diff options
| author | blackhao <13851610112@163.com> | 2025-08-22 02:51:50 -0500 |
|---|---|---|
| committer | blackhao <13851610112@163.com> | 2025-08-22 02:51:50 -0500 |
| commit | 4aab4087dc97906d0b9890035401175cdaab32d4 (patch) | |
| tree | 4e2e9d88a711ec5b1cfa02e8ac72a55183b99123 /.venv/lib/python3.12/site-packages/numpy/lib | |
| parent | afa8f50d1d21c721dabcb31ad244610946ab65a3 (diff) | |
2.0
Diffstat (limited to '.venv/lib/python3.12/site-packages/numpy/lib')
155 files changed, 52602 insertions, 0 deletions
diff --git a/.venv/lib/python3.12/site-packages/numpy/lib/__init__.py b/.venv/lib/python3.12/site-packages/numpy/lib/__init__.py new file mode 100644 index 0000000..a248d04 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/lib/__init__.py @@ -0,0 +1,97 @@ +""" +``numpy.lib`` is mostly a space for implementing functions that don't +belong in core or in another NumPy submodule with a clear purpose +(e.g. ``random``, ``fft``, ``linalg``, ``ma``). + +``numpy.lib``'s private submodules contain basic functions that are used by +other public modules and are useful to have in the main name-space. + +""" + +# Public submodules +# Note: recfunctions is public, but not imported +from numpy._core._multiarray_umath import add_docstring, tracemalloc_domain +from numpy._core.function_base import add_newdoc + +# Private submodules +# load module names. See https://github.com/networkx/networkx/issues/5838 +from . import ( + _arraypad_impl, + _arraysetops_impl, + _arrayterator_impl, + _function_base_impl, + _histograms_impl, + _index_tricks_impl, + _nanfunctions_impl, + _npyio_impl, + _polynomial_impl, + _shape_base_impl, + _stride_tricks_impl, + _twodim_base_impl, + _type_check_impl, + _ufunclike_impl, + _utils_impl, + _version, + array_utils, + format, + introspect, + mixins, + npyio, + scimath, + stride_tricks, +) + +# numpy.lib namespace members +from ._arrayterator_impl import Arrayterator +from ._version import NumpyVersion + +__all__ = [ + "Arrayterator", "add_docstring", "add_newdoc", "array_utils", + "format", "introspect", "mixins", "NumpyVersion", "npyio", "scimath", + "stride_tricks", "tracemalloc_domain", +] + +add_newdoc.__module__ = "numpy.lib" + +from numpy._pytesttester import PytestTester + +test = PytestTester(__name__) +del PytestTester + +def __getattr__(attr): + # Warn for deprecated/removed aliases + import math + import warnings + + if attr == "math": + warnings.warn( + "`np.lib.math` is a deprecated alias for the standard library " + "`math` module (Deprecated Numpy 1.25). Replace usages of " + "`numpy.lib.math` with `math`", DeprecationWarning, stacklevel=2) + return math + elif attr == "emath": + raise AttributeError( + "numpy.lib.emath was an alias for emath module that was removed " + "in NumPy 2.0. Replace usages of numpy.lib.emath with " + "numpy.emath.", + name=None + ) + elif attr in ( + "histograms", "type_check", "nanfunctions", "function_base", + "arraypad", "arraysetops", "ufunclike", "utils", "twodim_base", + "shape_base", "polynomial", "index_tricks", + ): + raise AttributeError( + f"numpy.lib.{attr} is now private. If you are using a public " + "function, it should be available in the main numpy namespace, " + "otherwise check the NumPy 2.0 migration guide.", + name=None + ) + elif attr == "arrayterator": + raise AttributeError( + "numpy.lib.arrayterator submodule is now private. To access " + "Arrayterator class use numpy.lib.Arrayterator.", + name=None + ) + else: + raise AttributeError(f"module {__name__!r} has no attribute {attr!r}") diff --git a/.venv/lib/python3.12/site-packages/numpy/lib/__init__.pyi b/.venv/lib/python3.12/site-packages/numpy/lib/__init__.pyi new file mode 100644 index 0000000..6185a49 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/lib/__init__.pyi @@ -0,0 +1,44 @@ +from numpy._core.function_base import add_newdoc +from numpy._core.multiarray import add_docstring, tracemalloc_domain + +# all submodules of `lib` are accessible at runtime through `__getattr__`, +# so we implicitly re-export them here +from . import _array_utils_impl as _array_utils_impl +from . import _arraypad_impl as _arraypad_impl +from . import _arraysetops_impl as _arraysetops_impl +from . import _arrayterator_impl as _arrayterator_impl +from . import _datasource as _datasource +from . import _format_impl as _format_impl +from . import _function_base_impl as _function_base_impl +from . import _histograms_impl as _histograms_impl +from . import _index_tricks_impl as _index_tricks_impl +from . import _iotools as _iotools +from . import _nanfunctions_impl as _nanfunctions_impl +from . import _npyio_impl as _npyio_impl +from . import _polynomial_impl as _polynomial_impl +from . import _scimath_impl as _scimath_impl +from . import _shape_base_impl as _shape_base_impl +from . import _stride_tricks_impl as _stride_tricks_impl +from . import _twodim_base_impl as _twodim_base_impl +from . import _type_check_impl as _type_check_impl +from . import _ufunclike_impl as _ufunclike_impl +from . import _utils_impl as _utils_impl +from . import _version as _version +from . import array_utils, format, introspect, mixins, npyio, scimath, stride_tricks +from ._arrayterator_impl import Arrayterator +from ._version import NumpyVersion + +__all__ = [ + "Arrayterator", + "add_docstring", + "add_newdoc", + "array_utils", + "format", + "introspect", + "mixins", + "NumpyVersion", + "npyio", + "scimath", + "stride_tricks", + "tracemalloc_domain", +] diff --git a/.venv/lib/python3.12/site-packages/numpy/lib/__pycache__/__init__.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/lib/__pycache__/__init__.cpython-312.pyc Binary files differnew file mode 100644 index 0000000..1c5fea7 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/lib/__pycache__/__init__.cpython-312.pyc diff --git a/.venv/lib/python3.12/site-packages/numpy/lib/__pycache__/_array_utils_impl.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/lib/__pycache__/_array_utils_impl.cpython-312.pyc Binary files differnew file mode 100644 index 0000000..9d1bad4 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/lib/__pycache__/_array_utils_impl.cpython-312.pyc diff --git a/.venv/lib/python3.12/site-packages/numpy/lib/__pycache__/_arraypad_impl.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/lib/__pycache__/_arraypad_impl.cpython-312.pyc Binary files differnew file mode 100644 index 0000000..cab5c63 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/lib/__pycache__/_arraypad_impl.cpython-312.pyc diff --git a/.venv/lib/python3.12/site-packages/numpy/lib/__pycache__/_arraysetops_impl.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/lib/__pycache__/_arraysetops_impl.cpython-312.pyc Binary files differnew file mode 100644 index 0000000..a234cd7 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/lib/__pycache__/_arraysetops_impl.cpython-312.pyc diff --git a/.venv/lib/python3.12/site-packages/numpy/lib/__pycache__/_arrayterator_impl.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/lib/__pycache__/_arrayterator_impl.cpython-312.pyc Binary files differnew file mode 100644 index 0000000..4cb830a --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/lib/__pycache__/_arrayterator_impl.cpython-312.pyc diff --git a/.venv/lib/python3.12/site-packages/numpy/lib/__pycache__/_datasource.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/lib/__pycache__/_datasource.cpython-312.pyc Binary files differnew file mode 100644 index 0000000..5c27b16 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/lib/__pycache__/_datasource.cpython-312.pyc diff --git a/.venv/lib/python3.12/site-packages/numpy/lib/__pycache__/_format_impl.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/lib/__pycache__/_format_impl.cpython-312.pyc Binary files differnew file mode 100644 index 0000000..0948a7b --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/lib/__pycache__/_format_impl.cpython-312.pyc diff --git a/.venv/lib/python3.12/site-packages/numpy/lib/__pycache__/_function_base_impl.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/lib/__pycache__/_function_base_impl.cpython-312.pyc Binary files differnew file mode 100644 index 0000000..124bec3 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/lib/__pycache__/_function_base_impl.cpython-312.pyc diff --git a/.venv/lib/python3.12/site-packages/numpy/lib/__pycache__/_histograms_impl.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/lib/__pycache__/_histograms_impl.cpython-312.pyc Binary files differnew file mode 100644 index 0000000..eb55724 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/lib/__pycache__/_histograms_impl.cpython-312.pyc diff --git a/.venv/lib/python3.12/site-packages/numpy/lib/__pycache__/_index_tricks_impl.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/lib/__pycache__/_index_tricks_impl.cpython-312.pyc Binary files differnew file mode 100644 index 0000000..d49d7a3 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/lib/__pycache__/_index_tricks_impl.cpython-312.pyc diff --git a/.venv/lib/python3.12/site-packages/numpy/lib/__pycache__/_iotools.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/lib/__pycache__/_iotools.cpython-312.pyc Binary files differnew file mode 100644 index 0000000..9c76d6c --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/lib/__pycache__/_iotools.cpython-312.pyc diff --git a/.venv/lib/python3.12/site-packages/numpy/lib/__pycache__/_nanfunctions_impl.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/lib/__pycache__/_nanfunctions_impl.cpython-312.pyc Binary files differnew file mode 100644 index 0000000..66783aa --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/lib/__pycache__/_nanfunctions_impl.cpython-312.pyc diff --git a/.venv/lib/python3.12/site-packages/numpy/lib/__pycache__/_npyio_impl.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/lib/__pycache__/_npyio_impl.cpython-312.pyc Binary files differnew file mode 100644 index 0000000..55e9a46 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/lib/__pycache__/_npyio_impl.cpython-312.pyc diff --git a/.venv/lib/python3.12/site-packages/numpy/lib/__pycache__/_polynomial_impl.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/lib/__pycache__/_polynomial_impl.cpython-312.pyc Binary files differnew file mode 100644 index 0000000..6dd6ded --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/lib/__pycache__/_polynomial_impl.cpython-312.pyc diff --git a/.venv/lib/python3.12/site-packages/numpy/lib/__pycache__/_scimath_impl.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/lib/__pycache__/_scimath_impl.cpython-312.pyc Binary files differnew file mode 100644 index 0000000..3b62648 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/lib/__pycache__/_scimath_impl.cpython-312.pyc diff --git a/.venv/lib/python3.12/site-packages/numpy/lib/__pycache__/_shape_base_impl.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/lib/__pycache__/_shape_base_impl.cpython-312.pyc Binary files differnew file mode 100644 index 0000000..e3c1fe4 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/lib/__pycache__/_shape_base_impl.cpython-312.pyc diff --git a/.venv/lib/python3.12/site-packages/numpy/lib/__pycache__/_stride_tricks_impl.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/lib/__pycache__/_stride_tricks_impl.cpython-312.pyc Binary files differnew file mode 100644 index 0000000..8cebc75 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/lib/__pycache__/_stride_tricks_impl.cpython-312.pyc diff --git a/.venv/lib/python3.12/site-packages/numpy/lib/__pycache__/_twodim_base_impl.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/lib/__pycache__/_twodim_base_impl.cpython-312.pyc Binary files differnew file mode 100644 index 0000000..753465d --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/lib/__pycache__/_twodim_base_impl.cpython-312.pyc diff --git a/.venv/lib/python3.12/site-packages/numpy/lib/__pycache__/_type_check_impl.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/lib/__pycache__/_type_check_impl.cpython-312.pyc Binary files differnew file mode 100644 index 0000000..0baef8e --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/lib/__pycache__/_type_check_impl.cpython-312.pyc diff --git a/.venv/lib/python3.12/site-packages/numpy/lib/__pycache__/_ufunclike_impl.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/lib/__pycache__/_ufunclike_impl.cpython-312.pyc Binary files differnew file mode 100644 index 0000000..2d4780d --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/lib/__pycache__/_ufunclike_impl.cpython-312.pyc diff --git a/.venv/lib/python3.12/site-packages/numpy/lib/__pycache__/_user_array_impl.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/lib/__pycache__/_user_array_impl.cpython-312.pyc Binary files differnew file mode 100644 index 0000000..1ec40c3 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/lib/__pycache__/_user_array_impl.cpython-312.pyc diff --git a/.venv/lib/python3.12/site-packages/numpy/lib/__pycache__/_utils_impl.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/lib/__pycache__/_utils_impl.cpython-312.pyc Binary files differnew file mode 100644 index 0000000..f82bdde --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/lib/__pycache__/_utils_impl.cpython-312.pyc diff --git a/.venv/lib/python3.12/site-packages/numpy/lib/__pycache__/_version.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/lib/__pycache__/_version.cpython-312.pyc Binary files differnew file mode 100644 index 0000000..903b5a1 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/lib/__pycache__/_version.cpython-312.pyc diff --git a/.venv/lib/python3.12/site-packages/numpy/lib/__pycache__/array_utils.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/lib/__pycache__/array_utils.cpython-312.pyc Binary files differnew file mode 100644 index 0000000..3b05c66 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/lib/__pycache__/array_utils.cpython-312.pyc diff --git a/.venv/lib/python3.12/site-packages/numpy/lib/__pycache__/format.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/lib/__pycache__/format.cpython-312.pyc Binary files differnew file mode 100644 index 0000000..a5bf7ce --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/lib/__pycache__/format.cpython-312.pyc diff --git a/.venv/lib/python3.12/site-packages/numpy/lib/__pycache__/introspect.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/lib/__pycache__/introspect.cpython-312.pyc Binary files differnew file mode 100644 index 0000000..202121b --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/lib/__pycache__/introspect.cpython-312.pyc diff --git a/.venv/lib/python3.12/site-packages/numpy/lib/__pycache__/mixins.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/lib/__pycache__/mixins.cpython-312.pyc Binary files differnew file mode 100644 index 0000000..a7e79bc --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/lib/__pycache__/mixins.cpython-312.pyc diff --git a/.venv/lib/python3.12/site-packages/numpy/lib/__pycache__/npyio.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/lib/__pycache__/npyio.cpython-312.pyc Binary files differnew file mode 100644 index 0000000..c1d402b --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/lib/__pycache__/npyio.cpython-312.pyc diff --git a/.venv/lib/python3.12/site-packages/numpy/lib/__pycache__/recfunctions.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/lib/__pycache__/recfunctions.cpython-312.pyc Binary files differnew file mode 100644 index 0000000..a819167 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/lib/__pycache__/recfunctions.cpython-312.pyc diff --git a/.venv/lib/python3.12/site-packages/numpy/lib/__pycache__/scimath.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/lib/__pycache__/scimath.cpython-312.pyc Binary files differnew file mode 100644 index 0000000..d3275b8 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/lib/__pycache__/scimath.cpython-312.pyc diff --git a/.venv/lib/python3.12/site-packages/numpy/lib/__pycache__/stride_tricks.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/lib/__pycache__/stride_tricks.cpython-312.pyc Binary files differnew file mode 100644 index 0000000..a9dc97b --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/lib/__pycache__/stride_tricks.cpython-312.pyc diff --git a/.venv/lib/python3.12/site-packages/numpy/lib/__pycache__/user_array.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/lib/__pycache__/user_array.cpython-312.pyc Binary files differnew file mode 100644 index 0000000..f083806 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/lib/__pycache__/user_array.cpython-312.pyc diff --git a/.venv/lib/python3.12/site-packages/numpy/lib/_array_utils_impl.py b/.venv/lib/python3.12/site-packages/numpy/lib/_array_utils_impl.py new file mode 100644 index 0000000..c3996e1 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/lib/_array_utils_impl.py @@ -0,0 +1,62 @@ +""" +Miscellaneous utils. +""" +from numpy._core import asarray +from numpy._core.numeric import normalize_axis_index, normalize_axis_tuple +from numpy._utils import set_module + +__all__ = ["byte_bounds", "normalize_axis_tuple", "normalize_axis_index"] + + +@set_module("numpy.lib.array_utils") +def byte_bounds(a): + """ + Returns pointers to the end-points of an array. + + Parameters + ---------- + a : ndarray + Input array. It must conform to the Python-side of the array + interface. + + Returns + ------- + (low, high) : tuple of 2 integers + The first integer is the first byte of the array, the second + integer is just past the last byte of the array. If `a` is not + contiguous it will not use every byte between the (`low`, `high`) + values. + + Examples + -------- + >>> import numpy as np + >>> I = np.eye(2, dtype='f'); I.dtype + dtype('float32') + >>> low, high = np.lib.array_utils.byte_bounds(I) + >>> high - low == I.size*I.itemsize + True + >>> I = np.eye(2); I.dtype + dtype('float64') + >>> low, high = np.lib.array_utils.byte_bounds(I) + >>> high - low == I.size*I.itemsize + True + + """ + ai = a.__array_interface__ + a_data = ai['data'][0] + astrides = ai['strides'] + ashape = ai['shape'] + bytes_a = asarray(a).dtype.itemsize + + a_low = a_high = a_data + if astrides is None: + # contiguous case + a_high += a.size * bytes_a + else: + for shape, stride in zip(ashape, astrides): + if stride < 0: + a_low += (shape - 1) * stride + else: + a_high += (shape - 1) * stride + a_high += bytes_a + return a_low, a_high diff --git a/.venv/lib/python3.12/site-packages/numpy/lib/_array_utils_impl.pyi b/.venv/lib/python3.12/site-packages/numpy/lib/_array_utils_impl.pyi new file mode 100644 index 0000000..d3e0714 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/lib/_array_utils_impl.pyi @@ -0,0 +1,26 @@ +from collections.abc import Iterable +from typing import Any + +from numpy import generic +from numpy.typing import NDArray + +__all__ = ["byte_bounds", "normalize_axis_tuple", "normalize_axis_index"] + +# NOTE: In practice `byte_bounds` can (potentially) take any object +# implementing the `__array_interface__` protocol. The caveat is +# that certain keys, marked as optional in the spec, must be present for +# `byte_bounds`. This concerns `"strides"` and `"data"`. +def byte_bounds(a: generic | NDArray[Any]) -> tuple[int, int]: ... + +def normalize_axis_tuple( + axis: int | Iterable[int], + ndim: int = ..., + argname: str | None = ..., + allow_duplicate: bool | None = ..., +) -> tuple[int, int]: ... + +def normalize_axis_index( + axis: int = ..., + ndim: int = ..., + msg_prefix: str | None = ..., +) -> int: ... diff --git a/.venv/lib/python3.12/site-packages/numpy/lib/_arraypad_impl.py b/.venv/lib/python3.12/site-packages/numpy/lib/_arraypad_impl.py new file mode 100644 index 0000000..507a0ab --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/lib/_arraypad_impl.py @@ -0,0 +1,890 @@ +""" +The arraypad module contains a group of functions to pad values onto the edges +of an n-dimensional array. + +""" +import numpy as np +from numpy._core.overrides import array_function_dispatch +from numpy.lib._index_tricks_impl import ndindex + +__all__ = ['pad'] + + +############################################################################### +# Private utility functions. + + +def _round_if_needed(arr, dtype): + """ + Rounds arr inplace if destination dtype is integer. + + Parameters + ---------- + arr : ndarray + Input array. + dtype : dtype + The dtype of the destination array. + """ + if np.issubdtype(dtype, np.integer): + arr.round(out=arr) + + +def _slice_at_axis(sl, axis): + """ + Construct tuple of slices to slice an array in the given dimension. + + Parameters + ---------- + sl : slice + The slice for the given dimension. + axis : int + The axis to which `sl` is applied. All other dimensions are left + "unsliced". + + Returns + ------- + sl : tuple of slices + A tuple with slices matching `shape` in length. + + Examples + -------- + >>> np._slice_at_axis(slice(None, 3, -1), 1) + (slice(None, None, None), slice(None, 3, -1), (...,)) + """ + return (slice(None),) * axis + (sl,) + (...,) + + +def _view_roi(array, original_area_slice, axis): + """ + Get a view of the current region of interest during iterative padding. + + When padding multiple dimensions iteratively corner values are + unnecessarily overwritten multiple times. This function reduces the + working area for the first dimensions so that corners are excluded. + + Parameters + ---------- + array : ndarray + The array with the region of interest. + original_area_slice : tuple of slices + Denotes the area with original values of the unpadded array. + axis : int + The currently padded dimension assuming that `axis` is padded before + `axis` + 1. + + Returns + ------- + roi : ndarray + The region of interest of the original `array`. + """ + axis += 1 + sl = (slice(None),) * axis + original_area_slice[axis:] + return array[sl] + + +def _pad_simple(array, pad_width, fill_value=None): + """ + Pad array on all sides with either a single value or undefined values. + + Parameters + ---------- + array : ndarray + Array to grow. + pad_width : sequence of tuple[int, int] + Pad width on both sides for each dimension in `arr`. + fill_value : scalar, optional + If provided the padded area is filled with this value, otherwise + the pad area left undefined. + + Returns + ------- + padded : ndarray + The padded array with the same dtype as`array`. Its order will default + to C-style if `array` is not F-contiguous. + original_area_slice : tuple + A tuple of slices pointing to the area of the original array. + """ + # Allocate grown array + new_shape = tuple( + left + size + right + for size, (left, right) in zip(array.shape, pad_width) + ) + order = 'F' if array.flags.fnc else 'C' # Fortran and not also C-order + padded = np.empty(new_shape, dtype=array.dtype, order=order) + + if fill_value is not None: + padded.fill(fill_value) + + # Copy old array into correct space + original_area_slice = tuple( + slice(left, left + size) + for size, (left, right) in zip(array.shape, pad_width) + ) + padded[original_area_slice] = array + + return padded, original_area_slice + + +def _set_pad_area(padded, axis, width_pair, value_pair): + """ + Set empty-padded area in given dimension. + + Parameters + ---------- + padded : ndarray + Array with the pad area which is modified inplace. + axis : int + Dimension with the pad area to set. + width_pair : (int, int) + Pair of widths that mark the pad area on both sides in the given + dimension. + value_pair : tuple of scalars or ndarrays + Values inserted into the pad area on each side. It must match or be + broadcastable to the shape of `arr`. + """ + left_slice = _slice_at_axis(slice(None, width_pair[0]), axis) + padded[left_slice] = value_pair[0] + + right_slice = _slice_at_axis( + slice(padded.shape[axis] - width_pair[1], None), axis) + padded[right_slice] = value_pair[1] + + +def _get_edges(padded, axis, width_pair): + """ + Retrieve edge values from empty-padded array in given dimension. + + Parameters + ---------- + padded : ndarray + Empty-padded array. + axis : int + Dimension in which the edges are considered. + width_pair : (int, int) + Pair of widths that mark the pad area on both sides in the given + dimension. + + Returns + ------- + left_edge, right_edge : ndarray + Edge values of the valid area in `padded` in the given dimension. Its + shape will always match `padded` except for the dimension given by + `axis` which will have a length of 1. + """ + left_index = width_pair[0] + left_slice = _slice_at_axis(slice(left_index, left_index + 1), axis) + left_edge = padded[left_slice] + + right_index = padded.shape[axis] - width_pair[1] + right_slice = _slice_at_axis(slice(right_index - 1, right_index), axis) + right_edge = padded[right_slice] + + return left_edge, right_edge + + +def _get_linear_ramps(padded, axis, width_pair, end_value_pair): + """ + Construct linear ramps for empty-padded array in given dimension. + + Parameters + ---------- + padded : ndarray + Empty-padded array. + axis : int + Dimension in which the ramps are constructed. + width_pair : (int, int) + Pair of widths that mark the pad area on both sides in the given + dimension. + end_value_pair : (scalar, scalar) + End values for the linear ramps which form the edge of the fully padded + array. These values are included in the linear ramps. + + Returns + ------- + left_ramp, right_ramp : ndarray + Linear ramps to set on both sides of `padded`. + """ + edge_pair = _get_edges(padded, axis, width_pair) + + left_ramp, right_ramp = ( + np.linspace( + start=end_value, + stop=edge.squeeze(axis), # Dimension is replaced by linspace + num=width, + endpoint=False, + dtype=padded.dtype, + axis=axis + ) + for end_value, edge, width in zip( + end_value_pair, edge_pair, width_pair + ) + ) + + # Reverse linear space in appropriate dimension + right_ramp = right_ramp[_slice_at_axis(slice(None, None, -1), axis)] + + return left_ramp, right_ramp + + +def _get_stats(padded, axis, width_pair, length_pair, stat_func): + """ + Calculate statistic for the empty-padded array in given dimension. + + Parameters + ---------- + padded : ndarray + Empty-padded array. + axis : int + Dimension in which the statistic is calculated. + width_pair : (int, int) + Pair of widths that mark the pad area on both sides in the given + dimension. + length_pair : 2-element sequence of None or int + Gives the number of values in valid area from each side that is + taken into account when calculating the statistic. If None the entire + valid area in `padded` is considered. + stat_func : function + Function to compute statistic. The expected signature is + ``stat_func(x: ndarray, axis: int, keepdims: bool) -> ndarray``. + + Returns + ------- + left_stat, right_stat : ndarray + Calculated statistic for both sides of `padded`. + """ + # Calculate indices of the edges of the area with original values + left_index = width_pair[0] + right_index = padded.shape[axis] - width_pair[1] + # as well as its length + max_length = right_index - left_index + + # Limit stat_lengths to max_length + left_length, right_length = length_pair + if left_length is None or max_length < left_length: + left_length = max_length + if right_length is None or max_length < right_length: + right_length = max_length + + if (left_length == 0 or right_length == 0) \ + and stat_func in {np.amax, np.amin}: + # amax and amin can't operate on an empty array, + # raise a more descriptive warning here instead of the default one + raise ValueError("stat_length of 0 yields no value for padding") + + # Calculate statistic for the left side + left_slice = _slice_at_axis( + slice(left_index, left_index + left_length), axis) + left_chunk = padded[left_slice] + left_stat = stat_func(left_chunk, axis=axis, keepdims=True) + _round_if_needed(left_stat, padded.dtype) + + if left_length == right_length == max_length: + # return early as right_stat must be identical to left_stat + return left_stat, left_stat + + # Calculate statistic for the right side + right_slice = _slice_at_axis( + slice(right_index - right_length, right_index), axis) + right_chunk = padded[right_slice] + right_stat = stat_func(right_chunk, axis=axis, keepdims=True) + _round_if_needed(right_stat, padded.dtype) + + return left_stat, right_stat + + +def _set_reflect_both(padded, axis, width_pair, method, + original_period, include_edge=False): + """ + Pad `axis` of `arr` with reflection. + + Parameters + ---------- + padded : ndarray + Input array of arbitrary shape. + axis : int + Axis along which to pad `arr`. + width_pair : (int, int) + Pair of widths that mark the pad area on both sides in the given + dimension. + method : str + Controls method of reflection; options are 'even' or 'odd'. + original_period : int + Original length of data on `axis` of `arr`. + include_edge : bool + If true, edge value is included in reflection, otherwise the edge + value forms the symmetric axis to the reflection. + + Returns + ------- + pad_amt : tuple of ints, length 2 + New index positions of padding to do along the `axis`. If these are + both 0, padding is done in this dimension. + """ + left_pad, right_pad = width_pair + old_length = padded.shape[axis] - right_pad - left_pad + + if include_edge: + # Avoid wrapping with only a subset of the original area + # by ensuring period can only be a multiple of the original + # area's length. + old_length = old_length // original_period * original_period + # Edge is included, we need to offset the pad amount by 1 + edge_offset = 1 + else: + # Avoid wrapping with only a subset of the original area + # by ensuring period can only be a multiple of the original + # area's length. + old_length = ((old_length - 1) // (original_period - 1) + * (original_period - 1) + 1) + edge_offset = 0 # Edge is not included, no need to offset pad amount + old_length -= 1 # but must be omitted from the chunk + + if left_pad > 0: + # Pad with reflected values on left side: + # First limit chunk size which can't be larger than pad area + chunk_length = min(old_length, left_pad) + # Slice right to left, stop on or next to edge, start relative to stop + stop = left_pad - edge_offset + start = stop + chunk_length + left_slice = _slice_at_axis(slice(start, stop, -1), axis) + left_chunk = padded[left_slice] + + if method == "odd": + # Negate chunk and align with edge + edge_slice = _slice_at_axis(slice(left_pad, left_pad + 1), axis) + left_chunk = 2 * padded[edge_slice] - left_chunk + + # Insert chunk into padded area + start = left_pad - chunk_length + stop = left_pad + pad_area = _slice_at_axis(slice(start, stop), axis) + padded[pad_area] = left_chunk + # Adjust pointer to left edge for next iteration + left_pad -= chunk_length + + if right_pad > 0: + # Pad with reflected values on right side: + # First limit chunk size which can't be larger than pad area + chunk_length = min(old_length, right_pad) + # Slice right to left, start on or next to edge, stop relative to start + start = -right_pad + edge_offset - 2 + stop = start - chunk_length + right_slice = _slice_at_axis(slice(start, stop, -1), axis) + right_chunk = padded[right_slice] + + if method == "odd": + # Negate chunk and align with edge + edge_slice = _slice_at_axis( + slice(-right_pad - 1, -right_pad), axis) + right_chunk = 2 * padded[edge_slice] - right_chunk + + # Insert chunk into padded area + start = padded.shape[axis] - right_pad + stop = start + chunk_length + pad_area = _slice_at_axis(slice(start, stop), axis) + padded[pad_area] = right_chunk + # Adjust pointer to right edge for next iteration + right_pad -= chunk_length + + return left_pad, right_pad + + +def _set_wrap_both(padded, axis, width_pair, original_period): + """ + Pad `axis` of `arr` with wrapped values. + + Parameters + ---------- + padded : ndarray + Input array of arbitrary shape. + axis : int + Axis along which to pad `arr`. + width_pair : (int, int) + Pair of widths that mark the pad area on both sides in the given + dimension. + original_period : int + Original length of data on `axis` of `arr`. + + Returns + ------- + pad_amt : tuple of ints, length 2 + New index positions of padding to do along the `axis`. If these are + both 0, padding is done in this dimension. + """ + left_pad, right_pad = width_pair + period = padded.shape[axis] - right_pad - left_pad + # Avoid wrapping with only a subset of the original area by ensuring period + # can only be a multiple of the original area's length. + period = period // original_period * original_period + + # If the current dimension of `arr` doesn't contain enough valid values + # (not part of the undefined pad area) we need to pad multiple times. + # Each time the pad area shrinks on both sides which is communicated with + # these variables. + new_left_pad = 0 + new_right_pad = 0 + + if left_pad > 0: + # Pad with wrapped values on left side + # First slice chunk from left side of the non-pad area. + # Use min(period, left_pad) to ensure that chunk is not larger than + # pad area. + slice_end = left_pad + period + slice_start = slice_end - min(period, left_pad) + right_slice = _slice_at_axis(slice(slice_start, slice_end), axis) + right_chunk = padded[right_slice] + + if left_pad > period: + # Chunk is smaller than pad area + pad_area = _slice_at_axis(slice(left_pad - period, left_pad), axis) + new_left_pad = left_pad - period + else: + # Chunk matches pad area + pad_area = _slice_at_axis(slice(None, left_pad), axis) + padded[pad_area] = right_chunk + + if right_pad > 0: + # Pad with wrapped values on right side + # First slice chunk from right side of the non-pad area. + # Use min(period, right_pad) to ensure that chunk is not larger than + # pad area. + slice_start = -right_pad - period + slice_end = slice_start + min(period, right_pad) + left_slice = _slice_at_axis(slice(slice_start, slice_end), axis) + left_chunk = padded[left_slice] + + if right_pad > period: + # Chunk is smaller than pad area + pad_area = _slice_at_axis( + slice(-right_pad, -right_pad + period), axis) + new_right_pad = right_pad - period + else: + # Chunk matches pad area + pad_area = _slice_at_axis(slice(-right_pad, None), axis) + padded[pad_area] = left_chunk + + return new_left_pad, new_right_pad + + +def _as_pairs(x, ndim, as_index=False): + """ + Broadcast `x` to an array with the shape (`ndim`, 2). + + A helper function for `pad` that prepares and validates arguments like + `pad_width` for iteration in pairs. + + Parameters + ---------- + x : {None, scalar, array-like} + The object to broadcast to the shape (`ndim`, 2). + ndim : int + Number of pairs the broadcasted `x` will have. + as_index : bool, optional + If `x` is not None, try to round each element of `x` to an integer + (dtype `np.intp`) and ensure every element is positive. + + Returns + ------- + pairs : nested iterables, shape (`ndim`, 2) + The broadcasted version of `x`. + + Raises + ------ + ValueError + If `as_index` is True and `x` contains negative elements. + Or if `x` is not broadcastable to the shape (`ndim`, 2). + """ + if x is None: + # Pass through None as a special case, otherwise np.round(x) fails + # with an AttributeError + return ((None, None),) * ndim + + x = np.array(x) + if as_index: + x = np.round(x).astype(np.intp, copy=False) + + if x.ndim < 3: + # Optimization: Possibly use faster paths for cases where `x` has + # only 1 or 2 elements. `np.broadcast_to` could handle these as well + # but is currently slower + + if x.size == 1: + # x was supplied as a single value + x = x.ravel() # Ensure x[0] works for x.ndim == 0, 1, 2 + if as_index and x < 0: + raise ValueError("index can't contain negative values") + return ((x[0], x[0]),) * ndim + + if x.size == 2 and x.shape != (2, 1): + # x was supplied with a single value for each side + # but except case when each dimension has a single value + # which should be broadcasted to a pair, + # e.g. [[1], [2]] -> [[1, 1], [2, 2]] not [[1, 2], [1, 2]] + x = x.ravel() # Ensure x[0], x[1] works + if as_index and (x[0] < 0 or x[1] < 0): + raise ValueError("index can't contain negative values") + return ((x[0], x[1]),) * ndim + + if as_index and x.min() < 0: + raise ValueError("index can't contain negative values") + + # Converting the array with `tolist` seems to improve performance + # when iterating and indexing the result (see usage in `pad`) + return np.broadcast_to(x, (ndim, 2)).tolist() + + +def _pad_dispatcher(array, pad_width, mode=None, **kwargs): + return (array,) + + +############################################################################### +# Public functions + + +@array_function_dispatch(_pad_dispatcher, module='numpy') +def pad(array, pad_width, mode='constant', **kwargs): + """ + Pad an array. + + Parameters + ---------- + array : array_like of rank N + The array to pad. + pad_width : {sequence, array_like, int} + Number of values padded to the edges of each axis. + ``((before_1, after_1), ... (before_N, after_N))`` unique pad widths + for each axis. + ``(before, after)`` or ``((before, after),)`` yields same before + and after pad for each axis. + ``(pad,)`` or ``int`` is a shortcut for before = after = pad width + for all axes. + mode : str or function, optional + One of the following string values or a user supplied function. + + 'constant' (default) + Pads with a constant value. + 'edge' + Pads with the edge values of array. + 'linear_ramp' + Pads with the linear ramp between end_value and the + array edge value. + 'maximum' + Pads with the maximum value of all or part of the + vector along each axis. + 'mean' + Pads with the mean value of all or part of the + vector along each axis. + 'median' + Pads with the median value of all or part of the + vector along each axis. + 'minimum' + Pads with the minimum value of all or part of the + vector along each axis. + 'reflect' + Pads with the reflection of the vector mirrored on + the first and last values of the vector along each + axis. + 'symmetric' + Pads with the reflection of the vector mirrored + along the edge of the array. + 'wrap' + Pads with the wrap of the vector along the axis. + The first values are used to pad the end and the + end values are used to pad the beginning. + 'empty' + Pads with undefined values. + + <function> + Padding function, see Notes. + stat_length : sequence or int, optional + Used in 'maximum', 'mean', 'median', and 'minimum'. Number of + values at edge of each axis used to calculate the statistic value. + + ``((before_1, after_1), ... (before_N, after_N))`` unique statistic + lengths for each axis. + + ``(before, after)`` or ``((before, after),)`` yields same before + and after statistic lengths for each axis. + + ``(stat_length,)`` or ``int`` is a shortcut for + ``before = after = statistic`` length for all axes. + + Default is ``None``, to use the entire axis. + constant_values : sequence or scalar, optional + Used in 'constant'. The values to set the padded values for each + axis. + + ``((before_1, after_1), ... (before_N, after_N))`` unique pad constants + for each axis. + + ``(before, after)`` or ``((before, after),)`` yields same before + and after constants for each axis. + + ``(constant,)`` or ``constant`` is a shortcut for + ``before = after = constant`` for all axes. + + Default is 0. + end_values : sequence or scalar, optional + Used in 'linear_ramp'. The values used for the ending value of the + linear_ramp and that will form the edge of the padded array. + + ``((before_1, after_1), ... (before_N, after_N))`` unique end values + for each axis. + + ``(before, after)`` or ``((before, after),)`` yields same before + and after end values for each axis. + + ``(constant,)`` or ``constant`` is a shortcut for + ``before = after = constant`` for all axes. + + Default is 0. + reflect_type : {'even', 'odd'}, optional + Used in 'reflect', and 'symmetric'. The 'even' style is the + default with an unaltered reflection around the edge value. For + the 'odd' style, the extended part of the array is created by + subtracting the reflected values from two times the edge value. + + Returns + ------- + pad : ndarray + Padded array of rank equal to `array` with shape increased + according to `pad_width`. + + Notes + ----- + For an array with rank greater than 1, some of the padding of later + axes is calculated from padding of previous axes. This is easiest to + think about with a rank 2 array where the corners of the padded array + are calculated by using padded values from the first axis. + + The padding function, if used, should modify a rank 1 array in-place. It + has the following signature:: + + padding_func(vector, iaxis_pad_width, iaxis, kwargs) + + where + + vector : ndarray + A rank 1 array already padded with zeros. Padded values are + vector[:iaxis_pad_width[0]] and vector[-iaxis_pad_width[1]:]. + iaxis_pad_width : tuple + A 2-tuple of ints, iaxis_pad_width[0] represents the number of + values padded at the beginning of vector where + iaxis_pad_width[1] represents the number of values padded at + the end of vector. + iaxis : int + The axis currently being calculated. + kwargs : dict + Any keyword arguments the function requires. + + Examples + -------- + >>> import numpy as np + >>> a = [1, 2, 3, 4, 5] + >>> np.pad(a, (2, 3), 'constant', constant_values=(4, 6)) + array([4, 4, 1, ..., 6, 6, 6]) + + >>> np.pad(a, (2, 3), 'edge') + array([1, 1, 1, ..., 5, 5, 5]) + + >>> np.pad(a, (2, 3), 'linear_ramp', end_values=(5, -4)) + array([ 5, 3, 1, 2, 3, 4, 5, 2, -1, -4]) + + >>> np.pad(a, (2,), 'maximum') + array([5, 5, 1, 2, 3, 4, 5, 5, 5]) + + >>> np.pad(a, (2,), 'mean') + array([3, 3, 1, 2, 3, 4, 5, 3, 3]) + + >>> np.pad(a, (2,), 'median') + array([3, 3, 1, 2, 3, 4, 5, 3, 3]) + + >>> a = [[1, 2], [3, 4]] + >>> np.pad(a, ((3, 2), (2, 3)), 'minimum') + array([[1, 1, 1, 2, 1, 1, 1], + [1, 1, 1, 2, 1, 1, 1], + [1, 1, 1, 2, 1, 1, 1], + [1, 1, 1, 2, 1, 1, 1], + [3, 3, 3, 4, 3, 3, 3], + [1, 1, 1, 2, 1, 1, 1], + [1, 1, 1, 2, 1, 1, 1]]) + + >>> a = [1, 2, 3, 4, 5] + >>> np.pad(a, (2, 3), 'reflect') + array([3, 2, 1, 2, 3, 4, 5, 4, 3, 2]) + + >>> np.pad(a, (2, 3), 'reflect', reflect_type='odd') + array([-1, 0, 1, 2, 3, 4, 5, 6, 7, 8]) + + >>> np.pad(a, (2, 3), 'symmetric') + array([2, 1, 1, 2, 3, 4, 5, 5, 4, 3]) + + >>> np.pad(a, (2, 3), 'symmetric', reflect_type='odd') + array([0, 1, 1, 2, 3, 4, 5, 5, 6, 7]) + + >>> np.pad(a, (2, 3), 'wrap') + array([4, 5, 1, 2, 3, 4, 5, 1, 2, 3]) + + >>> def pad_with(vector, pad_width, iaxis, kwargs): + ... pad_value = kwargs.get('padder', 10) + ... vector[:pad_width[0]] = pad_value + ... vector[-pad_width[1]:] = pad_value + >>> a = np.arange(6) + >>> a = a.reshape((2, 3)) + >>> np.pad(a, 2, pad_with) + array([[10, 10, 10, 10, 10, 10, 10], + [10, 10, 10, 10, 10, 10, 10], + [10, 10, 0, 1, 2, 10, 10], + [10, 10, 3, 4, 5, 10, 10], + [10, 10, 10, 10, 10, 10, 10], + [10, 10, 10, 10, 10, 10, 10]]) + >>> np.pad(a, 2, pad_with, padder=100) + array([[100, 100, 100, 100, 100, 100, 100], + [100, 100, 100, 100, 100, 100, 100], + [100, 100, 0, 1, 2, 100, 100], + [100, 100, 3, 4, 5, 100, 100], + [100, 100, 100, 100, 100, 100, 100], + [100, 100, 100, 100, 100, 100, 100]]) + """ + array = np.asarray(array) + pad_width = np.asarray(pad_width) + + if not pad_width.dtype.kind == 'i': + raise TypeError('`pad_width` must be of integral type.') + + # Broadcast to shape (array.ndim, 2) + pad_width = _as_pairs(pad_width, array.ndim, as_index=True) + + if callable(mode): + # Old behavior: Use user-supplied function with np.apply_along_axis + function = mode + # Create a new zero padded array + padded, _ = _pad_simple(array, pad_width, fill_value=0) + # And apply along each axis + + for axis in range(padded.ndim): + # Iterate using ndindex as in apply_along_axis, but assuming that + # function operates inplace on the padded array. + + # view with the iteration axis at the end + view = np.moveaxis(padded, axis, -1) + + # compute indices for the iteration axes, and append a trailing + # ellipsis to prevent 0d arrays decaying to scalars (gh-8642) + inds = ndindex(view.shape[:-1]) + inds = (ind + (Ellipsis,) for ind in inds) + for ind in inds: + function(view[ind], pad_width[axis], axis, kwargs) + + return padded + + # Make sure that no unsupported keywords were passed for the current mode + allowed_kwargs = { + 'empty': [], 'edge': [], 'wrap': [], + 'constant': ['constant_values'], + 'linear_ramp': ['end_values'], + 'maximum': ['stat_length'], + 'mean': ['stat_length'], + 'median': ['stat_length'], + 'minimum': ['stat_length'], + 'reflect': ['reflect_type'], + 'symmetric': ['reflect_type'], + } + try: + unsupported_kwargs = set(kwargs) - set(allowed_kwargs[mode]) + except KeyError: + raise ValueError(f"mode '{mode}' is not supported") from None + if unsupported_kwargs: + raise ValueError("unsupported keyword arguments for mode " + f"'{mode}': {unsupported_kwargs}") + + stat_functions = {"maximum": np.amax, "minimum": np.amin, + "mean": np.mean, "median": np.median} + + # Create array with final shape and original values + # (padded area is undefined) + padded, original_area_slice = _pad_simple(array, pad_width) + # And prepare iteration over all dimensions + # (zipping may be more readable than using enumerate) + axes = range(padded.ndim) + + if mode == "constant": + values = kwargs.get("constant_values", 0) + values = _as_pairs(values, padded.ndim) + for axis, width_pair, value_pair in zip(axes, pad_width, values): + roi = _view_roi(padded, original_area_slice, axis) + _set_pad_area(roi, axis, width_pair, value_pair) + + elif mode == "empty": + pass # Do nothing as _pad_simple already returned the correct result + + elif array.size == 0: + # Only modes "constant" and "empty" can extend empty axes, all other + # modes depend on `array` not being empty + # -> ensure every empty axis is only "padded with 0" + for axis, width_pair in zip(axes, pad_width): + if array.shape[axis] == 0 and any(width_pair): + raise ValueError( + f"can't extend empty axis {axis} using modes other than " + "'constant' or 'empty'" + ) + # passed, don't need to do anything more as _pad_simple already + # returned the correct result + + elif mode == "edge": + for axis, width_pair in zip(axes, pad_width): + roi = _view_roi(padded, original_area_slice, axis) + edge_pair = _get_edges(roi, axis, width_pair) + _set_pad_area(roi, axis, width_pair, edge_pair) + + elif mode == "linear_ramp": + end_values = kwargs.get("end_values", 0) + end_values = _as_pairs(end_values, padded.ndim) + for axis, width_pair, value_pair in zip(axes, pad_width, end_values): + roi = _view_roi(padded, original_area_slice, axis) + ramp_pair = _get_linear_ramps(roi, axis, width_pair, value_pair) + _set_pad_area(roi, axis, width_pair, ramp_pair) + + elif mode in stat_functions: + func = stat_functions[mode] + length = kwargs.get("stat_length") + length = _as_pairs(length, padded.ndim, as_index=True) + for axis, width_pair, length_pair in zip(axes, pad_width, length): + roi = _view_roi(padded, original_area_slice, axis) + stat_pair = _get_stats(roi, axis, width_pair, length_pair, func) + _set_pad_area(roi, axis, width_pair, stat_pair) + + elif mode in {"reflect", "symmetric"}: + method = kwargs.get("reflect_type", "even") + include_edge = mode == "symmetric" + for axis, (left_index, right_index) in zip(axes, pad_width): + if array.shape[axis] == 1 and (left_index > 0 or right_index > 0): + # Extending singleton dimension for 'reflect' is legacy + # behavior; it really should raise an error. + edge_pair = _get_edges(padded, axis, (left_index, right_index)) + _set_pad_area( + padded, axis, (left_index, right_index), edge_pair) + continue + + roi = _view_roi(padded, original_area_slice, axis) + while left_index > 0 or right_index > 0: + # Iteratively pad until dimension is filled with reflected + # values. This is necessary if the pad area is larger than + # the length of the original values in the current dimension. + left_index, right_index = _set_reflect_both( + roi, axis, (left_index, right_index), + method, array.shape[axis], include_edge + ) + + elif mode == "wrap": + for axis, (left_index, right_index) in zip(axes, pad_width): + roi = _view_roi(padded, original_area_slice, axis) + original_period = padded.shape[axis] - right_index - left_index + while left_index > 0 or right_index > 0: + # Iteratively pad until dimension is filled with wrapped + # values. This is necessary if the pad area is larger than + # the length of the original values in the current dimension. + left_index, right_index = _set_wrap_both( + roi, axis, (left_index, right_index), original_period) + + return padded diff --git a/.venv/lib/python3.12/site-packages/numpy/lib/_arraypad_impl.pyi b/.venv/lib/python3.12/site-packages/numpy/lib/_arraypad_impl.pyi new file mode 100644 index 0000000..46b4376 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/lib/_arraypad_impl.pyi @@ -0,0 +1,89 @@ +from typing import ( + Any, + Protocol, + TypeAlias, + TypeVar, + overload, + type_check_only, +) +from typing import ( + Literal as L, +) + +from numpy import generic +from numpy._typing import ( + ArrayLike, + NDArray, + _ArrayLike, + _ArrayLikeInt, +) + +__all__ = ["pad"] + +_ScalarT = TypeVar("_ScalarT", bound=generic) + +@type_check_only +class _ModeFunc(Protocol): + def __call__( + self, + vector: NDArray[Any], + iaxis_pad_width: tuple[int, int], + iaxis: int, + kwargs: dict[str, Any], + /, + ) -> None: ... + +_ModeKind: TypeAlias = L[ + "constant", + "edge", + "linear_ramp", + "maximum", + "mean", + "median", + "minimum", + "reflect", + "symmetric", + "wrap", + "empty", +] + +# TODO: In practice each keyword argument is exclusive to one or more +# specific modes. Consider adding more overloads to express this in the future. + +# Expand `**kwargs` into explicit keyword-only arguments +@overload +def pad( + array: _ArrayLike[_ScalarT], + pad_width: _ArrayLikeInt, + mode: _ModeKind = ..., + *, + stat_length: _ArrayLikeInt | None = ..., + constant_values: ArrayLike = ..., + end_values: ArrayLike = ..., + reflect_type: L["odd", "even"] = ..., +) -> NDArray[_ScalarT]: ... +@overload +def pad( + array: ArrayLike, + pad_width: _ArrayLikeInt, + mode: _ModeKind = ..., + *, + stat_length: _ArrayLikeInt | None = ..., + constant_values: ArrayLike = ..., + end_values: ArrayLike = ..., + reflect_type: L["odd", "even"] = ..., +) -> NDArray[Any]: ... +@overload +def pad( + array: _ArrayLike[_ScalarT], + pad_width: _ArrayLikeInt, + mode: _ModeFunc, + **kwargs: Any, +) -> NDArray[_ScalarT]: ... +@overload +def pad( + array: ArrayLike, + pad_width: _ArrayLikeInt, + mode: _ModeFunc, + **kwargs: Any, +) -> NDArray[Any]: ... diff --git a/.venv/lib/python3.12/site-packages/numpy/lib/_arraysetops_impl.py b/.venv/lib/python3.12/site-packages/numpy/lib/_arraysetops_impl.py new file mode 100644 index 0000000..ef0739b --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/lib/_arraysetops_impl.py @@ -0,0 +1,1260 @@ +""" +Set operations for arrays based on sorting. + +Notes +----- + +For floating point arrays, inaccurate results may appear due to usual round-off +and floating point comparison issues. + +Speed could be gained in some operations by an implementation of +`numpy.sort`, that can provide directly the permutation vectors, thus avoiding +calls to `numpy.argsort`. + +Original author: Robert Cimrman + +""" +import functools +import warnings +from typing import NamedTuple + +import numpy as np +from numpy._core import overrides +from numpy._core._multiarray_umath import _array_converter, _unique_hash + +array_function_dispatch = functools.partial( + overrides.array_function_dispatch, module='numpy') + + +__all__ = [ + "ediff1d", "in1d", "intersect1d", "isin", "setdiff1d", "setxor1d", + "union1d", "unique", "unique_all", "unique_counts", "unique_inverse", + "unique_values" +] + + +def _ediff1d_dispatcher(ary, to_end=None, to_begin=None): + return (ary, to_end, to_begin) + + +@array_function_dispatch(_ediff1d_dispatcher) +def ediff1d(ary, to_end=None, to_begin=None): + """ + The differences between consecutive elements of an array. + + Parameters + ---------- + ary : array_like + If necessary, will be flattened before the differences are taken. + to_end : array_like, optional + Number(s) to append at the end of the returned differences. + to_begin : array_like, optional + Number(s) to prepend at the beginning of the returned differences. + + Returns + ------- + ediff1d : ndarray + The differences. Loosely, this is ``ary.flat[1:] - ary.flat[:-1]``. + + See Also + -------- + diff, gradient + + Notes + ----- + When applied to masked arrays, this function drops the mask information + if the `to_begin` and/or `to_end` parameters are used. + + Examples + -------- + >>> import numpy as np + >>> x = np.array([1, 2, 4, 7, 0]) + >>> np.ediff1d(x) + array([ 1, 2, 3, -7]) + + >>> np.ediff1d(x, to_begin=-99, to_end=np.array([88, 99])) + array([-99, 1, 2, ..., -7, 88, 99]) + + The returned array is always 1D. + + >>> y = [[1, 2, 4], [1, 6, 24]] + >>> np.ediff1d(y) + array([ 1, 2, -3, 5, 18]) + + """ + conv = _array_converter(ary) + # Convert to (any) array and ravel: + ary = conv[0].ravel() + + # enforce that the dtype of `ary` is used for the output + dtype_req = ary.dtype + + # fast track default case + if to_begin is None and to_end is None: + return ary[1:] - ary[:-1] + + if to_begin is None: + l_begin = 0 + else: + to_begin = np.asanyarray(to_begin) + if not np.can_cast(to_begin, dtype_req, casting="same_kind"): + raise TypeError("dtype of `to_begin` must be compatible " + "with input `ary` under the `same_kind` rule.") + + to_begin = to_begin.ravel() + l_begin = len(to_begin) + + if to_end is None: + l_end = 0 + else: + to_end = np.asanyarray(to_end) + if not np.can_cast(to_end, dtype_req, casting="same_kind"): + raise TypeError("dtype of `to_end` must be compatible " + "with input `ary` under the `same_kind` rule.") + + to_end = to_end.ravel() + l_end = len(to_end) + + # do the calculation in place and copy to_begin and to_end + l_diff = max(len(ary) - 1, 0) + result = np.empty_like(ary, shape=l_diff + l_begin + l_end) + + if l_begin > 0: + result[:l_begin] = to_begin + if l_end > 0: + result[l_begin + l_diff:] = to_end + np.subtract(ary[1:], ary[:-1], result[l_begin:l_begin + l_diff]) + + return conv.wrap(result) + + +def _unpack_tuple(x): + """ Unpacks one-element tuples for use as return values """ + if len(x) == 1: + return x[0] + else: + return x + + +def _unique_dispatcher(ar, return_index=None, return_inverse=None, + return_counts=None, axis=None, *, equal_nan=None, + sorted=True): + return (ar,) + + +@array_function_dispatch(_unique_dispatcher) +def unique(ar, return_index=False, return_inverse=False, + return_counts=False, axis=None, *, equal_nan=True, + sorted=True): + """ + Find the unique elements of an array. + + Returns the sorted unique elements of an array. There are three optional + outputs in addition to the unique elements: + + * the indices of the input array that give the unique values + * the indices of the unique array that reconstruct the input array + * the number of times each unique value comes up in the input array + + Parameters + ---------- + ar : array_like + Input array. Unless `axis` is specified, this will be flattened if it + is not already 1-D. + return_index : bool, optional + If True, also return the indices of `ar` (along the specified axis, + if provided, or in the flattened array) that result in the unique array. + return_inverse : bool, optional + If True, also return the indices of the unique array (for the specified + axis, if provided) that can be used to reconstruct `ar`. + return_counts : bool, optional + If True, also return the number of times each unique item appears + in `ar`. + axis : int or None, optional + The axis to operate on. If None, `ar` will be flattened. If an integer, + the subarrays indexed by the given axis will be flattened and treated + as the elements of a 1-D array with the dimension of the given axis, + see the notes for more details. Object arrays or structured arrays + that contain objects are not supported if the `axis` kwarg is used. The + default is None. + + equal_nan : bool, optional + If True, collapses multiple NaN values in the return array into one. + + .. versionadded:: 1.24 + + sorted : bool, optional + If True, the unique elements are sorted. Elements may be sorted in + practice even if ``sorted=False``, but this could change without + notice. + + .. versionadded:: 2.3 + + Returns + ------- + unique : ndarray + The sorted unique values. + unique_indices : ndarray, optional + The indices of the first occurrences of the unique values in the + original array. Only provided if `return_index` is True. + unique_inverse : ndarray, optional + The indices to reconstruct the original array from the + unique array. Only provided if `return_inverse` is True. + unique_counts : ndarray, optional + The number of times each of the unique values comes up in the + original array. Only provided if `return_counts` is True. + + See Also + -------- + repeat : Repeat elements of an array. + sort : Return a sorted copy of an array. + + Notes + ----- + When an axis is specified the subarrays indexed by the axis are sorted. + This is done by making the specified axis the first dimension of the array + (move the axis to the first dimension to keep the order of the other axes) + and then flattening the subarrays in C order. The flattened subarrays are + then viewed as a structured type with each element given a label, with the + effect that we end up with a 1-D array of structured types that can be + treated in the same way as any other 1-D array. The result is that the + flattened subarrays are sorted in lexicographic order starting with the + first element. + + .. versionchanged:: 1.21 + Like np.sort, NaN will sort to the end of the values. + For complex arrays all NaN values are considered equivalent + (no matter whether the NaN is in the real or imaginary part). + As the representant for the returned array the smallest one in the + lexicographical order is chosen - see np.sort for how the lexicographical + order is defined for complex arrays. + + .. versionchanged:: 2.0 + For multi-dimensional inputs, ``unique_inverse`` is reshaped + such that the input can be reconstructed using + ``np.take(unique, unique_inverse, axis=axis)``. The result is + now not 1-dimensional when ``axis=None``. + + Note that in NumPy 2.0.0 a higher dimensional array was returned also + when ``axis`` was not ``None``. This was reverted, but + ``inverse.reshape(-1)`` can be used to ensure compatibility with both + versions. + + Examples + -------- + >>> import numpy as np + >>> np.unique([1, 1, 2, 2, 3, 3]) + array([1, 2, 3]) + >>> a = np.array([[1, 1], [2, 3]]) + >>> np.unique(a) + array([1, 2, 3]) + + Return the unique rows of a 2D array + + >>> a = np.array([[1, 0, 0], [1, 0, 0], [2, 3, 4]]) + >>> np.unique(a, axis=0) + array([[1, 0, 0], [2, 3, 4]]) + + Return the indices of the original array that give the unique values: + + >>> a = np.array(['a', 'b', 'b', 'c', 'a']) + >>> u, indices = np.unique(a, return_index=True) + >>> u + array(['a', 'b', 'c'], dtype='<U1') + >>> indices + array([0, 1, 3]) + >>> a[indices] + array(['a', 'b', 'c'], dtype='<U1') + + Reconstruct the input array from the unique values and inverse: + + >>> a = np.array([1, 2, 6, 4, 2, 3, 2]) + >>> u, indices = np.unique(a, return_inverse=True) + >>> u + array([1, 2, 3, 4, 6]) + >>> indices + array([0, 1, 4, 3, 1, 2, 1]) + >>> u[indices] + array([1, 2, 6, 4, 2, 3, 2]) + + Reconstruct the input values from the unique values and counts: + + >>> a = np.array([1, 2, 6, 4, 2, 3, 2]) + >>> values, counts = np.unique(a, return_counts=True) + >>> values + array([1, 2, 3, 4, 6]) + >>> counts + array([1, 3, 1, 1, 1]) + >>> np.repeat(values, counts) + array([1, 2, 2, 2, 3, 4, 6]) # original order not preserved + + """ + ar = np.asanyarray(ar) + if axis is None: + ret = _unique1d(ar, return_index, return_inverse, return_counts, + equal_nan=equal_nan, inverse_shape=ar.shape, axis=None, + sorted=sorted) + return _unpack_tuple(ret) + + # axis was specified and not None + try: + ar = np.moveaxis(ar, axis, 0) + except np.exceptions.AxisError: + # this removes the "axis1" or "axis2" prefix from the error message + raise np.exceptions.AxisError(axis, ar.ndim) from None + inverse_shape = [1] * ar.ndim + inverse_shape[axis] = ar.shape[0] + + # Must reshape to a contiguous 2D array for this to work... + orig_shape, orig_dtype = ar.shape, ar.dtype + ar = ar.reshape(orig_shape[0], np.prod(orig_shape[1:], dtype=np.intp)) + ar = np.ascontiguousarray(ar) + dtype = [(f'f{i}', ar.dtype) for i in range(ar.shape[1])] + + # At this point, `ar` has shape `(n, m)`, and `dtype` is a structured + # data type with `m` fields where each field has the data type of `ar`. + # In the following, we create the array `consolidated`, which has + # shape `(n,)` with data type `dtype`. + try: + if ar.shape[1] > 0: + consolidated = ar.view(dtype) + else: + # If ar.shape[1] == 0, then dtype will be `np.dtype([])`, which is + # a data type with itemsize 0, and the call `ar.view(dtype)` will + # fail. Instead, we'll use `np.empty` to explicitly create the + # array with shape `(len(ar),)`. Because `dtype` in this case has + # itemsize 0, the total size of the result is still 0 bytes. + consolidated = np.empty(len(ar), dtype=dtype) + except TypeError as e: + # There's no good way to do this for object arrays, etc... + msg = 'The axis argument to unique is not supported for dtype {dt}' + raise TypeError(msg.format(dt=ar.dtype)) from e + + def reshape_uniq(uniq): + n = len(uniq) + uniq = uniq.view(orig_dtype) + uniq = uniq.reshape(n, *orig_shape[1:]) + uniq = np.moveaxis(uniq, 0, axis) + return uniq + + output = _unique1d(consolidated, return_index, + return_inverse, return_counts, + equal_nan=equal_nan, inverse_shape=inverse_shape, + axis=axis, sorted=sorted) + output = (reshape_uniq(output[0]),) + output[1:] + return _unpack_tuple(output) + + +def _unique1d(ar, return_index=False, return_inverse=False, + return_counts=False, *, equal_nan=True, inverse_shape=None, + axis=None, sorted=True): + """ + Find the unique elements of an array, ignoring shape. + + Uses a hash table to find the unique elements if possible. + """ + ar = np.asanyarray(ar).flatten() + if len(ar.shape) != 1: + # np.matrix, and maybe some other array subclasses, insist on keeping + # two dimensions for all operations. Coerce to an ndarray in such cases. + ar = np.asarray(ar).flatten() + + optional_indices = return_index or return_inverse + + # masked arrays are not supported yet. + if not optional_indices and not return_counts and not np.ma.is_masked(ar): + # First we convert the array to a numpy array, later we wrap it back + # in case it was a subclass of numpy.ndarray. + conv = _array_converter(ar) + ar_, = conv + + if (hash_unique := _unique_hash(ar_)) is not NotImplemented: + if sorted: + hash_unique.sort() + # We wrap the result back in case it was a subclass of numpy.ndarray. + return (conv.wrap(hash_unique),) + + # If we don't use the hash map, we use the slower sorting method. + if optional_indices: + perm = ar.argsort(kind='mergesort' if return_index else 'quicksort') + aux = ar[perm] + else: + ar.sort() + aux = ar + mask = np.empty(aux.shape, dtype=np.bool) + mask[:1] = True + if (equal_nan and aux.shape[0] > 0 and aux.dtype.kind in "cfmM" and + np.isnan(aux[-1])): + if aux.dtype.kind == "c": # for complex all NaNs are considered equivalent + aux_firstnan = np.searchsorted(np.isnan(aux), True, side='left') + else: + aux_firstnan = np.searchsorted(aux, aux[-1], side='left') + if aux_firstnan > 0: + mask[1:aux_firstnan] = ( + aux[1:aux_firstnan] != aux[:aux_firstnan - 1]) + mask[aux_firstnan] = True + mask[aux_firstnan + 1:] = False + else: + mask[1:] = aux[1:] != aux[:-1] + + ret = (aux[mask],) + if return_index: + ret += (perm[mask],) + if return_inverse: + imask = np.cumsum(mask) - 1 + inv_idx = np.empty(mask.shape, dtype=np.intp) + inv_idx[perm] = imask + ret += (inv_idx.reshape(inverse_shape) if axis is None else inv_idx,) + if return_counts: + idx = np.concatenate(np.nonzero(mask) + ([mask.size],)) + ret += (np.diff(idx),) + return ret + + +# Array API set functions + +class UniqueAllResult(NamedTuple): + values: np.ndarray + indices: np.ndarray + inverse_indices: np.ndarray + counts: np.ndarray + + +class UniqueCountsResult(NamedTuple): + values: np.ndarray + counts: np.ndarray + + +class UniqueInverseResult(NamedTuple): + values: np.ndarray + inverse_indices: np.ndarray + + +def _unique_all_dispatcher(x, /): + return (x,) + + +@array_function_dispatch(_unique_all_dispatcher) +def unique_all(x): + """ + Find the unique elements of an array, and counts, inverse, and indices. + + This function is an Array API compatible alternative to:: + + np.unique(x, return_index=True, return_inverse=True, + return_counts=True, equal_nan=False, sorted=False) + + but returns a namedtuple for easier access to each output. + + .. note:: + This function currently always returns a sorted result, however, + this could change in any NumPy minor release. + + Parameters + ---------- + x : array_like + Input array. It will be flattened if it is not already 1-D. + + Returns + ------- + out : namedtuple + The result containing: + + * values - The unique elements of an input array. + * indices - The first occurring indices for each unique element. + * inverse_indices - The indices from the set of unique elements + that reconstruct `x`. + * counts - The corresponding counts for each unique element. + + See Also + -------- + unique : Find the unique elements of an array. + + Examples + -------- + >>> import numpy as np + >>> x = [1, 1, 2] + >>> uniq = np.unique_all(x) + >>> uniq.values + array([1, 2]) + >>> uniq.indices + array([0, 2]) + >>> uniq.inverse_indices + array([0, 0, 1]) + >>> uniq.counts + array([2, 1]) + """ + result = unique( + x, + return_index=True, + return_inverse=True, + return_counts=True, + equal_nan=False, + ) + return UniqueAllResult(*result) + + +def _unique_counts_dispatcher(x, /): + return (x,) + + +@array_function_dispatch(_unique_counts_dispatcher) +def unique_counts(x): + """ + Find the unique elements and counts of an input array `x`. + + This function is an Array API compatible alternative to:: + + np.unique(x, return_counts=True, equal_nan=False, sorted=False) + + but returns a namedtuple for easier access to each output. + + .. note:: + This function currently always returns a sorted result, however, + this could change in any NumPy minor release. + + Parameters + ---------- + x : array_like + Input array. It will be flattened if it is not already 1-D. + + Returns + ------- + out : namedtuple + The result containing: + + * values - The unique elements of an input array. + * counts - The corresponding counts for each unique element. + + See Also + -------- + unique : Find the unique elements of an array. + + Examples + -------- + >>> import numpy as np + >>> x = [1, 1, 2] + >>> uniq = np.unique_counts(x) + >>> uniq.values + array([1, 2]) + >>> uniq.counts + array([2, 1]) + """ + result = unique( + x, + return_index=False, + return_inverse=False, + return_counts=True, + equal_nan=False, + ) + return UniqueCountsResult(*result) + + +def _unique_inverse_dispatcher(x, /): + return (x,) + + +@array_function_dispatch(_unique_inverse_dispatcher) +def unique_inverse(x): + """ + Find the unique elements of `x` and indices to reconstruct `x`. + + This function is an Array API compatible alternative to:: + + np.unique(x, return_inverse=True, equal_nan=False, sorted=False) + + but returns a namedtuple for easier access to each output. + + .. note:: + This function currently always returns a sorted result, however, + this could change in any NumPy minor release. + + Parameters + ---------- + x : array_like + Input array. It will be flattened if it is not already 1-D. + + Returns + ------- + out : namedtuple + The result containing: + + * values - The unique elements of an input array. + * inverse_indices - The indices from the set of unique elements + that reconstruct `x`. + + See Also + -------- + unique : Find the unique elements of an array. + + Examples + -------- + >>> import numpy as np + >>> x = [1, 1, 2] + >>> uniq = np.unique_inverse(x) + >>> uniq.values + array([1, 2]) + >>> uniq.inverse_indices + array([0, 0, 1]) + """ + result = unique( + x, + return_index=False, + return_inverse=True, + return_counts=False, + equal_nan=False, + ) + return UniqueInverseResult(*result) + + +def _unique_values_dispatcher(x, /): + return (x,) + + +@array_function_dispatch(_unique_values_dispatcher) +def unique_values(x): + """ + Returns the unique elements of an input array `x`. + + This function is an Array API compatible alternative to:: + + np.unique(x, equal_nan=False, sorted=False) + + .. versionchanged:: 2.3 + The algorithm was changed to a faster one that does not rely on + sorting, and hence the results are no longer implicitly sorted. + + Parameters + ---------- + x : array_like + Input array. It will be flattened if it is not already 1-D. + + Returns + ------- + out : ndarray + The unique elements of an input array. + + See Also + -------- + unique : Find the unique elements of an array. + + Examples + -------- + >>> import numpy as np + >>> np.unique_values([1, 1, 2]) + array([1, 2]) # may vary + + """ + return unique( + x, + return_index=False, + return_inverse=False, + return_counts=False, + equal_nan=False, + sorted=False, + ) + + +def _intersect1d_dispatcher( + ar1, ar2, assume_unique=None, return_indices=None): + return (ar1, ar2) + + +@array_function_dispatch(_intersect1d_dispatcher) +def intersect1d(ar1, ar2, assume_unique=False, return_indices=False): + """ + Find the intersection of two arrays. + + Return the sorted, unique values that are in both of the input arrays. + + Parameters + ---------- + ar1, ar2 : array_like + Input arrays. Will be flattened if not already 1D. + assume_unique : bool + If True, the input arrays are both assumed to be unique, which + can speed up the calculation. If True but ``ar1`` or ``ar2`` are not + unique, incorrect results and out-of-bounds indices could result. + Default is False. + return_indices : bool + If True, the indices which correspond to the intersection of the two + arrays are returned. The first instance of a value is used if there are + multiple. Default is False. + + Returns + ------- + intersect1d : ndarray + Sorted 1D array of common and unique elements. + comm1 : ndarray + The indices of the first occurrences of the common values in `ar1`. + Only provided if `return_indices` is True. + comm2 : ndarray + The indices of the first occurrences of the common values in `ar2`. + Only provided if `return_indices` is True. + + Examples + -------- + >>> import numpy as np + >>> np.intersect1d([1, 3, 4, 3], [3, 1, 2, 1]) + array([1, 3]) + + To intersect more than two arrays, use functools.reduce: + + >>> from functools import reduce + >>> reduce(np.intersect1d, ([1, 3, 4, 3], [3, 1, 2, 1], [6, 3, 4, 2])) + array([3]) + + To return the indices of the values common to the input arrays + along with the intersected values: + + >>> x = np.array([1, 1, 2, 3, 4]) + >>> y = np.array([2, 1, 4, 6]) + >>> xy, x_ind, y_ind = np.intersect1d(x, y, return_indices=True) + >>> x_ind, y_ind + (array([0, 2, 4]), array([1, 0, 2])) + >>> xy, x[x_ind], y[y_ind] + (array([1, 2, 4]), array([1, 2, 4]), array([1, 2, 4])) + + """ + ar1 = np.asanyarray(ar1) + ar2 = np.asanyarray(ar2) + + if not assume_unique: + if return_indices: + ar1, ind1 = unique(ar1, return_index=True) + ar2, ind2 = unique(ar2, return_index=True) + else: + ar1 = unique(ar1) + ar2 = unique(ar2) + else: + ar1 = ar1.ravel() + ar2 = ar2.ravel() + + aux = np.concatenate((ar1, ar2)) + if return_indices: + aux_sort_indices = np.argsort(aux, kind='mergesort') + aux = aux[aux_sort_indices] + else: + aux.sort() + + mask = aux[1:] == aux[:-1] + int1d = aux[:-1][mask] + + if return_indices: + ar1_indices = aux_sort_indices[:-1][mask] + ar2_indices = aux_sort_indices[1:][mask] - ar1.size + if not assume_unique: + ar1_indices = ind1[ar1_indices] + ar2_indices = ind2[ar2_indices] + + return int1d, ar1_indices, ar2_indices + else: + return int1d + + +def _setxor1d_dispatcher(ar1, ar2, assume_unique=None): + return (ar1, ar2) + + +@array_function_dispatch(_setxor1d_dispatcher) +def setxor1d(ar1, ar2, assume_unique=False): + """ + Find the set exclusive-or of two arrays. + + Return the sorted, unique values that are in only one (not both) of the + input arrays. + + Parameters + ---------- + ar1, ar2 : array_like + Input arrays. + assume_unique : bool + If True, the input arrays are both assumed to be unique, which + can speed up the calculation. Default is False. + + Returns + ------- + setxor1d : ndarray + Sorted 1D array of unique values that are in only one of the input + arrays. + + Examples + -------- + >>> import numpy as np + >>> a = np.array([1, 2, 3, 2, 4]) + >>> b = np.array([2, 3, 5, 7, 5]) + >>> np.setxor1d(a,b) + array([1, 4, 5, 7]) + + """ + if not assume_unique: + ar1 = unique(ar1) + ar2 = unique(ar2) + + aux = np.concatenate((ar1, ar2), axis=None) + if aux.size == 0: + return aux + + aux.sort() + flag = np.concatenate(([True], aux[1:] != aux[:-1], [True])) + return aux[flag[1:] & flag[:-1]] + + +def _in1d_dispatcher(ar1, ar2, assume_unique=None, invert=None, *, + kind=None): + return (ar1, ar2) + + +@array_function_dispatch(_in1d_dispatcher) +def in1d(ar1, ar2, assume_unique=False, invert=False, *, kind=None): + """ + Test whether each element of a 1-D array is also present in a second array. + + .. deprecated:: 2.0 + Use :func:`isin` instead of `in1d` for new code. + + Returns a boolean array the same length as `ar1` that is True + where an element of `ar1` is in `ar2` and False otherwise. + + Parameters + ---------- + ar1 : (M,) array_like + Input array. + ar2 : array_like + The values against which to test each value of `ar1`. + assume_unique : bool, optional + If True, the input arrays are both assumed to be unique, which + can speed up the calculation. Default is False. + invert : bool, optional + If True, the values in the returned array are inverted (that is, + False where an element of `ar1` is in `ar2` and True otherwise). + Default is False. ``np.in1d(a, b, invert=True)`` is equivalent + to (but is faster than) ``np.invert(in1d(a, b))``. + kind : {None, 'sort', 'table'}, optional + The algorithm to use. This will not affect the final result, + but will affect the speed and memory use. The default, None, + will select automatically based on memory considerations. + + * If 'sort', will use a mergesort-based approach. This will have + a memory usage of roughly 6 times the sum of the sizes of + `ar1` and `ar2`, not accounting for size of dtypes. + * If 'table', will use a lookup table approach similar + to a counting sort. This is only available for boolean and + integer arrays. This will have a memory usage of the + size of `ar1` plus the max-min value of `ar2`. `assume_unique` + has no effect when the 'table' option is used. + * If None, will automatically choose 'table' if + the required memory allocation is less than or equal to + 6 times the sum of the sizes of `ar1` and `ar2`, + otherwise will use 'sort'. This is done to not use + a large amount of memory by default, even though + 'table' may be faster in most cases. If 'table' is chosen, + `assume_unique` will have no effect. + + Returns + ------- + in1d : (M,) ndarray, bool + The values `ar1[in1d]` are in `ar2`. + + See Also + -------- + isin : Version of this function that preserves the + shape of ar1. + + Notes + ----- + `in1d` can be considered as an element-wise function version of the + python keyword `in`, for 1-D sequences. ``in1d(a, b)`` is roughly + equivalent to ``np.array([item in b for item in a])``. + However, this idea fails if `ar2` is a set, or similar (non-sequence) + container: As ``ar2`` is converted to an array, in those cases + ``asarray(ar2)`` is an object array rather than the expected array of + contained values. + + Using ``kind='table'`` tends to be faster than `kind='sort'` if the + following relationship is true: + ``log10(len(ar2)) > (log10(max(ar2)-min(ar2)) - 2.27) / 0.927``, + but may use greater memory. The default value for `kind` will + be automatically selected based only on memory usage, so one may + manually set ``kind='table'`` if memory constraints can be relaxed. + + Examples + -------- + >>> import numpy as np + >>> test = np.array([0, 1, 2, 5, 0]) + >>> states = [0, 2] + >>> mask = np.in1d(test, states) + >>> mask + array([ True, False, True, False, True]) + >>> test[mask] + array([0, 2, 0]) + >>> mask = np.in1d(test, states, invert=True) + >>> mask + array([False, True, False, True, False]) + >>> test[mask] + array([1, 5]) + """ + + # Deprecated in NumPy 2.0, 2023-08-18 + warnings.warn( + "`in1d` is deprecated. Use `np.isin` instead.", + DeprecationWarning, + stacklevel=2 + ) + + return _in1d(ar1, ar2, assume_unique, invert, kind=kind) + + +def _in1d(ar1, ar2, assume_unique=False, invert=False, *, kind=None): + # Ravel both arrays, behavior for the first array could be different + ar1 = np.asarray(ar1).ravel() + ar2 = np.asarray(ar2).ravel() + + # Ensure that iteration through object arrays yields size-1 arrays + if ar2.dtype == object: + ar2 = ar2.reshape(-1, 1) + + if kind not in {None, 'sort', 'table'}: + raise ValueError( + f"Invalid kind: '{kind}'. Please use None, 'sort' or 'table'.") + + # Can use the table method if all arrays are integers or boolean: + is_int_arrays = all(ar.dtype.kind in ("u", "i", "b") for ar in (ar1, ar2)) + use_table_method = is_int_arrays and kind in {None, 'table'} + + if use_table_method: + if ar2.size == 0: + if invert: + return np.ones_like(ar1, dtype=bool) + else: + return np.zeros_like(ar1, dtype=bool) + + # Convert booleans to uint8 so we can use the fast integer algorithm + if ar1.dtype == bool: + ar1 = ar1.astype(np.uint8) + if ar2.dtype == bool: + ar2 = ar2.astype(np.uint8) + + ar2_min = int(np.min(ar2)) + ar2_max = int(np.max(ar2)) + + ar2_range = ar2_max - ar2_min + + # Constraints on whether we can actually use the table method: + # 1. Assert memory usage is not too large + below_memory_constraint = ar2_range <= 6 * (ar1.size + ar2.size) + # 2. Check overflows for (ar2 - ar2_min); dtype=ar2.dtype + range_safe_from_overflow = ar2_range <= np.iinfo(ar2.dtype).max + + # Optimal performance is for approximately + # log10(size) > (log10(range) - 2.27) / 0.927. + # However, here we set the requirement that by default + # the intermediate array can only be 6x + # the combined memory allocation of the original + # arrays. See discussion on + # https://github.com/numpy/numpy/pull/12065. + + if ( + range_safe_from_overflow and + (below_memory_constraint or kind == 'table') + ): + + if invert: + outgoing_array = np.ones_like(ar1, dtype=bool) + else: + outgoing_array = np.zeros_like(ar1, dtype=bool) + + # Make elements 1 where the integer exists in ar2 + if invert: + isin_helper_ar = np.ones(ar2_range + 1, dtype=bool) + isin_helper_ar[ar2 - ar2_min] = 0 + else: + isin_helper_ar = np.zeros(ar2_range + 1, dtype=bool) + isin_helper_ar[ar2 - ar2_min] = 1 + + # Mask out elements we know won't work + basic_mask = (ar1 <= ar2_max) & (ar1 >= ar2_min) + in_range_ar1 = ar1[basic_mask] + if in_range_ar1.size == 0: + # Nothing more to do, since all values are out of range. + return outgoing_array + + # Unfortunately, ar2_min can be out of range for `intp` even + # if the calculation result must fit in range (and be positive). + # In that case, use ar2.dtype which must work for all unmasked + # values. + try: + ar2_min = np.array(ar2_min, dtype=np.intp) + dtype = np.intp + except OverflowError: + dtype = ar2.dtype + + out = np.empty_like(in_range_ar1, dtype=np.intp) + outgoing_array[basic_mask] = isin_helper_ar[ + np.subtract(in_range_ar1, ar2_min, dtype=dtype, + out=out, casting="unsafe")] + + return outgoing_array + elif kind == 'table': # not range_safe_from_overflow + raise RuntimeError( + "You have specified kind='table', " + "but the range of values in `ar2` or `ar1` exceed the " + "maximum integer of the datatype. " + "Please set `kind` to None or 'sort'." + ) + elif kind == 'table': + raise ValueError( + "The 'table' method is only " + "supported for boolean or integer arrays. " + "Please select 'sort' or None for kind." + ) + + # Check if one of the arrays may contain arbitrary objects + contains_object = ar1.dtype.hasobject or ar2.dtype.hasobject + + # This code is run when + # a) the first condition is true, making the code significantly faster + # b) the second condition is true (i.e. `ar1` or `ar2` may contain + # arbitrary objects), since then sorting is not guaranteed to work + if len(ar2) < 10 * len(ar1) ** 0.145 or contains_object: + if invert: + mask = np.ones(len(ar1), dtype=bool) + for a in ar2: + mask &= (ar1 != a) + else: + mask = np.zeros(len(ar1), dtype=bool) + for a in ar2: + mask |= (ar1 == a) + return mask + + # Otherwise use sorting + if not assume_unique: + ar1, rev_idx = np.unique(ar1, return_inverse=True) + ar2 = np.unique(ar2) + + ar = np.concatenate((ar1, ar2)) + # We need this to be a stable sort, so always use 'mergesort' + # here. The values from the first array should always come before + # the values from the second array. + order = ar.argsort(kind='mergesort') + sar = ar[order] + if invert: + bool_ar = (sar[1:] != sar[:-1]) + else: + bool_ar = (sar[1:] == sar[:-1]) + flag = np.concatenate((bool_ar, [invert])) + ret = np.empty(ar.shape, dtype=bool) + ret[order] = flag + + if assume_unique: + return ret[:len(ar1)] + else: + return ret[rev_idx] + + +def _isin_dispatcher(element, test_elements, assume_unique=None, invert=None, + *, kind=None): + return (element, test_elements) + + +@array_function_dispatch(_isin_dispatcher) +def isin(element, test_elements, assume_unique=False, invert=False, *, + kind=None): + """ + Calculates ``element in test_elements``, broadcasting over `element` only. + Returns a boolean array of the same shape as `element` that is True + where an element of `element` is in `test_elements` and False otherwise. + + Parameters + ---------- + element : array_like + Input array. + test_elements : array_like + The values against which to test each value of `element`. + This argument is flattened if it is an array or array_like. + See notes for behavior with non-array-like parameters. + assume_unique : bool, optional + If True, the input arrays are both assumed to be unique, which + can speed up the calculation. Default is False. + invert : bool, optional + If True, the values in the returned array are inverted, as if + calculating `element not in test_elements`. Default is False. + ``np.isin(a, b, invert=True)`` is equivalent to (but faster + than) ``np.invert(np.isin(a, b))``. + kind : {None, 'sort', 'table'}, optional + The algorithm to use. This will not affect the final result, + but will affect the speed and memory use. The default, None, + will select automatically based on memory considerations. + + * If 'sort', will use a mergesort-based approach. This will have + a memory usage of roughly 6 times the sum of the sizes of + `element` and `test_elements`, not accounting for size of dtypes. + * If 'table', will use a lookup table approach similar + to a counting sort. This is only available for boolean and + integer arrays. This will have a memory usage of the + size of `element` plus the max-min value of `test_elements`. + `assume_unique` has no effect when the 'table' option is used. + * If None, will automatically choose 'table' if + the required memory allocation is less than or equal to + 6 times the sum of the sizes of `element` and `test_elements`, + otherwise will use 'sort'. This is done to not use + a large amount of memory by default, even though + 'table' may be faster in most cases. If 'table' is chosen, + `assume_unique` will have no effect. + + + Returns + ------- + isin : ndarray, bool + Has the same shape as `element`. The values `element[isin]` + are in `test_elements`. + + Notes + ----- + `isin` is an element-wise function version of the python keyword `in`. + ``isin(a, b)`` is roughly equivalent to + ``np.array([item in b for item in a])`` if `a` and `b` are 1-D sequences. + + `element` and `test_elements` are converted to arrays if they are not + already. If `test_elements` is a set (or other non-sequence collection) + it will be converted to an object array with one element, rather than an + array of the values contained in `test_elements`. This is a consequence + of the `array` constructor's way of handling non-sequence collections. + Converting the set to a list usually gives the desired behavior. + + Using ``kind='table'`` tends to be faster than `kind='sort'` if the + following relationship is true: + ``log10(len(test_elements)) > + (log10(max(test_elements)-min(test_elements)) - 2.27) / 0.927``, + but may use greater memory. The default value for `kind` will + be automatically selected based only on memory usage, so one may + manually set ``kind='table'`` if memory constraints can be relaxed. + + Examples + -------- + >>> import numpy as np + >>> element = 2*np.arange(4).reshape((2, 2)) + >>> element + array([[0, 2], + [4, 6]]) + >>> test_elements = [1, 2, 4, 8] + >>> mask = np.isin(element, test_elements) + >>> mask + array([[False, True], + [ True, False]]) + >>> element[mask] + array([2, 4]) + + The indices of the matched values can be obtained with `nonzero`: + + >>> np.nonzero(mask) + (array([0, 1]), array([1, 0])) + + The test can also be inverted: + + >>> mask = np.isin(element, test_elements, invert=True) + >>> mask + array([[ True, False], + [False, True]]) + >>> element[mask] + array([0, 6]) + + Because of how `array` handles sets, the following does not + work as expected: + + >>> test_set = {1, 2, 4, 8} + >>> np.isin(element, test_set) + array([[False, False], + [False, False]]) + + Casting the set to a list gives the expected result: + + >>> np.isin(element, list(test_set)) + array([[False, True], + [ True, False]]) + """ + element = np.asarray(element) + return _in1d(element, test_elements, assume_unique=assume_unique, + invert=invert, kind=kind).reshape(element.shape) + + +def _union1d_dispatcher(ar1, ar2): + return (ar1, ar2) + + +@array_function_dispatch(_union1d_dispatcher) +def union1d(ar1, ar2): + """ + Find the union of two arrays. + + Return the unique, sorted array of values that are in either of the two + input arrays. + + Parameters + ---------- + ar1, ar2 : array_like + Input arrays. They are flattened if they are not already 1D. + + Returns + ------- + union1d : ndarray + Unique, sorted union of the input arrays. + + Examples + -------- + >>> import numpy as np + >>> np.union1d([-1, 0, 1], [-2, 0, 2]) + array([-2, -1, 0, 1, 2]) + + To find the union of more than two arrays, use functools.reduce: + + >>> from functools import reduce + >>> reduce(np.union1d, ([1, 3, 4, 3], [3, 1, 2, 1], [6, 3, 4, 2])) + array([1, 2, 3, 4, 6]) + """ + return unique(np.concatenate((ar1, ar2), axis=None)) + + +def _setdiff1d_dispatcher(ar1, ar2, assume_unique=None): + return (ar1, ar2) + + +@array_function_dispatch(_setdiff1d_dispatcher) +def setdiff1d(ar1, ar2, assume_unique=False): + """ + Find the set difference of two arrays. + + Return the unique values in `ar1` that are not in `ar2`. + + Parameters + ---------- + ar1 : array_like + Input array. + ar2 : array_like + Input comparison array. + assume_unique : bool + If True, the input arrays are both assumed to be unique, which + can speed up the calculation. Default is False. + + Returns + ------- + setdiff1d : ndarray + 1D array of values in `ar1` that are not in `ar2`. The result + is sorted when `assume_unique=False`, but otherwise only sorted + if the input is sorted. + + Examples + -------- + >>> import numpy as np + >>> a = np.array([1, 2, 3, 2, 4, 1]) + >>> b = np.array([3, 4, 5, 6]) + >>> np.setdiff1d(a, b) + array([1, 2]) + + """ + if assume_unique: + ar1 = np.asarray(ar1).ravel() + else: + ar1 = unique(ar1) + ar2 = unique(ar2) + return ar1[_in1d(ar1, ar2, assume_unique=True, invert=True)] diff --git a/.venv/lib/python3.12/site-packages/numpy/lib/_arraysetops_impl.pyi b/.venv/lib/python3.12/site-packages/numpy/lib/_arraysetops_impl.pyi new file mode 100644 index 0000000..a7ad5b9 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/lib/_arraysetops_impl.pyi @@ -0,0 +1,444 @@ +from typing import Any, Generic, NamedTuple, SupportsIndex, TypeAlias, overload +from typing import Literal as L + +from typing_extensions import TypeVar, deprecated + +import numpy as np +from numpy._typing import ( + ArrayLike, + NDArray, + _ArrayLike, + _ArrayLikeBool_co, + _ArrayLikeNumber_co, +) + +__all__ = [ + "ediff1d", + "in1d", + "intersect1d", + "isin", + "setdiff1d", + "setxor1d", + "union1d", + "unique", + "unique_all", + "unique_counts", + "unique_inverse", + "unique_values", +] + +_ScalarT = TypeVar("_ScalarT", bound=np.generic) +_NumericT = TypeVar("_NumericT", bound=np.number | np.timedelta64 | np.object_) + +# Explicitly set all allowed values to prevent accidental castings to +# abstract dtypes (their common super-type). +# Only relevant if two or more arguments are parametrized, (e.g. `setdiff1d`) +# which could result in, for example, `int64` and `float64`producing a +# `number[_64Bit]` array +_EitherSCT = TypeVar( + "_EitherSCT", + np.bool, + np.int8, np.int16, np.int32, np.int64, np.intp, + np.uint8, np.uint16, np.uint32, np.uint64, np.uintp, + np.float16, np.float32, np.float64, np.longdouble, + np.complex64, np.complex128, np.clongdouble, + np.timedelta64, np.datetime64, + np.bytes_, np.str_, np.void, np.object_, + np.integer, np.floating, np.complexfloating, np.character, +) # fmt: skip + +_AnyArray: TypeAlias = NDArray[Any] +_IntArray: TypeAlias = NDArray[np.intp] + +### + +class UniqueAllResult(NamedTuple, Generic[_ScalarT]): + values: NDArray[_ScalarT] + indices: _IntArray + inverse_indices: _IntArray + counts: _IntArray + +class UniqueCountsResult(NamedTuple, Generic[_ScalarT]): + values: NDArray[_ScalarT] + counts: _IntArray + +class UniqueInverseResult(NamedTuple, Generic[_ScalarT]): + values: NDArray[_ScalarT] + inverse_indices: _IntArray + +# +@overload +def ediff1d( + ary: _ArrayLikeBool_co, + to_end: ArrayLike | None = None, + to_begin: ArrayLike | None = None, +) -> NDArray[np.int8]: ... +@overload +def ediff1d( + ary: _ArrayLike[_NumericT], + to_end: ArrayLike | None = None, + to_begin: ArrayLike | None = None, +) -> NDArray[_NumericT]: ... +@overload +def ediff1d( + ary: _ArrayLike[np.datetime64[Any]], + to_end: ArrayLike | None = None, + to_begin: ArrayLike | None = None, +) -> NDArray[np.timedelta64]: ... +@overload +def ediff1d( + ary: _ArrayLikeNumber_co, + to_end: ArrayLike | None = None, + to_begin: ArrayLike | None = None, +) -> _AnyArray: ... + +# +@overload # known scalar-type, FFF +def unique( + ar: _ArrayLike[_ScalarT], + return_index: L[False] = False, + return_inverse: L[False] = False, + return_counts: L[False] = False, + axis: SupportsIndex | None = None, + *, + equal_nan: bool = True, +) -> NDArray[_ScalarT]: ... +@overload # unknown scalar-type, FFF +def unique( + ar: ArrayLike, + return_index: L[False] = False, + return_inverse: L[False] = False, + return_counts: L[False] = False, + axis: SupportsIndex | None = None, + *, + equal_nan: bool = True, +) -> _AnyArray: ... +@overload # known scalar-type, TFF +def unique( + ar: _ArrayLike[_ScalarT], + return_index: L[True], + return_inverse: L[False] = False, + return_counts: L[False] = False, + axis: SupportsIndex | None = None, + *, + equal_nan: bool = True, +) -> tuple[NDArray[_ScalarT], _IntArray]: ... +@overload # unknown scalar-type, TFF +def unique( + ar: ArrayLike, + return_index: L[True], + return_inverse: L[False] = False, + return_counts: L[False] = False, + axis: SupportsIndex | None = None, + *, + equal_nan: bool = True, +) -> tuple[_AnyArray, _IntArray]: ... +@overload # known scalar-type, FTF (positional) +def unique( + ar: _ArrayLike[_ScalarT], + return_index: L[False], + return_inverse: L[True], + return_counts: L[False] = False, + axis: SupportsIndex | None = None, + *, + equal_nan: bool = True, +) -> tuple[NDArray[_ScalarT], _IntArray]: ... +@overload # known scalar-type, FTF (keyword) +def unique( + ar: _ArrayLike[_ScalarT], + return_index: L[False] = False, + *, + return_inverse: L[True], + return_counts: L[False] = False, + axis: SupportsIndex | None = None, + equal_nan: bool = True, +) -> tuple[NDArray[_ScalarT], _IntArray]: ... +@overload # unknown scalar-type, FTF (positional) +def unique( + ar: ArrayLike, + return_index: L[False], + return_inverse: L[True], + return_counts: L[False] = False, + axis: SupportsIndex | None = None, + *, + equal_nan: bool = True, +) -> tuple[_AnyArray, _IntArray]: ... +@overload # unknown scalar-type, FTF (keyword) +def unique( + ar: ArrayLike, + return_index: L[False] = False, + *, + return_inverse: L[True], + return_counts: L[False] = False, + axis: SupportsIndex | None = None, + equal_nan: bool = True, +) -> tuple[_AnyArray, _IntArray]: ... +@overload # known scalar-type, FFT (positional) +def unique( + ar: _ArrayLike[_ScalarT], + return_index: L[False], + return_inverse: L[False], + return_counts: L[True], + axis: SupportsIndex | None = None, + *, + equal_nan: bool = True, +) -> tuple[NDArray[_ScalarT], _IntArray]: ... +@overload # known scalar-type, FFT (keyword) +def unique( + ar: _ArrayLike[_ScalarT], + return_index: L[False] = False, + return_inverse: L[False] = False, + *, + return_counts: L[True], + axis: SupportsIndex | None = None, + equal_nan: bool = True, +) -> tuple[NDArray[_ScalarT], _IntArray]: ... +@overload # unknown scalar-type, FFT (positional) +def unique( + ar: ArrayLike, + return_index: L[False], + return_inverse: L[False], + return_counts: L[True], + axis: SupportsIndex | None = None, + *, + equal_nan: bool = True, +) -> tuple[_AnyArray, _IntArray]: ... +@overload # unknown scalar-type, FFT (keyword) +def unique( + ar: ArrayLike, + return_index: L[False] = False, + return_inverse: L[False] = False, + *, + return_counts: L[True], + axis: SupportsIndex | None = None, + equal_nan: bool = True, +) -> tuple[_AnyArray, _IntArray]: ... +@overload # known scalar-type, TTF +def unique( + ar: _ArrayLike[_ScalarT], + return_index: L[True], + return_inverse: L[True], + return_counts: L[False] = False, + axis: SupportsIndex | None = None, + *, + equal_nan: bool = True, +) -> tuple[NDArray[_ScalarT], _IntArray, _IntArray]: ... +@overload # unknown scalar-type, TTF +def unique( + ar: ArrayLike, + return_index: L[True], + return_inverse: L[True], + return_counts: L[False] = False, + axis: SupportsIndex | None = None, + *, + equal_nan: bool = True, +) -> tuple[_AnyArray, _IntArray, _IntArray]: ... +@overload # known scalar-type, TFT (positional) +def unique( + ar: _ArrayLike[_ScalarT], + return_index: L[True], + return_inverse: L[False], + return_counts: L[True], + axis: SupportsIndex | None = None, + *, + equal_nan: bool = True, +) -> tuple[NDArray[_ScalarT], _IntArray, _IntArray]: ... +@overload # known scalar-type, TFT (keyword) +def unique( + ar: _ArrayLike[_ScalarT], + return_index: L[True], + return_inverse: L[False] = False, + *, + return_counts: L[True], + axis: SupportsIndex | None = None, + equal_nan: bool = True, +) -> tuple[NDArray[_ScalarT], _IntArray, _IntArray]: ... +@overload # unknown scalar-type, TFT (positional) +def unique( + ar: ArrayLike, + return_index: L[True], + return_inverse: L[False], + return_counts: L[True], + axis: SupportsIndex | None = None, + *, + equal_nan: bool = True, +) -> tuple[_AnyArray, _IntArray, _IntArray]: ... +@overload # unknown scalar-type, TFT (keyword) +def unique( + ar: ArrayLike, + return_index: L[True], + return_inverse: L[False] = False, + *, + return_counts: L[True], + axis: SupportsIndex | None = None, + equal_nan: bool = True, +) -> tuple[_AnyArray, _IntArray, _IntArray]: ... +@overload # known scalar-type, FTT (positional) +def unique( + ar: _ArrayLike[_ScalarT], + return_index: L[False], + return_inverse: L[True], + return_counts: L[True], + axis: SupportsIndex | None = None, + *, + equal_nan: bool = True, +) -> tuple[NDArray[_ScalarT], _IntArray, _IntArray]: ... +@overload # known scalar-type, FTT (keyword) +def unique( + ar: _ArrayLike[_ScalarT], + return_index: L[False] = False, + *, + return_inverse: L[True], + return_counts: L[True], + axis: SupportsIndex | None = None, + equal_nan: bool = True, +) -> tuple[NDArray[_ScalarT], _IntArray, _IntArray]: ... +@overload # unknown scalar-type, FTT (positional) +def unique( + ar: ArrayLike, + return_index: L[False], + return_inverse: L[True], + return_counts: L[True], + axis: SupportsIndex | None = None, + *, + equal_nan: bool = True, +) -> tuple[_AnyArray, _IntArray, _IntArray]: ... +@overload # unknown scalar-type, FTT (keyword) +def unique( + ar: ArrayLike, + return_index: L[False] = False, + *, + return_inverse: L[True], + return_counts: L[True], + axis: SupportsIndex | None = None, + equal_nan: bool = True, +) -> tuple[_AnyArray, _IntArray, _IntArray]: ... +@overload # known scalar-type, TTT +def unique( + ar: _ArrayLike[_ScalarT], + return_index: L[True], + return_inverse: L[True], + return_counts: L[True], + axis: SupportsIndex | None = None, + *, + equal_nan: bool = True, +) -> tuple[NDArray[_ScalarT], _IntArray, _IntArray, _IntArray]: ... +@overload # unknown scalar-type, TTT +def unique( + ar: ArrayLike, + return_index: L[True], + return_inverse: L[True], + return_counts: L[True], + axis: SupportsIndex | None = None, + *, + equal_nan: bool = True, +) -> tuple[_AnyArray, _IntArray, _IntArray, _IntArray]: ... + +# +@overload +def unique_all(x: _ArrayLike[_ScalarT]) -> UniqueAllResult[_ScalarT]: ... +@overload +def unique_all(x: ArrayLike) -> UniqueAllResult[Any]: ... + +# +@overload +def unique_counts(x: _ArrayLike[_ScalarT]) -> UniqueCountsResult[_ScalarT]: ... +@overload +def unique_counts(x: ArrayLike) -> UniqueCountsResult[Any]: ... + +# +@overload +def unique_inverse(x: _ArrayLike[_ScalarT]) -> UniqueInverseResult[_ScalarT]: ... +@overload +def unique_inverse(x: ArrayLike) -> UniqueInverseResult[Any]: ... + +# +@overload +def unique_values(x: _ArrayLike[_ScalarT]) -> NDArray[_ScalarT]: ... +@overload +def unique_values(x: ArrayLike) -> _AnyArray: ... + +# +@overload # known scalar-type, return_indices=False (default) +def intersect1d( + ar1: _ArrayLike[_EitherSCT], + ar2: _ArrayLike[_EitherSCT], + assume_unique: bool = False, + return_indices: L[False] = False, +) -> NDArray[_EitherSCT]: ... +@overload # known scalar-type, return_indices=True (positional) +def intersect1d( + ar1: _ArrayLike[_EitherSCT], + ar2: _ArrayLike[_EitherSCT], + assume_unique: bool, + return_indices: L[True], +) -> tuple[NDArray[_EitherSCT], _IntArray, _IntArray]: ... +@overload # known scalar-type, return_indices=True (keyword) +def intersect1d( + ar1: _ArrayLike[_EitherSCT], + ar2: _ArrayLike[_EitherSCT], + assume_unique: bool = False, + *, + return_indices: L[True], +) -> tuple[NDArray[_EitherSCT], _IntArray, _IntArray]: ... +@overload # unknown scalar-type, return_indices=False (default) +def intersect1d( + ar1: ArrayLike, + ar2: ArrayLike, + assume_unique: bool = False, + return_indices: L[False] = False, +) -> _AnyArray: ... +@overload # unknown scalar-type, return_indices=True (positional) +def intersect1d( + ar1: ArrayLike, + ar2: ArrayLike, + assume_unique: bool, + return_indices: L[True], +) -> tuple[_AnyArray, _IntArray, _IntArray]: ... +@overload # unknown scalar-type, return_indices=True (keyword) +def intersect1d( + ar1: ArrayLike, + ar2: ArrayLike, + assume_unique: bool = False, + *, + return_indices: L[True], +) -> tuple[_AnyArray, _IntArray, _IntArray]: ... + +# +@overload +def setxor1d(ar1: _ArrayLike[_EitherSCT], ar2: _ArrayLike[_EitherSCT], assume_unique: bool = False) -> NDArray[_EitherSCT]: ... +@overload +def setxor1d(ar1: ArrayLike, ar2: ArrayLike, assume_unique: bool = False) -> _AnyArray: ... + +# +@overload +def union1d(ar1: _ArrayLike[_EitherSCT], ar2: _ArrayLike[_EitherSCT]) -> NDArray[_EitherSCT]: ... +@overload +def union1d(ar1: ArrayLike, ar2: ArrayLike) -> _AnyArray: ... + +# +@overload +def setdiff1d(ar1: _ArrayLike[_EitherSCT], ar2: _ArrayLike[_EitherSCT], assume_unique: bool = False) -> NDArray[_EitherSCT]: ... +@overload +def setdiff1d(ar1: ArrayLike, ar2: ArrayLike, assume_unique: bool = False) -> _AnyArray: ... + +# +def isin( + element: ArrayLike, + test_elements: ArrayLike, + assume_unique: bool = False, + invert: bool = False, + *, + kind: L["sort", "table"] | None = None, +) -> NDArray[np.bool]: ... + +# +@deprecated("Use 'isin' instead") +def in1d( + element: ArrayLike, + test_elements: ArrayLike, + assume_unique: bool = False, + invert: bool = False, + *, + kind: L["sort", "table"] | None = None, +) -> NDArray[np.bool]: ... diff --git a/.venv/lib/python3.12/site-packages/numpy/lib/_arrayterator_impl.py b/.venv/lib/python3.12/site-packages/numpy/lib/_arrayterator_impl.py new file mode 100644 index 0000000..5f7c5fc --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/lib/_arrayterator_impl.py @@ -0,0 +1,224 @@ +""" +A buffered iterator for big arrays. + +This module solves the problem of iterating over a big file-based array +without having to read it into memory. The `Arrayterator` class wraps +an array object, and when iterated it will return sub-arrays with at most +a user-specified number of elements. + +""" +from functools import reduce +from operator import mul + +__all__ = ['Arrayterator'] + + +class Arrayterator: + """ + Buffered iterator for big arrays. + + `Arrayterator` creates a buffered iterator for reading big arrays in small + contiguous blocks. The class is useful for objects stored in the + file system. It allows iteration over the object *without* reading + everything in memory; instead, small blocks are read and iterated over. + + `Arrayterator` can be used with any object that supports multidimensional + slices. This includes NumPy arrays, but also variables from + Scientific.IO.NetCDF or pynetcdf for example. + + Parameters + ---------- + var : array_like + The object to iterate over. + buf_size : int, optional + The buffer size. If `buf_size` is supplied, the maximum amount of + data that will be read into memory is `buf_size` elements. + Default is None, which will read as many element as possible + into memory. + + Attributes + ---------- + var + buf_size + start + stop + step + shape + flat + + See Also + -------- + numpy.ndenumerate : Multidimensional array iterator. + numpy.flatiter : Flat array iterator. + numpy.memmap : Create a memory-map to an array stored + in a binary file on disk. + + Notes + ----- + The algorithm works by first finding a "running dimension", along which + the blocks will be extracted. Given an array of dimensions + ``(d1, d2, ..., dn)``, e.g. if `buf_size` is smaller than ``d1``, the + first dimension will be used. If, on the other hand, + ``d1 < buf_size < d1*d2`` the second dimension will be used, and so on. + Blocks are extracted along this dimension, and when the last block is + returned the process continues from the next dimension, until all + elements have been read. + + Examples + -------- + >>> import numpy as np + >>> a = np.arange(3 * 4 * 5 * 6).reshape(3, 4, 5, 6) + >>> a_itor = np.lib.Arrayterator(a, 2) + >>> a_itor.shape + (3, 4, 5, 6) + + Now we can iterate over ``a_itor``, and it will return arrays of size + two. Since `buf_size` was smaller than any dimension, the first + dimension will be iterated over first: + + >>> for subarr in a_itor: + ... if not subarr.all(): + ... print(subarr, subarr.shape) # doctest: +SKIP + >>> # [[[[0 1]]]] (1, 1, 1, 2) + + """ + + __module__ = "numpy.lib" + + def __init__(self, var, buf_size=None): + self.var = var + self.buf_size = buf_size + + self.start = [0 for dim in var.shape] + self.stop = list(var.shape) + self.step = [1 for dim in var.shape] + + def __getattr__(self, attr): + return getattr(self.var, attr) + + def __getitem__(self, index): + """ + Return a new arrayterator. + + """ + # Fix index, handling ellipsis and incomplete slices. + if not isinstance(index, tuple): + index = (index,) + fixed = [] + length, dims = len(index), self.ndim + for slice_ in index: + if slice_ is Ellipsis: + fixed.extend([slice(None)] * (dims - length + 1)) + length = len(fixed) + elif isinstance(slice_, int): + fixed.append(slice(slice_, slice_ + 1, 1)) + else: + fixed.append(slice_) + index = tuple(fixed) + if len(index) < dims: + index += (slice(None),) * (dims - len(index)) + + # Return a new arrayterator object. + out = self.__class__(self.var, self.buf_size) + for i, (start, stop, step, slice_) in enumerate( + zip(self.start, self.stop, self.step, index)): + out.start[i] = start + (slice_.start or 0) + out.step[i] = step * (slice_.step or 1) + out.stop[i] = start + (slice_.stop or stop - start) + out.stop[i] = min(stop, out.stop[i]) + return out + + def __array__(self, dtype=None, copy=None): + """ + Return corresponding data. + + """ + slice_ = tuple(slice(*t) for t in zip( + self.start, self.stop, self.step)) + return self.var[slice_] + + @property + def flat(self): + """ + A 1-D flat iterator for Arrayterator objects. + + This iterator returns elements of the array to be iterated over in + `~lib.Arrayterator` one by one. + It is similar to `flatiter`. + + See Also + -------- + lib.Arrayterator + flatiter + + Examples + -------- + >>> a = np.arange(3 * 4 * 5 * 6).reshape(3, 4, 5, 6) + >>> a_itor = np.lib.Arrayterator(a, 2) + + >>> for subarr in a_itor.flat: + ... if not subarr: + ... print(subarr, type(subarr)) + ... + 0 <class 'numpy.int64'> + + """ + for block in self: + yield from block.flat + + @property + def shape(self): + """ + The shape of the array to be iterated over. + + For an example, see `Arrayterator`. + + """ + return tuple(((stop - start - 1) // step + 1) for start, stop, step in + zip(self.start, self.stop, self.step)) + + def __iter__(self): + # Skip arrays with degenerate dimensions + if [dim for dim in self.shape if dim <= 0]: + return + + start = self.start[:] + stop = self.stop[:] + step = self.step[:] + ndims = self.var.ndim + + while True: + count = self.buf_size or reduce(mul, self.shape) + + # iterate over each dimension, looking for the + # running dimension (ie, the dimension along which + # the blocks will be built from) + rundim = 0 + for i in range(ndims - 1, -1, -1): + # if count is zero we ran out of elements to read + # along higher dimensions, so we read only a single position + if count == 0: + stop[i] = start[i] + 1 + elif count <= self.shape[i]: + # limit along this dimension + stop[i] = start[i] + count * step[i] + rundim = i + else: + # read everything along this dimension + stop[i] = self.stop[i] + stop[i] = min(self.stop[i], stop[i]) + count = count // self.shape[i] + + # yield a block + slice_ = tuple(slice(*t) for t in zip(start, stop, step)) + yield self.var[slice_] + + # Update start position, taking care of overflow to + # other dimensions + start[rundim] = stop[rundim] # start where we stopped + for i in range(ndims - 1, 0, -1): + if start[i] >= self.stop[i]: + start[i] = self.start[i] + start[i - 1] += self.step[i - 1] + if start[0] >= self.stop[0]: + return diff --git a/.venv/lib/python3.12/site-packages/numpy/lib/_arrayterator_impl.pyi b/.venv/lib/python3.12/site-packages/numpy/lib/_arrayterator_impl.pyi new file mode 100644 index 0000000..e1a9e05 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/lib/_arrayterator_impl.pyi @@ -0,0 +1,46 @@ +# pyright: reportIncompatibleMethodOverride=false + +from collections.abc import Generator +from types import EllipsisType +from typing import Any, Final, TypeAlias, overload + +from typing_extensions import TypeVar + +import numpy as np +from numpy._typing import _AnyShape, _Shape + +__all__ = ["Arrayterator"] + +_ShapeT_co = TypeVar("_ShapeT_co", bound=_Shape, default=_AnyShape, covariant=True) +_DTypeT = TypeVar("_DTypeT", bound=np.dtype) +_DTypeT_co = TypeVar("_DTypeT_co", bound=np.dtype, default=np.dtype, covariant=True) +_ScalarT = TypeVar("_ScalarT", bound=np.generic) + +_AnyIndex: TypeAlias = EllipsisType | int | slice | tuple[EllipsisType | int | slice, ...] + +# NOTE: In reality `Arrayterator` does not actually inherit from `ndarray`, +# but its ``__getattr__` method does wrap around the former and thus has +# access to all its methods + +class Arrayterator(np.ndarray[_ShapeT_co, _DTypeT_co]): + var: np.ndarray[_ShapeT_co, _DTypeT_co] # type: ignore[assignment] + buf_size: Final[int | None] + start: Final[list[int]] + stop: Final[list[int]] + step: Final[list[int]] + + @property # type: ignore[misc] + def shape(self) -> _ShapeT_co: ... + @property + def flat(self: Arrayterator[Any, np.dtype[_ScalarT]]) -> Generator[_ScalarT]: ... # type: ignore[override] + + # + def __init__(self, /, var: np.ndarray[_ShapeT_co, _DTypeT_co], buf_size: int | None = None) -> None: ... + def __getitem__(self, index: _AnyIndex, /) -> Arrayterator[_AnyShape, _DTypeT_co]: ... # type: ignore[override] + def __iter__(self) -> Generator[np.ndarray[_AnyShape, _DTypeT_co]]: ... + + # + @overload # type: ignore[override] + def __array__(self, /, dtype: None = None, copy: bool | None = None) -> np.ndarray[_ShapeT_co, _DTypeT_co]: ... + @overload + def __array__(self, /, dtype: _DTypeT, copy: bool | None = None) -> np.ndarray[_ShapeT_co, _DTypeT]: ... diff --git a/.venv/lib/python3.12/site-packages/numpy/lib/_datasource.py b/.venv/lib/python3.12/site-packages/numpy/lib/_datasource.py new file mode 100644 index 0000000..72398c5 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/lib/_datasource.py @@ -0,0 +1,700 @@ +"""A file interface for handling local and remote data files. + +The goal of datasource is to abstract some of the file system operations +when dealing with data files so the researcher doesn't have to know all the +low-level details. Through datasource, a researcher can obtain and use a +file with one function call, regardless of location of the file. + +DataSource is meant to augment standard python libraries, not replace them. +It should work seamlessly with standard file IO operations and the os +module. + +DataSource files can originate locally or remotely: + +- local files : '/home/guido/src/local/data.txt' +- URLs (http, ftp, ...) : 'http://www.scipy.org/not/real/data.txt' + +DataSource files can also be compressed or uncompressed. Currently only +gzip, bz2 and xz are supported. + +Example:: + + >>> # Create a DataSource, use os.curdir (default) for local storage. + >>> from numpy import DataSource + >>> ds = DataSource() + >>> + >>> # Open a remote file. + >>> # DataSource downloads the file, stores it locally in: + >>> # './www.google.com/index.html' + >>> # opens the file and returns a file object. + >>> fp = ds.open('http://www.google.com/') # doctest: +SKIP + >>> + >>> # Use the file as you normally would + >>> fp.read() # doctest: +SKIP + >>> fp.close() # doctest: +SKIP + +""" +import os + +from numpy._utils import set_module + +_open = open + + +def _check_mode(mode, encoding, newline): + """Check mode and that encoding and newline are compatible. + + Parameters + ---------- + mode : str + File open mode. + encoding : str + File encoding. + newline : str + Newline for text files. + + """ + if "t" in mode: + if "b" in mode: + raise ValueError(f"Invalid mode: {mode!r}") + else: + if encoding is not None: + raise ValueError("Argument 'encoding' not supported in binary mode") + if newline is not None: + raise ValueError("Argument 'newline' not supported in binary mode") + + +# Using a class instead of a module-level dictionary +# to reduce the initial 'import numpy' overhead by +# deferring the import of lzma, bz2 and gzip until needed + +# TODO: .zip support, .tar support? +class _FileOpeners: + """ + Container for different methods to open (un-)compressed files. + + `_FileOpeners` contains a dictionary that holds one method for each + supported file format. Attribute lookup is implemented in such a way + that an instance of `_FileOpeners` itself can be indexed with the keys + of that dictionary. Currently uncompressed files as well as files + compressed with ``gzip``, ``bz2`` or ``xz`` compression are supported. + + Notes + ----- + `_file_openers`, an instance of `_FileOpeners`, is made available for + use in the `_datasource` module. + + Examples + -------- + >>> import gzip + >>> np.lib._datasource._file_openers.keys() + [None, '.bz2', '.gz', '.xz', '.lzma'] + >>> np.lib._datasource._file_openers['.gz'] is gzip.open + True + + """ + + def __init__(self): + self._loaded = False + self._file_openers = {None: open} + + def _load(self): + if self._loaded: + return + + try: + import bz2 + self._file_openers[".bz2"] = bz2.open + except ImportError: + pass + + try: + import gzip + self._file_openers[".gz"] = gzip.open + except ImportError: + pass + + try: + import lzma + self._file_openers[".xz"] = lzma.open + self._file_openers[".lzma"] = lzma.open + except (ImportError, AttributeError): + # There are incompatible backports of lzma that do not have the + # lzma.open attribute, so catch that as well as ImportError. + pass + + self._loaded = True + + def keys(self): + """ + Return the keys of currently supported file openers. + + Parameters + ---------- + None + + Returns + ------- + keys : list + The keys are None for uncompressed files and the file extension + strings (i.e. ``'.gz'``, ``'.xz'``) for supported compression + methods. + + """ + self._load() + return list(self._file_openers.keys()) + + def __getitem__(self, key): + self._load() + return self._file_openers[key] + + +_file_openers = _FileOpeners() + +def open(path, mode='r', destpath=os.curdir, encoding=None, newline=None): + """ + Open `path` with `mode` and return the file object. + + If ``path`` is an URL, it will be downloaded, stored in the + `DataSource` `destpath` directory and opened from there. + + Parameters + ---------- + path : str or pathlib.Path + Local file path or URL to open. + mode : str, optional + Mode to open `path`. Mode 'r' for reading, 'w' for writing, 'a' to + append. Available modes depend on the type of object specified by + path. Default is 'r'. + destpath : str, optional + Path to the directory where the source file gets downloaded to for + use. If `destpath` is None, a temporary directory will be created. + The default path is the current directory. + encoding : {None, str}, optional + Open text file with given encoding. The default encoding will be + what `open` uses. + newline : {None, str}, optional + Newline to use when reading text file. + + Returns + ------- + out : file object + The opened file. + + Notes + ----- + This is a convenience function that instantiates a `DataSource` and + returns the file object from ``DataSource.open(path)``. + + """ + + ds = DataSource(destpath) + return ds.open(path, mode, encoding=encoding, newline=newline) + + +@set_module('numpy.lib.npyio') +class DataSource: + """ + DataSource(destpath='.') + + A generic data source file (file, http, ftp, ...). + + DataSources can be local files or remote files/URLs. The files may + also be compressed or uncompressed. DataSource hides some of the + low-level details of downloading the file, allowing you to simply pass + in a valid file path (or URL) and obtain a file object. + + Parameters + ---------- + destpath : str or None, optional + Path to the directory where the source file gets downloaded to for + use. If `destpath` is None, a temporary directory will be created. + The default path is the current directory. + + Notes + ----- + URLs require a scheme string (``http://``) to be used, without it they + will fail:: + + >>> repos = np.lib.npyio.DataSource() + >>> repos.exists('www.google.com/index.html') + False + >>> repos.exists('http://www.google.com/index.html') + True + + Temporary directories are deleted when the DataSource is deleted. + + Examples + -------- + :: + + >>> ds = np.lib.npyio.DataSource('/home/guido') + >>> urlname = 'http://www.google.com/' + >>> gfile = ds.open('http://www.google.com/') + >>> ds.abspath(urlname) + '/home/guido/www.google.com/index.html' + + >>> ds = np.lib.npyio.DataSource(None) # use with temporary file + >>> ds.open('/home/guido/foobar.txt') + <open file '/home/guido.foobar.txt', mode 'r' at 0x91d4430> + >>> ds.abspath('/home/guido/foobar.txt') + '/tmp/.../home/guido/foobar.txt' + + """ + + def __init__(self, destpath=os.curdir): + """Create a DataSource with a local path at destpath.""" + if destpath: + self._destpath = os.path.abspath(destpath) + self._istmpdest = False + else: + import tempfile # deferring import to improve startup time + self._destpath = tempfile.mkdtemp() + self._istmpdest = True + + def __del__(self): + # Remove temp directories + if hasattr(self, '_istmpdest') and self._istmpdest: + import shutil + + shutil.rmtree(self._destpath) + + def _iszip(self, filename): + """Test if the filename is a zip file by looking at the file extension. + + """ + fname, ext = os.path.splitext(filename) + return ext in _file_openers.keys() + + def _iswritemode(self, mode): + """Test if the given mode will open a file for writing.""" + + # Currently only used to test the bz2 files. + _writemodes = ("w", "+") + return any(c in _writemodes for c in mode) + + def _splitzipext(self, filename): + """Split zip extension from filename and return filename. + + Returns + ------- + base, zip_ext : {tuple} + + """ + + if self._iszip(filename): + return os.path.splitext(filename) + else: + return filename, None + + def _possible_names(self, filename): + """Return a tuple containing compressed filename variations.""" + names = [filename] + if not self._iszip(filename): + for zipext in _file_openers.keys(): + if zipext: + names.append(filename + zipext) + return names + + def _isurl(self, path): + """Test if path is a net location. Tests the scheme and netloc.""" + + # We do this here to reduce the 'import numpy' initial import time. + from urllib.parse import urlparse + + # BUG : URLs require a scheme string ('http://') to be used. + # www.google.com will fail. + # Should we prepend the scheme for those that don't have it and + # test that also? Similar to the way we append .gz and test for + # for compressed versions of files. + + scheme, netloc, upath, uparams, uquery, ufrag = urlparse(path) + return bool(scheme and netloc) + + def _cache(self, path): + """Cache the file specified by path. + + Creates a copy of the file in the datasource cache. + + """ + # We import these here because importing them is slow and + # a significant fraction of numpy's total import time. + import shutil + from urllib.request import urlopen + + upath = self.abspath(path) + + # ensure directory exists + if not os.path.exists(os.path.dirname(upath)): + os.makedirs(os.path.dirname(upath)) + + # TODO: Doesn't handle compressed files! + if self._isurl(path): + with urlopen(path) as openedurl: + with _open(upath, 'wb') as f: + shutil.copyfileobj(openedurl, f) + else: + shutil.copyfile(path, upath) + return upath + + def _findfile(self, path): + """Searches for ``path`` and returns full path if found. + + If path is an URL, _findfile will cache a local copy and return the + path to the cached file. If path is a local file, _findfile will + return a path to that local file. + + The search will include possible compressed versions of the file + and return the first occurrence found. + + """ + + # Build list of possible local file paths + if not self._isurl(path): + # Valid local paths + filelist = self._possible_names(path) + # Paths in self._destpath + filelist += self._possible_names(self.abspath(path)) + else: + # Cached URLs in self._destpath + filelist = self._possible_names(self.abspath(path)) + # Remote URLs + filelist = filelist + self._possible_names(path) + + for name in filelist: + if self.exists(name): + if self._isurl(name): + name = self._cache(name) + return name + return None + + def abspath(self, path): + """ + Return absolute path of file in the DataSource directory. + + If `path` is an URL, then `abspath` will return either the location + the file exists locally or the location it would exist when opened + using the `open` method. + + Parameters + ---------- + path : str or pathlib.Path + Can be a local file or a remote URL. + + Returns + ------- + out : str + Complete path, including the `DataSource` destination directory. + + Notes + ----- + The functionality is based on `os.path.abspath`. + + """ + # We do this here to reduce the 'import numpy' initial import time. + from urllib.parse import urlparse + + # TODO: This should be more robust. Handles case where path includes + # the destpath, but not other sub-paths. Failing case: + # path = /home/guido/datafile.txt + # destpath = /home/alex/ + # upath = self.abspath(path) + # upath == '/home/alex/home/guido/datafile.txt' + + # handle case where path includes self._destpath + splitpath = path.split(self._destpath, 2) + if len(splitpath) > 1: + path = splitpath[1] + scheme, netloc, upath, uparams, uquery, ufrag = urlparse(path) + netloc = self._sanitize_relative_path(netloc) + upath = self._sanitize_relative_path(upath) + return os.path.join(self._destpath, netloc, upath) + + def _sanitize_relative_path(self, path): + """Return a sanitised relative path for which + os.path.abspath(os.path.join(base, path)).startswith(base) + """ + last = None + path = os.path.normpath(path) + while path != last: + last = path + # Note: os.path.join treats '/' as os.sep on Windows + path = path.lstrip(os.sep).lstrip('/') + path = path.lstrip(os.pardir).removeprefix('..') + drive, path = os.path.splitdrive(path) # for Windows + return path + + def exists(self, path): + """ + Test if path exists. + + Test if `path` exists as (and in this order): + + - a local file. + - a remote URL that has been downloaded and stored locally in the + `DataSource` directory. + - a remote URL that has not been downloaded, but is valid and + accessible. + + Parameters + ---------- + path : str or pathlib.Path + Can be a local file or a remote URL. + + Returns + ------- + out : bool + True if `path` exists. + + Notes + ----- + When `path` is an URL, `exists` will return True if it's either + stored locally in the `DataSource` directory, or is a valid remote + URL. `DataSource` does not discriminate between the two, the file + is accessible if it exists in either location. + + """ + + # First test for local path + if os.path.exists(path): + return True + + # We import this here because importing urllib is slow and + # a significant fraction of numpy's total import time. + from urllib.error import URLError + from urllib.request import urlopen + + # Test cached url + upath = self.abspath(path) + if os.path.exists(upath): + return True + + # Test remote url + if self._isurl(path): + try: + netfile = urlopen(path) + netfile.close() + del netfile + return True + except URLError: + return False + return False + + def open(self, path, mode='r', encoding=None, newline=None): + """ + Open and return file-like object. + + If `path` is an URL, it will be downloaded, stored in the + `DataSource` directory and opened from there. + + Parameters + ---------- + path : str or pathlib.Path + Local file path or URL to open. + mode : {'r', 'w', 'a'}, optional + Mode to open `path`. Mode 'r' for reading, 'w' for writing, + 'a' to append. Available modes depend on the type of object + specified by `path`. Default is 'r'. + encoding : {None, str}, optional + Open text file with given encoding. The default encoding will be + what `open` uses. + newline : {None, str}, optional + Newline to use when reading text file. + + Returns + ------- + out : file object + File object. + + """ + + # TODO: There is no support for opening a file for writing which + # doesn't exist yet (creating a file). Should there be? + + # TODO: Add a ``subdir`` parameter for specifying the subdirectory + # used to store URLs in self._destpath. + + if self._isurl(path) and self._iswritemode(mode): + raise ValueError("URLs are not writeable") + + # NOTE: _findfile will fail on a new file opened for writing. + found = self._findfile(path) + if found: + _fname, ext = self._splitzipext(found) + if ext == 'bz2': + mode.replace("+", "") + return _file_openers[ext](found, mode=mode, + encoding=encoding, newline=newline) + else: + raise FileNotFoundError(f"{path} not found.") + + +class Repository (DataSource): + """ + Repository(baseurl, destpath='.') + + A data repository where multiple DataSource's share a base + URL/directory. + + `Repository` extends `DataSource` by prepending a base URL (or + directory) to all the files it handles. Use `Repository` when you will + be working with multiple files from one base URL. Initialize + `Repository` with the base URL, then refer to each file by its filename + only. + + Parameters + ---------- + baseurl : str + Path to the local directory or remote location that contains the + data files. + destpath : str or None, optional + Path to the directory where the source file gets downloaded to for + use. If `destpath` is None, a temporary directory will be created. + The default path is the current directory. + + Examples + -------- + To analyze all files in the repository, do something like this + (note: this is not self-contained code):: + + >>> repos = np.lib._datasource.Repository('/home/user/data/dir/') + >>> for filename in filelist: + ... fp = repos.open(filename) + ... fp.analyze() + ... fp.close() + + Similarly you could use a URL for a repository:: + + >>> repos = np.lib._datasource.Repository('http://www.xyz.edu/data') + + """ + + def __init__(self, baseurl, destpath=os.curdir): + """Create a Repository with a shared url or directory of baseurl.""" + DataSource.__init__(self, destpath=destpath) + self._baseurl = baseurl + + def __del__(self): + DataSource.