal(np.promote_types(dt2, dt1), np.dtype([('f0', 'i8')]))
+ assert_raises(TypeError, np.promote_types, dt1, np.dtype([("", "V3")]))
+ assert_equal(np.promote_types('i4,f8', 'i8,f4'),
+ np.dtype([('f0', 'i8'), ('f1', 'f8')]))
+ # test nested case
+ dt1nest = np.dtype([("", dt1)])
+ dt2nest = np.dtype([("", dt2)])
+ assert_equal(np.promote_types(dt1nest, dt2nest),
+ np.dtype([('f0', np.dtype([('f0', 'i8')]))]))
+
+ # note that offsets are lost when promoting:
+ dt = np.dtype({'names': ['x'], 'formats': ['i4'], 'offsets': [8]})
+ a = np.ones(3, dtype=dt)
+ assert_equal(np.concatenate([a, a]).dtype, np.dtype([('x', 'i4')]))
+
+ @pytest.mark.parametrize("dtype_dict", [
+ {"names": ["a", "b"], "formats": ["i4", "f"], "itemsize": 100},
+ {"names": ["a", "b"], "formats": ["i4", "f"],
+ "offsets": [0, 12]}])
+ @pytest.mark.parametrize("align", [True, False])
+ def test_structured_promotion_packs(self, dtype_dict, align):
+ # Structured dtypes are packed when promoted (we consider the packed
+ # form to be "canonical"), so tere is no extra padding.
+ dtype = np.dtype(dtype_dict, align=align)
+ # Remove non "canonical" dtype options:
+ dtype_dict.pop("itemsize", None)
+ dtype_dict.pop("offsets", None)
+ expected = np.dtype(dtype_dict, align=align)
+
+ res = np.promote_types(dtype, dtype)
+ assert res.itemsize == expected.itemsize
+ assert res.fields == expected.fields
+
+ # But the "expected" one, should just be returned unchanged:
+ res = np.promote_types(expected, expected)
+ assert res is expected
+
+ def test_structured_asarray_is_view(self):
+ # A scalar viewing an array preserves its view even when creating a
+ # new array. This test documents behaviour, it may not be the best
+ # desired behaviour.
+ arr = np.array([1], dtype="i,i")
+ scalar = arr[0]
+ assert not scalar.flags.owndata # view into the array
+ assert np.asarray(scalar).base is scalar
+ # But never when a dtype is passed in:
+ assert np.asarray(scalar, dtype=scalar.dtype).base is None
+ # A scalar which owns its data does not have this property.
+ # It is not easy to create one, one method is to use pickle:
+ scalar = pickle.loads(pickle.dumps(scalar))
+ assert scalar.flags.owndata
+ assert np.asarray(scalar).base is None
+
+class TestBool:
+ def test_test_interning(self):
+ a0 = np.bool(0)
+ b0 = np.bool(False)
+ assert_(a0 is b0)
+ a1 = np.bool(1)
+ b1 = np.bool(True)
+ assert_(a1 is b1)
+ assert_(np.array([True])[0] is a1)
+ assert_(np.array(True)[()] is a1)
+
+ def test_sum(self):
+ d = np.ones(101, dtype=bool)
+ assert_equal(d.sum(), d.size)
+ assert_equal(d[::2].sum(), d[::2].size)
+ assert_equal(d[::-2].sum(), d[::-2].size)
+
+ d = np.frombuffer(b'\xff\xff' * 100, dtype=bool)
+ assert_equal(d.sum(), d.size)
+ assert_equal(d[::2].sum(), d[::2].size)
+ assert_equal(d[::-2].sum(), d[::-2].size)
+
+ def check_count_nonzero(self, power, length):
+ powers = [2 ** i for i in range(length)]
+ for i in range(2**power):
+ l = [(i & x) != 0 for x in powers]
+ a = np.array(l, dtype=bool)
+ c = builtins.sum(l)
+ assert_equal(np.count_nonzero(a), c)
+ av = a.view(np.uint8)
+ av *= 3
+ assert_equal(np.count_nonzero(a), c)
+ av *= 4
+ assert_equal(np.count_nonzero(a), c)
+ av[av != 0] = 0xFF
+ assert_equal(np.count_nonzero(a), c)
+
+ def test_count_nonzero(self):
+ # check all 12 bit combinations in a length 17 array
+ # covers most cases of the 16 byte unrolled code
+ self.check_count_nonzero(12, 17)
+
+ @pytest.mark.slow
+ def test_count_nonzero_all(self):
+ # check all combinations in a length 17 array
+ # covers all cases of the 16 byte unrolled code
+ self.check_count_nonzero(17, 17)
+
+ def test_count_nonzero_unaligned(self):
+ # prevent mistakes as e.g. gh-4060
+ for o in range(7):
+ a = np.zeros((18,), dtype=bool)[o + 1:]
+ a[:o] = True
+ assert_equal(np.count_nonzero(a), builtins.sum(a.tolist()))
+ a = np.ones((18,), dtype=bool)[o + 1:]
+ a[:o] = False
+ assert_equal(np.count_nonzero(a), builtins.sum(a.tolist()))
+
+ def _test_cast_from_flexible(self, dtype):
+ # empty string -> false
+ for n in range(3):
+ v = np.array(b'', (dtype, n))
+ assert_equal(bool(v), False)
+ assert_equal(bool(v[()]), False)
+ assert_equal(v.astype(bool), False)
+ assert_(isinstance(v.astype(bool), np.ndarray))
+ assert_(v[()].astype(bool) is np.False_)
+
+ # anything else -> true
+ for n in range(1, 4):
+ for val in [b'a', b'0', b' ']:
+ v = np.array(val, (dtype, n))
+ assert_equal(bool(v), True)
+ assert_equal(bool(v[()]), True)
+ assert_equal(v.astype(bool), True)
+ assert_(isinstance(v.astype(bool), np.ndarray))
+ assert_(v[()].astype(bool) is np.True_)
+
+ def test_cast_from_void(self):
+ self._test_cast_from_flexible(np.void)
+
+ @pytest.mark.xfail(reason="See gh-9847")
+ def test_cast_from_unicode(self):
+ self._test_cast_from_flexible(np.str_)
+
+ @pytest.mark.xfail(reason="See gh-9847")
+ def test_cast_from_bytes(self):
+ self._test_cast_from_flexible(np.bytes_)
+
+
+class TestZeroSizeFlexible:
+ @staticmethod
+ def _zeros(shape, dtype=str):
+ dtype = np.dtype(dtype)
+ if dtype == np.void:
+ return np.zeros(shape, dtype=(dtype, 0))
+
+ # not constructable directly
+ dtype = np.dtype([('x', dtype, 0)])
+ return np.zeros(shape, dtype=dtype)['x']
+
+ def test_create(self):
+ zs = self._zeros(10, bytes)
+ assert_equal(zs.itemsize, 0)
+ zs = self._zeros(10, np.void)
+ assert_equal(zs.itemsize, 0)
+ zs = self._zeros(10, str)
+ assert_equal(zs.itemsize, 0)
+
+ def _test_sort_partition(self, name, kinds, **kwargs):
+ # Previously, these would all hang
+ for dt in [bytes, np.void, str]:
+ zs = self._zeros(10, dt)
+ sort_method = getattr(zs, name)
+ sort_func = getattr(np, name)
+ for kind in kinds:
+ sort_method(kind=kind, **kwargs)
+ sort_func(zs, kind=kind, **kwargs)
+
+ def test_sort(self):
+ self._test_sort_partition('sort', kinds='qhs')
+
+ def test_argsort(self):
+ self._test_sort_partition('argsort', kinds='qhs')
+
+ def test_partition(self):
+ self._test_sort_partition('partition', kinds=['introselect'], kth=2)
+
+ def test_argpartition(self):
+ self._test_sort_partition('argpartition', kinds=['introselect'], kth=2)
+
+ def test_resize(self):
+ # previously an error
+ for dt in [bytes, np.void, str]:
+ zs = self._zeros(10, dt)
+ zs.resize(25)
+ zs.resize((10, 10))
+
+ def test_view(self):
+ for dt in [bytes, np.void, str]:
+ zs = self._zeros(10, dt)
+
+ # viewing as itself should be allowed
+ assert_equal(zs.view(dt).dtype, np.dtype(dt))
+
+ # viewing as any non-empty type gives an empty result
+ assert_equal(zs.view((dt, 1)).shape, (0,))
+
+ def test_dumps(self):
+ zs = self._zeros(10, int)
+ assert_equal(zs, pickle.loads(zs.dumps()))
+
+ def test_pickle(self):
+ for proto in range(2, pickle.HIGHEST_PROTOCOL + 1):
+ for dt in [bytes, np.void, str]:
+ zs = self._zeros(10, dt)
+ p = pickle.dumps(zs, protocol=proto)
+ zs2 = pickle.loads(p)
+
+ assert_equal(zs.dtype, zs2.dtype)
+
+ def test_pickle_empty(self):
+ """Checking if an empty array pickled and un-pickled will not cause a
+ segmentation fault"""
+ arr = np.array([]).reshape(999999, 0)
+ pk_dmp = pickle.dumps(arr)
+ pk_load = pickle.loads(pk_dmp)
+
+ assert pk_load.size == 0
+
+ @pytest.mark.skipif(pickle.HIGHEST_PROTOCOL < 5,
+ reason="requires pickle protocol 5")
+ def test_pickle_with_buffercallback(self):
+ array = np.arange(10)
+ buffers = []
+ bytes_string = pickle.dumps(array, buffer_callback=buffers.append,
+ protocol=5)
+ array_from_buffer = pickle.loads(bytes_string, buffers=buffers)
+ # when using pickle protocol 5 with buffer callbacks,
+ # array_from_buffer is reconstructed from a buffer holding a view
+ # to the initial array's data, so modifying an element in array
+ # should modify it in array_from_buffer too.
+ array[0] = -1
+ assert array_from_buffer[0] == -1, array_from_buffer[0]
+
+
+class TestMethods:
+
+ sort_kinds = ['quicksort', 'heapsort', 'stable']
+
+ def test_all_where(self):
+ a = np.array([[True, False, True],
+ [False, False, False],
+ [True, True, True]])
+ wh_full = np.array([[True, False, True],
+ [False, False, False],
+ [True, False, True]])
+ wh_lower = np.array([[False],
+ [False],
+ [True]])
+ for _ax in [0, None]:
+ assert_equal(a.all(axis=_ax, where=wh_lower),
+ np.all(a[wh_lower[:, 0], :], axis=_ax))
+ assert_equal(np.all(a, axis=_ax, where=wh_lower),
+ a[wh_lower[:, 0], :].all(axis=_ax))
+
+ assert_equal(a.all(where=wh_full), True)
+ assert_equal(np.all(a, where=wh_full), True)
+ assert_equal(a.all(where=False), True)
+ assert_equal(np.all(a, where=False), True)
+
+ def test_any_where(self):
+ a = np.array([[True, False, True],
+ [False, False, False],
+ [True, True, True]])
+ wh_full = np.array([[False, True, False],
+ [True, True, True],
+ [False, False, False]])
+ wh_middle = np.array([[False],
+ [True],
+ [False]])
+ for _ax in [0, None]:
+ assert_equal(a.any(axis=_ax, where=wh_middle),
+ np.any(a[wh_middle[:, 0], :], axis=_ax))
+ assert_equal(np.any(a, axis=_ax, where=wh_middle),
+ a[wh_middle[:, 0], :].any(axis=_ax))
+ assert_equal(a.any(where=wh_full), False)
+ assert_equal(np.any(a, where=wh_full), False)
+ assert_equal(a.any(where=False), False)
+ assert_equal(np.any(a, where=False), False)
+
+ @pytest.mark.parametrize("dtype",
+ ["i8", "U10", "object", "datetime64[ms]"])
+ def test_any_and_all_result_dtype(self, dtype):
+ arr = np.ones(3, dtype=dtype)
+ assert arr.any().dtype == np.bool
+ assert arr.all().dtype == np.bool
+
+ def test_any_and_all_object_dtype(self):
+ # (seberg) Not sure we should even allow dtype here, but it is.
+ arr = np.ones(3, dtype=object)
+ # keepdims to prevent getting a scalar.
+ assert arr.any(dtype=object, keepdims=True).dtype == object
+ assert arr.all(dtype=object, keepdims=True).dtype == object
+
+ def test_compress(self):
+ tgt = [[5, 6, 7, 8, 9]]
+ arr = np.arange(10).reshape(2, 5)
+ out = arr.compress([0, 1], axis=0)
+ assert_equal(out, tgt)
+
+ tgt = [[1, 3], [6, 8]]
+ out = arr.compress([0, 1, 0, 1, 0], axis=1)
+ assert_equal(out, tgt)
+
+ tgt = [[1], [6]]
+ arr = np.arange(10).reshape(2, 5)
+ out = arr.compress([0, 1], axis=1)
+ assert_equal(out, tgt)
+
+ arr = np.arange(10).reshape(2, 5)
+ out = arr.compress([0, 1])
+ assert_equal(out, 1)
+
+ def test_choose(self):
+ x = 2 * np.ones((3,), dtype=int)
+ y = 3 * np.ones((3,), dtype=int)
+ x2 = 2 * np.ones((2, 3), dtype=int)
+ y2 = 3 * np.ones((2, 3), dtype=int)
+ ind = np.array([0, 0, 1])
+
+ A = ind.choose((x, y))
+ assert_equal(A, [2, 2, 3])
+
+ A = ind.choose((x2, y2))
+ assert_equal(A, [[2, 2, 3], [2, 2, 3]])
+
+ A = ind.choose((x, y2))
+ assert_equal(A, [[2, 2, 3], [2, 2, 3]])
+
+ oned = np.ones(1)
+ # gh-12031, caused SEGFAULT
+ assert_raises(TypeError, oned.choose, np.void(0), [oned])
+
+ out = np.array(0)
+ ret = np.choose(np.array(1), [10, 20, 30], out=out)
+ assert out is ret
+ assert_equal(out[()], 20)
+
+ # gh-6272 check overlap on out
+ x = np.arange(5)
+ y = np.choose([0, 0, 0], [x[:3], x[:3], x[:3]], out=x[1:4], mode='wrap')
+ assert_equal(y, np.array([0, 1, 2]))
+
+ # gh_28206 check fail when out not writeable
+ x = np.arange(3)
+ out = np.zeros(3)
+ out.setflags(write=False)
+ assert_raises(ValueError, np.choose, [0, 1, 2], [x, x, x], out=out)
+
+ def test_prod(self):
+ ba = [1, 2, 10, 11, 6, 5, 4]
+ ba2 = [[1, 2, 3, 4], [5, 6, 7, 9], [10, 3, 4, 5]]
+
+ for ctype in [np.int16, np.uint16, np.int32, np.uint32,
+ np.float32, np.float64, np.complex64, np.complex128]:
+ a = np.array(ba, ctype)
+ a2 = np.array(ba2, ctype)
+ if ctype in ['1', 'b']:
+ assert_raises(ArithmeticError, a.prod)
+ assert_raises(ArithmeticError, a2.prod, axis=1)
+ else:
+ assert_equal(a.prod(axis=0), 26400)
+ assert_array_equal(a2.prod(axis=0),
+ np.array([50, 36, 84, 180], ctype))
+ assert_array_equal(a2.prod(axis=-1),
+ np.array([24, 1890, 600], ctype))
+
+ @pytest.mark.parametrize('dtype', [None, object])
+ def test_repeat(self, dtype):
+ m = np.array([1, 2, 3, 4, 5, 6], dtype=dtype)
+ m_rect = m.reshape((2, 3))
+
+ A = m.repeat([1, 3, 2, 1, 1, 2])
+ assert_equal(A, [1, 2, 2, 2, 3,
+ 3, 4, 5, 6, 6])
+
+ A = m.repeat(2)
+ assert_equal(A, [1, 1, 2, 2, 3, 3,
+ 4, 4, 5, 5, 6, 6])
+
+ A = m_rect.repeat([2, 1], axis=0)
+ assert_equal(A, [[1, 2, 3],
+ [1, 2, 3],
+ [4, 5, 6]])
+
+ A = m_rect.repeat([1, 3, 2], axis=1)
+ assert_equal(A, [[1, 2, 2, 2, 3, 3],
+ [4, 5, 5, 5, 6, 6]])
+
+ A = m_rect.repeat(2, axis=0)
+ assert_equal(A, [[1, 2, 3],
+ [1, 2, 3],
+ [4, 5, 6],
+ [4, 5, 6]])
+
+ A = m_rect.repeat(2, axis=1)
+ assert_equal(A, [[1, 1, 2, 2, 3, 3],
+ [4, 4, 5, 5, 6, 6]])
+
+ def test_reshape(self):
+ arr = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9], [10, 11, 12]])
+
+ tgt = [[1, 2, 3, 4, 5, 6], [7, 8, 9, 10, 11, 12]]
+ assert_equal(arr.reshape(2, 6), tgt)
+
+ tgt = [[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]]
+ assert_equal(arr.reshape(3, 4), tgt)
+
+ tgt = [[1, 10, 8, 6], [4, 2, 11, 9], [7, 5, 3, 12]]
+ assert_equal(arr.reshape((3, 4), order='F'), tgt)
+
+ tgt = [[1, 4, 7, 10], [2, 5, 8, 11], [3, 6, 9, 12]]
+ assert_equal(arr.T.reshape((3, 4), order='C'), tgt)
+
+ def test_round(self):
+ def check_round(arr, expected, *round_args):
+ assert_equal(arr.round(*round_args), expected)
+ # With output array
+ out = np.zeros_like(arr)
+ res = arr.round(*round_args, out=out)
+ assert_equal(out, expected)
+ assert out is res
+
+ check_round(np.array([1.2, 1.5]), [1, 2])
+ check_round(np.array(1.5), 2)
+ check_round(np.array([12.2, 15.5]), [10, 20], -1)
+ check_round(np.array([12.15, 15.51]), [12.2, 15.5], 1)
+ # Complex rounding
+ check_round(np.array([4.5 + 1.5j]), [4 + 2j])
+ check_round(np.array([12.5 + 15.5j]), [10 + 20j], -1)
+
+ def test_squeeze(self):
+ a = np.array([[[1], [2], [3]]])
+ assert_equal(a.squeeze(), [1, 2, 3])
+ assert_equal(a.squeeze(axis=(0,)), [[1], [2], [3]])
+ assert_raises(ValueError, a.squeeze, axis=(1,))
+ assert_equal(a.squeeze(axis=(2,)), [[1, 2, 3]])
+
+ def test_transpose(self):
+ a = np.array([[1, 2], [3, 4]])
+ assert_equal(a.transpose(), [[1, 3], [2, 4]])
+ assert_raises(ValueError, lambda: a.transpose(0))
+ assert_raises(ValueError, lambda: a.transpose(0, 0))
+ assert_raises(ValueError, lambda: a.transpose(0, 1, 2))
+
+ def test_sort(self):
+ # test ordering for floats and complex containing nans. It is only
+ # necessary to check the less-than comparison, so sorts that
+ # only follow the insertion sort path are sufficient. We only
+ # test doubles and complex doubles as the logic is the same.
+
+ # check doubles
+ msg = "Test real sort order with nans"
+ a = np.array([np.nan, 1, 0])
+ b = np.sort(a)
+ assert_equal(b, a[::-1], msg)
+ # check complex
+ msg = "Test complex sort order with nans"
+ a = np.zeros(9, dtype=np.complex128)
+ a.real += [np.nan, np.nan, np.nan, 1, 0, 1, 1, 0, 0]
+ a.imag += [np.nan, 1, 0, np.nan, np.nan, 1, 0, 1, 0]
+ b = np.sort(a)
+ assert_equal(b, a[::-1], msg)
+
+ with assert_raises_regex(
+ ValueError,
+ "kind` and `stable` parameters can't be provided at the same time"
+ ):
+ np.sort(a, kind="stable", stable=True)
+
+ # all c scalar sorts use the same code with different types
+ # so it suffices to run a quick check with one type. The number
+ # of sorted items must be greater than ~50 to check the actual
+ # algorithm because quick and merge sort fall over to insertion
+ # sort for small arrays.
+
+ @pytest.mark.parametrize('dtype', [np.uint8, np.uint16, np.uint32, np.uint64,
+ np.float16, np.float32, np.float64,
+ np.longdouble])
+ def test_sort_unsigned(self, dtype):
+ a = np.arange(101, dtype=dtype)
+ b = a[::-1].copy()
+ for kind in self.sort_kinds:
+ msg = f"scalar sort, kind={kind}"
+ c = a.copy()
+ c.sort(kind=kind)
+ assert_equal(c, a, msg)
+ c = b.copy()
+ c.sort(kind=kind)
+ assert_equal(c, a, msg)
+
+ @pytest.mark.parametrize('dtype',
+ [np.int8, np.int16, np.int32, np.int64, np.float16,
+ np.float32, np.float64, np.longdouble])
+ def test_sort_signed(self, dtype):
+ a = np.arange(-50, 51, dtype=dtype)
+ b = a[::-1].copy()
+ for kind in self.sort_kinds:
+ msg = f"scalar sort, kind={kind}"
+ c = a.copy()
+ c.sort(kind=kind)
+ assert_equal(c, a, msg)
+ c = b.copy()
+ c.sort(kind=kind)
+ assert_equal(c, a, msg)
+
+ @pytest.mark.parametrize('dtype', [np.float32, np.float64, np.longdouble])
+ @pytest.mark.parametrize('part', ['real', 'imag'])
+ def test_sort_complex(self, part, dtype):
+ # test complex sorts. These use the same code as the scalars
+ # but the compare function differs.
+ cdtype = {
+ np.single: np.csingle,
+ np.double: np.cdouble,
+ np.longdouble: np.clongdouble,
+ }[dtype]
+ a = np.arange(-50, 51, dtype=dtype)
+ b = a[::-1].copy()
+ ai = (a * (1 + 1j)).astype(cdtype)
+ bi = (b * (1 + 1j)).astype(cdtype)
+ setattr(ai, part, 1)
+ setattr(bi, part, 1)
+ for kind in self.sort_kinds:
+ msg = f"complex sort, {part} part == 1, kind={kind}"
+ c = ai.copy()
+ c.sort(kind=kind)
+ assert_equal(c, ai, msg)
+ c = bi.copy()
+ c.sort(kind=kind)
+ assert_equal(c, ai, msg)
+
+ def test_sort_complex_byte_swapping(self):
+ # test sorting of complex arrays requiring byte-swapping, gh-5441
+ for endianness in '<>':
+ for dt in np.typecodes['Complex']:
+ arr = np.array([1 + 3.j, 2 + 2.j, 3 + 1.j], dtype=endianness + dt)
+ c = arr.copy()
+ c.sort()
+ msg = f'byte-swapped complex sort, dtype={dt}'
+ assert_equal(c, arr, msg)
+
+ @pytest.mark.parametrize('dtype', [np.bytes_, np.str_])
+ def test_sort_string(self, dtype):
+ # np.array will perform the encoding to bytes for us in the bytes test
+ a = np.array(['aaaaaaaa' + chr(i) for i in range(101)], dtype=dtype)
+ b = a[::-1].copy()
+ for kind in self.sort_kinds:
+ msg = f"kind={kind}"
+ c = a.copy()
+ c.sort(kind=kind)
+ assert_equal(c, a, msg)
+ c = b.copy()
+ c.sort(kind=kind)
+ assert_equal(c, a, msg)
+
+ def test_sort_object(self):
+ # test object array sorts.
+ a = np.empty((101,), dtype=object)
+ a[:] = list(range(101))
+ b = a[::-1]
+ for kind in ['q', 'h', 'm']:
+ msg = f"kind={kind}"
+ c = a.copy()
+ c.sort(kind=kind)
+ assert_equal(c, a, msg)
+ c = b.copy()
+ c.sort(kind=kind)
+ assert_equal(c, a, msg)
+
+ @pytest.mark.parametrize("dt", [
+ np.dtype([('f', float), ('i', int)]),
+ np.dtype([('f', float), ('i', object)])])
+ @pytest.mark.parametrize("step", [1, 2])
+ def test_sort_structured(self, dt, step):
+ # test record array sorts.
+ a = np.array([(i, i) for i in range(101 * step)], dtype=dt)
+ b = a[::-1]
+ for kind in ['q', 'h', 'm']:
+ msg = f"kind={kind}"
+ c = a.copy()[::step]
+ indx = c.argsort(kind=kind)
+ c.sort(kind=kind)
+ assert_equal(c, a[::step], msg)
+ assert_equal(a[::step][indx], a[::step], msg)
+ c = b.copy()[::step]
+ indx = c.argsort(kind=kind)
+ c.sort(kind=kind)
+ assert_equal(c, a[step - 1::step], msg)
+ assert_equal(b[::step][indx], a[step - 1::step], msg)
+
+ @pytest.mark.parametrize('dtype', ['datetime64[D]', 'timedelta64[D]'])
+ def test_sort_time(self, dtype):
+ # test datetime64 and timedelta64 sorts.
+ a = np.arange(0, 101, dtype=dtype)
+ b = a[::-1]
+ for kind in ['q', 'h', 'm']:
+ msg = f"kind={kind}"
+ c = a.copy()
+ c.sort(kind=kind)
+ assert_equal(c, a, msg)
+ c = b.copy()
+ c.sort(kind=kind)
+ assert_equal(c, a, msg)
+
+ def test_sort_axis(self):
+ # check axis handling. This should be the same for all type
+ # specific sorts, so we only check it for one type and one kind
+ a = np.array([[3, 2], [1, 0]])
+ b = np.array([[1, 0], [3, 2]])
+ c = np.array([[2, 3], [0, 1]])
+ d = a.copy()
+ d.sort(axis=0)
+ assert_equal(d, b, "test sort with axis=0")
+ d = a.copy()
+ d.sort(axis=1)
+ assert_equal(d, c, "test sort with axis=1")
+ d = a.copy()
+ d.sort()
+ assert_equal(d, c, "test sort with default axis")
+
+ def test_sort_size_0(self):
+ # check axis handling for multidimensional empty arrays
+ a = np.array([])
+ a.shape = (3, 2, 1, 0)
+ for axis in range(-a.ndim, a.ndim):
+ msg = f'test empty array sort with axis={axis}'
+ assert_equal(np.sort(a, axis=axis), a, msg)
+ msg = 'test empty array sort with axis=None'
+ assert_equal(np.sort(a, axis=None), a.ravel(), msg)
+
+ def test_sort_bad_ordering(self):
+ # test generic class with bogus ordering,
+ # should not segfault.
+ class Boom:
+ def __lt__(self, other):
+ return True
+
+ a = np.array([Boom()] * 100, dtype=object)
+ for kind in self.sort_kinds:
+ msg = f"kind={kind}"
+ c = a.copy()
+ c.sort(kind=kind)
+ assert_equal(c, a, msg)
+
+ def test_void_sort(self):
+ # gh-8210 - previously segfaulted
+ for i in range(4):
+ rand = np.random.randint(256, size=4000, dtype=np.uint8)
+ arr = rand.view('V4')
+ arr[::-1].sort()
+
+ dt = np.dtype([('val', 'i4', (1,))])
+ for i in range(4):
+ rand = np.random.randint(256, size=4000, dtype=np.uint8)
+ arr = rand.view(dt)
+ arr[::-1].sort()
+
+ def test_sort_raises(self):
+ # gh-9404
+ arr = np.array([0, datetime.now(), 1], dtype=object)
+ for kind in self.sort_kinds:
+ assert_raises(TypeError, arr.sort, kind=kind)
+ # gh-3879
+
+ class Raiser:
+ def raises_anything(*args, **kwargs):
+ raise TypeError("SOMETHING ERRORED")
+ __eq__ = __ne__ = __lt__ = __gt__ = __ge__ = __le__ = raises_anything
+ arr = np.array([[Raiser(), n] for n in range(10)]).reshape(-1)
+ np.random.shuffle(arr)
+ for kind in self.sort_kinds:
+ assert_raises(TypeError, arr.sort, kind=kind)
+
+ def test_sort_degraded(self):
+ # test degraded dataset would take minutes to run with normal qsort
+ d = np.arange(1000000)
+ do = d.copy()
+ x = d
+ # create a median of 3 killer where each median is the sorted second
+ # last element of the quicksort partition
+ while x.size > 3:
+ mid = x.size // 2
+ x[mid], x[-2] = x[-2], x[mid]
+ x = x[:-2]
+
+ assert_equal(np.sort(d), do)
+ assert_equal(d[np.argsort(d)], do)
+
+ def test_copy(self):
+ def assert_fortran(arr):
+ assert_(arr.flags.fortran)
+ assert_(arr.flags.f_contiguous)
+ assert_(not arr.flags.c_contiguous)
+
+ def assert_c(arr):
+ assert_(not arr.flags.fortran)
+ assert_(not arr.flags.f_contiguous)
+ assert_(arr.flags.c_contiguous)
+
+ a = np.empty((2, 2), order='F')
+ # Test copying a Fortran array
+ assert_c(a.copy())
+ assert_c(a.copy('C'))
+ assert_fortran(a.copy('F'))
+ assert_fortran(a.copy('A'))
+
+ # Now test starting with a C array.
+ a = np.empty((2, 2), order='C')
+ assert_c(a.copy())
+ assert_c(a.copy('C'))
+ assert_fortran(a.copy('F'))
+ assert_c(a.copy('A'))
+
+ @pytest.mark.parametrize("dtype", ['O', np.int32, 'i,O'])
+ def test__deepcopy__(self, dtype):
+ # Force the entry of NULLs into array
+ a = np.empty(4, dtype=dtype)
+ ctypes.memset(a.ctypes.data, 0, a.nbytes)
+
+ # Ensure no error is raised, see gh-21833
+ b = a.__deepcopy__({})
+
+ a[0] = 42
+ with pytest.raises(AssertionError):
+ assert_array_equal(a, b)
+
+ def test__deepcopy__catches_failure(self):
+ class MyObj:
+ def __deepcopy__(self, *args, **kwargs):
+ raise RuntimeError
+
+ arr = np.array([1, MyObj(), 3], dtype='O')
+ with pytest.raises(RuntimeError):
+ arr.__deepcopy__({})
+
+ def test_sort_order(self):
+ # Test sorting an array with fields
+ x1 = np.array([21, 32, 14])
+ x2 = np.array(['my', 'first', 'name'])
+ x3 = np.array([3.1, 4.5, 6.2])
+ r = np.rec.fromarrays([x1, x2, x3], names='id,word,number')
+
+ r.sort(order=['id'])
+ assert_equal(r.id, np.array([14, 21, 32]))
+ assert_equal(r.word, np.array(['name', 'my', 'first']))
+ assert_equal(r.number, np.array([6.2, 3.1, 4.5]))
+
+ r.sort(order=['word'])
+ assert_equal(r.id, np.array([32, 21, 14]))
+ assert_equal(r.word, np.array(['first', 'my', 'name']))
+ assert_equal(r.number, np.array([4.5, 3.1, 6.2]))
+
+ r.sort(order=['number'])
+ assert_equal(r.id, np.array([21, 32, 14]))
+ assert_equal(r.word, np.array(['my', 'first', 'name']))
+ assert_equal(r.number, np.array([3.1, 4.5, 6.2]))
+
+ assert_raises_regex(ValueError, 'duplicate',
+ lambda: r.sort(order=['id', 'id']))
+
+ if sys.byteorder == 'little':
+ strtype = '>i2'
+ else:
+ strtype = '<i2'
+ mydtype = [('name', 'U5'), ('col2', strtype)]
+ r = np.array([('a', 1), ('b', 255), ('c', 3), ('d', 258)],
+ dtype=mydtype)
+ r.sort(order='col2')
+ assert_equal(r['col2'], [1, 3, 255, 258])
+ assert_equal(r, np.array([('a', 1), ('c', 3), ('b', 255), ('d', 258)],
+ dtype=mydtype))
+
+ def test_argsort(self):
+ # all c scalar argsorts use the same code with different types
+ # so it suffices to run a quick check with one type. The number
+ # of sorted items must be greater than ~50 to check the actual
+ # algorithm because quick and merge sort fall over to insertion
+ # sort for small arrays.
+
+ for dtype in [np.int32, np.uint32, np.float32]:
+ a = np.arange(101, dtype=dtype)
+ b = a[::-1].copy()
+ for kind in self.sort_kinds:
+ msg = f"scalar argsort, kind={kind}, dtype={dtype}"
+ assert_equal(a.copy().argsort(kind=kind), a, msg)
+ assert_equal(b.copy().argsort(kind=kind), b, msg)
+
+ # test complex argsorts. These use the same code as the scalars
+ # but the compare function differs.
+ ai = a * 1j + 1
+ bi = b * 1j + 1
+ for kind in self.sort_kinds:
+ msg = f"complex argsort, kind={kind}"
+ assert_equal(ai.copy().argsort(kind=kind), a, msg)
+ assert_equal(bi.copy().argsort(kind=kind), b, msg)
+ ai = a + 1j
+ bi = b + 1j
+ for kind in self.sort_kinds:
+ msg = f"complex argsort, kind={kind}"
+ assert_equal(ai.copy().argsort(kind=kind), a, msg)
+ assert_equal(bi.copy().argsort(kind=kind), b, msg)
+
+ # test argsort of complex arrays requiring byte-swapping, gh-5441
+ for endianness in '<>':
+ for dt in np.typecodes['Complex']:
+ arr = np.array([1 + 3.j, 2 + 2.j, 3 + 1.j], dtype=endianness + dt)
+ msg = f'byte-swapped complex argsort, dtype={dt}'
+ assert_equal(arr.argsort(),
+ np.arange(len(arr), dtype=np.intp), msg)
+
+ # test string argsorts.
+ s = 'aaaaaaaa'
+ a = np.array([s + chr(i) for i in range(101)])
+ b = a[::-1].copy()
+ r = np.arange(101)
+ rr = r[::-1]
+ for kind in self.sort_kinds:
+ msg = f"string argsort, kind={kind}"
+ assert_equal(a.copy().argsort(kind=kind), r, msg)
+ assert_equal(b.copy().argsort(kind=kind), rr, msg)
+
+ # test unicode argsorts.
+ s = 'aaaaaaaa'
+ a = np.array([s + chr(i) for i in range(101)], dtype=np.str_)
+ b = a[::-1]
+ r = np.arange(101)
+ rr = r[::-1]
+ for kind in self.sort_kinds:
+ msg = f"unicode argsort, kind={kind}"
+ assert_equal(a.copy().argsort(kind=kind), r, msg)
+ assert_equal(b.copy().argsort(kind=kind), rr, msg)
+
+ # test object array argsorts.
+ a = np.empty((101,), dtype=object)
+ a[:] = list(range(101))
+ b = a[::-1]
+ r = np.arange(101)
+ rr = r[::-1]
+ for kind in self.sort_kinds:
+ msg = f"object argsort, kind={kind}"
+ assert_equal(a.copy().argsort(kind=kind), r, msg)
+ assert_equal(b.copy().argsort(kind=kind), rr, msg)
+
+ # test structured array argsorts.
+ dt = np.dtype([('f', float), ('i', int)])
+ a = np.array([(i, i) for i in range(101)], dtype=dt)
+ b = a[::-1]
+ r = np.arange(101)
+ rr = r[::-1]
+ for kind in self.sort_kinds:
+ msg = f"structured array argsort, kind={kind}"
+ assert_equal(a.copy().argsort(kind=kind), r, msg)
+ assert_equal(b.copy().argsort(kind=kind), rr, msg)
+
+ # test datetime64 argsorts.
+ a = np.arange(0, 101, dtype='datetime64[D]')
+ b = a[::-1]
+ r = np.arange(101)
+ rr = r[::-1]
+ for kind in ['q', 'h', 'm']:
+ msg = f"datetime64 argsort, kind={kind}"
+ assert_equal(a.copy().argsort(kind=kind), r, msg)
+ assert_equal(b.copy().argsort(kind=kind), rr, msg)
+
+ # test timedelta64 argsorts.
+ a = np.arange(0, 101, dtype='timedelta64[D]')
+ b = a[::-1]
+ r = np.arange(101)
+ rr = r[::-1]
+ for kind in ['q', 'h', 'm']:
+ msg = f"timedelta64 argsort, kind={kind}"
+ assert_equal(a.copy().argsort(kind=kind), r, msg)
+ assert_equal(b.copy().argsort(kind=kind), rr, msg)
+
+ # check axis handling. This should be the same for all type
+ # specific argsorts, so we only check it for one type and one kind
+ a = np.array([[3, 2], [1, 0]])
+ b = np.array([[1, 1], [0, 0]])
+ c = np.array([[1, 0], [1, 0]])
+ assert_equal(a.copy().argsort(axis=0), b)
+ assert_equal(a.copy().argsort(axis=1), c)
+ assert_equal(a.copy().argsort(), c)
+
+ # check axis handling for multidimensional empty arrays
+ a = np.array([])
+ a.shape = (3, 2, 1, 0)
+ for axis in range(-a.ndim, a.ndim):
+ msg = f'test empty array argsort with axis={axis}'
+ assert_equal(np.argsort(a, axis=axis),
+ np.zeros_like(a, dtype=np.intp), msg)
+ msg = 'test empty array argsort with axis=None'
+ assert_equal(np.argsort(a, axis=None),
+ np.zeros_like(a.ravel(), dtype=np.intp), msg)
+
+ # check that stable argsorts are stable
+ r = np.arange(100)
+ # scalars
+ a = np.zeros(100)
+ assert_equal(a.argsort(kind='m'), r)
+ # complex
+ a = np.zeros(100, dtype=complex)
+ assert_equal(a.argsort(kind='m'), r)
+ # string
+ a = np.array(['aaaaaaaaa' for i in range(100)])
+ assert_equal(a.argsort(kind='m'), r)
+ # unicode
+ a = np.array(['aaaaaaaaa' for i in range(100)], dtype=np.str_)
+ assert_equal(a.argsort(kind='m'), r)
+
+ with assert_raises_regex(
+ ValueError,
+ "kind` and `stable` parameters can't be provided at the same time"
+ ):
+ np.argsort(a, kind="stable", stable=True)
+
+ def test_sort_unicode_kind(self):
+ d = np.arange(10)
+ k = b'\xc3\xa4'.decode("UTF8")
+ assert_raises(ValueError, d.sort, kind=k)
+ assert_raises(ValueError, d.argsort, kind=k)
+
+ @pytest.mark.parametrize('a', [
+ np.array([0, 1, np.nan], dtype=np.float16),
+ np.array([0, 1, np.nan], dtype=np.float32),
+ np.array([0, 1, np.nan]),
+ ])
+ def test_searchsorted_floats(self, a):
+ # test for floats arrays containing nans. Explicitly test
+ # half, single, and double precision floats to verify that
+ # the NaN-handling is correct.
+ msg = f"Test real ({a.dtype}) searchsorted with nans, side='l'"
+ b = a.searchsorted(a, side='left')
+ assert_equal(b, np.arange(3), msg)
+ msg = f"Test real ({a.dtype}) searchsorted with nans, side='r'"
+ b = a.searchsorted(a, side='right')
+ assert_equal(b, np.arange(1, 4), msg)
+ # check keyword arguments
+ a.searchsorted(v=1)
+ x = np.array([0, 1, np.nan], dtype='float32')
+ y = np.searchsorted(x, x[-1])
+ assert_equal(y, 2)
+
+ def test_searchsorted_complex(self):
+ # test for complex arrays containing nans.
+ # The search sorted routines use the compare functions for the
+ # array type, so this checks if that is consistent with the sort
+ # order.
+ # check double complex
+ a = np.zeros(9, dtype=np.complex128)
+ a.real += [0, 0, 1, 1, 0, 1, np.nan, np.nan, np.nan]
+ a.imag += [0, 1, 0, 1, np.nan, np.nan, 0, 1, np.nan]
+ msg = "Test complex searchsorted with nans, side='l'"
+ b = a.searchsorted(a, side='left')
+ assert_equal(b, np.arange(9), msg)
+ msg = "Test complex searchsorted with nans, side='r'"
+ b = a.searchsorted(a, side='right')
+ assert_equal(b, np.arange(1, 10), msg)
+ msg = "Test searchsorted with little endian, side='l'"
+ a = np.array([0, 128], dtype='<i4')
+ b = a.searchsorted(np.array(128, dtype='<i4'))
+ assert_equal(b, 1, msg)
+ msg = "Test searchsorted with big endian, side='l'"
+ a = np.array([0, 128], dtype='>i4')
+ b = a.searchsorted(np.array(128, dtype='>i4'))
+ assert_equal(b, 1, msg)
+
+ def test_searchsorted_n_elements(self):
+ # Check 0 elements
+ a = np.ones(0)
+ b = a.searchsorted([0, 1, 2], 'left')
+ assert_equal(b, [0, 0, 0])
+ b = a.searchsorted([0, 1, 2], 'right')
+ assert_equal(b, [0, 0, 0])
+ a = np.ones(1)
+ # Check 1 element
+ b = a.searchsorted([0, 1, 2], 'left')
+ assert_equal(b, [0, 0, 1])
+ b = a.searchsorted([0, 1, 2], 'right')
+ assert_equal(b, [0, 1, 1])
+ # Check all elements equal
+ a = np.ones(2)
+ b = a.searchsorted([0, 1, 2], 'left')
+ assert_equal(b, [0, 0, 2])
+ b = a.searchsorted([0, 1, 2], 'right')
+ assert_equal(b, [0, 2, 2])
+
+ def test_searchsorted_unaligned_array(self):
+ # Test searching unaligned array
+ a = np.arange(10)
+ aligned = np.empty(a.itemsize * a.size + 1, 'uint8')
+ unaligned = aligned[1:].view(a.dtype)
+ unaligned[:] = a
+ # Test searching unaligned array
+ b = unaligned.searchsorted(a, 'left')
+ assert_equal(b, a)
+ b = unaligned.searchsorted(a, 'right')
+ assert_equal(b, a + 1)
+ # Test searching for unaligned keys
+ b = a.searchsorted(unaligned, 'left')
+ assert_equal(b, a)
+ b = a.searchsorted(unaligned, 'right')
+ assert_equal(b, a + 1)
+
+ def test_searchsorted_resetting(self):
+ # Test smart resetting of binsearch indices
+ a = np.arange(5)
+ b = a.searchsorted([6, 5, 4], 'left')
+ assert_equal(b, [5, 5, 4])
+ b = a.searchsorted([6, 5, 4], 'right')
+ assert_equal(b, [5, 5, 5])
+
+ def test_searchsorted_type_specific(self):
+ # Test all type specific binary search functions
+ types = ''.join((np.typecodes['AllInteger'], np.typecodes['AllFloat'],
+ np.typecodes['Datetime'], '?O'))
+ for dt in types:
+ if dt == 'M':
+ dt = 'M8[D]'
+ if dt == '?':
+ a = np.arange(2, dtype=dt)
+ out = np.arange(2)
+ else:
+ a = np.arange(0, 5, dtype=dt)
+ out = np.arange(5)
+ b = a.searchsorted(a, 'left')
+ assert_equal(b, out)
+ b = a.searchsorted(a, 'right')
+ assert_equal(b, out + 1)
+ # Test empty array, use a fresh array to get warnings in
+ # valgrind if access happens.
+ e = np.ndarray(shape=0, buffer=b'', dtype=dt)
+ b = e.searchsorted(a, 'left')
+ assert_array_equal(b, np.zeros(len(a), dtype=np.intp))
+ b = a.searchsorted(e, 'left')
+ assert_array_equal(b, np.zeros(0, dtype=np.intp))
+
+ def test_searchsorted_unicode(self):
+ # Test searchsorted on unicode strings.
+
+ # 1.6.1 contained a string length miscalculation in
+ # arraytypes.c.src:UNICODE_compare() which manifested as
+ # incorrect/inconsistent results from searchsorted.
+ a = np.array(['P:\\20x_dapi_cy3\\20x_dapi_cy3_20100185_1',
+ 'P:\\20x_dapi_cy3\\20x_dapi_cy3_20100186_1',
+ 'P:\\20x_dapi_cy3\\20x_dapi_cy3_20100187_1',
+ 'P:\\20x_dapi_cy3\\20x_dapi_cy3_20100189_1',
+ 'P:\\20x_dapi_cy3\\20x_dapi_cy3_20100190_1',
+ 'P:\\20x_dapi_cy3\\20x_dapi_cy3_20100191_1',
+ 'P:\\20x_dapi_cy3\\20x_dapi_cy3_20100192_1',
+ 'P:\\20x_dapi_cy3\\20x_dapi_cy3_20100193_1',
+ 'P:\\20x_dapi_cy3\\20x_dapi_cy3_20100194_1',
+ 'P:\\20x_dapi_cy3\\20x_dapi_cy3_20100195_1',
+ 'P:\\20x_dapi_cy3\\20x_dapi_cy3_20100196_1',
+ 'P:\\20x_dapi_cy3\\20x_dapi_cy3_20100197_1',
+ 'P:\\20x_dapi_cy3\\20x_dapi_cy3_20100198_1',
+ 'P:\\20x_dapi_cy3\\20x_dapi_cy3_20100199_1'],
+ dtype=np.str_)
+ ind = np.arange(len(a))
+ assert_equal([a.searchsorted(v, 'left') for v in a], ind)
+ assert_equal([a.searchsorted(v, 'right') for v in a], ind + 1)
+ assert_equal([a.searchsorted(a[i], 'left') for i in ind], ind)
+ assert_equal([a.searchsorted(a[i], 'right') for i in ind], ind + 1)
+
+ def test_searchsorted_with_invalid_sorter(self):
+ a = np.array([5, 2, 1, 3, 4])
+ s = np.argsort(a)
+ assert_raises(TypeError, np.searchsorted, a, 0,
+ sorter=np.array((1, (2, 3)), dtype=object))
+ assert_raises(TypeError, np.searchsorted, a, 0, sorter=[1.1])
+ assert_raises(ValueError, np.searchsorted, a, 0, sorter=[1, 2, 3, 4])
+ assert_raises(ValueError, np.searchsorted, a, 0, sorter=[1, 2, 3, 4, 5, 6])
+
+ # bounds check
+ assert_raises(ValueError, np.searchsorted, a, 4, sorter=[0, 1, 2, 3, 5])
+ assert_raises(ValueError, np.searchsorted, a, 0, sorter=[-1, 0, 1, 2, 3])
+ assert_raises(ValueError, np.searchsorted, a, 0, sorter=[4, 0, -1, 2, 3])
+
+ def test_searchsorted_with_sorter(self):
+ a = np.random.rand(300)
+ s = a.argsort()
+ b = np.sort(a)
+ k = np.linspace(0, 1, 20)
+ assert_equal(b.searchsorted(k), a.searchsorted(k, sorter=s))
+
+ a = np.array([0, 1, 2, 3, 5] * 20)
+ s = a.argsort()
+ k = [0, 1, 2, 3, 5]
+ expected = [0, 20, 40, 60, 80]
+ assert_equal(a.searchsorted(k, side='left', sorter=s), expected)
+ expected = [20, 40, 60, 80, 100]
+ assert_equal(a.searchsorted(k, side='right', sorter=s), expected)
+
+ # Test searching unaligned array
+ keys = np.arange(10)
+ a = keys.copy()
+ np.random.shuffle(s)
+ s = a.argsort()
+ aligned = np.empty(a.itemsize * a.size + 1, 'uint8')
+ unaligned = aligned[1:].view(a.dtype)
+ # Test searching unaligned array
+ unaligned[:] = a
+ b = unaligned.searchsorted(keys, 'left', s)
+ assert_equal(b, keys)
+ b = unaligned.searchsorted(keys, 'right', s)
+ assert_equal(b, keys + 1)
+ # Test searching for unaligned keys
+ unaligned[:] = keys
+ b = a.searchsorted(unaligned, 'left', s)
+ assert_equal(b, keys)
+ b = a.searchsorted(unaligned, 'right', s)
+ assert_equal(b, keys + 1)
+
+ # Test all type specific indirect binary search functions
+ types = ''.join((np.typecodes['AllInteger'], np.typecodes['AllFloat'],
+ np.typecodes['Datetime'], '?O'))
+ for dt in types:
+ if dt == 'M':
+ dt = 'M8[D]'
+ if dt == '?':
+ a = np.array([1, 0], dtype=dt)
+ # We want the sorter array to be of a type that is different
+ # from np.intp in all platforms, to check for #4698
+ s = np.array([1, 0], dtype=np.int16)
+ out = np.array([1, 0])
+ else:
+ a = np.array([3, 4, 1, 2, 0], dtype=dt)
+ # We want the sorter array to be of a type that is different
+ # from np.intp in all platforms, to check for #4698
+ s = np.array([4, 2, 3, 0, 1], dtype=np.int16)
+ out = np.array([3, 4, 1, 2, 0], dtype=np.intp)
+ b = a.searchsorted(a, 'left', s)
+ assert_equal(b, out)
+ b = a.searchsorted(a, 'right', s)
+ assert_equal(b, out + 1)
+ # Test empty array, use a fresh array to get warnings in
+ # valgrind if access happens.
+ e = np.ndarray(shape=0, buffer=b'', dtype=dt)
+ b = e.searchsorted(a, 'left', s[:0])
+ assert_array_equal(b, np.zeros(len(a), dtype=np.intp))
+ b = a.searchsorted(e, 'left', s)
+ assert_array_equal(b, np.zeros(0, dtype=np.intp))
+
+ # Test non-contiguous sorter array
+ a = np.array([3, 4, 1, 2, 0])
+ srt = np.empty((10,), dtype=np.intp)
+ srt[1::2] = -1
+ srt[::2] = [4, 2, 3, 0, 1]
+ s = srt[::2]
+ out = np.array([3, 4, 1, 2, 0], dtype=np.intp)
+ b = a.searchsorted(a, 'left', s)
+ assert_equal(b, out)
+ b = a.searchsorted(a, 'right', s)
+ assert_equal(b, out + 1)
+
+ def test_searchsorted_return_type(self):
+ # Functions returning indices should always return base ndarrays
+ class A(np.ndarray):
+ pass
+ a = np.arange(5).view(A)
+ b = np.arange(1, 3).view(A)
+ s = np.arange(5).view(A)
+ assert_(not isinstance(a.searchsorted(b, 'left'), A))
+ assert_(not isinstance(a.searchsorted(b, 'right'), A))
+ assert_(not isinstance(a.searchsorted(b, 'left', s), A))
+ assert_(not isinstance(a.searchsorted(b, 'right', s), A))
+
+ @pytest.mark.parametrize("dtype", np.typecodes["All"])
+ def test_argpartition_out_of_range(self, dtype):
+ # Test out of range values in kth raise an error, gh-5469
+ d = np.arange(10).astype(dtype=dtype)
+ assert_raises(ValueError, d.argpartition, 10)
+ assert_raises(ValueError, d.argpartition, -11)
+
+ @pytest.mark.parametrize("dtype", np.typecodes["All"])
+ def test_partition_out_of_range(self, dtype):
+ # Test out of range values in kth raise an error, gh-5469
+ d = np.arange(10).astype(dtype=dtype)
+ assert_raises(ValueError, d.partition, 10)
+ assert_raises(ValueError, d.partition, -11)
+
+ def test_argpartition_integer(self):
+ # Test non-integer values in kth raise an error/
+ d = np.arange(10)
+ assert_raises(TypeError, d.argpartition, 9.)
+ # Test also for generic type argpartition, which uses sorting
+ # and used to not bound check kth
+ d_obj = np.arange(10, dtype=object)
+ assert_raises(TypeError, d_obj.argpartition, 9.)
+
+ def test_partition_integer(self):
+ # Test out of range values in kth raise an error, gh-5469
+ d = np.arange(10)
+ assert_raises(TypeError, d.partition, 9.)
+ # Test also for generic type partition, which uses sorting
+ # and used to not bound check kth
+ d_obj = np.arange(10, dtype=object)
+ assert_raises(TypeError, d_obj.partition, 9.)
+
+ @pytest.mark.parametrize("kth_dtype", np.typecodes["AllInteger"])
+ def test_partition_empty_array(self, kth_dtype):
+ # check axis handling for multidimensional empty arrays
+ kth = np.array(0, dtype=kth_dtype)[()]
+ a = np.array([])
+ a.shape = (3, 2, 1, 0)
+ for axis in range(-a.ndim, a.ndim):
+ msg = f'test empty array partition with axis={axis}'
+ assert_equal(np.partition(a, kth, axis=axis), a, msg)
+ msg = 'test empty array partition with axis=None'
+ assert_equal(np.partition(a, kth, axis=None), a.ravel(), msg)
+
+ @pytest.mark.parametrize("kth_dtype", np.typecodes["AllInteger"])
+ def test_argpartition_empty_array(self, kth_dtype):
+ # check axis handling for multidimensional empty arrays
+ kth = np.array(0, dtype=kth_dtype)[()]
+ a = np.array([])
+ a.shape = (3, 2, 1, 0)
+ for axis in range(-a.ndim, a.ndim):
+ msg = f'test empty array argpartition with axis={axis}'
+ assert_equal(np.partition(a, kth, axis=axis),
+ np.zeros_like(a, dtype=np.intp), msg)
+ msg = 'test empty array argpartition with axis=None'
+ assert_equal(np.partition(a, kth, axis=None),
+ np.zeros_like(a.ravel(), dtype=np.intp), msg)
+
+ def test_partition(self):
+ d = np.arange(10)
+ assert_raises(TypeError, np.partition, d, 2, kind=1)
+ assert_raises(ValueError, np.partition, d, 2, kind="nonsense")
+ assert_raises(ValueError, np.argpartition, d, 2, kind="nonsense")
+ assert_raises(ValueError, d.partition, 2, axis=0, kind="nonsense")
+ assert_raises(ValueError, d.argpartition, 2, axis=0, kind="nonsense")
+ for k in ("introselect",):
+ d = np.array([])
+ assert_array_equal(np.partition(d, 0, kind=k), d)
+ assert_array_equal(np.argpartition(d, 0, kind=k), d)
+ d = np.ones(1)
+ assert_array_equal(np.partition(d, 0, kind=k)[0], d)
+ assert_array_equal(d[np.argpartition(d, 0, kind=k)],
+ np.partition(d, 0, kind=k))
+
+ # kth not modified
+ kth = np.array([30, 15, 5])
+ okth = kth.copy()
+ np.partition(np.arange(40), kth)
+ assert_array_equal(kth, okth)
+
+ for r in ([2, 1], [1, 2], [1, 1]):
+ d = np.array(r)
+ tgt = np.sort(d)
+ assert_array_equal(np.partition(d, 0, kind=k)[0], tgt[0])
+ assert_array_equal(np.partition(d, 1, kind=k)[1], tgt[1])
+ self.assert_partitioned(np.partition(d, 0, kind=k), [0])
+ self.assert_partitioned(d[np.argpartition(d, 0, kind=k)], [0])
+ self.assert_partitioned(np.partition(d, 1, kind=k), [1])
+ self.assert_partitioned(d[np.argpartition(d, 1, kind=k)], [1])
+ for i in range(d.size):
+ d[i:].partition(0, kind=k)
+ assert_array_equal(d, tgt)
+
+ for r in ([3, 2, 1], [1, 2, 3], [2, 1, 3], [2, 3, 1],
+ [1, 1, 1], [1, 2, 2], [2, 2, 1], [1, 2, 1]):
+ d = np.array(r)
+ tgt = np.sort(d)
+ assert_array_equal(np.partition(d, 0, kind=k)[0], tgt[0])
+ assert_array_equal(np.partition(d, 1, kind=k)[1], tgt[1])
+ assert_array_equal(np.partition(d, 2, kind=k)[2], tgt[2])
+ self.assert_partitioned(np.partition(d, 0, kind=k), [0])
+ self.assert_partitioned(d[np.argpartition(d, 0, kind=k)], [0])
+ self.assert_partitioned(np.partition(d, 1, kind=k), [1])
+ self.assert_partitioned(d[np.argpartition(d, 1, kind=k)], [1])
+ self.assert_partitioned(np.partition(d, 2, kind=k), [2])
+ self.assert_partitioned(d[np.argpartition(d, 2, kind=k)], [2])
+ for i in range(d.size):
+ d[i:].partition(0, kind=k)
+ assert_array_equal(d, tgt)
+
+ d = np.ones(50)
+ assert_array_equal(np.partition(d, 0, kind=k), d)
+ assert_array_equal(d[np.argpartition(d, 0, kind=k)],
+ np.partition(d, 0, kind=k))
+
+ # sorted
+ d = np.arange(49)
+ assert_equal(np.partition(d, 5, kind=k)[5], 5)
+ assert_equal(np.partition(d, 15, kind=k)[15], 15)
+ self.assert_partitioned(np.partition(d, 5, kind=k), [5])
+ self.assert_partitioned(d[np.argpartition(d, 5, kind=k)], [5])
+ self.assert_partitioned(np.partition(d, 15, kind=k), [15])
+ self.assert_partitioned(d[np.argpartition(d, 15, kind=k)], [15])
+
+ # rsorted
+ d = np.arange(47)[::-1]
+ assert_equal(np.partition(d, 6, kind=k)[6], 6)
+ assert_equal(np.partition(d, 16, kind=k)[16], 16)
+ self.assert_partitioned(np.partition(d, 6, kind=k), [6])
+ self.assert_partitioned(d[np.argpartition(d, 6, kind=k)], [6])
+ self.assert_partitioned(np.partition(d, 16, kind=k), [16])
+ self.assert_partitioned(d[np.argpartition(d, 16, kind=k)], [16])
+
+ assert_array_equal(np.partition(d, -6, kind=k),
+ np.partition(d, 41, kind=k))
+ assert_array_equal(np.partition(d, -16, kind=k),
+ np.partition(d, 31, kind=k))
+ self.assert_partitioned(np.partition(d, 41, kind=k), [41])
+ self.assert_partitioned(d[np.argpartition(d, -6, kind=k)], [41])
+
+ # median of 3 killer, O(n^2) on pure median 3 pivot quickselect
+ # exercises the median of median of 5 code used to keep O(n)
+ d = np.arange(1000000)
+ x = np.roll(d, d.size // 2)
+ mid = x.size // 2 + 1
+ assert_equal(np.partition(x, mid)[mid], mid)
+ d = np.arange(1000001)
+ x = np.roll(d, d.size // 2 + 1)
+ mid = x.size // 2 + 1
+ assert_equal(np.partition(x, mid)[mid], mid)
+
+ # max
+ d = np.ones(10)
+ d[1] = 4
+ assert_equal(np.partition(d, (2, -1))[-1], 4)
+ assert_equal(np.partition(d, (2, -1))[2], 1)
+ assert_equal(d[np.argpartition(d, (2, -1))][-1], 4)
+ assert_equal(d[np.argpartition(d, (2, -1))][2], 1)
+ d[1] = np.nan
+ assert_(np.isnan(d[np.argpartition(d, (2, -1))][-1]))
+ assert_(np.isnan(np.partition(d, (2, -1))[-1]))
+
+ # equal elements
+ d = np.arange(47) % 7
+ tgt = np.sort(np.arange(47) % 7)
+ np.random.shuffle(d)
+ for i in range(d.size):
+ assert_equal(np.partition(d, i, kind=k)[i], tgt[i])
+ self.assert_partitioned(np.partition(d, 6, kind=k), [6])
+ self.assert_partitioned(d[np.argpartition(d, 6, kind=k)], [6])
+ self.assert_partitioned(np.partition(d, 16, kind=k), [16])
+ self.assert_partitioned(d[np.argpartition(d, 16, kind=k)], [16])
+ for i in range(d.size):
+ d[i:].partition(0, kind=k)
+ assert_array_equal(d, tgt)
+
+ d = np.array([0, 1, 2, 3, 4, 5, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
+ 7, 7, 7, 7, 7, 9])
+ kth = [0, 3, 19, 20]
+ assert_equal(np.partition(d, kth, kind=k)[kth], (0, 3, 7, 7))
+ assert_equal(d[np.argpartition(d, kth, kind=k)][kth], (0, 3, 7, 7))
+
+ d = np.array([2, 1])
+ d.partition(0, kind=k)
+ assert_raises(ValueError, d.partition, 2)
+ assert_raises(AxisError, d.partition, 3, axis=1)
+ assert_raises(ValueError, np.partition, d, 2)
+ assert_raises(AxisError, np.partition, d, 2, axis=1)
+ assert_raises(ValueError, d.argpartition, 2)
+ assert_raises(AxisError, d.argpartition, 3, axis=1)
+ assert_raises(ValueError, np.argpartition, d, 2)
+ assert_raises(AxisError, np.argpartition, d, 2, axis=1)
+ d = np.arange(10).reshape((2, 5))
+ d.partition(1, axis=0, kind=k)
+ d.partition(4, axis=1, kind=k)
+ np.partition(d, 1, axis=0, kind=k)
+ np.partition(d, 4, axis=1, kind=k)
+ np.partition(d, 1, axis=None, kind=k)
+ np.partition(d, 9, axis=None, kind=k)
+ d.argpartition(1, axis=0, kind=k)
+ d.argpartition(4, axis=1, kind=k)
+ np.argpartition(d, 1, axis=0, kind=k)
+ np.argpartition(d, 4, axis=1, kind=k)
+ np.argpartition(d, 1, axis=None, kind=k)
+ np.argpartition(d, 9, axis=None, kind=k)
+ assert_raises(ValueError, d.partition, 2, axis=0)
+ assert_raises(ValueError, d.partition, 11, axis=1)
+ assert_raises(TypeError, d.partition, 2, axis=None)
+ assert_raises(ValueError, np.partition, d, 9, axis=1)
+ assert_raises(ValueError, np.partition, d, 11, axis=None)
+ assert_raises(ValueError, d.argpartition, 2, axis=0)
+ assert_raises(ValueError, d.argpartition, 11, axis=1)
+ assert_raises(ValueError, np.argpartition, d, 9, axis=1)
+ assert_raises(ValueError, np.argpartition, d, 11, axis=None)
+
+ td = [(dt, s) for dt in [np.int32, np.float32, np.complex64]
+ for s in (9, 16)]
+ for dt, s in td:
+ aae = assert_array_equal
+ at = assert_
+
+ d = np.arange(s, dtype=dt)
+ np.random.shuffle(d)
+ d1 = np.tile(np.arange(s, dtype=dt), (4, 1))
+ map(np.random.shuffle, d1)
+ d0 = np.transpose(d1)
+ for i in range(d.size):
+ p = np.partition(d, i, kind=k)
+ assert_equal(p[i], i)
+ # all before are smaller
+ assert_array_less(p[:i], p[i])
+ # all after are larger
+ assert_array_less(p[i], p[i + 1:])
+ self.assert_partitioned(p, [i])
+ self.assert_partitioned(
+ d[np.argpartition(d, i, kind=k)], [i])
+
+ p = np.partition(d1, i, axis=1, kind=k)
+ parg = d1[np.arange(d1.shape[0])[:, None],
+ np.argpartition(d1, i, axis=1, kind=k)]
+ aae(p[:, i], np.array([i] * d1.shape[0], dtype=dt))
+ # array_less does not seem to work right
+ at((p[:, :i].T <= p[:, i]).all(),
+ msg="%d: %r <= %r" % (i, p[:, i], p[:, :i].T))
+ at((p[:, i + 1:].T > p[:, i]).all(),
+ msg="%d: %r < %r" % (i, p[:, i], p[:, i + 1:].T))
+ for row in range(p.shape[0]):
+ self.assert_partitioned(p[row], [i])
+ self.assert_partitioned(parg[row], [i])
+
+ p = np.partition(d0, i, axis=0, kind=k)
+ parg = d0[np.argpartition(d0, i, axis=0, kind=k),
+ np.arange(d0.shape[1])[None, :]]
+ aae(p[i, :], np.array([i] * d1.shape[0], dtype=dt))
+ # array_less does not seem to work right
+ at((p[:i, :] <= p[i, :]).all(),
+ msg="%d: %r <= %r" % (i, p[i, :], p[:i, :]))
+ at((p[i + 1:, :] > p[i, :]).all(),
+ msg="%d: %r < %r" % (i, p[i, :], p[:, i + 1:]))
+ for col in range(p.shape[1]):
+ self.assert_partitioned(p[:, col], [i])
+ self.assert_partitioned(parg[:, col], [i])
+
+ # check inplace
+ dc = d.copy()
+ dc.partition(i, kind=k)
+ assert_equal(dc, np.partition(d, i, kind=k))
+ dc = d0.copy()
+ dc.partition(i, axis=0, kind=k)
+ assert_equal(dc, np.partition(d0, i, axis=0, kind=k))
+ dc = d1.copy()
+ dc.partition(i, axis=1, kind=k)
+ assert_equal(dc, np.partition(d1, i, axis=1, kind=k))
+
+ def assert_partitioned(self, d, kth):
+ prev = 0
+ for k in np.sort(kth):
+ assert_array_compare(operator.__le__, d[prev:k], d[k],
+ err_msg='kth %d' % k)
+ assert_((d[k:] >= d[k]).all(),
+ msg="kth %d, %r not greater equal %r" % (k, d[k:], d[k]))
+ prev = k + 1
+
+ def test_partition_iterative(self):
+ d = np.arange(17)
+ kth = (0, 1, 2, 429, 231)
+ assert_raises(ValueError, d.partition, kth)
+ assert_raises(ValueError, d.argpartition, kth)
+ d = np.arange(10).reshape((2, 5))
+ assert_raises(ValueError, d.partition, kth, axis=0)
+ assert_raises(ValueError, d.partition, kth, axis=1)
+ assert_raises(ValueError, np.partition, d, kth, axis=1)
+ assert_raises(ValueError, np.partition, d, kth, axis=None)
+
+ d = np.array([3, 4, 2, 1])
+ p = np.partition(d, (0, 3))
+ self.assert_partitioned(p, (0, 3))
+ self.assert_partitioned(d[np.argpartition(d, (0, 3))], (0, 3))
+
+ assert_array_equal(p, np.partition(d, (-3, -1)))
+ assert_array_equal(p, d[np.argpartition(d, (-3, -1))])
+
+ d = np.arange(17)
+ np.random.shuffle(d)
+ d.partition(range(d.size))
+ assert_array_equal(np.arange(17), d)
+ np.random.shuffle(d)
+ assert_array_equal(np.arange(17), d[d.argpartition(range(d.size))])
+
+ # test unsorted kth
+ d = np.arange(17)
+ np.random.shuffle(d)
+ keys = np.array([1, 3, 8, -2])
+ np.random.shuffle(d)
+ p = np.partition(d, keys)
+ self.assert_partitioned(p, keys)
+ p = d[np.argpartition(d, keys)]
+ self.assert_partitioned(p, keys)
+ np.random.shuffle(keys)
+ assert_array_equal(np.partition(d, keys), p)
+ assert_array_equal(d[np.argpartition(d, keys)], p)
+
+ # equal kth
+ d = np.arange(20)[::-1]
+ self.assert_partitioned(np.partition(d, [5] * 4), [5])
+ self.assert_partitioned(np.partition(d, [5] * 4 + [6, 13]),
+ [5] * 4 + [6, 13])
+ self.assert_partitioned(d[np.argpartition(d, [5] * 4)], [5])
+ self.assert_partitioned(d[np.argpartition(d, [5] * 4 + [6, 13])],
+ [5] * 4 + [6, 13])
+
+ d = np.arange(12)
+ np.random.shuffle(d)
+ d1 = np.tile(np.arange(12), (4, 1))
+ map(np.random.shuffle, d1)
+ d0 = np.transpose(d1)
+
+ kth = (1, 6, 7, -1)
+ p = np.partition(d1, kth, axis=1)
+ pa = d1[np.arange(d1.shape[0])[:, None],
+ d1.argpartition(kth, axis=1)]
+ assert_array_equal(p, pa)
+ for i in range(d1.shape[0]):
+ self.assert_partitioned(p[i, :], kth)
+ p = np.partition(d0, kth, axis=0)
+ pa = d0[np.argpartition(d0, kth, axis=0),
+ np.arange(d0.shape[1])[None, :]]
+ assert_array_equal(p, pa)
+ for i in range(d0.shape[1]):
+ self.assert_partitioned(p[:, i], kth)
+
+ def test_partition_cdtype(self):
+ d = np.array([('Galahad', 1.7, 38), ('Arthur', 1.8, 41),
+ ('Lancelot', 1.9, 38)],
+ dtype=[('name', '|S10'), ('height', '<f8'), ('age', '<i4')])
+
+ tgt = np.sort(d, order=['age', 'height'])
+ assert_array_equal(np.partition(d, range(d.size),
+ order=['age', 'height']),
+ tgt)
+ assert_array_equal(d[np.argpartition(d, range(d.size),
+ order=['age', 'height'])],
+ tgt)
+ for k in range(d.size):
+ assert_equal(np.partition(d, k, order=['age', 'height'])[k],
+ tgt[k])
+ assert_equal(d[np.argpartition(d, k, order=['age', 'height'])][k],
+ tgt[k])
+
+ d = np.array(['Galahad', 'Arthur', 'zebra', 'Lancelot'])
+ tgt = np.sort(d)
+ assert_array_equal(np.partition(d, range(d.size)), tgt)
+ for k in range(d.size):
+ assert_equal(np.partition(d, k)[k], tgt[k])
+ assert_equal(d[np.argpartition(d, k)][k], tgt[k])
+
+ def test_partition_unicode_kind(self):
+ d = np.arange(10)
+ k = b'\xc3\xa4'.decode("UTF8")
+ assert_raises(ValueError, d.partition, 2, kind=k)
+ assert_raises(ValueError, d.argpartition, 2, kind=k)
+
+ def test_partition_fuzz(self):
+ # a few rounds of random data testing
+ for j in range(10, 30):
+ for i in range(1, j - 2):
+ d = np.arange(j)
+ np.random.shuffle(d)
+ d = d % np.random.randint(2, 30)
+ idx = np.random.randint(d.size)
+ kth = [0, idx, i, i + 1]
+ tgt = np.sort(d)[kth]
+ assert_array_equal(np.partition(d, kth)[kth], tgt,
+ err_msg=f"data: {d!r}\n kth: {kth!r}")
+
+ @pytest.mark.parametrize("kth_dtype", np.typecodes["AllInteger"])
+ def test_argpartition_gh5524(self, kth_dtype):
+ # A test for functionality of argpartition on lists.
+ kth = np.array(1, dtype=kth_dtype)[()]
+ d = [6, 7, 3, 2, 9, 0]
+ p = np.argpartition(d, kth)
+ self.assert_partitioned(np.array(d)[p], [1])
+
+ def test_flatten(self):
+ x0 = np.array([[1, 2, 3], [4, 5, 6]], np.int32)
+ x1 = np.array([[[1, 2], [3, 4]], [[5, 6], [7, 8]]], np.int32)
+ y0 = np.array([1, 2, 3, 4, 5, 6], np.int32)
+ y0f = np.array([1, 4, 2, 5, 3, 6], np.int32)
+ y1 = np.array([1, 2, 3, 4, 5, 6, 7, 8], np.int32)
+ y1f = np.array([1, 5, 3, 7, 2, 6, 4, 8], np.int32)
+ assert_equal(x0.flatten(), y0)
+ assert_equal(x0.flatten('F'), y0f)
+ assert_equal(x0.flatten('F'), x0.T.flatten())
+ assert_equal(x1.flatten(), y1)
+ assert_equal(x1.flatten('F'), y1f)
+ assert_equal(x1.flatten('F'), x1.T.flatten())
+
+ @pytest.mark.parametrize('func', (np.dot, np.matmul))
+ def test_arr_mult(self, func):
+ a = np.array([[1, 0], [0, 1]])
+ b = np.array([[0, 1], [1, 0]])
+ c = np.array([[9, 1], [1, -9]])
+ d = np.arange(24).reshape(4, 6)
+ ddt = np.array(
+ [[ 55, 145, 235, 325],
+ [ 145, 451, 757, 1063],
+ [ 235, 757, 1279, 1801],
+ [ 325, 1063, 1801, 2539]]
+ )
+ dtd = np.array(
+ [[504, 540, 576, 612, 648, 684],
+ [540, 580, 620, 660, 700, 740],
+ [576, 620, 664, 708, 752, 796],
+ [612, 660, 708, 756, 804, 852],
+ [648, 700, 752, 804, 856, 908],
+ [684, 740, 796, 852, 908, 964]]
+ )
+
+ # gemm vs syrk optimizations
+ for et in [np.float32, np.float64, np.complex64, np.complex128]:
+ eaf = a.astype(et)
+ assert_equal(func(eaf, eaf), eaf)
+ assert_equal(func(eaf.T, eaf), eaf)
+ assert_equal(func(eaf, eaf.T), eaf)
+ assert_equal(func(eaf.T, eaf.T), eaf)
+ assert_equal(func(eaf.T.copy(), eaf), eaf)
+ assert_equal(func(eaf, eaf.T.copy()), eaf)
+ assert_equal(func(eaf.T.copy(), eaf.T.copy()), eaf)
+
+ # syrk validations
+ for et in [np.float32, np.float64, np.complex64, np.complex128]:
+ eaf = a.astype(et)
+ ebf = b.astype(et)
+ assert_equal(func(ebf, ebf), eaf)
+ assert_equal(func(ebf.T, ebf), eaf)
+ assert_equal(func(ebf, ebf.T), eaf)
+ assert_equal(func(ebf.T, ebf.T), eaf)
+
+ # syrk - different shape, stride, and view validations
+ for et in [np.float32, np.float64, np.complex64, np.complex128]:
+ edf = d.astype(et)
+ assert_equal(
+ func(edf[::-1, :], edf.T),
+ func(edf[::-1, :].copy(), edf.T.copy())
+ )
+ assert_equal(
+ func(edf[:, ::-1], edf.T),
+ func(edf[:, ::-1].copy(), edf.T.copy())
+ )
+ assert_equal(
+ func(edf, edf[::-1, :].T),
+ func(edf, edf[::-1, :].T.copy())
+ )
+ assert_equal(
+ func(edf, edf[:, ::-1].T),
+ func(edf, edf[:, ::-1].T.copy())
+ )
+ assert_equal(
+ func(edf[:edf.shape[0] // 2, :], edf[::2, :].T),
+ func(edf[:edf.shape[0] // 2, :].copy(), edf[::2, :].T.copy())
+ )
+ assert_equal(
+ func(edf[::2, :], edf[:edf.shape[0] // 2, :].T),
+ func(edf[::2, :].copy(), edf[:edf.shape[0] // 2, :].T.copy())
+ )
+
+ # syrk - different shape
+ for et in [np.float32, np.float64, np.complex64, np.complex128]:
+ edf = d.astype(et)
+ eddtf = ddt.astype(et)
+ edtdf = dtd.astype(et)
+ assert_equal(func(edf, edf.T), eddtf)
+ assert_equal(func(edf.T, edf), edtdf)
+
+ @pytest.mark.parametrize('func', (np.dot, np.matmul))
+ @pytest.mark.parametrize('dtype', 'ifdFD')
+ def test_no_dgemv(self, func, dtype):
+ # check vector arg for contiguous before gemv
+ # gh-12156
+ a = np.arange(8.0, dtype=dtype).reshape(2, 4)
+ b = np.broadcast_to(1., (4, 1))
+ ret1 = func(a, b)
+ ret2 = func(a, b.copy())
+ assert_equal(ret1, ret2)
+
+ ret1 = func(b.T, a.T)
+ ret2 = func(b.T.copy(), a.T)
+ assert_equal(ret1, ret2)
+
+ # check for unaligned data
+ dt = np.dtype(dtype)
+ a = np.zeros(8 * dt.itemsize // 2 + 1, dtype='int16')[1:].view(dtype)
+ a = a.reshape(2, 4)
+ b = a[0]
+ # make sure it is not aligned
+ assert_(a.__array_interface__['data'][0] % dt.itemsize != 0)
+ ret1 = func(a, b)
+ ret2 = func(a.copy(), b.copy())
+ assert_equal(ret1, ret2)
+
+ ret1 = func(b.T, a.T)
+ ret2 = func(b.T.copy(), a.T.copy())
+ assert_equal(ret1, ret2)
+
+ def test_dot(self):
+ a = np.array([[1, 0], [0, 1]])
+ b = np.array([[0, 1], [1, 0]])
+ c = np.array([[9, 1], [1, -9]])
+ # function versus methods
+ assert_equal(np.dot(a, b), a.dot(b))
+ assert_equal(np.dot(np.dot(a, b), c), a.dot(b).dot(c))
+
+ # test passing in an output array
+ c = np.zeros_like(a)
+ a.dot(b, c)
+ assert_equal(c, np.dot(a, b))
+
+ # test keyword args
+ c = np.zeros_like(a)
+ a.dot(b=b, out=c)
+ assert_equal(c, np.dot(a, b))
+
+ @pytest.mark.parametrize("dtype", [np.half, np.double, np.longdouble])
+ @pytest.mark.skipif(IS_WASM, reason="no wasm fp exception support")
+ def test_dot_errstate(self, dtype):
+ # Some dtypes use BLAS for 'dot' operation and
+ # not all BLAS support floating-point errors.
+ if not BLAS_SUPPORTS_FPE and dtype == np.double:
+ pytest.skip("BLAS does not support FPE")
+
+ a = np.array([1, 1], dtype=dtype)
+ b = np.array([-np.inf, np.inf], dtype=dtype)
+
+ with np.errstate(invalid='raise'):
+ # there are two paths, depending on the number of dimensions - test
+ # them both
+ with pytest.raises(FloatingPointError,
+ match="invalid value encountered in dot"):
+ np.dot(a, b)
+
+ # test that fp exceptions are properly cleared
+ np.dot(a, a)
+
+ with pytest.raises(FloatingPointError,
+ match="invalid value encountered in dot"):
+ np.dot(a[np.newaxis, np.newaxis, ...],
+ b[np.newaxis, ..., np.newaxis])
+
+ np.dot(a[np.newaxis, np.newaxis, ...],
+ a[np.newaxis, ..., np.newaxis])
+
+ def test_dot_type_mismatch(self):
+ c = 1.
+ A = np.array((1, 1), dtype='i,i')
+
+ assert_raises(TypeError, np.dot, c, A)
+ assert_raises(TypeError, np.dot, A, c)
+
+ def test_dot_out_mem_overlap(self):
+ np.random.seed(1)
+
+ # Test BLAS and non-BLAS code paths, including all dtypes
+ # that dot() supports
+ dtypes = [np.dtype(code) for code in np.typecodes['All']
+ if code not in 'USVM']
+ for dtype in dtypes:
+ a = np.random.rand(3, 3).astype(dtype)
+
+ # Valid dot() output arrays must be aligned
+ b = _aligned_zeros((3, 3), dtype=dtype)
+ b[...] = np.random.rand(3, 3)
+
+ y = np.dot(a, b)
+ x = np.dot(a, b, out=b)
+ assert_equal(x, y, err_msg=repr(dtype))
+
+ # Check invalid output array
+ assert_raises(ValueError, np.dot, a, b, out=b[::2])
+ assert_raises(ValueError, np.dot, a, b, out=b.T)
+
+ def test_dot_matmul_out(self):
+ # gh-9641
+ class Sub(np.ndarray):
+ pass
+ a = np.ones((2, 2)).view(Sub)
+ b = np.ones((2, 2)).view(Sub)
+ out = np.ones((2, 2))
+
+ # make sure out can be any ndarray (not only subclass of inputs)
+ np.dot(a, b, out=out)
+ np.matmul(a, b, out=out)
+
+ def test_dot_matmul_inner_array_casting_fails(self):
+
+ class A:
+ def __array__(self, *args, **kwargs):
+ raise NotImplementedError
+
+ # Don't override the error from calling __array__()
+ assert_raises(NotImplementedError, np.dot, A(), A())
+ assert_raises(NotImplementedError, np.matmul, A(), A())
+ assert_raises(NotImplementedError, np.inner, A(), A())
+
+ def test_matmul_out(self):
+ # overlapping memory
+ a = np.arange(18).reshape(2, 3, 3)
+ b = np.matmul(a, a)
+ c = np.matmul(a, a, out=a)
+ assert_(c is a)
+ assert_equal(c, b)
+ a = np.arange(18).reshape(2, 3, 3)
+ c = np.matmul(a, a, out=a[::-1, ...])
+ assert_(c.base is a.base)
+ assert_equal(c, b)
+
+ def test_diagonal(self):
+ a = np.arange(12).reshape((3, 4))
+ assert_equal(a.diagonal(), [0, 5, 10])
+ assert_equal(a.diagonal(0), [0, 5, 10])
+ assert_equal(a.diagonal(1), [1, 6, 11])
+ assert_equal(a.diagonal(-1), [4, 9])
+ assert_raises(AxisError, a.diagonal, axis1=0, axis2=5)
+ assert_raises(AxisError, a.diagonal, axis1=5, axis2=0)
+ assert_raises(AxisError, a.diagonal, axis1=5, axis2=5)
+ assert_raises(ValueError, a.diagonal, axis1=1, axis2=1)
+
+ b = np.arange(8).reshape((2, 2, 2))
+ assert_equal(b.diagonal(), [[0, 6], [1, 7]])
+ assert_equal(b.diagonal(0), [[0, 6], [1, 7]])
+ assert_equal(b.diagonal(1), [[2], [3]])
+ assert_equal(b.diagonal(-1), [[4], [5]])
+ assert_raises(ValueError, b.diagonal, axis1=0, axis2=0)
+ assert_equal(b.diagonal(0, 1, 2), [[0, 3], [4, 7]])
+ assert_equal(b.diagonal(0, 0, 1), [[0, 6], [1, 7]])
+ assert_equal(b.diagonal(offset=1, axis1=0, axis2=2), [[1], [3]])
+ # Order of axis argument doesn't matter:
+ assert_equal(b.diagonal(0, 2, 1), [[0, 3], [4, 7]])
+
+ def test_diagonal_view_notwriteable(self):
+ a = np.eye(3).diagonal()
+ assert_(not a.flags.writeable)
+ assert_(not a.flags.owndata)
+
+ a = np.diagonal(np.eye(3))
+ assert_(not a.flags.writeable)
+ assert_(not a.flags.owndata)
+
+ a = np.diag(np.eye(3))
+ assert_(not a.flags.writeable)
+ assert_(not a.flags.owndata)
+
+ def test_diagonal_memleak(self):
+ # Regression test for a bug that crept in at one point
+ a = np.zeros((100, 100))
+ if HAS_REFCOUNT:
+ assert_(sys.getrefcount(a) < 50)
+ for i in range(100):
+ a.diagonal()
+ if HAS_REFCOUNT:
+ assert_(sys.getrefcount(a) < 50)
+
+ def test_size_zero_memleak(self):
+ # Regression test for issue 9615
+ # Exercises a special-case code path for dot products of length
+ # zero in cblasfuncs (making it is specific to floating dtypes).
+ a = np.array([], dtype=np.float64)
+ x = np.array(2.0)
+ for _ in range(100):
+ np.dot(a, a, out=x)
+ if HAS_REFCOUNT:
+ assert_(sys.getrefcount(x) < 50)
+
+ def test_trace(self):
+ a = np.arange(12).reshape((3, 4))
+ assert_equal(a.trace(), 15)
+ assert_equal(a.trace(0), 15)
+ assert_equal(a.trace(1), 18)
+ assert_equal(a.trace(-1), 13)
+
+ b = np.arange(8).reshape((2, 2, 2))
+ assert_equal(b.trace(), [6, 8])
+ assert_equal(b.trace(0), [6, 8])
+ assert_equal(b.trace(1), [2, 3])
+ assert_equal(b.trace(-1), [4, 5])
+ assert_equal(b.trace(0, 0, 1), [6, 8])
+ assert_equal(b.trace(0, 0, 2), [5, 9])
+ assert_equal(b.trace(0, 1, 2), [3, 11])
+ assert_equal(b.trace(offset=1, axis1=0, axis2=2), [1, 3])
+
+ out = np.array(1)
+ ret = a.trace(out=out)
+ assert ret is out
+
+ def test_trace_subclass(self):
+ # The class would need to overwrite trace to ensure single-element
+ # output also has the right subclass.
+ class MyArray(np.ndarray):
+ pass
+
+ b = np.arange(8).reshape((2, 2, 2)).view(MyArray)
+ t = b.trace()
+ assert_(isinstance(t, MyArray))
+
+ def test_put(self):
+ icodes = np.typecodes['AllInteger']
+ fcodes = np.typecodes['AllFloat']
+ for dt in icodes + fcodes + 'O':
+ tgt = np.array([0, 1, 0, 3, 0, 5], dtype=dt)
+
+ # test 1-d
+ a = np.zeros(6, dtype=dt)
+ a.put([1, 3, 5], [1, 3, 5])
+ assert_equal(a, tgt)
+
+ # test 2-d
+ a = np.zeros((2, 3), dtype=dt)
+ a.put([1, 3, 5], [1, 3, 5])
+ assert_equal(a, tgt.reshape(2, 3))
+
+ for dt in '?':
+ tgt = np.array([False, True, False, True, False, True], dtype=dt)
+
+ # test 1-d
+ a = np.zeros(6, dtype=dt)
+ a.put([1, 3, 5], [True] * 3)
+ assert_equal(a, tgt)
+
+ # test 2-d
+ a = np.zeros((2, 3), dtype=dt)
+ a.put([1, 3, 5], [True] * 3)
+ assert_equal(a, tgt.reshape(2, 3))
+
+ # check must be writeable
+ a = np.zeros(6)
+ a.flags.writeable = False
+ assert_raises(ValueError, a.put, [1, 3, 5], [1, 3, 5])
+
+ # when calling np.put, make sure a
+ # TypeError is raised if the object
+ # isn't an ndarray
+ bad_array = [1, 2, 3]
+ assert_raises(TypeError, np.put, bad_array, [0, 2], 5)
+
+ # when calling np.put, make sure an
+ # IndexError is raised if the
+ # array is empty
+ empty_array = np.asarray([])
+ with pytest.raises(IndexError,
+ match="cannot replace elements of an empty array"):
+ np.put(empty_array, 1, 1, mode="wrap")
+ with pytest.raises(IndexError,
+ match="cannot replace elements of an empty array"):
+ np.put(empty_array, 1, 1, mode="clip")
+
+ def test_ravel(self):
+ a = np.array([[0, 1], [2, 3]])
+ assert_equal(a.ravel(), [0, 1, 2, 3])
+ assert_(not a.ravel().flags.owndata)
+ assert_equal(a.ravel('F'), [0, 2, 1, 3])
+ assert_equal(a.ravel(order='C'), [0, 1, 2, 3])
+ assert_equal(a.ravel(order='F'), [0, 2, 1, 3])
+ assert_equal(a.ravel(order='A'), [0, 1, 2, 3])
+ assert_(not a.ravel(order='A').flags.owndata)
+ assert_equal(a.ravel(order='K'), [0, 1, 2, 3])
+ assert_(not a.ravel(order='K').flags.owndata)
+ assert_equal(a.ravel(), a.reshape(-1))
+
+ a = np.array([[0, 1], [2, 3]], order='F')
+ assert_equal(a.ravel(), [0, 1, 2, 3])
+ assert_equal(a.ravel(order='A'), [0, 2, 1, 3])
+ assert_equal(a.ravel(order='K'), [0, 2, 1, 3])
+ assert_(not a.ravel(order='A').flags.owndata)
+ assert_(not a.ravel(order='K').flags.owndata)
+ assert_equal(a.ravel(), a.reshape(-1))
+ assert_equal(a.ravel(order='A'), a.reshape(-1, order='A'))
+
+ a = np.array([[0, 1], [2, 3]])[::-1, :]
+ assert_equal(a.ravel(), [2, 3, 0, 1])
+ assert_equal(a.ravel(order='C'), [2, 3, 0, 1])
+ assert_equal(a.ravel(order='F'), [2, 0, 3, 1])
+ assert_equal(a.ravel(order='A'), [2, 3, 0, 1])
+ # 'K' doesn't reverse the axes of negative strides
+ assert_equal(a.ravel(order='K'), [2, 3, 0, 1])
+ assert_(a.ravel(order='K').flags.owndata)
+
+ # Test simple 1-d copy behaviour:
+ a = np.arange(10)[::2]
+ assert_(a.ravel('K').flags.owndata)
+ assert_(a.ravel('C').flags.owndata)
+ assert_(a.ravel('F').flags.owndata)
+
+ # Not contiguous and 1-sized axis with non matching stride
+ a = np.arange(2**3 * 2)[::2]
+ a = a.reshape(2, 1, 2, 2).swapaxes(-1, -2)
+ strides = list(a.strides)
+ strides[1] = 123
+ a.strides = strides
+ assert_(a.ravel(order='K').flags.owndata)
+ assert_equal(a.ravel('K'), np.arange(0, 15, 2))
+
+ # contiguous and 1-sized axis with non matching stride works:
+ a = np.arange(2**3)
+ a = a.reshape(2, 1, 2, 2).swapaxes(-1, -2)
+ strides = list(a.strides)
+ strides[1] = 123
+ a.strides = strides
+ assert_(np.may_share_memory(a.ravel(order='K'), a))
+ assert_equal(a.ravel(order='K'), np.arange(2**3))
+
+ # Test negative strides (not very interesting since non-contiguous):
+ a = np.arange(4)[::-1].reshape(2, 2)
+ assert_(a.ravel(order='C').flags.owndata)
+ assert_(a.ravel(order='K').flags.owndata)
+ assert_equal(a.ravel('C'), [3, 2, 1, 0])
+ assert_equal(a.ravel('K'), [3, 2, 1, 0])
+
+ # 1-element tidy strides test:
+ a = np.array([[1]])
+ a.strides = (123, 432)
+ if np.ones(1).strides == (8,):
+ assert_(np.may_share_memory(a.ravel('K'), a))
+ assert_equal(a.ravel('K').strides, (a.dtype.itemsize,))
+
+ for order in ('C', 'F', 'A', 'K'):
+ # 0-d corner case:
+ a = np.array(0)
+ assert_equal(a.ravel(order), [0])
+ assert_(np.may_share_memory(a.ravel(order), a))
+
+ # Test that certain non-inplace ravels work right (mostly) for 'K':
+ b = np.arange(2**4 * 2)[::2].reshape(2, 2, 2, 2)
+ a = b[..., ::2]
+ assert_equal(a.ravel('K'), [0, 4, 8, 12, 16, 20, 24, 28])
+ assert_equal(a.ravel('C'), [0, 4, 8, 12, 16, 20, 24, 28])
+ assert_equal(a.ravel('A'), [0, 4, 8, 12, 16, 20, 24, 28])
+ assert_equal(a.ravel('F'), [0, 16, 8, 24, 4, 20, 12, 28])
+
+ a = b[::2, ...]
+ assert_equal(a.ravel('K'), [0, 2, 4, 6, 8, 10, 12, 14])
+ assert_equal(a.ravel('C'), [0, 2, 4, 6, 8, 10, 12, 14])
+ assert_equal(a.ravel('A'), [0, 2, 4, 6, 8, 10, 12, 14])
+ assert_equal(a.ravel('F'), [0, 8, 4, 12, 2, 10, 6, 14])
+
+ def test_ravel_subclass(self):
+ class ArraySubclass(np.ndarray):
+ pass
+
+ a = np.arange(10).view(ArraySubclass)
+ assert_(isinstance(a.ravel('C'), ArraySubclass))
+ assert_(isinstance(a.ravel('F'), ArraySubclass))
+ assert_(isinstance(a.ravel('A'), ArraySubclass))
+ assert_(isinstance(a.ravel('K'), ArraySubclass))
+
+ a = np.arange(10)[::2].view(ArraySubclass)
+ assert_(isinstance(a.ravel('C'), ArraySubclass))
+ assert_(isinstance(a.ravel('F'), ArraySubclass))
+ assert_(isinstance(a.ravel('A'), ArraySubclass))
+ assert_(isinstance(a.ravel('K'), ArraySubclass))
+
+ def test_swapaxes(self):
+ a = np.arange(1 * 2 * 3 * 4).reshape(1, 2, 3, 4).copy()
+ idx = np.indices(a.shape)
+ assert_(a.flags['OWNDATA'])
+ b = a.copy()
+ # check exceptions
+ assert_raises(AxisError, a.swapaxes, -5, 0)
+ assert_raises(AxisError, a.swapaxes, 4, 0)
+ assert_raises(AxisError, a.swapaxes, 0, -5)
+ assert_raises(AxisError, a.swapaxes, 0, 4)
+
+ for i in range(-4, 4):
+ for j in range(-4, 4):
+ for k, src in enumerate((a, b)):
+ c = src.swapaxes(i, j)
+ # check shape
+ shape = list(src.shape)
+ shape[i] = src.shape[j]
+ shape[j] = src.shape[i]
+ assert_equal(c.shape, shape, str((i, j, k)))
+ # check array contents
+ i0, i1, i2, i3 = [dim - 1 for dim in c.shape]
+ j0, j1, j2, j3 = [dim - 1 for dim in src.shape]
+ assert_equal(src[idx[j0], idx[j1], idx[j2], idx[j3]],
+ c[idx[i0], idx[i1], idx[i2], idx[i3]],
+ str((i, j, k)))
+ # check a view is always returned, gh-5260
+ assert_(not c.flags['OWNDATA'], str((i, j, k)))
+ # check on non-contiguous input array
+ if k == 1:
+ b = c
+
+ def test_conjugate(self):
+ a = np.array([1 - 1j, 1 + 1j, 23 + 23.0j])
+ ac = a.conj()
+ assert_equal(a.real, ac.real)
+ assert_equal(a.imag, -ac.imag)
+ assert_equal(ac, a.conjugate())
+ assert_equal(ac, np.conjugate(a))
+
+ a = np.array([1 - 1j, 1 + 1j, 23 + 23.0j], 'F')
+ ac = a.conj()
+ assert_equal(a.real, ac.real)
+ assert_equal(a.imag, -ac.imag)
+ assert_equal(ac, a.conjugate())
+ assert_equal(ac, np.conjugate(a))
+
+ a = np.array([1, 2, 3])
+ ac = a.conj()
+ assert_equal(a, ac)
+ assert_equal(ac, a.conjugate())
+ assert_equal(ac, np.conjugate(a))
+
+ a = np.array([1.0, 2.0, 3.0])
+ ac = a.conj()
+ assert_equal(a, ac)
+ assert_equal(ac, a.conjugate())
+ assert_equal(ac, np.conjugate(a))
+
+ a = np.array([1 - 1j, 1 + 1j, 1, 2.0], object)
+ ac = a.conj()
+ assert_equal(ac, [k.conjugate() for k in a])
+ assert_equal(ac, a.conjugate())
+ assert_equal(ac, np.conjugate(a))
+
+ a = np.array([1 - 1j, 1, 2.0, 'f'], object)
+ assert_raises(TypeError, a.conj)
+ assert_raises(TypeError, a.conjugate)
+
+ def test_conjugate_out(self):
+ # Minimal test for the out argument being passed on correctly
+ # NOTE: The ability to pass `out` is currently undocumented!
+ a = np.array([1 - 1j, 1 + 1j, 23 + 23.0j])
+ out = np.empty_like(a)
+ res = a.conjugate(out)
+ assert res is out
+ assert_array_equal(out, a.conjugate())
+
+ def test_conjugate_scalar(self):
+ for v in 5, 5j:
+ a = np.array(v)
+ assert a.conjugate() == v.conjugate()
+ for a in (np.array('s'), np.array('2016', 'M'),
+ np.array((1, 2), [('a', int), ('b', int)])):
+ with pytest.raises(TypeError):
+ a.conjugate()
+
+ def test__complex__(self):
+ dtypes = ['i1', 'i2', 'i4', 'i8',
+ 'u1', 'u2', 'u4', 'u8',
+ 'f', 'd', 'g', 'F', 'D', 'G',
+ '?', 'O']
+ for dt in dtypes:
+ a = np.array(7, dtype=dt)
+ b = np.array([7], dtype=dt)
+ c = np.array([[[[[7]]]]], dtype=dt)
+
+ msg = f'dtype: {dt}'
+ ap = complex(a)
+ assert_equal(ap, a, msg)
+
+ with assert_warns(DeprecationWarning):
+ bp = complex(b)
+ assert_equal(bp, b, msg)
+
+ with assert_warns(DeprecationWarning):
+ cp = complex(c)
+ assert_equal(cp, c, msg)
+
+ def test__complex__should_not_work(self):
+ dtypes = ['i1', 'i2', 'i4', 'i8',
+ 'u1', 'u2', 'u4', 'u8',
+ 'f', 'd', 'g', 'F', 'D', 'G',
+ '?', 'O']
+ for dt in dtypes:
+ a = np.array([1, 2, 3], dtype=dt)
+ assert_raises(TypeError, complex, a)
+
+ dt = np.dtype([('a', 'f8'), ('b', 'i1')])
+ b = np.array((1.0, 3), dtype=dt)
+ assert_raises(TypeError, complex, b)
+
+ c = np.array([(1.0, 3), (2e-3, 7)], dtype=dt)
+ assert_raises(TypeError, complex, c)
+
+ d = np.array('1+1j')
+ assert_raises(TypeError, complex, d)
+
+ e = np.array(['1+1j'], 'U')
+ with assert_warns(DeprecationWarning):
+ assert_raises(TypeError, complex, e)
+
+class TestCequenceMethods:
+ def test_array_contains(self):
+ assert_(4.0 in np.arange(16.).reshape(4, 4))
+ assert_(20.0 not in np.arange(16.).reshape(4, 4))
+
+class TestBinop:
+ def test_inplace(self):
+ # test refcount 1 inplace conversion
+ assert_array_almost_equal(np.array([0.5]) * np.array([1.0, 2.0]),
+ [0.5, 1.0])
+
+ d = np.array([0.5, 0.5])[::2]
+ assert_array_almost_equal(d * (d * np.array([1.0, 2.0])),
+ [0.25, 0.5])
+
+ a = np.array([0.5])
+ b = np.array([0.5])
+ c = a + b
+ c = a - b
+ c = a * b
+ c = a / b
+ assert_equal(a, b)
+ assert_almost_equal(c, 1.)
+
+ c = a + b * 2. / b * a - a / b
+ assert_equal(a, b)
+ assert_equal(c, 0.5)
+
+ # true divide
+ a = np.array([5])
+ b = np.array([3])
+ c = (a * a) / b
+
+ assert_almost_equal(c, 25 / 3)
+ assert_equal(a, 5)
+ assert_equal(b, 3)
+
+ # ndarray.__rop__ always calls ufunc
+ # ndarray.__iop__ always calls ufunc
+ # ndarray.__op__, __rop__:
+ # - defer if other has __array_ufunc__ and it is None
+ # or other is not a subclass and has higher array priority
+ # - else, call ufunc
+ @pytest.mark.xfail(IS_PYPY, reason="Bug in pypy3.{9, 10}-v7.3.13, #24862")
+ def test_ufunc_binop_interaction(self):
+ # Python method name (without underscores)
+ # -> (numpy ufunc, has_in_place_version, preferred_dtype)
+ ops = {
+ 'add': (np.add, True, float),
+ 'sub': (np.subtract, True, float),
+ 'mul': (np.multiply, True, float),
+ 'truediv': (np.true_divide, True, float),
+ 'floordiv': (np.floor_divide, True, float),
+ 'mod': (np.remainder, True, float),
+ 'divmod': (np.divmod, False, float),
+ 'pow': (np.power, True, int),
+ 'lshift': (np.left_shift, True, int),
+ 'rshift': (np.right_shift, True, int),
+ 'and': (np.bitwise_and, True, int),
+ 'xor': (np.bitwise_xor, True, int),
+ 'or': (np.bitwise_or, True, int),
+ 'matmul': (np.matmul, True, float),
+ # 'ge': (np.less_equal, False),
+ # 'gt': (np.less, False),
+ # 'le': (np.greater_equal, False),
+ # 'lt': (np.greater, False),
+ # 'eq': (np.equal, False),
+ # 'ne': (np.not_equal, False),
+ }
+
+ class Coerced(Exception):
+ pass
+
+ def array_impl(self):
+ raise Coerced
+
+ def op_impl(self, other):
+ return "forward"
+
+ def rop_impl(self, other):
+ return "reverse"
+
+ def iop_impl(self, other):
+ return "in-place"
+
+ def array_ufunc_impl(self, ufunc, method, *args, **kwargs):
+ return ("__array_ufunc__", ufunc, method, args, kwargs)
+
+ # Create an object with the given base, in the given module, with a
+ # bunch of placeholder __op__ methods, and optionally a
+ # __array_ufunc__ and __array_priority__.
+ def make_obj(base, array_priority=False, array_ufunc=False,
+ alleged_module="__main__"):
+ class_namespace = {"__array__": array_impl}
+ if array_priority is not False:
+ class_namespace["__array_priority__"] = array_priority
+ for op in ops:
+ class_namespace[f"__{op}__"] = op_impl
+ class_namespace[f"__r{op}__"] = rop_impl
+ class_namespace[f"__i{op}__"] = iop_impl
+ if array_ufunc is not False:
+ class_namespace["__array_ufunc__"] = array_ufunc
+ eval_namespace = {"base": base,
+ "class_namespace": class_namespace,
+ "__name__": alleged_module,
+ }
+ MyType = eval("type('MyType', (base,), class_namespace)",
+ eval_namespace)
+ if issubclass(MyType, np.ndarray):
+ # Use this range to avoid special case weirdnesses around
+ # divide-by-0, pow(x, 2), overflow due to pow(big, big), etc.
+ return np.arange(3, 7).reshape(2, 2).view(MyType)
+ else:
+ return MyType()
+
+ def check(obj, binop_override_expected, ufunc_override_expected,
+ inplace_override_expected, check_scalar=True):
+ for op, (ufunc, has_inplace, dtype) in ops.items():
+ err_msg = ('op: %s, ufunc: %s, has_inplace: %s, dtype: %s'
+ % (op, ufunc, has_inplace, dtype))
+ check_objs = [np.arange(3, 7, dtype=dtype).reshape(2, 2)]
+ if check_scalar:
+ check_objs.append(check_objs[0][0])
+ for arr in check_objs:
+ arr_method = getattr(arr, f"__{op}__")
+
+ def first_out_arg(result):
+ if op == "divmod":
+ assert_(isinstance(result, tuple))
+ return result[0]
+ else:
+ return result
+
+ # arr __op__ obj
+ if binop_override_expected:
+ assert_equal(arr_method(obj), NotImplemented, err_msg)
+ elif ufunc_override_expected:
+ assert_equal(arr_method(obj)[0], "__array_ufunc__",
+ err_msg)
+ elif (isinstance(obj, np.ndarray) and
+ (type(obj).__array_ufunc__ is
+ np.ndarray.__array_ufunc__)):
+ # __array__ gets ignored
+ res = first_out_arg(arr_method(obj))
+ assert_(res.__class__ is obj.__class__, err_msg)
+ else:
+ assert_raises((TypeError, Coerced),
+ arr_method, obj, err_msg=err_msg)
+ # obj __op__ arr
+ arr_rmethod = getattr(arr, f"__r{op}__")
+ if ufunc_override_expected:
+ res = arr_rmethod(obj)
+ assert_equal(res[0], "__array_ufunc__",
+ err_msg=err_msg)
+ assert_equal(res[1], ufunc, err_msg=err_msg)
+ elif (isinstance(obj, np.ndarray) and
+ (type(obj).__array_ufunc__ is
+ np.ndarray.__array_ufunc__)):
+ # __array__ gets ignored
+ res = first_out_arg(arr_rmethod(obj))
+ assert_(res.__class__ is obj.__class__, err_msg)
+ else:
+ # __array_ufunc__ = "asdf" creates a TypeError
+ assert_raises((TypeError, Coerced),
+ arr_rmethod, obj, err_msg=err_msg)
+
+ # arr __iop__ obj
+ # array scalars don't have in-place operators
+ if has_inplace and isinstance(arr, np.ndarray):
+ arr_imethod = getattr(arr, f"__i{op}__")
+ if inplace_override_expected:
+ assert_equal(arr_method(obj), NotImplemented,
+ err_msg=err_msg)
+ elif ufunc_override_expected:
+ res = arr_imethod(obj)
+ assert_equal(res[0], "__array_ufunc__", err_msg)
+ assert_equal(res[1], ufunc, err_msg)
+ assert_(type(res[-1]["out"]) is tuple, err_msg)
+ assert_(res[-1]["out"][0] is arr, err_msg)
+ elif (isinstance(obj, np.ndarray) and
+ (type(obj).__array_ufunc__ is
+ np.ndarray.__array_ufunc__)):
+ # __array__ gets ignored
+ assert_(arr_imethod(obj) is arr, err_msg)
+ else:
+ assert_raises((TypeError, Coerced),
+ arr_imethod, obj,
+ err_msg=err_msg)
+
+ op_fn = getattr(operator, op, None)
+ if op_fn is None:
+ op_fn = getattr(operator, op + "_", None)
+ if op_fn is None:
+ op_fn = getattr(builtins, op)
+ assert_equal(op_fn(obj, arr), "forward", err_msg)
+ if not isinstance(obj, np.ndarray):
+ if binop_override_expected:
+ assert_equal(op_fn(arr, obj), "reverse", err_msg)
+ elif ufunc_override_expected:
+ assert_equal(op_fn(arr, obj)[0], "__array_ufunc__",
+ err_msg)
+ if ufunc_override_expected:
+ assert_equal(ufunc(obj, arr)[0], "__array_ufunc__",
+ err_msg)
+
+ # No array priority, no array_ufunc -> nothing called
+ check(make_obj(object), False, False, False)
+ # Negative array priority, no array_ufunc -> nothing called
+ # (has to be very negative, because scalar priority is -1000000.0)
+ check(make_obj(object, array_priority=-2**30), False, False, False)
+ # Positive array priority, no array_ufunc -> binops and iops only
+ check(make_obj(object, array_priority=1), True, False, True)
+ # ndarray ignores array_priority for ndarray subclasses
+ check(make_obj(np.ndarray, array_priority=1), False, False, False,
+ check_scalar=False)
+ # Positive array_priority and array_ufunc -> array_ufunc only
+ check(make_obj(object, array_priority=1,
+ array_ufunc=array_ufunc_impl), False, True, False)
+ check(make_obj(np.ndarray, array_priority=1,
+ array_ufunc=array_ufunc_impl), False, True, False)
+ # array_ufunc set to None -> defer binops only
+ check(make_obj(object, array_ufunc=None), True, False, False)
+ check(make_obj(np.ndarray, array_ufunc=None), True, False, False,
+ check_scalar=False)
+
+ @pytest.mark.parametrize("priority", [None, "runtime error"])
+ def test_ufunc_binop_bad_array_priority(self, priority):
+ # Mainly checks that this does not crash. The second array has a lower
+ # priority than -1 ("error value"). If the __radd__ actually exists,
+ # bad things can happen (I think via the scalar paths).
+ # In principle both of these can probably just be errors in the future.
+ class BadPriority:
+ @property
+ def __array_priority__(self):
+ if priority == "runtime error":
+ raise RuntimeError("RuntimeError in __array_priority__!")
+ return priority
+
+ def __radd__(self, other):
+ return "result"
+
+ class LowPriority(np.ndarray):
+ __array_priority__ = -1000
+
+ # Priority failure uses the same as scalars (smaller -1000). So the
+ # LowPriority wins with 'result' for each element (inner operation).
+ res = np.arange(3).view(LowPriority) + BadPriority()
+ assert res.shape == (3,)
+ assert res[0] == 'result'
+
+ @pytest.mark.parametrize("scalar", [
+ np.longdouble(1), np.timedelta64(120, 'm')])
+ @pytest.mark.parametrize("op", [operator.add, operator.xor])
+ def test_scalar_binop_guarantees_ufunc(self, scalar, op):
+ # Test that __array_ufunc__ will always cause ufunc use even when
+ # we have to protect some other calls from recursing (see gh-26904).
+ class SomeClass:
+ def __array_ufunc__(self, ufunc, method, *inputs, **kw):
+ return "result"
+
+ assert SomeClass() + scalar == "result"
+ assert scalar + SomeClass() == "result"
+
+ def test_ufunc_override_normalize_signature(self):
+ # gh-5674
+ class SomeClass:
+ def __array_ufunc__(self, ufunc, method, *inputs, **kw):
+ return kw
+
+ a = SomeClass()
+ kw = np.add(a, [1])
+ assert_('sig' not in kw and 'signature' not in kw)
+ kw = np.add(a, [1], sig='ii->i')
+ assert_('sig' not in kw and 'signature' in kw)
+ assert_equal(kw['signature'], 'ii->i')
+ kw = np.add(a, [1], signature='ii->i')
+ assert_('sig' not in kw and 'signature' in kw)
+ assert_equal(kw['signature'], 'ii->i')
+
+ def test_array_ufunc_index(self):
+ # Check that index is set appropriately, also if only an output
+ # is passed on (latter is another regression tests for github bug 4753)
+ # This also checks implicitly that 'out' is always a tuple.
+ class CheckIndex:
+ def __array_ufunc__(self, ufunc, method, *inputs, **kw):
+ for i, a in enumerate(inputs):
+ if a is self:
+ return i
+ # calls below mean we must be in an output.
+ for j, a in enumerate(kw['out']):
+ if a is self:
+ return (j,)
+
+ a = CheckIndex()
+ dummy = np.arange(2.)
+ # 1 input, 1 output
+ assert_equal(np.sin(a), 0)
+ assert_equal(np.sin(dummy, a), (0,))
+ assert_equal(np.sin(dummy, out=a), (0,))
+ assert_equal(np.sin(dummy, out=(a,)), (0,))
+ assert_equal(np.sin(a, a), 0)
+ assert_equal(np.sin(a, out=a), 0)
+ assert_equal(np.sin(a, out=(a,)), 0)
+ # 1 input, 2 outputs
+ assert_equal(np.modf(dummy, a), (0,))
+ assert_equal(np.modf(dummy, None, a), (1,))
+ assert_equal(np.modf(dummy, dummy, a), (1,))
+ assert_equal(np.modf(dummy, out=(a, None)), (0,))
+ assert_equal(np.modf(dummy, out=(a, dummy)), (0,))
+ assert_equal(np.modf(dummy, out=(None, a)), (1,))
+ assert_equal(np.modf(dummy, out=(dummy, a)), (1,))
+ assert_equal(np.modf(a, out=(dummy, a)), 0)
+ with assert_raises(TypeError):
+ # Out argument must be tuple, since there are multiple outputs
+ np.modf(dummy, out=a)
+
+ assert_raises(ValueError, np.modf, dummy, out=(a,))
+
+ # 2 inputs, 1 output
+ assert_equal(np.add(a, dummy), 0)
+ assert_equal(np.add(dummy, a), 1)
+ assert_equal(np.add(dummy, dummy, a), (0,))
+ assert_equal(np.add(dummy, a, a), 1)
+ assert_equal(np.add(dummy, dummy, out=a), (0,))
+ assert_equal(np.add(dummy, dummy, out=(a,)), (0,))
+ assert_equal(np.add(a, dummy, out=a), 0)
+
+ def test_out_override(self):
+ # regression test for github bug 4753
+ class OutClass(np.ndarray):
+ def __array_ufunc__(self, ufunc, method, *inputs, **kw):
+ if 'out' in kw:
+ tmp_kw = kw.copy()
+ tmp_kw.pop('out')
+ func = getattr(ufunc, method)
+ kw['out'][0][...] = func(*inputs, **tmp_kw)
+
+ A = np.array([0]).view(OutClass)
+ B = np.array([5])
+ C = np.array([6])
+ np.multiply(C, B, A)
+ assert_equal(A[0], 30)
+ assert_(isinstance(A, OutClass))
+ A[0] = 0
+ np.multiply(C, B, out=A)
+ assert_equal(A[0], 30)
+ assert_(isinstance(A, OutClass))
+
+ def test_pow_array_object_dtype(self):
+ # test pow on arrays of object dtype
+ class SomeClass:
+ def __init__(self, num=None):
+ self.num = num
+
+ # want to ensure a fast pow path is not taken
+ def __mul__(self, other):
+ raise AssertionError('__mul__ should not be called')
+
+ def __truediv__(self, other):
+ raise AssertionError('__truediv__ should not be called')
+
+ def __pow__(self, exp):
+ return SomeClass(num=self.num ** exp)
+
+ def __eq__(self, other):
+ if isinstance(other, SomeClass):
+ return self.num == other.num
+
+ __rpow__ = __pow__
+
+ def pow_for(exp, arr):
+ return np.array([x ** exp for x in arr])
+
+ obj_arr = np.array([SomeClass(1), SomeClass(2), SomeClass(3)])
+
+ assert_equal(obj_arr ** 0.5, pow_for(0.5, obj_arr))
+ assert_equal(obj_arr ** 0, pow_for(0, obj_arr))
+ assert_equal(obj_arr ** 1, pow_for(1, obj_arr))
+ assert_equal(obj_arr ** -1, pow_for(-1, obj_arr))
+ assert_equal(obj_arr ** 2, pow_for(2, obj_arr))
+
+ def test_pow_calls_square_structured_dtype(self):
+ # gh-29388
+ dt = np.dtype([('a', 'i4'), ('b', 'i4')])
+ a = np.array([(1, 2), (3, 4)], dtype=dt)
+ with pytest.raises(TypeError, match="ufunc 'square' not supported"):
+ a ** 2
+
+ def test_pos_array_ufunc_override(self):
+ class A(np.ndarray):
+ def __array_ufunc__(self, ufunc, method, *inputs, **kwargs):
+ return getattr(ufunc, method)(*[i.view(np.ndarray) for
+ i in inputs], **kwargs)
+ tst = np.array('foo').view(A)
+ with assert_raises(TypeError):
+ +tst
+
+
+class TestTemporaryElide:
+ # elision is only triggered on relatively large arrays
+
+ def test_extension_incref_elide(self):
+ # test extension (e.g. cython) calling PyNumber_* slots without
+ # increasing the reference counts
+ #
+ # def incref_elide(a):
+ # d = input.copy() # refcount 1
+ # return d, d + d # PyNumber_Add without increasing refcount
+ from numpy._core._multiarray_tests import incref_elide
+ d = np.ones(100000)
+ orig, res = incref_elide(d)
+ d + d
+ # the return original should not be changed to an inplace operation
+ assert_array_equal(orig, d)
+ assert_array_equal(res, d + d)
+
+ def test_extension_incref_elide_stack(self):
+ # scanning if the refcount == 1 object is on the python stack to check
+ # that we are called directly from python is flawed as object may still
+ # be above the stack pointer and we have no access to the top of it
+ #
+ # def incref_elide_l(d):
+ # return l[4] + l[4] # PyNumber_Add without increasing refcount
+ from numpy._core._multiarray_tests import incref_elide_l
+ # padding with 1 makes sure the object on the stack is not overwritten
+ l = [1, 1, 1, 1, np.ones(100000)]
+ res = incref_elide_l(l)
+ # the return original should not be changed to an inplace operation
+ assert_array_equal(l[4], np.ones(100000))
+ assert_array_equal(res, l[4] + l[4])
+
+ def test_temporary_with_cast(self):
+ # check that we don't elide into a temporary which would need casting
+ d = np.ones(200000, dtype=np.int64)
+ r = ((d + d) + np.array(2**222, dtype='O'))
+ assert_equal(r.dtype, np.dtype('O'))
+
+ r = ((d + d) / 2)
+ assert_equal(r.dtype, np.dtype('f8'))
+
+ r = np.true_divide((d + d), 2)
+ assert_equal(r.dtype, np.dtype('f8'))
+
+ r = ((d + d) / 2.)
+ assert_equal(r.dtype, np.dtype('f8'))
+
+ r = ((d + d) // 2)
+ assert_equal(r.dtype, np.dtype(np.int64))
+
+ # commutative elision into the astype result
+ f = np.ones(100000, dtype=np.float32)
+ assert_equal(((f + f) + f.astype(np.float64)).dtype, np.dtype('f8'))
+
+ # no elision into lower type
+ d = f.astype(np.float64)
+ assert_equal(((f + f) + d).dtype, d.dtype)
+ l = np.ones(100000, dtype=np.longdouble)
+ assert_equal(((d + d) + l).dtype, l.dtype)
+
+ # test unary abs with different output dtype
+ for dt in (np.complex64, np.complex128, np.clongdouble):
+ c = np.ones(100000, dtype=dt)
+ r = abs(c * 2.0)
+ assert_equal(r.dtype, np.dtype('f%d' % (c.itemsize // 2)))
+
+ def test_elide_broadcast(self):
+ # test no elision on broadcast to higher dimension
+ # only triggers elision code path in debug mode as triggering it in
+ # normal mode needs 256kb large matching dimension, so a lot of memory
+ d = np.ones((2000, 1), dtype=int)
+ b = np.ones((2000), dtype=bool)
+ r = (1 - d) + b
+ assert_equal(r, 1)
+ assert_equal(r.shape, (2000, 2000))
+
+ def test_elide_scalar(self):
+ # check inplace op does not create ndarray from scalars
+ a = np.bool()
+ assert_(type(~(a & a)) is np.bool)
+
+ def test_elide_scalar_readonly(self):
+ # The imaginary part of a real array is readonly. This needs to go
+ # through fast_scalar_power which is only called for powers of
+ # +1, -1, 0, 0.5, and 2, so use 2. Also need valid refcount for
+ # elision which can be gotten for the imaginary part of a real
+ # array. Should not error.
+ a = np.empty(100000, dtype=np.float64)
+ a.imag ** 2
+
+ def test_elide_readonly(self):
+ # don't try to elide readonly temporaries
+ r = np.asarray(np.broadcast_to(np.zeros(1), 100000).flat) * 0.0
+ assert_equal(r, 0)
+
+ def test_elide_updateifcopy(self):
+ a = np.ones(2**20)[::2]
+ b = a.flat.__array__() + 1
+ del b
+ assert_equal(a, 1)
+
+
+class TestCAPI:
+ def test_IsPythonScalar(self):
+ from numpy._core._multiarray_tests import IsPythonScalar
+ assert_(IsPythonScalar(b'foobar'))
+ assert_(IsPythonScalar(1))
+ assert_(IsPythonScalar(2**80))
+ assert_(IsPythonScalar(2.))
+ assert_(IsPythonScalar("a"))
+
+ @pytest.mark.parametrize("converter",
+ [_multiarray_tests.run_scalar_intp_converter,
+ _multiarray_tests.run_scalar_intp_from_sequence])
+ def test_intp_sequence_converters(self, converter):
+ # Test simple values (-1 is special for error return paths)
+ assert converter(10) == (10,)
+ assert converter(-1) == (-1,)
+ # A 0-D array looks a bit like a sequence but must take the integer
+ # path:
+ assert converter(np.array(123)) == (123,)
+ # Test simple sequences (intp_from_sequence only supports length 1):
+ assert converter((10,)) == (10,)
+ assert converter(np.array([11])) == (11,)
+
+ @pytest.mark.parametrize("converter",
+ [_multiarray_tests.run_scalar_intp_converter,
+ _multiarray_tests.run_scalar_intp_from_sequence])
+ @pytest.mark.skipif(IS_PYPY and sys.implementation.version <= (7, 3, 8),
+ reason="PyPy bug in error formatting")
+ def test_intp_sequence_converters_errors(self, converter):
+ with pytest.raises(TypeError,
+ match="expected a sequence of integers or a single integer, "):
+ converter(object())
+ with pytest.raises(TypeError,
+ match="expected a sequence of integers or a single integer, "
+ "got '32.0'"):
+ converter(32.)
+ with pytest.raises(TypeError,
+ match="'float' object cannot be interpreted as an integer"):
+ converter([32.])
+ with pytest.raises(ValueError,
+ match="Maximum allowed dimension"):
+ # These converters currently convert overflows to a ValueError
+ converter(2**64)
+
+
+class TestSubscripting:
+ def test_test_zero_rank(self):
+ x = np.array([1, 2, 3])
+ assert_(isinstance(x[0], np.int_))
+ assert_(type(x[0, ...]) is np.ndarray)
+
+
+class TestPickling:
+ @pytest.mark.skipif(pickle.HIGHEST_PROTOCOL >= 5,
+ reason=('this tests the error messages when trying to'
+ 'protocol 5 although it is not available'))
+ def test_correct_protocol5_error_message(self):
+ array = np.arange(10)
+
+ def test_record_array_with_object_dtype(self):
+ my_object = object()
+
+ arr_with_object = np.array(
+ [(my_object, 1, 2.0)],
+ dtype=[('a', object), ('b', int), ('c', float)])
+ arr_without_object = np.array(
+ [('xxx', 1, 2.0)],
+ dtype=[('a', str), ('b', int), ('c', float)])
+
+ for proto in range(2, pickle.HIGHEST_PROTOCOL + 1):
+ depickled_arr_with_object = pickle.loads(
+ pickle.dumps(arr_with_object, protocol=proto))
+ depickled_arr_without_object = pickle.loads(
+ pickle.dumps(arr_without_object, protocol=proto))
+
+ assert_equal(arr_with_object.dtype,
+ depickled_arr_with_object.dtype)
+ assert_equal(arr_without_object.dtype,
+ depickled_arr_without_object.dtype)
+
+ @pytest.mark.skipif(pickle.HIGHEST_PROTOCOL < 5,
+ reason="requires pickle protocol 5")
+ def test_f_contiguous_array(self):
+ f_contiguous_array = np.array([[1, 2, 3], [4, 5, 6]], order='F')
+ buffers = []
+
+ # When using pickle protocol 5, Fortran-contiguous arrays can be
+ # serialized using out-of-band buffers
+ bytes_string = pickle.dumps(f_contiguous_array, protocol=5,
+ buffer_callback=buffers.append)
+
+ assert len(buffers) > 0
+
+ depickled_f_contiguous_array = pickle.loads(bytes_string,
+ buffers=buffers)
+
+ assert_equal(f_contiguous_array, depickled_f_contiguous_array)
+
+ @pytest.mark.skipif(pickle.HIGHEST_PROTOCOL < 5, reason="requires pickle protocol 5")
+ @pytest.mark.parametrize('transposed_contiguous_array',
+ [np.random.default_rng(42).random((2, 3, 4)).transpose((1, 0, 2)),
+ np.random.default_rng(42).random((2, 3, 4, 5)).transpose((1, 3, 0, 2))] +
+ [np.random.default_rng(42).random(np.arange(2, 7)).transpose(np.random.permutation(5)) for _ in range(3)])
+ def test_transposed_contiguous_array(self, transposed_contiguous_array):
+ buffers = []
+ # When using pickle protocol 5, arrays which can be transposed to c_contiguous
+ # can be serialized using out-of-band buffers
+ bytes_string = pickle.dumps(transposed_contiguous_array, protocol=5,
+ buffer_callback=buffers.append)
+
+ assert len(buffers) > 0
+
+ depickled_transposed_contiguous_array = pickle.loads(bytes_string,
+ buffers=buffers)
+
+ assert_equal(transposed_contiguous_array, depickled_transposed_contiguous_array)
+
+ @pytest.mark.skipif(pickle.HIGHEST_PROTOCOL < 5, reason="requires pickle protocol 5")
+ def test_load_legacy_pkl_protocol5(self):
+ # legacy byte strs are dumped in 2.2.1
+ c_contiguous_dumped = b'\x80\x05\x95\x90\x00\x00\x00\x00\x00\x00\x00\x8c\x13numpy._core.numeric\x94\x8c\x0b_frombuffer\x94\x93\x94(\x96\x18\x00\x00\x00\x00\x00\x00\x00\x00\x01\x02\x03\x04\x05\x06\x07\x08\t\n\x0b\x0c\r\x0e\x0f\x10\x11\x12\x13\x14\x15\x16\x17\x94\x8c\x05numpy\x94\x8c\x05dtype\x94\x93\x94\x8c\x02u1\x94\x89\x88\x87\x94R\x94(K\x03\x8c\x01|\x94NNNJ\xff\xff\xff\xffJ\xff\xff\xff\xffK\x00t\x94bK\x03K\x04K\x02\x87\x94\x8c\x01C\x94t\x94R\x94.' # noqa: E501
+ f_contiguous_dumped = b'\x80\x05\x95\x90\x00\x00\x00\x00\x00\x00\x00\x8c\x13numpy._core.numeric\x94\x8c\x0b_frombuffer\x94\x93\x94(\x96\x18\x00\x00\x00\x00\x00\x00\x00\x00\x01\x02\x03\x04\x05\x06\x07\x08\t\n\x0b\x0c\r\x0e\x0f\x10\x11\x12\x13\x14\x15\x16\x17\x94\x8c\x05numpy\x94\x8c\x05dtype\x94\x93\x94\x8c\x02u1\x94\x89\x88\x87\x94R\x94(K\x03\x8c\x01|\x94NNNJ\xff\xff\xff\xffJ\xff\xff\xff\xffK\x00t\x94bK\x03K\x04K\x02\x87\x94\x8c\x01F\x94t\x94R\x94.' # noqa: E501
+ transposed_contiguous_dumped = b'\x80\x05\x95\xa5\x00\x00\x00\x00\x00\x00\x00\x8c\x16numpy._core.multiarray\x94\x8c\x0c_reconstruct\x94\x93\x94\x8c\x05numpy\x94\x8c\x07ndarray\x94\x93\x94K\x00\x85\x94C\x01b\x94\x87\x94R\x94(K\x01K\x04K\x03K\x02\x87\x94h\x03\x8c\x05dtype\x94\x93\x94\x8c\x02u1\x94\x89\x88\x87\x94R\x94(K\x03\x8c\x01|\x94NNNJ\xff\xff\xff\xffJ\xff\xff\xff\xffK\x00t\x94b\x89C\x18\x00\x01\x08\t\x10\x11\x02\x03\n\x0b\x12\x13\x04\x05\x0c\r\x14\x15\x06\x07\x0e\x0f\x16\x17\x94t\x94b.' # noqa: E501
+ no_contiguous_dumped = b'\x80\x05\x95\x91\x00\x00\x00\x00\x00\x00\x00\x8c\x16numpy._core.multiarray\x94\x8c\x0c_reconstruct\x94\x93\x94\x8c\x05numpy\x94\x8c\x07ndarray\x94\x93\x94K\x00\x85\x94C\x01b\x94\x87\x94R\x94(K\x01K\x03K\x02\x86\x94h\x03\x8c\x05dtype\x94\x93\x94\x8c\x02u1\x94\x89\x88\x87\x94R\x94(K\x03\x8c\x01|\x94NNNJ\xff\xff\xff\xffJ\xff\xff\xff\xffK\x00t\x94b\x89C\x06\x00\x01\x04\x05\x08\t\x94t\x94b.' # noqa: E501
+ x = np.arange(24, dtype='uint8').reshape(3, 4, 2)
+ assert_equal(x, pickle.loads(c_contiguous_dumped))
+ x = np.arange(24, dtype='uint8').reshape(3, 4, 2, order='F')
+ assert_equal(x, pickle.loads(f_contiguous_dumped))
+ x = np.arange(24, dtype='uint8').reshape(3, 4, 2).transpose((1, 0, 2))
+ assert_equal(x, pickle.loads(transposed_contiguous_dumped))
+ x = np.arange(12, dtype='uint8').reshape(3, 4)[:, :2]
+ assert_equal(x, pickle.loads(no_contiguous_dumped))
+
+ def test_non_contiguous_array(self):
+ non_contiguous_array = np.arange(12).reshape(3, 4)[:, :2]
+ assert not non_contiguous_array.flags.c_contiguous
+ assert not non_contiguous_array.flags.f_contiguous
+
+ # make sure non-contiguous arrays can be pickled-depickled
+ # using any protocol
+ buffers = []
+ for proto in range(2, pickle.HIGHEST_PROTOCOL + 1):
+ depickled_non_contiguous_array = pickle.loads(
+ pickle.dumps(non_contiguous_array, protocol=proto,
+ buffer_callback=buffers.append if proto >= 5 else None))
+
+ assert_equal(len(buffers), 0)
+ assert_equal(non_contiguous_array, depickled_non_contiguous_array)
+
+ def test_roundtrip(self):
+ for proto in range(2, pickle.HIGHEST_PROTOCOL + 1):
+ carray = np.array([[2, 9], [7, 0], [3, 8]])
+ DATA = [
+ carray,
+ np.transpose(carray),
+ np.array([('xxx', 1, 2.0)], dtype=[('a', (str, 3)), ('b', int),
+ ('c', float)])
+ ]
+
+ refs = [weakref.ref(a) for a in DATA]
+ for a in DATA:
+ assert_equal(
+ a, pickle.loads(pickle.dumps(a, protocol=proto)),
+ err_msg=f"{a!r}")
+ del a, DATA, carray
+ break_cycles()
+ # check for reference leaks (gh-12793)
+ for ref in refs:
+ assert ref() is None
+
+ def _loads(self, obj):
+ return pickle.loads(obj, encoding='latin1')
+
+ # version 0 pickles, using protocol=2 to pickle
+ # version 0 doesn't have a version field
+ def test_version0_int8(self):
+ s = b"\x80\x02cnumpy.core._internal\n_reconstruct\nq\x01cnumpy\nndarray\nq\x02K\x00\x85U\x01b\x87Rq\x03(K\x04\x85cnumpy\ndtype\nq\x04U\x02i1K\x00K\x01\x87Rq\x05(U\x01|NNJ\xff\xff\xff\xffJ\xff\xff\xff\xfftb\x89U\x04\x01\x02\x03\x04tb."
+ a = np.array([1, 2, 3, 4], dtype=np.int8)
+ p = self._loads(s)
+ assert_equal(a, p)
+
+ def test_version0_float32(self):
+ s = b"\x80\x02cnumpy.core._internal\n_reconstruct\nq\x01cnumpy\nndarray\nq\x02K\x00\x85U\x01b\x87Rq\x03(K\x04\x85cnumpy\ndtype\nq\x04U\x02f4K\x00K\x01\x87Rq\x05(U\x01<NNJ\xff\xff\xff\xffJ\xff\xff\xff\xfftb\x89U\x10\x00\x00\x80?\x00\x00\x00@\x00\x00@@\x00\x00\x80@tb."
+ a = np.array([1.0, 2.0, 3.0, 4.0], dtype=np.float32)
+ p = self._loads(s)
+ assert_equal(a, p)
+
+ def test_version0_object(self):
+ s = b"\x80\x02cnumpy.core._internal\n_reconstruct\nq\x01cnumpy\nndarray\nq\x02K\x00\x85U\x01b\x87Rq\x03(K\x02\x85cnumpy\ndtype\nq\x04U\x02O8K\x00K\x01\x87Rq\x05(U\x01|NNJ\xff\xff\xff\xffJ\xff\xff\xff\xfftb\x89]q\x06(}q\x07U\x01aK\x01s}q\x08U\x01bK\x02setb."
+ a = np.array([{'a': 1}, {'b': 2}])
+ p = self._loads(s)
+ assert_equal(a, p)
+
+ # version 1 pickles, using protocol=2 to pickle
+ def test_version1_int8(self):
+ s = b"\x80\x02cnumpy.core._internal\n_reconstruct\nq\x01cnumpy\nndarray\nq\x02K\x00\x85U\x01b\x87Rq\x03(K\x01K\x04\x85cnumpy\ndtype\nq\x04U\x02i1K\x00K\x01\x87Rq\x05(K\x01U\x01|NNJ\xff\xff\xff\xffJ\xff\xff\xff\xfftb\x89U\x04\x01\x02\x03\x04tb."
+ a = np.array([1, 2, 3, 4], dtype=np.int8)
+ p = self._loads(s)
+ assert_equal(a, p)
+
+ def test_version1_float32(self):
+ s = b"\x80\x02cnumpy.core._internal\n_reconstruct\nq\x01cnumpy\nndarray\nq\x02K\x00\x85U\x01b\x87Rq\x03(K\x01K\x04\x85cnumpy\ndtype\nq\x04U\x02f4K\x00K\x01\x87Rq\x05(K\x01U\x01<NNJ\xff\xff\xff\xffJ\xff\xff\xff\xfftb\x89U\x10\x00\x00\x80?\x00\x00\x00@\x00\x00@@\x00\x00\x80@tb."
+ a = np.array([1.0, 2.0, 3.0, 4.0], dtype=np.float32)
+ p = self._loads(s)
+ assert_equal(a, p)
+
+ def test_version1_object(self):
+ s = b"\x80\x02cnumpy.core._internal\n_reconstruct\nq\x01cnumpy\nndarray\nq\x02K\x00\x85U\x01b\x87Rq\x03(K\x01K\x02\x85cnumpy\ndtype\nq\x04U\x02O8K\x00K\x01\x87Rq\x05(K\x01U\x01|NNJ\xff\xff\xff\xffJ\xff\xff\xff\xfftb\x89]q\x06(}q\x07U\x01aK\x01s}q\x08U\x01bK\x02setb."
+ a = np.array([{'a': 1}, {'b': 2}])
+ p = self._loads(s)
+ assert_equal(a, p)
+
+ def test_subarray_int_shape(self):
+ s = b"cnumpy.core.multiarray\n_reconstruct\np0\n(cnumpy\nndarray\np1\n(I0\ntp2\nS'b'\np3\ntp4\nRp5\n(I1\n(I1\ntp6\ncnumpy\ndtype\np7\n(S'V6'\np8\nI0\nI1\ntp9\nRp10\n(I3\nS'|'\np11\nN(S'a'\np12\ng3\ntp13\n(dp14\ng12\n(g7\n(S'V4'\np15\nI0\nI1\ntp16\nRp17\n(I3\nS'|'\np18\n(g7\n(S'i1'\np19\nI0\nI1\ntp20\nRp21\n(I3\nS'|'\np22\nNNNI-1\nI-1\nI0\ntp23\nb(I2\nI2\ntp24\ntp25\nNNI4\nI1\nI0\ntp26\nbI0\ntp27\nsg3\n(g7\n(S'V2'\np28\nI0\nI1\ntp29\nRp30\n(I3\nS'|'\np31\n(g21\nI2\ntp32\nNNI2\nI1\nI0\ntp33\nbI4\ntp34\nsI6\nI1\nI0\ntp35\nbI00\nS'\\x01\\x01\\x01\\x01\\x01\\x02'\np36\ntp37\nb."
+ a = np.array([(1, (1, 2))], dtype=[('a', 'i1', (2, 2)), ('b', 'i1', 2)])
+ p = self._loads(s)
+ assert_equal(a, p)
+
+ def test_datetime64_byteorder(self):
+ original = np.array([['2015-02-24T00:00:00.000000000']], dtype='datetime64[ns]')
+
+ original_byte_reversed = original.copy(order='K')
+ original_byte_reversed.dtype = original_byte_reversed.dtype.newbyteorder('S')
+ original_byte_reversed.byteswap(inplace=True)
+
+ new = pickle.loads(pickle.dumps(original_byte_reversed))
+
+ assert_equal(original.dtype, new.dtype)
+
+
+class TestFancyIndexing:
+ def test_list(self):
+ x = np.ones((1, 1))
+ x[:, [0]] = 2.0
+ assert_array_equal(x, np.array([[2.0]]))
+
+ x = np.ones((1, 1, 1))
+ x[:, :, [0]] = 2.0
+ assert_array_equal(x, np.array([[[2.0]]]))
+
+ def test_tuple(self):
+ x = np.ones((1, 1))
+ x[:, (0,)] = 2.0
+ assert_array_equal(x, np.array([[2.0]]))
+ x = np.ones((1, 1, 1))
+ x[:, :, (0,)] = 2.0
+ assert_array_equal(x, np.array([[[2.0]]]))
+
+ def test_mask(self):
+ x = np.array([1, 2, 3, 4])
+ m = np.array([0, 1, 0, 0], bool)
+ assert_array_equal(x[m], np.array([2]))
+
+ def test_mask2(self):
+ x = np.array([[1, 2, 3, 4], [5, 6, 7, 8]])
+ m = np.array([0, 1], bool)
+ m2 = np.array([[0, 1, 0, 0], [1, 0, 0, 0]], bool)
+ m3 = np.array([[0, 1, 0, 0], [0, 0, 0, 0]], bool)
+ assert_array_equal(x[m], np.array([[5, 6, 7, 8]]))
+ assert_array_equal(x[m2], np.array([2, 5]))
+ assert_array_equal(x[m3], np.array([2]))
+
+ def test_assign_mask(self):
+ x = np.array([1, 2, 3, 4])
+ m = np.array([0, 1, 0, 0], bool)
+ x[m] = 5
+ assert_array_equal(x, np.array([1, 5, 3, 4]))
+
+ def test_assign_mask2(self):
+ xorig = np.array([[1, 2, 3, 4], [5, 6, 7, 8]])
+ m = np.array([0, 1], bool)
+ m2 = np.array([[0, 1, 0, 0], [1, 0, 0, 0]], bool)
+ m3 = np.array([[0, 1, 0, 0], [0, 0, 0, 0]], bool)
+ x = xorig.copy()
+ x[m] = 10
+ assert_array_equal(x, np.array([[1, 2, 3, 4], [10, 10, 10, 10]]))
+ x = xorig.copy()
+ x[m2] = 10
+ assert_array_equal(x, np.array([[1, 10, 3, 4], [10, 6, 7, 8]]))
+ x = xorig.copy()
+ x[m3] = 10
+ assert_array_equal(x, np.array([[1, 10, 3, 4], [5, 6, 7, 8]]))
+
+
+class TestStringCompare:
+ def test_string(self):
+ g1 = np.array(["This", "is", "example"])
+ g2 = np.array(["This", "was", "example"])
+ assert_array_equal(g1 == g2, [g1[i] == g2[i] for i in [0, 1, 2]])
+ assert_array_equal(g1 != g2, [g1[i] != g2[i] for i in [0, 1, 2]])
+ assert_array_equal(g1 <= g2, [g1[i] <= g2[i] for i in [0, 1, 2]])
+ assert_array_equal(g1 >= g2, [g1[i] >= g2[i] for i in [0, 1, 2]])
+ assert_array_equal(g1 < g2, [g1[i] < g2[i] for i in [0, 1, 2]])
+ assert_array_equal(g1 > g2, [g1[i] > g2[i] for i in [0, 1, 2]])
+
+ def test_mixed(self):
+ g1 = np.array(["spam", "spa", "spammer", "and eggs"])
+ g2 = "spam"
+ assert_array_equal(g1 == g2, [x == g2 for x in g1])
+ assert_array_equal(g1 != g2, [x != g2 for x in g1])
+ assert_array_equal(g1 < g2, [x < g2 for x in g1])
+ assert_array_equal(g1 > g2, [x > g2 for x in g1])
+ assert_array_equal(g1 <= g2, [x <= g2 for x in g1])
+ assert_array_equal(g1 >= g2, [x >= g2 for x in g1])
+
+ def test_unicode(self):
+ g1 = np.array(["This", "is", "example"])
+ g2 = np.array(["This", "was", "example"])
+ assert_array_equal(g1 == g2, [g1[i] == g2[i] for i in [0, 1, 2]])
+ assert_array_equal(g1 != g2, [g1[i] != g2[i] for i in [0, 1, 2]])
+ assert_array_equal(g1 <= g2, [g1[i] <= g2[i] for i in [0, 1, 2]])
+ assert_array_equal(g1 >= g2, [g1[i] >= g2[i] for i in [0, 1, 2]])
+ assert_array_equal(g1 < g2, [g1[i] < g2[i] for i in [0, 1, 2]])
+ assert_array_equal(g1 > g2, [g1[i] > g2[i] for i in [0, 1, 2]])
+
+class TestArgmaxArgminCommon:
+
+ sizes = [(), (3,), (3, 2), (2, 3),
+ (3, 3), (2, 3, 4), (4, 3, 2),
+ (1, 2, 3, 4), (2, 3, 4, 1),
+ (3, 4, 1, 2), (4, 1, 2, 3),
+ (64,), (128,), (256,)]
+
+ @pytest.mark.parametrize("size, axis", itertools.chain(*[[(size, axis)
+ for axis in list(range(-len(size), len(size))) + [None]]
+ for size in sizes]))
+ @pytest.mark.parametrize('method', [np.argmax, np.argmin])
+ def test_np_argmin_argmax_keepdims(self, size, axis, method):
+
+ arr = np.random.normal(size=size)
+
+ # contiguous arrays
+ if axis is None:
+ new_shape = [1 for _ in range(len(size))]
+ else:
+ new_shape = list(size)
+ new_shape[axis] = 1
+ new_shape = tuple(new_shape)
+
+ _res_orig = method(arr, axis=axis)
+ res_orig = _res_orig.reshape(new_shape)
+ res = method(arr, axis=axis, keepdims=True)
+ assert_equal(res, res_orig)
+ assert_(res.shape == new_shape)
+ outarray = np.empty(res.shape, dtype=res.dtype)
+ res1 = method(arr, axis=axis, out=outarray,
+ keepdims=True)
+ assert_(res1 is outarray)
+ assert_equal(res, outarray)
+
+ if len(size) > 0:
+ wrong_shape = list(new_shape)
+ if axis is not None:
+ wrong_shape[axis] = 2
+ else:
+ wrong_shape[0] = 2
+ wrong_outarray = np.empty(wrong_shape, dtype=res.dtype)
+ with pytest.raises(ValueError):
+ method(arr.T, axis=axis,
+ out=wrong_outarray, keepdims=True)
+
+ # non-contiguous arrays
+ if axis is None:
+ new_shape = [1 for _ in range(len(size))]
+ else:
+ new_shape = list(size)[::-1]
+ new_shape[axis] = 1
+ new_shape = tuple(new_shape)
+
+ _res_orig = method(arr.T, axis=axis)
+ res_orig = _res_orig.reshape(new_shape)
+ res = method(arr.T, axis=axis, keepdims=True)
+ assert_equal(res, res_orig)
+ assert_(res.shape == new_shape)
+ outarray = np.empty(new_shape[::-1], dtype=res.dtype)
+ outarray = outarray.T
+ res1 = method(arr.T, axis=axis, out=outarray,
+ keepdims=True)
+ assert_(res1 is outarray)
+ assert_equal(res, outarray)
+
+ if len(size) > 0:
+ # one dimension lesser for non-zero sized
+ # array should raise an error
+ with pytest.raises(ValueError):
+ method(arr[0], axis=axis,
+ out=outarray, keepdims=True)
+
+ if len(size) > 0:
+ wrong_shape = list(new_shape)
+ if axis is not None:
+ wrong_shape[axis] = 2
+ else:
+ wrong_shape[0] = 2
+ wrong_outarray = np.empty(wrong_shape, dtype=res.dtype)
+ with pytest.raises(ValueError):
+ method(arr.T, axis=axis,
+ out=wrong_outarray, keepdims=True)
+
+ @pytest.mark.parametrize('method', ['max', 'min'])
+ def test_all(self, method):
+ a = np.random.normal(0, 1, (4, 5, 6, 7, 8))
+ arg_method = getattr(a, 'arg' + method)
+ val_method = getattr(a, method)
+ for i in range(a.ndim):
+ a_maxmin = val_method(i)
+ aarg_maxmin = arg_method(i)
+ axes = list(range(a.ndim))
+ axes.remove(i)
+ assert_(np.all(a_maxmin == aarg_maxmin.choose(
+ *a.transpose(i, *axes))))
+
+ @pytest.mark.parametrize('method', ['argmax', 'argmin'])
+ def test_output_shape(self, method):
+ # see also gh-616
+ a = np.ones((10, 5))
+ arg_method = getattr(a, method)
+ # Check some simple shape mismatches
+ out = np.ones(11, dtype=np.int_)
+ assert_raises(ValueError, arg_method, -1, out)
+
+ out = np.ones((2, 5), dtype=np.int_)
+ assert_raises(ValueError, arg_method, -1, out)
+
+ # these could be relaxed possibly (used to allow even the previous)
+ out = np.ones((1, 10), dtype=np.int_)
+ assert_raises(ValueError, arg_method, -1, out)
+
+ out = np.ones(10, dtype=np.int_)
+ arg_method(-1, out=out)
+ assert_equal(out, arg_method(-1))
+
+ @pytest.mark.parametrize('ndim', [0, 1])
+ @pytest.mark.parametrize('method', ['argmax', 'argmin'])
+ def test_ret_is_out(self, ndim, method):
+ a = np.ones((4,) + (256,) * ndim)
+ arg_method = getattr(a, method)
+ out = np.empty((256,) * ndim, dtype=np.intp)
+ ret = arg_method(axis=0, out=out)
+ assert ret is out
+
+ @pytest.mark.parametrize('np_array, method, idx, val',
+ [(np.zeros, 'argmax', 5942, "as"),
+ (np.ones, 'argmin', 6001, "0")])
+ def test_unicode(self, np_array, method, idx, val):
+ d = np_array(6031, dtype='<U9')
+ arg_method = getattr(d, method)
+ d[idx] = val
+ assert_equal(arg_method(), idx)
+
+ @pytest.mark.parametrize('arr_method, np_method',
+ [('argmax', np.argmax),
+ ('argmin', np.argmin)])
+ def test_np_vs_ndarray(self, arr_method, np_method):
+ # make sure both ndarray.argmax/argmin and
+ # numpy.argmax/argmin support out/axis args
+ a = np.random.normal(size=(2, 3))
+ arg_method = getattr(a, arr_method)
+
+ # check positional args
+ out1 = np.zeros(2, dtype=int)
+ out2 = np.zeros(2, dtype=int)
+ assert_equal(arg_method(1, out1), np_method(a, 1, out2))
+ assert_equal(out1, out2)
+
+ # check keyword args
+ out1 = np.zeros(3, dtype=int)
+ out2 = np.zeros(3, dtype=int)
+ assert_equal(arg_method(out=out1, axis=0),
+ np_method(a, out=out2, axis=0))
+ assert_equal(out1, out2)
+
+ @pytest.mark.leaks_references(reason="replaces None with NULL.")
+ @pytest.mark.parametrize('method, vals',
+ [('argmax', (10, 30)),
+ ('argmin', (30, 10))])
+ def test_object_with_NULLs(self, method, vals):
+ # See gh-6032
+ a = np.empty(4, dtype='O')
+ arg_method = getattr(a, method)
+ ctypes.memset(a.ctypes.data, 0, a.nbytes)
+ assert_equal(arg_method(), 0)
+ a[3] = vals[0]
+ assert_equal(arg_method(), 3)
+ a[1] = vals[1]
+ assert_equal(arg_method(), 1)
+
+class TestArgmax:
+ usg_data = [
+ ([1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0], 0),
+ ([3, 3, 3, 3, 2, 2, 2, 2], 0),
+ ([0, 1, 2, 3, 4, 5, 6, 7], 7),
+ ([7, 6, 5, 4, 3, 2, 1, 0], 0)
+ ]
+ sg_data = usg_data + [
+ ([1, 2, 3, 4, -4, -3, -2, -1], 3),
+ ([1, 2, 3, 4, -1, -2, -3, -4], 3)
+ ]
+ darr = [(np.array(d[0], dtype=t), d[1]) for d, t in (
+ itertools.product(usg_data, (
+ np.uint8, np.uint16, np.uint32, np.uint64
+ ))
+ )]
+ darr = darr + [(np.array(d[0], dtype=t), d[1]) for d, t in (
+ itertools.product(sg_data, (
+ np.int8, np.int16, np.int32, np.int64, np.float32, np.float64
+ ))
+ )]
+ darr = darr + [(np.array(d[0], dtype=t), d[1]) for d, t in (
+ itertools.product((
+ ([0, 1, 2, 3, np.nan], 4),
+ ([0, 1, 2, np.nan, 3], 3),
+ ([np.nan, 0, 1, 2, 3], 0),
+ ([np.nan, 0, np.nan, 2, 3], 0),
+ # To hit the tail of SIMD multi-level(x4, x1) inner loops
+ # on variant SIMD widths
+ ([1] * (2 * 5 - 1) + [np.nan], 2 * 5 - 1),
+ ([1] * (4 * 5 - 1) + [np.nan], 4 * 5 - 1),
+ ([1] * (8 * 5 - 1) + [np.nan], 8 * 5 - 1),
+ ([1] * (16 * 5 - 1) + [np.nan], 16 * 5 - 1),
+ ([1] * (32 * 5 - 1) + [np.nan], 32 * 5 - 1)
+ ), (
+ np.float32, np.float64
+ ))
+ )]
+ nan_arr = darr + [
+ ([0, 1, 2, 3, complex(0, np.nan)], 4),
+ ([0, 1, 2, 3, complex(np.nan, 0)], 4),
+ ([0, 1, 2, complex(np.nan, 0), 3], 3),
+ ([0, 1, 2, complex(0, np.nan), 3], 3),
+ ([complex(0, np.nan), 0, 1, 2, 3], 0),
+ ([complex(np.nan, np.nan), 0, 1, 2, 3], 0),
+ ([complex(np.nan, 0), complex(np.nan, 2), complex(np.nan, 1)], 0),
+ ([complex(np.nan, np.nan), complex(np.nan, 2), complex(np.nan, 1)], 0),
+ ([complex(np.nan, 0), complex(np.nan, 2), complex(np.nan, np.nan)], 0),
+
+ ([complex(0, 0), complex(0, 2), complex(0, 1)], 1),
+ ([complex(1, 0), complex(0, 2), complex(0, 1)], 0),
+ ([complex(1, 0), complex(0, 2), complex(1, 1)], 2),
+
+ ([np.datetime64('1923-04-14T12:43:12'),
+ np.datetime64('1994-06-21T14:43:15'),
+ np.datetime64('2001-10-15T04:10:32'),
+ np.datetime64('1995-11-25T16:02:16'),
+ np.datetime64('2005-01-04T03:14:12'),
+ np.datetime64('2041-12-03T14:05:03')], 5),
+ ([np.datetime64('1935-09-14T04:40:11'),
+ np.datetime64('1949-10-12T12:32:11'),
+ np.datetime64('2010-01-03T05:14:12'),
+ np.datetime64('2015-11-20T12:20:59'),
+ np.datetime64('1932-09-23T10:10:13'),
+ np.datetime64('2014-10-10T03:50:30')], 3),
+ # Assorted tests with NaTs
+ ([np.datetime64('NaT'),
+ np.datetime64('NaT'),
+ np.datetime64('2010-01-03T05:14:12'),
+ np.datetime64('NaT'),
+ np.datetime64('2015-09-23T10:10:13'),
+ np.datetime64('1932-10-10T03:50:30')], 0),
+ ([np.datetime64('2059-03-14T12:43:12'),
+ np.datetime64('1996-09-21T14:43:15'),
+ np.datetime64('NaT'),
+ np.datetime64('2022-12-25T16:02:16'),
+ np.datetime64('1963-10-04T03:14:12'),
+ np.datetime64('2013-05-08T18:15:23')], 2),
+ ([np.timedelta64(2, 's'),
+ np.timedelta64(1, 's'),
+ np.timedelta64('NaT', 's'),
+ np.timedelta64(3, 's')], 2),
+ ([np.timedelta64('NaT', 's')] * 3, 0),
+
+ ([timedelta(days=5, seconds=14), timedelta(days=2, seconds=35),
+ timedelta(days=-1, seconds=23)], 0),
+ ([timedelta(days=1, seconds=43), timedelta(days=10, seconds=5),
+ timedelta(days=5, seconds=14)], 1),
+ ([timedelta(days=10, seconds=24), timedelta(days=10, seconds=5),
+ timedelta(days=10, seconds=43)], 2),
+
+ ([False, False, False, False, True], 4),
+ ([False, False, False, True, False], 3),
+ ([True, False, False, False, False], 0),
+ ([True, False, True, False, False], 0),
+ ]
+
+ @pytest.mark.parametrize('data', nan_arr)
+ def test_combinations(self, data):
+ arr, pos = data
+ with suppress_warnings() as sup:
+ sup.filter(RuntimeWarning,
+ "invalid value encountered in reduce")
+ val = np.max(arr)
+
+ assert_equal(np.argmax(arr), pos, err_msg=f"{arr!r}")
+ assert_equal(arr[np.argmax(arr)], val, err_msg=f"{arr!r}")
+
+ # add padding to test SIMD loops
+ rarr = np.repeat(arr, 129)
+ rpos = pos * 129
+ assert_equal(np.argmax(rarr), rpos, err_msg=f"{rarr!r}")
+ assert_equal(rarr[np.argmax(rarr)], val, err_msg=f"{rarr!r}")
+
+ padd = np.repeat(np.min(arr), 513)
+ rarr = np.concatenate((arr, padd))
+ rpos = pos
+ assert_equal(np.argmax(rarr), rpos, err_msg=f"{rarr!r}")
+ assert_equal(rarr[np.argmax(rarr)], val, err_msg=f"{rarr!r}")
+
+ def test_maximum_signed_integers(self):
+
+ a = np.array([1, 2**7 - 1, -2**7], dtype=np.int8)
+ assert_equal(np.argmax(a), 1)
+ a = a.repeat(129)
+ assert_equal(np.argmax(a), 129)
+
+ a = np.array([1, 2**15 - 1, -2**15], dtype=np.int16)
+ assert_equal(np.argmax(a), 1)
+ a = a.repeat(129)
+ assert_equal(np.argmax(a), 129)
+
+ a = np.array([1, 2**31 - 1, -2**31], dtype=np.int32)
+ assert_equal(np.argmax(a), 1)
+ a = a.repeat(129)
+ assert_equal(np.argmax(a), 129)
+
+ a = np.array([1, 2**63 - 1, -2**63], dtype=np.int64)
+ assert_equal(np.argmax(a), 1)
+ a = a.repeat(129)
+ assert_equal(np.argmax(a), 129)
+
+class TestArgmin:
+ usg_data = [
+ ([1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0], 8),
+ ([3, 3, 3, 3, 2, 2, 2, 2], 4),
+ ([0, 1, 2, 3, 4, 5, 6, 7], 0),
+ ([7, 6, 5, 4, 3, 2, 1, 0], 7)
+ ]
+ sg_data = usg_data + [
+ ([1, 2, 3, 4, -4, -3, -2, -1], 4),
+ ([1, 2, 3, 4, -1, -2, -3, -4], 7)
+ ]
+ darr = [(np.array(d[0], dtype=t), d[1]) for d, t in (
+ itertools.product(usg_data, (
+ np.uint8, np.uint16, np.uint32, np.uint64
+ ))
+ )]
+ darr = darr + [(np.array(d[0], dtype=t), d[1]) for d, t in (
+ itertools.product(sg_data, (
+ np.int8, np.int16, np.int32, np.int64, np.float32, np.float64
+ ))
+ )]
+ darr = darr + [(np.array(d[0], dtype=t), d[1]) for d, t in (
+ itertools.product((
+ ([0, 1, 2, 3, np.nan], 4),
+ ([0, 1, 2, np.nan, 3], 3),
+ ([np.nan, 0, 1, 2, 3], 0),
+ ([np.nan, 0, np.nan, 2, 3], 0),
+ # To hit the tail of SIMD multi-level(x4, x1) inner loops
+ # on variant SIMD widths
+ ([1] * (2 * 5 - 1) + [np.nan], 2 * 5 - 1),
+ ([1] * (4 * 5 - 1) + [np.nan], 4 * 5 - 1),
+ ([1] * (8 * 5 - 1) + [np.nan], 8 * 5 - 1),
+ ([1] * (16 * 5 - 1) + [np.nan], 16 * 5 - 1),
+ ([1] * (32 * 5 - 1) + [np.nan], 32 * 5 - 1)
+ ), (
+ np.float32, np.float64
+ ))
+ )]
+ nan_arr = darr + [
+ ([0, 1, 2, 3, complex(0, np.nan)], 4),
+ ([0, 1, 2, 3, complex(np.nan, 0)], 4),
+ ([0, 1, 2, complex(np.nan, 0), 3], 3),
+ ([0, 1, 2, complex(0, np.nan), 3], 3),
+ ([complex(0, np.nan), 0, 1, 2, 3], 0),
+ ([complex(np.nan, np.nan), 0, 1, 2, 3], 0),
+ ([complex(np.nan, 0), complex(np.nan, 2), complex(np.nan, 1)], 0),
+ ([complex(np.nan, np.nan), complex(np.nan, 2), complex(np.nan, 1)], 0),
+ ([complex(np.nan, 0), complex(np.nan, 2), complex(np.nan, np.nan)], 0),
+
+ ([complex(0, 0), complex(0, 2), complex(0, 1)], 0),
+ ([complex(1, 0), complex(0, 2), complex(0, 1)], 2),
+ ([complex(1, 0), complex(0, 2), complex(1, 1)], 1),
+
+ ([np.datetime64('1923-04-14T12:43:12'),
+ np.datetime64('1994-06-21T14:43:15'),
+ np.datetime64('2001-10-15T04:10:32'),
+ np.datetime64('1995-11-25T16:02:16'),
+ np.datetime64('2005-01-04T03:14:12'),
+ np.datetime64('2041-12-03T14:05:03')], 0),
+ ([np.datetime64('1935-09-14T04:40:11'),
+ np.datetime64('1949-10-12T12:32:11'),
+ np.datetime64('2010-01-03T05:14:12'),
+ np.datetime64('2014-11-20T12:20:59'),
+ np.datetime64('2015-09-23T10:10:13'),
+ np.datetime64('1932-10-10T03:50:30')], 5),
+ # Assorted tests with NaTs
+ ([np.datetime64('NaT'),
+ np.datetime64('NaT'),
+ np.datetime64('2010-01-03T05:14:12'),
+ np.datetime64('NaT'),
+ np.datetime64('2015-09-23T10:10:13'),
+ np.datetime64('1932-10-10T03:50:30')], 0),
+ ([np.datetime64('2059-03-14T12:43:12'),
+ np.datetime64('1996-09-21T14:43:15'),
+ np.datetime64('NaT'),
+ np.datetime64('2022-12-25T16:02:16'),
+ np.datetime64('1963-10-04T03:14:12'),
+ np.datetime64('2013-05-08T18:15:23')], 2),
+ ([np.timedelta64(2, 's'),
+ np.timedelta64(1, 's'),
+ np.timedelta64('NaT', 's'),
+ np.timedelta64(3, 's')], 2),
+ ([np.timedelta64('NaT', 's')] * 3, 0),
+
+ ([timedelta(days=5, seconds=14), timedelta(days=2, seconds=35),
+ timedelta(days=-1, seconds=23)], 2),
+ ([timedelta(days=1, seconds=43), timedelta(days=10, seconds=5),
+ timedelta(days=5, seconds=14)], 0),
+ ([timedelta(days=10, seconds=24), timedelta(days=10, seconds=5),
+ timedelta(days=10, seconds=43)], 1),
+
+ ([True, True, True, True, False], 4),
+ ([True, True, True, False, True], 3),
+ ([False, True, True, True, True], 0),
+ ([False, True, False, True, True], 0),
+ ]
+
+ @pytest.mark.parametrize('data', nan_arr)
+ def test_combinations(self, data):
+ arr, pos = data
+ with suppress_warnings() as sup:
+ sup.filter(RuntimeWarning,
+ "invalid value encountered in reduce")
+ min_val = np.min(arr)
+
+ assert_equal(np.argmin(arr), pos, err_msg=f"{arr!r}")
+ assert_equal(arr[np.argmin(arr)], min_val, err_msg=f"{arr!r}")
+
+ # add padding to test SIMD loops
+ rarr = np.repeat(arr, 129)
+ rpos = pos * 129
+ assert_equal(np.argmin(rarr), rpos, err_msg=f"{rarr!r}")
+ assert_equal(rarr[np.argmin(rarr)], min_val, err_msg=f"{rarr!r}")
+
+ padd = np.repeat(np.max(arr), 513)
+ rarr = np.concatenate((arr, padd))
+ rpos = pos
+ assert_equal(np.argmin(rarr), rpos, err_msg=f"{rarr!r}")
+ assert_equal(rarr[np.argmin(rarr)], min_val, err_msg=f"{rarr!r}")
+
+ def test_minimum_signed_integers(self):
+
+ a = np.array([1, -2**7, -2**7 + 1, 2**7 - 1], dtype=np.int8)
+ assert_equal(np.argmin(a), 1)
+ a = a.repeat(129)
+ assert_equal(np.argmin(a), 129)
+
+ a = np.array([1, -2**15, -2**15 + 1, 2**15 - 1], dtype=np.int16)
+ assert_equal(np.argmin(a), 1)
+ a = a.repeat(129)
+ assert_equal(np.argmin(a), 129)
+
+ a = np.array([1, -2**31, -2**31 + 1, 2**31 - 1], dtype=np.int32)
+ assert_equal(np.argmin(a), 1)
+ a = a.repeat(129)
+ assert_equal(np.argmin(a), 129)
+
+ a = np.array([1, -2**63, -2**63 + 1, 2**63 - 1], dtype=np.int64)
+ assert_equal(np.argmin(a), 1)
+ a = a.repeat(129)
+ assert_equal(np.argmin(a), 129)
+
+class TestMinMax:
+
+ def test_scalar(self):
+ assert_raises(AxisError, np.amax, 1, 1)
+ assert_raises(AxisError, np.amin, 1, 1)
+
+ assert_equal(np.amax(1, axis=0), 1)
+ assert_equal(np.amin(1, axis=0), 1)
+ assert_equal(np.amax(1, axis=None), 1)
+ assert_equal(np.amin(1, axis=None), 1)
+
+ def test_axis(self):
+ assert_raises(AxisError, np.amax, [1, 2, 3], 1000)
+ assert_equal(np.amax([[1, 2, 3]], axis=1), 3)
+
+ def test_datetime(self):
+ # Do not ignore NaT
+ for dtype in ('m8[s]', 'm8[Y]'):
+ a = np.arange(10).astype(dtype)
+ assert_equal(np.amin(a), a[0])
+ assert_equal(np.amax(a), a[9])
+ a[3] = 'NaT'
+ assert_equal(np.amin(a), a[3])
+ assert_equal(np.amax(a), a[3])
+
+
+class TestNewaxis:
+ def test_basic(self):
+ sk = np.array([0, -0.1, 0.1])
+ res = 250 * sk[:, np.newaxis]
+ assert_almost_equal(res.ravel(), 250 * sk)
+
+
+class TestClip:
+ def _check_range(self, x, cmin, cmax):
+ assert_(np.all(x >= cmin))
+ assert_(np.all(x <= cmax))
+
+ def _clip_type(self, type_group, array_max,
+ clip_min, clip_max, inplace=False,
+ expected_min=None, expected_max=None):
+ if expected_min is None:
+ expected_min = clip_min
+ if expected_max is None:
+ expected_max = clip_max
+
+ for T in np._core.sctypes[type_group]:
+ if sys.byteorder == 'little':
+ byte_orders = ['=', '>']
+ else:
+ byte_orders = ['<', '=']
+
+ for byteorder in byte_orders:
+ dtype = np.dtype(T).newbyteorder(byteorder)
+
+ x = (np.random.random(1000) * array_max).astype(dtype)
+ if inplace:
+ # The tests that call us pass clip_min and clip_max that
+ # might not fit in the destination dtype. They were written
+ # assuming the previous unsafe casting, which now must be
+ # passed explicitly to avoid a warning.
+ x.clip(clip_min, clip_max, x, casting='unsafe')
+ else:
+ x = x.clip(clip_min, clip_max)
+ byteorder = '='
+
+ if x.dtype.byteorder == '|':
+ byteorder = '|'
+ assert_equal(x.dtype.byteorder, byteorder)
+ self._check_range(x, expected_min, expected_max)
+ return x
+
+ def test_basic(self):
+ for inplace in [False, True]:
+ self._clip_type(
+ 'float', 1024, -12.8, 100.2, inplace=inplace)
+ self._clip_type(
+ 'float', 1024, 0, 0, inplace=inplace)
+
+ self._clip_type(
+ 'int', 1024, -120, 100, inplace=inplace)
+ self._clip_type(
+ 'int', 1024, 0, 0, inplace=inplace)
+
+ self._clip_type(
+ 'uint', 1024, 0, 0, inplace=inplace)
+ self._clip_type(
+ 'uint', 1024, 10, 100, inplace=inplace)
+
+ @pytest.mark.parametrize("inplace", [False, True])
+ def test_int_out_of_range(self, inplace):
+ # Simple check for out-of-bound integers, also testing the in-place
+ # path.
+ x = (np.random.random(1000) * 255).astype("uint8")
+ out = np.empty_like(x)
+ res = x.clip(-1, 300, out=out if inplace else None)
+ assert res is out or not inplace
+ assert (res == x).all()
+
+ res = x.clip(-1, 50, out=out if inplace else None)
+ assert res is out or not inplace
+ assert (res <= 50).all()
+ assert (res[x <= 50] == x[x <= 50]).all()
+
+ res = x.clip(100, 1000, out=out if inplace else None)
+ assert res is out or not inplace
+ assert (res >= 100).all()
+ assert (res[x >= 100] == x[x >= 100]).all()
+
+ def test_record_array(self):
+ rec = np.array([(-5, 2.0, 3.0), (5.0, 4.0, 3.0)],
+ dtype=[('x', '<f8'), ('y', '<f8'), ('z', '<f8')])
+ y = rec['x'].clip(-0.3, 0.5)
+ self._check_range(y, -0.3, 0.5)
+
+ def test_max_or_min(self):
+ val = np.array([0, 1, 2, 3, 4, 5, 6, 7])
+ x = val.clip(3)
+ assert_(np.all(x >= 3))
+ x = val.clip(min=3)
+ assert_(np.all(x >= 3))
+ x = val.clip(max=4)
+ assert_(np.all(x <= 4))
+
+ def test_nan(self):
+ input_arr = np.array([-2., np.nan, 0.5, 3., 0.25, np.nan])
+ result = input_arr.clip(-1, 1)
+ expected = np.array([-1., np.nan, 0.5, 1., 0.25, np.nan])
+ assert_array_equal(result, expected)
+
+
+class TestCompress:
+ def test_axis(self):
+ tgt = [[5, 6, 7, 8, 9]]
+ arr = np.arange(10).reshape(2, 5)
+ out = np.compress([0, 1], arr, axis=0)
+ assert_equal(out, tgt)
+
+ tgt = [[1, 3], [6, 8]]
+ out = np.compress([0, 1, 0, 1, 0], arr, axis=1)
+ assert_equal(out, tgt)
+
+ def test_truncate(self):
+ tgt = [[1], [6]]
+ arr = np.arange(10).reshape(2, 5)
+ out = np.compress([0, 1], arr, axis=1)
+ assert_equal(out, tgt)
+
+ def test_flatten(self):
+ arr = np.arange(10).reshape(2, 5)
+ out = np.compress([0, 1], arr)
+ assert_equal(out, 1)
+
+
+class TestPutmask:
+ def tst_basic(self, x, T, mask, val):
+ np.putmask(x, mask, val)
+ assert_equal(x[mask], np.array(val, T))
+
+ def test_ip_types(self):
+ unchecked_types = [bytes, str, np.void]
+
+ x = np.random.random(1000) * 100
+ mask = x < 40
+
+ for val in [-100, 0, 15]:
+ for types in np._core.sctypes.values():
+ for T in types:
+ if T not in unchecked_types:
+ if val < 0 and np.dtype(T).kind == "u":
+ val = np.iinfo(T).max - 99
+ self.tst_basic(x.copy().astype(T), T, mask, val)
+
+ # Also test string of a length which uses an untypical length
+ dt = np.dtype("S3")
+ self.tst_basic(x.astype(dt), dt.type, mask, dt.type(val)[:3])
+
+ def test_mask_size(self):
+ assert_raises(ValueError, np.putmask, np.array([1, 2, 3]), [True], 5)
+
+ @pytest.mark.parametrize('dtype', ('>i4', '<i4'))
+ def test_byteorder(self, dtype):
+ x = np.array([1, 2, 3], dtype)
+ np.putmask(x, [True, False, True], -1)
+ assert_array_equal(x, [-1, 2, -1])
+
+ def test_record_array(self):
+ # Note mixed byteorder.
+ rec = np.array([(-5, 2.0, 3.0), (5.0, 4.0, 3.0)],
+ dtype=[('x', '<f8'), ('y', '>f8'), ('z', '<f8')])
+ np.putmask(rec['x'], [True, False], 10)
+ assert_array_equal(rec['x'], [10, 5])
+ assert_array_equal(rec['y'], [2, 4])
+ assert_array_equal(rec['z'], [3, 3])
+ np.putmask(rec['y'], [True, False], 11)
+ assert_array_equal(rec['x'], [10, 5])
+ assert_array_equal(rec['y'], [11, 4])
+ assert_array_equal(rec['z'], [3, 3])
+
+ def test_overlaps(self):
+ # gh-6272 check overlap
+ x = np.array([True, False, True, False])
+ np.putmask(x[1:4], [True, True, True], x[:3])
+ assert_equal(x, np.array([True, True, False, True]))
+
+ x = np.array([True, False, True, False])
+ np.putmask(x[1:4], x[:3], [True, False, True])
+ assert_equal(x, np.array([True, True, True, True]))
+
+ def test_writeable(self):
+ a = np.arange(5)
+ a.flags.writeable = False
+
+ with pytest.raises(ValueError):
+ np.putmask(a, a >= 2, 3)
+
+ def test_kwargs(self):
+ x = np.array([0, 0])
+ np.putmask(x, [0, 1], [-1, -2])
+ assert_array_equal(x, [0, -2])
+
+ x = np.array([0, 0])
+ np.putmask(x, mask=[0, 1], values=[-1, -2])
+ assert_array_equal(x, [0, -2])
+
+ x = np.array([0, 0])
+ np.putmask(x, values=[-1, -2], mask=[0, 1])
+ assert_array_equal(x, [0, -2])
+
+ with pytest.raises(TypeError):
+ np.putmask(a=x, values=[-1, -2], mask=[0, 1])
+
+
+class TestTake:
+ def tst_basic(self, x):
+ ind = list(range(x.shape[0]))
+ assert_array_equal(x.take(ind, axis=0), x)
+
+ def test_ip_types(self):
+ unchecked_types = [bytes, str, np.void]
+
+ x = np.random.random(24) * 100
+ x.shape = 2, 3, 4
+ for types in np._core.sctypes.values():
+ for T in types:
+ if T not in unchecked_types:
+ self.tst_basic(x.copy().astype(T))
+
+ # Also test string of a length which uses an untypical length
+ self.tst_basic(x.astype("S3"))
+
+ def test_raise(self):
+ x = np.random.random(24) * 100
+ x.shape = 2, 3, 4
+ assert_raises(IndexError, x.take, [0, 1, 2], axis=0)
+ assert_raises(IndexError, x.take, [-3], axis=0)
+ assert_array_equal(x.take([-1], axis=0)[0], x[1])
+
+ def test_clip(self):
+ x = np.random.random(24) * 100
+ x.shape = 2, 3, 4
+ assert_array_equal(x.take([-1], axis=0, mode='clip')[0], x[0])
+ assert_array_equal(x.take([2], axis=0, mode='clip')[0], x[1])
+
+ def test_wrap(self):
+ x = np.random.random(24) * 100
+ x.shape = 2, 3, 4
+ assert_array_equal(x.take([-1], axis=0, mode='wrap')[0], x[1])
+ assert_array_equal(x.take([2], axis=0, mode='wrap')[0], x[0])
+ assert_array_equal(x.take([3], axis=0, mode='wrap')[0], x[1])
+
+ @pytest.mark.parametrize('dtype', ('>i4', '<i4'))
+ def test_byteorder(self, dtype):
+ x = np.array([1, 2, 3], dtype)
+ assert_array_equal(x.take([0, 2, 1]), [1, 3, 2])
+
+ def test_record_array(self):
+ # Note mixed byteorder.
+ rec = np.array([(-5, 2.0, 3.0), (5.0, 4.0, 3.0)],
+ dtype=[('x', '<f8'), ('y', '>f8'), ('z', '<f8')])
+ rec1 = rec.take([1])
+ assert_(rec1['x'] == 5.0 and rec1['y'] == 4.0)
+
+ def test_out_overlap(self):
+ # gh-6272 check overlap on out
+ x = np.arange(5)
+ y = np.take(x, [1, 2, 3], out=x[2:5], mode='wrap')
+ assert_equal(y, np.array([1, 2, 3]))
+
+ @pytest.mark.parametrize('shape', [(1, 2), (1,), ()])
+ def test_ret_is_out(self, shape):
+ # 0d arrays should not be an exception to this rule
+ x = np.arange(5)
+ inds = np.zeros(shape, dtype=np.intp)
+ out = np.zeros(shape, dtype=x.dtype)
+ ret = np.take(x, inds, out=out)
+ assert ret is out
+
+
+class TestLexsort:
+ @pytest.mark.parametrize('dtype', [
+ np.uint8, np.uint16, np.uint32, np.uint64,
+ np.int8, np.int16, np.int32, np.int64,
+ np.float16, np.float32, np.float64
+ ])
+ def test_basic(self, dtype):
+ a = np.array([1, 2, 1, 3, 1, 5], dtype=dtype)
+ b = np.array([0, 4, 5, 6, 2, 3], dtype=dtype)
+ idx = np.lexsort((b, a))
+ expected_idx = np.array([0, 4, 2, 1, 3, 5])
+ assert_array_equal(idx, expected_idx)
+ assert_array_equal(a[idx], np.sort(a))
+
+ def test_mixed(self):
+ a = np.array([1, 2, 1, 3, 1, 5])
+ b = np.array([0, 4, 5, 6, 2, 3], dtype='datetime64[D]')
+
+ idx = np.lexsort((b, a))
+ expected_idx = np.array([0, 4, 2, 1, 3, 5])
+ assert_array_equal(idx, expected_idx)
+
+ def test_datetime(self):
+ a = np.array([0, 0, 0], dtype='datetime64[D]')
+ b = np.array([2, 1, 0], dtype='datetime64[D]')
+ idx = np.lexsort((b, a))
+ expected_idx = np.array([2, 1, 0])
+ assert_array_equal(idx, expected_idx)
+
+ a = np.array([0, 0, 0], dtype='timedelta64[D]')
+ b = np.array([2, 1, 0], dtype='timedelta64[D]')
+ idx = np.lexsort((b, a))
+ expected_idx = np.array([2, 1, 0])
+ assert_array_equal(idx, expected_idx)
+
+ def test_object(self): # gh-6312
+ a = np.random.choice(10, 1000)
+ b = np.random.choice(['abc', 'xy', 'wz', 'efghi', 'qwst', 'x'], 1000)
+
+ for u in a, b:
+ left = np.lexsort((u.astype('O'),))
+ right = np.argsort(u, kind='mergesort')
+ assert_array_equal(left, right)
+
+ for u, v in (a, b), (b, a):
+ idx = np.lexsort((u, v))
+ assert_array_equal(idx, np.lexsort((u.astype('O'), v)))
+ assert_array_equal(idx, np.lexsort((u, v.astype('O'))))
+ u, v = np.array(u, dtype='object'), np.array(v, dtype='object')
+ assert_array_equal(idx, np.lexsort((u, v)))
+
+ def test_strings(self): # gh-27984
+ for dtype in "TU":
+ surnames = np.array(['Hertz', 'Galilei', 'Hertz'], dtype=dtype)
+ first_names = np.array(['Heinrich', 'Galileo', 'Gustav'], dtype=dtype)
+ assert_array_equal(np.lexsort((first_names, surnames)), [1, 2, 0])
+
+ def test_invalid_axis(self): # gh-7528
+ x = np.linspace(0., 1., 42 * 3).reshape(42, 3)
+ assert_raises(AxisError, np.lexsort, x, axis=2)
+
+class TestIO:
+ """Test tofile, fromfile, tobytes, and fromstring"""
+
+ @pytest.fixture()
+ def x(self):
+ shape = (2, 4, 3)
+ rand = np.random.random
+ x = rand(shape) + rand(shape).astype(complex) * 1j
+ x[0, :, 1] = [np.nan, np.inf, -np.inf, np.nan]
+ return x
+
+ @pytest.fixture(params=["string", "path_obj"])
+ def tmp_filename(self, tmp_path, request):
+ # This fixture covers two cases:
+ # one where the filename is a string and
+ # another where it is a pathlib object
+ filename = tmp_path / "file"
+ if request.param == "string":
+ filename = str(filename)
+ yield filename
+
+ def test_nofile(self):
+ # this should probably be supported as a file
+ # but for now test for proper errors
+ b = io.BytesIO()
+ assert_raises(OSError, np.fromfile, b, np.uint8, 80)
+ d = np.ones(7)
+ assert_raises(OSError, lambda x: x.tofile(b), d)
+
+ def test_bool_fromstring(self):
+ v = np.array([True, False, True, False], dtype=np.bool)
+ y = np.fromstring('1 0 -2.3 0.0', sep=' ', dtype=np.bool)
+ assert_array_equal(v, y)
+
+ def test_uint64_fromstring(self):
+ d = np.fromstring("9923372036854775807 104783749223640",
+ dtype=np.uint64, sep=' ')
+ e = np.array([9923372036854775807, 104783749223640], dtype=np.uint64)
+ assert_array_equal(d, e)
+
+ def test_int64_fromstring(self):
+ d = np.fromstring("-25041670086757 104783749223640",
+ dtype=np.int64, sep=' ')
+ e = np.array([-25041670086757, 104783749223640], dtype=np.int64)
+ assert_array_equal(d, e)
+
+ def test_fromstring_count0(self):
+ d = np.fromstring("1,2", sep=",", dtype=np.int64, count=0)
+ assert d.shape == (0,)
+
+ def test_empty_files_text(self, tmp_filename):
+ with open(tmp_filename, 'w') as f:
+ pass
+ y = np.fromfile(tmp_filename)
+ assert_(y.size == 0, "Array not empty")
+
+ def test_empty_files_binary(self, tmp_filename):
+ with open(tmp_filename, 'wb') as f:
+ pass
+ y = np.fromfile(tmp_filename, sep=" ")
+ assert_(y.size == 0, "Array not empty")
+
+ def test_roundtrip_file(self, x, tmp_filename):
+ with open(tmp_filename, 'wb') as f:
+ x.tofile(f)
+ # NB. doesn't work with flush+seek, due to use of C stdio
+ with open(tmp_filename, 'rb') as f:
+ y = np.fromfile(f, dtype=x.dtype)
+ assert_array_equal(y, x.flat)
+
+ def test_roundtrip(self, x, tmp_filename):
+ x.tofile(tmp_filename)
+ y = np.fromfile(tmp_filename, dtype=x.dtype)
+ assert_array_equal(y, x.flat)
+
+ def test_roundtrip_dump_pathlib(self, x, tmp_filename):
+ p = pathlib.Path(tmp_filename)
+ x.dump(p)
+ y = np.load(p, allow_pickle=True)
+ assert_array_equal(y, x)
+
+ def test_roundtrip_binary_str(self, x):
+ s = x.tobytes()
+ y = np.frombuffer(s, dtype=x.dtype)
+ assert_array_equal(y, x.flat)
+
+ s = x.tobytes('F')
+ y = np.frombuffer(s, dtype=x.dtype)
+ assert_array_equal(y, x.flatten('F'))
+
+ def test_roundtrip_str(self, x):
+ x = x.real.ravel()
+ s = "@".join(map(str, x))
+ y = np.fromstring(s, sep="@")
+ nan_mask = ~np.isfinite(x)
+ assert_array_equal(x[nan_mask], y[nan_mask])
+ assert_array_equal(x[~nan_mask], y[~nan_mask])
+
+ def test_roundtrip_repr(self, x):
+ x = x.real.ravel()
+ s = "@".join(repr(x)[11:-1] for x in x)
+ y = np.fromstring(s, sep="@")
+ assert_array_equal(x, y)
+
+ def test_unseekable_fromfile(self, x, tmp_filename):
+ # gh-6246
+ x.tofile(tmp_filename)
+
+ def fail(*args, **kwargs):
+ raise OSError('Can not tell or seek')
+
+ with open(tmp_filename, 'rb', buffering=0) as f:
+ f.seek = fail
+ f.tell = fail
+ assert_raises(OSError, np.fromfile, f, dtype=x.dtype)
+
+ def test_io_open_unbuffered_fromfile(self, x, tmp_filename):
+ # gh-6632
+ x.tofile(tmp_filename)
+ with open(tmp_filename, 'rb', buffering=0) as f:
+ y = np.fromfile(f, dtype=x.dtype)
+ assert_array_equal(y, x.flat)
+
+ def test_largish_file(self, tmp_filename):
+ # check the fallocate path on files > 16MB
+ d = np.zeros(4 * 1024 ** 2)
+ d.tofile(tmp_filename)
+ assert_equal(os.path.getsize(tmp_filename), d.nbytes)
+ assert_array_equal(d, np.fromfile(tmp_filename))
+ # check offset
+ with open(tmp_filename, "r+b") as f:
+ f.seek(d.nbytes)
+ d.tofile(f)
+ assert_equal(os.path.getsize(tmp_filename), d.nbytes * 2)
+ # check append mode (gh-8329)
+ open(tmp_filename, "w").close() # delete file contents
+ with open(tmp_filename, "ab") as f:
+ d.tofile(f)
+ assert_array_equal(d, np.fromfile(tmp_filename))
+ with open(tmp_filename, "ab") as f:
+ d.tofile(f)
+ assert_equal(os.path.getsize(tmp_filename), d.nbytes * 2)
+
+ def test_io_open_buffered_fromfile(self, x, tmp_filename):
+ # gh-6632
+ x.tofile(tmp_filename)
+ with open(tmp_filename, 'rb', buffering=-1) as f:
+ y = np.fromfile(f, dtype=x.dtype)
+ assert_array_equal(y, x.flat)
+
+ def test_file_position_after_fromfile(self, tmp_filename):
+ # gh-4118
+ sizes = [io.DEFAULT_BUFFER_SIZE // 8,
+ io.DEFAULT_BUFFER_SIZE,
+ io.DEFAULT_BUFFER_SIZE * 8]
+
+ for size in sizes:
+ with open(tmp_filename, 'wb') as f:
+ f.seek(size - 1)
+ f.write(b'\0')
+
+ for mode in ['rb', 'r+b']:
+ err_msg = "%d %s" % (size, mode)
+
+ with open(tmp_filename, mode) as f:
+ f.read(2)
+ np.fromfile(f, dtype=np.float64, count=1)
+ pos = f.tell()
+ assert_equal(pos, 10, err_msg=err_msg)
+
+ def test_file_position_after_tofile(self, tmp_filename):
+ # gh-4118
+ sizes = [io.DEFAULT_BUFFER_SIZE // 8,
+ io.DEFAULT_BUFFER_SIZE,
+ io.DEFAULT_BUFFER_SIZE * 8]
+
+ for size in sizes:
+ err_msg = "%d" % (size,)
+
+ with open(tmp_filename, 'wb') as f:
+ f.seek(size - 1)
+ f.write(b'\0')
+ f.seek(10)
+ f.write(b'12')
+ np.array([0], dtype=np.float64).tofile(f)
+ pos = f.tell()
+ assert_equal(pos, 10 + 2 + 8, err_msg=err_msg)
+
+ with open(tmp_filename, 'r+b') as f:
+ f.read(2)
+ f.seek(0, 1) # seek between read&write required by ANSI C
+ np.array([0], dtype=np.float64).tofile(f)
+ pos = f.tell()
+ assert_equal(pos, 10, err_msg=err_msg)
+
+ def test_load_object_array_fromfile(self, tmp_filename):
+ # gh-12300
+ with open(tmp_filename, 'w') as f:
+ # Ensure we have a file with consistent contents
+ pass
+
+ with open(tmp_filename, 'rb') as f:
+ assert_raises_regex(ValueError, "Cannot read into object array",
+ np.fromfile, f, dtype=object)
+
+ assert_raises_regex(ValueError, "Cannot read into object array",
+ np.fromfile, tmp_filename, dtype=object)
+
+ def test_fromfile_offset(self, x, tmp_filename):
+ with open(tmp_filename, 'wb') as f:
+ x.tofile(f)
+
+ with open(tmp_filename, 'rb') as f:
+ y = np.fromfile(f, dtype=x.dtype, offset=0)
+ assert_array_equal(y, x.flat)
+
+ with open(tmp_filename, 'rb') as f:
+ count_items = len(x.flat) // 8
+ offset_items = len(x.flat) // 4
+ offset_bytes = x.dtype.itemsize * offset_items
+ y = np.fromfile(
+ f, dtype=x.dtype, count=count_items, offset=offset_bytes
+ )
+ assert_array_equal(
+ y, x.flat[offset_items:offset_items + count_items]
+ )
+
+ # subsequent seeks should stack
+ offset_bytes = x.dtype.itemsize
+ z = np.fromfile(f, dtype=x.dtype, offset=offset_bytes)
+ assert_array_equal(z, x.flat[offset_items + count_items + 1:])
+
+ with open(tmp_filename, 'wb') as f:
+ x.tofile(f, sep=",")
+
+ with open(tmp_filename, 'rb') as f:
+ assert_raises_regex(
+ TypeError,
+ "'offset' argument only permitted for binary files",
+ np.fromfile, tmp_filename, dtype=x.dtype,
+ sep=",", offset=1)
+
+ @pytest.mark.skipif(IS_PYPY, reason="bug in PyPy's PyNumber_AsSsize_t")
+ def test_fromfile_bad_dup(self, x, tmp_filename):
+ def dup_str(fd):
+ return 'abc'
+
+ def dup_bigint(fd):
+ return 2**68
+
+ old_dup = os.dup
+ try:
+ with open(tmp_filename, 'wb') as f:
+ x.tofile(f)
+ for dup, exc in ((dup_str, TypeError), (dup_bigint, OSError)):
+ os.dup = dup
+ assert_raises(exc, np.fromfile, f)
+ finally:
+ os.dup = old_dup
+
+ def _check_from(self, s, value, filename, **kw):
+ if 'sep' not in kw:
+ y = np.frombuffer(s, **kw)
+ else:
+ y = np.fromstring(s, **kw)
+ assert_array_equal(y, value)
+
+ with open(filename, 'wb') as f:
+ f.write(s)
+ y = np.fromfile(filename, **kw)
+ assert_array_equal(y, value)
+
+ @pytest.fixture(params=["period", "comma"])
+ def decimal_sep_localization(self, request):
+ """
+ Including this fixture in a test will automatically
+ execute it with both types of decimal separator.
+
+ So::
+
+ def test_decimal(decimal_sep_localization):
+ pass
+
+ is equivalent to the following two tests::
+
+ def test_decimal_period_separator():
+ pass
+
+ def test_decimal_comma_separator():
+ with CommaDecimalPointLocale():
+ pass
+ """
+ if request.param == "period":
+ yield
+ elif request.param == "comma":
+ with CommaDecimalPointLocale():
+ yield
+ else:
+ assert False, request.param
+
+ def test_nan(self, tmp_filename, decimal_sep_localization):
+ self._check_from(
+ b"nan +nan -nan NaN nan(foo) +NaN(BAR) -NAN(q_u_u_x_)",
+ [np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan],
+ tmp_filename,
+ sep=' ')
+
+ def test_inf(self, tmp_filename, decimal_sep_localization):
+ self._check_from(
+ b"inf +inf -inf infinity -Infinity iNfInItY -inF",
+ [np.inf, np.inf, -np.inf, np.inf, -np.inf, np.inf, -np.inf],
+ tmp_filename,
+ sep=' ')
+
+ def test_numbers(self, tmp_filename, decimal_sep_localization):
+ self._check_from(
+ b"1.234 -1.234 .3 .3e55 -123133.1231e+133",
+ [1.234, -1.234, .3, .3e55, -123133.1231e+133],
+ tmp_filename,
+ sep=' ')
+
+ def test_binary(self, tmp_filename):
+ self._check_from(
+ b'\x00\x00\x80?\x00\x00\x00@\x00\x00@@\x00\x00\x80@',
+ np.array([1, 2, 3, 4]),
+ tmp_filename,
+ dtype='<f4')
+
+ def test_string(self, tmp_filename):
+ self._check_from(b'1,2,3,4', [1., 2., 3., 4.], tmp_filename, sep=',')
+
+ def test_counted_string(self, tmp_filename, decimal_sep_localization):
+ self._check_from(
+ b'1,2,3,4', [1., 2., 3., 4.], tmp_filename, count=4, sep=',')
+ self._check_from(
+ b'1,2,3,4', [1., 2., 3.], tmp_filename, count=3, sep=',')
+ self._check_from(
+ b'1,2,3,4', [1., 2., 3., 4.], tmp_filename, count=-1, sep=',')
+
+ def test_string_with_ws(self, tmp_filename):
+ self._check_from(
+ b'1 2 3 4 ', [1, 2, 3, 4], tmp_filename, dtype=int, sep=' ')
+
+ def test_counted_string_with_ws(self, tmp_filename):
+ self._check_from(
+ b'1 2 3 4 ', [1, 2, 3], tmp_filename, count=3, dtype=int,
+ sep=' ')
+
+ def test_ascii(self, tmp_filename, decimal_sep_localization):
+ self._check_from(
+ b'1 , 2 , 3 , 4', [1., 2., 3., 4.], tmp_filename, sep=',')
+ self._check_from(
+ b'1,2,3,4', [1., 2., 3., 4.], tmp_filename, dtype=float, sep=',')
+
+ def test_malformed(self, tmp_filename, decimal_sep_localization):
+ with assert_raises(ValueError):
+ self._check_from(
+ b'1.234 1,234', [1.234, 1.], tmp_filename, sep=' ')
+
+ def test_long_sep(self, tmp_filename):
+ self._check_from(
+ b'1_x_3_x_4_x_5', [1, 3, 4, 5], tmp_filename, sep='_x_')
+
+ def test_dtype(self, tmp_filename):
+ v = np.array([1, 2, 3, 4], dtype=np.int_)
+ self._check_from(b'1,2,3,4', v, tmp_filename, sep=',', dtype=np.int_)
+
+ def test_dtype_bool(self, tmp_filename):
+ # can't use _check_from because fromstring can't handle True/False
+ v = np.array([True, False, True, False], dtype=np.bool)
+ s = b'1,0,-2.3,0'
+ with open(tmp_filename, 'wb') as f:
+ f.write(s)
+ y = np.fromfile(tmp_filename, sep=',', dtype=np.bool)
+ assert_(y.dtype == '?')
+ assert_array_equal(y, v)
+
+ def test_tofile_sep(self, tmp_filename, decimal_sep_localization):
+ x = np.array([1.51, 2, 3.51, 4], dtype=float)
+ with open(tmp_filename, 'w') as f:
+ x.tofile(f, sep=',')
+ with open(tmp_filename, 'r') as f:
+ s = f.read()
+ #assert_equal(s, '1.51,2.0,3.51,4.0')
+ y = np.array([float(p) for p in s.split(',')])
+ assert_array_equal(x, y)
+
+ def test_tofile_format(self, tmp_filename, decimal_sep_localization):
+ x = np.array([1.51, 2, 3.51, 4], dtype=float)
+ with open(tmp_filename, 'w') as f:
+ x.tofile(f, sep=',', format='%.2f')
+ with open(tmp_filename, 'r') as f:
+ s = f.read()
+ assert_equal(s, '1.51,2.00,3.51,4.00')
+
+ def test_tofile_cleanup(self, tmp_filename):
+ x = np.zeros((10), dtype=object)
+ with open(tmp_filename, 'wb') as f:
+ assert_raises(OSError, lambda: x.tofile(f, sep=''))
+ # Dup-ed file handle should be closed or remove will fail on Windows OS
+ os.remove(tmp_filename)
+
+ # Also make sure that we close the Python handle
+ assert_raises(OSError, lambda: x.tofile(tmp_filename))
+ os.remove(tmp_filename)
+
+ def test_fromfile_subarray_binary(self, tmp_filename):
+ # Test subarray dtypes which are absorbed into the shape
+ x = np.arange(24, dtype="i4").reshape(2, 3, 4)
+ x.tofile(tmp_filename)
+ res = np.fromfile(tmp_filename, dtype="(3,4)i4")
+ assert_array_equal(x, res)
+
+ x_str = x.tobytes()
+ with pytest.raises(ValueError):
+ # binary fromstring raises
+ np.fromstring(x_str, dtype="(3,4)i4")
+
+ def test_parsing_subarray_unsupported(self, tmp_filename):
+ # We currently do not support parsing subarray dtypes
+ data = "12,42,13," * 50
+ with pytest.raises(ValueError):
+ expected = np.fromstring(data, dtype="(3,)i", sep=",")
+
+ with open(tmp_filename, "w") as f:
+ f.write(data)
+
+ with pytest.raises(ValueError):
+ np.fromfile(tmp_filename, dtype="(3,)i", sep=",")
+
+ def test_read_shorter_than_count_subarray(self, tmp_filename):
+ # Test that requesting more values does not cause any problems
+ # in conjunction with subarray dimensions being absorbed into the
+ # array dimension.
+ expected = np.arange(511 * 10, dtype="i").reshape(-1, 10)
+
+ binary = expected.tobytes()
+ with pytest.raises(ValueError):
+ np.fromstring(binary, dtype="(10,)i", count=10000)
+
+ expected.tofile(tmp_filename)
+ res = np.fromfile(tmp_filename, dtype="(10,)i", count=10000)
+ assert_array_equal(res, expected)
+
+
+class TestFromBuffer:
+ @pytest.mark.parametrize('byteorder', ['<', '>'])
+ @pytest.mark.parametrize('dtype', [float, int, complex])
+ def test_basic(self, byteorder, dtype):
+ dt = np.dtype(dtype).newbyteorder(byteorder)
+ x = (np.random.random((4, 7)) * 5).astype(dt)
+ buf = x.tobytes()
+ assert_array_equal(np.frombuffer(buf, dtype=dt), x.flat)
+
+ @pytest.mark.parametrize("obj", [np.arange(10), b"12345678"])
+ def test_array_base(self, obj):
+ # Objects (including NumPy arrays), which do not use the
+ # `release_buffer` slot should be directly used as a base object.
+ # See also gh-21612
+ new = np.frombuffer(obj)
+ assert new.base is obj
+
+ def test_empty(self):
+ assert_array_equal(np.frombuffer(b''), np.array([]))
+
+ @pytest.mark.skipif(IS_PYPY,
+ reason="PyPy's memoryview currently does not track exports. See: "
+ "https://foss.heptapod.net/pypy/pypy/-/issues/3724")
+ def test_mmap_close(self):
+ # The old buffer protocol was not safe for some things that the new
+ # one is. But `frombuffer` always used the old one for a long time.
+ # Checks that it is safe with the new one (using memoryviews)
+ with tempfile.TemporaryFile(mode='wb') as tmp:
+ tmp.write(b"asdf")
+ tmp.flush()
+ mm = mmap.mmap(tmp.fileno(), 0)
+ arr = np.frombuffer(mm, dtype=np.uint8)
+ with pytest.raises(BufferError):
+ mm.close() # cannot close while array uses the buffer
+ del arr
+ mm.close()
+
+class TestFlat:
+ def setup_method(self):
+ a0 = np.arange(20.0)
+ a = a0.reshape(4, 5)
+ a0.shape = (4, 5)
+ a.flags.writeable = False
+ self.a = a
+ self.b = a[::2, ::2]
+ self.a0 = a0
+ self.b0 = a0[::2, ::2]
+
+ def test_contiguous(self):
+ testpassed = False
+ try:
+ self.a.flat[12] = 100.0
+ except ValueError:
+ testpassed = True
+ assert_(testpassed)
+ assert_(self.a.flat[12] == 12.0)
+
+ def test_discontiguous(self):
+ testpassed = False
+ try:
+ self.b.flat[4] = 100.0
+ except ValueError:
+ testpassed = True
+ assert_(testpassed)
+ assert_(self.b.flat[4] == 12.0)
+
+ def test___array__(self):
+ c = self.a.flat.__array__()
+ d = self.b.flat.__array__()
+ e = self.a0.flat.__array__()
+ f = self.b0.flat.__array__()
+
+ assert_(c.flags.writeable is False)
+ assert_(d.flags.writeable is False)
+ assert_(e.flags.writeable is True)
+ assert_(f.flags.writeable is False)
+ assert_(c.flags.writebackifcopy is False)
+ assert_(d.flags.writebackifcopy is False)
+ assert_(e.flags.writebackifcopy is False)
+ assert_(f.flags.writebackifcopy is False)
+
+ @pytest.mark.skipif(not HAS_REFCOUNT, reason="Python lacks refcounts")
+ def test_refcount(self):
+ # includes regression test for reference count error gh-13165
+ inds = [np.intp(0), np.array([True] * self.a.size), np.array([0]), None]
+ indtype = np.dtype(np.intp)
+ rc_indtype = sys.getrefcount(indtype)
+ for ind in inds:
+ rc_ind = sys.getrefcount(ind)
+ for _ in range(100):
+ try:
+ self.a.flat[ind]
+ except IndexError:
+ pass
+ assert_(abs(sys.getrefcount(ind) - rc_ind) < 50)
+ assert_(abs(sys.getrefcount(indtype) - rc_indtype) < 50)
+
+ def test_index_getset(self):
+ it = np.arange(10).reshape(2, 1, 5).flat
+ with pytest.raises(AttributeError):
+ it.index = 10
+
+ for _ in it:
+ pass
+ # Check the value of `.index` is updated correctly (see also gh-19153)
+ # If the type was incorrect, this would show up on big-endian machines
+ assert it.index == it.base.size
+
+ def test_maxdims(self):
+ # The flat iterator and thus attribute is currently unfortunately
+ # limited to only 32 dimensions (after bumping it to 64 for 2.0)
+ a = np.ones((1,) * 64)
+
+ with pytest.raises(RuntimeError,
+ match=".*32 dimensions but the array has 64"):
+ a.flat
+
+
+class TestResize:
+
+ @_no_tracing
+ def test_basic(self):
+ x = np.array([[1, 0, 0], [0, 1, 0], [0, 0, 1]])
+ if IS_PYPY:
+ x.resize((5, 5), refcheck=False)
+ else:
+ x.resize((5, 5))
+ assert_array_equal(x.flat[:9],
+ np.array([[1, 0, 0], [0, 1, 0], [0, 0, 1]]).flat)
+ assert_array_equal(x[9:].flat, 0)
+
+ def test_check_reference(self):
+ x = np.array([[1, 0, 0], [0, 1, 0], [0, 0, 1]])
+ y = x
+ assert_raises(ValueError, x.resize, (5, 1))
+
+ @_no_tracing
+ def test_int_shape(self):
+ x = np.eye(3)
+ if IS_PYPY:
+ x.resize(3, refcheck=False)
+ else:
+ x.resize(3)
+ assert_array_equal(x, np.eye(3)[0, :])
+
+ def test_none_shape(self):
+ x = np.eye(3)
+ x.resize(None)
+ assert_array_equal(x, np.eye(3))
+ x.resize()
+ assert_array_equal(x, np.eye(3))
+
+ def test_0d_shape(self):
+ # to it multiple times to test it does not break alloc cache gh-9216
+ for i in range(10):
+ x = np.empty((1,))
+ x.resize(())
+ assert_equal(x.shape, ())
+ assert_equal(x.size, 1)
+ x = np.empty(())
+ x.resize((1,))
+ assert_equal(x.shape, (1,))
+ assert_equal(x.size, 1)
+
+ def test_invalid_arguments(self):
+ assert_raises(TypeError, np.eye(3).resize, 'hi')
+ assert_raises(ValueError, np.eye(3).resize, -1)
+ assert_raises(TypeError, np.eye(3).resize, order=1)
+ assert_raises(TypeError, np.eye(3).resize, refcheck='hi')
+
+ @_no_tracing
+ def test_freeform_shape(self):
+ x = np.eye(3)
+ if IS_PYPY:
+ x.resize(3, 2, 1, refcheck=False)
+ else:
+ x.resize(3, 2, 1)
+ assert_(x.shape == (3, 2, 1))
+
+ @_no_tracing
+ def test_zeros_appended(self):
+ x = np.eye(3)
+ if IS_PYPY:
+ x.resize(2, 3, 3, refcheck=False)
+ else:
+ x.resize(2, 3, 3)
+ assert_array_equal(x[0], np.eye(3))
+ assert_array_equal(x[1], np.zeros((3, 3)))
+
+ @_no_tracing
+ def test_obj_obj(self):
+ # check memory is initialized on resize, gh-4857
+ a = np.ones(10, dtype=[('k', object, 2)])
+ if IS_PYPY:
+ a.resize(15, refcheck=False)
+ else:
+ a.resize(15,)
+ assert_equal(a.shape, (15,))
+ assert_array_equal(a['k'][-5:], 0)
+ assert_array_equal(a['k'][:-5], 1)
+
+ def test_empty_view(self):
+ # check that sizes containing a zero don't trigger a reallocate for
+ # already empty arrays
+ x = np.zeros((10, 0), int)
+ x_view = x[...]
+ x_view.resize((0, 10))
+ x_view.resize((0, 100))
+
+ def test_check_weakref(self):
+ x = np.array([[1, 0, 0], [0, 1, 0], [0, 0, 1]])
+ xref = weakref.ref(x)
+ assert_raises(ValueError, x.resize, (5, 1))
+
+
+class TestRecord:
+ def test_field_rename(self):
+ dt = np.dtype([('f', float), ('i', int)])
+ dt.names = ['p', 'q']
+ assert_equal(dt.names, ['p', 'q'])
+
+ def test_multiple_field_name_occurrence(self):
+ def test_dtype_init():
+ np.dtype([("A", "f8"), ("B", "f8"), ("A", "f8")])
+
+ # Error raised when multiple fields have the same name
+ assert_raises(ValueError, test_dtype_init)
+
+ def test_bytes_fields(self):
+ # Bytes are not allowed in field names and not recognized in titles
+ # on Py3
+ assert_raises(TypeError, np.dtype, [(b'a', int)])
+ assert_raises(TypeError, np.dtype, [(('b', b'a'), int)])
+
+ dt = np.dtype([((b'a', 'b'), int)])
+ assert_raises(TypeError, dt.__getitem__, b'a')
+
+ x = np.array([(1,), (2,), (3,)], dtype=dt)
+ assert_raises(IndexError, x.__getitem__, b'a')
+
+ y = x[0]
+ assert_raises(IndexError, y.__getitem__, b'a')
+
+ def test_multiple_field_name_unicode(self):
+ def test_dtype_unicode():
+ np.dtype([("\u20B9", "f8"), ("B", "f8"), ("\u20B9", "f8")])
+
+ # Error raised when multiple fields have the same name(unicode included)
+ assert_raises(ValueError, test_dtype_unicode)
+
+ def test_fromarrays_unicode(self):
+ # A single name string provided to fromarrays() is allowed to be unicode
+ x = np._core.records.fromarrays(
+ [[0], [1]], names='a,b', formats='i4,i4')
+ assert_equal(x['a'][0], 0)
+ assert_equal(x['b'][0], 1)
+
+ def test_unicode_order(self):
+ # Test that we can sort with order as a unicode field name
+ name = 'b'
+ x = np.array([1, 3, 2], dtype=[(name, int)])
+ x.sort(order=name)
+ assert_equal(x['b'], np.array([1, 2, 3]))
+
+ def test_field_names(self):
+ # Test unicode and 8-bit / byte strings can be used
+ a = np.zeros((1,), dtype=[('f1', 'i4'),
+ ('f2', 'i4'),
+ ('f3', [('sf1', 'i4')])])
+ # byte string indexing fails gracefully
+ assert_raises(IndexError, a.__setitem__, b'f1', 1)
+ assert_raises(IndexError, a.__getitem__, b'f1')
+ assert_raises(IndexError, a['f1'].__setitem__, b'sf1', 1)
+ assert_raises(IndexError, a['f1'].__getitem__, b'sf1')
+ b = a.copy()
+ fn1 = 'f1'
+ b[fn1] = 1
+ assert_equal(b[fn1], 1)
+ fnn = 'not at all'
+ assert_raises(ValueError, b.__setitem__, fnn, 1)
+ assert_raises(ValueError, b.__getitem__, fnn)
+ b[0][fn1] = 2
+ assert_equal(b[fn1], 2)
+ # Subfield
+ assert_raises(ValueError, b[0].__setitem__, fnn, 1)
+ assert_raises(ValueError, b[0].__getitem__, fnn)
+ # Subfield
+ fn3 = 'f3'
+ sfn1 = 'sf1'
+ b[fn3][sfn1] = 1
+ assert_equal(b[fn3][sfn1], 1)
+ assert_raises(ValueError, b[fn3].__setitem__, fnn, 1)
+ assert_raises(ValueError, b[fn3].__getitem__, fnn)
+ # multiple subfields
+ fn2 = 'f2'
+ b[fn2] = 3
+
+ assert_equal(b[['f1', 'f2']][0].tolist(), (2, 3))
+ assert_equal(b[['f2', 'f1']][0].tolist(), (3, 2))
+ assert_equal(b[['f1', 'f3']][0].tolist(), (2, (1,)))
+
+ # non-ascii unicode field indexing is well behaved
+ assert_raises(ValueError, a.__setitem__, '\u03e0', 1)
+ assert_raises(ValueError, a.__getitem__, '\u03e0')
+
+ def test_record_hash(self):
+ a = np.array([(1, 2), (1, 2)], dtype='i1,i2')
+ a.flags.writeable = False
+ b = np.array([(1, 2), (3, 4)], dtype=[('num1', 'i1'), ('num2', 'i2')])
+ b.flags.writeable = False
+ c = np.array([(1, 2), (3, 4)], dtype='i1,i2')
+ c.flags.writeable = False
+ assert_(hash(a[0]) == hash(a[1]))
+ assert_(hash(a[0]) == hash(b[0]))
+ assert_(hash(a[0]) != hash(b[1]))
+ assert_(hash(c[0]) == hash(a[0]) and c[0] == a[0])
+
+ def test_record_no_hash(self):
+ a = np.array([(1, 2), (1, 2)], dtype='i1,i2')
+ assert_raises(TypeError, hash, a[0])
+
+ def test_empty_structure_creation(self):
+ # make sure these do not raise errors (gh-5631)
+ np.array([()], dtype={'names': [], 'formats': [],
+ 'offsets': [], 'itemsize': 12})
+ np.array([(), (), (), (), ()], dtype={'names': [], 'formats': [],
+ 'offsets': [], 'itemsize': 12})
+
+ def test_multifield_indexing_view(self):
+ a = np.ones(3, dtype=[('a', 'i4'), ('b', 'f4'), ('c', 'u4')])
+ v = a[['a', 'c']]
+ assert_(v.base is a)
+ assert_(v.dtype == np.dtype({'names': ['a', 'c'],
+ 'formats': ['i4', 'u4'],
+ 'offsets': [0, 8]}))
+ v[:] = (4, 5)
+ assert_equal(a[0].item(), (4, 1, 5))
+
+class TestView:
+ def test_basic(self):
+ x = np.array([(1, 2, 3, 4), (5, 6, 7, 8)],
+ dtype=[('r', np.int8), ('g', np.int8),
+ ('b', np.int8), ('a', np.int8)])
+ # We must be specific about the endianness here:
+ y = x.view(dtype='<i4')
+ # ... and again without the keyword.
+ z = x.view('<i4')
+ assert_array_equal(y, z)
+ assert_array_equal(y, [67305985, 134678021])
+
+
+def _mean(a, **args):
+ return a.mean(**args)
+
+
+def _var(a, **args):
+ return a.var(**args)
+
+
+def _std(a, **args):
+ return a.std(**args)
+
+
+class TestStats:
+
+ funcs = [_mean, _var, _std]
+
+ def setup_method(self):
+ np.random.seed(range(3))
+ self.rmat = np.random.random((4, 5))
+ self.cmat = self.rmat + 1j * self.rmat
+ self.omat = np.array([Decimal(str(r)) for r in self.rmat.flat])
+ self.omat = self.omat.reshape(4, 5)
+
+ def test_python_type(self):
+ for x in (np.float16(1.), 1, 1., 1 + 0j):
+ assert_equal(np.mean([x]), 1.)
+ assert_equal(np.std([x]), 0.)
+ assert_equal(np.var([x]), 0.)
+
+ def test_keepdims(self):
+ mat = np.eye(3)
+ for f in self.funcs:
+ for axis in [0, 1]:
+ res = f(mat, axis=axis, keepdims=True)
+ assert_(res.ndim == mat.ndim)
+ assert_(res.shape[axis] == 1)
+ for axis in [None]:
+ res = f(mat, axis=axis, keepdims=True)
+ assert_(res.shape == (1, 1))
+
+ def test_out(self):
+ mat = np.eye(3)
+ for f in self.funcs:
+ out = np.zeros(3)
+ tgt = f(mat, axis=1)
+ res = f(mat, axis=1, out=out)
+ assert_almost_equal(res, out)
+ assert_almost_equal(res, tgt)
+ out = np.empty(2)
+ assert_raises(ValueError, f, mat, axis=1, out=out)
+ out = np.empty((2, 2))
+ assert_raises(ValueError, f, mat, axis=1, out=out)
+
+ def test_dtype_from_input(self):
+
+ icodes = np.typecodes['AllInteger']
+ fcodes = np.typecodes['AllFloat']
+
+ # object type
+ for f in self.funcs:
+ mat = np.array([[Decimal(1)] * 3] * 3)
+ tgt = mat.dtype.type
+ res = f(mat, axis=1).dtype.type
+ assert_(res is tgt)
+ # scalar case
+ res = type(f(mat, axis=None))
+ assert_(res is Decimal)
+
+ # integer types
+ for f in self.funcs:
+ for c in icodes:
+ mat = np.eye(3, dtype=c)
+ tgt = np.float64
+ res = f(mat, axis=1).dtype.type
+ assert_(res is tgt)
+ # scalar case
+ res = f(mat, axis=None).dtype.type
+ assert_(res is tgt)
+
+ # mean for float types
+ for f in [_mean]:
+ for c in fcodes:
+ mat = np.eye(3, dtype=c)
+ tgt = mat.dtype.type
+ res = f(mat, axis=1).dtype.type
+ assert_(res is tgt)
+ # scalar case
+ res = f(mat, axis=None).dtype.type
+ assert_(res is tgt)
+
+ # var, std for float types
+ for f in [_var, _std]:
+ for c in fcodes:
+ mat = np.eye(3, dtype=c)
+ # deal with complex types
+ tgt = mat.real.dtype.type
+ res = f(mat, axis=1).dtype.type
+ assert_(res is tgt)
+ # scalar case
+ res = f(mat, axis=None).dtype.type
+ assert_(res is tgt)
+
+ def test_dtype_from_dtype(self):
+ mat = np.eye(3)
+
+ # stats for integer types
+ # FIXME:
+ # this needs definition as there are lots places along the line
+ # where type casting may take place.