__del__(self) + + def _fullpath(self, path): + """Return complete path for path. Prepends baseurl if necessary.""" + splitpath = path.split(self._baseurl, 2) + if len(splitpath) == 1: + result = os.path.join(self._baseurl, path) + else: + result = path # path contains baseurl already + return result + + def _findfile(self, path): + """Extend DataSource method to prepend baseurl to ``path``.""" + return DataSource._findfile(self, self._fullpath(path)) + + def abspath(self, path): + """ + Return absolute path of file in the Repository directory. + + If `path` is an URL, then `abspath` will return either the location + the file exists locally or the location it would exist when opened + using the `open` method. + + Parameters + ---------- + path : str or pathlib.Path + Can be a local file or a remote URL. This may, but does not + have to, include the `baseurl` with which the `Repository` was + initialized. + + Returns + ------- + out : str + Complete path, including the `DataSource` destination directory. + + """ + return DataSource.abspath(self, self._fullpath(path)) + + def exists(self, path): + """ + Test if path exists prepending Repository base URL to path. + + Test if `path` exists as (and in this order): + + - a local file. + - a remote URL that has been downloaded and stored locally in the + `DataSource` directory. + - a remote URL that has not been downloaded, but is valid and + accessible. + + Parameters + ---------- + path : str or pathlib.Path + Can be a local file or a remote URL. This may, but does not + have to, include the `baseurl` with which the `Repository` was + initialized. + + Returns + ------- + out : bool + True if `path` exists. + + Notes + ----- + When `path` is an URL, `exists` will return True if it's either + stored locally in the `DataSource` directory, or is a valid remote + URL. `DataSource` does not discriminate between the two, the file + is accessible if it exists in either location. + + """ + return DataSource.exists(self, self._fullpath(path)) + + def open(self, path, mode='r', encoding=None, newline=None): + """ + Open and return file-like object prepending Repository base URL. + + If `path` is an URL, it will be downloaded, stored in the + DataSource directory and opened from there. + + Parameters + ---------- + path : str or pathlib.Path + Local file path or URL to open. This may, but does not have to, + include the `baseurl` with which the `Repository` was + initialized. + mode : {'r', 'w', 'a'}, optional + Mode to open `path`. Mode 'r' for reading, 'w' for writing, + 'a' to append. Available modes depend on the type of object + specified by `path`. Default is 'r'. + encoding : {None, str}, optional + Open text file with given encoding. The default encoding will be + what `open` uses. + newline : {None, str}, optional + Newline to use when reading text file. + + Returns + ------- + out : file object + File object. + + """ + return DataSource.open(self, self._fullpath(path), mode, + encoding=encoding, newline=newline) + + def listdir(self): + """ + List files in the source Repository. + + Returns + ------- + files : list of str or pathlib.Path + List of file names (not containing a directory part). + + Notes + ----- + Does not currently work for remote repositories. + + """ + if self._isurl(self._baseurl): + raise NotImplementedError( + "Directory listing of URLs, not supported yet.") + else: + return os.listdir(self._baseurl) diff --git a/.venv/lib/python3.12/site-packages/numpy/lib/_datasource.pyi b/.venv/lib/python3.12/site-packages/numpy/lib/_datasource.pyi new file mode 100644 index 0000000..9f91fdf --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/lib/_datasource.pyi @@ -0,0 +1,31 @@ +from pathlib import Path +from typing import IO, Any, TypeAlias + +from _typeshed import OpenBinaryMode, OpenTextMode + +_Mode: TypeAlias = OpenBinaryMode | OpenTextMode + +### + +# exported in numpy.lib.nppyio +class DataSource: + def __init__(self, /, destpath: Path | str | None = ...) -> None: ... + def __del__(self, /) -> None: ... + def abspath(self, /, path: str) -> str: ... + def exists(self, /, path: str) -> bool: ... + + # Whether the file-object is opened in string or bytes mode (by default) + # depends on the file-extension of `path` + def open(self, /, path: str, mode: _Mode = "r", encoding: str | None = None, newline: str | None = None) -> IO[Any]: ... + +class Repository(DataSource): + def __init__(self, /, baseurl: str, destpath: str | None = ...) -> None: ... + def listdir(self, /) -> list[str]: ... + +def open( + path: str, + mode: _Mode = "r", + destpath: str | None = ..., + encoding: str | None = None, + newline: str | None = None, +) -> IO[Any]: ... diff --git a/.venv/lib/python3.12/site-packages/numpy/lib/_format_impl.py b/.venv/lib/python3.12/site-packages/numpy/lib/_format_impl.py new file mode 100644 index 0000000..7378ba5 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/lib/_format_impl.py @@ -0,0 +1,1036 @@ +""" +Binary serialization + +NPY format +========== + +A simple format for saving numpy arrays to disk with the full +information about them. + +The ``.npy`` format is the standard binary file format in NumPy for +persisting a *single* arbitrary NumPy array on disk. The format stores all +of the shape and dtype information necessary to reconstruct the array +correctly even on another machine with a different architecture. +The format is designed to be as simple as possible while achieving +its limited goals. + +The ``.npz`` format is the standard format for persisting *multiple* NumPy +arrays on disk. A ``.npz`` file is a zip file containing multiple ``.npy`` +files, one for each array. + +Capabilities +------------ + +- Can represent all NumPy arrays including nested record arrays and + object arrays. + +- Represents the data in its native binary form. + +- Supports Fortran-contiguous arrays directly. + +- Stores all of the necessary information to reconstruct the array + including shape and dtype on a machine of a different + architecture. Both little-endian and big-endian arrays are + supported, and a file with little-endian numbers will yield + a little-endian array on any machine reading the file. The + types are described in terms of their actual sizes. For example, + if a machine with a 64-bit C "long int" writes out an array with + "long ints", a reading machine with 32-bit C "long ints" will yield + an array with 64-bit integers. + +- Is straightforward to reverse engineer. Datasets often live longer than + the programs that created them. A competent developer should be + able to create a solution in their preferred programming language to + read most ``.npy`` files that they have been given without much + documentation. + +- Allows memory-mapping of the data. See `open_memmap`. + +- Can be read from a filelike stream object instead of an actual file. + +- Stores object arrays, i.e. arrays containing elements that are arbitrary + Python objects. Files with object arrays are not to be mmapable, but + can be read and written to disk. + +Limitations +----------- + +- Arbitrary subclasses of numpy.ndarray are not completely preserved. + Subclasses will be accepted for writing, but only the array data will + be written out. A regular numpy.ndarray object will be created + upon reading the file. + +.. warning:: + + Due to limitations in the interpretation of structured dtypes, dtypes + with fields with empty names will have the names replaced by 'f0', 'f1', + etc. Such arrays will not round-trip through the format entirely + accurately. The data is intact; only the field names will differ. We are + working on a fix for this. This fix will not require a change in the + file format. The arrays with such structures can still be saved and + restored, and the correct dtype may be restored by using the + ``loadedarray.view(correct_dtype)`` method. + +File extensions +--------------- + +We recommend using the ``.npy`` and ``.npz`` extensions for files saved +in this format. This is by no means a requirement; applications may wish +to use these file formats but use an extension specific to the +application. In the absence of an obvious alternative, however, +we suggest using ``.npy`` and ``.npz``. + +Version numbering +----------------- + +The version numbering of these formats is independent of NumPy version +numbering. If the format is upgraded, the code in `numpy.io` will still +be able to read and write Version 1.0 files. + +Format Version 1.0 +------------------ + +The first 6 bytes are a magic string: exactly ``\\x93NUMPY``. + +The next 1 byte is an unsigned byte: the major version number of the file +format, e.g. ``\\x01``. + +The next 1 byte is an unsigned byte: the minor version number of the file +format, e.g. ``\\x00``. Note: the version of the file format is not tied +to the version of the numpy package. + +The next 2 bytes form a little-endian unsigned short int: the length of +the header data HEADER_LEN. + +The next HEADER_LEN bytes form the header data describing the array's +format. It is an ASCII string which contains a Python literal expression +of a dictionary. It is terminated by a newline (``\\n``) and padded with +spaces (``\\x20``) to make the total of +``len(magic string) + 2 + len(length) + HEADER_LEN`` be evenly divisible +by 64 for alignment purposes. + +The dictionary contains three keys: + + "descr" : dtype.descr + An object that can be passed as an argument to the `numpy.dtype` + constructor to create the array's dtype. + "fortran_order" : bool + Whether the array data is Fortran-contiguous or not. Since + Fortran-contiguous arrays are a common form of non-C-contiguity, + we allow them to be written directly to disk for efficiency. + "shape" : tuple of int + The shape of the array. + +For repeatability and readability, the dictionary keys are sorted in +alphabetic order. This is for convenience only. A writer SHOULD implement +this if possible. A reader MUST NOT depend on this. + +Following the header comes the array data. If the dtype contains Python +objects (i.e. ``dtype.hasobject is True``), then the data is a Python +pickle of the array. Otherwise the data is the contiguous (either C- +or Fortran-, depending on ``fortran_order``) bytes of the array. +Consumers can figure out the number of bytes by multiplying the number +of elements given by the shape (noting that ``shape=()`` means there is +1 element) by ``dtype.itemsize``. + +Format Version 2.0 +------------------ + +The version 1.0 format only allowed the array header to have a total size of +65535 bytes. This can be exceeded by structured arrays with a large number of +columns. The version 2.0 format extends the header size to 4 GiB. +`numpy.save` will automatically save in 2.0 format if the data requires it, +else it will always use the more compatible 1.0 format. + +The description of the fourth element of the header therefore has become: +"The next 4 bytes form a little-endian unsigned int: the length of the header +data HEADER_LEN." + +Format Version 3.0 +------------------ + +This version replaces the ASCII string (which in practice was latin1) with +a utf8-encoded string, so supports structured types with any unicode field +names. + +Notes +----- +The ``.npy`` format, including motivation for creating it and a comparison of +alternatives, is described in the +:doc:`"npy-format" NEP <neps:nep-0001-npy-format>`, however details have +evolved with time and this document is more current. + +""" +import io +import os +import pickle +import warnings + +import numpy +from numpy._utils import set_module +from numpy.lib._utils_impl import drop_metadata + +__all__ = [] + +drop_metadata.__module__ = "numpy.lib.format" + +EXPECTED_KEYS = {'descr', 'fortran_order', 'shape'} +MAGIC_PREFIX = b'\x93NUMPY' +MAGIC_LEN = len(MAGIC_PREFIX) + 2 +ARRAY_ALIGN = 64 # plausible values are powers of 2 between 16 and 4096 +BUFFER_SIZE = 2**18 # size of buffer for reading npz files in bytes +# allow growth within the address space of a 64 bit machine along one axis +GROWTH_AXIS_MAX_DIGITS = 21 # = len(str(8*2**64-1)) hypothetical int1 dtype + +# difference between version 1.0 and 2.0 is a 4 byte (I) header length +# instead of 2 bytes (H) allowing storage of large structured arrays +_header_size_info = { + (1, 0): ('<H', 'latin1'), + (2, 0): ('<I', 'latin1'), + (3, 0): ('<I', 'utf8'), +} + +# Python's literal_eval is not actually safe for large inputs, since parsing +# may become slow or even cause interpreter crashes. +# This is an arbitrary, low limit which should make it safe in practice. +_MAX_HEADER_SIZE = 10000 + + +def _check_version(version): + if version not in [(1, 0), (2, 0), (3, 0), None]: + msg = "we only support format version (1,0), (2,0), and (3,0), not %s" + raise ValueError(msg % (version,)) + + +@set_module("numpy.lib.format") +def magic(major, minor): + """ Return the magic string for the given file format version. + + Parameters + ---------- + major : int in [0, 255] + minor : int in [0, 255] + + Returns + ------- + magic : str + + Raises + ------ + ValueError if the version cannot be formatted. + """ + if major < 0 or major > 255: + raise ValueError("major version must be 0 <= major < 256") + if minor < 0 or minor > 255: + raise ValueError("minor version must be 0 <= minor < 256") + return MAGIC_PREFIX + bytes([major, minor]) + + +@set_module("numpy.lib.format") +def read_magic(fp): + """ Read the magic string to get the version of the file format. + + Parameters + ---------- + fp : filelike object + + Returns + ------- + major : int + minor : int + """ + magic_str = _read_bytes(fp, MAGIC_LEN, "magic string") + if magic_str[:-2] != MAGIC_PREFIX: + msg = "the magic string is not correct; expected %r, got %r" + raise ValueError(msg % (MAGIC_PREFIX, magic_str[:-2])) + major, minor = magic_str[-2:] + return major, minor + + +@set_module("numpy.lib.format") +def dtype_to_descr(dtype): + """ + Get a serializable descriptor from the dtype. + + The .descr attribute of a dtype object cannot be round-tripped through + the dtype() constructor. Simple types, like dtype('float32'), have + a descr which looks like a record array with one field with '' as + a name. The dtype() constructor interprets this as a request to give + a default name. Instead, we construct descriptor that can be passed to + dtype(). + + Parameters + ---------- + dtype : dtype + The dtype of the array that will be written to disk. + + Returns + ------- + descr : object + An object that can be passed to `numpy.dtype()` in order to + replicate the input dtype. + + """ + # NOTE: that drop_metadata may not return the right dtype e.g. for user + # dtypes. In that case our code below would fail the same, though. + new_dtype = drop_metadata(dtype) + if new_dtype is not dtype: + warnings.warn("metadata on a dtype is not saved to an npy/npz. " + "Use another format (such as pickle) to store it.", + UserWarning, stacklevel=2) + dtype = new_dtype + + if dtype.names is not None: + # This is a record array. The .descr is fine. XXX: parts of the + # record array with an empty name, like padding bytes, still get + # fiddled with. This needs to be fixed in the C implementation of + # dtype(). + return dtype.descr + elif not type(dtype)._legacy: + # this must be a user-defined dtype since numpy does not yet expose any + # non-legacy dtypes in the public API + # + # non-legacy dtypes don't yet have __array_interface__ + # support. Instead, as a hack, we use pickle to save the array, and lie + # that the dtype is object. When the array is loaded, the descriptor is + # unpickled with the array and the object dtype in the header is + # discarded. + # + # a future NEP should define a way to serialize user-defined + # descriptors and ideally work out the possible security implications + warnings.warn("Custom dtypes are saved as python objects using the " + "pickle protocol. Loading this file requires " + "allow_pickle=True to be set.", + UserWarning, stacklevel=2) + return "|O" + else: + return dtype.str + + +@set_module("numpy.lib.format") +def descr_to_dtype(descr): + """ + Returns a dtype based off the given description. + + This is essentially the reverse of `~lib.format.dtype_to_descr`. It will + remove the valueless padding fields created by, i.e. simple fields like + dtype('float32'), and then convert the description to its corresponding + dtype. + + Parameters + ---------- + descr : object + The object retrieved by dtype.descr. Can be passed to + `numpy.dtype` in order to replicate the input dtype. + + Returns + ------- + dtype : dtype + The dtype constructed by the description. + + """ + if isinstance(descr, str): + # No padding removal needed + return numpy.dtype(descr) + elif isinstance(descr, tuple): + # subtype, will always have a shape descr[1] + dt = descr_to_dtype(descr[0]) + return numpy.dtype((dt, descr[1])) + + titles = [] + names = [] + formats = [] + offsets = [] + offset = 0 + for field in descr: + if len(field) == 2: + name, descr_str = field + dt = descr_to_dtype(descr_str) + else: + name, descr_str, shape = field + dt = numpy.dtype((descr_to_dtype(descr_str), shape)) + + # Ignore padding bytes, which will be void bytes with '' as name + # Once support for blank names is removed, only "if name == ''" needed) + is_pad = (name == '' and dt.type is numpy.void and dt.names is None) + if not is_pad: + title, name = name if isinstance(name, tuple) else (None, name) + titles.append(title) + names.append(name) + formats.append(dt) + offsets.append(offset) + offset += dt.itemsize + + return numpy.dtype({'names': names, 'formats': formats, 'titles': titles, + 'offsets': offsets, 'itemsize': offset}) + + +@set_module("numpy.lib.format") +def header_data_from_array_1_0(array): + """ Get the dictionary of header metadata from a numpy.ndarray. + + Parameters + ---------- + array : numpy.ndarray + + Returns + ------- + d : dict + This has the appropriate entries for writing its string representation + to the header of the file. + """ + d = {'shape': array.shape} + if array.flags.c_contiguous: + d['fortran_order'] = False + elif array.flags.f_contiguous: + d['fortran_order'] = True + else: + # Totally non-contiguous data. We will have to make it C-contiguous + # before writing. Note that we need to test for C_CONTIGUOUS first + # because a 1-D array is both C_CONTIGUOUS and F_CONTIGUOUS. + d['fortran_order'] = False + + d['descr'] = dtype_to_descr(array.dtype) + return d + + +def _wrap_header(header, version): + """ + Takes a stringified header, and attaches the prefix and padding to it + """ + import struct + assert version is not None + fmt, encoding = _header_size_info[version] + header = header.encode(encoding) + hlen = len(header) + 1 + padlen = ARRAY_ALIGN - ((MAGIC_LEN + struct.calcsize(fmt) + hlen) % ARRAY_ALIGN) + try: + header_prefix = magic(*version) + struct.pack(fmt, hlen + padlen) + except struct.error: + msg = f"Header length {hlen} too big for version={version}" + raise ValueError(msg) from None + + # Pad the header with spaces and a final newline such that the magic + # string, the header-length short and the header are aligned on a + # ARRAY_ALIGN byte boundary. This supports memory mapping of dtypes + # aligned up to ARRAY_ALIGN on systems like Linux where mmap() + # offset must be page-aligned (i.e. the beginning of the file). + return header_prefix + header + b' ' * padlen + b'\n' + + +def _wrap_header_guess_version(header): + """ + Like `_wrap_header`, but chooses an appropriate version given the contents + """ + try: + return _wrap_header(header, (1, 0)) + except ValueError: + pass + + try: + ret = _wrap_header(header, (2, 0)) + except UnicodeEncodeError: + pass + else: + warnings.warn("Stored array in format 2.0. It can only be" + "read by NumPy >= 1.9", UserWarning, stacklevel=2) + return ret + + header = _wrap_header(header, (3, 0)) + warnings.warn("Stored array in format 3.0. It can only be " + "read by NumPy >= 1.17", UserWarning, stacklevel=2) + return header + + +def _write_array_header(fp, d, version=None): + """ Write the header for an array and returns the version used + + Parameters + ---------- + fp : filelike object + d : dict + This has the appropriate entries for writing its string representation + to the header of the file. + version : tuple or None + None means use oldest that works. Providing an explicit version will + raise a ValueError if the format does not allow saving this data. + Default: None + """ + header = ["{"] + for key, value in sorted(d.items()): + # Need to use repr here, since we eval these when reading + header.append(f"'{key}': {repr(value)}, ") + header.append("}") + header = "".join(header) + + # Add some spare space so that the array header can be modified in-place + # when changing the array size, e.g. when growing it by appending data at + # the end. + shape = d['shape'] + header += " " * ((GROWTH_AXIS_MAX_DIGITS - len(repr( + shape[-1 if d['fortran_order'] else 0] + ))) if len(shape) > 0 else 0) + + if version is None: + header = _wrap_header_guess_version(header) + else: + header = _wrap_header(header, version) + fp.write(header) + + +@set_module("numpy.lib.format") +def write_array_header_1_0(fp, d): + """ Write the header for an array using the 1.0 format. + + Parameters + ---------- + fp : filelike object + d : dict + This has the appropriate entries for writing its string + representation to the header of the file. + """ + _write_array_header(fp, d, (1, 0)) + + +@set_module("numpy.lib.format") +def write_array_header_2_0(fp, d): + """ Write the header for an array using the 2.0 format. + The 2.0 format allows storing very large structured arrays. + + Parameters + ---------- + fp : filelike object + d : dict + This has the appropriate entries for writing its string + representation to the header of the file. + """ + _write_array_header(fp, d, (2, 0)) + + +@set_module("numpy.lib.format") +def read_array_header_1_0(fp, max_header_size=_MAX_HEADER_SIZE): + """ + Read an array header from a filelike object using the 1.0 file format + version. + + This will leave the file object located just after the header. + + Parameters + ---------- + fp : filelike object + A file object or something with a `.read()` method like a file. + + Returns + ------- + shape : tuple of int + The shape of the array. + fortran_order : bool + The array data will be written out directly if it is either + C-contiguous or Fortran-contiguous. Otherwise, it will be made + contiguous before writing it out. + dtype : dtype + The dtype of the file's data. + max_header_size : int, optional + Maximum allowed size of the header. Large headers may not be safe + to load securely and thus require explicitly passing a larger value. + See :py:func:`ast.literal_eval()` for details. + + Raises + ------ + ValueError + If the data is invalid. + + """ + return _read_array_header( + fp, version=(1, 0), max_header_size=max_header_size) + + +@set_module("numpy.lib.format") +def read_array_header_2_0(fp, max_header_size=_MAX_HEADER_SIZE): + """ + Read an array header from a filelike object using the 2.0 file format + version. + + This will leave the file object located just after the header. + + Parameters + ---------- + fp : filelike object + A file object or something with a `.read()` method like a file. + max_header_size : int, optional + Maximum allowed size of the header. Large headers may not be safe + to load securely and thus require explicitly passing a larger value. + See :py:func:`ast.literal_eval()` for details. + + Returns + ------- + shape : tuple of int + The shape of the array. + fortran_order : bool + The array data will be written out directly if it is either + C-contiguous or Fortran-contiguous. Otherwise, it will be made + contiguous before writing it out. + dtype : dtype + The dtype of the file's data. + + Raises + ------ + ValueError + If the data is invalid. + + """ + return _read_array_header( + fp, version=(2, 0), max_header_size=max_header_size) + + +def _filter_header(s): + """Clean up 'L' in npz header ints. + + Cleans up the 'L' in strings representing integers. Needed to allow npz + headers produced in Python2 to be read in Python3. + + Parameters + ---------- + s : string + Npy file header. + + Returns + ------- + header : str + Cleaned up header. + + """ + import tokenize + from io import StringIO + + tokens = [] + last_token_was_number = False + for token in tokenize.generate_tokens(StringIO(s).readline): + token_type = token[0] + token_string = token[1] + if (last_token_was_number and + token_type == tokenize.NAME and + token_string == "L"): + continue + else: + tokens.append(token) + last_token_was_number = (token_type == tokenize.NUMBER) + return tokenize.untokenize(tokens) + + +def _read_array_header(fp, version, max_header_size=_MAX_HEADER_SIZE): + """ + see read_array_header_1_0 + """ + # Read an unsigned, little-endian short int which has the length of the + # header. + import ast + import struct + hinfo = _header_size_info.get(version) + if hinfo is None: + raise ValueError(f"Invalid version {version!r}") + hlength_type, encoding = hinfo + + hlength_str = _read_bytes(fp, struct.calcsize(hlength_type), "array header length") + header_length = struct.unpack(hlength_type, hlength_str)[0] + header = _read_bytes(fp, header_length, "array header") + header = header.decode(encoding) + if len(header) > max_header_size: + raise ValueError( + f"Header info length ({len(header)}) is large and may not be safe " + "to load securely.\n" + "To allow loading, adjust `max_header_size` or fully trust " + "the `.npy` file using `allow_pickle=True`.\n" + "For safety against large resource use or crashes, sandboxing " + "may be necessary.") + + # The header is a pretty-printed string representation of a literal + # Python dictionary with trailing newlines padded to a ARRAY_ALIGN byte + # boundary. The keys are strings. + # "shape" : tuple of int + # "fortran_order" : bool + # "descr" : dtype.descr + # Versions (2, 0) and (1, 0) could have been created by a Python 2 + # implementation before header filtering was implemented. + # + # For performance reasons, we try without _filter_header first though + try: + d = ast.literal_eval(header) + except SyntaxError as e: + if version <= (2, 0): + header = _filter_header(header) + try: + d = ast.literal_eval(header) + except SyntaxError as e2: + msg = "Cannot parse header: {!r}" + raise ValueError(msg.format(header)) from e2 + else: + warnings.warn( + "Reading `.npy` or `.npz` file required additional " + "header parsing as it was created on Python 2. Save the " + "file again to speed up loading and avoid this warning.", + UserWarning, stacklevel=4) + else: + msg = "Cannot parse header: {!r}" + raise ValueError(msg.format(header)) from e + if not isinstance(d, dict): + msg = "Header is not a dictionary: {!r}" + raise ValueError(msg.format(d)) + + if EXPECTED_KEYS != d.keys(): + keys = sorted(d.keys()) + msg = "Header does not contain the correct keys: {!r}" + raise ValueError(msg.format(keys)) + + # Sanity-check the values. + if (not isinstance(d['shape'], tuple) or + not all(isinstance(x, int) for x in d['shape'])): + msg = "shape is not valid: {!r}" + raise ValueError(msg.format(d['shape'])) + if not isinstance(d['fortran_order'], bool): + msg = "fortran_order is not a valid bool: {!r}" + raise ValueError(msg.format(d['fortran_order'])) + try: + dtype = descr_to_dtype(d['descr']) + except TypeError as e: + msg = "descr is not a valid dtype descriptor: {!r}" + raise ValueError(msg.format(d['descr'])) from e + + return d['shape'], d['fortran_order'], dtype + + +@set_module("numpy.lib.format") +def write_array(fp, array, version=None, allow_pickle=True, pickle_kwargs=None): + """ + Write an array to an NPY file, including a header. + + If the array is neither C-contiguous nor Fortran-contiguous AND the + file_like object is not a real file object, this function will have to + copy data in memory. + + Parameters + ---------- + fp : file_like object + An open, writable file object, or similar object with a + ``.write()`` method. + array : ndarray + The array to write to disk. + version : (int, int) or None, optional + The version number of the format. None means use the oldest + supported version that is able to store the data. Default: None + allow_pickle : bool, optional + Whether to allow writing pickled data. Default: True + pickle_kwargs : dict, optional + Additional keyword arguments to pass to pickle.dump, excluding + 'protocol'. These are only useful when pickling objects in object + arrays to Python 2 compatible format. + + Raises + ------ + ValueError + If the array cannot be persisted. This includes the case of + allow_pickle=False and array being an object array. + Various other errors + If the array contains Python objects as part of its dtype, the + process of pickling them may raise various errors if the objects + are not picklable. + + """ + _check_version(version) + _write_array_header(fp, header_data_from_array_1_0(array), version) + + if array.itemsize == 0: + buffersize = 0 + else: + # Set buffer size to 16 MiB to hide the Python loop overhead. + buffersize = max(16 * 1024 ** 2 // array.itemsize, 1) + + dtype_class = type(array.dtype) + + if array.dtype.hasobject or not dtype_class._legacy: + # We contain Python objects so we cannot write out the data + # directly. Instead, we will pickle it out + if not allow_pickle: + if array.dtype.hasobject: + raise ValueError("Object arrays cannot be saved when " + "allow_pickle=False") + if not dtype_class._legacy: + raise ValueError("User-defined dtypes cannot be saved " + "when allow_pickle=False") + if pickle_kwargs is None: + pickle_kwargs = {} + pickle.dump(array, fp, protocol=4, **pickle_kwargs) + elif array.flags.f_contiguous and not array.flags.c_contiguous: + if isfileobj(fp): + array.T.tofile(fp) + else: + for chunk in numpy.nditer( + array, flags=['external_loop', 'buffered', 'zerosize_ok'], + buffersize=buffersize, order='F'): + fp.write(chunk.tobytes('C')) + elif isfileobj(fp): + array.tofile(fp) + else: + for chunk in numpy.nditer( + array, flags=['external_loop', 'buffered', 'zerosize_ok'], + buffersize=buffersize, order='C'): + fp.write(chunk.tobytes('C')) + + +@set_module("numpy.lib.format") +def read_array(fp, allow_pickle=False, pickle_kwargs=None, *, + max_header_size=_MAX_HEADER_SIZE): + """ + Read an array from an NPY file. + + Parameters + ---------- + fp : file_like object + If this is not a real file object, then this may take extra memory + and time. + allow_pickle : bool, optional + Whether to allow writing pickled data. Default: False + pickle_kwargs : dict + Additional keyword arguments to pass to pickle.load. These are only + useful when loading object arrays saved on Python 2. + max_header_size : int, optional + Maximum allowed size of the header. Large headers may not be safe + to load securely and thus require explicitly passing a larger value. + See :py:func:`ast.literal_eval()` for details. + This option is ignored when `allow_pickle` is passed. In that case + the file is by definition trusted and the limit is unnecessary. + + Returns + ------- + array : ndarray + The array from the data on disk. + + Raises + ------ + ValueError + If the data is invalid, or allow_pickle=False and the file contains + an object array. + + """ + if allow_pickle: + # Effectively ignore max_header_size, since `allow_pickle` indicates + # that the input is fully trusted. + max_header_size = 2**64 + + version = read_magic(fp) + _check_version(version) + shape, fortran_order, dtype = _read_array_header( + fp, version, max_header_size=max_header_size) + if len(shape) == 0: + count = 1 + else: + count = numpy.multiply.reduce(shape, dtype=numpy.int64) + + # Now read the actual data. + if dtype.hasobject: + # The array contained Python objects. We need to unpickle the data. + if not allow_pickle: + raise ValueError("Object arrays cannot be loaded when " + "allow_pickle=False") + if pickle_kwargs is None: + pickle_kwargs = {} + try: + array = pickle.load(fp, **pickle_kwargs) + except UnicodeError as err: + # Friendlier error message + raise UnicodeError("Unpickling a python object failed: %r\n" + "You may need to pass the encoding= option " + "to numpy.load" % (err,)) from err + else: + if isfileobj(fp): + # We can use the fast fromfile() function. + array = numpy.fromfile(fp, dtype=dtype, count=count) + else: + # This is not a real file. We have to read it the + # memory-intensive way. + # crc32 module fails on reads greater than 2 ** 32 bytes, + # breaking large reads from gzip streams. Chunk reads to + # BUFFER_SIZE bytes to avoid issue and reduce memory overhead + # of the read. In non-chunked case count < max_read_count, so + # only one read is performed. + + # Use np.ndarray instead of np.empty since the latter does + # not correctly instantiate zero-width string dtypes; see + # https://github.com/numpy/numpy/pull/6430 + array = numpy.ndarray(count, dtype=dtype) + + if dtype.itemsize > 0: + # If dtype.itemsize == 0 then there's nothing more to read + max_read_count = BUFFER_SIZE // min(BUFFER_SIZE, dtype.itemsize) + + for i in range(0, count, max_read_count): + read_count = min(max_read_count, count - i) + read_size = int(read_count * dtype.itemsize) + data = _read_bytes(fp, read_size, "array data") + array[i:i + read_count] = numpy.frombuffer(data, dtype=dtype, + count=read_count) + + if array.size != count: + raise ValueError( + "Failed to read all data for array. " + f"Expected {shape} = {count} elements, " + f"could only read {array.size} elements. " + "(file seems not fully written?)" + ) + + if fortran_order: + array.shape = shape[::-1] + array = array.transpose() + else: + array.shape = shape + + return array + + +@set_module("numpy.lib.format") +def open_memmap(filename, mode='r+', dtype=None, shape=None, + fortran_order=False, version=None, *, + max_header_size=_MAX_HEADER_SIZE): + """ + Open a .npy file as a memory-mapped array. + + This may be used to read an existing file or create a new one. + + Parameters + ---------- + filename : str or path-like + The name of the file on disk. This may *not* be a file-like + object. + mode : str, optional + The mode in which to open the file; the default is 'r+'. In + addition to the standard file modes, 'c' is also accepted to mean + "copy on write." See `memmap` for the available mode strings. + dtype : data-type, optional + The data type of the array if we are creating a new file in "write" + mode, if not, `dtype` is ignored. The default value is None, which + results in a data-type of `float64`. + shape : tuple of int + The shape of the array if we are creating a new file in "write" + mode, in which case this parameter is required. Otherwise, this + parameter is ignored and is thus optional. + fortran_order : bool, optional + Whether the array should be Fortran-contiguous (True) or + C-contiguous (False, the default) if we are creating a new file in + "write" mode. + version : tuple of int (major, minor) or None + If the mode is a "write" mode, then this is the version of the file + format used to create the file. None means use the oldest + supported version that is able to store the data. Default: None + max_header_size : int, optional + Maximum allowed size of the header. Large headers may not be safe + to load securely and thus require explicitly passing a larger value. + See :py:func:`ast.literal_eval()` for details. + + Returns + ------- + marray : memmap + The memory-mapped array. + + Raises + ------ + ValueError + If the data or the mode is invalid. + OSError + If the file is not found or cannot be opened correctly. + + See Also + -------- + numpy.memmap + + """ + if isfileobj(filename): + raise ValueError("Filename must be a string or a path-like object." + " Memmap cannot use existing file handles.") + + if 'w' in mode: + # We are creating the file, not reading it. + # Check if we ought to create the file. + _check_version(version) + # Ensure that the given dtype is an authentic dtype object rather + # than just something that can be interpreted as a dtype object. + dtype = numpy.dtype(dtype) + if dtype.hasobject: + msg = "Array can't be memory-mapped: Python objects in dtype." + raise ValueError(msg) + d = { + "descr": dtype_to_descr(dtype), + "fortran_order": fortran_order, + "shape": shape, + } + # If we got here, then it should be safe to create the file. + with open(os.fspath(filename), mode + 'b') as fp: + _write_array_header(fp, d, version) + offset = fp.tell() + else: + # Read the header of the file first. + with open(os.fspath(filename), 'rb') as fp: + version = read_magic(fp) + _check_version(version) + + shape, fortran_order, dtype = _read_array_header( + fp, version, max_header_size=max_header_size) + if dtype.hasobject: + msg = "Array can't be memory-mapped: Python objects in dtype." + raise ValueError(msg) + offset = fp.tell() + + if fortran_order: + order = 'F' + else: + order = 'C' + + # We need to change a write-only mode to a read-write mode since we've + # already written data to the file. + if mode == 'w+': + mode = 'r+' + + marray = numpy.memmap(filename, dtype=dtype, shape=shape, order=order, + mode=mode, offset=offset) + + return marray + + +def _read_bytes(fp, size, error_template="ran out of data"): + """ + Read from file-like object until size bytes are read. + Raises ValueError if not EOF is encountered before size bytes are read. + Non-blocking objects only supported if they derive from io objects. + + Required as e.g. ZipExtFile in python 2.6 can return less data than + requested. + """ + data = b"" + while True: + # io files (default in python3) return None or raise on + # would-block, python2 file will truncate, probably nothing can be + # done about that. note that regular files can't be non-blocking + try: + r = fp.read(size - len(data)) + data += r + if len(r) == 0 or len(data) == size: + break + except BlockingIOError: + pass + if len(data) != size: + msg = "EOF: reading %s, expected %d bytes got %d" + raise ValueError(msg % (error_template, size, len(data))) + else: + return data + + +@set_module("numpy.lib.format") +def isfileobj(f): + if not isinstance(f, (io.FileIO, io.BufferedReader, io.BufferedWriter)): + return False + try: + # BufferedReader/Writer may raise OSError when + # fetching `fileno()` (e.g. when wrapping BytesIO). + f.fileno() + return True + except OSError: + return False diff --git a/.venv/lib/python3.12/site-packages/numpy/lib/_format_impl.pyi b/.venv/lib/python3.12/site-packages/numpy/lib/_format_impl.pyi new file mode 100644 index 0000000..f4898d9 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/lib/_format_impl.pyi @@ -0,0 +1,26 @@ +from typing import Final, Literal + +from numpy.lib._utils_impl import drop_metadata # noqa: F401 + +__all__: list[str] = [] + +EXPECTED_KEYS: Final[set[str]] +MAGIC_PREFIX: Final[bytes] +MAGIC_LEN: Literal[8] +ARRAY_ALIGN: Literal[64] +BUFFER_SIZE: Literal[262144] # 2**18 +GROWTH_AXIS_MAX_DIGITS: Literal[21] + +def magic(major, minor): ... +def read_magic(fp): ... +def dtype_to_descr(dtype): ... +def descr_to_dtype(descr): ... +def header_data_from_array_1_0(array): ... +def write_array_header_1_0(fp, d): ... +def write_array_header_2_0(fp, d): ... +def read_array_header_1_0(fp): ... +def read_array_header_2_0(fp): ... +def write_array(fp, array, version=..., allow_pickle=..., pickle_kwargs=...): ... +def read_array(fp, allow_pickle=..., pickle_kwargs=...): ... +def open_memmap(filename, mode=..., dtype=..., shape=..., fortran_order=..., version=...): ... +def isfileobj(f): ... diff --git a/.venv/lib/python3.12/site-packages/numpy/lib/_function_base_impl.py b/.venv/lib/python3.12/site-packages/numpy/lib/_function_base_impl.py new file mode 100644 index 0000000..9ee5944 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/lib/_function_base_impl.py @@ -0,0 +1,5844 @@ +import builtins +import collections.abc +import functools +import re +import sys +import warnings + +import numpy as np +import numpy._core.numeric as _nx +from numpy._core import overrides, transpose +from numpy._core._multiarray_umath import _array_converter +from numpy._core.fromnumeric import any, mean, nonzero, partition, ravel, sum +from numpy._core.multiarray import _monotonicity, _place, bincount, normalize_axis_index +from numpy._core.multiarray import interp as compiled_interp +from numpy._core.multiarray import interp_complex as compiled_interp_complex +from numpy._core.numeric import ( + absolute, + arange, + array, + asanyarray, + asarray, + concatenate, + dot, + empty, + integer, + intp, + isscalar, + ndarray, + ones, + take, + where, + zeros_like, +) +from numpy._core.numerictypes import typecodes +from numpy._core.umath import ( + add, + arctan2, + cos, + exp, + frompyfunc, + less_equal, + minimum, + mod, + not_equal, + pi, + sin, + sqrt, + subtract, +) +from numpy._utils import set_module + +# needed in this module for compatibility +from numpy.lib._histograms_impl import histogram, histogramdd # noqa: F401 +from numpy.lib._twodim_base_impl import diag + +array_function_dispatch = functools.partial( + overrides.array_function_dispatch, module='numpy') + + +__all__ = [ + 'select', 'piecewise', 'trim_zeros', 'copy', 'iterable', 'percentile', + 'diff', 'gradient', 'angle', 'unwrap', 'sort_complex', 'flip', + 'rot90', 'extract', 'place', 'vectorize', 'asarray_chkfinite', 'average', + 'bincount', 'digitize', 'cov', 'corrcoef', + 'median', 'sinc', 'hamming', 'hanning', 'bartlett', + 'blackman', 'kaiser', 'trapezoid', 'trapz', 'i0', + 'meshgrid', 'delete', 'insert', 'append', 'interp', + 'quantile' + ] + +# _QuantileMethods is a dictionary listing all the supported methods to +# compute quantile/percentile. +# +# Below virtual_index refers to the index of the element where the percentile +# would be found in the sorted sample. +# When the sample contains exactly the percentile wanted, the virtual_index is +# an integer to the index of this element. +# When the percentile wanted is in between two elements, the virtual_index +# is made of a integer part (a.k.a 'i' or 'left') and a fractional part +# (a.k.a 'g' or 'gamma') +# +# Each method in _QuantileMethods has two properties +# get_virtual_index : Callable +# The function used to compute the virtual_index. +# fix_gamma : Callable +# A function used for discrete methods to force the index to a specific value. +_QuantileMethods = { + # --- HYNDMAN and FAN METHODS + # Discrete methods + 'inverted_cdf': { + 'get_virtual_index': lambda n, quantiles: _inverted_cdf(n, quantiles), # noqa: PLW0108 + 'fix_gamma': None, # should never be called + }, + 'averaged_inverted_cdf': { + 'get_virtual_index': lambda n, quantiles: (n * quantiles) - 1, + 'fix_gamma': lambda gamma, _: _get_gamma_mask( + shape=gamma.shape, + default_value=1., + conditioned_value=0.5, + where=gamma == 0), + }, + 'closest_observation': { + 'get_virtual_index': lambda n, quantiles: _closest_observation(n, quantiles), # noqa: PLW0108 + 'fix_gamma': None, # should never be called + }, + # Continuous methods + 'interpolated_inverted_cdf': { + 'get_virtual_index': lambda n, quantiles: + _compute_virtual_index(n, quantiles, 0, 1), + 'fix_gamma': lambda gamma, _: gamma, + }, + 'hazen': { + 'get_virtual_index': lambda n, quantiles: + _compute_virtual_index(n, quantiles, 0.5, 0.5), + 'fix_gamma': lambda gamma, _: gamma, + }, + 'weibull': { + 'get_virtual_index': lambda n, quantiles: + _compute_virtual_index(n, quantiles, 0, 0), + 'fix_gamma': lambda gamma, _: gamma, + }, + # Default method. + # To avoid some rounding issues, `(n-1) * quantiles` is preferred to + # `_compute_virtual_index(n, quantiles, 1, 1)`. + # They are mathematically equivalent. + 'linear': { + 'get_virtual_index': lambda n, quantiles: (n - 1) * quantiles, + 'fix_gamma': lambda gamma, _: gamma, + }, + 'median_unbiased': { + 'get_virtual_index': lambda n, quantiles: + _compute_virtual_index(n, quantiles, 1 / 3.0, 1 / 3.0), + 'fix_gamma': lambda gamma, _: gamma, + }, + 'normal_unbiased': { + 'get_virtual_index': lambda n, quantiles: + _compute_virtual_index(n, quantiles, 3 / 8.0, 3 / 8.0), + 'fix_gamma': lambda gamma, _: gamma, + }, + # --- OTHER METHODS + 'lower': { + 'get_virtual_index': lambda n, quantiles: np.floor( + (n - 1) * quantiles).astype(np.intp), + 'fix_gamma': None, # should never be called, index dtype is int + }, + 'higher': { + 'get_virtual_index': lambda n, quantiles: np.ceil( + (n - 1) * quantiles).astype(np.intp), + 'fix_gamma': None, # should never be called, index dtype is int + }, + 'midpoint': { + 'get_virtual_index': lambda n, quantiles: 0.5 * ( + np.floor((n - 1) * quantiles) + + np.ceil((n - 1) * quantiles)), + 'fix_gamma': lambda gamma, index: _get_gamma_mask( + shape=gamma.shape, + default_value=0.5, + conditioned_value=0., + where=index % 1 == 0), + }, + 'nearest': { + 'get_virtual_index': lambda n, quantiles: np.around( + (n - 1) * quantiles).astype(np.intp), + 'fix_gamma': None, + # should never be called, index dtype is int + }} + + +def _rot90_dispatcher(m, k=None, axes=None): + return (m,) + + +@array_function_dispatch(_rot90_dispatcher) +def rot90(m, k=1, axes=(0, 1)): + """ + Rotate an array by 90 degrees in the plane specified by axes. + + Rotation direction is from the first towards the second axis. + This means for a 2D array with the default `k` and `axes`, the + rotation will be counterclockwise. + + Parameters + ---------- + m : array_like + Array of two or more dimensions. + k : integer + Number of times the array is rotated by 90 degrees. + axes : (2,) array_like + The array is rotated in the plane defined by the axes. + Axes must be different. + + Returns + ------- + y : ndarray + A rotated view of `m`. + + See Also + -------- + flip : Reverse the order of elements in an array along the given axis. + fliplr : Flip an array horizontally. + flipud : Flip an array vertically. + + Notes + ----- + ``rot90(m, k=1, axes=(1,0))`` is the reverse of + ``rot90(m, k=1, axes=(0,1))`` + + ``rot90(m, k=1, axes=(1,0))`` is equivalent to + ``rot90(m, k=-1, axes=(0,1))`` + + Examples + -------- + >>> import numpy as np + >>> m = np.array([[1,2],[3,4]], int) + >>> m + array([[1, 2], + [3, 4]]) + >>> np.rot90(m) + array([[2, 4], + [1, 3]]) + >>> np.rot90(m, 2) + array([[4, 3], + [2, 1]]) + >>> m = np.arange(8).reshape((2,2,2)) + >>> np.rot90(m, 1, (1,2)) + array([[[1, 3], + [0, 2]], + [[5, 7], + [4, 6]]]) + + """ + axes = tuple(axes) + if len(axes) != 2: + raise ValueError("len(axes) must be 2.") + + m = asanyarray(m) + + if axes[0] == axes[1] or absolute(axes[0] - axes[1]) == m.ndim: + raise ValueError("Axes must be different.") + + if (axes[0] >= m.ndim or axes[0] < -m.ndim + or axes[1] >= m.ndim or axes[1] < -m.ndim): + raise ValueError(f"Axes={axes} out of range for array of ndim={m.ndim}.") + + k %= 4 + + if k == 0: + return m[:] + if k == 2: + return flip(flip(m, axes[0]), axes[1]) + + axes_list = arange(0, m.ndim) + (axes_list[axes[0]], axes_list[axes[1]]) = (axes_list[axes[1]], + axes_list[axes[0]]) + + if k == 1: + return transpose(flip(m, axes[1]), axes_list) + else: + # k == 3 + return flip(transpose(m, axes_list), axes[1]) + + +def _flip_dispatcher(m, axis=None): + return (m,) + + +@array_function_dispatch(_flip_dispatcher) +def flip(m, axis=None): + """ + Reverse the order of elements in an array along the given axis. + + The shape of the array is preserved, but the elements are reordered. + + Parameters + ---------- + m : array_like + Input array. + axis : None or int or tuple of ints, optional + Axis or axes along which to flip over. The default, + axis=None, will flip over all of the axes of the input array. + If axis is negative it counts from the last to the first axis. + + If axis is a tuple of ints, flipping is performed on all of the axes + specified in the tuple. + + Returns + ------- + out : array_like + A view of `m` with the entries of axis reversed. Since a view is + returned, this operation is done in constant time. + + See Also + -------- + flipud : Flip an array vertically (axis=0). + fliplr : Flip an array horizontally (axis=1). + + Notes + ----- + flip(m, 0) is equivalent to flipud(m). + + flip(m, 1) is equivalent to fliplr(m). + + flip(m, n) corresponds to ``m[...,::-1,...]`` with ``::-1`` at position n. + + flip(m) corresponds to ``m[::-1,::-1,...,::-1]`` with ``::-1`` at all + positions. + + flip(m, (0, 1)) corresponds to ``m[::-1,::-1,...]`` with ``::-1`` at + position 0 and position 1. + + Examples + -------- + >>> import numpy as np + >>> A = np.arange(8).reshape((2,2,2)) + >>> A + array([[[0, 1], + [2, 3]], + [[4, 5], + [6, 7]]]) + >>> np.flip(A, 0) + array([[[4, 5], + [6, 7]], + [[0, 1], + [2, 3]]]) + >>> np.flip(A, 1) + array([[[2, 3], + [0, 1]], + [[6, 7], + [4, 5]]]) + >>> np.flip(A) + array([[[7, 6], + [5, 4]], + [[3, 2], + [1, 0]]]) + >>> np.flip(A, (0, 2)) + array([[[5, 4], + [7, 6]], + [[1, 0], + [3, 2]]]) + >>> rng = np.random.default_rng() + >>> A = rng.normal(size=(3,4,5)) + >>> np.all(np.flip(A,2) == A[:,:,::-1,...]) + True + """ + if not hasattr(m, 'ndim'): + m = asarray(m) + if axis is None: + indexer = (np.s_[::-1],) * m.ndim + else: + axis = _nx.normalize_axis_tuple(axis, m.ndim) + indexer = [np.s_[:]] * m.ndim + for ax in axis: + indexer[ax] = np.s_[::-1] + indexer = tuple(indexer) + return m[indexer] + + +@set_module('numpy') +def iterable(y): + """ + Check whether or not an object can be iterated over. + + Parameters + ---------- + y : object + Input object. + + Returns + ------- + b : bool + Return ``True`` if the object has an iterator method or is a + sequence and ``False`` otherwise. + + + Examples + -------- + >>> import numpy as np + >>> np.iterable([1, 2, 3]) + True + >>> np.iterable(2) + False + + Notes + ----- + In most cases, the results of ``np.iterable(obj)`` are consistent with + ``isinstance(obj, collections.abc.Iterable)``. One notable exception is + the treatment of 0-dimensional arrays:: + + >>> from collections.abc import Iterable + >>> a = np.array(1.0) # 0-dimensional numpy array + >>> isinstance(a, Iterable) + True + >>> np.iterable(a) + False + + """ + try: + iter(y) + except TypeError: + return False + return True + + +def _weights_are_valid(weights, a, axis): + """Validate weights array. + + We assume, weights is not None. + """ + wgt = np.asanyarray(weights) + + # Sanity checks + if a.shape != wgt.shape: + if axis is None: + raise TypeError( + "Axis must be specified when shapes of a and weights " + "differ.") + if wgt.shape != tuple(a.shape[ax] for ax in axis): + raise ValueError( + "Shape of weights must be consistent with " + "shape of a along specified axis.") + + # setup wgt to broadcast along axis + wgt = wgt.transpose(np.argsort(axis)) + wgt = wgt.reshape(tuple((s if ax in axis else 1) + for ax, s in enumerate(a.shape))) + return wgt + + +def _average_dispatcher(a, axis=None, weights=None, returned=None, *, + keepdims=None): + return (a, weights) + + +@array_function_dispatch(_average_dispatcher) +def average(a, axis=None, weights=None, returned=False, *, + keepdims=np._NoValue): + """ + Compute the weighted average along the specified axis. + + Parameters + ---------- + a : array_like + Array containing data to be averaged. If `a` is not an array, a + conversion is attempted. + axis : None or int or tuple of ints, optional + Axis or axes along which to average `a`. The default, + `axis=None`, will average over all of the elements of the input array. + If axis is negative it counts from the last to the first axis. + If axis is a tuple of ints, averaging is performed on all of the axes + specified in the tuple instead of a single axis or all the axes as + before. + weights : array_like, optional + An array of weights associated with the values in `a`. Each value in + `a` contributes to the average according to its associated weight. + The array of weights must be the same shape as `a` if no axis is + specified, otherwise the weights must have dimensions and shape + consistent with `a` along the specified axis. + If `weights=None`, then all data in `a` are assumed to have a + weight equal to one. + The calculation is:: + + avg = sum(a * weights) / sum(weights) + + where the sum is over all included elements. + The only constraint on the values of `weights` is that `sum(weights)` + must not be 0. + returned : bool, optional + Default is `False`. If `True`, the tuple (`average`, `sum_of_weights`) + is returned, otherwise only the average is returned. + If `weights=None`, `sum_of_weights` is equivalent to the number of + elements over which the average is taken. + keepdims : bool, optional + If this is set to True, the axes which are reduced are left + in the result as dimensions with size one. With this option, + the result will broadcast correctly against the original `a`. + *Note:* `keepdims` will not work with instances of `numpy.matrix` + or other classes whose methods do not support `keepdims`. + + .. versionadded:: 1.23.0 + + Returns + ------- + retval, [sum_of_weights] : array_type or double + Return the average along the specified axis. When `returned` is `True`, + return a tuple with the average as the first element and the sum + of the weights as the second element. `sum_of_weights` is of the + same type as `retval`. The result dtype follows a general pattern. + If `weights` is None, the result dtype will be that of `a` , or ``float64`` + if `a` is integral. Otherwise, if `weights` is not None and `a` is non- + integral, the result type will be the type of lowest precision capable of + representing values of both `a` and `weights`. If `a` happens to be + integral, the previous rules still applies but the result dtype will + at least be ``float64``. + + Raises + ------ + ZeroDivisionError + When all weights along axis are zero. See `numpy.ma.average` for a + version robust to this type of error. + TypeError + When `weights` does not have the same shape as `a`, and `axis=None`. + ValueError + When `weights` does not have dimensions and shape consistent with `a` + along specified `axis`. + + See Also + -------- + mean + + ma.average : average for masked arrays -- useful if your data contains + "missing" values + numpy.result_type : Returns the type that results from applying the + numpy type promotion rules to the arguments. + + Examples + -------- + >>> import numpy as np + >>> data = np.arange(1, 5) + >>> data + array([1, 2, 3, 4]) + >>> np.average(data) + 2.5 + >>> np.average(np.arange(1, 11), weights=np.arange(10, 0, -1)) + 4.0 + + >>> data = np.arange(6).reshape((3, 2)) + >>> data + array([[0, 1], + [2, 3], + [4, 5]]) + >>> np.average(data, axis=1, weights=[1./4, 3./4]) + array([0.75, 2.75, 4.75]) + >>> np.average(data, weights=[1./4, 3./4]) + Traceback (most recent call last): + ... + TypeError: Axis must be specified when shapes of a and weights differ. + + With ``keepdims=True``, the following result has shape (3, 1). + + >>> np.average(data, axis=1, keepdims=True) + array([[0.5], + [2.5], + [4.5]]) + + >>> data = np.arange(8).reshape((2, 2, 2)) + >>> data + array([[[0, 1], + [2, 3]], + [[4, 5], + [6, 7]]]) + >>> np.average(data, axis=(0, 1), weights=[[1./4, 3./4], [1., 1./2]]) + array([3.4, 4.4]) + >>> np.average(data, axis=0, weights=[[1./4, 3./4], [1., 1./2]]) + Traceback (most recent call last): + ... + ValueError: Shape of weights must be consistent + with shape of a along specified axis. + """ + a = np.asanyarray(a) + + if axis is not None: + axis = _nx.normalize_axis_tuple(axis, a.ndim, argname="axis") + + if keepdims is np._NoValue: + # Don't pass on the keepdims argument if one wasn't given. + keepdims_kw = {} + else: + keepdims_kw = {'keepdims': keepdims} + + if weights is None: + avg = a.mean(axis, **keepdims_kw) + avg_as_array = np.asanyarray(avg) + scl = avg_as_array.dtype.type(a.size / avg_as_array.size) + else: + wgt = _weights_are_valid(weights=weights, a=a, axis=axis) + + if issubclass(a.dtype.type, (np.integer, np.bool)): + result_dtype = np.result_type(a.dtype, wgt.dtype, 'f8') + else: + result_dtype = np.result_type(a.dtype, wgt.dtype) + + scl = wgt.sum(axis=axis, dtype=result_dtype, **keepdims_kw) + if np.any(scl == 0.0): + raise ZeroDivisionError( + "Weights sum to zero, can't be normalized") + + avg = avg_as_array = np.multiply(a, wgt, + dtype=result_dtype).sum(axis, **keepdims_kw) / scl + + if returned: + if scl.shape != avg_as_array.shape: + scl = np.broadcast_to(scl, avg_as_array.shape).copy() + return avg, scl + else: + return avg + + +@set_module('numpy') +def asarray_chkfinite(a, dtype=None, order=None): + """Convert the input to an array, checking for NaNs or Infs. + + Parameters + ---------- + a : array_like + Input data, in any form that can be converted to an array. This + includes lists, lists of tuples, tuples, tuples of tuples, tuples + of lists and ndarrays. Success requires no NaNs or Infs. + dtype : data-type, optional + By default, the data-type is inferred from the input data. + order : {'C', 'F', 'A', 'K'}, optional + Memory layout. 'A' and 'K' depend on the order of input array a. + 'C' row-major (C-style), + 'F' column-major (Fortran-style) memory representation. + 'A' (any) means 'F' if `a` is Fortran contiguous, 'C' otherwise + 'K' (keep) preserve input order + Defaults to 'C'. + + Returns + ------- + out : ndarray + Array interpretation of `a`. No copy is performed if the input + is already an ndarray. If `a` is a subclass of ndarray, a base + class ndarray is returned. + + Raises + ------ + ValueError + Raises ValueError if `a` contains NaN (Not a Number) or Inf (Infinity). + + See Also + -------- + asarray : Create and array. + asanyarray : Similar function which passes through subclasses. + ascontiguousarray : Convert input to a contiguous array. + asfortranarray : Convert input to an ndarray with column-major + memory order. + fromiter : Create an array from an iterator. + fromfunction : Construct an array by executing a function on grid + positions. + + Examples + -------- + >>> import numpy as np + + Convert a list into an array. If all elements are finite, then + ``asarray_chkfinite`` is identical to ``asarray``. + + >>> a = [1, 2] + >>> np.asarray_chkfinite(a, dtype=float) + array([1., 2.]) + + Raises ValueError if array_like contains Nans or Infs. + + >>> a = [1, 2, np.inf] + >>> try: + ... np.asarray_chkfinite(a) + ... except ValueError: + ... print('ValueError') + ... + ValueError + + """ + a = asarray(a, dtype=dtype, order=order) + if a.dtype.char in typecodes['AllFloat'] and not np.isfinite(a).all(): + raise ValueError( + "array must not contain infs or NaNs") + return a + + +def _piecewise_dispatcher(x, condlist, funclist, *args, **kw): + yield x + # support the undocumented behavior of allowing scalars + if np.iterable(condlist): + yield from condlist + + +@array_function_dispatch(_piecewise_dispatcher) +def piecewise(x, condlist, funclist, *args, **kw): + """ + Evaluate a piecewise-defined function. + + Given a set of conditions and corresponding functions, evaluate each + function on the input data wherever its condition is true. + + Parameters + ---------- + x : ndarray or scalar + The input domain. + condlist : list of bool arrays or bool scalars + Each boolean array corresponds to a function in `funclist`. Wherever + `condlist[i]` is True, `funclist[i](x)` is used as the output value. + + Each boolean array in `condlist` selects a piece of `x`, + and should therefore be of the same shape as `x`. + + The length of `condlist` must correspond to that of `funclist`. + If one extra function is given, i.e. if + ``len(funclist) == len(condlist) + 1``, then that extra function + is the default value, used wherever all conditions are false. + funclist : list of callables, f(x,*args,**kw), or scalars + Each function is evaluated over `x` wherever its corresponding + condition is True. It should take a 1d array as input and give an 1d + array or a scalar value as output. If, instead of a callable, + a scalar is provided then a constant function (``lambda x: scalar``) is + assumed. + args : tuple, optional + Any further arguments given to `piecewise` are passed to the functions + upon execution, i.e., if called ``piecewise(..., ..., 1, 'a')``, then + each function is called as ``f(x, 1, 'a')``. + kw : dict, optional + Keyword arguments used in calling `piecewise` are passed to the + functions upon execution, i.e., if called + ``piecewise(..., ..., alpha=1)``, then each function is called as + ``f(x, alpha=1)``. + + Returns + ------- + out : ndarray + The output is the same shape and type as x and is found by + calling the functions in `funclist` on the appropriate portions of `x`, + as defined by the boolean arrays in `condlist`. Portions not covered + by any condition have a default value of 0. + + + See Also + -------- + choose, select, where + + Notes + ----- + This is similar to choose or select, except that functions are + evaluated on elements of `x` that satisfy the corresponding condition from + `condlist`. + + The result is:: + + |-- + |funclist[0](x[condlist[0]]) + out = |funclist[1](x[condlist[1]]) + |... + |funclist[n2](x[condlist[n2]]) + |-- + + Examples + -------- + >>> import numpy as np + + Define the signum function, which is -1 for ``x < 0`` and +1 for ``x >= 0``. + + >>> x = np.linspace(-2.5, 2.5, 6) + >>> np.piecewise(x, [x < 0, x >= 0], [-1, 1]) + array([-1., -1., -1., 1., 1., 1.]) + + Define the absolute value, which is ``-x`` for ``x <0`` and ``x`` for + ``x >= 0``. + + >>> np.piecewise(x, [x < 0, x >= 0], [lambda x: -x, lambda x: x]) + array([2.5, 1.5, 0.5, 0.5, 1.5, 2.5]) + + Apply the same function to a scalar value. + + >>> y = -2 + >>> np.piecewise(y, [y < 0, y >= 0], [lambda x: -x, lambda x: x]) + array(2) + + """ + x = asanyarray(x) + n2 = len(funclist) + + # undocumented: single condition is promoted to a list of one condition + if isscalar(condlist) or ( + not isinstance(condlist[0], (list, ndarray)) and x.ndim != 0): + condlist = [condlist] + + condlist = asarray(condlist, dtype=bool) + n = len(condlist) + + if n == n2 - 1: # compute the "otherwise" condition. + condelse = ~np.any(condlist, axis=0, keepdims=True) + condlist = np.concatenate([condlist, condelse], axis=0) + n += 1 + elif n != n2: + raise ValueError( + f"with {n} condition(s), either {n} or {n + 1} functions are expected" + ) + + y = zeros_like(x) + for cond, func in zip(condlist, funclist): + if not isinstance(func, collections.abc.Callable): + y[cond] = func + else: + vals = x[cond] + if vals.size > 0: + y[cond] = func(vals, *args, **kw) + + return y + + +def _select_dispatcher(condlist, choicelist, default=None): + yield from condlist + yield from choicelist + + +@array_function_dispatch(_select_dispatcher) +def select(condlist, choicelist, default=0): + """ + Return an array drawn from elements in choicelist, depending on conditions. + + Parameters + ---------- + condlist : list of bool ndarrays + The list of conditions which determine from which array in `choicelist` + the output elements are taken. When multiple conditions are satisfied, + the first one encountered in `condlist` is used. + choicelist : list of ndarrays + The list of arrays from which the output elements are taken. It has + to be of the same length as `condlist`. + default : scalar, optional + The element inserted in `output` when all conditions evaluate to False. + + Returns + ------- + output : ndarray + The output at position m is the m-th element of the array in + `choicelist` where the m-th element of the corresponding array in + `condlist` is True. + + See Also + -------- + where : Return elements from one of two arrays depending on condition. + take, choose, compress, diag, diagonal + + Examples + -------- + >>> import numpy as np + + Beginning with an array of integers from 0 to 5 (inclusive), + elements less than ``3`` are negated, elements greater than ``3`` + are squared, and elements not meeting either of these conditions + (exactly ``3``) are replaced with a `default` value of ``42``. + + >>> x = np.arange(6) + >>> condlist = [x<3, x>3] + >>> choicelist = [-x, x**2] + >>> np.select(condlist, choicelist, 42) + array([ 0, -1, -2, 42, 16, 25]) + + When multiple conditions are satisfied, the first one encountered in + `condlist` is used. + + >>> condlist = [x<=4, x>3] + >>> choicelist = [x, x**2] + >>> np.select(condlist, choicelist, 55) + array([ 0, 1, 2, 3, 4, 25]) + + """ + # Check the size of condlist and choicelist are the same, or abort. + if len(condlist) != len(choicelist): + raise ValueError( + 'list of cases must be same length as list of conditions') + + # Now that the dtype is known, handle the deprecated select([], []) case + if len(condlist) == 0: + raise ValueError("select with an empty condition list is not possible") + + # TODO: This preserves the Python int, float, complex manually to get the + # right `result_type` with NEP 50. Most likely we will grow a better + # way to spell this (and this can be replaced). + choicelist = [ + choice if type(choice) in (int, float, complex) else np.asarray(choice) + for choice in choicelist] + choicelist.append(default if type(default) in (int, float, complex) + else np.asarray(default)) + + try: + dtype = np.result_type(*choicelist) + except TypeError as e: + msg = f'Choicelist and default value do not have a common dtype: {e}' + raise TypeError(msg) from None + + # Convert conditions to arrays and broadcast conditions and choices + # as the shape is needed for the result. Doing it separately optimizes + # for example when all choices are scalars. + condlist = np.broadcast_arrays(*condlist) + choicelist = np.broadcast_arrays(*choicelist) + + # If cond array is not an ndarray in boolean format or scalar bool, abort. + for i, cond in enumerate(condlist): + if cond.dtype.type is not np.bool: + raise TypeError( + f'invalid entry {i} in condlist: should be boolean ndarray') + + if choicelist[0].ndim == 0: + # This may be common, so avoid the call. + result_shape = condlist[0].shape + else: + result_shape = np.broadcast_arrays(condlist[0], choicelist[0])[0].shape + + result = np.full(result_shape, choicelist[-1], dtype) + + # Use np.copyto to burn each choicelist array onto result, using the + # corresponding condlist as a boolean mask. This is done in reverse + # order since the first choice should take precedence. + choicelist = choicelist[-2::-1] + condlist = condlist[::-1] + for choice, cond in zip(choicelist, condlist): + np.copyto(result, choice, where=cond) + + return result + + +def _copy_dispatcher(a, order=None, subok=None): + return (a,) + + +@array_function_dispatch(_copy_dispatcher) +def copy(a, order='K', subok=False): + """ + Return an array copy of the given object. + + Parameters + ---------- + a : array_like + Input data. + order : {'C', 'F', 'A', 'K'}, optional + Controls the memory layout of the copy. 'C' means C-order, + 'F' means F-order, 'A' means 'F' if `a` is Fortran contiguous, + 'C' otherwise. 'K' means match the layout of `a` as closely + as possible. (Note that this function and :meth:`ndarray.copy` are very + similar, but have different default values for their order= + arguments.) + subok : bool, optional + If True, then sub-classes will be passed-through, otherwise the + returned array will be forced to be a base-class array (defaults to False). + + Returns + ------- + arr : ndarray + Array interpretation of `a`. + + See Also + -------- + ndarray.copy : Preferred method for creating an array copy + + Notes + ----- + This is equivalent to: + + >>> np.array(a, copy=True) #doctest: +SKIP + + The copy made of the data is shallow, i.e., for arrays with object dtype, + the new array will point to the same objects. + See Examples from `ndarray.copy`. + + Examples + -------- + >>> import numpy as np + + Create an array x, with a reference y and a copy z: + + >>> x = np.array([1, 2, 3]) + >>> y = x + >>> z = np.copy(x) + + Note that, when we modify x, y changes, but not z: + + >>> x[0] = 10 + >>> x[0] == y[0] + True + >>> x[0] == z[0] + False + + Note that, np.copy clears previously set WRITEABLE=False flag. + + >>> a = np.array([1, 2, 3]) + >>> a.flags["WRITEABLE"] = False + >>> b = np.copy(a) + >>> b.flags["WRITEABLE"] + True + >>> b[0] = 3 + >>> b + array([3, 2, 3]) + """ + return array(a, order=order, subok=subok, copy=True) + +# Basic operations + + +def _gradient_dispatcher(f, *varargs, axis=None, edge_order=None): + yield f + yield from varargs + + +@array_function_dispatch(_gradient_dispatcher) +def gradient(f, *varargs, axis=None, edge_order=1): + """ + Return the gradient of an N-dimensional array. + + The gradient is computed using second order accurate central differences + in the interior points and either first or second order accurate one-sides + (forward or backwards) differences at the boundaries. + The returned gradient hence has the same shape as the input array. + + Parameters + ---------- + f : array_like + An N-dimensional array containing samples of a scalar function. + varargs : list of scalar or array, optional + Spacing between f values. Default unitary spacing for all dimensions. + Spacing can be specified using: + + 1. single scalar to specify a sample distance for all dimensions. + 2. N scalars to specify a constant sample distance for each dimension. + i.e. `dx`, `dy`, `dz`, ... + 3. N arrays to specify the coordinates of the values along each + dimension of F. The length of the array must match the size of + the corresponding dimension + 4. Any combination of N scalars/arrays with the meaning of 2. and 3. + + If `axis` is given, the number of varargs must equal the number of axes + specified in the axis parameter. + Default: 1. (see Examples below). + + edge_order : {1, 2}, optional + Gradient is calculated using N-th order accurate differences + at the boundaries. Default: 1. + axis : None or int or tuple of ints, optional + Gradient is calculated only along the given axis or axes + The default (axis = None) is to calculate the gradient for all the axes + of the input array. axis may be negative, in which case it counts from + the last to the first axis. + + Returns + ------- + gradient : ndarray or tuple of ndarray + A tuple of ndarrays (or a single ndarray if there is only one + dimension) corresponding to the derivatives of f with respect + to each dimension. Each derivative has the same shape as f. + + Examples + -------- + >>> import numpy as np + >>> f = np.array([1, 2, 4, 7, 11, 16]) + >>> np.gradient(f) + array([1. , 1.5, 2.5, 3.5, 4.5, 5. ]) + >>> np.gradient(f, 2) + array([0.5 , 0.75, 1.25, 1.75, 2.25, 2.5 ]) + + Spacing can be also specified with an array that represents the coordinates + of the values F along the dimensions. + For instance a uniform spacing: + + >>> x = np.arange(f.size) + >>> np.gradient(f, x) + array([1. , 1.5, 2.5, 3.5, 4.5, 5. ]) + + Or a non uniform one: + + >>> x = np.array([0., 1., 1.5, 3.5, 4., 6.]) + >>> np.gradient(f, x) + array([1. , 3. , 3.5, 6.7, 6.9, 2.5]) + + For two dimensional arrays, the return will be two arrays ordered by + axis. In this example the first array stands for the gradient in + rows and the second one in columns direction: + + >>> np.gradient(np.array([[1, 2, 6], [3, 4, 5]])) + (array([[ 2., 2., -1.], + [ 2., 2., -1.]]), + array([[1. , 2.5, 4. ], + [1. , 1. , 1. ]])) + + In this example the spacing is also specified: + uniform for axis=0 and non uniform for axis=1 + + >>> dx = 2. + >>> y = [1., 1.5, 3.5] + >>> np.gradient(np.array([[1, 2, 6], [3, 4, 5]]), dx, y) + (array([[ 1. , 1. , -0.5], + [ 1. , 1. , -0.5]]), + array([[2. , 2. , 2. ], + [2. , 1.7, 0.5]])) + + It is possible to specify how boundaries are treated using `edge_order` + + >>> x = np.array([0, 1, 2, 3, 4]) + >>> f = x**2 + >>> np.gradient(f, edge_order=1) + array([1., 2., 4., 6., 7.]) + >>> np.gradient(f, edge_order=2) + array([0., 2., 4., 6., 8.]) + + The `axis` keyword can be used to specify a subset of axes of which the + gradient is calculated + + >>> np.gradient(np.array([[1, 2, 6], [3, 4, 5]]), axis=0) + array([[ 2., 2., -1.], + [ 2., 2., -1.]]) + + The `varargs` argument defines the spacing between sample points in the + input array. It can take two forms: + + 1. An array, specifying coordinates, which may be unevenly spaced: + + >>> x = np.array([0., 2., 3., 6., 8.]) + >>> y = x ** 2 + >>> np.gradient(y, x, edge_order=2) + array([ 0., 4., 6., 12., 16.]) + + 2. A scalar, representing the fixed sample distance: + + >>> dx = 2 + >>> x = np.array([0., 2., 4., 6., 8.]) + >>> y = x ** 2 + >>> np.gradient(y, dx, edge_order=2) + array([ 0., 4., 8., 12., 16.]) + + It's possible to provide different data for spacing along each dimension. + The number of arguments must match the number of dimensions in the input + data. + + >>> dx = 2 + >>> dy = 3 + >>> x = np.arange(0, 6, dx) + >>> y = np.arange(0, 9, dy) + >>> xs, ys = np.meshgrid(x, y) + >>> zs = xs + 2 * ys + >>> np.gradient(zs, dy, dx) # Passing two scalars + (array([[2., 2., 2.], + [2., 2., 2.], + [2., 2., 2.]]), + array([[1., 1., 1.], + [1., 1., 1.], + [1., 1., 1.]])) + + Mixing scalars and arrays is also allowed: + + >>> np.gradient(zs, y, dx) # Passing one array and one scalar + (array([[2., 2., 2.], + [2., 2., 2.], + [2., 2., 2.]]), + array([[1., 1., 1.], + [1., 1., 1.], + [1., 1., 1.]])) + + Notes + ----- + Assuming that :math:`f\\in C^{3}` (i.e., :math:`f` has at least 3 continuous + derivatives) and let :math:`h_{*}` be a non-homogeneous stepsize, we + minimize the "consistency error" :math:`\\eta_{i}` between the true gradient + and its estimate from a linear combination of the neighboring grid-points: + + .. math:: + + \\eta_{i} = f_{i}^{\\left(1\\right)} - + \\left[ \\alpha f\\left(x_{i}\\right) + + \\beta f\\left(x_{i} + h_{d}\\right) + + \\gamma f\\left(x_{i}-h_{s}\\right) + \\right] + + By substituting :math:`f(x_{i} + h_{d})` and :math:`f(x_{i} - h_{s})` + with their Taylor series expansion, this translates into solving + the following the linear system: + + .. math:: + + \\left\\{ + \\begin{array}{r} + \\alpha+\\beta+\\gamma=0 \\\\ + \\beta h_{d}-\\gamma h_{s}=1 \\\\ + \\beta h_{d}^{2}+\\gamma h_{s}^{2}=0 + \\end{array} + \\right. + + The resulting approximation of :math:`f_{i}^{(1)}` is the following: + + .. math:: + + \\hat f_{i}^{(1)} = + \\frac{ + h_{s}^{2}f\\left(x_{i} + h_{d}\\right) + + \\left(h_{d}^{2} - h_{s}^{2}\\right)f\\left(x_{i}\\right) + - h_{d}^{2}f\\left(x_{i}-h_{s}\\right)} + { h_{s}h_{d}\\left(h_{d} + h_{s}\\right)} + + \\mathcal{O}\\left(\\frac{h_{d}h_{s}^{2} + + h_{s}h_{d}^{2}}{h_{d} + + h_{s}}\\right) + + It is worth noting that if :math:`h_{s}=h_{d}` + (i.e., data are evenly spaced) + we find the standard second order approximation: + + .. math:: + + \\hat f_{i}^{(1)}= + \\frac{f\\left(x_{i+1}\\right) - f\\left(x_{i-1}\\right)}{2h} + + \\mathcal{O}\\left(h^{2}\\right) + + With a similar procedure the forward/backward approximations used for + boundaries can be derived. + + References + ---------- + .. [1] Quarteroni A., Sacco R., Saleri F. (2007) Numerical Mathematics + (Texts in Applied Mathematics). New York: Springer. + .. [2] Durran D. R. (1999) Numerical Methods for Wave Equations + in Geophysical Fluid Dynamics. New York: Springer. + .. [3] Fornberg B. (1988) Generation of Finite Difference Formulas on + Arbitrarily Spaced Grids, + Mathematics of Computation 51, no. 184 : 699-706. + `PDF <https://www.ams.org/journals/mcom/1988-51-184/ + S0025-5718-1988-0935077-0/S0025-5718-1988-0935077-0.pdf>`_. + """ + f = np.asanyarray(f) + N = f.ndim # number of dimensions + + if axis is None: + axes = tuple(range(N)) + else: + axes = _nx.normalize_axis_tuple(axis, N) + + len_axes = len(axes) + n = len(varargs) + if n == 0: + # no spacing argument - use 1 in all axes + dx = [1.0] * len_axes + elif n == 1 and np.ndim(varargs[0]) == 0: + # single scalar for all axes + dx = varargs * len_axes + elif n == len_axes: + # scalar or 1d array for each axis + dx = list(varargs) + for i, distances in enumerate(dx): + distances = np.asanyarray(distances) + if distances.ndim == 0: + continue + elif distances.ndim != 1: + raise ValueError("distances must be either scalars or 1d") + if len(distances) != f.shape[axes[i]]: + raise ValueError("when 1d, distances must match " + "the length of the corresponding dimension") + if np.issubdtype(distances.dtype, np.integer): + # Convert numpy integer types to float64 to avoid modular + # arithmetic in np.diff(distances). + distances = distances.astype(np.float64) + diffx = np.diff(distances) + # if distances are constant reduce to the scalar case + # since it brings a consistent speedup + if (diffx == diffx[0]).all(): + diffx = diffx[0] + dx[i] = diffx + else: + raise TypeError("invalid number of arguments") + + if edge_order > 2: + raise ValueError("'edge_order' greater than 2 not supported") + + # use central differences on interior and one-sided differences on the + # endpoints. This preserves second order-accuracy over the full domain. + + outvals = [] + + # create slice objects --- initially all are [:, :, ..., :] + slice1 = [slice(None)] * N + slice2 = [slice(None)] * N + slice3 = [slice(None)] * N + slice4 = [slice(None)] * N + + otype = f.dtype + if otype.type is np.datetime64: + # the timedelta dtype with the same unit information + otype = np.dtype(otype.name.replace('datetime', 'timedelta')) + # view as timedelta to allow addition + f = f.view(otype) + elif otype.type is np.timedelta64: + pass + elif np.issubdtype(otype, np.inexact): + pass + else: + # All other types convert to floating point. + # First check if f is a numpy integer type; if so, convert f to float64 + # to avoid modular arithmetic when computing the changes in f. + if np.issubdtype(otype, np.integer): + f = f.astype(np.float64) + otype = np.float64 + + for axis, ax_dx in zip(axes, dx): + if f.shape[axis] < edge_order + 1: + raise ValueError( + "Shape of array too small to calculate a numerical gradient, " + "at least (edge_order + 1) elements are required.") + # result allocation + out = np.empty_like(f, dtype=otype) + + # spacing for the current axis + uniform_spacing = np.ndim(ax_dx) == 0 + + # Numerical differentiation: 2nd order interior + slice1[axis] = slice(1, -1) + slice2[axis] = slice(None, -2) + slice3[axis] = slice(1, -1) + slice4[axis] = slice(2, None) + + if uniform_spacing: + out[tuple(slice1)] = (f[tuple(slice4)] - f[tuple(slice2)]) / (2. * ax_dx) + else: + dx1 = ax_dx[0:-1] + dx2 = ax_dx[1:] + a = -(dx2) / (dx1 * (dx1 + dx2)) + b = (dx2 - dx1) / (dx1 * dx2) + c = dx1 / (dx2 * (dx1 + dx2)) + # fix the shape for broadcasting + shape = np.ones(N, dtype=int) + shape[axis] = -1 + a.shape = b.shape = c.shape = shape + # 1D equivalent -- out[1:-1] = a * f[:-2] + b * f[1:-1] + c * f[2:] + out[tuple(slice1)] = a * f[tuple(slice2)] + b * f[tuple(slice3)] \ + + c * f[tuple(slice4)] + + # Numerical differentiation: 1st order edges + if edge_order == 1: + slice1[axis] = 0 + slice2[axis] = 1 + slice3[axis] = 0 + dx_0 = ax_dx if uniform_spacing else ax_dx[0] + # 1D equivalent -- out[0] = (f[1] - f[0]) / (x[1] - x[0]) + out[tuple(slice1)] = (f[tuple(slice2)] - f[tuple(slice3)]) / dx_0 + + slice1[axis] = -1 + slice2[axis] = -1 + slice3[axis] = -2 + dx_n = ax_dx if uniform_spacing else ax_dx[-1] + # 1D equivalent -- out[-1] = (f[-1] - f[-2]) / (x[-1] - x[-2]) + out[tuple(slice1)] = (f[tuple(slice2)] - f[tuple(slice3)]) / dx_n + + # Numerical differentiation: 2nd order edges + else: + slice1[axis] = 0 + slice2[axis] = 0 + slice3[axis] = 1 + slice4[axis] = 2 + if uniform_spacing: + a = -1.5 / ax_dx + b = 2. / ax_dx + c = -0.5 / ax_dx + else: + dx1 = ax_dx[0] + dx2 = ax_dx[1] + a = -(2. * dx1 + dx2) / (dx1 * (dx1 + dx2)) + b = (dx1 + dx2) / (dx1 * dx2) + c = - dx1 / (dx2 * (dx1 + dx2)) + # 1D equivalent -- out[0] = a * f[0] + b * f[1] + c * f[2] + out[tuple(slice1)] = a * f[tuple(slice2)] + b * f[tuple(slice3)] \ + + c * f[tuple(slice4)] + + slice1[axis] = -1 + slice2[axis] = -3 + slice3[axis] = -2 + slice4[axis] = -1 + if uniform_spacing: + a = 0.5 / ax_dx + b = -2. / ax_dx + c = 1.5 / ax_dx + else: + dx1 = ax_dx[-2] + dx2 = ax_dx[-1] + a = (dx2) / (dx1 * (dx1 + dx2)) + b = - (dx2 + dx1) / (dx1 * dx2) + c = (2. * dx2 + dx1) / (dx2 * (dx1 + dx2)) + # 1D equivalent -- out[-1] = a * f[-3] + b * f[-2] + c * f[-1] + out[tuple(slice1)] = a * f[tuple(slice2)] + b * f[tuple(slice3)] \ + + c * f[tuple(slice4)] + + outvals.append(out) + + # reset the slice object in this dimension to ":" + slice1[axis] = slice(None) + slice2[axis] = slice(None) + slice3[axis] = slice(None) + slice4[axis] = slice(None) + + if len_axes == 1: + return outvals[0] + return tuple(outvals) + + +def _diff_dispatcher(a, n=None, axis=None, prepend=None, append=None): + return (a, prepend, append) + + +@array_function_dispatch(_diff_dispatcher) +def diff(a, n=1, axis=-1, prepend=np._NoValue, append=np._NoValue): + """ + Calculate the n-th discrete difference along the given axis. + + The first difference is given by ``out[i] = a[i+1] - a[i]`` along + the given axis, higher differences are calculated by using `diff` + recursively. + + Parameters + ---------- + a : array_like + Input array + n : int, optional + The number of times values are differenced. If zero, the input + is returned as-is. + axis : int, optional + The axis along which the difference is taken, default is the + last axis. + prepend, append : array_like, optional + Values to prepend or append to `a` along axis prior to + performing the difference. Scalar values are expanded to + arrays with length 1 in the direction of axis and the shape + of the input array in along all other axes. Otherwise the + dimension and shape must match `a` except along axis. + + Returns + ------- + diff : ndarray + The n-th differences. The shape of the output is the same as `a` + except along `axis` where the dimension is smaller by `n`. The + type of the output is the same as the type of the difference + between any two elements of `a`. This is the same as the type of + `a` in most cases. A notable exception is `datetime64`, which + results in a `timedelta64` output array. + + See Also + -------- + gradient, ediff1d, cumsum + + Notes + ----- + Type is preserved for boolean arrays, so the result will contain + `False` when consecutive elements are the same and `True` when they + differ. + + For unsigned integer arrays, the results will also be unsigned. This + should not be surprising, as the result is consistent with + calculating the difference directly: + + >>> u8_arr = np.array([1, 0], dtype=np.uint8) + >>> np.diff(u8_arr) + array([255], dtype=uint8) + >>> u8_arr[1,...] - u8_arr[0,...] + np.uint8(255) + + If this is not desirable, then the array should be cast to a larger + integer type first: + + >>> i16_arr = u8_arr.astype(np.int16) + >>> np.diff(i16_arr) + array([-1], dtype=int16) + + Examples + -------- + >>> import numpy as np + >>> x = np.array([1, 2, 4, 7, 0]) + >>> np.diff(x) + array([ 1, 2, 3, -7]) + >>> np.diff(x, n=2) + array([ 1, 1, -10]) + + >>> x = np.array([[1, 3, 6, 10], [0, 5, 6, 8]]) + >>> np.diff(x) + array([[2, 3, 4], + [5, 1, 2]]) + >>> np.diff(x, axis=0) + array([[-1, 2, 0, -2]]) + + >>> x = np.arange('1066-10-13', '1066-10-16', dtype=np.datetime64) + >>> np.diff(x) + array([1, 1], dtype='timedelta64[D]') + + """ + if n == 0: + return a + if n < 0: + raise ValueError( + "order must be non-negative but got " + repr(n)) + + a = asanyarray(a) + nd = a.ndim + if nd == 0: + raise ValueError("diff requires input that is at least one dimensional") + axis = normalize_axis_index(axis, nd) + + combined = [] + if prepend is not np._NoValue: + prepend = np.asanyarray(prepend) + if prepend.ndim == 0: + shape = list(a.shape) + shape[axis] = 1 + prepend = np.broadcast_to(prepend, tuple(shape)) + combined.append(prepend) + + combined.append(a) + + if append is not np._NoValue: + append = np.asanyarray(append) + if append.ndim == 0: + shape = list(a.shape) + shape[axis] = 1 + append = np.broadcast_to(append, tuple(shape)) + combined.append(append) + + if len(combined) > 1: + a = np.concatenate(combined, axis) + + slice1 = [slice(None)] * nd + slice2 = [slice(None)] * nd + slice1[axis] = slice(1, None) + slice2[axis] = slice(None, -1) + slice1 = tuple(slice1) + slice2 = tuple(slice2) + + op = not_equal if a.dtype == np.bool else subtract + for _ in range(n): + a = op(a[slice1], a[slice2]) + + return a + + +def _interp_dispatcher(x, xp, fp, left=None, right=None, period=None): + return (x, xp, fp) + + +@array_function_dispatch(_interp_dispatcher) +def interp(x, xp, fp, left=None, right=None, period=None): + """ + One-dimensional linear interpolation for monotonically increasing sample points. + + Returns the one-dimensional piecewise linear interpolant to a function + with given discrete data points (`xp`, `fp`), evaluated at `x`. + + Parameters + ---------- + x : array_like + The x-coordinates at which to evaluate the interpolated values. + + xp : 1-D sequence of floats + The x-coordinates of the data points, must be increasing if argument + `period` is not specified. Otherwise, `xp` is internally sorted after + normalizing the periodic boundaries with ``xp = xp % period``. + + fp : 1-D sequence of float or complex + The y-coordinates of the data points, same length as `xp`. + + left : optional float or complex corresponding to fp + Value to return for `x < xp[0]`, default is `fp[0]`. + + right : optional float or complex corresponding to fp + Value to return for `x > xp[-1]`, default is `fp[-1]`. + + period : None or float, optional + A period for the x-coordinates. This parameter allows the proper + interpolation of angular x-coordinates. Parameters `left` and `right` + are ignored if `period` is specified. + + Returns + ------- + y : float or complex (corresponding to fp) or ndarray + The interpolated values, same shape as `x`. + + Raises + ------ + ValueError + If `xp` and `fp` have different length + If `xp` or `fp` are not 1-D sequences + If `period == 0` + + See Also + -------- + scipy.interpolate + + Warnings + -------- + The x-coordinate sequence is expected to be increasing, but this is not + explicitly enforced. However, if the sequence `xp` is non-increasing, + interpolation results are meaningless. + + Note that, since NaN is unsortable, `xp` also cannot contain NaNs. + + A simple check for `xp` being strictly increasing is:: + + np.all(np.diff(xp) > 0) + + Examples + -------- + >>> import numpy as np + >>> xp = [1, 2, 3] + >>> fp = [3, 2, 0] + >>> np.interp(2.5, xp, fp) + 1.0 + >>> np.interp([0, 1, 1.5, 2.72, 3.14], xp, fp) + array([3. , 3. , 2.5 , 0.56, 0. ]) + >>> UNDEF = -99.0 + >>> np.interp(3.14, xp, fp, right=UNDEF) + -99.0 + + Plot an interpolant to the sine function: + + >>> x = np.linspace(0, 2*np.pi, 10) + >>> y = np.sin(x) + >>> xvals = np.linspace(0, 2*np.pi, 50) + >>> yinterp = np.interp(xvals, x, y) + >>> import matplotlib.pyplot as plt + >>> plt.plot(x, y, 'o') + [<matplotlib.lines.Line2D object at 0x...>] + >>> plt.plot(xvals, yinterp, '-x') + [<matplotlib.lines.Line2D object at 0x...>] + >>> plt.show() + + Interpolation with periodic x-coordinates: + + >>> x = [-180, -170, -185, 185, -10, -5, 0, 365] + >>> xp = [190, -190, 350, -350] + >>> fp = [5, 10, 3, 4] + >>> np.interp(x, xp, fp, period=360) + array([7.5 , 5. , 8.75, 6.25, 3. , 3.25, 3.5 , 3.75]) + + Complex interpolation: + + >>> x = [1.5, 4.0] + >>> xp = [2,3,5] + >>> fp = [1.0j, 0, 2+3j] + >>> np.interp(x, xp, fp) + array([0.+1.j , 1.+1.5j]) + + """ + + fp = np.asarray(fp) + + if np.iscomplexobj(fp): + interp_func = compiled_interp_complex + input_dtype = np.complex128 + else: + interp_func = compiled_interp + input_dtype = np.float64 + + if period is not None: + if period == 0: + raise ValueError("period must be a non-zero value") + period = abs(period) + left = None + right = None + + x = np.asarray(x, dtype=np.float64) + xp = np.asarray(xp, dtype=np.float64) + fp = np.asarray(fp, dtype=input_dtype) + + if xp.ndim != 1 or fp.ndim != 1: + raise ValueError("Data points must be 1-D sequences") + if xp.shape[0] != fp.shape[0]: + raise ValueError("fp and xp are not of the same length") + # normalizing periodic boundaries + x = x % period + xp = xp % period + asort_xp = np.argsort(xp) + xp = xp[asort_xp] + fp = fp[asort_xp] + xp = np.concatenate((xp[-1:] - period, xp, xp[0:1] + period)) + fp = np.concatenate((fp[-1:], fp, fp[0:1])) + + return interp_func(x, xp, fp, left, right) + + +def _angle_dispatcher(z, deg=None): + return (z,) + + +@array_function_dispatch(_angle_dispatcher) +def angle(z, deg=False): + """ + Return the angle of the complex argument. + + Parameters + ---------- + z : array_like + A complex number or sequence of complex numbers. + deg : bool, optional + Return angle in degrees if True, radians if False (default). + + Returns + ------- + angle : ndarray or scalar + The counterclockwise angle from the positive real axis on the complex + plane in the range ``(-pi, pi]``, with dtype as numpy.float64. + + See Also + -------- + arctan2 + absolute + + Notes + ----- + This function passes the imaginary and real parts of the argument to + `arctan2` to compute the result; consequently, it follows the convention + of `arctan2` when the magnitude of the argument is zero. See example. + + Examples + -------- + >>> import numpy as np + >>> np.angle([1.0, 1.0j, 1+1j]) # in radians + array([ 0. , 1.57079633, 0.78539816]) # may vary + >>> np.angle(1+1j, deg=True) # in degrees + 45.0 + >>> np.angle([0., -0., complex(0., -0.), complex(-0., -0.)]) # convention + array([ 0. , 3.14159265, -0. , -3.14159265]) + + """ + z = asanyarray(z) + if issubclass(z.dtype.type, _nx.complexfloating): + zimag = z.imag + zreal = z.real + else: + zimag = 0 + zreal = z + + a = arctan2(zimag, zreal) + if deg: + a *= 180 / pi + return a + + +def _unwrap_dispatcher(p, discont=None, axis=None, *, period=None): + return (p,) + + +@array_function_dispatch(_unwrap_dispatcher) +def unwrap(p, discont=None, axis=-1, *, period=2 * pi): + r""" + Unwrap by taking the complement of large deltas with respect to the period. + + This unwraps a signal `p` by changing elements which have an absolute + difference from their predecessor of more than ``max(discont, period/2)`` + to their `period`-complementary values. + + For the default case where `period` is :math:`2\pi` and `discont` is + :math:`\pi`, this unwraps a radian phase `p` such that adjacent differences + are never greater than :math:`\pi` by adding :math:`2k\pi` for some + integer :math:`k`. + + Parameters + ---------- + p : array_like + Input array. + discont : float, optional + Maximum discontinuity between values, default is ``period/2``. + Values below ``period/2`` are treated as if they were ``period/2``. + To have an effect different from the default, `discont` should be + larger than ``period/2``. + axis : int, optional + Axis along which unwrap will operate, default is the last axis. + period : float, optional + Size of the range over which the input wraps. By default, it is + ``2 pi``. + + .. versionadded:: 1.21.0 + + Returns + ------- + out : ndarray + Output array. + + See Also + -------- + rad2deg, deg2rad + + Notes + ----- + If the discontinuity in `p` is smaller than ``period/2``, + but larger than `discont`, no unwrapping is done because taking + the complement would only make the discontinuity larger. + + Examples + -------- + >>> import numpy as np + >>> phase = np.linspace(0, np.pi, num=5) + >>> phase[3:] += np.pi + >>> phase + array([ 0. , 0.78539816, 1.57079633, 5.49778714, 6.28318531]) # may vary + >>> np.unwrap(phase) + array([ 0. , 0.78539816, 1.57079633, -0.78539816, 0. ]) # may vary + >>> np.unwrap([0, 1, 2, -1, 0], period=4) + array([0, 1, 2, 3, 4]) + >>> np.unwrap([ 1, 2, 3, 4, 5, 6, 1, 2, 3], period=6) + array([1, 2, 3, 4, 5, 6, 7, 8, 9]) + >>> np.unwrap([2, 3, 4, 5, 2, 3, 4, 5], period=4) + array([2, 3, 4, 5, 6, 7, 8, 9]) + >>> phase_deg = np.mod(np.linspace(0 ,720, 19), 360) - 180 + >>> np.unwrap(phase_deg, period=360) + array([-180., -140., -100., -60., -20., 20., 60., 100., 140., + 180., 220., 260., 300., 340., 380., 420., 460., 500., + 540.]) + """ + p = asarray(p) + nd = p.ndim + dd = diff(p, axis=axis) + if discont is None: + discont = period / 2 + slice1 = [slice(None, None)] * nd # full slices + slice1[axis] = slice(1, None) + slice1 = tuple(slice1) + dtype = np.result_type(dd, period) + if _nx.issubdtype(dtype, _nx.integer): + interval_high, rem = divmod(period, 2) + boundary_ambiguous = rem == 0 + else: + interval_high = period / 2 + boundary_ambiguous = True + interval_low = -interval_high + ddmod = mod(dd - interval_low, period) + interval_low + if boundary_ambiguous: + # for `mask = (abs(dd) == period/2)`, the above line made + # `ddmod[mask] == -period/2`. correct these such that + # `ddmod[mask] == sign(dd[mask])*period/2`. + _nx.copyto(ddmod, interval_high, + where=(ddmod == interval_low) & (dd > 0)) + ph_correct = ddmod - dd + _nx.copyto(ph_correct, 0, where=abs(dd) < discont) + up = array(p, copy=True, dtype=dtype) + up[slice1] = p[slice1] + ph_correct.cumsum(axis) + return up + + +def _sort_complex(a): + return (a,) + + +@array_function_dispatch(_sort_complex) +def sort_complex(a): + """ + Sort a complex array using the real part first, then the imaginary part. + + Parameters + ---------- + a : array_like + Input array + + Returns + ------- + out : complex ndarray + Always returns a sorted complex array. + + Examples + -------- + >>> import numpy as np + >>> np.sort_complex([5, 3, 6, 2, 1]) + array([1.+0.j, 2.+0.j, 3.+0.j, 5.+0.j, 6.+0.j]) + + >>> np.sort_complex([1 + 2j, 2 - 1j, 3 - 2j, 3 - 3j, 3 + 5j]) + array([1.+2.j, 2.-1.j, 3.-3.j, 3.-2.j, 3.+5.j]) + + """ + b = array(a, copy=True) + b.sort() + if not issubclass(b.dtype.type, _nx.complexfloating): + if b.dtype.char in 'bhBH': + return b.astype('F') + elif b.dtype.char == 'g': + return b.astype('G') + else: + return b.astype('D') + else: + return b + + +def _arg_trim_zeros(filt): + """Return indices of the first and last non-zero element. + + Parameters + ---------- + filt : array_like + Input array. + + Returns + ------- + start, stop : ndarray + Two arrays containing the indices of the first and last non-zero + element in each dimension. + + See also + -------- + trim_zeros + + Examples + -------- + >>> import numpy as np + >>> _arg_trim_zeros(np.array([0, 0, 1, 1, 0])) + (array([2]), array([3])) + """ + nonzero = ( + np.argwhere(filt) + if filt.dtype != np.object_ + # Historically, `trim_zeros` treats `None` in an object array + # as non-zero while argwhere doesn't, account for that + else np.argwhere(filt != 0) + ) + if nonzero.size == 0: + start = stop = np.array([], dtype=np.intp) + else: + start = nonzero.min(axis=0) + stop = nonzero.max(axis=0) + return start, stop + + +def _trim_zeros(filt, trim=None, axis=None): + return (filt,) + + +@array_function_dispatch(_trim_zeros) +def trim_zeros(filt, trim='fb', axis=None): + """Remove values along a dimension which are zero along all other. + + Parameters + ---------- + filt : array_like + Input array. + trim : {"fb", "f", "b"}, optional + A string with 'f' representing trim from front and 'b' to trim from + back. By default, zeros are trimmed on both sides. + Front and back refer to the edges of a dimension, with "front" referring + to the side with the lowest index 0, and "back" referring to the highest + index (or index -1). + axis : int or sequence, optional + If None, `filt` is cropped such that the smallest bounding box is + returned that still contains all values which are not zero. + If an axis is specified, `filt` will be sliced in that dimension only + on the sides specified by `trim`. The remaining area will be the + smallest that still contains all values wich are not zero. + + .. versionadded:: 2.2.0 + + Returns + ------- + trimmed : ndarray or sequence + The result of trimming the input. The number of dimensions and the + input data type are preserved. + + Notes + ----- + For all-zero arrays, the first axis is trimmed first. + + Examples + -------- + >>> import numpy as np + >>> a = np.array((0, 0, 0, 1, 2, 3, 0, 2, 1, 0)) + >>> np.trim_zeros(a) + array([1, 2, 3, 0, 2, 1]) + + >>> np.trim_zeros(a, trim='b') + array([0, 0, 0, ..., 0, 2, 1]) + + Multiple dimensions are supported. + + >>> b = np.array([[0, 0, 2, 3, 0, 0], + ... [0, 1, 0, 3, 0, 0], + ... [0, 0, 0, 0, 0, 0]]) + >>> np.trim_zeros(b) + array([[0, 2, 3], + [1, 0, 3]]) + + >>> np.trim_zeros(b, axis=-1) + array([[0, 2, 3], + [1, 0, 3], + [0, 0, 0]]) + + The input data type is preserved, list/tuple in means list/tuple out. + + >>> np.trim_zeros([0, 1, 2, 0]) + [1, 2] + + """ + filt_ = np.asarray(filt) + + trim = trim.lower() + if trim not in {"fb", "bf", "f", "b"}: + raise ValueError(f"unexpected character(s) in `trim`: {trim!r}") + + start, stop = _arg_trim_zeros(filt_) + stop += 1 # Adjust for slicing + + if start.size == 0: + # filt is all-zero -> assign same values to start and stop so that + # resulting slice will be empty + start = stop = np.zeros(filt_.ndim, dtype=np.intp) + else: + if 'f' not in trim: + start = (None,) * filt_.ndim + if 'b' not in trim: + stop = (None,) * filt_.ndim + + if len(start) == 1: + # filt is 1D -> don't use multi-dimensional slicing to preserve + # non-array input types + sl = slice(start[0], stop[0]) + elif axis is None: + # trim all axes + sl = tuple(slice(*x) for x in zip(start, stop)) + else: + # only trim single axis + axis = normalize_axis_index(axis, filt_.ndim) + sl = (slice(None),) * axis + (slice(start[axis], stop[axis]),) + (...,) + + trimmed = filt[sl] + return trimmed + + +def _extract_dispatcher(condition, arr): + return (condition, arr) + + +@array_function_dispatch(_extract_dispatcher) +def extract(condition, arr): + """ + Return the elements of an array that satisfy some condition. + + This is equivalent to ``np.compress(ravel(condition), ravel(arr))``. If + `condition` is boolean ``np.extract`` is equivalent to ``arr[condition]``. + + Note that `place` does the exact opposite of `extract`. + + Parameters + ---------- + condition : array_like + An array whose nonzero or True entries indicate the elements of `arr` + to extract. + arr : array_like + Input array of the same size as `condition`. + + Returns + ------- + extract : ndarray + Rank 1 array of values from `arr` where `condition` is True. + + See Also + -------- + take, put, copyto, compress, place + + Examples + -------- + >>> import numpy as np + >>> arr = np.arange(12).reshape((3, 4)) + >>> arr + array([[ 0, 1, 2, 3], + [ 4, 5, 6, 7], + [ 8, 9, 10, 11]]) + >>> condition = np.mod(arr, 3)==0 + >>> condition + array([[ True, False, False, True], + [False, False, True, False], + [False, True, False, False]]) + >>> np.extract(condition, arr) + array([0, 3, 6, 9]) + + + If `condition` is boolean: + + >>> arr[condition] + array([0, 3, 6, 9]) + + """ + return _nx.take(ravel(arr), nonzero(ravel(condition))[0]) + + +def _place_dispatcher(arr, mask, vals): + return (arr, mask, vals) + + +@array_function_dispatch(_place_dispatcher) +def place(arr, mask, vals): + """ + Change elements of an array based on conditional and input values. + + Similar to ``np.copyto(arr, vals, where=mask)``, the difference is that + `place` uses the first N elements of `vals`, where N is the number of + True values in `mask`, while `copyto` uses the elements where `mask` + is True. + + Note that `extract` does the exact opposite of `place`. + + Parameters + ---------- + arr : ndarray + Array to put data into. + mask : array_like + Boolean mask array. Must have the same size as `a`. + vals : 1-D sequence + Values to put into `a`. Only the first N elements are used, where + N is the number of True values in `mask`. If `vals` is smaller + than N, it will be repeated, and if elements of `a` are to be masked, + this sequence must be non-empty. + + See Also + -------- + copyto, put, take, extract + + Examples + -------- + >>> import numpy as np + >>> arr = np.arange(6).reshape(2, 3) + >>> np.place(arr, arr>2, [44, 55]) + >>> arr + array([[ 0, 1, 2], + [44, 55, 44]]) + + """ + return _place(arr, mask, vals) + + +def disp(mesg, device=None, linefeed=True): + """ + Display a message on a device. + + .. deprecated:: 2.0 + Use your own printing function instead. + + Parameters + ---------- + mesg : str + Message to display. + device : object + Device to write message. If None, defaults to ``sys.stdout`` which is + very similar to ``print``. `device` needs to have ``write()`` and + ``flush()`` methods. + linefeed : bool, optional + Option whether to print a line feed or not. Defaults to True. + + Raises + ------ + AttributeError + If `device` does not have a ``write()`` or ``flush()`` method. + + Examples + -------- + >>> import numpy as np + + Besides ``sys.stdout``, a file-like object can also be used as it has + both required methods: + + >>> from io import StringIO + >>> buf = StringIO() + >>> np.disp('"Display" in a file', device=buf) + >>> buf.getvalue() + '"Display" in a file\\n' + + """ + + # Deprecated in NumPy 2.0, 2023-07-11 + warnings.warn( + "`disp` is deprecated, " + "use your own printing function instead. " + "(deprecated in NumPy 2.0)", + DeprecationWarning, + stacklevel=2 + ) + + if device is None: + device = sys.stdout + if linefeed: + device.write(f'{mesg}\n') + else: + device.write(f'{mesg}') + device.flush() + + +# See https://docs.scipy.org/doc/numpy/reference/c-api.generalized-ufuncs.html +_DIMENSION_NAME = r'\w+' +_CORE_DIMENSION_LIST = f'(?:{_DIMENSION_NAME}(?:,{_DIMENSION_NAME})*)?' +_ARGUMENT = fr'\({_CORE_DIMENSION_LIST}\)' +_ARGUMENT_LIST = f'{_ARGUMENT}(?:,{_ARGUMENT})*' +_SIGNATURE = f'^{_ARGUMENT_LIST}->{_ARGUMENT_LIST}$' + + +def _parse_gufunc_signature(signature): + """ + Parse string signatures for a generalized universal function. + + Arguments + --------- + signature : string + Generalized universal function signature, e.g., ``(m,n),(n,p)->(m,p)`` + for ``np.matmul``. + + Returns + ------- + Tuple of input and output core dimensions parsed from the signature, each + of the form List[Tuple[str, ...]]. + """ + signature = re.sub(r'\s+', '', signature) + + if not re.match(_SIGNATURE, signature): + raise ValueError( + f'not a valid gufunc signature: {signature}') + return tuple([tuple(re.findall(_DIMENSION_NAME, arg)) + for arg in re.findall(_ARGUMENT, arg_list)] + for arg_list in signature.split('->')) + + +def _update_dim_sizes(dim_sizes, arg, core_dims): + """ + Incrementally check and update core dimension sizes for a single argument. + + Arguments + --------- + dim_sizes : Dict[str, int] + Sizes of existing core dimensions. Will be updated in-place. + arg : ndarray + Argument to examine. + core_dims : Tuple[str, ...] + Core dimensions for this argument. + """ + if not core_dims: + return + + num_core_dims = len(core_dims) + if arg.ndim < num_core_dims: + raise ValueError( + '%d-dimensional argument does not have enough ' + 'dimensions for all core dimensions %r' + % (arg.ndim, core_dims)) + + core_shape = arg.shape[-num_core_dims:] + for dim, size in zip(core_dims, core_shape): + if dim in dim_sizes: + if size != dim_sizes[dim]: + raise ValueError( + 'inconsistent size for core dimension %r: %r vs %r' + % (dim, size, dim_sizes[dim])) + else: + dim_sizes[dim] = size + + +def _parse_input_dimensions(args, input_core_dims): + """ + Parse broadcast and core dimensions for vectorize with a signature. + + Arguments + --------- + args : Tuple[ndarray, ...] + Tuple of input arguments to examine. + input_core_dims : List[Tuple[str, ...]] + List of core dimensions corresponding to each input. + + Returns + ------- + broadcast_shape : Tuple[int, ...] + Common shape to broadcast all non-core dimensions to. + dim_sizes : Dict[str, int] + Common sizes for named core dimensions. + """ + broadcast_args = [] + dim_sizes = {} + for arg, core_dims in zip(args, input_core_dims): + _update_dim_sizes(dim_sizes, arg, core_dims) + ndim = arg.ndim - len(core_dims) + dummy_array = np.lib.stride_tricks.as_strided(0, arg.shape[:ndim]) + broadcast_args.append(dummy_array) + broadcast_shape = np.lib._stride_tricks_impl._broadcast_shape( + *broadcast_args + ) + return broadcast_shape, dim_sizes + + +def _calculate_shapes(broadcast_shape, dim_sizes, list_of_core_dims): + """Helper for calculating broadcast shapes with core dimensions.""" + return [broadcast_shape + tuple(dim_sizes[dim] for dim in core_dims) + for core_dims in list_of_core_dims] + + +def _create_arrays(broadcast_shape, dim_sizes, list_of_core_dims, dtypes, + results=None): + """Helper for creating output arrays in vectorize.""" + shapes = _calculate_shapes(broadcast_shape, dim_sizes, list_of_core_dims) + if dtypes is None: + dtypes = [None] * len(shapes) + if results is None: + arrays = tuple(np.empty(shape=shape, dtype=dtype) + for shape, dtype in zip(shapes, dtypes)) + else: + arrays = tuple(np.empty_like(result, shape=shape, dtype=dtype) + for result, shape, dtype + in zip(results, shapes, dtypes)) + return arrays + + +def _get_vectorize_dtype(dtype): + if dtype.char in "SU": + return dtype.char + return dtype + + +@set_module('numpy') +class vectorize: + """ + vectorize(pyfunc=np._NoValue, otypes=None, doc=None, excluded=None, + cache=False, signature=None) + + Returns an object that acts like pyfunc, but takes arrays as input. + + Define a vectorized function which takes a nested sequence of objects or + numpy arrays as inputs and returns a single numpy array or a tuple of numpy + arrays. The vectorized function evaluates `pyfunc` over successive tuples + of the input arrays like the python map function, except it uses the + broadcasting rules of numpy. + + The data type of the output of `vectorized` is determined by calling + the function with the first element of the input. This can be avoided + by specifying the `otypes` argument. + + Parameters + ---------- + pyfunc : callable, optional + A python function or method. + Can be omitted to produce a decorator with keyword arguments. + otypes : str or list of dtypes, optional + The output data type. It must be specified as either a string of + typecode characters or a list of data type specifiers. There should + be one data type specifier for each output. + doc : str, optional + The docstring for the function. If None, the docstring will be the + ``pyfunc.__doc__``. + excluded : set, optional + Set of strings or integers representing the positional or keyword + arguments for which the function will not be vectorized. These will be + passed directly to `pyfunc` unmodified. + + cache : bool, optional + If `True`, then cache the first function call that determines the number + of outputs if `otypes` is not provided. + + signature : string, optional + Generalized universal function signature, e.g., ``(m,n),(n)->(m)`` for + vectorized matrix-vector multiplication. If provided, ``pyfunc`` will + be called with (and expected to return) arrays with shapes given by the + size of corresponding core dimensions. By default, ``pyfunc`` is + assumed to take scalars as input and output. + + Returns + ------- + out : callable + A vectorized function if ``pyfunc`` was provided, + a decorator otherwise. + + See Also + -------- + frompyfunc : Takes an arbitrary Python function and returns a ufunc + + Notes + ----- + The `vectorize` function is provided primarily for convenience, not for + performance. The implementation is essentially a for loop. + + If `otypes` is not specified, then a call to the function with the + first argument will be used to determine the number of outputs. The + results of this call will be cached if `cache` is `True` to prevent + calling the function twice. However, to implement the cache, the + original function must be wrapped which will slow down subsequent + calls, so only do this if your function is expensive. + + The new keyword argument interface and `excluded` argument support + further degrades performance. + + References + ---------- + .. [1] :doc:`/reference/c-api/generalized-ufuncs` + + Examples + -------- + >>> import numpy as np + >>> def myfunc(a, b): + ... "Return a-b if a>b, otherwise return a+b" + ... if a > b: + ... return a - b + ... else: + ... return a + b + + >>> vfunc = np.vectorize(myfunc) + >>> vfunc([1, 2, 3, 4], 2) + array([3, 4, 1, 2]) + + The docstring is taken from the input function to `vectorize` unless it + is specified: + + >>> vfunc.__doc__ + 'Return a-b if a>b, otherwise return a+b' + >>> vfunc = np.vectorize(myfunc, doc='Vectorized `myfunc`') + >>> vfunc.__doc__ + 'Vectorized `myfunc`' + + The output type is determined by evaluating the first element of the input, + unless it is specified: + + >>> out = vfunc([1, 2, 3, 4], 2) + >>> type(out[0]) + <class 'numpy.int64'> + >>> vfunc = np.vectorize(myfunc, otypes=[float]) + >>> out = vfunc([1, 2, 3, 4], 2) + >>> type(out[0]) + <class 'numpy.float64'> + + The `excluded` argument can be used to prevent vectorizing over certain + arguments. This can be useful for array-like arguments of a fixed length + such as the coefficients for a polynomial as in `polyval`: + + >>> def mypolyval(p, x): + ... _p = list(p) + ... res = _p.pop(0) + ... while _p: + ... res = res*x + _p.pop(0) + ... return res + + Here, we exclude the zeroth argument from vectorization whether it is + passed by position or keyword. + + >>> vpolyval = np.vectorize(mypolyval, excluded={0, 'p'}) + >>> vpolyval([1, 2, 3], x=[0, 1]) + array([3, 6]) + >>> vpolyval(p=[1, 2, 3], x=[0, 1]) + array([3, 6]) + + The `signature` argument allows for vectorizing functions that act on + non-scalar arrays of fixed length. For example, you can use it for a + vectorized calculation of Pearson correlation coefficient and its p-value: + + >>> import scipy.stats + >>> pearsonr = np.vectorize(scipy.stats.pearsonr, + ... signature='(n),(n)->(),()') + >>> pearsonr([[0, 1, 2, 3]], [[1, 2, 3, 4], [4, 3, 2, 1]]) + (array([ 1., -1.]), array([ 0., 0.])) + + Or for a vectorized convolution: + + >>> convolve = np.vectorize(np.convolve, signature='(n),(m)->(k)') + >>> convolve(np.eye(4), [1, 2, 1]) + array([[1., 2., 1., 0., 0., 0.], + [0., 1., 2., 1., 0., 0.], + [0., 0., 1., 2., 1., 0.], + [0., 0., 0., 1., 2., 1.]]) + + Decorator syntax is supported. The decorator can be called as + a function to provide keyword arguments: + + >>> @np.vectorize + ... def identity(x): + ... return x + ... + >>> identity([0, 1, 2]) + array([0, 1, 2]) + >>> @np.vectorize(otypes=[float]) + ... def as_float(x): + ... return x + ... + >>> as_float([0, 1, 2]) + array([0., 1., 2.]) + """ + def __init__(self, pyfunc=np._NoValue, otypes=None, doc=None, + excluded=None, cache=False, signature=None): + + if (pyfunc != np._NoValue) and (not callable(pyfunc)): + # Splitting the error message to keep + # the length below 79 characters. + part1 = "When used as a decorator, " + part2 = "only accepts keyword arguments." + raise TypeError(part1 + part2) + + self.pyfunc = pyfunc + self.cache = cache + self.signature = signature + if pyfunc != np._NoValue and hasattr(pyfunc, '__name__'): + self.__name__ = pyfunc.__name__ + + self._ufunc = {} # Caching to improve default performance + self._doc = None + self.__doc__ = doc + if doc is None and hasattr(pyfunc, '__doc__'): + self.__doc__ = pyfunc.__doc__ + else: + self._doc = doc + + if isinstance(otypes, str): + for char in otypes: + if char not in typecodes['All']: + raise ValueError(f"Invalid otype specified: {char}") + elif iterable(otypes): + otypes = [_get_vectorize_dtype(_nx.dtype(x)) for x in otypes] + elif otypes is not None: + raise ValueError("Invalid otype specification") + self.otypes = otypes + + # Excluded variable support + if excluded is None: + excluded = set() + self.excluded = set(excluded) + + if signature is not None: + self._in_and_out_core_dims = _parse_gufunc_signature(signature) + else: + self._in_and_out_core_dims = None + + def _init_stage_2(self, pyfunc, *args, **kwargs): + self.__name__ = pyfunc.__name__ + self.pyfunc = pyfunc + if self._doc is None: + self.__doc__ = pyfunc.__doc__ + else: + self.__doc__ = self._doc + + def _call_as_normal(self, *args, **kwargs): + """ + Return arrays with the results of `pyfunc` broadcast (vectorized) over + `args` and `kwargs` not in `excluded`. + """ + excluded = self.excluded + if not kwargs and not excluded: + func = self.pyfunc + vargs = args + else: + # The wrapper accepts only positional arguments: we use `names` and + # `inds` to mutate `the_args` and `kwargs` to pass to the original + # function. + nargs = len(args) + + names = [_n for _n in kwargs if _n not in excluded] + inds = [_i for _i in range(nargs) if _i not in excluded] + the_args = list(args) + + def func(*vargs): + for _n, _i in enumerate(inds): + the_args[_i] = vargs[_n] + kwargs.update(zip(names, vargs[len(inds):])) + return self.pyfunc(*the_args, **kwargs) + + vargs = [args[_i] for _i in inds] + vargs.extend([kwargs[_n] for _n in names]) + + return self._vectorize_call(func=func, args=vargs) + + def __call__(self, *args, **kwargs): + if self.pyfunc is np._NoValue: + self._init_stage_2(*args, **kwargs) + return self + + return self._call_as_normal(*args, **kwargs) + + def _get_ufunc_and_otypes(self, func, args): + """Return (ufunc, otypes).""" + # frompyfunc will fail if args is empty + if not args: + raise ValueError('args can not be empty') + + if self.otypes is not None: + otypes = self.otypes + + # self._ufunc is a dictionary whose keys are the number of + # arguments (i.e. len(args)) and whose values are ufuncs created + # by frompyfunc. len(args) can be different for different calls if + # self.pyfunc has parameters with default values. We only use the + # cache when func is self.pyfunc, which occurs when the call uses + # only positional arguments and no arguments are excluded. + + nin = len(args) + nout = len(self.otypes) + if func is not self.pyfunc or nin not in self._ufunc: + ufunc = frompyfunc(func, nin, nout) + else: + ufunc = None # We'll get it from self._ufunc + if func is self.pyfunc: + ufunc = self._ufunc.setdefault(nin, ufunc) + else: + # Get number of outputs and output types by calling the function on + # the first entries of args. We also cache the result to prevent + # the subsequent call when the ufunc is evaluated. + # Assumes that ufunc first evaluates the 0th elements in the input + # arrays (the input values are not checked to ensure this) + args = [asarray(a) for a in args] + if builtins.any(arg.size == 0 for arg in args): + raise ValueError('cannot call `vectorize` on size 0 inputs ' + 'unless `otypes` is set') + + inputs = [arg.flat[0] for arg in args] + outputs = func(*inputs) + + # Performance note: profiling indicates that -- for simple + # functions at least -- this wrapping can almost double the + # execution time. + # Hence we make it optional. + if self.cache: + _cache = [outputs] + + def _func(*vargs): + if _cache: + return _cache.pop() + else: + return func(*vargs) + else: + _func = func + + if isinstance(outputs, tuple): + nout = len(outputs) + else: + nout = 1 + outputs = (outputs,) + + otypes = ''.join([asarray(outputs[_k]).dtype.char + for _k in range(nout)]) + + # Performance note: profiling indicates that creating the ufunc is + # not a significant cost compared with wrapping so it seems not + # worth trying to cache this. + ufunc = frompyfunc(_func, len(args), nout) + + return ufunc, otypes + + def _vectorize_call(self, func, args): + """Vectorized call to `func` over positional `args`.""" + if self.signature is not None: + res = self._vectorize_call_with_signature(func, args) + elif not args: + res = func() + else: + ufunc, otypes = self._get_ufunc_and_otypes(func=func, args=args) + # gh-29196: `dtype=object` should eventually be removed + args = [asanyarray(a, dtype=object) for a in args] + outputs = ufunc(*args, out=...) + + if ufunc.nout == 1: + res = asanyarray(outputs, dtype=otypes[0]) + else: + res = tuple(asanyarray(x, dtype=t) + for x, t in zip(outputs, otypes)) + return res + + def _vectorize_call_with_signature(self, func, args): + """Vectorized call over positional arguments with a signature.""" + input_core_dims, output_core_dims = self._in_and_out_core_dims + + if len(args) != len(input_core_dims): + raise TypeError('wrong number of positional arguments: ' + 'expected %r, got %r' + % (len(input_core_dims), len(args))) + args = tuple(asanyarray(arg) for arg in args) + + broadcast_shape, dim_sizes = _parse_input_dimensions( + args, input_core_dims) + input_shapes = _calculate_shapes(broadcast_shape, dim_sizes, + input_core_dims) + args = [np.broadcast_to(arg, shape, subok=True) + for arg, shape in zip(args, input_shapes)] + + outputs = None + otypes = self.otypes + nout = len(output_core_dims) + + for index in np.ndindex(*broadcast_shape): + results = func(*(arg[index] for arg in args)) + + n_results = len(results) if isinstance(results, tuple) else 1 + + if nout != n_results: + raise ValueError( + 'wrong number of outputs from pyfunc: expected %r, got %r' + % (nout, n_results)) + + if nout == 1: + results = (results,) + + if outputs is None: + for result, core_dims in zip(results, output_core_dims): + _update_dim_sizes(dim_sizes, result, core_dims) + + outputs = _create_arrays(broadcast_shape, dim_sizes, + output_core_dims, otypes, results) + + for output, result in zip(outputs, results): + output[index] = result + + if outputs is None: + # did not call the function even once + if otypes is None: + raise ValueError('cannot call `vectorize` on size 0 inputs ' + 'unless `otypes` is set') + if builtins.any(dim not in dim_sizes + for dims in output_core_dims + for dim in dims): + raise ValueError('cannot call `vectorize` with a signature ' + 'including new output dimensions on size 0 ' + 'inputs') + outputs = _create_arrays(broadcast_shape, dim_sizes, + output_core_dims, otypes) + + return outputs[0] if nout == 1 else outputs + + +def _cov_dispatcher(m, y=None, rowvar=None, bias=None, ddof=None, + fweights=None, aweights=None, *, dtype=None): + return (m, y, fweights, aweights) + + +@array_function_dispatch(_cov_dispatcher) +def cov(m, y=None, rowvar=True, bias=False, ddof=None, fweights=None, + aweights=None, *, dtype=None): + """ + Estimate a covariance matrix, given data and weights. + + Covariance indicates the level to which two variables vary together. + If we examine N-dimensional samples, :math:`X = [x_1, x_2, ... x_N]^T`, + then the covariance matrix element :math:`C_{ij}` is the covariance of + :math:`x_i` and :math:`x_j`. The element :math:`C_{ii}` is the variance + of :math:`x_i`. + + See the notes for an outline of the algorithm. + + Parameters + ---------- + m : array_like + A 1-D or 2-D array containing multiple variables and observations. + Each row of `m` represents a variable, and each column a single + observation of all those variables. Also see `rowvar` below. + y : array_like, optional + An additional set of variables and observations. `y` has the same form + as that of `m`. + rowvar : bool, optional + If `rowvar` is True (default), then each row represents a + variable, with observations in the columns. Otherwise, the relationship + is transposed: each column represents a variable, while the rows + contain observations. + bias : bool, optional + Default normalization (False) is by ``(N - 1)``, where ``N`` is the + number of observations given (unbiased estimate). If `bias` is True, + then normalization is by ``N``. These values can be overridden by using + the keyword ``ddof`` in numpy versions >= 1.5. + ddof : int, optional + If not ``None`` the default value implied by `bias` is overridden. + Note that ``ddof=1`` will return the unbiased estimate, even if both + `fweights` and `aweights` are specified, and ``ddof=0`` will return + the simple average. See the notes for the details. The default value + is ``None``. + fweights : array_like, int, optional + 1-D array of integer frequency weights; the number of times each + observation vector should be repeated. + aweights : array_like, optional + 1-D array of observation vector weights. These relative weights are + typically large for observations considered "important" and smaller for + observations considered less "important". If ``ddof=0`` the array of + weights can be used to assign probabilities to observation vectors. + dtype : data-type, optional + Data-type of the result. By default, the return data-type will have + at least `numpy.float64` precision. + + .. versionadded:: 1.20 + + Returns + ------- + out : ndarray + The covariance matrix of the variables. + + See Also + -------- + corrcoef : Normalized covariance matrix + + Notes + ----- + Assume that the observations are in the columns of the observation + array `m` and let ``f = fweights`` and ``a = aweights`` for brevity. The + steps to compute the weighted covariance are as follows:: + + >>> m = np.arange(10, dtype=np.float64) + >>> f = np.arange(10) * 2 + >>> a = np.arange(10) ** 2. + >>> ddof = 1 + >>> w = f * a + >>> v1 = np.sum(w) + >>> v2 = np.sum(w * a) + >>> m -= np.sum(m * w, axis=None, keepdims=True) / v1 + >>> cov = np.dot(m * w, m.T) * v1 / (v1**2 - ddof * v2) + + Note that when ``a == 1``, the normalization factor + ``v1 / (v1**2 - ddof * v2)`` goes over to ``1 / (np.sum(f) - ddof)`` + as it should. + + Examples + -------- + >>> import numpy as np + + Consider two variables, :math:`x_0` and :math:`x_1`, which + correlate perfectly, but in opposite directions: + + >>> x = np.array([[0, 2], [1, 1], [2, 0]]).T + >>> x + array([[0, 1, 2], + [2, 1, 0]]) + + Note how :math:`x_0` increases while :math:`x_1` decreases. The covariance + matrix shows this clearly: + + >>> np.cov(x) + array([[ 1., -1.], + [-1., 1.]]) + + Note that element :math:`C_{0,1}`, which shows the correlation between + :math:`x_0` and :math:`x_1`, is negative. + + Further, note how `x` and `y` are combined: + + >>> x = [-2.1, -1, 4.3] + >>> y = [3, 1.1, 0.12] + >>> X = np.stack((x, y), axis=0) + >>> np.cov(X) + array([[11.71 , -4.286 ], # may vary + [-4.286 , 2.144133]]) + >>> np.cov(x, y) + array([[11.71 , -4.286 ], # may vary + [-4.286 , 2.144133]]) + >>> np.cov(x) + array(11.71) + + """ + # Check inputs + if ddof is not None and ddof != int(ddof): + raise ValueError( + "ddof must be integer") + + # Handles complex arrays too + m = np.asarray(m) + if m.ndim > 2: + raise ValueError("m has more than 2 dimensions") + + if y is not None: + y = np.asarray(y) + if y.ndim > 2: + raise ValueError("y has more than 2 dimensions") + + if dtype is None: + if y is None: + dtype = np.result_type(m, np.float64) + else: + dtype = np.result_type(m, y, np.float64) + + X = array(m, ndmin=2, dtype=dtype) + if not rowvar and m.ndim != 1: + X = X.T + if X.shape[0] == 0: + return np.array([]).reshape(0, 0) + if y is not None: + y = array(y, copy=None, ndmin=2, dtype=dtype) + if not rowvar and y.shape[0] != 1: + y = y.T + X = np.concatenate((X, y), axis=0) + + if ddof is None: + if bias == 0: + ddof = 1 + else: + ddof = 0 + + # Get the product of frequencies and weights + w = None + if fweights is not None: + fweights = np.asarray(fweights, dtype=float) + if not np.all(fweights == np.around(fweights)): + raise TypeError( + "fweights must be integer") + if fweights.ndim > 1: + raise RuntimeError( + "cannot handle multidimensional fweights") + if fweights.shape[0] != X.shape[1]: + raise RuntimeError( + "incompatible numbers of samples and fweights") + if any(fweights < 0): + raise ValueError( + "fweights cannot be negative") + w = fweights + if aweights is not None: + aweights = np.asarray(aweights, dtype=float) + if aweights.ndim > 1: + raise RuntimeError( + "cannot handle multidimensional aweights") + if aweights.shape[0] != X.shape[1]: + raise RuntimeError( + "incompatible numbers of samples and aweights") + if any(aweights < 0): + raise ValueError( + "aweights cannot be negative") + if w is None: + w = aweights + else: + w *= aweights + + avg, w_sum = average(X, axis=1, weights=w, returned=True) + w_sum = w_sum[0] + + # Determine the normalization + if w is None: + fact = X.shape[1] - ddof + elif ddof == 0: + fact = w_sum + elif aweights is None: + fact = w_sum - ddof + else: + fact = w_sum - ddof * sum(w * aweights) / w_sum + + if fact <= 0: + warnings.warn("Degrees of freedom <= 0 for slice", + RuntimeWarning, stacklevel=2) + fact = 0.0 + + X -= avg[:, None] + if w is None: + X_T = X.T + else: + X_T = (X * w).T + c = dot(X, X_T.conj()) + c *= np.true_divide(1, fact) + return c.squeeze() + + +def _corrcoef_dispatcher(x, y=None, rowvar=None, bias=None, ddof=None, *, + dtype=None): + return (x, y) + + +@array_function_dispatch(_corrcoef_dispatcher) +def corrcoef(x, y=None, rowvar=True, bias=np._NoValue, ddof=np._NoValue, *, + dtype=None): + """ + Return Pearson product-moment correlation coefficients. + + Please refer to the documentation for `cov` for more detail. The + relationship between the correlation coefficient matrix, `R`, and the + covariance matrix, `C`, is + + .. math:: R_{ij} = \\frac{ C_{ij} } { \\sqrt{ C_{ii} C_{jj} } } + + The values of `R` are between -1 and 1, inclusive. + + Parameters + ---------- + x : array_like + A 1-D or 2-D array containing multiple variables and observations. + Each row of `x` represents a variable, and each column a single + observation of all those variables. Also see `rowvar` below. + y : array_like, optional + An additional set of variables and observations. `y` has the same + shape as `x`. + rowvar : bool, optional + If `rowvar` is True (default), then each row represents a + variable, with observations in the columns. Otherwise, the relationship + is transposed: each column represents a variable, while the rows + contain observations. + bias : _NoValue, optional + Has no effect, do not use. + + .. deprecated:: 1.10.0 + ddof : _NoValue, optional + Has no effect, do not use. + + .. deprecated:: 1.10.0 + dtype : data-type, optional + Data-type of the result. By default, the return data-type will have + at least `numpy.float64` precision. + + .. versionadded:: 1.20 + + Returns + ------- + R : ndarray + The correlation coefficient matrix of the variables. + + See Also + -------- + cov : Covariance matrix + + Notes + ----- + Due to floating point rounding the resulting array may not be Hermitian, + the diagonal elements may not be 1, and the elements may not satisfy the + inequality abs(a) <= 1. The real and imaginary parts are clipped to the + interval [-1, 1] in an attempt to improve on that situation but is not + much help in the complex case. + + This function accepts but discards arguments `bias` and `ddof`. This is + for backwards compatibility with previous versions of this function. These + arguments had no effect on the return values of the function and can be + safely ignored in this and previous versions of numpy. + + Examples + -------- + >>> import numpy as np + + In this example we generate two random arrays, ``xarr`` and ``yarr``, and + compute the row-wise and column-wise Pearson correlation coefficients, + ``R``. Since ``rowvar`` is true by default, we first find the row-wise + Pearson correlation coefficients between the variables of ``xarr``. + + >>> import numpy as np + >>> rng = np.random.default_rng(seed=42) + >>> xarr = rng.random((3, 3)) + >>> xarr + array([[0.77395605, 0.43887844, 0.85859792], + [0.69736803, 0.09417735, 0.97562235], + [0.7611397 , 0.78606431, 0.12811363]]) + >>> R1 = np.corrcoef(xarr) + >>> R1 + array([[ 1. , 0.99256089, -0.68080986], + [ 0.99256089, 1. , -0.76492172], + [-0.68080986, -0.76492172, 1. ]]) + + If we add another set of variables and observations ``yarr``, we can + compute the row-wise Pearson correlation coefficients between the + variables in ``xarr`` and ``yarr``. + + >>> yarr = rng.random((3, 3)) + >>> yarr + array([[0.45038594, 0.37079802, 0.92676499], + [0.64386512, 0.82276161, 0.4434142 ], + [0.22723872, 0.55458479, 0.06381726]]) + >>> R2 = np.corrcoef(xarr, yarr) + >>> R2 + array([[ 1. , 0.99256089, -0.68080986, 0.75008178, -0.934284 , + -0.99004057], + [ 0.99256089, 1. , -0.76492172, 0.82502011, -0.97074098, + -0.99981569], + [-0.68080986, -0.76492172, 1. , -0.99507202, 0.89721355, + 0.77714685], + [ 0.75008178, 0.82502011, -0.99507202, 1. , -0.93657855, + -0.83571711], + [-0.934284 , -0.97074098, 0.89721355, -0.93657855, 1. , + 0.97517215], + [-0.99004057, -0.99981569, 0.77714685, -0.83571711, 0.97517215, + 1. ]]) + + Finally if we use the option ``rowvar=False``, the columns are now + being treated as the variables and we will find the column-wise Pearson + correlation coefficients between variables in ``xarr`` and ``yarr``. + + >>> R3 = np.corrcoef(xarr, yarr, rowvar=False) + >>> R3 + array([[ 1. , 0.77598074, -0.47458546, -0.75078643, -0.9665554 , + 0.22423734], + [ 0.77598074, 1. , -0.92346708, -0.99923895, -0.58826587, + -0.44069024], + [-0.47458546, -0.92346708, 1. , 0.93773029, 0.23297648, + 0.75137473], + [-0.75078643, -0.99923895, 0.93773029, 1. , 0.55627469, + 0.47536961], + [-0.9665554 , -0.58826587, 0.23297648, 0.55627469, 1. , + -0.46666491], + [ 0.22423734, -0.44069024, 0.75137473, 0.47536961, -0.46666491, + 1. ]]) + + """ + if bias is not np._NoValue or ddof is not np._NoValue: + # 2015-03-15, 1.10 + warnings.warn('bias and ddof have no effect and are deprecated', + DeprecationWarning, stacklevel=2) + c = cov(x, y, rowvar, dtype=dtype) + try: + d = diag(c) + except ValueError: + # scalar covariance + # nan if incorrect value (nan, inf, 0), 1 otherwise + return c / c + stddev = sqrt(d.real) + c /= stddev[:, None] + c /= stddev[None, :] + + # Clip real and imaginary parts to [-1, 1]. This does not guarantee + # abs(a[i,j]) <= 1 for complex arrays, but is the best we can do without + # excessive work. + np.clip(c.real, -1, 1, out=c.real) + if np.iscomplexobj(c): + np.clip(c.imag, -1, 1, out=c.imag) + + return c + + +@set_module('numpy') +def blackman(M): + """ + Return the Blackman window. + + The Blackman window is a taper formed by using the first three + terms of a summation of cosines. It was designed to have close to the + minimal leakage possible. It is close to optimal, only slightly worse + than a Kaiser window. + + Parameters + ---------- + M : int + Number of points in the output window. If zero or less, an empty + array is returned. + + Returns + ------- + out : ndarray + The window, with the maximum value normalized to one (the value one + appears only if the number of samples is odd). + + See Also + -------- + bartlett, hamming, hanning, kaiser + + Notes + ----- + The Blackman window is defined as + + .. math:: w(n) = 0.42 - 0.5 \\cos(2\\pi n/M) + 0.08 \\cos(4\\pi n/M) + + Most references to the Blackman window come from the signal processing + literature, where it is used as one of many windowing functions for + smoothing values. It is also known as an apodization (which means + "removing the foot", i.e. smoothing discontinuities at the beginning + and end of the sampled signal) or tapering function. It is known as a + "near optimal" tapering function, almost as good (by some measures) + as the kaiser window. + + References + ---------- + Blackman, R.B. and Tukey, J.W., (1958) The measurement of power spectra, + Dover Publications, New York. + + Oppenheim, A.V., and R.W. Schafer. Discrete-Time Signal Processing. + Upper Saddle River, NJ: Prentice-Hall, 1999, pp. 468-471. + + Examples + -------- + >>> import numpy as np + >>> import matplotlib.pyplot as plt + >>> np.blackman(12) + array([-1.38777878e-17, 3.26064346e-02, 1.59903635e-01, # may vary + 4.14397981e-01, 7.36045180e-01, 9.67046769e-01, + 9.67046769e-01, 7.36045180e-01, 4.14397981e-01, + 1.59903635e-01, 3.26064346e-02, -1.38777878e-17]) + + Plot the window and the frequency response. + + .. plot:: + :include-source: + + import matplotlib.pyplot as plt + from numpy.fft import fft, fftshift + window = np.blackman(51) + plt.plot(window) + plt.title("Blackman window") + plt.ylabel("Amplitude") + plt.xlabel("Sample") + plt.show() # doctest: +SKIP + + plt.figure() + A = fft(window, 2048) / 25.5 + mag = np.abs(fftshift(A)) + freq = np.linspace(-0.5, 0.5, len(A)) + with np.errstate(divide='ignore', invalid='ignore'): + response = 20 * np.log10(mag) + response = np.clip(response, -100, 100) + plt.plot(freq, response) + plt.title("Frequency response of Blackman window") + plt.ylabel("Magnitude [dB]") + plt.xlabel("Normalized frequency [cycles per sample]") + plt.axis('tight') + plt.show() + + """ + # Ensures at least float64 via 0.0. M should be an integer, but conversion + # to double is safe for a range. + values = np.array([0.0, M]) + M = values[1] + + if M < 1: + return array([], dtype=values.dtype) + if M == 1: + return ones(1, dtype=values.dtype) + n = arange(1 - M, M, 2) + return 0.42 + 0.5 * cos(pi * n / (M - 1)) + 0.08 * cos(2.0 * pi * n / (M - 1)) + + +@set_module('numpy') +def bartlett(M): + """ + Return the Bartlett window. + + The Bartlett window is very similar to a triangular window, except + that the end points are at zero. It is often used in signal + processing for tapering a signal, without generating too much + ripple in the frequency domain. + + Parameters + ---------- + M : int + Number of points in the output window. If zero or less, an + empty array is returned. + + Returns + ------- + out : array + The triangular window, with the maximum value normalized to one + (the value one appears only if the number of samples is odd), with + the first and last samples equal to zero. + + See Also + -------- + blackman, hamming, hanning, kaiser + + Notes + ----- + The Bartlett window is defined as + + .. math:: w(n) = \\frac{2}{M-1} \\left( + \\frac{M-1}{2} - \\left|n - \\frac{M-1}{2}\\right| + \\right) + + Most references to the Bartlett window come from the signal processing + literature, where it is used as one of many windowing functions for + smoothing values. Note that convolution with this window produces linear + interpolation. It is also known as an apodization (which means "removing + the foot", i.e. smoothing discontinuities at the beginning and end of the + sampled signal) or tapering function. The Fourier transform of the + Bartlett window is the product of two sinc functions. Note the excellent + discussion in Kanasewich [2]_. + + References + ---------- + .. [1] M.S. Bartlett, "Periodogram Analysis and Continuous Spectra", + Biometrika 37, 1-16, 1950. + .. [2] E.R. Kanasewich, "Time Sequence Analysis in Geophysics", + The University of Alberta Press, 1975, pp. 109-110. + .. [3] A.V. Oppenheim and R.W. Schafer, "Discrete-Time Signal + Processing", Prentice-Hall, 1999, pp. 468-471. + .. [4] Wikipedia, "Window function", + https://en.wikipedia.org/wiki/Window_function + .. [5] W.H. Press, B.P. Flannery, S.A. Teukolsky, and W.T. Vetterling, + "Numerical Recipes", Cambridge University Press, 1986, page 429. + + Examples + -------- + >>> import numpy as np + >>> import matplotlib.pyplot as plt + >>> np.bartlett(12) + array([ 0. , 0.18181818, 0.36363636, 0.54545455, 0.72727273, # may vary + 0.90909091, 0.90909091, 0.72727273, 0.54545455, 0.36363636, + 0.18181818, 0. ]) + + Plot the window and its frequency response (requires SciPy and matplotlib). + + .. plot:: + :include-source: + + import matplotlib.pyplot as plt + from numpy.fft import fft, fftshift + window = np.bartlett(51) + plt.plot(window) + plt.title("Bartlett window") + plt.ylabel("Amplitude") + plt.xlabel("Sample") + plt.show() + plt.figure() + A = fft(window, 2048) / 25.5 + mag = np.abs(fftshift(A)) + freq = np.linspace(-0.5, 0.5, len(A)) + with np.errstate(divide='ignore', invalid='ignore'): + response = 20 * np.log10(mag) + response = np.clip(response, -100, 100) + plt.plot(freq, response) + plt.title("Frequency response of Bartlett window") + plt.ylabel("Magnitude [dB]") + plt.xlabel("Normalized frequency [cycles per sample]") + plt.axis('tight') + plt.show() + + """ + # Ensures at least float64 via 0.0. M should be an integer, but conversion + # to double is safe for a range. + values = np.array([0.0, M]) + M = values[1] + + if M < 1: + return array([], dtype=values.dtype) + if M == 1: + return ones(1, dtype=values.dtype) + n = arange(1 - M, M, 2) + return where(less_equal(n, 0), 1 + n / (M - 1), 1 - n / (M - 1)) + + +@set_module('numpy') +def hanning(M): + """ + Return the Hanning window. + + The Hanning window is a taper formed by using a weighted cosine. + + Parameters + ---------- + M : int + Number of points in the output window. If zero or less, an + empty array is returned. + + Returns + ------- + out : ndarray, shape(M,) + The window, with the maximum value normalized to one (the value + one appears only if `M` is odd). + + See Also + -------- + bartlett, blackman, hamming, kaiser + + Notes + ----- + The Hanning window is defined as + + .. math:: w(n) = 0.5 - 0.5\\cos\\left(\\frac{2\\pi{n}}{M-1}\\right) + \\qquad 0 \\leq n \\leq M-1 + + The Hanning was named for Julius von Hann, an Austrian meteorologist. + It is also known as the Cosine Bell. Some authors prefer that it be + called a Hann window, to help avoid confusion with the very similar + Hamming window. + + Most references to the Hanning window come from the signal processing + literature, where it is used as one of many windowing functions for + smoothing values. It is also known as an apodization (which means + "removing the foot", i.e. smoothing discontinuities at the beginning + and end of the sampled signal) or tapering function. + + References + ---------- + .. [1] Blackman, R.B. and Tukey, J.W., (1958) The measurement of power + spectra, Dover Publications, New York. + .. [2] E.R. Kanasewich, "Time Sequence Analysis in Geophysics", + The University of Alberta Press, 1975, pp. 106-108. + .. [3] Wikipedia, "Window function", + https://en.wikipedia.org/wiki/Window_function + .. [4] W.H. Press, B.P. Flannery, S.A. Teukolsky, and W.T. Vetterling, + "Numerical Recipes", Cambridge University Press, 1986, page 425. + + Examples + -------- + >>> import numpy as np + >>> np.hanning(12) + array([0. , 0.07937323, 0.29229249, 0.57115742, 0.82743037, + 0.97974649, 0.97974649, 0.82743037, 0.57115742, 0.29229249, + 0.07937323, 0. ]) + + Plot the window and its frequency response. + + .. plot:: + :include-source: + + import matplotlib.pyplot as plt + from numpy.fft import fft, fftshift + window = np.hanning(51) + plt.plot(window) + plt.title("Hann window") + plt.ylabel("Amplitude") + plt.xlabel("Sample") + plt.show() + + plt.figure() + A = fft(window, 2048) / 25.5 + mag = np.abs(fftshift(A)) + freq = np.linspace(-0.5, 0.5, len(A)) + with np.errstate(divide='ignore', invalid='ignore'): + response = 20 * np.log10(mag) + response = np.clip(response, -100, 100) + plt.plot(freq, response) + plt.title("Frequency response of the Hann window") + plt.ylabel("Magnitude [dB]") + plt.xlabel("Normalized frequency [cycles per sample]") + plt.axis('tight') + plt.show() + + """ + # Ensures at least float64 via 0.0. M should be an integer, but conversion + # to double is safe for a range. + values = np.array([0.0, M]) + M = values[1] + + if M < 1: + return array([], dtype=values.dtype) + if M == 1: + return ones(1, dtype=values.dtype) + n = arange(1 - M, M, 2) + return 0.5 + 0.5 * cos(pi * n / (M - 1)) + + +@set_module('numpy') +def hamming(M): + """ + Return the Hamming window. + + The Hamming window is a taper formed by using a weighted cosine. + + Parameters + ---------- + M : int + Number of points in the output window. If zero or less, an + empty array is returned. + + Returns + ------- + out : ndarray + The window, with the maximum value normalized to one (the value + one appears only if the number of samples is odd). + + See Also + -------- + bartlett, blackman, hanning, kaiser + + Notes + ----- + The Hamming window is defined as + + .. math:: w(n) = 0.54 - 0.46\\cos\\left(\\frac{2\\pi{n}}{M-1}\\right) + \\qquad 0 \\leq n \\leq M-1 + + The Hamming was named for R. W. Hamming, an associate of J. W. Tukey + and is described in Blackman and Tukey. It was recommended for + smoothing the truncated autocovariance function in the time domain. + Most references to the Hamming window come from the signal processing + literature, where it is used as one of many windowing functions for + smoothing values. It is also known as an apodization (which means + "removing the foot", i.e. smoothing discontinuities at the beginning + and end of the sampled signal) or tapering function. + + References + ---------- + .. [1] Blackman, R.B. and Tukey, J.W., (1958) The measurement of power + spectra, Dover Publications, New York. + .. [2] E.R. Kanasewich, "Time Sequence Analysis in Geophysics", The + University of Alberta Press, 1975, pp. 109-110. + .. [3] Wikipedia, "Window function", + https://en.wikipedia.org/wiki/Window_function + .. [4] W.H. Press, B.P. Flannery, S.A. Teukolsky, and W.T. Vetterling, + "Numerical Recipes", Cambridge University Press, 1986, page 425. + + Examples + -------- + >>> import numpy as np + >>> np.hamming(12) + array([ 0.08 , 0.15302337, 0.34890909, 0.60546483, 0.84123594, # may vary + 0.98136677, 0.98136677, 0.84123594, 0.60546483, 0.34890909, + 0.15302337, 0.08 ]) + + Plot the window and the frequency response. + + .. plot:: + :include-source: + + import matplotlib.pyplot as plt + from numpy.fft import fft, fftshift + window = np.hamming(51) + plt.plot(window) + plt.title("Hamming window") + plt.ylabel("Amplitude") + plt.xlabel("Sample") + plt.show() + + plt.figure() + A = fft(window, 2048) / 25.5 + mag = np.abs(fftshift(A)) + freq = np.linspace(-0.5, 0.5, len(A)) + response = 20 * np.log10(mag) + response = np.clip(response, -100, 100) + plt.plot(freq, response) + plt.title("Frequency response of Hamming window") + plt.ylabel("Magnitude [dB]") + plt.xlabel("Normalized frequency [cycles per sample]") + plt.axis('tight') + plt.show() + + """ + # Ensures at least float64 via 0.0. M should be an integer, but conversion + # to double is safe for a range. + values = np.array([0.0, M]) + M = values[1] + + if M < 1: + return array([], dtype=values.dtype) + if M == 1: + return ones(1, dtype=values.dtype) + n = arange(1 - M, M, 2) + return 0.54 + 0.46 * cos(pi * n / (M - 1)) + + +## Code from cephes for i0 + +_i0A = [ + -4.41534164647933937950E-18, + 3.33079451882223809783E-17, + -2.43127984654795469359E-16, + 1.71539128555513303061E-15, + -1.16853328779934516808E-14, + 7.67618549860493561688E-14, + -4.85644678311192946090E-13, + 2.95505266312963983461E-12, + -1.72682629144155570723E-11, + 9.67580903537323691224E-11, + -5.18979560163526290666E-10, + 2.65982372468238665035E-9, + -1.30002500998624804212E-8, + 6.04699502254191894932E-8, + -2.67079385394061173391E-7, + 1.11738753912010371815E-6, + -4.41673835845875056359E-6, + 1.64484480707288970893E-5, + -5.75419501008210370398E-5, + 1.88502885095841655729E-4, + -5.76375574538582365885E-4, + 1.63947561694133579842E-3, + -4.32430999505057594430E-3, + 1.05464603945949983183E-2, + -2.37374148058994688156E-2, + 4.93052842396707084878E-2, + -9.49010970480476444210E-2, + 1.71620901522208775349E-1, + -3.04682672343198398683E-1, + 6.76795274409476084995E-1 + ] + +_i0B = [ + -7.23318048787475395456E-18, + -4.83050448594418207126E-18, + 4.46562142029675999901E-17, + 3.46122286769746109310E-17, + -2.82762398051658348494E-16, + -3.42548561967721913462E-16, + 1.77256013305652638360E-15, + 3.81168066935262242075E-15, + -9.55484669882830764870E-15, + -4.15056934728722208663E-14, + 1.54008621752140982691E-14, + 3.85277838274214270114E-13, + 7.18012445138366623367E-13, + -1.79417853150680611778E-12, + -1.32158118404477131188E-11, + -3.14991652796324136454E-11, + 1.18891471078464383424E-11, + 4.94060238822496958910E-10, + 3.39623202570838634515E-9, + 2.26666899049817806459E-8, + 2.04891858946906374183E-7, + 2.89137052083475648297E-6, + 6.88975834691682398426E-5, + 3.36911647825569408990E-3, + 8.04490411014108831608E-1 + ] + + +def _chbevl(x, vals): + b0 = vals[0] + b1 = 0.0 + + for i in range(1, len(vals)): + b2 = b1 + b1 = b0 + b0 = x * b1 - b2 + vals[i] + + return 0.5 * (b0 - b2) + + +def _i0_1(x): + return exp(x) * _chbevl(x / 2.0 - 2, _i0A) + + +def _i0_2(x): + return exp(x) * _chbevl(32.0 / x - 2.0, _i0B) / sqrt(x) + + +def _i0_dispatcher(x): + return (x,) + + +@array_function_dispatch(_i0_dispatcher) +def i0(x): + """ + Modified Bessel function of the first kind, order 0. + + Usually denoted :math:`I_0`. + + Parameters + ---------- + x : array_like of float + Argument of the Bessel function. + + Returns + ------- + out : ndarray, shape = x.shape, dtype = float + The modified Bessel function evaluated at each of the elements of `x`. + + See Also + -------- + scipy.special.i0, scipy.special.iv, scipy.special.ive + + Notes + ----- + The scipy implementation is recommended over this function: it is a + proper ufunc written in C, and more than an order of magnitude faster. + + We use the algorithm published by Clenshaw [1]_ and referenced by + Abramowitz and Stegun [2]_, for which the function domain is + partitioned into the two intervals [0,8] and (8,inf), and Chebyshev + polynomial expansions are employed in each interval. Relative error on + the domain [0,30] using IEEE arithmetic is documented [3]_ as having a + peak of 5.8e-16 with an rms of 1.4e-16 (n = 30000). + + References + ---------- + .. [1] C. W. Clenshaw, "Chebyshev series for mathematical functions", in + *National Physical Laboratory Mathematical Tables*, vol. 5, London: + Her Majesty's Stationery Office, 1962. + .. [2] M. Abramowitz and I. A. Stegun, *Handbook of Mathematical + Functions*, 10th printing, New York: Dover, 1964, pp. 379. + https://personal.math.ubc.ca/~cbm/aands/page_379.htm + .. [3] https://metacpan.org/pod/distribution/Math-Cephes/lib/Math/Cephes.pod#i0:-Modified-Bessel-function-of-order-zero + + Examples + -------- + >>> import numpy as np + >>> np.i0(0.) + array(1.0) + >>> np.i0([0, 1, 2, 3]) + array([1. , 1.26606588, 2.2795853 , 4.88079259]) + + """ + x = np.asanyarray(x) + if x.dtype.kind == 'c': + raise TypeError("i0 not supported for complex values") + if x.dtype.kind != 'f': + x = x.astype(float) + x = np.abs(x) + return piecewise(x, [x <= 8.0], [_i0_1, _i0_2]) + +## End of cephes code for i0 + + +@set_module('numpy') +def kaiser(M, beta): + """ + Return the Kaiser window. + + The Kaiser window is a taper formed by using a Bessel function. + + Parameters + ---------- + M : int + Number of points in the output window. If zero or less, an + empty array is returned. + beta : float + Shape parameter for window. + + Returns + ------- + out : array + The window, with the maximum value normalized to one (the value + one appears only if the number of samples is odd). + + See Also + -------- + bartlett, blackman, hamming, hanning + + Notes + ----- + The Kaiser window is defined as + + .. math:: w(n) = I_0\\left( \\beta \\sqrt{1-\\frac{4n^2}{(M-1)^2}} + \\right)/I_0(\\beta) + + with + + .. math:: \\quad -\\frac{M-1}{2} \\leq n \\leq \\frac{M-1}{2}, + + where :math:`I_0` is the modified zeroth-order Bessel function. + + The Kaiser was named for Jim Kaiser, who discovered a simple + approximation to the DPSS window based on Bessel functions. The Kaiser + window is a very good approximation to the Digital Prolate Spheroidal + Sequence, or Slepian window, which is the transform which maximizes the + energy in the main lobe of the window relative to total energy. + + The Kaiser can approximate many other windows by varying the beta + parameter. + + ==== ======================= + beta Window shape + ==== ======================= + 0 Rectangular + 5 Similar to a Hamming + 6 Similar to a Hanning + 8.6 Similar to a Blackman + ==== ======================= + + A beta value of 14 is probably a good starting point. Note that as beta + gets large, the window narrows, and so the number of samples needs to be + large enough to sample the increasingly narrow spike, otherwise NaNs will + get returned. + + Most references to the Kaiser window come from the signal processing + literature, where it is used as one of many windowing functions for + smoothing values. It is also known as an apodization (which means + "removing the foot", i.e. smoothing discontinuities at the beginning + and end of the sampled signal) or tapering function. + + References + ---------- + .. [1] J. F. Kaiser, "Digital Filters" - Ch 7 in "Systems analysis by + digital computer", Editors: F.F. Kuo and J.F. Kaiser, p 218-285. + John Wiley and Sons, New York, (1966). + .. [2] E.R. Kanasewich, "Time Sequence Analysis in Geophysics", The + University of Alberta Press, 1975, pp. 177-178. + .. [3] Wikipedia, "Window function", + https://en.wikipedia.org/wiki/Window_function + + Examples + -------- + >>> import numpy as np + >>> import matplotlib.pyplot as plt + >>> np.kaiser(12, 14) + array([7.72686684e-06, 3.46009194e-03, 4.65200189e-02, # may vary + 2.29737120e-01, 5.99885316e-01, 9.45674898e-01, + 9.45674898e-01, 5.99885316e-01, 2.29737120e-01, + 4.65200189e-02, 3.46009194e-03, 7.72686684e-06]) + + + Plot the window and the frequency response. + + .. plot:: + :include-source: + + import matplotlib.pyplot as plt + from numpy.fft import fft, fftshift + window = np.kaiser(51, 14) + plt.plot(window) + plt.title("Kaiser window") + plt.ylabel("Amplitude") + plt.xlabel("Sample") + plt.show() + + plt.figure() + A = fft(window, 2048) / 25.5 + mag = np.abs(fftshift(A)) + freq = np.linspace(-0.5, 0.5, len(A)) + response = 20 * np.log10(mag) + response = np.clip(response, -100, 100) + plt.plot(freq, response) + plt.title("Frequency response of Kaiser window") + plt.ylabel("Magnitude [dB]") + plt.xlabel("Normalized frequency [cycles per sample]") + plt.axis('tight') + plt.show() + + """ + # Ensures at least float64 via 0.0. M should be an integer, but conversion + # to double is safe for a range. (Simplified result_type with 0.0 + # strongly typed. result-type is not/less order sensitive, but that mainly + # matters for integers anyway.) + values = np.array([0.0, M, beta]) + M = values[1] + beta = values[2] + + if M == 1: + return np.ones(1, dtype=values.dtype) + n = arange(0, M) + alpha = (M - 1) / 2.0 + return i0(beta * sqrt(1 - ((n - alpha) / alpha)**2.0)) / i0(beta) + + +def _sinc_dispatcher(x): + return (x,) + + +@array_function_dispatch(_sinc_dispatcher) +def sinc(x): + r""" + Return the normalized sinc function. + + The sinc function is equal to :math:`\sin(\pi x)/(\pi x)` for any argument + :math:`x\ne 0`. ``sinc(0)`` takes the limit value 1, making ``sinc`` not + only everywhere continuous but also infinitely differentiable. + + .. note:: + + Note the normalization factor of ``pi`` used in the definition. + This is the most commonly used definition in signal processing. + Use ``sinc(x / np.pi)`` to obtain the unnormalized sinc function + :math:`\sin(x)/x` that is more common in mathematics. + + Parameters + ---------- + x : ndarray + Array (possibly multi-dimensional) of values for which to calculate + ``sinc(x)``. + + Returns + ------- + out : ndarray + ``sinc(x)``, which has the same shape as the input. + + Notes + ----- + The name sinc is short for "sine cardinal" or "sinus cardinalis". + + The sinc function is used in various signal processing applications, + including in anti-aliasing, in the construction of a Lanczos resampling + filter, and in interpolation. + + For bandlimited interpolation of discrete-time signals, the ideal + interpolation kernel is proportional to the sinc function. + + References + ---------- + .. [1] Weisstein, Eric W. "Sinc Function." From MathWorld--A Wolfram Web + Resource. https://mathworld.wolfram.com/SincFunction.html + .. [2] Wikipedia, "Sinc function", + https://en.wikipedia.org/wiki/Sinc_function + + Examples + -------- + >>> import numpy as np + >>> import matplotlib.pyplot as plt + >>> x = np.linspace(-4, 4, 41) + >>> np.sinc(x) + array([-3.89804309e-17, -4.92362781e-02, -8.40918587e-02, # may vary + -8.90384387e-02, -5.84680802e-02, 3.89804309e-17, + 6.68206631e-02, 1.16434881e-01, 1.26137788e-01, + 8.50444803e-02, -3.89804309e-17, -1.03943254e-01, + -1.89206682e-01, -2.16236208e-01, -1.55914881e-01, + 3.89804309e-17, 2.33872321e-01, 5.04551152e-01, + 7.56826729e-01, 9.35489284e-01, 1.00000000e+00, + 9.35489284e-01, 7.56826729e-01, 5.04551152e-01, + 2.33872321e-01, 3.89804309e-17, -1.55914881e-01, + -2.16236208e-01, -1.89206682e-01, -1.03943254e-01, + -3.89804309e-17, 8.50444803e-02, 1.26137788e-01, + 1.16434881e-01, 6.68206631e-02, 3.89804309e-17, + -5.84680802e-02, -8.90384387e-02, -8.40918587e-02, + -4.92362781e-02, -3.89804309e-17]) + + >>> plt.plot(x, np.sinc(x)) + [<matplotlib.lines.Line2D object at 0x...>] + >>> plt.title("Sinc Function") + Text(0.5, 1.0, 'Sinc Function') + >>> plt.ylabel("Amplitude") + Text(0, 0.5, 'Amplitude') + >>> plt.xlabel("X") + Text(0.5, 0, 'X') + >>> plt.show() + + """ + x = np.asanyarray(x) + x = pi * x + # Hope that 1e-20 is sufficient for objects... + eps = np.finfo(x.dtype).eps if x.dtype.kind == "f" else 1e-20 + y = where(x, x, eps) + return sin(y) / y + + +def _ureduce(a, func, keepdims=False, **kwargs): + """ + Internal Function. + Call `func` with `a` as first argument swapping the axes to use extended + axis on functions that don't support it natively. + + Returns result and a.shape with axis dims set to 1. + + Parameters + ---------- + a : array_like + Input array or object that can be converted to an array. + func : callable + Reduction function capable of receiving a single axis argument. + It is called with `a` as first argument followed by `kwargs`. + kwargs : keyword arguments + additional keyword arguments to pass to `func`. + + Returns + ------- + result : tuple + Result of func(a, **kwargs) and a.shape with axis dims set to 1 + which can be used to reshape the result to the same shape a ufunc with + keepdims=True would produce. + + """ + a = np.asanyarray(a) + axis = kwargs.get('axis') + out = kwargs.get('out') + + if keepdims is np._NoValue: + keepdims = False + + nd = a.ndim + if axis is not None: + axis = _nx.normalize_axis_tuple(axis, nd) + + if keepdims and out is not None: + index_out = tuple( + 0 if i in axis else slice(None) for i in range(nd)) + kwargs['out'] = out[(Ellipsis, ) + index_out] + + if len(axis) == 1: + kwargs['axis'] = axis[0] + else: + keep = set(range(nd)) - set(axis) + nkeep = len(keep) + # swap axis that should not be reduced to front + for i, s in enumerate(sorted(keep)): + a = a.swapaxes(i, s) + # merge reduced axis + a = a.reshape(a.shape[:nkeep] + (-1,)) + kwargs['axis'] = -1 + elif keepdims and out is not None: + index_out = (0, ) * nd + kwargs['out'] = out[(Ellipsis, ) + index_out] + + r = func(a, **kwargs) + + if out is not None: + return out + + if keepdims: + if axis is None: + index_r = (np.newaxis, ) * nd + else: + index_r = tuple( + np.newaxis if i in axis else slice(None) + for i in range(nd)) + r = r[(Ellipsis, ) + index_r] + + return r + + +def _median_dispatcher( + a, axis=None, out=None, overwrite_input=None, keepdims=None): + return (a, out) + + +@array_function_dispatch(_median_dispatcher) +def median(a, axis=None, out=None, overwrite_input=False, keepdims=False): + """ + Compute the median along the specified axis. + + Returns the median of the array elements. + + Parameters + ---------- + a : array_like + Input array or object that can be converted to an array. + axis : {int, sequence of int, None}, optional + Axis or axes along which the medians are computed. The default, + axis=None, will compute the median along a flattened version of + the array. If a sequence of axes, the array is first flattened + along the given axes, then the median is computed along the + resulting flattened axis. + out : ndarray, optional + Alternative output array in which to place the result. It must + have the same shape and buffer length as the expected output, + but the type (of the output) will be cast if necessary. + overwrite_input : bool, optional + If True, then allow use of memory of input array `a` for + calculations. The input array will be modified by the call to + `median`. This will save memory when you do not need to preserve + the contents of the input array. Treat the input as undefined, + but it will probably be fully or partially sorted. Default is + False. If `overwrite_input` is ``True`` and `a` is not already an + `ndarray`, an error will be raised. + keepdims : bool, optional + If this is set to True, the axes which are reduced are left + in the result as dimensions with size one. With this option, + the result will broadcast correctly against the original `arr`. + + Returns + ------- + median : ndarray + A new array holding the result. If the input contains integers + or floats smaller than ``float64``, then the output data-type is + ``np.float64``. Otherwise, the data-type of the output is the + same as that of the input. If `out` is specified, that array is + returned instead. + + See Also + -------- + mean, percentile + + Notes + ----- + Given a vector ``V`` of length ``N``, the median of ``V`` is the + middle value of a sorted copy of ``V``, ``V_sorted`` - i + e., ``V_sorted[(N-1)/2]``, when ``N`` is odd, and the average of the + two middle values of ``V_sorted`` when ``N`` is even. + + Examples + -------- + >>> import numpy as np + >>> a = np.array([[10, 7, 4], [3, 2, 1]]) + >>> a + array([[10, 7, 4], + [ 3, 2, 1]]) + >>> np.median(a) + np.float64(3.5) + >>> np.median(a, axis=0) + array([6.5, 4.5, 2.5]) + >>> np.median(a, axis=1) + array([7., 2.]) + >>> np.median(a, axis=(0, 1)) + np.float64(3.5) + >>> m = np.median(a, axis=0) + >>> out = np.zeros_like(m) + >>> np.median(a, axis=0, out=m) + array([6.5, 4.5, 2.5]) + >>> m + array([6.5, 4.5, 2.5]) + >>> b = a.copy() + >>> np.median(b, axis=1, overwrite_input=True) + array([7., 2.]) + >>> assert not np.all(a==b) + >>> b = a.copy() + >>> np.median(b, axis=None, overwrite_input=True) + np.float64(3.5) + >>> assert not np.all(a==b) + + """ + return _ureduce(a, func=_median, keepdims=keepdims, axis=axis, out=out, + overwrite_input=overwrite_input) + + +def _median(a, axis=None, out=None, overwrite_input=False): + # can't be reasonably be implemented in terms of percentile as we have to + # call mean to not break astropy + a = np.asanyarray(a) + + # Set the partition indexes + if axis is None: + sz = a.size + else: + sz = a.shape[axis] + if sz % 2 == 0: + szh = sz // 2 + kth = [szh - 1, szh] + else: + kth = [(sz - 1) // 2] + + # We have to check for NaNs (as of writing 'M' doesn't actually work). + supports_nans = np.issubdtype(a.dtype, np.inexact) or a.dtype.kind in 'Mm' + if supports_nans: + kth.append(-1) + + if overwrite_input: + if axis is None: + part = a.ravel() + part.partition(kth) + else: + a.partition(kth, axis=axis) + part = a + else: + part = partition(a, kth, axis=axis) + + if part.shape == (): + # make 0-D arrays work + return part.item() + if axis is None: + axis = 0 + + indexer = [slice(None)] * part.ndim + index = part.shape[axis] // 2 + if part.shape[axis] % 2 == 1: + # index with slice to allow mean (below) to work + indexer[axis] = slice(index, index + 1) + else: + indexer[axis] = slice(index - 1, index + 1) + indexer = tuple(indexer) + + # Use mean in both odd and even case to coerce data type, + # using out array if needed. + rout = mean(part[indexer], axis=axis, out=out) + if supports_nans and sz > 0: + # If nans are possible, warn and replace by nans like mean would. + rout = np.lib._utils_impl._median_nancheck(part, rout, axis) + + return rout + + +def _percentile_dispatcher(a, q, axis=None, out=None, overwrite_input=None, + method=None, keepdims=None, *, weights=None, + interpolation=None): + return (a, q, out, weights) + + +@array_function_dispatch(_percentile_dispatcher) +def percentile(a, + q, + axis=None, + out=None, + overwrite_input=False, + method="linear", + keepdims=False, + *, + weights=None, + interpolation=None): + """ + Compute the q-th percentile of the data along the specified axis. + + Returns the q-th percentile(s) of the array elements. + + Parameters + ---------- + a : array_like of real numbers + Input array or object that can be converted to an array. + q : array_like of float + Percentage or sequence of percentages for the percentiles to compute. + Values must be between 0 and 100 inclusive. + axis : {int, tuple of int, None}, optional + Axis or axes along which the percentiles are computed. The + default is to compute the percentile(s) along a flattened + version of the array. + out : ndarray, optional + Alternative output array in which to place the result. It must + have the same shape and buffer length as the expected output, + but the type (of the output) will be cast if necessary. + overwrite_input : bool, optional + If True, then allow the input array `a` to be modified by intermediate + calculations, to save memory. In this case, the contents of the input + `a` after this function completes is undefined. + method : str, optional + This parameter specifies the method to use for estimating the + percentile. There are many different methods, some unique to NumPy. + See the notes for explanation. The options sorted by their R type + as summarized in the H&F paper [1]_ are: + + 1. 'inverted_cdf' + 2. 'averaged_inverted_cdf' + 3. 'closest_observation' + 4. 'interpolated_inverted_cdf' + 5. 'hazen' + 6. 'weibull' + 7. 'linear' (default) + 8. 'median_unbiased' + 9. 'normal_unbiased' + + The first three methods are discontinuous. NumPy further defines the + following discontinuous variations of the default 'linear' (7.) option: + + * 'lower' + * 'higher', + * 'midpoint' + * 'nearest' + + .. versionchanged:: 1.22.0 + This argument was previously called "interpolation" and only + offered the "linear" default and last four options. + + keepdims : bool, optional + If this is set to True, the axes which are reduced are left in + the result as dimensions with size one. With this option, the + result will broadcast correctly against the original array `a`. + + weights : array_like, optional + An array of weights associated with the values in `a`. Each value in + `a` contributes to the percentile according to its associated weight. + The weights array can either be 1-D (in which case its length must be + the size of `a` along the given axis) or of the same shape as `a`. + If `weights=None`, then all data in `a` are assumed to have a + weight equal to one. + Only `method="inverted_cdf"` supports weights. + See the notes for more details. + + .. versionadded:: 2.0.0 + + interpolation : str, optional + Deprecated name for the method keyword argument. + + .. deprecated:: 1.22.0 + + Returns + ------- + percentile : scalar or ndarray + If `q` is a single percentile and `axis=None`, then the result + is a scalar. If multiple percentiles are given, first axis of + the result corresponds to the percentiles. The other axes are + the axes that remain after the reduction of `a`. If the input + contains integers or floats smaller than ``float64``, the output + data-type is ``float64``. Otherwise, the output data-type is the + same as that of the input. If `out` is specified, that array is + returned instead. + + See Also + -------- + mean + median : equivalent to ``percentile(..., 50)`` + nanpercentile + quantile : equivalent to percentile, except q in the range [0, 1]. + + Notes + ----- + The behavior of `numpy.percentile` with percentage `q` is + that of `numpy.quantile` with argument ``q/100``. + For more information, please see `numpy.quantile`. + + Examples + -------- + >>> import numpy as np + >>> a = np.array([[10, 7, 4], [3, 2, 1]]) + >>> a + array([[10, 7, 4], + [ 3, 2, 1]]) + >>> np.percentile(a, 50) + 3.5 + >>> np.percentile(a, 50, axis=0) + array([6.5, 4.5, 2.5]) + >>> np.percentile(a, 50, axis=1) + array([7., 2.]) + >>> np.percentile(a, 50, axis=1, keepdims=True) + array([[7.], + [2.]]) + + >>> m = np.percentile(a, 50, axis=0) + >>> out = np.zeros_like(m) + >>> np.percentile(a, 50, axis=0, out=out) + array([6.5, 4.5, 2.5]) + >>> m + array([6.5, 4.5, 2.5]) + + >>> b = a.copy() + >>> np.percentile(b, 50, axis=1, overwrite_input=True) + array([7., 2.]) + >>> assert not np.all(a == b) + + The different methods can be visualized graphically: + + .. plot:: + + import matplotlib.pyplot as plt + + a = np.arange(4) + p = np.linspace(0, 100, 6001) + ax = plt.gca() + lines = [ + ('linear', '-', 'C0'), + ('inverted_cdf', ':', 'C1'), + # Almost the same as `inverted_cdf`: + ('averaged_inverted_cdf', '-.', 'C1'), + ('closest_observation', ':', 'C2'), + ('interpolated_inverted_cdf', '--', 'C1'), + ('hazen', '--', 'C3'), + ('weibull', '-.', 'C4'), + ('median_unbiased', '--', 'C5'), + ('normal_unbiased', '-.', 'C6'), + ] + for method, style, color in lines: + ax.plot( + p, np.percentile(a, p, method=method), + label=method, linestyle=style, color=color) + ax.set( + title='Percentiles for different methods and data: ' + str(a), + xlabel='Percentile', + ylabel='Estimated percentile value', + yticks=a) + ax.legend(bbox_to_anchor=(1.03, 1)) + plt.tight_layout() + plt.show() + + References + ---------- + .. [1] R. J. Hyndman and Y. Fan, + "Sample quantiles in statistical packages," + The American Statistician, 50(4), pp. 361-365, 1996 + + """ + if interpolation is not None: + method = _check_interpolation_as_method( + method, interpolation, "percentile") + + a = np.asanyarray(a) + if a.dtype.kind == "c": + raise TypeError("a must be an array of real numbers") + + # Use dtype of array if possible (e.g., if q is a python int or float) + # by making the divisor have the dtype of the data array. + q = np.true_divide(q, a.dtype.type(100) if a.dtype.kind == "f" else 100, out=...) + if not _quantile_is_valid(q): + raise ValueError("Percentiles must be in the range [0, 100]") + + if weights is not None: + if method != "inverted_cdf": + msg = ("Only method 'inverted_cdf' supports weights. " + f"Got: {method}.") + raise ValueError(msg) + if axis is not None: + axis = _nx.normalize_axis_tuple(axis, a.ndim, argname="axis") + weights = _weights_are_valid(weights=weights, a=a, axis=axis) + if np.any(weights < 0): + raise ValueError("Weights must be non-negative.") + + return _quantile_unchecked( + a, q, axis, out, overwrite_input, method, keepdims, weights) + + +def _quantile_dispatcher(a, q, axis=None, out=None, overwrite_input=None, + method=None, keepdims=None, *, weights=None, + interpolation=None): + return (a, q, out, weights) + + +@array_function_dispatch(_quantile_dispatcher) +def quantile(a, + q, + axis=None, + out=None, + overwrite_input=False, + method="linear", + keepdims=False, + *, + weights=None, + interpolation=None): + """ + Compute the q-th quantile of the data along the specified axis. + + Parameters + ---------- + a : array_like of real numbers + Input array or object that can be converted to an array. + q : array_like of float + Probability or sequence of probabilities of the quantiles to compute. + Values must be between 0 and 1 inclusive. + axis : {int, tuple of int, None}, optional + Axis or axes along which the quantiles are computed. The default is + to compute the quantile(s) along a flattened version of the array. + out : ndarray, optional + Alternative output array in which to place the result. It must have + the same shape and buffer length as the expected output, but the + type (of the output) will be cast if necessary. + overwrite_input : bool, optional + If True, then allow the input array `a` to be modified by + intermediate calculations, to save memory. In this case, the + contents of the input `a` after this function completes is + undefined. + method : str, optional + This parameter specifies the method to use for estimating the + quantile. There are many different methods, some unique to NumPy. + The recommended options, numbered as they appear in [1]_, are: + + 1. 'inverted_cdf' + 2. 'averaged_inverted_cdf' + 3. 'closest_observation' + 4. 'interpolated_inverted_cdf' + 5. 'hazen' + 6. 'weibull' + 7. 'linear' (default) + 8. 'median_unbiased' + 9. 'normal_unbiased' + + The first three methods are discontinuous. For backward compatibility + with previous versions of NumPy, the following discontinuous variations + of the default 'linear' (7.) option are available: + + * 'lower' + * 'higher', + * 'midpoint' + * 'nearest' + + See Notes for details. + + .. versionchanged:: 1.22.0 + This argument was previously called "interpolation" and only + offered the "linear" default and last four options. + + keepdims : bool, optional + If this is set to True, the axes which are reduced are left in + the result as dimensions with size one. With this option, the + result will broadcast correctly against the original array `a`. + + weights : array_like, optional + An array of weights associated with the values in `a`. Each value in + `a` contributes to the quantile according to its associated weight. + The weights array can either be 1-D (in which case its length must be + the size of `a` along the given axis) or of the same shape as `a`. + If `weights=None`, then all data in `a` are assumed to have a + weight equal to one. + Only `method="inverted_cdf"` supports weights. + See the notes for more details. + + .. versionadded:: 2.0.0 + + interpolation : str, optional + Deprecated name for the method keyword argument. + + .. deprecated:: 1.22.0 + + Returns + ------- + quantile : scalar or ndarray + If `q` is a single probability and `axis=None`, then the result + is a scalar. If multiple probability levels are given, first axis + of the result corresponds to the quantiles. The other axes are + the axes that remain after the reduction of `a`. If the input + contains integers or floats smaller than ``float64``, the output + data-type is ``float64``. Otherwise, the output data-type is the + same as that of the input. If `out` is specified, that array is + returned instead. + + See Also + -------- + mean + percentile : equivalent to quantile, but with q in the range [0, 100]. + median : equivalent to ``quantile(..., 0.5)`` + nanquantile + + Notes + ----- + Given a sample `a` from an underlying distribution, `quantile` provides a + nonparametric estimate of the inverse cumulative distribution function. + + By default, this is done by interpolating between adjacent elements in + ``y``, a sorted copy of `a`:: + + (1-g)*y[j] + g*y[j+1] + + where the index ``j`` and coefficient ``g`` are the integral and + fractional components of ``q * (n-1)``, and ``n`` is the number of + elements in the sample. + + This is a special case of Equation 1 of H&F [1]_. More generally, + + - ``j = (q*n + m - 1) // 1``, and + - ``g = (q*n + m - 1) % 1``, + + where ``m`` may be defined according to several different conventions. + The preferred convention may be selected using the ``method`` parameter: + + =============================== =============== =============== + ``method`` number in H&F ``m`` + =============================== =============== =============== + ``interpolated_inverted_cdf`` 4 ``0`` + ``hazen`` 5 ``1/2`` + ``weibull`` 6 ``q`` + ``linear`` (default) 7 ``1 - q`` + ``median_unbiased`` 8 ``q/3 + 1/3`` + ``normal_unbiased`` 9 ``q/4 + 3/8`` + =============================== =============== =============== + + Note that indices ``j`` and ``j + 1`` are clipped to the range ``0`` to + ``n - 1`` when the results of the formula would be outside the allowed + range of non-negative indices. The ``- 1`` in the formulas for ``j`` and + ``g`` accounts for Python's 0-based indexing. + + The table above includes only the estimators from H&F that are continuous + functions of probability `q` (estimators 4-9). NumPy also provides the + three discontinuous estimators from H&F (estimators 1-3), where ``j`` is + defined as above, ``m`` is defined as follows, and ``g`` is a function + of the real-valued ``index = q*n + m - 1`` and ``j``. + + 1. ``inverted_cdf``: ``m = 0`` and ``g = int(index - j > 0)`` + 2. ``averaged_inverted_cdf``: ``m = 0`` and + ``g = (1 + int(index - j > 0)) / 2`` + 3. ``closest_observation``: ``m = -1/2`` and + ``g = 1 - int((index == j) & (j%2 == 1))`` + + For backward compatibility with previous versions of NumPy, `quantile` + provides four additional discontinuous estimators. Like + ``method='linear'``, all have ``m = 1 - q`` so that ``j = q*(n-1) // 1``, + but ``g`` is defined as follows. + + - ``lower``: ``g = 0`` + - ``midpoint``: ``g = 0.5`` + - ``higher``: ``g = 1`` + - ``nearest``: ``g = (q*(n-1) % 1) > 0.5`` + + **Weighted quantiles:** + More formally, the quantile at probability level :math:`q` of a cumulative + distribution function :math:`F(y)=P(Y \\leq y)` with probability measure + :math:`P` is defined as any number :math:`x` that fulfills the + *coverage conditions* + + .. math:: P(Y < x) \\leq q \\quad\\text{and}\\quad P(Y \\leq x) \\geq q + + with random variable :math:`Y\\sim P`. + Sample quantiles, the result of `quantile`, provide nonparametric + estimation of the underlying population counterparts, represented by the + unknown :math:`F`, given a data vector `a` of length ``n``. + + Some of the estimators above arise when one considers :math:`F` as the + empirical distribution function of the data, i.e. + :math:`F(y) = \\frac{1}{n} \\sum_i 1_{a_i \\leq y}`. + Then, different methods correspond to different choices of :math:`x` that + fulfill the above coverage conditions. Methods that follow this approach + are ``inverted_cdf`` and ``averaged_inverted_cdf``. + + For weighted quantiles, the coverage conditions still hold. The + empirical cumulative distribution is simply replaced by its weighted + version, i.e. + :math:`P(Y \\leq t) = \\frac{1}{\\sum_i w_i} \\sum_i w_i 1_{x_i \\leq t}`. + Only ``method="inverted_cdf"`` supports weights. + + Examples + -------- + >>> import numpy as np + >>> a = np.array([[10, 7, 4], [3, 2, 1]]) + >>> a + array([[10, 7, 4], + [ 3, 2, 1]]) + >>> np.quantile(a, 0.5) + 3.5 + >>> np.quantile(a, 0.5, axis=0) + array([6.5, 4.5, 2.5]) + >>> np.quantile(a, 0.5, axis=1) + array([7., 2.]) + >>> np.quantile(a, 0.5, axis=1, keepdims=True) + array([[7.], + [2.]]) + >>> m = np.quantile(a, 0.5, axis=0) + >>> out = np.zeros_like(m) + >>> np.quantile(a, 0.5, axis=0, out=out) + array([6.5, 4.5, 2.5]) + >>> m + array([6.5, 4.5, 2.5]) + >>> b = a.copy() + >>> np.quantile(b, 0.5, axis=1, overwrite_input=True) + array([7., 2.]) + >>> assert not np.all(a == b) + + See also `numpy.percentile` for a visualization of most methods. + + References + ---------- + .. [1] R. J. Hyndman and Y. Fan, + "Sample quantiles in statistical packages," + The American Statistician, 50(4), pp. 361-365, 1996 + + """ + if interpolation is not None: + method = _check_interpolation_as_method( + method, interpolation, "quantile") + + a = np.asanyarray(a) + if a.dtype.kind == "c": + raise TypeError("a must be an array of real numbers") + + # Use dtype of array if possible (e.g., if q is a python int or float). + if isinstance(q, (int, float)) and a.dtype.kind == "f": + q = np.asanyarray(q, dtype=a.dtype) + else: + q = np.asanyarray(q) + + if not _quantile_is_valid(q): + raise ValueError("Quantiles must be in the range [0, 1]") + + if weights is not None: + if method != "inverted_cdf": + msg = ("Only method 'inverted_cdf' supports weights. " + f"Got: {method}.") + raise ValueError(msg) + if axis is not None: + axis = _nx.normalize_axis_tuple(axis, a.ndim, argname="axis") + weights = _weights_are_valid(weights=weights, a=a, axis=axis) + if np.any(weights < 0): + raise ValueError("Weights must be non-negative.") + + return _quantile_unchecked( + a, q, axis, out, overwrite_input, method, keepdims, weights) + + +def _quantile_unchecked(a, + q, + axis=None, + out=None, + overwrite_input=False, + method="linear", + keepdims=False, + weights=None): + """Assumes that q is in [0, 1], and is an ndarray""" + return _ureduce(a, + func=_quantile_ureduce_func, + q=q, + weights=weights, + keepdims=keepdims, + axis=axis, + out=out, + overwrite_input=overwrite_input, + method=method) + + +def _quantile_is_valid(q): + # avoid expensive reductions, relevant for arrays with < O(1000) elements + if q.ndim == 1 and q.size < 10: + for i in range(q.size): + if not (0.0 <= q[i] <= 1.0): + return False + elif not (q.min() >= 0 and q.max() <= 1): + return False + return True + + +def _check_interpolation_as_method(method, interpolation, fname): + # Deprecated NumPy 1.22, 2021-11-08 + warnings.warn( + f"the `interpolation=` argument to {fname} was renamed to " + "`method=`, which has additional options.\n" + "Users of the modes 'nearest', 'lower', 'higher', or " + "'midpoint' are encouraged to review the method they used. " + "(Deprecated NumPy 1.22)", + DeprecationWarning, stacklevel=4) + if method != "linear": + # sanity check, we assume this basically never happens + raise TypeError( + "You shall not pass both `method` and `interpolation`!\n" + "(`interpolation` is Deprecated in favor of `method`)") + return interpolation + + +def _compute_virtual_index(n, quantiles, alpha: float, beta: float): + """ + Compute the floating point indexes of an array for the linear + interpolation of quantiles. + n : array_like + The sample sizes. + quantiles : array_like + The quantiles values. + alpha : float + A constant used to correct the index computed. + beta : float + A constant used to correct the index computed. + + alpha and beta values depend on the chosen method + (see quantile documentation) + + Reference: + Hyndman&Fan paper "Sample Quantiles in Statistical Packages", + DOI: 10.1080/00031305.1996.10473566 + """ + return n * quantiles + ( + alpha + quantiles * (1 - alpha - beta) + ) - 1 + + +def _get_gamma(virtual_indexes, previous_indexes, method): + """ + Compute gamma (a.k.a 'm' or 'weight') for the linear interpolation + of quantiles. + + virtual_indexes : array_like + The indexes where the percentile is supposed to be found in the sorted + sample. + previous_indexes : array_like + The floor values of virtual_indexes. + interpolation : dict + The interpolation method chosen, which may have a specific rule + modifying gamma. + + gamma is usually the fractional part of virtual_indexes but can be modified + by the interpolation method. + """ + gamma = np.asanyarray(virtual_indexes - previous_indexes) + gamma = method["fix_gamma"](gamma, virtual_indexes) + # Ensure both that we have an array, and that we keep the dtype + # (which may have been matched to the input array). + return np.asanyarray(gamma, dtype=virtual_indexes.dtype) + + +def _lerp(a, b, t, out=None): + """ + Compute the linear interpolation weighted by gamma on each point of + two same shape array. + + a : array_like + Left bound. + b : array_like + Right bound. + t : array_like + The interpolation weight. + out : array_like + Output array. + """ + diff_b_a = subtract(b, a) + # asanyarray is a stop-gap until gh-13105 + lerp_interpolation = asanyarray(add(a, diff_b_a * t, out=out)) + subtract(b, diff_b_a * (1 - t), out=lerp_interpolation, where=t >= 0.5, + casting='unsafe', dtype=type(lerp_interpolation.dtype)) + if lerp_interpolation.ndim == 0 and out is None: + lerp_interpolation = lerp_interpolation[()] # unpack 0d arrays + return lerp_interpolation + + +def _get_gamma_mask(shape, default_value, conditioned_value, where): + out = np.full(shape, default_value) + np.copyto(out, conditioned_value, where=where, casting="unsafe") + return out + + +def _discrete_interpolation_to_boundaries(index, gamma_condition_fun): + previous = np.floor(index) + next = previous + 1 + gamma = index - previous + res = _get_gamma_mask(shape=index.shape, + default_value=next, + conditioned_value=previous, + where=gamma_condition_fun(gamma, index) + ).astype(np.intp) + # Some methods can lead to out-of-bound integers, clip them: + res[res < 0] = 0 + return res + + +def _closest_observation(n, quantiles): + # "choose the nearest even order statistic at g=0" (H&F (1996) pp. 362). + # Order is 1-based so for zero-based indexing round to nearest odd index. + gamma_fun = lambda gamma, index: (gamma == 0) & (np.floor(index) % 2 == 1) + return _discrete_interpolation_to_boundaries((n * quantiles) - 1 - 0.5, + gamma_fun) + + +def _inverted_cdf(n, quantiles): + gamma_fun = lambda gamma, _: (gamma == 0) + return _discrete_interpolation_to_boundaries((n * quantiles) - 1, + gamma_fun) + + +def _quantile_ureduce_func( + a: np.array, + q: np.array, + weights: np.array, + axis: int | None = None, + out=None, + overwrite_input: bool = False, + method="linear", +) -> np.array: + if q.ndim > 2: + # The code below works fine for nd, but it might not have useful + # semantics. For now, keep the supported dimensions the same as it was + # before. + raise ValueError("q must be a scalar or 1d") + if overwrite_input: + if axis is None: + axis = 0 + arr = a.ravel() + wgt = None if weights is None else weights.ravel() + else: + arr = a + wgt = weights + elif axis is None: + axis = 0 + arr = a.flatten() + wgt = None if weights is None else weights.flatten() + else: + arr = a.copy() + wgt = weights + result = _quantile(arr, + quantiles=q, + axis=axis, + method=method, + out=out, + weights=wgt) + return result + + +def _get_indexes(arr, virtual_indexes, valid_values_count): + """ + Get the valid indexes of arr neighbouring virtual_indexes. + Note + This is a companion function to linear interpolation of + Quantiles + + Returns + ------- + (previous_indexes, next_indexes): Tuple + A Tuple of virtual_indexes neighbouring indexes + """ + previous_indexes = np.asanyarray(np.floor(virtual_indexes)) + next_indexes = np.asanyarray(previous_indexes + 1) + indexes_above_bounds = virtual_indexes >= valid_values_count - 1 + # When indexes is above max index, take the max value of the array + if indexes_above_bounds.any(): + previous_indexes[indexes_above_bounds] = -1 + next_indexes[indexes_above_bounds] = -1 + # When indexes is below min index, take the min value of the array + indexes_below_bounds = virtual_indexes < 0 + if indexes_below_bounds.any(): + previous_indexes[indexes_below_bounds] = 0 + next_indexes[indexes_below_bounds] = 0 + if np.issubdtype(arr.dtype, np.inexact): + # After the sort, slices having NaNs will have for last element a NaN + virtual_indexes_nans = np.isnan(virtual_indexes) + if virtual_indexes_nans.any(): + previous_indexes[virtual_indexes_nans] = -1 + next_indexes[virtual_indexes_nans] = -1 + previous_indexes = previous_indexes.astype(np.intp) + next_indexes = next_indexes.astype(np.intp) + return previous_indexes, next_indexes + + +def _quantile( + arr: np.array, + quantiles: np.array, + axis: int = -1, + method="linear", + out=None, + weights=None, +): + """ + Private function that doesn't support extended axis or keepdims. + These methods are extended to this function using _ureduce + See nanpercentile for parameter usage + It computes the quantiles of the array for the given axis. + A linear interpolation is performed based on the `interpolation`. + + By default, the method is "linear" where alpha == beta == 1 which + performs the 7th method of Hyndman&Fan. + With "median_unbiased" we get alpha == beta == 1/3 + thus the 8th method of Hyndman&Fan. + """ + # --- Setup + arr = np.asanyarray(arr) + values_count = arr.shape[axis] + # The dimensions of `q` are prepended to the output shape, so we need the + # axis being sampled from `arr` to be last. + if axis != 0: # But moveaxis is slow, so only call it if necessary. + arr = np.moveaxis(arr, axis, destination=0) + supports_nans = ( + np.issubdtype(arr.dtype, np.inexact) or arr.dtype.kind in 'Mm' + ) + + if weights is None: + # --- Computation of indexes + # Index where to find the value in the sorted array. + # Virtual because it is a floating point value, not an valid index. + # The nearest neighbours are used for interpolation + try: + method_props = _QuantileMethods[method] + except KeyError: + raise ValueError( + f"{method!r} is not a valid method. Use one of: " + f"{_QuantileMethods.keys()}") from None + virtual_indexes = method_props["get_virtual_index"](values_count, + quantiles) + virtual_indexes = np.asanyarray(virtual_indexes) + + if method_props["fix_gamma"] is None: + supports_integers = True + else: + int_virtual_indices = np.issubdtype(virtual_indexes.dtype, + np.integer) + supports_integers = method == 'linear' and int_virtual_indices + + if supports_integers: + # No interpolation needed, take the points along axis + if supports_nans: + # may contain nan, which would sort to the end + arr.partition( + concatenate((virtual_indexes.ravel(), [-1])), axis=0, + ) + slices_having_nans = np.isnan(arr[-1, ...]) + else: + # cannot contain nan + arr.partition(virtual_indexes.ravel(), axis=0) + slices_having_nans = np.array(False, dtype=bool) + result = take(arr, virtual_indexes, axis=0, out=out) + else: + previous_indexes, next_indexes = _get_indexes(arr, + virtual_indexes, + values_count) + # --- Sorting + arr.partition( + np.unique(np.concatenate(([0, -1], + previous_indexes.ravel(), + next_indexes.ravel(), + ))), + axis=0) + if supports_nans: + slices_having_nans = np.isnan(arr[-1, ...]) + else: + slices_having_nans = None + # --- Get values from indexes + previous = arr[previous_indexes] + next = arr[next_indexes] + # --- Linear interpolation + gamma = _get_gamma(virtual_indexes, previous_indexes, method_props) + result_shape = virtual_indexes.shape + (1,) * (arr.ndim - 1) + gamma = gamma.reshape(result_shape) + result = _lerp(previous, + next, + gamma, + out=out) + else: + # Weighted case + # This implements method="inverted_cdf", the only supported weighted + # method, which needs to sort anyway. + weights = np.asanyarray(weights) + if axis != 0: + weights = np.moveaxis(weights, axis, destination=0) + index_array = np.argsort(arr, axis=0, kind="stable") + + # arr = arr[index_array, ...] # but this adds trailing dimensions of + # 1. + arr = np.take_along_axis(arr, index_array, axis=0) + if weights.shape == arr.shape: + weights = np.take_along_axis(weights, index_array, axis=0) + else: + # weights is 1d + weights = weights.reshape(-1)[index_array, ...] + + if supports_nans: + # may contain nan, which would sort to the end + slices_having_nans = np.isnan(arr[-1, ...]) + else: + # cannot contain nan + slices_having_nans = np.array(False, dtype=bool) + + # We use the weights to calculate the empirical cumulative + # distribution function cdf + cdf = weights.cumsum(axis=0, dtype=np.float64) + cdf /= cdf[-1, ...] # normalization to 1 + # Search index i such that + # sum(weights[j], j=0..i-1) < quantile <= sum(weights[j], j=0..i) + # is then equivalent to + # cdf[i-1] < quantile <= cdf[i] + # Unfortunately, searchsorted only accepts 1-d arrays as first + # argument, so we will need to iterate over dimensions. + + # Without the following cast, searchsorted can return surprising + # results, e.g. + # np.searchsorted(np.array([0.2, 0.4, 0.6, 0.8, 1.]), + # np.array(0.4, dtype=np.float32), side="left") + # returns 2 instead of 1 because 0.4 is not binary representable. + if quantiles.dtype.kind == "f": + cdf = cdf.astype(quantiles.dtype) + # Weights must be non-negative, so we might have zero weights at the + # beginning leading to some leading zeros in cdf. The call to + # np.searchsorted for quantiles=0 will then pick the first element, + # but should pick the first one larger than zero. We + # therefore simply set 0 values in cdf to -1. + if np.any(cdf[0, ...] == 0): + cdf[cdf == 0] = -1 + + def find_cdf_1d(arr, cdf): + indices = np.searchsorted(cdf, quantiles, side="left") + # We might have reached the maximum with i = len(arr), e.g. for + # quantiles = 1, and need to cut it to len(arr) - 1. + indices = minimum(indices, values_count - 1) + result = take(arr, indices, axis=0) + return result + + r_shape = arr.shape[1:] + if quantiles.ndim > 0: + r_shape = quantiles.shape + r_shape + if out is None: + result = np.empty_like(arr, shape=r_shape) + else: + if out.shape != r_shape: + msg = (f"Wrong shape of argument 'out', shape={r_shape} is " + f"required; got shape={out.shape}.") + raise ValueError(msg) + result = out + + # See apply_along_axis, which we do for axis=0. Note that Ni = (,) + # always, so we remove it here. + Nk = arr.shape[1:] + for kk in np.ndindex(Nk): + result[(...,) + kk] = find_cdf_1d( + arr[np.s_[:, ] + kk], cdf[np.s_[:, ] + kk] + ) + + # Make result the same as in unweighted inverted_cdf. + if result.shape == () and result.dtype == np.dtype("O"): + result = result.item() + + if np.any(slices_having_nans): + if result.ndim == 0 and out is None: + # can't write to a scalar, but indexing will be correct + result = arr[-1] + else: + np.copyto(result, arr[-1, ...], where=slices_having_nans) + return result + + +def _trapezoid_dispatcher(y, x=None, dx=None, axis=None): + return (y, x) + + +@array_function_dispatch(_trapezoid_dispatcher) +def trapezoid(y, x=None, dx=1.0, axis=-1): + r""" + Integrate along the given axis using the composite trapezoidal rule. + + If `x` is provided, the integration happens in sequence along its + elements - they are not sorted. + + Integrate `y` (`x`) along each 1d slice on the given axis, compute + :math:`\int y(x) dx`. + When `x` is specified, this integrates along the parametric curve, + computing :math:`\int_t y(t) dt = + \int_t y(t) \left.\frac{dx}{dt}\right|_{x=x(t)} dt`. + + .. versionadded:: 2.0.0 + + Parameters + ---------- + y : array_like + Input array to integrate. + x : array_like, optional + The sample points corresponding to the `y` values. If `x` is None, + the sample points are assumed to be evenly spaced `dx` apart. The + default is None. + dx : scalar, optional + The spacing between sample points when `x` is None. The default is 1. + axis : int, optional + The axis along which to integrate. + + Returns + ------- + trapezoid : float or ndarray + Definite integral of `y` = n-dimensional array as approximated along + a single axis by the trapezoidal rule. If `y` is a 1-dimensional array, + then the result is a float. If `n` is greater than 1, then the result + is an `n`-1 dimensional array. + + See Also + -------- + sum, cumsum + + Notes + ----- + Image [2]_ illustrates trapezoidal rule -- y-axis locations of points + will be taken from `y` array, by default x-axis distances between + points will be 1.0, alternatively they can be provided with `x` array + or with `dx` scalar. Return value will be equal to combined area under + the red lines. + + + References + ---------- + .. [1] Wikipedia page: https://en.wikipedia.org/wiki/Trapezoidal_rule + + .. [2] Illustration image: + https://en.wikipedia.org/wiki/File:Composite_trapezoidal_rule_illustration.png + + Examples + -------- + >>> import numpy as np + + Use the trapezoidal rule on evenly spaced points: + + >>> np.trapezoid([1, 2, 3]) + 4.0 + + The spacing between sample points can be selected by either the + ``x`` or ``dx`` arguments: + + >>> np.trapezoid([1, 2, 3], x=[4, 6, 8]) + 8.0 + >>> np.trapezoid([1, 2, 3], dx=2) + 8.0 + + Using a decreasing ``x`` corresponds to integrating in reverse: + + >>> np.trapezoid([1, 2, 3], x=[8, 6, 4]) + -8.0 + + More generally ``x`` is used to integrate along a parametric curve. We can + estimate the integral :math:`\int_0^1 x^2 = 1/3` using: + + >>> x = np.linspace(0, 1, num=50) + >>> y = x**2 + >>> np.trapezoid(y, x) + 0.33340274885464394 + + Or estimate the area of a circle, noting we repeat the sample which closes + the curve: + + >>> theta = np.linspace(0, 2 * np.pi, num=1000, endpoint=True) + >>> np.trapezoid(np.cos(theta), x=np.sin(theta)) + 3.141571941375841 + + ``np.trapezoid`` can be applied along a specified axis to do multiple + computations in one call: + + >>> a = np.arange(6).reshape(2, 3) + >>> a + array([[0, 1, 2], + [3, 4, 5]]) + >>> np.trapezoid(a, axis=0) + array([1.5, 2.5, 3.5]) + >>> np.trapezoid(a, axis=1) + array([2., 8.]) + """ + + y = asanyarray(y) + if x is None: + d = dx + else: + x = asanyarray(x) + if x.ndim == 1: + d = diff(x) + # reshape to correct shape + shape = [1] * y.ndim + shape[axis] = d.shape[0] + d = d.reshape(shape) + else: + d = diff(x, axis=axis) + nd = y.ndim + slice1 = [slice(None)] * nd + slice2 = [slice(None)] * nd + slice1[axis] = slice(1, None) + slice2[axis] = slice(None, -1) + try: + ret = (d * (y[tuple(slice1)] + y[tuple(slice2)]) / 2.0).sum(axis) + except ValueError: + # Operations didn't work, cast to ndarray + d = np.asarray(d) + y = np.asarray(y) + ret = add.reduce(d * (y[tuple(slice1)] + y[tuple(slice2)]) / 2.0, axis) + return ret + + +@set_module('numpy') +def trapz(y, x=None, dx=1.0, axis=-1): + """ + `trapz` is deprecated in NumPy 2.0. + + Please use `trapezoid` instead, or one of the numerical integration + functions in `scipy.integrate`. + """ + # Deprecated in NumPy 2.0, 2023-08-18 + warnings.warn( + "`trapz` is deprecated. Use `trapezoid` instead, or one of the " + "numerical integration functions in `scipy.integrate`.", + DeprecationWarning, + stacklevel=2 + ) + return trapezoid(y, x=x, dx=dx, axis=axis) + + +def _meshgrid_dispatcher(*xi, copy=None, sparse=None, indexing=None): + return xi + + +# Based on scitools meshgrid +@array_function_dispatch(_meshgrid_dispatcher) +def meshgrid(*xi, copy=True, sparse=False, indexing='xy'): + """ + Return a tuple of coordinate matrices from coordinate vectors. + + Make N-D coordinate arrays for vectorized evaluations of + N-D scalar/vector fields over N-D grids, given + one-dimensional coordinate arrays x1, x2,..., xn. + + Parameters + ---------- + x1, x2,..., xn : array_like + 1-D arrays representing the coordinates of a grid. + indexing : {'xy', 'ij'}, optional + Cartesian ('xy', default) or matrix ('ij') indexing of output. + See Notes for more details. + sparse : bool, optional + If True the shape of the returned coordinate array for dimension *i* + is reduced from ``(N1, ..., Ni, ... Nn)`` to + ``(1, ..., 1, Ni, 1, ..., 1)``. These sparse coordinate grids are + intended to be used with :ref:`basics.broadcasting`. When all + coordinates are used in an expression, broadcasting still leads to a + fully-dimensonal result array. + + Default is False. + + copy : bool, optional + If False, a view into the original arrays are returned in order to + conserve memory. Default is True. Please note that + ``sparse=False, copy=False`` will likely return non-contiguous + arrays. Furthermore, more than one element of a broadcast array + may refer to a single memory location. If you need to write to the + arrays, make copies first. + + Returns + ------- + X1, X2,..., XN : tuple of ndarrays + For vectors `x1`, `x2`,..., `xn` with lengths ``Ni=len(xi)``, + returns ``(N1, N2, N3,..., Nn)`` shaped arrays if indexing='ij' + or ``(N2, N1, N3,..., Nn)`` shaped arrays if indexing='xy' + with the elements of `xi` repeated to fill the matrix along + the first dimension for `x1`, the second for `x2` and so on. + + Notes + ----- + This function supports both indexing conventions through the indexing + keyword argument. Giving the string 'ij' returns a meshgrid with + matrix indexing, while 'xy' returns a meshgrid with Cartesian indexing. + In the 2-D case with inputs of length M and N, the outputs are of shape + (N, M) for 'xy' indexing and (M, N) for 'ij' indexing. In the 3-D case + with inputs of length M, N and P, outputs are of shape (N, M, P) for + 'xy' indexing and (M, N, P) for 'ij' indexing. The difference is + illustrated by the following code snippet:: + + xv, yv = np.meshgrid(x, y, indexing='ij') + for i in range(nx): + for j in range(ny): + # treat xv[i,j], yv[i,j] + + xv, yv = np.meshgrid(x, y, indexing='xy') + for i in range(nx): + for j in range(ny): + # treat xv[j,i], yv[j,i] + + In the 1-D and 0-D case, the indexing and sparse keywords have no effect. + + See Also + -------- + mgrid : Construct a multi-dimensional "meshgrid" using indexing notation. + ogrid : Construct an open multi-dimensional "meshgrid" using indexing + notation. + :ref:`how-to-index` + + Examples + -------- + >>> import numpy as np + >>> nx, ny = (3, 2) + >>> x = np.linspace(0, 1, nx) + >>> y = np.linspace(0, 1, ny) + >>> xv, yv = np.meshgrid(x, y) + >>> xv + array([[0. , 0.5, 1. ], + [0. , 0.5, 1. ]]) + >>> yv + array([[0., 0., 0.], + [1., 1., 1.]]) + + The result of `meshgrid` is a coordinate grid: + + >>> import matplotlib.pyplot as plt + >>> plt.plot(xv, yv, marker='o', color='k', linestyle='none') + >>> plt.show() + + You can create sparse output arrays to save memory and computation time. + + >>> xv, yv = np.meshgrid(x, y, sparse=True) + >>> xv + array([[0. , 0.5, 1. ]]) + >>> yv + array([[0.], + [1.]]) + + `meshgrid` is very useful to evaluate functions on a grid. If the + function depends on all coordinates, both dense and sparse outputs can be + used. + + >>> x = np.linspace(-5, 5, 101) + >>> y = np.linspace(-5, 5, 101) + >>> # full coordinate arrays + >>> xx, yy = np.meshgrid(x, y) + >>> zz = np.sqrt(xx**2 + yy**2) + >>> xx.shape, yy.shape, zz.shape + ((101, 101), (101, 101), (101, 101)) + >>> # sparse coordinate arrays + >>> xs, ys = np.meshgrid(x, y, sparse=True) + >>> zs = np.sqrt(xs**2 + ys**2) + >>> xs.shape, ys.shape, zs.shape + ((1, 101), (101, 1), (101, 101)) + >>> np.array_equal(zz, zs) + True + + >>> h = plt.contourf(x, y, zs) + >>> plt.axis('scaled') + >>> plt.colorbar() + >>> plt.show() + """ + ndim = len(xi) + + if indexing not in ['xy', 'ij']: + raise ValueError( + "Valid values for `indexing` are 'xy' and 'ij'.") + + s0 = (1,) * ndim + output = [np.asanyarray(x).reshape(s0[:i] + (-1,) + s0[i + 1:]) + for i, x in enumerate(xi)] + + if indexing == 'xy' and ndim > 1: + # switch first and second axis + output[0].shape = (1, -1) + s0[2:] + output[1].shape = (-1, 1) + s0[2:] + + if not sparse: + # Return the full N-D matrix (not only the 1-D vector) + output = np.broadcast_arrays(*output, subok=True) + + if copy: + output = tuple(x.copy() for x in output) + + return output + + +def _delete_dispatcher(arr, obj, axis=None): + return (arr, obj) + + +@array_function_dispatch(_delete_dispatcher) +def delete(arr, obj, axis=None): + """ + Return a new array with sub-arrays along an axis deleted. For a one + dimensional array, this returns those entries not returned by + `arr[obj]`. + + Parameters + ---------- + arr : array_like + Input array. + obj : slice, int, array-like of ints or bools + Indicate indices of sub-arrays to remove along the specified axis. + + .. versionchanged:: 1.19.0 + Boolean indices are now treated as a mask of elements to remove, + rather than being cast to the integers 0 and 1. + + axis : int, optional + The axis along which to delete the subarray defined by `obj`. + If `axis` is None, `obj` is applied to the flattened array. + + Returns + ------- + out : ndarray + A copy of `arr` with the elements specified by `obj` removed. Note + that `delete` does not occur in-place. If `axis` is None, `out` is + a flattened array. + + See Also + -------- + insert : Insert elements into an array. + append : Append elements at the end of an array. + + Notes + ----- + Often it is preferable to use a boolean mask. For example: + + >>> arr = np.arange(12) + 1 + >>> mask = np.ones(len(arr), dtype=bool) + >>> mask[[0,2,4]] = False + >>> result = arr[mask,...] + + Is equivalent to ``np.delete(arr, [0,2,4], axis=0)``, but allows further + use of `mask`. + + Examples + -------- + >>> import numpy as np + >>> arr = np.array([[1,2,3,4], [5,6,7,8], [9,10,11,12]]) + >>> arr + array([[ 1, 2, 3, 4], + [ 5, 6, 7, 8], + [ 9, 10, 11, 12]]) + >>> np.delete(arr, 1, 0) + array([[ 1, 2, 3, 4], + [ 9, 10, 11, 12]]) + + >>> np.delete(arr, np.s_[::2], 1) + array([[ 2, 4], + [ 6, 8], + [10, 12]]) + >>> np.delete(arr, [1,3,5], None) + array([ 1, 3, 5, 7, 8, 9, 10, 11, 12]) + + """ + conv = _array_converter(arr) + arr, = conv.as_arrays(subok=False) + + ndim = arr.ndim + arrorder = 'F' if arr.flags.fnc else 'C' + if axis is None: + if ndim != 1: + arr = arr.ravel() + # needed for np.matrix, which is still not 1d after being ravelled + ndim = arr.ndim + axis = ndim - 1 + else: + axis = normalize_axis_index(axis, ndim) + + slobj = [slice(None)] * ndim + N = arr.shape[axis] + newshape = list(arr.shape) + + if isinstance(obj, slice): + start, stop, step = obj.indices(N) + xr = range(start, stop, step) + numtodel = len(xr) + + if numtodel <= 0: + return conv.wrap(arr.copy(order=arrorder), to_scalar=False) + + # Invert if step is negative: + if step < 0: + step = -step + start = xr[-1] + stop = xr[0] + 1 + + newshape[axis] -= numtodel + new = empty(newshape, arr.dtype, arrorder) + # copy initial chunk + if start == 0: + pass + else: + slobj[axis] = slice(None, start) + new[tuple(slobj)] = arr[tuple(slobj)] + # copy end chunk + if stop == N: + pass + else: + slobj[axis] = slice(stop - numtodel, None) + slobj2 = [slice(None)] * ndim + slobj2[axis] = slice(stop, None) + new[tuple(slobj)] = arr[tuple(slobj2)] + # copy middle pieces + if step == 1: + pass + else: # use array indexing. + keep = ones(stop - start, dtype=bool) + keep[:stop - start:step] = False + slobj[axis] = slice(start, stop - numtodel) + slobj2 = [slice(None)] * ndim + slobj2[axis] = slice(start, stop) + arr = arr[tuple(slobj2)] + slobj2[axis] = keep + new[tuple(slobj)] = arr[tuple(slobj2)] + + return conv.wrap(new, to_scalar=False) + + if isinstance(obj, (int, integer)) and not isinstance(obj, bool): + single_value = True + else: + single_value = False + _obj = obj + obj = np.asarray(obj) + # `size == 0` to allow empty lists similar to indexing, but (as there) + # is really too generic: + if obj.size == 0 and not isinstance(_obj, np.ndarray): + obj = obj.astype(intp) + elif obj.size == 1 and obj.dtype.kind in "ui": + # For a size 1 integer array we can use the single-value path + # (most dtypes, except boolean, should just fail later). + obj = obj.item() + single_value = True + + if single_value: + # optimization for a single value + if (obj < -N or obj >= N): + raise IndexError( + f"index {obj} is out of bounds for axis {axis} with " + f"size {N}") + if (obj < 0): + obj += N + newshape[axis] -= 1 + new = empty(newshape, arr.dtype, arrorder) + slobj[axis] = slice(None, obj) + new[tuple(slobj)] = arr[tuple(slobj)] + slobj[axis] = slice(obj, None) + slobj2 = [slice(None)] * ndim + slobj2[axis] = slice(obj + 1, None) + new[tuple(slobj)] = arr[tuple(slobj2)] + else: + if obj.dtype == bool: + if obj.shape != (N,): + raise ValueError('boolean array argument obj to delete ' + 'must be one dimensional and match the axis ' + f'length of {N}') + + # optimization, the other branch is slower + keep = ~obj + else: + keep = ones(N, dtype=bool) + keep[obj,] = False + + slobj[axis] = keep + new = arr[tuple(slobj)] + + return conv.wrap(new, to_scalar=False) + + +def _insert_dispatcher(arr, obj, values, axis=None): + return (arr, obj, values) + + +@array_function_dispatch(_insert_dispatcher) +def insert(arr, obj, values, axis=None): + """ + Insert values along the given axis before the given indices. + + Parameters + ---------- + arr : array_like + Input array. + obj : slice, int, array-like of ints or bools + Object that defines the index or indices before which `values` is + inserted. + + .. versionchanged:: 2.1.2 + Boolean indices are now treated as a mask of elements to insert, + rather than being cast to the integers 0 and 1. + + Support for multiple insertions when `obj` is a single scalar or a + sequence with one element (similar to calling insert multiple + times). + values : array_like + Values to insert into `arr`. If the type of `values` is different + from that of `arr`, `values` is converted to the type of `arr`. + `values` should be shaped so that ``arr[...,obj,...] = values`` + is legal. + axis : int, optional + Axis along which to insert `values`. If `axis` is None then `arr` + is flattened first. + + Returns + ------- + out : ndarray + A copy of `arr` with `values` inserted. Note that `insert` + does not occur in-place: a new array is returned. If + `axis` is None, `out` is a flattened array. + + See Also + -------- + append : Append elements at the end of an array. + concatenate : Join a sequence of arrays along an existing axis. + delete : Delete elements from an array. + + Notes + ----- + Note that for higher dimensional inserts ``obj=0`` behaves very different + from ``obj=[0]`` just like ``arr[:,0,:] = values`` is different from + ``arr[:,[0],:] = values``. This is because of the difference between basic + and advanced :ref:`indexing <basics.indexing>`. + + Examples + -------- + >>> import numpy as np + >>> a = np.arange(6).reshape(3, 2) + >>> a + array([[0, 1], + [2, 3], + [4, 5]]) + >>> np.insert(a, 1, 6) + array([0, 6, 1, 2, 3, 4, 5]) + >>> np.insert(a, 1, 6, axis=1) + array([[0, 6, 1], + [2, 6, 3], + [4, 6, 5]]) + + Difference between sequence and scalars, + showing how ``obj=[1]`` behaves different from ``obj=1``: + + >>> np.insert(a, [1], [[7],[8],[9]], axis=1) + array([[0, 7, 1], + [2, 8, 3], + [4, 9, 5]]) + >>> np.insert(a, 1, [[7],[8],[9]], axis=1) + array([[0, 7, 8, 9, 1], + [2, 7, 8, 9, 3], + [4, 7, 8, 9, 5]]) + >>> np.array_equal(np.insert(a, 1, [7, 8, 9], axis=1), + ... np.insert(a, [1], [[7],[8],[9]], axis=1)) + True + + >>> b = a.flatten() + >>> b + array([0, 1, 2, 3, 4, 5]) + >>> np.insert(b, [2, 2], [6, 7]) + array([0, 1, 6, 7, 2, 3, 4, 5]) + + >>> np.insert(b, slice(2, 4), [7, 8]) + array([0, 1, 7, 2, 8, 3, 4, 5]) + + >>> np.insert(b, [2, 2], [7.13, False]) # type casting + array([0, 1, 7, 0, 2, 3, 4, 5]) + + >>> x = np.arange(8).reshape(2, 4) + >>> idx = (1, 3) + >>> np.insert(x, idx, 999, axis=1) + array([[ 0, 999, 1, 2, 999, 3], + [ 4, 999, 5, 6, 999, 7]]) + + """ + conv = _array_converter(arr) + arr, = conv.as_arrays(subok=False) + + ndim = arr.ndim + arrorder = 'F' if arr.flags.fnc else 'C' + if axis is None: + if ndim != 1: + arr = arr.ravel() + # needed for np.matrix, which is still not 1d after being ravelled + ndim = arr.ndim + axis = ndim - 1 + else: + axis = normalize_axis_index(axis, ndim) + slobj = [slice(None)] * ndim + N = arr.shape[axis] + newshape = list(arr.shape) + + if isinstance(obj, slice): + # turn it into a range object + indices = arange(*obj.indices(N), dtype=intp) + else: + # need to copy obj, because indices will be changed in-place + indices = np.array(obj) + if indices.dtype == bool: + if obj.ndim != 1: + raise ValueError('boolean array argument obj to insert ' + 'must be one dimensional') + indices = np.flatnonzero(obj) + elif indices.ndim > 1: + raise ValueError( + "index array argument obj to insert must be one dimensional " + "or scalar") + if indices.size == 1: + index = indices.item() + if index < -N or index > N: + raise IndexError(f"index {obj} is out of bounds for axis {axis} " + f"with size {N}") + if (index < 0): + index += N + + # There are some object array corner cases here, but we cannot avoid + # that: + values = array(values, copy=None, ndmin=arr.ndim, dtype=arr.dtype) + if indices.ndim == 0: + # broadcasting is very different here, since a[:,0,:] = ... behaves + # very different from a[:,[0],:] = ...! This changes values so that + # it works likes the second case. (here a[:,0:1,:]) + values = np.moveaxis(values, 0, axis) + numnew = values.shape[axis] + newshape[axis] += numnew + new = empty(newshape, arr.dtype, arrorder) + slobj[axis] = slice(None, index) + new[tuple(slobj)] = arr[tuple(slobj)] + slobj[axis] = slice(index, index + numnew) + new[tuple(slobj)] = values + slobj[axis] = slice(index + numnew, None) + slobj2 = [slice(None)] * ndim + slobj2[axis] = slice(index, None) + new[tuple(slobj)] = arr[tuple(slobj2)] + + return conv.wrap(new, to_scalar=False) + + elif indices.size == 0 and not isinstance(obj, np.ndarray): + # Can safely cast the empty list to intp + indices = indices.astype(intp) + + indices[indices < 0] += N + + numnew = len(indices) + order = indices.argsort(kind='mergesort') # stable sort + indices[order] += np.arange(numnew) + + newshape[axis] += numnew + old_mask = ones(newshape[axis], dtype=bool) + old_mask[indices] = False + + new = empty(newshape, arr.dtype, arrorder) + slobj2 = [slice(None)] * ndim + slobj[axis] = indices + slobj2[axis] = old_mask + new[tuple(slobj)] = values + new[tuple(slobj2)] = arr + + return conv.wrap(new, to_scalar=False) + + +def _append_dispatcher(arr, values, axis=None): + return (arr, values) + + +@array_function_dispatch(_append_dispatcher) +def append(arr, values, axis=None): + """ + Append values to the end of an array. + + Parameters + ---------- + arr : array_like + Values are appended to a copy of this array. + values : array_like + These values are appended to a copy of `arr`. It must be of the + correct shape (the same shape as `arr`, excluding `axis`). If + `axis` is not specified, `values` can be any shape and will be + flattened before use. + axis : int, optional + The axis along which `values` are appended. If `axis` is not + given, both `arr` and `values` are flattened before use. + + Returns + ------- + append : ndarray + A copy of `arr` with `values` appended to `axis`. Note that + `append` does not occur in-place: a new array is allocated and + filled. If `axis` is None, `out` is a flattened array. + + See Also + -------- + insert : Insert elements into an array. + delete : Delete elements from an array. + + Examples + -------- + >>> import numpy as np + >>> np.append([1, 2, 3], [[4, 5, 6], [7, 8, 9]]) + array([1, 2, 3, ..., 7, 8, 9]) + + When `axis` is specified, `values` must have the correct shape. + + >>> np.append([[1, 2, 3], [4, 5, 6]], [[7, 8, 9]], axis=0) + array([[1, 2, 3], + [4, 5, 6], + [7, 8, 9]]) + + >>> np.append([[1, 2, 3], [4, 5, 6]], [7, 8, 9], axis=0) + Traceback (most recent call last): + ... + ValueError: all the input arrays must have same number of dimensions, but + the array at index 0 has 2 dimension(s) and the array at index 1 has 1 + dimension(s) + + >>> a = np.array([1, 2], dtype=int) + >>> c = np.append(a, []) + >>> c + array([1., 2.]) + >>> c.dtype + float64 + + Default dtype for empty ndarrays is `float64` thus making the output of dtype + `float64` when appended with dtype `int64` + + """ + arr = asanyarray(arr) + if axis is None: + if arr.ndim != 1: + arr = arr.ravel() + values = ravel(values) + axis = arr.ndim - 1 + return concatenate((arr, values), axis=axis) + + +def _digitize_dispatcher(x, bins, right=None): + return (x, bins) + + +@array_function_dispatch(_digitize_dispatcher) +def digitize(x, bins, right=False): + """ + Return the indices of the bins to which each value in input array belongs. + + ========= ============= ============================ + `right` order of bins returned index `i` satisfies + ========= ============= ============================ + ``False`` increasing ``bins[i-1] <= x < bins[i]`` + ``True`` increasing ``bins[i-1] < x <= bins[i]`` + ``False`` decreasing ``bins[i-1] > x >= bins[i]`` + ``True`` decreasing ``bins[i-1] >= x > bins[i]`` + ========= ============= ============================ + + If values in `x` are beyond the bounds of `bins`, 0 or ``len(bins)`` is + returned as appropriate. + + Parameters + ---------- + x : array_like + Input array to be binned. Prior to NumPy 1.10.0, this array had to + be 1-dimensional, but can now have any shape. + bins : array_like + Array of bins. It has to be 1-dimensional and monotonic. + right : bool, optional + Indicating whether the intervals include the right or the left bin + edge. Default behavior is (right==False) indicating that the interval + does not include the right edge. The left bin end is open in this + case, i.e., bins[i-1] <= x < bins[i] is the default behavior for + monotonically increasing bins. + + Returns + ------- + indices : ndarray of ints + Output array of indices, of same shape as `x`. + + Raises + ------ + ValueError + If `bins` is not monotonic. + TypeError + If the type of the input is complex. + + See Also + -------- + bincount, histogram, unique, searchsorted + + Notes + ----- + If values in `x` are such that they fall outside the bin range, + attempting to index `bins` with the indices that `digitize` returns + will result in an IndexError. + + .. versionadded:: 1.10.0 + + `numpy.digitize` is implemented in terms of `numpy.searchsorted`. + This means that a binary search is used to bin the values, which scales + much better for larger number of bins than the previous linear search. + It also removes the requirement for the input array to be 1-dimensional. + + For monotonically *increasing* `bins`, the following are equivalent:: + + np.digitize(x, bins, right=True) + np.searchsorted(bins, x, side='left') + + Note that as the order of the arguments are reversed, the side must be too. + The `searchsorted` call is marginally faster, as it does not do any + monotonicity checks. Perhaps more importantly, it supports all dtypes. + + Examples + -------- + >>> import numpy as np + >>> x = np.array([0.2, 6.4, 3.0, 1.6]) + >>> bins = np.array([0.0, 1.0, 2.5, 4.0, 10.0]) + >>> inds = np.digitize(x, bins) + >>> inds + array([1, 4, 3, 2]) + >>> for n in range(x.size): + ... print(bins[inds[n]-1], "<=", x[n], "<", bins[inds[n]]) + ... + 0.0 <= 0.2 < 1.0 + 4.0 <= 6.4 < 10.0 + 2.5 <= 3.0 < 4.0 + 1.0 <= 1.6 < 2.5 + + >>> x = np.array([1.2, 10.0, 12.4, 15.5, 20.]) + >>> bins = np.array([0, 5, 10, 15, 20]) + >>> np.digitize(x,bins,right=True) + array([1, 2, 3, 4, 4]) + >>> np.digitize(x,bins,right=False) + array([1, 3, 3, 4, 5]) + """ + x = _nx.asarray(x) + bins = _nx.asarray(bins) + + # here for compatibility, searchsorted below is happy to take this + if np.issubdtype(x.dtype, _nx.complexfloating): + raise TypeError("x may not be complex") + + mono = _monotonicity(bins) + if mono == 0: + raise ValueError("bins must be monotonically increasing or decreasing") + + # this is backwards because the arguments below are swapped + side = 'left' if right else 'right' + if mono == -1: + # reverse the bins, and invert the results + return len(bins) - _nx.searchsorted(bins[::-1], x, side=side) + else: + return _nx.searchsorted(bins, x, side=side) diff --git a/.venv/lib/python3.12/site-packages/numpy/lib/_function_base_impl.pyi b/.venv/lib/python3.12/site-packages/numpy/lib/_function_base_impl.pyi new file mode 100644 index 0000000..090fb23 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/lib/_function_base_impl.pyi @@ -0,0 +1,985 @@ +# ruff: noqa: ANN401 +from collections.abc import Callable, Iterable, Sequence +from typing import ( + Any, + Concatenate, + ParamSpec, + Protocol, + SupportsIndex, + SupportsInt, + TypeAlias, + TypeVar, + overload, + type_check_only, +) +from typing import Literal as L + +from _typeshed import Incomplete +from typing_extensions import TypeIs, deprecated + +import numpy as np +from numpy import ( + _OrderKACF, + bool_, + complex128, + complexfloating, + datetime64, + float64, + floating, + generic, + integer, + intp, + object_, + timedelta64, + vectorize, +) +from numpy._core.multiarray import bincount +from numpy._globals import _NoValueType +from numpy._typing import ( + ArrayLike, + DTypeLike, + NDArray, + _ArrayLike, + _ArrayLikeBool_co, + _ArrayLikeComplex_co, + _ArrayLikeDT64_co, + _ArrayLikeFloat_co, + _ArrayLikeInt_co, + _ArrayLikeNumber_co, + _ArrayLikeObject_co, + _ArrayLikeTD64_co, + _ComplexLike_co, + _DTypeLike, + _FloatLike_co, + _NestedSequence, + _NumberLike_co, + _ScalarLike_co, + _ShapeLike, +) + +__all__ = [ + "select", + "piecewise", + "trim_zeros", + "copy", + "iterable", + "percentile", + "diff", + "gradient", + "angle", + "unwrap", + "sort_complex", + "flip", + "rot90", + "extract", + "place", + "vectorize", + "asarray_chkfinite", + "average", + "bincount", + "digitize", + "cov", + "corrcoef", + "median", + "sinc", + "hamming", + "hanning", + "bartlett", + "blackman", + "kaiser", + "trapezoid", + "trapz", + "i0", + "meshgrid", + "delete", + "insert", + "append", + "interp", + "quantile", +] + +_T = TypeVar("_T") +_T_co = TypeVar("_T_co", covariant=True) +# The `{}ss` suffix refers to the Python 3.12 syntax: `**P` +_Pss = ParamSpec("_Pss") +_ScalarT = TypeVar("_ScalarT", bound=generic) +_ScalarT1 = TypeVar("_ScalarT1", bound=generic) +_ScalarT2 = TypeVar("_ScalarT2", bound=generic) +_ArrayT = TypeVar("_ArrayT", bound=np.ndarray) + +_2Tuple: TypeAlias = tuple[_T, _T] +_MeshgridIdx: TypeAlias = L['ij', 'xy'] + +@type_check_only +class _TrimZerosSequence(Protocol[_T_co]): + def __len__(self, /) -> int: ... + @overload + def __getitem__(self, key: int, /) -> object: ... + @overload + def __getitem__(self, key: slice, /) -> _T_co: ... + +### + +@overload +def rot90( + m: _ArrayLike[_ScalarT], + k: int = ..., + axes: tuple[int, int] = ..., +) -> NDArray[_ScalarT]: ... +@overload +def rot90( + m: ArrayLike, + k: int = ..., + axes: tuple[int, int] = ..., +) -> NDArray[Any]: ... + +@overload +def flip(m: _ScalarT, axis: None = ...) -> _ScalarT: ... +@overload +def flip(m: _ScalarLike_co, axis: None = ...) -> Any: ... +@overload +def flip(m: _ArrayLike[_ScalarT], axis: _ShapeLike | None = ...) -> NDArray[_ScalarT]: ... +@overload +def flip(m: ArrayLike, axis: _ShapeLike | None = ...) -> NDArray[Any]: ... + +def iterable(y: object) -> TypeIs[Iterable[Any]]: ... + +@overload +def average( + a: _ArrayLikeFloat_co, + axis: None = None, + weights: _ArrayLikeFloat_co | None = None, + returned: L[False] = False, + *, + keepdims: L[False] | _NoValueType = ..., +) -> floating: ... +@overload +def average( + a: _ArrayLikeFloat_co, + axis: None = None, + weights: _ArrayLikeFloat_co | None = None, + *, + returned: L[True], + keepdims: L[False] | _NoValueType = ..., +) -> _2Tuple[floating]: ... +@overload +def average( + a: _ArrayLikeComplex_co, + axis: None = None, + weights: _ArrayLikeComplex_co | None = None, + returned: L[False] = False, + *, + keepdims: L[False] | _NoValueType = ..., +) -> complexfloating: ... +@overload +def average( + a: _ArrayLikeComplex_co, + axis: None = None, + weights: _ArrayLikeComplex_co | None = None, + *, + returned: L[True], + keepdims: L[False] | _NoValueType = ..., +) -> _2Tuple[complexfloating]: ... +@overload +def average( + a: _ArrayLikeComplex_co | _ArrayLikeObject_co, + axis: _ShapeLike | None = None, + weights: object | None = None, + *, + returned: L[True], + keepdims: bool | bool_ | _NoValueType = ..., +) -> _2Tuple[Incomplete]: ... +@overload +def average( + a: _ArrayLikeComplex_co | _ArrayLikeObject_co, + axis: _ShapeLike | None = None, + weights: object | None = None, + returned: bool | bool_ = False, + *, + keepdims: bool | bool_ | _NoValueType = ..., +) -> Incomplete: ... + +@overload +def asarray_chkfinite( + a: _ArrayLike[_ScalarT], + dtype: None = ..., + order: _OrderKACF = ..., +) -> NDArray[_ScalarT]: ... +@overload +def asarray_chkfinite( + a: object, + dtype: None = ..., + order: _OrderKACF = ..., +) -> NDArray[Any]: ... +@overload +def asarray_chkfinite( + a: Any, + dtype: _DTypeLike[_ScalarT], + order: _OrderKACF = ..., +) -> NDArray[_ScalarT]: ... +@overload +def asarray_chkfinite( + a: Any, + dtype: DTypeLike, + order: _OrderKACF = ..., +) -> NDArray[Any]: ... + +@overload +def piecewise( + x: _ArrayLike[_ScalarT], + condlist: _ArrayLike[bool_] | Sequence[_ArrayLikeBool_co], + funclist: Sequence[ + Callable[Concatenate[NDArray[_ScalarT], _Pss], NDArray[_ScalarT | Any]] + | _ScalarT | object + ], + /, + *args: _Pss.args, + **kw: _Pss.kwargs, +) -> NDArray[_ScalarT]: ... +@overload +def piecewise( + x: ArrayLike, + condlist: _ArrayLike[bool_] | Sequence[_ArrayLikeBool_co], + funclist: Sequence[ + Callable[Concatenate[NDArray[Any], _Pss], NDArray[Any]] + | object + ], + /, + *args: _Pss.args, + **kw: _Pss.kwargs, +) -> NDArray[Any]: ... + +def select( + condlist: Sequence[ArrayLike], + choicelist: Sequence[ArrayLike], + default: ArrayLike = ..., +) -> NDArray[Any]: ... + +@overload +def copy( + a: _ArrayT, + order: _OrderKACF, + subok: L[True], +) -> _ArrayT: ... +@overload +def copy( + a: _ArrayT, + order: _OrderKACF = ..., + *, + subok: L[True], +) -> _ArrayT: ... +@overload +def copy( + a: _ArrayLike[_ScalarT], + order: _OrderKACF = ..., + subok: L[False] = ..., +) -> NDArray[_ScalarT]: ... +@overload +def copy( + a: ArrayLike, + order: _OrderKACF = ..., + subok: L[False] = ..., +) -> NDArray[Any]: ... + +def gradient( + f: ArrayLike, + *varargs: ArrayLike, + axis: _ShapeLike | None = ..., + edge_order: L[1, 2] = ..., +) -> Any: ... + +@overload +def diff( + a: _T, + n: L[0], + axis: SupportsIndex = ..., + prepend: ArrayLike = ..., + append: ArrayLike = ..., +) -> _T: ... +@overload +def diff( + a: ArrayLike, + n: int = ..., + axis: SupportsIndex = ..., + prepend: ArrayLike = ..., + append: ArrayLike = ..., +) -> NDArray[Any]: ... + +@overload # float scalar +def interp( + x: _FloatLike_co, + xp: _ArrayLikeFloat_co, + fp: _ArrayLikeFloat_co, + left: _FloatLike_co | None = None, + right: _FloatLike_co | None = None, + period: _FloatLike_co | None = None, +) -> float64: ... +@overload # float array +def interp( + x: NDArray[floating | integer | np.bool] | _NestedSequence[_FloatLike_co], + xp: _ArrayLikeFloat_co, + fp: _ArrayLikeFloat_co, + left: _FloatLike_co | None = None, + right: _FloatLike_co | None = None, + period: _FloatLike_co | None = None, +) -> NDArray[float64]: ... +@overload # float scalar or array +def interp( + x: _ArrayLikeFloat_co, + xp: _ArrayLikeFloat_co, + fp: _ArrayLikeFloat_co, + left: _FloatLike_co | None = None, + right: _FloatLike_co | None = None, + period: _FloatLike_co | None = None, +) -> NDArray[float64] | float64: ... +@overload # complex scalar +def interp( + x: _FloatLike_co, + xp: _ArrayLikeFloat_co, + fp: _ArrayLike[complexfloating], + left: _NumberLike_co | None = None, + right: _NumberLike_co | None = None, + period: _FloatLike_co | None = None, +) -> complex128: ... +@overload # complex or float scalar +def interp( + x: _FloatLike_co, + xp: _ArrayLikeFloat_co, + fp: Sequence[complex | complexfloating], + left: _NumberLike_co | None = None, + right: _NumberLike_co | None = None, + period: _FloatLike_co | None = None, +) -> complex128 | float64: ... +@overload # complex array +def interp( + x: NDArray[floating | integer | np.bool] | _NestedSequence[_FloatLike_co], + xp: _ArrayLikeFloat_co, + fp: _ArrayLike[complexfloating], + left: _NumberLike_co | None = None, + right: _NumberLike_co | None = None, + period: _FloatLike_co | None = None, +) -> NDArray[complex128]: ... +@overload # complex or float array +def interp( + x: NDArray[floating | integer | np.bool] | _NestedSequence[_FloatLike_co], + xp: _ArrayLikeFloat_co, + fp: Sequence[complex | complexfloating], + left: _NumberLike_co | None = None, + right: _NumberLike_co | None = None, + period: _FloatLike_co | None = None, +) -> NDArray[complex128 | float64]: ... +@overload # complex scalar or array +def interp( + x: _ArrayLikeFloat_co, + xp: _ArrayLikeFloat_co, + fp: _ArrayLike[complexfloating], + left: _NumberLike_co | None = None, + right: _NumberLike_co | None = None, + period: _FloatLike_co | None = None, +) -> NDArray[complex128] | complex128: ... +@overload # complex or float scalar or array +def interp( + x: _ArrayLikeFloat_co, + xp: _ArrayLikeFloat_co, + fp: _ArrayLikeNumber_co, + left: _NumberLike_co | None = None, + right: _NumberLike_co | None = None, + period: _FloatLike_co | None = None, +) -> NDArray[complex128 | float64] | complex128 | float64: ... + +@overload +def angle(z: _ComplexLike_co, deg: bool = ...) -> floating: ... +@overload +def angle(z: object_, deg: bool = ...) -> Any: ... +@overload +def angle(z: _ArrayLikeComplex_co, deg: bool = ...) -> NDArray[floating]: ... +@overload +def angle(z: _ArrayLikeObject_co, deg: bool = ...) -> NDArray[object_]: ... + +@overload +def unwrap( + p: _ArrayLikeFloat_co, + discont: float | None = ..., + axis: int = ..., + *, + period: float = ..., +) -> NDArray[floating]: ... +@overload +def unwrap( + p: _ArrayLikeObject_co, + discont: float | None = ..., + axis: int = ..., + *, + period: float = ..., +) -> NDArray[object_]: ... + +def sort_complex(a: ArrayLike) -> NDArray[complexfloating]: ... + +def trim_zeros( + filt: _TrimZerosSequence[_T], + trim: L["f", "b", "fb", "bf"] = ..., +) -> _T: ... + +@overload +def extract(condition: ArrayLike, arr: _ArrayLike[_ScalarT]) -> NDArray[_ScalarT]: ... +@overload +def extract(condition: ArrayLike, arr: ArrayLike) -> NDArray[Any]: ... + +def place(arr: NDArray[Any], mask: ArrayLike, vals: Any) -> None: ... + +@overload +def cov( + m: _ArrayLikeFloat_co, + y: _ArrayLikeFloat_co | None = ..., + rowvar: bool = ..., + bias: bool = ..., + ddof: SupportsIndex | SupportsInt | None = ..., + fweights: ArrayLike | None = ..., + aweights: ArrayLike | None = ..., + *, + dtype: None = ..., +) -> NDArray[floating]: ... +@overload +def cov( + m: _ArrayLikeComplex_co, + y: _ArrayLikeComplex_co | None = ..., + rowvar: bool = ..., + bias: bool = ..., + ddof: SupportsIndex | SupportsInt | None = ..., + fweights: ArrayLike | None = ..., + aweights: ArrayLike | None = ..., + *, + dtype: None = ..., +) -> NDArray[complexfloating]: ... +@overload +def cov( + m: _ArrayLikeComplex_co, + y: _ArrayLikeComplex_co | None = ..., + rowvar: bool = ..., + bias: bool = ..., + ddof: SupportsIndex | SupportsInt | None = ..., + fweights: ArrayLike | None = ..., + aweights: ArrayLike | None = ..., + *, + dtype: _DTypeLike[_ScalarT], +) -> NDArray[_ScalarT]: ... +@overload +def cov( + m: _ArrayLikeComplex_co, + y: _ArrayLikeComplex_co | None = ..., + rowvar: bool = ..., + bias: bool = ..., + ddof: SupportsIndex | SupportsInt | None = ..., + fweights: ArrayLike | None = ..., + aweights: ArrayLike | None = ..., + *, + dtype: DTypeLike, +) -> NDArray[Any]: ... + +# NOTE `bias` and `ddof` are deprecated and ignored +@overload +def corrcoef( + m: _ArrayLikeFloat_co, + y: _ArrayLikeFloat_co | None = None, + rowvar: bool = True, + bias: _NoValueType = ..., + ddof: _NoValueType = ..., + *, + dtype: None = None, +) -> NDArray[floating]: ... +@overload +def corrcoef( + m: _ArrayLikeComplex_co, + y: _ArrayLikeComplex_co | None = None, + rowvar: bool = True, + bias: _NoValueType = ..., + ddof: _NoValueType = ..., + *, + dtype: None = None, +) -> NDArray[complexfloating]: ... +@overload +def corrcoef( + m: _ArrayLikeComplex_co, + y: _ArrayLikeComplex_co | None = None, + rowvar: bool = True, + bias: _NoValueType = ..., + ddof: _NoValueType = ..., + *, + dtype: _DTypeLike[_ScalarT], +) -> NDArray[_ScalarT]: ... +@overload +def corrcoef( + m: _ArrayLikeComplex_co, + y: _ArrayLikeComplex_co | None = None, + rowvar: bool = True, + bias: _NoValueType = ..., + ddof: _NoValueType = ..., + *, + dtype: DTypeLike | None = None, +) -> NDArray[Any]: ... + +def blackman(M: _FloatLike_co) -> NDArray[floating]: ... + +def bartlett(M: _FloatLike_co) -> NDArray[floating]: ... + +def hanning(M: _FloatLike_co) -> NDArray[floating]: ... + +def hamming(M: _FloatLike_co) -> NDArray[floating]: ... + +def i0(x: _ArrayLikeFloat_co) -> NDArray[floating]: ... + +def kaiser( + M: _FloatLike_co, + beta: _FloatLike_co, +) -> NDArray[floating]: ... + +@overload +def sinc(x: _FloatLike_co) -> floating: ... +@overload +def sinc(x: _ComplexLike_co) -> complexfloating: ... +@overload +def sinc(x: _ArrayLikeFloat_co) -> NDArray[floating]: ... +@overload +def sinc(x: _ArrayLikeComplex_co) -> NDArray[complexfloating]: ... + +@overload +def median( + a: _ArrayLikeFloat_co, + axis: None = ..., + out: None = ..., + overwrite_input: bool = ..., + keepdims: L[False] = ..., +) -> floating: ... +@overload +def median( + a: _ArrayLikeComplex_co, + axis: None = ..., + out: None = ..., + overwrite_input: bool = ..., + keepdims: L[False] = ..., +) -> complexfloating: ... +@overload +def median( + a: _ArrayLikeTD64_co, + axis: None = ..., + out: None = ..., + overwrite_input: bool = ..., + keepdims: L[False] = ..., +) -> timedelta64: ... +@overload +def median( + a: _ArrayLikeObject_co, + axis: None = ..., + out: None = ..., + overwrite_input: bool = ..., + keepdims: L[False] = ..., +) -> Any: ... +@overload +def median( + a: _ArrayLikeFloat_co | _ArrayLikeComplex_co | _ArrayLikeTD64_co | _ArrayLikeObject_co, + axis: _ShapeLike | None = ..., + out: None = ..., + overwrite_input: bool = ..., + keepdims: bool = ..., +) -> Any: ... +@overload +def median( + a: _ArrayLikeFloat_co | _ArrayLikeComplex_co | _ArrayLikeTD64_co | _ArrayLikeObject_co, + axis: _ShapeLike | None, + out: _ArrayT, + overwrite_input: bool = ..., + keepdims: bool = ..., +) -> _ArrayT: ... +@overload +def median( + a: _ArrayLikeFloat_co | _ArrayLikeComplex_co | _ArrayLikeTD64_co | _ArrayLikeObject_co, + axis: _ShapeLike | None = ..., + *, + out: _ArrayT, + overwrite_input: bool = ..., + keepdims: bool = ..., +) -> _ArrayT: ... + +_MethodKind = L[ + "inverted_cdf", + "averaged_inverted_cdf", + "closest_observation", + "interpolated_inverted_cdf", + "hazen", + "weibull", + "linear", + "median_unbiased", + "normal_unbiased", + "lower", + "higher", + "midpoint", + "nearest", +] + +@overload +def percentile( + a: _ArrayLikeFloat_co, + q: _FloatLike_co, + axis: None = ..., + out: None = ..., + overwrite_input: bool = ..., + method: _MethodKind = ..., + keepdims: L[False] = ..., + *, + weights: _ArrayLikeFloat_co | None = ..., +) -> floating: ... +@overload +def percentile( + a: _ArrayLikeComplex_co, + q: _FloatLike_co, + axis: None = ..., + out: None = ..., + overwrite_input: bool = ..., + method: _MethodKind = ..., + keepdims: L[False] = ..., + *, + weights: _ArrayLikeFloat_co | None = ..., +) -> complexfloating: ... +@overload +def percentile( + a: _ArrayLikeTD64_co, + q: _FloatLike_co, + axis: None = ..., + out: None = ..., + overwrite_input: bool = ..., + method: _MethodKind = ..., + keepdims: L[False] = ..., + *, + weights: _ArrayLikeFloat_co | None = ..., +) -> timedelta64: ... +@overload +def percentile( + a: _ArrayLikeDT64_co, + q: _FloatLike_co, + axis: None = ..., + out: None = ..., + overwrite_input: bool = ..., + method: _MethodKind = ..., + keepdims: L[False] = ..., + *, + weights: _ArrayLikeFloat_co | None = ..., +) -> datetime64: ... +@overload +def percentile( + a: _ArrayLikeObject_co, + q: _FloatLike_co, + axis: None = ..., + out: None = ..., + overwrite_input: bool = ..., + method: _MethodKind = ..., + keepdims: L[False] = ..., + *, + weights: _ArrayLikeFloat_co | None = ..., +) -> Any: ... +@overload +def percentile( + a: _ArrayLikeFloat_co, + q: _ArrayLikeFloat_co, + axis: None = ..., + out: None = ..., + overwrite_input: bool = ..., + method: _MethodKind = ..., + keepdims: L[False] = ..., + *, + weights: _ArrayLikeFloat_co | None = ..., +) -> NDArray[floating]: ... +@overload +def percentile( + a: _ArrayLikeComplex_co, + q: _ArrayLikeFloat_co, + axis: None = ..., + out: None = ..., + overwrite_input: bool = ..., + method: _MethodKind = ..., + keepdims: L[False] = ..., + *, + weights: _ArrayLikeFloat_co | None = ..., +) -> NDArray[complexfloating]: ... +@overload +def percentile( + a: _ArrayLikeTD64_co, + q: _ArrayLikeFloat_co, + axis: None = ..., + out: None = ..., + overwrite_input: bool = ..., + method: _MethodKind = ..., + keepdims: L[False] = ..., + *, + weights: _ArrayLikeFloat_co | None = ..., +) -> NDArray[timedelta64]: ... +@overload +def percentile( + a: _ArrayLikeDT64_co, + q: _ArrayLikeFloat_co, + axis: None = ..., + out: None = ..., + overwrite_input: bool = ..., + method: _MethodKind = ..., + keepdims: L[False] = ..., + *, + weights: _ArrayLikeFloat_co | None = ..., +) -> NDArray[datetime64]: ... +@overload +def percentile( + a: _ArrayLikeObject_co, + q: _ArrayLikeFloat_co, + axis: None = ..., + out: None = ..., + overwrite_input: bool = ..., + method: _MethodKind = ..., + keepdims: L[False] = ..., + *, + weights: _ArrayLikeFloat_co | None = ..., +) -> NDArray[object_]: ... +@overload +def percentile( + a: _ArrayLikeComplex_co | _ArrayLikeTD64_co | _ArrayLikeDT64_co | _ArrayLikeObject_co, + q: _ArrayLikeFloat_co, + axis: _ShapeLike | None = ..., + out: None = ..., + overwrite_input: bool = ..., + method: _MethodKind = ..., + keepdims: bool = ..., + *, + weights: _ArrayLikeFloat_co | None = ..., +) -> Any: ... +@overload +def percentile( + a: _ArrayLikeComplex_co | _ArrayLikeTD64_co | _ArrayLikeDT64_co | _ArrayLikeObject_co, + q: _ArrayLikeFloat_co, + axis: _ShapeLike | None, + out: _ArrayT, + overwrite_input: bool = ..., + method: _MethodKind = ..., + keepdims: bool = ..., + *, + weights: _ArrayLikeFloat_co | None = ..., +) -> _ArrayT: ... +@overload +def percentile( + a: _ArrayLikeComplex_co | _ArrayLikeTD64_co | _ArrayLikeDT64_co | _ArrayLikeObject_co, + q: _ArrayLikeFloat_co, + axis: _ShapeLike | None = ..., + *, + out: _ArrayT, + overwrite_input: bool = ..., + method: _MethodKind = ..., + keepdims: bool = ..., + weights: _ArrayLikeFloat_co | None = ..., +) -> _ArrayT: ... + +# NOTE: Not an alias, but they do have identical signatures +# (that we can reuse) +quantile = percentile + +_ScalarT_fm = TypeVar( + "_ScalarT_fm", + bound=floating | complexfloating | timedelta64, +) + +class _SupportsRMulFloat(Protocol[_T_co]): + def __rmul__(self, other: float, /) -> _T_co: ... + +@overload +def trapezoid( # type: ignore[overload-overlap] + y: Sequence[_FloatLike_co], + x: Sequence[_FloatLike_co] | None = ..., + dx: float = ..., + axis: SupportsIndex = ..., +) -> float64: ... +@overload +def trapezoid( + y: Sequence[_ComplexLike_co], + x: Sequence[_ComplexLike_co] | None = ..., + dx: float = ..., + axis: SupportsIndex = ..., +) -> complex128: ... +@overload +def trapezoid( + y: _ArrayLike[bool_ | integer], + x: _ArrayLike[bool_ | integer] | None = ..., + dx: float = ..., + axis: SupportsIndex = ..., +) -> float64 | NDArray[float64]: ... +@overload +def trapezoid( # type: ignore[overload-overlap] + y: _ArrayLikeObject_co, + x: _ArrayLikeFloat_co | _ArrayLikeObject_co | None = ..., + dx: float = ..., + axis: SupportsIndex = ..., +) -> float | NDArray[object_]: ... +@overload +def trapezoid( + y: _ArrayLike[_ScalarT_fm], + x: _ArrayLike[_ScalarT_fm] | _ArrayLikeInt_co | None = ..., + dx: float = ..., + axis: SupportsIndex = ..., +) -> _ScalarT_fm | NDArray[_ScalarT_fm]: ... +@overload +def trapezoid( + y: Sequence[_SupportsRMulFloat[_T]], + x: Sequence[_SupportsRMulFloat[_T] | _T] | None = ..., + dx: float = ..., + axis: SupportsIndex = ..., +) -> _T: ... +@overload +def trapezoid( + y: _ArrayLikeComplex_co | _ArrayLikeTD64_co | _ArrayLikeObject_co, + x: _ArrayLikeComplex_co | _ArrayLikeTD64_co | _ArrayLikeObject_co | None = ..., + dx: float = ..., + axis: SupportsIndex = ..., +) -> ( + floating | complexfloating | timedelta64 + | NDArray[floating | complexfloating | timedelta64 | object_] +): ... + +@deprecated("Use 'trapezoid' instead") +def trapz(y: ArrayLike, x: ArrayLike | None = None, dx: float = 1.0, axis: int = -1) -> generic | NDArray[generic]: ... + +@overload +def meshgrid( + *, + copy: bool = ..., + sparse: bool = ..., + indexing: _MeshgridIdx = ..., +) -> tuple[()]: ... +@overload +def meshgrid( + x1: _ArrayLike[_ScalarT], + /, + *, + copy: bool = ..., + sparse: bool = ..., + indexing: _MeshgridIdx = ..., +) -> tuple[NDArray[_ScalarT]]: ... +@overload +def meshgrid( + x1: ArrayLike, + /, + *, + copy: bool = ..., + sparse: bool = ..., + indexing: _MeshgridIdx = ..., +) -> tuple[NDArray[Any]]: ... +@overload +def meshgrid( + x1: _ArrayLike[_ScalarT1], + x2: _ArrayLike[_ScalarT2], + /, + *, + copy: bool = ..., + sparse: bool = ..., + indexing: _MeshgridIdx = ..., +) -> tuple[NDArray[_ScalarT1], NDArray[_ScalarT2]]: ... +@overload +def meshgrid( + x1: ArrayLike, + x2: _ArrayLike[_ScalarT], + /, + *, + copy: bool = ..., + sparse: bool = ..., + indexing: _MeshgridIdx = ..., +) -> tuple[NDArray[Any], NDArray[_ScalarT]]: ... +@overload +def meshgrid( + x1: _ArrayLike[_ScalarT], + x2: ArrayLike, + /, + *, + copy: bool = ..., + sparse: bool = ..., + indexing: _MeshgridIdx = ..., +) -> tuple[NDArray[_ScalarT], NDArray[Any]]: ... +@overload +def meshgrid( + x1: ArrayLike, + x2: ArrayLike, + /, + *, + copy: bool = ..., + sparse: bool = ..., + indexing: _MeshgridIdx = ..., +) -> tuple[NDArray[Any], NDArray[Any]]: ... +@overload +def meshgrid( + x1: ArrayLike, + x2: ArrayLike, + x3: ArrayLike, + /, + *, + copy: bool = ..., + sparse: bool = ..., + indexing: _MeshgridIdx = ..., +) -> tuple[NDArray[Any], NDArray[Any], NDArray[Any]]: ... +@overload +def meshgrid( + x1: ArrayLike, + x2: ArrayLike, + x3: ArrayLike, + x4: ArrayLike, + /, + *, + copy: bool = ..., + sparse: bool = ..., + indexing: _MeshgridIdx = ..., +) -> tuple[NDArray[Any], NDArray[Any], NDArray[Any], NDArray[Any]]: ... +@overload +def meshgrid( + *xi: ArrayLike, + copy: bool = ..., + sparse: bool = ..., + indexing: _MeshgridIdx = ..., +) -> tuple[NDArray[Any], ...]: ... + +@overload +def delete( + arr: _ArrayLike[_ScalarT], + obj: slice | _ArrayLikeInt_co, + axis: SupportsIndex | None = ..., +) -> NDArray[_ScalarT]: ... +@overload +def delete( + arr: ArrayLike, + obj: slice | _ArrayLikeInt_co, + axis: SupportsIndex | None = ..., +) -> NDArray[Any]: ... + +@overload +def insert( + arr: _ArrayLike[_ScalarT], + obj: slice | _ArrayLikeInt_co, + values: ArrayLike, + axis: SupportsIndex | None = ..., +) -> NDArray[_ScalarT]: ... +@overload +def insert( + arr: ArrayLike, + obj: slice | _ArrayLikeInt_co, + values: ArrayLike, + axis: SupportsIndex | None = ..., +) -> NDArray[Any]: ... + +def append( + arr: ArrayLike, + values: ArrayLike, + axis: SupportsIndex | None = ..., +) -> NDArray[Any]: ... + +@overload +def digitize( + x: _FloatLike_co, + bins: _ArrayLikeFloat_co, + right: bool = ..., +) -> intp: ... +@overload +def digitize( + x: _ArrayLikeFloat_co, + bins: _ArrayLikeFloat_co, + right: bool = ..., +) -> NDArray[intp]: ... diff --git a/.venv/lib/python3.12/site-packages/numpy/lib/_histograms_impl.py b/.venv/lib/python3.12/site-packages/numpy/lib/_histograms_impl.py new file mode 100644 index 0000000..b4aacd0 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/lib/_histograms_impl.py @@ -0,0 +1,1085 @@ +""" +Histogram-related functions +""" +import contextlib +import functools +import operator +import warnings + +import numpy as np +from numpy._core import overrides + +__all__ = ['histogram', 'histogramdd', 'histogram_bin_edges'] + +array_function_dispatch = functools.partial( + overrides.array_function_dispatch, module='numpy') + +# range is a keyword argument to many functions, so save the builtin so they can +# use it. +_range = range + + +def _ptp(x): + """Peak-to-peak value of x. + + This implementation avoids the problem of signed integer arrays having a + peak-to-peak value that cannot be represented with the array's data type. + This function returns an unsigned value for signed integer arrays. + """ + return _unsigned_subtract(x.max(), x.min()) + + +def _hist_bin_sqrt(x, range): + """ + Square root histogram bin estimator. + + Bin width is inversely proportional to the data size. Used by many + programs for its simplicity. + + Parameters + ---------- + x : array_like + Input data that is to be histogrammed, trimmed to range. May not + be empty. + + Returns + ------- + h : An estimate of the optimal bin width for the given data. + """ + del range # unused + return _ptp(x) / np.sqrt(x.size) + + +def _hist_bin_sturges(x, range): + """ + Sturges histogram bin estimator. + + A very simplistic estimator based on the assumption of normality of + the data. This estimator has poor performance for non-normal data, + which becomes especially obvious for large data sets. The estimate + depends only on size of the data. + + Parameters + ---------- + x : array_like + Input data that is to be histogrammed, trimmed to range. May not + be empty. + + Returns + ------- + h : An estimate of the optimal bin width for the given data. + """ + del range # unused + return _ptp(x) / (np.log2(x.size) + 1.0) + + +def _hist_bin_rice(x, range): + """ + Rice histogram bin estimator. + + Another simple estimator with no normality assumption. It has better + performance for large data than Sturges, but tends to overestimate + the number of bins. The number of bins is proportional to the cube + root of data size (asymptotically optimal). The estimate depends + only on size of the data. + + Parameters + ---------- + x : array_like + Input data that is to be histogrammed, trimmed to range. May not + be empty. + + Returns + ------- + h : An estimate of the optimal bin width for the given data. + """ + del range # unused + return _ptp(x) / (2.0 * x.size ** (1.0 / 3)) + + +def _hist_bin_scott(x, range): + """ + Scott histogram bin estimator. + + The binwidth is proportional to the standard deviation of the data + and inversely proportional to the cube root of data size + (asymptotically optimal). + + Parameters + ---------- + x : array_like + Input data that is to be histogrammed, trimmed to range. May not + be empty. + + Returns + ------- + h : An estimate of the optimal bin width for the given data. + """ + del range # unused + return (24.0 * np.pi**0.5 / x.size)**(1.0 / 3.0) * np.std(x) + + +def _hist_bin_stone(x, range): + """ + Histogram bin estimator based on minimizing the estimated integrated squared error (ISE). + + The number of bins is chosen by minimizing the estimated ISE against the unknown + true distribution. The ISE is estimated using cross-validation and can be regarded + as a generalization of Scott's rule. + https://en.wikipedia.org/wiki/Histogram#Scott.27s_normal_reference_rule + + This paper by Stone appears to be the origination of this rule. + https://digitalassets.lib.berkeley.edu/sdtr/ucb/text/34.pdf + + Parameters + ---------- + x : array_like + Input data that is to be histogrammed, trimmed to range. May not + be empty. + range : (float, float) + The lower and upper range of the bins. + + Returns + ------- + h : An estimate of the optimal bin width for the given data. + """ # noqa: E501 + + n = x.size + ptp_x = _ptp(x) + if n <= 1 or ptp_x == 0: + return 0 + + def jhat(nbins): + hh = ptp_x / nbins + p_k = np.histogram(x, bins=nbins, range=range)[0] / n + return (2 - (n + 1) * p_k.dot(p_k)) / hh + + nbins_upper_bound = max(100, int(np.sqrt(n))) + nbins = min(_range(1, nbins_upper_bound + 1), key=jhat) + if nbins == nbins_upper_bound: + warnings.warn("The number of bins estimated may be suboptimal.", + RuntimeWarning, stacklevel=3) + return ptp_x / nbins + + +def _hist_bin_doane(x, range): + """ + Doane's histogram bin estimator. + + Improved version of Sturges' formula which works better for + non-normal data. See + stats.stackexchange.com/questions/55134/doanes-formula-for-histogram-binning + + Parameters + ---------- + x : array_like + Input data that is to be histogrammed, trimmed to range. May not + be empty. + + Returns + ------- + h : An estimate of the optimal bin width for the given data. + """ + del range # unused + if x.size > 2: + sg1 = np.sqrt(6.0 * (x.size - 2) / ((x.size + 1.0) * (x.size + 3))) + sigma = np.std(x) + if sigma > 0.0: + # These three operations add up to + # g1 = np.mean(((x - np.mean(x)) / sigma)**3) + # but use only one temp array instead of three + temp = x - np.mean(x) + np.true_divide(temp, sigma, temp) + np.power(temp, 3, temp) + g1 = np.mean(temp) + return _ptp(x) / (1.0 + np.log2(x.size) + + np.log2(1.0 + np.absolute(g1) / sg1)) + return 0.0 + + +def _hist_bin_fd(x, range): + """ + The Freedman-Diaconis histogram bin estimator. + + The Freedman-Diaconis rule uses interquartile range (IQR) to + estimate binwidth. It is considered a variation of the Scott rule + with more robustness as the IQR is less affected by outliers than + the standard deviation. However, the IQR depends on fewer points + than the standard deviation, so it is less accurate, especially for + long tailed distributions. + + If the IQR is 0, this function returns 0 for the bin width. + Binwidth is inversely proportional to the cube root of data size + (asymptotically optimal). + + Parameters + ---------- + x : array_like + Input data that is to be histogrammed, trimmed to range. May not + be empty. + + Returns + ------- + h : An estimate of the optimal bin width for the given data. + """ + del range # unused + iqr = np.subtract(*np.percentile(x, [75, 25])) + return 2.0 * iqr * x.size ** (-1.0 / 3.0) + + +def _hist_bin_auto(x, range): + """ + Histogram bin estimator that uses the minimum width of a relaxed + Freedman-Diaconis and Sturges estimators if the FD bin width does + not result in a large number of bins. The relaxed Freedman-Diaconis estimator + limits the bin width to half the sqrt estimated to avoid small bins. + + The FD estimator is usually the most robust method, but its width + estimate tends to be too large for small `x` and bad for data with limited + variance. The Sturges estimator is quite good for small (<1000) datasets + and is the default in the R language. This method gives good off-the-shelf + behaviour. + + + Parameters + ---------- + x : array_like + Input data that is to be histogrammed, trimmed to range. May not + be empty. + range : Tuple with range for the histogram + + Returns + ------- + h : An estimate of the optimal bin width for the given data. + + See Also + -------- + _hist_bin_fd, _hist_bin_sturges + """ + fd_bw = _hist_bin_fd(x, range) + sturges_bw = _hist_bin_sturges(x, range) + sqrt_bw = _hist_bin_sqrt(x, range) + # heuristic to limit the maximal number of bins + fd_bw_corrected = max(fd_bw, sqrt_bw / 2) + return min(fd_bw_corrected, sturges_bw) + + +# Private dict initialized at module load time +_hist_bin_selectors = {'stone': _hist_bin_stone, + 'auto': _hist_bin_auto, + 'doane': _hist_bin_doane, + 'fd': _hist_bin_fd, + 'rice': _hist_bin_rice, + 'scott': _hist_bin_scott, + 'sqrt': _hist_bin_sqrt, + 'sturges': _hist_bin_sturges} + + +def _ravel_and_check_weights(a, weights): + """ Check a and weights have matching shapes, and ravel both """ + a = np.asarray(a) + + # Ensure that the array is a "subtractable" dtype + if a.dtype == np.bool: + msg = f"Converting input from {a.dtype} to {np.uint8} for compatibility." + warnings.warn(msg, RuntimeWarning, stacklevel=3) + a = a.astype(np.uint8) + + if weights is not None: + weights = np.asarray(weights) + if weights.shape != a.shape: + raise ValueError( + 'weights should have the same shape as a.') + weights = weights.ravel() + a = a.ravel() + return a, weights + + +def _get_outer_edges(a, range): + """ + Determine the outer bin edges to use, from either the data or the range + argument + """ + if range is not None: + first_edge, last_edge = range + if first_edge > last_edge: + raise ValueError( + 'max must be larger than min in range parameter.') + if not (np.isfinite(first_edge) and np.isfinite(last_edge)): + raise ValueError( + f"supplied range of [{first_edge}, {last_edge}] is not finite") + elif a.size == 0: + # handle empty arrays. Can't determine range, so use 0-1. + first_edge, last_edge = 0, 1 + else: + first_edge, last_edge = a.min(), a.max() + if not (np.isfinite(first_edge) and np.isfinite(last_edge)): + raise ValueError( + f"autodetected range of [{first_edge}, {last_edge}] is not finite") + + # expand empty range to avoid divide by zero + if first_edge == last_edge: + first_edge = first_edge - 0.5 + last_edge = last_edge + 0.5 + + return first_edge, last_edge + + +def _unsigned_subtract(a, b): + """ + Subtract two values where a >= b, and produce an unsigned result + + This is needed when finding the difference between the upper and lower + bound of an int16 histogram + """ + # coerce to a single type + signed_to_unsigned = { + np.byte: np.ubyte, + np.short: np.ushort, + np.intc: np.uintc, + np.int_: np.uint, + np.longlong: np.ulonglong + } + dt = np.result_type(a, b) + try: + unsigned_dt = signed_to_unsigned[dt.type] + except KeyError: + return np.subtract(a, b, dtype=dt) + else: + # we know the inputs are integers, and we are deliberately casting + # signed to unsigned. The input may be negative python integers so + # ensure we pass in arrays with the initial dtype (related to NEP 50). + return np.subtract(np.asarray(a, dtype=dt), np.asarray(b, dtype=dt), + casting='unsafe', dtype=unsigned_dt) + + +def _get_bin_edges(a, bins, range, weights): + """ + Computes the bins used internally by `histogram`. + + Parameters + ========== + a : ndarray + Ravelled data array + bins, range + Forwarded arguments from `histogram`. + weights : ndarray, optional + Ravelled weights array, or None + + Returns + ======= + bin_edges : ndarray + Array of bin edges + uniform_bins : (Number, Number, int): + The upper bound, lowerbound, and number of bins, used in the optimized + implementation of `histogram` that works on uniform bins. + """ + # parse the overloaded bins argument + n_equal_bins = None + bin_edges = None + + if isinstance(bins, str): + bin_name = bins + # if `bins` is a string for an automatic method, + # this will replace it with the number of bins calculated + if bin_name not in _hist_bin_selectors: + raise ValueError( + f"{bin_name!r} is not a valid estimator for `bins`") + if weights is not None: + raise TypeError("Automated estimation of the number of " + "bins is not supported for weighted data") + + first_edge, last_edge = _get_outer_edges(a, range) + + # truncate the range if needed + if range is not None: + keep = (a >= first_edge) + keep &= (a <= last_edge) + if not np.logical_and.reduce(keep): + a = a[keep] + + if a.size == 0: + n_equal_bins = 1 + else: + # Do not call selectors on empty arrays + width = _hist_bin_selectors[bin_name](a, (first_edge, last_edge)) + if width: + if np.issubdtype(a.dtype, np.integer) and width < 1: + width = 1 + delta = _unsigned_subtract(last_edge, first_edge) + n_equal_bins = int(np.ceil(delta / width)) + else: + # Width can be zero for some estimators, e.g. FD when + # the IQR of the data is zero. + n_equal_bins = 1 + + elif np.ndim(bins) == 0: + try: + n_equal_bins = operator.index(bins) + except TypeError as e: + raise TypeError( + '`bins` must be an integer, a string, or an array') from e + if n_equal_bins < 1: + raise ValueError('`bins` must be positive, when an integer') + + first_edge, last_edge = _get_outer_edges(a, range) + + elif np.ndim(bins) == 1: + bin_edges = np.asarray(bins) + if np.any(bin_edges[:-1] > bin_edges[1:]): + raise ValueError( + '`bins` must increase monotonically, when an array') + + else: + raise ValueError('`bins` must be 1d, when an array') + + if n_equal_bins is not None: + # gh-10322 means that type resolution rules are dependent on array + # shapes. To avoid this causing problems, we pick a type now and stick + # with it throughout. + bin_type = np.result_type(first_edge, last_edge, a) + if np.issubdtype(bin_type, np.integer): + bin_type = np.result_type(bin_type, float) + + # bin edges must be computed + bin_edges = np.linspace( + first_edge, last_edge, n_equal_bins + 1, + endpoint=True, dtype=bin_type) + if np.any(bin_edges[:-1] >= bin_edges[1:]): + raise ValueError( + f'Too many bins for data range. Cannot create {n_equal_bins} ' + f'finite-sized bins.') + return bin_edges, (first_edge, last_edge, n_equal_bins) + else: + return bin_edges, None + + +def _search_sorted_inclusive(a, v): + """ + Like `searchsorted`, but where the last item in `v` is placed on the right. + + In the context of a histogram, this makes the last bin edge inclusive + """ + return np.concatenate(( + a.searchsorted(v[:-1], 'left'), + a.searchsorted(v[-1:], 'right') + )) + + +def _histogram_bin_edges_dispatcher(a, bins=None, range=None, weights=None): + return (a, bins, weights) + + +@array_function_dispatch(_histogram_bin_edges_dispatcher) +def histogram_bin_edges(a, bins=10, range=None, weights=None): + r""" + Function to calculate only the edges of the bins used by the `histogram` + function. + + Parameters + ---------- + a : array_like + Input data. The histogram is computed over the flattened array. + bins : int or sequence of scalars or str, optional + If `bins` is an int, it defines the number of equal-width + bins in the given range (10, by default). If `bins` is a + sequence, it defines the bin edges, including the rightmost + edge, allowing for non-uniform bin widths. + + If `bins` is a string from the list below, `histogram_bin_edges` will + use the method chosen to calculate the optimal bin width and + consequently the number of bins (see the Notes section for more detail + on the estimators) from the data that falls within the requested range. + While the bin width will be optimal for the actual data + in the range, the number of bins will be computed to fill the + entire range, including the empty portions. For visualisation, + using the 'auto' option is suggested. Weighted data is not + supported for automated bin size selection. + + 'auto' + Minimum bin width between the 'sturges' and 'fd' estimators. + Provides good all-around performance. + + 'fd' (Freedman Diaconis Estimator) + Robust (resilient to outliers) estimator that takes into + account data variability and data size. + + 'doane' + An improved version of Sturges' estimator that works better + with non-normal datasets. + + 'scott' + Less robust estimator that takes into account data variability + and data size. + + 'stone' + Estimator based on leave-one-out cross-validation estimate of + the integrated squared error. Can be regarded as a generalization + of Scott's rule. + + 'rice' + Estimator does not take variability into account, only data + size. Commonly overestimates number of bins required. + + 'sturges' + R's default method, only accounts for data size. Only + optimal for gaussian data and underestimates number of bins + for large non-gaussian datasets. + + 'sqrt' + Square root (of data size) estimator, used by Excel and + other programs for its speed and simplicity. + + range : (float, float), optional + The lower and upper range of the bins. If not provided, range + is simply ``(a.min(), a.max())``. Values outside the range are + ignored. The first element of the range must be less than or + equal to the second. `range` affects the automatic bin + computation as well. While bin width is computed to be optimal + based on the actual data within `range`, the bin count will fill + the entire range including portions containing no data. + + weights : array_like, optional + An array of weights, of the same shape as `a`. Each value in + `a` only contributes its associated weight towards the bin count + (instead of 1). This is currently not used by any of the bin estimators, + but may be in the future. + + Returns + ------- + bin_edges : array of dtype float + The edges to pass into `histogram` + + See Also + -------- + histogram + + Notes + ----- + The methods to estimate the optimal number of bins are well founded + in literature, and are inspired by the choices R provides for + histogram visualisation. Note that having the number of bins + proportional to :math:`n^{1/3}` is asymptotically optimal, which is + why it appears in most estimators. These are simply plug-in methods + that give good starting points for number of bins. In the equations + below, :math:`h` is the binwidth and :math:`n_h` is the number of + bins. All estimators that compute bin counts are recast to bin width + using the `ptp` of the data. The final bin count is obtained from + ``np.round(np.ceil(range / h))``. The final bin width is often less + than what is returned by the estimators below. + + 'auto' (minimum bin width of the 'sturges' and 'fd' estimators) + A compromise to get a good value. For small datasets the Sturges + value will usually be chosen, while larger datasets will usually + default to FD. Avoids the overly conservative behaviour of FD + and Sturges for small and large datasets respectively. + Switchover point is usually :math:`a.size \approx 1000`. + + 'fd' (Freedman Diaconis Estimator) + .. math:: h = 2 \frac{IQR}{n^{1/3}} + + The binwidth is proportional to the interquartile range (IQR) + and inversely proportional to cube root of a.size. Can be too + conservative for small datasets, but is quite good for large + datasets. The IQR is very robust to outliers. + + 'scott' + .. math:: h = \sigma \sqrt[3]{\frac{24 \sqrt{\pi}}{n}} + + The binwidth is proportional to the standard deviation of the + data and inversely proportional to cube root of ``x.size``. Can + be too conservative for small datasets, but is quite good for + large datasets. The standard deviation is not very robust to + outliers. Values are very similar to the Freedman-Diaconis + estimator in the absence of outliers. + + 'rice' + .. math:: n_h = 2n^{1/3} + + The number of bins is only proportional to cube root of + ``a.size``. It tends to overestimate the number of bins and it + does not take into account data variability. + + 'sturges' + .. math:: n_h = \log _{2}(n) + 1 + + The number of bins is the base 2 log of ``a.size``. This + estimator assumes normality of data and is too conservative for + larger, non-normal datasets. This is the default method in R's + ``hist`` method. + + 'doane' + .. math:: n_h = 1 + \log_{2}(n) + + \log_{2}\left(1 + \frac{|g_1|}{\sigma_{g_1}}\right) + + g_1 = mean\left[\left(\frac{x - \mu}{\sigma}\right)^3\right] + + \sigma_{g_1} = \sqrt{\frac{6(n - 2)}{(n + 1)(n + 3)}} + + An improved version of Sturges' formula that produces better + estimates for non-normal datasets. This estimator attempts to + account for the skew of the data. + + 'sqrt' + .. math:: n_h = \sqrt n + + The simplest and fastest estimator. Only takes into account the + data size. + + Additionally, if the data is of integer dtype, then the binwidth will never + be less than 1. + + Examples + -------- + >>> import numpy as np + >>> arr = np.array([0, 0, 0, 1, 2, 3, 3, 4, 5]) + >>> np.histogram_bin_edges(arr, bins='auto', range=(0, 1)) + array([0. , 0.25, 0.5 , 0.75, 1. ]) + >>> np.histogram_bin_edges(arr, bins=2) + array([0. , 2.5, 5. ]) + + For consistency with histogram, an array of pre-computed bins is + passed through unmodified: + + >>> np.histogram_bin_edges(arr, [1, 2]) + array([1, 2]) + + This function allows one set of bins to be computed, and reused across + multiple histograms: + + >>> shared_bins = np.histogram_bin_edges(arr, bins='auto') + >>> shared_bins + array([0., 1., 2., 3., 4., 5.]) + + >>> group_id = np.array([0, 1, 1, 0, 1, 1, 0, 1, 1]) + >>> hist_0, _ = np.histogram(arr[group_id == 0], bins=shared_bins) + >>> hist_1, _ = np.histogram(arr[group_id == 1], bins=shared_bins) + + >>> hist_0; hist_1 + array([1, 1, 0, 1, 0]) + array([2, 0, 1, 1, 2]) + + Which gives more easily comparable results than using separate bins for + each histogram: + + >>> hist_0, bins_0 = np.histogram(arr[group_id == 0], bins='auto') + >>> hist_1, bins_1 = np.histogram(arr[group_id == 1], bins='auto') + >>> hist_0; hist_1 + array([1, 1, 1]) + array([2, 1, 1, 2]) + >>> bins_0; bins_1 + array([0., 1., 2., 3.]) + array([0. , 1.25, 2.5 , 3.75, 5. ]) + + """ + a, weights = _ravel_and_check_weights(a, weights) + bin_edges, _ = _get_bin_edges(a, bins, range, weights) + return bin_edges + + +def _histogram_dispatcher( + a, bins=None, range=None, density=None, weights=None): + return (a, bins, weights) + + +@array_function_dispatch(_histogram_dispatcher) +def histogram(a, bins=10, range=None, density=None, weights=None): + r""" + Compute the histogram of a dataset. + + Parameters + ---------- + a : array_like + Input data. The histogram is computed over the flattened array. + bins : int or sequence of scalars or str, optional + If `bins` is an int, it defines the number of equal-width + bins in the given range (10, by default). If `bins` is a + sequence, it defines a monotonically increasing array of bin edges, + including the rightmost edge, allowing for non-uniform bin widths. + + If `bins` is a string, it defines the method used to calculate the + optimal bin width, as defined by `histogram_bin_edges`. + + range : (float, float), optional + The lower and upper range of the bins. If not provided, range + is simply ``(a.min(), a.max())``. Values outside the range are + ignored. The first element of the range must be less than or + equal to the second. `range` affects the automatic bin + computation as well. While bin width is computed to be optimal + based on the actual data within `range`, the bin count will fill + the entire range including portions containing no data. + weights : array_like, optional + An array of weights, of the same shape as `a`. Each value in + `a` only contributes its associated weight towards the bin count + (instead of 1). If `density` is True, the weights are + normalized, so that the integral of the density over the range + remains 1. + Please note that the ``dtype`` of `weights` will also become the + ``dtype`` of the returned accumulator (`hist`), so it must be + large enough to hold accumulated values as well. + density : bool, optional + If ``False``, the result will contain the number of samples in + each bin. If ``True``, the result is the value of the + probability *density* function at the bin, normalized such that + the *integral* over the range is 1. Note that the sum of the + histogram values will not be equal to 1 unless bins of unity + width are chosen; it is not a probability *mass* function. + + Returns + ------- + hist : array + The values of the histogram. See `density` and `weights` for a + description of the possible semantics. If `weights` are given, + ``hist.dtype`` will be taken from `weights`. + bin_edges : array of dtype float + Return the bin edges ``(length(hist)+1)``. + + + See Also + -------- + histogramdd, bincount, searchsorted, digitize, histogram_bin_edges + + Notes + ----- + All but the last (righthand-most) bin is half-open. In other words, + if `bins` is:: + + [1, 2, 3, 4] + + then the first bin is ``[1, 2)`` (including 1, but excluding 2) and + the second ``[2, 3)``. The last bin, however, is ``[3, 4]``, which + *includes* 4. + + + Examples + -------- + >>> import numpy as np + >>> np.histogram([1, 2, 1], bins=[0, 1, 2, 3]) + (array([0, 2, 1]), array([0, 1, 2, 3])) + >>> np.histogram(np.arange(4), bins=np.arange(5), density=True) + (array([0.25, 0.25, 0.25, 0.25]), array([0, 1, 2, 3, 4])) + >>> np.histogram([[1, 2, 1], [1, 0, 1]], bins=[0,1,2,3]) + (array([1, 4, 1]), array([0, 1, 2, 3])) + + >>> a = np.arange(5) + >>> hist, bin_edges = np.histogram(a, density=True) + >>> hist + array([0.5, 0. , 0.5, 0. , 0. , 0.5, 0. , 0.5, 0. , 0.5]) + >>> hist.sum() + 2.4999999999999996 + >>> np.sum(hist * np.diff(bin_edges)) + 1.0 + + Automated Bin Selection Methods example, using 2 peak random data + with 2000 points. + + .. plot:: + :include-source: + + import matplotlib.pyplot as plt + import numpy as np + + rng = np.random.RandomState(10) # deterministic random data + a = np.hstack((rng.normal(size=1000), + rng.normal(loc=5, scale=2, size=1000))) + plt.hist(a, bins='auto') # arguments are passed to np.histogram + plt.title("Histogram with 'auto' bins") + plt.show() + + """ + a, weights = _ravel_and_check_weights(a, weights) + + bin_edges, uniform_bins = _get_bin_edges(a, bins, range, weights) + + # Histogram is an integer or a float array depending on the weights. + if weights is None: + ntype = np.dtype(np.intp) + else: + ntype = weights.dtype + + # We set a block size, as this allows us to iterate over chunks when + # computing histograms, to minimize memory usage. + BLOCK = 65536 + + # The fast path uses bincount, but that only works for certain types + # of weight + simple_weights = ( + weights is None or + np.can_cast(weights.dtype, np.double) or + np.can_cast(weights.dtype, complex) + ) + + if uniform_bins is not None and simple_weights: + # Fast algorithm for equal bins + # We now convert values of a to bin indices, under the assumption of + # equal bin widths (which is valid here). + first_edge, last_edge, n_equal_bins = uniform_bins + + # Initialize empty histogram + n = np.zeros(n_equal_bins, ntype) + + # Pre-compute histogram scaling factor + norm_numerator = n_equal_bins + norm_denom = _unsigned_subtract(last_edge, first_edge) + + # We iterate over blocks here for two reasons: the first is that for + # large arrays, it is actually faster (for example for a 10^8 array it + # is 2x as fast) and it results in a memory footprint 3x lower in the + # limit of large arrays. + for i in _range(0, len(a), BLOCK): + tmp_a = a[i:i + BLOCK] + if weights is None: + tmp_w = None + else: + tmp_w = weights[i:i + BLOCK] + + # Only include values in the right range + keep = (tmp_a >= first_edge) + keep &= (tmp_a <= last_edge) + if not np.logical_and.reduce(keep): + tmp_a = tmp_a[keep] + if tmp_w is not None: + tmp_w = tmp_w[keep] + + # This cast ensures no type promotions occur below, which gh-10322 + # make unpredictable. Getting it wrong leads to precision errors + # like gh-8123. + tmp_a = tmp_a.astype(bin_edges.dtype, copy=False) + + # Compute the bin indices, and for values that lie exactly on + # last_edge we need to subtract one + f_indices = ((_unsigned_subtract(tmp_a, first_edge) / norm_denom) + * norm_numerator) + indices = f_indices.astype(np.intp) + indices[indices == n_equal_bins] -= 1 + + # The index computation is not guaranteed to give exactly + # consistent results within ~1 ULP of the bin edges. + decrement = tmp_a < bin_edges[indices] + indices[decrement] -= 1 + # The last bin includes the right edge. The other bins do not. + increment = ((tmp_a >= bin_edges[indices + 1]) + & (indices != n_equal_bins - 1)) + indices[increment] += 1 + + # We now compute the histogram using bincount + if ntype.kind == 'c': + n.real += np.bincount(indices, weights=tmp_w.real, + minlength=n_equal_bins) + n.imag += np.bincount(indices, weights=tmp_w.imag, + minlength=n_equal_bins) + else: + n += np.bincount(indices, weights=tmp_w, + minlength=n_equal_bins).astype(ntype) + else: + # Compute via cumulative histogram + cum_n = np.zeros(bin_edges.shape, ntype) + if weights is None: + for i in _range(0, len(a), BLOCK): + sa = np.sort(a[i:i + BLOCK]) + cum_n += _search_sorted_inclusive(sa, bin_edges) + else: + zero = np.zeros(1, dtype=ntype) + for i in _range(0, len(a), BLOCK): + tmp_a = a[i:i + BLOCK] + tmp_w = weights[i:i + BLOCK] + sorting_index = np.argsort(tmp_a) + sa = tmp_a[sorting_index] + sw = tmp_w[sorting_index] + cw = np.concatenate((zero, sw.cumsum())) + bin_index = _search_sorted_inclusive(sa, bin_edges) + cum_n += cw[bin_index] + + n = np.diff(cum_n) + + if density: + db = np.array(np.diff(bin_edges), float) + return n / db / n.sum(), bin_edges + + return n, bin_edges + + +def _histogramdd_dispatcher(sample, bins=None, range=None, density=None, + weights=None): + if hasattr(sample, 'shape'): # same condition as used in histogramdd + yield sample + else: + yield from sample + with contextlib.suppress(TypeError): + yield from bins + yield weights + + +@array_function_dispatch(_histogramdd_dispatcher) +def histogramdd(sample, bins=10, range=None, density=None, weights=None): + """ + Compute the multidimensional histogram of some data. + + Parameters + ---------- + sample : (N, D) array, or (N, D) array_like + The data to be histogrammed. + + Note the unusual interpretation of sample when an array_like: + + * When an array, each row is a coordinate in a D-dimensional space - + such as ``histogramdd(np.array([p1, p2, p3]))``. + * When an array_like, each element is the list of values for single + coordinate - such as ``histogramdd((X, Y, Z))``. + + The first form should be preferred. + + bins : sequence or int, optional + The bin specification: + + * A sequence of arrays describing the monotonically increasing bin + edges along each dimension. + * The number of bins for each dimension (nx, ny, ... =bins) + * The number of bins for all dimensions (nx=ny=...