+
+ # for f in self.funcs:
+ # for c in np.typecodes['AllInteger']:
+ # tgt = np.dtype(c).type
+ # res = f(mat, axis=1, dtype=c).dtype.type
+ # assert_(res is tgt)
+ # # scalar case
+ # res = f(mat, axis=None, dtype=c).dtype.type
+ # assert_(res is tgt)
+
+ # stats for float types
+ for f in self.funcs:
+ for c in np.typecodes['AllFloat']:
+ tgt = np.dtype(c).type
+ res = f(mat, axis=1, dtype=c).dtype.type
+ assert_(res is tgt)
+ # scalar case
+ res = f(mat, axis=None, dtype=c).dtype.type
+ assert_(res is tgt)
+
+ def test_ddof(self):
+ for f in [_var]:
+ for ddof in range(3):
+ dim = self.rmat.shape[1]
+ tgt = f(self.rmat, axis=1) * dim
+ res = f(self.rmat, axis=1, ddof=ddof) * (dim - ddof)
+ for f in [_std]:
+ for ddof in range(3):
+ dim = self.rmat.shape[1]
+ tgt = f(self.rmat, axis=1) * np.sqrt(dim)
+ res = f(self.rmat, axis=1, ddof=ddof) * np.sqrt(dim - ddof)
+ assert_almost_equal(res, tgt)
+ assert_almost_equal(res, tgt)
+
+ def test_ddof_too_big(self):
+ dim = self.rmat.shape[1]
+ for f in [_var, _std]:
+ for ddof in range(dim, dim + 2):
+ with warnings.catch_warnings(record=True) as w:
+ warnings.simplefilter('always')
+ res = f(self.rmat, axis=1, ddof=ddof)
+ assert_(not (res < 0).any())
+ assert_(len(w) > 0)
+ assert_(issubclass(w[0].category, RuntimeWarning))
+
+ def test_empty(self):
+ A = np.zeros((0, 3))
+ for f in self.funcs:
+ for axis in [0, None]:
+ with warnings.catch_warnings(record=True) as w:
+ warnings.simplefilter('always')
+ assert_(np.isnan(f(A, axis=axis)).all())
+ assert_(len(w) > 0)
+ assert_(issubclass(w[0].category, RuntimeWarning))
+ for axis in [1]:
+ with warnings.catch_warnings(record=True) as w:
+ warnings.simplefilter('always')
+ assert_equal(f(A, axis=axis), np.zeros([]))
+
+ def test_mean_values(self):
+ for mat in [self.rmat, self.cmat, self.omat]:
+ for axis in [0, 1]:
+ tgt = mat.sum(axis=axis)
+ res = _mean(mat, axis=axis) * mat.shape[axis]
+ assert_almost_equal(res, tgt)
+ for axis in [None]:
+ tgt = mat.sum(axis=axis)
+ res = _mean(mat, axis=axis) * np.prod(mat.shape)
+ assert_almost_equal(res, tgt)
+
+ def test_mean_float16(self):
+ # This fail if the sum inside mean is done in float16 instead
+ # of float32.
+ assert_(_mean(np.ones(100000, dtype='float16')) == 1)
+
+ def test_mean_axis_error(self):
+ # Ensure that AxisError is raised instead of IndexError when axis is
+ # out of bounds, see gh-15817.
+ with assert_raises(np.exceptions.AxisError):
+ np.arange(10).mean(axis=2)
+
+ def test_mean_where(self):
+ a = np.arange(16).reshape((4, 4))
+ wh_full = np.array([[False, True, False, True],
+ [True, False, True, False],
+ [True, True, False, False],
+ [False, False, True, True]])
+ wh_partial = np.array([[False],
+ [True],
+ [True],
+ [False]])
+ _cases = [(1, True, [1.5, 5.5, 9.5, 13.5]),
+ (0, wh_full, [6., 5., 10., 9.]),
+ (1, wh_full, [2., 5., 8.5, 14.5]),
+ (0, wh_partial, [6., 7., 8., 9.])]
+ for _ax, _wh, _res in _cases:
+ assert_allclose(a.mean(axis=_ax, where=_wh),
+ np.array(_res))
+ assert_allclose(np.mean(a, axis=_ax, where=_wh),
+ np.array(_res))
+
+ a3d = np.arange(16).reshape((2, 2, 4))
+ _wh_partial = np.array([False, True, True, False])
+ _res = [[1.5, 5.5], [9.5, 13.5]]
+ assert_allclose(a3d.mean(axis=2, where=_wh_partial),
+ np.array(_res))
+ assert_allclose(np.mean(a3d, axis=2, where=_wh_partial),
+ np.array(_res))
+
+ with pytest.warns(RuntimeWarning) as w:
+ assert_allclose(a.mean(axis=1, where=wh_partial),
+ np.array([np.nan, 5.5, 9.5, np.nan]))
+ with pytest.warns(RuntimeWarning) as w:
+ assert_equal(a.mean(where=False), np.nan)
+ with pytest.warns(RuntimeWarning) as w:
+ assert_equal(np.mean(a, where=False), np.nan)
+
+ def test_var_values(self):
+ for mat in [self.rmat, self.cmat, self.omat]:
+ for axis in [0, 1, None]:
+ msqr = _mean(mat * mat.conj(), axis=axis)
+ mean = _mean(mat, axis=axis)
+ tgt = msqr - mean * mean.conjugate()
+ res = _var(mat, axis=axis)
+ assert_almost_equal(res, tgt)
+
+ @pytest.mark.parametrize(('complex_dtype', 'ndec'), (
+ ('complex64', 6),
+ ('complex128', 7),
+ ('clongdouble', 7),
+ ))
+ def test_var_complex_values(self, complex_dtype, ndec):
+ # Test fast-paths for every builtin complex type
+ for axis in [0, 1, None]:
+ mat = self.cmat.copy().astype(complex_dtype)
+ msqr = _mean(mat * mat.conj(), axis=axis)
+ mean = _mean(mat, axis=axis)
+ tgt = msqr - mean * mean.conjugate()
+ res = _var(mat, axis=axis)
+ assert_almost_equal(res, tgt, decimal=ndec)
+
+ def test_var_dimensions(self):
+ # _var paths for complex number introduce additions on views that
+ # increase dimensions. Ensure this generalizes to higher dims
+ mat = np.stack([self.cmat] * 3)
+ for axis in [0, 1, 2, -1, None]:
+ msqr = _mean(mat * mat.conj(), axis=axis)
+ mean = _mean(mat, axis=axis)
+ tgt = msqr - mean * mean.conjugate()
+ res = _var(mat, axis=axis)
+ assert_almost_equal(res, tgt)
+
+ def test_var_complex_byteorder(self):
+ # Test that var fast-path does not cause failures for complex arrays
+ # with non-native byteorder
+ cmat = self.cmat.copy().astype('complex128')
+ cmat_swapped = cmat.astype(cmat.dtype.newbyteorder())
+ assert_almost_equal(cmat.var(), cmat_swapped.var())
+
+ def test_var_axis_error(self):
+ # Ensure that AxisError is raised instead of IndexError when axis is
+ # out of bounds, see gh-15817.
+ with assert_raises(np.exceptions.AxisError):
+ np.arange(10).var(axis=2)
+
+ def test_var_where(self):
+ a = np.arange(25).reshape((5, 5))
+ wh_full = np.array([[False, True, False, True, True],
+ [True, False, True, True, False],
+ [True, True, False, False, True],
+ [False, True, True, False, True],
+ [True, False, True, True, False]])
+ wh_partial = np.array([[False],
+ [True],
+ [True],
+ [False],
+ [True]])
+ _cases = [(0, True, [50., 50., 50., 50., 50.]),
+ (1, True, [2., 2., 2., 2., 2.])]
+ for _ax, _wh, _res in _cases:
+ assert_allclose(a.var(axis=_ax, where=_wh),
+ np.array(_res))
+ assert_allclose(np.var(a, axis=_ax, where=_wh),
+ np.array(_res))
+
+ a3d = np.arange(16).reshape((2, 2, 4))
+ _wh_partial = np.array([False, True, True, False])
+ _res = [[0.25, 0.25], [0.25, 0.25]]
+ assert_allclose(a3d.var(axis=2, where=_wh_partial),
+ np.array(_res))
+ assert_allclose(np.var(a3d, axis=2, where=_wh_partial),
+ np.array(_res))
+
+ assert_allclose(np.var(a, axis=1, where=wh_full),
+ np.var(a[wh_full].reshape((5, 3)), axis=1))
+ assert_allclose(np.var(a, axis=0, where=wh_partial),
+ np.var(a[wh_partial[:, 0]], axis=0))
+ with pytest.warns(RuntimeWarning) as w:
+ assert_equal(a.var(where=False), np.nan)
+ with pytest.warns(RuntimeWarning) as w:
+ assert_equal(np.var(a, where=False), np.nan)
+
+ def test_std_values(self):
+ for mat in [self.rmat, self.cmat, self.omat]:
+ for axis in [0, 1, None]:
+ tgt = np.sqrt(_var(mat, axis=axis))
+ res = _std(mat, axis=axis)
+ assert_almost_equal(res, tgt)
+
+ def test_std_where(self):
+ a = np.arange(25).reshape((5, 5))[::-1]
+ whf = np.array([[False, True, False, True, True],
+ [True, False, True, False, True],
+ [True, True, False, True, False],
+ [True, False, True, True, False],
+ [False, True, False, True, True]])
+ whp = np.array([[False],
+ [False],
+ [True],
+ [True],
+ [False]])
+ _cases = [
+ (0, True, 7.07106781 * np.ones(5)),
+ (1, True, 1.41421356 * np.ones(5)),
+ (0, whf,
+ np.array([4.0824829, 8.16496581, 5., 7.39509973, 8.49836586])),
+ (0, whp, 2.5 * np.ones(5))
+ ]
+ for _ax, _wh, _res in _cases:
+ assert_allclose(a.std(axis=_ax, where=_wh), _res)
+ assert_allclose(np.std(a, axis=_ax, where=_wh), _res)
+
+ a3d = np.arange(16).reshape((2, 2, 4))
+ _wh_partial = np.array([False, True, True, False])
+ _res = [[0.5, 0.5], [0.5, 0.5]]
+ assert_allclose(a3d.std(axis=2, where=_wh_partial),
+ np.array(_res))
+ assert_allclose(np.std(a3d, axis=2, where=_wh_partial),
+ np.array(_res))
+
+ assert_allclose(a.std(axis=1, where=whf),
+ np.std(a[whf].reshape((5, 3)), axis=1))
+ assert_allclose(np.std(a, axis=1, where=whf),
+ (a[whf].reshape((5, 3))).std(axis=1))
+ assert_allclose(a.std(axis=0, where=whp),
+ np.std(a[whp[:, 0]], axis=0))
+ assert_allclose(np.std(a, axis=0, where=whp),
+ (a[whp[:, 0]]).std(axis=0))
+ with pytest.warns(RuntimeWarning) as w:
+ assert_equal(a.std(where=False), np.nan)
+ with pytest.warns(RuntimeWarning) as w:
+ assert_equal(np.std(a, where=False), np.nan)
+
+ def test_subclass(self):
+ class TestArray(np.ndarray):
+ def __new__(cls, data, info):
+ result = np.array(data)
+ result = result.view(cls)
+ result.info = info
+ return result
+
+ def __array_finalize__(self, obj):
+ self.info = getattr(obj, "info", '')
+
+ dat = TestArray([[1, 2, 3, 4], [5, 6, 7, 8]], 'jubba')
+ res = dat.mean(1)
+ assert_(res.info == dat.info)
+ res = dat.std(1)
+ assert_(res.info == dat.info)
+ res = dat.var(1)
+ assert_(res.info == dat.info)
+
+
+class TestVdot:
+ def test_basic(self):
+ dt_numeric = np.typecodes['AllFloat'] + np.typecodes['AllInteger']
+ dt_complex = np.typecodes['Complex']
+
+ # test real
+ a = np.eye(3)
+ for dt in dt_numeric + 'O':
+ b = a.astype(dt)
+ res = np.vdot(b, b)
+ assert_(np.isscalar(res))
+ assert_equal(np.vdot(b, b), 3)
+
+ # test complex
+ a = np.eye(3) * 1j
+ for dt in dt_complex + 'O':
+ b = a.astype(dt)
+ res = np.vdot(b, b)
+ assert_(np.isscalar(res))
+ assert_equal(np.vdot(b, b), 3)
+
+ # test boolean
+ b = np.eye(3, dtype=bool)
+ res = np.vdot(b, b)
+ assert_(np.isscalar(res))
+ assert_equal(np.vdot(b, b), True)
+
+ def test_vdot_array_order(self):
+ a = np.array([[1, 2], [3, 4]], order='C')
+ b = np.array([[1, 2], [3, 4]], order='F')
+ res = np.vdot(a, a)
+
+ # integer arrays are exact
+ assert_equal(np.vdot(a, b), res)
+ assert_equal(np.vdot(b, a), res)
+ assert_equal(np.vdot(b, b), res)
+
+ def test_vdot_uncontiguous(self):
+ for size in [2, 1000]:
+ # Different sizes match different branches in vdot.
+ a = np.zeros((size, 2, 2))
+ b = np.zeros((size, 2, 2))
+ a[:, 0, 0] = np.arange(size)
+ b[:, 0, 0] = np.arange(size) + 1
+ # Make a and b uncontiguous:
+ a = a[..., 0]
+ b = b[..., 0]
+
+ assert_equal(np.vdot(a, b),
+ np.vdot(a.flatten(), b.flatten()))
+ assert_equal(np.vdot(a, b.copy()),
+ np.vdot(a.flatten(), b.flatten()))
+ assert_equal(np.vdot(a.copy(), b),
+ np.vdot(a.flatten(), b.flatten()))
+ assert_equal(np.vdot(a.copy('F'), b),
+ np.vdot(a.flatten(), b.flatten()))
+ assert_equal(np.vdot(a, b.copy('F')),
+ np.vdot(a.flatten(), b.flatten()))
+
+
+class TestDot:
+ def setup_method(self):
+ np.random.seed(128)
+ self.A = np.random.rand(4, 2)
+ self.b1 = np.random.rand(2, 1)
+ self.b2 = np.random.rand(2)
+ self.b3 = np.random.rand(1, 2)
+ self.b4 = np.random.rand(4)
+ self.N = 7
+
+ def test_dotmatmat(self):
+ A = self.A
+ res = np.dot(A.transpose(), A)
+ tgt = np.array([[1.45046013, 0.86323640],
+ [0.86323640, 0.84934569]])
+ assert_almost_equal(res, tgt, decimal=self.N)
+
+ def test_dotmatvec(self):
+ A, b1 = self.A, self.b1
+ res = np.dot(A, b1)
+ tgt = np.array([[0.32114320], [0.04889721],
+ [0.15696029], [0.33612621]])
+ assert_almost_equal(res, tgt, decimal=self.N)
+
+ def test_dotmatvec2(self):
+ A, b2 = self.A, self.b2
+ res = np.dot(A, b2)
+ tgt = np.array([0.29677940, 0.04518649, 0.14468333, 0.31039293])
+ assert_almost_equal(res, tgt, decimal=self.N)
+
+ def test_dotvecmat(self):
+ A, b4 = self.A, self.b4
+ res = np.dot(b4, A)
+ tgt = np.array([1.23495091, 1.12222648])
+ assert_almost_equal(res, tgt, decimal=self.N)
+
+ def test_dotvecmat2(self):
+ b3, A = self.b3, self.A
+ res = np.dot(b3, A.transpose())
+ tgt = np.array([[0.58793804, 0.08957460, 0.30605758, 0.62716383]])
+ assert_almost_equal(res, tgt, decimal=self.N)
+
+ def test_dotvecmat3(self):
+ A, b4 = self.A, self.b4
+ res = np.dot(A.transpose(), b4)
+ tgt = np.array([1.23495091, 1.12222648])
+ assert_almost_equal(res, tgt, decimal=self.N)
+
+ def test_dotvecvecouter(self):
+ b1, b3 = self.b1, self.b3
+ res = np.dot(b1, b3)
+ tgt = np.array([[0.20128610, 0.08400440], [0.07190947, 0.03001058]])
+ assert_almost_equal(res, tgt, decimal=self.N)
+
+ def test_dotvecvecinner(self):
+ b1, b3 = self.b1, self.b3
+ res = np.dot(b3, b1)
+ tgt = np.array([[0.23129668]])
+ assert_almost_equal(res, tgt, decimal=self.N)
+
+ def test_dotcolumnvect1(self):
+ b1 = np.ones((3, 1))
+ b2 = [5.3]
+ res = np.dot(b1, b2)
+ tgt = np.array([5.3, 5.3, 5.3])
+ assert_almost_equal(res, tgt, decimal=self.N)
+
+ def test_dotcolumnvect2(self):
+ b1 = np.ones((3, 1)).transpose()
+ b2 = [6.2]
+ res = np.dot(b2, b1)
+ tgt = np.array([6.2, 6.2, 6.2])
+ assert_almost_equal(res, tgt, decimal=self.N)
+
+ def test_dotvecscalar(self):
+ np.random.seed(100)
+ b1 = np.random.rand(1, 1)
+ b2 = np.random.rand(1, 4)
+ res = np.dot(b1, b2)
+ tgt = np.array([[0.15126730, 0.23068496, 0.45905553, 0.00256425]])
+ assert_almost_equal(res, tgt, decimal=self.N)
+
+ def test_dotvecscalar2(self):
+ np.random.seed(100)
+ b1 = np.random.rand(4, 1)
+ b2 = np.random.rand(1, 1)
+ res = np.dot(b1, b2)
+ tgt = np.array([[0.00256425], [0.00131359], [0.00200324], [0.00398638]])
+ assert_almost_equal(res, tgt, decimal=self.N)
+
+ def test_all(self):
+ dims = [(), (1,), (1, 1)]
+ dout = [(), (1,), (1, 1), (1,), (), (1,), (1, 1), (1,), (1, 1)]
+ for dim, (dim1, dim2) in zip(dout, itertools.product(dims, dims)):
+ b1 = np.zeros(dim1)
+ b2 = np.zeros(dim2)
+ res = np.dot(b1, b2)
+ tgt = np.zeros(dim)
+ assert_(res.shape == tgt.shape)
+ assert_almost_equal(res, tgt, decimal=self.N)
+
+ def test_vecobject(self):
+ class Vec:
+ def __init__(self, sequence=None):
+ if sequence is None:
+ sequence = []
+ self.array = np.array(sequence)
+
+ def __add__(self, other):
+ out = Vec()
+ out.array = self.array + other.array
+ return out
+
+ def __sub__(self, other):
+ out = Vec()
+ out.array = self.array - other.array
+ return out
+
+ def __mul__(self, other): # with scalar
+ out = Vec(self.array.copy())
+ out.array *= other
+ return out
+
+ def __rmul__(self, other):
+ return self * other
+
+ U_non_cont = np.transpose([[1., 1.], [1., 2.]])
+ U_cont = np.ascontiguousarray(U_non_cont)
+ x = np.array([Vec([1., 0.]), Vec([0., 1.])])
+ zeros = np.array([Vec([0., 0.]), Vec([0., 0.])])
+ zeros_test = np.dot(U_cont, x) - np.dot(U_non_cont, x)
+ assert_equal(zeros[0].array, zeros_test[0].array)
+ assert_equal(zeros[1].array, zeros_test[1].array)
+
+ def test_dot_2args(self):
+
+ a = np.array([[1, 2], [3, 4]], dtype=float)
+ b = np.array([[1, 0], [1, 1]], dtype=float)
+ c = np.array([[3, 2], [7, 4]], dtype=float)
+
+ d = dot(a, b)
+ assert_allclose(c, d)
+
+ def test_dot_3args(self):
+
+ np.random.seed(22)
+ f = np.random.random_sample((1024, 16))
+ v = np.random.random_sample((16, 32))
+
+ r = np.empty((1024, 32))
+ if HAS_REFCOUNT:
+ orig_refcount = sys.getrefcount(r)
+ for i in range(12):
+ dot(f, v, r)
+ if HAS_REFCOUNT:
+ assert_equal(sys.getrefcount(r), orig_refcount)
+ r2 = dot(f, v, out=None)
+ assert_array_equal(r2, r)
+ assert_(r is dot(f, v, out=r))
+
+ v = v[:, 0].copy() # v.shape == (16,)
+ r = r[:, 0].copy() # r.shape == (1024,)
+ r2 = dot(f, v)
+ assert_(r is dot(f, v, r))
+ assert_array_equal(r2, r)
+
+ def test_dot_3args_errors(self):
+
+ np.random.seed(22)
+ f = np.random.random_sample((1024, 16))
+ v = np.random.random_sample((16, 32))
+
+ r = np.empty((1024, 31))
+ assert_raises(ValueError, dot, f, v, r)
+
+ r = np.empty((1024,))
+ assert_raises(ValueError, dot, f, v, r)
+
+ r = np.empty((32,))
+ assert_raises(ValueError, dot, f, v, r)
+
+ r = np.empty((32, 1024))
+ assert_raises(ValueError, dot, f, v, r)
+ assert_raises(ValueError, dot, f, v, r.T)
+
+ r = np.empty((1024, 64))
+ assert_raises(ValueError, dot, f, v, r[:, ::2])
+ assert_raises(ValueError, dot, f, v, r[:, :32])
+
+ r = np.empty((1024, 32), dtype=np.float32)
+ assert_raises(ValueError, dot, f, v, r)
+
+ r = np.empty((1024, 32), dtype=int)
+ assert_raises(ValueError, dot, f, v, r)
+
+ def test_dot_out_result(self):
+ x = np.ones((), dtype=np.float16)
+ y = np.ones((5,), dtype=np.float16)
+ z = np.zeros((5,), dtype=np.float16)
+ res = x.dot(y, out=z)
+ assert np.array_equal(res, y)
+ assert np.array_equal(z, y)
+
+ def test_dot_out_aliasing(self):
+ x = np.ones((), dtype=np.float16)
+ y = np.ones((5,), dtype=np.float16)
+ z = np.zeros((5,), dtype=np.float16)
+ res = x.dot(y, out=z)
+ z[0] = 2
+ assert np.array_equal(res, z)
+
+ def test_dot_array_order(self):
+ a = np.array([[1, 2], [3, 4]], order='C')
+ b = np.array([[1, 2], [3, 4]], order='F')
+ res = np.dot(a, a)
+
+ # integer arrays are exact
+ assert_equal(np.dot(a, b), res)
+ assert_equal(np.dot(b, a), res)
+ assert_equal(np.dot(b, b), res)
+
+ def test_accelerate_framework_sgemv_fix(self):
+
+ def aligned_array(shape, align, dtype, order='C'):
+ d = dtype(0)
+ N = np.prod(shape)
+ tmp = np.zeros(N * d.nbytes + align, dtype=np.uint8)
+ address = tmp.__array_interface__["data"][0]
+ for offset in range(align):
+ if (address + offset) % align == 0:
+ break
+ tmp = tmp[offset:offset + N * d.nbytes].view(dtype=dtype)
+ return tmp.reshape(shape, order=order)
+
+ def as_aligned(arr, align, dtype, order='C'):
+ aligned = aligned_array(arr.shape, align, dtype, order)
+ aligned[:] = arr[:]
+ return aligned
+
+ def assert_dot_close(A, X, desired):
+ assert_allclose(np.dot(A, X), desired, rtol=1e-5, atol=1e-7)
+
+ m = aligned_array(100, 15, np.float32)
+ s = aligned_array((100, 100), 15, np.float32)
+ np.dot(s, m) # this will always segfault if the bug is present
+
+ testdata = itertools.product((15, 32), (10000,), (200, 89), ('C', 'F'))
+ for align, m, n, a_order in testdata:
+ # Calculation in double precision
+ A_d = np.random.rand(m, n)
+ X_d = np.random.rand(n)
+ desired = np.dot(A_d, X_d)
+ # Calculation with aligned single precision
+ A_f = as_aligned(A_d, align, np.float32, order=a_order)
+ X_f = as_aligned(X_d, align, np.float32)
+ assert_dot_close(A_f, X_f, desired)
+ # Strided A rows
+ A_d_2 = A_d[::2]
+ desired = np.dot(A_d_2, X_d)
+ A_f_2 = A_f[::2]
+ assert_dot_close(A_f_2, X_f, desired)
+ # Strided A columns, strided X vector
+ A_d_22 = A_d_2[:, ::2]
+ X_d_2 = X_d[::2]
+ desired = np.dot(A_d_22, X_d_2)
+ A_f_22 = A_f_2[:, ::2]
+ X_f_2 = X_f[::2]
+ assert_dot_close(A_f_22, X_f_2, desired)
+ # Check the strides are as expected
+ if a_order == 'F':
+ assert_equal(A_f_22.strides, (8, 8 * m))
+ else:
+ assert_equal(A_f_22.strides, (8 * n, 8))
+ assert_equal(X_f_2.strides, (8,))
+ # Strides in A rows + cols only
+ X_f_2c = as_aligned(X_f_2, align, np.float32)
+ assert_dot_close(A_f_22, X_f_2c, desired)
+ # Strides just in A cols
+ A_d_12 = A_d[:, ::2]
+ desired = np.dot(A_d_12, X_d_2)
+ A_f_12 = A_f[:, ::2]
+ assert_dot_close(A_f_12, X_f_2c, desired)
+ # Strides in A cols and X
+ assert_dot_close(A_f_12, X_f_2, desired)
+
+ @pytest.mark.slow
+ @pytest.mark.parametrize("dtype", [np.float64, np.complex128])
+ @requires_memory(free_bytes=18e9) # complex case needs 18GiB+
+ def test_huge_vectordot(self, dtype):
+ # Large vector multiplications are chunked with 32bit BLAS
+ # Test that the chunking does the right thing, see also gh-22262
+ data = np.ones(2**30 + 100, dtype=dtype)
+ res = np.dot(data, data)
+ assert res == 2**30 + 100
+
+ def test_dtype_discovery_fails(self):
+ # See gh-14247, error checking was missing for failed dtype discovery
+ class BadObject:
+ def __array__(self, dtype=None, copy=None):
+ raise TypeError("just this tiny mint leaf")
+
+ with pytest.raises(TypeError):
+ np.dot(BadObject(), BadObject())
+
+ with pytest.raises(TypeError):
+ np.dot(3.0, BadObject())
+
+
+class MatmulCommon:
+ """Common tests for '@' operator and numpy.matmul.
+
+ """
+ # Should work with these types. Will want to add
+ # "O" at some point
+ types = "?bhilqBHILQefdgFDGO"
+
+ def test_exceptions(self):
+ dims = [
+ ((1,), (2,)), # mismatched vector vector
+ ((2, 1,), (2,)), # mismatched matrix vector
+ ((2,), (1, 2)), # mismatched vector matrix
+ ((1, 2), (3, 1)), # mismatched matrix matrix
+ ((1,), ()), # vector scalar
+ ((), (1)), # scalar vector
+ ((1, 1), ()), # matrix scalar
+ ((), (1, 1)), # scalar matrix
+ ((2, 2, 1), (3, 1, 2)), # cannot broadcast
+ ]
+
+ for dt, (dm1, dm2) in itertools.product(self.types, dims):
+ a = np.ones(dm1, dtype=dt)
+ b = np.ones(dm2, dtype=dt)
+ assert_raises(ValueError, self.matmul, a, b)
+
+ def test_shapes(self):
+ dims = [
+ ((1, 1), (2, 1, 1)), # broadcast first argument
+ ((2, 1, 1), (1, 1)), # broadcast second argument
+ ((2, 1, 1), (2, 1, 1)), # matrix stack sizes match
+ ]
+
+ for dt, (dm1, dm2) in itertools.product(self.types, dims):
+ a = np.ones(dm1, dtype=dt)
+ b = np.ones(dm2, dtype=dt)
+ res = self.matmul(a, b)
+ assert_(res.shape == (2, 1, 1))
+
+ # vector vector returns scalars.
+ for dt in self.types:
+ a = np.ones((2,), dtype=dt)
+ b = np.ones((2,), dtype=dt)
+ c = self.matmul(a, b)
+ assert_(np.array(c).shape == ())
+
+ def test_result_types(self):
+ mat = np.ones((1, 1))
+ vec = np.ones((1,))
+ for dt in self.types:
+ m = mat.astype(dt)
+ v = vec.astype(dt)
+ for arg in [(m, v), (v, m), (m, m)]:
+ res = self.matmul(*arg)
+ assert_(res.dtype == dt)
+
+ # vector vector returns scalars
+ if dt != "O":
+ res = self.matmul(v, v)
+ assert_(type(res) is np.dtype(dt).type)
+
+ def test_scalar_output(self):
+ vec1 = np.array([2])
+ vec2 = np.array([3, 4]).reshape(1, -1)
+ tgt = np.array([6, 8])
+ for dt in self.types[1:]:
+ v1 = vec1.astype(dt)
+ v2 = vec2.astype(dt)
+ res = self.matmul(v1, v2)
+ assert_equal(res, tgt)
+ res = self.matmul(v2.T, v1)
+ assert_equal(res, tgt)
+
+ # boolean type
+ vec = np.array([True, True], dtype='?').reshape(1, -1)
+ res = self.matmul(vec[:, 0], vec)
+ assert_equal(res, True)
+
+ def test_vector_vector_values(self):
+ vec1 = np.array([1, 2])
+ vec2 = np.array([3, 4]).reshape(-1, 1)
+ tgt1 = np.array([11])
+ tgt2 = np.array([[3, 6], [4, 8]])
+ for dt in self.types[1:]:
+ v1 = vec1.astype(dt)
+ v2 = vec2.astype(dt)
+ res = self.matmul(v1, v2)
+ assert_equal(res, tgt1)
+ # no broadcast, we must make v1 into a 2d ndarray
+ res = self.matmul(v2, v1.reshape(1, -1))
+ assert_equal(res, tgt2)
+
+ # boolean type
+ vec = np.array([True, True], dtype='?')
+ res = self.matmul(vec, vec)
+ assert_equal(res, True)
+
+ def test_vector_matrix_values(self):
+ vec = np.array([1, 2])
+ mat1 = np.array([[1, 2], [3, 4]])
+ mat2 = np.stack([mat1] * 2, axis=0)
+ tgt1 = np.array([7, 10])
+ tgt2 = np.stack([tgt1] * 2, axis=0)
+ for dt in self.types[1:]:
+ v = vec.astype(dt)
+ m1 = mat1.astype(dt)
+ m2 = mat2.astype(dt)
+ res = self.matmul(v, m1)
+ assert_equal(res, tgt1)
+ res = self.matmul(v, m2)
+ assert_equal(res, tgt2)
+
+ # boolean type
+ vec = np.array([True, False])
+ mat1 = np.array([[True, False], [False, True]])
+ mat2 = np.stack([mat1] * 2, axis=0)
+ tgt1 = np.array([True, False])
+ tgt2 = np.stack([tgt1] * 2, axis=0)
+
+ res = self.matmul(vec, mat1)
+ assert_equal(res, tgt1)
+ res = self.matmul(vec, mat2)
+ assert_equal(res, tgt2)
+
+ def test_matrix_vector_values(self):
+ vec = np.array([1, 2])
+ mat1 = np.array([[1, 2], [3, 4]])
+ mat2 = np.stack([mat1] * 2, axis=0)
+ tgt1 = np.array([5, 11])
+ tgt2 = np.stack([tgt1] * 2, axis=0)
+ for dt in self.types[1:]:
+ v = vec.astype(dt)
+ m1 = mat1.astype(dt)
+ m2 = mat2.astype(dt)
+ res = self.matmul(m1, v)
+ assert_equal(res, tgt1)
+ res = self.matmul(m2, v)
+ assert_equal(res, tgt2)
+
+ # boolean type
+ vec = np.array([True, False])
+ mat1 = np.array([[True, False], [False, True]])
+ mat2 = np.stack([mat1] * 2, axis=0)
+ tgt1 = np.array([True, False])
+ tgt2 = np.stack([tgt1] * 2, axis=0)
+
+ res = self.matmul(vec, mat1)
+ assert_equal(res, tgt1)
+ res = self.matmul(vec, mat2)
+ assert_equal(res, tgt2)
+
+ def test_matrix_matrix_values(self):
+ mat1 = np.array([[1, 2], [3, 4]])
+ mat2 = np.array([[1, 0], [1, 1]])
+ mat12 = np.stack([mat1, mat2], axis=0)
+ mat21 = np.stack([mat2, mat1], axis=0)
+ tgt11 = np.array([[7, 10], [15, 22]])
+ tgt12 = np.array([[3, 2], [7, 4]])
+ tgt21 = np.array([[1, 2], [4, 6]])
+ tgt12_21 = np.stack([tgt12, tgt21], axis=0)
+ tgt11_12 = np.stack((tgt11, tgt12), axis=0)
+ tgt11_21 = np.stack((tgt11, tgt21), axis=0)
+ for dt in self.types[1:]:
+ m1 = mat1.astype(dt)
+ m2 = mat2.astype(dt)
+ m12 = mat12.astype(dt)
+ m21 = mat21.astype(dt)
+
+ # matrix @ matrix
+ res = self.matmul(m1, m2)
+ assert_equal(res, tgt12)
+ res = self.matmul(m2, m1)
+ assert_equal(res, tgt21)
+
+ # stacked @ matrix
+ res = self.matmul(m12, m1)
+ assert_equal(res, tgt11_21)
+
+ # matrix @ stacked
+ res = self.matmul(m1, m12)
+ assert_equal(res, tgt11_12)
+
+ # stacked @ stacked
+ res = self.matmul(m12, m21)
+ assert_equal(res, tgt12_21)
+
+ # boolean type
+ m1 = np.array([[1, 1], [0, 0]], dtype=np.bool)
+ m2 = np.array([[1, 0], [1, 1]], dtype=np.bool)
+ m12 = np.stack([m1, m2], axis=0)
+ m21 = np.stack([m2, m1], axis=0)
+ tgt11 = m1
+ tgt12 = m1
+ tgt21 = np.array([[1, 1], [1, 1]], dtype=np.bool)
+ tgt12_21 = np.stack([tgt12, tgt21], axis=0)
+ tgt11_12 = np.stack((tgt11, tgt12), axis=0)
+ tgt11_21 = np.stack((tgt11, tgt21), axis=0)
+
+ # matrix @ matrix
+ res = self.matmul(m1, m2)
+ assert_equal(res, tgt12)
+ res = self.matmul(m2, m1)
+ assert_equal(res, tgt21)
+
+ # stacked @ matrix
+ res = self.matmul(m12, m1)
+ assert_equal(res, tgt11_21)
+
+ # matrix @ stacked
+ res = self.matmul(m1, m12)
+ assert_equal(res, tgt11_12)
+
+ # stacked @ stacked
+ res = self.matmul(m12, m21)
+ assert_equal(res, tgt12_21)
+
+
+class TestMatmul(MatmulCommon):
+ matmul = np.matmul
+
+ def test_out_arg(self):
+ a = np.ones((5, 2), dtype=float)
+ b = np.array([[1, 3], [5, 7]], dtype=float)
+ tgt = np.dot(a, b)
+
+ # test as positional argument
+ msg = "out positional argument"
+ out = np.zeros((5, 2), dtype=float)
+ self.matmul(a, b, out)
+ assert_array_equal(out, tgt, err_msg=msg)
+
+ # test as keyword argument
+ msg = "out keyword argument"
+ out = np.zeros((5, 2), dtype=float)
+ self.matmul(a, b, out=out)
+ assert_array_equal(out, tgt, err_msg=msg)
+
+ # test out with not allowed type cast (safe casting)
+ msg = "Cannot cast ufunc .* output"
+ out = np.zeros((5, 2), dtype=np.int32)
+ assert_raises_regex(TypeError, msg, self.matmul, a, b, out=out)
+
+ # test out with type upcast to complex
+ out = np.zeros((5, 2), dtype=np.complex128)
+ c = self.matmul(a, b, out=out)
+ assert_(c is out)
+ with suppress_warnings() as sup:
+ sup.filter(ComplexWarning, '')
+ c = c.astype(tgt.dtype)
+ assert_array_equal(c, tgt)
+
+ def test_empty_out(self):
+ # Check that the output cannot be broadcast, so that it cannot be
+ # size zero when the outer dimensions (iterator size) has size zero.
+ arr = np.ones((0, 1, 1))
+ out = np.ones((1, 1, 1))
+ assert self.matmul(arr, arr).shape == (0, 1, 1)
+
+ with pytest.raises(ValueError, match=r"non-broadcastable"):
+ self.matmul(arr, arr, out=out)
+
+ def test_out_contiguous(self):
+ a = np.ones((5, 2), dtype=float)
+ b = np.array([[1, 3], [5, 7]], dtype=float)
+ v = np.array([1, 3], dtype=float)
+ tgt = np.dot(a, b)
+ tgt_mv = np.dot(a, v)
+
+ # test out non-contiguous
+ out = np.ones((5, 2, 2), dtype=float)
+ c = self.matmul(a, b, out=out[..., 0])
+ assert c.base is out
+ assert_array_equal(c, tgt)
+ c = self.matmul(a, v, out=out[:, 0, 0])
+ assert_array_equal(c, tgt_mv)
+ c = self.matmul(v, a.T, out=out[:, 0, 0])
+ assert_array_equal(c, tgt_mv)
+
+ # test out contiguous in only last dim
+ out = np.ones((10, 2), dtype=float)
+ c = self.matmul(a, b, out=out[::2, :])
+ assert_array_equal(c, tgt)
+
+ # test transposes of out, args
+ out = np.ones((5, 2), dtype=float)
+ c = self.matmul(b.T, a.T, out=out.T)
+ assert_array_equal(out, tgt)
+
+ m1 = np.arange(15.).reshape(5, 3)
+ m2 = np.arange(21.).reshape(3, 7)
+ m3 = np.arange(30.).reshape(5, 6)[:, ::2] # non-contiguous
+ vc = np.arange(10.)
+ vr = np.arange(6.)
+ m0 = np.zeros((3, 0))
+
+ @pytest.mark.parametrize('args', (
+ # matrix-matrix
+ (m1, m2), (m2.T, m1.T), (m2.T.copy(), m1.T), (m2.T, m1.T.copy()),
+ # matrix-matrix-transpose, contiguous and non
+ (m1, m1.T), (m1.T, m1), (m1, m3.T), (m3, m1.T),
+ (m3, m3.T), (m3.T, m3),
+ # matrix-matrix non-contiguous
+ (m3, m2), (m2.T, m3.T), (m2.T.copy(), m3.T),
+ # vector-matrix, matrix-vector, contiguous
+ (m1, vr[:3]), (vc[:5], m1), (m1.T, vc[:5]), (vr[:3], m1.T),
+ # vector-matrix, matrix-vector, vector non-contiguous
+ (m1, vr[::2]), (vc[::2], m1), (m1.T, vc[::2]), (vr[::2], m1.T),
+ # vector-matrix, matrix-vector, matrix non-contiguous
+ (m3, vr[:3]), (vc[:5], m3), (m3.T, vc[:5]), (vr[:3], m3.T),
+ # vector-matrix, matrix-vector, both non-contiguous
+ (m3, vr[::2]), (vc[::2], m3), (m3.T, vc[::2]), (vr[::2], m3.T),
+ # size == 0
+ (m0, m0.T), (m0.T, m0), (m1, m0), (m0.T, m1.T),
+ ))
+ def test_dot_equivalent(self, args):
+ r1 = np.matmul(*args)
+ r2 = np.dot(*args)
+ assert_equal(r1, r2)
+
+ r3 = np.matmul(args[0].copy(), args[1].copy())
+ assert_equal(r1, r3)
+
+ # matrix matrix, issue 29164
+ if [len(args[0].shape), len(args[1].shape)] == [2, 2]:
+ out_f = np.zeros((r2.shape[0] * 2, r2.shape[1] * 2), order='F')
+ r4 = np.matmul(*args, out=out_f[::2, ::2])
+ assert_equal(r2, r4)
+
+ def test_matmul_object(self):
+ import fractions
+
+ f = np.vectorize(fractions.Fraction)
+
+ def random_ints():
+ return np.random.randint(1, 1000, size=(10, 3, 3))
+ M1 = f(random_ints(), random_ints())
+ M2 = f(random_ints(), random_ints())
+
+ M3 = self.matmul(M1, M2)
+
+ [N1, N2, N3] = [a.astype(float) for a in [M1, M2, M3]]
+
+ assert_allclose(N3, self.matmul(N1, N2))
+
+ def test_matmul_object_type_scalar(self):
+ from fractions import Fraction as F
+ v = np.array([F(2, 3), F(5, 7)])
+ res = self.matmul(v, v)
+ assert_(type(res) is F)
+
+ def test_matmul_empty(self):
+ a = np.empty((3, 0), dtype=object)
+ b = np.empty((0, 3), dtype=object)
+ c = np.zeros((3, 3))
+ assert_array_equal(np.matmul(a, b), c)
+
+ def test_matmul_exception_multiply(self):
+ # test that matmul fails if `__mul__` is missing
+ class add_not_multiply:
+ def __add__(self, other):
+ return self
+ a = np.full((3, 3), add_not_multiply())
+ with assert_raises(TypeError):
+ b = np.matmul(a, a)
+
+ def test_matmul_exception_add(self):
+ # test that matmul fails if `__add__` is missing
+ class multiply_not_add:
+ def __mul__(self, other):
+ return self
+ a = np.full((3, 3), multiply_not_add())
+ with assert_raises(TypeError):
+ b = np.matmul(a, a)
+
+ def test_matmul_bool(self):
+ # gh-14439
+ a = np.array([[1, 0], [1, 1]], dtype=bool)
+ assert np.max(a.view(np.uint8)) == 1
+ b = np.matmul(a, a)
+ # matmul with boolean output should always be 0, 1
+ assert np.max(b.view(np.uint8)) == 1
+
+ rg = np.random.default_rng(np.random.PCG64(43))
+ d = rg.integers(2, size=4 * 5, dtype=np.int8)
+ d = d.reshape(4, 5) > 0
+ out1 = np.matmul(d, d.reshape(5, 4))
+ out2 = np.dot(d, d.reshape(5, 4))
+ assert_equal(out1, out2)
+
+ c = np.matmul(np.zeros((2, 0), dtype=bool), np.zeros(0, dtype=bool))
+ assert not np.any(c)
+
+
+class TestMatmulOperator(MatmulCommon):
+ import operator
+ matmul = operator.matmul
+
+ def test_array_priority_override(self):
+
+ class A:
+ __array_priority__ = 1000
+
+ def __matmul__(self, other):
+ return "A"
+
+ def __rmatmul__(self, other):
+ return "A"
+
+ a = A()
+ b = np.ones(2)
+ assert_equal(self.matmul(a, b), "A")
+ assert_equal(self.matmul(b, a), "A")
+
+ def test_matmul_raises(self):
+ assert_raises(TypeError, self.matmul, np.int8(5), np.int8(5))
+ assert_raises(TypeError, self.matmul, np.void(b'abc'), np.void(b'abc'))
+ assert_raises(TypeError, self.matmul, np.arange(10), np.void(b'abc'))
+
+
+class TestMatmulInplace:
+ DTYPES = {}
+ for i in MatmulCommon.types:
+ for j in MatmulCommon.types:
+ if np.can_cast(j, i):
+ DTYPES[f"{i}-{j}"] = (np.dtype(i), np.dtype(j))
+
+ @pytest.mark.parametrize("dtype1,dtype2", DTYPES.values(), ids=DTYPES)
+ def test_basic(self, dtype1: np.dtype, dtype2: np.dtype) -> None:
+ a = np.arange(10).reshape(5, 2).astype(dtype1)
+ a_id = id(a)
+ b = np.ones((2, 2), dtype=dtype2)
+
+ ref = a @ b
+ a @= b
+
+ assert id(a) == a_id
+ assert a.dtype == dtype1
+ assert a.shape == (5, 2)
+ if dtype1.kind in "fc":
+ np.testing.assert_allclose(a, ref)
+ else:
+ np.testing.assert_array_equal(a, ref)
+
+ SHAPES = {
+ "2d_large": ((10**5, 10), (10, 10)),
+ "3d_large": ((10**4, 10, 10), (1, 10, 10)),
+ "1d": ((3,), (3,)),
+ "2d_1d": ((3, 3), (3,)),
+ "1d_2d": ((3,), (3, 3)),
+ "2d_broadcast": ((3, 3), (3, 1)),
+ "2d_broadcast_reverse": ((1, 3), (3, 3)),
+ "3d_broadcast1": ((3, 3, 3), (1, 3, 1)),
+ "3d_broadcast2": ((3, 3, 3), (1, 3, 3)),
+ "3d_broadcast3": ((3, 3, 3), (3, 3, 1)),
+ "3d_broadcast_reverse1": ((1, 3, 3), (3, 3, 3)),
+ "3d_broadcast_reverse2": ((3, 1, 3), (3, 3, 3)),
+ "3d_broadcast_reverse3": ((1, 1, 3), (3, 3, 3)),
+ }
+
+ @pytest.mark.parametrize("a_shape,b_shape", SHAPES.values(), ids=SHAPES)
+ def test_shapes(self, a_shape: tuple[int, ...], b_shape: tuple[int, ...]):
+ a_size = np.prod(a_shape)
+ a = np.arange(a_size).reshape(a_shape).astype(np.float64)
+ a_id = id(a)
+
+ b_size = np.prod(b_shape)
+ b = np.arange(b_size).reshape(b_shape)
+
+ ref = a @ b
+ if ref.shape != a_shape:
+ with pytest.raises(ValueError):
+ a @= b
+ return
+ else:
+ a @= b
+
+ assert id(a) == a_id
+ assert a.dtype.type == np.float64
+ assert a.shape == a_shape
+ np.testing.assert_allclose(a, ref)
+
+
+def test_matmul_axes():
+ a = np.arange(3 * 4 * 5).reshape(3, 4, 5)
+ c = np.matmul(a, a, axes=[(-2, -1), (-1, -2), (1, 2)])
+ assert c.shape == (3, 4, 4)
+ d = np.matmul(a, a, axes=[(-2, -1), (-1, -2), (0, 1)])
+ assert d.shape == (4, 4, 3)
+ e = np.swapaxes(d, 0, 2)
+ assert_array_equal(e, c)
+ f = np.matmul(a, np.arange(3), axes=[(1, 0), (0), (0)])
+ assert f.shape == (4, 5)
+
+
+class TestInner:
+
+ def test_inner_type_mismatch(self):
+ c = 1.
+ A = np.array((1, 1), dtype='i,i')
+
+ assert_raises(TypeError, np.inner, c, A)
+ assert_raises(TypeError, np.inner, A, c)
+
+ def test_inner_scalar_and_vector(self):
+ for dt in np.typecodes['AllInteger'] + np.typecodes['AllFloat'] + '?':
+ sca = np.array(3, dtype=dt)[()]
+ vec = np.array([1, 2], dtype=dt)
+ desired = np.array([3, 6], dtype=dt)
+ assert_equal(np.inner(vec, sca), desired)
+ assert_equal(np.inner(sca, vec), desired)
+
+ def test_vecself(self):
+ # Ticket 844.
+ # Inner product of a vector with itself segfaults or give
+ # meaningless result
+ a = np.zeros(shape=(1, 80), dtype=np.float64)
+ p = np.inner(a, a)
+ assert_almost_equal(p, 0, decimal=14)
+
+ def test_inner_product_with_various_contiguities(self):
+ # github issue 6532
+ for dt in np.typecodes['AllInteger'] + np.typecodes['AllFloat'] + '?':
+ # check an inner product involving a matrix transpose
+ A = np.array([[1, 2], [3, 4]], dtype=dt)
+ B = np.array([[1, 3], [2, 4]], dtype=dt)
+ C = np.array([1, 1], dtype=dt)
+ desired = np.array([4, 6], dtype=dt)
+ assert_equal(np.inner(A.T, C), desired)
+ assert_equal(np.inner(C, A.T), desired)
+ assert_equal(np.inner(B, C), desired)
+ assert_equal(np.inner(C, B), desired)
+ # check a matrix product
+ desired = np.array([[7, 10], [15, 22]], dtype=dt)
+ assert_equal(np.inner(A, B), desired)
+ # check the syrk vs. gemm paths
+ desired = np.array([[5, 11], [11, 25]], dtype=dt)
+ assert_equal(np.inner(A, A), desired)
+ assert_equal(np.inner(A, A.copy()), desired)
+ # check an inner product involving an aliased and reversed view
+ a = np.arange(5).astype(dt)
+ b = a[::-1]
+ desired = np.array(10, dtype=dt).item()
+ assert_equal(np.inner(b, a), desired)
+
+ def test_3d_tensor(self):
+ for dt in np.typecodes['AllInteger'] + np.typecodes['AllFloat'] + '?':
+ a = np.arange(24).reshape(2, 3, 4).astype(dt)
+ b = np.arange(24, 48).reshape(2, 3, 4).astype(dt)
+ desired = np.array(
+ [[[[ 158, 182, 206],
+ [ 230, 254, 278]],
+
+ [[ 566, 654, 742],
+ [ 830, 918, 1006]],
+
+ [[ 974, 1126, 1278],
+ [1430, 1582, 1734]]],
+
+ [[[1382, 1598, 1814],
+ [2030, 2246, 2462]],
+
+ [[1790, 2070, 2350],
+ [2630, 2910, 3190]],
+
+ [[2198, 2542, 2886],
+ [3230, 3574, 3918]]]]
+ ).astype(dt)
+ assert_equal(np.inner(a, b), desired)
+ assert_equal(np.inner(b, a).transpose(2, 3, 0, 1), desired)
+
+
+class TestChoose:
+ def setup_method(self):
+ self.x = 2 * np.ones((3,), dtype=int)
+ self.y = 3 * np.ones((3,), dtype=int)
+ self.x2 = 2 * np.ones((2, 3), dtype=int)
+ self.y2 = 3 * np.ones((2, 3), dtype=int)
+ self.ind = [0, 0, 1]
+
+ def test_basic(self):
+ A = np.choose(self.ind, (self.x, self.y))
+ assert_equal(A, [2, 2, 3])
+
+ def test_broadcast1(self):
+ A = np.choose(self.ind, (self.x2, self.y2))
+ assert_equal(A, [[2, 2, 3], [2, 2, 3]])
+
+ def test_broadcast2(self):
+ A = np.choose(self.ind, (self.x, self.y2))
+ assert_equal(A, [[2, 2, 3], [2, 2, 3]])
+
+ @pytest.mark.parametrize("ops",
+ [(1000, np.array([1], dtype=np.uint8)),
+ (-1, np.array([1], dtype=np.uint8)),
+ (1., np.float32(3)),
+ (1., np.array([3], dtype=np.float32))],)
+ def test_output_dtype(self, ops):
+ expected_dt = np.result_type(*ops)
+ assert np.choose([0], ops).dtype == expected_dt
+
+ def test_dimension_and_args_limit(self):
+ # Maxdims for the legacy iterator is 32, but the maximum number
+ # of arguments is actually larger (a itself also counts here)
+ a = np.ones((1,) * 32, dtype=np.intp)
+ res = a.choose([0, a] + [2] * 61)
+ with pytest.raises(ValueError,
+ match="Need at least 0 and at most 64 array objects"):
+ a.choose([0, a] + [2] * 62)
+
+ assert_array_equal(res, a)
+ # Choose is unfortunately limited to 32 dims as of NumPy 2.0
+ a = np.ones((1,) * 60, dtype=np.intp)
+ with pytest.raises(RuntimeError,
+ match=".*32 dimensions but the array has 60"):
+ a.choose([a, a])
+
+
+class TestRepeat:
+ def setup_method(self):
+ self.m = np.array([1, 2, 3, 4, 5, 6])
+ self.m_rect = self.m.reshape((2, 3))
+
+ def test_basic(self):
+ A = np.repeat(self.m, [1, 3, 2, 1, 1, 2])
+ assert_equal(A, [1, 2, 2, 2, 3,
+ 3, 4, 5, 6, 6])
+
+ def test_broadcast1(self):
+ A = np.repeat(self.m, 2)
+ assert_equal(A, [1, 1, 2, 2, 3, 3,
+ 4, 4, 5, 5, 6, 6])
+
+ def test_axis_spec(self):
+ A = np.repeat(self.m_rect, [2, 1], axis=0)
+ assert_equal(A, [[1, 2, 3],
+ [1, 2, 3],
+ [4, 5, 6]])
+
+ A = np.repeat(self.m_rect, [1, 3, 2], axis=1)
+ assert_equal(A, [[1, 2, 2, 2, 3, 3],
+ [4, 5, 5, 5, 6, 6]])
+
+ def test_broadcast2(self):
+ A = np.repeat(self.m_rect, 2, axis=0)
+ assert_equal(A, [[1, 2, 3],
+ [1, 2, 3],
+ [4, 5, 6],
+ [4, 5, 6]])
+
+ A = np.repeat(self.m_rect, 2, axis=1)
+ assert_equal(A, [[1, 1, 2, 2, 3, 3],
+ [4, 4, 5, 5, 6, 6]])
+
+
+# TODO: test for multidimensional
+NEIGH_MODE = {'zero': 0, 'one': 1, 'constant': 2, 'circular': 3, 'mirror': 4}
+
+
+@pytest.mark.parametrize('dt', [float, Decimal], ids=['float', 'object'])
+class TestNeighborhoodIter:
+ # Simple, 2d tests
+ def test_simple2d(self, dt):
+ # Test zero and one padding for simple data type
+ x = np.array([[0, 1], [2, 3]], dtype=dt)
+ r = [np.array([[0, 0, 0], [0, 0, 1]], dtype=dt),
+ np.array([[0, 0, 0], [0, 1, 0]], dtype=dt),
+ np.array([[0, 0, 1], [0, 2, 3]], dtype=dt),
+ np.array([[0, 1, 0], [2, 3, 0]], dtype=dt)]
+ l = _multiarray_tests.test_neighborhood_iterator(
+ x, [-1, 0, -1, 1], x[0], NEIGH_MODE['zero'])
+ assert_array_equal(l, r)
+
+ r = [np.array([[1, 1, 1], [1, 0, 1]], dtype=dt),
+ np.array([[1, 1, 1], [0, 1, 1]], dtype=dt),
+ np.array([[1, 0, 1], [1, 2, 3]], dtype=dt),
+ np.array([[0, 1, 1], [2, 3, 1]], dtype=dt)]
+ l = _multiarray_tests.test_neighborhood_iterator(
+ x, [-1, 0, -1, 1], x[0], NEIGH_MODE['one'])
+ assert_array_equal(l, r)
+
+ r = [np.array([[4, 4, 4], [4, 0, 1]], dtype=dt),
+ np.array([[4, 4, 4], [0, 1, 4]], dtype=dt),
+ np.array([[4, 0, 1], [4, 2, 3]], dtype=dt),
+ np.array([[0, 1, 4], [2, 3, 4]], dtype=dt)]
+ l = _multiarray_tests.test_neighborhood_iterator(
+ x, [-1, 0, -1, 1], 4, NEIGH_MODE['constant'])
+ assert_array_equal(l, r)
+
+ # Test with start in the middle
+ r = [np.array([[4, 0, 1], [4, 2, 3]], dtype=dt),
+ np.array([[0, 1, 4], [2, 3, 4]], dtype=dt)]
+ l = _multiarray_tests.test_neighborhood_iterator(
+ x, [-1, 0, -1, 1], 4, NEIGH_MODE['constant'], 2)
+ assert_array_equal(l, r)
+
+ def test_mirror2d(self, dt):
+ x = np.array([[0, 1], [2, 3]], dtype=dt)
+ r = [np.array([[0, 0, 1], [0, 0, 1]], dtype=dt),
+ np.array([[0, 1, 1], [0, 1, 1]], dtype=dt),
+ np.array([[0, 0, 1], [2, 2, 3]], dtype=dt),
+ np.array([[0, 1, 1], [2, 3, 3]], dtype=dt)]
+ l = _multiarray_tests.test_neighborhood_iterator(
+ x, [-1, 0, -1, 1], x[0], NEIGH_MODE['mirror'])
+ assert_array_equal(l, r)
+
+ # Simple, 1d tests
+ def test_simple(self, dt):
+ # Test padding with constant values
+ x = np.linspace(1, 5, 5).astype(dt)
+ r = [[0, 1, 2], [1, 2, 3], [2, 3, 4], [3, 4, 5], [4, 5, 0]]
+ l = _multiarray_tests.test_neighborhood_iterator(
+ x, [-1, 1], x[0], NEIGH_MODE['zero'])
+ assert_array_equal(l, r)
+
+ r = [[1, 1, 2], [1, 2, 3], [2, 3, 4], [3, 4, 5], [4, 5, 1]]
+ l = _multiarray_tests.test_neighborhood_iterator(
+ x, [-1, 1], x[0], NEIGH_MODE['one'])
+ assert_array_equal(l, r)
+
+ r = [[x[4], 1, 2], [1, 2, 3], [2, 3, 4], [3, 4, 5], [4, 5, x[4]]]
+ l = _multiarray_tests.test_neighborhood_iterator(
+ x, [-1, 1], x[4], NEIGH_MODE['constant'])
+ assert_array_equal(l, r)
+
+ # Test mirror modes
+ def test_mirror(self, dt):
+ x = np.linspace(1, 5, 5).astype(dt)
+ r = np.array([[2, 1, 1, 2, 3], [1, 1, 2, 3, 4], [1, 2, 3, 4, 5],
+ [2, 3, 4, 5, 5], [3, 4, 5, 5, 4]], dtype=dt)
+ l = _multiarray_tests.test_neighborhood_iterator(
+ x, [-2, 2], x[1], NEIGH_MODE['mirror'])
+ assert_([i.dtype == dt for i in l])
+ assert_array_equal(l, r)
+
+ # Circular mode
+ def test_circular(self, dt):
+ x = np.linspace(1, 5, 5).astype(dt)
+ r = np.array([[4, 5, 1, 2, 3], [5, 1, 2, 3, 4], [1, 2, 3, 4, 5],
+ [2, 3, 4, 5, 1], [3, 4, 5, 1, 2]], dtype=dt)
+ l = _multiarray_tests.test_neighborhood_iterator(
+ x, [-2, 2], x[0], NEIGH_MODE['circular'])
+ assert_array_equal(l, r)
+
+
+# Test stacking neighborhood iterators
+class TestStackedNeighborhoodIter:
+ # Simple, 1d test: stacking 2 constant-padded neigh iterators
+ def test_simple_const(self):
+ dt = np.float64
+ # Test zero and one padding for simple data type
+ x = np.array([1, 2, 3], dtype=dt)
+ r = [np.array([0], dtype=dt),
+ np.array([0], dtype=dt),
+ np.array([1], dtype=dt),
+ np.array([2], dtype=dt),
+ np.array([3], dtype=dt),
+ np.array([0], dtype=dt),
+ np.array([0], dtype=dt)]
+ l = _multiarray_tests.test_neighborhood_iterator_oob(
+ x, [-2, 4], NEIGH_MODE['zero'], [0, 0], NEIGH_MODE['zero'])
+ assert_array_equal(l, r)
+
+ r = [np.array([1, 0, 1], dtype=dt),
+ np.array([0, 1, 2], dtype=dt),
+ np.array([1, 2, 3], dtype=dt),
+ np.array([2, 3, 0], dtype=dt),
+ np.array([3, 0, 1], dtype=dt)]
+ l = _multiarray_tests.test_neighborhood_iterator_oob(
+ x, [-1, 3], NEIGH_MODE['zero'], [-1, 1], NEIGH_MODE['one'])
+ assert_array_equal(l, r)
+
+ # 2nd simple, 1d test: stacking 2 neigh iterators, mixing const padding and
+ # mirror padding
+ def test_simple_mirror(self):
+ dt = np.float64
+ # Stacking zero on top of mirror
+ x = np.array([1, 2, 3], dtype=dt)
+ r = [np.array([0, 1, 1], dtype=dt),
+ np.array([1, 1, 2], dtype=dt),
+ np.array([1, 2, 3], dtype=dt),
+ np.array([2, 3, 3], dtype=dt),
+ np.array([3, 3, 0], dtype=dt)]
+ l = _multiarray_tests.test_neighborhood_iterator_oob(
+ x, [-1, 3], NEIGH_MODE['mirror'], [-1, 1], NEIGH_MODE['zero'])
+ assert_array_equal(l, r)
+
+ # Stacking mirror on top of zero
+ x = np.array([1, 2, 3], dtype=dt)
+ r = [np.array([1, 0, 0], dtype=dt),
+ np.array([0, 0, 1], dtype=dt),
+ np.array([0, 1, 2], dtype=dt),
+ np.array([1, 2, 3], dtype=dt),
+ np.array([2, 3, 0], dtype=dt)]
+ l = _multiarray_tests.test_neighborhood_iterator_oob(
+ x, [-1, 3], NEIGH_MODE['zero'], [-2, 0], NEIGH_MODE['mirror'])
+ assert_array_equal(l, r)
+
+ # Stacking mirror on top of zero: 2nd
+ x = np.array([1, 2, 3], dtype=dt)
+ r = [np.array([0, 1, 2], dtype=dt),
+ np.array([1, 2, 3], dtype=dt),
+ np.array([2, 3, 0], dtype=dt),
+ np.array([3, 0, 0], dtype=dt),
+ np.array([0, 0, 3], dtype=dt)]
+ l = _multiarray_tests.test_neighborhood_iterator_oob(
+ x, [-1, 3], NEIGH_MODE['zero'], [0, 2], NEIGH_MODE['mirror'])
+ assert_array_equal(l, r)
+
+ # Stacking mirror on top of zero: 3rd
+ x = np.array([1, 2, 3], dtype=dt)
+ r = [np.array([1, 0, 0, 1, 2], dtype=dt),
+ np.array([0, 0, 1, 2, 3], dtype=dt),
+ np.array([0, 1, 2, 3, 0], dtype=dt),
+ np.array([1, 2, 3, 0, 0], dtype=dt),
+ np.array([2, 3, 0, 0, 3], dtype=dt)]
+ l = _multiarray_tests.test_neighborhood_iterator_oob(
+ x, [-1, 3], NEIGH_MODE['zero'], [-2, 2], NEIGH_MODE['mirror'])
+ assert_array_equal(l, r)
+
+ # 3rd simple, 1d test: stacking 2 neigh iterators, mixing const padding and
+ # circular padding
+ def test_simple_circular(self):
+ dt = np.float64
+ # Stacking zero on top of mirror
+ x = np.array([1, 2, 3], dtype=dt)
+ r = [np.array([0, 3, 1], dtype=dt),
+ np.array([3, 1, 2], dtype=dt),
+ np.array([1, 2, 3], dtype=dt),
+ np.array([2, 3, 1], dtype=dt),
+ np.array([3, 1, 0], dtype=dt)]
+ l = _multiarray_tests.test_neighborhood_iterator_oob(
+ x, [-1, 3], NEIGH_MODE['circular'], [-1, 1], NEIGH_MODE['zero'])
+ assert_array_equal(l, r)
+
+ # Stacking mirror on top of zero
+ x = np.array([1, 2, 3], dtype=dt)
+ r = [np.array([3, 0, 0], dtype=dt),
+ np.array([0, 0, 1], dtype=dt),
+ np.array([0, 1, 2], dtype=dt),
+ np.array([1, 2, 3], dtype=dt),
+ np.array([2, 3, 0], dtype=dt)]
+ l = _multiarray_tests.test_neighborhood_iterator_oob(
+ x, [-1, 3], NEIGH_MODE['zero'], [-2, 0], NEIGH_MODE['circular'])
+ assert_array_equal(l, r)
+
+ # Stacking mirror on top of zero: 2nd
+ x = np.array([1, 2, 3], dtype=dt)
+ r = [np.array([0, 1, 2], dtype=dt),
+ np.array([1, 2, 3], dtype=dt),
+ np.array([2, 3, 0], dtype=dt),
+ np.array([3, 0, 0], dtype=dt),
+ np.array([0, 0, 1], dtype=dt)]
+ l = _multiarray_tests.test_neighborhood_iterator_oob(
+ x, [-1, 3], NEIGH_MODE['zero'], [0, 2], NEIGH_MODE['circular'])
+ assert_array_equal(l, r)
+
+ # Stacking mirror on top of zero: 3rd
+ x = np.array([1, 2, 3], dtype=dt)
+ r = [np.array([3, 0, 0, 1, 2], dtype=dt),
+ np.array([0, 0, 1, 2, 3], dtype=dt),
+ np.array([0, 1, 2, 3, 0], dtype=dt),
+ np.array([1, 2, 3, 0, 0], dtype=dt),
+ np.array([2, 3, 0, 0, 1], dtype=dt)]
+ l = _multiarray_tests.test_neighborhood_iterator_oob(
+ x, [-1, 3], NEIGH_MODE['zero'], [-2, 2], NEIGH_MODE['circular'])
+ assert_array_equal(l, r)
+
+ # 4th simple, 1d test: stacking 2 neigh iterators, but with lower iterator
+ # being strictly within the array
+ def test_simple_strict_within(self):
+ dt = np.float64
+ # Stacking zero on top of zero, first neighborhood strictly inside the
+ # array
+ x = np.array([1, 2, 3], dtype=dt)
+ r = [np.array([1, 2, 3, 0], dtype=dt)]
+ l = _multiarray_tests.test_neighborhood_iterator_oob(
+ x, [1, 1], NEIGH_MODE['zero'], [-1, 2], NEIGH_MODE['zero'])
+ assert_array_equal(l, r)
+
+ # Stacking mirror on top of zero, first neighborhood strictly inside the
+ # array
+ x = np.array([1, 2, 3], dtype=dt)
+ r = [np.array([1, 2, 3, 3], dtype=dt)]
+ l = _multiarray_tests.test_neighborhood_iterator_oob(
+ x, [1, 1], NEIGH_MODE['zero'], [-1, 2], NEIGH_MODE['mirror'])
+ assert_array_equal(l, r)
+
+ # Stacking mirror on top of zero, first neighborhood strictly inside the
+ # array
+ x = np.array([1, 2, 3], dtype=dt)
+ r = [np.array([1, 2, 3, 1], dtype=dt)]
+ l = _multiarray_tests.test_neighborhood_iterator_oob(
+ x, [1, 1], NEIGH_MODE['zero'], [-1, 2], NEIGH_MODE['circular'])
+ assert_array_equal(l, r)
+
+class TestWarnings:
+
+ def test_complex_warning(self):
+ x = np.array([1, 2])
+ y = np.array([1 - 2j, 1 + 2j])
+
+ with warnings.catch_warnings():
+ warnings.simplefilter("error", ComplexWarning)
+ assert_raises(ComplexWarning, x.__setitem__, slice(None), y)
+ assert_equal(x, [1, 2])
+
+
+class TestMinScalarType:
+
+ def test_usigned_shortshort(self):
+ dt = np.min_scalar_type(2**8 - 1)
+ wanted = np.dtype('uint8')
+ assert_equal(wanted, dt)
+
+ def test_usigned_short(self):
+ dt = np.min_scalar_type(2**16 - 1)
+ wanted = np.dtype('uint16')
+ assert_equal(wanted, dt)
+
+ def test_usigned_int(self):
+ dt = np.min_scalar_type(2**32 - 1)
+ wanted = np.dtype('uint32')
+ assert_equal(wanted, dt)
+
+ def test_usigned_longlong(self):
+ dt = np.min_scalar_type(2**63 - 1)
+ wanted = np.dtype('uint64')
+ assert_equal(wanted, dt)
+
+ def test_object(self):
+ dt = np.min_scalar_type(2**64)
+ wanted = np.dtype('O')
+ assert_equal(wanted, dt)
+
+
+from numpy._core._internal import _dtype_from_pep3118
+
+
+class TestPEP3118Dtype:
+ def _check(self, spec, wanted):
+ dt = np.dtype(wanted)
+ actual = _dtype_from_pep3118(spec)
+ assert_equal(actual, dt,
+ err_msg=f"spec {spec!r} != dtype {wanted!r}")
+
+ def test_native_padding(self):
+ align = np.dtype('i').alignment
+ for j in range(8):
+ if j == 0:
+ s = 'bi'
+ else:
+ s = 'b%dxi' % j
+ self._check('@' + s, {'f0': ('i1', 0),
+ 'f1': ('i', align * (1 + j // align))})
+ self._check('=' + s, {'f0': ('i1', 0),
+ 'f1': ('i', 1 + j)})
+
+ def test_native_padding_2(self):
+ # Native padding should work also for structs and sub-arrays
+ self._check('x3T{xi}', {'f0': (({'f0': ('i', 4)}, (3,)), 4)})
+ self._check('^x3T{xi}', {'f0': (({'f0': ('i', 1)}, (3,)), 1)})
+
+ def test_trailing_padding(self):
+ # Trailing padding should be included, *and*, the item size
+ # should match the alignment if in aligned mode
+ align = np.dtype('i').alignment
+ size = np.dtype('i').itemsize
+
+ def aligned(n):
+ return align * (1 + (n - 1) // align)
+
+ base = {"formats": ['i'], "names": ['f0']}
+
+ self._check('ix', dict(itemsize=aligned(size + 1), **base))
+ self._check('ixx', dict(itemsize=aligned(size + 2), **base))
+ self._check('ixxx', dict(itemsize=aligned(size + 3), **base))
+ self._check('ixxxx', dict(itemsize=aligned(size + 4), **base))
+ self._check('i7x', dict(itemsize=aligned(size + 7), **base))
+
+ self._check('^ix', dict(itemsize=size + 1, **base))
+ self._check('^ixx', dict(itemsize=size + 2, **base))
+ self._check('^ixxx', dict(itemsize=size + 3, **base))
+ self._check('^ixxxx', dict(itemsize=size + 4, **base))
+ self._check('^i7x', dict(itemsize=size + 7, **base))
+
+ def test_native_padding_3(self):
+ dt = np.dtype(
+ [('a', 'b'), ('b', 'i'),
+ ('sub', np.dtype('b,i')), ('c', 'i')],
+ align=True)
+ self._check("T{b:a:xxxi:b:T{b:f0:=i:f1:}:sub:xxxi:c:}", dt)
+
+ dt = np.dtype(
+ [('a', 'b'), ('b', 'i'), ('c', 'b'), ('d', 'b'),
+ ('e', 'b'), ('sub', np.dtype('b,i', align=True))])
+ self._check("T{b:a:=i:b:b:c:b:d:b:e:T{b:f0:xxxi:f1:}:sub:}", dt)
+
+ def test_padding_with_array_inside_struct(self):
+ dt = np.dtype(
+ [('a', 'b'), ('b', 'i'), ('c', 'b', (3,)),
+ ('d', 'i')],
+ align=True)
+ self._check("T{b:a:xxxi:b:3b:c:xi:d:}", dt)
+
+ def test_byteorder_inside_struct(self):
+ # The byte order after @T{=i} should be '=', not '@'.
+ # Check this by noting the absence of native alignment.
+ self._check('@T{^i}xi', {'f0': ({'f0': ('i', 0)}, 0),
+ 'f1': ('i', 5)})
+
+ def test_intra_padding(self):
+ # Natively aligned sub-arrays may require some internal padding
+ align = np.dtype('i').alignment
+ size = np.dtype('i').itemsize
+
+ def aligned(n):
+ return (align * (1 + (n - 1) // align))
+
+ self._check('(3)T{ix}', ({
+ "names": ['f0'],
+ "formats": ['i'],
+ "offsets": [0],
+ "itemsize": aligned(size + 1)
+ }, (3,)))
+
+ def test_char_vs_string(self):
+ dt = np.dtype('c')
+ self._check('c', dt)
+
+ dt = np.dtype([('f0', 'S1', (4,)), ('f1', 'S4')])
+ self._check('4c4s', dt)
+
+ def test_field_order(self):
+ # gh-9053 - previously, we relied on dictionary key order
+ self._check("(0)I:a:f:b:", [('a', 'I', (0,)), ('b', 'f')])
+ self._check("(0)I:b:f:a:", [('b', 'I', (0,)), ('a', 'f')])
+
+ def test_unnamed_fields(self):
+ self._check('ii', [('f0', 'i'), ('f1', 'i')])
+ self._check('ii:f0:', [('f1', 'i'), ('f0', 'i')])
+
+ self._check('i', 'i')
+ self._check('i:f0:', [('f0', 'i')])
+
+
+class TestNewBufferProtocol:
+ """ Test PEP3118 buffers """
+
+ def _check_roundtrip(self, obj):
+ obj = np.asarray(obj)
+ x = memoryview(obj)
+ y = np.asarray(x)
+ y2 = np.array(x)
+ assert_(not y.flags.owndata)
+ assert_(y2.flags.owndata)
+
+ assert_equal(y.dtype, obj.dtype)
+ assert_equal(y.shape, obj.shape)
+ assert_array_equal(obj, y)
+
+ assert_equal(y2.dtype, obj.dtype)
+ assert_equal(y2.shape, obj.shape)
+ assert_array_equal(obj, y2)
+
+ def test_roundtrip(self):
+ x = np.array([1, 2, 3, 4, 5], dtype='i4')
+ self._check_roundtrip(x)
+
+ x = np.array([[1, 2], [3, 4]], dtype=np.float64)
+ self._check_roundtrip(x)
+
+ x = np.zeros((3, 3, 3), dtype=np.float32)[:, 0, :]
+ self._check_roundtrip(x)
+
+ dt = [('a', 'b'),
+ ('b', 'h'),
+ ('c', 'i'),
+ ('d', 'l'),
+ ('dx', 'q'),
+ ('e', 'B'),
+ ('f', 'H'),
+ ('g', 'I'),
+ ('h', 'L'),
+ ('hx', 'Q'),
+ ('i', np.single),
+ ('j', np.double),
+ ('k', np.longdouble),
+ ('ix', np.csingle),
+ ('jx', np.cdouble),
+ ('kx', np.clongdouble),
+ ('l', 'S4'),
+ ('m', 'U4'),
+ ('n', 'V3'),
+ ('o', '?'),
+ ('p', np.half),
+ ]
+ x = np.array(
+ [(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
+ b'aaaa', 'bbbb', b'xxx', True, 1.0)],
+ dtype=dt)
+ self._check_roundtrip(x)
+
+ x = np.array(([[1, 2], [3, 4]],), dtype=[('a', (int, (2, 2)))])
+ self._check_roundtrip(x)
+
+ x = np.array([1, 2, 3], dtype='>i2')
+ self._check_roundtrip(x)
+
+ x = np.array([1, 2, 3], dtype='<i2')
+ self._check_roundtrip(x)
+
+ x = np.array([1, 2, 3], dtype='>i4')
+ self._check_roundtrip(x)
+
+ x = np.array([1, 2, 3], dtype='<i4')
+ self._check_roundtrip(x)
+
+ # check long long can be represented as non-native
+ x = np.array([1, 2, 3], dtype='>q')
+ self._check_roundtrip(x)
+
+ # Native-only data types can be passed through the buffer interface
+ # only in native byte order
+ if sys.byteorder == 'little':
+ x = np.array([1, 2, 3], dtype='>g')
+ assert_raises(ValueError, self._check_roundtrip, x)
+ x = np.array([1, 2, 3], dtype='<g')
+ self._check_roundtrip(x)
+ else:
+ x = np.array([1, 2, 3], dtype='>g')
+ self._check_roundtrip(x)
+ x = np.array([1, 2, 3], dtype='<g')
+ assert_raises(ValueError, self._check_roundtrip, x)
+
+ def test_roundtrip_half(self):
+ half_list = [
+ 1.0,
+ -2.0,
+ 6.5504 * 10**4, # (max half precision)
+ 2**-14, # ~= 6.10352 * 10**-5 (minimum positive normal)
+ 2**-24, # ~= 5.96046 * 10**-8 (minimum strictly positive subnormal)
+ 0.0,
+ -0.0,
+ float('+inf'),
+ float('-inf'),
+ 0.333251953125, # ~= 1/3
+ ]
+
+ x = np.array(half_list, dtype='>e')
+ self._check_roundtrip(x)
+ x = np.array(half_list, dtype='<e')
+ self._check_roundtrip(x)
+
+ def test_roundtrip_single_types(self):
+ for typ in np._core.sctypeDict.values():
+ dtype = np.dtype(typ)
+
+ if dtype.char in 'Mm':
+ # datetimes cannot be used in buffers
+ continue
+ if dtype.char == 'V':
+ # skip void
+ continue
+
+ x = np.zeros(4, dtype=dtype)
+ self._check_roundtrip(x)
+
+ if dtype.char not in 'qQgG':
+ dt = dtype.newbyteorder('<')
+ x = np.zeros(4, dtype=dt)
+ self._check_roundtrip(x)
+
+ dt = dtype.newbyteorder('>')
+ x = np.zeros(4, dtype=dt)
+ self._check_roundtrip(x)
+
+ def test_roundtrip_scalar(self):
+ # Issue #4015.
+ self._check_roundtrip(0)
+
+ def test_invalid_buffer_format(self):
+ # datetime64 cannot be used fully in a buffer yet
+ # Should be fixed in the next Numpy major release
+ dt = np.dtype([('a', 'uint16'), ('b', 'M8[s]')])
+ a = np.empty(3, dt)
+ assert_raises((ValueError, BufferError), memoryview, a)
+ assert_raises((ValueError, BufferError), memoryview, np.array((3), 'M8[D]'))
+
+ def test_export_simple_1d(self):
+ x = np.array([1, 2, 3, 4, 5], dtype='i')
+ y = memoryview(x)
+ assert_equal(y.format, 'i')
+ assert_equal(y.shape, (5,))
+ assert_equal(y.ndim, 1)
+ assert_equal(y.strides, (4,))
+ assert_equal(y.suboffsets, ())
+ assert_equal(y.itemsize, 4)
+
+ def test_export_simple_nd(self):
+ x = np.array([[1, 2], [3, 4]], dtype=np.float64)
+ y = memoryview(x)
+ assert_equal(y.format, 'd')
+ assert_equal(y.shape, (2, 2))
+ assert_equal(y.ndim, 2)
+ assert_equal(y.strides, (16, 8))
+ assert_equal(y.suboffsets, ())
+ assert_equal(y.itemsize, 8)
+
+ def test_export_discontiguous(self):
+ x = np.zeros((3, 3, 3), dtype=np.float32)[:, 0, :]
+ y = memoryview(x)
+ assert_equal(y.format, 'f')
+ assert_equal(y.shape, (3, 3))
+ assert_equal(y.ndim, 2)
+ assert_equal(y.strides, (36, 4))
+ assert_equal(y.suboffsets, ())
+ assert_equal(y.itemsize, 4)
+
+ def test_export_record(self):
+ dt = [('a', 'b'),
+ ('b', 'h'),
+ ('c', 'i'),
+ ('d', 'l'),
+ ('dx', 'q'),
+ ('e', 'B'),
+ ('f', 'H'),
+ ('g', 'I'),
+ ('h', 'L'),
+ ('hx', 'Q'),
+ ('i', np.single),
+ ('j', np.double),
+ ('k', np.longdouble),
+ ('ix', np.csingle),
+ ('jx', np.cdouble),
+ ('kx', np.clongdouble),
+ ('l', 'S4'),
+ ('m', 'U4'),
+ ('n', 'V3'),
+ ('o', '?'),
+ ('p', np.half),
+ ]
+ x = np.array(
+ [(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
+ b'aaaa', 'bbbb', b' ', True, 1.0)],
+ dtype=dt)
+ y = memoryview(x)
+ assert_equal(y.shape, (1,))
+ assert_equal(y.ndim, 1)
+ assert_equal(y.suboffsets, ())
+
+ sz = sum(np.dtype(b).itemsize for a, b in dt)
+ if np.dtype('l').itemsize == 4:
+ assert_equal(y.format, 'T{b:a:=h:b:i:c:l:d:q:dx:B:e:@H:f:=I:g:L:h:Q:hx:f:i:d:j:^g:k:=Zf:ix:Zd:jx:^Zg:kx:4s:l:=4w:m:3x:n:?:o:@e:p:}')
+ else:
+ assert_equal(y.format, 'T{b:a:=h:b:i:c:q:d:q:dx:B:e:@H:f:=I:g:Q:h:Q:hx:f:i:d:j:^g:k:=Zf:ix:Zd:jx:^Zg:kx:4s:l:=4w:m:3x:n:?:o:@e:p:}')
+ assert_equal(y.strides, (sz,))
+ assert_equal(y.itemsize, sz)
+
+ def test_export_subarray(self):
+ x = np.array(([[1, 2], [3, 4]],), dtype=[('a', ('i', (2, 2)))])
+ y = memoryview(x)
+ assert_equal(y.format, 'T{(2,2)i:a:}')
+ assert_equal(y.shape, ())
+ assert_equal(y.ndim, 0)
+ assert_equal(y.strides, ())
+ assert_equal(y.suboffsets, ())
+ assert_equal(y.itemsize, 16)
+
+ def test_export_endian(self):
+ x = np.array([1, 2, 3], dtype='>i')
+ y = memoryview(x)
+ if sys.byteorder == 'little':
+ assert_equal(y.format, '>i')
+ else:
+ assert_equal(y.format, 'i')
+
+ x = np.array([1, 2, 3], dtype='<i')
+ y = memoryview(x)
+ if sys.byteorder == 'little':
+ assert_equal(y.format, 'i')
+ else:
+ assert_equal(y.format, '<i')
+
+ def test_export_flags(self):
+ # Check SIMPLE flag, see also gh-3613 (exception should be BufferError)
+ assert_raises(ValueError,
+ _multiarray_tests.get_buffer_info,
+ np.arange(5)[::2], ('SIMPLE',))
+
+ @pytest.mark.parametrize(["obj", "error"], [
+ pytest.param(np.array([1, 2], dtype=rational), ValueError, id="array"),
+ pytest.param(rational(1, 2), TypeError, id="scalar")])
+ def test_export_and_pickle_user_dtype(self, obj, error):
+ # User dtypes should export successfully when FORMAT was not requested.
+ with pytest.raises(error):
+ _multiarray_tests.get_buffer_info(obj, ("STRIDED_RO", "FORMAT"))
+
+ _multiarray_tests.get_buffer_info(obj, ("STRIDED_RO",))
+
+ # This is currently also necessary to implement pickling:
+ pickle_obj = pickle.dumps(obj)
+ res = pickle.loads(pickle_obj)
+ assert_array_equal(res, obj)
+
+ def test_repr_user_dtype(self):
+ dt = np.dtype(rational)
+ assert_equal(repr(dt), 'dtype(rational)')
+
+ def test_padding(self):
+ for j in range(8):
+ x = np.array([(1,), (2,)], dtype={'f0': (int, j)})
+ self._check_roundtrip(x)
+
+ def test_reference_leak(self):
+ if HAS_REFCOUNT:
+ count_1 = sys.getrefcount(np._core._internal)
+ a = np.zeros(4)
+ b = memoryview(a)
+ c = np.asarray(b)
+ if HAS_REFCOUNT:
+ count_2 = sys.getrefcount(np._core._internal)
+ assert_equal(count_1, count_2)
+
+ def test_padded_struct_array(self):
+ dt1 = np.dtype(
+ [('a', 'b'), ('b', 'i'), ('sub', np.dtype('b,i')), ('c', 'i')],
+ align=True)
+ x1 = np.arange(dt1.itemsize, dtype=np.int8).view(dt1)
+ self._check_roundtrip(x1)
+
+ dt2 = np.dtype(
+ [('a', 'b'), ('b', 'i'), ('c', 'b', (3,)), ('d', 'i')],
+ align=True)
+ x2 = np.arange(dt2.itemsize, dtype=np.int8).view(dt2)
+ self._check_roundtrip(x2)
+
+ dt3 = np.dtype(
+ [('a', 'b'), ('b', 'i'), ('c', 'b'), ('d', 'b'),
+ ('e', 'b'), ('sub', np.dtype('b,i', align=True))])
+ x3 = np.arange(dt3.itemsize, dtype=np.int8).view(dt3)
+ self._check_roundtrip(x3)
+
+ @pytest.mark.valgrind_error(reason="leaks buffer info cache temporarily.")
+ def test_relaxed_strides(self, c=np.ones((1, 10, 10), dtype='i8')): # noqa: B008
+ # Note: c defined as parameter so that it is persistent and leak
+ # checks will notice gh-16934 (buffer info cache leak).
+ c.strides = (-1, 80, 8) # strides need to be fixed at export
+
+ assert_(memoryview(c).strides == (800, 80, 8))
+
+ # Writing C-contiguous data to a BytesIO buffer should work
+ fd = io.BytesIO()
+ fd.write(c.data)
+
+ fortran = c.T
+ assert_(memoryview(fortran).strides == (8, 80, 800))
+
+ arr = np.ones((1, 10))
+ if arr.flags.f_contiguous:
+ shape, strides = _multiarray_tests.get_buffer_info(
+ arr, ['F_CONTIGUOUS'])
+ assert_(strides[0] == 8)
+ arr = np.ones((10, 1), order='F')
+ shape, strides = _multiarray_tests.get_buffer_info(
+ arr, ['C_CONTIGUOUS'])
+ assert_(strides[-1] == 8)
+
+ def test_out_of_order_fields(self):
+ dt = np.dtype({
+ "formats": ['<i4', '<i4'],
+ "names": ['one', 'two'],
+ "offsets": [4, 0],
+ "itemsize": 8
+ })
+
+ # overlapping fields cannot be represented by PEP3118
+ arr = np.empty(1, dt)
+ with assert_raises(ValueError):
+ memoryview(arr)
+
+ def test_max_dims(self):
+ a = np.ones((1,) * 32)
+ self._check_roundtrip(a)
+
+ def test_error_pointer_type(self):
+ # gh-6741
+ m = memoryview(ctypes.pointer(ctypes.c_uint8()))
+ assert_('&' in m.format)
+
+ assert_raises_regex(
+ ValueError, "format string",
+ np.array, m)
+
+ def test_error_message_unsupported(self):
+ # wchar has no corresponding numpy type - if this changes in future, we
+ # need a better way to construct an invalid memoryview format.
+ t = ctypes.c_wchar * 4
+ with assert_raises(ValueError) as cm:
+ np.array(t())
+
+ exc = cm.exception
+ with assert_raises_regex(
+ NotImplementedError,
+ r"Unrepresentable .* 'u' \(UCS-2 strings\)"
+ ):
+ raise exc.__cause__
+
+ def test_ctypes_integer_via_memoryview(self):
+ # gh-11150, due to bpo-10746
+ for c_integer in {ctypes.c_int, ctypes.c_long, ctypes.c_longlong}:
+ value = c_integer(42)
+ with warnings.catch_warnings(record=True):
+ warnings.filterwarnings('always', r'.*\bctypes\b', RuntimeWarning)
+ np.asarray(value)
+
+ def test_ctypes_struct_via_memoryview(self):
+ # gh-10528
+ class foo(ctypes.Structure):
+ _fields_ = [('a', ctypes.c_uint8), ('b', ctypes.c_uint32)]
+ f = foo(a=1, b=2)
+
+ with warnings.catch_warnings(record=True):
+ warnings.filterwarnings('always', r'.*\bctypes\b', RuntimeWarning)
+ arr = np.asarray(f)
+
+ assert_equal(arr['a'], 1)
+ assert_equal(arr['b'], 2)
+ f.a = 3
+ assert_equal(arr['a'], 3)
+
+ @pytest.mark.parametrize("obj", [np.ones(3), np.ones(1, dtype="i,i")[()]])
+ def test_error_if_stored_buffer_info_is_corrupted(self, obj):
+ """
+ If a user extends a NumPy array before 1.20 and then runs it
+ on NumPy 1.20+. A C-subclassed array might in theory modify
+ the new buffer-info field. This checks that an error is raised
+ if this happens (for buffer export), an error is written on delete.
+ This is a sanity check to help users transition to safe code, it
+ may be deleted at any point.
+ """
+ # corrupt buffer info:
+ _multiarray_tests.corrupt_or_fix_bufferinfo(obj)
+ name = type(obj)
+ with pytest.raises(RuntimeError,
+ match=f".*{name} appears to be C subclassed"):
+ memoryview(obj)
+ # Fix buffer info again before we delete (or we lose the memory)
+ _multiarray_tests.corrupt_or_fix_bufferinfo(obj)
+
+ def test_no_suboffsets(self):
+ try:
+ import _testbuffer
+ except ImportError:
+ raise pytest.skip("_testbuffer is not available")
+
+ for shape in [(2, 3), (2, 3, 4)]:
+ data = list(range(np.prod(shape)))
+ buffer = _testbuffer.ndarray(data, shape, format='i',
+ flags=_testbuffer.ND_PIL)
+ msg = "NumPy currently does not support.*suboffsets"
+ with pytest.raises(BufferError, match=msg):
+ np.asarray(buffer)
+ with pytest.raises(BufferError, match=msg):
+ np.asarray([buffer])
+
+ # Also check (unrelated and more limited but similar) frombuffer:
+ with pytest.raises(BufferError):
+ np.frombuffer(buffer)
+
+
+class TestArrayCreationCopyArgument:
+
+ class RaiseOnBool:
+
+ def __bool__(self):
+ raise ValueError
+
+ true_vals = [True, np._CopyMode.ALWAYS, np.True_]
+ if_needed_vals = [None, np._CopyMode.IF_NEEDED]
+ false_vals = [False, np._CopyMode.NEVER, np.False_]
+
+ def test_scalars(self):
+ # Test both numpy and python scalars
+ for dtype in np.typecodes["All"]:
+ arr = np.zeros((), dtype=dtype)
+ scalar = arr[()]
+ pyscalar = arr.item(0)
+
+ # Test never-copy raises error:
+ assert_raises(ValueError, np.array, pyscalar,
+ copy=self.RaiseOnBool())
+ assert_raises(ValueError, _multiarray_tests.npy_ensurenocopy,
+ [1])
+ for copy in self.false_vals:
+ assert_raises(ValueError, np.array, scalar, copy=copy)
+ assert_raises(ValueError, np.array, pyscalar, copy=copy)
+ # Casting with a dtype (to unsigned integers) can be special:
+ with pytest.raises(ValueError):
+ np.array(pyscalar, dtype=np.int64, copy=copy)
+
+ def test_compatible_cast(self):
+
+ # Some types are compatible even though they are different, no
+ # copy is necessary for them. This is mostly true for some integers
+ def int_types(byteswap=False):
+ int_types = (np.typecodes["Integer"] +
+ np.typecodes["UnsignedInteger"])
+ for int_type in int_types:
+ yield np.dtype(int_type)
+ if byteswap:
+ yield np.dtype(int_type).newbyteorder()
+
+ for int1 in int_types():
+ for int2 in int_types(True):
+ arr = np.arange(10, dtype=int1)
+
+ for copy in self.true_vals:
+ res = np.array(arr, copy=copy, dtype=int2)
+ assert res is not arr and res.flags.owndata
+ assert_array_equal(res, arr)
+
+ if int1 == int2:
+ # Casting is not necessary, base check is sufficient here
+ for copy in self.if_needed_vals:
+ res = np.array(arr, copy=copy, dtype=int2)
+ assert res is arr or res.base is arr
+
+ for copy in self.false_vals:
+ res = np.array(arr, copy=copy, dtype=int2)
+ assert res is arr or res.base is arr
+
+ else:
+ # Casting is necessary, assert copy works:
+ for copy in self.if_needed_vals:
+ res = np.array(arr, copy=copy, dtype=int2)
+ assert res is not arr and res.flags.owndata
+ assert_array_equal(res, arr)
+
+ assert_raises(ValueError, np.array,
+ arr, copy=False,
+ dtype=int2)
+
+ def test_buffer_interface(self):
+
+ # Buffer interface gives direct memory access (no copy)
+ arr = np.arange(10)
+ view = memoryview(arr)
+
+ # Checking bases is a bit tricky since numpy creates another
+ # memoryview, so use may_share_memory.
+ for copy in self.true_vals:
+ res = np.array(view, copy=copy)
+ assert not np.may_share_memory(arr, res)
+ for copy in self.false_vals:
+ res = np.array(view, copy=copy)
+ assert np.may_share_memory(arr, res)
+ res = np.array(view, copy=np._CopyMode.NEVER)
+ assert np.may_share_memory(arr, res)
+
+ def test_array_interfaces(self):
+ base_arr = np.arange(10)
+
+ # Array interface gives direct memory access (much like a memoryview)
+ class ArrayLike:
+ __array_interface__ = base_arr.__array_interface__
+
+ arr = ArrayLike()
+
+ for copy, val in [(True, None), (np._CopyMode.ALWAYS, None),
+ (False, arr), (np._CopyMode.IF_NEEDED, arr),
+ (np._CopyMode.NEVER, arr)]:
+ res = np.array(arr, copy=copy)
+ assert res.base is val
+
+ def test___array__(self):
+ base_arr = np.arange(10)
+
+ class ArrayLike:
+ def __array__(self, dtype=None, copy=None):
+ return base_arr
+
+ arr = ArrayLike()
+
+ for copy in self.true_vals:
+ res = np.array(arr, copy=copy)
+ assert_array_equal(res, base_arr)
+ # An additional copy is no longer forced by NumPy in this case.
+ # NumPy trusts the ArrayLike made a copy:
+ assert res is base_arr
+
+ for copy in self.if_needed_vals + self.false_vals:
+ res = np.array(arr, copy=copy)
+ assert_array_equal(res, base_arr)
+ assert res is base_arr # numpy trusts the ArrayLike
+
+ def test___array__copy_arg(self):
+ a = np.ones((10, 10), dtype=int)
+
+ assert np.shares_memory(a, a.__array__())
+ assert not np.shares_memory(a, a.__array__(float))
+ assert not np.shares_memory(a, a.__array__(float, copy=None))
+ assert not np.shares_memory(a, a.__array__(copy=True))
+ assert np.shares_memory(a, a.__array__(copy=None))
+ assert np.shares_memory(a, a.__array__(copy=False))
+ assert np.shares_memory(a, a.__array__(int, copy=False))
+ with pytest.raises(ValueError):
+ np.shares_memory(a, a.__array__(float, copy=False))
+
+ base_arr = np.arange(10)
+
+ class ArrayLikeNoCopy:
+ def __array__(self, dtype=None):
+ return base_arr
+
+ a = ArrayLikeNoCopy()
+
+ # explicitly passing copy=None shouldn't raise a warning
+ arr = np.array(a, copy=None)
+ assert_array_equal(arr, base_arr)
+ assert arr is base_arr
+
+ # As of NumPy 2.1, explicitly passing copy=True does trigger passing
+ # it to __array__ (deprecation warning is triggered).
+ with pytest.warns(DeprecationWarning,
+ match="__array__.*must implement.*'copy'"):
+ arr = np.array(a, copy=True)
+ assert_array_equal(arr, base_arr)
+ assert arr is not base_arr
+
+ # And passing copy=False gives a deprecation warning, but also raises
+ # an error:
+ with pytest.warns(DeprecationWarning, match="__array__.*'copy'"):
+ with pytest.raises(ValueError,
+ match=r"Unable to avoid copy(.|\n)*numpy_2_0_migration_guide.html"):
+ np.array(a, copy=False)
+
+ def test___array__copy_once(self):
+ size = 100
+ base_arr = np.zeros((size, size))
+ copy_arr = np.zeros((size, size))
+
+ class ArrayRandom:
+ def __init__(self):
+ self.true_passed = False
+
+ def __array__(self, dtype=None, copy=None):
+ if copy:
+ self.true_passed = True
+ return copy_arr
+ else:
+ return base_arr
+
+ arr_random = ArrayRandom()
+ first_copy = np.array(arr_random, copy=True)
+ assert arr_random.true_passed
+ assert first_copy is copy_arr
+
+ arr_random = ArrayRandom()
+ no_copy = np.array(arr_random, copy=False)
+ assert not arr_random.true_passed
+ assert no_copy is base_arr
+
+ arr_random = ArrayRandom()
+ _ = np.array([arr_random], copy=True)
+ assert not arr_random.true_passed
+
+ arr_random = ArrayRandom()
+ second_copy = np.array(arr_random, copy=True, order="F")
+ assert arr_random.true_passed
+ assert second_copy is not copy_arr
+
+ arr_random = ArrayRandom()
+ arr = np.ones((size, size))
+ arr[...] = arr_random
+ assert not arr_random.true_passed
+ assert not np.shares_memory(arr, base_arr)
+
+ @pytest.mark.skipif(not HAS_REFCOUNT, reason="Python lacks refcounts")
+ def test__array__reference_leak(self):
+ class NotAnArray:
+ def __array__(self, dtype=None, copy=None):
+ raise NotImplementedError
+
+ x = NotAnArray()
+
+ refcount = sys.getrefcount(x)
+
+ try:
+ np.array(x)
+ except NotImplementedError:
+ pass
+
+ gc.collect()
+
+ assert refcount == sys.getrefcount(x)
+
+ @pytest.mark.parametrize(
+ "arr", [np.ones(()), np.arange(81).reshape((9, 9))])
+ @pytest.mark.parametrize("order1", ["C", "F", None])
+ @pytest.mark.parametrize("order2", ["C", "F", "A", "K"])
+ def test_order_mismatch(self, arr, order1, order2):
+ # The order is the main (python side) reason that can cause
+ # a never-copy to fail.
+ # Prepare C-order, F-order and non-contiguous arrays:
+ arr = arr.copy(order1)
+ if order1 == "C":
+ assert arr.flags.c_contiguous
+ elif order1 == "F":
+ assert arr.flags.f_contiguous
+ elif arr.ndim != 0:
+ # Make array non-contiguous
+ arr = arr[::2, ::2]
+ assert not arr.flags.forc
+
+ # Whether a copy is necessary depends on the order of arr:
+ if order2 == "C":
+ no_copy_necessary = arr.flags.c_contiguous
+ elif order2 == "F":
+ no_copy_necessary = arr.flags.f_contiguous
+ else:
+ # Keeporder and Anyorder are OK with non-contiguous output.
+ # This is not consistent with the `astype` behaviour which
+ # enforces contiguity for "A". It is probably historic from when
+ # "K" did not exist.
+ no_copy_necessary = True
+
+ # Test it for both the array and a memoryview
+ for view in [arr, memoryview(arr)]:
+ for copy in self.true_vals:
+ res = np.array(view, copy=copy, order=order2)
+ assert res is not arr and res.flags.owndata
+ assert_array_equal(arr, res)
+
+ if no_copy_necessary:
+ for copy in self.if_needed_vals + self.false_vals:
+ res = np.array(view, copy=copy, order=order2)
+ # res.base.obj refers to the memoryview
+ if not IS_PYPY:
+ assert res is arr or res.base.obj is arr
+ else:
+ for copy in self.if_needed_vals:
+ res = np.array(arr, copy=copy, order=order2)
+ assert_array_equal(arr, res)
+ for copy in self.false_vals:
+ assert_raises(ValueError, np.array,
+ view, copy=copy, order=order2)
+
+ def test_striding_not_ok(self):
+ arr = np.array([[1, 2, 4], [3, 4, 5]])
+ assert_raises(ValueError, np.array,
+ arr.T, copy=np._CopyMode.NEVER,
+ order='C')
+ assert_raises(ValueError, np.array,
+ arr.T, copy=np._CopyMode.NEVER,
+ order='C', dtype=np.int64)
+ assert_raises(ValueError, np.array,
+ arr, copy=np._CopyMode.NEVER,
+ order='F')
+ assert_raises(ValueError, np.array,
+ arr, copy=np._CopyMode.NEVER,
+ order='F', dtype=np.int64)
+
+
+class TestArrayAttributeDeletion:
+
+ def test_multiarray_writable_attributes_deletion(self):
+ # ticket #2046, should not seqfault, raise AttributeError
+ a = np.ones(2)
+ attr = ['shape', 'strides', 'data', 'dtype', 'real', 'imag', 'flat']
+ with suppress_warnings() as sup:
+ sup.filter(DeprecationWarning, "Assigning the 'data' attribute")
+ for s in attr:
+ assert_raises(AttributeError, delattr, a, s)
+
+ def test_multiarray_not_writable_attributes_deletion(self):
+ a = np.ones(2)
+ attr = ["ndim", "flags", "itemsize", "size", "nbytes", "base",
+ "ctypes", "T", "__array_interface__", "__array_struct__",
+ "__array_priority__", "__array_finalize__"]
+ for s in attr:
+ assert_raises(AttributeError, delattr, a, s)
+
+ def test_multiarray_flags_writable_attribute_deletion(self):
+ a = np.ones(2).flags
+ attr = ['writebackifcopy', 'updateifcopy', 'aligned', 'writeable']
+ for s in attr:
+ assert_raises(AttributeError, delattr, a, s)
+
+ def test_multiarray_flags_not_writable_attribute_deletion(self):
+ a = np.ones(2).flags
+ attr = ["contiguous", "c_contiguous", "f_contiguous", "fortran",
+ "owndata", "fnc", "forc", "behaved", "carray", "farray",
+ "num"]
+ for s in attr:
+ assert_raises(AttributeError, delattr, a, s)
+
+
+class TestArrayInterface:
+ class Foo:
+ def __init__(self, value):
+ self.value = value
+ self.iface = {'typestr': 'f8'}
+
+ def __float__(self):
+ return float(self.value)
+
+ @property
+ def __array_interface__(self):
+ return self.iface
+
+ f = Foo(0.5)
+
+ @pytest.mark.parametrize('val, iface, expected', [
+ (f, {}, 0.5),
+ ([f], {}, [0.5]),
+ ([f, f], {}, [0.5, 0.5]),
+ (f, {'shape': ()}, 0.5),
+ (f, {'shape': None}, TypeError),
+ (f, {'shape': (1, 1)}, [[0.5]]),
+ (f, {'shape': (2,)}, ValueError),
+ (f, {'strides': ()}, 0.5),
+ (f, {'strides': (2,)}, ValueError),
+ (f, {'strides': 16}, TypeError),
+ ])
+ def test_scalar_interface(self, val, iface, expected):
+ # Test scalar coercion within the array interface
+ self.f.iface = {'typestr': 'f8'}
+ self.f.iface.update(iface)
+ if HAS_REFCOUNT:
+ pre_cnt = sys.getrefcount(np.dtype('f8'))
+ if isinstance(expected, type):
+ assert_raises(expected, np.array, val)
+ else:
+ result = np.array(val)
+ assert_equal(np.array(val), expected)
+ assert result.dtype == 'f8'
+ del result
+ if HAS_REFCOUNT:
+ post_cnt = sys.getrefcount(np.dtype('f8'))
+ assert_equal(pre_cnt, post_cnt)
+
+def test_interface_no_shape():
+ class ArrayLike:
+ array = np.array(1)
+ __array_interface__ = array.__array_interface__
+ assert_equal(np.array(ArrayLike()), 1)
+
+
+def test_interface_no_shape_error():
+ class ArrayLike:
+ __array_interface__ = {"data": None, "typestr": "f8"}
+
+ with pytest.raises(ValueError, match="Missing __array_interface__ shape"):
+ np.array(ArrayLike())
+
+
+def test_array_interface_itemsize():
+ # See gh-6361
+ my_dtype = np.dtype({'names': ['A', 'B'], 'formats': ['f4', 'f4'],
+ 'offsets': [0, 8], 'itemsize': 16})
+ a = np.ones(10, dtype=my_dtype)
+ descr_t = np.dtype(a.__array_interface__['descr'])
+ typestr_t = np.dtype(a.__array_interface__['typestr'])
+ assert_equal(descr_t.itemsize, typestr_t.itemsize)
+
+
+def test_array_interface_empty_shape():
+ # See gh-7994
+ arr = np.array([1, 2, 3])
+ interface1 = dict(arr.__array_interface__)
+ interface1['shape'] = ()
+
+ class DummyArray1:
+ __array_interface__ = interface1
+
+ # NOTE: Because Py2 str/Py3 bytes supports the buffer interface, setting
+ # the interface data to bytes would invoke the bug this tests for, that
+ # __array_interface__ with shape=() is not allowed if the data is an object
+ # exposing the buffer interface
+ interface2 = dict(interface1)
+ interface2['data'] = arr[0].tobytes()
+
+ class DummyArray2:
+ __array_interface__ = interface2
+
+ arr1 = np.asarray(DummyArray1())
+ arr2 = np.asarray(DummyArray2())
+ arr3 = arr[:1].reshape(())
+ assert_equal(arr1, arr2)
+ assert_equal(arr1, arr3)
+
+def test_array_interface_offset():
+ arr = np.array([1, 2, 3], dtype='int32')
+ interface = dict(arr.__array_interface__)
+ interface['data'] = memoryview(arr)
+ interface['shape'] = (2,)
+ interface['offset'] = 4
+
+ class DummyArray:
+ __array_interface__ = interface
+
+ arr1 = np.asarray(DummyArray())
+ assert_equal(arr1, arr[1:])
+
+def test_array_interface_unicode_typestr():
+ arr = np.array([1, 2, 3], dtype='int32')
+ interface = dict(arr.__array_interface__)
+ interface['typestr'] = '\N{check mark}'
+
+ class DummyArray:
+ __array_interface__ = interface
+
+ # should not be UnicodeEncodeError
+ with pytest.raises(TypeError):
+ np.asarray(DummyArray())
+
+def test_flat_element_deletion():
+ it = np.ones(3).flat
+ try:
+ del it[1]
+ del it[1:2]
+ except TypeError:
+ pass
+ except Exception:
+ raise AssertionError
+
+
+def test_scalar_element_deletion():
+ a = np.zeros(2, dtype=[('x', 'int'), ('y', 'int')])
+ assert_raises(ValueError, a[0].__delitem__, 'x')
+
+
+class TestAsCArray:
+ def test_1darray(self):
+ array = np.arange(24, dtype=np.double)
+ from_c = _multiarray_tests.test_as_c_array(array, 3)
+ assert_equal(array[3], from_c)
+
+ def test_2darray(self):
+ array = np.arange(24, dtype=np.double).reshape(3, 8)
+ from_c = _multiarray_tests.test_as_c_array(array, 2, 4)
+ assert_equal(array[2, 4], from_c)
+
+ def test_3darray(self):
+ array = np.arange(24, dtype=np.double).reshape(2, 3, 4)
+ from_c = _multiarray_tests.test_as_c_array(array, 1, 2, 3)
+ assert_equal(array[1, 2, 3], from_c)
+
+
+class TestConversion:
+ def test_array_scalar_relational_operation(self):
+ # All integer
+ for dt1 in np.typecodes['AllInteger']:
+ assert_(1 > np.array(0, dtype=dt1), f"type {dt1} failed")
+ assert_(not 1 < np.array(0, dtype=dt1), f"type {dt1} failed")
+
+ for dt2 in np.typecodes['AllInteger']:
+ assert_(np.array(1, dtype=dt1) > np.array(0, dtype=dt2),
+ f"type {dt1} and {dt2} failed")
+ assert_(not np.array(1, dtype=dt1) < np.array(0, dtype=dt2),
+ f"type {dt1} and {dt2} failed")
+
+ # Unsigned integers
+ for dt1 in 'BHILQP':
+ assert_(-1 < np.array(1, dtype=dt1), f"type {dt1} failed")
+ assert_(not -1 > np.array(1, dtype=dt1), f"type {dt1} failed")
+ assert_(-1 != np.array(1, dtype=dt1), f"type {dt1} failed")
+
+ # Unsigned vs signed
+ for dt2 in 'bhilqp':
+ assert_(np.array(1, dtype=dt1) > np.array(-1, dtype=dt2),
+ f"type {dt1} and {dt2} failed")
+ assert_(not np.array(1, dtype=dt1) < np.array(-1, dtype=dt2),
+ f"type {dt1} and {dt2} failed")
+ assert_(np.array(1, dtype=dt1) != np.array(-1, dtype=dt2),
+ f"type {dt1} and {dt2} failed")
+
+ # Signed integers and floats
+ for dt1 in 'bhlqp' + np.typecodes['Float']:
+ assert_(1 > np.array(-1, dtype=dt1), f"type {dt1} failed")
+ assert_(not 1 < np.array(-1, dtype=dt1), f"type {dt1} failed")
+ assert_(-1 == np.array(-1, dtype=dt1), f"type {dt1} failed")
+
+ for dt2 in 'bhlqp' + np.typecodes['Float']:
+ assert_(np.array(1, dtype=dt1) > np.array(-1, dtype=dt2),
+ f"type {dt1} and {dt2} failed")
+ assert_(not np.array(1, dtype=dt1) < np.array(-1, dtype=dt2),
+ f"type {dt1} and {dt2} failed")
+ assert_(np.array(-1, dtype=dt1) == np.array(-1, dtype=dt2),
+ f"type {dt1} and {dt2} failed")
+
+ def test_to_bool_scalar(self):
+ assert_equal(bool(np.array([False])), False)
+ assert_equal(bool(np.array([True])), True)
+ assert_equal(bool(np.array([[42]])), True)
+
+ def test_to_bool_scalar_not_convertible(self):
+
+ class NotConvertible:
+ def __bool__(self):
+ raise NotImplementedError
+
+ assert_raises(NotImplementedError, bool, np.array(NotConvertible()))
+ assert_raises(NotImplementedError, bool, np.array([NotConvertible()]))
+ if IS_PYSTON:
+ pytest.skip("Pyston disables recursion checking")
+ if IS_WASM:
+ pytest.skip("Pyodide/WASM has limited stack size")
+
+ self_containing = np.array([None])
+ self_containing[0] = self_containing
+
+ Error = RecursionError
+
+ assert_raises(Error, bool, self_containing) # previously stack overflow
+ self_containing[0] = None # resolve circular reference
+
+ def test_to_bool_scalar_size_errors(self):
+ with pytest.raises(ValueError, match=".*one element is ambiguous"):
+ bool(np.array([1, 2]))
+
+ with pytest.raises(ValueError, match=".*empty array is ambiguous"):
+ bool(np.empty((3, 0)))
+
+ with pytest.raises(ValueError, match=".*empty array is ambiguous"):
+ bool(np.empty((0,)))
+
+ def test_to_int_scalar(self):
+ # gh-9972 means that these aren't always the same
+ int_funcs = (int, lambda x: x.__int__())
+ for int_func in int_funcs:
+ assert_equal(int_func(np.array(0)), 0)
+ with assert_warns(DeprecationWarning):
+ assert_equal(int_func(np.array([1])), 1)
+ with assert_warns(DeprecationWarning):
+ assert_equal(int_func(np.array([[42]])), 42)
+ assert_raises(TypeError, int_func, np.array([1, 2]))
+
+ # gh-9972
+ assert_equal(4, int_func(np.array('4')))
+ assert_equal(5, int_func(np.bytes_(b'5')))
+ assert_equal(6, int_func(np.str_('6')))
+
+ class NotConvertible:
+ def __int__(self):
+ raise NotImplementedError
+ assert_raises(NotImplementedError,
+ int_func, np.array(NotConvertible()))
+ with assert_warns(DeprecationWarning):
+ assert_raises(NotImplementedError,
+ int_func, np.array([NotConvertible()]))
+
+
+class TestWhere:
+ def test_basic(self):
+ dts = [bool, np.int16, np.int32, np.int64, np.double, np.complex128,
+ np.longdouble, np.clongdouble]
+ for dt in dts:
+ c = np.ones(53, dtype=bool)
+ assert_equal(np.where( c, dt(0), dt(1)), dt(0))
+ assert_equal(np.where(~c, dt(0), dt(1)), dt(1))
+ assert_equal(np.where(True, dt(0), dt(1)), dt(0))
+ assert_equal(np.where(False, dt(0), dt(1)), dt(1))
+ d = np.ones_like(c).astype(dt)
+ e = np.zeros_like(d)
+ r = d.astype(dt)
+ c[7] = False
+ r[7] = e[7]
+ assert_equal(np.where(c, e, e), e)
+ assert_equal(np.where(c, d, e), r)
+ assert_equal(np.where(c, d, e[0]), r)
+ assert_equal(np.where(c, d[0], e), r)
+ assert_equal(np.where(c[::2], d[::2], e[::2]), r[::2])
+ assert_equal(np.where(c[1::2], d[1::2], e[1::2]), r[1::2])
+ assert_equal(np.where(c[::3], d[::3], e[::3]), r[::3])
+ assert_equal(np.where(c[1::3], d[1::3], e[1::3]), r[1::3])
+ assert_equal(np.where(c[::-2], d[::-2], e[::-2]), r[::-2])
+ assert_equal(np.where(c[::-3], d[::-3], e[::-3]), r[::-3])
+ assert_equal(np.where(c[1::-3], d[1::-3], e[1::-3]), r[1::-3])
+
+ @pytest.mark.skipif(IS_WASM, reason="no wasm fp exception support")
+ def test_exotic(self):
+ # object
+ assert_array_equal(np.where(True, None, None), np.array(None))
+ # zero sized
+ m = np.array([], dtype=bool).reshape(0, 3)
+ b = np.array([], dtype=np.float64).reshape(0, 3)
+ assert_array_equal(np.where(m, 0, b), np.array([]).reshape(0, 3))
+
+ # object cast
+ d = np.array([-1.34, -0.16, -0.54, -0.31, -0.08, -0.95, 0.000, 0.313,
+ 0.547, -0.18, 0.876, 0.236, 1.969, 0.310, 0.699, 1.013,
+ 1.267, 0.229, -1.39, 0.487])
+ nan = float('NaN')
+ e = np.array(['5z', '0l', nan, 'Wz', nan, nan, 'Xq', 'cs', nan, nan,
+ 'QN', nan, nan, 'Fd', nan, nan, 'kp', nan, '36', 'i1'],
+ dtype=object)
+ m = np.array([0, 0, 1, 0, 1, 1, 0, 0, 1, 1,
+ 0, 1, 1, 0, 1, 1, 0, 1, 0, 0], dtype=bool)
+
+ r = e[:]
+ r[np.where(m)] = d[np.where(m)]
+ assert_array_equal(np.where(m, d, e), r)
+
+ r = e[:]
+ r[np.where(~m)] = d[np.where(~m)]
+ assert_array_equal(np.where(m, e, d), r)
+
+ assert_array_equal(np.where(m, e, e), e)
+
+ # minimal dtype result with NaN scalar (e.g required by pandas)
+ d = np.array([1., 2.], dtype=np.float32)
+ e = float('NaN')
+ assert_equal(np.where(True, d, e).dtype, np.float32)
+ e = float('Infinity')
+ assert_equal(np.where(True, d, e).dtype, np.float32)
+ e = float('-Infinity')
+ assert_equal(np.where(True, d, e).dtype, np.float32)
+ # With NEP 50 adopted, the float will overflow here:
+ e = 1e150
+ with pytest.warns(RuntimeWarning, match="overflow"):
+ res = np.where(True, d, e)
+ assert res.dtype == np.float32
+
+ def test_ndim(self):
+ c = [True, False]
+ a = np.zeros((2, 25))
+ b = np.ones((2, 25))
+ r = np.where(np.array(c)[:, np.newaxis], a, b)
+ assert_array_equal(r[0], a[0])
+ assert_array_equal(r[1], b[0])
+
+ a = a.T
+ b = b.T
+ r = np.where(c, a, b)
+ assert_array_equal(r[:, 0], a[:, 0])
+ assert_array_equal(r[:, 1], b[:, 0])
+
+ def test_dtype_mix(self):
+ c = np.array([False, True, False, False, False, False, True, False,
+ False, False, True, False])
+ a = np.uint32(1)
+ b = np.array([5., 0., 3., 2., -1., -4., 0., -10., 10., 1., 0., 3.],
+ dtype=np.float64)
+ r = np.array([5., 1., 3., 2., -1., -4., 1., -10., 10., 1., 1., 3.],
+ dtype=np.float64)
+ assert_equal(np.where(c, a, b), r)
+
+ a = a.astype(np.float32)
+ b = b.astype(np.int64)
+ assert_equal(np.where(c, a, b), r)
+
+ # non bool mask
+ c = c.astype(int)
+ c[c != 0] = 34242324
+ assert_equal(np.where(c, a, b), r)
+ # invert
+ tmpmask = c != 0
+ c[c == 0] = 41247212
+ c[tmpmask] = 0
+ assert_equal(np.where(c, b, a), r)
+
+ def test_foreign(self):
+ c = np.array([False, True, False, False, False, False, True, False,
+ False, False, True, False])
+ r = np.array([5., 1., 3., 2., -1., -4., 1., -10., 10., 1., 1., 3.],
+ dtype=np.float64)
+ a = np.ones(1, dtype='>i4')
+ b = np.array([5., 0., 3., 2., -1., -4., 0., -10., 10., 1., 0., 3.],
+ dtype=np.float64)
+ assert_equal(np.where(c, a, b), r)
+
+ b = b.astype('>f8')
+ assert_equal(np.where(c, a, b), r)
+
+ a = a.astype('<i4')
+ assert_equal(np.where(c, a, b), r)
+
+ c = c.astype('>i4')
+ assert_equal(np.where(c, a, b), r)
+
+ def test_error(self):
+ c = [True, True]
+ a = np.ones((4, 5))
+ b = np.ones((5, 5))
+ assert_raises(ValueError, np.where, c, a, a)
+ assert_raises(ValueError, np.where, c[0], a, b)
+
+ def test_string(self):
+ # gh-4778 check strings are properly filled with nulls
+ a = np.array("abc")
+ b = np.array("x" * 753)
+ assert_equal(np.where(True, a, b), "abc")
+ assert_equal(np.where(False, b, a), "abc")
+
+ # check native datatype sized strings
+ a = np.array("abcd")
+ b = np.array("x" * 8)
+ assert_equal(np.where(True, a, b), "abcd")
+ assert_equal(np.where(False, b, a), "abcd")
+
+ def test_empty_result(self):
+ # pass empty where result through an assignment which reads the data of
+ # empty arrays, error detectable with valgrind, see gh-8922
+ x = np.zeros((1, 1))
+ ibad = np.vstack(np.where(x == 99.))
+ assert_array_equal(ibad,
+ np.atleast_2d(np.array([[], []], dtype=np.intp)))
+
+ def test_largedim(self):
+ # invalid read regression gh-9304
+ shape = [10, 2, 3, 4, 5, 6]
+ np.random.seed(2)
+ array = np.random.rand(*shape)
+
+ for i in range(10):
+ benchmark = array.nonzero()
+ result = array.nonzero()
+ assert_array_equal(benchmark, result)
+
+ def test_kwargs(self):
+ a = np.zeros(1)
+ with assert_raises(TypeError):
+ np.where(a, x=a, y=a)
+
+
+if not IS_PYPY:
+ # sys.getsizeof() is not valid on PyPy
+ class TestSizeOf:
+
+ def test_empty_array(self):
+ x = np.array([])
+ assert_(sys.getsizeof(x) > 0)
+
+ def check_array(self, dtype):
+ elem_size = dtype(0).itemsize
+
+ for length in [10, 50, 100, 500]:
+ x = np.arange(length, dtype=dtype)
+ assert_(sys.getsizeof(x) > length * elem_size)
+
+ def test_array_int32(self):
+ self.check_array(np.int32)
+
+ def test_array_int64(self):
+ self.check_array(np.int64)
+
+ def test_array_float32(self):
+ self.check_array(np.float32)
+
+ def test_array_float64(self):
+ self.check_array(np.float64)
+
+ def test_view(self):
+ d = np.ones(100)
+ assert_(sys.getsizeof(d[...]) < sys.getsizeof(d))
+
+ def test_reshape(self):
+ d = np.ones(100)
+ assert_(sys.getsizeof(d) < sys.getsizeof(d.reshape(100, 1, 1).copy()))
+
+ @_no_tracing
+ def test_resize(self):
+ d = np.ones(100)
+ old = sys.getsizeof(d)
+ d.resize(50)
+ assert_(old > sys.getsizeof(d))
+ d.resize(150)
+ assert_(old < sys.getsizeof(d))
+
+ @pytest.mark.parametrize("dtype", ["u4,f4", "u4,O"])
+ def test_resize_structured(self, dtype):
+ a = np.array([(0, 0.0) for i in range(5)], dtype=dtype)
+ a.resize(1000)
+ assert_array_equal(a, np.zeros(1000, dtype=dtype))
+
+ def test_error(self):
+ d = np.ones(100)
+ assert_raises(TypeError, d.__sizeof__, "a")
+
+
+class TestHashing:
+
+ def test_arrays_not_hashable(self):
+ x = np.ones(3)
+ assert_raises(TypeError, hash, x)
+
+ def test_collections_hashable(self):
+ x = np.array([])
+ assert_(not isinstance(x, collections.abc.Hashable))
+
+
+class TestArrayPriority:
+ # This will go away when __array_priority__ is settled, meanwhile
+ # it serves to check unintended changes.
+ op = operator
+ binary_ops = [
+ op.pow, op.add, op.sub, op.mul, op.floordiv, op.truediv, op.mod,
+ op.and_, op.or_, op.xor, op.lshift, op.rshift, op.mod, op.gt,
+ op.ge, op.lt, op.le, op.ne, op.eq
+ ]
+
+ class Foo(np.ndarray):
+ __array_priority__ = 100.
+
+ def __new__(cls, *args, **kwargs):
+ return np.array(*args, **kwargs).view(cls)
+
+ class Bar(np.ndarray):
+ __array_priority__ = 101.
+
+ def __new__(cls, *args, **kwargs):
+ return np.array(*args, **kwargs).view(cls)
+
+ class Other:
+ __array_priority__ = 1000.
+
+ def _all(self, other):
+ return self.__class__()
+
+ __add__ = __radd__ = _all
+ __sub__ = __rsub__ = _all
+ __mul__ = __rmul__ = _all
+ __pow__ = __rpow__ = _all
+ __mod__ = __rmod__ = _all
+ __truediv__ = __rtruediv__ = _all
+ __floordiv__ = __rfloordiv__ = _all
+ __and__ = __rand__ = _all
+ __xor__ = __rxor__ = _all
+ __or__ = __ror__ = _all
+ __lshift__ = __rlshift__ = _all
+ __rshift__ = __rrshift__ = _all
+ __eq__ = _all
+ __ne__ = _all
+ __gt__ = _all
+ __ge__ = _all
+ __lt__ = _all
+ __le__ = _all
+
+ def test_ndarray_subclass(self):
+ a = np.array([1, 2])
+ b = self.Bar([1, 2])
+ for f in self.binary_ops:
+ msg = repr(f)
+ assert_(isinstance(f(a, b), self.Bar), msg)
+ assert_(isinstance(f(b, a), self.Bar), msg)
+
+ def test_ndarray_other(self):
+ a = np.array([1, 2])
+ b = self.Other()
+ for f in self.binary_ops:
+ msg = repr(f)
+ assert_(isinstance(f(a, b), self.Other), msg)
+ assert_(isinstance(f(b, a), self.Other), msg)
+
+ def test_subclass_subclass(self):
+ a = self.Foo([1, 2])
+ b = self.Bar([1, 2])
+ for f in self.binary_ops:
+ msg = repr(f)
+ assert_(isinstance(f(a, b), self.Bar), msg)
+ assert_(isinstance(f(b, a), self.Bar), msg)
+
+ def test_subclass_other(self):
+ a = self.Foo([1, 2])
+ b = self.Other()
+ for f in self.binary_ops:
+ msg = repr(f)
+ assert_(isinstance(f(a, b), self.Other), msg)
+ assert_(isinstance(f(b, a), self.Other), msg)
+
+
+class TestBytestringArrayNonzero:
+
+ def test_empty_bstring_array_is_falsey(self):
+ assert_(not np.array([''], dtype=str))
+
+ def test_whitespace_bstring_array_is_truthy(self):
+ a = np.array(['spam'], dtype=str)
+ a[0] = ' \0\0'
+ assert_(a)
+
+ def test_all_null_bstring_array_is_falsey(self):
+ a = np.array(['spam'], dtype=str)
+ a[0] = '\0\0\0\0'
+ assert_(not a)
+
+ def test_null_inside_bstring_array_is_truthy(self):
+ a = np.array(['spam'], dtype=str)
+ a[0] = ' \0 \0'
+ assert_(a)
+
+
+class TestUnicodeEncoding:
+ """
+ Tests for encoding related bugs, such as UCS2 vs UCS4, round-tripping
+ issues, etc
+ """
+ def test_round_trip(self):
+ """ Tests that GETITEM, SETITEM, and PyArray_Scalar roundtrip """
+ # gh-15363
+ arr = np.zeros(shape=(), dtype="U1")
+ for i in range(1, sys.maxunicode + 1):
+ expected = chr(i)
+ arr[()] = expected
+ assert arr[()] == expected
+ assert arr.item() == expected
+
+ def test_assign_scalar(self):
+ # gh-3258
+ l = np.array(['aa', 'bb'])
+ l[:] = np.str_('cc')
+ assert_equal(l, ['cc', 'cc'])
+
+ def test_fill_scalar(self):
+ # gh-7227
+ l = np.array(['aa', 'bb'])
+ l.fill(np.str_('cc'))
+ assert_equal(l, ['cc', 'cc'])
+
+
+class TestUnicodeArrayNonzero:
+
+ def test_empty_ustring_array_is_falsey(self):
+ assert_(not np.array([''], dtype=np.str_))
+
+ def test_whitespace_ustring_array_is_truthy(self):
+ a = np.array(['eggs'], dtype=np.str_)
+ a[0] = ' \0\0'
+ assert_(a)
+
+ def test_all_null_ustring_array_is_falsey(self):
+ a = np.array(['eggs'], dtype=np.str_)
+ a[0] = '\0\0\0\0'
+ assert_(not a)
+
+ def test_null_inside_ustring_array_is_truthy(self):
+ a = np.array(['eggs'], dtype=np.str_)
+ a[0] = ' \0 \0'
+ assert_(a)
+
+
+class TestFormat:
+
+ def test_0d(self):
+ a = np.array(np.pi)
+ assert_equal(f'{a:0.3g}', '3.14')
+ assert_equal(f'{a[()]:0.3g}', '3.14')
+
+ def test_1d_no_format(self):
+ a = np.array([np.pi])
+ assert_equal(f'{a}', str(a))
+
+ def test_1d_format(self):
+ # until gh-5543, ensure that the behaviour matches what it used to be
+ a = np.array([np.pi])
+ assert_raises(TypeError, '{:30}'.format, a)
+
+
+from numpy.testing import IS_PYPY
+
+
+class TestCTypes:
+
+ def test_ctypes_is_available(self):
+ test_arr = np.array([[1, 2, 3], [4, 5, 6]])
+
+ assert_equal(ctypes, test_arr.ctypes._ctypes)
+ assert_equal(tuple(test_arr.ctypes.shape), (2, 3))
+
+ def test_ctypes_is_not_available(self):
+ from numpy._core import _internal
+ _internal.ctypes = None
+ try:
+ test_arr = np.array([[1, 2, 3], [4, 5, 6]])
+
+ assert_(isinstance(test_arr.ctypes._ctypes,
+ _internal._missing_ctypes))
+ assert_equal(tuple(test_arr.ctypes.shape), (2, 3))
+ finally:
+ _internal.ctypes = ctypes
+
+ def _make_readonly(x):
+ x.flags.writeable = False
+ return x
+
+ @pytest.mark.parametrize('arr', [
+ np.array([1, 2, 3]),
+ np.array([['one', 'two'], ['three', 'four']]),
+ np.array((1, 2), dtype='i4,i4'),
+ np.zeros((2,), dtype=np.dtype({
+ "formats": ['<i4', '<i4'],
+ "names": ['a', 'b'],
+ "offsets": [0, 2],
+ "itemsize": 6
+ })
+ ),
+ np.array([None], dtype=object),
+ np.array([]),
+ np.empty((0, 0)),
+ _make_readonly(np.array([1, 2, 3])),
+ ], ids=[
+ '1d',
+ '2d',
+ 'structured',
+ 'overlapping',
+ 'object',
+ 'empty',
+ 'empty-2d',
+ 'readonly'
+ ])
+ def test_ctypes_data_as_holds_reference(self, arr):
+ # gh-9647
+ # create a copy to ensure that pytest does not mess with the refcounts
+ arr = arr.copy()
+
+ arr_ref = weakref.ref(arr)
+
+ ctypes_ptr = arr.ctypes.data_as(ctypes.c_void_p)
+
+ # `ctypes_ptr` should hold onto `arr`
+ del arr
+ break_cycles()
+ assert_(arr_ref() is not None, "ctypes pointer did not hold onto a reference")
+
+ # but when the `ctypes_ptr` object dies, so should `arr`
+ del ctypes_ptr
+ if IS_PYPY:
+ # Pypy does not recycle arr objects immediately. Trigger gc to
+ # release arr. Cpython uses refcounts. An explicit call to gc
+ # should not be needed here.
+ break_cycles()
+ assert_(arr_ref() is None, "unknowable whether ctypes pointer holds a reference")
+
+ def test_ctypes_as_parameter_holds_reference(self):
+ arr = np.array([None]).copy()
+
+ arr_ref = weakref.ref(arr)
+
+ ctypes_ptr = arr.ctypes._as_parameter_
+
+ # `ctypes_ptr` should hold onto `arr`
+ del arr
+ break_cycles()
+ assert_(arr_ref() is not None, "ctypes pointer did not hold onto a reference")
+
+ # but when the `ctypes_ptr` object dies, so should `arr`
+ del ctypes_ptr
+ if IS_PYPY:
+ break_cycles()
+ assert_(arr_ref() is None, "unknowable whether ctypes pointer holds a reference")
+
+
+class TestWritebackIfCopy:
+ # all these tests use the WRITEBACKIFCOPY mechanism
+ def test_argmax_with_out(self):
+ mat = np.eye(5)
+ out = np.empty(5, dtype='i2')
+ res = np.argmax(mat, 0, out=out)
+ assert_equal(res, range(5))
+
+ def test_argmin_with_out(self):
+ mat = -np.eye(5)
+ out = np.empty(5, dtype='i2')
+ res = np.argmin(mat, 0, out=out)
+ assert_equal(res, range(5))
+
+ def test_insert_noncontiguous(self):
+ a = np.arange(6).reshape(2, 3).T # force non-c-contiguous
+ # uses arr_insert
+ np.place(a, a > 2, [44, 55])
+ assert_equal(a, np.array([[0, 44], [1, 55], [2, 44]]))
+ # hit one of the failing paths
+ assert_raises(ValueError, np.place, a, a > 20, [])
+
+ def test_put_noncontiguous(self):
+ a = np.arange(6).reshape(2, 3).T # force non-c-contiguous
+ np.put(a, [0, 2], [44, 55])
+ assert_equal(a, np.array([[44, 3], [55, 4], [2, 5]]))
+
+ def test_putmask_noncontiguous(self):
+ a = np.arange(6).reshape(2, 3).T # force non-c-contiguous
+ # uses arr_putmask
+ np.putmask(a, a > 2, a**2)
+ assert_equal(a, np.array([[0, 9], [1, 16], [2, 25]]))
+
+ def test_take_mode_raise(self):
+ a = np.arange(6, dtype='int')
+ out = np.empty(2, dtype='int')
+ np.take(a, [0, 2], out=out, mode='raise')
+ assert_equal(out, np.array([0, 2]))
+
+ def test_choose_mod_raise(self):
+ a = np.array([[1, 0, 1], [0, 1, 0], [1, 0, 1]])
+ out = np.empty((3, 3), dtype='int')
+ choices = [-10, 10]
+ np.choose(a, choices, out=out, mode='raise')
+ assert_equal(out, np.array([[ 10, -10, 10],
+ [-10, 10, -10],
+ [ 10, -10, 10]]))
+
+ def test_flatiter__array__(self):
+ a = np.arange(9).reshape(3, 3)
+ b = a.T.flat
+ c = b.__array__()
+ # triggers the WRITEBACKIFCOPY resolution, assuming refcount semantics
+ del c
+
+ def test_dot_out(self):
+ # if HAVE_CBLAS, will use WRITEBACKIFCOPY
+ a = np.arange(9, dtype=float).reshape(3, 3)
+ b = np.dot(a, a, out=a)
+ assert_equal(b, np.array([[15, 18, 21], [42, 54, 66], [69, 90, 111]]))
+
+ def test_view_assign(self):
+ from numpy._core._multiarray_tests import (
+ npy_create_writebackifcopy,
+ npy_resolve,
+ )
+
+ arr = np.arange(9).reshape(3, 3).T
+ arr_wb = npy_create_writebackifcopy(arr)
+ assert_(arr_wb.flags.writebackifcopy)
+ assert_(arr_wb.base is arr)
+ arr_wb[...] = -100
+ npy_resolve(arr_wb)
+ # arr changes after resolve, even though we assigned to arr_wb
+ assert_equal(arr, -100)
+ # after resolve, the two arrays no longer reference each other
+ assert_(arr_wb.ctypes.data != 0)
+ assert_equal(arr_wb.base, None)
+ # assigning to arr_wb does not get transferred to arr
+ arr_wb[...] = 100
+ assert_equal(arr, -100)
+
+ @pytest.mark.leaks_references(
+ reason="increments self in dealloc; ignore since deprecated path.")
+ def test_dealloc_warning(self):
+ with suppress_warnings() as sup:
+ sup.record(RuntimeWarning)
+ arr = np.arange(9).reshape(3, 3)
+ v = arr.T
+ _multiarray_tests.npy_abuse_writebackifcopy(v)
+ assert len(sup.log) == 1
+
+ def test_view_discard_refcount(self):
+ from numpy._core._multiarray_tests import (
+ npy_create_writebackifcopy,
+ npy_discard,
+ )
+
+ arr = np.arange(9).reshape(3, 3).T
+ orig = arr.copy()
+ if HAS_REFCOUNT:
+ arr_cnt = sys.getrefcount(arr)
+ arr_wb = npy_create_writebackifcopy(arr)
+ assert_(arr_wb.flags.writebackifcopy)
+ assert_(arr_wb.base is arr)
+ arr_wb[...] = -100
+ npy_discard(arr_wb)
+ # arr remains unchanged after discard
+ assert_equal(arr, orig)
+ # after discard, the two arrays no longer reference each other
+ assert_(arr_wb.ctypes.data != 0)
+ assert_equal(arr_wb.base, None)
+ if HAS_REFCOUNT:
+ assert_equal(arr_cnt, sys.getrefcount(arr))
+ # assigning to arr_wb does not get transferred to arr
+ arr_wb[...] = 100
+ assert_equal(arr, orig)
+
+
+class TestArange:
+ def test_infinite(self):
+ assert_raises_regex(
+ ValueError, "size exceeded",
+ np.arange, 0, np.inf
+ )
+
+ def test_nan_step(self):
+ assert_raises_regex(
+ ValueError, "cannot compute length",
+ np.arange, 0, 1, np.nan
+ )
+
+ def test_zero_step(self):
+ assert_raises(ZeroDivisionError, np.arange, 0, 10, 0)
+ assert_raises(ZeroDivisionError, np.arange, 0.0, 10.0, 0.0)
+
+ # empty range
+ assert_raises(ZeroDivisionError, np.arange, 0, 0, 0)
+ assert_raises(ZeroDivisionError, np.arange, 0.0, 0.0, 0.0)
+
+ def test_require_range(self):
+ assert_raises(TypeError, np.arange)
+ assert_raises(TypeError, np.arange, step=3)
+ assert_raises(TypeError, np.arange, dtype='int64')
+ assert_raises(TypeError, np.arange, start=4)
+
+ def test_start_stop_kwarg(self):
+ keyword_stop = np.arange(stop=3)
+ keyword_zerotostop = np.arange(0, stop=3)
+ keyword_start_stop = np.arange(start=3, stop=9)
+
+ assert len(keyword_stop) == 3
+ assert len(keyword_zerotostop) == 3
+ assert len(keyword_start_stop) == 6
+ assert_array_equal(keyword_stop, keyword_zerotostop)
+
+ def test_arange_booleans(self):
+ # Arange makes some sense for booleans and works up to length 2.
+ # But it is weird since `arange(2, 4, dtype=bool)` works.
+ # Arguably, much or all of this could be deprecated/removed.
+ res = np.arange(False, dtype=bool)
+ assert_array_equal(res, np.array([], dtype="bool"))
+
+ res = np.arange(True, dtype="bool")
+ assert_array_equal(res, [False])
+
+ res = np.arange(2, dtype="bool")
+ assert_array_equal(res, [False, True])
+
+ # This case is especially weird, but drops out without special case:
+ res = np.arange(6, 8, dtype="bool")
+ assert_array_equal(res, [True, True])
+
+ with pytest.raises(TypeError):
+ np.arange(3, dtype="bool")
+
+ @pytest.mark.parametrize("dtype", ["S3", "U", "5i"])
+ def test_rejects_bad_dtypes(self, dtype):
+ dtype = np.dtype(dtype)
+ DType_name = re.escape(str(type(dtype)))
+ with pytest.raises(TypeError,
+ match=rf"arange\(\) not supported for inputs .* {DType_name}"):
+ np.arange(2, dtype=dtype)
+
+ def test_rejects_strings(self):
+ # Explicitly test error for strings which may call "b" - "a":
+ DType_name = re.escape(str(type(np.array("a").dtype)))
+ with pytest.raises(TypeError,
+ match=rf"arange\(\) not supported for inputs .* {DType_name}"):
+ np.arange("a", "b")
+
+ def test_byteswapped(self):
+ res_be = np.arange(1, 1000, dtype=">i4")
+ res_le = np.arange(1, 1000, dtype="<i4")
+ assert res_be.dtype == ">i4"
+ assert res_le.dtype == "<i4"
+ assert_array_equal(res_le, res_be)
+
+ @pytest.mark.parametrize("which", [0, 1, 2])
+ def test_error_paths_and_promotion(self, which):
+ args = [0, 1, 2] # start, stop, and step
+ args[which] = np.float64(2.) # should ensure float64 output
+
+ assert np.arange(*args).dtype == np.float64
+
+ # Cover stranger error path, test only to achieve code coverage!
+ args[which] = [None, []]
+ with pytest.raises(ValueError):
+ # Fails discovering start dtype
+ np.arange(*args)
+
+ def test_dtype_attribute_ignored(self):
+ # Until 2.3 this would raise a DeprecationWarning
+ class dt:
+ dtype = "f8"
+
+ class vdt(np.void):
+ dtype = "f,f"
+
+ assert_raises(ValueError, np.dtype, dt)
+ assert_raises(ValueError, np.dtype, dt())
+ assert_raises(ValueError, np.dtype, vdt)
+ assert_raises(ValueError, np.dtype, vdt(1))
+
+
+class TestDTypeCoercionForbidden:
+ forbidden_types = [
+ # The builtin scalar super types:
+ np.generic, np.flexible, np.number,
+ np.inexact, np.floating, np.complexfloating,
+ np.integer, np.unsignedinteger, np.signedinteger,
+ # character is a deprecated S1 special case:
+ np.character,
+ ]
+
+ def test_dtype_coercion(self):
+ for scalar_type in self.forbidden_types:
+ assert_raises(TypeError, np.dtype, args=(scalar_type,))
+
+ def test_array_construction(self):
+ for scalar_type in self.forbidden_types:
+ assert_raises(TypeError, np.array, args=([], scalar_type,))
+
+ def test_not_deprecated(self):
+ # All specific types work
+ for group in np._core.sctypes.values():
+ for scalar_type in group:
+ np.dtype(scalar_type)
+
+ for scalar_type in [type, dict, list, tuple]:
+ # Typical python types are coerced to object currently:
+ np.dtype(scalar_type)
+
+
+class TestDateTimeCreationTuple:
+ @pytest.mark.parametrize("cls", [np.datetime64, np.timedelta64])
+ def test_dt_tuple(self, cls):
+ # two valid uses - (unit, num) and (unit, num, den, None)
+ cls(1, ('ms', 2))
+ cls(1, ('ms', 2, 1, None))
+
+ # trying to use the event argument, removed in 1.7.0
+ # it used to be a uint8
+ assert_raises(TypeError, cls, args=(1, ('ms', 2, 'event')))
+ assert_raises(TypeError, cls, args=(1, ('ms', 2, 63)))
+ assert_raises(TypeError, cls, args=(1, ('ms', 2, 1, 'event')))
+ assert_raises(TypeError, cls, args=(1, ('ms', 2, 1, 63)))
+
+
+class TestArrayFinalize:
+ """ Tests __array_finalize__ """
+
+ def test_receives_base(self):
+ # gh-11237
+ class SavesBase(np.ndarray):
+ def __array_finalize__(self, obj):
+ self.saved_base = self.base
+
+ a = np.array(1).view(SavesBase)
+ assert_(a.saved_base is a.base)
+
+ def test_bad_finalize1(self):
+ class BadAttributeArray(np.ndarray):
+ @property
+ def __array_finalize__(self):
+ raise RuntimeError("boohoo!")
+
+ with pytest.raises(TypeError, match="not callable"):
+ np.arange(10).view(BadAttributeArray)
+
+ def test_bad_finalize2(self):
+ class BadAttributeArray(np.ndarray):
+ def __array_finalize__(self):
+ raise RuntimeError("boohoo!")
+
+ with pytest.raises(TypeError, match="takes 1 positional"):
+ np.arange(10).view(BadAttributeArray)
+
+ def test_bad_finalize3(self):
+ class BadAttributeArray(np.ndarray):
+ def __array_finalize__(self, obj):
+ raise RuntimeError("boohoo!")
+
+ with pytest.raises(RuntimeError, match="boohoo!"):
+ np.arange(10).view(BadAttributeArray)
+
+ def test_lifetime_on_error(self):
+ # gh-11237
+ class RaisesInFinalize(np.ndarray):
+ def __array_finalize__(self, obj):
+ # crash, but keep this object alive
+ raise Exception(self)
+
+ # a plain object can't be weakref'd
+ class Dummy:
+ pass
+
+ # get a weak reference to an object within an array
+ obj_arr = np.array(Dummy())
+ obj_ref = weakref.ref(obj_arr[()])
+
+ # get an array that crashed in __array_finalize__
+ with assert_raises(Exception) as e:
+ obj_arr.view(RaisesInFinalize)
+
+ obj_subarray = e.exception.args[0]
+ del e
+ assert_(isinstance(obj_subarray, RaisesInFinalize))
+
+ # reference should still be held by obj_arr
+ break_cycles()
+ assert_(obj_ref() is not None, "object should not already be dead")
+
+ del obj_arr
+ break_cycles()
+ assert_(obj_ref() is not None, "obj_arr should not hold the last reference")
+
+ del obj_subarray
+ break_cycles()
+ assert_(obj_ref() is None, "no references should remain")
+
+ def test_can_use_super(self):
+ class SuperFinalize(np.ndarray):
+ def __array_finalize__(self, obj):
+ self.saved_result = super().__array_finalize__(obj)
+
+ a = np.array(1).view(SuperFinalize)
+ assert_(a.saved_result is None)
+
+
+def test_orderconverter_with_nonASCII_unicode_ordering():
+ # gh-7475
+ a = np.arange(5)
+ assert_raises(ValueError, a.flatten, order='\xe2')
+
+
+def test_equal_override():
+ # gh-9153: ndarray.__eq__ uses special logic for structured arrays, which
+ # did not respect overrides with __array_priority__ or __array_ufunc__.
+ # The PR fixed this for __array_priority__ and __array_ufunc__ = None.
+ class MyAlwaysEqual:
+ def __eq__(self, other):
+ return "eq"
+
+ def __ne__(self, other):
+ return "ne"
+
+ class MyAlwaysEqualOld(MyAlwaysEqual):
+ __array_priority__ = 10000
+
+ class MyAlwaysEqualNew(MyAlwaysEqual):
+ __array_ufunc__ = None
+
+ array = np.array([(0, 1), (2, 3)], dtype='i4,i4')
+ for my_always_equal_cls in MyAlwaysEqualOld, MyAlwaysEqualNew:
+ my_always_equal = my_always_equal_cls()
+ assert_equal(my_always_equal == array, 'eq')
+ assert_equal(array == my_always_equal, 'eq')
+ assert_equal(my_always_equal != array, 'ne')
+ assert_equal(array != my_always_equal, 'ne')
+
+
+@pytest.mark.parametrize("op", [operator.eq, operator.ne])
+@pytest.mark.parametrize(["dt1", "dt2"], [
+ ([("f", "i")], [("f", "i")]), # structured comparison (successful)
+ ("M8", "d"), # impossible comparison: result is all True or False
+ ("d", "d"), # valid comparison
+ ])
+def test_equal_subclass_no_override(op, dt1, dt2):
+ # Test how the three different possible code-paths deal with subclasses
+
+ class MyArr(np.ndarray):
+ called_wrap = 0
+
+ def __array_wrap__(self, new, context=None, return_scalar=False):
+ type(self).called_wrap += 1
+ return super().__array_wrap__(new, context, return_scalar)
+
+ numpy_arr = np.zeros(5, dtype=dt1)
+ my_arr = np.zeros(5, dtype=dt2).view(MyArr)
+
+ assert type(op(numpy_arr, my_arr)) is MyArr
+ assert type(op(my_arr, numpy_arr)) is MyArr
+ # We expect 2 calls (more if there were more fields):
+ assert MyArr.called_wrap == 2
+
+
+@pytest.mark.parametrize(["dt1", "dt2"], [
+ ("M8[ns]", "d"),
+ ("M8[s]", "l"),
+ ("m8[ns]", "d"),
+ # Missing: ("m8[ns]", "l") as timedelta currently promotes ints
+ ("M8[s]", "m8[s]"),
+ ("S5", "U5"),
+ # Structured/void dtypes have explicit paths not tested here.
+])
+def test_no_loop_gives_all_true_or_false(dt1, dt2):
+ # Make sure they broadcast to test result shape, use random values, since
+ # the actual value should be ignored
+ arr1 = np.random.randint(5, size=100).astype(dt1)
+ arr2 = np.random.randint(5, size=99)[:, np.newaxis].astype(dt2)
+
+ res = arr1 == arr2
+ assert res.shape == (99, 100)
+ assert res.dtype == bool
+ assert not res.any()
+
+ res = arr1 != arr2
+ assert res.shape == (99, 100)
+ assert res.dtype == bool
+ assert res.all()
+
+ # incompatible shapes raise though
+ arr2 = np.random.randint(5, size=99).astype(dt2)
+ with pytest.raises(ValueError):
+ arr1 == arr2
+
+ with pytest.raises(ValueError):
+ arr1 != arr2
+
+ # Basic test with another operation:
+ with pytest.raises(np._core._exceptions._UFuncNoLoopError):
+ arr1 > arr2
+
+
+@pytest.mark.parametrize("op", [
+ operator.eq, operator.ne, operator.le, operator.lt, operator.ge,
+ operator.gt])
+def test_comparisons_forwards_error(op):
+ class NotArray:
+ def __array__(self, dtype=None, copy=None):
+ raise TypeError("run you fools")
+
+ with pytest.raises(TypeError, match="run you fools"):
+ op(np.arange(2), NotArray())
+
+ with pytest.raises(TypeError, match="run you fools"):
+ op(NotArray(), np.arange(2))
+
+
+def test_richcompare_scalar_boolean_singleton_return():
+ # These are currently guaranteed to be the boolean numpy singletons
+ assert (np.array(0) == "a") is np.bool_(False)
+ assert (np.array(0) != "a") is np.bool_(True)
+ assert (np.int16(0) == "a") is np.bool_(False)
+ assert (np.int16(0) != "a") is np.bool_(True)
+
+
+@pytest.mark.parametrize("op", [
+ operator.eq, operator.ne, operator.le, operator.lt, operator.ge,
+ operator.gt])
+def test_ragged_comparison_fails(op):
+ # This needs to convert the internal array to True/False, which fails:
+ a = np.array([1, np.array([1, 2, 3])], dtype=object)
+ b = np.array([1, np.array([1, 2, 3])], dtype=object)
+
+ with pytest.raises(ValueError, match="The truth value.*ambiguous"):
+ op(a, b)
+
+
+@pytest.mark.parametrize(
+ ["fun", "npfun"],
+ [
+ (_multiarray_tests.npy_cabs, np.absolute),
+ (_multiarray_tests.npy_carg, np.angle)
+ ]
+)
+@pytest.mark.parametrize("x", [1, np.inf, -np.inf, np.nan])
+@pytest.mark.parametrize("y", [1, np.inf, -np.inf, np.nan])
+@pytest.mark.parametrize("test_dtype", np.complexfloating.__subclasses__())
+def test_npymath_complex(fun, npfun, x, y, test_dtype):
+ # Smoketest npymath functions
+ z = test_dtype(complex(x, y))
+ with np.errstate(invalid='ignore'):
+ # Fallback implementations may emit a warning for +-inf (see gh-24876):
+ # RuntimeWarning: invalid value encountered in absolute
+ got = fun(z)
+ expected = npfun(z)
+ assert_allclose(got, expected)
+
+
+def test_npymath_real():
+ # Smoketest npymath functions
+ from numpy._core._multiarray_tests import (
+ npy_cosh,
+ npy_log10,
+ npy_sinh,
+ npy_tan,
+ npy_tanh,
+ )
+
+ funcs = {npy_log10: np.log10,
+ npy_cosh: np.cosh,
+ npy_sinh: np.sinh,
+ npy_tan: np.tan,
+ npy_tanh: np.tanh}
+ vals = (1, np.inf, -np.inf, np.nan)
+ types = (np.float32, np.float64, np.longdouble)
+
+ with np.errstate(all='ignore'):
+ for fun, npfun in funcs.items():
+ for x, t in itertools.product(vals, types):
+ z = t(x)
+ got = fun(z)
+ expected = npfun(z)
+ assert_allclose(got, expected)
+
+def test_uintalignment_and_alignment():
+ # alignment code needs to satisfy these requirements:
+ # 1. numpy structs match C struct layout
+ # 2. ufuncs/casting is safe wrt to aligned access
+ # 3. copy code is safe wrt to "uint alidned" access
+ #
+ # Complex types are the main problem, whose alignment may not be the same
+ # as their "uint alignment".
+ #
+ # This test might only fail on certain platforms, where uint64 alignment is
+ # not equal to complex64 alignment. The second 2 tests will only fail
+ # for DEBUG=1.
+
+ d1 = np.dtype('u1,c8', align=True)
+ d2 = np.dtype('u4,c8', align=True)
+ d3 = np.dtype({'names': ['a', 'b'], 'formats': ['u1', d1]}, align=True)
+
+ assert_equal(np.zeros(1, dtype=d1)['f1'].flags['ALIGNED'], True)
+ assert_equal(np.zeros(1, dtype=d2)['f1'].flags['ALIGNED'], True)
+ assert_equal(np.zeros(1, dtype='u1,c8')['f1'].flags['ALIGNED'], False)
+
+ # check that C struct matches numpy struct size
+ s = _multiarray_tests.get_struct_alignments()
+ for d, (alignment, size) in zip([d1, d2, d3], s):
+ assert_equal(d.alignment, alignment)
+ assert_equal(d.itemsize, size)
+
+ # check that ufuncs don't complain in debug mode
+ # (this is probably OK if the aligned flag is true above)
+ src = np.zeros((2, 2), dtype=d1)['f1'] # 4-byte aligned, often
+ np.exp(src) # assert fails?
+
+ # check that copy code doesn't complain in debug mode
+ dst = np.zeros((2, 2), dtype='c8')
+ dst[:, 1] = src[:, 1] # assert in lowlevel_strided_loops fails?
+
+class TestAlignment:
+ # adapted from scipy._lib.tests.test__util.test__aligned_zeros
+ # Checks that unusual memory alignments don't trip up numpy.
+
+ def check(self, shape, dtype, order, align):
+ err_msg = repr((shape, dtype, order, align))
+ x = _aligned_zeros(shape, dtype, order, align=align)
+ if align is None:
+ align = np.dtype(dtype).alignment
+ assert_equal(x.__array_interface__['data'][0] % align, 0)
+ if hasattr(shape, '__len__'):
+ assert_equal(x.shape, shape, err_msg)
+ else:
+ assert_equal(x.shape, (shape,), err_msg)
+ assert_equal(x.dtype, dtype)
+ if order == "C":
+ assert_(x.flags.c_contiguous, err_msg)
+ elif order == "F":
+ if x.size > 0:
+ assert_(x.flags.f_contiguous, err_msg)
+ elif order is None:
+ assert_(x.flags.c_contiguous, err_msg)
+ else:
+ raise ValueError
+
+ def test_various_alignments(self):
+ for align in [1, 2, 3, 4, 8, 12, 16, 32, 64, None]:
+ for n in [0, 1, 3, 11]:
+ for order in ["C", "F", None]:
+ for dtype in list(np.typecodes["All"]) + ['i4,i4,i4']:
+ if dtype == 'O':
+ # object dtype can't be misaligned
+ continue
+ for shape in [n, (1, 2, 3, n)]:
+ self.check(shape, np.dtype(dtype), order, align)
+
+ def test_strided_loop_alignments(self):
+ # particularly test that complex64 and float128 use right alignment
+ # code-paths, since these are particularly problematic. It is useful to
+ # turn on USE_DEBUG for this test, so lowlevel-loop asserts are run.
+ for align in [1, 2, 4, 8, 12, 16, None]:
+ xf64 = _aligned_zeros(3, np.float64)
+
+ xc64 = _aligned_zeros(3, np.complex64, align=align)
+ xf128 = _aligned_zeros(3, np.longdouble, align=align)
+
+ # test casting, both to and from misaligned
+ with suppress_warnings() as sup:
+ sup.filter(ComplexWarning, "Casting complex values")
+ xc64.astype('f8')
+ xf64.astype(np.complex64)
+ test = xc64 + xf64
+
+ xf128.astype('f8')
+ xf64.astype(np.longdouble)
+ test = xf128 + xf64
+
+ test = xf128 + xc64
+
+ # test copy, both to and from misaligned
+ # contig copy
+ xf64[:] = xf64.copy()
+ xc64[:] = xc64.copy()
+ xf128[:] = xf128.copy()
+ # strided copy
+ xf64[::2] = xf64[::2].copy()
+ xc64[::2] = xc64[::2].copy()
+ xf128[::2] = xf128[::2].copy()
+
+def test_getfield():
+ a = np.arange(32, dtype='uint16')
+ if sys.byteorder == 'little':
+ i = 0
+ j = 1
+ else:
+ i = 1
+ j = 0
+ b = a.getfield('int8', i)
+ assert_equal(b, a)
+ b = a.getfield('int8', j)
+ assert_equal(b, 0)
+ pytest.raises(ValueError, a.getfield, 'uint8', -1)
+ pytest.raises(ValueError, a.getfield, 'uint8', 16)
+ pytest.raises(ValueError, a.getfield, 'uint64', 0)
+
+
+class TestViewDtype:
+ """
+ Verify that making a view of a non-contiguous array works as expected.
+ """
+ def test_smaller_dtype_multiple(self):
+ # x is non-contiguous
+ x = np.arange(10, dtype='<i4')[::2]
+ with pytest.raises(ValueError,
+ match='the last axis must be contiguous'):
+ x.view('<i2')
+ expected = [[0, 0], [2, 0], [4, 0], [6, 0], [8, 0]]
+ assert_array_equal(x[:, np.newaxis].view('<i2'), expected)
+
+ def test_smaller_dtype_not_multiple(self):
+ # x is non-contiguous
+ x = np.arange(5, dtype='<i4')[::2]
+
+ with pytest.raises(ValueError,
+ match='the last axis must be contiguous'):
+ x.view('S3')
+ with pytest.raises(ValueError,
+ match='When changing to a smaller dtype'):
+ x[:, np.newaxis].view('S3')
+
+ # Make sure the problem is because of the dtype size
+ expected = [[b''], [b'\x02'], [b'\x04']]
+ assert_array_equal(x[:, np.newaxis].view('S4'), expected)
+
+ def test_larger_dtype_multiple(self):
+ # x is non-contiguous in the first dimension, contiguous in the last
+ x = np.arange(20, dtype='<i2').reshape(10, 2)[::2, :]
+ expected = np.array([[65536], [327684], [589832],
+ [851980], [1114128]], dtype='<i4')
+ assert_array_equal(x.view('<i4'), expected)
+
+ def test_larger_dtype_not_multiple(self):
+ # x is non-contiguous in the first dimension, contiguous in the last
+ x = np.arange(20, dtype='<i2').reshape(10, 2)[::2, :]
+ with pytest.raises(ValueError,
+ match='When changing to a larger dtype'):
+ x.view('S3')
+ # Make sure the problem is because of the dtype size
+ expected = [[b'\x00\x00\x01'], [b'\x04\x00\x05'], [b'\x08\x00\t'],
+ [b'\x0c\x00\r'], [b'\x10\x00\x11']]
+ assert_array_equal(x.view('S4'), expected)
+
+ def test_f_contiguous(self):
+ # x is F-contiguous
+ x = np.arange(4 * 3, dtype='<i4').reshape(4, 3).T
+ with pytest.raises(ValueError,
+ match='the last axis must be contiguous'):
+ x.view('<i2')
+
+ def test_non_c_contiguous(self):
+ # x is contiguous in axis=-1, but not C-contiguous in other axes
+ x = np.arange(2 * 3 * 4, dtype='i1').\
+ reshape(2, 3, 4).transpose(1, 0, 2)
+ expected = [[[256, 770], [3340, 3854]],
+ [[1284, 1798], [4368, 4882]],
+ [[2312, 2826], [5396, 5910]]]
+ assert_array_equal(x.view('<i2'), expected)
+
+
+@pytest.mark.xfail(check_support_sve(), reason="gh-22982")
+# Test various array sizes that hit different code paths in quicksort-avx512
+@pytest.mark.parametrize("N", np.arange(1, 512))
+@pytest.mark.parametrize("dtype", ['e', 'f', 'd'])
+def test_sort_float(N, dtype):
+ # Regular data with nan sprinkled
+ np.random.seed(42)
+ arr = -0.5 + np.random.sample(N).astype(dtype)
+ arr[np.random.choice(arr.shape[0], 3)] = np.nan
+ assert_equal(np.sort(arr, kind='quick'), np.sort(arr, kind='heap'))
+
+ # (2) with +INF
+ infarr = np.inf * np.ones(N, dtype=dtype)
+ infarr[np.random.choice(infarr.shape[0], 5)] = -1.0
+ assert_equal(np.sort(infarr, kind='quick'), np.sort(infarr, kind='heap'))
+
+ # (3) with -INF
+ neginfarr = -np.inf * np.ones(N, dtype=dtype)
+ neginfarr[np.random.choice(neginfarr.shape[0], 5)] = 1.0
+ assert_equal(np.sort(neginfarr, kind='quick'),
+ np.sort(neginfarr, kind='heap'))
+
+ # (4) with +/-INF
+ infarr = np.inf * np.ones(N, dtype=dtype)
+ infarr[np.random.choice(infarr.shape[0], (int)(N / 2))] = -np.inf
+ assert_equal(np.sort(infarr, kind='quick'), np.sort(infarr, kind='heap'))
+
+def test_sort_float16():
+ arr = np.arange(65536, dtype=np.int16)
+ temp = np.frombuffer(arr.tobytes(), dtype=np.float16)
+ data = np.copy(temp)
+ np.random.shuffle(data)
+ data_backup = data
+ assert_equal(np.sort(data, kind='quick'),
+ np.sort(data_backup, kind='heap'))
+
+
+@pytest.mark.parametrize("N", np.arange(1, 512))
+@pytest.mark.parametrize("dtype", ['h', 'H', 'i', 'I', 'l', 'L'])
+def test_sort_int(N, dtype):
+ # Random data with MAX and MIN sprinkled
+ minv = np.iinfo(dtype).min
+ maxv = np.iinfo(dtype).max
+ arr = np.random.randint(low=minv, high=maxv - 1, size=N, dtype=dtype)
+ arr[np.random.choice(arr.shape[0], 10)] = minv
+ arr[np.random.choice(arr.shape[0], 10)] = maxv
+ assert_equal(np.sort(arr, kind='quick'), np.sort(arr, kind='heap'))
+
+
+def test_sort_uint():
+ # Random data with NPY_MAX_UINT32 sprinkled
+ rng = np.random.default_rng(42)
+ N = 2047
+ maxv = np.iinfo(np.uint32).max
+ arr = rng.integers(low=0, high=maxv, size=N).astype('uint32')
+ arr[np.random.choice(arr.shape[0], 10)] = maxv
+ assert_equal(np.sort(arr, kind='quick'), np.sort(arr, kind='heap'))
+
+def test_private_get_ndarray_c_version():
+ assert isinstance(_get_ndarray_c_version(), int)
+
+
+@pytest.mark.parametrize("N", np.arange(1, 512))
+@pytest.mark.parametrize("dtype", [np.float32, np.float64])
+def test_argsort_float(N, dtype):
+ rnd = np.random.RandomState(116112)
+ # (1) Regular data with a few nan: doesn't use vectorized sort
+ arr = -0.5 + rnd.random(N).astype(dtype)
+ arr[rnd.choice(arr.shape[0], 3)] = np.nan
+ assert_arg_sorted(arr, np.argsort(arr, kind='quick'))
+
+ # (2) Random data with inf at the end of array
+ # See: https://github.com/intel/x86-simd-sort/pull/39
+ arr = -0.5 + rnd.rand(N).astype(dtype)
+ arr[N - 1] = np.inf
+ assert_arg_sorted(arr, np.argsort(arr, kind='quick'))
+
+
+@pytest.mark.parametrize("N", np.arange(2, 512))
+@pytest.mark.parametrize("dtype", [np.int32, np.uint32, np.int64, np.uint64])
+def test_argsort_int(N, dtype):
+ rnd = np.random.RandomState(1100710816)
+ # (1) random data with min and max values
+ minv = np.iinfo(dtype).min
+ maxv = np.iinfo(dtype).max
+ arr = rnd.randint(low=minv, high=maxv, size=N, dtype=dtype)
+ i, j = rnd.choice(N, 2, replace=False)
+ arr[i] = minv
+ arr[j] = maxv
+ assert_arg_sorted(arr, np.argsort(arr, kind='quick'))
+
+ # (2) random data with max value at the end of array
+ # See: https://github.com/intel/x86-simd-sort/pull/39
+ arr = rnd.randint(low=minv, high=maxv, size=N, dtype=dtype)
+ arr[N - 1] = maxv
+ assert_arg_sorted(arr, np.argsort(arr, kind='quick'))
+
+# Test large arrays that leverage openMP implementations from x86-simd-sort:
+@pytest.mark.parametrize("dtype", [np.float16, np.float32, np.float64])
+def test_sort_largearrays(dtype):
+ N = 1000000
+ rnd = np.random.RandomState(1100710816)
+ arr = -0.5 + rnd.random(N).astype(dtype)
+ assert_equal(np.sort(arr, kind='quick'), np.sort(arr, kind='heap'))
+
+# Test large arrays that leverage openMP implementations from x86-simd-sort:
+@pytest.mark.parametrize("dtype", [np.float32, np.float64])
+def test_argsort_largearrays(dtype):
+ N = 1000000
+ rnd = np.random.RandomState(1100710816)
+ arr = -0.5 + rnd.random(N).astype(dtype)
+ assert_arg_sorted(arr, np.argsort(arr, kind='quick'))
+
+@pytest.mark.skipif(not HAS_REFCOUNT, reason="Python lacks refcounts")
+def test_gh_22683():
+ b = 777.68760986
+ a = np.array([b] * 10000, dtype=object)
+ refc_start = sys.getrefcount(b)
+ np.choose(np.zeros(10000, dtype=int), [a], out=a)
+ np.choose(np.zeros(10000, dtype=int), [a], out=a)
+ refc_end = sys.getrefcount(b)
+ assert refc_end - refc_start < 10
+
+
+def test_gh_24459():
+ a = np.zeros((50, 3), dtype=np.float64)
+ with pytest.raises(TypeError):
+ np.choose(a, [3, -1])
+
+
+def test_gh_28206():
+ a = np.arange(3)
+ b = np.ones((3, 3), dtype=np.int64)
+ out = np.array([np.nan, np.nan, np.nan])
+
+ with warnings.catch_warnings():
+ warnings.simplefilter("error", RuntimeWarning)
+ np.choose(a, b, out=out)
+
+
+@pytest.mark.parametrize("N", np.arange(2, 512))
+@pytest.mark.parametrize("dtype", [np.int16, np.uint16,
+ np.int32, np.uint32, np.int64, np.uint64])
+def test_partition_int(N, dtype):
+ rnd = np.random.RandomState(1100710816)
+ # (1) random data with min and max values
+ minv = np.iinfo(dtype).min
+ maxv = np.iinfo(dtype).max
+ arr = rnd.randint(low=minv, high=maxv, size=N, dtype=dtype)
+ i, j = rnd.choice(N, 2, replace=False)
+ arr[i] = minv
+ arr[j] = maxv
+ k = rnd.choice(N, 1)[0]
+ assert_arr_partitioned(np.sort(arr)[k], k,
+ np.partition(arr, k, kind='introselect'))
+ assert_arr_partitioned(np.sort(arr)[k], k,
+ arr[np.argpartition(arr, k, kind='introselect')])
+
+ # (2) random data with max value at the end of array
+ arr = rnd.randint(low=minv, high=maxv, size=N, dtype=dtype)
+ arr[N - 1] = maxv
+ assert_arr_partitioned(np.sort(arr)[k], k,
+ np.partition(arr, k, kind='introselect'))
+ assert_arr_partitioned(np.sort(arr)[k], k,
+ arr[np.argpartition(arr, k, kind='introselect')])
+
+
+@pytest.mark.parametrize("N", np.arange(2, 512))
+@pytest.mark.parametrize("dtype", [np.float16, np.float32, np.float64])
+def test_partition_fp(N, dtype):
+ rnd = np.random.RandomState(1100710816)
+ arr = -0.5 + rnd.random(N).astype(dtype)
+ k = rnd.choice(N, 1)[0]
+ assert_arr_partitioned(np.sort(arr)[k], k,
+ np.partition(arr, k, kind='introselect'))
+ assert_arr_partitioned(np.sort(arr)[k], k,
+ arr[np.argpartition(arr, k, kind='introselect')])
+
+ # Check that `np.inf < np.nan`
+ # This follows np.sort
+ arr[0] = np.nan
+ arr[1] = np.inf
+ o1 = np.partition(arr, -2, kind='introselect')
+ o2 = arr[np.argpartition(arr, -2, kind='introselect')]
+ for out in [o1, o2]:
+ assert_(np.isnan(out[-1]))
+ assert_equal(out[-2], np.inf)
+
+def test_cannot_assign_data():
+ a = np.arange(10)
+ b = np.linspace(0, 1, 10)
+ with pytest.raises(AttributeError):
+ a.data = b.data
+
+def test_insufficient_width():
+ """
+ If a 'width' parameter is passed into ``binary_repr`` that is insufficient
+ to represent the number in base 2 (positive) or 2's complement (negative)
+ form, the function used to silently ignore the parameter and return a
+ representation using the minimal number of bits needed for the form in
+ question. Such behavior is now considered unsafe from a user perspective
+ and will raise an error.
+ """
+ with pytest.raises(ValueError):
+ np.binary_repr(10, width=2)
+ with pytest.raises(ValueError):
+ np.binary_repr(-5, width=2)
+
+def test_npy_char_raises():
+ from numpy._core._multiarray_tests import npy_char_deprecation
+ with pytest.raises(ValueError):
+ npy_char_deprecation()
+
+
+class TestDevice:
+ """
+ Test arr.device attribute and arr.to_device() method.
+ """
+ @pytest.mark.parametrize("func, arg", [
+ (np.arange, 5),
+ (np.empty_like, []),
+ (np.zeros, 5),
+ (np.empty, (5, 5)),
+ (np.asarray, []),
+ (np.asanyarray, []),
+ ])
+ def test_device(self, func, arg):
+ arr = func(arg)
+ assert arr.device == "cpu"
+ arr = func(arg, device=None)
+ assert arr.device == "cpu"
+ arr = func(arg, device="cpu")
+ assert arr.device == "cpu"
+
+ with assert_raises_regex(
+ ValueError,
+ r"Device not understood. Only \"cpu\" is allowed, "
+ r"but received: nonsense"
+ ):
+ func(arg, device="nonsense")
+
+ with assert_raises_regex(
+ AttributeError,
+ r"attribute 'device' of '(numpy.|)ndarray' objects is "
+ r"not writable"
+ ):
+ arr.device = "other"
+
+ def test_to_device(self):
+ arr = np.arange(5)
+
+ assert arr.to_device("cpu") is arr
+ with assert_raises_regex(
+ ValueError,
+ r"The stream argument in to_device\(\) is not supported"
+ ):
+ arr.to_device("cpu", stream=1)
+
+def test_array_interface_excess_dimensions_raises():
+ """Regression test for gh-27949: ensure too many dims raises ValueError instead of segfault."""
+
+ # Dummy object to hold a custom __array_interface__
+ class DummyArray:
+ def __init__(self, interface):
+ # Attach the array interface dict to mimic an array
+ self.__array_interface__ = interface
+
+ # Create a base array (scalar) and copy its interface
+ base = np.array(42) # base can be any scalar or array
+ interface = dict(base.__array_interface__)
+
+ # Modify the shape to exceed NumPy's dimension limit (NPY_MAXDIMS, typically 64)
+ interface['shape'] = tuple([1] * 136) # match the original bug report
+
+ dummy = DummyArray(interface)
+ # Now, using np.asanyarray on this dummy should trigger a ValueError (not segfault)
+ with pytest.raises(ValueError, match="dimensions must be within"):
+ np.asanyarray(dummy)
+
+@pytest.mark.parametrize("dtype", [np.float32, np.float64, np.uint32, np.complex128])
+def test_array_dunder_array_preserves_dtype_on_none(dtype):
+ """
+ Regression test for: https://github.com/numpy/numpy/issues/27407
+ Ensure that __array__(None) returns an array of the same dtype.
+ """
+ a = np.array([1], dtype=dtype)
+ b = a.__array__(None)
+ assert_array_equal(a, b, strict=True)
diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_multithreading.py b/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_multithreading.py
new file mode 100644
index 0000000..09f9075
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_multithreading.py
@@ -0,0 +1,292 @@
+import concurrent.futures
+import string
+import threading
+
+import pytest
+
+import numpy as np
+from numpy._core import _rational_tests
+from numpy.testing import IS_64BIT, IS_WASM
+from numpy.testing._private.utils import run_threaded
+
+if IS_WASM:
+ pytest.skip(allow_module_level=True, reason="no threading support in wasm")
+
+
+def test_parallel_randomstate_creation():
+ # if the coercion cache is enabled and not thread-safe, creating
+ # RandomState instances simultaneously leads to a data race
+ def func(seed):
+ np.random.RandomState(seed)
+
+ run_threaded(func, 500, pass_count=True)
+
+
+def test_parallel_ufunc_execution():
+ # if the loop data cache or dispatch cache are not thread-safe
+ # computing ufuncs simultaneously in multiple threads leads
+ # to a data race that causes crashes or spurious exceptions
+ def func():
+ arr = np.random.random((25,))
+ np.isnan(arr)
+
+ run_threaded(func, 500)
+
+ # see gh-26690
+ NUM_THREADS = 50
+
+ a = np.ones(1000)
+
+ def f(b):
+ b.wait()
+ return a.sum()
+
+ run_threaded(f, NUM_THREADS, pass_barrier=True)
+
+
+def test_temp_elision_thread_safety():
+ amid = np.ones(50000)
+ bmid = np.ones(50000)
+ alarge = np.ones(1000000)
+ blarge = np.ones(1000000)
+
+ def func(count):
+ if count % 4 == 0:
+ (amid * 2) + bmid
+ elif count % 4 == 1:
+ (amid + bmid) - 2
+ elif count % 4 == 2:
+ (alarge * 2) + blarge
+ else:
+ (alarge + blarge) - 2
+
+ run_threaded(func, 100, pass_count=True)
+
+
+def test_eigvalsh_thread_safety():
+ # if lapack isn't thread safe this will randomly segfault or error
+ # see gh-24512
+ rng = np.random.RandomState(873699172)
+ matrices = (
+ rng.random((5, 10, 10, 3, 3)),
+ rng.random((5, 10, 10, 3, 3)),
+ )
+
+ run_threaded(lambda i: np.linalg.eigvalsh(matrices[i]), 2,
+ pass_count=True)
+
+
+def test_printoptions_thread_safety():
+ # until NumPy 2.1 the printoptions state was stored in globals
+ # this verifies that they are now stored in a context variable
+ b = threading.Barrier(2)
+
+ def legacy_113():
+ np.set_printoptions(legacy='1.13', precision=12)
+ b.wait()
+ po = np.get_printoptions()
+ assert po['legacy'] == '1.13'
+ assert po['precision'] == 12
+ orig_linewidth = po['linewidth']
+ with np.printoptions(linewidth=34, legacy='1.21'):
+ po = np.get_printoptions()
+ assert po['legacy'] == '1.21'
+ assert po['precision'] == 12
+ assert po['linewidth'] == 34
+ po = np.get_printoptions()
+ assert po['linewidth'] == orig_linewidth
+ assert po['legacy'] == '1.13'
+ assert po['precision'] == 12
+
+ def legacy_125():
+ np.set_printoptions(legacy='1.25', precision=7)
+ b.wait()
+ po = np.get_printoptions()
+ assert po['legacy'] == '1.25'
+ assert po['precision'] == 7
+ orig_linewidth = po['linewidth']
+ with np.printoptions(linewidth=6, legacy='1.13'):
+ po = np.get_printoptions()
+ assert po['legacy'] == '1.13'
+ assert po['precision'] == 7
+ assert po['linewidth'] == 6
+ po = np.get_printoptions()
+ assert po['linewidth'] == orig_linewidth
+ assert po['legacy'] == '1.25'
+ assert po['precision'] == 7
+
+ task1 = threading.Thread(target=legacy_113)
+ task2 = threading.Thread(target=legacy_125)
+
+ task1.start()
+ task2.start()
+
+
+def test_parallel_reduction():
+ # gh-28041
+ NUM_THREADS = 50
+
+ x = np.arange(1000)
+
+ def closure(b):
+ b.wait()
+ np.sum(x)
+
+ run_threaded(closure, NUM_THREADS, pass_barrier=True)
+
+
+def test_parallel_flat_iterator():
+ # gh-28042
+ x = np.arange(20).reshape(5, 4).T
+
+ def closure(b):
+ b.wait()
+ for _ in range(100):
+ list(x.flat)
+
+ run_threaded(closure, outer_iterations=100, pass_barrier=True)
+
+ # gh-28143
+ def prepare_args():
+ return [np.arange(10)]
+
+ def closure(x, b):
+ b.wait()
+ for _ in range(100):
+ y = np.arange(10)
+ y.flat[x] = x
+
+ run_threaded(closure, pass_barrier=True, prepare_args=prepare_args)
+
+
+def test_multithreaded_repeat():
+ x0 = np.arange(10)
+
+ def closure(b):
+ b.wait()
+ for _ in range(100):
+ x = np.repeat(x0, 2, axis=0)[::2]
+
+ run_threaded(closure, max_workers=10, pass_barrier=True)
+
+
+def test_structured_advanced_indexing():
+ # Test that copyswap(n) used by integer array indexing is threadsafe
+ # for structured datatypes, see gh-15387. This test can behave randomly.
+
+ # Create a deeply nested dtype to make a failure more likely:
+ dt = np.dtype([("", "f8")])
+ dt = np.dtype([("", dt)] * 2)
+ dt = np.dtype([("", dt)] * 2)
+ # The array should be large enough to likely run into threading issues
+ arr = np.random.uniform(size=(6000, 8)).view(dt)[:, 0]
+
+ rng = np.random.default_rng()
+
+ def func(arr):
+ indx = rng.integers(0, len(arr), size=6000, dtype=np.intp)
+ arr[indx]
+
+ tpe = concurrent.futures.ThreadPoolExecutor(max_workers=8)
+ futures = [tpe.submit(func, arr) for _ in range(10)]
+ for f in futures:
+ f.result()
+
+ assert arr.dtype is dt
+
+
+def test_structured_threadsafety2():
+ # Nonzero (and some other functions) should be threadsafe for
+ # structured datatypes, see gh-15387. This test can behave randomly.
+ from concurrent.futures import ThreadPoolExecutor
+
+ # Create a deeply nested dtype to make a failure more likely:
+ dt = np.dtype([("", "f8")])
+ dt = np.dtype([("", dt)])
+ dt = np.dtype([("", dt)] * 2)
+ # The array should be large enough to likely run into threading issues
+ arr = np.random.uniform(size=(5000, 4)).view(dt)[:, 0]
+
+ def func(arr):
+ arr.nonzero()
+
+ tpe = ThreadPoolExecutor(max_workers=8)
+ futures = [tpe.submit(func, arr) for _ in range(10)]
+ for f in futures:
+ f.result()
+
+ assert arr.dtype is dt
+
+
+def test_stringdtype_multithreaded_access_and_mutation(
+ dtype, random_string_list):
+ # this test uses an RNG and may crash or cause deadlocks if there is a
+ # threading bug
+ rng = np.random.default_rng(0x4D3D3D3)
+
+ chars = list(string.ascii_letters + string.digits)
+ chars = np.array(chars, dtype="U1")
+ ret = rng.choice(chars, size=100 * 10, replace=True)
+ random_string_list = ret.view("U100")
+
+ def func(arr):
+ rnd = rng.random()
+ # either write to random locations in the array, compute a ufunc, or
+ # re-initialize the array
+ if rnd < 0.25:
+ num = np.random.randint(0, arr.size)
+ arr[num] = arr[num] + "hello"
+ elif rnd < 0.5:
+ if rnd < 0.375:
+ np.add(arr, arr)
+ else:
+ np.add(arr, arr, out=arr)
+ elif rnd < 0.75:
+ if rnd < 0.875:
+ np.multiply(arr, np.int64(2))
+ else:
+ np.multiply(arr, np.int64(2), out=arr)
+ else:
+ arr[:] = random_string_list
+
+ with concurrent.futures.ThreadPoolExecutor(max_workers=8) as tpe:
+ arr = np.array(random_string_list, dtype=dtype)
+ futures = [tpe.submit(func, arr) for _ in range(500)]
+
+ for f in futures:
+ f.result()
+
+
+@pytest.mark.skipif(
+ not IS_64BIT,
+ reason="Sometimes causes failures or crashes due to OOM on 32 bit runners"
+)
+def test_legacy_usertype_cast_init_thread_safety():
+ def closure(b):
+ b.wait()
+ np.full((10, 10), 1, _rational_tests.rational)
+
+ run_threaded(closure, 250, pass_barrier=True)
+
+@pytest.mark.parametrize("dtype", [bool, int, float])
+def test_nonzero(dtype):
+ # See: gh-28361
+ #
+ # np.nonzero uses np.count_nonzero to determine the size of the output array
+ # In a second pass the indices of the non-zero elements are determined, but they can have changed
+ #
+ # This test triggers a data race which is suppressed in the TSAN CI. The test is to ensure
+ # np.nonzero does not generate a segmentation fault
+ x = np.random.randint(4, size=100).astype(dtype)
+
+ def func(index):
+ for _ in range(10):
+ if index == 0:
+ x[::2] = np.random.randint(2)
+ else:
+ try:
+ _ = np.nonzero(x)
+ except RuntimeError as ex:
+ assert 'number of non-zero array elements changed during function execution' in str(ex)
+
+ run_threaded(func, max_workers=10, pass_count=True, outer_iterations=5)
diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_nditer.py b/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_nditer.py
new file mode 100644
index 0000000..ec28e48
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_nditer.py
@@ -0,0 +1,3498 @@
+import subprocess
+import sys
+import textwrap
+
+import numpy._core._multiarray_tests as _multiarray_tests
+import pytest
+
+import numpy as np
+import numpy._core.umath as ncu
+from numpy import all, arange, array, nditer
+from numpy.testing import (
+ HAS_REFCOUNT,
+ IS_WASM,
+ assert_,
+ assert_array_equal,
+ assert_equal,
+ assert_raises,
+ suppress_warnings,
+)
+from numpy.testing._private.utils import requires_memory
+
+
+def iter_multi_index(i):
+ ret = []
+ while not i.finished:
+ ret.append(i.multi_index)
+ i.iternext()
+ return ret
+
+def iter_indices(i):
+ ret = []
+ while not i.finished:
+ ret.append(i.index)
+ i.iternext()
+ return ret
+
+def iter_iterindices(i):
+ ret = []
+ while not i.finished:
+ ret.append(i.iterindex)
+ i.iternext()
+ return ret
+
+@pytest.mark.skipif(not HAS_REFCOUNT, reason="Python lacks refcounts")
+def test_iter_refcount():
+ # Make sure the iterator doesn't leak
+
+ # Basic
+ a = arange(6)
+ dt = np.dtype('f4').newbyteorder()
+ rc_a = sys.getrefcount(a)
+ rc_dt = sys.getrefcount(dt)
+ with nditer(a, [],
+ [['readwrite', 'updateifcopy']],
+ casting='unsafe',
+ op_dtypes=[dt]) as it:
+ assert_(not it.iterationneedsapi)
+ assert_(sys.getrefcount(a) > rc_a)
+ assert_(sys.getrefcount(dt) > rc_dt)
+ # del 'it'
+ it = None
+ assert_equal(sys.getrefcount(a), rc_a)
+ assert_equal(sys.getrefcount(dt), rc_dt)
+
+ # With a copy
+ a = arange(6, dtype='f4')
+ dt = np.dtype('f4')
+ rc_a = sys.getrefcount(a)
+ rc_dt = sys.getrefcount(dt)
+ it = nditer(a, [],
+ [['readwrite']],
+ op_dtypes=[dt])
+ rc2_a = sys.getrefcount(a)
+ rc2_dt = sys.getrefcount(dt)
+ it2 = it.copy()
+ assert_(sys.getrefcount(a) > rc2_a)
+ if sys.version_info < (3, 13):
+ # np.dtype('f4') is immortal after Python 3.13
+ assert_(sys.getrefcount(dt) > rc2_dt)
+ it = None
+ assert_equal(sys.getrefcount(a), rc2_a)
+ assert_equal(sys.getrefcount(dt), rc2_dt)
+ it2 = None
+ assert_equal(sys.getrefcount(a), rc_a)
+ assert_equal(sys.getrefcount(dt), rc_dt)
+
+def test_iter_best_order():
+ # The iterator should always find the iteration order
+ # with increasing memory addresses
+
+ # Test the ordering for 1-D to 5-D shapes
+ for shape in [(5,), (3, 4), (2, 3, 4), (2, 3, 4, 3), (2, 3, 2, 2, 3)]:
+ a = arange(np.prod(shape))
+ # Test each combination of positive and negative strides
+ for dirs in range(2**len(shape)):
+ dirs_index = [slice(None)] * len(shape)
+ for bit in range(len(shape)):
+ if ((2**bit) & dirs):
+ dirs_index[bit] = slice(None, None, -1)
+ dirs_index = tuple(dirs_index)
+
+ aview = a.reshape(shape)[dirs_index]
+ # C-order
+ i = nditer(aview, [], [['readonly']])
+ assert_equal(list(i), a)
+ # Fortran-order
+ i = nditer(aview.T, [], [['readonly']])
+ assert_equal(list(i), a)
+ # Other order
+ if len(shape) > 2:
+ i = nditer(aview.swapaxes(0, 1), [], [['readonly']])
+ assert_equal(list(i), a)
+
+def test_iter_c_order():
+ # Test forcing C order
+
+ # Test the ordering for 1-D to 5-D shapes
+ for shape in [(5,), (3, 4), (2, 3, 4), (2, 3, 4, 3), (2, 3, 2, 2, 3)]:
+ a = arange(np.prod(shape))
+ # Test each combination of positive and negative strides
+ for dirs in range(2**len(shape)):
+ dirs_index = [slice(None)] * len(shape)
+ for bit in range(len(shape)):
+ if ((2**bit) & dirs):
+ dirs_index[bit] = slice(None, None, -1)
+ dirs_index = tuple(dirs_index)
+
+ aview = a.reshape(shape)[dirs_index]
+ # C-order
+ i = nditer(aview, order='C')
+ assert_equal(list(i), aview.ravel(order='C'))
+ # Fortran-order
+ i = nditer(aview.T, order='C')
+ assert_equal(list(i), aview.T.ravel(order='C'))
+ # Other order
+ if len(shape) > 2:
+ i = nditer(aview.swapaxes(0, 1), order='C')
+ assert_equal(list(i),
+ aview.swapaxes(0, 1).ravel(order='C'))
+
+def test_iter_f_order():
+ # Test forcing F order
+
+ # Test the ordering for 1-D to 5-D shapes
+ for shape in [(5,), (3, 4), (2, 3, 4), (2, 3, 4, 3), (2, 3, 2, 2, 3)]:
+ a = arange(np.prod(shape))
+ # Test each combination of positive and negative strides
+ for dirs in range(2**len(shape)):
+ dirs_index = [slice(None)] * len(shape)
+ for bit in range(len(shape)):
+ if ((2**bit) & dirs):
+ dirs_index[bit] = slice(None, None, -1)
+ dirs_index = tuple(dirs_index)
+
+ aview = a.reshape(shape)[dirs_index]
+ # C-order
+ i = nditer(aview, order='F')
+ assert_equal(list(i), aview.ravel(order='F'))
+ # Fortran-order
+ i = nditer(aview.T, order='F')
+ assert_equal(list(i), aview.T.ravel(order='F'))
+ # Other order
+ if len(shape) > 2:
+ i = nditer(aview.swapaxes(0, 1), order='F')
+ assert_equal(list(i),
+ aview.swapaxes(0, 1).ravel(order='F'))
+
+def test_iter_c_or_f_order():
+ # Test forcing any contiguous (C or F) order
+
+ # Test the ordering for 1-D to 5-D shapes
+ for shape in [(5,), (3, 4), (2, 3, 4), (2, 3, 4, 3), (2, 3, 2, 2, 3)]:
+ a = arange(np.prod(shape))
+ # Test each combination of positive and negative strides
+ for dirs in range(2**len(shape)):
+ dirs_index = [slice(None)] * len(shape)
+ for bit in range(len(shape)):
+ if ((2**bit) & dirs):
+ dirs_index[bit] = slice(None, None, -1)
+ dirs_index = tuple(dirs_index)
+
+ aview = a.reshape(shape)[dirs_index]
+ # C-order
+ i = nditer(aview, order='A')
+ assert_equal(list(i), aview.ravel(order='A'))
+ # Fortran-order
+ i = nditer(aview.T, order='A')
+ assert_equal(list(i), aview.T.ravel(order='A'))
+ # Other order
+ if len(shape) > 2:
+ i = nditer(aview.swapaxes(0, 1), order='A')
+ assert_equal(list(i),
+ aview.swapaxes(0, 1).ravel(order='A'))
+
+def test_nditer_multi_index_set():
+ # Test the multi_index set
+ a = np.arange(6).reshape(2, 3)
+ it = np.nditer(a, flags=['multi_index'])
+
+ # Removes the iteration on two first elements of a[0]
+ it.multi_index = (0, 2,)
+
+ assert_equal(list(it), [2, 3, 4, 5])
+
+@pytest.mark.skipif(not HAS_REFCOUNT, reason="Python lacks refcounts")
+def test_nditer_multi_index_set_refcount():
+ # Test if the reference count on index variable is decreased
+
+ index = 0
+ i = np.nditer(np.array([111, 222, 333, 444]), flags=['multi_index'])
+
+ start_count = sys.getrefcount(index)
+ i.multi_index = (index,)
+ end_count = sys.getrefcount(index)
+
+ assert_equal(start_count, end_count)
+
+def test_iter_best_order_multi_index_1d():
+ # The multi-indices should be correct with any reordering
+
+ a = arange(4)
+ # 1D order
+ i = nditer(a, ['multi_index'], [['readonly']])
+ assert_equal(iter_multi_index(i), [(0,), (1,), (2,), (3,)])
+ # 1D reversed order
+ i = nditer(a[::-1], ['multi_index'], [['readonly']])
+ assert_equal(iter_multi_index(i), [(3,), (2,), (1,), (0,)])
+
+def test_iter_best_order_multi_index_2d():
+ # The multi-indices should be correct with any reordering
+
+ a = arange(6)
+ # 2D C-order
+ i = nditer(a.reshape(2, 3), ['multi_index'], [['readonly']])
+ assert_equal(iter_multi_index(i), [(0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (1, 2)])
+ # 2D Fortran-order
+ i = nditer(a.reshape(2, 3).copy(order='F'), ['multi_index'], [['readonly']])
+ assert_equal(iter_multi_index(i), [(0, 0), (1, 0), (0, 1), (1, 1), (0, 2), (1, 2)])
+ # 2D reversed C-order
+ i = nditer(a.reshape(2, 3)[::-1], ['multi_index'], [['readonly']])
+ assert_equal(iter_multi_index(i), [(1, 0), (1, 1), (1, 2), (0, 0), (0, 1), (0, 2)])
+ i = nditer(a.reshape(2, 3)[:, ::-1], ['multi_index'], [['readonly']])
+ assert_equal(iter_multi_index(i), [(0, 2), (0, 1), (0, 0), (1, 2), (1, 1), (1, 0)])
+ i = nditer(a.reshape(2, 3)[::-1, ::-1], ['multi_index'], [['readonly']])
+ assert_equal(iter_multi_index(i), [(1, 2), (1, 1), (1, 0), (0, 2), (0, 1), (0, 0)])
+ # 2D reversed Fortran-order
+ i = nditer(a.reshape(2, 3).copy(order='F')[::-1], ['multi_index'], [['readonly']])
+ assert_equal(iter_multi_index(i), [(1, 0), (0, 0), (1, 1), (0, 1), (1, 2), (0, 2)])
+ i = nditer(a.reshape(2, 3).copy(order='F')[:, ::-1],
+ ['multi_index'], [['readonly']])
+ assert_equal(iter_multi_index(i), [(0, 2), (1, 2), (0, 1), (1, 1), (0, 0), (1, 0)])
+ i = nditer(a.reshape(2, 3).copy(order='F')[::-1, ::-1],
+ ['multi_index'], [['readonly']])
+ assert_equal(iter_multi_index(i), [(1, 2), (0, 2), (1, 1), (0, 1), (1, 0), (0, 0)])
+
+def test_iter_best_order_multi_index_3d():
+ # The multi-indices should be correct with any reordering
+
+ a = arange(12)
+ # 3D C-order
+ i = nditer(a.reshape(2, 3, 2), ['multi_index'], [['readonly']])
+ assert_equal(iter_multi_index(i),
+ [(0, 0, 0), (0, 0, 1), (0, 1, 0), (0, 1, 1), (0, 2, 0), (0, 2, 1),
+ (1, 0, 0), (1, 0, 1), (1, 1, 0), (1, 1, 1), (1, 2, 0), (1, 2, 1)])
+ # 3D Fortran-order
+ i = nditer(a.reshape(2, 3, 2).copy(order='F'), ['multi_index'], [['readonly']])
+ assert_equal(iter_multi_index(i),
+ [(0, 0, 0), (1, 0, 0), (0, 1, 0), (1, 1, 0), (0, 2, 0), (1, 2, 0),
+ (0, 0, 1), (1, 0, 1), (0, 1, 1), (1, 1, 1), (0, 2, 1), (1, 2, 1)])
+ # 3D reversed C-order
+ i = nditer(a.reshape(2, 3, 2)[::-1], ['multi_index'], [['readonly']])
+ assert_equal(iter_multi_index(i),
+ [(1, 0, 0), (1, 0, 1), (1, 1, 0), (1, 1, 1), (1, 2, 0), (1, 2, 1),
+ (0, 0, 0), (0, 0, 1), (0, 1, 0), (0, 1, 1), (0, 2, 0), (0, 2, 1)])
+ i = nditer(a.reshape(2, 3, 2)[:, ::-1], ['multi_index'], [['readonly']])
+ assert_equal(iter_multi_index(i),
+ [(0, 2, 0), (0, 2, 1), (0, 1, 0), (0, 1, 1), (0, 0, 0), (0, 0, 1),
+ (1, 2, 0), (1, 2, 1), (1, 1, 0), (1, 1, 1), (1, 0, 0), (1, 0, 1)])
+ i = nditer(a.reshape(2, 3, 2)[:, :, ::-1], ['multi_index'], [['readonly']])
+ assert_equal(iter_multi_index(i),
+ [(0, 0, 1), (0, 0, 0), (0, 1, 1), (0, 1, 0), (0, 2, 1), (0, 2, 0),
+ (1, 0, 1), (1, 0, 0), (1, 1, 1), (1, 1, 0), (1, 2, 1), (1, 2, 0)])
+ # 3D reversed Fortran-order
+ i = nditer(a.reshape(2, 3, 2).copy(order='F')[::-1],
+ ['multi_index'], [['readonly']])
+ assert_equal(iter_multi_index(i),
+ [(1, 0, 0), (0, 0, 0), (1, 1, 0), (0, 1, 0), (1, 2, 0), (0, 2, 0),
+ (1, 0, 1), (0, 0, 1), (1, 1, 1), (0, 1, 1), (1, 2, 1), (0, 2, 1)])
+ i = nditer(a.reshape(2, 3, 2).copy(order='F')[:, ::-1],
+ ['multi_index'], [['readonly']])
+ assert_equal(iter_multi_index(i),
+ [(0, 2, 0), (1, 2, 0), (0, 1, 0), (1, 1, 0), (0, 0, 0), (1, 0, 0),
+ (0, 2, 1), (1, 2, 1), (0, 1, 1), (1, 1, 1), (0, 0, 1), (1, 0, 1)])
+ i = nditer(a.reshape(2, 3, 2).copy(order='F')[:, :, ::-1],
+ ['multi_index'], [['readonly']])
+ assert_equal(iter_multi_index(i),
+ [(0, 0, 1), (1, 0, 1), (0, 1, 1), (1, 1, 1), (0, 2, 1), (1, 2, 1),
+ (0, 0, 0), (1, 0, 0), (0, 1, 0), (1, 1, 0), (0, 2, 0), (1, 2, 0)])
+
+def test_iter_best_order_c_index_1d():
+ # The C index should be correct with any reordering
+
+ a = arange(4)
+ # 1D order
+ i = nditer(a, ['c_index'], [['readonly']])
+ assert_equal(iter_indices(i), [0, 1, 2, 3])
+ # 1D reversed order
+ i = nditer(a[::-1], ['c_index'], [['readonly']])
+ assert_equal(iter_indices(i), [3, 2, 1, 0])
+
+def test_iter_best_order_c_index_2d():
+ # The C index should be correct with any reordering
+
+ a = arange(6)
+ # 2D C-order
+ i = nditer(a.reshape(2, 3), ['c_index'], [['readonly']])
+ assert_equal(iter_indices(i), [0, 1, 2, 3, 4, 5])
+ # 2D Fortran-order
+ i = nditer(a.reshape(2, 3).copy(order='F'),
+ ['c_index'], [['readonly']])
+ assert_equal(iter_indices(i), [0, 3, 1, 4, 2, 5])
+ # 2D reversed C-order
+ i = nditer(a.reshape(2, 3)[::-1], ['c_index'], [['readonly']])
+ assert_equal(iter_indices(i), [3, 4, 5, 0, 1, 2])
+ i = nditer(a.reshape(2, 3)[:, ::-1], ['c_index'], [['readonly']])
+ assert_equal(iter_indices(i), [2, 1, 0, 5, 4, 3])
+ i = nditer(a.reshape(2, 3)[::-1, ::-1], ['c_index'], [['readonly']])
+ assert_equal(iter_indices(i), [5, 4, 3, 2, 1, 0])
+ # 2D reversed Fortran-order
+ i = nditer(a.reshape(2, 3).copy(order='F')[::-1],
+ ['c_index'], [['readonly']])
+ assert_equal(iter_indices(i), [3, 0, 4, 1, 5, 2])
+ i = nditer(a.reshape(2, 3).copy(order='F')[:, ::-1],
+ ['c_index'], [['readonly']])
+ assert_equal(iter_indices(i), [2, 5, 1, 4, 0, 3])
+ i = nditer(a.reshape(2, 3).copy(order='F')[::-1, ::-1],
+ ['c_index'], [['readonly']])
+ assert_equal(iter_indices(i), [5, 2, 4, 1, 3, 0])
+
+def test_iter_best_order_c_index_3d():
+ # The C index should be correct with any reordering
+
+ a = arange(12)
+ # 3D C-order
+ i = nditer(a.reshape(2, 3, 2), ['c_index'], [['readonly']])
+ assert_equal(iter_indices(i),
+ [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11])
+ # 3D Fortran-order
+ i = nditer(a.reshape(2, 3, 2).copy(order='F'),
+ ['c_index'], [['readonly']])
+ assert_equal(iter_indices(i),
+ [0, 6, 2, 8, 4, 10, 1, 7, 3, 9, 5, 11])
+ # 3D reversed C-order
+ i = nditer(a.reshape(2, 3, 2)[::-1], ['c_index'], [['readonly']])
+ assert_equal(iter_indices(i),
+ [6, 7, 8, 9, 10, 11, 0, 1, 2, 3, 4, 5])
+ i = nditer(a.reshape(2, 3, 2)[:, ::-1], ['c_index'], [['readonly']])
+ assert_equal(iter_indices(i),
+ [4, 5, 2, 3, 0, 1, 10, 11, 8, 9, 6, 7])
+ i = nditer(a.reshape(2, 3, 2)[:, :, ::-1], ['c_index'], [['readonly']])
+ assert_equal(iter_indices(i),
+ [1, 0, 3, 2, 5, 4, 7, 6, 9, 8, 11, 10])
+ # 3D reversed Fortran-order
+ i = nditer(a.reshape(2, 3, 2).copy(order='F')[::-1],
+ ['c_index'], [['readonly']])
+ assert_equal(iter_indices(i),
+ [6, 0, 8, 2, 10, 4, 7, 1, 9, 3, 11, 5])
+ i = nditer(a.reshape(2, 3, 2).copy(order='F')[:, ::-1],
+ ['c_index'], [['readonly']])
+ assert_equal(iter_indices(i),
+ [4, 10, 2, 8, 0, 6, 5, 11, 3, 9, 1, 7])
+ i = nditer(a.reshape(2, 3, 2).copy(order='F')[:, :, ::-1],
+ ['c_index'], [['readonly']])
+ assert_equal(iter_indices(i),
+ [1, 7, 3, 9, 5, 11, 0, 6, 2, 8, 4, 10])
+
+def test_iter_best_order_f_index_1d():
+ # The Fortran index should be correct with any reordering
+
+ a = arange(4)
+ # 1D order
+ i = nditer(a, ['f_index'], [['readonly']])
+ assert_equal(iter_indices(i), [0, 1, 2, 3])
+ # 1D reversed order
+ i = nditer(a[::-1], ['f_index'], [['readonly']])
+ assert_equal(iter_indices(i), [3, 2, 1, 0])
+
+def test_iter_best_order_f_index_2d():
+ # The Fortran index should be correct with any reordering
+
+ a = arange(6)
+ # 2D C-order
+ i = nditer(a.reshape(2, 3), ['f_index'], [['readonly']])
+ assert_equal(iter_indices(i), [0, 2, 4, 1, 3, 5])
+ # 2D Fortran-order
+ i = nditer(a.reshape(2, 3).copy(order='F'),
+ ['f_index'], [['readonly']])
+ assert_equal(iter_indices(i), [0, 1, 2, 3, 4, 5])
+ # 2D reversed C-order
+ i = nditer(a.reshape(2, 3)[::-1], ['f_index'], [['readonly']])
+ assert_equal(iter_indices(i), [1, 3, 5, 0, 2, 4])
+ i = nditer(a.reshape(2, 3)[:, ::-1], ['f_index'], [['readonly']])
+ assert_equal(iter_indices(i), [4, 2, 0, 5, 3, 1])
+ i = nditer(a.reshape(2, 3)[::-1, ::-1], ['f_index'], [['readonly']])
+ assert_equal(iter_indices(i), [5, 3, 1, 4, 2, 0])
+ # 2D reversed Fortran-order
+ i = nditer(a.reshape(2, 3).copy(order='F')[::-1],
+ ['f_index'], [['readonly']])
+ assert_equal(iter_indices(i), [1, 0, 3, 2, 5, 4])
+ i = nditer(a.reshape(2, 3).copy(order='F')[:, ::-1],
+ ['f_index'], [['readonly']])
+ assert_equal(iter_indices(i), [4, 5, 2, 3, 0, 1])
+ i = nditer(a.reshape(2, 3).copy(order='F')[::-1, ::-1],
+ ['f_index'], [['readonly']])
+ assert_equal(iter_indices(i), [5, 4, 3, 2, 1, 0])
+
+def test_iter_best_order_f_index_3d():
+ # The Fortran index should be correct with any reordering
+
+ a = arange(12)
+ # 3D C-order
+ i = nditer(a.reshape(2, 3, 2), ['f_index'], [['readonly']])
+ assert_equal(iter_indices(i),
+ [0, 6, 2, 8, 4, 10, 1, 7, 3, 9, 5, 11])
+ # 3D Fortran-order
+ i = nditer(a.reshape(2, 3, 2).copy(order='F'),
+ ['f_index'], [['readonly']])
+ assert_equal(iter_indices(i),
+ [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11])
+ # 3D reversed C-order
+ i = nditer(a.reshape(2, 3, 2)[::-1], ['f_index'], [['readonly']])
+ assert_equal(iter_indices(i),
+ [1, 7, 3, 9, 5, 11, 0, 6, 2, 8, 4, 10])
+ i = nditer(a.reshape(2, 3, 2)[:, ::-1], ['f_index'], [['readonly']])
+ assert_equal(iter_indices(i),
+ [4, 10, 2, 8, 0, 6, 5, 11, 3, 9, 1, 7])
+ i = nditer(a.reshape(2, 3, 2)[:, :, ::-1], ['f_index'], [['readonly']])
+ assert_equal(iter_indices(i),
+ [6, 0, 8, 2, 10, 4, 7, 1, 9, 3, 11, 5])
+ # 3D reversed Fortran-order
+ i = nditer(a.reshape(2, 3, 2).copy(order='F')[::-1],
+ ['f_index'], [['readonly']])
+ assert_equal(iter_indices(i),
+ [1, 0, 3, 2, 5, 4, 7, 6, 9, 8, 11, 10])
+ i = nditer(a.reshape(2, 3, 2).copy(order='F')[:, ::-1],
+ ['f_index'], [['readonly']])
+ assert_equal(iter_indices(i),
+ [4, 5, 2, 3, 0, 1, 10, 11, 8, 9, 6, 7])
+ i = nditer(a.reshape(2, 3, 2).copy(order='F')[:, :, ::-1],
+ ['f_index'], [['readonly']])
+ assert_equal(iter_indices(i),
+ [6, 7, 8, 9, 10, 11, 0, 1, 2, 3, 4, 5])
+
+def test_iter_no_inner_full_coalesce():
+ # Check no_inner iterators which coalesce into a single inner loop
+
+ for shape in [(5,), (3, 4), (2, 3, 4), (2, 3, 4, 3), (2, 3, 2, 2, 3)]:
+ size = np.prod(shape)
+ a = arange(size)
+ # Test each combination of forward and backwards indexing
+ for dirs in range(2**len(shape)):
+ dirs_index = [slice(None)] * len(shape)
+ for bit in range(len(shape)):
+ if ((2**bit) & dirs):
+ dirs_index[bit] = slice(None, None, -1)
+ dirs_index = tuple(dirs_index)
+
+ aview = a.reshape(shape)[dirs_index]
+ # C-order
+ i = nditer(aview, ['external_loop'], [['readonly']])
+ assert_equal(i.ndim, 1)
+ assert_equal(i[0].shape, (size,))
+ # Fortran-order
+ i = nditer(aview.T, ['external_loop'], [['readonly']])
+ assert_equal(i.ndim, 1)
+ assert_equal(i[0].shape, (size,))
+ # Other order
+ if len(shape) > 2:
+ i = nditer(aview.swapaxes(0, 1),
+ ['external_loop'], [['readonly']])
+ assert_equal(i.ndim, 1)
+ assert_equal(i[0].shape, (size,))
+
+def test_iter_no_inner_dim_coalescing():
+ # Check no_inner iterators whose dimensions may not coalesce completely
+
+ # Skipping the last element in a dimension prevents coalescing
+ # with the next-bigger dimension
+ a = arange(24).reshape(2, 3, 4)[:, :, :-1]
+ i = nditer(a, ['external_loop'], [['readonly']])
+ assert_equal(i.ndim, 2)
+ assert_equal(i[0].shape, (3,))
+ a = arange(24).reshape(2, 3, 4)[:, :-1, :]
+ i = nditer(a, ['external_loop'], [['readonly']])
+ assert_equal(i.ndim, 2)
+ assert_equal(i[0].shape, (8,))
+ a = arange(24).reshape(2, 3, 4)[:-1, :, :]
+ i = nditer(a, ['external_loop'], [['readonly']])
+ assert_equal(i.ndim, 1)
+ assert_equal(i[0].shape, (12,))
+
+ # Even with lots of 1-sized dimensions, should still coalesce
+ a = arange(24).reshape(1, 1, 2, 1, 1, 3, 1, 1, 4, 1, 1)
+ i = nditer(a, ['external_loop'], [['readonly']])
+ assert_equal(i.ndim, 1)
+ assert_equal(i[0].shape, (24,))
+
+def test_iter_dim_coalescing():
+ # Check that the correct number of dimensions are coalesced
+
+ # Tracking a multi-index disables coalescing
+ a = arange(24).reshape(2, 3, 4)
+ i = nditer(a, ['multi_index'], [['readonly']])
+ assert_equal(i.ndim, 3)
+
+ # A tracked index can allow coalescing if it's compatible with the array
+ a3d = arange(24).reshape(2, 3, 4)
+ i = nditer(a3d, ['c_index'], [['readonly']])
+ assert_equal(i.ndim, 1)
+ i = nditer(a3d.swapaxes(0, 1), ['c_index'], [['readonly']])
+ assert_equal(i.ndim, 3)
+ i = nditer(a3d.T, ['c_index'], [['readonly']])
+ assert_equal(i.ndim, 3)
+ i = nditer(a3d.T, ['f_index'], [['readonly']])
+ assert_equal(i.ndim, 1)
+ i = nditer(a3d.T.swapaxes(0, 1), ['f_index'], [['readonly']])
+ assert_equal(i.ndim, 3)
+
+ # When C or F order is forced, coalescing may still occur
+ a3d = arange(24).reshape(2, 3, 4)
+ i = nditer(a3d, order='C')
+ assert_equal(i.ndim, 1)
+ i = nditer(a3d.T, order='C')
+ assert_equal(i.ndim, 3)
+ i = nditer(a3d, order='F')
+ assert_equal(i.ndim, 3)
+ i = nditer(a3d.T, order='F')
+ assert_equal(i.ndim, 1)
+ i = nditer(a3d, order='A')
+ assert_equal(i.ndim, 1)
+ i = nditer(a3d.T, order='A')
+ assert_equal(i.ndim, 1)
+
+def test_iter_broadcasting():
+ # Standard NumPy broadcasting rules
+
+ # 1D with scalar
+ i = nditer([arange(6), np.int32(2)], ['multi_index'], [['readonly']] * 2)
+ assert_equal(i.itersize, 6)
+ assert_equal(i.shape, (6,))
+
+ # 2D with scalar
+ i = nditer([arange(6).reshape(2, 3), np.int32(2)],
+ ['multi_index'], [['readonly']] * 2)
+ assert_equal(i.itersize, 6)
+ assert_equal(i.shape, (2, 3))
+ # 2D with 1D
+ i = nditer([arange(6).reshape(2, 3), arange(3)],
+ ['multi_index'], [['readonly']] * 2)
+ assert_equal(i.itersize, 6)
+ assert_equal(i.shape, (2, 3))
+ i = nditer([arange(2).reshape(2, 1), arange(3)],
+ ['multi_index'], [['readonly']] * 2)
+ assert_equal(i.itersize, 6)
+ assert_equal(i.shape, (2, 3))
+ # 2D with 2D
+ i = nditer([arange(2).reshape(2, 1), arange(3).reshape(1, 3)],
+ ['multi_index'], [['readonly']] * 2)
+ assert_equal(i.itersize, 6)
+ assert_equal(i.shape, (2, 3))
+
+ # 3D with scalar
+ i = nditer([np.int32(2), arange(24).reshape(4, 2, 3)],
+ ['multi_index'], [['readonly']] * 2)
+ assert_equal(i.itersize, 24)
+ assert_equal(i.shape, (4, 2, 3))
+ # 3D with 1D
+ i = nditer([arange(3), arange(24).reshape(4, 2, 3)],
+ ['multi_index'], [['readonly']] * 2)
+ assert_equal(i.itersize, 24)
+ assert_equal(i.shape, (4, 2, 3))
+ i = nditer([arange(3), arange(8).reshape(4, 2, 1)],
+ ['multi_index'], [['readonly']] * 2)
+ assert_equal(i.itersize, 24)
+ assert_equal(i.shape, (4, 2, 3))
+ # 3D with 2D
+ i = nditer([arange(6).reshape(2, 3), arange(24).reshape(4, 2, 3)],
+ ['multi_index'], [['readonly']] * 2)
+ assert_equal(i.itersize, 24)
+ assert_equal(i.shape, (4, 2, 3))
+ i = nditer([arange(2).reshape(2, 1), arange(24).reshape(4, 2, 3)],
+ ['multi_index'], [['readonly']] * 2)
+ assert_equal(i.itersize, 24)
+ assert_equal(i.shape, (4, 2, 3))
+ i = nditer([arange(3).reshape(1, 3), arange(8).reshape(4, 2, 1)],
+ ['multi_index'], [['readonly']] * 2)
+ assert_equal(i.itersize, 24)
+ assert_equal(i.shape, (4, 2, 3))
+ # 3D with 3D
+ i = nditer([arange(2).reshape(1, 2, 1), arange(3).reshape(1, 1, 3),
+ arange(4).reshape(4, 1, 1)],
+ ['multi_index'], [['readonly']] * 3)
+ assert_equal(i.itersize, 24)
+ assert_equal(i.shape, (4, 2, 3))
+ i = nditer([arange(6).reshape(1, 2, 3), arange(4).reshape(4, 1, 1)],
+ ['multi_index'], [['readonly']] * 2)
+ assert_equal(i.itersize, 24)
+ assert_equal(i.shape, (4, 2, 3))
+ i = nditer([arange(24).reshape(4, 2, 3), arange(12).reshape(4, 1, 3)],
+ ['multi_index'], [['readonly']] * 2)
+ assert_equal(i.itersize, 24)
+ assert_equal(i.shape, (4, 2, 3))
+
+def test_iter_itershape():
+ # Check that allocated outputs work with a specified shape
+ a = np.arange(6, dtype='i2').reshape(2, 3)
+ i = nditer([a, None], [], [['readonly'], ['writeonly', 'allocate']],
+ op_axes=[[0, 1, None], None],
+ itershape=(-1, -1, 4))
+ assert_equal(i.operands[1].shape, (2, 3, 4))
+ assert_equal(i.operands[1].strides, (24, 8, 2))
+
+ i = nditer([a.T, None], [], [['readonly'], ['writeonly', 'allocate']],
+ op_axes=[[0, 1, None], None],
+ itershape=(-1, -1, 4))
+ assert_equal(i.operands[1].shape, (3, 2, 4))
+ assert_equal(i.operands[1].strides, (8, 24, 2))
+
+ i = nditer([a.T, None], [], [['readonly'], ['writeonly', 'allocate']],
+ order='F',
+ op_axes=[[0, 1, None], None],
+ itershape=(-1, -1, 4))
+ assert_equal(i.operands[1].shape, (3, 2, 4))
+ assert_equal(i.operands[1].strides, (2, 6, 12))
+
+ # If we specify 1 in the itershape, it shouldn't allow broadcasting
+ # of that dimension to a bigger value
+ assert_raises(ValueError, nditer, [a, None], [],
+ [['readonly'], ['writeonly', 'allocate']],
+ op_axes=[[0, 1, None], None],
+ itershape=(-1, 1, 4))
+ # Test bug that for no op_axes but itershape, they are NULLed correctly
+ i = np.nditer([np.ones(2), None, None], itershape=(2,))
+
+def test_iter_broadcasting_errors():
+ # Check that errors are thrown for bad broadcasting shapes
+
+ # 1D with 1D
+ assert_raises(ValueError, nditer, [arange(2), arange(3)],
+ [], [['readonly']] * 2)
+ # 2D with 1D
+ assert_raises(ValueError, nditer,
+ [arange(6).reshape(2, 3), arange(2)],
+ [], [['readonly']] * 2)
+ # 2D with 2D
+ assert_raises(ValueError, nditer,
+ [arange(6).reshape(2, 3), arange(9).reshape(3, 3)],
+ [], [['readonly']] * 2)
+ assert_raises(ValueError, nditer,
+ [arange(6).reshape(2, 3), arange(4).reshape(2, 2)],
+ [], [['readonly']] * 2)
+ # 3D with 3D
+ assert_raises(ValueError, nditer,
+ [arange(36).reshape(3, 3, 4), arange(24).reshape(2, 3, 4)],
+ [], [['readonly']] * 2)
+ assert_raises(ValueError, nditer,
+ [arange(8).reshape(2, 4, 1), arange(24).reshape(2, 3, 4)],
+ [], [['readonly']] * 2)
+
+ # Verify that the error message mentions the right shapes
+ try:
+ nditer([arange(2).reshape(1, 2, 1),
+ arange(3).reshape(1, 3),
+ arange(6).reshape(2, 3)],
+ [],
+ [['readonly'], ['readonly'], ['writeonly', 'no_broadcast']])
+ raise AssertionError('Should have raised a broadcast error')
+ except ValueError as e:
+ msg = str(e)
+ # The message should contain the shape of the 3rd operand
+ assert_(msg.find('(2,3)') >= 0,
+ f'Message "{msg}" doesn\'t contain operand shape (2,3)')
+ # The message should contain the broadcast shape
+ assert_(msg.find('(1,2,3)') >= 0,
+ f'Message "{msg}" doesn\'t contain broadcast shape (1,2,3)')
+
+ try:
+ nditer([arange(6).reshape(2, 3), arange(2)],
+ [],
+ [['readonly'], ['readonly']],
+ op_axes=[[0, 1], [0, np.newaxis]],
+ itershape=(4, 3))
+ raise AssertionError('Should have raised a broadcast error')
+ except ValueError as e:
+ msg = str(e)
+ # The message should contain "shape->remappedshape" for each operand
+ assert_(msg.find('(2,3)->(2,3)') >= 0,
+ f'Message "{msg}" doesn\'t contain operand shape (2,3)->(2,3)')
+ assert_(msg.find('(2,)->(2,newaxis)') >= 0,
+ ('Message "%s" doesn\'t contain remapped operand shape'
+ '(2,)->(2,newaxis)') % msg)
+ # The message should contain the itershape parameter
+ assert_(msg.find('(4,3)') >= 0,
+ f'Message "{msg}" doesn\'t contain itershape parameter (4,3)')
+
+ try:
+ nditer([np.zeros((2, 1, 1)), np.zeros((2,))],
+ [],
+ [['writeonly', 'no_broadcast'], ['readonly']])
+ raise AssertionError('Should have raised a broadcast error')
+ except ValueError as e:
+ msg = str(e)
+ # The message should contain the shape of the bad operand
+ assert_(msg.find('(2,1,1)') >= 0,
+ f'Message "{msg}" doesn\'t contain operand shape (2,1,1)')
+ # The message should contain the broadcast shape
+ assert_(msg.find('(2,1,2)') >= 0,
+ f'Message "{msg}" doesn\'t contain the broadcast shape (2,1,2)')
+
+def test_iter_flags_errors():
+ # Check that bad combinations of flags produce errors
+
+ a = arange(6)
+
+ # Not enough operands
+ assert_raises(ValueError, nditer, [], [], [])
+ # Bad global flag
+ assert_raises(ValueError, nditer, [a], ['bad flag'], [['readonly']])
+ # Bad op flag
+ assert_raises(ValueError, nditer, [a], [], [['readonly', 'bad flag']])
+ # Bad order parameter
+ assert_raises(ValueError, nditer, [a], [], [['readonly']], order='G')
+ # Bad casting parameter
+ assert_raises(ValueError, nditer, [a], [], [['readonly']], casting='noon')
+ # op_flags must match ops
+ assert_raises(ValueError, nditer, [a] * 3, [], [['readonly']] * 2)
+ # Cannot track both a C and an F index
+ assert_raises(ValueError, nditer, a,
+ ['c_index', 'f_index'], [['readonly']])
+ # Inner iteration and multi-indices/indices are incompatible
+ assert_raises(ValueError, nditer, a,
+ ['external_loop', 'multi_index'], [['readonly']])
+ assert_raises(ValueError, nditer, a,
+ ['external_loop', 'c_index'], [['readonly']])
+ assert_raises(ValueError, nditer, a,
+ ['external_loop', 'f_index'], [['readonly']])
+ # Must specify exactly one of readwrite/readonly/writeonly per operand
+ assert_raises(ValueError, nditer, a, [], [[]])
+ assert_raises(ValueError, nditer, a, [], [['readonly', 'writeonly']])
+ assert_raises(ValueError, nditer, a, [], [['readonly', 'readwrite']])
+ assert_raises(ValueError, nditer, a, [], [['writeonly', 'readwrite']])
+ assert_raises(ValueError, nditer, a,
+ [], [['readonly', 'writeonly', 'readwrite']])
+ # Python scalars are always readonly
+ assert_raises(TypeError, nditer, 1.5, [], [['writeonly']])
+ assert_raises(TypeError, nditer, 1.5, [], [['readwrite']])
+ # Array scalars are always readonly
+ assert_raises(TypeError, nditer, np.int32(1), [], [['writeonly']])
+ assert_raises(TypeError, nditer, np.int32(1), [], [['readwrite']])
+ # Check readonly array
+ a.flags.writeable = False
+ assert_raises(ValueError, nditer, a, [], [['writeonly']])
+ assert_raises(ValueError, nditer, a, [], [['readwrite']])
+ a.flags.writeable = True
+ # Multi-indices available only with the multi_index flag
+ i = nditer(arange(6), [], [['readonly']])
+ assert_raises(ValueError, lambda i: i.multi_index, i)
+ # Index available only with an index flag
+ assert_raises(ValueError, lambda i: i.index, i)
+ # GotoCoords and GotoIndex incompatible with buffering or no_inner
+
+ def assign_multi_index(i):
+ i.multi_index = (0,)
+
+ def assign_index(i):
+ i.index = 0
+
+ def assign_iterindex(i):
+ i.iterindex = 0
+
+ def assign_iterrange(i):
+ i.iterrange = (0, 1)
+ i = nditer(arange(6), ['external_loop'])
+ assert_raises(ValueError, assign_multi_index, i)
+ assert_raises(ValueError, assign_index, i)
+ assert_raises(ValueError, assign_iterindex, i)
+ assert_raises(ValueError, assign_iterrange, i)
+ i = nditer(arange(6), ['buffered'])
+ assert_raises(ValueError, assign_multi_index, i)
+ assert_raises(ValueError, assign_index, i)
+ assert_raises(ValueError, assign_iterrange, i)
+ # Can't iterate if size is zero
+ assert_raises(ValueError, nditer, np.array([]))
+
+def test_iter_slice():
+ a, b, c = np.arange(3), np.arange(3), np.arange(3.)