=bins). + + range : sequence, optional + A sequence of length D, each an optional (lower, upper) tuple giving + the outer bin edges to be used if the edges are not given explicitly in + `bins`. + An entry of None in the sequence results in the minimum and maximum + values being used for the corresponding dimension. + The default, None, is equivalent to passing a tuple of D None values. + density : bool, optional + If False, the default, returns the number of samples in each bin. + If True, returns the probability *density* function at the bin, + ``bin_count / sample_count / bin_volume``. + weights : (N,) array_like, optional + An array of values `w_i` weighing each sample `(x_i, y_i, z_i, ...)`. + Weights are normalized to 1 if density is True. If density is False, + the values of the returned histogram are equal to the sum of the + weights belonging to the samples falling into each bin. + + Returns + ------- + H : ndarray + The multidimensional histogram of sample x. See density and weights + for the different possible semantics. + edges : tuple of ndarrays + A tuple of D arrays describing the bin edges for each dimension. + + See Also + -------- + histogram: 1-D histogram + histogram2d: 2-D histogram + + Examples + -------- + >>> import numpy as np + >>> rng = np.random.default_rng() + >>> r = rng.normal(size=(100,3)) + >>> H, edges = np.histogramdd(r, bins = (5, 8, 4)) + >>> H.shape, edges[0].size, edges[1].size, edges[2].size + ((5, 8, 4), 6, 9, 5) + + """ + + try: + # Sample is an ND-array. + N, D = sample.shape + except (AttributeError, ValueError): + # Sample is a sequence of 1D arrays. + sample = np.atleast_2d(sample).T + N, D = sample.shape + + nbin = np.empty(D, np.intp) + edges = D * [None] + dedges = D * [None] + if weights is not None: + weights = np.asarray(weights) + + try: + M = len(bins) + if M != D: + raise ValueError( + 'The dimension of bins must be equal to the dimension of the ' + 'sample x.') + except TypeError: + # bins is an integer + bins = D * [bins] + + # normalize the range argument + if range is None: + range = (None,) * D + elif len(range) != D: + raise ValueError('range argument must have one entry per dimension') + + # Create edge arrays + for i in _range(D): + if np.ndim(bins[i]) == 0: + if bins[i] < 1: + raise ValueError( + f'`bins[{i}]` must be positive, when an integer') + smin, smax = _get_outer_edges(sample[:, i], range[i]) + try: + n = operator.index(bins[i]) + + except TypeError as e: + raise TypeError( + f"`bins[{i}]` must be an integer, when a scalar" + ) from e + + edges[i] = np.linspace(smin, smax, n + 1) + elif np.ndim(bins[i]) == 1: + edges[i] = np.asarray(bins[i]) + if np.any(edges[i][:-1] > edges[i][1:]): + raise ValueError( + f'`bins[{i}]` must be monotonically increasing, when an array') + else: + raise ValueError( + f'`bins[{i}]` must be a scalar or 1d array') + + nbin[i] = len(edges[i]) + 1 # includes an outlier on each end + dedges[i] = np.diff(edges[i]) + + # Compute the bin number each sample falls into. + Ncount = tuple( + # avoid np.digitize to work around gh-11022 + np.searchsorted(edges[i], sample[:, i], side='right') + for i in _range(D) + ) + + # Using digitize, values that fall on an edge are put in the right bin. + # For the rightmost bin, we want values equal to the right edge to be + # counted in the last bin, and not as an outlier. + for i in _range(D): + # Find which points are on the rightmost edge. + on_edge = (sample[:, i] == edges[i][-1]) + # Shift these points one bin to the left. + Ncount[i][on_edge] -= 1 + + # Compute the sample indices in the flattened histogram matrix. + # This raises an error if the array is too large. + xy = np.ravel_multi_index(Ncount, nbin) + + # Compute the number of repetitions in xy and assign it to the + # flattened histmat. + hist = np.bincount(xy, weights, minlength=nbin.prod()) + + # Shape into a proper matrix + hist = hist.reshape(nbin) + + # This preserves the (bad) behavior observed in gh-7845, for now. + hist = hist.astype(float, casting='safe') + + # Remove outliers (indices 0 and -1 for each dimension). + core = D * (slice(1, -1),) + hist = hist[core] + + if density: + # calculate the probability density function + s = hist.sum() + for i in _range(D): + shape = np.ones(D, int) + shape[i] = nbin[i] - 2 + hist = hist / dedges[i].reshape(shape) + hist /= s + + if (hist.shape != nbin - 2).any(): + raise RuntimeError( + "Internal Shape Error") + return hist, edges diff --git a/.venv/lib/python3.12/site-packages/numpy/lib/_histograms_impl.pyi b/.venv/lib/python3.12/site-packages/numpy/lib/_histograms_impl.pyi new file mode 100644 index 0000000..5e7afb5 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/lib/_histograms_impl.pyi @@ -0,0 +1,50 @@ +from collections.abc import Sequence +from typing import ( + Any, + SupportsIndex, + TypeAlias, +) +from typing import ( + Literal as L, +) + +from numpy._typing import ( + ArrayLike, + NDArray, +) + +__all__ = ["histogram", "histogramdd", "histogram_bin_edges"] + +_BinKind: TypeAlias = L[ + "stone", + "auto", + "doane", + "fd", + "rice", + "scott", + "sqrt", + "sturges", +] + +def histogram_bin_edges( + a: ArrayLike, + bins: _BinKind | SupportsIndex | ArrayLike = ..., + range: tuple[float, float] | None = ..., + weights: ArrayLike | None = ..., +) -> NDArray[Any]: ... + +def histogram( + a: ArrayLike, + bins: _BinKind | SupportsIndex | ArrayLike = ..., + range: tuple[float, float] | None = ..., + density: bool = ..., + weights: ArrayLike | None = ..., +) -> tuple[NDArray[Any], NDArray[Any]]: ... + +def histogramdd( + sample: ArrayLike, + bins: SupportsIndex | ArrayLike = ..., + range: Sequence[tuple[float, float]] = ..., + density: bool | None = ..., + weights: ArrayLike | None = ..., +) -> tuple[NDArray[Any], tuple[NDArray[Any], ...]]: ... diff --git a/.venv/lib/python3.12/site-packages/numpy/lib/_index_tricks_impl.py b/.venv/lib/python3.12/site-packages/numpy/lib/_index_tricks_impl.py new file mode 100644 index 0000000..131bbae --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/lib/_index_tricks_impl.py @@ -0,0 +1,1067 @@ +import functools +import math +import sys +import warnings + +import numpy as np +import numpy._core.numeric as _nx +import numpy.matrixlib as matrixlib +from numpy._core import linspace, overrides +from numpy._core.multiarray import ravel_multi_index, unravel_index +from numpy._core.numeric import ScalarType, array +from numpy._core.numerictypes import issubdtype +from numpy._utils import set_module +from numpy.lib._function_base_impl import diff +from numpy.lib.stride_tricks import as_strided + +array_function_dispatch = functools.partial( + overrides.array_function_dispatch, module='numpy') + + +__all__ = [ + 'ravel_multi_index', 'unravel_index', 'mgrid', 'ogrid', 'r_', 'c_', + 's_', 'index_exp', 'ix_', 'ndenumerate', 'ndindex', 'fill_diagonal', + 'diag_indices', 'diag_indices_from' +] + + +def _ix__dispatcher(*args): + return args + + +@array_function_dispatch(_ix__dispatcher) +def ix_(*args): + """ + Construct an open mesh from multiple sequences. + + This function takes N 1-D sequences and returns N outputs with N + dimensions each, such that the shape is 1 in all but one dimension + and the dimension with the non-unit shape value cycles through all + N dimensions. + + Using `ix_` one can quickly construct index arrays that will index + the cross product. ``a[np.ix_([1,3],[2,5])]`` returns the array + ``[[a[1,2] a[1,5]], [a[3,2] a[3,5]]]``. + + Parameters + ---------- + args : 1-D sequences + Each sequence should be of integer or boolean type. + Boolean sequences will be interpreted as boolean masks for the + corresponding dimension (equivalent to passing in + ``np.nonzero(boolean_sequence)``). + + Returns + ------- + out : tuple of ndarrays + N arrays with N dimensions each, with N the number of input + sequences. Together these arrays form an open mesh. + + See Also + -------- + ogrid, mgrid, meshgrid + + Examples + -------- + >>> import numpy as np + >>> a = np.arange(10).reshape(2, 5) + >>> a + array([[0, 1, 2, 3, 4], + [5, 6, 7, 8, 9]]) + >>> ixgrid = np.ix_([0, 1], [2, 4]) + >>> ixgrid + (array([[0], + [1]]), array([[2, 4]])) + >>> ixgrid[0].shape, ixgrid[1].shape + ((2, 1), (1, 2)) + >>> a[ixgrid] + array([[2, 4], + [7, 9]]) + + >>> ixgrid = np.ix_([True, True], [2, 4]) + >>> a[ixgrid] + array([[2, 4], + [7, 9]]) + >>> ixgrid = np.ix_([True, True], [False, False, True, False, True]) + >>> a[ixgrid] + array([[2, 4], + [7, 9]]) + + """ + out = [] + nd = len(args) + for k, new in enumerate(args): + if not isinstance(new, _nx.ndarray): + new = np.asarray(new) + if new.size == 0: + # Explicitly type empty arrays to avoid float default + new = new.astype(_nx.intp) + if new.ndim != 1: + raise ValueError("Cross index must be 1 dimensional") + if issubdtype(new.dtype, _nx.bool): + new, = new.nonzero() + new = new.reshape((1,) * k + (new.size,) + (1,) * (nd - k - 1)) + out.append(new) + return tuple(out) + + +class nd_grid: + """ + Construct a multi-dimensional "meshgrid". + + ``grid = nd_grid()`` creates an instance which will return a mesh-grid + when indexed. The dimension and number of the output arrays are equal + to the number of indexing dimensions. If the step length is not a + complex number, then the stop is not inclusive. + + However, if the step length is a **complex number** (e.g. 5j), then the + integer part of its magnitude is interpreted as specifying the + number of points to create between the start and stop values, where + the stop value **is inclusive**. + + If instantiated with an argument of ``sparse=True``, the mesh-grid is + open (or not fleshed out) so that only one-dimension of each returned + argument is greater than 1. + + Parameters + ---------- + sparse : bool, optional + Whether the grid is sparse or not. Default is False. + + Notes + ----- + Two instances of `nd_grid` are made available in the NumPy namespace, + `mgrid` and `ogrid`, approximately defined as:: + + mgrid = nd_grid(sparse=False) + ogrid = nd_grid(sparse=True) + + Users should use these pre-defined instances instead of using `nd_grid` + directly. + """ + __slots__ = ('sparse',) + + def __init__(self, sparse=False): + self.sparse = sparse + + def __getitem__(self, key): + try: + size = [] + # Mimic the behavior of `np.arange` and use a data type + # which is at least as large as `np.int_` + num_list = [0] + for k in range(len(key)): + step = key[k].step + start = key[k].start + stop = key[k].stop + if start is None: + start = 0 + if step is None: + step = 1 + if isinstance(step, (_nx.complexfloating, complex)): + step = abs(step) + size.append(int(step)) + else: + size.append( + math.ceil((stop - start) / step)) + num_list += [start, stop, step] + typ = _nx.result_type(*num_list) + if self.sparse: + nn = [_nx.arange(_x, dtype=_t) + for _x, _t in zip(size, (typ,) * len(size))] + else: + nn = _nx.indices(size, typ) + for k, kk in enumerate(key): + step = kk.step + start = kk.start + if start is None: + start = 0 + if step is None: + step = 1 + if isinstance(step, (_nx.complexfloating, complex)): + step = int(abs(step)) + if step != 1: + step = (kk.stop - start) / float(step - 1) + nn[k] = (nn[k] * step + start) + if self.sparse: + slobj = [_nx.newaxis] * len(size) + for k in range(len(size)): + slobj[k] = slice(None, None) + nn[k] = nn[k][tuple(slobj)] + slobj[k] = _nx.newaxis + return tuple(nn) # ogrid -> tuple of arrays + return nn # mgrid -> ndarray + except (IndexError, TypeError): + step = key.step + stop = key.stop + start = key.start + if start is None: + start = 0 + if isinstance(step, (_nx.complexfloating, complex)): + # Prevent the (potential) creation of integer arrays + step_float = abs(step) + step = length = int(step_float) + if step != 1: + step = (key.stop - start) / float(step - 1) + typ = _nx.result_type(start, stop, step_float) + return _nx.arange(0, length, 1, dtype=typ) * step + start + else: + return _nx.arange(start, stop, step) + + +class MGridClass(nd_grid): + """ + An instance which returns a dense multi-dimensional "meshgrid". + + An instance which returns a dense (or fleshed out) mesh-grid + when indexed, so that each returned argument has the same shape. + The dimensions and number of the output arrays are equal to the + number of indexing dimensions. If the step length is not a complex + number, then the stop is not inclusive. + + However, if the step length is a **complex number** (e.g. 5j), then + the integer part of its magnitude is interpreted as specifying the + number of points to create between the start and stop values, where + the stop value **is inclusive**. + + Returns + ------- + mesh-grid : ndarray + A single array, containing a set of `ndarray`\\ s all of the same + dimensions. stacked along the first axis. + + See Also + -------- + ogrid : like `mgrid` but returns open (not fleshed out) mesh grids + meshgrid: return coordinate matrices from coordinate vectors + r_ : array concatenator + :ref:`how-to-partition` + + Examples + -------- + >>> import numpy as np + >>> np.mgrid[0:5, 0:5] + array([[[0, 0, 0, 0, 0], + [1, 1, 1, 1, 1], + [2, 2, 2, 2, 2], + [3, 3, 3, 3, 3], + [4, 4, 4, 4, 4]], + [[0, 1, 2, 3, 4], + [0, 1, 2, 3, 4], + [0, 1, 2, 3, 4], + [0, 1, 2, 3, 4], + [0, 1, 2, 3, 4]]]) + >>> np.mgrid[-1:1:5j] + array([-1. , -0.5, 0. , 0.5, 1. ]) + + >>> np.mgrid[0:4].shape + (4,) + >>> np.mgrid[0:4, 0:5].shape + (2, 4, 5) + >>> np.mgrid[0:4, 0:5, 0:6].shape + (3, 4, 5, 6) + + """ + __slots__ = () + + def __init__(self): + super().__init__(sparse=False) + + +mgrid = MGridClass() + + +class OGridClass(nd_grid): + """ + An instance which returns an open multi-dimensional "meshgrid". + + An instance which returns an open (i.e. not fleshed out) mesh-grid + when indexed, so that only one dimension of each returned array is + greater than 1. The dimension and number of the output arrays are + equal to the number of indexing dimensions. If the step length is + not a complex number, then the stop is not inclusive. + + However, if the step length is a **complex number** (e.g. 5j), then + the integer part of its magnitude is interpreted as specifying the + number of points to create between the start and stop values, where + the stop value **is inclusive**. + + Returns + ------- + mesh-grid : ndarray or tuple of ndarrays + If the input is a single slice, returns an array. + If the input is multiple slices, returns a tuple of arrays, with + only one dimension not equal to 1. + + See Also + -------- + mgrid : like `ogrid` but returns dense (or fleshed out) mesh grids + meshgrid: return coordinate matrices from coordinate vectors + r_ : array concatenator + :ref:`how-to-partition` + + Examples + -------- + >>> from numpy import ogrid + >>> ogrid[-1:1:5j] + array([-1. , -0.5, 0. , 0.5, 1. ]) + >>> ogrid[0:5, 0:5] + (array([[0], + [1], + [2], + [3], + [4]]), + array([[0, 1, 2, 3, 4]])) + + """ + __slots__ = () + + def __init__(self): + super().__init__(sparse=True) + + +ogrid = OGridClass() + + +class AxisConcatenator: + """ + Translates slice objects to concatenation along an axis. + + For detailed documentation on usage, see `r_`. + """ + __slots__ = ('axis', 'matrix', 'ndmin', 'trans1d') + + # allow ma.mr_ to override this + concatenate = staticmethod(_nx.concatenate) + makemat = staticmethod(matrixlib.matrix) + + def __init__(self, axis=0, matrix=False, ndmin=1, trans1d=-1): + self.axis = axis + self.matrix = matrix + self.trans1d = trans1d + self.ndmin = ndmin + + def __getitem__(self, key): + # handle matrix builder syntax + if isinstance(key, str): + frame = sys._getframe().f_back + mymat = matrixlib.bmat(key, frame.f_globals, frame.f_locals) + return mymat + + if not isinstance(key, tuple): + key = (key,) + + # copy attributes, since they can be overridden in the first argument + trans1d = self.trans1d + ndmin = self.ndmin + matrix = self.matrix + axis = self.axis + + objs = [] + # dtypes or scalars for weak scalar handling in result_type + result_type_objs = [] + + for k, item in enumerate(key): + scalar = False + if isinstance(item, slice): + step = item.step + start = item.start + stop = item.stop + if start is None: + start = 0 + if step is None: + step = 1 + if isinstance(step, (_nx.complexfloating, complex)): + size = int(abs(step)) + newobj = linspace(start, stop, num=size) + else: + newobj = _nx.arange(start, stop, step) + if ndmin > 1: + newobj = array(newobj, copy=None, ndmin=ndmin) + if trans1d != -1: + newobj = newobj.swapaxes(-1, trans1d) + elif isinstance(item, str): + if k != 0: + raise ValueError("special directives must be the " + "first entry.") + if item in ('r', 'c'): + matrix = True + col = (item == 'c') + continue + if ',' in item: + vec = item.split(',') + try: + axis, ndmin = [int(x) for x in vec[:2]] + if len(vec) == 3: + trans1d = int(vec[2]) + continue + except Exception as e: + raise ValueError( + f"unknown special directive {item!r}" + ) from e + try: + axis = int(item) + continue + except (ValueError, TypeError) as e: + raise ValueError("unknown special directive") from e + elif type(item) in ScalarType: + scalar = True + newobj = item + else: + item_ndim = np.ndim(item) + newobj = array(item, copy=None, subok=True, ndmin=ndmin) + if trans1d != -1 and item_ndim < ndmin: + k2 = ndmin - item_ndim + k1 = trans1d + if k1 < 0: + k1 += k2 + 1 + defaxes = list(range(ndmin)) + axes = defaxes[:k1] + defaxes[k2:] + defaxes[k1:k2] + newobj = newobj.transpose(axes) + + objs.append(newobj) + if scalar: + result_type_objs.append(item) + else: + result_type_objs.append(newobj.dtype) + + # Ensure that scalars won't up-cast unless warranted, for 0, drops + # through to error in concatenate. + if len(result_type_objs) != 0: + final_dtype = _nx.result_type(*result_type_objs) + # concatenate could do cast, but that can be overridden: + objs = [array(obj, copy=None, subok=True, + ndmin=ndmin, dtype=final_dtype) for obj in objs] + + res = self.concatenate(tuple(objs), axis=axis) + + if matrix: + oldndim = res.ndim + res = self.makemat(res) + if oldndim == 1 and col: + res = res.T + return res + + def __len__(self): + return 0 + +# separate classes are used here instead of just making r_ = concatenator(0), +# etc. because otherwise we couldn't get the doc string to come out right +# in help(r_) + + +class RClass(AxisConcatenator): + """ + Translates slice objects to concatenation along the first axis. + + This is a simple way to build up arrays quickly. There are two use cases. + + 1. If the index expression contains comma separated arrays, then stack + them along their first axis. + 2. If the index expression contains slice notation or scalars then create + a 1-D array with a range indicated by the slice notation. + + If slice notation is used, the syntax ``start:stop:step`` is equivalent + to ``np.arange(start, stop, step)`` inside of the brackets. However, if + ``step`` is an imaginary number (i.e. 100j) then its integer portion is + interpreted as a number-of-points desired and the start and stop are + inclusive. In other words ``start:stop:stepj`` is interpreted as + ``np.linspace(start, stop, step, endpoint=1)`` inside of the brackets. + After expansion of slice notation, all comma separated sequences are + concatenated together. + + Optional character strings placed as the first element of the index + expression can be used to change the output. The strings 'r' or 'c' result + in matrix output. If the result is 1-D and 'r' is specified a 1 x N (row) + matrix is produced. If the result is 1-D and 'c' is specified, then a N x 1 + (column) matrix is produced. If the result is 2-D then both provide the + same matrix result. + + A string integer specifies which axis to stack multiple comma separated + arrays along. A string of two comma-separated integers allows indication + of the minimum number of dimensions to force each entry into as the + second integer (the axis to concatenate along is still the first integer). + + A string with three comma-separated integers allows specification of the + axis to concatenate along, the minimum number of dimensions to force the + entries to, and which axis should contain the start of the arrays which + are less than the specified number of dimensions. In other words the third + integer allows you to specify where the 1's should be placed in the shape + of the arrays that have their shapes upgraded. By default, they are placed + in the front of the shape tuple. The third argument allows you to specify + where the start of the array should be instead. Thus, a third argument of + '0' would place the 1's at the end of the array shape. Negative integers + specify where in the new shape tuple the last dimension of upgraded arrays + should be placed, so the default is '-1'. + + Parameters + ---------- + Not a function, so takes no parameters + + + Returns + ------- + A concatenated ndarray or matrix. + + See Also + -------- + concatenate : Join a sequence of arrays along an existing axis. + c_ : Translates slice objects to concatenation along the second axis. + + Examples + -------- + >>> import numpy as np + >>> np.r_[np.array([1,2,3]), 0, 0, np.array([4,5,6])] + array([1, 2, 3, ..., 4, 5, 6]) + >>> np.r_[-1:1:6j, [0]*3, 5, 6] + array([-1. , -0.6, -0.2, 0.2, 0.6, 1. , 0. , 0. , 0. , 5. , 6. ]) + + String integers specify the axis to concatenate along or the minimum + number of dimensions to force entries into. + + >>> a = np.array([[0, 1, 2], [3, 4, 5]]) + >>> np.r_['-1', a, a] # concatenate along last axis + array([[0, 1, 2, 0, 1, 2], + [3, 4, 5, 3, 4, 5]]) + >>> np.r_['0,2', [1,2,3], [4,5,6]] # concatenate along first axis, dim>=2 + array([[1, 2, 3], + [4, 5, 6]]) + + >>> np.r_['0,2,0', [1,2,3], [4,5,6]] + array([[1], + [2], + [3], + [4], + [5], + [6]]) + >>> np.r_['1,2,0', [1,2,3], [4,5,6]] + array([[1, 4], + [2, 5], + [3, 6]]) + + Using 'r' or 'c' as a first string argument creates a matrix. + + >>> np.r_['r',[1,2,3], [4,5,6]] + matrix([[1, 2, 3, 4, 5, 6]]) + + """ + __slots__ = () + + def __init__(self): + AxisConcatenator.__init__(self, 0) + + +r_ = RClass() + + +class CClass(AxisConcatenator): + """ + Translates slice objects to concatenation along the second axis. + + This is short-hand for ``np.r_['-1,2,0', index expression]``, which is + useful because of its common occurrence. In particular, arrays will be + stacked along their last axis after being upgraded to at least 2-D with + 1's post-pended to the shape (column vectors made out of 1-D arrays). + + See Also + -------- + column_stack : Stack 1-D arrays as columns into a 2-D array. + r_ : For more detailed documentation. + + Examples + -------- + >>> import numpy as np + >>> np.c_[np.array([1,2,3]), np.array([4,5,6])] + array([[1, 4], + [2, 5], + [3, 6]]) + >>> np.c_[np.array([[1,2,3]]), 0, 0, np.array([[4,5,6]])] + array([[1, 2, 3, ..., 4, 5, 6]]) + + """ + __slots__ = () + + def __init__(self): + AxisConcatenator.__init__(self, -1, ndmin=2, trans1d=0) + + +c_ = CClass() + + +@set_module('numpy') +class ndenumerate: + """ + Multidimensional index iterator. + + Return an iterator yielding pairs of array coordinates and values. + + Parameters + ---------- + arr : ndarray + Input array. + + See Also + -------- + ndindex, flatiter + + Examples + -------- + >>> import numpy as np + >>> a = np.array([[1, 2], [3, 4]]) + >>> for index, x in np.ndenumerate(a): + ... print(index, x) + (0, 0) 1 + (0, 1) 2 + (1, 0) 3 + (1, 1) 4 + + """ + + def __init__(self, arr): + self.iter = np.asarray(arr).flat + + def __next__(self): + """ + Standard iterator method, returns the index tuple and array value. + + Returns + ------- + coords : tuple of ints + The indices of the current iteration. + val : scalar + The array element of the current iteration. + + """ + return self.iter.coords, next(self.iter) + + def __iter__(self): + return self + + +@set_module('numpy') +class ndindex: + """ + An N-dimensional iterator object to index arrays. + + Given the shape of an array, an `ndindex` instance iterates over + the N-dimensional index of the array. At each iteration a tuple + of indices is returned, the last dimension is iterated over first. + + Parameters + ---------- + shape : ints, or a single tuple of ints + The size of each dimension of the array can be passed as + individual parameters or as the elements of a tuple. + + See Also + -------- + ndenumerate, flatiter + + Examples + -------- + >>> import numpy as np + + Dimensions as individual arguments + + >>> for index in np.ndindex(3, 2, 1): + ... print(index) + (0, 0, 0) + (0, 1, 0) + (1, 0, 0) + (1, 1, 0) + (2, 0, 0) + (2, 1, 0) + + Same dimensions - but in a tuple ``(3, 2, 1)`` + + >>> for index in np.ndindex((3, 2, 1)): + ... print(index) + (0, 0, 0) + (0, 1, 0) + (1, 0, 0) + (1, 1, 0) + (2, 0, 0) + (2, 1, 0) + + """ + + def __init__(self, *shape): + if len(shape) == 1 and isinstance(shape[0], tuple): + shape = shape[0] + x = as_strided(_nx.zeros(1), shape=shape, + strides=_nx.zeros_like(shape)) + self._it = _nx.nditer(x, flags=['multi_index', 'zerosize_ok'], + order='C') + + def __iter__(self): + return self + + def ndincr(self): + """ + Increment the multi-dimensional index by one. + + This method is for backward compatibility only: do not use. + + .. deprecated:: 1.20.0 + This method has been advised against since numpy 1.8.0, but only + started emitting DeprecationWarning as of this version. + """ + # NumPy 1.20.0, 2020-09-08 + warnings.warn( + "`ndindex.ndincr()` is deprecated, use `next(ndindex)` instead", + DeprecationWarning, stacklevel=2) + next(self) + + def __next__(self): + """ + Standard iterator method, updates the index and returns the index + tuple. + + Returns + ------- + val : tuple of ints + Returns a tuple containing the indices of the current + iteration. + + """ + next(self._it) + return self._it.multi_index + + +# You can do all this with slice() plus a few special objects, +# but there's a lot to remember. This version is simpler because +# it uses the standard array indexing syntax. +# +# Written by Konrad Hinsen <hinsen@cnrs-orleans.fr> +# last revision: 1999-7-23 +# +# Cosmetic changes by T. Oliphant 2001 +# +# + +class IndexExpression: + """ + A nicer way to build up index tuples for arrays. + + .. note:: + Use one of the two predefined instances ``index_exp`` or `s_` + rather than directly using `IndexExpression`. + + For any index combination, including slicing and axis insertion, + ``a[indices]`` is the same as ``a[np.index_exp[indices]]`` for any + array `a`. However, ``np.index_exp[indices]`` can be used anywhere + in Python code and returns a tuple of slice objects that can be + used in the construction of complex index expressions. + + Parameters + ---------- + maketuple : bool + If True, always returns a tuple. + + See Also + -------- + s_ : Predefined instance without tuple conversion: + `s_ = IndexExpression(maketuple=False)`. + The ``index_exp`` is another predefined instance that + always returns a tuple: + `index_exp = IndexExpression(maketuple=True)`. + + Notes + ----- + You can do all this with :class:`slice` plus a few special objects, + but there's a lot to remember and this version is simpler because + it uses the standard array indexing syntax. + + Examples + -------- + >>> import numpy as np + >>> np.s_[2::2] + slice(2, None, 2) + >>> np.index_exp[2::2] + (slice(2, None, 2),) + + >>> np.array([0, 1, 2, 3, 4])[np.s_[2::2]] + array([2, 4]) + + """ + __slots__ = ('maketuple',) + + def __init__(self, maketuple): + self.maketuple = maketuple + + def __getitem__(self, item): + if self.maketuple and not isinstance(item, tuple): + return (item,) + else: + return item + + +index_exp = IndexExpression(maketuple=True) +s_ = IndexExpression(maketuple=False) + +# End contribution from Konrad. + + +# The following functions complement those in twodim_base, but are +# applicable to N-dimensions. + + +def _fill_diagonal_dispatcher(a, val, wrap=None): + return (a,) + + +@array_function_dispatch(_fill_diagonal_dispatcher) +def fill_diagonal(a, val, wrap=False): + """Fill the main diagonal of the given array of any dimensionality. + + For an array `a` with ``a.ndim >= 2``, the diagonal is the list of + values ``a[i, ..., i]`` with indices ``i`` all identical. This function + modifies the input array in-place without returning a value. + + Parameters + ---------- + a : array, at least 2-D. + Array whose diagonal is to be filled in-place. + val : scalar or array_like + Value(s) to write on the diagonal. If `val` is scalar, the value is + written along the diagonal. If array-like, the flattened `val` is + written along the diagonal, repeating if necessary to fill all + diagonal entries. + + wrap : bool + For tall matrices in NumPy version up to 1.6.2, the + diagonal "wrapped" after N columns. You can have this behavior + with this option. This affects only tall matrices. + + See also + -------- + diag_indices, diag_indices_from + + Notes + ----- + This functionality can be obtained via `diag_indices`, but internally + this version uses a much faster implementation that never constructs the + indices and uses simple slicing. + + Examples + -------- + >>> import numpy as np + >>> a = np.zeros((3, 3), int) + >>> np.fill_diagonal(a, 5) + >>> a + array([[5, 0, 0], + [0, 5, 0], + [0, 0, 5]]) + + The same function can operate on a 4-D array: + + >>> a = np.zeros((3, 3, 3, 3), int) + >>> np.fill_diagonal(a, 4) + + We only show a few blocks for clarity: + + >>> a[0, 0] + array([[4, 0, 0], + [0, 0, 0], + [0, 0, 0]]) + >>> a[1, 1] + array([[0, 0, 0], + [0, 4, 0], + [0, 0, 0]]) + >>> a[2, 2] + array([[0, 0, 0], + [0, 0, 0], + [0, 0, 4]]) + + The wrap option affects only tall matrices: + + >>> # tall matrices no wrap + >>> a = np.zeros((5, 3), int) + >>> np.fill_diagonal(a, 4) + >>> a + array([[4, 0, 0], + [0, 4, 0], + [0, 0, 4], + [0, 0, 0], + [0, 0, 0]]) + + >>> # tall matrices wrap + >>> a = np.zeros((5, 3), int) + >>> np.fill_diagonal(a, 4, wrap=True) + >>> a + array([[4, 0, 0], + [0, 4, 0], + [0, 0, 4], + [0, 0, 0], + [4, 0, 0]]) + + >>> # wide matrices + >>> a = np.zeros((3, 5), int) + >>> np.fill_diagonal(a, 4, wrap=True) + >>> a + array([[4, 0, 0, 0, 0], + [0, 4, 0, 0, 0], + [0, 0, 4, 0, 0]]) + + The anti-diagonal can be filled by reversing the order of elements + using either `numpy.flipud` or `numpy.fliplr`. + + >>> a = np.zeros((3, 3), int); + >>> np.fill_diagonal(np.fliplr(a), [1,2,3]) # Horizontal flip + >>> a + array([[0, 0, 1], + [0, 2, 0], + [3, 0, 0]]) + >>> np.fill_diagonal(np.flipud(a), [1,2,3]) # Vertical flip + >>> a + array([[0, 0, 3], + [0, 2, 0], + [1, 0, 0]]) + + Note that the order in which the diagonal is filled varies depending + on the flip function. + """ + if a.ndim < 2: + raise ValueError("array must be at least 2-d") + end = None + if a.ndim == 2: + # Explicit, fast formula for the common case. For 2-d arrays, we + # accept rectangular ones. + step = a.shape[1] + 1 + # This is needed to don't have tall matrix have the diagonal wrap. + if not wrap: + end = a.shape[1] * a.shape[1] + else: + # For more than d=2, the strided formula is only valid for arrays with + # all dimensions equal, so we check first. + if not np.all(diff(a.shape) == 0): + raise ValueError("All dimensions of input must be of equal length") + step = 1 + (np.cumprod(a.shape[:-1])).sum() + + # Write the value out into the diagonal. + a.flat[:end:step] = val + + +@set_module('numpy') +def diag_indices(n, ndim=2): + """ + Return the indices to access the main diagonal of an array. + + This returns a tuple of indices that can be used to access the main + diagonal of an array `a` with ``a.ndim >= 2`` dimensions and shape + (n, n, ..., n). For ``a.ndim = 2`` this is the usual diagonal, for + ``a.ndim > 2`` this is the set of indices to access ``a[i, i, ..., i]`` + for ``i = [0..n-1]``. + + Parameters + ---------- + n : int + The size, along each dimension, of the arrays for which the returned + indices can be used. + + ndim : int, optional + The number of dimensions. + + See Also + -------- + diag_indices_from + + Examples + -------- + >>> import numpy as np + + Create a set of indices to access the diagonal of a (4, 4) array: + + >>> di = np.diag_indices(4) + >>> di + (array([0, 1, 2, 3]), array([0, 1, 2, 3])) + >>> a = np.arange(16).reshape(4, 4) + >>> a + array([[ 0, 1, 2, 3], + [ 4, 5, 6, 7], + [ 8, 9, 10, 11], + [12, 13, 14, 15]]) + >>> a[di] = 100 + >>> a + array([[100, 1, 2, 3], + [ 4, 100, 6, 7], + [ 8, 9, 100, 11], + [ 12, 13, 14, 100]]) + + Now, we create indices to manipulate a 3-D array: + + >>> d3 = np.diag_indices(2, 3) + >>> d3 + (array([0, 1]), array([0, 1]), array([0, 1])) + + And use it to set the diagonal of an array of zeros to 1: + + >>> a = np.zeros((2, 2, 2), dtype=int) + >>> a[d3] = 1 + >>> a + array([[[1, 0], + [0, 0]], + [[0, 0], + [0, 1]]]) + + """ + idx = np.arange(n) + return (idx,) * ndim + + +def _diag_indices_from(arr): + return (arr,) + + +@array_function_dispatch(_diag_indices_from) +def diag_indices_from(arr): + """ + Return the indices to access the main diagonal of an n-dimensional array. + + See `diag_indices` for full details. + + Parameters + ---------- + arr : array, at least 2-D + + See Also + -------- + diag_indices + + Examples + -------- + >>> import numpy as np + + Create a 4 by 4 array. + + >>> a = np.arange(16).reshape(4, 4) + >>> a + array([[ 0, 1, 2, 3], + [ 4, 5, 6, 7], + [ 8, 9, 10, 11], + [12, 13, 14, 15]]) + + Get the indices of the diagonal elements. + + >>> di = np.diag_indices_from(a) + >>> di + (array([0, 1, 2, 3]), array([0, 1, 2, 3])) + + >>> a[di] + array([ 0, 5, 10, 15]) + + This is simply syntactic sugar for diag_indices. + + >>> np.diag_indices(a.shape[0]) + (array([0, 1, 2, 3]), array([0, 1, 2, 3])) + + """ + + if not arr.ndim >= 2: + raise ValueError("input array must be at least 2-d") + # For more than d=2, the strided formula is only valid for arrays with + # all dimensions equal, so we check first. + if not np.all(diff(arr.shape) == 0): + raise ValueError("All dimensions of input must be of equal length") + + return diag_indices(arr.shape[0], arr.ndim) diff --git a/.venv/lib/python3.12/site-packages/numpy/lib/_index_tricks_impl.pyi b/.venv/lib/python3.12/site-packages/numpy/lib/_index_tricks_impl.pyi new file mode 100644 index 0000000..7ac2b3a --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/lib/_index_tricks_impl.pyi @@ -0,0 +1,196 @@ +from collections.abc import Sequence +from typing import Any, ClassVar, Final, Generic, Self, SupportsIndex, final, overload +from typing import Literal as L + +from _typeshed import Incomplete +from typing_extensions import TypeVar, deprecated + +import numpy as np +from numpy._core.multiarray import ravel_multi_index, unravel_index +from numpy._typing import ( + ArrayLike, + NDArray, + _AnyShape, + _FiniteNestedSequence, + _NestedSequence, + _SupportsArray, + _SupportsDType, +) + +__all__ = [ # noqa: RUF022 + "ravel_multi_index", + "unravel_index", + "mgrid", + "ogrid", + "r_", + "c_", + "s_", + "index_exp", + "ix_", + "ndenumerate", + "ndindex", + "fill_diagonal", + "diag_indices", + "diag_indices_from", +] + +### + +_T = TypeVar("_T") +_TupleT = TypeVar("_TupleT", bound=tuple[Any, ...]) +_ArrayT = TypeVar("_ArrayT", bound=NDArray[Any]) +_DTypeT = TypeVar("_DTypeT", bound=np.dtype) +_ScalarT = TypeVar("_ScalarT", bound=np.generic) +_ScalarT_co = TypeVar("_ScalarT_co", bound=np.generic, covariant=True) +_BoolT_co = TypeVar("_BoolT_co", bound=bool, default=bool, covariant=True) + +_AxisT_co = TypeVar("_AxisT_co", bound=int, default=L[0], covariant=True) +_MatrixT_co = TypeVar("_MatrixT_co", bound=bool, default=L[False], covariant=True) +_NDMinT_co = TypeVar("_NDMinT_co", bound=int, default=L[1], covariant=True) +_Trans1DT_co = TypeVar("_Trans1DT_co", bound=int, default=L[-1], covariant=True) + +### + +class ndenumerate(Generic[_ScalarT_co]): + @overload + def __new__(cls, arr: _FiniteNestedSequence[_SupportsArray[np.dtype[_ScalarT]]]) -> ndenumerate[_ScalarT]: ... + @overload + def __new__(cls, arr: str | _NestedSequence[str]) -> ndenumerate[np.str_]: ... + @overload + def __new__(cls, arr: bytes | _NestedSequence[bytes]) -> ndenumerate[np.bytes_]: ... + @overload + def __new__(cls, arr: bool | _NestedSequence[bool]) -> ndenumerate[np.bool]: ... + @overload + def __new__(cls, arr: int | _NestedSequence[int]) -> ndenumerate[np.intp]: ... + @overload + def __new__(cls, arr: float | _NestedSequence[float]) -> ndenumerate[np.float64]: ... + @overload + def __new__(cls, arr: complex | _NestedSequence[complex]) -> ndenumerate[np.complex128]: ... + @overload + def __new__(cls, arr: object) -> ndenumerate[Any]: ... + + # The first overload is a (semi-)workaround for a mypy bug (tested with v1.10 and v1.11) + @overload + def __next__( + self: ndenumerate[np.bool | np.number | np.flexible | np.datetime64 | np.timedelta64], + /, + ) -> tuple[_AnyShape, _ScalarT_co]: ... + @overload + def __next__(self: ndenumerate[np.object_], /) -> tuple[_AnyShape, Incomplete]: ... + @overload + def __next__(self, /) -> tuple[_AnyShape, _ScalarT_co]: ... + + # + def __iter__(self) -> Self: ... + +class ndindex: + @overload + def __init__(self, shape: tuple[SupportsIndex, ...], /) -> None: ... + @overload + def __init__(self, /, *shape: SupportsIndex) -> None: ... + + # + def __iter__(self) -> Self: ... + def __next__(self) -> _AnyShape: ... + + # + @deprecated("Deprecated since 1.20.0.") + def ndincr(self, /) -> None: ... + +class nd_grid(Generic[_BoolT_co]): + sparse: _BoolT_co + def __init__(self, sparse: _BoolT_co = ...) -> None: ... + @overload + def __getitem__(self: nd_grid[L[False]], key: slice | Sequence[slice]) -> NDArray[Incomplete]: ... + @overload + def __getitem__(self: nd_grid[L[True]], key: slice | Sequence[slice]) -> tuple[NDArray[Incomplete], ...]: ... + +@final +class MGridClass(nd_grid[L[False]]): + def __init__(self) -> None: ... + +@final +class OGridClass(nd_grid[L[True]]): + def __init__(self) -> None: ... + +class AxisConcatenator(Generic[_AxisT_co, _MatrixT_co, _NDMinT_co, _Trans1DT_co]): + __slots__ = "axis", "matrix", "ndmin", "trans1d" + + makemat: ClassVar[type[np.matrix[tuple[int, int], np.dtype]]] + + axis: _AxisT_co + matrix: _MatrixT_co + ndmin: _NDMinT_co + trans1d: _Trans1DT_co + + # + def __init__( + self, + /, + axis: _AxisT_co = ..., + matrix: _MatrixT_co = ..., + ndmin: _NDMinT_co = ..., + trans1d: _Trans1DT_co = ..., + ) -> None: ... + + # TODO(jorenham): annotate this + def __getitem__(self, key: Incomplete, /) -> Incomplete: ... + def __len__(self, /) -> L[0]: ... + + # + @staticmethod + @overload + def concatenate(*a: ArrayLike, axis: SupportsIndex | None = 0, out: _ArrayT) -> _ArrayT: ... + @staticmethod + @overload + def concatenate(*a: ArrayLike, axis: SupportsIndex | None = 0, out: None = None) -> NDArray[Incomplete]: ... + +@final +class RClass(AxisConcatenator[L[0], L[False], L[1], L[-1]]): + def __init__(self, /) -> None: ... + +@final +class CClass(AxisConcatenator[L[-1], L[False], L[2], L[0]]): + def __init__(self, /) -> None: ... + +class IndexExpression(Generic[_BoolT_co]): + maketuple: _BoolT_co + def __init__(self, maketuple: _BoolT_co) -> None: ... + @overload + def __getitem__(self, item: _TupleT) -> _TupleT: ... + @overload + def __getitem__(self: IndexExpression[L[True]], item: _T) -> tuple[_T]: ... + @overload + def __getitem__(self: IndexExpression[L[False]], item: _T) -> _T: ... + +@overload +def ix_(*args: _FiniteNestedSequence[_SupportsDType[_DTypeT]]) -> tuple[np.ndarray[_AnyShape, _DTypeT], ...]: ... +@overload +def ix_(*args: str | _NestedSequence[str]) -> tuple[NDArray[np.str_], ...]: ... +@overload +def ix_(*args: bytes | _NestedSequence[bytes]) -> tuple[NDArray[np.bytes_], ...]: ... +@overload +def ix_(*args: bool | _NestedSequence[bool]) -> tuple[NDArray[np.bool], ...]: ... +@overload +def ix_(*args: int | _NestedSequence[int]) -> tuple[NDArray[np.intp], ...]: ... +@overload +def ix_(*args: float | _NestedSequence[float]) -> tuple[NDArray[np.float64], ...]: ... +@overload +def ix_(*args: complex | _NestedSequence[complex]) -> tuple[NDArray[np.complex128], ...]: ... + +# +def fill_diagonal(a: NDArray[Any], val: object, wrap: bool = ...) -> None: ... + +# +def diag_indices(n: int, ndim: int = ...) -> tuple[NDArray[np.intp], ...]: ... +def diag_indices_from(arr: ArrayLike) -> tuple[NDArray[np.intp], ...]: ... + +# +mgrid: Final[MGridClass] = ... +ogrid: Final[OGridClass] = ... + +r_: Final[RClass] = ... +c_: Final[CClass] = ... + +index_exp: Final[IndexExpression[L[True]]] = ... +s_: Final[IndexExpression[L[False]]] = ... diff --git a/.venv/lib/python3.12/site-packages/numpy/lib/_iotools.py b/.venv/lib/python3.12/site-packages/numpy/lib/_iotools.py new file mode 100644 index 0000000..3586b41 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/lib/_iotools.py @@ -0,0 +1,900 @@ +"""A collection of functions designed to help I/O with ascii files. + +""" +__docformat__ = "restructuredtext en" + +import itertools + +import numpy as np +import numpy._core.numeric as nx +from numpy._utils import asbytes, asunicode + + +def _decode_line(line, encoding=None): + """Decode bytes from binary input streams. + + Defaults to decoding from 'latin1'. + + Parameters + ---------- + line : str or bytes + Line to be decoded. + encoding : str + Encoding used to decode `line`. + + Returns + ------- + decoded_line : str + + """ + if type(line) is bytes: + if encoding is None: + encoding = "latin1" + line = line.decode(encoding) + + return line + + +def _is_string_like(obj): + """ + Check whether obj behaves like a string. + """ + try: + obj + '' + except (TypeError, ValueError): + return False + return True + + +def _is_bytes_like(obj): + """ + Check whether obj behaves like a bytes object. + """ + try: + obj + b'' + except (TypeError, ValueError): + return False + return True + + +def has_nested_fields(ndtype): + """ + Returns whether one or several fields of a dtype are nested. + + Parameters + ---------- + ndtype : dtype + Data-type of a structured array. + + Raises + ------ + AttributeError + If `ndtype` does not have a `names` attribute. + + Examples + -------- + >>> import numpy as np + >>> dt = np.dtype([('name', 'S4'), ('x', float), ('y', float)]) + >>> np.lib._iotools.has_nested_fields(dt) + False + + """ + return any(ndtype[name].names is not None for name in ndtype.names or ()) + + +def flatten_dtype(ndtype, flatten_base=False): + """ + Unpack a structured data-type by collapsing nested fields and/or fields + with a shape. + + Note that the field names are lost. + + Parameters + ---------- + ndtype : dtype + The datatype to collapse + flatten_base : bool, optional + If True, transform a field with a shape into several fields. Default is + False. + + Examples + -------- + >>> import numpy as np + >>> dt = np.dtype([('name', 'S4'), ('x', float), ('y', float), + ... ('block', int, (2, 3))]) + >>> np.lib._iotools.flatten_dtype(dt) + [dtype('S4'), dtype('float64'), dtype('float64'), dtype('int64')] + >>> np.lib._iotools.flatten_dtype(dt, flatten_base=True) + [dtype('S4'), + dtype('float64'), + dtype('float64'), + dtype('int64'), + dtype('int64'), + dtype('int64'), + dtype('int64'), + dtype('int64'), + dtype('int64')] + + """ + names = ndtype.names + if names is None: + if flatten_base: + return [ndtype.base] * int(np.prod(ndtype.shape)) + return [ndtype.base] + else: + types = [] + for field in names: + info = ndtype.fields[field] + flat_dt = flatten_dtype(info[0], flatten_base) + types.extend(flat_dt) + return types + + +class LineSplitter: + """ + Object to split a string at a given delimiter or at given places. + + Parameters + ---------- + delimiter : str, int, or sequence of ints, optional + If a string, character used to delimit consecutive fields. + If an integer or a sequence of integers, width(s) of each field. + comments : str, optional + Character used to mark the beginning of a comment. Default is '#'. + autostrip : bool, optional + Whether to strip each individual field. Default is True. + + """ + + def autostrip(self, method): + """ + Wrapper to strip each member of the output of `method`. + + Parameters + ---------- + method : function + Function that takes a single argument and returns a sequence of + strings. + + Returns + ------- + wrapped : function + The result of wrapping `method`. `wrapped` takes a single input + argument and returns a list of strings that are stripped of + white-space. + + """ + return lambda input: [_.strip() for _ in method(input)] + + def __init__(self, delimiter=None, comments='#', autostrip=True, + encoding=None): + delimiter = _decode_line(delimiter) + comments = _decode_line(comments) + + self.comments = comments + + # Delimiter is a character + if (delimiter is None) or isinstance(delimiter, str): + delimiter = delimiter or None + _handyman = self._delimited_splitter + # Delimiter is a list of field widths + elif hasattr(delimiter, '__iter__'): + _handyman = self._variablewidth_splitter + idx = np.cumsum([0] + list(delimiter)) + delimiter = [slice(i, j) for (i, j) in itertools.pairwise(idx)] + # Delimiter is a single integer + elif int(delimiter): + (_handyman, delimiter) = ( + self._fixedwidth_splitter, int(delimiter)) + else: + (_handyman, delimiter) = (self._delimited_splitter, None) + self.delimiter = delimiter + if autostrip: + self._handyman = self.autostrip(_handyman) + else: + self._handyman = _handyman + self.encoding = encoding + + def _delimited_splitter(self, line): + """Chop off comments, strip, and split at delimiter. """ + if self.comments is not None: + line = line.split(self.comments)[0] + line = line.strip(" \r\n") + if not line: + return [] + return line.split(self.delimiter) + + def _fixedwidth_splitter(self, line): + if self.comments is not None: + line = line.split(self.comments)[0] + line = line.strip("\r\n") + if not line: + return [] + fixed = self.delimiter + slices = [slice(i, i + fixed) for i in range(0, len(line), fixed)] + return [line[s] for s in slices] + + def _variablewidth_splitter(self, line): + if self.comments is not None: + line = line.split(self.comments)[0] + if not line: + return [] + slices = self.delimiter + return [line[s] for s in slices] + + def __call__(self, line): + return self._handyman(_decode_line(line, self.encoding)) + + +class NameValidator: + """ + Object to validate a list of strings to use as field names. + + The strings are stripped of any non alphanumeric character, and spaces + are replaced by '_'. During instantiation, the user can define a list + of names to exclude, as well as a list of invalid characters. Names in + the exclusion list are appended a '_' character. + + Once an instance has been created, it can be called with a list of + names, and a list of valid names will be created. The `__call__` + method accepts an optional keyword "default" that sets the default name + in case of ambiguity. By default this is 'f', so that names will + default to `f0`, `f1`, etc. + + Parameters + ---------- + excludelist : sequence, optional + A list of names to exclude. This list is appended to the default + list ['return', 'file', 'print']. Excluded names are appended an + underscore: for example, `file` becomes `file_` if supplied. + deletechars : str, optional + A string combining invalid characters that must be deleted from the + names. + case_sensitive : {True, False, 'upper', 'lower'}, optional + * If True, field names are case-sensitive. + * If False or 'upper', field names are converted to upper case. + * If 'lower', field names are converted to lower case. + + The default value is True. + replace_space : '_', optional + Character(s) used in replacement of white spaces. + + Notes + ----- + Calling an instance of `NameValidator` is the same as calling its + method `validate`. + + Examples + -------- + >>> import numpy as np + >>> validator = np.lib._iotools.NameValidator() + >>> validator(['file', 'field2', 'with space', 'CaSe']) + ('file_', 'field2', 'with_space', 'CaSe') + + >>> validator = np.lib._iotools.NameValidator(excludelist=['excl'], + ... deletechars='q', + ... case_sensitive=False) + >>> validator(['excl', 'field2', 'no_q', 'with space', 'CaSe']) + ('EXCL', 'FIELD2', 'NO_Q', 'WITH_SPACE', 'CASE') + + """ + + defaultexcludelist = 'return', 'file', 'print' + defaultdeletechars = frozenset(r"""~!@#$%^&*()-=+~\|]}[{';: /?.>,<""") + + def __init__(self, excludelist=None, deletechars=None, + case_sensitive=None, replace_space='_'): + # Process the exclusion list .. + if excludelist is None: + excludelist = [] + excludelist.extend(self.defaultexcludelist) + self.excludelist = excludelist + # Process the list of characters to delete + if deletechars is None: + delete = set(self.defaultdeletechars) + else: + delete = set(deletechars) + delete.add('"') + self.deletechars = delete + # Process the case option ..... + if (case_sensitive is None) or (case_sensitive is True): + self.case_converter = lambda x: x + elif (case_sensitive is False) or case_sensitive.startswith('u'): + self.case_converter = lambda x: x.upper() + elif case_sensitive.startswith('l'): + self.case_converter = lambda x: x.lower() + else: + msg = f'unrecognized case_sensitive value {case_sensitive}.' + raise ValueError(msg) + + self.replace_space = replace_space + + def validate(self, names, defaultfmt="f%i", nbfields=None): + """ + Validate a list of strings as field names for a structured array. + + Parameters + ---------- + names : sequence of str + Strings to be validated. + defaultfmt : str, optional + Default format string, used if validating a given string + reduces its length to zero. + nbfields : integer, optional + Final number of validated names, used to expand or shrink the + initial list of names. + + Returns + ------- + validatednames : list of str + The list of validated field names. + + Notes + ----- + A `NameValidator` instance can be called directly, which is the + same as calling `validate`. For examples, see `NameValidator`. + + """ + # Initial checks .............. + if (names is None): + if (nbfields is None): + return None + names = [] + if isinstance(names, str): + names = [names, ] + if nbfields is not None: + nbnames = len(names) + if (nbnames < nbfields): + names = list(names) + [''] * (nbfields - nbnames) + elif (nbnames > nbfields): + names = names[:nbfields] + # Set some shortcuts ........... + deletechars = self.deletechars + excludelist = self.excludelist + case_converter = self.case_converter + replace_space = self.replace_space + # Initializes some variables ... + validatednames = [] + seen = {} + nbempty = 0 + + for item in names: + item = case_converter(item).strip() + if replace_space: + item = item.replace(' ', replace_space) + item = ''.join([c for c in item if c not in deletechars]) + if item == '': + item = defaultfmt % nbempty + while item in names: + nbempty += 1 + item = defaultfmt % nbempty + nbempty += 1 + elif item in excludelist: + item += '_' + cnt = seen.get(item, 0) + if cnt > 0: + validatednames.append(item + '_%d' % cnt) + else: + validatednames.append(item) + seen[item] = cnt + 1 + return tuple(validatednames) + + def __call__(self, names, defaultfmt="f%i", nbfields=None): + return self.validate(names, defaultfmt=defaultfmt, nbfields=nbfields) + + +def str2bool(value): + """ + Tries to transform a string supposed to represent a boolean to a boolean. + + Parameters + ---------- + value : str + The string that is transformed to a boolean. + + Returns + ------- + boolval : bool + The boolean representation of `value`. + + Raises + ------ + ValueError + If the string is not 'True' or 'False' (case independent) + + Examples + -------- + >>> import numpy as np + >>> np.lib._iotools.str2bool('TRUE') + True + >>> np.lib._iotools.str2bool('false') + False + + """ + value = value.upper() + if value == 'TRUE': + return True + elif value == 'FALSE': + return False + else: + raise ValueError("Invalid boolean") + + +class ConverterError(Exception): + """ + Exception raised when an error occurs in a converter for string values. + + """ + pass + + +class ConverterLockError(ConverterError): + """ + Exception raised when an attempt is made to upgrade a locked converter. + + """ + pass + + +class ConversionWarning(UserWarning): + """ + Warning issued when a string converter has a problem. + + Notes + ----- + In `genfromtxt` a `ConversionWarning` is issued if raising exceptions + is explicitly suppressed with the "invalid_raise" keyword. + + """ + pass + + +class StringConverter: + """ + Factory class for function transforming a string into another object + (int, float). + + After initialization, an instance can be called to transform a string + into another object. If the string is recognized as representing a + missing value, a default value is returned. + + Attributes + ---------- + func : function + Function used for the conversion. + default : any + Default value to return when the input corresponds to a missing + value. + type : type + Type of the output. + _status : int + Integer representing the order of the conversion. + _mapper : sequence of tuples + Sequence of tuples (dtype, function, default value) to evaluate in + order. + _locked : bool + Holds `locked` parameter. + + Parameters + ---------- + dtype_or_func : {None, dtype, function}, optional + If a `dtype`, specifies the input data type, used to define a basic + function and a default value for missing data. For example, when + `dtype` is float, the `func` attribute is set to `float` and the + default value to `np.nan`. If a function, this function is used to + convert a string to another object. In this case, it is recommended + to give an associated default value as input. + default : any, optional + Value to return by default, that is, when the string to be + converted is flagged as missing. If not given, `StringConverter` + tries to supply a reasonable default value. + missing_values : {None, sequence of str}, optional + ``None`` or sequence of strings indicating a missing value. If ``None`` + then missing values are indicated by empty entries. The default is + ``None``. + locked : bool, optional + Whether the StringConverter should be locked to prevent automatic + upgrade or not. Default is False. + + """ + _mapper = [(nx.bool, str2bool, False), + (nx.int_, int, -1),] + + # On 32-bit systems, we need to make sure that we explicitly include + # nx.int64 since ns.int_ is nx.int32. + if nx.dtype(nx.int_).itemsize < nx.dtype(nx.int64).itemsize: + _mapper.append((nx.int64, int, -1)) + + _mapper.extend([(nx.float64, float, nx.nan), + (nx.complex128, complex, nx.nan + 0j), + (nx.longdouble, nx.longdouble, nx.nan), + # If a non-default dtype is passed, fall back to generic + # ones (should only be used for the converter) + (nx.integer, int, -1), + (nx.floating, float, nx.nan), + (nx.complexfloating, complex, nx.nan + 0j), + # Last, try with the string types (must be last, because + # `_mapper[-1]` is used as default in some cases) + (nx.str_, asunicode, '???'), + (nx.bytes_, asbytes, '???'), + ]) + + @classmethod + def _getdtype(cls, val): + """Returns the dtype of the input variable.""" + return np.array(val).dtype + + @classmethod + def _getsubdtype(cls, val): + """Returns the type of the dtype of the input variable.""" + return np.array(val).dtype.type + + @classmethod + def _dtypeortype(cls, dtype): + """Returns dtype for datetime64 and type of dtype otherwise.""" + + # This is a bit annoying. We want to return the "general" type in most + # cases (ie. "string" rather than "S10"), but we want to return the + # specific type for datetime64 (ie. "datetime64[us]" rather than + # "datetime64"). + if dtype.type == np.datetime64: + return dtype + return dtype.type + + @classmethod + def upgrade_mapper(cls, func, default=None): + """ + Upgrade the mapper of a StringConverter by adding a new function and + its corresponding default. + + The input function (or sequence of functions) and its associated + default value (if any) is inserted in penultimate position of the + mapper. The corresponding type is estimated from the dtype of the + default value. + + Parameters + ---------- + func : var + Function, or sequence of functions + + Examples + -------- + >>> import dateutil.parser + >>> import datetime + >>> dateparser = dateutil.parser.parse + >>> defaultdate = datetime.date(2000, 1, 1) + >>> StringConverter.upgrade_mapper(dateparser, default=defaultdate) + """ + # Func is a single functions + if callable(func): + cls._mapper.insert(-1, (cls._getsubdtype(default), func, default)) + return + elif hasattr(func, '__iter__'): + if isinstance(func[0], (tuple, list)): + for _ in func: + cls._mapper.insert(-1, _) + return + if default is None: + default = [None] * len(func) + else: + default = list(default) + default.append([None] * (len(func) - len(default))) + for fct, dft in zip(func, default): + cls._mapper.insert(-1, (cls._getsubdtype(dft), fct, dft)) + + @classmethod + def _find_map_entry(cls, dtype): + # if a converter for the specific dtype is available use that + for i, (deftype, func, default_def) in enumerate(cls._mapper): + if dtype.type == deftype: + return i, (deftype, func, default_def) + + # otherwise find an inexact match + for i, (deftype, func, default_def) in enumerate(cls._mapper): + if np.issubdtype(dtype.type, deftype): + return i, (deftype, func, default_def) + + raise LookupError + + def __init__(self, dtype_or_func=None, default=None, missing_values=None, + locked=False): + # Defines a lock for upgrade + self._locked = bool(locked) + # No input dtype: minimal initialization + if dtype_or_func is None: + self.func = str2bool + self._status = 0 + self.default = default or False + dtype = np.dtype('bool') + else: + # Is the input a np.dtype ? + try: + self.func = None + dtype = np.dtype(dtype_or_func) + except TypeError: + # dtype_or_func must be a function, then + if not callable(dtype_or_func): + errmsg = ("The input argument `dtype` is neither a" + " function nor a dtype (got '%s' instead)") + raise TypeError(errmsg % type(dtype_or_func)) + # Set the function + self.func = dtype_or_func + # If we don't have a default, try to guess it or set it to + # None + if default is None: + try: + default = self.func('0') + except ValueError: + default = None + dtype = self._getdtype(default) + + # find the best match in our mapper + try: + self._status, (_, func, default_def) = self._find_map_entry(dtype) + except LookupError: + # no match + self.default = default + _, func, _ = self._mapper[-1] + self._status = 0 + else: + # use the found default only if we did not already have one + if default is None: + self.default = default_def + else: + self.default = default + + # If the input was a dtype, set the function to the last we saw + if self.func is None: + self.func = func + + # If the status is 1 (int), change the function to + # something more robust. + if self.func == self._mapper[1][1]: + if issubclass(dtype.type, np.uint64): + self.func = np.uint64 + elif issubclass(dtype.type, np.int64): + self.func = np.int64 + else: + self.func = lambda x: int(float(x)) + # Store the list of strings corresponding to missing values. + if missing_values is None: + self.missing_values = {''} + else: + if isinstance(missing_values, str): + missing_values = missing_values.split(",") + self.missing_values = set(list(missing_values) + ['']) + + self._callingfunction = self._strict_call + self.type = self._dtypeortype(dtype) + self._checked = False + self._initial_default = default + + def _loose_call(self, value): + try: + return self.func(value) + except ValueError: + return self.default + + def _strict_call(self, value): + try: + + # We check if we can convert the value using the current function + new_value = self.func(value) + + # In addition to having to check whether func can convert the + # value, we also have to make sure that we don't get overflow + # errors for integers. + if self.func is int: + try: + np.array(value, dtype=self.type) + except OverflowError: + raise ValueError + + # We're still here so we can now return the new value + return new_value + + except ValueError: + if value.strip() in self.missing_values: + if not self._status: + self._checked = False + return self.default + raise ValueError(f"Cannot convert string '{value}'") + + def __call__(self, value): + return self._callingfunction(value) + + def _do_upgrade(self): + # Raise an exception if we locked the converter... + if self._locked: + errmsg = "Converter is locked and cannot be upgraded" + raise ConverterLockError(errmsg) + _statusmax = len(self._mapper) + # Complains if we try to upgrade by the maximum + _status = self._status + if _status == _statusmax: + errmsg = "Could not find a valid conversion function" + raise ConverterError(errmsg) + elif _status < _statusmax - 1: + _status += 1 + self.type, self.func, default = self._mapper[_status] + self._status = _status + if self._initial_default is not None: + self.default = self._initial_default + else: + self.default = default + + def upgrade(self, value): + """ + Find the best converter for a given string, and return the result. + + The supplied string `value` is converted by testing different + converters in order. First the `func` method of the + `StringConverter` instance is tried, if this fails other available + converters are tried. The order in which these other converters + are tried is determined by the `_status` attribute of the instance. + + Parameters + ---------- + value : str + The string to convert. + + Returns + ------- + out : any + The result of converting `value` with the appropriate converter. + + """ + self._checked = True + try: + return self._strict_call(value) + except ValueError: + self._do_upgrade() + return self.upgrade(value) + + def iterupgrade(self, value): + self._checked = True + if not hasattr(value, '__iter__'): + value = (value,) + _strict_call = self._strict_call + try: + for _m in value: + _strict_call(_m) + except ValueError: + self._do_upgrade() + self.iterupgrade(value) + + def update(self, func, default=None, testing_value=None, + missing_values='', locked=False): + """ + Set StringConverter attributes directly. + + Parameters + ---------- + func : function + Conversion function. + default : any, optional + Value to return by default, that is, when the string to be + converted is flagged as missing. If not given, + `StringConverter` tries to supply a reasonable default value. + testing_value : str, optional + A string representing a standard input value of the converter. + This string is used to help defining a reasonable default + value. + missing_values : {sequence of str, None}, optional + Sequence of strings indicating a missing value. If ``None``, then + the existing `missing_values` are cleared. The default is ``''``. + locked : bool, optional + Whether the StringConverter should be locked to prevent + automatic upgrade or not. Default is False. + + Notes + ----- + `update` takes the same parameters as the constructor of + `StringConverter`, except that `func` does not accept a `dtype` + whereas `dtype_or_func` in the constructor does. + + """ + self.func = func + self._locked = locked + + # Don't reset the default to None if we can avoid it + if default is not None: + self.default = default + self.type = self._dtypeortype(self._getdtype(default)) + else: + try: + tester = func(testing_value or '1') + except (TypeError, ValueError): + tester = None + self.type = self._dtypeortype(self._getdtype(tester)) + + # Add the missing values to the existing set or clear it. + if missing_values is None: + # Clear all missing values even though the ctor initializes it to + # set(['']) when the argument is None. + self.missing_values = set() + else: + if not np.iterable(missing_values): + missing_values = [missing_values] + if not all(isinstance(v, str) for v in missing_values): + raise TypeError("missing_values must be strings or unicode") + self.missing_values.update(missing_values) + + +def easy_dtype(ndtype, names=None, defaultfmt="f%i", **validationargs): + """ + Convenience function to create a `np.dtype` object. + + The function processes the input `dtype` and matches it with the given + names. + + Parameters + ---------- + ndtype : var + Definition of the dtype. Can be any string or dictionary recognized + by the `np.dtype` function, or a sequence of types. + names : str or sequence, optional + Sequence of strings to use as field names for a structured dtype. + For convenience, `names` can be a string of a comma-separated list + of names. + defaultfmt : str, optional + Format string used to define missing names, such as ``"f%i"`` + (default) or ``"fields_%02i"``. + validationargs : optional + A series of optional arguments used to initialize a + `NameValidator`. + + Examples + -------- + >>> import numpy as np + >>> np.lib._iotools.easy_dtype(float) + dtype('float64') + >>> np.lib._iotools.easy_dtype("i4, f8") + dtype([('f0', '<i4'), ('f1', '<f8')]) + >>> np.lib._iotools.easy_dtype("i4, f8", defaultfmt="field_%03i") + dtype([('field_000', '<i4'), ('field_001', '<f8')]) + + >>> np.lib._iotools.easy_dtype((int, float, float), names="a,b,c") + dtype([('a', '<i8'), ('b', '<f8'), ('c', '<f8')]) + >>> np.lib._iotools.easy_dtype(float, names="a,b,c") + dtype([('a', '<f8'), ('b', '<f8'), ('c', '<f8')]) + + """ + try: + ndtype = np.dtype(ndtype) + except TypeError: + validate = NameValidator(**validationargs) + nbfields = len(ndtype) + if names is None: + names = [''] * len(ndtype) + elif isinstance(names, str): + names = names.split(",") + names = validate(names, nbfields=nbfields, defaultfmt=defaultfmt) + ndtype = np.dtype({"formats": ndtype, "names": names}) + else: + # Explicit names + if names is not None: + validate = NameValidator(**validationargs) + if isinstance(names, str): + names = names.split(",") + # Simple dtype: repeat to match the nb of names + if ndtype.names is None: + formats = tuple([ndtype.type] * len(names)) + names = validate(names, defaultfmt=defaultfmt) + ndtype = np.dtype(list(zip(names, formats))) + # Structured dtype: just validate the names as needed + else: + ndtype.names = validate(names, nbfields=len(ndtype.names), + defaultfmt=defaultfmt) + # No implicit names + elif ndtype.names is not None: + validate = NameValidator(**validationargs) + # Default initial names : should we change the format ? + numbered_names = tuple(f"f{i}" for i in range(len(ndtype.names))) + if ((ndtype.names == numbered_names) and (defaultfmt != "f%i")): + ndtype.names = validate([''] * len(ndtype.names), + defaultfmt=defaultfmt) + # Explicit initial names : just validate + else: + ndtype.names = validate(ndtype.names, defaultfmt=defaultfmt) + return ndtype diff --git a/.venv/lib/python3.12/site-packages/numpy/lib/_iotools.pyi b/.venv/lib/python3.12/site-packages/numpy/lib/_iotools.pyi new file mode 100644 index 0000000..21cfc3b --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/lib/_iotools.pyi @@ -0,0 +1,114 @@ +from collections.abc import Callable, Iterable, Sequence +from typing import ( + Any, + ClassVar, + Final, + Literal, + TypedDict, + TypeVar, + Unpack, + overload, + type_check_only, +) + +import numpy as np +import numpy.typing as npt + +_T = TypeVar("_T") + +@type_check_only +class _ValidationKwargs(TypedDict, total=False): + excludelist: Iterable[str] | None + deletechars: Iterable[str] | None + case_sensitive: Literal["upper", "lower"] | bool | None + replace_space: str + +### + +__docformat__: Final[str] = "restructuredtext en" + +class ConverterError(Exception): ... +class ConverterLockError(ConverterError): ... +class ConversionWarning(UserWarning): ... + +class LineSplitter: + delimiter: str | int | Iterable[int] | None + comments: str + encoding: str | None + + def __init__( + self, + /, + delimiter: str | bytes | int | Iterable[int] | None = None, + comments: str | bytes = "#", + autostrip: bool = True, + encoding: str | None = None, + ) -> None: ... + def __call__(self, /, line: str | bytes) -> list[str]: ... + def autostrip(self, /, method: Callable[[_T], Iterable[str]]) -> Callable[[_T], list[str]]: ... + +class NameValidator: + defaultexcludelist: ClassVar[Sequence[str]] + defaultdeletechars: ClassVar[Sequence[str]] + excludelist: list[str] + deletechars: set[str] + case_converter: Callable[[str], str] + replace_space: str + + def __init__( + self, + /, + excludelist: Iterable[str] | None = None, + deletechars: Iterable[str] | None = None, + case_sensitive: Literal["upper", "lower"] | bool | None = None, + replace_space: str = "_", + ) -> None: ... + def __call__(self, /, names: Iterable[str], defaultfmt: str = "f%i", nbfields: int | None = None) -> tuple[str, ...]: ... + def validate(self, /, names: Iterable[str], defaultfmt: str = "f%i", nbfields: int | None = None) -> tuple[str, ...]: ... + +class StringConverter: + func: Callable[[str], Any] | None + default: Any + missing_values: set[str] + type: np.dtype[np.datetime64] | np.generic + + def __init__( + self, + /, + dtype_or_func: npt.DTypeLike | None = None, + default: None = None, + missing_values: Iterable[str] | None = None, + locked: bool = False, + ) -> None: ... + def update( + self, + /, + func: Callable[[str], Any], + default: object | None = None, + testing_value: str | None = None, + missing_values: str = "", + locked: bool = False, + ) -> None: ... + # + def __call__(self, /, value: str) -> Any: ... + def upgrade(self, /, value: str) -> Any: ... + def iterupgrade(self, /, value: Iterable[str] | str) -> None: ... + + # + @classmethod + def upgrade_mapper(cls, func: Callable[[str], Any], default: object | None = None) -> None: ... + +@overload +def str2bool(value: Literal["false", "False", "FALSE"]) -> Literal[False]: ... +@overload +def str2bool(value: Literal["true", "True", "TRUE"]) -> Literal[True]: ... + +# +def has_nested_fields(ndtype: np.dtype[np.void]) -> bool: ... +def flatten_dtype(ndtype: np.dtype[np.void], flatten_base: bool = False) -> type[np.dtype]: ... +def easy_dtype( + ndtype: npt.DTypeLike, + names: Iterable[str] | None = None, + defaultfmt: str = "f%i", + **validationargs: Unpack[_ValidationKwargs], +) -> np.dtype[np.void]: ... diff --git a/.venv/lib/python3.12/site-packages/numpy/lib/_nanfunctions_impl.py b/.venv/lib/python3.12/site-packages/numpy/lib/_nanfunctions_impl.py new file mode 100644 index 0000000..4a01490 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/lib/_nanfunctions_impl.py @@ -0,0 +1,2024 @@ +""" +Functions that ignore NaN. + +Functions +--------- + +- `nanmin` -- minimum non-NaN value +- `nanmax` -- maximum non-NaN value +- `nanargmin` -- index of minimum non-NaN value +- `nanargmax` -- index of maximum non-NaN value +- `nansum` -- sum of non-NaN values +- `nanprod` -- product of non-NaN values +- `nancumsum` -- cumulative sum of non-NaN values +- `nancumprod` -- cumulative product of non-NaN values +- `nanmean` -- mean of non-NaN values +- `nanvar` -- variance of non-NaN values +- `nanstd` -- standard deviation of non-NaN values +- `nanmedian` -- median of non-NaN values +- `nanquantile` -- qth quantile of non-NaN values +- `nanpercentile` -- qth percentile of non-NaN values + +""" +import functools +import warnings + +import numpy as np +import numpy._core.numeric as _nx +from numpy._core import overrides +from numpy.lib import _function_base_impl as fnb +from numpy.lib._function_base_impl import _weights_are_valid + +array_function_dispatch = functools.partial( + overrides.array_function_dispatch, module='numpy') + + +__all__ = [ + 'nansum', 'nanmax', 'nanmin', 'nanargmax', 'nanargmin', 'nanmean', + 'nanmedian', 'nanpercentile', 'nanvar', 'nanstd', 'nanprod', + 'nancumsum', 'nancumprod', 'nanquantile' + ] + + +def _nan_mask(a, out=None): + """ + Parameters + ---------- + a : array-like + Input array with at least 1 dimension. + out : ndarray, optional + Alternate output array in which to place the result. The default + is ``None``; if provided, it must have the same shape as the + expected output and will prevent the allocation of a new array. + + Returns + ------- + y : bool ndarray or True + A bool array where ``np.nan`` positions are marked with ``False`` + and other positions are marked with ``True``. If the type of ``a`` + is such that it can't possibly contain ``np.nan``, returns ``True``. + """ + # we assume that a is an array for this private function + + if a.dtype.kind not in 'fc': + return True + + y = np.isnan(a, out=out) + y = np.invert(y, out=y) + return y + +def _replace_nan(a, val): + """ + If `a` is of inexact type, make a copy of `a`, replace NaNs with + the `val` value, and return the copy together with a boolean mask + marking the locations where NaNs were present. If `a` is not of + inexact type, do nothing and return `a` together with a mask of None. + + Note that scalars will end up as array scalars, which is important + for using the result as the value of the out argument in some + operations. + + Parameters + ---------- + a : array-like + Input array. + val : float + NaN values are set to val before doing the operation. + + Returns + ------- + y : ndarray + If `a` is of inexact type, return a copy of `a` with the NaNs + replaced by the fill value, otherwise return `a`. + mask: {bool, None} + If `a` is of inexact type, return a boolean mask marking locations of + NaNs, otherwise return None. + + """ + a = np.asanyarray(a) + + if a.dtype == np.object_: + # object arrays do not support `isnan` (gh-9009), so make a guess + mask = np.not_equal(a, a, dtype=bool) + elif issubclass(a.dtype.type, np.inexact): + mask = np.isnan(a) + else: + mask = None + + if mask is not None: + a = np.array(a, subok=True, copy=True) + np.copyto(a, val, where=mask) + + return a, mask + + +def _copyto(a, val, mask): + """ + Replace values in `a` with NaN where `mask` is True. This differs from + copyto in that it will deal with the case where `a` is a numpy scalar. + + Parameters + ---------- + a : ndarray or numpy scalar + Array or numpy scalar some of whose values are to be replaced + by val. + val : numpy scalar + Value used a replacement. + mask : ndarray, scalar + Boolean array. Where True the corresponding element of `a` is + replaced by `val`. Broadcasts. + + Returns + ------- + res : ndarray, scalar + Array with elements replaced or scalar `val`. + + """ + if isinstance(a, np.ndarray): + np.copyto(a, val, where=mask, casting='unsafe') + else: + a = a.dtype.type(val) + return a + + +def _remove_nan_1d(arr1d, second_arr1d=None, overwrite_input=False): + """ + Equivalent to arr1d[~arr1d.isnan()], but in a different order + + Presumably faster as it incurs fewer copies + + Parameters + ---------- + arr1d : ndarray + Array to remove nans from + second_arr1d : ndarray or None + A second array which will have the same positions removed as arr1d. + overwrite_input : bool + True if `arr1d` can be modified in place + + Returns + ------- + res : ndarray + Array with nan elements removed + second_res : ndarray or None + Second array with nan element positions of first array removed. + overwrite_input : bool + True if `res` can be modified in place, given the constraint on the + input + """ + if arr1d.dtype == object: + # object arrays do not support `isnan` (gh-9009), so make a guess + c = np.not_equal(arr1d, arr1d, dtype=bool) + else: + c = np.isnan(arr1d) + + s = np.nonzero(c)[0] + if s.size == arr1d.size: + warnings.warn("All-NaN slice encountered", RuntimeWarning, + stacklevel=6) + if second_arr1d is None: + return arr1d[:0], None, True + else: + return arr1d[:0], second_arr1d[:0], True + elif s.size == 0: + return arr1d, second_arr1d, overwrite_input + else: + if not overwrite_input: + arr1d = arr1d.copy() + # select non-nans at end of array + enonan = arr1d[-s.size:][~c[-s.size:]] + # fill nans in beginning of array with non-nans of end + arr1d[s[:enonan.size]] = enonan + + if second_arr1d is None: + return arr1d[:-s.size], None, True + else: + if not overwrite_input: + second_arr1d = second_arr1d.copy() + enonan = second_arr1d[-s.size:][~c[-s.size:]] + second_arr1d[s[:enonan.size]] = enonan + + return arr1d[:-s.size], second_arr1d[:-s.size], True + + +def _divide_by_count(a, b, out=None): + """ + Compute a/b ignoring invalid results. If `a` is an array the division + is done in place. If `a` is a scalar, then its type is preserved in the + output. If out is None, then a is used instead so that the division + is in place. Note that this is only called with `a` an inexact type. + + Parameters + ---------- + a : {ndarray, numpy scalar} + Numerator. Expected to be of inexact type but not checked. + b : {ndarray, numpy scalar} + Denominator. + out : ndarray, optional + Alternate output array in which to place the result. The default + is ``None``; if provided, it must have the same shape as the + expected output, but the type will be cast if necessary. + + Returns + ------- + ret : {ndarray, numpy scalar} + The return value is a/b. If `a` was an ndarray the division is done + in place. If `a` is a numpy scalar, the division preserves its type. + + """ + with np.errstate(invalid='ignore', divide='ignore'): + if isinstance(a, np.ndarray): + if out is None: + return np.divide(a, b, out=a, casting='unsafe') + else: + return np.divide(a, b, out=out, casting='unsafe') + elif out is None: + # Precaution against reduced object arrays + try: + return a.dtype.type(a / b) + except AttributeError: + return a / b + else: + # This is questionable, but currently a numpy scalar can + # be output to a zero dimensional array. + return np.divide(a, b, out=out, casting='unsafe') + + +def _nanmin_dispatcher(a, axis=None, out=None, keepdims=None, + initial=None, where=None): + return (a, out) + + +@array_function_dispatch(_nanmin_dispatcher) +def nanmin(a, axis=None, out=None, keepdims=np._NoValue, initial=np._NoValue, + where=np._NoValue): + """ + Return minimum of an array or minimum along an axis, ignoring any NaNs. + When all-NaN slices are encountered a ``RuntimeWarning`` is raised and + Nan is returned for that slice. + + Parameters + ---------- + a : array_like + Array containing numbers whose minimum is desired. If `a` is not an + array, a conversion is attempted. + axis : {int, tuple of int, None}, optional + Axis or axes along which the minimum is computed. The default is to compute + the minimum of the flattened array. + out : ndarray, optional + Alternate output array in which to place the result. The default + is ``None``; if provided, it must have the same shape as the + expected output, but the type will be cast if necessary. See + :ref:`ufuncs-output-type` for more details. + keepdims : bool, optional + If this is set to True, the axes which are reduced are left + in the result as dimensions with size one. With this option, + the result will broadcast correctly against the original `a`. + + If the value is anything but the default, then + `keepdims` will be passed through to the `min` method + of sub-classes of `ndarray`. If the sub-classes methods + does not implement `keepdims` any exceptions will be raised. + initial : scalar, optional + The maximum value of an output element. Must be present to allow + computation on empty slice. See `~numpy.ufunc.reduce` for details. + + .. versionadded:: 1.22.0 + where : array_like of bool, optional + Elements to compare for the minimum. See `~numpy.ufunc.reduce` + for details. + + .. versionadded:: 1.22.0 + + Returns + ------- + nanmin : ndarray + An array with the same shape as `a`, with the specified axis + removed. If `a` is a 0-d array, or if axis is None, an ndarray + scalar is returned. The same dtype as `a` is returned. + + See Also + -------- + nanmax : + The maximum value of an array along a given axis, ignoring any NaNs. + amin : + The minimum value of an array along a given axis, propagating any NaNs. + fmin : + Element-wise minimum of two arrays, ignoring any NaNs. + minimum : + Element-wise minimum of two arrays, propagating any NaNs. + isnan : + Shows which elements are Not a Number (NaN). + isfinite: + Shows which elements are neither NaN nor infinity. + + amax, fmax, maximum + + Notes + ----- + NumPy uses the IEEE Standard for Binary Floating-Point for Arithmetic + (IEEE 754). This means that Not a Number is not equivalent to infinity. + Positive infinity is treated as a very large number and negative + infinity is treated as a very small (i.e. negative) number. + + If the input has a integer type the function is equivalent to np.min. + + Examples + -------- + >>> import numpy as np + >>> a = np.array([[1, 2], [3, np.nan]]) + >>> np.nanmin(a) + 1.0 + >>> np.nanmin(a, axis=0) + array([1., 2.]) + >>> np.nanmin(a, axis=1) + array([1., 3.]) + + When positive infinity and negative infinity are present: + + >>> np.nanmin([1, 2, np.nan, np.inf]) + 1.0 + >>> np.nanmin([1, 2, np.nan, -np.inf]) + -inf + + """ + kwargs = {} + if keepdims is not np._NoValue: + kwargs['keepdims'] = keepdims + if initial is not np._NoValue: + kwargs['initial'] = initial + if where is not np._NoValue: + kwargs['where'] = where + + if (type(a) is np.ndarray or type(a) is np.memmap) and a.dtype != np.object_: + # Fast, but not safe for subclasses of ndarray, or object arrays, + # which do not implement isnan (gh-9009), or fmin correctly (gh-8975) + res = np.fmin.reduce(a, axis=axis, out=out, **kwargs) + if np.isnan(res).any(): + warnings.warn("All-NaN slice encountered", RuntimeWarning, + stacklevel=2) + else: + # Slow, but safe for subclasses of ndarray + a, mask = _replace_nan(a, +np.inf) + res = np.amin(a, axis=axis, out=out, **kwargs) + if mask is None: + return res + + # Check for all-NaN axis + kwargs.pop("initial", None) + mask = np.all(mask, axis=axis, **kwargs) + if np.any(mask): + res = _copyto(res, np.nan, mask) + warnings.warn("All-NaN axis encountered", RuntimeWarning, + stacklevel=2) + return res + + +def _nanmax_dispatcher(a, axis=None, out=None, keepdims=None, + initial=None, where=None): + return (a, out) + + +@array_function_dispatch(_nanmax_dispatcher) +def nanmax(a, axis=None, out=None, keepdims=np._NoValue, initial=np._NoValue, + where=np._NoValue): + """ + Return the maximum of an array or maximum along an axis, ignoring any + NaNs. When all-NaN slices are encountered a ``RuntimeWarning`` is + raised and NaN is returned for that slice. + + Parameters + ---------- + a : array_like + Array containing numbers whose maximum is desired. If `a` is not an + array, a conversion is attempted. + axis : {int, tuple of int, None}, optional + Axis or axes along which the maximum is computed. The default is to compute + the maximum of the flattened array. + out : ndarray, optional + Alternate output array in which to place the result. The default + is ``None``; if provided, it must have the same shape as the + expected output, but the type will be cast if necessary. See + :ref:`ufuncs-output-type` for more details. + keepdims : bool, optional + If this is set to True, the axes which are reduced are left + in the result as dimensions with size one. With this option, + the result will broadcast correctly against the original `a`. + If the value is anything but the default, then + `keepdims` will be passed through to the `max` method + of sub-classes of `ndarray`. If the sub-classes methods + does not implement `keepdims` any exceptions will be raised. + initial : scalar, optional + The minimum value of an output element. Must be present to allow + computation on empty slice. See `~numpy.ufunc.reduce` for details. + + .. versionadded:: 1.22.0 + where : array_like of bool, optional + Elements to compare for the maximum. See `~numpy.ufunc.reduce` + for details. + + .. versionadded:: 1.22.0 + + Returns + ------- + nanmax : ndarray + An array with the same shape as `a`, with the specified axis removed. + If `a` is a 0-d array, or if axis is None, an ndarray scalar is + returned. The same dtype as `a` is returned. + + See Also + -------- + nanmin : + The minimum value of an array along a given axis, ignoring any NaNs. + amax : + The maximum value of an array along a given axis, propagating any NaNs. + fmax : + Element-wise maximum of two arrays, ignoring any NaNs. + maximum : + Element-wise maximum of two arrays, propagating any NaNs. + isnan : + Shows which elements are Not a Number (NaN). + isfinite: + Shows which elements are neither NaN nor infinity. + + amin, fmin, minimum + + Notes + ----- + NumPy uses the IEEE Standard for Binary Floating-Point for Arithmetic + (IEEE 754). This means that Not a Number is not equivalent to infinity. + Positive infinity is treated as a very large number and negative + infinity is treated as a very small (i.e. negative) number. + + If the input has a integer type the function is equivalent to np.max. + + Examples + -------- + >>> import numpy as np + >>> a = np.array([[1, 2], [3, np.nan]]) + >>> np.nanmax(a) + 3.0 + >>> np.nanmax(a, axis=0) + array([3., 2.]) + >>> np.nanmax(a, axis=1) + array([2., 3.]) + + When positive infinity and negative infinity are present: + + >>> np.nanmax([1, 2, np.nan, -np.inf]) + 2.0 + >>> np.nanmax([1, 2, np.nan, np.inf]) + inf + + """ + kwargs = {} + if keepdims is not np._NoValue: + kwargs['keepdims'] = keepdims + if initial is not np._NoValue: + kwargs['initial'] = initial + if where is not np._NoValue: + kwargs['where'] = where + + if (type(a) is np.ndarray or type(a) is np.memmap) and a.dtype != np.object_: + # Fast, but not safe for subclasses of ndarray, or object arrays, + # which do not implement isnan (gh-9009), or fmax correctly (gh-8975) + res = np.fmax.reduce(a, axis=axis, out=out, **kwargs) + if np.isnan(res).any(): + warnings.warn("All-NaN slice encountered", RuntimeWarning, + stacklevel=2) + else: + # Slow, but safe for subclasses of ndarray + a, mask = _replace_nan(a, -np.inf) + res = np.amax(a, axis=axis, out=out, **kwargs) + if mask is None: + return res + + # Check for all-NaN axis + kwargs.pop("initial", None) + mask = np.all(mask, axis=axis, **kwargs) + if np.any(mask): + res = _copyto(res, np.nan, mask) + warnings.warn("All-NaN axis encountered", RuntimeWarning, + stacklevel=2) + return res + + +def _nanargmin_dispatcher(a, axis=None, out=None, *, keepdims=None): + return (a,) + + +@array_function_dispatch(_nanargmin_dispatcher) +def nanargmin(a, axis=None, out=None, *, keepdims=np._NoValue): + """ + Return the indices of the minimum values in the specified axis ignoring + NaNs. For all-NaN slices ``ValueError`` is raised. Warning: the results + cannot be trusted if a slice contains only NaNs and Infs. + + Parameters + ---------- + a : array_like + Input data. + axis : int, optional + Axis along which to operate. By default flattened input is used. + out : array, optional + If provided, the result will be inserted into this array. It should + be of the appropriate shape and dtype. + + .. versionadded:: 1.22.0 + keepdims : bool, optional + If this is set to True, the axes which are reduced are left + in the result as dimensions with size one. With this option, + the result will broadcast correctly against the array. + + .. versionadded:: 1.22.0 + + Returns + ------- + index_array : ndarray + An array of indices or a single index value. + + See Also + -------- + argmin, nanargmax + + Examples + -------- + >>> import numpy as np + >>> a = np.array([[np.nan, 4], [2, 3]]) + >>> np.argmin(a) + 0 + >>> np.nanargmin(a) + 2 + >>> np.nanargmin(a, axis=0) + array([1, 1]) + >>> np.nanargmin(a, axis=1) + array([1, 0]) + + """ + a, mask = _replace_nan(a, np.inf) + if mask is not None and mask.size: + mask = np.all(mask, axis=axis) + if np.any(mask): + raise ValueError("All-NaN slice encountered") + res = np.argmin(a, axis=axis, out=out, keepdims=keepdims) + return res + + +def _nanargmax_dispatcher(a, axis=None, out=None, *, keepdims=None): + return (a,) + + +@array_function_dispatch(_nanargmax_dispatcher) +def nanargmax(a, axis=None, out=None, *, keepdims=np._NoValue): + """ + Return the indices of the maximum values in the specified axis ignoring + NaNs. For all-NaN slices ``ValueError`` is raised. Warning: the + results cannot be trusted if a slice contains only NaNs and -Infs. + + + Parameters + ---------- + a : array_like + Input data. + axis : int, optional + Axis along which to operate. By default flattened input is used. + out : array, optional + If provided, the result will be inserted into this array. It should + be of the appropriate shape and dtype. + + .. versionadded:: 1.22.0 + keepdims : bool, optional + If this is set to True, the axes which are reduced are left + in the result as dimensions with size one. With this option, + the result will broadcast correctly against the array. + + .. versionadded:: 1.22.0 + + Returns + ------- + index_array : ndarray + An array of indices or a single index value. + + See Also + -------- + argmax, nanargmin + + Examples + -------- + >>> import numpy as np + >>> a = np.array([[np.nan, 4], [2, 3]]) + >>> np.argmax(a) + 0 + >>> np.nanargmax(a) + 1 + >>> np.nanargmax(a, axis=0) + array([1, 0]) + >>> np.nanargmax(a, axis=1) + array([1, 1]) + + """ + a, mask = _replace_nan(a, -np.inf) + if mask is not None and mask.size: + mask = np.all(mask, axis=axis) + if np.any(mask): + raise ValueError("All-NaN slice encountered") + res = np.argmax(a, axis=axis, out=out, keepdims=keepdims) + return res + + +def _nansum_dispatcher(a, axis=None, dtype=None, out=None, keepdims=None, + initial=None, where=None): + return (a, out) + + +@array_function_dispatch(_nansum_dispatcher) +def nansum(a, axis=None, dtype=None, out=None, keepdims=np._NoValue, + initial=np._NoValue, where=np._NoValue): + """ + Return the sum of array elements over a given axis treating Not a + Numbers (NaNs) as zero. + + In NumPy versions <= 1.9.0 Nan is returned for slices that are all-NaN or + empty. In later versions zero is returned. + + Parameters + ---------- + a : array_like + Array containing numbers whose sum is desired. If `a` is not an + array, a conversion is attempted. + axis : {int, tuple of int, None}, optional + Axis or axes along which the sum is computed. The default is to compute the + sum of the flattened array. + dtype : data-type, optional + The type of the returned array and of the accumulator in which the + elements are summed. By default, the dtype of `a` is used. An + exception is when `a` has an integer type with less precision than + the platform (u)intp. In that case, the default will be either + (u)int32 or (u)int64 depending on whether the platform is 32 or 64 + bits. For inexact inputs, dtype must be inexact. + out : ndarray, optional + Alternate output array in which to place the result. The default + is ``None``. If provided, it must have the same shape as the + expected output, but the type will be cast if necessary. See + :ref:`ufuncs-output-type` for more details. The casting of NaN to integer + can yield unexpected results. + keepdims : bool, optional + If this is set to True, the axes which are reduced are left + in the result as dimensions with size one. With this option, + the result will broadcast correctly against the original `a`. + + If the value is anything but the default, then + `keepdims` will be passed through to the `mean` or `sum` methods + of sub-classes of `ndarray`. If the sub-classes methods + does not implement `keepdims` any exceptions will be raised. + initial : scalar, optional + Starting value for the sum. See `~numpy.ufunc.reduce` for details. + + .. versionadded:: 1.22.0 + where : array_like of bool, optional + Elements to include in the sum. See `~numpy.ufunc.reduce` for details. + + .. versionadded:: 1.22.0 + + Returns + ------- + nansum : ndarray. + A new array holding the result is returned unless `out` is + specified, in which it is returned. The result has the same + size as `a`, and the same shape as `a` if `axis` is not None + or `a` is a 1-d array. + + See Also + -------- + numpy.sum : Sum across array propagating NaNs. + isnan : Show which elements are NaN. + isfinite : Show which elements are not NaN or +/-inf. + + Notes + ----- + If both positive and negative infinity are present, the sum will be Not + A Number (NaN). + + Examples + -------- + >>> import numpy as np + >>> np.nansum(1) + 1 + >>> np.nansum([1]) + 1 + >>> np.nansum([1, np.nan]) + 1.0 + >>> a = np.array([[1, 1], [1, np.nan]]) + >>> np.nansum(a) + 3.0 + >>> np.nansum(a, axis=0) + array([2., 1.]) + >>> np.nansum([1, np.nan, np.inf]) + inf + >>> np.nansum([1, np.nan, -np.inf]) + -inf + >>> from numpy.testing import suppress_warnings + >>> with np.errstate(invalid="ignore"): + ... np.nansum([1, np.nan, np.inf, -np.inf]) # both +/- infinity present + np.float64(nan) + + """ + a, mask = _replace_nan(a, 0) + return np.sum(a, axis=axis, dtype=dtype, out=out, keepdims=keepdims, + initial=initial, where=where) + + +def _nanprod_dispatcher(a, axis=None, dtype=None, out=None, keepdims=None, + initial=None, where=None): + return (a, out) + + +@array_function_dispatch(_nanprod_dispatcher) +def nanprod(a, axis=None, dtype=None, out=None, keepdims=np._NoValue, + initial=np._NoValue, where=np._NoValue): + """ + Return the product of array elements over a given axis treating Not a + Numbers (NaNs) as ones. + + One is returned for slices that are all-NaN or empty. + + Parameters + ---------- + a : array_like + Array containing numbers whose product is desired. If `a` is not an + array, a conversion is attempted. + axis : {int, tuple of int, None}, optional + Axis or axes along which the product is computed. The default is to compute + the product of the flattened array. + dtype : data-type, optional + The type of the returned array and of the accumulator in which the + elements are summed. By default, the dtype of `a` is used. An + exception is when `a` has an integer type with less precision than + the platform (u)intp. In that case, the default will be either + (u)int32 or (u)int64 depending on whether the platform is 32 or 64 + bits. For inexact inputs, dtype must be inexact. + out : ndarray, optional + Alternate output array in which to place the result. The default + is ``None``. If provided, it must have the same shape as the + expected output, but the type will be cast if necessary. See + :ref:`ufuncs-output-type` for more details. The casting of NaN to integer + can yield unexpected results. + keepdims : bool, optional + If True, the axes which are reduced are left in the result as + dimensions with size one. With this option, the result will + broadcast correctly against the original `arr`. + initial : scalar, optional + The starting value for this product. See `~numpy.ufunc.reduce` + for details. + + .. versionadded:: 1.22.0 + where : array_like of bool, optional + Elements to include in the product. See `~numpy.ufunc.reduce` + for details. + + .. versionadded:: 1.22.0 + + Returns + ------- + nanprod : ndarray + A new array holding the result is returned unless `out` is + specified, in which case it is returned. + + See Also + -------- + numpy.prod : Product across array propagating NaNs. + isnan : Show which elements are NaN. + + Examples + -------- + >>> import numpy as np + >>> np.nanprod(1) + 1 + >>> np.nanprod([1]) + 1 + >>> np.nanprod([1, np.nan]) + 1.0 + >>> a = np.array([[1, 2], [3, np.nan]]) + >>> np.nanprod(a) + 6.0 + >>> np.nanprod(a, axis=0) + array([3., 2.]) + + """ + a, mask = _replace_nan(a, 1) + return np.prod(a, axis=axis, dtype=dtype, out=out, keepdims=keepdims, + initial=initial, where=where) + + +def _nancumsum_dispatcher(a, axis=None, dtype=None, out=None): + return (a, out) + + +@array_function_dispatch(_nancumsum_dispatcher) +def nancumsum(a, axis=None, dtype=None, out=None): + """ + Return the cumulative sum of array elements over a given axis treating Not a + Numbers (NaNs) as zero. The cumulative sum does not change when NaNs are + encountered and leading NaNs are replaced by zeros. + + Zeros are returned for slices that are all-NaN or empty. + + Parameters + ---------- + a : array_like + Input array. + axis : int, optional + Axis along which the cumulative sum is computed. The default + (None) is to compute the cumsum over the flattened array. + dtype : dtype, optional + Type of the returned array and of the accumulator in which the + elements are summed. If `dtype` is not specified, it defaults + to the dtype of `a`, unless `a` has an integer dtype with a + precision less than that of the default platform integer. In + that case, the default platform integer is used. + out : ndarray, optional + Alternative output array in which to place the result. It must + have the same shape and buffer length as the expected output + but the type will be cast if necessary. See :ref:`ufuncs-output-type` for + more details. + + Returns + ------- + nancumsum : ndarray. + A new array holding the result is returned unless `out` is + specified, in which it is returned. The result has the same + size as `a`, and the same shape as `a` if `axis` is not None + or `a` is a 1-d array. + + See Also + -------- + numpy.cumsum : Cumulative sum across array propagating NaNs. + isnan : Show which elements are NaN. + + Examples + -------- + >>> import numpy as np + >>> np.nancumsum(1) + array([1]) + >>> np.nancumsum([1]) + array([1]) + >>> np.nancumsum([1, np.nan]) + array([1., 1.]) + >>> a = np.array([[1, 2], [3, np.nan]]) + >>> np.nancumsum(a) + array([1., 3., 6., 6.]) + >>> np.nancumsum(a, axis=0) + array([[1., 2.], + [4., 2.]]) + >>> np.nancumsum(a, axis=1) + array([[1., 3.], + [3., 3.]]) + + """ + a, mask = _replace_nan(a, 0) + return np.cumsum(a, axis=axis, dtype=dtype, out=out) + + +def _nancumprod_dispatcher(a, axis=None, dtype=None, out=None): + return (a, out) + + +@array_function_dispatch(_nancumprod_dispatcher) +def nancumprod(a, axis=None, dtype=None, out=None): + """ + Return the cumulative product of array elements over a given axis treating Not a + Numbers (NaNs) as one. The cumulative product does not change when NaNs are + encountered and leading NaNs are replaced by ones. + + Ones are returned for slices that are all-NaN or empty. + + Parameters + ---------- + a : array_like + Input array. + axis : int, optional + Axis along which the cumulative product is computed. By default + the input is flattened. + dtype : dtype, optional + Type of the returned array, as well as of the accumulator in which + the elements are multiplied. If *dtype* is not specified, it + defaults to the dtype of `a`, unless `a` has an integer dtype with + a precision less than that of the default platform integer. In + that case, the default platform integer is used instead. + out : ndarray, optional + Alternative output array in which to place the result. It must + have the same shape and buffer length as the expected output + but the type of the resulting values will be cast if necessary. + + Returns + ------- + nancumprod : ndarray + A new array holding the result is returned unless `out` is + specified, in which case it is returned. + + See Also + -------- + numpy.cumprod : Cumulative product across array propagating NaNs. + isnan : Show which elements are NaN. + + Examples + -------- + >>> import numpy as np + >>> np.nancumprod(1) + array([1]) + >>> np.nancumprod([1]) + array([1]) + >>> np.nancumprod([1, np.nan]) + array([1., 1.]) + >>> a = np.array([[1, 2], [3, np.nan]]) + >>> np.nancumprod(a) + array([1., 2., 6., 6.]) + >>> np.nancumprod(a, axis=0) + array([[1., 2.], + [3., 2.]]) + >>> np.nancumprod(a, axis=1) + array([[1., 2.], + [3., 3.]]) + + """ + a, mask = _replace_nan(a, 1) + return np.cumprod(a, axis=axis, dtype=dtype, out=out) + + +def _nanmean_dispatcher(a, axis=None, dtype=None, out=None, keepdims=None, + *, where=None): + return (a, out) + + +@array_function_dispatch(_nanmean_dispatcher) +def nanmean(a, axis=None, dtype=None, out=None, keepdims=np._NoValue, + *, where=np._NoValue): + """ + Compute the arithmetic mean along the specified axis, ignoring NaNs. + + Returns the average of the array elements. The average is taken over + the flattened array by default, otherwise over the specified axis. + `float64` intermediate and return values are used for integer inputs. + + For all-NaN slices, NaN is returned and a `RuntimeWarning` is raised. + + Parameters + ---------- + a : array_like + Array containing numbers whose mean is desired. If `a` is not an + array, a conversion is attempted. + axis : {int, tuple of int, None}, optional + Axis or axes along which the means are computed. The default is to compute + the mean of the flattened array. + dtype : data-type, optional + Type to use in computing the mean. For integer inputs, the default + is `float64`; for inexact inputs, it is the same as the input + dtype. + out : ndarray, optional + Alternate output array in which to place the result. The default + is ``None``; if provided, it must have the same shape as the + expected output, but the type will be cast if necessary. + See :ref:`ufuncs-output-type` for more details. + keepdims : bool, optional + If this is set to True, the axes which are reduced are left + in the result as dimensions with size one. With this option, + the result will broadcast correctly against the original `a`. + + If the value is anything but the default, then + `keepdims` will be passed through to the `mean` or `sum` methods + of sub-classes of `ndarray`. If the sub-classes methods + does not implement `keepdims` any exceptions will be raised. + where : array_like of bool, optional + Elements to include in the mean. See `~numpy.ufunc.reduce` for details. + + .. versionadded:: 1.22.0 + + Returns + ------- + m : ndarray, see dtype parameter above + If `out=None`, returns a new array containing the mean values, + otherwise a reference to the output array is returned. Nan is + returned for slices that contain only NaNs. + + See Also + -------- + average : Weighted average + mean : Arithmetic mean taken while not ignoring NaNs + var, nanvar + + Notes + ----- + The arithmetic mean is the sum of the non-NaN elements along the axis + divided by the number of non-NaN elements. + + Note that for floating-point input, the mean is computed using the same + precision the input has. Depending on the input data, this can cause + the results to be inaccurate, especially for `float32`. Specifying a + higher-precision accumulator using the `dtype` keyword can alleviate + this issue. + + Examples + -------- + >>> import numpy as np + >>> a = np.array([[1, np.nan], [3, 4]]) + >>> np.nanmean(a) + 2.6666666666666665 + >>> np.nanmean(a, axis=0) + array([2., 4.]) + >>> np.nanmean(a, axis=1) + array([1., 3.5]) # may vary + + """ + arr, mask = _replace_nan(a, 0) + if mask is None: + return np.mean(arr, axis=axis, dtype=dtype, out=out, keepdims=keepdims, + where=where) + + if dtype is not None: + dtype = np.dtype(dtype) + if dtype is not None and not issubclass(dtype.type, np.inexact): + raise TypeError("If a is inexact, then dtype must be inexact") + if out is not None and not issubclass(out.dtype.type, np.inexact): + raise TypeError("If a is inexact, then out must be inexact") + + cnt = np.sum(~mask, axis=axis, dtype=np.intp, keepdims=keepdims, + where=where) + tot = np.sum(arr, axis=axis, dtype=dtype, out=out, keepdims=keepdims, + where=where) + avg = _divide_by_count(tot, cnt, out=out) + + isbad = (cnt == 0) + if isbad.any(): + warnings.warn("Mean of empty slice", RuntimeWarning, stacklevel=2) + # NaN is the only possible bad value, so no further + # action is needed to handle bad results. + return avg + + +def _nanmedian1d(arr1d, overwrite_input=False): + """ + Private function for rank 1 arrays. Compute the median ignoring NaNs. + See nanmedian for parameter usage + """ + arr1d_parsed, _, overwrite_input = _remove_nan_1d( + arr1d, overwrite_input=overwrite_input, + ) + + if arr1d_parsed.size == 0: + # Ensure that a nan-esque scalar of the appropriate type (and unit) + # is returned for `timedelta64` and `complexfloating` + return arr1d[-1] + + return np.median(arr1d_parsed, overwrite_input=overwrite_input) + + +def _nanmedian(a, axis=None, out=None, overwrite_input=False): + """ + Private function that doesn't support extended axis or keepdims. + These methods are extended to this function using _ureduce + See nanmedian for parameter usage + + """ + if axis is None or a.ndim == 1: + part = a.ravel() + if out is None: + return _nanmedian1d(part, overwrite_input) + else: + out[...] = _nanmedian1d(part, overwrite_input) + return out + else: + # for small medians use sort + indexing which is still faster than + # apply_along_axis + # benchmarked with shuffled (50, 50, x) containing a few NaN + if a.shape[axis] < 600: + return _nanmedian_small(a, axis, out, overwrite_input) + result = np.apply_along_axis(_nanmedian1d, axis, a, overwrite_input) + if out is not None: + out[...] = result + return result + + +def _nanmedian_small(a, axis=None, out=None, overwrite_input=False): + """ + sort + indexing median, faster for small medians along multiple + dimensions due to the high overhead of apply_along_axis + + see nanmedian for parameter usage + """ + a = np.ma.masked_array(a, np.isnan(a)) + m = np.ma.median(a, axis=axis, overwrite_input=overwrite_input) + for i in range(np.count_nonzero(m.mask.ravel())): + warnings.warn("All-NaN slice encountered", RuntimeWarning, + stacklevel=5) + + fill_value = np.timedelta64("NaT") if m.dtype.kind == "m" else np.nan + if out is not None: + out[...] = m.filled(fill_value) + return out + return m.filled(fill_value) + + +def _nanmedian_dispatcher( + a, axis=None, out=None, overwrite_input=None, keepdims=None): + return (a, out) + + +@array_function_dispatch(_nanmedian_dispatcher) +def nanmedian(a, axis=None, out=None, overwrite_input=False, keepdims=np._NoValue): + """ + Compute the median along the specified axis, while ignoring NaNs. + + Returns the median of the array elements. + + Parameters + ---------- + a : array_like + Input array or object that can be converted to an array. + axis : {int, sequence of int, None}, optional + Axis or axes along which the medians are computed. The default + is to compute the median along a flattened version of the array. + A sequence of axes is supported since version 1.9.0. + out : ndarray, optional + Alternative output array in which to place the result. It must + have the same shape and buffer length as the expected output, + but the type (of the output) will be cast if necessary. + overwrite_input : bool, optional + If True, then allow use of memory of input array `a` for + calculations. The input array will be modified by the call to + `median`. This will save memory when you do not need to preserve + the contents of the input array. Treat the input as undefined, + but it will probably be fully or partially sorted. Default is + False. If `overwrite_input` is ``True`` and `a` is not already an + `ndarray`, an error will be raised. + keepdims : bool, optional + If this is set to True, the axes which are reduced are left + in the result as dimensions with size one. With this option, + the result will broadcast correctly against the original `a`. + + If this is anything but the default value it will be passed + through (in the special case of an empty array) to the + `mean` function of the underlying array. If the array is + a sub-class and `mean` does not have the kwarg `keepdims` this + will raise a RuntimeError. + + Returns + ------- + median : ndarray + A new array holding the result. If the input contains integers + or floats smaller than ``float64``, then the output data-type is + ``np.float64``. Otherwise, the data-type of the output is the + same as that of the input. If `out` is specified, that array is + returned instead. + + See Also + -------- + mean, median, percentile + + Notes + ----- + Given a vector ``V`` of length ``N``, the median of ``V`` is the + middle value of a sorted copy of ``V``, ``V_sorted`` - i.e., + ``V_sorted[(N-1)/2]``, when ``N`` is odd and the average of the two + middle values of ``V_sorted`` when ``N`` is even. + + Examples + -------- + >>> import numpy as np + >>> a = np.array([[10.0, 7, 4], [3, 2, 1]]) + >>> a[0, 1] = np.nan + >>> a + array([[10., nan, 4.], + [ 3., 2., 1.]]) + >>> np.median(a) + np.float64(nan) + >>> np.nanmedian(a) + 3.0 + >>> np.nanmedian(a, axis=0) + array([6.5, 2. , 2.5]) + >>> np.median(a, axis=1) + array([nan, 2.]) + >>> b = a.copy() + >>> np.nanmedian(b, axis=1, overwrite_input=True) + array([7., 2.]) + >>> assert not np.all(a==b) + >>> b = a.copy() + >>> np.nanmedian(b, axis=None, overwrite_input=True) + 3.0 + >>> assert not np.all(a==b) + + """ + a = np.asanyarray(a) + # apply_along_axis in _nanmedian doesn't handle empty arrays well, + # so deal them upfront + if a.size == 0: + return np.nanmean(a, axis, out=out, keepdims=keepdims) + + return fnb._ureduce(a, func=_nanmedian, keepdims=keepdims, + axis=axis, out=out, + overwrite_input=overwrite_input) + + +def _nanpercentile_dispatcher( + a, q, axis=None, out=None, overwrite_input=None, + method=None, keepdims=None, *, weights=None, interpolation=None): + return (a, q, out, weights) + + +@array_function_dispatch(_nanpercentile_dispatcher) +def nanpercentile( + a, + q, + axis=None, + out=None, + overwrite_input=False, + method="linear", + keepdims=np._NoValue, + *, + weights=None, + interpolation=None, +): + """ + Compute the qth percentile of the data along the specified axis, + while ignoring nan values. + + Returns the qth percentile(s) of the array elements. + + Parameters + ---------- + a : array_like + Input array or object that can be converted to an array, containing + nan values to be ignored. + q : array_like of float + Percentile or sequence of percentiles to compute, which must be + between 0 and 100 inclusive. + axis : {int, tuple of int, None}, optional + Axis or axes along which the percentiles are computed. The default + is to compute the percentile(s) along a flattened version of the + array. + out : ndarray, optional + Alternative output array in which to place the result. It must have + the same shape and buffer length as the expected output, but the + type (of the output) will be cast if necessary. + overwrite_input : bool, optional + If True, then allow the input array `a` to be modified by + intermediate calculations, to save memory. In this case, the + contents of the input `a` after this function completes is + undefined. + method : str, optional + This parameter specifies the method to use for estimating the + percentile. There are many different methods, some unique to NumPy. + See the notes for explanation. The options sorted by their R type + as summarized in the H&F paper [1]_ are: + + 1. 'inverted_cdf' + 2. 'averaged_inverted_cdf' + 3. 'closest_observation' + 4. 'interpolated_inverted_cdf' + 5. 'hazen' + 6. 'weibull' + 7. 'linear' (default) + 8. 'median_unbiased' + 9. 'normal_unbiased' + + The first three methods are discontinuous. NumPy further defines the + following discontinuous variations of the default 'linear' (7.) option: + + * 'lower' + * 'higher', + * 'midpoint' + * 'nearest' + + .. versionchanged:: 1.22.0 + This argument was previously called "interpolation" and only + offered the "linear" default and last four options. + + keepdims : bool, optional + If this is set to True, the axes which are reduced are left in + the result as dimensions with size one. With this option, the + result will broadcast correctly against the original array `a`. + + If this is anything but the default value it will be passed + through (in the special case of an empty array) to the + `mean` function of the underlying array. If the array is + a sub-class and `mean` does not have the kwarg `keepdims` this + will raise a RuntimeError. + + weights : array_like, optional + An array of weights associated with the values in `a`. Each value in + `a` contributes to the percentile according to its associated weight. + The weights array can either be 1-D (in which case its length must be + the size of `a` along the given axis) or of the same shape as `a`. + If `weights=None`, then all data in `a` are assumed to have a + weight equal to one. + Only `method="inverted_cdf"` supports weights. + + .. versionadded:: 2.0.0 + + interpolation : str, optional + Deprecated name for the method keyword argument. + + .. deprecated:: 1.22.0 + + Returns + ------- + percentile : scalar or ndarray + If `q` is a single percentile and `axis=None`, then the result + is a scalar. If multiple percentiles are given, first axis of + the result corresponds to the percentiles. The other axes are + the axes that remain after the reduction of `a`. If the input + contains integers or floats smaller than ``float64``, the output + data-type is ``float64``. Otherwise, the output data-type is the + same as that of the input. If `out` is specified, that array is + returned instead. + + See Also + -------- + nanmean + nanmedian : equivalent to ``nanpercentile(..., 50)`` + percentile, median, mean + nanquantile : equivalent to nanpercentile, except q in range [0, 1]. + + Notes + ----- + The behavior of `numpy.nanpercentile` with percentage `q` is that of + `numpy.quantile` with argument ``q/100`` (ignoring nan values). + For more information, please see `numpy.quantile`. + + Examples + -------- + >>> import numpy as np + >>> a = np.array([[10., 7., 4.], [3., 2., 1.]]) + >>> a[0][1] = np.nan + >>> a + array([[10., nan, 4.], + [ 3., 2., 1.]]) + >>> np.percentile(a, 50) + np.float64(nan) + >>> np.nanpercentile(a, 50) + 3.0 + >>> np.nanpercentile(a, 50, axis=0) + array([6.5, 2. , 2.5]) + >>> np.nanpercentile(a, 50, axis=1, keepdims=True) + array([[7.], + [2.]]) + >>> m = np.nanpercentile(a, 50, axis=0) + >>> out = np.zeros_like(m) + >>> np.nanpercentile(a, 50, axis=0, out=out) + array([6.5, 2. , 2.5]) + >>> m + array([6.5, 2. , 2.5]) + + >>> b = a.copy() + >>> np.nanpercentile(b, 50, axis=1, overwrite_input=True) + array([7., 2.]) + >>> assert not np.all(a==b) + + References + ---------- + .. [1] R. J. Hyndman and Y. Fan, + "Sample quantiles in statistical packages," + The American Statistician, 50(4), pp. 361-365, 1996 + + """ + if interpolation is not None: + method = fnb._check_interpolation_as_method( + method, interpolation, "nanpercentile") + + a = np.asanyarray(a) + if a.dtype.kind == "c": + raise TypeError("a must be an array of real numbers") + + q = np.true_divide(q, a.dtype.type(100) if a.dtype.kind == "f" else 100, out=...) + if not fnb._quantile_is_valid(q): + raise ValueError("Percentiles must be in the range [0, 100]") + + if weights is not None: + if method != "inverted_cdf": + msg = ("Only method 'inverted_cdf' supports weights. " + f"Got: {method}.") + raise ValueError(msg) + if axis is not None: + axis = _nx.normalize_axis_tuple(axis, a.ndim, argname="axis") + weights = _weights_are_valid(weights=weights, a=a, axis=axis) + if np.any(weights < 0): + raise ValueError("Weights must be non-negative.") + + return _nanquantile_unchecked( + a, q, axis, out, overwrite_input, method, keepdims, weights) + + +def _nanquantile_dispatcher(a, q, axis=None, out=None, overwrite_input=None, + method=None, keepdims=None, *, weights=None, + interpolation=None): + return (a, q, out, weights) + + +@array_function_dispatch(_nanquantile_dispatcher) +def nanquantile( + a, + q, + axis=None, + out=None, + overwrite_input=False, + method="linear", + keepdims=np._NoValue, + *, + weights=None, + interpolation=None, +): + """ + Compute the qth quantile of the data along the specified axis, + while ignoring nan values. + Returns the qth quantile(s) of the array elements. + + Parameters + ---------- + a : array_like + Input array or object that can be converted to an array, containing + nan values to be ignored + q : array_like of float + Probability or sequence of probabilities for the quantiles to compute. + Values must be between 0 and 1 inclusive. + axis : {int, tuple of int, None}, optional + Axis or axes along which the quantiles are computed. The + default is to compute the quantile(s) along a flattened + version of the array. + out : ndarray, optional + Alternative output array in which to place the result. It must + have the same shape and buffer length as the expected output, + but the type (of the output) will be cast if necessary. + overwrite_input : bool, optional + If True, then allow the input array `a` to be modified by intermediate + calculations, to save memory. In this case, the contents of the input + `a` after this function completes is undefined. + method : str, optional + This parameter specifies the method to use for estimating the + quantile. There are many different methods, some unique to NumPy. + See the notes for explanation. The options sorted by their R type + as summarized in the H&F paper [1]_ are: + + 1. 'inverted_cdf' + 2. 'averaged_inverted_cdf' + 3. 'closest_observation' + 4. 'interpolated_inverted_cdf' + 5. 'hazen' + 6. 'weibull' + 7. 'linear' (default) + 8. 'median_unbiased' + 9. 