+ i = nditer([a, b, c], [], ['readwrite'])
+ with i:
+ i[0:2] = (3, 3)
+ assert_equal(a, [3, 1, 2])
+ assert_equal(b, [3, 1, 2])
+ assert_equal(c, [0, 1, 2])
+ i[1] = 12
+ assert_equal(i[0:2], [3, 12])
+
+def test_iter_assign_mapping():
+ a = np.arange(24, dtype='f8').reshape(2, 3, 4).T
+ it = np.nditer(a, [], [['readwrite', 'updateifcopy']],
+ casting='same_kind', op_dtypes=[np.dtype('f4')])
+ with it:
+ it.operands[0][...] = 3
+ it.operands[0][...] = 14
+ assert_equal(a, 14)
+ it = np.nditer(a, [], [['readwrite', 'updateifcopy']],
+ casting='same_kind', op_dtypes=[np.dtype('f4')])
+ with it:
+ x = it.operands[0][-1:1]
+ x[...] = 14
+ it.operands[0][...] = -1234
+ assert_equal(a, -1234)
+ # check for no warnings on dealloc
+ x = None
+ it = None
+
+def test_iter_nbo_align_contig():
+ # Check that byte order, alignment, and contig changes work
+
+ # Byte order change by requesting a specific dtype
+ a = np.arange(6, dtype='f4')
+ au = a.byteswap()
+ au = au.view(au.dtype.newbyteorder())
+ assert_(a.dtype.byteorder != au.dtype.byteorder)
+ i = nditer(au, [], [['readwrite', 'updateifcopy']],
+ casting='equiv',
+ op_dtypes=[np.dtype('f4')])
+ with i:
+ # context manager triggers WRITEBACKIFCOPY on i at exit
+ assert_equal(i.dtypes[0].byteorder, a.dtype.byteorder)
+ assert_equal(i.operands[0].dtype.byteorder, a.dtype.byteorder)
+ assert_equal(i.operands[0], a)
+ i.operands[0][:] = 2
+ assert_equal(au, [2] * 6)
+ del i # should not raise a warning
+ # Byte order change by requesting NBO
+ a = np.arange(6, dtype='f4')
+ au = a.byteswap()
+ au = au.view(au.dtype.newbyteorder())
+ assert_(a.dtype.byteorder != au.dtype.byteorder)
+ with nditer(au, [], [['readwrite', 'updateifcopy', 'nbo']],
+ casting='equiv') as i:
+ # context manager triggers UPDATEIFCOPY on i at exit
+ assert_equal(i.dtypes[0].byteorder, a.dtype.byteorder)
+ assert_equal(i.operands[0].dtype.byteorder, a.dtype.byteorder)
+ assert_equal(i.operands[0], a)
+ i.operands[0][:] = 12345
+ i.operands[0][:] = 2
+ assert_equal(au, [2] * 6)
+
+ # Unaligned input
+ a = np.zeros((6 * 4 + 1,), dtype='i1')[1:]
+ a.dtype = 'f4'
+ a[:] = np.arange(6, dtype='f4')
+ assert_(not a.flags.aligned)
+ # Without 'aligned', shouldn't copy
+ i = nditer(a, [], [['readonly']])
+ assert_(not i.operands[0].flags.aligned)
+ assert_equal(i.operands[0], a)
+ # With 'aligned', should make a copy
+ with nditer(a, [], [['readwrite', 'updateifcopy', 'aligned']]) as i:
+ assert_(i.operands[0].flags.aligned)
+ # context manager triggers UPDATEIFCOPY on i at exit
+ assert_equal(i.operands[0], a)
+ i.operands[0][:] = 3
+ assert_equal(a, [3] * 6)
+
+ # Discontiguous input
+ a = arange(12)
+ # If it is contiguous, shouldn't copy
+ i = nditer(a[:6], [], [['readonly']])
+ assert_(i.operands[0].flags.contiguous)
+ assert_equal(i.operands[0], a[:6])
+ # If it isn't contiguous, should buffer
+ i = nditer(a[::2], ['buffered', 'external_loop'],
+ [['readonly', 'contig']],
+ buffersize=10)
+ assert_(i[0].flags.contiguous)
+ assert_equal(i[0], a[::2])
+
+def test_iter_array_cast():
+ # Check that arrays are cast as requested
+
+ # No cast 'f4' -> 'f4'
+ a = np.arange(6, dtype='f4').reshape(2, 3)
+ i = nditer(a, [], [['readwrite']], op_dtypes=[np.dtype('f4')])
+ with i:
+ assert_equal(i.operands[0], a)
+ assert_equal(i.operands[0].dtype, np.dtype('f4'))
+
+ # Byte-order cast '<f4' -> '>f4'
+ a = np.arange(6, dtype='<f4').reshape(2, 3)
+ with nditer(a, [], [['readwrite', 'updateifcopy']],
+ casting='equiv',
+ op_dtypes=[np.dtype('>f4')]) as i:
+ assert_equal(i.operands[0], a)
+ assert_equal(i.operands[0].dtype, np.dtype('>f4'))
+
+ # Safe case 'f4' -> 'f8'
+ a = np.arange(24, dtype='f4').reshape(2, 3, 4).swapaxes(1, 2)
+ i = nditer(a, [], [['readonly', 'copy']],
+ casting='safe',
+ op_dtypes=[np.dtype('f8')])
+ assert_equal(i.operands[0], a)
+ assert_equal(i.operands[0].dtype, np.dtype('f8'))
+ # The memory layout of the temporary should match a (a is (48,4,16))
+ # except negative strides get flipped to positive strides.
+ assert_equal(i.operands[0].strides, (96, 8, 32))
+ a = a[::-1, :, ::-1]
+ i = nditer(a, [], [['readonly', 'copy']],
+ casting='safe',
+ op_dtypes=[np.dtype('f8')])
+ assert_equal(i.operands[0], a)
+ assert_equal(i.operands[0].dtype, np.dtype('f8'))
+ assert_equal(i.operands[0].strides, (96, 8, 32))
+
+ # Same-kind cast 'f8' -> 'f4' -> 'f8'
+ a = np.arange(24, dtype='f8').reshape(2, 3, 4).T
+ with nditer(a, [],
+ [['readwrite', 'updateifcopy']],
+ casting='same_kind',
+ op_dtypes=[np.dtype('f4')]) as i:
+ assert_equal(i.operands[0], a)
+ assert_equal(i.operands[0].dtype, np.dtype('f4'))
+ assert_equal(i.operands[0].strides, (4, 16, 48))
+ # Check that WRITEBACKIFCOPY is activated at exit
+ i.operands[0][2, 1, 1] = -12.5
+ assert_(a[2, 1, 1] != -12.5)
+ assert_equal(a[2, 1, 1], -12.5)
+
+ a = np.arange(6, dtype='i4')[::-2]
+ with nditer(a, [],
+ [['writeonly', 'updateifcopy']],
+ casting='unsafe',
+ op_dtypes=[np.dtype('f4')]) as i:
+ assert_equal(i.operands[0].dtype, np.dtype('f4'))
+ # Even though the stride was negative in 'a', it
+ # becomes positive in the temporary
+ assert_equal(i.operands[0].strides, (4,))
+ i.operands[0][:] = [1, 2, 3]
+ assert_equal(a, [1, 2, 3])
+
+def test_iter_array_cast_errors():
+ # Check that invalid casts are caught
+
+ # Need to enable copying for casts to occur
+ assert_raises(TypeError, nditer, arange(2, dtype='f4'), [],
+ [['readonly']], op_dtypes=[np.dtype('f8')])
+ # Also need to allow casting for casts to occur
+ assert_raises(TypeError, nditer, arange(2, dtype='f4'), [],
+ [['readonly', 'copy']], casting='no',
+ op_dtypes=[np.dtype('f8')])
+ assert_raises(TypeError, nditer, arange(2, dtype='f4'), [],
+ [['readonly', 'copy']], casting='equiv',
+ op_dtypes=[np.dtype('f8')])
+ assert_raises(TypeError, nditer, arange(2, dtype='f8'), [],
+ [['writeonly', 'updateifcopy']],
+ casting='no',
+ op_dtypes=[np.dtype('f4')])
+ assert_raises(TypeError, nditer, arange(2, dtype='f8'), [],
+ [['writeonly', 'updateifcopy']],
+ casting='equiv',
+ op_dtypes=[np.dtype('f4')])
+ # '<f4' -> '>f4' should not work with casting='no'
+ assert_raises(TypeError, nditer, arange(2, dtype='<f4'), [],
+ [['readonly', 'copy']], casting='no',
+ op_dtypes=[np.dtype('>f4')])
+ # 'f4' -> 'f8' is a safe cast, but 'f8' -> 'f4' isn't
+ assert_raises(TypeError, nditer, arange(2, dtype='f4'), [],
+ [['readwrite', 'updateifcopy']],
+ casting='safe',
+ op_dtypes=[np.dtype('f8')])
+ assert_raises(TypeError, nditer, arange(2, dtype='f8'), [],
+ [['readwrite', 'updateifcopy']],
+ casting='safe',
+ op_dtypes=[np.dtype('f4')])
+ # 'f4' -> 'i4' is neither a safe nor a same-kind cast
+ assert_raises(TypeError, nditer, arange(2, dtype='f4'), [],
+ [['readonly', 'copy']],
+ casting='same_kind',
+ op_dtypes=[np.dtype('i4')])
+ assert_raises(TypeError, nditer, arange(2, dtype='i4'), [],
+ [['writeonly', 'updateifcopy']],
+ casting='same_kind',
+ op_dtypes=[np.dtype('f4')])
+
+def test_iter_scalar_cast():
+ # Check that scalars are cast as requested
+
+ # No cast 'f4' -> 'f4'
+ i = nditer(np.float32(2.5), [], [['readonly']],
+ op_dtypes=[np.dtype('f4')])
+ assert_equal(i.dtypes[0], np.dtype('f4'))
+ assert_equal(i.value.dtype, np.dtype('f4'))
+ assert_equal(i.value, 2.5)
+ # Safe cast 'f4' -> 'f8'
+ i = nditer(np.float32(2.5), [],
+ [['readonly', 'copy']],
+ casting='safe',
+ op_dtypes=[np.dtype('f8')])
+ assert_equal(i.dtypes[0], np.dtype('f8'))
+ assert_equal(i.value.dtype, np.dtype('f8'))
+ assert_equal(i.value, 2.5)
+ # Same-kind cast 'f8' -> 'f4'
+ i = nditer(np.float64(2.5), [],
+ [['readonly', 'copy']],
+ casting='same_kind',
+ op_dtypes=[np.dtype('f4')])
+ assert_equal(i.dtypes[0], np.dtype('f4'))
+ assert_equal(i.value.dtype, np.dtype('f4'))
+ assert_equal(i.value, 2.5)
+ # Unsafe cast 'f8' -> 'i4'
+ i = nditer(np.float64(3.0), [],
+ [['readonly', 'copy']],
+ casting='unsafe',
+ op_dtypes=[np.dtype('i4')])
+ assert_equal(i.dtypes[0], np.dtype('i4'))
+ assert_equal(i.value.dtype, np.dtype('i4'))
+ assert_equal(i.value, 3)
+ # Readonly scalars may be cast even without setting COPY or BUFFERED
+ i = nditer(3, [], [['readonly']], op_dtypes=[np.dtype('f8')])
+ assert_equal(i[0].dtype, np.dtype('f8'))
+ assert_equal(i[0], 3.)
+
+def test_iter_scalar_cast_errors():
+ # Check that invalid casts are caught
+
+ # Need to allow copying/buffering for write casts of scalars to occur
+ assert_raises(TypeError, nditer, np.float32(2), [],
+ [['readwrite']], op_dtypes=[np.dtype('f8')])
+ assert_raises(TypeError, nditer, 2.5, [],
+ [['readwrite']], op_dtypes=[np.dtype('f4')])
+ # 'f8' -> 'f4' isn't a safe cast if the value would overflow
+ assert_raises(TypeError, nditer, np.float64(1e60), [],
+ [['readonly']],
+ casting='safe',
+ op_dtypes=[np.dtype('f4')])
+ # 'f4' -> 'i4' is neither a safe nor a same-kind cast
+ assert_raises(TypeError, nditer, np.float32(2), [],
+ [['readonly']],
+ casting='same_kind',
+ op_dtypes=[np.dtype('i4')])
+
+def test_iter_object_arrays_basic():
+ # Check that object arrays work
+
+ obj = {'a': 3, 'b': 'd'}
+ a = np.array([[1, 2, 3], None, obj, None], dtype='O')
+ if HAS_REFCOUNT:
+ rc = sys.getrefcount(obj)
+
+ # Need to allow references for object arrays
+ assert_raises(TypeError, nditer, a)
+ if HAS_REFCOUNT:
+ assert_equal(sys.getrefcount(obj), rc)
+
+ i = nditer(a, ['refs_ok'], ['readonly'])
+ vals = [x_[()] for x_ in i]
+ assert_equal(np.array(vals, dtype='O'), a)
+ vals, i, x = [None] * 3
+ if HAS_REFCOUNT:
+ assert_equal(sys.getrefcount(obj), rc)
+
+ i = nditer(a.reshape(2, 2).T, ['refs_ok', 'buffered'],
+ ['readonly'], order='C')
+ assert_(i.iterationneedsapi)
+ vals = [x_[()] for x_ in i]
+ assert_equal(np.array(vals, dtype='O'), a.reshape(2, 2).ravel(order='F'))
+ vals, i, x = [None] * 3
+ if HAS_REFCOUNT:
+ assert_equal(sys.getrefcount(obj), rc)
+
+ i = nditer(a.reshape(2, 2).T, ['refs_ok', 'buffered'],
+ ['readwrite'], order='C')
+ with i:
+ for x in i:
+ x[...] = None
+ vals, i, x = [None] * 3
+ if HAS_REFCOUNT:
+ assert_(sys.getrefcount(obj) == rc - 1)
+ assert_equal(a, np.array([None] * 4, dtype='O'))
+
+def test_iter_object_arrays_conversions():
+ # Conversions to/from objects
+ a = np.arange(6, dtype='O')
+ i = nditer(a, ['refs_ok', 'buffered'], ['readwrite'],
+ casting='unsafe', op_dtypes='i4')
+ with i:
+ for x in i:
+ x[...] += 1
+ assert_equal(a, np.arange(6) + 1)
+
+ a = np.arange(6, dtype='i4')
+ i = nditer(a, ['refs_ok', 'buffered'], ['readwrite'],
+ casting='unsafe', op_dtypes='O')
+ with i:
+ for x in i:
+ x[...] += 1
+ assert_equal(a, np.arange(6) + 1)
+
+ # Non-contiguous object array
+ a = np.zeros((6,), dtype=[('p', 'i1'), ('a', 'O')])
+ a = a['a']
+ a[:] = np.arange(6)
+ i = nditer(a, ['refs_ok', 'buffered'], ['readwrite'],
+ casting='unsafe', op_dtypes='i4')
+ with i:
+ for x in i:
+ x[...] += 1
+ assert_equal(a, np.arange(6) + 1)
+
+ # Non-contiguous value array
+ a = np.zeros((6,), dtype=[('p', 'i1'), ('a', 'i4')])
+ a = a['a']
+ a[:] = np.arange(6) + 98172488
+ i = nditer(a, ['refs_ok', 'buffered'], ['readwrite'],
+ casting='unsafe', op_dtypes='O')
+ with i:
+ ob = i[0][()]
+ if HAS_REFCOUNT:
+ rc = sys.getrefcount(ob)
+ for x in i:
+ x[...] += 1
+ if HAS_REFCOUNT:
+ newrc = sys.getrefcount(ob)
+ assert_(newrc == rc - 1)
+ assert_equal(a, np.arange(6) + 98172489)
+
+def test_iter_common_dtype():
+ # Check that the iterator finds a common data type correctly
+ # (some checks are somewhat duplicate after adopting NEP 50)
+
+ i = nditer([array([3], dtype='f4'), array([0], dtype='f8')],
+ ['common_dtype'],
+ [['readonly', 'copy']] * 2,
+ casting='safe')
+ assert_equal(i.dtypes[0], np.dtype('f8'))
+ assert_equal(i.dtypes[1], np.dtype('f8'))
+ i = nditer([array([3], dtype='i4'), array([0], dtype='f4')],
+ ['common_dtype'],
+ [['readonly', 'copy']] * 2,
+ casting='safe')
+ assert_equal(i.dtypes[0], np.dtype('f8'))
+ assert_equal(i.dtypes[1], np.dtype('f8'))
+ i = nditer([array([3], dtype='f4'), array(0, dtype='f8')],
+ ['common_dtype'],
+ [['readonly', 'copy']] * 2,
+ casting='same_kind')
+ assert_equal(i.dtypes[0], np.dtype('f8'))
+ assert_equal(i.dtypes[1], np.dtype('f8'))
+ i = nditer([array([3], dtype='u4'), array(0, dtype='i4')],
+ ['common_dtype'],
+ [['readonly', 'copy']] * 2,
+ casting='safe')
+ assert_equal(i.dtypes[0], np.dtype('i8'))
+ assert_equal(i.dtypes[1], np.dtype('i8'))
+ i = nditer([array([3], dtype='u4'), array(-12, dtype='i4')],
+ ['common_dtype'],
+ [['readonly', 'copy']] * 2,
+ casting='safe')
+ assert_equal(i.dtypes[0], np.dtype('i8'))
+ assert_equal(i.dtypes[1], np.dtype('i8'))
+ i = nditer([array([3], dtype='u4'), array(-12, dtype='i4'),
+ array([2j], dtype='c8'), array([9], dtype='f8')],
+ ['common_dtype'],
+ [['readonly', 'copy']] * 4,
+ casting='safe')
+ assert_equal(i.dtypes[0], np.dtype('c16'))
+ assert_equal(i.dtypes[1], np.dtype('c16'))
+ assert_equal(i.dtypes[2], np.dtype('c16'))
+ assert_equal(i.dtypes[3], np.dtype('c16'))
+ assert_equal(i.value, (3, -12, 2j, 9))
+
+ # When allocating outputs, other outputs aren't factored in
+ i = nditer([array([3], dtype='i4'), None, array([2j], dtype='c16')], [],
+ [['readonly', 'copy'],
+ ['writeonly', 'allocate'],
+ ['writeonly']],
+ casting='safe')
+ assert_equal(i.dtypes[0], np.dtype('i4'))
+ assert_equal(i.dtypes[1], np.dtype('i4'))
+ assert_equal(i.dtypes[2], np.dtype('c16'))
+ # But, if common data types are requested, they are
+ i = nditer([array([3], dtype='i4'), None, array([2j], dtype='c16')],
+ ['common_dtype'],
+ [['readonly', 'copy'],
+ ['writeonly', 'allocate'],
+ ['writeonly']],
+ casting='safe')
+ assert_equal(i.dtypes[0], np.dtype('c16'))
+ assert_equal(i.dtypes[1], np.dtype('c16'))
+ assert_equal(i.dtypes[2], np.dtype('c16'))
+
+def test_iter_copy_if_overlap():
+ # Ensure the iterator makes copies on read/write overlap, if requested
+
+ # Copy not needed, 1 op
+ for flag in ['readonly', 'writeonly', 'readwrite']:
+ a = arange(10)
+ i = nditer([a], ['copy_if_overlap'], [[flag]])
+ with i:
+ assert_(i.operands[0] is a)
+
+ # Copy needed, 2 ops, read-write overlap
+ x = arange(10)
+ a = x[1:]
+ b = x[:-1]
+ with nditer([a, b], ['copy_if_overlap'], [['readonly'], ['readwrite']]) as i:
+ assert_(not np.shares_memory(*i.operands))
+
+ # Copy not needed with elementwise, 2 ops, exactly same arrays
+ x = arange(10)
+ a = x
+ b = x
+ i = nditer([a, b], ['copy_if_overlap'], [['readonly', 'overlap_assume_elementwise'],
+ ['readwrite', 'overlap_assume_elementwise']])
+ with i:
+ assert_(i.operands[0] is a and i.operands[1] is b)
+ with nditer([a, b], ['copy_if_overlap'], [['readonly'], ['readwrite']]) as i:
+ assert_(i.operands[0] is a and not np.shares_memory(i.operands[1], b))
+
+ # Copy not needed, 2 ops, no overlap
+ x = arange(10)
+ a = x[::2]
+ b = x[1::2]
+ i = nditer([a, b], ['copy_if_overlap'], [['readonly'], ['writeonly']])
+ assert_(i.operands[0] is a and i.operands[1] is b)
+
+ # Copy needed, 2 ops, read-write overlap
+ x = arange(4, dtype=np.int8)
+ a = x[3:]
+ b = x.view(np.int32)[:1]
+ with nditer([a, b], ['copy_if_overlap'], [['readonly'], ['writeonly']]) as i:
+ assert_(not np.shares_memory(*i.operands))
+
+ # Copy needed, 3 ops, read-write overlap
+ for flag in ['writeonly', 'readwrite']:
+ x = np.ones([10, 10])
+ a = x
+ b = x.T
+ c = x
+ with nditer([a, b, c], ['copy_if_overlap'],
+ [['readonly'], ['readonly'], [flag]]) as i:
+ a2, b2, c2 = i.operands
+ assert_(not np.shares_memory(a2, c2))
+ assert_(not np.shares_memory(b2, c2))
+
+ # Copy not needed, 3 ops, read-only overlap
+ x = np.ones([10, 10])
+ a = x
+ b = x.T
+ c = x
+ i = nditer([a, b, c], ['copy_if_overlap'],
+ [['readonly'], ['readonly'], ['readonly']])
+ a2, b2, c2 = i.operands
+ assert_(a is a2)
+ assert_(b is b2)
+ assert_(c is c2)
+
+ # Copy not needed, 3 ops, read-only overlap
+ x = np.ones([10, 10])
+ a = x
+ b = np.ones([10, 10])
+ c = x.T
+ i = nditer([a, b, c], ['copy_if_overlap'],
+ [['readonly'], ['writeonly'], ['readonly']])
+ a2, b2, c2 = i.operands
+ assert_(a is a2)
+ assert_(b is b2)
+ assert_(c is c2)
+
+ # Copy not needed, 3 ops, write-only overlap
+ x = np.arange(7)
+ a = x[:3]
+ b = x[3:6]
+ c = x[4:7]
+ i = nditer([a, b, c], ['copy_if_overlap'],
+ [['readonly'], ['writeonly'], ['writeonly']])
+ a2, b2, c2 = i.operands
+ assert_(a is a2)
+ assert_(b is b2)
+ assert_(c is c2)
+
+def test_iter_op_axes():
+ # Check that custom axes work
+
+ # Reverse the axes
+ a = arange(6).reshape(2, 3)
+ i = nditer([a, a.T], [], [['readonly']] * 2, op_axes=[[0, 1], [1, 0]])
+ assert_(all([x == y for (x, y) in i]))
+ a = arange(24).reshape(2, 3, 4)
+ i = nditer([a.T, a], [], [['readonly']] * 2, op_axes=[[2, 1, 0], None])
+ assert_(all([x == y for (x, y) in i]))
+
+ # Broadcast 1D to any dimension
+ a = arange(1, 31).reshape(2, 3, 5)
+ b = arange(1, 3)
+ i = nditer([a, b], [], [['readonly']] * 2, op_axes=[None, [0, -1, -1]])
+ assert_equal([x * y for (x, y) in i], (a * b.reshape(2, 1, 1)).ravel())
+ b = arange(1, 4)
+ i = nditer([a, b], [], [['readonly']] * 2, op_axes=[None, [-1, 0, -1]])
+ assert_equal([x * y for (x, y) in i], (a * b.reshape(1, 3, 1)).ravel())
+ b = arange(1, 6)
+ i = nditer([a, b], [], [['readonly']] * 2,
+ op_axes=[None, [np.newaxis, np.newaxis, 0]])
+ assert_equal([x * y for (x, y) in i], (a * b.reshape(1, 1, 5)).ravel())
+
+ # Inner product-style broadcasting
+ a = arange(24).reshape(2, 3, 4)
+ b = arange(40).reshape(5, 2, 4)
+ i = nditer([a, b], ['multi_index'], [['readonly']] * 2,
+ op_axes=[[0, 1, -1, -1], [-1, -1, 0, 1]])
+ assert_equal(i.shape, (2, 3, 5, 2))
+
+ # Matrix product-style broadcasting
+ a = arange(12).reshape(3, 4)
+ b = arange(20).reshape(4, 5)
+ i = nditer([a, b], ['multi_index'], [['readonly']] * 2,
+ op_axes=[[0, -1], [-1, 1]])
+ assert_equal(i.shape, (3, 5))
+
+def test_iter_op_axes_errors():
+ # Check that custom axes throws errors for bad inputs
+
+ # Wrong number of items in op_axes
+ a = arange(6).reshape(2, 3)
+ assert_raises(ValueError, nditer, [a, a], [], [['readonly']] * 2,
+ op_axes=[[0], [1], [0]])
+ # Out of bounds items in op_axes
+ assert_raises(ValueError, nditer, [a, a], [], [['readonly']] * 2,
+ op_axes=[[2, 1], [0, 1]])
+ assert_raises(ValueError, nditer, [a, a], [], [['readonly']] * 2,
+ op_axes=[[0, 1], [2, -1]])
+ # Duplicate items in op_axes
+ assert_raises(ValueError, nditer, [a, a], [], [['readonly']] * 2,
+ op_axes=[[0, 0], [0, 1]])
+ assert_raises(ValueError, nditer, [a, a], [], [['readonly']] * 2,
+ op_axes=[[0, 1], [1, 1]])
+
+ # Different sized arrays in op_axes
+ assert_raises(ValueError, nditer, [a, a], [], [['readonly']] * 2,
+ op_axes=[[0, 1], [0, 1, 0]])
+
+ # Non-broadcastable dimensions in the result
+ assert_raises(ValueError, nditer, [a, a], [], [['readonly']] * 2,
+ op_axes=[[0, 1], [1, 0]])
+
+def test_iter_copy():
+ # Check that copying the iterator works correctly
+ a = arange(24).reshape(2, 3, 4)
+
+ # Simple iterator
+ i = nditer(a)
+ j = i.copy()
+ assert_equal([x[()] for x in i], [x[()] for x in j])
+
+ i.iterindex = 3
+ j = i.copy()
+ assert_equal([x[()] for x in i], [x[()] for x in j])
+
+ # Buffered iterator
+ i = nditer(a, ['buffered', 'ranged'], order='F', buffersize=3)
+ j = i.copy()
+ assert_equal([x[()] for x in i], [x[()] for x in j])
+
+ i.iterindex = 3
+ j = i.copy()
+ assert_equal([x[()] for x in i], [x[()] for x in j])
+
+ i.iterrange = (3, 9)
+ j = i.copy()
+ assert_equal([x[()] for x in i], [x[()] for x in j])
+
+ i.iterrange = (2, 18)
+ next(i)
+ next(i)
+ j = i.copy()
+ assert_equal([x[()] for x in i], [x[()] for x in j])
+
+ # Casting iterator
+ with nditer(a, ['buffered'], order='F', casting='unsafe',
+ op_dtypes='f8', buffersize=5) as i:
+ j = i.copy()
+ assert_equal([x[()] for x in j], a.ravel(order='F'))
+
+ a = arange(24, dtype='<i4').reshape(2, 3, 4)
+ with nditer(a, ['buffered'], order='F', casting='unsafe',
+ op_dtypes='>f8', buffersize=5) as i:
+ j = i.copy()
+ assert_equal([x[()] for x in j], a.ravel(order='F'))
+
+
+@pytest.mark.parametrize("dtype", np.typecodes["All"])
+@pytest.mark.parametrize("loop_dtype", np.typecodes["All"])
+@pytest.mark.filterwarnings("ignore::numpy.exceptions.ComplexWarning")
+def test_iter_copy_casts(dtype, loop_dtype):
+ # Ensure the dtype is never flexible:
+ if loop_dtype.lower() == "m":
+ loop_dtype = loop_dtype + "[ms]"
+ elif np.dtype(loop_dtype).itemsize == 0:
+ loop_dtype = loop_dtype + "50"
+
+ # Make things a bit more interesting by requiring a byte-swap as well:
+ arr = np.ones(1000, dtype=np.dtype(dtype).newbyteorder())
+ try:
+ expected = arr.astype(loop_dtype)
+ except Exception:
+ # Some casts are not possible, do not worry about them
+ return
+
+ it = np.nditer((arr,), ["buffered", "external_loop", "refs_ok"],
+ op_dtypes=[loop_dtype], casting="unsafe")
+
+ if np.issubdtype(np.dtype(loop_dtype), np.number):
+ # Casting to strings may be strange, but for simple dtypes do not rely
+ # on the cast being correct:
+ assert_array_equal(expected, np.ones(1000, dtype=loop_dtype))
+
+ it_copy = it.copy()
+ res = next(it)
+ del it
+ res_copy = next(it_copy)
+ del it_copy
+
+ assert_array_equal(res, expected)
+ assert_array_equal(res_copy, expected)
+
+
+def test_iter_copy_casts_structured():
+ # Test a complicated structured dtype for casting, as it requires
+ # both multiple steps and a more complex casting setup.
+ # Includes a structured -> unstructured (any to object), and many other
+ # casts, which cause this to require all steps in the casting machinery
+ # one level down as well as the iterator copy (which uses NpyAuxData clone)
+ in_dtype = np.dtype([("a", np.dtype("i,")),
+ ("b", np.dtype(">i,<i,>d,S17,>d,3f,O,i1"))])
+ out_dtype = np.dtype([("a", np.dtype("O")),
+ ("b", np.dtype(">i,>i,S17,>d,>U3,3d,i1,O"))])
+ arr = np.ones(1000, dtype=in_dtype)
+
+ it = np.nditer((arr,), ["buffered", "external_loop", "refs_ok"],
+ op_dtypes=[out_dtype], casting="unsafe")
+ it_copy = it.copy()
+
+ res1 = next(it)
+ del it
+ res2 = next(it_copy)
+ del it_copy
+
+ expected = arr["a"].astype(out_dtype["a"])
+ assert_array_equal(res1["a"], expected)
+ assert_array_equal(res2["a"], expected)
+
+ for field in in_dtype["b"].names:
+ # Note that the .base avoids the subarray field
+ expected = arr["b"][field].astype(out_dtype["b"][field].base)
+ assert_array_equal(res1["b"][field], expected)
+ assert_array_equal(res2["b"][field], expected)
+
+
+def test_iter_copy_casts_structured2():
+ # Similar to the above, this is a fairly arcane test to cover internals
+ in_dtype = np.dtype([("a", np.dtype("O,O")),
+ ("b", np.dtype("5O,3O,(1,)O,(1,)i,(1,)O"))])
+ out_dtype = np.dtype([("a", np.dtype("O")),
+ ("b", np.dtype("O,3i,4O,4O,4i"))])
+
+ arr = np.ones(1, dtype=in_dtype)
+ it = np.nditer((arr,), ["buffered", "external_loop", "refs_ok"],
+ op_dtypes=[out_dtype], casting="unsafe")
+ it_copy = it.copy()
+
+ res1 = next(it)
+ del it
+ res2 = next(it_copy)
+ del it_copy
+
+ # Array of two structured scalars:
+ for res in res1, res2:
+ # Cast to tuple by getitem, which may be weird and changeable?:
+ assert isinstance(res["a"][0], tuple)
+ assert res["a"][0] == (1, 1)
+
+ for res in res1, res2:
+ assert_array_equal(res["b"]["f0"][0], np.ones(5, dtype=object))
+ assert_array_equal(res["b"]["f1"], np.ones((1, 3), dtype="i"))
+ assert res["b"]["f2"].shape == (1, 4)
+ assert_array_equal(res["b"]["f2"][0], np.ones(4, dtype=object))
+ assert_array_equal(res["b"]["f3"][0], np.ones(4, dtype=object))
+ assert_array_equal(res["b"]["f3"][0], np.ones(4, dtype="i"))
+
+
+def test_iter_allocate_output_simple():
+ # Check that the iterator will properly allocate outputs
+
+ # Simple case
+ a = arange(6)
+ i = nditer([a, None], [], [['readonly'], ['writeonly', 'allocate']],
+ op_dtypes=[None, np.dtype('f4')])
+ assert_equal(i.operands[1].shape, a.shape)
+ assert_equal(i.operands[1].dtype, np.dtype('f4'))
+
+def test_iter_allocate_output_buffered_readwrite():
+ # Allocated output with buffering + delay_bufalloc
+
+ a = arange(6)
+ i = nditer([a, None], ['buffered', 'delay_bufalloc'],
+ [['readonly'], ['allocate', 'readwrite']])
+ with i:
+ i.operands[1][:] = 1
+ i.reset()
+ for x in i:
+ x[1][...] += x[0][...]
+ assert_equal(i.operands[1], a + 1)
+
+def test_iter_allocate_output_itorder():
+ # The allocated output should match the iteration order
+
+ # C-order input, best iteration order
+ a = arange(6, dtype='i4').reshape(2, 3)
+ i = nditer([a, None], [], [['readonly'], ['writeonly', 'allocate']],
+ op_dtypes=[None, np.dtype('f4')])
+ assert_equal(i.operands[1].shape, a.shape)
+ assert_equal(i.operands[1].strides, a.strides)
+ assert_equal(i.operands[1].dtype, np.dtype('f4'))
+ # F-order input, best iteration order
+ a = arange(24, dtype='i4').reshape(2, 3, 4).T
+ i = nditer([a, None], [], [['readonly'], ['writeonly', 'allocate']],
+ op_dtypes=[None, np.dtype('f4')])
+ assert_equal(i.operands[1].shape, a.shape)
+ assert_equal(i.operands[1].strides, a.strides)
+ assert_equal(i.operands[1].dtype, np.dtype('f4'))
+ # Non-contiguous input, C iteration order
+ a = arange(24, dtype='i4').reshape(2, 3, 4).swapaxes(0, 1)
+ i = nditer([a, None], [],
+ [['readonly'], ['writeonly', 'allocate']],
+ order='C',
+ op_dtypes=[None, np.dtype('f4')])
+ assert_equal(i.operands[1].shape, a.shape)
+ assert_equal(i.operands[1].strides, (32, 16, 4))
+ assert_equal(i.operands[1].dtype, np.dtype('f4'))
+
+def test_iter_allocate_output_opaxes():
+ # Specifying op_axes should work
+
+ a = arange(24, dtype='i4').reshape(2, 3, 4)
+ i = nditer([None, a], [], [['writeonly', 'allocate'], ['readonly']],
+ op_dtypes=[np.dtype('u4'), None],
+ op_axes=[[1, 2, 0], None])
+ assert_equal(i.operands[0].shape, (4, 2, 3))
+ assert_equal(i.operands[0].strides, (4, 48, 16))
+ assert_equal(i.operands[0].dtype, np.dtype('u4'))
+
+def test_iter_allocate_output_types_promotion():
+ # Check type promotion of automatic outputs (this was more interesting
+ # before NEP 50...)
+
+ i = nditer([array([3], dtype='f4'), array([0], dtype='f8'), None], [],
+ [['readonly']] * 2 + [['writeonly', 'allocate']])
+ assert_equal(i.dtypes[2], np.dtype('f8'))
+ i = nditer([array([3], dtype='i4'), array([0], dtype='f4'), None], [],
+ [['readonly']] * 2 + [['writeonly', 'allocate']])
+ assert_equal(i.dtypes[2], np.dtype('f8'))
+ i = nditer([array([3], dtype='f4'), array(0, dtype='f8'), None], [],
+ [['readonly']] * 2 + [['writeonly', 'allocate']])
+ assert_equal(i.dtypes[2], np.dtype('f8'))
+ i = nditer([array([3], dtype='u4'), array(0, dtype='i4'), None], [],
+ [['readonly']] * 2 + [['writeonly', 'allocate']])
+ assert_equal(i.dtypes[2], np.dtype('i8'))
+ i = nditer([array([3], dtype='u4'), array(-12, dtype='i4'), None], [],
+ [['readonly']] * 2 + [['writeonly', 'allocate']])
+ assert_equal(i.dtypes[2], np.dtype('i8'))
+
+def test_iter_allocate_output_types_byte_order():
+ # Verify the rules for byte order changes
+
+ # When there's just one input, the output type exactly matches
+ a = array([3], dtype='u4')
+ a = a.view(a.dtype.newbyteorder())
+ i = nditer([a, None], [],
+ [['readonly'], ['writeonly', 'allocate']])
+ assert_equal(i.dtypes[0], i.dtypes[1])
+ # With two or more inputs, the output type is in native byte order
+ i = nditer([a, a, None], [],
+ [['readonly'], ['readonly'], ['writeonly', 'allocate']])
+ assert_(i.dtypes[0] != i.dtypes[2])
+ assert_equal(i.dtypes[0].newbyteorder('='), i.dtypes[2])
+
+def test_iter_allocate_output_types_scalar():
+ # If the inputs are all scalars, the output should be a scalar
+
+ i = nditer([None, 1, 2.3, np.float32(12), np.complex128(3)], [],
+ [['writeonly', 'allocate']] + [['readonly']] * 4)
+ assert_equal(i.operands[0].dtype, np.dtype('complex128'))
+ assert_equal(i.operands[0].ndim, 0)
+
+def test_iter_allocate_output_subtype():
+ # Make sure that the subtype with priority wins
+ class MyNDArray(np.ndarray):
+ __array_priority__ = 15
+
+ # subclass vs ndarray
+ a = np.array([[1, 2], [3, 4]]).view(MyNDArray)
+ b = np.arange(4).reshape(2, 2).T
+ i = nditer([a, b, None], [],
+ [['readonly'], ['readonly'], ['writeonly', 'allocate']])
+ assert_equal(type(a), type(i.operands[2]))
+ assert_(type(b) is not type(i.operands[2]))
+ assert_equal(i.operands[2].shape, (2, 2))
+
+ # If subtypes are disabled, we should get back an ndarray.
+ i = nditer([a, b, None], [],
+ [['readonly'], ['readonly'],
+ ['writeonly', 'allocate', 'no_subtype']])
+ assert_equal(type(b), type(i.operands[2]))
+ assert_(type(a) is not type(i.operands[2]))
+ assert_equal(i.operands[2].shape, (2, 2))
+
+def test_iter_allocate_output_errors():
+ # Check that the iterator will throw errors for bad output allocations
+
+ # Need an input if no output data type is specified
+ a = arange(6)
+ assert_raises(TypeError, nditer, [a, None], [],
+ [['writeonly'], ['writeonly', 'allocate']])
+ # Allocated output should be flagged for writing
+ assert_raises(ValueError, nditer, [a, None], [],
+ [['readonly'], ['allocate', 'readonly']])
+ # Allocated output can't have buffering without delayed bufalloc
+ assert_raises(ValueError, nditer, [a, None], ['buffered'],
+ ['allocate', 'readwrite'])
+ # Must specify dtype if there are no inputs (cannot promote existing ones;
+ # maybe this should use the 'f4' here, but it does not historically.)
+ assert_raises(TypeError, nditer, [None, None], [],
+ [['writeonly', 'allocate'],
+ ['writeonly', 'allocate']],
+ op_dtypes=[None, np.dtype('f4')])
+ # If using op_axes, must specify all the axes
+ a = arange(24, dtype='i4').reshape(2, 3, 4)
+ assert_raises(ValueError, nditer, [a, None], [],
+ [['readonly'], ['writeonly', 'allocate']],
+ op_dtypes=[None, np.dtype('f4')],
+ op_axes=[None, [0, np.newaxis, 1]])
+ # If using op_axes, the axes must be within bounds
+ assert_raises(ValueError, nditer, [a, None], [],
+ [['readonly'], ['writeonly', 'allocate']],
+ op_dtypes=[None, np.dtype('f4')],
+ op_axes=[None, [0, 3, 1]])
+ # If using op_axes, there can't be duplicates
+ assert_raises(ValueError, nditer, [a, None], [],
+ [['readonly'], ['writeonly', 'allocate']],
+ op_dtypes=[None, np.dtype('f4')],
+ op_axes=[None, [0, 2, 1, 0]])
+ # Not all axes may be specified if a reduction. If there is a hole
+ # in op_axes, this is an error.
+ a = arange(24, dtype='i4').reshape(2, 3, 4)
+ assert_raises(ValueError, nditer, [a, None], ["reduce_ok"],
+ [['readonly'], ['readwrite', 'allocate']],
+ op_dtypes=[None, np.dtype('f4')],
+ op_axes=[None, [0, np.newaxis, 2]])
+
+def test_all_allocated():
+ # When no output and no shape is given, `()` is used as shape.
+ i = np.nditer([None], op_dtypes=["int64"])
+ assert i.operands[0].shape == ()
+ assert i.dtypes == (np.dtype("int64"),)
+
+ i = np.nditer([None], op_dtypes=["int64"], itershape=(2, 3, 4))
+ assert i.operands[0].shape == (2, 3, 4)
+
+def test_iter_remove_axis():
+ a = arange(24).reshape(2, 3, 4)
+
+ i = nditer(a, ['multi_index'])
+ i.remove_axis(1)
+ assert_equal(list(i), a[:, 0, :].ravel())
+
+ a = a[::-1, :, :]
+ i = nditer(a, ['multi_index'])
+ i.remove_axis(0)
+ assert_equal(list(i), a[0, :, :].ravel())
+
+def test_iter_remove_multi_index_inner_loop():
+ # Check that removing multi-index support works
+
+ a = arange(24).reshape(2, 3, 4)
+
+ i = nditer(a, ['multi_index'])
+ assert_equal(i.ndim, 3)
+ assert_equal(i.shape, (2, 3, 4))
+ assert_equal(i.itviews[0].shape, (2, 3, 4))
+
+ # Removing the multi-index tracking causes all dimensions to coalesce
+ before = list(i)
+ i.remove_multi_index()
+ after = list(i)
+
+ assert_equal(before, after)
+ assert_equal(i.ndim, 1)
+ assert_raises(ValueError, lambda i: i.shape, i)
+ assert_equal(i.itviews[0].shape, (24,))
+
+ # Removing the inner loop means there's just one iteration
+ i.reset()
+ assert_equal(i.itersize, 24)
+ assert_equal(i[0].shape, ())
+ i.enable_external_loop()
+ assert_equal(i.itersize, 24)
+ assert_equal(i[0].shape, (24,))
+ assert_equal(i.value, arange(24))
+
+def test_iter_iterindex():
+ # Make sure iterindex works
+
+ buffersize = 5
+ a = arange(24).reshape(4, 3, 2)
+ for flags in ([], ['buffered']):
+ i = nditer(a, flags, buffersize=buffersize)
+ assert_equal(iter_iterindices(i), list(range(24)))
+ i.iterindex = 2
+ assert_equal(iter_iterindices(i), list(range(2, 24)))
+
+ i = nditer(a, flags, order='F', buffersize=buffersize)
+ assert_equal(iter_iterindices(i), list(range(24)))
+ i.iterindex = 5
+ assert_equal(iter_iterindices(i), list(range(5, 24)))
+
+ i = nditer(a[::-1], flags, order='F', buffersize=buffersize)
+ assert_equal(iter_iterindices(i), list(range(24)))
+ i.iterindex = 9
+ assert_equal(iter_iterindices(i), list(range(9, 24)))
+
+ i = nditer(a[::-1, ::-1], flags, order='C', buffersize=buffersize)
+ assert_equal(iter_iterindices(i), list(range(24)))
+ i.iterindex = 13
+ assert_equal(iter_iterindices(i), list(range(13, 24)))
+
+ i = nditer(a[::1, ::-1], flags, buffersize=buffersize)
+ assert_equal(iter_iterindices(i), list(range(24)))
+ i.iterindex = 23
+ assert_equal(iter_iterindices(i), list(range(23, 24)))
+ i.reset()
+ i.iterindex = 2
+ assert_equal(iter_iterindices(i), list(range(2, 24)))
+
+def test_iter_iterrange():
+ # Make sure getting and resetting the iterrange works
+
+ buffersize = 5
+ a = arange(24, dtype='i4').reshape(4, 3, 2)
+ a_fort = a.ravel(order='F')
+
+ i = nditer(a, ['ranged'], ['readonly'], order='F',
+ buffersize=buffersize)
+ assert_equal(i.iterrange, (0, 24))
+ assert_equal([x[()] for x in i], a_fort)
+ for r in [(0, 24), (1, 2), (3, 24), (5, 5), (0, 20), (23, 24)]:
+ i.iterrange = r
+ assert_equal(i.iterrange, r)
+ assert_equal([x[()] for x in i], a_fort[r[0]:r[1]])
+
+ i = nditer(a, ['ranged', 'buffered'], ['readonly'], order='F',
+ op_dtypes='f8', buffersize=buffersize)
+ assert_equal(i.iterrange, (0, 24))
+ assert_equal([x[()] for x in i], a_fort)
+ for r in [(0, 24), (1, 2), (3, 24), (5, 5), (0, 20), (23, 24)]:
+ i.iterrange = r
+ assert_equal(i.iterrange, r)
+ assert_equal([x[()] for x in i], a_fort[r[0]:r[1]])
+
+ def get_array(i):
+ val = np.array([], dtype='f8')
+ for x in i:
+ val = np.concatenate((val, x))
+ return val
+
+ i = nditer(a, ['ranged', 'buffered', 'external_loop'],
+ ['readonly'], order='F',
+ op_dtypes='f8', buffersize=buffersize)
+ assert_equal(i.iterrange, (0, 24))
+ assert_equal(get_array(i), a_fort)
+ for r in [(0, 24), (1, 2), (3, 24), (5, 5), (0, 20), (23, 24)]:
+ i.iterrange = r
+ assert_equal(i.iterrange, r)
+ assert_equal(get_array(i), a_fort[r[0]:r[1]])
+
+def test_iter_buffering():
+ # Test buffering with several buffer sizes and types
+ arrays = []
+ # F-order swapped array
+ _tmp = np.arange(24, dtype='c16').reshape(2, 3, 4).T
+ _tmp = _tmp.view(_tmp.dtype.newbyteorder()).byteswap()
+ arrays.append(_tmp)
+ # Contiguous 1-dimensional array
+ arrays.append(np.arange(10, dtype='f4'))
+ # Unaligned array
+ a = np.zeros((4 * 16 + 1,), dtype='i1')[1:]
+ a.dtype = 'i4'
+ a[:] = np.arange(16, dtype='i4')
+ arrays.append(a)
+ # 4-D F-order array
+ arrays.append(np.arange(120, dtype='i4').reshape(5, 3, 2, 4).T)
+ for a in arrays:
+ for buffersize in (1, 2, 3, 5, 8, 11, 16, 1024):
+ vals = []
+ i = nditer(a, ['buffered', 'external_loop'],
+ [['readonly', 'nbo', 'aligned']],
+ order='C',
+ casting='equiv',
+ buffersize=buffersize)
+ while not i.finished:
+ assert_(i[0].size <= buffersize)
+ vals.append(i[0].copy())
+ i.iternext()
+ assert_equal(np.concatenate(vals), a.ravel(order='C'))
+
+def test_iter_write_buffering():
+ # Test that buffering of writes is working
+
+ # F-order swapped array
+ a = np.arange(24).reshape(2, 3, 4).T
+ a = a.view(a.dtype.newbyteorder()).byteswap()
+ i = nditer(a, ['buffered'],
+ [['readwrite', 'nbo', 'aligned']],
+ casting='equiv',
+ order='C',
+ buffersize=16)
+ x = 0
+ with i:
+ while not i.finished:
+ i[0] = x
+ x += 1
+ i.iternext()
+ assert_equal(a.ravel(order='C'), np.arange(24))
+
+def test_iter_buffering_delayed_alloc():
+ # Test that delaying buffer allocation works
+
+ a = np.arange(6)
+ b = np.arange(1, dtype='f4')
+ i = nditer([a, b], ['buffered', 'delay_bufalloc', 'multi_index', 'reduce_ok'],
+ ['readwrite'],
+ casting='unsafe',
+ op_dtypes='f4')
+ assert_(i.has_delayed_bufalloc)
+ assert_raises(ValueError, lambda i: i.multi_index, i)
+ assert_raises(ValueError, lambda i: i[0], i)
+ assert_raises(ValueError, lambda i: i[0:2], i)
+
+ def assign_iter(i):
+ i[0] = 0
+ assert_raises(ValueError, assign_iter, i)
+
+ i.reset()
+ assert_(not i.has_delayed_bufalloc)
+ assert_equal(i.multi_index, (0,))
+ with i:
+ assert_equal(i[0], 0)
+ i[1] = 1
+ assert_equal(i[0:2], [0, 1])
+ assert_equal([[x[0][()], x[1][()]] for x in i], list(zip(range(6), [1] * 6)))
+
+def test_iter_buffered_cast_simple():
+ # Test that buffering can handle a simple cast
+
+ a = np.arange(10, dtype='f4')
+ i = nditer(a, ['buffered', 'external_loop'],
+ [['readwrite', 'nbo', 'aligned']],
+ casting='same_kind',
+ op_dtypes=[np.dtype('f8')],
+ buffersize=3)
+ with i:
+ for v in i:
+ v[...] *= 2
+
+ assert_equal(a, 2 * np.arange(10, dtype='f4'))
+
+def test_iter_buffered_cast_byteswapped():
+ # Test that buffering can handle a cast which requires swap->cast->swap
+
+ a = np.arange(10, dtype='f4')
+ a = a.view(a.dtype.newbyteorder()).byteswap()
+ i = nditer(a, ['buffered', 'external_loop'],
+ [['readwrite', 'nbo', 'aligned']],
+ casting='same_kind',
+ op_dtypes=[np.dtype('f8').newbyteorder()],
+ buffersize=3)
+ with i:
+ for v in i:
+ v[...] *= 2
+
+ assert_equal(a, 2 * np.arange(10, dtype='f4'))
+
+ with suppress_warnings() as sup:
+ sup.filter(np.exceptions.ComplexWarning)
+
+ a = np.arange(10, dtype='f8')
+ a = a.view(a.dtype.newbyteorder()).byteswap()
+ i = nditer(a, ['buffered', 'external_loop'],
+ [['readwrite', 'nbo', 'aligned']],
+ casting='unsafe',
+ op_dtypes=[np.dtype('c8').newbyteorder()],
+ buffersize=3)
+ with i:
+ for v in i:
+ v[...] *= 2
+
+ assert_equal(a, 2 * np.arange(10, dtype='f8'))
+
+def test_iter_buffered_cast_byteswapped_complex():
+ # Test that buffering can handle a cast which requires swap->cast->copy
+
+ a = np.arange(10, dtype='c8')
+ a = a.view(a.dtype.newbyteorder()).byteswap()
+ a += 2j
+ i = nditer(a, ['buffered', 'external_loop'],
+ [['readwrite', 'nbo', 'aligned']],
+ casting='same_kind',
+ op_dtypes=[np.dtype('c16')],
+ buffersize=3)
+ with i:
+ for v in i:
+ v[...] *= 2
+ assert_equal(a, 2 * np.arange(10, dtype='c8') + 4j)
+
+ a = np.arange(10, dtype='c8')
+ a += 2j
+ i = nditer(a, ['buffered', 'external_loop'],
+ [['readwrite', 'nbo', 'aligned']],
+ casting='same_kind',
+ op_dtypes=[np.dtype('c16').newbyteorder()],
+ buffersize=3)
+ with i:
+ for v in i:
+ v[...] *= 2
+ assert_equal(a, 2 * np.arange(10, dtype='c8') + 4j)
+
+ a = np.arange(10, dtype=np.clongdouble)
+ a = a.view(a.dtype.newbyteorder()).byteswap()
+ a += 2j
+ i = nditer(a, ['buffered', 'external_loop'],
+ [['readwrite', 'nbo', 'aligned']],
+ casting='same_kind',
+ op_dtypes=[np.dtype('c16')],
+ buffersize=3)
+ with i:
+ for v in i:
+ v[...] *= 2
+ assert_equal(a, 2 * np.arange(10, dtype=np.clongdouble) + 4j)
+
+ a = np.arange(10, dtype=np.longdouble)
+ a = a.view(a.dtype.newbyteorder()).byteswap()
+ i = nditer(a, ['buffered', 'external_loop'],
+ [['readwrite', 'nbo', 'aligned']],
+ casting='same_kind',
+ op_dtypes=[np.dtype('f4')],
+ buffersize=7)
+ with i:
+ for v in i:
+ v[...] *= 2
+ assert_equal(a, 2 * np.arange(10, dtype=np.longdouble))
+
+def test_iter_buffered_cast_structured_type():
+ # Tests buffering of structured types
+
+ # simple -> struct type (duplicates the value)
+ sdt = [('a', 'f4'), ('b', 'i8'), ('c', 'c8', (2, 3)), ('d', 'O')]
+ a = np.arange(3, dtype='f4') + 0.5
+ i = nditer(a, ['buffered', 'refs_ok'], ['readonly'],
+ casting='unsafe',
+ op_dtypes=sdt)
+ vals = [np.array(x) for x in i]
+ assert_equal(vals[0]['a'], 0.5)
+ assert_equal(vals[0]['b'], 0)
+ assert_equal(vals[0]['c'], [[(0.5)] * 3] * 2)
+ assert_equal(vals[0]['d'], 0.5)
+ assert_equal(vals[1]['a'], 1.5)
+ assert_equal(vals[1]['b'], 1)
+ assert_equal(vals[1]['c'], [[(1.5)] * 3] * 2)
+ assert_equal(vals[1]['d'], 1.5)
+ assert_equal(vals[0].dtype, np.dtype(sdt))
+
+ # object -> struct type
+ sdt = [('a', 'f4'), ('b', 'i8'), ('c', 'c8', (2, 3)), ('d', 'O')]
+ a = np.zeros((3,), dtype='O')
+ a[0] = (0.5, 0.5, [[0.5, 0.5, 0.5], [0.5, 0.5, 0.5]], 0.5)
+ a[1] = (1.5, 1.5, [[1.5, 1.5, 1.5], [1.5, 1.5, 1.5]], 1.5)
+ a[2] = (2.5, 2.5, [[2.5, 2.5, 2.5], [2.5, 2.5, 2.5]], 2.5)
+ if HAS_REFCOUNT:
+ rc = sys.getrefcount(a[0])
+ i = nditer(a, ['buffered', 'refs_ok'], ['readonly'],
+ casting='unsafe',
+ op_dtypes=sdt)
+ vals = [x.copy() for x in i]
+ assert_equal(vals[0]['a'], 0.5)
+ assert_equal(vals[0]['b'], 0)
+ assert_equal(vals[0]['c'], [[(0.5)] * 3] * 2)
+ assert_equal(vals[0]['d'], 0.5)
+ assert_equal(vals[1]['a'], 1.5)
+ assert_equal(vals[1]['b'], 1)
+ assert_equal(vals[1]['c'], [[(1.5)] * 3] * 2)
+ assert_equal(vals[1]['d'], 1.5)
+ assert_equal(vals[0].dtype, np.dtype(sdt))
+ vals, i, x = [None] * 3
+ if HAS_REFCOUNT:
+ assert_equal(sys.getrefcount(a[0]), rc)
+
+ # single-field struct type -> simple
+ sdt = [('a', 'f4')]
+ a = np.array([(5.5,), (8,)], dtype=sdt)
+ i = nditer(a, ['buffered', 'refs_ok'], ['readonly'],
+ casting='unsafe',
+ op_dtypes='i4')
+ assert_equal([x_[()] for x_ in i], [5, 8])
+
+ # make sure multi-field struct type -> simple doesn't work
+ sdt = [('a', 'f4'), ('b', 'i8'), ('d', 'O')]
+ a = np.array([(5.5, 7, 'test'), (8, 10, 11)], dtype=sdt)
+ assert_raises(TypeError, lambda: (
+ nditer(a, ['buffered', 'refs_ok'], ['readonly'],
+ casting='unsafe',
+ op_dtypes='i4')))
+
+ # struct type -> struct type (field-wise copy)
+ sdt1 = [('a', 'f4'), ('b', 'i8'), ('d', 'O')]
+ sdt2 = [('d', 'u2'), ('a', 'O'), ('b', 'f8')]
+ a = np.array([(1, 2, 3), (4, 5, 6)], dtype=sdt1)
+ i = nditer(a, ['buffered', 'refs_ok'], ['readonly'],
+ casting='unsafe',
+ op_dtypes=sdt2)
+ assert_equal(i[0].dtype, np.dtype(sdt2))
+ assert_equal([np.array(x_) for x_ in i],
+ [np.array((1, 2, 3), dtype=sdt2),
+ np.array((4, 5, 6), dtype=sdt2)])
+
+
+def test_iter_buffered_cast_structured_type_failure_with_cleanup():
+ # make sure struct type -> struct type with different
+ # number of fields fails
+ sdt1 = [('a', 'f4'), ('b', 'i8'), ('d', 'O')]
+ sdt2 = [('b', 'O'), ('a', 'f8')]
+ a = np.array([(1, 2, 3), (4, 5, 6)], dtype=sdt1)
+
+ for intent in ["readwrite", "readonly", "writeonly"]:
+ # This test was initially designed to test an error at a different
+ # place, but will now raise earlier to to the cast not being possible:
+ # `assert np.can_cast(a.dtype, sdt2, casting="unsafe")` fails.
+ # Without a faulty DType, there is probably no reliable
+ # way to get the initial tested behaviour.
+ simple_arr = np.array([1, 2], dtype="i,i") # requires clean up
+ with pytest.raises(TypeError):
+ nditer((simple_arr, a), ['buffered', 'refs_ok'], [intent, intent],
+ casting='unsafe', op_dtypes=["f,f", sdt2])
+
+
+def test_buffered_cast_error_paths():
+ with pytest.raises(ValueError):
+ # The input is cast into an `S3` buffer
+ np.nditer((np.array("a", dtype="S1"),), op_dtypes=["i"],
+ casting="unsafe", flags=["buffered"])
+
+ # The `M8[ns]` is cast into the `S3` output
+ it = np.nditer((np.array(1, dtype="i"),), op_dtypes=["S1"],
+ op_flags=["writeonly"], casting="unsafe", flags=["buffered"])
+ with pytest.raises(ValueError):
+ with it:
+ buf = next(it)
+ buf[...] = "a" # cannot be converted to int.
+
+@pytest.mark.skipif(IS_WASM, reason="Cannot start subprocess")
+@pytest.mark.skipif(not HAS_REFCOUNT, reason="PyPy seems to not hit this.")
+def test_buffered_cast_error_paths_unraisable():
+ # The following gives an unraisable error. Pytest sometimes captures that
+ # (depending python and/or pytest version). So with Python>=3.8 this can
+ # probably be cleaned out in the future to check for
+ # pytest.PytestUnraisableExceptionWarning:
+ code = textwrap.dedent("""
+ import numpy as np
+
+ it = np.nditer((np.array(1, dtype="i"),), op_dtypes=["S1"],
+ op_flags=["writeonly"], casting="unsafe", flags=["buffered"])
+ buf = next(it)
+ buf[...] = "a"
+ del buf, it # Flushing only happens during deallocate right now.
+ """)
+ res = subprocess.check_output([sys.executable, "-c", code],
+ stderr=subprocess.STDOUT, text=True)
+ assert "ValueError" in res
+
+
+def test_iter_buffered_cast_subarray():
+ # Tests buffering of subarrays
+
+ # one element -> many (copies it to all)
+ sdt1 = [('a', 'f4')]
+ sdt2 = [('a', 'f8', (3, 2, 2))]
+ a = np.zeros((6,), dtype=sdt1)
+ a['a'] = np.arange(6)
+ i = nditer(a, ['buffered', 'refs_ok'], ['readonly'],
+ casting='unsafe',
+ op_dtypes=sdt2)
+ assert_equal(i[0].dtype, np.dtype(sdt2))
+ for x, count in zip(i, list(range(6))):
+ assert_(np.all(x['a'] == count))
+
+ # one element -> many -> back (copies it to all)
+ sdt1 = [('a', 'O', (1, 1))]
+ sdt2 = [('a', 'O', (3, 2, 2))]
+ a = np.zeros((6,), dtype=sdt1)
+ a['a'][:, 0, 0] = np.arange(6)
+ i = nditer(a, ['buffered', 'refs_ok'], ['readwrite'],
+ casting='unsafe',
+ op_dtypes=sdt2)
+ with i:
+ assert_equal(i[0].dtype, np.dtype(sdt2))
+ count = 0
+ for x in i:
+ assert_(np.all(x['a'] == count))
+ x['a'][0] += 2
+ count += 1
+ assert_equal(a['a'], np.arange(6).reshape(6, 1, 1) + 2)
+
+ # many -> one element -> back (copies just element 0)
+ sdt1 = [('a', 'O', (3, 2, 2))]
+ sdt2 = [('a', 'O', (1,))]
+ a = np.zeros((6,), dtype=sdt1)
+ a['a'][:, 0, 0, 0] = np.arange(6)
+ i = nditer(a, ['buffered', 'refs_ok'], ['readwrite'],
+ casting='unsafe',
+ op_dtypes=sdt2)
+ with i:
+ assert_equal(i[0].dtype, np.dtype(sdt2))
+ count = 0
+ for x in i:
+ assert_equal(x['a'], count)
+ x['a'] += 2
+ count += 1
+ assert_equal(a['a'], np.arange(6).reshape(6, 1, 1, 1) * np.ones((1, 3, 2, 2)) + 2)
+
+ # many -> one element -> back (copies just element 0)
+ sdt1 = [('a', 'f8', (3, 2, 2))]
+ sdt2 = [('a', 'O', (1,))]
+ a = np.zeros((6,), dtype=sdt1)
+ a['a'][:, 0, 0, 0] = np.arange(6)
+ i = nditer(a, ['buffered', 'refs_ok'], ['readonly'],
+ casting='unsafe',
+ op_dtypes=sdt2)
+ assert_equal(i[0].dtype, np.dtype(sdt2))
+ count = 0
+ for x in i:
+ assert_equal(x['a'], count)
+ count += 1
+
+ # many -> one element (copies just element 0)
+ sdt1 = [('a', 'O', (3, 2, 2))]
+ sdt2 = [('a', 'f4', (1,))]
+ a = np.zeros((6,), dtype=sdt1)
+ a['a'][:, 0, 0, 0] = np.arange(6)
+ i = nditer(a, ['buffered', 'refs_ok'], ['readonly'],
+ casting='unsafe',
+ op_dtypes=sdt2)
+ assert_equal(i[0].dtype, np.dtype(sdt2))
+ count = 0
+ for x in i:
+ assert_equal(x['a'], count)
+ count += 1
+
+ # many -> matching shape (straightforward copy)
+ sdt1 = [('a', 'O', (3, 2, 2))]
+ sdt2 = [('a', 'f4', (3, 2, 2))]
+ a = np.zeros((6,), dtype=sdt1)
+ a['a'] = np.arange(6 * 3 * 2 * 2).reshape(6, 3, 2, 2)
+ i = nditer(a, ['buffered', 'refs_ok'], ['readonly'],
+ casting='unsafe',
+ op_dtypes=sdt2)
+ assert_equal(i[0].dtype, np.dtype(sdt2))
+ count = 0
+ for x in i:
+ assert_equal(x['a'], a[count]['a'])
+ count += 1
+
+ # vector -> smaller vector (truncates)
+ sdt1 = [('a', 'f8', (6,))]
+ sdt2 = [('a', 'f4', (2,))]
+ a = np.zeros((6,), dtype=sdt1)
+ a['a'] = np.arange(6 * 6).reshape(6, 6)
+ i = nditer(a, ['buffered', 'refs_ok'], ['readonly'],
+ casting='unsafe',
+ op_dtypes=sdt2)
+ assert_equal(i[0].dtype, np.dtype(sdt2))
+ count = 0
+ for x in i:
+ assert_equal(x['a'], a[count]['a'][:2])
+ count += 1
+
+ # vector -> bigger vector (pads with zeros)
+ sdt1 = [('a', 'f8', (2,))]
+ sdt2 = [('a', 'f4', (6,))]
+ a = np.zeros((6,), dtype=sdt1)
+ a['a'] = np.arange(6 * 2).reshape(6, 2)
+ i = nditer(a, ['buffered', 'refs_ok'], ['readonly'],
+ casting='unsafe',
+ op_dtypes=sdt2)
+ assert_equal(i[0].dtype, np.dtype(sdt2))
+ count = 0
+ for x in i:
+ assert_equal(x['a'][:2], a[count]['a'])
+ assert_equal(x['a'][2:], [0, 0, 0, 0])
+ count += 1
+
+ # vector -> matrix (broadcasts)
+ sdt1 = [('a', 'f8', (2,))]
+ sdt2 = [('a', 'f4', (2, 2))]
+ a = np.zeros((6,), dtype=sdt1)
+ a['a'] = np.arange(6 * 2).reshape(6, 2)
+ i = nditer(a, ['buffered', 'refs_ok'], ['readonly'],
+ casting='unsafe',
+ op_dtypes=sdt2)
+ assert_equal(i[0].dtype, np.dtype(sdt2))
+ count = 0
+ for x in i:
+ assert_equal(x['a'][0], a[count]['a'])
+ assert_equal(x['a'][1], a[count]['a'])
+ count += 1
+
+ # vector -> matrix (broadcasts and zero-pads)
+ sdt1 = [('a', 'f8', (2, 1))]
+ sdt2 = [('a', 'f4', (3, 2))]
+ a = np.zeros((6,), dtype=sdt1)
+ a['a'] = np.arange(6 * 2).reshape(6, 2, 1)
+ i = nditer(a, ['buffered', 'refs_ok'], ['readonly'],
+ casting='unsafe',
+ op_dtypes=sdt2)
+ assert_equal(i[0].dtype, np.dtype(sdt2))
+ count = 0
+ for x in i:
+ assert_equal(x['a'][:2, 0], a[count]['a'][:, 0])
+ assert_equal(x['a'][:2, 1], a[count]['a'][:, 0])
+ assert_equal(x['a'][2, :], [0, 0])
+ count += 1
+
+ # matrix -> matrix (truncates and zero-pads)
+ sdt1 = [('a', 'f8', (2, 3))]
+ sdt2 = [('a', 'f4', (3, 2))]
+ a = np.zeros((6,), dtype=sdt1)
+ a['a'] = np.arange(6 * 2 * 3).reshape(6, 2, 3)
+ i = nditer(a, ['buffered', 'refs_ok'], ['readonly'],
+ casting='unsafe',
+ op_dtypes=sdt2)
+ assert_equal(i[0].dtype, np.dtype(sdt2))
+ count = 0
+ for x in i:
+ assert_equal(x['a'][:2, 0], a[count]['a'][:, 0])
+ assert_equal(x['a'][:2, 1], a[count]['a'][:, 1])
+ assert_equal(x['a'][2, :], [0, 0])
+ count += 1
+
+def test_iter_buffering_badwriteback():
+ # Writing back from a buffer cannot combine elements
+
+ # a needs write buffering, but had a broadcast dimension
+ a = np.arange(6).reshape(2, 3, 1)
+ b = np.arange(12).reshape(2, 3, 2)
+ assert_raises(ValueError, nditer, [a, b],
+ ['buffered', 'external_loop'],
+ [['readwrite'], ['writeonly']],
+ order='C')
+
+ # But if a is readonly, it's fine
+ nditer([a, b], ['buffered', 'external_loop'],
+ [['readonly'], ['writeonly']],
+ order='C')
+
+ # If a has just one element, it's fine too (constant 0 stride, a reduction)
+ a = np.arange(1).reshape(1, 1, 1)
+ nditer([a, b], ['buffered', 'external_loop', 'reduce_ok'],
+ [['readwrite'], ['writeonly']],
+ order='C')
+
+ # check that it fails on other dimensions too
+ a = np.arange(6).reshape(1, 3, 2)
+ assert_raises(ValueError, nditer, [a, b],
+ ['buffered', 'external_loop'],
+ [['readwrite'], ['writeonly']],
+ order='C')
+ a = np.arange(4).reshape(2, 1, 2)
+ assert_raises(ValueError, nditer, [a, b],
+ ['buffered', 'external_loop'],
+ [['readwrite'], ['writeonly']],
+ order='C')
+
+def test_iter_buffering_string():
+ # Safe casting disallows shrinking strings
+ a = np.array(['abc', 'a', 'abcd'], dtype=np.bytes_)
+ assert_equal(a.dtype, np.dtype('S4'))
+ assert_raises(TypeError, nditer, a, ['buffered'], ['readonly'],
+ op_dtypes='S2')
+ i = nditer(a, ['buffered'], ['readonly'], op_dtypes='S6')
+ assert_equal(i[0], b'abc')
+ assert_equal(i[0].dtype, np.dtype('S6'))
+
+ a = np.array(['abc', 'a', 'abcd'], dtype=np.str_)
+ assert_equal(a.dtype, np.dtype('U4'))
+ assert_raises(TypeError, nditer, a, ['buffered'], ['readonly'],
+ op_dtypes='U2')
+ i = nditer(a, ['buffered'], ['readonly'], op_dtypes='U6')
+ assert_equal(i[0], 'abc')
+ assert_equal(i[0].dtype, np.dtype('U6'))
+
+def test_iter_buffering_growinner():
+ # Test that the inner loop grows when no buffering is needed
+ a = np.arange(30)
+ i = nditer(a, ['buffered', 'growinner', 'external_loop'],
+ buffersize=5)
+ # Should end up with just one inner loop here
+ assert_equal(i[0].size, a.size)
+
+
+@pytest.mark.parametrize("read_or_readwrite", ["readonly", "readwrite"])
+def test_iter_contig_flag_reduce_error(read_or_readwrite):
+ # Test that a non-contiguous operand is rejected without buffering.
+ # NOTE: This is true even for a reduction, where we return a 0-stride
+ # below!
+ with pytest.raises(TypeError, match="Iterator operand required buffering"):
+ it = np.nditer(
+ (np.zeros(()),), flags=["external_loop", "reduce_ok"],
+ op_flags=[(read_or_readwrite, "contig"),], itershape=(10,))
+
+
+@pytest.mark.parametrize("arr", [
+ lambda: np.zeros(()),
+ lambda: np.zeros((20, 1))[::20],
+ lambda: np.zeros((1, 20))[:, ::20]
+ ])
+def test_iter_contig_flag_single_operand_strides(arr):
+ """
+ Tests the strides with the contig flag for both broadcast and non-broadcast
+ operands in 3 cases where the logic is needed:
+ 1. When everything has a zero stride, the broadcast op needs to repeated
+ 2. When the reduce axis is the last axis (first to iterate).
+ 3. When the reduce axis is the first axis (last to iterate).
+
+ NOTE: The semantics of the cast flag are not clearly defined when
+ it comes to reduction. It is unclear that there are any users.
+ """
+ first_op = np.ones((10, 10))
+ broadcast_op = arr()
+ red_op = arr()
+ # Add a first operand to ensure no axis-reordering and the result shape.
+ iterator = np.nditer(
+ (first_op, broadcast_op, red_op),
+ flags=["external_loop", "reduce_ok", "buffered", "delay_bufalloc"],
+ op_flags=[("readonly", "contig")] * 2 + [("readwrite", "contig")])
+
+ with iterator:
+ iterator.reset()
+ for f, b, r in iterator:
+ # The first operand is contigouos, we should have a view
+ assert np.shares_memory(f, first_op)
+ # Although broadcast, the second op always has a contiguous stride
+ assert b.strides[0] == 8
+ assert not np.shares_memory(b, broadcast_op)
+ # The reduction has a contiguous stride or a 0 stride
+ if red_op.ndim == 0 or red_op.shape[-1] == 1:
+ assert r.strides[0] == 0
+ else:
+ # The stride is 8, although it was not originally:
+ assert r.strides[0] == 8
+ # If the reduce stride is 0, buffering makes no difference, but we
+ # do it anyway right now:
+ assert not np.shares_memory(r, red_op)
+
+
+@pytest.mark.xfail(reason="The contig flag was always buggy.")
+def test_iter_contig_flag_incorrect():
+ # This case does the wrong thing...
+ iterator = np.nditer(
+ (np.ones((10, 10)).T, np.ones((1, 10))),
+ flags=["external_loop", "reduce_ok", "buffered", "delay_bufalloc"],
+ op_flags=[("readonly", "contig")] * 2)
+
+ with iterator:
+ iterator.reset()
+ for a, b in iterator:
+ # Remove a and b from locals (pytest may want to format them)
+ a, b = a.strides, b.strides
+ assert a == 8
+ assert b == 8 # should be 8 but is 0 due to axis reorder
+
+
+@pytest.mark.slow
+def test_iter_buffered_reduce_reuse():
+ # large enough array for all views, including negative strides.
+ a = np.arange(2 * 3**5)[3**5:3**5 + 1]
+ flags = ['buffered', 'delay_bufalloc', 'multi_index', 'reduce_ok', 'refs_ok']
+ op_flags = [('readonly',), ('readwrite', 'allocate')]
+ op_axes_list = [[(0, 1, 2), (0, 1, -1)], [(0, 1, 2), (0, -1, -1)]]
+ # wrong dtype to force buffering
+ op_dtypes = [float, a.dtype]
+
+ def get_params():
+ for xs in range(-3**2, 3**2 + 1):
+ for ys in range(xs, 3**2 + 1):
+ for op_axes in op_axes_list:
+ # last stride is reduced and because of that not
+ # important for this test, as it is the inner stride.
+ strides = (xs * a.itemsize, ys * a.itemsize, a.itemsize)
+ arr = np.lib.stride_tricks.as_strided(a, (3, 3, 3), strides)
+
+ for skip in [0, 1]:
+ yield arr, op_axes, skip
+
+ for arr, op_axes, skip in get_params():
+ nditer2 = np.nditer([arr.copy(), None],
+ op_axes=op_axes, flags=flags, op_flags=op_flags,
+ op_dtypes=op_dtypes)
+ with nditer2:
+ nditer2.operands[-1][...] = 0
+ nditer2.reset()
+ nditer2.iterindex = skip
+
+ for (a2_in, b2_in) in nditer2:
+ b2_in += a2_in.astype(np.int_)
+
+ comp_res = nditer2.operands[-1]
+
+ for bufsize in range(3**3):
+ nditer1 = np.nditer([arr, None],
+ op_axes=op_axes, flags=flags, op_flags=op_flags,
+ buffersize=bufsize, op_dtypes=op_dtypes)
+ with nditer1:
+ nditer1.operands[-1][...] = 0
+ nditer1.reset()
+ nditer1.iterindex = skip
+
+ for (a1_in, b1_in) in nditer1:
+ b1_in += a1_in.astype(np.int_)
+
+ res = nditer1.operands[-1]
+ assert_array_equal(res, comp_res)
+
+
+def test_iter_buffered_reduce_reuse_core():
+ # NumPy re-uses buffers for broadcast operands (as of writing when reading).
+ # Test this even if the offset is manually set at some point during
+ # the iteration. (not a particularly tricky path)
+ arr = np.empty((1, 6, 4, 1)).reshape(1, 6, 4, 1)[:, ::3, ::2, :]
+ arr[...] = np.arange(arr.size).reshape(arr.shape)
+ # First and last dimension are broadcast dimensions.
+ arr = np.broadcast_to(arr, (100, 2, 2, 2))
+
+ flags = ['buffered', 'reduce_ok', 'refs_ok', 'multi_index']
+ op_flags = [('readonly',)]
+
+ buffersize = 100 # small enough to not fit the whole array
+ it = np.nditer(arr, flags=flags, op_flags=op_flags, buffersize=100)
+
+ # Iterate a bit (this will cause buffering internally)
+ expected = [next(it) for i in range(11)]
+ # Now, manually advance to inside the core (the +1)
+ it.iterindex = 10 * (2 * 2 * 2) + 1
+ result = [next(it) for i in range(10)]
+
+ assert expected[1:] == result
+
+
+def test_iter_no_broadcast():
+ # Test that the no_broadcast flag works
+ a = np.arange(24).reshape(2, 3, 4)
+ b = np.arange(6).reshape(2, 3, 1)
+ c = np.arange(12).reshape(3, 4)
+
+ nditer([a, b, c], [],
+ [['readonly', 'no_broadcast'],
+ ['readonly'], ['readonly']])
+ assert_raises(ValueError, nditer, [a, b, c], [],
+ [['readonly'], ['readonly', 'no_broadcast'], ['readonly']])
+ assert_raises(ValueError, nditer, [a, b, c], [],
+ [['readonly'], ['readonly'], ['readonly', 'no_broadcast']])
+
+
+class TestIterNested:
+
+ def test_basic(self):
+ # Test nested iteration basic usage
+ a = arange(12).reshape(2, 3, 2)
+
+ i, j = np.nested_iters(a, [[0], [1, 2]])
+ vals = [list(j) for _ in i]
+ assert_equal(vals, [[0, 1, 2, 3, 4, 5], [6, 7, 8, 9, 10, 11]])
+
+ i, j = np.nested_iters(a, [[0, 1], [2]])
+ vals = [list(j) for _ in i]
+ assert_equal(vals, [[0, 1], [2, 3], [4, 5], [6, 7], [8, 9], [10, 11]])
+
+ i, j = np.nested_iters(a, [[0, 2], [1]])
+ vals = [list(j) for _ in i]
+ assert_equal(vals, [[0, 2, 4], [1, 3, 5], [6, 8, 10], [7, 9, 11]])
+
+ def test_reorder(self):
+ # Test nested iteration basic usage
+ a = arange(12).reshape(2, 3, 2)
+
+ # In 'K' order (default), it gets reordered
+ i, j = np.nested_iters(a, [[0], [2, 1]])
+ vals = [list(j) for _ in i]
+ assert_equal(vals, [[0, 1, 2, 3, 4, 5], [6, 7, 8, 9, 10, 11]])
+
+ i, j = np.nested_iters(a, [[1, 0], [2]])
+ vals = [list(j) for _ in i]
+ assert_equal(vals, [[0, 1], [2, 3], [4, 5], [6, 7], [8, 9], [10, 11]])
+
+ i, j = np.nested_iters(a, [[2, 0], [1]])
+ vals = [list(j) for _ in i]
+ assert_equal(vals, [[0, 2, 4], [1, 3, 5], [6, 8, 10], [7, 9, 11]])
+
+ # In 'C' order, it doesn't
+ i, j = np.nested_iters(a, [[0], [2, 1]], order='C')
+ vals = [list(j) for _ in i]
+ assert_equal(vals, [[0, 2, 4, 1, 3, 5], [6, 8, 10, 7, 9, 11]])
+
+ i, j = np.nested_iters(a, [[1, 0], [2]], order='C')
+ vals = [list(j) for _ in i]
+ assert_equal(vals, [[0, 1], [6, 7], [2, 3], [8, 9], [4, 5], [10, 11]])
+
+ i, j = np.nested_iters(a, [[2, 0], [1]], order='C')
+ vals = [list(j) for _ in i]
+ assert_equal(vals, [[0, 2, 4], [6, 8, 10], [1, 3, 5], [7, 9, 11]])
+
+ def test_flip_axes(self):
+ # Test nested iteration with negative axes
+ a = arange(12).reshape(2, 3, 2)[::-1, ::-1, ::-1]
+
+ # In 'K' order (default), the axes all get flipped
+ i, j = np.nested_iters(a, [[0], [1, 2]])
+ vals = [list(j) for _ in i]
+ assert_equal(vals, [[0, 1, 2, 3, 4, 5], [6, 7, 8, 9, 10, 11]])
+
+ i, j = np.nested_iters(a, [[0, 1], [2]])
+ vals = [list(j) for _ in i]
+ assert_equal(vals, [[0, 1], [2, 3], [4, 5], [6, 7], [8, 9], [10, 11]])
+
+ i, j = np.nested_iters(a, [[0, 2], [1]])
+ vals = [list(j) for _ in i]
+ assert_equal(vals, [[0, 2, 4], [1, 3, 5], [6, 8, 10], [7, 9, 11]])
+
+ # In 'C' order, flipping axes is disabled
+ i, j = np.nested_iters(a, [[0], [1, 2]], order='C')
+ vals = [list(j) for _ in i]
+ assert_equal(vals, [[11, 10, 9, 8, 7, 6], [5, 4, 3, 2, 1, 0]])
+
+ i, j = np.nested_iters(a, [[0, 1], [2]], order='C')
+ vals = [list(j) for _ in i]
+ assert_equal(vals, [[11, 10], [9, 8], [7, 6], [5, 4], [3, 2], [1, 0]])
+
+ i, j = np.nested_iters(a, [[0, 2], [1]], order='C')
+ vals = [list(j) for _ in i]
+ assert_equal(vals, [[11, 9, 7], [10, 8, 6], [5, 3, 1], [4, 2, 0]])
+
+ def test_broadcast(self):
+ # Test nested iteration with broadcasting
+ a = arange(2).reshape(2, 1)
+ b = arange(3).reshape(1, 3)
+
+ i, j = np.nested_iters([a, b], [[0], [1]])
+ vals = [list(j) for _ in i]
+ assert_equal(vals, [[[0, 0], [0, 1], [0, 2]], [[1, 0], [1, 1], [1, 2]]])
+
+ i, j = np.nested_iters([a, b], [[1], [0]])
+ vals = [list(j) for _ in i]
+ assert_equal(vals, [[[0, 0], [1, 0]], [[0, 1], [1, 1]], [[0, 2], [1, 2]]])
+
+ def test_dtype_copy(self):
+ # Test nested iteration with a copy to change dtype
+
+ # copy
+ a = arange(6, dtype='i4').reshape(2, 3)
+ i, j = np.nested_iters(a, [[0], [1]],
+ op_flags=['readonly', 'copy'],
+ op_dtypes='f8')
+ assert_equal(j[0].dtype, np.dtype('f8'))
+ vals = [list(j) for _ in i]
+ assert_equal(vals, [[0, 1, 2], [3, 4, 5]])
+ vals = None
+
+ # writebackifcopy - using context manager
+ a = arange(6, dtype='f4').reshape(2, 3)
+ i, j = np.nested_iters(a, [[0], [1]],
+ op_flags=['readwrite', 'updateifcopy'],
+ casting='same_kind',
+ op_dtypes='f8')
+ with i, j:
+ assert_equal(j[0].dtype, np.dtype('f8'))
+ for x in i:
+ for y in j:
+ y[...] += 1
+ assert_equal(a, [[0, 1, 2], [3, 4, 5]])
+ assert_equal(a, [[1, 2, 3], [4, 5, 6]])
+
+ # writebackifcopy - using close()
+ a = arange(6, dtype='f4').reshape(2, 3)
+ i, j = np.nested_iters(a, [[0], [1]],
+ op_flags=['readwrite', 'updateifcopy'],
+ casting='same_kind',
+ op_dtypes='f8')
+ assert_equal(j[0].dtype, np.dtype('f8'))
+ for x in i:
+ for y in j:
+ y[...] += 1
+ assert_equal(a, [[0, 1, 2], [3, 4, 5]])
+ i.close()
+ j.close()
+ assert_equal(a, [[1, 2, 3], [4, 5, 6]])
+
+ def test_dtype_buffered(self):
+ # Test nested iteration with buffering to change dtype
+
+ a = arange(6, dtype='f4').reshape(2, 3)
+ i, j = np.nested_iters(a, [[0], [1]],
+ flags=['buffered'],
+ op_flags=['readwrite'],
+ casting='same_kind',
+ op_dtypes='f8')
+ assert_equal(j[0].dtype, np.dtype('f8'))
+ for x in i:
+ for y in j:
+ y[...] += 1
+ assert_equal(a, [[1, 2, 3], [4, 5, 6]])
+
+ def test_0d(self):
+ a = np.arange(12).reshape(2, 3, 2)
+ i, j = np.nested_iters(a, [[], [1, 0, 2]])
+ vals = [list(j) for _ in i]
+ assert_equal(vals, [[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]])
+
+ i, j = np.nested_iters(a, [[1, 0, 2], []])
+ vals = [list(j) for _ in i]
+ assert_equal(vals, [[0], [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11]])
+
+ i, j, k = np.nested_iters(a, [[2, 0], [], [1]])
+ vals = []
+ for x in i:
+ for y in j:
+ vals.append(list(k))
+ assert_equal(vals, [[0, 2, 4], [1, 3, 5], [6, 8, 10], [7, 9, 11]])
+
+ def test_iter_nested_iters_dtype_buffered(self):
+ # Test nested iteration with buffering to change dtype
+
+ a = arange(6, dtype='f4').reshape(2, 3)
+ i, j = np.nested_iters(a, [[0], [1]],
+ flags=['buffered'],
+ op_flags=['readwrite'],
+ casting='same_kind',
+ op_dtypes='f8')
+ with i, j:
+ assert_equal(j[0].dtype, np.dtype('f8'))
+ for x in i:
+ for y in j:
+ y[...] += 1
+ assert_equal(a, [[1, 2, 3], [4, 5, 6]])
+
+def test_iter_reduction_error():
+
+ a = np.arange(6)
+ assert_raises(ValueError, nditer, [a, None], [],
+ [['readonly'], ['readwrite', 'allocate']],
+ op_axes=[[0], [-1]])
+
+ a = np.arange(6).reshape(2, 3)
+ assert_raises(ValueError, nditer, [a, None], ['external_loop'],
+ [['readonly'], ['readwrite', 'allocate']],
+ op_axes=[[0, 1], [-1, -1]])
+
+def test_iter_reduction():
+ # Test doing reductions with the iterator
+
+ a = np.arange(6)
+ i = nditer([a, None], ['reduce_ok'],
+ [['readonly'], ['readwrite', 'allocate']],
+ op_axes=[[0], [-1]])
+ # Need to initialize the output operand to the addition unit
+ with i:
+ i.operands[1][...] = 0
+ # Do the reduction
+ for x, y in i:
+ y[...] += x
+ # Since no axes were specified, should have allocated a scalar
+ assert_equal(i.operands[1].ndim, 0)
+ assert_equal(i.operands[1], np.sum(a))
+
+ a = np.arange(6).reshape(2, 3)
+ i = nditer([a, None], ['reduce_ok', 'external_loop'],
+ [['readonly'], ['readwrite', 'allocate']],
+ op_axes=[[0, 1], [-1, -1]])
+ # Need to initialize the output operand to the addition unit
+ with i:
+ i.operands[1][...] = 0
+ # Reduction shape/strides for the output
+ assert_equal(i[1].shape, (6,))
+ assert_equal(i[1].strides, (0,))
+ # Do the reduction
+ for x, y in i:
+ # Use a for loop instead of ``y[...] += x``
+ # (equivalent to ``y[...] = y[...].copy() + x``),
+ # because y has zero strides we use for the reduction
+ for j in range(len(y)):
+ y[j] += x[j]
+ # Since no axes were specified, should have allocated a scalar
+ assert_equal(i.operands[1].ndim, 0)
+ assert_equal(i.operands[1], np.sum(a))
+
+ # This is a tricky reduction case for the buffering double loop
+ # to handle
+ a = np.ones((2, 3, 5))
+ it1 = nditer([a, None], ['reduce_ok', 'external_loop'],
+ [['readonly'], ['readwrite', 'allocate']],
+ op_axes=[None, [0, -1, 1]])
+ it2 = nditer([a, None], ['reduce_ok', 'external_loop',
+ 'buffered', 'delay_bufalloc'],
+ [['readonly'], ['readwrite', 'allocate']],
+ op_axes=[None, [0, -1, 1]], buffersize=10)
+ with it1, it2:
+ it1.operands[1].fill(0)
+ it2.operands[1].fill(0)
+ it2.reset()
+ for x in it1:
+ x[1][...] += x[0]
+ for x in it2:
+ x[1][...] += x[0]
+ assert_equal(it1.operands[1], it2.operands[1])
+ assert_equal(it2.operands[1].sum(), a.size)
+
+def test_iter_buffering_reduction():
+ # Test doing buffered reductions with the iterator
+
+ a = np.arange(6)
+ b = np.array(0., dtype='f8').byteswap()
+ b = b.view(b.dtype.newbyteorder())
+ i = nditer([a, b], ['reduce_ok', 'buffered'],
+ [['readonly'], ['readwrite', 'nbo']],
+ op_axes=[[0], [-1]])
+ with i:
+ assert_equal(i[1].dtype, np.dtype('f8'))
+ assert_(i[1].dtype != b.dtype)
+ # Do the reduction
+ for x, y in i:
+ y[...] += x
+ # Since no axes were specified, should have allocated a scalar
+ assert_equal(b, np.sum(a))
+
+ a = np.arange(6).reshape(2, 3)
+ b = np.array([0, 0], dtype='f8').byteswap()
+ b = b.view(b.dtype.newbyteorder())
+ i = nditer([a, b], ['reduce_ok', 'external_loop', 'buffered'],
+ [['readonly'], ['readwrite', 'nbo']],
+ op_axes=[[0, 1], [0, -1]])
+ # Reduction shape/strides for the output
+ with i:
+ assert_equal(i[1].shape, (3,))
+ assert_equal(i[1].strides, (0,))
+ # Do the reduction
+ for x, y in i:
+ # Use a for loop instead of ``y[...] += x``
+ # (equivalent to ``y[...] = y[...].copy() + x``),
+ # because y has zero strides we use for the reduction
+ for j in range(len(y)):
+ y[j] += x[j]
+ assert_equal(b, np.sum(a, axis=1))
+
+ # Iterator inner double loop was wrong on this one
+ p = np.arange(2) + 1
+ it = np.nditer([p, None],
+ ['delay_bufalloc', 'reduce_ok', 'buffered', 'external_loop'],
+ [['readonly'], ['readwrite', 'allocate']],
+ op_axes=[[-1, 0], [-1, -1]],
+ itershape=(2, 2))
+ with it:
+ it.operands[1].fill(0)
+ it.reset()
+ assert_equal(it[0], [1, 2, 1, 2])
+
+ # Iterator inner loop should take argument contiguity into account
+ x = np.ones((7, 13, 8), np.int8)[4:6, 1:11:6, 1:5].transpose(1, 2, 0)
+ x[...] = np.arange(x.size).reshape(x.shape)
+ y_base = np.arange(4 * 4, dtype=np.int8).reshape(4, 4)
+ y_base_copy = y_base.copy()
+ y = y_base[::2, :, None]
+
+ it = np.nditer([y, x],
+ ['buffered', 'external_loop', 'reduce_ok'],
+ [['readwrite'], ['readonly']])
+ with it:
+ for a, b in it:
+ a.fill(2)
+
+ assert_equal(y_base[1::2], y_base_copy[1::2])
+ assert_equal(y_base[::2], 2)
+
+def test_iter_buffering_reduction_reuse_reduce_loops():
+ # There was a bug triggering reuse of the reduce loop inappropriately,
+ # which caused processing to happen in unnecessarily small chunks
+ # and overran the buffer.
+
+ a = np.zeros((2, 7))
+ b = np.zeros((1, 7))
+ it = np.nditer([a, b], flags=['reduce_ok', 'external_loop', 'buffered'],
+ op_flags=[['readonly'], ['readwrite']],
+ buffersize=5)
+
+ with it:
+ bufsizes = [x.shape[0] for x, y in it]
+ assert_equal(bufsizes, [5, 2, 5, 2])
+ assert_equal(sum(bufsizes), a.size)
+
+def test_iter_writemasked_badinput():
+ a = np.zeros((2, 3))
+ b = np.zeros((3,))
+ m = np.array([[True, True, False], [False, True, False]])
+ m2 = np.array([True, True, False])
+ m3 = np.array([0, 1, 1], dtype='u1')
+ mbad1 = np.array([0, 1, 1], dtype='i1')
+ mbad2 = np.array([0, 1, 1], dtype='f4')
+
+ # Need an 'arraymask' if any operand is 'writemasked'
+ assert_raises(ValueError, nditer, [a, m], [],
+ [['readwrite', 'writemasked'], ['readonly']])
+
+ # A 'writemasked' operand must not be readonly
+ assert_raises(ValueError, nditer, [a, m], [],
+ [['readonly', 'writemasked'], ['readonly', 'arraymask']])
+
+ # 'writemasked' and 'arraymask' may not be used together
+ assert_raises(ValueError, nditer, [a, m], [],
+ [['readonly'], ['readwrite', 'arraymask', 'writemasked']])
+
+ # 'arraymask' may only be specified once
+ assert_raises(ValueError, nditer, [a, m, m2], [],
+ [['readwrite', 'writemasked'],
+ ['readonly', 'arraymask'],
+ ['readonly', 'arraymask']])
+
+ # An 'arraymask' with nothing 'writemasked' also doesn't make sense
+ assert_raises(ValueError, nditer, [a, m], [],
+ [['readwrite'], ['readonly', 'arraymask']])
+
+ # A writemasked reduction requires a similarly smaller mask
+ assert_raises(ValueError, nditer, [a, b, m], ['reduce_ok'],
+ [['readonly'],
+ ['readwrite', 'writemasked'],
+ ['readonly', 'arraymask']])
+ # But this should work with a smaller/equal mask to the reduction operand
+ np.nditer([a, b, m2], ['reduce_ok'],
+ [['readonly'],
+ ['readwrite', 'writemasked'],
+ ['readonly', 'arraymask']])
+ # The arraymask itself cannot be a reduction
+ assert_raises(ValueError, nditer, [a, b, m2], ['reduce_ok'],
+ [['readonly'],
+ ['readwrite', 'writemasked'],
+ ['readwrite', 'arraymask']])
+
+ # A uint8 mask is ok too
+ np.nditer([a, m3], ['buffered'],
+ [['readwrite', 'writemasked'],
+ ['readonly', 'arraymask']],
+ op_dtypes=['f4', None],
+ casting='same_kind')
+ # An int8 mask isn't ok
+ assert_raises(TypeError, np.nditer, [a, mbad1], ['buffered'],
+ [['readwrite', 'writemasked'],
+ ['readonly', 'arraymask']],
+ op_dtypes=['f4', None],
+ casting='same_kind')
+ # A float32 mask isn't ok
+ assert_raises(TypeError, np.nditer, [a, mbad2], ['buffered'],
+ [['readwrite', 'writemasked'],
+ ['readonly', 'arraymask']],
+ op_dtypes=['f4', None],
+ casting='same_kind')
+
+
+def _is_buffered(iterator):
+ try:
+ iterator.itviews
+ except ValueError:
+ return True
+ return False
+
+@pytest.mark.parametrize("a",
+ [np.zeros((3,), dtype='f8'),
+ np.zeros((9876, 3 * 5), dtype='f8')[::2, :],
+ np.zeros((4, 312, 124, 3), dtype='f8')[::2, :, ::2, :],
+ # Also test with the last dimension strided (so it does not fit if
+ # there is repeated access)
+ np.zeros((9,), dtype='f8')[::3],
+ np.zeros((9876, 3 * 10), dtype='f8')[::2, ::5],
+ np.zeros((4, 312, 124, 3), dtype='f8')[::2, :, ::2, ::-1]])
+def test_iter_writemasked(a):
+ # Note, the slicing above is to ensure that nditer cannot combine multiple
+ # axes into one. The repetition is just to make things a bit more
+ # interesting.
+ shape = a.shape
+ reps = shape[-1] // 3
+ msk = np.empty(shape, dtype=bool)
+ msk[...] = [True, True, False] * reps
+
+ # When buffering is unused, 'writemasked' effectively does nothing.
+ # It's up to the user of the iterator to obey the requested semantics.
+ it = np.nditer([a, msk], [],
+ [['readwrite', 'writemasked'],
+ ['readonly', 'arraymask']])
+ with it:
+ for x, m in it:
+ x[...] = 1
+ # Because we violated the semantics, all the values became 1
+ assert_equal(a, np.broadcast_to([1, 1, 1] * reps, shape))
+
+ # Even if buffering is enabled, we still may be accessing the array
+ # directly.
+ it = np.nditer([a, msk], ['buffered'],
+ [['readwrite', 'writemasked'],
+ ['readonly', 'arraymask']])
+ # @seberg: I honestly don't currently understand why a "buffered" iterator
+ # would end up not using a buffer for the small array here at least when
+ # "writemasked" is used, that seems confusing... Check by testing for
+ # actual memory overlap!
+ is_buffered = True
+ with it:
+ for x, m in it:
+ x[...] = 2.5
+ if np.may_share_memory(x, a):
+ is_buffered = False
+
+ if not is_buffered:
+ # Because we violated the semantics, all the values became 2.5
+ assert_equal(a, np.broadcast_to([2.5, 2.5, 2.5] * reps, shape))
+ else:
+ # For large sizes, the iterator may be buffered:
+ assert_equal(a, np.broadcast_to([2.5, 2.5, 1] * reps, shape))
+ a[...] = 2.5
+
+ # If buffering will definitely happening, for instance because of
+ # a cast, only the items selected by the mask will be copied back from
+ # the buffer.
+ it = np.nditer([a, msk], ['buffered'],
+ [['readwrite', 'writemasked'],
+ ['readonly', 'arraymask']],
+ op_dtypes=['i8', None],
+ casting='unsafe')
+ with it:
+ for x, m in it:
+ x[...] = 3
+ # Even though we violated the semantics, only the selected values
+ # were copied back
+ assert_equal(a, np.broadcast_to([3, 3, 2.5] * reps, shape))
+
+
+@pytest.mark.parametrize(["mask", "mask_axes"], [
+ # Allocated operand (only broadcasts with -1)
+ (None, [-1, 0]),
+ # Reduction along the first dimension (with and without op_axes)
+ (np.zeros((1, 4), dtype="bool"), [0, 1]),
+ (np.zeros((1, 4), dtype="bool"), None),
+ # Test 0-D and -1 op_axes
+ (np.zeros(4, dtype="bool"), [-1, 0]),
+ (np.zeros((), dtype="bool"), [-1, -1]),
+ (np.zeros((), dtype="bool"), None)])
+def test_iter_writemasked_broadcast_error(mask, mask_axes):
+ # This assumes that a readwrite mask makes sense. This is likely not the
+ # case and should simply be deprecated.
+ arr = np.zeros((3, 4))
+ itflags = ["reduce_ok"]
+ mask_flags = ["arraymask", "readwrite", "allocate"]
+ a_flags = ["writeonly", "writemasked"]
+ if mask_axes is None:
+ op_axes = None
+ else:
+ op_axes = [mask_axes, [0, 1]]
+
+ with assert_raises(ValueError):
+ np.nditer((mask, arr), flags=itflags, op_flags=[mask_flags, a_flags],
+ op_axes=op_axes)
+
+
+def test_iter_writemasked_decref():
+ # force casting (to make it interesting) by using a structured dtype.
+ arr = np.arange(10000).astype(">i,O")
+ original = arr.copy()
+ mask = np.random.randint(0, 2, size=10000).astype(bool)
+
+ it = np.nditer([arr, mask], ['buffered', "refs_ok"],
+ [['readwrite', 'writemasked'],
+ ['readonly', 'arraymask']],
+ op_dtypes=["<i,O", "?"])
+ singleton = object()
+ if HAS_REFCOUNT:
+ count = sys.getrefcount(singleton)
+ for buf, mask_buf in it:
+ buf[...] = (3, singleton)
+
+ del buf, mask_buf, it # delete everything to ensure correct cleanup
+
+ if HAS_REFCOUNT:
+ # The buffer would have included additional items, they must be
+ # cleared correctly:
+ assert sys.getrefcount(singleton) - count == np.count_nonzero(mask)
+
+ assert_array_equal(arr[~mask], original[~mask])
+ assert (arr[mask] == np.array((3, singleton), arr.dtype)).all()
+ del arr
+
+ if HAS_REFCOUNT:
+ assert sys.getrefcount(singleton) == count
+
+
+def test_iter_non_writable_attribute_deletion():
+ it = np.nditer(np.ones(2))
+ attr = ["value", "shape", "operands", "itviews", "has_delayed_bufalloc",
+ "iterationneedsapi", "has_multi_index", "has_index", "dtypes",
+ "ndim", "nop", "itersize", "finished"]
+
+ for s in attr:
+ assert_raises(AttributeError, delattr, it, s)
+
+
+def test_iter_writable_attribute_deletion():
+ it = np.nditer(np.ones(2))
+ attr = ["multi_index", "index", "iterrange", "iterindex"]
+ for s in attr:
+ assert_raises(AttributeError, delattr, it, s)
+
+
+def test_iter_element_deletion():
+ it = np.nditer(np.ones(3))
+ try:
+ del it[1]
+ del it[1:2]
+ except TypeError:
+ pass
+ except Exception:
+ raise AssertionError
+
+def test_iter_allocated_array_dtypes():
+ # If the dtype of an allocated output has a shape, the shape gets
+ # tacked onto the end of the result.
+ it = np.nditer(([1, 3, 20], None), op_dtypes=[None, ('i4', (2,))])
+ for a, b in it:
+ b[0] = a - 1
+ b[1] = a + 1
+ assert_equal(it.operands[1], [[0, 2], [2, 4], [19, 21]])
+
+ # Check the same (less sensitive) thing when `op_axes` with -1 is given.
+ it = np.nditer(([[1, 3, 20]], None), op_dtypes=[None, ('i4', (2,))],
+ flags=["reduce_ok"], op_axes=[None, (-1, 0)])
+ for a, b in it:
+ b[0] = a - 1
+ b[1] = a + 1
+ assert_equal(it.operands[1], [[0, 2], [2, 4], [19, 21]])
+
+ # Make sure this works for scalars too
+ it = np.nditer((10, 2, None), op_dtypes=[None, None, ('i4', (2, 2))])
+ for a, b, c in it:
+ c[0, 0] = a - b
+ c[0, 1] = a + b
+ c[1, 0] = a * b
+ c[1, 1] = a / b
+ assert_equal(it.operands[2], [[8, 12], [20, 5]])
+
+
+def test_0d_iter():
+ # Basic test for iteration of 0-d arrays:
+ i = nditer([2, 3], ['multi_index'], [['readonly']] * 2)
+ assert_equal(i.ndim, 0)
+ assert_equal(next(i), (2, 3))
+ assert_equal(i.multi_index, ())
+ assert_equal(i.iterindex, 0)
+ assert_raises(StopIteration, next, i)
+ # test reset:
+ i.reset()
+ assert_equal(next(i), (2, 3))
+ assert_raises(StopIteration, next, i)
+
+ # test forcing to 0-d
+ i = nditer(np.arange(5), ['multi_index'], [['readonly']], op_axes=[()])
+ assert_equal(i.ndim, 0)
+ assert_equal(len(i), 1)
+
+ i = nditer(np.arange(5), ['multi_index'], [['readonly']],
+ op_axes=[()], itershape=())
+ assert_equal(i.ndim, 0)
+ assert_equal(len(i), 1)
+
+ # passing an itershape alone is not enough, the op_axes are also needed
+ with assert_raises(ValueError):
+ nditer(np.arange(5), ['multi_index'], [['readonly']], itershape=())
+
+ # Test a more complex buffered casting case (same as another test above)
+ sdt = [('a', 'f4'), ('b', 'i8'), ('c', 'c8', (2, 3)), ('d', 'O')]
+ a = np.array(0.5, dtype='f4')
+ i = nditer(a, ['buffered', 'refs_ok'], ['readonly'],
+ casting='unsafe', op_dtypes=sdt)
+ vals = next(i)
+ assert_equal(vals['a'], 0.5)
+ assert_equal(vals['b'], 0)
+ assert_equal(vals['c'], [[(0.5)] * 3] * 2)
+ assert_equal(vals['d'], 0.5)
+
+def test_object_iter_cleanup():
+ # see gh-18450
+ # object arrays can raise a python exception in ufunc inner loops using
+ # nditer, which should cause iteration to stop & cleanup. There were bugs
+ # in the nditer cleanup when decref'ing object arrays.
+ # This test would trigger valgrind "uninitialized read" before the bugfix.
+ assert_raises(TypeError, lambda: np.zeros((17000, 2), dtype='f4') * None)
+
+ # this more explicit code also triggers the invalid access
+ arr = np.arange(ncu.BUFSIZE * 10).reshape(10, -1).astype(str)
+ oarr = arr.astype(object)
+ oarr[:, -1] = None
+ assert_raises(TypeError, lambda: np.add(oarr[:, ::-1], arr[:, ::-1]))
+
+ # followup: this tests for a bug introduced in the first pass of gh-18450,
+ # caused by an incorrect fallthrough of the TypeError
+ class T:
+ def __bool__(self):
+ raise TypeError("Ambiguous")
+ assert_raises(TypeError, np.logical_or.reduce,
+ np.array([T(), T()], dtype='O'))
+
+def test_object_iter_cleanup_reduce():
+ # Similar as above, but a complex reduction case that was previously
+ # missed (see gh-18810).
+ # The following array is special in that it cannot be flattened:
+ arr = np.array([[None, 1], [-1, -1], [None, 2], [-1, -1]])[::2]
+ with pytest.raises(TypeError):
+ np.sum(arr)
+
+@pytest.mark.parametrize("arr", [
+ np.ones((8000, 4, 2), dtype=object)[:, ::2, :],
+ np.ones((8000, 4, 2), dtype=object, order="F")[:, ::2, :],
+ np.ones((8000, 4, 2), dtype=object)[:, ::2, :].copy("F")])
+def test_object_iter_cleanup_large_reduce(arr):
+ # More complicated calls are possible for large arrays:
+ out = np.ones(8000, dtype=np.intp)
+ # force casting with `dtype=object`
+ res = np.sum(arr, axis=(1, 2), dtype=object, out=out)
+ assert_array_equal(res, np.full(8000, 4, dtype=object))
+
+def test_iter_too_large():
+ # The total size of the iterator must not exceed the maximum intp due
+ # to broadcasting. Dividing by 1024 will keep it small enough to
+ # give a legal array.
+ size = np.iinfo(np.intp).max // 1024
+ arr = np.lib.stride_tricks.as_strided(np.zeros(1), (size,), (0,))
+ assert_raises(ValueError, nditer, (arr, arr[:, None]))
+ # test the same for multiindex. That may get more interesting when
+ # removing 0 dimensional axis is allowed (since an iterator can grow then)
+ assert_raises(ValueError, nditer,
+ (arr, arr[:, None]), flags=['multi_index'])
+
+
+def test_iter_too_large_with_multiindex():
+ # When a multi index is being tracked, the error is delayed this
+ # checks the delayed error messages and getting below that by
+ # removing an axis.
+ base_size = 2**10
+ num = 1
+ while base_size**num < np.iinfo(np.intp).max:
+ num += 1
+
+ shape_template = [1, 1] * num
+ arrays = []
+ for i in range(num):
+ shape = shape_template[:]
+ shape[i * 2] = 2**10
+ arrays.append(np.empty(shape))
+ arrays = tuple(arrays)
+
+ # arrays are now too large to be broadcast. The different modes test
+ # different nditer functionality with or without GIL.
+ for mode in range(6):
+ with assert_raises(ValueError):
+ _multiarray_tests.test_nditer_too_large(arrays, -1, mode)
+ # but if we do nothing with the nditer, it can be constructed:
+ _multiarray_tests.test_nditer_too_large(arrays, -1, 7)
+
+ # When an axis is removed, things should work again (half the time):
+ for i in range(num):
+ for mode in range(6):
+ # an axis with size 1024 is removed:
+ _multiarray_tests.test_nditer_too_large(arrays, i * 2, mode)
+ # an axis with size 1 is removed:
+ with assert_raises(ValueError):
+ _multiarray_tests.test_nditer_too_large(arrays, i * 2 + 1, mode)
+
+def test_writebacks():
+ a = np.arange(6, dtype='f4')
+ au = a.byteswap()
+ au = au.view(au.dtype.newbyteorder())
+ assert_(a.dtype.byteorder != au.dtype.byteorder)
+ it = nditer(au, [], [['readwrite', 'updateifcopy']],
+ casting='equiv', op_dtypes=[np.dtype('f4')])
+ with it:
+ it.operands[0][:] = 100
+ assert_equal(au, 100)
+ # do it again, this time raise an error,
+ it = nditer(au, [], [['readwrite', 'updateifcopy']],
+ casting='equiv', op_dtypes=[np.dtype('f4')])
+ try:
+ with it:
+ assert_equal(au.flags.writeable, False)
+ it.operands[0][:] = 0
+ raise ValueError('exit context manager on exception')
+ except Exception:
+ pass
+ assert_equal(au, 0)
+ assert_equal(au.flags.writeable, True)
+ # cannot reuse i outside context manager
+ assert_raises(ValueError, getattr, it, 'operands')
+
+ it = nditer(au, [], [['readwrite', 'updateifcopy']],
+ casting='equiv', op_dtypes=[np.dtype('f4')])
+ with it:
+ x = it.operands[0]
+ x[:] = 6
+ assert_(x.flags.writebackifcopy)
+ assert_equal(au, 6)
+ assert_(not x.flags.writebackifcopy)
+ x[:] = 123 # x.data still valid
+ assert_equal(au, 6) # but not connected to au
+
+ it = nditer(au, [],
+ [['readwrite', 'updateifcopy']],
+ casting='equiv', op_dtypes=[np.dtype('f4')])
+ # reentering works
+ with it:
+ with it:
+ for x in it:
+ x[...] = 123
+
+ it = nditer(au, [],
+ [['readwrite', 'updateifcopy']],
+ casting='equiv', op_dtypes=[np.dtype('f4')])
+ # make sure exiting the inner context manager closes the iterator
+ with it:
+ with it:
+ for x in it:
+ x[...] = 123
+ assert_raises(ValueError, getattr, it, 'operands')
+ # do not crash if original data array is decrefed
+ it = nditer(au, [],
+ [['readwrite', 'updateifcopy']],
+ casting='equiv', op_dtypes=[np.dtype('f4')])
+ del au
+ with it:
+ for x in it:
+ x[...] = 123
+ # make sure we cannot reenter the closed iterator
+ enter = it.__enter__
+ assert_raises(RuntimeError, enter)
+
+def test_close_equivalent():
+ ''' using a context amanger and using nditer.close are equivalent
+ '''
+ def add_close(x, y, out=None):
+ addop = np.add
+ it = np.nditer([x, y, out], [],
+ [['readonly'], ['readonly'], ['writeonly', 'allocate']])
+ for (a, b, c) in it:
+ addop(a, b, out=c)
+ ret = it.operands[2]
+ it.close()
+ return ret
+
+ def add_context(x, y, out=None):
+ addop = np.add
+ it = np.nditer([x, y, out], [],
+ [['readonly'], ['readonly'], ['writeonly', 'allocate']])
+ with it:
+ for (a, b, c) in it:
+ addop(a, b, out=c)
+ return it.operands[2]
+ z = add_close(range(5), range(5))
+ assert_equal(z, range(0, 10, 2))
+ z = add_context(range(5), range(5))
+ assert_equal(z, range(0, 10, 2))
+
+def test_close_raises():
+ it = np.nditer(np.arange(3))
+ assert_equal(next(it), 0)
+ it.close()
+ assert_raises(StopIteration, next, it)
+ assert_raises(ValueError, getattr, it, 'operands')
+
+def test_close_parameters():
+ it = np.nditer(np.arange(3))
+ assert_raises(TypeError, it.close, 1)
+
+@pytest.mark.skipif(not HAS_REFCOUNT, reason="Python lacks refcounts")
+def test_warn_noclose():
+ a = np.arange(6, dtype='f4')
+ au = a.byteswap()
+ au = au.view(au.dtype.newbyteorder())
+ with suppress_warnings() as sup:
+ sup.record(RuntimeWarning)
+ it = np.nditer(au, [], [['readwrite', 'updateifcopy']],
+ casting='equiv', op_dtypes=[np.dtype('f4')])
+ del it
+ assert len(sup.log) == 1
+
+
+@pytest.mark.parametrize(["in_dtype", "buf_dtype"],
+ [("i", "O"), ("O", "i"), # most simple cases
+ ("i,O", "O,O"), # structured partially only copying O
+ ("O,i", "i,O"), # structured casting to and from O
+ ])
+@pytest.mark.parametrize("steps", [1, 2, 3])
+def test_partial_iteration_cleanup(in_dtype, buf_dtype, steps):
+ """
+ Checks for reference counting leaks during cleanup. Using explicit
+ reference counts lead to occasional false positives (at least in parallel
+ test setups). This test now should still test leaks correctly when
+ run e.g. with pytest-valgrind or pytest-leaks
+ """
+ value = 2**30 + 1 # just a random value that Python won't intern
+ arr = np.full(int(ncu.BUFSIZE * 2.5), value).astype(in_dtype)
+
+ it = np.nditer(arr, op_dtypes=[np.dtype(buf_dtype)],
+ flags=["buffered", "external_loop", "refs_ok"], casting="unsafe")
+ for step in range(steps):
+ # The iteration finishes in 3 steps, the first two are partial
+ next(it)
+
+ del it # not necessary, but we test the cleanup
+
+ # Repeat the test with `iternext`
+ it = np.nditer(arr, op_dtypes=[np.dtype(buf_dtype)],
+ flags=["buffered", "external_loop", "refs_ok"], casting="unsafe")
+ for step in range(steps):
+ it.iternext()
+
+ del it # not necessary, but we test the cleanup
+
+@pytest.mark.skipif(not HAS_REFCOUNT, reason="Python lacks refcounts")
+@pytest.mark.parametrize(["in_dtype", "buf_dtype"],
+ [("O", "i"), # most simple cases
+ ("O,i", "i,O"), # structured casting to and from O
+ ])
+def test_partial_iteration_error(in_dtype, buf_dtype):
+ value = 123 # relies on python cache (leak-check will still find it)
+ arr = np.full(int(ncu.BUFSIZE * 2.5), value).astype(in_dtype)
+ if in_dtype == "O":
+ arr[int(ncu.BUFSIZE * 1.5)] = None
+ else:
+ arr[int(ncu.BUFSIZE * 1.5)]["f0"] = None
+
+ count = sys.getrefcount(value)
+
+ it = np.nditer(arr, op_dtypes=[np.dtype(buf_dtype)],
+ flags=["buffered", "external_loop", "refs_ok"], casting="unsafe")
+ with pytest.raises(TypeError):
+ # pytest.raises seems to have issues with the error originating
+ # in the for loop, so manually unravel:
+ next(it)
+ next(it) # raises TypeError
+
+ # Repeat the test with `iternext` after resetting, the buffers should
+ # already be cleared from any references, so resetting is sufficient.
+ it.reset()
+ with pytest.raises(TypeError):
+ it.iternext()
+ it.iternext()
+
+ assert count == sys.getrefcount(value)
+
+
+def test_arbitrary_number_of_ops():
+ # 2*16 + 1 is still just a few kiB, so should be fast and easy to deal with
+ # but larger than any small custom integer.
+ ops = [np.arange(10) for a in range(2**16 + 1)]
+
+ it = np.nditer(ops)
+ for i, vals in enumerate(it):
+ assert all(v == i for v in vals)
+
+
+def test_arbitrary_number_of_ops_nested():
+ # 2*16 + 1 is still just a few kiB, so should be fast and easy to deal with
+ # but larger than any small custom integer.
+ ops = [np.arange(10) for a in range(2**16 + 1)]
+
+ it = np.nested_iters(ops, [[0], []])
+ for i, vals in enumerate(it):
+ assert all(v == i for v in vals)
+
+
+@pytest.mark.slow
+@requires_memory(9 * np.iinfo(np.intc).max)
+def test_arbitrary_number_of_ops_error():
+ # A different error may happen for more than integer operands, but that
+ # is too large to test nicely.
+ a = np.ones(1)
+ args = [a] * (np.iinfo(np.intc).max + 1)
+ with pytest.raises(ValueError, match="Too many operands to nditer"):
+ np.nditer(args)
+
+ with pytest.raises(ValueError, match="Too many operands to nditer"):
+ np.nested_iters(args, [[0], []])
+
+
+def test_debug_print(capfd):
+ """
+ Matches the expected output of a debug print with the actual output.
+ Note that the iterator dump should not be considered stable API,
+ this test is mainly to ensure the print does not crash.
+
+ Currently uses a subprocess to avoid dealing with the C level `printf`s.
+ """
+ # the expected output with all addresses and sizes stripped (they vary
+ # and/or are platform dependent).
+ expected = """
+ ------ BEGIN ITERATOR DUMP ------
+ | Iterator Address:
+ | ItFlags: BUFFER REDUCE
+ | NDim: 2
+ | NOp: 2
+ | IterSize: 50
+ | IterStart: 0
+ | IterEnd: 50
+ | IterIndex: 0
+ | Iterator SizeOf:
+ | BufferData SizeOf:
+ | AxisData SizeOf:
+ |
+ | Perm: 0 1
+ | DTypes:
+ | DTypes: dtype('float64') dtype('int32')
+ | InitDataPtrs:
+ | BaseOffsets: 0 0
+ | Ptrs:
+ | User/buffer ptrs:
+ | Operands:
+ | Operand DTypes: dtype('int64') dtype('float64')
+ | OpItFlags:
+ | Flags[0]: READ CAST
+ | Flags[1]: READ WRITE CAST REDUCE
+ |
+ | BufferData:
+ | BufferSize: 50
+ | Size: 5
+ | BufIterEnd: 5
+ | BUFFER CoreSize: 5
+ | REDUCE Pos: 0
+ | REDUCE OuterSize: 10
+ | REDUCE OuterDim: 1
+ | Strides: 8 4
+ | REDUCE Outer Strides: 40 0
+ | REDUCE Outer Ptrs:
+ | ReadTransferFn:
+ | ReadTransferData:
+ | WriteTransferFn:
+ | WriteTransferData:
+ | Buffers:
+ |
+ | AxisData[0]:
+ | Shape: 5
+ | Index: 0
+ | Strides: 16 8
+ | AxisData[1]:
+ | Shape: 10
+ | Index: 0
+ | Strides: 80 0
+ ------- END ITERATOR DUMP -------
+ """.strip().splitlines()
+
+ arr1 = np.arange(100, dtype=np.int64).reshape(10, 10)[:, ::2]
+ arr2 = np.arange(5.)
+ it = np.nditer((arr1, arr2), op_dtypes=["d", "i4"], casting="unsafe",
+ flags=["reduce_ok", "buffered"],
+ op_flags=[["readonly"], ["readwrite"]])
+ it.debug_print()
+ res = capfd.readouterr().out
+ res = res.strip().splitlines()
+
+ assert len(res) == len(expected)
+ for res_line, expected_line in zip(res, expected):
+ # The actual output may have additional pointers listed that are
+ # stripped from the example output:
+ assert res_line.startswith(expected_line.strip())
diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_nep50_promotions.py b/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_nep50_promotions.py
new file mode 100644
index 0000000..8d9d9e6
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_nep50_promotions.py
@@ -0,0 +1,287 @@
+"""
+This file adds basic tests to test the NEP 50 style promotion compatibility
+mode. Most of these test are likely to be simply deleted again once NEP 50
+is adopted in the main test suite. A few may be moved elsewhere.
+"""
+
+import operator
+
+import hypothesis
+import pytest
+from hypothesis import strategies
+
+import numpy as np
+from numpy.testing import IS_WASM, assert_array_equal
+
+
+@pytest.mark.skipif(IS_WASM, reason="wasm doesn't have support for fp errors")
+def test_nep50_examples():
+ res = np.uint8(1) + 2
+ assert res.dtype == np.uint8
+
+ res = np.array([1], np.uint8) + np.int64(1)
+ assert res.dtype == np.int64
+
+ res = np.array([1], np.uint8) + np.array(1, dtype=np.int64)
+ assert res.dtype == np.int64
+
+ with pytest.warns(RuntimeWarning, match="overflow"):
+ res = np.uint8(100) + 200
+ assert res.dtype == np.uint8
+
+ with pytest.warns(RuntimeWarning, match="overflow"):
+ res = np.float32(1) + 3e100
+
+ assert np.isinf(res)
+ assert res.dtype == np.float32
+
+ res = np.array([0.1], np.float32) == np.float64(0.1)
+ assert res[0] == False
+
+ res = np.array([0.1], np.float32) + np.float64(0.1)
+ assert res.dtype == np.float64
+
+ res = np.array([1.], np.float32) + np.int64(3)
+ assert res.dtype == np.float64
+
+
+@pytest.mark.parametrize("dtype", np.typecodes["AllInteger"])
+def test_nep50_weak_integers(dtype):
+ # Avoids warning (different code path for scalars)
+ scalar_type = np.dtype(dtype).type
+
+ maxint = int(np.iinfo(dtype).max)
+
+ with np.errstate(over="warn"):
+ with pytest.warns(RuntimeWarning):
+ res = scalar_type(100) + maxint
+ assert res.dtype == dtype
+
+ # Array operations are not expected to warn, but should give the same
+ # result dtype.
+ res = np.array(100, dtype=dtype) + maxint
+ assert res.dtype == dtype
+
+
+@pytest.mark.parametrize("dtype", np.typecodes["AllFloat"])
+def test_nep50_weak_integers_with_inexact(dtype):
+ # Avoids warning (different code path for scalars)
+ scalar_type = np.dtype(dtype).type
+
+ too_big_int = int(np.finfo(dtype).max) * 2
+
+ if dtype in "dDG":
+ # These dtypes currently convert to Python float internally, which
+ # raises an OverflowError, while the other dtypes overflow to inf.
+ # NOTE: It may make sense to normalize the behavior!
+ with pytest.raises(OverflowError):
+ scalar_type(1) + too_big_int
+
+ with pytest.raises(OverflowError):
+ np.array(1, dtype=dtype) + too_big_int
+ else:
+ # NumPy uses (or used) `int -> string -> longdouble` for the
+ # conversion. But Python may refuse `str(int)` for huge ints.
+ # In that case, RuntimeWarning would be correct, but conversion
+ # fails earlier (seems to happen on 32bit linux, possibly only debug).
+ if dtype in "gG":
+ try:
+ str(too_big_int)
+ except ValueError:
+ pytest.skip("`huge_int -> string -> longdouble` failed")
+
+ # Otherwise, we overflow to infinity:
+ with pytest.warns(RuntimeWarning):
+ res = scalar_type(1) + too_big_int
+ assert res.dtype == dtype
+ assert res == np.inf
+
+ with pytest.warns(RuntimeWarning):
+ # We force the dtype here, since windows may otherwise pick the
+ # double instead of the longdouble loop. That leads to slightly
+ # different results (conversion of the int fails as above).
+ res = np.add(np.array(1, dtype=dtype), too_big_int, dtype=dtype)
+ assert res.dtype == dtype
+ assert res == np.inf
+
+
+@pytest.mark.parametrize("op", [operator.add, operator.pow])
+def test_weak_promotion_scalar_path(op):
+ # Some additional paths exercising the weak scalars.
+
+ # Integer path:
+ res = op(np.uint8(3), 5)
+ assert res == op(3, 5)
+ assert res.dtype == np.uint8 or res.dtype == bool # noqa: PLR1714
+
+ with pytest.raises(OverflowError):
+ op(np.uint8(3), 1000)
+
+ # Float path:
+ res = op(np.float32(3), 5.)
+ assert res == op(3., 5.)
+ assert res.dtype == np.float32 or res.dtype == bool # noqa: PLR1714
+
+
+def test_nep50_complex_promotion():
+ with pytest.warns(RuntimeWarning, match=".*overflow"):
+ res = np.complex64(3) + complex(2**300)
+
+ assert type(res) == np.complex64
+
+
+def test_nep50_integer_conversion_errors():
+ # Implementation for error paths is mostly missing (as of writing)
+ with pytest.raises(OverflowError, match=".*uint8"):
+ np.array([1], np.uint8) + 300
+
+ with pytest.raises(OverflowError, match=".*uint8"):
+ np.uint8(1) + 300
+
+ # Error message depends on platform (maybe unsigned int or unsigned long)
+ with pytest.raises(OverflowError,
+ match="Python integer -1 out of bounds for uint8"):
+ np.uint8(1) + -1
+
+
+def test_nep50_with_axisconcatenator():
+ # Concatenate/r_ does not promote, so this has to error:
+ with pytest.raises(OverflowError):
+ np.r_[np.arange(5, dtype=np.int8), 255]
+
+
+@pytest.mark.parametrize("ufunc", [np.add, np.power])
+def test_nep50_huge_integers(ufunc):
+ # Very large integers are complicated, because they go to uint64 or
+ # object dtype. This tests covers a few possible paths.
+ with pytest.raises(OverflowError):
+ ufunc(np.int64(0), 2**63) # 2**63 too large for int64
+
+ with pytest.raises(OverflowError):
+ ufunc(np.uint64(0), 2**64) # 2**64 cannot be represented by uint64
+
+ # However, 2**63 can be represented by the uint64 (and that is used):
+ res = ufunc(np.uint64(1), 2**63)
+
+ assert res.dtype == np.uint64
+ assert res == ufunc(1, 2**63, dtype=object)
+
+ # The following paths fail to warn correctly about the change:
+ with pytest.raises(OverflowError):
+ ufunc(np.int64(1), 2**63) # np.array(2**63) would go to uint
+
+ with pytest.raises(OverflowError):
+ ufunc(np.int64(1), 2**100) # np.array(2**100) would go to object
+
+ # This would go to object and thus a Python float, not a NumPy one:
+ res = ufunc(1.0, 2**100)
+ assert isinstance(res, np.float64)
+
+
+def test_nep50_in_concat_and_choose():
+ res = np.concatenate([np.float32(1), 1.], axis=None)
+ assert res.dtype == "float32"
+
+ res = np.choose(1, [np.float32(1), 1.])
+ assert res.dtype == "float32"
+
+
+@pytest.mark.parametrize("expected,dtypes,optional_dtypes", [
+ (np.float32, [np.float32],
+ [np.float16, 0.0, np.uint16, np.int16, np.int8, 0]),
+ (np.complex64, [np.float32, 0j],
+ [np.float16, 0.0, np.uint16, np.int16, np.int8, 0]),
+ (np.float32, [np.int16, np.uint16, np.float16],
+ [np.int8, np.uint8, np.float32, 0., 0]),
+ (np.int32, [np.int16, np.uint16],
+ [np.int8, np.uint8, 0, np.bool]),
+ ])
+@hypothesis.given(data=strategies.data())
+def test_expected_promotion(expected, dtypes, optional_dtypes, data):
+ # Sample randomly while ensuring "dtypes" is always present:
+ optional = data.draw(strategies.lists(
+ strategies.sampled_from(dtypes + optional_dtypes)))
+ all_dtypes = dtypes + optional
+ dtypes_sample = data.draw(strategies.permutations(all_dtypes))
+
+ res = np.result_type(*dtypes_sample)
+ assert res == expected
+
+
+@pytest.mark.parametrize("sctype",
+ [np.int8, np.int16, np.int32, np.int64,
+ np.uint8, np.uint16, np.uint32, np.uint64])
+@pytest.mark.parametrize("other_val",
+ [-2 * 100, -1, 0, 9, 10, 11, 2**63, 2 * 100])
+@pytest.mark.parametrize("comp",
+ [operator.eq, operator.ne, operator.le, operator.lt,
+ operator.ge, operator.gt])
+def test_integer_comparison(sctype, other_val, comp):
+ # Test that comparisons with integers (especially out-of-bound) ones
+ # works correctly.
+ val_obj = 10
+ val = sctype(val_obj)
+ # Check that the scalar behaves the same as the python int:
+ assert comp(10, other_val) == comp(val, other_val)
+ assert comp(val, other_val) == comp(10, other_val)
+ # Except for the result type:
+ assert type(comp(val, other_val)) is np.bool
+
+ # Check that the integer array and object array behave the same:
+ val_obj = np.array([10, 10], dtype=object)
+ val = val_obj.astype(sctype)
+ assert_array_equal(comp(val_obj, other_val), comp(val, other_val))
+ assert_array_equal(comp(other_val, val_obj), comp(other_val, val))
+
+
+@pytest.mark.parametrize("arr", [
+ np.ones((100, 100), dtype=np.uint8)[::2], # not trivially iterable
+ np.ones(20000, dtype=">u4"), # cast and >buffersize
+ np.ones(100, dtype=">u4"), # fast path compatible with cast
+])
+def test_integer_comparison_with_cast(arr):
+ # Similar to above, but mainly test a few cases that cover the slow path
+ # the test is limited to unsigned ints and -1 for simplicity.
+ res = arr >= -1
+ assert_array_equal(res, np.ones_like(arr, dtype=bool))
+ res = arr < -1
+ assert_array_equal(res, np.zeros_like(arr, dtype=bool))
+
+
+@pytest.mark.parametrize("comp",
+ [np.equal, np.not_equal, np.less_equal, np.less,
+ np.greater_equal, np.greater])
+def test_integer_integer_comparison(comp):
+ # Test that the NumPy comparison ufuncs work with large Python integers
+ assert comp(2**200, -2**200) == comp(2**200, -2**200, dtype=object)
+
+
+def create_with_scalar(sctype, value):
+ return sctype(value)
+
+
+def create_with_array(sctype, value):
+ return np.array([value], dtype=sctype)
+
+
+@pytest.mark.parametrize("sctype",
+ [np.int8, np.int16, np.int32, np.int64,
+ np.uint8, np.uint16, np.uint32, np.uint64])
+@pytest.mark.parametrize("create", [create_with_scalar, create_with_array])
+def test_oob_creation(sctype, create):
+ iinfo = np.iinfo(sctype)
+
+ with pytest.raises(OverflowError):
+ create(sctype, iinfo.min - 1)
+
+ with pytest.raises(OverflowError):
+ create(sctype, iinfo.max + 1)
+
+ with pytest.raises(OverflowError):
+ create(sctype, str(iinfo.min - 1))
+
+ with pytest.raises(OverflowError):
+ create(sctype, str(iinfo.max + 1))
+
+ assert create(sctype, iinfo.min) == iinfo.min
+ assert create(sctype, iinfo.max) == iinfo.max
diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_numeric.py b/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_numeric.py
new file mode 100644
index 0000000..5b58b34
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_numeric.py
@@ -0,0 +1,4247 @@
+import itertools
+import math
+import platform
+import sys
+import warnings
+from decimal import Decimal
+
+import pytest
+from hypothesis import given
+from hypothesis import strategies as st
+from hypothesis.extra import numpy as hynp
+from numpy._core._rational_tests import rational
+
+import numpy as np
+from numpy import ma
+from numpy._core import sctypes
+from numpy._core.numerictypes import obj2sctype
+from numpy.exceptions import AxisError
+from numpy.random import rand, randint, randn
+from numpy.testing import (
+ HAS_REFCOUNT,
+ IS_WASM,
+ assert_,
+ assert_almost_equal,
+ assert_array_almost_equal,
+ assert_array_equal,
+ assert_array_max_ulp,
+ assert_equal,
+ assert_raises,
+ assert_raises_regex,
+)
+
+
+class TestResize:
+ def test_copies(self):
+ A = np.array([[1, 2], [3, 4]])
+ Ar1 = np.array([[1, 2, 3, 4], [1, 2, 3, 4]])
+ assert_equal(np.resize(A, (2, 4)), Ar1)
+
+ Ar2 = np.array([[1, 2], [3, 4], [1, 2], [3, 4]])
+ assert_equal(np.resize(A, (4, 2)), Ar2)
+
+ Ar3 = np.array([[1, 2, 3], [4, 1, 2], [3, 4, 1], [2, 3, 4]])
+ assert_equal(np.resize(A, (4, 3)), Ar3)
+
+ def test_repeats(self):
+ A = np.array([1, 2, 3])
+ Ar1 = np.array([[1, 2, 3, 1], [2, 3, 1, 2]])
+ assert_equal(np.resize(A, (2, 4)), Ar1)
+
+ Ar2 = np.array([[1, 2], [3, 1], [2, 3], [1, 2]])
+ assert_equal(np.resize(A, (4, 2)), Ar2)
+
+ Ar3 = np.array([[1, 2, 3], [1, 2, 3], [1, 2, 3], [1, 2, 3]])
+ assert_equal(np.resize(A, (4, 3)), Ar3)
+
+ def test_zeroresize(self):
+ A = np.array([[1, 2], [3, 4]])
+ Ar = np.resize(A, (0,))
+ assert_array_equal(Ar, np.array([]))
+ assert_equal(A.dtype, Ar.dtype)
+
+ Ar = np.resize(A, (0, 2))
+ assert_equal(Ar.shape, (0, 2))
+
+ Ar = np.resize(A, (2, 0))
+ assert_equal(Ar.shape, (2, 0))
+
+ def test_reshape_from_zero(self):
+ # See also gh-6740
+ A = np.zeros(0, dtype=[('a', np.float32)])
+ Ar = np.resize(A, (2, 1))
+ assert_array_equal(Ar, np.zeros((2, 1), Ar.dtype))
+ assert_equal(A.dtype, Ar.dtype)
+
+ def test_negative_resize(self):
+ A = np.arange(0, 10, dtype=np.float32)
+ new_shape = (-10, -1)
+ with pytest.raises(ValueError, match=r"negative"):
+ np.resize(A, new_shape=new_shape)
+
+ def test_unsigned_resize(self):
+ # ensure unsigned integer sizes don't lead to underflows
+ for dt_pair in [(np.int32, np.uint32), (np.int64, np.uint64)]:
+ arr = np.array([[23, 95], [66, 37]])
+ assert_array_equal(np.resize(arr, dt_pair[0](1)),
+ np.resize(arr, dt_pair[1](1)))
+
+ def test_subclass(self):
+ class MyArray(np.ndarray):
+ __array_priority__ = 1.
+
+ my_arr = np.array([1]).view(MyArray)
+ assert type(np.resize(my_arr, 5)) is MyArray
+ assert type(np.resize(my_arr, 0)) is MyArray
+
+ my_arr = np.array([]).view(MyArray)
+ assert type(np.resize(my_arr, 5)) is MyArray
+
+
+class TestNonarrayArgs:
+ # check that non-array arguments to functions wrap them in arrays
+ def test_choose(self):
+ choices = [[0, 1, 2],
+ [3, 4, 5],
+ [5, 6, 7]]
+ tgt = [5, 1, 5]
+ a = [2, 0, 1]
+
+ out = np.choose(a, choices)
+ assert_equal(out, tgt)
+
+ def test_clip(self):
+ arr = [-1, 5, 2, 3, 10, -4, -9]
+ out = np.clip(arr, 2, 7)
+ tgt = [2, 5, 2, 3, 7, 2, 2]
+ assert_equal(out, tgt)
+
+ def test_compress(self):
+ arr = [[0, 1, 2, 3, 4],
+ [5, 6, 7, 8, 9]]
+ tgt = [[5, 6, 7, 8, 9]]
+ out = np.compress([0, 1], arr, axis=0)
+ assert_equal(out, tgt)
+
+ def test_count_nonzero(self):
+ arr = [[0, 1, 7, 0, 0],
+ [3, 0, 0, 2, 19]]
+ tgt = np.array([2, 3])
+ out = np.count_nonzero(arr, axis=1)
+ assert_equal(out, tgt)
+
+ def test_diagonal(self):
+ a = [[0, 1, 2, 3],
+ [4, 5, 6, 7],
+ [8, 9, 10, 11]]
+ out = np.diagonal(a)
+ tgt = [0, 5, 10]
+
+ assert_equal(out, tgt)
+
+ def test_mean(self):
+ A = [[1, 2, 3], [4, 5, 6]]
+ assert_(np.mean(A) == 3.5)
+ assert_(np.all(np.mean(A, 0) == np.array([2.5, 3.5, 4.5])))
+ assert_(np.all(np.mean(A, 1) == np.array([2., 5.])))
+
+ with warnings.catch_warnings(record=True) as w:
+ warnings.filterwarnings('always', '', RuntimeWarning)
+ assert_(np.isnan(np.mean([])))
+ assert_(w[0].category is RuntimeWarning)
+
+ def test_ptp(self):
+ a = [3, 4, 5, 10, -3, -5, 6.0]
+ assert_equal(np.ptp(a, axis=0), 15.0)
+
+ def test_prod(self):
+ arr = [[1, 2, 3, 4],
+ [5, 6, 7, 9],
+ [10, 3, 4, 5]]
+ tgt = [24, 1890, 600]
+
+ assert_equal(np.prod(arr, axis=-1), tgt)
+
+ def test_ravel(self):
+ a = [[1, 2, 3], [4, 5, 6], [7, 8, 9], [10, 11, 12]]
+ tgt = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]
+ assert_equal(np.ravel(a), tgt)
+
+ def test_repeat(self):
+ a = [1, 2, 3]
+ tgt = [1, 1, 2, 2, 3, 3]
+
+ out = np.repeat(a, 2)
+ assert_equal(out, tgt)
+
+ def test_reshape(self):
+ arr = [[1, 2, 3], [4, 5, 6], [7, 8, 9], [10, 11, 12]]
+ tgt = [[1, 2, 3, 4, 5, 6], [7, 8, 9, 10, 11, 12]]
+ assert_equal(np.reshape(arr, (2, 6)), tgt)
+
+ def test_reshape_shape_arg(self):
+ arr = np.arange(12)
+ shape = (3, 4)
+ expected = arr.reshape(shape)
+
+ with pytest.raises(
+ TypeError,
+ match="You cannot specify 'newshape' and 'shape' "
+ "arguments at the same time."
+ ):
+ np.reshape(arr, shape=shape, newshape=shape)
+ with pytest.raises(
+ TypeError,
+ match=r"reshape\(\) missing 1 required positional "
+ "argument: 'shape'"
+ ):
+ np.reshape(arr)
+
+ assert_equal(np.reshape(arr, shape), expected)
+ assert_equal(np.reshape(arr, shape, order="C"), expected)
+ assert_equal(np.reshape(arr, shape, "C"), expected)
+ assert_equal(np.reshape(arr, shape=shape), expected)
+ assert_equal(np.reshape(arr, shape=shape, order="C"), expected)
+ with pytest.warns(DeprecationWarning):
+ actual = np.reshape(arr, newshape=shape)
+ assert_equal(actual, expected)
+
+ def test_reshape_copy_arg(self):
+ arr = np.arange(24).reshape(2, 3, 4)
+ arr_f_ord = np.array(arr, order="F")
+ shape = (12, 2)
+
+ assert np.shares_memory(np.reshape(arr, shape), arr)
+ assert np.shares_memory(np.reshape(arr, shape, order="C"), arr)
+ assert np.shares_memory(
+ np.reshape(arr_f_ord, shape, order="F"), arr_f_ord)
+ assert np.shares_memory(np.reshape(arr, shape, copy=None), arr)
+ assert np.shares_memory(np.reshape(arr, shape, copy=False), arr)
+ assert np.shares_memory(arr.reshape(shape, copy=False), arr)
+ assert not np.shares_memory(np.reshape(arr, shape, copy=True), arr)
+ assert not np.shares_memory(
+ np.reshape(arr, shape, order="C", copy=True), arr)
+ assert not np.shares_memory(
+ np.reshape(arr, shape, order="F", copy=True), arr)
+ assert not np.shares_memory(
+ np.reshape(arr, shape, order="F", copy=None), arr)
+
+ err_msg = "Unable to avoid creating a copy while reshaping."
+ with pytest.raises(ValueError, match=err_msg):
+ np.reshape(arr, shape, order="F", copy=False)
+ with pytest.raises(ValueError, match=err_msg):
+ np.reshape(arr_f_ord, shape, order="C", copy=False)
+
+ def test_round(self):
+ arr = [1.56, 72.54, 6.35, 3.25]
+ tgt = [1.6, 72.5, 6.4, 3.2]
+ assert_equal(np.around(arr, decimals=1), tgt)
+ s = np.float64(1.)
+ assert_(isinstance(s.round(), np.float64))
+ assert_equal(s.round(), 1.)
+
+ @pytest.mark.parametrize('dtype', [
+ np.int8, np.int16, np.int32, np.int64,
+ np.uint8, np.uint16, np.uint32, np.uint64,
+ np.float16, np.float32, np.float64,
+ ])
+ def test_dunder_round(self, dtype):
+ s = dtype(1)
+ assert_(isinstance(round(s), int))
+ assert_(isinstance(round(s, None), int))
+ assert_(isinstance(round(s, ndigits=None), int))
+ assert_equal(round(s), 1)
+ assert_equal(round(s, None), 1)
+ assert_equal(round(s, ndigits=None), 1)
+
+ @pytest.mark.parametrize('val, ndigits', [
+ pytest.param(2**31 - 1, -1,
+ marks=pytest.mark.skip(reason="Out of range of int32")
+ ),
+ (2**31 - 1, 1 - math.ceil(math.log10(2**31 - 1))),
+ (2**31 - 1, -math.ceil(math.log10(2**31 - 1)))
+ ])
+ def test_dunder_round_edgecases(self, val, ndigits):
+ assert_equal(round(val, ndigits), round(np.int32(val), ndigits))
+
+ def test_dunder_round_accuracy(self):
+ f = np.float64(5.1 * 10**73)
+ assert_(isinstance(round(f, -73), np.float64))
+ assert_array_max_ulp(round(f, -73), 5.0 * 10**73)
+ assert_(isinstance(round(f, ndigits=-73), np.float64))
+ assert_array_max_ulp(round(f, ndigits=-73), 5.0 * 10**73)
+
+ i = np.int64(501)
+ assert_(isinstance(round(i, -2), np.int64))
+ assert_array_max_ulp(round(i, -2), 500)
+ assert_(isinstance(round(i, ndigits=-2), np.int64))
+ assert_array_max_ulp(round(i, ndigits=-2), 500)
+
+ @pytest.mark.xfail(raises=AssertionError, reason="gh-15896")
+ def test_round_py_consistency(self):
+ f = 5.1 * 10**73
+ assert_equal(round(np.float64(f), -73), round(f, -73))
+
+ def test_searchsorted(self):
+ arr = [-8, -5, -1, 3, 6, 10]
+ out = np.searchsorted(arr, 0)
+ assert_equal(out, 3)
+
+ def test_size(self):
+ A = [[1, 2, 3], [4, 5, 6]]
+ assert_(np.size(A) == 6)
+ assert_(np.size(A, 0) == 2)
+ assert_(np.size(A, 1) == 3)
+
+ def test_squeeze(self):
+ A = [[[1, 1, 1], [2, 2, 2], [3, 3, 3]]]
+ assert_equal(np.squeeze(A).shape, (3, 3))
+ assert_equal(np.squeeze(np.zeros((1, 3, 1))).shape, (3,))
+ assert_equal(np.squeeze(np.zeros((1, 3, 1)), axis=0).shape, (3, 1))
+ assert_equal(np.squeeze(np.zeros((1, 3, 1)), axis=-1).shape, (1, 3))
+ assert_equal(np.squeeze(np.zeros((1, 3, 1)), axis=2).shape, (1, 3))
+ assert_equal(np.squeeze([np.zeros((3, 1))]).shape, (3,))
+ assert_equal(np.squeeze([np.zeros((3, 1))], axis=0).shape, (3, 1))
+ assert_equal(np.squeeze([np.zeros((3, 1))], axis=2).shape, (1, 3))
+ assert_equal(np.squeeze([np.zeros((3, 1))], axis=-1).shape, (1, 3))
+
+ def test_std(self):
+ A = [[1, 2, 3], [4, 5, 6]]
+ assert_almost_equal(np.std(A), 1.707825127659933)
+ assert_almost_equal(np.std(A, 0), np.array([1.5, 1.5, 1.5]))
+ assert_almost_equal(np.std(A, 1), np.array([0.81649658, 0.81649658]))
+
+ with warnings.catch_warnings(record=True) as w:
+ warnings.filterwarnings('always', '', RuntimeWarning)
+ assert_(np.isnan(np.std([])))
+ assert_(w[0].category is RuntimeWarning)
+
+ def test_swapaxes(self):
+ tgt = [[[0, 4], [2, 6]], [[1, 5], [3, 7]]]
+ a = [[[0, 1], [2, 3]], [[4, 5], [6, 7]]]
+ out = np.swapaxes(a, 0, 2)
+ assert_equal(out, tgt)
+
+ def test_sum(self):
+ m = [[1, 2, 3],
+ [4, 5, 6],
+ [7, 8, 9]]
+ tgt = [[6], [15], [24]]
+ out = np.sum(m, axis=1, keepdims=True)
+
+ assert_equal(tgt, out)
+
+ def test_take(self):
+ tgt = [2, 3, 5]
+ indices = [1, 2, 4]
+ a = [1, 2, 3, 4, 5]
+
+ out = np.take(a, indices)
+ assert_equal(out, tgt)
+
+ pairs = [
+ (np.int32, np.int32), (np.int32, np.int64),
+ (np.int64, np.int32), (np.int64, np.int64)
+ ]
+ for array_type, indices_type in pairs:
+ x = np.array([1, 2, 3, 4, 5], dtype=array_type)
+ ind = np.array([0, 2, 2, 3], dtype=indices_type)
+ tgt = np.array([1, 3, 3, 4], dtype=array_type)
+ out = np.take(x, ind)
+ assert_equal(out, tgt)
+ assert_equal(out.dtype, tgt.dtype)
+
+ def test_trace(self):
+ c = [[1, 2], [3, 4], [5, 6]]
+ assert_equal(np.trace(c), 5)
+
+ def test_transpose(self):
+ arr = [[1, 2], [3, 4], [5, 6]]
+ tgt = [[1, 3, 5], [2, 4, 6]]
+ assert_equal(np.transpose(arr, (1, 0)), tgt)
+ assert_equal(np.transpose(arr, (-1, -2)), tgt)
+ assert_equal(np.matrix_transpose(arr), tgt)
+
+ def test_var(self):
+ A = [[1, 2, 3], [4, 5, 6]]
+ assert_almost_equal(np.var(A), 2.9166666666666665)
+ assert_almost_equal(np.var(A, 0), np.array([2.25, 2.25, 2.25]))
+ assert_almost_equal(np.var(A, 1), np.array([0.66666667, 0.66666667]))
+
+ with warnings.catch_warnings(record=True) as w:
+ warnings.filterwarnings('always', '', RuntimeWarning)
+ assert_(np.isnan(np.var([])))
+ assert_(w[0].category is RuntimeWarning)
+
+ B = np.array([None, 0])
+ B[0] = 1j
+ assert_almost_equal(np.var(B), 0.25)
+
+ def test_std_with_mean_keyword(self):
+ # Setting the seed to make the test reproducible
+ rng = np.random.RandomState(1234)
+ A = rng.randn(10, 20, 5) + 0.5
+
+ mean_out = np.zeros((10, 1, 5))
+ std_out = np.zeros((10, 1, 5))
+
+ mean = np.mean(A,
+ out=mean_out,
+ axis=1,
+ keepdims=True)
+
+ # The returned object should be the object specified during calling
+ assert mean_out is mean
+
+ std = np.std(A,
+ out=std_out,
+ axis=1,
+ keepdims=True,
+ mean=mean)
+
+ # The returned object should be the object specified during calling
+ assert std_out is std
+
+ # Shape of returned mean and std should be same
+ assert std.shape == mean.shape
+ assert std.shape == (10, 1, 5)
+
+ # Output should be the same as from the individual algorithms
+ std_old = np.std(A, axis=1, keepdims=True)
+
+ assert std_old.shape == mean.shape
+ assert_almost_equal(std, std_old)
+
+ def test_var_with_mean_keyword(self):
+ # Setting the seed to make the test reproducible
+ rng = np.random.RandomState(1234)
+ A = rng.randn(10, 20, 5) + 0.5
+
+ mean_out = np.zeros((10, 1, 5))
+ var_out = np.zeros((10, 1, 5))
+
+ mean = np.mean(A,
+ out=mean_out,
+ axis=1,
+ keepdims=True)
+
+ # The returned object should be the object specified during calling
+ assert mean_out is mean
+
+ var = np.var(A,
+ out=var_out,
+ axis=1,
+ keepdims=True,
+ mean=mean)
+
+ # The returned object should be the object specified during calling
+ assert var_out is var
+
+ # Shape of returned mean and var should be same
+ assert var.shape == mean.shape
+ assert var.shape == (10, 1, 5)
+
+ # Output should be the same as from the individual algorithms
+ var_old = np.var(A, axis=1, keepdims=True)
+
+ assert var_old.shape == mean.shape
+ assert_almost_equal(var, var_old)
+
+ def test_std_with_mean_keyword_keepdims_false(self):
+ rng = np.random.RandomState(1234)
+ A = rng.randn(10, 20, 5) + 0.5
+
+ mean = np.mean(A,
+ axis=1,
+ keepdims=True)
+
+ std = np.std(A,
+ axis=1,
+ keepdims=False,
+ mean=mean)
+
+ # Shape of returned mean and std should be same
+ assert std.shape == (10, 5)
+
+ # Output should be the same as from the individual algorithms
+ std_old = np.std(A, axis=1, keepdims=False)
+ mean_old = np.mean(A, axis=1, keepdims=False)
+
+ assert std_old.shape == mean_old.shape
+ assert_equal(std, std_old)
+
+ def test_var_with_mean_keyword_keepdims_false(self):
+ rng = np.random.RandomState(1234)
+ A = rng.randn(10, 20, 5) + 0.5
+
+ mean = np.mean(A,
+ axis=1,
+ keepdims=True)
+
+ var = np.var(A,
+ axis=1,
+ keepdims=False,
+ mean=mean)
+
+ # Shape of returned mean and var should be same
+ assert var.shape == (10, 5)
+
+ # Output should be the same as from the individual algorithms
+ var_old = np.var(A, axis=1, keepdims=False)
+ mean_old = np.mean(A, axis=1, keepdims=False)
+
+ assert var_old.shape == mean_old.shape
+ assert_equal(var, var_old)
+
+ def test_std_with_mean_keyword_where_nontrivial(self):
+ rng = np.random.RandomState(1234)
+ A = rng.randn(10, 20, 5) + 0.5
+
+ where = A > 0.5
+
+ mean = np.mean(A,
+ axis=1,
+ keepdims=True,
+ where=where)
+
+ std = np.std(A,
+ axis=1,
+ keepdims=False,
+ mean=mean,
+ where=where)
+
+ # Shape of returned mean and std should be same
+ assert std.shape == (10, 5)
+
+ # Output should be the same as from the individual algorithms
+ std_old = np.std(A, axis=1, where=where)
+ mean_old = np.mean(A, axis=1, where=where)
+
+ assert std_old.shape == mean_old.shape
+ assert_equal(std, std_old)
+
+ def test_var_with_mean_keyword_where_nontrivial(self):
+ rng = np.random.RandomState(1234)
+ A = rng.randn(10, 20, 5) + 0.5
+
+ where = A > 0.5
+
+ mean = np.mean(A,
+ axis=1,
+ keepdims=True,
+ where=where)
+
+ var = np.var(A,
+ axis=1,
+ keepdims=False,
+ mean=mean,
+ where=where)
+
+ # Shape of returned mean and var should be same
+ assert var.shape == (10, 5)
+
+ # Output should be the same as from the individual algorithms
+ var_old = np.var(A, axis=1, where=where)
+ mean_old = np.mean(A, axis=1, where=where)
+
+ assert var_old.shape == mean_old.shape
+ assert_equal(var, var_old)
+
+ def test_std_with_mean_keyword_multiple_axis(self):
+ # Setting the seed to make the test reproducible
+ rng = np.random.RandomState(1234)
+ A = rng.randn(10, 20, 5) + 0.5
+
+ axis = (0, 2)
+
+ mean = np.mean(A,
+ out=None,
+ axis=axis,
+ keepdims=True)
+
+ std = np.std(A,
+ out=None,
+ axis=axis,
+ keepdims=False,
+ mean=mean)
+
+ # Shape of returned mean and std should be same
+ assert std.shape == (20,)
+
+ # Output should be the same as from the individual algorithms
+ std_old = np.std(A, axis=axis, keepdims=False)
+
+ assert_almost_equal(std, std_old)
+
+ def test_std_with_mean_keyword_axis_None(self):
+ # Setting the seed to make the test reproducible
+ rng = np.random.RandomState(1234)
+ A = rng.randn(10, 20, 5) + 0.5
+
+ axis = None
+
+ mean = np.mean(A,
+ out=None,
+ axis=axis,
+ keepdims=True)
+
+ std = np.std(A,
+ out=None,
+ axis=axis,
+ keepdims=False,
+ mean=mean)
+
+ # Shape of returned mean and std should be same
+ assert std.shape == ()
+
+ # Output should be the same as from the individual algorithms
+ std_old = np.std(A, axis=axis, keepdims=False)
+
+ assert_almost_equal(std, std_old)
+
+ def test_std_with_mean_keyword_keepdims_true_masked(self):
+
+ A = ma.array([[2., 3., 4., 5.],
+ [1., 2., 3., 4.]],
+ mask=[[True, False, True, False],
+ [True, False, True, False]])
+
+ B = ma.array([[100., 3., 104., 5.],
+ [101., 2., 103., 4.]],
+ mask=[[True, False, True, False],
+ [True, False, True, False]])
+
+ mean_out = ma.array([[0., 0., 0., 0.]],
+ mask=[[False, False, False, False]])
+ std_out = ma.array([[0., 0., 0., 0.]],
+ mask=[[False, False, False, False]])
+
+ axis = 0
+
+ mean = np.mean(A, out=mean_out,
+ axis=axis, keepdims=True)
+
+ std = np.std(A, out=std_out,
+ axis=axis, keepdims=True,
+ mean=mean)
+
+ # Shape of returned mean and std should be same
+ assert std.shape == mean.shape
+ assert std.shape == (1, 4)
+
+ # Output should be the same as from the individual algorithms
+ std_old = np.std(A, axis=axis, keepdims=True)
+ mean_old = np.mean(A, axis=axis, keepdims=True)
+
+ assert std_old.shape == mean_old.shape
+ assert_almost_equal(std, std_old)
+ assert_almost_equal(mean, mean_old)
+
+ assert mean_out is mean
+ assert std_out is std
+
+ # masked elements should be ignored
+ mean_b = np.mean(B, axis=axis, keepdims=True)
+ std_b = np.std(B, axis=axis, keepdims=True, mean=mean_b)
+ assert_almost_equal(std, std_b)
+ assert_almost_equal(mean, mean_b)
+
+ def test_var_with_mean_keyword_keepdims_true_masked(self):
+
+ A = ma.array([[2., 3., 4., 5.],
+ [1., 2., 3., 4.]],
+ mask=[[True, False, True, False],
+ [True, False, True, False]])
+
+ B = ma.array([[100., 3., 104., 5.],
+ [101., 2., 103., 4.]],
+ mask=[[True, False, True, False],
+ [True, False, True, False]])
+
+ mean_out = ma.array([[0., 0., 0., 0.]],
+ mask=[[False, False, False, False]])
+ var_out = ma.array([[0., 0., 0., 0.]],
+ mask=[[False, False, False, False]])
+
+ axis = 0
+
+ mean = np.mean(A, out=mean_out,
+ axis=axis, keepdims=True)
+
+ var = np.var(A, out=var_out,
+ axis=axis, keepdims=True,
+ mean=mean)
+
+ # Shape of returned mean and var should be same
+ assert var.shape == mean.shape
+ assert var.shape == (1, 4)
+
+ # Output should be the same as from the individual algorithms
+ var_old = np.var(A, axis=axis, keepdims=True)
+ mean_old = np.mean(A, axis=axis, keepdims=True)
+
+ assert var_old.shape == mean_old.shape
+ assert_almost_equal(var, var_old)
+ assert_almost_equal(mean, mean_old)
+
+ assert mean_out is mean
+ assert var_out is var
+
+ # masked elements should be ignored
+ mean_b = np.mean(B, axis=axis, keepdims=True)
+ var_b = np.var(B, axis=axis, keepdims=True, mean=mean_b)
+ assert_almost_equal(var, var_b)
+ assert_almost_equal(mean, mean_b)
+
+
+class TestIsscalar:
+ def test_isscalar(self):
+ assert_(np.isscalar(3.1))
+ assert_(np.isscalar(np.int16(12345)))
+ assert_(np.isscalar(False))
+ assert_(np.isscalar('numpy'))
+ assert_(not np.isscalar([3.1]))
+ assert_(not np.isscalar(None))
+
+ # PEP 3141
+ from fractions import Fraction
+ assert_(np.isscalar(Fraction(5, 17)))
+ from numbers import Number
+ assert_(np.isscalar(Number()))
+
+
+class TestBoolScalar:
+ def test_logical(self):
+ f = np.False_
+ t = np.True_
+ s = "xyz"
+ assert_((t and s) is s)
+ assert_((f and s) is f)
+
+ def test_bitwise_or(self):
+ f = np.False_
+ t = np.True_
+ assert_((t | t) is t)
+ assert_((f | t) is t)
+ assert_((t | f) is t)
+ assert_((f | f) is f)
+
+ def test_bitwise_and(self):
+ f = np.False_
+ t = np.True_
+ assert_((t & t) is t)
+ assert_((f & t) is f)
+ assert_((t & f) is f)
+ assert_((f & f) is f)
+
+ def test_bitwise_xor(self):
+ f = np.False_
+ t = np.True_
+ assert_((t ^ t) is f)
+ assert_((f ^ t) is t)
+ assert_((t ^ f) is t)
+ assert_((f ^ f) is f)
+
+
+class TestBoolArray:
+ def setup_method(self):
+ # offset for simd tests
+ self.t = np.array([True] * 41, dtype=bool)[1::]
+ self.f = np.array([False] * 41, dtype=bool)[1::]
+ self.o = np.array([False] * 42, dtype=bool)[2::]
+ self.nm = self.f.copy()
+ self.im = self.t.copy()
+ self.nm[3] = True
+ self.nm[-2] = True
+ self.im[3] = False
+ self.im[-2] = False
+
+ def test_all_any(self):
+ assert_(self.t.all())
+ assert_(self.t.any())
+ assert_(not self.f.all())
+ assert_(not self.f.any())
+ assert_(self.nm.any())
+ assert_(self.im.any())
+ assert_(not self.nm.all())
+ assert_(not self.im.all())
+ # check bad element in all positions
+ for i in range(256 - 7):
+ d = np.array([False] * 256, dtype=bool)[7::]
+ d[i] = True
+ assert_(np.any(d))
+ e = np.array([True] * 256, dtype=bool)[7::]
+ e[i] = False
+ assert_(not np.all(e))
+ assert_array_equal(e, ~d)
+ # big array test for blocked libc loops
+ for i in list(range(9, 6000, 507)) + [7764, 90021, -10]:
+ d = np.array([False] * 100043, dtype=bool)
+ d[i] = True
+ assert_(np.any(d), msg=f"{i!r}")
+ e = np.array([True] * 100043, dtype=bool)
+ e[i] = False
+ assert_(not np.all(e), msg=f"{i!r}")
+
+ def test_logical_not_abs(self):
+ assert_array_equal(~self.t, self.f)
+ assert_array_equal(np.abs(~self.t), self.f)
+ assert_array_equal(np.abs(~self.f), self.t)
+ assert_array_equal(np.abs(self.f), self.f)
+ assert_array_equal(~np.abs(self.f), self.t)
+ assert_array_equal(~np.abs(self.t), self.f)
+ assert_array_equal(np.abs(~self.nm), self.im)
+ np.logical_not(self.t, out=self.o)
+ assert_array_equal(self.o, self.f)
+ np.abs(self.t, out=self.o)
+ assert_array_equal(self.o, self.t)
+
+ def test_logical_and_or_xor(self):
+ assert_array_equal(self.t | self.t, self.t)
+ assert_array_equal(self.f | self.f, self.f)
+ assert_array_equal(self.t | self.f, self.t)
+ assert_array_equal(self.f | self.t, self.t)
+ np.logical_or(self.t, self.t, out=self.o)
+ assert_array_equal(self.o, self.t)
+ assert_array_equal(self.t & self.t, self.t)
+ assert_array_equal(self.f & self.f, self.f)
+ assert_array_equal(self.t & self.f, self.f)
+ assert_array_equal(self.f & self.t, self.f)
+ np.logical_and(self.t, self.t, out=self.o)
+ assert_array_equal(self.o, self.t)
+ assert_array_equal(self.t ^ self.t, self.f)
+ assert_array_equal(self.f ^ self.f, self.f)
+ assert_array_equal(self.t ^ self.f, self.t)
+ assert_array_equal(self.f ^ self.t, self.t)
+ np.logical_xor(self.t, self.t, out=self.o)
+ assert_array_equal(self.o, self.f)
+
+ assert_array_equal(self.nm & self.t, self.nm)
+ assert_array_equal(self.im & self.f, False)
+ assert_array_equal(self.nm & True, self.nm)
+ assert_array_equal(self.im & False, self.f)
+ assert_array_equal(self.nm | self.t, self.t)
+ assert_array_equal(self.im | self.f, self.im)
+ assert_array_equal(self.nm | True, self.t)
+ assert_array_equal(self.im | False, self.im)
+ assert_array_equal(self.nm ^ self.t, self.im)
+ assert_array_equal(self.im ^ self.f, self.im)
+ assert_array_equal(self.nm ^ True, self.im)
+ assert_array_equal(self.im ^ False, self.im)
+
+
+class TestBoolCmp:
+ def setup_method(self):
+ self.f = np.ones(256, dtype=np.float32)
+ self.ef = np.ones(self.f.size, dtype=bool)
+ self.d = np.ones(128, dtype=np.float64)
+ self.ed = np.ones(self.d.size, dtype=bool)
+ # generate values for all permutation of 256bit simd vectors
+ s = 0
+ for i in range(32):
+ self.f[s:s + 8] = [i & 2**x for x in range(8)]
+ self.ef[s:s + 8] = [(i & 2**x) != 0 for x in range(8)]
+ s += 8
+ s = 0
+ for i in range(16):
+ self.d[s:s + 4] = [i & 2**x for x in range(4)]
+ self.ed[s:s + 4] = [(i & 2**x) != 0 for x in range(4)]
+ s += 4
+
+ self.nf = self.f.copy()
+ self.nd = self.d.copy()
+ self.nf[self.ef] = np.nan
+ self.nd[self.ed] = np.nan
+
+ self.inff = self.f.copy()
+ self.infd = self.d.copy()
+ self.inff[::3][self.ef[::3]] = np.inf
+ self.infd[::3][self.ed[::3]] = np.inf
+ self.inff[1::3][self.ef[1::3]] = -np.inf
+ self.infd[1::3][self.ed[1::3]] = -np.inf
+ self.inff[2::3][self.ef[2::3]] = np.nan
+ self.infd[2::3][self.ed[2::3]] = np.nan
+ self.efnonan = self.ef.copy()
+ self.efnonan[2::3] = False
+ self.ednonan = self.ed.copy()
+ self.ednonan[2::3] = False
+
+ self.signf = self.f.copy()
+ self.signd = self.d.copy()
+ self.signf[self.ef] *= -1.
+ self.signd[self.ed] *= -1.
+ self.signf[1::6][self.ef[1::6]] = -np.inf
+ self.signd[1::6][self.ed[1::6]] = -np.inf
+ # On RISC-V, many operations that produce NaNs, such as converting
+ # a -NaN from f64 to f32, return a canonical NaN. The canonical
+ # NaNs are always positive. See section 11.3 NaN Generation and
+ # Propagation of the RISC-V Unprivileged ISA for more details.
+ # We disable the float32 sign test on riscv64 for -np.nan as the sign
+ # of the NaN will be lost when it's converted to a float32.
+ if platform.machine() != 'riscv64':
+ self.signf[3::6][self.ef[3::6]] = -np.nan
+ self.signd[3::6][self.ed[3::6]] = -np.nan
+ self.signf[4::6][self.ef[4::6]] = -0.
+ self.signd[4::6][self.ed[4::6]] = -0.
+
+ def test_float(self):
+ # offset for alignment test
+ for i in range(4):
+ assert_array_equal(self.f[i:] > 0, self.ef[i:])
+ assert_array_equal(self.f[i:] - 1 >= 0, self.ef[i:])
+ assert_array_equal(self.f[i:] == 0, ~self.ef[i:])
+ assert_array_equal(-self.f[i:] < 0, self.ef[i:])
+ assert_array_equal(-self.f[i:] + 1 <= 0, self.ef[i:])
+ r = self.f[i:] != 0
+ assert_array_equal(r, self.ef[i:])
+ r2 = self.f[i:] != np.zeros_like(self.f[i:])
+ r3 = 0 != self.f[i:]
+ assert_array_equal(r, r2)
+ assert_array_equal(r, r3)
+ # check bool == 0x1
+ assert_array_equal(r.view(np.int8), r.astype(np.int8))
+ assert_array_equal(r2.view(np.int8), r2.astype(np.int8))
+ assert_array_equal(r3.view(np.int8), r3.astype(np.int8))
+
+ # isnan on amd64 takes the same code path
+ assert_array_equal(np.isnan(self.nf[i:]), self.ef[i:])
+ assert_array_equal(np.isfinite(self.nf[i:]), ~self.ef[i:])
+ assert_array_equal(np.isfinite(self.inff[i:]), ~self.ef[i:])
+ assert_array_equal(np.isinf(self.inff[i:]), self.efnonan[i:])
+ assert_array_equal(np.signbit(self.signf[i:]), self.ef[i:])
+
+ def test_double(self):
+ # offset for alignment test
+ for i in range(2):
+ assert_array_equal(self.d[i:] > 0, self.ed[i:])
+ assert_array_equal(self.d[i:] - 1 >= 0, self.ed[i:])
+ assert_array_equal(self.d[i:] == 0, ~self.ed[i:])
+ assert_array_equal(-self.d[i:] < 0, self.ed[i:])
+ assert_array_equal(-self.d[i:] + 1 <= 0, self.ed[i:])
+ r = self.d[i:] != 0
+ assert_array_equal(r, self.ed[i:])
+ r2 = self.d[i:] != np.zeros_like(self.d[i:])
+ r3 = 0 != self.d[i:]
+ assert_array_equal(r, r2)
+ assert_array_equal(r, r3)
+ # check bool == 0x1
+ assert_array_equal(r.view(np.int8), r.astype(np.int8))
+ assert_array_equal(r2.view(np.int8), r2.astype(np.int8))
+ assert_array_equal(r3.view(np.int8), r3.astype(np.int8))
+
+ # isnan on amd64 takes the same code path
+ assert_array_equal(np.isnan(self.nd[i:]), self.ed[i:])
+ assert_array_equal(np.isfinite(self.nd[i:]), ~self.ed[i:])
+ assert_array_equal(np.isfinite(self.infd[i:]), ~self.ed[i:])
+ assert_array_equal(np.isinf(self.infd[i:]), self.ednonan[i:])
+ assert_array_equal(np.signbit(self.signd[i:]), self.ed[i:])
+
+
+class TestSeterr:
+ def test_default(self):
+ err = np.geterr()
+ assert_equal(err,
+ {'divide': 'warn',
+ 'invalid': 'warn',
+ 'over': 'warn',
+ 'under': 'ignore'}
+ )
+
+ def test_set(self):
+ with np.errstate():
+ err = np.seterr()
+ old = np.seterr(divide='print')
+ assert_(err == old)
+ new = np.seterr()
+ assert_(new['divide'] == 'print')
+ np.seterr(over='raise')
+ assert_(np.geterr()['over'] == 'raise')
+ assert_(new['divide'] == 'print')
+ np.seterr(**old)
+ assert_(np.geterr() == old)
+
+ @pytest.mark.skipif(IS_WASM, reason="no wasm fp exception support")
+ @pytest.mark.skipif(platform.machine() == "armv5tel", reason="See gh-413.")
+ def test_divide_err(self):
+ with np.errstate(divide='raise'):
+ with assert_raises(FloatingPointError):
+ np.array([1.]) / np.array([0.])
+
+ np.seterr(divide='ignore')
+ np.array([1.]) / np.array([0.])
+
+
+class TestFloatExceptions:
+ def assert_raises_fpe(self, fpeerr, flop, x, y):
+ ftype = type(x)
+ try:
+ flop(x, y)
+ assert_(False,
+ f"Type {ftype} did not raise fpe error '{fpeerr}'.")
+ except FloatingPointError as exc:
+ assert_(str(exc).find(fpeerr) >= 0,
+ f"Type {ftype} raised wrong fpe error '{exc}'.")
+
+ def assert_op_raises_fpe(self, fpeerr, flop, sc1, sc2):
+ # Check that fpe exception is raised.
+ #
+ # Given a floating operation `flop` and two scalar values, check that
+ # the operation raises the floating point exception specified by
+ # `fpeerr`. Tests all variants with 0-d array scalars as well.
+
+ self.assert_raises_fpe(fpeerr, flop, sc1, sc2)
+ self.assert_raises_fpe(fpeerr, flop, sc1[()], sc2)
+ self.assert_raises_fpe(fpeerr, flop, sc1, sc2[()])
+ self.assert_raises_fpe(fpeerr, flop, sc1[()], sc2[()])
+
+ # Test for all real and complex float types
+ @pytest.mark.skipif(IS_WASM, reason="no wasm fp exception support")
+ @pytest.mark.parametrize("typecode", np.typecodes["AllFloat"])
+ def test_floating_exceptions(self, typecode):
+ if 'bsd' in sys.platform and typecode in 'gG':
+ pytest.skip(reason="Fallback impl for (c)longdouble may not raise "
+ "FPE errors as expected on BSD OSes, "
+ "see gh-24876, gh-23379")
+
+ # Test basic arithmetic function errors
+ with np.errstate(all='raise'):
+ ftype = obj2sctype(typecode)
+ if np.dtype(ftype).kind == 'f':
+ # Get some extreme values for the type
+ fi = np.finfo(ftype)
+ ft_tiny = fi._machar.tiny
+ ft_max = fi.max
+ ft_eps = fi.eps
+ underflow = 'underflow'
+ divbyzero = 'divide by zero'
+ else:
+ # 'c', complex, corresponding real dtype
+ rtype = type(ftype(0).real)
+ fi = np.finfo(rtype)
+ ft_tiny = ftype(fi._machar.tiny)
+ ft_max = ftype(fi.max)
+ ft_eps = ftype(fi.eps)
+ # The complex types raise different exceptions
+ underflow = ''
+ divbyzero = ''
+ overflow = 'overflow'
+ invalid = 'invalid'
+
+ # The value of tiny for double double is NaN, so we need to
+ # pass the assert
+ if not np.isnan(ft_tiny):
+ self.assert_raises_fpe(underflow,
+ lambda a, b: a / b, ft_tiny, ft_max)
+ self.assert_raises_fpe(underflow,
+ lambda a, b: a * b, ft_tiny, ft_tiny)
+ self.assert_raises_fpe(overflow,
+ lambda a, b: a * b, ft_max, ftype(2))
+ self.assert_raises_fpe(overflow,
+ lambda a, b: a / b, ft_max, ftype(0.5))
+ self.assert_raises_fpe(overflow,
+ lambda a, b: a + b, ft_max, ft_max * ft_eps)
+ self.assert_raises_fpe(overflow,
+ lambda a, b: a - b, -ft_max, ft_max * ft_eps)
+ self.assert_raises_fpe(overflow,
+ np.power, ftype(2), ftype(2**fi.nexp))
+ self.assert_raises_fpe(divbyzero,
+ lambda a, b: a / b, ftype(1), ftype(0))
+ self.assert_raises_fpe(
+ invalid, lambda a, b: a / b, ftype(np.inf), ftype(np.inf)
+ )
+ self.assert_raises_fpe(invalid,
+ lambda a, b: a / b, ftype(0), ftype(0))
+ self.assert_raises_fpe(
+ invalid, lambda a, b: a - b, ftype(np.inf), ftype(np.inf)
+ )
+ self.assert_raises_fpe(
+ invalid, lambda a, b: a + b, ftype(np.inf), ftype(-np.inf)
+ )
+ self.assert_raises_fpe(invalid,
+ lambda a, b: a * b, ftype(0), ftype(np.inf))
+
+ @pytest.mark.skipif(IS_WASM, reason="no wasm fp exception support")
+ def test_warnings(self):
+ # test warning code path
+ with warnings.catch_warnings(record=True) as w:
+ warnings.simplefilter("always")
+ with np.errstate(all="warn"):
+ np.divide(1, 0.)
+ assert_equal(len(w), 1)
+ assert_("divide by zero" in str(w[0].message))
+ np.array(1e300) * np.array(1e300)
+ assert_equal(len(w), 2)
+ assert_("overflow" in str(w[-1].message))
+ np.array(np.inf) - np.array(np.inf)
+ assert_equal(len(w), 3)
+ assert_("invalid value" in str(w[-1].message))
+ np.array(1e-300) * np.array(1e-300)
+ assert_equal(len(w), 4)
+ assert_("underflow" in str(w[-1].message))
+
+
+class TestTypes:
+ def check_promotion_cases(self, promote_func):
+ # tests that the scalars get coerced correctly.
+ b = np.bool(0)
+ i8, i16, i32, i64 = np.int8(0), np.int16(0), np.int32(0), np.int64(0)
+ u8, u16, u32, u64 = np.uint8(0), np.uint16(0), np.uint32(0), np.uint64(0)
+ f32, f64, fld = np.float32(0), np.float64(0), np.longdouble(0)
+ c64, c128, cld = np.complex64(0), np.complex128(0), np.clongdouble(0)
+
+ # coercion within the same kind
+ assert_equal(promote_func(i8, i16), np.dtype(np.int16))
+ assert_equal(promote_func(i32, i8), np.dtype(np.int32))
+ assert_equal(promote_func(i16, i64), np.dtype(np.int64))
+ assert_equal(promote_func(u8, u32), np.dtype(np.uint32))
+ assert_equal(promote_func(f32, f64), np.dtype(np.float64))
+ assert_equal(promote_func(fld, f32), np.dtype(np.longdouble))
+ assert_equal(promote_func(f64, fld), np.dtype(np.longdouble))
+ assert_equal(promote_func(c128, c64), np.dtype(np.complex128))
+ assert_equal(promote_func(cld, c128), np.dtype(np.clongdouble))
+ assert_equal(promote_func(c64, fld), np.dtype(np.clongdouble))
+
+ # coercion between kinds
+ assert_equal(promote_func(b, i32), np.dtype(np.int32))
+ assert_equal(promote_func(b, u8), np.dtype(np.uint8))
+ assert_equal(promote_func(i8, u8), np.dtype(np.int16))
+ assert_equal(promote_func(u8, i32), np.dtype(np.int32))
+ assert_equal(promote_func(i64, u32), np.dtype(np.int64))
+ assert_equal(promote_func(u64, i32), np.dtype(np.float64))
+ assert_equal(promote_func(i32, f32), np.dtype(np.float64))
+ assert_equal(promote_func(i64, f32), np.dtype(np.float64))
+ assert_equal(promote_func(f32, i16), np.dtype(np.float32))
+ assert_equal(promote_func(f32, u32), np.dtype(np.float64))
+ assert_equal(promote_func(f32, c64), np.dtype(np.complex64))
+ assert_equal(promote_func(c128, f32), np.dtype(np.complex128))
+ assert_equal(promote_func(cld, f64), np.dtype(np.clongdouble))
+
+ # coercion between scalars and 1-D arrays
+ assert_equal(promote_func(np.array([b]), i8), np.dtype(np.int8))
+ assert_equal(promote_func(np.array([b]), u8), np.dtype(np.uint8))
+ assert_equal(promote_func(np.array([b]), i32), np.dtype(np.int32))
+ assert_equal(promote_func(np.array([b]), u32), np.dtype(np.uint32))
+ assert_equal(promote_func(np.array([i8]), i64), np.dtype(np.int64))
+ # unsigned and signed unfortunately tend to promote to float64:
+ assert_equal(promote_func(u64, np.array([i32])), np.dtype(np.float64))
+ assert_equal(promote_func(i64, np.array([u32])), np.dtype(np.int64))
+ assert_equal(promote_func(np.array([u16]), i32), np.dtype(np.int32))
+ assert_equal(promote_func(np.int32(-1), np.array([u64])),
+ np.dtype(np.float64))
+ assert_equal(promote_func(f64, np.array([f32])), np.dtype(np.float64))
+ assert_equal(promote_func(fld, np.array([f32])),
+ np.dtype(np.longdouble))
+ assert_equal(promote_func(np.array([f64]), fld),
+ np.dtype(np.longdouble))
+ assert_equal(promote_func(fld, np.array([c64])),
+ np.dtype(np.clongdouble))
+ assert_equal(promote_func(c64, np.array([f64])),
+ np.dtype(np.complex128))
+ assert_equal(promote_func(np.complex64(3j), np.array([f64])),
+ np.dtype(np.complex128))
+ assert_equal(promote_func(np.array([f32]), c128),
+ np.dtype(np.complex128))
+
+ # coercion between scalars and 1-D arrays, where
+ # the scalar has greater kind than the array
+ assert_equal(promote_func(np.array([b]), f64), np.dtype(np.float64))
+ assert_equal(promote_func(np.array([b]), i64), np.dtype(np.int64))
+ assert_equal(promote_func(np.array([b]), u64), np.dtype(np.uint64))
+ assert_equal(promote_func(np.array([i8]), f64), np.dtype(np.float64))
+ assert_equal(promote_func(np.array([u16]), f64), np.dtype(np.float64))
+
+ def test_coercion(self):
+ def res_type(a, b):
+ return np.add(a, b).dtype
+
+ self.check_promotion_cases(res_type)
+
+ # Use-case: float/complex scalar * bool/int8 array
+ # shouldn't narrow the float/complex type
+ for a in [np.array([True, False]), np.array([-3, 12], dtype=np.int8)]:
+ b = 1.234 * a
+ assert_equal(b.dtype, np.dtype('f8'), f"array type {a.dtype}")
+ b = np.longdouble(1.234) * a
+ assert_equal(b.dtype, np.dtype(np.longdouble),
+ f"array type {a.dtype}")
+ b = np.float64(1.234) * a
+ assert_equal(b.dtype, np.dtype('f8'), f"array type {a.dtype}")
+ b = np.float32(1.234) * a
+ assert_equal(b.dtype, np.dtype('f4'), f"array type {a.dtype}")
+ b = np.float16(1.234) * a
+ assert_equal(b.dtype, np.dtype('f2'), f"array type {a.dtype}")
+
+ b = 1.234j * a
+ assert_equal(b.dtype, np.dtype('c16'), f"array type {a.dtype}")
+ b = np.clongdouble(1.234j) * a
+ assert_equal(b.dtype, np.dtype(np.clongdouble),
+ f"array type {a.dtype}")
+ b = np.complex128(1.234j) * a
+ assert_equal(b.dtype, np.dtype('c16'), f"array type {a.dtype}")
+ b = np.complex64(1.234j) * a
+ assert_equal(b.dtype, np.dtype('c8'), f"array type {a.dtype}")
+
+ # The following use-case is problematic, and to resolve its
+ # tricky side-effects requires more changes.
+ #
+ # Use-case: (1-t)*a, where 't' is a boolean array and 'a' is
+ # a float32, shouldn't promote to float64
+ #
+ # a = np.array([1.0, 1.5], dtype=np.float32)
+ # t = np.array([True, False])
+ # b = t*a
+ # assert_equal(b, [1.0, 0.0])
+ # assert_equal(b.dtype, np.dtype('f4'))
+ # b = (1-t)*a
+ # assert_equal(b, [0.0, 1.5])
+ # assert_equal(b.dtype, np.dtype('f4'))
+ #
+ # Probably ~t (bitwise negation) is more proper to use here,
+ # but this is arguably less intuitive to understand at a glance, and
+ # would fail if 't' is actually an integer array instead of boolean:
+ #
+ # b = (~t)*a
+ # assert_equal(b, [0.0, 1.5])
+ # assert_equal(b.dtype, np.dtype('f4'))
+
+ def test_result_type(self):
+ self.check_promotion_cases(np.result_type)
+ assert_(np.result_type(None) == np.dtype(None))
+
+ def test_promote_types_endian(self):
+ # promote_types should always return native-endian types
+ assert_equal(np.promote_types('<i8', '<i8'), np.dtype('i8'))
+ assert_equal(np.promote_types('>i8', '>i8'), np.dtype('i8'))
+
+ assert_equal(np.promote_types('>i8', '>U16'), np.dtype('U21'))
+ assert_equal(np.promote_types('<i8', '<U16'), np.dtype('U21'))
+ assert_equal(np.promote_types('>U16', '>i8'), np.dtype('U21'))
+ assert_equal(np.promote_types('<U16', '<i8'), np.dtype('U21'))
+
+ assert_equal(np.promote_types('<S5', '<U8'), np.dtype('U8'))
+ assert_equal(np.promote_types('>S5', '>U8'), np.dtype('U8'))
+ assert_equal(np.promote_types('<U8', '<S5'), np.dtype('U8'))
+ assert_equal(np.promote_types('>U8', '>S5'), np.dtype('U8'))
+ assert_equal(np.promote_types('<U5', '<U8'), np.dtype('U8'))
+ assert_equal(np.promote_types('>U8', '>U5'), np.dtype('U8'))
+
+ assert_equal(np.promote_types('<M8', '<M8'), np.dtype('M8'))
+ assert_equal(np.promote_types('>M8', '>M8'), np.dtype('M8'))
+ assert_equal(np.promote_types('<m8', '<m8'), np.dtype('m8'))
+ assert_equal(np.promote_types('>m8', '>m8'), np.dtype('m8'))
+
+ def test_can_cast_and_promote_usertypes(self):
+ # The rational type defines safe casting for signed integers,
+ # boolean. Rational itself *does* cast safely to double.
+ # (rational does not actually cast to all signed integers, e.g.
+ # int64 can be both long and longlong and it registers only the first)
+ valid_types = ["int8", "int16", "int32", "int64", "bool"]
+ invalid_types = "BHILQP" + "FDG" + "mM" + "f" + "V"
+
+ rational_dt = np.dtype(rational)
+ for numpy_dtype in valid_types:
+ numpy_dtype = np.dtype(numpy_dtype)
+ assert np.can_cast(numpy_dtype, rational_dt)
+ assert np.promote_types(numpy_dtype, rational_dt) is rational_dt
+
+ for numpy_dtype in invalid_types:
+ numpy_dtype = np.dtype(numpy_dtype)
+ assert not np.can_cast(numpy_dtype, rational_dt)
+ with pytest.raises(TypeError):
+ np.promote_types(numpy_dtype, rational_dt)
+
+ double_dt = np.dtype("double")
+ assert np.can_cast(rational_dt, double_dt)
+ assert np.promote_types(double_dt, rational_dt) is double_dt
+
+ @pytest.mark.parametrize("swap", ["", "swap"])
+ @pytest.mark.parametrize("string_dtype", ["U", "S"])
+ def test_promote_types_strings(self, swap, string_dtype):
+ if swap == "swap":
+ promote_types = lambda a, b: np.promote_types(b, a)
+ else:
+ promote_types = np.promote_types
+
+ S = string_dtype
+
+ # Promote numeric with unsized string:
+ assert_equal(promote_types('bool', S), np.dtype(S + '5'))
+ assert_equal(promote_types('b', S), np.dtype(S + '4'))
+ assert_equal(promote_types('u1', S), np.dtype(S + '3'))
+ assert_equal(promote_types('u2', S), np.dtype(S + '5'))
+ assert_equal(promote_types('u4', S), np.dtype(S + '10'))
+ assert_equal(promote_types('u8', S), np.dtype(S + '20'))
+ assert_equal(promote_types('i1', S), np.dtype(S + '4'))
+ assert_equal(promote_types('i2', S), np.dtype(S + '6'))
+ assert_equal(promote_types('i4', S), np.dtype(S + '11'))
+ assert_equal(promote_types('i8', S), np.dtype(S + '21'))
+ # Promote numeric with sized string:
+ assert_equal(promote_types('bool', S + '1'), np.dtype(S + '5'))
+ assert_equal(promote_types('bool', S + '30'), np.dtype(S + '30'))
+ assert_equal(promote_types('b', S + '1'), np.dtype(S + '4'))
+ assert_equal(promote_types('b', S + '30'), np.dtype(S + '30'))
+ assert_equal(promote_types('u1', S + '1'), np.dtype(S + '3'))
+ assert_equal(promote_types('u1', S + '30'), np.dtype(S + '30'))
+ assert_equal(promote_types('u2', S + '1'), np.dtype(S + '5'))
+ assert_equal(promote_types('u2', S + '30'), np.dtype(S + '30'))
+ assert_equal(promote_types('u4', S + '1'), np.dtype(S + '10'))
+ assert_equal(promote_types('u4', S + '30'), np.dtype(S + '30'))
+ assert_equal(promote_types('u8', S + '1'), np.dtype(S + '20'))
+ assert_equal(promote_types('u8', S + '30'), np.dtype(S + '30'))
+ # Promote with object:
+ assert_equal(promote_types('O', S + '30'), np.dtype('O'))
+
+ @pytest.mark.parametrize(["dtype1", "dtype2"],
+ [[np.dtype("V6"), np.dtype("V10")], # mismatch shape
+ # Mismatching names:
+ [np.dtype([("name1", "i8")]), np.dtype([("name2", "i8")])],
+ ])
+ def test_invalid_void_promotion(self, dtype1, dtype2):
+ with pytest.raises(TypeError):
+ np.promote_types(dtype1, dtype2)
+
+ @pytest.mark.parametrize(["dtype1", "dtype2"],
+ [[np.dtype("V10"), np.dtype("V10")],
+ [np.dtype([("name1", "i8")]),
+ np.dtype([("name1", np.dtype("i8").newbyteorder())])],
+ [np.dtype("i8,i8"), np.dtype("i8,>i8")],
+ [np.dtype("i8,i8"), np.dtype("i4,i4")],
+ ])
+ def test_valid_void_promotion(self, dtype1, dtype2):
+ assert np.promote_types(dtype1, dtype2) == dtype1
+
+ @pytest.mark.parametrize("dtype",
+ list(np.typecodes["All"]) +
+ ["i,i", "10i", "S3", "S100", "U3", "U100", rational])
+ def test_promote_identical_types_metadata(self, dtype):
+ # The same type passed in twice to promote types always
+ # preserves metadata
+ metadata = {1: 1}
+ dtype = np.dtype(dtype, metadata=metadata)
+
+ res = np.promote_types(dtype, dtype)
+ assert res.metadata == dtype.metadata
+
+ # byte-swapping preserves and makes the dtype native:
+ dtype = dtype.newbyteorder()
+ if dtype.isnative:
+ # The type does not have byte swapping
+ return
+
+ res = np.promote_types(dtype, dtype)
+
+ # Metadata is (currently) generally lost on byte-swapping (except for
+ # unicode.
+ if dtype.char != "U":
+ assert res.metadata is None
+ else:
+ assert res.metadata == metadata
+ assert res.isnative
+
+ @pytest.mark.slow
+ @pytest.mark.filterwarnings('ignore:Promotion of numbers:FutureWarning')
+ @pytest.mark.parametrize(["dtype1", "dtype2"],
+ itertools.product(
+ list(np.typecodes["All"]) +
+ ["i,i", "S3", "S100", "U3", "U100", rational],
+ repeat=2))
+ def test_promote_types_metadata(self, dtype1, dtype2):
+ """Metadata handling in promotion does not appear formalized
+ right now in NumPy. This test should thus be considered to
+ document behaviour, rather than test the correct definition of it.
+
+ This test is very ugly, it was useful for rewriting part of the
+ promotion, but probably should eventually be replaced/deleted
+ (i.e. when metadata handling in promotion is better defined).
+ """
+ metadata1 = {1: 1}
+ metadata2 = {2: 2}
+ dtype1 = np.dtype(dtype1, metadata=metadata1)
+ dtype2 = np.dtype(dtype2, metadata=metadata2)
+
+ try:
+ res = np.promote_types(dtype1, dtype2)
+ except TypeError:
+ # Promotion failed, this test only checks metadata
+ return
+
+ if res.char not in "USV" or res.names is not None or res.shape != ():
+ # All except string dtypes (and unstructured void) lose metadata
+ # on promotion (unless both dtypes are identical).
+ # At some point structured ones did not, but were restrictive.
+ assert res.metadata is None
+ elif res == dtype1:
+ # If one result is the result, it is usually returned unchanged:
+ assert res is dtype1
+ elif res == dtype2:
+ # dtype1 may have been cast to the same type/kind as dtype2.
+ # If the resulting dtype is identical we currently pick the cast
+ # version of dtype1, which lost the metadata:
+ if np.promote_types(dtype1, dtype2.kind) == dtype2:
+ res.metadata is None
+ else:
+ res.metadata == metadata2
+ else:
+ assert res.metadata is None
+
+ # Try again for byteswapped version
+ dtype1 = dtype1.newbyteorder()
+ assert dtype1.metadata == metadata1
+ res_bs = np.promote_types(dtype1, dtype2)
+ assert res_bs == res
+ assert res_bs.metadata == res.metadata
+
+ def test_can_cast(self):
+ assert_(np.can_cast(np.int32, np.int64))
+ assert_(np.can_cast(np.float64, complex))
+ assert_(not np.can_cast(complex, float))
+
+ assert_(np.can_cast('i8', 'f8'))
+ assert_(not np.can_cast('i8', 'f4'))
+ assert_(np.can_cast('i4', 'S11'))
+
+ assert_(np.can_cast('i8', 'i8', 'no'))
+ assert_(not np.can_cast('<i8', '>i8', 'no'))
+
+ assert_(np.can_cast('<i8', '>i8', 'equiv'))
+ assert_(not np.can_cast('<i4', '>i8', 'equiv'))
+
+ assert_(np.can_cast('<i4', '>i8', 'safe'))
+ assert_(not np.can_cast('<i8', '>i4', 'safe'))
+
+ assert_(np.can_cast('<i8', '>i4', 'same_kind'))
+ assert_(not np.can_cast('<i8', '>u4', 'same_kind'))
+
+ assert_(np.can_cast('<i8', '>u4', 'unsafe'))
+
+ assert_(np.can_cast('bool', 'S5'))
+ assert_(not np.can_cast('bool', 'S4'))
+
+ assert_(np.can_cast('b', 'S4'))
+ assert_(not np.can_cast('b', 'S3'))
+
+ assert_(np.can_cast('u1', 'S3'))
+ assert_(not np.can_cast('u1', 'S2'))
+ assert_(np.can_cast('u2', 'S5'))
+ assert_(not np.can_cast('u2', 'S4'))
+ assert_(np.can_cast('u4', 'S10'))
+ assert_(not np.can_cast('u4', 'S9'))
+ assert_(np.can_cast('u8', 'S20'))
+ assert_(not np.can_cast('u8', 'S19'))
+
+ assert_(np.can_cast('i1', 'S4'))
+ assert_(not np.can_cast('i1', 'S3'))
+ assert_(np.can_cast('i2', 'S6'))
+ assert_(not np.can_cast('i2', 'S5'))
+ assert_(np.can_cast('i4', 'S11'))
+ assert_(not np.can_cast('i4', 'S10'))
+ assert_(np.can_cast('i8', 'S21'))
+ assert_(not np.can_cast('i8', 'S20'))
+
+ assert_(np.can_cast('bool', 'S5'))
+ assert_(not np.can_cast('bool', 'S4'))
+
+ assert_(np.can_cast('b', 'U4'))
+ assert_(not np.can_cast('b', 'U3'))
+
+ assert_(np.can_cast('u1', 'U3'))
+ assert_(not np.can_cast('u1', 'U2'))
+ assert_(np.can_cast('u2', 'U5'))
+ assert_(not np.can_cast('u2', 'U4'))
+ assert_(np.can_cast('u4', 'U10'))
+ assert_(not np.can_cast('u4', 'U9'))
+ assert_(np.can_cast('u8', 'U20'))
+ assert_(not np.can_cast('u8', 'U19'))
+
+ assert_(np.can_cast('i1', 'U4'))
+ assert_(not np.can_cast('i1', 'U3'))
+ assert_(np.can_cast('i2', 'U6'))
+ assert_(not np.can_cast('i2', 'U5'))
+ assert_(np.can_cast('i4', 'U11'))
+ assert_(not np.can_cast('i4', 'U10'))
+ assert_(np.can_cast('i8', 'U21'))
+ assert_(not np.can_cast('i8', 'U20'))
+
+ assert_raises(TypeError, np.can_cast, 'i4', None)
+ assert_raises(TypeError, np.can_cast, None, 'i4')
+
+ # Also test keyword arguments
+ assert_(np.can_cast(from_=np.int32, to=np.int64))
+
+ def test_can_cast_simple_to_structured(self):
+ # Non-structured can only be cast to structured in 'unsafe' mode.
+ assert_(not np.can_cast('i4', 'i4,i4'))
+ assert_(not np.can_cast('i4', 'i4,i2'))
+ assert_(np.can_cast('i4', 'i4,i4', casting='unsafe'))
+ assert_(np.can_cast('i4', 'i4,i2', casting='unsafe'))
+ # Even if there is just a single field which is OK.
+ assert_(not np.can_cast('i2', [('f1', 'i4')]))
+ assert_(not np.can_cast('i2', [('f1', 'i4')], casting='same_kind'))
+ assert_(np.can_cast('i2', [('f1', 'i4')], casting='unsafe'))
+ # It should be the same for recursive structured or subarrays.
+ assert_(not np.can_cast('i2', [('f1', 'i4,i4')]))
+ assert_(np.can_cast('i2', [('f1', 'i4,i4')], casting='unsafe'))
+ assert_(not np.can_cast('i2', [('f1', '(2,3)i4')]))
+ assert_(np.can_cast('i2', [('f1', '(2,3)i4')], casting='unsafe'))
+
+ def test_can_cast_structured_to_simple(self):
+ # Need unsafe casting for structured to simple.
+ assert_(not np.can_cast([('f1', 'i4')], 'i4'))
+ assert_(np.can_cast([('f1', 'i4')], 'i4', casting='unsafe'))
+ assert_(np.can_cast([('f1', 'i4')], 'i2', casting='unsafe'))
+ # Since it is unclear what is being cast, multiple fields to
+ # single should not work even for unsafe casting.
+ assert_(not np.can_cast('i4,i4', 'i4', casting='unsafe'))
+ # But a single field inside a single field is OK.
+ assert_(not np.can_cast([('f1', [('x', 'i4')])], 'i4'))
+ assert_(np.can_cast([('f1', [('x', 'i4')])], 'i4', casting='unsafe'))
+ # And a subarray is fine too - it will just take the first element
+ # (arguably not very consistently; might also take the first field).
+ assert_(not np.can_cast([('f0', '(3,)i4')], 'i4'))
+ assert_(np.can_cast([('f0', '(3,)i4')], 'i4', casting='unsafe'))
+ # But a structured subarray with multiple fields should fail.
+ assert_(not np.can_cast([('f0', ('i4,i4'), (2,))], 'i4',
+ casting='unsafe'))
+
+ def test_can_cast_values(self):
+ # With NumPy 2 and NEP 50, can_cast errors on Python scalars. We could
+ # define this as (usually safe) at some point, and already do so
+ # in `copyto` and ufuncs (but there an error is raised if the integer
+ # is out of bounds and a warning for out-of-bound floats).
+ # Raises even for unsafe, previously checked within range (for floats
+ # that was approximately whether it would overflow to inf).
+ with pytest.raises(TypeError):
+ np.can_cast(4, "int8", casting="unsafe")
+
+ with pytest.raises(TypeError):
+ np.can_cast(4.0, "float64", casting="unsafe")
+
+ with pytest.raises(TypeError):
+ np.can_cast(4j, "complex128", casting="unsafe")
+
+ @pytest.mark.parametrize("dtype",
+ list("?bhilqBHILQefdgFDG") + [rational])
+ def test_can_cast_scalars(self, dtype):
+ # Basic test to ensure that scalars are supported in can-cast
+ # (does not check behavior exhaustively).
+ dtype = np.dtype(dtype)
+ scalar = dtype.type(0)
+
+ assert np.can_cast(scalar, "int64") == np.can_cast(dtype, "int64")
+ assert np.can_cast(scalar, "float32", casting="unsafe")
+
+
+# Custom exception class to test exception propagation in fromiter
+class NIterError(Exception):
+ pass
+
+
+class TestFromiter:
+ def makegen(self):
+ return (x**2 for x in range(24))
+
+ def test_types(self):
+ ai32 = np.fromiter(self.makegen(), np.int32)
+ ai64 = np.fromiter(self.makegen(), np.int64)
+ af = np.fromiter(self.makegen(), float)
+ assert_(ai32.dtype == np.dtype(np.int32))
+ assert_(ai64.dtype == np.dtype(np.int64))
+ assert_(af.dtype == np.dtype(float))
+
+ def test_lengths(self):
+ expected = np.array(list(self.makegen()))
+ a = np.fromiter(self.makegen(), int)
+ a20 = np.fromiter(self.makegen(), int, 20)
+ assert_(len(a) == len(expected))
+ assert_(len(a20) == 20)
+ assert_raises(ValueError, np.fromiter,
+ self.makegen(), int, len(expected) + 10)
+
+ def test_values(self):
+ expected = np.array(list(self.makegen()))
+ a = np.fromiter(self.makegen(), int)
+ a20 = np.fromiter(self.makegen(), int, 20)
+ assert_(np.all(a == expected, axis=0))
+ assert_(np.all(a20 == expected[:20], axis=0))
+
+ def load_data(self, n, eindex):
+ # Utility method for the issue 2592 tests.
+ # Raise an exception at the desired index in the iterator.
+ for e in range(n):
+ if e == eindex:
+ raise NIterError(f'error at index {eindex}')
+ yield e
+
+ @pytest.mark.parametrize("dtype", [int, object])
+ @pytest.mark.parametrize(["count", "error_index"], [(10, 5), (10, 9)])
+ def test_2592(self, count, error_index, dtype):
+ # Test iteration exceptions are correctly raised. The data/generator
+ # has `count` elements but errors at `error_index`
+ iterable = self.load_data(count, error_index)
+ with pytest.raises(NIterError):
+ np.fromiter(iterable, dtype=dtype, count=count)
+
+ @pytest.mark.parametrize("dtype", ["S", "S0", "V0", "U0"])
+ def test_empty_not_structured(self, dtype):
+ # Note, "S0" could be allowed at some point, so long "S" (without
+ # any length) is rejected.
+ with pytest.raises(ValueError, match="Must specify length"):
+ np.fromiter([], dtype=dtype)
+
+ @pytest.mark.parametrize(["dtype", "data"],
+ [("d", [1, 2, 3, 4, 5, 6, 7, 8, 9]),
+ ("O", [1, 2, 3, 4, 5, 6, 7, 8, 9]),
+ ("i,O", [(1, 2), (5, 4), (2, 3), (9, 8), (6, 7)]),
+ # subarray dtypes (important because their dimensions end up
+ # in the result arrays dimension:
+ ("2i", [(1, 2), (5, 4), (2, 3), (9, 8), (6, 7)]),
+ (np.dtype(("O", (2, 3))),
+ [((1, 2, 3), (3, 4, 5)), ((3, 2, 1), (5, 4, 3))])])
+ @pytest.mark.parametrize("length_hint", [0, 1])
+ def test_growth_and_complicated_dtypes(self, dtype, data, length_hint):
+ dtype = np.dtype(dtype)
+
+ data = data * 100 # make sure we realloc a bit
+
+ class MyIter:
+ # Class/example from gh-15789
+ def __length_hint__(self):
+ # only required to be an estimate, this is legal
+ return length_hint # 0 or 1
+
+ def __iter__(self):
+ return iter(data)
+
+ res = np.fromiter(MyIter(), dtype=dtype)
+ expected = np.array(data, dtype=dtype)
+
+ assert_array_equal(res, expected)
+
+ def test_empty_result(self):
+ class MyIter:
+ def __length_hint__(self):
+ return 10
+
+ def __iter__(self):
+ return iter([]) # actual iterator is empty.