'normal_unbiased' + + The first three methods are discontinuous. NumPy further defines the + following discontinuous variations of the default 'linear' (7.) option: + + * 'lower' + * 'higher', + * 'midpoint' + * 'nearest' + + .. versionchanged:: 1.22.0 + This argument was previously called "interpolation" and only + offered the "linear" default and last four options. + + keepdims : bool, optional + If this is set to True, the axes which are reduced are left in + the result as dimensions with size one. With this option, the + result will broadcast correctly against the original array `a`. + + If this is anything but the default value it will be passed + through (in the special case of an empty array) to the + `mean` function of the underlying array. If the array is + a sub-class and `mean` does not have the kwarg `keepdims` this + will raise a RuntimeError. + + weights : array_like, optional + An array of weights associated with the values in `a`. Each value in + `a` contributes to the quantile according to its associated weight. + The weights array can either be 1-D (in which case its length must be + the size of `a` along the given axis) or of the same shape as `a`. + If `weights=None`, then all data in `a` are assumed to have a + weight equal to one. + Only `method="inverted_cdf"` supports weights. + + .. versionadded:: 2.0.0 + + interpolation : str, optional + Deprecated name for the method keyword argument. + + .. deprecated:: 1.22.0 + + Returns + ------- + quantile : scalar or ndarray + If `q` is a single probability and `axis=None`, then the result + is a scalar. If multiple probability levels are given, first axis of + the result corresponds to the quantiles. The other axes are + the axes that remain after the reduction of `a`. If the input + contains integers or floats smaller than ``float64``, the output + data-type is ``float64``. Otherwise, the output data-type is the + same as that of the input. If `out` is specified, that array is + returned instead. + + See Also + -------- + quantile + nanmean, nanmedian + nanmedian : equivalent to ``nanquantile(..., 0.5)`` + nanpercentile : same as nanquantile, but with q in the range [0, 100]. + + Notes + ----- + The behavior of `numpy.nanquantile` is the same as that of + `numpy.quantile` (ignoring nan values). + For more information, please see `numpy.quantile`. + + Examples + -------- + >>> import numpy as np + >>> a = np.array([[10., 7., 4.], [3., 2., 1.]]) + >>> a[0][1] = np.nan + >>> a + array([[10., nan, 4.], + [ 3., 2., 1.]]) + >>> np.quantile(a, 0.5) + np.float64(nan) + >>> np.nanquantile(a, 0.5) + 3.0 + >>> np.nanquantile(a, 0.5, axis=0) + array([6.5, 2. , 2.5]) + >>> np.nanquantile(a, 0.5, axis=1, keepdims=True) + array([[7.], + [2.]]) + >>> m = np.nanquantile(a, 0.5, axis=0) + >>> out = np.zeros_like(m) + >>> np.nanquantile(a, 0.5, axis=0, out=out) + array([6.5, 2. , 2.5]) + >>> m + array([6.5, 2. , 2.5]) + >>> b = a.copy() + >>> np.nanquantile(b, 0.5, axis=1, overwrite_input=True) + array([7., 2.]) + >>> assert not np.all(a==b) + + References + ---------- + .. [1] R. J. Hyndman and Y. Fan, + "Sample quantiles in statistical packages," + The American Statistician, 50(4), pp. 361-365, 1996 + + """ + + if interpolation is not None: + method = fnb._check_interpolation_as_method( + method, interpolation, "nanquantile") + + a = np.asanyarray(a) + if a.dtype.kind == "c": + raise TypeError("a must be an array of real numbers") + + # Use dtype of array if possible (e.g., if q is a python int or float). + if isinstance(q, (int, float)) and a.dtype.kind == "f": + q = np.asanyarray(q, dtype=a.dtype) + else: + q = np.asanyarray(q) + + if not fnb._quantile_is_valid(q): + raise ValueError("Quantiles must be in the range [0, 1]") + + if weights is not None: + if method != "inverted_cdf": + msg = ("Only method 'inverted_cdf' supports weights. " + f"Got: {method}.") + raise ValueError(msg) + if axis is not None: + axis = _nx.normalize_axis_tuple(axis, a.ndim, argname="axis") + weights = _weights_are_valid(weights=weights, a=a, axis=axis) + if np.any(weights < 0): + raise ValueError("Weights must be non-negative.") + + return _nanquantile_unchecked( + a, q, axis, out, overwrite_input, method, keepdims, weights) + + +def _nanquantile_unchecked( + a, + q, + axis=None, + out=None, + overwrite_input=False, + method="linear", + keepdims=np._NoValue, + weights=None, +): + """Assumes that q is in [0, 1], and is an ndarray""" + # apply_along_axis in _nanpercentile doesn't handle empty arrays well, + # so deal them upfront + if a.size == 0: + return np.nanmean(a, axis, out=out, keepdims=keepdims) + return fnb._ureduce(a, + func=_nanquantile_ureduce_func, + q=q, + weights=weights, + keepdims=keepdims, + axis=axis, + out=out, + overwrite_input=overwrite_input, + method=method) + + +def _nanquantile_ureduce_func( + a: np.array, + q: np.array, + weights: np.array, + axis: int | None = None, + out=None, + overwrite_input: bool = False, + method="linear", +): + """ + Private function that doesn't support extended axis or keepdims. + These methods are extended to this function using _ureduce + See nanpercentile for parameter usage + """ + if axis is None or a.ndim == 1: + part = a.ravel() + wgt = None if weights is None else weights.ravel() + result = _nanquantile_1d(part, q, overwrite_input, method, weights=wgt) + # Note that this code could try to fill in `out` right away + elif weights is None: + result = np.apply_along_axis(_nanquantile_1d, axis, a, q, + overwrite_input, method, weights) + # apply_along_axis fills in collapsed axis with results. + # Move those axes to the beginning to match percentile's + # convention. + if q.ndim != 0: + from_ax = [axis + i for i in range(q.ndim)] + result = np.moveaxis(result, from_ax, list(range(q.ndim))) + else: + # We need to apply along axis over 2 arrays, a and weights. + # move operation axes to end for simplicity: + a = np.moveaxis(a, axis, -1) + if weights is not None: + weights = np.moveaxis(weights, axis, -1) + if out is not None: + result = out + else: + # weights are limited to `inverted_cdf` so the result dtype + # is known to be identical to that of `a` here: + result = np.empty_like(a, shape=q.shape + a.shape[:-1]) + + for ii in np.ndindex(a.shape[:-1]): + result[(...,) + ii] = _nanquantile_1d( + a[ii], q, weights=weights[ii], + overwrite_input=overwrite_input, method=method, + ) + # This path dealt with `out` already... + return result + + if out is not None: + out[...] = result + return result + + +def _nanquantile_1d( + arr1d, q, overwrite_input=False, method="linear", weights=None, +): + """ + Private function for rank 1 arrays. Compute quantile ignoring NaNs. + See nanpercentile for parameter usage + """ + # TODO: What to do when arr1d = [1, np.nan] and weights = [0, 1]? + arr1d, weights, overwrite_input = _remove_nan_1d(arr1d, + second_arr1d=weights, overwrite_input=overwrite_input) + if arr1d.size == 0: + # convert to scalar + return np.full(q.shape, np.nan, dtype=arr1d.dtype)[()] + + return fnb._quantile_unchecked( + arr1d, + q, + overwrite_input=overwrite_input, + method=method, + weights=weights, + ) + + +def _nanvar_dispatcher(a, axis=None, dtype=None, out=None, ddof=None, + keepdims=None, *, where=None, mean=None, + correction=None): + return (a, out) + + +@array_function_dispatch(_nanvar_dispatcher) +def nanvar(a, axis=None, dtype=None, out=None, ddof=0, keepdims=np._NoValue, + *, where=np._NoValue, mean=np._NoValue, correction=np._NoValue): + """ + Compute the variance along the specified axis, while ignoring NaNs. + + Returns the variance of the array elements, a measure of the spread of + a distribution. The variance is computed for the flattened array by + default, otherwise over the specified axis. + + For all-NaN slices or slices with zero degrees of freedom, NaN is + returned and a `RuntimeWarning` is raised. + + Parameters + ---------- + a : array_like + Array containing numbers whose variance is desired. If `a` is not an + array, a conversion is attempted. + axis : {int, tuple of int, None}, optional + Axis or axes along which the variance is computed. The default is to compute + the variance of the flattened array. + dtype : data-type, optional + Type to use in computing the variance. For arrays of integer type + the default is `float64`; for arrays of float types it is the same as + the array type. + out : ndarray, optional + Alternate output array in which to place the result. It must have + the same shape as the expected output, but the type is cast if + necessary. + ddof : {int, float}, optional + "Delta Degrees of Freedom": the divisor used in the calculation is + ``N - ddof``, where ``N`` represents the number of non-NaN + elements. By default `ddof` is zero. + keepdims : bool, optional + If this is set to True, the axes which are reduced are left + in the result as dimensions with size one. With this option, + the result will broadcast correctly against the original `a`. + where : array_like of bool, optional + Elements to include in the variance. See `~numpy.ufunc.reduce` for + details. + + .. versionadded:: 1.22.0 + + mean : array_like, optional + Provide the mean to prevent its recalculation. The mean should have + a shape as if it was calculated with ``keepdims=True``. + The axis for the calculation of the mean should be the same as used in + the call to this var function. + + .. versionadded:: 2.0.0 + + correction : {int, float}, optional + Array API compatible name for the ``ddof`` parameter. Only one of them + can be provided at the same time. + + .. versionadded:: 2.0.0 + + Returns + ------- + variance : ndarray, see dtype parameter above + If `out` is None, return a new array containing the variance, + otherwise return a reference to the output array. If ddof is >= the + number of non-NaN elements in a slice or the slice contains only + NaNs, then the result for that slice is NaN. + + See Also + -------- + std : Standard deviation + mean : Average + var : Variance while not ignoring NaNs + nanstd, nanmean + :ref:`ufuncs-output-type` + + Notes + ----- + The variance is the average of the squared deviations from the mean, + i.e., ``var = mean(abs(x - x.mean())**2)``. + + The mean is normally calculated as ``x.sum() / N``, where ``N = len(x)``. + If, however, `ddof` is specified, the divisor ``N - ddof`` is used + instead. In standard statistical practice, ``ddof=1`` provides an + unbiased estimator of the variance of a hypothetical infinite + population. ``ddof=0`` provides a maximum likelihood estimate of the + variance for normally distributed variables. + + Note that for complex numbers, the absolute value is taken before + squaring, so that the result is always real and nonnegative. + + For floating-point input, the variance is computed using the same + precision the input has. Depending on the input data, this can cause + the results to be inaccurate, especially for `float32` (see example + below). Specifying a higher-accuracy accumulator using the ``dtype`` + keyword can alleviate this issue. + + For this function to work on sub-classes of ndarray, they must define + `sum` with the kwarg `keepdims` + + Examples + -------- + >>> import numpy as np + >>> a = np.array([[1, np.nan], [3, 4]]) + >>> np.nanvar(a) + 1.5555555555555554 + >>> np.nanvar(a, axis=0) + array([1., 0.]) + >>> np.nanvar(a, axis=1) + array([0., 0.25]) # may vary + + """ + arr, mask = _replace_nan(a, 0) + if mask is None: + return np.var(arr, axis=axis, dtype=dtype, out=out, ddof=ddof, + keepdims=keepdims, where=where, mean=mean, + correction=correction) + + if dtype is not None: + dtype = np.dtype(dtype) + if dtype is not None and not issubclass(dtype.type, np.inexact): + raise TypeError("If a is inexact, then dtype must be inexact") + if out is not None and not issubclass(out.dtype.type, np.inexact): + raise TypeError("If a is inexact, then out must be inexact") + + if correction != np._NoValue: + if ddof != 0: + raise ValueError( + "ddof and correction can't be provided simultaneously." + ) + else: + ddof = correction + + # Compute mean + if type(arr) is np.matrix: + _keepdims = np._NoValue + else: + _keepdims = True + + cnt = np.sum(~mask, axis=axis, dtype=np.intp, keepdims=_keepdims, + where=where) + + if mean is not np._NoValue: + avg = mean + else: + # we need to special case matrix for reverse compatibility + # in order for this to work, these sums need to be called with + # keepdims=True, however matrix now raises an error in this case, but + # the reason that it drops the keepdims kwarg is to force keepdims=True + # so this used to work by serendipity. + avg = np.sum(arr, axis=axis, dtype=dtype, + keepdims=_keepdims, where=where) + avg = _divide_by_count(avg, cnt) + + # Compute squared deviation from mean. + np.subtract(arr, avg, out=arr, casting='unsafe', where=where) + arr = _copyto(arr, 0, mask) + if issubclass(arr.dtype.type, np.complexfloating): + sqr = np.multiply(arr, arr.conj(), out=arr, where=where).real + else: + sqr = np.multiply(arr, arr, out=arr, where=where) + + # Compute variance. + var = np.sum(sqr, axis=axis, dtype=dtype, out=out, keepdims=keepdims, + where=where) + + # Precaution against reduced object arrays + try: + var_ndim = var.ndim + except AttributeError: + var_ndim = np.ndim(var) + if var_ndim < cnt.ndim: + # Subclasses of ndarray may ignore keepdims, so check here. + cnt = cnt.squeeze(axis) + dof = cnt - ddof + var = _divide_by_count(var, dof) + + isbad = (dof <= 0) + if np.any(isbad): + warnings.warn("Degrees of freedom <= 0 for slice.", RuntimeWarning, + stacklevel=2) + # NaN, inf, or negative numbers are all possible bad + # values, so explicitly replace them with NaN. + var = _copyto(var, np.nan, isbad) + return var + + +def _nanstd_dispatcher(a, axis=None, dtype=None, out=None, ddof=None, + keepdims=None, *, where=None, mean=None, + correction=None): + return (a, out) + + +@array_function_dispatch(_nanstd_dispatcher) +def nanstd(a, axis=None, dtype=None, out=None, ddof=0, keepdims=np._NoValue, + *, where=np._NoValue, mean=np._NoValue, correction=np._NoValue): + """ + Compute the standard deviation along the specified axis, while + ignoring NaNs. + + Returns the standard deviation, a measure of the spread of a + distribution, of the non-NaN array elements. The standard deviation is + computed for the flattened array by default, otherwise over the + specified axis. + + For all-NaN slices or slices with zero degrees of freedom, NaN is + returned and a `RuntimeWarning` is raised. + + Parameters + ---------- + a : array_like + Calculate the standard deviation of the non-NaN values. + axis : {int, tuple of int, None}, optional + Axis or axes along which the standard deviation is computed. The default is + to compute the standard deviation of the flattened array. + dtype : dtype, optional + Type to use in computing the standard deviation. For arrays of + integer type the default is float64, for arrays of float types it + is the same as the array type. + out : ndarray, optional + Alternative output array in which to place the result. It must have + the same shape as the expected output but the type (of the + calculated values) will be cast if necessary. + ddof : {int, float}, optional + Means Delta Degrees of Freedom. The divisor used in calculations + is ``N - ddof``, where ``N`` represents the number of non-NaN + elements. By default `ddof` is zero. + + keepdims : bool, optional + If this is set to True, the axes which are reduced are left + in the result as dimensions with size one. With this option, + the result will broadcast correctly against the original `a`. + + If this value is anything but the default it is passed through + as-is to the relevant functions of the sub-classes. If these + functions do not have a `keepdims` kwarg, a RuntimeError will + be raised. + where : array_like of bool, optional + Elements to include in the standard deviation. + See `~numpy.ufunc.reduce` for details. + + .. versionadded:: 1.22.0 + + mean : array_like, optional + Provide the mean to prevent its recalculation. The mean should have + a shape as if it was calculated with ``keepdims=True``. + The axis for the calculation of the mean should be the same as used in + the call to this std function. + + .. versionadded:: 2.0.0 + + correction : {int, float}, optional + Array API compatible name for the ``ddof`` parameter. Only one of them + can be provided at the same time. + + .. versionadded:: 2.0.0 + + Returns + ------- + standard_deviation : ndarray, see dtype parameter above. + If `out` is None, return a new array containing the standard + deviation, otherwise return a reference to the output array. If + ddof is >= the number of non-NaN elements in a slice or the slice + contains only NaNs, then the result for that slice is NaN. + + See Also + -------- + var, mean, std + nanvar, nanmean + :ref:`ufuncs-output-type` + + Notes + ----- + The standard deviation is the square root of the average of the squared + deviations from the mean: ``std = sqrt(mean(abs(x - x.mean())**2))``. + + The average squared deviation is normally calculated as + ``x.sum() / N``, where ``N = len(x)``. If, however, `ddof` is + specified, the divisor ``N - ddof`` is used instead. In standard + statistical practice, ``ddof=1`` provides an unbiased estimator of the + variance of the infinite population. ``ddof=0`` provides a maximum + likelihood estimate of the variance for normally distributed variables. + The standard deviation computed in this function is the square root of + the estimated variance, so even with ``ddof=1``, it will not be an + unbiased estimate of the standard deviation per se. + + Note that, for complex numbers, `std` takes the absolute value before + squaring, so that the result is always real and nonnegative. + + For floating-point input, the *std* is computed using the same + precision the input has. Depending on the input data, this can cause + the results to be inaccurate, especially for float32 (see example + below). Specifying a higher-accuracy accumulator using the `dtype` + keyword can alleviate this issue. + + Examples + -------- + >>> import numpy as np + >>> a = np.array([[1, np.nan], [3, 4]]) + >>> np.nanstd(a) + 1.247219128924647 + >>> np.nanstd(a, axis=0) + array([1., 0.]) + >>> np.nanstd(a, axis=1) + array([0., 0.5]) # may vary + + """ + var = nanvar(a, axis=axis, dtype=dtype, out=out, ddof=ddof, + keepdims=keepdims, where=where, mean=mean, + correction=correction) + if isinstance(var, np.ndarray): + std = np.sqrt(var, out=var) + elif hasattr(var, 'dtype'): + std = var.dtype.type(np.sqrt(var)) + else: + std = np.sqrt(var) + return std diff --git a/.venv/lib/python3.12/site-packages/numpy/lib/_nanfunctions_impl.pyi b/.venv/lib/python3.12/site-packages/numpy/lib/_nanfunctions_impl.pyi new file mode 100644 index 0000000..f39800d --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/lib/_nanfunctions_impl.pyi @@ -0,0 +1,52 @@ +from numpy._core.fromnumeric import ( + amax, + amin, + argmax, + argmin, + cumprod, + cumsum, + mean, + prod, + std, + sum, + var, +) +from numpy.lib._function_base_impl import ( + median, + percentile, + quantile, +) + +__all__ = [ + "nansum", + "nanmax", + "nanmin", + "nanargmax", + "nanargmin", + "nanmean", + "nanmedian", + "nanpercentile", + "nanvar", + "nanstd", + "nanprod", + "nancumsum", + "nancumprod", + "nanquantile", +] + +# NOTE: In reality these functions are not aliases but distinct functions +# with identical signatures. +nanmin = amin +nanmax = amax +nanargmin = argmin +nanargmax = argmax +nansum = sum +nanprod = prod +nancumsum = cumsum +nancumprod = cumprod +nanmean = mean +nanvar = var +nanstd = std +nanmedian = median +nanpercentile = percentile +nanquantile = quantile diff --git a/.venv/lib/python3.12/site-packages/numpy/lib/_npyio_impl.py b/.venv/lib/python3.12/site-packages/numpy/lib/_npyio_impl.py new file mode 100644 index 0000000..6aea567 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/lib/_npyio_impl.py @@ -0,0 +1,2596 @@ +""" +IO related functions. +""" +import contextlib +import functools +import itertools +import operator +import os +import pickle +import re +import warnings +import weakref +from collections.abc import Mapping +from operator import itemgetter + +import numpy as np +from numpy._core import overrides +from numpy._core._multiarray_umath import _load_from_filelike +from numpy._core.multiarray import packbits, unpackbits +from numpy._core.overrides import finalize_array_function_like, set_module +from numpy._utils import asbytes, asunicode + +from . import format +from ._datasource import DataSource # noqa: F401 +from ._format_impl import _MAX_HEADER_SIZE +from ._iotools import ( + ConversionWarning, + ConverterError, + ConverterLockError, + LineSplitter, + NameValidator, + StringConverter, + _decode_line, + _is_string_like, + easy_dtype, + flatten_dtype, + has_nested_fields, +) + +__all__ = [ + 'savetxt', 'loadtxt', 'genfromtxt', 'load', 'save', 'savez', + 'savez_compressed', 'packbits', 'unpackbits', 'fromregex' + ] + + +array_function_dispatch = functools.partial( + overrides.array_function_dispatch, module='numpy') + + +class BagObj: + """ + BagObj(obj) + + Convert attribute look-ups to getitems on the object passed in. + + Parameters + ---------- + obj : class instance + Object on which attribute look-up is performed. + + Examples + -------- + >>> import numpy as np + >>> from numpy.lib._npyio_impl import BagObj as BO + >>> class BagDemo: + ... def __getitem__(self, key): # An instance of BagObj(BagDemo) + ... # will call this method when any + ... # attribute look-up is required + ... result = "Doesn't matter what you want, " + ... return result + "you're gonna get this" + ... + >>> demo_obj = BagDemo() + >>> bagobj = BO(demo_obj) + >>> bagobj.hello_there + "Doesn't matter what you want, you're gonna get this" + >>> bagobj.I_can_be_anything + "Doesn't matter what you want, you're gonna get this" + + """ + + def __init__(self, obj): + # Use weakref to make NpzFile objects collectable by refcount + self._obj = weakref.proxy(obj) + + def __getattribute__(self, key): + try: + return object.__getattribute__(self, '_obj')[key] + except KeyError: + raise AttributeError(key) from None + + def __dir__(self): + """ + Enables dir(bagobj) to list the files in an NpzFile. + + This also enables tab-completion in an interpreter or IPython. + """ + return list(object.__getattribute__(self, '_obj').keys()) + + +def zipfile_factory(file, *args, **kwargs): + """ + Create a ZipFile. + + Allows for Zip64, and the `file` argument can accept file, str, or + pathlib.Path objects. `args` and `kwargs` are passed to the zipfile.ZipFile + constructor. + """ + if not hasattr(file, 'read'): + file = os.fspath(file) + import zipfile + kwargs['allowZip64'] = True + return zipfile.ZipFile(file, *args, **kwargs) + + +@set_module('numpy.lib.npyio') +class NpzFile(Mapping): + """ + NpzFile(fid) + + A dictionary-like object with lazy-loading of files in the zipped + archive provided on construction. + + `NpzFile` is used to load files in the NumPy ``.npz`` data archive + format. It assumes that files in the archive have a ``.npy`` extension, + other files are ignored. + + The arrays and file strings are lazily loaded on either + getitem access using ``obj['key']`` or attribute lookup using + ``obj.f.key``. A list of all files (without ``.npy`` extensions) can + be obtained with ``obj.files`` and the ZipFile object itself using + ``obj.zip``. + + Attributes + ---------- + files : list of str + List of all files in the archive with a ``.npy`` extension. + zip : ZipFile instance + The ZipFile object initialized with the zipped archive. + f : BagObj instance + An object on which attribute can be performed as an alternative + to getitem access on the `NpzFile` instance itself. + allow_pickle : bool, optional + Allow loading pickled data. Default: False + pickle_kwargs : dict, optional + Additional keyword arguments to pass on to pickle.load. + These are only useful when loading object arrays saved on + Python 2. + max_header_size : int, optional + Maximum allowed size of the header. Large headers may not be safe + to load securely and thus require explicitly passing a larger value. + See :py:func:`ast.literal_eval()` for details. + This option is ignored when `allow_pickle` is passed. In that case + the file is by definition trusted and the limit is unnecessary. + + Parameters + ---------- + fid : file, str, or pathlib.Path + The zipped archive to open. This is either a file-like object + or a string containing the path to the archive. + own_fid : bool, optional + Whether NpzFile should close the file handle. + Requires that `fid` is a file-like object. + + Examples + -------- + >>> import numpy as np + >>> from tempfile import TemporaryFile + >>> outfile = TemporaryFile() + >>> x = np.arange(10) + >>> y = np.sin(x) + >>> np.savez(outfile, x=x, y=y) + >>> _ = outfile.seek(0) + + >>> npz = np.load(outfile) + >>> isinstance(npz, np.lib.npyio.NpzFile) + True + >>> npz + NpzFile 'object' with keys: x, y + >>> sorted(npz.files) + ['x', 'y'] + >>> npz['x'] # getitem access + array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) + >>> npz.f.x # attribute lookup + array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) + + """ + # Make __exit__ safe if zipfile_factory raises an exception + zip = None + fid = None + _MAX_REPR_ARRAY_COUNT = 5 + + def __init__(self, fid, own_fid=False, allow_pickle=False, + pickle_kwargs=None, *, + max_header_size=_MAX_HEADER_SIZE): + # Import is postponed to here since zipfile depends on gzip, an + # optional component of the so-called standard library. + _zip = zipfile_factory(fid) + _files = _zip.namelist() + self.files = [name.removesuffix(".npy") for name in _files] + self._files = dict(zip(self.files, _files)) + self._files.update(zip(_files, _files)) + self.allow_pickle = allow_pickle + self.max_header_size = max_header_size + self.pickle_kwargs = pickle_kwargs + self.zip = _zip + self.f = BagObj(self) + if own_fid: + self.fid = fid + + def __enter__(self): + return self + + def __exit__(self, exc_type, exc_value, traceback): + self.close() + + def close(self): + """ + Close the file. + + """ + if self.zip is not None: + self.zip.close() + self.zip = None + if self.fid is not None: + self.fid.close() + self.fid = None + self.f = None # break reference cycle + + def __del__(self): + self.close() + + # Implement the Mapping ABC + def __iter__(self): + return iter(self.files) + + def __len__(self): + return len(self.files) + + def __getitem__(self, key): + try: + key = self._files[key] + except KeyError: + raise KeyError(f"{key} is not a file in the archive") from None + else: + with self.zip.open(key) as bytes: + magic = bytes.read(len(format.MAGIC_PREFIX)) + bytes.seek(0) + if magic == format.MAGIC_PREFIX: + # FIXME: This seems like it will copy strings around + # more than is strictly necessary. The zipfile + # will read the string and then + # the format.read_array will copy the string + # to another place in memory. + # It would be better if the zipfile could read + # (or at least uncompress) the data + # directly into the array memory. + return format.read_array( + bytes, + allow_pickle=self.allow_pickle, + pickle_kwargs=self.pickle_kwargs, + max_header_size=self.max_header_size + ) + else: + return bytes.read() + + def __contains__(self, key): + return (key in self._files) + + def __repr__(self): + # Get filename or default to `object` + if isinstance(self.fid, str): + filename = self.fid + else: + filename = getattr(self.fid, "name", "object") + + # Get the name of arrays + array_names = ', '.join(self.files[:self._MAX_REPR_ARRAY_COUNT]) + if len(self.files) > self._MAX_REPR_ARRAY_COUNT: + array_names += "..." + return f"NpzFile {filename!r} with keys: {array_names}" + + # Work around problems with the docstrings in the Mapping methods + # They contain a `->`, which confuses the type annotation interpretations + # of sphinx-docs. See gh-25964 + + def get(self, key, default=None, /): + """ + D.get(k,[,d]) returns D[k] if k in D, else d. d defaults to None. + """ + return Mapping.get(self, key, default) + + def items(self): + """ + D.items() returns a set-like object providing a view on the items + """ + return Mapping.items(self) + + def keys(self): + """ + D.keys() returns a set-like object providing a view on the keys + """ + return Mapping.keys(self) + + def values(self): + """ + D.values() returns a set-like object providing a view on the values + """ + return Mapping.values(self) + + +@set_module('numpy') +def load(file, mmap_mode=None, allow_pickle=False, fix_imports=True, + encoding='ASCII', *, max_header_size=_MAX_HEADER_SIZE): + """ + Load arrays or pickled objects from ``.npy``, ``.npz`` or pickled files. + + .. warning:: Loading files that contain object arrays uses the ``pickle`` + module, which is not secure against erroneous or maliciously + constructed data. Consider passing ``allow_pickle=False`` to + load data that is known not to contain object arrays for the + safer handling of untrusted sources. + + Parameters + ---------- + file : file-like object, string, or pathlib.Path + The file to read. File-like objects must support the + ``seek()`` and ``read()`` methods and must always + be opened in binary mode. Pickled files require that the + file-like object support the ``readline()`` method as well. + mmap_mode : {None, 'r+', 'r', 'w+', 'c'}, optional + If not None, then memory-map the file, using the given mode (see + `numpy.memmap` for a detailed description of the modes). A + memory-mapped array is kept on disk. However, it can be accessed + and sliced like any ndarray. Memory mapping is especially useful + for accessing small fragments of large files without reading the + entire file into memory. + allow_pickle : bool, optional + Allow loading pickled object arrays stored in npy files. Reasons for + disallowing pickles include security, as loading pickled data can + execute arbitrary code. If pickles are disallowed, loading object + arrays will fail. Default: False + fix_imports : bool, optional + Only useful when loading Python 2 generated pickled files, + which includes npy/npz files containing object arrays. If `fix_imports` + is True, pickle will try to map the old Python 2 names to the new names + used in Python 3. + encoding : str, optional + What encoding to use when reading Python 2 strings. Only useful when + loading Python 2 generated pickled files, which includes + npy/npz files containing object arrays. Values other than 'latin1', + 'ASCII', and 'bytes' are not allowed, as they can corrupt numerical + data. Default: 'ASCII' + max_header_size : int, optional + Maximum allowed size of the header. Large headers may not be safe + to load securely and thus require explicitly passing a larger value. + See :py:func:`ast.literal_eval()` for details. + This option is ignored when `allow_pickle` is passed. In that case + the file is by definition trusted and the limit is unnecessary. + + Returns + ------- + result : array, tuple, dict, etc. + Data stored in the file. For ``.npz`` files, the returned instance + of NpzFile class must be closed to avoid leaking file descriptors. + + Raises + ------ + OSError + If the input file does not exist or cannot be read. + UnpicklingError + If ``allow_pickle=True``, but the file cannot be loaded as a pickle. + ValueError + The file contains an object array, but ``allow_pickle=False`` given. + EOFError + When calling ``np.load`` multiple times on the same file handle, + if all data has already been read + + See Also + -------- + save, savez, savez_compressed, loadtxt + memmap : Create a memory-map to an array stored in a file on disk. + lib.format.open_memmap : Create or load a memory-mapped ``.npy`` file. + + Notes + ----- + - If the file contains pickle data, then whatever object is stored + in the pickle is returned. + - If the file is a ``.npy`` file, then a single array is returned. + - If the file is a ``.npz`` file, then a dictionary-like object is + returned, containing ``{filename: array}`` key-value pairs, one for + each file in the archive. + - If the file is a ``.npz`` file, the returned value supports the + context manager protocol in a similar fashion to the open function:: + + with load('foo.npz') as data: + a = data['a'] + + The underlying file descriptor is closed when exiting the 'with' + block. + + Examples + -------- + >>> import numpy as np + + Store data to disk, and load it again: + + >>> np.save('/tmp/123', np.array([[1, 2, 3], [4, 5, 6]])) + >>> np.load('/tmp/123.npy') + array([[1, 2, 3], + [4, 5, 6]]) + + Store compressed data to disk, and load it again: + + >>> a=np.array([[1, 2, 3], [4, 5, 6]]) + >>> b=np.array([1, 2]) + >>> np.savez('/tmp/123.npz', a=a, b=b) + >>> data = np.load('/tmp/123.npz') + >>> data['a'] + array([[1, 2, 3], + [4, 5, 6]]) + >>> data['b'] + array([1, 2]) + >>> data.close() + + Mem-map the stored array, and then access the second row + directly from disk: + + >>> X = np.load('/tmp/123.npy', mmap_mode='r') + >>> X[1, :] + memmap([4, 5, 6]) + + """ + if encoding not in ('ASCII', 'latin1', 'bytes'): + # The 'encoding' value for pickle also affects what encoding + # the serialized binary data of NumPy arrays is loaded + # in. Pickle does not pass on the encoding information to + # NumPy. The unpickling code in numpy._core.multiarray is + # written to assume that unicode data appearing where binary + # should be is in 'latin1'. 'bytes' is also safe, as is 'ASCII'. + # + # Other encoding values can corrupt binary data, and we + # purposefully disallow them. For the same reason, the errors= + # argument is not exposed, as values other than 'strict' + # result can similarly silently corrupt numerical data. + raise ValueError("encoding must be 'ASCII', 'latin1', or 'bytes'") + + pickle_kwargs = {'encoding': encoding, 'fix_imports': fix_imports} + + with contextlib.ExitStack() as stack: + if hasattr(file, 'read'): + fid = file + own_fid = False + else: + fid = stack.enter_context(open(os.fspath(file), "rb")) + own_fid = True + + # Code to distinguish from NumPy binary files and pickles. + _ZIP_PREFIX = b'PK\x03\x04' + _ZIP_SUFFIX = b'PK\x05\x06' # empty zip files start with this + N = len(format.MAGIC_PREFIX) + magic = fid.read(N) + if not magic: + raise EOFError("No data left in file") + # If the file size is less than N, we need to make sure not + # to seek past the beginning of the file + fid.seek(-min(N, len(magic)), 1) # back-up + if magic.startswith((_ZIP_PREFIX, _ZIP_SUFFIX)): + # zip-file (assume .npz) + # Potentially transfer file ownership to NpzFile + stack.pop_all() + ret = NpzFile(fid, own_fid=own_fid, allow_pickle=allow_pickle, + pickle_kwargs=pickle_kwargs, + max_header_size=max_header_size) + return ret + elif magic == format.MAGIC_PREFIX: + # .npy file + if mmap_mode: + if allow_pickle: + max_header_size = 2**64 + return format.open_memmap(file, mode=mmap_mode, + max_header_size=max_header_size) + else: + return format.read_array(fid, allow_pickle=allow_pickle, + pickle_kwargs=pickle_kwargs, + max_header_size=max_header_size) + else: + # Try a pickle + if not allow_pickle: + raise ValueError( + "This file contains pickled (object) data. If you trust " + "the file you can load it unsafely using the " + "`allow_pickle=` keyword argument or `pickle.load()`.") + try: + return pickle.load(fid, **pickle_kwargs) + except Exception as e: + raise pickle.UnpicklingError( + f"Failed to interpret file {file!r} as a pickle") from e + + +def _save_dispatcher(file, arr, allow_pickle=None, fix_imports=None): + return (arr,) + + +@array_function_dispatch(_save_dispatcher) +def save(file, arr, allow_pickle=True, fix_imports=np._NoValue): + """ + Save an array to a binary file in NumPy ``.npy`` format. + + Parameters + ---------- + file : file, str, or pathlib.Path + File or filename to which the data is saved. If file is a file-object, + then the filename is unchanged. If file is a string or Path, + a ``.npy`` extension will be appended to the filename if it does not + already have one. + arr : array_like + Array data to be saved. + allow_pickle : bool, optional + Allow saving object arrays using Python pickles. Reasons for + disallowing pickles include security (loading pickled data can execute + arbitrary code) and portability (pickled objects may not be loadable + on different Python installations, for example if the stored objects + require libraries that are not available, and not all pickled data is + compatible between different versions of Python). + Default: True + fix_imports : bool, optional + The `fix_imports` flag is deprecated and has no effect. + + .. deprecated:: 2.1 + This flag is ignored since NumPy 1.17 and was only needed to + support loading in Python 2 some files written in Python 3. + + See Also + -------- + savez : Save several arrays into a ``.npz`` archive + savetxt, load + + Notes + ----- + For a description of the ``.npy`` format, see :py:mod:`numpy.lib.format`. + + Any data saved to the file is appended to the end of the file. + + Examples + -------- + >>> import numpy as np + + >>> from tempfile import TemporaryFile + >>> outfile = TemporaryFile() + + >>> x = np.arange(10) + >>> np.save(outfile, x) + + >>> _ = outfile.seek(0) # Only needed to simulate closing & reopening file + >>> np.load(outfile) + array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) + + + >>> with open('test.npy', 'wb') as f: + ... np.save(f, np.array([1, 2])) + ... np.save(f, np.array([1, 3])) + >>> with open('test.npy', 'rb') as f: + ... a = np.load(f) + ... b = np.load(f) + >>> print(a, b) + # [1 2] [1 3] + """ + if fix_imports is not np._NoValue: + # Deprecated 2024-05-16, NumPy 2.1 + warnings.warn( + "The 'fix_imports' flag is deprecated and has no effect. " + "(Deprecated in NumPy 2.1)", + DeprecationWarning, stacklevel=2) + if hasattr(file, 'write'): + file_ctx = contextlib.nullcontext(file) + else: + file = os.fspath(file) + if not file.endswith('.npy'): + file = file + '.npy' + file_ctx = open(file, "wb") + + with file_ctx as fid: + arr = np.asanyarray(arr) + format.write_array(fid, arr, allow_pickle=allow_pickle, + pickle_kwargs={'fix_imports': fix_imports}) + + +def _savez_dispatcher(file, *args, allow_pickle=True, **kwds): + yield from args + yield from kwds.values() + + +@array_function_dispatch(_savez_dispatcher) +def savez(file, *args, allow_pickle=True, **kwds): + """Save several arrays into a single file in uncompressed ``.npz`` format. + + Provide arrays as keyword arguments to store them under the + corresponding name in the output file: ``savez(fn, x=x, y=y)``. + + If arrays are specified as positional arguments, i.e., ``savez(fn, + x, y)``, their names will be `arr_0`, `arr_1`, etc. + + Parameters + ---------- + file : file, str, or pathlib.Path + Either the filename (string) or an open file (file-like object) + where the data will be saved. If file is a string or a Path, the + ``.npz`` extension will be appended to the filename if it is not + already there. + args : Arguments, optional + Arrays to save to the file. Please use keyword arguments (see + `kwds` below) to assign names to arrays. Arrays specified as + args will be named "arr_0", "arr_1", and so on. + allow_pickle : bool, optional + Allow saving object arrays using Python pickles. Reasons for + disallowing pickles include security (loading pickled data can execute + arbitrary code) and portability (pickled objects may not be loadable + on different Python installations, for example if the stored objects + require libraries that are not available, and not all pickled data is + compatible between different versions of Python). + Default: True + kwds : Keyword arguments, optional + Arrays to save to the file. Each array will be saved to the + output file with its corresponding keyword name. + + Returns + ------- + None + + See Also + -------- + save : Save a single array to a binary file in NumPy format. + savetxt : Save an array to a file as plain text. + savez_compressed : Save several arrays into a compressed ``.npz`` archive + + Notes + ----- + The ``.npz`` file format is a zipped archive of files named after the + variables they contain. The archive is not compressed and each file + in the archive contains one variable in ``.npy`` format. For a + description of the ``.npy`` format, see :py:mod:`numpy.lib.format`. + + When opening the saved ``.npz`` file with `load` a `~lib.npyio.NpzFile` + object is returned. This is a dictionary-like object which can be queried + for its list of arrays (with the ``.files`` attribute), and for the arrays + themselves. + + Keys passed in `kwds` are used as filenames inside the ZIP archive. + Therefore, keys should be valid filenames; e.g., avoid keys that begin with + ``/`` or contain ``.``. + + When naming variables with keyword arguments, it is not possible to name a + variable ``file``, as this would cause the ``file`` argument to be defined + twice in the call to ``savez``. + + Examples + -------- + >>> import numpy as np + >>> from tempfile import TemporaryFile + >>> outfile = TemporaryFile() + >>> x = np.arange(10) + >>> y = np.sin(x) + + Using `savez` with \\*args, the arrays are saved with default names. + + >>> np.savez(outfile, x, y) + >>> _ = outfile.seek(0) # Only needed to simulate closing & reopening file + >>> npzfile = np.load(outfile) + >>> npzfile.files + ['arr_0', 'arr_1'] + >>> npzfile['arr_0'] + array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) + + Using `savez` with \\**kwds, the arrays are saved with the keyword names. + + >>> outfile = TemporaryFile() + >>> np.savez(outfile, x=x, y=y) + >>> _ = outfile.seek(0) + >>> npzfile = np.load(outfile) + >>> sorted(npzfile.files) + ['x', 'y'] + >>> npzfile['x'] + array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) + + """ + _savez(file, args, kwds, False, allow_pickle=allow_pickle) + + +def _savez_compressed_dispatcher(file, *args, allow_pickle=True, **kwds): + yield from args + yield from kwds.values() + + +@array_function_dispatch(_savez_compressed_dispatcher) +def savez_compressed(file, *args, allow_pickle=True, **kwds): + """ + Save several arrays into a single file in compressed ``.npz`` format. + + Provide arrays as keyword arguments to store them under the + corresponding name in the output file: ``savez_compressed(fn, x=x, y=y)``. + + If arrays are specified as positional arguments, i.e., + ``savez_compressed(fn, x, y)``, their names will be `arr_0`, `arr_1`, etc. + + Parameters + ---------- + file : file, str, or pathlib.Path + Either the filename (string) or an open file (file-like object) + where the data will be saved. If file is a string or a Path, the + ``.npz`` extension will be appended to the filename if it is not + already there. + args : Arguments, optional + Arrays to save to the file. Please use keyword arguments (see + `kwds` below) to assign names to arrays. Arrays specified as + args will be named "arr_0", "arr_1", and so on. + allow_pickle : bool, optional + Allow saving object arrays using Python pickles. Reasons for + disallowing pickles include security (loading pickled data can execute + arbitrary code) and portability (pickled objects may not be loadable + on different Python installations, for example if the stored objects + require libraries that are not available, and not all pickled data is + compatible between different versions of Python). + Default: True + kwds : Keyword arguments, optional + Arrays to save to the file. Each array will be saved to the + output file with its corresponding keyword name. + + Returns + ------- + None + + See Also + -------- + numpy.save : Save a single array to a binary file in NumPy format. + numpy.savetxt : Save an array to a file as plain text. + numpy.savez : Save several arrays into an uncompressed ``.npz`` file format + numpy.load : Load the files created by savez_compressed. + + Notes + ----- + The ``.npz`` file format is a zipped archive of files named after the + variables they contain. The archive is compressed with + ``zipfile.ZIP_DEFLATED`` and each file in the archive contains one variable + in ``.npy`` format. For a description of the ``.npy`` format, see + :py:mod:`numpy.lib.format`. + + + When opening the saved ``.npz`` file with `load` a `~lib.npyio.NpzFile` + object is returned. This is a dictionary-like object which can be queried + for its list of arrays (with the ``.files`` attribute), and for the arrays + themselves. + + Examples + -------- + >>> import numpy as np + >>> test_array = np.random.rand(3, 2) + >>> test_vector = np.random.rand(4) + >>> np.savez_compressed('/tmp/123', a=test_array, b=test_vector) + >>> loaded = np.load('/tmp/123.npz') + >>> print(np.array_equal(test_array, loaded['a'])) + True + >>> print(np.array_equal(test_vector, loaded['b'])) + True + + """ + _savez(file, args, kwds, True, allow_pickle=allow_pickle) + + +def _savez(file, args, kwds, compress, allow_pickle=True, pickle_kwargs=None): + # Import is postponed to here since zipfile depends on gzip, an optional + # component of the so-called standard library. + import zipfile + + if not hasattr(file, 'write'): + file = os.fspath(file) + if not file.endswith('.npz'): + file = file + '.npz' + + namedict = kwds + for i, val in enumerate(args): + key = 'arr_%d' % i + if key in namedict.keys(): + raise ValueError( + f"Cannot use un-named variables and keyword {key}") + namedict[key] = val + + if compress: + compression = zipfile.ZIP_DEFLATED + else: + compression = zipfile.ZIP_STORED + + zipf = zipfile_factory(file, mode="w", compression=compression) + try: + for key, val in namedict.items(): + fname = key + '.npy' + val = np.asanyarray(val) + # always force zip64, gh-10776 + with zipf.open(fname, 'w', force_zip64=True) as fid: + format.write_array(fid, val, + allow_pickle=allow_pickle, + pickle_kwargs=pickle_kwargs) + finally: + zipf.close() + + +def _ensure_ndmin_ndarray_check_param(ndmin): + """Just checks if the param ndmin is supported on + _ensure_ndmin_ndarray. It is intended to be used as + verification before running anything expensive. + e.g. loadtxt, genfromtxt + """ + # Check correctness of the values of `ndmin` + if ndmin not in [0, 1, 2]: + raise ValueError(f"Illegal value of ndmin keyword: {ndmin}") + +def _ensure_ndmin_ndarray(a, *, ndmin: int): + """This is a helper function of loadtxt and genfromtxt to ensure + proper minimum dimension as requested + + ndim : int. Supported values 1, 2, 3 + ^^ whenever this changes, keep in sync with + _ensure_ndmin_ndarray_check_param + """ + # Verify that the array has at least dimensions `ndmin`. + # Tweak the size and shape of the arrays - remove extraneous dimensions + if a.ndim > ndmin: + a = np.squeeze(a) + # and ensure we have the minimum number of dimensions asked for + # - has to be in this order for the odd case ndmin=1, a.squeeze().ndim=0 + if a.ndim < ndmin: + if ndmin == 1: + a = np.atleast_1d(a) + elif ndmin == 2: + a = np.atleast_2d(a).T + + return a + + +# amount of lines loadtxt reads in one chunk, can be overridden for testing +_loadtxt_chunksize = 50000 + + +def _check_nonneg_int(value, name="argument"): + try: + operator.index(value) + except TypeError: + raise TypeError(f"{name} must be an integer") from None + if value < 0: + raise ValueError(f"{name} must be nonnegative") + + +def _preprocess_comments(iterable, comments, encoding): + """ + Generator that consumes a line iterated iterable and strips out the + multiple (or multi-character) comments from lines. + This is a pre-processing step to achieve feature parity with loadtxt + (we assume that this feature is a nieche feature). + """ + for line in iterable: + if isinstance(line, bytes): + # Need to handle conversion here, or the splitting would fail + line = line.decode(encoding) + + for c in comments: + line = line.split(c, 1)[0] + + yield line + + +# The number of rows we read in one go if confronted with a parametric dtype +_loadtxt_chunksize = 50000 + + +def _read(fname, *, delimiter=',', comment='#', quote='"', + imaginary_unit='j', usecols=None, skiplines=0, + max_rows=None, converters=None, ndmin=None, unpack=False, + dtype=np.float64, encoding=None): + r""" + Read a NumPy array from a text file. + This is a helper function for loadtxt. + + Parameters + ---------- + fname : file, str, or pathlib.Path + The filename or the file to be read. + delimiter : str, optional + Field delimiter of the fields in line of the file. + Default is a comma, ','. If None any sequence of whitespace is + considered a delimiter. + comment : str or sequence of str or None, optional + Character that begins a comment. All text from the comment + character to the end of the line is ignored. + Multiple comments or multiple-character comment strings are supported, + but may be slower and `quote` must be empty if used. + Use None to disable all use of comments. + quote : str or None, optional + Character that is used to quote string fields. Default is '"' + (a double quote). Use None to disable quote support. + imaginary_unit : str, optional + Character that represent the imaginary unit `sqrt(-1)`. + Default is 'j'. + usecols : array_like, optional + A one-dimensional array of integer column numbers. These are the + columns from the file to be included in the array. If this value + is not given, all the columns are used. + skiplines : int, optional + Number of lines to skip before interpreting the data in the file. + max_rows : int, optional + Maximum number of rows of data to read. Default is to read the + entire file. + converters : dict or callable, optional + A function to parse all columns strings into the desired value, or + a dictionary mapping column number to a parser function. + E.g. if column 0 is a date string: ``converters = {0: datestr2num}``. + Converters can also be used to provide a default value for missing + data, e.g. ``converters = lambda s: float(s.strip() or 0)`` will + convert empty fields to 0. + Default: None + ndmin : int, optional + Minimum dimension of the array returned. + Allowed values are 0, 1 or 2. Default is 0. + unpack : bool, optional + If True, the returned array is transposed, so that arguments may be + unpacked using ``x, y, z = read(...)``. When used with a structured + data-type, arrays are returned for each field. Default is False. + dtype : numpy data type + A NumPy dtype instance, can be a structured dtype to map to the + columns of the file. + encoding : str, optional + Encoding used to decode the inputfile. The special value 'bytes' + (the default) enables backwards-compatible behavior for `converters`, + ensuring that inputs to the converter functions are encoded + bytes objects. The special value 'bytes' has no additional effect if + ``converters=None``. If encoding is ``'bytes'`` or ``None``, the + default system encoding is used. + + Returns + ------- + ndarray + NumPy array. + """ + # Handle special 'bytes' keyword for encoding + byte_converters = False + if encoding == 'bytes': + encoding = None + byte_converters = True + + if dtype is None: + raise TypeError("a dtype must be provided.") + dtype = np.dtype(dtype) + + read_dtype_via_object_chunks = None + if dtype.kind in 'SUM' and dtype in { + np.dtype("S0"), np.dtype("U0"), np.dtype("M8"), np.dtype("m8")}: + # This is a legacy "flexible" dtype. We do not truly support + # parametric dtypes currently (no dtype discovery step in the core), + # but have to support these for backward compatibility. + read_dtype_via_object_chunks = dtype + dtype = np.dtype(object) + + if usecols is not None: + # Allow usecols to be a single int or a sequence of ints, the C-code + # handles the rest + try: + usecols = list(usecols) + except TypeError: + usecols = [usecols] + + _ensure_ndmin_ndarray_check_param(ndmin) + + if comment is None: + comments = None + else: + # assume comments are a sequence of strings + if "" in comment: + raise ValueError( + "comments cannot be an empty string. Use comments=None to " + "disable comments." + ) + comments = tuple(comment) + comment = None + if len(comments) == 0: + comments = None # No comments at all + elif len(comments) == 1: + # If there is only one comment, and that comment has one character, + # the normal parsing can deal with it just fine. + if isinstance(comments[0], str) and len(comments[0]) == 1: + comment = comments[0] + comments = None + # Input validation if there are multiple comment characters + elif delimiter in comments: + raise TypeError( + f"Comment characters '{comments}' cannot include the " + f"delimiter '{delimiter}'" + ) + + # comment is now either a 1 or 0 character string or a tuple: + if comments is not None: + # Note: An earlier version support two character comments (and could + # have been extended to multiple characters, we assume this is + # rare enough to not optimize for. + if quote is not None: + raise ValueError( + "when multiple comments or a multi-character comment is " + "given, quotes are not supported. In this case quotechar " + "must be set to None.") + + if len(imaginary_unit) != 1: + raise ValueError('len(imaginary_unit) must be 1.') + + _check_nonneg_int(skiplines) + if max_rows is not None: + _check_nonneg_int(max_rows) + else: + # Passing -1 to the C code means "read the entire file". + max_rows = -1 + + fh_closing_ctx = contextlib.nullcontext() + filelike = False + try: + if isinstance(fname, os.PathLike): + fname = os.fspath(fname) + if isinstance(fname, str): + fh = np.lib._datasource.open(fname, 'rt', encoding=encoding) + if encoding is None: + encoding = getattr(fh, 'encoding', 'latin1') + + fh_closing_ctx = contextlib.closing(fh) + data = fh + filelike = True + else: + if encoding is None: + encoding = getattr(fname, 'encoding', 'latin1') + data = iter(fname) + except TypeError as e: + raise ValueError( + f"fname must be a string, filehandle, list of strings,\n" + f"or generator. Got {type(fname)} instead.") from e + + with fh_closing_ctx: + if comments is not None: + if filelike: + data = iter(data) + filelike = False + data = _preprocess_comments(data, comments, encoding) + + if read_dtype_via_object_chunks is None: + arr = _load_from_filelike( + data, delimiter=delimiter, comment=comment, quote=quote, + imaginary_unit=imaginary_unit, + usecols=usecols, skiplines=skiplines, max_rows=max_rows, + converters=converters, dtype=dtype, + encoding=encoding, filelike=filelike, + byte_converters=byte_converters) + + else: + # This branch reads the file into chunks of object arrays and then + # casts them to the desired actual dtype. This ensures correct + # string-length and datetime-unit discovery (like `arr.astype()`). + # Due to chunking, certain error reports are less clear, currently. + if filelike: + data = iter(data) # cannot chunk when reading from file + filelike = False + + c_byte_converters = False + if read_dtype_via_object_chunks == "S": + c_byte_converters = True # Use latin1 rather than ascii + + chunks = [] + while max_rows != 0: + if max_rows < 0: + chunk_size = _loadtxt_chunksize + else: + chunk_size = min(_loadtxt_chunksize, max_rows) + + next_arr = _load_from_filelike( + data, delimiter=delimiter, comment=comment, quote=quote, + imaginary_unit=imaginary_unit, + usecols=usecols, skiplines=skiplines, max_rows=chunk_size, + converters=converters, dtype=dtype, + encoding=encoding, filelike=filelike, + byte_converters=byte_converters, + c_byte_converters=c_byte_converters) + # Cast here already. We hope that this is better even for + # large files because the storage is more compact. It could + # be adapted (in principle the concatenate could cast). + chunks.append(next_arr.astype(read_dtype_via_object_chunks)) + + skiplines = 0 # Only have to skip for first chunk + if max_rows >= 0: + max_rows -= chunk_size + if len(next_arr) < chunk_size: + # There was less data than requested, so we are done. + break + + # Need at least one chunk, but if empty, the last one may have + # the wrong shape. + if len(chunks) > 1 and len(chunks[-1]) == 0: + del chunks[-1] + if len(chunks) == 1: + arr = chunks[0] + else: + arr = np.concatenate(chunks, axis=0) + + # NOTE: ndmin works as advertised for structured dtypes, but normally + # these would return a 1D result plus the structured dimension, + # so ndmin=2 adds a third dimension even when no squeezing occurs. + # A `squeeze=False` could be a better solution (pandas uses squeeze). + arr = _ensure_ndmin_ndarray(arr, ndmin=ndmin) + + if arr.shape: + if arr.shape[0] == 0: + warnings.warn( + f'loadtxt: input contained no data: "{fname}"', + category=UserWarning, + stacklevel=3 + ) + + if unpack: + # Unpack structured dtypes if requested: + dt = arr.dtype + if dt.names is not None: + # For structured arrays, return an array for each field. + return [arr[field] for field in dt.names] + else: + return arr.T + else: + return arr + + +@finalize_array_function_like +@set_module('numpy') +def loadtxt(fname, dtype=float, comments='#', delimiter=None, + converters=None, skiprows=0, usecols=None, unpack=False, + ndmin=0, encoding=None, max_rows=None, *, quotechar=None, + like=None): + r""" + Load data from a text file. + + Parameters + ---------- + fname : file, str, pathlib.Path, list of str, generator + File, filename, list, or generator to read. If the filename + extension is ``.gz`` or ``.bz2``, the file is first decompressed. Note + that generators must return bytes or strings. The strings + in a list or produced by a generator are treated as lines. + dtype : data-type, optional + Data-type of the resulting array; default: float. If this is a + structured data-type, the resulting array will be 1-dimensional, and + each row will be interpreted as an element of the array. In this + case, the number of columns used must match the number of fields in + the data-type. + comments : str or sequence of str or None, optional + The characters or list of characters used to indicate the start of a + comment. None implies no comments. For backwards compatibility, byte + strings will be decoded as 'latin1'. The default is '#'. + delimiter : str, optional + The character used to separate the values. For backwards compatibility, + byte strings will be decoded as 'latin1'. The default is whitespace. + + .. versionchanged:: 1.23.0 + Only single character delimiters are supported. Newline characters + cannot be used as the delimiter. + + converters : dict or callable, optional + Converter functions to customize value parsing. If `converters` is + callable, the function is applied to all columns, else it must be a + dict that maps column number to a parser function. + See examples for further details. + Default: None. + + .. versionchanged:: 1.23.0 + The ability to pass a single callable to be applied to all columns + was added. + + skiprows : int, optional + Skip the first `skiprows` lines, including comments; default: 0. + usecols : int or sequence, optional + Which columns to read, with 0 being the first. For example, + ``usecols = (1,4,5)`` will extract the 2nd, 5th and 6th columns. + The default, None, results in all columns being read. + unpack : bool, optional + If True, the returned array is transposed, so that arguments may be + unpacked using ``x, y, z = loadtxt(...)``. When used with a + structured data-type, arrays are returned for each field. + Default is False. + ndmin : int, optional + The returned array will have at least `ndmin` dimensions. + Otherwise mono-dimensional axes will be squeezed. + Legal values: 0 (default), 1 or 2. + encoding : str, optional + Encoding used to decode the inputfile. Does not apply to input streams. + The special value 'bytes' enables backward compatibility workarounds + that ensures you receive byte arrays as results if possible and passes + 'latin1' encoded strings to converters. Override this value to receive + unicode arrays and pass strings as input to converters. If set to None + the system default is used. The default value is None. + + .. versionchanged:: 2.0 + Before NumPy 2, the default was ``'bytes'`` for Python 2 + compatibility. The default is now ``None``. + + max_rows : int, optional + Read `max_rows` rows of content after `skiprows` lines. The default is + to read all the rows. Note that empty rows containing no data such as + empty lines and comment lines are not counted towards `max_rows`, + while such lines are counted in `skiprows`. + + .. versionchanged:: 1.23.0 + Lines containing no data, including comment lines (e.g., lines + starting with '#' or as specified via `comments`) are not counted + towards `max_rows`. + quotechar : unicode character or None, optional + The character used to denote the start and end of a quoted item. + Occurrences of the delimiter or comment characters are ignored within + a quoted item. The default value is ``quotechar=None``, which means + quoting support is disabled. + + If two consecutive instances of `quotechar` are found within a quoted + field, the first is treated as an escape character. See examples. + + .. versionadded:: 1.23.0 + ${ARRAY_FUNCTION_LIKE} + + .. versionadded:: 1.20.0 + + Returns + ------- + out : ndarray + Data read from the text file. + + See Also + -------- + load, fromstring, fromregex + genfromtxt : Load data with missing values handled as specified. + scipy.io.loadmat : reads MATLAB data files + + Notes + ----- + This function aims to be a fast reader for simply formatted files. The + `genfromtxt` function provides more sophisticated handling of, e.g., + lines with missing values. + + Each row in the input text file must have the same number of values to be + able to read all values. If all rows do not have same number of values, a + subset of up to n columns (where n is the least number of values present + in all rows) can be read by specifying the columns via `usecols`. + + The strings produced by the Python float.hex method can be used as + input for floats. + + Examples + -------- + >>> import numpy as np + >>> from io import StringIO # StringIO behaves like a file object + >>> c = StringIO("0 1\n2 3") + >>> np.loadtxt(c) + array([[0., 1.], + [2., 3.]]) + + >>> d = StringIO("M 21 72\nF 35 58") + >>> np.loadtxt(d, dtype={'names': ('gender', 'age', 'weight'), + ... 'formats': ('S1', 'i4', 'f4')}) + array([(b'M', 21, 72.), (b'F', 35, 58.)], + dtype=[('gender', 'S1'), ('age', '<i4'), ('weight', '<f4')]) + + >>> c = StringIO("1,0,2\n3,0,4") + >>> x, y = np.loadtxt(c, delimiter=',', usecols=(0, 2), unpack=True) + >>> x + array([1., 3.]) + >>> y + array([2., 4.]) + + The `converters` argument is used to specify functions to preprocess the + text prior to parsing. `converters` can be a dictionary that maps + preprocessing functions to each column: + + >>> s = StringIO("1.618, 2.296\n3.141, 4.669\n") + >>> conv = { + ... 0: lambda x: np.floor(float(x)), # conversion fn for column 0 + ... 1: lambda x: np.ceil(float(x)), # conversion fn for column 1 + ... } + >>> np.loadtxt(s, delimiter=",", converters=conv) + array([[1., 3.], + [3., 5.]]) + + `converters` can be a callable instead of a dictionary, in which case it + is applied to all columns: + + >>> s = StringIO("0xDE 0xAD\n0xC0 0xDE") + >>> import functools + >>> conv = functools.partial(int, base=16) + >>> np.loadtxt(s, converters=conv) + array([[222., 173.], + [192., 222.]]) + + This example shows how `converters` can be used to convert a field + with a trailing minus sign into a negative number. + + >>> s = StringIO("10.01 31.25-\n19.22 64.31\n17.57- 63.94") + >>> def conv(fld): + ... return -float(fld[:-1]) if fld.endswith("-") else float(fld) + ... + >>> np.loadtxt(s, converters=conv) + array([[ 10.01, -31.25], + [ 19.22, 64.31], + [-17.57, 63.94]]) + + Using a callable as the converter can be particularly useful for handling + values with different formatting, e.g. floats with underscores: + + >>> s = StringIO("1 2.7 100_000") + >>> np.loadtxt(s, converters=float) + array([1.e+00, 2.7e+00, 1.e+05]) + + This idea can be extended to automatically handle values specified in + many different formats, such as hex values: + + >>> def conv(val): + ... try: + ... return float(val) + ... except ValueError: + ... return float.fromhex(val) + >>> s = StringIO("1, 2.5, 3_000, 0b4, 0x1.4000000000000p+2") + >>> np.loadtxt(s, delimiter=",", converters=conv) + array([1.0e+00, 2.5e+00, 3.0e+03, 1.8e+02, 5.0e+00]) + + Or a format where the ``-`` sign comes after the number: + + >>> s = StringIO("10.01 31.25-\n19.22 64.31\n17.57- 63.94") + >>> conv = lambda x: -float(x[:-1]) if x.endswith("-") else float(x) + >>> np.loadtxt(s, converters=conv) + array([[ 10.01, -31.25], + [ 19.22, 64.31], + [-17.57, 63.94]]) + + Support for quoted fields is enabled with the `quotechar` parameter. + Comment and delimiter characters are ignored when they appear within a + quoted item delineated by `quotechar`: + + >>> s = StringIO('"alpha, #42", 10.0\n"beta, #64", 2.0\n') + >>> dtype = np.dtype([("label", "U12"), ("value", float)]) + >>> np.loadtxt(s, dtype=dtype, delimiter=",", quotechar='"') + array([('alpha, #42', 10.), ('beta, #64', 2.)], + dtype=[('label', '<U12'), ('value', '<f8')]) + + Quoted fields can be separated by multiple whitespace characters: + + >>> s = StringIO('"alpha, #42" 10.0\n"beta, #64" 2.0\n') + >>> dtype = np.dtype([("label", "U12"), ("value", float)]) + >>> np.loadtxt(s, dtype=dtype, delimiter=None, quotechar='"') + array([('alpha, #42', 10.), ('beta, #64', 2.)], + dtype=[('label', '<U12'), ('value', '<f8')]) + + Two consecutive quote characters within a quoted field are treated as a + single escaped character: + + >>> s = StringIO('"Hello, my name is ""Monty""!"') + >>> np.loadtxt(s, dtype="U", delimiter=",", quotechar='"') + array('Hello, my name is "Monty"!', dtype='<U26') + + Read subset of columns when all rows do not contain equal number of values: + + >>> d = StringIO("1 2\n2 4\n3 9 12\n4 16 20") + >>> np.loadtxt(d, usecols=(0, 1)) + array([[ 1., 2.], + [ 2., 4.], + [ 3., 9.], + [ 4., 16.]]) + + """ + + if like is not None: + return _loadtxt_with_like( + like, fname, dtype=dtype, comments=comments, delimiter=delimiter, + converters=converters, skiprows=skiprows, usecols=usecols, + unpack=unpack, ndmin=ndmin, encoding=encoding, + max_rows=max_rows + ) + + if isinstance(delimiter, bytes): + delimiter.decode("latin1") + + if dtype is None: + dtype = np.float64 + + comment = comments + # Control character type conversions for Py3 convenience + if comment is not None: + if isinstance(comment, (str, bytes)): + comment = [comment] + comment = [ + x.decode('latin1') if isinstance(x, bytes) else x for x in comment] + if isinstance(delimiter, bytes): + delimiter = delimiter.decode('latin1') + + arr = _read(fname, dtype=dtype, comment=comment, delimiter=delimiter, + converters=converters, skiplines=skiprows, usecols=usecols, + unpack=unpack, ndmin=ndmin, encoding=encoding, + max_rows=max_rows, quote=quotechar) + + return arr + + +_loadtxt_with_like = array_function_dispatch()(loadtxt) + + +def _savetxt_dispatcher(fname, X, fmt=None, delimiter=None, newline=None, + header=None, footer=None, comments=None, + encoding=None): + return (X,) + + +@array_function_dispatch(_savetxt_dispatcher) +def savetxt(fname, X, fmt='%.18e', delimiter=' ', newline='\n', header='', + footer='', comments='# ', encoding=None): + """ + Save an array to a text file. + + Parameters + ---------- + fname : filename, file handle or pathlib.Path + If the filename ends in ``.gz``, the file is automatically saved in + compressed gzip format. `loadtxt` understands gzipped files + transparently. + X : 1D or 2D array_like + Data to be saved to a text file. + fmt : str or sequence of strs, optional + A single format (%10.5f), a sequence of formats, or a + multi-format string, e.g. 'Iteration %d -- %10.5f', in which + case `delimiter` is ignored. For complex `X`, the legal options + for `fmt` are: + + * a single specifier, ``fmt='%.4e'``, resulting in numbers formatted + like ``' (%s+%sj)' % (fmt, fmt)`` + * a full string specifying every real and imaginary part, e.g. + ``' %.4e %+.4ej %.4e %+.4ej %.4e %+.4ej'`` for 3 columns + * a list of specifiers, one per column - in this case, the real + and imaginary part must have separate specifiers, + e.g. ``['%.3e + %.3ej', '(%.15e%+.15ej)']`` for 2 columns + delimiter : str, optional + String or character separating columns. + newline : str, optional + String or character separating lines. + header : str, optional + String that will be written at the beginning of the file. + footer : str, optional + String that will be written at the end of the file. + comments : str, optional + String that will be prepended to the ``header`` and ``footer`` strings, + to mark them as comments. Default: '# ', as expected by e.g. + ``numpy.loadtxt``. + encoding : {None, str}, optional + Encoding used to encode the outputfile. Does not apply to output + streams. If the encoding is something other than 'bytes' or 'latin1' + you will not be able to load the file in NumPy versions < 1.14. Default + is 'latin1'. + + See Also + -------- + save : Save an array to a binary file in NumPy ``.npy`` format + savez : Save several arrays into an uncompressed ``.npz`` archive + savez_compressed : Save several arrays into a compressed ``.npz`` archive + + Notes + ----- + Further explanation of the `fmt` parameter + (``%[flag]width[.precision]specifier``): + + flags: + ``-`` : left justify + + ``+`` : Forces to precede result with + or -. + + ``0`` : Left pad the number with zeros instead of space (see width). + + width: + Minimum number of characters to be printed. The value is not truncated + if it has more characters. + + precision: + - For integer specifiers (eg. ``d,i,o,x``), the minimum number of + digits. + - For ``e, E`` and ``f`` specifiers, the number of digits to print + after the decimal point. + - For ``g`` and ``G``, the maximum number of significant digits. + - For ``s``, the maximum number of characters. + + specifiers: + ``c`` : character + + ``d`` or ``i`` : signed decimal integer + + ``e`` or ``E`` : scientific notation with ``e`` or ``E``. + + ``f`` : decimal floating point + + ``g,G`` : use the shorter of ``e,E`` or ``f`` + + ``o`` : signed octal + + ``s`` : string of characters + + ``u`` : unsigned decimal integer + + ``x,X`` : unsigned hexadecimal integer + + This explanation of ``fmt`` is not complete, for an exhaustive + specification see [1]_. + + References + ---------- + .. [1] `Format Specification Mini-Language + <https://docs.python.org/library/string.html#format-specification-mini-language>`_, + Python Documentation. + + Examples + -------- + >>> import numpy as np + >>> x = y = z = np.arange(0.0,5.0,1.0) + >>> np.savetxt('test.out', x, delimiter=',') # X is an array + >>> np.savetxt('test.out', (x,y,z)) # x,y,z equal sized 1D arrays + >>> np.savetxt('test.out', x, fmt='%1.4e') # use exponential notation + + """ + + class WriteWrap: + """Convert to bytes on bytestream inputs. + + """ + def __init__(self, fh, encoding): + self.fh = fh + self.encoding = encoding + self.do_write = self.first_write + + def close(self): + self.fh.close() + + def write(self, v): + self.do_write(v) + + def write_bytes(self, v): + if isinstance(v, bytes): + self.fh.write(v) + else: + self.fh.write(v.encode(self.encoding)) + + def write_normal(self, v): + self.fh.write(asunicode(v)) + + def first_write(self, v): + try: + self.write_normal(v) + self.write = self.write_normal + except TypeError: + # input is probably a bytestream + self.write_bytes(v) + self.write = self.write_bytes + + own_fh = False + if isinstance(fname, os.PathLike): + fname = os.fspath(fname) + if _is_string_like(fname): + # datasource doesn't support creating a new file ... + open(fname, 'wt').close() + fh = np.lib._datasource.open(fname, 'wt', encoding=encoding) + own_fh = True + elif hasattr(fname, 'write'): + # wrap to handle byte output streams + fh = WriteWrap(fname, encoding or 'latin1') + else: + raise ValueError('fname must be a string or file handle') + + try: + X = np.asarray(X) + + # Handle 1-dimensional arrays + if X.ndim == 0 or X.ndim > 2: + raise ValueError( + "Expected 1D or 2D array, got %dD array instead" % X.ndim) + elif X.ndim == 1: + # Common case -- 1d array of numbers + if X.dtype.names is None: + X = np.atleast_2d(X).T + ncol = 1 + + # Complex dtype -- each field indicates a separate column + else: + ncol = len(X.dtype.names) + else: + ncol = X.shape[1] + + iscomplex_X = np.iscomplexobj(X) + # `fmt` can be a string with multiple insertion points or a + # list of formats. E.g. '%10.5f\t%10d' or ('%10.5f', '$10d') + if type(fmt) in (list, tuple): + if len(fmt) != ncol: + raise AttributeError(f'fmt has wrong shape. {str(fmt)}') + format = delimiter.join(fmt) + elif isinstance(fmt, str): + n_fmt_chars = fmt.count('%') + error = ValueError(f'fmt has wrong number of % formats: {fmt}') + if n_fmt_chars == 1: + if iscomplex_X: + fmt = [f' ({fmt}+{fmt}j)', ] * ncol + else: + fmt = [fmt, ] * ncol + format = delimiter.join(fmt) + elif iscomplex_X and n_fmt_chars != (2 * ncol): + raise error + elif ((not iscomplex_X) and n_fmt_chars != ncol): + raise error + else: + format = fmt + else: + raise ValueError(f'invalid fmt: {fmt!r}') + + if len(header) > 0: + header = header.replace('\n', '\n' + comments) + fh.write(comments + header + newline) + if iscomplex_X: + for row in X: + row2 = [] + for number in row: + row2.extend((number.real, number.imag)) + s = format % tuple(row2) + newline + fh.write(s.replace('+-', '-')) + else: + for row in X: + try: + v = format % tuple(row) + newline + except TypeError as e: + raise TypeError("Mismatch between array dtype ('%s') and " + "format specifier ('%s')" + % (str(X.dtype), format)) from e + fh.write(v) + + if len(footer) > 0: + footer = footer.replace('\n', '\n' + comments) + fh.write(comments + footer + newline) + finally: + if own_fh: + fh.close() + + +@set_module('numpy') +def fromregex(file, regexp, dtype, encoding=None): + r""" + Construct an array from a text file, using regular expression parsing. + + The returned array is always a structured array, and is constructed from + all matches of the regular expression in the file. Groups in the regular + expression are converted to fields of the structured array. + + Parameters + ---------- + file : file, str, or pathlib.Path + Filename or file object to read. + + .. versionchanged:: 1.22.0 + Now accepts `os.PathLike` implementations. + + regexp : str or regexp + Regular expression used to parse the file. + Groups in the regular expression correspond to fields in the dtype. + dtype : dtype or list of dtypes + Dtype for the structured array; must be a structured datatype. + encoding : str, optional + Encoding used to decode the inputfile. Does not apply to input streams. + + Returns + ------- + output : ndarray + The output array, containing the part of the content of `file` that + was matched by `regexp`. `output` is always a structured array. + + Raises + ------ + TypeError + When `dtype` is not a valid dtype for a structured array. + + See Also + -------- + fromstring, loadtxt + + Notes + ----- + Dtypes for structured arrays can be specified in several forms, but all + forms specify at least the data type and field name. For details see + `basics.rec`. + + Examples + -------- + >>> import numpy as np + >>> from io import StringIO + >>> text = StringIO("1312 foo\n1534 bar\n444 qux") + + >>> regexp = r"(\d+)\s+(...)" # match [digits, whitespace, anything] + >>> output = np.fromregex(text, regexp, + ... [('num', np.int64), ('key', 'S3')]) + >>> output + array([(1312, b'foo'), (1534, b'bar'), ( 444, b'qux')], + dtype=[('num', '<i8'), ('key', 'S3')]) + >>> output['num'] + array([1312, 1534, 444]) + + """ + own_fh = False + if not hasattr(file, "read"): + file = os.fspath(file) + file = np.lib._datasource.open(file, 'rt', encoding=encoding) + own_fh = True + + try: + if not isinstance(dtype, np.dtype): + dtype = np.dtype(dtype) + if dtype.names is None: + raise TypeError('dtype must be a structured datatype.') + + content = file.read() + if isinstance(content, bytes) and isinstance(regexp, str): + regexp = asbytes(regexp) + + if not hasattr(regexp, 'match'): + regexp = re.compile(regexp) + seq = regexp.findall(content) + if seq and not isinstance(seq[0], tuple): + # Only one group is in the regexp. + # Create the new array as a single data-type and then + # re-interpret as a single-field structured array. + newdtype = np.dtype(dtype[dtype.names[0]]) + output = np.array(seq, dtype=newdtype) + output.dtype = dtype + else: + output = np.array(seq, dtype=dtype) + + return output + finally: + if own_fh: + file.close() + + +#####-------------------------------------------------------------------------- +#---- --- ASCII functions --- +#####-------------------------------------------------------------------------- + + +@finalize_array_function_like +@set_module('numpy') +def genfromtxt(fname, dtype=float, comments='#', delimiter=None, + skip_header=0, skip_footer=0, converters=None, + missing_values=None, filling_values=None, usecols=None, + names=None, excludelist=None, + deletechars=''.join(sorted(NameValidator.defaultdeletechars)), # noqa: B008 + replace_space='_', autostrip=False, case_sensitive=True, + defaultfmt="f%i", unpack=None, usemask=False, loose=True, + invalid_raise=True, max_rows=None, encoding=None, + *, ndmin=0, like=None): + """ + Load data from a text file, with missing values handled as specified. + + Each line past the first `skip_header` lines is split at the `delimiter` + character, and characters following the `comments` character are discarded. + + Parameters + ---------- + fname : file, str, pathlib.Path, list of str, generator + File, filename, list, or generator to read. If the filename + extension is ``.gz`` or ``.bz2``, the file is first decompressed. Note + that generators must return bytes or strings. The strings + in a list or produced by a generator are treated as lines. + dtype : dtype, optional + Data type of the resulting array. + If None, the dtypes will be determined by the contents of each + column, individually. + comments : str, optional + The character used to indicate the start of a comment. + All the characters occurring on a line after a comment are discarded. + delimiter : str, int, or sequence, optional + The string used to separate values. By default, any consecutive + whitespaces act as delimiter. An integer or sequence of integers + can also be provided as width(s) of each field. + skiprows : int, optional + `skiprows` was removed in numpy 1.10. Please use `skip_header` instead. + skip_header : int, optional + The number of lines to skip at the beginning of the file. + skip_footer : int, optional + The number of lines to skip at the end of the file. + converters : variable, optional + The set of functions that convert the data of a column to a value. + The converters can also be used to provide a default value + for missing data: ``converters = {3: lambda s: float(s or 0)}``. + missing : variable, optional + `missing` was removed in numpy 1.10. Please use `missing_values` + instead. + missing_values : variable, optional + The set of strings corresponding to missing data. + filling_values : variable, optional + The set of values to be used as default when the data are missing. + usecols : sequence, optional + Which columns to read, with 0 being the first. For example, + ``usecols = (1, 4, 5)`` will extract the 2nd, 5th and 6th columns. + names : {None, True, str, sequence}, optional + If `names` is True, the field names are read from the first line after + the first `skip_header` lines. This line can optionally be preceded + by a comment delimiter. Any content before the comment delimiter is + discarded. If `names` is a sequence or a single-string of + comma-separated names, the names will be used to define the field + names in a structured dtype. If `names` is None, the names of the + dtype fields will be used, if any. + excludelist : sequence, optional + A list of names to exclude. This list is appended to the default list + ['return','file','print']. Excluded names are appended with an + underscore: for example, `file` would become `file_`. + deletechars : str, optional + A string combining invalid characters that must be deleted from the + names. + defaultfmt : str, optional + A format used to define default field names, such as "f%i" or "f_%02i". + autostrip : bool, optional + Whether to automatically strip white spaces from the variables. + replace_space : char, optional + Character(s) used in replacement of white spaces in the variable + names. By default, use a '_'. + case_sensitive : {True, False, 'upper', 'lower'}, optional + If True, field names are case sensitive. + If False or 'upper', field names are converted to upper case. + If 'lower', field names are converted to lower case. + unpack : bool, optional + If True, the returned array is transposed, so that arguments may be + unpacked using ``x, y, z = genfromtxt(...)``. When used with a + structured data-type, arrays are returned for each field. + Default is False. + usemask : bool, optional + If True, return a masked array. + If False, return a regular array. + loose : bool, optional + If True, do not raise errors for invalid values. + invalid_raise : bool, optional + If True, an exception is raised if an inconsistency is detected in the + number of columns. + If False, a warning is emitted and the offending lines are skipped. + max_rows : int, optional + The maximum number of rows to read. Must not be used with skip_footer + at the same time. If given, the value must be at least 1. Default is + to read the entire file. + encoding : str, optional + Encoding used to decode the inputfile. Does not apply when `fname` + is a file object. The special value 'bytes' enables backward + compatibility workarounds that ensure that you receive byte arrays + when possible and passes latin1 encoded strings to converters. + Override this value to receive unicode arrays and pass strings + as input to converters. If set to None the system default is used. + The default value is 'bytes'. + + .. versionchanged:: 2.0 + Before NumPy 2, the default was ``'bytes'`` for Python 2 + compatibility. The default is now ``None``. + + ndmin : int, optional + Same parameter as `loadtxt` + + .. versionadded:: 1.23.0 + ${ARRAY_FUNCTION_LIKE} + + .. versionadded:: 1.20.0 + + Returns + ------- + out : ndarray + Data read from the text file. If `usemask` is True, this is a + masked array. + + See Also + -------- + numpy.loadtxt : equivalent function when no data is missing. + + Notes + ----- + * When spaces are used as delimiters, or when no delimiter has been given + as input, there should not be any missing data between two fields. + * When variables are named (either by a flexible dtype or with a `names` + sequence), there must not be any header in the file (else a ValueError + exception is raised). + * Individual values are not stripped of spaces by default. + When using a custom converter, make sure the function does remove spaces. + * Custom converters may receive unexpected values due to dtype + discovery. + + References + ---------- + .. [1] NumPy User Guide, section `I/O with NumPy + <https://docs.scipy.org/doc/numpy/user/basics.io.genfromtxt.html>`_. + + Examples + -------- + >>> from io import StringIO + >>> import numpy as np + + Comma delimited file with mixed dtype + + >>> s = StringIO("1,1.3,abcde") + >>> data = np.genfromtxt(s, dtype=[('myint','i8'),('myfloat','f8'), + ... ('mystring','S5')], delimiter=",") + >>> data + array((1, 1.3, b'abcde'), + dtype=[('myint', '<i8'), ('myfloat', '<f8'), ('mystring', 'S5')]) + + Using dtype = None + + >>> _ = s.seek(0) # needed for StringIO example only + >>> data = np.genfromtxt(s, dtype=None, + ... names = ['myint','myfloat','mystring'], delimiter=",") + >>> data + array((1, 1.3, 'abcde'), + dtype=[('myint', '<i8'), ('myfloat', '<f8'), ('mystring', '<U5')]) + + Specifying dtype and names + + >>> _ = s.seek(0) + >>> data = np.genfromtxt(s, dtype="i8,f8,S5", + ... names=['myint','myfloat','mystring'], delimiter=",") + >>> data + array((1, 1.3, b'abcde'), + dtype=[('myint', '<i8'), ('myfloat', '<f8'), ('mystring', 'S5')]) + + An example with fixed-width columns + + >>> s = StringIO("11.3abcde") + >>> data = np.genfromtxt(s, dtype=None, names=['intvar','fltvar','strvar'], + ... delimiter=[1,3,5]) + >>> data + array((1, 1.3, 'abcde'), + dtype=[('intvar', '<i8'), ('fltvar', '<f8'), ('strvar', '<U5')]) + + An example to show comments + + >>> f = StringIO(''' + ... text,# of chars + ... hello world,11 + ... numpy,5''') + >>> np.genfromtxt(f, dtype='S12,S12', delimiter=',') + array([(b'text', b''), (b'hello world', b'11'), (b'numpy', b'5')], + dtype=[('f0', 'S12'), ('f1', 'S12')]) + + """ + + if like is not None: + return _genfromtxt_with_like( + like, fname, dtype=dtype, comments=comments, delimiter=delimiter, + skip_header=skip_header, skip_footer=skip_footer, + converters=converters, missing_values=missing_values, + filling_values=filling_values, usecols=usecols, names=names, + excludelist=excludelist, deletechars=deletechars, + replace_space=replace_space, autostrip=autostrip, + case_sensitive=case_sensitive, defaultfmt=defaultfmt, + unpack=unpack, usemask=usemask, loose=loose, + invalid_raise=invalid_raise, max_rows=max_rows, encoding=encoding, + ndmin=ndmin, + ) + + _ensure_ndmin_ndarray_check_param(ndmin) + + if max_rows is not None: + if skip_footer: + raise ValueError( + "The keywords 'skip_footer' and 'max_rows' can not be " + "specified at the same time.") + if max_rows < 1: + raise ValueError("'max_rows' must be at least 1.") + + if usemask: + from numpy.ma import MaskedArray, make_mask_descr + # Check the input dictionary of converters + user_converters = converters or {} + if not isinstance(user_converters, dict): + raise TypeError( + "The input argument 'converter' should be a valid dictionary " + "(got '%s' instead)" % type(user_converters)) + + if encoding == 'bytes': + encoding = None + byte_converters = True + else: + byte_converters = False + + # Initialize the filehandle, the LineSplitter and the NameValidator + if isinstance(fname, os.PathLike): + fname = os.fspath(fname) + if isinstance(fname, str): + fid = np.lib._datasource.open(fname, 'rt', encoding=encoding) + fid_ctx = contextlib.closing(fid) + else: + fid = fname + fid_ctx = contextlib.nullcontext(fid) + try: + fhd = iter(fid) + except TypeError as e: + raise TypeError( + "fname must be a string, a filehandle, a sequence of strings,\n" + f"or an iterator of strings. Got {type(fname)} instead." + ) from e + with fid_ctx: + split_line = LineSplitter(delimiter=delimiter, comments=comments, + autostrip=autostrip, encoding=encoding) + validate_names = NameValidator(excludelist=excludelist, + deletechars=deletechars, + case_sensitive=case_sensitive, + replace_space=replace_space) + + # Skip the first `skip_header` rows + try: + for i in range(skip_header): + next(fhd) + + # Keep on until we find the first valid values + first_values = None + + while not first_values: + first_line = _decode_line(next(fhd), encoding) + if (names is True) and (comments is not None): + if comments in first_line: + first_line = ( + ''.join(first_line.split(comments)[1:])) + first_values = split_line(first_line) + except StopIteration: + # return an empty array if the datafile is empty + first_line = '' + first_values = [] + warnings.warn( + f'genfromtxt: Empty input file: "{fname}"', stacklevel=2 + ) + + # Should we take the first values as names ? + if names is True: + fval = first_values[0].strip() + if comments is not None: + if fval in comments: + del first_values[0] + + # Check the columns to use: make sure `usecols` is a list + if usecols is not None: + try: + usecols = [_.strip() for _ in usecols.split(",")] + except AttributeError: + try: + usecols = list(usecols) + except TypeError: + usecols = [usecols, ] + nbcols = len(usecols or first_values) + + # Check the names and overwrite the dtype.names if needed + if names is True: + names = validate_names([str(_.strip()) for _ in first_values]) + first_line = '' + elif _is_string_like(names): + names = validate_names([_.strip() for _ in names.split(',')]) + elif names: + names = validate_names(names) + # Get the dtype + if dtype is not None: + dtype = easy_dtype(dtype, defaultfmt=defaultfmt, names=names, + excludelist=excludelist, + deletechars=deletechars, + case_sensitive=case_sensitive, + replace_space=replace_space) + # Make sure the names is a list (for 2.5) + if names is not None: + names = list(names) + + if usecols: + for (i, current) in enumerate(usecols): + # if usecols is a list of names, convert to a list of indices + if _is_string_like(current): + usecols[i] = names.index(current) + elif current < 0: + usecols[i] = current + len(first_values) + # If the dtype is not None, make sure we update it + if (dtype is not None) and (len(dtype) > nbcols): + descr = dtype.descr + dtype = np.dtype([descr[_] for _ in usecols]) + names = list(dtype.names) + # If `names` is not None, update the names + elif (names is not None) and (len(names) > nbcols): + names = [names[_] for _ in usecols] + elif (names is not None) and (dtype is not None): + names = list(dtype.names) + + # Process the missing values ............................... + # Rename missing_values for convenience + user_missing_values = missing_values or () + if isinstance(user_missing_values, bytes): + user_missing_values = user_missing_values.decode('latin1') + + # Define the list of missing_values (one column: one list) + missing_values = [[''] for _ in range(nbcols)] + + # We have a dictionary: process it field by field + if isinstance(user_missing_values, dict): + # Loop on the items + for (key, val) in user_missing_values.items(): + # Is the key a string ? + if _is_string_like(key): + try: + # Transform it into an integer + key = names.index(key) + except ValueError: + # We couldn't find it: the name must have been dropped + continue + # Redefine the key as needed if it's a column number + if usecols: + try: + key = usecols.index(key) + except ValueError: + pass + # Transform the value as a list of string + if isinstance(val, (list, tuple)): + val = [str(_) for _ in val] + else: + val = [str(val), ] + # Add the value(s) to the current list of missing + if key is None: + # None acts as default + for miss in missing_values: + miss.extend(val) + else: + missing_values[key].extend(val) + # We have a sequence : each item matches a column + elif isinstance(user_missing_values, (list, tuple)): + for (value, entry) in zip(user_missing_values, missing_values): + value = str(value) + if value not in entry: + entry.append(value) + # We have a string : apply it to all entries + elif isinstance(user_missing_values, str): + user_value = user_missing_values.split(",") + for entry in missing_values: + entry.extend(user_value) + # We have something else: apply it to all entries + else: + for entry in missing_values: + entry.extend([str(user_missing_values)]) + + # Process the filling_values ............................... + # Rename the input for convenience + user_filling_values = filling_values + if user_filling_values is None: + user_filling_values = [] + # Define the default + filling_values = [None] * nbcols + # We have a dictionary : update each entry individually + if isinstance(user_filling_values, dict): + for (key, val) in user_filling_values.items(): + if _is_string_like(key): + try: + # Transform it into an integer + key = names.index(key) + except ValueError: + # We couldn't find it: the name must have been dropped + continue + # Redefine the key if it's a column number + # and usecols is defined + if usecols: + try: + key = usecols.index(key) + except ValueError: + pass + # Add the value to the list + filling_values[key] = val + # We have a sequence : update on a one-to-one basis + elif isinstance(user_filling_values, (list, tuple)): + n = len(user_filling_values) + if (n <= nbcols): + filling_values[:n] = user_filling_values + else: + filling_values = user_filling_values[:nbcols] + # We have something else : use it for all entries + else: + filling_values = [user_filling_values] * nbcols + + # Initialize the converters ................................ + if dtype is None: + # Note: we can't use a [...]*nbcols, as we would have 3 times + # the same converter, instead of 3 different converters. + converters = [ + StringConverter(None, missing_values=miss, default=fill) + for (miss, fill) in zip(missing_values, filling_values) + ] + else: + dtype_flat = flatten_dtype(dtype, flatten_base=True) + # Initialize the converters + if len(dtype_flat) > 1: + # Flexible type : get a converter from each dtype + zipit = zip(dtype_flat, missing_values, filling_values) + converters = [StringConverter(dt, + locked=True, + missing_values=miss, + default=fill) + for (dt, miss, fill) in zipit] + else: + # Set to a default converter (but w/ different missing values) + zipit = zip(missing_values, filling_values) + converters = [StringConverter(dtype, + locked=True, + missing_values=miss, + default=fill) + for (miss, fill) in zipit] + # Update the converters to use the user-defined ones + uc_update = [] + for (j, conv) in user_converters.items(): + # If the converter is specified by column names, + # use the index instead + if _is_string_like(j): + try: + j = names.index(j) + i = j + except ValueError: + continue + elif usecols: + try: + i = usecols.index(j) + except ValueError: + # Unused converter specified + continue + else: + i = j + # Find the value to test - first_line is not filtered by usecols: + if len(first_line): + testing_value = first_values[j] + else: + testing_value = None + if conv is bytes: + user_conv = asbytes + elif byte_converters: + # Converters may use decode to workaround numpy's old + # behavior, so encode the string again before passing + # to the user converter. + def tobytes_first(x, conv): + if type(x) is bytes: + return conv(x) + return conv(x.encode("latin1")) + user_conv = functools.partial(tobytes_first, conv=conv) + else: + user_conv = conv + converters[i].update(user_conv, locked=True, + testing_value=testing_value, + default=filling_values[i], + missing_values=missing_values[i],) + uc_update.append((i, user_conv)) + # Make sure we have the corrected keys in user_converters... + user_converters.update(uc_update) + + # Fixme: possible error as following variable never used. + # miss_chars = [_.missing_values for _ in converters] + + # Initialize the output lists ... + # ... rows + rows = [] + append_to_rows = rows.append + # ... masks + if usemask: + masks = [] + append_to_masks = masks.append + # ... invalid + invalid = [] + append_to_invalid = invalid.append + + # Parse each line + for (i, line) in enumerate(itertools.chain([first_line, ], fhd)): + values = split_line(line) + nbvalues = len(values) + # Skip an empty line + if nbvalues == 0: + continue + if usecols: + # Select only the columns we need + try: + values = [values[_] for _ in usecols] + except IndexError: + append_to_invalid((i + skip_header + 1, nbvalues)) + continue + elif nbvalues != nbcols: + append_to_invalid((i + skip_header + 1, nbvalues)) + continue + # Store the values + append_to_rows(tuple(values)) + if usemask: + append_to_masks(tuple(v.strip() in m + for (v, m) in zip(values, + missing_values))) + if len(rows) == max_rows: + break + + # Upgrade the converters (if needed) + if dtype is None: + for (i, converter) in enumerate(converters): + current_column = [itemgetter(i)(_m) for _m in rows] + try: + converter.iterupgrade(current_column) + except ConverterLockError: + errmsg = f"Converter #{i} is locked and cannot be upgraded: " + current_column = map(itemgetter(i), rows) + for (j, value) in enumerate(current_column): + try: + converter.upgrade(value) + except (ConverterError, ValueError): + line_number = j + 1 + skip_header + errmsg += f"(occurred line #{line_number} for value '{value}')" + raise ConverterError(errmsg) + + # Check that we don't have invalid values + nbinvalid = len(invalid) + if nbinvalid > 0: + nbrows = len(rows) + nbinvalid - skip_footer + # Construct the error message + template = f" Line #%i (got %i columns instead of {nbcols})" + if skip_footer > 0: + nbinvalid_skipped = len([_ for _ in invalid + if _[0] > nbrows + skip_header]) + invalid = invalid[:nbinvalid - nbinvalid_skipped] + skip_footer -= nbinvalid_skipped +# +# nbrows -= skip_footer +# errmsg = [template % (i, nb) +# for (i, nb) in invalid if i < nbrows] +# else: + errmsg = [template % (i, nb) + for (i, nb) in invalid] + if len(errmsg): + errmsg.insert(0, "Some errors were detected !") + errmsg = "\n".join(errmsg) + # Raise an exception ? + if invalid_raise: + raise ValueError(errmsg) + # Issue a warning ? + else: + warnings.warn(errmsg, ConversionWarning, stacklevel=2) + + # Strip the last skip_footer data + if skip_footer > 0: + rows = rows[:-skip_footer] + if usemask: + masks = masks[:-skip_footer] + + # Convert each value according to the converter: + # We want to modify the list in place to avoid creating a new one... + if loose: + rows = list( + zip(*[[conv._loose_call(_r) for _r in map(itemgetter(i), rows)] + for (i, conv) in enumerate(converters)])) + else: + rows = list( + zip(*[[conv._strict_call(_r) for _r in map(itemgetter(i), rows)] + for (i, conv) in enumerate(converters)])) + + # Reset the dtype + data = rows + if dtype is None: + # Get the dtypes from the types of the converters + column_types = [conv.type for conv in converters] + # Find the columns with strings... + strcolidx = [i for (i, v) in enumerate(column_types) + if v == np.str_] + + if byte_converters and strcolidx: + # convert strings back to bytes for backward compatibility + warnings.warn( + "Reading unicode strings without specifying the encoding " + "argument is deprecated. Set the encoding, use None for the " + "system default.", + np.exceptions.VisibleDeprecationWarning, stacklevel=2) + + def encode_unicode_cols(row_tup): + row = list(row_tup) + for i in strcolidx: + row[i] = row[i].encode('latin1') + return tuple(row) + + try: + data = [encode_unicode_cols(r) for r in data] + except UnicodeEncodeError: + pass + else: + for i in strcolidx: + column_types[i] = np.bytes_ + + # Update string types to be the right length + sized_column_types = column_types.copy() + for i, col_type in enumerate(column_types): + if np.issubdtype(col_type, np.character): + n_chars = max(len(row[i]) for row in data) + sized_column_types[i] = (col_type, n_chars) + + if names is None: + # If the dtype is uniform (before sizing strings) + base = { + c_type + for c, c_type in zip(converters, column_types) + if c._checked} + if len(base) == 1: + uniform_type, = base + (ddtype, mdtype) = (uniform_type, bool) + else: + ddtype = [(defaultfmt % i, dt) + for (i, dt) in enumerate(sized_column_types)] + if usemask: + mdtype = [(defaultfmt % i, bool) + for (i, dt) in enumerate(sized_column_types)] + else: + ddtype = list(zip(names, sized_column_types)) + mdtype = list(zip(names, [bool] * len(sized_column_types))) + output = np.array(data, dtype=ddtype) + if usemask: + outputmask = np.array(masks, dtype=mdtype) + else: + # Overwrite the initial dtype names if needed + if names and dtype.names is not None: + dtype.names = names + # Case 1. We have a structured type + if len(dtype_flat) > 1: + # Nested dtype, eg [('a', int), ('b', [('b0', int), ('b1', 'f4')])] + # First, create the array using a flattened dtype: + # [('a', int), ('b1', int), ('b2', float)] + # Then, view the array using the specified dtype. + if 'O' in (_.char for _ in dtype_flat): + if has_nested_fields(dtype): + raise NotImplementedError( + "Nested fields involving objects are not supported...") + else: + output = np.array(data, dtype=dtype) + else: + rows = np.array(data, dtype=[('', _) for _ in dtype_flat]) + output = rows.view(dtype) + # Now, process the rowmasks the same way + if usemask: + rowmasks = np.array( + masks, dtype=np.dtype([('', bool) for t in dtype_flat])) + # Construct the new dtype + mdtype = make_mask_descr(dtype) + outputmask = rowmasks.view(mdtype) + # Case #2. We have a basic dtype + else: + # We used some user-defined converters + if user_converters: + ishomogeneous = True + descr = [] + for i, ttype in enumerate([conv.type for conv in converters]): + # Keep the dtype of the current converter + if i in user_converters: + ishomogeneous &= (ttype == dtype.type) + if np.issubdtype(ttype, np.character): + ttype = (ttype, max(len(row[i]) for row in data)) + descr.append(('', ttype)) + else: + descr.append(('', dtype)) + # So we changed the dtype ? + if not ishomogeneous: + # We have more than one field + if len(descr) > 1: + dtype = np.dtype(descr) + # We have only one field: drop the name if not needed. + else: + dtype = np.dtype(ttype) + # + output = np.array(data, dtype) + if usemask: + if dtype.names is not None: + mdtype = [(_, bool) for _ in dtype.names] + else: + mdtype = bool + outputmask = np.array(masks, dtype=mdtype) + # Try to take care of the missing data we missed + names = output.dtype.names + if usemask and names: + for (name, conv) in zip(names, converters): + missing_values = [conv(_) for _ in conv.missing_values + if _ != ''] + for mval in missing_values: + outputmask[name] |= (output[name] == mval) + # Construct the final array + if usemask: + output = output.view(MaskedArray) + output._mask = outputmask + + output = _ensure_ndmin_ndarray(output, ndmin=ndmin) + + if unpack: + if names is None: + return output.T + elif len(names) == 1: + # squeeze single-name dtypes too + return output[names[0]] + else: + # For structured arrays with multiple fields, + # return an array for each field. + return [output[field] for field in names] + return output + + +_genfromtxt_with_like = array_function_dispatch()(genfromtxt) + + +def recfromtxt(fname, **kwargs): + """ + Load ASCII data from a file and return it in a record array. + + If ``usemask=False`` a standard `recarray` is returned, + if ``usemask=True`` a MaskedRecords array is returned. + + .. deprecated:: 2.0 + Use `numpy.genfromtxt` instead. + + Parameters + ---------- + fname, kwargs : For a description of input parameters, see `genfromtxt`. + + See Also + -------- + numpy.genfromtxt : generic function + + Notes + ----- + By default, `dtype` is None, which means that the data-type of the output + array will be determined from the data. + + """ + + # Deprecated in NumPy 2.0, 2023-07-11 + warnings.warn( + "`recfromtxt` is deprecated, " + "use `numpy.genfromtxt` instead." + "(deprecated in NumPy 2.0)", + DeprecationWarning, + stacklevel=2 + ) + + kwargs.setdefault("dtype", None) + usemask = kwargs.get('usemask', False) + output = genfromtxt(fname, **kwargs) + if usemask: + from numpy.ma.mrecords import MaskedRecords + output = output.view(MaskedRecords) + else: + output = output.view(np.recarray) + return output + + +def recfromcsv(fname, **kwargs): + """ + Load ASCII data stored in a comma-separated file. + + The returned array is a record array (if ``usemask=False``, see + `recarray`) or a masked record array (if ``usemask=True``, + see `ma.mrecords.MaskedRecords`). + + .. deprecated:: 2.0 + Use `numpy.genfromtxt` with comma as `delimiter` instead. + + Parameters + ---------- + fname, kwargs : For a description of input parameters, see `genfromtxt`. + + See Also + -------- + numpy.genfromtxt : generic function to load ASCII data. + + Notes + ----- + By default, `dtype` is None, which means that the data-type of the output + array will be determined from the data. + + """ + + # Deprecated in NumPy 2.0, 2023-07-11 + warnings.warn( + "`recfromcsv` is deprecated, " + "use `numpy.genfromtxt` with comma as `delimiter` instead. " + "(deprecated in NumPy 2.0)", + DeprecationWarning, + stacklevel=2 + ) + + # Set default kwargs for genfromtxt as relevant to csv import. + kwargs.setdefault("case_sensitive", "lower") + kwargs.setdefault("names", True) + kwargs.setdefault("delimiter", ",") + kwargs.setdefault("dtype", None) + output = genfromtxt(fname, **kwargs) + + usemask = kwargs.get("usemask", False) + if usemask: + from numpy.ma.mrecords import MaskedRecords + output = output.view(MaskedRecords) + else: + output = output.view(np.recarray) + return output diff --git a/.venv/lib/python3.12/site-packages/numpy/lib/_npyio_impl.pyi b/.venv/lib/python3.12/site-packages/numpy/lib/_npyio_impl.pyi new file mode 100644 index 0000000..40369c5 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/lib/_npyio_impl.pyi @@ -0,0 +1,301 @@ +import types +import zipfile +from collections.abc import Callable, Collection, Iterable, Iterator, Mapping, Sequence +from re import Pattern +from typing import ( + IO, + Any, + ClassVar, + Generic, + Protocol, + Self, + TypeAlias, + overload, + type_check_only, +) +from typing import Literal as L + +from _typeshed import ( + StrOrBytesPath, + StrPath, + SupportsKeysAndGetItem, + SupportsRead, + SupportsWrite, +) +from typing_extensions import TypeVar, deprecated, override + +import numpy as np +from numpy._core.multiarray import packbits, unpackbits +from numpy._typing import ArrayLike, DTypeLike, NDArray, _DTypeLike, _SupportsArrayFunc +from numpy.ma.mrecords import MaskedRecords + +from ._datasource import DataSource as DataSource + +__all__ = [ + "fromregex", + "genfromtxt", + "load", + "loadtxt", + "packbits", + "save", + "savetxt", + "savez", + "savez_compressed", + "unpackbits", +] + +_T_co = TypeVar("_T_co", covariant=True) +_ScalarT = TypeVar("_ScalarT", bound=np.generic) +_ScalarT_co = TypeVar("_ScalarT_co", bound=np.generic, default=Any, covariant=True) + +_FName: TypeAlias = StrPath | Iterable[str] | Iterable[bytes] +_FNameRead: TypeAlias = StrPath | SupportsRead[str] | SupportsRead[bytes] +_FNameWriteBytes: TypeAlias = StrPath | SupportsWrite[bytes] +_FNameWrite: TypeAlias = _FNameWriteBytes | SupportsWrite[str] + +@type_check_only +class _SupportsReadSeek(SupportsRead[_T_co], Protocol[_T_co]): + def seek(self, offset: int, whence: int, /) -> object: ... + +class BagObj(Generic[_T_co]): + def __init__(self, /, obj: SupportsKeysAndGetItem[str, _T_co]) -> None: ... + def __getattribute__(self, key: str, /) -> _T_co: ... + def __dir__(self) -> list[str]: ... + +class NpzFile(Mapping[str, NDArray[_ScalarT_co]]): + _MAX_REPR_ARRAY_COUNT: ClassVar[int] = 5 + + zip: zipfile.ZipFile + fid: IO[str] | None + files: list[str] + allow_pickle: bool + pickle_kwargs: Mapping[str, Any] | None + f: BagObj[NpzFile[_ScalarT_co]] + + # + def __init__( + self, + /, + fid: IO[Any], + own_fid: bool = False, + allow_pickle: bool = False, + pickle_kwargs: Mapping[str, object] | None = None, + *, + max_header_size: int = 10_000, + ) -> None: ... + def __del__(self) -> None: ... + def __enter__(self) -> Self: ... + def __exit__(self, cls: type[BaseException] | None, e: BaseException | None, tb: types.TracebackType | None, /) -> None: ... + @override + def __len__(self) -> int: ... + @override + def __iter__(self) -> Iterator[str]: ... + @override + def __getitem__(self, key: str, /) -> NDArray[_ScalarT_co]: ... + def close(self) -> None: ... + +# NOTE: Returns a `NpzFile` if file is a zip file; +# returns an `ndarray`/`memmap` otherwise +def load( + file: StrOrBytesPath | _SupportsReadSeek[bytes], + mmap_mode: L["r+", "r", "w+", "c"] | None = None, + allow_pickle: bool = False, + fix_imports: bool = True, + encoding: L["ASCII", "latin1", "bytes"] = "ASCII", + *, + max_header_size: int = 10_000, +) -> Any: ... + +@overload +def save(file: _FNameWriteBytes, arr: ArrayLike, allow_pickle: bool = True) -> None: ... +@overload +@deprecated("The 'fix_imports' flag is deprecated in NumPy 2.1.") +def save(file: _FNameWriteBytes, arr: ArrayLike, allow_pickle: bool, fix_imports: bool) -> None: ... +@overload +@deprecated("The 'fix_imports' flag is deprecated in NumPy 2.1.") +def save(file: _FNameWriteBytes, arr: ArrayLike, allow_pickle: bool = True, *, fix_imports: bool) -> None: ... + +# +def savez(file: _FNameWriteBytes, *args: ArrayLike, allow_pickle: bool = True, **kwds: ArrayLike) -> None: ... + +# +def savez_compressed(file: _FNameWriteBytes, *args: ArrayLike, allow_pickle: bool = True, **kwds: ArrayLike) -> None: ... + +# File-like objects only have to implement `__iter__` and, +# optionally, `encoding` +@overload +def loadtxt( + fname: _FName, + dtype: None = None, + comments: str | Sequence[str] | None = "#", + delimiter: str | None = None, + converters: Mapping[int | str, Callable[[str], Any]] | Callable[[str], Any] | None = None, + skiprows: int = 0, + usecols: int | Sequence[int] | None = None, + unpack: bool = False, + ndmin: L[0, 1, 2] = 0, + encoding: str | None = None, + max_rows: int | None = None, + *, + quotechar: str | None = None, + like: _SupportsArrayFunc | None = None, +) -> NDArray[np.float64]: ... +@overload +def loadtxt( + fname: _FName, + dtype: _DTypeLike[_ScalarT], + comments: str | Sequence[str] | None = "#", + delimiter: str | None = None, + converters: Mapping[int | str, Callable[[str], Any]] | Callable[[str], Any] | None = None, + skiprows: int = 0, + usecols: int | Sequence[int] | None = None, + unpack: bool = False, + ndmin: L[0, 1, 2] = 0, + encoding: str | None = None, + max_rows: int | None = None, + *, + quotechar: str | None = None, + like: _SupportsArrayFunc | None = None, +) -> NDArray[_ScalarT]: ... +@overload +def loadtxt( + fname: _FName, + dtype: DTypeLike, + comments: str | Sequence[str] | None = "#", + delimiter: str | None = None, + converters: Mapping[int | str, Callable[[str], Any]] | Callable[[str], Any] | None = None, + skiprows: int = 0, + usecols: int | Sequence[int] | None = None, + unpack: bool = False, + ndmin: L[0, 1, 2] = 0, + encoding: str | None = None, + max_rows: int | None = None, + *, + quotechar: str | None = None, + like: _SupportsArrayFunc | None = None, +) -> NDArray[Any]: ... + +def savetxt( + fname: _FNameWrite, + X: ArrayLike, + fmt: str | Sequence[str] = "%.18e", + delimiter: str = " ", + newline: str = "\n", + header: str = "", + footer: str = "", + comments: str = "# ", + encoding: str | None = None, +) -> None: ... + +@overload +def fromregex( + file: _FNameRead, + regexp: str | bytes | Pattern[Any], + dtype: _DTypeLike[_ScalarT], + encoding: str | None = None, +) -> NDArray[_ScalarT]: ... +@overload +def fromregex( + file: _FNameRead, + regexp: str | bytes | Pattern[Any], + dtype: DTypeLike, + encoding: str | None = None, +) -> NDArray[Any]: ... + +@overload +def genfromtxt( + fname: _FName, + dtype: None = None, + comments: str = ..., + delimiter: str | int | Iterable[int] | None = ..., + skip_header: int = ..., + skip_footer: int = ..., + converters: Mapping[int | str, Callable[[str], Any]] | None = ..., + missing_values: Any = ..., + filling_values: Any = ..., + usecols: Sequence[int] | None = ..., + names: L[True] | str | Collection[str] | None = ..., + excludelist: Sequence[str] | None = ..., + deletechars: str = ..., + replace_space: str = ..., + autostrip: bool = ..., + case_sensitive: bool | L["upper", "lower"] = ..., + defaultfmt: str = ..., + unpack: bool | None = ..., + usemask: bool = ..., + loose: bool = ..., + invalid_raise: bool = ..., + max_rows: int | None = ..., + encoding: str = ..., + *, + ndmin: L[0, 1, 2] = ..., + like: _SupportsArrayFunc | None = ..., +) -> NDArray[Any]: ... +@overload +def genfromtxt( + fname: _FName, + dtype: _DTypeLike[_ScalarT], + comments: str = ..., + delimiter: str | int | Iterable[int] | None = ..., + skip_header: int = ..., + skip_footer: int = ..., + converters: Mapping[int | str, Callable[[str], Any]] | None = ..., + missing_values: Any = ..., + filling_values: Any = ..., + usecols: Sequence[int] | None = ..., + names: L[True] | str | Collection[str] | None = ..., + excludelist: Sequence[str] | None = ..., + deletechars: str = ..., + replace_space: str = ..., + autostrip: bool = ..., + case_sensitive: bool | L["upper", "lower"] = ..., + defaultfmt: str = ..., + unpack: bool | None = ..., + usemask: bool = ..., + loose: bool = ..., + invalid_raise: bool = ..., + max_rows: int | None = ..., + encoding: str = ..., + *, + ndmin: L[0, 1, 2] = ..., + like: _SupportsArrayFunc | None = ..., +) -> NDArray[_ScalarT]: ... +@overload +def genfromtxt( + fname: _FName, + dtype: DTypeLike, + comments: str = ..., + delimiter: str | int | Iterable[int] | None = ..., + skip_header: int = ..., + skip_footer: int = ..., + converters: Mapping[int | str, Callable[[str], Any]] | None = ..., + missing_values: Any = ..., + filling_values: Any = ..., + usecols: Sequence[int] | None = ..., + names: L[True] | str | Collection[str] | None = ..., + excludelist: Sequence[str] | None = ..., + deletechars: str = ..., + replace_space: str = ..., + autostrip: bool = ..., + case_sensitive: bool | L["upper", "lower"] = ..., + defaultfmt: str = ..., + unpack: bool | None = ..., + usemask: bool = ..., + loose: bool = ..., + invalid_raise: bool = ..., + max_rows: int | None = ..., + encoding: str = ..., + *, + ndmin: L[0, 1, 2] = ..., + like: _SupportsArrayFunc | None = ..., +) -> NDArray[Any]: ... + +@overload +def recfromtxt(fname: _FName, *, usemask: L[False] = False, **kwargs: object) -> np.recarray[Any, np.dtype[np.record]]: ... +@overload +def recfromtxt(fname: _FName, *, usemask: L[True], **kwargs: object) -> MaskedRecords[Any, np.dtype[np.void]]: ... + +@overload +def recfromcsv(fname: _FName, *, usemask: L[False] = False, **kwargs: object) -> np.recarray[Any, np.dtype[np.record]]: ... +@overload +def recfromcsv(fname: _FName, *, usemask: L[True], **kwargs: object) -> MaskedRecords[Any, np.dtype[np.void]]: ... diff --git a/.venv/lib/python3.12/site-packages/numpy/lib/_polynomial_impl.py b/.venv/lib/python3.12/site-packages/numpy/lib/_polynomial_impl.py new file mode 100644 index 0000000..a58ca76 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/lib/_polynomial_impl.py @@ -0,0 +1,1465 @@ +""" +Functions to operate on polynomials. + +""" +__all__ = ['poly', 'roots', 'polyint', 'polyder', 'polyadd', + 'polysub', 'polymul', 'polydiv', 'polyval', 'poly1d', + 'polyfit'] + +import functools +import re +import warnings + +import numpy._core.numeric as NX +from numpy._core import ( + abs, + array, + atleast_1d, + dot, + finfo, + hstack, + isscalar, + ones, + overrides, +) +from numpy._utils import set_module +from numpy.exceptions import RankWarning +from numpy.lib._function_base_impl import trim_zeros +from numpy.lib._twodim_base_impl import diag, vander +from numpy.lib._type_check_impl import imag, iscomplex, mintypecode, real +from numpy.linalg import eigvals, inv, lstsq + +array_function_dispatch = functools.partial( + overrides.array_function_dispatch, module='numpy') + + +def _poly_dispatcher(seq_of_zeros): + return seq_of_zeros + + +@array_function_dispatch(_poly_dispatcher) +def poly(seq_of_zeros): + """ + Find the coefficients of a polynomial with the given sequence of roots. + + .. note:: + This forms part of the old polynomial API. Since version 1.4, the + new polynomial API defined in `numpy.polynomial` is preferred. + A summary of the differences can be found in the + :doc:`transition guide </reference/routines.polynomials>`. + + Returns the coefficients of the polynomial whose leading coefficient + is one for the given sequence of zeros (multiple roots must be included + in the sequence as many times as their multiplicity; see Examples). + A square matrix (or array, which will be treated as a matrix) can also + be given, in which case the coefficients of the characteristic polynomial + of the matrix are returned. + + Parameters + ---------- + seq_of_zeros : array_like, shape (N,) or (N, N) + A sequence of polynomial roots, or a square array or matrix object. + + Returns + ------- + c : ndarray + 1D array of polynomial coefficients from highest to lowest degree: + + ``c[0] * x**(N) + c[1] * x**(N-1) + ... + c[N-1] * x + c[N]`` + where c[0] always equals 1. + + Raises + ------ + ValueError + If input is the wrong shape (the input must be a 1-D or square + 2-D array). + + See Also + -------- + polyval : Compute polynomial values. + roots : Return the roots of a polynomial. + polyfit : Least squares polynomial fit. + poly1d : A one-dimensional polynomial class. + + Notes + ----- + Specifying the roots of a polynomial still leaves one degree of + freedom, typically represented by an undetermined leading + coefficient. [1]_ In the case of this function, that coefficient - + the first one in the returned array - is always taken as one. (If + for some reason you have one other point, the only automatic way + presently to leverage that information is to use ``polyfit``.) + + The characteristic polynomial, :math:`p_a(t)`, of an `n`-by-`n` + matrix **A** is given by + + :math:`p_a(t) = \\mathrm{det}(t\\, \\mathbf{I} - \\mathbf{A})`, + + where **I** is the `n`-by-`n` identity matrix. [2]_ + + References + ---------- + .. [1] M. Sullivan and M. Sullivan, III, "Algebra and Trigonometry, + Enhanced With Graphing Utilities," Prentice-Hall, pg. 318, 1996. + + .. [2] G. Strang, "Linear Algebra and Its Applications, 2nd Edition," + Academic Press, pg. 182, 1980. + + Examples + -------- + + Given a sequence of a polynomial's zeros: + + >>> import numpy as np + + >>> np.poly((0, 0, 0)) # Multiple root example + array([1., 0., 0., 0.]) + + The line above represents z**3 + 0*z**2 + 0*z + 0. + + >>> np.poly((-1./2, 0, 1./2)) + array([ 1. , 0. , -0.25, 0. ]) + + The line above represents z**3 - z/4 + + >>> np.poly((np.random.random(1)[0], 0, np.random.random(1)[0])) + array([ 1. , -0.77086955, 0.08618131, 0. ]) # random + + Given a square array object: + + >>> P = np.array([[0, 1./3], [-1./2, 0]]) + >>> np.poly(P) + array([1. , 0. , 0.16666667]) + + Note how in all cases the leading coefficient is always 1. + + """ + seq_of_zeros = atleast_1d(seq_of_zeros) + sh = seq_of_zeros.shape + + if len(sh) == 2 and sh[0] == sh[1] and sh[0] != 0: + seq_of_zeros = eigvals(seq_of_zeros) + elif len(sh) == 1: + dt = seq_of_zeros.dtype + # Let object arrays slip through, e.g. for arbitrary precision + if dt != object: + seq_of_zeros = seq_of_zeros.astype(mintypecode(dt.char)) + else: + raise ValueError("input must be 1d or non-empty square 2d array.") + + if len(seq_of_zeros) == 0: + return 1.0 + dt = seq_of_zeros.dtype + a = ones((1,), dtype=dt) + for zero in seq_of_zeros: + a = NX.convolve(a, array([1, -zero], dtype=dt), mode='full') + + if issubclass(a.dtype.type, NX.complexfloating): + # if complex roots are all complex conjugates, the roots are real. + roots = NX.asarray(seq_of_zeros, complex) + if NX.all(NX.sort(roots) == NX.sort(roots.conjugate())): + a = a.real.copy() + + return a + + +def _roots_dispatcher(p): + return p + + +@array_function_dispatch(_roots_dispatcher) +def roots(p): + """ + Return the roots of a polynomial with coefficients given in p. + + .. note:: + This forms part of the old polynomial API. Since version 1.4, the + new polynomial API defined in `numpy.polynomial` is preferred. + A summary of the differences can be found in the + :doc:`transition guide </reference/routines.polynomials>`. + + The values in the rank-1 array `p` are coefficients of a polynomial. + If the length of `p` is n+1 then the polynomial is described by:: + + p[0] * x**n + p[1] * x**(n-1) + ... + p[n-1]*x + p[n] + + Parameters + ---------- + p : array_like + Rank-1 array of polynomial coefficients. + + Returns + ------- + out : ndarray + An array containing the roots of the polynomial. + + Raises + ------ + ValueError + When `p` cannot be converted to a rank-1 array. + + See also + -------- + poly : Find the coefficients of a polynomial with a given sequence + of roots. + polyval : Compute polynomial values. + polyfit : Least squares polynomial fit. + poly1d : A one-dimensional polynomial class. + + Notes + ----- + The algorithm relies on computing the eigenvalues of the + companion matrix [1]_. + + References + ---------- + .. [1] R. A. Horn & C. R. Johnson, *Matrix Analysis*. Cambridge, UK: + Cambridge University Press, 1999, pp. 146-7. + + Examples + -------- + >>> import numpy as np + >>> coeff = [3.2, 2, 1] + >>> np.roots(coeff) + array([-0.3125+0.46351241j, -0.3125-0.46351241j]) + + """ + # If input is scalar, this makes it an array + p = atleast_1d(p) + if p.ndim != 1: + raise ValueError("Input must be a rank-1 array.") + + # find non-zero array entries + non_zero = NX.nonzero(NX.ravel(p))[0] + + # Return an empty array if polynomial is all zeros + if len(non_zero) == 0: + return NX.array([]) + + # find the number of trailing zeros -- this is the number of roots at 0. + trailing_zeros = len(p) - non_zero[-1] - 1 + + # strip leading and trailing zeros + p = p[int(non_zero[0]):int(non_zero[-1]) + 1] + + # casting: if incoming array isn't floating point, make it floating point. + if not issubclass(p.dtype.type, (NX.floating, NX.complexfloating)): + p = p.astype(float) + + N = len(p) + if N > 1: + # build companion matrix and find its eigenvalues (the roots) + A = diag(NX.ones((N - 2,), p.dtype), -1) + A[0, :] = -p[1:] / p[0] + roots = eigvals(A) + else: + roots = NX.array([]) + + # tack any zeros onto the back of the array + roots = hstack((roots, NX.zeros(trailing_zeros, roots.dtype))) + return roots + + +def _polyint_dispatcher(p, m=None, k=None): + return (p,) + + +@array_function_dispatch(_polyint_dispatcher) +def polyint(p, m=1, k=None): + """ + Return an antiderivative (indefinite integral) of a polynomial. + + .. note:: + This forms part of the old polynomial API. Since version 1.4, the + new polynomial API defined in `numpy.polynomial` is preferred. + A summary of the differences can be found in the + :doc:`transition guide </reference/routines.polynomials>`. + + The returned order `m` antiderivative `P` of polynomial `p` satisfies + :math:`\\frac{d^m}{dx^m}P(x) = p(x)` and is defined up to `m - 1` + integration constants `k`. The constants determine the low-order + polynomial part + + .. math:: \\frac{k_{m-1}}{0!} x^0 + \\ldots + \\frac{k_0}{(m-1)!}x^{m-1} + + of `P` so that :math:`P^{(j)}(0) = k_{m-j-1}`. + + Parameters + ---------- + p : array_like or poly1d + Polynomial to integrate. + A sequence is interpreted as polynomial coefficients, see `poly1d`. + m : int, optional + Order of the antiderivative. (Default: 1) + k : list of `m` scalars or scalar, optional + Integration constants. They are given in the order of integration: + those corresponding to highest-order terms come first. + + If ``None`` (default), all constants are assumed to be zero. + If `m = 1`, a single scalar can be given instead of a list. + + See Also + -------- + polyder : derivative of a polynomial + poly1d.integ : equivalent method + + Examples + -------- + + The defining property of the antiderivative: + + >>> import numpy as np + + >>> p = np.poly1d([1,1,1]) + >>> P = np.polyint(p) + >>> P + poly1d([ 0.33333333, 0.5 , 1. , 0. ]) # may vary + >>> np.polyder(P) == p + True + + The integration constants default to zero, but can be specified: + + >>> P = np.polyint(p, 3) + >>> P(0) + 0.0 + >>> np.polyder(P)(0) + 0.0 + >>> np.polyder(P, 2)(0) + 0.0 + >>> P = np.polyint(p, 3, k=[6,5,3]) + >>> P + poly1d([ 0.01666667, 0.04166667, 0.16666667, 3. , 5. , 3. ]) # may vary + + Note that 3 = 6 / 2!, and that the constants are given in the order of + integrations. Constant of the highest-order polynomial term comes first: + + >>> np.polyder(P, 2)(0) + 6.0 + >>> np.polyder(P, 1)(0) + 5.0 + >>> P(0) + 3.0 + + """ + m = int(m) + if m < 0: + raise ValueError("Order of integral must be positive (see polyder)") + if k is None: + k = NX.zeros(m, float) + k = atleast_1d(k) + if len(k) == 1 and m > 1: + k = k[0] * NX.ones(m, float) + if len(k) < m: + raise ValueError( + "k must be a scalar or a rank-1 array of length 1 or >m.") + + truepoly = isinstance(p, poly1d) + p = NX.asarray(p) + if m == 0: + if truepoly: + return poly1d(p) + return p + else: + # Note: this must work also with object and integer arrays + y = NX.concatenate((p.__truediv__(NX.arange(len(p), 0, -1)), [k[0]])) + val = polyint(y, m - 1, k=k[1:]) + if truepoly: + return poly1d(val) + return val + + +def _polyder_dispatcher(p, m=None): + return (p,) + + +@array_function_dispatch(_polyder_dispatcher) +def polyder(p, m=1): + """ + Return the derivative of the specified order of a polynomial. + + .. note:: + This forms part of the old polynomial API. Since version 1.4, the + new polynomial API defined in `numpy.polynomial` is preferred. + A summary of the differences can be found in the + :doc:`transition guide </reference/routines.polynomials>`. + + Parameters + ---------- + p : poly1d or sequence + Polynomial to differentiate. + A sequence is interpreted as polynomial coefficients, see `poly1d`. + m : int, optional + Order of differentiation (default: 1) + + Returns + ------- + der : poly1d + A new polynomial representing the derivative. + + See Also + -------- + polyint : Anti-derivative of a polynomial. + poly1d : Class for one-dimensional polynomials. + + Examples + -------- + + The derivative of the polynomial :math:`x^3 + x^2 + x^1 + 1` is: + + >>> import numpy as np + + >>> p = np.poly1d([1,1,1,1]) + >>> p2 = np.polyder(p) + >>> p2 + poly1d([3, 2, 1]) + + which evaluates to: + + >>> p2(2.) + 17.0 + + We can verify this, approximating the derivative with + ``(f(x + h) - f(x))/h``: + + >>> (p(2. + 0.001) - p(2.)) / 0.001 + 17.007000999997857 + + The fourth-order derivative of a 3rd-order polynomial is zero: + + >>> np.polyder(p, 2) + poly1d([6, 2]) + >>> np.polyder(p, 3) + poly1d([6]) + >>> np.polyder(p, 4) + poly1d([0]) + + """ + m = int(m) + if m < 0: + raise ValueError("Order of derivative must be positive (see polyint)") + + truepoly = isinstance(p, poly1d) + p = NX.asarray(p) + n = len(p) - 1 + y = p[:-1] * NX.arange(n, 0, -1) + if m == 0: + val = p + else: + val = polyder(y, m - 1) + if truepoly: + val = poly1d(val) + return val + + +def _polyfit_dispatcher(x, y, deg, rcond=None, full=None, w=None, cov=None): + return (x, y, w) + + +@array_function_dispatch(_polyfit_dispatcher) +def polyfit(x, y, deg, rcond=None, full=False, w=None, cov=False): + """ + Least squares polynomial fit. + + .. note:: + This forms part of the old polynomial API. Since version 1.4, the + new polynomial API defined in `numpy.polynomial` is preferred. + A summary of the differences can be found in the + :doc:`transition guide </reference/routines.polynomials>`. + + Fit a polynomial ``p(x) = p[0] * x**deg + ... + p[deg]`` of degree `deg` + to points `(x, y)`. Returns a vector of coefficients `p` that minimises + the squared error in the order `deg`, `deg-1`, ... `0`. + + The `Polynomial.fit <numpy.polynomial.polynomial.Polynomial.fit>` class + method is recommended for new code as it is more stable numerically. See + the documentation of the method for more information. + + Parameters + ---------- + x : array_like, shape (M,) + x-coordinates of the M sample points ``(x[i], y[i])``. + y : array_like, shape (M,) or (M, K) + y-coordinates of the sample points. Several data sets of sample + points sharing the same x-coordinates can be fitted at once by + passing in a 2D-array that contains one dataset per column. + deg : int + Degree of the fitting polynomial + rcond : float, optional + Relative condition number of the fit. Singular values smaller than + this relative to the largest singular value will be ignored. The + default value is len(x)*eps, where eps is the relative precision of + the float type, about 2e-16 in most cases. + full : bool, optional + Switch determining nature of return value. When it is False (the + default) just the coefficients are returned, when True diagnostic + information from the singular value decomposition is also returned. + w : array_like, shape (M,), optional + Weights. If not None, the weight ``w[i]`` applies to the unsquared + residual ``y[i] - y_hat[i]`` at ``x[i]``. Ideally the weights are + chosen so that the errors of the products ``w[i]*y[i]`` all have the + same variance. When using inverse-variance weighting, use + ``w[i] = 1/sigma(y[i])``. The default value is None. + cov : bool or str, optional + If given and not `False`, return not just the estimate but also its + covariance matrix. By default, the covariance are scaled by + chi2/dof, where dof = M - (deg + 1), i.e., the weights are presumed + to be unreliable except in a relative sense and everything is scaled + such that the reduced chi2 is unity. This scaling is omitted if + ``cov='unscaled'``, as is relevant for the case that the weights are + w = 1/sigma, with sigma known to be a reliable estimate of the + uncertainty. + + Returns + ------- + p : ndarray, shape (deg + 1,) or (deg + 1, K) + Polynomial coefficients, highest power first. If `y` was 2-D, the + coefficients for `k`-th data set are in ``p[:,k]``. + + residuals, rank, singular_values, rcond + These values are only returned if ``full == True`` + + - residuals -- sum of squared residuals of the least squares fit + - rank -- the effective rank of the scaled Vandermonde + coefficient matrix + - singular_values -- singular values of the scaled Vandermonde + coefficient matrix + - rcond -- value of `rcond`. + + For more details, see `numpy.linalg.lstsq`. + + V : ndarray, shape (deg + 1, deg + 1) or (deg + 1, deg + 1, K) + Present only if ``full == False`` and ``cov == True``. The covariance + matrix of the polynomial coefficient estimates. The diagonal of + this matrix are the variance estimates for each coefficient. If y + is a 2-D array, then the covariance matrix for the `k`-th data set + are in ``V[:,:,k]`` + + + Warns + ----- + RankWarning + The rank of the coefficient matrix in the least-squares fit is + deficient. The warning is only raised if ``full == False``. + + The warnings can be turned off by + + >>> import warnings + >>> warnings.simplefilter('ignore', np.exceptions.RankWarning) + + See Also + -------- + polyval : Compute polynomial values. + linalg.lstsq : Computes a least-squares fit. + scipy.interpolate.UnivariateSpline : Computes spline fits. + + Notes + ----- + The solution minimizes the squared error + + .. math:: + E = \\sum_{j=0}^k |p(x_j) - y_j|^2 + + in the equations:: + + x[0]**n * p[0] + ... + x[0] * p[n-1] + p[n] = y[0] + x[1]**n * p[0] + ... + x[1] * p[n-1] + p[n] = y[1] + ... + x[k]**n * p[0] + ... + x[k] * p[n-1] + p[n] = y[k] + + The coefficient matrix of the coefficients `p` is a Vandermonde matrix. + + `polyfit` issues a `~exceptions.RankWarning` when the least-squares fit is + badly conditioned. This implies that the best fit is not well-defined due + to numerical error. The results may be improved by lowering the polynomial + degree or by replacing `x` by `x` - `x`.mean(). The `rcond` parameter + can also be set to a value smaller than its default, but the resulting + fit may be spurious: including contributions from the small singular + values can add numerical noise to the result. + + Note that fitting polynomial coefficients is inherently badly conditioned + when the degree of the polynomial is large or the interval of sample points + is badly centered. The quality of the fit should always be checked in these + cases. When polynomial fits are not satisfactory, splines may be a good + alternative. + + References + ---------- + .. [1] Wikipedia, "Curve fitting", + https://en.wikipedia.org/wiki/Curve_fitting + .. [2] Wikipedia, "Polynomial interpolation", + https://en.wikipedia.org/wiki/Polynomial_interpolation + + Examples + -------- + >>> import numpy as np + >>> import warnings + >>> x = np.array([0.0, 1.0, 2.0, 3.0, 4.0, 5.0]) + >>> y = np.array([0.0, 0.8, 0.9, 0.1, -0.8, -1.0]) + >>> z = np.polyfit(x, y, 3) + >>> z + array([ 0.08703704, -0.81349206, 1.69312169, -0.03968254]) # may vary + + It is convenient to use `poly1d` objects for dealing with polynomials: + + >>> p = np.poly1d(z) + >>> p(0.5) + 0.6143849206349179 # may vary + >>> p(3.5) + -0.34732142857143039 # may vary + >>> p(10) + 22.579365079365115 # may vary + + High-order polynomials may oscillate wildly: + + >>> with warnings.catch_warnings(): + ... warnings.simplefilter('ignore', np.exceptions.RankWarning) + ... p30 = np.poly1d(np.polyfit(x, y, 30)) + ... + >>> p30(4) + -0.80000000000000204 # may vary + >>> p30(5) + -0.99999999999999445 # may vary + >>> p30(4.5) + -0.10547061179440398 # may vary + + Illustration: + + >>> import matplotlib.pyplot as plt + >>> xp = np.linspace(-2, 6, 100) + >>> _ = plt.plot(x, y, '.', xp, p(xp), '-', xp, p30(xp), '--') + >>> plt.ylim(-2,2) + (-2, 2) + >>> plt.show() + + """ + order = int(deg) + 1 + x = NX.asarray(x) + 0.0 + y = NX.asarray(y) + 0.0 + + # check arguments. + if deg < 0: + raise ValueError("expected deg >= 0") + if x.ndim != 1: + raise TypeError("expected 1D vector for x") + if x.size == 0: + raise TypeError("expected non-empty vector for x") + if y.ndim < 1 or y.ndim > 2: + raise TypeError("expected 1D or 2D array for y") + if x.shape[0] != y.shape[0]: + raise TypeError("expected x and y to have same length") + + # set rcond + if rcond is None: + rcond = len(x) * finfo(x.dtype).eps + + # set up least squares equation for powers of x + lhs = vander(x, order) + rhs = y + + # apply weighting + if w is not None: + w = NX.asarray(w) + 0.0 + if w.ndim != 1: + raise TypeError("expected a 1-d array for weights") + if w.shape[0] != y.shape[0]: + raise TypeError("expected w and y to have the same length") + lhs *= w[:, NX.newaxis] + if rhs.ndim == 2: + rhs *= w[:, NX.newaxis] + else: + rhs *= w + + # scale lhs to improve condition number and solve + scale = NX.sqrt((lhs * lhs).sum(axis=0)) + lhs /= scale + c, resids, rank, s = lstsq(lhs, rhs, rcond) + c = (c.T / scale).T # broadcast scale coefficients + + # warn on rank reduction, which indicates an ill conditioned matrix + if rank != order and not full: + msg = "Polyfit may be poorly conditioned" + warnings.warn(msg, RankWarning, stacklevel=2) + + if full: + return c, resids, rank, s, rcond + elif cov: + Vbase = inv(dot(lhs.T, lhs)) + Vbase /= NX.outer(scale, scale) + if cov == "unscaled": + fac = 1 + else: + if len(x) <= order: + raise ValueError("the number of data points must exceed order " + "to scale the covariance matrix") + # note, this used to be: fac = resids / (len(x) - order - 2.0) + # it was decided that the "- 2" (originally justified by "Bayesian + # uncertainty analysis") is not what the user expects + # (see gh-11196 and gh-11197) + fac = resids / (len(x) - order) + if y.ndim == 1: + return c, Vbase * fac + else: + return c, Vbase[:, :, NX.newaxis] * fac + else: + return c + + +def _polyval_dispatcher(p, x): + return (p, x) + + +@array_function_dispatch(_polyval_dispatcher) +def polyval(p, x): + """ + Evaluate a polynomial at specific values. + + .. note:: + This forms part of the old polynomial API. Since version 1.4, the + new polynomial API defined in `numpy.polynomial` is preferred. + A summary of the differences can be found in the + :doc:`transition guide </reference/routines.polynomials>`. + + If `p` is of length N, this function returns the value:: + + p[0]*x**(N-1) + p[1]*x**(N-2) + ... + p[N-2]*x + p[N-1] + + If `x` is a sequence, then ``p(x)`` is returned for each element of ``x``. + If `x` is another polynomial then the composite polynomial ``p(x(t))`` + is returned. + + Parameters + ---------- + p : array_like or poly1d object + 1D array of polynomial coefficients (including coefficients equal + to zero) from highest degree to the constant term, or an + instance of poly1d. + x : array_like or poly1d object + A number, an array of numbers, or an instance of poly1d, at + which to evaluate `p`. + + Returns + ------- + values : ndarray or poly1d + If `x` is a poly1d instance, the result is the composition of the two + polynomials, i.e., `x` is "substituted" in `p` and the simplified + result is returned. In addition, the type of `x` - array_like or + poly1d - governs the type of the output: `x` array_like => `values` + array_like, `x` a poly1d object => `values` is also. + + See Also + -------- + poly1d: A polynomial class. + + Notes + ----- + Horner's scheme [1]_ is used to evaluate the polynomial. Even so, + for polynomials of high degree the values may be inaccurate due to + rounding errors. Use carefully. + + If `x` is a subtype of `ndarray` the return value will be of the same type. + + References + ---------- + .. [1] I. N. Bronshtein, K. A. Semendyayev, and K. A. Hirsch (Eng. + trans. Ed.), *Handbook of Mathematics*, New York, Van Nostrand + Reinhold Co., 1985, pg. 720. + + Examples + -------- + >>> import numpy as np + >>> np.polyval([3,0,1], 5) # 3 * 5**2 + 0 * 5**1 + 1 + 76 + >>> np.polyval([3,0,1], np.poly1d(5)) + poly1d([76]) + >>> np.polyval(np.poly1d([3,0,1]), 5) + 76 + >>> np.polyval(np.poly1d([3,0,1]), np.poly1d(5)) + poly1d([76]) + + """ + p = NX.asarray(p) + if isinstance(x, poly1d): + y = 0 + else: + x = NX.asanyarray(x) + y = NX.zeros_like(x) + for pv in p: + y = y * x + pv + return y + + +def _binary_op_dispatcher(a1, a2): + return (a1, a2) + + +@array_function_dispatch(_binary_op_dispatcher) +def polyadd(a1, a2): + """ + Find the sum of two polynomials. + + .. note:: + This forms part of the old polynomial API. Since version 1.4, the + new polynomial API defined in `numpy.polynomial` is preferred. + A summary of the differences can be found in the + :doc:`transition guide </reference/routines.polynomials>`. + + Returns the polynomial resulting from the sum of two input polynomials. + Each input must be either a poly1d object or a 1D sequence of polynomial + coefficients, from highest to lowest degree. + + Parameters + ---------- + a1, a2 : array_like or poly1d object + Input polynomials. + + Returns + ------- + out : ndarray or poly1d object + The sum of the inputs. If either input is a poly1d object, then the + output is also a poly1d object. Otherwise, it is a 1D array of + polynomial coefficients from highest to lowest degree. + + See Also + -------- + poly1d : A one-dimensional polynomial class. + poly, polyadd, polyder, polydiv, polyfit, polyint, polysub, polyval + + Examples + -------- + >>> import numpy as np + >>> np.polyadd([1, 2], [9, 5, 4]) + array([9, 6, 6]) + + Using poly1d objects: + + >>> p1 = np.poly1d([1, 2]) + >>> p2 = np.poly1d([9, 5, 4]) + >>> print(p1) + 1 x + 2 + >>> print(p2) + 2 + 9 x + 5 x + 4 + >>> print(np.polyadd(p1, p2)) + 2 + 9 x + 6 x + 6 + + """ + truepoly = (isinstance(a1, poly1d) or isinstance(a2, poly1d)) + a1 = atleast_1d(a1) + a2 = atleast_1d(a2) + diff = len(a2) - len(a1) + if diff == 0: + val = a1 + a2 + elif diff > 0: + zr = NX.zeros(diff, a1.dtype) + val = NX.concatenate((zr, a1)) + a2 + else: + zr = NX.zeros(abs(diff), a2.dtype) + val = a1 + NX.concatenate((zr, a2)) + if truepoly: + val = poly1d(val) + return val + + +@array_function_dispatch(_binary_op_dispatcher) +def polysub(a1, a2): + """ + Difference (subtraction) of two polynomials. + + .. note:: + This forms part of the old polynomial API. Since version 1.4, the + new polynomial API defined in `numpy.polynomial` is preferred. + A summary of the differences can be found in the + :doc:`transition guide </reference/routines.polynomials>`. + + Given two polynomials `a1` and `a2`, returns ``a1 - a2``. + `a1` and `a2` can be either array_like sequences of the polynomials' + coefficients (including coefficients equal to zero), or `poly1d` objects. + + Parameters + ---------- + a1, a2 : array_like or poly1d + Minuend and subtrahend polynomials, respectively. + + Returns + ------- + out : ndarray or poly1d + Array or `poly1d` object of the difference polynomial's coefficients. + + See Also + -------- + polyval, polydiv, polymul, polyadd + + Examples + -------- + + .. math:: (2 x^2 + 10 x - 2) - (3 x^2 + 10 x -4) = (-x^2 + 2) + + >>> import numpy as np + + >>> np.polysub([2, 10, -2], [3, 10, -4]) + array([-1, 0, 2]) + + """ + truepoly = (isinstance(a1, poly1d) or isinstance(a2, poly1d)) + a1 = atleast_1d(a1) + a2 = atleast_1d(a2) + diff = len(a2) - len(a1) + if diff == 0: + val = a1 - a2 + elif diff > 0: + zr = NX.zeros(diff, a1.dtype) + val = NX.concatenate((zr, a1)) - a2 + else: + zr = NX.zeros(abs(diff), a2.dtype) + val = a1 - NX.concatenate((zr, a2)) + if truepoly: + val = poly1d(val) + return val + + +@array_function_dispatch(_binary_op_dispatcher) +def polymul(a1, a2): + """ + Find the product of two polynomials. + + .. note:: + This forms part of the old polynomial API. Since version 1.4, the + new polynomial API defined in `numpy.polynomial` is preferred. + A summary of the differences can be found in the + :doc:`transition guide </reference/routines.polynomials>`. + + Finds the polynomial resulting from the multiplication of the two input + polynomials. Each input must be either a poly1d object or a 1D sequence + of polynomial coefficients, from highest to lowest degree. + + Parameters + ---------- + a1, a2 : array_like or poly1d object + Input polynomials. + + Returns + ------- + out : ndarray or poly1d object + The polynomial resulting from the multiplication of the inputs. If + either inputs is a poly1d object, then the output is also a poly1d + object. Otherwise, it is a 1D array of polynomial coefficients from + highest to lowest degree. + + See Also + -------- + poly1d : A one-dimensional polynomial class. + poly, polyadd, polyder, polydiv, polyfit, polyint, polysub, polyval + convolve : Array convolution. Same output as polymul, but has parameter + for overlap mode. + + Examples + -------- + >>> import numpy as np + >>> np.polymul([1, 2, 3], [9, 5, 1]) + array([ 9, 23, 38, 17, 3]) + + Using poly1d objects: + + >>> p1 = np.poly1d([1, 2, 3]) + >>> p2 = np.poly1d([9, 5, 1]) + >>> print(p1) + 2 + 1 x + 2 x + 3 + >>> print(p2) + 2 + 9 x + 5 x + 1 + >>> print(np.polymul(p1, p2)) + 4 3 2 + 9 x + 23 x + 38 x + 17 x + 3 + + """ + truepoly = (isinstance(a1, poly1d) or isinstance(a2, poly1d)) + a1, a2 = poly1d(a1), poly1d(a2) + val = NX.convolve(a1, a2) + if truepoly: + val = poly1d(val) + return val + + +def _polydiv_dispatcher(u, v): + return (u, v) + + +@array_function_dispatch(_polydiv_dispatcher) +def polydiv(u, v): + """ + Returns the quotient and remainder of polynomial division. + + .. note:: + This forms part of the old polynomial API. Since version 1.4, the + new polynomial API defined in `numpy.polynomial` is preferred. + A summary of the differences can be found in the + :doc:`transition guide </reference/routines.polynomials>`. + + The input arrays are the coefficients (including any coefficients + equal to zero) of the "numerator" (dividend) and "denominator" + (divisor) polynomials, respectively. + + Parameters + ---------- + u : array_like or poly1d + Dividend polynomial's coefficients. + + v : array_like or poly1d + Divisor polynomial's coefficients. + + Returns + ------- + q : ndarray + Coefficients, including those equal to zero, of the quotient. + r : ndarray + Coefficients, including those equal to zero, of the remainder. + + See Also + -------- + poly, polyadd, polyder, polydiv, polyfit, polyint, polymul, polysub + polyval + + Notes + ----- + Both `u` and `v` must be 0-d or 1-d (ndim = 0 or 1), but `u.ndim` need + not equal `v.ndim`. In other words, all four possible combinations - + ``u.ndim = v.ndim = 0``, ``u.ndim = v.ndim = 1``, + ``u.ndim = 1, v.ndim = 0``, and ``u.ndim = 0, v.ndim = 1`` - work. + + Examples + -------- + + .. math:: \\frac{3x^2 + 5x + 2}{2x + 1} = 1.5x + 1.75, remainder 0.25 + + >>> import numpy as np + + >>> x = np.array([3.0, 5.0, 2.0]) + >>> y = np.array([2.0, 1.0]) + >>> np.polydiv(x, y) + (array([1.5 , 1.75]), array([0.25])) + + """ + truepoly = (isinstance(u, poly1d) or isinstance(v, poly1d)) + u = atleast_1d(u) + 0.0 + v = atleast_1d(v) + 0.0 + # w has the common type + w = u[0] + v[0] + m = len(u) - 1 + n = len(v) - 1 + scale = 1. / v[0] + q = NX.zeros((max(m - n + 1, 1),), w.dtype) + r = u.astype(w.dtype) + for k in range(m - n + 1): + d = scale * r[k] + q[k] = d + r[k:k + n + 1] -= d * v + while NX.allclose(r[0], 0, rtol=1e-14) and (r.shape[-1] > 1): + r = r[1:] + if truepoly: + return poly1d(q), poly1d(r) + return q, r + + +_poly_mat = re.compile(r"\*\*([0-9]*)") +def _raise_power(astr, wrap=70): + n = 0 + line1 = '' + line2 = '' + output = ' ' + while True: + mat = _poly_mat.search(astr, n) + if mat is None: + break + span = mat.span() + power = mat.groups()[0] + partstr = astr[n:span[0]] + n = span[1] + toadd2 = partstr + ' ' * (len(power) - 1) + toadd1 = ' ' * (len(partstr) - 1) + power + if ((len(line2) + len(toadd2) > wrap) or + (len(line1) + len(toadd1) > wrap)): + output += line1 + "\n" + line2 + "\n " + line1 = toadd1 + line2 = toadd2 + else: + line2 += partstr + ' ' * (len(power) - 1) + line1 += ' ' * (len(partstr) - 1) + power + output += line1 + "\n" + line2 + return output + astr[n:] + + +@set_module('numpy') +class poly1d: + """ + A one-dimensional polynomial class. + + .. note:: + This forms part of the old polynomial API. Since version 1.4, the + new polynomial API defined in `numpy.polynomial` is preferred. + A summary of the differences can be found in the + :doc:`transition guide </reference/routines.polynomials>`. + + A convenience class, used to encapsulate "natural" operations on + polynomials so that said operations may take on their customary + form in code (see Examples). + + Parameters + ---------- + c_or_r : array_like + The polynomial's coefficients, in decreasing powers, or if + the value of the second parameter is True, the polynomial's + roots (values where the polynomial evaluates to 0). For example, + ``poly1d([1, 2, 3])`` returns an object that represents + :math:`x^2 + 2x + 3`, whereas ``poly1d([1, 2, 3], True)`` returns + one that represents :math:`(x-1)(x-2)(x-3) = x^3 - 6x^2 + 11x -6`. + r : bool, optional + If True, `c_or_r` specifies the polynomial's roots; the default + is False. + variable : str, optional + Changes the variable used when printing `p` from `x` to `variable` + (see Examples). + + Examples + -------- + >>> import numpy as np + + Construct the polynomial :math:`x^2 + 2x + 3`: + + >>> import numpy as np + + >>> p = np.poly1d([1, 2, 3]) + >>> print(np.poly1d(p)) + 2 + 1 x + 2 x + 3 + + Evaluate the polynomial at :math:`x = 0.5`: + + >>> p(0.5) + 4.25 + + Find the roots: + + >>> p.r + array([-1.+1.41421356j, -1.-1.41421356j]) + >>> p(p.r) + array([ -4.44089210e-16+0.j, -4.44089210e-16+0.j]) # may vary + + These numbers in the previous line represent (0, 0) to machine precision + + Show the coefficients: + + >>> p.c + array([1, 2, 3]) + + Display the order (the leading zero-coefficients are removed): + + >>> p.order + 2 + + Show the coefficient of the k-th power in the polynomial + (which is equivalent to ``p.c[-(i+1)]``): + + >>> p[1] + 2 + + Polynomials can be added, subtracted, multiplied, and divided + (returns quotient and remainder): + + >>> p * p + poly1d([ 1, 4, 10, 12, 9]) + + >>> (p**3 + 4) / p + (poly1d([ 1., 4., 10., 12., 9.]), poly1d([4.])) + + ``asarray(p)`` gives the coefficient array, so polynomials can be + used in all functions that accept arrays: + + >>> p**2 # square of polynomial + poly1d([ 1, 4, 10, 12, 9]) + + >>> np.square(p) # square of individual coefficients + array([1, 4, 9]) + + The variable used in the string representation of `p` can be modified, + using the `variable` parameter: + + >>> p = np.poly1d([1,2,3], variable='z') + >>> print(p) + 2 + 1 z + 2 z + 3 + + Construct a polynomial from its roots: + + >>> np.poly1d([1, 2], True) + poly1d([ 1., -3., 2.]) + + This is the same polynomial as obtained by: + + >>> np.poly1d([1, -1]) * np.poly1d([1, -2]) + poly1d([ 1, -3, 2]) + + """ + __hash__ = None + + @property + def coeffs(self): + """ The polynomial coefficients """ + return self._coeffs + + @coeffs.setter + def coeffs(self, value): + # allowing this makes p.coeffs *= 2 legal + if value is not self._coeffs: + raise AttributeError("Cannot set attribute") + + @property + def variable(self): + """ The name of the polynomial variable """ + return self._variable + + # calculated attributes + @property + def order(self): + """ The order or degree of the polynomial """ + return len(self._coeffs) - 1 + + @property + def roots(self): + """ The roots of the polynomial, where self(x) == 0 """ + return roots(self._coeffs) + + # our internal _coeffs property need to be backed by __dict__['coeffs'] for + # scipy to work correctly. + @property + def _coeffs(self): + return self.__dict__['coeffs'] + + @_coeffs.setter + def _coeffs(self, coeffs): + self.__dict__['coeffs'] = coeffs + + # alias attributes + r = roots + c = coef = coefficients = coeffs + o = order + + def __init__(self, c_or_r, r=False, variable=None): + if isinstance(c_or_r, poly1d): + self._variable = c_or_r._variable + self._coeffs = c_or_r._coeffs + + if set(c_or_r.__dict__) - set(self.__dict__): + msg = ("In the future extra properties will not be copied " + "across when constructing one poly1d from another") + warnings.warn(msg, FutureWarning, stacklevel=2) + self.__dict__.update(c_or_r.__dict__) + + if variable is not None: + self._variable = variable + return + if r: + c_or_r = poly(c_or_r) + c_or_r = atleast_1d(c_or_r) + if c_or_r.ndim > 1: + raise ValueError("Polynomial must be 1d only.") + c_or_r = trim_zeros(c_or_r, trim='f') + if len(c_or_r) == 0: + c_or_r = NX.array([0], dtype=c_or_r.dtype) + self._coeffs = c_or_r + if variable is None: + variable = 'x' + self._variable = variable + + def __array__(self, t=None, copy=None): + if t: + return NX.asarray(self.coeffs, t, copy=copy) + else: + return NX.asarray(self.coeffs, copy=copy) + + def __repr__(self): + vals = repr(self.coeffs) + vals = vals[6:-1] + return f"poly1d({vals})" + + def __len__(self): + return self.order + + def __str__(self): + thestr = "0" + var = self.variable + + # Remove leading zeros + coeffs = self.coeffs[NX.logical_or.accumulate(self.coeffs != 0)] + N = len(coeffs) - 1 + + def fmt_float(q): + s = f'{q:.4g}' + s = s.removesuffix('.0000') + return s + + for k, coeff in enumerate(coeffs): + if not iscomplex(coeff): + coefstr = fmt_float(real(coeff)) + elif real(coeff) == 0: + coefstr = f'{fmt_float(imag(coeff))}j' + else: + coefstr = f'({fmt_float(real(coeff))} + {fmt_float(imag(coeff))}j)' + + power = (N - k) + if power == 0: + if coefstr != '0': + newstr = f'{coefstr}' + elif k == 0: + newstr = '0' + else: + newstr = '' + elif power == 1: + if coefstr == '0': + newstr = '' + elif coefstr == 'b': + newstr = var + else: + newstr = f'{coefstr} {var}' + elif coefstr == '0': + newstr = '' + elif coefstr == 'b': + newstr = '%s**%d' % (var, power,) + else: + newstr = '%s %s**%d' % (coefstr, var, power) + + if k > 0: + if newstr != '': + if newstr.startswith('-'): + thestr = f"{thestr} - {newstr[1:]}" + else: + thestr = f"{thestr} + {newstr}" + else: + thestr = newstr + return _raise_power(thestr) + + def __call__(self, val): + return polyval(self.coeffs, val) + + def __neg__(self): + return poly1d(-self.coeffs) + + def __pos__(self): + return self + + def __mul__(self, other): + if isscalar(other): + return poly1d(self.coeffs * other) + else: + other = poly1d(other) + return poly1d(polymul(self.coeffs, other.coeffs)) + + def __rmul__(self, other): + if isscalar(other): + return poly1d(other * self.coeffs) + else: + other = poly1d(other) + return poly1d(polymul(self.coeffs, other.coeffs)) + + def __add__(self, other): + other = poly1d(other) + return poly1d(polyadd(self.coeffs, other.coeffs)) + + def __radd__(self, other): + other = poly1d(other) + return poly1d(polyadd(self.coeffs, other.coeffs)) + + def __pow__(self, val): + if not isscalar(val) or int(val) != val or val < 0: + raise ValueError("Power to non-negative integers only.") + res = [1] + for _ in range(val): + res = polymul(self.coeffs, res) + return poly1d(res) + + def __sub__(self, other): + other = poly1d(other) + return poly1d(polysub(self.coeffs, other.coeffs)) + + def __rsub__(self, other): + other = poly1d(other) + return poly1d(polysub(other.coeffs, self.coeffs)) + + def __truediv__(self, other): + if isscalar(other): + return poly1d(self.coeffs / other) + else: + other = poly1d(other) + return polydiv(self, other) + + def __rtruediv__(self, other): + if isscalar(other): + return poly1d(other / self.coeffs) + else: + other = poly1d(other) + return polydiv(other, self) + + def __eq__(self, other): + if not isinstance(other, poly1d): + return NotImplemented + if self.coeffs.shape != other.coeffs.shape: + return False + return (self.coeffs == other.coeffs).all() + + def __ne__(self, other): + if not isinstance(other, poly1d): + return NotImplemented + return not self.__eq__(other) + + def __getitem__(self, val): + ind = self.order - val + if val > self.order: + return self.coeffs.dtype.type(0) + if val < 0: + return self.coeffs.dtype.type(0) + return self.coeffs[ind] + + def __setitem__(self, key, val): + ind = self.order - key + if key < 0: + raise ValueError("Does not support negative powers.") + if key > self.order: + zr = NX.zeros(key - self.order, self.coeffs.dtype) + self._coeffs = NX.concatenate((zr, self.coeffs)) + ind = 0 + self._coeffs[ind] = val + + def __iter__(self): + return iter(self.coeffs) + + def integ(self, m=1, k=0): + """ + Return an antiderivative (indefinite integral) of this polynomial. + + Refer to `polyint` for full documentation. + + See Also + -------- + polyint : equivalent function + + """ + return poly1d(polyint(self.coeffs, m=m, k=k)) + + def deriv(self, m=1): + """ + Return a derivative of this polynomial. + + Refer to `polyder` for full documentation. + + See Also + -------- + polyder : equivalent function + + """ + return poly1d(polyder(self.coeffs, m=m)) + +# Stuff to do on module import + + +warnings.simplefilter('always', RankWarning) diff --git a/.venv/lib/python3.12/site-packages/numpy/lib/_polynomial_impl.pyi b/.venv/lib/python3.12/site-packages/numpy/lib/_polynomial_impl.pyi new file mode 100644 index 0000000..faf2f01 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/lib/_polynomial_impl.pyi @@ -0,0 +1,316 @@ +from typing import ( + Any, + NoReturn, + SupportsIndex, + SupportsInt, + TypeAlias, + TypeVar, + overload, +) +from typing import ( + Literal as L, +) + +import numpy as np +from numpy import ( + complex128, + complexfloating, + float64, + floating, + int32, + int64, + object_, + poly1d, + signedinteger, + unsignedinteger, +) +from numpy._typing import ( + ArrayLike, + NDArray, + _ArrayLikeBool_co, + _ArrayLikeComplex_co, + _ArrayLikeFloat_co, + _ArrayLikeInt_co, + _ArrayLikeObject_co, + _ArrayLikeUInt_co, +) + +_T = TypeVar("_T") + +_2Tup: TypeAlias = tuple[_T, _T] +_5Tup: TypeAlias = tuple[ + _T, + NDArray[float64], + NDArray[int32], + NDArray[float64], + NDArray[float64], +] + +__all__ = [ + "poly", + "roots", + "polyint", + "polyder", + "polyadd", + "polysub", + "polymul", + "polydiv", + "polyval", + "poly1d", + "polyfit", +] + +def poly(seq_of_zeros: ArrayLike) -> NDArray[floating]: ... + +# Returns either a float or complex array depending on the input values. +# See `np.linalg.eigvals`. +def roots(p: ArrayLike) -> NDArray[complexfloating] | NDArray[floating]: ... + +@overload +def polyint( + p: poly1d, + m: SupportsInt | SupportsIndex = ..., + k: _ArrayLikeComplex_co | _ArrayLikeObject_co | None = ..., +) -> poly1d: ... +@overload +def polyint( + p: _ArrayLikeFloat_co, + m: SupportsInt | SupportsIndex = ..., + k: _ArrayLikeFloat_co | None = ..., +) -> NDArray[floating]: ... +@overload +def polyint( + p: _ArrayLikeComplex_co, + m: SupportsInt | SupportsIndex = ..., + k: _ArrayLikeComplex_co | None = ..., +) -> NDArray[complexfloating]: ... +@overload +def polyint( + p: _ArrayLikeObject_co, + m: SupportsInt | SupportsIndex = ..., + k: _ArrayLikeObject_co | None = ..., +) -> NDArray[object_]: ... + +@overload +def polyder( + p: poly1d, + m: SupportsInt | SupportsIndex = ..., +) -> poly1d: ... +@overload +def polyder( + p: _ArrayLikeFloat_co, + m: SupportsInt | SupportsIndex = ..., +) -> NDArray[floating]: ... +@overload +def polyder( + p: _ArrayLikeComplex_co, + m: SupportsInt | SupportsIndex = ..., +) -> NDArray[complexfloating]: ... +@overload +def polyder( + p: _ArrayLikeObject_co, + m: SupportsInt | SupportsIndex = ..., +) -> NDArray[object_]: ... + +@overload +def polyfit( + x: _ArrayLikeFloat_co, + y: _ArrayLikeFloat_co, + deg: SupportsIndex | SupportsInt, + rcond: float | None = ..., + full: L[False] = ..., + w: _ArrayLikeFloat_co | None = ..., + cov: L[False] = ..., +) -> NDArray[float64]: ... +@overload +def polyfit( + x: _ArrayLikeComplex_co, + y: _ArrayLikeComplex_co, + deg: SupportsIndex | SupportsInt, + rcond: float | None = ..., + full: L[False] = ..., + w: _ArrayLikeFloat_co | None = ..., + cov: L[False] = ..., +) -> NDArray[complex128]: ... +@overload +def polyfit( + x: _ArrayLikeFloat_co, + y: _ArrayLikeFloat_co, + deg: SupportsIndex | SupportsInt, + rcond: float | None = ..., + full: L[False] = ..., + w: _ArrayLikeFloat_co | None = ..., + cov: L[True, "unscaled"] = ..., +) -> _2Tup[NDArray[float64]]: ... +@overload +def polyfit( + x: _ArrayLikeComplex_co, + y: _ArrayLikeComplex_co, + deg: SupportsIndex | SupportsInt, + rcond: float | None = ..., + full: L[False] = ..., + w: _ArrayLikeFloat_co | None = ..., + cov: L[True, "unscaled"] = ..., +) -> _2Tup[NDArray[complex128]]: ... +@overload +def polyfit( + x: _ArrayLikeFloat_co, + y: _ArrayLikeFloat_co, + deg: SupportsIndex | SupportsInt, + rcond: float | None = ..., + full: L[True] = ..., + w: _ArrayLikeFloat_co | None = ..., + cov: bool | L["unscaled"] = ..., +) -> _5Tup[NDArray[float64]]: ... +@overload +def polyfit( + x: _ArrayLikeComplex_co, + y: _ArrayLikeComplex_co, + deg: SupportsIndex | SupportsInt, + rcond: float | None = ..., + full: L[True] = ..., + w: _ArrayLikeFloat_co | None = ..., + cov: bool | L["unscaled"] = ..., +) -> _5Tup[NDArray[complex128]]: ... + +@overload +def polyval( + p: _ArrayLikeBool_co, + x: _ArrayLikeBool_co, +) -> NDArray[int64]: ... +@overload +def polyval( + p: _ArrayLikeUInt_co, + x: _ArrayLikeUInt_co, +) -> NDArray[unsignedinteger]: ... +@overload +def polyval( + p: _ArrayLikeInt_co, + x: _ArrayLikeInt_co, +) -> NDArray[signedinteger]: ... +@overload +def polyval( + p: _ArrayLikeFloat_co, + x: _ArrayLikeFloat_co, +) -> NDArray[floating]: ... +@overload +def polyval( + p: _ArrayLikeComplex_co, + x: _ArrayLikeComplex_co, +) -> NDArray[complexfloating]: ... +@overload +def polyval( + p: _ArrayLikeObject_co, + x: _ArrayLikeObject_co, +) -> NDArray[object_]: ... + +@overload +def polyadd( + a1: poly1d, + a2: _ArrayLikeComplex_co | _ArrayLikeObject_co, +) -> poly1d: ... +@overload +def polyadd( + a1: _ArrayLikeComplex_co | _ArrayLikeObject_co, + a2: poly1d, +) -> poly1d: ... +@overload +def polyadd( + a1: _ArrayLikeBool_co, + a2: _ArrayLikeBool_co, +) -> NDArray[np.bool]: ... +@overload +def polyadd( + a1: _ArrayLikeUInt_co, + a2: _ArrayLikeUInt_co, +) -> NDArray[unsignedinteger]: ... +@overload +def polyadd( + a1: _ArrayLikeInt_co, + a2: _ArrayLikeInt_co, +) -> NDArray[signedinteger]: ... +@overload +def polyadd( + a1: _ArrayLikeFloat_co, + a2: _ArrayLikeFloat_co, +) -> NDArray[floating]: ... +@overload +def polyadd( + a1: _ArrayLikeComplex_co, + a2: _ArrayLikeComplex_co, +) -> NDArray[complexfloating]: ... +@overload +def polyadd( + a1: _ArrayLikeObject_co, + a2: _ArrayLikeObject_co, +) -> NDArray[object_]: ... + +@overload +def polysub( + a1: poly1d, + a2: _ArrayLikeComplex_co | _ArrayLikeObject_co, +) -> poly1d: ... +@overload +def polysub( + a1: _ArrayLikeComplex_co | _ArrayLikeObject_co, + a2: poly1d, +) -> poly1d: ... +@overload +def polysub( + a1: _ArrayLikeBool_co, + a2: _ArrayLikeBool_co, +) -> NoReturn: ... +@overload +def polysub( + a1: _ArrayLikeUInt_co, + a2: _ArrayLikeUInt_co, +) -> NDArray[unsignedinteger]: ... +@overload +def polysub( + a1: _ArrayLikeInt_co, + a2: _ArrayLikeInt_co, +) -> NDArray[signedinteger]: ... +@overload +def polysub( + a1: _ArrayLikeFloat_co, + a2: _ArrayLikeFloat_co, +) -> NDArray[floating]: ... +@overload +def polysub( + a1: _ArrayLikeComplex_co, + a2: _ArrayLikeComplex_co, +) -> NDArray[complexfloating]: ... +@overload +def polysub( + a1: _ArrayLikeObject_co, + a2: _ArrayLikeObject_co, +) -> NDArray[object_]: ... + +# NOTE: Not an alias, but they do have the same signature (that we can reuse) +polymul = polyadd + +@overload +def polydiv( + u: poly1d, + v: _ArrayLikeComplex_co | _ArrayLikeObject_co, +) -> _2Tup[poly1d]: ... +@overload +def polydiv( + u: _ArrayLikeComplex_co | _ArrayLikeObject_co, + v: poly1d, +) -> _2Tup[poly1d]: ... +@overload +def polydiv( + u: _ArrayLikeFloat_co, + v: _ArrayLikeFloat_co, +) -> _2Tup[NDArray[floating]]: ... +@overload +def polydiv( + u: _ArrayLikeComplex_co, + v: _ArrayLikeComplex_co, +) -> _2Tup[NDArray[complexfloating]]: ... +@overload +def polydiv( + u: _ArrayLikeObject_co, + v: _ArrayLikeObject_co, +) -> _2Tup[NDArray[Any]]: ... diff --git a/.venv/lib/python3.12/site-packages/numpy/lib/_scimath_impl.py b/.venv/lib/python3.12/site-packages/numpy/lib/_scimath_impl.py new file mode 100644 index 0000000..8136a7d --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/lib/_scimath_impl.py @@ -0,0 +1,642 @@ +""" +Wrapper functions to more user-friendly calling of certain math functions +whose output data-type is different than the input data-type in certain +domains of the input. + +For example, for functions like `log` with branch cuts, the versions in this +module provide the mathematically valid answers in the complex plane:: + + >>> import math + >>> np.emath.log(-math.exp(1)) == (1+1j*math.pi) + True + +Similarly, `sqrt`, other base logarithms, `power` and trig functions are +correctly handled. See their respective docstrings for specific examples. + +""" +import numpy._core.numeric as nx +import numpy._core.numerictypes as nt +from numpy._core.numeric import any, asarray +from numpy._core.overrides import array_function_dispatch, set_module +from numpy.lib._type_check_impl import isreal + +__all__ = [ + 'sqrt', 'log', 'log2', 'logn', 'log10', 'power', 'arccos', 'arcsin', + 'arctanh' + ] + + +_ln2 = nx.log(2.0) + + +def _tocomplex(arr): + """Convert its input `arr` to a complex array. + + The input is returned as a complex array of the smallest type that will fit + the original data: types like single, byte, short, etc. become csingle, + while others become cdouble. + + A copy of the input is always made. + + Parameters + ---------- + arr : array + + Returns + ------- + array + An array with the same input data as the input but in complex form. + + Examples + -------- + >>> import numpy as np + + First, consider an input of type short: + + >>> a = np.array([1,2,3],np.short) + + >>> ac = np.lib.scimath._tocomplex(a); ac + array([1.+0.j, 2.+0.j, 3.+0.j], dtype=complex64) + + >>> ac.dtype + dtype('complex64') + + If the input is of type double, the output is correspondingly of the + complex double type as well: + + >>> b = np.array([1,2,3],np.double) + + >>> bc = np.lib.scimath._tocomplex(b); bc + array([1.+0.j, 2.+0.j, 3.+0.j]) + + >>> bc.dtype + dtype('complex128') + + Note that even if the input was complex to begin with, a copy is still + made, since the astype() method always copies: + + >>> c = np.array([1,2,3],np.csingle) + + >>> cc = np.lib.scimath._tocomplex(c); cc + array([1.+0.j, 2.+0.j, 3.+0.j], dtype=complex64) + + >>> c *= 2; c + array([2.+0.j, 4.+0.j, 6.+0.j], dtype=complex64) + + >>> cc + array([1.+0.j, 2.+0.j, 3.+0.j], dtype=complex64) + """ + if issubclass(arr.dtype.type, (nt.single, nt.byte, nt.short, nt.ubyte, + nt.ushort, nt.csingle)): + return arr.astype(nt.csingle) + else: + return arr.astype(nt.cdouble) + + +def _fix_real_lt_zero(x): + """Convert `x` to complex if it has real, negative components. + + Otherwise, output is just the array version of the input (via asarray). + + Parameters + ---------- + x : array_like + + Returns + ------- + array + + Examples + -------- + >>> import numpy as np + >>> np.lib.scimath._fix_real_lt_zero([1,2]) + array([1, 2]) + + >>> np.lib.scimath._fix_real_lt_zero([-1,2]) + array([-1.+0.j, 2.+0.j]) + + """ + x = asarray(x) + if any(isreal(x) & (x < 0)): + x = _tocomplex(x) + return x + + +def _fix_int_lt_zero(x): + """Convert `x` to double if it has real, negative components. + + Otherwise, output is just the array version of the input (via asarray). + + Parameters + ---------- + x : array_like + + Returns + ------- + array + + Examples + -------- + >>> import numpy as np + >>> np.lib.scimath._fix_int_lt_zero([1,2]) + array([1, 2]) + + >>> np.lib.scimath._fix_int_lt_zero([-1,2]) + array([-1., 2.]) + """ + x = asarray(x) + if any(isreal(x) & (x < 0)): + x = x * 1.0 + return x + + +def _fix_real_abs_gt_1(x): + """Convert `x` to complex if it has real components x_i with abs(x_i)>1. + + Otherwise, output is just the array version of the input (via asarray). + + Parameters + ---------- + x : array_like + + Returns + ------- + array + + Examples + -------- + >>> import numpy as np + >>> np.lib.scimath._fix_real_abs_gt_1([0,1]) + array([0, 1]) + + >>> np.lib.scimath._fix_real_abs_gt_1([0,2]) + array([0.+0.j, 2.+0.j]) + """ + x = asarray(x) + if any(isreal(x) & (abs(x) > 1)): + x = _tocomplex(x) + return x + + +def _unary_dispatcher(x): + return (x,) + + +@set_module('numpy.lib.scimath') +@array_function_dispatch(_unary_dispatcher) +def sqrt(x): + """ + Compute the square root of x. + + For negative input elements, a complex value is returned + (unlike `numpy.sqrt` which returns NaN). + + Parameters + ---------- + x : array_like + The input value(s). + + Returns + ------- + out : ndarray or scalar + The square root of `x`. If `x` was a scalar, so is `out`, + otherwise an array is returned. + + See Also + -------- + numpy.sqrt + + Examples + -------- + For real, non-negative inputs this works just like `numpy.sqrt`: + + >>> import numpy as np + + >>> np.emath.sqrt(1) + 1.0 + >>> np.emath.sqrt([1, 4]) + array([1., 2.]) + + But it automatically handles negative inputs: + + >>> np.emath.sqrt(-1) + 1j + >>> np.emath.sqrt([-1,4]) + array([0.+1.j, 2.+0.j]) + + Different results are expected because: + floating point 0.0 and -0.0 are distinct. + + For more control, explicitly use complex() as follows: + + >>> np.emath.sqrt(complex(-4.0, 0.0)) + 2j + >>> np.emath.sqrt(complex(-4.0, -0.0)) + -2j + """ + x = _fix_real_lt_zero(x) + return nx.sqrt(x) + + +@set_module('numpy.lib.scimath') +@array_function_dispatch(_unary_dispatcher) +def log(x): + """ + Compute the natural logarithm of `x`. + + Return the "principal value" (for a description of this, see `numpy.log`) + of :math:`log_e(x)`. For real `x > 0`, this is a real number (``log(0)`` + returns ``-inf`` and ``log(np.inf)`` returns ``inf``). Otherwise, the + complex principle value is returned. + + Parameters + ---------- + x : array_like + The value(s) whose log is (are) required. + + Returns + ------- + out : ndarray or scalar + The log of the `x` value(s). If `x` was a scalar, so is `out`, + otherwise an array is returned. + + See Also + -------- + numpy.log + + Notes + ----- + For a log() that returns ``NAN`` when real `x < 0`, use `numpy.log` + (note, however, that otherwise `numpy.log` and this `log` are identical, + i.e., both return ``-inf`` for `x = 0`, ``inf`` for `x = inf`, and, + notably, the complex principle value if ``x.imag != 0``). + + Examples + -------- + >>> import numpy as np + >>> np.emath.log(np.exp(1)) + 1.0 + + Negative arguments are handled "correctly" (recall that + ``exp(log(x)) == x`` does *not* hold for real ``x < 0``): + + >>> np.emath.log(-np.exp(1)) == (1 + np.pi * 1j) + True + + """ + x = _fix_real_lt_zero(x) + return nx.log(x) + + +@set_module('numpy.lib.scimath') +@array_function_dispatch(_unary_dispatcher) +def log10(x): + """ + Compute the logarithm base 10 of `x`. + + Return the "principal value" (for a description of this, see + `numpy.log10`) of :math:`log_{10}(x)`. For real `x > 0`, this + is a real number (``log10(0)`` returns ``-inf`` and ``log10(np.inf)`` + returns ``inf``). Otherwise, the complex principle value is returned. + + Parameters + ---------- + x : array_like or scalar + The value(s) whose log base 10 is (are) required. + + Returns + ------- + out : ndarray or scalar + The log base 10 of the `x` value(s). If `x` was a scalar, so is `out`, + otherwise an array object is returned. + + See Also + -------- + numpy.log10 + + Notes + ----- + For a log10() that returns ``NAN`` when real `x < 0`, use `numpy.log10` + (note, however, that otherwise `numpy.log10` and this `log10` are + identical, i.e., both return ``-inf`` for `x = 0`, ``inf`` for `x = inf`, + and, notably, the complex principle value if ``x.imag != 0``). + + Examples + -------- + >>> import numpy as np + + (We set the printing precision so the example can be auto-tested) + + >>> np.set_printoptions(precision=4) + + >>> np.emath.log10(10**1) + 1.0 + + >>> np.emath.log10([-10**1, -10**2, 10**2]) + array([1.+1.3644j, 2.+1.3644j, 2.+0.j ]) + + """ + x = _fix_real_lt_zero(x) + return nx.log10(x) + + +def _logn_dispatcher(n, x): + return (n, x,) + + +@set_module('numpy.lib.scimath') +@array_function_dispatch(_logn_dispatcher) +def logn(n, x): + """ + Take log base n of x. + + If `x` contains negative inputs, the answer is computed and returned in the + complex domain. + + Parameters + ---------- + n : array_like + The integer base(s) in which the log is taken. + x : array_like + The value(s) whose log base `n` is (are) required. + + Returns + ------- + out : ndarray or scalar + The log base `n` of the `x` value(s). If `x` was a scalar, so is + `out`, otherwise an array is returned. + + Examples + -------- + >>> import numpy as np + >>> np.set_printoptions(precision=4) + + >>> np.emath.logn(2, [4, 8]) + array([2., 3.]) + >>> np.emath.logn(2, [-4, -8, 8]) + array([2.+4.5324j, 3.+4.5324j, 3.+0.j ]) + + """ + x = _fix_real_lt_zero(x) + n = _fix_real_lt_zero(n) + return nx.log(x) / nx.log(n) + + +@set_module('numpy.lib.scimath') +@array_function_dispatch(_unary_dispatcher) +def log2(x): + """ + Compute the logarithm base 2 of `x`. + + Return the "principal value" (for a description of this, see + `numpy.log2`) of :math:`log_2(x)`. For real `x > 0`, this is + a real number (``log2(0)`` returns ``-inf`` and ``log2(np.inf)`` returns + ``inf``). Otherwise, the complex principle value is returned. + + Parameters + ---------- + x : array_like + The value(s) whose log base 2 is (are) required. + + Returns + ------- + out : ndarray or scalar + The log base 2 of the `x` value(s). If `x` was a scalar, so is `out`, + otherwise an array is returned. + + See Also + -------- + numpy.log2 + + Notes + ----- + For a log2() that returns ``NAN`` when real `x < 0`, use `numpy.log2` + (note, however, that otherwise `numpy.log2` and this `log2` are + identical, i.e., both return ``-inf`` for `x = 0`, ``inf`` for `x = inf`, + and, notably, the complex principle value if ``x.imag != 0``). + + Examples + -------- + + We set the printing precision so the example can be auto-tested: + + >>> np.set_printoptions(precision=4) + + >>> np.emath.log2(8) + 3.0 + >>> np.emath.log2([-4, -8, 8]) + array([2.+4.5324j, 3.+4.5324j, 3.+0.j ]) + + """ + x = _fix_real_lt_zero(x) + return nx.log2(x) + + +def _power_dispatcher(x, p): + return (x, p) + + +@set_module('numpy.lib.scimath') +@array_function_dispatch(_power_dispatcher) +def power(x, p): + """ + Return x to the power p, (x**p). + + If `x` contains negative values, the output is converted to the + complex domain. + + Parameters + ---------- + x : array_like + The input value(s). + p : array_like of ints + The power(s) to which `x` is raised. If `x` contains multiple values, + `p` has to either be a scalar, or contain the same number of values + as `x`. In the latter case, the result is + ``x[0]**p[0], x[1]**p[1], ...``. + + Returns + ------- + out : ndarray or scalar + The result of ``x**p``. If `x` and `p` are scalars, so is `out`, + otherwise an array is returned. + + See Also + -------- + numpy.power + + Examples + -------- + >>> import numpy as np + >>> np.set_printoptions(precision=4) + + >>> np.emath.power(2, 2) + 4 + + >>> np.emath.power([2, 4], 2) + array([ 4, 16]) + + >>> np.emath.power([2, 4], -2) + array([0.25 , 0.0625]) + + >>> np.emath.power([-2, 4], 2) + array([ 4.-0.j, 16.+0.j]) + + >>> np.emath.power([2, 4], [2, 4]) + array([ 4, 256]) + + """ + x = _fix_real_lt_zero(x) + p = _fix_int_lt_zero(p) + return nx.power(x, p) + + +@set_module('numpy.lib.scimath') +@array_function_dispatch(_unary_dispatcher) +def arccos(x): + """ + Compute the inverse cosine of x. + + Return the "principal value" (for a description of this, see + `numpy.arccos`) of the inverse cosine of `x`. For real `x` such that + `abs(x) <= 1`, this is a real number in the closed interval + :math:`[0, \\pi]`. Otherwise, the complex principle value is returned. + + Parameters + ---------- + x : array_like or scalar + The value(s) whose arccos is (are) required. + + Returns + ------- + out : ndarray or scalar + The inverse cosine(s) of the `x` value(s). If `x` was a scalar, so + is `out`, otherwise an array object is returned. + + See Also + -------- + numpy.arccos + + Notes + ----- + For an arccos() that returns ``NAN`` when real `x` is not in the + interval ``[-1,1]``, use `numpy.arccos`. + + Examples + -------- + >>> import numpy as np + >>> np.set_printoptions(precision=4) + + >>> np.emath.arccos(1) # a scalar is returned + 0.0 + + >>> np.emath.arccos([1,2]) + array([0.-0.j , 0.-1.317j]) + + """ + x = _fix_real_abs_gt_1(x) + return nx.arccos(x) + + +@set_module('numpy.lib.scimath') +@array_function_dispatch(_unary_dispatcher) +def arcsin(x): + """ + Compute the inverse sine of x. + + Return the "principal value" (for a description of this, see + `numpy.arcsin`) of the inverse sine of `x`. For real `x` such that + `abs(x) <= 1`, this is a real number in the closed interval + :math:`[-\\pi/2, \\pi/2]`. Otherwise, the complex principle value is + returned. + + Parameters + ---------- + x : array_like or scalar + The value(s) whose arcsin is (are) required. + + Returns + ------- + out : ndarray or scalar + The inverse sine(s) of the `x` value(s). If `x` was a scalar, so + is `out`, otherwise an array object is returned. + + See Also + -------- + numpy.arcsin + + Notes + ----- + For an arcsin() that returns ``NAN`` when real `x` is not in the + interval ``[-1,1]``, use `numpy.arcsin`. + + Examples + -------- + >>> import numpy as np + >>> np.set_printoptions(precision=4) + + >>> np.emath.arcsin(0) + 0.0 + + >>> np.emath.arcsin([0,1]) + array([0. , 1.5708]) + + """ + x = _fix_real_abs_gt_1(x) + return nx.arcsin(x) + + +@set_module('numpy.lib.scimath') +@array_function_dispatch(_unary_dispatcher) +def arctanh(x): + """ + Compute the inverse hyperbolic tangent of `x`. + + Return the "principal value" (for a description of this, see + `numpy.arctanh`) of ``arctanh(x)``. For real `x` such that + ``abs(x) < 1``, this is a real number. If `abs(x) > 1`, or if `x` is + complex, the result is complex. Finally, `x = 1` returns``inf`` and + ``x=-1`` returns ``-inf``. + + Parameters + ---------- + x : array_like + The value(s) whose arctanh is (are) required. + + Returns + ------- + out : ndarray or scalar + The inverse hyperbolic tangent(s) of the `x` value(s). If `x` was + a scalar so is `out`, otherwise an array is returned. + + + See Also + -------- + numpy.arctanh + + Notes + ----- + For an arctanh() that returns ``NAN`` when real `x` is not in the + interval ``(-1,1)``, use `numpy.arctanh` (this latter, however, does + return +/-inf for ``x = +/-1``). + + Examples + -------- + >>> import numpy as np + >>> np.set_printoptions(precision=4) + + >>> np.emath.arctanh(0.5) + 0.5493061443340549 + + >>> from numpy.testing import suppress_warnings + >>> with suppress_warnings() as sup: + ... sup.filter(RuntimeWarning) + ... np.emath.arctanh(np.eye(2)) + array([[inf, 0.], + [ 0., inf]]) + >>> np.emath.arctanh([1j]) + array([0.+0.7854j]) + + """ + x = _fix_real_abs_gt_1(x) + return nx.arctanh(x) diff --git a/.venv/lib/python3.12/site-packages/numpy/lib/_scimath_impl.pyi b/.venv/lib/python3.12/site-packages/numpy/lib/_scimath_impl.pyi new file mode 100644 index 0000000..e6390c2 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/lib/_scimath_impl.pyi @@ -0,0 +1,93 @@ +from typing import Any, overload + +from numpy import complexfloating +from numpy._typing import ( + NDArray, + _ArrayLikeComplex_co, + _ArrayLikeFloat_co, + _ComplexLike_co, + _FloatLike_co, +) + +__all__ = ["sqrt", "log", "log2", "logn", "log10", "power", "arccos", "arcsin", "arctanh"] + +@overload +def sqrt(x: _FloatLike_co) -> Any: ... +@overload +def sqrt(x: _ComplexLike_co) -> complexfloating: ... +@overload +def sqrt(x: _ArrayLikeFloat_co) -> NDArray[Any]: ... +@overload +def sqrt(x: _ArrayLikeComplex_co) -> NDArray[complexfloating]: ... + +@overload +def log(x: _FloatLike_co) -> Any: ... +@overload +def log(x: _ComplexLike_co) -> complexfloating: ... +@overload +def log(x: _ArrayLikeFloat_co) -> NDArray[Any]: ... +@overload +def log(x: _ArrayLikeComplex_co) -> NDArray[complexfloating]: ... + +@overload +def log10(x: _FloatLike_co) -> Any: ... +@overload +def log10(x: _ComplexLike_co) -> complexfloating: ... +@overload +def log10(x: _ArrayLikeFloat_co) -> NDArray[Any]: ... +@overload +def log10(x: _ArrayLikeComplex_co) -> NDArray[complexfloating]: ... + +@overload +def log2(x: _FloatLike_co) -> Any: ... +@overload +def log2(x: _ComplexLike_co) -> complexfloating: ... +@overload +def log2(x: _ArrayLikeFloat_co) -> NDArray[Any]: ... +@overload +def log2(x: _ArrayLikeComplex_co) -> NDArray[complexfloating]: ... + +@overload +def logn(n: _FloatLike_co, x: _FloatLike_co) -> Any: ... +@overload +def logn(n: _ComplexLike_co, x: _ComplexLike_co) -> complexfloating: ... +@overload +def logn(n: _ArrayLikeFloat_co, x: _ArrayLikeFloat_co) -> NDArray[Any]: ... +@overload +def logn(n: _ArrayLikeComplex_co, x: _ArrayLikeComplex_co) -> NDArray[complexfloating]: ... + +@overload +def power(x: _FloatLike_co, p: _FloatLike_co) -> Any: ... +@overload +def power(x: _ComplexLike_co, p: _ComplexLike_co) -> complexfloating: ... +@overload +def power(x: _ArrayLikeFloat_co, p: _ArrayLikeFloat_co) -> NDArray[Any]: ... +@overload +def power(x: _ArrayLikeComplex_co, p: _ArrayLikeComplex_co) -> NDArray[complexfloating]: ... + +@overload +def arccos(x: _FloatLike_co) -> Any: ... +@overload +def arccos(x: _ComplexLike_co) -> complexfloating: ... +@overload +def arccos(x: _ArrayLikeFloat_co) -> NDArray[Any]: ... +@overload +def arccos(x: _ArrayLikeComplex_co) -> NDArray[complexfloating]: ... + +@overload +def arcsin(x: _FloatLike_co) -> Any: ... +@overload +def arcsin(x: _ComplexLike_co) -> complexfloating: ... +@overload +def arcsin(x: _ArrayLikeFloat_co) -> NDArray[Any]: ... +@overload +def arcsin(x: _ArrayLikeComplex_co) -> NDArray[complexfloating]: ... + +@overload +def arctanh(x: _FloatLike_co) -> Any: ... +@overload +def arctanh(x: _ComplexLike_co) -> complexfloating: ... +@overload +def arctanh(x: _ArrayLikeFloat_co) -> NDArray[Any]: ... +@overload +def arctanh(x: _ArrayLikeComplex_co) -> NDArray[complexfloating]: ... diff --git a/.venv/lib/python3.12/site-packages/numpy/lib/_shape_base_impl.py b/.venv/lib/python3.12/site-packages/numpy/lib/_shape_base_impl.py new file mode 100644 index 0000000..89b86c8 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/lib/_shape_base_impl.py @@ -0,0 +1,1301 @@ +import functools +import warnings + +import numpy._core.numeric as _nx +from numpy._core import atleast_3d, overrides, vstack +from numpy._core._multiarray_umath import _array_converter +from numpy._core.fromnumeric import reshape, transpose +from numpy._core.multiarray import normalize_axis_index +from numpy._core.numeric import ( + array, + asanyarray, + asarray, + normalize_axis_tuple, + zeros, + zeros_like, +) +from numpy._core.overrides import set_module +from numpy._core.shape_base import _arrays_for_stack_dispatcher +from numpy.lib._index_tricks_impl import ndindex +from numpy.matrixlib.defmatrix import matrix # this raises all the right alarm bells + +__all__ = [ + 'column_stack', 'row_stack', 'dstack', 'array_split', 'split', + 'hsplit', 'vsplit', 'dsplit', 'apply_over_axes', 'expand_dims', + 'apply_along_axis', 'kron', 'tile', 'take_along_axis', + 'put_along_axis' + ] + + +array_function_dispatch = functools.partial( + overrides.array_function_dispatch, module='numpy') + + +def _make_along_axis_idx(arr_shape, indices, axis): + # compute dimensions to iterate over + if not _nx.issubdtype(indices.dtype, _nx.integer): + raise IndexError('`indices` must be an integer array') + if len(arr_shape) != indices.ndim: + raise ValueError( + "`indices` and `arr` must have the same number of dimensions") + shape_ones = (1,) * indices.ndim + dest_dims = list(range(axis)) + [None] + list(range(axis + 1, indices.ndim)) + + # build a fancy index, consisting of orthogonal aranges, with the + # requested index inserted at the right location + fancy_index = [] + for dim, n in zip(dest_dims, arr_shape): + if dim is None: + fancy_index.append(indices) + else: + ind_shape = shape_ones[:dim] + (-1,) + shape_ones[dim + 1:] + fancy_index.append(_nx.arange(n).reshape(ind_shape)) + + return tuple(fancy_index) + + +def _take_along_axis_dispatcher(arr, indices, axis=None): + return (arr, indices) + + +@array_function_dispatch(_take_along_axis_dispatcher) +def take_along_axis(arr, indices, axis=-1): + """ + Take values from the input array by matching 1d index and data slices. + + This iterates over matching 1d slices oriented along the specified axis in + the index and data arrays, and uses the former to look up values in the + latter. These slices can be different lengths. + + Functions returning an index along an axis, like `argsort` and + `argpartition`, produce suitable indices for this function. + + Parameters + ---------- + arr : ndarray (Ni..., M, Nk...) + Source array + indices : ndarray (Ni..., J, Nk...) + Indices to take along each 1d slice of ``arr``. This must match the + dimension of ``arr``, but dimensions Ni and Nj only need to broadcast + against ``arr``. + axis : int or None, optional + The axis to take 1d slices along. If axis is None, the input array is + treated as if it had first been flattened to 1d, for consistency with + `sort` and `argsort`. + + .. versionchanged:: 2.3 + The default value is now ``-1``. + + Returns + ------- + out: ndarray (Ni..., J, Nk...) + The indexed result. + + Notes + ----- + This is equivalent to (but faster than) the following use of `ndindex` and + `s_`, which sets each of ``ii`` and ``kk`` to a tuple of indices:: + + Ni, M, Nk = a.shape[:axis], a.shape[axis], a.shape[axis+1:] + J = indices.shape[axis] # Need not equal M + out = np.empty(Ni + (J,) + Nk) + + for ii in ndindex(Ni): + for kk in ndindex(Nk): + a_1d = a [ii + s_[:,] + kk] + indices_1d = indices[ii + s_[:,] + kk] + out_1d = out [ii + s_[:,] + kk] + for j in range(J): + out_1d[j] = a_1d[indices_1d[j]] + + Equivalently, eliminating the inner loop, the last two lines would be:: + + out_1d[:] = a_1d[indices_1d] + + See Also + -------- + take : Take along an axis, using the same indices for every 1d slice + put_along_axis : + Put values into the destination array by matching 1d index and data slices + + Examples + -------- + >>> import numpy as np + + For this sample array + + >>> a = np.array([[10, 30, 20], [60, 40, 50]]) + + We can sort either by using sort directly, or argsort and this function + + >>> np.sort(a, axis=1) + array([[10, 20, 30], + [40, 50, 60]]) + >>> ai = np.argsort(a, axis=1) + >>> ai + array([[0, 2, 1], + [1, 2, 0]]) + >>> np.take_along_axis(a, ai, axis=1) + array([[10, 20, 30], + [40, 50, 60]]) + + The same works for max and min, if you maintain the trivial dimension + with ``keepdims``: + + >>> np.max(a, axis=1, keepdims=True) + array([[30], + [60]]) + >>> ai = np.argmax(a, axis=1, keepdims=True) + >>> ai + array([[1], + [0]]) + >>> np.take_along_axis(a, ai, axis=1) + array([[30], + [60]]) + + If we want to get the max and min at the same time, we can stack the + indices first + + >>> ai_min = np.argmin(a, axis=1, keepdims=True) + >>> ai_max = np.argmax(a, axis=1, keepdims=True) + >>> ai = np.concatenate([ai_min, ai_max], axis=1) + >>> ai + array([[0, 1], + [1, 0]]) + >>> np.take_along_axis(a, ai, axis=1) + array([[10, 30], + [40, 60]]) + """ + # normalize inputs + if axis is None: + if indices.ndim != 1: + raise ValueError( + 'when axis=None, `indices` must have a single dimension.') + arr = arr.flat + arr_shape = (len(arr),) # flatiter has no .shape + axis = 0 + else: + axis = normalize_axis_index(axis, arr.ndim) + arr_shape = arr.shape + + # use the fancy index + return arr[_make_along_axis_idx(arr_shape, indices, axis)] + + +def _put_along_axis_dispatcher(arr, indices, values, axis): + return (arr, indices, values) + + +@array_function_dispatch(_put_along_axis_dispatcher) +def put_along_axis(arr, indices, values, axis): + """ + Put values into the destination array by matching 1d index and data slices. + + This iterates over matching 1d slices oriented along the specified axis in + the index and data arrays, and uses the former to place values into the + latter. These slices can be different lengths. + + Functions returning an index along an axis, like `argsort` and + `argpartition`, produce suitable indices for this function. + + Parameters + ---------- + arr : ndarray (Ni..., M, Nk...) + Destination array. + indices : ndarray (Ni..., J, Nk...) + Indices to change along each 1d slice of `arr`. This must match the + dimension of arr, but dimensions in Ni and Nj may be 1 to broadcast + against `arr`. + values : array_like (Ni..., J, Nk...) + values to insert at those indices. Its shape and dimension are + broadcast to match that of `indices`. + axis : int + The axis to take 1d slices along. If axis is None, the destination + array is treated as if a flattened 1d view had been created of it. + + Notes + ----- + This is equivalent to (but faster than) the following use of `ndindex` and + `s_`, which sets each of ``ii`` and ``kk`` to a tuple of indices:: + + Ni, M, Nk = a.shape[:axis], a.shape[axis], a.shape[axis+1:] + J = indices.shape[axis] # Need not equal M + + for ii in ndindex(Ni): + for kk in ndindex(Nk): + a_1d = a [ii + s_[:,] + kk] + indices_1d = indices[ii + s_[:,] + kk] + values_1d = values [ii + s_[:,] + kk] + for j in range(J): + a_1d[indices_1d[j]] = values_1d[j] + + Equivalently, eliminating the inner loop, the last two lines would be:: + + a_1d[indices_1d] = values_1d + + See Also + -------- + take_along_axis : + Take values from the input array by matching 1d index and data slices + + Examples + -------- + >>> import numpy as np + + For this sample array + + >>> a = np.array([[10, 30, 20], [60, 40, 50]]) + + We can replace the maximum values with: + + >>> ai = np.argmax(a, axis=1, keepdims=True) + >>> ai + array([[1], + [0]]) + >>> np.put_along_axis(a, ai, 99, axis=1) + >>> a + array([[10, 99, 20], + [99, 40, 50]]) + + """ + # normalize inputs + if axis is None: + if indices.ndim != 1: + raise ValueError( + 'when axis=None, `indices` must have a single dimension.') + arr = arr.flat + axis = 0 + arr_shape = (len(arr),) # flatiter has no .shape + else: + axis = normalize_axis_index(axis, arr.ndim) + arr_shape = arr.shape + + # use the fancy index + arr[_make_along_axis_idx(arr_shape, indices, axis)] = values + + +def _apply_along_axis_dispatcher(func1d, axis, arr, *args, **kwargs): + return (arr,) + + +@array_function_dispatch(_apply_along_axis_dispatcher) +def apply_along_axis(func1d, axis, arr, *args, **kwargs): + """ + Apply a function to 1-D slices along the given axis. + + Execute `func1d(a, *args, **kwargs)` where `func1d` operates on 1-D arrays + and `a` is a 1-D slice of `arr` along `axis`. + + This is equivalent to (but faster than) the following use of `ndindex` and + `s_`, which sets each of ``ii``, ``jj``, and ``kk`` to a tuple of indices:: + + Ni, Nk = a.shape[:axis], a.shape[axis+1:] + for ii in ndindex(Ni): + for kk in ndindex(Nk): + f = func1d(arr[ii + s_[:,] + kk]) + Nj = f.shape + for jj in ndindex(Nj): + out[ii + jj + kk] = f[jj] + + Equivalently, eliminating the inner loop, this can be expressed as:: + + Ni, Nk = a.shape[:axis], a.shape[axis+1:] + for ii in ndindex(Ni): + for kk in ndindex(Nk): + out[ii + s_[...,] + kk] = func1d(arr[ii + s_[:,] + kk]) + + Parameters + ---------- + func1d : function (M,) -> (Nj...) + This function should accept 1-D arrays. It is applied to 1-D + slices of `arr` along the specified axis. + axis : integer + Axis along which `arr` is sliced. + arr : ndarray (Ni..., M, Nk...) + Input array. + args : any + Additional arguments to `func1d`. + kwargs : any + Additional named arguments to `func1d`. + + Returns + ------- + out : ndarray (Ni..., Nj..., Nk...) + The output array. The shape of `out` is identical to the shape of + `arr`, except along the `axis` dimension. This axis is removed, and + replaced with new dimensions equal to the shape of the return value + of `func1d`. So if `func1d` returns a scalar `out` will have one + fewer dimensions than `arr`. + + See Also + -------- + apply_over_axes : Apply a function repeatedly over multiple axes. + + Examples + -------- + >>> import numpy as np + >>> def my_func(a): + ... \"\"\"Average first and last element of a 1-D array\"\"\" + ... return (a[0] + a[-1]) * 0.5 + >>> b = np.array([[1,2,3], [4,5,6], [7,8,9]]) + >>> np.apply_along_axis(my_func, 0, b) + array([4., 5., 6.]) + >>> np.apply_along_axis(my_func, 1, b) + array([2., 5., 8.]) + + For a function that returns a 1D array, the number of dimensions in + `outarr` is the same as `arr`. + + >>> b = np.array([[8,1,7], [4,3,9], [5,2,6]]) + >>> np.apply_along_axis(sorted, 1, b) + array([[1, 7, 8], + [3, 4, 9], + [2, 5, 6]]) + + For a function that returns a higher dimensional array, those dimensions + are inserted in place of the `axis` dimension. + + >>> b = np.array([[1,2,3], [4,5,6], [7,8,9]]) + >>> np.apply_along_axis(np.diag, -1, b) + array([[[1, 0, 0], + [0, 2, 0], + [0, 0, 3]], + [[4, 0, 0], + [0, 5, 0], + [0, 0, 6]], + [[7, 0, 0], + [0, 8, 0], + [0, 0, 9]]]) + """ + # handle negative axes + conv = _array_converter(arr) + arr = conv[0] + + nd = arr.ndim + axis = normalize_axis_index(axis, nd) + + # arr, with the iteration axis at the end + in_dims = list(range(nd)) + inarr_view = transpose(arr, in_dims[:axis] + in_dims[axis + 1:] + [axis]) + + # compute indices for the iteration axes, and append a trailing ellipsis to + # prevent 0d arrays decaying to scalars, which fixes gh-8642 + inds = ndindex(inarr_view.shape[:-1]) + inds = (ind + (Ellipsis,) for ind in inds) + + # invoke the function on the first item + try: + ind0 = next(inds) + except StopIteration: + raise ValueError( + 'Cannot apply_along_axis when any iteration dimensions are 0' + ) from None + res = asanyarray(func1d(inarr_view[ind0], *args, **kwargs)) + + # build a buffer for storing evaluations of func1d. + # remove the requested axis, and add the new ones on the end. + # laid out so that each write is contiguous. + # for a tuple index inds, buff[inds] = func1d(inarr_view[inds]) + if not isinstance(res, matrix): + buff = zeros_like(res, shape=inarr_view.shape[:-1] + res.shape) + else: + # Matrices are nasty with reshaping, so do not preserve them here. + buff = zeros(inarr_view.shape[:-1] + res.shape, dtype=res.dtype) + + # permutation of axes such that out = buff.transpose(buff_permute) + buff_dims = list(range(buff.ndim)) + buff_permute = ( + buff_dims[0 : axis] + + buff_dims[buff.ndim - res.ndim : buff.ndim] + + buff_dims[axis : buff.ndim - res.ndim] + ) + + # save the first result, then compute and save all remaining results + buff[ind0] = res + for ind in inds: + buff[ind] = asanyarray(func1d(inarr_view[ind], *args, **kwargs)) + + res = transpose(buff, buff_permute) + return conv.wrap(res) + + +def _apply_over_axes_dispatcher(func, a, axes): + return (a,) + + +@array_function_dispatch(_apply_over_axes_dispatcher) +def apply_over_axes(func, a, axes): + """ + Apply a function repeatedly over multiple axes. + + `func` is called as `res = func(a, axis)`, where `axis` is the first + element of `axes`. The result `res` of the function call must have + either the same dimensions as `a` or one less dimension. If `res` + has one less dimension than `a`, a dimension is inserted before + `axis`. The call to `func` is then repeated for each axis in `axes`, + with `res` as the first argument. + + Parameters + ---------- + func : function + This function must take two arguments, `func(a, axis)`. + a : array_like + Input array. + axes : array_like + Axes over which `func` is applied; the elements must be integers. + + Returns + ------- + apply_over_axis : ndarray + The output array. The number of dimensions is the same as `a`, + but the shape can be different. This depends on whether `func` + changes the shape of its output with respect to its input. + + See Also + -------- + apply_along_axis : + Apply a function to 1-D slices of an array along the given axis. + + Notes + ----- + This function is equivalent to tuple axis arguments to reorderable ufuncs + with keepdims=True. Tuple axis arguments to ufuncs have been available since + version 1.7.0. + + Examples + -------- + >>> import numpy as np + >>> a = np.arange(24).reshape(2,3,4) + >>> a + array([[[ 0, 1, 2, 3], + [ 4, 5, 6, 7], + [ 8, 9, 10, 11]], + [[12, 13, 14, 15], + [16, 17, 18, 19], + [20, 21, 22, 23]]]) + + Sum over axes 0 and 2. The result has same number of dimensions + as the original array: + + >>> np.apply_over_axes(np.sum, a, [0,2]) + array([[[ 60], + [ 92], + [124]]]) + + Tuple axis arguments to ufuncs are equivalent: + + >>> np.sum(a, axis=(0,2), keepdims=True) + array([[[ 60], + [ 92], + [124]]]) + + """ + val = asarray(a) + N = a.ndim + if array(axes).ndim == 0: + axes = (axes,) + for axis in axes: + if axis < 0: + axis = N + axis + args = (val, axis) + res = func(*args) + if res.ndim == val.ndim: + val = res + else: + res = expand_dims(res, axis) + if res.ndim == val.ndim: + val = res + else: + raise ValueError("function is not returning " + "an array of the correct shape") + return val + + +def _expand_dims_dispatcher(a, axis): + return (a,) + + +@array_function_dispatch(_expand_dims_dispatcher) +def expand_dims(a, axis): + """ + Expand the shape of an array. + + Insert a new axis that will appear at the `axis` position in the expanded + array shape. + + Parameters + ---------- + a : array_like + Input array. + axis : int or tuple of ints + Position in the expanded axes where the new axis (or axes) is placed. + + .. deprecated:: 1.13.0 + Passing an axis where ``axis > a.ndim`` will be treated as + ``axis == a.ndim``, and passing ``axis < -a.ndim - 1`` will + be treated as ``axis == 0``. This behavior is deprecated. + + Returns + ------- + result : ndarray + View of `a` with the number of dimensions increased. + + See Also + -------- + squeeze : The inverse operation, removing singleton dimensions + reshape : Insert, remove, and combine dimensions, and resize existing ones + atleast_1d, atleast_2d, atleast_3d + + Examples + -------- + >>> import numpy as np + >>> x = np.array([1, 2]) + >>> x.shape + (2,) + + The following is equivalent to ``x[np.newaxis, :]`` or ``x[np.newaxis]``: + + >>> y = np.expand_dims(x, axis=0) + >>> y + array([[1, 2]]) + >>> y.shape + (1, 2) + + The following is equivalent to ``x[:, np.newaxis]``: + + >>> y = np.expand_dims(x, axis=1) + >>> y + array([[1], + [2]]) + >>> y.shape + (2, 1) + + ``axis`` may also be a tuple: + + >>> y = np.expand_dims(x, axis=(0, 1)) + >>> y + array([[[1, 2]]]) + + >>> y = np.expand_dims(x, axis=(2, 0)) + >>> y + array([[[1], + [2]]]) + + Note that some examples may use ``None`` instead of ``np.newaxis``. These + are the same objects: + + >>> np.newaxis is None + True + + """ + if isinstance(a, matrix): + a = asarray(a) + else: + a = asanyarray(a) + + if not isinstance(axis, (tuple, list)): + axis = (axis,) + + out_ndim = len(axis) + a.ndim + axis = normalize_axis_tuple(axis, out_ndim) + + shape_it = iter(a.shape) + shape = [1 if ax in axis else next(shape_it) for ax in range(out_ndim)] + + return a.reshape(shape) + + +# NOTE: Remove once deprecation period passes +@set_module("numpy") +def row_stack(tup, *, dtype=None, casting="same_kind"): + # Deprecated in NumPy 2.0, 2023-08-18 + warnings.warn( + "`row_stack` alias is deprecated. " + "Use `np.vstack` directly.", + DeprecationWarning, + stacklevel=2 + ) + return vstack(tup, dtype=dtype, casting=casting) + + +row_stack.__doc__ = vstack.__doc__ + + +def _column_stack_dispatcher(tup): + return _arrays_for_stack_dispatcher(tup) + + +@array_function_dispatch(_column_stack_dispatcher) +def column_stack(tup): + """ + Stack 1-D arrays as columns into a 2-D array. + + Take a sequence of 1-D arrays and stack them as columns + to make a single 2-D array. 2-D arrays are stacked as-is, + just like with `hstack`. 1-D arrays are turned into 2-D columns + first. + + Parameters + ---------- + tup : sequence of 1-D or 2-D arrays. + Arrays to stack. All of them must have the same first dimension. + + Returns + ------- + stacked : 2-D array + The array formed by stacking the given arrays. + + See Also + -------- + stack, hstack, vstack, concatenate + + Examples + -------- + >>> import numpy as np + >>> a = np.array((1,2,3)) + >>> b = np.array((2,3,4)) + >>> np.column_stack((a,b)) + array([[1, 2], + [2, 3], + [3, 4]]) + + """ + arrays = [] + for v in tup: + arr = asanyarray(v) + if arr.ndim < 2: + arr = array(arr, copy=None, subok=True, ndmin=2).T + arrays.append(arr) + return _nx.concatenate(arrays, 1) + + +def _dstack_dispatcher(tup): + return _arrays_for_stack_dispatcher(tup) + + +@array_function_dispatch(_dstack_dispatcher) +def dstack(tup): + """ + Stack arrays in sequence depth wise (along third axis). + + This is equivalent to concatenation along the third axis after 2-D arrays + of shape `(M,N)` have been reshaped to `(M,N,1)` and 1-D arrays of shape + `(N,)` have been reshaped to `(1,N,1)`. Rebuilds arrays divided by + `dsplit`. + + This function makes most sense for arrays with up to 3 dimensions. For + instance, for pixel-data with a height (first axis), width (second axis), + and r/g/b channels (third axis). The functions `concatenate`, `stack` and + `block` provide more general stacking and concatenation operations. + + Parameters + ---------- + tup : sequence of arrays + The arrays must have the same shape along all but the third axis. + 1-D or 2-D arrays must have the same shape. + + Returns + ------- + stacked : ndarray + The array formed by stacking the given arrays, will be at least 3-D. + + See Also + -------- + concatenate : Join a sequence of arrays along an existing axis. + stack : Join a sequence of arrays along a new axis. + block : Assemble an nd-array from nested lists of blocks. + vstack : Stack arrays in sequence vertically (row wise). + hstack : Stack arrays in sequence horizontally (column wise). + column_stack : Stack 1-D arrays as columns into a 2-D array. + dsplit : Split array along third axis. + + Examples + -------- + >>> import numpy as np + >>> a = np.array((1,2,3)) + >>> b = np.array((2,3,4)) + >>> np.dstack((a,b)) + array([[[1, 2], + [2, 3], + [3, 4]]]) + + >>> a = np.array([[1],[2],[3]]) + >>> b = np.array([[2],[3],[4]]) + >>> np.dstack((a,b)) + array([[[1, 2]], + [[2, 3]], + [[3, 4]]]) + + """ + arrs = atleast_3d(*tup) + if not isinstance(arrs, tuple): + arrs = (arrs,) + return _nx.concatenate(arrs, 2) + + +def _replace_zero_by_x_arrays(sub_arys): + for i in range(len(sub_arys)): + if _nx.ndim(sub_arys[i]) == 0: + sub_arys[i] = _nx.empty(0, dtype=sub_arys[i].dtype) + elif _nx.sometrue(_nx.equal(_nx.shape(sub_arys[i]), 0)): + sub_arys[i] = _nx.empty(0, dtype=sub_arys[i].dtype) + return sub_arys + + +def _array_split_dispatcher(ary, indices_or_sections, axis=None): + return (ary, indices_or_sections) + + +@array_function_dispatch(_array_split_dispatcher) +def array_split(ary, indices_or_sections, axis=0): + """ + Split an array into multiple sub-arrays. + + Please refer to the ``split`` documentation. The only difference + between these functions is that ``array_split`` allows + `indices_or_sections` to be an integer that does *not* equally + divide the axis. For an array of length l that should be split + into n sections, it returns l % n sub-arrays of size l//n + 1 + and the rest of size l//n. + + See Also + -------- + split : Split array into multiple sub-arrays of equal size. + + Examples + -------- + >>> import numpy as np + >>> x = np.arange(8.0) + >>> np.array_split(x, 3) + [array([0., 1., 2.]), array([3., 4., 5.]), array([6., 7.])] + + >>> x = np.arange(9) + >>> np.array_split(x, 4) + [array([0, 1, 2]), array([3, 4]), array([5, 6]), array([7, 8])] + + """ + try: + Ntotal = ary.shape[axis] + except AttributeError: + Ntotal = len(ary) + try: + # handle array case. + Nsections = len(indices_or_sections) + 1 + div_points = [0] + list(indices_or_sections) + [Ntotal] + except TypeError: + # indices_or_sections is a scalar, not an array. + Nsections = int(indices_or_sections) + if Nsections <= 0: + raise ValueError('number sections must be larger than 0.') from None + Neach_section, extras = divmod(Ntotal, Nsections) + section_sizes = ([0] + + extras * [Neach_section + 1] + + (Nsections - extras) * [Neach_section]) + div_points = _nx.array(section_sizes, dtype=_nx.intp).cumsum() + + sub_arys = [] + sary = _nx.swapaxes(ary, axis, 0) + for i in range(Nsections): + st = div_points[i] + end = div_points[i + 1] + sub_arys.append(_nx.swapaxes(sary[st:end], axis, 0)) + + return sub_arys + + +def _split_dispatcher(ary, indices_or_sections, axis=None): + return (ary, indices_or_sections) + + +@array_function_dispatch(_split_dispatcher) +def split(ary, indices_or_sections, axis=0): + """ + Split an array into multiple sub-arrays as views into `ary`. + + Parameters + ---------- + ary : ndarray + Array to be divided into sub-arrays. + indices_or_sections : int or 1-D array + If `indices_or_sections` is an integer, N, the array will be divided + into N equal arrays along `axis`. If such a split is not possible, + an error is raised. + + If `indices_or_sections` is a 1-D array of sorted integers, the entries + indicate where along `axis` the array is split. For example, + ``[2, 3]`` would, for ``axis=0``, result in + + - ary[:2] + - ary[2:3] + - ary[3:] + + If an index exceeds the dimension of the array along `axis`, + an empty sub-array is returned correspondingly. + axis : int, optional + The axis along which to split, default is 0. + + Returns + ------- + sub-arrays : list of ndarrays + A list of sub-arrays as views into `ary`. + + Raises + ------ + ValueError + If `indices_or_sections` is given as an integer, but + a split does not result in equal division. + + See Also + -------- + array_split : Split an array into multiple sub-arrays of equal or + near-equal size. Does not raise an exception if + an equal division cannot be made. + hsplit : Split array into multiple sub-arrays horizontally (column-wise). + vsplit : Split array into multiple sub-arrays vertically (row wise). + dsplit : Split array into multiple sub-arrays along the 3rd axis (depth). + concatenate : Join a sequence of arrays along an existing axis. + stack : Join a sequence of arrays along a new axis. + hstack : Stack arrays in sequence horizontally (column wise). + vstack : Stack arrays in sequence vertically (row wise). + dstack : Stack arrays in sequence depth wise (along third dimension). + + Examples + -------- + >>> import numpy as np + >>> x = np.arange(9.0) + >>> np.split(x, 3) + [array([0., 1., 2.]), array([3., 4., 5.]), array([6., 7., 8.])] + + >>> x = np.arange(8.0) + >>> np.split(x, [3, 5, 6, 10]) + [array([0., 1., 2.]), + array([3., 4.]), + array([5.]), + array([6., 7.]), + array([], dtype=float64)] + + """ + try: + len(indices_or_sections) + except TypeError: + sections = indices_or_sections + N = ary.shape[axis] + if N % sections: + raise ValueError( + 'array split does not result in an equal division') from None + return array_split(ary, indices_or_sections, axis) + + +def _hvdsplit_dispatcher(ary, indices_or_sections): + return (ary, indices_or_sections) + + +@array_function_dispatch(_hvdsplit_dispatcher) +def hsplit(ary, indices_or_sections): + """ + Split an array into multiple sub-arrays horizontally (column-wise). + + Please refer to the `split` documentation. `hsplit` is equivalent + to `split` with ``axis=1``, the array is always split along the second + axis except for 1-D arrays, where it is split at ``axis=0``. + + See Also + -------- + split : Split an array into multiple sub-arrays of equal size. + + Examples + -------- + >>> import numpy as np + >>> x = np.arange(16.0).reshape(4, 4) + >>> x + array([[ 0., 1., 2., 3.], + [ 4., 5., 6., 7.], + [ 8., 9., 10., 11.], + [12., 13., 14., 15.]]) + >>> np.hsplit(x, 2) + [array([[ 0., 1.], + [ 4., 5.], + [ 8., 9.], + [12., 13.]]), + array([[ 2., 3.], + [ 6., 7.], + [10., 11.], + [14., 15.]])] + >>> np.hsplit(x, np.array([3, 6])) + [array([[ 0., 1., 2.], + [ 4., 5., 6.], + [ 8., 9., 10.], + [12., 13., 14.]]), + array([[ 3.], + [ 7.], + [11.], + [15.]]), + array([], shape=(4, 0), dtype=float64)] + + With a higher dimensional array the split is still along the second axis. + + >>> x = np.arange(8.0).reshape(2, 2, 2) + >>> x + array([[[0., 1.], + [2., 3.]], + [[4., 5.], + [6., 7.]]]) + >>> np.hsplit(x, 2) + [array([[[0., 1.]], + [[4., 5.]]]), + array([[[2., 3.]], + [[6., 7.]]])] + + With a 1-D array, the split is along axis 0. + + >>> x = np.array([0, 1, 2, 3, 4, 5]) + >>> np.hsplit(x, 2) + [array([0, 1, 2]), array([3, 4, 5])] + + """ + if _nx.ndim(ary) == 0: + raise ValueError('hsplit only works on arrays of 1 or more dimensions') + if ary.ndim > 1: + return split(ary, indices_or_sections, 1) + else: + return split(ary, indices_or_sections, 0) + + +@array_function_dispatch(_hvdsplit_dispatcher) +def vsplit(ary, indices_or_sections): + """ + Split an array into multiple sub-arrays vertically (row-wise). + + Please refer to the ``split`` documentation. ``vsplit`` is equivalent + to ``split`` with `axis=0` (default), the array is always split along the + first axis regardless of the array dimension. + + See Also + -------- + split : Split an array into multiple sub-arrays of equal size. + + Examples + -------- + >>> import numpy as np + >>> x = np.arange(16.0).reshape(4, 4) + >>> x + array([[ 0., 1., 2., 3.], + [ 4., 5., 6., 7.], + [ 8., 9., 10., 11.], + [12., 13., 14., 15.]]) + >>> np.vsplit(x, 2) + [array([[0., 1., 2., 3.], + [4., 5., 6., 7.]]), + array([[ 8., 9., 10., 11.], + [12., 13., 14., 15.]])] + >>> np.vsplit(x, np.array([3, 6])) + [array([[ 0., 1., 2., 3.], + [ 4., 5., 6., 7.], + [ 8., 9., 10., 11.]]), + array([[12., 13., 14., 15.]]), + array([], shape=(0, 4), dtype=float64)] + + With a higher dimensional array the split is still along the first axis. + + >>> x = np.arange(8.0).reshape(2, 2, 2) + >>> x + array([[[0., 1.], + [2., 3.]], + [[4., 5.], + [6., 7.]]]) + >>> np.vsplit(x, 2) + [array([[[0., 1.], + [2., 3.]]]), + array([[[4., 5.], + [6., 7.]]])] + + """ + if _nx.ndim(ary) < 2: + raise ValueError('vsplit only works on arrays of 2 or more dimensions') + return split(ary, indices_or_sections, 0) + + +@array_function_dispatch(_hvdsplit_dispatcher) +def dsplit(ary, indices_or_sections): + """ + Split array into multiple sub-arrays along the 3rd axis (depth). + + Please refer to the `split` documentation. `dsplit` is equivalent + to `split` with ``axis=2``, the array is always split along the third + axis provided the array dimension is greater than or equal to 3. + + See Also + -------- + split : Split an array into multiple sub-arrays of equal size. + + Examples + -------- + >>> import numpy as np + >>> x = np.arange(16.0).reshape(2, 2, 4) + >>> x + array([[[ 0., 1., 2., 3.], + [ 4., 5., 6., 7.]], + [[ 8., 9., 10., 11.], + [12., 13., 14., 15.]]]) + >>> np.dsplit(x, 2) + [array([[[ 0., 1.], + [ 4., 5.]], + [[ 8., 9.], + [12., 13.]]]), array([[[ 2., 3.], + [ 6., 7.]], + [[10., 11.], + [14., 15.]]])] + >>> np.dsplit(x, np.array([3, 6])) + [array([[[ 0., 1., 2.], + [ 4., 5., 6.]], + [[ 8., 9., 10.], + [12., 13., 14.]]]), + array([[[ 3.], + [ 7.]], + [[11.], + [15.]]]), + array([], shape=(2, 2, 0), dtype=float64)] + """ + if _nx.ndim(ary) < 3: + raise ValueError('dsplit only works on arrays of 3 or more dimensions') + return split(ary, indices_or_sections, 2) + + +def get_array_wrap(*args): + """Find the wrapper for the array with the highest priority. + + In case of ties, leftmost wins. If no wrapper is found, return None. + + .. deprecated:: 2.0 + """ + + # Deprecated in NumPy 2.0, 2023-07-11 + warnings.warn( + "`get_array_wrap` is deprecated. " + "(deprecated in NumPy 2.0)", + DeprecationWarning, + stacklevel=2 + ) + + wrappers = sorted((getattr(x, '__array_priority__', 0), -i, + x.__array_wrap__) for i, x in enumerate(args) + if hasattr(x, '__array_wrap__')) + if wrappers: + return wrappers[-1][-1] + return None + + +def _kron_dispatcher(a, b): + return (a, b) + + +@array_function_dispatch(_kron_dispatcher) +def kron(a, b): + """ + Kronecker product of two arrays. + + Computes the Kronecker product, a composite array made of blocks of the + second array scaled by the first. + + Parameters + ---------- + a, b : array_like + + Returns + ------- + out : ndarray + + See Also + -------- + outer : The outer product + + Notes + ----- + The function assumes that the number of dimensions of `a` and `b` + are the same, if necessary prepending the smallest with ones. + If ``a.shape = (r0,r1,..,rN)`` and ``b.shape = (s0,s1,...,sN)``, + the Kronecker product has shape ``(r0*s0, r1*s1, ..., rN*SN)``. + The elements are products of elements from `a` and `b`, organized + explicitly by:: + + kron(a,b)[k0,k1,...,kN] = a[i0,i1,...,iN] * b[j0,j1,...,jN] + + where:: + + kt = it * st + jt, t = 0,...,N + + In the common 2-D case (N=1), the block structure can be visualized:: + + [[ a[0,0]*b, a[0,1]*b, ... , a[0,-1]*b ], + [ ... ... ], + [ a[-1,0]*b, a[-1,1]*b, ... , a[-1,-1]*b ]] + + + Examples + -------- + >>> import numpy as np + >>> np.kron([1,10,100], [5,6,7]) + array([ 5, 6, 7, ..., 500, 600, 700]) + >>> np.kron([5,6,7], [1,10,100]) + array([ 5, 50, 500, ..., 7, 70, 700]) + + >>> np.kron(np.eye(2), np.ones((2,2))) + array([[1., 1., 0., 0.], + [1., 1., 0., 0.], + [0., 0., 1., 1.], + [0., 0., 1., 1.]]) + + >>> a = np.arange(100).reshape((2,5,2,5)) + >>> b = np.arange(24).reshape((2,3,4)) + >>> c = np.kron(a,b) + >>> c.shape + (2, 10, 6, 20) + >>> I = (1,3,0,2) + >>> J = (0,2,1) + >>> J1 = (0,) + J # extend to ndim=4 + >>> S1 = (1,) + b.shape + >>> K = tuple(np.array(I) * np.array(S1) + np.array(J1)) + >>> c[K] == a[I]*b[J] + True + + """ + # Working: + # 1. Equalise the shapes by prepending smaller array with 1s + # 2. Expand shapes of both the arrays by adding new axes at + # odd positions for 1st array and even positions for 2nd + # 3. Compute the product of the modified array + # 4. The inner most array elements now contain the rows of + # the Kronecker product + # 5. Reshape the result to kron's shape, which is same as + # product of shapes of the two arrays. + b = asanyarray(b) + a = array(a, copy=None, subok=True, ndmin=b.ndim) + is_any_mat = isinstance(a, matrix) or isinstance(b, matrix) + ndb, nda = b.ndim, a.ndim + nd = max(ndb, nda) + + if (nda == 0 or ndb == 0): + return _nx.multiply(a, b) + + as_ = a.shape + bs = b.shape + if not a.flags.contiguous: + a = reshape(a, as_) + if not b.flags.contiguous: + b = reshape(b, bs) + + # Equalise the shapes by prepending smaller one with 1s + as_ = (1,) * max(0, ndb - nda) + as_ + bs = (1,) * max(0, nda - ndb) + bs + + # Insert empty dimensions + a_arr = expand_dims(a, axis=tuple(range(ndb - nda))) + b_arr = expand_dims(b, axis=tuple(range(nda - ndb))) + + # Compute the product + a_arr = expand_dims(a_arr, axis=tuple(range(1, nd * 2, 2))) + b_arr = expand_dims(b_arr, axis=tuple(range(0, nd * 2, 2))) + # In case of `mat`, convert result to `array` + result = _nx.multiply(a_arr, b_arr, subok=(not is_any_mat)) + + # Reshape back + result = result.reshape(_nx.multiply(as_, bs)) + + return result if not is_any_mat else matrix(result, copy=False) + + +def _tile_dispatcher(A, reps): + return (A, reps) + + +@array_function_dispatch(_tile_dispatcher) +def tile(A, reps): + """ + Construct an array by repeating A the number of times given by reps. + + If `reps` has length ``d``, the result will have dimension of + ``max(d, A.ndim)``. + + If ``A.ndim < d``, `A` is promoted to be d-dimensional by prepending new + axes. So a shape (3,) array is promoted to (1, 3) for 2-D replication, + or shape (1, 1, 3) for 3-D replication. If this is not the desired + behavior, promote `A` to d-dimensions manually before calling this + function. + + If ``A.ndim > d``, `reps` is promoted to `A`.ndim by prepending 1's to it. + Thus for an `A` of shape (2, 3, 4, 5), a `reps` of (2, 2) is treated as + (1, 1, 2, 2). + + Note : Although tile may be used for broadcasting, it is strongly + recommended to use numpy's broadcasting operations and functions. + + Parameters + ---------- + A : array_like + The input array. + reps : array_like + The number of repetitions of `A` along each axis. + + Returns + ------- + c : ndarray + The tiled output array. + + See Also + -------- + repeat : Repeat elements of an array. + broadcast_to : Broadcast an array to a new shape + + Examples + -------- + >>> import numpy as np + >>> a = np.array([0, 1, 2]) + >>> np.tile(a, 2) + array([0, 1, 2, 0, 1, 2]) + >>> np.tile(a, (2, 2)) + array([[0, 1, 2, 0, 1, 2], + [0, 1, 2, 0, 1, 2]]) + >>> np.tile(a, (2, 1, 2)) + array([[[0, 1, 2, 0, 1, 2]], + [[0, 1, 2, 0, 1, 2]]]) + + >>> b = np.array([[1, 2], [3, 4]]) + >>> np.tile(b, 2) + array([[1, 2, 1, 2], + [3, 4, 3, 4]]) + >>> np.tile(b, (2, 1)) + array([[1, 2], + [3, 4], + [1, 2], + [3, 4]]) + + >>> c = np.array([1,2,3,4]) + >>> np.tile(c,(4,1)) + array([[1, 2, 3, 4], + [1, 2, 3, 4], + [1, 2, 3, 4], + [1, 2, 3, 4]]) + """ + try: + tup = tuple(reps) + except TypeError: + tup = (reps,) + d = len(tup) + if all(x == 1 for x in tup) and isinstance(A, _nx.ndarray): + # Fixes the problem that the function does not make a copy if A is a + # numpy array and the repetitions are 1 in all dimensions + return _nx.array(A, copy=True, subok=True, ndmin=d) + else: + # Note that no copy of zero-sized arrays is made. However since they + # have no data there is no risk of an inadvertent overwrite. + c = _nx.array(A, copy=None, subok=True, ndmin=d) + if (d < c.ndim): + tup = (1,) * (c.ndim - d) + tup + shape_out = tuple(s * t for s, t in zip(c.shape, tup)) + n = c.size + if n > 0: + for dim_in, nrep in zip(c.shape, tup): + if nrep != 1: + c = c.reshape(-1, n).repeat(nrep, 0) + n //= dim_in + return c.reshape(shape_out) diff --git a/.venv/lib/python3.12/site-packages/numpy/lib/_shape_base_impl.pyi b/.venv/lib/python3.12/site-packages/numpy/lib/_shape_base_impl.pyi new file mode 100644 index 0000000..a50d372 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/lib/_shape_base_impl.pyi @@ -0,0 +1,235 @@ +from collections.abc import Callable, Sequence +from typing import ( + Any, + Concatenate, + ParamSpec, + Protocol, + SupportsIndex, + TypeVar, + overload, + type_check_only, +) + +from typing_extensions import deprecated + +import numpy as np +from numpy import ( + _CastingKind, + complexfloating, + floating, + generic, + integer, + object_, + signedinteger, + ufunc, + unsignedinteger, +) +from numpy._typing import ( + ArrayLike, + DTypeLike, + NDArray, + _ArrayLike, + _ArrayLikeBool_co, + _ArrayLikeComplex_co, + _ArrayLikeFloat_co, + _ArrayLikeInt_co, + _ArrayLikeObject_co, + _ArrayLikeUInt_co, + _ShapeLike, +) + +__all__ = [ + "column_stack", + "row_stack", + "dstack", + "array_split", + "split", + "hsplit", + "vsplit", + "dsplit", + "apply_over_axes", + "expand_dims", + "apply_along_axis", + "kron", + "tile", + "take_along_axis", + "put_along_axis", +] + +_P = ParamSpec("_P") +_ScalarT = TypeVar("_ScalarT", bound=generic) + +# Signature of `__array_wrap__` +@type_check_only +class _ArrayWrap(Protocol): + def __call__( + self, + array: NDArray[Any], + context: tuple[ufunc, tuple[Any, ...], int] | None = ..., + return_scalar: bool = ..., + /, + ) -> Any: ... + +@type_check_only +class _SupportsArrayWrap(Protocol): + @property + def __array_wrap__(self) -> _ArrayWrap: ... + +### + +def take_along_axis( + arr: _ScalarT | NDArray[_ScalarT], + indices: NDArray[integer], + axis: int | None = ..., +) -> NDArray[_ScalarT]: ... + +def put_along_axis( + arr: NDArray[_ScalarT], + indices: NDArray[integer], + values: ArrayLike, + axis: int | None, +) -> None: ... + +@overload +def apply_along_axis( + func1d: Callable[Concatenate[NDArray[Any], _P], _ArrayLike[_ScalarT]], + axis: SupportsIndex, + arr: ArrayLike, + *args: _P.args, + **kwargs: _P.kwargs, +) -> NDArray[_ScalarT]: ... +@overload +def apply_along_axis( + func1d: Callable[Concatenate[NDArray[Any], _P], Any], + axis: SupportsIndex, + arr: ArrayLike, + *args: _P.args, + **kwargs: _P.kwargs, +) -> NDArray[Any]: ... + +def apply_over_axes( + func: Callable[[NDArray[Any], int], NDArray[_ScalarT]], + a: ArrayLike, + axes: int | Sequence[int], +) -> NDArray[_ScalarT]: ... + +@overload +def expand_dims( + a: _ArrayLike[_ScalarT], + axis: _ShapeLike, +) -> NDArray[_ScalarT]: ... +@overload +def expand_dims( + a: ArrayLike, + axis: _ShapeLike, +) -> NDArray[Any]: ... + +# Deprecated in NumPy 2.0, 2023-08-18 +@deprecated("`row_stack` alias is deprecated. Use `np.vstack` directly.") +def row_stack( + tup: Sequence[ArrayLike], + *, + dtype: DTypeLike | None = None, + casting: _CastingKind = "same_kind", +) -> NDArray[Any]: ... + +# +@overload +def column_stack(tup: Sequence[_ArrayLike[_ScalarT]]) -> NDArray[_ScalarT]: ... +@overload +def column_stack(tup: Sequence[ArrayLike]) -> NDArray[Any]: ... + +@overload +def dstack(tup: Sequence[_ArrayLike[_ScalarT]]) -> NDArray[_ScalarT]: ... +@overload +def dstack(tup: Sequence[ArrayLike]) -> NDArray[Any]: ... + +@overload +def array_split( + ary: _ArrayLike[_ScalarT], + indices_or_sections: _ShapeLike, + axis: SupportsIndex = ..., +) -> list[NDArray[_ScalarT]]: ... +@overload +def array_split( + ary: ArrayLike, + indices_or_sections: _ShapeLike, + axis: SupportsIndex = ..., +) -> list[NDArray[Any]]: ... + +@overload +def split( + ary: _ArrayLike[_ScalarT], + indices_or_sections: _ShapeLike, + axis: SupportsIndex = ..., +) -> list[NDArray[_ScalarT]]: ... +@overload +def split( + ary: ArrayLike, + indices_or_sections: _ShapeLike, + axis: SupportsIndex = ..., +) -> list[NDArray[Any]]: ... + +@overload +def hsplit( + ary: _ArrayLike[_ScalarT], + indices_or_sections: _ShapeLike, +) -> list[NDArray[_ScalarT]]: ... +@overload +def hsplit( + ary: ArrayLike, + indices_or_sections: _ShapeLike, +) -> list[NDArray[Any]]: ... + +@overload +def vsplit( + ary: _ArrayLike[_ScalarT], + indices_or_sections: _ShapeLike, +) -> list[NDArray[_ScalarT]]: ... +@overload +def vsplit( + ary: ArrayLike, + indices_or_sections: _ShapeLike, +) -> list[NDArray[Any]]: ... + +@overload +def dsplit( + ary: _ArrayLike[_ScalarT], + indices_or_sections: _ShapeLike, +) -> list[NDArray[_ScalarT]]: ... +@overload +def dsplit( + ary: ArrayLike, + indices_or_sections: _ShapeLike, +) -> list[NDArray[Any]]: ... + +@overload +def get_array_wrap(*args: _SupportsArrayWrap) -> _ArrayWrap: ... +@overload +def get_array_wrap(*args: object) -> _ArrayWrap | None: ... + +@overload +def kron(a: _ArrayLikeBool_co, b: _ArrayLikeBool_co) -> NDArray[np.bool]: ... # type: ignore[misc] +@overload +def kron(a: _ArrayLikeUInt_co, b: _ArrayLikeUInt_co) -> NDArray[unsignedinteger]: ... # type: ignore[misc] +@overload +def kron(a: _ArrayLikeInt_co, b: _ArrayLikeInt_co) -> NDArray[signedinteger]: ... # type: ignore[misc] +@overload +def kron(a: _ArrayLikeFloat_co, b: _ArrayLikeFloat_co) -> NDArray[floating]: ... # type: ignore[misc] +@overload +def kron(a: _ArrayLikeComplex_co, b: _ArrayLikeComplex_co) -> NDArray[complexfloating]: ... +@overload +def kron(a: _ArrayLikeObject_co, b: Any) -> NDArray[object_]: ... +@overload +def kron(a: Any, b: _ArrayLikeObject_co) -> NDArray[object_]: ... + +@overload +def tile( + A: _ArrayLike[_ScalarT], + reps: int | Sequence[int], +) -> NDArray[_ScalarT]: ... +@overload +def tile( + A: ArrayLike, + reps: int | Sequence[int], +) -> NDArray[Any]: ... diff --git a/.venv/lib/python3.12/site-packages/numpy/lib/_stride_tricks_impl.py b/.venv/lib/python3.12/site-packages/numpy/lib/_stride_tricks_impl.py new file mode 100644 index 0000000..d478078 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/lib/_stride_tricks_impl.py @@ -0,0 +1,549 @@ +""" +Utilities that manipulate strides to achieve desirable effects. + +An explanation of strides can be found in the :ref:`arrays.ndarray`. + +""" +import numpy as np +from numpy._core.numeric import normalize_axis_tuple +from numpy._core.overrides import array_function_dispatch, set_module + +__all__ = ['broadcast_to', 'broadcast_arrays', 'broadcast_shapes'] + + +class DummyArray: + """Dummy object that just exists to hang __array_interface__ dictionaries + and possibly keep alive a reference to a base array. + """ + + def __init__(self, interface, base=None): + self.__array_interface__ = interface + self.base = base + + +def _maybe_view_as_subclass(original_array, new_array): + if type(original_array) is not type(new_array): + # if input was an ndarray subclass and subclasses were OK, + # then view the result as that subclass. + new_array = new_array.view(type=type(original_array)) + # Since we have done something akin to a view from original_array, we + # should let the subclass finalize (if it has it implemented, i.e., is + # not None). + if new_array.__array_finalize__: + new_array.__array_finalize__(original_array) + return new_array + + +@set_module("numpy.lib.stride_tricks") +def as_strided(x, shape=None, strides=None, subok=False, writeable=True): + """ + Create a view into the array with the given shape and strides. + + .. warning:: This function has to be used with extreme care, see notes. + + Parameters + ---------- + x : ndarray + Array to create a new. + shape : sequence of int, optional + The shape of the new array. Defaults to ``x.shape``. + strides : sequence of int, optional + The strides of the new array. Defaults to ``x.strides``. + subok : bool, optional + If True, subclasses are preserved. + writeable : bool, optional + If set to False, the returned array will always be readonly. + Otherwise it will be writable if the original array was. It + is advisable to set this to False if possible (see Notes). + + Returns + ------- + view : ndarray + + See also + -------- + broadcast_to : broadcast an array to a given shape. + reshape : reshape an array. + lib.stride_tricks.sliding_window_view : + userfriendly and safe function for a creation of sliding window views. + + Notes + ----- + ``as_strided`` creates a view into the array given the exact strides + and shape. This means it manipulates the internal data structure of + ndarray and, if done incorrectly, the array elements can point to + invalid memory and can corrupt results or crash your program. + It is advisable to always use the original ``x.strides`` when + calculating new strides to avoid reliance on a contiguous memory + layout. + + Furthermore, arrays created with this function often contain self + overlapping memory, so that two elements are identical. + Vectorized write operations on such arrays will typically be + unpredictable. They may even give different results for small, large, + or transposed arrays. + + Since writing to these arrays has to be tested and done with great + care, you may want to use ``writeable=False`` to avoid accidental write + operations. + + For these reasons it is advisable to avoid ``as_strided`` when + possible. + """ + # first convert input to array, possibly keeping subclass + x = np.array(x, copy=None, subok=subok) + interface = dict(x.__array_interface__) + if shape is not None: + interface['shape'] = tuple(shape) + if strides is not None: + interface['strides'] = tuple(strides) + + array = np.asarray(DummyArray(interface, base=x)) + # The route via `__interface__` does not preserve structured + # dtypes. Since dtype should remain unchanged, we set it explicitly. + array.dtype = x.dtype + + view = _maybe_view_as_subclass(x, array) + + if view.flags.writeable and not writeable: + view.flags.writeable = False + + return view + + +def _sliding_window_view_dispatcher(x, window_shape, axis=None, *, + subok=None, writeable=None): + return (x,) + + +@array_function_dispatch( + _sliding_window_view_dispatcher, module="numpy.lib.stride_tricks" +) +def sliding_window_view(x, window_shape, axis=None, *, + subok=False, writeable=False): + """ + Create a sliding window view into the array with the given window shape. + + Also known as rolling or moving window, the window slides across all + dimensions of the array and extracts subsets of the array at all window + positions. + + .. versionadded:: 1.20.0 + + Parameters + ---------- + x : array_like + Array to create the sliding window view from. + window_shape : int or tuple of int + Size of window over each axis that takes part in the sliding window. + If `axis` is not present, must have same length as the number of input + array dimensions. Single integers `i` are treated as if they were the + tuple `(i,)`. + axis : int or tuple of int, optional + Axis or axes along which the sliding window is applied. + By default, the sliding window is applied to all axes and + `window_shape[i]` will refer to axis `i` of `x`. + If `axis` is given as a `tuple of int`, `window_shape[i]` will refer to + the axis `axis[i]` of `x`. + Single integers `i` are treated as if they were the tuple `(i,)`. + subok : bool, optional + If True, sub-classes will be passed-through, otherwise the returned + array will be forced to be a base-class array (default). + writeable : bool, optional + When true, allow writing to the returned view. The default is false, + as this should be used with caution: the returned view contains the + same memory location multiple times, so writing to one location will + cause others to change. + + Returns + ------- + view : ndarray + Sliding window view of the array. The sliding window dimensions are + inserted at the end, and the original dimensions are trimmed as + required by the size of the sliding window. + That is, ``view.shape = x_shape_trimmed + window_shape``, where + ``x_shape_trimmed`` is ``x.shape`` with every entry reduced by one less + than the corresponding window size. + + See Also + -------- + lib.stride_tricks.as_strided: A lower-level and less safe routine for + creating arbitrary views from custom shape and strides. + broadcast_to: broadcast an array to a given shape. + + Notes + ----- + For many applications using a sliding window view can be convenient, but + potentially very slow. Often specialized solutions exist, for example: + + - `scipy.signal.fftconvolve` + + - filtering functions in `scipy.ndimage` + + - moving window functions provided by + `bottleneck <https://github.com/pydata/bottleneck>`_. + + As a rough estimate, a sliding window approach with an input size of `N` + and a window size of `W` will scale as `O(N*W)` where frequently a special + algorithm can achieve `O(N)`. That means that the sliding window variant + for a window size of 100 can be a 100 times slower than a more specialized + version. + + Nevertheless, for small window sizes, when no custom algorithm exists, or + as a prototyping and developing tool, this function can be a good solution. + + Examples + -------- + >>> import numpy as np + >>> from numpy.lib.stride_tricks import sliding_window_view + >>> x = np.arange(6) + >>> x.shape + (6,) + >>> v = sliding_window_view(x, 3) + >>> v.shape + (4, 3) + >>> v + array([[0, 1, 2], + [1, 2, 3], + [2, 3, 4], + [3, 4, 5]]) + + This also works in more dimensions, e.g. + + >>> i, j = np.ogrid[:3, :4] + >>> x = 10*i + j + >>> x.shape + (3, 4) + >>> x + array([[ 0, 1, 2, 3], + [10, 11, 12, 13], + [20, 21, 22, 23]]) + >>> shape = (2,2) + >>> v = sliding_window_view(x, shape) + >>> v.shape + (2, 3, 2, 2) + >>> v + array([[[[ 0, 1], + [10, 11]], + [[ 1, 2], + [11, 12]], + [[ 2, 3], + [12, 13]]], + [[[10, 11], + [20, 21]], + [[11, 12], + [21, 22]], + [[12, 13], + [22, 23]]]]) + + The axis can be specified explicitly: + + >>> v = sliding_window_view(x, 3, 0) + >>> v.shape + (1, 4, 3) + >>> v + array([[[ 0, 10, 20], + [ 1, 11, 21], + [ 2, 12, 22], + [ 3, 13, 23]]]) + + The same axis can be used several times. In that case, every use reduces + the corresponding original dimension: + + >>> v = sliding_window_view(x, (2, 3), (1, 1)) + >>> v.shape + (3, 1, 2, 3) + >>> v + array([[[[ 0, 1, 2], + [ 1, 2, 3]]], + [[[10, 11, 12], + [11, 12, 13]]], + [[[20, 21, 22], + [21, 22, 23]]]]) + + Combining with stepped slicing (`::step`), this can be used to take sliding + views which skip elements: + + >>> x = np.arange(7) + >>> sliding_window_view(x, 5)[:, ::2] + array([[0, 2, 4], + [1, 3, 5], + [2, 4, 6]]) + + or views which move by multiple elements + + >>> x = np.arange(7) + >>> sliding_window_view(x, 3)[::2, :] + array([[0, 1, 2], + [2, 3, 4], + [4, 5, 6]]) + + A common application of `sliding_window_view` is the calculation of running + statistics. The simplest example is the + `moving average <https://en.wikipedia.org/wiki/Moving_average>`_: + + >>> x = np.arange(6) + >>> x.shape + (6,) + >>> v = sliding_window_view(x, 3) + >>> v.shape + (4, 3) + >>> v + array([[0, 1, 2], + [1, 2, 3], + [2, 3, 4], + [3, 4, 5]]) + >>> moving_average = v.mean(axis=-1) + >>> moving_average + array([1., 2., 3., 4.]) + + Note that a sliding window approach is often **not** optimal (see Notes). + """ + window_shape = (tuple(window_shape) + if np.iterable(window_shape) + else (window_shape,)) + # first convert input to array, possibly keeping subclass + x = np.array(x, copy=None, subok=subok) + + window_shape_array = np.array(window_shape) + if np.any(window_shape_array < 0): + raise ValueError('`window_shape` cannot contain negative values') + + if axis is None: + axis = tuple(range(x.ndim)) + if len(window_shape) != len(axis): + raise ValueError(f'Since axis is `None`, must provide ' + f'window_shape for all dimensions of `x`; ' + f'got {len(window_shape)} window_shape elements ' + f'and `x.ndim` is {x.ndim}.') + else: + axis = normalize_axis_tuple(axis, x.ndim, allow_duplicate=True) + if len(window_shape) != len(axis): + raise ValueError(f'Must provide matching length window_shape and ' + f'axis; got {len(window_shape)} window_shape ' + f'elements and {len(axis)} axes elements.') + + out_strides = x.strides + tuple(x.strides[ax] for ax in axis) + + # note: same axis can be windowed repeatedly + x_shape_trimmed = list(x.shape) + for ax, dim in zip(axis, window_shape): + if x_shape_trimmed[ax] < dim: + raise ValueError( + 'window shape cannot be larger than input array shape') + x_shape_trimmed[ax] -= dim - 1 + out_shape = tuple(x_shape_trimmed) + window_shape + return as_strided(x, strides=out_strides, shape=out_shape, + subok=subok, writeable=writeable) + + +def _broadcast_to(array, shape, subok, readonly): + shape = tuple(shape) if np.iterable(shape) else (shape,) + array = np.array(array, copy=None, subok=subok) + if not shape and array.shape: + raise ValueError('cannot broadcast a non-scalar to a scalar array') + if any(size < 0 for size in shape): + raise ValueError('all elements of broadcast shape must be non-' + 'negative') + extras = [] + it = np.nditer( + (array,), flags=['multi_index', 'refs_ok', 'zerosize_ok'] + extras, + op_flags=['readonly'], itershape=shape, order='C') + with it: + # never really has writebackifcopy semantics + broadcast = it.itviews[0] + result = _maybe_view_as_subclass(array, broadcast) + # In a future version this will go away + if not readonly and array.flags._writeable_no_warn: + result.flags.writeable = True + result.flags._warn_on_write = True + return result + + +def _broadcast_to_dispatcher(array, shape, subok=None): + return (array,) + + +@array_function_dispatch(_broadcast_to_dispatcher, module='numpy') +def broadcast_to(array, shape, subok=False): + """Broadcast an array to a new shape. + + Parameters + ---------- + array : array_like + The array to broadcast. + shape : tuple or int + The shape of the desired array. A single integer ``i`` is interpreted + as ``(i,)``. + subok : bool, optional + If True, then sub-classes will be passed-through, otherwise + the returned array will be forced to be a base-class array (default). + + Returns + ------- + broadcast : array + A readonly view on the original array with the given shape. It is + typically not contiguous. Furthermore, more than one element of a + broadcasted array may refer to a single memory location. + + Raises + ------ + ValueError + If the array is not compatible with the new shape according to NumPy's + broadcasting rules. + + See Also + -------- + broadcast + broadcast_arrays + broadcast_shapes + + Examples + -------- + >>> import numpy as np + >>> x = np.array([1, 2, 3]) + >>> np.broadcast_to(x, (3, 3)) + array([[1, 2, 3], + [1, 2, 3], + [1, 2, 3]]) + """ + return _broadcast_to(array, shape, subok=subok, readonly=True) + + +def _broadcast_shape(*args): + """Returns the shape of the arrays that would result from broadcasting the + supplied arrays against each other. + """ + # use the old-iterator because np.nditer does not handle size 0 arrays + # consistently + b = np.broadcast(*args[:32]) + # unfortunately, it cannot handle 32 or more arguments directly + for pos in range(32, len(args), 31): + # ironically, np.broadcast does not properly handle np.broadcast + # objects (it treats them as scalars) + # use broadcasting to avoid allocating the full array + b = broadcast_to(0, b.shape) + b = np.broadcast(b, *args[pos:(pos + 31)]) + return b.shape + + +_size0_dtype = np.dtype([]) + + +@set_module('numpy') +def broadcast_shapes(*args): + """ + Broadcast the input shapes into a single shape. + + :ref:`Learn more about broadcasting here <basics.broadcasting>`. + + .. versionadded:: 1.20.0 + + Parameters + ---------- + *args : tuples of ints, or ints + The shapes to be broadcast against each other. + + Returns + ------- + tuple + Broadcasted shape. + + Raises + ------ + ValueError + If the shapes are not compatible and cannot be broadcast according + to NumPy's broadcasting rules. + + See Also + -------- + broadcast + broadcast_arrays + broadcast_to + + Examples + -------- + >>> import numpy as np + >>> np.broadcast_shapes((1, 2), (3, 1), (3, 2)) + (3, 2) + + >>> np.broadcast_shapes((6, 7), (5, 6, 1), (7,), (5, 1, 7)) + (5, 6, 7) + """ + arrays = [np.empty(x, dtype=_size0_dtype) for x in args] + return _broadcast_shape(*arrays) + + +def _broadcast_arrays_dispatcher(*args, subok=None): + return args + + +@array_function_dispatch(_broadcast_arrays_dispatcher, module='numpy') +def broadcast_arrays(*args, subok=False): + """ + Broadcast any number of arrays against each other. + + Parameters + ---------- + *args : array_likes + The arrays to broadcast. + + subok : bool, optional + If True, then sub-classes will be passed-through, otherwise + the returned arrays will be forced to be a base-class array (default). + + Returns + ------- + broadcasted : tuple of arrays + These arrays are views on the original arrays. They are typically + not contiguous. Furthermore, more than one element of a + broadcasted array may refer to a single memory location. If you need + to write to the arrays, make copies first. While you can set the + ``writable`` flag True, writing to a single output value may end up + changing more than one location in the output array. + + .. deprecated:: 1.17 + The output is currently marked so that if written to, a deprecation + warning will be emitted. A future version will set the + ``writable`` flag False so writing to it will raise an error. + + See Also + -------- + broadcast + broadcast_to + broadcast_shapes + + Examples + -------- + >>> import numpy as np + >>> x = np.array([[1,2,3]]) + >>> y = np.array([[4],[5]]) + >>> np.broadcast_arrays(x, y) + (array([[1, 2, 3], + [1, 2, 3]]), + array([[4, 4, 4], + [5, 5, 5]])) + + Here is a useful idiom for getting contiguous copies instead of + non-contiguous views. + + >>> [np.array(a) for a in np.broadcast_arrays(x, y)] + [array([[1, 2, 3], + [1, 2, 3]]), + array([[4, 4, 4], + [5, 5, 5]])] + + """ + # nditer is not used here to avoid the limit of 32 arrays. + # Otherwise, something like the following one-liner would suffice: + # return np.nditer(args, flags=['multi_index', 'zerosize_ok'], + # order='C').itviews + + args = [np.array(_m, copy=None, subok=subok) for _m in args] + + shape = _broadcast_shape(*args) + + result = [array if array.shape == shape + else _broadcast_to(array, shape, subok=subok, readonly=False) + for array in args] + return tuple(result) diff --git a/.venv/lib/python3.12/site-packages/numpy/lib/_stride_tricks_impl.pyi b/.venv/lib/python3.12/site-packages/numpy/lib/_stride_tricks_impl.pyi new file mode 100644 index 0000000..a7005d7 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/lib/_stride_tricks_impl.pyi @@ -0,0 +1,74 @@ +from collections.abc import Iterable +from typing import Any, SupportsIndex, TypeVar, overload + +from numpy import generic +from numpy._typing import ArrayLike, NDArray, _AnyShape, _ArrayLike, _ShapeLike + +__all__ = ["broadcast_to", "broadcast_arrays", "broadcast_shapes"] + +_ScalarT = TypeVar("_ScalarT", bound=generic) + +class DummyArray: + __array_interface__: dict[str, Any] + base: NDArray[Any] | None + def __init__( + self, + interface: dict[str, Any], + base: NDArray[Any] | None = ..., + ) -> None: ... + +@overload +def as_strided( + x: _ArrayLike[_ScalarT], + shape: Iterable[int] | None = ..., + strides: Iterable[int] | None = ..., + subok: bool = ..., + writeable: bool = ..., +) -> NDArray[_ScalarT]: ... +@overload +def as_strided( + x: ArrayLike, + shape: Iterable[int] | None = ..., + strides: Iterable[int] | None = ..., + subok: bool = ..., + writeable: bool = ..., +) -> NDArray[Any]: ... + +@overload +def sliding_window_view( + x: _ArrayLike[_ScalarT], + window_shape: int | Iterable[int], + axis: SupportsIndex | None = ..., + *, + subok: bool = ..., + writeable: bool = ..., +) -> NDArray[_ScalarT]: ... +@overload +def sliding_window_view( + x: ArrayLike, + window_shape: int | Iterable[int], + axis: SupportsIndex | None = ..., + *, + subok: bool = ..., + writeable: bool = ..., +) -> NDArray[Any]: ... + +@overload +def broadcast_to( + array: _ArrayLike[_ScalarT], + shape: int | Iterable[int], + subok: bool = ..., +) -> NDArray[_ScalarT]: ... +@overload +def broadcast_to( + array: ArrayLike, + shape: int | Iterable[int], + subok: bool = ..., +) -> NDArray[Any]: ... + +def broadcast_shapes(*args: _ShapeLike) -> _AnyShape: ... + +def broadcast_arrays( + *args: ArrayLike, + subok: bool = ..., +) -> tuple[NDArray[Any], ...]: ... diff --git a/.venv/lib/python3.12/site-packages/numpy/lib/_twodim_base_impl.py b/.venv/lib/python3.12/site-packages/numpy/lib/_twodim_base_impl.py new file mode 100644 index 0000000..dc6a558 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/lib/_twodim_base_impl.py @@ -0,0 +1,1201 @@ +""" Basic functions for manipulating 2d arrays + +""" +import functools +import operator + +from numpy._core import iinfo, overrides +from numpy._core._multiarray_umath import _array_converter +from numpy._core.numeric import ( + arange, + asanyarray, + asarray, + diagonal, + empty, + greater_equal, + indices, + int8, + int16, + int32, + int64, + intp, + multiply, + nonzero, + ones, + promote_types, + where, + zeros, +) +from numpy._core.overrides import finalize_array_function_like, set_module +from numpy.lib._stride_tricks_impl import broadcast_to + +__all__ = [ + 'diag', 'diagflat', 'eye', 'fliplr', 'flipud', 'tri', 'triu', + 'tril', 'vander', 'histogram2d', 'mask_indices', 'tril_indices', + 'tril_indices_from', 'triu_indices', 'triu_indices_from', ] + + +array_function_dispatch = functools.partial( + overrides.array_function_dispatch, module='numpy') + + +i1 = iinfo(int8) +i2 = iinfo(int16) +i4 = iinfo(int32) + + +def _min_int(low, high): + """ get small int that fits the range """ + if high <= i1.max and low >= i1.min: + return int8 + if high <= i2.max and low >= i2.min: + return int16 + if high <= i4.max and low >= i4.min: + return int32 + return int64 + + +def _flip_dispatcher(m): + return (m,) + + +@array_function_dispatch(_flip_dispatcher) +def fliplr(m): + """ + Reverse the order of elements along axis 1 (left/right). + + For a 2-D array, this flips the entries in each row in the left/right + direction. Columns are preserved, but appear in a different order than + before. + + Parameters + ---------- + m : array_like + Input array, must be at least 2-D. + + Returns + ------- + f : ndarray + A view of `m` with the columns reversed. Since a view + is returned, this operation is :math:`\\mathcal O(1)`. + + See Also + -------- + flipud : Flip array in the up/down direction. + flip : Flip array in one or more dimensions. + rot90 : Rotate array counterclockwise. + + Notes + ----- + Equivalent to ``m[:,::-1]`` or ``np.flip(m, axis=1)``. + Requires the array to be at least 2-D. + + Examples + -------- + >>> import numpy as np + >>> A = np.diag([1.,2.,3.]) + >>> A + array([[1., 0., 0.], + [0., 2., 0.], + [0., 0., 3.]]) + >>> np.fliplr(A) + array([[0., 0., 1.], + [0., 2., 0.], + [3., 0., 0.]]) + + >>> rng = np.random.default_rng() + >>> A = rng.normal(size=(2,3,5)) + >>> np.all(np.fliplr(A) == A[:,::-1,...]) + True + + """ + m = asanyarray(m) + if m.ndim < 2: + raise ValueError("Input must be >= 2-d.") + return m[:, ::-1] + + +@array_function_dispatch(_flip_dispatcher) +def flipud(m): + """ + Reverse the order of elements along axis 0 (up/down). + + For a 2-D array, this flips the entries in each column in the up/down + direction. Rows are preserved, but appear in a different order than before. + + Parameters + ---------- + m : array_like + Input array. + + Returns + ------- + out : array_like + A view of `m` with the rows reversed. Since a view is + returned, this operation is :math:`\\mathcal O(1)`. + + See Also + -------- + fliplr : Flip array in the left/right direction. + flip : Flip array in one or more dimensions. + rot90 : Rotate array counterclockwise. + + Notes + ----- + Equivalent to ``m[::-1, ...]`` or ``np.flip(m, axis=0)``. + Requires the array to be at least 1-D. + + Examples + -------- + >>> import numpy as np + >>> A = np.diag([1.0, 2, 3]) + >>> A + array([[1., 0., 0.], + [0., 2., 0.], + [0., 0., 3.]]) + >>> np.flipud(A) + array([[0., 0., 3.], + [0., 2., 0.], + [1., 0., 0.]]) + + >>> rng = np.random.default_rng() + >>> A = rng.normal(size=(2,3,5)) + >>> np.all(np.flipud(A) == A[::-1,...]) + True + + >>> np.flipud([1,2]) + array([2, 1]) + + """ + m = asanyarray(m) + if m.ndim < 1: + raise ValueError("Input must be >= 1-d.") + return m[::-1, ...] + + +@finalize_array_function_like +@set_module('numpy') +def eye(N, M=None, k=0, dtype=float, order='C', *, device=None, like=None): + """ + Return a 2-D array with ones on the diagonal and zeros elsewhere. + + Parameters + ---------- + N : int + Number of rows in the output. + M : int, optional + Number of columns in the output. If None, defaults to `N`. + k : int, optional + Index of the diagonal: 0 (the default) refers to the main diagonal, + a positive value refers to an upper diagonal, and a negative value + to a lower diagonal. + dtype : data-type, optional + Data-type of the returned array. + order : {'C', 'F'}, optional + Whether the output should be stored in row-major (C-style) or + column-major (Fortran-style) order in memory. + device : str, optional + The device on which to place the created array. Default: None. + For Array-API interoperability only, so must be ``"cpu"`` if passed. + + .. versionadded:: 2.0.0 + ${ARRAY_FUNCTION_LIKE} + + .. versionadded:: 1.20.0 + + Returns + ------- + I : ndarray of shape (N,M) + An array where all elements are equal to zero, except for the `k`-th + diagonal, whose values are equal to one. + + See Also + -------- + identity : (almost) equivalent function + diag : diagonal 2-D array from a 1-D array specified by the user. + + Examples + -------- + >>> import numpy as np + >>> np.eye(2, dtype=int) + array([[1, 0], + [0, 1]]) + >>> np.eye(3, k=1) + array([[0., 1., 0.], + [0., 0., 1.], + [0., 0., 0.]]) + + """ + if like is not None: + return _eye_with_like( + like, N, M=M, k=k, dtype=dtype, order=order, device=device + ) + if M is None: + M = N + m = zeros((N, M), dtype=dtype, order=order, device=device) + if k >= M: + return m + # Ensure M and k are integers, so we don't get any surprise casting + # results in the expressions `M-k` and `M+1` used below. This avoids + # a problem with inputs with type (for example) np.uint64. + M = operator.index(M) + k = operator.index(k) + if k >= 0: + i = k + else: + i = (-k) * M + m[:M - k].flat[i::M + 1] = 1 + return m + + +_eye_with_like = array_function_dispatch()(eye) + + +def _diag_dispatcher(v, k=None): + return (v,) + + +@array_function_dispatch(_diag_dispatcher) +def diag(v, k=0): + """ + Extract a diagonal or construct a diagonal array. + + See the more detailed documentation for ``numpy.diagonal`` if you use this + function to extract a diagonal and wish to write to the resulting array; + whether it returns a copy or a view depends on what version of numpy you + are using. + + Parameters + ---------- + v : array_like + If `v` is a 2-D array, return a copy of its `k`-th diagonal. + If `v` is a 1-D array, return a 2-D array with `v` on the `k`-th + diagonal. + k : int, optional + Diagonal in question. The default is 0. Use `k>0` for diagonals + above the main diagonal, and `k<0` for diagonals below the main + diagonal. + + Returns + ------- + out : ndarray + The extracted diagonal or constructed diagonal array. + + See Also + -------- + diagonal : Return specified diagonals. + diagflat : Create a 2-D array with the flattened input as a diagonal. + trace : Sum along diagonals. + triu : Upper triangle of an array. + tril : Lower triangle of an array. + + Examples + -------- + >>> import numpy as np + >>> x = np.arange(9).reshape((3,3)) + >>> x + array([[0, 1, 2], + [3, 4, 5], + [6, 7, 8]]) + + >>> np.diag(x) + array([0, 4, 8]) + >>> np.diag(x, k=1) + array([1, 5]) + >>> np.diag(x, k=-1) + array([3, 7]) + + >>> np.diag(np.diag(x)) + array([[0, 0, 0], + [0, 4, 0], + [0, 0, 8]]) + + """ + v = asanyarray(v) + s = v.shape + if len(s) == 1: + n = s[0] + abs(k) + res = zeros((n, n), v.dtype) + if k >= 0: + i = k + else: + i = (-k) * n + res[:n - k].flat[i::n + 1] = v + return res + elif len(s) == 2: + return diagonal(v, k) + else: + raise ValueError("Input must be 1- or 2-d.") + + +@array_function_dispatch(_diag_dispatcher) +def diagflat(v, k=0): + """ + Create a two-dimensional array with the flattened input as a diagonal. + + Parameters + ---------- + v : array_like + Input data, which is flattened and set as the `k`-th + diagonal of the output. + k : int, optional + Diagonal to set; 0, the default, corresponds to the "main" diagonal, + a positive (negative) `k` giving the number of the diagonal above + (below) the main. + + Returns + ------- + out : ndarray + The 2-D output array. + + See Also + -------- + diag : MATLAB work-alike for 1-D and 2-D arrays. + diagonal : Return specified diagonals. + trace : Sum along diagonals. + + Examples + -------- + >>> import numpy as np + >>> np.diagflat([[1,2], [3,4]]) + array([[1, 0, 0, 0], + [0, 2, 0, 0], + [0, 0, 3, 0], + [0, 0, 0, 4]]) + + >>> np.diagflat([1,2], 1) + array([[0, 1, 0], + [0, 0, 2], + [0, 0, 0]]) + + """ + conv = _array_converter(v) + v, = conv.as_arrays(subok=False) + v = v.ravel() + s = len(v) + n = s + abs(k) + res = zeros((n, n), v.dtype) + if (k >= 0): + i = arange(0, n - k, dtype=intp) + fi = i + k + i * n + else: + i = arange(0, n + k, dtype=intp) + fi = i + (i - k) * n + res.flat[fi] = v + + return conv.wrap(res) + + +@finalize_array_function_like +@set_module('numpy') +def tri(N, M=None, k=0, dtype=float, *, like=None): + """ + An array with ones at and below the given diagonal and zeros elsewhere. + + Parameters + ---------- + N : int + Number of rows in the array. + M : int, optional + Number of columns in the array. + By default, `M` is taken equal to `N`. + k : int, optional + The sub-diagonal at and below which the array is filled. + `k` = 0 is the main diagonal, while `k` < 0 is below it, + and `k` > 0 is above. The default is 0. + dtype : dtype, optional + Data type of the returned array. The default is float. + ${ARRAY_FUNCTION_LIKE} + + .. versionadded:: 1.20.0 + + Returns + ------- + tri : ndarray of shape (N, M) + Array with its lower triangle filled with ones and zero elsewhere; + in other words ``T[i,j] == 1`` for ``j <= i + k``, 0 otherwise. + + Examples + -------- + >>> import numpy as np + >>> np.tri(3, 5, 2, dtype=int) + array([[1, 1, 1, 0, 0], + [1, 1, 1, 1, 0], + [1, 1, 1, 1, 1]]) + + >>> np.tri(3, 5, -1) + array([[0., 0., 0., 0., 0.], + [1., 0., 0., 0., 0.], + [1., 1., 0., 0., 0.]]) + + """ + if like is not None: + return _tri_with_like(like, N, M=M, k=k, dtype=dtype) + + if M is None: + M = N + + m = greater_equal.outer(arange(N, dtype=_min_int(0, N)), + arange(-k, M - k, dtype=_min_int(-k, M - k))) + + # Avoid making a copy if the requested type is already bool + m = m.astype(dtype, copy=False) + + return m + + +_tri_with_like = array_function_dispatch()(tri) + + +def _trilu_dispatcher(m, k=None): + return (m,) + + +@array_function_dispatch(_trilu_dispatcher) +def tril(m, k=0): + """ + Lower triangle of an array. + + Return a copy of an array with elements above the `k`-th diagonal zeroed. + For arrays with ``ndim`` exceeding 2, `tril` will apply to the final two + axes. + + Parameters + ---------- + m : array_like, shape (..., M, N) + Input array. + k : int, optional + Diagonal above which to zero elements. `k = 0` (the default) is the + main diagonal, `k < 0` is below it and `k > 0` is above. + + Returns + ------- + tril : ndarray, shape (..., M, N) + Lower triangle of `m`, of same shape and data-type as `m`. + + See Also + -------- + triu : same thing, only for the upper triangle + + Examples + -------- + >>> import numpy as np + >>> np.tril([[1,2,3],[4,5,6],[7,8,9],[10,11,12]], -1) + array([[ 0, 0, 0], + [ 4, 0, 0], + [ 7, 8, 0], + [10, 11, 12]]) + + >>> np.tril(np.arange(3*4*5).reshape(3, 4, 5)) + array([[[ 0, 0, 0, 0, 0], + [ 5, 6, 0, 0, 0], + [10, 11, 12, 0, 0], + [15, 16, 17, 18, 0]], + [[20, 0, 0, 0, 0], + [25, 26, 0, 0, 0], + [30, 31, 32, 0, 0], + [35, 36, 37, 38, 0]], + [[40, 0, 0, 0, 0], + [45, 46, 0, 0, 0], + [50, 51, 52, 0, 0], + [55, 56, 57, 58, 0]]]) + + """ + m = asanyarray(m) + mask = tri(*m.shape[-2:], k=k, dtype=bool) + + return where(mask, m, zeros(1, m.dtype)) + + +@array_function_dispatch(_trilu_dispatcher) +def triu(m, k=0): + """ + Upper triangle of an array. + + Return a copy of an array with the elements below the `k`-th diagonal + zeroed. For arrays with ``ndim`` exceeding 2, `triu` will apply to the + final two axes. + + Please refer to the documentation for `tril` for further details. + + See Also + -------- + tril : lower triangle of an array + + Examples + -------- + >>> import numpy as np + >>> np.triu([[1,2,3],[4,5,6],[7,8,9],[10,11,12]], -1) + array([[ 1, 2, 3], + [ 4, 5, 6], + [ 0, 8, 9], + [ 0, 0, 12]]) + + >>> np.triu(np.arange(3*4*5).reshape(3, 4, 5)) + array([[[ 0, 1, 2, 3, 4], + [ 0, 6, 7, 8, 9], + [ 0, 0, 12, 13, 14], + [ 0, 0, 0, 18, 19]], + [[20, 21, 22, 23, 24], + [ 0, 26, 27, 28, 29], + [ 0, 0, 32, 33, 34], + [ 0, 0, 0, 38, 39]], + [[40, 41, 42, 43, 44], + [ 0, 46, 47, 48, 49], + [ 0, 0, 52, 53, 54], + [ 0, 0, 0, 58, 59]]]) + + """ + m = asanyarray(m) + mask = tri(*m.shape[-2:], k=k - 1, dtype=bool) + + return where(mask, zeros(1, m.dtype), m) + + +def _vander_dispatcher(x, N=None, increasing=None): + return (x,) + + +# Originally borrowed from John Hunter and matplotlib +@array_function_dispatch(_vander_dispatcher) +def vander(x, N=None, increasing=False): + """ + Generate a Vandermonde matrix. + + The columns of the output matrix are powers of the input vector. The + order of the powers is determined by the `increasing` boolean argument. + Specifically, when `increasing` is False, the `i`-th output column is + the input vector raised element-wise to the power of ``N - i - 1``. Such + a matrix with a geometric progression in each row is named for Alexandre- + Theophile Vandermonde. + + Parameters + ---------- + x : array_like + 1-D input array. + N : int, optional + Number of columns in the output. If `N` is not specified, a square + array is returned (``N = len(x)``). + increasing : bool, optional + Order of the powers of the columns. If True, the powers increase + from left to right, if False (the default) they are reversed. + + Returns + ------- + out : ndarray + Vandermonde matrix. If `increasing` is False, the first column is + ``x^(N-1)``, the second ``x^(N-2)`` and so forth. If `increasing` is + True, the columns are ``x^0, x^1, ..., x^(N-1)``. + + See Also + -------- + polynomial.polynomial.polyvander + + Examples + -------- + >>> import numpy as np + >>> x = np.array([1, 2, 3, 5]) + >>> N = 3 + >>> np.vander(x, N) + array([[ 1, 1, 1], + [ 4, 2, 1], + [ 9, 3, 1], + [25, 5, 1]]) + + >>> np.column_stack([x**(N-1-i) for i in range(N)]) + array([[ 1, 1, 1], + [ 4, 2, 1], + [ 9, 3, 1], + [25, 5, 1]]) + + >>> x = np.array([1, 2, 3, 5]) + >>> np.vander(x) + array([[ 1, 1, 1, 1], + [ 8, 4, 2, 1], + [ 27, 9, 3, 1], + [125, 25, 5, 1]]) + >>> np.vander(x, increasing=True) + array([[ 1, 1, 1, 1], + [ 1, 2, 4, 8], + [ 1, 3, 9, 27], + [ 1, 5, 25, 125]]) + + The determinant of a square Vandermonde matrix is the product + of the differences between the values of the input vector: + + >>> np.linalg.det(np.vander(x)) + 48.000000000000043 # may vary + >>> (5-3)*(5-2)*(5-1)*(3-2)*(3-1)*(2-1) + 48 + + """ + x = asarray(x) + if x.ndim != 1: + raise ValueError("x must be a one-dimensional array or sequence.") + if N is None: + N = len(x) + + v = empty((len(x), N), dtype=promote_types(x.dtype, int)) + tmp = v[:, ::-1] if not increasing else v + + if N > 0: + tmp[:, 0] = 1 + if N > 1: + tmp[:, 1:] = x[:, None] + multiply.accumulate(tmp[:, 1:], out=tmp[:, 1:], axis=1) + + return v + + +def _histogram2d_dispatcher(x, y, bins=None, range=None, density=None, + weights=None): + yield x + yield y + + # This terrible logic is adapted from the checks in histogram2d + try: + N = len(bins) + except TypeError: + N = 1 + if N == 2: + yield from bins # bins=[x, y] + else: + yield bins + + yield weights + + +@array_function_dispatch(_histogram2d_dispatcher) +def histogram2d(x, y, bins=10, range=None, density=None, weights=None): + """ + Compute the bi-dimensional histogram of two data samples. + + Parameters + ---------- + x : array_like, shape (N,) + An array containing the x coordinates of the points to be + histogrammed. + y : array_like, shape (N,) + An array containing the y coordinates of the points to be + histogrammed. + bins : int or array_like or [int, int] or [array, array], optional + The bin specification: + + * If int, the number of bins for the two dimensions (nx=ny=bins). + * If array_like, the bin edges for the two dimensions + (x_edges=y_edges=bins). + * If [int, int], the number of bins in each dimension + (nx, ny = bins). + * If [array, array], the bin edges in each dimension + (x_edges, y_edges = bins). + * A combination [int, array] or [array, int], where int + is the number of bins and array is the bin edges. + + range : array_like, shape(2,2), optional + The leftmost and rightmost edges of the bins along each dimension + (if not specified explicitly in the `bins` parameters): + ``[[xmin, xmax], [ymin, ymax]]``. All values outside of this range + will be considered outliers and not tallied in the histogram. + density : bool, optional + If False, the default, returns the number of samples in each bin. + If True, returns the probability *density* function at the bin, + ``bin_count / sample_count / bin_area``. + weights : array_like, shape(N,), optional + An array of values ``w_i`` weighing each sample ``(x_i, y_i)``. + Weights are normalized to 1 if `density` is True. If `density` is + False, the values of the returned histogram are equal to the sum of + the weights belonging to the samples falling into each bin. + + Returns + ------- + H : ndarray, shape(nx, ny) + The bi-dimensional histogram of samples `x` and `y`. Values in `x` + are histogrammed along the first dimension and values in `y` are + histogrammed along the second dimension. + xedges : ndarray, shape(nx+1,) + The bin edges along the first dimension. + yedges : ndarray, shape(ny+1,) + The bin edges along the second dimension. + + See Also + -------- + histogram : 1D histogram + histogramdd : Multidimensional histogram + + Notes + ----- + When `density` is True, then the returned histogram is the sample + density, defined such that the sum over bins of the product + ``bin_value * bin_area`` is 1. + + Please note that the histogram does not follow the Cartesian convention + where `x` values are on the abscissa and `y` values on the ordinate + axis. Rather, `x` is histogrammed along the first dimension of the + array (vertical), and `y` along the second dimension of the array + (horizontal). This ensures compatibility with `histogramdd`. + + Examples + -------- + >>> import numpy as np + >>> from matplotlib.image import NonUniformImage + >>> import matplotlib.pyplot as plt + + Construct a 2-D histogram with variable bin width. First define the bin + edges: + + >>> xedges = [0, 1, 3, 5] + >>> yedges = [0, 2, 3, 4, 6] + + Next we create a histogram H with random bin content: + + >>> x = np.random.normal(2, 1, 100) + >>> y = np.random.normal(1, 1, 100) + >>> H, xedges, yedges = np.histogram2d(x, y, bins=(xedges, yedges)) + >>> # Histogram does not follow Cartesian convention (see Notes), + >>> # therefore transpose H for visualization purposes. + >>> H = H.T + + :func:`imshow <matplotlib.pyplot.imshow>` can only display square bins: + + >>> fig = plt.figure(figsize=(7, 3)) + >>> ax = fig.add_subplot(131, title='imshow: square bins') + >>> plt.imshow(H, interpolation='nearest', origin='lower', + ... extent=[xedges[0], xedges[-1], yedges[0], yedges[-1]]) + <matplotlib.image.AxesImage object at 0x...> + + :func:`pcolormesh <matplotlib.pyplot.pcolormesh>` can display actual edges: + + >>> ax = fig.add_subplot(132, title='pcolormesh: actual edges', + ... aspect='equal') + >>> X, Y = np.meshgrid(xedges, yedges) + >>> ax.pcolormesh(X, Y, H) + <matplotlib.collections.QuadMesh object at 0x...