+
+ res = np.fromiter(MyIter(), dtype="d")
+ assert res.shape == (0,)
+ assert res.dtype == "d"
+
+ def test_too_few_items(self):
+ msg = "iterator too short: Expected 10 but iterator had only 3 items."
+ with pytest.raises(ValueError, match=msg):
+ np.fromiter([1, 2, 3], count=10, dtype=int)
+
+ def test_failed_itemsetting(self):
+ with pytest.raises(TypeError):
+ np.fromiter([1, None, 3], dtype=int)
+
+ # The following manages to hit somewhat trickier code paths:
+ iterable = ((2, 3, 4) for i in range(5))
+ with pytest.raises(ValueError):
+ np.fromiter(iterable, dtype=np.dtype((int, 2)))
+
+class TestNonzero:
+ def test_nonzero_trivial(self):
+ assert_equal(np.count_nonzero(np.array([])), 0)
+ assert_equal(np.count_nonzero(np.array([], dtype='?')), 0)
+ assert_equal(np.nonzero(np.array([])), ([],))
+
+ assert_equal(np.count_nonzero(np.array([0])), 0)
+ assert_equal(np.count_nonzero(np.array([0], dtype='?')), 0)
+ assert_equal(np.nonzero(np.array([0])), ([],))
+
+ assert_equal(np.count_nonzero(np.array([1])), 1)
+ assert_equal(np.count_nonzero(np.array([1], dtype='?')), 1)
+ assert_equal(np.nonzero(np.array([1])), ([0],))
+
+ def test_nonzero_zerodim(self):
+ err_msg = "Calling nonzero on 0d arrays is not allowed"
+ with assert_raises_regex(ValueError, err_msg):
+ np.nonzero(np.array(0))
+ with assert_raises_regex(ValueError, err_msg):
+ np.array(1).nonzero()
+
+ def test_nonzero_onedim(self):
+ x = np.array([1, 0, 2, -1, 0, 0, 8])
+ assert_equal(np.count_nonzero(x), 4)
+ assert_equal(np.count_nonzero(x), 4)
+ assert_equal(np.nonzero(x), ([0, 2, 3, 6],))
+
+ # x = np.array([(1, 2), (0, 0), (1, 1), (-1, 3), (0, 7)],
+ # dtype=[('a', 'i4'), ('b', 'i2')])
+ x = np.array([(1, 2, -5, -3), (0, 0, 2, 7), (1, 1, 0, 1), (-1, 3, 1, 0), (0, 7, 0, 4)],
+ dtype=[('a', 'i4'), ('b', 'i2'), ('c', 'i1'), ('d', 'i8')])
+ assert_equal(np.count_nonzero(x['a']), 3)
+ assert_equal(np.count_nonzero(x['b']), 4)
+ assert_equal(np.count_nonzero(x['c']), 3)
+ assert_equal(np.count_nonzero(x['d']), 4)
+ assert_equal(np.nonzero(x['a']), ([0, 2, 3],))
+ assert_equal(np.nonzero(x['b']), ([0, 2, 3, 4],))
+
+ def test_nonzero_twodim(self):
+ x = np.array([[0, 1, 0], [2, 0, 3]])
+ assert_equal(np.count_nonzero(x.astype('i1')), 3)
+ assert_equal(np.count_nonzero(x.astype('i2')), 3)
+ assert_equal(np.count_nonzero(x.astype('i4')), 3)
+ assert_equal(np.count_nonzero(x.astype('i8')), 3)
+ assert_equal(np.nonzero(x), ([0, 1, 1], [1, 0, 2]))
+
+ x = np.eye(3)
+ assert_equal(np.count_nonzero(x.astype('i1')), 3)
+ assert_equal(np.count_nonzero(x.astype('i2')), 3)
+ assert_equal(np.count_nonzero(x.astype('i4')), 3)
+ assert_equal(np.count_nonzero(x.astype('i8')), 3)
+ assert_equal(np.nonzero(x), ([0, 1, 2], [0, 1, 2]))
+
+ x = np.array([[(0, 1), (0, 0), (1, 11)],
+ [(1, 1), (1, 0), (0, 0)],
+ [(0, 0), (1, 5), (0, 1)]], dtype=[('a', 'f4'), ('b', 'u1')])
+ assert_equal(np.count_nonzero(x['a']), 4)
+ assert_equal(np.count_nonzero(x['b']), 5)
+ assert_equal(np.nonzero(x['a']), ([0, 1, 1, 2], [2, 0, 1, 1]))
+ assert_equal(np.nonzero(x['b']), ([0, 0, 1, 2, 2], [0, 2, 0, 1, 2]))
+
+ assert_(not x['a'].T.flags.aligned)
+ assert_equal(np.count_nonzero(x['a'].T), 4)
+ assert_equal(np.count_nonzero(x['b'].T), 5)
+ assert_equal(np.nonzero(x['a'].T), ([0, 1, 1, 2], [1, 1, 2, 0]))
+ assert_equal(np.nonzero(x['b'].T), ([0, 0, 1, 2, 2], [0, 1, 2, 0, 2]))
+
+ def test_sparse(self):
+ # test special sparse condition boolean code path
+ for i in range(20):
+ c = np.zeros(200, dtype=bool)
+ c[i::20] = True
+ assert_equal(np.nonzero(c)[0], np.arange(i, 200 + i, 20))
+
+ c = np.zeros(400, dtype=bool)
+ c[10 + i:20 + i] = True
+ c[20 + i * 2] = True
+ assert_equal(np.nonzero(c)[0],
+ np.concatenate((np.arange(10 + i, 20 + i), [20 + i * 2])))
+
+ @pytest.mark.parametrize('dtype', [np.float32, np.float64])
+ def test_nonzero_float_dtypes(self, dtype):
+ rng = np.random.default_rng(seed=10)
+ x = ((2**33) * rng.normal(size=100)).astype(dtype)
+ x[rng.choice(50, size=100)] = 0
+ idxs = np.nonzero(x)[0]
+ assert_equal(np.array_equal(np.where(x != 0)[0], idxs), True)
+
+ @pytest.mark.parametrize('dtype', [bool, np.int8, np.int16, np.int32, np.int64,
+ np.uint8, np.uint16, np.uint32, np.uint64])
+ def test_nonzero_integer_dtypes(self, dtype):
+ rng = np.random.default_rng(seed=10)
+ x = rng.integers(0, 255, size=100).astype(dtype)
+ x[rng.choice(50, size=100)] = 0
+ idxs = np.nonzero(x)[0]
+ assert_equal(np.array_equal(np.where(x != 0)[0], idxs), True)
+
+ def test_return_type(self):
+ class C(np.ndarray):
+ pass
+
+ for view in (C, np.ndarray):
+ for nd in range(1, 4):
+ shape = tuple(range(2, 2 + nd))
+ x = np.arange(np.prod(shape)).reshape(shape).view(view)
+ for nzx in (np.nonzero(x), x.nonzero()):
+ for nzx_i in nzx:
+ assert_(type(nzx_i) is np.ndarray)
+ assert_(nzx_i.flags.writeable)
+
+ def test_count_nonzero_axis(self):
+ # Basic check of functionality
+ m = np.array([[0, 1, 7, 0, 0], [3, 0, 0, 2, 19]])
+
+ expected = np.array([1, 1, 1, 1, 1])
+ assert_equal(np.count_nonzero(m, axis=0), expected)
+
+ expected = np.array([2, 3])
+ assert_equal(np.count_nonzero(m, axis=1), expected)
+
+ assert_raises(ValueError, np.count_nonzero, m, axis=(1, 1))
+ assert_raises(TypeError, np.count_nonzero, m, axis='foo')
+ assert_raises(AxisError, np.count_nonzero, m, axis=3)
+ assert_raises(TypeError, np.count_nonzero,
+ m, axis=np.array([[1], [2]]))
+
+ def test_count_nonzero_axis_all_dtypes(self):
+ # More thorough test that the axis argument is respected
+ # for all dtypes and responds correctly when presented with
+ # either integer or tuple arguments for axis
+ msg = "Mismatch for dtype: %s"
+
+ def assert_equal_w_dt(a, b, err_msg):
+ assert_equal(a.dtype, b.dtype, err_msg=err_msg)
+ assert_equal(a, b, err_msg=err_msg)
+
+ for dt in np.typecodes['All']:
+ err_msg = msg % (np.dtype(dt).name,)
+
+ if dt != 'V':
+ if dt != 'M':
+ m = np.zeros((3, 3), dtype=dt)
+ n = np.ones(1, dtype=dt)
+
+ m[0, 0] = n[0]
+ m[1, 0] = n[0]
+
+ else: # np.zeros doesn't work for np.datetime64
+ m = np.array(['1970-01-01'] * 9)
+ m = m.reshape((3, 3))
+
+ m[0, 0] = '1970-01-12'
+ m[1, 0] = '1970-01-12'
+ m = m.astype(dt)
+
+ expected = np.array([2, 0, 0], dtype=np.intp)
+ assert_equal_w_dt(np.count_nonzero(m, axis=0),
+ expected, err_msg=err_msg)
+
+ expected = np.array([1, 1, 0], dtype=np.intp)
+ assert_equal_w_dt(np.count_nonzero(m, axis=1),
+ expected, err_msg=err_msg)
+
+ expected = np.array(2)
+ assert_equal(np.count_nonzero(m, axis=(0, 1)),
+ expected, err_msg=err_msg)
+ assert_equal(np.count_nonzero(m, axis=None),
+ expected, err_msg=err_msg)
+ assert_equal(np.count_nonzero(m),
+ expected, err_msg=err_msg)
+
+ if dt == 'V':
+ # There are no 'nonzero' objects for np.void, so the testing
+ # setup is slightly different for this dtype
+ m = np.array([np.void(1)] * 6).reshape((2, 3))
+
+ expected = np.array([0, 0, 0], dtype=np.intp)
+ assert_equal_w_dt(np.count_nonzero(m, axis=0),
+ expected, err_msg=err_msg)
+
+ expected = np.array([0, 0], dtype=np.intp)
+ assert_equal_w_dt(np.count_nonzero(m, axis=1),
+ expected, err_msg=err_msg)
+
+ expected = np.array(0)
+ assert_equal(np.count_nonzero(m, axis=(0, 1)),
+ expected, err_msg=err_msg)
+ assert_equal(np.count_nonzero(m, axis=None),
+ expected, err_msg=err_msg)
+ assert_equal(np.count_nonzero(m),
+ expected, err_msg=err_msg)
+
+ def test_count_nonzero_axis_consistent(self):
+ # Check that the axis behaviour for valid axes in
+ # non-special cases is consistent (and therefore
+ # correct) by checking it against an integer array
+ # that is then casted to the generic object dtype
+ from itertools import combinations, permutations
+
+ axis = (0, 1, 2, 3)
+ size = (5, 5, 5, 5)
+ msg = "Mismatch for axis: %s"
+
+ rng = np.random.RandomState(1234)
+ m = rng.randint(-100, 100, size=size)
+ n = m.astype(object)
+
+ for length in range(len(axis)):
+ for combo in combinations(axis, length):
+ for perm in permutations(combo):
+ assert_equal(
+ np.count_nonzero(m, axis=perm),
+ np.count_nonzero(n, axis=perm),
+ err_msg=msg % (perm,))
+
+ def test_countnonzero_axis_empty(self):
+ a = np.array([[0, 0, 1], [1, 0, 1]])
+ assert_equal(np.count_nonzero(a, axis=()), a.astype(bool))
+
+ def test_countnonzero_keepdims(self):
+ a = np.array([[0, 0, 1, 0],
+ [0, 3, 5, 0],
+ [7, 9, 2, 0]])
+ assert_equal(np.count_nonzero(a, axis=0, keepdims=True),
+ [[1, 2, 3, 0]])
+ assert_equal(np.count_nonzero(a, axis=1, keepdims=True),
+ [[1], [2], [3]])
+ assert_equal(np.count_nonzero(a, keepdims=True),
+ [[6]])
+
+ def test_array_method(self):
+ # Tests that the array method
+ # call to nonzero works
+ m = np.array([[1, 0, 0], [4, 0, 6]])
+ tgt = [[0, 1, 1], [0, 0, 2]]
+
+ assert_equal(m.nonzero(), tgt)
+
+ def test_nonzero_invalid_object(self):
+ # gh-9295
+ a = np.array([np.array([1, 2]), 3], dtype=object)
+ assert_raises(ValueError, np.nonzero, a)
+
+ class BoolErrors:
+ def __bool__(self):
+ raise ValueError("Not allowed")
+
+ assert_raises(ValueError, np.nonzero, np.array([BoolErrors()]))
+
+ def test_nonzero_sideeffect_safety(self):
+ # gh-13631
+ class FalseThenTrue:
+ _val = False
+
+ def __bool__(self):
+ try:
+ return self._val
+ finally:
+ self._val = True
+
+ class TrueThenFalse:
+ _val = True
+
+ def __bool__(self):
+ try:
+ return self._val
+ finally:
+ self._val = False
+
+ # result grows on the second pass
+ a = np.array([True, FalseThenTrue()])
+ assert_raises(RuntimeError, np.nonzero, a)
+
+ a = np.array([[True], [FalseThenTrue()]])
+ assert_raises(RuntimeError, np.nonzero, a)
+
+ # result shrinks on the second pass
+ a = np.array([False, TrueThenFalse()])
+ assert_raises(RuntimeError, np.nonzero, a)
+
+ a = np.array([[False], [TrueThenFalse()]])
+ assert_raises(RuntimeError, np.nonzero, a)
+
+ def test_nonzero_sideffects_structured_void(self):
+ # Checks that structured void does not mutate alignment flag of
+ # original array.
+ arr = np.zeros(5, dtype="i1,i8,i8") # `ones` may short-circuit
+ assert arr.flags.aligned # structs are considered "aligned"
+ assert not arr["f2"].flags.aligned
+ # make sure that nonzero/count_nonzero do not flip the flag:
+ np.nonzero(arr)
+ assert arr.flags.aligned
+ np.count_nonzero(arr)
+ assert arr.flags.aligned
+
+ def test_nonzero_exception_safe(self):
+ # gh-13930
+
+ class ThrowsAfter:
+ def __init__(self, iters):
+ self.iters_left = iters
+
+ def __bool__(self):
+ if self.iters_left == 0:
+ raise ValueError("called `iters` times")
+
+ self.iters_left -= 1
+ return True
+
+ """
+ Test that a ValueError is raised instead of a SystemError
+
+ If the __bool__ function is called after the error state is set,
+ Python (cpython) will raise a SystemError.
+ """
+
+ # assert that an exception in first pass is handled correctly
+ a = np.array([ThrowsAfter(5)] * 10)
+ assert_raises(ValueError, np.nonzero, a)
+
+ # raise exception in second pass for 1-dimensional loop
+ a = np.array([ThrowsAfter(15)] * 10)
+ assert_raises(ValueError, np.nonzero, a)
+
+ # raise exception in second pass for n-dimensional loop
+ a = np.array([[ThrowsAfter(15)]] * 10)
+ assert_raises(ValueError, np.nonzero, a)
+
+ def test_nonzero_byteorder(self):
+ values = [0., -0., 1, float('nan'), 0, 1,
+ np.float16(0), np.float16(12.3)]
+ expected_values = [0, 0, 1, 1, 0, 1, 0, 1]
+
+ for value, expected in zip(values, expected_values):
+ A = np.array([value])
+ A_byteswapped = (A.view(A.dtype.newbyteorder()).byteswap()).copy()
+
+ assert np.count_nonzero(A) == expected
+ assert np.count_nonzero(A_byteswapped) == expected
+
+ def test_count_nonzero_non_aligned_array(self):
+ # gh-27523
+ b = np.zeros(64 + 1, dtype=np.int8)[1:]
+ b = b.view(int)
+ b[:] = np.arange(b.size)
+ b[::2] = 0
+ assert b.flags.aligned is False
+ assert np.count_nonzero(b) == b.size / 2
+
+ b = np.zeros(64 + 1, dtype=np.float16)[1:]
+ b = b.view(float)
+ b[:] = np.arange(b.size)
+ b[::2] = 0
+ assert b.flags.aligned is False
+ assert np.count_nonzero(b) == b.size / 2
+
+
+class TestIndex:
+ def test_boolean(self):
+ a = rand(3, 5, 8)
+ V = rand(5, 8)
+ g1 = randint(0, 5, size=15)
+ g2 = randint(0, 8, size=15)
+ V[g1, g2] = -V[g1, g2]
+ assert_((np.array([a[0][V > 0], a[1][V > 0], a[2][V > 0]]) == a[:, V > 0]).all())
+
+ def test_boolean_edgecase(self):
+ a = np.array([], dtype='int32')
+ b = np.array([], dtype='bool')
+ c = a[b]
+ assert_equal(c, [])
+ assert_equal(c.dtype, np.dtype('int32'))
+
+
+class TestBinaryRepr:
+ def test_zero(self):
+ assert_equal(np.binary_repr(0), '0')
+
+ def test_positive(self):
+ assert_equal(np.binary_repr(10), '1010')
+ assert_equal(np.binary_repr(12522),
+ '11000011101010')
+ assert_equal(np.binary_repr(10736848),
+ '101000111101010011010000')
+
+ def test_negative(self):
+ assert_equal(np.binary_repr(-1), '-1')
+ assert_equal(np.binary_repr(-10), '-1010')
+ assert_equal(np.binary_repr(-12522),
+ '-11000011101010')
+ assert_equal(np.binary_repr(-10736848),
+ '-101000111101010011010000')
+
+ def test_sufficient_width(self):
+ assert_equal(np.binary_repr(0, width=5), '00000')
+ assert_equal(np.binary_repr(10, width=7), '0001010')
+ assert_equal(np.binary_repr(-5, width=7), '1111011')
+
+ def test_neg_width_boundaries(self):
+ # see gh-8670
+
+ # Ensure that the example in the issue does not
+ # break before proceeding to a more thorough test.
+ assert_equal(np.binary_repr(-128, width=8), '10000000')
+
+ for width in range(1, 11):
+ num = -2**(width - 1)
+ exp = '1' + (width - 1) * '0'
+ assert_equal(np.binary_repr(num, width=width), exp)
+
+ def test_large_neg_int64(self):
+ # See gh-14289.
+ assert_equal(np.binary_repr(np.int64(-2**62), width=64),
+ '11' + '0' * 62)
+
+
+class TestBaseRepr:
+ def test_base3(self):
+ assert_equal(np.base_repr(3**5, 3), '100000')
+
+ def test_positive(self):
+ assert_equal(np.base_repr(12, 10), '12')
+ assert_equal(np.base_repr(12, 10, 4), '000012')
+ assert_equal(np.base_repr(12, 4), '30')
+ assert_equal(np.base_repr(3731624803700888, 36), '10QR0ROFCEW')
+
+ def test_negative(self):
+ assert_equal(np.base_repr(-12, 10), '-12')
+ assert_equal(np.base_repr(-12, 10, 4), '-000012')
+ assert_equal(np.base_repr(-12, 4), '-30')
+
+ def test_base_range(self):
+ with assert_raises(ValueError):
+ np.base_repr(1, 1)
+ with assert_raises(ValueError):
+ np.base_repr(1, 37)
+
+ def test_minimal_signed_int(self):
+ assert_equal(np.base_repr(np.int8(-128)), '-10000000')
+
+
+def _test_array_equal_parametrizations():
+ """
+ we pre-create arrays as we sometime want to pass the same instance
+ and sometime not. Passing the same instances may not mean the array are
+ equal, especially when containing None
+ """
+ # those are 0-d arrays, it used to be a special case
+ # where (e0 == e0).all() would raise
+ e0 = np.array(0, dtype="int")
+ e1 = np.array(1, dtype="float")
+ # x,y, nan_equal, expected_result
+ yield (e0, e0.copy(), None, True)
+ yield (e0, e0.copy(), False, True)
+ yield (e0, e0.copy(), True, True)
+
+ #
+ yield (e1, e1.copy(), None, True)
+ yield (e1, e1.copy(), False, True)
+ yield (e1, e1.copy(), True, True)
+
+ # Non-nanable - those cannot hold nans
+ a12 = np.array([1, 2])
+ a12b = a12.copy()
+ a123 = np.array([1, 2, 3])
+ a13 = np.array([1, 3])
+ a34 = np.array([3, 4])
+
+ aS1 = np.array(["a"], dtype="S1")
+ aS1b = aS1.copy()
+ aS1u4 = np.array([("a", 1)], dtype="S1,u4")
+ aS1u4b = aS1u4.copy()
+
+ yield (a12, a12b, None, True)
+ yield (a12, a12, None, True)
+ yield (a12, a123, None, False)
+ yield (a12, a34, None, False)
+ yield (a12, a13, None, False)
+ yield (aS1, aS1b, None, True)
+ yield (aS1, aS1, None, True)
+
+ # Non-float dtype - equal_nan should have no effect,
+ yield (a123, a123, None, True)
+ yield (a123, a123, False, True)
+ yield (a123, a123, True, True)
+ yield (a123, a123.copy(), None, True)
+ yield (a123, a123.copy(), False, True)
+ yield (a123, a123.copy(), True, True)
+ yield (a123.astype("float"), a123.astype("float"), None, True)
+ yield (a123.astype("float"), a123.astype("float"), False, True)
+ yield (a123.astype("float"), a123.astype("float"), True, True)
+
+ # these can hold None
+ b1 = np.array([1, 2, np.nan])
+ b2 = np.array([1, np.nan, 2])
+ b3 = np.array([1, 2, np.inf])
+ b4 = np.array(np.nan)
+
+ # instances are the same
+ yield (b1, b1, None, False)
+ yield (b1, b1, False, False)
+ yield (b1, b1, True, True)
+
+ # equal but not same instance
+ yield (b1, b1.copy(), None, False)
+ yield (b1, b1.copy(), False, False)
+ yield (b1, b1.copy(), True, True)
+
+ # same once stripped of Nan
+ yield (b1, b2, None, False)
+ yield (b1, b2, False, False)
+ yield (b1, b2, True, False)
+
+ # nan's not conflated with inf's
+ yield (b1, b3, None, False)
+ yield (b1, b3, False, False)
+ yield (b1, b3, True, False)
+
+ # all Nan
+ yield (b4, b4, None, False)
+ yield (b4, b4, False, False)
+ yield (b4, b4, True, True)
+ yield (b4, b4.copy(), None, False)
+ yield (b4, b4.copy(), False, False)
+ yield (b4, b4.copy(), True, True)
+
+ t1 = b1.astype("timedelta64")
+ t2 = b2.astype("timedelta64")
+
+ # Timedeltas are particular
+ yield (t1, t1, None, False)
+ yield (t1, t1, False, False)
+ yield (t1, t1, True, True)
+
+ yield (t1, t1.copy(), None, False)
+ yield (t1, t1.copy(), False, False)
+ yield (t1, t1.copy(), True, True)
+
+ yield (t1, t2, None, False)
+ yield (t1, t2, False, False)
+ yield (t1, t2, True, False)
+
+ # Multi-dimensional array
+ md1 = np.array([[0, 1], [np.nan, 1]])
+
+ yield (md1, md1, None, False)
+ yield (md1, md1, False, False)
+ yield (md1, md1, True, True)
+ yield (md1, md1.copy(), None, False)
+ yield (md1, md1.copy(), False, False)
+ yield (md1, md1.copy(), True, True)
+ # both complexes are nan+nan.j but the same instance
+ cplx1, cplx2 = [np.array([np.nan + np.nan * 1j])] * 2
+
+ # only real or img are nan.
+ cplx3, cplx4 = np.complex64(1, np.nan), np.complex64(np.nan, 1)
+
+ # Complex values
+ yield (cplx1, cplx2, None, False)
+ yield (cplx1, cplx2, False, False)
+ yield (cplx1, cplx2, True, True)
+
+ # Complex values, 1+nan, nan+1j
+ yield (cplx3, cplx4, None, False)
+ yield (cplx3, cplx4, False, False)
+ yield (cplx3, cplx4, True, True)
+
+
+class TestArrayComparisons:
+ @pytest.mark.parametrize(
+ "bx,by,equal_nan,expected", _test_array_equal_parametrizations()
+ )
+ def test_array_equal_equal_nan(self, bx, by, equal_nan, expected):
+ """
+ This test array_equal for a few combinations:
+
+ - are the two inputs the same object or not (same object may not
+ be equal if contains NaNs)
+ - Whether we should consider or not, NaNs, being equal.
+
+ """
+ if equal_nan is None:
+ res = np.array_equal(bx, by)
+ else:
+ res = np.array_equal(bx, by, equal_nan=equal_nan)
+ assert_(res is expected)
+ assert_(type(res) is bool)
+
+ def test_array_equal_different_scalar_types(self):
+ # https://github.com/numpy/numpy/issues/27271
+ a = np.array("foo")
+ b = np.array(1)
+ assert not np.array_equal(a, b)
+ assert not np.array_equiv(a, b)
+
+ def test_none_compares_elementwise(self):
+ a = np.array([None, 1, None], dtype=object)
+ assert_equal(a == None, [True, False, True]) # noqa: E711
+ assert_equal(a != None, [False, True, False]) # noqa: E711
+
+ a = np.ones(3)
+ assert_equal(a == None, [False, False, False]) # noqa: E711
+ assert_equal(a != None, [True, True, True]) # noqa: E711
+
+ def test_array_equiv(self):
+ res = np.array_equiv(np.array([1, 2]), np.array([1, 2]))
+ assert_(res)
+ assert_(type(res) is bool)
+ res = np.array_equiv(np.array([1, 2]), np.array([1, 2, 3]))
+ assert_(not res)
+ assert_(type(res) is bool)
+ res = np.array_equiv(np.array([1, 2]), np.array([3, 4]))
+ assert_(not res)
+ assert_(type(res) is bool)
+ res = np.array_equiv(np.array([1, 2]), np.array([1, 3]))
+ assert_(not res)
+ assert_(type(res) is bool)
+
+ res = np.array_equiv(np.array([1, 1]), np.array([1]))
+ assert_(res)
+ assert_(type(res) is bool)
+ res = np.array_equiv(np.array([1, 1]), np.array([[1], [1]]))
+ assert_(res)
+ assert_(type(res) is bool)
+ res = np.array_equiv(np.array([1, 2]), np.array([2]))
+ assert_(not res)
+ assert_(type(res) is bool)
+ res = np.array_equiv(np.array([1, 2]), np.array([[1], [2]]))
+ assert_(not res)
+ assert_(type(res) is bool)
+ res = np.array_equiv(np.array([1, 2]), np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]))
+ assert_(not res)
+ assert_(type(res) is bool)
+
+ @pytest.mark.parametrize("dtype", ["V0", "V3", "V10"])
+ def test_compare_unstructured_voids(self, dtype):
+ zeros = np.zeros(3, dtype=dtype)
+
+ assert_array_equal(zeros, zeros)
+ assert not (zeros != zeros).any()
+
+ if dtype == "V0":
+ # Can't test != of actually different data
+ return
+
+ nonzeros = np.array([b"1", b"2", b"3"], dtype=dtype)
+
+ assert not (zeros == nonzeros).any()
+ assert (zeros != nonzeros).all()
+
+
+def assert_array_strict_equal(x, y):
+ assert_array_equal(x, y)
+ # Check flags, 32 bit arches typically don't provide 16 byte alignment
+ if ((x.dtype.alignment <= 8 or
+ np.intp().dtype.itemsize != 4) and
+ sys.platform != 'win32'):
+ assert_(x.flags == y.flags)
+ else:
+ assert_(x.flags.owndata == y.flags.owndata)
+ assert_(x.flags.writeable == y.flags.writeable)
+ assert_(x.flags.c_contiguous == y.flags.c_contiguous)
+ assert_(x.flags.f_contiguous == y.flags.f_contiguous)
+ assert_(x.flags.writebackifcopy == y.flags.writebackifcopy)
+ # check endianness
+ assert_(x.dtype.isnative == y.dtype.isnative)
+
+
+class TestClip:
+ def setup_method(self):
+ self.nr = 5
+ self.nc = 3
+
+ def fastclip(self, a, m, M, out=None, **kwargs):
+ return a.clip(m, M, out=out, **kwargs)
+
+ def clip(self, a, m, M, out=None):
+ # use a.choose to verify fastclip result
+ selector = np.less(a, m) + 2 * np.greater(a, M)
+ return selector.choose((a, m, M), out=out)
+
+ # Handy functions
+ def _generate_data(self, n, m):
+ return randn(n, m)
+
+ def _generate_data_complex(self, n, m):
+ return randn(n, m) + 1.j * rand(n, m)
+
+ def _generate_flt_data(self, n, m):
+ return (randn(n, m)).astype(np.float32)
+
+ def _neg_byteorder(self, a):
+ a = np.asarray(a)
+ if sys.byteorder == 'little':
+ a = a.astype(a.dtype.newbyteorder('>'))
+ else:
+ a = a.astype(a.dtype.newbyteorder('<'))
+ return a
+
+ def _generate_non_native_data(self, n, m):
+ data = randn(n, m)
+ data = self._neg_byteorder(data)
+ assert_(not data.dtype.isnative)
+ return data
+
+ def _generate_int_data(self, n, m):
+ return (10 * rand(n, m)).astype(np.int64)
+
+ def _generate_int32_data(self, n, m):
+ return (10 * rand(n, m)).astype(np.int32)
+
+ # Now the real test cases
+
+ @pytest.mark.parametrize("dtype", '?bhilqpBHILQPefdgFDGO')
+ def test_ones_pathological(self, dtype):
+ # for preservation of behavior described in
+ # gh-12519; amin > amax behavior may still change
+ # in the future
+ arr = np.ones(10, dtype=dtype)
+ expected = np.zeros(10, dtype=dtype)
+ actual = np.clip(arr, 1, 0)
+ if dtype == 'O':
+ assert actual.tolist() == expected.tolist()
+ else:
+ assert_equal(actual, expected)
+
+ def test_simple_double(self):
+ # Test native double input with scalar min/max.
+ a = self._generate_data(self.nr, self.nc)
+ m = 0.1
+ M = 0.6
+ ac = self.fastclip(a, m, M)
+ act = self.clip(a, m, M)
+ assert_array_strict_equal(ac, act)
+
+ def test_simple_int(self):
+ # Test native int input with scalar min/max.
+ a = self._generate_int_data(self.nr, self.nc)
+ a = a.astype(int)
+ m = -2
+ M = 4
+ ac = self.fastclip(a, m, M)
+ act = self.clip(a, m, M)
+ assert_array_strict_equal(ac, act)
+
+ def test_array_double(self):
+ # Test native double input with array min/max.
+ a = self._generate_data(self.nr, self.nc)
+ m = np.zeros(a.shape)
+ M = m + 0.5
+ ac = self.fastclip(a, m, M)
+ act = self.clip(a, m, M)
+ assert_array_strict_equal(ac, act)
+
+ def test_simple_nonnative(self):
+ # Test non native double input with scalar min/max.
+ # Test native double input with non native double scalar min/max.
+ a = self._generate_non_native_data(self.nr, self.nc)
+ m = -0.5
+ M = 0.6
+ ac = self.fastclip(a, m, M)
+ act = self.clip(a, m, M)
+ assert_array_equal(ac, act)
+
+ # Test native double input with non native double scalar min/max.
+ a = self._generate_data(self.nr, self.nc)
+ m = -0.5
+ M = self._neg_byteorder(0.6)
+ assert_(not M.dtype.isnative)
+ ac = self.fastclip(a, m, M)
+ act = self.clip(a, m, M)
+ assert_array_equal(ac, act)
+
+ def test_simple_complex(self):
+ # Test native complex input with native double scalar min/max.
+ # Test native input with complex double scalar min/max.
+ a = 3 * self._generate_data_complex(self.nr, self.nc)
+ m = -0.5
+ M = 1.
+ ac = self.fastclip(a, m, M)
+ act = self.clip(a, m, M)
+ assert_array_strict_equal(ac, act)
+
+ # Test native input with complex double scalar min/max.
+ a = 3 * self._generate_data(self.nr, self.nc)
+ m = -0.5 + 1.j
+ M = 1. + 2.j
+ ac = self.fastclip(a, m, M)
+ act = self.clip(a, m, M)
+ assert_array_strict_equal(ac, act)
+
+ def test_clip_complex(self):
+ # Address Issue gh-5354 for clipping complex arrays
+ # Test native complex input without explicit min/max
+ # ie, either min=None or max=None
+ a = np.ones(10, dtype=complex)
+ m = a.min()
+ M = a.max()
+ am = self.fastclip(a, m, None)
+ aM = self.fastclip(a, None, M)
+ assert_array_strict_equal(am, a)
+ assert_array_strict_equal(aM, a)
+
+ def test_clip_non_contig(self):
+ # Test clip for non contiguous native input and native scalar min/max.
+ a = self._generate_data(self.nr * 2, self.nc * 3)
+ a = a[::2, ::3]
+ assert_(not a.flags['F_CONTIGUOUS'])
+ assert_(not a.flags['C_CONTIGUOUS'])
+ ac = self.fastclip(a, -1.6, 1.7)
+ act = self.clip(a, -1.6, 1.7)
+ assert_array_strict_equal(ac, act)
+
+ def test_simple_out(self):
+ # Test native double input with scalar min/max.
+ a = self._generate_data(self.nr, self.nc)
+ m = -0.5
+ M = 0.6
+ ac = np.zeros(a.shape)
+ act = np.zeros(a.shape)
+ self.fastclip(a, m, M, ac)
+ self.clip(a, m, M, act)
+ assert_array_strict_equal(ac, act)
+
+ @pytest.mark.parametrize("casting", [None, "unsafe"])
+ def test_simple_int32_inout(self, casting):
+ # Test native int32 input with double min/max and int32 out.
+ a = self._generate_int32_data(self.nr, self.nc)
+ m = np.float64(0)
+ M = np.float64(2)
+ ac = np.zeros(a.shape, dtype=np.int32)
+ act = ac.copy()
+ if casting is None:
+ with pytest.raises(TypeError):
+ self.fastclip(a, m, M, ac, casting=casting)
+ else:
+ # explicitly passing "unsafe" will silence warning
+ self.fastclip(a, m, M, ac, casting=casting)
+ self.clip(a, m, M, act)
+ assert_array_strict_equal(ac, act)
+
+ def test_simple_int64_out(self):
+ # Test native int32 input with int32 scalar min/max and int64 out.
+ a = self._generate_int32_data(self.nr, self.nc)
+ m = np.int32(-1)
+ M = np.int32(1)
+ ac = np.zeros(a.shape, dtype=np.int64)
+ act = ac.copy()
+ self.fastclip(a, m, M, ac)
+ self.clip(a, m, M, act)
+ assert_array_strict_equal(ac, act)
+
+ def test_simple_int64_inout(self):
+ # Test native int32 input with double array min/max and int32 out.
+ a = self._generate_int32_data(self.nr, self.nc)
+ m = np.zeros(a.shape, np.float64)
+ M = np.float64(1)
+ ac = np.zeros(a.shape, dtype=np.int32)
+ act = ac.copy()
+ self.fastclip(a, m, M, out=ac, casting="unsafe")
+ self.clip(a, m, M, act)
+ assert_array_strict_equal(ac, act)
+
+ def test_simple_int32_out(self):
+ # Test native double input with scalar min/max and int out.
+ a = self._generate_data(self.nr, self.nc)
+ m = -1.0
+ M = 2.0
+ ac = np.zeros(a.shape, dtype=np.int32)
+ act = ac.copy()
+ self.fastclip(a, m, M, out=ac, casting="unsafe")
+ self.clip(a, m, M, act)
+ assert_array_strict_equal(ac, act)
+
+ def test_simple_inplace_01(self):
+ # Test native double input with array min/max in-place.
+ a = self._generate_data(self.nr, self.nc)
+ ac = a.copy()
+ m = np.zeros(a.shape)
+ M = 1.0
+ self.fastclip(a, m, M, a)
+ self.clip(a, m, M, ac)
+ assert_array_strict_equal(a, ac)
+
+ def test_simple_inplace_02(self):
+ # Test native double input with scalar min/max in-place.
+ a = self._generate_data(self.nr, self.nc)
+ ac = a.copy()
+ m = -0.5
+ M = 0.6
+ self.fastclip(a, m, M, a)
+ self.clip(ac, m, M, ac)
+ assert_array_strict_equal(a, ac)
+
+ def test_noncontig_inplace(self):
+ # Test non contiguous double input with double scalar min/max in-place.
+ a = self._generate_data(self.nr * 2, self.nc * 3)
+ a = a[::2, ::3]
+ assert_(not a.flags['F_CONTIGUOUS'])
+ assert_(not a.flags['C_CONTIGUOUS'])
+ ac = a.copy()
+ m = -0.5
+ M = 0.6
+ self.fastclip(a, m, M, a)
+ self.clip(ac, m, M, ac)
+ assert_array_equal(a, ac)
+
+ def test_type_cast_01(self):
+ # Test native double input with scalar min/max.
+ a = self._generate_data(self.nr, self.nc)
+ m = -0.5
+ M = 0.6
+ ac = self.fastclip(a, m, M)
+ act = self.clip(a, m, M)
+ assert_array_strict_equal(ac, act)
+
+ def test_type_cast_02(self):
+ # Test native int32 input with int32 scalar min/max.
+ a = self._generate_int_data(self.nr, self.nc)
+ a = a.astype(np.int32)
+ m = -2
+ M = 4
+ ac = self.fastclip(a, m, M)
+ act = self.clip(a, m, M)
+ assert_array_strict_equal(ac, act)
+
+ def test_type_cast_03(self):
+ # Test native int32 input with float64 scalar min/max.
+ a = self._generate_int32_data(self.nr, self.nc)
+ m = -2
+ M = 4
+ ac = self.fastclip(a, np.float64(m), np.float64(M))
+ act = self.clip(a, np.float64(m), np.float64(M))
+ assert_array_strict_equal(ac, act)
+
+ def test_type_cast_04(self):
+ # Test native int32 input with float32 scalar min/max.
+ a = self._generate_int32_data(self.nr, self.nc)
+ m = np.float32(-2)
+ M = np.float32(4)
+ act = self.fastclip(a, m, M)
+ ac = self.clip(a, m, M)
+ assert_array_strict_equal(ac, act)
+
+ def test_type_cast_05(self):
+ # Test native int32 with double arrays min/max.
+ a = self._generate_int_data(self.nr, self.nc)
+ m = -0.5
+ M = 1.
+ ac = self.fastclip(a, m * np.zeros(a.shape), M)
+ act = self.clip(a, m * np.zeros(a.shape), M)
+ assert_array_strict_equal(ac, act)
+
+ def test_type_cast_06(self):
+ # Test native with NON native scalar min/max.
+ a = self._generate_data(self.nr, self.nc)
+ m = 0.5
+ m_s = self._neg_byteorder(m)
+ M = 1.
+ act = self.clip(a, m_s, M)
+ ac = self.fastclip(a, m_s, M)
+ assert_array_strict_equal(ac, act)
+
+ def test_type_cast_07(self):
+ # Test NON native with native array min/max.
+ a = self._generate_data(self.nr, self.nc)
+ m = -0.5 * np.ones(a.shape)
+ M = 1.
+ a_s = self._neg_byteorder(a)
+ assert_(not a_s.dtype.isnative)
+ act = a_s.clip(m, M)
+ ac = self.fastclip(a_s, m, M)
+ assert_array_strict_equal(ac, act)
+
+ def test_type_cast_08(self):
+ # Test NON native with native scalar min/max.
+ a = self._generate_data(self.nr, self.nc)
+ m = -0.5
+ M = 1.
+ a_s = self._neg_byteorder(a)
+ assert_(not a_s.dtype.isnative)
+ ac = self.fastclip(a_s, m, M)
+ act = a_s.clip(m, M)
+ assert_array_strict_equal(ac, act)
+
+ def test_type_cast_09(self):
+ # Test native with NON native array min/max.
+ a = self._generate_data(self.nr, self.nc)
+ m = -0.5 * np.ones(a.shape)
+ M = 1.
+ m_s = self._neg_byteorder(m)
+ assert_(not m_s.dtype.isnative)
+ ac = self.fastclip(a, m_s, M)
+ act = self.clip(a, m_s, M)
+ assert_array_strict_equal(ac, act)
+
+ def test_type_cast_10(self):
+ # Test native int32 with float min/max and float out for output argument.
+ a = self._generate_int_data(self.nr, self.nc)
+ b = np.zeros(a.shape, dtype=np.float32)
+ m = np.float32(-0.5)
+ M = np.float32(1)
+ act = self.clip(a, m, M, out=b)
+ ac = self.fastclip(a, m, M, out=b)
+ assert_array_strict_equal(ac, act)
+
+ def test_type_cast_11(self):
+ # Test non native with native scalar, min/max, out non native
+ a = self._generate_non_native_data(self.nr, self.nc)
+ b = a.copy()
+ b = b.astype(b.dtype.newbyteorder('>'))
+ bt = b.copy()
+ m = -0.5
+ M = 1.
+ self.fastclip(a, m, M, out=b)
+ self.clip(a, m, M, out=bt)
+ assert_array_strict_equal(b, bt)
+
+ def test_type_cast_12(self):
+ # Test native int32 input and min/max and float out
+ a = self._generate_int_data(self.nr, self.nc)
+ b = np.zeros(a.shape, dtype=np.float32)
+ m = np.int32(0)
+ M = np.int32(1)
+ act = self.clip(a, m, M, out=b)
+ ac = self.fastclip(a, m, M, out=b)
+ assert_array_strict_equal(ac, act)
+
+ def test_clip_with_out_simple(self):
+ # Test native double input with scalar min/max
+ a = self._generate_data(self.nr, self.nc)
+ m = -0.5
+ M = 0.6
+ ac = np.zeros(a.shape)
+ act = np.zeros(a.shape)
+ self.fastclip(a, m, M, ac)
+ self.clip(a, m, M, act)
+ assert_array_strict_equal(ac, act)
+
+ def test_clip_with_out_simple2(self):
+ # Test native int32 input with double min/max and int32 out
+ a = self._generate_int32_data(self.nr, self.nc)
+ m = np.float64(0)
+ M = np.float64(2)
+ ac = np.zeros(a.shape, dtype=np.int32)
+ act = ac.copy()
+ self.fastclip(a, m, M, out=ac, casting="unsafe")
+ self.clip(a, m, M, act)
+ assert_array_strict_equal(ac, act)
+
+ def test_clip_with_out_simple_int32(self):
+ # Test native int32 input with int32 scalar min/max and int64 out
+ a = self._generate_int32_data(self.nr, self.nc)
+ m = np.int32(-1)
+ M = np.int32(1)
+ ac = np.zeros(a.shape, dtype=np.int64)
+ act = ac.copy()
+ self.fastclip(a, m, M, ac)
+ self.clip(a, m, M, act)
+ assert_array_strict_equal(ac, act)
+
+ def test_clip_with_out_array_int32(self):
+ # Test native int32 input with double array min/max and int32 out
+ a = self._generate_int32_data(self.nr, self.nc)
+ m = np.zeros(a.shape, np.float64)
+ M = np.float64(1)
+ ac = np.zeros(a.shape, dtype=np.int32)
+ act = ac.copy()
+ self.fastclip(a, m, M, out=ac, casting="unsafe")
+ self.clip(a, m, M, act)
+ assert_array_strict_equal(ac, act)
+
+ def test_clip_with_out_array_outint32(self):
+ # Test native double input with scalar min/max and int out
+ a = self._generate_data(self.nr, self.nc)
+ m = -1.0
+ M = 2.0
+ ac = np.zeros(a.shape, dtype=np.int32)
+ act = ac.copy()
+ self.fastclip(a, m, M, out=ac, casting="unsafe")
+ self.clip(a, m, M, act)
+ assert_array_strict_equal(ac, act)
+
+ def test_clip_with_out_transposed(self):
+ # Test that the out argument works when transposed
+ a = np.arange(16).reshape(4, 4)
+ out = np.empty_like(a).T
+ a.clip(4, 10, out=out)
+ expected = self.clip(a, 4, 10)
+ assert_array_equal(out, expected)
+
+ def test_clip_with_out_memory_overlap(self):
+ # Test that the out argument works when it has memory overlap
+ a = np.arange(16).reshape(4, 4)
+ ac = a.copy()
+ a[:-1].clip(4, 10, out=a[1:])
+ expected = self.clip(ac[:-1], 4, 10)
+ assert_array_equal(a[1:], expected)
+
+ def test_clip_inplace_array(self):
+ # Test native double input with array min/max
+ a = self._generate_data(self.nr, self.nc)
+ ac = a.copy()
+ m = np.zeros(a.shape)
+ M = 1.0
+ self.fastclip(a, m, M, a)
+ self.clip(a, m, M, ac)
+ assert_array_strict_equal(a, ac)
+
+ def test_clip_inplace_simple(self):
+ # Test native double input with scalar min/max
+ a = self._generate_data(self.nr, self.nc)
+ ac = a.copy()
+ m = -0.5
+ M = 0.6
+ self.fastclip(a, m, M, a)
+ self.clip(a, m, M, ac)
+ assert_array_strict_equal(a, ac)
+
+ def test_clip_func_takes_out(self):
+ # Ensure that the clip() function takes an out=argument.
+ a = self._generate_data(self.nr, self.nc)
+ ac = a.copy()
+ m = -0.5
+ M = 0.6
+ a2 = np.clip(a, m, M, out=a)
+ self.clip(a, m, M, ac)
+ assert_array_strict_equal(a2, ac)
+ assert_(a2 is a)
+
+ def test_clip_nan(self):
+ d = np.arange(7.)
+ assert_equal(d.clip(min=np.nan), np.nan)
+ assert_equal(d.clip(max=np.nan), np.nan)
+ assert_equal(d.clip(min=np.nan, max=np.nan), np.nan)
+ assert_equal(d.clip(min=-2, max=np.nan), np.nan)
+ assert_equal(d.clip(min=np.nan, max=10), np.nan)
+
+ def test_object_clip(self):
+ a = np.arange(10, dtype=object)
+ actual = np.clip(a, 1, 5)
+ expected = np.array([1, 1, 2, 3, 4, 5, 5, 5, 5, 5])
+ assert actual.tolist() == expected.tolist()
+
+ def test_clip_all_none(self):
+ arr = np.arange(10, dtype=object)
+ assert_equal(np.clip(arr, None, None), arr)
+ assert_equal(np.clip(arr), arr)
+
+ def test_clip_invalid_casting(self):
+ a = np.arange(10, dtype=object)
+ with assert_raises_regex(ValueError,
+ 'casting must be one of'):
+ self.fastclip(a, 1, 8, casting="garbage")
+
+ @pytest.mark.parametrize("amin, amax", [
+ # two scalars
+ (1, 0),
+ # mix scalar and array
+ (1, np.zeros(10)),
+ # two arrays
+ (np.ones(10), np.zeros(10)),
+ ])
+ def test_clip_value_min_max_flip(self, amin, amax):
+ a = np.arange(10, dtype=np.int64)
+ # requirement from ufunc_docstrings.py
+ expected = np.minimum(np.maximum(a, amin), amax)
+ actual = np.clip(a, amin, amax)
+ assert_equal(actual, expected)
+
+ @pytest.mark.parametrize("arr, amin, amax, exp", [
+ # for a bug in npy_ObjectClip, based on a
+ # case produced by hypothesis
+ (np.zeros(10, dtype=object),
+ 0,
+ -2**64 + 1,
+ np.full(10, -2**64 + 1, dtype=object)),
+ # for bugs in NPY_TIMEDELTA_MAX, based on a case
+ # produced by hypothesis
+ (np.zeros(10, dtype='m8') - 1,
+ 0,
+ 0,
+ np.zeros(10, dtype='m8')),
+ ])
+ def test_clip_problem_cases(self, arr, amin, amax, exp):
+ actual = np.clip(arr, amin, amax)
+ assert_equal(actual, exp)
+
+ @pytest.mark.parametrize("arr, amin, amax", [
+ # problematic scalar nan case from hypothesis
+ (np.zeros(10, dtype=np.int64),
+ np.array(np.nan),
+ np.zeros(10, dtype=np.int32)),
+ ])
+ def test_clip_scalar_nan_propagation(self, arr, amin, amax):
+ # enforcement of scalar nan propagation for comparisons
+ # called through clip()
+ expected = np.minimum(np.maximum(arr, amin), amax)
+ actual = np.clip(arr, amin, amax)
+ assert_equal(actual, expected)
+
+ @pytest.mark.xfail(reason="propagation doesn't match spec")
+ @pytest.mark.parametrize("arr, amin, amax", [
+ (np.array([1] * 10, dtype='m8'),
+ np.timedelta64('NaT'),
+ np.zeros(10, dtype=np.int32)),
+ ])
+ @pytest.mark.filterwarnings("ignore::DeprecationWarning")
+ def test_NaT_propagation(self, arr, amin, amax):
+ # NOTE: the expected function spec doesn't
+ # propagate NaT, but clip() now does
+ expected = np.minimum(np.maximum(arr, amin), amax)
+ actual = np.clip(arr, amin, amax)
+ assert_equal(actual, expected)
+
+ @given(
+ data=st.data(),
+ arr=hynp.arrays(
+ dtype=hynp.integer_dtypes() | hynp.floating_dtypes(),
+ shape=hynp.array_shapes()
+ )
+ )
+ def test_clip_property(self, data, arr):
+ """A property-based test using Hypothesis.
+
+ This aims for maximum generality: it could in principle generate *any*
+ valid inputs to np.clip, and in practice generates much more varied
+ inputs than human testers come up with.
+
+ Because many of the inputs have tricky dependencies - compatible dtypes
+ and mutually-broadcastable shapes - we use `st.data()` strategy draw
+ values *inside* the test function, from strategies we construct based
+ on previous values. An alternative would be to define a custom strategy
+ with `@st.composite`, but until we have duplicated code inline is fine.
+
+ That accounts for most of the function; the actual test is just three
+ lines to calculate and compare actual vs expected results!
+ """
+ numeric_dtypes = hynp.integer_dtypes() | hynp.floating_dtypes()
+ # Generate shapes for the bounds which can be broadcast with each other
+ # and with the base shape. Below, we might decide to use scalar bounds,
+ # but it's clearer to generate these shapes unconditionally in advance.
+ in_shapes, result_shape = data.draw(
+ hynp.mutually_broadcastable_shapes(
+ num_shapes=2, base_shape=arr.shape
+ )
+ )
+ # Scalar `nan` is deprecated due to the differing behaviour it shows.
+ s = numeric_dtypes.flatmap(
+ lambda x: hynp.from_dtype(x, allow_nan=False))
+ amin = data.draw(s | hynp.arrays(dtype=numeric_dtypes,
+ shape=in_shapes[0], elements={"allow_nan": False}))
+ amax = data.draw(s | hynp.arrays(dtype=numeric_dtypes,
+ shape=in_shapes[1], elements={"allow_nan": False}))
+
+ # Then calculate our result and expected result and check that they're
+ # equal! See gh-12519 and gh-19457 for discussion deciding on this
+ # property and the result_type argument.
+ result = np.clip(arr, amin, amax)
+ t = np.result_type(arr, amin, amax)
+ expected = np.minimum(amax, np.maximum(arr, amin, dtype=t), dtype=t)
+ assert result.dtype == t
+ assert_array_equal(result, expected)
+
+ def test_clip_min_max_args(self):
+ arr = np.arange(5)
+
+ assert_array_equal(np.clip(arr), arr)
+ assert_array_equal(np.clip(arr, min=2, max=3), np.clip(arr, 2, 3))
+ assert_array_equal(np.clip(arr, min=None, max=2),
+ np.clip(arr, None, 2))
+
+ with assert_raises_regex(TypeError, "missing 1 required positional "
+ "argument: 'a_max'"):
+ np.clip(arr, 2)
+ with assert_raises_regex(TypeError, "missing 1 required positional "
+ "argument: 'a_min'"):
+ np.clip(arr, a_max=2)
+ msg = ("Passing `min` or `max` keyword argument when `a_min` and "
+ "`a_max` are provided is forbidden.")
+ with assert_raises_regex(ValueError, msg):
+ np.clip(arr, 2, 3, max=3)
+ with assert_raises_regex(ValueError, msg):
+ np.clip(arr, 2, 3, min=2)
+
+ @pytest.mark.parametrize("dtype,min,max", [
+ ("int32", -2**32 - 1, 2**32),
+ ("int32", -2**320, None),
+ ("int32", None, 2**300),
+ ("int32", -1000, 2**32),
+ ("int32", -2**32 - 1, 1000),
+ ("uint8", -1, 129),
+ ])
+ def test_out_of_bound_pyints(self, dtype, min, max):
+ a = np.arange(10000).astype(dtype)
+ # Check min only
+ c = np.clip(a, min=min, max=max)
+ assert not np.may_share_memory(a, c)
+ assert c.dtype == a.dtype
+ if min is not None:
+ assert (c >= min).all()
+ if max is not None:
+ assert (c <= max).all()
+
+class TestAllclose:
+ rtol = 1e-5
+ atol = 1e-8
+
+ def setup_method(self):
+ self.olderr = np.seterr(invalid='ignore')
+
+ def teardown_method(self):
+ np.seterr(**self.olderr)
+
+ def tst_allclose(self, x, y):
+ assert_(np.allclose(x, y), f"{x} and {y} not close")
+
+ def tst_not_allclose(self, x, y):
+ assert_(not np.allclose(x, y), f"{x} and {y} shouldn't be close")
+
+ def test_ip_allclose(self):
+ # Parametric test factory.
+ arr = np.array([100, 1000])
+ aran = np.arange(125).reshape((5, 5, 5))
+
+ atol = self.atol
+ rtol = self.rtol
+
+ data = [([1, 0], [1, 0]),
+ ([atol], [0]),
+ ([1], [1 + rtol + atol]),
+ (arr, arr + arr * rtol),
+ (arr, arr + arr * rtol + atol * 2),
+ (aran, aran + aran * rtol),
+ (np.inf, np.inf),
+ (np.inf, [np.inf])]
+
+ for (x, y) in data:
+ self.tst_allclose(x, y)
+
+ def test_ip_not_allclose(self):
+ # Parametric test factory.
+ aran = np.arange(125).reshape((5, 5, 5))
+
+ atol = self.atol
+ rtol = self.rtol
+
+ data = [([np.inf, 0], [1, np.inf]),
+ ([np.inf, 0], [1, 0]),
+ ([np.inf, np.inf], [1, np.inf]),
+ ([np.inf, np.inf], [1, 0]),
+ ([-np.inf, 0], [np.inf, 0]),
+ ([np.nan, 0], [np.nan, 0]),
+ ([atol * 2], [0]),
+ ([1], [1 + rtol + atol * 2]),
+ (aran, aran + aran * atol + atol * 2),
+ (np.array([np.inf, 1]), np.array([0, np.inf]))]
+
+ for (x, y) in data:
+ self.tst_not_allclose(x, y)
+
+ def test_no_parameter_modification(self):
+ x = np.array([np.inf, 1])
+ y = np.array([0, np.inf])
+ np.allclose(x, y)
+ assert_array_equal(x, np.array([np.inf, 1]))
+ assert_array_equal(y, np.array([0, np.inf]))
+
+ def test_min_int(self):
+ # Could make problems because of abs(min_int) == min_int
+ min_int = np.iinfo(np.int_).min
+ a = np.array([min_int], dtype=np.int_)
+ assert_(np.allclose(a, a))
+
+ def test_equalnan(self):
+ x = np.array([1.0, np.nan])
+ assert_(np.allclose(x, x, equal_nan=True))
+
+ def test_return_class_is_ndarray(self):
+ # Issue gh-6475
+ # Check that allclose does not preserve subtypes
+ class Foo(np.ndarray):
+ def __new__(cls, *args, **kwargs):
+ return np.array(*args, **kwargs).view(cls)
+
+ a = Foo([1])
+ assert_(type(np.allclose(a, a)) is bool)
+
+
+class TestIsclose:
+ rtol = 1e-5
+ atol = 1e-8
+
+ def _setup(self):
+ atol = self.atol
+ rtol = self.rtol
+ arr = np.array([100, 1000])
+ aran = np.arange(125).reshape((5, 5, 5))
+
+ self.all_close_tests = [
+ ([1, 0], [1, 0]),
+ ([atol], [0]),
+ ([1], [1 + rtol + atol]),
+ (arr, arr + arr * rtol),
+ (arr, arr + arr * rtol + atol),
+ (aran, aran + aran * rtol),
+ (np.inf, np.inf),
+ (np.inf, [np.inf]),
+ ([np.inf, -np.inf], [np.inf, -np.inf]),
+ ]
+ self.none_close_tests = [
+ ([np.inf, 0], [1, np.inf]),
+ ([np.inf, -np.inf], [1, 0]),
+ ([np.inf, np.inf], [1, -np.inf]),
+ ([np.inf, np.inf], [1, 0]),
+ ([np.nan, 0], [np.nan, -np.inf]),
+ ([atol * 2], [0]),
+ ([1], [1 + rtol + atol * 2]),
+ (aran, aran + rtol * 1.1 * aran + atol * 1.1),
+ (np.array([np.inf, 1]), np.array([0, np.inf])),
+ ]
+ self.some_close_tests = [
+ ([np.inf, 0], [np.inf, atol * 2]),
+ ([atol, 1, 1e6 * (1 + 2 * rtol) + atol], [0, np.nan, 1e6]),
+ (np.arange(3), [0, 1, 2.1]),
+ (np.nan, [np.nan, np.nan, np.nan]),
+ ([0], [atol, np.inf, -np.inf, np.nan]),
+ (0, [atol, np.inf, -np.inf, np.nan]),
+ ]
+ self.some_close_results = [
+ [True, False],
+ [True, False, False],
+ [True, True, False],
+ [False, False, False],
+ [True, False, False, False],
+ [True, False, False, False],
+ ]
+
+ def test_ip_isclose(self):
+ self._setup()
+ tests = self.some_close_tests
+ results = self.some_close_results
+ for (x, y), result in zip(tests, results):
+ assert_array_equal(np.isclose(x, y), result)
+
+ x = np.array([2.1, 2.1, 2.1, 2.1, 5, np.nan])
+ y = np.array([2, 2, 2, 2, np.nan, 5])
+ atol = [0.11, 0.09, 1e-8, 1e-8, 1, 1]
+ rtol = [1e-8, 1e-8, 0.06, 0.04, 1, 1]
+ expected = np.array([True, False, True, False, False, False])
+ assert_array_equal(np.isclose(x, y, rtol=rtol, atol=atol), expected)
+
+ message = "operands could not be broadcast together..."
+ atol = np.array([1e-8, 1e-8])
+ with assert_raises(ValueError, msg=message):
+ np.isclose(x, y, atol=atol)
+
+ rtol = np.array([1e-5, 1e-5])
+ with assert_raises(ValueError, msg=message):
+ np.isclose(x, y, rtol=rtol)
+
+ def test_nep50_isclose(self):
+ below_one = float(1. - np.finfo('f8').eps)
+ f32 = np.array(below_one, 'f4') # This is just 1 at float32 precision
+ assert f32 > np.array(below_one)
+ # NEP 50 broadcasting of python scalars
+ assert f32 == below_one
+ # Test that it works for isclose arguments too (and that those fail if
+ # one uses a numpy float64).
+ assert np.isclose(f32, below_one, atol=0, rtol=0)
+ assert np.isclose(f32, np.float32(0), atol=below_one)
+ assert np.isclose(f32, 2, atol=0, rtol=below_one / 2)
+ assert not np.isclose(f32, np.float64(below_one), atol=0, rtol=0)
+ assert not np.isclose(f32, np.float32(0), atol=np.float64(below_one))
+ assert not np.isclose(f32, 2, atol=0, rtol=np.float64(below_one / 2))
+
+ def tst_all_isclose(self, x, y):
+ assert_(np.all(np.isclose(x, y)), f"{x} and {y} not close")
+
+ def tst_none_isclose(self, x, y):
+ msg = "%s and %s shouldn't be close"
+ assert_(not np.any(np.isclose(x, y)), msg % (x, y))
+
+ def tst_isclose_allclose(self, x, y):
+ msg = "isclose.all() and allclose aren't same for %s and %s"
+ msg2 = "isclose and allclose aren't same for %s and %s"
+ if np.isscalar(x) and np.isscalar(y):
+ assert_(np.isclose(x, y) == np.allclose(x, y), msg=msg2 % (x, y))
+ else:
+ assert_array_equal(np.isclose(x, y).all(), np.allclose(x, y), msg % (x, y))
+
+ def test_ip_all_isclose(self):
+ self._setup()
+ for (x, y) in self.all_close_tests:
+ self.tst_all_isclose(x, y)
+
+ x = np.array([2.3, 3.6, 4.4, np.nan])
+ y = np.array([2, 3, 4, np.nan])
+ atol = [0.31, 0, 0, 1]
+ rtol = [0, 0.21, 0.11, 1]
+ assert np.allclose(x, y, atol=atol, rtol=rtol, equal_nan=True)
+ assert not np.allclose(x, y, atol=0.1, rtol=0.1, equal_nan=True)
+
+ # Show that gh-14330 is resolved
+ assert np.allclose([1, 2, float('nan')], [1, 2, float('nan')],
+ atol=[1, 1, 1], equal_nan=True)
+
+ def test_ip_none_isclose(self):
+ self._setup()
+ for (x, y) in self.none_close_tests:
+ self.tst_none_isclose(x, y)
+
+ def test_ip_isclose_allclose(self):
+ self._setup()
+ tests = (self.all_close_tests + self.none_close_tests +
+ self.some_close_tests)
+ for (x, y) in tests:
+ self.tst_isclose_allclose(x, y)
+
+ def test_equal_nan(self):
+ assert_array_equal(np.isclose(np.nan, np.nan, equal_nan=True), [True])
+ arr = np.array([1.0, np.nan])
+ assert_array_equal(np.isclose(arr, arr, equal_nan=True), [True, True])
+
+ def test_masked_arrays(self):
+ # Make sure to test the output type when arguments are interchanged.
+
+ x = np.ma.masked_where([True, True, False], np.arange(3))
+ assert_(type(x) is type(np.isclose(2, x)))
+ assert_(type(x) is type(np.isclose(x, 2)))
+
+ x = np.ma.masked_where([True, True, False], [np.nan, np.inf, np.nan])
+ assert_(type(x) is type(np.isclose(np.inf, x)))
+ assert_(type(x) is type(np.isclose(x, np.inf)))
+
+ x = np.ma.masked_where([True, True, False], [np.nan, np.nan, np.nan])
+ y = np.isclose(np.nan, x, equal_nan=True)
+ assert_(type(x) is type(y))
+ # Ensure that the mask isn't modified...
+ assert_array_equal([True, True, False], y.mask)
+ y = np.isclose(x, np.nan, equal_nan=True)
+ assert_(type(x) is type(y))
+ # Ensure that the mask isn't modified...
+ assert_array_equal([True, True, False], y.mask)
+
+ x = np.ma.masked_where([True, True, False], [np.nan, np.nan, np.nan])
+ y = np.isclose(x, x, equal_nan=True)
+ assert_(type(x) is type(y))
+ # Ensure that the mask isn't modified...
+ assert_array_equal([True, True, False], y.mask)
+
+ def test_scalar_return(self):
+ assert_(np.isscalar(np.isclose(1, 1)))
+
+ def test_no_parameter_modification(self):
+ x = np.array([np.inf, 1])
+ y = np.array([0, np.inf])
+ np.isclose(x, y)
+ assert_array_equal(x, np.array([np.inf, 1]))
+ assert_array_equal(y, np.array([0, np.inf]))
+
+ def test_non_finite_scalar(self):
+ # GH7014, when two scalars are compared the output should also be a
+ # scalar
+ assert_(np.isclose(np.inf, -np.inf) is np.False_)
+ assert_(np.isclose(0, np.inf) is np.False_)
+ assert_(type(np.isclose(0, np.inf)) is np.bool)
+
+ def test_timedelta(self):
+ # Allclose currently works for timedelta64 as long as `atol` is
+ # an integer or also a timedelta64
+ a = np.array([[1, 2, 3, "NaT"]], dtype="m8[ns]")
+ assert np.isclose(a, a, atol=0, equal_nan=True).all()
+ assert np.isclose(a, a, atol=np.timedelta64(1, "ns"), equal_nan=True).all()
+ assert np.allclose(a, a, atol=0, equal_nan=True)
+ assert np.allclose(a, a, atol=np.timedelta64(1, "ns"), equal_nan=True)
+
+ def test_tol_warnings(self):
+ a = np.array([1, 2, 3])
+ b = np.array([np.inf, np.nan, 1])
+
+ for i in b:
+ for j in b:
+ # Making sure that i and j are not both numbers, because that won't create a warning
+ if (i == 1) and (j == 1):
+ continue
+
+ with warnings.catch_warnings(record=True) as w:
+
+ warnings.simplefilter("always")
+ c = np.isclose(a, a, atol=i, rtol=j)
+ assert len(w) == 1
+ assert issubclass(w[-1].category, RuntimeWarning)
+ assert f"One of rtol or atol is not valid, atol: {i}, rtol: {j}" in str(w[-1].message)
+
+
+class TestStdVar:
+ def setup_method(self):
+ self.A = np.array([1, -1, 1, -1])
+ self.real_var = 1
+
+ def test_basic(self):
+ assert_almost_equal(np.var(self.A), self.real_var)
+ assert_almost_equal(np.std(self.A)**2, self.real_var)
+
+ def test_scalars(self):
+ assert_equal(np.var(1), 0)
+ assert_equal(np.std(1), 0)
+
+ def test_ddof1(self):
+ assert_almost_equal(np.var(self.A, ddof=1),
+ self.real_var * len(self.A) / (len(self.A) - 1))
+ assert_almost_equal(np.std(self.A, ddof=1)**2,
+ self.real_var * len(self.A) / (len(self.A) - 1))
+
+ def test_ddof2(self):
+ assert_almost_equal(np.var(self.A, ddof=2),
+ self.real_var * len(self.A) / (len(self.A) - 2))
+ assert_almost_equal(np.std(self.A, ddof=2)**2,
+ self.real_var * len(self.A) / (len(self.A) - 2))
+
+ def test_correction(self):
+ assert_almost_equal(
+ np.var(self.A, correction=1), np.var(self.A, ddof=1)
+ )
+ assert_almost_equal(
+ np.std(self.A, correction=1), np.std(self.A, ddof=1)
+ )
+
+ err_msg = "ddof and correction can't be provided simultaneously."
+
+ with assert_raises_regex(ValueError, err_msg):
+ np.var(self.A, ddof=1, correction=0)
+
+ with assert_raises_regex(ValueError, err_msg):
+ np.std(self.A, ddof=1, correction=1)
+
+ def test_out_scalar(self):
+ d = np.arange(10)
+ out = np.array(0.)
+ r = np.std(d, out=out)
+ assert_(r is out)
+ assert_array_equal(r, out)
+ r = np.var(d, out=out)
+ assert_(r is out)
+ assert_array_equal(r, out)
+ r = np.mean(d, out=out)
+ assert_(r is out)
+ assert_array_equal(r, out)
+
+
+class TestStdVarComplex:
+ def test_basic(self):
+ A = np.array([1, 1.j, -1, -1.j])
+ real_var = 1
+ assert_almost_equal(np.var(A), real_var)
+ assert_almost_equal(np.std(A)**2, real_var)
+
+ def test_scalars(self):
+ assert_equal(np.var(1j), 0)
+ assert_equal(np.std(1j), 0)
+
+
+class TestCreationFuncs:
+ # Test ones, zeros, empty and full.
+
+ def setup_method(self):
+ dtypes = {np.dtype(tp) for tp in itertools.chain(*sctypes.values())}
+ # void, bytes, str
+ variable_sized = {tp for tp in dtypes if tp.str.endswith('0')}
+ keyfunc = lambda dtype: dtype.str
+ self.dtypes = sorted(dtypes - variable_sized |
+ {np.dtype(tp.str.replace("0", str(i)))
+ for tp in variable_sized for i in range(1, 10)},
+ key=keyfunc)
+ self.dtypes += [type(dt) for dt in sorted(dtypes, key=keyfunc)]
+ self.orders = {'C': 'c_contiguous', 'F': 'f_contiguous'}
+ self.ndims = 10
+
+ def check_function(self, func, fill_value=None):
+ par = ((0, 1, 2),
+ range(self.ndims),
+ self.orders,
+ self.dtypes)
+ fill_kwarg = {}
+ if fill_value is not None:
+ fill_kwarg = {'fill_value': fill_value}
+
+ for size, ndims, order, dtype in itertools.product(*par):
+ shape = ndims * [size]
+
+ is_void = dtype is np.dtypes.VoidDType or (
+ isinstance(dtype, np.dtype) and dtype.str.startswith('|V'))
+
+ # do not fill void type
+ if fill_kwarg and is_void:
+ continue
+
+ arr = func(shape, order=order, dtype=dtype,
+ **fill_kwarg)
+
+ if isinstance(dtype, np.dtype):
+ assert_equal(arr.dtype, dtype)
+ elif isinstance(dtype, type(np.dtype)):
+ if dtype in (np.dtypes.StrDType, np.dtypes.BytesDType):
+ dtype_str = np.dtype(dtype.type).str.replace('0', '1')
+ assert_equal(arr.dtype, np.dtype(dtype_str))
+ else:
+ assert_equal(arr.dtype, np.dtype(dtype.type))
+ assert_(getattr(arr.flags, self.orders[order]))
+
+ if fill_value is not None:
+ if arr.dtype.str.startswith('|S'):
+ val = str(fill_value)
+ else:
+ val = fill_value
+ assert_equal(arr, dtype.type(val))
+
+ def test_zeros(self):
+ self.check_function(np.zeros)
+
+ def test_ones(self):
+ self.check_function(np.ones)
+
+ def test_empty(self):
+ self.check_function(np.empty)
+
+ def test_full(self):
+ self.check_function(np.full, 0)
+ self.check_function(np.full, 1)
+
+ @pytest.mark.skipif(not HAS_REFCOUNT, reason="Python lacks refcounts")
+ def test_for_reference_leak(self):
+ # Make sure we have an object for reference
+ dim = 1
+ beg = sys.getrefcount(dim)
+ np.zeros([dim] * 10)
+ assert_(sys.getrefcount(dim) == beg)
+ np.ones([dim] * 10)
+ assert_(sys.getrefcount(dim) == beg)
+ np.empty([dim] * 10)
+ assert_(sys.getrefcount(dim) == beg)
+ np.full([dim] * 10, 0)
+ assert_(sys.getrefcount(dim) == beg)
+
+
+class TestLikeFuncs:
+ '''Test ones_like, zeros_like, empty_like and full_like'''
+
+ def setup_method(self):
+ self.data = [
+ # Array scalars
+ (np.array(3.), None),
+ (np.array(3), 'f8'),
+ # 1D arrays
+ (np.arange(6, dtype='f4'), None),
+ (np.arange(6), 'c16'),
+ # 2D C-layout arrays
+ (np.arange(6).reshape(2, 3), None),
+ (np.arange(6).reshape(3, 2), 'i1'),
+ # 2D F-layout arrays
+ (np.arange(6).reshape((2, 3), order='F'), None),
+ (np.arange(6).reshape((3, 2), order='F'), 'i1'),
+ # 3D C-layout arrays
+ (np.arange(24).reshape(2, 3, 4), None),
+ (np.arange(24).reshape(4, 3, 2), 'f4'),
+ # 3D F-layout arrays
+ (np.arange(24).reshape((2, 3, 4), order='F'), None),
+ (np.arange(24).reshape((4, 3, 2), order='F'), 'f4'),
+ # 3D non-C/F-layout arrays
+ (np.arange(24).reshape(2, 3, 4).swapaxes(0, 1), None),
+ (np.arange(24).reshape(4, 3, 2).swapaxes(0, 1), '?'),
+ ]
+ self.shapes = [(), (5,), (5, 6,), (5, 6, 7,)]
+
+ def compare_array_value(self, dz, value, fill_value):
+ if value is not None:
+ if fill_value:
+ # Conversion is close to what np.full_like uses
+ # but we may want to convert directly in the future
+ # which may result in errors (where this does not).
+ z = np.array(value).astype(dz.dtype)
+ assert_(np.all(dz == z))
+ else:
+ assert_(np.all(dz == value))
+
+ def check_like_function(self, like_function, value, fill_value=False):
+ if fill_value:
+ fill_kwarg = {'fill_value': value}
+ else:
+ fill_kwarg = {}
+ for d, dtype in self.data:
+ # default (K) order, dtype
+ dz = like_function(d, dtype=dtype, **fill_kwarg)
+ assert_equal(dz.shape, d.shape)
+ assert_equal(np.array(dz.strides) * d.dtype.itemsize,
+ np.array(d.strides) * dz.dtype.itemsize)
+ assert_equal(d.flags.c_contiguous, dz.flags.c_contiguous)
+ assert_equal(d.flags.f_contiguous, dz.flags.f_contiguous)
+ if dtype is None:
+ assert_equal(dz.dtype, d.dtype)
+ else:
+ assert_equal(dz.dtype, np.dtype(dtype))
+ self.compare_array_value(dz, value, fill_value)
+
+ # C order, default dtype
+ dz = like_function(d, order='C', dtype=dtype, **fill_kwarg)
+ assert_equal(dz.shape, d.shape)
+ assert_(dz.flags.c_contiguous)
+ if dtype is None:
+ assert_equal(dz.dtype, d.dtype)
+ else:
+ assert_equal(dz.dtype, np.dtype(dtype))
+ self.compare_array_value(dz, value, fill_value)
+
+ # F order, default dtype
+ dz = like_function(d, order='F', dtype=dtype, **fill_kwarg)
+ assert_equal(dz.shape, d.shape)
+ assert_(dz.flags.f_contiguous)
+ if dtype is None:
+ assert_equal(dz.dtype, d.dtype)
+ else:
+ assert_equal(dz.dtype, np.dtype(dtype))
+ self.compare_array_value(dz, value, fill_value)
+
+ # A order
+ dz = like_function(d, order='A', dtype=dtype, **fill_kwarg)
+ assert_equal(dz.shape, d.shape)
+ if d.flags.f_contiguous:
+ assert_(dz.flags.f_contiguous)
+ else:
+ assert_(dz.flags.c_contiguous)
+ if dtype is None:
+ assert_equal(dz.dtype, d.dtype)
+ else:
+ assert_equal(dz.dtype, np.dtype(dtype))
+ self.compare_array_value(dz, value, fill_value)
+
+ # Test the 'shape' parameter
+ for s in self.shapes:
+ for o in 'CFA':
+ sz = like_function(d, dtype=dtype, shape=s, order=o,
+ **fill_kwarg)
+ assert_equal(sz.shape, s)
+ if dtype is None:
+ assert_equal(sz.dtype, d.dtype)
+ else:
+ assert_equal(sz.dtype, np.dtype(dtype))
+ if o == 'C' or (o == 'A' and d.flags.c_contiguous):
+ assert_(sz.flags.c_contiguous)
+ elif o == 'F' or (o == 'A' and d.flags.f_contiguous):
+ assert_(sz.flags.f_contiguous)
+ self.compare_array_value(sz, value, fill_value)
+
+ if (d.ndim != len(s)):
+ assert_equal(np.argsort(like_function(d, dtype=dtype,
+ shape=s, order='K',
+ **fill_kwarg).strides),
+ np.argsort(np.empty(s, dtype=dtype,
+ order='C').strides))
+ else:
+ assert_equal(np.argsort(like_function(d, dtype=dtype,
+ shape=s, order='K',
+ **fill_kwarg).strides),
+ np.argsort(d.strides))
+
+ # Test the 'subok' parameter
+ class MyNDArray(np.ndarray):
+ pass
+
+ a = np.array([[1, 2], [3, 4]]).view(MyNDArray)
+
+ b = like_function(a, **fill_kwarg)
+ assert_(type(b) is MyNDArray)
+
+ b = like_function(a, subok=False, **fill_kwarg)
+ assert_(type(b) is not MyNDArray)
+
+ # Test invalid dtype
+ with assert_raises(TypeError):
+ a = np.array(b"abc")
+ like_function(a, dtype="S-1", **fill_kwarg)
+
+ def test_ones_like(self):
+ self.check_like_function(np.ones_like, 1)
+
+ def test_zeros_like(self):
+ self.check_like_function(np.zeros_like, 0)
+
+ def test_empty_like(self):
+ self.check_like_function(np.empty_like, None)
+
+ def test_filled_like(self):
+ self.check_like_function(np.full_like, 0, True)
+ self.check_like_function(np.full_like, 1, True)
+ # Large integers may overflow, but using int64 is OK (casts)
+ # see also gh-27075
+ with pytest.raises(OverflowError):
+ np.full_like(np.ones(3, dtype=np.int8), 1000)
+ self.check_like_function(np.full_like, np.int64(1000), True)
+ self.check_like_function(np.full_like, 123.456, True)
+ # Inf to integer casts cause invalid-value errors: ignore them.
+ with np.errstate(invalid="ignore"):
+ self.check_like_function(np.full_like, np.inf, True)
+
+ @pytest.mark.parametrize('likefunc', [np.empty_like, np.full_like,
+ np.zeros_like, np.ones_like])
+ @pytest.mark.parametrize('dtype', [str, bytes])
+ def test_dtype_str_bytes(self, likefunc, dtype):
+ # Regression test for gh-19860
+ a = np.arange(16).reshape(2, 8)
+ b = a[:, ::2] # Ensure b is not contiguous.
+ kwargs = {'fill_value': ''} if likefunc == np.full_like else {}
+ result = likefunc(b, dtype=dtype, **kwargs)
+ if dtype == str:
+ assert result.strides == (16, 4)
+ else:
+ # dtype is bytes
+ assert result.strides == (4, 1)
+
+
+class TestCorrelate:
+ def _setup(self, dt):
+ self.x = np.array([1, 2, 3, 4, 5], dtype=dt)
+ self.xs = np.arange(1, 20)[::3]
+ self.y = np.array([-1, -2, -3], dtype=dt)
+ self.z1 = np.array([-3., -8., -14., -20., -26., -14., -5.], dtype=dt)
+ self.z1_4 = np.array([-2., -5., -8., -11., -14., -5.], dtype=dt)
+ self.z1r = np.array([-15., -22., -22., -16., -10., -4., -1.], dtype=dt)
+ self.z2 = np.array([-5., -14., -26., -20., -14., -8., -3.], dtype=dt)
+ self.z2r = np.array([-1., -4., -10., -16., -22., -22., -15.], dtype=dt)
+ self.zs = np.array([-3., -14., -30., -48., -66., -84.,
+ -102., -54., -19.], dtype=dt)
+
+ def test_float(self):
+ self._setup(float)
+ z = np.correlate(self.x, self.y, 'full')
+ assert_array_almost_equal(z, self.z1)
+ z = np.correlate(self.x, self.y[:-1], 'full')
+ assert_array_almost_equal(z, self.z1_4)
+ z = np.correlate(self.y, self.x, 'full')
+ assert_array_almost_equal(z, self.z2)
+ z = np.correlate(self.x[::-1], self.y, 'full')
+ assert_array_almost_equal(z, self.z1r)
+ z = np.correlate(self.y, self.x[::-1], 'full')
+ assert_array_almost_equal(z, self.z2r)
+ z = np.correlate(self.xs, self.y, 'full')
+ assert_array_almost_equal(z, self.zs)
+
+ def test_object(self):
+ self._setup(Decimal)
+ z = np.correlate(self.x, self.y, 'full')
+ assert_array_almost_equal(z, self.z1)
+ z = np.correlate(self.y, self.x, 'full')
+ assert_array_almost_equal(z, self.z2)
+
+ def test_no_overwrite(self):
+ d = np.ones(100)
+ k = np.ones(3)
+ np.correlate(d, k)
+ assert_array_equal(d, np.ones(100))
+ assert_array_equal(k, np.ones(3))
+
+ def test_complex(self):
+ x = np.array([1, 2, 3, 4 + 1j], dtype=complex)
+ y = np.array([-1, -2j, 3 + 1j], dtype=complex)
+ r_z = np.array([3 - 1j, 6, 8 + 1j, 11 + 5j, -5 + 8j, -4 - 1j], dtype=complex)
+ r_z = r_z[::-1].conjugate()
+ z = np.correlate(y, x, mode='full')
+ assert_array_almost_equal(z, r_z)
+
+ def test_zero_size(self):
+ with pytest.raises(ValueError):
+ np.correlate(np.array([]), np.ones(1000), mode='full')
+ with pytest.raises(ValueError):
+ np.correlate(np.ones(1000), np.array([]), mode='full')
+
+ def test_mode(self):
+ d = np.ones(100)
+ k = np.ones(3)
+ default_mode = np.correlate(d, k, mode='valid')
+ with assert_raises(ValueError):
+ np.correlate(d, k, mode='v')
+ # integer mode
+ with assert_raises(ValueError):
+ np.correlate(d, k, mode=-1)
+ # assert_array_equal(np.correlate(d, k, mode=), default_mode)
+ # illegal arguments
+ with assert_raises(TypeError):
+ np.correlate(d, k, mode=None)
+
+
+class TestConvolve:
+ def test_object(self):
+ d = [1.] * 100
+ k = [1.] * 3
+ assert_array_almost_equal(np.convolve(d, k)[2:-2], np.full(98, 3))
+
+ def test_no_overwrite(self):
+ d = np.ones(100)
+ k = np.ones(3)
+ np.convolve(d, k)
+ assert_array_equal(d, np.ones(100))
+ assert_array_equal(k, np.ones(3))
+
+ def test_mode(self):
+ d = np.ones(100)
+ k = np.ones(3)
+ default_mode = np.convolve(d, k, mode='full')
+ with assert_raises(ValueError):
+ np.convolve(d, k, mode='f')
+ # integer mode
+ with assert_raises(ValueError):
+ np.convolve(d, k, mode=-1)
+ assert_array_equal(np.convolve(d, k, mode=2), default_mode)
+ # illegal arguments
+ with assert_raises(TypeError):
+ np.convolve(d, k, mode=None)
+
+
+class TestArgwhere:
+
+ @pytest.mark.parametrize('nd', [0, 1, 2])
+ def test_nd(self, nd):
+ # get an nd array with multiple elements in every dimension
+ x = np.empty((2,) * nd, bool)
+
+ # none
+ x[...] = False
+ assert_equal(np.argwhere(x).shape, (0, nd))
+
+ # only one
+ x[...] = False
+ x.flat[0] = True
+ assert_equal(np.argwhere(x).shape, (1, nd))
+
+ # all but one
+ x[...] = True
+ x.flat[0] = False
+ assert_equal(np.argwhere(x).shape, (x.size - 1, nd))
+
+ # all
+ x[...] = True
+ assert_equal(np.argwhere(x).shape, (x.size, nd))
+
+ def test_2D(self):
+ x = np.arange(6).reshape((2, 3))
+ assert_array_equal(np.argwhere(x > 1),
+ [[0, 2],
+ [1, 0],
+ [1, 1],
+ [1, 2]])
+
+ def test_list(self):
+ assert_equal(np.argwhere([4, 0, 2, 1, 3]), [[0], [2], [3], [4]])
+
+
+class TestRoll:
+ def test_roll1d(self):
+ x = np.arange(10)
+ xr = np.roll(x, 2)
+ assert_equal(xr, np.array([8, 9, 0, 1, 2, 3, 4, 5, 6, 7]))
+
+ def test_roll2d(self):
+ x2 = np.reshape(np.arange(10), (2, 5))
+ x2r = np.roll(x2, 1)
+ assert_equal(x2r, np.array([[9, 0, 1, 2, 3], [4, 5, 6, 7, 8]]))
+
+ x2r = np.roll(x2, 1, axis=0)
+ assert_equal(x2r, np.array([[5, 6, 7, 8, 9], [0, 1, 2, 3, 4]]))
+
+ x2r = np.roll(x2, 1, axis=1)
+ assert_equal(x2r, np.array([[4, 0, 1, 2, 3], [9, 5, 6, 7, 8]]))
+
+ # Roll multiple axes at once.
+ x2r = np.roll(x2, 1, axis=(0, 1))
+ assert_equal(x2r, np.array([[9, 5, 6, 7, 8], [4, 0, 1, 2, 3]]))
+
+ x2r = np.roll(x2, (1, 0), axis=(0, 1))
+ assert_equal(x2r, np.array([[5, 6, 7, 8, 9], [0, 1, 2, 3, 4]]))
+
+ x2r = np.roll(x2, (-1, 0), axis=(0, 1))
+ assert_equal(x2r, np.array([[5, 6, 7, 8, 9], [0, 1, 2, 3, 4]]))
+
+ x2r = np.roll(x2, (0, 1), axis=(0, 1))
+ assert_equal(x2r, np.array([[4, 0, 1, 2, 3], [9, 5, 6, 7, 8]]))
+
+ x2r = np.roll(x2, (0, -1), axis=(0, 1))
+ assert_equal(x2r, np.array([[1, 2, 3, 4, 0], [6, 7, 8, 9, 5]]))
+
+ x2r = np.roll(x2, (1, 1), axis=(0, 1))
+ assert_equal(x2r, np.array([[9, 5, 6, 7, 8], [4, 0, 1, 2, 3]]))
+
+ x2r = np.roll(x2, (-1, -1), axis=(0, 1))
+ assert_equal(x2r, np.array([[6, 7, 8, 9, 5], [1, 2, 3, 4, 0]]))
+
+ # Roll the same axis multiple times.
+ x2r = np.roll(x2, 1, axis=(0, 0))
+ assert_equal(x2r, np.array([[0, 1, 2, 3, 4], [5, 6, 7, 8, 9]]))
+
+ x2r = np.roll(x2, 1, axis=(1, 1))
+ assert_equal(x2r, np.array([[3, 4, 0, 1, 2], [8, 9, 5, 6, 7]]))
+
+ # Roll more than one turn in either direction.
+ x2r = np.roll(x2, 6, axis=1)
+ assert_equal(x2r, np.array([[4, 0, 1, 2, 3], [9, 5, 6, 7, 8]]))
+
+ x2r = np.roll(x2, -4, axis=1)
+ assert_equal(x2r, np.array([[4, 0, 1, 2, 3], [9, 5, 6, 7, 8]]))
+
+ def test_roll_empty(self):
+ x = np.array([])
+ assert_equal(np.roll(x, 1), np.array([]))
+
+ def test_roll_unsigned_shift(self):
+ x = np.arange(4)
+ shift = np.uint16(2)
+ assert_equal(np.roll(x, shift), np.roll(x, 2))
+
+ shift = np.uint64(2**63 + 2)
+ assert_equal(np.roll(x, shift), np.roll(x, 2))
+
+ def test_roll_big_int(self):
+ x = np.arange(4)
+ assert_equal(np.roll(x, 2**100), x)
+
+
+class TestRollaxis:
+
+ # expected shape indexed by (axis, start) for array of
+ # shape (1, 2, 3, 4)
+ tgtshape = {(0, 0): (1, 2, 3, 4), (0, 1): (1, 2, 3, 4),
+ (0, 2): (2, 1, 3, 4), (0, 3): (2, 3, 1, 4),
+ (0, 4): (2, 3, 4, 1),
+ (1, 0): (2, 1, 3, 4), (1, 1): (1, 2, 3, 4),
+ (1, 2): (1, 2, 3, 4), (1, 3): (1, 3, 2, 4),
+ (1, 4): (1, 3, 4, 2),
+ (2, 0): (3, 1, 2, 4), (2, 1): (1, 3, 2, 4),
+ (2, 2): (1, 2, 3, 4), (2, 3): (1, 2, 3, 4),
+ (2, 4): (1, 2, 4, 3),
+ (3, 0): (4, 1, 2, 3), (3, 1): (1, 4, 2, 3),
+ (3, 2): (1, 2, 4, 3), (3, 3): (1, 2, 3, 4),
+ (3, 4): (1, 2, 3, 4)}
+
+ def test_exceptions(self):
+ a = np.arange(1 * 2 * 3 * 4).reshape(1, 2, 3, 4)
+ assert_raises(AxisError, np.rollaxis, a, -5, 0)
+ assert_raises(AxisError, np.rollaxis, a, 0, -5)
+ assert_raises(AxisError, np.rollaxis, a, 4, 0)
+ assert_raises(AxisError, np.rollaxis, a, 0, 5)
+
+ def test_results(self):
+ a = np.arange(1 * 2 * 3 * 4).reshape(1, 2, 3, 4).copy()
+ aind = np.indices(a.shape)
+ assert_(a.flags['OWNDATA'])
+ for (i, j) in self.tgtshape:
+ # positive axis, positive start
+ res = np.rollaxis(a, axis=i, start=j)
+ i0, i1, i2, i3 = aind[np.array(res.shape) - 1]
+ assert_(np.all(res[i0, i1, i2, i3] == a))
+ assert_(res.shape == self.tgtshape[(i, j)], str((i, j)))
+ assert_(not res.flags['OWNDATA'])
+
+ # negative axis, positive start
+ ip = i + 1
+ res = np.rollaxis(a, axis=-ip, start=j)
+ i0, i1, i2, i3 = aind[np.array(res.shape) - 1]
+ assert_(np.all(res[i0, i1, i2, i3] == a))
+ assert_(res.shape == self.tgtshape[(4 - ip, j)])
+ assert_(not res.flags['OWNDATA'])
+
+ # positive axis, negative start
+ jp = j + 1 if j < 4 else j
+ res = np.rollaxis(a, axis=i, start=-jp)
+ i0, i1, i2, i3 = aind[np.array(res.shape) - 1]
+ assert_(np.all(res[i0, i1, i2, i3] == a))
+ assert_(res.shape == self.tgtshape[(i, 4 - jp)])
+ assert_(not res.flags['OWNDATA'])
+
+ # negative axis, negative start
+ ip = i + 1
+ jp = j + 1 if j < 4 else j
+ res = np.rollaxis(a, axis=-ip, start=-jp)
+ i0, i1, i2, i3 = aind[np.array(res.shape) - 1]
+ assert_(np.all(res[i0, i1, i2, i3] == a))
+ assert_(res.shape == self.tgtshape[(4 - ip, 4 - jp)])
+ assert_(not res.flags['OWNDATA'])
+
+
+class TestMoveaxis:
+ def test_move_to_end(self):
+ x = np.random.randn(5, 6, 7)
+ for source, expected in [(0, (6, 7, 5)),
+ (1, (5, 7, 6)),
+ (2, (5, 6, 7)),
+ (-1, (5, 6, 7))]:
+ actual = np.moveaxis(x, source, -1).shape
+ assert_(actual, expected)
+
+ def test_move_new_position(self):
+ x = np.random.randn(1, 2, 3, 4)
+ for source, destination, expected in [
+ (0, 1, (2, 1, 3, 4)),
+ (1, 2, (1, 3, 2, 4)),
+ (1, -1, (1, 3, 4, 2)),
+ ]:
+ actual = np.moveaxis(x, source, destination).shape
+ assert_(actual, expected)
+
+ def test_preserve_order(self):
+ x = np.zeros((1, 2, 3, 4))
+ for source, destination in [
+ (0, 0),
+ (3, -1),
+ (-1, 3),
+ ([0, -1], [0, -1]),
+ ([2, 0], [2, 0]),
+ (range(4), range(4)),
+ ]:
+ actual = np.moveaxis(x, source, destination).shape
+ assert_(actual, (1, 2, 3, 4))
+
+ def test_move_multiples(self):
+ x = np.zeros((0, 1, 2, 3))
+ for source, destination, expected in [
+ ([0, 1], [2, 3], (2, 3, 0, 1)),
+ ([2, 3], [0, 1], (2, 3, 0, 1)),
+ ([0, 1, 2], [2, 3, 0], (2, 3, 0, 1)),
+ ([3, 0], [1, 0], (0, 3, 1, 2)),
+ ([0, 3], [0, 1], (0, 3, 1, 2)),
+ ]:
+ actual = np.moveaxis(x, source, destination).shape
+ assert_(actual, expected)
+
+ def test_errors(self):
+ x = np.random.randn(1, 2, 3)
+ assert_raises_regex(AxisError, 'source.*out of bounds',
+ np.moveaxis, x, 3, 0)
+ assert_raises_regex(AxisError, 'source.*out of bounds',
+ np.moveaxis, x, -4, 0)
+ assert_raises_regex(AxisError, 'destination.*out of bounds',
+ np.moveaxis, x, 0, 5)
+ assert_raises_regex(ValueError, 'repeated axis in `source`',
+ np.moveaxis, x, [0, 0], [0, 1])
+ assert_raises_regex(ValueError, 'repeated axis in `destination`',
+ np.moveaxis, x, [0, 1], [1, 1])
+ assert_raises_regex(ValueError, 'must have the same number',
+ np.moveaxis, x, 0, [0, 1])
+ assert_raises_regex(ValueError, 'must have the same number',
+ np.moveaxis, x, [0, 1], [0])
+
+ def test_array_likes(self):
+ x = np.ma.zeros((1, 2, 3))
+ result = np.moveaxis(x, 0, 0)
+ assert_(x.shape, result.shape)
+ assert_(isinstance(result, np.ma.MaskedArray))
+
+ x = [1, 2, 3]
+ result = np.moveaxis(x, 0, 0)
+ assert_(x, list(result))
+ assert_(isinstance(result, np.ndarray))
+
+
+class TestCross:
+ @pytest.mark.filterwarnings(
+ "ignore:.*2-dimensional vectors.*:DeprecationWarning"
+ )
+ def test_2x2(self):
+ u = [1, 2]
+ v = [3, 4]
+ z = -2
+ cp = np.cross(u, v)
+ assert_equal(cp, z)
+ cp = np.cross(v, u)
+ assert_equal(cp, -z)
+
+ @pytest.mark.filterwarnings(
+ "ignore:.*2-dimensional vectors.*:DeprecationWarning"
+ )
+ def test_2x3(self):
+ u = [1, 2]
+ v = [3, 4, 5]
+ z = np.array([10, -5, -2])
+ cp = np.cross(u, v)
+ assert_equal(cp, z)
+ cp = np.cross(v, u)
+ assert_equal(cp, -z)
+
+ def test_3x3(self):
+ u = [1, 2, 3]
+ v = [4, 5, 6]
+ z = np.array([-3, 6, -3])
+ cp = np.cross(u, v)
+ assert_equal(cp, z)
+ cp = np.cross(v, u)
+ assert_equal(cp, -z)
+
+ @pytest.mark.filterwarnings(
+ "ignore:.*2-dimensional vectors.*:DeprecationWarning"
+ )
+ def test_broadcasting(self):
+ # Ticket #2624 (Trac #2032)
+ u = np.tile([1, 2], (11, 1))
+ v = np.tile([3, 4], (11, 1))
+ z = -2
+ assert_equal(np.cross(u, v), z)
+ assert_equal(np.cross(v, u), -z)
+ assert_equal(np.cross(u, u), 0)
+
+ u = np.tile([1, 2], (11, 1)).T
+ v = np.tile([3, 4, 5], (11, 1))
+ z = np.tile([10, -5, -2], (11, 1))
+ assert_equal(np.cross(u, v, axisa=0), z)
+ assert_equal(np.cross(v, u.T), -z)
+ assert_equal(np.cross(v, v), 0)
+
+ u = np.tile([1, 2, 3], (11, 1)).T
+ v = np.tile([3, 4], (11, 1)).T
+ z = np.tile([-12, 9, -2], (11, 1))
+ assert_equal(np.cross(u, v, axisa=0, axisb=0), z)
+ assert_equal(np.cross(v.T, u.T), -z)
+ assert_equal(np.cross(u.T, u.T), 0)
+
+ u = np.tile([1, 2, 3], (5, 1))
+ v = np.tile([4, 5, 6], (5, 1)).T
+ z = np.tile([-3, 6, -3], (5, 1))
+ assert_equal(np.cross(u, v, axisb=0), z)
+ assert_equal(np.cross(v.T, u), -z)
+ assert_equal(np.cross(u, u), 0)
+
+ @pytest.mark.filterwarnings(
+ "ignore:.*2-dimensional vectors.*:DeprecationWarning"
+ )
+ def test_broadcasting_shapes(self):
+ u = np.ones((2, 1, 3))
+ v = np.ones((5, 3))
+ assert_equal(np.cross(u, v).shape, (2, 5, 3))
+ u = np.ones((10, 3, 5))
+ v = np.ones((2, 5))
+ assert_equal(np.cross(u, v, axisa=1, axisb=0).shape, (10, 5, 3))
+ assert_raises(AxisError, np.cross, u, v, axisa=1, axisb=2)
+ assert_raises(AxisError, np.cross, u, v, axisa=3, axisb=0)
+ u = np.ones((10, 3, 5, 7))
+ v = np.ones((5, 7, 2))
+ assert_equal(np.cross(u, v, axisa=1, axisc=2).shape, (10, 5, 3, 7))
+ assert_raises(AxisError, np.cross, u, v, axisa=-5, axisb=2)
+ assert_raises(AxisError, np.cross, u, v, axisa=1, axisb=-4)
+ # gh-5885
+ u = np.ones((3, 4, 2))
+ for axisc in range(-2, 2):
+ assert_equal(np.cross(u, u, axisc=axisc).shape, (3, 4))
+
+ def test_uint8_int32_mixed_dtypes(self):
+ # regression test for gh-19138
+ u = np.array([[195, 8, 9]], np.uint8)
+ v = np.array([250, 166, 68], np.int32)
+ z = np.array([[950, 11010, -30370]], dtype=np.int32)
+ assert_equal(np.cross(v, u), z)
+ assert_equal(np.cross(u, v), -z)
+
+ @pytest.mark.parametrize("a, b", [(0, [1, 2]), ([1, 2], 3)])
+ def test_zero_dimension(self, a, b):
+ with pytest.raises(ValueError) as exc:
+ np.cross(a, b)
+ assert "At least one array has zero dimension" in str(exc.value)
+
+
+def test_outer_out_param():
+ arr1 = np.ones((5,))
+ arr2 = np.ones((2,))
+ arr3 = np.linspace(-2, 2, 5)
+ out1 = np.ndarray(shape=(5, 5))
+ out2 = np.ndarray(shape=(2, 5))
+ res1 = np.outer(arr1, arr3, out1)
+ assert_equal(res1, out1)
+ assert_equal(np.outer(arr2, arr3, out2), out2)
+
+
+class TestIndices:
+
+ def test_simple(self):
+ [x, y] = np.indices((4, 3))
+ assert_array_equal(x, np.array([[0, 0, 0],
+ [1, 1, 1],
+ [2, 2, 2],
+ [3, 3, 3]]))
+ assert_array_equal(y, np.array([[0, 1, 2],
+ [0, 1, 2],
+ [0, 1, 2],
+ [0, 1, 2]]))
+
+ def test_single_input(self):
+ [x] = np.indices((4,))
+ assert_array_equal(x, np.array([0, 1, 2, 3]))
+
+ [x] = np.indices((4,), sparse=True)
+ assert_array_equal(x, np.array([0, 1, 2, 3]))
+
+ def test_scalar_input(self):
+ assert_array_equal([], np.indices(()))
+ assert_array_equal([], np.indices((), sparse=True))
+ assert_array_equal([[]], np.indices((0,)))
+ assert_array_equal([[]], np.indices((0,), sparse=True))
+
+ def test_sparse(self):
+ [x, y] = np.indices((4, 3), sparse=True)
+ assert_array_equal(x, np.array([[0], [1], [2], [3]]))
+ assert_array_equal(y, np.array([[0, 1, 2]]))
+
+ @pytest.mark.parametrize("dtype", [np.int32, np.int64, np.float32, np.float64])
+ @pytest.mark.parametrize("dims", [(), (0,), (4, 3)])
+ def test_return_type(self, dtype, dims):
+ inds = np.indices(dims, dtype=dtype)
+ assert_(inds.dtype == dtype)
+
+ for arr in np.indices(dims, dtype=dtype, sparse=True):
+ assert_(arr.dtype == dtype)
+
+
+class TestRequire:
+ flag_names = ['C', 'C_CONTIGUOUS', 'CONTIGUOUS',
+ 'F', 'F_CONTIGUOUS', 'FORTRAN',
+ 'A', 'ALIGNED',
+ 'W', 'WRITEABLE',
+ 'O', 'OWNDATA']
+
+ def generate_all_false(self, dtype):
+ arr = np.zeros((2, 2), [('junk', 'i1'), ('a', dtype)])
+ arr.setflags(write=False)
+ a = arr['a']
+ assert_(not a.flags['C'])
+ assert_(not a.flags['F'])
+ assert_(not a.flags['O'])
+ assert_(not a.flags['W'])
+ assert_(not a.flags['A'])
+ return a
+
+ def set_and_check_flag(self, flag, dtype, arr):
+ if dtype is None:
+ dtype = arr.dtype
+ b = np.require(arr, dtype, [flag])
+ assert_(b.flags[flag])
+ assert_(b.dtype == dtype)
+
+ # a further call to np.require ought to return the same array
+ # unless OWNDATA is specified.
+ c = np.require(b, None, [flag])
+ if flag[0] != 'O':
+ assert_(c is b)
+ else:
+ assert_(c.flags[flag])
+
+ def test_require_each(self):
+
+ id = ['f8', 'i4']
+ fd = [None, 'f8', 'c16']
+ for idtype, fdtype, flag in itertools.product(id, fd, self.flag_names):
+ a = self.generate_all_false(idtype)
+ self.set_and_check_flag(flag, fdtype, a)
+
+ def test_unknown_requirement(self):
+ a = self.generate_all_false('f8')
+ assert_raises(KeyError, np.require, a, None, 'Q')
+
+ def test_non_array_input(self):
+ a = np.require([1, 2, 3, 4], 'i4', ['C', 'A', 'O'])
+ assert_(a.flags['O'])
+ assert_(a.flags['C'])
+ assert_(a.flags['A'])
+ assert_(a.dtype == 'i4')
+ assert_equal(a, [1, 2, 3, 4])
+
+ def test_C_and_F_simul(self):
+ a = self.generate_all_false('f8')
+ assert_raises(ValueError, np.require, a, None, ['C', 'F'])
+
+ def test_ensure_array(self):
+ class ArraySubclass(np.ndarray):
+ pass
+
+ a = ArraySubclass((2, 2))
+ b = np.require(a, None, ['E'])
+ assert_(type(b) is np.ndarray)
+
+ def test_preserve_subtype(self):
+ class ArraySubclass(np.ndarray):
+ pass
+
+ for flag in self.flag_names:
+ a = ArraySubclass((2, 2))
+ self.set_and_check_flag(flag, None, a)
+
+
+class TestBroadcast:
+ def test_broadcast_in_args(self):
+ # gh-5881
+ arrs = [np.empty((6, 7)), np.empty((5, 6, 1)), np.empty((7,)),
+ np.empty((5, 1, 7))]
+ mits = [np.broadcast(*arrs),
+ np.broadcast(np.broadcast(*arrs[:0]), np.broadcast(*arrs[0:])),
+ np.broadcast(np.broadcast(*arrs[:1]), np.broadcast(*arrs[1:])),
+ np.broadcast(np.broadcast(*arrs[:2]), np.broadcast(*arrs[2:])),
+ np.broadcast(arrs[0], np.broadcast(*arrs[1:-1]), arrs[-1])]
+ for mit in mits:
+ assert_equal(mit.shape, (5, 6, 7))
+ assert_equal(mit.ndim, 3)
+ assert_equal(mit.nd, 3)
+ assert_equal(mit.numiter, 4)
+ for a, ia in zip(arrs, mit.iters):
+ assert_(a is ia.base)
+
+ def test_broadcast_single_arg(self):
+ # gh-6899
+ arrs = [np.empty((5, 6, 7))]
+ mit = np.broadcast(*arrs)
+ assert_equal(mit.shape, (5, 6, 7))
+ assert_equal(mit.ndim, 3)
+ assert_equal(mit.nd, 3)
+ assert_equal(mit.numiter, 1)
+ assert_(arrs[0] is mit.iters[0].base)
+
+ def test_number_of_arguments(self):
+ arr = np.empty((5,))
+ for j in range(70):
+ arrs = [arr] * j
+ if j > 64:
+ assert_raises(ValueError, np.broadcast, *arrs)
+ else:
+ mit = np.broadcast(*arrs)
+ assert_equal(mit.numiter, j)
+
+ def test_broadcast_error_kwargs(self):
+ # gh-13455
+ arrs = [np.empty((5, 6, 7))]
+ mit = np.broadcast(*arrs)
+ mit2 = np.broadcast(*arrs, **{}) # noqa: PIE804
+ assert_equal(mit.shape, mit2.shape)
+ assert_equal(mit.ndim, mit2.ndim)
+ assert_equal(mit.nd, mit2.nd)
+ assert_equal(mit.numiter, mit2.numiter)
+ assert_(mit.iters[0].base is mit2.iters[0].base)
+
+ assert_raises(ValueError, np.broadcast, 1, x=1)
+
+ def test_shape_mismatch_error_message(self):
+ with pytest.raises(ValueError, match=r"arg 0 with shape \(1, 3\) and "
+ r"arg 2 with shape \(2,\)"):
+ np.broadcast([[1, 2, 3]], [[4], [5]], [6, 7])
+
+
+class TestKeepdims:
+
+ class sub_array(np.ndarray):
+ def sum(self, axis=None, dtype=None, out=None):
+ return np.ndarray.sum(self, axis, dtype, out, keepdims=True)
+
+ def test_raise(self):
+ sub_class = self.sub_array
+ x = np.arange(30).view(sub_class)
+ assert_raises(TypeError, np.sum, x, keepdims=True)
+
+
+class TestTensordot:
+
+ def test_zero_dimension(self):
+ # Test resolution to issue #5663
+ a = np.ndarray((3, 0))
+ b = np.ndarray((0, 4))
+ td = np.tensordot(a, b, (1, 0))
+ assert_array_equal(td, np.dot(a, b))
+ assert_array_equal(td, np.einsum('ij,jk', a, b))
+
+ def test_zero_dimensional(self):
+ # gh-12130
+ arr_0d = np.array(1)
+ ret = np.tensordot(arr_0d, arr_0d, ([], [])) # contracting no axes is well defined
+ assert_array_equal(ret, arr_0d)
+
+
+class TestAsType:
+
+ def test_astype(self):
+ data = [[1, 2], [3, 4]]
+ actual = np.astype(
+ np.array(data, dtype=np.int64), np.uint32
+ )
+ expected = np.array(data, dtype=np.uint32)
+
+ assert_array_equal(actual, expected)
+ assert_equal(actual.dtype, expected.dtype)
+
+ assert np.shares_memory(
+ actual, np.astype(actual, actual.dtype, copy=False)
+ )
+
+ actual = np.astype(np.int64(10), np.float64)
+ expected = np.float64(10)
+ assert_equal(actual, expected)
+ assert_equal(actual.dtype, expected.dtype)
+
+ with pytest.raises(TypeError, match="Input should be a NumPy array"):
+ np.astype(data, np.float64)
diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_numerictypes.py b/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_numerictypes.py
new file mode 100644
index 0000000..c9a2ac0
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_numerictypes.py
@@ -0,0 +1,622 @@
+import itertools
+import sys
+
+import pytest
+
+import numpy as np
+import numpy._core.numerictypes as nt
+from numpy._core.numerictypes import issctype, maximum_sctype, sctype2char, sctypes
+from numpy.testing import (
+ IS_PYPY,
+ assert_,
+ assert_equal,
+ assert_raises,
+ assert_raises_regex,
+)
+
+# This is the structure of the table used for plain objects:
+#
+# +-+-+-+
+# |x|y|z|
+# +-+-+-+
+
+# Structure of a plain array description:
+Pdescr = [
+ ('x', 'i4', (2,)),
+ ('y', 'f8', (2, 2)),
+ ('z', 'u1')]
+
+# A plain list of tuples with values for testing:
+PbufferT = [
+ # x y z
+ ([3, 2], [[6., 4.], [6., 4.]], 8),
+ ([4, 3], [[7., 5.], [7., 5.]], 9),
+ ]
+
+
+# This is the structure of the table used for nested objects (DON'T PANIC!):
+#
+# +-+---------------------------------+-----+----------+-+-+
+# |x|Info |color|info |y|z|
+# | +-----+--+----------------+----+--+ +----+-----+ | |
+# | |value|y2|Info2 |name|z2| |Name|Value| | |
+# | | | +----+-----+--+--+ | | | | | | |
+# | | | |name|value|y3|z3| | | | | | | |
+# +-+-----+--+----+-----+--+--+----+--+-----+----+-----+-+-+
+#
+
+# The corresponding nested array description:
+Ndescr = [
+ ('x', 'i4', (2,)),
+ ('Info', [
+ ('value', 'c16'),
+ ('y2', 'f8'),
+ ('Info2', [
+ ('name', 'S2'),
+ ('value', 'c16', (2,)),
+ ('y3', 'f8', (2,)),
+ ('z3', 'u4', (2,))]),
+ ('name', 'S2'),
+ ('z2', 'b1')]),
+ ('color', 'S2'),
+ ('info', [
+ ('Name', 'U8'),
+ ('Value', 'c16')]),
+ ('y', 'f8', (2, 2)),
+ ('z', 'u1')]
+
+NbufferT = [
+ # x Info color info y z
+ # value y2 Info2 name z2 Name Value
+ # name value y3 z3
+ ([3, 2], (6j, 6., (b'nn', [6j, 4j], [6., 4.], [1, 2]), b'NN', True),
+ b'cc', ('NN', 6j), [[6., 4.], [6., 4.]], 8),
+ ([4, 3], (7j, 7., (b'oo', [7j, 5j], [7., 5.], [2, 1]), b'OO', False),
+ b'dd', ('OO', 7j), [[7., 5.], [7., 5.]], 9),
+ ]
+
+
+byteorder = {'little': '<', 'big': '>'}[sys.byteorder]
+
+def normalize_descr(descr):
+ "Normalize a description adding the platform byteorder."
+
+ out = []
+ for item in descr:
+ dtype = item[1]
+ if isinstance(dtype, str):
+ if dtype[0] not in ['|', '<', '>']:
+ onebyte = dtype[1:] == "1"
+ if onebyte or dtype[0] in ['S', 'V', 'b']:
+ dtype = "|" + dtype
+ else:
+ dtype = byteorder + dtype
+ if len(item) > 2 and np.prod(item[2]) > 1:
+ nitem = (item[0], dtype, item[2])
+ else:
+ nitem = (item[0], dtype)
+ out.append(nitem)
+ elif isinstance(dtype, list):
+ l = normalize_descr(dtype)
+ out.append((item[0], l))
+ else:
+ raise ValueError(f"Expected a str or list and got {type(item)}")
+ return out
+
+
+############################################################
+# Creation tests
+############################################################
+
+class CreateZeros:
+ """Check the creation of heterogeneous arrays zero-valued"""
+
+ def test_zeros0D(self):
+ """Check creation of 0-dimensional objects"""
+ h = np.zeros((), dtype=self._descr)
+ assert_(normalize_descr(self._descr) == h.dtype.descr)
+ assert_(h.dtype.fields['x'][0].name[:4] == 'void')
+ assert_(h.dtype.fields['x'][0].char == 'V')
+ assert_(h.dtype.fields['x'][0].type == np.void)
+ # A small check that data is ok
+ assert_equal(h['z'], np.zeros((), dtype='u1'))
+
+ def test_zerosSD(self):
+ """Check creation of single-dimensional objects"""
+ h = np.zeros((2,), dtype=self._descr)
+ assert_(normalize_descr(self._descr) == h.dtype.descr)
+ assert_(h.dtype['y'].name[:4] == 'void')
+ assert_(h.dtype['y'].char == 'V')
+ assert_(h.dtype['y'].type == np.void)
+ # A small check that data is ok
+ assert_equal(h['z'], np.zeros((2,), dtype='u1'))
+
+ def test_zerosMD(self):
+ """Check creation of multi-dimensional objects"""
+ h = np.zeros((2, 3), dtype=self._descr)
+ assert_(normalize_descr(self._descr) == h.dtype.descr)
+ assert_(h.dtype['z'].name == 'uint8')
+ assert_(h.dtype['z'].char == 'B')
+ assert_(h.dtype['z'].type == np.uint8)
+ # A small check that data is ok
+ assert_equal(h['z'], np.zeros((2, 3), dtype='u1'))
+
+
+class TestCreateZerosPlain(CreateZeros):
+ """Check the creation of heterogeneous arrays zero-valued (plain)"""
+ _descr = Pdescr
+
+class TestCreateZerosNested(CreateZeros):
+ """Check the creation of heterogeneous arrays zero-valued (nested)"""
+ _descr = Ndescr
+
+
+class CreateValues:
+ """Check the creation of heterogeneous arrays with values"""
+
+ def test_tuple(self):
+ """Check creation from tuples"""
+ h = np.array(self._buffer, dtype=self._descr)
+ assert_(normalize_descr(self._descr) == h.dtype.descr)
+ if self.multiple_rows:
+ assert_(h.shape == (2,))
+ else:
+ assert_(h.shape == ())
+
+ def test_list_of_tuple(self):
+ """Check creation from list of tuples"""
+ h = np.array([self._buffer], dtype=self._descr)
+ assert_(normalize_descr(self._descr) == h.dtype.descr)
+ if self.multiple_rows:
+ assert_(h.shape == (1, 2))
+ else:
+ assert_(h.shape == (1,))
+
+ def test_list_of_list_of_tuple(self):
+ """Check creation from list of list of tuples"""
+ h = np.array([[self._buffer]], dtype=self._descr)
+ assert_(normalize_descr(self._descr) == h.dtype.descr)
+ if self.multiple_rows:
+ assert_(h.shape == (1, 1, 2))
+ else:
+ assert_(h.shape == (1, 1))
+
+
+class TestCreateValuesPlainSingle(CreateValues):
+ """Check the creation of heterogeneous arrays (plain, single row)"""
+ _descr = Pdescr
+ multiple_rows = 0
+ _buffer = PbufferT[0]
+
+class TestCreateValuesPlainMultiple(CreateValues):
+ """Check the creation of heterogeneous arrays (plain, multiple rows)"""
+ _descr = Pdescr
+ multiple_rows = 1
+ _buffer = PbufferT
+
+class TestCreateValuesNestedSingle(CreateValues):
+ """Check the creation of heterogeneous arrays (nested, single row)"""
+ _descr = Ndescr
+ multiple_rows = 0
+ _buffer = NbufferT[0]
+
+class TestCreateValuesNestedMultiple(CreateValues):
+ """Check the creation of heterogeneous arrays (nested, multiple rows)"""
+ _descr = Ndescr
+ multiple_rows = 1
+ _buffer = NbufferT
+
+
+############################################################
+# Reading tests
+############################################################
+
+class ReadValuesPlain:
+ """Check the reading of values in heterogeneous arrays (plain)"""
+
+ def test_access_fields(self):
+ h = np.array(self._buffer, dtype=self._descr)
+ if not self.multiple_rows:
+ assert_(h.shape == ())
+ assert_equal(h['x'], np.array(self._buffer[0], dtype='i4'))
+ assert_equal(h['y'], np.array(self._buffer[1], dtype='f8'))
+ assert_equal(h['z'], np.array(self._buffer[2], dtype='u1'))
+ else:
+ assert_(len(h) == 2)
+ assert_equal(h['x'], np.array([self._buffer[0][0],
+ self._buffer[1][0]], dtype='i4'))
+ assert_equal(h['y'], np.array([self._buffer[0][1],
+ self._buffer[1][1]], dtype='f8'))
+ assert_equal(h['z'], np.array([self._buffer[0][2],
+ self._buffer[1][2]], dtype='u1'))
+
+
+class TestReadValuesPlainSingle(ReadValuesPlain):
+ """Check the creation of heterogeneous arrays (plain, single row)"""
+ _descr = Pdescr
+ multiple_rows = 0
+ _buffer = PbufferT[0]
+
+class TestReadValuesPlainMultiple(ReadValuesPlain):
+ """Check the values of heterogeneous arrays (plain, multiple rows)"""
+ _descr = Pdescr
+ multiple_rows = 1
+ _buffer = PbufferT
+
+class ReadValuesNested:
+ """Check the reading of values in heterogeneous arrays (nested)"""
+
+ def test_access_top_fields(self):
+ """Check reading the top fields of a nested array"""
+ h = np.array(self._buffer, dtype=self._descr)
+ if not self.multiple_rows:
+ assert_(h.shape == ())
+ assert_equal(h['x'], np.array(self._buffer[0], dtype='i4'))
+ assert_equal(h['y'], np.array(self._buffer[4], dtype='f8'))
+ assert_equal(h['z'], np.array(self._buffer[5], dtype='u1'))
+ else:
+ assert_(len(h) == 2)
+ assert_equal(h['x'], np.array([self._buffer[0][0],
+ self._buffer[1][0]], dtype='i4'))
+ assert_equal(h['y'], np.array([self._buffer[0][4],
+ self._buffer[1][4]], dtype='f8'))
+ assert_equal(h['z'], np.array([self._buffer[0][5],
+ self._buffer[1][5]], dtype='u1'))
+
+ def test_nested1_acessors(self):
+ """Check reading the nested fields of a nested array (1st level)"""
+ h = np.array(self._buffer, dtype=self._descr)
+ if not self.multiple_rows:
+ assert_equal(h['Info']['value'],
+ np.array(self._buffer[1][0], dtype='c16'))
+ assert_equal(h['Info']['y2'],
+ np.array(self._buffer[1][1], dtype='f8'))
+ assert_equal(h['info']['Name'],
+ np.array(self._buffer[3][0], dtype='U2'))
+ assert_equal(h['info']['Value'],
+ np.array(self._buffer[3][1], dtype='c16'))
+ else:
+ assert_equal(h['Info']['value'],
+ np.array([self._buffer[0][1][0],
+ self._buffer[1][1][0]],
+ dtype='c16'))
+ assert_equal(h['Info']['y2'],
+ np.array([self._buffer[0][1][1],
+ self._buffer[1][1][1]],
+ dtype='f8'))
+ assert_equal(h['info']['Name'],
+ np.array([self._buffer[0][3][0],
+ self._buffer[1][3][0]],
+ dtype='U2'))
+ assert_equal(h['info']['Value'],
+ np.array([self._buffer[0][3][1],
+ self._buffer[1][3][1]],
+ dtype='c16'))
+
+ def test_nested2_acessors(self):
+ """Check reading the nested fields of a nested array (2nd level)"""
+ h = np.array(self._buffer, dtype=self._descr)
+ if not self.multiple_rows:
+ assert_equal(h['Info']['Info2']['value'],
+ np.array(self._buffer[1][2][1], dtype='c16'))
+ assert_equal(h['Info']['Info2']['z3'],
+ np.array(self._buffer[1][2][3], dtype='u4'))
+ else:
+ assert_equal(h['Info']['Info2']['value'],
+ np.array([self._buffer[0][1][2][1],
+ self._buffer[1][1][2][1]],
+ dtype='c16'))
+ assert_equal(h['Info']['Info2']['z3'],
+ np.array([self._buffer[0][1][2][3],
+ self._buffer[1][1][2][3]],
+ dtype='u4'))
+
+ def test_nested1_descriptor(self):
+ """Check access nested descriptors of a nested array (1st level)"""
+ h = np.array(self._buffer, dtype=self._descr)
+ assert_(h.dtype['Info']['value'].name == 'complex128')
+ assert_(h.dtype['Info']['y2'].name == 'float64')
+ assert_(h.dtype['info']['Name'].name == 'str256')
+ assert_(h.dtype['info']['Value'].name == 'complex128')
+
+ def test_nested2_descriptor(self):
+ """Check access nested descriptors of a nested array (2nd level)"""
+ h = np.array(self._buffer, dtype=self._descr)
+ assert_(h.dtype['Info']['Info2']['value'].name == 'void256')
+ assert_(h.dtype['Info']['Info2']['z3'].name == 'void64')
+
+
+class TestReadValuesNestedSingle(ReadValuesNested):
+ """Check the values of heterogeneous arrays (nested, single row)"""
+ _descr = Ndescr
+ multiple_rows = False
+ _buffer = NbufferT[0]
+
+class TestReadValuesNestedMultiple(ReadValuesNested):
+ """Check the values of heterogeneous arrays (nested, multiple rows)"""
+ _descr = Ndescr
+ multiple_rows = True
+ _buffer = NbufferT
+
+class TestEmptyField:
+ def test_assign(self):
+ a = np.arange(10, dtype=np.float32)
+ a.dtype = [("int", "<0i4"), ("float", "<2f4")]
+ assert_(a['int'].shape == (5, 0))
+ assert_(a['float'].shape == (5, 2))
+
+
+class TestMultipleFields:
+ def setup_method(self):
+ self.ary = np.array([(1, 2, 3, 4), (5, 6, 7, 8)], dtype='i4,f4,i2,c8')
+
+ def _bad_call(self):
+ return self.ary['f0', 'f1']
+
+ def test_no_tuple(self):
+ assert_raises(IndexError, self._bad_call)
+
+ def test_return(self):
+ res = self.ary[['f0', 'f2']].tolist()
+ assert_(res == [(1, 3), (5, 7)])
+
+
+class TestIsSubDType:
+ # scalar types can be promoted into dtypes
+ wrappers = [np.dtype, lambda x: x]
+
+ def test_both_abstract(self):
+ assert_(np.issubdtype(np.floating, np.inexact))
+ assert_(not np.issubdtype(np.inexact, np.floating))
+
+ def test_same(self):
+ for cls in (np.float32, np.int32):
+ for w1, w2 in itertools.product(self.wrappers, repeat=2):
+ assert_(np.issubdtype(w1(cls), w2(cls)))
+
+ def test_subclass(self):
+ # note we cannot promote floating to a dtype, as it would turn into a
+ # concrete type
+ for w in self.wrappers:
+ assert_(np.issubdtype(w(np.float32), np.floating))
+ assert_(np.issubdtype(w(np.float64), np.floating))
+
+ def test_subclass_backwards(self):
+ for w in self.wrappers:
+ assert_(not np.issubdtype(np.floating, w(np.float32)))
+ assert_(not np.issubdtype(np.floating, w(np.float64)))
+
+ def test_sibling_class(self):
+ for w1, w2 in itertools.product(self.wrappers, repeat=2):
+ assert_(not np.issubdtype(w1(np.float32), w2(np.float64)))
+ assert_(not np.issubdtype(w1(np.float64), w2(np.float32)))
+
+ def test_nondtype_nonscalartype(self):
+ # See gh-14619 and gh-9505 which introduced the deprecation to fix
+ # this. These tests are directly taken from gh-9505
+ assert not np.issubdtype(np.float32, 'float64')
+ assert not np.issubdtype(np.float32, 'f8')
+ assert not np.issubdtype(np.int32, str)
+ assert not np.issubdtype(np.int32, 'int64')
+ assert not np.issubdtype(np.str_, 'void')
+ # for the following the correct spellings are
+ # np.integer, np.floating, or np.complexfloating respectively:
+ assert not np.issubdtype(np.int8, int) # np.int8 is never np.int_
+ assert not np.issubdtype(np.float32, float)
+ assert not np.issubdtype(np.complex64, complex)
+ assert not np.issubdtype(np.float32, "float")
+ assert not np.issubdtype(np.float64, "f")
+
+ # Test the same for the correct first datatype and abstract one
+ # in the case of int, float, complex:
+ assert np.issubdtype(np.float64, 'float64')
+ assert np.issubdtype(np.float64, 'f8')
+ assert np.issubdtype(np.str_, str)
+ assert np.issubdtype(np.int64, 'int64')
+ assert np.issubdtype(np.void, 'void')
+ assert np.issubdtype(np.int8, np.integer)
+ assert np.issubdtype(np.float32, np.floating)
+ assert np.issubdtype(np.complex64, np.complexfloating)
+ assert np.issubdtype(np.float64, "float")
+ assert np.issubdtype(np.float32, "f")
+
+
+class TestIsDType:
+ """
+ Check correctness of `np.isdtype`. The test considers different argument
+ configurations: `np.isdtype(dtype, k1)` and `np.isdtype(dtype, (k1, k2))`
+ with concrete dtypes and dtype groups.
+ """
+ dtype_group_dict = {
+ "signed integer": sctypes["int"],
+ "unsigned integer": sctypes["uint"],
+ "integral": sctypes["int"] + sctypes["uint"],
+ "real floating": sctypes["float"],
+ "complex floating": sctypes["complex"],
+ "numeric": (
+ sctypes["int"] + sctypes["uint"] + sctypes["float"] +
+ sctypes["complex"]
+ )
+ }
+
+ @pytest.mark.parametrize(
+ "dtype,close_dtype",
+ [
+ (np.int64, np.int32), (np.uint64, np.uint32),
+ (np.float64, np.float32), (np.complex128, np.complex64)
+ ]
+ )
+ @pytest.mark.parametrize(
+ "dtype_group",
+ [
+ None, "signed integer", "unsigned integer", "integral",
+ "real floating", "complex floating", "numeric"
+ ]
+ )
+ def test_isdtype(self, dtype, close_dtype, dtype_group):
+ # First check if same dtypes return `true` and different ones
+ # give `false` (even if they're close in the dtype hierarchy!)
+ if dtype_group is None:
+ assert np.isdtype(dtype, dtype)
+ assert not np.isdtype(dtype, close_dtype)
+ assert np.isdtype(dtype, (dtype, close_dtype))
+
+ # Check that dtype and a dtype group that it belongs to
+ # return `true`, and `false` otherwise.
+ elif dtype in self.dtype_group_dict[dtype_group]:
+ assert np.isdtype(dtype, dtype_group)
+ assert np.isdtype(dtype, (close_dtype, dtype_group))
+ else:
+ assert not np.isdtype(dtype, dtype_group)
+
+ def test_isdtype_invalid_args(self):
+ with assert_raises_regex(TypeError, r".*must be a NumPy dtype.*"):
+ np.isdtype("int64", np.int64)
+ with assert_raises_regex(TypeError, r".*kind argument must.*"):
+ np.isdtype(np.int64, 1)
+ with assert_raises_regex(ValueError, r".*not a known kind name.*"):
+ np.isdtype(np.int64, "int64")
+
+ def test_sctypes_complete(self):
+ # issue 26439: int32/intc were masking each other on 32-bit builds
+ assert np.int32 in sctypes['int']
+ assert np.intc in sctypes['int']
+ assert np.int64 in sctypes['int']
+ assert np.uint32 in sctypes['uint']
+ assert np.uintc in sctypes['uint']
+ assert np.uint64 in sctypes['uint']
+
+class TestSctypeDict:
+ def test_longdouble(self):
+ assert_(np._core.sctypeDict['float64'] is not np.longdouble)
+ assert_(np._core.sctypeDict['complex128'] is not np.clongdouble)
+
+ def test_ulong(self):
+ assert np._core.sctypeDict['ulong'] is np.ulong
+ assert np.dtype(np.ulong) is np.dtype("ulong")
+ assert np.dtype(np.ulong).itemsize == np.dtype(np.long).itemsize
+
+
+@pytest.mark.filterwarnings("ignore:.*maximum_sctype.*:DeprecationWarning")
+class TestMaximumSctype:
+
+ # note that parametrizing with sctype['int'] and similar would skip types
+ # with the same size (gh-11923)
+
+ @pytest.mark.parametrize(
+ 't', [np.byte, np.short, np.intc, np.long, np.longlong]
+ )
+ def test_int(self, t):
+ assert_equal(maximum_sctype(t), np._core.sctypes['int'][-1])
+
+ @pytest.mark.parametrize(
+ 't', [np.ubyte, np.ushort, np.uintc, np.ulong, np.ulonglong]
+ )
+ def test_uint(self, t):
+ assert_equal(maximum_sctype(t), np._core.sctypes['uint'][-1])
+
+ @pytest.mark.parametrize('t', [np.half, np.single, np.double, np.longdouble])
+ def test_float(self, t):
+ assert_equal(maximum_sctype(t), np._core.sctypes['float'][-1])
+
+ @pytest.mark.parametrize('t', [np.csingle, np.cdouble, np.clongdouble])
+ def test_complex(self, t):
+ assert_equal(maximum_sctype(t), np._core.sctypes['complex'][-1])
+
+ @pytest.mark.parametrize('t', [np.bool, np.object_, np.str_, np.bytes_,
+ np.void])
+ def test_other(self, t):
+ assert_equal(maximum_sctype(t), t)
+
+
+class Test_sctype2char:
+ # This function is old enough that we're really just documenting the quirks
+ # at this point.
+
+ def test_scalar_type(self):
+ assert_equal(sctype2char(np.double), 'd')
+ assert_equal(sctype2char(np.long), 'l')
+ assert_equal(sctype2char(np.int_), np.array(0).dtype.char)
+ assert_equal(sctype2char(np.str_), 'U')
+ assert_equal(sctype2char(np.bytes_), 'S')
+
+ def test_other_type(self):
+ assert_equal(sctype2char(float), 'd')
+ assert_equal(sctype2char(list), 'O')
+ assert_equal(sctype2char(np.ndarray), 'O')
+
+ def test_third_party_scalar_type(self):
+ from numpy._core._rational_tests import rational
+ assert_raises(KeyError, sctype2char, rational)
+ assert_raises(KeyError, sctype2char, rational(1))
+
+ def test_array_instance(self):
+ assert_equal(sctype2char(np.array([1.0, 2.0])), 'd')
+
+ def test_abstract_type(self):
+ assert_raises(KeyError, sctype2char, np.floating)
+
+ def test_non_type(self):
+ assert_raises(ValueError, sctype2char, 1)
+
+@pytest.mark.parametrize("rep, expected", [
+ (np.int32, True),
+ (list, False),
+ (1.1, False),
+ (str, True),
+ (np.dtype(np.float64), True),
+ (np.dtype((np.int16, (3, 4))), True),
+ (np.dtype([('a', np.int8)]), True),
+ ])
+def test_issctype(rep, expected):
+ # ensure proper identification of scalar
+ # data-types by issctype()
+ actual = issctype(rep)
+ assert type(actual) is bool
+ assert_equal(actual, expected)
+
+
+@pytest.mark.skipif(sys.flags.optimize > 1,
+ reason="no docstrings present to inspect when PYTHONOPTIMIZE/Py_OptimizeFlag > 1")
+@pytest.mark.xfail(IS_PYPY,
+ reason="PyPy cannot modify tp_doc after PyType_Ready")
+class TestDocStrings:
+ def test_platform_dependent_aliases(self):
+ if np.int64 is np.int_:
+ assert_('int64' in np.int_.__doc__)
+ elif np.int64 is np.longlong:
+ assert_('int64' in np.longlong.__doc__)
+
+
+class TestScalarTypeNames:
+ # gh-9799
+
+ numeric_types = [
+ np.byte, np.short, np.intc, np.long, np.longlong,
+ np.ubyte, np.ushort, np.uintc, np.ulong, np.ulonglong,
+ np.half, np.single, np.double, np.longdouble,
+ np.csingle, np.cdouble, np.clongdouble,
+ ]
+
+ def test_names_are_unique(self):
+ # none of the above may be aliases for each other
+ assert len(set(self.numeric_types)) == len(self.numeric_types)
+
+ # names must be unique
+ names = [t.__name__ for t in self.numeric_types]
+ assert len(set(names)) == len(names)
+
+ @pytest.mark.parametrize('t', numeric_types)
+ def test_names_reflect_attributes(self, t):
+ """ Test that names correspond to where the type is under ``np.`` """
+ assert getattr(np, t.__name__) is t
+
+ @pytest.mark.parametrize('t', numeric_types)
+ def test_names_are_undersood_by_dtype(self, t):
+ """ Test the dtype constructor maps names back to the type """
+ assert np.dtype(t.__name__).type is t
+
+
+class TestBoolDefinition:
+ def test_bool_definition(self):
+ assert nt.bool is np.bool
diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_overrides.py b/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_overrides.py
new file mode 100644
index 0000000..b0d7337
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_overrides.py
@@ -0,0 +1,791 @@
+import inspect
+import os
+import pickle
+import sys
+import tempfile
+from io import StringIO
+from unittest import mock
+
+import pytest
+
+import numpy as np
+from numpy._core.overrides import (
+ _get_implementing_args,
+ array_function_dispatch,
+ verify_matching_signatures,
+)
+from numpy.testing import assert_, assert_equal, assert_raises, assert_raises_regex
+from numpy.testing.overrides import get_overridable_numpy_array_functions
+
+
+def _return_not_implemented(self, *args, **kwargs):
+ return NotImplemented
+
+
+# need to define this at the top level to test pickling
+@array_function_dispatch(lambda array: (array,))
+def dispatched_one_arg(array):
+ """Docstring."""
+ return 'original'
+
+
+@array_function_dispatch(lambda array1, array2: (array1, array2))
+def dispatched_two_arg(array1, array2):
+ """Docstring."""
+ return 'original'
+
+
+class TestGetImplementingArgs:
+
+ def test_ndarray(self):
+ array = np.array(1)
+
+ args = _get_implementing_args([array])
+ assert_equal(list(args), [array])
+
+ args = _get_implementing_args([array, array])
+ assert_equal(list(args), [array])
+
+ args = _get_implementing_args([array, 1])
+ assert_equal(list(args), [array])
+
+ args = _get_implementing_args([1, array])
+ assert_equal(list(args), [array])
+
+ def test_ndarray_subclasses(self):
+
+ class OverrideSub(np.ndarray):
+ __array_function__ = _return_not_implemented
+
+ class NoOverrideSub(np.ndarray):
+ pass
+
+ array = np.array(1).view(np.ndarray)
+ override_sub = np.array(1).view(OverrideSub)
+ no_override_sub = np.array(1).view(NoOverrideSub)
+
+ args = _get_implementing_args([array, override_sub])
+ assert_equal(list(args), [override_sub, array])
+
+ args = _get_implementing_args([array, no_override_sub])
+ assert_equal(list(args), [no_override_sub, array])
+
+ args = _get_implementing_args(
+ [override_sub, no_override_sub])
+ assert_equal(list(args), [override_sub, no_override_sub])
+
+ def test_ndarray_and_duck_array(self):
+
+ class Other:
+ __array_function__ = _return_not_implemented
+
+ array = np.array(1)
+ other = Other()
+
+ args = _get_implementing_args([other, array])
+ assert_equal(list(args), [other, array])
+
+ args = _get_implementing_args([array, other])
+ assert_equal(list(args), [array, other])
+
+ def test_ndarray_subclass_and_duck_array(self):
+
+ class OverrideSub(np.ndarray):
+ __array_function__ = _return_not_implemented
+
+ class Other:
+ __array_function__ = _return_not_implemented
+
+ array = np.array(1)
+ subarray = np.array(1).view(OverrideSub)
+ other = Other()
+
+ assert_equal(_get_implementing_args([array, subarray, other]),
+ [subarray, array, other])
+ assert_equal(_get_implementing_args([array, other, subarray]),
+ [subarray, array, other])
+
+ def test_many_duck_arrays(self):
+
+ class A:
+ __array_function__ = _return_not_implemented
+
+ class B(A):
+ __array_function__ = _return_not_implemented
+
+ class C(A):
+ __array_function__ = _return_not_implemented
+
+ class D:
+ __array_function__ = _return_not_implemented
+
+ a = A()
+ b = B()
+ c = C()
+ d = D()
+
+ assert_equal(_get_implementing_args([1]), [])
+ assert_equal(_get_implementing_args([a]), [a])
+ assert_equal(_get_implementing_args([a, 1]), [a])
+ assert_equal(_get_implementing_args([a, a, a]), [a])
+ assert_equal(_get_implementing_args([a, d, a]), [a, d])
+ assert_equal(_get_implementing_args([a, b]), [b, a])
+ assert_equal(_get_implementing_args([b, a]), [b, a])
+ assert_equal(_get_implementing_args([a, b, c]), [b, c, a])
+ assert_equal(_get_implementing_args([a, c, b]), [c, b, a])
+
+ def test_too_many_duck_arrays(self):
+ namespace = {'__array_function__': _return_not_implemented}
+ types = [type('A' + str(i), (object,), namespace) for i in range(65)]
+ relevant_args = [t() for t in types]
+
+ actual = _get_implementing_args(relevant_args[:64])
+ assert_equal(actual, relevant_args[:64])
+
+ with assert_raises_regex(TypeError, 'distinct argument types'):
+ _get_implementing_args(relevant_args)
+
+
+class TestNDArrayArrayFunction:
+
+ def test_method(self):
+
+ class Other:
+ __array_function__ = _return_not_implemented
+
+ class NoOverrideSub(np.ndarray):
+ pass
+
+ class OverrideSub(np.ndarray):
+ __array_function__ = _return_not_implemented
+
+ array = np.array([1])
+ other = Other()
+ no_override_sub = array.view(NoOverrideSub)
+ override_sub = array.view(OverrideSub)
+
+ result = array.__array_function__(func=dispatched_two_arg,
+ types=(np.ndarray,),
+ args=(array, 1.), kwargs={})
+ assert_equal(result, 'original')
+
+ result = array.__array_function__(func=dispatched_two_arg,
+ types=(np.ndarray, Other),
+ args=(array, other), kwargs={})
+ assert_(result is NotImplemented)
+
+ result = array.__array_function__(func=dispatched_two_arg,
+ types=(np.ndarray, NoOverrideSub),
+ args=(array, no_override_sub),
+ kwargs={})
+ assert_equal(result, 'original')
+
+ result = array.__array_function__(func=dispatched_two_arg,
+ types=(np.ndarray, OverrideSub),
+ args=(array, override_sub),
+ kwargs={})
+ assert_equal(result, 'original')
+
+ with assert_raises_regex(TypeError, 'no implementation found'):
+ np.concatenate((array, other))
+
+ expected = np.concatenate((array, array))
+ result = np.concatenate((array, no_override_sub))
+ assert_equal(result, expected.view(NoOverrideSub))
+ result = np.concatenate((array, override_sub))
+ assert_equal(result, expected.view(OverrideSub))
+
+ def test_no_wrapper(self):
+ # Regular numpy functions have wrappers, but do not presume
+ # all functions do (array creation ones do not): check that
+ # we just call the function in that case.
+ array = np.array(1)
+ func = lambda x: x * 2
+ result = array.__array_function__(func=func, types=(np.ndarray,),
+ args=(array,), kwargs={})
+ assert_equal(result, array * 2)
+
+ def test_wrong_arguments(self):
+ # Check our implementation guards against wrong arguments.
+ a = np.array([1, 2])
+ with pytest.raises(TypeError, match="args must be a tuple"):
+ a.__array_function__(np.reshape, (np.ndarray,), a, (2, 1))
+ with pytest.raises(TypeError, match="kwargs must be a dict"):
+ a.__array_function__(np.reshape, (np.ndarray,), (a,), (2, 1))
+
+
+class TestArrayFunctionDispatch:
+
+ def test_pickle(self):
+ for proto in range(2, pickle.HIGHEST_PROTOCOL + 1):
+ roundtripped = pickle.loads(
+ pickle.dumps(dispatched_one_arg, protocol=proto))
+ assert_(roundtripped is dispatched_one_arg)
+
+ def test_name_and_docstring(self):
+ assert_equal(dispatched_one_arg.__name__, 'dispatched_one_arg')
+ if sys.flags.optimize < 2:
+ assert_equal(dispatched_one_arg.__doc__, 'Docstring.')
+
+ def test_interface(self):
+
+ class MyArray:
+ def __array_function__(self, func, types, args, kwargs):
+ return (self, func, types, args, kwargs)
+
+ original = MyArray()
+ (obj, func, types, args, kwargs) = dispatched_one_arg(original)
+ assert_(obj is original)
+ assert_(func is dispatched_one_arg)
+ assert_equal(set(types), {MyArray})
+ # assert_equal uses the overloaded np.iscomplexobj() internally
+ assert_(args == (original,))
+ assert_equal(kwargs, {})
+
+ def test_not_implemented(self):
+
+ class MyArray:
+ def __array_function__(self, func, types, args, kwargs):
+ return NotImplemented
+
+ array = MyArray()
+ with assert_raises_regex(TypeError, 'no implementation found'):
+ dispatched_one_arg(array)
+
+ def test_where_dispatch(self):
+
+ class DuckArray:
+ def __array_function__(self, ufunc, method, *inputs, **kwargs):
+ return "overridden"
+
+ array = np.array(1)
+ duck_array = DuckArray()
+
+ result = np.std(array, where=duck_array)
+
+ assert_equal(result, "overridden")
+
+
+class TestVerifyMatchingSignatures:
+
+ def test_verify_matching_signatures(self):
+
+ verify_matching_signatures(lambda x: 0, lambda x: 0)
+ verify_matching_signatures(lambda x=None: 0, lambda x=None: 0)
+ verify_matching_signatures(lambda x=1: 0, lambda x=None: 0)
+
+ with assert_raises(RuntimeError):
+ verify_matching_signatures(lambda a: 0, lambda b: 0)
+ with assert_raises(RuntimeError):
+ verify_matching_signatures(lambda x: 0, lambda x=None: 0)
+ with assert_raises(RuntimeError):
+ verify_matching_signatures(lambda x=None: 0, lambda y=None: 0)
+ with assert_raises(RuntimeError):
+ verify_matching_signatures(lambda x=1: 0, lambda y=1: 0)
+
+ def test_array_function_dispatch(self):
+
+ with assert_raises(RuntimeError):
+ @array_function_dispatch(lambda x: (x,))
+ def f(y):
+ pass
+
+ # should not raise
+ @array_function_dispatch(lambda x: (x,), verify=False)
+ def f(y):
+ pass
+
+
+def _new_duck_type_and_implements():
+ """Create a duck array type and implements functions."""
+ HANDLED_FUNCTIONS = {}
+
+ class MyArray:
+ def __array_function__(self, func, types, args, kwargs):
+ if func not in HANDLED_FUNCTIONS:
+ return NotImplemented
+ if not all(issubclass(t, MyArray) for t in types):
+ return NotImplemented
+ return HANDLED_FUNCTIONS[func](*args, **kwargs)
+
+ def implements(numpy_function):
+ """Register an __array_function__ implementations."""
+ def decorator(func):
+ HANDLED_FUNCTIONS[numpy_function] = func
+ return func
+ return decorator
+
+ return (MyArray, implements)
+
+
+class TestArrayFunctionImplementation:
+
+ def test_one_arg(self):
+ MyArray, implements = _new_duck_type_and_implements()
+
+ @implements(dispatched_one_arg)
+ def _(array):
+ return 'myarray'
+
+ assert_equal(dispatched_one_arg(1), 'original')
+ assert_equal(dispatched_one_arg(MyArray()), 'myarray')
+
+ def test_optional_args(self):
+ MyArray, implements = _new_duck_type_and_implements()
+
+ @array_function_dispatch(lambda array, option=None: (array,))
+ def func_with_option(array, option='default'):
+ return option
+
+ @implements(func_with_option)
+ def my_array_func_with_option(array, new_option='myarray'):
+ return new_option
+
+ # we don't need to implement every option on __array_function__
+ # implementations
+ assert_equal(func_with_option(1), 'default')
+ assert_equal(func_with_option(1, option='extra'), 'extra')
+ assert_equal(func_with_option(MyArray()), 'myarray')
+ with assert_raises(TypeError):
+ func_with_option(MyArray(), option='extra')
+
+ # but new options on implementations can't be used
+ result = my_array_func_with_option(MyArray(), new_option='yes')
+ assert_equal(result, 'yes')
+ with assert_raises(TypeError):
+ func_with_option(MyArray(), new_option='no')
+
+ def test_not_implemented(self):
+ MyArray, implements = _new_duck_type_and_implements()
+
+ @array_function_dispatch(lambda array: (array,), module='my')
+ def func(array):
+ return array
+
+ array = np.array(1)
+ assert_(func(array) is array)
+ assert_equal(func.__module__, 'my')
+
+ with assert_raises_regex(
+ TypeError, "no implementation found for 'my.func'"):
+ func(MyArray())
+
+ @pytest.mark.parametrize("name", ["concatenate", "mean", "asarray"])
+ def test_signature_error_message_simple(self, name):
+ func = getattr(np, name)
+ try:
+ # all of these functions need an argument:
+ func()
+ except TypeError as e:
+ exc = e
+
+ assert exc.args[0].startswith(f"{name}()")
+
+ def test_signature_error_message(self):
+ # The lambda function will be named "<lambda>", but the TypeError
+ # should show the name as "func"
+ def _dispatcher():
+ return ()
+
+ @array_function_dispatch(_dispatcher)
+ def func():
+ pass
+
+ try:
+ func._implementation(bad_arg=3)
+ except TypeError as e:
+ expected_exception = e
+
+ try:
+ func(bad_arg=3)
+ raise AssertionError("must fail")
+ except TypeError as exc:
+ if exc.args[0].startswith("_dispatcher"):
+ # We replace the qualname currently, but it used `__name__`
+ # (relevant functions have the same name and qualname anyway)
+ pytest.skip("Python version is not using __qualname__ for "
+ "TypeError formatting.")
+
+ assert exc.args == expected_exception.args
+
+ @pytest.mark.parametrize("value", [234, "this func is not replaced"])
+ def test_dispatcher_error(self, value):
+ # If the dispatcher raises an error, we must not attempt to mutate it
+ error = TypeError(value)
+
+ def dispatcher():
+ raise error
+
+ @array_function_dispatch(dispatcher)
+ def func():
+ return 3
+
+ try:
+ func()
+ raise AssertionError("must fail")
+ except TypeError as exc:
+ assert exc is error # unmodified exception
+
+ def test_properties(self):
+ # Check that str and repr are sensible
+ func = dispatched_two_arg
+ assert str(func) == str(func._implementation)
+ repr_no_id = repr(func).split("at ")[0]
+ repr_no_id_impl = repr(func._implementation).split("at ")[0]
+ assert repr_no_id == repr_no_id_impl
+
+ @pytest.mark.parametrize("func", [
+ lambda x, y: 0, # no like argument
+ lambda like=None: 0, # not keyword only
+ lambda *, like=None, a=3: 0, # not last (not that it matters)
+ ])
+ def test_bad_like_sig(self, func):
+ # We sanity check the signature, and these should fail.
+ with pytest.raises(RuntimeError):
+ array_function_dispatch()(func)
+
+ def test_bad_like_passing(self):
+ # Cover internal sanity check for passing like as first positional arg
+ def func(*, like=None):
+ pass
+
+ func_with_like = array_function_dispatch()(func)
+ with pytest.raises(TypeError):
+ func_with_like()
+ with pytest.raises(TypeError):
+ func_with_like(like=234)
+
+ def test_too_many_args(self):
+ # Mainly a unit-test to increase coverage
+ objs = []
+ for i in range(80):
+ class MyArr:
+ def __array_function__(self, *args, **kwargs):
+ return NotImplemented
+
+ objs.append(MyArr())
+
+ def _dispatch(*args):
+ return args
+
+ @array_function_dispatch(_dispatch)
+ def func(*args):
+ pass
+
+ with pytest.raises(TypeError, match="maximum number"):
+ func(*objs)
+
+
+class TestNDArrayMethods:
+
+ def test_repr(self):
+ # gh-12162: should still be defined even if __array_function__ doesn't
+ # implement np.array_repr()
+
+ class MyArray(np.ndarray):
+ def __array_function__(*args, **kwargs):
+ return NotImplemented
+
+ array = np.array(1).view(MyArray)
+ assert_equal(repr(array), 'MyArray(1)')
+ assert_equal(str(array), '1')
+
+
+class TestNumPyFunctions:
+
+ def test_set_module(self):
+ assert_equal(np.sum.__module__, 'numpy')
+ assert_equal(np.char.equal.__module__, 'numpy.char')
+ assert_equal(np.fft.fft.__module__, 'numpy.fft')
+ assert_equal(np.linalg.solve.__module__, 'numpy.linalg')
+
+ def test_inspect_sum(self):
+ signature = inspect.signature(np.sum)
+ assert_('axis' in signature.parameters)
+
+ def test_override_sum(self):
+ MyArray, implements = _new_duck_type_and_implements()
+
+ @implements(np.sum)
+ def _(array):
+ return 'yes'
+
+ assert_equal(np.sum(MyArray()), 'yes')
+
+ def test_sum_on_mock_array(self):
+
+ # We need a proxy for mocks because __array_function__ is only looked
+ # up in the class dict
+ class ArrayProxy:
+ def __init__(self, value):
+ self.value = value
+
+ def __array_function__(self, *args, **kwargs):
+ return self.value.__array_function__(*args, **kwargs)
+
+ def __array__(self, *args, **kwargs):
+ return self.value.__array__(*args, **kwargs)
+
+ proxy = ArrayProxy(mock.Mock(spec=ArrayProxy))
+ proxy.value.__array_function__.return_value = 1
+ result = np.sum(proxy)
+ assert_equal(result, 1)
+ proxy.value.__array_function__.assert_called_once_with(
+ np.sum, (ArrayProxy,), (proxy,), {})
+ proxy.value.__array__.assert_not_called()
+
+ def test_sum_forwarding_implementation(self):
+
+ class MyArray(np.ndarray):
+
+ def sum(self, axis, out):
+ return 'summed'
+
+ def __array_function__(self, func, types, args, kwargs):
+ return super().__array_function__(func, types, args, kwargs)
+
+ # note: the internal implementation of np.sum() calls the .sum() method
+ array = np.array(1).view(MyArray)
+ assert_equal(np.sum(array), 'summed')
+
+
+class TestArrayLike:
+ def setup_method(self):
+ class MyArray:
+ def __init__(self, function=None):
+ self.function = function
+
+ def __array_function__(self, func, types, args, kwargs):
+ assert func is getattr(np, func.__name__)
+ try:
+ my_func = getattr(self, func.__name__)
+ except AttributeError:
+ return NotImplemented
+ return my_func(*args, **kwargs)
+
+ self.MyArray = MyArray
+
+ class MyNoArrayFunctionArray:
+ def __init__(self, function=None):
+ self.function = function
+
+ self.MyNoArrayFunctionArray = MyNoArrayFunctionArray
+
+ class MySubclass(np.ndarray):
+ def __array_function__(self, func, types, args, kwargs):
+ result = super().__array_function__(func, types, args, kwargs)
+ return result.view(self.__class__)
+
+ self.MySubclass = MySubclass
+
+ def add_method(self, name, arr_class, enable_value_error=False):
+ def _definition(*args, **kwargs):
+ # Check that `like=` isn't propagated downstream
+ assert 'like' not in kwargs
+
+ if enable_value_error and 'value_error' in kwargs:
+ raise ValueError
+
+ return arr_class(getattr(arr_class, name))
+ setattr(arr_class, name, _definition)
+
+ def func_args(*args, **kwargs):
+ return args, kwargs
+
+ def test_array_like_not_implemented(self):
+ self.add_method('array', self.MyArray)
+
+ ref = self.MyArray.array()
+
+ with assert_raises_regex(TypeError, 'no implementation found'):
+ array_like = np.asarray(1, like=ref)
+
+ _array_tests = [
+ ('array', *func_args((1,))),
+ ('asarray', *func_args((1,))),
+ ('asanyarray', *func_args((1,))),
+ ('ascontiguousarray', *func_args((2, 3))),
+ ('asfortranarray', *func_args((2, 3))),
+ ('require', *func_args((np.arange(6).reshape(2, 3),),
+ requirements=['A', 'F'])),
+ ('empty', *func_args((1,))),
+ ('full', *func_args((1,), 2)),
+ ('ones', *func_args((1,))),
+ ('zeros', *func_args((1,))),
+ ('arange', *func_args(3)),
+ ('frombuffer', *func_args(b'\x00' * 8, dtype=int)),
+ ('fromiter', *func_args(range(3), dtype=int)),
+ ('fromstring', *func_args('1,2', dtype=int, sep=',')),
+ ('loadtxt', *func_args(lambda: StringIO('0 1\n2 3'))),
+ ('genfromtxt', *func_args(lambda: StringIO('1,2.1'),
+ dtype=[('int', 'i8'), ('float', 'f8')],
+ delimiter=',')),
+ ]
+
+ def test_nep35_functions_as_array_functions(self,):
+ all_array_functions = get_overridable_numpy_array_functions()
+ like_array_functions_subset = {
+ getattr(np, func_name) for func_name, *_ in self.__class__._array_tests
+ }
+ assert like_array_functions_subset.issubset(all_array_functions)
+
+ nep35_python_functions = {
+ np.eye, np.fromfunction, np.full, np.genfromtxt,
+ np.identity, np.loadtxt, np.ones, np.require, np.tri,
+ }
+ assert nep35_python_functions.issubset(all_array_functions)
+
+ nep35_C_functions = {
+ np.arange, np.array, np.asanyarray, np.asarray,
+ np.ascontiguousarray, np.asfortranarray, np.empty,
+ np.frombuffer, np.fromfile, np.fromiter, np.fromstring,
+ np.zeros,
+ }
+ assert nep35_C_functions.issubset(all_array_functions)
+
+ @pytest.mark.parametrize('function, args, kwargs', _array_tests)
+ @pytest.mark.parametrize('numpy_ref', [True, False])
+ def test_array_like(self, function, args, kwargs, numpy_ref):
+ self.add_method('array', self.MyArray)
+ self.add_method(function, self.MyArray)
+ np_func = getattr(np, function)
+ my_func = getattr(self.MyArray, function)
+
+ if numpy_ref is True:
+ ref = np.array(1)
+ else:
+ ref = self.MyArray.array()
+
+ like_args = tuple(a() if callable(a) else a for a in args)
+ array_like = np_func(*like_args, **kwargs, like=ref)
+
+ if numpy_ref is True:
+ assert type(array_like) is np.ndarray
+
+ np_args = tuple(a() if callable(a) else a for a in args)
+ np_arr = np_func(*np_args, **kwargs)
+
+ # Special-case np.empty to ensure values match
+ if function == "empty":
+ np_arr.fill(1)
+ array_like.fill(1)
+
+ assert_equal(array_like, np_arr)
+ else:
+ assert type(array_like) is self.MyArray
+ assert array_like.function is my_func
+
+ @pytest.mark.parametrize('function, args, kwargs', _array_tests)
+ @pytest.mark.parametrize('ref', [1, [1], "MyNoArrayFunctionArray"])
+ def test_no_array_function_like(self, function, args, kwargs, ref):
+ self.add_method('array', self.MyNoArrayFunctionArray)
+ self.add_method(function, self.MyNoArrayFunctionArray)
+ np_func = getattr(np, function)
+
+ # Instantiate ref if it's the MyNoArrayFunctionArray class
+ if ref == "MyNoArrayFunctionArray":
+ ref = self.MyNoArrayFunctionArray.array()
+
+ like_args = tuple(a() if callable(a) else a for a in args)
+
+ with assert_raises_regex(TypeError,
+ 'The `like` argument must be an array-like that implements'):
+ np_func(*like_args, **kwargs, like=ref)
+
+ @pytest.mark.parametrize('function, args, kwargs', _array_tests)
+ def test_subclass(self, function, args, kwargs):
+ ref = np.array(1).view(self.MySubclass)
+ np_func = getattr(np, function)
+ like_args = tuple(a() if callable(a) else a for a in args)
+ array_like = np_func(*like_args, **kwargs, like=ref)
+ assert type(array_like) is self.MySubclass
+ if np_func is np.empty:
+ return
+ np_args = tuple(a() if callable(a) else a for a in args)
+ np_arr = np_func(*np_args, **kwargs)
+ assert_equal(array_like.view(np.ndarray), np_arr)
+
+ @pytest.mark.parametrize('numpy_ref', [True, False])
+ def test_array_like_fromfile(self, numpy_ref):
+ self.add_method('array', self.MyArray)
+ self.add_method("fromfile", self.MyArray)
+
+ if numpy_ref is True:
+ ref = np.array(1)
+ else:
+ ref = self.MyArray.array()
+
+ data = np.random.random(5)
+
+ with tempfile.TemporaryDirectory() as tmpdir:
+ fname = os.path.join(tmpdir, "testfile")
+ data.tofile(fname)
+
+ array_like = np.fromfile(fname, like=ref)
+ if numpy_ref is True:
+ assert type(array_like) is np.ndarray
+ np_res = np.fromfile(fname, like=ref)
+ assert_equal(np_res, data)
+ assert_equal(array_like, np_res)
+ else:
+ assert type(array_like) is self.MyArray
+ assert array_like.function is self.MyArray.fromfile
+
+ def test_exception_handling(self):
+ self.add_method('array', self.MyArray, enable_value_error=True)
+
+ ref = self.MyArray.array()
+
+ with assert_raises(TypeError):
+ # Raises the error about `value_error` being invalid first
+ np.array(1, value_error=True, like=ref)
+
+ @pytest.mark.parametrize('function, args, kwargs', _array_tests)
+ def test_like_as_none(self, function, args, kwargs):
+ self.add_method('array', self.MyArray)
+ self.add_method(function, self.MyArray)
+ np_func = getattr(np, function)
+
+ like_args = tuple(a() if callable(a) else a for a in args)
+ # required for loadtxt and genfromtxt to init w/o error.
+ like_args_exp = tuple(a() if callable(a) else a for a in args)
+
+ array_like = np_func(*like_args, **kwargs, like=None)
+ expected = np_func(*like_args_exp, **kwargs)
+ # Special-case np.empty to ensure values match
+ if function == "empty":
+ array_like.fill(1)
+ expected.fill(1)
+ assert_equal(array_like, expected)
+
+
+def test_function_like():
+ # We provide a `__get__` implementation, make sure it works
+ assert type(np.mean) is np._core._multiarray_umath._ArrayFunctionDispatcher
+
+ class MyClass:
+ def __array__(self, dtype=None, copy=None):
+ # valid argument to mean:
+ return np.arange(3)
+
+ func1 = staticmethod(np.mean)
+ func2 = np.mean
+ func3 = classmethod(np.mean)
+
+ m = MyClass()
+ assert m.func1([10]) == 10
+ assert m.func2() == 1 # mean of the arange
+ with pytest.raises(TypeError, match="unsupported operand type"):
+ # Tries to operate on the class
+ m.func3()
+
+ # Manual binding also works (the above may shortcut):
+ bound = np.mean.__get__(m, MyClass)
+ assert bound() == 1
+
+ bound = np.mean.__get__(None, MyClass) # unbound actually
+ assert bound([10]) == 10
+
+ bound = np.mean.__get__(MyClass) # classmethod
+ with pytest.raises(TypeError, match="unsupported operand type"):
+ bound()
diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_print.py b/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_print.py
new file mode 100644
index 0000000..d99b279
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_print.py
@@ -0,0 +1,200 @@
+import sys
+from io import StringIO
+
+import pytest
+
+import numpy as np
+from numpy._core.tests._locales import CommaDecimalPointLocale
+from numpy.testing import IS_MUSL, assert_, assert_equal
+
+_REF = {np.inf: 'inf', -np.inf: '-inf', np.nan: 'nan'}
+
+
+@pytest.mark.parametrize('tp', [np.float32, np.double, np.longdouble])
+def test_float_types(tp):
+ """ Check formatting.
+
+ This is only for the str function, and only for simple types.
+ The precision of np.float32 and np.longdouble aren't the same as the
+ python float precision.
+
+ """
+ for x in [0, 1, -1, 1e20]:
+ assert_equal(str(tp(x)), str(float(x)),
+ err_msg=f'Failed str formatting for type {tp}')
+
+ if tp(1e16).itemsize > 4:
+ assert_equal(str(tp(1e16)), str(float('1e16')),
+ err_msg=f'Failed str formatting for type {tp}')
+ else:
+ ref = '1e+16'
+ assert_equal(str(tp(1e16)), ref,
+ err_msg=f'Failed str formatting for type {tp}')
+
+
+@pytest.mark.parametrize('tp', [np.float32, np.double, np.longdouble])
+def test_nan_inf_float(tp):
+ """ Check formatting of nan & inf.
+
+ This is only for the str function, and only for simple types.
+ The precision of np.float32 and np.longdouble aren't the same as the
+ python float precision.
+
+ """
+ for x in [np.inf, -np.inf, np.nan]:
+ assert_equal(str(tp(x)), _REF[x],
+ err_msg=f'Failed str formatting for type {tp}')
+
+
+@pytest.mark.parametrize('tp', [np.complex64, np.cdouble, np.clongdouble])
+def test_complex_types(tp):
+ """Check formatting of complex types.
+
+ This is only for the str function, and only for simple types.
+ The precision of np.float32 and np.longdouble aren't the same as the
+ python float precision.
+
+ """
+ for x in [0, 1, -1, 1e20]:
+ assert_equal(str(tp(x)), str(complex(x)),
+ err_msg=f'Failed str formatting for type {tp}')
+ assert_equal(str(tp(x * 1j)), str(complex(x * 1j)),
+ err_msg=f'Failed str formatting for type {tp}')
+ assert_equal(str(tp(x + x * 1j)), str(complex(x + x * 1j)),
+ err_msg=f'Failed str formatting for type {tp}')
+
+ if tp(1e16).itemsize > 8:
+ assert_equal(str(tp(1e16)), str(complex(1e16)),
+ err_msg=f'Failed str formatting for type {tp}')
+ else:
+ ref = '(1e+16+0j)'
+ assert_equal(str(tp(1e16)), ref,
+ err_msg=f'Failed str formatting for type {tp}')
+
+
+@pytest.mark.parametrize('dtype', [np.complex64, np.cdouble, np.clongdouble])
+def test_complex_inf_nan(dtype):
+ """Check inf/nan formatting of complex types."""
+ TESTS = {
+ complex(np.inf, 0): "(inf+0j)",
+ complex(0, np.inf): "infj",
+ complex(-np.inf, 0): "(-inf+0j)",
+ complex(0, -np.inf): "-infj",
+ complex(np.inf, 1): "(inf+1j)",
+ complex(1, np.inf): "(1+infj)",
+ complex(-np.inf, 1): "(-inf+1j)",
+ complex(1, -np.inf): "(1-infj)",
+ complex(np.nan, 0): "(nan+0j)",
+ complex(0, np.nan): "nanj",
+ complex(-np.nan, 0): "(nan+0j)",
+ complex(0, -np.nan): "nanj",
+ complex(np.nan, 1): "(nan+1j)",
+ complex(1, np.nan): "(1+nanj)",
+ complex(-np.nan, 1): "(nan+1j)",
+ complex(1, -np.nan): "(1+nanj)",
+ }
+ for c, s in TESTS.items():
+ assert_equal(str(dtype(c)), s)
+
+
+# print tests
+def _test_redirected_print(x, tp, ref=None):
+ file = StringIO()
+ file_tp = StringIO()
+ stdout = sys.stdout
+ try:
+ sys.stdout = file_tp
+ print(tp(x))
+ sys.stdout = file
+ if ref:
+ print(ref)
+ else:
+ print(x)
+ finally:
+ sys.stdout = stdout
+
+ assert_equal(file.getvalue(), file_tp.getvalue(),
+ err_msg=f'print failed for type{tp}')
+
+
+@pytest.mark.parametrize('tp', [np.float32, np.double, np.longdouble])
+def test_float_type_print(tp):
+ """Check formatting when using print """
+ for x in [0, 1, -1, 1e20]:
+ _test_redirected_print(float(x), tp)
+
+ for x in [np.inf, -np.inf, np.nan]:
+ _test_redirected_print(float(x), tp, _REF[x])
+
+ if tp(1e16).itemsize > 4:
+ _test_redirected_print(1e16, tp)
+ else:
+ ref = '1e+16'
+ _test_redirected_print(1e16, tp, ref)
+
+
+@pytest.mark.parametrize('tp', [np.complex64, np.cdouble, np.clongdouble])
+def test_complex_type_print(tp):
+ """Check formatting when using print """
+ # We do not create complex with inf/nan directly because the feature is
+ # missing in python < 2.6
+ for x in [0, 1, -1, 1e20]:
+ _test_redirected_print(complex(x), tp)
+
+ if tp(1e16).itemsize > 8:
+ _test_redirected_print(complex(1e16), tp)
+ else:
+ ref = '(1e+16+0j)'
+ _test_redirected_print(complex(1e16), tp, ref)
+
+ _test_redirected_print(complex(np.inf, 1), tp, '(inf+1j)')
+ _test_redirected_print(complex(-np.inf, 1), tp, '(-inf+1j)')
+ _test_redirected_print(complex(-np.nan, 1), tp, '(nan+1j)')
+
+
+def test_scalar_format():
+ """Test the str.format method with NumPy scalar types"""
+ tests = [('{0}', True, np.bool),
+ ('{0}', False, np.bool),
+ ('{0:d}', 130, np.uint8),
+ ('{0:d}', 50000, np.uint16),
+ ('{0:d}', 3000000000, np.uint32),
+ ('{0:d}', 15000000000000000000, np.uint64),
+ ('{0:d}', -120, np.int8),
+ ('{0:d}', -30000, np.int16),
+ ('{0:d}', -2000000000, np.int32),
+ ('{0:d}', -7000000000000000000, np.int64),
+ ('{0:g}', 1.5, np.float16),
+ ('{0:g}', 1.5, np.float32),
+ ('{0:g}', 1.5, np.float64),
+ ('{0:g}', 1.5, np.longdouble),
+ ('{0:g}', 1.5 + 0.5j, np.complex64),
+ ('{0:g}', 1.5 + 0.5j, np.complex128),
+ ('{0:g}', 1.5 + 0.5j, np.clongdouble)]
+
+ for (fmat, val, valtype) in tests:
+ try:
+ assert_equal(fmat.format(val), fmat.format(valtype(val)),
+ f"failed with val {val}, type {valtype}")
+ except ValueError as e:
+ assert_(False,
+ "format raised exception (fmt='%s', val=%s, type=%s, exc='%s')" %
+ (fmat, repr(val), repr(valtype), str(e)))
+
+
+#
+# Locale tests: scalar types formatting should be independent of the locale
+#
+
+class TestCommaDecimalPointLocale(CommaDecimalPointLocale):
+
+ def test_locale_single(self):
+ assert_equal(str(np.float32(1.2)), str(1.2))
+
+ def test_locale_double(self):
+ assert_equal(str(np.double(1.2)), str(1.2))
+
+ @pytest.mark.skipif(IS_MUSL,
+ reason="test flaky on musllinux")
+ def test_locale_longdouble(self):
+ assert_equal(str(np.longdouble('1.2')), str(1.2))
diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_protocols.py b/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_protocols.py
new file mode 100644
index 0000000..96bb600
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_protocols.py
@@ -0,0 +1,46 @@
+import warnings
+
+import pytest
+
+import numpy as np
+
+
+@pytest.mark.filterwarnings("error")
+def test_getattr_warning():
+ # issue gh-14735: make sure we clear only getattr errors, and let warnings
+ # through
+ class Wrapper:
+ def __init__(self, array):
+ self.array = array
+
+ def __len__(self):
+ return len(self.array)
+
+ def __getitem__(self, item):
+ return type(self)(self.array[item])
+
+ def __getattr__(self, name):
+ if name.startswith("__array_"):
+ warnings.warn("object got converted", UserWarning, stacklevel=1)
+
+ return getattr(self.array, name)
+
+ def __repr__(self):
+ return f"<Wrapper({self.array})>"
+
+ array = Wrapper(np.arange(10))
+ with pytest.raises(UserWarning, match="object got converted"):
+ np.asarray(array)
+
+
+def test_array_called():
+ class Wrapper:
+ val = '0' * 100
+
+ def __array__(self, dtype=None, copy=None):
+ return np.array([self.val], dtype=dtype, copy=copy)
+
+ wrapped = Wrapper()
+ arr = np.array(wrapped, dtype=str)
+ assert arr.dtype == 'U100'
+ assert arr[0] == Wrapper.val
diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_records.py b/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_records.py
new file mode 100644
index 0000000..b4b93ae
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_records.py
@@ -0,0 +1,544 @@
+import collections.abc
+import pickle
+import textwrap
+from io import BytesIO
+from os import path
+from pathlib import Path
+
+import pytest
+
+import numpy as np
+from numpy.testing import (
+ assert_,
+ assert_array_almost_equal,
+ assert_array_equal,
+ assert_equal,
+ assert_raises,
+ temppath,
+)
+
+
+class TestFromrecords:
+ def test_fromrecords(self):
+ r = np.rec.fromrecords([[456, 'dbe', 1.2], [2, 'de', 1.3]],
+ names='col1,col2,col3')
+ assert_equal(r[0].item(), (456, 'dbe', 1.2))
+ assert_equal(r['col1'].dtype.kind, 'i')
+ assert_equal(r['col2'].dtype.kind, 'U')
+ assert_equal(r['col2'].dtype.itemsize, 12)
+ assert_equal(r['col3'].dtype.kind, 'f')
+
+ def test_fromrecords_0len(self):
+ """ Verify fromrecords works with a 0-length input """
+ dtype = [('a', float), ('b', float)]
+ r = np.rec.fromrecords([], dtype=dtype)
+ assert_equal(r.shape, (0,))
+
+ def test_fromrecords_2d(self):
+ data = [
+ [(1, 2), (3, 4), (5, 6)],
+ [(6, 5), (4, 3), (2, 1)]
+ ]
+ expected_a = [[1, 3, 5], [6, 4, 2]]
+ expected_b = [[2, 4, 6], [5, 3, 1]]
+
+ # try with dtype
+ r1 = np.rec.fromrecords(data, dtype=[('a', int), ('b', int)])
+ assert_equal(r1['a'], expected_a)
+ assert_equal(r1['b'], expected_b)
+
+ # try with names
+ r2 = np.rec.fromrecords(data, names=['a', 'b'])
+ assert_equal(r2['a'], expected_a)
+ assert_equal(r2['b'], expected_b)
+
+ assert_equal(r1, r2)
+
+ def test_method_array(self):
+ r = np.rec.array(
+ b'abcdefg' * 100, formats='i2,S3,i4', shape=3, byteorder='big'
+ )
+ assert_equal(r[1].item(), (25444, b'efg', 1633837924))
+
+ def test_method_array2(self):
+ r = np.rec.array(
+ [
+ (1, 11, 'a'), (2, 22, 'b'), (3, 33, 'c'), (4, 44, 'd'),
+ (5, 55, 'ex'), (6, 66, 'f'), (7, 77, 'g')
+ ],
+ formats='u1,f4,S1'
+ )
+ assert_equal(r[1].item(), (2, 22.0, b'b'))
+
+ def test_recarray_slices(self):
+ r = np.rec.array(
+ [
+ (1, 11, 'a'), (2, 22, 'b'), (3, 33, 'c'), (4, 44, 'd'),
+ (5, 55, 'ex'), (6, 66, 'f'), (7, 77, 'g')
+ ],
+ formats='u1,f4,S1'
+ )
+ assert_equal(r[1::2][1].item(), (4, 44.0, b'd'))
+
+ def test_recarray_fromarrays(self):
+ x1 = np.array([1, 2, 3, 4])
+ x2 = np.array(['a', 'dd', 'xyz', '12'])
+ x3 = np.array([1.1, 2, 3, 4])
+ r = np.rec.fromarrays([x1, x2, x3], names='a,b,c')
+ assert_equal(r[1].item(), (2, 'dd', 2.0))
+ x1[1] = 34
+ assert_equal(r.a, np.array([1, 2, 3, 4]))
+
+ def test_recarray_fromfile(self):
+ data_dir = path.join(path.dirname(__file__), 'data')
+ filename = path.join(data_dir, 'recarray_from_file.fits')
+ fd = open(filename, 'rb')
+ fd.seek(2880 * 2)
+ r1 = np.rec.fromfile(fd, formats='f8,i4,S5', shape=3, byteorder='big')
+ fd.seek(2880 * 2)
+ r2 = np.rec.array(fd, formats='f8,i4,S5', shape=3, byteorder='big')
+ fd.seek(2880 * 2)
+ bytes_array = BytesIO()
+ bytes_array.write(fd.read())
+ bytes_array.seek(0)
+ r3 = np.rec.fromfile(
+ bytes_array, formats='f8,i4,S5', shape=3, byteorder='big'
+ )
+ fd.close()
+ assert_equal(r1, r2)
+ assert_equal(r2, r3)
+
+ def test_recarray_from_obj(self):
+ count = 10
+ a = np.zeros(count, dtype='O')
+ b = np.zeros(count, dtype='f8')
+ c = np.zeros(count, dtype='f8')
+ for i in range(len(a)):
+ a[i] = list(range(1, 10))
+
+ mine = np.rec.fromarrays([a, b, c], names='date,data1,data2')
+ for i in range(len(a)):
+ assert_(mine.date[i] == list(range(1, 10)))
+ assert_(mine.data1[i] == 0.0)
+ assert_(mine.data2[i] == 0.0)
+
+ def test_recarray_repr(self):
+ a = np.array([(1, 0.1), (2, 0.2)],
+ dtype=[('foo', '<i4'), ('bar', '<f8')])
+ a = np.rec.array(a)
+ assert_equal(
+ repr(a),
+ textwrap.dedent("""\
+ rec.array([(1, 0.1), (2, 0.2)],
+ dtype=[('foo', '<i4'), ('bar', '<f8')])""")
+ )
+
+ # make sure non-structured dtypes also show up as rec.array
+ a = np.array(np.ones(4, dtype='f8'))
+ assert_(repr(np.rec.array(a)).startswith('rec.array'))
+
+ # check that the 'np.record' part of the dtype isn't shown
+ a = np.rec.array(np.ones(3, dtype='i4,i4'))
+ assert_equal(repr(a).find('numpy.record'), -1)
+ a = np.rec.array(np.ones(3, dtype='i4'))
+ assert_(repr(a).find('dtype=int32') != -1)
+
+ def test_0d_recarray_repr(self):
+ arr_0d = np.rec.array((1, 2.0, '2003'), dtype='<i4,<f8,<M8[Y]')
+ assert_equal(repr(arr_0d), textwrap.dedent("""\
+ rec.array((1, 2., '2003'),
+ dtype=[('f0', '<i4'), ('f1', '<f8'), ('f2', '<M8[Y]')])"""))
+
+ record = arr_0d[()]
+ assert_equal(repr(record),
+ "np.record((1, 2.0, '2003'), "
+ "dtype=[('f0', '<i4'), ('f1', '<f8'), ('f2', '<M8[Y]')])")
+ # 1.13 converted to python scalars before the repr
+ try:
+ np.set_printoptions(legacy='1.13')
+ assert_equal(repr(record), '(1, 2.0, datetime.date(2003, 1, 1))')
+ finally:
+ np.set_printoptions(legacy=False)
+
+ def test_recarray_from_repr(self):
+ a = np.array([(1, 'ABC'), (2, "DEF")],
+ dtype=[('foo', int), ('bar', 'S4')])
+ recordarr = np.rec.array(a)
+ recarr = a.view(np.recarray)
+ recordview = a.view(np.dtype((np.record, a.dtype)))
+
+ recordarr_r = eval("np." + repr(recordarr), {'np': np})
+ recarr_r = eval("np." + repr(recarr), {'np': np})
+ # Prints the type `numpy.record` as part of the dtype:
+ recordview_r = eval("np." + repr(recordview), {'np': np, 'numpy': np})
+
+ assert_equal(type(recordarr_r), np.recarray)
+ assert_equal(recordarr_r.dtype.type, np.record)
+ assert_equal(recordarr, recordarr_r)
+
+ assert_equal(type(recarr_r), np.recarray)
+ assert_equal(recarr_r.dtype.type, np.record)
+ assert_equal(recarr, recarr_r)
+
+ assert_equal(type(recordview_r), np.ndarray)
+ assert_equal(recordview.dtype.type, np.record)
+ assert_equal(recordview, recordview_r)
+
+ def test_recarray_views(self):
+ a = np.array([(1, 'ABC'), (2, "DEF")],
+ dtype=[('foo', int), ('bar', 'S4')])
+ b = np.array([1, 2, 3, 4, 5], dtype=np.int64)
+
+ # check that np.rec.array gives right dtypes
+ assert_equal(np.rec.array(a).dtype.type, np.record)
+ assert_equal(type(np.rec.array(a)), np.recarray)
+ assert_equal(np.rec.array(b).dtype.type, np.int64)
+ assert_equal(type(np.rec.array(b)), np.recarray)
+
+ # check that viewing as recarray does the same
+ assert_equal(a.view(np.recarray).dtype.type, np.record)
+ assert_equal(type(a.view(np.recarray)), np.recarray)
+ assert_equal(b.view(np.recarray).dtype.type, np.int64)
+ assert_equal(type(b.view(np.recarray)), np.recarray)
+
+ # check that view to non-structured dtype preserves type=np.recarray
+ r = np.rec.array(np.ones(4, dtype="f4,i4"))
+ rv = r.view('f8').view('f4,i4')
+ assert_equal(type(rv), np.recarray)
+ assert_equal(rv.dtype.type, np.record)
+
+ # check that getitem also preserves np.recarray and np.record
+ r = np.rec.array(np.ones(4, dtype=[('a', 'i4'), ('b', 'i4'),
+ ('c', 'i4,i4')]))
+ assert_equal(r['c'].dtype.type, np.record)
+ assert_equal(type(r['c']), np.recarray)
+
+ # and that it preserves subclasses (gh-6949)
+ class C(np.recarray):
+ pass
+
+ c = r.view(C)
+ assert_equal(type(c['c']), C)
+
+ # check that accessing nested structures keep record type, but
+ # not for subarrays, non-void structures, non-structured voids
+ test_dtype = [('a', 'f4,f4'), ('b', 'V8'), ('c', ('f4', 2)),
+ ('d', ('i8', 'i4,i4'))]
+ r = np.rec.array([((1, 1), b'11111111', [1, 1], 1),
+ ((1, 1), b'11111111', [1, 1], 1)], dtype=test_dtype)
+ assert_equal(r.a.dtype.type, np.record)
+ assert_equal(r.b.dtype.type, np.void)
+ assert_equal(r.c.dtype.type, np.float32)
+ assert_equal(r.d.dtype.type, np.int64)
+ # check the same, but for views
+ r = np.rec.array(np.ones(4, dtype='i4,i4'))
+ assert_equal(r.view('f4,f4').dtype.type, np.record)
+ assert_equal(r.view(('i4', 2)).dtype.type, np.int32)
+ assert_equal(r.view('V8').dtype.type, np.void)
+ assert_equal(r.view(('i8', 'i4,i4')).dtype.type, np.int64)
+
+ # check that we can undo the view
+ arrs = [np.ones(4, dtype='f4,i4'), np.ones(4, dtype='f8')]
+ for arr in arrs:
+ rec = np.rec.array(arr)
+ # recommended way to view as an ndarray:
+ arr2 = rec.view(rec.dtype.fields or rec.dtype, np.ndarray)
+ assert_equal(arr2.dtype.type, arr.dtype.type)
+ assert_equal(type(arr2), type(arr))
+
+ def test_recarray_from_names(self):
+ ra = np.rec.array([
+ (1, 'abc', 3.7000002861022949, 0),
+ (2, 'xy', 6.6999998092651367, 1),
+ (0, ' ', 0.40000000596046448, 0)],
+ names='c1, c2, c3, c4')
+ pa = np.rec.fromrecords([
+ (1, 'abc', 3.7000002861022949, 0),
+ (2, 'xy', 6.6999998092651367, 1),
+ (0, ' ', 0.40000000596046448, 0)],
+ names='c1, c2, c3, c4')
+ assert_(ra.dtype == pa.dtype)
+ assert_(ra.shape == pa.shape)
+ for k in range(len(ra)):
+ assert_(ra[k].item() == pa[k].item())
+
+ def test_recarray_conflict_fields(self):
+ ra = np.rec.array([(1, 'abc', 2.3), (2, 'xyz', 4.2),
+ (3, 'wrs', 1.3)],
+ names='field, shape, mean')
+ ra.mean = [1.1, 2.2, 3.3]
+ assert_array_almost_equal(ra['mean'], [1.1, 2.2, 3.3])
+ assert_(type(ra.mean) is type(ra.var))
+ ra.shape = (1, 3)
+ assert_(ra.shape == (1, 3))
+ ra.shape = ['A', 'B', 'C']
+ assert_array_equal(ra['shape'], [['A', 'B', 'C']])
+ ra.field = 5
+ assert_array_equal(ra['field'], [[5, 5, 5]])
+ assert_(isinstance(ra.field, collections.abc.Callable))
+
+ def test_fromrecords_with_explicit_dtype(self):
+ a = np.rec.fromrecords([(1, 'a'), (2, 'bbb')],
+ dtype=[('a', int), ('b', object)])
+ assert_equal(a.a, [1, 2])
+ assert_equal(a[0].a, 1)
+ assert_equal(a.b, ['a', 'bbb'])
+ assert_equal(a[-1].b, 'bbb')
+ #
+ ndtype = np.dtype([('a', int), ('b', object)])
+ a = np.rec.fromrecords([(1, 'a'), (2, 'bbb')], dtype=ndtype)
+ assert_equal(a.a, [1, 2])
+ assert_equal(a[0].a, 1)
+ assert_equal(a.b, ['a', 'bbb'])
+ assert_equal(a[-1].b, 'bbb')
+
+ def test_recarray_stringtypes(self):
+ # Issue #3993
+ a = np.array([('abc ', 1), ('abc', 2)],
+ dtype=[('foo', 'S4'), ('bar', int)])
+ a = a.view(np.recarray)
+ assert_equal(a.foo[0] == a.foo[1], False)
+
+ def test_recarray_returntypes(self):
+ qux_fields = {'C': (np.dtype('S5'), 0), 'D': (np.dtype('S5'), 6)}
+ a = np.rec.array([('abc ', (1, 1), 1, ('abcde', 'fgehi')),
+ ('abc', (2, 3), 1, ('abcde', 'jklmn'))],
+ dtype=[('foo', 'S4'),
+ ('bar', [('A', int), ('B', int)]),
+ ('baz', int), ('qux', qux_fields)])
+ assert_equal(type(a.foo), np.ndarray)
+ assert_equal(type(a['foo']), np.ndarray)
+ assert_equal(type(a.bar), np.recarray)
+ assert_equal(type(a['bar']), np.recarray)
+ assert_equal(a.bar.dtype.type, np.record)
+ assert_equal(type(a['qux']), np.recarray)
+ assert_equal(a.qux.dtype.type, np.record)
+ assert_equal(dict(a.qux.dtype.fields), qux_fields)
+ assert_equal(type(a.baz), np.ndarray)
+ assert_equal(type(a['baz']), np.ndarray)
+ assert_equal(type(a[0].bar), np.record)
+ assert_equal(type(a[0]['bar']), np.record)
+ assert_equal(a[0].bar.A, 1)
+ assert_equal(a[0].bar['A'], 1)
+ assert_equal(a[0]['bar'].A, 1)
+ assert_equal(a[0]['bar']['A'], 1)
+ assert_equal(a[0].qux.D, b'fgehi')
+ assert_equal(a[0].qux['D'], b'fgehi')
+ assert_equal(a[0]['qux'].D, b'fgehi')
+ assert_equal(a[0]['qux']['D'], b'fgehi')
+
+ def test_zero_width_strings(self):
+ # Test for #6430, based on the test case from #1901
+
+ cols = [['test'] * 3, [''] * 3]
+ rec = np.rec.fromarrays(cols)
+ assert_equal(rec['f0'], ['test', 'test', 'test'])
+ assert_equal(rec['f1'], ['', '', ''])
+
+ dt = np.dtype([('f0', '|S4'), ('f1', '|S')])
+ rec = np.rec.fromarrays(cols, dtype=dt)
+ assert_equal(rec.itemsize, 4)
+ assert_equal(rec['f0'], [b'test', b'test', b'test'])
+ assert_equal(rec['f1'], [b'', b'', b''])
+
+
+class TestPathUsage:
+ # Test that pathlib.Path can be used
+ def test_tofile_fromfile(self):
+ with temppath(suffix='.bin') as path:
+ path = Path(path)
+ np.random.seed(123)
+ a = np.random.rand(10).astype('f8,i4,S5')
+ a[5] = (0.5, 10, 'abcde')
+ with path.open("wb") as fd:
+ a.tofile(fd)
+ x = np._core.records.fromfile(
+ path, formats='f8,i4,S5', shape=10
+ )
+ assert_array_equal(x, a)
+
+
+class TestRecord:
+ def setup_method(self):
+ self.data = np.rec.fromrecords([(1, 2, 3), (4, 5, 6)],
+ dtype=[("col1", "<i4"),
+ ("col2", "<i4"),
+ ("col3", "<i4")])
+
+ def test_assignment1(self):
+ a = self.data
+ assert_equal(a.col1[0], 1)
+ a[0].col1 = 0
+ assert_equal(a.col1[0], 0)
+
+ def test_assignment2(self):
+ a = self.data
+ assert_equal(a.col1[0], 1)
+ a.col1[0] = 0
+ assert_equal(a.col1[0], 0)
+
+ def test_invalid_assignment(self):
+ a = self.data
+
+ def assign_invalid_column(x):
+ x[0].col5 = 1
+
+ assert_raises(AttributeError, assign_invalid_column, a)
+
+ def test_nonwriteable_setfield(self):
+ # gh-8171
+ r = np.rec.array([(0,), (1,)], dtype=[('f', 'i4')])
+ r.flags.writeable = False
+ with assert_raises(ValueError):
+ r.f = [2, 3]
+ with assert_raises(ValueError):
+ r.setfield([2, 3], *r.dtype.fields['f'])
+
+ def test_out_of_order_fields(self):
+ # names in the same order, padding added to descr
+ x = self.data[['col1', 'col2']]
+ assert_equal(x.dtype.names, ('col1', 'col2'))
+ assert_equal(x.dtype.descr,
+ [('col1', '<i4'), ('col2', '<i4'), ('', '|V4')])
+
+ # names change order to match indexing, as of 1.14 - descr can't
+ # represent that
+ y = self.data[['col2', 'col1']]
+ assert_equal(y.dtype.names, ('col2', 'col1'))
+ assert_raises(ValueError, lambda: y.dtype.descr)
+
+ def test_pickle_1(self):
+ # Issue #1529
+ a = np.array([(1, [])], dtype=[('a', np.int32), ('b', np.int32, 0)])
+ for proto in range(2, pickle.HIGHEST_PROTOCOL + 1):
+ assert_equal(a, pickle.loads(pickle.dumps(a, protocol=proto)))
+ assert_equal(a[0], pickle.loads(pickle.dumps(a[0],
+ protocol=proto)))
+
+ def test_pickle_2(self):
+ a = self.data
+ for proto in range(2, pickle.HIGHEST_PROTOCOL + 1):
+ assert_equal(a, pickle.loads(pickle.dumps(a, protocol=proto)))
+ assert_equal(a[0], pickle.loads(pickle.dumps(a[0],
+ protocol=proto)))
+
+ def test_pickle_3(self):
+ # Issue #7140
+ a = self.data
+ for proto in range(2, pickle.HIGHEST_PROTOCOL + 1):
+ pa = pickle.loads(pickle.dumps(a[0], protocol=proto))
+ assert_(pa.flags.c_contiguous)
+ assert_(pa.flags.f_contiguous)
+ assert_(pa.flags.writeable)
+ assert_(pa.flags.aligned)
+
+ def test_pickle_void(self):
+ # issue gh-13593
+ dt = np.dtype([('obj', 'O'), ('int', 'i')])
+ a = np.empty(1, dtype=dt)
+ data = (bytearray(b'eman'),)
+ a['obj'] = data
+ a['int'] = 42
+ ctor, args = a[0].__reduce__()
+ # check the constructor is what we expect before interpreting the arguments
+ assert ctor is np._core.multiarray.scalar
+ dtype, obj = args
+ # make sure we did not pickle the address
+ assert not isinstance(obj, bytes)
+
+ assert_raises(RuntimeError, ctor, dtype, 13)
+
+ # Test roundtrip:
+ dump = pickle.dumps(a[0])
+ unpickled = pickle.loads(dump)
+ assert a[0] == unpickled
+
+ # Also check the similar (impossible) "object scalar" path:
+ with assert_raises(TypeError):
+ ctor(np.dtype("O"), data)
+
+ def test_objview_record(self):
+ # https://github.com/numpy/numpy/issues/2599
+ dt = np.dtype([('foo', 'i8'), ('bar', 'O')])
+ r = np.zeros((1, 3), dtype=dt).view(np.recarray)
+ r.foo = np.array([1, 2, 3]) # TypeError?
+
+ # https://github.com/numpy/numpy/issues/3256
+ ra = np.recarray(
+ (2,), dtype=[('x', object), ('y', float), ('z', int)]
+ )
+ ra[['x', 'y']] # TypeError?
+
+ def test_record_scalar_setitem(self):
+ # https://github.com/numpy/numpy/issues/3561
+ rec = np.recarray(1, dtype=[('x', float, 5)])
+ rec[0].x = 1
+ assert_equal(rec[0].x, np.ones(5))
+
+ def test_missing_field(self):
+ # https://github.com/numpy/numpy/issues/4806
+ arr = np.zeros((3,), dtype=[('x', int), ('y', int)])
+ assert_raises(KeyError, lambda: arr[['nofield']])
+
+ def test_fromarrays_nested_structured_arrays(self):
+ arrays = [
+ np.arange(10),
+ np.ones(10, dtype=[('a', '<u2'), ('b', '<f4')]),
+ ]
+ arr = np.rec.fromarrays(arrays) # ValueError?
+
+ @pytest.mark.parametrize('nfields', [0, 1, 2])
+ def test_assign_dtype_attribute(self, nfields):
+ dt = np.dtype([('a', np.uint8), ('b', np.uint8), ('c', np.uint8)][:nfields])
+ data = np.zeros(3, dt).view(np.recarray)
+
+ # the original and resulting dtypes differ on whether they are records
+ assert data.dtype.type == np.record
+ assert dt.type != np.record
+
+ # ensure that the dtype remains a record even when assigned
+ data.dtype = dt
+ assert data.dtype.type == np.record
+
+ @pytest.mark.parametrize('nfields', [0, 1, 2])
+ def test_nested_fields_are_records(self, nfields):
+ """ Test that nested structured types are treated as records too """
+ dt = np.dtype([('a', np.uint8), ('b', np.uint8), ('c', np.uint8)][:nfields])
+ dt_outer = np.dtype([('inner', dt)])
+
+ data = np.zeros(3, dt_outer).view(np.recarray)
+ assert isinstance(data, np.recarray)
+ assert isinstance(data['inner'], np.recarray)
+
+ data0 = data[0]
+ assert isinstance(data0, np.record)
+ assert isinstance(data0['inner'], np.record)
+
+ def test_nested_dtype_padding(self):
+ """ test that trailing padding is preserved """
+ # construct a dtype with padding at the end
+ dt = np.dtype([('a', np.uint8), ('b', np.uint8), ('c', np.uint8)])
+ dt_padded_end = dt[['a', 'b']]
+ assert dt_padded_end.itemsize == dt.itemsize
+
+ dt_outer = np.dtype([('inner', dt_padded_end)])
+
+ data = np.zeros(3, dt_outer).view(np.recarray)
+ assert_equal(data['inner'].dtype, dt_padded_end)
+
+ data0 = data[0]
+ assert_equal(data0['inner'].dtype, dt_padded_end)
+
+
+def test_find_duplicate():
+ l1 = [1, 2, 3, 4, 5, 6]
+ assert_(np.rec.find_duplicate(l1) == [])
+
+ l2 = [1, 2, 1, 4, 5, 6]
+ assert_(np.rec.find_duplicate(l2) == [1])
+
+ l3 = [1, 2, 1, 4, 1, 6, 2, 3]
+ assert_(np.rec.find_duplicate(l3) == [1, 2])
+
+ l3 = [2, 2, 1, 4, 1, 6, 2, 3]
+ assert_(np.rec.find_duplicate(l3) == [2, 1])
diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_regression.py b/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_regression.py
new file mode 100644
index 0000000..fbfa931
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_regression.py
@@ -0,0 +1,2670 @@
+import copy
+import gc
+import pickle
+import sys
+import tempfile
+from io import BytesIO
+from itertools import chain
+from os import path
+
+import pytest
+
+import numpy as np
+from numpy._utils import asbytes, asunicode
+from numpy.exceptions import AxisError, ComplexWarning
+from numpy.testing import (
+ HAS_REFCOUNT,
+ IS_64BIT,
+ IS_PYPY,
+ IS_PYSTON,
+ IS_WASM,
+ _assert_valid_refcount,
+ assert_,
+ assert_almost_equal,
+ assert_array_almost_equal,
+ assert_array_equal,
+ assert_equal,
+ assert_raises,
+ assert_raises_regex,
+ assert_warns,
+ suppress_warnings,
+)
+from numpy.testing._private.utils import _no_tracing, requires_memory
+
+
+class TestRegression:
+ def test_invalid_round(self):
+ # Ticket #3
+ v = 4.7599999999999998
+ assert_array_equal(np.array([v]), np.array(v))
+
+ def test_mem_empty(self):
+ # Ticket #7
+ np.empty((1,), dtype=[('x', np.int64)])
+
+ def test_pickle_transposed(self):
+ # Ticket #16
+ a = np.transpose(np.array([[2, 9], [7, 0], [3, 8]]))
+ for proto in range(2, pickle.HIGHEST_PROTOCOL + 1):
+ with BytesIO() as f:
+ pickle.dump(a, f, protocol=proto)
+ f.seek(0)
+ b = pickle.load(f)
+ assert_array_equal(a, b)
+
+ def test_dtype_names(self):
+ # Ticket #35
+ # Should succeed
+ np.dtype([(('name', 'label'), np.int32, 3)])
+
+ def test_reduce(self):
+ # Ticket #40
+ assert_almost_equal(np.add.reduce([1., .5], dtype=None), 1.5)
+
+ def test_zeros_order(self):
+ # Ticket #43
+ np.zeros([3], int, 'C')
+ np.zeros([3], order='C')
+ np.zeros([3], int, order='C')
+
+ def test_asarray_with_order(self):
+ # Check that nothing is done when order='F' and array C/F-contiguous
+ a = np.ones(2)
+ assert_(a is np.asarray(a, order='F'))
+
+ def test_ravel_with_order(self):
+ # Check that ravel works when order='F' and array C/F-contiguous
+ a = np.ones(2)
+ assert_(not a.ravel('F').flags.owndata)
+
+ def test_sort_bigendian(self):
+ # Ticket #47
+ a = np.linspace(0, 10, 11)
+ c = a.astype(np.dtype('<f8'))
+ c.sort()
+ assert_array_almost_equal(c, a)
+
+ def test_negative_nd_indexing(self):
+ # Ticket #49
+ c = np.arange(125).reshape((5, 5, 5))
+ origidx = np.array([-1, 0, 1])
+ idx = np.array(origidx)
+ c[idx]
+ assert_array_equal(idx, origidx)
+
+ def test_char_dump(self):
+ # Ticket #50
+ ca = np.char.array(np.arange(1000, 1010), itemsize=4)
+ for proto in range(2, pickle.HIGHEST_PROTOCOL + 1):
+ with BytesIO() as f:
+ pickle.dump(ca, f, protocol=proto)
+ f.seek(0)
+ ca = np.load(f, allow_pickle=True)
+
+ def test_noncontiguous_fill(self):
+ # Ticket #58.
+ a = np.zeros((5, 3))
+ b = a[:, :2,]
+
+ def rs():
+ b.shape = (10,)
+
+ assert_raises(AttributeError, rs)
+
+ def test_bool(self):
+ # Ticket #60
+ np.bool(1) # Should succeed
+
+ def test_indexing1(self):
+ # Ticket #64
+ descr = [('x', [('y', [('z', 'c16', (2,)),]),]),]
+ buffer = ((([6j, 4j],),),)
+ h = np.array(buffer, dtype=descr)
+ h['x']['y']['z']
+
+ def test_indexing2(self):
+ # Ticket #65
+ descr = [('x', 'i4', (2,))]
+ buffer = ([3, 2],)
+ h = np.array(buffer, dtype=descr)
+ h['x']
+
+ def test_round(self):
+ # Ticket #67
+ x = np.array([1 + 2j])
+ assert_almost_equal(x**(-1), [1 / (1 + 2j)])
+
+ def test_scalar_compare(self):
+ # Trac Ticket #72
+ # https://github.com/numpy/numpy/issues/565
+ a = np.array(['test', 'auto'])
+ assert_array_equal(a == 'auto', np.array([False, True]))
+ assert_(a[1] == 'auto')
+ assert_(a[0] != 'auto')
+ b = np.linspace(0, 10, 11)
+ assert_array_equal(b != 'auto', np.ones(11, dtype=bool))
+ assert_(b[0] != 'auto')
+
+ def test_unicode_swapping(self):
+ # Ticket #79
+ ulen = 1
+ ucs_value = '\U0010FFFF'
+ ua = np.array([[[ucs_value * ulen] * 2] * 3] * 4, dtype=f'U{ulen}')
+ ua.view(ua.dtype.newbyteorder()) # Should succeed.
+
+ def test_object_array_fill(self):
+ # Ticket #86
+ x = np.zeros(1, 'O')
+ x.fill([])
+
+ def test_mem_dtype_align(self):
+ # Ticket #93
+ assert_raises(TypeError, np.dtype,
+ {'names': ['a'], 'formats': ['foo']}, align=1)
+
+ def test_endian_bool_indexing(self):
+ # Ticket #105
+ a = np.arange(10., dtype='>f8')
+ b = np.arange(10., dtype='<f8')
+ xa = np.where((a > 2) & (a < 6))
+ xb = np.where((b > 2) & (b < 6))
+ ya = ((a > 2) & (a < 6))
+ yb = ((b > 2) & (b < 6))
+ assert_array_almost_equal(xa, ya.nonzero())
+ assert_array_almost_equal(xb, yb.nonzero())
+ assert_(np.all(a[ya] > 0.5))
+ assert_(np.all(b[yb] > 0.5))
+
+ def test_endian_where(self):
+ # GitHub issue #369
+ net = np.zeros(3, dtype='>f4')
+ net[1] = 0.00458849
+ net[2] = 0.605202
+ max_net = net.max()
+ test = np.where(net <= 0., max_net, net)
+ correct = np.array([0.60520202, 0.00458849, 0.60520202])
+ assert_array_almost_equal(test, correct)
+
+ def test_endian_recarray(self):
+ # Ticket #2185
+ dt = np.dtype([
+ ('head', '>u4'),
+ ('data', '>u4', 2),
+ ])
+ buf = np.recarray(1, dtype=dt)
+ buf[0]['head'] = 1
+ buf[0]['data'][:] = [1, 1]
+
+ h = buf[0]['head']
+ d = buf[0]['data'][0]
+ buf[0]['head'] = h
+ buf[0]['data'][0] = d
+ assert_(buf[0]['head'] == 1)
+
+ def test_mem_dot(self):
+ # Ticket #106
+ x = np.random.randn(0, 1)
+ y = np.random.randn(10, 1)
+ # Dummy array to detect bad memory access:
+ _z = np.ones(10)
+ _dummy = np.empty((0, 10))
+ z = np.lib.stride_tricks.as_strided(_z, _dummy.shape, _dummy.strides)
+ np.dot(x, np.transpose(y), out=z)
+ assert_equal(_z, np.ones(10))
+ # Do the same for the built-in dot:
+ np._core.multiarray.dot(x, np.transpose(y), out=z)
+ assert_equal(_z, np.ones(10))
+
+ def test_arange_endian(self):
+ # Ticket #111
+ ref = np.arange(10)
+ x = np.arange(10, dtype='<f8')
+ assert_array_equal(ref, x)
+ x = np.arange(10, dtype='>f8')
+ assert_array_equal(ref, x)
+
+ def test_arange_inf_step(self):
+ ref = np.arange(0, 1, 10)
+ x = np.arange(0, 1, np.inf)
+ assert_array_equal(ref, x)
+
+ ref = np.arange(0, 1, -10)
+ x = np.arange(0, 1, -np.inf)
+ assert_array_equal(ref, x)
+
+ ref = np.arange(0, -1, -10)
+ x = np.arange(0, -1, -np.inf)
+ assert_array_equal(ref, x)
+
+ ref = np.arange(0, -1, 10)
+ x = np.arange(0, -1, np.inf)
+ assert_array_equal(ref, x)
+
+ def test_arange_underflow_stop_and_step(self):
+ finfo = np.finfo(np.float64)
+
+ ref = np.arange(0, finfo.eps, 2 * finfo.eps)
+ x = np.arange(0, finfo.eps, finfo.max)
+ assert_array_equal(ref, x)
+
+ ref = np.arange(0, finfo.eps, -2 * finfo.eps)
+ x = np.arange(0, finfo.eps, -finfo.max)
+ assert_array_equal(ref, x)
+
+ ref = np.arange(0, -finfo.eps, -2 * finfo.eps)
+ x = np.arange(0, -finfo.eps, -finfo.max)
+ assert_array_equal(ref, x)
+
+ ref = np.arange(0, -finfo.eps, 2 * finfo.eps)
+ x = np.arange(0, -finfo.eps, finfo.max)
+ assert_array_equal(ref, x)
+
+ def test_argmax(self):
+ # Ticket #119
+ a = np.random.normal(0, 1, (4, 5, 6, 7, 8))
+ for i in range(a.ndim):
+ a.argmax(i) # Should succeed
+
+ def test_mem_divmod(self):
+ # Ticket #126
+ for i in range(10):
+ divmod(np.array([i])[0], 10)
+
+ def test_hstack_invalid_dims(self):
+ # Ticket #128
+ x = np.arange(9).reshape((3, 3))
+ y = np.array([0, 0, 0])
+ assert_raises(ValueError, np.hstack, (x, y))
+
+ def test_squeeze_type(self):
+ # Ticket #133
+ a = np.array([3])
+ b = np.array(3)
+ assert_(type(a.squeeze()) is np.ndarray)
+ assert_(type(b.squeeze()) is np.ndarray)
+
+ def test_add_identity(self):
+ # Ticket #143
+ assert_equal(0, np.add.identity)
+
+ def test_numpy_float_python_long_addition(self):
+ # Check that numpy float and python longs can be added correctly.
+ a = np.float64(23.) + 2**135
+ assert_equal(a, 23. + 2**135)
+
+ def test_binary_repr_0(self):
+ # Ticket #151
+ assert_equal('0', np.binary_repr(0))
+
+ def test_rec_iterate(self):
+ # Ticket #160
+ descr = np.dtype([('i', int), ('f', float), ('s', '|S3')])
+ x = np.rec.array([(1, 1.1, '1.0'),
+ (2, 2.2, '2.0')], dtype=descr)
+ x[0].tolist()
+ list(x[0])
+
+ def test_unicode_string_comparison(self):
+ # Ticket #190
+ a = np.array('hello', np.str_)
+ b = np.array('world')
+ a == b
+
+ def test_tobytes_FORTRANORDER_discontiguous(self):
+ # Fix in r2836
+ # Create non-contiguous Fortran ordered array
+ x = np.array(np.random.rand(3, 3), order='F')[:, :2]
+ assert_array_almost_equal(x.ravel(), np.frombuffer(x.tobytes()))
+
+ def test_flat_assignment(self):
+ # Correct behaviour of ticket #194
+ x = np.empty((3, 1))
+ x.flat = np.arange(3)
+ assert_array_almost_equal(x, [[0], [1], [2]])
+ x.flat = np.arange(3, dtype=float)
+ assert_array_almost_equal(x, [[0], [1], [2]])
+
+ def test_broadcast_flat_assignment(self):
+ # Ticket #194
+ x = np.empty((3, 1))
+
+ def bfa():
+ x[:] = np.arange(3)
+
+ def bfb():
+ x[:] = np.arange(3, dtype=float)
+
+ assert_raises(ValueError, bfa)
+ assert_raises(ValueError, bfb)
+
+ @pytest.mark.xfail(IS_WASM, reason="not sure why")
+ @pytest.mark.parametrize("index",
+ [np.ones(10, dtype=bool), np.arange(10)],
+ ids=["boolean-arr-index", "integer-arr-index"])
+ def test_nonarray_assignment(self, index):
+ # See also Issue gh-2870, test for non-array assignment
+ # and equivalent unsafe casted array assignment
+ a = np.arange(10)
+
+ with pytest.raises(ValueError):
+ a[index] = np.nan
+
+ with np.errstate(invalid="warn"):
+ with pytest.warns(RuntimeWarning, match="invalid value"):
+ a[index] = np.array(np.nan) # Only warns
+
+ def test_unpickle_dtype_with_object(self):
+ # Implemented in r2840
+ dt = np.dtype([('x', int), ('y', np.object_), ('z', 'O')])
+ for proto in range(2, pickle.HIGHEST_PROTOCOL + 1):
+ with BytesIO() as f:
+ pickle.dump(dt, f, protocol=proto)
+ f.seek(0)
+ dt_ = pickle.load(f)
+ assert_equal(dt, dt_)
+
+ def test_mem_array_creation_invalid_specification(self):
+ # Ticket #196
+ dt = np.dtype([('x', int), ('y', np.object_)])
+ # Wrong way
+ assert_raises(ValueError, np.array, [1, 'object'], dt)
+ # Correct way
+ np.array([(1, 'object')], dt)
+
+ def test_recarray_single_element(self):
+ # Ticket #202
+ a = np.array([1, 2, 3], dtype=np.int32)
+ b = a.copy()
+ r = np.rec.array(a, shape=1, formats=['3i4'], names=['d'])
+ assert_array_equal(a, b)
+ assert_equal(a, r[0][0])
+
+ def test_zero_sized_array_indexing(self):
+ # Ticket #205
+ tmp = np.array([])
+
+ def index_tmp():
+ tmp[np.array(10)]
+
+ assert_raises(IndexError, index_tmp)
+
+ def test_chararray_rstrip(self):
+ # Ticket #222
+ x = np.char.chararray((1,), 5)
+ x[0] = b'a '
+ x = x.rstrip()
+ assert_equal(x[0], b'a')
+
+ def test_object_array_shape(self):
+ # Ticket #239
+ assert_equal(np.array([[1, 2], 3, 4], dtype=object).shape, (3,))
+ assert_equal(np.array([[1, 2], [3, 4]], dtype=object).shape, (2, 2))
+ assert_equal(np.array([(1, 2), (3, 4)], dtype=object).shape, (2, 2))
+ assert_equal(np.array([], dtype=object).shape, (0,))
+ assert_equal(np.array([[], [], []], dtype=object).shape, (3, 0))
+ assert_equal(np.array([[3, 4], [5, 6], None], dtype=object).shape, (3,))
+
+ def test_mem_around(self):
+ # Ticket #243
+ x = np.zeros((1,))
+ y = [0]
+ decimal = 6
+ np.around(abs(x - y), decimal) <= 10.0**(-decimal)
+
+ def test_character_array_strip(self):
+ # Ticket #246
+ x = np.char.array(("x", "x ", "x "))
+ for c in x:
+ assert_equal(c, "x")
+
+ def test_lexsort(self):
+ # Lexsort memory error
+ v = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10])
+ assert_equal(np.lexsort(v), 0)
+
+ def test_lexsort_invalid_sequence(self):
+ # Issue gh-4123
+ class BuggySequence:
+ def __len__(self):
+ return 4
+
+ def __getitem__(self, key):
+ raise KeyError
+
+ assert_raises(KeyError, np.lexsort, BuggySequence())
+
+ def test_lexsort_zerolen_custom_strides(self):
+ # Ticket #14228
+ xs = np.array([], dtype='i8')
+ assert np.lexsort((xs,)).shape[0] == 0 # Works
+
+ xs.strides = (16,)
+ assert np.lexsort((xs,)).shape[0] == 0 # Was: MemoryError
+
+ def test_lexsort_zerolen_custom_strides_2d(self):
+ xs = np.array([], dtype='i8')
+
+ xs.shape = (0, 2)
+ xs.strides = (16, 16)
+ assert np.lexsort((xs,), axis=0).shape[0] == 0
+
+ xs.shape = (2, 0)
+ xs.strides = (16, 16)
+ assert np.lexsort((xs,), axis=0).shape[0] == 2
+
+ def test_lexsort_invalid_axis(self):
+ assert_raises(AxisError, np.lexsort, (np.arange(1),), axis=2)
+ assert_raises(AxisError, np.lexsort, (np.array([]),), axis=1)
+ assert_raises(AxisError, np.lexsort, (np.array(1),), axis=10)
+
+ def test_lexsort_zerolen_element(self):
+ dt = np.dtype([]) # a void dtype with no fields
+ xs = np.empty(4, dt)
+
+ assert np.lexsort((xs,)).shape[0] == xs.shape[0]
+
+ def test_pickle_py2_bytes_encoding(self):
+ # Check that arrays and scalars pickled on Py2 are
+ # unpickleable on Py3 using encoding='bytes'
+
+ test_data = [
+ # (original, py2_pickle)
+ (
+ np.str_('\u6f2c'),
+ b"cnumpy.core.multiarray\nscalar\np0\n(cnumpy\ndtype\np1\n(S'U1'\np2\nI0\nI1\ntp3\nRp4\n(I3\nS'<'\np5\nNNNI4\nI4\nI0\ntp6\nbS',o\\x00\\x00'\np7\ntp8\nRp9\n."