> + + :class:`NonUniformImage <matplotlib.image.NonUniformImage>` can be used to + display actual bin edges with interpolation: + + >>> ax = fig.add_subplot(133, title='NonUniformImage: interpolated', + ... aspect='equal', xlim=xedges[[0, -1]], ylim=yedges[[0, -1]]) + >>> im = NonUniformImage(ax, interpolation='bilinear') + >>> xcenters = (xedges[:-1] + xedges[1:]) / 2 + >>> ycenters = (yedges[:-1] + yedges[1:]) / 2 + >>> im.set_data(xcenters, ycenters, H) + >>> ax.add_image(im) + >>> plt.show() + + It is also possible to construct a 2-D histogram without specifying bin + edges: + + >>> # Generate non-symmetric test data + >>> n = 10000 + >>> x = np.linspace(1, 100, n) + >>> y = 2*np.log(x) + np.random.rand(n) - 0.5 + >>> # Compute 2d histogram. Note the order of x/y and xedges/yedges + >>> H, yedges, xedges = np.histogram2d(y, x, bins=20) + + Now we can plot the histogram using + :func:`pcolormesh <matplotlib.pyplot.pcolormesh>`, and a + :func:`hexbin <matplotlib.pyplot.hexbin>` for comparison. + + >>> # Plot histogram using pcolormesh + >>> fig, (ax1, ax2) = plt.subplots(ncols=2, sharey=True) + >>> ax1.pcolormesh(xedges, yedges, H, cmap='rainbow') + >>> ax1.plot(x, 2*np.log(x), 'k-') + >>> ax1.set_xlim(x.min(), x.max()) + >>> ax1.set_ylim(y.min(), y.max()) + >>> ax1.set_xlabel('x') + >>> ax1.set_ylabel('y') + >>> ax1.set_title('histogram2d') + >>> ax1.grid() + + >>> # Create hexbin plot for comparison + >>> ax2.hexbin(x, y, gridsize=20, cmap='rainbow') + >>> ax2.plot(x, 2*np.log(x), 'k-') + >>> ax2.set_title('hexbin') + >>> ax2.set_xlim(x.min(), x.max()) + >>> ax2.set_xlabel('x') + >>> ax2.grid() + + >>> plt.show() + """ + from numpy import histogramdd + + if len(x) != len(y): + raise ValueError('x and y must have the same length.') + + try: + N = len(bins) + except TypeError: + N = 1 + + if N not in {1, 2}: + xedges = yedges = asarray(bins) + bins = [xedges, yedges] + hist, edges = histogramdd([x, y], bins, range, density, weights) + return hist, edges[0], edges[1] + + +@set_module('numpy') +def mask_indices(n, mask_func, k=0): + """ + Return the indices to access (n, n) arrays, given a masking function. + + Assume `mask_func` is a function that, for a square array a of size + ``(n, n)`` with a possible offset argument `k`, when called as + ``mask_func(a, k)`` returns a new array with zeros in certain locations + (functions like `triu` or `tril` do precisely this). Then this function + returns the indices where the non-zero values would be located. + + Parameters + ---------- + n : int + The returned indices will be valid to access arrays of shape (n, n). + mask_func : callable + A function whose call signature is similar to that of `triu`, `tril`. + That is, ``mask_func(x, k)`` returns a boolean array, shaped like `x`. + `k` is an optional argument to the function. + k : scalar + An optional argument which is passed through to `mask_func`. Functions + like `triu`, `tril` take a second argument that is interpreted as an + offset. + + Returns + ------- + indices : tuple of arrays. + The `n` arrays of indices corresponding to the locations where + ``mask_func(np.ones((n, n)), k)`` is True. + + See Also + -------- + triu, tril, triu_indices, tril_indices + + Examples + -------- + >>> import numpy as np + + These are the indices that would allow you to access the upper triangular + part of any 3x3 array: + + >>> iu = np.mask_indices(3, np.triu) + + For example, if `a` is a 3x3 array: + + >>> a = np.arange(9).reshape(3, 3) + >>> a + array([[0, 1, 2], + [3, 4, 5], + [6, 7, 8]]) + >>> a[iu] + array([0, 1, 2, 4, 5, 8]) + + An offset can be passed also to the masking function. This gets us the + indices starting on the first diagonal right of the main one: + + >>> iu1 = np.mask_indices(3, np.triu, 1) + + with which we now extract only three elements: + + >>> a[iu1] + array([1, 2, 5]) + + """ + m = ones((n, n), int) + a = mask_func(m, k) + return nonzero(a != 0) + + +@set_module('numpy') +def tril_indices(n, k=0, m=None): + """ + Return the indices for the lower-triangle of an (n, m) array. + + Parameters + ---------- + n : int + The row dimension of the arrays for which the returned + indices will be valid. + k : int, optional + Diagonal offset (see `tril` for details). + m : int, optional + The column dimension of the arrays for which the returned + arrays will be valid. + By default `m` is taken equal to `n`. + + + Returns + ------- + inds : tuple of arrays + The row and column indices, respectively. The row indices are sorted + in non-decreasing order, and the correspdonding column indices are + strictly increasing for each row. + + See also + -------- + triu_indices : similar function, for upper-triangular. + mask_indices : generic function accepting an arbitrary mask function. + tril, triu + + Examples + -------- + >>> import numpy as np + + Compute two different sets of indices to access 4x4 arrays, one for the + lower triangular part starting at the main diagonal, and one starting two + diagonals further right: + + >>> il1 = np.tril_indices(4) + >>> il1 + (array([0, 1, 1, 2, 2, 2, 3, 3, 3, 3]), array([0, 0, 1, 0, 1, 2, 0, 1, 2, 3])) + + Note that row indices (first array) are non-decreasing, and the corresponding + column indices (second array) are strictly increasing for each row. + Here is how they can be used with a sample array: + + >>> a = np.arange(16).reshape(4, 4) + >>> a + array([[ 0, 1, 2, 3], + [ 4, 5, 6, 7], + [ 8, 9, 10, 11], + [12, 13, 14, 15]]) + + Both for indexing: + + >>> a[il1] + array([ 0, 4, 5, ..., 13, 14, 15]) + + And for assigning values: + + >>> a[il1] = -1 + >>> a + array([[-1, 1, 2, 3], + [-1, -1, 6, 7], + [-1, -1, -1, 11], + [-1, -1, -1, -1]]) + + These cover almost the whole array (two diagonals right of the main one): + + >>> il2 = np.tril_indices(4, 2) + >>> a[il2] = -10 + >>> a + array([[-10, -10, -10, 3], + [-10, -10, -10, -10], + [-10, -10, -10, -10], + [-10, -10, -10, -10]]) + + """ + tri_ = tri(n, m, k=k, dtype=bool) + + return tuple(broadcast_to(inds, tri_.shape)[tri_] + for inds in indices(tri_.shape, sparse=True)) + + +def _trilu_indices_form_dispatcher(arr, k=None): + return (arr,) + + +@array_function_dispatch(_trilu_indices_form_dispatcher) +def tril_indices_from(arr, k=0): + """ + Return the indices for the lower-triangle of arr. + + See `tril_indices` for full details. + + Parameters + ---------- + arr : array_like + The indices will be valid for square arrays whose dimensions are + the same as arr. + k : int, optional + Diagonal offset (see `tril` for details). + + Examples + -------- + >>> import numpy as np + + Create a 4 by 4 array + + >>> a = np.arange(16).reshape(4, 4) + >>> a + array([[ 0, 1, 2, 3], + [ 4, 5, 6, 7], + [ 8, 9, 10, 11], + [12, 13, 14, 15]]) + + Pass the array to get the indices of the lower triangular elements. + + >>> trili = np.tril_indices_from(a) + >>> trili + (array([0, 1, 1, 2, 2, 2, 3, 3, 3, 3]), array([0, 0, 1, 0, 1, 2, 0, 1, 2, 3])) + + >>> a[trili] + array([ 0, 4, 5, 8, 9, 10, 12, 13, 14, 15]) + + This is syntactic sugar for tril_indices(). + + >>> np.tril_indices(a.shape[0]) + (array([0, 1, 1, 2, 2, 2, 3, 3, 3, 3]), array([0, 0, 1, 0, 1, 2, 0, 1, 2, 3])) + + Use the `k` parameter to return the indices for the lower triangular array + up to the k-th diagonal. + + >>> trili1 = np.tril_indices_from(a, k=1) + >>> a[trili1] + array([ 0, 1, 4, 5, 6, 8, 9, 10, 11, 12, 13, 14, 15]) + + See Also + -------- + tril_indices, tril, triu_indices_from + """ + if arr.ndim != 2: + raise ValueError("input array must be 2-d") + return tril_indices(arr.shape[-2], k=k, m=arr.shape[-1]) + + +@set_module('numpy') +def triu_indices(n, k=0, m=None): + """ + Return the indices for the upper-triangle of an (n, m) array. + + Parameters + ---------- + n : int + The size of the arrays for which the returned indices will + be valid. + k : int, optional + Diagonal offset (see `triu` for details). + m : int, optional + The column dimension of the arrays for which the returned + arrays will be valid. + By default `m` is taken equal to `n`. + + + Returns + ------- + inds : tuple, shape(2) of ndarrays, shape(`n`) + The row and column indices, respectively. The row indices are sorted + in non-decreasing order, and the correspdonding column indices are + strictly increasing for each row. + + See also + -------- + tril_indices : similar function, for lower-triangular. + mask_indices : generic function accepting an arbitrary mask function. + triu, tril + + Examples + -------- + >>> import numpy as np + + Compute two different sets of indices to access 4x4 arrays, one for the + upper triangular part starting at the main diagonal, and one starting two + diagonals further right: + + >>> iu1 = np.triu_indices(4) + >>> iu1 + (array([0, 0, 0, 0, 1, 1, 1, 2, 2, 3]), array([0, 1, 2, 3, 1, 2, 3, 2, 3, 3])) + + Note that row indices (first array) are non-decreasing, and the corresponding + column indices (second array) are strictly increasing for each row. + + Here is how they can be used with a sample array: + + >>> a = np.arange(16).reshape(4, 4) + >>> a + array([[ 0, 1, 2, 3], + [ 4, 5, 6, 7], + [ 8, 9, 10, 11], + [12, 13, 14, 15]]) + + Both for indexing: + + >>> a[iu1] + array([ 0, 1, 2, ..., 10, 11, 15]) + + And for assigning values: + + >>> a[iu1] = -1 + >>> a + array([[-1, -1, -1, -1], + [ 4, -1, -1, -1], + [ 8, 9, -1, -1], + [12, 13, 14, -1]]) + + These cover only a small part of the whole array (two diagonals right + of the main one): + + >>> iu2 = np.triu_indices(4, 2) + >>> a[iu2] = -10 + >>> a + array([[ -1, -1, -10, -10], + [ 4, -1, -1, -10], + [ 8, 9, -1, -1], + [ 12, 13, 14, -1]]) + + """ + tri_ = ~tri(n, m, k=k - 1, dtype=bool) + + return tuple(broadcast_to(inds, tri_.shape)[tri_] + for inds in indices(tri_.shape, sparse=True)) + + +@array_function_dispatch(_trilu_indices_form_dispatcher) +def triu_indices_from(arr, k=0): + """ + Return the indices for the upper-triangle of arr. + + See `triu_indices` for full details. + + Parameters + ---------- + arr : ndarray, shape(N, N) + The indices will be valid for square arrays. + k : int, optional + Diagonal offset (see `triu` for details). + + Returns + ------- + triu_indices_from : tuple, shape(2) of ndarray, shape(N) + Indices for the upper-triangle of `arr`. + + Examples + -------- + >>> import numpy as np + + Create a 4 by 4 array + + >>> a = np.arange(16).reshape(4, 4) + >>> a + array([[ 0, 1, 2, 3], + [ 4, 5, 6, 7], + [ 8, 9, 10, 11], + [12, 13, 14, 15]]) + + Pass the array to get the indices of the upper triangular elements. + + >>> triui = np.triu_indices_from(a) + >>> triui + (array([0, 0, 0, 0, 1, 1, 1, 2, 2, 3]), array([0, 1, 2, 3, 1, 2, 3, 2, 3, 3])) + + >>> a[triui] + array([ 0, 1, 2, 3, 5, 6, 7, 10, 11, 15]) + + This is syntactic sugar for triu_indices(). + + >>> np.triu_indices(a.shape[0]) + (array([0, 0, 0, 0, 1, 1, 1, 2, 2, 3]), array([0, 1, 2, 3, 1, 2, 3, 2, 3, 3])) + + Use the `k` parameter to return the indices for the upper triangular array + from the k-th diagonal. + + >>> triuim1 = np.triu_indices_from(a, k=1) + >>> a[triuim1] + array([ 1, 2, 3, 6, 7, 11]) + + + See Also + -------- + triu_indices, triu, tril_indices_from + """ + if arr.ndim != 2: + raise ValueError("input array must be 2-d") + return triu_indices(arr.shape[-2], k=k, m=arr.shape[-1]) diff --git a/.venv/lib/python3.12/site-packages/numpy/lib/_twodim_base_impl.pyi b/.venv/lib/python3.12/site-packages/numpy/lib/_twodim_base_impl.pyi new file mode 100644 index 0000000..43df38e --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/lib/_twodim_base_impl.pyi @@ -0,0 +1,438 @@ +from collections.abc import Callable, Sequence +from typing import ( + Any, + TypeAlias, + TypeVar, + overload, +) +from typing import ( + Literal as L, +) + +import numpy as np +from numpy import ( + _OrderCF, + complex128, + complexfloating, + datetime64, + float64, + floating, + generic, + int_, + intp, + object_, + signedinteger, + timedelta64, +) +from numpy._typing import ( + ArrayLike, + DTypeLike, + NDArray, + _ArrayLike, + _ArrayLikeComplex_co, + _ArrayLikeFloat_co, + _ArrayLikeInt_co, + _ArrayLikeObject_co, + _DTypeLike, + _SupportsArray, + _SupportsArrayFunc, +) + +__all__ = [ + "diag", + "diagflat", + "eye", + "fliplr", + "flipud", + "tri", + "triu", + "tril", + "vander", + "histogram2d", + "mask_indices", + "tril_indices", + "tril_indices_from", + "triu_indices", + "triu_indices_from", +] + +### + +_T = TypeVar("_T") +_ScalarT = TypeVar("_ScalarT", bound=generic) +_ComplexFloatingT = TypeVar("_ComplexFloatingT", bound=np.complexfloating) +_InexactT = TypeVar("_InexactT", bound=np.inexact) +_NumberCoT = TypeVar("_NumberCoT", bound=_Number_co) + +# The returned arrays dtype must be compatible with `np.equal` +_MaskFunc: TypeAlias = Callable[[NDArray[int_], _T], NDArray[_Number_co | timedelta64 | datetime64 | object_]] + +_Int_co: TypeAlias = np.integer | np.bool +_Float_co: TypeAlias = np.floating | _Int_co +_Number_co: TypeAlias = np.number | np.bool + +_ArrayLike1D: TypeAlias = _SupportsArray[np.dtype[_ScalarT]] | Sequence[_ScalarT] +_ArrayLike1DInt_co: TypeAlias = _SupportsArray[np.dtype[_Int_co]] | Sequence[int | _Int_co] +_ArrayLike1DFloat_co: TypeAlias = _SupportsArray[np.dtype[_Float_co]] | Sequence[float | _Float_co] +_ArrayLike2DFloat_co: TypeAlias = _SupportsArray[np.dtype[_Float_co]] | Sequence[_ArrayLike1DFloat_co] +_ArrayLike1DNumber_co: TypeAlias = _SupportsArray[np.dtype[_Number_co]] | Sequence[complex | _Number_co] + +### + +@overload +def fliplr(m: _ArrayLike[_ScalarT]) -> NDArray[_ScalarT]: ... +@overload +def fliplr(m: ArrayLike) -> NDArray[Any]: ... + +@overload +def flipud(m: _ArrayLike[_ScalarT]) -> NDArray[_ScalarT]: ... +@overload +def flipud(m: ArrayLike) -> NDArray[Any]: ... + +@overload +def eye( + N: int, + M: int | None = ..., + k: int = ..., + dtype: None = ..., + order: _OrderCF = ..., + *, + device: L["cpu"] | None = ..., + like: _SupportsArrayFunc | None = ..., +) -> NDArray[float64]: ... +@overload +def eye( + N: int, + M: int | None, + k: int, + dtype: _DTypeLike[_ScalarT], + order: _OrderCF = ..., + *, + device: L["cpu"] | None = ..., + like: _SupportsArrayFunc | None = ..., +) -> NDArray[_ScalarT]: ... +@overload +def eye( + N: int, + M: int | None = ..., + k: int = ..., + *, + dtype: _DTypeLike[_ScalarT], + order: _OrderCF = ..., + device: L["cpu"] | None = ..., + like: _SupportsArrayFunc | None = ..., +) -> NDArray[_ScalarT]: ... +@overload +def eye( + N: int, + M: int | None = ..., + k: int = ..., + dtype: DTypeLike = ..., + order: _OrderCF = ..., + *, + device: L["cpu"] | None = ..., + like: _SupportsArrayFunc | None = ..., +) -> NDArray[Any]: ... + +@overload +def diag(v: _ArrayLike[_ScalarT], k: int = ...) -> NDArray[_ScalarT]: ... +@overload +def diag(v: ArrayLike, k: int = ...) -> NDArray[Any]: ... + +@overload +def diagflat(v: _ArrayLike[_ScalarT], k: int = ...) -> NDArray[_ScalarT]: ... +@overload +def diagflat(v: ArrayLike, k: int = ...) -> NDArray[Any]: ... + +@overload +def tri( + N: int, + M: int | None = ..., + k: int = ..., + dtype: None = ..., + *, + like: _SupportsArrayFunc | None = ... +) -> NDArray[float64]: ... +@overload +def tri( + N: int, + M: int | None, + k: int, + dtype: _DTypeLike[_ScalarT], + *, + like: _SupportsArrayFunc | None = ... +) -> NDArray[_ScalarT]: ... +@overload +def tri( + N: int, + M: int | None = ..., + k: int = ..., + *, + dtype: _DTypeLike[_ScalarT], + like: _SupportsArrayFunc | None = ... +) -> NDArray[_ScalarT]: ... +@overload +def tri( + N: int, + M: int | None = ..., + k: int = ..., + dtype: DTypeLike = ..., + *, + like: _SupportsArrayFunc | None = ... +) -> NDArray[Any]: ... + +@overload +def tril(m: _ArrayLike[_ScalarT], k: int = 0) -> NDArray[_ScalarT]: ... +@overload +def tril(m: ArrayLike, k: int = 0) -> NDArray[Any]: ... + +@overload +def triu(m: _ArrayLike[_ScalarT], k: int = 0) -> NDArray[_ScalarT]: ... +@overload +def triu(m: ArrayLike, k: int = 0) -> NDArray[Any]: ... + +@overload +def vander( # type: ignore[misc] + x: _ArrayLikeInt_co, + N: int | None = ..., + increasing: bool = ..., +) -> NDArray[signedinteger]: ... +@overload +def vander( # type: ignore[misc] + x: _ArrayLikeFloat_co, + N: int | None = ..., + increasing: bool = ..., +) -> NDArray[floating]: ... +@overload +def vander( + x: _ArrayLikeComplex_co, + N: int | None = ..., + increasing: bool = ..., +) -> NDArray[complexfloating]: ... +@overload +def vander( + x: _ArrayLikeObject_co, + N: int | None = ..., + increasing: bool = ..., +) -> NDArray[object_]: ... + +@overload +def histogram2d( + x: _ArrayLike1D[_ComplexFloatingT], + y: _ArrayLike1D[_ComplexFloatingT | _Float_co], + bins: int | Sequence[int] = ..., + range: _ArrayLike2DFloat_co | None = ..., + density: bool | None = ..., + weights: _ArrayLike1DFloat_co | None = ..., +) -> tuple[ + NDArray[float64], + NDArray[_ComplexFloatingT], + NDArray[_ComplexFloatingT], +]: ... +@overload +def histogram2d( + x: _ArrayLike1D[_ComplexFloatingT | _Float_co], + y: _ArrayLike1D[_ComplexFloatingT], + bins: int | Sequence[int] = ..., + range: _ArrayLike2DFloat_co | None = ..., + density: bool | None = ..., + weights: _ArrayLike1DFloat_co | None = ..., +) -> tuple[ + NDArray[float64], + NDArray[_ComplexFloatingT], + NDArray[_ComplexFloatingT], +]: ... +@overload +def histogram2d( + x: _ArrayLike1D[_InexactT], + y: _ArrayLike1D[_InexactT | _Int_co], + bins: int | Sequence[int] = ..., + range: _ArrayLike2DFloat_co | None = ..., + density: bool | None = ..., + weights: _ArrayLike1DFloat_co | None = ..., +) -> tuple[ + NDArray[float64], + NDArray[_InexactT], + NDArray[_InexactT], +]: ... +@overload +def histogram2d( + x: _ArrayLike1D[_InexactT | _Int_co], + y: _ArrayLike1D[_InexactT], + bins: int | Sequence[int] = ..., + range: _ArrayLike2DFloat_co | None = ..., + density: bool | None = ..., + weights: _ArrayLike1DFloat_co | None = ..., +) -> tuple[ + NDArray[float64], + NDArray[_InexactT], + NDArray[_InexactT], +]: ... +@overload +def histogram2d( + x: _ArrayLike1DInt_co | Sequence[float], + y: _ArrayLike1DInt_co | Sequence[float], + bins: int | Sequence[int] = ..., + range: _ArrayLike2DFloat_co | None = ..., + density: bool | None = ..., + weights: _ArrayLike1DFloat_co | None = ..., +) -> tuple[ + NDArray[float64], + NDArray[float64], + NDArray[float64], +]: ... +@overload +def histogram2d( + x: Sequence[complex], + y: Sequence[complex], + bins: int | Sequence[int] = ..., + range: _ArrayLike2DFloat_co | None = ..., + density: bool | None = ..., + weights: _ArrayLike1DFloat_co | None = ..., +) -> tuple[ + NDArray[float64], + NDArray[complex128 | float64], + NDArray[complex128 | float64], +]: ... +@overload +def histogram2d( + x: _ArrayLike1DNumber_co, + y: _ArrayLike1DNumber_co, + bins: _ArrayLike1D[_NumberCoT] | Sequence[_ArrayLike1D[_NumberCoT]], + range: _ArrayLike2DFloat_co | None = ..., + density: bool | None = ..., + weights: _ArrayLike1DFloat_co | None = ..., +) -> tuple[ + NDArray[float64], + NDArray[_NumberCoT], + NDArray[_NumberCoT], +]: ... +@overload +def histogram2d( + x: _ArrayLike1D[_InexactT], + y: _ArrayLike1D[_InexactT], + bins: Sequence[_ArrayLike1D[_NumberCoT] | int], + range: _ArrayLike2DFloat_co | None = ..., + density: bool | None = ..., + weights: _ArrayLike1DFloat_co | None = ..., +) -> tuple[ + NDArray[float64], + NDArray[_NumberCoT | _InexactT], + NDArray[_NumberCoT | _InexactT], +]: ... +@overload +def histogram2d( + x: _ArrayLike1DInt_co | Sequence[float], + y: _ArrayLike1DInt_co | Sequence[float], + bins: Sequence[_ArrayLike1D[_NumberCoT] | int], + range: _ArrayLike2DFloat_co | None = ..., + density: bool | None = ..., + weights: _ArrayLike1DFloat_co | None = ..., +) -> tuple[ + NDArray[float64], + NDArray[_NumberCoT | float64], + NDArray[_NumberCoT | float64], +]: ... +@overload +def histogram2d( + x: Sequence[complex], + y: Sequence[complex], + bins: Sequence[_ArrayLike1D[_NumberCoT] | int], + range: _ArrayLike2DFloat_co | None = ..., + density: bool | None = ..., + weights: _ArrayLike1DFloat_co | None = ..., +) -> tuple[ + NDArray[float64], + NDArray[_NumberCoT | complex128 | float64], + NDArray[_NumberCoT | complex128 | float64], +]: ... +@overload +def histogram2d( + x: _ArrayLike1DNumber_co, + y: _ArrayLike1DNumber_co, + bins: Sequence[Sequence[bool]], + range: _ArrayLike2DFloat_co | None = ..., + density: bool | None = ..., + weights: _ArrayLike1DFloat_co | None = ..., +) -> tuple[ + NDArray[float64], + NDArray[np.bool], + NDArray[np.bool], +]: ... +@overload +def histogram2d( + x: _ArrayLike1DNumber_co, + y: _ArrayLike1DNumber_co, + bins: Sequence[Sequence[int]], + range: _ArrayLike2DFloat_co | None = ..., + density: bool | None = ..., + weights: _ArrayLike1DFloat_co | None = ..., +) -> tuple[ + NDArray[float64], + NDArray[np.int_ | np.bool], + NDArray[np.int_ | np.bool], +]: ... +@overload +def histogram2d( + x: _ArrayLike1DNumber_co, + y: _ArrayLike1DNumber_co, + bins: Sequence[Sequence[float]], + range: _ArrayLike2DFloat_co | None = ..., + density: bool | None = ..., + weights: _ArrayLike1DFloat_co | None = ..., +) -> tuple[ + NDArray[float64], + NDArray[np.float64 | np.int_ | np.bool], + NDArray[np.float64 | np.int_ | np.bool], +]: ... +@overload +def histogram2d( + x: _ArrayLike1DNumber_co, + y: _ArrayLike1DNumber_co, + bins: Sequence[Sequence[complex]], + range: _ArrayLike2DFloat_co | None = ..., + density: bool | None = ..., + weights: _ArrayLike1DFloat_co | None = ..., +) -> tuple[ + NDArray[float64], + NDArray[np.complex128 | np.float64 | np.int_ | np.bool], + NDArray[np.complex128 | np.float64 | np.int_ | np.bool], +]: ... + +# NOTE: we're assuming/demanding here the `mask_func` returns +# an ndarray of shape `(n, n)`; otherwise there is the possibility +# of the output tuple having more or less than 2 elements +@overload +def mask_indices( + n: int, + mask_func: _MaskFunc[int], + k: int = ..., +) -> tuple[NDArray[intp], NDArray[intp]]: ... +@overload +def mask_indices( + n: int, + mask_func: _MaskFunc[_T], + k: _T, +) -> tuple[NDArray[intp], NDArray[intp]]: ... + +def tril_indices( + n: int, + k: int = ..., + m: int | None = ..., +) -> tuple[NDArray[int_], NDArray[int_]]: ... + +def tril_indices_from( + arr: NDArray[Any], + k: int = ..., +) -> tuple[NDArray[int_], NDArray[int_]]: ... + +def triu_indices( + n: int, + k: int = ..., + m: int | None = ..., +) -> tuple[NDArray[int_], NDArray[int_]]: ... + +def triu_indices_from( + arr: NDArray[Any], + k: int = ..., +) -> tuple[NDArray[int_], NDArray[int_]]: ... diff --git a/.venv/lib/python3.12/site-packages/numpy/lib/_type_check_impl.py b/.venv/lib/python3.12/site-packages/numpy/lib/_type_check_impl.py new file mode 100644 index 0000000..977609c --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/lib/_type_check_impl.py @@ -0,0 +1,699 @@ +"""Automatically adapted for numpy Sep 19, 2005 by convertcode.py + +""" +import functools + +__all__ = ['iscomplexobj', 'isrealobj', 'imag', 'iscomplex', + 'isreal', 'nan_to_num', 'real', 'real_if_close', + 'typename', 'mintypecode', + 'common_type'] + +import numpy._core.numeric as _nx +from numpy._core import getlimits, overrides +from numpy._core.numeric import asanyarray, asarray, isnan, zeros +from numpy._utils import set_module + +from ._ufunclike_impl import isneginf, isposinf + +array_function_dispatch = functools.partial( + overrides.array_function_dispatch, module='numpy') + + +_typecodes_by_elsize = 'GDFgdfQqLlIiHhBb?' + + +@set_module('numpy') +def mintypecode(typechars, typeset='GDFgdf', default='d'): + """ + Return the character for the minimum-size type to which given types can + be safely cast. + + The returned type character must represent the smallest size dtype such + that an array of the returned type can handle the data from an array of + all types in `typechars` (or if `typechars` is an array, then its + dtype.char). + + Parameters + ---------- + typechars : list of str or array_like + If a list of strings, each string should represent a dtype. + If array_like, the character representation of the array dtype is used. + typeset : str or list of str, optional + The set of characters that the returned character is chosen from. + The default set is 'GDFgdf'. + default : str, optional + The default character, this is returned if none of the characters in + `typechars` matches a character in `typeset`. + + Returns + ------- + typechar : str + The character representing the minimum-size type that was found. + + See Also + -------- + dtype + + Examples + -------- + >>> import numpy as np + >>> np.mintypecode(['d', 'f', 'S']) + 'd' + >>> x = np.array([1.1, 2-3.j]) + >>> np.mintypecode(x) + 'D' + + >>> np.mintypecode('abceh', default='G') + 'G' + + """ + typecodes = ((isinstance(t, str) and t) or asarray(t).dtype.char + for t in typechars) + intersection = {t for t in typecodes if t in typeset} + if not intersection: + return default + if 'F' in intersection and 'd' in intersection: + return 'D' + return min(intersection, key=_typecodes_by_elsize.index) + + +def _real_dispatcher(val): + return (val,) + + +@array_function_dispatch(_real_dispatcher) +def real(val): + """ + Return the real part of the complex argument. + + Parameters + ---------- + val : array_like + Input array. + + Returns + ------- + out : ndarray or scalar + The real component of the complex argument. If `val` is real, the type + of `val` is used for the output. If `val` has complex elements, the + returned type is float. + + See Also + -------- + real_if_close, imag, angle + + Examples + -------- + >>> import numpy as np + >>> a = np.array([1+2j, 3+4j, 5+6j]) + >>> a.real + array([1., 3., 5.]) + >>> a.real = 9 + >>> a + array([9.+2.j, 9.+4.j, 9.+6.j]) + >>> a.real = np.array([9, 8, 7]) + >>> a + array([9.+2.j, 8.+4.j, 7.+6.j]) + >>> np.real(1 + 1j) + 1.0 + + """ + try: + return val.real + except AttributeError: + return asanyarray(val).real + + +def _imag_dispatcher(val): + return (val,) + + +@array_function_dispatch(_imag_dispatcher) +def imag(val): + """ + Return the imaginary part of the complex argument. + + Parameters + ---------- + val : array_like + Input array. + + Returns + ------- + out : ndarray or scalar + The imaginary component of the complex argument. If `val` is real, + the type of `val` is used for the output. If `val` has complex + elements, the returned type is float. + + See Also + -------- + real, angle, real_if_close + + Examples + -------- + >>> import numpy as np + >>> a = np.array([1+2j, 3+4j, 5+6j]) + >>> a.imag + array([2., 4., 6.]) + >>> a.imag = np.array([8, 10, 12]) + >>> a + array([1. +8.j, 3.+10.j, 5.+12.j]) + >>> np.imag(1 + 1j) + 1.0 + + """ + try: + return val.imag + except AttributeError: + return asanyarray(val).imag + + +def _is_type_dispatcher(x): + return (x,) + + +@array_function_dispatch(_is_type_dispatcher) +def iscomplex(x): + """ + Returns a bool array, where True if input element is complex. + + What is tested is whether the input has a non-zero imaginary part, not if + the input type is complex. + + Parameters + ---------- + x : array_like + Input array. + + Returns + ------- + out : ndarray of bools + Output array. + + See Also + -------- + isreal + iscomplexobj : Return True if x is a complex type or an array of complex + numbers. + + Examples + -------- + >>> import numpy as np + >>> np.iscomplex([1+1j, 1+0j, 4.5, 3, 2, 2j]) + array([ True, False, False, False, False, True]) + + """ + ax = asanyarray(x) + if issubclass(ax.dtype.type, _nx.complexfloating): + return ax.imag != 0 + res = zeros(ax.shape, bool) + return res[()] # convert to scalar if needed + + +@array_function_dispatch(_is_type_dispatcher) +def isreal(x): + """ + Returns a bool array, where True if input element is real. + + If element has complex type with zero imaginary part, the return value + for that element is True. + + Parameters + ---------- + x : array_like + Input array. + + Returns + ------- + out : ndarray, bool + Boolean array of same shape as `x`. + + Notes + ----- + `isreal` may behave unexpectedly for string or object arrays (see examples) + + See Also + -------- + iscomplex + isrealobj : Return True if x is not a complex type. + + Examples + -------- + >>> import numpy as np + >>> a = np.array([1+1j, 1+0j, 4.5, 3, 2, 2j], dtype=complex) + >>> np.isreal(a) + array([False, True, True, True, True, False]) + + The function does not work on string arrays. + + >>> a = np.array([2j, "a"], dtype="U") + >>> np.isreal(a) # Warns about non-elementwise comparison + False + + Returns True for all elements in input array of ``dtype=object`` even if + any of the elements is complex. + + >>> a = np.array([1, "2", 3+4j], dtype=object) + >>> np.isreal(a) + array([ True, True, True]) + + isreal should not be used with object arrays + + >>> a = np.array([1+2j, 2+1j], dtype=object) + >>> np.isreal(a) + array([ True, True]) + + """ + return imag(x) == 0 + + +@array_function_dispatch(_is_type_dispatcher) +def iscomplexobj(x): + """ + Check for a complex type or an array of complex numbers. + + The type of the input is checked, not the value. Even if the input + has an imaginary part equal to zero, `iscomplexobj` evaluates to True. + + Parameters + ---------- + x : any + The input can be of any type and shape. + + Returns + ------- + iscomplexobj : bool + The return value, True if `x` is of a complex type or has at least + one complex element. + + See Also + -------- + isrealobj, iscomplex + + Examples + -------- + >>> import numpy as np + >>> np.iscomplexobj(1) + False + >>> np.iscomplexobj(1+0j) + True + >>> np.iscomplexobj([3, 1+0j, True]) + True + + """ + try: + dtype = x.dtype + type_ = dtype.type + except AttributeError: + type_ = asarray(x).dtype.type + return issubclass(type_, _nx.complexfloating) + + +@array_function_dispatch(_is_type_dispatcher) +def isrealobj(x): + """ + Return True if x is a not complex type or an array of complex numbers. + + The type of the input is checked, not the value. So even if the input + has an imaginary part equal to zero, `isrealobj` evaluates to False + if the data type is complex. + + Parameters + ---------- + x : any + The input can be of any type and shape. + + Returns + ------- + y : bool + The return value, False if `x` is of a complex type. + + See Also + -------- + iscomplexobj, isreal + + Notes + ----- + The function is only meant for arrays with numerical values but it + accepts all other objects. Since it assumes array input, the return + value of other objects may be True. + + >>> np.isrealobj('A string') + True + >>> np.isrealobj(False) + True + >>> np.isrealobj(None) + True + + Examples + -------- + >>> import numpy as np + >>> np.isrealobj(1) + True + >>> np.isrealobj(1+0j) + False + >>> np.isrealobj([3, 1+0j, True]) + False + + """ + return not iscomplexobj(x) + +#----------------------------------------------------------------------------- + +def _getmaxmin(t): + from numpy._core import getlimits + f = getlimits.finfo(t) + return f.max, f.min + + +def _nan_to_num_dispatcher(x, copy=None, nan=None, posinf=None, neginf=None): + return (x,) + + +@array_function_dispatch(_nan_to_num_dispatcher) +def nan_to_num(x, copy=True, nan=0.0, posinf=None, neginf=None): + """ + Replace NaN with zero and infinity with large finite numbers (default + behaviour) or with the numbers defined by the user using the `nan`, + `posinf` and/or `neginf` keywords. + + If `x` is inexact, NaN is replaced by zero or by the user defined value in + `nan` keyword, infinity is replaced by the largest finite floating point + values representable by ``x.dtype`` or by the user defined value in + `posinf` keyword and -infinity is replaced by the most negative finite + floating point values representable by ``x.dtype`` or by the user defined + value in `neginf` keyword. + + For complex dtypes, the above is applied to each of the real and + imaginary components of `x` separately. + + If `x` is not inexact, then no replacements are made. + + Parameters + ---------- + x : scalar or array_like + Input data. + copy : bool, optional + Whether to create a copy of `x` (True) or to replace values + in-place (False). The in-place operation only occurs if + casting to an array does not require a copy. + Default is True. + nan : int, float, optional + Value to be used to fill NaN values. If no value is passed + then NaN values will be replaced with 0.0. + posinf : int, float, optional + Value to be used to fill positive infinity values. If no value is + passed then positive infinity values will be replaced with a very + large number. + neginf : int, float, optional + Value to be used to fill negative infinity values. If no value is + passed then negative infinity values will be replaced with a very + small (or negative) number. + + Returns + ------- + out : ndarray + `x`, with the non-finite values replaced. If `copy` is False, this may + be `x` itself. + + See Also + -------- + isinf : Shows which elements are positive or negative infinity. + isneginf : Shows which elements are negative infinity. + isposinf : Shows which elements are positive infinity. + isnan : Shows which elements are Not a Number (NaN). + isfinite : Shows which elements are finite (not NaN, not infinity) + + Notes + ----- + NumPy uses the IEEE Standard for Binary Floating-Point for Arithmetic + (IEEE 754). This means that Not a Number is not equivalent to infinity. + + Examples + -------- + >>> import numpy as np + >>> np.nan_to_num(np.inf) + 1.7976931348623157e+308 + >>> np.nan_to_num(-np.inf) + -1.7976931348623157e+308 + >>> np.nan_to_num(np.nan) + 0.0 + >>> x = np.array([np.inf, -np.inf, np.nan, -128, 128]) + >>> np.nan_to_num(x) + array([ 1.79769313e+308, -1.79769313e+308, 0.00000000e+000, # may vary + -1.28000000e+002, 1.28000000e+002]) + >>> np.nan_to_num(x, nan=-9999, posinf=33333333, neginf=33333333) + array([ 3.3333333e+07, 3.3333333e+07, -9.9990000e+03, + -1.2800000e+02, 1.2800000e+02]) + >>> y = np.array([complex(np.inf, np.nan), np.nan, complex(np.nan, np.inf)]) + array([ 1.79769313e+308, -1.79769313e+308, 0.00000000e+000, # may vary + -1.28000000e+002, 1.28000000e+002]) + >>> np.nan_to_num(y) + array([ 1.79769313e+308 +0.00000000e+000j, # may vary + 0.00000000e+000 +0.00000000e+000j, + 0.00000000e+000 +1.79769313e+308j]) + >>> np.nan_to_num(y, nan=111111, posinf=222222) + array([222222.+111111.j, 111111. +0.j, 111111.+222222.j]) + """ + x = _nx.array(x, subok=True, copy=copy) + xtype = x.dtype.type + + isscalar = (x.ndim == 0) + + if not issubclass(xtype, _nx.inexact): + return x[()] if isscalar else x + + iscomplex = issubclass(xtype, _nx.complexfloating) + + dest = (x.real, x.imag) if iscomplex else (x,) + maxf, minf = _getmaxmin(x.real.dtype) + if posinf is not None: + maxf = posinf + if neginf is not None: + minf = neginf + for d in dest: + idx_nan = isnan(d) + idx_posinf = isposinf(d) + idx_neginf = isneginf(d) + _nx.copyto(d, nan, where=idx_nan) + _nx.copyto(d, maxf, where=idx_posinf) + _nx.copyto(d, minf, where=idx_neginf) + return x[()] if isscalar else x + +#----------------------------------------------------------------------------- + +def _real_if_close_dispatcher(a, tol=None): + return (a,) + + +@array_function_dispatch(_real_if_close_dispatcher) +def real_if_close(a, tol=100): + """ + If input is complex with all imaginary parts close to zero, return + real parts. + + "Close to zero" is defined as `tol` * (machine epsilon of the type for + `a`). + + Parameters + ---------- + a : array_like + Input array. + tol : float + Tolerance in machine epsilons for the complex part of the elements + in the array. If the tolerance is <=1, then the absolute tolerance + is used. + + Returns + ------- + out : ndarray + If `a` is real, the type of `a` is used for the output. If `a` + has complex elements, the returned type is float. + + See Also + -------- + real, imag, angle + + Notes + ----- + Machine epsilon varies from machine to machine and between data types + but Python floats on most platforms have a machine epsilon equal to + 2.2204460492503131e-16. You can use 'np.finfo(float).eps' to print + out the machine epsilon for floats. + + Examples + -------- + >>> import numpy as np + >>> np.finfo(float).eps + 2.2204460492503131e-16 # may vary + + >>> np.real_if_close([2.1 + 4e-14j, 5.2 + 3e-15j], tol=1000) + array([2.1, 5.2]) + >>> np.real_if_close([2.1 + 4e-13j, 5.2 + 3e-15j], tol=1000) + array([2.1+4.e-13j, 5.2 + 3e-15j]) + + """ + a = asanyarray(a) + type_ = a.dtype.type + if not issubclass(type_, _nx.complexfloating): + return a + if tol > 1: + f = getlimits.finfo(type_) + tol = f.eps * tol + if _nx.all(_nx.absolute(a.imag) < tol): + a = a.real + return a + + +#----------------------------------------------------------------------------- + +_namefromtype = {'S1': 'character', + '?': 'bool', + 'b': 'signed char', + 'B': 'unsigned char', + 'h': 'short', + 'H': 'unsigned short', + 'i': 'integer', + 'I': 'unsigned integer', + 'l': 'long integer', + 'L': 'unsigned long integer', + 'q': 'long long integer', + 'Q': 'unsigned long long integer', + 'f': 'single precision', + 'd': 'double precision', + 'g': 'long precision', + 'F': 'complex single precision', + 'D': 'complex double precision', + 'G': 'complex long double precision', + 'S': 'string', + 'U': 'unicode', + 'V': 'void', + 'O': 'object' + } + +@set_module('numpy') +def typename(char): + """ + Return a description for the given data type code. + + Parameters + ---------- + char : str + Data type code. + + Returns + ------- + out : str + Description of the input data type code. + + See Also + -------- + dtype + + Examples + -------- + >>> import numpy as np + >>> typechars = ['S1', '?', 'B', 'D', 'G', 'F', 'I', 'H', 'L', 'O', 'Q', + ... 'S', 'U', 'V', 'b', 'd', 'g', 'f', 'i', 'h', 'l', 'q'] + >>> for typechar in typechars: + ... print(typechar, ' : ', np.typename(typechar)) + ... + S1 : character + ? : bool + B : unsigned char + D : complex double precision + G : complex long double precision + F : complex single precision + I : unsigned integer + H : unsigned short + L : unsigned long integer + O : object + Q : unsigned long long integer + S : string + U : unicode + V : void + b : signed char + d : double precision + g : long precision + f : single precision + i : integer + h : short + l : long integer + q : long long integer + + """ + return _namefromtype[char] + +#----------------------------------------------------------------------------- + + +#determine the "minimum common type" for a group of arrays. +array_type = [[_nx.float16, _nx.float32, _nx.float64, _nx.longdouble], + [None, _nx.complex64, _nx.complex128, _nx.clongdouble]] +array_precision = {_nx.float16: 0, + _nx.float32: 1, + _nx.float64: 2, + _nx.longdouble: 3, + _nx.complex64: 1, + _nx.complex128: 2, + _nx.clongdouble: 3} + + +def _common_type_dispatcher(*arrays): + return arrays + + +@array_function_dispatch(_common_type_dispatcher) +def common_type(*arrays): + """ + Return a scalar type which is common to the input arrays. + + The return type will always be an inexact (i.e. floating point) scalar + type, even if all the arrays are integer arrays. If one of the inputs is + an integer array, the minimum precision type that is returned is a + 64-bit floating point dtype. + + All input arrays except int64 and uint64 can be safely cast to the + returned dtype without loss of information. + + Parameters + ---------- + array1, array2, ... : ndarrays + Input arrays. + + Returns + ------- + out : data type code + Data type code. + + See Also + -------- + dtype, mintypecode + + Examples + -------- + >>> np.common_type(np.arange(2, dtype=np.float32)) + <class 'numpy.float32'> + >>> np.common_type(np.arange(2, dtype=np.float32), np.arange(2)) + <class 'numpy.float64'> + >>> np.common_type(np.arange(4), np.array([45, 6.j]), np.array([45.0])) + <class 'numpy.complex128'> + + """ + is_complex = False + precision = 0 + for a in arrays: + t = a.dtype.type + if iscomplexobj(a): + is_complex = True + if issubclass(t, _nx.integer): + p = 2 # array_precision[_nx.double] + else: + p = array_precision.get(t) + if p is None: + raise TypeError("can't get common type for non-numeric array") + precision = max(precision, p) + if is_complex: + return array_type[1][precision] + else: + return array_type[0][precision] diff --git a/.venv/lib/python3.12/site-packages/numpy/lib/_type_check_impl.pyi b/.venv/lib/python3.12/site-packages/numpy/lib/_type_check_impl.pyi new file mode 100644 index 0000000..944015e --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/lib/_type_check_impl.pyi @@ -0,0 +1,350 @@ +from collections.abc import Container, Iterable +from typing import Any, Protocol, TypeAlias, overload, type_check_only +from typing import Literal as L + +from _typeshed import Incomplete +from typing_extensions import TypeVar + +import numpy as np +from numpy._typing import ( + ArrayLike, + NDArray, + _16Bit, + _32Bit, + _64Bit, + _ArrayLike, + _NestedSequence, + _ScalarLike_co, + _SupportsArray, +) + +__all__ = [ + "common_type", + "imag", + "iscomplex", + "iscomplexobj", + "isreal", + "isrealobj", + "mintypecode", + "nan_to_num", + "real", + "real_if_close", + "typename", +] + +_T = TypeVar("_T") +_T_co = TypeVar("_T_co", covariant=True) +_ScalarT = TypeVar("_ScalarT", bound=np.generic) +_ScalarT_co = TypeVar("_ScalarT_co", bound=np.generic, covariant=True) +_RealT = TypeVar("_RealT", bound=np.floating | np.integer | np.bool) + +_FloatMax32: TypeAlias = np.float32 | np.float16 +_ComplexMax128: TypeAlias = np.complex128 | np.complex64 +_RealMax64: TypeAlias = np.float64 | np.float32 | np.float16 | np.integer +_Real: TypeAlias = np.floating | np.integer +_InexactMax32: TypeAlias = np.inexact[_32Bit] | np.float16 +_NumberMax64: TypeAlias = np.number[_64Bit] | np.number[_32Bit] | np.number[_16Bit] | np.integer + +@type_check_only +class _HasReal(Protocol[_T_co]): + @property + def real(self, /) -> _T_co: ... + +@type_check_only +class _HasImag(Protocol[_T_co]): + @property + def imag(self, /) -> _T_co: ... + +@type_check_only +class _HasDType(Protocol[_ScalarT_co]): + @property + def dtype(self, /) -> np.dtype[_ScalarT_co]: ... + +### + +def mintypecode(typechars: Iterable[str | ArrayLike], typeset: str | Container[str] = "GDFgdf", default: str = "d") -> str: ... + +# +@overload +def real(val: _HasReal[_T]) -> _T: ... # type: ignore[overload-overlap] +@overload +def real(val: _ArrayLike[_RealT]) -> NDArray[_RealT]: ... +@overload +def real(val: ArrayLike) -> NDArray[Any]: ... + +# +@overload +def imag(val: _HasImag[_T]) -> _T: ... # type: ignore[overload-overlap] +@overload +def imag(val: _ArrayLike[_RealT]) -> NDArray[_RealT]: ... +@overload +def imag(val: ArrayLike) -> NDArray[Any]: ... + +# +@overload +def iscomplex(x: _ScalarLike_co) -> np.bool: ... +@overload +def iscomplex(x: NDArray[Any] | _NestedSequence[ArrayLike]) -> NDArray[np.bool]: ... +@overload +def iscomplex(x: ArrayLike) -> np.bool | NDArray[np.bool]: ... + +# +@overload +def isreal(x: _ScalarLike_co) -> np.bool: ... +@overload +def isreal(x: NDArray[Any] | _NestedSequence[ArrayLike]) -> NDArray[np.bool]: ... +@overload +def isreal(x: ArrayLike) -> np.bool | NDArray[np.bool]: ... + +# +def iscomplexobj(x: _HasDType[Any] | ArrayLike) -> bool: ... +def isrealobj(x: _HasDType[Any] | ArrayLike) -> bool: ... + +# +@overload +def nan_to_num( + x: _ScalarT, + copy: bool = True, + nan: float = 0.0, + posinf: float | None = None, + neginf: float | None = None, +) -> _ScalarT: ... +@overload +def nan_to_num( + x: NDArray[_ScalarT] | _NestedSequence[_ArrayLike[_ScalarT]], + copy: bool = True, + nan: float = 0.0, + posinf: float | None = None, + neginf: float | None = None, +) -> NDArray[_ScalarT]: ... +@overload +def nan_to_num( + x: _SupportsArray[np.dtype[_ScalarT]], + copy: bool = True, + nan: float = 0.0, + posinf: float | None = None, + neginf: float | None = None, +) -> _ScalarT | NDArray[_ScalarT]: ... +@overload +def nan_to_num( + x: _NestedSequence[ArrayLike], + copy: bool = True, + nan: float = 0.0, + posinf: float | None = None, + neginf: float | None = None, +) -> NDArray[Incomplete]: ... +@overload +def nan_to_num( + x: ArrayLike, + copy: bool = True, + nan: float = 0.0, + posinf: float | None = None, + neginf: float | None = None, +) -> Incomplete: ... + +# NOTE: The [overload-overlap] mypy error is a false positive +@overload +def real_if_close(a: _ArrayLike[np.complex64], tol: float = 100) -> NDArray[np.float32 | np.complex64]: ... # type: ignore[overload-overlap] +@overload +def real_if_close(a: _ArrayLike[np.complex128], tol: float = 100) -> NDArray[np.float64 | np.complex128]: ... +@overload +def real_if_close(a: _ArrayLike[np.clongdouble], tol: float = 100) -> NDArray[np.longdouble | np.clongdouble]: ... +@overload +def real_if_close(a: _ArrayLike[_RealT], tol: float = 100) -> NDArray[_RealT]: ... +@overload +def real_if_close(a: ArrayLike, tol: float = 100) -> NDArray[Any]: ... + +# +@overload +def typename(char: L['S1']) -> L['character']: ... +@overload +def typename(char: L['?']) -> L['bool']: ... +@overload +def typename(char: L['b']) -> L['signed char']: ... +@overload +def typename(char: L['B']) -> L['unsigned char']: ... +@overload +def typename(char: L['h']) -> L['short']: ... +@overload +def typename(char: L['H']) -> L['unsigned short']: ... +@overload +def typename(char: L['i']) -> L['integer']: ... +@overload +def typename(char: L['I']) -> L['unsigned integer']: ... +@overload +def typename(char: L['l']) -> L['long integer']: ... +@overload +def typename(char: L['L']) -> L['unsigned long integer']: ... +@overload +def typename(char: L['q']) -> L['long long integer']: ... +@overload +def typename(char: L['Q']) -> L['unsigned long long integer']: ... +@overload +def typename(char: L['f']) -> L['single precision']: ... +@overload +def typename(char: L['d']) -> L['double precision']: ... +@overload +def typename(char: L['g']) -> L['long precision']: ... +@overload +def typename(char: L['F']) -> L['complex single precision']: ... +@overload +def typename(char: L['D']) -> L['complex double precision']: ... +@overload +def typename(char: L['G']) -> L['complex long double precision']: ... +@overload +def typename(char: L['S']) -> L['string']: ... +@overload +def typename(char: L['U']) -> L['unicode']: ... +@overload +def typename(char: L['V']) -> L['void']: ... +@overload +def typename(char: L['O']) -> L['object']: ... + +# NOTE: The [overload-overlap] mypy errors are false positives +@overload +def common_type() -> type[np.float16]: ... +@overload +def common_type(a0: _HasDType[np.float16], /, *ai: _HasDType[np.float16]) -> type[np.float16]: ... # type: ignore[overload-overlap] +@overload +def common_type(a0: _HasDType[np.float32], /, *ai: _HasDType[_FloatMax32]) -> type[np.float32]: ... # type: ignore[overload-overlap] +@overload +def common_type( # type: ignore[overload-overlap] + a0: _HasDType[np.float64 | np.integer], + /, + *ai: _HasDType[_RealMax64], +) -> type[np.float64]: ... +@overload +def common_type( # type: ignore[overload-overlap] + a0: _HasDType[np.longdouble], + /, + *ai: _HasDType[_Real], +) -> type[np.longdouble]: ... +@overload +def common_type( # type: ignore[overload-overlap] + a0: _HasDType[np.complex64], + /, + *ai: _HasDType[_InexactMax32], +) -> type[np.complex64]: ... +@overload +def common_type( # type: ignore[overload-overlap] + a0: _HasDType[np.complex128], + /, + *ai: _HasDType[_NumberMax64], +) -> type[np.complex128]: ... +@overload +def common_type( # type: ignore[overload-overlap] + a0: _HasDType[np.clongdouble], + /, + *ai: _HasDType[np.number], +) -> type[np.clongdouble]: ... +@overload +def common_type( # type: ignore[overload-overlap] + a0: _HasDType[_FloatMax32], + array1: _HasDType[np.float32], + /, + *ai: _HasDType[_FloatMax32], +) -> type[np.float32]: ... +@overload +def common_type( + a0: _HasDType[_RealMax64], + array1: _HasDType[np.float64 | np.integer], + /, + *ai: _HasDType[_RealMax64], +) -> type[np.float64]: ... +@overload +def common_type( + a0: _HasDType[_Real], + array1: _HasDType[np.longdouble], + /, + *ai: _HasDType[_Real], +) -> type[np.longdouble]: ... +@overload +def common_type( # type: ignore[overload-overlap] + a0: _HasDType[_InexactMax32], + array1: _HasDType[np.complex64], + /, + *ai: _HasDType[_InexactMax32], +) -> type[np.complex64]: ... +@overload +def common_type( + a0: _HasDType[np.float64], + array1: _HasDType[_ComplexMax128], + /, + *ai: _HasDType[_NumberMax64], +) -> type[np.complex128]: ... +@overload +def common_type( + a0: _HasDType[_ComplexMax128], + array1: _HasDType[np.float64], + /, + *ai: _HasDType[_NumberMax64], +) -> type[np.complex128]: ... +@overload +def common_type( + a0: _HasDType[_NumberMax64], + array1: _HasDType[np.complex128], + /, + *ai: _HasDType[_NumberMax64], +) -> type[np.complex128]: ... +@overload +def common_type( + a0: _HasDType[_ComplexMax128], + array1: _HasDType[np.complex128 | np.integer], + /, + *ai: _HasDType[_NumberMax64], +) -> type[np.complex128]: ... +@overload +def common_type( + a0: _HasDType[np.complex128 | np.integer], + array1: _HasDType[_ComplexMax128], + /, + *ai: _HasDType[_NumberMax64], +) -> type[np.complex128]: ... +@overload +def common_type( + a0: _HasDType[_Real], + /, + *ai: _HasDType[_Real], +) -> type[np.floating]: ... +@overload +def common_type( + a0: _HasDType[np.number], + array1: _HasDType[np.clongdouble], + /, + *ai: _HasDType[np.number], +) -> type[np.clongdouble]: ... +@overload +def common_type( + a0: _HasDType[np.longdouble], + array1: _HasDType[np.complexfloating], + /, + *ai: _HasDType[np.number], +) -> type[np.clongdouble]: ... +@overload +def common_type( + a0: _HasDType[np.complexfloating], + array1: _HasDType[np.longdouble], + /, + *ai: _HasDType[np.number], +) -> type[np.clongdouble]: ... +@overload +def common_type( + a0: _HasDType[np.complexfloating], + array1: _HasDType[np.number], + /, + *ai: _HasDType[np.number], +) -> type[np.complexfloating]: ... +@overload +def common_type( + a0: _HasDType[np.number], + array1: _HasDType[np.complexfloating], + /, + *ai: _HasDType[np.number], +) -> type[np.complexfloating]: ... +@overload +def common_type( + a0: _HasDType[np.number], + array1: _HasDType[np.number], + /, + *ai: _HasDType[np.number], +) -> type[Any]: ... diff --git a/.venv/lib/python3.12/site-packages/numpy/lib/_ufunclike_impl.py b/.venv/lib/python3.12/site-packages/numpy/lib/_ufunclike_impl.py new file mode 100644 index 0000000..695aab1 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/lib/_ufunclike_impl.py @@ -0,0 +1,207 @@ +""" +Module of functions that are like ufuncs in acting on arrays and optionally +storing results in an output array. + +""" +__all__ = ['fix', 'isneginf', 'isposinf'] + +import numpy._core.numeric as nx +from numpy._core.overrides import array_function_dispatch + + +def _dispatcher(x, out=None): + return (x, out) + + +@array_function_dispatch(_dispatcher, verify=False, module='numpy') +def fix(x, out=None): + """ + Round to nearest integer towards zero. + + Round an array of floats element-wise to nearest integer towards zero. + The rounded values have the same data-type as the input. + + Parameters + ---------- + x : array_like + An array to be rounded + out : ndarray, optional + A location into which the result is stored. If provided, it must have + a shape that the input broadcasts to. If not provided or None, a + freshly-allocated array is returned. + + Returns + ------- + out : ndarray of floats + An array with the same dimensions and data-type as the input. + If second argument is not supplied then a new array is returned + with the rounded values. + + If a second argument is supplied the result is stored there. + The return value ``out`` is then a reference to that array. + + See Also + -------- + rint, trunc, floor, ceil + around : Round to given number of decimals + + Examples + -------- + >>> import numpy as np + >>> np.fix(3.14) + 3.0 + >>> np.fix(3) + 3 + >>> np.fix([2.1, 2.9, -2.1, -2.9]) + array([ 2., 2., -2., -2.]) + + """ + # promote back to an array if flattened + res = nx.asanyarray(nx.ceil(x, out=out)) + res = nx.floor(x, out=res, where=nx.greater_equal(x, 0)) + + # when no out argument is passed and no subclasses are involved, flatten + # scalars + if out is None and type(res) is nx.ndarray: + res = res[()] + return res + + +@array_function_dispatch(_dispatcher, verify=False, module='numpy') +def isposinf(x, out=None): + """ + Test element-wise for positive infinity, return result as bool array. + + Parameters + ---------- + x : array_like + The input array. + out : array_like, optional + A location into which the result is stored. If provided, it must have a + shape that the input broadcasts to. If not provided or None, a + freshly-allocated boolean array is returned. + + Returns + ------- + out : ndarray + A boolean array with the same dimensions as the input. + If second argument is not supplied then a boolean array is returned + with values True where the corresponding element of the input is + positive infinity and values False where the element of the input is + not positive infinity. + + If a second argument is supplied the result is stored there. If the + type of that array is a numeric type the result is represented as zeros + and ones, if the type is boolean then as False and True. + The return value `out` is then a reference to that array. + + See Also + -------- + isinf, isneginf, isfinite, isnan + + Notes + ----- + NumPy uses the IEEE Standard for Binary Floating-Point for Arithmetic + (IEEE 754). + + Errors result if the second argument is also supplied when x is a scalar + input, if first and second arguments have different shapes, or if the + first argument has complex values + + Examples + -------- + >>> import numpy as np + >>> np.isposinf(np.inf) + True + >>> np.isposinf(-np.inf) + False + >>> np.isposinf([-np.inf, 0., np.inf]) + array([False, False, True]) + + >>> x = np.array([-np.inf, 0., np.inf]) + >>> y = np.array([2, 2, 2]) + >>> np.isposinf(x, y) + array([0, 0, 1]) + >>> y + array([0, 0, 1]) + + """ + is_inf = nx.isinf(x) + try: + signbit = ~nx.signbit(x) + except TypeError as e: + dtype = nx.asanyarray(x).dtype + raise TypeError(f'This operation is not supported for {dtype} values ' + 'because it would be ambiguous.') from e + else: + return nx.logical_and(is_inf, signbit, out) + + +@array_function_dispatch(_dispatcher, verify=False, module='numpy') +def isneginf(x, out=None): + """ + Test element-wise for negative infinity, return result as bool array. + + Parameters + ---------- + x : array_like + The input array. + out : array_like, optional + A location into which the result is stored. If provided, it must have a + shape that the input broadcasts to. If not provided or None, a + freshly-allocated boolean array is returned. + + Returns + ------- + out : ndarray + A boolean array with the same dimensions as the input. + If second argument is not supplied then a numpy boolean array is + returned with values True where the corresponding element of the + input is negative infinity and values False where the element of + the input is not negative infinity. + + If a second argument is supplied the result is stored there. If the + type of that array is a numeric type the result is represented as + zeros and ones, if the type is boolean then as False and True. The + return value `out` is then a reference to that array. + + See Also + -------- + isinf, isposinf, isnan, isfinite + + Notes + ----- + NumPy uses the IEEE Standard for Binary Floating-Point for Arithmetic + (IEEE 754). + + Errors result if the second argument is also supplied when x is a scalar + input, if first and second arguments have different shapes, or if the + first argument has complex values. + + Examples + -------- + >>> import numpy as np + >>> np.isneginf(-np.inf) + True + >>> np.isneginf(np.inf) + False + >>> np.isneginf([-np.inf, 0., np.inf]) + array([ True, False, False]) + + >>> x = np.array([-np.inf, 0., np.inf]) + >>> y = np.array([2, 2, 2]) + >>> np.isneginf(x, y) + array([1, 0, 0]) + >>> y + array([1, 0, 0]) + + """ + is_inf = nx.isinf(x) + try: + signbit = nx.signbit(x) + except TypeError as e: + dtype = nx.asanyarray(x).dtype + raise TypeError(f'This operation is not supported for {dtype} values ' + 'because it would be ambiguous.') from e + else: + return nx.logical_and(is_inf, signbit, out) diff --git a/.venv/lib/python3.12/site-packages/numpy/lib/_ufunclike_impl.pyi b/.venv/lib/python3.12/site-packages/numpy/lib/_ufunclike_impl.pyi new file mode 100644 index 0000000..a673f05 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/lib/_ufunclike_impl.pyi @@ -0,0 +1,67 @@ +from typing import Any, TypeVar, overload + +import numpy as np +from numpy import floating, object_ +from numpy._typing import ( + NDArray, + _ArrayLikeFloat_co, + _ArrayLikeObject_co, + _FloatLike_co, +) + +__all__ = ["fix", "isneginf", "isposinf"] + +_ArrayT = TypeVar("_ArrayT", bound=NDArray[Any]) + +@overload +def fix( # type: ignore[misc] + x: _FloatLike_co, + out: None = ..., +) -> floating: ... +@overload +def fix( + x: _ArrayLikeFloat_co, + out: None = ..., +) -> NDArray[floating]: ... +@overload +def fix( + x: _ArrayLikeObject_co, + out: None = ..., +) -> NDArray[object_]: ... +@overload +def fix( + x: _ArrayLikeFloat_co | _ArrayLikeObject_co, + out: _ArrayT, +) -> _ArrayT: ... + +@overload +def isposinf( # type: ignore[misc] + x: _FloatLike_co, + out: None = ..., +) -> np.bool: ... +@overload +def isposinf( + x: _ArrayLikeFloat_co, + out: None = ..., +) -> NDArray[np.bool]: ... +@overload +def isposinf( + x: _ArrayLikeFloat_co, + out: _ArrayT, +) -> _ArrayT: ... + +@overload +def isneginf( # type: ignore[misc] + x: _FloatLike_co, + out: None = ..., +) -> np.bool: ... +@overload +def isneginf( + x: _ArrayLikeFloat_co, + out: None = ..., +) -> NDArray[np.bool]: ... +@overload +def isneginf( + x: _ArrayLikeFloat_co, + out: _ArrayT, +) -> _ArrayT: ... diff --git a/.venv/lib/python3.12/site-packages/numpy/lib/_user_array_impl.py b/.venv/lib/python3.12/site-packages/numpy/lib/_user_array_impl.py new file mode 100644 index 0000000..f3a6c0f --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/lib/_user_array_impl.py @@ -0,0 +1,299 @@ +""" +Container class for backward compatibility with NumArray. + +The user_array.container class exists for backward compatibility with NumArray +and is not meant to be used in new code. If you need to create an array +container class, we recommend either creating a class that wraps an ndarray +or subclasses ndarray. + +""" +from numpy._core import ( + absolute, + add, + arange, + array, + asarray, + bitwise_and, + bitwise_or, + bitwise_xor, + divide, + equal, + greater, + greater_equal, + invert, + left_shift, + less, + less_equal, + multiply, + not_equal, + power, + remainder, + reshape, + right_shift, + shape, + sin, + sqrt, + subtract, + transpose, +) +from numpy._core.overrides import set_module + + +@set_module("numpy.lib.user_array") +class container: + """ + container(data, dtype=None, copy=True) + + Standard container-class for easy multiple-inheritance. + + Methods + ------- + copy + byteswap + astype + + """ + def __init__(self, data, dtype=None, copy=True): + self.array = array(data, dtype, copy=copy) + + def __repr__(self): + if self.ndim > 0: + return self.__class__.__name__ + repr(self.array)[len("array"):] + else: + return self.__class__.__name__ + "(" + repr(self.array) + ")" + + def __array__(self, t=None): + if t: + return self.array.astype(t) + return self.array + + # Array as sequence + def __len__(self): + return len(self.array) + + def __getitem__(self, index): + return self._rc(self.array[index]) + + def __setitem__(self, index, value): + self.array[index] = asarray(value, self.dtype) + + def __abs__(self): + return self._rc(absolute(self.array)) + + def __neg__(self): + return self._rc(-self.array) + + def __add__(self, other): + return self._rc(self.array + asarray(other)) + + __radd__ = __add__ + + def __iadd__(self, other): + add(self.array, other, self.array) + return self + + def __sub__(self, other): + return self._rc(self.array - asarray(other)) + + def __rsub__(self, other): + return self._rc(asarray(other) - self.array) + + def __isub__(self, other): + subtract(self.array, other, self.array) + return self + + def __mul__(self, other): + return self._rc(multiply(self.array, asarray(other))) + + __rmul__ = __mul__ + + def __imul__(self, other): + multiply(self.array, other, self.array) + return self + + def __mod__(self, other): + return self._rc(remainder(self.array, other)) + + def __rmod__(self, other): + return self._rc(remainder(other, self.array)) + + def __imod__(self, other): + remainder(self.array, other, self.array) + return self + + def __divmod__(self, other): + return (self._rc(divide(self.array, other)), + self._rc(remainder(self.array, other))) + + def __rdivmod__(self, other): + return (self._rc(divide(other, self.array)), + self._rc(remainder(other, self.array))) + + def __pow__(self, other): + return self._rc(power(self.array, asarray(other))) + + def __rpow__(self, other): + return self._rc(power(asarray(other), self.array)) + + def __ipow__(self, other): + power(self.array, other, self.array) + return self + + def __lshift__(self, other): + return self._rc(left_shift(self.array, other)) + + def __rshift__(self, other): + return self._rc(right_shift(self.array, other)) + + def __rlshift__(self, other): + return self._rc(left_shift(other, self.array)) + + def __rrshift__(self, other): + return self._rc(right_shift(other, self.array)) + + def __ilshift__(self, other): + left_shift(self.array, other, self.array) + return self + + def __irshift__(self, other): + right_shift(self.array, other, self.array) + return self + + def __and__(self, other): + return self._rc(bitwise_and(self.array, other)) + + def __rand__(self, other): + return self._rc(bitwise_and(other, self.array)) + + def __iand__(self, other): + bitwise_and(self.array, other, self.array) + return self + + def __xor__(self, other): + return self._rc(bitwise_xor(self.array, other)) + + def __rxor__(self, other): + return self._rc(bitwise_xor(other, self.array)) + + def __ixor__(self, other): + bitwise_xor(self.array, other, self.array) + return self + + def __or__(self, other): + return self._rc(bitwise_or(self.array, other)) + + def __ror__(self, other): + return self._rc(bitwise_or(other, self.array)) + + def __ior__(self, other): + bitwise_or(self.array, other, self.array) + return self + + def __pos__(self): + return self._rc(self.array) + + def __invert__(self): + return self._rc(invert(self.array)) + + def _scalarfunc(self, func): + if self.ndim == 0: + return func(self[0]) + else: + raise TypeError( + "only rank-0 arrays can be converted to Python scalars.") + + def __complex__(self): + return self._scalarfunc(complex) + + def __float__(self): + return self._scalarfunc(float) + + def __int__(self): + return self._scalarfunc(int) + + def __hex__(self): + return self._scalarfunc(hex) + + def __oct__(self): + return self._scalarfunc(oct) + + def __lt__(self, other): + return self._rc(less(self.array, other)) + + def __le__(self, other): + return self._rc(less_equal(self.array, other)) + + def __eq__(self, other): + return self._rc(equal(self.array, other)) + + def __ne__(self, other): + return self._rc(not_equal(self.array, other)) + + def __gt__(self, other): + return self._rc(greater(self.array, other)) + + def __ge__(self, other): + return self._rc(greater_equal(self.array, other)) + + def copy(self): + "" + return self._rc(self.array.copy()) + + def tobytes(self): + "" + return self.array.tobytes() + + def byteswap(self): + "" + return self._rc(self.array.byteswap()) + + def astype(self, typecode): + "" + return self._rc(self.array.astype(typecode)) + + def _rc(self, a): + if len(shape(a)) == 0: + return a + else: + return self.__class__(a) + + def __array_wrap__(self, *args): + return self.__class__(args[0]) + + def __setattr__(self, attr, value): + if attr == 'array': + object.__setattr__(self, attr, value) + return + try: + self.array.__setattr__(attr, value) + except AttributeError: + object.__setattr__(self, attr, value) + + # Only called after other approaches fail. + def __getattr__(self, attr): + if (attr == 'array'): + return object.__getattribute__(self, attr) + return self.array.__getattribute__(attr) + + +############################################################# +# Test of class container +############################################################# +if __name__ == '__main__': + temp = reshape(arange(10000), (100, 100)) + + ua = container(temp) + # new object created begin test + print(dir(ua)) + print(shape(ua), ua.shape) # I have changed Numeric.py + + ua_small = ua[:3, :5] + print(ua_small) + # this did not change ua[0,0], which is not normal behavior + ua_small[0, 0] = 10 + print(ua_small[0, 0], ua[0, 0]) + print(sin(ua_small) / 3. * 6. + sqrt(ua_small ** 2)) + print(less(ua_small, 103), type(less(ua_small, 103))) + print(type(ua_small * reshape(arange(15), shape(ua_small)))) + print(reshape(ua_small, (5, 3))) + print(transpose(ua_small)) diff --git a/.venv/lib/python3.12/site-packages/numpy/lib/_user_array_impl.pyi b/.venv/lib/python3.12/site-packages/numpy/lib/_user_array_impl.pyi new file mode 100644 index 0000000..13c0a01 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/lib/_user_array_impl.pyi @@ -0,0 +1,225 @@ +from types import EllipsisType +from typing import Any, Generic, Self, SupportsIndex, TypeAlias, overload + +from _typeshed import Incomplete +from typing_extensions import TypeVar, override + +import numpy as np +import numpy.typing as npt +from numpy._typing import ( + _AnyShape, + _ArrayLike, + _ArrayLikeBool_co, + _ArrayLikeInt_co, + _DTypeLike, +) + +### + +_ScalarT = TypeVar("_ScalarT", bound=np.generic) +_ShapeT = TypeVar("_ShapeT", bound=tuple[int, ...]) +_ShapeT_co = TypeVar("_ShapeT_co", bound=tuple[int, ...], default=_AnyShape, covariant=True) +_DTypeT = TypeVar("_DTypeT", bound=np.dtype) +_DTypeT_co = TypeVar("_DTypeT_co", bound=np.dtype, default=np.dtype, covariant=True) + +_BoolArrayT = TypeVar("_BoolArrayT", bound=container[Any, np.dtype[np.bool]]) +_IntegralArrayT = TypeVar("_IntegralArrayT", bound=container[Any, np.dtype[np.bool | np.integer | np.object_]]) +_RealContainerT = TypeVar( + "_RealContainerT", + bound=container[Any, np.dtype[np.bool | np.integer | np.floating | np.timedelta64 | np.object_]], +) +_NumericContainerT = TypeVar("_NumericContainerT", bound=container[Any, np.dtype[np.number | np.timedelta64 | np.object_]]) + +_ArrayInt_co: TypeAlias = npt.NDArray[np.integer | np.bool] + +_ToIndexSlice: TypeAlias = slice | EllipsisType | _ArrayInt_co | None +_ToIndexSlices: TypeAlias = _ToIndexSlice | tuple[_ToIndexSlice, ...] +_ToIndex: TypeAlias = SupportsIndex | _ToIndexSlice +_ToIndices: TypeAlias = _ToIndex | tuple[_ToIndex, ...] + +### + +class container(Generic[_ShapeT_co, _DTypeT_co]): + array: np.ndarray[_ShapeT_co, _DTypeT_co] + + @overload + def __init__( + self, + /, + data: container[_ShapeT_co, _DTypeT_co] | np.ndarray[_ShapeT_co, _DTypeT_co], + dtype: None = None, + copy: bool = True, + ) -> None: ... + @overload + def __init__( + self: container[Any, np.dtype[_ScalarT]], + /, + data: _ArrayLike[_ScalarT], + dtype: None = None, + copy: bool = True, + ) -> None: ... + @overload + def __init__( + self: container[Any, np.dtype[_ScalarT]], + /, + data: npt.ArrayLike, + dtype: _DTypeLike[_ScalarT], + copy: bool = True, + ) -> None: ... + @overload + def __init__(self, /, data: npt.ArrayLike, dtype: npt.DTypeLike | None = None, copy: bool = True) -> None: ... + + # + def __complex__(self, /) -> complex: ... + def __float__(self, /) -> float: ... + def __int__(self, /) -> int: ... + def __hex__(self, /) -> str: ... + def __oct__(self, /) -> str: ... + + # + @override + def __eq__(self, other: object, /) -> container[_ShapeT_co, np.dtype[np.bool]]: ... # type: ignore[override] # pyright: ignore[reportIncompatibleMethodOverride] + @override + def __ne__(self, other: object, /) -> container[_ShapeT_co, np.dtype[np.bool]]: ... # type: ignore[override] # pyright: ignore[reportIncompatibleMethodOverride] + + # + def __lt__(self, other: npt.ArrayLike, /) -> container[_ShapeT_co, np.dtype[np.bool]]: ... + def __le__(self, other: npt.ArrayLike, /) -> container[_ShapeT_co, np.dtype[np.bool]]: ... + def __gt__(self, other: npt.ArrayLike, /) -> container[_ShapeT_co, np.dtype[np.bool]]: ... + def __ge__(self, other: npt.ArrayLike, /) -> container[_ShapeT_co, np.dtype[np.bool]]: ... + + # + def __len__(self, /) -> int: ... + + # keep in sync with np.ndarray + @overload + def __getitem__(self, key: _ArrayInt_co | tuple[_ArrayInt_co, ...], /) -> container[_ShapeT_co, _DTypeT_co]: ... + @overload + def __getitem__(self, key: _ToIndexSlices, /) -> container[_AnyShape, _DTypeT_co]: ... + @overload + def __getitem__(self, key: _ToIndices, /) -> Any: ... + @overload + def __getitem__(self: container[Any, np.dtype[np.void]], key: list[str], /) -> container[_ShapeT_co, np.dtype[np.void]]: ... + @overload + def __getitem__(self: container[Any, np.dtype[np.void]], key: str, /) -> container[_ShapeT_co, np.dtype]: ... + + # keep in sync with np.ndarray + @overload + def __setitem__(self, index: _ToIndices, value: object, /) -> None: ... + @overload + def __setitem__(self: container[Any, np.dtype[np.void]], key: str | list[str], value: object, /) -> None: ... + + # keep in sync with np.ndarray + @overload + def __abs__(self: container[_ShapeT, np.dtype[np.complex64]], /) -> container[_ShapeT, np.dtype[np.float32]]: ... # type: ignore[overload-overlap] + @overload + def __abs__(self: container[_ShapeT, np.dtype[np.complex128]], /) -> container[_ShapeT, np.dtype[np.float64]]: ... + @overload + def __abs__(self: container[_ShapeT, np.dtype[np.complex192]], /) -> container[_ShapeT, np.dtype[np.float96]]: ... + @overload + def __abs__(self: container[_ShapeT, np.dtype[np.complex256]], /) -> container[_ShapeT, np.dtype[np.float128]]: ... + @overload + def __abs__(self: _RealContainerT, /) -> _RealContainerT: ... + + # + def __neg__(self: _NumericContainerT, /) -> _NumericContainerT: ... # noqa: PYI019 + def __pos__(self: _NumericContainerT, /) -> _NumericContainerT: ... # noqa: PYI019 + def __invert__(self: _IntegralArrayT, /) -> _IntegralArrayT: ... # noqa: PYI019 + + # TODO(jorenham): complete these binary ops + + # + def __add__(self, other: npt.ArrayLike, /) -> Incomplete: ... + def __radd__(self, other: npt.ArrayLike, /) -> Incomplete: ... + def __iadd__(self, other: npt.ArrayLike, /) -> Self: ... + + # + def __sub__(self, other: npt.ArrayLike, /) -> Incomplete: ... + def __rsub__(self, other: npt.ArrayLike, /) -> Incomplete: ... + def __isub__(self, other: npt.ArrayLike, /) -> Self: ... + + # + def __mul__(self, other: npt.ArrayLike, /) -> Incomplete: ... + def __rmul__(self, other: npt.ArrayLike, /) -> Incomplete: ... + def __imul__(self, other: npt.ArrayLike, /) -> Self: ... + + # + def __mod__(self, other: npt.ArrayLike, /) -> Incomplete: ... + def __rmod__(self, other: npt.ArrayLike, /) -> Incomplete: ... + def __imod__(self, other: npt.ArrayLike, /) -> Self: ... + + # + def __divmod__(self, other: npt.ArrayLike, /) -> tuple[Incomplete, Incomplete]: ... + def __rdivmod__(self, other: npt.ArrayLike, /) -> tuple[Incomplete, Incomplete]: ... + + # + def __pow__(self, other: npt.ArrayLike, /) -> Incomplete: ... + def __rpow__(self, other: npt.ArrayLike, /) -> Incomplete: ... + def __ipow__(self, other: npt.ArrayLike, /) -> Self: ... + + # + def __lshift__(self, other: _ArrayLikeInt_co, /) -> container[_AnyShape, np.dtype[np.integer]]: ... + def __rlshift__(self, other: _ArrayLikeInt_co, /) -> container[_AnyShape, np.dtype[np.integer]]: ... + def __ilshift__(self, other: _ArrayLikeInt_co, /) -> Self: ... + + # + def __rshift__(self, other: _ArrayLikeInt_co, /) -> container[_AnyShape, np.dtype[np.integer]]: ... + def __rrshift__(self, other: _ArrayLikeInt_co, /) -> container[_AnyShape, np.dtype[np.integer]]: ... + def __irshift__(self, other: _ArrayLikeInt_co, /) -> Self: ... + + # + @overload + def __and__( + self: container[Any, np.dtype[np.bool]], other: _ArrayLikeBool_co, / + ) -> container[_AnyShape, np.dtype[np.bool]]: ... + @overload + def __and__(self, other: _ArrayLikeInt_co, /) -> container[_AnyShape, np.dtype[np.bool | np.integer]]: ... + __rand__ = __and__ + @overload + def __iand__(self: _BoolArrayT, other: _ArrayLikeBool_co, /) -> _BoolArrayT: ... + @overload + def __iand__(self, other: _ArrayLikeInt_co, /) -> Self: ... + + # + @overload + def __xor__( + self: container[Any, np.dtype[np.bool]], other: _ArrayLikeBool_co, / + ) -> container[_AnyShape, np.dtype[np.bool]]: ... + @overload + def __xor__(self, other: _ArrayLikeInt_co, /) -> container[_AnyShape, np.dtype[np.bool | np.integer]]: ... + __rxor__ = __xor__ + @overload + def __ixor__(self: _BoolArrayT, other: _ArrayLikeBool_co, /) -> _BoolArrayT: ... + @overload + def __ixor__(self, other: _ArrayLikeInt_co, /) -> Self: ... + + # + @overload + def __or__( + self: container[Any, np.dtype[np.bool]], other: _ArrayLikeBool_co, / + ) -> container[_AnyShape, np.dtype[np.bool]]: ... + @overload + def __or__(self, other: _ArrayLikeInt_co, /) -> container[_AnyShape, np.dtype[np.bool | np.integer]]: ... + __ror__ = __or__ + @overload + def __ior__(self: _BoolArrayT, other: _ArrayLikeBool_co, /) -> _BoolArrayT: ... + @overload + def __ior__(self, other: _ArrayLikeInt_co, /) -> Self: ... + + # + @overload + def __array__(self, /, t: None = None) -> np.ndarray[_ShapeT_co, _DTypeT_co]: ... + @overload + def __array__(self, /, t: _DTypeT) -> np.ndarray[_ShapeT_co, _DTypeT]: ... + + # + @overload + def __array_wrap__(self, arg0: npt.ArrayLike, /) -> container[_ShapeT_co, _DTypeT_co]: ... + @overload + def __array_wrap__(self, a: np.ndarray[_ShapeT, _DTypeT], c: Any = ..., s: Any = ..., /) -> container[_ShapeT, _DTypeT]: ... + + # + def copy(self, /) -> Self: ... + def tobytes(self, /) -> bytes: ... + def byteswap(self, /) -> Self: ... + def astype(self, /, typecode: _DTypeLike[_ScalarT]) -> container[_ShapeT_co, np.dtype[_ScalarT]]: ... diff --git a/.venv/lib/python3.12/site-packages/numpy/lib/_utils_impl.py b/.venv/lib/python3.12/site-packages/numpy/lib/_utils_impl.py new file mode 100644 index 0000000..2e1ee23 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/lib/_utils_impl.py @@ -0,0 +1,779 @@ +import functools +import os +import platform +import sys +import textwrap +import types +import warnings + +import numpy as np +from numpy._core import ndarray +from numpy._utils import set_module + +__all__ = [ + 'get_include', 'info', 'show_runtime' +] + + +@set_module('numpy') +def show_runtime(): + """ + Print information about various resources in the system + including available intrinsic support and BLAS/LAPACK library + in use + + .. versionadded:: 1.24.0 + + See Also + -------- + show_config : Show libraries in the system on which NumPy was built. + + Notes + ----- + 1. Information is derived with the help of `threadpoolctl <https://pypi.org/project/threadpoolctl/>`_ + library if available. + 2. SIMD related information is derived from ``__cpu_features__``, + ``__cpu_baseline__`` and ``__cpu_dispatch__`` + + """ + from pprint import pprint + + from numpy._core._multiarray_umath import ( + __cpu_baseline__, + __cpu_dispatch__, + __cpu_features__, + ) + config_found = [{ + "numpy_version": np.__version__, + "python": sys.version, + "uname": platform.uname(), + }] + features_found, features_not_found = [], [] + for feature in __cpu_dispatch__: + if __cpu_features__[feature]: + features_found.append(feature) + else: + features_not_found.append(feature) + config_found.append({ + "simd_extensions": { + "baseline": __cpu_baseline__, + "found": features_found, + "not_found": features_not_found + } + }) + try: + from threadpoolctl import threadpool_info + config_found.extend(threadpool_info()) + except ImportError: + print("WARNING: `threadpoolctl` not found in system!" + " Install it by `pip install threadpoolctl`." + " Once installed, try `np.show_runtime` again" + " for more detailed build information") + pprint(config_found) + + +@set_module('numpy') +def get_include(): + """ + Return the directory that contains the NumPy \\*.h header files. + + Extension modules that need to compile against NumPy may need to use this + function to locate the appropriate include directory. + + Notes + ----- + When using ``setuptools``, for example in ``setup.py``:: + + import numpy as np + ... + Extension('extension_name', ... + include_dirs=[np.get_include()]) + ... + + Note that a CLI tool ``numpy-config`` was introduced in NumPy 2.0, using + that is likely preferred for build systems other than ``setuptools``:: + + $ numpy-config --cflags + -I/path/to/site-packages/numpy/_core/include + + # Or rely on pkg-config: + $ export PKG_CONFIG_PATH=$(numpy-config --pkgconfigdir) + $ pkg-config --cflags + -I/path/to/site-packages/numpy/_core/include + + Examples + -------- + >>> np.get_include() + '.../site-packages/numpy/core/include' # may vary + + """ + import numpy + if numpy.show_config is None: + # running from numpy source directory + d = os.path.join(os.path.dirname(numpy.__file__), '_core', 'include') + else: + # using installed numpy core headers + import numpy._core as _core + d = os.path.join(os.path.dirname(_core.__file__), 'include') + return d + + +class _Deprecate: + """ + Decorator class to deprecate old functions. + + Refer to `deprecate` for details. + + See Also + -------- + deprecate + + """ + + def __init__(self, old_name=None, new_name=None, message=None): + self.old_name = old_name + self.new_name = new_name + self.message = message + + def __call__(self, func, *args, **kwargs): + """ + Decorator call. Refer to ``decorate``. + + """ + old_name = self.old_name + new_name = self.new_name + message = self.message + + if old_name is None: + old_name = func.__name__ + if new_name is None: + depdoc = f"`{old_name}` is deprecated!" + else: + depdoc = f"`{old_name}` is deprecated, use `{new_name}` instead!" + + if message is not None: + depdoc += "\n" + message + + @functools.wraps(func) + def newfunc(*args, **kwds): + warnings.warn(depdoc, DeprecationWarning, stacklevel=2) + return func(*args, **kwds) + + newfunc.__name__ = old_name + doc = func.__doc__ + if doc is None: + doc = depdoc + else: + lines = doc.expandtabs().split('\n') + indent = _get_indent(lines[1:]) + if lines[0].lstrip(): + # Indent the original first line to let inspect.cleandoc() + # dedent the docstring despite the deprecation notice. + doc = indent * ' ' + doc + else: + # Remove the same leading blank lines as cleandoc() would. + skip = len(lines[0]) + 1 + for line in lines[1:]: + if len(line) > indent: + break + skip += len(line) + 1 + doc = doc[skip:] + depdoc = textwrap.indent(depdoc, ' ' * indent) + doc = f'{depdoc}\n\n{doc}' + newfunc.__doc__ = doc + + return newfunc + + +def _get_indent(lines): + """ + Determines the leading whitespace that could be removed from all the lines. + """ + indent = sys.maxsize + for line in lines: + content = len(line.lstrip()) + if content: + indent = min(indent, len(line) - content) + if indent == sys.maxsize: + indent = 0 + return indent + + +def deprecate(*args, **kwargs): + """ + Issues a DeprecationWarning, adds warning to `old_name`'s + docstring, rebinds ``old_name.__name__`` and returns the new + function object. + + This function may also be used as a decorator. + + .. deprecated:: 2.0 + Use `~warnings.warn` with :exc:`DeprecationWarning` instead. + + Parameters + ---------- + func : function + The function to be deprecated. + old_name : str, optional + The name of the function to be deprecated. Default is None, in + which case the name of `func` is used. + new_name : str, optional + The new name for the function. Default is None, in which case the + deprecation message is that `old_name` is deprecated. If given, the + deprecation message is that `old_name` is deprecated and `new_name` + should be used instead. + message : str, optional + Additional explanation of the deprecation. Displayed in the + docstring after the warning. + + Returns + ------- + old_func : function + The deprecated function. + + Examples + -------- + Note that ``olduint`` returns a value after printing Deprecation + Warning: + + >>> olduint = np.lib.utils.deprecate(np.uint) + DeprecationWarning: `uint64` is deprecated! # may vary + >>> olduint(6) + 6 + + """ + # Deprecate may be run as a function or as a decorator + # If run as a function, we initialise the decorator class + # and execute its __call__ method. + + # Deprecated in NumPy 2.0, 2023-07-11 + warnings.warn( + "`deprecate` is deprecated, " + "use `warn` with `DeprecationWarning` instead. " + "(deprecated in NumPy 2.0)", + DeprecationWarning, + stacklevel=2 + ) + + if args: + fn = args[0] + args = args[1:] + + return _Deprecate(*args, **kwargs)(fn) + else: + return _Deprecate(*args, **kwargs) + + +def deprecate_with_doc(msg): + """ + Deprecates a function and includes the deprecation in its docstring. + + .. deprecated:: 2.0 + Use `~warnings.warn` with :exc:`DeprecationWarning` instead. + + This function is used as a decorator. It returns an object that can be + used to issue a DeprecationWarning, by passing the to-be decorated + function as argument, this adds warning to the to-be decorated function's + docstring and returns the new function object. + + See Also + -------- + deprecate : Decorate a function such that it issues a + :exc:`DeprecationWarning` + + Parameters + ---------- + msg : str + Additional explanation of the deprecation. Displayed in the + docstring after the warning. + + Returns + ------- + obj : object + + """ + + # Deprecated in NumPy 2.0, 2023-07-11 + warnings.warn( + "`deprecate` is deprecated, " + "use `warn` with `DeprecationWarning` instead. " + "(deprecated in NumPy 2.0)", + DeprecationWarning, + stacklevel=2 + ) + + return _Deprecate(message=msg) + + +#----------------------------------------------------------------------------- + + +# NOTE: pydoc defines a help function which works similarly to this +# except it uses a pager to take over the screen. + +# combine name and arguments and split to multiple lines of width +# characters. End lines on a comma and begin argument list indented with +# the rest of the arguments. +def _split_line(name, arguments, width): + firstwidth = len(name) + k = firstwidth + newstr = name + sepstr = ", " + arglist = arguments.split(sepstr) + for argument in arglist: + if k == firstwidth: + addstr = "" + else: + addstr = sepstr + k = k + len(argument) + len(addstr) + if k > width: + k = firstwidth + 1 + len(argument) + newstr = newstr + ",\n" + " " * (firstwidth + 2) + argument + else: + newstr = newstr + addstr + argument + return newstr + + +_namedict = None +_dictlist = None + +# Traverse all module directories underneath globals +# to see if something is defined +def _makenamedict(module='numpy'): + module = __import__(module, globals(), locals(), []) + thedict = {module.__name__: module.__dict__} + dictlist = [module.__name__] + totraverse = [module.__dict__] + while True: + if len(totraverse) == 0: + break + thisdict = totraverse.pop(0) + for x in thisdict.keys(): + if isinstance(thisdict[x], types.ModuleType): + modname = thisdict[x].__name__ + if modname not in dictlist: + moddict = thisdict[x].__dict__ + dictlist.append(modname) + totraverse.append(moddict) + thedict[modname] = moddict + return thedict, dictlist + + +def _info(obj, output=None): + """Provide information about ndarray obj. + + Parameters + ---------- + obj : ndarray + Must be ndarray, not checked. + output + Where printed output goes. + + Notes + ----- + Copied over from the numarray module prior to its removal. + Adapted somewhat as only numpy is an option now. + + Called by info. + + """ + extra = "" + tic = "" + bp = lambda x: x + cls = getattr(obj, '__class__', type(obj)) + nm = getattr(cls, '__name__', cls) + strides = obj.strides + endian = obj.dtype.byteorder + + if output is None: + output = sys.stdout + + print("class: ", nm, file=output) + print("shape: ", obj.shape, file=output) + print("strides: ", strides, file=output) + print("itemsize: ", obj.itemsize, file=output) + print("aligned: ", bp(obj.flags.aligned), file=output) + print("contiguous: ", bp(obj.flags.contiguous), file=output) + print("fortran: ", obj.flags.fortran, file=output) + print( + f"data pointer: {hex(obj.ctypes._as_parameter_.value)}{extra}", + file=output + ) + print("byteorder: ", end=' ', file=output) + if endian in ['|', '=']: + print(f"{tic}{sys.byteorder}{tic}", file=output) + byteswap = False + elif endian == '>': + print(f"{tic}big{tic}", file=output) + byteswap = sys.byteorder != "big" + else: + print(f"{tic}little{tic}", file=output) + byteswap = sys.byteorder != "little" + print("byteswap: ", bp(byteswap), file=output) + print(f"type: {obj.dtype}", file=output) + + +@set_module('numpy') +def info(object=None, maxwidth=76, output=None, toplevel='numpy'): + """ + Get help information for an array, function, class, or module. + + Parameters + ---------- + object : object or str, optional + Input object or name to get information about. If `object` is + an `ndarray` instance, information about the array is printed. + If `object` is a numpy object, its docstring is given. If it is + a string, available modules are searched for matching objects. + If None, information about `info` itself is returned. + maxwidth : int, optional + Printing width. + output : file like object, optional + File like object that the output is written to, default is + ``None``, in which case ``sys.stdout`` will be used. + The object has to be opened in 'w' or 'a' mode. + toplevel : str, optional + Start search at this level. + + Notes + ----- + When used interactively with an object, ``np.info(obj)`` is equivalent + to ``help(obj)`` on the Python prompt or ``obj?`` on the IPython + prompt. + + Examples + -------- + >>> np.info(np.polyval) # doctest: +SKIP + polyval(p, x) + Evaluate the polynomial p at x. + ... + + When using a string for `object` it is possible to get multiple results. + + >>> np.info('fft') # doctest: +SKIP + *** Found in numpy *** + Core FFT routines + ... + *** Found in numpy.fft *** + fft(a, n=None, axis=-1) + ... + *** Repeat reference found in numpy.fft.fftpack *** + *** Total of 3 references found. *** + + When the argument is an array, information about the array is printed. + + >>> a = np.array([[1 + 2j, 3, -4], [-5j, 6, 0]], dtype=np.complex64) + >>> np.info(a) + class: ndarray + shape: (2, 3) + strides: (24, 8) + itemsize: 8 + aligned: True + contiguous: True + fortran: False + data pointer: 0x562b6e0d2860 # may vary + byteorder: little + byteswap: False + type: complex64 + + """ + global _namedict, _dictlist + # Local import to speed up numpy's import time. + import inspect + import pydoc + + if (hasattr(object, '_ppimport_importer') or + hasattr(object, '_ppimport_module')): + object = object._ppimport_module + elif hasattr(object, '_ppimport_attr'): + object = object._ppimport_attr + + if output is None: + output = sys.stdout + + if object is None: + info(info) + elif isinstance(object, ndarray): + _info(object, output=output) + elif isinstance(object, str): + if _namedict is None: + _namedict, _dictlist = _makenamedict(toplevel) + numfound = 0 + objlist = [] + for namestr in _dictlist: + try: + obj = _namedict[namestr][object] + if id(obj) in objlist: + print(f"\n *** Repeat reference found in {namestr} *** ", + file=output + ) + else: + objlist.append(id(obj)) + print(f" *** Found in {namestr} ***", file=output) + info(obj) + print("-" * maxwidth, file=output) + numfound += 1 + except KeyError: + pass + if numfound == 0: + print(f"Help for {object} not found.", file=output) + else: + print("\n " + "*** Total of %d references found. ***" % numfound, + file=output + ) + + elif inspect.isfunction(object) or inspect.ismethod(object): + name = object.__name__ + try: + arguments = str(inspect.signature(object)) + except Exception: + arguments = "()" + + if len(name + arguments) > maxwidth: + argstr = _split_line(name, arguments, maxwidth) + else: + argstr = name + arguments + + print(" " + argstr + "\n", file=output) + print(inspect.getdoc(object), file=output) + + elif inspect.isclass(object): + name = object.__name__ + try: + arguments = str(inspect.signature(object)) + except Exception: + arguments = "()" + + if len(name + arguments) > maxwidth: + argstr = _split_line(name, arguments, maxwidth) + else: + argstr = name + arguments + + print(" " + argstr + "\n", file=output) + doc1 = inspect.getdoc(object) + if doc1 is None: + if hasattr(object, '__init__'): + print(inspect.getdoc(object.__init__), file=output) + else: + print(inspect.getdoc(object), file=output) + + methods = pydoc.allmethods(object) + + public_methods = [meth for meth in methods if meth[0] != '_'] + if public_methods: + print("\n\nMethods:\n", file=output) + for meth in public_methods: + thisobj = getattr(object, meth, None) + if thisobj is not None: + methstr, other = pydoc.splitdoc( + inspect.getdoc(thisobj) or "None" + ) + print(f" {meth} -- {methstr}", file=output) + + elif hasattr(object, '__doc__'): + print(inspect.getdoc(object), file=output) + + +def safe_eval(source): + """ + Protected string evaluation. + + .. deprecated:: 2.0 + Use `ast.literal_eval` instead. + + Evaluate a string containing a Python literal expression without + allowing the execution of arbitrary non-literal code. + + .. warning:: + + This function is identical to :py:meth:`ast.literal_eval` and + has the same security implications. It may not always be safe + to evaluate large input strings. + + Parameters + ---------- + source : str + The string to evaluate. + + Returns + ------- + obj : object + The result of evaluating `source`. + + Raises + ------ + SyntaxError + If the code has invalid Python syntax, or if it contains + non-literal code. + + Examples + -------- + >>> np.safe_eval('1') + 1 + >>> np.safe_eval('[1, 2, 3]') + [1, 2, 3] + >>> np.safe_eval('{"foo": ("bar", 10.0)}') + {'foo': ('bar', 10.0)} + + >>> np.safe_eval('import os') + Traceback (most recent call last): + ... + SyntaxError: invalid syntax + + >>> np.safe_eval('open("/home/user/.ssh/id_dsa").read()') + Traceback (most recent call last): + ... + ValueError: malformed node or string: <_ast.Call object at 0x...> + + """ + + # Deprecated in NumPy 2.0, 2023-07-11 + warnings.warn( + "`safe_eval` is deprecated. Use `ast.literal_eval` instead. " + "Be aware of security implications, such as memory exhaustion " + "based attacks (deprecated in NumPy 2.0)", + DeprecationWarning, + stacklevel=2 + ) + + # Local import to speed up numpy's import time. + import ast + return ast.literal_eval(source) + + +def _median_nancheck(data, result, axis): + """ + Utility function to check median result from data for NaN values at the end + and return NaN in that case. Input result can also be a MaskedArray. + + Parameters + ---------- + data : array + Sorted input data to median function + result : Array or MaskedArray + Result of median function. + axis : int + Axis along which the median was computed. + + Returns + ------- + result : scalar or ndarray + Median or NaN in axes which contained NaN in the input. If the input + was an array, NaN will be inserted in-place. If a scalar, either the + input itself or a scalar NaN. + """ + if data.size == 0: + return result + potential_nans = data.take(-1, axis=axis) + n = np.isnan(potential_nans) + # masked NaN values are ok, although for masked the copyto may fail for + # unmasked ones (this was always broken) when the result is a scalar. + if np.ma.isMaskedArray(n): + n = n.filled(False) + + if not n.any(): + return result + + # Without given output, it is possible that the current result is a + # numpy scalar, which is not writeable. If so, just return nan. + if isinstance(result, np.generic): + return potential_nans + + # Otherwise copy NaNs (if there are any) + np.copyto(result, potential_nans, where=n) + return result + +def _opt_info(): + """ + Returns a string containing the CPU features supported + by the current build. + + The format of the string can be explained as follows: + - Dispatched features supported by the running machine end with `*`. + - Dispatched features not supported by the running machine + end with `?`. + - Remaining features represent the baseline. + + Returns: + str: A formatted string indicating the supported CPU features. + """ + from numpy._core._multiarray_umath import ( + __cpu_baseline__, + __cpu_dispatch__, + __cpu_features__, + ) + + if len(__cpu_baseline__) == 0 and len(__cpu_dispatch__) == 0: + return '' + + enabled_features = ' '.join(__cpu_baseline__) + for feature in __cpu_dispatch__: + if __cpu_features__[feature]: + enabled_features += f" {feature}*" + else: + enabled_features += f" {feature}?" + + return enabled_features + +def drop_metadata(dtype, /): + """ + Returns the dtype unchanged if it contained no metadata or a copy of the + dtype if it (or any of its structure dtypes) contained metadata. + + This utility is used by `np.save` and `np.savez` to drop metadata before + saving. + + .. note:: + + Due to its limitation this function may move to a more appropriate + home or change in the future and is considered semi-public API only. + + .. warning:: + + This function does not preserve more strange things like record dtypes + and user dtypes may simply return the wrong thing. If you need to be + sure about the latter, check the result with: + ``np.can_cast(new_dtype, dtype, casting="no")``. + + """ + if dtype.fields is not None: + found_metadata = dtype.metadata is not None + + names = [] + formats = [] + offsets = [] + titles = [] + for name, field in dtype.fields.items(): + field_dt = drop_metadata(field[0]) + if field_dt is not field[0]: + found_metadata = True + + names.append(name) + formats.append(field_dt) + offsets.append(field[1]) + titles.append(None if len(field) < 3 else field[2]) + + if not found_metadata: + return dtype + + structure = { + 'names': names, 'formats': formats, 'offsets': offsets, 'titles': titles, + 'itemsize': dtype.itemsize} + + # NOTE: Could pass (dtype.type, structure) to preserve record dtypes... + return np.dtype(structure, align=dtype.isalignedstruct) + elif dtype.subdtype is not None: + # subarray dtype + subdtype, shape = dtype.subdtype + new_subdtype = drop_metadata(subdtype) + if dtype.metadata is None and new_subdtype is subdtype: + return dtype + + return np.dtype((new_subdtype, shape)) + else: + # Normal unstructured dtype + if dtype.metadata is None: + return dtype + # Note that `dt.str` doesn't round-trip e.g. for user-dtypes. + return np.dtype(dtype.str) diff --git a/.venv/lib/python3.12/site-packages/numpy/lib/_utils_impl.pyi b/.venv/lib/python3.12/site-packages/numpy/lib/_utils_impl.pyi new file mode 100644 index 0000000..00ed47c --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/lib/_utils_impl.pyi @@ -0,0 +1,10 @@ +from _typeshed import SupportsWrite + +from numpy._typing import DTypeLike + +__all__ = ["get_include", "info", "show_runtime"] + +def get_include() -> str: ... +def show_runtime() -> None: ... +def info(object: object = ..., maxwidth: int = ..., output: SupportsWrite[str] | None = ..., toplevel: str = ...) -> None: ... +def drop_metadata(dtype: DTypeLike, /) -> DTypeLike: ... diff --git a/.venv/lib/python3.12/site-packages/numpy/lib/_version.py b/.venv/lib/python3.12/site-packages/numpy/lib/_version.py new file mode 100644 index 0000000..f7a3538 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/lib/_version.py @@ -0,0 +1,154 @@ +"""Utility to compare (NumPy) version strings. + +The NumpyVersion class allows properly comparing numpy version strings. +The LooseVersion and StrictVersion classes that distutils provides don't +work; they don't recognize anything like alpha/beta/rc/dev versions. + +""" +import re + +__all__ = ['NumpyVersion'] + + +class NumpyVersion: + """Parse and compare numpy version strings. + + NumPy has the following versioning scheme (numbers given are examples; they + can be > 9 in principle): + + - Released version: '1.8.0', '1.8.1', etc. + - Alpha: '1.8.0a1', '1.8.0a2', etc. + - Beta: '1.8.0b1', '1.8.0b2', etc. + - Release candidates: '1.8.0rc1', '1.8.0rc2', etc. + - Development versions: '1.8.0.dev-f1234afa' (git commit hash appended) + - Development versions after a1: '1.8.0a1.dev-f1234afa', + '1.8.0b2.dev-f1234afa', + '1.8.1rc1.dev-f1234afa', etc. + - Development versions (no git hash available): '1.8.0.dev-Unknown' + + Comparing needs to be done against a valid version string or other + `NumpyVersion` instance. Note that all development versions of the same + (pre-)release compare equal. + + Parameters + ---------- + vstring : str + NumPy version string (``np.__version__``). + + Examples + -------- + >>> from numpy.lib import NumpyVersion + >>> if NumpyVersion(np.__version__) < '1.7.0': + ... print('skip') + >>> # skip + + >>> NumpyVersion('1.7') # raises ValueError, add ".0" + Traceback (most recent call last): + ... + ValueError: Not a valid numpy version string + + """ + + __module__ = "numpy.lib" + + def __init__(self, vstring): + self.vstring = vstring + ver_main = re.match(r'\d+\.\d+\.\d+', vstring) + if not ver_main: + raise ValueError("Not a valid numpy version string") + + self.version = ver_main.group() + self.major, self.minor, self.bugfix = [int(x) for x in + self.version.split('.')] + if len(vstring) == ver_main.end(): + self.pre_release = 'final' + else: + alpha = re.match(r'a\d', vstring[ver_main.end():]) + beta = re.match(r'b\d', vstring[ver_main.end():]) + rc = re.match(r'rc\d', vstring[ver_main.end():]) + pre_rel = [m for m in [alpha, beta, rc] if m is not None] + if pre_rel: + self.pre_release = pre_rel[0].group() + else: + self.pre_release = '' + + self.is_devversion = bool(re.search(r'.dev', vstring)) + + def _compare_version(self, other): + """Compare major.minor.bugfix""" + if self.major == other.major: + if self.minor == other.minor: + if self.bugfix == other.bugfix: + vercmp = 0 + elif self.bugfix > other.bugfix: + vercmp = 1 + else: + vercmp = -1 + elif self.minor > other.minor: + vercmp = 1 + else: + vercmp = -1 + elif self.major > other.major: + vercmp = 1 + else: + vercmp = -1 + + return vercmp + + def _compare_pre_release(self, other): + """Compare alpha/beta/rc/final.""" + if self.pre_release == other.pre_release: + vercmp = 0 + elif self.pre_release == 'final': + vercmp = 1 + elif other.pre_release == 'final': + vercmp = -1 + elif self.pre_release > other.pre_release: + vercmp = 1 + else: + vercmp = -1 + + return vercmp + + def _compare(self, other): + if not isinstance(other, (str, NumpyVersion)): + raise ValueError("Invalid object to compare with NumpyVersion.") + + if isinstance(other, str): + other = NumpyVersion(other) + + vercmp = self._compare_version(other) + if vercmp == 0: + # Same x.y.z version, check for alpha/beta/rc + vercmp = self._compare_pre_release(other) + if vercmp == 0: + # Same version and same pre-release, check if dev version + if self.is_devversion is other.is_devversion: + vercmp = 0 + elif self.is_devversion: + vercmp = -1 + else: + vercmp = 1 + + return vercmp + + def __lt__(self, other): + return self._compare(other) < 0 + + def __le__(self, other): + return self._compare(other) <= 0 + + def __eq__(self, other): + return self._compare(other) == 0 + + def __ne__(self, other): + return self._compare(other) != 0 + + def __gt__(self, other): + return self._compare(other) > 0 + + def __ge__(self, other): + return self._compare(other) >= 0 + + def __repr__(self): + return f"NumpyVersion({self.vstring})" diff --git a/.venv/lib/python3.12/site-packages/numpy/lib/_version.pyi b/.venv/lib/python3.12/site-packages/numpy/lib/_version.pyi new file mode 100644 index 0000000..c53ef79 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/lib/_version.pyi @@ -0,0 +1,17 @@ +__all__ = ["NumpyVersion"] + +class NumpyVersion: + vstring: str + version: str + major: int + minor: int + bugfix: int + pre_release: str + is_devversion: bool + def __init__(self, vstring: str) -> None: ... + def __lt__(self, other: str | NumpyVersion) -> bool: ... + def __le__(self, other: str | NumpyVersion) -> bool: ... + def __eq__(self, other: str | NumpyVersion) -> bool: ... # type: ignore[override] + def __ne__(self, other: str | NumpyVersion) -> bool: ... # type: ignore[override] + def __gt__(self, other: str | NumpyVersion) -> bool: ... + def __ge__(self, other: str | NumpyVersion) -> bool: ... diff --git a/.venv/lib/python3.12/site-packages/numpy/lib/array_utils.py b/.venv/lib/python3.12/site-packages/numpy/lib/array_utils.py new file mode 100644 index 0000000..c267eb0 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/lib/array_utils.py @@ -0,0 +1,7 @@ +from ._array_utils_impl import ( # noqa: F401 + __all__, + __doc__, + byte_bounds, + normalize_axis_index, + normalize_axis_tuple, +) diff --git a/.venv/lib/python3.12/site-packages/numpy/lib/array_utils.pyi b/.venv/lib/python3.12/site-packages/numpy/lib/array_utils.pyi new file mode 100644 index 0000000..8adc3c5 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/lib/array_utils.pyi @@ -0,0 +1,12 @@ +from ._array_utils_impl import ( + __all__ as __all__, +) +from ._array_utils_impl import ( + byte_bounds as byte_bounds, +) +from ._array_utils_impl import ( + normalize_axis_index as normalize_axis_index, +) +from ._array_utils_impl import ( + normalize_axis_tuple as normalize_axis_tuple, +) diff --git a/.venv/lib/python3.12/site-packages/numpy/lib/format.py b/.venv/lib/python3.12/site-packages/numpy/lib/format.py new file mode 100644 index 0000000..8e0c799 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/lib/format.py @@ -0,0 +1,24 @@ +from ._format_impl import ( # noqa: F401 + ARRAY_ALIGN, + BUFFER_SIZE, + EXPECTED_KEYS, + GROWTH_AXIS_MAX_DIGITS, + MAGIC_LEN, + MAGIC_PREFIX, + __all__, + __doc__, + descr_to_dtype, + drop_metadata, + dtype_to_descr, + header_data_from_array_1_0, + isfileobj, + magic, + open_memmap, + read_array, + read_array_header_1_0, + read_array_header_2_0, + read_magic, + write_array, + write_array_header_1_0, + write_array_header_2_0, +) diff --git a/.venv/lib/python3.12/site-packages/numpy/lib/format.pyi b/.venv/lib/python3.12/site-packages/numpy/lib/format.pyi new file mode 100644 index 0000000..dd9470e --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/lib/format.pyi @@ -0,0 +1,66 @@ +from ._format_impl import ( + ARRAY_ALIGN as ARRAY_ALIGN, +) +from ._format_impl import ( + BUFFER_SIZE as BUFFER_SIZE, +) +from ._format_impl import ( + EXPECTED_KEYS as EXPECTED_KEYS, +) +from ._format_impl import ( + GROWTH_AXIS_MAX_DIGITS as GROWTH_AXIS_MAX_DIGITS, +) +from ._format_impl import ( + MAGIC_LEN as MAGIC_LEN, +) +from ._format_impl import ( + MAGIC_PREFIX as MAGIC_PREFIX, +) +from ._format_impl import ( + __all__ as __all__, +) +from ._format_impl import ( + __doc__ as __doc__, +) +from ._format_impl import ( + descr_to_dtype as descr_to_dtype, +) +from ._format_impl import ( + drop_metadata as drop_metadata, +) +from ._format_impl import ( + dtype_to_descr as dtype_to_descr, +) +from ._format_impl import ( + header_data_from_array_1_0 as header_data_from_array_1_0, +) +from ._format_impl import ( + isfileobj as isfileobj, +) +from ._format_impl import ( + magic as magic, +) +from ._format_impl import ( + open_memmap as open_memmap, +) +from ._format_impl import ( + read_array as read_array, +) +from ._format_impl import ( + read_array_header_1_0 as read_array_header_1_0, +) +from ._format_impl import ( + read_array_header_2_0 as read_array_header_2_0, +) +from ._format_impl import ( + read_magic as read_magic, +) +from ._format_impl import ( + write_array as write_array, +) +from ._format_impl import ( + write_array_header_1_0 as write_array_header_1_0, +) +from ._format_impl import ( + write_array_header_2_0 as write_array_header_2_0, +) diff --git a/.venv/lib/python3.12/site-packages/numpy/lib/introspect.py b/.venv/lib/python3.12/site-packages/numpy/lib/introspect.py new file mode 100644 index 0000000..f4a0f32 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/lib/introspect.py @@ -0,0 +1,95 @@ +""" +Introspection helper functions. +""" + +__all__ = ['opt_func_info'] + + +def opt_func_info(func_name=None, signature=None): + """ + Returns a dictionary containing the currently supported CPU dispatched + features for all optimized functions. + + Parameters + ---------- + func_name : str (optional) + Regular expression to filter by function name. + + signature : str (optional) + Regular expression to filter by data type. + + Returns + ------- + dict + A dictionary where keys are optimized function names and values are + nested dictionaries indicating supported targets based on data types. + + Examples + -------- + Retrieve dispatch information for functions named 'add' or 'sub' and + data types 'float64' or 'float32': + + >>> import numpy as np + >>> dict = np.lib.introspect.opt_func_info( + ... func_name="add|abs", signature="float64|complex64" + ... ) + >>> import json + >>> print(json.dumps(dict, indent=2)) + { + "absolute": { + "dd": { + "current": "SSE41", + "available": "SSE41 baseline(SSE SSE2 SSE3)" + }, + "Ff": { + "current": "FMA3__AVX2", + "available": "AVX512F FMA3__AVX2 baseline(SSE SSE2 SSE3)" + }, + "Dd": { + "current": "FMA3__AVX2", + "available": "AVX512F FMA3__AVX2 baseline(SSE SSE2 SSE3)" + } + }, + "add": { + "ddd": { + "current": "FMA3__AVX2", + "available": "FMA3__AVX2 baseline(SSE SSE2 SSE3)" + }, + "FFF": { + "current": "FMA3__AVX2", + "available": "FMA3__AVX2 baseline(SSE SSE2 SSE3)" + } + } + } + + """ + import re + + from numpy._core._multiarray_umath import __cpu_targets_info__ as targets + from numpy._core._multiarray_umath import dtype + + if func_name is not None: + func_pattern = re.compile(func_name) + matching_funcs = { + k: v for k, v in targets.items() + if func_pattern.search(k) + } + else: + matching_funcs = targets + + if signature is not None: + sig_pattern = re.compile(signature) + matching_sigs = {} + for k, v in matching_funcs.items(): + matching_chars = {} + for chars, targets in v.items(): + if any( + sig_pattern.search(c) or sig_pattern.search(dtype(c).name) + for c in chars + ): + matching_chars[chars] = targets + if matching_chars: + matching_sigs[k] = matching_chars + else: + matching_sigs = matching_funcs + return matching_sigs diff --git a/.venv/lib/python3.12/site-packages/numpy/lib/introspect.pyi b/.venv/lib/python3.12/site-packages/numpy/lib/introspect.pyi new file mode 100644 index 0000000..7929981 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/lib/introspect.pyi @@ -0,0 +1,3 @@ +__all__ = ["opt_func_info"] + +def opt_func_info(func_name: str | None = None, signature: str | None = None) -> dict[str, dict[str, dict[str, str]]]: ... diff --git a/.venv/lib/python3.12/site-packages/numpy/lib/mixins.py b/.venv/lib/python3.12/site-packages/numpy/lib/mixins.py new file mode 100644 index 0000000..831bb34 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/lib/mixins.py @@ -0,0 +1,180 @@ +""" +Mixin classes for custom array types that don't inherit from ndarray. +""" + +__all__ = ['NDArrayOperatorsMixin'] + + +def _disables_array_ufunc(obj): + """True when __array_ufunc__ is set to None.""" + try: + return obj.__array_ufunc__ is None + except AttributeError: + return False + + +def _binary_method(ufunc, name): + """Implement a forward binary method with a ufunc, e.g., __add__.""" + def func(self, other): + if _disables_array_ufunc(other): + return NotImplemented + return ufunc(self, other) + func.__name__ = f'__{name}__' + return func + + +def _reflected_binary_method(ufunc, name): + """Implement a reflected binary method with a ufunc, e.g., __radd__.""" + def func(self, other): + if _disables_array_ufunc(other): + return NotImplemented + return ufunc(other, self) + func.__name__ = f'__r{name}__' + return func + + +def _inplace_binary_method(ufunc, name): + """Implement an in-place binary method with a ufunc, e.g., __iadd__.""" + def func(self, other): + return ufunc(self, other, out=(self,)) + func.__name__ = f'__i{name}__' + return func + + +def _numeric_methods(ufunc, name): + """Implement forward, reflected and inplace binary methods with a ufunc.""" + return (_binary_method(ufunc, name), + _reflected_binary_method(ufunc, name), + _inplace_binary_method(ufunc, name)) + + +def _unary_method(ufunc, name): + """Implement a unary special method with a ufunc.""" + def func(self): + return ufunc(self) + func.__name__ = f'__{name}__' + return func + + +class NDArrayOperatorsMixin: + """Mixin defining all operator special methods using __array_ufunc__. + + This class implements the special methods for almost all of Python's + builtin operators defined in the `operator` module, including comparisons + (``==``, ``>``, etc.) and arithmetic (``+``, ``*``, ``-``, etc.), by + deferring to the ``__array_ufunc__`` method, which subclasses must + implement. + + It is useful for writing classes that do not inherit from `numpy.ndarray`, + but that should support arithmetic and numpy universal functions like + arrays as described in :external+neps:doc:`nep-0013-ufunc-overrides`. + + As an trivial example, consider this implementation of an ``ArrayLike`` + class that simply wraps a NumPy array and ensures that the result of any + arithmetic operation is also an ``ArrayLike`` object: + + >>> import numbers + >>> class ArrayLike(np.lib.mixins.NDArrayOperatorsMixin): + ... def __init__(self, value): + ... self.value = np.asarray(value) + ... + ... # One might also consider adding the built-in list type to this + ... # list, to support operations like np.add(array_like, list) + ... _HANDLED_TYPES = (np.ndarray, numbers.Number) + ... + ... def __array_ufunc__(self, ufunc, method, *inputs, **kwargs): + ... out = kwargs.get('out', ()) + ... for x in inputs + out: + ... # Only support operations with instances of + ... # _HANDLED_TYPES. Use ArrayLike instead of type(self) + ... # for isinstance to allow subclasses that don't + ... # override __array_ufunc__ to handle ArrayLike objects. + ... if not isinstance( + ... x, self._HANDLED_TYPES + (ArrayLike,) + ... ): + ... return NotImplemented + ... + ... # Defer to the implementation of the ufunc + ... # on unwrapped values. + ... inputs = tuple(x.value if isinstance(x, ArrayLike) else x + ... for x in inputs) + ... if out: + ... kwargs['out'] = tuple( + ... x.value if isinstance(x, ArrayLike) else x + ... for x in out) + ... result = getattr(ufunc, method)(*inputs, **kwargs) + ... + ... if type(result) is tuple: + ... # multiple return values + ... return tuple(type(self)(x) for x in result) + ... elif method == 'at': + ... # no return value + ... return None + ... else: + ... # one return value + ... return type(self)(result) + ... + ... def __repr__(self): + ... return '%s(%r)' % (type(self).__name__, self.value) + + In interactions between ``ArrayLike`` objects and numbers or numpy arrays, + the result is always another ``ArrayLike``: + + >>> x = ArrayLike([1, 2, 3]) + >>> x - 1 + ArrayLike(array([0, 1, 2])) + >>> 1 - x + ArrayLike(array([ 0, -1, -2])) + >>> np.arange(3) - x + ArrayLike(array([-1, -1, -1])) + >>> x - np.arange(3) + ArrayLike(array([1, 1, 1])) + + Note that unlike ``numpy.ndarray``, ``ArrayLike`` does not allow operations + with arbitrary, unrecognized types. This ensures that interactions with + ArrayLike preserve a well-defined casting hierarchy. + + """ + from numpy._core import umath as um + + __slots__ = () + # Like np.ndarray, this mixin class implements "Option 1" from the ufunc + # overrides NEP. + + # comparisons don't have reflected and in-place versions + __lt__ = _binary_method(um.less, 'lt') + __le__ = _binary_method(um.less_equal, 'le') + __eq__ = _binary_method(um.equal, 'eq') + __ne__ = _binary_method(um.not_equal, 'ne') + __gt__ = _binary_method(um.greater, 'gt') + __ge__ = _binary_method(um.greater_equal, 'ge') + + # numeric methods + __add__, __radd__, __iadd__ = _numeric_methods(um.add, 'add') + __sub__, __rsub__, __isub__ = _numeric_methods(um.subtract, 'sub') + __mul__, __rmul__, __imul__ = _numeric_methods(um.multiply, 'mul') + __matmul__, __rmatmul__, __imatmul__ = _numeric_methods( + um.matmul, 'matmul') + __truediv__, __rtruediv__, __itruediv__ = _numeric_methods( + um.true_divide, 'truediv') + __floordiv__, __rfloordiv__, __ifloordiv__ = _numeric_methods( + um.floor_divide, 'floordiv') + __mod__, __rmod__, __imod__ = _numeric_methods(um.remainder, 'mod') + __divmod__ = _binary_method(um.divmod, 'divmod') + __rdivmod__ = _reflected_binary_method(um.divmod, 'divmod') + # __idivmod__ does not exist + # TODO: handle the optional third argument for __pow__? + __pow__, __rpow__, __ipow__ = _numeric_methods(um.power, 'pow') + __lshift__, __rlshift__, __ilshift__ = _numeric_methods( + um.left_shift, 'lshift') + __rshift__, __rrshift__, __irshift__ = _numeric_methods( + um.right_shift, 'rshift') + __and__, __rand__, __iand__ = _numeric_methods(um.bitwise_and, 'and') + __xor__, __rxor__, __ixor__ = _numeric_methods(um.bitwise_xor, 'xor') + __or__, __ror__, __ior__ = _numeric_methods(um.bitwise_or, 'or') + + # unary methods + __neg__ = _unary_method(um.negative, 'neg') + __pos__ = _unary_method(um.positive, 'pos') + __abs__ = _unary_method(um.absolute, 'abs') + __invert__ = _unary_method(um.invert, 'invert') diff --git a/.venv/lib/python3.12/site-packages/numpy/lib/mixins.pyi b/.venv/lib/python3.12/site-packages/numpy/lib/mixins.pyi new file mode 100644 index 0000000..4f4801f --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/lib/mixins.pyi @@ -0,0 +1,75 @@ +from abc import ABC, abstractmethod +from typing import Any +from typing import Literal as L + +from numpy import ufunc + +__all__ = ["NDArrayOperatorsMixin"] + +# NOTE: `NDArrayOperatorsMixin` is not formally an abstract baseclass, +# even though it's reliant on subclasses implementing `__array_ufunc__` + +# NOTE: The accepted input- and output-types of the various dunders are +# completely dependent on how `__array_ufunc__` is implemented. +# As such, only little type safety can be provided here. + +class NDArrayOperatorsMixin(ABC): + @abstractmethod + def __array_ufunc__( + self, + ufunc: ufunc, + method: L["__call__", "reduce", "reduceat", "accumulate", "outer", "at"], + *inputs: Any, + **kwargs: Any, + ) -> Any: ... + def __lt__(self, other: Any) -> Any: ... + def __le__(self, other: Any) -> Any: ... + def __eq__(self, other: Any) -> Any: ... + def __ne__(self, other: Any) -> Any: ... + def __gt__(self, other: Any) -> Any: ... + def __ge__(self, other: Any) -> Any: ... + def __add__(self, other: Any) -> Any: ... + def __radd__(self, other: Any) -> Any: ... + def __iadd__(self, other: Any) -> Any: ... + def __sub__(self, other: Any) -> Any: ... + def __rsub__(self, other: Any) -> Any: ... + def __isub__(self, other: Any) -> Any: ... + def __mul__(self, other: Any) -> Any: ... + def __rmul__(self, other: Any) -> Any: ... + def __imul__(self, other: Any) -> Any: ... + def __matmul__(self, other: Any) -> Any: ... + def __rmatmul__(self, other: Any) -> Any: ... + def __imatmul__(self, other: Any) -> Any: ... + def __truediv__(self, other: Any) -> Any: ... + def __rtruediv__(self, other: Any) -> Any: ... + def __itruediv__(self, other: Any) -> Any: ... + def __floordiv__(self, other: Any) -> Any: ... + def __rfloordiv__(self, other: Any) -> Any: ... + def __ifloordiv__(self, other: Any) -> Any: ... + def __mod__(self, other: Any) -> Any: ... + def __rmod__(self, other: Any) -> Any: ... + def __imod__(self, other: Any) -> Any: ... + def __divmod__(self, other: Any) -> Any: ... + def __rdivmod__(self, other: Any) -> Any: ... + def __pow__(self, other: Any) -> Any: ... + def __rpow__(self, other: Any) -> Any: ... + def __ipow__(self, other: Any) -> Any: ... + def __lshift__(self, other: Any) -> Any: ... + def __rlshift__(self, other: Any) -> Any: ... + def __ilshift__(self, other: Any) -> Any: ... + def __rshift__(self, other: Any) -> Any: ... + def __rrshift__(self, other: Any) -> Any: ... + def __irshift__(self, other: Any) -> Any: ... + def __and__(self, other: Any) -> Any: ... + def __rand__(self, other: Any) -> Any: ... + def __iand__(self, other: Any) -> Any: ... + def __xor__(self, other: Any) -> Any: ... + def __rxor__(self, other: Any) -> Any: ... + def __ixor__(self, other: Any) -> Any: ... + def __or__(self, other: Any) -> Any: ... + def __ror__(self, other: Any) -> Any: ... + def __ior__(self, other: Any) -> Any: ... + def __neg__(self) -> Any: ... + def __pos__(self) -> Any: ... + def __abs__(self) -> Any: ... + def __invert__(self) -> Any: ... diff --git a/.venv/lib/python3.12/site-packages/numpy/lib/npyio.py b/.venv/lib/python3.12/site-packages/numpy/lib/npyio.py new file mode 100644 index 0000000..84d8079 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/lib/npyio.py @@ -0,0 +1 @@ +from ._npyio_impl import DataSource, NpzFile, __doc__ # noqa: F401 diff --git a/.venv/lib/python3.12/site-packages/numpy/lib/npyio.pyi b/.venv/lib/python3.12/site-packages/numpy/lib/npyio.pyi new file mode 100644 index 0000000..49fb4d1 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/lib/npyio.pyi @@ -0,0 +1,9 @@ +from numpy.lib._npyio_impl import ( + DataSource as DataSource, +) +from numpy.lib._npyio_impl import ( + NpzFile as NpzFile, +) +from numpy.lib._npyio_impl import ( + __doc__ as __doc__, +) diff --git a/.venv/lib/python3.12/site-packages/numpy/lib/recfunctions.py b/.venv/lib/python3.12/site-packages/numpy/lib/recfunctions.py new file mode 100644 index 0000000..c8a6dd8 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/lib/recfunctions.py @@ -0,0 +1,1681 @@ +""" +Collection of utilities to manipulate structured arrays. + +Most of these functions were initially implemented by John Hunter for +matplotlib. They have been rewritten and extended for convenience. + +""" +import itertools + +import numpy as np +import numpy.ma as ma +import numpy.ma.mrecords as mrec +from numpy._core.overrides import array_function_dispatch +from numpy.lib._iotools import _is_string_like + +__all__ = [ + 'append_fields', 'apply_along_fields', 'assign_fields_by_name', + 'drop_fields', 'find_duplicates', 'flatten_descr', + 'get_fieldstructure', 'get_names', 'get_names_flat', + 'join_by', 'merge_arrays', 'rec_append_fields', + 'rec_drop_fields', 'rec_join', 'recursive_fill_fields', + 'rename_fields', 'repack_fields', 'require_fields', + 'stack_arrays', 'structured_to_unstructured', 'unstructured_to_structured', + ] + + +def _recursive_fill_fields_dispatcher(input, output): + return (input, output) + + +@array_function_dispatch(_recursive_fill_fields_dispatcher) +def recursive_fill_fields(input, output): + """ + Fills fields from output with fields from input, + with support for nested structures. + + Parameters + ---------- + input : ndarray + Input array. + output : ndarray + Output array. + + Notes + ----- + * `output` should be at least the same size as `input` + + Examples + -------- + >>> import numpy as np + >>> from numpy.lib import recfunctions as rfn + >>> a = np.array([(1, 10.), (2, 20.)], dtype=[('A', np.int64), ('B', np.float64)]) + >>> b = np.zeros((3,), dtype=a.dtype) + >>> rfn.recursive_fill_fields(a, b) + array([(1, 10.), (2, 20.), (0, 0.)], dtype=[('A', '<i8'), ('B', '<f8')]) + + """ + newdtype = output.dtype + for field in newdtype.names: + try: + current = input[field] + except ValueError: + continue + if current.dtype.names is not None: + recursive_fill_fields(current, output[field]) + else: + output[field][:len(current)] = current + return output + + +def _get_fieldspec(dtype): + """ + Produce a list of name/dtype pairs corresponding to the dtype fields + + Similar to dtype.descr, but the second item of each tuple is a dtype, not a + string. As a result, this handles subarray dtypes + + Can be passed to the dtype constructor to reconstruct the dtype, noting that + this (deliberately) discards field offsets. + + Examples + -------- + >>> import numpy as np + >>> dt = np.dtype([(('a', 'A'), np.int64), ('b', np.double, 3)]) + >>> dt.descr + [(('a', 'A'), '<i8'), ('b', '<f8', (3,))] + >>> _get_fieldspec(dt) + [(('a', 'A'), dtype('int64')), ('b', dtype(('<f8', (3,))))] + + """ + if dtype.names is None: + # .descr returns a nameless field, so we should too + return [('', dtype)] + else: + fields = ((name, dtype.fields[name]) for name in dtype.names) + # keep any titles, if present + return [ + (name if len(f) == 2 else (f[2], name), f[0]) + for name, f in fields + ] + + +def get_names(adtype): + """ + Returns the field names of the input datatype as a tuple. Input datatype + must have fields otherwise error is raised. + + Parameters + ---------- + adtype : dtype + Input datatype + + Examples + -------- + >>> import numpy as np + >>> from numpy.lib import recfunctions as rfn + >>> rfn.get_names(np.empty((1,), dtype=[('A', int)]).dtype) + ('A',) + >>> rfn.get_names(np.empty((1,), dtype=[('A',int), ('B', float)]).dtype) + ('A', 'B') + >>> adtype = np.dtype([('a', int), ('b', [('ba', int), ('bb', int)])]) + >>> rfn.get_names(adtype) + ('a', ('b', ('ba', 'bb'))) + """ + listnames = [] + names = adtype.names + for name in names: + current = adtype[name] + if current.names is not None: + listnames.append((name, tuple(get_names(current)))) + else: + listnames.append(name) + return tuple(listnames) + + +def get_names_flat(adtype): + """ + Returns the field names of the input datatype as a tuple. Input datatype + must have fields otherwise error is raised. + Nested structure are flattened beforehand. + + Parameters + ---------- + adtype : dtype + Input datatype + + Examples + -------- + >>> import numpy as np + >>> from numpy.lib import recfunctions as rfn + >>> rfn.get_names_flat(np.empty((1,), dtype=[('A', int)]).dtype) is None + False + >>> rfn.get_names_flat(np.empty((1,), dtype=[('A',int), ('B', str)]).dtype) + ('A', 'B') + >>> adtype = np.dtype([('a', int), ('b', [('ba', int), ('bb', int)])]) + >>> rfn.get_names_flat(adtype) + ('a', 'b', 'ba', 'bb') + """ + listnames = [] + names = adtype.names + for name in names: + listnames.append(name) + current = adtype[name] + if current.names is not None: + listnames.extend(get_names_flat(current)) + return tuple(listnames) + + +def flatten_descr(ndtype): + """ + Flatten a structured data-type description. + + Examples + -------- + >>> import numpy as np + >>> from numpy.lib import recfunctions as rfn + >>> ndtype = np.dtype([('a', '<i4'), ('b', [('ba', '<f8'), ('bb', '<i4')])]) + >>> rfn.flatten_descr(ndtype) + (('a', dtype('int32')), ('ba', dtype('float64')), ('bb', dtype('int32'))) + + """ + names = ndtype.names + if names is None: + return (('', ndtype),) + else: + descr = [] + for field in names: + (typ, _) = ndtype.fields[field] + if typ.names is not None: + descr.extend(flatten_descr(typ)) + else: + descr.append((field, typ)) + return tuple(descr) + + +def _zip_dtype(seqarrays, flatten=False): + newdtype = [] + if flatten: + for a in seqarrays: + newdtype.extend(flatten_descr(a.dtype)) + else: + for a in seqarrays: + current = a.dtype + if current.names is not None and len(current.names) == 1: + # special case - dtypes of 1 field are flattened + newdtype.extend(_get_fieldspec(current)) + else: + newdtype.append(('', current)) + return np.dtype(newdtype) + + +def _zip_descr(seqarrays, flatten=False): + """ + Combine the dtype description of a series of arrays. + + Parameters + ---------- + seqarrays : sequence of arrays + Sequence of arrays + flatten : {boolean}, optional + Whether to collapse nested descriptions. + """ + return _zip_dtype(seqarrays, flatten=flatten).descr + + +def get_fieldstructure(adtype, lastname=None, parents=None,): + """ + Returns a dictionary with fields indexing lists of their parent fields. + + This function is used to simplify access to fields nested in other fields. + + Parameters + ---------- + adtype : np.dtype + Input datatype + lastname : optional + Last processed field name (used internally during recursion). + parents : dictionary + Dictionary of parent fields (used internally during recursion). + + Examples + -------- + >>> import numpy as np + >>> from numpy.lib import recfunctions as rfn + >>> ndtype = np.dtype([('A', int), + ... ('B', [('BA', int), + ... ('BB', [('BBA', int), ('BBB', int)])])]) + >>> rfn.get_fieldstructure(ndtype) + ... # XXX: possible regression, order of BBA and BBB is swapped + {'A': [], 'B': [], 'BA': ['B'], 'BB': ['B'], 'BBA': ['B', 'BB'], 'BBB': ['B', 'BB']} + + """ + if parents is None: + parents = {} + names = adtype.names + for name in names: + current = adtype[name] + if current.names is not None: + if lastname: + parents[name] = [lastname, ] + else: + parents[name] = [] + parents.update(get_fieldstructure(current, name, parents)) + else: + lastparent = list(parents.get(lastname, []) or []) + if lastparent: + lastparent.append(lastname) + elif lastname: + lastparent = [lastname, ] + parents[name] = lastparent or [] + return parents + + +def _izip_fields_flat(iterable): + """ + Returns an iterator of concatenated fields from a sequence of arrays, + collapsing any nested structure. + + """ + for element in iterable: + if isinstance(element, np.void): + yield from _izip_fields_flat(tuple(element)) + else: + yield element + + +def _izip_fields(iterable): + """ + Returns an iterator of concatenated fields from a sequence of arrays. + + """ + for element in iterable: + if (hasattr(element, '__iter__') and + not isinstance(element, str)): + yield from _izip_fields(element) + elif isinstance(element, np.void) and len(tuple(element)) == 1: + # this statement is the same from the previous expression + yield from _izip_fields(element) + else: + yield element + + +def _izip_records(seqarrays, fill_value=None, flatten=True): + """ + Returns an iterator of concatenated items from a sequence of arrays. + + Parameters + ---------- + seqarrays : sequence of arrays + Sequence of arrays. + fill_value : {None, integer} + Value used to pad shorter iterables. + flatten : {True, False}, + Whether to + """ + + # Should we flatten the items, or just use a nested approach + if flatten: + zipfunc = _izip_fields_flat + else: + zipfunc = _izip_fields + + for tup in itertools.zip_longest(*seqarrays, fillvalue=fill_value): + yield tuple(zipfunc(tup)) + + +def _fix_output(output, usemask=True, asrecarray=False): + """ + Private function: return a recarray, a ndarray, a MaskedArray + or a MaskedRecords depending on the input parameters + """ + if not isinstance(output, ma.MaskedArray): + usemask = False + if usemask: + if asrecarray: + output = output.view(mrec.MaskedRecords) + else: + output = ma.filled(output) + if asrecarray: + output = output.view(np.recarray) + return output + + +def _fix_defaults(output, defaults=None): + """ + Update the fill_value and masked data of `output` + from the default given in a dictionary defaults. + """ + names = output.dtype.names + (data, mask, fill_value) = (output.data, output.mask, output.fill_value) + for (k, v) in (defaults or {}).items(): + if k in names: + fill_value[k] = v + data[k][mask[k]] = v + return output + + +def _merge_arrays_dispatcher(seqarrays, fill_value=None, flatten=None, + usemask=None, asrecarray=None): + return seqarrays + + +@array_function_dispatch(_merge_arrays_dispatcher) +def merge_arrays(seqarrays, fill_value=-1, flatten=False, + usemask=False, asrecarray=False): + """ + Merge arrays field by field. + + Parameters + ---------- + seqarrays : sequence of ndarrays + Sequence of arrays + fill_value : {float}, optional + Filling value used to pad missing data on the shorter arrays. + flatten : {False, True}, optional + Whether to collapse nested fields. + usemask : {False, True}, optional + Whether to return a masked array or not. + asrecarray : {False, True}, optional + Whether to return a recarray (MaskedRecords) or not. + + Examples + -------- + >>> import numpy as np + >>> from numpy.lib import recfunctions as rfn + >>> rfn.merge_arrays((np.array([1, 2]), np.array([10., 20., 30.]))) + array([( 1, 10.), ( 2, 20.), (-1, 30.)], + dtype=[('f0', '<i8'), ('f1', '<f8')]) + + >>> rfn.merge_arrays((np.array([1, 2], dtype=np.int64), + ... np.array([10., 20., 30.])), usemask=False) + array([(1, 10.0), (2, 20.0), (-1, 30.0)], + dtype=[('f0', '<i8'), ('f1', '<f8')]) + >>> rfn.merge_arrays((np.array([1, 2]).view([('a', np.int64)]), + ... np.array([10., 20., 30.])), + ... usemask=False, asrecarray=True) + rec.array([( 1, 10.), ( 2, 20.), (-1, 30.)], + dtype=[('a', '<i8'), ('f1', '<f8')]) + + Notes + ----- + * Without a mask, the missing value will be filled with something, + depending on what its corresponding type: + + * ``-1`` for integers + * ``-1.0`` for floating point numbers + * ``'-'`` for characters + * ``'-1'`` for strings + * ``True`` for boolean values + * XXX: I just obtained these values empirically + """ + # Only one item in the input sequence ? + if (len(seqarrays) == 1): + seqarrays = np.asanyarray(seqarrays[0]) + # Do we have a single ndarray as input ? + if isinstance(seqarrays, (np.ndarray, np.void)): + seqdtype = seqarrays.dtype + # Make sure we have named fields + if seqdtype.names is None: + seqdtype = np.dtype([('', seqdtype)]) + if not flatten or _zip_dtype((seqarrays,), flatten=True) == seqdtype: + # Minimal processing needed: just make sure everything's a-ok + seqarrays = seqarrays.ravel() + # Find what type of array we must return + if usemask: + if asrecarray: + seqtype = mrec.MaskedRecords + else: + seqtype = ma.MaskedArray + elif asrecarray: + seqtype = np.recarray + else: + seqtype = np.ndarray + return seqarrays.view(dtype=seqdtype, type=seqtype) + else: + seqarrays = (seqarrays,) + else: + # Make sure we have arrays in the input sequence + seqarrays = [np.asanyarray(_m) for _m in seqarrays] + # Find the sizes of the inputs and their maximum + sizes = tuple(a.size for a in seqarrays) + maxlength = max(sizes) + # Get the dtype of the output (flattening if needed) + newdtype = _zip_dtype(seqarrays, flatten=flatten) + # Initialize the sequences for data and mask + seqdata = [] + seqmask = [] + # If we expect some kind of MaskedArray, make a special loop. + if usemask: + for (a, n) in zip(seqarrays, sizes): + nbmissing = (maxlength - n) + # Get the data and mask + data = a.ravel().__array__() + mask = ma.getmaskarray(a).ravel() + # Get the filling value (if needed) + if nbmissing: + fval = mrec._check_fill_value(fill_value, a.dtype) + if isinstance(fval, (np.ndarray, np.void)): + if len(fval.dtype) == 1: + fval = fval.item()[0] + fmsk = True + else: + fval = np.array(fval, dtype=a.dtype, ndmin=1) + fmsk = np.ones((1,), dtype=mask.dtype) + else: + fval = None + fmsk = True + # Store an iterator padding the input to the expected length + seqdata.append(itertools.chain(data, [fval] * nbmissing)) + seqmask.append(itertools.chain(mask, [fmsk] * nbmissing)) + # Create an iterator for the data + data = tuple(_izip_records(seqdata, flatten=flatten)) + output = ma.array(np.fromiter(data, dtype=newdtype, count=maxlength), + mask=list(_izip_records(seqmask, flatten=flatten))) + if asrecarray: + output = output.view(mrec.MaskedRecords) + else: + # Same as before, without the mask we don't need... + for (a, n) in zip(seqarrays, sizes): + nbmissing = (maxlength - n) + data = a.ravel().