+ ),
+
+ (
+ np.array([9e123], dtype=np.float64),
+ b"cnumpy.core.multiarray\n_reconstruct\np0\n(cnumpy\nndarray\np1\n(I0\ntp2\nS'b'\np3\ntp4\nRp5\n(I1\n(I1\ntp6\ncnumpy\ndtype\np7\n(S'f8'\np8\nI0\nI1\ntp9\nRp10\n(I3\nS'<'\np11\nNNNI-1\nI-1\nI0\ntp12\nbI00\nS'O\\x81\\xb7Z\\xaa:\\xabY'\np13\ntp14\nb."
+ ),
+
+ (
+ np.array([(9e123,)], dtype=[('name', float)]),
+ b"cnumpy.core.multiarray\n_reconstruct\np0\n(cnumpy\nndarray\np1\n(I0\ntp2\nS'b'\np3\ntp4\nRp5\n(I1\n(I1\ntp6\ncnumpy\ndtype\np7\n(S'V8'\np8\nI0\nI1\ntp9\nRp10\n(I3\nS'|'\np11\nN(S'name'\np12\ntp13\n(dp14\ng12\n(g7\n(S'f8'\np15\nI0\nI1\ntp16\nRp17\n(I3\nS'<'\np18\nNNNI-1\nI-1\nI0\ntp19\nbI0\ntp20\nsI8\nI1\nI0\ntp21\nbI00\nS'O\\x81\\xb7Z\\xaa:\\xabY'\np22\ntp23\nb."
+ ),
+ ]
+
+ for original, data in test_data:
+ result = pickle.loads(data, encoding='bytes')
+ assert_equal(result, original)
+
+ if isinstance(result, np.ndarray) and result.dtype.names is not None:
+ for name in result.dtype.names:
+ assert_(isinstance(name, str))
+
+ def test_pickle_dtype(self):
+ # Ticket #251
+ for proto in range(2, pickle.HIGHEST_PROTOCOL + 1):
+ pickle.dumps(float, protocol=proto)
+
+ def test_swap_real(self):
+ # Ticket #265
+ assert_equal(np.arange(4, dtype='>c8').imag.max(), 0.0)
+ assert_equal(np.arange(4, dtype='<c8').imag.max(), 0.0)
+ assert_equal(np.arange(4, dtype='>c8').real.max(), 3.0)
+ assert_equal(np.arange(4, dtype='<c8').real.max(), 3.0)
+
+ def test_object_array_from_list(self):
+ # Ticket #270 (gh-868)
+ assert_(np.array([1, None, 'A']).shape == (3,))
+
+ def test_multiple_assign(self):
+ # Ticket #273
+ a = np.zeros((3, 1), int)
+ a[[1, 2]] = 1
+
+ def test_empty_array_type(self):
+ assert_equal(np.array([]).dtype, np.zeros(0).dtype)
+
+ def test_void_copyswap(self):
+ dt = np.dtype([('one', '<i4'), ('two', '<i4')])
+ x = np.array((1, 2), dtype=dt)
+ x = x.byteswap()
+ assert_(x['one'] > 1 and x['two'] > 2)
+
+ def test_method_args(self):
+ # Make sure methods and functions have same default axis
+ # keyword and arguments
+ funcs1 = ['argmax', 'argmin', 'sum', 'any', 'all', 'cumsum',
+ 'cumprod', 'prod', 'std', 'var', 'mean',
+ 'round', 'min', 'max', 'argsort', 'sort']
+ funcs2 = ['compress', 'take', 'repeat']
+
+ for func in funcs1:
+ arr = np.random.rand(8, 7)
+ arr2 = arr.copy()
+ res1 = getattr(arr, func)()
+ res2 = getattr(np, func)(arr2)
+ if res1 is None:
+ res1 = arr
+
+ if res1.dtype.kind in 'uib':
+ assert_((res1 == res2).all(), func)
+ else:
+ assert_(abs(res1 - res2).max() < 1e-8, func)
+
+ for func in funcs2:
+ arr1 = np.random.rand(8, 7)
+ arr2 = np.random.rand(8, 7)
+ res1 = None
+ if func == 'compress':
+ arr1 = arr1.ravel()
+ res1 = getattr(arr2, func)(arr1)
+ else:
+ arr2 = (15 * arr2).astype(int).ravel()
+ if res1 is None:
+ res1 = getattr(arr1, func)(arr2)
+ res2 = getattr(np, func)(arr1, arr2)
+ assert_(abs(res1 - res2).max() < 1e-8, func)
+
+ def test_mem_lexsort_strings(self):
+ # Ticket #298
+ lst = ['abc', 'cde', 'fgh']
+ np.lexsort((lst,))
+
+ def test_fancy_index(self):
+ # Ticket #302
+ x = np.array([1, 2])[np.array([0])]
+ assert_equal(x.shape, (1,))
+
+ def test_recarray_copy(self):
+ # Ticket #312
+ dt = [('x', np.int16), ('y', np.float64)]
+ ra = np.array([(1, 2.3)], dtype=dt)
+ rb = np.rec.array(ra, dtype=dt)
+ rb['x'] = 2.
+ assert_(ra['x'] != rb['x'])
+
+ def test_rec_fromarray(self):
+ # Ticket #322
+ x1 = np.array([[1, 2], [3, 4], [5, 6]])
+ x2 = np.array(['a', 'dd', 'xyz'])
+ x3 = np.array([1.1, 2, 3])
+ np.rec.fromarrays([x1, x2, x3], formats="(2,)i4,S3,f8")
+
+ def test_object_array_assign(self):
+ x = np.empty((2, 2), object)
+ x.flat[2] = (1, 2, 3)
+ assert_equal(x.flat[2], (1, 2, 3))
+
+ def test_ndmin_float64(self):
+ # Ticket #324
+ x = np.array([1, 2, 3], dtype=np.float64)
+ assert_equal(np.array(x, dtype=np.float32, ndmin=2).ndim, 2)
+ assert_equal(np.array(x, dtype=np.float64, ndmin=2).ndim, 2)
+
+ def test_ndmin_order(self):
+ # Issue #465 and related checks
+ assert_(np.array([1, 2], order='C', ndmin=3).flags.c_contiguous)
+ assert_(np.array([1, 2], order='F', ndmin=3).flags.f_contiguous)
+ assert_(np.array(np.ones((2, 2), order='F'), ndmin=3).flags.f_contiguous)
+ assert_(np.array(np.ones((2, 2), order='C'), ndmin=3).flags.c_contiguous)
+
+ def test_mem_axis_minimization(self):
+ # Ticket #327
+ data = np.arange(5)
+ data = np.add.outer(data, data)
+
+ def test_mem_float_imag(self):
+ # Ticket #330
+ np.float64(1.0).imag
+
+ def test_dtype_tuple(self):
+ # Ticket #334
+ assert_(np.dtype('i4') == np.dtype(('i4', ())))
+
+ def test_dtype_posttuple(self):
+ # Ticket #335
+ np.dtype([('col1', '()i4')])
+
+ def test_numeric_carray_compare(self):
+ # Ticket #341
+ assert_equal(np.array(['X'], 'c'), b'X')
+
+ def test_string_array_size(self):
+ # Ticket #342
+ assert_raises(ValueError,
+ np.array, [['X'], ['X', 'X', 'X']], '|S1')
+
+ def test_dtype_repr(self):
+ # Ticket #344
+ dt1 = np.dtype(('uint32', 2))
+ dt2 = np.dtype(('uint32', (2,)))
+ assert_equal(dt1.__repr__(), dt2.__repr__())
+
+ def test_reshape_order(self):
+ # Make sure reshape order works.
+ a = np.arange(6).reshape(2, 3, order='F')
+ assert_equal(a, [[0, 2, 4], [1, 3, 5]])
+ a = np.array([[1, 2], [3, 4], [5, 6], [7, 8]])
+ b = a[:, 1]
+ assert_equal(b.reshape(2, 2, order='F'), [[2, 6], [4, 8]])
+
+ def test_reshape_zero_strides(self):
+ # Issue #380, test reshaping of zero strided arrays
+ a = np.ones(1)
+ a = np.lib.stride_tricks.as_strided(a, shape=(5,), strides=(0,))
+ assert_(a.reshape(5, 1).strides[0] == 0)
+
+ def test_reshape_zero_size(self):
+ # GitHub Issue #2700, setting shape failed for 0-sized arrays
+ a = np.ones((0, 2))
+ a.shape = (-1, 2)
+
+ def test_reshape_trailing_ones_strides(self):
+ # GitHub issue gh-2949, bad strides for trailing ones of new shape
+ a = np.zeros(12, dtype=np.int32)[::2] # not contiguous
+ strides_c = (16, 8, 8, 8)
+ strides_f = (8, 24, 48, 48)
+ assert_equal(a.reshape(3, 2, 1, 1).strides, strides_c)
+ assert_equal(a.reshape(3, 2, 1, 1, order='F').strides, strides_f)
+ assert_equal(np.array(0, dtype=np.int32).reshape(1, 1).strides, (4, 4))
+
+ def test_repeat_discont(self):
+ # Ticket #352
+ a = np.arange(12).reshape(4, 3)[:, 2]
+ assert_equal(a.repeat(3), [2, 2, 2, 5, 5, 5, 8, 8, 8, 11, 11, 11])
+
+ def test_array_index(self):
+ # Make sure optimization is not called in this case.
+ a = np.array([1, 2, 3])
+ a2 = np.array([[1, 2, 3]])
+ assert_equal(a[np.where(a == 3)], a2[np.where(a2 == 3)])
+
+ def test_object_argmax(self):
+ a = np.array([1, 2, 3], dtype=object)
+ assert_(a.argmax() == 2)
+
+ def test_recarray_fields(self):
+ # Ticket #372
+ dt0 = np.dtype([('f0', 'i4'), ('f1', 'i4')])
+ dt1 = np.dtype([('f0', 'i8'), ('f1', 'i8')])
+ for a in [np.array([(1, 2), (3, 4)], "i4,i4"),
+ np.rec.array([(1, 2), (3, 4)], "i4,i4"),
+ np.rec.array([(1, 2), (3, 4)]),
+ np.rec.fromarrays([(1, 2), (3, 4)], "i4,i4"),
+ np.rec.fromarrays([(1, 2), (3, 4)])]:
+ assert_(a.dtype in [dt0, dt1])
+
+ def test_random_shuffle(self):
+ # Ticket #374
+ a = np.arange(5).reshape((5, 1))
+ b = a.copy()
+ np.random.shuffle(b)
+ assert_equal(np.sort(b, axis=0), a)
+
+ def test_refcount_vdot(self):
+ # Changeset #3443
+ _assert_valid_refcount(np.vdot)
+
+ def test_startswith(self):
+ ca = np.char.array(['Hi', 'There'])
+ assert_equal(ca.startswith('H'), [True, False])
+
+ def test_noncommutative_reduce_accumulate(self):
+ # Ticket #413
+ tosubtract = np.arange(5)
+ todivide = np.array([2.0, 0.5, 0.25])
+ assert_equal(np.subtract.reduce(tosubtract), -10)
+ assert_equal(np.divide.reduce(todivide), 16.0)
+ assert_array_equal(np.subtract.accumulate(tosubtract),
+ np.array([0, -1, -3, -6, -10]))
+ assert_array_equal(np.divide.accumulate(todivide),
+ np.array([2., 4., 16.]))
+
+ def test_convolve_empty(self):
+ # Convolve should raise an error for empty input array.
+ assert_raises(ValueError, np.convolve, [], [1])
+ assert_raises(ValueError, np.convolve, [1], [])
+
+ def test_multidim_byteswap(self):
+ # Ticket #449
+ r = np.array([(1, (0, 1, 2))], dtype="i2,3i2")
+ assert_array_equal(r.byteswap(),
+ np.array([(256, (0, 256, 512))], r.dtype))
+
+ def test_string_NULL(self):
+ # Changeset 3557
+ assert_equal(np.array("a\x00\x0b\x0c\x00").item(),
+ 'a\x00\x0b\x0c')
+
+ def test_junk_in_string_fields_of_recarray(self):
+ # Ticket #483
+ r = np.array([[b'abc']], dtype=[('var1', '|S20')])
+ assert_(asbytes(r['var1'][0][0]) == b'abc')
+
+ def test_take_output(self):
+ # Ensure that 'take' honours output parameter.
+ x = np.arange(12).reshape((3, 4))
+ a = np.take(x, [0, 2], axis=1)
+ b = np.zeros_like(a)
+ np.take(x, [0, 2], axis=1, out=b)
+ assert_array_equal(a, b)
+
+ def test_take_object_fail(self):
+ # Issue gh-3001
+ d = 123.
+ a = np.array([d, 1], dtype=object)
+ if HAS_REFCOUNT:
+ ref_d = sys.getrefcount(d)
+ try:
+ a.take([0, 100])
+ except IndexError:
+ pass
+ if HAS_REFCOUNT:
+ assert_(ref_d == sys.getrefcount(d))
+
+ def test_array_str_64bit(self):
+ # Ticket #501
+ s = np.array([1, np.nan], dtype=np.float64)
+ with np.errstate(all='raise'):
+ np.array_str(s) # Should succeed
+
+ def test_frompyfunc_endian(self):
+ # Ticket #503
+ from math import radians
+ uradians = np.frompyfunc(radians, 1, 1)
+ big_endian = np.array([83.4, 83.5], dtype='>f8')
+ little_endian = np.array([83.4, 83.5], dtype='<f8')
+ assert_almost_equal(uradians(big_endian).astype(float),
+ uradians(little_endian).astype(float))
+
+ def test_mem_string_arr(self):
+ # Ticket #514
+ s = "aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa"
+ t = []
+ np.hstack((t, s))
+
+ def test_arr_transpose(self):
+ # Ticket #516
+ x = np.random.rand(*(2,) * 16)
+ x.transpose(list(range(16))) # Should succeed
+
+ def test_string_mergesort(self):
+ # Ticket #540
+ x = np.array(['a'] * 32)
+ assert_array_equal(x.argsort(kind='m'), np.arange(32))
+
+ def test_argmax_byteorder(self):
+ # Ticket #546
+ a = np.arange(3, dtype='>f')
+ assert_(a[a.argmax()] == a.max())
+
+ def test_rand_seed(self):
+ # Ticket #555
+ for l in np.arange(4):
+ np.random.seed(l)
+
+ def test_mem_deallocation_leak(self):
+ # Ticket #562
+ a = np.zeros(5, dtype=float)
+ b = np.array(a, dtype=float)
+ del a, b
+
+ def test_mem_on_invalid_dtype(self):
+ "Ticket #583"
+ assert_raises(ValueError, np.fromiter, [['12', ''], ['13', '']], str)
+
+ def test_dot_negative_stride(self):
+ # Ticket #588
+ x = np.array([[1, 5, 25, 125., 625]])
+ y = np.array([[20.], [160.], [640.], [1280.], [1024.]])
+ z = y[::-1].copy()
+ y2 = y[::-1]
+ assert_equal(np.dot(x, z), np.dot(x, y2))
+
+ def test_object_casting(self):
+ # This used to trigger the object-type version of
+ # the bitwise_or operation, because float64 -> object
+ # casting succeeds
+ def rs():
+ x = np.ones([484, 286])
+ y = np.zeros([484, 286])
+ x |= y
+
+ assert_raises(TypeError, rs)
+
+ def test_unicode_scalar(self):
+ # Ticket #600
+ x = np.array(["DROND", "DROND1"], dtype="U6")
+ el = x[1]
+ for proto in range(2, pickle.HIGHEST_PROTOCOL + 1):
+ new = pickle.loads(pickle.dumps(el, protocol=proto))
+ assert_equal(new, el)
+
+ def test_arange_non_native_dtype(self):
+ # Ticket #616
+ for T in ('>f4', '<f4'):
+ dt = np.dtype(T)
+ assert_equal(np.arange(0, dtype=dt).dtype, dt)
+ assert_equal(np.arange(0.5, dtype=dt).dtype, dt)
+ assert_equal(np.arange(5, dtype=dt).dtype, dt)
+
+ def test_bool_flat_indexing_invalid_nr_elements(self):
+ s = np.ones(10, dtype=float)
+ x = np.array((15,), dtype=float)
+
+ def ia(x, s, v):
+ x[(s > 0)] = v
+
+ assert_raises(IndexError, ia, x, s, np.zeros(9, dtype=float))
+ assert_raises(IndexError, ia, x, s, np.zeros(11, dtype=float))
+
+ # Old special case (different code path):
+ assert_raises(ValueError, ia, x.flat, s, np.zeros(9, dtype=float))
+ assert_raises(ValueError, ia, x.flat, s, np.zeros(11, dtype=float))
+
+ def test_mem_scalar_indexing(self):
+ # Ticket #603
+ x = np.array([0], dtype=float)
+ index = np.array(0, dtype=np.int32)
+ x[index]
+
+ def test_binary_repr_0_width(self):
+ assert_equal(np.binary_repr(0, width=3), '000')
+
+ def test_fromstring(self):
+ assert_equal(np.fromstring("12:09:09", dtype=int, sep=":"),
+ [12, 9, 9])
+
+ def test_searchsorted_variable_length(self):
+ x = np.array(['a', 'aa', 'b'])
+ y = np.array(['d', 'e'])
+ assert_equal(x.searchsorted(y), [3, 3])
+
+ def test_string_argsort_with_zeros(self):
+ # Check argsort for strings containing zeros.
+ x = np.frombuffer(b"\x00\x02\x00\x01", dtype="|S2")
+ assert_array_equal(x.argsort(kind='m'), np.array([1, 0]))
+ assert_array_equal(x.argsort(kind='q'), np.array([1, 0]))
+
+ def test_string_sort_with_zeros(self):
+ # Check sort for strings containing zeros.
+ x = np.frombuffer(b"\x00\x02\x00\x01", dtype="|S2")
+ y = np.frombuffer(b"\x00\x01\x00\x02", dtype="|S2")
+ assert_array_equal(np.sort(x, kind="q"), y)
+
+ def test_copy_detection_zero_dim(self):
+ # Ticket #658
+ np.indices((0, 3, 4)).T.reshape(-1, 3)
+
+ def test_flat_byteorder(self):
+ # Ticket #657
+ x = np.arange(10)
+ assert_array_equal(x.astype('>i4'), x.astype('<i4').flat[:])
+ assert_array_equal(x.astype('>i4').flat[:], x.astype('<i4'))
+
+ def test_sign_bit(self):
+ x = np.array([0, -0.0, 0])
+ assert_equal(str(np.abs(x)), '[0. 0. 0.]')
+
+ def test_flat_index_byteswap(self):
+ for dt in (np.dtype('<i4'), np.dtype('>i4')):
+ x = np.array([-1, 0, 1], dtype=dt)
+ assert_equal(x.flat[0].dtype, x[0].dtype)
+
+ def test_copy_detection_corner_case(self):
+ # Ticket #658
+ np.indices((0, 3, 4)).T.reshape(-1, 3)
+
+ def test_object_array_refcounting(self):
+ # Ticket #633
+ if not hasattr(sys, 'getrefcount'):
+ return
+
+ # NB. this is probably CPython-specific
+
+ cnt = sys.getrefcount
+
+ a = object()
+ b = object()
+ c = object()
+
+ cnt0_a = cnt(a)
+ cnt0_b = cnt(b)
+ cnt0_c = cnt(c)
+
+ # -- 0d -> 1-d broadcast slice assignment
+
+ arr = np.zeros(5, dtype=np.object_)
+
+ arr[:] = a
+ assert_equal(cnt(a), cnt0_a + 5)
+
+ arr[:] = b
+ assert_equal(cnt(a), cnt0_a)
+ assert_equal(cnt(b), cnt0_b + 5)
+
+ arr[:2] = c
+ assert_equal(cnt(b), cnt0_b + 3)
+ assert_equal(cnt(c), cnt0_c + 2)
+
+ del arr
+
+ # -- 1-d -> 2-d broadcast slice assignment
+
+ arr = np.zeros((5, 2), dtype=np.object_)
+ arr0 = np.zeros(2, dtype=np.object_)
+
+ arr0[0] = a
+ assert_(cnt(a) == cnt0_a + 1)
+ arr0[1] = b
+ assert_(cnt(b) == cnt0_b + 1)
+
+ arr[:, :] = arr0
+ assert_(cnt(a) == cnt0_a + 6)
+ assert_(cnt(b) == cnt0_b + 6)
+
+ arr[:, 0] = None
+ assert_(cnt(a) == cnt0_a + 1)
+
+ del arr, arr0
+
+ # -- 2-d copying + flattening
+
+ arr = np.zeros((5, 2), dtype=np.object_)
+
+ arr[:, 0] = a
+ arr[:, 1] = b
+ assert_(cnt(a) == cnt0_a + 5)
+ assert_(cnt(b) == cnt0_b + 5)
+
+ arr2 = arr.copy()
+ assert_(cnt(a) == cnt0_a + 10)
+ assert_(cnt(b) == cnt0_b + 10)
+
+ arr2 = arr[:, 0].copy()
+ assert_(cnt(a) == cnt0_a + 10)
+ assert_(cnt(b) == cnt0_b + 5)
+
+ arr2 = arr.flatten()
+ assert_(cnt(a) == cnt0_a + 10)
+ assert_(cnt(b) == cnt0_b + 10)
+
+ del arr, arr2
+
+ # -- concatenate, repeat, take, choose
+
+ arr1 = np.zeros((5, 1), dtype=np.object_)
+ arr2 = np.zeros((5, 1), dtype=np.object_)
+
+ arr1[...] = a
+ arr2[...] = b
+ assert_(cnt(a) == cnt0_a + 5)
+ assert_(cnt(b) == cnt0_b + 5)
+
+ tmp = np.concatenate((arr1, arr2))
+ assert_(cnt(a) == cnt0_a + 5 + 5)
+ assert_(cnt(b) == cnt0_b + 5 + 5)
+
+ tmp = arr1.repeat(3, axis=0)
+ assert_(cnt(a) == cnt0_a + 5 + 3 * 5)
+
+ tmp = arr1.take([1, 2, 3], axis=0)
+ assert_(cnt(a) == cnt0_a + 5 + 3)
+
+ x = np.array([[0], [1], [0], [1], [1]], int)
+ tmp = x.choose(arr1, arr2)
+ assert_(cnt(a) == cnt0_a + 5 + 2)
+ assert_(cnt(b) == cnt0_b + 5 + 3)
+
+ def test_mem_custom_float_to_array(self):
+ # Ticket 702
+ class MyFloat:
+ def __float__(self):
+ return 1.0
+
+ tmp = np.atleast_1d([MyFloat()])
+ tmp.astype(float) # Should succeed
+
+ def test_object_array_refcount_self_assign(self):
+ # Ticket #711
+ class VictimObject:
+ deleted = False
+
+ def __del__(self):
+ self.deleted = True
+
+ d = VictimObject()
+ arr = np.zeros(5, dtype=np.object_)
+ arr[:] = d
+ del d
+ arr[:] = arr # refcount of 'd' might hit zero here
+ assert_(not arr[0].deleted)
+ arr[:] = arr # trying to induce a segfault by doing it again...
+ assert_(not arr[0].deleted)
+
+ def test_mem_fromiter_invalid_dtype_string(self):
+ x = [1, 2, 3]
+ assert_raises(ValueError,
+ np.fromiter, list(x), dtype='S')
+
+ def test_reduce_big_object_array(self):
+ # Ticket #713
+ oldsize = np.setbufsize(10 * 16)
+ a = np.array([None] * 161, object)
+ assert_(not np.any(a))
+ np.setbufsize(oldsize)
+
+ def test_mem_0d_array_index(self):
+ # Ticket #714
+ np.zeros(10)[np.array(0)]
+
+ def test_nonnative_endian_fill(self):
+ # Non-native endian arrays were incorrectly filled with scalars
+ # before r5034.
+ if sys.byteorder == 'little':
+ dtype = np.dtype('>i4')
+ else:
+ dtype = np.dtype('<i4')
+ x = np.empty([1], dtype=dtype)
+ x.fill(1)
+ assert_equal(x, np.array([1], dtype=dtype))
+
+ def test_dot_alignment_sse2(self):
+ # Test for ticket #551, changeset r5140
+ x = np.zeros((30, 40))
+ for proto in range(2, pickle.HIGHEST_PROTOCOL + 1):
+ y = pickle.loads(pickle.dumps(x, protocol=proto))
+ # y is now typically not aligned on a 8-byte boundary
+ z = np.ones((1, y.shape[0]))
+ # This shouldn't cause a segmentation fault:
+ np.dot(z, y)
+
+ def test_astype_copy(self):
+ # Ticket #788, changeset r5155
+ # The test data file was generated by scipy.io.savemat.
+ # The dtype is float64, but the isbuiltin attribute is 0.
+ data_dir = path.join(path.dirname(__file__), 'data')
+ filename = path.join(data_dir, "astype_copy.pkl")
+ with open(filename, 'rb') as f:
+ xp = pickle.load(f, encoding='latin1')
+ xpd = xp.astype(np.float64)
+ assert_(xp.__array_interface__['data'][0] !=
+ xpd.__array_interface__['data'][0])
+
+ def test_compress_small_type(self):
+ # Ticket #789, changeset 5217.
+ # compress with out argument segfaulted if cannot cast safely
+ import numpy as np
+ a = np.array([[1, 2], [3, 4]])
+ b = np.zeros((2, 1), dtype=np.single)
+ try:
+ a.compress([True, False], axis=1, out=b)
+ raise AssertionError("compress with an out which cannot be "
+ "safely casted should not return "
+ "successfully")
+ except TypeError:
+ pass
+
+ def test_attributes(self):
+ # Ticket #791
+ class TestArray(np.ndarray):
+ def __new__(cls, data, info):
+ result = np.array(data)
+ result = result.view(cls)
+ result.info = info
+ return result
+
+ def __array_finalize__(self, obj):
+ self.info = getattr(obj, 'info', '')
+
+ dat = TestArray([[1, 2, 3, 4], [5, 6, 7, 8]], 'jubba')
+ assert_(dat.info == 'jubba')
+ dat.resize((4, 2))
+ assert_(dat.info == 'jubba')
+ dat.sort()
+ assert_(dat.info == 'jubba')
+ dat.fill(2)
+ assert_(dat.info == 'jubba')
+ dat.put([2, 3, 4], [6, 3, 4])
+ assert_(dat.info == 'jubba')
+ dat.setfield(4, np.int32, 0)
+ assert_(dat.info == 'jubba')
+ dat.setflags()
+ assert_(dat.info == 'jubba')
+ assert_(dat.all(1).info == 'jubba')
+ assert_(dat.any(1).info == 'jubba')
+ assert_(dat.argmax(1).info == 'jubba')
+ assert_(dat.argmin(1).info == 'jubba')
+ assert_(dat.argsort(1).info == 'jubba')
+ assert_(dat.astype(TestArray).info == 'jubba')
+ assert_(dat.byteswap().info == 'jubba')
+ assert_(dat.clip(2, 7).info == 'jubba')
+ assert_(dat.compress([0, 1, 1]).info == 'jubba')
+ assert_(dat.conj().info == 'jubba')
+ assert_(dat.conjugate().info == 'jubba')
+ assert_(dat.copy().info == 'jubba')
+ dat2 = TestArray([2, 3, 1, 0], 'jubba')
+ choices = [[0, 1, 2, 3], [10, 11, 12, 13],
+ [20, 21, 22, 23], [30, 31, 32, 33]]
+ assert_(dat2.choose(choices).info == 'jubba')
+ assert_(dat.cumprod(1).info == 'jubba')
+ assert_(dat.cumsum(1).info == 'jubba')
+ assert_(dat.diagonal().info == 'jubba')
+ assert_(dat.flatten().info == 'jubba')
+ assert_(dat.getfield(np.int32, 0).info == 'jubba')
+ assert_(dat.imag.info == 'jubba')
+ assert_(dat.max(1).info == 'jubba')
+ assert_(dat.mean(1).info == 'jubba')
+ assert_(dat.min(1).info == 'jubba')
+ assert_(dat.prod(1).info == 'jubba')
+ assert_(dat.ravel().info == 'jubba')
+ assert_(dat.real.info == 'jubba')
+ assert_(dat.repeat(2).info == 'jubba')
+ assert_(dat.reshape((2, 4)).info == 'jubba')
+ assert_(dat.round().info == 'jubba')
+ assert_(dat.squeeze().info == 'jubba')
+ assert_(dat.std(1).info == 'jubba')
+ assert_(dat.sum(1).info == 'jubba')
+ assert_(dat.swapaxes(0, 1).info == 'jubba')
+ assert_(dat.take([2, 3, 5]).info == 'jubba')
+ assert_(dat.transpose().info == 'jubba')
+ assert_(dat.T.info == 'jubba')
+ assert_(dat.var(1).info == 'jubba')
+ assert_(dat.view(TestArray).info == 'jubba')
+ # These methods do not preserve subclasses
+ assert_(type(dat.nonzero()[0]) is np.ndarray)
+ assert_(type(dat.nonzero()[1]) is np.ndarray)
+
+ def test_recarray_tolist(self):
+ # Ticket #793, changeset r5215
+ # Comparisons fail for NaN, so we can't use random memory
+ # for the test.
+ buf = np.zeros(40, dtype=np.int8)
+ a = np.recarray(2, formats="i4,f8,f8", names="id,x,y", buf=buf)
+ b = a.tolist()
+ assert_(a[0].tolist() == b[0])
+ assert_(a[1].tolist() == b[1])
+
+ def test_nonscalar_item_method(self):
+ # Make sure that .item() fails graciously when it should
+ a = np.arange(5)
+ assert_raises(ValueError, a.item)
+
+ def test_char_array_creation(self):
+ a = np.array('123', dtype='c')
+ b = np.array([b'1', b'2', b'3'])
+ assert_equal(a, b)
+
+ def test_unaligned_unicode_access(self):
+ # Ticket #825
+ for i in range(1, 9):
+ msg = 'unicode offset: %d chars' % i
+ t = np.dtype([('a', 'S%d' % i), ('b', 'U2')])
+ x = np.array([(b'a', 'b')], dtype=t)
+ assert_equal(str(x), "[(b'a', 'b')]", err_msg=msg)
+
+ def test_sign_for_complex_nan(self):
+ # Ticket 794.
+ with np.errstate(invalid='ignore'):
+ C = np.array([-np.inf, -3 + 4j, 0, 4 - 3j, np.inf, np.nan])
+ have = np.sign(C)
+ want = np.array([-1 + 0j, -0.6 + 0.8j, 0 + 0j, 0.8 - 0.6j, 1 + 0j,
+ complex(np.nan, np.nan)])
+ assert_equal(have, want)
+
+ def test_for_equal_names(self):
+ # Ticket #674
+ dt = np.dtype([('foo', float), ('bar', float)])
+ a = np.zeros(10, dt)
+ b = list(a.dtype.names)
+ b[0] = "notfoo"
+ a.dtype.names = b
+ assert_(a.dtype.names[0] == "notfoo")
+ assert_(a.dtype.names[1] == "bar")
+
+ def test_for_object_scalar_creation(self):
+ # Ticket #816
+ a = np.object_()
+ b = np.object_(3)
+ b2 = np.object_(3.0)
+ c = np.object_([4, 5])
+ d = np.object_([None, {}, []])
+ assert_(a is None)
+ assert_(type(b) is int)
+ assert_(type(b2) is float)
+ assert_(type(c) is np.ndarray)
+ assert_(c.dtype == object)
+ assert_(d.dtype == object)
+
+ def test_array_resize_method_system_error(self):
+ # Ticket #840 - order should be an invalid keyword.
+ x = np.array([[0, 1], [2, 3]])
+ assert_raises(TypeError, x.resize, (2, 2), order='C')
+
+ def test_for_zero_length_in_choose(self):
+ "Ticket #882"
+ a = np.array(1)
+ assert_raises(ValueError, lambda x: x.choose([]), a)
+
+ def test_array_ndmin_overflow(self):
+ "Ticket #947."
+ assert_raises(ValueError, lambda: np.array([1], ndmin=65))
+
+ def test_void_scalar_with_titles(self):
+ # No ticket
+ data = [('john', 4), ('mary', 5)]
+ dtype1 = [(('source:yy', 'name'), 'O'), (('source:xx', 'id'), int)]
+ arr = np.array(data, dtype=dtype1)
+ assert_(arr[0][0] == 'john')
+ assert_(arr[0][1] == 4)
+
+ def test_void_scalar_constructor(self):
+ # Issue #1550
+
+ # Create test string data, construct void scalar from data and assert
+ # that void scalar contains original data.
+ test_string = np.array("test")
+ test_string_void_scalar = np._core.multiarray.scalar(
+ np.dtype(("V", test_string.dtype.itemsize)), test_string.tobytes())
+
+ assert_(test_string_void_scalar.view(test_string.dtype) == test_string)
+
+ # Create record scalar, construct from data and assert that
+ # reconstructed scalar is correct.
+ test_record = np.ones((), "i,i")
+ test_record_void_scalar = np._core.multiarray.scalar(
+ test_record.dtype, test_record.tobytes())
+
+ assert_(test_record_void_scalar == test_record)
+
+ # Test pickle and unpickle of void and record scalars
+ for proto in range(2, pickle.HIGHEST_PROTOCOL + 1):
+ assert_(pickle.loads(
+ pickle.dumps(test_string, protocol=proto)) == test_string)
+ assert_(pickle.loads(
+ pickle.dumps(test_record, protocol=proto)) == test_record)
+
+ @_no_tracing
+ def test_blasdot_uninitialized_memory(self):
+ # Ticket #950
+ for m in [0, 1, 2]:
+ for n in [0, 1, 2]:
+ for k in range(3):
+ # Try to ensure that x->data contains non-zero floats
+ x = np.array([123456789e199], dtype=np.float64)
+ if IS_PYPY:
+ x.resize((m, 0), refcheck=False)
+ else:
+ x.resize((m, 0))
+ y = np.array([123456789e199], dtype=np.float64)
+ if IS_PYPY:
+ y.resize((0, n), refcheck=False)
+ else:
+ y.resize((0, n))
+
+ # `dot` should just return zero (m, n) matrix
+ z = np.dot(x, y)
+ assert_(np.all(z == 0))
+ assert_(z.shape == (m, n))
+
+ def test_zeros(self):
+ # Regression test for #1061.
+ # Set a size which cannot fit into a 64 bits signed integer
+ sz = 2 ** 64
+ with assert_raises_regex(ValueError,
+ 'Maximum allowed dimension exceeded'):
+ np.empty(sz)
+
+ def test_huge_arange(self):
+ # Regression test for #1062.
+ # Set a size which cannot fit into a 64 bits signed integer
+ sz = 2 ** 64
+ with assert_raises_regex(ValueError,
+ 'Maximum allowed size exceeded'):
+ np.arange(sz)
+ assert_(np.size == sz)
+
+ def test_fromiter_bytes(self):
+ # Ticket #1058
+ a = np.fromiter(list(range(10)), dtype='b')
+ b = np.fromiter(list(range(10)), dtype='B')
+ assert_(np.all(a == np.array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])))
+ assert_(np.all(b == np.array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])))
+
+ def test_array_from_sequence_scalar_array(self):
+ # Ticket #1078: segfaults when creating an array with a sequence of
+ # 0d arrays.
+ a = np.array((np.ones(2), np.array(2)), dtype=object)
+ assert_equal(a.shape, (2,))
+ assert_equal(a.dtype, np.dtype(object))
+ assert_equal(a[0], np.ones(2))
+ assert_equal(a[1], np.array(2))
+
+ a = np.array(((1,), np.array(1)), dtype=object)
+ assert_equal(a.shape, (2,))
+ assert_equal(a.dtype, np.dtype(object))
+ assert_equal(a[0], (1,))
+ assert_equal(a[1], np.array(1))
+
+ def test_array_from_sequence_scalar_array2(self):
+ # Ticket #1081: weird array with strange input...
+ t = np.array([np.array([]), np.array(0, object)], dtype=object)
+ assert_equal(t.shape, (2,))
+ assert_equal(t.dtype, np.dtype(object))
+
+ def test_array_too_big(self):
+ # Ticket #1080.
+ assert_raises(ValueError, np.zeros, [975] * 7, np.int8)
+ assert_raises(ValueError, np.zeros, [26244] * 5, np.int8)
+
+ def test_dtype_keyerrors_(self):
+ # Ticket #1106.
+ dt = np.dtype([('f1', np.uint)])
+ assert_raises(KeyError, dt.__getitem__, "f2")
+ assert_raises(IndexError, dt.__getitem__, 1)
+ assert_raises(TypeError, dt.__getitem__, 0.0)
+
+ def test_lexsort_buffer_length(self):
+ # Ticket #1217, don't segfault.
+ a = np.ones(100, dtype=np.int8)
+ b = np.ones(100, dtype=np.int32)
+ i = np.lexsort((a[::-1], b))
+ assert_equal(i, np.arange(100, dtype=int))
+
+ def test_object_array_to_fixed_string(self):
+ # Ticket #1235.
+ a = np.array(['abcdefgh', 'ijklmnop'], dtype=np.object_)
+ b = np.array(a, dtype=(np.str_, 8))
+ assert_equal(a, b)
+ c = np.array(a, dtype=(np.str_, 5))
+ assert_equal(c, np.array(['abcde', 'ijklm']))
+ d = np.array(a, dtype=(np.str_, 12))
+ assert_equal(a, d)
+ e = np.empty((2, ), dtype=(np.str_, 8))
+ e[:] = a[:]
+ assert_equal(a, e)
+
+ def test_unicode_to_string_cast(self):
+ # Ticket #1240.
+ a = np.array([['abc', '\u03a3'],
+ ['asdf', 'erw']],
+ dtype='U')
+ assert_raises(UnicodeEncodeError, np.array, a, 'S4')
+
+ def test_unicode_to_string_cast_error(self):
+ # gh-15790
+ a = np.array(['\x80'] * 129, dtype='U3')
+ assert_raises(UnicodeEncodeError, np.array, a, 'S')
+ b = a.reshape(3, 43)[:-1, :-1]
+ assert_raises(UnicodeEncodeError, np.array, b, 'S')
+
+ def test_mixed_string_byte_array_creation(self):
+ a = np.array(['1234', b'123'])
+ assert_(a.itemsize == 16)
+ a = np.array([b'123', '1234'])
+ assert_(a.itemsize == 16)
+ a = np.array(['1234', b'123', '12345'])
+ assert_(a.itemsize == 20)
+ a = np.array([b'123', '1234', b'12345'])
+ assert_(a.itemsize == 20)
+ a = np.array([b'123', '1234', b'1234'])
+ assert_(a.itemsize == 16)
+
+ def test_misaligned_objects_segfault(self):
+ # Ticket #1198 and #1267
+ a1 = np.zeros((10,), dtype='O,c')
+ a2 = np.array(['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j'], 'S10')
+ a1['f0'] = a2
+ repr(a1)
+ np.argmax(a1['f0'])
+ a1['f0'][1] = "FOO"
+ a1['f0'] = "FOO"
+ np.array(a1['f0'], dtype='S')
+ np.nonzero(a1['f0'])
+ a1.sort()
+ copy.deepcopy(a1)
+
+ def test_misaligned_scalars_segfault(self):
+ # Ticket #1267
+ s1 = np.array(('a', 'Foo'), dtype='c,O')
+ s2 = np.array(('b', 'Bar'), dtype='c,O')
+ s1['f1'] = s2['f1']
+ s1['f1'] = 'Baz'
+
+ def test_misaligned_dot_product_objects(self):
+ # Ticket #1267
+ # This didn't require a fix, but it's worth testing anyway, because
+ # it may fail if .dot stops enforcing the arrays to be BEHAVED
+ a = np.array([[(1, 'a'), (0, 'a')], [(0, 'a'), (1, 'a')]], dtype='O,c')
+ b = np.array([[(4, 'a'), (1, 'a')], [(2, 'a'), (2, 'a')]], dtype='O,c')
+ np.dot(a['f0'], b['f0'])
+
+ def test_byteswap_complex_scalar(self):
+ # Ticket #1259 and gh-441
+ for dtype in [np.dtype('<' + t) for t in np.typecodes['Complex']]:
+ z = np.array([2.2 - 1.1j], dtype)
+ x = z[0] # always native-endian
+ y = x.byteswap()
+ if x.dtype.byteorder == z.dtype.byteorder:
+ # little-endian machine
+ assert_equal(x, np.frombuffer(y.tobytes(), dtype=dtype.newbyteorder()))
+ else:
+ # big-endian machine
+ assert_equal(x, np.frombuffer(y.tobytes(), dtype=dtype))
+ # double check real and imaginary parts:
+ assert_equal(x.real, y.real.byteswap())
+ assert_equal(x.imag, y.imag.byteswap())
+
+ def test_structured_arrays_with_objects1(self):
+ # Ticket #1299
+ stra = 'aaaa'
+ strb = 'bbbb'
+ x = np.array([[(0, stra), (1, strb)]], 'i8,O')
+ x[x.nonzero()] = x.ravel()[:1]
+ assert_(x[0, 1] == x[0, 0])
+
+ @pytest.mark.skipif(
+ sys.version_info >= (3, 12),
+ reason="Python 3.12 has immortal refcounts, this test no longer works."
+ )
+ @pytest.mark.skipif(not HAS_REFCOUNT, reason="Python lacks refcounts")
+ def test_structured_arrays_with_objects2(self):
+ # Ticket #1299 second test
+ stra = 'aaaa'
+ strb = 'bbbb'
+ numb = sys.getrefcount(strb)
+ numa = sys.getrefcount(stra)
+ x = np.array([[(0, stra), (1, strb)]], 'i8,O')
+ x[x.nonzero()] = x.ravel()[:1]
+ assert_(sys.getrefcount(strb) == numb)
+ assert_(sys.getrefcount(stra) == numa + 2)
+
+ def test_duplicate_title_and_name(self):
+ # Ticket #1254
+ dtspec = [(('a', 'a'), 'i'), ('b', 'i')]
+ assert_raises(ValueError, np.dtype, dtspec)
+
+ def test_signed_integer_division_overflow(self):
+ # Ticket #1317.
+ def test_type(t):
+ min = np.array([np.iinfo(t).min])
+ min //= -1
+
+ with np.errstate(over="ignore"):
+ for t in (np.int8, np.int16, np.int32, np.int64, int):
+ test_type(t)
+
+ def test_buffer_hashlib(self):
+ from hashlib import sha256
+
+ x = np.array([1, 2, 3], dtype=np.dtype('<i4'))
+ assert_equal(
+ sha256(x).hexdigest(),
+ '4636993d3e1da4e9d6b8f87b79e8f7c6d018580d52661950eabc3845c5897a4d'
+ )
+
+ def test_0d_string_scalar(self):
+ # Bug #1436; the following should succeed
+ np.asarray('x', '>c')
+
+ def test_log1p_compiler_shenanigans(self):
+ # Check if log1p is behaving on 32 bit intel systems.
+ assert_(np.isfinite(np.log1p(np.exp2(-53))))
+
+ def test_fromiter_comparison(self):
+ a = np.fromiter(list(range(10)), dtype='b')
+ b = np.fromiter(list(range(10)), dtype='B')
+ assert_(np.all(a == np.array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])))
+ assert_(np.all(b == np.array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])))
+
+ def test_fromstring_crash(self):
+ with assert_raises(ValueError):
+ np.fromstring(b'aa, aa, 1.0', sep=',')
+
+ def test_ticket_1539(self):
+ dtypes = [x for x in np._core.sctypeDict.values()
+ if (issubclass(x, np.number)
+ and not issubclass(x, np.timedelta64))]
+ a = np.array([], np.bool) # not x[0] because it is unordered
+ failures = []
+
+ for x in dtypes:
+ b = a.astype(x)
+ for y in dtypes:
+ c = a.astype(y)
+ try:
+ d = np.dot(b, c)
+ except TypeError:
+ failures.append((x, y))
+ else:
+ if d != 0:
+ failures.append((x, y))
+ if failures:
+ raise AssertionError(f"Failures: {failures!r}")
+
+ def test_ticket_1538(self):
+ x = np.finfo(np.float32)
+ for name in ('eps', 'epsneg', 'max', 'min', 'resolution', 'tiny'):
+ assert_equal(type(getattr(x, name)), np.float32,
+ err_msg=name)
+
+ def test_ticket_1434(self):
+ # Check that the out= argument in var and std has an effect
+ data = np.array(((1, 2, 3), (4, 5, 6), (7, 8, 9)))
+ out = np.zeros((3,))
+
+ ret = data.var(axis=1, out=out)
+ assert_(ret is out)
+ assert_array_equal(ret, data.var(axis=1))
+
+ ret = data.std(axis=1, out=out)
+ assert_(ret is out)
+ assert_array_equal(ret, data.std(axis=1))
+
+ def test_complex_nan_maximum(self):
+ cnan = complex(0, np.nan)
+ assert_equal(np.maximum(1, cnan), cnan)
+
+ def test_subclass_int_tuple_assignment(self):
+ # ticket #1563
+ class Subclass(np.ndarray):
+ def __new__(cls, i):
+ return np.ones((i,)).view(cls)
+
+ x = Subclass(5)
+ x[(0,)] = 2 # shouldn't raise an exception
+ assert_equal(x[0], 2)
+
+ def test_ufunc_no_unnecessary_views(self):
+ # ticket #1548
+ class Subclass(np.ndarray):
+ pass
+ x = np.array([1, 2, 3]).view(Subclass)
+ y = np.add(x, x, x)
+ assert_equal(id(x), id(y))
+
+ @pytest.mark.skipif(not HAS_REFCOUNT, reason="Python lacks refcounts")
+ def test_take_refcount(self):
+ # ticket #939
+ a = np.arange(16, dtype=float)
+ a.shape = (4, 4)
+ lut = np.ones((5 + 3, 4), float)
+ rgba = np.empty(shape=a.shape + (4,), dtype=lut.dtype)
+ c1 = sys.getrefcount(rgba)
+ try:
+ lut.take(a, axis=0, mode='clip', out=rgba)
+ except TypeError:
+ pass
+ c2 = sys.getrefcount(rgba)
+ assert_equal(c1, c2)
+
+ def test_fromfile_tofile_seeks(self):
+ # tofile/fromfile used to get (#1610) the Python file handle out of sync
+ with tempfile.NamedTemporaryFile() as f:
+ f.write(np.arange(255, dtype='u1').tobytes())
+
+ f.seek(20)
+ ret = np.fromfile(f, count=4, dtype='u1')
+ assert_equal(ret, np.array([20, 21, 22, 23], dtype='u1'))
+ assert_equal(f.tell(), 24)
+
+ f.seek(40)
+ np.array([1, 2, 3], dtype='u1').tofile(f)
+ assert_equal(f.tell(), 43)
+
+ f.seek(40)
+ data = f.read(3)
+ assert_equal(data, b"\x01\x02\x03")
+
+ f.seek(80)
+ f.read(4)
+ data = np.fromfile(f, dtype='u1', count=4)
+ assert_equal(data, np.array([84, 85, 86, 87], dtype='u1'))
+
+ def test_complex_scalar_warning(self):
+ for tp in [np.csingle, np.cdouble, np.clongdouble]:
+ x = tp(1 + 2j)
+ assert_warns(ComplexWarning, float, x)
+ with suppress_warnings() as sup:
+ sup.filter(ComplexWarning)
+ assert_equal(float(x), float(x.real))
+
+ def test_complex_scalar_complex_cast(self):
+ for tp in [np.csingle, np.cdouble, np.clongdouble]:
+ x = tp(1 + 2j)
+ assert_equal(complex(x), 1 + 2j)
+
+ def test_complex_boolean_cast(self):
+ # Ticket #2218
+ for tp in [np.csingle, np.cdouble, np.clongdouble]:
+ x = np.array([0, 0 + 0.5j, 0.5 + 0j], dtype=tp)
+ assert_equal(x.astype(bool), np.array([0, 1, 1], dtype=bool))
+ assert_(np.any(x))
+ assert_(np.all(x[1:]))
+
+ def test_uint_int_conversion(self):
+ x = 2**64 - 1
+ assert_equal(int(np.uint64(x)), x)
+
+ def test_duplicate_field_names_assign(self):
+ ra = np.fromiter(((i * 3, i * 2) for i in range(10)), dtype='i8,f8')
+ ra.dtype.names = ('f1', 'f2')
+ repr(ra) # should not cause a segmentation fault
+ assert_raises(ValueError, setattr, ra.dtype, 'names', ('f1', 'f1'))
+
+ def test_eq_string_and_object_array(self):
+ # From e-mail thread "__eq__ with str and object" (Keith Goodman)
+ a1 = np.array(['a', 'b'], dtype=object)
+ a2 = np.array(['a', 'c'])
+ assert_array_equal(a1 == a2, [True, False])
+ assert_array_equal(a2 == a1, [True, False])
+
+ def test_nonzero_byteswap(self):
+ a = np.array([0x80000000, 0x00000080, 0], dtype=np.uint32)
+ a.dtype = np.float32
+ assert_equal(a.nonzero()[0], [1])
+ a = a.byteswap()
+ a = a.view(a.dtype.newbyteorder())
+ assert_equal(a.nonzero()[0], [1]) # [0] if nonzero() ignores swap
+
+ def test_empty_mul(self):
+ a = np.array([1.])
+ a[1:1] *= 2
+ assert_equal(a, [1.])
+
+ def test_array_side_effect(self):
+ # The second use of itemsize was throwing an exception because in
+ # ctors.c, discover_itemsize was calling PyObject_Length without
+ # checking the return code. This failed to get the length of the
+ # number 2, and the exception hung around until something checked
+ # PyErr_Occurred() and returned an error.
+ assert_equal(np.dtype('S10').itemsize, 10)
+ np.array([['abc', 2], ['long ', '0123456789']], dtype=np.bytes_)
+ assert_equal(np.dtype('S10').itemsize, 10)
+
+ def test_any_float(self):
+ # all and any for floats
+ a = np.array([0.1, 0.9])
+ assert_(np.any(a))
+ assert_(np.all(a))
+
+ def test_large_float_sum(self):
+ a = np.arange(10000, dtype='f')
+ assert_equal(a.sum(dtype='d'), a.astype('d').sum())
+
+ def test_ufunc_casting_out(self):
+ a = np.array(1.0, dtype=np.float32)
+ b = np.array(1.0, dtype=np.float64)
+ c = np.array(1.0, dtype=np.float32)
+ np.add(a, b, out=c)
+ assert_equal(c, 2.0)
+
+ def test_array_scalar_contiguous(self):
+ # Array scalars are both C and Fortran contiguous
+ assert_(np.array(1.0).flags.c_contiguous)
+ assert_(np.array(1.0).flags.f_contiguous)
+ assert_(np.array(np.float32(1.0)).flags.c_contiguous)
+ assert_(np.array(np.float32(1.0)).flags.f_contiguous)
+
+ def test_squeeze_contiguous(self):
+ # Similar to GitHub issue #387
+ a = np.zeros((1, 2)).squeeze()
+ b = np.zeros((2, 2, 2), order='F')[:, :, ::2].squeeze()
+ assert_(a.flags.c_contiguous)
+ assert_(a.flags.f_contiguous)
+ assert_(b.flags.f_contiguous)
+
+ def test_squeeze_axis_handling(self):
+ # Issue #10779
+ # Ensure proper handling of objects
+ # that don't support axis specification
+ # when squeezing
+
+ class OldSqueeze(np.ndarray):
+
+ def __new__(cls,
+ input_array):
+ obj = np.asarray(input_array).view(cls)
+ return obj
+
+ # it is perfectly reasonable that prior
+ # to numpy version 1.7.0 a subclass of ndarray
+ # might have been created that did not expect
+ # squeeze to have an axis argument
+ # NOTE: this example is somewhat artificial;
+ # it is designed to simulate an old API
+ # expectation to guard against regression
+ def squeeze(self):
+ return super().squeeze()
+
+ oldsqueeze = OldSqueeze(np.array([[1], [2], [3]]))
+
+ # if no axis argument is specified the old API
+ # expectation should give the correct result
+ assert_equal(np.squeeze(oldsqueeze),
+ np.array([1, 2, 3]))
+
+ # likewise, axis=None should work perfectly well
+ # with the old API expectation
+ assert_equal(np.squeeze(oldsqueeze, axis=None),
+ np.array([1, 2, 3]))
+
+ # however, specification of any particular axis
+ # should raise a TypeError in the context of the
+ # old API specification, even when using a valid
+ # axis specification like 1 for this array
+ with assert_raises(TypeError):
+ # this would silently succeed for array
+ # subclasses / objects that did not support
+ # squeeze axis argument handling before fixing
+ # Issue #10779
+ np.squeeze(oldsqueeze, axis=1)
+
+ # check for the same behavior when using an invalid
+ # axis specification -- in this case axis=0 does not
+ # have size 1, but the priority should be to raise
+ # a TypeError for the axis argument and NOT a
+ # ValueError for squeezing a non-empty dimension
+ with assert_raises(TypeError):
+ np.squeeze(oldsqueeze, axis=0)
+
+ # the new API knows how to handle the axis
+ # argument and will return a ValueError if
+ # attempting to squeeze an axis that is not
+ # of length 1
+ with assert_raises(ValueError):
+ np.squeeze(np.array([[1], [2], [3]]), axis=0)
+
+ def test_reduce_contiguous(self):
+ # GitHub issue #387
+ a = np.add.reduce(np.zeros((2, 1, 2)), (0, 1))
+ b = np.add.reduce(np.zeros((2, 1, 2)), 1)
+ assert_(a.flags.c_contiguous)
+ assert_(a.flags.f_contiguous)
+ assert_(b.flags.c_contiguous)
+
+ @pytest.mark.skipif(IS_PYSTON, reason="Pyston disables recursion checking")
+ @pytest.mark.skipif(IS_WASM, reason="Pyodide/WASM has limited stack size")
+ def test_object_array_self_reference(self):
+ # Object arrays with references to themselves can cause problems
+ a = np.array(0, dtype=object)
+ a[()] = a
+ assert_raises(RecursionError, int, a)
+ assert_raises(RecursionError, float, a)
+ a[()] = None
+
+ @pytest.mark.skipif(IS_PYSTON, reason="Pyston disables recursion checking")
+ @pytest.mark.skipif(IS_WASM, reason="Pyodide/WASM has limited stack size")
+ def test_object_array_circular_reference(self):
+ # Test the same for a circular reference.
+ a = np.array(0, dtype=object)
+ b = np.array(0, dtype=object)
+ a[()] = b
+ b[()] = a
+ assert_raises(RecursionError, int, a)
+ # NumPy has no tp_traverse currently, so circular references
+ # cannot be detected. So resolve it:
+ a[()] = None
+
+ # This was causing a to become like the above
+ a = np.array(0, dtype=object)
+ a[...] += 1
+ assert_equal(a, 1)
+
+ def test_object_array_nested(self):
+ # but is fine with a reference to a different array
+ a = np.array(0, dtype=object)
+ b = np.array(0, dtype=object)
+ a[()] = b
+ assert_equal(int(a), int(0)) # noqa: UP018
+ assert_equal(float(a), float(0))
+
+ def test_object_array_self_copy(self):
+ # An object array being copied into itself DECREF'ed before INCREF'ing
+ # causing segmentation faults (gh-3787)
+ a = np.array(object(), dtype=object)
+ np.copyto(a, a)
+ if HAS_REFCOUNT:
+ assert_(sys.getrefcount(a[()]) == 2)
+ a[()].__class__ # will segfault if object was deleted
+
+ def test_zerosize_accumulate(self):
+ "Ticket #1733"
+ x = np.array([[42, 0]], dtype=np.uint32)
+ assert_equal(np.add.accumulate(x[:-1, 0]), [])
+
+ def test_objectarray_setfield(self):
+ # Setfield should not overwrite Object fields with non-Object data
+ x = np.array([1, 2, 3], dtype=object)
+ assert_raises(TypeError, x.setfield, 4, np.int32, 0)
+
+ def test_setting_rank0_string(self):
+ "Ticket #1736"
+ s1 = b"hello1"
+ s2 = b"hello2"
+ a = np.zeros((), dtype="S10")
+ a[()] = s1
+ assert_equal(a, np.array(s1))
+ a[()] = np.array(s2)
+ assert_equal(a, np.array(s2))
+
+ a = np.zeros((), dtype='f4')
+ a[()] = 3
+ assert_equal(a, np.array(3))
+ a[()] = np.array(4)
+ assert_equal(a, np.array(4))
+
+ def test_string_astype(self):
+ "Ticket #1748"
+ s1 = b'black'
+ s2 = b'white'
+ s3 = b'other'
+ a = np.array([[s1], [s2], [s3]])
+ assert_equal(a.dtype, np.dtype('S5'))
+ b = a.astype(np.dtype('S0'))
+ assert_equal(b.dtype, np.dtype('S5'))
+
+ def test_ticket_1756(self):
+ # Ticket #1756
+ s = b'0123456789abcdef'
+ a = np.array([s] * 5)
+ for i in range(1, 17):
+ a1 = np.array(a, "|S%d" % i)
+ a2 = np.array([s[:i]] * 5)
+ assert_equal(a1, a2)
+
+ def test_fields_strides(self):
+ "gh-2355"
+ r = np.frombuffer(b'abcdefghijklmnop' * 4 * 3, dtype='i4,(2,3)u2')
+ assert_equal(r[0:3:2]['f1'], r['f1'][0:3:2])
+ assert_equal(r[0:3:2]['f1'][0], r[0:3:2][0]['f1'])
+ assert_equal(r[0:3:2]['f1'][0][()], r[0:3:2][0]['f1'][()])
+ assert_equal(r[0:3:2]['f1'][0].strides, r[0:3:2][0]['f1'].strides)
+
+ def test_alignment_update(self):
+ # Check that alignment flag is updated on stride setting
+ a = np.arange(10)
+ assert_(a.flags.aligned)
+ a.strides = 3
+ assert_(not a.flags.aligned)
+
+ def test_ticket_1770(self):
+ "Should not segfault on python 3k"
+ import numpy as np
+ try:
+ a = np.zeros((1,), dtype=[('f1', 'f')])
+ a['f1'] = 1
+ a['f2'] = 1
+ except ValueError:
+ pass
+ except Exception:
+ raise AssertionError
+
+ def test_ticket_1608(self):
+ "x.flat shouldn't modify data"
+ x = np.array([[1, 2], [3, 4]]).T
+ np.array(x.flat)
+ assert_equal(x, [[1, 3], [2, 4]])
+
+ def test_pickle_string_overwrite(self):
+ import re
+
+ data = np.array([1], dtype='b')
+ blob = pickle.dumps(data, protocol=1)
+ data = pickle.loads(blob)
+
+ # Check that loads does not clobber interned strings
+ s = re.sub(r"a(.)", "\x01\\1", "a_")
+ assert_equal(s[0], "\x01")
+ data[0] = 0x6a
+ s = re.sub(r"a(.)", "\x01\\1", "a_")
+ assert_equal(s[0], "\x01")
+
+ def test_pickle_bytes_overwrite(self):
+ for proto in range(2, pickle.HIGHEST_PROTOCOL + 1):
+ data = np.array([1], dtype='b')
+ data = pickle.loads(pickle.dumps(data, protocol=proto))
+ data[0] = 0x7d
+ bytestring = "\x01 ".encode('ascii')
+ assert_equal(bytestring[0:1], '\x01'.encode('ascii'))
+
+ def test_pickle_py2_array_latin1_hack(self):
+ # Check that unpickling hacks in Py3 that support
+ # encoding='latin1' work correctly.
+
+ # Python2 output for pickle.dumps(numpy.array([129], dtype='b'))
+ data = b"cnumpy.core.multiarray\n_reconstruct\np0\n(cnumpy\nndarray\np1\n(I0\ntp2\nS'b'\np3\ntp4\nRp5\n(I1\n(I1\ntp6\ncnumpy\ndtype\np7\n(S'i1'\np8\nI0\nI1\ntp9\nRp10\n(I3\nS'|'\np11\nNNNI-1\nI-1\nI0\ntp12\nbI00\nS'\\x81'\np13\ntp14\nb."
+ # This should work:
+ result = pickle.loads(data, encoding='latin1')
+ assert_array_equal(result, np.array([129]).astype('b'))
+ # Should not segfault:
+ assert_raises(Exception, pickle.loads, data, encoding='koi8-r')
+
+ def test_pickle_py2_scalar_latin1_hack(self):
+ # Check that scalar unpickling hack in Py3 that supports
+ # encoding='latin1' work correctly.
+
+ # Python2 output for pickle.dumps(...)
+ datas = [
+ # (original, python2_pickle, koi8r_validity)
+ (np.str_('\u6bd2'),
+ b"cnumpy.core.multiarray\nscalar\np0\n(cnumpy\ndtype\np1\n(S'U1'\np2\nI0\nI1\ntp3\nRp4\n(I3\nS'<'\np5\nNNNI4\nI4\nI0\ntp6\nbS'\\xd2k\\x00\\x00'\np7\ntp8\nRp9\n.",
+ 'invalid'),
+
+ (np.float64(9e123),
+ b"cnumpy.core.multiarray\nscalar\np0\n(cnumpy\ndtype\np1\n(S'f8'\np2\nI0\nI1\ntp3\nRp4\n(I3\nS'<'\np5\nNNNI-1\nI-1\nI0\ntp6\nbS'O\\x81\\xb7Z\\xaa:\\xabY'\np7\ntp8\nRp9\n.",
+ 'invalid'),
+
+ # different 8-bit code point in KOI8-R vs latin1
+ (np.bytes_(b'\x9c'),
+ b"cnumpy.core.multiarray\nscalar\np0\n(cnumpy\ndtype\np1\n(S'S1'\np2\nI0\nI1\ntp3\nRp4\n(I3\nS'|'\np5\nNNNI1\nI1\nI0\ntp6\nbS'\\x9c'\np7\ntp8\nRp9\n.",
+ 'different'),
+ ]
+ for original, data, koi8r_validity in datas:
+ result = pickle.loads(data, encoding='latin1')
+ assert_equal(result, original)
+
+ # Decoding under non-latin1 encoding (e.g.) KOI8-R can
+ # produce bad results, but should not segfault.
+ if koi8r_validity == 'different':
+ # Unicode code points happen to lie within latin1,
+ # but are different in koi8-r, resulting to silent
+ # bogus results
+ result = pickle.loads(data, encoding='koi8-r')
+ assert_(result != original)
+ elif koi8r_validity == 'invalid':
+ # Unicode code points outside latin1, so results
+ # to an encoding exception
+ assert_raises(
+ ValueError, pickle.loads, data, encoding='koi8-r'
+ )
+ else:
+ raise ValueError(koi8r_validity)
+
+ def test_structured_type_to_object(self):
+ a_rec = np.array([(0, 1), (3, 2)], dtype='i4,i8')
+ a_obj = np.empty((2,), dtype=object)
+ a_obj[0] = (0, 1)
+ a_obj[1] = (3, 2)
+ # astype records -> object
+ assert_equal(a_rec.astype(object), a_obj)
+ # '=' records -> object
+ b = np.empty_like(a_obj)
+ b[...] = a_rec
+ assert_equal(b, a_obj)
+ # '=' object -> records
+ b = np.empty_like(a_rec)
+ b[...] = a_obj
+ assert_equal(b, a_rec)
+
+ def test_assign_obj_listoflists(self):
+ # Ticket # 1870
+ # The inner list should get assigned to the object elements
+ a = np.zeros(4, dtype=object)
+ b = a.copy()
+ a[0] = [1]
+ a[1] = [2]
+ a[2] = [3]
+ a[3] = [4]
+ b[...] = [[1], [2], [3], [4]]
+ assert_equal(a, b)
+ # The first dimension should get broadcast
+ a = np.zeros((2, 2), dtype=object)
+ a[...] = [[1, 2]]
+ assert_equal(a, [[1, 2], [1, 2]])
+
+ @pytest.mark.slow_pypy
+ def test_memoryleak(self):
+ # Ticket #1917 - ensure that array data doesn't leak
+ for i in range(1000):
+ # 100MB times 1000 would give 100GB of memory usage if it leaks
+ a = np.empty((100000000,), dtype='i1')
+ del a
+
+ @pytest.mark.skipif(not HAS_REFCOUNT, reason="Python lacks refcounts")
+ def test_ufunc_reduce_memoryleak(self):
+ a = np.arange(6)
+ acnt = sys.getrefcount(a)
+ np.add.reduce(a)
+ assert_equal(sys.getrefcount(a), acnt)
+
+ def test_search_sorted_invalid_arguments(self):
+ # Ticket #2021, should not segfault.
+ x = np.arange(0, 4, dtype='datetime64[D]')
+ assert_raises(TypeError, x.searchsorted, 1)
+
+ def test_string_truncation(self):
+ # Ticket #1990 - Data can be truncated in creation of an array from a
+ # mixed sequence of numeric values and strings (gh-2583)
+ for val in [True, 1234, 123.4, complex(1, 234)]:
+ for tostr, dtype in [(asunicode, "U"), (asbytes, "S")]:
+ b = np.array([val, tostr('xx')], dtype=dtype)
+ assert_equal(tostr(b[0]), tostr(val))
+ b = np.array([tostr('xx'), val], dtype=dtype)
+ assert_equal(tostr(b[1]), tostr(val))
+
+ # test also with longer strings
+ b = np.array([val, tostr('xxxxxxxxxx')], dtype=dtype)
+ assert_equal(tostr(b[0]), tostr(val))
+ b = np.array([tostr('xxxxxxxxxx'), val], dtype=dtype)
+ assert_equal(tostr(b[1]), tostr(val))
+
+ def test_string_truncation_ucs2(self):
+ # Ticket #2081. Python compiled with two byte unicode
+ # can lead to truncation if itemsize is not properly
+ # adjusted for NumPy's four byte unicode.
+ a = np.array(['abcd'])
+ assert_equal(a.dtype.itemsize, 16)
+
+ def test_unique_stable(self):
+ # Ticket #2063 must always choose stable sort for argsort to
+ # get consistent results
+ v = np.array(([0] * 5 + [1] * 6 + [2] * 6) * 4)
+ res = np.unique(v, return_index=True)
+ tgt = (np.array([0, 1, 2]), np.array([0, 5, 11]))
+ assert_equal(res, tgt)
+
+ def test_unicode_alloc_dealloc_match(self):
+ # Ticket #1578, the mismatch only showed up when running
+ # python-debug for python versions >= 2.7, and then as
+ # a core dump and error message.
+ a = np.array(['abc'], dtype=np.str_)[0]
+ del a
+
+ def test_refcount_error_in_clip(self):
+ # Ticket #1588
+ a = np.zeros((2,), dtype='>i2').clip(min=0)
+ x = a + a
+ # This used to segfault:
+ y = str(x)
+ # Check the final string:
+ assert_(y == "[0 0]")
+
+ def test_searchsorted_wrong_dtype(self):
+ # Ticket #2189, it used to segfault, so we check that it raises the
+ # proper exception.
+ a = np.array([('a', 1)], dtype='S1, int')
+ assert_raises(TypeError, np.searchsorted, a, 1.2)
+ # Ticket #2066, similar problem:
+ dtype = np.rec.format_parser(['i4', 'i4'], [], [])
+ a = np.recarray((2,), dtype)
+ a[...] = [(1, 2), (3, 4)]
+ assert_raises(TypeError, np.searchsorted, a, 1)
+
+ def test_complex64_alignment(self):
+ # Issue gh-2668 (trac 2076), segfault on sparc due to misalignment
+ dtt = np.complex64
+ arr = np.arange(10, dtype=dtt)
+ # 2D array
+ arr2 = np.reshape(arr, (2, 5))
+ # Fortran write followed by (C or F) read caused bus error
+ data_str = arr2.tobytes('F')
+ data_back = np.ndarray(arr2.shape,
+ arr2.dtype,
+ buffer=data_str,
+ order='F')
+ assert_array_equal(arr2, data_back)
+
+ def test_structured_count_nonzero(self):
+ arr = np.array([0, 1]).astype('i4, 2i4')[:1]
+ count = np.count_nonzero(arr)
+ assert_equal(count, 0)
+
+ def test_copymodule_preserves_f_contiguity(self):
+ a = np.empty((2, 2), order='F')
+ b = copy.copy(a)
+ c = copy.deepcopy(a)
+ assert_(b.flags.fortran)
+ assert_(b.flags.f_contiguous)
+ assert_(c.flags.fortran)
+ assert_(c.flags.f_contiguous)
+
+ def test_fortran_order_buffer(self):
+ import numpy as np
+ a = np.array([['Hello', 'Foob']], dtype='U5', order='F')
+ arr = np.ndarray(shape=[1, 2, 5], dtype='U1', buffer=a)
+ arr2 = np.array([[['H', 'e', 'l', 'l', 'o'],
+ ['F', 'o', 'o', 'b', '']]])
+ assert_array_equal(arr, arr2)
+
+ def test_assign_from_sequence_error(self):
+ # Ticket #4024.
+ arr = np.array([1, 2, 3])
+ assert_raises(ValueError, arr.__setitem__, slice(None), [9, 9])
+ arr.__setitem__(slice(None), [9])
+ assert_equal(arr, [9, 9, 9])
+
+ def test_format_on_flex_array_element(self):
+ # Ticket #4369.
+ dt = np.dtype([('date', '<M8[D]'), ('val', '<f8')])
+ arr = np.array([('2000-01-01', 1)], dt)
+ formatted = f'{arr[0]}'
+ assert_equal(formatted, str(arr[0]))
+
+ def test_deepcopy_on_0d_array(self):
+ # Ticket #3311.
+ arr = np.array(3)
+ arr_cp = copy.deepcopy(arr)
+
+ assert_equal(arr, arr_cp)
+ assert_equal(arr.shape, arr_cp.shape)
+ assert_equal(int(arr), int(arr_cp))
+ assert_(arr is not arr_cp)
+ assert_(isinstance(arr_cp, type(arr)))
+
+ def test_deepcopy_F_order_object_array(self):
+ # Ticket #6456.
+ a = {'a': 1}
+ b = {'b': 2}
+ arr = np.array([[a, b], [a, b]], order='F')
+ arr_cp = copy.deepcopy(arr)
+
+ assert_equal(arr, arr_cp)
+ assert_(arr is not arr_cp)
+ # Ensure that we have actually copied the item.
+ assert_(arr[0, 1] is not arr_cp[1, 1])
+ # Ensure we are allowed to have references to the same object.
+ assert_(arr[0, 1] is arr[1, 1])
+ # Check the references hold for the copied objects.
+ assert_(arr_cp[0, 1] is arr_cp[1, 1])
+
+ def test_deepcopy_empty_object_array(self):
+ # Ticket #8536.
+ # Deepcopy should succeed
+ a = np.array([], dtype=object)
+ b = copy.deepcopy(a)
+ assert_(a.shape == b.shape)
+
+ def test_bool_subscript_crash(self):
+ # gh-4494
+ c = np.rec.array([(1, 2, 3), (4, 5, 6)])
+ masked = c[np.array([True, False])]
+ base = masked.base
+ del masked, c
+ base.dtype
+
+ def test_richcompare_crash(self):
+ # gh-4613
+ import operator as op
+
+ # dummy class where __array__ throws exception
+ class Foo:
+ __array_priority__ = 1002
+
+ def __array__(self, *args, **kwargs):
+ raise Exception
+
+ rhs = Foo()
+ lhs = np.array(1)
+ for f in [op.lt, op.le, op.gt, op.ge]:
+ assert_raises(TypeError, f, lhs, rhs)
+ assert_(not op.eq(lhs, rhs))
+ assert_(op.ne(lhs, rhs))
+
+ def test_richcompare_scalar_and_subclass(self):
+ # gh-4709
+ class Foo(np.ndarray):
+ def __eq__(self, other):
+ return "OK"
+
+ x = np.array([1, 2, 3]).view(Foo)
+ assert_equal(10 == x, "OK")
+ assert_equal(np.int32(10) == x, "OK")
+ assert_equal(np.array([10]) == x, "OK")
+
+ def test_pickle_empty_string(self):
+ # gh-3926
+ for proto in range(2, pickle.HIGHEST_PROTOCOL + 1):
+ test_string = np.bytes_('')
+ assert_equal(pickle.loads(
+ pickle.dumps(test_string, protocol=proto)), test_string)
+
+ def test_frompyfunc_many_args(self):
+ # gh-5672
+
+ def passer(*args):
+ pass
+
+ assert_raises(ValueError, np.frompyfunc, passer, 64, 1)
+
+ def test_repeat_broadcasting(self):
+ # gh-5743
+ a = np.arange(60).reshape(3, 4, 5)
+ for axis in chain(range(-a.ndim, a.ndim), [None]):
+ assert_equal(a.repeat(2, axis=axis), a.repeat([2], axis=axis))
+
+ def test_frompyfunc_nout_0(self):
+ # gh-2014
+
+ def f(x):
+ x[0], x[-1] = x[-1], x[0]
+
+ uf = np.frompyfunc(f, 1, 0)
+ a = np.array([[1, 2, 3], [4, 5], [6, 7, 8, 9]], dtype=object)
+ assert_equal(uf(a), ())
+ expected = np.array([[3, 2, 1], [5, 4], [9, 7, 8, 6]], dtype=object)
+ assert_array_equal(a, expected)
+
+ @pytest.mark.skipif(not HAS_REFCOUNT, reason="Python lacks refcounts")
+ def test_leak_in_structured_dtype_comparison(self):
+ # gh-6250
+ recordtype = np.dtype([('a', np.float64),
+ ('b', np.int32),
+ ('d', (str, 5))])
+
+ # Simple case
+ a = np.zeros(2, dtype=recordtype)
+ for i in range(100):
+ a == a
+ assert_(sys.getrefcount(a) < 10)
+
+ # The case in the bug report.
+ before = sys.getrefcount(a)
+ u, v = a[0], a[1]
+ u == v
+ del u, v
+ gc.collect()
+ after = sys.getrefcount(a)
+ assert_equal(before, after)
+
+ def test_empty_percentile(self):
+ # gh-6530 / gh-6553
+ assert_array_equal(np.percentile(np.arange(10), []), np.array([]))
+
+ def test_void_compare_segfault(self):
+ # gh-6922. The following should not segfault
+ a = np.ones(3, dtype=[('object', 'O'), ('int', '<i2')])
+ a.sort()
+
+ def test_reshape_size_overflow(self):
+ # gh-7455
+ a = np.ones(20)[::2]
+ if IS_64BIT:
+ # 64 bit. The following are the prime factors of 2**63 + 5,
+ # plus a leading 2, so when multiplied together as int64,
+ # the result overflows to a total size of 10.
+ new_shape = (2, 13, 419, 691, 823, 2977518503)
+ else:
+ # 32 bit. The following are the prime factors of 2**31 + 5,
+ # plus a leading 2, so when multiplied together as int32,
+ # the result overflows to a total size of 10.
+ new_shape = (2, 7, 7, 43826197)
+ assert_raises(ValueError, a.reshape, new_shape)
+
+ @pytest.mark.skipif(IS_PYPY and sys.implementation.version <= (7, 3, 8),
+ reason="PyPy bug in error formatting")
+ def test_invalid_structured_dtypes(self):
+ # gh-2865
+ # mapping python objects to other dtypes
+ assert_raises(ValueError, np.dtype, ('O', [('name', 'i8')]))
+ assert_raises(ValueError, np.dtype, ('i8', [('name', 'O')]))
+ assert_raises(ValueError, np.dtype,
+ ('i8', [('name', [('name', 'O')])]))
+ assert_raises(ValueError, np.dtype, ([('a', 'i4'), ('b', 'i4')], 'O'))
+ assert_raises(ValueError, np.dtype, ('i8', 'O'))
+ # wrong number/type of tuple elements in dict
+ assert_raises(ValueError, np.dtype,
+ ('i', {'name': ('i', 0, 'title', 'oops')}))
+ assert_raises(ValueError, np.dtype,
+ ('i', {'name': ('i', 'wrongtype', 'title')}))
+ # disallowed as of 1.13
+ assert_raises(ValueError, np.dtype,
+ ([('a', 'O'), ('b', 'O')], [('c', 'O'), ('d', 'O')]))
+ # allowed as a special case due to existing use, see gh-2798
+ a = np.ones(1, dtype=('O', [('name', 'O')]))
+ assert_equal(a[0], 1)
+ # In particular, the above union dtype (and union dtypes in general)
+ # should mainly behave like the main (object) dtype:
+ assert a[0] is a.item()
+ assert type(a[0]) is int
+
+ def test_correct_hash_dict(self):
+ # gh-8887 - __hash__ would be None despite tp_hash being set
+ all_types = set(np._core.sctypeDict.values()) - {np.void}
+ for t in all_types:
+ val = t()
+
+ try:
+ hash(val)
+ except TypeError:
+ assert_(t.__hash__ is None)
+ except ValueError:
+ assert_(t is np.timedelta64)
+ assert_(t.__hash__ is not None)
+ else:
+ assert_(t.__hash__ is not None)
+
+ def test_scalar_copy(self):
+ scalar_types = set(np._core.sctypeDict.values())
+ values = {
+ np.void: b"a",
+ np.bytes_: b"a",
+ np.str_: "a",
+ np.datetime64: "2017-08-25",
+ }
+ for sctype in scalar_types:
+ item = sctype(values.get(sctype, 1))
+ item2 = copy.copy(item)
+ assert_equal(item, item2)
+
+ def test_void_item_memview(self):
+ va = np.zeros(10, 'V4')
+ x = va[:1].item()
+ va[0] = b'\xff\xff\xff\xff'
+ del va
+ assert_equal(x, b'\x00\x00\x00\x00')
+
+ def test_void_getitem(self):
+ # Test fix for gh-11668.
+ assert_(np.array([b'a'], 'V1').astype('O') == b'a')
+ assert_(np.array([b'ab'], 'V2').astype('O') == b'ab')
+ assert_(np.array([b'abc'], 'V3').astype('O') == b'abc')
+ assert_(np.array([b'abcd'], 'V4').astype('O') == b'abcd')
+
+ def test_structarray_title(self):
+ # The following used to segfault on pypy, due to NPY_TITLE_KEY
+ # not working properly and resulting to double-decref of the
+ # structured array field items:
+ # See: https://bitbucket.org/pypy/pypy/issues/2789
+ for j in range(5):
+ structure = np.array([1], dtype=[(('x', 'X'), np.object_)])
+ structure[0]['x'] = np.array([2])
+ gc.collect()
+
+ def test_dtype_scalar_squeeze(self):
+ # gh-11384
+ values = {
+ 'S': b"a",
+ 'M': "2018-06-20",
+ }
+ for ch in np.typecodes['All']:
+ if ch in 'O':
+ continue
+ sctype = np.dtype(ch).type
+ scvalue = sctype(values.get(ch, 3))
+ for axis in [None, ()]:
+ squeezed = scvalue.squeeze(axis=axis)
+ assert_equal(squeezed, scvalue)
+ assert_equal(type(squeezed), type(scvalue))
+
+ def test_field_access_by_title(self):
+ # gh-11507
+ s = 'Some long field name'
+ if HAS_REFCOUNT:
+ base = sys.getrefcount(s)
+ t = np.dtype([((s, 'f1'), np.float64)])
+ data = np.zeros(10, t)
+ for i in range(10):
+ str(data[['f1']])
+ if HAS_REFCOUNT:
+ assert_(base <= sys.getrefcount(s))
+
+ @pytest.mark.parametrize('val', [
+ # arrays and scalars
+ np.ones((10, 10), dtype='int32'),
+ np.uint64(10),
+ ])
+ @pytest.mark.parametrize('protocol',
+ range(2, pickle.HIGHEST_PROTOCOL + 1)
+ )
+ def test_pickle_module(self, protocol, val):
+ # gh-12837
+ s = pickle.dumps(val, protocol)
+ assert b'_multiarray_umath' not in s
+ if protocol == 5 and len(val.shape) > 0:
+ # unpickling ndarray goes through _frombuffer for protocol 5
+ assert b'numpy._core.numeric' in s
+ else:
+ assert b'numpy._core.multiarray' in s
+
+ def test_object_casting_errors(self):
+ # gh-11993 update to ValueError (see gh-16909), since strings can in
+ # principle be converted to complex, but this string cannot.
+ arr = np.array(['AAAAA', 18465886.0, 18465886.0], dtype=object)
+ assert_raises(ValueError, arr.astype, 'c8')
+
+ def test_eff1d_casting(self):
+ # gh-12711
+ x = np.array([1, 2, 4, 7, 0], dtype=np.int16)
+ res = np.ediff1d(x, to_begin=-99, to_end=np.array([88, 99]))
+ assert_equal(res, [-99, 1, 2, 3, -7, 88, 99])
+
+ # The use of safe casting means, that 1<<20 is cast unsafely, an
+ # error may be better, but currently there is no mechanism for it.
+ res = np.ediff1d(x, to_begin=(1 << 20), to_end=(1 << 20))
+ assert_equal(res, [0, 1, 2, 3, -7, 0])
+
+ def test_pickle_datetime64_array(self):
+ # gh-12745 (would fail with pickle5 installed)
+ d = np.datetime64('2015-07-04 12:59:59.50', 'ns')
+ arr = np.array([d])
+ for proto in range(2, pickle.HIGHEST_PROTOCOL + 1):
+ dumped = pickle.dumps(arr, protocol=proto)
+ assert_equal(pickle.loads(dumped), arr)
+
+ def test_bad_array_interface(self):
+ class T:
+ __array_interface__ = {}
+
+ with assert_raises(ValueError):
+ np.array([T()])
+
+ def test_2d__array__shape(self):
+ class T:
+ def __array__(self, dtype=None, copy=None):
+ return np.ndarray(shape=(0, 0))
+
+ # Make sure __array__ is used instead of Sequence methods.
+ def __iter__(self):
+ return iter([])
+
+ def __getitem__(self, idx):
+ raise AssertionError("__getitem__ was called")
+
+ def __len__(self):
+ return 0
+
+ t = T()
+ # gh-13659, would raise in broadcasting [x=t for x in result]
+ arr = np.array([t])
+ assert arr.shape == (1, 0, 0)
+
+ @pytest.mark.skipif(sys.maxsize < 2 ** 31 + 1, reason='overflows 32-bit python')
+ def test_to_ctypes(self):
+ # gh-14214
+ arr = np.zeros((2 ** 31 + 1,), 'b')
+ assert arr.size * arr.itemsize > 2 ** 31
+ c_arr = np.ctypeslib.as_ctypes(arr)
+ assert_equal(c_arr._length_, arr.size)
+
+ def test_complex_conversion_error(self):
+ # gh-17068
+ with pytest.raises(TypeError, match=r"Unable to convert dtype.*"):
+ complex(np.array("now", np.datetime64))
+
+ def test__array_interface__descr(self):
+ # gh-17068
+ dt = np.dtype({'names': ['a', 'b'],
+ 'offsets': [0, 0],
+ 'formats': [np.int64, np.int64]})
+ descr = np.array((1, 1), dtype=dt).__array_interface__['descr']
+ assert descr == [('', '|V8')] # instead of [(b'', '|V8')]
+
+ @pytest.mark.skipif(sys.maxsize < 2 ** 31 + 1, reason='overflows 32-bit python')
+ @requires_memory(free_bytes=9e9)
+ def test_dot_big_stride(self):
+ # gh-17111
+ # blas stride = stride//itemsize > int32 max
+ int32_max = np.iinfo(np.int32).max
+ n = int32_max + 3
+ a = np.empty([n], dtype=np.float32)
+ b = a[::n - 1]
+ b[...] = 1
+ assert b.strides[0] > int32_max * b.dtype.itemsize
+ assert np.dot(b, b) == 2.0
+
+ def test_frompyfunc_name(self):
+ # name conversion was failing for python 3 strings
+ # resulting in the default '?' name. Also test utf-8
+ # encoding using non-ascii name.
+ def cassé(x):
+ return x
+
+ f = np.frompyfunc(cassé, 1, 1)
+ assert str(f) == "<ufunc 'cassé (vectorized)'>"
+
+ @pytest.mark.parametrize("operation", [
+ 'add', 'subtract', 'multiply', 'floor_divide',
+ 'conjugate', 'fmod', 'square', 'reciprocal',
+ 'power', 'absolute', 'negative', 'positive',
+ 'greater', 'greater_equal', 'less',
+ 'less_equal', 'equal', 'not_equal', 'logical_and',
+ 'logical_not', 'logical_or', 'bitwise_and', 'bitwise_or',
+ 'bitwise_xor', 'invert', 'left_shift', 'right_shift',
+ 'gcd', 'lcm'
+ ]
+ )
+ @pytest.mark.parametrize("order", [
+ ('b->', 'B->'),
+ ('h->', 'H->'),
+ ('i->', 'I->'),
+ ('l->', 'L->'),
+ ('q->', 'Q->'),
+ ]
+ )
+ def test_ufunc_order(self, operation, order):
+ # gh-18075
+ # Ensure signed types before unsigned
+ def get_idx(string, str_lst):
+ for i, s in enumerate(str_lst):
+ if string in s:
+ return i
+ raise ValueError(f"{string} not in list")
+ types = getattr(np, operation).types
+ assert get_idx(order[0], types) < get_idx(order[1], types), (
+ f"Unexpected types order of ufunc in {operation}"
+ f"for {order}. Possible fix: Use signed before unsigned"
+ "in generate_umath.py")
+
+ def test_nonbool_logical(self):
+ # gh-22845
+ # create two arrays with bit patterns that do not overlap.
+ # needs to be large enough to test both SIMD and scalar paths
+ size = 100
+ a = np.frombuffer(b'\x01' * size, dtype=np.bool)
+ b = np.frombuffer(b'\x80' * size, dtype=np.bool)
+ expected = np.ones(size, dtype=np.bool)
+ assert_array_equal(np.logical_and(a, b), expected)
+
+ @pytest.mark.skipif(IS_PYPY, reason="PyPy issue 2742")
+ def test_gh_23737(self):
+ with pytest.raises(TypeError, match="not an acceptable base type"):
+ class Y(np.flexible):
+ pass
+
+ with pytest.raises(TypeError, match="not an acceptable base type"):
+ class X(np.flexible, np.ma.core.MaskedArray):
+ pass
+
+ def test_load_ufunc_pickle(self):
+ # ufuncs are pickled with a semi-private path in
+ # numpy.core._multiarray_umath and must be loadable without warning
+ # despite np.core being deprecated.
+ test_data = b'\x80\x04\x95(\x00\x00\x00\x00\x00\x00\x00\x8c\x1cnumpy.core._multiarray_umath\x94\x8c\x03add\x94\x93\x94.'
+ result = pickle.loads(test_data, encoding='bytes')
+ assert result is np.add
+
+ def test__array_namespace__(self):
+ arr = np.arange(2)
+
+ xp = arr.__array_namespace__()
+ assert xp is np
+ xp = arr.__array_namespace__(api_version="2021.12")
+ assert xp is np
+ xp = arr.__array_namespace__(api_version="2022.12")
+ assert xp is np
+ xp = arr.__array_namespace__(api_version="2023.12")
+ assert xp is np
+ xp = arr.__array_namespace__(api_version="2024.12")
+ assert xp is np
+ xp = arr.__array_namespace__(api_version=None)
+ assert xp is np
+
+ with pytest.raises(
+ ValueError,
+ match="Version \"2025.12\" of the Array API Standard "
+ "is not supported."
+ ):
+ arr.__array_namespace__(api_version="2025.12")
+
+ with pytest.raises(
+ ValueError,
+ match="Only None and strings are allowed as the Array API version"
+ ):
+ arr.__array_namespace__(api_version=2024)
+
+ def test_isin_refcnt_bug(self):
+ # gh-25295
+ for _ in range(1000):
+ np.isclose(np.int64(2), np.int64(2), atol=1e-15, rtol=1e-300)
+
+ def test_replace_regression(self):
+ # gh-25513 segfault
+ carr = np.char.chararray((2,), itemsize=25)
+ test_strings = [b' 4.52173913043478315E+00',
+ b' 4.95652173913043548E+00']
+ carr[:] = test_strings
+ out = carr.replace(b"E", b"D")
+ expected = np.char.chararray((2,), itemsize=25)
+ expected[:] = [s.replace(b"E", b"D") for s in test_strings]
+ assert_array_equal(out, expected)
+
+ def test_logspace_base_does_not_determine_dtype(self):
+ # gh-24957 and cupy/cupy/issues/7946
+ start = np.array([0, 2], dtype=np.float16)
+ stop = np.array([2, 0], dtype=np.float16)
+ out = np.logspace(start, stop, num=5, axis=1, dtype=np.float32)
+ expected = np.array([[1., 3.1621094, 10., 31.625, 100.],
+ [100., 31.625, 10., 3.1621094, 1.]],
+ dtype=np.float32)
+ assert_almost_equal(out, expected)
+ # Check test fails if the calculation is done in float64, as happened
+ # before when a python float base incorrectly influenced the dtype.
+ out2 = np.logspace(start, stop, num=5, axis=1, dtype=np.float32,
+ base=np.array([10.0]))
+ with pytest.raises(AssertionError, match="not almost equal"):
+ assert_almost_equal(out2, expected)
+
+ def test_vectorize_fixed_width_string(self):
+ arr = np.array(["SOme wOrd DŽ ß ᾛ ΣΣ ffi⁵Å Ç Ⅰ"]).astype(np.str_)
+ f = str.casefold
+ res = np.vectorize(f, otypes=[arr.dtype])(arr)
+ assert res.dtype == "U30"
+
+ def test_repeated_square_consistency(self):
+ # gh-26940
+ buf = np.array([-5.171866611150749e-07 + 2.5618634555957426e-07j,
+ 0, 0, 0, 0, 0])
+ # Test buffer with regular and reverse strides
+ for in_vec in [buf[:3], buf[:3][::-1]]:
+ expected_res = np.square(in_vec)
+ # Output vector immediately follows input vector
+ # to reproduce off-by-one in nomemoverlap check.
+ for res in [buf[3:], buf[3:][::-1]]:
+ res = buf[3:]
+ np.square(in_vec, out=res)
+ assert_equal(res, expected_res)
+
+ def test_sort_unique_crash(self):
+ # gh-27037
+ for _ in range(4):
+ vals = np.linspace(0, 1, num=128)
+ data = np.broadcast_to(vals, (128, 128, 128))
+ data = data.transpose(0, 2, 1).copy()
+ np.unique(data)
+
+ def test_sort_overlap(self):
+ # gh-27273
+ size = 100
+ inp = np.linspace(0, size, num=size, dtype=np.intc)
+ out = np.sort(inp)
+ assert_equal(inp, out)
+
+ def test_searchsorted_structured(self):
+ # gh-28190
+ x = np.array([(0, 1.)], dtype=[('time', '<i8'), ('value', '<f8')])
+ y = np.array((0, 0.), dtype=[('time', '<i8'), ('value', '<f8')])
+ x.searchsorted(y)
diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_scalar_ctors.py b/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_scalar_ctors.py
new file mode 100644
index 0000000..be3ef04
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_scalar_ctors.py
@@ -0,0 +1,207 @@
+"""
+Test the scalar constructors, which also do type-coercion
+"""
+import pytest
+
+import numpy as np
+from numpy.testing import (
+ assert_almost_equal,
+ assert_equal,
+ assert_warns,
+)
+
+
+class TestFromString:
+ def test_floating(self):
+ # Ticket #640, floats from string
+ fsingle = np.single('1.234')
+ fdouble = np.double('1.234')
+ flongdouble = np.longdouble('1.234')
+ assert_almost_equal(fsingle, 1.234)
+ assert_almost_equal(fdouble, 1.234)
+ assert_almost_equal(flongdouble, 1.234)
+
+ def test_floating_overflow(self):
+ """ Strings containing an unrepresentable float overflow """
+ fhalf = np.half('1e10000')
+ assert_equal(fhalf, np.inf)
+ fsingle = np.single('1e10000')
+ assert_equal(fsingle, np.inf)
+ fdouble = np.double('1e10000')
+ assert_equal(fdouble, np.inf)
+ flongdouble = assert_warns(RuntimeWarning, np.longdouble, '1e10000')
+ assert_equal(flongdouble, np.inf)
+
+ fhalf = np.half('-1e10000')
+ assert_equal(fhalf, -np.inf)
+ fsingle = np.single('-1e10000')
+ assert_equal(fsingle, -np.inf)
+ fdouble = np.double('-1e10000')
+ assert_equal(fdouble, -np.inf)
+ flongdouble = assert_warns(RuntimeWarning, np.longdouble, '-1e10000')
+ assert_equal(flongdouble, -np.inf)
+
+
+class TestExtraArgs:
+ def test_superclass(self):
+ # try both positional and keyword arguments
+ s = np.str_(b'\\x61', encoding='unicode-escape')
+ assert s == 'a'
+ s = np.str_(b'\\x61', 'unicode-escape')
+ assert s == 'a'
+
+ # previously this would return '\\xx'
+ with pytest.raises(UnicodeDecodeError):
+ np.str_(b'\\xx', encoding='unicode-escape')
+ with pytest.raises(UnicodeDecodeError):
+ np.str_(b'\\xx', 'unicode-escape')
+
+ # superclass fails, but numpy succeeds
+ assert np.bytes_(-2) == b'-2'
+
+ def test_datetime(self):
+ dt = np.datetime64('2000-01', ('M', 2))
+ assert np.datetime_data(dt) == ('M', 2)
+
+ with pytest.raises(TypeError):
+ np.datetime64('2000', garbage=True)
+
+ def test_bool(self):
+ with pytest.raises(TypeError):
+ np.bool(False, garbage=True)
+
+ def test_void(self):
+ with pytest.raises(TypeError):
+ np.void(b'test', garbage=True)
+
+
+class TestFromInt:
+ def test_intp(self):
+ # Ticket #99
+ assert_equal(1024, np.intp(1024))
+
+ def test_uint64_from_negative(self):
+ with pytest.raises(OverflowError):
+ np.uint64(-2)
+
+
+int_types = [np.byte, np.short, np.intc, np.long, np.longlong]
+uint_types = [np.ubyte, np.ushort, np.uintc, np.ulong, np.ulonglong]
+float_types = [np.half, np.single, np.double, np.longdouble]
+cfloat_types = [np.csingle, np.cdouble, np.clongdouble]
+
+
+class TestArrayFromScalar:
+ """ gh-15467 and gh-19125 """
+
+ def _do_test(self, t1, t2, arg=2):
+ if arg is None:
+ x = t1()
+ elif isinstance(arg, tuple):
+ if t1 is np.clongdouble:
+ pytest.xfail("creating a clongdouble from real and "
+ "imaginary parts isn't supported")
+ x = t1(*arg)
+ else:
+ x = t1(arg)
+ arr = np.array(x, dtype=t2)
+ # type should be preserved exactly
+ if t2 is None:
+ assert arr.dtype.type is t1
+ else:
+ assert arr.dtype.type is t2
+
+ @pytest.mark.parametrize('t1', int_types + uint_types)
+ @pytest.mark.parametrize('t2', int_types + uint_types + [None])
+ def test_integers(self, t1, t2):
+ return self._do_test(t1, t2)
+
+ @pytest.mark.parametrize('t1', float_types)
+ @pytest.mark.parametrize('t2', float_types + [None])
+ def test_reals(self, t1, t2):
+ return self._do_test(t1, t2)
+
+ @pytest.mark.parametrize('t1', cfloat_types)
+ @pytest.mark.parametrize('t2', cfloat_types + [None])
+ @pytest.mark.parametrize('arg', [2, 1 + 3j, (1, 2), None])
+ def test_complex(self, t1, t2, arg):
+ self._do_test(t1, t2, arg)
+
+ @pytest.mark.parametrize('t', cfloat_types)
+ def test_complex_errors(self, t):
+ with pytest.raises(TypeError):
+ t(1j, 1j)
+ with pytest.raises(TypeError):
+ t(1, None)
+ with pytest.raises(TypeError):
+ t(None, 1)
+
+
+@pytest.mark.parametrize("length",
+ [5, np.int8(5), np.array(5, dtype=np.uint16)])
+def test_void_via_length(length):
+ res = np.void(length)
+ assert type(res) is np.void
+ assert res.item() == b"\0" * 5
+ assert res.dtype == "V5"
+
+@pytest.mark.parametrize("bytes_",
+ [b"spam", np.array(567.)])
+def test_void_from_byteslike(bytes_):
+ res = np.void(bytes_)
+ expected = bytes(bytes_)
+ assert type(res) is np.void
+ assert res.item() == expected
+
+ # Passing dtype can extend it (this is how filling works)
+ res = np.void(bytes_, dtype="V100")
+ assert type(res) is np.void
+ assert res.item()[:len(expected)] == expected
+ assert res.item()[len(expected):] == b"\0" * (res.nbytes - len(expected))
+ # As well as shorten:
+ res = np.void(bytes_, dtype="V4")
+ assert type(res) is np.void
+ assert res.item() == expected[:4]
+
+def test_void_arraylike_trumps_byteslike():
+ # The memoryview is converted as an array-like of shape (18,)
+ # rather than a single bytes-like of that length.
+ m = memoryview(b"just one mintleaf?")
+ res = np.void(m)
+ assert type(res) is np.ndarray
+ assert res.dtype == "V1"
+ assert res.shape == (18,)
+
+def test_void_dtype_arg():
+ # Basic test for the dtype argument (positional and keyword)
+ res = np.void((1, 2), dtype="i,i")
+ assert res.item() == (1, 2)
+ res = np.void((2, 3), "i,i")
+ assert res.item() == (2, 3)
+
+@pytest.mark.parametrize("data",
+ [5, np.int8(5), np.array(5, dtype=np.uint16)])
+def test_void_from_integer_with_dtype(data):
+ # The "length" meaning is ignored, rather data is used:
+ res = np.void(data, dtype="i,i")
+ assert type(res) is np.void
+ assert res.dtype == "i,i"
+ assert res["f0"] == 5 and res["f1"] == 5
+
+def test_void_from_structure():
+ dtype = np.dtype([('s', [('f', 'f8'), ('u', 'U1')]), ('i', 'i2')])
+ data = np.array(((1., 'a'), 2), dtype=dtype)
+ res = np.void(data[()], dtype=dtype)
+ assert type(res) is np.void
+ assert res.dtype == dtype
+ assert res == data[()]
+
+def test_void_bad_dtype():
+ with pytest.raises(TypeError,
+ match="void: descr must be a `void.*int64"):
+ np.void(4, dtype="i8")
+
+ # Subarray dtype (with shape `(4,)` is rejected):
+ with pytest.raises(TypeError,
+ match=r"void: descr must be a `void.*\(4,\)"):
+ np.void(4, dtype="4i")
diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_scalar_methods.py b/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_scalar_methods.py
new file mode 100644
index 0000000..2d508a0
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_scalar_methods.py
@@ -0,0 +1,246 @@
+"""
+Test the scalar constructors, which also do type-coercion
+"""
+import fractions
+import platform
+import types
+from typing import Any
+
+import pytest
+
+import numpy as np
+from numpy._core import sctypes
+from numpy.testing import assert_equal, assert_raises
+
+
+class TestAsIntegerRatio:
+ # derived in part from the cpython test "test_floatasratio"
+
+ @pytest.mark.parametrize("ftype", [
+ np.half, np.single, np.double, np.longdouble])
+ @pytest.mark.parametrize("f, ratio", [
+ (0.875, (7, 8)),
+ (-0.875, (-7, 8)),
+ (0.0, (0, 1)),
+ (11.5, (23, 2)),
+ ])
+ def test_small(self, ftype, f, ratio):
+ assert_equal(ftype(f).as_integer_ratio(), ratio)
+
+ @pytest.mark.parametrize("ftype", [
+ np.half, np.single, np.double, np.longdouble])
+ def test_simple_fractions(self, ftype):
+ R = fractions.Fraction
+ assert_equal(R(0, 1),
+ R(*ftype(0.0).as_integer_ratio()))
+ assert_equal(R(5, 2),
+ R(*ftype(2.5).as_integer_ratio()))
+ assert_equal(R(1, 2),
+ R(*ftype(0.5).as_integer_ratio()))
+ assert_equal(R(-2100, 1),
+ R(*ftype(-2100.0).as_integer_ratio()))
+
+ @pytest.mark.parametrize("ftype", [
+ np.half, np.single, np.double, np.longdouble])
+ def test_errors(self, ftype):
+ assert_raises(OverflowError, ftype('inf').as_integer_ratio)
+ assert_raises(OverflowError, ftype('-inf').as_integer_ratio)
+ assert_raises(ValueError, ftype('nan').as_integer_ratio)
+
+ def test_against_known_values(self):
+ R = fractions.Fraction
+ assert_equal(R(1075, 512),
+ R(*np.half(2.1).as_integer_ratio()))
+ assert_equal(R(-1075, 512),
+ R(*np.half(-2.1).as_integer_ratio()))
+ assert_equal(R(4404019, 2097152),
+ R(*np.single(2.1).as_integer_ratio()))
+ assert_equal(R(-4404019, 2097152),
+ R(*np.single(-2.1).as_integer_ratio()))
+ assert_equal(R(4728779608739021, 2251799813685248),
+ R(*np.double(2.1).as_integer_ratio()))
+ assert_equal(R(-4728779608739021, 2251799813685248),
+ R(*np.double(-2.1).as_integer_ratio()))
+ # longdouble is platform dependent
+
+ @pytest.mark.parametrize("ftype, frac_vals, exp_vals", [
+ # dtype test cases generated using hypothesis
+ # first five generated cases per dtype
+ (np.half, [0.0, 0.01154830649280303, 0.31082276347447274,
+ 0.527350517124794, 0.8308562335072596],
+ [0, 1, 0, -8, 12]),
+ (np.single, [0.0, 0.09248576989263226, 0.8160498218131407,
+ 0.17389442853722373, 0.7956044195067877],
+ [0, 12, 10, 17, -26]),
+ (np.double, [0.0, 0.031066908499895136, 0.5214135908877832,
+ 0.45780736035689296, 0.5906586745934036],
+ [0, -801, 51, 194, -653]),
+ pytest.param(
+ np.longdouble,
+ [0.0, 0.20492557202724854, 0.4277180662199366, 0.9888085019891495,
+ 0.9620175814461964],
+ [0, -7400, 14266, -7822, -8721],
+ marks=[
+ pytest.mark.skipif(
+ np.finfo(np.double) == np.finfo(np.longdouble),
+ reason="long double is same as double"),
+ pytest.mark.skipif(
+ platform.machine().startswith("ppc"),
+ reason="IBM double double"),
+ ]
+ )
+ ])
+ def test_roundtrip(self, ftype, frac_vals, exp_vals):
+ for frac, exp in zip(frac_vals, exp_vals):
+ f = np.ldexp(ftype(frac), exp)
+ assert f.dtype == ftype
+ n, d = f.as_integer_ratio()
+
+ try:
+ nf = np.longdouble(n)
+ df = np.longdouble(d)
+ if not np.isfinite(df):
+ raise OverflowError
+ except (OverflowError, RuntimeWarning):
+ # the values may not fit in any float type
+ pytest.skip("longdouble too small on this platform")
+
+ assert_equal(nf / df, f, f"{n}/{d}")
+
+
+class TestIsInteger:
+ @pytest.mark.parametrize("str_value", ["inf", "nan"])
+ @pytest.mark.parametrize("code", np.typecodes["Float"])
+ def test_special(self, code: str, str_value: str) -> None:
+ cls = np.dtype(code).type
+ value = cls(str_value)
+ assert not value.is_integer()
+
+ @pytest.mark.parametrize(
+ "code", np.typecodes["Float"] + np.typecodes["AllInteger"]
+ )
+ def test_true(self, code: str) -> None:
+ float_array = np.arange(-5, 5).astype(code)
+ for value in float_array:
+ assert value.is_integer()
+
+ @pytest.mark.parametrize("code", np.typecodes["Float"])
+ def test_false(self, code: str) -> None:
+ float_array = np.arange(-5, 5).astype(code)
+ float_array *= 1.1
+ for value in float_array:
+ if value == 0:
+ continue
+ assert not value.is_integer()
+
+
+class TestClassGetItem:
+ @pytest.mark.parametrize("cls", [
+ np.number,
+ np.integer,
+ np.inexact,
+ np.unsignedinteger,
+ np.signedinteger,
+ np.floating,
+ ])
+ def test_abc(self, cls: type[np.number]) -> None:
+ alias = cls[Any]
+ assert isinstance(alias, types.GenericAlias)
+ assert alias.__origin__ is cls
+
+ def test_abc_complexfloating(self) -> None:
+ alias = np.complexfloating[Any, Any]
+ assert isinstance(alias, types.GenericAlias)
+ assert alias.__origin__ is np.complexfloating
+
+ @pytest.mark.parametrize("arg_len", range(4))
+ def test_abc_complexfloating_subscript_tuple(self, arg_len: int) -> None:
+ arg_tup = (Any,) * arg_len
+ if arg_len in (1, 2):
+ assert np.complexfloating[arg_tup]
+ else:
+ match = f"Too {'few' if arg_len == 0 else 'many'} arguments"
+ with pytest.raises(TypeError, match=match):
+ np.complexfloating[arg_tup]
+
+ @pytest.mark.parametrize("cls", [np.generic, np.flexible, np.character])
+ def test_abc_non_numeric(self, cls: type[np.generic]) -> None:
+ with pytest.raises(TypeError):
+ cls[Any]
+
+ @pytest.mark.parametrize("code", np.typecodes["All"])
+ def test_concrete(self, code: str) -> None:
+ cls = np.dtype(code).type
+ with pytest.raises(TypeError):
+ cls[Any]
+
+ @pytest.mark.parametrize("arg_len", range(4))
+ def test_subscript_tuple(self, arg_len: int) -> None:
+ arg_tup = (Any,) * arg_len
+ if arg_len == 1:
+ assert np.number[arg_tup]
+ else:
+ with pytest.raises(TypeError):
+ np.number[arg_tup]
+
+ def test_subscript_scalar(self) -> None:
+ assert np.number[Any]
+
+
+class TestBitCount:
+ # derived in part from the cpython test "test_bit_count"
+
+ @pytest.mark.parametrize("itype", sctypes['int'] + sctypes['uint'])
+ def test_small(self, itype):
+ for a in range(max(np.iinfo(itype).min, 0), 128):
+ msg = f"Smoke test for {itype}({a}).bit_count()"
+ assert itype(a).bit_count() == a.bit_count(), msg
+
+ def test_bit_count(self):
+ for exp in [10, 17, 63]:
+ a = 2**exp
+ assert np.uint64(a).bit_count() == 1
+ assert np.uint64(a - 1).bit_count() == exp
+ assert np.uint64(a ^ 63).bit_count() == 7
+ assert np.uint64((a - 1) ^ 510).bit_count() == exp - 8
+
+
+class TestDevice:
+ """
+ Test scalar.device attribute and scalar.to_device() method.
+ """
+ scalars = [np.bool(True), np.int64(1), np.uint64(1), np.float64(1.0),
+ np.complex128(1 + 1j)]
+
+ @pytest.mark.parametrize("scalar", scalars)
+ def test_device(self, scalar):
+ assert scalar.device == "cpu"
+
+ @pytest.mark.parametrize("scalar", scalars)
+ def test_to_device(self, scalar):
+ assert scalar.to_device("cpu") is scalar
+
+ @pytest.mark.parametrize("scalar", scalars)
+ def test___array_namespace__(self, scalar):
+ assert scalar.__array_namespace__() is np
+
+
+@pytest.mark.parametrize("scalar", [np.bool(True), np.int8(1), np.float64(1)])
+def test_array_wrap(scalar):
+ # Test scalars array wrap as long as it exists. NumPy itself should
+ # probably not use it, so it may not be necessary to keep it around.
+
+ arr0d = np.array(3, dtype=np.int8)
+ # Third argument not passed, None, or True "decays" to scalar.
+ # (I don't think NumPy would pass `None`, but it seems clear to support)
+ assert type(scalar.__array_wrap__(arr0d)) is np.int8
+ assert type(scalar.__array_wrap__(arr0d, None, None)) is np.int8
+ assert type(scalar.__array_wrap__(arr0d, None, True)) is np.int8
+
+ # Otherwise, result should be the input
+ assert scalar.__array_wrap__(arr0d, None, False) is arr0d
+
+ # An old bug. A non 0-d array cannot be converted to scalar:
+ arr1d = np.array([3], dtype=np.int8)
+ assert scalar.__array_wrap__(arr1d) is arr1d
+ assert scalar.__array_wrap__(arr1d, None, True) is arr1d
diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_scalarbuffer.py b/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_scalarbuffer.py
new file mode 100644
index 0000000..4d6b5bd
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_scalarbuffer.py
@@ -0,0 +1,153 @@
+"""
+Test scalar buffer interface adheres to PEP 3118
+"""
+import pytest
+from numpy._core._multiarray_tests import get_buffer_info
+from numpy._core._rational_tests import rational
+
+import numpy as np
+from numpy.testing import assert_, assert_equal, assert_raises
+
+# PEP3118 format strings for native (standard alignment and byteorder) types
+scalars_and_codes = [
+ (np.bool, '?'),
+ (np.byte, 'b'),
+ (np.short, 'h'),
+ (np.intc, 'i'),
+ (np.long, 'l'),
+ (np.longlong, 'q'),
+ (np.ubyte, 'B'),
+ (np.ushort, 'H'),
+ (np.uintc, 'I'),
+ (np.ulong, 'L'),
+ (np.ulonglong, 'Q'),
+ (np.half, 'e'),
+ (np.single, 'f'),
+ (np.double, 'd'),
+ (np.longdouble, 'g'),
+ (np.csingle, 'Zf'),
+ (np.cdouble, 'Zd'),
+ (np.clongdouble, 'Zg'),
+]
+scalars_only, codes_only = zip(*scalars_and_codes)
+
+
+class TestScalarPEP3118:
+
+ @pytest.mark.parametrize('scalar', scalars_only, ids=codes_only)
+ def test_scalar_match_array(self, scalar):
+ x = scalar()
+ a = np.array([], dtype=np.dtype(scalar))
+ mv_x = memoryview(x)
+ mv_a = memoryview(a)
+ assert_equal(mv_x.format, mv_a.format)
+
+ @pytest.mark.parametrize('scalar', scalars_only, ids=codes_only)
+ def test_scalar_dim(self, scalar):
+ x = scalar()
+ mv_x = memoryview(x)
+ assert_equal(mv_x.itemsize, np.dtype(scalar).itemsize)
+ assert_equal(mv_x.ndim, 0)
+ assert_equal(mv_x.shape, ())
+ assert_equal(mv_x.strides, ())
+ assert_equal(mv_x.suboffsets, ())
+
+ @pytest.mark.parametrize('scalar, code', scalars_and_codes, ids=codes_only)
+ def test_scalar_code_and_properties(self, scalar, code):
+ x = scalar()
+ expected = {'strides': (), 'itemsize': x.dtype.itemsize, 'ndim': 0,
+ 'shape': (), 'format': code, 'readonly': True}
+
+ mv_x = memoryview(x)
+ assert self._as_dict(mv_x) == expected
+
+ @pytest.mark.parametrize('scalar', scalars_only, ids=codes_only)
+ def test_scalar_buffers_readonly(self, scalar):
+ x = scalar()
+ with pytest.raises(BufferError, match="scalar buffer is readonly"):
+ get_buffer_info(x, ["WRITABLE"])
+
+ def test_void_scalar_structured_data(self):
+ dt = np.dtype([('name', np.str_, 16), ('grades', np.float64, (2,))])
+ x = np.array(('ndarray_scalar', (1.2, 3.0)), dtype=dt)[()]
+ assert_(isinstance(x, np.void))
+ mv_x = memoryview(x)
+ expected_size = 16 * np.dtype((np.str_, 1)).itemsize
+ expected_size += 2 * np.dtype(np.float64).itemsize
+ assert_equal(mv_x.itemsize, expected_size)
+ assert_equal(mv_x.ndim, 0)
+ assert_equal(mv_x.shape, ())
+ assert_equal(mv_x.strides, ())
+ assert_equal(mv_x.suboffsets, ())
+
+ # check scalar format string against ndarray format string
+ a = np.array([('Sarah', (8.0, 7.0)), ('John', (6.0, 7.0))], dtype=dt)
+ assert_(isinstance(a, np.ndarray))
+ mv_a = memoryview(a)
+ assert_equal(mv_x.itemsize, mv_a.itemsize)
+ assert_equal(mv_x.format, mv_a.format)
+
+ # Check that we do not allow writeable buffer export (technically
+ # we could allow it sometimes here...)
+ with pytest.raises(BufferError, match="scalar buffer is readonly"):
+ get_buffer_info(x, ["WRITABLE"])
+
+ def _as_dict(self, m):
+ return {'strides': m.strides, 'shape': m.shape, 'itemsize': m.itemsize,
+ 'ndim': m.ndim, 'format': m.format, 'readonly': m.readonly}
+
+ def test_datetime_memoryview(self):
+ # gh-11656
+ # Values verified with v1.13.3, shape is not () as in test_scalar_dim
+
+ dt1 = np.datetime64('2016-01-01')
+ dt2 = np.datetime64('2017-01-01')
+ expected = {'strides': (1,), 'itemsize': 1, 'ndim': 1, 'shape': (8,),
+ 'format': 'B', 'readonly': True}
+ v = memoryview(dt1)
+ assert self._as_dict(v) == expected
+
+ v = memoryview(dt2 - dt1)
+ assert self._as_dict(v) == expected
+
+ dt = np.dtype([('a', 'uint16'), ('b', 'M8[s]')])
+ a = np.empty(1, dt)
+ # Fails to create a PEP 3118 valid buffer
+ assert_raises((ValueError, BufferError), memoryview, a[0])
+
+ # Check that we do not allow writeable buffer export
+ with pytest.raises(BufferError, match="scalar buffer is readonly"):
+ get_buffer_info(dt1, ["WRITABLE"])
+
+ @pytest.mark.parametrize('s', [
+ pytest.param("\x32\x32", id="ascii"),
+ pytest.param("\uFE0F\uFE0F", id="basic multilingual"),
+ pytest.param("\U0001f4bb\U0001f4bb", id="non-BMP"),
+ ])
+ def test_str_ucs4(self, s):
+ s = np.str_(s) # only our subclass implements the buffer protocol
+
+ # all the same, characters always encode as ucs4
+ expected = {'strides': (), 'itemsize': 8, 'ndim': 0, 'shape': (), 'format': '2w',
+ 'readonly': True}
+
+ v = memoryview(s)
+ assert self._as_dict(v) == expected
+
+ # integers of the paltform-appropriate endianness
+ code_points = np.frombuffer(v, dtype='i4')
+
+ assert_equal(code_points, [ord(c) for c in s])
+
+ # Check that we do not allow writeable buffer export
+ with pytest.raises(BufferError, match="scalar buffer is readonly"):
+ get_buffer_info(s, ["WRITABLE"])
+
+ def test_user_scalar_fails_buffer(self):
+ r = rational(1)
+ with assert_raises(TypeError):
+ memoryview(r)
+
+ # Check that we do not allow writeable buffer export
+ with pytest.raises(BufferError, match="scalar buffer is readonly"):
+ get_buffer_info(r, ["WRITABLE"])
diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_scalarinherit.py b/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_scalarinherit.py
new file mode 100644
index 0000000..746a157
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_scalarinherit.py
@@ -0,0 +1,105 @@
+""" Test printing of scalar types.
+
+"""
+import pytest
+
+import numpy as np
+from numpy.testing import assert_, assert_raises
+
+
+class A:
+ pass
+class B(A, np.float64):
+ pass
+
+class C(B):
+ pass
+class D(C, B):
+ pass
+
+class B0(np.float64, A):
+ pass
+class C0(B0):
+ pass
+
+class HasNew:
+ def __new__(cls, *args, **kwargs):
+ return cls, args, kwargs
+
+class B1(np.float64, HasNew):
+ pass
+
+
+class TestInherit:
+ def test_init(self):
+ x = B(1.0)
+ assert_(str(x) == '1.0')
+ y = C(2.0)
+ assert_(str(y) == '2.0')
+ z = D(3.0)
+ assert_(str(z) == '3.0')
+
+ def test_init2(self):
+ x = B0(1.0)
+ assert_(str(x) == '1.0')
+ y = C0(2.0)
+ assert_(str(y) == '2.0')
+
+ def test_gh_15395(self):
+ # HasNew is the second base, so `np.float64` should have priority
+ x = B1(1.0)
+ assert_(str(x) == '1.0')
+
+ # previously caused RecursionError!?
+ with pytest.raises(TypeError):
+ B1(1.0, 2.0)
+
+ def test_int_repr(self):
+ # Test that integer repr works correctly for subclasses (gh-27106)
+ class my_int16(np.int16):
+ pass
+
+ s = repr(my_int16(3))
+ assert s == "my_int16(3)"
+
+class TestCharacter:
+ def test_char_radd(self):
+ # GH issue 9620, reached gentype_add and raise TypeError
+ np_s = np.bytes_('abc')
+ np_u = np.str_('abc')
+ s = b'def'
+ u = 'def'
+ assert_(np_s.__radd__(np_s) is NotImplemented)
+ assert_(np_s.__radd__(np_u) is NotImplemented)
+ assert_(np_s.__radd__(s) is NotImplemented)
+ assert_(np_s.__radd__(u) is NotImplemented)
+ assert_(np_u.__radd__(np_s) is NotImplemented)
+ assert_(np_u.__radd__(np_u) is NotImplemented)
+ assert_(np_u.__radd__(s) is NotImplemented)
+ assert_(np_u.__radd__(u) is NotImplemented)
+ assert_(s + np_s == b'defabc')
+ assert_(u + np_u == 'defabc')
+
+ class MyStr(str, np.generic):
+ # would segfault
+ pass
+
+ with assert_raises(TypeError):
+ # Previously worked, but gave completely wrong result
+ ret = s + MyStr('abc')
+
+ class MyBytes(bytes, np.generic):
+ # would segfault
+ pass
+
+ ret = s + MyBytes(b'abc')
+ assert type(ret) is type(s)
+ assert ret == b"defabc"
+
+ def test_char_repeat(self):
+ np_s = np.bytes_('abc')
+ np_u = np.str_('abc')
+ res_s = b'abc' * 5
+ res_u = 'abc' * 5
+ assert_(np_s * 5 == res_s)
+ assert_(np_u * 5 == res_u)
diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_scalarmath.py b/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_scalarmath.py
new file mode 100644
index 0000000..fc37897
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_scalarmath.py
@@ -0,0 +1,1176 @@
+import contextlib
+import itertools
+import operator
+import platform
+import sys
+import warnings
+
+import pytest
+from hypothesis import given, settings
+from hypothesis.extra import numpy as hynp
+from hypothesis.strategies import sampled_from
+from numpy._core._rational_tests import rational
+
+import numpy as np
+from numpy._utils import _pep440
+from numpy.exceptions import ComplexWarning
+from numpy.testing import (
+ IS_PYPY,
+ _gen_alignment_data,
+ assert_,
+ assert_almost_equal,
+ assert_array_equal,
+ assert_equal,
+ assert_raises,
+ check_support_sve,
+ suppress_warnings,
+)
+
+types = [np.bool, np.byte, np.ubyte, np.short, np.ushort, np.intc, np.uintc,
+ np.int_, np.uint, np.longlong, np.ulonglong,
+ np.single, np.double, np.longdouble, np.csingle,
+ np.cdouble, np.clongdouble]
+
+floating_types = np.floating.__subclasses__()
+complex_floating_types = np.complexfloating.__subclasses__()
+
+objecty_things = [object(), None, np.array(None, dtype=object)]
+
+binary_operators_for_scalars = [
+ operator.lt, operator.le, operator.eq, operator.ne, operator.ge,
+ operator.gt, operator.add, operator.floordiv, operator.mod,
+ operator.mul, operator.pow, operator.sub, operator.truediv
+]
+binary_operators_for_scalar_ints = binary_operators_for_scalars + [
+ operator.xor, operator.or_, operator.and_
+]
+
+
+# This compares scalarmath against ufuncs.
+
+class TestTypes:
+ def test_types(self):
+ for atype in types:
+ a = atype(1)
+ assert_(a == 1, f"error with {atype!r}: got {a!r}")
+
+ def test_type_add(self):
+ # list of types
+ for k, atype in enumerate(types):
+ a_scalar = atype(3)
+ a_array = np.array([3], dtype=atype)
+ for l, btype in enumerate(types):
+ b_scalar = btype(1)
+ b_array = np.array([1], dtype=btype)
+ c_scalar = a_scalar + b_scalar
+ c_array = a_array + b_array
+ # It was comparing the type numbers, but the new ufunc
+ # function-finding mechanism finds the lowest function
+ # to which both inputs can be cast - which produces 'l'
+ # when you do 'q' + 'b'. The old function finding mechanism
+ # skipped ahead based on the first argument, but that
+ # does not produce properly symmetric results...
+ assert_equal(c_scalar.dtype, c_array.dtype,
+ "error with types (%d/'%c' + %d/'%c')" %
+ (k, np.dtype(atype).char, l, np.dtype(btype).char))
+
+ def test_type_create(self):
+ for atype in types:
+ a = np.array([1, 2, 3], atype)
+ b = atype([1, 2, 3])
+ assert_equal(a, b)
+
+ def test_leak(self):
+ # test leak of scalar objects
+ # a leak would show up in valgrind as still-reachable of ~2.6MB
+ for i in range(200000):
+ np.add(1, 1)
+
+
+def check_ufunc_scalar_equivalence(op, arr1, arr2):
+ scalar1 = arr1[()]
+ scalar2 = arr2[()]
+ assert isinstance(scalar1, np.generic)
+ assert isinstance(scalar2, np.generic)
+
+ if arr1.dtype.kind == "c" or arr2.dtype.kind == "c":
+ comp_ops = {operator.ge, operator.gt, operator.le, operator.lt}
+ if op in comp_ops and (np.isnan(scalar1) or np.isnan(scalar2)):
+ pytest.xfail("complex comp ufuncs use sort-order, scalars do not.")
+ if op == operator.pow and arr2.item() in [-1, 0, 0.5, 1, 2]:
+ # array**scalar special case can have different result dtype
+ # (Other powers may have issues also, but are not hit here.)
+ # TODO: It would be nice to resolve this issue.
+ pytest.skip("array**2 can have incorrect/weird result dtype")
+
+ # ignore fpe's since they may just mismatch for integers anyway.
+ with warnings.catch_warnings(), np.errstate(all="ignore"):
+ # Comparisons DeprecationWarnings replacing errors (2022-03):
+ warnings.simplefilter("error", DeprecationWarning)
+ try:
+ res = op(arr1, arr2)
+ except Exception as e:
+ with pytest.raises(type(e)):
+ op(scalar1, scalar2)
+ else:
+ scalar_res = op(scalar1, scalar2)
+ assert_array_equal(scalar_res, res, strict=True)
+
+
+@pytest.mark.slow
+@settings(max_examples=10000, deadline=2000)
+@given(sampled_from(binary_operators_for_scalars),
+ hynp.arrays(dtype=hynp.scalar_dtypes(), shape=()),
+ hynp.arrays(dtype=hynp.scalar_dtypes(), shape=()))
+def test_array_scalar_ufunc_equivalence(op, arr1, arr2):
+ """
+ This is a thorough test attempting to cover important promotion paths
+ and ensuring that arrays and scalars stay as aligned as possible.
+ However, if it creates troubles, it should maybe just be removed.
+ """
+ check_ufunc_scalar_equivalence(op, arr1, arr2)
+
+
+@pytest.mark.slow
+@given(sampled_from(binary_operators_for_scalars),
+ hynp.scalar_dtypes(), hynp.scalar_dtypes())
+def test_array_scalar_ufunc_dtypes(op, dt1, dt2):
+ # Same as above, but don't worry about sampling weird values so that we
+ # do not have to sample as much
+ arr1 = np.array(2, dtype=dt1)
+ arr2 = np.array(3, dtype=dt2) # some power do weird things.
+
+ check_ufunc_scalar_equivalence(op, arr1, arr2)
+
+
+@pytest.mark.parametrize("fscalar", [np.float16, np.float32])
+def test_int_float_promotion_truediv(fscalar):
+ # Promotion for mixed int and float32/float16 must not go to float64
+ i = np.int8(1)
+ f = fscalar(1)
+ expected = np.result_type(i, f)
+ assert (i / f).dtype == expected
+ assert (f / i).dtype == expected
+ # But normal int / int true division goes to float64:
+ assert (i / i).dtype == np.dtype("float64")
+ # For int16, result has to be ast least float32 (takes ufunc path):
+ assert (np.int16(1) / f).dtype == np.dtype("float32")
+
+
+class TestBaseMath:
+ @pytest.mark.xfail(check_support_sve(), reason="gh-22982")
+ def test_blocked(self):
+ # test alignments offsets for simd instructions
+ # alignments for vz + 2 * (vs - 1) + 1
+ for dt, sz in [(np.float32, 11), (np.float64, 7), (np.int32, 11)]:
+ for out, inp1, inp2, msg in _gen_alignment_data(dtype=dt,
+ type='binary',
+ max_size=sz):
+ exp1 = np.ones_like(inp1)
+ inp1[...] = np.ones_like(inp1)
+ inp2[...] = np.zeros_like(inp2)
+ assert_almost_equal(np.add(inp1, inp2), exp1, err_msg=msg)
+ assert_almost_equal(np.add(inp1, 2), exp1 + 2, err_msg=msg)
+ assert_almost_equal(np.add(1, inp2), exp1, err_msg=msg)
+
+ np.add(inp1, inp2, out=out)
+ assert_almost_equal(out, exp1, err_msg=msg)
+
+ inp2[...] += np.arange(inp2.size, dtype=dt) + 1
+ assert_almost_equal(np.square(inp2),
+ np.multiply(inp2, inp2), err_msg=msg)
+ # skip true divide for ints
+ if dt != np.int32:
+ assert_almost_equal(np.reciprocal(inp2),
+ np.divide(1, inp2), err_msg=msg)
+
+ inp1[...] = np.ones_like(inp1)
+ np.add(inp1, 2, out=out)
+ assert_almost_equal(out, exp1 + 2, err_msg=msg)
+ inp2[...] = np.ones_like(inp2)
+ np.add(2, inp2, out=out)
+ assert_almost_equal(out, exp1 + 2, err_msg=msg)
+
+ def test_lower_align(self):
+ # check data that is not aligned to element size
+ # i.e doubles are aligned to 4 bytes on i386
+ d = np.zeros(23 * 8, dtype=np.int8)[4:-4].view(np.float64)
+ o = np.zeros(23 * 8, dtype=np.int8)[4:-4].view(np.float64)
+ assert_almost_equal(d + d, d * 2)
+ np.add(d, d, out=o)
+ np.add(np.ones_like(d), d, out=o)
+ np.add(d, np.ones_like(d), out=o)
+ np.add(np.ones_like(d), d)
+ np.add(d, np.ones_like(d))
+
+
+class TestPower:
+ def test_small_types(self):
+ for t in [np.int8, np.int16, np.float16]:
+ a = t(3)
+ b = a ** 4
+ assert_(b == 81, f"error with {t!r}: got {b!r}")
+
+ def test_large_types(self):
+ for t in [np.int32, np.int64, np.float32, np.float64, np.longdouble]:
+ a = t(51)
+ b = a ** 4
+ msg = f"error with {t!r}: got {b!r}"
+ if np.issubdtype(t, np.integer):
+ assert_(b == 6765201, msg)
+ else:
+ assert_almost_equal(b, 6765201, err_msg=msg)
+
+ def test_integers_to_negative_integer_power(self):
+ # Note that the combination of uint64 with a signed integer
+ # has common type np.float64. The other combinations should all
+ # raise a ValueError for integer ** negative integer.
+ exp = [np.array(-1, dt)[()] for dt in 'bhilq']
+
+ # 1 ** -1 possible special case
+ base = [np.array(1, dt)[()] for dt in 'bhilqBHILQ']
+ for i1, i2 in itertools.product(base, exp):
+ if i1.dtype != np.uint64:
+ assert_raises(ValueError, operator.pow, i1, i2)
+ else:
+ res = operator.pow(i1, i2)
+ assert_(res.dtype.type is np.float64)
+ assert_almost_equal(res, 1.)
+
+ # -1 ** -1 possible special case
+ base = [np.array(-1, dt)[()] for dt in 'bhilq']
+ for i1, i2 in itertools.product(base, exp):
+ if i1.dtype != np.uint64:
+ assert_raises(ValueError, operator.pow, i1, i2)
+ else:
+ res = operator.pow(i1, i2)
+ assert_(res.dtype.type is np.float64)
+ assert_almost_equal(res, -1.)
+
+ # 2 ** -1 perhaps generic
+ base = [np.array(2, dt)[()] for dt in 'bhilqBHILQ']
+ for i1, i2 in itertools.product(base, exp):
+ if i1.dtype != np.uint64:
+ assert_raises(ValueError, operator.pow, i1, i2)
+ else:
+ res = operator.pow(i1, i2)
+ assert_(res.dtype.type is np.float64)
+ assert_almost_equal(res, .5)
+
+ def test_mixed_types(self):
+ typelist = [np.int8, np.int16, np.float16,
+ np.float32, np.float64, np.int8,
+ np.int16, np.int32, np.int64]
+ for t1 in typelist:
+ for t2 in typelist:
+ a = t1(3)
+ b = t2(2)
+ result = a**b
+ msg = f"error with {t1!r} and {t2!r}:got {result!r}, expected {9!r}"
+ if np.issubdtype(np.dtype(result), np.integer):
+ assert_(result == 9, msg)
+ else:
+ assert_almost_equal(result, 9, err_msg=msg)
+
+ def test_modular_power(self):
+ # modular power is not implemented, so ensure it errors
+ a = 5
+ b = 4
+ c = 10
+ expected = pow(a, b, c) # noqa: F841
+ for t in (np.int32, np.float32, np.complex64):
+ # note that 3-operand power only dispatches on the first argument
+ assert_raises(TypeError, operator.pow, t(a), b, c)
+ assert_raises(TypeError, operator.pow, np.array(t(a)), b, c)
+
+
+def floordiv_and_mod(x, y):
+ return (x // y, x % y)
+
+
+def _signs(dt):
+ if dt in np.typecodes['UnsignedInteger']:
+ return (+1,)
+ else:
+ return (+1, -1)
+
+
+class TestModulus:
+
+ def test_modulus_basic(self):
+ dt = np.typecodes['AllInteger'] + np.typecodes['Float']
+ for op in [floordiv_and_mod, divmod]:
+ for dt1, dt2 in itertools.product(dt, dt):
+ for sg1, sg2 in itertools.product(_signs(dt1), _signs(dt2)):
+ fmt = 'op: %s, dt1: %s, dt2: %s, sg1: %s, sg2: %s'
+ msg = fmt % (op.__name__, dt1, dt2, sg1, sg2)
+ a = np.array(sg1 * 71, dtype=dt1)[()]
+ b = np.array(sg2 * 19, dtype=dt2)[()]
+ div, rem = op(a, b)
+ assert_equal(div * b + rem, a, err_msg=msg)
+ if sg2 == -1:
+ assert_(b < rem <= 0, msg)
+ else:
+ assert_(b > rem >= 0, msg)
+
+ def test_float_modulus_exact(self):
+ # test that float results are exact for small integers. This also
+ # holds for the same integers scaled by powers of two.
+ nlst = list(range(-127, 0))
+ plst = list(range(1, 128))
+ dividend = nlst + [0] + plst
+ divisor = nlst + plst
+ arg = list(itertools.product(dividend, divisor))
+ tgt = [divmod(*t) for t in arg]
+
+ a, b = np.array(arg, dtype=int).T
+ # convert exact integer results from Python to float so that
+ # signed zero can be used, it is checked.
+ tgtdiv, tgtrem = np.array(tgt, dtype=float).T
+ tgtdiv = np.where((tgtdiv == 0.0) & ((b < 0) ^ (a < 0)), -0.0, tgtdiv)
+ tgtrem = np.where((tgtrem == 0.0) & (b < 0), -0.0, tgtrem)
+
+ for op in [floordiv_and_mod, divmod]:
+ for dt in np.typecodes['Float']:
+ msg = f'op: {op.__name__}, dtype: {dt}'
+ fa = a.astype(dt)
+ fb = b.astype(dt)
+ # use list comprehension so a_ and b_ are scalars
+ div, rem = zip(*[op(a_, b_) for a_, b_ in zip(fa, fb)])
+ assert_equal(div, tgtdiv, err_msg=msg)
+ assert_equal(rem, tgtrem, err_msg=msg)
+
+ def test_float_modulus_roundoff(self):
+ # gh-6127
+ dt = np.typecodes['Float']
+ for op in [floordiv_and_mod, divmod]:
+ for dt1, dt2 in itertools.product(dt, dt):
+ for sg1, sg2 in itertools.product((+1, -1), (+1, -1)):
+ fmt = 'op: %s, dt1: %s, dt2: %s, sg1: %s, sg2: %s'
+ msg = fmt % (op.__name__, dt1, dt2, sg1, sg2)
+ a = np.array(sg1 * 78 * 6e-8, dtype=dt1)[()]
+ b = np.array(sg2 * 6e-8, dtype=dt2)[()]
+ div, rem = op(a, b)
+ # Equal assertion should hold when fmod is used
+ assert_equal(div * b + rem, a, err_msg=msg)
+ if sg2 == -1:
+ assert_(b < rem <= 0, msg)
+ else:
+ assert_(b > rem >= 0, msg)
+
+ def test_float_modulus_corner_cases(self):
+ # Check remainder magnitude.
+ for dt in np.typecodes['Float']:
+ b = np.array(1.0, dtype=dt)
+ a = np.nextafter(np.array(0.0, dtype=dt), -b)
+ rem = operator.mod(a, b)
+ assert_(rem <= b, f'dt: {dt}')
+ rem = operator.mod(-a, -b)
+ assert_(rem >= -b, f'dt: {dt}')
+
+ # Check nans, inf
+ with suppress_warnings() as sup:
+ sup.filter(RuntimeWarning, "invalid value encountered in remainder")
+ sup.filter(RuntimeWarning, "divide by zero encountered in remainder")
+ sup.filter(RuntimeWarning, "divide by zero encountered in floor_divide")
+ sup.filter(RuntimeWarning, "divide by zero encountered in divmod")
+ sup.filter(RuntimeWarning, "invalid value encountered in divmod")
+ for dt in np.typecodes['Float']:
+ fone = np.array(1.0, dtype=dt)
+ fzer = np.array(0.0, dtype=dt)
+ finf = np.array(np.inf, dtype=dt)
+ fnan = np.array(np.nan, dtype=dt)
+ rem = operator.mod(fone, fzer)
+ assert_(np.isnan(rem), f'dt: {dt}')
+ # MSVC 2008 returns NaN here, so disable the check.
+ #rem = operator.mod(fone, finf)
+ #assert_(rem == fone, 'dt: %s' % dt)
+ rem = operator.mod(fone, fnan)
+ assert_(np.isnan(rem), f'dt: {dt}')
+ rem = operator.mod(finf, fone)
+ assert_(np.isnan(rem), f'dt: {dt}')
+ for op in [floordiv_and_mod, divmod]:
+ div, mod = op(fone, fzer)
+ assert_(np.isinf(div)) and assert_(np.isnan(mod))
+
+ def test_inplace_floordiv_handling(self):
+ # issue gh-12927
+ # this only applies to in-place floordiv //=, because the output type
+ # promotes to float which does not fit
+ a = np.array([1, 2], np.int64)
+ b = np.array([1, 2], np.uint64)
+ with pytest.raises(TypeError,
+ match=r"Cannot cast ufunc 'floor_divide' output from"):
+ a //= b
+
+class TestComparison:
+ def test_comparision_different_types(self):
+ x = np.array(1)
+ y = np.array('s')
+ eq = x == y
+ neq = x != y
+ assert eq is np.bool_(False)
+ assert neq is np.bool_(True)
+
+
+class TestComplexDivision:
+ def test_zero_division(self):
+ with np.errstate(all="ignore"):
+ for t in [np.complex64, np.complex128]:
+ a = t(0.0)
+ b = t(1.0)
+ assert_(np.isinf(b / a))
+ b = t(complex(np.inf, np.inf))
+ assert_(np.isinf(b / a))
+ b = t(complex(np.inf, np.nan))
+ assert_(np.isinf(b / a))
+ b = t(complex(np.nan, np.inf))
+ assert_(np.isinf(b / a))
+ b = t(complex(np.nan, np.nan))
+ assert_(np.isnan(b / a))
+ b = t(0.)
+ assert_(np.isnan(b / a))
+
+ def test_signed_zeros(self):
+ with np.errstate(all="ignore"):
+ for t in [np.complex64, np.complex128]:
+ # tupled (numerator, denominator, expected)
+ # for testing as expected == numerator/denominator
+ data = (
+ (( 0.0, -1.0), ( 0.0, 1.0), (-1.0, -0.0)),
+ (( 0.0, -1.0), ( 0.0, -1.0), ( 1.0, -0.0)),
+ (( 0.0, -1.0), (-0.0, -1.0), ( 1.0, 0.0)),
+ (( 0.0, -1.0), (-0.0, 1.0), (-1.0, 0.0)),
+ (( 0.0, 1.0), ( 0.0, -1.0), (-1.0, 0.0)),
+ (( 0.0, -1.0), ( 0.0, -1.0), ( 1.0, -0.0)),
+ ((-0.0, -1.0), ( 0.0, -1.0), ( 1.0, -0.0)),
+ ((-0.0, 1.0), ( 0.0, -1.0), (-1.0, -0.0))
+ )
+ for cases in data:
+ n = cases[0]
+ d = cases[1]
+ ex = cases[2]
+ result = t(complex(n[0], n[1])) / t(complex(d[0], d[1]))
+ # check real and imag parts separately to avoid comparison
+ # in array context, which does not account for signed zeros
+ assert_equal(result.real, ex[0])
+ assert_equal(result.imag, ex[1])
+
+ def test_branches(self):
+ with np.errstate(all="ignore"):
+ for t in [np.complex64, np.complex128]:
+ # tupled (numerator, denominator, expected)
+ # for testing as expected == numerator/denominator
+ data = []
+
+ # trigger branch: real(fabs(denom)) > imag(fabs(denom))
+ # followed by else condition as neither are == 0
+ data.append((( 2.0, 1.0), ( 2.0, 1.0), (1.0, 0.0)))
+
+ # trigger branch: real(fabs(denom)) > imag(fabs(denom))
+ # followed by if condition as both are == 0
+ # is performed in test_zero_division(), so this is skipped
+
+ # trigger else if branch: real(fabs(denom)) < imag(fabs(denom))
+ data.append(((1.0, 2.0), (1.0, 2.0), (1.0, 0.0)))
+
+ for cases in data:
+ n = cases[0]
+ d = cases[1]
+ ex = cases[2]
+ result = t(complex(n[0], n[1])) / t(complex(d[0], d[1]))
+ # check real and imag parts separately to avoid comparison
+ # in array context, which does not account for signed zeros
+ assert_equal(result.real, ex[0])
+ assert_equal(result.imag, ex[1])
+
+
+class TestConversion:
+ def test_int_from_long(self):
+ l = [1e6, 1e12, 1e18, -1e6, -1e12, -1e18]
+ li = [10**6, 10**12, 10**18, -10**6, -10**12, -10**18]
+ for T in [None, np.float64, np.int64]:
+ a = np.array(l, dtype=T)
+ assert_equal([int(_m) for _m in a], li)
+
+ a = np.array(l[:3], dtype=np.uint64)
+ assert_equal([int(_m) for _m in a], li[:3])
+
+ def test_iinfo_long_values(self):
+ for code in 'bBhH':
+ with pytest.raises(OverflowError):
+ np.array(np.iinfo(code).max + 1, dtype=code)
+
+ for code in np.typecodes['AllInteger']:
+ res = np.array(np.iinfo(code).max, dtype=code)
+ tgt = np.iinfo(code).max
+ assert_(res == tgt)
+
+ for code in np.typecodes['AllInteger']:
+ res = np.dtype(code).type(np.iinfo(code).max)
+ tgt = np.iinfo(code).max
+ assert_(res == tgt)
+
+ def test_int_raise_behaviour(self):
+ def overflow_error_func(dtype):
+ dtype(np.iinfo(dtype).max + 1)
+
+ for code in [np.int_, np.uint, np.longlong, np.ulonglong]:
+ assert_raises(OverflowError, overflow_error_func, code)
+
+ def test_int_from_infinite_longdouble(self):
+ # gh-627
+ x = np.longdouble(np.inf)
+ assert_raises(OverflowError, int, x)
+ with suppress_warnings() as sup:
+ sup.record(ComplexWarning)
+ x = np.clongdouble(np.inf)
+ assert_raises(OverflowError, int, x)
+ assert_equal(len(sup.log), 1)
+
+ @pytest.mark.skipif(not IS_PYPY, reason="Test is PyPy only (gh-9972)")
+ def test_int_from_infinite_longdouble___int__(self):
+ x = np.longdouble(np.inf)
+ assert_raises(OverflowError, x.__int__)
+ with suppress_warnings() as sup:
+ sup.record(ComplexWarning)
+ x = np.clongdouble(np.inf)
+ assert_raises(OverflowError, x.__int__)
+ assert_equal(len(sup.log), 1)
+
+ @pytest.mark.skipif(np.finfo(np.double) == np.finfo(np.longdouble),
+ reason="long double is same as double")
+ @pytest.mark.skipif(platform.machine().startswith("ppc"),
+ reason="IBM double double")
+ def test_int_from_huge_longdouble(self):
+ # Produce a longdouble that would overflow a double,
+ # use exponent that avoids bug in Darwin pow function.
+ exp = np.finfo(np.double).maxexp - 1
+ huge_ld = 2 * 1234 * np.longdouble(2) ** exp
+ huge_i = 2 * 1234 * 2 ** exp
+ assert_(huge_ld != np.inf)
+ assert_equal(int(huge_ld), huge_i)
+
+ def test_int_from_longdouble(self):
+ x = np.longdouble(1.5)
+ assert_equal(int(x), 1)
+ x = np.longdouble(-10.5)
+ assert_equal(int(x), -10)
+
+ def test_numpy_scalar_relational_operators(self):
+ # All integer
+ for dt1 in np.typecodes['AllInteger']:
+ assert_(1 > np.array(0, dtype=dt1)[()], f"type {dt1} failed")
+ assert_(not 1 < np.array(0, dtype=dt1)[()], f"type {dt1} failed")
+
+ for dt2 in np.typecodes['AllInteger']:
+ assert_(np.array(1, dtype=dt1)[()] > np.array(0, dtype=dt2)[()],
+ f"type {dt1} and {dt2} failed")
+ assert_(not np.array(1, dtype=dt1)[()] < np.array(0, dtype=dt2)[()],
+ f"type {dt1} and {dt2} failed")
+
+ # Unsigned integers
+ for dt1 in 'BHILQP':
+ assert_(-1 < np.array(1, dtype=dt1)[()], f"type {dt1} failed")
+ assert_(not -1 > np.array(1, dtype=dt1)[()], f"type {dt1} failed")
+ assert_(-1 != np.array(1, dtype=dt1)[()], f"type {dt1} failed")
+
+ # unsigned vs signed
+ for dt2 in 'bhilqp':
+ assert_(np.array(1, dtype=dt1)[()] > np.array(-1, dtype=dt2)[()],
+ f"type {dt1} and {dt2} failed")
+ assert_(not np.array(1, dtype=dt1)[()] < np.array(-1, dtype=dt2)[()],
+ f"type {dt1} and {dt2} failed")
+ assert_(np.array(1, dtype=dt1)[()] != np.array(-1, dtype=dt2)[()],
+ f"type {dt1} and {dt2} failed")
+
+ # Signed integers and floats
+ for dt1 in 'bhlqp' + np.typecodes['Float']:
+ assert_(1 > np.array(-1, dtype=dt1)[()], f"type {dt1} failed")
+ assert_(not 1 < np.array(-1, dtype=dt1)[()], f"type {dt1} failed")
+ assert_(-1 == np.array(-1, dtype=dt1)[()], f"type {dt1} failed")
+
+ for dt2 in 'bhlqp' + np.typecodes['Float']:
+ assert_(np.array(1, dtype=dt1)[()] > np.array(-1, dtype=dt2)[()],
+ f"type {dt1} and {dt2} failed")
+ assert_(not np.array(1, dtype=dt1)[()] < np.array(-1, dtype=dt2)[()],
+ f"type {dt1} and {dt2} failed")
+ assert_(np.array(-1, dtype=dt1)[()] == np.array(-1, dtype=dt2)[()],
+ f"type {dt1} and {dt2} failed")
+
+ def test_scalar_comparison_to_none(self):
+ # Scalars should just return False and not give a warnings.
+ # The comparisons are flagged by pep8, ignore that.
+ with warnings.catch_warnings(record=True) as w:
+ warnings.filterwarnings('always', '', FutureWarning)
+ assert_(not np.float32(1) == None) # noqa: E711
+ assert_(not np.str_('test') == None) # noqa: E711
+ # This is dubious (see below):
+ assert_(not np.datetime64('NaT') == None) # noqa: E711
+
+ assert_(np.float32(1) != None) # noqa: E711
+ assert_(np.str_('test') != None) # noqa: E711
+ # This is dubious (see below):
+ assert_(np.datetime64('NaT') != None) # noqa: E711
+ assert_(len(w) == 0)
+
+ # For documentation purposes, this is why the datetime is dubious.
+ # At the time of deprecation this was no behaviour change, but
+ # it has to be considered when the deprecations are done.
+ assert_(np.equal(np.datetime64('NaT'), None))
+
+
+#class TestRepr:
+# def test_repr(self):
+# for t in types:
+# val = t(1197346475.0137341)
+# val_repr = repr(val)
+# val2 = eval(val_repr)
+# assert_equal( val, val2 )
+
+
+class TestRepr:
+ def _test_type_repr(self, t):
+ finfo = np.finfo(t)
+ last_fraction_bit_idx = finfo.nexp + finfo.nmant
+ last_exponent_bit_idx = finfo.nexp
+ storage_bytes = np.dtype(t).itemsize * 8
+ # could add some more types to the list below
+ for which in ['small denorm', 'small norm']:
+ # Values from https://en.wikipedia.org/wiki/IEEE_754
+ constr = np.array([0x00] * storage_bytes, dtype=np.uint8)
+ if which == 'small denorm':
+ byte = last_fraction_bit_idx // 8
+ bytebit = 7 - (last_fraction_bit_idx % 8)
+ constr[byte] = 1 << bytebit
+ elif which == 'small norm':
+ byte = last_exponent_bit_idx // 8
+ bytebit = 7 - (last_exponent_bit_idx % 8)
+ constr[byte] = 1 << bytebit
+ else:
+ raise ValueError('hmm')
+ val = constr.view(t)[0]
+ val_repr = repr(val)
+ val2 = t(eval(val_repr))
+ if not (val2 == 0 and val < 1e-100):
+ assert_equal(val, val2)
+
+ def test_float_repr(self):
+ # long double test cannot work, because eval goes through a python
+ # float
+ for t in [np.float32, np.float64]:
+ self._test_type_repr(t)
+
+
+if not IS_PYPY:
+ # sys.getsizeof() is not valid on PyPy
+ class TestSizeOf:
+
+ def test_equal_nbytes(self):
+ for type in types:
+ x = type(0)
+ assert_(sys.getsizeof(x) > x.nbytes)
+
+ def test_error(self):
+ d = np.float32()
+ assert_raises(TypeError, d.__sizeof__, "a")
+
+
+class TestMultiply:
+ def test_seq_repeat(self):
+ # Test that basic sequences get repeated when multiplied with
+ # numpy integers. And errors are raised when multiplied with others.
+ # Some of this behaviour may be controversial and could be open for
+ # change.
+ accepted_types = set(np.typecodes["AllInteger"])
+ deprecated_types = {'?'}
+ forbidden_types = (
+ set(np.typecodes["All"]) - accepted_types - deprecated_types)
+ forbidden_types -= {'V'} # can't default-construct void scalars
+
+ for seq_type in (list, tuple):
+ seq = seq_type([1, 2, 3])
+ for numpy_type in accepted_types:
+ i = np.dtype(numpy_type).type(2)
+ assert_equal(seq * i, seq * int(i))
+ assert_equal(i * seq, int(i) * seq)
+
+ for numpy_type in deprecated_types:
+ i = np.dtype(numpy_type).type()
+ with assert_raises(TypeError):
+ operator.mul(seq, i)
+
+ for numpy_type in forbidden_types:
+ i = np.dtype(numpy_type).type()
+ assert_raises(TypeError, operator.mul, seq, i)
+ assert_raises(TypeError, operator.mul, i, seq)
+
+ def test_no_seq_repeat_basic_array_like(self):
+ # Test that an array-like which does not know how to be multiplied
+ # does not attempt sequence repeat (raise TypeError).
+ # See also gh-7428.
+ class ArrayLike:
+ def __init__(self, arr):
+ self.arr = arr
+
+ def __array__(self, dtype=None, copy=None):
+ return self.arr
+
+ # Test for simple ArrayLike above and memoryviews (original report)
+ for arr_like in (ArrayLike(np.ones(3)), memoryview(np.ones(3))):
+ assert_array_equal(arr_like * np.float32(3.), np.full(3, 3.))
+ assert_array_equal(np.float32(3.) * arr_like, np.full(3, 3.))
+ assert_array_equal(arr_like * np.int_(3), np.full(3, 3))
+ assert_array_equal(np.int_(3) * arr_like, np.full(3, 3))
+
+
+class TestNegative:
+ def test_exceptions(self):
+ a = np.ones((), dtype=np.bool)[()]
+ assert_raises(TypeError, operator.neg, a)
+
+ def test_result(self):
+ types = np.typecodes['AllInteger'] + np.typecodes['AllFloat']
+ with suppress_warnings() as sup:
+ sup.filter(RuntimeWarning)
+ for dt in types:
+ a = np.ones((), dtype=dt)[()]
+ if dt in np.typecodes['UnsignedInteger']:
+ st = np.dtype(dt).type
+ max = st(np.iinfo(dt).max)
+ assert_equal(operator.neg(a), max)
+ else:
+ assert_equal(operator.neg(a) + a, 0)
+
+class TestSubtract:
+ def test_exceptions(self):
+ a = np.ones((), dtype=np.bool)[()]
+ assert_raises(TypeError, operator.sub, a, a)
+
+ def test_result(self):
+ types = np.typecodes['AllInteger'] + np.typecodes['AllFloat']
+ with suppress_warnings() as sup:
+ sup.filter(RuntimeWarning)
+ for dt in types:
+ a = np.ones((), dtype=dt)[()]
+ assert_equal(operator.sub(a, a), 0)
+
+
+class TestAbs:
+ def _test_abs_func(self, absfunc, test_dtype):
+ x = test_dtype(-1.5)
+ assert_equal(absfunc(x), 1.5)
+ x = test_dtype(0.0)
+ res = absfunc(x)
+ # assert_equal() checks zero signedness
+ assert_equal(res, 0.0)
+ x = test_dtype(-0.0)
+ res = absfunc(x)
+ assert_equal(res, 0.0)
+
+ x = test_dtype(np.finfo(test_dtype).max)
+ assert_equal(absfunc(x), x.real)
+
+ with suppress_warnings() as sup:
+ sup.filter(UserWarning)
+ x = test_dtype(np.finfo(test_dtype).tiny)
+ assert_equal(absfunc(x), x.real)
+
+ x = test_dtype(np.finfo(test_dtype).min)
+ assert_equal(absfunc(x), -x.real)
+
+ @pytest.mark.parametrize("dtype", floating_types + complex_floating_types)
+ def test_builtin_abs(self, dtype):
+ if (
+ sys.platform == "cygwin" and dtype == np.clongdouble and
+ (
+ _pep440.parse(platform.release().split("-")[0])
+ < _pep440.Version("3.3.0")
+ )
+ ):
+ pytest.xfail(
+ reason="absl is computed in double precision on cygwin < 3.3"
+ )
+ self._test_abs_func(abs, dtype)
+
+ @pytest.mark.parametrize("dtype", floating_types + complex_floating_types)
+ def test_numpy_abs(self, dtype):
+ if (
+ sys.platform == "cygwin" and dtype == np.clongdouble and
+ (
+ _pep440.parse(platform.release().split("-")[0])
+ < _pep440.Version("3.3.0")
+ )
+ ):
+ pytest.xfail(
+ reason="absl is computed in double precision on cygwin < 3.3"
+ )
+ self._test_abs_func(np.abs, dtype)
+
+class TestBitShifts:
+
+ @pytest.mark.parametrize('type_code', np.typecodes['AllInteger'])
+ @pytest.mark.parametrize('op',
+ [operator.rshift, operator.lshift], ids=['>>', '<<'])
+ def test_shift_all_bits(self, type_code, op):
+ """Shifts where the shift amount is the width of the type or wider """
+ # gh-2449
+ dt = np.dtype(type_code)
+ nbits = dt.itemsize * 8
+ for val in [5, -5]:
+ for shift in [nbits, nbits + 4]:
+ val_scl = np.array(val).astype(dt)[()]
+ shift_scl = dt.type(shift)
+ res_scl = op(val_scl, shift_scl)
+ if val_scl < 0 and op is operator.rshift:
+ # sign bit is preserved
+ assert_equal(res_scl, -1)
+ else:
+ assert_equal(res_scl, 0)
+
+ # Result on scalars should be the same as on arrays
+ val_arr = np.array([val_scl] * 32, dtype=dt)
+ shift_arr = np.array([shift] * 32, dtype=dt)
+ res_arr = op(val_arr, shift_arr)
+ assert_equal(res_arr, res_scl)
+
+
+class TestHash:
+ @pytest.mark.parametrize("type_code", np.typecodes['AllInteger'])
+ def test_integer_hashes(self, type_code):
+ scalar = np.dtype(type_code).type
+ for i in range(128):
+ assert hash(i) == hash(scalar(i))
+
+ @pytest.mark.parametrize("type_code", np.typecodes['AllFloat'])
+ def test_float_and_complex_hashes(self, type_code):
+ scalar = np.dtype(type_code).type
+ for val in [np.pi, np.inf, 3, 6.]:
+ numpy_val = scalar(val)
+ # Cast back to Python, in case the NumPy scalar has less precision
+ if numpy_val.dtype.kind == 'c':
+ val = complex(numpy_val)
+ else:
+ val = float(numpy_val)
+ assert val == numpy_val
+ assert hash(val) == hash(numpy_val)
+
+ if hash(float(np.nan)) != hash(float(np.nan)):
+ # If Python distinguishes different NaNs we do so too (gh-18833)
+ assert hash(scalar(np.nan)) != hash(scalar(np.nan))
+
+ @pytest.mark.parametrize("type_code", np.typecodes['Complex'])
+ def test_complex_hashes(self, type_code):
+ # Test some complex valued hashes specifically:
+ scalar = np.dtype(type_code).type
+ for val in [np.pi + 1j, np.inf - 3j, 3j, 6. + 1j]:
+ numpy_val = scalar(val)
+ assert hash(complex(numpy_val)) == hash(numpy_val)
+
+
+@contextlib.contextmanager
+def recursionlimit(n):
+ o = sys.getrecursionlimit()
+ try:
+ sys.setrecursionlimit(n)
+ yield
+ finally:
+ sys.setrecursionlimit(o)
+
+
+@given(sampled_from(objecty_things),
+ sampled_from(binary_operators_for_scalar_ints),
+ sampled_from(types + [rational]))
+def test_operator_object_left(o, op, type_):
+ try:
+ with recursionlimit(200):
+ op(o, type_(1))
+ except TypeError:
+ pass
+
+
+@given(sampled_from(objecty_things),
+ sampled_from(binary_operators_for_scalar_ints),
+ sampled_from(types + [rational]))
+def test_operator_object_right(o, op, type_):
+ try:
+ with recursionlimit(200):
+ op(type_(1), o)
+ except TypeError:
+ pass
+
+
+@given(sampled_from(binary_operators_for_scalars),
+ sampled_from(types),
+ sampled_from(types))
+def test_operator_scalars(op, type1, type2):
+ try:
+ op(type1(1), type2(1))
+ except TypeError:
+ pass
+
+
+@pytest.mark.parametrize("op", binary_operators_for_scalars)
+@pytest.mark.parametrize("sctype", [np.longdouble, np.clongdouble])
+def test_longdouble_operators_with_obj(sctype, op):
+ # This is/used to be tricky, because NumPy generally falls back to
+ # using the ufunc via `np.asarray()`, this effectively might do:
+ # longdouble + None
+ # -> asarray(longdouble) + np.array(None, dtype=object)
+ # -> asarray(longdouble).astype(object) + np.array(None, dtype=object)
+ # And after getting the scalars in the inner loop:
+ # -> longdouble + None
+ #
+ # That would recurse infinitely. Other scalars return the python object
+ # on cast, so this type of things works OK.
+ #
+ # As of NumPy 2.1, this has been consolidated into the np.generic binops
+ # and now checks `.item()`. That also allows the below path to work now.
+ try:
+ op(sctype(3), None)
+ except TypeError:
+ pass
+ try:
+ op(None, sctype(3))
+ except TypeError:
+ pass
+
+
+@pytest.mark.parametrize("op", [operator.add, operator.pow, operator.sub])
+@pytest.mark.parametrize("sctype", [np.longdouble, np.clongdouble])
+def test_longdouble_with_arrlike(sctype, op):
+ # As of NumPy 2.1, longdouble behaves like other types and can coerce
+ # e.g. lists. (Not necessarily better, but consistent.)
+ assert_array_equal(op(sctype(3), [1, 2]), op(3, np.array([1, 2])))
+ assert_array_equal(op([1, 2], sctype(3)), op(np.array([1, 2]), 3))
+
+
+@pytest.mark.parametrize("op", binary_operators_for_scalars)
+@pytest.mark.parametrize("sctype", [np.longdouble, np.clongdouble])
+@np.errstate(all="ignore")
+def test_longdouble_operators_with_large_int(sctype, op):
+ # (See `test_longdouble_operators_with_obj` for why longdouble is special)
+ # NEP 50 means that the result is clearly a (c)longdouble here:
+ if sctype == np.clongdouble and op in [operator.mod, operator.floordiv]:
+ # The above operators are not support for complex though...
+ with pytest.raises(TypeError):
+ op(sctype(3), 2**64)
+ with pytest.raises(TypeError):
+ op(sctype(3), 2**64)
+ else:
+ assert op(sctype(3), -2**64) == op(sctype(3), sctype(-2**64))
+ assert op(2**64, sctype(3)) == op(sctype(2**64), sctype(3))
+
+
+@pytest.mark.parametrize("dtype", np.typecodes["AllInteger"])
+@pytest.mark.parametrize("operation", [
+ lambda min, max: max + max,
+ lambda min, max: min - max,
+ lambda min, max: max * max], ids=["+", "-", "*"])
+def test_scalar_integer_operation_overflow(dtype, operation):
+ st = np.dtype(dtype).type
+ min = st(np.iinfo(dtype).min)
+ max = st(np.iinfo(dtype).max)
+
+ with pytest.warns(RuntimeWarning, match="overflow encountered"):
+ operation(min, max)
+
+
+@pytest.mark.parametrize("dtype", np.typecodes["Integer"])
+@pytest.mark.parametrize("operation", [
+ lambda min, neg_1: -min,
+ lambda min, neg_1: abs(min),
+ lambda min, neg_1: min * neg_1,
+ pytest.param(lambda min, neg_1: min // neg_1,
+ marks=pytest.mark.skip(reason="broken on some platforms"))],
+ ids=["neg", "abs", "*", "//"])
+def test_scalar_signed_integer_overflow(dtype, operation):
+ # The minimum signed integer can "overflow" for some additional operations
+ st = np.dtype(dtype).type
+ min = st(np.iinfo(dtype).min)
+ neg_1 = st(-1)
+
+ with pytest.warns(RuntimeWarning, match="overflow encountered"):
+ operation(min, neg_1)
+
+
+@pytest.mark.parametrize("dtype", np.typecodes["UnsignedInteger"])
+def test_scalar_unsigned_integer_overflow(dtype):
+ val = np.dtype(dtype).type(8)
+ with pytest.warns(RuntimeWarning, match="overflow encountered"):
+ -val
+
+ zero = np.dtype(dtype).type(0)
+ -zero # does not warn
+
+@pytest.mark.parametrize("dtype", np.typecodes["AllInteger"])
+@pytest.mark.parametrize("operation", [
+ lambda val, zero: val // zero,
+ lambda val, zero: val % zero, ], ids=["//", "%"])
+def test_scalar_integer_operation_divbyzero(dtype, operation):
+ st = np.dtype(dtype).type
+ val = st(100)
+ zero = st(0)
+
+ with pytest.warns(RuntimeWarning, match="divide by zero"):
+ operation(val, zero)
+
+
+ops_with_names = [
+ ("__lt__", "__gt__", operator.lt, True),
+ ("__le__", "__ge__", operator.le, True),
+ ("__eq__", "__eq__", operator.eq, True),
+ # Note __op__ and __rop__ may be identical here:
+ ("__ne__", "__ne__", operator.ne, True),
+ ("__gt__", "__lt__", operator.gt, True),
+ ("__ge__", "__le__", operator.ge, True),
+ ("__floordiv__", "__rfloordiv__", operator.floordiv, False),
+ ("__truediv__", "__rtruediv__", operator.truediv, False),
+ ("__add__", "__radd__", operator.add, False),
+ ("__mod__", "__rmod__", operator.mod, False),
+ ("__mul__", "__rmul__", operator.mul, False),
+ ("__pow__", "__rpow__", operator.pow, False),
+ ("__sub__", "__rsub__", operator.sub, False),
+]
+
+
+@pytest.mark.parametrize(["__op__", "__rop__", "op", "cmp"], ops_with_names)
+@pytest.mark.parametrize("sctype", [np.float32, np.float64, np.longdouble])
+def test_subclass_deferral(sctype, __op__, __rop__, op, cmp):
+ """
+ This test covers scalar subclass deferral. Note that this is exceedingly
+ complicated, especially since it tends to fall back to the array paths and
+ these additionally add the "array priority" mechanism.
+
+ The behaviour was modified subtly in 1.22 (to make it closer to how Python
+ scalars work). Due to its complexity and the fact that subclassing NumPy
+ scalars is probably a bad idea to begin with. There is probably room
+ for adjustments here.
+ """
+ class myf_simple1(sctype):
+ pass
+
+ class myf_simple2(sctype):
+ pass
+
+ def op_func(self, other):
+ return __op__
+
+ def rop_func(self, other):
+ return __rop__
+
+ myf_op = type("myf_op", (sctype,), {__op__: op_func, __rop__: rop_func})
+
+ # inheritance has to override, or this is correctly lost:
+ res = op(myf_simple1(1), myf_simple2(2))
+ assert type(res) == sctype or type(res) == np.bool
+ assert op(myf_simple1(1), myf_simple2(2)) == op(1, 2) # inherited
+
+ # Two independent subclasses do not really define an order. This could
+ # be attempted, but we do not since Python's `int` does neither:
+ assert op(myf_op(1), myf_simple1(2)) == __op__
+ assert op(myf_simple1(1), myf_op(2)) == op(1, 2) # inherited
+
+
+def test_longdouble_complex():
+ # Simple test to check longdouble and complex combinations, since these
+ # need to go through promotion, which longdouble needs to be careful about.
+ x = np.longdouble(1)
+ assert x + 1j == 1 + 1j
+ assert 1j + x == 1 + 1j
+
+
+@pytest.mark.parametrize(["__op__", "__rop__", "op", "cmp"], ops_with_names)
+@pytest.mark.parametrize("subtype", [float, int, complex, np.float16])
+def test_pyscalar_subclasses(subtype, __op__, __rop__, op, cmp):
+ # This tests that python scalar subclasses behave like a float64 (if they
+ # don't override it).
+ # In an earlier version of NEP 50, they behaved like the Python buildins.
+ def op_func(self, other):
+ return __op__
+
+ def rop_func(self, other):
+ return __rop__
+
+ # Check that deferring is indicated using `__array_ufunc__`:
+ myt = type("myt", (subtype,),
+ {__op__: op_func, __rop__: rop_func, "__array_ufunc__": None})
+
+ # Just like normally, we should never presume we can modify the float.
+ assert op(myt(1), np.float64(2)) == __op__
+ assert op(np.float64(1), myt(2)) == __rop__
+
+ if op in {operator.mod, operator.floordiv} and subtype == complex:
+ return # module is not support for complex. Do not test.
+
+ if __rop__ == __op__:
+ return
+
+ # When no deferring is indicated, subclasses are handled normally.
+ myt = type("myt", (subtype,), {__rop__: rop_func})
+ behaves_like = lambda x: np.array(subtype(x))[()]
+
+ # Check for float32, as a float subclass float64 may behave differently
+ res = op(myt(1), np.float16(2))
+ expected = op(behaves_like(1), np.float16(2))
+ assert res == expected
+ assert type(res) == type(expected)
+ res = op(np.float32(2), myt(1))
+ expected = op(np.float32(2), behaves_like(1))
+ assert res == expected
+ assert type(res) == type(expected)
+
+ # Same check for longdouble (compare via dtype to accept float64 when
+ # longdouble has the identical size), which is currently not perfectly
+ # consistent.
+ res = op(myt(1), np.longdouble(2))
+ expected = op(behaves_like(1), np.longdouble(2))
+ assert res == expected
+ assert np.dtype(type(res)) == np.dtype(type(expected))
+ res = op(np.float32(2), myt(1))
+ expected = op(np.float32(2), behaves_like(1))
+ assert res == expected
+ assert np.dtype(type(res)) == np.dtype(type(expected))
+
+
+def test_truediv_int():
+ # This should work, as the result is float:
+ assert np.uint8(3) / 123454 == np.float64(3) / 123454
+
+
+@pytest.mark.slow
+@pytest.mark.parametrize("op",
+ # TODO: Power is a bit special, but here mostly bools seem to behave oddly
+ [op for op in binary_operators_for_scalars if op is not operator.pow])
+@pytest.mark.parametrize("sctype", types)
+@pytest.mark.parametrize("other_type", [float, int, complex])
+@pytest.mark.parametrize("rop", [True, False])
+def test_scalar_matches_array_op_with_pyscalar(op, sctype, other_type, rop):
+ # Check that the ufunc path matches by coercing to an array explicitly
+ val1 = sctype(2)
+ val2 = other_type(2)
+
+ if rop:
+ _op = op
+ op = lambda x, y: _op(y, x)
+
+ try:
+ res = op(val1, val2)
+ except TypeError:
+ try:
+ expected = op(np.asarray(val1), val2)
+ raise AssertionError("ufunc didn't raise.")
+ except TypeError:
+ return
+ else:
+ expected = op(np.asarray(val1), val2)
+
+ # Note that we only check dtype equivalency, as ufuncs may pick the lower
+ # dtype if they are equivalent.
+ assert res == expected
+ if isinstance(val1, float) and other_type is complex and rop:
+ # Python complex accepts float subclasses, so we don't get a chance
+ # and the result may be a Python complex (thus, the `np.array()``)
+ assert np.array(res).dtype == expected.dtype
+ else:
+ assert res.dtype == expected.dtype
diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_scalarprint.py b/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_scalarprint.py
new file mode 100644
index 0000000..38ed778
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_scalarprint.py
@@ -0,0 +1,403 @@
+""" Test printing of scalar types.
+
+"""
+import platform
+
+import pytest
+
+import numpy as np
+from numpy.testing import IS_MUSL, assert_, assert_equal, assert_raises
+
+
+class TestRealScalars:
+ def test_str(self):
+ svals = [0.0, -0.0, 1, -1, np.inf, -np.inf, np.nan]
+ styps = [np.float16, np.float32, np.float64, np.longdouble]
+ wanted = [
+ ['0.0', '0.0', '0.0', '0.0' ], # noqa: E202
+ ['-0.0', '-0.0', '-0.0', '-0.0'],
+ ['1.0', '1.0', '1.0', '1.0' ], # noqa: E202
+ ['-1.0', '-1.0', '-1.0', '-1.0'],
+ ['inf', 'inf', 'inf', 'inf' ], # noqa: E202
+ ['-inf', '-inf', '-inf', '-inf'],
+ ['nan', 'nan', 'nan', 'nan' ]] # noqa: E202
+
+ for wants, val in zip(wanted, svals):
+ for want, styp in zip(wants, styps):
+ msg = f'for str({np.dtype(styp).name}({val!r}))'
+ assert_equal(str(styp(val)), want, err_msg=msg)
+
+ def test_scalar_cutoffs(self):
+ # test that both the str and repr of np.float64 behaves
+ # like python floats in python3.
+ def check(v):
+ assert_equal(str(np.float64(v)), str(v))
+ assert_equal(str(np.float64(v)), repr(v))
+ assert_equal(repr(np.float64(v)), f"np.float64({v!r})")
+ assert_equal(repr(np.float64(v)), f"np.float64({v})")
+
+ # check we use the same number of significant digits
+ check(1.12345678901234567890)
+ check(0.0112345678901234567890)
+
+ # check switch from scientific output to positional and back
+ check(1e-5)
+ check(1e-4)
+ check(1e15)
+ check(1e16)
+
+ test_cases_gh_28679 = [
+ (np.half, -0.000099, "-9.9e-05"),
+ (np.half, 0.0001, "0.0001"),
+ (np.half, 999, "999.0"),
+ (np.half, -1000, "-1e+03"),
+ (np.single, 0.000099, "9.9e-05"),
+ (np.single, -0.000100001, "-0.000100001"),
+ (np.single, 999999, "999999.0"),
+ (np.single, -1000000, "-1e+06")
+ ]
+
+ @pytest.mark.parametrize("dtype, input_val, expected_str", test_cases_gh_28679)
+ def test_gh_28679(self, dtype, input_val, expected_str):
+ # test cutoff to exponent notation for half and single
+ assert_equal(str(dtype(input_val)), expected_str)
+
+ test_cases_legacy_2_2 = [
+ (np.half(65504), "65500.0"),
+ (np.single(1.e15), "1000000000000000.0"),
+ (np.single(1.e16), "1e+16"),
+ ]
+
+ @pytest.mark.parametrize("input_val, expected_str", test_cases_legacy_2_2)
+ def test_legacy_2_2_mode(self, input_val, expected_str):
+ # test legacy cutoff to exponent notation for half and single
+ with np.printoptions(legacy='2.2'):
+ assert_equal(str(input_val), expected_str)
+
+ def test_dragon4(self):
+ # these tests are adapted from Ryan Juckett's dragon4 implementation,
+ # see dragon4.c for details.
+
+ fpos32 = lambda x, **k: np.format_float_positional(np.float32(x), **k)
+ fsci32 = lambda x, **k: np.format_float_scientific(np.float32(x), **k)
+ fpos64 = lambda x, **k: np.format_float_positional(np.float64(x), **k)
+ fsci64 = lambda x, **k: np.format_float_scientific(np.float64(x), **k)
+
+ preckwd = lambda prec: {'unique': False, 'precision': prec}
+
+ assert_equal(fpos32('1.0'), "1.")
+ assert_equal(fsci32('1.0'), "1.e+00")
+ assert_equal(fpos32('10.234'), "10.234")
+ assert_equal(fpos32('-10.234'), "-10.234")
+ assert_equal(fsci32('10.234'), "1.0234e+01")
+ assert_equal(fsci32('-10.234'), "-1.0234e+01")
+ assert_equal(fpos32('1000.0'), "1000.")
+ assert_equal(fpos32('1.0', precision=0), "1.")
+ assert_equal(fsci32('1.0', precision=0), "1.e+00")
+ assert_equal(fpos32('10.234', precision=0), "10.")
+ assert_equal(fpos32('-10.234', precision=0), "-10.")
+ assert_equal(fsci32('10.234', precision=0), "1.e+01")
+ assert_equal(fsci32('-10.234', precision=0), "-1.e+01")
+ assert_equal(fpos32('10.234', precision=2), "10.23")
+ assert_equal(fsci32('-10.234', precision=2), "-1.02e+01")
+ assert_equal(fsci64('9.9999999999999995e-08', **preckwd(16)),
+ '9.9999999999999995e-08')
+ assert_equal(fsci64('9.8813129168249309e-324', **preckwd(16)),
+ '9.8813129168249309e-324')
+ assert_equal(fsci64('9.9999999999999694e-311', **preckwd(16)),
+ '9.9999999999999694e-311')
+
+ # test rounding
+ # 3.1415927410 is closest float32 to np.pi
+ assert_equal(fpos32('3.14159265358979323846', **preckwd(10)),
+ "3.1415927410")
+ assert_equal(fsci32('3.14159265358979323846', **preckwd(10)),
+ "3.1415927410e+00")
+ assert_equal(fpos64('3.14159265358979323846', **preckwd(10)),
+ "3.1415926536")
+ assert_equal(fsci64('3.14159265358979323846', **preckwd(10)),
+ "3.1415926536e+00")
+ # 299792448 is closest float32 to 299792458
+ assert_equal(fpos32('299792458.0', **preckwd(5)), "299792448.00000")
+ assert_equal(fsci32('299792458.0', **preckwd(5)), "2.99792e+08")
+ assert_equal(fpos64('299792458.0', **preckwd(5)), "299792458.00000")
+ assert_equal(fsci64('299792458.0', **preckwd(5)), "2.99792e+08")
+
+ assert_equal(fpos32('3.14159265358979323846', **preckwd(25)),
+ "3.1415927410125732421875000")
+ assert_equal(fpos64('3.14159265358979323846', **preckwd(50)),
+ "3.14159265358979311599796346854418516159057617187500")
+ assert_equal(fpos64('3.14159265358979323846'), "3.141592653589793")
+
+ # smallest numbers
+ assert_equal(fpos32(0.5**(126 + 23), unique=False, precision=149),
+ "0.00000000000000000000000000000000000000000000140129846432"
+ "4817070923729583289916131280261941876515771757068283889791"
+ "08268586060148663818836212158203125")
+
+ assert_equal(fpos64(5e-324, unique=False, precision=1074),
+ "0.00000000000000000000000000000000000000000000000000000000"
+ "0000000000000000000000000000000000000000000000000000000000"
+ "0000000000000000000000000000000000000000000000000000000000"
+ "0000000000000000000000000000000000000000000000000000000000"
+ "0000000000000000000000000000000000000000000000000000000000"
+ "0000000000000000000000000000000000049406564584124654417656"
+ "8792868221372365059802614324764425585682500675507270208751"
+ "8652998363616359923797965646954457177309266567103559397963"
+ "9877479601078187812630071319031140452784581716784898210368"
+ "8718636056998730723050006387409153564984387312473397273169"
+ "6151400317153853980741262385655911710266585566867681870395"
+ "6031062493194527159149245532930545654440112748012970999954"
+ "1931989409080416563324524757147869014726780159355238611550"
+ "1348035264934720193790268107107491703332226844753335720832"
+ "4319360923828934583680601060115061698097530783422773183292"
+ "4790498252473077637592724787465608477820373446969953364701"
+ "7972677717585125660551199131504891101451037862738167250955"
+ "8373897335989936648099411642057026370902792427675445652290"
+ "87538682506419718265533447265625")
+
+ # largest numbers
+ f32x = np.finfo(np.float32).max
+ assert_equal(fpos32(f32x, **preckwd(0)),
+ "340282346638528859811704183484516925440.")
+ assert_equal(fpos64(np.finfo(np.float64).max, **preckwd(0)),
+ "1797693134862315708145274237317043567980705675258449965989"
+ "1747680315726078002853876058955863276687817154045895351438"
+ "2464234321326889464182768467546703537516986049910576551282"
+ "0762454900903893289440758685084551339423045832369032229481"
+ "6580855933212334827479782620414472316873817718091929988125"
+ "0404026184124858368.")
+ # Warning: In unique mode only the integer digits necessary for
+ # uniqueness are computed, the rest are 0.
+ assert_equal(fpos32(f32x),
+ "340282350000000000000000000000000000000.")
+
+ # Further tests of zero-padding vs rounding in different combinations
+ # of unique, fractional, precision, min_digits
+ # precision can only reduce digits, not add them.
+ # min_digits can only extend digits, not reduce them.
+ assert_equal(fpos32(f32x, unique=True, fractional=True, precision=0),
+ "340282350000000000000000000000000000000.")
+ assert_equal(fpos32(f32x, unique=True, fractional=True, precision=4),
+ "340282350000000000000000000000000000000.")
+ assert_equal(fpos32(f32x, unique=True, fractional=True, min_digits=0),
+ "340282346638528859811704183484516925440.")
+ assert_equal(fpos32(f32x, unique=True, fractional=True, min_digits=4),
+ "340282346638528859811704183484516925440.0000")
+ assert_equal(fpos32(f32x, unique=True, fractional=True,
+ min_digits=4, precision=4),
+ "340282346638528859811704183484516925440.0000")
+ assert_raises(ValueError, fpos32, f32x, unique=True, fractional=False,
+ precision=0)
+ assert_equal(fpos32(f32x, unique=True, fractional=False, precision=4),
+ "340300000000000000000000000000000000000.")
+ assert_equal(fpos32(f32x, unique=True, fractional=False, precision=20),
+ "340282350000000000000000000000000000000.")
+ assert_equal(fpos32(f32x, unique=True, fractional=False, min_digits=4),
+ "340282350000000000000000000000000000000.")
+ assert_equal(fpos32(f32x, unique=True, fractional=False,
+ min_digits=20),
+ "340282346638528859810000000000000000000.")
+ assert_equal(fpos32(f32x, unique=True, fractional=False,
+ min_digits=15),
+ "340282346638529000000000000000000000000.")
+ assert_equal(fpos32(f32x, unique=False, fractional=False, precision=4),
+ "340300000000000000000000000000000000000.")
+ # test that unique rounding is preserved when precision is supplied
+ # but no extra digits need to be printed (gh-18609)
+ a = np.float64.fromhex('-1p-97')
+ assert_equal(fsci64(a, unique=True), '-6.310887241768095e-30')
+ assert_equal(fsci64(a, unique=False, precision=15),
+ '-6.310887241768094e-30')
+ assert_equal(fsci64(a, unique=True, precision=15),
+ '-6.310887241768095e-30')
+ assert_equal(fsci64(a, unique=True, min_digits=15),
+ '-6.310887241768095e-30')
+ assert_equal(fsci64(a, unique=True, precision=15, min_digits=15),
+ '-6.310887241768095e-30')
+ # adds/remove digits in unique mode with unbiased rnding
+ assert_equal(fsci64(a, unique=True, precision=14),
+ '-6.31088724176809e-30')
+ assert_equal(fsci64(a, unique=True, min_digits=16),
+ '-6.3108872417680944e-30')
+ assert_equal(fsci64(a, unique=True, precision=16),
+ '-6.310887241768095e-30')
+ assert_equal(fsci64(a, unique=True, min_digits=14),
+ '-6.310887241768095e-30')
+ # test min_digits in unique mode with different rounding cases
+ assert_equal(fsci64('1e120', min_digits=3), '1.000e+120')
+ assert_equal(fsci64('1e100', min_digits=3), '1.000e+100')
+
+ # test trailing zeros
+ assert_equal(fpos32('1.0', unique=False, precision=3), "1.000")
+ assert_equal(fpos64('1.0', unique=False, precision=3), "1.000")
+ assert_equal(fsci32('1.0', unique=False, precision=3), "1.000e+00")
+ assert_equal(fsci64('1.0', unique=False, precision=3), "1.000e+00")
+ assert_equal(fpos32('1.5', unique=False, precision=3), "1.500")
+ assert_equal(fpos64('1.5', unique=False, precision=3), "1.500")
+ assert_equal(fsci32('1.5', unique=False, precision=3), "1.500e+00")
+ assert_equal(fsci64('1.5', unique=False, precision=3), "1.500e+00")
+ # gh-10713
+ assert_equal(fpos64('324', unique=False, precision=5,
+ fractional=False), "324.00")
+
+ available_float_dtypes = [np.float16, np.float32, np.float64, np.float128]\
+ if hasattr(np, 'float128') else [np.float16, np.float32, np.float64]
+
+ @pytest.mark.parametrize("tp", available_float_dtypes)
+ def test_dragon4_positional_interface(self, tp):
+ # test is flaky for musllinux on np.float128
+ if IS_MUSL and tp == np.float128:
+ pytest.skip("Skipping flaky test of float128 on musllinux")
+
+ fpos = np.format_float_positional
+
+ # test padding
+ assert_equal(fpos(tp('1.0'), pad_left=4, pad_right=4), " 1. ")
+ assert_equal(fpos(tp('-1.0'), pad_left=4, pad_right=4), " -1. ")
+ assert_equal(fpos(tp('-10.2'),
+ pad_left=4, pad_right=4), " -10.2 ")
+
+ # test fixed (non-unique) mode
+ assert_equal(fpos(tp('1.0'), unique=False, precision=4), "1.0000")
+
+ @pytest.mark.parametrize("tp", available_float_dtypes)
+ def test_dragon4_positional_interface_trim(self, tp):
+ # test is flaky for musllinux on np.float128
+ if IS_MUSL and tp == np.float128:
+ pytest.skip("Skipping flaky test of float128 on musllinux")
+
+ fpos = np.format_float_positional
+ # test trimming
+ # trim of 'k' or '.' only affects non-unique mode, since unique
+ # mode will not output trailing 0s.
+ assert_equal(fpos(tp('1.'), unique=False, precision=4, trim='k'),
+ "1.0000")
+
+ assert_equal(fpos(tp('1.'), unique=False, precision=4, trim='.'),
+ "1.")
+ assert_equal(fpos(tp('1.2'), unique=False, precision=4, trim='.'),
+ "1.2" if tp != np.float16 else "1.2002")
+
+ assert_equal(fpos(tp('1.'), unique=False, precision=4, trim='0'),
+ "1.0")
+ assert_equal(fpos(tp('1.2'), unique=False, precision=4, trim='0'),
+ "1.2" if tp != np.float16 else "1.2002")
+ assert_equal(fpos(tp('1.'), trim='0'), "1.0")
+
+ assert_equal(fpos(tp('1.'), unique=False, precision=4, trim='-'),
+ "1")
+ assert_equal(fpos(tp('1.2'), unique=False, precision=4, trim='-'),
+ "1.2" if tp != np.float16 else "1.2002")
+ assert_equal(fpos(tp('1.'), trim='-'), "1")
+ assert_equal(fpos(tp('1.001'), precision=1, trim='-'), "1")
+
+ @pytest.mark.parametrize("tp", available_float_dtypes)
+ @pytest.mark.parametrize("pad_val", [10**5, np.iinfo("int32").max])
+ def test_dragon4_positional_interface_overflow(self, tp, pad_val):
+ # test is flaky for musllinux on np.float128
+ if IS_MUSL and tp == np.float128:
+ pytest.skip("Skipping flaky test of float128 on musllinux")
+
+ fpos = np.format_float_positional
+
+ # gh-28068
+ with pytest.raises(RuntimeError,
+ match="Float formatting result too large"):
+ fpos(tp('1.047'), unique=False, precision=pad_val)
+
+ with pytest.raises(RuntimeError,
+ match="Float formatting result too large"):
+ fpos(tp('1.047'), precision=2, pad_left=pad_val)
+
+ with pytest.raises(RuntimeError,
+ match="Float formatting result too large"):
+ fpos(tp('1.047'), precision=2, pad_right=pad_val)
+
+ @pytest.mark.parametrize("tp", available_float_dtypes)
+ def test_dragon4_scientific_interface(self, tp):
+ # test is flaky for musllinux on np.float128
+ if IS_MUSL and tp == np.float128:
+ pytest.skip("Skipping flaky test of float128 on musllinux")
+
+ fsci = np.format_float_scientific
+
+ # test exp_digits
+ assert_equal(fsci(tp('1.23e1'), exp_digits=5), "1.23e+00001")
+
+ # test fixed (non-unique) mode
+ assert_equal(fsci(tp('1.0'), unique=False, precision=4),
+ "1.0000e+00")
+
+ @pytest.mark.skipif(not platform.machine().startswith("ppc64"),
+ reason="only applies to ppc float128 values")
+ def test_ppc64_ibm_double_double128(self):
+ # check that the precision decreases once we get into the subnormal
+ # range. Unlike float64, this starts around 1e-292 instead of 1e-308,
+ # which happens when the first double is normal and the second is
+ # subnormal.
+ x = np.float128('2.123123123123123123123123123123123e-286')
+ got = [str(x / np.float128('2e' + str(i))) for i in range(40)]
+ expected = [
+ "1.06156156156156156156156156156157e-286",
+ "1.06156156156156156156156156156158e-287",
+ "1.06156156156156156156156156156159e-288",
+ "1.0615615615615615615615615615616e-289",
+ "1.06156156156156156156156156156157e-290",
+ "1.06156156156156156156156156156156e-291",
+ "1.0615615615615615615615615615616e-292",
+ "1.0615615615615615615615615615615e-293",
+ "1.061561561561561561561561561562e-294",
+ "1.06156156156156156156156156155e-295",
+ "1.0615615615615615615615615616e-296",
+ "1.06156156156156156156156156e-297",
+ "1.06156156156156156156156157e-298",
+ "1.0615615615615615615615616e-299",
+ "1.06156156156156156156156e-300",
+ "1.06156156156156156156155e-301",
+ "1.0615615615615615615616e-302",
+ "1.061561561561561561562e-303",
+ "1.06156156156156156156e-304",
+ "1.0615615615615615618e-305",
+ "1.06156156156156156e-306",
+ "1.06156156156156157e-307",
+ "1.0615615615615616e-308",
+ "1.06156156156156e-309",
+ "1.06156156156157e-310",
+ "1.0615615615616e-311",
+ "1.06156156156e-312",
+ "1.06156156154e-313",
+ "1.0615615616e-314",
+ "1.06156156e-315",
+ "1.06156155e-316",
+ "1.061562e-317",
+ "1.06156e-318",
+ "1.06155e-319",
+ "1.0617e-320",
+ "1.06e-321",
+ "1.04e-322",
+ "1e-323",
+ "0.0",
+ "0.0"]
+ assert_equal(got, expected)
+
+ # Note: we follow glibc behavior, but it (or gcc) might not be right.
+ # In particular we can get two values that print the same but are not
+ # equal:
+ a = np.float128('2') / np.float128('3')
+ b = np.float128(str(a))
+ assert_equal(str(a), str(b))
+ assert_(a != b)
+
+ def float32_roundtrip(self):
+ # gh-9360
+ x = np.float32(1024 - 2**-14)
+ y = np.float32(1024 - 2**-13)
+ assert_(repr(x) != repr(y))
+ assert_equal(np.float32(repr(x)), x)
+ assert_equal(np.float32(repr(y)), y)
+
+ def float64_vs_python(self):
+ # gh-2643, gh-6136, gh-6908
+ assert_equal(repr(np.float64(0.1)), repr(0.1))
+ assert_(repr(np.float64(0.20000000000000004)) != repr(0.2))
diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_shape_base.py b/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_shape_base.py
new file mode 100644
index 0000000..8de2427
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_shape_base.py
@@ -0,0 +1,891 @@
+import sys
+
+import pytest
+
+import numpy as np
+from numpy._core import (
+ arange,
+ array,
+ atleast_1d,
+ atleast_2d,
+ atleast_3d,
+ block,
+ concatenate,
+ hstack,
+ newaxis,
+ stack,
+ vstack,
+)
+from numpy._core.shape_base import (
+ _block_concatenate,
+ _block_dispatcher,
+ _block_setup,
+ _block_slicing,
+)
+from numpy.exceptions import AxisError
+from numpy.testing import (
+ IS_PYPY,
+ assert_,
+ assert_array_equal,
+ assert_equal,
+ assert_raises,
+ assert_raises_regex,
+)
+from numpy.testing._private.utils import requires_memory
+
+
+class TestAtleast1d:
+ def test_0D_array(self):
+ a = array(1)
+ b = array(2)
+ res = [atleast_1d(a), atleast_1d(b)]
+ desired = [array([1]), array([2])]
+ assert_array_equal(res, desired)
+
+ def test_1D_array(self):
+ a = array([1, 2])
+ b = array([2, 3])
+ res = [atleast_1d(a), atleast_1d(b)]
+ desired = [array([1, 2]), array([2, 3])]
+ assert_array_equal(res, desired)
+
+ def test_2D_array(self):
+ a = array([[1, 2], [1, 2]])
+ b = array([[2, 3], [2, 3]])
+ res = [atleast_1d(a), atleast_1d(b)]
+ desired = [a, b]
+ assert_array_equal(res, desired)
+
+ def test_3D_array(self):
+ a = array([[1, 2], [1, 2]])
+ b = array([[2, 3], [2, 3]])
+ a = array([a, a])
+ b = array([b, b])
+ res = [atleast_1d(a), atleast_1d(b)]
+ desired = [a, b]
+ assert_array_equal(res, desired)
+
+ def test_r1array(self):
+ """ Test to make sure equivalent Travis O's r1array function
+ """
+ assert_(atleast_1d(3).shape == (1,))
+ assert_(atleast_1d(3j).shape == (1,))
+ assert_(atleast_1d(3.0).shape == (1,))
+ assert_(atleast_1d([[2, 3], [4, 5]]).shape == (2, 2))
+
+
+class TestAtleast2d:
+ def test_0D_array(self):
+ a = array(1)
+ b = array(2)
+ res = [atleast_2d(a), atleast_2d(b)]
+ desired = [array([[1]]), array([[2]])]
+ assert_array_equal(res, desired)
+
+ def test_1D_array(self):
+ a = array([1, 2])
+ b = array([2, 3])
+ res = [atleast_2d(a), atleast_2d(b)]
+ desired = [array([[1, 2]]), array([[2, 3]])]
+ assert_array_equal(res, desired)
+
+ def test_2D_array(self):
+ a = array([[1, 2], [1, 2]])
+ b = array([[2, 3], [2, 3]])
+ res = [atleast_2d(a), atleast_2d(b)]
+ desired = [a, b]
+ assert_array_equal(res, desired)
+
+ def test_3D_array(self):
+ a = array([[1, 2], [1, 2]])
+ b = array([[2, 3], [2, 3]])
+ a = array([a, a])
+ b = array([b, b])
+ res = [atleast_2d(a), atleast_2d(b)]
+ desired = [a, b]
+ assert_array_equal(res, desired)
+
+ def test_r2array(self):
+ """ Test to make sure equivalent Travis O's r2array function
+ """
+ assert_(atleast_2d(3).shape == (1, 1))
+ assert_(atleast_2d([3j, 1]).shape == (1, 2))
+ assert_(atleast_2d([[[3, 1], [4, 5]], [[3, 5], [1, 2]]]).shape == (2, 2, 2))
+
+
+class TestAtleast3d:
+ def test_0D_array(self):
+ a = array(1)
+ b = array(2)
+ res = [atleast_3d(a), atleast_3d(b)]
+ desired = [array([[[1]]]), array([[[2]]])]
+ assert_array_equal(res, desired)
+
+ def test_1D_array(self):
+ a = array([1, 2])
+ b = array([2, 3])
+ res = [atleast_3d(a), atleast_3d(b)]
+ desired = [array([[[1], [2]]]), array([[[2], [3]]])]
+ assert_array_equal(res, desired)
+
+ def test_2D_array(self):
+ a = array([[1, 2], [1, 2]])
+ b = array([[2, 3], [2, 3]])
+ res = [atleast_3d(a), atleast_3d(b)]
+ desired = [a[:, :, newaxis], b[:, :, newaxis]]
+ assert_array_equal(res, desired)
+
+ def test_3D_array(self):
+ a = array([[1, 2], [1, 2]])
+ b = array([[2, 3], [2, 3]])
+ a = array([a, a])
+ b = array([b, b])
+ res = [atleast_3d(a), atleast_3d(b)]
+ desired = [a, b]
+ assert_array_equal(res, desired)
+
+
+class TestHstack:
+ def test_non_iterable(self):
+ assert_raises(TypeError, hstack, 1)
+
+ def test_empty_input(self):
+ assert_raises(ValueError, hstack, ())
+
+ def test_0D_array(self):
+ a = array(1)
+ b = array(2)
+ res = hstack([a, b])
+ desired = array([1, 2])
+ assert_array_equal(res, desired)
+
+ def test_1D_array(self):
+ a = array([1])
+ b = array([2])
+ res = hstack([a, b])
+ desired = array([1, 2])
+ assert_array_equal(res, desired)
+
+ def test_2D_array(self):
+ a = array([[1], [2]])
+ b = array([[1], [2]])
+ res = hstack([a, b])
+ desired = array([[1, 1], [2, 2]])
+ assert_array_equal(res, desired)
+
+ def test_generator(self):
+ with pytest.raises(TypeError, match="arrays to stack must be"):
+ hstack(np.arange(3) for _ in range(2))
+ with pytest.raises(TypeError, match="arrays to stack must be"):
+ hstack(x for x in np.ones((3, 2)))
+
+ def test_casting_and_dtype(self):
+ a = np.array([1, 2, 3])
+ b = np.array([2.5, 3.5, 4.5])
+ res = np.hstack((a, b), casting="unsafe", dtype=np.int64)
+ expected_res = np.array([1, 2, 3, 2, 3, 4])
+ assert_array_equal(res, expected_res)
+
+ def test_casting_and_dtype_type_error(self):
+ a = np.array([1, 2, 3])
+ b = np.array([2.5, 3.5, 4.5])
+ with pytest.raises(TypeError):
+ hstack((a, b), casting="safe", dtype=np.int64)
+
+
+class TestVstack:
+ def test_non_iterable(self):
+ assert_raises(TypeError, vstack, 1)
+
+ def test_empty_input(self):
+ assert_raises(ValueError, vstack, ())
+
+ def test_0D_array(self):
+ a = array(1)
+ b = array(2)
+ res = vstack([a, b])
+ desired = array([[1], [2]])
+ assert_array_equal(res, desired)
+
+ def test_1D_array(self):
+ a = array([1])
+ b = array([2])
+ res = vstack([a, b])
+ desired = array([[1], [2]])
+ assert_array_equal(res, desired)
+
+ def test_2D_array(self):
+ a = array([[1], [2]])
+ b = array([[1], [2]])
+ res = vstack([a, b])
+ desired = array([[1], [2], [1], [2]])
+ assert_array_equal(res, desired)
+
+ def test_2D_array2(self):
+ a = array([1, 2])
+ b = array([1, 2])
+ res = vstack([a, b])
+ desired = array([[1, 2], [1, 2]])
+ assert_array_equal(res, desired)
+
+ def test_generator(self):
+ with pytest.raises(TypeError, match="arrays to stack must be"):
+ vstack(np.arange(3) for _ in range(2))
+
+ def test_casting_and_dtype(self):
+ a = np.array([1, 2, 3])
+ b = np.array([2.5, 3.5, 4.5])
+ res = np.vstack((a, b), casting="unsafe", dtype=np.int64)
+ expected_res = np.array([[1, 2, 3], [2, 3, 4]])
+ assert_array_equal(res, expected_res)
+
+ def test_casting_and_dtype_type_error(self):
+ a = np.array([1, 2, 3])
+ b = np.array([2.5, 3.5, 4.5])
+ with pytest.raises(TypeError):
+ vstack((a, b), casting="safe", dtype=np.int64)
+
+
+class TestConcatenate:
+ def test_returns_copy(self):
+ a = np.eye(3)
+ b = np.concatenate([a])
+ b[0, 0] = 2
+ assert b[0, 0] != a[0, 0]
+
+ def test_exceptions(self):
+ # test axis must be in bounds
+ for ndim in [1, 2, 3]:
+ a = np.ones((1,) * ndim)
+ np.concatenate((a, a), axis=0) # OK
+ assert_raises(AxisError, np.concatenate, (a, a), axis=ndim)
+ assert_raises(AxisError, np.concatenate, (a, a), axis=-(ndim + 1))
+
+ # Scalars cannot be concatenated
+ assert_raises(ValueError, concatenate, (0,))
+ assert_raises(ValueError, concatenate, (np.array(0),))
+
+ # dimensionality must match
+ assert_raises_regex(
+ ValueError,
+ r"all the input arrays must have same number of dimensions, but "
+ r"the array at index 0 has 1 dimension\(s\) and the array at "
+ r"index 1 has 2 dimension\(s\)",
+ np.concatenate, (np.zeros(1), np.zeros((1, 1))))
+
+ # test shapes must match except for concatenation axis
+ a = np.ones((1, 2, 3))
+ b = np.ones((2, 2, 3))
+ axis = list(range(3))
+ for i in range(3):
+ np.concatenate((a, b), axis=axis[0]) # OK
+ assert_raises_regex(
+ ValueError,
+ "all the input array dimensions except for the concatenation axis "
+ f"must match exactly, but along dimension {i}, the array at "
+ "index 0 has size 1 and the array at index 1 has size 2",
+ np.concatenate, (a, b), axis=axis[1])
+ assert_raises(ValueError, np.concatenate, (a, b), axis=axis[2])
+ a = np.moveaxis(a, -1, 0)
+ b = np.moveaxis(b, -1, 0)
+ axis.append(axis.pop(0))
+
+ # No arrays to concatenate raises ValueError
+ assert_raises(ValueError, concatenate, ())
+
+ @pytest.mark.slow
+ @pytest.mark.skipif(sys.maxsize < 2**32, reason="only problematic on 64bit platforms")
+ @requires_memory(2 * np.iinfo(np.intc).max)
+ def test_huge_list_error(self):
+ a = np.array([1])
+ max_int = np.iinfo(np.intc).max
+ arrs = (a,) * (max_int + 1)
+ msg = fr"concatenate\(\) only supports up to {max_int} arrays but got {max_int + 1}."
+ with pytest.raises(ValueError, match=msg):
+ np.concatenate(arrs)
+
+ def test_concatenate_axis_None(self):
+ a = np.arange(4, dtype=np.float64).reshape((2, 2))
+ b = list(range(3))
+ c = ['x']
+ r = np.concatenate((a, a), axis=None)
+ assert_equal(r.dtype, a.dtype)
+ assert_equal(r.ndim, 1)
+ r = np.concatenate((a, b), axis=None)
+ assert_equal(r.size, a.size + len(b))
+ assert_equal(r.dtype, a.dtype)
+ r = np.concatenate((a, b, c), axis=None, dtype="U")
+ d = array(['0.0', '1.0', '2.0', '3.0',
+ '0', '1', '2', 'x'])
+ assert_array_equal(r, d)
+
+ out = np.zeros(a.size + len(b))
+ r = np.concatenate((a, b), axis=None)
+ rout = np.concatenate((a, b), axis=None, out=out)
+ assert_(out is rout)
+ assert_equal(r, rout)
+
+ def test_large_concatenate_axis_None(self):
+ # When no axis is given, concatenate uses flattened versions.
+ # This also had a bug with many arrays (see gh-5979).
+ x = np.arange(1, 100)
+ r = np.concatenate(x, None)
+ assert_array_equal(x, r)
+
+ # Once upon a time, this was the same as `axis=None` now it fails
+ # (with an unspecified error, as multiple things are wrong here)
+ with pytest.raises(ValueError):
+ np.concatenate(x, 100)
+
+ def test_concatenate(self):
+ # Test concatenate function
+ # One sequence returns unmodified (but as array)
+ r4 = list(range(4))
+ assert_array_equal(concatenate((r4,)), r4)
+ # Any sequence
+ assert_array_equal(concatenate((tuple(r4),)), r4)
+ assert_array_equal(concatenate((array(r4),)), r4)
+ # 1D default concatenation
+ r3 = list(range(3))
+ assert_array_equal(concatenate((r4, r3)), r4 + r3)
+ # Mixed sequence types
+ assert_array_equal(concatenate((tuple(r4), r3)), r4 + r3)
+ assert_array_equal(concatenate((array(r4), r3)), r4 + r3)
+ # Explicit axis specification
+ assert_array_equal(concatenate((r4, r3), 0), r4 + r3)
+ # Including negative
+ assert_array_equal(concatenate((r4, r3), -1), r4 + r3)
+ # 2D
+ a23 = array([[10, 11, 12], [13, 14, 15]])
+ a13 = array([[0, 1, 2]])
+ res = array([[10, 11, 12], [13, 14, 15], [0, 1, 2]])
+ assert_array_equal(concatenate((a23, a13)), res)
+ assert_array_equal(concatenate((a23, a13), 0), res)
+ assert_array_equal(concatenate((a23.T, a13.T), 1), res.T)
+ assert_array_equal(concatenate((a23.T, a13.T), -1), res.T)
+ # Arrays much match shape
+ assert_raises(ValueError, concatenate, (a23.T, a13.T), 0)
+ # 3D
+ res = arange(2 * 3 * 7).reshape((2, 3, 7))
+ a0 = res[..., :4]
+ a1 = res[..., 4:6]
+ a2 = res[..., 6:]
+ assert_array_equal(concatenate((a0, a1, a2), 2), res)
+ assert_array_equal(concatenate((a0, a1, a2), -1), res)
+ assert_array_equal(concatenate((a0.T, a1.T, a2.T), 0), res.T)
+
+ out = res.copy()
+ rout = concatenate((a0, a1, a2), 2, out=out)
+ assert_(out is rout)
+ assert_equal(res, rout)
+
+ @pytest.mark.skipif(IS_PYPY, reason="PYPY handles sq_concat, nb_add differently than cpython")
+ def test_operator_concat(self):
+ import operator
+ a = array([1, 2])
+ b = array([3, 4])
+ n = [1, 2]
+ res = array([1, 2, 3, 4])
+ assert_raises(TypeError, operator.concat, a, b)
+ assert_raises(TypeError, operator.concat, a, n)
+ assert_raises(TypeError, operator.concat, n, a)
+ assert_raises(TypeError, operator.concat, a, 1)
+ assert_raises(TypeError, operator.concat, 1, a)
+
+ def test_bad_out_shape(self):
+ a = array([1, 2])
+ b = array([3, 4])
+
+ assert_raises(ValueError, concatenate, (a, b), out=np.empty(5))
+ assert_raises(ValueError, concatenate, (a, b), out=np.empty((4, 1)))
+ assert_raises(ValueError, concatenate, (a, b), out=np.empty((1, 4)))
+ concatenate((a, b), out=np.empty(4))
+
+ @pytest.mark.parametrize("axis", [None, 0])
+ @pytest.mark.parametrize("out_dtype", ["c8", "f4", "f8", ">f8", "i8", "S4"])
+ @pytest.mark.parametrize("casting",
+ ['no', 'equiv', 'safe', 'same_kind', 'unsafe'])
+ def test_out_and_dtype(self, axis, out_dtype, casting):
+ # Compare usage of `out=out` with `dtype=out.dtype`
+ out = np.empty(4, dtype=out_dtype)
+ to_concat = (array([1.1, 2.2]), array([3.3, 4.4]))
+
+ if not np.can_cast(to_concat[0], out_dtype, casting=casting):
+ with assert_raises(TypeError):
+ concatenate(to_concat, out=out, axis=axis, casting=casting)
+ with assert_raises(TypeError):
+ concatenate(to_concat, dtype=out.dtype,
+ axis=axis, casting=casting)
+ else:
+ res_out = concatenate(to_concat, out=out,
+ axis=axis, casting=casting)
+ res_dtype = concatenate(to_concat, dtype=out.dtype,
+ axis=axis, casting=casting)
+ assert res_out is out
+ assert_array_equal(out, res_dtype)
+ assert res_dtype.dtype == out_dtype
+
+ with assert_raises(TypeError):
+ concatenate(to_concat, out=out, dtype=out_dtype, axis=axis)
+
+ @pytest.mark.parametrize("axis", [None, 0])
+ @pytest.mark.parametrize("string_dt", ["S", "U", "S0", "U0"])
+ @pytest.mark.parametrize("arrs",
+ [([0.],), ([0.], [1]), ([0], ["string"], [1.])])
+ def test_dtype_with_promotion(self, arrs, string_dt, axis):
+ # Note that U0 and S0 should be deprecated eventually and changed to
+ # actually give the empty string result (together with `np.array`)
+ res = np.concatenate(arrs, axis=axis, dtype=string_dt, casting="unsafe")
+ # The actual dtype should be identical to a cast (of a double array):
+ assert res.dtype == np.array(1.).astype(string_dt).dtype
+
+ @pytest.mark.parametrize("axis", [None, 0])
+ def test_string_dtype_does_not_inspect(self, axis):
+ with pytest.raises(TypeError):
+ np.concatenate(([None], [1]), dtype="S", axis=axis)
+ with pytest.raises(TypeError):
+ np.concatenate(([None], [1]), dtype="U", axis=axis)
+
+ @pytest.mark.parametrize("axis", [None, 0])
+ def test_subarray_error(self, axis):
+ with pytest.raises(TypeError, match=".*subarray dtype"):
+ np.concatenate(([1], [1]), dtype="(2,)i", axis=axis)
+
+
+def test_stack():
+ # non-iterable input
+ assert_raises(TypeError, stack, 1)
+
+ # 0d input
+ for input_ in [(1, 2, 3),
+ [np.int32(1), np.int32(2), np.int32(3)],
+ [np.array(1), np.array(2), np.array(3)]]:
+ assert_array_equal(stack(input_), [1, 2, 3])
+ # 1d input examples
+ a = np.array([1, 2, 3])
+ b = np.array([4, 5, 6])
+ r1 = array([[1, 2, 3], [4, 5, 6]])
+ assert_array_equal(np.stack((a, b)), r1)
+ assert_array_equal(np.stack((a, b), axis=1), r1.T)
+ # all input types
+ assert_array_equal(np.stack([a, b]), r1)
+ assert_array_equal(np.stack(array([a, b])), r1)
+ # all shapes for 1d input
+ arrays = [np.random.randn(3) for _ in range(10)]
+ axes = [0, 1, -1, -2]
+ expected_shapes = [(10, 3), (3, 10), (3, 10), (10, 3)]
+ for axis, expected_shape in zip(axes, expected_shapes):
+ assert_equal(np.stack(arrays, axis).shape, expected_shape)
+ assert_raises_regex(AxisError, 'out of bounds', stack, arrays, axis=2)
+ assert_raises_regex(AxisError, 'out of bounds', stack, arrays, axis=-3)
+ # all shapes for 2d input
+ arrays = [np.random.randn(3, 4) for _ in range(10)]
+ axes = [0, 1, 2, -1, -2, -3]
+ expected_shapes = [(10, 3, 4), (3, 10, 4), (3, 4, 10),
+ (3, 4, 10), (3, 10, 4), (10, 3, 4)]
+ for axis, expected_shape in zip(axes, expected_shapes):
+ assert_equal(np.stack(arrays, axis).shape, expected_shape)
+ # empty arrays
+ assert_(stack([[], [], []]).shape == (3, 0))
+ assert_(stack([[], [], []], axis=1).shape == (0, 3))
+ # out
+ out = np.zeros_like(r1)
+ np.stack((a, b), out=out)
+ assert_array_equal(out, r1)
+ # edge cases
+ assert_raises_regex(ValueError, 'need at least one array', stack, [])
+ assert_raises_regex(ValueError, 'must have the same shape',
+ stack, [1, np.arange(3)])
+ assert_raises_regex(ValueError, 'must have the same shape',
+ stack, [np.arange(3), 1])
+ assert_raises_regex(ValueError, 'must have the same shape',
+ stack, [np.arange(3), 1], axis=1)
+ assert_raises_regex(ValueError, 'must have the same shape',
+ stack, [np.zeros((3, 3)), np.zeros(3)], axis=1)
+ assert_raises_regex(ValueError, 'must have the same shape',
+ stack, [np.arange(2), np.arange(3)])
+
+ # do not accept generators
+ with pytest.raises(TypeError, match="arrays to stack must be"):
+ stack(x for x in range(3))
+
+ # casting and dtype test
+ a = np.array([1, 2, 3])
+ b = np.array([2.5, 3.5, 4.5])
+ res = np.stack((a, b), axis=1, casting="unsafe", dtype=np.int64)
+ expected_res = np.array([[1, 2], [2, 3], [3, 4]])
+ assert_array_equal(res, expected_res)
+ # casting and dtype with TypeError
+ with assert_raises(TypeError):
+ stack((a, b), dtype=np.int64, axis=1, casting="safe")
+
+
+def test_unstack():
+ a = np.arange(24).reshape((2, 3, 4))
+
+ for stacks in [np.unstack(a),
+ np.unstack(a, axis=0),
+ np.unstack(a, axis=-3)]:
+ assert isinstance(stacks, tuple)
+ assert len(stacks) == 2
+ assert_array_equal(stacks[0], a[0])
+ assert_array_equal(stacks[1], a[1])
+
+ for stacks in [np.unstack(a, axis=1),
+ np.unstack(a, axis=-2)]:
+ assert isinstance(stacks, tuple)
+ assert len(stacks) == 3
+ assert_array_equal(stacks[0], a[:, 0])
+ assert_array_equal(stacks[1], a[:, 1])
+ assert_array_equal(stacks[2], a[:, 2])
+
+ for stacks in [np.unstack(a, axis=2),
+ np.unstack(a, axis=-1)]:
+ assert isinstance(stacks, tuple)
+ assert len(stacks) == 4
+ assert_array_equal(stacks[0], a[:, :, 0])
+ assert_array_equal(stacks[1], a[:, :, 1])
+ assert_array_equal(stacks[2], a[:, :, 2])
+ assert_array_equal(stacks[3], a[:, :, 3])
+
+ assert_raises(ValueError, np.unstack, a, axis=3)
+ assert_raises(ValueError, np.unstack, a, axis=-4)
+ assert_raises(ValueError, np.unstack, np.array(0), axis=0)
+
+
+@pytest.mark.parametrize("axis", [0])
+@pytest.mark.parametrize("out_dtype", ["c8", "f4", "f8", ">f8", "i8"])
+@pytest.mark.parametrize("casting",
+ ['no', 'equiv', 'safe', 'same_kind', 'unsafe'])
+def test_stack_out_and_dtype(axis, out_dtype, casting):
+ to_concat = (array([1, 2]), array([3, 4]))
+ res = array([[1, 2], [3, 4]])
+ out = np.zeros_like(res)
+
+ if not np.can_cast(to_concat[0], out_dtype, casting=casting):
+ with assert_raises(TypeError):
+ stack(to_concat, dtype=out_dtype,
+ axis=axis, casting=casting)
+ else:
+ res_out = stack(to_concat, out=out,
+ axis=axis, casting=casting)
+ res_dtype = stack(to_concat, dtype=out_dtype,
+ axis=axis, casting=casting)
+ assert res_out is out
+ assert_array_equal(out, res_dtype)
+ assert res_dtype.dtype == out_dtype
+
+ with assert_raises(TypeError):
+ stack(to_concat, out=out, dtype=out_dtype, axis=axis)
+
+
+class TestBlock:
+ @pytest.fixture(params=['block', 'force_concatenate', 'force_slicing'])
+ def block(self, request):
+ # blocking small arrays and large arrays go through different paths.
+ # the algorithm is triggered depending on the number of element
+ # copies required.
+ # We define a test fixture that forces most tests to go through
+ # both code paths.
+ # Ultimately, this should be removed if a single algorithm is found
+ # to be faster for both small and large arrays.
+ def _block_force_concatenate(arrays):
+ arrays, list_ndim, result_ndim, _ = _block_setup(arrays)
+ return _block_concatenate(arrays, list_ndim, result_ndim)
+
+ def _block_force_slicing(arrays):
+ arrays, list_ndim, result_ndim, _ = _block_setup(arrays)
+ return _block_slicing(arrays, list_ndim, result_ndim)
+
+ if request.param == 'force_concatenate':
+ return _block_force_concatenate
+ elif request.param == 'force_slicing':
+ return _block_force_slicing
+ elif request.param == 'block':
+ return block
+ else:
+ raise ValueError('Unknown blocking request. There is a typo in the tests.')
+
+ def test_returns_copy(self, block):
+ a = np.eye(3)
+ b = block(a)
+ b[0, 0] = 2
+ assert b[0, 0] != a[0, 0]
+
+ def test_block_total_size_estimate(self, block):
+ _, _, _, total_size = _block_setup([1])
+ assert total_size == 1
+
+ _, _, _, total_size = _block_setup([[1]])
+ assert total_size == 1
+
+ _, _, _, total_size = _block_setup([[1, 1]])
+ assert total_size == 2
+
+ _, _, _, total_size = _block_setup([[1], [1]])
+ assert total_size == 2
+
+ _, _, _, total_size = _block_setup([[1, 2], [3, 4]])
+ assert total_size == 4
+
+ def test_block_simple_row_wise(self, block):
+ a_2d = np.ones((2, 2))
+ b_2d = 2 * a_2d
+ desired = np.array([[1, 1, 2, 2],
+ [1, 1, 2, 2]])
+ result = block([a_2d, b_2d])
+ assert_equal(desired, result)
+
+ def test_block_simple_column_wise(self, block):
+ a_2d = np.ones((2, 2))
+ b_2d = 2 * a_2d
+ expected = np.array([[1, 1],
+ [1, 1],
+ [2, 2],
+ [2, 2]])
+ result = block([[a_2d], [b_2d]])
+ assert_equal(expected, result)
+
+ def test_block_with_1d_arrays_row_wise(self, block):
+ # # # 1-D vectors are treated as row arrays
+ a = np.array([1, 2, 3])
+ b = np.array([2, 3, 4])
+ expected = np.array([1, 2, 3, 2, 3, 4])
+ result = block([a, b])
+ assert_equal(expected, result)
+
+ def test_block_with_1d_arrays_multiple_rows(self, block):
+ a = np.array([1, 2, 3])
+ b = np.array([2, 3, 4])
+ expected = np.array([[1, 2, 3, 2, 3, 4],
+ [1, 2, 3, 2, 3, 4]])
+ result = block([[a, b], [a, b]])
+ assert_equal(expected, result)
+
+ def test_block_with_1d_arrays_column_wise(self, block):
+ # # # 1-D vectors are treated as row arrays
+ a_1d = np.array([1, 2, 3])
+ b_1d = np.array([2, 3, 4])
+ expected = np.array([[1, 2, 3],
+ [2, 3, 4]])
+ result = block([[a_1d], [b_1d]])
+ assert_equal(expected, result)
+
+ def test_block_mixed_1d_and_2d(self, block):
+ a_2d = np.ones((2, 2))
+ b_1d = np.array([2, 2])
+ result = block([[a_2d], [b_1d]])
+ expected = np.array([[1, 1],
+ [1, 1],
+ [2, 2]])
+ assert_equal(expected, result)
+
+ def test_block_complicated(self, block):
+ # a bit more complicated
+ one_2d = np.array([[1, 1, 1]])
+ two_2d = np.array([[2, 2, 2]])
+ three_2d = np.array([[3, 3, 3, 3, 3, 3]])
+ four_1d = np.array([4, 4, 4, 4, 4, 4])
+ five_0d = np.array(5)
+ six_1d = np.array([6, 6, 6, 6, 6])
+ zero_2d = np.zeros((2, 6))
+
+ expected = np.array([[1, 1, 1, 2, 2, 2],
+ [3, 3, 3, 3, 3, 3],
+ [4, 4, 4, 4, 4, 4],
+ [5, 6, 6, 6, 6, 6],
+ [0, 0, 0, 0, 0, 0],
+ [0, 0, 0, 0, 0, 0]])
+
+ result = block([[one_2d, two_2d],
+ [three_2d],
+ [four_1d],
+ [five_0d, six_1d],
+ [zero_2d]])
+ assert_equal(result, expected)
+
+ def test_nested(self, block):
+ one = np.array([1, 1, 1])
+ two = np.array([[2, 2, 2], [2, 2, 2], [2, 2, 2]])
+ three = np.array([3, 3, 3])
+ four = np.array([4, 4, 4])
+ five = np.array(5)
+ six = np.array([6, 6, 6, 6, 6])
+ zero = np.zeros((2, 6))
+
+ result = block([
+ [
+ block([
+ [one],
+ [three],
+ [four]
+ ]),
+ two
+ ],
+ [five, six],
+ [zero]
+ ])
+ expected = np.array([[1, 1, 1, 2, 2, 2],
+ [3, 3, 3, 2, 2, 2],
+ [4, 4, 4, 2, 2, 2],
+ [5, 6, 6, 6, 6, 6],
+ [0, 0, 0, 0, 0, 0],
+ [0, 0, 0, 0, 0, 0]])
+
+ assert_equal(result, expected)
+
+ def test_3d(self, block):
+ a000 = np.ones((2, 2, 2), int) * 1
+
+ a100 = np.ones((3, 2, 2), int) * 2
+ a010 = np.ones((2, 3, 2), int) * 3
+ a001 = np.ones((2, 2, 3), int) * 4
+
+ a011 = np.ones((2, 3, 3), int) * 5
+ a101 = np.ones((3, 2, 3), int) * 6
+ a110 = np.ones((3, 3, 2), int) * 7
+
+ a111 = np.ones((3, 3, 3), int) * 8
+
+ result = block([
+ [
+ [a000, a001],
+ [a010, a011],
+ ],
+ [
+ [a100, a101],
+ [a110, a111],
+ ]
+ ])
+ expected = array([[[1, 1, 4, 4, 4],
+ [1, 1, 4, 4, 4],
+ [3, 3, 5, 5, 5],
+ [3, 3, 5, 5, 5],
+ [3, 3, 5, 5, 5]],
+
+ [[1, 1, 4, 4, 4],
+ [1, 1, 4, 4, 4],
+ [3, 3, 5, 5, 5],
+ [3, 3, 5, 5, 5],
+ [3, 3, 5, 5, 5]],
+
+ [[2, 2, 6, 6, 6],
+ [2, 2, 6, 6, 6],
+ [7, 7, 8, 8, 8],
+ [7, 7, 8, 8, 8],
+ [7, 7, 8, 8, 8]],
+
+ [[2, 2, 6, 6, 6],
+ [2, 2, 6, 6, 6],
+ [7, 7, 8, 8, 8],
+ [7, 7, 8, 8, 8],
+ [7, 7, 8, 8, 8]],
+
+ [[2, 2, 6, 6, 6],
+ [2, 2, 6, 6, 6],
+ [7, 7, 8, 8, 8],
+ [7, 7, 8, 8, 8],
+ [7, 7, 8, 8, 8]]])
+
+ assert_array_equal(result, expected)
+
+ def test_block_with_mismatched_shape(self, block):
+ a = np.array([0, 0])
+ b = np.eye(2)
+ assert_raises(ValueError, block, [a, b])
+ assert_raises(ValueError, block, [b, a])
+
+ to_block = [[np.ones((2, 3)), np.ones((2, 2))],
+ [np.ones((2, 2)), np.ones((2, 2))]]
+ assert_raises(ValueError, block, to_block)
+
+ def test_no_lists(self, block):
+ assert_equal(block(1), np.array(1))
+ assert_equal(block(np.eye(3)), np.eye(3))
+
+ def test_invalid_nesting(self, block):
+ msg = 'depths are mismatched'
+ assert_raises_regex(ValueError, msg, block, [1, [2]])
+ assert_raises_regex(ValueError, msg, block, [1, []])
+ assert_raises_regex(ValueError, msg, block, [[1], 2])
+ assert_raises_regex(ValueError, msg, block, [[], 2])
+ assert_raises_regex(ValueError, msg, block, [
+ [[1], [2]],
+ [[3, 4]],
+ [5] # missing brackets
+ ])
+
+ def test_empty_lists(self, block):
+ assert_raises_regex(ValueError, 'empty', block, [])
+ assert_raises_regex(ValueError, 'empty', block, [[]])
+ assert_raises_regex(ValueError, 'empty', block, [[1], []])
+
+ def test_tuple(self, block):
+ assert_raises_regex(TypeError, 'tuple', block, ([1, 2], [3, 4]))
+ assert_raises_regex(TypeError, 'tuple', block, [(1, 2), (3, 4)])
+
+ def test_different_ndims(self, block):
+ a = 1.
+ b = 2 * np.ones((1, 2))
+ c = 3 * np.ones((1, 1, 3))
+
+ result = block([a, b, c])
+ expected = np.array([[[1., 2., 2., 3., 3., 3.]]])
+
+ assert_equal(result, expected)
+
+ def test_different_ndims_depths(self, block):
+ a = 1.
+ b = 2 * np.ones((1, 2))
+ c = 3 * np.ones((1, 2, 3))
+
+ result = block([[a, b], [c]])
+ expected = np.array([[[1., 2., 2.],
+ [3., 3., 3.],
+ [3., 3., 3.]]])
+
+ assert_equal(result, expected)
+
+ def test_block_memory_order(self, block):
+ # 3D
+ arr_c = np.zeros((3,) * 3, order='C')
+ arr_f = np.zeros((3,) * 3, order='F')
+
+ b_c = [[[arr_c, arr_c],
+ [arr_c, arr_c]],
+ [[arr_c, arr_c],
+ [arr_c, arr_c]]]
+
+ b_f = [[[arr_f, arr_f],
+ [arr_f, arr_f]],
+ [[arr_f, arr_f],
+ [arr_f, arr_f]]]
+
+ assert block(b_c).flags['C_CONTIGUOUS']
+ assert block(b_f).flags['F_CONTIGUOUS']
+
+ arr_c = np.zeros((3, 3), order='C')
+ arr_f = np.zeros((3, 3), order='F')
+ # 2D
+ b_c = [[arr_c, arr_c],
+ [arr_c, arr_c]]
+
+ b_f = [[arr_f, arr_f],
+ [arr_f, arr_f]]
+
+ assert block(b_c).flags['C_CONTIGUOUS']
+ assert block(b_f).flags['F_CONTIGUOUS']
+
+
+def test_block_dispatcher():
+ class ArrayLike:
+ pass
+ a = ArrayLike()
+ b = ArrayLike()
+ c = ArrayLike()
+ assert_equal(list(_block_dispatcher(a)), [a])
+ assert_equal(list(_block_dispatcher([a])), [a])
+ assert_equal(list(_block_dispatcher([a, b])), [a, b])
+ assert_equal(list(_block_dispatcher([[a], [b, [c]]])), [a, b, c])
+ # don't recurse into non-lists
+ assert_equal(list(_block_dispatcher((a, b))), [(a, b)])
diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_simd.py b/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_simd.py
new file mode 100644
index 0000000..697d89b
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_simd.py
@@ -0,0 +1,1341 @@
+# NOTE: Please avoid the use of numpy.testing since NPYV intrinsics
+# may be involved in their functionality.
+import itertools
+import math
+import operator
+import re
+
+import pytest
+from numpy._core._multiarray_umath import __cpu_baseline__
+
+from numpy._core._simd import clear_floatstatus, get_floatstatus, targets
+
+
+def check_floatstatus(divbyzero=False, overflow=False,
+ underflow=False, invalid=False,
+ all=False):
+ #define NPY_FPE_DIVIDEBYZERO 1
+ #define NPY_FPE_OVERFLOW 2
+ #define NPY_FPE_UNDERFLOW 4
+ #define NPY_FPE_INVALID 8
+ err = get_floatstatus()
+ ret = (all or divbyzero) and (err & 1) != 0
+ ret |= (all or overflow) and (err & 2) != 0
+ ret |= (all or underflow) and (err & 4) != 0
+ ret |= (all or invalid) and (err & 8) != 0
+ return ret
+
+class _Test_Utility:
+ # submodule of the desired SIMD extension, e.g. targets["AVX512F"]
+ npyv = None
+ # the current data type suffix e.g. 's8'
+ sfx = None
+ # target name can be 'baseline' or one or more of CPU features
+ target_name = None
+
+ def __getattr__(self, attr):
+ """
+ To call NPV intrinsics without the attribute 'npyv' and
+ auto suffixing intrinsics according to class attribute 'sfx'
+ """
+ return getattr(self.npyv, attr + "_" + self.sfx)
+
+ def _x2(self, intrin_name):
+ return getattr(self.npyv, f"{intrin_name}_{self.sfx}x2")
+
+ def _data(self, start=None, count=None, reverse=False):
+ """
+ Create list of consecutive numbers according to number of vector's lanes.
+ """
+ if start is None:
+ start = 1
+ if count is None:
+ count = self.nlanes
+ rng = range(start, start + count)
+ if reverse:
+ rng = reversed(rng)
+ if self._is_fp():
+ return [x / 1.0 for x in rng]
+ return list(rng)
+
+ def _is_unsigned(self):
+ return self.sfx[0] == 'u'
+
+ def _is_signed(self):
+ return self.sfx[0] == 's'
+
+ def _is_fp(self):
+ return self.sfx[0] == 'f'
+
+ def _scalar_size(self):
+ return int(self.sfx[1:])
+
+ def _int_clip(self, seq):
+ if self._is_fp():
+ return seq
+ max_int = self._int_max()
+ min_int = self._int_min()
+ return [min(max(v, min_int), max_int) for v in seq]
+
+ def _int_max(self):
+ if self._is_fp():
+ return None
+ max_u = self._to_unsigned(self.setall(-1))[0]
+ if self._is_signed():
+ return max_u // 2
+ return max_u
+
+ def _int_min(self):
+ if self._is_fp():
+ return None
+ if self._is_unsigned():
+ return 0
+ return -(self._int_max() + 1)
+
+ def _true_mask(self):
+ max_unsig = getattr(self.npyv, "setall_u" + self.sfx[1:])(-1)
+ return max_unsig[0]
+
+ def _to_unsigned(self, vector):
+ if isinstance(vector, (list, tuple)):
+ return getattr(self.npyv, "load_u" + self.sfx[1:])(vector)
+ else:
+ sfx = vector.__name__.replace("npyv_", "")
+ if sfx[0] == "b":
+ cvt_intrin = "cvt_u{0}_b{0}"
+ else:
+ cvt_intrin = "reinterpret_u{0}_{1}"
+ return getattr(self.npyv, cvt_intrin.format(sfx[1:], sfx))(vector)
+
+ def _pinfinity(self):
+ return float("inf")
+
+ def _ninfinity(self):
+ return -float("inf")
+
+ def _nan(self):
+ return float("nan")
+
+ def _cpu_features(self):
+ target = self.target_name
+ if target == "baseline":
+ target = __cpu_baseline__
+ else:
+ target = target.split('__') # multi-target separator
+ return ' '.join(target)
+
+class _SIMD_BOOL(_Test_Utility):
+ """
+ To test all boolean vector types at once
+ """
+ def _nlanes(self):
+ return getattr(self.npyv, "nlanes_u" + self.sfx[1:])
+
+ def _data(self, start=None, count=None, reverse=False):
+ true_mask = self._true_mask()
+ rng = range(self._nlanes())
+ if reverse:
+ rng = reversed(rng)
+ return [true_mask if x % 2 else 0 for x in rng]
+
+ def _load_b(self, data):
+ len_str = self.sfx[1:]
+ load = getattr(self.npyv, "load_u" + len_str)
+ cvt = getattr(self.npyv, f"cvt_b{len_str}_u{len_str}")
+ return cvt(load(data))
+
+ def test_operators_logical(self):
+ """
+ Logical operations for boolean types.
+ Test intrinsics:
+ npyv_xor_##SFX, npyv_and_##SFX, npyv_or_##SFX, npyv_not_##SFX,
+ npyv_andc_b8, npvy_orc_b8, nvpy_xnor_b8
+ """
+ data_a = self._data()
+ data_b = self._data(reverse=True)
+ vdata_a = self._load_b(data_a)
+ vdata_b = self._load_b(data_b)
+
+ data_and = [a & b for a, b in zip(data_a, data_b)]
+ vand = getattr(self, "and")(vdata_a, vdata_b)
+ assert vand == data_and
+
+ data_or = [a | b for a, b in zip(data_a, data_b)]
+ vor = getattr(self, "or")(vdata_a, vdata_b)
+ assert vor == data_or
+
+ data_xor = [a ^ b for a, b in zip(data_a, data_b)]
+ vxor = self.xor(vdata_a, vdata_b)
+ assert vxor == data_xor
+
+ vnot = getattr(self, "not")(vdata_a)
+ assert vnot == data_b
+
+ # among the boolean types, andc, orc and xnor only support b8
+ if self.sfx not in ("b8"):
+ return
+
+ data_andc = [(a & ~b) & 0xFF for a, b in zip(data_a, data_b)]
+ vandc = self.andc(vdata_a, vdata_b)
+ assert data_andc == vandc
+
+ data_orc = [(a | ~b) & 0xFF for a, b in zip(data_a, data_b)]
+ vorc = self.orc(vdata_a, vdata_b)
+ assert data_orc == vorc
+
+ data_xnor = [~(a ^ b) & 0xFF for a, b in zip(data_a, data_b)]
+ vxnor = self.xnor(vdata_a, vdata_b)
+ assert data_xnor == vxnor
+
+ def test_tobits(self):
+ data2bits = lambda data: sum(int(x != 0) << i for i, x in enumerate(data, 0))
+ for data in (self._data(), self._data(reverse=True)):
+ vdata = self._load_b(data)
+ data_bits = data2bits(data)
+ tobits = self.tobits(vdata)
+ bin_tobits = bin(tobits)
+ assert bin_tobits == bin(data_bits)
+
+ def test_pack(self):
+ """
+ Pack multiple vectors into one
+ Test intrinsics:
+ npyv_pack_b8_b16
+ npyv_pack_b8_b32
+ npyv_pack_b8_b64
+ """
+ if self.sfx not in ("b16", "b32", "b64"):
+ return
+ # create the vectors
+ data = self._data()
+ rdata = self._data(reverse=True)
+ vdata = self._load_b(data)
+ vrdata = self._load_b(rdata)
+ pack_simd = getattr(self.npyv, f"pack_b8_{self.sfx}")
+ # for scalar execution, concatenate the elements of the multiple lists
+ # into a single list (spack) and then iterate over the elements of
+ # the created list applying a mask to capture the first byte of them.
+ if self.sfx == "b16":
+ spack = [(i & 0xFF) for i in (list(rdata) + list(data))]
+ vpack = pack_simd(vrdata, vdata)
+ elif self.sfx == "b32":
+ spack = [(i & 0xFF) for i in (2 * list(rdata) + 2 * list(data))]
+ vpack = pack_simd(vrdata, vrdata, vdata, vdata)
+ elif self.sfx == "b64":
+ spack = [(i & 0xFF) for i in (4 * list(rdata) + 4 * list(data))]
+ vpack = pack_simd(vrdata, vrdata, vrdata, vrdata,
+ vdata, vdata, vdata, vdata)
+ assert vpack == spack
+
+ @pytest.mark.parametrize("intrin", ["any", "all"])
+ @pytest.mark.parametrize("data", (
+ [-1, 0],
+ [0, -1],
+ [-1],
+ [0]
+ ))
+ def test_operators_crosstest(self, intrin, data):
+ """
+ Test intrinsics:
+ npyv_any_##SFX
+ npyv_all_##SFX
+ """
+ data_a = self._load_b(data * self._nlanes())
+ func = eval(intrin)
+ intrin = getattr(self, intrin)
+ desired = func(data_a)
+ simd = intrin(data_a)
+ assert not not simd == desired
+
+class _SIMD_INT(_Test_Utility):
+ """
+ To test all integer vector types at once
+ """
+ def test_operators_shift(self):
+ if self.sfx in ("u8", "s8"):
+ return
+
+ data_a = self._data(self._int_max() - self.nlanes)
+ data_b = self._data(self._int_min(), reverse=True)
+ vdata_a, vdata_b = self.load(data_a), self.load(data_b)
+
+ for count in range(self._scalar_size()):
+ # load to cast
+ data_shl_a = self.load([a << count for a in data_a])
+ # left shift
+ shl = self.shl(vdata_a, count)
+ assert shl == data_shl_a
+ # load to cast
+ data_shr_a = self.load([a >> count for a in data_a])
+ # right shift
+ shr = self.shr(vdata_a, count)
+ assert shr == data_shr_a
+
+ # shift by zero or max or out-range immediate constant is not applicable and illogical
+ for count in range(1, self._scalar_size()):
+ # load to cast
+ data_shl_a = self.load([a << count for a in data_a])
+ # left shift by an immediate constant
+ shli = self.shli(vdata_a, count)
+ assert shli == data_shl_a
+ # load to cast
+ data_shr_a = self.load([a >> count for a in data_a])
+ # right shift by an immediate constant
+ shri = self.shri(vdata_a, count)
+ assert shri == data_shr_a
+
+ def test_arithmetic_subadd_saturated(self):
+ if self.sfx in ("u32", "s32", "u64", "s64"):
+ return
+
+ data_a = self._data(self._int_max() - self.nlanes)
+ data_b = self._data(self._int_min(), reverse=True)
+ vdata_a, vdata_b = self.load(data_a), self.load(data_b)
+
+ data_adds = self._int_clip([a + b for a, b in zip(data_a, data_b)])
+ adds = self.adds(vdata_a, vdata_b)
+ assert adds == data_adds
+
+ data_subs = self._int_clip([a - b for a, b in zip(data_a, data_b)])
+ subs = self.subs(vdata_a, vdata_b)
+ assert subs == data_subs
+
+ def test_math_max_min(self):
+ data_a = self._data()
+ data_b = self._data(self.nlanes)
+ vdata_a, vdata_b = self.load(data_a), self.load(data_b)
+
+ data_max = [max(a, b) for a, b in zip(data_a, data_b)]
+ simd_max = self.max(vdata_a, vdata_b)
+ assert simd_max == data_max
+
+ data_min = [min(a, b) for a, b in zip(data_a, data_b)]
+ simd_min = self.min(vdata_a, vdata_b)
+ assert simd_min == data_min
+
+ @pytest.mark.parametrize("start", [-100, -10000, 0, 100, 10000])
+ def test_reduce_max_min(self, start):
+ """
+ Test intrinsics:
+ npyv_reduce_max_##sfx
+ npyv_reduce_min_##sfx
+ """
+ vdata_a = self.load(self._data(start))
+ assert self.reduce_max(vdata_a) == max(vdata_a)
+ assert self.reduce_min(vdata_a) == min(vdata_a)
+
+
+class _SIMD_FP32(_Test_Utility):
+ """
+ To only test single precision
+ """
+ def test_conversions(self):
+ """
+ Round to nearest even integer, assume CPU control register is set to rounding.
+ Test intrinsics:
+ npyv_round_s32_##SFX
+ """
+ features = self._cpu_features()
+ if not self.npyv.simd_f64 and re.match(r".*(NEON|ASIMD)", features):
+ # very costly to emulate nearest even on Armv7
+ # instead we round halves to up. e.g. 0.5 -> 1, -0.5 -> -1
+ _round = lambda v: int(v + (0.5 if v >= 0 else -0.5))
+ else:
+ _round = round
+ vdata_a = self.load(self._data())
+ vdata_a = self.sub(vdata_a, self.setall(0.5))
+ data_round = [_round(x) for x in vdata_a]
+ vround = self.round_s32(vdata_a)
+ assert vround == data_round
+
+class _SIMD_FP64(_Test_Utility):
+ """
+ To only test double precision
+ """
+ def test_conversions(self):
+ """
+ Round to nearest even integer, assume CPU control register is set to rounding.
+ Test intrinsics:
+ npyv_round_s32_##SFX
+ """
+ vdata_a = self.load(self._data())
+ vdata_a = self.sub(vdata_a, self.setall(0.5))
+ vdata_b = self.mul(vdata_a, self.setall(-1.5))
+ data_round = [round(x) for x in list(vdata_a) + list(vdata_b)]
+ vround = self.round_s32(vdata_a, vdata_b)
+ assert vround == data_round
+
+class _SIMD_FP(_Test_Utility):
+ """
+ To test all float vector types at once
+ """
+ def test_arithmetic_fused(self):
+ vdata_a, vdata_b, vdata_c = [self.load(self._data())] * 3
+ vdata_cx2 = self.add(vdata_c, vdata_c)
+ # multiply and add, a*b + c
+ data_fma = self.load([a * b + c for a, b, c in zip(vdata_a, vdata_b, vdata_c)])
+ fma = self.muladd(vdata_a, vdata_b, vdata_c)
+ assert fma == data_fma
+ # multiply and subtract, a*b - c
+ fms = self.mulsub(vdata_a, vdata_b, vdata_c)
+ data_fms = self.sub(data_fma, vdata_cx2)
+ assert fms == data_fms
+ # negate multiply and add, -(a*b) + c
+ nfma = self.nmuladd(vdata_a, vdata_b, vdata_c)
+ data_nfma = self.sub(vdata_cx2, data_fma)
+ assert nfma == data_nfma
+ # negate multiply and subtract, -(a*b) - c
+ nfms = self.nmulsub(vdata_a, vdata_b, vdata_c)
+ data_nfms = self.mul(data_fma, self.setall(-1))
+ assert nfms == data_nfms
+ # multiply, add for odd elements and subtract even elements.
+ # (a * b) -+ c
+ fmas = list(self.muladdsub(vdata_a, vdata_b, vdata_c))
+ assert fmas[0::2] == list(data_fms)[0::2]
+ assert fmas[1::2] == list(data_fma)[1::2]
+
+ def test_abs(self):
+ pinf, ninf, nan = self._pinfinity(), self._ninfinity(), self._nan()
+ data = self._data()
+ vdata = self.load(self._data())
+
+ abs_cases = ((-0, 0), (ninf, pinf), (pinf, pinf), (nan, nan))
+ for case, desired in abs_cases:
+ data_abs = [desired] * self.nlanes
+ vabs = self.abs(self.setall(case))
+ assert vabs == pytest.approx(data_abs, nan_ok=True)
+
+ vabs = self.abs(self.mul(vdata, self.setall(-1)))
+ assert vabs == data
+
+ def test_sqrt(self):
+ pinf, ninf, nan = self._pinfinity(), self._ninfinity(), self._nan()
+ data = self._data()
+ vdata = self.load(self._data())
+
+ sqrt_cases = ((-0.0, -0.0), (0.0, 0.0), (-1.0, nan), (ninf, nan), (pinf, pinf))
+ for case, desired in sqrt_cases:
+ data_sqrt = [desired] * self.nlanes
+ sqrt = self.sqrt(self.setall(case))
+ assert sqrt == pytest.approx(data_sqrt, nan_ok=True)
+
+ data_sqrt = self.load([math.sqrt(x) for x in data]) # load to truncate precision
+ sqrt = self.sqrt(vdata)
+ assert sqrt == data_sqrt
+
+ def test_square(self):
+ pinf, ninf, nan = self._pinfinity(), self._ninfinity(), self._nan()
+ data = self._data()
+ vdata = self.load(self._data())
+ # square
+ square_cases = ((nan, nan), (pinf, pinf), (ninf, pinf))
+ for case, desired in square_cases:
+ data_square = [desired] * self.nlanes
+ square = self.square(self.setall(case))
+ assert square == pytest.approx(data_square, nan_ok=True)
+
+ data_square = [x * x for x in data]
+ square = self.square(vdata)
+ assert square == data_square
+
+ @pytest.mark.parametrize("intrin, func", [("ceil", math.ceil),
+ ("trunc", math.trunc), ("floor", math.floor), ("rint", round)])
+ def test_rounding(self, intrin, func):
+ """
+ Test intrinsics:
+ npyv_rint_##SFX
+ npyv_ceil_##SFX
+ npyv_trunc_##SFX
+ npyv_floor##SFX
+ """
+ intrin_name = intrin
+ intrin = getattr(self, intrin)
+ pinf, ninf, nan = self._pinfinity(), self._ninfinity(), self._nan()
+ # special cases
+ round_cases = ((nan, nan), (pinf, pinf), (ninf, ninf))
+ for case, desired in round_cases:
+ data_round = [desired] * self.nlanes
+ _round = intrin(self.setall(case))
+ assert _round == pytest.approx(data_round, nan_ok=True)
+
+ for x in range(0, 2**20, 256**2):
+ for w in (-1.05, -1.10, -1.15, 1.05, 1.10, 1.15):
+ data = self.load([(x + a) * w for a in range(self.nlanes)])
+ data_round = [func(x) for x in data]
+ _round = intrin(data)
+ assert _round == data_round
+
+ # test large numbers
+ for i in (
+ 1.1529215045988576e+18, 4.6116860183954304e+18,
+ 5.902958103546122e+20, 2.3611832414184488e+21
+ ):
+ x = self.setall(i)
+ y = intrin(x)
+ data_round = [func(n) for n in x]
+ assert y == data_round
+
+ # signed zero
+ if intrin_name == "floor":
+ data_szero = (-0.0,)
+ else:
+ data_szero = (-0.0, -0.25, -0.30, -0.45, -0.5)
+
+ for w in data_szero:
+ _round = self._to_unsigned(intrin(self.setall(w)))
+ data_round = self._to_unsigned(self.setall(-0.0))
+ assert _round == data_round
+
+ @pytest.mark.parametrize("intrin", [
+ "max", "maxp", "maxn", "min", "minp", "minn"
+ ])
+ def test_max_min(self, intrin):
+ """
+ Test intrinsics:
+ npyv_max_##sfx
+ npyv_maxp_##sfx
+ npyv_maxn_##sfx
+ npyv_min_##sfx
+ npyv_minp_##sfx
+ npyv_minn_##sfx
+ npyv_reduce_max_##sfx
+ npyv_reduce_maxp_##sfx
+ npyv_reduce_maxn_##sfx
+ npyv_reduce_min_##sfx
+ npyv_reduce_minp_##sfx
+ npyv_reduce_minn_##sfx
+ """
+ pinf, ninf, nan = self._pinfinity(), self._ninfinity(), self._nan()
+ chk_nan = {"xp": 1, "np": 1, "nn": 2, "xn": 2}.get(intrin[-2:], 0)
+ func = eval(intrin[:3])
+ reduce_intrin = getattr(self, "reduce_" + intrin)
+ intrin = getattr(self, intrin)
+ hf_nlanes = self.nlanes // 2
+
+ cases = (
+ ([0.0, -0.0], [-0.0, 0.0]),
+ ([10, -10], [10, -10]),
+ ([pinf, 10], [10, ninf]),
+ ([10, pinf], [ninf, 10]),
+ ([10, -10], [10, -10]),
+ ([-10, 10], [-10, 10])
+ )
+ for op1, op2 in cases:
+ vdata_a = self.load(op1 * hf_nlanes)
+ vdata_b = self.load(op2 * hf_nlanes)
+ data = func(vdata_a, vdata_b)
+ simd = intrin(vdata_a, vdata_b)
+ assert simd == data
+ data = func(vdata_a)
+ simd = reduce_intrin(vdata_a)
+ assert simd == data
+
+ if not chk_nan:
+ return
+ if chk_nan == 1:
+ test_nan = lambda a, b: (
+ b if math.isnan(a) else a if math.isnan(b) else b
+ )
+ else:
+ test_nan = lambda a, b: (
+ nan if math.isnan(a) or math.isnan(b) else b
+ )
+ cases = (
+ (nan, 10),
+ (10, nan),
+ (nan, pinf),
+ (pinf, nan),
+ (nan, nan)
+ )
+ for op1, op2 in cases:
+ vdata_ab = self.load([op1, op2] * hf_nlanes)
+ data = test_nan(op1, op2)
+ simd = reduce_intrin(vdata_ab)
+ assert simd == pytest.approx(data, nan_ok=True)
+ vdata_a = self.setall(op1)
+ vdata_b = self.setall(op2)
+ data = [data] * self.nlanes
+ simd = intrin(vdata_a, vdata_b)
+ assert simd == pytest.approx(data, nan_ok=True)
+
+ def test_reciprocal(self):
+ pinf, ninf, nan = self._pinfinity(), self._ninfinity(), self._nan()
+ data = self._data()
+ vdata = self.load(self._data())
+
+ recip_cases = ((nan, nan), (pinf, 0.0), (ninf, -0.0), (0.0, pinf), (-0.0, ninf))
+ for case, desired in recip_cases:
+ data_recip = [desired] * self.nlanes
+ recip = self.recip(self.setall(case))
+ assert recip == pytest.approx(data_recip, nan_ok=True)
+
+ data_recip = self.load([1 / x for x in data]) # load to truncate precision
+ recip = self.recip(vdata)
+ assert recip == data_recip
+
+ def test_special_cases(self):
+ """
+ Compare Not NaN. Test intrinsics:
+ npyv_notnan_##SFX
+ """
+ nnan = self.notnan(self.setall(self._nan()))
+ assert nnan == [0] * self.nlanes
+
+ @pytest.mark.parametrize("intrin_name", [
+ "rint", "trunc", "ceil", "floor"
+ ])
+ def test_unary_invalid_fpexception(self, intrin_name):
+ intrin = getattr(self, intrin_name)
+ for d in [float("nan"), float("inf"), -float("inf")]:
+ v = self.setall(d)
+ clear_floatstatus()
+ intrin(v)
+ assert check_floatstatus(invalid=True) is False
+
+ @pytest.mark.parametrize('py_comp,np_comp', [
+ (operator.lt, "cmplt"),
+ (operator.le, "cmple"),
+ (operator.gt, "cmpgt"),
+ (operator.ge, "cmpge"),
+ (operator.eq, "cmpeq"),
+ (operator.ne, "cmpneq")
+ ])
+ def test_comparison_with_nan(self, py_comp, np_comp):
+ pinf, ninf, nan = self._pinfinity(), self._ninfinity(), self._nan()
+ mask_true = self._true_mask()
+
+ def to_bool(vector):
+ return [lane == mask_true for lane in vector]
+
+ intrin = getattr(self, np_comp)
+ cmp_cases = ((0, nan), (nan, 0), (nan, nan), (pinf, nan),
+ (ninf, nan), (-0.0, +0.0))
+ for case_operand1, case_operand2 in cmp_cases:
+ data_a = [case_operand1] * self.nlanes
+ data_b = [case_operand2] * self.nlanes
+ vdata_a = self.setall(case_operand1)
+ vdata_b = self.setall(case_operand2)
+ vcmp = to_bool(intrin(vdata_a, vdata_b))
+ data_cmp = [py_comp(a, b) for a, b in zip(data_a, data_b)]
+ assert vcmp == data_cmp
+
+ @pytest.mark.parametrize("intrin", ["any", "all"])
+ @pytest.mark.parametrize("data", (
+ [float("nan"), 0],
+ [0, float("nan")],
+ [float("nan"), 1],
+ [1, float("nan")],
+ [float("nan"), float("nan")],
+ [0.0, -0.0],
+ [-0.0, 0.0],
+ [1.0, -0.0]
+ ))
+ def test_operators_crosstest(self, intrin, data):
+ """
+ Test intrinsics:
+ npyv_any_##SFX
+ npyv_all_##SFX
+ """
+ data_a = self.load(data * self.nlanes)
+ func = eval(intrin)
+ intrin = getattr(self, intrin)
+ desired = func(data_a)
+ simd = intrin(data_a)
+ assert not not simd == desired
+
+class _SIMD_ALL(_Test_Utility):
+ """
+ To test all vector types at once
+ """
+ def test_memory_load(self):
+ data = self._data()
+ # unaligned load
+ load_data = self.load(data)
+ assert load_data == data
+ # aligned load
+ loada_data = self.loada(data)
+ assert loada_data == data
+ # stream load
+ loads_data = self.loads(data)
+ assert loads_data == data
+ # load lower part
+ loadl = self.loadl(data)
+ loadl_half = list(loadl)[:self.nlanes // 2]
+ data_half = data[:self.nlanes // 2]
+ assert loadl_half == data_half
+ assert loadl != data # detect overflow
+
+ def test_memory_store(self):
+ data = self._data()
+ vdata = self.load(data)
+ # unaligned store
+ store = [0] * self.nlanes
+ self.store(store, vdata)
+ assert store == data
+ # aligned store
+ store_a = [0] * self.nlanes
+ self.storea(store_a, vdata)
+ assert store_a == data
+ # stream store
+ store_s = [0] * self.nlanes
+ self.stores(store_s, vdata)
+ assert store_s == data
+ # store lower part
+ store_l = [0] * self.nlanes
+ self.storel(store_l, vdata)
+ assert store_l[:self.nlanes // 2] == data[:self.nlanes // 2]
+ assert store_l != vdata # detect overflow
+ # store higher part
+ store_h = [0] * self.nlanes
+ self.storeh(store_h, vdata)
+ assert store_h[:self.nlanes // 2] == data[self.nlanes // 2:]
+ assert store_h != vdata # detect overflow
+
+ @pytest.mark.parametrize("intrin, elsizes, scale, fill", [
+ ("self.load_tillz, self.load_till", (32, 64), 1, [0xffff]),
+ ("self.load2_tillz, self.load2_till", (32, 64), 2, [0xffff, 0x7fff]),
+ ])
+ def test_memory_partial_load(self, intrin, elsizes, scale, fill):
+ if self._scalar_size() not in elsizes:
+ return
+ npyv_load_tillz, npyv_load_till = eval(intrin)
+ data = self._data()
+ lanes = list(range(1, self.nlanes + 1))
+ lanes += [self.nlanes**2, self.nlanes**4] # test out of range
+ for n in lanes:
+ load_till = npyv_load_till(data, n, *fill)
+ load_tillz = npyv_load_tillz(data, n)
+ n *= scale
+ data_till = data[:n] + fill * ((self.nlanes - n) // scale)
+ assert load_till == data_till
+ data_tillz = data[:n] + [0] * (self.nlanes - n)
+ assert load_tillz == data_tillz
+
+ @pytest.mark.parametrize("intrin, elsizes, scale", [
+ ("self.store_till", (32, 64), 1),
+ ("self.store2_till", (32, 64), 2),
+ ])
+ def test_memory_partial_store(self, intrin, elsizes, scale):
+ if self._scalar_size() not in elsizes:
+ return
+ npyv_store_till = eval(intrin)
+ data = self._data()
+ data_rev = self._data(reverse=True)
+ vdata = self.load(data)
+ lanes = list(range(1, self.nlanes + 1))
+ lanes += [self.nlanes**2, self.nlanes**4]
+ for n in lanes:
+ data_till = data_rev.copy()
+ data_till[:n * scale] = data[:n * scale]
+ store_till = self._data(reverse=True)
+ npyv_store_till(store_till, n, vdata)
+ assert store_till == data_till
+
+ @pytest.mark.parametrize("intrin, elsizes, scale", [
+ ("self.loadn", (32, 64), 1),
+ ("self.loadn2", (32, 64), 2),
+ ])
+ def test_memory_noncont_load(self, intrin, elsizes, scale):
+ if self._scalar_size() not in elsizes:
+ return
+ npyv_loadn = eval(intrin)
+ for stride in range(-64, 64):
+ if stride < 0:
+ data = self._data(stride, -stride * self.nlanes)
+ data_stride = list(itertools.chain(
+ *zip(*[data[-i::stride] for i in range(scale, 0, -1)])
+ ))
+ elif stride == 0:
+ data = self._data()
+ data_stride = data[0:scale] * (self.nlanes // scale)
+ else:
+ data = self._data(count=stride * self.nlanes)
+ data_stride = list(itertools.chain(
+ *zip(*[data[i::stride] for i in range(scale)]))
+ )
+ data_stride = self.load(data_stride) # cast unsigned
+ loadn = npyv_loadn(data, stride)
+ assert loadn == data_stride
+
+ @pytest.mark.parametrize("intrin, elsizes, scale, fill", [
+ ("self.loadn_tillz, self.loadn_till", (32, 64), 1, [0xffff]),
+ ("self.loadn2_tillz, self.loadn2_till", (32, 64), 2, [0xffff, 0x7fff]),
+ ])
+ def test_memory_noncont_partial_load(self, intrin, elsizes, scale, fill):
+ if self._scalar_size() not in elsizes:
+ return
+ npyv_loadn_tillz, npyv_loadn_till = eval(intrin)
+ lanes = list(range(1, self.nlanes + 1))
+ lanes += [self.nlanes**2, self.nlanes**4]
+ for stride in range(-64, 64):
+ if stride < 0:
+ data = self._data(stride, -stride * self.nlanes)
+ data_stride = list(itertools.chain(
+ *zip(*[data[-i::stride] for i in range(scale, 0, -1)])
+ ))
+ elif stride == 0:
+ data = self._data()
+ data_stride = data[0:scale] * (self.nlanes // scale)
+ else:
+ data = self._data(count=stride * self.nlanes)
+ data_stride = list(itertools.chain(
+ *zip(*[data[i::stride] for i in range(scale)])
+ ))
+ data_stride = list(self.load(data_stride)) # cast unsigned
+ for n in lanes:
+ nscale = n * scale
+ llanes = self.nlanes - nscale
+ data_stride_till = (
+ data_stride[:nscale] + fill * (llanes // scale)
+ )
+ loadn_till = npyv_loadn_till(data, stride, n, *fill)
+ assert loadn_till == data_stride_till
+ data_stride_tillz = data_stride[:nscale] + [0] * llanes
+ loadn_tillz = npyv_loadn_tillz(data, stride, n)
+ assert loadn_tillz == data_stride_tillz
+
+ @pytest.mark.parametrize("intrin, elsizes, scale", [
+ ("self.storen", (32, 64), 1),
+ ("self.storen2", (32, 64), 2),
+ ])
+ def test_memory_noncont_store(self, intrin, elsizes, scale):
+ if self._scalar_size() not in elsizes:
+ return
+ npyv_storen = eval(intrin)
+ data = self._data()
+ vdata = self.load(data)
+ hlanes = self.nlanes // scale
+ for stride in range(1, 64):
+ data_storen = [0xff] * stride * self.nlanes
+ for s in range(0, hlanes * stride, stride):
+ i = (s // stride) * scale
+ data_storen[s:s + scale] = data[i:i + scale]
+ storen = [0xff] * stride * self.nlanes
+ storen += [0x7f] * 64
+ npyv_storen(storen, stride, vdata)
+ assert storen[:-64] == data_storen
+ assert storen[-64:] == [0x7f] * 64 # detect overflow
+
+ for stride in range(-64, 0):
+ data_storen = [0xff] * -stride * self.nlanes
+ for s in range(0, hlanes * stride, stride):
+ i = (s // stride) * scale
+ data_storen[s - scale:s or None] = data[i:i + scale]
+ storen = [0x7f] * 64
+ storen += [0xff] * -stride * self.nlanes
+ npyv_storen(storen, stride, vdata)
+ assert storen[64:] == data_storen
+ assert storen[:64] == [0x7f] * 64 # detect overflow
+ # stride 0
+ data_storen = [0x7f] * self.nlanes
+ storen = data_storen.copy()
+ data_storen[0:scale] = data[-scale:]
+ npyv_storen(storen, 0, vdata)
+ assert storen == data_storen
+
+ @pytest.mark.parametrize("intrin, elsizes, scale", [
+ ("self.storen_till", (32, 64), 1),
+ ("self.storen2_till", (32, 64), 2),
+ ])
+ def test_memory_noncont_partial_store(self, intrin, elsizes, scale):
+ if self._scalar_size() not in elsizes:
+ return
+ npyv_storen_till = eval(intrin)
+ data = self._data()
+ vdata = self.load(data)
+ lanes = list(range(1, self.nlanes + 1))
+ lanes += [self.nlanes**2, self.nlanes**4]
+ hlanes = self.nlanes // scale
+ for stride in range(1, 64):
+ for n in lanes:
+ data_till = [0xff] * stride * self.nlanes
+ tdata = data[:n * scale] + [0xff] * (self.nlanes - n * scale)
+ for s in range(0, hlanes * stride, stride)[:n]:
+ i = (s // stride) * scale
+ data_till[s:s + scale] = tdata[i:i + scale]
+ storen_till = [0xff] * stride * self.nlanes
+ storen_till += [0x7f] * 64
+ npyv_storen_till(storen_till, stride, n, vdata)
+ assert storen_till[:-64] == data_till
+ assert storen_till[-64:] == [0x7f] * 64 # detect overflow
+
+ for stride in range(-64, 0):
+ for n in lanes:
+ data_till = [0xff] * -stride * self.nlanes
+ tdata = data[:n * scale] + [0xff] * (self.nlanes - n * scale)
+ for s in range(0, hlanes * stride, stride)[:n]:
+ i = (s // stride) * scale
+ data_till[s - scale:s or None] = tdata[i:i + scale]
+ storen_till = [0x7f] * 64
+ storen_till += [0xff] * -stride * self.nlanes
+ npyv_storen_till(storen_till, stride, n, vdata)
+ assert storen_till[64:] == data_till
+ assert storen_till[:64] == [0x7f] * 64 # detect overflow
+
+ # stride 0
+ for n in lanes:
+ data_till = [0x7f] * self.nlanes
+ storen_till = data_till.copy()
+ data_till[0:scale] = data[:n * scale][-scale:]
+ npyv_storen_till(storen_till, 0, n, vdata)
+ assert storen_till == data_till
+
+ @pytest.mark.parametrize("intrin, table_size, elsize", [
+ ("self.lut32", 32, 32),
+ ("self.lut16", 16, 64)
+ ])
+ def test_lut(self, intrin, table_size, elsize):
+ """
+ Test lookup table intrinsics:
+ npyv_lut32_##sfx
+ npyv_lut16_##sfx
+ """
+ if elsize != self._scalar_size():
+ return
+ intrin = eval(intrin)
+ idx_itrin = getattr(self.npyv, f"setall_u{elsize}")
+ table = range(table_size)
+ for i in table:
+ broadi = self.setall(i)
+ idx = idx_itrin(i)
+ lut = intrin(table, idx)
+ assert lut == broadi
+
+ def test_misc(self):
+ broadcast_zero = self.zero()
+ assert broadcast_zero == [0] * self.nlanes
+ for i in range(1, 10):
+ broadcasti = self.setall(i)
+ assert broadcasti == [i] * self.nlanes
+
+ data_a, data_b = self._data(), self._data(reverse=True)
+ vdata_a, vdata_b = self.load(data_a), self.load(data_b)
+
+ # py level of npyv_set_* don't support ignoring the extra specified lanes or
+ # fill non-specified lanes with zero.
+ vset = self.set(*data_a)
+ assert vset == data_a
+ # py level of npyv_setf_* don't support ignoring the extra specified lanes or
+ # fill non-specified lanes with the specified scalar.
+ vsetf = self.setf(10, *data_a)
+ assert vsetf == data_a
+
+ # We're testing the sanity of _simd's type-vector,
+ # reinterpret* intrinsics itself are tested via compiler
+ # during the build of _simd module
+ sfxes = ["u8", "s8", "u16", "s16", "u32", "s32", "u64", "s64"]
+ if self.npyv.simd_f64:
+ sfxes.append("f64")
+ if self.npyv.simd_f32:
+ sfxes.append("f32")
+ for sfx in sfxes:
+ vec_name = getattr(self, "reinterpret_" + sfx)(vdata_a).__name__
+ assert vec_name == "npyv_" + sfx
+
+ # select & mask operations
+ select_a = self.select(self.cmpeq(self.zero(), self.zero()), vdata_a, vdata_b)
+ assert select_a == data_a
+ select_b = self.select(self.cmpneq(self.zero(), self.zero()), vdata_a, vdata_b)
+ assert select_b == data_b
+
+ # test extract elements
+ assert self.extract0(vdata_b) == vdata_b[0]
+
+ # cleanup intrinsic is only used with AVX for
+ # zeroing registers to avoid the AVX-SSE transition penalty,
+ # so nothing to test here
+ self.npyv.cleanup()
+
+ def test_reorder(self):
+ data_a, data_b = self._data(), self._data(reverse=True)
+ vdata_a, vdata_b = self.load(data_a), self.load(data_b)
+ # lower half part
+ data_a_lo = data_a[:self.nlanes // 2]
+ data_b_lo = data_b[:self.nlanes // 2]
+ # higher half part
+ data_a_hi = data_a[self.nlanes // 2:]
+ data_b_hi = data_b[self.nlanes // 2:]
+ # combine two lower parts
+ combinel = self.combinel(vdata_a, vdata_b)
+ assert combinel == data_a_lo + data_b_lo
+ # combine two higher parts
+ combineh = self.combineh(vdata_a, vdata_b)
+ assert combineh == data_a_hi + data_b_hi
+ # combine x2
+ combine = self.combine(vdata_a, vdata_b)
+ assert combine == (data_a_lo + data_b_lo, data_a_hi + data_b_hi)
+
+ # zip(interleave)
+ data_zipl = self.load([
+ v for p in zip(data_a_lo, data_b_lo) for v in p
+ ])
+ data_ziph = self.load([
+ v for p in zip(data_a_hi, data_b_hi) for v in p
+ ])
+ vzip = self.zip(vdata_a, vdata_b)
+ assert vzip == (data_zipl, data_ziph)
+ vzip = [0] * self.nlanes * 2
+ self._x2("store")(vzip, (vdata_a, vdata_b))
+ assert vzip == list(data_zipl) + list(data_ziph)
+
+ # unzip(deinterleave)
+ unzip = self.unzip(data_zipl, data_ziph)
+ assert unzip == (data_a, data_b)
+ unzip = self._x2("load")(list(data_zipl) + list(data_ziph))
+ assert unzip == (data_a, data_b)
+
+ def test_reorder_rev64(self):
+ # Reverse elements of each 64-bit lane
+ ssize = self._scalar_size()
+ if ssize == 64:
+ return
+ data_rev64 = [
+ y for x in range(0, self.nlanes, 64 // ssize)
+ for y in reversed(range(x, x + 64 // ssize))
+ ]
+ rev64 = self.rev64(self.load(range(self.nlanes)))
+ assert rev64 == data_rev64
+
+ def test_reorder_permi128(self):
+ """
+ Test permuting elements for each 128-bit lane.
+ npyv_permi128_##sfx
+ """
+ ssize = self._scalar_size()
+ if ssize < 32:
+ return
+ data = self.load(self._data())
+ permn = 128 // ssize
+ permd = permn - 1
+ nlane128 = self.nlanes // permn
+ shfl = [0, 1] if ssize == 64 else [0, 2, 4, 6]
+ for i in range(permn):
+ indices = [(i >> shf) & permd for shf in shfl]
+ vperm = self.permi128(data, *indices)
+ data_vperm = [
+ data[j + (e & -permn)]
+ for e, j in enumerate(indices * nlane128)
+ ]
+ assert vperm == data_vperm
+
+ @pytest.mark.parametrize('func, intrin', [
+ (operator.lt, "cmplt"),
+ (operator.le, "cmple"),
+ (operator.gt, "cmpgt"),
+ (operator.ge, "cmpge"),
+ (operator.eq, "cmpeq")
+ ])
+ def test_operators_comparison(self, func, intrin):
+ if self._is_fp():
+ data_a = self._data()
+ else:
+ data_a = self._data(self._int_max() - self.nlanes)
+ data_b = self._data(self._int_min(), reverse=True)
+ vdata_a, vdata_b = self.load(data_a), self.load(data_b)
+ intrin = getattr(self, intrin)
+
+ mask_true = self._true_mask()
+
+ def to_bool(vector):
+ return [lane == mask_true for lane in vector]
+
+ data_cmp = [func(a, b) for a, b in zip(data_a, data_b)]
+ cmp = to_bool(intrin(vdata_a, vdata_b))
+ assert cmp == data_cmp
+
+ def test_operators_logical(self):
+ if self._is_fp():
+ data_a = self._data()
+ else:
+ data_a = self._data(self._int_max() - self.nlanes)
+ data_b = self._data(self._int_min(), reverse=True)
+ vdata_a, vdata_b = self.load(data_a), self.load(data_b)
+
+ if self._is_fp():
+ data_cast_a = self._to_unsigned(vdata_a)
+ data_cast_b = self._to_unsigned(vdata_b)
+ cast, cast_data = self._to_unsigned, self._to_unsigned
+ else:
+ data_cast_a, data_cast_b = data_a, data_b
+ cast, cast_data = lambda a: a, self.load
+
+ data_xor = cast_data([a ^ b for a, b in zip(data_cast_a, data_cast_b)])
+ vxor = cast(self.xor(vdata_a, vdata_b))
+ assert vxor == data_xor
+
+ data_or = cast_data([a | b for a, b in zip(data_cast_a, data_cast_b)])
+ vor = cast(getattr(self, "or")(vdata_a, vdata_b))
+ assert vor == data_or
+
+ data_and = cast_data([a & b for a, b in zip(data_cast_a, data_cast_b)])
+ vand = cast(getattr(self, "and")(vdata_a, vdata_b))
+ assert vand == data_and
+
+ data_not = cast_data([~a for a in data_cast_a])
+ vnot = cast(getattr(self, "not")(vdata_a))
+ assert vnot == data_not
+
+ if self.sfx not in ("u8"):
+ return
+ data_andc = [a & ~b for a, b in zip(data_cast_a, data_cast_b)]
+ vandc = cast(self.andc(vdata_a, vdata_b))
+ assert vandc == data_andc
+
+ @pytest.mark.parametrize("intrin", ["any", "all"])
+ @pytest.mark.parametrize("data", (
+ [1, 2, 3, 4],
+ [-1, -2, -3, -4],
+ [0, 1, 2, 3, 4],
+ [0x7f, 0x7fff, 0x7fffffff, 0x7fffffffffffffff],
+ [0, -1, -2, -3, 4],
+ [0],
+ [1],
+ [-1]
+ ))
+ def test_operators_crosstest(self, intrin, data):
+ """
+ Test intrinsics:
+ npyv_any_##SFX
+ npyv_all_##SFX
+ """
+ data_a = self.load(data * self.nlanes)
+ func = eval(intrin)
+ intrin = getattr(self, intrin)
+ desired = func(data_a)
+ simd = intrin(data_a)
+ assert not not simd == desired
+
+ def test_conversion_boolean(self):
+ bsfx = "b" + self.sfx[1:]
+ to_boolean = getattr(self.npyv, f"cvt_{bsfx}_{self.sfx}")
+ from_boolean = getattr(self.npyv, f"cvt_{self.sfx}_{bsfx}")
+
+ false_vb = to_boolean(self.setall(0))
+ true_vb = self.cmpeq(self.setall(0), self.setall(0))
+ assert false_vb != true_vb
+
+ false_vsfx = from_boolean(false_vb)
+ true_vsfx = from_boolean(true_vb)
+ assert false_vsfx != true_vsfx
+
+ def test_conversion_expand(self):
+ """
+ Test expand intrinsics:
+ npyv_expand_u16_u8
+ npyv_expand_u32_u16
+ """
+ if self.sfx not in ("u8", "u16"):
+ return
+ totype = self.sfx[0] + str(int(self.sfx[1:]) * 2)
+ expand = getattr(self.npyv, f"expand_{totype}_{self.sfx}")
+ # close enough from the edge to detect any deviation
+ data = self._data(self._int_max() - self.nlanes)
+ vdata = self.load(data)
+ edata = expand(vdata)
+ # lower half part
+ data_lo = data[:self.nlanes // 2]
+ # higher half part
+ data_hi = data[self.nlanes // 2:]
+ assert edata == (data_lo, data_hi)
+
+ def test_arithmetic_subadd(self):
+ if self._is_fp():
+ data_a = self._data()
+ else:
+ data_a = self._data(self._int_max() - self.nlanes)
+ data_b = self._data(self._int_min(), reverse=True)
+ vdata_a, vdata_b = self.load(data_a), self.load(data_b)
+
+ # non-saturated
+ data_add = self.load([a + b for a, b in zip(data_a, data_b)]) # load to cast
+ add = self.add(vdata_a, vdata_b)
+ assert add == data_add
+ data_sub = self.load([a - b for a, b in zip(data_a, data_b)])
+ sub = self.sub(vdata_a, vdata_b)
+ assert sub == data_sub
+
+ def test_arithmetic_mul(self):
+ if self.sfx in ("u64", "s64"):
+ return
+
+ if self._is_fp():
+ data_a = self._data()
+ else:
+ data_a = self._data(self._int_max() - self.nlanes)
+ data_b = self._data(self._int_min(), reverse=True)
+ vdata_a, vdata_b = self.load(data_a), self.load(data_b)
+
+ data_mul = self.load([a * b for a, b in zip(data_a, data_b)])
+ mul = self.mul(vdata_a, vdata_b)
+ assert mul == data_mul
+
+ def test_arithmetic_div(self):
+ if not self._is_fp():
+ return
+
+ data_a, data_b = self._data(), self._data(reverse=True)
+ vdata_a, vdata_b = self.load(data_a), self.load(data_b)
+
+ # load to truncate f64 to precision of f32
+ data_div = self.load([a / b for a, b in zip(data_a, data_b)])
+ div = self.div(vdata_a, vdata_b)
+ assert div == data_div
+
+ def test_arithmetic_intdiv(self):
+ """
+ Test integer division intrinsics:
+ npyv_divisor_##sfx
+ npyv_divc_##sfx
+ """
+ if self._is_fp():
+ return
+
+ int_min = self._int_min()
+
+ def trunc_div(a, d):
+ """
+ Divide towards zero works with large integers > 2^53,
+ and wrap around overflow similar to what C does.
+ """
+ if d == -1 and a == int_min:
+ return a
+ sign_a, sign_d = a < 0, d < 0
+ if a == 0 or sign_a == sign_d:
+ return a // d
+ return (a + sign_d - sign_a) // d + 1
+
+ data = [1, -int_min] # to test overflow
+ data += range(0, 2**8, 2**5)
+ data += range(0, 2**8, 2**5 - 1)
+ bsize = self._scalar_size()
+ if bsize > 8:
+ data += range(2**8, 2**16, 2**13)
+ data += range(2**8, 2**16, 2**13 - 1)
+ if bsize > 16:
+ data += range(2**16, 2**32, 2**29)
+ data += range(2**16, 2**32, 2**29 - 1)
+ if bsize > 32:
+ data += range(2**32, 2**64, 2**61)
+ data += range(2**32, 2**64, 2**61 - 1)
+ # negate
+ data += [-x for x in data]
+ for dividend, divisor in itertools.product(data, data):
+ divisor = self.setall(divisor)[0] # cast
+ if divisor == 0:
+ continue
+ dividend = self.load(self._data(dividend))
+ data_divc = [trunc_div(a, divisor) for a in dividend]
+ divisor_parms = self.divisor(divisor)
+ divc = self.divc(dividend, divisor_parms)
+ assert divc == data_divc
+
+ def test_arithmetic_reduce_sum(self):
+ """
+ Test reduce sum intrinsics:
+ npyv_sum_##sfx
+ """
+ if self.sfx not in ("u32", "u64", "f32", "f64"):
+ return
+ # reduce sum
+ data = self._data()
+ vdata = self.load(data)
+
+ data_sum = sum(data)
+ vsum = self.sum(vdata)
+ assert vsum == data_sum
+
+ def test_arithmetic_reduce_sumup(self):
+ """
+ Test extend reduce sum intrinsics:
+ npyv_sumup_##sfx
+ """
+ if self.sfx not in ("u8", "u16"):
+ return
+ rdata = (0, self.nlanes, self._int_min(), self._int_max() - self.nlanes)
+ for r in rdata:
+ data = self._data(r)
+ vdata = self.load(data)
+ data_sum = sum(data)
+ vsum = self.sumup(vdata)
+ assert vsum == data_sum
+
+ def test_mask_conditional(self):
+ """
+ Conditional addition and subtraction for all supported data types.
+ Test intrinsics:
+ npyv_ifadd_##SFX, npyv_ifsub_##SFX
+ """
+ vdata_a = self.load(self._data())
+ vdata_b = self.load(self._data(reverse=True))
+ true_mask = self.cmpeq(self.zero(), self.zero())
+ false_mask = self.cmpneq(self.zero(), self.zero())
+
+ data_sub = self.sub(vdata_b, vdata_a)
+ ifsub = self.ifsub(true_mask, vdata_b, vdata_a, vdata_b)
+ assert ifsub == data_sub
+ ifsub = self.ifsub(false_mask, vdata_a, vdata_b, vdata_b)
+ assert ifsub == vdata_b
+
+ data_add = self.add(vdata_b, vdata_a)
+ ifadd = self.ifadd(true_mask, vdata_b, vdata_a, vdata_b)
+ assert ifadd == data_add
+ ifadd = self.ifadd(false_mask, vdata_a, vdata_b, vdata_b)
+ assert ifadd == vdata_b
+
+ if not self._is_fp():
+ return
+ data_div = self.div(vdata_b, vdata_a)
+ ifdiv = self.ifdiv(true_mask, vdata_b, vdata_a, vdata_b)
+ assert ifdiv == data_div
+ ifdivz = self.ifdivz(true_mask, vdata_b, vdata_a)
+ assert ifdivz == data_div
+ ifdiv = self.ifdiv(false_mask, vdata_a, vdata_b, vdata_b)
+ assert ifdiv == vdata_b
+ ifdivz = self.ifdivz(false_mask, vdata_a, vdata_b)
+ assert ifdivz == self.zero()
+
+
+bool_sfx = ("b8", "b16", "b32", "b64")
+int_sfx = ("u8", "s8", "u16", "s16", "u32", "s32", "u64", "s64")
+fp_sfx = ("f32", "f64")
+all_sfx = int_sfx + fp_sfx
+tests_registry = {
+ bool_sfx: _SIMD_BOOL,
+ int_sfx: _SIMD_INT,
+ fp_sfx: _SIMD_FP,
+ ("f32",): _SIMD_FP32,
+ ("f64",): _SIMD_FP64,
+ all_sfx: _SIMD_ALL
+}
+for target_name, npyv in targets.items():
+ simd_width = npyv.simd if npyv else ''
+ pretty_name = target_name.split('__') # multi-target separator
+ if len(pretty_name) > 1:
+ # multi-target
+ pretty_name = f"({' '.join(pretty_name)})"
+ else:
+ pretty_name = pretty_name[0]
+
+ skip = ""
+ skip_sfx = {}
+ if not npyv:
+ skip = f"target '{pretty_name}' isn't supported by current machine"
+ elif not npyv.simd:
+ skip = f"target '{pretty_name}' isn't supported by NPYV"
+ else:
+ if not npyv.simd_f32:
+ skip_sfx["f32"] = f"target '{pretty_name}' "\
+ "doesn't support single-precision"
+ if not npyv.simd_f64:
+ skip_sfx["f64"] = f"target '{pretty_name}' doesn't"\
+ "support double-precision"
+
+ for sfxes, cls in tests_registry.items():
+ for sfx in sfxes:
+ skip_m = skip_sfx.get(sfx, skip)
+ inhr = (cls,)
+ attr = {"npyv": targets[target_name], "sfx": sfx, "target_name": target_name}
+ tcls = type(f"Test{cls.__name__}_{simd_width}_{target_name}_{sfx}", inhr, attr)
+ if skip_m:
+ pytest.mark.skip(reason=skip_m)(tcls)
+ globals()[tcls.__name__] = tcls
diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_simd_module.py b/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_simd_module.py
new file mode 100644
index 0000000..dca83fd
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_simd_module.py
@@ -0,0 +1,103 @@
+import pytest
+
+from numpy._core._simd import targets
+
+"""
+This testing unit only for checking the sanity of common functionality,
+therefore all we need is just to take one submodule that represents any
+of enabled SIMD extensions to run the test on it and the second submodule
+required to run only one check related to the possibility of mixing
+the data types among each submodule.
+"""
+npyvs = [npyv_mod for npyv_mod in targets.values() if npyv_mod and npyv_mod.simd]
+npyv, npyv2 = (npyvs + [None, None])[:2]
+
+unsigned_sfx = ["u8", "u16", "u32", "u64"]
+signed_sfx = ["s8", "s16", "s32", "s64"]
+fp_sfx = []
+if npyv and npyv.simd_f32:
+ fp_sfx.append("f32")
+if npyv and npyv.simd_f64:
+ fp_sfx.append("f64")
+
+int_sfx = unsigned_sfx + signed_sfx
+all_sfx = unsigned_sfx + int_sfx
+
+@pytest.mark.skipif(not npyv, reason="could not find any SIMD extension with NPYV support")
+class Test_SIMD_MODULE:
+
+ @pytest.mark.parametrize('sfx', all_sfx)
+ def test_num_lanes(self, sfx):
+ nlanes = getattr(npyv, "nlanes_" + sfx)
+ vector = getattr(npyv, "setall_" + sfx)(1)
+ assert len(vector) == nlanes
+
+ @pytest.mark.parametrize('sfx', all_sfx)
+ def test_type_name(self, sfx):
+ vector = getattr(npyv, "setall_" + sfx)(1)
+ assert vector.__name__ == "npyv_" + sfx
+
+ def test_raises(self):
+ a, b = [npyv.setall_u32(1)] * 2
+ for sfx in all_sfx:
+ vcb = lambda intrin: getattr(npyv, f"{intrin}_{sfx}")
+ pytest.raises(TypeError, vcb("add"), a)
+ pytest.raises(TypeError, vcb("add"), a, b, a)
+ pytest.raises(TypeError, vcb("setall"))
+ pytest.raises(TypeError, vcb("setall"), [1])
+ pytest.raises(TypeError, vcb("load"), 1)
+ pytest.raises(ValueError, vcb("load"), [1])
+ pytest.raises(ValueError, vcb("store"), [1], getattr(npyv, f"reinterpret_{sfx}_u32")(a))
+
+ @pytest.mark.skipif(not npyv2, reason=(
+ "could not find a second SIMD extension with NPYV support"
+ ))
+ def test_nomix(self):
+ # mix among submodules isn't allowed
+ a = npyv.setall_u32(1)
+ a2 = npyv2.setall_u32(1)
+ pytest.raises(TypeError, npyv.add_u32, a2, a2)
+ pytest.raises(TypeError, npyv2.add_u32, a, a)
+
+ @pytest.mark.parametrize('sfx', unsigned_sfx)
+ def test_unsigned_overflow(self, sfx):
+ nlanes = getattr(npyv, "nlanes_" + sfx)
+ maxu = (1 << int(sfx[1:])) - 1
+ maxu_72 = (1 << 72) - 1
+ lane = getattr(npyv, "setall_" + sfx)(maxu_72)[0]
+ assert lane == maxu
+ lanes = getattr(npyv, "load_" + sfx)([maxu_72] * nlanes)
+ assert lanes == [maxu] * nlanes
+ lane = getattr(npyv, "setall_" + sfx)(-1)[0]
+ assert lane == maxu
+ lanes = getattr(npyv, "load_" + sfx)([-1] * nlanes)
+ assert lanes == [maxu] * nlanes
+
+ @pytest.mark.parametrize('sfx', signed_sfx)
+ def test_signed_overflow(self, sfx):
+ nlanes = getattr(npyv, "nlanes_" + sfx)
+ maxs_72 = (1 << 71) - 1
+ lane = getattr(npyv, "setall_" + sfx)(maxs_72)[0]
+ assert lane == -1
+ lanes = getattr(npyv, "load_" + sfx)([maxs_72] * nlanes)
+ assert lanes == [-1] * nlanes
+ mins_72 = -1 << 71
+ lane = getattr(npyv, "setall_" + sfx)(mins_72)[0]
+ assert lane == 0
+ lanes = getattr(npyv, "load_" + sfx)([mins_72] * nlanes)
+ assert lanes == [0] * nlanes
+
+ def test_truncate_f32(self):
+ if not npyv.simd_f32:
+ pytest.skip("F32 isn't support by the SIMD extension")
+ f32 = npyv.setall_f32(0.1)[0]
+ assert f32 != 0.1
+ assert round(f32, 1) == 0.1
+
+ def test_compare(self):
+ data_range = range(npyv.nlanes_u32)
+ vdata = npyv.load_u32(data_range)
+ assert vdata == list(data_range)
+ assert vdata == tuple(data_range)
+ for i in data_range:
+ assert vdata[i] == data_range[i]
diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_stringdtype.py b/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_stringdtype.py
new file mode 100644
index 0000000..e39d746
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_stringdtype.py
@@ -0,0 +1,1807 @@
+import copy
+import itertools
+import os
+import pickle
+import sys
+import tempfile
+
+import pytest
+
+import numpy as np
+from numpy._core.tests._natype import get_stringdtype_dtype as get_dtype
+from numpy._core.tests._natype import pd_NA
+from numpy.dtypes import StringDType
+from numpy.testing import IS_PYPY, assert_array_equal
+
+
+@pytest.fixture
+def string_list():
+ return ["abc", "def", "ghi" * 10, "A¢☃€ 😊" * 100, "Abc" * 1000, "DEF"]
+
+
+# second copy for cast tests to do a cartesian product over dtypes
+@pytest.fixture(params=[True, False])
+def coerce2(request):
+ return request.param
+
+
+@pytest.fixture(
+ params=["unset", None, pd_NA, np.nan, float("nan"), "__nan__"],
+ ids=["unset", "None", "pandas.NA", "np.nan", "float('nan')", "string nan"],
+)
+def na_object2(request):
+ return request.param
+
+
+@pytest.fixture()
+def dtype2(na_object2, coerce2):
+ # explicit is check for pd_NA because != with pd_NA returns pd_NA
+ if na_object2 is pd_NA or na_object2 != "unset":
+ return StringDType(na_object=na_object2, coerce=coerce2)
+ else:
+ return StringDType(coerce=coerce2)
+
+
+def test_dtype_creation():
+ hashes = set()
+ dt = StringDType()
+ assert not hasattr(dt, "na_object") and dt.coerce is True
+ hashes.add(hash(dt))
+
+ dt = StringDType(na_object=None)
+ assert dt.na_object is None and dt.coerce is True
+ hashes.add(hash(dt))
+
+ dt = StringDType(coerce=False)
+ assert not hasattr(dt, "na_object") and dt.coerce is False
+ hashes.add(hash(dt))
+
+ dt = StringDType(na_object=None, coerce=False)
+ assert dt.na_object is None and dt.coerce is False
+ hashes.add(hash(dt))
+
+ assert len(hashes) == 4
+
+ dt = np.dtype("T")
+ assert dt == StringDType()
+ assert dt.kind == "T"
+ assert dt.char == "T"
+
+ hashes.add(hash(dt))
+ assert len(hashes) == 4
+
+
+def test_dtype_equality(dtype):
+ assert dtype == dtype
+ for ch in "SU":
+ assert dtype != np.dtype(ch)
+ assert dtype != np.dtype(f"{ch}8")
+
+
+def test_dtype_repr(dtype):
+ if not hasattr(dtype, "na_object") and dtype.coerce:
+ assert repr(dtype) == "StringDType()"
+ elif dtype.coerce:
+ assert repr(dtype) == f"StringDType(na_object={dtype.na_object!r})"
+ elif not hasattr(dtype, "na_object"):
+ assert repr(dtype) == "StringDType(coerce=False)"
+ else:
+ assert (
+ repr(dtype)
+ == f"StringDType(na_object={dtype.na_object!r}, coerce=False)"
+ )
+
+
+def test_create_with_na(dtype):
+ if not hasattr(dtype, "na_object"):
+ pytest.skip("does not have an na object")
+ na_val = dtype.na_object
+ string_list = ["hello", na_val, "world"]
+ arr = np.array(string_list, dtype=dtype)
+ assert str(arr) == "[" + " ".join([repr(s) for s in string_list]) + "]"
+ assert arr[1] is dtype.na_object
+
+
+@pytest.mark.parametrize("i", list(range(5)))
+def test_set_replace_na(i):
+ # Test strings of various lengths can be set to NaN and then replaced.
+ s_empty = ""
+ s_short = "0123456789"
+ s_medium = "abcdefghijklmnopqrstuvwxyz"
+ s_long = "-=+" * 100
+ strings = [s_medium, s_empty, s_short, s_medium, s_long]
+ a = np.array(strings, StringDType(na_object=np.nan))
+ for s in [a[i], s_medium + s_short, s_short, s_empty, s_long]:
+ a[i] = np.nan
+ assert np.isnan(a[i])
+ a[i] = s
+ assert a[i] == s
+ assert_array_equal(a, strings[:i] + [s] + strings[i + 1:])
+
+
+def test_null_roundtripping():
+ data = ["hello\0world", "ABC\0DEF\0\0"]
+ arr = np.array(data, dtype="T")
+ assert data[0] == arr[0]
+ assert data[1] == arr[1]
+
+
+def test_string_too_large_error():
+ arr = np.array(["a", "b", "c"], dtype=StringDType())
+ with pytest.raises(OverflowError):
+ arr * (sys.maxsize + 1)
+
+
+@pytest.mark.parametrize(
+ "data",
+ [
+ ["abc", "def", "ghi"],
+ ["🤣", "📵", "😰"],
+ ["🚜", "🙃", "😾"],
+ ["😹", "🚠", "🚌"],
+ ],
+)
+def test_array_creation_utf8(dtype, data):
+ arr = np.array(data, dtype=dtype)
+ assert str(arr) == "[" + " ".join(["'" + str(d) + "'" for d in data]) + "]"
+ assert arr.dtype == dtype
+
+
+@pytest.mark.parametrize(
+ "data",
+ [
+ [1, 2, 3],
+ [b"abc", b"def", b"ghi"],
+ [object, object, object],
+ ],
+)
+def test_scalars_string_conversion(data, dtype):
+ try:
+ str_vals = [str(d.decode('utf-8')) for d in data]
+ except AttributeError:
+ str_vals = [str(d) for d in data]
+ if dtype.coerce:
+ assert_array_equal(
+ np.array(data, dtype=dtype),
+ np.array(str_vals, dtype=dtype),
+ )
+ else:
+ with pytest.raises(ValueError):
+ np.array(data, dtype=dtype)
+
+
+@pytest.mark.parametrize(
+ ("strings"),
+ [
+ ["this", "is", "an", "array"],
+ ["€", "", "😊"],
+ ["A¢☃€ 😊", " A☃€¢😊", "☃€😊 A¢", "😊☃A¢ €"],
+ ],
+)
+def test_self_casts(dtype, dtype2, strings):
+ if hasattr(dtype, "na_object"):
+ strings = strings + [dtype.na_object]
+ elif hasattr(dtype2, "na_object"):
+ strings = strings + [""]
+ arr = np.array(strings, dtype=dtype)
+ newarr = arr.astype(dtype2)
+
+ if hasattr(dtype, "na_object") and not hasattr(dtype2, "na_object"):
+ assert newarr[-1] == str(dtype.na_object)
+ with pytest.raises(TypeError):
+ arr.astype(dtype2, casting="safe")
+ elif hasattr(dtype, "na_object") and hasattr(dtype2, "na_object"):
+ assert newarr[-1] is dtype2.na_object
+ arr.astype(dtype2, casting="safe")
+ elif hasattr(dtype2, "na_object"):
+ assert newarr[-1] == ""
+ arr.astype(dtype2, casting="safe")
+ else:
+ arr.astype(dtype2, casting="safe")
+
+ if hasattr(dtype, "na_object") and hasattr(dtype2, "na_object"):
+ na1 = dtype.na_object
+ na2 = dtype2.na_object
+ if (na1 is not na2 and
+ # check for pd_NA first because bool(pd_NA) is an error
+ ((na1 is pd_NA or na2 is pd_NA) or
+ # the second check is a NaN check, spelled this way
+ # to avoid errors from math.isnan and np.isnan
+ (na1 != na2 and not (na1 != na1 and na2 != na2)))):
+ with pytest.raises(TypeError):
+ arr[:-1] == newarr[:-1]
+ return
+ assert_array_equal(arr[:-1], newarr[:-1])
+
+
+@pytest.mark.parametrize(
+ ("strings"),
+ [
+ ["this", "is", "an", "array"],
+ ["€", "", "😊"],
+ ["A¢☃€ 😊", " A☃€¢😊", "☃€😊 A¢", "😊☃A¢ €"],
+ ],
+)
+class TestStringLikeCasts:
+ def test_unicode_casts(self, dtype, strings):
+ arr = np.array(strings, dtype=np.str_).astype(dtype)
+ expected = np.array(strings, dtype=dtype)
+ assert_array_equal(arr, expected)
+
+ arr_as_U8 = expected.astype("U8")
+ assert_array_equal(arr_as_U8, np.array(strings, dtype="U8"))
+ assert_array_equal(arr_as_U8.astype(dtype), arr)
+ arr_as_U3 = expected.astype("U3")
+ assert_array_equal(arr_as_U3, np.array(strings, dtype="U3"))
+ assert_array_equal(
+ arr_as_U3.astype(dtype),
+ np.array([s[:3] for s in strings], dtype=dtype),
+ )
+
+ def test_void_casts(self, dtype, strings):
+ sarr = np.array(strings, dtype=dtype)
+ utf8_bytes = [s.encode("utf-8") for s in strings]
+ void_dtype = f"V{max(len(s) for s in utf8_bytes)}"
+ varr = np.array(utf8_bytes, dtype=void_dtype)
+ assert_array_equal(varr, sarr.astype(void_dtype))
+ assert_array_equal(varr.astype(dtype), sarr)
+
+ def test_bytes_casts(self, dtype, strings):
+ sarr = np.array(strings, dtype=dtype)
+ try:
+ utf8_bytes = [s.encode("ascii") for s in strings]
+ bytes_dtype = f"S{max(len(s) for s in utf8_bytes)}"
+ barr = np.array(utf8_bytes, dtype=bytes_dtype)
+ assert_array_equal(barr, sarr.astype(bytes_dtype))
+ assert_array_equal(barr.astype(dtype), sarr)
+ if dtype.coerce:
+ barr = np.array(utf8_bytes, dtype=dtype)
+ assert_array_equal(barr, sarr)
+ barr = np.array(utf8_bytes, dtype="O")
+ assert_array_equal(barr.astype(dtype), sarr)
+ else:
+ with pytest.raises(ValueError):
+ np.array(utf8_bytes, dtype=dtype)
+ except UnicodeEncodeError:
+ with pytest.raises(UnicodeEncodeError):
+ sarr.astype("S20")
+
+
+def test_additional_unicode_cast(random_string_list, dtype):
+ arr = np.array(random_string_list, dtype=dtype)
+ # test that this short-circuits correctly
+ assert_array_equal(arr, arr.astype(arr.dtype))
+ # tests the casts via the comparison promoter
+ assert_array_equal(arr, arr.astype(random_string_list.dtype))
+
+
+def test_insert_scalar(dtype, string_list):
+ """Test that inserting a scalar works."""
+ arr = np.array(string_list, dtype=dtype)
+ scalar_instance = "what"
+ arr[1] = scalar_instance
+ assert_array_equal(
+ arr,
+ np.array(string_list[:1] + ["what"] + string_list[2:], dtype=dtype),
+ )
+
+
+comparison_operators = [
+ np.equal,
+ np.not_equal,
+ np.greater,
+ np.greater_equal,
+ np.less,
+ np.less_equal,
+]
+
+
+@pytest.mark.parametrize("op", comparison_operators)
+@pytest.mark.parametrize("o_dtype", [np.str_, object, StringDType()])
+def test_comparisons(string_list, dtype, op, o_dtype):
+ sarr = np.array(string_list, dtype=dtype)
+ oarr = np.array(string_list, dtype=o_dtype)
+
+ # test that comparison operators work
+ res = op(sarr, sarr)
+ ores = op(oarr, oarr)
+ # test that promotion works as well
+ orres = op(sarr, oarr)
+ olres = op(oarr, sarr)
+
+ assert_array_equal(res, ores)
+ assert_array_equal(res, orres)
+ assert_array_equal(res, olres)
+
+ # test we get the correct answer for unequal length strings
+ sarr2 = np.array([s + "2" for s in string_list], dtype=dtype)
+ oarr2 = np.array([s + "2" for s in string_list], dtype=o_dtype)
+
+ res = op(sarr, sarr2)
+ ores = op(oarr, oarr2)
+ olres = op(oarr, sarr2)
+ orres = op(sarr, oarr2)
+
+ assert_array_equal(res, ores)
+ assert_array_equal(res, olres)
+ assert_array_equal(res, orres)
+
+ res = op(sarr2, sarr)
+ ores = op(oarr2, oarr)
+ olres = op(oarr2, sarr)
+ orres = op(sarr2, oarr)
+
+ assert_array_equal(res, ores)
+ assert_array_equal(res, olres)
+ assert_array_equal(res, orres)
+
+
+def test_isnan(dtype, string_list):
+ if not hasattr(dtype, "na_object"):
+ pytest.skip("no na support")
+ sarr = np.array(string_list + [dtype.na_object], dtype=dtype)
+ is_nan = isinstance(dtype.na_object, float) and np.isnan(dtype.na_object)
+ bool_errors = 0
+ try:
+ bool(dtype.na_object)
+ except TypeError:
+ bool_errors = 1
+ if is_nan or bool_errors:
+ # isnan is only true when na_object is a NaN
+ assert_array_equal(
+ np.isnan(sarr),
+ np.array([0] * len(string_list) + [1], dtype=np.bool),
+ )
+ else:
+ assert not np.any(np.isnan(sarr))
+
+
+def test_pickle(dtype, string_list):
+ arr = np.array(string_list, dtype=dtype)
+
+ with tempfile.NamedTemporaryFile("wb", delete=False) as f:
+ pickle.dump([arr, dtype], f)
+
+ with open(f.name, "rb") as f:
+ res = pickle.load(f)
+
+ assert_array_equal(res[0], arr)
+ assert res[1] == dtype
+
+ os.remove(f.name)
+
+
+def test_stdlib_copy(dtype, string_list):
+ arr = np.array(string_list, dtype=dtype)
+
+ assert_array_equal(copy.copy(arr), arr)
+ assert_array_equal(copy.deepcopy(arr), arr)
+
+
+@pytest.mark.parametrize(
+ "strings",
+ [
+ ["left", "right", "leftovers", "righty", "up", "down"],
+ [
+ "left" * 10,
+ "right" * 10,
+ "leftovers" * 10,
+ "righty" * 10,
+ "up" * 10,
+ ],
+ ["🤣🤣", "🤣", "📵", "😰"],
+ ["🚜", "🙃", "😾"],
+ ["😹", "🚠", "🚌"],
+ ["A¢☃€ 😊", " A☃€¢😊", "☃€😊 A¢", "😊☃A¢ €"],
+ ],
+)
+def test_sort(dtype, strings):
+ """Test that sorting matches python's internal sorting."""
+
+ def test_sort(strings, arr_sorted):
+ arr = np.array(strings, dtype=dtype)
+ na_object = getattr(arr.dtype, "na_object", "")
+ if na_object is None and None in strings:
+ with pytest.raises(
+ ValueError,
+ match="Cannot compare null that is not a nan-like value",
+ ):
+ np.argsort(arr)
+ argsorted = None
+ elif na_object is pd_NA or na_object != '':
+ argsorted = None
+ else:
+ argsorted = np.argsort(arr)
+ np.random.default_rng().shuffle(arr)
+ if na_object is None and None in strings:
+ with pytest.raises(
+ ValueError,
+ match="Cannot compare null that is not a nan-like value",
+ ):
+ arr.sort()
+ else:
+ arr.sort()
+ assert np.array_equal(arr, arr_sorted, equal_nan=True)
+ if argsorted is not None:
+ assert np.array_equal(argsorted, np.argsort(strings))
+
+ # make a copy so we don't mutate the lists in the fixture
+ strings = strings.copy()
+ arr_sorted = np.array(sorted(strings), dtype=dtype)
+ test_sort(strings, arr_sorted)
+
+ if not hasattr(dtype, "na_object"):
+ return
+
+ # make sure NAs get sorted to the end of the array and string NAs get
+ # sorted like normal strings
+ strings.insert(0, dtype.na_object)
+ strings.insert(2, dtype.na_object)
+ # can't use append because doing that with NA converts
+ # the result to object dtype
+ if not isinstance(dtype.na_object, str):
+ arr_sorted = np.array(
+ arr_sorted.tolist() + [dtype.na_object, dtype.na_object],
+ dtype=dtype,
+ )
+ else:
+ arr_sorted = np.array(sorted(strings), dtype=dtype)
+
+ test_sort(strings, arr_sorted)
+
+
+@pytest.mark.parametrize(
+ "strings",
+ [
+ ["A¢☃€ 😊", " A☃€¢😊", "☃€😊 A¢", "😊☃A¢ €"],
+ ["A¢☃€ 😊", "", " ", " "],
+ ["", "a", "😸", "ááðfáíóåéë"],
+ ],
+)
+def test_nonzero(strings, na_object):
+ dtype = get_dtype(na_object)
+ arr = np.array(strings, dtype=dtype)
+ is_nonzero = np.array(
+ [i for i, item in enumerate(strings) if len(item) != 0])
+ assert_array_equal(arr.nonzero()[0], is_nonzero)
+
+ if na_object is not pd_NA and na_object == 'unset':
+ return
+
+ strings_with_na = np.array(strings + [na_object], dtype=dtype)
+ is_nan = np.isnan(np.array([dtype.na_object], dtype=dtype))[0]
+
+ if is_nan:
+ assert strings_with_na.nonzero()[0][-1] == 4
+ else:
+ assert strings_with_na.nonzero()[0][-1] == 3
+
+ # check that the casting to bool and nonzero give consistent results
+ assert_array_equal(strings_with_na[strings_with_na.nonzero()],
+ strings_with_na[strings_with_na.astype(bool)])
+
+
+def test_where(string_list, na_object):
+ dtype = get_dtype(na_object)
+ a = np.array(string_list, dtype=dtype)
+ b = a[::-1]
+ res = np.where([True, False, True, False, True, False], a, b)
+ assert_array_equal(res, [a[0], b[1], a[2], b[3], a[4], b[5]])
+
+
+def test_fancy_indexing(string_list):
+ sarr = np.array(string_list, dtype="T")
+ assert_array_equal(sarr, sarr[np.arange(sarr.shape[0])])
+
+ inds = [
+ [True, True],
+ [0, 1],
+ ...,
+ np.array([0, 1], dtype='uint8'),
+ ]
+
+ lops = [
+ ['a' * 25, 'b' * 25],
+ ['', ''],
+ ['hello', 'world'],
+ ['hello', 'world' * 25],
+ ]
+
+ # see gh-27003 and gh-27053
+ for ind in inds:
+ for lop in lops:
+ a = np.array(lop, dtype="T")
+ assert_array_equal(a[ind], a)
+ rop = ['d' * 25, 'e' * 25]
+ for b in [rop, np.array(rop, dtype="T")]:
+ a[ind] = b
+ assert_array_equal(a, b)
+ assert a[0] == 'd' * 25
+
+ # see gh-29279
+ data = [
+ ["AAAAAAAAAAAAAAAAA"],
+ ["BBBBBBBBBBBBBBBBBBBBBBBBBBBBB"],
+ ["CCCCCCCCCCCCCCCCC"],
+ ["DDDDDDDDDDDDDDDDD"],
+ ]
+ sarr = np.array(data, dtype=np.dtypes.StringDType())
+ uarr = np.array(data, dtype="U30")
+ for ind in [[0], [1], [2], [3], [[0, 0]], [[1, 1, 3]], [[1, 1]]]:
+ assert_array_equal(sarr[ind], uarr[ind])
+
+
+def test_creation_functions():
+ assert_array_equal(np.zeros(3, dtype="T"), ["", "", ""])
+ assert_array_equal(np.empty(3, dtype="T"), ["", "", ""])
+
+ assert np.zeros(3, dtype="T")[0] == ""
+ assert np.empty(3, dtype="T")[0] == ""
+
+
+def test_concatenate(string_list):
+ sarr = np.array(string_list, dtype="T")
+ sarr_cat = np.array(string_list + string_list, dtype="T")
+
+ assert_array_equal(np.concatenate([sarr], axis=0), sarr)
+
+
+def test_resize_method(string_list):
+ sarr = np.array(string_list, dtype="T")
+ if IS_PYPY:
+ sarr.resize(len(string_list) + 3, refcheck=False)
+ else:
+ sarr.resize(len(string_list) + 3)
+ assert_array_equal(sarr, np.array(string_list + [''] * 3, dtype="T"))
+
+
+def test_create_with_copy_none(string_list):
+ arr = np.array(string_list, dtype=StringDType())
+ # create another stringdtype array with an arena that has a different
+ # in-memory layout than the first array
+ arr_rev = np.array(string_list[::-1], dtype=StringDType())
+
+ # this should create a copy and the resulting array
+ # shouldn't share an allocator or arena with arr_rev, despite
+ # explicitly passing arr_rev.dtype
+ arr_copy = np.array(arr, copy=None, dtype=arr_rev.dtype)
+ np.testing.assert_array_equal(arr, arr_copy)
+ assert arr_copy.base is None
+
+ with pytest.raises(ValueError, match="Unable to avoid copy"):
+ np.array(arr, copy=False, dtype=arr_rev.dtype)
+
+ # because we're using arr's dtype instance, the view is safe
+ arr_view = np.array(arr, copy=None, dtype=arr.dtype)
+ np.testing.assert_array_equal(arr, arr)
+ np.testing.assert_array_equal(arr_view[::-1], arr_rev)
+ assert arr_view is arr
+
+
+def test_astype_copy_false():
+ orig_dt = StringDType()
+ arr = np.array(["hello", "world"], dtype=StringDType())
+ assert not arr.astype(StringDType(coerce=False), copy=False).dtype.coerce
+
+ assert arr.astype(orig_dt, copy=False).dtype is orig_dt
+
+@pytest.mark.parametrize(
+ "strings",
+ [
+ ["left", "right", "leftovers", "righty", "up", "down"],
+ ["🤣🤣", "🤣", "📵", "😰"],
+ ["🚜", "🙃", "😾"],
+ ["😹", "🚠", "🚌"],
+ ["A¢☃€ 😊", " A☃€¢😊", "☃€😊 A¢", "😊☃A¢ €"],
+ ],
+)
+def test_argmax(strings):
+ """Test that argmax/argmin matches what python calculates."""
+ arr = np.array(strings, dtype="T")
+ assert np.argmax(arr) == strings.index(max(strings))
+ assert np.argmin(arr) == strings.index(min(strings))
+
+
+@pytest.mark.parametrize(
+ "arrfunc,expected",
+ [
+ [np.sort, None],
+ [np.nonzero, (np.array([], dtype=np.int_),)],
+ [np.argmax, 0],
+ [np.argmin, 0],
+ ],
+)
+def test_arrfuncs_zeros(arrfunc, expected):
+ arr = np.zeros(10, dtype="T")
+ result = arrfunc(arr)
+ if expected is None:
+ expected = arr
+ assert_array_equal(result, expected, strict=True)
+
+
+@pytest.mark.parametrize(
+ ("strings", "cast_answer", "any_answer", "all_answer"),
+ [
+ [["hello", "world"], [True, True], True, True],
+ [["", ""], [False, False], False, False],
+ [["hello", ""], [True, False], True, False],
+ [["", "world"], [False, True], True, False],
+ ],
+)
+def test_cast_to_bool(strings, cast_answer, any_answer, all_answer):
+ sarr = np.array(strings, dtype="T")
+ assert_array_equal(sarr.astype("bool"), cast_answer)
+
+ assert np.any(sarr) == any_answer
+ assert np.all(sarr) == all_answer
+
+
+@pytest.mark.parametrize(
+ ("strings", "cast_answer"),
+ [
+ [[True, True], ["True", "True"]],
+ [[False, False], ["False", "False"]],
+ [[True, False], ["True", "False"]],
+ [[False, True], ["False", "True"]],
+ ],
+)
+def test_cast_from_bool(strings, cast_answer):
+ barr = np.array(strings, dtype=bool)
+ assert_array_equal(barr.astype("T"), np.array(cast_answer, dtype="T"))
+
+
+@pytest.mark.parametrize("bitsize", [8, 16, 32, 64])
+@pytest.mark.parametrize("signed", [True, False])
+def test_sized_integer_casts(bitsize, signed):
+ idtype = f"int{bitsize}"
+ if signed:
+ inp = [-(2**p - 1) for p in reversed(range(bitsize - 1))]
+ inp += [2**p - 1 for p in range(1, bitsize - 1)]
+ else:
+ idtype = "u" + idtype
+ inp = [2**p - 1 for p in range(bitsize)]
+ ainp = np.array(inp, dtype=idtype)
+ assert_array_equal(ainp, ainp.astype("T").astype(idtype))
+
+ # safe casting works
+ ainp.astype("T", casting="safe")
+
+ with pytest.raises(TypeError):
+ ainp.astype("T").astype(idtype, casting="safe")
+
+ oob = [str(2**bitsize), str(-(2**bitsize))]
+ with pytest.raises(OverflowError):
+ np.array(oob, dtype="T").astype(idtype)
+
+ with pytest.raises(ValueError):
+ np.array(["1", np.nan, "3"],
+ dtype=StringDType(na_object=np.nan)).astype(idtype)
+
+
+@pytest.mark.parametrize("typename", ["byte", "short", "int", "longlong"])
+@pytest.mark.parametrize("signed", ["", "u"])
+def test_unsized_integer_casts(typename, signed):
+ idtype = f"{signed}{typename}"
+
+ inp = [1, 2, 3, 4]
+ ainp = np.array(inp, dtype=idtype)
+ assert_array_equal(ainp, ainp.astype("T").astype(idtype))
+
+
+@pytest.mark.parametrize(
+ "typename",
+ [
+ pytest.param(
+ "longdouble",
+ marks=pytest.mark.xfail(
+ np.dtypes.LongDoubleDType() != np.dtypes.Float64DType(),
+ reason="numpy lacks an ld2a implementation",
+ strict=True,
+ ),
+ ),
+ "float64",
+ "float32",
+ "float16",
+ ],
+)
+def test_float_casts(typename):
+ inp = [1.1, 2.8, -3.2, 2.7e4]
+ ainp = np.array(inp, dtype=typename)
+ assert_array_equal(ainp, ainp.astype("T").astype(typename))
+
+ inp = [0.1]
+ sres = np.array(inp, dtype=typename).astype("T")
+ res = sres.astype(typename)
+ assert_array_equal(np.array(inp, dtype=typename), res)
+ assert sres[0] == "0.1"
+
+ if typename == "longdouble":
+ # let's not worry about platform-dependent rounding of longdouble
+ return
+
+ fi = np.finfo(typename)
+
+ inp = [1e-324, fi.smallest_subnormal, -1e-324, -fi.smallest_subnormal]
+ eres = [0, fi.smallest_subnormal, -0, -fi.smallest_subnormal]
+ res = np.array(inp, dtype=typename).astype("T").astype(typename)
+ assert_array_equal(eres, res)
+
+ inp = [2e308, fi.max, -2e308, fi.min]
+ eres = [np.inf, fi.max, -np.inf, fi.min]
+ res = np.array(inp, dtype=typename).astype("T").astype(typename)
+ assert_array_equal(eres, res)
+
+
+def test_float_nan_cast_na_object():
+ # gh-28157
+ dt = np.dtypes.StringDType(na_object=np.nan)
+ arr1 = np.full((1,), fill_value=np.nan, dtype=dt)
+ arr2 = np.full_like(arr1, fill_value=np.nan)
+
+ assert arr1.item() is np.nan
+ assert arr2.item() is np.nan
+
+ inp = [1.2, 2.3, np.nan]
+ arr = np.array(inp).astype(dt)
+ assert arr[2] is np.nan
+ assert arr[0] == '1.2'
+
+
+@pytest.mark.parametrize(
+ "typename",
+ [
+ "csingle",
+ "cdouble",
+ pytest.param(
+ "clongdouble",
+ marks=pytest.mark.xfail(
+ np.dtypes.CLongDoubleDType() != np.dtypes.Complex128DType(),
+ reason="numpy lacks an ld2a implementation",
+ strict=True,
+ ),
+ ),
+ ],
+)
+def test_cfloat_casts(typename):
+ inp = [1.1 + 1.1j, 2.8 + 2.8j, -3.2 - 3.2j, 2.7e4 + 2.7e4j]
+ ainp = np.array(inp, dtype=typename)
+ assert_array_equal(ainp, ainp.astype("T").astype(typename))
+
+ inp = [0.1 + 0.1j]
+ sres = np.array(inp, dtype=typename).astype("T")
+ res = sres.astype(typename)
+ assert_array_equal(np.array(inp, dtype=typename), res)
+ assert sres[0] == "(0.1+0.1j)"
+
+
+def test_take(string_list):
+ sarr = np.array(string_list, dtype="T")
+ res = sarr.take(np.arange(len(string_list)))
+ assert_array_equal(sarr, res)
+
+ # make sure it also works for out
+ out = np.empty(len(string_list), dtype="T")
+ out[0] = "hello"
+ res = sarr.take(np.arange(len(string_list)), out=out)
+ assert res is out
+ assert_array_equal(sarr, res)
+
+
+@pytest.mark.parametrize("use_out", [True, False])
+@pytest.mark.parametrize(
+ "ufunc_name,func",
+ [
+ ("min", min),
+ ("max", max),
+ ],
+)
+def test_ufuncs_minmax(string_list, ufunc_name, func, use_out):
+ """Test that the min/max ufuncs match Python builtin min/max behavior."""
+ arr = np.array(string_list, dtype="T")
+ uarr = np.array(string_list, dtype=str)
+ res = np.array(func(string_list), dtype="T")
+ assert_array_equal(getattr(arr, ufunc_name)(), res)
+
+ ufunc = getattr(np, ufunc_name + "imum")
+
+ if use_out:
+ res = ufunc(arr, arr, out=arr)
+ else:
+ res = ufunc(arr, arr)
+
+ assert_array_equal(uarr, res)
+ assert_array_equal(getattr(arr, ufunc_name)(), func(string_list))
+
+
+def test_max_regression():
+ arr = np.array(['y', 'y', 'z'], dtype="T")
+ assert arr.max() == 'z'
+
+
+@pytest.mark.parametrize("use_out", [True, False])
+@pytest.mark.parametrize(
+ "other_strings",
+ [
+ ["abc", "def" * 500, "ghi" * 16, "🤣" * 100, "📵", "😰"],
+ ["🚜", "🙃", "😾", "😹", "🚠", "🚌"],
+ ["🥦", "¨", "⨯", "∰ ", "⨌ ", "⎶ "],
+ ],
+)
+def test_ufunc_add(dtype, string_list, other_strings, use_out):
+ arr1 = np.array(string_list, dtype=dtype)
+ arr2 = np.array(other_strings, dtype=dtype)
+ result = np.array([a + b for a, b in zip(arr1, arr2)], dtype=dtype)
+
+ if use_out:
+ res = np.add(arr1, arr2, out=arr1)
+ else:
+ res = np.add(arr1, arr2)
+
+ assert_array_equal(res, result)
+
+ if not hasattr(dtype, "na_object"):
+ return
+
+ is_nan = isinstance(dtype.na_object, float) and np.isnan(dtype.na_object)
+ is_str = isinstance(dtype.na_object, str)
+ bool_errors = 0
+ try:
+ bool(dtype.na_object)
+ except TypeError:
+ bool_errors = 1
+
+ arr1 = np.array([dtype.na_object] + string_list, dtype=dtype)
+ arr2 = np.array(other_strings + [dtype.na_object], dtype=dtype)
+
+ if is_nan or bool_errors or is_str:
+ res = np.add(arr1, arr2)
+ assert_array_equal(res[1:-1], arr1[1:-1] + arr2[1:-1])
+ if not is_str:
+ assert res[0] is dtype.na_object and res[-1] is dtype.na_object
+ else:
+ assert res[0] == dtype.na_object + arr2[0]
+ assert res[-1] == arr1[-1] + dtype.na_object
+ else:
+ with pytest.raises(ValueError):
+ np.add(arr1, arr2)
+
+
+def test_ufunc_add_reduce(dtype):
+ values = ["a", "this is a long string", "c"]
+ arr = np.array(values, dtype=dtype)
+ out = np.empty((), dtype=dtype)
+
+ expected = np.array("".join(values), dtype=dtype)
+ assert_array_equal(np.add.reduce(arr), expected)
+
+ np.add.reduce(arr, out=out)
+ assert_array_equal(out, expected)
+
+
+def test_add_promoter(string_list):
+ arr = np.array(string_list, dtype=StringDType())
+ lresult = np.array(["hello" + s for s in string_list], dtype=StringDType())
+ rresult = np.array([s + "hello" for s in string_list], dtype=StringDType())
+
+ for op in ["hello", np.str_("hello"), np.array(["hello"])]:
+ assert_array_equal(op + arr, lresult)
+ assert_array_equal(arr + op, rresult)
+
+ # The promoter should be able to handle things if users pass `dtype=`
+ res = np.add("hello", string_list, dtype=StringDType)
+ assert res.dtype == StringDType()
+
+ # The promoter should not kick in if users override the input,
+ # which means arr is cast, this fails because of the unknown length.
+ with pytest.raises(TypeError, match="cannot cast dtype"):
+ np.add(arr, "add", signature=("U", "U", None), casting="unsafe")
+
+ # But it must simply reject the following:
+ with pytest.raises(TypeError, match=".*did not contain a loop"):
+ np.add(arr, "add", signature=(None, "U", None))
+
+ with pytest.raises(TypeError, match=".*did not contain a loop"):
+ np.add("a", "b", signature=("U", "U", StringDType))
+
+
+def test_add_no_legacy_promote_with_signature():
+ # Possibly misplaced, but useful to test with string DType. We check that
+ # if there is clearly no loop found, a stray `dtype=` doesn't break things
+ # Regression test for the bad error in gh-26735
+ # (If legacy promotion is gone, this can be deleted...)
+ with pytest.raises(TypeError, match=".*did not contain a loop"):
+ np.add("3", 6, dtype=StringDType)
+
+
+def test_add_promoter_reduce():
+ # Exact TypeError could change, but ensure StringDtype doesn't match
+ with pytest.raises(TypeError, match="the resolved dtypes are not"):
+ np.add.reduce(np.array(["a", "b"], dtype="U"))
+
+ # On the other hand, using `dtype=T` in the *ufunc* should work.
+ np.add.reduce(np.array(["a", "b"], dtype="U"), dtype=np.dtypes.StringDType)
+
+
+def test_multiply_reduce():
+ # At the time of writing (NumPy 2.0) this is very limited (and rather
+ # ridiculous anyway). But it works and actually makes some sense...
+ # (NumPy does not allow non-scalar initial values)
+ repeats = np.array([2, 3, 4])
+ val = "school-🚌"
+ res = np.multiply.reduce(repeats, initial=val, dtype=np.dtypes.StringDType)
+ assert res == val * np.prod(repeats)
+
+
+def test_multiply_two_string_raises():
+ arr = np.array(["hello", "world"], dtype="T")
+ with pytest.raises(np._core._exceptions._UFuncNoLoopError):
+ np.multiply(arr, arr)
+
+
+@pytest.mark.parametrize("use_out", [True, False])
+@pytest.mark.parametrize("other", [2, [2, 1, 3, 4, 1, 3]])
+@pytest.mark.parametrize(
+ "other_dtype",
+ [
+ None,
+ "int8",
+ "int16",
+ "int32",
+ "int64",
+ "uint8",
+ "uint16",
+ "uint32",
+ "uint64",
+ "short",
+ "int",
+ "intp",
+ "long",
+ "longlong",
+ "ushort",
+ "uint",
+ "uintp",
+ "ulong",
+ "ulonglong",
+ ],
+)
+def test_ufunc_multiply(dtype, string_list, other, other_dtype, use_out):
+ """Test the two-argument ufuncs match python builtin behavior."""
+ arr = np.array(string_list, dtype=dtype)
+ if other_dtype is not None:
+ other_dtype = np.dtype(other_dtype)
+ try:
+ len(other)
+ result = [s * o for s, o in zip(string_list, other)]
+ other = np.array(other)
+ if other_dtype is not None:
+ other = other.astype(other_dtype)
+ except TypeError:
+ if other_dtype is not None:
+ other = other_dtype.type(other)
+ result = [s * other for s in string_list]
+
+ if use_out:
+ arr_cache = arr.copy()
+ lres = np.multiply(arr, other, out=arr)
+ assert_array_equal(lres, result)
+ arr[:] = arr_cache
+ assert lres is arr
+ arr *= other
+ assert_array_equal(arr, result)
+ arr[:] = arr_cache
+ rres = np.multiply(other, arr, out=arr)
+ assert rres is arr
+ assert_array_equal(rres, result)
+ else:
+ lres = arr * other
+ assert_array_equal(lres, result)
+ rres = other * arr
+ assert_array_equal(rres, result)
+
+ if not hasattr(dtype, "na_object"):
+ return
+
+ is_nan = np.isnan(np.array([dtype.na_object], dtype=dtype))[0]
+ is_str = isinstance(dtype.na_object, str)
+ bool_errors = 0
+ try:
+ bool(dtype.na_object)
+ except TypeError:
+ bool_errors = 1
+
+ arr = np.array(string_list + [dtype.na_object], dtype=dtype)
+
+ try:
+ len(other)
+ other = np.append(other, 3)
+ if other_dtype is not None:
+ other = other.astype(other_dtype)
+ except TypeError:
+ pass
+
+ if is_nan or bool_errors or is_str:
+ for res in [arr * other, other * arr]:
+ assert_array_equal(res[:-1], result)
+ if not is_str:
+ assert res[-1] is dtype.na_object
+ else:
+ try:
+ assert res[-1] == dtype.na_object * other[-1]
+ except (IndexError, TypeError):
+ assert res[-1] == dtype.na_object * other
+ else:
+ with pytest.raises(TypeError):
+ arr * other
+ with pytest.raises(TypeError):
+ other * arr
+
+
+def test_findlike_promoters():
+ r = "Wally"
+ l = "Where's Wally?"
+ s = np.int32(3)
+ e = np.int8(13)
+ for dtypes in [("T", "U"), ("U", "T")]:
+ for function, answer in [
+ (np.strings.index, 8),
+ (np.strings.endswith, True),
+ ]:
+ assert answer == function(
+ np.array(l, dtype=dtypes[0]), np.array(r, dtype=dtypes[1]), s, e
+ )
+
+
+def test_strip_promoter():
+ arg = ["Hello!!!!", "Hello??!!"]
+ strip_char = "!"
+ answer = ["Hello", "Hello??"]
+ for dtypes in [("T", "U"), ("U", "T")]:
+ result = np.strings.strip(
+ np.array(arg, dtype=dtypes[0]),
+ np.array(strip_char, dtype=dtypes[1])
+ )
+ assert_array_equal(result, answer)
+ assert result.dtype.char == "T"
+
+
+def test_replace_promoter():
+ arg = ["Hello, planet!", "planet, Hello!"]
+ old = "planet"
+ new = "world"
+ answer = ["Hello, world!", "world, Hello!"]
+ for dtypes in itertools.product("TU", repeat=3):
+ if dtypes == ("U", "U", "U"):
+ continue
+ answer_arr = np.strings.replace(
+ np.array(arg, dtype=dtypes[0]),
+ np.array(old, dtype=dtypes[1]),
+ np.array(new, dtype=dtypes[2]),
+ )
+ assert_array_equal(answer_arr, answer)
+ assert answer_arr.dtype.char == "T"
+
+
+def test_center_promoter():
+ arg = ["Hello", "planet!"]
+ fillchar = "/"
+ for dtypes in [("T", "U"), ("U", "T")]:
+ answer = np.strings.center(
+ np.array(arg, dtype=dtypes[0]), 9, np.array(fillchar, dtype=dtypes[1])
+ )
+ assert_array_equal(answer, ["//Hello//", "/planet!/"])
+ assert answer.dtype.char == "T"
+
+
+DATETIME_INPUT = [
+ np.datetime64("1923-04-14T12:43:12"),
+ np.datetime64("1994-06-21T14:43:15"),
+ np.datetime64("2001-10-15T04:10:32"),
+ np.datetime64("NaT"),
+ np.datetime64("1995-11-25T16:02:16"),
+ np.datetime64("2005-01-04T03:14:12"),
+ np.datetime64("2041-12-03T14:05:03"),
+]
+
+
+TIMEDELTA_INPUT = [
+ np.timedelta64(12358, "s"),
+ np.timedelta64(23, "s"),
+ np.timedelta64(74, "s"),
+ np.timedelta64("NaT"),
+ np.timedelta64(23, "s"),
+ np.timedelta64(73, "s"),
+ np.timedelta64(7, "s"),
+]
+
+
+@pytest.mark.parametrize(
+ "input_data, input_dtype",
+ [
+ (DATETIME_INPUT, "M8[s]"),
+ (TIMEDELTA_INPUT, "m8[s]")
+ ]
+)
+def test_datetime_timedelta_cast(dtype, input_data, input_dtype):
+
+ a = np.array(input_data, dtype=input_dtype)
+
+ has_na = hasattr(dtype, "na_object")
+ is_str = isinstance(getattr(dtype, "na_object", None), str)
+
+ if not has_na or is_str:
+ a = np.delete(a, 3)
+
+ sa = a.astype(dtype)
+ ra = sa.astype(a.dtype)
+
+ if has_na and not is_str:
+ assert sa[3] is dtype.na_object
+ assert np.isnat(ra[3])
+
+ assert_array_equal(a, ra)
+
+ if has_na and not is_str:
+ # don't worry about comparing how NaT is converted
+ sa = np.delete(sa, 3)
+ a = np.delete(a, 3)
+
+ if input_dtype.startswith("M"):
+ assert_array_equal(sa, a.astype("U"))
+ else:
+ # The timedelta to unicode cast produces strings
+ # that aren't round-trippable and we don't want to
+ # reproduce that behavior in stringdtype
+ assert_array_equal(sa, a.astype("int64").astype("U"))
+
+
+def test_nat_casts():
+ s = 'nat'
+ all_nats = itertools.product(*zip(s.upper(), s.lower()))
+ all_nats = list(map(''.join, all_nats))
+ NaT_dt = np.datetime64('NaT')
+ NaT_td = np.timedelta64('NaT')
+ for na_object in [np._NoValue, None, np.nan, 'nat', '']:
+ # numpy treats empty string and all case combinations of 'nat' as NaT
+ dtype = StringDType(na_object=na_object)
+ arr = np.array([''] + all_nats, dtype=dtype)
+ dt_array = arr.astype('M8[s]')
+ td_array = arr.astype('m8[s]')
+ assert_array_equal(dt_array, NaT_dt)
+ assert_array_equal(td_array, NaT_td)
+
+ if na_object is np._NoValue:
+ output_object = 'NaT'
+ else:
+ output_object = na_object
+
+ for arr in [dt_array, td_array]:
+ assert_array_equal(
+ arr.astype(dtype),
+ np.array([output_object] * arr.size, dtype=dtype))
+
+
+def test_nat_conversion():
+ for nat in [np.datetime64("NaT", "s"), np.timedelta64("NaT", "s")]:
+ with pytest.raises(ValueError, match="string coercion is disabled"):
+ np.array(["a", nat], dtype=StringDType(coerce=False))
+
+
+def test_growing_strings(dtype):
+ # growing a string leads to a heap allocation, this tests to make sure
+ # we do that bookkeeping correctly for all possible starting cases
+ data = [
+ "hello", # a short string
+ "abcdefghijklmnopqestuvwxyz", # a medium heap-allocated string
+ "hello" * 200, # a long heap-allocated string
+ ]
+
+ arr = np.array(data, dtype=dtype)
+ uarr = np.array(data, dtype=str)
+
+ for _ in range(5):
+ arr = arr + arr
+ uarr = uarr + uarr
+
+ assert_array_equal(arr, uarr)
+
+
+def test_assign_medium_strings():
+ # see gh-29261
+ N = 9
+ src = np.array(
+ (
+ ['0' * 256] * 3 + ['0' * 255] + ['0' * 256] + ['0' * 255] +
+ ['0' * 256] * 2 + ['0' * 255]
+ ), dtype='T')
+ dst = np.array(
+ (
+ ['0' * 255] + ['0' * 256] * 2 + ['0' * 255] + ['0' * 256] +
+ ['0' * 255] + [''] * 5
+ ), dtype='T')
+
+ dst[1:N + 1] = src
+ assert_array_equal(dst[1:N + 1], src)
+
+
+UFUNC_TEST_DATA = [
+ "hello" * 10,
+ "Ae¢☃€ 😊" * 20,
+ "entry\nwith\nnewlines",
+ "entry\twith\ttabs",
+]
+
+
+@pytest.fixture
+def string_array(dtype):
+ return np.array(UFUNC_TEST_DATA, dtype=dtype)
+
+
+@pytest.fixture
+def unicode_array():
+ return np.array(UFUNC_TEST_DATA, dtype=np.str_)
+
+
+NAN_PRESERVING_FUNCTIONS = [
+ "capitalize",
+ "expandtabs",
+ "lower",
+ "lstrip",
+ "rstrip",
+ "splitlines",
+ "strip",
+ "swapcase",
+ "title",
+ "upper",
+]
+
+BOOL_OUTPUT_FUNCTIONS = [
+ "isalnum",
+ "isalpha",
+ "isdigit",
+ "islower",
+ "isspace",
+ "istitle",
+ "isupper",
+ "isnumeric",
+ "isdecimal",
+]
+
+UNARY_FUNCTIONS = [
+ "str_len",
+ "capitalize",
+ "expandtabs",
+ "isalnum",
+ "isalpha",
+ "isdigit",
+ "islower",
+ "isspace",
+ "istitle",
+ "isupper",
+ "lower",
+ "lstrip",
+ "rstrip",
+ "splitlines",
+ "strip",
+ "swapcase",
+ "title",
+ "upper",
+ "isnumeric",
+ "isdecimal",
+ "isalnum",
+ "islower",
+ "istitle",
+ "isupper",
+]
+
+UNIMPLEMENTED_VEC_STRING_FUNCTIONS = [
+ "capitalize",
+ "expandtabs",
+ "lower",
+ "splitlines",
+ "swapcase",
+ "title",
+ "upper",
+]
+
+ONLY_IN_NP_CHAR = [
+ "join",
+ "split",
+ "rsplit",
+ "splitlines"
+]
+
+
+@pytest.mark.parametrize("function_name", UNARY_FUNCTIONS)
+def test_unary(string_array, unicode_array, function_name):
+ if function_name in ONLY_IN_NP_CHAR:
+ func = getattr(np.char, function_name)
+ else:
+ func = getattr(np.strings, function_name)
+ dtype = string_array.dtype
+ sres = func(string_array)
+ ures = func(unicode_array)
+ if sres.dtype == StringDType():
+ ures = ures.astype(StringDType())
+ assert_array_equal(sres, ures)
+
+ if not hasattr(dtype, "na_object"):
+ return
+
+ is_nan = np.isnan(np.array([dtype.na_object], dtype=dtype))[0]
+ is_str = isinstance(dtype.na_object, str)
+ na_arr = np.insert(string_array, 0, dtype.na_object)
+
+ if function_name in UNIMPLEMENTED_VEC_STRING_FUNCTIONS:
+ if not is_str:
+ # to avoid these errors we'd need to add NA support to _vec_string
+ with pytest.raises((ValueError, TypeError)):
+ func(na_arr)
+ elif function_name == "splitlines":
+ assert func(na_arr)[0] == func(dtype.na_object)[()]
+ else:
+ assert func(na_arr)[0] == func(dtype.na_object)
+ return
+ if function_name == "str_len" and not is_str:
+ # str_len always errors for any non-string null, even NA ones because
+ # it has an integer result
+ with pytest.raises(ValueError):
+ func(na_arr)
+ return
+ if function_name in BOOL_OUTPUT_FUNCTIONS:
+ if is_nan:
+ assert func(na_arr)[0] is np.False_
+ elif is_str:
+ assert func(na_arr)[0] == func(dtype.na_object)
+ else:
+ with pytest.raises(ValueError):
+ func(na_arr)
+ return
+ if not (is_nan or is_str):
+ with pytest.raises(ValueError):
+ func(na_arr)
+ return
+ res = func(na_arr)
+ if is_nan and function_name in NAN_PRESERVING_FUNCTIONS:
+ assert res[0] is dtype.na_object
+ elif is_str:
+ assert res[0] == func(dtype.na_object)
+
+
+unicode_bug_fail = pytest.mark.xfail(
+ reason="unicode output width is buggy", strict=True
+)
+
+# None means that the argument is a string array
+BINARY_FUNCTIONS = [
+ ("add", (None, None)),
+ ("multiply", (None, 2)),
+ ("mod", ("format: %s", None)),
+ ("center", (None, 25)),
+ ("count", (None, "A")),
+ ("encode", (None, "UTF-8")),
+ ("endswith", (None, "lo")),
+ ("find", (None, "A")),
+ ("index", (None, "e")),
+ ("join", ("-", None)),
+ ("ljust", (None, 12)),
+ ("lstrip", (None, "A")),
+ ("partition", (None, "A")),
+ ("replace", (None, "A", "B")),
+ ("rfind", (None, "A")),
+ ("rindex", (None, "e")),
+ ("rjust", (None, 12)),
+ ("rsplit", (None, "A")),
+ ("rstrip", (None, "A")),
+ ("rpartition", (None, "A")),
+ ("split", (None, "A")),
+ ("strip", (None, "A")),
+ ("startswith", (None, "A")),
+ ("zfill", (None, 12)),
+]
+
+PASSES_THROUGH_NAN_NULLS = [
+ "add",
+ "center",
+ "ljust",
+ "multiply",
+ "replace",
+ "rjust",
+ "strip",
+ "lstrip",
+ "rstrip",
+ "replace"
+ "zfill",
+]
+
+NULLS_ARE_FALSEY = [
+ "startswith",
+ "endswith",
+]
+
+NULLS_ALWAYS_ERROR = [
+ "count",
+ "find",
+ "rfind",
+]
+
+SUPPORTS_NULLS = (
+ PASSES_THROUGH_NAN_NULLS +
+ NULLS_ARE_FALSEY +
+ NULLS_ALWAYS_ERROR
+)
+
+
+def call_func(func, args, array, sanitize=True):
+ if args == (None, None):
+ return func(array, array)
+ if args[0] is None:
+ if sanitize:
+ san_args = tuple(
+ np.array(arg, dtype=array.dtype) if isinstance(arg, str) else
+ arg for arg in args[1:]
+ )
+ else:
+ san_args = args[1:]
+ return func(array, *san_args)
+ if args[1] is None:
+ return func(args[0], array)
+ # shouldn't ever happen
+ assert 0
+
+
+@pytest.mark.parametrize("function_name, args", BINARY_FUNCTIONS)
+def test_binary(string_array, unicode_array, function_name, args):
+ if function_name in ONLY_IN_NP_CHAR:
+ func = getattr(np.char, function_name)
+ else:
+ func = getattr(np.strings, function_name)
+ sres = call_func(func, args, string_array)
+ ures = call_func(func, args, unicode_array, sanitize=False)
+ if not isinstance(sres, tuple) and sres.dtype == StringDType():
+ ures = ures.astype(StringDType())
+ assert_array_equal(sres, ures)
+
+ dtype = string_array.dtype
+ if function_name not in SUPPORTS_NULLS or not hasattr(dtype, "na_object"):
+ return
+
+ na_arr = np.insert(string_array, 0, dtype.na_object)
+ is_nan = np.isnan(np.array([dtype.na_object], dtype=dtype))[0]
+ is_str = isinstance(dtype.na_object, str)
+ should_error = not (is_nan or is_str)
+
+ if (
+ (function_name in NULLS_ALWAYS_ERROR and not is_str)
+ or (function_name in PASSES_THROUGH_NAN_NULLS and should_error)
+ or (function_name in NULLS_ARE_FALSEY and should_error)
+ ):
+ with pytest.raises((ValueError, TypeError)):
+ call_func(func, args, na_arr)
+ return
+
+ res = call_func(func, args, na_arr)
+
+ if is_str:
+ assert res[0] == call_func(func, args, na_arr[:1])
+ elif function_name in NULLS_ARE_FALSEY:
+ assert res[0] is np.False_
+ elif function_name in PASSES_THROUGH_NAN_NULLS:
+ assert res[0] is dtype.na_object
+ else:
+ # shouldn't ever get here
+ assert 0
+
+
+@pytest.mark.parametrize("function, expected", [
+ (np.strings.find, [[2, -1], [1, -1]]),
+ (np.strings.startswith, [[False, False], [True, False]])])
+@pytest.mark.parametrize("start, stop", [
+ (1, 4),
+ (np.int8(1), np.int8(4)),
+ (np.array([1, 1], dtype='u2'), np.array([4, 4], dtype='u2'))])
+def test_non_default_start_stop(function, start, stop, expected):
+ a = np.array([["--🐍--", "--🦜--"],
+ ["-🐍---", "-🦜---"]], "T")
+ indx = function(a, "🐍", start, stop)
+ assert_array_equal(indx, expected)
+
+
+@pytest.mark.parametrize("count", [2, np.int8(2), np.array([2, 2], 'u2')])
+def test_replace_non_default_repeat(count):
+ a = np.array(["🐍--", "🦜-🦜-"], "T")
+ result = np.strings.replace(a, "🦜-", "🦜†", count)
+ assert_array_equal(result, np.array(["🐍--", "🦜†🦜†"], "T"))
+
+
+def test_strip_ljust_rjust_consistency(string_array, unicode_array):
+ rjs = np.char.rjust(string_array, 1000)
+ rju = np.char.rjust(unicode_array, 1000)
+
+ ljs = np.char.ljust(string_array, 1000)
+ lju = np.char.ljust(unicode_array, 1000)
+
+ assert_array_equal(
+ np.char.lstrip(rjs),
+ np.char.lstrip(rju).astype(StringDType()),
+ )
+
+ assert_array_equal(
+ np.char.rstrip(ljs),
+ np.char.rstrip(lju).astype(StringDType()),
+ )
+
+ assert_array_equal(
+ np.char.strip(ljs),
+ np.char.strip(lju).astype(StringDType()),
+ )
+
+ assert_array_equal(
+ np.char.strip(rjs),
+ np.char.strip(rju).astype(StringDType()),
+ )
+
+
+def test_unset_na_coercion():
+ # a dtype instance with an unset na object is compatible
+ # with a dtype that has one set
+
+ # this test uses the "add" and "equal" ufunc but all ufuncs that
+ # accept more than one string argument and produce a string should
+ # behave this way
+ # TODO: generalize to more ufuncs
+ inp = ["hello", "world"]
+ arr = np.array(inp, dtype=StringDType(na_object=None))
+ for op_dtype in [None, StringDType(), StringDType(coerce=False),
+ StringDType(na_object=None)]:
+ if op_dtype is None:
+ op = "2"
+ else:
+ op = np.array("2", dtype=op_dtype)
+ res = arr + op
+ assert_array_equal(res, ["hello2", "world2"])
+
+ # dtype instances with distinct explicitly set NA objects are incompatible
+ for op_dtype in [StringDType(na_object=pd_NA), StringDType(na_object="")]:
+ op = np.array("2", dtype=op_dtype)
+ with pytest.raises(TypeError):
+ arr + op
+
+ # comparisons only consider the na_object
+ for op_dtype in [None, StringDType(), StringDType(coerce=True),
+ StringDType(na_object=None)]:
+ if op_dtype is None:
+ op = inp
+ else:
+ op = np.array(inp, dtype=op_dtype)
+ assert_array_equal(arr, op)
+
+ for op_dtype in [StringDType(na_object=pd_NA),
+ StringDType(na_object=np.nan)]:
+ op = np.array(inp, dtype=op_dtype)
+ with pytest.raises(TypeError):
+ arr == op
+
+
+def test_repeat(string_array):
+ res = string_array.repeat(1000)
+ # Create an empty array with expanded dimension, and fill it. Then,
+ # reshape it to the expected result.
+ expected = np.empty_like(string_array, shape=string_array.shape + (1000,))
+ expected[...] = string_array[:, np.newaxis]
+ expected = expected.reshape(-1)
+
+ assert_array_equal(res, expected, strict=True)
+
+
+@pytest.mark.parametrize("tile", [1, 6, (2, 5)])
+def test_accumulation(string_array, tile):
+ """Accumulation is odd for StringDType but tests dtypes with references.
+ """
+ # Fill with mostly empty strings to not create absurdly big strings
+ arr = np.zeros_like(string_array, shape=(100,))
+ arr[:len(string_array)] = string_array
+ arr[-len(string_array):] = string_array
+
+ # Bloat size a bit (get above thresholds and test >1 ndim).
+ arr = np.tile(string_array, tile)
+
+ res = np.add.accumulate(arr, axis=0)
+ res_obj = np.add.accumulate(arr.astype(object), axis=0)
+ assert_array_equal(res, res_obj.astype(arr.dtype), strict=True)
+
+ if arr.ndim > 1:
+ res = np.add.accumulate(arr, axis=-1)
+ res_obj = np.add.accumulate(arr.astype(object), axis=-1)
+
+ assert_array_equal(res, res_obj.astype(arr.dtype), strict=True)
+
+
+class TestImplementation:
+ """Check that strings are stored in the arena when possible.
+
+ This tests implementation details, so should be adjusted if
+ the implementation changes.
+ """
+
+ @classmethod
+ def setup_class(self):
+ self.MISSING = 0x80
+ self.INITIALIZED = 0x40
+ self.OUTSIDE_ARENA = 0x20
+ self.LONG = 0x10
+ self.dtype = StringDType(na_object=np.nan)
+ self.sizeofstr = self.dtype.itemsize
+ sp = self.dtype.itemsize // 2 # pointer size = sizeof(size_t)
+ # Below, size is not strictly correct, since it really uses
+ # 7 (or 3) bytes, but good enough for the tests here.
+ self.view_dtype = np.dtype([
+ ('offset', f'u{sp}'),
+ ('size', f'u{sp // 2}'),
+ ('xsiz', f'V{sp // 2 - 1}'),
+ ('size_and_flags', 'u1'),
+ ] if sys.byteorder == 'little' else [
+ ('size_and_flags', 'u1'),
+ ('xsiz', f'V{sp // 2 - 1}'),
+ ('size', f'u{sp // 2}'),
+ ('offset', f'u{sp}'),
+ ])
+ self.s_empty = ""
+ self.s_short = "01234"
+ self.s_medium = "abcdefghijklmnopqrstuvwxyz"
+ self.s_long = "-=+" * 100
+ self.a = np.array(
+ [self.s_empty, self.s_short, self.s_medium, self.s_long],
+ self.dtype)
+
+ def get_view(self, a):
+ # Cannot view a StringDType as anything else directly, since
+ # it has references. So, we use a stride trick hack.
+ from numpy.lib._stride_tricks_impl import DummyArray
+ interface = dict(a.__array_interface__)
+ interface['descr'] = self.view_dtype.descr
+ interface['typestr'] = self.view_dtype.str
+ return np.asarray(DummyArray(interface, base=a))
+
+ def get_flags(self, a):
+ return self.get_view(a)['size_and_flags'] & 0xf0
+
+ def is_short(self, a):
+ return self.get_flags(a) == self.INITIALIZED | self.OUTSIDE_ARENA
+
+ def is_on_heap(self, a):
+ return self.get_flags(a) == (self.INITIALIZED
+ | self.OUTSIDE_ARENA
+ | self.LONG)
+
+ def is_missing(self, a):
+ return self.get_flags(a) & self.MISSING == self.MISSING
+
+ def in_arena(self, a):
+ return (self.get_flags(a) & (self.INITIALIZED | self.OUTSIDE_ARENA)
+ == self.INITIALIZED)
+
+ def test_setup(self):
+ is_short = self.is_short(self.a)
+ length = np.strings.str_len(self.a)
+ assert_array_equal(is_short, (length > 0) & (length <= 15))
+ assert_array_equal(self.in_arena(self.a), [False, False, True, True])
+ assert_array_equal(self.is_on_heap(self.a), False)
+ assert_array_equal(self.is_missing(self.a), False)
+ view = self.get_view(self.a)
+ sizes = np.where(is_short, view['size_and_flags'] & 0xf,
+ view['size'])
+ assert_array_equal(sizes, np.strings.str_len(self.a))
+ assert_array_equal(view['xsiz'][2:],
+ np.void(b'\x00' * (self.sizeofstr // 4 - 1)))
+ # Check that the medium string uses only 1 byte for its length
+ # in the arena, while the long string takes 8 (or 4).
+ offsets = view['offset']
+ assert offsets[2] == 1
+ assert offsets[3] == 1 + len(self.s_medium) + self.sizeofstr // 2
+
+ def test_empty(self):
+ e = np.empty((3,), self.dtype)
+ assert_array_equal(self.get_flags(e), 0)
+ assert_array_equal(e, "")
+
+ def test_zeros(self):
+ z = np.zeros((2,), self.dtype)
+ assert_array_equal(self.get_flags(z), 0)
+ assert_array_equal(z, "")
+
+ def test_copy(self):
+ for c in [self.a.copy(), copy.copy(self.a), copy.deepcopy(self.a)]:
+ assert_array_equal(self.get_flags(c), self.get_flags(self.a))
+ assert_array_equal(c, self.a)
+ offsets = self.get_view(c)['offset']
+ assert offsets[2] == 1
+ assert offsets[3] == 1 + len(self.s_medium) + self.sizeofstr // 2
+
+ def test_arena_use_with_setting(self):
+ c = np.zeros_like(self.a)
+ assert_array_equal(self.get_flags(c), 0)
+ c[:] = self.a
+ assert_array_equal(self.get_flags(c), self.get_flags(self.a))
+ assert_array_equal(c, self.a)
+
+ def test_arena_reuse_with_setting(self):
+ c = self.a.copy()
+ c[:] = self.a
+ assert_array_equal(self.get_flags(c), self.get_flags(self.a))
+ assert_array_equal(c, self.a)
+
+ def test_arena_reuse_after_missing(self):
+ c = self.a.copy()
+ c[:] = np.nan
+ assert np.all(self.is_missing(c))
+ # Replacing with the original strings, the arena should be reused.
+ c[:] = self.a
+ assert_array_equal(self.get_flags(c), self.get_flags(self.a))
+ assert_array_equal(c, self.a)
+
+ def test_arena_reuse_after_empty(self):
+ c = self.a.copy()
+ c[:] = ""
+ assert_array_equal(c, "")
+ # Replacing with the original strings, the arena should be reused.
+ c[:] = self.a
+ assert_array_equal(self.get_flags(c), self.get_flags(self.a))
+ assert_array_equal(c, self.a)
+
+ def test_arena_reuse_for_shorter(self):
+ c = self.a.copy()
+ # A string slightly shorter than the shortest in the arena
+ # should be used for all strings in the arena.
+ c[:] = self.s_medium[:-1]
+ assert_array_equal(c, self.s_medium[:-1])
+ # first empty string in original was never initialized, so
+ # filling it in now leaves it initialized inside the arena.
+ # second string started as a short string so it can never live
+ # in the arena.
+ in_arena = np.array([True, False, True, True])
+ assert_array_equal(self.in_arena(c), in_arena)
+ # But when a short string is replaced, it will go on the heap.
+ assert_array_equal(self.is_short(c), False)
+ assert_array_equal(self.is_on_heap(c), ~in_arena)
+ # We can put the originals back, and they'll still fit,
+ # and short strings are back as short strings
+ c[:] = self.a
+ assert_array_equal(c, self.a)
+ assert_array_equal(self.in_arena(c), in_arena)
+ assert_array_equal(self.is_short(c), self.is_short(self.a))
+ assert_array_equal(self.is_on_heap(c), False)
+
+ def test_arena_reuse_if_possible(self):
+ c = self.a.copy()
+ # A slightly longer string will not fit in the arena for
+ # the medium string, but will fit for the longer one.
+ c[:] = self.s_medium + "±"
+ assert_array_equal(c, self.s_medium + "±")
+ in_arena_exp = np.strings.str_len(self.a) >= len(self.s_medium) + 1
+ # first entry started uninitialized and empty, so filling it leaves
+ # it in the arena
+ in_arena_exp[0] = True
+ assert not np.all(in_arena_exp == self.in_arena(self.a))
+ assert_array_equal(self.in_arena(c), in_arena_exp)
+ assert_array_equal(self.is_short(c), False)
+ assert_array_equal(self.is_on_heap(c), ~in_arena_exp)
+ # And once outside arena, it stays outside, since offset is lost.
+ # But short strings are used again.
+ c[:] = self.a
+ is_short_exp = self.is_short(self.a)
+ assert_array_equal(c, self.a)
+ assert_array_equal(self.in_arena(c), in_arena_exp)
+ assert_array_equal(self.is_short(c), is_short_exp)
+ assert_array_equal(self.is_on_heap(c), ~in_arena_exp & ~is_short_exp)
+
+ def test_arena_no_reuse_after_short(self):
+ c = self.a.copy()
+ # If we replace a string with a short string, it cannot
+ # go into the arena after because the offset is lost.
+ c[:] = self.s_short
+ assert_array_equal(c, self.s_short)
+ assert_array_equal(self.in_arena(c), False)
+ c[:] = self.a
+ assert_array_equal(c, self.a)
+ assert_array_equal(self.in_arena(c), False)
+ assert_array_equal(self.is_on_heap(c), self.in_arena(self.a))
diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_strings.py b/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_strings.py
new file mode 100644
index 0000000..e29151a
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_strings.py
@@ -0,0 +1,1454 @@
+import operator
+import sys
+
+import pytest
+
+import numpy as np
+from numpy.testing import IS_PYPY, assert_array_equal, assert_raises
+from numpy.testing._private.utils import requires_memory
+
+COMPARISONS = [
+ (operator.eq, np.equal, "=="),
+ (operator.ne, np.not_equal, "!="),
+ (operator.lt, np.less, "<"),
+ (operator.le, np.less_equal, "<="),
+ (operator.gt, np.greater, ">"),
+ (operator.ge, np.greater_equal, ">="),
+]
+
+MAX = np.iinfo(np.int64).max
+
+IS_PYPY_LT_7_3_16 = IS_PYPY and sys.implementation.version < (7, 3, 16)
+
+@pytest.mark.parametrize(["op", "ufunc", "sym"], COMPARISONS)
+def test_mixed_string_comparison_ufuncs_fail(op, ufunc, sym):
+ arr_string = np.array(["a", "b"], dtype="S")
+ arr_unicode = np.array(["a", "c"], dtype="U")
+
+ with pytest.raises(TypeError, match="did not contain a loop"):
+ ufunc(arr_string, arr_unicode)
+
+ with pytest.raises(TypeError, match="did not contain a loop"):
+ ufunc(arr_unicode, arr_string)
+
+@pytest.mark.parametrize(["op", "ufunc", "sym"], COMPARISONS)
+def test_mixed_string_comparisons_ufuncs_with_cast(op, ufunc, sym):
+ arr_string = np.array(["a", "b"], dtype="S")
+ arr_unicode = np.array(["a", "c"], dtype="U")
+
+ # While there is no loop, manual casting is acceptable:
+ res1 = ufunc(arr_string, arr_unicode, signature="UU->?", casting="unsafe")
+ res2 = ufunc(arr_string, arr_unicode, signature="SS->?", casting="unsafe")
+
+ expected = op(arr_string.astype("U"), arr_unicode)
+ assert_array_equal(res1, expected)
+ assert_array_equal(res2, expected)
+
+
+@pytest.mark.parametrize(["op", "ufunc", "sym"], COMPARISONS)
+@pytest.mark.parametrize("dtypes", [
+ ("S2", "S2"), ("S2", "S10"),
+ ("<U1", "<U1"), ("<U1", ">U1"), (">U1", ">U1"),
+ ("<U1", "<U10"), ("<U1", ">U10")])
+@pytest.mark.parametrize("aligned", [True, False])
+def test_string_comparisons(op, ufunc, sym, dtypes, aligned):
+ # ensure native byte-order for the first view to stay within unicode range
+ native_dt = np.dtype(dtypes[0]).newbyteorder("=")
+ arr = np.arange(2**15).view(native_dt).astype(dtypes[0])
+ if not aligned:
+ # Make `arr` unaligned:
+ new = np.zeros(arr.nbytes + 1, dtype=np.uint8)[1:].view(dtypes[0])
+ new[...] = arr
+ arr = new
+
+ arr2 = arr.astype(dtypes[1], copy=True)
+ np.random.shuffle(arr2)
+ arr[0] = arr2[0] # make sure one matches
+
+ expected = [op(d1, d2) for d1, d2 in zip(arr.tolist(), arr2.tolist())]
+ assert_array_equal(op(arr, arr2), expected)
+ assert_array_equal(ufunc(arr, arr2), expected)
+ assert_array_equal(
+ np.char.compare_chararrays(arr, arr2, sym, False), expected
+ )
+
+ expected = [op(d2, d1) for d1, d2 in zip(arr.tolist(), arr2.tolist())]
+ assert_array_equal(op(arr2, arr), expected)
+ assert_array_equal(ufunc(arr2, arr), expected)
+ assert_array_equal(
+ np.char.compare_chararrays(arr2, arr, sym, False), expected
+ )
+
+
+@pytest.mark.parametrize(["op", "ufunc", "sym"], COMPARISONS)
+@pytest.mark.parametrize("dtypes", [
+ ("S2", "S2"), ("S2", "S10"), ("<U1", "<U1"), ("<U1", ">U10")])
+def test_string_comparisons_empty(op, ufunc, sym, dtypes):
+ arr = np.empty((1, 0, 1, 5), dtype=dtypes[0])
+ arr2 = np.empty((100, 1, 0, 1), dtype=dtypes[1])
+
+ expected = np.empty(np.broadcast_shapes(arr.shape, arr2.shape), dtype=bool)
+ assert_array_equal(op(arr, arr2), expected)
+ assert_array_equal(ufunc(arr, arr2), expected)
+ assert_array_equal(
+ np.char.compare_chararrays(arr, arr2, sym, False), expected
+ )
+
+
+@pytest.mark.parametrize("str_dt", ["S", "U"])
+@pytest.mark.parametrize("float_dt", np.typecodes["AllFloat"])
+def test_float_to_string_cast(str_dt, float_dt):
+ float_dt = np.dtype(float_dt)
+ fi = np.finfo(float_dt)
+ arr = np.array([np.nan, np.inf, -np.inf, fi.max, fi.min], dtype=float_dt)
+ expected = ["nan", "inf", "-inf", str(fi.max), str(fi.min)]
+ if float_dt.kind == "c":
+ expected = [f"({r}+0j)" for r in expected]
+
+ res = arr.astype(str_dt)
+ assert_array_equal(res, np.array(expected, dtype=str_dt))
+
+
+@pytest.mark.parametrize("str_dt", "US")
+@pytest.mark.parametrize("size", [-1, np.iinfo(np.intc).max])
+def test_string_size_dtype_errors(str_dt, size):
+ if size > 0:
+ size = size // np.dtype(f"{str_dt}1").itemsize + 1
+
+ with pytest.raises(ValueError):
+ np.dtype((str_dt, size))
+ with pytest.raises(TypeError):
+ np.dtype(f"{str_dt}{size}")
+
+
+@pytest.mark.parametrize("str_dt", "US")
+def test_string_size_dtype_large_repr(str_dt):
+ size = np.iinfo(np.intc).max // np.dtype(f"{str_dt}1").itemsize
+ size_str = str(size)
+
+ dtype = np.dtype((str_dt, size))
+ assert size_str in dtype.str
+ assert size_str in str(dtype)
+ assert size_str in repr(dtype)
+
+
+@pytest.mark.slow
+@requires_memory(2 * np.iinfo(np.intc).max)
+@pytest.mark.parametrize("str_dt", "US")
+def test_large_string_coercion_error(str_dt):
+ very_large = np.iinfo(np.intc).max // np.dtype(f"{str_dt}1").itemsize
+ try:
+ large_string = "A" * (very_large + 1)
+ except Exception:
+ # We may not be able to create this Python string on 32bit.
+ pytest.skip("python failed to create huge string")
+
+ class MyStr:
+ def __str__(self):
+ return large_string
+
+ try:
+ # TypeError from NumPy, or OverflowError from 32bit Python.
+ with pytest.raises((TypeError, OverflowError)):
+ np.array([large_string], dtype=str_dt)
+
+ # Same as above, but input has to be converted to a string.
+ with pytest.raises((TypeError, OverflowError)):
+ np.array([MyStr()], dtype=str_dt)
+ except MemoryError:
+ # Catch memory errors, because `requires_memory` would do so.
+ raise AssertionError("Ops should raise before any large allocation.")
+
+@pytest.mark.slow
+@requires_memory(2 * np.iinfo(np.intc).max)
+@pytest.mark.parametrize("str_dt", "US")
+def test_large_string_addition_error(str_dt):
+ very_large = np.iinfo(np.intc).max // np.dtype(f"{str_dt}1").itemsize
+
+ a = np.array(["A" * very_large], dtype=str_dt)
+ b = np.array("B", dtype=str_dt)
+ try:
+ with pytest.raises(TypeError):
+ np.add(a, b)
+ with pytest.raises(TypeError):
+ np.add(a, a)
+ except MemoryError:
+ # Catch memory errors, because `requires_memory` would do so.
+ raise AssertionError("Ops should raise before any large allocation.")
+
+
+def test_large_string_cast():
+ very_large = np.iinfo(np.intc).max // 4
+ # Could be nice to test very large path, but it makes too many huge
+ # allocations right now (need non-legacy cast loops for this).
+ # a = np.array([], dtype=np.dtype(("S", very_large)))
+ # assert a.astype("U").dtype.itemsize == very_large * 4
+
+ a = np.array([], dtype=np.dtype(("S", very_large + 1)))
+ # It is not perfect but OK if this raises a MemoryError during setup
+ # (this happens due clunky code and/or buffer setup.)
+ with pytest.raises((TypeError, MemoryError)):
+ a.astype("U")
+
+
+@pytest.mark.parametrize("dt", ["S", "U", "T"])
+class TestMethods:
+
+ @pytest.mark.parametrize("in1,in2,out", [
+ ("", "", ""),
+ ("abc", "abc", "abcabc"),
+ ("12345", "12345", "1234512345"),
+ ("MixedCase", "MixedCase", "MixedCaseMixedCase"),
+ ("12345 \0 ", "12345 \0 ", "12345 \0 12345 \0 "),
+ ("UPPER", "UPPER", "UPPERUPPER"),
+ (["abc", "def"], ["hello", "world"], ["abchello", "defworld"]),
+ ])
+ def test_add(self, in1, in2, out, dt):
+ in1 = np.array(in1, dtype=dt)
+ in2 = np.array(in2, dtype=dt)
+ out = np.array(out, dtype=dt)
+ assert_array_equal(np.strings.add(in1, in2), out)
+
+ @pytest.mark.parametrize("in1,in2,out", [
+ ("abc", 3, "abcabcabc"),
+ ("abc", 0, ""),
+ ("abc", -1, ""),
+ (["abc", "def"], [1, 4], ["abc", "defdefdefdef"]),
+ ])
+ def test_multiply(self, in1, in2, out, dt):
+ in1 = np.array(in1, dtype=dt)
+ out = np.array(out, dtype=dt)
+ assert_array_equal(np.strings.multiply(in1, in2), out)
+
+ def test_multiply_raises(self, dt):
+ with pytest.raises(TypeError, match="unsupported type"):
+ np.strings.multiply(np.array("abc", dtype=dt), 3.14)
+
+ with pytest.raises(OverflowError):
+ np.strings.multiply(np.array("abc", dtype=dt), sys.maxsize)
+
+ def test_inplace_multiply(self, dt):
+ arr = np.array(['foo ', 'bar'], dtype=dt)
+ arr *= 2
+ if dt != "T":
+ assert_array_equal(arr, np.array(['foo ', 'barb'], dtype=dt))
+ else:
+ assert_array_equal(arr, ['foo foo ', 'barbar'])
+
+ with pytest.raises(OverflowError):
+ arr *= sys.maxsize
+
+ @pytest.mark.parametrize("i_dt", [np.int8, np.int16, np.int32,
+ np.int64, np.int_])
+ def test_multiply_integer_dtypes(self, i_dt, dt):
+ a = np.array("abc", dtype=dt)
+ i = np.array(3, dtype=i_dt)
+ res = np.array("abcabcabc", dtype=dt)
+ assert_array_equal(np.strings.multiply(a, i), res)
+
+ @pytest.mark.parametrize("in_,out", [
+ ("", False),
+ ("a", True),
+ ("A", True),
+ ("\n", False),
+ ("abc", True),
+ ("aBc123", False),
+ ("abc\n", False),
+ (["abc", "aBc123"], [True, False]),
+ ])
+ def test_isalpha(self, in_, out, dt):
+ in_ = np.array(in_, dtype=dt)
+ assert_array_equal(np.strings.isalpha(in_), out)
+
+ @pytest.mark.parametrize("in_,out", [
+ ('', False),
+ ('a', True),
+ ('A', True),
+ ('\n', False),
+ ('123abc456', True),
+ ('a1b3c', True),
+ ('aBc000 ', False),
+ ('abc\n', False),
+ ])
+ def test_isalnum(self, in_, out, dt):
+ in_ = np.array(in_, dtype=dt)
+ assert_array_equal(np.strings.isalnum(in_), out)
+
+ @pytest.mark.parametrize("in_,out", [
+ ("", False),
+ ("a", False),
+ ("0", True),
+ ("012345", True),
+ ("012345a", False),
+ (["a", "012345"], [False, True]),
+ ])
+ def test_isdigit(self, in_, out, dt):
+ in_ = np.array(in_, dtype=dt)
+ assert_array_equal(np.strings.isdigit(in_), out)
+
+ @pytest.mark.parametrize("in_,out", [
+ ("", False),
+ ("a", False),
+ ("1", False),
+ (" ", True),
+ ("\t", True),
+ ("\r", True),
+ ("\n", True),
+ (" \t\r \n", True),
+ (" \t\r\na", False),
+ (["\t1", " \t\r \n"], [False, True])
+ ])
+ def test_isspace(self, in_, out, dt):
+ in_ = np.array(in_, dtype=dt)
+ assert_array_equal(np.strings.isspace(in_), out)
+
+ @pytest.mark.parametrize("in_,out", [
+ ('', False),
+ ('a', True),
+ ('A', False),
+ ('\n', False),
+ ('abc', True),
+ ('aBc', False),
+ ('abc\n', True),
+ ])
+ def test_islower(self, in_, out, dt):
+ in_ = np.array(in_, dtype=dt)
+ assert_array_equal(np.strings.islower(in_), out)
+
+ @pytest.mark.parametrize("in_,out", [
+ ('', False),
+ ('a', False),
+ ('A', True),
+ ('\n', False),
+ ('ABC', True),
+ ('AbC', False),
+ ('ABC\n', True),
+ ])
+ def test_isupper(self, in_, out, dt):
+ in_ = np.array(in_, dtype=dt)
+ assert_array_equal(np.strings.isupper(in_), out)
+
+ @pytest.mark.parametrize("in_,out", [
+ ('', False),
+ ('a', False),
+ ('A', True),
+ ('\n', False),
+ ('A Titlecased Line', True),
+ ('A\nTitlecased Line', True),
+ ('A Titlecased, Line', True),
+ ('Not a capitalized String', False),
+ ('Not\ta Titlecase String', False),
+ ('Not--a Titlecase String', False),
+ ('NOT', False),
+ ])
+ def test_istitle(self, in_, out, dt):
+ in_ = np.array(in_, dtype=dt)
+ assert_array_equal(np.strings.istitle(in_), out)
+
+ @pytest.mark.parametrize("in_,out", [
+ ("", 0),
+ ("abc", 3),
+ ("12345", 5),
+ ("MixedCase", 9),
+ ("12345 \x00 ", 8),
+ ("UPPER", 5),
+ (["abc", "12345 \x00 "], [3, 8]),
+ ])
+ def test_str_len(self, in_, out, dt):
+ in_ = np.array(in_, dtype=dt)
+ assert_array_equal(np.strings.str_len(in_), out)
+
+ @pytest.mark.parametrize("a,sub,start,end,out", [
+ ("abcdefghiabc", "abc", 0, None, 0),
+ ("abcdefghiabc", "abc", 1, None, 9),
+ ("abcdefghiabc", "def", 4, None, -1),
+ ("abc", "", 0, None, 0),
+ ("abc", "", 3, None, 3),
+ ("abc", "", 4, None, -1),
+ ("rrarrrrrrrrra", "a", 0, None, 2),
+ ("rrarrrrrrrrra", "a", 4, None, 12),
+ ("rrarrrrrrrrra", "a", 4, 6, -1),
+ ("", "", 0, None, 0),
+ ("", "", 1, 1, -1),
+ ("", "", MAX, 0, -1),
+ ("", "xx", 0, None, -1),
+ ("", "xx", 1, 1, -1),
+ ("", "xx", MAX, 0, -1),
+ pytest.param(99 * "a" + "b", "b", 0, None, 99,
+ id="99*a+b-b-0-None-99"),
+ pytest.param(98 * "a" + "ba", "ba", 0, None, 98,
+ id="98*a+ba-ba-0-None-98"),
+ pytest.param(100 * "a", "b", 0, None, -1,
+ id="100*a-b-0-None--1"),
+ pytest.param(30000 * "a" + 100 * "b", 100 * "b", 0, None, 30000,
+ id="30000*a+100*b-100*b-0-None-30000"),
+ pytest.param(30000 * "a", 100 * "b", 0, None, -1,
+ id="30000*a-100*b-0-None--1"),
+ pytest.param(15000 * "a" + 15000 * "b", 15000 * "b", 0, None, 15000,
+ id="15000*a+15000*b-15000*b-0-None-15000"),
+ pytest.param(15000 * "a" + 15000 * "b", 15000 * "c", 0, None, -1,
+ id="15000*a+15000*b-15000*c-0-None--1"),
+ (["abcdefghiabc", "rrarrrrrrrrra"], ["def", "arr"], [0, 3],
+ None, [3, -1]),
+ ("Ae¢☃€ 😊" * 2, "😊", 0, None, 6),
+ ("Ae¢☃€ 😊" * 2, "😊", 7, None, 13),
+ pytest.param("A" * (2 ** 17), r"[\w]+\Z", 0, None, -1,
+ id=r"A*2**17-[\w]+\Z-0-None--1"),
+ ])
+ def test_find(self, a, sub, start, end, out, dt):
+ if "😊" in a and dt == "S":
+ pytest.skip("Bytes dtype does not support non-ascii input")
+ a = np.array(a, dtype=dt)
+ sub = np.array(sub, dtype=dt)
+ assert_array_equal(np.strings.find(a, sub, start, end), out)
+
+ @pytest.mark.parametrize("a,sub,start,end,out", [
+ ("abcdefghiabc", "abc", 0, None, 9),
+ ("abcdefghiabc", "", 0, None, 12),
+ ("abcdefghiabc", "abcd", 0, None, 0),
+ ("abcdefghiabc", "abcz", 0, None, -1),
+ ("abc", "", 0, None, 3),
+ ("abc", "", 3, None, 3),
+ ("abc", "", 4, None, -1),
+ ("rrarrrrrrrrra", "a", 0, None, 12),
+ ("rrarrrrrrrrra", "a", 4, None, 12),
+ ("rrarrrrrrrrra", "a", 4, 6, -1),
+ (["abcdefghiabc", "rrarrrrrrrrra"], ["abc", "a"], [0, 0],
+ None, [9, 12]),
+ ("Ae¢☃€ 😊" * 2, "😊", 0, None, 13),
+ ("Ae¢☃€ 😊" * 2, "😊", 0, 7, 6),
+ ])
+ def test_rfind(self, a, sub, start, end, out, dt):
+ if "😊" in a and dt == "S":
+ pytest.skip("Bytes dtype does not support non-ascii input")
+ a = np.array(a, dtype=dt)
+ sub = np.array(sub, dtype=dt)
+ assert_array_equal(np.strings.rfind(a, sub, start, end), out)
+
+ @pytest.mark.parametrize("a,sub,start,end,out", [
+ ("aaa", "a", 0, None, 3),
+ ("aaa", "b", 0, None, 0),
+ ("aaa", "a", 1, None, 2),
+ ("aaa", "a", 10, None, 0),
+ ("aaa", "a", -1, None, 1),
+ ("aaa", "a", -10, None, 3),
+ ("aaa", "a", 0, 1, 1),
+ ("aaa", "a", 0, 10, 3),
+ ("aaa", "a", 0, -1, 2),
+ ("aaa", "a", 0, -10, 0),
+ ("aaa", "", 1, None, 3),
+ ("aaa", "", 3, None, 1),
+ ("aaa", "", 10, None, 0),
+ ("aaa", "", -1, None, 2),
+ ("aaa", "", -10, None, 4),
+ ("aaa", "aaaa", 0, None, 0),
+ pytest.param(98 * "a" + "ba", "ba", 0, None, 1,
+ id="98*a+ba-ba-0-None-1"),
+ pytest.param(30000 * "a" + 100 * "b", 100 * "b", 0, None, 1,
+ id="30000*a+100*b-100*b-0-None-1"),
+ pytest.param(30000 * "a", 100 * "b", 0, None, 0,
+ id="30000*a-100*b-0-None-0"),
+ pytest.param(30000 * "a" + 100 * "ab", "ab", 0, None, 100,
+ id="30000*a+100*ab-ab-0-None-100"),
+ pytest.param(15000 * "a" + 15000 * "b", 15000 * "b", 0, None, 1,
+ id="15000*a+15000*b-15000*b-0-None-1"),
+ pytest.param(15000 * "a" + 15000 * "b", 15000 * "c", 0, None, 0,
+ id="15000*a+15000*b-15000*c-0-None-0"),
+ ("", "", 0, None, 1),
+ ("", "", 1, 1, 0),
+ ("", "", MAX, 0, 0),
+ ("", "xx", 0, None, 0),
+ ("", "xx", 1, 1, 0),
+ ("", "xx", MAX, 0, 0),
+ (["aaa", ""], ["a", ""], [0, 0], None, [3, 1]),
+ ("Ae¢☃€ 😊" * 100, "😊", 0, None, 100),
+ ])
+ def test_count(self, a, sub, start, end, out, dt):
+ if "😊" in a and dt == "S":
+ pytest.skip("Bytes dtype does not support non-ascii input")
+ a = np.array(a, dtype=dt)
+ sub = np.array(sub, dtype=dt)
+ assert_array_equal(np.strings.count(a, sub, start, end), out)
+
+ @pytest.mark.parametrize("a,prefix,start,end,out", [
+ ("hello", "he", 0, None, True),
+ ("hello", "hello", 0, None, True),
+ ("hello", "hello world", 0, None, False),
+ ("hello", "", 0, None, True),
+ ("hello", "ello", 0, None, False),
+ ("hello", "ello", 1, None, True),
+ ("hello", "o", 4, None, True),
+ ("hello", "o", 5, None, False),
+ ("hello", "", 5, None, True),
+ ("hello", "lo", 6, None, False),
+ ("helloworld", "lowo", 3, None, True),
+ ("helloworld", "lowo", 3, 7, True),
+ ("helloworld", "lowo", 3, 6, False),
+ ("", "", 0, 1, True),
+ ("", "", 0, 0, True),
+ ("", "", 1, 0, False),
+ ("hello", "he", 0, -1, True),
+ ("hello", "he", -53, -1, True),
+ ("hello", "hello", 0, -1, False),
+ ("hello", "hello world", -1, -10, False),
+ ("hello", "ello", -5, None, False),
+ ("hello", "ello", -4, None, True),
+ ("hello", "o", -2, None, False),
+ ("hello", "o", -1, None, True),
+ ("hello", "", -3, -3, True),
+ ("hello", "lo", -9, None, False),
+ (["hello", ""], ["he", ""], [0, 0], None, [True, True]),
+ ])
+ def test_startswith(self, a, prefix, start, end, out, dt):
+ a = np.array(a, dtype=dt)
+ prefix = np.array(prefix, dtype=dt)
+ assert_array_equal(np.strings.startswith(a, prefix, start, end), out)
+
+ @pytest.mark.parametrize("a,suffix,start,end,out", [
+ ("hello", "lo", 0, None, True),
+ ("hello", "he", 0, None, False),
+ ("hello", "", 0, None, True),
+ ("hello", "hello world", 0, None, False),
+ ("helloworld", "worl", 0, None, False),
+ ("helloworld", "worl", 3, 9, True),
+ ("helloworld", "world", 3, 12, True),
+ ("helloworld", "lowo", 1, 7, True),
+ ("helloworld", "lowo", 2, 7, True),
+ ("helloworld", "lowo", 3, 7, True),
+ ("helloworld", "lowo", 4, 7, False),
+ ("helloworld", "lowo", 3, 8, False),
+ ("ab", "ab", 0, 1, False),
+ ("ab", "ab", 0, 0, False),
+ ("", "", 0, 1, True),
+ ("", "", 0, 0, True),
+ ("", "", 1, 0, False),
+ ("hello", "lo", -2, None, True),
+ ("hello", "he", -2, None, False),
+ ("hello", "", -3, -3, True),
+ ("hello", "hello world", -10, -2, False),
+ ("helloworld", "worl", -6, None, False),
+ ("helloworld", "worl", -5, -1, True),
+ ("helloworld", "worl", -5, 9, True),
+ ("helloworld", "world", -7, 12, True),
+ ("helloworld", "lowo", -99, -3, True),
+ ("helloworld", "lowo", -8, -3, True),
+ ("helloworld", "lowo", -7, -3, True),
+ ("helloworld", "lowo", 3, -4, False),
+ ("helloworld", "lowo", -8, -2, False),
+ (["hello", "helloworld"], ["lo", "worl"], [0, -6], None,
+ [True, False]),
+ ])
+ def test_endswith(self, a, suffix, start, end, out, dt):
+ a = np.array(a, dtype=dt)
+ suffix = np.array(suffix, dtype=dt)
+ assert_array_equal(np.strings.endswith(a, suffix, start, end), out)
+
+ @pytest.mark.parametrize("a,chars,out", [
+ ("", None, ""),
+ (" hello ", None, "hello "),
+ ("hello", None, "hello"),
+ (" \t\n\r\f\vabc \t\n\r\f\v", None, "abc \t\n\r\f\v"),
+ ([" hello ", "hello"], None, ["hello ", "hello"]),
+ ("", "", ""),
+ ("", "xyz", ""),
+ ("hello", "", "hello"),
+ ("xyzzyhelloxyzzy", "xyz", "helloxyzzy"),
+ ("hello", "xyz", "hello"),
+ ("xyxz", "xyxz", ""),
+ ("xyxzx", "x", "yxzx"),
+ (["xyzzyhelloxyzzy", "hello"], ["xyz", "xyz"],
+ ["helloxyzzy", "hello"]),
+ (["ba", "ac", "baa", "bba"], "b", ["a", "ac", "aa", "a"]),
+ ])
+ def test_lstrip(self, a, chars, out, dt):
+ a = np.array(a, dtype=dt)
+ out = np.array(out, dtype=dt)
+ if chars is not None:
+ chars = np.array(chars, dtype=dt)
+ assert_array_equal(np.strings.lstrip(a, chars), out)
+ else:
+ assert_array_equal(np.strings.lstrip(a), out)
+
+ @pytest.mark.parametrize("a,chars,out", [
+ ("", None, ""),
+ (" hello ", None, " hello"),
+ ("hello", None, "hello"),
+ (" \t\n\r\f\vabc \t\n\r\f\v", None, " \t\n\r\f\vabc"),
+ ([" hello ", "hello"], None, [" hello", "hello"]),
+ ("", "", ""),
+ ("", "xyz", ""),
+ ("hello", "", "hello"),
+ (["hello ", "abcdefghijklmnop"], None,
+ ["hello", "abcdefghijklmnop"]),
+ ("xyzzyhelloxyzzy", "xyz", "xyzzyhello"),
+ ("hello", "xyz", "hello"),
+ ("xyxz", "xyxz", ""),
+ (" ", None, ""),
+ ("xyxzx", "x", "xyxz"),
+ (["xyzzyhelloxyzzy", "hello"], ["xyz", "xyz"],
+ ["xyzzyhello", "hello"]),
+ (["ab", "ac", "aab", "abb"], "b", ["a", "ac", "aa", "a"]),
+ ])
+ def test_rstrip(self, a, chars, out, dt):
+ a = np.array(a, dtype=dt)
+ out = np.array(out, dtype=dt)
+ if chars is not None:
+ chars = np.array(chars, dtype=dt)
+ assert_array_equal(np.strings.rstrip(a, chars), out)
+ else:
+ assert_array_equal(np.strings.rstrip(a), out)
+
+ @pytest.mark.parametrize("a,chars,out", [
+ ("", None, ""),
+ (" hello ", None, "hello"),
+ ("hello", None, "hello"),
+ (" \t\n\r\f\vabc \t\n\r\f\v", None, "abc"),
+ ([" hello ", "hello"], None, ["hello", "hello"]),
+ ("", "", ""),
+ ("", "xyz", ""),
+ ("hello", "", "hello"),
+ ("xyzzyhelloxyzzy", "xyz", "hello"),
+ ("hello", "xyz", "hello"),
+ ("xyxz", "xyxz", ""),
+ ("xyxzx", "x", "yxz"),
+ (["xyzzyhelloxyzzy", "hello"], ["xyz", "xyz"],
+ ["hello", "hello"]),
+ (["bab", "ac", "baab", "bbabb"], "b", ["a", "ac", "aa", "a"]),
+ ])
+ def test_strip(self, a, chars, out, dt):
+ a = np.array(a, dtype=dt)
+ if chars is not None:
+ chars = np.array(chars, dtype=dt)
+ out = np.array(out, dtype=dt)
+ assert_array_equal(np.strings.strip(a, chars), out)
+
+ @pytest.mark.parametrize("buf,old,new,count,res", [
+ ("", "", "", -1, ""),
+ ("", "", "A", -1, "A"),
+ ("", "A", "", -1, ""),
+ ("", "A", "A", -1, ""),
+ ("", "", "", 100, ""),
+ ("", "", "A", 100, "A"),
+ ("A", "", "", -1, "A"),
+ ("A", "", "*", -1, "*A*"),
+ ("A", "", "*1", -1, "*1A*1"),
+ ("A", "", "*-#", -1, "*-#A*-#"),
+ ("AA", "", "*-", -1, "*-A*-A*-"),
+ ("AA", "", "*-", -1, "*-A*-A*-"),
+ ("AA", "", "*-", 4, "*-A*-A*-"),
+ ("AA", "", "*-", 3, "*-A*-A*-"),
+ ("AA", "", "*-", 2, "*-A*-A"),
+ ("AA", "", "*-", 1, "*-AA"),
+ ("AA", "", "*-", 0, "AA"),
+ ("A", "A", "", -1, ""),
+ ("AAA", "A", "", -1, ""),
+ ("AAA", "A", "", -1, ""),
+ ("AAA", "A", "", 4, ""),
+ ("AAA", "A", "", 3, ""),
+ ("AAA", "A", "", 2, "A"),
+ ("AAA", "A", "", 1, "AA"),
+ ("AAA", "A", "", 0, "AAA"),
+ ("AAAAAAAAAA", "A", "", -1, ""),
+ ("ABACADA", "A", "", -1, "BCD"),
+ ("ABACADA", "A", "", -1, "BCD"),
+ ("ABACADA", "A", "", 5, "BCD"),
+ ("ABACADA", "A", "", 4, "BCD"),
+ ("ABACADA", "A", "", 3, "BCDA"),
+ ("ABACADA", "A", "", 2, "BCADA"),
+ ("ABACADA", "A", "", 1, "BACADA"),
+ ("ABACADA", "A", "", 0, "ABACADA"),
+ ("ABCAD", "A", "", -1, "BCD"),
+ ("ABCADAA", "A", "", -1, "BCD"),
+ ("BCD", "A", "", -1, "BCD"),
+ ("*************", "A", "", -1, "*************"),
+ ("^" + "A" * 1000 + "^", "A", "", 999, "^A^"),
+ ("the", "the", "", -1, ""),
+ ("theater", "the", "", -1, "ater"),
+ ("thethe", "the", "", -1, ""),
+ ("thethethethe", "the", "", -1, ""),
+ ("theatheatheathea", "the", "", -1, "aaaa"),
+ ("that", "the", "", -1, "that"),
+ ("thaet", "the", "", -1, "thaet"),
+ ("here and there", "the", "", -1, "here and re"),
+ ("here and there and there", "the", "", -1, "here and re and re"),
+ ("here and there and there", "the", "", 3, "here and re and re"),
+ ("here and there and there", "the", "", 2, "here and re and re"),
+ ("here and there and there", "the", "", 1, "here and re and there"),
+ ("here and there and there", "the", "", 0, "here and there and there"),
+ ("here and there and there", "the", "", -1, "here and re and re"),
+ ("abc", "the", "", -1, "abc"),
+ ("abcdefg", "the", "", -1, "abcdefg"),
+ ("bbobob", "bob", "", -1, "bob"),
+ ("bbobobXbbobob", "bob", "", -1, "bobXbob"),
+ ("aaaaaaabob", "bob", "", -1, "aaaaaaa"),
+ ("aaaaaaa", "bob", "", -1, "aaaaaaa"),
+ ("Who goes there?", "o", "o", -1, "Who goes there?"),
+ ("Who goes there?", "o", "O", -1, "WhO gOes there?"),
+ ("Who goes there?", "o", "O", -1, "WhO gOes there?"),
+ ("Who goes there?", "o", "O", 3, "WhO gOes there?"),
+ ("Who goes there?", "o", "O", 2, "WhO gOes there?"),
+ ("Who goes there?", "o", "O", 1, "WhO goes there?"),
+ ("Who goes there?", "o", "O", 0, "Who goes there?"),
+ ("Who goes there?", "a", "q", -1, "Who goes there?"),
+ ("Who goes there?", "W", "w", -1, "who goes there?"),
+ ("WWho goes there?WW", "W", "w", -1, "wwho goes there?ww"),
+ ("Who goes there?", "?", "!", -1, "Who goes there!"),
+ ("Who goes there??", "?", "!", -1, "Who goes there!!"),
+ ("Who goes there?", ".", "!", -1, "Who goes there?"),
+ ("This is a tissue", "is", "**", -1, "Th** ** a t**sue"),
+ ("This is a tissue", "is", "**", -1, "Th** ** a t**sue"),
+ ("This is a tissue", "is", "**", 4, "Th** ** a t**sue"),
+ ("This is a tissue", "is", "**", 3, "Th** ** a t**sue"),
+ ("This is a tissue", "is", "**", 2, "Th** ** a tissue"),
+ ("This is a tissue", "is", "**", 1, "Th** is a tissue"),
+ ("This is a tissue", "is", "**", 0, "This is a tissue"),
+ ("bobob", "bob", "cob", -1, "cobob"),
+ ("bobobXbobobob", "bob", "cob", -1, "cobobXcobocob"),
+ ("bobob", "bot", "bot", -1, "bobob"),
+ ("Reykjavik", "k", "KK", -1, "ReyKKjaviKK"),
+ ("Reykjavik", "k", "KK", -1, "ReyKKjaviKK"),
+ ("Reykjavik", "k", "KK", 2, "ReyKKjaviKK"),
+ ("Reykjavik", "k", "KK", 1, "ReyKKjavik"),
+ ("Reykjavik", "k", "KK", 0, "Reykjavik"),
+ ("A.B.C.", ".", "----", -1, "A----B----C----"),
+ ("Reykjavik", "q", "KK", -1, "Reykjavik"),
+ ("spam, spam, eggs and spam", "spam", "ham", -1,
+ "ham, ham, eggs and ham"),
+ ("spam, spam, eggs and spam", "spam", "ham", -1,
+ "ham, ham, eggs and ham"),
+ ("spam, spam, eggs and spam", "spam", "ham", 4,
+ "ham, ham, eggs and ham"),
+ ("spam, spam, eggs and spam", "spam", "ham", 3,
+ "ham, ham, eggs and ham"),
+ ("spam, spam, eggs and spam", "spam", "ham", 2,
+ "ham, ham, eggs and spam"),
+ ("spam, spam, eggs and spam", "spam", "ham", 1,
+ "ham, spam, eggs and spam"),
+ ("spam, spam, eggs and spam", "spam", "ham", 0,
+ "spam, spam, eggs and spam"),
+ ("bobobob", "bobob", "bob", -1, "bobob"),
+ ("bobobobXbobobob", "bobob", "bob", -1, "bobobXbobob"),
+ ("BOBOBOB", "bob", "bobby", -1, "BOBOBOB"),
+ ("one!two!three!", "!", "@", 1, "one@two!three!"),
+ ("one!two!three!", "!", "", -1, "onetwothree"),
+ ("one!two!three!", "!", "@", 2, "one@two@three!"),
+ ("one!two!three!", "!", "@", 3, "one@two@three@"),
+ ("one!two!three!", "!", "@", 4, "one@two@three@"),
+ ("one!two!three!", "!", "@", 0, "one!two!three!"),
+ ("one!two!three!", "!", "@", -1, "one@two@three@"),
+ ("one!two!three!", "x", "@", -1, "one!two!three!"),
+ ("one!two!three!", "x", "@", 2, "one!two!three!"),
+ ("abc", "", "-", -1, "-a-b-c-"),
+ ("abc", "", "-", 3, "-a-b-c"),
+ ("abc", "", "-", 0, "abc"),
+ ("abc", "ab", "--", 0, "abc"),
+ ("abc", "xy", "--", -1, "abc"),
+ (["abbc", "abbd"], "b", "z", [1, 2], ["azbc", "azzd"]),
+ ])
+ def test_replace(self, buf, old, new, count, res, dt):
+ if "😊" in buf and dt == "S":
+ pytest.skip("Bytes dtype does not support non-ascii input")
+ buf = np.array(buf, dtype=dt)
+ old = np.array(old, dtype=dt)
+ new = np.array(new, dtype=dt)
+ res = np.array(res, dtype=dt)
+ assert_array_equal(np.strings.replace(buf, old, new, count), res)
+
+ @pytest.mark.parametrize("buf,sub,start,end,res", [
+ ("abcdefghiabc", "", 0, None, 0),
+ ("abcdefghiabc", "def", 0, None, 3),
+ ("abcdefghiabc", "abc", 0, None, 0),
+ ("abcdefghiabc", "abc", 1, None, 9),
+ ])
+ def test_index(self, buf, sub, start, end, res, dt):
+ buf = np.array(buf, dtype=dt)
+ sub = np.array(sub, dtype=dt)
+ assert_array_equal(np.strings.index(buf, sub, start, end), res)
+
+ @pytest.mark.parametrize("buf,sub,start,end", [
+ ("abcdefghiabc", "hib", 0, None),
+ ("abcdefghiab", "abc", 1, None),
+ ("abcdefghi", "ghi", 8, None),
+ ("abcdefghi", "ghi", -1, None),
+ ("rrarrrrrrrrra", "a", 4, 6),
+ ])
+ def test_index_raises(self, buf, sub, start, end, dt):
+ buf = np.array(buf, dtype=dt)
+ sub = np.array(sub, dtype=dt)
+ with pytest.raises(ValueError, match="substring not found"):
+ np.strings.index(buf, sub, start, end)
+
+ @pytest.mark.parametrize("buf,sub,start,end,res", [
+ ("abcdefghiabc", "", 0, None, 12),
+ ("abcdefghiabc", "def", 0, None, 3),
+ ("abcdefghiabc", "abc", 0, None, 9),
+ ("abcdefghiabc", "abc", 0, -1, 0),
+ ])
+ def test_rindex(self, buf, sub, start, end, res, dt):
+ buf = np.array(buf, dtype=dt)
+ sub = np.array(sub, dtype=dt)
+ assert_array_equal(np.strings.rindex(buf, sub, start, end), res)
+
+ @pytest.mark.parametrize("buf,sub,start,end", [
+ ("abcdefghiabc", "hib", 0, None),
+ ("defghiabc", "def", 1, None),
+ ("defghiabc", "abc", 0, -1),
+ ("abcdefghi", "ghi", 0, 8),
+ ("abcdefghi", "ghi", 0, -1),
+ ("rrarrrrrrrrra", "a", 4, 6),
+ ])
+ def test_rindex_raises(self, buf, sub, start, end, dt):
+ buf = np.array(buf, dtype=dt)
+ sub = np.array(sub, dtype=dt)
+ with pytest.raises(ValueError, match="substring not found"):
+ np.strings.rindex(buf, sub, start, end)
+
+ @pytest.mark.parametrize("buf,tabsize,res", [
+ ("abc\rab\tdef\ng\thi", 8, "abc\rab def\ng hi"),
+ ("abc\rab\tdef\ng\thi", 4, "abc\rab def\ng hi"),
+ ("abc\r\nab\tdef\ng\thi", 8, "abc\r\nab def\ng hi"),
+ ("abc\r\nab\tdef\ng\thi", 4, "abc\r\nab def\ng hi"),
+ ("abc\r\nab\r\ndef\ng\r\nhi", 4, "abc\r\nab\r\ndef\ng\r\nhi"),
+ (" \ta\n\tb", 1, " a\n b"),
+ ])
+ def test_expandtabs(self, buf, tabsize, res, dt):
+ buf = np.array(buf, dtype=dt)
+ res = np.array(res, dtype=dt)
+ assert_array_equal(np.strings.expandtabs(buf, tabsize), res)
+
+ def test_expandtabs_raises_overflow(self, dt):
+ with pytest.raises(OverflowError, match="new string is too long"):
+ np.strings.expandtabs(np.array("\ta\n\tb", dtype=dt), sys.maxsize)
+ np.strings.expandtabs(np.array("\ta\n\tb", dtype=dt), 2**61)
+
+ FILL_ERROR = "The fill character must be exactly one character long"
+
+ def test_center_raises_multiple_character_fill(self, dt):
+ buf = np.array("abc", dtype=dt)
+ fill = np.array("**", dtype=dt)
+ with pytest.raises(TypeError, match=self.FILL_ERROR):
+ np.strings.center(buf, 10, fill)
+
+ def test_ljust_raises_multiple_character_fill(self, dt):
+ buf = np.array("abc", dtype=dt)
+ fill = np.array("**", dtype=dt)
+ with pytest.raises(TypeError, match=self.FILL_ERROR):
+ np.strings.ljust(buf, 10, fill)
+
+ def test_rjust_raises_multiple_character_fill(self, dt):
+ buf = np.array("abc", dtype=dt)
+ fill = np.array("**", dtype=dt)
+ with pytest.raises(TypeError, match=self.FILL_ERROR):
+ np.strings.rjust(buf, 10, fill)
+
+ @pytest.mark.parametrize("buf,width,fillchar,res", [
+ ('abc', 10, ' ', ' abc '),
+ ('abc', 6, ' ', ' abc '),
+ ('abc', 3, ' ', 'abc'),
+ ('abc', 2, ' ', 'abc'),
+ ('abc', -2, ' ', 'abc'),
+ ('abc', 10, '*', '***abc****'),
+ ])
+ def test_center(self, buf, width, fillchar, res, dt):
+ buf = np.array(buf, dtype=dt)
+ fillchar = np.array(fillchar, dtype=dt)
+ res = np.array(res, dtype=dt)
+ assert_array_equal(np.strings.center(buf, width, fillchar), res)
+
+ @pytest.mark.parametrize("buf,width,fillchar,res", [
+ ('abc', 10, ' ', 'abc '),
+ ('abc', 6, ' ', 'abc '),
+ ('abc', 3, ' ', 'abc'),
+ ('abc', 2, ' ', 'abc'),
+ ('abc', -2, ' ', 'abc'),
+ ('abc', 10, '*', 'abc*******'),
+ ])
+ def test_ljust(self, buf, width, fillchar, res, dt):
+ buf = np.array(buf, dtype=dt)
+ fillchar = np.array(fillchar, dtype=dt)
+ res = np.array(res, dtype=dt)
+ assert_array_equal(np.strings.ljust(buf, width, fillchar), res)
+
+ @pytest.mark.parametrize("buf,width,fillchar,res", [
+ ('abc', 10, ' ', ' abc'),
+ ('abc', 6, ' ', ' abc'),
+ ('abc', 3, ' ', 'abc'),
+ ('abc', 2, ' ', 'abc'),
+ ('abc', -2, ' ', 'abc'),
+ ('abc', 10, '*', '*******abc'),
+ ])
+ def test_rjust(self, buf, width, fillchar, res, dt):
+ buf = np.array(buf, dtype=dt)
+ fillchar = np.array(fillchar, dtype=dt)
+ res = np.array(res, dtype=dt)
+ assert_array_equal(np.strings.rjust(buf, width, fillchar), res)
+
+ @pytest.mark.parametrize("buf,width,res", [
+ ('123', 2, '123'),
+ ('123', 3, '123'),
+ ('0123', 4, '0123'),
+ ('+123', 3, '+123'),
+ ('+123', 4, '+123'),
+ ('+123', 5, '+0123'),
+ ('+0123', 5, '+0123'),
+ ('-123', 3, '-123'),
+ ('-123', 4, '-123'),
+ ('-0123', 5, '-0123'),
+ ('000', 3, '000'),
+ ('34', 1, '34'),
+ ('34', -1, '34'),
+ ('0034', 4, '0034'),
+ ])
+ def test_zfill(self, buf, width, res, dt):
+ buf = np.array(buf, dtype=dt)
+ res = np.array(res, dtype=dt)
+ assert_array_equal(np.strings.zfill(buf, width), res)
+
+ @pytest.mark.parametrize("buf,sep,res1,res2,res3", [
+ ("this is the partition method", "ti", "this is the par",
+ "ti", "tion method"),
+ ("http://www.python.org", "://", "http", "://", "www.python.org"),
+ ("http://www.python.org", "?", "http://www.python.org", "", ""),
+ ("http://www.python.org", "http://", "", "http://", "www.python.org"),
+ ("http://www.python.org", "org", "http://www.python.", "org", ""),
+ ("http://www.python.org", ["://", "?", "http://", "org"],
+ ["http", "http://www.python.org", "", "http://www.python."],
+ ["://", "", "http://", "org"],
+ ["www.python.org", "", "www.python.org", ""]),
+ ("mississippi", "ss", "mi", "ss", "issippi"),
+ ("mississippi", "i", "m", "i", "ssissippi"),
+ ("mississippi", "w", "mississippi", "", ""),
+ ])
+ def test_partition(self, buf, sep, res1, res2, res3, dt):
+ buf = np.array(buf, dtype=dt)
+ sep = np.array(sep, dtype=dt)
+ res1 = np.array(res1, dtype=dt)
+ res2 = np.array(res2, dtype=dt)
+ res3 = np.array(res3, dtype=dt)
+ act1, act2, act3 = np.strings.partition(buf, sep)
+ assert_array_equal(act1, res1)
+ assert_array_equal(act2, res2)
+ assert_array_equal(act3, res3)
+ assert_array_equal(act1 + act2 + act3, buf)
+
+ @pytest.mark.parametrize("buf,sep,res1,res2,res3", [
+ ("this is the partition method", "ti", "this is the parti",
+ "ti", "on method"),
+ ("http://www.python.org", "://", "http", "://", "www.python.org"),
+ ("http://www.python.org", "?", "", "", "http://www.python.org"),
+ ("http://www.python.org", "http://", "", "http://", "www.python.org"),
+ ("http://www.python.org", "org", "http://www.python.", "org", ""),
+ ("http://www.python.org", ["://", "?", "http://", "org"],
+ ["http", "", "", "http://www.python."],
+ ["://", "", "http://", "org"],
+ ["www.python.org", "http://www.python.org", "www.python.org", ""]),
+ ("mississippi", "ss", "missi", "ss", "ippi"),
+ ("mississippi", "i", "mississipp", "i", ""),
+ ("mississippi", "w", "", "", "mississippi"),
+ ])
+ def test_rpartition(self, buf, sep, res1, res2, res3, dt):
+ buf = np.array(buf, dtype=dt)
+ sep = np.array(sep, dtype=dt)
+ res1 = np.array(res1, dtype=dt)
+ res2 = np.array(res2, dtype=dt)
+ res3 = np.array(res3, dtype=dt)
+ act1, act2, act3 = np.strings.rpartition(buf, sep)
+ assert_array_equal(act1, res1)
+ assert_array_equal(act2, res2)
+ assert_array_equal(act3, res3)
+ assert_array_equal(act1 + act2 + act3, buf)
+
+ @pytest.mark.parametrize("args", [
+ (None,),
+ (0,),
+ (1,),
+ (3,),
+ (5,),
+ (6,), # test index past the end
+ (-1,),
+ (-3,),
+ ([3, 4],),
+ ([2, 4],),
+ ([-3, 5],),
+ ([0, -5],),
+ (1, 4),
+ (-3, 5),
+ (None, -1),
+ (0, [4, 2]),
+ ([1, 2], [-1, -2]),
+ (1, 5, 2),
+ (None, None, -1),
+ ([0, 6], [-1, 0], [2, -1]),
+ ])
+ def test_slice(self, args, dt):
+ buf = np.array(["hello", "world"], dtype=dt)
+ act = np.strings.slice(buf, *args)
+ bcast_args = tuple(np.broadcast_to(arg, buf.shape) for arg in args)
+ res = np.array([s[slice(*arg)]
+ for s, arg in zip(buf, zip(*bcast_args))],
+ dtype=dt)
+ assert_array_equal(act, res)
+
+ def test_slice_unsupported(self, dt):
+ with pytest.raises(TypeError, match="did not contain a loop"):
+ np.strings.slice(np.array([1, 2, 3]), 4)
+
+ with pytest.raises(TypeError, match=r"Cannot cast ufunc '_slice' input .* from .* to dtype\('int(64|32)'\)"):
+ np.strings.slice(np.array(['foo', 'bar'], dtype=dt), np.array(['foo', 'bar'], dtype=dt))
+
+ @pytest.mark.parametrize("int_dt", [np.int8, np.int16, np.int32, np.int64,
+ np.uint8, np.uint16, np.uint32, np.uint64])
+ def test_slice_int_type_promotion(self, int_dt, dt):
+ buf = np.array(["hello", "world"], dtype=dt)
+
+ assert_array_equal(np.strings.slice(buf, int_dt(4)), np.array(["hell", "worl"], dtype=dt))
+ assert_array_equal(np.strings.slice(buf, np.array([4, 4], dtype=int_dt)), np.array(["hell", "worl"], dtype=dt))
+
+ assert_array_equal(np.strings.slice(buf, int_dt(2), int_dt(4)), np.array(["ll", "rl"], dtype=dt))
+ assert_array_equal(np.strings.slice(buf, np.array([2, 2], dtype=int_dt), np.array([4, 4], dtype=int_dt)), np.array(["ll", "rl"], dtype=dt))
+
+ assert_array_equal(np.strings.slice(buf, int_dt(0), int_dt(4), int_dt(2)), np.array(["hl", "wr"], dtype=dt))
+ assert_array_equal(np.strings.slice(buf, np.array([0, 0], dtype=int_dt), np.array([4, 4], dtype=int_dt), np.array([2, 2], dtype=int_dt)), np.array(["hl", "wr"], dtype=dt))
+
+@pytest.mark.parametrize("dt", ["U", "T"])
+class TestMethodsWithUnicode:
+ @pytest.mark.parametrize("in_,out", [
+ ("", False),
+ ("a", False),
+ ("0", True),
+ ("\u2460", False), # CIRCLED DIGIT 1
+ ("\xbc", False), # VULGAR FRACTION ONE QUARTER
+ ("\u0660", True), # ARABIC_INDIC DIGIT ZERO
+ ("012345", True),
+ ("012345a", False),
+ (["0", "a"], [True, False]),
+ ])
+ def test_isdecimal_unicode(self, in_, out, dt):
+ buf = np.array(in_, dtype=dt)
+ assert_array_equal(np.strings.isdecimal(buf), out)
+
+ @pytest.mark.parametrize("in_,out", [
+ ("", False),
+ ("a", False),
+ ("0", True),
+ ("\u2460", True), # CIRCLED DIGIT 1
+ ("\xbc", True), # VULGAR FRACTION ONE QUARTER
+ ("\u0660", True), # ARABIC_INDIC DIGIT ZERO
+ ("012345", True),
+ ("012345a", False),
+ (["0", "a"], [True, False]),
+ ])
+ def test_isnumeric_unicode(self, in_, out, dt):
+ buf = np.array(in_, dtype=dt)
+ assert_array_equal(np.strings.isnumeric(buf), out)
+
+ @pytest.mark.parametrize("buf,old,new,count,res", [
+ ("...\u043c......<", "<", "&lt;", -1, "...\u043c......&lt;"),
+ ("Ae¢☃€ 😊" * 2, "A", "B", -1, "Be¢☃€ 😊Be¢☃€ 😊"),
+ ("Ae¢☃€ 😊" * 2, "😊", "B", -1, "Ae¢☃€ BAe¢☃€ B"),
+ ])
+ def test_replace_unicode(self, buf, old, new, count, res, dt):
+ buf = np.array(buf, dtype=dt)
+ old = np.array(old, dtype=dt)
+ new = np.array(new, dtype=dt)
+ res = np.array(res, dtype=dt)
+ assert_array_equal(np.strings.replace(buf, old, new, count), res)
+
+ @pytest.mark.parametrize("in_", [
+ '\U00010401',
+ '\U00010427',
+ '\U00010429',
+ '\U0001044E',
+ '\U0001D7F6',
+ '\U00011066',
+ '\U000104A0',
+ pytest.param('\U0001F107', marks=pytest.mark.xfail(
+ sys.platform == 'win32' and IS_PYPY_LT_7_3_16,
+ reason="PYPY bug in Py_UNICODE_ISALNUM",
+ strict=True)),
+ ])
+ def test_isalnum_unicode(self, in_, dt):
+ in_ = np.array(in_, dtype=dt)
+ assert_array_equal(np.strings.isalnum(in_), True)
+
+ @pytest.mark.parametrize("in_,out", [
+ ('\u1FFc', False),
+ ('\u2167', False),
+ ('\U00010401', False),
+ ('\U00010427', False),
+ ('\U0001F40D', False),
+ ('\U0001F46F', False),
+ ('\u2177', True),
+ pytest.param('\U00010429', True, marks=pytest.mark.xfail(
+ sys.platform == 'win32' and IS_PYPY_LT_7_3_16,
+ reason="PYPY bug in Py_UNICODE_ISLOWER",
+ strict=True)),
+ ('\U0001044E', True),
+ ])
+ def test_islower_unicode(self, in_, out, dt):
+ in_ = np.array(in_, dtype=dt)
+ assert_array_equal(np.strings.islower(in_), out)
+
+ @pytest.mark.parametrize("in_,out", [
+ ('\u1FFc', False),
+ ('\u2167', True),
+ ('\U00010401', True),
+ ('\U00010427', True),
+ ('\U0001F40D', False),
+ ('\U0001F46F', False),
+ ('\u2177', False),
+ pytest.param('\U00010429', False, marks=pytest.mark.xfail(
+ sys.platform == 'win32' and IS_PYPY_LT_7_3_16,
+ reason="PYPY bug in Py_UNICODE_ISUPPER",
+ strict=True)),
+ ('\U0001044E', False),
+ ])
+ def test_isupper_unicode(self, in_, out, dt):
+ in_ = np.array(in_, dtype=dt)
+ assert_array_equal(np.strings.isupper(in_), out)
+
+ @pytest.mark.parametrize("in_,out", [
+ ('\u1FFc', True),
+ ('Greek \u1FFcitlecases ...', True),
+ pytest.param('\U00010401\U00010429', True, marks=pytest.mark.xfail(
+ sys.platform == 'win32' and IS_PYPY_LT_7_3_16,
+ reason="PYPY bug in Py_UNICODE_ISISTITLE",
+ strict=True)),
+ ('\U00010427\U0001044E', True),
+ pytest.param('\U00010429', False, marks=pytest.mark.xfail(
+ sys.platform == 'win32' and IS_PYPY_LT_7_3_16,
+ reason="PYPY bug in Py_UNICODE_ISISTITLE",
+ strict=True)),
+ ('\U0001044E', False),
+ ('\U0001F40D', False),
+ ('\U0001F46F', False),
+ ])
+ def test_istitle_unicode(self, in_, out, dt):
+ in_ = np.array(in_, dtype=dt)
+ assert_array_equal(np.strings.istitle(in_), out)
+
+ @pytest.mark.parametrize("buf,sub,start,end,res", [
+ ("Ae¢☃€ 😊" * 2, "😊", 0, None, 6),
+ ("Ae¢☃€ 😊" * 2, "😊", 7, None, 13),
+ ])
+ def test_index_unicode(self, buf, sub, start, end, res, dt):
+ buf = np.array(buf, dtype=dt)
+ sub = np.array(sub, dtype=dt)
+ assert_array_equal(np.strings.index(buf, sub, start, end), res)
+
+ def test_index_raises_unicode(self, dt):
+ with pytest.raises(ValueError, match="substring not found"):
+ np.strings.index("Ae¢☃€ 😊", "😀")
+
+ @pytest.mark.parametrize("buf,res", [
+ ("Ae¢☃€ \t 😊", "Ae¢☃€ 😊"),
+ ("\t\U0001044E", " \U0001044E"),
+ ])
+ def test_expandtabs(self, buf, res, dt):
+ buf = np.array(buf, dtype=dt)
+ res = np.array(res, dtype=dt)
+ assert_array_equal(np.strings.expandtabs(buf), res)
+
+ @pytest.mark.parametrize("buf,width,fillchar,res", [
+ ('x', 2, '\U0001044E', 'x\U0001044E'),
+ ('x', 3, '\U0001044E', '\U0001044Ex\U0001044E'),
+ ('x', 4, '\U0001044E', '\U0001044Ex\U0001044E\U0001044E'),
+ ])
+ def test_center(self, buf, width, fillchar, res, dt):
+ buf = np.array(buf, dtype=dt)
+ fillchar = np.array(fillchar, dtype=dt)
+ res = np.array(res, dtype=dt)
+ assert_array_equal(np.strings.center(buf, width, fillchar), res)
+
+ @pytest.mark.parametrize("buf,width,fillchar,res", [
+ ('x', 2, '\U0001044E', 'x\U0001044E'),
+ ('x', 3, '\U0001044E', 'x\U0001044E\U0001044E'),
+ ('x', 4, '\U0001044E', 'x\U0001044E\U0001044E\U0001044E'),
+ ])
+ def test_ljust(self, buf, width, fillchar, res, dt):
+ buf = np.array(buf, dtype=dt)
+ fillchar = np.array(fillchar, dtype=dt)
+ res = np.array(res, dtype=dt)
+ assert_array_equal(np.strings.ljust(buf, width, fillchar), res)
+
+ @pytest.mark.parametrize("buf,width,fillchar,res", [
+ ('x', 2, '\U0001044E', '\U0001044Ex'),
+ ('x', 3, '\U0001044E', '\U0001044E\U0001044Ex'),
+ ('x', 4, '\U0001044E', '\U0001044E\U0001044E\U0001044Ex'),
+ ])
+ def test_rjust(self, buf, width, fillchar, res, dt):
+ buf = np.array(buf, dtype=dt)
+ fillchar = np.array(fillchar, dtype=dt)
+ res = np.array(res, dtype=dt)
+ assert_array_equal(np.strings.rjust(buf, width, fillchar), res)
+
+ @pytest.mark.parametrize("buf,sep,res1,res2,res3", [
+ ("āāāāĀĀĀĀ", "Ă", "āāāāĀĀĀĀ", "", ""),
+ ("āāāāĂĀĀĀĀ", "Ă", "āāāā", "Ă", "ĀĀĀĀ"),
+ ("āāāāĂĂĀĀĀĀ", "ĂĂ", "āāāā", "ĂĂ", "ĀĀĀĀ"),
+ ("𐌁𐌁𐌁𐌁𐌀𐌀𐌀𐌀", "𐌂", "𐌁𐌁𐌁𐌁𐌀𐌀𐌀𐌀", "", ""),
+ ("𐌁𐌁𐌁𐌁𐌂𐌀𐌀𐌀𐌀", "𐌂", "𐌁𐌁𐌁𐌁", "𐌂", "𐌀𐌀𐌀𐌀"),
+ ("𐌁𐌁𐌁𐌁𐌂𐌂𐌀𐌀𐌀𐌀", "𐌂𐌂", "𐌁𐌁𐌁𐌁", "𐌂𐌂", "𐌀𐌀𐌀𐌀"),
+ ("𐌁𐌁𐌁𐌁𐌂𐌂𐌂𐌂𐌀𐌀𐌀𐌀", "𐌂𐌂𐌂𐌂", "𐌁𐌁𐌁𐌁", "𐌂𐌂𐌂𐌂", "𐌀𐌀𐌀𐌀"),
+ ])
+ def test_partition(self, buf, sep, res1, res2, res3, dt):
+ buf = np.array(buf, dtype=dt)
+ sep = np.array(sep, dtype=dt)
+ res1 = np.array(res1, dtype=dt)
+ res2 = np.array(res2, dtype=dt)
+ res3 = np.array(res3, dtype=dt)
+ act1, act2, act3 = np.strings.partition(buf, sep)
+ assert_array_equal(act1, res1)
+ assert_array_equal(act2, res2)
+ assert_array_equal(act3, res3)
+ assert_array_equal(act1 + act2 + act3, buf)
+
+ @pytest.mark.parametrize("buf,sep,res1,res2,res3", [
+ ("āāāāĀĀĀĀ", "Ă", "", "", "āāāāĀĀĀĀ"),
+ ("āāāāĂĀĀĀĀ", "Ă", "āāāā", "Ă", "ĀĀĀĀ"),
+ ("āāāāĂĂĀĀĀĀ", "ĂĂ", "āāāā", "ĂĂ", "ĀĀĀĀ"),
+ ("𐌁𐌁𐌁𐌁𐌀𐌀𐌀𐌀", "𐌂", "", "", "𐌁𐌁𐌁𐌁𐌀𐌀𐌀𐌀"),
+ ("𐌁𐌁𐌁𐌁𐌂𐌀𐌀𐌀𐌀", "𐌂", "𐌁𐌁𐌁𐌁", "𐌂", "𐌀𐌀𐌀𐌀"),
+ ("𐌁𐌁𐌁𐌁𐌂𐌂𐌀𐌀𐌀𐌀", "𐌂𐌂", "𐌁𐌁𐌁𐌁", "𐌂𐌂", "𐌀𐌀𐌀𐌀"),
+ ])
+ def test_rpartition(self, buf, sep, res1, res2, res3, dt):
+ buf = np.array(buf, dtype=dt)
+ sep = np.array(sep, dtype=dt)
+ res1 = np.array(res1, dtype=dt)
+ res2 = np.array(res2, dtype=dt)
+ res3 = np.array(res3, dtype=dt)
+ act1, act2, act3 = np.strings.rpartition(buf, sep)
+ assert_array_equal(act1, res1)
+ assert_array_equal(act2, res2)
+ assert_array_equal(act3, res3)
+ assert_array_equal(act1 + act2 + act3, buf)
+
+ @pytest.mark.parametrize("method", ["strip", "lstrip", "rstrip"])
+ @pytest.mark.parametrize(
+ "source,strip",
+ [
+ ("λμ", "μ"),
+ ("λμ", "λ"),
+ ("λ" * 5 + "μ" * 2, "μ"),
+ ("λ" * 5 + "μ" * 2, "λ"),
+ ("λ" * 5 + "A" + "μ" * 2, "μλ"),
+ ("λμ" * 5, "μ"),
+ ("λμ" * 5, "λ"),
+ ])
+ def test_strip_functions_unicode(self, source, strip, method, dt):
+ src_array = np.array([source], dtype=dt)
+
+ npy_func = getattr(np.strings, method)
+ py_func = getattr(str, method)
+
+ expected = np.array([py_func(source, strip)], dtype=dt)
+ actual = npy_func(src_array, strip)
+
+ assert_array_equal(actual, expected)
+
+ @pytest.mark.parametrize("args", [
+ (None,),
+ (0,),
+ (1,),
+ (5,),
+ (15,),
+ (22,),
+ (-1,),
+ (-3,),
+ ([3, 4],),
+ ([-5, 5],),
+ ([0, -8],),
+ (1, 12),
+ (-12, 15),
+ (None, -1),
+ (0, [17, 6]),
+ ([1, 2], [-1, -2]),
+ (1, 11, 2),
+ (None, None, -1),
+ ([0, 10], [-1, 0], [2, -1]),
+ ])
+ def test_slice(self, args, dt):
+ buf = np.array(["Приве́т नमस्ते שָׁלוֹם", "😀😃😄😁😆😅🤣😂🙂🙃"],
+ dtype=dt)
+ act = np.strings.slice(buf, *args)
+ bcast_args = tuple(np.broadcast_to(arg, buf.shape) for arg in args)
+ res = np.array([s[slice(*arg)]
+ for s, arg in zip(buf, zip(*bcast_args))],
+ dtype=dt)
+ assert_array_equal(act, res)
+
+
+class TestMixedTypeMethods:
+ def test_center(self):
+ buf = np.array("😊", dtype="U")
+ fill = np.array("*", dtype="S")
+ res = np.array("*😊*", dtype="U")
+ assert_array_equal(np.strings.center(buf, 3, fill), res)
+
+ buf = np.array("s", dtype="S")
+ fill = np.array("*", dtype="U")
+ res = np.array("*s*", dtype="S")
+ assert_array_equal(np.strings.center(buf, 3, fill), res)
+
+ with pytest.raises(ValueError, match="'ascii' codec can't encode"):
+ buf = np.array("s", dtype="S")
+ fill = np.array("😊", dtype="U")
+ np.strings.center(buf, 3, fill)
+
+ def test_ljust(self):
+ buf = np.array("😊", dtype="U")
+ fill = np.array("*", dtype="S")
+ res = np.array("😊**", dtype="U")
+ assert_array_equal(np.strings.ljust(buf, 3, fill), res)
+
+ buf = np.array("s", dtype="S")
+ fill = np.array("*", dtype="U")
+ res = np.array("s**", dtype="S")
+ assert_array_equal(np.strings.ljust(buf, 3, fill), res)
+
+ with pytest.raises(ValueError, match="'ascii' codec can't encode"):
+ buf = np.array("s", dtype="S")
+ fill = np.array("😊", dtype="U")
+ np.strings.ljust(buf, 3, fill)
+
+ def test_rjust(self):
+ buf = np.array("😊", dtype="U")
+ fill = np.array("*", dtype="S")
+ res = np.array("**😊", dtype="U")
+ assert_array_equal(np.strings.rjust(buf, 3, fill), res)
+
+ buf = np.array("s", dtype="S")
+ fill = np.array("*", dtype="U")
+ res = np.array("**s", dtype="S")
+ assert_array_equal(np.strings.rjust(buf, 3, fill), res)
+
+ with pytest.raises(ValueError, match="'ascii' codec can't encode"):
+ buf = np.array("s", dtype="S")
+ fill = np.array("😊", dtype="U")
+ np.strings.rjust(buf, 3, fill)
+
+
+class TestUnicodeOnlyMethodsRaiseWithBytes:
+ def test_isdecimal_raises(self):
+ in_ = np.array(b"1")
+ with assert_raises(TypeError):
+ np.strings.isdecimal(in_)
+
+ def test_isnumeric_bytes(self):
+ in_ = np.array(b"1")
+ with assert_raises(TypeError):
+ np.strings.isnumeric(in_)
+
+
+def check_itemsize(n_elem, dt):
+ if dt == "T":
+ return np.dtype(dt).itemsize
+ if dt == "S":
+ return n_elem
+ if dt == "U":
+ return n_elem * 4
+
+@pytest.mark.parametrize("dt", ["S", "U", "T"])
+class TestReplaceOnArrays:
+
+ def test_replace_count_and_size(self, dt):
+ a = np.array(["0123456789" * i for i in range(4)], dtype=dt)
+ r1 = np.strings.replace(a, "5", "ABCDE")
+ assert r1.dtype.itemsize == check_itemsize(3 * 10 + 3 * 4, dt)
+ r1_res = np.array(["01234ABCDE6789" * i for i in range(4)], dtype=dt)
+ assert_array_equal(r1, r1_res)
+ r2 = np.strings.replace(a, "5", "ABCDE", 1)
+ assert r2.dtype.itemsize == check_itemsize(3 * 10 + 4, dt)
+ r3 = np.strings.replace(a, "5", "ABCDE", 0)
+ assert r3.dtype.itemsize == a.dtype.itemsize
+ assert_array_equal(r3, a)
+ # Negative values mean to replace all.
+ r4 = np.strings.replace(a, "5", "ABCDE", -1)
+ assert r4.dtype.itemsize == check_itemsize(3 * 10 + 3 * 4, dt)
+ assert_array_equal(r4, r1)
+ # We can do count on an element-by-element basis.
+ r5 = np.strings.replace(a, "5", "ABCDE", [-1, -1, -1, 1])
+ assert r5.dtype.itemsize == check_itemsize(3 * 10 + 4, dt)
+ assert_array_equal(r5, np.array(
+ ["01234ABCDE6789" * i for i in range(3)]
+ + ["01234ABCDE6789" + "0123456789" * 2], dtype=dt))
+
+ def test_replace_broadcasting(self, dt):
+ a = np.array("0,0,0", dtype=dt)
+ r1 = np.strings.replace(a, "0", "1", np.arange(3))
+ assert r1.dtype == a.dtype
+ assert_array_equal(r1, np.array(["0,0,0", "1,0,0", "1,1,0"], dtype=dt))
+ r2 = np.strings.replace(a, "0", [["1"], ["2"]], np.arange(1, 4))
+ assert_array_equal(r2, np.array([["1,0,0", "1,1,0", "1,1,1"],
+ ["2,0,0", "2,2,0", "2,2,2"]],
+ dtype=dt))
+ r3 = np.strings.replace(a, ["0", "0,0", "0,0,0"], "X")
+ assert_array_equal(r3, np.array(["X,X,X", "X,0", "X"], dtype=dt))
+
+
+class TestOverride:
+ @classmethod
+ def setup_class(cls):
+ class Override:
+
+ def __array_function__(self, *args, **kwargs):
+ return "function"
+
+ def __array_ufunc__(self, *args, **kwargs):
+ return "ufunc"
+
+ cls.override = Override()
+
+ @pytest.mark.parametrize("func, kwargs", [
+ (np.strings.center, dict(width=10)),
+ (np.strings.capitalize, {}),
+ (np.strings.decode, {}),
+ (np.strings.encode, {}),
+ (np.strings.expandtabs, {}),
+ (np.strings.ljust, dict(width=10)),
+ (np.strings.lower, {}),
+ (np.strings.mod, dict(values=2)),
+ (np.strings.multiply, dict(i=2)),
+ (np.strings.partition, dict(sep="foo")),
+ (np.strings.rjust, dict(width=10)),
+ (np.strings.rpartition, dict(sep="foo")),
+ (np.strings.swapcase, {}),
+ (np.strings.title, {}),
+ (np.strings.translate, dict(table=None)),
+ (np.strings.upper, {}),
+ (np.strings.zfill, dict(width=10)),
+ ])
+ def test_override_function(self, func, kwargs):
+ assert func(self.override, **kwargs) == "function"
+
+ @pytest.mark.parametrize("func, args, kwargs", [
+ (np.strings.add, (None, ), {}),
+ (np.strings.lstrip, (), {}),
+ (np.strings.rstrip, (), {}),
+ (np.strings.strip, (), {}),
+ (np.strings.equal, (None, ), {}),
+ (np.strings.not_equal, (None, ), {}),
+ (np.strings.greater_equal, (None, ), {}),
+ (np.strings.less_equal, (None, ), {}),
+ (np.strings.greater, (None, ), {}),
+ (np.strings.less, (None, ), {}),
+ (np.strings.count, ("foo", ), {}),
+ (np.strings.endswith, ("foo", ), {}),
+ (np.strings.find, ("foo", ), {}),
+ (np.strings.index, ("foo", ), {}),
+ (np.strings.isalnum, (), {}),
+ (np.strings.isalpha, (), {}),
+ (np.strings.isdecimal, (), {}),
+ (np.strings.isdigit, (), {}),
+ (np.strings.islower, (), {}),
+ (np.strings.isnumeric, (), {}),
+ (np.strings.isspace, (), {}),
+ (np.strings.istitle, (), {}),
+ (np.strings.isupper, (), {}),
+ (np.strings.rfind, ("foo", ), {}),
+ (np.strings.rindex, ("foo", ), {}),
+ (np.strings.startswith, ("foo", ), {}),
+ (np.strings.str_len, (), {}),
+ ])
+ def test_override_ufunc(self, func, args, kwargs):
+ assert func(self.override, *args, **kwargs) == "ufunc"
diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_ufunc.py b/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_ufunc.py
new file mode 100644
index 0000000..af22dce
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_ufunc.py
@@ -0,0 +1,3313 @@
+import ctypes as ct
+import itertools
+import pickle
+import sys
+import warnings
+
+import numpy._core._operand_flag_tests as opflag_tests
+import numpy._core._rational_tests as _rational_tests
+import numpy._core._umath_tests as umt
+import pytest
+from pytest import param
+
+import numpy as np
+import numpy._core.umath as ncu
+import numpy.linalg._umath_linalg as uml
+from numpy.exceptions import AxisError
+from numpy.testing import (
+ HAS_REFCOUNT,
+ IS_PYPY,
+ IS_WASM,
+ assert_,
+ assert_allclose,
+ assert_almost_equal,
+ assert_array_almost_equal,
+ assert_array_equal,
+ assert_equal,
+ assert_no_warnings,
+ assert_raises,
+ suppress_warnings,
+)
+from numpy.testing._private.utils import requires_memory
+
+UNARY_UFUNCS = [obj for obj in np._core.umath.__dict__.values()
+ if isinstance(obj, np.ufunc)]
+UNARY_OBJECT_UFUNCS = [uf for uf in UNARY_UFUNCS if "O->O" in uf.types]
+
+# Remove functions that do not support `floats`
+UNARY_OBJECT_UFUNCS.remove(np.bitwise_count)
+
+
+class TestUfuncKwargs:
+ def test_kwarg_exact(self):
+ assert_raises(TypeError, np.add, 1, 2, castingx='safe')
+ assert_raises(TypeError, np.add, 1, 2, dtypex=int)
+ assert_raises(TypeError, np.add, 1, 2, extobjx=[4096])
+ assert_raises(TypeError, np.add, 1, 2, outx=None)
+ assert_raises(TypeError, np.add, 1, 2, sigx='ii->i')
+ assert_raises(TypeError, np.add, 1, 2, signaturex='ii->i')
+ assert_raises(TypeError, np.add, 1, 2, subokx=False)
+ assert_raises(TypeError, np.add, 1, 2, wherex=[True])
+
+ def test_sig_signature(self):
+ assert_raises(TypeError, np.add, 1, 2, sig='ii->i',
+ signature='ii->i')
+
+ def test_sig_dtype(self):
+ assert_raises(TypeError, np.add, 1, 2, sig='ii->i',
+ dtype=int)
+ assert_raises(TypeError, np.add, 1, 2, signature='ii->i',
+ dtype=int)
+
+ def test_extobj_removed(self):
+ assert_raises(TypeError, np.add, 1, 2, extobj=[4096])
+
+
+class TestUfuncGenericLoops:
+ """Test generic loops.
+
+ The loops to be tested are:
+
+ PyUFunc_ff_f_As_dd_d
+ PyUFunc_ff_f
+ PyUFunc_dd_d
+ PyUFunc_gg_g
+ PyUFunc_FF_F_As_DD_D
+ PyUFunc_DD_D
+ PyUFunc_FF_F
+ PyUFunc_GG_G
+ PyUFunc_OO_O
+ PyUFunc_OO_O_method
+ PyUFunc_f_f_As_d_d
+ PyUFunc_d_d
+ PyUFunc_f_f
+ PyUFunc_g_g
+ PyUFunc_F_F_As_D_D
+ PyUFunc_F_F
+ PyUFunc_D_D
+ PyUFunc_G_G
+ PyUFunc_O_O
+ PyUFunc_O_O_method
+ PyUFunc_On_Om
+
+ Where:
+
+ f -- float
+ d -- double
+ g -- long double
+ F -- complex float
+ D -- complex double
+ G -- complex long double
+ O -- python object
+
+ It is difficult to assure that each of these loops is entered from the
+ Python level as the special cased loops are a moving target and the
+ corresponding types are architecture dependent. We probably need to
+ define C level testing ufuncs to get at them. For the time being, I've
+ just looked at the signatures registered in the build directory to find
+ relevant functions.
+
+ """
+ np_dtypes = [
+ (np.single, np.single), (np.single, np.double),
+ (np.csingle, np.csingle), (np.csingle, np.cdouble),
+ (np.double, np.double), (np.longdouble, np.longdouble),
+ (np.cdouble, np.cdouble), (np.clongdouble, np.clongdouble)]
+
+ @pytest.mark.parametrize('input_dtype,output_dtype', np_dtypes)
+ def test_unary_PyUFunc(self, input_dtype, output_dtype, f=np.exp, x=0, y=1):
+ xs = np.full(10, input_dtype(x), dtype=output_dtype)
+ ys = f(xs)[::2]
+ assert_allclose(ys, y)
+ assert_equal(ys.dtype, output_dtype)
+
+ def f2(x, y):
+ return x**y
+
+ @pytest.mark.parametrize('input_dtype,output_dtype', np_dtypes)
+ def test_binary_PyUFunc(self, input_dtype, output_dtype, f=f2, x=0, y=1):
+ xs = np.full(10, input_dtype(x), dtype=output_dtype)
+ ys = f(xs, xs)[::2]
+ assert_allclose(ys, y)
+ assert_equal(ys.dtype, output_dtype)
+
+ # class to use in testing object method loops
+ class foo:
+ def conjugate(self):
+ return np.bool(1)
+
+ def logical_xor(self, obj):
+ return np.bool(1)
+
+ def test_unary_PyUFunc_O_O(self):
+ x = np.ones(10, dtype=object)
+ assert_(np.all(np.abs(x) == 1))
+
+ def test_unary_PyUFunc_O_O_method_simple(self, foo=foo):
+ x = np.full(10, foo(), dtype=object)
+ assert_(np.all(np.conjugate(x) == True))
+
+ def test_binary_PyUFunc_OO_O(self):
+ x = np.ones(10, dtype=object)
+ assert_(np.all(np.add(x, x) == 2))
+
+ def test_binary_PyUFunc_OO_O_method(self, foo=foo):
+ x = np.full(10, foo(), dtype=object)
+ assert_(np.all(np.logical_xor(x, x)))
+
+ def test_binary_PyUFunc_On_Om_method(self, foo=foo):
+ x = np.full((10, 2, 3), foo(), dtype=object)
+ assert_(np.all(np.logical_xor(x, x)))
+
+ def test_python_complex_conjugate(self):
+ # The conjugate ufunc should fall back to calling the method:
+ arr = np.array([1 + 2j, 3 - 4j], dtype="O")
+ assert isinstance(arr[0], complex)
+ res = np.conjugate(arr)
+ assert res.dtype == np.dtype("O")
+ assert_array_equal(res, np.array([1 - 2j, 3 + 4j], dtype="O"))
+
+ @pytest.mark.parametrize("ufunc", UNARY_OBJECT_UFUNCS)
+ def test_unary_PyUFunc_O_O_method_full(self, ufunc):
+ """Compare the result of the object loop with non-object one"""
+ val = np.float64(np.pi / 4)
+
+ class MyFloat(np.float64):
+ def __getattr__(self, attr):
+ try:
+ return super().__getattr__(attr)
+ except AttributeError:
+ return lambda: getattr(np._core.umath, attr)(val)
+
+ # Use 0-D arrays, to ensure the same element call
+ num_arr = np.array(val, dtype=np.float64)
+ obj_arr = np.array(MyFloat(val), dtype="O")
+
+ with np.errstate(all="raise"):
+ try:
+ res_num = ufunc(num_arr)
+ except Exception as exc:
+ with assert_raises(type(exc)):
+ ufunc(obj_arr)
+ else:
+ res_obj = ufunc(obj_arr)
+ assert_array_almost_equal(res_num.astype("O"), res_obj)
+
+
+def _pickleable_module_global():
+ pass
+
+
+class TestUfunc:
+ def test_pickle(self):
+ for proto in range(2, pickle.HIGHEST_PROTOCOL + 1):
+ assert_(pickle.loads(pickle.dumps(np.sin,
+ protocol=proto)) is np.sin)
+
+ # Check that ufunc not defined in the top level numpy namespace
+ # such as numpy._core._rational_tests.test_add can also be pickled
+ res = pickle.loads(pickle.dumps(_rational_tests.test_add,
+ protocol=proto))
+ assert_(res is _rational_tests.test_add)
+
+ def test_pickle_withstring(self):
+ astring = (b"cnumpy.core\n_ufunc_reconstruct\np0\n"
+ b"(S'numpy._core.umath'\np1\nS'cos'\np2\ntp3\nRp4\n.")
+ assert_(pickle.loads(astring) is np.cos)
+
+ @pytest.mark.skipif(IS_PYPY, reason="'is' check does not work on PyPy")
+ def test_pickle_name_is_qualname(self):
+ # This tests that a simplification of our ufunc pickle code will
+ # lead to allowing qualnames as names. Future ufuncs should
+ # possible add a specific qualname, or a hook into pickling instead
+ # (dask+numba may benefit).
+ _pickleable_module_global.ufunc = umt._pickleable_module_global_ufunc
+
+ obj = pickle.loads(pickle.dumps(_pickleable_module_global.ufunc))
+ assert obj is umt._pickleable_module_global_ufunc
+
+ def test_reduceat_shifting_sum(self):
+ L = 6
+ x = np.arange(L)
+ idx = np.array(list(zip(np.arange(L - 2), np.arange(L - 2) + 2))).ravel()
+ assert_array_equal(np.add.reduceat(x, idx)[::2], [1, 3, 5, 7])
+
+ def test_all_ufunc(self):
+ """Try to check presence and results of all ufuncs.
+
+ The list of ufuncs comes from generate_umath.py and is as follows:
+
+ ===== ==== ============= =============== ========================
+ done args function types notes
+ ===== ==== ============= =============== ========================
+ n 1 conjugate nums + O
+ n 1 absolute nums + O complex -> real
+ n 1 negative nums + O
+ n 1 sign nums + O -> int
+ n 1 invert bool + ints + O flts raise an error
+ n 1 degrees real + M cmplx raise an error
+ n 1 radians real + M cmplx raise an error
+ n 1 arccos flts + M
+ n 1 arccosh flts + M
+ n 1 arcsin flts + M
+ n 1 arcsinh flts + M
+ n 1 arctan flts + M
+ n 1 arctanh flts + M
+ n 1 cos flts + M
+ n 1 sin flts + M
+ n 1 tan flts + M
+ n 1 cosh flts + M
+ n 1 sinh flts + M
+ n 1 tanh flts + M
+ n 1 exp flts + M
+ n 1 expm1 flts + M
+ n 1 log flts + M
+ n 1 log10 flts + M
+ n 1 log1p flts + M
+ n 1 sqrt flts + M real x < 0 raises error
+ n 1 ceil real + M
+ n 1 trunc real + M
+ n 1 floor real + M
+ n 1 fabs real + M
+ n 1 rint flts + M
+ n 1 isnan flts -> bool
+ n 1 isinf flts -> bool
+ n 1 isfinite flts -> bool
+ n 1 signbit real -> bool
+ n 1 modf real -> (frac, int)
+ n 1 logical_not bool + nums + M -> bool
+ n 2 left_shift ints + O flts raise an error
+ n 2 right_shift ints + O flts raise an error
+ n 2 add bool + nums + O boolean + is ||
+ n 2 subtract bool + nums + O boolean - is ^
+ n 2 multiply bool + nums + O boolean * is &
+ n 2 divide nums + O
+ n 2 floor_divide nums + O
+ n 2 true_divide nums + O bBhH -> f, iIlLqQ -> d
+ n 2 fmod nums + M
+ n 2 power nums + O
+ n 2 greater bool + nums + O -> bool
+ n 2 greater_equal bool + nums + O -> bool
+ n 2 less bool + nums + O -> bool
+ n 2 less_equal bool + nums + O -> bool
+ n 2 equal bool + nums + O -> bool
+ n 2 not_equal bool + nums + O -> bool
+ n 2 logical_and bool + nums + M -> bool
+ n 2 logical_or bool + nums + M -> bool
+ n 2 logical_xor bool + nums + M -> bool
+ n 2 maximum bool + nums + O
+ n 2 minimum bool + nums + O
+ n 2 bitwise_and bool + ints + O flts raise an error
+ n 2 bitwise_or bool + ints + O flts raise an error
+ n 2 bitwise_xor bool + ints + O flts raise an error
+ n 2 arctan2 real + M
+ n 2 remainder ints + real + O
+ n 2 hypot real + M
+ ===== ==== ============= =============== ========================
+
+ Types other than those listed will be accepted, but they are cast to
+ the smallest compatible type for which the function is defined. The
+ casting rules are:
+
+ bool -> int8 -> float32
+ ints -> double
+
+ """
+ pass
+
+ # from include/numpy/ufuncobject.h
+ size_inferred = 2
+ can_ignore = 4
+
+ def test_signature0(self):
+ # the arguments to test_signature are: nin, nout, core_signature
+ enabled, num_dims, ixs, flags, sizes = umt.test_signature(
+ 2, 1, "(i),(i)->()")
+ assert_equal(enabled, 1)
+ assert_equal(num_dims, (1, 1, 0))
+ assert_equal(ixs, (0, 0))
+ assert_equal(flags, (self.size_inferred,))
+ assert_equal(sizes, (-1,))
+
+ def test_signature1(self):
+ # empty core signature; treat as plain ufunc (with trivial core)
+ enabled, num_dims, ixs, flags, sizes = umt.test_signature(
+ 2, 1, "(),()->()")
+ assert_equal(enabled, 0)
+ assert_equal(num_dims, (0, 0, 0))
+ assert_equal(ixs, ())
+ assert_equal(flags, ())
+ assert_equal(sizes, ())
+
+ def test_signature2(self):
+ # more complicated names for variables
+ enabled, num_dims, ixs, flags, sizes = umt.test_signature(
+ 2, 1, "(i1,i2),(J_1)->(_kAB)")
+ assert_equal(enabled, 1)
+ assert_equal(num_dims, (2, 1, 1))
+ assert_equal(ixs, (0, 1, 2, 3))
+ assert_equal(flags, (self.size_inferred,) * 4)
+ assert_equal(sizes, (-1, -1, -1, -1))
+
+ def test_signature3(self):
+ enabled, num_dims, ixs, flags, sizes = umt.test_signature(
+ 2, 1, "(i1, i12), (J_1)->(i12, i2)")
+ assert_equal(enabled, 1)
+ assert_equal(num_dims, (2, 1, 2))
+ assert_equal(ixs, (0, 1, 2, 1, 3))
+ assert_equal(flags, (self.size_inferred,) * 4)
+ assert_equal(sizes, (-1, -1, -1, -1))
+
+ def test_signature4(self):
+ # matrix_multiply signature from _umath_tests
+ enabled, num_dims, ixs, flags, sizes = umt.test_signature(
+ 2, 1, "(n,k),(k,m)->(n,m)")
+ assert_equal(enabled, 1)
+ assert_equal(num_dims, (2, 2, 2))
+ assert_equal(ixs, (0, 1, 1, 2, 0, 2))
+ assert_equal(flags, (self.size_inferred,) * 3)
+ assert_equal(sizes, (-1, -1, -1))
+
+ def test_signature5(self):
+ # matmul signature from _umath_tests
+ enabled, num_dims, ixs, flags, sizes = umt.test_signature(
+ 2, 1, "(n?,k),(k,m?)->(n?,m?)")
+ assert_equal(enabled, 1)
+ assert_equal(num_dims, (2, 2, 2))
+ assert_equal(ixs, (0, 1, 1, 2, 0, 2))
+ assert_equal(flags, (self.size_inferred | self.can_ignore,
+ self.size_inferred,
+ self.size_inferred | self.can_ignore))
+ assert_equal(sizes, (-1, -1, -1))
+
+ def test_signature6(self):
+ enabled, num_dims, ixs, flags, sizes = umt.test_signature(
+ 1, 1, "(3)->()")
+ assert_equal(enabled, 1)
+ assert_equal(num_dims, (1, 0))
+ assert_equal(ixs, (0,))
+ assert_equal(flags, (0,))
+ assert_equal(sizes, (3,))
+
+ def test_signature7(self):
+ enabled, num_dims, ixs, flags, sizes = umt.test_signature(
+ 3, 1, "(3),(03,3),(n)->(9)")
+ assert_equal(enabled, 1)
+ assert_equal(num_dims, (1, 2, 1, 1))
+ assert_equal(ixs, (0, 0, 0, 1, 2))
+ assert_equal(flags, (0, self.size_inferred, 0))
+ assert_equal(sizes, (3, -1, 9))
+
+ def test_signature8(self):
+ enabled, num_dims, ixs, flags, sizes = umt.test_signature(
+ 3, 1, "(3?),(3?,3?),(n)->(9)")
+ assert_equal(enabled, 1)
+ assert_equal(num_dims, (1, 2, 1, 1))
+ assert_equal(ixs, (0, 0, 0, 1, 2))
+ assert_equal(flags, (self.can_ignore, self.size_inferred, 0))
+ assert_equal(sizes, (3, -1, 9))
+
+ def test_signature9(self):
+ enabled, num_dims, ixs, flags, sizes = umt.test_signature(
+ 1, 1, "( 3) -> ( )")
+ assert_equal(enabled, 1)
+ assert_equal(num_dims, (1, 0))
+ assert_equal(ixs, (0,))
+ assert_equal(flags, (0,))
+ assert_equal(sizes, (3,))
+
+ def test_signature10(self):
+ enabled, num_dims, ixs, flags, sizes = umt.test_signature(
+ 3, 1, "( 3? ) , (3? , 3?) ,(n )-> ( 9)")
+ assert_equal(enabled, 1)
+ assert_equal(num_dims, (1, 2, 1, 1))
+ assert_equal(ixs, (0, 0, 0, 1, 2))
+ assert_equal(flags, (self.can_ignore, self.size_inferred, 0))
+ assert_equal(sizes, (3, -1, 9))
+
+ def test_signature_failure_extra_parenthesis(self):
+ with assert_raises(ValueError):
+ umt.test_signature(2, 1, "((i)),(i)->()")
+
+ def test_signature_failure_mismatching_parenthesis(self):
+ with assert_raises(ValueError):
+ umt.test_signature(2, 1, "(i),)i(->()")
+
+ def test_signature_failure_signature_missing_input_arg(self):
+ with assert_raises(ValueError):
+ umt.test_signature(2, 1, "(i),->()")
+
+ def test_signature_failure_signature_missing_output_arg(self):
+ with assert_raises(ValueError):
+ umt.test_signature(2, 2, "(i),(i)->()")
+
+ def test_get_signature(self):
+ assert_equal(np.vecdot.signature, "(n),(n)->()")
+
+ def test_forced_sig(self):
+ a = 0.5 * np.arange(3, dtype='f8')
+ assert_equal(np.add(a, 0.5), [0.5, 1, 1.5])
+ with assert_raises(TypeError):
+ np.add(a, 0.5, sig='i', casting='unsafe')
+ assert_equal(np.add(a, 0.5, sig='ii->i', casting='unsafe'), [0, 0, 1])
+ with assert_raises(TypeError):
+ np.add(a, 0.5, sig=('i4',), casting='unsafe')
+ assert_equal(np.add(a, 0.5, sig=('i4', 'i4', 'i4'),
+ casting='unsafe'), [0, 0, 1])
+
+ b = np.zeros((3,), dtype='f8')
+ np.add(a, 0.5, out=b)
+ assert_equal(b, [0.5, 1, 1.5])
+ b[:] = 0
+ with assert_raises(TypeError):
+ np.add(a, 0.5, sig='i', out=b, casting='unsafe')
+ assert_equal(b, [0, 0, 0])
+ np.add(a, 0.5, sig='ii->i', out=b, casting='unsafe')
+ assert_equal(b, [0, 0, 1])
+ b[:] = 0
+ with assert_raises(TypeError):
+ np.add(a, 0.5, sig=('i4',), out=b, casting='unsafe')
+ assert_equal(b, [0, 0, 0])
+ np.add(a, 0.5, sig=('i4', 'i4', 'i4'), out=b, casting='unsafe')
+ assert_equal(b, [0, 0, 1])
+
+ def test_signature_all_None(self):
+ # signature all None, is an acceptable alternative (since 1.21)
+ # to not providing a signature.
+ res1 = np.add([3], [4], sig=(None, None, None))
+ res2 = np.add([3], [4])
+ assert_array_equal(res1, res2)
+ res1 = np.maximum([3], [4], sig=(None, None, None))
+ res2 = np.maximum([3], [4])
+ assert_array_equal(res1, res2)
+
+ with pytest.raises(TypeError):
+ # special case, that would be deprecated anyway, so errors:
+ np.add(3, 4, signature=(None,))
+
+ def test_signature_dtype_type(self):
+ # Since that will be the normal behaviour (past NumPy 1.21)
+ # we do support the types already:
+ float_dtype = type(np.dtype(np.float64))
+ np.add(3, 4, signature=(float_dtype, float_dtype, None))
+
+ @pytest.mark.parametrize("get_kwarg", [
+ param(lambda dt: {"dtype": dt}, id="dtype"),
+ param(lambda dt: {"signature": (dt, None, None)}, id="signature")])
+ def test_signature_dtype_instances_allowed(self, get_kwarg):
+ # We allow certain dtype instances when there is a clear singleton
+ # and the given one is equivalent; mainly for backcompat.
+ int64 = np.dtype("int64")
+ int64_2 = pickle.loads(pickle.dumps(int64))
+ # Relies on pickling behavior, if assert fails just remove test...
+ assert int64 is not int64_2
+
+ assert np.add(1, 2, **get_kwarg(int64_2)).dtype == int64
+ td = np.timedelta64(2, "s")
+ assert np.add(td, td, **get_kwarg("m8")).dtype == "m8[s]"
+
+ msg = "The `dtype` and `signature` arguments to ufuncs"
+
+ with pytest.raises(TypeError, match=msg):
+ np.add(3, 5, **get_kwarg(np.dtype("int64").newbyteorder()))
+ with pytest.raises(TypeError, match=msg):
+ np.add(3, 5, **get_kwarg(np.dtype("m8[ns]")))
+ with pytest.raises(TypeError, match=msg):
+ np.add(3, 5, **get_kwarg("m8[ns]"))
+
+ @pytest.mark.parametrize("casting", ["unsafe", "same_kind", "safe"])
+ def test_partial_signature_mismatch(self, casting):
+ # If the second argument matches already, no need to specify it:
+ res = np.ldexp(np.float32(1.), np.int_(2), dtype="d")
+ assert res.dtype == "d"
+ res = np.ldexp(np.float32(1.), np.int_(2), signature=(None, None, "d"))
+ assert res.dtype == "d"
+
+ # ldexp only has a loop for long input as second argument, overriding
+ # the output cannot help with that (no matter the casting)
+ with pytest.raises(TypeError):
+ np.ldexp(1., np.uint64(3), dtype="d")
+ with pytest.raises(TypeError):
+ np.ldexp(1., np.uint64(3), signature=(None, None, "d"))
+
+ def test_partial_signature_mismatch_with_cache(self):
+ with pytest.raises(TypeError):
+ np.add(np.float16(1), np.uint64(2), sig=("e", "d", None))
+ # Ensure e,d->None is in the dispatching cache (double loop)
+ np.add(np.float16(1), np.float64(2))
+ # The error must still be raised:
+ with pytest.raises(TypeError):
+ np.add(np.float16(1), np.uint64(2), sig=("e", "d", None))
+
+ def test_use_output_signature_for_all_arguments(self):
+ # Test that providing only `dtype=` or `signature=(None, None, dtype)`
+ # is sufficient if falling back to a homogeneous signature works.
+ # In this case, the `intp, intp -> intp` loop is chosen.
+ res = np.power(1.5, 2.8, dtype=np.intp, casting="unsafe")
+ assert res == 1 # the cast happens first.
+ res = np.power(1.5, 2.8, signature=(None, None, np.intp),
+ casting="unsafe")
+ assert res == 1
+ with pytest.raises(TypeError):
+ # the unsafe casting would normally cause errors though:
+ np.power(1.5, 2.8, dtype=np.intp)
+
+ def test_signature_errors(self):
+ with pytest.raises(TypeError,
+ match="the signature object to ufunc must be a string or"):
+ np.add(3, 4, signature=123.) # neither a string nor a tuple
+
+ with pytest.raises(ValueError):
+ # bad symbols that do not translate to dtypes
+ np.add(3, 4, signature="%^->#")
+
+ with pytest.raises(ValueError):
+ np.add(3, 4, signature=b"ii-i") # incomplete and byte string
+
+ with pytest.raises(ValueError):
+ np.add(3, 4, signature="ii>i") # incomplete string
+
+ with pytest.raises(ValueError):
+ np.add(3, 4, signature=(None, "f8")) # bad length
+
+ with pytest.raises(UnicodeDecodeError):
+ np.add(3, 4, signature=b"\xff\xff->i")
+
+ def test_forced_dtype_times(self):
+ # Signatures only set the type numbers (not the actual loop dtypes)
+ # so using `M` in a signature/dtype should generally work:
+ a = np.array(['2010-01-02', '1999-03-14', '1833-03'], dtype='>M8[D]')
+ np.maximum(a, a, dtype="M")
+ np.maximum.reduce(a, dtype="M")
+
+ arr = np.arange(10, dtype="m8[s]")
+ np.add(arr, arr, dtype="m")
+ np.maximum(arr, arr, dtype="m")
+
+ @pytest.mark.parametrize("ufunc", [np.add, np.sqrt])
+ def test_cast_safety(self, ufunc):
+ """Basic test for the safest casts, because ufuncs inner loops can
+ indicate a cast-safety as well (which is normally always "no").
+ """
+ def call_ufunc(arr, **kwargs):
+ return ufunc(*(arr,) * ufunc.nin, **kwargs)
+
+ arr = np.array([1., 2., 3.], dtype=np.float32)
+ arr_bs = arr.astype(arr.dtype.newbyteorder())
+ expected = call_ufunc(arr)
+ # Normally, a "no" cast:
+ res = call_ufunc(arr, casting="no")
+ assert_array_equal(expected, res)
+ # Byte-swapping is not allowed with "no" though:
+ with pytest.raises(TypeError):
+ call_ufunc(arr_bs, casting="no")
+
+ # But is allowed with "equiv":
+ res = call_ufunc(arr_bs, casting="equiv")
+ assert_array_equal(expected, res)
+
+ # Casting to float64 is safe, but not equiv:
+ with pytest.raises(TypeError):
+ call_ufunc(arr_bs, dtype=np.float64, casting="equiv")
+
+ # but it is safe cast:
+ res = call_ufunc(arr_bs, dtype=np.float64, casting="safe")
+ expected = call_ufunc(arr.astype(np.float64)) # upcast
+ assert_array_equal(expected, res)
+
+ @pytest.mark.parametrize("ufunc", [np.add, np.equal])
+ def test_cast_safety_scalar(self, ufunc):
+ # We test add and equal, because equal has special scalar handling
+ # Note that the "equiv" casting behavior should maybe be considered
+ # a current implementation detail.
+ with pytest.raises(TypeError):
+ # this picks an integer loop, which is not safe
+ ufunc(3., 4., dtype=int, casting="safe")
+
+ with pytest.raises(TypeError):
+ # We accept python float as float64 but not float32 for equiv.
+ ufunc(3., 4., dtype="float32", casting="equiv")
+
+ # Special case for object and equal (note that equiv implies safe)
+ ufunc(3, 4, dtype=object, casting="equiv")
+ # Picks a double loop for both, first is equiv, second safe:
+ ufunc(np.array([3.]), 3., casting="equiv")
+ ufunc(np.array([3.]), 3, casting="safe")
+ ufunc(np.array([3]), 3, casting="equiv")
+
+ def test_cast_safety_scalar_special(self):
+ # We allow this (and it succeeds) via object, although the equiv
+ # part may not be important.
+ np.equal(np.array([3]), 2**300, casting="equiv")
+
+ def test_true_divide(self):
+ a = np.array(10)
+ b = np.array(20)
+ tgt = np.array(0.5)
+
+ for tc in 'bhilqBHILQefdgFDG':
+ dt = np.dtype(tc)
+ aa = a.astype(dt)
+ bb = b.astype(dt)
+
+ # Check result value and dtype.
+ for x, y in itertools.product([aa, -aa], [bb, -bb]):
+
+ # Check with no output type specified
+ if tc in 'FDG':
+ tgt = complex(x) / complex(y)
+ else:
+ tgt = float(x) / float(y)
+
+ res = np.true_divide(x, y)
+ rtol = max(np.finfo(res).resolution, 1e-15)
+ assert_allclose(res, tgt, rtol=rtol)
+
+ if tc in 'bhilqBHILQ':
+ assert_(res.dtype.name == 'float64')
+ else:
+ assert_(res.dtype.name == dt.name)
+
+ # Check with output type specified. This also checks for the
+ # incorrect casts in issue gh-3484 because the unary '-' does
+ # not change types, even for unsigned types, Hence casts in the
+ # ufunc from signed to unsigned and vice versa will lead to
+ # errors in the values.
+ for tcout in 'bhilqBHILQ':
+ dtout = np.dtype(tcout)
+ assert_raises(TypeError, np.true_divide, x, y, dtype=dtout)
+
+ for tcout in 'efdg':
+ dtout = np.dtype(tcout)
+ if tc in 'FDG':
+ # Casting complex to float is not allowed
+ assert_raises(TypeError, np.true_divide, x, y, dtype=dtout)
+ else:
+ tgt = float(x) / float(y)
+ rtol = max(np.finfo(dtout).resolution, 1e-15)
+ # The value of tiny for double double is NaN
+ with suppress_warnings() as sup:
+ sup.filter(UserWarning)
+ if not np.isnan(np.finfo(dtout).tiny):
+ atol = max(np.finfo(dtout).tiny, 3e-308)
+ else:
+ atol = 3e-308
+ # Some test values result in invalid for float16
+ # and the cast to it may overflow to inf.
+ with np.errstate(invalid='ignore', over='ignore'):
+ res = np.true_divide(x, y, dtype=dtout)
+ if not np.isfinite(res) and tcout == 'e':
+ continue
+ assert_allclose(res, tgt, rtol=rtol, atol=atol)
+ assert_(res.dtype.name == dtout.name)
+
+ for tcout in 'FDG':
+ dtout = np.dtype(tcout)
+ tgt = complex(x) / complex(y)
+ rtol = max(np.finfo(dtout).resolution, 1e-15)
+ # The value of tiny for double double is NaN
+ with suppress_warnings() as sup:
+ sup.filter(UserWarning)
+ if not np.isnan(np.finfo(dtout).tiny):
+ atol = max(np.finfo(dtout).tiny, 3e-308)
+ else:
+ atol = 3e-308
+ res = np.true_divide(x, y, dtype=dtout)
+ if not np.isfinite(res):
+ continue
+ assert_allclose(res, tgt, rtol=rtol, atol=atol)
+ assert_(res.dtype.name == dtout.name)
+
+ # Check booleans
+ a = np.ones((), dtype=np.bool)
+ res = np.true_divide(a, a)
+ assert_(res == 1.0)
+ assert_(res.dtype.name == 'float64')
+ res = np.true_divide(~a, a)
+ assert_(res == 0.0)
+ assert_(res.dtype.name == 'float64')
+
+ def test_sum_stability(self):
+ a = np.ones(500, dtype=np.float32)
+ assert_almost_equal((a / 10.).sum() - a.size / 10., 0, 4)
+
+ a = np.ones(500, dtype=np.float64)
+ assert_almost_equal((a / 10.).sum() - a.size / 10., 0, 13)
+
+ @pytest.mark.skipif(IS_WASM, reason="fp errors don't work in wasm")
+ def test_sum(self):
+ for dt in (int, np.float16, np.float32, np.float64, np.longdouble):
+ for v in (0, 1, 2, 7, 8, 9, 15, 16, 19, 127,
+ 128, 1024, 1235):
+ # warning if sum overflows, which it does in float16
+ with warnings.catch_warnings(record=True) as w:
+ warnings.simplefilter("always", RuntimeWarning)
+
+ tgt = dt(v * (v + 1) / 2)
+ overflow = not np.isfinite(tgt)
+ assert_equal(len(w), 1 * overflow)
+
+ d = np.arange(1, v + 1, dtype=dt)
+
+ assert_almost_equal(np.sum(d), tgt)
+ assert_equal(len(w), 2 * overflow)
+
+ assert_almost_equal(np.sum(d[::-1]), tgt)
+ assert_equal(len(w), 3 * overflow)
+
+ d = np.ones(500, dtype=dt)
+ assert_almost_equal(np.sum(d[::2]), 250.)
+ assert_almost_equal(np.sum(d[1::2]), 250.)
+ assert_almost_equal(np.sum(d[::3]), 167.)
+ assert_almost_equal(np.sum(d[1::3]), 167.)
+ assert_almost_equal(np.sum(d[::-2]), 250.)
+ assert_almost_equal(np.sum(d[-1::-2]), 250.)
+ assert_almost_equal(np.sum(d[::-3]), 167.)
+ assert_almost_equal(np.sum(d[-1::-3]), 167.)
+ # sum with first reduction entry != 0
+ d = np.ones((1,), dtype=dt)
+ d += d
+ assert_almost_equal(d, 2.)
+
+ def test_sum_complex(self):
+ for dt in (np.complex64, np.complex128, np.clongdouble):
+ for v in (0, 1, 2, 7, 8, 9, 15, 16, 19, 127,
+ 128, 1024, 1235):
+ tgt = dt(v * (v + 1) / 2) - dt((v * (v + 1) / 2) * 1j)
+ d = np.empty(v, dtype=dt)
+ d.real = np.arange(1, v + 1)
+ d.imag = -np.arange(1, v + 1)
+ assert_almost_equal(np.sum(d), tgt)
+ assert_almost_equal(np.sum(d[::-1]), tgt)
+
+ d = np.ones(500, dtype=dt) + 1j
+ assert_almost_equal(np.sum(d[::2]), 250. + 250j)
+ assert_almost_equal(np.sum(d[1::2]), 250. + 250j)
+ assert_almost_equal(np.sum(d[::3]), 167. + 167j)
+ assert_almost_equal(np.sum(d[1::3]), 167. + 167j)
+ assert_almost_equal(np.sum(d[::-2]), 250. + 250j)
+ assert_almost_equal(np.sum(d[-1::-2]), 250. + 250j)
+ assert_almost_equal(np.sum(d[::-3]), 167. + 167j)
+ assert_almost_equal(np.sum(d[-1::-3]), 167. + 167j)
+ # sum with first reduction entry != 0
+ d = np.ones((1,), dtype=dt) + 1j
+ d += d
+ assert_almost_equal(d, 2. + 2j)
+
+ def test_sum_initial(self):
+ # Integer, single axis
+ assert_equal(np.sum([3], initial=2), 5)
+
+ # Floating point
+ assert_almost_equal(np.sum([0.2], initial=0.1), 0.3)
+
+ # Multiple non-adjacent axes
+ assert_equal(np.sum(np.ones((2, 3, 5), dtype=np.int64), axis=(0, 2), initial=2),
+ [12, 12, 12])
+
+ def test_sum_where(self):
+ # More extensive tests done in test_reduction_with_where.
+ assert_equal(np.sum([[1., 2.], [3., 4.]], where=[True, False]), 4.)
+ assert_equal(np.sum([[1., 2.], [3., 4.]], axis=0, initial=5.,
+ where=[True, False]), [9., 5.])
+
+ def test_vecdot(self):
+ arr1 = np.arange(6).reshape((2, 3))
+ arr2 = np.arange(3).reshape((1, 3))
+
+ actual = np.vecdot(arr1, arr2)
+ expected = np.array([5, 14])
+
+ assert_array_equal(actual, expected)
+
+ actual2 = np.vecdot(arr1.T, arr2.T, axis=-2)
+ assert_array_equal(actual2, expected)
+
+ actual3 = np.vecdot(arr1.astype("object"), arr2)
+ assert_array_equal(actual3, expected.astype("object"))
+
+ def test_matvec(self):
+ arr1 = np.arange(6).reshape((2, 3))
+ arr2 = np.arange(3).reshape((1, 3))
+
+ actual = np.matvec(arr1, arr2)
+ expected = np.array([[5, 14]])
+
+ assert_array_equal(actual, expected)
+
+ actual2 = np.matvec(arr1.T, arr2.T, axes=[(-1, -2), -2, -1])
+ assert_array_equal(actual2, expected)
+
+ actual3 = np.matvec(arr1.astype("object"), arr2)
+ assert_array_equal(actual3, expected.astype("object"))
+
+ @pytest.mark.parametrize("vec", [
+ np.array([[1., 2., 3.], [4., 5., 6.]]),
+ np.array([[1., 2j, 3.], [4., 5., 6j]]),
+ np.array([[1., 2., 3.], [4., 5., 6.]], dtype=object),
+ np.array([[1., 2j, 3.], [4., 5., 6j]], dtype=object)])
+ @pytest.mark.parametrize("matrix", [
+ None,
+ np.array([[1. + 1j, 0.5, -0.5j],
+ [0.25, 2j, 0.],
+ [4., 0., -1j]])])
+ def test_vecmatvec_identity(self, matrix, vec):
+ """Check that (x†A)x equals x†(Ax)."""
+ mat = matrix if matrix is not None else np.eye(3)
+ matvec = np.matvec(mat, vec) # Ax
+ vecmat = np.vecmat(vec, mat) # x†A
+ if matrix is None:
+ assert_array_equal(matvec, vec)
+ assert_array_equal(vecmat.conj(), vec)
+ assert_array_equal(matvec, (mat @ vec[..., np.newaxis]).squeeze(-1))
+ assert_array_equal(vecmat, (vec[..., np.newaxis].mT.conj()
+ @ mat).squeeze(-2))
+ expected = np.einsum('...i,ij,...j', vec.conj(), mat, vec)
+ vec_matvec = (vec.conj() * matvec).sum(-1)
+ vecmat_vec = (vecmat * vec).sum(-1)
+ assert_array_equal(vec_matvec, expected)
+ assert_array_equal(vecmat_vec, expected)
+
+ @pytest.mark.parametrize("ufunc, shape1, shape2, conj", [
+ (np.vecdot, (3,), (3,), True),
+ (np.vecmat, (3,), (3, 1), True),
+ (np.matvec, (1, 3), (3,), False),
+ (np.matmul, (1, 3), (3, 1), False),
+ ])
+ def test_vecdot_matvec_vecmat_complex(self, ufunc, shape1, shape2, conj):
+ arr1 = np.array([1, 2j, 3])
+ arr2 = np.array([1, 2, 3])
+
+ actual1 = ufunc(arr1.reshape(shape1), arr2.reshape(shape2))
+ expected1 = np.array(((arr1.conj() if conj else arr1) * arr2).sum(),
+ ndmin=min(len(shape1), len(shape2)))
+ assert_array_equal(actual1, expected1)
+ # This would fail for conj=True, since matmul omits the conjugate.
+ if not conj:
+ assert_array_equal(arr1.reshape(shape1) @ arr2.reshape(shape2),
+ expected1)
+
+ actual2 = ufunc(arr2.reshape(shape1), arr1.reshape(shape2))
+ expected2 = np.array(((arr2.conj() if conj else arr2) * arr1).sum(),
+ ndmin=min(len(shape1), len(shape2)))
+ assert_array_equal(actual2, expected2)
+
+ actual3 = ufunc(arr1.reshape(shape1).astype("object"),
+ arr2.reshape(shape2).astype("object"))
+ expected3 = expected1.astype(object)
+ assert_array_equal(actual3, expected3)
+
+ def test_vecdot_subclass(self):
+ class MySubclass(np.ndarray):
+ pass
+
+ arr1 = np.arange(6).reshape((2, 3)).view(MySubclass)
+ arr2 = np.arange(3).reshape((1, 3)).view(MySubclass)
+ result = np.vecdot(arr1, arr2)
+ assert isinstance(result, MySubclass)
+
+ def test_vecdot_object_no_conjugate(self):
+ arr = np.array(["1", "2"], dtype=object)
+ with pytest.raises(AttributeError, match="conjugate"):
+ np.vecdot(arr, arr)
+
+ def test_vecdot_object_breaks_outer_loop_on_error(self):
+ arr1 = np.ones((3, 3)).astype(object)
+ arr2 = arr1.copy()
+ arr2[1, 1] = None
+ out = np.zeros(3).astype(object)
+ with pytest.raises(TypeError, match=r"\*: 'float' and 'NoneType'"):
+ np.vecdot(arr1, arr2, out=out)
+ assert out[0] == 3
+ assert out[1] == out[2] == 0
+
+ def test_broadcast(self):
+ msg = "broadcast"
+ a = np.arange(4).reshape((2, 1, 2))
+ b = np.arange(4).reshape((1, 2, 2))
+ assert_array_equal(np.vecdot(a, b), np.sum(a * b, axis=-1), err_msg=msg)
+ msg = "extend & broadcast loop dimensions"
+ b = np.arange(4).reshape((2, 2))
+ assert_array_equal(np.vecdot(a, b), np.sum(a * b, axis=-1), err_msg=msg)
+ # Broadcast in core dimensions should fail
+ a = np.arange(8).reshape((4, 2))
+ b = np.arange(4).reshape((4, 1))
+ assert_raises(ValueError, np.vecdot, a, b)
+ # Extend core dimensions should fail
+ a = np.arange(8).reshape((4, 2))
+ b = np.array(7)
+ assert_raises(ValueError, np.vecdot, a, b)
+ # Broadcast should fail
+ a = np.arange(2).reshape((2, 1, 1))
+ b = np.arange(3).reshape((3, 1, 1))
+ assert_raises(ValueError, np.vecdot, a, b)
+
+ # Writing to a broadcasted array with overlap should warn, gh-2705
+ a = np.arange(2)
+ b = np.arange(4).reshape((2, 2))
+ u, v = np.broadcast_arrays(a, b)
+ assert_equal(u.strides[0], 0)
+ x = u + v
+ with warnings.catch_warnings(record=True) as w:
+ warnings.simplefilter("always")
+ u += v
+ assert_equal(len(w), 1)
+ assert_(x[0, 0] != u[0, 0])
+
+ # Output reduction should not be allowed.
+ # See gh-15139
+ a = np.arange(6).reshape(3, 2)
+ b = np.ones(2)
+ out = np.empty(())
+ assert_raises(ValueError, np.vecdot, a, b, out)
+ out2 = np.empty(3)
+ c = np.vecdot(a, b, out2)
+ assert_(c is out2)
+
+ def test_out_broadcasts(self):
+ # For ufuncs and gufuncs (not for reductions), we currently allow
+ # the output to cause broadcasting of the input arrays.
+ # both along dimensions with shape 1 and dimensions which do not
+ # exist at all in the inputs.
+ arr = np.arange(3).reshape(1, 3)
+ out = np.empty((5, 4, 3))
+ np.add(arr, arr, out=out)
+ assert (out == np.arange(3) * 2).all()
+
+ # The same holds for gufuncs (gh-16484)
+ np.vecdot(arr, arr, out=out)
+ # the result would be just a scalar `5`, but is broadcast fully:
+ assert (out == 5).all()
+
+ @pytest.mark.parametrize(["arr", "out"], [
+ ([2], np.empty(())),
+ ([1, 2], np.empty(1)),
+ (np.ones((4, 3)), np.empty((4, 1)))],
+ ids=["(1,)->()", "(2,)->(1,)", "(4, 3)->(4, 1)"])
+ def test_out_broadcast_errors(self, arr, out):
+ # Output is (currently) allowed to broadcast inputs, but it cannot be
+ # smaller than the actual result.
+ with pytest.raises(ValueError, match="non-broadcastable"):
+ np.positive(arr, out=out)
+
+ with pytest.raises(ValueError, match="non-broadcastable"):
+ np.add(np.ones(()), arr, out=out)
+
+ def test_type_cast(self):
+ msg = "type cast"
+ a = np.arange(6, dtype='short').reshape((2, 3))
+ assert_array_equal(np.vecdot(a, a), np.sum(a * a, axis=-1),
+ err_msg=msg)
+ msg = "type cast on one argument"
+ a = np.arange(6).reshape((2, 3))
+ b = a + 0.1
+ assert_array_almost_equal(np.vecdot(a, b), np.sum(a * b, axis=-1),
+ err_msg=msg)
+
+ def test_endian(self):
+ msg = "big endian"
+ a = np.arange(6, dtype='>i4').reshape((2, 3))
+ assert_array_equal(np.vecdot(a, a), np.sum(a * a, axis=-1),
+ err_msg=msg)
+ msg = "little endian"
+ a = np.arange(6, dtype='<i4').reshape((2, 3))
+ assert_array_equal(np.vecdot(a, a), np.sum(a * a, axis=-1),
+ err_msg=msg)
+
+ # Output should always be native-endian
+ Ba = np.arange(1, dtype='>f8')
+ La = np.arange(1, dtype='<f8')
+ assert_equal((Ba + Ba).dtype, np.dtype('f8'))
+ assert_equal((Ba + La).dtype, np.dtype('f8'))
+ assert_equal((La + Ba).dtype, np.dtype('f8'))
+ assert_equal((La + La).dtype, np.dtype('f8'))
+
+ assert_equal(np.absolute(La).dtype, np.dtype('f8'))
+ assert_equal(np.absolute(Ba).dtype, np.dtype('f8'))
+ assert_equal(np.negative(La).dtype, np.dtype('f8'))
+ assert_equal(np.negative(Ba).dtype, np.dtype('f8'))
+
+ def test_incontiguous_array(self):
+ msg = "incontiguous memory layout of array"
+ x = np.arange(64).reshape((2, 2, 2, 2, 2, 2))
+ a = x[:, 0, :, 0, :, 0]
+ b = x[:, 1, :, 1, :, 1]
+ a[0, 0, 0] = -1
+ msg2 = "make sure it references to the original array"
+ assert_equal(x[0, 0, 0, 0, 0, 0], -1, err_msg=msg2)
+ assert_array_equal(np.vecdot(a, b), np.sum(a * b, axis=-1), err_msg=msg)
+ x = np.arange(24).reshape(2, 3, 4)
+ a = x.T
+ b = x.T
+ a[0, 0, 0] = -1
+ assert_equal(x[0, 0, 0], -1, err_msg=msg2)
+ assert_array_equal(np.vecdot(a, b), np.sum(a * b, axis=-1), err_msg=msg)
+
+ def test_output_argument(self):
+ msg = "output argument"
+ a = np.arange(12).reshape((2, 3, 2))
+ b = np.arange(4).reshape((2, 1, 2)) + 1
+ c = np.zeros((2, 3), dtype='int')
+ np.vecdot(a, b, c)
+ assert_array_equal(c, np.sum(a * b, axis=-1), err_msg=msg)
+ c[:] = -1
+ np.vecdot(a, b, out=c)
+ assert_array_equal(c, np.sum(a * b, axis=-1), err_msg=msg)
+
+ msg = "output argument with type cast"
+ c = np.zeros((2, 3), dtype='int16')
+ np.vecdot(a, b, c)
+ assert_array_equal(c, np.sum(a * b, axis=-1), err_msg=msg)
+ c[:] = -1
+ np.vecdot(a, b, out=c)
+ assert_array_equal(c, np.sum(a * b, axis=-1), err_msg=msg)
+
+ msg = "output argument with incontiguous layout"
+ c = np.zeros((2, 3, 4), dtype='int16')
+ np.vecdot(a, b, c[..., 0])
+ assert_array_equal(c[..., 0], np.sum(a * b, axis=-1), err_msg=msg)
+ c[:] = -1
+ np.vecdot(a, b, out=c[..., 0])
+ assert_array_equal(c[..., 0], np.sum(a * b, axis=-1), err_msg=msg)
+
+ @pytest.mark.parametrize("arg", ["array", "scalar", "subclass"])
+ def test_output_ellipsis(self, arg):
+ class subclass(np.ndarray):
+ def __array_wrap__(self, obj, context=None, return_value=None):
+ return super().__array_wrap__(obj, context, return_value)
+
+ if arg == "scalar":
+ one = 1
+ expected_type = np.ndarray
+ elif arg == "array":
+ one = np.array(1)
+ expected_type = np.ndarray
+ elif arg == "subclass":
+ one = np.array(1).view(subclass)
+ expected_type = subclass
+
+ assert type(np.add(one, 2, out=...)) is expected_type
+ assert type(np.add.reduce(one, out=...)) is expected_type
+ res1, res2 = np.divmod(one, 2, out=...)
+ assert type(res1) is type(res2) is expected_type
+
+ def test_output_ellipsis_errors(self):
+ with pytest.raises(TypeError,
+ match=r"out=\.\.\. is only allowed as a keyword argument."):
+ np.add(1, 2, ...)
+
+ with pytest.raises(TypeError,
+ match=r"out=\.\.\. is only allowed as a keyword argument."):
+ np.add.reduce(1, (), None, ...)
+
+ with pytest.raises(TypeError,
+ match=r"must use `\.\.\.` as `out=\.\.\.` and not per-operand/in a tuple"):
+ np.negative(1, out=(...,))
+
+ with pytest.raises(TypeError,
+ match=r"must use `\.\.\.` as `out=\.\.\.` and not per-operand/in a tuple"):
+ # We only allow out=... not individual args for now
+ np.divmod(1, 2, out=(np.empty(()), ...))
+
+ with pytest.raises(TypeError,
+ match=r"must use `\.\.\.` as `out=\.\.\.` and not per-operand/in a tuple"):
+ np.add.reduce(1, out=(...,))
+
+ def test_axes_argument(self):
+ # vecdot signature: '(n),(n)->()'
+ a = np.arange(27.).reshape((3, 3, 3))
+ b = np.arange(10., 19.).reshape((3, 1, 3))
+ # basic tests on inputs (outputs tested below with matrix_multiply).
+ c = np.vecdot(a, b)
+ assert_array_equal(c, (a * b).sum(-1))
+ # default
+ c = np.vecdot(a, b, axes=[(-1,), (-1,), ()])
+ assert_array_equal(c, (a * b).sum(-1))
+ # integers ok for single axis.
+ c = np.vecdot(a, b, axes=[-1, -1, ()])
+ assert_array_equal(c, (a * b).sum(-1))
+ # mix fine
+ c = np.vecdot(a, b, axes=[(-1,), -1, ()])
+ assert_array_equal(c, (a * b).sum(-1))
+ # can omit last axis.
+ c = np.vecdot(a, b, axes=[-1, -1])
+ assert_array_equal(c, (a * b).sum(-1))
+ # can pass in other types of integer (with __index__ protocol)
+ c = np.vecdot(a, b, axes=[np.int8(-1), np.array(-1, dtype=np.int32)])
+ assert_array_equal(c, (a * b).sum(-1))
+ # swap some axes
+ c = np.vecdot(a, b, axes=[0, 0])
+ assert_array_equal(c, (a * b).sum(0))
+ c = np.vecdot(a, b, axes=[0, 2])
+ assert_array_equal(c, (a.transpose(1, 2, 0) * b).sum(-1))
+ # Check errors for improperly constructed axes arguments.
+ # should have list.
+ assert_raises(TypeError, np.vecdot, a, b, axes=-1)
+ # needs enough elements
+ assert_raises(ValueError, np.vecdot, a, b, axes=[-1])
+ # should pass in indices.
+ assert_raises(TypeError, np.vecdot, a, b, axes=[-1.0, -1.0])
+ assert_raises(TypeError, np.vecdot, a, b, axes=[(-1.0,), -1])
+ assert_raises(TypeError, np.vecdot, a, b, axes=[None, 1])
+ # cannot pass an index unless there is only one dimension
+ # (output is wrong in this case)
+ assert_raises(AxisError, np.vecdot, a, b, axes=[-1, -1, -1])
+ # or pass in generally the wrong number of axes
+ assert_raises(AxisError, np.vecdot, a, b, axes=[-1, -1, (-1,)])
+ assert_raises(AxisError, np.vecdot, a, b, axes=[-1, (-2, -1), ()])
+ # axes need to have same length.
+ assert_raises(ValueError, np.vecdot, a, b, axes=[0, 1])
+
+ # matrix_multiply signature: '(m,n),(n,p)->(m,p)'
+ mm = umt.matrix_multiply
+ a = np.arange(12).reshape((2, 3, 2))
+ b = np.arange(8).reshape((2, 2, 2, 1)) + 1
+ # Sanity check.
+ c = mm(a, b)
+ assert_array_equal(c, np.matmul(a, b))
+ # Default axes.
+ c = mm(a, b, axes=[(-2, -1), (-2, -1), (-2, -1)])
+ assert_array_equal(c, np.matmul(a, b))
+ # Default with explicit axes.
+ c = mm(a, b, axes=[(1, 2), (2, 3), (2, 3)])
+ assert_array_equal(c, np.matmul(a, b))
+ # swap some axes.
+ c = mm(a, b, axes=[(0, -1), (1, 2), (-2, -1)])
+ assert_array_equal(c, np.matmul(a.transpose(1, 0, 2),
+ b.transpose(0, 3, 1, 2)))
+ # Default with output array.
+ c = np.empty((2, 2, 3, 1))
+ d = mm(a, b, out=c, axes=[(1, 2), (2, 3), (2, 3)])
+ assert_(c is d)
+ assert_array_equal(c, np.matmul(a, b))
+ # Transposed output array
+ c = np.empty((1, 2, 2, 3))
+ d = mm(a, b, out=c, axes=[(-2, -1), (-2, -1), (3, 0)])
+ assert_(c is d)
+ assert_array_equal(c, np.matmul(a, b).transpose(3, 0, 1, 2))
+ # Check errors for improperly constructed axes arguments.
+ # wrong argument
+ assert_raises(TypeError, mm, a, b, axis=1)
+ # axes should be list
+ assert_raises(TypeError, mm, a, b, axes=1)
+ assert_raises(TypeError, mm, a, b, axes=((-2, -1), (-2, -1), (-2, -1)))
+ # list needs to have right length
+ assert_raises(ValueError, mm, a, b, axes=[])
+ assert_raises(ValueError, mm, a, b, axes=[(-2, -1)])
+ # list should not contain None, or lists
+ assert_raises(TypeError, mm, a, b, axes=[None, None, None])
+ assert_raises(TypeError,
+ mm, a, b, axes=[[-2, -1], [-2, -1], [-2, -1]])
+ assert_raises(TypeError,
+ mm, a, b, axes=[(-2, -1), (-2, -1), [-2, -1]])
+ assert_raises(TypeError, mm, a, b, axes=[(-2, -1), (-2, -1), None])
+ # single integers are AxisErrors if more are required
+ assert_raises(AxisError, mm, a, b, axes=[-1, -1, -1])
+ assert_raises(AxisError, mm, a, b, axes=[(-2, -1), (-2, -1), -1])
+ # tuples should not have duplicated values
+ assert_raises(ValueError, mm, a, b, axes=[(-2, -1), (-2, -1), (-2, -2)])
+ # arrays should have enough axes.
+ z = np.zeros((2, 2))
+ assert_raises(ValueError, mm, z, z[0])
+ assert_raises(ValueError, mm, z, z, out=z[:, 0])
+ assert_raises(ValueError, mm, z[1], z, axes=[0, 1])
+ assert_raises(ValueError, mm, z, z, out=z[0], axes=[0, 1])
+ # Regular ufuncs should not accept axes.
+ assert_raises(TypeError, np.add, 1., 1., axes=[0])
+ # should be able to deal with bad unrelated kwargs.
+ assert_raises(TypeError, mm, z, z, axes=[0, 1], parrot=True)
+
+ def test_axis_argument(self):
+ # vecdot signature: '(n),(n)->()'
+ a = np.arange(27.).reshape((3, 3, 3))
+ b = np.arange(10., 19.).reshape((3, 1, 3))
+ c = np.vecdot(a, b)
+ assert_array_equal(c, (a * b).sum(-1))
+ c = np.vecdot(a, b, axis=-1)
+ assert_array_equal(c, (a * b).sum(-1))
+ out = np.zeros_like(c)
+ d = np.vecdot(a, b, axis=-1, out=out)
+ assert_(d is out)
+ assert_array_equal(d, c)
+ c = np.vecdot(a, b, axis=0)
+ assert_array_equal(c, (a * b).sum(0))
+ # Sanity checks on innerwt and cumsum.
+ a = np.arange(6).reshape((2, 3))
+ b = np.arange(10, 16).reshape((2, 3))
+ w = np.arange(20, 26).reshape((2, 3))
+ assert_array_equal(umt.innerwt(a, b, w, axis=0),
+ np.sum(a * b * w, axis=0))
+ assert_array_equal(umt.cumsum(a, axis=0), np.cumsum(a, axis=0))
+ assert_array_equal(umt.cumsum(a, axis=-1), np.cumsum(a, axis=-1))
+ out = np.empty_like(a)
+ b = umt.cumsum(a, out=out, axis=0)
+ assert_(out is b)
+ assert_array_equal(b, np.cumsum(a, axis=0))
+ b = umt.cumsum(a, out=out, axis=1)
+ assert_(out is b)
+ assert_array_equal(b, np.cumsum(a, axis=-1))
+ # Check errors.
+ # Cannot pass in both axis and axes.
+ assert_raises(TypeError, np.vecdot, a, b, axis=0, axes=[0, 0])
+ # Not an integer.
+ assert_raises(TypeError, np.vecdot, a, b, axis=[0])
+ # more than 1 core dimensions.
+ mm = umt.matrix_multiply
+ assert_raises(TypeError, mm, a, b, axis=1)
+ # Output wrong size in axis.
+ out = np.empty((1, 2, 3), dtype=a.dtype)
+ assert_raises(ValueError, umt.cumsum, a, out=out, axis=0)
+ # Regular ufuncs should not accept axis.
+ assert_raises(TypeError, np.add, 1., 1., axis=0)
+
+ def test_keepdims_argument(self):
+ # vecdot signature: '(n),(n)->()'
+ a = np.arange(27.).reshape((3, 3, 3))
+ b = np.arange(10., 19.).reshape((3, 1, 3))
+ c = np.vecdot(a, b)
+ assert_array_equal(c, (a * b).sum(-1))
+ c = np.vecdot(a, b, keepdims=False)
+ assert_array_equal(c, (a * b).sum(-1))
+ c = np.vecdot(a, b, keepdims=True)
+ assert_array_equal(c, (a * b).sum(-1, keepdims=True))
+ out = np.zeros_like(c)
+ d = np.vecdot(a, b, keepdims=True, out=out)
+ assert_(d is out)
+ assert_array_equal(d, c)
+ # Now combined with axis and axes.
+ c = np.vecdot(a, b, axis=-1, keepdims=False)
+ assert_array_equal(c, (a * b).sum(-1, keepdims=False))
+ c = np.vecdot(a, b, axis=-1, keepdims=True)
+ assert_array_equal(c, (a * b).sum(-1, keepdims=True))
+ c = np.vecdot(a, b, axis=0, keepdims=False)
+ assert_array_equal(c, (a * b).sum(0, keepdims=False))
+ c = np.vecdot(a, b, axis=0, keepdims=True)
+ assert_array_equal(c, (a * b).sum(0, keepdims=True))
+ c = np.vecdot(a, b, axes=[(-1,), (-1,), ()], keepdims=False)
+ assert_array_equal(c, (a * b).sum(-1))
+ c = np.vecdot(a, b, axes=[(-1,), (-1,), (-1,)], keepdims=True)
+ assert_array_equal(c, (a * b).sum(-1, keepdims=True))
+ c = np.vecdot(a, b, axes=[0, 0], keepdims=False)
+ assert_array_equal(c, (a * b).sum(0))
+ c = np.vecdot(a, b, axes=[0, 0, 0], keepdims=True)
+ assert_array_equal(c, (a * b).sum(0, keepdims=True))
+ c = np.vecdot(a, b, axes=[0, 2], keepdims=False)
+ assert_array_equal(c, (a.transpose(1, 2, 0) * b).sum(-1))
+ c = np.vecdot(a, b, axes=[0, 2], keepdims=True)
+ assert_array_equal(c, (a.transpose(1, 2, 0) * b).sum(-1,
+ keepdims=True))
+ c = np.vecdot(a, b, axes=[0, 2, 2], keepdims=True)
+ assert_array_equal(c, (a.transpose(1, 2, 0) * b).sum(-1,
+ keepdims=True))
+ c = np.vecdot(a, b, axes=[0, 2, 0], keepdims=True)
+ assert_array_equal(c, (a * b.transpose(2, 0, 1)).sum(0, keepdims=True))
+ # Hardly useful, but should work.
+ c = np.vecdot(a, b, axes=[0, 2, 1], keepdims=True)
+ assert_array_equal(c, (a.transpose(1, 0, 2) * b.transpose(0, 2, 1))
+ .sum(1, keepdims=True))
+ # Check with two core dimensions.
+ a = np.eye(3) * np.arange(4.)[:, np.newaxis, np.newaxis]
+ expected = uml.det(a)
+ c = uml.det(a, keepdims=False)
+ assert_array_equal(c, expected)
+ c = uml.det(a, keepdims=True)
+ assert_array_equal(c, expected[:, np.newaxis, np.newaxis])
+ a = np.eye(3) * np.arange(4.)[:, np.newaxis, np.newaxis]
+ expected_s, expected_l = uml.slogdet(a)
+ cs, cl = uml.slogdet(a, keepdims=False)
+ assert_array_equal(cs, expected_s)
+ assert_array_equal(cl, expected_l)
+ cs, cl = uml.slogdet(a, keepdims=True)
+ assert_array_equal(cs, expected_s[:, np.newaxis, np.newaxis])
+ assert_array_equal(cl, expected_l[:, np.newaxis, np.newaxis])
+ # Sanity check on innerwt.
+ a = np.arange(6).reshape((2, 3))
+ b = np.arange(10, 16).reshape((2, 3))
+ w = np.arange(20, 26).reshape((2, 3))
+ assert_array_equal(umt.innerwt(a, b, w, keepdims=True),
+ np.sum(a * b * w, axis=-1, keepdims=True))
+ assert_array_equal(umt.innerwt(a, b, w, axis=0, keepdims=True),
+ np.sum(a * b * w, axis=0, keepdims=True))
+ # Check errors.
+ # Not a boolean
+ assert_raises(TypeError, np.vecdot, a, b, keepdims='true')
+ # More than 1 core dimension, and core output dimensions.
+ mm = umt.matrix_multiply
+ assert_raises(TypeError, mm, a, b, keepdims=True)
+ assert_raises(TypeError, mm, a, b, keepdims=False)
+ # Regular ufuncs should not accept keepdims.
+ assert_raises(TypeError, np.add, 1., 1., keepdims=False)
+
+ def test_innerwt(self):
+ a = np.arange(6).reshape((2, 3))
+ b = np.arange(10, 16).reshape((2, 3))
+ w = np.arange(20, 26).reshape((2, 3))
+ assert_array_equal(umt.innerwt(a, b, w), np.sum(a * b * w, axis=-1))
+ a = np.arange(100, 124).reshape((2, 3, 4))
+ b = np.arange(200, 224).reshape((2, 3, 4))
+ w = np.arange(300, 324).reshape((2, 3, 4))
+ assert_array_equal(umt.innerwt(a, b, w), np.sum(a * b * w, axis=-1))
+
+ def test_innerwt_empty(self):
+ """Test generalized ufunc with zero-sized operands"""
+ a = np.array([], dtype='f8')
+ b = np.array([], dtype='f8')
+ w = np.array([], dtype='f8')
+ assert_array_equal(umt.innerwt(a, b, w), np.sum(a * b * w, axis=-1))
+
+ def test_cross1d(self):
+ """Test with fixed-sized signature."""
+ a = np.eye(3)
+ assert_array_equal(umt.cross1d(a, a), np.zeros((3, 3)))
+ out = np.zeros((3, 3))
+ result = umt.cross1d(a[0], a, out)
+ assert_(result is out)
+ assert_array_equal(result, np.vstack((np.zeros(3), a[2], -a[1])))
+ assert_raises(ValueError, umt.cross1d, np.eye(4), np.eye(4))
+ assert_raises(ValueError, umt.cross1d, a, np.arange(4.))
+ # Wrong output core dimension.
+ assert_raises(ValueError, umt.cross1d, a, np.arange(3.), np.zeros((3, 4)))
+ # Wrong output broadcast dimension (see gh-15139).
+ assert_raises(ValueError, umt.cross1d, a, np.arange(3.), np.zeros(3))
+
+ def test_can_ignore_signature(self):
+ # Comparing the effects of ? in signature:
+ # matrix_multiply: (m,n),(n,p)->(m,p) # all must be there.
+ # matmul: (m?,n),(n,p?)->(m?,p?) # allow missing m, p.
+ mat = np.arange(12).reshape((2, 3, 2))
+ single_vec = np.arange(2)
+ col_vec = single_vec[:, np.newaxis]
+ col_vec_array = np.arange(8).reshape((2, 2, 2, 1)) + 1
+ # matrix @ single column vector with proper dimension
+ mm_col_vec = umt.matrix_multiply(mat, col_vec)
+ # matmul does the same thing
+ matmul_col_vec = umt.matmul(mat, col_vec)
+ assert_array_equal(matmul_col_vec, mm_col_vec)
+ # matrix @ vector without dimension making it a column vector.
+ # matrix multiply fails -> missing core dim.
+ assert_raises(ValueError, umt.matrix_multiply, mat, single_vec)
+ # matmul mimicker passes, and returns a vector.
+ matmul_col = umt.matmul(mat, single_vec)
+ assert_array_equal(matmul_col, mm_col_vec.squeeze())
+ # Now with a column array: same as for column vector,
+ # broadcasting sensibly.
+ mm_col_vec = umt.matrix_multiply(mat, col_vec_array)
+ matmul_col_vec = umt.matmul(mat, col_vec_array)
+ assert_array_equal(matmul_col_vec, mm_col_vec)
+ # As above, but for row vector
+ single_vec = np.arange(3)
+ row_vec = single_vec[np.newaxis, :]
+ row_vec_array = np.arange(24).reshape((4, 2, 1, 1, 3)) + 1
+ # row vector @ matrix
+ mm_row_vec = umt.matrix_multiply(row_vec, mat)
+ matmul_row_vec = umt.matmul(row_vec, mat)
+ assert_array_equal(matmul_row_vec, mm_row_vec)
+ # single row vector @ matrix
+ assert_raises(ValueError, umt.matrix_multiply, single_vec, mat)
+ matmul_row = umt.matmul(single_vec, mat)
+ assert_array_equal(matmul_row, mm_row_vec.squeeze())
+ # row vector array @ matrix
+ mm_row_vec = umt.matrix_multiply(row_vec_array, mat)
+ matmul_row_vec = umt.matmul(row_vec_array, mat)
+ assert_array_equal(matmul_row_vec, mm_row_vec)
+ # Now for vector combinations
+ # row vector @ column vector
+ col_vec = row_vec.T
+ col_vec_array = row_vec_array.swapaxes(-2, -1)
+ mm_row_col_vec = umt.matrix_multiply(row_vec, col_vec)
+ matmul_row_col_vec = umt.matmul(row_vec, col_vec)
+ assert_array_equal(matmul_row_col_vec, mm_row_col_vec)
+ # single row vector @ single col vector
+ assert_raises(ValueError, umt.matrix_multiply, single_vec, single_vec)
+ matmul_row_col = umt.matmul(single_vec, single_vec)
+ assert_array_equal(matmul_row_col, mm_row_col_vec.squeeze())
+ # row vector array @ matrix
+ mm_row_col_array = umt.matrix_multiply(row_vec_array, col_vec_array)
+ matmul_row_col_array = umt.matmul(row_vec_array, col_vec_array)
+ assert_array_equal(matmul_row_col_array, mm_row_col_array)
+ # Finally, check that things are *not* squeezed if one gives an
+ # output.
+ out = np.zeros_like(mm_row_col_array)
+ out = umt.matrix_multiply(row_vec_array, col_vec_array, out=out)
+ assert_array_equal(out, mm_row_col_array)
+ out[:] = 0
+ out = umt.matmul(row_vec_array, col_vec_array, out=out)
+ assert_array_equal(out, mm_row_col_array)
+ # And check one cannot put missing dimensions back.
+ out = np.zeros_like(mm_row_col_vec)
+ assert_raises(ValueError, umt.matrix_multiply, single_vec, single_vec,
+ out)
+ # But fine for matmul, since it is just a broadcast.
+ out = umt.matmul(single_vec, single_vec, out)
+ assert_array_equal(out, mm_row_col_vec.squeeze())
+
+ def test_matrix_multiply(self):
+ self.compare_matrix_multiply_results(np.int64)
+ self.compare_matrix_multiply_results(np.double)
+
+ def test_matrix_multiply_umath_empty(self):
+ res = umt.matrix_multiply(np.ones((0, 10)), np.ones((10, 0)))
+ assert_array_equal(res, np.zeros((0, 0)))
+ res = umt.matrix_multiply(np.ones((10, 0)), np.ones((0, 10)))
+ assert_array_equal(res, np.zeros((10, 10)))
+
+ def compare_matrix_multiply_results(self, tp):
+ d1 = np.array(np.random.rand(2, 3, 4), dtype=tp)
+ d2 = np.array(np.random.rand(2, 3, 4), dtype=tp)
+ msg = f"matrix multiply on type {d1.dtype.name}"
+
+ def permute_n(n):
+ if n == 1:
+ return ([0],)
+ ret = ()
+ base = permute_n(n - 1)
+ for perm in base:
+ for i in range(n):
+ new = perm + [n - 1]
+ new[n - 1] = new[i]
+ new[i] = n - 1
+ ret += (new,)
+ return ret
+
+ def slice_n(n):
+ if n == 0:
+ return ((),)
+ ret = ()
+ base = slice_n(n - 1)
+ for sl in base:
+ ret += (sl + (slice(None),),)
+ ret += (sl + (slice(0, 1),),)
+ return ret
+
+ def broadcastable(s1, s2):
+ return s1 == s2 or 1 in {s1, s2}
+
+ permute_3 = permute_n(3)
+ slice_3 = slice_n(3) + ((slice(None, None, -1),) * 3,)
+
+ ref = True
+ for p1 in permute_3:
+ for p2 in permute_3:
+ for s1 in slice_3:
+ for s2 in slice_3:
+ a1 = d1.transpose(p1)[s1]
+ a2 = d2.transpose(p2)[s2]
+ ref = ref and a1.base is not None
+ ref = ref and a2.base is not None
+ if (a1.shape[-1] == a2.shape[-2] and
+ broadcastable(a1.shape[0], a2.shape[0])):
+ assert_array_almost_equal(
+ umt.matrix_multiply(a1, a2),
+ np.sum(a2[..., np.newaxis].swapaxes(-3, -1) *
+ a1[..., np.newaxis, :], axis=-1),
+ err_msg=msg + f' {str(a1.shape)} {str(a2.shape)}')
+
+ assert_equal(ref, True, err_msg="reference check")
+
+ def test_euclidean_pdist(self):
+ a = np.arange(12, dtype=float).reshape(4, 3)
+ out = np.empty((a.shape[0] * (a.shape[0] - 1) // 2,), dtype=a.dtype)
+ umt.euclidean_pdist(a, out)
+ b = np.sqrt(np.sum((a[:, None] - a)**2, axis=-1))
+ b = b[~np.tri(a.shape[0], dtype=bool)]
+ assert_almost_equal(out, b)
+ # An output array is required to determine p with signature (n,d)->(p)
+ assert_raises(ValueError, umt.euclidean_pdist, a)
+
+ def test_cumsum(self):
+ a = np.arange(10)
+ result = umt.cumsum(a)
+ assert_array_equal(result, a.cumsum())
+
+ def test_object_logical(self):
+ a = np.array([3, None, True, False, "test", ""], dtype=object)
+ assert_equal(np.logical_or(a, None),
+ np.array([x or None for x in a], dtype=object))
+ assert_equal(np.logical_or(a, True),
+ np.array([x or True for x in a], dtype=object))
+ assert_equal(np.logical_or(a, 12),
+ np.array([x or 12 for x in a], dtype=object))
+ assert_equal(np.logical_or(a, "blah"),
+ np.array([x or "blah" for x in a], dtype=object))
+
+ assert_equal(np.logical_and(a, None),
+ np.array([x and None for x in a], dtype=object))
+ assert_equal(np.logical_and(a, True),
+ np.array([x and True for x in a], dtype=object))
+ assert_equal(np.logical_and(a, 12),
+ np.array([x and 12 for x in a], dtype=object))
+ assert_equal(np.logical_and(a, "blah"),
+ np.array([x and "blah" for x in a], dtype=object))
+
+ assert_equal(np.logical_not(a),
+ np.array([not x for x in a], dtype=object))
+
+ assert_equal(np.logical_or.reduce(a), 3)
+ assert_equal(np.logical_and.reduce(a), None)
+
+ def test_object_comparison(self):
+ class HasComparisons:
+ def __eq__(self, other):
+ return '=='
+
+ arr0d = np.array(HasComparisons())
+ assert_equal(arr0d == arr0d, True)
+ assert_equal(np.equal(arr0d, arr0d), True) # normal behavior is a cast
+
+ arr1d = np.array([HasComparisons()])
+ assert_equal(arr1d == arr1d, np.array([True]))
+ assert_equal(np.equal(arr1d, arr1d), np.array([True])) # normal behavior is a cast
+ assert_equal(np.equal(arr1d, arr1d, dtype=object), np.array(['==']))
+
+ def test_object_array_reduction(self):
+ # Reductions on object arrays
+ a = np.array(['a', 'b', 'c'], dtype=object)
+ assert_equal(np.sum(a), 'abc')
+ assert_equal(np.max(a), 'c')
+ assert_equal(np.min(a), 'a')
+ a = np.array([True, False, True], dtype=object)
+ assert_equal(np.sum(a), 2)
+ assert_equal(np.prod(a), 0)
+ assert_equal(np.any(a), True)
+ assert_equal(np.all(a), False)
+ assert_equal(np.max(a), True)
+ assert_equal(np.min(a), False)
+ assert_equal(np.array([[1]], dtype=object).sum(), 1)
+ assert_equal(np.array([[[1, 2]]], dtype=object).sum((0, 1)), [1, 2])
+ assert_equal(np.array([1], dtype=object).sum(initial=1), 2)
+ assert_equal(np.array([[1], [2, 3]], dtype=object)
+ .sum(initial=[0], where=[False, True]), [0, 2, 3])
+
+ def test_object_array_accumulate_inplace(self):
+ # Checks that in-place accumulates work, see also gh-7402
+ arr = np.ones(4, dtype=object)
+ arr[:] = [[1] for i in range(4)]
+ # Twice reproduced also for tuples:
+ np.add.accumulate(arr, out=arr)
+ np.add.accumulate(arr, out=arr)
+ assert_array_equal(arr,
+ np.array([[1] * i for i in [1, 3, 6, 10]], dtype=object),
+ )
+
+ # And the same if the axis argument is used
+ arr = np.ones((2, 4), dtype=object)
+ arr[0, :] = [[2] for i in range(4)]
+ np.add.accumulate(arr, out=arr, axis=-1)
+ np.add.accumulate(arr, out=arr, axis=-1)
+ assert_array_equal(arr[0, :],
+ np.array([[2] * i for i in [1, 3, 6, 10]], dtype=object),
+ )
+
+ def test_object_array_accumulate_failure(self):
+ # Typical accumulation on object works as expected:
+ res = np.add.accumulate(np.array([1, 0, 2], dtype=object))
+ assert_array_equal(res, np.array([1, 1, 3], dtype=object))
+ # But errors are propagated from the inner-loop if they occur:
+ with pytest.raises(TypeError):
+ np.add.accumulate([1, None, 2])
+
+ def test_object_array_reduceat_inplace(self):
+ # Checks that in-place reduceats work, see also gh-7465
+ arr = np.empty(4, dtype=object)
+ arr[:] = [[1] for i in range(4)]
+ out = np.empty(4, dtype=object)
+ out[:] = [[1] for i in range(4)]
+ np.add.reduceat(arr, np.arange(4), out=arr)
+ np.add.reduceat(arr, np.arange(4), out=arr)
+ assert_array_equal(arr, out)
+
+ # And the same if the axis argument is used
+ arr = np.ones((2, 4), dtype=object)
+ arr[0, :] = [[2] for i in range(4)]
+ out = np.ones((2, 4), dtype=object)
+ out[0, :] = [[2] for i in range(4)]
+ np.add.reduceat(arr, np.arange(4), out=arr, axis=-1)
+ np.add.reduceat(arr, np.arange(4), out=arr, axis=-1)
+ assert_array_equal(arr, out)
+
+ def test_object_array_reduceat_failure(self):
+ # Reduceat works as expected when no invalid operation occurs (None is
+ # not involved in an operation here)
+ res = np.add.reduceat(np.array([1, None, 2], dtype=object), [1, 2])
+ assert_array_equal(res, np.array([None, 2], dtype=object))
+ # But errors when None would be involved in an operation:
+ with pytest.raises(TypeError):
+ np.add.reduceat([1, None, 2], [0, 2])
+
+ def test_zerosize_reduction(self):
+ # Test with default dtype and object dtype
+ for a in [[], np.array([], dtype=object)]:
+ assert_equal(np.sum(a), 0)
+ assert_equal(np.prod(a), 1)
+ assert_equal(np.any(a), False)
+ assert_equal(np.all(a), True)
+ assert_raises(ValueError, np.max, a)
+ assert_raises(ValueError, np.min, a)
+
+ def test_axis_out_of_bounds(self):
+ a = np.array([False, False])
+ assert_raises(AxisError, a.all, axis=1)
+ a = np.array([False, False])
+ assert_raises(AxisError, a.all, axis=-2)
+
+ a = np.array([False, False])
+ assert_raises(AxisError, a.any, axis=1)
+ a = np.array([False, False])
+ assert_raises(AxisError, a.any, axis=-2)
+
+ def test_scalar_reduction(self):
+ # The functions 'sum', 'prod', etc allow specifying axis=0
+ # even for scalars
+ assert_equal(np.sum(3, axis=0), 3)
+ assert_equal(np.prod(3.5, axis=0), 3.5)
+ assert_equal(np.any(True, axis=0), True)
+ assert_equal(np.all(False, axis=0), False)
+ assert_equal(np.max(3, axis=0), 3)
+ assert_equal(np.min(2.5, axis=0), 2.5)
+
+ # Check scalar behaviour for ufuncs without an identity
+ assert_equal(np.power.reduce(3), 3)
+
+ # Make sure that scalars are coming out from this operation
+ assert_(type(np.prod(np.float32(2.5), axis=0)) is np.float32)
+ assert_(type(np.sum(np.float32(2.5), axis=0)) is np.float32)
+ assert_(type(np.max(np.float32(2.5), axis=0)) is np.float32)
+ assert_(type(np.min(np.float32(2.5), axis=0)) is np.float32)
+
+ # check if scalars/0-d arrays get cast
+ assert_(type(np.any(0, axis=0)) is np.bool)
+
+ # assert that 0-d arrays get wrapped
+ class MyArray(np.ndarray):
+ pass
+ a = np.array(1).view(MyArray)
+ assert_(type(np.any(a)) is MyArray)
+
+ def test_casting_out_param(self):
+ # Test that it's possible to do casts on output
+ a = np.ones((200, 100), np.int64)
+ b = np.ones((200, 100), np.int64)
+ c = np.ones((200, 100), np.float64)
+ np.add(a, b, out=c)
+ assert_equal(c, 2)
+
+ a = np.zeros(65536)
+ b = np.zeros(65536, dtype=np.float32)
+ np.subtract(a, 0, out=b)
+ assert_equal(b, 0)
+
+ def test_where_param(self):
+ # Test that the where= ufunc parameter works with regular arrays
+ a = np.arange(7)
+ b = np.ones(7)
+ c = np.zeros(7)
+ np.add(a, b, out=c, where=(a % 2 == 1))
+ assert_equal(c, [0, 2, 0, 4, 0, 6, 0])
+
+ a = np.arange(4).reshape(2, 2) + 2
+ np.power(a, [2, 3], out=a, where=[[0, 1], [1, 0]])
+ assert_equal(a, [[2, 27], [16, 5]])
+ # Broadcasting the where= parameter
+ np.subtract(a, 2, out=a, where=[True, False])
+ assert_equal(a, [[0, 27], [14, 5]])
+
+ def test_where_param_buffer_output(self):
+ # This test is temporarily skipped because it requires
+ # adding masking features to the nditer to work properly
+
+ # With casting on output
+ a = np.ones(10, np.int64)
+ b = np.ones(10, np.int64)
+ c = 1.5 * np.ones(10, np.float64)
+ np.add(a, b, out=c, where=[1, 0, 0, 1, 0, 0, 1, 1, 1, 0])
+ assert_equal(c, [2, 1.5, 1.5, 2, 1.5, 1.5, 2, 2, 2, 1.5])
+
+ def test_where_param_alloc(self):
+ # With casting and allocated output
+ a = np.array([1], dtype=np.int64)
+ m = np.array([True], dtype=bool)
+ assert_equal(np.sqrt(a, where=m), [1])
+
+ # No casting and allocated output
+ a = np.array([1], dtype=np.float64)
+ m = np.array([True], dtype=bool)
+ assert_equal(np.sqrt(a, where=m), [1])
+
+ def test_where_with_broadcasting(self):
+ # See gh-17198
+ a = np.random.random((5000, 4))
+ b = np.random.random((5000, 1))
+
+ where = a > 0.3
+ out = np.full_like(a, 0)
+ np.less(a, b, where=where, out=out)
+ b_where = np.broadcast_to(b, a.shape)[where]
+ assert_array_equal((a[where] < b_where), out[where].astype(bool))
+ assert not out[~where].any() # outside mask, out remains all 0
+
+ @staticmethod
+ def identityless_reduce_arrs():
+ yield np.empty((2, 3, 4), order='C')
+ yield np.empty((2, 3, 4), order='F')
+ # Mixed order (reduce order differs outer)
+ yield np.empty((2, 4, 3), order='C').swapaxes(1, 2)
+ # Reversed order
+ yield np.empty((2, 3, 4), order='C')[::-1, ::-1, ::-1]
+ # Not contiguous
+ yield np.empty((3, 5, 4), order='C').swapaxes(1, 2)[1:, 1:, 1:]
+ # Not contiguous and not aligned
+ a = np.empty((3 * 4 * 5 * 8 + 1,), dtype='i1')
+ a = a[1:].view(dtype='f8')
+ a.shape = (3, 4, 5)
+ a = a[1:, 1:, 1:]
+ yield a
+
+ @pytest.mark.parametrize("a", identityless_reduce_arrs())
+ @pytest.mark.parametrize("pos", [(1, 0, 0), (0, 1, 0), (0, 0, 1)])
+ def test_identityless_reduction(self, a, pos):
+ # np.minimum.reduce is an identityless reduction
+ a[...] = 1
+ a[pos] = 0
+
+ for axis in [None, (0, 1), (0, 2), (1, 2), 0, 1, 2, ()]:
+ if axis is None:
+ axes = np.array([], dtype=np.intp)
+ else:
+ axes = np.delete(np.arange(a.ndim), axis)
+
+ expected_pos = tuple(np.array(pos)[axes])
+ expected = np.ones(np.array(a.shape)[axes])
+ expected[expected_pos] = 0
+
+ res = np.minimum.reduce(a, axis=axis)
+ assert_equal(res, expected, strict=True)
+
+ res = np.full_like(res, np.nan)
+ np.minimum.reduce(a, axis=axis, out=res)
+ assert_equal(res, expected, strict=True)
+
+ @requires_memory(6 * 1024**3)
+ @pytest.mark.skipif(sys.maxsize < 2**32,
+ reason="test array too large for 32bit platform")
+ def test_identityless_reduction_huge_array(self):
+ # Regression test for gh-20921 (copying identity incorrectly failed)
+ arr = np.zeros((2, 2**31), 'uint8')
+ arr[:, 0] = [1, 3]
+ arr[:, -1] = [4, 1]
+ res = np.maximum.reduce(arr, axis=0)
+ del arr
+ assert res[0] == 3
+ assert res[-1] == 4
+
+ def test_reduce_identity_depends_on_loop(self):
+ """
+ The type of the result should always depend on the selected loop, not
+ necessarily the output (only relevant for object arrays).
+ """
+ # For an object loop, the default value 0 with type int is used:
+ assert type(np.add.reduce([], dtype=object)) is int
+ out = np.array(None, dtype=object)
+ # When the loop is float64 but `out` is object this does not happen,
+ # the result is float64 cast to object (which gives Python `float`).
+ np.add.reduce([], out=out, dtype=np.float64)
+ assert type(out[()]) is float
+
+ def test_initial_reduction(self):
+ # np.minimum.reduce is an identityless reduction
+
+ # For cases like np.maximum(np.abs(...), initial=0)
+ # More generally, a supremum over non-negative numbers.
+ assert_equal(np.maximum.reduce([], initial=0), 0)
+
+ # For cases like reduction of an empty array over the reals.
+ assert_equal(np.minimum.reduce([], initial=np.inf), np.inf)
+ assert_equal(np.maximum.reduce([], initial=-np.inf), -np.inf)
+
+ # Random tests
+ assert_equal(np.minimum.reduce([5], initial=4), 4)
+ assert_equal(np.maximum.reduce([4], initial=5), 5)
+ assert_equal(np.maximum.reduce([5], initial=4), 5)
+ assert_equal(np.minimum.reduce([4], initial=5), 4)
+
+ # Check initial=None raises ValueError for both types of ufunc reductions
+ assert_raises(ValueError, np.minimum.reduce, [], initial=None)
+ assert_raises(ValueError, np.add.reduce, [], initial=None)
+ # Also in the somewhat special object case:
+ with pytest.raises(ValueError):
+ np.add.reduce([], initial=None, dtype=object)
+
+ # Check that np._NoValue gives default behavior.
+ assert_equal(np.add.reduce([], initial=np._NoValue), 0)
+
+ # Check that initial kwarg behaves as intended for dtype=object
+ a = np.array([10], dtype=object)
+ res = np.add.reduce(a, initial=5)
+ assert_equal(res, 15)
+
+ def test_empty_reduction_and_identity(self):
+ arr = np.zeros((0, 5))
+ # OK, since the reduction itself is *not* empty, the result is
+ assert np.true_divide.reduce(arr, axis=1).shape == (0,)
+ # Not OK, the reduction itself is empty and we have no identity
+ with pytest.raises(ValueError):
+ np.true_divide.reduce(arr, axis=0)
+
+ # Test that an empty reduction fails also if the result is empty
+ arr = np.zeros((0, 0, 5))
+ with pytest.raises(ValueError):
+ np.true_divide.reduce(arr, axis=1)
+
+ # Division reduction makes sense with `initial=1` (empty or not):
+ res = np.true_divide.reduce(arr, axis=1, initial=1)
+ assert_array_equal(res, np.ones((0, 5)))
+
+ @pytest.mark.parametrize('axis', (0, 1, None))
+ @pytest.mark.parametrize('where', (np.array([False, True, True]),
+ np.array([[True], [False], [True]]),
+ np.array([[True, False, False],
+ [False, True, False],
+ [False, True, True]])))
+ def test_reduction_with_where(self, axis, where):
+ a = np.arange(9.).reshape(3, 3)
+ a_copy = a.copy()
+ a_check = np.zeros_like(a)
+ np.positive(a, out=a_check, where=where)
+
+ res = np.add.reduce(a, axis=axis, where=where)
+ check = a_check.sum(axis)
+ assert_equal(res, check)
+ # Check we do not overwrite elements of a internally.
+ assert_array_equal(a, a_copy)
+
+ @pytest.mark.parametrize(('axis', 'where'),
+ ((0, np.array([True, False, True])),
+ (1, [True, True, False]),
+ (None, True)))
+ @pytest.mark.parametrize('initial', (-np.inf, 5.))
+ def test_reduction_with_where_and_initial(self, axis, where, initial):
+ a = np.arange(9.).reshape(3, 3)
+ a_copy = a.copy()
+ a_check = np.full(a.shape, -np.inf)
+ np.positive(a, out=a_check, where=where)
+
+ res = np.maximum.reduce(a, axis=axis, where=where, initial=initial)
+ check = a_check.max(axis, initial=initial)
+ assert_equal(res, check)
+
+ def test_reduction_where_initial_needed(self):
+ a = np.arange(9.).reshape(3, 3)
+ m = [False, True, False]
+ assert_raises(ValueError, np.maximum.reduce, a, where=m)
+
+ def test_identityless_reduction_nonreorderable(self):
+ a = np.array([[8.0, 2.0, 2.0], [1.0, 0.5, 0.25]])
+
+ res = np.divide.reduce(a, axis=0)
+ assert_equal(res, [8.0, 4.0, 8.0])
+
+ res = np.divide.reduce(a, axis=1)
+ assert_equal(res, [2.0, 8.0])
+
+ res = np.divide.reduce(a, axis=())
+ assert_equal(res, a)
+
+ assert_raises(ValueError, np.divide.reduce, a, axis=(0, 1))
+
+ def test_reduce_zero_axis(self):
+ # If we have a n x m array and do a reduction with axis=1, then we are
+ # doing n reductions, and each reduction takes an m-element array. For
+ # a reduction operation without an identity, then:
+ # n > 0, m > 0: fine
+ # n = 0, m > 0: fine, doing 0 reductions of m-element arrays
+ # n > 0, m = 0: can't reduce a 0-element array, ValueError
+ # n = 0, m = 0: can't reduce a 0-element array, ValueError (for
+ # consistency with the above case)
+ # This test doesn't actually look at return values, it just checks to
+ # make sure that error we get an error in exactly those cases where we
+ # expect one, and assumes the calculations themselves are done
+ # correctly.
+
+ def ok(f, *args, **kwargs):
+ f(*args, **kwargs)
+
+ def err(f, *args, **kwargs):
+ assert_raises(ValueError, f, *args, **kwargs)
+
+ def t(expect, func, n, m):
+ expect(func, np.zeros((n, m)), axis=1)
+ expect(func, np.zeros((m, n)), axis=0)
+ expect(func, np.zeros((n // 2, n // 2, m)), axis=2)
+ expect(func, np.zeros((n // 2, m, n // 2)), axis=1)
+ expect(func, np.zeros((n, m // 2, m // 2)), axis=(1, 2))
+ expect(func, np.zeros((m // 2, n, m // 2)), axis=(0, 2))
+ expect(func, np.zeros((m // 3, m // 3, m // 3,
+ n // 2, n // 2)),
+ axis=(0, 1, 2))
+ # Check what happens if the inner (resp. outer) dimensions are a
+ # mix of zero and non-zero:
+ expect(func, np.zeros((10, m, n)), axis=(0, 1))
+ expect(func, np.zeros((10, n, m)), axis=(0, 2))
+ expect(func, np.zeros((m, 10, n)), axis=0)
+ expect(func, np.zeros((10, m, n)), axis=1)
+ expect(func, np.zeros((10, n, m)), axis=2)
+
+ # np.maximum is just an arbitrary ufunc with no reduction identity
+ assert_equal(np.maximum.identity, None)
+ t(ok, np.maximum.reduce, 30, 30)
+ t(ok, np.maximum.reduce, 0, 30)
+ t(err, np.maximum.reduce, 30, 0)
+ t(err, np.maximum.reduce, 0, 0)
+ err(np.maximum.reduce, [])
+ np.maximum.reduce(np.zeros((0, 0)), axis=())
+
+ # all of the combinations are fine for a reduction that has an
+ # identity
+ t(ok, np.add.reduce, 30, 30)
+ t(ok, np.add.reduce, 0, 30)
+ t(ok, np.add.reduce, 30, 0)
+ t(ok, np.add.reduce, 0, 0)
+ np.add.reduce([])
+ np.add.reduce(np.zeros((0, 0)), axis=())
+
+ # OTOH, accumulate always makes sense for any combination of n and m,
+ # because it maps an m-element array to an m-element array. These
+ # tests are simpler because accumulate doesn't accept multiple axes.
+ for uf in (np.maximum, np.add):
+ uf.accumulate(np.zeros((30, 0)), axis=0)
+ uf.accumulate(np.zeros((0, 30)), axis=0)
+ uf.accumulate(np.zeros((30, 30)), axis=0)
+ uf.accumulate(np.zeros((0, 0)), axis=0)
+
+ def test_safe_casting(self):
+ # In old versions of numpy, in-place operations used the 'unsafe'
+ # casting rules. In versions >= 1.10, 'same_kind' is the
+ # default and an exception is raised instead of a warning.
+ # when 'same_kind' is not satisfied.
+ a = np.array([1, 2, 3], dtype=int)
+ # Non-in-place addition is fine
+ assert_array_equal(assert_no_warnings(np.add, a, 1.1),
+ [2.1, 3.1, 4.1])
+ assert_raises(TypeError, np.add, a, 1.1, out=a)
+
+ def add_inplace(a, b):
+ a += b
+
+ assert_raises(TypeError, add_inplace, a, 1.1)
+ # Make sure that explicitly overriding the exception is allowed:
+ assert_no_warnings(np.add, a, 1.1, out=a, casting="unsafe")
+ assert_array_equal(a, [2, 3, 4])
+
+ def test_ufunc_custom_out(self):
+ # Test ufunc with built in input types and custom output type
+
+ a = np.array([0, 1, 2], dtype='i8')
+ b = np.array([0, 1, 2], dtype='i8')
+ c = np.empty(3, dtype=_rational_tests.rational)
+
+ # Output must be specified so numpy knows what
+ # ufunc signature to look for
+ result = _rational_tests.test_add(a, b, c)
+ target = np.array([0, 2, 4], dtype=_rational_tests.rational)
+ assert_equal(result, target)
+
+ # The new resolution means that we can (usually) find custom loops
+ # as long as they match exactly:
+ result = _rational_tests.test_add(a, b)
+ assert_equal(result, target)
+
+ # This works even more generally, so long the default common-dtype
+ # promoter works out:
+ result = _rational_tests.test_add(a, b.astype(np.uint16), out=c)
+ assert_equal(result, target)
+
+ # This scalar path used to go into legacy promotion, but doesn't now:
+ result = _rational_tests.test_add(a, np.uint16(2))
+ target = np.array([2, 3, 4], dtype=_rational_tests.rational)
+ assert_equal(result, target)
+
+ def test_operand_flags(self):
+ a = np.arange(16, dtype=int).reshape(4, 4)
+ b = np.arange(9, dtype=int).reshape(3, 3)
+ opflag_tests.inplace_add(a[:-1, :-1], b)
+ assert_equal(a, np.array([[0, 2, 4, 3], [7, 9, 11, 7],
+ [14, 16, 18, 11], [12, 13, 14, 15]]))
+
+ a = np.array(0)
+ opflag_tests.inplace_add(a, 3)
+ assert_equal(a, 3)
+ opflag_tests.inplace_add(a, [3, 4])
+ assert_equal(a, 10)
+
+ def test_struct_ufunc(self):
+ import numpy._core._struct_ufunc_tests as struct_ufunc
+
+ a = np.array([(1, 2, 3)], dtype='u8,u8,u8')
+ b = np.array([(1, 2, 3)], dtype='u8,u8,u8')
+
+ result = struct_ufunc.add_triplet(a, b)
+ assert_equal(result, np.array([(2, 4, 6)], dtype='u8,u8,u8'))
+ assert_raises(RuntimeError, struct_ufunc.register_fail)
+
+ def test_custom_ufunc(self):
+ a = np.array(
+ [_rational_tests.rational(1, 2),
+ _rational_tests.rational(1, 3),
+ _rational_tests.rational(1, 4)],
+ dtype=_rational_tests.rational)
+ b = np.array(
+ [_rational_tests.rational(1, 2),
+ _rational_tests.rational(1, 3),
+ _rational_tests.rational(1, 4)],
+ dtype=_rational_tests.rational)
+
+ result = _rational_tests.test_add_rationals(a, b)
+ expected = np.array(
+ [_rational_tests.rational(1),
+ _rational_tests.rational(2, 3),
+ _rational_tests.rational(1, 2)],
+ dtype=_rational_tests.rational)
+ assert_equal(result, expected)
+
+ def test_custom_ufunc_forced_sig(self):
+ # gh-9351 - looking for a non-first userloop would previously hang
+ with assert_raises(TypeError):
+ np.multiply(_rational_tests.rational(1), 1,
+ signature=(_rational_tests.rational, int, None))
+
+ def test_custom_array_like(self):
+
+ class MyThing:
+ __array_priority__ = 1000
+
+ rmul_count = 0
+ getitem_count = 0
+
+ def __init__(self, shape):
+ self.shape = shape
+
+ def __len__(self):
+ return self.shape[0]
+
+ def __getitem__(self, i):
+ MyThing.getitem_count += 1
+ if not isinstance(i, tuple):
+ i = (i,)
+ if len(i) > self.ndim:
+ raise IndexError("boo")
+
+ return MyThing(self.shape[len(i):])
+
+ def __rmul__(self, other):
+ MyThing.rmul_count += 1
+ return self
+
+ np.float64(5) * MyThing((3, 3))
+ assert_(MyThing.rmul_count == 1, MyThing.rmul_count)
+ assert_(MyThing.getitem_count <= 2, MyThing.getitem_count)
+
+ def test_array_wrap_array_priority(self):
+ class ArrayPriorityBase(np.ndarray):
+ @classmethod
+ def __array_wrap__(cls, array, context=None, return_scalar=False):
+ return cls
+
+ class ArrayPriorityMinus0(ArrayPriorityBase):
+ __array_priority__ = 0
+
+ class ArrayPriorityMinus1000(ArrayPriorityBase):
+ __array_priority__ = -1000
+
+ class ArrayPriorityMinus1000b(ArrayPriorityBase):
+ __array_priority__ = -1000
+
+ class ArrayPriorityMinus2000(ArrayPriorityBase):
+ __array_priority__ = -2000
+
+ x = np.ones(2).view(ArrayPriorityMinus1000)
+ xb = np.ones(2).view(ArrayPriorityMinus1000b)
+ y = np.ones(2).view(ArrayPriorityMinus2000)
+
+ assert np.add(x, y) is ArrayPriorityMinus1000
+ assert np.add(y, x) is ArrayPriorityMinus1000
+ assert np.add(x, xb) is ArrayPriorityMinus1000
+ assert np.add(xb, x) is ArrayPriorityMinus1000b
+ y_minus0 = np.zeros(2).view(ArrayPriorityMinus0)
+ assert np.add(np.zeros(2), y_minus0) is ArrayPriorityMinus0
+ assert type(np.add(xb, x, np.zeros(2))) is np.ndarray
+
+ @pytest.mark.parametrize("a", (
+ np.arange(10, dtype=int),
+ np.arange(10, dtype=_rational_tests.rational),
+ ))
+ def test_ufunc_at_basic(self, a):
+
+ aa = a.copy()
+ np.add.at(aa, [2, 5, 2], 1)
+ assert_equal(aa, [0, 1, 4, 3, 4, 6, 6, 7, 8, 9])
+
+ with pytest.raises(ValueError):
+ # missing second operand
+ np.add.at(aa, [2, 5, 3])
+
+ aa = a.copy()
+ np.negative.at(aa, [2, 5, 3])
+ assert_equal(aa, [0, 1, -2, -3, 4, -5, 6, 7, 8, 9])
+
+ aa = a.copy()
+ b = np.array([100, 100, 100])
+ np.add.at(aa, [2, 5, 2], b)
+ assert_equal(aa, [0, 1, 202, 3, 4, 105, 6, 7, 8, 9])
+
+ with pytest.raises(ValueError):
+ # extraneous second operand
+ np.negative.at(a, [2, 5, 3], [1, 2, 3])
+
+ with pytest.raises(ValueError):
+ # second operand cannot be converted to an array
+ np.add.at(a, [2, 5, 3], [[1, 2], 1])
+
+ # ufuncs with indexed loops for performance in ufunc.at
+ indexed_ufuncs = [np.add, np.subtract, np.multiply, np.floor_divide,
+ np.maximum, np.minimum, np.fmax, np.fmin]
+
+ @pytest.mark.parametrize(
+ "typecode", np.typecodes['AllInteger'] + np.typecodes['Float'])
+ @pytest.mark.parametrize("ufunc", indexed_ufuncs)
+ def test_ufunc_at_inner_loops(self, typecode, ufunc):
+ if ufunc is np.divide and typecode in np.typecodes['AllInteger']:
+ # Avoid divide-by-zero and inf for integer divide
+ a = np.ones(100, dtype=typecode)
+ indx = np.random.randint(100, size=30, dtype=np.intp)
+ vals = np.arange(1, 31, dtype=typecode)
+ else:
+ a = np.ones(1000, dtype=typecode)
+ indx = np.random.randint(1000, size=3000, dtype=np.intp)
+ vals = np.arange(3000, dtype=typecode)
+ atag = a.copy()
+ # Do the calculation twice and compare the answers
+ with warnings.catch_warnings(record=True) as w_at:
+ warnings.simplefilter('always')
+ ufunc.at(a, indx, vals)
+ with warnings.catch_warnings(record=True) as w_loop:
+ warnings.simplefilter('always')
+ for i, v in zip(indx, vals):
+ # Make sure all the work happens inside the ufunc
+ # in order to duplicate error/warning handling
+ ufunc(atag[i], v, out=atag[i:i + 1], casting="unsafe")
+ assert_equal(atag, a)
+ # If w_loop warned, make sure w_at warned as well
+ if len(w_loop) > 0:
+ #
+ assert len(w_at) > 0
+ assert w_at[0].category == w_loop[0].category
+ assert str(w_at[0].message)[:10] == str(w_loop[0].message)[:10]
+
+ @pytest.mark.parametrize("typecode", np.typecodes['Complex'])
+ @pytest.mark.parametrize("ufunc", [np.add, np.subtract, np.multiply])
+ def test_ufunc_at_inner_loops_complex(self, typecode, ufunc):
+ a = np.ones(10, dtype=typecode)
+ indx = np.concatenate([np.ones(6, dtype=np.intp),
+ np.full(18, 4, dtype=np.intp)])
+ value = a.dtype.type(1j)
+ ufunc.at(a, indx, value)
+ expected = np.ones_like(a)
+ if ufunc is np.multiply:
+ expected[1] = expected[4] = -1
+ else:
+ expected[1] += 6 * (value if ufunc is np.add else -value)
+ expected[4] += 18 * (value if ufunc is np.add else -value)
+
+ assert_array_equal(a, expected)
+
+ def test_ufunc_at_ellipsis(self):
+ # Make sure the indexed loop check does not choke on iters
+ # with subspaces
+ arr = np.zeros(5)
+ np.add.at(arr, slice(None), np.ones(5))
+ assert_array_equal(arr, np.ones(5))
+
+ def test_ufunc_at_negative(self):
+ arr = np.ones(5, dtype=np.int32)
+ indx = np.arange(5)
+ umt.indexed_negative.at(arr, indx)
+ # If it is [-1, -1, -1, -100, 0] then the regular strided loop was used
+ assert np.all(arr == [-1, -1, -1, -200, -1])
+
+ def test_ufunc_at_large(self):
+ # issue gh-23457
+ indices = np.zeros(8195, dtype=np.int16)
+ b = np.zeros(8195, dtype=float)
+ b[0] = 10
+ b[1] = 5
+ b[8192:] = 100
+ a = np.zeros(1, dtype=float)
+ np.add.at(a, indices, b)
+ assert a[0] == b.sum()
+
+ def test_cast_index_fastpath(self):
+ arr = np.zeros(10)
+ values = np.ones(100000)
+ # index must be cast, which may be buffered in chunks:
+ index = np.zeros(len(values), dtype=np.uint8)
+ np.add.at(arr, index, values)
+ assert arr[0] == len(values)
+
+ @pytest.mark.parametrize("value", [
+ np.ones(1), np.ones(()), np.float64(1.), 1.])
+ def test_ufunc_at_scalar_value_fastpath(self, value):
+ arr = np.zeros(1000)
+ # index must be cast, which may be buffered in chunks:
+ index = np.repeat(np.arange(1000), 2)
+ np.add.at(arr, index, value)
+ assert_array_equal(arr, np.full_like(arr, 2 * value))
+
+ def test_ufunc_at_multiD(self):
+ a = np.arange(9).reshape(3, 3)
+ b = np.array([[100, 100, 100], [200, 200, 200], [300, 300, 300]])
+ np.add.at(a, (slice(None), [1, 2, 1]), b)
+ assert_equal(a, [[0, 201, 102], [3, 404, 205], [6, 607, 308]])
+
+ a = np.arange(27).reshape(3, 3, 3)
+ b = np.array([100, 200, 300])
+ np.add.at(a, (slice(None), slice(None), [1, 2, 1]), b)
+ assert_equal(a,
+ [[[0, 401, 202],
+ [3, 404, 205],
+ [6, 407, 208]],
+
+ [[9, 410, 211],
+ [12, 413, 214],
+ [15, 416, 217]],
+
+ [[18, 419, 220],
+ [21, 422, 223],
+ [24, 425, 226]]])
+
+ a = np.arange(9).reshape(3, 3)
+ b = np.array([[100, 100, 100], [200, 200, 200], [300, 300, 300]])
+ np.add.at(a, ([1, 2, 1], slice(None)), b)
+ assert_equal(a, [[0, 1, 2], [403, 404, 405], [206, 207, 208]])
+
+ a = np.arange(27).reshape(3, 3, 3)
+ b = np.array([100, 200, 300])
+ np.add.at(a, (slice(None), [1, 2, 1], slice(None)), b)
+ assert_equal(a,
+ [[[0, 1, 2],
+ [203, 404, 605],
+ [106, 207, 308]],
+
+ [[9, 10, 11],
+ [212, 413, 614],
+ [115, 216, 317]],
+
+ [[18, 19, 20],
+ [221, 422, 623],
+ [124, 225, 326]]])
+
+ a = np.arange(9).reshape(3, 3)
+ b = np.array([100, 200, 300])
+ np.add.at(a, (0, [1, 2, 1]), b)
+ assert_equal(a, [[0, 401, 202], [3, 4, 5], [6, 7, 8]])
+
+ a = np.arange(27).reshape(3, 3, 3)
+ b = np.array([100, 200, 300])
+ np.add.at(a, ([1, 2, 1], 0, slice(None)), b)
+ assert_equal(a,
+ [[[0, 1, 2],
+ [3, 4, 5],
+ [6, 7, 8]],
+
+ [[209, 410, 611],
+ [12, 13, 14],
+ [15, 16, 17]],
+
+ [[118, 219, 320],
+ [21, 22, 23],
+ [24, 25, 26]]])
+
+ a = np.arange(27).reshape(3, 3, 3)
+ b = np.array([100, 200, 300])
+ np.add.at(a, (slice(None), slice(None), slice(None)), b)
+ assert_equal(a,
+ [[[100, 201, 302],
+ [103, 204, 305],
+ [106, 207, 308]],
+
+ [[109, 210, 311],
+ [112, 213, 314],
+ [115, 216, 317]],
+
+ [[118, 219, 320],
+ [121, 222, 323],
+ [124, 225, 326]]])
+
+ def test_ufunc_at_0D(self):
+ a = np.array(0)
+ np.add.at(a, (), 1)
+ assert_equal(a, 1)
+
+ assert_raises(IndexError, np.add.at, a, 0, 1)
+ assert_raises(IndexError, np.add.at, a, [], 1)
+
+ def test_ufunc_at_dtypes(self):
+ # Test mixed dtypes
+ a = np.arange(10)
+ np.power.at(a, [1, 2, 3, 2], 3.5)
+ assert_equal(a, np.array([0, 1, 4414, 46, 4, 5, 6, 7, 8, 9]))
+
+ def test_ufunc_at_boolean(self):
+ # Test boolean indexing and boolean ufuncs
+ a = np.arange(10)
+ index = a % 2 == 0
+ np.equal.at(a, index, [0, 2, 4, 6, 8])
+ assert_equal(a, [1, 1, 1, 3, 1, 5, 1, 7, 1, 9])
+
+ # Test unary operator
+ a = np.arange(10, dtype='u4')
+ np.invert.at(a, [2, 5, 2])
+ assert_equal(a, [0, 1, 2, 3, 4, 5 ^ 0xffffffff, 6, 7, 8, 9])
+
+ def test_ufunc_at_advanced(self):
+ # Test empty subspace
+ orig = np.arange(4)
+ a = orig[:, None][:, 0:0]
+ np.add.at(a, [0, 1], 3)
+ assert_array_equal(orig, np.arange(4))
+
+ # Test with swapped byte order
+ index = np.array([1, 2, 1], np.dtype('i').newbyteorder())
+ values = np.array([1, 2, 3, 4], np.dtype('f').newbyteorder())
+ np.add.at(values, index, 3)
+ assert_array_equal(values, [1, 8, 6, 4])
+
+ # Test exception thrown
+ values = np.array(['a', 1], dtype=object)
+ assert_raises(TypeError, np.add.at, values, [0, 1], 1)
+ assert_array_equal(values, np.array(['a', 1], dtype=object))
+
+ # Test multiple output ufuncs raise error, gh-5665
+ assert_raises(ValueError, np.modf.at, np.arange(10), [1])
+
+ # Test maximum
+ a = np.array([1, 2, 3])
+ np.maximum.at(a, [0], 0)
+ assert_equal(a, np.array([1, 2, 3]))
+
+ @pytest.mark.parametrize("dtype",
+ np.typecodes['AllInteger'] + np.typecodes['Float'])
+ @pytest.mark.parametrize("ufunc",
+ [np.add, np.subtract, np.divide, np.minimum, np.maximum])
+ def test_at_negative_indexes(self, dtype, ufunc):
+ a = np.arange(0, 10).astype(dtype)
+ indxs = np.array([-1, 1, -1, 2]).astype(np.intp)
+ vals = np.array([1, 5, 2, 10], dtype=a.dtype)
+
+ expected = a.copy()
+ for i, v in zip(indxs, vals):
+ expected[i] = ufunc(expected[i], v)
+
+ ufunc.at(a, indxs, vals)
+ assert_array_equal(a, expected)
+ assert np.all(indxs == [-1, 1, -1, 2])
+
+ def test_at_not_none_signature(self):
+ # Test ufuncs with non-trivial signature raise a TypeError
+ a = np.ones((2, 2, 2))
+ b = np.ones((1, 2, 2))
+ assert_raises(TypeError, np.matmul.at, a, [0], b)
+
+ a = np.array([[[1, 2], [3, 4]]])
+ assert_raises(TypeError, np.linalg._umath_linalg.det.at, a, [0])
+
+ def test_at_no_loop_for_op(self):
+ # str dtype does not have a ufunc loop for np.add
+ arr = np.ones(10, dtype=str)
+ with pytest.raises(np._core._exceptions._UFuncNoLoopError):
+ np.add.at(arr, [0, 1], [0, 1])
+
+ def test_at_output_casting(self):
+ arr = np.array([-1])
+ np.equal.at(arr, [0], [0])
+ assert arr[0] == 0
+
+ def test_at_broadcast_failure(self):
+ arr = np.arange(5)
+ with pytest.raises(ValueError):
+ np.add.at(arr, [0, 1], [1, 2, 3])
+
+ def test_reduce_arguments(self):
+ f = np.add.reduce
+ d = np.ones((5, 2), dtype=int)
+ o = np.ones((2,), dtype=d.dtype)
+ r = o * 5
+ assert_equal(f(d), r)
+ # a, axis=0, dtype=None, out=None, keepdims=False
+ assert_equal(f(d, axis=0), r)
+ assert_equal(f(d, 0), r)
+ assert_equal(f(d, 0, dtype=None), r)
+ assert_equal(f(d, 0, dtype='i'), r)
+ assert_equal(f(d, 0, 'i'), r)
+ assert_equal(f(d, 0, None), r)
+ assert_equal(f(d, 0, None, out=None), r)
+ assert_equal(f(d, 0, None, out=o), r)
+ assert_equal(f(d, 0, None, o), r)
+ assert_equal(f(d, 0, None, None), r)
+ assert_equal(f(d, 0, None, None, keepdims=False), r)
+ assert_equal(f(d, 0, None, None, True), r.reshape((1,) + r.shape))
+ assert_equal(f(d, 0, None, None, False, 0), r)
+ assert_equal(f(d, 0, None, None, False, initial=0), r)
+ assert_equal(f(d, 0, None, None, False, 0, True), r)
+ assert_equal(f(d, 0, None, None, False, 0, where=True), r)
+ # multiple keywords
+ assert_equal(f(d, axis=0, dtype=None, out=None, keepdims=False), r)
+ assert_equal(f(d, 0, dtype=None, out=None, keepdims=False), r)
+ assert_equal(f(d, 0, None, out=None, keepdims=False), r)
+ assert_equal(f(d, 0, None, out=None, keepdims=False, initial=0,
+ where=True), r)
+
+ # too little
+ assert_raises(TypeError, f)
+ # too much
+ assert_raises(TypeError, f, d, 0, None, None, False, 0, True, 1)
+ # invalid axis
+ assert_raises(TypeError, f, d, "invalid")
+ assert_raises(TypeError, f, d, axis="invalid")
+ assert_raises(TypeError, f, d, axis="invalid", dtype=None,
+ keepdims=True)
+ # invalid dtype
+ assert_raises(TypeError, f, d, 0, "invalid")
+ assert_raises(TypeError, f, d, dtype="invalid")
+ assert_raises(TypeError, f, d, dtype="invalid", out=None)
+ # invalid out
+ assert_raises(TypeError, f, d, 0, None, "invalid")
+ assert_raises(TypeError, f, d, out="invalid")
+ assert_raises(TypeError, f, d, out="invalid", dtype=None)
+ # keepdims boolean, no invalid value
+ # assert_raises(TypeError, f, d, 0, None, None, "invalid")
+ # assert_raises(TypeError, f, d, keepdims="invalid", axis=0, dtype=None)
+ # invalid mix
+ assert_raises(TypeError, f, d, 0, keepdims="invalid", dtype="invalid",
+ out=None)
+
+ # invalid keyword
+ assert_raises(TypeError, f, d, axis=0, dtype=None, invalid=0)
+ assert_raises(TypeError, f, d, invalid=0)
+ assert_raises(TypeError, f, d, 0, keepdims=True, invalid="invalid",
+ out=None)
+ assert_raises(TypeError, f, d, axis=0, dtype=None, keepdims=True,
+ out=None, invalid=0)
+ assert_raises(TypeError, f, d, axis=0, dtype=None,
+ out=None, invalid=0)
+
+ def test_structured_equal(self):
+ # https://github.com/numpy/numpy/issues/4855
+
+ class MyA(np.ndarray):
+ def __array_ufunc__(self, ufunc, method, *inputs, **kwargs):
+ return getattr(ufunc, method)(*(input.view(np.ndarray)
+ for input in inputs), **kwargs)
+ a = np.arange(12.).reshape(4, 3)
+ ra = a.view(dtype=('f8,f8,f8')).squeeze()
+ mra = ra.view(MyA)
+
+ target = np.array([True, False, False, False], dtype=bool)
+ assert_equal(np.all(target == (mra == ra[0])), True)
+
+ def test_scalar_equal(self):
+ # Scalar comparisons should always work, without deprecation warnings.
+ # even when the ufunc fails.
+ a = np.array(0.)
+ b = np.array('a')
+ assert_(a != b)
+ assert_(b != a)
+ assert_(not (a == b))
+ assert_(not (b == a))
+
+ def test_NotImplemented_not_returned(self):
+ # See gh-5964 and gh-2091. Some of these functions are not operator
+ # related and were fixed for other reasons in the past.
+ binary_funcs = [
+ np.power, np.add, np.subtract, np.multiply, np.divide,
+ np.true_divide, np.floor_divide, np.bitwise_and, np.bitwise_or,
+ np.bitwise_xor, np.left_shift, np.right_shift, np.fmax,
+ np.fmin, np.fmod, np.hypot, np.logaddexp, np.logaddexp2,
+ np.maximum, np.minimum, np.mod,
+ np.greater, np.greater_equal, np.less, np.less_equal,
+ np.equal, np.not_equal]
+
+ a = np.array('1')
+ b = 1
+ c = np.array([1., 2.])
+ for f in binary_funcs:
+ assert_raises(TypeError, f, a, b)
+ assert_raises(TypeError, f, c, a)
+
+ @pytest.mark.parametrize("ufunc",
+ [np.logical_and, np.logical_or]) # logical_xor object loop is bad
+ @pytest.mark.parametrize("signature",
+ [(None, None, object), (object, None, None),
+ (None, object, None)])
+ def test_logical_ufuncs_object_signatures(self, ufunc, signature):
+ a = np.array([True, None, False], dtype=object)
+ res = ufunc(a, a, signature=signature)
+ assert res.dtype == object
+
+ @pytest.mark.parametrize("ufunc",
+ [np.logical_and, np.logical_or, np.logical_xor])
+ @pytest.mark.parametrize("signature",
+ [(bool, None, object), (object, None, bool),
+ (None, object, bool)])
+ def test_logical_ufuncs_mixed_object_signatures(self, ufunc, signature):
+ # Most mixed signatures fail (except those with bool out, e.g. `OO->?`)
+ a = np.array([True, None, False])
+ with pytest.raises(TypeError):
+ ufunc(a, a, signature=signature)
+
+ @pytest.mark.parametrize("ufunc",
+ [np.logical_and, np.logical_or, np.logical_xor])
+ def test_logical_ufuncs_support_anything(self, ufunc):
+ # The logical ufuncs support even input that can't be promoted:
+ a = np.array(b'1', dtype="V3")
+ c = np.array([1., 2.])
+ assert_array_equal(ufunc(a, c), ufunc([True, True], True))
+ assert ufunc.reduce(a) == True
+ # check that the output has no effect:
+ out = np.zeros(2, dtype=np.int32)
+ expected = ufunc([True, True], True).astype(out.dtype)
+ assert_array_equal(ufunc(a, c, out=out), expected)
+ out = np.zeros((), dtype=np.int32)
+ assert ufunc.reduce(a, out=out) == True
+ # Last check, test reduction when out and a match (the complexity here
+ # is that the "i,i->?" may seem right, but should not match.
+ a = np.array([3], dtype="i")
+ out = np.zeros((), dtype=a.dtype)
+ assert ufunc.reduce(a, out=out) == 1
+
+ @pytest.mark.parametrize("ufunc",
+ [np.logical_and, np.logical_or, np.logical_xor])
+ @pytest.mark.parametrize("dtype", ["S", "U"])
+ @pytest.mark.parametrize("values", [["1", "hi", "0"], ["", ""]])
+ def test_logical_ufuncs_supports_string(self, ufunc, dtype, values):
+ # note that values are either all true or all false
+ arr = np.array(values, dtype=dtype)
+ obj_arr = np.array(values, dtype=object)
+ res = ufunc(arr, arr)
+ expected = ufunc(obj_arr, obj_arr, dtype=bool)
+
+ assert_array_equal(res, expected)
+
+ res = ufunc.reduce(arr)
+ expected = ufunc.reduce(obj_arr, dtype=bool)
+ assert_array_equal(res, expected)
+
+ @pytest.mark.parametrize("ufunc",
+ [np.logical_and, np.logical_or, np.logical_xor])
+ def test_logical_ufuncs_out_cast_check(self, ufunc):
+ a = np.array('1')
+ c = np.array([1., 2.])
+ out = a.copy()
+ with pytest.raises(TypeError):
+ # It would be safe, but not equiv casting:
+ ufunc(a, c, out=out, casting="equiv")
+
+ def test_reducelike_byteorder_resolution(self):
+ # See gh-20699, byte-order changes need some extra care in the type
+ # resolution to make the following succeed:
+ arr_be = np.arange(10, dtype=">i8")
+ arr_le = np.arange(10, dtype="<i8")
+
+ assert np.add.reduce(arr_be) == np.add.reduce(arr_le)
+ assert_array_equal(np.add.accumulate(arr_be), np.add.accumulate(arr_le))
+ assert_array_equal(
+ np.add.reduceat(arr_be, [1]), np.add.reduceat(arr_le, [1]))
+
+ def test_reducelike_out_promotes(self):
+ # Check that the out argument to reductions is considered for
+ # promotion. See also gh-20455.
+ # Note that these paths could prefer `initial=` in the future and
+ # do not up-cast to the default integer for add and prod
+ arr = np.ones(1000, dtype=np.uint8)
+ out = np.zeros((), dtype=np.uint16)
+ assert np.add.reduce(arr, out=out) == 1000
+ arr[:10] = 2
+ assert np.multiply.reduce(arr, out=out) == 2**10
+
+ # For legacy dtypes, the signature currently has to be forced if `out=`
+ # is passed. The two paths below should differ, without `dtype=` the
+ # expected result should be: `np.prod(arr.astype("f8")).astype("f4")`!
+ arr = np.full(5, 2**25 - 1, dtype=np.int64)
+
+ # float32 and int64 promote to float64:
+ res = np.zeros((), dtype=np.float32)
+ # If `dtype=` is passed, the calculation is forced to float32:
+ single_res = np.zeros((), dtype=np.float32)
+ np.multiply.reduce(arr, out=single_res, dtype=np.float32)
+ assert single_res != res
+
+ def test_reducelike_output_needs_identical_cast(self):
+ # Checks the case where a simple byte-swap works, mainly tests that
+ # this is not rejected directly.
+ # (interesting because we require descriptor identity in reducelikes).
+ arr = np.ones(20, dtype="f8")
+ out = np.empty((), dtype=arr.dtype.newbyteorder())
+ expected = np.add.reduce(arr)
+ np.add.reduce(arr, out=out)
+ assert_array_equal(expected, out)
+ # Check reduceat:
+ out = np.empty(2, dtype=arr.dtype.newbyteorder())
+ expected = np.add.reduceat(arr, [0, 1])
+ np.add.reduceat(arr, [0, 1], out=out)
+ assert_array_equal(expected, out)
+ # And accumulate:
+ out = np.empty(arr.shape, dtype=arr.dtype.newbyteorder())
+ expected = np.add.accumulate(arr)
+ np.add.accumulate(arr, out=out)
+ assert_array_equal(expected, out)
+
+ def test_reduce_noncontig_output(self):
+ # Check that reduction deals with non-contiguous output arrays
+ # appropriately.
+ #
+ # gh-8036
+
+ x = np.arange(7 * 13 * 8, dtype=np.int16).reshape(7, 13, 8)
+ x = x[4:6, 1:11:6, 1:5].transpose(1, 2, 0)
+ y_base = np.arange(4 * 4, dtype=np.int16).reshape(4, 4)
+ y = y_base[::2, :]
+
+ y_base_copy = y_base.copy()
+
+ r0 = np.add.reduce(x, out=y.copy(), axis=2)
+ r1 = np.add.reduce(x, out=y, axis=2)
+
+ # The results should match, and y_base shouldn't get clobbered
+ assert_equal(r0, r1)
+ assert_equal(y_base[1, :], y_base_copy[1, :])
+ assert_equal(y_base[3, :], y_base_copy[3, :])
+
+ @pytest.mark.parametrize("with_cast", [True, False])
+ def test_reduceat_and_accumulate_out_shape_mismatch(self, with_cast):
+ # Should raise an error mentioning "shape" or "size"
+ arr = np.arange(5)
+ out = np.arange(3) # definitely wrong shape
+ if with_cast:
+ # If a cast is necessary on the output, we can be sure to use
+ # the generic NpyIter (non-fast) path.
+ out = out.astype(np.float64)
+
+ with pytest.raises(ValueError, match="(shape|size)"):
+ np.add.reduceat(arr, [0, 3], out=out)
+
+ with pytest.raises(ValueError, match="(shape|size)"):
+ np.add.accumulate(arr, out=out)
+
+ @pytest.mark.parametrize('out_shape',
+ [(), (1,), (3,), (1, 1), (1, 3), (4, 3)])
+ @pytest.mark.parametrize('keepdims', [True, False])
+ @pytest.mark.parametrize('f_reduce', [np.add.reduce, np.minimum.reduce])
+ def test_reduce_wrong_dimension_output(self, f_reduce, keepdims, out_shape):
+ # Test that we're not incorrectly broadcasting dimensions.
+ # See gh-15144 (failed for np.add.reduce previously).
+ a = np.arange(12.).reshape(4, 3)
+ out = np.empty(out_shape, a.dtype)
+
+ correct_out = f_reduce(a, axis=0, keepdims=keepdims)
+ if out_shape != correct_out.shape:
+ with assert_raises(ValueError):
+ f_reduce(a, axis=0, out=out, keepdims=keepdims)
+ else:
+ check = f_reduce(a, axis=0, out=out, keepdims=keepdims)
+ assert_(check is out)
+ assert_array_equal(check, correct_out)
+
+ def test_reduce_output_does_not_broadcast_input(self):
+ # Test that the output shape cannot broadcast an input dimension
+ # (it never can add dimensions, but it might expand an existing one)
+ a = np.ones((1, 10))
+ out_correct = (np.empty((1, 1)))
+ out_incorrect = np.empty((3, 1))
+ np.add.reduce(a, axis=-1, out=out_correct, keepdims=True)
+ np.add.reduce(a, axis=-1, out=out_correct[:, 0], keepdims=False)
+ with assert_raises(ValueError):
+ np.add.reduce(a, axis=-1, out=out_incorrect, keepdims=True)
+ with assert_raises(ValueError):
+ np.add.reduce(a, axis=-1, out=out_incorrect[:, 0], keepdims=False)
+
+ def test_reduce_output_subclass_ok(self):
+ class MyArr(np.ndarray):
+ pass
+
+ out = np.empty(())
+ np.add.reduce(np.ones(5), out=out) # no subclass, all fine
+ out = out.view(MyArr)
+ assert np.add.reduce(np.ones(5), out=out) is out
+ assert type(np.add.reduce(out)) is MyArr
+
+ def test_no_doc_string(self):
+ # gh-9337
+ assert_('\n' not in umt.inner1d_no_doc.__doc__)
+
+ def test_invalid_args(self):
+ # gh-7961
+ exc = pytest.raises(TypeError, np.sqrt, None)
+ # minimally check the exception text
+ assert exc.match('loop of ufunc does not support')
+
+ @pytest.mark.parametrize('nat', [np.datetime64('nat'), np.timedelta64('nat')])
+ def test_nat_is_not_finite(self, nat):
+ try:
+ assert not np.isfinite(nat)
+ except TypeError:
+ pass # ok, just not implemented
+
+ @pytest.mark.parametrize('nat', [np.datetime64('nat'), np.timedelta64('nat')])
+ def test_nat_is_nan(self, nat):
+ try:
+ assert np.isnan(nat)
+ except TypeError:
+ pass # ok, just not implemented
+
+ @pytest.mark.parametrize('nat', [np.datetime64('nat'), np.timedelta64('nat')])
+ def test_nat_is_not_inf(self, nat):
+ try:
+ assert not np.isinf(nat)
+ except TypeError:
+ pass # ok, just not implemented
+
+
+class TestGUFuncProcessCoreDims:
+
+ def test_conv1d_full_without_out(self):
+ x = np.arange(5.0)
+ y = np.arange(13.0)
+ w = umt.conv1d_full(x, y)
+ assert_equal(w, np.convolve(x, y, mode='full'))
+
+ def test_conv1d_full_with_out(self):
+ x = np.arange(5.0)
+ y = np.arange(13.0)
+ out = np.zeros(len(x) + len(y) - 1)
+ umt.conv1d_full(x, y, out=out)
+ assert_equal(out, np.convolve(x, y, mode='full'))
+
+ def test_conv1d_full_basic_broadcast(self):
+ # x.shape is (3, 6)
+ x = np.array([[1, 3, 0, -10, 2, 2],
+ [0, -1, 2, 2, 10, 4],
+ [8, 9, 10, 2, 23, 3]])
+ # y.shape is (2, 1, 7)
+ y = np.array([[[3, 4, 5, 20, 30, 40, 29]],
+ [[5, 6, 7, 10, 11, 12, -5]]])
+ # result should have shape (2, 3, 12)
+ result = umt.conv1d_full(x, y)
+ assert result.shape == (2, 3, 12)
+ for i in range(2):
+ for j in range(3):
+ assert_equal(result[i, j], np.convolve(x[j], y[i, 0]))
+
+ def test_bad_out_shape(self):
+ x = np.ones((1, 2))
+ y = np.ones((2, 3))
+ out = np.zeros((2, 3)) # Not the correct shape.
+ with pytest.raises(ValueError, match=r'does not equal m \+ n - 1'):
+ umt.conv1d_full(x, y, out=out)
+
+ def test_bad_input_both_inputs_length_zero(self):
+ with pytest.raises(ValueError,
+ match='both inputs have core dimension 0'):
+ umt.conv1d_full([], [])
+
+
+@pytest.mark.parametrize('ufunc', [getattr(np, x) for x in dir(np)
+ if isinstance(getattr(np, x), np.ufunc)])
+def test_ufunc_types(ufunc):
+ '''
+ Check all ufuncs that the correct type is returned. Avoid
+ object and boolean types since many operations are not defined for
+ for them.
+
+ Choose the shape so even dot and matmul will succeed
+ '''
+ for typ in ufunc.types:
+ # types is a list of strings like ii->i
+ if 'O' in typ or '?' in typ:
+ continue
+ inp, out = typ.split('->')
+ args = [np.ones((3, 3), t) for t in inp]
+ with warnings.catch_warnings(record=True):
+ warnings.filterwarnings("always")
+ res = ufunc(*args)
+ if isinstance(res, tuple):
+ outs = tuple(out)
+ assert len(res) == len(outs)
+ for r, t in zip(res, outs):
+ assert r.dtype == np.dtype(t)
+ else:
+ assert res.dtype == np.dtype(out)
+
+@pytest.mark.parametrize('ufunc', [getattr(np, x) for x in dir(np)
+ if isinstance(getattr(np, x), np.ufunc)])
+def test_ufunc_noncontiguous(ufunc):
+ '''
+ Check that contiguous and non-contiguous calls to ufuncs
+ have the same results for values in range(9)
+ '''
+ for typ in ufunc.types:
+ # types is a list of strings like ii->i
+ if any(set('O?mM') & set(typ)):
+ # bool, object, datetime are too irregular for this simple test
+ continue
+ inp, out = typ.split('->')
+ args_c = [np.empty((6, 6), t) for t in inp]
+ # non contiguous (2, 3 step on the two dimensions)
+ args_n = [np.empty((12, 18), t)[::2, ::3] for t in inp]
+ # alignment != itemsize is possible. So create an array with such
+ # an odd step manually.
+ args_o = []
+ for t in inp:
+ orig_dt = np.dtype(t)
+ off_dt = f"S{orig_dt.alignment}" # offset by alignment
+ dtype = np.dtype([("_", off_dt), ("t", orig_dt)], align=False)
+ args_o.append(np.empty((6, 6), dtype=dtype)["t"])
+ for a in args_c + args_n + args_o:
+ a.flat = range(1, 37)
+
+ with warnings.catch_warnings(record=True):
+ warnings.filterwarnings("always")
+ res_c = ufunc(*args_c)
+ res_n = ufunc(*args_n)
+ res_o = ufunc(*args_o)
+ if len(out) == 1:
+ res_c = (res_c,)
+ res_n = (res_n,)
+ res_o = (res_o,)
+ for c_ar, n_ar, o_ar in zip(res_c, res_n, res_o):
+ dt = c_ar.dtype
+ if np.issubdtype(dt, np.floating):
+ # for floating point results allow a small fuss in comparisons
+ # since different algorithms (libm vs. intrinsics) can be used
+ # for different input strides
+ res_eps = np.finfo(dt).eps
+ tol = 3 * res_eps
+ assert_allclose(res_c, res_n, atol=tol, rtol=tol)
+ assert_allclose(res_c, res_o, atol=tol, rtol=tol)
+ else:
+ assert_equal(c_ar, n_ar)
+ assert_equal(c_ar, o_ar)
+
+
+@pytest.mark.parametrize('ufunc', [np.sign, np.equal])
+def test_ufunc_warn_with_nan(ufunc):
+ # issue gh-15127
+ # test that calling certain ufuncs with a non-standard `nan` value does not
+ # emit a warning
+ # `b` holds a 64 bit signaling nan: the most significant bit of the
+ # significand is zero.
+ b = np.array([0x7ff0000000000001], 'i8').view('f8')
+ assert np.isnan(b)
+ if ufunc.nin == 1:
+ ufunc(b)
+ elif ufunc.nin == 2:
+ ufunc(b, b.copy())
+ else:
+ raise ValueError('ufunc with more than 2 inputs')
+
+
+@pytest.mark.skipif(not HAS_REFCOUNT, reason="Python lacks refcounts")
+def test_ufunc_out_casterrors():
+ # Tests that casting errors are correctly reported and buffers are
+ # cleared.
+ # The following array can be added to itself as an object array, but
+ # the result cannot be cast to an integer output:
+ value = 123 # relies on python cache (leak-check will still find it)
+ arr = np.array([value] * int(ncu.BUFSIZE * 1.5) +
+ ["string"] +
+ [value] * int(1.5 * ncu.BUFSIZE), dtype=object)
+ out = np.ones(len(arr), dtype=np.intp)
+
+ count = sys.getrefcount(value)
+ with pytest.raises(ValueError):
+ # Output casting failure:
+ np.add(arr, arr, out=out, casting="unsafe")
+
+ assert count == sys.getrefcount(value)
+ # output is unchanged after the error, this shows that the iteration
+ # was aborted (this is not necessarily defined behaviour)
+ assert out[-1] == 1
+
+ with pytest.raises(ValueError):
+ # Input casting failure:
+ np.add(arr, arr, out=out, dtype=np.intp, casting="unsafe")
+
+ assert count == sys.getrefcount(value)
+ # output is unchanged after the error, this shows that the iteration
+ # was aborted (this is not necessarily defined behaviour)
+ assert out[-1] == 1
+
+
+@pytest.mark.parametrize("bad_offset", [0, int(ncu.BUFSIZE * 1.5)])
+def test_ufunc_input_casterrors(bad_offset):
+ value = 123
+ arr = np.array([value] * bad_offset +
+ ["string"] +
+ [value] * int(1.5 * ncu.BUFSIZE), dtype=object)
+ with pytest.raises(ValueError):
+ # Force cast inputs, but the buffered cast of `arr` to intp fails:
+ np.add(arr, arr, dtype=np.intp, casting="unsafe")
+
+
+@pytest.mark.skipif(IS_WASM, reason="fp errors don't work in wasm")
+@pytest.mark.parametrize("bad_offset", [0, int(ncu.BUFSIZE * 1.5)])
+def test_ufunc_input_floatingpoint_error(bad_offset):
+ value = 123
+ arr = np.array([value] * bad_offset +
+ [np.nan] +
+ [value] * int(1.5 * ncu.BUFSIZE))
+ with np.errstate(invalid="raise"), pytest.raises(FloatingPointError):
+ # Force cast inputs, but the buffered cast of `arr` to intp fails:
+ np.add(arr, arr, dtype=np.intp, casting="unsafe")
+
+
+def test_trivial_loop_invalid_cast():
+ # This tests the fast-path "invalid cast", see gh-19904.
+ with pytest.raises(TypeError,
+ match="cast ufunc 'add' input 0"):
+ # the void dtype definitely cannot cast to double:
+ np.add(np.array(1, "i,i"), 3, signature="dd->d")
+
+
+@pytest.mark.skipif(not HAS_REFCOUNT, reason="Python lacks refcounts")
+@pytest.mark.parametrize("offset",
+ [0, ncu.BUFSIZE // 2, int(1.5 * ncu.BUFSIZE)])
+def test_reduce_casterrors(offset):
+ # Test reporting of casting errors in reductions, we test various
+ # offsets to where the casting error will occur, since these may occur
+ # at different places during the reduction procedure. For example
+ # the first item may be special.
+ value = 123 # relies on python cache (leak-check will still find it)
+ arr = np.array([value] * offset +
+ ["string"] +
+ [value] * int(1.5 * ncu.BUFSIZE), dtype=object)
+ out = np.array(-1, dtype=np.intp)
+
+ count = sys.getrefcount(value)
+ with pytest.raises(ValueError, match="invalid literal"):
+ # This is an unsafe cast, but we currently always allow that.
+ # Note that the double loop is picked, but the cast fails.
+ # `initial=None` disables the use of an identity here to test failures
+ # while copying the first values path (not used when identity exists).
+ np.add.reduce(arr, dtype=np.intp, out=out, initial=None)
+ assert count == sys.getrefcount(value)
+ # If an error occurred during casting, the operation is done at most until
+ # the error occurs (the result of which would be `value * offset`) and -1
+ # if the error happened immediately.
+ # This does not define behaviour, the output is invalid and thus undefined
+ assert out[()] < value * offset
+
+
+@pytest.mark.skipif(not HAS_REFCOUNT, reason="Python lacks refcounts")
+def test_reduction_no_reference_leak():
+ # Test that the generic reduction does not leak references.
+ # gh-29358
+ arr = np.array([1, 2, 3], dtype=np.int32)
+ count = sys.getrefcount(arr)
+
+ np.add.reduce(arr, dtype=np.int32, initial=0)
+ assert count == sys.getrefcount(arr)
+
+ np.add.accumulate(arr, dtype=np.int32)
+ assert count == sys.getrefcount(arr)
+
+ np.add.reduceat(arr, [0, 1], dtype=np.int32)
+ assert count == sys.getrefcount(arr)
+
+ # with `out=` the reference count is not changed
+ out = np.empty((), dtype=np.int32)
+ out_count = sys.getrefcount(out)
+
+ np.add.reduce(arr, dtype=np.int32, out=out, initial=0)
+ assert count == sys.getrefcount(arr)
+ assert out_count == sys.getrefcount(out)
+
+ out = np.empty(arr.shape, dtype=np.int32)
+ out_count = sys.getrefcount(out)
+
+ np.add.accumulate(arr, dtype=np.int32, out=out)
+ assert count == sys.getrefcount(arr)
+ assert out_count == sys.getrefcount(out)
+
+ out = np.empty((2,), dtype=np.int32)
+ out_count = sys.getrefcount(out)
+
+ np.add.reduceat(arr, [0, 1], dtype=np.int32, out=out)
+ assert count == sys.getrefcount(arr)
+ assert out_count == sys.getrefcount(out)
+
+
+def test_object_reduce_cleanup_on_failure():
+ # Test cleanup, including of the initial value (manually provided or not)
+ with pytest.raises(TypeError):
+ np.add.reduce([1, 2, None], initial=4)
+
+ with pytest.raises(TypeError):
+ np.add.reduce([1, 2, None])
+
+
+@pytest.mark.skipif(IS_WASM, reason="fp errors don't work in wasm")
+@pytest.mark.parametrize("method",
+ [np.add.accumulate, np.add.reduce,
+ pytest.param(lambda x: np.add.reduceat(x, [0]), id="reduceat"),
+ pytest.param(lambda x: np.log.at(x, [2]), id="at")])
+def test_ufunc_methods_floaterrors(method):
+ # adding inf and -inf (or log(-inf) creates an invalid float and warns
+ arr = np.array([np.inf, 0, -np.inf])
+ with np.errstate(all="warn"):
+ with pytest.warns(RuntimeWarning, match="invalid value"):
+ method(arr)
+
+ arr = np.array([np.inf, 0, -np.inf])
+ with np.errstate(all="raise"):
+ with pytest.raises(FloatingPointError):
+ method(arr)
+
+
+def _check_neg_zero(value):
+ if value != 0.0:
+ return False
+ if not np.signbit(value.real):
+ return False
+ if value.dtype.kind == "c":
+ return np.signbit(value.imag)
+ return True
+
+@pytest.mark.parametrize("dtype", np.typecodes["AllFloat"])
+def test_addition_negative_zero(dtype):
+ dtype = np.dtype(dtype)
+ if dtype.kind == "c":
+ neg_zero = dtype.type(complex(-0.0, -0.0))
+ else:
+ neg_zero = dtype.type(-0.0)
+
+ arr = np.array(neg_zero)
+ arr2 = np.array(neg_zero)
+
+ assert _check_neg_zero(arr + arr2)
+ # In-place ops may end up on a different path (reduce path) see gh-21211
+ arr += arr2
+ assert _check_neg_zero(arr)
+
+
+@pytest.mark.parametrize("dtype", np.typecodes["AllFloat"])
+@pytest.mark.parametrize("use_initial", [True, False])
+def test_addition_reduce_negative_zero(dtype, use_initial):
+ dtype = np.dtype(dtype)
+ if dtype.kind == "c":
+ neg_zero = dtype.type(complex(-0.0, -0.0))
+ else:
+ neg_zero = dtype.type(-0.0)
+
+ kwargs = {}
+ if use_initial:
+ kwargs["initial"] = neg_zero
+ else:
+ pytest.xfail("-0. propagation in sum currently requires initial")
+
+ # Test various length, in case SIMD paths or chunking play a role.
+ # 150 extends beyond the pairwise blocksize; probably not important.
+ for i in range(150):
+ arr = np.array([neg_zero] * i, dtype=dtype)
+ res = np.sum(arr, **kwargs)
+ if i > 0 or use_initial:
+ assert _check_neg_zero(res)
+ else:
+ # `sum([])` should probably be 0.0 and not -0.0 like `sum([-0.0])`
+ assert not np.signbit(res.real)
+ assert not np.signbit(res.imag)
+
+
+@pytest.mark.parametrize(["dt1", "dt2"],
+ [("S", "U"), ("U", "S"), ("S", "d"), ("S", "V"), ("U", "l")])
+def test_addition_string_types(dt1, dt2):
+ arr1 = np.array([1234234], dtype=dt1)
+ arr2 = np.array([b"423"], dtype=dt2)
+ with pytest.raises(np._core._exceptions.UFuncTypeError) as exc:
+ np.add(arr1, arr2)
+
+
+@pytest.mark.parametrize("order1,order2",
+ [(">", ">"), ("<", "<"), (">", "<"), ("<", ">")])
+def test_addition_unicode_inverse_byte_order(order1, order2):
+ element = 'abcd'
+ arr1 = np.array([element], dtype=f"{order1}U4")
+ arr2 = np.array([element], dtype=f"{order2}U4")
+ result = arr1 + arr2
+ assert result == 2 * element
+
+
+@pytest.mark.parametrize("dtype", [np.int8, np.int16, np.int32, np.int64])
+def test_find_non_long_args(dtype):
+ element = 'abcd'
+ start = dtype(0)
+ end = dtype(len(element))
+ arr = np.array([element])
+ result = np._core.umath.find(arr, "a", start, end)
+ assert result.dtype == np.dtype("intp")
+ assert result == 0
+
+
+def test_find_access_past_buffer():
+ # This checks that no read past the string buffer occurs in
+ # string_fastsearch.h. The buffer class makes sure this is checked.
+ # To see it in action, you can remove the checks in the buffer and
+ # this test will produce an 'Invalid read' if run under valgrind.
+ arr = np.array([b'abcd', b'ebcd'])
+ result = np._core.umath.find(arr, b'cde', 0, np.iinfo(np.int64).max)
+ assert np.all(result == -1)
+
+
+class TestLowlevelAPIAccess:
+ def test_resolve_dtypes_basic(self):
+ # Basic test for dtype resolution:
+ i4 = np.dtype("i4")
+ f4 = np.dtype("f4")
+ f8 = np.dtype("f8")
+
+ r = np.add.resolve_dtypes((i4, f4, None))
+ assert r == (f8, f8, f8)
+
+ # Signature uses the same logic to parse as ufunc (less strict)
+ # the following is "same-kind" casting so works:
+ r = np.add.resolve_dtypes((
+ i4, i4, None), signature=(None, None, "f4"))
+ assert r == (f4, f4, f4)
+
+ # Check NEP 50 "weak" promotion also:
+ r = np.add.resolve_dtypes((f4, int, None))
+ assert r == (f4, f4, f4)
+
+ with pytest.raises(TypeError):
+ np.add.resolve_dtypes((i4, f4, None), casting="no")
+
+ def test_resolve_dtypes_comparison(self):
+ i4 = np.dtype("i4")
+ i8 = np.dtype("i8")
+ b = np.dtype("?")
+ r = np.equal.resolve_dtypes((i4, i8, None))
+ assert r == (i8, i8, b)
+
+ def test_weird_dtypes(self):
+ S0 = np.dtype("S0")
+ # S0 is often converted by NumPy to S1, but not here:
+ r = np.equal.resolve_dtypes((S0, S0, None))
+ assert r == (S0, S0, np.dtype(bool))
+
+ # Subarray dtypes are weird and may not work fully, we preserve them
+ # leading to a TypeError (currently no equal loop for void/structured)
+ dts = np.dtype("10i")
+ with pytest.raises(TypeError):
+ np.equal.resolve_dtypes((dts, dts, None))
+
+ def test_resolve_dtypes_reduction(self):
+ i2 = np.dtype("i2")
+ default_int_ = np.dtype(np.int_)
+ # Check special addition resolution:
+ res = np.add.resolve_dtypes((None, i2, None), reduction=True)
+ assert res == (default_int_, default_int_, default_int_)
+
+ def test_resolve_dtypes_reduction_no_output(self):
+ i4 = np.dtype("i4")
+ with pytest.raises(TypeError):
+ # May be allowable at some point?
+ np.add.resolve_dtypes((i4, i4, i4), reduction=True)
+
+ @pytest.mark.parametrize("dtypes", [
+ (np.dtype("i"), np.dtype("i")),
+ (None, np.dtype("i"), np.dtype("f")),
+ (np.dtype("i"), None, np.dtype("f")),
+ ("i4", "i4", None)])
+ def test_resolve_dtypes_errors(self, dtypes):
+ with pytest.raises(TypeError):
+ np.add.resolve_dtypes(dtypes)
+
+ def test_resolve_dtypes_reduction_errors(self):
+ i2 = np.dtype("i2")
+
+ with pytest.raises(TypeError):
+ np.add.resolve_dtypes((None, i2, i2))
+
+ with pytest.raises(TypeError):
+ np.add.signature((None, None, "i4"))
+
+ @pytest.mark.skipif(not hasattr(ct, "pythonapi"),
+ reason="`ctypes.pythonapi` required for capsule unpacking.")
+ def test_loop_access(self):
+ # This is a basic test for the full strided loop access
+ data_t = ct.c_char_p * 2
+ dim_t = ct.c_ssize_t * 1
+ strides_t = ct.c_ssize_t * 2
+ strided_loop_t = ct.CFUNCTYPE(
+ ct.c_int, ct.c_void_p, data_t, dim_t, strides_t, ct.c_void_p)
+
+ class call_info_t(ct.Structure):
+ _fields_ = [
+ ("strided_loop", strided_loop_t),
+ ("context", ct.c_void_p),
+ ("auxdata", ct.c_void_p),
+ ("requires_pyapi", ct.c_byte),
+ ("no_floatingpoint_errors", ct.c_byte),
+ ]
+
+ i4 = np.dtype("i4")
+ dt, call_info_obj = np.negative._resolve_dtypes_and_context((i4, i4))
+ assert dt == (i4, i4) # can be used without casting
+
+ # Fill in the rest of the information:
+ np.negative._get_strided_loop(call_info_obj)
+
+ ct.pythonapi.PyCapsule_GetPointer.restype = ct.c_void_p
+ call_info = ct.pythonapi.PyCapsule_GetPointer(
+ ct.py_object(call_info_obj),
+ ct.c_char_p(b"numpy_1.24_ufunc_call_info"))
+
+ call_info = ct.cast(call_info, ct.POINTER(call_info_t)).contents
+
+ arr = np.arange(10, dtype=i4)
+ call_info.strided_loop(
+ call_info.context,
+ data_t(arr.ctypes.data, arr.ctypes.data),
+ arr.ctypes.shape, # is a C-array with 10 here
+ strides_t(arr.ctypes.strides[0], arr.ctypes.strides[0]),
+ call_info.auxdata)
+
+ # We just directly called the negative inner-loop in-place:
+ assert_array_equal(arr, -np.arange(10, dtype=i4))
+
+ @pytest.mark.parametrize("strides", [1, (1, 2, 3), (1, "2")])
+ def test__get_strided_loop_errors_bad_strides(self, strides):
+ i4 = np.dtype("i4")
+ dt, call_info = np.negative._resolve_dtypes_and_context((i4, i4))
+
+ with pytest.raises(TypeError, match="fixed_strides.*tuple.*or None"):
+ np.negative._get_strided_loop(call_info, fixed_strides=strides)
+
+ def test__get_strided_loop_errors_bad_call_info(self):
+ i4 = np.dtype("i4")
+ dt, call_info = np.negative._resolve_dtypes_and_context((i4, i4))
+
+ with pytest.raises(ValueError, match="PyCapsule"):
+ np.negative._get_strided_loop("not the capsule!")
+
+ with pytest.raises(TypeError, match=".*incompatible context"):
+ np.add._get_strided_loop(call_info)
+
+ np.negative._get_strided_loop(call_info)
+ with pytest.raises(TypeError):
+ # cannot call it a second time:
+ np.negative._get_strided_loop(call_info)
+
+ def test_long_arrays(self):
+ t = np.zeros((1029, 917), dtype=np.single)
+ t[0][0] = 1
+ t[28][414] = 1
+ tc = np.cos(t)
+ assert_equal(tc[0][0], tc[28][414])
diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_umath.py b/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_umath.py
new file mode 100644
index 0000000..13e139d
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_umath.py
@@ -0,0 +1,4916 @@
+import fnmatch
+import itertools
+import operator
+import platform
+import sys
+import warnings
+from collections import namedtuple
+from fractions import Fraction
+from functools import reduce
+
+import pytest
+
+import numpy as np
+import numpy._core.umath as ncu
+from numpy._core import _umath_tests as ncu_tests
+from numpy._core import sctypes
+from numpy.testing import (
+ HAS_REFCOUNT,
+ IS_MUSL,
+ IS_PYPY,
+ IS_WASM,
+ _gen_alignment_data,
+ assert_,
+ assert_allclose,
+ assert_almost_equal,
+ assert_array_almost_equal,
+ assert_array_almost_equal_nulp,
+ assert_array_equal,
+ assert_array_max_ulp,
+ assert_equal,
+ assert_no_warnings,
+ assert_raises,
+ assert_raises_regex,
+ suppress_warnings,
+)
+from numpy.testing._private.utils import _glibc_older_than
+
+UFUNCS = [obj for obj in np._core.umath.__dict__.values()
+ if isinstance(obj, np.ufunc)]
+
+UFUNCS_UNARY = [
+ uf for uf in UFUNCS if uf.nin == 1
+]
+UFUNCS_UNARY_FP = [
+ uf for uf in UFUNCS_UNARY if 'f->f' in uf.types
+]
+
+UFUNCS_BINARY = [
+ uf for uf in UFUNCS if uf.nin == 2
+]
+UFUNCS_BINARY_ACC = [
+ uf for uf in UFUNCS_BINARY if hasattr(uf, "accumulate") and uf.nout == 1
+]
+
+def interesting_binop_operands(val1, val2, dtype):
+ """
+ Helper to create "interesting" operands to cover common code paths:
+ * scalar inputs
+ * only first "values" is an array (e.g. scalar division fast-paths)
+ * Longer array (SIMD) placing the value of interest at different positions
+ * Oddly strided arrays which may not be SIMD compatible
+
+ It does not attempt to cover unaligned access or mixed dtypes.
+ These are normally handled by the casting/buffering machinery.
+
+ This is not a fixture (currently), since I believe a fixture normally
+ only yields once?
+ """
+ fill_value = 1 # could be a parameter, but maybe not an optional one?
+
+ arr1 = np.full(10003, dtype=dtype, fill_value=fill_value)
+ arr2 = np.full(10003, dtype=dtype, fill_value=fill_value)
+
+ arr1[0] = val1
+ arr2[0] = val2
+
+ extractor = lambda res: res
+ yield arr1[0], arr2[0], extractor, "scalars"
+
+ extractor = lambda res: res
+ yield arr1[0, ...], arr2[0, ...], extractor, "scalar-arrays"
+
+ # reset array values to fill_value:
+ arr1[0] = fill_value
+ arr2[0] = fill_value
+
+ for pos in [0, 1, 2, 3, 4, 5, -1, -2, -3, -4]:
+ arr1[pos] = val1
+ arr2[pos] = val2
+
+ extractor = lambda res: res[pos]
+ yield arr1, arr2, extractor, f"off-{pos}"
+ yield arr1, arr2[pos], extractor, f"off-{pos}-with-scalar"
+
+ arr1[pos] = fill_value
+ arr2[pos] = fill_value
+
+ for stride in [-1, 113]:
+ op1 = arr1[::stride]
+ op2 = arr2[::stride]
+ op1[10] = val1
+ op2[10] = val2
+
+ extractor = lambda res: res[10]
+ yield op1, op2, extractor, f"stride-{stride}"
+
+ op1[10] = fill_value
+ op2[10] = fill_value
+
+
+def on_powerpc():
+ """ True if we are running on a Power PC platform."""
+ return platform.processor() == 'powerpc' or \
+ platform.machine().startswith('ppc')
+
+
+def bad_arcsinh():
+ """The blocklisted trig functions are not accurate on aarch64/PPC for
+ complex256. Rather than dig through the actual problem skip the
+ test. This should be fixed when we can move past glibc2.17
+ which is the version in manylinux2014
+ """
+ if platform.machine() == 'aarch64':
+ x = 1.78e-10
+ elif on_powerpc():
+ x = 2.16e-10
+ else:
+ return False
+ v1 = np.arcsinh(np.float128(x))
+ v2 = np.arcsinh(np.complex256(x)).real
+ # The eps for float128 is 1-e33, so this is way bigger
+ return abs((v1 / v2) - 1.0) > 1e-23
+
+
+class _FilterInvalids:
+ def setup_method(self):
+ self.olderr = np.seterr(invalid='ignore')
+
+ def teardown_method(self):
+ np.seterr(**self.olderr)
+
+
+class TestConstants:
+ def test_pi(self):
+ assert_allclose(ncu.pi, 3.141592653589793, 1e-15)
+
+ def test_e(self):
+ assert_allclose(ncu.e, 2.718281828459045, 1e-15)
+
+ def test_euler_gamma(self):
+ assert_allclose(ncu.euler_gamma, 0.5772156649015329, 1e-15)
+
+
+class TestOut:
+ def test_out_subok(self):
+ for subok in (True, False):
+ a = np.array(0.5)
+ o = np.empty(())
+
+ r = np.add(a, 2, o, subok=subok)
+ assert_(r is o)
+ r = np.add(a, 2, out=o, subok=subok)
+ assert_(r is o)
+ r = np.add(a, 2, out=(o,), subok=subok)
+ assert_(r is o)
+
+ d = np.array(5.7)
+ o1 = np.empty(())
+ o2 = np.empty((), dtype=np.int32)
+
+ r1, r2 = np.frexp(d, o1, None, subok=subok)
+ assert_(r1 is o1)
+ r1, r2 = np.frexp(d, None, o2, subok=subok)
+ assert_(r2 is o2)
+ r1, r2 = np.frexp(d, o1, o2, subok=subok)
+ assert_(r1 is o1)
+ assert_(r2 is o2)
+
+ r1, r2 = np.frexp(d, out=(o1, None), subok=subok)
+ assert_(r1 is o1)
+ r1, r2 = np.frexp(d, out=(None, o2), subok=subok)
+ assert_(r2 is o2)
+ r1, r2 = np.frexp(d, out=(o1, o2), subok=subok)
+ assert_(r1 is o1)
+ assert_(r2 is o2)
+
+ with assert_raises(TypeError):
+ # Out argument must be tuple, since there are multiple outputs.
+ r1, r2 = np.frexp(d, out=o1, subok=subok)
+
+ assert_raises(TypeError, np.add, a, 2, o, o, subok=subok)
+ assert_raises(TypeError, np.add, a, 2, o, out=o, subok=subok)
+ assert_raises(TypeError, np.add, a, 2, None, out=o, subok=subok)
+ assert_raises(ValueError, np.add, a, 2, out=(o, o), subok=subok)
+ assert_raises(ValueError, np.add, a, 2, out=(), subok=subok)
+ assert_raises(TypeError, np.add, a, 2, [], subok=subok)
+ assert_raises(TypeError, np.add, a, 2, out=[], subok=subok)
+ assert_raises(TypeError, np.add, a, 2, out=([],), subok=subok)
+ o.flags.writeable = False
+ assert_raises(ValueError, np.add, a, 2, o, subok=subok)
+ assert_raises(ValueError, np.add, a, 2, out=o, subok=subok)
+ assert_raises(ValueError, np.add, a, 2, out=(o,), subok=subok)
+
+ def test_out_wrap_subok(self):
+ class ArrayWrap(np.ndarray):
+ __array_priority__ = 10
+
+ def __new__(cls, arr):
+ return np.asarray(arr).view(cls).copy()
+
+ def __array_wrap__(self, arr, context=None, return_scalar=False):
+ return arr.view(type(self))
+
+ for subok in (True, False):
+ a = ArrayWrap([0.5])
+
+ r = np.add(a, 2, subok=subok)
+ if subok:
+ assert_(isinstance(r, ArrayWrap))
+ else:
+ assert_(type(r) == np.ndarray)
+
+ r = np.add(a, 2, None, subok=subok)
+ if subok:
+ assert_(isinstance(r, ArrayWrap))
+ else:
+ assert_(type(r) == np.ndarray)
+
+ r = np.add(a, 2, out=None, subok=subok)
+ if subok:
+ assert_(isinstance(r, ArrayWrap))
+ else:
+ assert_(type(r) == np.ndarray)
+
+ r = np.add(a, 2, out=(None,), subok=subok)
+ if subok:
+ assert_(isinstance(r, ArrayWrap))
+ else:
+ assert_(type(r) == np.ndarray)
+
+ d = ArrayWrap([5.7])
+ o1 = np.empty((1,))
+ o2 = np.empty((1,), dtype=np.int32)
+
+ r1, r2 = np.frexp(d, o1, subok=subok)
+ if subok:
+ assert_(isinstance(r2, ArrayWrap))
+ else:
+ assert_(type(r2) == np.ndarray)
+
+ r1, r2 = np.frexp(d, o1, None, subok=subok)
+ if subok:
+ assert_(isinstance(r2, ArrayWrap))
+ else:
+ assert_(type(r2) == np.ndarray)
+
+ r1, r2 = np.frexp(d, None, o2, subok=subok)
+ if subok:
+ assert_(isinstance(r1, ArrayWrap))
+ else:
+ assert_(type(r1) == np.ndarray)
+
+ r1, r2 = np.frexp(d, out=(o1, None), subok=subok)
+ if subok:
+ assert_(isinstance(r2, ArrayWrap))
+ else:
+ assert_(type(r2) == np.ndarray)
+
+ r1, r2 = np.frexp(d, out=(None, o2), subok=subok)
+ if subok:
+ assert_(isinstance(r1, ArrayWrap))
+ else:
+ assert_(type(r1) == np.ndarray)
+
+ with assert_raises(TypeError):
+ # Out argument must be tuple, since there are multiple outputs.
+ r1, r2 = np.frexp(d, out=o1, subok=subok)
+
+ @pytest.mark.skipif(not HAS_REFCOUNT, reason="Python lacks refcounts")
+ def test_out_wrap_no_leak(self):
+ # Regression test for gh-26545
+ class ArrSubclass(np.ndarray):
+ pass
+
+ arr = np.arange(10).view(ArrSubclass)
+ orig_refcount = sys.getrefcount(arr)
+ arr *= 1
+ assert sys.getrefcount(arr) == orig_refcount
+
+
+class TestComparisons:
+ import operator
+
+ @pytest.mark.parametrize('dtype', sctypes['uint'] + sctypes['int'] +
+ sctypes['float'] + [np.bool])
+ @pytest.mark.parametrize('py_comp,np_comp', [
+ (operator.lt, np.less),
+ (operator.le, np.less_equal),
+ (operator.gt, np.greater),
+ (operator.ge, np.greater_equal),
+ (operator.eq, np.equal),
+ (operator.ne, np.not_equal)
+ ])
+ def test_comparison_functions(self, dtype, py_comp, np_comp):
+ # Initialize input arrays
+ if dtype == np.bool:
+ a = np.random.choice(a=[False, True], size=1000)
+ b = np.random.choice(a=[False, True], size=1000)
+ scalar = True
+ else:
+ a = np.random.randint(low=1, high=10, size=1000).astype(dtype)
+ b = np.random.randint(low=1, high=10, size=1000).astype(dtype)
+ scalar = 5
+ np_scalar = np.dtype(dtype).type(scalar)
+ a_lst = a.tolist()
+ b_lst = b.tolist()
+
+ # (Binary) Comparison (x1=array, x2=array)
+ comp_b = np_comp(a, b).view(np.uint8)
+ comp_b_list = [int(py_comp(x, y)) for x, y in zip(a_lst, b_lst)]
+
+ # (Scalar1) Comparison (x1=scalar, x2=array)
+ comp_s1 = np_comp(np_scalar, b).view(np.uint8)
+ comp_s1_list = [int(py_comp(scalar, x)) for x in b_lst]
+
+ # (Scalar2) Comparison (x1=array, x2=scalar)
+ comp_s2 = np_comp(a, np_scalar).view(np.uint8)
+ comp_s2_list = [int(py_comp(x, scalar)) for x in a_lst]
+
+ # Sequence: Binary, Scalar1 and Scalar2
+ assert_(comp_b.tolist() == comp_b_list,
+ f"Failed comparison ({py_comp.__name__})")
+ assert_(comp_s1.tolist() == comp_s1_list,
+ f"Failed comparison ({py_comp.__name__})")
+ assert_(comp_s2.tolist() == comp_s2_list,
+ f"Failed comparison ({py_comp.__name__})")
+
+ def test_ignore_object_identity_in_equal(self):
+ # Check comparing identical objects whose comparison
+ # is not a simple boolean, e.g., arrays that are compared elementwise.
+ a = np.array([np.array([1, 2, 3]), None], dtype=object)
+ assert_raises(ValueError, np.equal, a, a)
+
+ # Check error raised when comparing identical non-comparable objects.
+ class FunkyType:
+ def __eq__(self, other):
+ raise TypeError("I won't compare")
+
+ a = np.array([FunkyType()])
+ assert_raises(TypeError, np.equal, a, a)
+
+ # Check identity doesn't override comparison mismatch.
+ a = np.array([np.nan], dtype=object)
+ assert_equal(np.equal(a, a), [False])
+
+ def test_ignore_object_identity_in_not_equal(self):
+ # Check comparing identical objects whose comparison
+ # is not a simple boolean, e.g., arrays that are compared elementwise.
+ a = np.array([np.array([1, 2, 3]), None], dtype=object)
+ assert_raises(ValueError, np.not_equal, a, a)
+
+ # Check error raised when comparing identical non-comparable objects.
+ class FunkyType:
+ def __ne__(self, other):
+ raise TypeError("I won't compare")
+
+ a = np.array([FunkyType()])
+ assert_raises(TypeError, np.not_equal, a, a)
+
+ # Check identity doesn't override comparison mismatch.
+ a = np.array([np.nan], dtype=object)
+ assert_equal(np.not_equal(a, a), [True])
+
+ def test_error_in_equal_reduce(self):
+ # gh-20929
+ # make sure np.equal.reduce raises a TypeError if an array is passed
+ # without specifying the dtype
+ a = np.array([0, 0])
+ assert_equal(np.equal.reduce(a, dtype=bool), True)
+ assert_raises(TypeError, np.equal.reduce, a)
+
+ def test_object_dtype(self):
+ assert np.equal(1, [1], dtype=object).dtype == object
+ assert np.equal(1, [1], signature=(None, None, "O")).dtype == object
+
+ def test_object_nonbool_dtype_error(self):
+ # bool output dtype is fine of course:
+ assert np.equal(1, [1], dtype=bool).dtype == bool
+
+ # but the following are examples do not have a loop:
+ with pytest.raises(TypeError, match="No loop matching"):
+ np.equal(1, 1, dtype=np.int64)
+
+ with pytest.raises(TypeError, match="No loop matching"):
+ np.equal(1, 1, sig=(None, None, "l"))
+
+ @pytest.mark.parametrize("dtypes", ["qQ", "Qq"])
+ @pytest.mark.parametrize('py_comp, np_comp', [
+ (operator.lt, np.less),
+ (operator.le, np.less_equal),
+ (operator.gt, np.greater),
+ (operator.ge, np.greater_equal),
+ (operator.eq, np.equal),
+ (operator.ne, np.not_equal)
+ ])
+ @pytest.mark.parametrize("vals", [(2**60, 2**60 + 1), (2**60 + 1, 2**60)])
+ def test_large_integer_direct_comparison(
+ self, dtypes, py_comp, np_comp, vals):
+ # Note that float(2**60) + 1 == float(2**60).
+ a1 = np.array([2**60], dtype=dtypes[0])
+ a2 = np.array([2**60 + 1], dtype=dtypes[1])
+ expected = py_comp(2**60, 2**60 + 1)
+
+ assert py_comp(a1, a2) == expected
+ assert np_comp(a1, a2) == expected
+ # Also check the scalars:
+ s1 = a1[0]
+ s2 = a2[0]
+ assert isinstance(s1, np.integer)
+ assert isinstance(s2, np.integer)
+ # The Python operator here is mainly interesting:
+ assert py_comp(s1, s2) == expected
+ assert np_comp(s1, s2) == expected
+
+ @pytest.mark.parametrize("dtype", np.typecodes['UnsignedInteger'])
+ @pytest.mark.parametrize('py_comp_func, np_comp_func', [
+ (operator.lt, np.less),
+ (operator.le, np.less_equal),
+ (operator.gt, np.greater),
+ (operator.ge, np.greater_equal),
+ (operator.eq, np.equal),
+ (operator.ne, np.not_equal)
+ ])
+ @pytest.mark.parametrize("flip", [True, False])
+ def test_unsigned_signed_direct_comparison(
+ self, dtype, py_comp_func, np_comp_func, flip):
+ if flip:
+ py_comp = lambda x, y: py_comp_func(y, x)
+ np_comp = lambda x, y: np_comp_func(y, x)
+ else:
+ py_comp = py_comp_func
+ np_comp = np_comp_func
+
+ arr = np.array([np.iinfo(dtype).max], dtype=dtype)
+ expected = py_comp(int(arr[0]), -1)
+
+ assert py_comp(arr, -1) == expected
+ assert np_comp(arr, -1) == expected
+
+ scalar = arr[0]
+ assert isinstance(scalar, np.integer)
+ # The Python operator here is mainly interesting:
+ assert py_comp(scalar, -1) == expected
+ assert np_comp(scalar, -1) == expected
+
+
+class TestAdd:
+ def test_reduce_alignment(self):
+ # gh-9876
+ # make sure arrays with weird strides work with the optimizations in
+ # pairwise_sum_@TYPE@. On x86, the 'b' field will count as aligned at a
+ # 4 byte offset, even though its itemsize is 8.
+ a = np.zeros(2, dtype=[('a', np.int32), ('b', np.float64)])
+ a['a'] = -1
+ assert_equal(a['b'].sum(), 0)
+
+
+class TestDivision:
+ def test_division_int(self):
+ # int division should follow Python
+ x = np.array([5, 10, 90, 100, -5, -10, -90, -100, -120])
+ if 5 / 10 == 0.5:
+ assert_equal(x / 100, [0.05, 0.1, 0.9, 1,
+ -0.05, -0.1, -0.9, -1, -1.2])
+ else:
+ assert_equal(x / 100, [0, 0, 0, 1, -1, -1, -1, -1, -2])
+ assert_equal(x // 100, [0, 0, 0, 1, -1, -1, -1, -1, -2])
+ assert_equal(x % 100, [5, 10, 90, 0, 95, 90, 10, 0, 80])
+
+ @pytest.mark.skipif(IS_WASM, reason="fp errors don't work in wasm")
+ @pytest.mark.parametrize("dtype,ex_val", itertools.product(
+ sctypes['int'] + sctypes['uint'], (
+ (
+ # dividend
+ "np.array(range(fo.max-lsize, fo.max)).astype(dtype),"
+ # divisors
+ "np.arange(lsize).astype(dtype),"
+ # scalar divisors
+ "range(15)"
+ ),
+ (
+ # dividend
+ "np.arange(fo.min, fo.min+lsize).astype(dtype),"
+ # divisors
+ "np.arange(lsize//-2, lsize//2).astype(dtype),"
+ # scalar divisors
+ "range(fo.min, fo.min + 15)"
+ ), (
+ # dividend
+ "np.array(range(fo.max-lsize, fo.max)).astype(dtype),"
+ # divisors
+ "np.arange(lsize).astype(dtype),"
+ # scalar divisors
+ "[1,3,9,13,neg, fo.min+1, fo.min//2, fo.max//3, fo.max//4]"
+ )
+ )
+ ))
+ def test_division_int_boundary(self, dtype, ex_val):
+ fo = np.iinfo(dtype)
+ neg = -1 if fo.min < 0 else 1
+ # Large enough to test SIMD loops and remainder elements
+ lsize = 512 + 7
+ a, b, divisors = eval(ex_val)
+ a_lst, b_lst = a.tolist(), b.tolist()
+
+ c_div = lambda n, d: (
+ 0 if d == 0 else (
+ fo.min if (n and n == fo.min and d == -1) else n // d
+ )
+ )
+ with np.errstate(divide='ignore'):
+ ac = a.copy()
+ ac //= b
+ div_ab = a // b
+ div_lst = [c_div(x, y) for x, y in zip(a_lst, b_lst)]
+
+ msg = "Integer arrays floor division check (//)"
+ assert all(div_ab == div_lst), msg
+ msg_eq = "Integer arrays floor division check (//=)"
+ assert all(ac == div_lst), msg_eq
+
+ for divisor in divisors:
+ ac = a.copy()
+ with np.errstate(divide='ignore', over='ignore'):
+ div_a = a // divisor
+ ac //= divisor
+ div_lst = [c_div(i, divisor) for i in a_lst]
+
+ assert all(div_a == div_lst), msg
+ assert all(ac == div_lst), msg_eq
+
+ with np.errstate(divide='raise', over='raise'):
+ if 0 in b:
+ # Verify overflow case
+ with pytest.raises(FloatingPointError,
+ match="divide by zero encountered in floor_divide"):
+ a // b
+ else:
+ a // b
+ if fo.min and fo.min in a:
+ with pytest.raises(FloatingPointError,
+ match='overflow encountered in floor_divide'):
+ a // -1
+ elif fo.min:
+ a // -1
+ with pytest.raises(FloatingPointError,
+ match="divide by zero encountered in floor_divide"):
+ a // 0
+ with pytest.raises(FloatingPointError,
+ match="divide by zero encountered in floor_divide"):
+ ac = a.copy()
+ ac //= 0
+
+ np.array([], dtype=dtype) // 0
+
+ @pytest.mark.skipif(IS_WASM, reason="fp errors don't work in wasm")
+ @pytest.mark.parametrize("dtype,ex_val", itertools.product(
+ sctypes['int'] + sctypes['uint'], (
+ "np.array([fo.max, 1, 2, 1, 1, 2, 3], dtype=dtype)",
+ "np.array([fo.min, 1, -2, 1, 1, 2, -3]).astype(dtype)",
+ "np.arange(fo.min, fo.min+(100*10), 10, dtype=dtype)",
+ "np.array(range(fo.max-(100*7), fo.max, 7)).astype(dtype)",
+ )
+ ))
+ def test_division_int_reduce(self, dtype, ex_val):
+ fo = np.iinfo(dtype)
+ a = eval(ex_val)
+ lst = a.tolist()
+ c_div = lambda n, d: (
+ 0 if d == 0 or (n and n == fo.min and d == -1) else n // d
+ )
+
+ with np.errstate(divide='ignore'):
+ div_a = np.floor_divide.reduce(a)
+ div_lst = reduce(c_div, lst)
+ msg = "Reduce floor integer division check"
+ assert div_a == div_lst, msg
+
+ with np.errstate(divide='raise', over='raise'):
+ with pytest.raises(FloatingPointError,
+ match="divide by zero encountered in reduce"):
+ np.floor_divide.reduce(np.arange(-100, 100).astype(dtype))
+ if fo.min:
+ with pytest.raises(FloatingPointError,
+ match='overflow encountered in reduce'):
+ np.floor_divide.reduce(
+ np.array([fo.min, 1, -1], dtype=dtype)
+ )
+
+ @pytest.mark.parametrize(
+ "dividend,divisor,quotient",
+ [(np.timedelta64(2, 'Y'), np.timedelta64(2, 'M'), 12),
+ (np.timedelta64(2, 'Y'), np.timedelta64(-2, 'M'), -12),
+ (np.timedelta64(-2, 'Y'), np.timedelta64(2, 'M'), -12),
+ (np.timedelta64(-2, 'Y'), np.timedelta64(-2, 'M'), 12),
+ (np.timedelta64(2, 'M'), np.timedelta64(-2, 'Y'), -1),
+ (np.timedelta64(2, 'Y'), np.timedelta64(0, 'M'), 0),
+ (np.timedelta64(2, 'Y'), 2, np.timedelta64(1, 'Y')),
+ (np.timedelta64(2, 'Y'), -2, np.timedelta64(-1, 'Y')),
+ (np.timedelta64(-2, 'Y'), 2, np.timedelta64(-1, 'Y')),
+ (np.timedelta64(-2, 'Y'), -2, np.timedelta64(1, 'Y')),
+ (np.timedelta64(-2, 'Y'), -2, np.timedelta64(1, 'Y')),
+ (np.timedelta64(-2, 'Y'), -3, np.timedelta64(0, 'Y')),
+ (np.timedelta64(-2, 'Y'), 0, np.timedelta64('Nat', 'Y')),
+ ])
+ def test_division_int_timedelta(self, dividend, divisor, quotient):
+ # If either divisor is 0 or quotient is Nat, check for division by 0
+ if divisor and (isinstance(quotient, int) or not np.isnat(quotient)):
+ msg = "Timedelta floor division check"
+ assert dividend // divisor == quotient, msg
+
+ # Test for arrays as well
+ msg = "Timedelta arrays floor division check"
+ dividend_array = np.array([dividend] * 5)
+ quotient_array = np.array([quotient] * 5)
+ assert all(dividend_array // divisor == quotient_array), msg
+ else:
+ if IS_WASM:
+ pytest.skip("fp errors don't work in wasm")
+ with np.errstate(divide='raise', invalid='raise'):
+ with pytest.raises(FloatingPointError):
+ dividend // divisor
+
+ def test_division_complex(self):
+ # check that implementation is correct
+ msg = "Complex division implementation check"
+ x = np.array([1. + 1. * 1j, 1. + .5 * 1j, 1. + 2. * 1j], dtype=np.complex128)
+ assert_almost_equal(x**2 / x, x, err_msg=msg)
+ # check overflow, underflow
+ msg = "Complex division overflow/underflow check"
+ x = np.array([1.e+110, 1.e-110], dtype=np.complex128)
+ y = x**2 / x
+ assert_almost_equal(y / x, [1, 1], err_msg=msg)
+
+ def test_zero_division_complex(self):
+ with np.errstate(invalid="ignore", divide="ignore"):
+ x = np.array([0.0], dtype=np.complex128)
+ y = 1.0 / x
+ assert_(np.isinf(y)[0])
+ y = complex(np.inf, np.nan) / x
+ assert_(np.isinf(y)[0])
+ y = complex(np.nan, np.inf) / x
+ assert_(np.isinf(y)[0])
+ y = complex(np.inf, np.inf) / x
+ assert_(np.isinf(y)[0])
+ y = 0.0 / x
+ assert_(np.isnan(y)[0])
+
+ def test_floor_division_complex(self):
+ # check that floor division, divmod and remainder raises type errors
+ x = np.array([.9 + 1j, -.1 + 1j, .9 + .5 * 1j, .9 + 2. * 1j], dtype=np.complex128)
+ with pytest.raises(TypeError):
+ x // 7
+ with pytest.raises(TypeError):
+ np.divmod(x, 7)
+ with pytest.raises(TypeError):
+ np.remainder(x, 7)
+
+ def test_floor_division_signed_zero(self):
+ # Check that the sign bit is correctly set when dividing positive and
+ # negative zero by one.
+ x = np.zeros(10)
+ assert_equal(np.signbit(x // 1), 0)
+ assert_equal(np.signbit((-x) // 1), 1)
+
+ @pytest.mark.skipif(hasattr(np.__config__, "blas_ssl2_info"),
+ reason="gh-22982")
+ @pytest.mark.skipif(IS_WASM, reason="fp errors don't work in wasm")
+ @pytest.mark.parametrize('dtype', np.typecodes['Float'])
+ def test_floor_division_errors(self, dtype):
+ fnan = np.array(np.nan, dtype=dtype)
+ fone = np.array(1.0, dtype=dtype)
+ fzer = np.array(0.0, dtype=dtype)
+ finf = np.array(np.inf, dtype=dtype)
+ # divide by zero error check
+ with np.errstate(divide='raise', invalid='ignore'):
+ assert_raises(FloatingPointError, np.floor_divide, fone, fzer)
+ with np.errstate(divide='ignore', invalid='raise'):
+ np.floor_divide(fone, fzer)
+
+ # The following already contain a NaN and should not warn
+ with np.errstate(all='raise'):
+ np.floor_divide(fnan, fone)
+ np.floor_divide(fone, fnan)
+ np.floor_divide(fnan, fzer)
+ np.floor_divide(fzer, fnan)
+
+ @pytest.mark.parametrize('dtype', np.typecodes['Float'])
+ def test_floor_division_corner_cases(self, dtype):
+ # test corner cases like 1.0//0.0 for errors and return vals
+ x = np.zeros(10, dtype=dtype)
+ y = np.ones(10, dtype=dtype)
+ fnan = np.array(np.nan, dtype=dtype)
+ fone = np.array(1.0, dtype=dtype)
+ fzer = np.array(0.0, dtype=dtype)
+ finf = np.array(np.inf, dtype=dtype)
+ with suppress_warnings() as sup:
+ sup.filter(RuntimeWarning, "invalid value encountered in floor_divide")
+ div = np.floor_divide(fnan, fone)
+ assert np.isnan(div), f"div: {div}"
+ div = np.floor_divide(fone, fnan)
+ assert np.isnan(div), f"div: {div}"
+ div = np.floor_divide(fnan, fzer)
+ assert np.isnan(div), f"div: {div}"
+ # verify 1.0//0.0 computations return inf
+ with np.errstate(divide='ignore'):
+ z = np.floor_divide(y, x)
+ assert_(np.isinf(z).all())
+
+def floor_divide_and_remainder(x, y):
+ return (np.floor_divide(x, y), np.remainder(x, y))
+
+
+def _signs(dt):
+ if dt in np.typecodes['UnsignedInteger']:
+ return (+1,)
+ else:
+ return (+1, -1)
+
+
+class TestRemainder:
+
+ def test_remainder_basic(self):
+ dt = np.typecodes['AllInteger'] + np.typecodes['Float']
+ for op in [floor_divide_and_remainder, np.divmod]:
+ for dt1, dt2 in itertools.product(dt, dt):
+ for sg1, sg2 in itertools.product(_signs(dt1), _signs(dt2)):
+ fmt = 'op: %s, dt1: %s, dt2: %s, sg1: %s, sg2: %s'
+ msg = fmt % (op.__name__, dt1, dt2, sg1, sg2)
+ a = np.array(sg1 * 71, dtype=dt1)
+ b = np.array(sg2 * 19, dtype=dt2)
+ div, rem = op(a, b)
+ assert_equal(div * b + rem, a, err_msg=msg)
+ if sg2 == -1:
+ assert_(b < rem <= 0, msg)
+ else:
+ assert_(b > rem >= 0, msg)
+
+ def test_float_remainder_exact(self):
+ # test that float results are exact for small integers. This also
+ # holds for the same integers scaled by powers of two.
+ nlst = list(range(-127, 0))
+ plst = list(range(1, 128))
+ dividend = nlst + [0] + plst
+ divisor = nlst + plst
+ arg = list(itertools.product(dividend, divisor))
+ tgt = [divmod(*t) for t in arg]
+
+ a, b = np.array(arg, dtype=int).T
+ # convert exact integer results from Python to float so that
+ # signed zero can be used, it is checked.
+ tgtdiv, tgtrem = np.array(tgt, dtype=float).T
+ tgtdiv = np.where((tgtdiv == 0.0) & ((b < 0) ^ (a < 0)), -0.0, tgtdiv)
+ tgtrem = np.where((tgtrem == 0.0) & (b < 0), -0.0, tgtrem)
+
+ for op in [floor_divide_and_remainder, np.divmod]:
+ for dt in np.typecodes['Float']:
+ msg = f'op: {op.__name__}, dtype: {dt}'
+ fa = a.astype(dt)
+ fb = b.astype(dt)
+ div, rem = op(fa, fb)
+ assert_equal(div, tgtdiv, err_msg=msg)
+ assert_equal(rem, tgtrem, err_msg=msg)
+
+ def test_float_remainder_roundoff(self):
+ # gh-6127
+ dt = np.typecodes['Float']
+ for op in [floor_divide_and_remainder, np.divmod]:
+ for dt1, dt2 in itertools.product(dt, dt):
+ for sg1, sg2 in itertools.product((+1, -1), (+1, -1)):
+ fmt = 'op: %s, dt1: %s, dt2: %s, sg1: %s, sg2: %s'
+ msg = fmt % (op.__name__, dt1, dt2, sg1, sg2)
+ a = np.array(sg1 * 78 * 6e-8, dtype=dt1)
+ b = np.array(sg2 * 6e-8, dtype=dt2)
+ div, rem = op(a, b)
+ # Equal assertion should hold when fmod is used
+ assert_equal(div * b + rem, a, err_msg=msg)
+ if sg2 == -1:
+ assert_(b < rem <= 0, msg)
+ else:
+ assert_(b > rem >= 0, msg)
+
+ @pytest.mark.skipif(IS_WASM, reason="fp errors don't work in wasm")
+ @pytest.mark.xfail(sys.platform.startswith("darwin"),
+ reason="MacOS seems to not give the correct 'invalid' warning for "
+ "`fmod`. Hopefully, others always do.")
+ @pytest.mark.parametrize('dtype', np.typecodes['Float'])
+ def test_float_divmod_errors(self, dtype):
+ # Check valid errors raised for divmod and remainder
+ fzero = np.array(0.0, dtype=dtype)
+ fone = np.array(1.0, dtype=dtype)
+ finf = np.array(np.inf, dtype=dtype)
+ fnan = np.array(np.nan, dtype=dtype)
+ # since divmod is combination of both remainder and divide
+ # ops it will set both dividebyzero and invalid flags
+ with np.errstate(divide='raise', invalid='ignore'):
+ assert_raises(FloatingPointError, np.divmod, fone, fzero)
+ with np.errstate(divide='ignore', invalid='raise'):
+ assert_raises(FloatingPointError, np.divmod, fone, fzero)
+ with np.errstate(invalid='raise'):
+ assert_raises(FloatingPointError, np.divmod, fzero, fzero)
+ with np.errstate(invalid='raise'):
+ assert_raises(FloatingPointError, np.divmod, finf, finf)
+ with np.errstate(divide='ignore', invalid='raise'):
+ assert_raises(FloatingPointError, np.divmod, finf, fzero)
+ with np.errstate(divide='raise', invalid='ignore'):
+ # inf / 0 does not set any flags, only the modulo creates a NaN
+ np.divmod(finf, fzero)
+
+ @pytest.mark.skipif(hasattr(np.__config__, "blas_ssl2_info"),
+ reason="gh-22982")
+ @pytest.mark.skipif(IS_WASM, reason="fp errors don't work in wasm")
+ @pytest.mark.xfail(sys.platform.startswith("darwin"),
+ reason="MacOS seems to not give the correct 'invalid' warning for "
+ "`fmod`. Hopefully, others always do.")
+ @pytest.mark.parametrize('dtype', np.typecodes['Float'])
+ @pytest.mark.parametrize('fn', [np.fmod, np.remainder])
+ def test_float_remainder_errors(self, dtype, fn):
+ fzero = np.array(0.0, dtype=dtype)
+ fone = np.array(1.0, dtype=dtype)
+ finf = np.array(np.inf, dtype=dtype)
+ fnan = np.array(np.nan, dtype=dtype)
+
+ # The following already contain a NaN and should not warn.
+ with np.errstate(all='raise'):
+ with pytest.raises(FloatingPointError,
+ match="invalid value"):
+ fn(fone, fzero)
+ fn(fnan, fzero)
+ fn(fzero, fnan)
+ fn(fone, fnan)
+ fn(fnan, fone)
+
+ @pytest.mark.skipif(IS_WASM, reason="fp errors don't work in wasm")
+ def test_float_remainder_overflow(self):
+ a = np.finfo(np.float64).tiny
+ with np.errstate(over='ignore', invalid='ignore'):
+ div, mod = np.divmod(4, a)
+ np.isinf(div)
+ assert_(mod == 0)
+ with np.errstate(over='raise', invalid='ignore'):
+ assert_raises(FloatingPointError, np.divmod, 4, a)
+ with np.errstate(invalid='raise', over='ignore'):
+ assert_raises(FloatingPointError, np.divmod, 4, a)
+
+ def test_float_divmod_corner_cases(self):
+ # check nan cases
+ for dt in np.typecodes['Float']:
+ fnan = np.array(np.nan, dtype=dt)
+ fone = np.array(1.0, dtype=dt)
+ fzer = np.array(0.0, dtype=dt)
+ finf = np.array(np.inf, dtype=dt)
+ with suppress_warnings() as sup:
+ sup.filter(RuntimeWarning, "invalid value encountered in divmod")
+ sup.filter(RuntimeWarning, "divide by zero encountered in divmod")
+ div, rem = np.divmod(fone, fzer)
+ assert np.isinf(div), f'dt: {dt}, div: {rem}'
+ assert np.isnan(rem), f'dt: {dt}, rem: {rem}'
+ div, rem = np.divmod(fzer, fzer)
+ assert np.isnan(rem), f'dt: {dt}, rem: {rem}'
+ assert_(np.isnan(div)), f'dt: {dt}, rem: {rem}'
+ div, rem = np.divmod(finf, finf)
+ assert np.isnan(div), f'dt: {dt}, rem: {rem}'
+ assert np.isnan(rem), f'dt: {dt}, rem: {rem}'
+ div, rem = np.divmod(finf, fzer)
+ assert np.isinf(div), f'dt: {dt}, rem: {rem}'
+ assert np.isnan(rem), f'dt: {dt}, rem: {rem}'
+ div, rem = np.divmod(fnan, fone)
+ assert np.isnan(rem), f"dt: {dt}, rem: {rem}"
+ assert np.isnan(div), f"dt: {dt}, rem: {rem}"
+ div, rem = np.divmod(fone, fnan)
+ assert np.isnan(rem), f"dt: {dt}, rem: {rem}"
+ assert np.isnan(div), f"dt: {dt}, rem: {rem}"
+ div, rem = np.divmod(fnan, fzer)
+ assert np.isnan(rem), f"dt: {dt}, rem: {rem}"
+ assert np.isnan(div), f"dt: {dt}, rem: {rem}"
+
+ def test_float_remainder_corner_cases(self):
+ # Check remainder magnitude.
+ for dt in np.typecodes['Float']:
+ fone = np.array(1.0, dtype=dt)
+ fzer = np.array(0.0, dtype=dt)
+ fnan = np.array(np.nan, dtype=dt)
+ b = np.array(1.0, dtype=dt)
+ a = np.nextafter(np.array(0.0, dtype=dt), -b)
+ rem = np.remainder(a, b)
+ assert_(rem <= b, f'dt: {dt}')
+ rem = np.remainder(-a, -b)
+ assert_(rem >= -b, f'dt: {dt}')
+
+ # Check nans, inf
+ with suppress_warnings() as sup:
+ sup.filter(RuntimeWarning, "invalid value encountered in remainder")
+ sup.filter(RuntimeWarning, "invalid value encountered in fmod")
+ for dt in np.typecodes['Float']:
+ fone = np.array(1.0, dtype=dt)
+ fzer = np.array(0.0, dtype=dt)
+ finf = np.array(np.inf, dtype=dt)
+ fnan = np.array(np.nan, dtype=dt)
+ rem = np.remainder(fone, fzer)
+ assert_(np.isnan(rem), f'dt: {dt}, rem: {rem}')
+ # MSVC 2008 returns NaN here, so disable the check.
+ #rem = np.remainder(fone, finf)
+ #assert_(rem == fone, 'dt: %s, rem: %s' % (dt, rem))
+ rem = np.remainder(finf, fone)
+ fmod = np.fmod(finf, fone)
+ assert_(np.isnan(fmod), f'dt: {dt}, fmod: {fmod}')
+ assert_(np.isnan(rem), f'dt: {dt}, rem: {rem}')
+ rem = np.remainder(finf, finf)
+ fmod = np.fmod(finf, fone)
+ assert_(np.isnan(rem), f'dt: {dt}, rem: {rem}')
+ assert_(np.isnan(fmod), f'dt: {dt}, fmod: {fmod}')
+ rem = np.remainder(finf, fzer)
+ fmod = np.fmod(finf, fzer)
+ assert_(np.isnan(rem), f'dt: {dt}, rem: {rem}')
+ assert_(np.isnan(fmod), f'dt: {dt}, fmod: {fmod}')
+ rem = np.remainder(fone, fnan)
+ fmod = np.fmod(fone, fnan)
+ assert_(np.isnan(rem), f'dt: {dt}, rem: {rem}')
+ assert_(np.isnan(fmod), f'dt: {dt}, fmod: {fmod}')
+ rem = np.remainder(fnan, fzer)
+ fmod = np.fmod(fnan, fzer)
+ assert_(np.isnan(rem), f'dt: {dt}, rem: {rem}')
+ assert_(np.isnan(fmod), f'dt: {dt}, fmod: {rem}')
+ rem = np.remainder(fnan, fone)
+ fmod = np.fmod(fnan, fone)
+ assert_(np.isnan(rem), f'dt: {dt}, rem: {rem}')
+ assert_(np.isnan(fmod), f'dt: {dt}, fmod: {rem}')
+
+
+class TestDivisionIntegerOverflowsAndDivideByZero:
+ result_type = namedtuple('result_type',
+ ['nocast', 'casted'])
+ helper_lambdas = {
+ 'zero': lambda dtype: 0,
+ 'min': lambda dtype: np.iinfo(dtype).min,
+ 'neg_min': lambda dtype: -np.iinfo(dtype).min,
+ 'min-zero': lambda dtype: (np.iinfo(dtype).min, 0),
+ 'neg_min-zero': lambda dtype: (-np.iinfo(dtype).min, 0),
+ }
+ overflow_results = {
+ np.remainder: result_type(
+ helper_lambdas['zero'], helper_lambdas['zero']),
+ np.fmod: result_type(
+ helper_lambdas['zero'], helper_lambdas['zero']),
+ operator.mod: result_type(
+ helper_lambdas['zero'], helper_lambdas['zero']),
+ operator.floordiv: result_type(
+ helper_lambdas['min'], helper_lambdas['neg_min']),
+ np.floor_divide: result_type(
+ helper_lambdas['min'], helper_lambdas['neg_min']),
+ np.divmod: result_type(
+ helper_lambdas['min-zero'], helper_lambdas['neg_min-zero'])
+ }
+
+ @pytest.mark.skipif(IS_WASM, reason="fp errors don't work in wasm")
+ @pytest.mark.parametrize("dtype", np.typecodes["Integer"])
+ def test_signed_division_overflow(self, dtype):
+ to_check = interesting_binop_operands(np.iinfo(dtype).min, -1, dtype)
+ for op1, op2, extractor, operand_identifier in to_check:
+ with pytest.warns(RuntimeWarning, match="overflow encountered"):
+ res = op1 // op2
+
+ assert res.dtype == op1.dtype
+ assert extractor(res) == np.iinfo(op1.dtype).min
+
+ # Remainder is well defined though, and does not warn:
+ res = op1 % op2
+ assert res.dtype == op1.dtype
+ assert extractor(res) == 0
+ # Check fmod as well:
+ res = np.fmod(op1, op2)
+ assert extractor(res) == 0
+
+ # Divmod warns for the division part:
+ with pytest.warns(RuntimeWarning, match="overflow encountered"):
+ res1, res2 = np.divmod(op1, op2)
+
+ assert res1.dtype == res2.dtype == op1.dtype
+ assert extractor(res1) == np.iinfo(op1.dtype).min
+ assert extractor(res2) == 0
+
+ @pytest.mark.skipif(IS_WASM, reason="fp errors don't work in wasm")
+ @pytest.mark.parametrize("dtype", np.typecodes["AllInteger"])
+ def test_divide_by_zero(self, dtype):
+ # Note that the return value cannot be well defined here, but NumPy
+ # currently uses 0 consistently. This could be changed.
+ to_check = interesting_binop_operands(1, 0, dtype)
+ for op1, op2, extractor, operand_identifier in to_check:
+ with pytest.warns(RuntimeWarning, match="divide by zero"):
+ res = op1 // op2
+
+ assert res.dtype == op1.dtype
+ assert extractor(res) == 0
+
+ with pytest.warns(RuntimeWarning, match="divide by zero"):
+ res1, res2 = np.divmod(op1, op2)
+
+ assert res1.dtype == res2.dtype == op1.dtype
+ assert extractor(res1) == 0
+ assert extractor(res2) == 0
+
+ @pytest.mark.skipif(IS_WASM, reason="fp errors don't work in wasm")
+ @pytest.mark.parametrize("dividend_dtype", sctypes['int'])
+ @pytest.mark.parametrize("divisor_dtype", sctypes['int'])
+ @pytest.mark.parametrize("operation",
+ [np.remainder, np.fmod, np.divmod, np.floor_divide,
+ operator.mod, operator.floordiv])
+ @np.errstate(divide='warn', over='warn')
+ def test_overflows(self, dividend_dtype, divisor_dtype, operation):
+ # SIMD tries to perform the operation on as many elements as possible
+ # that is a multiple of the register's size. We resort to the
+ # default implementation for the leftover elements.
+ # We try to cover all paths here.
+ arrays = [np.array([np.iinfo(dividend_dtype).min] * i,
+ dtype=dividend_dtype) for i in range(1, 129)]
+ divisor = np.array([-1], dtype=divisor_dtype)
+ # If dividend is a larger type than the divisor (`else` case),
+ # then, result will be a larger type than dividend and will not
+ # result in an overflow for `divmod` and `floor_divide`.
+ if np.dtype(dividend_dtype).itemsize >= np.dtype(
+ divisor_dtype).itemsize and operation in (
+ np.divmod, np.floor_divide, operator.floordiv):
+ with pytest.warns(
+ RuntimeWarning,
+ match="overflow encountered in"):
+ result = operation(
+ dividend_dtype(np.iinfo(dividend_dtype).min),
+ divisor_dtype(-1)
+ )
+ assert result == self.overflow_results[operation].nocast(
+ dividend_dtype)
+
+ # Arrays
+ for a in arrays:
+ # In case of divmod, we need to flatten the result
+ # column first as we get a column vector of quotient and
+ # remainder and a normal flatten of the expected result.
+ with pytest.warns(
+ RuntimeWarning,
+ match="overflow encountered in"):
+ result = np.array(operation(a, divisor)).flatten('f')
+ expected_array = np.array(
+ [self.overflow_results[operation].nocast(
+ dividend_dtype)] * len(a)).flatten()
+ assert_array_equal(result, expected_array)
+ else:
+ # Scalars
+ result = operation(
+ dividend_dtype(np.iinfo(dividend_dtype).min),
+ divisor_dtype(-1)
+ )
+ assert result == self.overflow_results[operation].casted(
+ dividend_dtype)
+
+ # Arrays
+ for a in arrays:
+ # See above comment on flatten
+ result = np.array(operation(a, divisor)).flatten('f')
+ expected_array = np.array(
+ [self.overflow_results[operation].casted(
+ dividend_dtype)] * len(a)).flatten()
+ assert_array_equal(result, expected_array)
+
+
+class TestCbrt:
+ def test_cbrt_scalar(self):
+ assert_almost_equal((np.cbrt(np.float32(-2.5)**3)), -2.5)
+
+ def test_cbrt(self):
+ x = np.array([1., 2., -3., np.inf, -np.inf])
+ assert_almost_equal(np.cbrt(x**3), x)
+
+ assert_(np.isnan(np.cbrt(np.nan)))
+ assert_equal(np.cbrt(np.inf), np.inf)
+ assert_equal(np.cbrt(-np.inf), -np.inf)
+
+
+class TestPower:
+ def test_power_float(self):
+ x = np.array([1., 2., 3.])
+ assert_equal(x**0, [1., 1., 1.])
+ assert_equal(x**1, x)
+ assert_equal(x**2, [1., 4., 9.])
+ y = x.copy()
+ y **= 2
+ assert_equal(y, [1., 4., 9.])
+ assert_almost_equal(x**(-1), [1., 0.5, 1. / 3])
+ assert_almost_equal(x**(0.5), [1., ncu.sqrt(2), ncu.sqrt(3)])
+
+ for out, inp, msg in _gen_alignment_data(dtype=np.float32,
+ type='unary',
+ max_size=11):
+ exp = [ncu.sqrt(i) for i in inp]
+ assert_almost_equal(inp**(0.5), exp, err_msg=msg)
+ np.sqrt(inp, out=out)
+ assert_equal(out, exp, err_msg=msg)
+
+ for out, inp, msg in _gen_alignment_data(dtype=np.float64,
+ type='unary',
+ max_size=7):
+ exp = [ncu.sqrt(i) for i in inp]
+ assert_almost_equal(inp**(0.5), exp, err_msg=msg)
+ np.sqrt(inp, out=out)
+ assert_equal(out, exp, err_msg=msg)
+
+ def test_power_complex(self):
+ x = np.array([1 + 2j, 2 + 3j, 3 + 4j])
+ assert_equal(x**0, [1., 1., 1.])
+ assert_equal(x**1, x)
+ assert_almost_equal(x**2, [-3 + 4j, -5 + 12j, -7 + 24j])
+ assert_almost_equal(x**3, [(1 + 2j)**3, (2 + 3j)**3, (3 + 4j)**3])
+ assert_almost_equal(x**4, [(1 + 2j)**4, (2 + 3j)**4, (3 + 4j)**4])
+ assert_almost_equal(x**(-1), [1 / (1 + 2j), 1 / (2 + 3j), 1 / (3 + 4j)])
+ assert_almost_equal(x**(-2), [1 / (1 + 2j)**2, 1 / (2 + 3j)**2, 1 / (3 + 4j)**2])
+ assert_almost_equal(x**(-3), [(-11 + 2j) / 125, (-46 - 9j) / 2197,
+ (-117 - 44j) / 15625])
+ assert_almost_equal(x**(0.5), [ncu.sqrt(1 + 2j), ncu.sqrt(2 + 3j),
+ ncu.sqrt(3 + 4j)])
+ norm = 1. / ((x**14)[0])
+ assert_almost_equal(x**14 * norm,
+ [i * norm for i in [-76443 + 16124j, 23161315 + 58317492j,
+ 5583548873 + 2465133864j]])
+
+ # Ticket #836
+ def assert_complex_equal(x, y):
+ assert_array_equal(x.real, y.real)
+ assert_array_equal(x.imag, y.imag)
+
+ for z in [complex(0, np.inf), complex(1, np.inf)]:
+ z = np.array([z], dtype=np.complex128)
+ with np.errstate(invalid="ignore"):
+ assert_complex_equal(z**1, z)
+ assert_complex_equal(z**2, z * z)
+ assert_complex_equal(z**3, z * z * z)
+
+ def test_power_zero(self):
+ # ticket #1271
+ zero = np.array([0j])
+ one = np.array([1 + 0j])
+ cnan = np.array([complex(np.nan, np.nan)])
+ # FIXME cinf not tested.
+ #cinf = np.array([complex(np.inf, 0)])
+
+ def assert_complex_equal(x, y):
+ x, y = np.asarray(x), np.asarray(y)
+ assert_array_equal(x.real, y.real)
+ assert_array_equal(x.imag, y.imag)
+
+ # positive powers
+ for p in [0.33, 0.5, 1, 1.5, 2, 3, 4, 5, 6.6]:
+ assert_complex_equal(np.power(zero, p), zero)
+
+ # zero power
+ assert_complex_equal(np.power(zero, 0), one)
+ with np.errstate(invalid="ignore"):
+ assert_complex_equal(np.power(zero, 0 + 1j), cnan)
+
+ # negative power
+ for p in [0.33, 0.5, 1, 1.5, 2, 3, 4, 5, 6.6]:
+ assert_complex_equal(np.power(zero, -p), cnan)
+ assert_complex_equal(np.power(zero, -1 + 0.2j), cnan)
+
+ @pytest.mark.skipif(IS_WASM, reason="fp errors don't work in wasm")
+ def test_zero_power_nonzero(self):
+ # Testing 0^{Non-zero} issue 18378
+ zero = np.array([0.0 + 0.0j])
+ cnan = np.array([complex(np.nan, np.nan)])
+
+ def assert_complex_equal(x, y):
+ assert_array_equal(x.real, y.real)
+ assert_array_equal(x.imag, y.imag)
+
+ # Complex powers with positive real part will not generate a warning
+ assert_complex_equal(np.power(zero, 1 + 4j), zero)
+ assert_complex_equal(np.power(zero, 2 - 3j), zero)
+ # Testing zero values when real part is greater than zero
+ assert_complex_equal(np.power(zero, 1 + 1j), zero)
+ assert_complex_equal(np.power(zero, 1 + 0j), zero)
+ assert_complex_equal(np.power(zero, 1 - 1j), zero)
+ # Complex powers will negative real part or 0 (provided imaginary
+ # part is not zero) will generate a NAN and hence a RUNTIME warning
+ with pytest.warns(expected_warning=RuntimeWarning) as r:
+ assert_complex_equal(np.power(zero, -1 + 1j), cnan)
+ assert_complex_equal(np.power(zero, -2 - 3j), cnan)
+ assert_complex_equal(np.power(zero, -7 + 0j), cnan)
+ assert_complex_equal(np.power(zero, 0 + 1j), cnan)
+ assert_complex_equal(np.power(zero, 0 - 1j), cnan)
+ assert len(r) == 5
+
+ def test_fast_power(self):
+ x = np.array([1, 2, 3], np.int16)
+ res = x**2.0
+ assert_((x**2.00001).dtype is res.dtype)
+ assert_array_equal(res, [1, 4, 9])
+ # check the inplace operation on the casted copy doesn't mess with x
+ assert_(not np.may_share_memory(res, x))
+ assert_array_equal(x, [1, 2, 3])
+
+ # Check that the fast path ignores 1-element not 0-d arrays
+ res = x ** np.array([[[2]]])
+ assert_equal(res.shape, (1, 1, 3))
+
+ def test_integer_power(self):
+ a = np.array([15, 15], 'i8')
+ b = np.power(a, a)
+ assert_equal(b, [437893890380859375, 437893890380859375])
+
+ def test_integer_power_with_integer_zero_exponent(self):
+ dtypes = np.typecodes['Integer']
+ for dt in dtypes:
+ arr = np.arange(-10, 10, dtype=dt)
+ assert_equal(np.power(arr, 0), np.ones_like(arr))
+
+ dtypes = np.typecodes['UnsignedInteger']
+ for dt in dtypes:
+ arr = np.arange(10, dtype=dt)
+ assert_equal(np.power(arr, 0), np.ones_like(arr))
+
+ def test_integer_power_of_1(self):
+ dtypes = np.typecodes['AllInteger']
+ for dt in dtypes:
+ arr = np.arange(10, dtype=dt)
+ assert_equal(np.power(1, arr), np.ones_like(arr))
+
+ def test_integer_power_of_zero(self):
+ dtypes = np.typecodes['AllInteger']
+ for dt in dtypes:
+ arr = np.arange(1, 10, dtype=dt)
+ assert_equal(np.power(0, arr), np.zeros_like(arr))
+
+ def test_integer_to_negative_power(self):
+ dtypes = np.typecodes['Integer']
+ for dt in dtypes:
+ a = np.array([0, 1, 2, 3], dtype=dt)
+ b = np.array([0, 1, 2, -3], dtype=dt)
+ one = np.array(1, dtype=dt)
+ minusone = np.array(-1, dtype=dt)
+ assert_raises(ValueError, np.power, a, b)
+ assert_raises(ValueError, np.power, a, minusone)
+ assert_raises(ValueError, np.power, one, b)
+ assert_raises(ValueError, np.power, one, minusone)
+
+ def test_float_to_inf_power(self):
+ for dt in [np.float32, np.float64]:
+ a = np.array([1, 1, 2, 2, -2, -2, np.inf, -np.inf], dt)
+ b = np.array([np.inf, -np.inf, np.inf, -np.inf,
+ np.inf, -np.inf, np.inf, -np.inf], dt)
+ r = np.array([1, 1, np.inf, 0, np.inf, 0, np.inf, 0], dt)
+ assert_equal(np.power(a, b), r)
+
+ def test_power_fast_paths(self):
+ # gh-26055
+ for dt in [np.float32, np.float64]:
+ a = np.array([0, 1.1, 2, 12e12, -10., np.inf, -np.inf], dt)
+ expected = np.array([0.0, 1.21, 4., 1.44e+26, 100, np.inf, np.inf])
+ result = np.power(a, 2.)
+ assert_array_max_ulp(result, expected.astype(dt), maxulp=1)
+
+ a = np.array([0, 1.1, 2, 12e12], dt)
+ expected = np.sqrt(a).astype(dt)
+ result = np.power(a, 0.5)
+ assert_array_max_ulp(result, expected, maxulp=1)
+
+
+class TestFloat_power:
+ def test_type_conversion(self):
+ arg_type = '?bhilBHILefdgFDG'
+ res_type = 'ddddddddddddgDDG'
+ for dtin, dtout in zip(arg_type, res_type):
+ msg = f"dtin: {dtin}, dtout: {dtout}"
+ arg = np.ones(1, dtype=dtin)
+ res = np.float_power(arg, arg)
+ assert_(res.dtype.name == np.dtype(dtout).name, msg)
+
+
+class TestLog2:
+ @pytest.mark.parametrize('dt', ['f', 'd', 'g'])
+ def test_log2_values(self, dt):
+ x = [1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024]
+ y = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
+ xf = np.array(x, dtype=dt)
+ yf = np.array(y, dtype=dt)
+ assert_almost_equal(np.log2(xf), yf)
+
+ @pytest.mark.parametrize("i", range(1, 65))
+ def test_log2_ints(self, i):
+ # a good log2 implementation should provide this,
+ # might fail on OS with bad libm
+ v = np.log2(2.**i)
+ assert_equal(v, float(i), err_msg='at exponent %d' % i)
+
+ @pytest.mark.skipif(IS_WASM, reason="fp errors don't work in wasm")
+ def test_log2_special(self):
+ assert_equal(np.log2(1.), 0.)
+ assert_equal(np.log2(np.inf), np.inf)
+ assert_(np.isnan(np.log2(np.nan)))
+
+ with warnings.catch_warnings(record=True) as w:
+ warnings.filterwarnings('always', '', RuntimeWarning)
+ assert_(np.isnan(np.log2(-1.)))
+ assert_(np.isnan(np.log2(-np.inf)))
+ assert_equal(np.log2(0.), -np.inf)
+ assert_(w[0].category is RuntimeWarning)
+ assert_(w[1].category is RuntimeWarning)
+ assert_(w[2].category is RuntimeWarning)
+
+
+class TestExp2:
+ def test_exp2_values(self):
+ x = [1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024]
+ y = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
+ for dt in ['f', 'd', 'g']:
+ xf = np.array(x, dtype=dt)
+ yf = np.array(y, dtype=dt)
+ assert_almost_equal(np.exp2(yf), xf)
+
+
+class TestLogAddExp2(_FilterInvalids):
+ # Need test for intermediate precisions
+ def test_logaddexp2_values(self):
+ x = [1, 2, 3, 4, 5]
+ y = [5, 4, 3, 2, 1]
+ z = [6, 6, 6, 6, 6]
+ for dt, dec_ in zip(['f', 'd', 'g'], [6, 15, 15]):
+ xf = np.log2(np.array(x, dtype=dt))
+ yf = np.log2(np.array(y, dtype=dt))
+ zf = np.log2(np.array(z, dtype=dt))
+ assert_almost_equal(np.logaddexp2(xf, yf), zf, decimal=dec_)
+
+ def test_logaddexp2_range(self):
+ x = [1000000, -1000000, 1000200, -1000200]
+ y = [1000200, -1000200, 1000000, -1000000]
+ z = [1000200, -1000000, 1000200, -1000000]
+ for dt in ['f', 'd', 'g']:
+ logxf = np.array(x, dtype=dt)
+ logyf = np.array(y, dtype=dt)
+ logzf = np.array(z, dtype=dt)
+ assert_almost_equal(np.logaddexp2(logxf, logyf), logzf)
+
+ def test_inf(self):
+ inf = np.inf
+ x = [inf, -inf, inf, -inf, inf, 1, -inf, 1] # noqa: E221
+ y = [inf, inf, -inf, -inf, 1, inf, 1, -inf] # noqa: E221
+ z = [inf, inf, inf, -inf, inf, inf, 1, 1]
+ with np.errstate(invalid='raise'):
+ for dt in ['f', 'd', 'g']:
+ logxf = np.array(x, dtype=dt)
+ logyf = np.array(y, dtype=dt)
+ logzf = np.array(z, dtype=dt)
+ assert_equal(np.logaddexp2(logxf, logyf), logzf)
+
+ def test_nan(self):
+ assert_(np.isnan(np.logaddexp2(np.nan, np.inf)))
+ assert_(np.isnan(np.logaddexp2(np.inf, np.nan)))
+ assert_(np.isnan(np.logaddexp2(np.nan, 0)))
+ assert_(np.isnan(np.logaddexp2(0, np.nan)))
+ assert_(np.isnan(np.logaddexp2(np.nan, np.nan)))
+
+ def test_reduce(self):
+ assert_equal(np.logaddexp2.identity, -np.inf)
+ assert_equal(np.logaddexp2.reduce([]), -np.inf)
+ assert_equal(np.logaddexp2.reduce([-np.inf]), -np.inf)
+ assert_equal(np.logaddexp2.reduce([-np.inf, 0]), 0)
+
+
+class TestLog:
+ def test_log_values(self):
+ x = [1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024]
+ y = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
+ for dt in ['f', 'd', 'g']:
+ log2_ = 0.69314718055994530943
+ xf = np.array(x, dtype=dt)
+ yf = np.array(y, dtype=dt) * log2_
+ assert_almost_equal(np.log(xf), yf)
+
+ # test aliasing(issue #17761)
+ x = np.array([2, 0.937500, 3, 0.947500, 1.054697])
+ xf = np.log(x)
+ assert_almost_equal(np.log(x, out=x), xf)
+
+ def test_log_values_maxofdtype(self):
+ # test log() of max for dtype does not raise
+ dtypes = [np.float32, np.float64]
+ # This is failing at least on linux aarch64 (see gh-25460), and on most
+ # other non x86-64 platforms checking `longdouble` isn't too useful as
+ # it's an alias for float64.
+ if platform.machine() == 'x86_64':
+ dtypes += [np.longdouble]
+
+ for dt in dtypes:
+ with np.errstate(all='raise'):
+ x = np.finfo(dt).max
+ np.log(x)
+
+ def test_log_strides(self):
+ np.random.seed(42)
+ strides = np.array([-4, -3, -2, -1, 1, 2, 3, 4])
+ sizes = np.arange(2, 100)
+ for ii in sizes:
+ x_f64 = np.float64(np.random.uniform(low=0.01, high=100.0, size=ii))
+ x_special = x_f64.copy()
+ x_special[3:-1:4] = 1.0
+ y_true = np.log(x_f64)
+ y_special = np.log(x_special)
+ for jj in strides:
+ assert_array_almost_equal_nulp(np.log(x_f64[::jj]), y_true[::jj], nulp=2)
+ assert_array_almost_equal_nulp(np.log(x_special[::jj]), y_special[::jj], nulp=2)
+
+ # Reference values were computed with mpmath, with mp.dps = 200.
+ @pytest.mark.parametrize(
+ 'z, wref',
+ [(1 + 1e-12j, 5e-25 + 1e-12j),
+ (1.000000000000001 + 3e-08j,
+ 1.5602230246251546e-15 + 2.999999999999996e-08j),
+ (0.9999995000000417 + 0.0009999998333333417j,
+ 7.831475869017683e-18 + 0.001j),
+ (0.9999999999999996 + 2.999999999999999e-08j,
+ 5.9107901499372034e-18 + 3e-08j),
+ (0.99995000042 - 0.009999833j,
+ -7.015159763822903e-15 - 0.009999999665816696j)],
+ )
+ def test_log_precision_float64(self, z, wref):
+ w = np.log(z)
+ assert_allclose(w, wref, rtol=1e-15)
+
+ # Reference values were computed with mpmath, with mp.dps = 200.
+ @pytest.mark.parametrize(
+ 'z, wref',
+ [(np.complex64(1.0 + 3e-6j), np.complex64(4.5e-12 + 3e-06j)),
+ (np.complex64(1.0 - 2e-5j), np.complex64(1.9999999e-10 - 2e-5j)),
+ (np.complex64(0.9999999 + 1e-06j),
+ np.complex64(-1.192088e-07 + 1.0000001e-06j))],
+ )
+ def test_log_precision_float32(self, z, wref):
+ w = np.log(z)
+ assert_allclose(w, wref, rtol=1e-6)
+
+
+class TestExp:
+ def test_exp_values(self):
+ x = [1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024]
+ y = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
+ for dt in ['f', 'd', 'g']:
+ log2_ = 0.69314718055994530943
+ xf = np.array(x, dtype=dt)
+ yf = np.array(y, dtype=dt) * log2_
+ assert_almost_equal(np.exp(yf), xf)
+
+ def test_exp_strides(self):
+ np.random.seed(42)
+ strides = np.array([-4, -3, -2, -1, 1, 2, 3, 4])
+ sizes = np.arange(2, 100)
+ for ii in sizes:
+ x_f64 = np.float64(np.random.uniform(low=0.01, high=709.1, size=ii))
+ y_true = np.exp(x_f64)
+ for jj in strides:
+ assert_array_almost_equal_nulp(np.exp(x_f64[::jj]), y_true[::jj], nulp=2)
+
+class TestSpecialFloats:
+ def test_exp_values(self):
+ with np.errstate(under='raise', over='raise'):
+ x = [np.nan, np.nan, np.inf, 0.]
+ y = [np.nan, -np.nan, np.inf, -np.inf]
+ for dt in ['e', 'f', 'd', 'g']:
+ xf = np.array(x, dtype=dt)
+ yf = np.array(y, dtype=dt)
+ assert_equal(np.exp(yf), xf)
+
+ # See: https://github.com/numpy/numpy/issues/19192
+ @pytest.mark.xfail(
+ _glibc_older_than("2.17"),
+ reason="Older glibc versions may not raise appropriate FP exceptions"
+ )
+ def test_exp_exceptions(self):
+ with np.errstate(over='raise'):
+ assert_raises(FloatingPointError, np.exp, np.float16(11.0899))
+ assert_raises(FloatingPointError, np.exp, np.float32(100.))
+ assert_raises(FloatingPointError, np.exp, np.float32(1E19))
+ assert_raises(FloatingPointError, np.exp, np.float64(800.))
+ assert_raises(FloatingPointError, np.exp, np.float64(1E19))
+
+ with np.errstate(under='raise'):
+ assert_raises(FloatingPointError, np.exp, np.float16(-17.5))
+ assert_raises(FloatingPointError, np.exp, np.float32(-1000.))
+ assert_raises(FloatingPointError, np.exp, np.float32(-1E19))
+ assert_raises(FloatingPointError, np.exp, np.float64(-1000.))
+ assert_raises(FloatingPointError, np.exp, np.float64(-1E19))
+
+ @pytest.mark.skipif(IS_WASM, reason="fp errors don't work in wasm")
+ def test_log_values(self):
+ with np.errstate(all='ignore'):
+ x = [np.nan, np.nan, np.inf, np.nan, -np.inf, np.nan]
+ y = [np.nan, -np.nan, np.inf, -np.inf, 0.0, -1.0]
+ y1p = [np.nan, -np.nan, np.inf, -np.inf, -1.0, -2.0]
+ for dt in ['e', 'f', 'd', 'g']:
+ xf = np.array(x, dtype=dt)
+ yf = np.array(y, dtype=dt)
+ yf1p = np.array(y1p, dtype=dt)
+ assert_equal(np.log(yf), xf)
+ assert_equal(np.log2(yf), xf)
+ assert_equal(np.log10(yf), xf)
+ assert_equal(np.log1p(yf1p), xf)
+
+ with np.errstate(divide='raise'):
+ for dt in ['e', 'f', 'd']:
+ assert_raises(FloatingPointError, np.log,
+ np.array(0.0, dtype=dt))
+ assert_raises(FloatingPointError, np.log2,
+ np.array(0.0, dtype=dt))
+ assert_raises(FloatingPointError, np.log10,
+ np.array(0.0, dtype=dt))
+ assert_raises(FloatingPointError, np.log1p,
+ np.array(-1.0, dtype=dt))
+
+ with np.errstate(invalid='raise'):
+ for dt in ['e', 'f', 'd']:
+ assert_raises(FloatingPointError, np.log,
+ np.array(-np.inf, dtype=dt))
+ assert_raises(FloatingPointError, np.log,
+ np.array(-1.0, dtype=dt))
+ assert_raises(FloatingPointError, np.log2,
+ np.array(-np.inf, dtype=dt))
+ assert_raises(FloatingPointError, np.log2,
+ np.array(-1.0, dtype=dt))
+ assert_raises(FloatingPointError, np.log10,
+ np.array(-np.inf, dtype=dt))
+ assert_raises(FloatingPointError, np.log10,
+ np.array(-1.0, dtype=dt))
+ assert_raises(FloatingPointError, np.log1p,
+ np.array(-np.inf, dtype=dt))
+ assert_raises(FloatingPointError, np.log1p,
+ np.array(-2.0, dtype=dt))
+
+ # See https://github.com/numpy/numpy/issues/18005
+ with assert_no_warnings():
+ a = np.array(1e9, dtype='float32')
+ np.log(a)
+
+ @pytest.mark.skipif(IS_WASM, reason="fp errors don't work in wasm")
+ @pytest.mark.parametrize('dtype', ['e', 'f', 'd', 'g'])
+ def test_sincos_values(self, dtype):
+ with np.errstate(all='ignore'):
+ x = [np.nan, np.nan, np.nan, np.nan]
+ y = [np.nan, -np.nan, np.inf, -np.inf]
+ xf = np.array(x, dtype=dtype)
+ yf = np.array(y, dtype=dtype)
+ assert_equal(np.sin(yf), xf)
+ assert_equal(np.cos(yf), xf)
+
+ @pytest.mark.skipif(IS_WASM, reason="fp errors don't work in wasm")
+ @pytest.mark.xfail(
+ sys.platform.startswith("darwin"),
+ reason="underflow is triggered for scalar 'sin'"
+ )
+ def test_sincos_underflow(self):
+ with np.errstate(under='raise'):
+ underflow_trigger = np.array(
+ float.fromhex("0x1.f37f47a03f82ap-511"),
+ dtype=np.float64
+ )
+ np.sin(underflow_trigger)
+ np.cos(underflow_trigger)
+
+ @pytest.mark.skipif(IS_WASM, reason="fp errors don't work in wasm")
+ @pytest.mark.parametrize('callable', [np.sin, np.cos])
+ @pytest.mark.parametrize('dtype', ['e', 'f', 'd'])
+ @pytest.mark.parametrize('value', [np.inf, -np.inf])
+ def test_sincos_errors(self, callable, dtype, value):
+ with np.errstate(invalid='raise'):
+ assert_raises(FloatingPointError, callable,
+ np.array([value], dtype=dtype))
+
+ @pytest.mark.parametrize('callable', [np.sin, np.cos])
+ @pytest.mark.parametrize('dtype', ['f', 'd'])
+ @pytest.mark.parametrize('stride', [-1, 1, 2, 4, 5])
+ def test_sincos_overlaps(self, callable, dtype, stride):
+ N = 100
+ M = N // abs(stride)
+ rng = np.random.default_rng(42)
+ x = rng.standard_normal(N, dtype)
+ y = callable(x[::stride])
+ callable(x[::stride], out=x[:M])
+ assert_equal(x[:M], y)
+
+ @pytest.mark.parametrize('dt', ['e', 'f', 'd', 'g'])
+ def test_sqrt_values(self, dt):
+ with np.errstate(all='ignore'):
+ x = [np.nan, np.nan, np.inf, np.nan, 0.]
+ y = [np.nan, -np.nan, np.inf, -np.inf, 0.]
+ xf = np.array(x, dtype=dt)
+ yf = np.array(y, dtype=dt)
+ assert_equal(np.sqrt(yf), xf)
+
+ # with np.errstate(invalid='raise'):
+ # assert_raises(
+ # FloatingPointError, np.sqrt, np.array(-100., dtype=dt)
+ # )
+
+ def test_abs_values(self):
+ x = [np.nan, np.nan, np.inf, np.inf, 0., 0., 1.0, 1.0]
+ y = [np.nan, -np.nan, np.inf, -np.inf, 0., -0., -1.0, 1.0]
+ for dt in ['e', 'f', 'd', 'g']:
+ xf = np.array(x, dtype=dt)
+ yf = np.array(y, dtype=dt)
+ assert_equal(np.abs(yf), xf)
+
+ @pytest.mark.skipif(IS_WASM, reason="fp errors don't work in wasm")
+ def test_square_values(self):
+ x = [np.nan, np.nan, np.inf, np.inf]
+ y = [np.nan, -np.nan, np.inf, -np.inf]
+ with np.errstate(all='ignore'):
+ for dt in ['e', 'f', 'd', 'g']:
+ xf = np.array(x, dtype=dt)
+ yf = np.array(y, dtype=dt)
+ assert_equal(np.square(yf), xf)
+
+ with np.errstate(over='raise'):
+ assert_raises(FloatingPointError, np.square,
+ np.array(1E3, dtype='e'))
+ assert_raises(FloatingPointError, np.square,
+ np.array(1E32, dtype='f'))
+ assert_raises(FloatingPointError, np.square,
+ np.array(1E200, dtype='d'))
+
+ @pytest.mark.skipif(IS_WASM, reason="fp errors don't work in wasm")
+ def test_reciprocal_values(self):
+ with np.errstate(all='ignore'):
+ x = [np.nan, np.nan, 0.0, -0.0, np.inf, -np.inf]
+ y = [np.nan, -np.nan, np.inf, -np.inf, 0., -0.]
+ for dt in ['e', 'f', 'd', 'g']:
+ xf = np.array(x, dtype=dt)
+ yf = np.array(y, dtype=dt)
+ assert_equal(np.reciprocal(yf), xf)
+
+ with np.errstate(divide='raise'):
+ for dt in ['e', 'f', 'd', 'g']:
+ assert_raises(FloatingPointError, np.reciprocal,
+ np.array(-0.0, dtype=dt))
+
+ @pytest.mark.skipif(IS_WASM, reason="fp errors don't work in wasm")
+ def test_tan(self):
+ with np.errstate(all='ignore'):
+ in_ = [np.nan, -np.nan, 0.0, -0.0, np.inf, -np.inf]
+ out = [np.nan, np.nan, 0.0, -0.0, np.nan, np.nan]
+ for dt in ['e', 'f', 'd']:
+ in_arr = np.array(in_, dtype=dt)
+ out_arr = np.array(out, dtype=dt)
+ assert_equal(np.tan(in_arr), out_arr)
+
+ with np.errstate(invalid='raise'):
+ for dt in ['e', 'f', 'd']:
+ assert_raises(FloatingPointError, np.tan,
+ np.array(np.inf, dtype=dt))
+ assert_raises(FloatingPointError, np.tan,
+ np.array(-np.inf, dtype=dt))
+
+ @pytest.mark.skipif(IS_WASM, reason="fp errors don't work in wasm")
+ def test_arcsincos(self):
+ with np.errstate(all='ignore'):
+ in_ = [np.nan, -np.nan, np.inf, -np.inf]
+ out = [np.nan, np.nan, np.nan, np.nan]
+ for dt in ['e', 'f', 'd']:
+ in_arr = np.array(in_, dtype=dt)
+ out_arr = np.array(out, dtype=dt)
+ assert_equal(np.arcsin(in_arr), out_arr)
+ assert_equal(np.arccos(in_arr), out_arr)
+
+ for callable in [np.arcsin, np.arccos]:
+ for value in [np.inf, -np.inf, 2.0, -2.0]:
+ for dt in ['e', 'f', 'd']:
+ with np.errstate(invalid='raise'):
+ assert_raises(FloatingPointError, callable,
+ np.array(value, dtype=dt))
+
+ def test_arctan(self):
+ with np.errstate(all='ignore'):
+ in_ = [np.nan, -np.nan]
+ out = [np.nan, np.nan]
+ for dt in ['e', 'f', 'd']:
+ in_arr = np.array(in_, dtype=dt)
+ out_arr = np.array(out, dtype=dt)
+ assert_equal(np.arctan(in_arr), out_arr)
+
+ @pytest.mark.skipif(IS_WASM, reason="fp errors don't work in wasm")
+ def test_sinh(self):
+ in_ = [np.nan, -np.nan, np.inf, -np.inf]
+ out = [np.nan, np.nan, np.inf, -np.inf]
+ for dt in ['e', 'f', 'd']:
+ in_arr = np.array(in_, dtype=dt)
+ out_arr = np.array(out, dtype=dt)
+ assert_equal(np.sinh(in_arr), out_arr)
+
+ with np.errstate(over='raise'):
+ assert_raises(FloatingPointError, np.sinh,
+ np.array(12.0, dtype='e'))
+ assert_raises(FloatingPointError, np.sinh,
+ np.array(120.0, dtype='f'))
+ assert_raises(FloatingPointError, np.sinh,
+ np.array(1200.0, dtype='d'))
+
+ @pytest.mark.skipif(IS_WASM, reason="fp errors don't work in wasm")
+ @pytest.mark.skipif('bsd' in sys.platform,
+ reason="fallback implementation may not raise, see gh-2487")
+ def test_cosh(self):
+ in_ = [np.nan, -np.nan, np.inf, -np.inf]
+ out = [np.nan, np.nan, np.inf, np.inf]
+ for dt in ['e', 'f', 'd']:
+ in_arr = np.array(in_, dtype=dt)
+ out_arr = np.array(out, dtype=dt)
+ assert_equal(np.cosh(in_arr), out_arr)
+
+ with np.errstate(over='raise'):
+ assert_raises(FloatingPointError, np.cosh,
+ np.array(12.0, dtype='e'))
+ assert_raises(FloatingPointError, np.cosh,
+ np.array(120.0, dtype='f'))
+ assert_raises(FloatingPointError, np.cosh,
+ np.array(1200.0, dtype='d'))
+
+ def test_tanh(self):
+ in_ = [np.nan, -np.nan, np.inf, -np.inf]
+ out = [np.nan, np.nan, 1.0, -1.0]
+ for dt in ['e', 'f', 'd']:
+ in_arr = np.array(in_, dtype=dt)
+ out_arr = np.array(out, dtype=dt)
+ assert_array_max_ulp(np.tanh(in_arr), out_arr, 3)
+
+ def test_arcsinh(self):
+ in_ = [np.nan, -np.nan, np.inf, -np.inf]
+ out = [np.nan, np.nan, np.inf, -np.inf]
+ for dt in ['e', 'f', 'd']:
+ in_arr = np.array(in_, dtype=dt)
+ out_arr = np.array(out, dtype=dt)
+ assert_equal(np.arcsinh(in_arr), out_arr)
+
+ @pytest.mark.skipif(IS_WASM, reason="fp errors don't work in wasm")
+ def test_arccosh(self):
+ with np.errstate(all='ignore'):
+ in_ = [np.nan, -np.nan, np.inf, -np.inf, 1.0, 0.0]
+ out = [np.nan, np.nan, np.inf, np.nan, 0.0, np.nan]
+ for dt in ['e', 'f', 'd']:
+ in_arr = np.array(in_, dtype=dt)
+ out_arr = np.array(out, dtype=dt)
+ assert_equal(np.arccosh(in_arr), out_arr)
+
+ for value in [0.0, -np.inf]:
+ with np.errstate(invalid='raise'):
+ for dt in ['e', 'f', 'd']:
+ assert_raises(FloatingPointError, np.arccosh,
+ np.array(value, dtype=dt))
+
+ @pytest.mark.skipif(IS_WASM, reason="fp errors don't work in wasm")
+ def test_arctanh(self):
+ with np.errstate(all='ignore'):
+ in_ = [np.nan, -np.nan, np.inf, -np.inf, 1.0, -1.0, 2.0]
+ out = [np.nan, np.nan, np.nan, np.nan, np.inf, -np.inf, np.nan]
+ for dt in ['e', 'f', 'd']:
+ in_arr = np.array(in_, dtype=dt)
+ out_arr = np.array(out, dtype=dt)
+ assert_equal(np.arctanh(in_arr), out_arr)
+
+ for value in [1.01, np.inf, -np.inf, 1.0, -1.0]:
+ with np.errstate(invalid='raise', divide='raise'):
+ for dt in ['e', 'f', 'd']:
+ assert_raises(FloatingPointError, np.arctanh,
+ np.array(value, dtype=dt))
+
+ # Make sure glibc < 2.18 atanh is not used, issue 25087
+ assert np.signbit(np.arctanh(-1j).real)
+
+ # See: https://github.com/numpy/numpy/issues/20448
+ @pytest.mark.xfail(
+ _glibc_older_than("2.17"),
+ reason="Older glibc versions may not raise appropriate FP exceptions"
+ )
+ def test_exp2(self):
+ with np.errstate(all='ignore'):
+ in_ = [np.nan, -np.nan, np.inf, -np.inf]
+ out = [np.nan, np.nan, np.inf, 0.0]
+ for dt in ['e', 'f', 'd']:
+ in_arr = np.array(in_, dtype=dt)
+ out_arr = np.array(out, dtype=dt)
+ assert_equal(np.exp2(in_arr), out_arr)
+
+ for value in [2000.0, -2000.0]:
+ with np.errstate(over='raise', under='raise'):
+ for dt in ['e', 'f', 'd']:
+ assert_raises(FloatingPointError, np.exp2,
+ np.array(value, dtype=dt))
+
+ @pytest.mark.skipif(IS_WASM, reason="fp errors don't work in wasm")
+ def test_expm1(self):
+ with np.errstate(all='ignore'):
+ in_ = [np.nan, -np.nan, np.inf, -np.inf]
+ out = [np.nan, np.nan, np.inf, -1.0]
+ for dt in ['e', 'f', 'd']:
+ in_arr = np.array(in_, dtype=dt)
+ out_arr = np.array(out, dtype=dt)
+ assert_equal(np.expm1(in_arr), out_arr)
+
+ for value in [200.0, 2000.0]:
+ with np.errstate(over='raise'):
+ for dt in ['e', 'f']:
+ assert_raises(FloatingPointError, np.expm1,
+ np.array(value, dtype=dt))
+
+ # test to ensure no spurious FP exceptions are raised due to SIMD
+ INF_INVALID_ERR = [
+ np.cos, np.sin, np.tan, np.arccos, np.arcsin, np.spacing, np.arctanh
+ ]
+ NEG_INVALID_ERR = [
+ np.log, np.log2, np.log10, np.log1p, np.sqrt, np.arccosh,
+ np.arctanh
+ ]
+ ONE_INVALID_ERR = [
+ np.arctanh,
+ ]
+ LTONE_INVALID_ERR = [
+ np.arccosh,
+ ]
+ BYZERO_ERR = [
+ np.log, np.log2, np.log10, np.reciprocal, np.arccosh
+ ]
+
+ @pytest.mark.parametrize("ufunc", UFUNCS_UNARY_FP)
+ @pytest.mark.parametrize("dtype", ('e', 'f', 'd'))
+ @pytest.mark.parametrize("data, escape", (
+ ([0.03], LTONE_INVALID_ERR),
+ ([0.03] * 32, LTONE_INVALID_ERR),
+ # neg
+ ([-1.0], NEG_INVALID_ERR),
+ ([-1.0] * 32, NEG_INVALID_ERR),
+ # flat
+ ([1.0], ONE_INVALID_ERR),
+ ([1.0] * 32, ONE_INVALID_ERR),
+ # zero
+ ([0.0], BYZERO_ERR),
+ ([0.0] * 32, BYZERO_ERR),
+ ([-0.0], BYZERO_ERR),
+ ([-0.0] * 32, BYZERO_ERR),
+ # nan
+ ([0.5, 0.5, 0.5, np.nan], LTONE_INVALID_ERR),
+ ([0.5, 0.5, 0.5, np.nan] * 32, LTONE_INVALID_ERR),
+ ([np.nan, 1.0, 1.0, 1.0], ONE_INVALID_ERR),
+ ([np.nan, 1.0, 1.0, 1.0] * 32, ONE_INVALID_ERR),
+ ([np.nan], []),
+ ([np.nan] * 32, []),
+ # inf
+ ([0.5, 0.5, 0.5, np.inf], INF_INVALID_ERR + LTONE_INVALID_ERR),
+ ([0.5, 0.5, 0.5, np.inf] * 32, INF_INVALID_ERR + LTONE_INVALID_ERR),
+ ([np.inf, 1.0, 1.0, 1.0], INF_INVALID_ERR),
+ ([np.inf, 1.0, 1.0, 1.0] * 32, INF_INVALID_ERR),
+ ([np.inf], INF_INVALID_ERR),
+ ([np.inf] * 32, INF_INVALID_ERR),
+ # ninf
+ ([0.5, 0.5, 0.5, -np.inf],
+ NEG_INVALID_ERR + INF_INVALID_ERR + LTONE_INVALID_ERR),
+ ([0.5, 0.5, 0.5, -np.inf] * 32,
+ NEG_INVALID_ERR + INF_INVALID_ERR + LTONE_INVALID_ERR),
+ ([-np.inf, 1.0, 1.0, 1.0], NEG_INVALID_ERR + INF_INVALID_ERR),
+ ([-np.inf, 1.0, 1.0, 1.0] * 32, NEG_INVALID_ERR + INF_INVALID_ERR),
+ ([-np.inf], NEG_INVALID_ERR + INF_INVALID_ERR),
+ ([-np.inf] * 32, NEG_INVALID_ERR + INF_INVALID_ERR),
+ ))
+ def test_unary_spurious_fpexception(self, ufunc, dtype, data, escape):
+ if escape and ufunc in escape:
+ return
+ # FIXME: NAN raises FP invalid exception:
+ # - ceil/float16 on MSVC:32-bit
+ # - spacing/float16 on almost all platforms
+ # - spacing all floats on MSVC vs2022
+ if ufunc == np.spacing:
+ return
+ if ufunc == np.ceil and dtype == 'e':
+ return
+ array = np.array(data, dtype=dtype)
+ with assert_no_warnings():
+ ufunc(array)
+
+ @pytest.mark.parametrize("dtype", ('e', 'f', 'd'))
+ def test_divide_spurious_fpexception(self, dtype):
+ dt = np.dtype(dtype)
+ dt_info = np.finfo(dt)
+ subnorm = dt_info.smallest_subnormal
+ # Verify a bug fix caused due to filling the remaining lanes of the
+ # partially loaded dividend SIMD vector with ones, which leads to
+ # raising an overflow warning when the divisor is denormal.
+ # see https://github.com/numpy/numpy/issues/25097
+ with assert_no_warnings():
+ np.zeros(128 + 1, dtype=dt) / subnorm
+
+class TestFPClass:
+ @pytest.mark.parametrize("stride", [-5, -4, -3, -2, -1, 1,
+ 2, 4, 5, 6, 7, 8, 9, 10])
+ def test_fpclass(self, stride):
+ arr_f64 = np.array([np.nan, -np.nan, np.inf, -np.inf, -1.0, 1.0, -0.0, 0.0, 2.2251e-308, -2.2251e-308], dtype='d')
+ arr_f32 = np.array([np.nan, -np.nan, np.inf, -np.inf, -1.0, 1.0, -0.0, 0.0, 1.4013e-045, -1.4013e-045], dtype='f')
+ nan = np.array([True, True, False, False, False, False, False, False, False, False]) # noqa: E221
+ inf = np.array([False, False, True, True, False, False, False, False, False, False]) # noqa: E221
+ sign = np.array([False, True, False, True, True, False, True, False, False, True]) # noqa: E221
+ finite = np.array([False, False, False, False, True, True, True, True, True, True]) # noqa: E221
+ assert_equal(np.isnan(arr_f32[::stride]), nan[::stride])
+ assert_equal(np.isnan(arr_f64[::stride]), nan[::stride])
+ assert_equal(np.isinf(arr_f32[::stride]), inf[::stride])
+ assert_equal(np.isinf(arr_f64[::stride]), inf[::stride])
+ if platform.machine() == 'riscv64':
+ # On RISC-V, many operations that produce NaNs, such as converting
+ # a -NaN from f64 to f32, return a canonical NaN. The canonical
+ # NaNs are always positive. See section 11.3 NaN Generation and
+ # Propagation of the RISC-V Unprivileged ISA for more details.
+ # We disable the sign test on riscv64 for -np.nan as we
+ # cannot assume that its sign will be honoured in these tests.
+ arr_f64_rv = np.copy(arr_f64)
+ arr_f32_rv = np.copy(arr_f32)
+ arr_f64_rv[1] = -1.0
+ arr_f32_rv[1] = -1.0
+ assert_equal(np.signbit(arr_f32_rv[::stride]), sign[::stride])
+ assert_equal(np.signbit(arr_f64_rv[::stride]), sign[::stride])
+ else:
+ assert_equal(np.signbit(arr_f32[::stride]), sign[::stride])
+ assert_equal(np.signbit(arr_f64[::stride]), sign[::stride])
+ assert_equal(np.isfinite(arr_f32[::stride]), finite[::stride])
+ assert_equal(np.isfinite(arr_f64[::stride]), finite[::stride])
+
+ @pytest.mark.parametrize("dtype", ['d', 'f'])
+ def test_fp_noncontiguous(self, dtype):
+ data = np.array([np.nan, -np.nan, np.inf, -np.inf, -1.0,
+ 1.0, -0.0, 0.0, 2.2251e-308,
+ -2.2251e-308], dtype=dtype)
+ nan = np.array([True, True, False, False, False, False,
+ False, False, False, False])
+ inf = np.array([False, False, True, True, False, False,
+ False, False, False, False])
+ sign = np.array([False, True, False, True, True, False,
+ True, False, False, True])
+ finite = np.array([False, False, False, False, True, True,
+ True, True, True, True])
+ out = np.ndarray(data.shape, dtype='bool')
+ ncontig_in = data[1::3]
+ ncontig_out = out[1::3]
+ contig_in = np.array(ncontig_in)
+
+ if platform.machine() == 'riscv64':
+ # Disable the -np.nan signbit tests on riscv64. See comments in
+ # test_fpclass for more details.
+ data_rv = np.copy(data)
+ data_rv[1] = -1.0
+ ncontig_sign_in = data_rv[1::3]
+ contig_sign_in = np.array(ncontig_sign_in)
+ else:
+ ncontig_sign_in = ncontig_in
+ contig_sign_in = contig_in
+
+ assert_equal(ncontig_in.flags.c_contiguous, False)
+ assert_equal(ncontig_out.flags.c_contiguous, False)
+ assert_equal(contig_in.flags.c_contiguous, True)
+ assert_equal(ncontig_sign_in.flags.c_contiguous, False)
+ assert_equal(contig_sign_in.flags.c_contiguous, True)
+ # ncontig in, ncontig out
+ assert_equal(np.isnan(ncontig_in, out=ncontig_out), nan[1::3])
+ assert_equal(np.isinf(ncontig_in, out=ncontig_out), inf[1::3])
+ assert_equal(np.signbit(ncontig_sign_in, out=ncontig_out), sign[1::3])
+ assert_equal(np.isfinite(ncontig_in, out=ncontig_out), finite[1::3])
+ # contig in, ncontig out
+ assert_equal(np.isnan(contig_in, out=ncontig_out), nan[1::3])
+ assert_equal(np.isinf(contig_in, out=ncontig_out), inf[1::3])
+ assert_equal(np.signbit(contig_sign_in, out=ncontig_out), sign[1::3])
+ assert_equal(np.isfinite(contig_in, out=ncontig_out), finite[1::3])
+ # ncontig in, contig out
+ assert_equal(np.isnan(ncontig_in), nan[1::3])
+ assert_equal(np.isinf(ncontig_in), inf[1::3])
+ assert_equal(np.signbit(ncontig_sign_in), sign[1::3])
+ assert_equal(np.isfinite(ncontig_in), finite[1::3])
+ # contig in, contig out, nd stride
+ data_split = np.array(np.array_split(data, 2))
+ nan_split = np.array(np.array_split(nan, 2))
+ inf_split = np.array(np.array_split(inf, 2))
+ sign_split = np.array(np.array_split(sign, 2))
+ finite_split = np.array(np.array_split(finite, 2))
+ assert_equal(np.isnan(data_split), nan_split)
+ assert_equal(np.isinf(data_split), inf_split)
+ if platform.machine() == 'riscv64':
+ data_split_rv = np.array(np.array_split(data_rv, 2))
+ assert_equal(np.signbit(data_split_rv), sign_split)
+ else:
+ assert_equal(np.signbit(data_split), sign_split)
+ assert_equal(np.isfinite(data_split), finite_split)
+
+class TestLDExp:
+ @pytest.mark.parametrize("stride", [-4, -2, -1, 1, 2, 4])
+ @pytest.mark.parametrize("dtype", ['f', 'd'])
+ def test_ldexp(self, dtype, stride):
+ mant = np.array([0.125, 0.25, 0.5, 1., 1., 2., 4., 8.], dtype=dtype)
+ exp = np.array([3, 2, 1, 0, 0, -1, -2, -3], dtype='i')
+ out = np.zeros(8, dtype=dtype)
+ assert_equal(np.ldexp(mant[::stride], exp[::stride], out=out[::stride]), np.ones(8, dtype=dtype)[::stride])
+ assert_equal(out[::stride], np.ones(8, dtype=dtype)[::stride])
+
+class TestFRExp:
+ @pytest.mark.parametrize("stride", [-4, -2, -1, 1, 2, 4])
+ @pytest.mark.parametrize("dtype", ['f', 'd'])
+ @pytest.mark.skipif(not sys.platform.startswith('linux'),
+ reason="np.frexp gives different answers for NAN/INF on windows and linux")
+ @pytest.mark.xfail(IS_MUSL, reason="gh23049")
+ def test_frexp(self, dtype, stride):
+ arr = np.array([np.nan, np.nan, np.inf, -np.inf, 0.0, -0.0, 1.0, -1.0], dtype=dtype)
+ mant_true = np.array([np.nan, np.nan, np.inf, -np.inf, 0.0, -0.0, 0.5, -0.5], dtype=dtype)
+ exp_true = np.array([0, 0, 0, 0, 0, 0, 1, 1], dtype='i')
+ out_mant = np.ones(8, dtype=dtype)
+ out_exp = 2 * np.ones(8, dtype='i')
+ mant, exp = np.frexp(arr[::stride], out=(out_mant[::stride], out_exp[::stride]))
+ assert_equal(mant_true[::stride], mant)
+ assert_equal(exp_true[::stride], exp)
+ assert_equal(out_mant[::stride], mant_true[::stride])
+ assert_equal(out_exp[::stride], exp_true[::stride])
+
+
+# func : [maxulperror, low, high]
+avx_ufuncs = {'sqrt' : [1, 0., 100.], # noqa: E203
+ 'absolute' : [0, -100., 100.], # noqa: E203
+ 'reciprocal' : [1, 1., 100.], # noqa: E203
+ 'square' : [1, -100., 100.], # noqa: E203
+ 'rint' : [0, -100., 100.], # noqa: E203
+ 'floor' : [0, -100., 100.], # noqa: E203
+ 'ceil' : [0, -100., 100.], # noqa: E203
+ 'trunc' : [0, -100., 100.]} # noqa: E203
+
+class TestAVXUfuncs:
+ def test_avx_based_ufunc(self):
+ strides = np.array([-4, -3, -2, -1, 1, 2, 3, 4])
+ np.random.seed(42)
+ for func, prop in avx_ufuncs.items():
+ maxulperr = prop[0]
+ minval = prop[1]
+ maxval = prop[2]
+ # various array sizes to ensure masking in AVX is tested
+ for size in range(1, 32):
+ myfunc = getattr(np, func)
+ x_f32 = np.random.uniform(low=minval, high=maxval,
+ size=size).astype(np.float32)
+ x_f64 = x_f32.astype(np.float64)
+ x_f128 = x_f32.astype(np.longdouble)
+ y_true128 = myfunc(x_f128)
+ if maxulperr == 0:
+ assert_equal(myfunc(x_f32), y_true128.astype(np.float32))
+ assert_equal(myfunc(x_f64), y_true128.astype(np.float64))
+ else:
+ assert_array_max_ulp(myfunc(x_f32),
+ y_true128.astype(np.float32),
+ maxulp=maxulperr)
+ assert_array_max_ulp(myfunc(x_f64),
+ y_true128.astype(np.float64),
+ maxulp=maxulperr)
+ # various strides to test gather instruction
+ if size > 1:
+ y_true32 = myfunc(x_f32)
+ y_true64 = myfunc(x_f64)
+ for jj in strides:
+ assert_equal(myfunc(x_f64[::jj]), y_true64[::jj])
+ assert_equal(myfunc(x_f32[::jj]), y_true32[::jj])
+
+class TestAVXFloat32Transcendental:
+ def test_exp_float32(self):
+ np.random.seed(42)
+ x_f32 = np.float32(np.random.uniform(low=0.0, high=88.1, size=1000000))
+ x_f64 = np.float64(x_f32)
+ assert_array_max_ulp(np.exp(x_f32), np.float32(np.exp(x_f64)), maxulp=3)
+
+ def test_log_float32(self):
+ np.random.seed(42)
+ x_f32 = np.float32(np.random.uniform(low=0.0, high=1000, size=1000000))
+ x_f64 = np.float64(x_f32)
+ assert_array_max_ulp(np.log(x_f32), np.float32(np.log(x_f64)), maxulp=4)
+
+ def test_sincos_float32(self):
+ np.random.seed(42)
+ N = 1000000
+ M = np.int_(N / 20)
+ index = np.random.randint(low=0, high=N, size=M)
+ x_f32 = np.float32(np.random.uniform(low=-100., high=100., size=N))
+ if not _glibc_older_than("2.17"):
+ # test coverage for elements > 117435.992f for which glibc is used
+ # this is known to be problematic on old glibc, so skip it there
+ x_f32[index] = np.float32(10E+10 * np.random.rand(M))
+ x_f64 = np.float64(x_f32)
+ assert_array_max_ulp(np.sin(x_f32), np.float32(np.sin(x_f64)), maxulp=2)
+ assert_array_max_ulp(np.cos(x_f32), np.float32(np.cos(x_f64)), maxulp=2)
+ # test aliasing(issue #17761)
+ tx_f32 = x_f32.copy()
+ assert_array_max_ulp(np.sin(x_f32, out=x_f32), np.float32(np.sin(x_f64)), maxulp=2)
+ assert_array_max_ulp(np.cos(tx_f32, out=tx_f32), np.float32(np.cos(x_f64)), maxulp=2)
+
+ def test_strided_float32(self):
+ np.random.seed(42)
+ strides = np.array([-4, -3, -2, -1, 1, 2, 3, 4])
+ sizes = np.arange(2, 100)
+ for ii in sizes:
+ x_f32 = np.float32(np.random.uniform(low=0.01, high=88.1, size=ii))
+ x_f32_large = x_f32.copy()
+ x_f32_large[3:-1:4] = 120000.0
+ exp_true = np.exp(x_f32)
+ log_true = np.log(x_f32)
+ sin_true = np.sin(x_f32_large)
+ cos_true = np.cos(x_f32_large)
+ for jj in strides:
+ assert_array_almost_equal_nulp(np.exp(x_f32[::jj]), exp_true[::jj], nulp=2)
+ assert_array_almost_equal_nulp(np.log(x_f32[::jj]), log_true[::jj], nulp=2)
+ assert_array_almost_equal_nulp(np.sin(x_f32_large[::jj]), sin_true[::jj], nulp=2)
+ assert_array_almost_equal_nulp(np.cos(x_f32_large[::jj]), cos_true[::jj], nulp=2)
+
+class TestLogAddExp(_FilterInvalids):
+ def test_logaddexp_values(self):
+ x = [1, 2, 3, 4, 5]
+ y = [5, 4, 3, 2, 1]
+ z = [6, 6, 6, 6, 6]
+ for dt, dec_ in zip(['f', 'd', 'g'], [6, 15, 15]):
+ xf = np.log(np.array(x, dtype=dt))
+ yf = np.log(np.array(y, dtype=dt))
+ zf = np.log(np.array(z, dtype=dt))
+ assert_almost_equal(np.logaddexp(xf, yf), zf, decimal=dec_)
+
+ def test_logaddexp_range(self):
+ x = [1000000, -1000000, 1000200, -1000200]
+ y = [1000200, -1000200, 1000000, -1000000]
+ z = [1000200, -1000000, 1000200, -1000000]
+ for dt in ['f', 'd', 'g']:
+ logxf = np.array(x, dtype=dt)
+ logyf = np.array(y, dtype=dt)
+ logzf = np.array(z, dtype=dt)
+ assert_almost_equal(np.logaddexp(logxf, logyf), logzf)
+
+ def test_inf(self):
+ inf = np.inf
+ x = [inf, -inf, inf, -inf, inf, 1, -inf, 1] # noqa: E221
+ y = [inf, inf, -inf, -inf, 1, inf, 1, -inf] # noqa: E221
+ z = [inf, inf, inf, -inf, inf, inf, 1, 1]
+ with np.errstate(invalid='raise'):
+ for dt in ['f', 'd', 'g']:
+ logxf = np.array(x, dtype=dt)
+ logyf = np.array(y, dtype=dt)
+ logzf = np.array(z, dtype=dt)
+ assert_equal(np.logaddexp(logxf, logyf), logzf)
+
+ def test_nan(self):
+ assert_(np.isnan(np.logaddexp(np.nan, np.inf)))
+ assert_(np.isnan(np.logaddexp(np.inf, np.nan)))
+ assert_(np.isnan(np.logaddexp(np.nan, 0)))
+ assert_(np.isnan(np.logaddexp(0, np.nan)))
+ assert_(np.isnan(np.logaddexp(np.nan, np.nan)))
+
+ def test_reduce(self):
+ assert_equal(np.logaddexp.identity, -np.inf)
+ assert_equal(np.logaddexp.reduce([]), -np.inf)
+
+
+class TestLog1p:
+ def test_log1p(self):
+ assert_almost_equal(ncu.log1p(0.2), ncu.log(1.2))
+ assert_almost_equal(ncu.log1p(1e-6), ncu.log(1 + 1e-6))
+
+ def test_special(self):
+ with np.errstate(invalid="ignore", divide="ignore"):
+ assert_equal(ncu.log1p(np.nan), np.nan)
+ assert_equal(ncu.log1p(np.inf), np.inf)
+ assert_equal(ncu.log1p(-1.), -np.inf)
+ assert_equal(ncu.log1p(-2.), np.nan)
+ assert_equal(ncu.log1p(-np.inf), np.nan)
+
+
+class TestExpm1:
+ def test_expm1(self):
+ assert_almost_equal(ncu.expm1(0.2), ncu.exp(0.2) - 1)
+ assert_almost_equal(ncu.expm1(1e-6), ncu.exp(1e-6) - 1)
+
+ def test_special(self):
+ assert_equal(ncu.expm1(np.inf), np.inf)
+ assert_equal(ncu.expm1(0.), 0.)
+ assert_equal(ncu.expm1(-0.), -0.)
+ assert_equal(ncu.expm1(np.inf), np.inf)
+ assert_equal(ncu.expm1(-np.inf), -1.)
+
+ def test_complex(self):
+ x = np.asarray(1e-12)
+ assert_allclose(x, ncu.expm1(x))
+ x = x.astype(np.complex128)
+ assert_allclose(x, ncu.expm1(x))
+
+
+class TestHypot:
+ def test_simple(self):
+ assert_almost_equal(ncu.hypot(1, 1), ncu.sqrt(2))
+ assert_almost_equal(ncu.hypot(0, 0), 0)
+
+ def test_reduce(self):
+ assert_almost_equal(ncu.hypot.reduce([3.0, 4.0]), 5.0)
+ assert_almost_equal(ncu.hypot.reduce([3.0, 4.0, 0]), 5.0)
+ assert_almost_equal(ncu.hypot.reduce([9.0, 12.0, 20.0]), 25.0)
+ assert_equal(ncu.hypot.reduce([]), 0.0)
+
+
+def assert_hypot_isnan(x, y):
+ with np.errstate(invalid='ignore'):
+ assert_(np.isnan(ncu.hypot(x, y)),
+ f"hypot({x}, {y}) is {ncu.hypot(x, y)}, not nan")
+
+
+def assert_hypot_isinf(x, y):
+ with np.errstate(invalid='ignore'):
+ assert_(np.isinf(ncu.hypot(x, y)),
+ f"hypot({x}, {y}) is {ncu.hypot(x, y)}, not inf")
+
+
+class TestHypotSpecialValues:
+ def test_nan_outputs(self):
+ assert_hypot_isnan(np.nan, np.nan)
+ assert_hypot_isnan(np.nan, 1)
+
+ def test_nan_outputs2(self):
+ assert_hypot_isinf(np.nan, np.inf)
+ assert_hypot_isinf(np.inf, np.nan)
+ assert_hypot_isinf(np.inf, 0)
+ assert_hypot_isinf(0, np.inf)
+ assert_hypot_isinf(np.inf, np.inf)
+ assert_hypot_isinf(np.inf, 23.0)
+
+ def test_no_fpe(self):
+ assert_no_warnings(ncu.hypot, np.inf, 0)
+
+
+def assert_arctan2_isnan(x, y):
+ assert_(np.isnan(ncu.arctan2(x, y)), f"arctan({x}, {y}) is {ncu.arctan2(x, y)}, not nan")
+
+
+def assert_arctan2_ispinf(x, y):
+ assert_((np.isinf(ncu.arctan2(x, y)) and ncu.arctan2(x, y) > 0), f"arctan({x}, {y}) is {ncu.arctan2(x, y)}, not +inf")
+
+
+def assert_arctan2_isninf(x, y):
+ assert_((np.isinf(ncu.arctan2(x, y)) and ncu.arctan2(x, y) < 0), f"arctan({x}, {y}) is {ncu.arctan2(x, y)}, not -inf")
+
+
+def assert_arctan2_ispzero(x, y):
+ assert_((ncu.arctan2(x, y) == 0 and not np.signbit(ncu.arctan2(x, y))), f"arctan({x}, {y}) is {ncu.arctan2(x, y)}, not +0")
+
+
+def assert_arctan2_isnzero(x, y):
+ assert_((ncu.arctan2(x, y) == 0 and np.signbit(ncu.arctan2(x, y))), f"arctan({x}, {y}) is {ncu.arctan2(x, y)}, not -0")
+
+
+class TestArctan2SpecialValues:
+ def test_one_one(self):
+ # atan2(1, 1) returns pi/4.
+ assert_almost_equal(ncu.arctan2(1, 1), 0.25 * np.pi)
+ assert_almost_equal(ncu.arctan2(-1, 1), -0.25 * np.pi)
+ assert_almost_equal(ncu.arctan2(1, -1), 0.75 * np.pi)
+
+ def test_zero_nzero(self):
+ # atan2(+-0, -0) returns +-pi.
+ assert_almost_equal(ncu.arctan2(ncu.PZERO, ncu.NZERO), np.pi)
+ assert_almost_equal(ncu.arctan2(ncu.NZERO, ncu.NZERO), -np.pi)
+
+ def test_zero_pzero(self):
+ # atan2(+-0, +0) returns +-0.
+ assert_arctan2_ispzero(ncu.PZERO, ncu.PZERO)
+ assert_arctan2_isnzero(ncu.NZERO, ncu.PZERO)
+
+ def test_zero_negative(self):
+ # atan2(+-0, x) returns +-pi for x < 0.
+ assert_almost_equal(ncu.arctan2(ncu.PZERO, -1), np.pi)
+ assert_almost_equal(ncu.arctan2(ncu.NZERO, -1), -np.pi)
+
+ def test_zero_positive(self):
+ # atan2(+-0, x) returns +-0 for x > 0.
+ assert_arctan2_ispzero(ncu.PZERO, 1)
+ assert_arctan2_isnzero(ncu.NZERO, 1)
+
+ def test_positive_zero(self):
+ # atan2(y, +-0) returns +pi/2 for y > 0.
+ assert_almost_equal(ncu.arctan2(1, ncu.PZERO), 0.5 * np.pi)
+ assert_almost_equal(ncu.arctan2(1, ncu.NZERO), 0.5 * np.pi)
+
+ def test_negative_zero(self):
+ # atan2(y, +-0) returns -pi/2 for y < 0.
+ assert_almost_equal(ncu.arctan2(-1, ncu.PZERO), -0.5 * np.pi)
+ assert_almost_equal(ncu.arctan2(-1, ncu.NZERO), -0.5 * np.pi)
+
+ def test_any_ninf(self):
+ # atan2(+-y, -infinity) returns +-pi for finite y > 0.
+ assert_almost_equal(ncu.arctan2(1, -np.inf), np.pi)
+ assert_almost_equal(ncu.arctan2(-1, -np.inf), -np.pi)
+
+ def test_any_pinf(self):
+ # atan2(+-y, +infinity) returns +-0 for finite y > 0.
+ assert_arctan2_ispzero(1, np.inf)
+ assert_arctan2_isnzero(-1, np.inf)
+
+ def test_inf_any(self):
+ # atan2(+-infinity, x) returns +-pi/2 for finite x.
+ assert_almost_equal(ncu.arctan2( np.inf, 1), 0.5 * np.pi)
+ assert_almost_equal(ncu.arctan2(-np.inf, 1), -0.5 * np.pi)
+
+ def test_inf_ninf(self):
+ # atan2(+-infinity, -infinity) returns +-3*pi/4.
+ assert_almost_equal(ncu.arctan2( np.inf, -np.inf), 0.75 * np.pi)
+ assert_almost_equal(ncu.arctan2(-np.inf, -np.inf), -0.75 * np.pi)
+
+ def test_inf_pinf(self):
+ # atan2(+-infinity, +infinity) returns +-pi/4.
+ assert_almost_equal(ncu.arctan2( np.inf, np.inf), 0.25 * np.pi)
+ assert_almost_equal(ncu.arctan2(-np.inf, np.inf), -0.25 * np.pi)
+
+ def test_nan_any(self):
+ # atan2(nan, x) returns nan for any x, including inf
+ assert_arctan2_isnan(np.nan, np.inf)
+ assert_arctan2_isnan(np.inf, np.nan)
+ assert_arctan2_isnan(np.nan, np.nan)
+
+
+class TestLdexp:
+ def _check_ldexp(self, tp):
+ assert_almost_equal(ncu.ldexp(np.array(2., np.float32),
+ np.array(3, tp)), 16.)
+ assert_almost_equal(ncu.ldexp(np.array(2., np.float64),
+ np.array(3, tp)), 16.)
+ assert_almost_equal(ncu.ldexp(np.array(2., np.longdouble),
+ np.array(3, tp)), 16.)
+
+ def test_ldexp(self):
+ # The default Python int type should work
+ assert_almost_equal(ncu.ldexp(2., 3), 16.)
+ # The following int types should all be accepted
+ self._check_ldexp(np.int8)
+ self._check_ldexp(np.int16)
+ self._check_ldexp(np.int32)
+ self._check_ldexp('i')
+ self._check_ldexp('l')
+
+ def test_ldexp_overflow(self):
+ # silence warning emitted on overflow
+ with np.errstate(over="ignore"):
+ imax = np.iinfo(np.dtype('l')).max
+ imin = np.iinfo(np.dtype('l')).min
+ assert_equal(ncu.ldexp(2., imax), np.inf)
+ assert_equal(ncu.ldexp(2., imin), 0)
+
+
+class TestMaximum(_FilterInvalids):
+ def test_reduce(self):
+ dflt = np.typecodes['AllFloat']
+ dint = np.typecodes['AllInteger']
+ seq1 = np.arange(11)
+ seq2 = seq1[::-1]
+ func = np.maximum.reduce
+ for dt in dint:
+ tmp1 = seq1.astype(dt)
+ tmp2 = seq2.astype(dt)
+ assert_equal(func(tmp1), 10)
+ assert_equal(func(tmp2), 10)
+ for dt in dflt:
+ tmp1 = seq1.astype(dt)
+ tmp2 = seq2.astype(dt)
+ assert_equal(func(tmp1), 10)
+ assert_equal(func(tmp2), 10)
+ tmp1[::2] = np.nan
+ tmp2[::2] = np.nan
+ assert_equal(func(tmp1), np.nan)
+ assert_equal(func(tmp2), np.nan)
+
+ def test_reduce_complex(self):
+ assert_equal(np.maximum.reduce([1, 2j]), 1)
+ assert_equal(np.maximum.reduce([1 + 3j, 2j]), 1 + 3j)
+
+ def test_float_nans(self):
+ nan = np.nan
+ arg1 = np.array([0, nan, nan])
+ arg2 = np.array([nan, 0, nan])
+ out = np.array([nan, nan, nan])
+ assert_equal(np.maximum(arg1, arg2), out)
+
+ def test_object_nans(self):
+ # Multiple checks to give this a chance to
+ # fail if cmp is used instead of rich compare.
+ # Failure cannot be guaranteed.
+ for i in range(1):
+ x = np.array(float('nan'), object)
+ y = 1.0
+ z = np.array(float('nan'), object)
+ assert_(np.maximum(x, y) == 1.0)
+ assert_(np.maximum(z, y) == 1.0)
+
+ def test_complex_nans(self):
+ nan = np.nan
+ for cnan in [complex(nan, 0), complex(0, nan), complex(nan, nan)]:
+ arg1 = np.array([0, cnan, cnan], dtype=complex)
+ arg2 = np.array([cnan, 0, cnan], dtype=complex)
+ out = np.array([nan, nan, nan], dtype=complex)
+ assert_equal(np.maximum(arg1, arg2), out)
+
+ def test_object_array(self):
+ arg1 = np.arange(5, dtype=object)
+ arg2 = arg1 + 1
+ assert_equal(np.maximum(arg1, arg2), arg2)
+
+ def test_strided_array(self):
+ arr1 = np.array([-4.0, 1.0, 10.0, 0.0, np.nan, -np.nan, np.inf, -np.inf])
+ arr2 = np.array([-2.0, -1.0, np.nan, 1.0, 0.0, np.nan, 1.0, -3.0]) # noqa: E221
+ maxtrue = np.array([-2.0, 1.0, np.nan, 1.0, np.nan, np.nan, np.inf, -3.0])
+ out = np.ones(8)
+ out_maxtrue = np.array([-2.0, 1.0, 1.0, 10.0, 1.0, 1.0, np.nan, 1.0])
+ assert_equal(np.maximum(arr1, arr2), maxtrue)
+ assert_equal(np.maximum(arr1[::2], arr2[::2]), maxtrue[::2])
+ assert_equal(np.maximum(arr1[:4:], arr2[::2]), np.array([-2.0, np.nan, 10.0, 1.0]))
+ assert_equal(np.maximum(arr1[::3], arr2[:3:]), np.array([-2.0, 0.0, np.nan]))
+ assert_equal(np.maximum(arr1[:6:2], arr2[::3], out=out[::3]), np.array([-2.0, 10., np.nan]))
+ assert_equal(out, out_maxtrue)
+
+ def test_precision(self):
+ dtypes = [np.float16, np.float32, np.float64, np.longdouble]
+
+ for dt in dtypes:
+ dtmin = np.finfo(dt).min
+ dtmax = np.finfo(dt).max
+ d1 = dt(0.1)
+ d1_next = np.nextafter(d1, np.inf)
+
+ test_cases = [
+ # v1 v2 expected
+ (dtmin, -np.inf, dtmin),
+ (dtmax, -np.inf, dtmax),
+ (d1, d1_next, d1_next),
+ (dtmax, np.nan, np.nan),
+ ]
+
+ for v1, v2, expected in test_cases:
+ assert_equal(np.maximum([v1], [v2]), [expected])
+ assert_equal(np.maximum.reduce([v1, v2]), expected)
+
+
+class TestMinimum(_FilterInvalids):
+ def test_reduce(self):
+ dflt = np.typecodes['AllFloat']
+ dint = np.typecodes['AllInteger']
+ seq1 = np.arange(11)
+ seq2 = seq1[::-1]
+ func = np.minimum.reduce
+ for dt in dint:
+ tmp1 = seq1.astype(dt)
+ tmp2 = seq2.astype(dt)
+ assert_equal(func(tmp1), 0)
+ assert_equal(func(tmp2), 0)
+ for dt in dflt:
+ tmp1 = seq1.astype(dt)
+ tmp2 = seq2.astype(dt)
+ assert_equal(func(tmp1), 0)
+ assert_equal(func(tmp2), 0)
+ tmp1[::2] = np.nan
+ tmp2[::2] = np.nan
+ assert_equal(func(tmp1), np.nan)
+ assert_equal(func(tmp2), np.nan)
+
+ def test_reduce_complex(self):
+ assert_equal(np.minimum.reduce([1, 2j]), 2j)
+ assert_equal(np.minimum.reduce([1 + 3j, 2j]), 2j)
+
+ def test_float_nans(self):
+ nan = np.nan
+ arg1 = np.array([0, nan, nan])
+ arg2 = np.array([nan, 0, nan])
+ out = np.array([nan, nan, nan])
+ assert_equal(np.minimum(arg1, arg2), out)
+
+ def test_object_nans(self):
+ # Multiple checks to give this a chance to
+ # fail if cmp is used instead of rich compare.
+ # Failure cannot be guaranteed.
+ for i in range(1):
+ x = np.array(float('nan'), object)
+ y = 1.0
+ z = np.array(float('nan'), object)
+ assert_(np.minimum(x, y) == 1.0)
+ assert_(np.minimum(z, y) == 1.0)
+
+ def test_complex_nans(self):
+ nan = np.nan
+ for cnan in [complex(nan, 0), complex(0, nan), complex(nan, nan)]:
+ arg1 = np.array([0, cnan, cnan], dtype=complex)
+ arg2 = np.array([cnan, 0, cnan], dtype=complex)
+ out = np.array([nan, nan, nan], dtype=complex)
+ assert_equal(np.minimum(arg1, arg2), out)
+
+ def test_object_array(self):
+ arg1 = np.arange(5, dtype=object)
+ arg2 = arg1 + 1
+ assert_equal(np.minimum(arg1, arg2), arg1)
+
+ def test_strided_array(self):
+ arr1 = np.array([-4.0, 1.0, 10.0, 0.0, np.nan, -np.nan, np.inf, -np.inf])
+ arr2 = np.array([-2.0, -1.0, np.nan, 1.0, 0.0, np.nan, 1.0, -3.0])
+ mintrue = np.array([-4.0, -1.0, np.nan, 0.0, np.nan, np.nan, 1.0, -np.inf])
+ out = np.ones(8)
+ out_mintrue = np.array([-4.0, 1.0, 1.0, 1.0, 1.0, 1.0, np.nan, 1.0])
+ assert_equal(np.minimum(arr1, arr2), mintrue)
+ assert_equal(np.minimum(arr1[::2], arr2[::2]), mintrue[::2])
+ assert_equal(np.minimum(arr1[:4:], arr2[::2]), np.array([-4.0, np.nan, 0.0, 0.0]))
+ assert_equal(np.minimum(arr1[::3], arr2[:3:]), np.array([-4.0, -1.0, np.nan]))
+ assert_equal(np.minimum(arr1[:6:2], arr2[::3], out=out[::3]), np.array([-4.0, 1.0, np.nan]))
+ assert_equal(out, out_mintrue)
+
+ def test_precision(self):
+ dtypes = [np.float16, np.float32, np.float64, np.longdouble]
+
+ for dt in dtypes:
+ dtmin = np.finfo(dt).min
+ dtmax = np.finfo(dt).max
+ d1 = dt(0.1)
+ d1_next = np.nextafter(d1, np.inf)
+
+ test_cases = [
+ # v1 v2 expected
+ (dtmin, np.inf, dtmin),
+ (dtmax, np.inf, dtmax),
+ (d1, d1_next, d1),
+ (dtmin, np.nan, np.nan),
+ ]
+
+ for v1, v2, expected in test_cases:
+ assert_equal(np.minimum([v1], [v2]), [expected])
+ assert_equal(np.minimum.reduce([v1, v2]), expected)
+
+
+class TestFmax(_FilterInvalids):
+ def test_reduce(self):
+ dflt = np.typecodes['AllFloat']
+ dint = np.typecodes['AllInteger']
+ seq1 = np.arange(11)
+ seq2 = seq1[::-1]
+ func = np.fmax.reduce
+ for dt in dint:
+ tmp1 = seq1.astype(dt)
+ tmp2 = seq2.astype(dt)
+ assert_equal(func(tmp1), 10)
+ assert_equal(func(tmp2), 10)
+ for dt in dflt:
+ tmp1 = seq1.astype(dt)
+ tmp2 = seq2.astype(dt)
+ assert_equal(func(tmp1), 10)
+ assert_equal(func(tmp2), 10)
+ tmp1[::2] = np.nan
+ tmp2[::2] = np.nan
+ assert_equal(func(tmp1), 9)
+ assert_equal(func(tmp2), 9)
+
+ def test_reduce_complex(self):
+ assert_equal(np.fmax.reduce([1, 2j]), 1)
+ assert_equal(np.fmax.reduce([1 + 3j, 2j]), 1 + 3j)
+
+ def test_float_nans(self):
+ nan = np.nan
+ arg1 = np.array([0, nan, nan])
+ arg2 = np.array([nan, 0, nan])
+ out = np.array([0, 0, nan])
+ assert_equal(np.fmax(arg1, arg2), out)
+
+ def test_complex_nans(self):
+ nan = np.nan
+ for cnan in [complex(nan, 0), complex(0, nan), complex(nan, nan)]:
+ arg1 = np.array([0, cnan, cnan], dtype=complex)
+ arg2 = np.array([cnan, 0, cnan], dtype=complex)
+ out = np.array([0, 0, nan], dtype=complex)
+ assert_equal(np.fmax(arg1, arg2), out)
+
+ def test_precision(self):
+ dtypes = [np.float16, np.float32, np.float64, np.longdouble]
+
+ for dt in dtypes:
+ dtmin = np.finfo(dt).min
+ dtmax = np.finfo(dt).max
+ d1 = dt(0.1)
+ d1_next = np.nextafter(d1, np.inf)
+
+ test_cases = [
+ # v1 v2 expected
+ (dtmin, -np.inf, dtmin),
+ (dtmax, -np.inf, dtmax),
+ (d1, d1_next, d1_next),
+ (dtmax, np.nan, dtmax),
+ ]
+
+ for v1, v2, expected in test_cases:
+ assert_equal(np.fmax([v1], [v2]), [expected])
+ assert_equal(np.fmax.reduce([v1, v2]), expected)
+
+
+class TestFmin(_FilterInvalids):
+ def test_reduce(self):
+ dflt = np.typecodes['AllFloat']
+ dint = np.typecodes['AllInteger']
+ seq1 = np.arange(11)
+ seq2 = seq1[::-1]
+ func = np.fmin.reduce
+ for dt in dint:
+ tmp1 = seq1.astype(dt)
+ tmp2 = seq2.astype(dt)
+ assert_equal(func(tmp1), 0)
+ assert_equal(func(tmp2), 0)
+ for dt in dflt:
+ tmp1 = seq1.astype(dt)
+ tmp2 = seq2.astype(dt)
+ assert_equal(func(tmp1), 0)
+ assert_equal(func(tmp2), 0)
+ tmp1[::2] = np.nan
+ tmp2[::2] = np.nan
+ assert_equal(func(tmp1), 1)
+ assert_equal(func(tmp2), 1)
+
+ def test_reduce_complex(self):
+ assert_equal(np.fmin.reduce([1, 2j]), 2j)
+ assert_equal(np.fmin.reduce([1 + 3j, 2j]), 2j)
+
+ def test_float_nans(self):
+ nan = np.nan
+ arg1 = np.array([0, nan, nan])
+ arg2 = np.array([nan, 0, nan])
+ out = np.array([0, 0, nan])
+ assert_equal(np.fmin(arg1, arg2), out)
+
+ def test_complex_nans(self):
+ nan = np.nan
+ for cnan in [complex(nan, 0), complex(0, nan), complex(nan, nan)]:
+ arg1 = np.array([0, cnan, cnan], dtype=complex)
+ arg2 = np.array([cnan, 0, cnan], dtype=complex)
+ out = np.array([0, 0, nan], dtype=complex)
+ assert_equal(np.fmin(arg1, arg2), out)
+
+ def test_precision(self):
+ dtypes = [np.float16, np.float32, np.float64, np.longdouble]
+
+ for dt in dtypes:
+ dtmin = np.finfo(dt).min
+ dtmax = np.finfo(dt).max
+ d1 = dt(0.1)
+ d1_next = np.nextafter(d1, np.inf)
+
+ test_cases = [
+ # v1 v2 expected
+ (dtmin, np.inf, dtmin),
+ (dtmax, np.inf, dtmax),
+ (d1, d1_next, d1),
+ (dtmin, np.nan, dtmin),
+ ]
+
+ for v1, v2, expected in test_cases:
+ assert_equal(np.fmin([v1], [v2]), [expected])
+ assert_equal(np.fmin.reduce([v1, v2]), expected)
+
+
+class TestBool:
+ def test_exceptions(self):
+ a = np.ones(1, dtype=np.bool)
+ assert_raises(TypeError, np.negative, a)
+ assert_raises(TypeError, np.positive, a)
+ assert_raises(TypeError, np.subtract, a, a)
+
+ def test_truth_table_logical(self):
+ # 2, 3 and 4 serves as true values
+ input1 = [0, 0, 3, 2]
+ input2 = [0, 4, 0, 2]
+
+ typecodes = (np.typecodes['AllFloat']
+ + np.typecodes['AllInteger']
+ + '?') # boolean
+ for dtype in map(np.dtype, typecodes):
+ arg1 = np.asarray(input1, dtype=dtype)
+ arg2 = np.asarray(input2, dtype=dtype)
+
+ # OR
+ out = [False, True, True, True]
+ for func in (np.logical_or, np.maximum):
+ assert_equal(func(arg1, arg2).astype(bool), out)
+ # AND
+ out = [False, False, False, True]
+ for func in (np.logical_and, np.minimum):
+ assert_equal(func(arg1, arg2).astype(bool), out)
+ # XOR
+ out = [False, True, True, False]
+ for func in (np.logical_xor, np.not_equal):
+ assert_equal(func(arg1, arg2).astype(bool), out)
+
+ def test_truth_table_bitwise(self):
+ arg1 = [False, False, True, True]
+ arg2 = [False, True, False, True]
+
+ out = [False, True, True, True]
+ assert_equal(np.bitwise_or(arg1, arg2), out)
+
+ out = [False, False, False, True]
+ assert_equal(np.bitwise_and(arg1, arg2), out)
+
+ out = [False, True, True, False]
+ assert_equal(np.bitwise_xor(arg1, arg2), out)
+
+ def test_reduce(self):
+ none = np.array([0, 0, 0, 0], bool)
+ some = np.array([1, 0, 1, 1], bool)
+ every = np.array([1, 1, 1, 1], bool)
+ empty = np.array([], bool)
+
+ arrs = [none, some, every, empty]
+
+ for arr in arrs:
+ assert_equal(np.logical_and.reduce(arr), all(arr))
+
+ for arr in arrs:
+ assert_equal(np.logical_or.reduce(arr), any(arr))
+
+ for arr in arrs:
+ assert_equal(np.logical_xor.reduce(arr), arr.sum() % 2 == 1)
+
+
+class TestBitwiseUFuncs:
+
+ _all_ints_bits = [
+ np.dtype(c).itemsize * 8 for c in np.typecodes["AllInteger"]]
+ bitwise_types = [
+ np.dtype(c) for c in '?' + np.typecodes["AllInteger"] + 'O']
+ bitwise_bits = [
+ 2, # boolean type
+ *_all_ints_bits, # All integers
+ max(_all_ints_bits) + 1, # Object_ type
+ ]
+
+ def test_values(self):
+ for dt in self.bitwise_types:
+ zeros = np.array([0], dtype=dt)
+ ones = np.array([-1]).astype(dt)
+ msg = f"dt = '{dt.char}'"
+
+ assert_equal(np.bitwise_not(zeros), ones, err_msg=msg)
+ assert_equal(np.bitwise_not(ones), zeros, err_msg=msg)
+
+ assert_equal(np.bitwise_or(zeros, zeros), zeros, err_msg=msg)
+ assert_equal(np.bitwise_or(zeros, ones), ones, err_msg=msg)
+ assert_equal(np.bitwise_or(ones, zeros), ones, err_msg=msg)
+ assert_equal(np.bitwise_or(ones, ones), ones, err_msg=msg)
+
+ assert_equal(np.bitwise_xor(zeros, zeros), zeros, err_msg=msg)
+ assert_equal(np.bitwise_xor(zeros, ones), ones, err_msg=msg)
+ assert_equal(np.bitwise_xor(ones, zeros), ones, err_msg=msg)
+ assert_equal(np.bitwise_xor(ones, ones), zeros, err_msg=msg)
+
+ assert_equal(np.bitwise_and(zeros, zeros), zeros, err_msg=msg)
+ assert_equal(np.bitwise_and(zeros, ones), zeros, err_msg=msg)
+ assert_equal(np.bitwise_and(ones, zeros), zeros, err_msg=msg)
+ assert_equal(np.bitwise_and(ones, ones), ones, err_msg=msg)
+
+ def test_types(self):
+ for dt in self.bitwise_types:
+ zeros = np.array([0], dtype=dt)
+ ones = np.array([-1]).astype(dt)
+ msg = f"dt = '{dt.char}'"
+
+ assert_(np.bitwise_not(zeros).dtype == dt, msg)
+ assert_(np.bitwise_or(zeros, zeros).dtype == dt, msg)
+ assert_(np.bitwise_xor(zeros, zeros).dtype == dt, msg)
+ assert_(np.bitwise_and(zeros, zeros).dtype == dt, msg)
+
+ def test_identity(self):
+ assert_(np.bitwise_or.identity == 0, 'bitwise_or')
+ assert_(np.bitwise_xor.identity == 0, 'bitwise_xor')
+ assert_(np.bitwise_and.identity == -1, 'bitwise_and')
+
+ def test_reduction(self):
+ binary_funcs = (np.bitwise_or, np.bitwise_xor, np.bitwise_and)
+
+ for dt in self.bitwise_types:
+ zeros = np.array([0], dtype=dt)
+ ones = np.array([-1]).astype(dt)
+ for f in binary_funcs:
+ msg = f"dt: '{dt}', f: '{f}'"
+ assert_equal(f.reduce(zeros), zeros, err_msg=msg)
+ assert_equal(f.reduce(ones), ones, err_msg=msg)
+
+ # Test empty reduction, no object dtype
+ for dt in self.bitwise_types[:-1]:
+ # No object array types
+ empty = np.array([], dtype=dt)
+ for f in binary_funcs:
+ msg = f"dt: '{dt}', f: '{f}'"
+ tgt = np.array(f.identity).astype(dt)
+ res = f.reduce(empty)
+ assert_equal(res, tgt, err_msg=msg)
+ assert_(res.dtype == tgt.dtype, msg)
+
+ # Empty object arrays use the identity. Note that the types may
+ # differ, the actual type used is determined by the assign_identity
+ # function and is not the same as the type returned by the identity
+ # method.
+ for f in binary_funcs:
+ msg = f"dt: '{f}'"
+ empty = np.array([], dtype=object)
+ tgt = f.identity
+ res = f.reduce(empty)
+ assert_equal(res, tgt, err_msg=msg)
+
+ # Non-empty object arrays do not use the identity
+ for f in binary_funcs:
+ msg = f"dt: '{f}'"
+ btype = np.array([True], dtype=object)
+ assert_(type(f.reduce(btype)) is bool, msg)
+
+ @pytest.mark.parametrize("input_dtype_obj, bitsize",
+ zip(bitwise_types, bitwise_bits))
+ def test_bitwise_count(self, input_dtype_obj, bitsize):
+ input_dtype = input_dtype_obj.type
+
+ for i in range(1, bitsize):
+ num = 2**i - 1
+ msg = f"bitwise_count for {num}"
+ assert i == np.bitwise_count(input_dtype(num)), msg
+ if np.issubdtype(
+ input_dtype, np.signedinteger) or input_dtype == np.object_:
+ assert i == np.bitwise_count(input_dtype(-num)), msg
+
+ a = np.array([2**i - 1 for i in range(1, bitsize)], dtype=input_dtype)
+ bitwise_count_a = np.bitwise_count(a)
+ expected = np.arange(1, bitsize, dtype=input_dtype)
+
+ msg = f"array bitwise_count for {input_dtype}"
+ assert all(bitwise_count_a == expected), msg
+
+
+class TestInt:
+ def test_logical_not(self):
+ x = np.ones(10, dtype=np.int16)
+ o = np.ones(10 * 2, dtype=bool)
+ tgt = o.copy()
+ tgt[::2] = False
+ os = o[::2]
+ assert_array_equal(np.logical_not(x, out=os), False)
+ assert_array_equal(o, tgt)
+
+
+class TestFloatingPoint:
+ def test_floating_point(self):
+ assert_equal(ncu.FLOATING_POINT_SUPPORT, 1)
+
+
+class TestDegrees:
+ def test_degrees(self):
+ assert_almost_equal(ncu.degrees(np.pi), 180.0)
+ assert_almost_equal(ncu.degrees(-0.5 * np.pi), -90.0)
+
+
+class TestRadians:
+ def test_radians(self):
+ assert_almost_equal(ncu.radians(180.0), np.pi)
+ assert_almost_equal(ncu.radians(-90.0), -0.5 * np.pi)
+
+
+class TestHeavside:
+ def test_heaviside(self):
+ x = np.array([[-30.0, -0.1, 0.0, 0.2], [7.5, np.nan, np.inf, -np.inf]])
+ expectedhalf = np.array([[0.0, 0.0, 0.5, 1.0], [1.0, np.nan, 1.0, 0.0]])
+ expected1 = expectedhalf.copy()
+ expected1[0, 2] = 1
+
+ h = ncu.heaviside(x, 0.5)
+ assert_equal(h, expectedhalf)
+
+ h = ncu.heaviside(x, 1.0)
+ assert_equal(h, expected1)
+
+ x = x.astype(np.float32)
+
+ h = ncu.heaviside(x, np.float32(0.5))
+ assert_equal(h, expectedhalf.astype(np.float32))
+
+ h = ncu.heaviside(x, np.float32(1.0))
+ assert_equal(h, expected1.astype(np.float32))
+
+
+class TestSign:
+ def test_sign(self):
+ a = np.array([np.inf, -np.inf, np.nan, 0.0, 3.0, -3.0])
+ out = np.zeros(a.shape)
+ tgt = np.array([1., -1., np.nan, 0.0, 1.0, -1.0])
+
+ with np.errstate(invalid='ignore'):
+ res = ncu.sign(a)
+ assert_equal(res, tgt)
+ res = ncu.sign(a, out)
+ assert_equal(res, tgt)
+ assert_equal(out, tgt)
+
+ def test_sign_complex(self):
+ a = np.array([
+ np.inf, -np.inf, complex(0, np.inf), complex(0, -np.inf),
+ complex(np.inf, np.inf), complex(np.inf, -np.inf), # nan
+ np.nan, complex(0, np.nan), complex(np.nan, np.nan), # nan
+ 0.0, # 0.
+ 3.0, -3.0, -2j, 3.0 + 4.0j, -8.0 + 6.0j
+ ])
+ out = np.zeros(a.shape, a.dtype)
+ tgt = np.array([
+ 1., -1., 1j, -1j,
+ ] + [complex(np.nan, np.nan)] * 5 + [
+ 0.0,
+ 1.0, -1.0, -1j, 0.6 + 0.8j, -0.8 + 0.6j])
+
+ with np.errstate(invalid='ignore'):
+ res = ncu.sign(a)
+ assert_equal(res, tgt)
+ res = ncu.sign(a, out)
+ assert_(res is out)
+ assert_equal(res, tgt)
+
+ def test_sign_dtype_object(self):
+ # In reference to github issue #6229
+
+ foo = np.array([-.1, 0, .1])
+ a = np.sign(foo.astype(object))
+ b = np.sign(foo)
+
+ assert_array_equal(a, b)
+
+ def test_sign_dtype_nan_object(self):
+ # In reference to github issue #6229
+ def test_nan():
+ foo = np.array([np.nan])
+ # FIXME: a not used
+ a = np.sign(foo.astype(object))
+
+ assert_raises(TypeError, test_nan)
+
+class TestMinMax:
+ def test_minmax_blocked(self):
+ # simd tests on max/min, test all alignments, slow but important
+ # for 2 * vz + 2 * (vs - 1) + 1 (unrolled once)
+ for dt, sz in [(np.float32, 15), (np.float64, 7)]:
+ for out, inp, msg in _gen_alignment_data(dtype=dt, type='unary',
+ max_size=sz):
+ for i in range(inp.size):
+ inp[:] = np.arange(inp.size, dtype=dt)
+ inp[i] = np.nan
+ emsg = lambda: f'{inp!r}\n{msg}'
+ with suppress_warnings() as sup:
+ sup.filter(RuntimeWarning,
+ "invalid value encountered in reduce")
+ assert_(np.isnan(inp.max()), msg=emsg)
+ assert_(np.isnan(inp.min()), msg=emsg)
+
+ inp[i] = 1e10
+ assert_equal(inp.max(), 1e10, err_msg=msg)
+ inp[i] = -1e10
+ assert_equal(inp.min(), -1e10, err_msg=msg)
+
+ def test_lower_align(self):
+ # check data that is not aligned to element size
+ # i.e doubles are aligned to 4 bytes on i386
+ d = np.zeros(23 * 8, dtype=np.int8)[4:-4].view(np.float64)
+ assert_equal(d.max(), d[0])
+ assert_equal(d.min(), d[0])
+
+ def test_reduce_reorder(self):
+ # gh 10370, 11029 Some compilers reorder the call to npy_getfloatstatus
+ # and put it before the call to an intrinsic function that causes
+ # invalid status to be set. Also make sure warnings are not emitted
+ for n in (2, 4, 8, 16, 32):
+ for dt in (np.float32, np.float16, np.complex64):
+ for r in np.diagflat(np.array([np.nan] * n, dtype=dt)):
+ assert_equal(np.min(r), np.nan)
+
+ def test_minimize_no_warns(self):
+ a = np.minimum(np.nan, 1)
+ assert_equal(a, np.nan)
+
+
+class TestAbsoluteNegative:
+ def test_abs_neg_blocked(self):
+ # simd tests on abs, test all alignments for vz + 2 * (vs - 1) + 1
+ for dt, sz in [(np.float32, 11), (np.float64, 5)]:
+ for out, inp, msg in _gen_alignment_data(dtype=dt, type='unary',
+ max_size=sz):
+ tgt = [ncu.absolute(i) for i in inp]
+ np.absolute(inp, out=out)
+ assert_equal(out, tgt, err_msg=msg)
+ assert_((out >= 0).all())
+
+ tgt = [-1 * (i) for i in inp]
+ np.negative(inp, out=out)
+ assert_equal(out, tgt, err_msg=msg)
+
+ for v in [np.nan, -np.inf, np.inf]:
+ for i in range(inp.size):
+ d = np.arange(inp.size, dtype=dt)
+ inp[:] = -d
+ inp[i] = v
+ d[i] = -v if v == -np.inf else v
+ assert_array_equal(np.abs(inp), d, err_msg=msg)
+ np.abs(inp, out=out)
+ assert_array_equal(out, d, err_msg=msg)
+
+ assert_array_equal(-inp, -1 * inp, err_msg=msg)
+ d = -1 * inp
+ np.negative(inp, out=out)
+ assert_array_equal(out, d, err_msg=msg)
+
+ def test_lower_align(self):
+ # check data that is not aligned to element size
+ # i.e doubles are aligned to 4 bytes on i386
+ d = np.zeros(23 * 8, dtype=np.int8)[4:-4].view(np.float64)
+ assert_equal(np.abs(d), d)
+ assert_equal(np.negative(d), -d)
+ np.negative(d, out=d)
+ np.negative(np.ones_like(d), out=d)
+ np.abs(d, out=d)
+ np.abs(np.ones_like(d), out=d)
+
+ @pytest.mark.parametrize("dtype", ['d', 'f', 'int32', 'int64'])
+ @pytest.mark.parametrize("big", [True, False])
+ def test_noncontiguous(self, dtype, big):
+ data = np.array([-1.0, 1.0, -0.0, 0.0, 2.2251e-308, -2.5, 2.5, -6,
+ 6, -2.2251e-308, -8, 10], dtype=dtype)
+ expect = np.array([1.0, -1.0, 0.0, -0.0, -2.2251e-308, 2.5, -2.5, 6,
+ -6, 2.2251e-308, 8, -10], dtype=dtype)
+ if big:
+ data = np.repeat(data, 10)
+ expect = np.repeat(expect, 10)
+ out = np.ndarray(data.shape, dtype=dtype)
+ ncontig_in = data[1::2]
+ ncontig_out = out[1::2]
+ contig_in = np.array(ncontig_in)
+ # contig in, contig out
+ assert_array_equal(np.negative(contig_in), expect[1::2])
+ # contig in, ncontig out
+ assert_array_equal(np.negative(contig_in, out=ncontig_out),
+ expect[1::2])
+ # ncontig in, contig out
+ assert_array_equal(np.negative(ncontig_in), expect[1::2])
+ # ncontig in, ncontig out
+ assert_array_equal(np.negative(ncontig_in, out=ncontig_out),
+ expect[1::2])
+ # contig in, contig out, nd stride
+ data_split = np.array(np.array_split(data, 2))
+ expect_split = np.array(np.array_split(expect, 2))
+ assert_equal(np.negative(data_split), expect_split)
+
+
+class TestPositive:
+ def test_valid(self):
+ valid_dtypes = [int, float, complex, object]
+ for dtype in valid_dtypes:
+ x = np.arange(5, dtype=dtype)
+ result = np.positive(x)
+ assert_equal(x, result, err_msg=str(dtype))
+
+ def test_invalid(self):
+ with assert_raises(TypeError):
+ np.positive(True)
+ with assert_raises(TypeError):
+ np.positive(np.datetime64('2000-01-01'))
+ with assert_raises(TypeError):
+ np.positive(np.array(['foo'], dtype=str))
+ with assert_raises(TypeError):
+ np.positive(np.array(['bar'], dtype=object))
+
+
+class TestSpecialMethods:
+ def test_wrap(self):
+
+ class with_wrap:
+ def __array__(self, dtype=None, copy=None):
+ return np.zeros(1)
+
+ def __array_wrap__(self, arr, context, return_scalar):
+ r = with_wrap()
+ r.arr = arr
+ r.context = context
+ return r
+
+ a = with_wrap()
+ x = ncu.minimum(a, a)
+ assert_equal(x.arr, np.zeros(1))
+ func, args, i = x.context
+ assert_(func is ncu.minimum)
+ assert_equal(len(args), 2)
+ assert_equal(args[0], a)
+ assert_equal(args[1], a)
+ assert_equal(i, 0)
+
+ def test_wrap_out(self):
+ # Calling convention for out should not affect how special methods are
+ # called
+
+ class StoreArrayPrepareWrap(np.ndarray):
+ _wrap_args = None
+ _prepare_args = None
+
+ def __new__(cls):
+ return np.zeros(()).view(cls)
+
+ def __array_wrap__(self, obj, context, return_scalar):
+ self._wrap_args = context[1]
+ return obj
+
+ @property
+ def args(self):
+ # We need to ensure these are fetched at the same time, before
+ # any other ufuncs are called by the assertions
+ return self._wrap_args
+
+ def __repr__(self):
+ return "a" # for short test output
+
+ def do_test(f_call, f_expected):
+ a = StoreArrayPrepareWrap()
+
+ f_call(a)
+
+ w = a.args
+ expected = f_expected(a)
+ try:
+ assert w == expected
+ except AssertionError as e:
+ # assert_equal produces truly useless error messages
+ raise AssertionError("\n".join([
+ "Bad arguments passed in ufunc call",
+ f" expected: {expected}",
+ f" __array_wrap__ got: {w}"
+ ]))
+
+ # method not on the out argument
+ do_test(lambda a: np.add(a, 0), lambda a: (a, 0))
+ do_test(lambda a: np.add(a, 0, None), lambda a: (a, 0))
+ do_test(lambda a: np.add(a, 0, out=None), lambda a: (a, 0))
+ do_test(lambda a: np.add(a, 0, out=(None,)), lambda a: (a, 0))
+
+ # method on the out argument
+ do_test(lambda a: np.add(0, 0, a), lambda a: (0, 0, a))
+ do_test(lambda a: np.add(0, 0, out=a), lambda a: (0, 0, a))
+ do_test(lambda a: np.add(0, 0, out=(a,)), lambda a: (0, 0, a))
+
+ # Also check the where mask handling:
+ do_test(lambda a: np.add(a, 0, where=False), lambda a: (a, 0))
+ do_test(lambda a: np.add(0, 0, a, where=False), lambda a: (0, 0, a))
+
+ def test_wrap_with_iterable(self):
+ # test fix for bug #1026:
+
+ class with_wrap(np.ndarray):
+ __array_priority__ = 10
+
+ def __new__(cls):
+ return np.asarray(1).view(cls).copy()
+
+ def __array_wrap__(self, arr, context, return_scalar):
+ return arr.view(type(self))
+
+ a = with_wrap()
+ x = ncu.multiply(a, (1, 2, 3))
+ assert_(isinstance(x, with_wrap))
+ assert_array_equal(x, np.array((1, 2, 3)))
+
+ def test_priority_with_scalar(self):
+ # test fix for bug #826:
+
+ class A(np.ndarray):
+ __array_priority__ = 10
+
+ def __new__(cls):
+ return np.asarray(1.0, 'float64').view(cls).copy()
+
+ a = A()
+ x = np.float64(1) * a
+ assert_(isinstance(x, A))
+ assert_array_equal(x, np.array(1))
+
+ def test_priority(self):
+
+ class A:
+ def __array__(self, dtype=None, copy=None):
+ return np.zeros(1)
+
+ def __array_wrap__(self, arr, context, return_scalar):
+ r = type(self)()
+ r.arr = arr
+ r.context = context
+ return r
+
+ class B(A):
+ __array_priority__ = 20.
+
+ class C(A):
+ __array_priority__ = 40.
+
+ x = np.zeros(1)
+ a = A()
+ b = B()
+ c = C()
+ f = ncu.minimum
+ assert_(type(f(x, x)) is np.ndarray)
+ assert_(type(f(x, a)) is A)
+ assert_(type(f(x, b)) is B)
+ assert_(type(f(x, c)) is C)
+ assert_(type(f(a, x)) is A)
+ assert_(type(f(b, x)) is B)
+ assert_(type(f(c, x)) is C)
+
+ assert_(type(f(a, a)) is A)
+ assert_(type(f(a, b)) is B)
+ assert_(type(f(b, a)) is B)
+ assert_(type(f(b, b)) is B)
+ assert_(type(f(b, c)) is C)
+ assert_(type(f(c, b)) is C)
+ assert_(type(f(c, c)) is C)
+
+ assert_(type(ncu.exp(a) is A))
+ assert_(type(ncu.exp(b) is B))
+ assert_(type(ncu.exp(c) is C))
+
+ def test_failing_wrap(self):
+
+ class A:
+ def __array__(self, dtype=None, copy=None):
+ return np.zeros(2)
+
+ def __array_wrap__(self, arr, context, return_scalar):
+ raise RuntimeError
+
+ a = A()
+ assert_raises(RuntimeError, ncu.maximum, a, a)
+ assert_raises(RuntimeError, ncu.maximum.reduce, a)
+
+ def test_failing_out_wrap(self):
+
+ singleton = np.array([1.0])
+
+ class Ok(np.ndarray):
+ def __array_wrap__(self, obj, context, return_scalar):
+ return singleton
+
+ class Bad(np.ndarray):
+ def __array_wrap__(self, obj, context, return_scalar):
+ raise RuntimeError
+
+ ok = np.empty(1).view(Ok)
+ bad = np.empty(1).view(Bad)
+ # double-free (segfault) of "ok" if "bad" raises an exception
+ for i in range(10):
+ assert_raises(RuntimeError, ncu.frexp, 1, ok, bad)
+
+ def test_none_wrap(self):
+ # Tests that issue #8507 is resolved. Previously, this would segfault
+
+ class A:
+ def __array__(self, dtype=None, copy=None):
+ return np.zeros(1)
+
+ def __array_wrap__(self, arr, context=None, return_scalar=False):
+ return None
+
+ a = A()
+ assert_equal(ncu.maximum(a, a), None)
+
+ def test_default_prepare(self):
+
+ class with_wrap:
+ __array_priority__ = 10
+
+ def __array__(self, dtype=None, copy=None):
+ return np.zeros(1)
+
+ def __array_wrap__(self, arr, context, return_scalar):
+ return arr
+
+ a = with_wrap()
+ x = ncu.minimum(a, a)
+ assert_equal(x, np.zeros(1))
+ assert_equal(type(x), np.ndarray)
+
+ def test_array_too_many_args(self):
+
+ class A:
+ def __array__(self, dtype, context, copy=None):
+ return np.zeros(1)
+
+ a = A()
+ assert_raises_regex(TypeError, '2 required positional', np.sum, a)
+
+ def test_ufunc_override(self):
+ # check override works even with instance with high priority.
+ class A:
+ def __array_ufunc__(self, func, method, *inputs, **kwargs):
+ return self, func, method, inputs, kwargs
+
+ class MyNDArray(np.ndarray):
+ __array_priority__ = 100
+
+ a = A()
+ b = np.array([1]).view(MyNDArray)
+ res0 = np.multiply(a, b)
+ res1 = np.multiply(b, b, out=a)
+
+ # self
+ assert_equal(res0[0], a)
+ assert_equal(res1[0], a)
+ assert_equal(res0[1], np.multiply)
+ assert_equal(res1[1], np.multiply)
+ assert_equal(res0[2], '__call__')
+ assert_equal(res1[2], '__call__')
+ assert_equal(res0[3], (a, b))
+ assert_equal(res1[3], (b, b))
+ assert_equal(res0[4], {})
+ assert_equal(res1[4], {'out': (a,)})
+
+ def test_ufunc_override_mro(self):
+
+ # Some multi arg functions for testing.
+ def tres_mul(a, b, c):
+ return a * b * c
+
+ def quatro_mul(a, b, c, d):
+ return a * b * c * d
+
+ # Make these into ufuncs.
+ three_mul_ufunc = np.frompyfunc(tres_mul, 3, 1)
+ four_mul_ufunc = np.frompyfunc(quatro_mul, 4, 1)
+
+ class A:
+ def __array_ufunc__(self, func, method, *inputs, **kwargs):
+ return "A"
+
+ class ASub(A):
+ def __array_ufunc__(self, func, method, *inputs, **kwargs):
+ return "ASub"
+
+ class B:
+ def __array_ufunc__(self, func, method, *inputs, **kwargs):
+ return "B"
+
+ class C:
+ def __init__(self):
+ self.count = 0
+
+ def __array_ufunc__(self, func, method, *inputs, **kwargs):
+ self.count += 1
+ return NotImplemented
+
+ class CSub(C):
+ def __array_ufunc__(self, func, method, *inputs, **kwargs):
+ self.count += 1
+ return NotImplemented
+
+ a = A()
+ a_sub = ASub()
+ b = B()
+ c = C()
+
+ # Standard
+ res = np.multiply(a, a_sub)
+ assert_equal(res, "ASub")
+ res = np.multiply(a_sub, b)
+ assert_equal(res, "ASub")
+
+ # With 1 NotImplemented
+ res = np.multiply(c, a)
+ assert_equal(res, "A")
+ assert_equal(c.count, 1)
+ # Check our counter works, so we can trust tests below.
+ res = np.multiply(c, a)
+ assert_equal(c.count, 2)
+
+ # Both NotImplemented.
+ c = C()
+ c_sub = CSub()
+ assert_raises(TypeError, np.multiply, c, c_sub)
+ assert_equal(c.count, 1)
+ assert_equal(c_sub.count, 1)
+ c.count = c_sub.count = 0
+ assert_raises(TypeError, np.multiply, c_sub, c)
+ assert_equal(c.count, 1)
+ assert_equal(c_sub.count, 1)
+ c.count = 0
+ assert_raises(TypeError, np.multiply, c, c)
+ assert_equal(c.count, 1)
+ c.count = 0
+ assert_raises(TypeError, np.multiply, 2, c)
+ assert_equal(c.count, 1)
+
+ # Ternary testing.
+ assert_equal(three_mul_ufunc(a, 1, 2), "A")
+ assert_equal(three_mul_ufunc(1, a, 2), "A")
+ assert_equal(three_mul_ufunc(1, 2, a), "A")
+
+ assert_equal(three_mul_ufunc(a, a, 6), "A")
+ assert_equal(three_mul_ufunc(a, 2, a), "A")
+ assert_equal(three_mul_ufunc(a, 2, b), "A")
+ assert_equal(three_mul_ufunc(a, 2, a_sub), "ASub")
+ assert_equal(three_mul_ufunc(a, a_sub, 3), "ASub")
+ c.count = 0
+ assert_equal(three_mul_ufunc(c, a_sub, 3), "ASub")
+ assert_equal(c.count, 1)
+ c.count = 0
+ assert_equal(three_mul_ufunc(1, a_sub, c), "ASub")
+ assert_equal(c.count, 0)
+
+ c.count = 0
+ assert_equal(three_mul_ufunc(a, b, c), "A")
+ assert_equal(c.count, 0)
+ c_sub.count = 0
+ assert_equal(three_mul_ufunc(a, b, c_sub), "A")
+ assert_equal(c_sub.count, 0)
+ assert_equal(three_mul_ufunc(1, 2, b), "B")
+
+ assert_raises(TypeError, three_mul_ufunc, 1, 2, c)
+ assert_raises(TypeError, three_mul_ufunc, c_sub, 2, c)
+ assert_raises(TypeError, three_mul_ufunc, c_sub, 2, 3)
+
+ # Quaternary testing.
+ assert_equal(four_mul_ufunc(a, 1, 2, 3), "A")
+ assert_equal(four_mul_ufunc(1, a, 2, 3), "A")
+ assert_equal(four_mul_ufunc(1, 1, a, 3), "A")
+ assert_equal(four_mul_ufunc(1, 1, 2, a), "A")
+
+ assert_equal(four_mul_ufunc(a, b, 2, 3), "A")
+ assert_equal(four_mul_ufunc(1, a, 2, b), "A")
+ assert_equal(four_mul_ufunc(b, 1, a, 3), "B")
+ assert_equal(four_mul_ufunc(a_sub, 1, 2, a), "ASub")
+ assert_equal(four_mul_ufunc(a, 1, 2, a_sub), "ASub")
+
+ c = C()
+ c_sub = CSub()
+ assert_raises(TypeError, four_mul_ufunc, 1, 2, 3, c)
+ assert_equal(c.count, 1)
+ c.count = 0
+ assert_raises(TypeError, four_mul_ufunc, 1, 2, c_sub, c)
+ assert_equal(c_sub.count, 1)
+ assert_equal(c.count, 1)
+ c2 = C()
+ c.count = c_sub.count = 0
+ assert_raises(TypeError, four_mul_ufunc, 1, c, c_sub, c2)
+ assert_equal(c_sub.count, 1)
+ assert_equal(c.count, 1)
+ assert_equal(c2.count, 0)
+ c.count = c2.count = c_sub.count = 0
+ assert_raises(TypeError, four_mul_ufunc, c2, c, c_sub, c)
+ assert_equal(c_sub.count, 1)
+ assert_equal(c.count, 0)
+ assert_equal(c2.count, 1)
+
+ def test_ufunc_override_methods(self):
+
+ class A:
+ def __array_ufunc__(self, ufunc, method, *inputs, **kwargs):
+ return self, ufunc, method, inputs, kwargs
+
+ # __call__
+ a = A()
+ with assert_raises(TypeError):
+ np.multiply.__call__(1, a, foo='bar', answer=42)
+ res = np.multiply.__call__(1, a, subok='bar', where=42)
+ assert_equal(res[0], a)
+ assert_equal(res[1], np.multiply)
+ assert_equal(res[2], '__call__')
+ assert_equal(res[3], (1, a))
+ assert_equal(res[4], {'subok': 'bar', 'where': 42})
+
+ # __call__, wrong args
+ assert_raises(TypeError, np.multiply, a)
+ assert_raises(TypeError, np.multiply, a, a, a, a)
+ assert_raises(TypeError, np.multiply, a, a, sig='a', signature='a')
+ assert_raises(TypeError, ncu_tests.inner1d, a, a, axis=0, axes=[0, 0])
+
+ # reduce, positional args
+ res = np.multiply.reduce(a, 'axis0', 'dtype0', 'out0', 'keep0')
+ assert_equal(res[0], a)
+ assert_equal(res[1], np.multiply)
+ assert_equal(res[2], 'reduce')
+ assert_equal(res[3], (a,))
+ assert_equal(res[4], {'dtype': 'dtype0',
+ 'out': ('out0',),
+ 'keepdims': 'keep0',
+ 'axis': 'axis0'})
+
+ # reduce, kwargs
+ res = np.multiply.reduce(a, axis='axis0', dtype='dtype0', out='out0',
+ keepdims='keep0', initial='init0',
+ where='where0')
+ assert_equal(res[0], a)
+ assert_equal(res[1], np.multiply)
+ assert_equal(res[2], 'reduce')
+ assert_equal(res[3], (a,))
+ assert_equal(res[4], {'dtype': 'dtype0',
+ 'out': ('out0',),
+ 'keepdims': 'keep0',
+ 'axis': 'axis0',
+ 'initial': 'init0',
+ 'where': 'where0'})
+
+ # reduce, output equal to None removed, but not other explicit ones,
+ # even if they are at their default value.
+ res = np.multiply.reduce(a, 0, None, None, False)
+ assert_equal(res[4], {'axis': 0, 'dtype': None, 'keepdims': False})
+ res = np.multiply.reduce(a, out=None, axis=0, keepdims=True)
+ assert_equal(res[4], {'axis': 0, 'keepdims': True})
+ res = np.multiply.reduce(a, None, out=(None,), dtype=None)
+ assert_equal(res[4], {'axis': None, 'dtype': None})
+ res = np.multiply.reduce(a, 0, None, None, False, 2, True)
+ assert_equal(res[4], {'axis': 0, 'dtype': None, 'keepdims': False,
+ 'initial': 2, 'where': True})
+ # np._NoValue ignored for initial
+ res = np.multiply.reduce(a, 0, None, None, False,
+ np._NoValue, True)
+ assert_equal(res[4], {'axis': 0, 'dtype': None, 'keepdims': False,
+ 'where': True})
+ # None kept for initial, True for where.
+ res = np.multiply.reduce(a, 0, None, None, False, None, True)
+ assert_equal(res[4], {'axis': 0, 'dtype': None, 'keepdims': False,
+ 'initial': None, 'where': True})
+
+ # reduce, wrong args
+ assert_raises(ValueError, np.multiply.reduce, a, out=())
+ assert_raises(ValueError, np.multiply.reduce, a, out=('out0', 'out1'))
+ assert_raises(TypeError, np.multiply.reduce, a, 'axis0', axis='axis0')
+
+ # accumulate, pos args
+ res = np.multiply.accumulate(a, 'axis0', 'dtype0', 'out0')
+ assert_equal(res[0], a)
+ assert_equal(res[1], np.multiply)
+ assert_equal(res[2], 'accumulate')
+ assert_equal(res[3], (a,))
+ assert_equal(res[4], {'dtype': 'dtype0',
+ 'out': ('out0',),
+ 'axis': 'axis0'})
+
+ # accumulate, kwargs
+ res = np.multiply.accumulate(a, axis='axis0', dtype='dtype0',
+ out='out0')
+ assert_equal(res[0], a)
+ assert_equal(res[1], np.multiply)
+ assert_equal(res[2], 'accumulate')
+ assert_equal(res[3], (a,))
+ assert_equal(res[4], {'dtype': 'dtype0',
+ 'out': ('out0',),
+ 'axis': 'axis0'})
+
+ # accumulate, output equal to None removed.
+ res = np.multiply.accumulate(a, 0, None, None)
+ assert_equal(res[4], {'axis': 0, 'dtype': None})
+ res = np.multiply.accumulate(a, out=None, axis=0, dtype='dtype1')
+ assert_equal(res[4], {'axis': 0, 'dtype': 'dtype1'})
+ res = np.multiply.accumulate(a, None, out=(None,), dtype=None)
+ assert_equal(res[4], {'axis': None, 'dtype': None})
+
+ # accumulate, wrong args
+ assert_raises(ValueError, np.multiply.accumulate, a, out=())
+ assert_raises(ValueError, np.multiply.accumulate, a,
+ out=('out0', 'out1'))
+ assert_raises(TypeError, np.multiply.accumulate, a,
+ 'axis0', axis='axis0')
+
+ # reduceat, pos args
+ res = np.multiply.reduceat(a, [4, 2], 'axis0', 'dtype0', 'out0')
+ assert_equal(res[0], a)
+ assert_equal(res[1], np.multiply)
+ assert_equal(res[2], 'reduceat')
+ assert_equal(res[3], (a, [4, 2]))
+ assert_equal(res[4], {'dtype': 'dtype0',
+ 'out': ('out0',),
+ 'axis': 'axis0'})
+
+ # reduceat, kwargs
+ res = np.multiply.reduceat(a, [4, 2], axis='axis0', dtype='dtype0',
+ out='out0')
+ assert_equal(res[0], a)
+ assert_equal(res[1], np.multiply)
+ assert_equal(res[2], 'reduceat')
+ assert_equal(res[3], (a, [4, 2]))
+ assert_equal(res[4], {'dtype': 'dtype0',
+ 'out': ('out0',),
+ 'axis': 'axis0'})
+
+ # reduceat, output equal to None removed.
+ res = np.multiply.reduceat(a, [4, 2], 0, None, None)
+ assert_equal(res[4], {'axis': 0, 'dtype': None})
+ res = np.multiply.reduceat(a, [4, 2], axis=None, out=None, dtype='dt')
+ assert_equal(res[4], {'axis': None, 'dtype': 'dt'})
+ res = np.multiply.reduceat(a, [4, 2], None, None, out=(None,))
+ assert_equal(res[4], {'axis': None, 'dtype': None})
+
+ # reduceat, wrong args
+ assert_raises(ValueError, np.multiply.reduce, a, [4, 2], out=())
+ assert_raises(ValueError, np.multiply.reduce, a, [4, 2],
+ out=('out0', 'out1'))
+ assert_raises(TypeError, np.multiply.reduce, a, [4, 2],
+ 'axis0', axis='axis0')
+
+ # outer
+ res = np.multiply.outer(a, 42)
+ assert_equal(res[0], a)
+ assert_equal(res[1], np.multiply)
+ assert_equal(res[2], 'outer')
+ assert_equal(res[3], (a, 42))
+ assert_equal(res[4], {})
+
+ # outer, wrong args
+ assert_raises(TypeError, np.multiply.outer, a)
+ assert_raises(TypeError, np.multiply.outer, a, a, a, a)
+ assert_raises(TypeError, np.multiply.outer, a, a, sig='a', signature='a')
+
+ # at
+ res = np.multiply.at(a, [4, 2], 'b0')
+ assert_equal(res[0], a)
+ assert_equal(res[1], np.multiply)
+ assert_equal(res[2], 'at')
+ assert_equal(res[3], (a, [4, 2], 'b0'))
+
+ # at, wrong args
+ assert_raises(TypeError, np.multiply.at, a)
+ assert_raises(TypeError, np.multiply.at, a, a, a, a)
+
+ def test_ufunc_override_out(self):
+
+ class A:
+ def __array_ufunc__(self, ufunc, method, *inputs, **kwargs):
+ return kwargs
+
+ class B:
+ def __array_ufunc__(self, ufunc, method, *inputs, **kwargs):
+ return kwargs
+
+ a = A()
+ b = B()
+ res0 = np.multiply(a, b, 'out_arg')
+ res1 = np.multiply(a, b, out='out_arg')
+ res2 = np.multiply(2, b, 'out_arg')
+ res3 = np.multiply(3, b, out='out_arg')
+ res4 = np.multiply(a, 4, 'out_arg')
+ res5 = np.multiply(a, 5, out='out_arg')
+
+ assert_equal(res0['out'][0], 'out_arg')
+ assert_equal(res1['out'][0], 'out_arg')
+ assert_equal(res2['out'][0], 'out_arg')
+ assert_equal(res3['out'][0], 'out_arg')
+ assert_equal(res4['out'][0], 'out_arg')
+ assert_equal(res5['out'][0], 'out_arg')
+
+ # ufuncs with multiple output modf and frexp.
+ res6 = np.modf(a, 'out0', 'out1')
+ res7 = np.frexp(a, 'out0', 'out1')
+ assert_equal(res6['out'][0], 'out0')
+ assert_equal(res6['out'][1], 'out1')
+ assert_equal(res7['out'][0], 'out0')
+ assert_equal(res7['out'][1], 'out1')
+
+ # While we're at it, check that default output is never passed on.
+ assert_(np.sin(a, None) == {})
+ assert_(np.sin(a, out=None) == {})
+ assert_(np.sin(a, out=(None,)) == {})
+ assert_(np.modf(a, None) == {})
+ assert_(np.modf(a, None, None) == {})
+ assert_(np.modf(a, out=(None, None)) == {})
+ with assert_raises(TypeError):
+ # Out argument must be tuple, since there are multiple outputs.
+ np.modf(a, out=None)
+
+ # don't give positional and output argument, or too many arguments.
+ # wrong number of arguments in the tuple is an error too.
+ assert_raises(TypeError, np.multiply, a, b, 'one', out='two')
+ assert_raises(TypeError, np.multiply, a, b, 'one', 'two')
+ assert_raises(ValueError, np.multiply, a, b, out=('one', 'two'))
+ assert_raises(TypeError, np.multiply, a, out=())
+ assert_raises(TypeError, np.modf, a, 'one', out=('two', 'three'))
+ assert_raises(TypeError, np.modf, a, 'one', 'two', 'three')
+ assert_raises(ValueError, np.modf, a, out=('one', 'two', 'three'))
+ assert_raises(ValueError, np.modf, a, out=('one',))
+
+ def test_ufunc_override_where(self):
+
+ class OverriddenArrayOld(np.ndarray):
+
+ def _unwrap(self, objs):
+ cls = type(self)
+ result = []
+ for obj in objs:
+ if isinstance(obj, cls):
+ obj = np.array(obj)
+ elif type(obj) != np.ndarray:
+ return NotImplemented
+ result.append(obj)
+ return result
+
+ def __array_ufunc__(self, ufunc, method, *inputs, **kwargs):
+
+ inputs = self._unwrap(inputs)
+ if inputs is NotImplemented:
+ return NotImplemented
+
+ kwargs = kwargs.copy()
+ if "out" in kwargs:
+ kwargs["out"] = self._unwrap(kwargs["out"])
+ if kwargs["out"] is NotImplemented:
+ return NotImplemented
+
+ r = super().__array_ufunc__(ufunc, method, *inputs, **kwargs)
+ if r is not NotImplemented:
+ r = r.view(type(self))
+
+ return r
+
+ class OverriddenArrayNew(OverriddenArrayOld):
+ def __array_ufunc__(self, ufunc, method, *inputs, **kwargs):
+
+ kwargs = kwargs.copy()
+ if "where" in kwargs:
+ kwargs["where"] = self._unwrap((kwargs["where"], ))
+ if kwargs["where"] is NotImplemented:
+ return NotImplemented
+ else:
+ kwargs["where"] = kwargs["where"][0]
+
+ r = super().__array_ufunc__(ufunc, method, *inputs, **kwargs)
+ if r is not NotImplemented:
+ r = r.view(type(self))
+
+ return r
+
+ ufunc = np.negative
+
+ array = np.array([1, 2, 3])
+ where = np.array([True, False, True])
+ expected = ufunc(array, where=where)
+
+ with pytest.raises(TypeError):
+ ufunc(array, where=where.view(OverriddenArrayOld))
+
+ result_1 = ufunc(
+ array,
+ where=where.view(OverriddenArrayNew)
+ )
+ assert isinstance(result_1, OverriddenArrayNew)
+ assert np.all(np.array(result_1) == expected, where=where)
+
+ result_2 = ufunc(
+ array.view(OverriddenArrayNew),
+ where=where.view(OverriddenArrayNew)
+ )
+ assert isinstance(result_2, OverriddenArrayNew)
+ assert np.all(np.array(result_2) == expected, where=where)
+
+ def test_ufunc_override_exception(self):
+
+ class A:
+ def __array_ufunc__(self, *a, **kwargs):
+ raise ValueError("oops")
+
+ a = A()
+ assert_raises(ValueError, np.negative, 1, out=a)
+ assert_raises(ValueError, np.negative, a)
+ assert_raises(ValueError, np.divide, 1., a)
+
+ def test_ufunc_override_not_implemented(self):
+
+ class A:
+ def __array_ufunc__(self, *args, **kwargs):
+ return NotImplemented
+
+ msg = ("operand type(s) all returned NotImplemented from "
+ "__array_ufunc__(<ufunc 'negative'>, '__call__', <*>): 'A'")
+ with assert_raises_regex(TypeError, fnmatch.translate(msg)):
+ np.negative(A())
+
+ msg = ("operand type(s) all returned NotImplemented from "
+ "__array_ufunc__(<ufunc 'add'>, '__call__', <*>, <object *>, "
+ "out=(1,)): 'A', 'object', 'int'")
+ with assert_raises_regex(TypeError, fnmatch.translate(msg)):
+ np.add(A(), object(), out=1)
+
+ def test_ufunc_override_disabled(self):
+
+ class OptOut:
+ __array_ufunc__ = None
+
+ opt_out = OptOut()
+
+ # ufuncs always raise
+ msg = "operand 'OptOut' does not support ufuncs"
+ with assert_raises_regex(TypeError, msg):
+ np.add(opt_out, 1)
+ with assert_raises_regex(TypeError, msg):
+ np.add(1, opt_out)
+ with assert_raises_regex(TypeError, msg):
+ np.negative(opt_out)
+
+ # opt-outs still hold even when other arguments have pathological
+ # __array_ufunc__ implementations
+
+ class GreedyArray:
+ def __array_ufunc__(self, *args, **kwargs):
+ return self
+
+ greedy = GreedyArray()
+ assert_(np.negative(greedy) is greedy)
+ with assert_raises_regex(TypeError, msg):
+ np.add(greedy, opt_out)
+ with assert_raises_regex(TypeError, msg):
+ np.add(greedy, 1, out=opt_out)
+
+ def test_gufunc_override(self):
+ # gufunc are just ufunc instances, but follow a different path,
+ # so check __array_ufunc__ overrides them properly.
+ class A:
+ def __array_ufunc__(self, ufunc, method, *inputs, **kwargs):
+ return self, ufunc, method, inputs, kwargs
+
+ inner1d = ncu_tests.inner1d
+ a = A()
+ res = inner1d(a, a)
+ assert_equal(res[0], a)
+ assert_equal(res[1], inner1d)
+ assert_equal(res[2], '__call__')
+ assert_equal(res[3], (a, a))
+ assert_equal(res[4], {})
+
+ res = inner1d(1, 1, out=a)
+ assert_equal(res[0], a)
+ assert_equal(res[1], inner1d)
+ assert_equal(res[2], '__call__')
+ assert_equal(res[3], (1, 1))
+ assert_equal(res[4], {'out': (a,)})
+
+ # wrong number of arguments in the tuple is an error too.
+ assert_raises(TypeError, inner1d, a, out='two')
+ assert_raises(TypeError, inner1d, a, a, 'one', out='two')
+ assert_raises(TypeError, inner1d, a, a, 'one', 'two')
+ assert_raises(ValueError, inner1d, a, a, out=('one', 'two'))
+ assert_raises(ValueError, inner1d, a, a, out=())
+
+ def test_ufunc_override_with_super(self):
+ # NOTE: this class is used in doc/source/user/basics.subclassing.rst
+ # if you make any changes here, do update it there too.
+ class A(np.ndarray):
+ def __array_ufunc__(self, ufunc, method, *inputs, out=None, **kwargs):
+ args = []
+ in_no = []
+ for i, input_ in enumerate(inputs):
+ if isinstance(input_, A):
+ in_no.append(i)
+ args.append(input_.view(np.ndarray))
+ else:
+ args.append(input_)
+
+ outputs = out
+ out_no = []
+ if outputs:
+ out_args = []
+ for j, output in enumerate(outputs):
+ if isinstance(output, A):
+ out_no.append(j)
+ out_args.append(output.view(np.ndarray))
+ else:
+ out_args.append(output)
+ kwargs['out'] = tuple(out_args)
+ else:
+ outputs = (None,) * ufunc.nout
+
+ info = {}
+ if in_no:
+ info['inputs'] = in_no
+ if out_no:
+ info['outputs'] = out_no
+
+ results = super().__array_ufunc__(ufunc, method,
+ *args, **kwargs)
+ if results is NotImplemented:
+ return NotImplemented
+
+ if method == 'at':
+ if isinstance(inputs[0], A):
+ inputs[0].info = info
+ return
+
+ if ufunc.nout == 1:
+ results = (results,)
+
+ results = tuple((np.asarray(result).view(A)
+ if output is None else output)
+ for result, output in zip(results, outputs))
+ if results and isinstance(results[0], A):
+ results[0].info = info
+
+ return results[0] if len(results) == 1 else results
+
+ class B:
+ def __array_ufunc__(self, ufunc, method, *inputs, **kwargs):
+ if any(isinstance(input_, A) for input_ in inputs):
+ return "A!"
+ else:
+ return NotImplemented
+
+ d = np.arange(5.)
+ # 1 input, 1 output
+ a = np.arange(5.).view(A)
+ b = np.sin(a)
+ check = np.sin(d)
+ assert_(np.all(check == b))
+ assert_equal(b.info, {'inputs': [0]})
+ b = np.sin(d, out=(a,))
+ assert_(np.all(check == b))
+ assert_equal(b.info, {'outputs': [0]})
+ assert_(b is a)
+ a = np.arange(5.).view(A)
+ b = np.sin(a, out=a)
+ assert_(np.all(check == b))
+ assert_equal(b.info, {'inputs': [0], 'outputs': [0]})
+
+ # 1 input, 2 outputs
+ a = np.arange(5.).view(A)
+ b1, b2 = np.modf(a)
+ assert_equal(b1.info, {'inputs': [0]})
+ b1, b2 = np.modf(d, out=(None, a))
+ assert_(b2 is a)
+ assert_equal(b1.info, {'outputs': [1]})
+ a = np.arange(5.).view(A)
+ b = np.arange(5.).view(A)
+ c1, c2 = np.modf(a, out=(a, b))
+ assert_(c1 is a)
+ assert_(c2 is b)
+ assert_equal(c1.info, {'inputs': [0], 'outputs': [0, 1]})
+
+ # 2 input, 1 output
+ a = np.arange(5.).view(A)
+ b = np.arange(5.).view(A)
+ c = np.add(a, b, out=a)
+ assert_(c is a)
+ assert_equal(c.info, {'inputs': [0, 1], 'outputs': [0]})
+ # some tests with a non-ndarray subclass
+ a = np.arange(5.)
+ b = B()
+ assert_(a.__array_ufunc__(np.add, '__call__', a, b) is NotImplemented)
+ assert_(b.__array_ufunc__(np.add, '__call__', a, b) is NotImplemented)
+ assert_raises(TypeError, np.add, a, b)
+ a = a.view(A)
+ assert_(a.__array_ufunc__(np.add, '__call__', a, b) is NotImplemented)
+ assert_(b.__array_ufunc__(np.add, '__call__', a, b) == "A!")
+ assert_(np.add(a, b) == "A!")
+ # regression check for gh-9102 -- tests ufunc.reduce implicitly.
+ d = np.array([[1, 2, 3], [1, 2, 3]])
+ a = d.view(A)
+ c = a.any()
+ check = d.any()
+ assert_equal(c, check)
+ assert_(c.info, {'inputs': [0]})
+ c = a.max()
+ check = d.max()
+ assert_equal(c, check)
+ assert_(c.info, {'inputs': [0]})
+ b = np.array(0).view(A)
+ c = a.max(out=b)
+ assert_equal(c, check)
+ assert_(c is b)
+ assert_(c.info, {'inputs': [0], 'outputs': [0]})
+ check = a.max(axis=0)
+ b = np.zeros_like(check).view(A)
+ c = a.max(axis=0, out=b)
+ assert_equal(c, check)
+ assert_(c is b)
+ assert_(c.info, {'inputs': [0], 'outputs': [0]})
+ # simple explicit tests of reduce, accumulate, reduceat
+ check = np.add.reduce(d, axis=1)
+ c = np.add.reduce(a, axis=1)
+ assert_equal(c, check)
+ assert_(c.info, {'inputs': [0]})
+ b = np.zeros_like(c)
+ c = np.add.reduce(a, 1, None, b)
+ assert_equal(c, check)
+ assert_(c is b)
+ assert_(c.info, {'inputs': [0], 'outputs': [0]})
+ check = np.add.accumulate(d, axis=0)
+ c = np.add.accumulate(a, axis=0)
+ assert_equal(c, check)
+ assert_(c.info, {'inputs': [0]})
+ b = np.zeros_like(c)
+ c = np.add.accumulate(a, 0, None, b)
+ assert_equal(c, check)
+ assert_(c is b)
+ assert_(c.info, {'inputs': [0], 'outputs': [0]})
+ indices = [0, 2, 1]
+ check = np.add.reduceat(d, indices, axis=1)
+ c = np.add.reduceat(a, indices, axis=1)
+ assert_equal(c, check)
+ assert_(c.info, {'inputs': [0]})
+ b = np.zeros_like(c)
+ c = np.add.reduceat(a, indices, 1, None, b)
+ assert_equal(c, check)
+ assert_(c is b)
+ assert_(c.info, {'inputs': [0], 'outputs': [0]})
+ # and a few tests for at
+ d = np.array([[1, 2, 3], [1, 2, 3]])
+ check = d.copy()
+ a = d.copy().view(A)
+ np.add.at(check, ([0, 1], [0, 2]), 1.)
+ np.add.at(a, ([0, 1], [0, 2]), 1.)
+ assert_equal(a, check)
+ assert_(a.info, {'inputs': [0]})
+ b = np.array(1.).view(A)
+ a = d.copy().view(A)
+ np.add.at(a, ([0, 1], [0, 2]), b)
+ assert_equal(a, check)
+ assert_(a.info, {'inputs': [0, 2]})
+
+ def test_array_ufunc_direct_call(self):
+ # This is mainly a regression test for gh-24023 (shouldn't segfault)
+ a = np.array(1)
+ with pytest.raises(TypeError):
+ a.__array_ufunc__()
+
+ # No kwargs means kwargs may be NULL on the C-level
+ with pytest.raises(TypeError):
+ a.__array_ufunc__(1, 2)
+
+ # And the same with a valid call:
+ res = a.__array_ufunc__(np.add, "__call__", a, a)
+ assert_array_equal(res, a + a)
+
+ def test_ufunc_docstring(self):
+ original_doc = np.add.__doc__
+ new_doc = "new docs"
+ expected_dict = (
+ {} if IS_PYPY else {"__module__": "numpy", "__qualname__": "add"}
+ )
+
+ np.add.__doc__ = new_doc
+ assert np.add.__doc__ == new_doc
+ assert np.add.__dict__["__doc__"] == new_doc
+
+ del np.add.__doc__
+ assert np.add.__doc__ == original_doc
+ assert np.add.__dict__ == expected_dict
+
+ np.add.__dict__["other"] = 1
+ np.add.__dict__["__doc__"] = new_doc
+ assert np.add.__doc__ == new_doc
+
+ del np.add.__dict__["__doc__"]
+ assert np.add.__doc__ == original_doc
+ del np.add.__dict__["other"]
+ assert np.add.__dict__ == expected_dict
+
+
+class TestChoose:
+ def test_mixed(self):
+ c = np.array([True, True])
+ a = np.array([True, True])
+ assert_equal(np.choose(c, (a, 1)), np.array([1, 1]))
+
+
+class TestRationalFunctions:
+ def test_lcm(self):
+ self._test_lcm_inner(np.int16)
+ self._test_lcm_inner(np.uint16)
+
+ def test_lcm_object(self):
+ self._test_lcm_inner(np.object_)
+
+ def test_gcd(self):
+ self._test_gcd_inner(np.int16)
+ self._test_lcm_inner(np.uint16)
+
+ def test_gcd_object(self):
+ self._test_gcd_inner(np.object_)
+
+ def _test_lcm_inner(self, dtype):
+ # basic use
+ a = np.array([12, 120], dtype=dtype)
+ b = np.array([20, 200], dtype=dtype)
+ assert_equal(np.lcm(a, b), [60, 600])
+
+ if not issubclass(dtype, np.unsignedinteger):
+ # negatives are ignored
+ a = np.array([12, -12, 12, -12], dtype=dtype)
+ b = np.array([20, 20, -20, -20], dtype=dtype)
+ assert_equal(np.lcm(a, b), [60] * 4)
+
+ # reduce
+ a = np.array([3, 12, 20], dtype=dtype)
+ assert_equal(np.lcm.reduce([3, 12, 20]), 60)
+
+ # broadcasting, and a test including 0
+ a = np.arange(6).astype(dtype)
+ b = 20
+ assert_equal(np.lcm(a, b), [0, 20, 20, 60, 20, 20])
+
+ def _test_gcd_inner(self, dtype):
+ # basic use
+ a = np.array([12, 120], dtype=dtype)
+ b = np.array([20, 200], dtype=dtype)
+ assert_equal(np.gcd(a, b), [4, 40])
+
+ if not issubclass(dtype, np.unsignedinteger):
+ # negatives are ignored
+ a = np.array([12, -12, 12, -12], dtype=dtype)
+ b = np.array([20, 20, -20, -20], dtype=dtype)
+ assert_equal(np.gcd(a, b), [4] * 4)
+
+ # reduce
+ a = np.array([15, 25, 35], dtype=dtype)
+ assert_equal(np.gcd.reduce(a), 5)
+
+ # broadcasting, and a test including 0
+ a = np.arange(6).astype(dtype)
+ b = 20
+ assert_equal(np.gcd(a, b), [20, 1, 2, 1, 4, 5])
+
+ def test_lcm_overflow(self):
+ # verify that we don't overflow when a*b does overflow
+ big = np.int32(np.iinfo(np.int32).max // 11)
+ a = 2 * big
+ b = 5 * big
+ assert_equal(np.lcm(a, b), 10 * big)
+
+ def test_gcd_overflow(self):
+ for dtype in (np.int32, np.int64):
+ # verify that we don't overflow when taking abs(x)
+ # not relevant for lcm, where the result is unrepresentable anyway
+ a = dtype(np.iinfo(dtype).min) # negative power of two
+ q = -(a // 4)
+ assert_equal(np.gcd(a, q * 3), q)
+ assert_equal(np.gcd(a, -q * 3), q)
+
+ def test_decimal(self):
+ from decimal import Decimal
+ a = np.array([1, 1, -1, -1]) * Decimal('0.20')
+ b = np.array([1, -1, 1, -1]) * Decimal('0.12')
+
+ assert_equal(np.gcd(a, b), 4 * [Decimal('0.04')])
+ assert_equal(np.lcm(a, b), 4 * [Decimal('0.60')])
+
+ def test_float(self):
+ # not well-defined on float due to rounding errors
+ assert_raises(TypeError, np.gcd, 0.3, 0.4)
+ assert_raises(TypeError, np.lcm, 0.3, 0.4)
+
+ def test_huge_integers(self):
+ # Converting to an array first is a bit different as it means we
+ # have an explicit object dtype:
+ assert_equal(np.array(2**200), 2**200)
+ # Special promotion rules should ensure that this also works for
+ # two Python integers (even if slow).
+ # (We do this for comparisons, as the result is always bool and
+ # we also special case array comparisons with Python integers)
+ np.equal(2**200, 2**200)
+
+ # But, we cannot do this when it would affect the result dtype:
+ with pytest.raises(OverflowError):
+ np.gcd(2**100, 3**100)
+
+ # Asking for `object` explicitly is fine, though:
+ assert np.gcd(2**100, 3**100, dtype=object) == 1
+
+ # As of now, the below work, because it is using arrays (which
+ # will be object arrays)
+ a = np.array(2**100 * 3**5)
+ b = np.array([2**100 * 5**7, 2**50 * 3**10])
+ assert_equal(np.gcd(a, b), [2**100, 2**50 * 3**5])
+ assert_equal(np.lcm(a, b), [2**100 * 3**5 * 5**7, 2**100 * 3**10])
+
+ def test_inf_and_nan(self):
+ inf = np.array([np.inf], dtype=np.object_)
+ assert_raises(ValueError, np.gcd, inf, 1)
+ assert_raises(ValueError, np.gcd, 1, inf)
+ assert_raises(ValueError, np.gcd, np.nan, inf)
+ assert_raises(TypeError, np.gcd, 4, float(np.inf))
+
+
+class TestRoundingFunctions:
+
+ def test_object_direct(self):
+ """ test direct implementation of these magic methods """
+ class C:
+ def __floor__(self):
+ return 1
+
+ def __ceil__(self):
+ return 2
+
+ def __trunc__(self):
+ return 3
+
+ arr = np.array([C(), C()])
+ assert_equal(np.floor(arr), [1, 1])
+ assert_equal(np.ceil(arr), [2, 2])
+ assert_equal(np.trunc(arr), [3, 3])
+
+ def test_object_indirect(self):
+ """ test implementations via __float__ """
+ class C:
+ def __float__(self):
+ return -2.5
+
+ arr = np.array([C(), C()])
+ assert_equal(np.floor(arr), [-3, -3])
+ assert_equal(np.ceil(arr), [-2, -2])
+ with pytest.raises(TypeError):
+ np.trunc(arr) # consistent with math.trunc
+
+ def test_fraction(self):
+ f = Fraction(-4, 3)
+ assert_equal(np.floor(f), -2)
+ assert_equal(np.ceil(f), -1)
+ assert_equal(np.trunc(f), -1)
+
+ @pytest.mark.parametrize('func', [np.floor, np.ceil, np.trunc])
+ @pytest.mark.parametrize('dtype', [np.bool, np.float64, np.float32,
+ np.int64, np.uint32])
+ def test_output_dtype(self, func, dtype):
+ arr = np.array([-2, 0, 4, 8]).astype(dtype)
+ result = func(arr)
+ assert_equal(arr, result)
+ assert result.dtype == dtype
+
+
+class TestComplexFunctions:
+ funcs = [np.arcsin, np.arccos, np.arctan, np.arcsinh, np.arccosh,
+ np.arctanh, np.sin, np.cos, np.tan, np.exp,
+ np.exp2, np.log, np.sqrt, np.log10, np.log2,
+ np.log1p]
+
+ def test_it(self):
+ for f in self.funcs:
+ if f is np.arccosh:
+ x = 1.5
+ else:
+ x = .5
+ fr = f(x)
+ fz = f(complex(x))
+ assert_almost_equal(fz.real, fr, err_msg=f'real part {f}')
+ assert_almost_equal(fz.imag, 0., err_msg=f'imag part {f}')
+
+ @pytest.mark.xfail(IS_WASM, reason="doesn't work")
+ def test_precisions_consistent(self):
+ z = 1 + 1j
+ for f in self.funcs:
+ fcf = f(np.csingle(z))
+ fcd = f(np.cdouble(z))
+ fcl = f(np.clongdouble(z))
+ assert_almost_equal(fcf, fcd, decimal=6, err_msg=f'fch-fcd {f}')
+ assert_almost_equal(fcl, fcd, decimal=15, err_msg=f'fch-fcl {f}')
+
+ @pytest.mark.xfail(IS_WASM, reason="doesn't work")
+ def test_branch_cuts(self):
+ # check branch cuts and continuity on them
+ _check_branch_cut(np.log, -0.5, 1j, 1, -1, True) # noqa: E221
+ _check_branch_cut(np.log2, -0.5, 1j, 1, -1, True) # noqa: E221
+ _check_branch_cut(np.log10, -0.5, 1j, 1, -1, True)
+ _check_branch_cut(np.log1p, -1.5, 1j, 1, -1, True)
+ _check_branch_cut(np.sqrt, -0.5, 1j, 1, -1, True) # noqa: E221
+
+ _check_branch_cut(np.arcsin, [ -2, 2], [1j, 1j], 1, -1, True)
+ _check_branch_cut(np.arccos, [ -2, 2], [1j, 1j], 1, -1, True)
+ _check_branch_cut(np.arctan, [0 - 2j, 2j], [1, 1], -1, 1, True)
+
+ _check_branch_cut(np.arcsinh, [0 - 2j, 2j], [1, 1], -1, 1, True)
+ _check_branch_cut(np.arccosh, [ -1, 0.5], [1j, 1j], 1, -1, True)
+ _check_branch_cut(np.arctanh, [ -2, 2], [1j, 1j], 1, -1, True)
+
+ # check against bogus branch cuts: assert continuity between quadrants
+ _check_branch_cut(np.arcsin, [0 - 2j, 2j], [ 1, 1], 1, 1)
+ _check_branch_cut(np.arccos, [0 - 2j, 2j], [ 1, 1], 1, 1)
+ _check_branch_cut(np.arctan, [ -2, 2], [1j, 1j], 1, 1)
+
+ _check_branch_cut(np.arcsinh, [ -2, 2, 0], [1j, 1j, 1], 1, 1)
+ _check_branch_cut(np.arccosh, [0 - 2j, 2j, 2], [1, 1, 1j], 1, 1)
+ _check_branch_cut(np.arctanh, [0 - 2j, 2j, 0], [1, 1, 1j], 1, 1)
+
+ @pytest.mark.xfail(IS_WASM, reason="doesn't work")
+ def test_branch_cuts_complex64(self):
+ # check branch cuts and continuity on them
+ _check_branch_cut(np.log, -0.5, 1j, 1, -1, True, np.complex64) # noqa: E221
+ _check_branch_cut(np.log2, -0.5, 1j, 1, -1, True, np.complex64) # noqa: E221
+ _check_branch_cut(np.log10, -0.5, 1j, 1, -1, True, np.complex64)
+ _check_branch_cut(np.log1p, -1.5, 1j, 1, -1, True, np.complex64)
+ _check_branch_cut(np.sqrt, -0.5, 1j, 1, -1, True, np.complex64) # noqa: E221
+
+ _check_branch_cut(np.arcsin, [ -2, 2], [1j, 1j], 1, -1, True, np.complex64)
+ _check_branch_cut(np.arccos, [ -2, 2], [1j, 1j], 1, -1, True, np.complex64)
+ _check_branch_cut(np.arctan, [0 - 2j, 2j], [1, 1], -1, 1, True, np.complex64)
+
+ _check_branch_cut(np.arcsinh, [0 - 2j, 2j], [1, 1], -1, 1, True, np.complex64)
+ _check_branch_cut(np.arccosh, [ -1, 0.5], [1j, 1j], 1, -1, True, np.complex64)
+ _check_branch_cut(np.arctanh, [ -2, 2], [1j, 1j], 1, -1, True, np.complex64)
+
+ # check against bogus branch cuts: assert continuity between quadrants
+ _check_branch_cut(np.arcsin, [0 - 2j, 2j], [ 1, 1], 1, 1, False, np.complex64)
+ _check_branch_cut(np.arccos, [0 - 2j, 2j], [ 1, 1], 1, 1, False, np.complex64)
+ _check_branch_cut(np.arctan, [ -2, 2], [1j, 1j], 1, 1, False, np.complex64)
+
+ _check_branch_cut(np.arcsinh, [ -2, 2, 0], [1j, 1j, 1], 1, 1, False, np.complex64)
+ _check_branch_cut(np.arccosh, [0 - 2j, 2j, 2], [1, 1, 1j], 1, 1, False, np.complex64)
+ _check_branch_cut(np.arctanh, [0 - 2j, 2j, 0], [1, 1, 1j], 1, 1, False, np.complex64)
+
+ def test_against_cmath(self):
+ import cmath
+
+ points = [-1 - 1j, -1 + 1j, +1 - 1j, +1 + 1j]
+ name_map = {'arcsin': 'asin', 'arccos': 'acos', 'arctan': 'atan',
+ 'arcsinh': 'asinh', 'arccosh': 'acosh', 'arctanh': 'atanh'}
+ atol = 4 * np.finfo(complex).eps
+ for func in self.funcs:
+ fname = func.__name__.split('.')[-1]
+ cname = name_map.get(fname, fname)
+ try:
+ cfunc = getattr(cmath, cname)
+ except AttributeError:
+ continue
+ for p in points:
+ a = complex(func(np.complex128(p)))
+ b = cfunc(p)
+ assert_(
+ abs(a - b) < atol,
+ f"{fname} {p}: {a}; cmath: {b}"
+ )
+
+ @pytest.mark.xfail(
+ # manylinux2014 uses glibc2.17
+ _glibc_older_than("2.18"),
+ reason="Older glibc versions are imprecise (maybe passes with SIMD?)"
+ )
+ @pytest.mark.xfail(IS_WASM, reason="doesn't work")
+ @pytest.mark.parametrize('dtype', [
+ np.complex64, np.complex128, np.clongdouble
+ ])
+ def test_loss_of_precision(self, dtype):
+ """Check loss of precision in complex arc* functions"""
+ if dtype is np.clongdouble and platform.machine() != 'x86_64':
+ # Failures on musllinux, aarch64, s390x, ppc64le (see gh-17554)
+ pytest.skip('Only works reliably for x86-64 and recent glibc')
+
+ # Check against known-good functions
+
+ info = np.finfo(dtype)
+ real_dtype = dtype(0.).real.dtype
+ eps = info.eps
+
+ def check(x, rtol):
+ x = x.astype(real_dtype)
+
+ z = x.astype(dtype)
+ d = np.absolute(np.arcsinh(x) / np.arcsinh(z).real - 1)
+ assert_(np.all(d < rtol), (np.argmax(d), x[np.argmax(d)], d.max(),
+ 'arcsinh'))
+
+ z = (1j * x).astype(dtype)
+ d = np.absolute(np.arcsinh(x) / np.arcsin(z).imag - 1)
+ assert_(np.all(d < rtol), (np.argmax(d), x[np.argmax(d)], d.max(),
+ 'arcsin'))
+
+ z = x.astype(dtype)
+ d = np.absolute(np.arctanh(x) / np.arctanh(z).real - 1)
+ assert_(np.all(d < rtol), (np.argmax(d), x[np.argmax(d)], d.max(),
+ 'arctanh'))
+
+ z = (1j * x).astype(dtype)
+ d = np.absolute(np.arctanh(x) / np.arctan(z).imag - 1)
+ assert_(np.all(d < rtol), (np.argmax(d), x[np.argmax(d)], d.max(),
+ 'arctan'))
+
+ # The switchover was chosen as 1e-3; hence there can be up to
+ # ~eps/1e-3 of relative cancellation error before it
+
+ x_series = np.logspace(-20, -3.001, 200)
+ x_basic = np.logspace(-2.999, 0, 10, endpoint=False)
+
+ if dtype is np.clongdouble:
+ if bad_arcsinh():
+ pytest.skip("Trig functions of np.clongdouble values known "
+ "to be inaccurate on aarch64 and PPC for some "
+ "compilation configurations.")
+ # It's not guaranteed that the system-provided arc functions
+ # are accurate down to a few epsilons. (Eg. on Linux 64-bit)
+ # So, give more leeway for long complex tests here:
+ check(x_series, 50.0 * eps)
+ else:
+ check(x_series, 2.1 * eps)
+ check(x_basic, 2.0 * eps / 1e-3)
+
+ # Check a few points
+
+ z = np.array([1e-5 * (1 + 1j)], dtype=dtype)
+ p = 9.999999999333333333e-6 + 1.000000000066666666e-5j
+ d = np.absolute(1 - np.arctanh(z) / p)
+ assert_(np.all(d < 1e-15))
+
+ p = 1.0000000000333333333e-5 + 9.999999999666666667e-6j
+ d = np.absolute(1 - np.arcsinh(z) / p)
+ assert_(np.all(d < 1e-15))
+
+ p = 9.999999999333333333e-6j + 1.000000000066666666e-5
+ d = np.absolute(1 - np.arctan(z) / p)
+ assert_(np.all(d < 1e-15))
+
+ p = 1.0000000000333333333e-5j + 9.999999999666666667e-6
+ d = np.absolute(1 - np.arcsin(z) / p)
+ assert_(np.all(d < 1e-15))
+
+ # Check continuity across switchover points
+
+ def check(func, z0, d=1):
+ z0 = np.asarray(z0, dtype=dtype)
+ zp = z0 + abs(z0) * d * eps * 2
+ zm = z0 - abs(z0) * d * eps * 2
+ assert_(np.all(zp != zm), (zp, zm))
+
+ # NB: the cancellation error at the switchover is at least eps
+ good = (abs(func(zp) - func(zm)) < 2 * eps)
+ assert_(np.all(good), (func, z0[~good]))
+
+ for func in (np.arcsinh, np.arcsinh, np.arcsin, np.arctanh, np.arctan):
+ pts = [rp + 1j * ip for rp in (-1e-3, 0, 1e-3) for ip in (-1e-3, 0, 1e-3)
+ if rp != 0 or ip != 0]
+ check(func, pts, 1)
+ check(func, pts, 1j)
+ check(func, pts, 1 + 1j)
+
+ @np.errstate(all="ignore")
+ def test_promotion_corner_cases(self):
+ for func in self.funcs:
+ assert func(np.float16(1)).dtype == np.float16
+ # Integer to low precision float promotion is a dubious choice:
+ assert func(np.uint8(1)).dtype == np.float16
+ assert func(np.int16(1)).dtype == np.float32
+
+
+class TestAttributes:
+ def test_attributes(self):
+ add = ncu.add
+ assert_equal(add.__name__, 'add')
+ assert_(add.ntypes >= 18) # don't fail if types added
+ assert_('ii->i' in add.types)
+ assert_equal(add.nin, 2)
+ assert_equal(add.nout, 1)
+ assert_equal(add.identity, 0)
+
+ def test_doc(self):
+ # don't bother checking the long list of kwargs, which are likely to
+ # change
+ assert_(ncu.add.__doc__.startswith(
+ "add(x1, x2, /, out=None, *, where=True"))
+ assert_(ncu.frexp.__doc__.startswith(
+ "frexp(x[, out1, out2], / [, out=(None, None)], *, where=True"))
+
+
+class TestSubclass:
+
+ def test_subclass_op(self):
+
+ class simple(np.ndarray):
+ def __new__(subtype, shape):
+ self = np.ndarray.__new__(subtype, shape, dtype=object)
+ self.fill(0)
+ return self
+
+ a = simple((3, 4))
+ assert_equal(a + a, a)
+
+
+class TestFrompyfunc:
+
+ def test_identity(self):
+ def mul(a, b):
+ return a * b
+
+ # with identity=value
+ mul_ufunc = np.frompyfunc(mul, nin=2, nout=1, identity=1)
+ assert_equal(mul_ufunc.reduce([2, 3, 4]), 24)
+ assert_equal(mul_ufunc.reduce(np.ones((2, 2)), axis=(0, 1)), 1)
+ assert_equal(mul_ufunc.reduce([]), 1)
+
+ # with identity=None (reorderable)
+ mul_ufunc = np.frompyfunc(mul, nin=2, nout=1, identity=None)
+ assert_equal(mul_ufunc.reduce([2, 3, 4]), 24)
+ assert_equal(mul_ufunc.reduce(np.ones((2, 2)), axis=(0, 1)), 1)
+ assert_raises(ValueError, lambda: mul_ufunc.reduce([]))
+
+ # with no identity (not reorderable)
+ mul_ufunc = np.frompyfunc(mul, nin=2, nout=1)
+ assert_equal(mul_ufunc.reduce([2, 3, 4]), 24)
+ assert_raises(ValueError, lambda: mul_ufunc.reduce(np.ones((2, 2)), axis=(0, 1)))
+ assert_raises(ValueError, lambda: mul_ufunc.reduce([]))
+
+
+def _check_branch_cut(f, x0, dx, re_sign=1, im_sign=-1, sig_zero_ok=False,
+ dtype=complex):
+ """
+ Check for a branch cut in a function.
+
+ Assert that `x0` lies on a branch cut of function `f` and `f` is
+ continuous from the direction `dx`.
+
+ Parameters
+ ----------
+ f : func
+ Function to check
+ x0 : array-like
+ Point on branch cut
+ dx : array-like
+ Direction to check continuity in
+ re_sign, im_sign : {1, -1}
+ Change of sign of the real or imaginary part expected
+ sig_zero_ok : bool
+ Whether to check if the branch cut respects signed zero (if applicable)
+ dtype : dtype
+ Dtype to check (should be complex)
+
+ """
+ x0 = np.atleast_1d(x0).astype(dtype)
+ dx = np.atleast_1d(dx).astype(dtype)
+
+ if np.dtype(dtype).char == 'F':
+ scale = np.finfo(dtype).eps * 1e2
+ atol = np.float32(1e-2)
+ else:
+ scale = np.finfo(dtype).eps * 1e3
+ atol = 1e-4
+
+ y0 = f(x0)
+ yp = f(x0 + dx * scale * np.absolute(x0) / np.absolute(dx))
+ ym = f(x0 - dx * scale * np.absolute(x0) / np.absolute(dx))
+
+ assert_(np.all(np.absolute(y0.real - yp.real) < atol), (y0, yp))
+ assert_(np.all(np.absolute(y0.imag - yp.imag) < atol), (y0, yp))
+ assert_(np.all(np.absolute(y0.real - ym.real * re_sign) < atol), (y0, ym))
+ assert_(np.all(np.absolute(y0.imag - ym.imag * im_sign) < atol), (y0, ym))
+
+ if sig_zero_ok:
+ # check that signed zeros also work as a displacement
+ jr = (x0.real == 0) & (dx.real != 0)
+ ji = (x0.imag == 0) & (dx.imag != 0)
+ if np.any(jr):
+ x = x0[jr]
+ x.real = ncu.NZERO
+ ym = f(x)
+ assert_(np.all(np.absolute(y0[jr].real - ym.real * re_sign) < atol), (y0[jr], ym))
+ assert_(np.all(np.absolute(y0[jr].imag - ym.imag * im_sign) < atol), (y0[jr], ym))
+
+ if np.any(ji):
+ x = x0[ji]
+ x.imag = ncu.NZERO
+ ym = f(x)
+ assert_(np.all(np.absolute(y0[ji].real - ym.real * re_sign) < atol), (y0[ji], ym))
+ assert_(np.all(np.absolute(y0[ji].imag - ym.imag * im_sign) < atol), (y0[ji], ym))
+
+def test_copysign():
+ assert_(np.copysign(1, -1) == -1)
+ with np.errstate(divide="ignore"):
+ assert_(1 / np.copysign(0, -1) < 0)
+ assert_(1 / np.copysign(0, 1) > 0)
+ assert_(np.signbit(np.copysign(np.nan, -1)))
+ assert_(not np.signbit(np.copysign(np.nan, 1)))
+
+def _test_nextafter(t):
+ one = t(1)
+ two = t(2)
+ zero = t(0)
+ eps = np.finfo(t).eps
+ assert_(np.nextafter(one, two) - one == eps)
+ assert_(np.nextafter(one, zero) - one < 0)
+ assert_(np.isnan(np.nextafter(np.nan, one)))
+ assert_(np.isnan(np.nextafter(one, np.nan)))
+ assert_(np.nextafter(one, one) == one)
+
+def test_nextafter():
+ return _test_nextafter(np.float64)
+
+
+def test_nextafterf():
+ return _test_nextafter(np.float32)
+
+
+@pytest.mark.skipif(np.finfo(np.double) == np.finfo(np.longdouble),
+ reason="long double is same as double")
+@pytest.mark.xfail(condition=platform.machine().startswith("ppc64"),
+ reason="IBM double double")
+def test_nextafterl():
+ return _test_nextafter(np.longdouble)
+
+
+def test_nextafter_0():
+ for t, direction in itertools.product(np._core.sctypes['float'], (1, -1)):
+ # The value of tiny for double double is NaN, so we need to pass the
+ # assert
+ with suppress_warnings() as sup:
+ sup.filter(UserWarning)
+ if not np.isnan(np.finfo(t).tiny):
+ tiny = np.finfo(t).tiny
+ assert_(
+ 0. < direction * np.nextafter(t(0), t(direction)) < tiny)
+ assert_equal(np.nextafter(t(0), t(direction)) / t(2.1), direction * 0.0)
+
+def _test_spacing(t):
+ one = t(1)
+ eps = np.finfo(t).eps
+ nan = t(np.nan)
+ inf = t(np.inf)
+ with np.errstate(invalid='ignore'):
+ assert_equal(np.spacing(one), eps)
+ assert_(np.isnan(np.spacing(nan)))
+ assert_(np.isnan(np.spacing(inf)))
+ assert_(np.isnan(np.spacing(-inf)))
+ assert_(np.spacing(t(1e30)) != 0)
+
+def test_spacing():
+ return _test_spacing(np.float64)
+
+def test_spacingf():
+ return _test_spacing(np.float32)
+
+
+@pytest.mark.skipif(np.finfo(np.double) == np.finfo(np.longdouble),
+ reason="long double is same as double")
+@pytest.mark.xfail(condition=platform.machine().startswith("ppc64"),
+ reason="IBM double double")
+def test_spacingl():
+ return _test_spacing(np.longdouble)
+
+def test_spacing_gfortran():
+ # Reference from this fortran file, built with gfortran 4.3.3 on linux
+ # 32bits:
+ # PROGRAM test_spacing
+ # INTEGER, PARAMETER :: SGL = SELECTED_REAL_KIND(p=6, r=37)
+ # INTEGER, PARAMETER :: DBL = SELECTED_REAL_KIND(p=13, r=200)
+ #
+ # WRITE(*,*) spacing(0.00001_DBL)
+ # WRITE(*,*) spacing(1.0_DBL)
+ # WRITE(*,*) spacing(1000._DBL)
+ # WRITE(*,*) spacing(10500._DBL)
+ #
+ # WRITE(*,*) spacing(0.00001_SGL)
+ # WRITE(*,*) spacing(1.0_SGL)
+ # WRITE(*,*) spacing(1000._SGL)
+ # WRITE(*,*) spacing(10500._SGL)
+ # END PROGRAM
+ ref = {np.float64: [1.69406589450860068E-021,
+ 2.22044604925031308E-016,
+ 1.13686837721616030E-013,
+ 1.81898940354585648E-012],
+ np.float32: [9.09494702E-13,
+ 1.19209290E-07,
+ 6.10351563E-05,
+ 9.76562500E-04]}
+
+ for dt, dec_ in zip([np.float32, np.float64], (10, 20)):
+ x = np.array([1e-5, 1, 1000, 10500], dtype=dt)
+ assert_array_almost_equal(np.spacing(x), ref[dt], decimal=dec_)
+
+def test_nextafter_vs_spacing():
+ # XXX: spacing does not handle long double yet
+ for t in [np.float32, np.float64]:
+ for _f in [1, 1e-5, 1000]:
+ f = t(_f)
+ f1 = t(_f + 1)
+ assert_(np.nextafter(f, f1) - f == np.spacing(f))
+
+def test_pos_nan():
+ """Check np.nan is a positive nan."""
+ assert_(np.signbit(np.nan) == 0)
+
+def test_reduceat():
+ """Test bug in reduceat when structured arrays are not copied."""
+ db = np.dtype([('name', 'S11'), ('time', np.int64), ('value', np.float32)])
+ a = np.empty([100], dtype=db)
+ a['name'] = 'Simple'
+ a['time'] = 10
+ a['value'] = 100
+ indx = [0, 7, 15, 25]
+
+ h2 = []
+ val1 = indx[0]
+ for val2 in indx[1:]:
+ h2.append(np.add.reduce(a['value'][val1:val2]))
+ val1 = val2
+ h2.append(np.add.reduce(a['value'][val1:]))
+ h2 = np.array(h2)
+
+ # test buffered -- this should work
+ h1 = np.add.reduceat(a['value'], indx)
+ assert_array_almost_equal(h1, h2)
+
+ # This is when the error occurs.
+ # test no buffer
+ np.setbufsize(32)
+ h1 = np.add.reduceat(a['value'], indx)
+ np.setbufsize(ncu.UFUNC_BUFSIZE_DEFAULT)
+ assert_array_almost_equal(h1, h2)
+
+def test_reduceat_empty():
+ """Reduceat should work with empty arrays"""
+ indices = np.array([], 'i4')
+ x = np.array([], 'f8')
+ result = np.add.reduceat(x, indices)
+ assert_equal(result.dtype, x.dtype)
+ assert_equal(result.shape, (0,))
+ # Another case with a slightly different zero-sized shape
+ x = np.ones((5, 2))
+ result = np.add.reduceat(x, [], axis=0)
+ assert_equal(result.dtype, x.dtype)
+ assert_equal(result.shape, (0, 2))
+ result = np.add.reduceat(x, [], axis=1)
+ assert_equal(result.dtype, x.dtype)
+ assert_equal(result.shape, (5, 0))
+
+def test_complex_nan_comparisons():
+ nans = [complex(np.nan, 0), complex(0, np.nan), complex(np.nan, np.nan)]
+ fins = [complex(1, 0), complex(-1, 0), complex(0, 1), complex(0, -1),
+ complex(1, 1), complex(-1, -1), complex(0, 0)]
+
+ with np.errstate(invalid='ignore'):
+ for x in nans + fins:
+ x = np.array([x])
+ for y in nans + fins:
+ y = np.array([y])
+
+ if np.isfinite(x) and np.isfinite(y):
+ continue
+
+ assert_equal(x < y, False, err_msg=f"{x!r} < {y!r}")
+ assert_equal(x > y, False, err_msg=f"{x!r} > {y!r}")
+ assert_equal(x <= y, False, err_msg=f"{x!r} <= {y!r}")
+ assert_equal(x >= y, False, err_msg=f"{x!r} >= {y!r}")
+ assert_equal(x == y, False, err_msg=f"{x!r} == {y!r}")
+
+
+def test_rint_big_int():
+ # np.rint bug for large integer values on Windows 32-bit and MKL
+ # https://github.com/numpy/numpy/issues/6685
+ val = 4607998452777363968
+ # This is exactly representable in floating point
+ assert_equal(val, int(float(val)))
+ # Rint should not change the value
+ assert_equal(val, np.rint(val))
+
+
+@pytest.mark.parametrize('ftype', [np.float32, np.float64])
+def test_memoverlap_accumulate(ftype):
+ # Reproduces bug https://github.com/numpy/numpy/issues/15597
+ arr = np.array([0.61, 0.60, 0.77, 0.41, 0.19], dtype=ftype)
+ out_max = np.array([0.61, 0.61, 0.77, 0.77, 0.77], dtype=ftype)
+ out_min = np.array([0.61, 0.60, 0.60, 0.41, 0.19], dtype=ftype)
+ assert_equal(np.maximum.accumulate(arr), out_max)
+ assert_equal(np.minimum.accumulate(arr), out_min)
+
+@pytest.mark.parametrize("ufunc, dtype", [
+ (ufunc, t[0])
+ for ufunc in UFUNCS_BINARY_ACC
+ for t in ufunc.types
+ if t[-1] == '?' and t[0] not in 'DFGMmO'
+])
+def test_memoverlap_accumulate_cmp(ufunc, dtype):
+ if ufunc.signature:
+ pytest.skip('For generic signatures only')
+ for size in (2, 8, 32, 64, 128, 256):
+ arr = np.array([0, 1, 1] * size, dtype=dtype)
+ acc = ufunc.accumulate(arr, dtype='?')
+ acc_u8 = acc.view(np.uint8)
+ exp = np.array(list(itertools.accumulate(arr, ufunc)), dtype=np.uint8)
+ assert_equal(exp, acc_u8)
+
+@pytest.mark.parametrize("ufunc, dtype", [
+ (ufunc, t[0])
+ for ufunc in UFUNCS_BINARY_ACC
+ for t in ufunc.types
+ if t[0] == t[1] and t[0] == t[-1] and t[0] not in 'DFGMmO?'
+])
+def test_memoverlap_accumulate_symmetric(ufunc, dtype):
+ if ufunc.signature:
+ pytest.skip('For generic signatures only')
+ with np.errstate(all='ignore'):
+ for size in (2, 8, 32, 64, 128, 256):
+ arr = np.array([0, 1, 2] * size).astype(dtype)
+ acc = ufunc.accumulate(arr, dtype=dtype)
+ exp = np.array(list(itertools.accumulate(arr, ufunc)), dtype=dtype)
+ assert_equal(exp, acc)
+
+def test_signaling_nan_exceptions():
+ with assert_no_warnings():
+ a = np.ndarray(shape=(), dtype='float32', buffer=b'\x00\xe0\xbf\xff')
+ np.isnan(a)
+
+@pytest.mark.parametrize("arr", [
+ np.arange(2),
+ np.matrix([0, 1]),
+ np.matrix([[0, 1], [2, 5]]),
+ ])
+def test_outer_subclass_preserve(arr):
+ # for gh-8661
+ class foo(np.ndarray):
+ pass
+ actual = np.multiply.outer(arr.view(foo), arr.view(foo))
+ assert actual.__class__.__name__ == 'foo'
+
+def test_outer_bad_subclass():
+ class BadArr1(np.ndarray):
+ def __array_finalize__(self, obj):
+ # The outer call reshapes to 3 dims, try to do a bad reshape.
+ if self.ndim == 3:
+ self.shape = self.shape + (1,)
+
+ class BadArr2(np.ndarray):
+ def __array_finalize__(self, obj):
+ if isinstance(obj, BadArr2):
+ # outer inserts 1-sized dims. In that case disturb them.
+ if self.shape[-1] == 1:
+ self.shape = self.shape[::-1]
+
+ for cls in [BadArr1, BadArr2]:
+ arr = np.ones((2, 3)).view(cls)
+ with assert_raises(TypeError) as a:
+ # The first array gets reshaped (not the second one)
+ np.add.outer(arr, [1, 2])
+
+ # This actually works, since we only see the reshaping error:
+ arr = np.ones((2, 3)).view(cls)
+ assert type(np.add.outer([1, 2], arr)) is cls
+
+def test_outer_exceeds_maxdims():
+ deep = np.ones((1,) * 33)
+ with assert_raises(ValueError):
+ np.add.outer(deep, deep)
+
+def test_bad_legacy_ufunc_silent_errors():
+ # legacy ufuncs can't report errors and NumPy can't check if the GIL
+ # is released. So NumPy has to check after the GIL is released just to
+ # cover all bases. `np.power` uses/used to use this.
+ arr = np.arange(3).astype(np.float64)
+
+ with pytest.raises(RuntimeError, match=r"How unexpected :\)!"):
+ ncu_tests.always_error(arr, arr)
+
+ with pytest.raises(RuntimeError, match=r"How unexpected :\)!"):
+ # not contiguous means the fast-path cannot be taken
+ non_contig = arr.repeat(20).reshape(-1, 6)[:, ::2]
+ ncu_tests.always_error(non_contig, arr)
+
+ with pytest.raises(RuntimeError, match=r"How unexpected :\)!"):
+ ncu_tests.always_error.outer(arr, arr)
+
+ with pytest.raises(RuntimeError, match=r"How unexpected :\)!"):
+ ncu_tests.always_error.reduce(arr)
+
+ with pytest.raises(RuntimeError, match=r"How unexpected :\)!"):
+ ncu_tests.always_error.reduceat(arr, [0, 1])
+
+ with pytest.raises(RuntimeError, match=r"How unexpected :\)!"):
+ ncu_tests.always_error.accumulate(arr)
+
+ with pytest.raises(RuntimeError, match=r"How unexpected :\)!"):
+ ncu_tests.always_error.at(arr, [0, 1, 2], arr)
+
+
+@pytest.mark.parametrize('x1', [np.arange(3.0), [0.0, 1.0, 2.0]])
+def test_bad_legacy_gufunc_silent_errors(x1):
+ # Verify that an exception raised in a gufunc loop propagates correctly.
+ # The signature of always_error_gufunc is '(i),()->()'.
+ with pytest.raises(RuntimeError, match=r"How unexpected :\)!"):
+ ncu_tests.always_error_gufunc(x1, 0.0)
+
+
+class TestAddDocstring:
+ @pytest.mark.skipif(sys.flags.optimize == 2, reason="Python running -OO")
+ @pytest.mark.skipif(IS_PYPY, reason="PyPy does not modify tp_doc")
+ def test_add_same_docstring(self):
+ # test for attributes (which are C-level defined)
+ ncu.add_docstring(np.ndarray.flat, np.ndarray.flat.__doc__)
+
+ # And typical functions:
+ def func():
+ """docstring"""
+ return
+
+ ncu.add_docstring(func, func.__doc__)
+
+ @pytest.mark.skipif(sys.flags.optimize == 2, reason="Python running -OO")
+ def test_different_docstring_fails(self):
+ # test for attributes (which are C-level defined)
+ with assert_raises(RuntimeError):
+ ncu.add_docstring(np.ndarray.flat, "different docstring")
+
+ # And typical functions:
+ def func():
+ """docstring"""
+ return
+
+ with assert_raises(RuntimeError):
+ ncu.add_docstring(func, "different docstring")
+
+
+class TestAdd_newdoc_ufunc:
+ @pytest.mark.filterwarnings("ignore:_add_newdoc_ufunc:DeprecationWarning")
+ def test_ufunc_arg(self):
+ assert_raises(TypeError, ncu._add_newdoc_ufunc, 2, "blah")
+ assert_raises(ValueError, ncu._add_newdoc_ufunc, np.add, "blah")
+
+ @pytest.mark.filterwarnings("ignore:_add_newdoc_ufunc:DeprecationWarning")
+ def test_string_arg(self):
+ assert_raises(TypeError, ncu._add_newdoc_ufunc, np.add, 3)
diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_umath_accuracy.py b/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_umath_accuracy.py
new file mode 100644
index 0000000..5707e92
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_umath_accuracy.py
@@ -0,0 +1,124 @@
+import os
+import sys
+from ctypes import POINTER, c_double, c_float, c_int, c_longlong, cast, pointer
+from os import path
+
+import pytest
+from numpy._core._multiarray_umath import __cpu_features__
+
+import numpy as np
+from numpy.testing import assert_array_max_ulp
+from numpy.testing._private.utils import _glibc_older_than
+
+UNARY_UFUNCS = [obj for obj in np._core.umath.__dict__.values() if
+ isinstance(obj, np.ufunc)]
+UNARY_OBJECT_UFUNCS = [uf for uf in UNARY_UFUNCS if "O->O" in uf.types]
+
+# Remove functions that do not support `floats`
+UNARY_OBJECT_UFUNCS.remove(np.invert)
+UNARY_OBJECT_UFUNCS.remove(np.bitwise_count)
+
+IS_AVX = __cpu_features__.get('AVX512F', False) or \
+ (__cpu_features__.get('FMA3', False) and __cpu_features__.get('AVX2', False))
+
+IS_AVX512FP16 = __cpu_features__.get('AVX512FP16', False)
+
+# only run on linux with AVX, also avoid old glibc (numpy/numpy#20448).
+runtest = (sys.platform.startswith('linux')
+ and IS_AVX and not _glibc_older_than("2.17"))
+platform_skip = pytest.mark.skipif(not runtest,
+ reason="avoid testing inconsistent platform "
+ "library implementations")
+
+# convert string to hex function taken from:
+# https://stackoverflow.com/questions/1592158/convert-hex-to-float #
+def convert(s, datatype="np.float32"):
+ i = int(s, 16) # convert from hex to a Python int
+ if (datatype == "np.float64"):
+ cp = pointer(c_longlong(i)) # make this into a c long long integer
+ fp = cast(cp, POINTER(c_double)) # cast the int pointer to a double pointer
+ else:
+ cp = pointer(c_int(i)) # make this into a c integer
+ fp = cast(cp, POINTER(c_float)) # cast the int pointer to a float pointer
+
+ return fp.contents.value # dereference the pointer, get the float
+
+
+str_to_float = np.vectorize(convert)
+
+class TestAccuracy:
+ @platform_skip
+ def test_validate_transcendentals(self):
+ with np.errstate(all='ignore'):
+ data_dir = path.join(path.dirname(__file__), 'data')
+ files = os.listdir(data_dir)
+ files = list(filter(lambda f: f.endswith('.csv'), files))
+ for filename in files:
+ filepath = path.join(data_dir, filename)
+ with open(filepath) as fid:
+ file_without_comments = (
+ r for r in fid if r[0] not in ('$', '#')
+ )
+ data = np.genfromtxt(file_without_comments,
+ dtype=('|S39', '|S39', '|S39', int),
+ names=('type', 'input', 'output', 'ulperr'),
+ delimiter=',',
+ skip_header=1)
+ npname = path.splitext(filename)[0].split('-')[3]
+ npfunc = getattr(np, npname)
+ for datatype in np.unique(data['type']):
+ data_subset = data[data['type'] == datatype]
+ inval = np.array(str_to_float(data_subset['input'].astype(str), data_subset['type'].astype(str)), dtype=eval(datatype))
+ outval = np.array(str_to_float(data_subset['output'].astype(str), data_subset['type'].astype(str)), dtype=eval(datatype))
+ perm = np.random.permutation(len(inval))
+ inval = inval[perm]
+ outval = outval[perm]
+ maxulperr = data_subset['ulperr'].max()
+ assert_array_max_ulp(npfunc(inval), outval, maxulperr)
+
+ @pytest.mark.skipif(IS_AVX512FP16,
+ reason="SVML FP16 have slightly higher ULP errors")
+ @pytest.mark.parametrize("ufunc", UNARY_OBJECT_UFUNCS)
+ def test_validate_fp16_transcendentals(self, ufunc):
+ with np.errstate(all='ignore'):
+ arr = np.arange(65536, dtype=np.int16)
+ datafp16 = np.frombuffer(arr.tobytes(), dtype=np.float16)
+ datafp32 = datafp16.astype(np.float32)
+ assert_array_max_ulp(ufunc(datafp16), ufunc(datafp32),
+ maxulp=1, dtype=np.float16)
+
+ @pytest.mark.skipif(not IS_AVX512FP16,
+ reason="lower ULP only apply for SVML FP16")
+ def test_validate_svml_fp16(self):
+ max_ulp_err = {
+ "arccos": 2.54,
+ "arccosh": 2.09,
+ "arcsin": 3.06,
+ "arcsinh": 1.51,
+ "arctan": 2.61,
+ "arctanh": 1.88,
+ "cbrt": 1.57,
+ "cos": 1.43,
+ "cosh": 1.33,
+ "exp2": 1.33,
+ "exp": 1.27,
+ "expm1": 0.53,
+ "log": 1.80,
+ "log10": 1.27,
+ "log1p": 1.88,
+ "log2": 1.80,
+ "sin": 1.88,
+ "sinh": 2.05,
+ "tan": 2.26,
+ "tanh": 3.00,
+ }
+
+ with np.errstate(all='ignore'):
+ arr = np.arange(65536, dtype=np.int16)
+ datafp16 = np.frombuffer(arr.tobytes(), dtype=np.float16)
+ datafp32 = datafp16.astype(np.float32)
+ for func in max_ulp_err:
+ ufunc = getattr(np, func)
+ ulp = np.ceil(max_ulp_err[func])
+ assert_array_max_ulp(ufunc(datafp16), ufunc(datafp32),
+ maxulp=ulp, dtype=np.float16)
diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_umath_complex.py b/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_umath_complex.py
new file mode 100644
index 0000000..a97af47
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_umath_complex.py
@@ -0,0 +1,626 @@
+import platform
+import sys
+
+# import the c-extension module directly since _arg is not exported via umath
+import numpy._core._multiarray_umath as ncu
+import pytest
+
+import numpy as np
+from numpy.testing import (
+ assert_almost_equal,
+ assert_array_equal,
+ assert_array_max_ulp,
+ assert_equal,
+ assert_raises,
+)
+
+# TODO: branch cuts (use Pauli code)
+# TODO: conj 'symmetry'
+# TODO: FPU exceptions
+
+# At least on Windows the results of many complex functions are not conforming
+# to the C99 standard. See ticket 1574.
+# Ditto for Solaris (ticket 1642) and OS X on PowerPC.
+# FIXME: this will probably change when we require full C99 compatibility
+with np.errstate(all='ignore'):
+ functions_seem_flaky = ((np.exp(complex(np.inf, 0)).imag != 0)
+ or (np.log(complex(ncu.NZERO, 0)).imag != np.pi))
+# TODO: replace with a check on whether platform-provided C99 funcs are used
+xfail_complex_tests = (not sys.platform.startswith('linux') or functions_seem_flaky)
+
+# TODO This can be xfail when the generator functions are got rid of.
+platform_skip = pytest.mark.skipif(xfail_complex_tests,
+ reason="Inadequate C99 complex support")
+
+
+class TestCexp:
+ def test_simple(self):
+ check = check_complex_value
+ f = np.exp
+
+ check(f, 1, 0, np.exp(1), 0, False)
+ check(f, 0, 1, np.cos(1), np.sin(1), False)
+
+ ref = np.exp(1) * complex(np.cos(1), np.sin(1))
+ check(f, 1, 1, ref.real, ref.imag, False)
+
+ @platform_skip
+ def test_special_values(self):
+ # C99: Section G 6.3.1
+
+ check = check_complex_value
+ f = np.exp
+
+ # cexp(+-0 + 0i) is 1 + 0i
+ check(f, ncu.PZERO, 0, 1, 0, False)
+ check(f, ncu.NZERO, 0, 1, 0, False)
+
+ # cexp(x + infi) is nan + nani for finite x and raises 'invalid' FPU
+ # exception
+ check(f, 1, np.inf, np.nan, np.nan)
+ check(f, -1, np.inf, np.nan, np.nan)
+ check(f, 0, np.inf, np.nan, np.nan)
+
+ # cexp(inf + 0i) is inf + 0i
+ check(f, np.inf, 0, np.inf, 0)
+
+ # cexp(-inf + yi) is +0 * (cos(y) + i sin(y)) for finite y
+ check(f, -np.inf, 1, ncu.PZERO, ncu.PZERO)
+ check(f, -np.inf, 0.75 * np.pi, ncu.NZERO, ncu.PZERO)
+
+ # cexp(inf + yi) is +inf * (cos(y) + i sin(y)) for finite y
+ check(f, np.inf, 1, np.inf, np.inf)
+ check(f, np.inf, 0.75 * np.pi, -np.inf, np.inf)
+
+ # cexp(-inf + inf i) is +-0 +- 0i (signs unspecified)
+ def _check_ninf_inf(dummy):
+ msgform = "cexp(-inf, inf) is (%f, %f), expected (+-0, +-0)"
+ with np.errstate(invalid='ignore'):
+ z = f(np.array(complex(-np.inf, np.inf)))
+ if z.real != 0 or z.imag != 0:
+ raise AssertionError(msgform % (z.real, z.imag))
+
+ _check_ninf_inf(None)
+
+ # cexp(inf + inf i) is +-inf + NaNi and raised invalid FPU ex.
+ def _check_inf_inf(dummy):
+ msgform = "cexp(inf, inf) is (%f, %f), expected (+-inf, nan)"
+ with np.errstate(invalid='ignore'):
+ z = f(np.array(complex(np.inf, np.inf)))
+ if not np.isinf(z.real) or not np.isnan(z.imag):
+ raise AssertionError(msgform % (z.real, z.imag))
+
+ _check_inf_inf(None)
+
+ # cexp(-inf + nan i) is +-0 +- 0i
+ def _check_ninf_nan(dummy):
+ msgform = "cexp(-inf, nan) is (%f, %f), expected (+-0, +-0)"
+ with np.errstate(invalid='ignore'):
+ z = f(np.array(complex(-np.inf, np.nan)))
+ if z.real != 0 or z.imag != 0:
+ raise AssertionError(msgform % (z.real, z.imag))
+
+ _check_ninf_nan(None)
+
+ # cexp(inf + nan i) is +-inf + nan
+ def _check_inf_nan(dummy):
+ msgform = "cexp(-inf, nan) is (%f, %f), expected (+-inf, nan)"
+ with np.errstate(invalid='ignore'):
+ z = f(np.array(complex(np.inf, np.nan)))
+ if not np.isinf(z.real) or not np.isnan(z.imag):
+ raise AssertionError(msgform % (z.real, z.imag))
+
+ _check_inf_nan(None)
+
+ # cexp(nan + yi) is nan + nani for y != 0 (optional: raises invalid FPU
+ # ex)
+ check(f, np.nan, 1, np.nan, np.nan)
+ check(f, np.nan, -1, np.nan, np.nan)
+
+ check(f, np.nan, np.inf, np.nan, np.nan)
+ check(f, np.nan, -np.inf, np.nan, np.nan)
+
+ # cexp(nan + nani) is nan + nani
+ check(f, np.nan, np.nan, np.nan, np.nan)
+
+ # TODO This can be xfail when the generator functions are got rid of.
+ @pytest.mark.skip(reason="cexp(nan + 0I) is wrong on most platforms")
+ def test_special_values2(self):
+ # XXX: most implementations get it wrong here (including glibc <= 2.10)
+ # cexp(nan + 0i) is nan + 0i
+ check = check_complex_value
+ f = np.exp
+
+ check(f, np.nan, 0, np.nan, 0)
+
+class TestClog:
+ def test_simple(self):
+ x = np.array([1 + 0j, 1 + 2j])
+ y_r = np.log(np.abs(x)) + 1j * np.angle(x)
+ y = np.log(x)
+ assert_almost_equal(y, y_r)
+
+ @platform_skip
+ @pytest.mark.skipif(platform.machine() == "armv5tel", reason="See gh-413.")
+ def test_special_values(self):
+ xl = []
+ yl = []
+
+ # From C99 std (Sec 6.3.2)
+ # XXX: check exceptions raised
+ # --- raise for invalid fails.
+
+ # clog(-0 + i0) returns -inf + i pi and raises the 'divide-by-zero'
+ # floating-point exception.
+ with np.errstate(divide='raise'):
+ x = np.array([ncu.NZERO], dtype=complex)
+ y = complex(-np.inf, np.pi)
+ assert_raises(FloatingPointError, np.log, x)
+ with np.errstate(divide='ignore'):
+ assert_almost_equal(np.log(x), y)
+
+ xl.append(x)
+ yl.append(y)
+
+ # clog(+0 + i0) returns -inf + i0 and raises the 'divide-by-zero'
+ # floating-point exception.
+ with np.errstate(divide='raise'):
+ x = np.array([0], dtype=complex)
+ y = complex(-np.inf, 0)
+ assert_raises(FloatingPointError, np.log, x)
+ with np.errstate(divide='ignore'):
+ assert_almost_equal(np.log(x), y)
+
+ xl.append(x)
+ yl.append(y)
+
+ # clog(x + i inf returns +inf + i pi /2, for finite x.
+ x = np.array([complex(1, np.inf)], dtype=complex)
+ y = complex(np.inf, 0.5 * np.pi)
+ assert_almost_equal(np.log(x), y)
+ xl.append(x)
+ yl.append(y)
+
+ x = np.array([complex(-1, np.inf)], dtype=complex)
+ assert_almost_equal(np.log(x), y)
+ xl.append(x)
+ yl.append(y)
+
+ # clog(x + iNaN) returns NaN + iNaN and optionally raises the
+ # 'invalid' floating- point exception, for finite x.
+ with np.errstate(invalid='raise'):
+ x = np.array([complex(1., np.nan)], dtype=complex)
+ y = complex(np.nan, np.nan)
+ #assert_raises(FloatingPointError, np.log, x)
+ with np.errstate(invalid='ignore'):
+ assert_almost_equal(np.log(x), y)
+
+ xl.append(x)
+ yl.append(y)
+
+ with np.errstate(invalid='raise'):
+ x = np.array([np.inf + 1j * np.nan], dtype=complex)
+ #assert_raises(FloatingPointError, np.log, x)
+ with np.errstate(invalid='ignore'):
+ assert_almost_equal(np.log(x), y)
+
+ xl.append(x)
+ yl.append(y)
+
+ # clog(- inf + iy) returns +inf + ipi , for finite positive-signed y.
+ x = np.array([-np.inf + 1j], dtype=complex)
+ y = complex(np.inf, np.pi)
+ assert_almost_equal(np.log(x), y)
+ xl.append(x)
+ yl.append(y)
+
+ # clog(+ inf + iy) returns +inf + i0, for finite positive-signed y.
+ x = np.array([np.inf + 1j], dtype=complex)
+ y = complex(np.inf, 0)
+ assert_almost_equal(np.log(x), y)
+ xl.append(x)
+ yl.append(y)
+
+ # clog(- inf + i inf) returns +inf + i3pi /4.
+ x = np.array([complex(-np.inf, np.inf)], dtype=complex)
+ y = complex(np.inf, 0.75 * np.pi)
+ assert_almost_equal(np.log(x), y)
+ xl.append(x)
+ yl.append(y)
+
+ # clog(+ inf + i inf) returns +inf + ipi /4.
+ x = np.array([complex(np.inf, np.inf)], dtype=complex)
+ y = complex(np.inf, 0.25 * np.pi)
+ assert_almost_equal(np.log(x), y)
+ xl.append(x)
+ yl.append(y)
+
+ # clog(+/- inf + iNaN) returns +inf + iNaN.
+ x = np.array([complex(np.inf, np.nan)], dtype=complex)
+ y = complex(np.inf, np.nan)
+ assert_almost_equal(np.log(x), y)
+ xl.append(x)
+ yl.append(y)
+
+ x = np.array([complex(-np.inf, np.nan)], dtype=complex)
+ assert_almost_equal(np.log(x), y)
+ xl.append(x)
+ yl.append(y)
+
+ # clog(NaN + iy) returns NaN + iNaN and optionally raises the
+ # 'invalid' floating-point exception, for finite y.
+ x = np.array([complex(np.nan, 1)], dtype=complex)
+ y = complex(np.nan, np.nan)
+ assert_almost_equal(np.log(x), y)
+ xl.append(x)
+ yl.append(y)
+
+ # clog(NaN + i inf) returns +inf + iNaN.
+ x = np.array([complex(np.nan, np.inf)], dtype=complex)
+ y = complex(np.inf, np.nan)
+ assert_almost_equal(np.log(x), y)
+ xl.append(x)
+ yl.append(y)
+
+ # clog(NaN + iNaN) returns NaN + iNaN.
+ x = np.array([complex(np.nan, np.nan)], dtype=complex)
+ y = complex(np.nan, np.nan)
+ assert_almost_equal(np.log(x), y)
+ xl.append(x)
+ yl.append(y)
+
+ # clog(conj(z)) = conj(clog(z)).
+ xa = np.array(xl, dtype=complex)
+ ya = np.array(yl, dtype=complex)
+ with np.errstate(divide='ignore'):
+ for i in range(len(xa)):
+ assert_almost_equal(np.log(xa[i].conj()), ya[i].conj())
+
+
+class TestCsqrt:
+
+ def test_simple(self):
+ # sqrt(1)
+ check_complex_value(np.sqrt, 1, 0, 1, 0)
+
+ # sqrt(1i)
+ rres = 0.5 * np.sqrt(2)
+ ires = rres
+ check_complex_value(np.sqrt, 0, 1, rres, ires, False)
+
+ # sqrt(-1)
+ check_complex_value(np.sqrt, -1, 0, 0, 1)
+
+ def test_simple_conjugate(self):
+ ref = np.conj(np.sqrt(complex(1, 1)))
+
+ def f(z):
+ return np.sqrt(np.conj(z))
+
+ check_complex_value(f, 1, 1, ref.real, ref.imag, False)
+
+ #def test_branch_cut(self):
+ # _check_branch_cut(f, -1, 0, 1, -1)
+
+ @platform_skip
+ def test_special_values(self):
+ # C99: Sec G 6.4.2
+
+ check = check_complex_value
+ f = np.sqrt
+
+ # csqrt(+-0 + 0i) is 0 + 0i
+ check(f, ncu.PZERO, 0, 0, 0)
+ check(f, ncu.NZERO, 0, 0, 0)
+
+ # csqrt(x + infi) is inf + infi for any x (including NaN)
+ check(f, 1, np.inf, np.inf, np.inf)
+ check(f, -1, np.inf, np.inf, np.inf)
+
+ check(f, ncu.PZERO, np.inf, np.inf, np.inf)
+ check(f, ncu.NZERO, np.inf, np.inf, np.inf)
+ check(f, np.inf, np.inf, np.inf, np.inf)
+ check(f, -np.inf, np.inf, np.inf, np.inf) # noqa: E221
+ check(f, -np.nan, np.inf, np.inf, np.inf) # noqa: E221
+
+ # csqrt(x + nani) is nan + nani for any finite x
+ check(f, 1, np.nan, np.nan, np.nan)
+ check(f, -1, np.nan, np.nan, np.nan)
+ check(f, 0, np.nan, np.nan, np.nan)
+
+ # csqrt(-inf + yi) is +0 + infi for any finite y > 0
+ check(f, -np.inf, 1, ncu.PZERO, np.inf)
+
+ # csqrt(inf + yi) is +inf + 0i for any finite y > 0
+ check(f, np.inf, 1, np.inf, ncu.PZERO)
+
+ # csqrt(-inf + nani) is nan +- infi (both +i infi are valid)
+ def _check_ninf_nan(dummy):
+ msgform = "csqrt(-inf, nan) is (%f, %f), expected (nan, +-inf)"
+ z = np.sqrt(np.array(complex(-np.inf, np.nan)))
+ # FIXME: ugly workaround for isinf bug.
+ with np.errstate(invalid='ignore'):
+ if not (np.isnan(z.real) and np.isinf(z.imag)):
+ raise AssertionError(msgform % (z.real, z.imag))
+
+ _check_ninf_nan(None)
+
+ # csqrt(+inf + nani) is inf + nani
+ check(f, np.inf, np.nan, np.inf, np.nan)
+
+ # csqrt(nan + yi) is nan + nani for any finite y (infinite handled in x
+ # + nani)
+ check(f, np.nan, 0, np.nan, np.nan)
+ check(f, np.nan, 1, np.nan, np.nan)
+ check(f, np.nan, np.nan, np.nan, np.nan)
+
+ # XXX: check for conj(csqrt(z)) == csqrt(conj(z)) (need to fix branch
+ # cuts first)
+
+class TestCpow:
+ def setup_method(self):
+ self.olderr = np.seterr(invalid='ignore')
+
+ def teardown_method(self):
+ np.seterr(**self.olderr)
+
+ def test_simple(self):
+ x = np.array([1 + 1j, 0 + 2j, 1 + 2j, np.inf, np.nan])
+ y_r = x ** 2
+ y = np.power(x, 2)
+ assert_almost_equal(y, y_r)
+
+ def test_scalar(self):
+ x = np.array([1, 1j, 2, 2.5 + .37j, np.inf, np.nan])
+ y = np.array([1, 1j, -0.5 + 1.5j, -0.5 + 1.5j, 2, 3])
+ lx = list(range(len(x)))
+
+ # Hardcode the expected `builtins.complex` values,
+ # as complex exponentiation is broken as of bpo-44698
+ p_r = [
+ 1 + 0j,
+ 0.20787957635076193 + 0j,
+ 0.35812203996480685 + 0.6097119028618724j,
+ 0.12659112128185032 + 0.48847676699581527j,
+ complex(np.inf, np.nan),
+ complex(np.nan, np.nan),
+ ]
+
+ n_r = [x[i] ** y[i] for i in lx]
+ for i in lx:
+ assert_almost_equal(n_r[i], p_r[i], err_msg='Loop %d\n' % i)
+
+ def test_array(self):
+ x = np.array([1, 1j, 2, 2.5 + .37j, np.inf, np.nan])
+ y = np.array([1, 1j, -0.5 + 1.5j, -0.5 + 1.5j, 2, 3])
+ lx = list(range(len(x)))
+
+ # Hardcode the expected `builtins.complex` values,
+ # as complex exponentiation is broken as of bpo-44698
+ p_r = [
+ 1 + 0j,
+ 0.20787957635076193 + 0j,
+ 0.35812203996480685 + 0.6097119028618724j,
+ 0.12659112128185032 + 0.48847676699581527j,
+ complex(np.inf, np.nan),
+ complex(np.nan, np.nan),
+ ]
+
+ n_r = x ** y
+ for i in lx:
+ assert_almost_equal(n_r[i], p_r[i], err_msg='Loop %d\n' % i)
+
+class TestCabs:
+ def setup_method(self):
+ self.olderr = np.seterr(invalid='ignore')
+
+ def teardown_method(self):
+ np.seterr(**self.olderr)
+
+ def test_simple(self):
+ x = np.array([1 + 1j, 0 + 2j, 1 + 2j, np.inf, np.nan])
+ y_r = np.array([np.sqrt(2.), 2, np.sqrt(5), np.inf, np.nan])
+ y = np.abs(x)
+ assert_almost_equal(y, y_r)
+
+ def test_fabs(self):
+ # Test that np.abs(x +- 0j) == np.abs(x) (as mandated by C99 for cabs)
+ x = np.array([1 + 0j], dtype=complex)
+ assert_array_equal(np.abs(x), np.real(x))
+
+ x = np.array([complex(1, ncu.NZERO)], dtype=complex)
+ assert_array_equal(np.abs(x), np.real(x))
+
+ x = np.array([complex(np.inf, ncu.NZERO)], dtype=complex)
+ assert_array_equal(np.abs(x), np.real(x))
+
+ x = np.array([complex(np.nan, ncu.NZERO)], dtype=complex)
+ assert_array_equal(np.abs(x), np.real(x))
+
+ def test_cabs_inf_nan(self):
+ x, y = [], []
+
+ # cabs(+-nan + nani) returns nan
+ x.append(np.nan)
+ y.append(np.nan)
+ check_real_value(np.abs, np.nan, np.nan, np.nan)
+
+ x.append(np.nan)
+ y.append(-np.nan)
+ check_real_value(np.abs, -np.nan, np.nan, np.nan)
+
+ # According to C99 standard, if exactly one of the real/part is inf and
+ # the other nan, then cabs should return inf
+ x.append(np.inf)
+ y.append(np.nan)
+ check_real_value(np.abs, np.inf, np.nan, np.inf)
+
+ x.append(-np.inf)
+ y.append(np.nan)
+ check_real_value(np.abs, -np.inf, np.nan, np.inf)
+
+ # cabs(conj(z)) == conj(cabs(z)) (= cabs(z))
+ def f(a):
+ return np.abs(np.conj(a))
+
+ def g(a, b):
+ return np.abs(complex(a, b))
+
+ xa = np.array(x, dtype=complex)
+ assert len(xa) == len(x) == len(y)
+ for xi, yi in zip(x, y):
+ ref = g(xi, yi)
+ check_real_value(f, xi, yi, ref)
+
+class TestCarg:
+ def test_simple(self):
+ check_real_value(ncu._arg, 1, 0, 0, False)
+ check_real_value(ncu._arg, 0, 1, 0.5 * np.pi, False)
+
+ check_real_value(ncu._arg, 1, 1, 0.25 * np.pi, False)
+ check_real_value(ncu._arg, ncu.PZERO, ncu.PZERO, ncu.PZERO)
+
+ # TODO This can be xfail when the generator functions are got rid of.
+ @pytest.mark.skip(
+ reason="Complex arithmetic with signed zero fails on most platforms")
+ def test_zero(self):
+ # carg(-0 +- 0i) returns +- pi
+ check_real_value(ncu._arg, ncu.NZERO, ncu.PZERO, np.pi, False)
+ check_real_value(ncu._arg, ncu.NZERO, ncu.NZERO, -np.pi, False)
+
+ # carg(+0 +- 0i) returns +- 0
+ check_real_value(ncu._arg, ncu.PZERO, ncu.PZERO, ncu.PZERO)
+ check_real_value(ncu._arg, ncu.PZERO, ncu.NZERO, ncu.NZERO)
+
+ # carg(x +- 0i) returns +- 0 for x > 0
+ check_real_value(ncu._arg, 1, ncu.PZERO, ncu.PZERO, False)
+ check_real_value(ncu._arg, 1, ncu.NZERO, ncu.NZERO, False)
+
+ # carg(x +- 0i) returns +- pi for x < 0
+ check_real_value(ncu._arg, -1, ncu.PZERO, np.pi, False)
+ check_real_value(ncu._arg, -1, ncu.NZERO, -np.pi, False)
+
+ # carg(+- 0 + yi) returns pi/2 for y > 0
+ check_real_value(ncu._arg, ncu.PZERO, 1, 0.5 * np.pi, False)
+ check_real_value(ncu._arg, ncu.NZERO, 1, 0.5 * np.pi, False)
+
+ # carg(+- 0 + yi) returns -pi/2 for y < 0
+ check_real_value(ncu._arg, ncu.PZERO, -1, 0.5 * np.pi, False)
+ check_real_value(ncu._arg, ncu.NZERO, -1, -0.5 * np.pi, False)
+
+ #def test_branch_cuts(self):
+ # _check_branch_cut(ncu._arg, -1, 1j, -1, 1)
+
+ def test_special_values(self):
+ # carg(-np.inf +- yi) returns +-pi for finite y > 0
+ check_real_value(ncu._arg, -np.inf, 1, np.pi, False)
+ check_real_value(ncu._arg, -np.inf, -1, -np.pi, False)
+
+ # carg(np.inf +- yi) returns +-0 for finite y > 0
+ check_real_value(ncu._arg, np.inf, 1, ncu.PZERO, False)
+ check_real_value(ncu._arg, np.inf, -1, ncu.NZERO, False)
+
+ # carg(x +- np.infi) returns +-pi/2 for finite x
+ check_real_value(ncu._arg, 1, np.inf, 0.5 * np.pi, False)
+ check_real_value(ncu._arg, 1, -np.inf, -0.5 * np.pi, False)
+
+ # carg(-np.inf +- np.infi) returns +-3pi/4
+ check_real_value(ncu._arg, -np.inf, np.inf, 0.75 * np.pi, False)
+ check_real_value(ncu._arg, -np.inf, -np.inf, -0.75 * np.pi, False)
+
+ # carg(np.inf +- np.infi) returns +-pi/4
+ check_real_value(ncu._arg, np.inf, np.inf, 0.25 * np.pi, False)
+ check_real_value(ncu._arg, np.inf, -np.inf, -0.25 * np.pi, False)
+
+ # carg(x + yi) returns np.nan if x or y is nan
+ check_real_value(ncu._arg, np.nan, 0, np.nan, False)
+ check_real_value(ncu._arg, 0, np.nan, np.nan, False)
+
+ check_real_value(ncu._arg, np.nan, np.inf, np.nan, False)
+ check_real_value(ncu._arg, np.inf, np.nan, np.nan, False)
+
+
+def check_real_value(f, x1, y1, x, exact=True):
+ z1 = np.array([complex(x1, y1)])
+ if exact:
+ assert_equal(f(z1), x)
+ else:
+ assert_almost_equal(f(z1), x)
+
+
+def check_complex_value(f, x1, y1, x2, y2, exact=True):
+ z1 = np.array([complex(x1, y1)])
+ z2 = complex(x2, y2)
+ with np.errstate(invalid='ignore'):
+ if exact:
+ assert_equal(f(z1), z2)
+ else:
+ assert_almost_equal(f(z1), z2)
+
+class TestSpecialComplexAVX:
+ @pytest.mark.parametrize("stride", [-4, -2, -1, 1, 2, 4])
+ @pytest.mark.parametrize("astype", [np.complex64, np.complex128])
+ def test_array(self, stride, astype):
+ arr = np.array([complex(np.nan, np.nan),
+ complex(np.nan, np.inf),
+ complex(np.inf, np.nan),
+ complex(np.inf, np.inf),
+ complex(0., np.inf),
+ complex(np.inf, 0.),
+ complex(0., 0.),
+ complex(0., np.nan),
+ complex(np.nan, 0.)], dtype=astype)
+ abs_true = np.array([np.nan, np.inf, np.inf, np.inf, np.inf, np.inf, 0., np.nan, np.nan], dtype=arr.real.dtype)
+ sq_true = np.array([complex(np.nan, np.nan),
+ complex(np.nan, np.nan),
+ complex(np.nan, np.nan),
+ complex(np.nan, np.inf),
+ complex(-np.inf, np.nan),
+ complex(np.inf, np.nan),
+ complex(0., 0.),
+ complex(np.nan, np.nan),
+ complex(np.nan, np.nan)], dtype=astype)
+ with np.errstate(invalid='ignore'):
+ assert_equal(np.abs(arr[::stride]), abs_true[::stride])
+ assert_equal(np.square(arr[::stride]), sq_true[::stride])
+
+class TestComplexAbsoluteAVX:
+ @pytest.mark.parametrize("arraysize", [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 15, 17, 18, 19])
+ @pytest.mark.parametrize("stride", [-4, -3, -2, -1, 1, 2, 3, 4])
+ @pytest.mark.parametrize("astype", [np.complex64, np.complex128])
+ # test to ensure masking and strides work as intended in the AVX implementation
+ def test_array(self, arraysize, stride, astype):
+ arr = np.ones(arraysize, dtype=astype)
+ abs_true = np.ones(arraysize, dtype=arr.real.dtype)
+ assert_equal(np.abs(arr[::stride]), abs_true[::stride])
+
+# Testcase taken as is from https://github.com/numpy/numpy/issues/16660
+class TestComplexAbsoluteMixedDTypes:
+ @pytest.mark.parametrize("stride", [-4, -3, -2, -1, 1, 2, 3, 4])
+ @pytest.mark.parametrize("astype", [np.complex64, np.complex128])
+ @pytest.mark.parametrize("func", ['abs', 'square', 'conjugate'])
+ def test_array(self, stride, astype, func):
+ dtype = [('template_id', '<i8'), ('bank_chisq', '<f4'),
+ ('bank_chisq_dof', '<i8'), ('chisq', '<f4'), ('chisq_dof', '<i8'),
+ ('cont_chisq', '<f4'), ('psd_var_val', '<f4'), ('sg_chisq', '<f4'),
+ ('mycomplex', astype), ('time_index', '<i8')]
+ vec = np.array([
+ (0, 0., 0, -31.666483, 200, 0., 0., 1. , 3.0 + 4.0j , 613090), # noqa: E203,E501
+ (1, 0., 0, 260.91525 , 42, 0., 0., 1. , 5.0 + 12.0j , 787315), # noqa: E203,E501
+ (1, 0., 0, 52.15155 , 42, 0., 0., 1. , 8.0 + 15.0j , 806641), # noqa: E203,E501
+ (1, 0., 0, 52.430195, 42, 0., 0., 1. , 7.0 + 24.0j , 1363540), # noqa: E203,E501
+ (2, 0., 0, 304.43646 , 58, 0., 0., 1. , 20.0 + 21.0j, 787323), # noqa: E203,E501
+ (3, 0., 0, 299.42108 , 52, 0., 0., 1. , 12.0 + 35.0j, 787332), # noqa: E203,E501
+ (4, 0., 0, 39.4836 , 28, 0., 0., 9.182192, 9.0 + 40.0j , 787304), # noqa: E203,E501
+ (4, 0., 0, 76.83787 , 28, 0., 0., 1. , 28.0 + 45.0j, 1321869), # noqa: E203,E501
+ (5, 0., 0, 143.26366 , 24, 0., 0., 10.996129, 11.0 + 60.0j, 787299)], # noqa: E203,E501
+ dtype=dtype)
+ myfunc = getattr(np, func)
+ a = vec['mycomplex']
+ g = myfunc(a[::stride])
+
+ b = vec['mycomplex'].copy()
+ h = myfunc(b[::stride])
+
+ assert_array_max_ulp(h.real, g.real, 1)
+ assert_array_max_ulp(h.imag, g.imag, 1)
diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_unicode.py b/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_unicode.py
new file mode 100644
index 0000000..9fdc55b
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_unicode.py
@@ -0,0 +1,368 @@
+
+import numpy as np
+from numpy.testing import assert_, assert_array_equal, assert_equal
+
+
+def buffer_length(arr):
+ if isinstance(arr, str):
+ if not arr:
+ charmax = 0
+ else:
+ charmax = max(ord(c) for c in arr)
+ if charmax < 256:
+ size = 1
+ elif charmax < 65536:
+ size = 2
+ else:
+ size = 4
+ return size * len(arr)
+ v = memoryview(arr)
+ if v.shape is None:
+ return len(v) * v.itemsize
+ else:
+ return np.prod(v.shape) * v.itemsize
+
+
+# In both cases below we need to make sure that the byte swapped value (as
+# UCS4) is still a valid unicode:
+# Value that can be represented in UCS2 interpreters
+ucs2_value = '\u0900'
+# Value that cannot be represented in UCS2 interpreters (but can in UCS4)
+ucs4_value = '\U00100900'
+
+
+def test_string_cast():
+ str_arr = np.array(["1234", "1234\0\0"], dtype='S')
+ uni_arr1 = str_arr.astype('>U')
+ uni_arr2 = str_arr.astype('<U')
+
+ assert_array_equal(str_arr != uni_arr1, np.ones(2, dtype=bool))
+ assert_array_equal(uni_arr1 != str_arr, np.ones(2, dtype=bool))
+ assert_array_equal(str_arr == uni_arr1, np.zeros(2, dtype=bool))
+ assert_array_equal(uni_arr1 == str_arr, np.zeros(2, dtype=bool))
+
+ assert_array_equal(uni_arr1, uni_arr2)
+
+
+############################################################
+# Creation tests
+############################################################
+
+class CreateZeros:
+ """Check the creation of zero-valued arrays"""
+
+ def content_check(self, ua, ua_scalar, nbytes):
+
+ # Check the length of the unicode base type
+ assert_(int(ua.dtype.str[2:]) == self.ulen)
+ # Check the length of the data buffer
+ assert_(buffer_length(ua) == nbytes)
+ # Small check that data in array element is ok
+ assert_(ua_scalar == '')
+ # Encode to ascii and double check
+ assert_(ua_scalar.encode('ascii') == b'')
+ # Check buffer lengths for scalars
+ assert_(buffer_length(ua_scalar) == 0)
+
+ def test_zeros0D(self):
+ # Check creation of 0-dimensional objects
+ ua = np.zeros((), dtype=f'U{self.ulen}')
+ self.content_check(ua, ua[()], 4 * self.ulen)
+
+ def test_zerosSD(self):
+ # Check creation of single-dimensional objects
+ ua = np.zeros((2,), dtype=f'U{self.ulen}')
+ self.content_check(ua, ua[0], 4 * self.ulen * 2)
+ self.content_check(ua, ua[1], 4 * self.ulen * 2)
+
+ def test_zerosMD(self):
+ # Check creation of multi-dimensional objects
+ ua = np.zeros((2, 3, 4), dtype=f'U{self.ulen}')
+ self.content_check(ua, ua[0, 0, 0], 4 * self.ulen * 2 * 3 * 4)
+ self.content_check(ua, ua[-1, -1, -1], 4 * self.ulen * 2 * 3 * 4)
+
+
+class TestCreateZeros_1(CreateZeros):
+ """Check the creation of zero-valued arrays (size 1)"""
+ ulen = 1
+
+
+class TestCreateZeros_2(CreateZeros):
+ """Check the creation of zero-valued arrays (size 2)"""
+ ulen = 2
+
+
+class TestCreateZeros_1009(CreateZeros):
+ """Check the creation of zero-valued arrays (size 1009)"""
+ ulen = 1009
+
+
+class CreateValues:
+ """Check the creation of unicode arrays with values"""
+
+ def content_check(self, ua, ua_scalar, nbytes):
+
+ # Check the length of the unicode base type
+ assert_(int(ua.dtype.str[2:]) == self.ulen)
+ # Check the length of the data buffer
+ assert_(buffer_length(ua) == nbytes)
+ # Small check that data in array element is ok
+ assert_(ua_scalar == self.ucs_value * self.ulen)
+ # Encode to UTF-8 and double check
+ assert_(ua_scalar.encode('utf-8') ==
+ (self.ucs_value * self.ulen).encode('utf-8'))
+ # Check buffer lengths for scalars
+ if self.ucs_value == ucs4_value:
+ # In UCS2, the \U0010FFFF will be represented using a
+ # surrogate *pair*
+ assert_(buffer_length(ua_scalar) == 2 * 2 * self.ulen)
+ else:
+ # In UCS2, the \uFFFF will be represented using a
+ # regular 2-byte word
+ assert_(buffer_length(ua_scalar) == 2 * self.ulen)
+
+ def test_values0D(self):
+ # Check creation of 0-dimensional objects with values
+ ua = np.array(self.ucs_value * self.ulen, dtype=f'U{self.ulen}')
+ self.content_check(ua, ua[()], 4 * self.ulen)
+
+ def test_valuesSD(self):
+ # Check creation of single-dimensional objects with values
+ ua = np.array([self.ucs_value * self.ulen] * 2, dtype=f'U{self.ulen}')
+ self.content_check(ua, ua[0], 4 * self.ulen * 2)
+ self.content_check(ua, ua[1], 4 * self.ulen * 2)
+
+ def test_valuesMD(self):
+ # Check creation of multi-dimensional objects with values
+ ua = np.array([[[self.ucs_value * self.ulen] * 2] * 3] * 4, dtype=f'U{self.ulen}')
+ self.content_check(ua, ua[0, 0, 0], 4 * self.ulen * 2 * 3 * 4)
+ self.content_check(ua, ua[-1, -1, -1], 4 * self.ulen * 2 * 3 * 4)
+
+
+class TestCreateValues_1_UCS2(CreateValues):
+ """Check the creation of valued arrays (size 1, UCS2 values)"""
+ ulen = 1
+ ucs_value = ucs2_value
+
+
+class TestCreateValues_1_UCS4(CreateValues):
+ """Check the creation of valued arrays (size 1, UCS4 values)"""
+ ulen = 1
+ ucs_value = ucs4_value
+
+
+class TestCreateValues_2_UCS2(CreateValues):
+ """Check the creation of valued arrays (size 2, UCS2 values)"""
+ ulen = 2
+ ucs_value = ucs2_value
+
+
+class TestCreateValues_2_UCS4(CreateValues):
+ """Check the creation of valued arrays (size 2, UCS4 values)"""
+ ulen = 2
+ ucs_value = ucs4_value
+
+
+class TestCreateValues_1009_UCS2(CreateValues):
+ """Check the creation of valued arrays (size 1009, UCS2 values)"""
+ ulen = 1009
+ ucs_value = ucs2_value
+
+
+class TestCreateValues_1009_UCS4(CreateValues):
+ """Check the creation of valued arrays (size 1009, UCS4 values)"""
+ ulen = 1009
+ ucs_value = ucs4_value
+
+
+############################################################
+# Assignment tests
+############################################################
+
+class AssignValues:
+ """Check the assignment of unicode arrays with values"""
+
+ def content_check(self, ua, ua_scalar, nbytes):
+
+ # Check the length of the unicode base type
+ assert_(int(ua.dtype.str[2:]) == self.ulen)
+ # Check the length of the data buffer
+ assert_(buffer_length(ua) == nbytes)
+ # Small check that data in array element is ok
+ assert_(ua_scalar == self.ucs_value * self.ulen)
+ # Encode to UTF-8 and double check
+ assert_(ua_scalar.encode('utf-8') ==
+ (self.ucs_value * self.ulen).encode('utf-8'))
+ # Check buffer lengths for scalars
+ if self.ucs_value == ucs4_value:
+ # In UCS2, the \U0010FFFF will be represented using a
+ # surrogate *pair*
+ assert_(buffer_length(ua_scalar) == 2 * 2 * self.ulen)
+ else:
+ # In UCS2, the \uFFFF will be represented using a
+ # regular 2-byte word
+ assert_(buffer_length(ua_scalar) == 2 * self.ulen)
+
+ def test_values0D(self):
+ # Check assignment of 0-dimensional objects with values
+ ua = np.zeros((), dtype=f'U{self.ulen}')
+ ua[()] = self.ucs_value * self.ulen
+ self.content_check(ua, ua[()], 4 * self.ulen)
+
+ def test_valuesSD(self):
+ # Check assignment of single-dimensional objects with values
+ ua = np.zeros((2,), dtype=f'U{self.ulen}')
+ ua[0] = self.ucs_value * self.ulen
+ self.content_check(ua, ua[0], 4 * self.ulen * 2)
+ ua[1] = self.ucs_value * self.ulen
+ self.content_check(ua, ua[1], 4 * self.ulen * 2)
+
+ def test_valuesMD(self):
+ # Check assignment of multi-dimensional objects with values
+ ua = np.zeros((2, 3, 4), dtype=f'U{self.ulen}')
+ ua[0, 0, 0] = self.ucs_value * self.ulen
+ self.content_check(ua, ua[0, 0, 0], 4 * self.ulen * 2 * 3 * 4)
+ ua[-1, -1, -1] = self.ucs_value * self.ulen
+ self.content_check(ua, ua[-1, -1, -1], 4 * self.ulen * 2 * 3 * 4)
+
+
+class TestAssignValues_1_UCS2(AssignValues):
+ """Check the assignment of valued arrays (size 1, UCS2 values)"""
+ ulen = 1
+ ucs_value = ucs2_value
+
+
+class TestAssignValues_1_UCS4(AssignValues):
+ """Check the assignment of valued arrays (size 1, UCS4 values)"""
+ ulen = 1
+ ucs_value = ucs4_value
+
+
+class TestAssignValues_2_UCS2(AssignValues):
+ """Check the assignment of valued arrays (size 2, UCS2 values)"""
+ ulen = 2
+ ucs_value = ucs2_value
+
+
+class TestAssignValues_2_UCS4(AssignValues):
+ """Check the assignment of valued arrays (size 2, UCS4 values)"""
+ ulen = 2
+ ucs_value = ucs4_value
+
+
+class TestAssignValues_1009_UCS2(AssignValues):
+ """Check the assignment of valued arrays (size 1009, UCS2 values)"""
+ ulen = 1009
+ ucs_value = ucs2_value
+
+
+class TestAssignValues_1009_UCS4(AssignValues):
+ """Check the assignment of valued arrays (size 1009, UCS4 values)"""
+ ulen = 1009
+ ucs_value = ucs4_value
+
+
+############################################################
+# Byteorder tests
+############################################################
+
+class ByteorderValues:
+ """Check the byteorder of unicode arrays in round-trip conversions"""
+
+ def test_values0D(self):
+ # Check byteorder of 0-dimensional objects
+ ua = np.array(self.ucs_value * self.ulen, dtype=f'U{self.ulen}')
+ ua2 = ua.view(ua.dtype.newbyteorder())
+ # This changes the interpretation of the data region (but not the
+ # actual data), therefore the returned scalars are not
+ # the same (they are byte-swapped versions of each other).
+ assert_(ua[()] != ua2[()])
+ ua3 = ua2.view(ua2.dtype.newbyteorder())
+ # Arrays must be equal after the round-trip
+ assert_equal(ua, ua3)
+
+ def test_valuesSD(self):
+ # Check byteorder of single-dimensional objects
+ ua = np.array([self.ucs_value * self.ulen] * 2, dtype=f'U{self.ulen}')
+ ua2 = ua.view(ua.dtype.newbyteorder())
+ assert_((ua != ua2).all())
+ assert_(ua[-1] != ua2[-1])
+ ua3 = ua2.view(ua2.dtype.newbyteorder())
+ # Arrays must be equal after the round-trip
+ assert_equal(ua, ua3)
+
+ def test_valuesMD(self):
+ # Check byteorder of multi-dimensional objects
+ ua = np.array([[[self.ucs_value * self.ulen] * 2] * 3] * 4,
+ dtype=f'U{self.ulen}')
+ ua2 = ua.view(ua.dtype.newbyteorder())
+ assert_((ua != ua2).all())
+ assert_(ua[-1, -1, -1] != ua2[-1, -1, -1])
+ ua3 = ua2.view(ua2.dtype.newbyteorder())
+ # Arrays must be equal after the round-trip
+ assert_equal(ua, ua3)
+
+ def test_values_cast(self):
+ # Check byteorder of when casting the array for a strided and
+ # contiguous array:
+ test1 = np.array([self.ucs_value * self.ulen] * 2, dtype=f'U{self.ulen}')
+ test2 = np.repeat(test1, 2)[::2]
+ for ua in (test1, test2):
+ ua2 = ua.astype(dtype=ua.dtype.newbyteorder())
+ assert_((ua == ua2).all())
+ assert_(ua[-1] == ua2[-1])
+ ua3 = ua2.astype(dtype=ua.dtype)
+ # Arrays must be equal after the round-trip
+ assert_equal(ua, ua3)
+
+ def test_values_updowncast(self):
+ # Check byteorder of when casting the array to a longer and shorter
+ # string length for strided and contiguous arrays
+ test1 = np.array([self.ucs_value * self.ulen] * 2, dtype=f'U{self.ulen}')
+ test2 = np.repeat(test1, 2)[::2]
+ for ua in (test1, test2):
+ # Cast to a longer type with zero padding
+ longer_type = np.dtype(f'U{self.ulen + 1}').newbyteorder()
+ ua2 = ua.astype(dtype=longer_type)
+ assert_((ua == ua2).all())
+ assert_(ua[-1] == ua2[-1])
+ # Cast back again with truncating:
+ ua3 = ua2.astype(dtype=ua.dtype)
+ # Arrays must be equal after the round-trip
+ assert_equal(ua, ua3)
+
+
+class TestByteorder_1_UCS2(ByteorderValues):
+ """Check the byteorder in unicode (size 1, UCS2 values)"""
+ ulen = 1
+ ucs_value = ucs2_value
+
+
+class TestByteorder_1_UCS4(ByteorderValues):
+ """Check the byteorder in unicode (size 1, UCS4 values)"""
+ ulen = 1
+ ucs_value = ucs4_value
+
+
+class TestByteorder_2_UCS2(ByteorderValues):
+ """Check the byteorder in unicode (size 2, UCS2 values)"""
+ ulen = 2
+ ucs_value = ucs2_value
+
+
+class TestByteorder_2_UCS4(ByteorderValues):
+ """Check the byteorder in unicode (size 2, UCS4 values)"""
+ ulen = 2
+ ucs_value = ucs4_value
+
+
+class TestByteorder_1009_UCS2(ByteorderValues):
+ """Check the byteorder in unicode (size 1009, UCS2 values)"""
+ ulen = 1009
+ ucs_value = ucs2_value
+
+
+class TestByteorder_1009_UCS4(ByteorderValues):
+ """Check the byteorder in unicode (size 1009, UCS4 values)"""
+ ulen = 1009
+ ucs_value = ucs4_value
diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/umath.py b/.venv/lib/python3.12/site-packages/numpy/_core/umath.py
new file mode 100644
index 0000000..94f97c0
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/_core/umath.py
@@ -0,0 +1,60 @@
+"""
+Create the numpy._core.umath namespace for backward compatibility. In v1.16
+the multiarray and umath c-extension modules were merged into a single
+_multiarray_umath extension module. So we replicate the old namespace
+by importing from the extension module.
+
+"""
+
+import numpy
+
+from . import _multiarray_umath
+from ._multiarray_umath import *
+
+# These imports are needed for backward compatibility,
+# do not change them. issue gh-11862
+# _ones_like is semi-public, on purpose not added to __all__
+# These imports are needed for the strip & replace implementations
+from ._multiarray_umath import (
+ _UFUNC_API,
+ _add_newdoc_ufunc,
+ _center,
+ _expandtabs,
+ _expandtabs_length,
+ _extobj_contextvar,
+ _get_extobj_dict,
+ _ljust,
+ _lstrip_chars,
+ _lstrip_whitespace,
+ _make_extobj,
+ _ones_like,
+ _partition,
+ _partition_index,
+ _replace,
+ _rjust,
+ _rpartition,
+ _rpartition_index,
+ _rstrip_chars,
+ _rstrip_whitespace,
+ _slice,
+ _strip_chars,
+ _strip_whitespace,
+ _zfill,
+)
+
+__all__ = [
+ 'absolute', 'add',
+ 'arccos', 'arccosh', 'arcsin', 'arcsinh', 'arctan', 'arctan2', 'arctanh',
+ 'bitwise_and', 'bitwise_or', 'bitwise_xor', 'cbrt', 'ceil', 'conj',
+ 'conjugate', 'copysign', 'cos', 'cosh', 'bitwise_count', 'deg2rad',
+ 'degrees', 'divide', 'divmod', 'e', 'equal', 'euler_gamma', 'exp', 'exp2',
+ 'expm1', 'fabs', 'floor', 'floor_divide', 'float_power', 'fmax', 'fmin',
+ 'fmod', 'frexp', 'frompyfunc', 'gcd', 'greater', 'greater_equal',
+ 'heaviside', 'hypot', 'invert', 'isfinite', 'isinf', 'isnan', 'isnat',
+ 'lcm', 'ldexp', 'left_shift', 'less', 'less_equal', 'log', 'log10',
+ 'log1p', 'log2', 'logaddexp', 'logaddexp2', 'logical_and', 'logical_not',
+ 'logical_or', 'logical_xor', 'matvec', 'maximum', 'minimum', 'mod', 'modf',
+ 'multiply', 'negative', 'nextafter', 'not_equal', 'pi', 'positive',
+ 'power', 'rad2deg', 'radians', 'reciprocal', 'remainder', 'right_shift',
+ 'rint', 'sign', 'signbit', 'sin', 'sinh', 'spacing', 'sqrt', 'square',
+ 'subtract', 'tan', 'tanh', 'true_divide', 'trunc', 'vecdot', 'vecmat']
diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/umath.pyi b/.venv/lib/python3.12/site-packages/numpy/_core/umath.pyi
new file mode 100644
index 0000000..d9f0d38
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/_core/umath.pyi
@@ -0,0 +1,197 @@
+from numpy import (
+ absolute,
+ add,
+ arccos,
+ arccosh,
+ arcsin,
+ arcsinh,
+ arctan,
+ arctan2,
+ arctanh,
+ bitwise_and,
+ bitwise_count,
+ bitwise_or,
+ bitwise_xor,
+ cbrt,
+ ceil,
+ conj,
+ conjugate,
+ copysign,
+ cos,
+ cosh,
+ deg2rad,
+ degrees,
+ divide,
+ divmod,
+ e,
+ equal,
+ euler_gamma,
+ exp,
+ exp2,
+ expm1,
+ fabs,
+ float_power,
+ floor,
+ floor_divide,
+ fmax,
+ fmin,
+ fmod,
+ frexp,
+ frompyfunc,
+ gcd,
+ greater,
+ greater_equal,
+ heaviside,
+ hypot,
+ invert,
+ isfinite,
+ isinf,
+ isnan,
+ isnat,
+ lcm,
+ ldexp,
+ left_shift,
+ less,
+ less_equal,
+ log,
+ log1p,
+ log2,
+ log10,
+ logaddexp,
+ logaddexp2,
+ logical_and,
+ logical_not,
+ logical_or,
+ logical_xor,
+ matvec,
+ maximum,
+ minimum,
+ mod,
+ modf,
+ multiply,
+ negative,
+ nextafter,
+ not_equal,
+ pi,
+ positive,
+ power,
+ rad2deg,
+ radians,
+ reciprocal,
+ remainder,
+ right_shift,
+ rint,
+ sign,
+ signbit,
+ sin,
+ sinh,
+ spacing,
+ sqrt,
+ square,
+ subtract,
+ tan,
+ tanh,
+ true_divide,
+ trunc,
+ vecdot,
+ vecmat,
+)
+
+__all__ = [
+ "absolute",
+ "add",
+ "arccos",
+ "arccosh",
+ "arcsin",
+ "arcsinh",
+ "arctan",
+ "arctan2",
+ "arctanh",
+ "bitwise_and",
+ "bitwise_count",
+ "bitwise_or",
+ "bitwise_xor",
+ "cbrt",
+ "ceil",
+ "conj",
+ "conjugate",
+ "copysign",
+ "cos",
+ "cosh",
+ "deg2rad",
+ "degrees",
+ "divide",
+ "divmod",
+ "e",
+ "equal",
+ "euler_gamma",
+ "exp",
+ "exp2",
+ "expm1",
+ "fabs",
+ "float_power",
+ "floor",
+ "floor_divide",
+ "fmax",
+ "fmin",
+ "fmod",
+ "frexp",
+ "frompyfunc",
+ "gcd",
+ "greater",
+ "greater_equal",
+ "heaviside",
+ "hypot",
+ "invert",
+ "isfinite",
+ "isinf",
+ "isnan",
+ "isnat",
+ "lcm",
+ "ldexp",
+ "left_shift",
+ "less",
+ "less_equal",
+ "log",
+ "log1p",
+ "log2",
+ "log10",
+ "logaddexp",
+ "logaddexp2",
+ "logical_and",
+ "logical_not",
+ "logical_or",
+ "logical_xor",
+ "matvec",
+ "maximum",
+ "minimum",
+ "mod",
+ "modf",
+ "multiply",
+ "negative",
+ "nextafter",
+ "not_equal",
+ "pi",
+ "positive",
+ "power",
+ "rad2deg",
+ "radians",
+ "reciprocal",
+ "remainder",
+ "right_shift",
+ "rint",
+ "sign",
+ "signbit",
+ "sin",
+ "sinh",
+ "spacing",
+ "sqrt",
+ "square",
+ "subtract",
+ "tan",
+ "tanh",
+ "true_divide",
+ "trunc",
+ "vecdot",
+ "vecmat",
+]