__array__() + if nbmissing: + fval = mrec._check_fill_value(fill_value, a.dtype) + if isinstance(fval, (np.ndarray, np.void)): + if len(fval.dtype) == 1: + fval = fval.item()[0] + else: + fval = np.array(fval, dtype=a.dtype, ndmin=1) + else: + fval = None + seqdata.append(itertools.chain(data, [fval] * nbmissing)) + output = np.fromiter(tuple(_izip_records(seqdata, flatten=flatten)), + dtype=newdtype, count=maxlength) + if asrecarray: + output = output.view(np.recarray) + # And we're done... + return output + + +def _drop_fields_dispatcher(base, drop_names, usemask=None, asrecarray=None): + return (base,) + + +@array_function_dispatch(_drop_fields_dispatcher) +def drop_fields(base, drop_names, usemask=True, asrecarray=False): + """ + Return a new array with fields in `drop_names` dropped. + + Nested fields are supported. + + Parameters + ---------- + base : array + Input array + drop_names : string or sequence + String or sequence of strings corresponding to the names of the + fields to drop. + usemask : {False, True}, optional + Whether to return a masked array or not. + asrecarray : string or sequence, optional + Whether to return a recarray or a mrecarray (`asrecarray=True`) or + a plain ndarray or masked array with flexible dtype. The default + is False. + + Examples + -------- + >>> import numpy as np + >>> from numpy.lib import recfunctions as rfn + >>> a = np.array([(1, (2, 3.0)), (4, (5, 6.0))], + ... dtype=[('a', np.int64), ('b', [('ba', np.double), ('bb', np.int64)])]) + >>> rfn.drop_fields(a, 'a') + array([((2., 3),), ((5., 6),)], + dtype=[('b', [('ba', '<f8'), ('bb', '<i8')])]) + >>> rfn.drop_fields(a, 'ba') + array([(1, (3,)), (4, (6,))], dtype=[('a', '<i8'), ('b', [('bb', '<i8')])]) + >>> rfn.drop_fields(a, ['ba', 'bb']) + array([(1,), (4,)], dtype=[('a', '<i8')]) + """ + if _is_string_like(drop_names): + drop_names = [drop_names] + else: + drop_names = set(drop_names) + + def _drop_descr(ndtype, drop_names): + names = ndtype.names + newdtype = [] + for name in names: + current = ndtype[name] + if name in drop_names: + continue + if current.names is not None: + descr = _drop_descr(current, drop_names) + if descr: + newdtype.append((name, descr)) + else: + newdtype.append((name, current)) + return newdtype + + newdtype = _drop_descr(base.dtype, drop_names) + + output = np.empty(base.shape, dtype=newdtype) + output = recursive_fill_fields(base, output) + return _fix_output(output, usemask=usemask, asrecarray=asrecarray) + + +def _keep_fields(base, keep_names, usemask=True, asrecarray=False): + """ + Return a new array keeping only the fields in `keep_names`, + and preserving the order of those fields. + + Parameters + ---------- + base : array + Input array + keep_names : string or sequence + String or sequence of strings corresponding to the names of the + fields to keep. Order of the names will be preserved. + usemask : {False, True}, optional + Whether to return a masked array or not. + asrecarray : string or sequence, optional + Whether to return a recarray or a mrecarray (`asrecarray=True`) or + a plain ndarray or masked array with flexible dtype. The default + is False. + """ + newdtype = [(n, base.dtype[n]) for n in keep_names] + output = np.empty(base.shape, dtype=newdtype) + output = recursive_fill_fields(base, output) + return _fix_output(output, usemask=usemask, asrecarray=asrecarray) + + +def _rec_drop_fields_dispatcher(base, drop_names): + return (base,) + + +@array_function_dispatch(_rec_drop_fields_dispatcher) +def rec_drop_fields(base, drop_names): + """ + Returns a new numpy.recarray with fields in `drop_names` dropped. + """ + return drop_fields(base, drop_names, usemask=False, asrecarray=True) + + +def _rename_fields_dispatcher(base, namemapper): + return (base,) + + +@array_function_dispatch(_rename_fields_dispatcher) +def rename_fields(base, namemapper): + """ + Rename the fields from a flexible-datatype ndarray or recarray. + + Nested fields are supported. + + Parameters + ---------- + base : ndarray + Input array whose fields must be modified. + namemapper : dictionary + Dictionary mapping old field names to their new version. + + Examples + -------- + >>> import numpy as np + >>> from numpy.lib import recfunctions as rfn + >>> a = np.array([(1, (2, [3.0, 30.])), (4, (5, [6.0, 60.]))], + ... dtype=[('a', int),('b', [('ba', float), ('bb', (float, 2))])]) + >>> rfn.rename_fields(a, {'a':'A', 'bb':'BB'}) + array([(1, (2., [ 3., 30.])), (4, (5., [ 6., 60.]))], + dtype=[('A', '<i8'), ('b', [('ba', '<f8'), ('BB', '<f8', (2,))])]) + + """ + def _recursive_rename_fields(ndtype, namemapper): + newdtype = [] + for name in ndtype.names: + newname = namemapper.get(name, name) + current = ndtype[name] + if current.names is not None: + newdtype.append( + (newname, _recursive_rename_fields(current, namemapper)) + ) + else: + newdtype.append((newname, current)) + return newdtype + newdtype = _recursive_rename_fields(base.dtype, namemapper) + return base.view(newdtype) + + +def _append_fields_dispatcher(base, names, data, dtypes=None, + fill_value=None, usemask=None, asrecarray=None): + yield base + yield from data + + +@array_function_dispatch(_append_fields_dispatcher) +def append_fields(base, names, data, dtypes=None, + fill_value=-1, usemask=True, asrecarray=False): + """ + Add new fields to an existing array. + + The names of the fields are given with the `names` arguments, + the corresponding values with the `data` arguments. + If a single field is appended, `names`, `data` and `dtypes` do not have + to be lists but just values. + + Parameters + ---------- + base : array + Input array to extend. + names : string, sequence + String or sequence of strings corresponding to the names + of the new fields. + data : array or sequence of arrays + Array or sequence of arrays storing the fields to add to the base. + dtypes : sequence of datatypes, optional + Datatype or sequence of datatypes. + If None, the datatypes are estimated from the `data`. + fill_value : {float}, optional + Filling value used to pad missing data on the shorter arrays. + usemask : {False, True}, optional + Whether to return a masked array or not. + asrecarray : {False, True}, optional + Whether to return a recarray (MaskedRecords) or not. + + """ + # Check the names + if isinstance(names, (tuple, list)): + if len(names) != len(data): + msg = "The number of arrays does not match the number of names" + raise ValueError(msg) + elif isinstance(names, str): + names = [names, ] + data = [data, ] + # + if dtypes is None: + data = [np.array(a, copy=None, subok=True) for a in data] + data = [a.view([(name, a.dtype)]) for (name, a) in zip(names, data)] + else: + if not isinstance(dtypes, (tuple, list)): + dtypes = [dtypes, ] + if len(data) != len(dtypes): + if len(dtypes) == 1: + dtypes = dtypes * len(data) + else: + msg = "The dtypes argument must be None, a dtype, or a list." + raise ValueError(msg) + data = [np.array(a, copy=None, subok=True, dtype=d).view([(n, d)]) + for (a, n, d) in zip(data, names, dtypes)] + # + base = merge_arrays(base, usemask=usemask, fill_value=fill_value) + if len(data) > 1: + data = merge_arrays(data, flatten=True, usemask=usemask, + fill_value=fill_value) + else: + data = data.pop() + # + output = ma.masked_all( + max(len(base), len(data)), + dtype=_get_fieldspec(base.dtype) + _get_fieldspec(data.dtype)) + output = recursive_fill_fields(base, output) + output = recursive_fill_fields(data, output) + # + return _fix_output(output, usemask=usemask, asrecarray=asrecarray) + + +def _rec_append_fields_dispatcher(base, names, data, dtypes=None): + yield base + yield from data + + +@array_function_dispatch(_rec_append_fields_dispatcher) +def rec_append_fields(base, names, data, dtypes=None): + """ + Add new fields to an existing array. + + The names of the fields are given with the `names` arguments, + the corresponding values with the `data` arguments. + If a single field is appended, `names`, `data` and `dtypes` do not have + to be lists but just values. + + Parameters + ---------- + base : array + Input array to extend. + names : string, sequence + String or sequence of strings corresponding to the names + of the new fields. + data : array or sequence of arrays + Array or sequence of arrays storing the fields to add to the base. + dtypes : sequence of datatypes, optional + Datatype or sequence of datatypes. + If None, the datatypes are estimated from the `data`. + + See Also + -------- + append_fields + + Returns + ------- + appended_array : np.recarray + """ + return append_fields(base, names, data=data, dtypes=dtypes, + asrecarray=True, usemask=False) + + +def _repack_fields_dispatcher(a, align=None, recurse=None): + return (a,) + + +@array_function_dispatch(_repack_fields_dispatcher) +def repack_fields(a, align=False, recurse=False): + """ + Re-pack the fields of a structured array or dtype in memory. + + The memory layout of structured datatypes allows fields at arbitrary + byte offsets. This means the fields can be separated by padding bytes, + their offsets can be non-monotonically increasing, and they can overlap. + + This method removes any overlaps and reorders the fields in memory so they + have increasing byte offsets, and adds or removes padding bytes depending + on the `align` option, which behaves like the `align` option to + `numpy.dtype`. + + If `align=False`, this method produces a "packed" memory layout in which + each field starts at the byte the previous field ended, and any padding + bytes are removed. + + If `align=True`, this methods produces an "aligned" memory layout in which + each field's offset is a multiple of its alignment, and the total itemsize + is a multiple of the largest alignment, by adding padding bytes as needed. + + Parameters + ---------- + a : ndarray or dtype + array or dtype for which to repack the fields. + align : boolean + If true, use an "aligned" memory layout, otherwise use a "packed" layout. + recurse : boolean + If True, also repack nested structures. + + Returns + ------- + repacked : ndarray or dtype + Copy of `a` with fields repacked, or `a` itself if no repacking was + needed. + + Examples + -------- + >>> import numpy as np + + >>> from numpy.lib import recfunctions as rfn + >>> def print_offsets(d): + ... print("offsets:", [d.fields[name][1] for name in d.names]) + ... print("itemsize:", d.itemsize) + ... + >>> dt = np.dtype('u1, <i8, <f8', align=True) + >>> dt + dtype({'names': ['f0', 'f1', 'f2'], 'formats': ['u1', '<i8', '<f8'], \ +'offsets': [0, 8, 16], 'itemsize': 24}, align=True) + >>> print_offsets(dt) + offsets: [0, 8, 16] + itemsize: 24 + >>> packed_dt = rfn.repack_fields(dt) + >>> packed_dt + dtype([('f0', 'u1'), ('f1', '<i8'), ('f2', '<f8')]) + >>> print_offsets(packed_dt) + offsets: [0, 1, 9] + itemsize: 17 + + """ + if not isinstance(a, np.dtype): + dt = repack_fields(a.dtype, align=align, recurse=recurse) + return a.astype(dt, copy=False) + + if a.names is None: + return a + + fieldinfo = [] + for name in a.names: + tup = a.fields[name] + if recurse: + fmt = repack_fields(tup[0], align=align, recurse=True) + else: + fmt = tup[0] + + if len(tup) == 3: + name = (tup[2], name) + + fieldinfo.append((name, fmt)) + + dt = np.dtype(fieldinfo, align=align) + return np.dtype((a.type, dt)) + +def _get_fields_and_offsets(dt, offset=0): + """ + Returns a flat list of (dtype, count, offset) tuples of all the + scalar fields in the dtype "dt", including nested fields, in left + to right order. + """ + + # counts up elements in subarrays, including nested subarrays, and returns + # base dtype and count + def count_elem(dt): + count = 1 + while dt.shape != (): + for size in dt.shape: + count *= size + dt = dt.base + return dt, count + + fields = [] + for name in dt.names: + field = dt.fields[name] + f_dt, f_offset = field[0], field[1] + f_dt, n = count_elem(f_dt) + + if f_dt.names is None: + fields.append((np.dtype((f_dt, (n,))), n, f_offset + offset)) + else: + subfields = _get_fields_and_offsets(f_dt, f_offset + offset) + size = f_dt.itemsize + + for i in range(n): + if i == 0: + # optimization: avoid list comprehension if no subarray + fields.extend(subfields) + else: + fields.extend([(d, c, o + i * size) for d, c, o in subfields]) + return fields + +def _common_stride(offsets, counts, itemsize): + """ + Returns the stride between the fields, or None if the stride is not + constant. The values in "counts" designate the lengths of + subarrays. Subarrays are treated as many contiguous fields, with + always positive stride. + """ + if len(offsets) <= 1: + return itemsize + + negative = offsets[1] < offsets[0] # negative stride + if negative: + # reverse, so offsets will be ascending + it = zip(reversed(offsets), reversed(counts)) + else: + it = zip(offsets, counts) + + prev_offset = None + stride = None + for offset, count in it: + if count != 1: # subarray: always c-contiguous + if negative: + return None # subarrays can never have a negative stride + if stride is None: + stride = itemsize + if stride != itemsize: + return None + end_offset = offset + (count - 1) * itemsize + else: + end_offset = offset + + if prev_offset is not None: + new_stride = offset - prev_offset + if stride is None: + stride = new_stride + if stride != new_stride: + return None + + prev_offset = end_offset + + if negative: + return -stride + return stride + + +def _structured_to_unstructured_dispatcher(arr, dtype=None, copy=None, + casting=None): + return (arr,) + +@array_function_dispatch(_structured_to_unstructured_dispatcher) +def structured_to_unstructured(arr, dtype=None, copy=False, casting='unsafe'): + """ + Converts an n-D structured array into an (n+1)-D unstructured array. + + The new array will have a new last dimension equal in size to the + number of field-elements of the input array. If not supplied, the output + datatype is determined from the numpy type promotion rules applied to all + the field datatypes. + + Nested fields, as well as each element of any subarray fields, all count + as a single field-elements. + + Parameters + ---------- + arr : ndarray + Structured array or dtype to convert. Cannot contain object datatype. + dtype : dtype, optional + The dtype of the output unstructured array. + copy : bool, optional + If true, always return a copy. If false, a view is returned if + possible, such as when the `dtype` and strides of the fields are + suitable and the array subtype is one of `numpy.ndarray`, + `numpy.recarray` or `numpy.memmap`. + + .. versionchanged:: 1.25.0 + A view can now be returned if the fields are separated by a + uniform stride. + + casting : {'no', 'equiv', 'safe', 'same_kind', 'unsafe'}, optional + See casting argument of `numpy.ndarray.astype`. Controls what kind of + data casting may occur. + + Returns + ------- + unstructured : ndarray + Unstructured array with one more dimension. + + Examples + -------- + >>> import numpy as np + + >>> from numpy.lib import recfunctions as rfn + >>> a = np.zeros(4, dtype=[('a', 'i4'), ('b', 'f4,u2'), ('c', 'f4', 2)]) + >>> a + array([(0, (0., 0), [0., 0.]), (0, (0., 0), [0., 0.]), + (0, (0., 0), [0., 0.]), (0, (0., 0), [0., 0.])], + dtype=[('a', '<i4'), ('b', [('f0', '<f4'), ('f1', '<u2')]), ('c', '<f4', (2,))]) + >>> rfn.structured_to_unstructured(a) + array([[0., 0., 0., 0., 0.], + [0., 0., 0., 0., 0.], + [0., 0., 0., 0., 0.], + [0., 0., 0., 0., 0.]]) + + >>> b = np.array([(1, 2, 5), (4, 5, 7), (7, 8 ,11), (10, 11, 12)], + ... dtype=[('x', 'i4'), ('y', 'f4'), ('z', 'f8')]) + >>> np.mean(rfn.structured_to_unstructured(b[['x', 'z']]), axis=-1) + array([ 3. , 5.5, 9. , 11. ]) + + """ # noqa: E501 + if arr.dtype.names is None: + raise ValueError('arr must be a structured array') + + fields = _get_fields_and_offsets(arr.dtype) + n_fields = len(fields) + if n_fields == 0 and dtype is None: + raise ValueError("arr has no fields. Unable to guess dtype") + elif n_fields == 0: + # too many bugs elsewhere for this to work now + raise NotImplementedError("arr with no fields is not supported") + + dts, counts, offsets = zip(*fields) + names = [f'f{n}' for n in range(n_fields)] + + if dtype is None: + out_dtype = np.result_type(*[dt.base for dt in dts]) + else: + out_dtype = np.dtype(dtype) + + # Use a series of views and casts to convert to an unstructured array: + + # first view using flattened fields (doesn't work for object arrays) + # Note: dts may include a shape for subarrays + flattened_fields = np.dtype({'names': names, + 'formats': dts, + 'offsets': offsets, + 'itemsize': arr.dtype.itemsize}) + arr = arr.view(flattened_fields) + + # we only allow a few types to be unstructured by manipulating the + # strides, because we know it won't work with, for example, np.matrix nor + # np.ma.MaskedArray. + can_view = type(arr) in (np.ndarray, np.recarray, np.memmap) + if (not copy) and can_view and all(dt.base == out_dtype for dt in dts): + # all elements have the right dtype already; if they have a common + # stride, we can just return a view + common_stride = _common_stride(offsets, counts, out_dtype.itemsize) + if common_stride is not None: + wrap = arr.__array_wrap__ + + new_shape = arr.shape + (sum(counts), out_dtype.itemsize) + new_strides = arr.strides + (abs(common_stride), 1) + + arr = arr[..., np.newaxis].view(np.uint8) # view as bytes + arr = arr[..., min(offsets):] # remove the leading unused data + arr = np.lib.stride_tricks.as_strided(arr, + new_shape, + new_strides, + subok=True) + + # cast and drop the last dimension again + arr = arr.view(out_dtype)[..., 0] + + if common_stride < 0: + arr = arr[..., ::-1] # reverse, if the stride was negative + if type(arr) is not type(wrap.__self__): + # Some types (e.g. recarray) turn into an ndarray along the + # way, so we have to wrap it again in order to match the + # behavior with copy=True. + arr = wrap(arr) + return arr + + # next cast to a packed format with all fields converted to new dtype + packed_fields = np.dtype({'names': names, + 'formats': [(out_dtype, dt.shape) for dt in dts]}) + arr = arr.astype(packed_fields, copy=copy, casting=casting) + + # finally is it safe to view the packed fields as the unstructured type + return arr.view((out_dtype, (sum(counts),))) + + +def _unstructured_to_structured_dispatcher(arr, dtype=None, names=None, + align=None, copy=None, casting=None): + return (arr,) + +@array_function_dispatch(_unstructured_to_structured_dispatcher) +def unstructured_to_structured(arr, dtype=None, names=None, align=False, + copy=False, casting='unsafe'): + """ + Converts an n-D unstructured array into an (n-1)-D structured array. + + The last dimension of the input array is converted into a structure, with + number of field-elements equal to the size of the last dimension of the + input array. By default all output fields have the input array's dtype, but + an output structured dtype with an equal number of fields-elements can be + supplied instead. + + Nested fields, as well as each element of any subarray fields, all count + towards the number of field-elements. + + Parameters + ---------- + arr : ndarray + Unstructured array or dtype to convert. + dtype : dtype, optional + The structured dtype of the output array + names : list of strings, optional + If dtype is not supplied, this specifies the field names for the output + dtype, in order. The field dtypes will be the same as the input array. + align : boolean, optional + Whether to create an aligned memory layout. + copy : bool, optional + See copy argument to `numpy.ndarray.astype`. If true, always return a + copy. If false, and `dtype` requirements are satisfied, a view is + returned. + casting : {'no', 'equiv', 'safe', 'same_kind', 'unsafe'}, optional + See casting argument of `numpy.ndarray.astype`. Controls what kind of + data casting may occur. + + Returns + ------- + structured : ndarray + Structured array with fewer dimensions. + + Examples + -------- + >>> import numpy as np + + >>> from numpy.lib import recfunctions as rfn + >>> dt = np.dtype([('a', 'i4'), ('b', 'f4,u2'), ('c', 'f4', 2)]) + >>> a = np.arange(20).reshape((4,5)) + >>> a + array([[ 0, 1, 2, 3, 4], + [ 5, 6, 7, 8, 9], + [10, 11, 12, 13, 14], + [15, 16, 17, 18, 19]]) + >>> rfn.unstructured_to_structured(a, dt) + array([( 0, ( 1., 2), [ 3., 4.]), ( 5, ( 6., 7), [ 8., 9.]), + (10, (11., 12), [13., 14.]), (15, (16., 17), [18., 19.])], + dtype=[('a', '<i4'), ('b', [('f0', '<f4'), ('f1', '<u2')]), ('c', '<f4', (2,))]) + + """ # noqa: E501 + if arr.shape == (): + raise ValueError('arr must have at least one dimension') + n_elem = arr.shape[-1] + if n_elem == 0: + # too many bugs elsewhere for this to work now + raise NotImplementedError("last axis with size 0 is not supported") + + if dtype is None: + if names is None: + names = [f'f{n}' for n in range(n_elem)] + out_dtype = np.dtype([(n, arr.dtype) for n in names], align=align) + fields = _get_fields_and_offsets(out_dtype) + dts, counts, offsets = zip(*fields) + else: + if names is not None: + raise ValueError("don't supply both dtype and names") + # if dtype is the args of np.dtype, construct it + dtype = np.dtype(dtype) + # sanity check of the input dtype + fields = _get_fields_and_offsets(dtype) + if len(fields) == 0: + dts, counts, offsets = [], [], [] + else: + dts, counts, offsets = zip(*fields) + + if n_elem != sum(counts): + raise ValueError('The length of the last dimension of arr must ' + 'be equal to the number of fields in dtype') + out_dtype = dtype + if align and not out_dtype.isalignedstruct: + raise ValueError("align was True but dtype is not aligned") + + names = [f'f{n}' for n in range(len(fields))] + + # Use a series of views and casts to convert to a structured array: + + # first view as a packed structured array of one dtype + packed_fields = np.dtype({'names': names, + 'formats': [(arr.dtype, dt.shape) for dt in dts]}) + arr = np.ascontiguousarray(arr).view(packed_fields) + + # next cast to an unpacked but flattened format with varied dtypes + flattened_fields = np.dtype({'names': names, + 'formats': dts, + 'offsets': offsets, + 'itemsize': out_dtype.itemsize}) + arr = arr.astype(flattened_fields, copy=copy, casting=casting) + + # finally view as the final nested dtype and remove the last axis + return arr.view(out_dtype)[..., 0] + +def _apply_along_fields_dispatcher(func, arr): + return (arr,) + +@array_function_dispatch(_apply_along_fields_dispatcher) +def apply_along_fields(func, arr): + """ + Apply function 'func' as a reduction across fields of a structured array. + + This is similar to `numpy.apply_along_axis`, but treats the fields of a + structured array as an extra axis. The fields are all first cast to a + common type following the type-promotion rules from `numpy.result_type` + applied to the field's dtypes. + + Parameters + ---------- + func : function + Function to apply on the "field" dimension. This function must + support an `axis` argument, like `numpy.mean`, `numpy.sum`, etc. + arr : ndarray + Structured array for which to apply func. + + Returns + ------- + out : ndarray + Result of the reduction operation + + Examples + -------- + >>> import numpy as np + + >>> from numpy.lib import recfunctions as rfn + >>> b = np.array([(1, 2, 5), (4, 5, 7), (7, 8 ,11), (10, 11, 12)], + ... dtype=[('x', 'i4'), ('y', 'f4'), ('z', 'f8')]) + >>> rfn.apply_along_fields(np.mean, b) + array([ 2.66666667, 5.33333333, 8.66666667, 11. ]) + >>> rfn.apply_along_fields(np.mean, b[['x', 'z']]) + array([ 3. , 5.5, 9. , 11. ]) + + """ + if arr.dtype.names is None: + raise ValueError('arr must be a structured array') + + uarr = structured_to_unstructured(arr) + return func(uarr, axis=-1) + # works and avoids axis requirement, but very, very slow: + #return np.apply_along_axis(func, -1, uarr) + +def _assign_fields_by_name_dispatcher(dst, src, zero_unassigned=None): + return dst, src + +@array_function_dispatch(_assign_fields_by_name_dispatcher) +def assign_fields_by_name(dst, src, zero_unassigned=True): + """ + Assigns values from one structured array to another by field name. + + Normally in numpy >= 1.14, assignment of one structured array to another + copies fields "by position", meaning that the first field from the src is + copied to the first field of the dst, and so on, regardless of field name. + + This function instead copies "by field name", such that fields in the dst + are assigned from the identically named field in the src. This applies + recursively for nested structures. This is how structure assignment worked + in numpy >= 1.6 to <= 1.13. + + Parameters + ---------- + dst : ndarray + src : ndarray + The source and destination arrays during assignment. + zero_unassigned : bool, optional + If True, fields in the dst for which there was no matching + field in the src are filled with the value 0 (zero). This + was the behavior of numpy <= 1.13. If False, those fields + are not modified. + """ + + if dst.dtype.names is None: + dst[...] = src + return + + for name in dst.dtype.names: + if name not in src.dtype.names: + if zero_unassigned: + dst[name] = 0 + else: + assign_fields_by_name(dst[name], src[name], + zero_unassigned) + +def _require_fields_dispatcher(array, required_dtype): + return (array,) + +@array_function_dispatch(_require_fields_dispatcher) +def require_fields(array, required_dtype): + """ + Casts a structured array to a new dtype using assignment by field-name. + + This function assigns from the old to the new array by name, so the + value of a field in the output array is the value of the field with the + same name in the source array. This has the effect of creating a new + ndarray containing only the fields "required" by the required_dtype. + + If a field name in the required_dtype does not exist in the + input array, that field is created and set to 0 in the output array. + + Parameters + ---------- + a : ndarray + array to cast + required_dtype : dtype + datatype for output array + + Returns + ------- + out : ndarray + array with the new dtype, with field values copied from the fields in + the input array with the same name + + Examples + -------- + >>> import numpy as np + + >>> from numpy.lib import recfunctions as rfn + >>> a = np.ones(4, dtype=[('a', 'i4'), ('b', 'f8'), ('c', 'u1')]) + >>> rfn.require_fields(a, [('b', 'f4'), ('c', 'u1')]) + array([(1., 1), (1., 1), (1., 1), (1., 1)], + dtype=[('b', '<f4'), ('c', 'u1')]) + >>> rfn.require_fields(a, [('b', 'f4'), ('newf', 'u1')]) + array([(1., 0), (1., 0), (1., 0), (1., 0)], + dtype=[('b', '<f4'), ('newf', 'u1')]) + + """ + out = np.empty(array.shape, dtype=required_dtype) + assign_fields_by_name(out, array) + return out + + +def _stack_arrays_dispatcher(arrays, defaults=None, usemask=None, + asrecarray=None, autoconvert=None): + return arrays + + +@array_function_dispatch(_stack_arrays_dispatcher) +def stack_arrays(arrays, defaults=None, usemask=True, asrecarray=False, + autoconvert=False): + """ + Superposes arrays fields by fields + + Parameters + ---------- + arrays : array or sequence + Sequence of input arrays. + defaults : dictionary, optional + Dictionary mapping field names to the corresponding default values. + usemask : {True, False}, optional + Whether to return a MaskedArray (or MaskedRecords is + `asrecarray==True`) or a ndarray. + asrecarray : {False, True}, optional + Whether to return a recarray (or MaskedRecords if `usemask==True`) + or just a flexible-type ndarray. + autoconvert : {False, True}, optional + Whether automatically cast the type of the field to the maximum. + + Examples + -------- + >>> import numpy as np + >>> from numpy.lib import recfunctions as rfn + >>> x = np.array([1, 2,]) + >>> rfn.stack_arrays(x) is x + True + >>> z = np.array([('A', 1), ('B', 2)], dtype=[('A', '|S3'), ('B', float)]) + >>> zz = np.array([('a', 10., 100.), ('b', 20., 200.), ('c', 30., 300.)], + ... dtype=[('A', '|S3'), ('B', np.double), ('C', np.double)]) + >>> test = rfn.stack_arrays((z,zz)) + >>> test + masked_array(data=[(b'A', 1.0, --), (b'B', 2.0, --), (b'a', 10.0, 100.0), + (b'b', 20.0, 200.0), (b'c', 30.0, 300.0)], + mask=[(False, False, True), (False, False, True), + (False, False, False), (False, False, False), + (False, False, False)], + fill_value=(b'N/A', 1e+20, 1e+20), + dtype=[('A', 'S3'), ('B', '<f8'), ('C', '<f8')]) + + """ + if isinstance(arrays, np.ndarray): + return arrays + elif len(arrays) == 1: + return arrays[0] + seqarrays = [np.asanyarray(a).ravel() for a in arrays] + nrecords = [len(a) for a in seqarrays] + ndtype = [a.dtype for a in seqarrays] + fldnames = [d.names for d in ndtype] + # + dtype_l = ndtype[0] + newdescr = _get_fieldspec(dtype_l) + names = [n for n, d in newdescr] + for dtype_n in ndtype[1:]: + for fname, fdtype in _get_fieldspec(dtype_n): + if fname not in names: + newdescr.append((fname, fdtype)) + names.append(fname) + else: + nameidx = names.index(fname) + _, cdtype = newdescr[nameidx] + if autoconvert: + newdescr[nameidx] = (fname, max(fdtype, cdtype)) + elif fdtype != cdtype: + raise TypeError(f"Incompatible type '{cdtype}' <> '{fdtype}'") + # Only one field: use concatenate + if len(newdescr) == 1: + output = ma.concatenate(seqarrays) + else: + # + output = ma.masked_all((np.sum(nrecords),), newdescr) + offset = np.cumsum(np.r_[0, nrecords]) + seen = [] + for (a, n, i, j) in zip(seqarrays, fldnames, offset[:-1], offset[1:]): + names = a.dtype.names + if names is None: + output[f'f{len(seen)}'][i:j] = a + else: + for name in n: + output[name][i:j] = a[name] + if name not in seen: + seen.append(name) + # + return _fix_output(_fix_defaults(output, defaults), + usemask=usemask, asrecarray=asrecarray) + + +def _find_duplicates_dispatcher( + a, key=None, ignoremask=None, return_index=None): + return (a,) + + +@array_function_dispatch(_find_duplicates_dispatcher) +def find_duplicates(a, key=None, ignoremask=True, return_index=False): + """ + Find the duplicates in a structured array along a given key + + Parameters + ---------- + a : array-like + Input array + key : {string, None}, optional + Name of the fields along which to check the duplicates. + If None, the search is performed by records + ignoremask : {True, False}, optional + Whether masked data should be discarded or considered as duplicates. + return_index : {False, True}, optional + Whether to return the indices of the duplicated values. + + Examples + -------- + >>> import numpy as np + >>> from numpy.lib import recfunctions as rfn + >>> ndtype = [('a', int)] + >>> a = np.ma.array([1, 1, 1, 2, 2, 3, 3], + ... mask=[0, 0, 1, 0, 0, 0, 1]).view(ndtype) + >>> rfn.find_duplicates(a, ignoremask=True, return_index=True) + (masked_array(data=[(1,), (1,), (2,), (2,)], + mask=[(False,), (False,), (False,), (False,)], + fill_value=(999999,), + dtype=[('a', '<i8')]), array([0, 1, 3, 4])) + """ + a = np.asanyarray(a).ravel() + # Get a dictionary of fields + fields = get_fieldstructure(a.dtype) + # Get the sorting data (by selecting the corresponding field) + base = a + if key: + for f in fields[key]: + base = base[f] + base = base[key] + # Get the sorting indices and the sorted data + sortidx = base.argsort() + sortedbase = base[sortidx] + sorteddata = sortedbase.filled() + # Compare the sorting data + flag = (sorteddata[:-1] == sorteddata[1:]) + # If masked data must be ignored, set the flag to false where needed + if ignoremask: + sortedmask = sortedbase.recordmask + flag[sortedmask[1:]] = False + flag = np.concatenate(([False], flag)) + # We need to take the point on the left as well (else we're missing it) + flag[:-1] = flag[:-1] + flag[1:] + duplicates = a[sortidx][flag] + if return_index: + return (duplicates, sortidx[flag]) + else: + return duplicates + + +def _join_by_dispatcher( + key, r1, r2, jointype=None, r1postfix=None, r2postfix=None, + defaults=None, usemask=None, asrecarray=None): + return (r1, r2) + + +@array_function_dispatch(_join_by_dispatcher) +def join_by(key, r1, r2, jointype='inner', r1postfix='1', r2postfix='2', + defaults=None, usemask=True, asrecarray=False): + """ + Join arrays `r1` and `r2` on key `key`. + + The key should be either a string or a sequence of string corresponding + to the fields used to join the array. An exception is raised if the + `key` field cannot be found in the two input arrays. Neither `r1` nor + `r2` should have any duplicates along `key`: the presence of duplicates + will make the output quite unreliable. Note that duplicates are not + looked for by the algorithm. + + Parameters + ---------- + key : {string, sequence} + A string or a sequence of strings corresponding to the fields used + for comparison. + r1, r2 : arrays + Structured arrays. + jointype : {'inner', 'outer', 'leftouter'}, optional + If 'inner', returns the elements common to both r1 and r2. + If 'outer', returns the common elements as well as the elements of + r1 not in r2 and the elements of not in r2. + If 'leftouter', returns the common elements and the elements of r1 + not in r2. + r1postfix : string, optional + String appended to the names of the fields of r1 that are present + in r2 but absent of the key. + r2postfix : string, optional + String appended to the names of the fields of r2 that are present + in r1 but absent of the key. + defaults : {dictionary}, optional + Dictionary mapping field names to the corresponding default values. + usemask : {True, False}, optional + Whether to return a MaskedArray (or MaskedRecords is + `asrecarray==True`) or a ndarray. + asrecarray : {False, True}, optional + Whether to return a recarray (or MaskedRecords if `usemask==True`) + or just a flexible-type ndarray. + + Notes + ----- + * The output is sorted along the key. + * A temporary array is formed by dropping the fields not in the key for + the two arrays and concatenating the result. This array is then + sorted, and the common entries selected. The output is constructed by + filling the fields with the selected entries. Matching is not + preserved if there are some duplicates... + + """ + # Check jointype + if jointype not in ('inner', 'outer', 'leftouter'): + raise ValueError( + "The 'jointype' argument should be in 'inner', " + "'outer' or 'leftouter' (got '%s' instead)" % jointype + ) + # If we have a single key, put it in a tuple + if isinstance(key, str): + key = (key,) + + # Check the keys + if len(set(key)) != len(key): + dup = next(x for n, x in enumerate(key) if x in key[n + 1:]) + raise ValueError(f"duplicate join key {dup!r}") + for name in key: + if name not in r1.dtype.names: + raise ValueError(f'r1 does not have key field {name!r}') + if name not in r2.dtype.names: + raise ValueError(f'r2 does not have key field {name!r}') + + # Make sure we work with ravelled arrays + r1 = r1.ravel() + r2 = r2.ravel() + (nb1, nb2) = (len(r1), len(r2)) + (r1names, r2names) = (r1.dtype.names, r2.dtype.names) + + # Check the names for collision + collisions = (set(r1names) & set(r2names)) - set(key) + if collisions and not (r1postfix or r2postfix): + msg = "r1 and r2 contain common names, r1postfix and r2postfix " + msg += "can't both be empty" + raise ValueError(msg) + + # Make temporary arrays of just the keys + # (use order of keys in `r1` for back-compatibility) + key1 = [n for n in r1names if n in key] + r1k = _keep_fields(r1, key1) + r2k = _keep_fields(r2, key1) + + # Concatenate the two arrays for comparison + aux = ma.concatenate((r1k, r2k)) + idx_sort = aux.argsort(order=key) + aux = aux[idx_sort] + # + # Get the common keys + flag_in = ma.concatenate(([False], aux[1:] == aux[:-1])) + flag_in[:-1] = flag_in[1:] + flag_in[:-1] + idx_in = idx_sort[flag_in] + idx_1 = idx_in[(idx_in < nb1)] + idx_2 = idx_in[(idx_in >= nb1)] - nb1 + (r1cmn, r2cmn) = (len(idx_1), len(idx_2)) + if jointype == 'inner': + (r1spc, r2spc) = (0, 0) + elif jointype == 'outer': + idx_out = idx_sort[~flag_in] + idx_1 = np.concatenate((idx_1, idx_out[(idx_out < nb1)])) + idx_2 = np.concatenate((idx_2, idx_out[(idx_out >= nb1)] - nb1)) + (r1spc, r2spc) = (len(idx_1) - r1cmn, len(idx_2) - r2cmn) + elif jointype == 'leftouter': + idx_out = idx_sort[~flag_in] + idx_1 = np.concatenate((idx_1, idx_out[(idx_out < nb1)])) + (r1spc, r2spc) = (len(idx_1) - r1cmn, 0) + # Select the entries from each input + (s1, s2) = (r1[idx_1], r2[idx_2]) + # + # Build the new description of the output array ....... + # Start with the key fields + ndtype = _get_fieldspec(r1k.dtype) + + # Add the fields from r1 + for fname, fdtype in _get_fieldspec(r1.dtype): + if fname not in key: + ndtype.append((fname, fdtype)) + + # Add the fields from r2 + for fname, fdtype in _get_fieldspec(r2.dtype): + # Have we seen the current name already ? + # we need to rebuild this list every time + names = [name for name, dtype in ndtype] + try: + nameidx = names.index(fname) + except ValueError: + #... we haven't: just add the description to the current list + ndtype.append((fname, fdtype)) + else: + # collision + _, cdtype = ndtype[nameidx] + if fname in key: + # The current field is part of the key: take the largest dtype + ndtype[nameidx] = (fname, max(fdtype, cdtype)) + else: + # The current field is not part of the key: add the suffixes, + # and place the new field adjacent to the old one + ndtype[nameidx:nameidx + 1] = [ + (fname + r1postfix, cdtype), + (fname + r2postfix, fdtype) + ] + # Rebuild a dtype from the new fields + ndtype = np.dtype(ndtype) + # Find the largest nb of common fields : + # r1cmn and r2cmn should be equal, but... + cmn = max(r1cmn, r2cmn) + # Construct an empty array + output = ma.masked_all((cmn + r1spc + r2spc,), dtype=ndtype) + names = output.dtype.names + for f in r1names: + selected = s1[f] + if f not in names or (f in r2names and not r2postfix and f not in key): + f += r1postfix + current = output[f] + current[:r1cmn] = selected[:r1cmn] + if jointype in ('outer', 'leftouter'): + current[cmn:cmn + r1spc] = selected[r1cmn:] + for f in r2names: + selected = s2[f] + if f not in names or (f in r1names and not r1postfix and f not in key): + f += r2postfix + current = output[f] + current[:r2cmn] = selected[:r2cmn] + if (jointype == 'outer') and r2spc: + current[-r2spc:] = selected[r2cmn:] + # Sort and finalize the output + output.sort(order=key) + kwargs = {'usemask': usemask, 'asrecarray': asrecarray} + return _fix_output(_fix_defaults(output, defaults), **kwargs) + + +def _rec_join_dispatcher( + key, r1, r2, jointype=None, r1postfix=None, r2postfix=None, + defaults=None): + return (r1, r2) + + +@array_function_dispatch(_rec_join_dispatcher) +def rec_join(key, r1, r2, jointype='inner', r1postfix='1', r2postfix='2', + defaults=None): + """ + Join arrays `r1` and `r2` on keys. + Alternative to join_by, that always returns a np.recarray. + + See Also + -------- + join_by : equivalent function + """ + kwargs = {'jointype': jointype, 'r1postfix': r1postfix, 'r2postfix': r2postfix, + 'defaults': defaults, 'usemask': False, 'asrecarray': True} + return join_by(key, r1, r2, **kwargs) + + +del array_function_dispatch diff --git a/.venv/lib/python3.12/site-packages/numpy/lib/recfunctions.pyi b/.venv/lib/python3.12/site-packages/numpy/lib/recfunctions.pyi new file mode 100644 index 0000000..0736429 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/lib/recfunctions.pyi @@ -0,0 +1,435 @@ +from collections.abc import Callable, Iterable, Mapping, Sequence +from typing import Any, Literal, TypeAlias, overload + +from _typeshed import Incomplete +from typing_extensions import TypeVar + +import numpy as np +import numpy.typing as npt +from numpy._typing import _AnyShape, _DTypeLike, _DTypeLikeVoid +from numpy.ma.mrecords import MaskedRecords + +__all__ = [ + "append_fields", + "apply_along_fields", + "assign_fields_by_name", + "drop_fields", + "find_duplicates", + "flatten_descr", + "get_fieldstructure", + "get_names", + "get_names_flat", + "join_by", + "merge_arrays", + "rec_append_fields", + "rec_drop_fields", + "rec_join", + "recursive_fill_fields", + "rename_fields", + "repack_fields", + "require_fields", + "stack_arrays", + "structured_to_unstructured", + "unstructured_to_structured", +] + +_T = TypeVar("_T") +_ShapeT = TypeVar("_ShapeT", bound=tuple[int, ...]) +_ScalarT = TypeVar("_ScalarT", bound=np.generic) +_DTypeT = TypeVar("_DTypeT", bound=np.dtype) +_ArrayT = TypeVar("_ArrayT", bound=npt.NDArray[Any]) +_VoidArrayT = TypeVar("_VoidArrayT", bound=npt.NDArray[np.void]) +_NonVoidDTypeT = TypeVar("_NonVoidDTypeT", bound=_NonVoidDType) + +_OneOrMany: TypeAlias = _T | Iterable[_T] +_BuiltinSequence: TypeAlias = tuple[_T, ...] | list[_T] + +_NestedNames: TypeAlias = tuple[str | _NestedNames, ...] +_NonVoid: TypeAlias = np.bool | np.number | np.character | np.datetime64 | np.timedelta64 | np.object_ +_NonVoidDType: TypeAlias = np.dtype[_NonVoid] | np.dtypes.StringDType + +_JoinType: TypeAlias = Literal["inner", "outer", "leftouter"] + +### + +def recursive_fill_fields(input: npt.NDArray[np.void], output: _VoidArrayT) -> _VoidArrayT: ... + +# +def get_names(adtype: np.dtype[np.void]) -> _NestedNames: ... +def get_names_flat(adtype: np.dtype[np.void]) -> tuple[str, ...]: ... + +# +@overload +def flatten_descr(ndtype: _NonVoidDTypeT) -> tuple[tuple[Literal[""], _NonVoidDTypeT]]: ... +@overload +def flatten_descr(ndtype: np.dtype[np.void]) -> tuple[tuple[str, np.dtype]]: ... + +# +def get_fieldstructure( + adtype: np.dtype[np.void], + lastname: str | None = None, + parents: dict[str, list[str]] | None = None, +) -> dict[str, list[str]]: ... + +# +@overload +def merge_arrays( + seqarrays: Sequence[np.ndarray[_ShapeT, np.dtype]] | np.ndarray[_ShapeT, np.dtype], + fill_value: float = -1, + flatten: bool = False, + usemask: bool = False, + asrecarray: bool = False, +) -> np.recarray[_ShapeT, np.dtype[np.void]]: ... +@overload +def merge_arrays( + seqarrays: Sequence[npt.ArrayLike] | np.void, + fill_value: float = -1, + flatten: bool = False, + usemask: bool = False, + asrecarray: bool = False, +) -> np.recarray[_AnyShape, np.dtype[np.void]]: ... + +# +@overload +def drop_fields( + base: np.ndarray[_ShapeT, np.dtype[np.void]], + drop_names: str | Iterable[str], + usemask: bool = True, + asrecarray: Literal[False] = False, +) -> np.ndarray[_ShapeT, np.dtype[np.void]]: ... +@overload +def drop_fields( + base: np.ndarray[_ShapeT, np.dtype[np.void]], + drop_names: str | Iterable[str], + usemask: bool, + asrecarray: Literal[True], +) -> np.recarray[_ShapeT, np.dtype[np.void]]: ... +@overload +def drop_fields( + base: np.ndarray[_ShapeT, np.dtype[np.void]], + drop_names: str | Iterable[str], + usemask: bool = True, + *, + asrecarray: Literal[True], +) -> np.recarray[_ShapeT, np.dtype[np.void]]: ... + +# +@overload +def rename_fields( + base: MaskedRecords[_ShapeT, np.dtype[np.void]], + namemapper: Mapping[str, str], +) -> MaskedRecords[_ShapeT, np.dtype[np.void]]: ... +@overload +def rename_fields( + base: np.ma.MaskedArray[_ShapeT, np.dtype[np.void]], + namemapper: Mapping[str, str], +) -> np.ma.MaskedArray[_ShapeT, np.dtype[np.void]]: ... +@overload +def rename_fields( + base: np.recarray[_ShapeT, np.dtype[np.void]], + namemapper: Mapping[str, str], +) -> np.recarray[_ShapeT, np.dtype[np.void]]: ... +@overload +def rename_fields( + base: np.ndarray[_ShapeT, np.dtype[np.void]], + namemapper: Mapping[str, str], +) -> np.ndarray[_ShapeT, np.dtype[np.void]]: ... + +# +@overload +def append_fields( + base: np.ndarray[_ShapeT, np.dtype[np.void]], + names: _OneOrMany[str], + data: _OneOrMany[npt.NDArray[Any]], + dtypes: _BuiltinSequence[np.dtype] | None, + fill_value: int, + usemask: Literal[False], + asrecarray: Literal[False] = False, +) -> np.ndarray[_ShapeT, np.dtype[np.void]]: ... +@overload +def append_fields( + base: np.ndarray[_ShapeT, np.dtype[np.void]], + names: _OneOrMany[str], + data: _OneOrMany[npt.NDArray[Any]], + dtypes: _BuiltinSequence[np.dtype] | None = None, + fill_value: int = -1, + *, + usemask: Literal[False], + asrecarray: Literal[False] = False, +) -> np.ndarray[_ShapeT, np.dtype[np.void]]: ... +@overload +def append_fields( + base: np.ndarray[_ShapeT, np.dtype[np.void]], + names: _OneOrMany[str], + data: _OneOrMany[npt.NDArray[Any]], + dtypes: _BuiltinSequence[np.dtype] | None, + fill_value: int, + usemask: Literal[False], + asrecarray: Literal[True], +) -> np.recarray[_ShapeT, np.dtype[np.void]]: ... +@overload +def append_fields( + base: np.ndarray[_ShapeT, np.dtype[np.void]], + names: _OneOrMany[str], + data: _OneOrMany[npt.NDArray[Any]], + dtypes: _BuiltinSequence[np.dtype] | None = None, + fill_value: int = -1, + *, + usemask: Literal[False], + asrecarray: Literal[True], +) -> np.recarray[_ShapeT, np.dtype[np.void]]: ... +@overload +def append_fields( + base: np.ndarray[_ShapeT, np.dtype[np.void]], + names: _OneOrMany[str], + data: _OneOrMany[npt.NDArray[Any]], + dtypes: _BuiltinSequence[np.dtype] | None = None, + fill_value: int = -1, + usemask: Literal[True] = True, + asrecarray: Literal[False] = False, +) -> np.ma.MaskedArray[_ShapeT, np.dtype[np.void]]: ... +@overload +def append_fields( + base: np.ndarray[_ShapeT, np.dtype[np.void]], + names: _OneOrMany[str], + data: _OneOrMany[npt.NDArray[Any]], + dtypes: _BuiltinSequence[np.dtype] | None, + fill_value: int, + usemask: Literal[True], + asrecarray: Literal[True], +) -> MaskedRecords[_ShapeT, np.dtype[np.void]]: ... +@overload +def append_fields( + base: np.ndarray[_ShapeT, np.dtype[np.void]], + names: _OneOrMany[str], + data: _OneOrMany[npt.NDArray[Any]], + dtypes: _BuiltinSequence[np.dtype] | None = None, + fill_value: int = -1, + usemask: Literal[True] = True, + *, + asrecarray: Literal[True], +) -> MaskedRecords[_ShapeT, np.dtype[np.void]]: ... + +# +def rec_drop_fields( + base: np.ndarray[_ShapeT, np.dtype[np.void]], + drop_names: str | Iterable[str], +) -> np.recarray[_ShapeT, np.dtype[np.void]]: ... + +# +def rec_append_fields( + base: np.ndarray[_ShapeT, np.dtype[np.void]], + names: _OneOrMany[str], + data: _OneOrMany[npt.NDArray[Any]], + dtypes: _BuiltinSequence[np.dtype] | None = None, +) -> np.ma.MaskedArray[_ShapeT, np.dtype[np.void]]: ... + +# TODO(jorenham): Stop passing `void` directly once structured dtypes are implemented, +# e.g. using a `TypeVar` with constraints. +# https://github.com/numpy/numtype/issues/92 +@overload +def repack_fields(a: _DTypeT, align: bool = False, recurse: bool = False) -> _DTypeT: ... +@overload +def repack_fields(a: _ScalarT, align: bool = False, recurse: bool = False) -> _ScalarT: ... +@overload +def repack_fields(a: _ArrayT, align: bool = False, recurse: bool = False) -> _ArrayT: ... + +# TODO(jorenham): Attempt shape-typing (return type has ndim == arr.ndim + 1) +@overload +def structured_to_unstructured( + arr: npt.NDArray[np.void], + dtype: _DTypeLike[_ScalarT], + copy: bool = False, + casting: np._CastingKind = "unsafe", +) -> npt.NDArray[_ScalarT]: ... +@overload +def structured_to_unstructured( + arr: npt.NDArray[np.void], + dtype: npt.DTypeLike | None = None, + copy: bool = False, + casting: np._CastingKind = "unsafe", +) -> npt.NDArray[Any]: ... + +# +@overload +def unstructured_to_structured( + arr: npt.NDArray[Any], + dtype: npt.DTypeLike, + names: None = None, + align: bool = False, + copy: bool = False, + casting: str = "unsafe", +) -> npt.NDArray[np.void]: ... +@overload +def unstructured_to_structured( + arr: npt.NDArray[Any], + dtype: None, + names: _OneOrMany[str], + align: bool = False, + copy: bool = False, + casting: str = "unsafe", +) -> npt.NDArray[np.void]: ... + +# +def apply_along_fields( + func: Callable[[np.ndarray[_ShapeT, Any]], npt.NDArray[Any]], + arr: np.ndarray[_ShapeT, np.dtype[np.void]], +) -> np.ndarray[_ShapeT, np.dtype[np.void]]: ... + +# +def assign_fields_by_name(dst: npt.NDArray[np.void], src: npt.NDArray[np.void], zero_unassigned: bool = True) -> None: ... + +# +def require_fields( + array: np.ndarray[_ShapeT, np.dtype[np.void]], + required_dtype: _DTypeLikeVoid, +) -> np.ndarray[_ShapeT, np.dtype[np.void]]: ... + +# TODO(jorenham): Attempt shape-typing +@overload +def stack_arrays( + arrays: _ArrayT, + defaults: Mapping[str, object] | None = None, + usemask: bool = True, + asrecarray: bool = False, + autoconvert: bool = False, +) -> _ArrayT: ... +@overload +def stack_arrays( + arrays: Sequence[npt.NDArray[Any]], + defaults: Mapping[str, Incomplete] | None, + usemask: Literal[False], + asrecarray: Literal[False] = False, + autoconvert: bool = False, +) -> npt.NDArray[np.void]: ... +@overload +def stack_arrays( + arrays: Sequence[npt.NDArray[Any]], + defaults: Mapping[str, Incomplete] | None = None, + *, + usemask: Literal[False], + asrecarray: Literal[False] = False, + autoconvert: bool = False, +) -> npt.NDArray[np.void]: ... +@overload +def stack_arrays( + arrays: Sequence[npt.NDArray[Any]], + defaults: Mapping[str, Incomplete] | None = None, + *, + usemask: Literal[False], + asrecarray: Literal[True], + autoconvert: bool = False, +) -> np.recarray[_AnyShape, np.dtype[np.void]]: ... +@overload +def stack_arrays( + arrays: Sequence[npt.NDArray[Any]], + defaults: Mapping[str, Incomplete] | None = None, + usemask: Literal[True] = True, + asrecarray: Literal[False] = False, + autoconvert: bool = False, +) -> np.ma.MaskedArray[_AnyShape, np.dtype[np.void]]: ... +@overload +def stack_arrays( + arrays: Sequence[npt.NDArray[Any]], + defaults: Mapping[str, Incomplete] | None, + usemask: Literal[True], + asrecarray: Literal[True], + autoconvert: bool = False, +) -> MaskedRecords[_AnyShape, np.dtype[np.void]]: ... +@overload +def stack_arrays( + arrays: Sequence[npt.NDArray[Any]], + defaults: Mapping[str, Incomplete] | None = None, + usemask: Literal[True] = True, + *, + asrecarray: Literal[True], + autoconvert: bool = False, +) -> MaskedRecords[_AnyShape, np.dtype[np.void]]: ... + +# +@overload +def find_duplicates( + a: np.ma.MaskedArray[_ShapeT, np.dtype[np.void]], + key: str | None = None, + ignoremask: bool = True, + return_index: Literal[False] = False, +) -> np.ma.MaskedArray[_ShapeT, np.dtype[np.void]]: ... +@overload +def find_duplicates( + a: np.ma.MaskedArray[_ShapeT, np.dtype[np.void]], + key: str | None, + ignoremask: bool, + return_index: Literal[True], +) -> tuple[np.ma.MaskedArray[_ShapeT, np.dtype[np.void]], np.ndarray[_ShapeT, np.dtype[np.int_]]]: ... +@overload +def find_duplicates( + a: np.ma.MaskedArray[_ShapeT, np.dtype[np.void]], + key: str | None = None, + ignoremask: bool = True, + *, + return_index: Literal[True], +) -> tuple[np.ma.MaskedArray[_ShapeT, np.dtype[np.void]], np.ndarray[_ShapeT, np.dtype[np.int_]]]: ... + +# +@overload +def join_by( + key: str | Sequence[str], + r1: npt.NDArray[np.void], + r2: npt.NDArray[np.void], + jointype: _JoinType = "inner", + r1postfix: str = "1", + r2postfix: str = "2", + defaults: Mapping[str, object] | None = None, + *, + usemask: Literal[False], + asrecarray: Literal[False] = False, +) -> np.ndarray[tuple[int], np.dtype[np.void]]: ... +@overload +def join_by( + key: str | Sequence[str], + r1: npt.NDArray[np.void], + r2: npt.NDArray[np.void], + jointype: _JoinType = "inner", + r1postfix: str = "1", + r2postfix: str = "2", + defaults: Mapping[str, object] | None = None, + *, + usemask: Literal[False], + asrecarray: Literal[True], +) -> np.recarray[tuple[int], np.dtype[np.void]]: ... +@overload +def join_by( + key: str | Sequence[str], + r1: npt.NDArray[np.void], + r2: npt.NDArray[np.void], + jointype: _JoinType = "inner", + r1postfix: str = "1", + r2postfix: str = "2", + defaults: Mapping[str, object] | None = None, + usemask: Literal[True] = True, + asrecarray: Literal[False] = False, +) -> np.ma.MaskedArray[tuple[int], np.dtype[np.void]]: ... +@overload +def join_by( + key: str | Sequence[str], + r1: npt.NDArray[np.void], + r2: npt.NDArray[np.void], + jointype: _JoinType = "inner", + r1postfix: str = "1", + r2postfix: str = "2", + defaults: Mapping[str, object] | None = None, + usemask: Literal[True] = True, + *, + asrecarray: Literal[True], +) -> MaskedRecords[tuple[int], np.dtype[np.void]]: ... + +# +def rec_join( + key: str | Sequence[str], + r1: npt.NDArray[np.void], + r2: npt.NDArray[np.void], + jointype: _JoinType = "inner", + r1postfix: str = "1", + r2postfix: str = "2", + defaults: Mapping[str, object] | None = None, +) -> np.recarray[tuple[int], np.dtype[np.void]]: ... diff --git a/.venv/lib/python3.12/site-packages/numpy/lib/scimath.py b/.venv/lib/python3.12/site-packages/numpy/lib/scimath.py new file mode 100644 index 0000000..fb6824d --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/lib/scimath.py @@ -0,0 +1,13 @@ +from ._scimath_impl import ( # noqa: F401 + __all__, + __doc__, + arccos, + arcsin, + arctanh, + log, + log2, + log10, + logn, + power, + sqrt, +) diff --git a/.venv/lib/python3.12/site-packages/numpy/lib/scimath.pyi b/.venv/lib/python3.12/site-packages/numpy/lib/scimath.pyi new file mode 100644 index 0000000..253235d --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/lib/scimath.pyi @@ -0,0 +1,30 @@ +from ._scimath_impl import ( + __all__ as __all__, +) +from ._scimath_impl import ( + arccos as arccos, +) +from ._scimath_impl import ( + arcsin as arcsin, +) +from ._scimath_impl import ( + arctanh as arctanh, +) +from ._scimath_impl import ( + log as log, +) +from ._scimath_impl import ( + log2 as log2, +) +from ._scimath_impl import ( + log10 as log10, +) +from ._scimath_impl import ( + logn as logn, +) +from ._scimath_impl import ( + power as power, +) +from ._scimath_impl import ( + sqrt as sqrt, +) diff --git a/.venv/lib/python3.12/site-packages/numpy/lib/stride_tricks.py b/.venv/lib/python3.12/site-packages/numpy/lib/stride_tricks.py new file mode 100644 index 0000000..721a548 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/lib/stride_tricks.py @@ -0,0 +1 @@ +from ._stride_tricks_impl import __doc__, as_strided, sliding_window_view # noqa: F401 diff --git a/.venv/lib/python3.12/site-packages/numpy/lib/stride_tricks.pyi b/.venv/lib/python3.12/site-packages/numpy/lib/stride_tricks.pyi new file mode 100644 index 0000000..42d8fe9 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/lib/stride_tricks.pyi @@ -0,0 +1,6 @@ +from numpy.lib._stride_tricks_impl import ( + as_strided as as_strided, +) +from numpy.lib._stride_tricks_impl import ( + sliding_window_view as sliding_window_view, +) diff --git a/.venv/lib/python3.12/site-packages/numpy/lib/tests/__init__.py b/.venv/lib/python3.12/site-packages/numpy/lib/tests/__init__.py new file mode 100644 index 0000000..e69de29 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/lib/tests/__init__.py diff --git a/.venv/lib/python3.12/site-packages/numpy/lib/tests/__pycache__/__init__.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/lib/tests/__pycache__/__init__.cpython-312.pyc Binary files differnew file mode 100644 index 0000000..08ba67e --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/lib/tests/__pycache__/__init__.cpython-312.pyc diff --git a/.venv/lib/python3.12/site-packages/numpy/lib/tests/__pycache__/test__datasource.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/lib/tests/__pycache__/test__datasource.cpython-312.pyc Binary files differnew file mode 100644 index 0000000..f6ce1a4 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/lib/tests/__pycache__/test__datasource.cpython-312.pyc diff --git a/.venv/lib/python3.12/site-packages/numpy/lib/tests/__pycache__/test__iotools.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/lib/tests/__pycache__/test__iotools.cpython-312.pyc Binary files differnew file mode 100644 index 0000000..064d4eb --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/lib/tests/__pycache__/test__iotools.cpython-312.pyc diff --git a/.venv/lib/python3.12/site-packages/numpy/lib/tests/__pycache__/test__version.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/lib/tests/__pycache__/test__version.cpython-312.pyc Binary files differnew file mode 100644 index 0000000..a212b0b --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/lib/tests/__pycache__/test__version.cpython-312.pyc diff --git a/.venv/lib/python3.12/site-packages/numpy/lib/tests/__pycache__/test_array_utils.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/lib/tests/__pycache__/test_array_utils.cpython-312.pyc Binary files differnew file mode 100644 index 0000000..72fd67e --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/lib/tests/__pycache__/test_array_utils.cpython-312.pyc diff --git a/.venv/lib/python3.12/site-packages/numpy/lib/tests/__pycache__/test_arraypad.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/lib/tests/__pycache__/test_arraypad.cpython-312.pyc Binary files differnew file mode 100644 index 0000000..673f7c1 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/lib/tests/__pycache__/test_arraypad.cpython-312.pyc diff --git a/.venv/lib/python3.12/site-packages/numpy/lib/tests/__pycache__/test_arraysetops.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/lib/tests/__pycache__/test_arraysetops.cpython-312.pyc Binary files differnew file mode 100644 index 0000000..3edbed0 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/lib/tests/__pycache__/test_arraysetops.cpython-312.pyc diff --git a/.venv/lib/python3.12/site-packages/numpy/lib/tests/__pycache__/test_arrayterator.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/lib/tests/__pycache__/test_arrayterator.cpython-312.pyc Binary files differnew file mode 100644 index 0000000..a9a8259 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/lib/tests/__pycache__/test_arrayterator.cpython-312.pyc diff --git a/.venv/lib/python3.12/site-packages/numpy/lib/tests/__pycache__/test_format.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/lib/tests/__pycache__/test_format.cpython-312.pyc Binary files differnew file mode 100644 index 0000000..4b905ea --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/lib/tests/__pycache__/test_format.cpython-312.pyc diff --git a/.venv/lib/python3.12/site-packages/numpy/lib/tests/__pycache__/test_function_base.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/lib/tests/__pycache__/test_function_base.cpython-312.pyc Binary files differnew file mode 100644 index 0000000..beaa22d --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/lib/tests/__pycache__/test_function_base.cpython-312.pyc diff --git a/.venv/lib/python3.12/site-packages/numpy/lib/tests/__pycache__/test_histograms.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/lib/tests/__pycache__/test_histograms.cpython-312.pyc Binary files differnew file mode 100644 index 0000000..2b1a824 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/lib/tests/__pycache__/test_histograms.cpython-312.pyc diff --git a/.venv/lib/python3.12/site-packages/numpy/lib/tests/__pycache__/test_index_tricks.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/lib/tests/__pycache__/test_index_tricks.cpython-312.pyc Binary files differnew file mode 100644 index 0000000..2610bc0 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/lib/tests/__pycache__/test_index_tricks.cpython-312.pyc diff --git a/.venv/lib/python3.12/site-packages/numpy/lib/tests/__pycache__/test_io.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/lib/tests/__pycache__/test_io.cpython-312.pyc Binary files differnew file mode 100644 index 0000000..20e6590 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/lib/tests/__pycache__/test_io.cpython-312.pyc diff --git a/.venv/lib/python3.12/site-packages/numpy/lib/tests/__pycache__/test_loadtxt.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/lib/tests/__pycache__/test_loadtxt.cpython-312.pyc Binary files differnew file mode 100644 index 0000000..9d3d392 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/lib/tests/__pycache__/test_loadtxt.cpython-312.pyc diff --git a/.venv/lib/python3.12/site-packages/numpy/lib/tests/__pycache__/test_mixins.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/lib/tests/__pycache__/test_mixins.cpython-312.pyc Binary files differnew file mode 100644 index 0000000..f390886 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/lib/tests/__pycache__/test_mixins.cpython-312.pyc diff --git a/.venv/lib/python3.12/site-packages/numpy/lib/tests/__pycache__/test_nanfunctions.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/lib/tests/__pycache__/test_nanfunctions.cpython-312.pyc Binary files differnew file mode 100644 index 0000000..c4c3dfe --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/lib/tests/__pycache__/test_nanfunctions.cpython-312.pyc diff --git a/.venv/lib/python3.12/site-packages/numpy/lib/tests/__pycache__/test_packbits.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/lib/tests/__pycache__/test_packbits.cpython-312.pyc Binary files differnew file mode 100644 index 0000000..c7d50a1 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/lib/tests/__pycache__/test_packbits.cpython-312.pyc diff --git a/.venv/lib/python3.12/site-packages/numpy/lib/tests/__pycache__/test_polynomial.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/lib/tests/__pycache__/test_polynomial.cpython-312.pyc Binary files differnew file mode 100644 index 0000000..17dd09f --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/lib/tests/__pycache__/test_polynomial.cpython-312.pyc diff --git a/.venv/lib/python3.12/site-packages/numpy/lib/tests/__pycache__/test_recfunctions.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/lib/tests/__pycache__/test_recfunctions.cpython-312.pyc Binary files differnew file mode 100644 index 0000000..7850412 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/lib/tests/__pycache__/test_recfunctions.cpython-312.pyc diff --git a/.venv/lib/python3.12/site-packages/numpy/lib/tests/__pycache__/test_regression.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/lib/tests/__pycache__/test_regression.cpython-312.pyc Binary files differnew file mode 100644 index 0000000..bd89d0d --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/lib/tests/__pycache__/test_regression.cpython-312.pyc diff --git a/.venv/lib/python3.12/site-packages/numpy/lib/tests/__pycache__/test_shape_base.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/lib/tests/__pycache__/test_shape_base.cpython-312.pyc Binary files differnew file mode 100644 index 0000000..69e2029 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/lib/tests/__pycache__/test_shape_base.cpython-312.pyc diff --git a/.venv/lib/python3.12/site-packages/numpy/lib/tests/__pycache__/test_stride_tricks.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/lib/tests/__pycache__/test_stride_tricks.cpython-312.pyc Binary files differnew file mode 100644 index 0000000..6af642b --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/lib/tests/__pycache__/test_stride_tricks.cpython-312.pyc diff --git a/.venv/lib/python3.12/site-packages/numpy/lib/tests/__pycache__/test_twodim_base.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/lib/tests/__pycache__/test_twodim_base.cpython-312.pyc Binary files differnew file mode 100644 index 0000000..268e30e --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/lib/tests/__pycache__/test_twodim_base.cpython-312.pyc diff --git a/.venv/lib/python3.12/site-packages/numpy/lib/tests/__pycache__/test_type_check.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/lib/tests/__pycache__/test_type_check.cpython-312.pyc Binary files differnew file mode 100644 index 0000000..f06fa5f --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/lib/tests/__pycache__/test_type_check.cpython-312.pyc diff --git a/.venv/lib/python3.12/site-packages/numpy/lib/tests/__pycache__/test_ufunclike.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/lib/tests/__pycache__/test_ufunclike.cpython-312.pyc Binary files differnew file mode 100644 index 0000000..bf8e207 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/lib/tests/__pycache__/test_ufunclike.cpython-312.pyc diff --git a/.venv/lib/python3.12/site-packages/numpy/lib/tests/__pycache__/test_utils.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/lib/tests/__pycache__/test_utils.cpython-312.pyc Binary files differnew file mode 100644 index 0000000..2f4fba6 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/lib/tests/__pycache__/test_utils.cpython-312.pyc diff --git a/.venv/lib/python3.12/site-packages/numpy/lib/tests/data/py2-np0-objarr.npy b/.venv/lib/python3.12/site-packages/numpy/lib/tests/data/py2-np0-objarr.npy Binary files differnew file mode 100644 index 0000000..a6e9e23 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/lib/tests/data/py2-np0-objarr.npy diff --git a/.venv/lib/python3.12/site-packages/numpy/lib/tests/data/py2-objarr.npy b/.venv/lib/python3.12/site-packages/numpy/lib/tests/data/py2-objarr.npy Binary files differnew file mode 100644 index 0000000..12936c9 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/lib/tests/data/py2-objarr.npy diff --git a/.venv/lib/python3.12/site-packages/numpy/lib/tests/data/py2-objarr.npz b/.venv/lib/python3.12/site-packages/numpy/lib/tests/data/py2-objarr.npz Binary files differnew file mode 100644 index 0000000..68a3b53 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/lib/tests/data/py2-objarr.npz diff --git a/.venv/lib/python3.12/site-packages/numpy/lib/tests/data/py3-objarr.npy b/.venv/lib/python3.12/site-packages/numpy/lib/tests/data/py3-objarr.npy Binary files differnew file mode 100644 index 0000000..c9f33b0 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/lib/tests/data/py3-objarr.npy diff --git a/.venv/lib/python3.12/site-packages/numpy/lib/tests/data/py3-objarr.npz b/.venv/lib/python3.12/site-packages/numpy/lib/tests/data/py3-objarr.npz Binary files differnew file mode 100644 index 0000000..fd7d9d3 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/lib/tests/data/py3-objarr.npz diff --git a/.venv/lib/python3.12/site-packages/numpy/lib/tests/data/python3.npy b/.venv/lib/python3.12/site-packages/numpy/lib/tests/data/python3.npy Binary files differnew file mode 100644 index 0000000..7c6997d --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/lib/tests/data/python3.npy diff --git a/.venv/lib/python3.12/site-packages/numpy/lib/tests/data/win64python2.npy b/.venv/lib/python3.12/site-packages/numpy/lib/tests/data/win64python2.npy Binary files differnew file mode 100644 index 0000000..d9bc36a --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/lib/tests/data/win64python2.npy diff --git a/.venv/lib/python3.12/site-packages/numpy/lib/tests/test__datasource.py b/.venv/lib/python3.12/site-packages/numpy/lib/tests/test__datasource.py new file mode 100644 index 0000000..6513732 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/lib/tests/test__datasource.py @@ -0,0 +1,352 @@ +import os +import urllib.request as urllib_request +from shutil import rmtree +from tempfile import NamedTemporaryFile, mkdtemp, mkstemp +from urllib.error import URLError +from urllib.parse import urlparse + +import pytest + +import numpy.lib._datasource as datasource +from numpy.testing import assert_, assert_equal, assert_raises + + +def urlopen_stub(url, data=None): + '''Stub to replace urlopen for testing.''' + if url == valid_httpurl(): + tmpfile = NamedTemporaryFile(prefix='urltmp_') + return tmpfile + else: + raise URLError('Name or service not known') + + +# setup and teardown +old_urlopen = None + + +def setup_module(): + global old_urlopen + + old_urlopen = urllib_request.urlopen + urllib_request.urlopen = urlopen_stub + + +def teardown_module(): + urllib_request.urlopen = old_urlopen + + +# A valid website for more robust testing +http_path = 'http://www.google.com/' +http_file = 'index.html' + +http_fakepath = 'http://fake.abc.web/site/' +http_fakefile = 'fake.txt' + +malicious_files = ['/etc/shadow', '../../shadow', + '..\\system.dat', 'c:\\windows\\system.dat'] + +magic_line = b'three is the magic number' + + +# Utility functions used by many tests +def valid_textfile(filedir): + # Generate and return a valid temporary file. + fd, path = mkstemp(suffix='.txt', prefix='dstmp_', dir=filedir, text=True) + os.close(fd) + return path + + +def invalid_textfile(filedir): + # Generate and return an invalid filename. + fd, path = mkstemp(suffix='.txt', prefix='dstmp_', dir=filedir) + os.close(fd) + os.remove(path) + return path + + +def valid_httpurl(): + return http_path + http_file + + +def invalid_httpurl(): + return http_fakepath + http_fakefile + + +def valid_baseurl(): + return http_path + + +def invalid_baseurl(): + return http_fakepath + + +def valid_httpfile(): + return http_file + + +def invalid_httpfile(): + return http_fakefile + + +class TestDataSourceOpen: + def setup_method(self): + self.tmpdir = mkdtemp() + self.ds = datasource.DataSource(self.tmpdir) + + def teardown_method(self): + rmtree(self.tmpdir) + del self.ds + + def test_ValidHTTP(self): + fh = self.ds.open(valid_httpurl()) + assert_(fh) + fh.close() + + def test_InvalidHTTP(self): + url = invalid_httpurl() + assert_raises(OSError, self.ds.open, url) + try: + self.ds.open(url) + except OSError as e: + # Regression test for bug fixed in r4342. + assert_(e.errno is None) + + def test_InvalidHTTPCacheURLError(self): + assert_raises(URLError, self.ds._cache, invalid_httpurl()) + + def test_ValidFile(self): + local_file = valid_textfile(self.tmpdir) + fh = self.ds.open(local_file) + assert_(fh) + fh.close() + + def test_InvalidFile(self): + invalid_file = invalid_textfile(self.tmpdir) + assert_raises(OSError, self.ds.open, invalid_file) + + def test_ValidGzipFile(self): + try: + import gzip + except ImportError: + # We don't have the gzip capabilities to test. + pytest.skip() + # Test datasource's internal file_opener for Gzip files. + filepath = os.path.join(self.tmpdir, 'foobar.txt.gz') + fp = gzip.open(filepath, 'w') + fp.write(magic_line) + fp.close() + fp = self.ds.open(filepath) + result = fp.readline() + fp.close() + assert_equal(magic_line, result) + + def test_ValidBz2File(self): + try: + import bz2 + except ImportError: + # We don't have the bz2 capabilities to test. + pytest.skip() + # Test datasource's internal file_opener for BZip2 files. + filepath = os.path.join(self.tmpdir, 'foobar.txt.bz2') + fp = bz2.BZ2File(filepath, 'w') + fp.write(magic_line) + fp.close() + fp = self.ds.open(filepath) + result = fp.readline() + fp.close() + assert_equal(magic_line, result) + + +class TestDataSourceExists: + def setup_method(self): + self.tmpdir = mkdtemp() + self.ds = datasource.DataSource(self.tmpdir) + + def teardown_method(self): + rmtree(self.tmpdir) + del self.ds + + def test_ValidHTTP(self): + assert_(self.ds.exists(valid_httpurl())) + + def test_InvalidHTTP(self): + assert_equal(self.ds.exists(invalid_httpurl()), False) + + def test_ValidFile(self): + # Test valid file in destpath + tmpfile = valid_textfile(self.tmpdir) + assert_(self.ds.exists(tmpfile)) + # Test valid local file not in destpath + localdir = mkdtemp() + tmpfile = valid_textfile(localdir) + assert_(self.ds.exists(tmpfile)) + rmtree(localdir) + + def test_InvalidFile(self): + tmpfile = invalid_textfile(self.tmpdir) + assert_equal(self.ds.exists(tmpfile), False) + + +class TestDataSourceAbspath: + def setup_method(self): + self.tmpdir = os.path.abspath(mkdtemp()) + self.ds = datasource.DataSource(self.tmpdir) + + def teardown_method(self): + rmtree(self.tmpdir) + del self.ds + + def test_ValidHTTP(self): + scheme, netloc, upath, pms, qry, frg = urlparse(valid_httpurl()) + local_path = os.path.join(self.tmpdir, netloc, + upath.strip(os.sep).strip('/')) + assert_equal(local_path, self.ds.abspath(valid_httpurl())) + + def test_ValidFile(self): + tmpfile = valid_textfile(self.tmpdir) + tmpfilename = os.path.split(tmpfile)[-1] + # Test with filename only + assert_equal(tmpfile, self.ds.abspath(tmpfilename)) + # Test filename with complete path + assert_equal(tmpfile, self.ds.abspath(tmpfile)) + + def test_InvalidHTTP(self): + scheme, netloc, upath, pms, qry, frg = urlparse(invalid_httpurl()) + invalidhttp = os.path.join(self.tmpdir, netloc, + upath.strip(os.sep).strip('/')) + assert_(invalidhttp != self.ds.abspath(valid_httpurl())) + + def test_InvalidFile(self): + invalidfile = valid_textfile(self.tmpdir) + tmpfile = valid_textfile(self.tmpdir) + tmpfilename = os.path.split(tmpfile)[-1] + # Test with filename only + assert_(invalidfile != self.ds.abspath(tmpfilename)) + # Test filename with complete path + assert_(invalidfile != self.ds.abspath(tmpfile)) + + def test_sandboxing(self): + tmpfile = valid_textfile(self.tmpdir) + tmpfilename = os.path.split(tmpfile)[-1] + + tmp_path = lambda x: os.path.abspath(self.ds.abspath(x)) + + assert_(tmp_path(valid_httpurl()).startswith(self.tmpdir)) + assert_(tmp_path(invalid_httpurl()).startswith(self.tmpdir)) + assert_(tmp_path(tmpfile).startswith(self.tmpdir)) + assert_(tmp_path(tmpfilename).startswith(self.tmpdir)) + for fn in malicious_files: + assert_(tmp_path(http_path + fn).startswith(self.tmpdir)) + assert_(tmp_path(fn).startswith(self.tmpdir)) + + def test_windows_os_sep(self): + orig_os_sep = os.sep + try: + os.sep = '\\' + self.test_ValidHTTP() + self.test_ValidFile() + self.test_InvalidHTTP() + self.test_InvalidFile() + self.test_sandboxing() + finally: + os.sep = orig_os_sep + + +class TestRepositoryAbspath: + def setup_method(self): + self.tmpdir = os.path.abspath(mkdtemp()) + self.repos = datasource.Repository(valid_baseurl(), self.tmpdir) + + def teardown_method(self): + rmtree(self.tmpdir) + del self.repos + + def test_ValidHTTP(self): + scheme, netloc, upath, pms, qry, frg = urlparse(valid_httpurl()) + local_path = os.path.join(self.repos._destpath, netloc, + upath.strip(os.sep).strip('/')) + filepath = self.repos.abspath(valid_httpfile()) + assert_equal(local_path, filepath) + + def test_sandboxing(self): + tmp_path = lambda x: os.path.abspath(self.repos.abspath(x)) + assert_(tmp_path(valid_httpfile()).startswith(self.tmpdir)) + for fn in malicious_files: + assert_(tmp_path(http_path + fn).startswith(self.tmpdir)) + assert_(tmp_path(fn).startswith(self.tmpdir)) + + def test_windows_os_sep(self): + orig_os_sep = os.sep + try: + os.sep = '\\' + self.test_ValidHTTP() + self.test_sandboxing() + finally: + os.sep = orig_os_sep + + +class TestRepositoryExists: + def setup_method(self): + self.tmpdir = mkdtemp() + self.repos = datasource.Repository(valid_baseurl(), self.tmpdir) + + def teardown_method(self): + rmtree(self.tmpdir) + del self.repos + + def test_ValidFile(self): + # Create local temp file + tmpfile = valid_textfile(self.tmpdir) + assert_(self.repos.exists(tmpfile)) + + def test_InvalidFile(self): + tmpfile = invalid_textfile(self.tmpdir) + assert_equal(self.repos.exists(tmpfile), False) + + def test_RemoveHTTPFile(self): + assert_(self.repos.exists(valid_httpurl())) + + def test_CachedHTTPFile(self): + localfile = valid_httpurl() + # Create a locally cached temp file with an URL based + # directory structure. This is similar to what Repository.open + # would do. + scheme, netloc, upath, pms, qry, frg = urlparse(localfile) + local_path = os.path.join(self.repos._destpath, netloc) + os.mkdir(local_path, 0o0700) + tmpfile = valid_textfile(local_path) + assert_(self.repos.exists(tmpfile)) + + +class TestOpenFunc: + def setup_method(self): + self.tmpdir = mkdtemp() + + def teardown_method(self): + rmtree(self.tmpdir) + + def test_DataSourceOpen(self): + local_file = valid_textfile(self.tmpdir) + # Test case where destpath is passed in + fp = datasource.open(local_file, destpath=self.tmpdir) + assert_(fp) + fp.close() + # Test case where default destpath is used + fp = datasource.open(local_file) + assert_(fp) + fp.close() + +def test_del_attr_handling(): + # DataSource __del__ can be called + # even if __init__ fails when the + # Exception object is caught by the + # caller as happens in refguide_check + # is_deprecated() function + + ds = datasource.DataSource() + # simulate failed __init__ by removing key attribute + # produced within __init__ and expected by __del__ + del ds._istmpdest + # should not raise an AttributeError if __del__ + # gracefully handles failed __init__: + ds.__del__() diff --git a/.venv/lib/python3.12/site-packages/numpy/lib/tests/test__iotools.py b/.venv/lib/python3.12/site-packages/numpy/lib/tests/test__iotools.py new file mode 100644 index 0000000..1581ffb --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/lib/tests/test__iotools.py @@ -0,0 +1,360 @@ +import time +from datetime import date + +import numpy as np +from numpy.lib._iotools import ( + LineSplitter, + NameValidator, + StringConverter, + easy_dtype, + flatten_dtype, + has_nested_fields, +) +from numpy.testing import ( + assert_, + assert_allclose, + assert_equal, + assert_raises, +) + + +class TestLineSplitter: + "Tests the LineSplitter class." + + def test_no_delimiter(self): + "Test LineSplitter w/o delimiter" + strg = " 1 2 3 4 5 # test" + test = LineSplitter()(strg) + assert_equal(test, ['1', '2', '3', '4', '5']) + test = LineSplitter('')(strg) + assert_equal(test, ['1', '2', '3', '4', '5']) + + def test_space_delimiter(self): + "Test space delimiter" + strg = " 1 2 3 4 5 # test" + test = LineSplitter(' ')(strg) + assert_equal(test, ['1', '2', '3', '4', '', '5']) + test = LineSplitter(' ')(strg) + assert_equal(test, ['1 2 3 4', '5']) + + def test_tab_delimiter(self): + "Test tab delimiter" + strg = " 1\t 2\t 3\t 4\t 5 6" + test = LineSplitter('\t')(strg) + assert_equal(test, ['1', '2', '3', '4', '5 6']) + strg = " 1 2\t 3 4\t 5 6" + test = LineSplitter('\t')(strg) + assert_equal(test, ['1 2', '3 4', '5 6']) + + def test_other_delimiter(self): + "Test LineSplitter on delimiter" + strg = "1,2,3,4,,5" + test = LineSplitter(',')(strg) + assert_equal(test, ['1', '2', '3', '4', '', '5']) + # + strg = " 1,2,3,4,,5 # test" + test = LineSplitter(',')(strg) + assert_equal(test, ['1', '2', '3', '4', '', '5']) + + # gh-11028 bytes comment/delimiters should get encoded + strg = b" 1,2,3,4,,5 % test" + test = LineSplitter(delimiter=b',', comments=b'%')(strg) + assert_equal(test, ['1', '2', '3', '4', '', '5']) + + def test_constant_fixed_width(self): + "Test LineSplitter w/ fixed-width fields" + strg = " 1 2 3 4 5 # test" + test = LineSplitter(3)(strg) + assert_equal(test, ['1', '2', '3', '4', '', '5', '']) + # + strg = " 1 3 4 5 6# test" + test = LineSplitter(20)(strg) + assert_equal(test, ['1 3 4 5 6']) + # + strg = " 1 3 4 5 6# test" + test = LineSplitter(30)(strg) + assert_equal(test, ['1 3 4 5 6']) + + def test_variable_fixed_width(self): + strg = " 1 3 4 5 6# test" + test = LineSplitter((3, 6, 6, 3))(strg) + assert_equal(test, ['1', '3', '4 5', '6']) + # + strg = " 1 3 4 5 6# test" + test = LineSplitter((6, 6, 9))(strg) + assert_equal(test, ['1', '3 4', '5 6']) + +# ----------------------------------------------------------------------------- + + +class TestNameValidator: + + def test_case_sensitivity(self): + "Test case sensitivity" + names = ['A', 'a', 'b', 'c'] + test = NameValidator().validate(names) + assert_equal(test, ['A', 'a', 'b', 'c']) + test = NameValidator(case_sensitive=False).validate(names) + assert_equal(test, ['A', 'A_1', 'B', 'C']) + test = NameValidator(case_sensitive='upper').validate(names) + assert_equal(test, ['A', 'A_1', 'B', 'C']) + test = NameValidator(case_sensitive='lower').validate(names) + assert_equal(test, ['a', 'a_1', 'b', 'c']) + + # check exceptions + assert_raises(ValueError, NameValidator, case_sensitive='foobar') + + def test_excludelist(self): + "Test excludelist" + names = ['dates', 'data', 'Other Data', 'mask'] + validator = NameValidator(excludelist=['dates', 'data', 'mask']) + test = validator.validate(names) + assert_equal(test, ['dates_', 'data_', 'Other_Data', 'mask_']) + + def test_missing_names(self): + "Test validate missing names" + namelist = ('a', 'b', 'c') + validator = NameValidator() + assert_equal(validator(namelist), ['a', 'b', 'c']) + namelist = ('', 'b', 'c') + assert_equal(validator(namelist), ['f0', 'b', 'c']) + namelist = ('a', 'b', '') + assert_equal(validator(namelist), ['a', 'b', 'f0']) + namelist = ('', 'f0', '') + assert_equal(validator(namelist), ['f1', 'f0', 'f2']) + + def test_validate_nb_names(self): + "Test validate nb names" + namelist = ('a', 'b', 'c') + validator = NameValidator() + assert_equal(validator(namelist, nbfields=1), ('a',)) + assert_equal(validator(namelist, nbfields=5, defaultfmt="g%i"), + ['a', 'b', 'c', 'g0', 'g1']) + + def test_validate_wo_names(self): + "Test validate no names" + namelist = None + validator = NameValidator() + assert_(validator(namelist) is None) + assert_equal(validator(namelist, nbfields=3), ['f0', 'f1', 'f2']) + +# ----------------------------------------------------------------------------- + + +def _bytes_to_date(s): + return date(*time.strptime(s, "%Y-%m-%d")[:3]) + + +class TestStringConverter: + "Test StringConverter" + + def test_creation(self): + "Test creation of a StringConverter" + converter = StringConverter(int, -99999) + assert_equal(converter._status, 1) + assert_equal(converter.default, -99999) + + def test_upgrade(self): + "Tests the upgrade method." + + converter = StringConverter() + assert_equal(converter._status, 0) + + # test int + assert_equal(converter.upgrade('0'), 0) + assert_equal(converter._status, 1) + + # On systems where long defaults to 32-bit, the statuses will be + # offset by one, so we check for this here. + import numpy._core.numeric as nx + status_offset = int(nx.dtype(nx.int_).itemsize < nx.dtype(nx.int64).itemsize) + + # test int > 2**32 + assert_equal(converter.upgrade('17179869184'), 17179869184) + assert_equal(converter._status, 1 + status_offset) + + # test float + assert_allclose(converter.upgrade('0.'), 0.0) + assert_equal(converter._status, 2 + status_offset) + + # test complex + assert_equal(converter.upgrade('0j'), complex('0j')) + assert_equal(converter._status, 3 + status_offset) + + # test str + # note that the longdouble type has been skipped, so the + # _status increases by 2. Everything should succeed with + # unicode conversion (8). + for s in ['a', b'a']: + res = converter.upgrade(s) + assert_(type(res) is str) + assert_equal(res, 'a') + assert_equal(converter._status, 8 + status_offset) + + def test_missing(self): + "Tests the use of missing values." + converter = StringConverter(missing_values=('missing', + 'missed')) + converter.upgrade('0') + assert_equal(converter('0'), 0) + assert_equal(converter(''), converter.default) + assert_equal(converter('missing'), converter.default) + assert_equal(converter('missed'), converter.default) + try: + converter('miss') + except ValueError: + pass + + def test_upgrademapper(self): + "Tests updatemapper" + dateparser = _bytes_to_date + _original_mapper = StringConverter._mapper[:] + try: + StringConverter.upgrade_mapper(dateparser, date(2000, 1, 1)) + convert = StringConverter(dateparser, date(2000, 1, 1)) + test = convert('2001-01-01') + assert_equal(test, date(2001, 1, 1)) + test = convert('2009-01-01') + assert_equal(test, date(2009, 1, 1)) + test = convert('') + assert_equal(test, date(2000, 1, 1)) + finally: + StringConverter._mapper = _original_mapper + + def test_string_to_object(self): + "Make sure that string-to-object functions are properly recognized" + old_mapper = StringConverter._mapper[:] # copy of list + conv = StringConverter(_bytes_to_date) + assert_equal(conv._mapper, old_mapper) + assert_(hasattr(conv, 'default')) + + def test_keep_default(self): + "Make sure we don't lose an explicit default" + converter = StringConverter(None, missing_values='', + default=-999) + converter.upgrade('3.14159265') + assert_equal(converter.default, -999) + assert_equal(converter.type, np.dtype(float)) + # + converter = StringConverter( + None, missing_values='', default=0) + converter.upgrade('3.14159265') + assert_equal(converter.default, 0) + assert_equal(converter.type, np.dtype(float)) + + def test_keep_default_zero(self): + "Check that we don't lose a default of 0" + converter = StringConverter(int, default=0, + missing_values="N/A") + assert_equal(converter.default, 0) + + def test_keep_missing_values(self): + "Check that we're not losing missing values" + converter = StringConverter(int, default=0, + missing_values="N/A") + assert_equal( + converter.missing_values, {'', 'N/A'}) + + def test_int64_dtype(self): + "Check that int64 integer types can be specified" + converter = StringConverter(np.int64, default=0) + val = "-9223372036854775807" + assert_(converter(val) == -9223372036854775807) + val = "9223372036854775807" + assert_(converter(val) == 9223372036854775807) + + def test_uint64_dtype(self): + "Check that uint64 integer types can be specified" + converter = StringConverter(np.uint64, default=0) + val = "9223372043271415339" + assert_(converter(val) == 9223372043271415339) + + +class TestMiscFunctions: + + def test_has_nested_dtype(self): + "Test has_nested_dtype" + ndtype = np.dtype(float) + assert_equal(has_nested_fields(ndtype), False) + ndtype = np.dtype([('A', '|S3'), ('B', float)]) + assert_equal(has_nested_fields(ndtype), False) + ndtype = np.dtype([('A', int), ('B', [('BA', float), ('BB', '|S1')])]) + assert_equal(has_nested_fields(ndtype), True) + + def test_easy_dtype(self): + "Test ndtype on dtypes" + # Simple case + ndtype = float + assert_equal(easy_dtype(ndtype), np.dtype(float)) + # As string w/o names + ndtype = "i4, f8" + assert_equal(easy_dtype(ndtype), + np.dtype([('f0', "i4"), ('f1', "f8")])) + # As string w/o names but different default format + assert_equal(easy_dtype(ndtype, defaultfmt="field_%03i"), + np.dtype([('field_000', "i4"), ('field_001', "f8")])) + # As string w/ names + ndtype = "i4, f8" + assert_equal(easy_dtype(ndtype, names="a, b"), + np.dtype([('a', "i4"), ('b', "f8")])) + # As string w/ names (too many) + ndtype = "i4, f8" + assert_equal(easy_dtype(ndtype, names="a, b, c"), + np.dtype([('a', "i4"), ('b', "f8")])) + # As string w/ names (not enough) + ndtype = "i4, f8" + assert_equal(easy_dtype(ndtype, names=", b"), + np.dtype([('f0', "i4"), ('b', "f8")])) + # ... (with different default format) + assert_equal(easy_dtype(ndtype, names="a", defaultfmt="f%02i"), + np.dtype([('a', "i4"), ('f00', "f8")])) + # As list of tuples w/o names + ndtype = [('A', int), ('B', float)] + assert_equal(easy_dtype(ndtype), np.dtype([('A', int), ('B', float)])) + # As list of tuples w/ names + assert_equal(easy_dtype(ndtype, names="a,b"), + np.dtype([('a', int), ('b', float)])) + # As list of tuples w/ not enough names + assert_equal(easy_dtype(ndtype, names="a"), + np.dtype([('a', int), ('f0', float)])) + # As list of tuples w/ too many names + assert_equal(easy_dtype(ndtype, names="a,b,c"), + np.dtype([('a', int), ('b', float)])) + # As list of types w/o names + ndtype = (int, float, float) + assert_equal(easy_dtype(ndtype), + np.dtype([('f0', int), ('f1', float), ('f2', float)])) + # As list of types w names + ndtype = (int, float, float) + assert_equal(easy_dtype(ndtype, names="a, b, c"), + np.dtype([('a', int), ('b', float), ('c', float)])) + # As simple dtype w/ names + ndtype = np.dtype(float) + assert_equal(easy_dtype(ndtype, names="a, b, c"), + np.dtype([(_, float) for _ in ('a', 'b', 'c')])) + # As simple dtype w/o names (but multiple fields) + ndtype = np.dtype(float) + assert_equal( + easy_dtype(ndtype, names=['', '', ''], defaultfmt="f%02i"), + np.dtype([(_, float) for _ in ('f00', 'f01', 'f02')])) + + def test_flatten_dtype(self): + "Testing flatten_dtype" + # Standard dtype + dt = np.dtype([("a", "f8"), ("b", "f8")]) + dt_flat = flatten_dtype(dt) + assert_equal(dt_flat, [float, float]) + # Recursive dtype + dt = np.dtype([("a", [("aa", '|S1'), ("ab", '|S2')]), ("b", int)]) + dt_flat = flatten_dtype(dt) + assert_equal(dt_flat, [np.dtype('|S1'), np.dtype('|S2'), int]) + # dtype with shaped fields + dt = np.dtype([("a", (float, 2)), ("b", (int, 3))]) + dt_flat = flatten_dtype(dt) + assert_equal(dt_flat, [float, int]) + dt_flat = flatten_dtype(dt, True) + assert_equal(dt_flat, [float] * 2 + [int] * 3) + # dtype w/ titles + dt = np.dtype([(("a", "A"), "f8"), (("b", "B"), "f8")]) + dt_flat = flatten_dtype(dt) + assert_equal(dt_flat, [float, float]) diff --git a/.venv/lib/python3.12/site-packages/numpy/lib/tests/test__version.py b/.venv/lib/python3.12/site-packages/numpy/lib/tests/test__version.py new file mode 100644 index 0000000..6e6a34a --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/lib/tests/test__version.py @@ -0,0 +1,64 @@ +"""Tests for the NumpyVersion class. + +""" +from numpy.lib import NumpyVersion +from numpy.testing import assert_, assert_raises + + +def test_main_versions(): + assert_(NumpyVersion('1.8.0') == '1.8.0') + for ver in ['1.9.0', '2.0.0', '1.8.1', '10.0.1']: + assert_(NumpyVersion('1.8.0') < ver) + + for ver in ['1.7.0', '1.7.1', '0.9.9']: + assert_(NumpyVersion('1.8.0') > ver) + + +def test_version_1_point_10(): + # regression test for gh-2998. + assert_(NumpyVersion('1.9.0') < '1.10.0') + assert_(NumpyVersion('1.11.0') < '1.11.1') + assert_(NumpyVersion('1.11.0') == '1.11.0') + assert_(NumpyVersion('1.99.11') < '1.99.12') + + +def test_alpha_beta_rc(): + assert_(NumpyVersion('1.8.0rc1') == '1.8.0rc1') + for ver in ['1.8.0', '1.8.0rc2']: + assert_(NumpyVersion('1.8.0rc1') < ver) + + for ver in ['1.8.0a2', '1.8.0b3', '1.7.2rc4']: + assert_(NumpyVersion('1.8.0rc1') > ver) + + assert_(NumpyVersion('1.8.0b1') > '1.8.0a2') + + +def test_dev_version(): + assert_(NumpyVersion('1.9.0.dev-Unknown') < '1.9.0') + for ver in ['1.9.0', '1.9.0a1', '1.9.0b2', '1.9.0b2.dev-ffffffff']: + assert_(NumpyVersion('1.9.0.dev-f16acvda') < ver) + + assert_(NumpyVersion('1.9.0.dev-f16acvda') == '1.9.0.dev-11111111') + + +def test_dev_a_b_rc_mixed(): + assert_(NumpyVersion('1.9.0a2.dev-f16acvda') == '1.9.0a2.dev-11111111') + assert_(NumpyVersion('1.9.0a2.dev-6acvda54') < '1.9.0a2') + + +def test_dev0_version(): + assert_(NumpyVersion('1.9.0.dev0+Unknown') < '1.9.0') + for ver in ['1.9.0', '1.9.0a1', '1.9.0b2', '1.9.0b2.dev0+ffffffff']: + assert_(NumpyVersion('1.9.0.dev0+f16acvda') < ver) + + assert_(NumpyVersion('1.9.0.dev0+f16acvda') == '1.9.0.dev0+11111111') + + +def test_dev0_a_b_rc_mixed(): + assert_(NumpyVersion('1.9.0a2.dev0+f16acvda') == '1.9.0a2.dev0+11111111') + assert_(NumpyVersion('1.9.0a2.dev0+6acvda54') < '1.9.0a2') + + +def test_raises(): + for ver in ['1.9', '1,9.0', '1.7.x']: + assert_raises(ValueError, NumpyVersion, ver) diff --git a/.venv/lib/python3.12/site-packages/numpy/lib/tests/test_array_utils.py b/.venv/lib/python3.12/site-packages/numpy/lib/tests/test_array_utils.py new file mode 100644 index 0000000..55b9d28 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/lib/tests/test_array_utils.py @@ -0,0 +1,32 @@ +import numpy as np +from numpy.lib import array_utils +from numpy.testing import assert_equal + + +class TestByteBounds: + def test_byte_bounds(self): + # pointer difference matches size * itemsize + # due to contiguity + a = np.arange(12).reshape(3, 4) + low, high = array_utils.byte_bounds(a) + assert_equal(high - low, a.size * a.itemsize) + + def test_unusual_order_positive_stride(self): + a = np.arange(12).reshape(3, 4) + b = a.T + low, high = array_utils.byte_bounds(b) + assert_equal(high - low, b.size * b.itemsize) + + def test_unusual_order_negative_stride(self): + a = np.arange(12).reshape(3, 4) + b = a.T[::-1] + low, high = array_utils.byte_bounds(b) + assert_equal(high - low, b.size * b.itemsize) + + def test_strided(self): + a = np.arange(12) + b = a[::2] + low, high = array_utils.byte_bounds(b) + # the largest pointer address is lost (even numbers only in the + # stride), and compensate addresses for striding by 2 + assert_equal(high - low, b.size * 2 * b.itemsize - b.itemsize) diff --git a/.venv/lib/python3.12/site-packages/numpy/lib/tests/test_arraypad.py b/.venv/lib/python3.12/site-packages/numpy/lib/tests/test_arraypad.py new file mode 100644 index 0000000..6efbe34 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/lib/tests/test_arraypad.py @@ -0,0 +1,1415 @@ +"""Tests for the array padding functions. + +""" +import pytest + +import numpy as np +from numpy.lib._arraypad_impl import _as_pairs +from numpy.testing import assert_allclose, assert_array_equal, assert_equal + +_numeric_dtypes = ( + np._core.sctypes["uint"] + + np._core.sctypes["int"] + + np._core.sctypes["float"] + + np._core.sctypes["complex"] +) +_all_modes = { + 'constant': {'constant_values': 0}, + 'edge': {}, + 'linear_ramp': {'end_values': 0}, + 'maximum': {'stat_length': None}, + 'mean': {'stat_length': None}, + 'median': {'stat_length': None}, + 'minimum': {'stat_length': None}, + 'reflect': {'reflect_type': 'even'}, + 'symmetric': {'reflect_type': 'even'}, + 'wrap': {}, + 'empty': {} +} + + +class TestAsPairs: + def test_single_value(self): + """Test casting for a single value.""" + expected = np.array([[3, 3]] * 10) + for x in (3, [3], [[3]]): + result = _as_pairs(x, 10) + assert_equal(result, expected) + # Test with dtype=object + obj = object() + assert_equal( + _as_pairs(obj, 10), + np.array([[obj, obj]] * 10) + ) + + def test_two_values(self): + """Test proper casting for two different values.""" + # Broadcasting in the first dimension with numbers + expected = np.array([[3, 4]] * 10) + for x in ([3, 4], [[3, 4]]): + result = _as_pairs(x, 10) + assert_equal(result, expected) + # and with dtype=object + obj = object() + assert_equal( + _as_pairs(["a", obj], 10), + np.array([["a", obj]] * 10) + ) + + # Broadcasting in the second / last dimension with numbers + assert_equal( + _as_pairs([[3], [4]], 2), + np.array([[3, 3], [4, 4]]) + ) + # and with dtype=object + assert_equal( + _as_pairs([["a"], [obj]], 2), + np.array([["a", "a"], [obj, obj]]) + ) + + def test_with_none(self): + expected = ((None, None), (None, None), (None, None)) + assert_equal( + _as_pairs(None, 3, as_index=False), + expected + ) + assert_equal( + _as_pairs(None, 3, as_index=True), + expected + ) + + def test_pass_through(self): + """Test if `x` already matching desired output are passed through.""" + expected = np.arange(12).reshape((6, 2)) + assert_equal( + _as_pairs(expected, 6), + expected + ) + + def test_as_index(self): + """Test results if `as_index=True`.""" + assert_equal( + _as_pairs([2.6, 3.3], 10, as_index=True), + np.array([[3, 3]] * 10, dtype=np.intp) + ) + assert_equal( + _as_pairs([2.6, 4.49], 10, as_index=True), + np.array([[3, 4]] * 10, dtype=np.intp) + ) + for x in (-3, [-3], [[-3]], [-3, 4], [3, -4], [[-3, 4]], [[4, -3]], + [[1, 2]] * 9 + [[1, -2]]): + with pytest.raises(ValueError, match="negative values"): + _as_pairs(x, 10, as_index=True) + + def test_exceptions(self): + """Ensure faulty usage is discovered.""" + with pytest.raises(ValueError, match="more dimensions than allowed"): + _as_pairs([[[3]]], 10) + with pytest.raises(ValueError, match="could not be broadcast"): + _as_pairs([[1, 2], [3, 4]], 3) + with pytest.raises(ValueError, match="could not be broadcast"): + _as_pairs(np.ones((2, 3)), 3) + + +class TestConditionalShortcuts: + @pytest.mark.parametrize("mode", _all_modes.keys()) + def test_zero_padding_shortcuts(self, mode): + test = np.arange(120).reshape(4, 5, 6) + pad_amt = [(0, 0) for _ in test.shape] + assert_array_equal(test, np.pad(test, pad_amt, mode=mode)) + + @pytest.mark.parametrize("mode", ['maximum', 'mean', 'median', 'minimum',]) + def test_shallow_statistic_range(self, mode): + test = np.arange(120).reshape(4, 5, 6) + pad_amt = [(1, 1) for _ in test.shape] + assert_array_equal(np.pad(test, pad_amt, mode='edge'), + np.pad(test, pad_amt, mode=mode, stat_length=1)) + + @pytest.mark.parametrize("mode", ['maximum', 'mean', 'median', 'minimum',]) + def test_clip_statistic_range(self, mode): + test = np.arange(30).reshape(5, 6) + pad_amt = [(3, 3) for _ in test.shape] + assert_array_equal(np.pad(test, pad_amt, mode=mode), + np.pad(test, pad_amt, mode=mode, stat_length=30)) + + +class TestStatistic: + def test_check_mean_stat_length(self): + a = np.arange(100).astype('f') + a = np.pad(a, ((25, 20), ), 'mean', stat_length=((2, 3), )) + b = np.array( + [0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, + 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, + 0.5, 0.5, 0.5, 0.5, 0.5, + + 0., 1., 2., 3., 4., 5., 6., 7., 8., 9., + 10., 11., 12., 13., 14., 15., 16., 17., 18., 19., + 20., 21., 22., 23., 24., 25., 26., 27., 28., 29., + 30., 31., 32., 33., 34., 35., 36., 37., 38., 39., + 40., 41., 42., 43., 44., 45., 46., 47., 48., 49., + 50., 51., 52., 53., 54., 55., 56., 57., 58., 59., + 60., 61., 62., 63., 64., 65., 66., 67., 68., 69., + 70., 71., 72., 73., 74., 75., 76., 77., 78., 79., + 80., 81., 82., 83., 84., 85., 86., 87., 88., 89., + 90., 91., 92., 93., 94., 95., 96., 97., 98., 99., + + 98., 98., 98., 98., 98., 98., 98., 98., 98., 98., + 98., 98., 98., 98., 98., 98., 98., 98., 98., 98. + ]) + assert_array_equal(a, b) + + def test_check_maximum_1(self): + a = np.arange(100) + a = np.pad(a, (25, 20), 'maximum') + b = np.array( + [99, 99, 99, 99, 99, 99, 99, 99, 99, 99, + 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, + 99, 99, 99, 99, 99, + + 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, + 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, + 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, + 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, + 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, + 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, + 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, + 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, + 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, + 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, + + 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, + 99, 99, 99, 99, 99, 99, 99, 99, 99, 99] + ) + assert_array_equal(a, b) + + def test_check_maximum_2(self): + a = np.arange(100) + 1 + a = np.pad(a, (25, 20), 'maximum') + b = np.array( + [100, 100, 100, 100, 100, 100, 100, 100, 100, 100, + 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, + 100, 100, 100, 100, 100, + + 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, + 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, + 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, + 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, + 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, + 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, + 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, + 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, + 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, + 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, + + 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, + 100, 100, 100, 100, 100, 100, 100, 100, 100, 100] + ) + assert_array_equal(a, b) + + def test_check_maximum_stat_length(self): + a = np.arange(100) + 1 + a = np.pad(a, (25, 20), 'maximum', stat_length=10) + b = np.array( + [10, 10, 10, 10, 10, 10, 10, 10, 10, 10, + 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, + 10, 10, 10, 10, 10, + + 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, + 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, + 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, + 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, + 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, + 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, + 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, + 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, + 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, + 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, + + 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, + 100, 100, 100, 100, 100, 100, 100, 100, 100, 100] + ) + assert_array_equal(a, b) + + def test_check_minimum_1(self): + a = np.arange(100) + a = np.pad(a, (25, 20), 'minimum') + b = np.array( + [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, + 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, + 0, 0, 0, 0, 0, + + 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, + 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, + 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, + 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, + 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, + 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, + 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, + 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, + 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, + 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, + + 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, + 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] + ) + assert_array_equal(a, b) + + def test_check_minimum_2(self): + a = np.arange(100) + 2 + a = np.pad(a, (25, 20), 'minimum') + b = np.array( + [ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, + + 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, + 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, + 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, + 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, + 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, + 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, + 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, + 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, + 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, + 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, + + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2] + ) + assert_array_equal(a, b) + + def test_check_minimum_stat_length(self): + a = np.arange(100) + 1 + a = np.pad(a, (25, 20), 'minimum', stat_length=10) + b = np.array( + [ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, + 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, + 1, 1, 1, 1, 1, + + 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, + 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, + 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, + 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, + 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, + 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, + 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, + 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, + 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, + 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, + + 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, + 91, 91, 91, 91, 91, 91, 91, 91, 91, 91] + ) + assert_array_equal(a, b) + + def test_check_median(self): + a = np.arange(100).astype('f') + a = np.pad(a, (25, 20), 'median') + b = np.array( + [49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, + 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, + 49.5, 49.5, 49.5, 49.5, 49.5, + + 0., 1., 2., 3., 4., 5., 6., 7., 8., 9., + 10., 11., 12., 13., 14., 15., 16., 17., 18., 19., + 20., 21., 22., 23., 24., 25., 26., 27., 28., 29., + 30., 31., 32., 33., 34., 35., 36., 37., 38., 39., + 40., 41., 42., 43., 44., 45., 46., 47., 48., 49., + 50., 51., 52., 53., 54., 55., 56., 57., 58., 59., + 60., 61., 62., 63., 64., 65., 66., 67., 68., 69., + 70., 71., 72., 73., 74., 75., 76., 77., 78., 79., + 80., 81., 82., 83., 84., 85., 86., 87., 88., 89., + 90., 91., 92., 93., 94., 95., 96., 97., 98., 99., + + 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, + 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5] + ) + assert_array_equal(a, b) + + def test_check_median_01(self): + a = np.array([[3, 1, 4], [4, 5, 9], [9, 8, 2]]) + a = np.pad(a, 1, 'median') + b = np.array( + [[4, 4, 5, 4, 4], + + [3, 3, 1, 4, 3], + [5, 4, 5, 9, 5], + [8, 9, 8, 2, 8], + + [4, 4, 5, 4, 4]] + ) + assert_array_equal(a, b) + + def test_check_median_02(self): + a = np.array([[3, 1, 4], [4, 5, 9], [9, 8, 2]]) + a = np.pad(a.T, 1, 'median').T + b = np.array( + [[5, 4, 5, 4, 5], + + [3, 3, 1, 4, 3], + [5, 4, 5, 9, 5], + [8, 9, 8, 2, 8], + + [5, 4, 5, 4, 5]] + ) + assert_array_equal(a, b) + + def test_check_median_stat_length(self): + a = np.arange(100).astype('f') + a[1] = 2. + a[97] = 96. + a = np.pad(a, (25, 20), 'median', stat_length=(3, 5)) + b = np.array( + [ 2., 2., 2., 2., 2., 2., 2., 2., 2., 2., + 2., 2., 2., 2., 2., 2., 2., 2., 2., 2., + 2., 2., 2., 2., 2., + + 0., 2., 2., 3., 4., 5., 6., 7., 8., 9., + 10., 11., 12., 13., 14., 15., 16., 17., 18., 19., + 20., 21., 22., 23., 24., 25., 26., 27., 28., 29., + 30., 31., 32., 33., 34., 35., 36., 37., 38., 39., + 40., 41., 42., 43., 44., 45., 46., 47., 48., 49., + 50., 51., 52., 53., 54., 55., 56., 57., 58., 59., + 60., 61., 62., 63., 64., 65., 66., 67., 68., 69., + 70., 71., 72., 73., 74., 75., 76., 77., 78., 79., + 80., 81., 82., 83., 84., 85., 86., 87., 88., 89., + 90., 91., 92., 93., 94., 95., 96., 96., 98., 99., + + 96., 96., 96., 96., 96., 96., 96., 96., 96., 96., + 96., 96., 96., 96., 96., 96., 96., 96., 96., 96.] + ) + assert_array_equal(a, b) + + def test_check_mean_shape_one(self): + a = [[4, 5, 6]] + a = np.pad(a, (5, 7), 'mean', stat_length=2) + b = np.array( + [[4, 4, 4, 4, 4, 4, 5, 6, 6, 6, 6, 6, 6, 6, 6], + [4, 4, 4, 4, 4, 4, 5, 6, 6, 6, 6, 6, 6, 6, 6], + [4, 4, 4, 4, 4, 4, 5, 6, 6, 6, 6, 6, 6, 6, 6], + [4, 4, 4, 4, 4, 4, 5, 6, 6, 6, 6, 6, 6, 6, 6], + [4, 4, 4, 4, 4, 4, 5, 6, 6, 6, 6, 6, 6, 6, 6], + + [4, 4, 4, 4, 4, 4, 5, 6, 6, 6, 6, 6, 6, 6, 6], + + [4, 4, 4, 4, 4, 4, 5, 6, 6, 6, 6, 6, 6, 6, 6], + [4, 4, 4, 4, 4, 4, 5, 6, 6, 6, 6, 6, 6, 6, 6], + [4, 4, 4, 4, 4, 4, 5, 6, 6, 6, 6, 6, 6, 6, 6], + [4, 4, 4, 4, 4, 4, 5, 6, 6, 6, 6, 6, 6, 6, 6], + [4, 4, 4, 4, 4, 4, 5, 6, 6, 6, 6, 6, 6, 6, 6], + [4, 4, 4, 4, 4, 4, 5, 6, 6, 6, 6, 6, 6, 6, 6], + [4, 4, 4, 4, 4, 4, 5, 6, 6, 6, 6, 6, 6, 6, 6]] + ) + assert_array_equal(a, b) + + def test_check_mean_2(self): + a = np.arange(100).astype('f') + a = np.pad(a, (25, 20), 'mean') + b = np.array( + [49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, + 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, + 49.5, 49.5, 49.5, 49.5, 49.5, + + 0., 1., 2., 3., 4., 5., 6., 7., 8., 9., + 10., 11., 12., 13., 14., 15., 16., 17., 18., 19., + 20., 21., 22., 23., 24., 25., 26., 27., 28., 29., + 30., 31., 32., 33., 34., 35., 36., 37., 38., 39., + 40., 41., 42., 43., 44., 45., 46., 47., 48., 49., + 50., 51., 52., 53., 54., 55., 56., 57., 58., 59., + 60., 61., 62., 63., 64., 65., 66., 67., 68., 69., + 70., 71., 72., 73., 74., 75., 76., 77., 78., 79., + 80., 81., 82., 83., 84., 85., 86., 87., 88., 89., + 90., 91., 92., 93., 94., 95., 96., 97., 98., 99., + + 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, + 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5] + ) + assert_array_equal(a, b) + + @pytest.mark.parametrize("mode", [ + "mean", + "median", + "minimum", + "maximum" + ]) + def test_same_prepend_append(self, mode): + """ Test that appended and prepended values are equal """ + # This test is constructed to trigger floating point rounding errors in + # a way that caused gh-11216 for mode=='mean' + a = np.array([-1, 2, -1]) + np.array([0, 1e-12, 0], dtype=np.float64) + a = np.pad(a, (1, 1), mode) + assert_equal(a[0], a[-1]) + + @pytest.mark.parametrize("mode", ["mean", "median", "minimum", "maximum"]) + @pytest.mark.parametrize( + "stat_length", [-2, (-2,), (3, -1), ((5, 2), (-2, 3)), ((-4,), (2,))] + ) + def test_check_negative_stat_length(self, mode, stat_length): + arr = np.arange(30).reshape((6, 5)) + match = "index can't contain negative values" + with pytest.raises(ValueError, match=match): + np.pad(arr, 2, mode, stat_length=stat_length) + + def test_simple_stat_length(self): + a = np.arange(30) + a = np.reshape(a, (6, 5)) + a = np.pad(a, ((2, 3), (3, 2)), mode='mean', stat_length=(3,)) + b = np.array( + [[6, 6, 6, 5, 6, 7, 8, 9, 8, 8], + [6, 6, 6, 5, 6, 7, 8, 9, 8, 8], + + [1, 1, 1, 0, 1, 2, 3, 4, 3, 3], + [6, 6, 6, 5, 6, 7, 8, 9, 8, 8], + [11, 11, 11, 10, 11, 12, 13, 14, 13, 13], + [16, 16, 16, 15, 16, 17, 18, 19, 18, 18], + [21, 21, 21, 20, 21, 22, 23, 24, 23, 23], + [26, 26, 26, 25, 26, 27, 28, 29, 28, 28], + + [21, 21, 21, 20, 21, 22, 23, 24, 23, 23], + [21, 21, 21, 20, 21, 22, 23, 24, 23, 23], + [21, 21, 21, 20, 21, 22, 23, 24, 23, 23]] + ) + assert_array_equal(a, b) + + @pytest.mark.filterwarnings("ignore:Mean of empty slice:RuntimeWarning") + @pytest.mark.filterwarnings( + "ignore:invalid value encountered in( scalar)? divide:RuntimeWarning" + ) + @pytest.mark.parametrize("mode", ["mean", "median"]) + def test_zero_stat_length_valid(self, mode): + arr = np.pad([1., 2.], (1, 2), mode, stat_length=0) + expected = np.array([np.nan, 1., 2., np.nan, np.nan]) + assert_equal(arr, expected) + + @pytest.mark.parametrize("mode", ["minimum", "maximum"]) + def test_zero_stat_length_invalid(self, mode): + match = "stat_length of 0 yields no value for padding" + with pytest.raises(ValueError, match=match): + np.pad([1., 2.], 0, mode, stat_length=0) + with pytest.raises(ValueError, match=match): + np.pad([1., 2.], 0, mode, stat_length=(1, 0)) + with pytest.raises(ValueError, match=match): + np.pad([1., 2.], 1, mode, stat_length=0) + with pytest.raises(ValueError, match=match): + np.pad([1., 2.], 1, mode, stat_length=(1, 0)) + + +class TestConstant: + def test_check_constant(self): + a = np.arange(100) + a = np.pad(a, (25, 20), 'constant', constant_values=(10, 20)) + b = np.array( + [10, 10, 10, 10, 10, 10, 10, 10, 10, 10, + 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, + 10, 10, 10, 10, 10, + + 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, + 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, + 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, + 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, + 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, + 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, + 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, + 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, + 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, + 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, + + 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, + 20, 20, 20, 20, 20, 20, 20, 20, 20, 20] + ) + assert_array_equal(a, b) + + def test_check_constant_zeros(self): + a = np.arange(100) + a = np.pad(a, (25, 20), 'constant') + b = np.array( + [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, + 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, + 0, 0, 0, 0, 0, + + 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, + 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, + 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, + 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, + 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, + 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, + 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, + 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, + 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, + 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, + + 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, + 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] + ) + assert_array_equal(a, b) + + def test_check_constant_float(self): + # If input array is int, but constant_values are float, the dtype of + # the array to be padded is kept + arr = np.arange(30).reshape(5, 6) + test = np.pad(arr, (1, 2), mode='constant', + constant_values=1.1) + expected = np.array( + [[1, 1, 1, 1, 1, 1, 1, 1, 1], + + [1, 0, 1, 2, 3, 4, 5, 1, 1], + [1, 6, 7, 8, 9, 10, 11, 1, 1], + [1, 12, 13, 14, 15, 16, 17, 1, 1], + [1, 18, 19, 20, 21, 22, 23, 1, 1], + [1, 24, 25, 26, 27, 28, 29, 1, 1], + + [1, 1, 1, 1, 1, 1, 1, 1, 1], + [1, 1, 1, 1, 1, 1, 1, 1, 1]] + ) + assert_allclose(test, expected) + + def test_check_constant_float2(self): + # If input array is float, and constant_values are float, the dtype of + # the array to be padded is kept - here retaining the float constants + arr = np.arange(30).reshape(5, 6) + arr_float = arr.astype(np.float64) + test = np.pad(arr_float, ((1, 2), (1, 2)), mode='constant', + constant_values=1.1) + expected = np.array( + [[1.1, 1.1, 1.1, 1.1, 1.1, 1.1, 1.1, 1.1, 1.1], + + [1.1, 0. , 1. , 2. , 3. , 4. , 5. , 1.1, 1.1], # noqa: E203 + [1.1, 6. , 7. , 8. , 9. , 10. , 11. , 1.1, 1.1], # noqa: E203 + [1.1, 12. , 13. , 14. , 15. , 16. , 17. , 1.1, 1.1], # noqa: E203 + [1.1, 18. , 19. , 20. , 21. , 22. , 23. , 1.1, 1.1], # noqa: E203 + [1.1, 24. , 25. , 26. , 27. , 28. , 29. , 1.1, 1.1], # noqa: E203 + + [1.1, 1.1, 1.1, 1.1, 1.1, 1.1, 1.1, 1.1, 1.1], + [1.1, 1.1, 1.1, 1.1, 1.1, 1.1, 1.1, 1.1, 1.1]] + ) + assert_allclose(test, expected) + + def test_check_constant_float3(self): + a = np.arange(100, dtype=float) + a = np.pad(a, (25, 20), 'constant', constant_values=(-1.1, -1.2)) + b = np.array( + [-1.1, -1.1, -1.1, -1.1, -1.1, -1.1, -1.1, -1.1, -1.1, -1.1, + -1.1, -1.1, -1.1, -1.1, -1.1, -1.1, -1.1, -1.1, -1.1, -1.1, + -1.1, -1.1, -1.1, -1.1, -1.1, + + 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, + 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, + 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, + 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, + 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, + 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, + 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, + 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, + 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, + 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, + + -1.2, -1.2, -1.2, -1.2, -1.2, -1.2, -1.2, -1.2, -1.2, -1.2, + -1.2, -1.2, -1.2, -1.2, -1.2, -1.2, -1.2, -1.2, -1.2, -1.2] + ) + assert_allclose(a, b) + + def test_check_constant_odd_pad_amount(self): + arr = np.arange(30).reshape(5, 6) + test = np.pad(arr, ((1,), (2,)), mode='constant', + constant_values=3) + expected = np.array( + [[3, 3, 3, 3, 3, 3, 3, 3, 3, 3], + + [3, 3, 0, 1, 2, 3, 4, 5, 3, 3], + [3, 3, 6, 7, 8, 9, 10, 11, 3, 3], + [3, 3, 12, 13, 14, 15, 16, 17, 3, 3], + [3, 3, 18, 19, 20, 21, 22, 23, 3, 3], + [3, 3, 24, 25, 26, 27, 28, 29, 3, 3], + + [3, 3, 3, 3, 3, 3, 3, 3, 3, 3]] + ) + assert_allclose(test, expected) + + def test_check_constant_pad_2d(self): + arr = np.arange(4).reshape(2, 2) + test = np.pad(arr, ((1, 2), (1, 3)), mode='constant', + constant_values=((1, 2), (3, 4))) + expected = np.array( + [[3, 1, 1, 4, 4, 4], + [3, 0, 1, 4, 4, 4], + [3, 2, 3, 4, 4, 4], + [3, 2, 2, 4, 4, 4], + [3, 2, 2, 4, 4, 4]] + ) + assert_allclose(test, expected) + + def test_check_large_integers(self): + uint64_max = 2 ** 64 - 1 + arr = np.full(5, uint64_max, dtype=np.uint64) + test = np.pad(arr, 1, mode="constant", constant_values=arr.min()) + expected = np.full(7, uint64_max, dtype=np.uint64) + assert_array_equal(test, expected) + + int64_max = 2 ** 63 - 1 + arr = np.full(5, int64_max, dtype=np.int64) + test = np.pad(arr, 1, mode="constant", constant_values=arr.min()) + expected = np.full(7, int64_max, dtype=np.int64) + assert_array_equal(test, expected) + + def test_check_object_array(self): + arr = np.empty(1, dtype=object) + obj_a = object() + arr[0] = obj_a + obj_b = object() + obj_c = object() + arr = np.pad(arr, pad_width=1, mode='constant', + constant_values=(obj_b, obj_c)) + + expected = np.empty((3,), dtype=object) + expected[0] = obj_b + expected[1] = obj_a + expected[2] = obj_c + + assert_array_equal(arr, expected) + + def test_pad_empty_dimension(self): + arr = np.zeros((3, 0, 2)) + result = np.pad(arr, [(0,), (2,), (1,)], mode="constant") + assert result.shape == (3, 4, 4) + + +class TestLinearRamp: + def test_check_simple(self): + a = np.arange(100).astype('f') + a = np.pad(a, (25, 20), 'linear_ramp', end_values=(4, 5)) + b = np.array( + [4.00, 3.84, 3.68, 3.52, 3.36, 3.20, 3.04, 2.88, 2.72, 2.56, + 2.40, 2.24, 2.08, 1.92, 1.76, 1.60, 1.44, 1.28, 1.12, 0.96, + 0.80, 0.64, 0.48, 0.32, 0.16, + + 0.00, 1.00, 2.00, 3.00, 4.00, 5.00, 6.00, 7.00, 8.00, 9.00, + 10.0, 11.0, 12.0, 13.0, 14.0, 15.0, 16.0, 17.0, 18.0, 19.0, + 20.0, 21.0, 22.0, 23.0, 24.0, 25.0, 26.0, 27.0, 28.0, 29.0, + 30.0, 31.0, 32.0, 33.0, 34.0, 35.0, 36.0, 37.0, 38.0, 39.0, + 40.0, 41.0, 42.0, 43.0, 44.0, 45.0, 46.0, 47.0, 48.0, 49.0, + 50.0, 51.0, 52.0, 53.0, 54.0, 55.0, 56.0, 57.0, 58.0, 59.0, + 60.0, 61.0, 62.0, 63.0, 64.0, 65.0, 66.0, 67.0, 68.0, 69.0, + 70.0, 71.0, 72.0, 73.0, 74.0, 75.0, 76.0, 77.0, 78.0, 79.0, + 80.0, 81.0, 82.0, 83.0, 84.0, 85.0, 86.0, 87.0, 88.0, 89.0, + 90.0, 91.0, 92.0, 93.0, 94.0, 95.0, 96.0, 97.0, 98.0, 99.0, + + 94.3, 89.6, 84.9, 80.2, 75.5, 70.8, 66.1, 61.4, 56.7, 52.0, + 47.3, 42.6, 37.9, 33.2, 28.5, 23.8, 19.1, 14.4, 9.7, 5.] + ) + assert_allclose(a, b, rtol=1e-5, atol=1e-5) + + def test_check_2d(self): + arr = np.arange(20).reshape(4, 5).astype(np.float64) + test = np.pad(arr, (2, 2), mode='linear_ramp', end_values=(0, 0)) + expected = np.array( + [[0., 0., 0., 0., 0., 0., 0., 0., 0.], + [0., 0., 0., 0.5, 1., 1.5, 2., 1., 0.], + [0., 0., 0., 1., 2., 3., 4., 2., 0.], + [0., 2.5, 5., 6., 7., 8., 9., 4.5, 0.], + [0., 5., 10., 11., 12., 13., 14., 7., 0.], + [0., 7.5, 15., 16., 17., 18., 19., 9.5, 0.], + [0., 3.75, 7.5, 8., 8.5, 9., 9.5, 4.75, 0.], + [0., 0., 0., 0., 0., 0., 0., 0., 0.]]) + assert_allclose(test, expected) + + @pytest.mark.xfail(exceptions=(AssertionError,)) + def test_object_array(self): + from fractions import Fraction + arr = np.array([Fraction(1, 2), Fraction(-1, 2)]) + actual = np.pad(arr, (2, 3), mode='linear_ramp', end_values=0) + + # deliberately chosen to have a non-power-of-2 denominator such that + # rounding to floats causes a failure. + expected = np.array([ + Fraction( 0, 12), + Fraction( 3, 12), + Fraction( 6, 12), + Fraction(-6, 12), + Fraction(-4, 12), + Fraction(-2, 12), + Fraction(-0, 12), + ]) + assert_equal(actual, expected) + + def test_end_values(self): + """Ensure that end values are exact.""" + a = np.pad(np.ones(10).reshape(2, 5), (223, 123), mode="linear_ramp") + assert_equal(a[:, 0], 0.) + assert_equal(a[:, -1], 0.) + assert_equal(a[0, :], 0.) + assert_equal(a[-1, :], 0.) + + @pytest.mark.parametrize("dtype", _numeric_dtypes) + def test_negative_difference(self, dtype): + """ + Check correct behavior of unsigned dtypes if there is a negative + difference between the edge to pad and `end_values`. Check both cases + to be independent of implementation. Test behavior for all other dtypes + in case dtype casting interferes with complex dtypes. See gh-14191. + """ + x = np.array([3], dtype=dtype) + result = np.pad(x, 3, mode="linear_ramp", end_values=0) + expected = np.array([0, 1, 2, 3, 2, 1, 0], dtype=dtype) + assert_equal(result, expected) + + x = np.array([0], dtype=dtype) + result = np.pad(x, 3, mode="linear_ramp", end_values=3) + expected = np.array([3, 2, 1, 0, 1, 2, 3], dtype=dtype) + assert_equal(result, expected) + + +class TestReflect: + def test_check_simple(self): + a = np.arange(100) + a = np.pad(a, (25, 20), 'reflect') + b = np.array( + [25, 24, 23, 22, 21, 20, 19, 18, 17, 16, + 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, + 5, 4, 3, 2, 1, + + 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, + 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, + 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, + 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, + 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, + 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, + 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, + 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, + 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, + 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, + + 98, 97, 96, 95, 94, 93, 92, 91, 90, 89, + 88, 87, 86, 85, 84, 83, 82, 81, 80, 79] + ) + assert_array_equal(a, b) + + def test_check_odd_method(self): + a = np.arange(100) + a = np.pad(a, (25, 20), 'reflect', reflect_type='odd') + b = np.array( + [-25, -24, -23, -22, -21, -20, -19, -18, -17, -16, + -15, -14, -13, -12, -11, -10, -9, -8, -7, -6, + -5, -4, -3, -2, -1, + + 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, + 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, + 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, + 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, + 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, + 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, + 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, + 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, + 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, + 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, + + 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, + 110, 111, 112, 113, 114, 115, 116, 117, 118, 119] + ) + assert_array_equal(a, b) + + def test_check_large_pad(self): + a = [[4, 5, 6], [6, 7, 8]] + a = np.pad(a, (5, 7), 'reflect') + b = np.array( + [[7, 6, 7, 8, 7, 6, 7, 8, 7, 6, 7, 8, 7, 6, 7], + [5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5], + [7, 6, 7, 8, 7, 6, 7, 8, 7, 6, 7, 8, 7, 6, 7], + [5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5], + [7, 6, 7, 8, 7, 6, 7, 8, 7, 6, 7, 8, 7, 6, 7], + + [5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5], + [7, 6, 7, 8, 7, 6, 7, 8, 7, 6, 7, 8, 7, 6, 7], + + [5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5], + [7, 6, 7, 8, 7, 6, 7, 8, 7, 6, 7, 8, 7, 6, 7], + [5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5], + [7, 6, 7, 8, 7, 6, 7, 8, 7, 6, 7, 8, 7, 6, 7], + [5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5], + [7, 6, 7, 8, 7, 6, 7, 8, 7, 6, 7, 8, 7, 6, 7], + [5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5]] + ) + assert_array_equal(a, b) + + def test_check_shape(self): + a = [[4, 5, 6]] + a = np.pad(a, (5, 7), 'reflect') + b = np.array( + [[5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5], + [5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5], + [5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5], + [5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5], + [5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5], + + [5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5], + + [5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5], + [5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5], + [5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5], + [5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5], + [5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5], + [5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5], + [5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5]] + ) + assert_array_equal(a, b) + + def test_check_01(self): + a = np.pad([1, 2, 3], 2, 'reflect') + b = np.array([3, 2, 1, 2, 3, 2, 1]) + assert_array_equal(a, b) + + def test_check_02(self): + a = np.pad([1, 2, 3], 3, 'reflect') + b = np.array([2, 3, 2, 1, 2, 3, 2, 1, 2]) + assert_array_equal(a, b) + + def test_check_03(self): + a = np.pad([1, 2, 3], 4, 'reflect') + b = np.array([1, 2, 3, 2, 1, 2, 3, 2, 1, 2, 3]) + assert_array_equal(a, b) + + def test_check_04(self): + a = np.pad([1, 2, 3], [1, 10], 'reflect') + b = np.array([2, 1, 2, 3, 2, 1, 2, 3, 2, 1, 2, 3, 2, 1]) + assert_array_equal(a, b) + + def test_check_05(self): + a = np.pad([1, 2, 3, 4], [45, 10], 'reflect') + b = np.array( + [4, 3, 2, 1, 2, 3, 4, 3, 2, 1, + 2, 3, 4, 3, 2, 1, 2, 3, 4, 3, + 2, 1, 2, 3, 4, 3, 2, 1, 2, 3, + 4, 3, 2, 1, 2, 3, 4, 3, 2, 1, + 2, 3, 4, 3, 2, 1, 2, 3, 4, 3, + 2, 1, 2, 3, 4, 3, 2, 1, 2]) + assert_array_equal(a, b) + + def test_check_06(self): + a = np.pad([1, 2, 3, 4], [15, 2], 'symmetric') + b = np.array( + [2, 3, 4, 4, 3, 2, 1, 1, 2, 3, + 4, 4, 3, 2, 1, 1, 2, 3, 4, 4, + 3] + ) + assert_array_equal(a, b) + + def test_check_07(self): + a = np.pad([1, 2, 3, 4, 5, 6], [45, 3], 'symmetric') + b = np.array( + [4, 5, 6, 6, 5, 4, 3, 2, 1, 1, + 2, 3, 4, 5, 6, 6, 5, 4, 3, 2, + 1, 1, 2, 3, 4, 5, 6, 6, 5, 4, + 3, 2, 1, 1, 2, 3, 4, 5, 6, 6, + 5, 4, 3, 2, 1, 1, 2, 3, 4, 5, + 6, 6, 5, 4]) + assert_array_equal(a, b) + + +class TestEmptyArray: + """Check how padding behaves on arrays with an empty dimension.""" + + @pytest.mark.parametrize( + # Keep parametrization ordered, otherwise pytest-xdist might believe + # that different tests were collected during parallelization + "mode", sorted(_all_modes.keys() - {"constant", "empty"}) + ) + def test_pad_empty_dimension(self, mode): + match = ("can't extend empty axis 0 using modes other than 'constant' " + "or 'empty'") + with pytest.raises(ValueError, match=match): + np.pad([], 4, mode=mode) + with pytest.raises(ValueError, match=match): + np.pad(np.ndarray(0), 4, mode=mode) + with pytest.raises(ValueError, match=match): + np.pad(np.zeros((0, 3)), ((1,), (0,)), mode=mode) + + @pytest.mark.parametrize("mode", _all_modes.keys()) + def test_pad_non_empty_dimension(self, mode): + result = np.pad(np.ones((2, 0, 2)), ((3,), (0,), (1,)), mode=mode) + assert result.shape == (8, 0, 4) + + +class TestSymmetric: + def test_check_simple(self): + a = np.arange(100) + a = np.pad(a, (25, 20), 'symmetric') + b = np.array( + [24, 23, 22, 21, 20, 19, 18, 17, 16, 15, + 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, + 4, 3, 2, 1, 0, + + 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, + 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, + 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, + 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, + 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, + 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, + 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, + 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, + 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, + 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, + + 99, 98, 97, 96, 95, 94, 93, 92, 91, 90, + 89, 88, 87, 86, 85, 84, 83, 82, 81, 80] + ) + assert_array_equal(a, b) + + def test_check_odd_method(self): + a = np.arange(100) + a = np.pad(a, (25, 20), 'symmetric', reflect_type='odd') + b = np.array( + [-24, -23, -22, -21, -20, -19, -18, -17, -16, -15, + -14, -13, -12, -11, -10, -9, -8, -7, -6, -5, + -4, -3, -2, -1, 0, + + 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, + 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, + 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, + 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, + 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, + 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, + 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, + 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, + 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, + 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, + + 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, + 109, 110, 111, 112, 113, 114, 115, 116, 117, 118] + ) + assert_array_equal(a, b) + + def test_check_large_pad(self): + a = [[4, 5, 6], [6, 7, 8]] + a = np.pad(a, (5, 7), 'symmetric') + b = np.array( + [[5, 6, 6, 5, 4, 4, 5, 6, 6, 5, 4, 4, 5, 6, 6], + [5, 6, 6, 5, 4, 4, 5, 6, 6, 5, 4, 4, 5, 6, 6], + [7, 8, 8, 7, 6, 6, 7, 8, 8, 7, 6, 6, 7, 8, 8], + [7, 8, 8, 7, 6, 6, 7, 8, 8, 7, 6, 6, 7, 8, 8], + [5, 6, 6, 5, 4, 4, 5, 6, 6, 5, 4, 4, 5, 6, 6], + + [5, 6, 6, 5, 4, 4, 5, 6, 6, 5, 4, 4, 5, 6, 6], + [7, 8, 8, 7, 6, 6, 7, 8, 8, 7, 6, 6, 7, 8, 8], + + [7, 8, 8, 7, 6, 6, 7, 8, 8, 7, 6, 6, 7, 8, 8], + [5, 6, 6, 5, 4, 4, 5, 6, 6, 5, 4, 4, 5, 6, 6], + [5, 6, 6, 5, 4, 4, 5, 6, 6, 5, 4, 4, 5, 6, 6], + [7, 8, 8, 7, 6, 6, 7, 8, 8, 7, 6, 6, 7, 8, 8], + [7, 8, 8, 7, 6, 6, 7, 8, 8, 7, 6, 6, 7, 8, 8], + [5, 6, 6, 5, 4, 4, 5, 6, 6, 5, 4, 4, 5, 6, 6], + [5, 6, 6, 5, 4, 4, 5, 6, 6, 5, 4, 4, 5, 6, 6]] + ) + + assert_array_equal(a, b) + + def test_check_large_pad_odd(self): + a = [[4, 5, 6], [6, 7, 8]] + a = np.pad(a, (5, 7), 'symmetric', reflect_type='odd') + b = np.array( + [[-3, -2, -2, -1, 0, 0, 1, 2, 2, 3, 4, 4, 5, 6, 6], + [-3, -2, -2, -1, 0, 0, 1, 2, 2, 3, 4, 4, 5, 6, 6], + [-1, 0, 0, 1, 2, 2, 3, 4, 4, 5, 6, 6, 7, 8, 8], + [-1, 0, 0, 1, 2, 2, 3, 4, 4, 5, 6, 6, 7, 8, 8], + [ 1, 2, 2, 3, 4, 4, 5, 6, 6, 7, 8, 8, 9, 10, 10], + + [ 1, 2, 2, 3, 4, 4, 5, 6, 6, 7, 8, 8, 9, 10, 10], + [ 3, 4, 4, 5, 6, 6, 7, 8, 8, 9, 10, 10, 11, 12, 12], + + [ 3, 4, 4, 5, 6, 6, 7, 8, 8, 9, 10, 10, 11, 12, 12], + [ 5, 6, 6, 7, 8, 8, 9, 10, 10, 11, 12, 12, 13, 14, 14], + [ 5, 6, 6, 7, 8, 8, 9, 10, 10, 11, 12, 12, 13, 14, 14], + [ 7, 8, 8, 9, 10, 10, 11, 12, 12, 13, 14, 14, 15, 16, 16], + [ 7, 8, 8, 9, 10, 10, 11, 12, 12, 13, 14, 14, 15, 16, 16], + [ 9, 10, 10, 11, 12, 12, 13, 14, 14, 15, 16, 16, 17, 18, 18], + [ 9, 10, 10, 11, 12, 12, 13, 14, 14, 15, 16, 16, 17, 18, 18]] + ) + assert_array_equal(a, b) + + def test_check_shape(self): + a = [[4, 5, 6]] + a = np.pad(a, (5, 7), 'symmetric') + b = np.array( + [[5, 6, 6, 5, 4, 4, 5, 6, 6, 5, 4, 4, 5, 6, 6], + [5, 6, 6, 5, 4, 4, 5, 6, 6, 5, 4, 4, 5, 6, 6], + [5, 6, 6, 5, 4, 4, 5, 6, 6, 5, 4, 4, 5, 6, 6], + [5, 6, 6, 5, 4, 4, 5, 6, 6, 5, 4, 4, 5, 6, 6], + [5, 6, 6, 5, 4, 4, 5, 6, 6, 5, 4, 4, 5, 6, 6], + + [5, 6, 6, 5, 4, 4, 5, 6, 6, 5, 4, 4, 5, 6, 6], + [5, 6, 6, 5, 4, 4, 5, 6, 6, 5, 4, 4, 5, 6, 6], + + [5, 6, 6, 5, 4, 4, 5, 6, 6, 5, 4, 4, 5, 6, 6], + [5, 6, 6, 5, 4, 4, 5, 6, 6, 5, 4, 4, 5, 6, 6], + [5, 6, 6, 5, 4, 4, 5, 6, 6, 5, 4, 4, 5, 6, 6], + [5, 6, 6, 5, 4, 4, 5, 6, 6, 5, 4, 4, 5, 6, 6], + [5, 6, 6, 5, 4, 4, 5, 6, 6, 5, 4, 4, 5, 6, 6], + [5, 6, 6, 5, 4, 4, 5, 6, 6, 5, 4, 4, 5, 6, 6]] + ) + assert_array_equal(a, b) + + def test_check_01(self): + a = np.pad([1, 2, 3], 2, 'symmetric') + b = np.array([2, 1, 1, 2, 3, 3, 2]) + assert_array_equal(a, b) + + def test_check_02(self): + a = np.pad([1, 2, 3], 3, 'symmetric') + b = np.array([3, 2, 1, 1, 2, 3, 3, 2, 1]) + assert_array_equal(a, b) + + def test_check_03(self): + a = np.pad([1, 2, 3], 6, 'symmetric') + b = np.array([1, 2, 3, 3, 2, 1, 1, 2, 3, 3, 2, 1, 1, 2, 3]) + assert_array_equal(a, b) + + +class TestWrap: + def test_check_simple(self): + a = np.arange(100) + a = np.pad(a, (25, 20), 'wrap') + b = np.array( + [75, 76, 77, 78, 79, 80, 81, 82, 83, 84, + 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, + 95, 96, 97, 98, 99, + + 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, + 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, + 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, + 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, + 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, + 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, + 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, + 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, + 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, + 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, + + 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, + 10, 11, 12, 13, 14, 15, 16, 17, 18, 19] + ) + assert_array_equal(a, b) + + def test_check_large_pad(self): + a = np.arange(12) + a = np.reshape(a, (3, 4)) + a = np.pad(a, (10, 12), 'wrap') + b = np.array( + [[10, 11, 8, 9, 10, 11, 8, 9, 10, 11, 8, 9, 10, 11, 8, 9, 10, + 11, 8, 9, 10, 11, 8, 9, 10, 11], + [2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, + 3, 0, 1, 2, 3, 0, 1, 2, 3], + [6, 7, 4, 5, 6, 7, 4, 5, 6, 7, 4, 5, 6, 7, 4, 5, 6, + 7, 4, 5, 6, 7, 4, 5, 6, 7], + [10, 11, 8, 9, 10, 11, 8, 9, 10, 11, 8, 9, 10, 11, 8, 9, 10, + 11, 8, 9, 10, 11, 8, 9, 10, 11], + [2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, + 3, 0, 1, 2, 3, 0, 1, 2, 3], + [6, 7, 4, 5, 6, 7, 4, 5, 6, 7, 4, 5, 6, 7, 4, 5, 6, + 7, 4, 5, 6, 7, 4, 5, 6, 7], + [10, 11, 8, 9, 10, 11, 8, 9, 10, 11, 8, 9, 10, 11, 8, 9, 10, + 11, 8, 9, 10, 11, 8, 9, 10, 11], + [2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, + 3, 0, 1, 2, 3, 0, 1, 2, 3], + [6, 7, 4, 5, 6, 7, 4, 5, 6, 7, 4, 5, 6, 7, 4, 5, 6, + 7, 4, 5, 6, 7, 4, 5, 6, 7], + [10, 11, 8, 9, 10, 11, 8, 9, 10, 11, 8, 9, 10, 11, 8, 9, 10, + 11, 8, 9, 10, 11, 8, 9, 10, 11], + + [2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, + 3, 0, 1, 2, 3, 0, 1, 2, 3], + [6, 7, 4, 5, 6, 7, 4, 5, 6, 7, 4, 5, 6, 7, 4, 5, 6, + 7, 4, 5, 6, 7, 4, 5, 6, 7], + [10, 11, 8, 9, 10, 11, 8, 9, 10, 11, 8, 9, 10, 11, 8, 9, 10, + 11, 8, 9, 10, 11, 8, 9, 10, 11], + + [2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, + 3, 0, 1, 2, 3, 0, 1, 2, 3], + [6, 7, 4, 5, 6, 7, 4, 5, 6, 7, 4, 5, 6, 7, 4, 5, 6, + 7, 4, 5, 6, 7, 4, 5, 6, 7], + [10, 11, 8, 9, 10, 11, 8, 9, 10, 11, 8, 9, 10, 11, 8, 9, 10, + 11, 8, 9, 10, 11, 8, 9, 10, 11], + [2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, + 3, 0, 1, 2, 3, 0, 1, 2, 3], + [6, 7, 4, 5, 6, 7, 4, 5, 6, 7, 4, 5, 6, 7, 4, 5, 6, + 7, 4, 5, 6, 7, 4, 5, 6, 7], + [10, 11, 8, 9, 10, 11, 8, 9, 10, 11, 8, 9, 10, 11, 8, 9, 10, + 11, 8, 9, 10, 11, 8, 9, 10, 11], + [2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, + 3, 0, 1, 2, 3, 0, 1, 2, 3], + [6, 7, 4, 5, 6, 7, 4, 5, 6, 7, 4, 5, 6, 7, 4, 5, 6, + 7, 4, 5, 6, 7, 4, 5, 6, 7], + [10, 11, 8, 9, 10, 11, 8, 9, 10, 11, 8, 9, 10, 11, 8, 9, 10, + 11, 8, 9, 10, 11, 8, 9, 10, 11], + [2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, + 3, 0, 1, 2, 3, 0, 1, 2, 3], + [6, 7, 4, 5, 6, 7, 4, 5, 6, 7, 4, 5, 6, 7, 4, 5, 6, + 7, 4, 5, 6, 7, 4, 5, 6, 7], + [10, 11, 8, 9, 10, 11, 8, 9, 10, 11, 8, 9, 10, 11, 8, 9, 10, + 11, 8, 9, 10, 11, 8, 9, 10, 11]] + ) + assert_array_equal(a, b) + + def test_check_01(self): + a = np.pad([1, 2, 3], 3, 'wrap') + b = np.array([1, 2, 3, 1, 2, 3, 1, 2, 3]) + assert_array_equal(a, b) + + def test_check_02(self): + a = np.pad([1, 2, 3], 4, 'wrap') + b = np.array([3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1]) + assert_array_equal(a, b) + + def test_pad_with_zero(self): + a = np.ones((3, 5)) + b = np.pad(a, (0, 5), mode="wrap") + assert_array_equal(a, b[:-5, :-5]) + + def test_repeated_wrapping(self): + """ + Check wrapping on each side individually if the wrapped area is longer + than the original array. + """ + a = np.arange(5) + b = np.pad(a, (12, 0), mode="wrap") + assert_array_equal(np.r_[a, a, a, a][3:], b) + + a = np.arange(5) + b = np.pad(a, (0, 12), mode="wrap") + assert_array_equal(np.r_[a, a, a, a][:-3], b) + + def test_repeated_wrapping_multiple_origin(self): + """ + Assert that 'wrap' pads only with multiples of the original area if + the pad width is larger than the original array. + """ + a = np.arange(4).reshape(2, 2) + a = np.pad(a, [(1, 3), (3, 1)], mode='wrap') + b = np.array( + [[3, 2, 3, 2, 3, 2], + [1, 0, 1, 0, 1, 0], + [3, 2, 3, 2, 3, 2], + [1, 0, 1, 0, 1, 0], + [3, 2, 3, 2, 3, 2], + [1, 0, 1, 0, 1, 0]] + ) + assert_array_equal(a, b) + + +class TestEdge: + def test_check_simple(self): + a = np.arange(12) + a = np.reshape(a, (4, 3)) + a = np.pad(a, ((2, 3), (3, 2)), 'edge') + b = np.array( + [[0, 0, 0, 0, 1, 2, 2, 2], + [0, 0, 0, 0, 1, 2, 2, 2], + + [0, 0, 0, 0, 1, 2, 2, 2], + [3, 3, 3, 3, 4, 5, 5, 5], + [6, 6, 6, 6, 7, 8, 8, 8], + [9, 9, 9, 9, 10, 11, 11, 11], + + [9, 9, 9, 9, 10, 11, 11, 11], + [9, 9, 9, 9, 10, 11, 11, 11], + [9, 9, 9, 9, 10, 11, 11, 11]] + ) + assert_array_equal(a, b) + + def test_check_width_shape_1_2(self): + # Check a pad_width of the form ((1, 2),). + # Regression test for issue gh-7808. + a = np.array([1, 2, 3]) + padded = np.pad(a, ((1, 2),), 'edge') + expected = np.array([1, 1, 2, 3, 3, 3]) + assert_array_equal(padded, expected) + + a = np.array([[1, 2, 3], [4, 5, 6]]) + padded = np.pad(a, ((1, 2),), 'edge') + expected = np.pad(a, ((1, 2), (1, 2)), 'edge') + assert_array_equal(padded, expected) + + a = np.arange(24).reshape(2, 3, 4) + padded = np.pad(a, ((1, 2),), 'edge') + expected = np.pad(a, ((1, 2), (1, 2), (1, 2)), 'edge') + assert_array_equal(padded, expected) + + +class TestEmpty: + def test_simple(self): + arr = np.arange(24).reshape(4, 6) + result = np.pad(arr, [(2, 3), (3, 1)], mode="empty") + assert result.shape == (9, 10) + assert_equal(arr, result[2:-3, 3:-1]) + + def test_pad_empty_dimension(self): + arr = np.zeros((3, 0, 2)) + result = np.pad(arr, [(0,), (2,), (1,)], mode="empty") + assert result.shape == (3, 4, 4) + + +def test_legacy_vector_functionality(): + def _padwithtens(vector, pad_width, iaxis, kwargs): + vector[:pad_width[0]] = 10 + vector[-pad_width[1]:] = 10 + + a = np.arange(6).reshape(2, 3) + a = np.pad(a, 2, _padwithtens) + b = np.array( + [[10, 10, 10, 10, 10, 10, 10], + [10, 10, 10, 10, 10, 10, 10], + + [10, 10, 0, 1, 2, 10, 10], + [10, 10, 3, 4, 5, 10, 10], + + [10, 10, 10, 10, 10, 10, 10], + [10, 10, 10, 10, 10, 10, 10]] + ) + assert_array_equal(a, b) + + +def test_unicode_mode(): + a = np.pad([1], 2, mode='constant') + b = np.array([0, 0, 1, 0, 0]) + assert_array_equal(a, b) + + +@pytest.mark.parametrize("mode", ["edge", "symmetric", "reflect", "wrap"]) +def test_object_input(mode): + # Regression test for issue gh-11395. + a = np.full((4, 3), fill_value=None) + pad_amt = ((2, 3), (3, 2)) + b = np.full((9, 8), fill_value=None) + assert_array_equal(np.pad(a, pad_amt, mode=mode), b) + + +class TestPadWidth: + @pytest.mark.parametrize("pad_width", [ + (4, 5, 6, 7), + ((1,), (2,), (3,)), + ((1, 2), (3, 4), (5, 6)), + ((3, 4, 5), (0, 1, 2)), + ]) + @pytest.mark.parametrize("mode", _all_modes.keys()) + def test_misshaped_pad_width(self, pad_width, mode): + arr = np.arange(30).reshape((6, 5)) + match = "operands could not be broadcast together" + with pytest.raises(ValueError, match=match): + np.pad(arr, pad_width, mode) + + @pytest.mark.parametrize("mode", _all_modes.keys()) + def test_misshaped_pad_width_2(self, mode): + arr = np.arange(30).reshape((6, 5)) + match = ("input operand has more dimensions than allowed by the axis " + "remapping") + with pytest.raises(ValueError, match=match): + np.pad(arr, (((3,), (4,), (5,)), ((0,), (1,), (2,))), mode) + + @pytest.mark.parametrize( + "pad_width", [-2, (-2,), (3, -1), ((5, 2), (-2, 3)), ((-4,), (2,))]) + @pytest.mark.parametrize("mode", _all_modes.keys()) + def test_negative_pad_width(self, pad_width, mode): + arr = np.arange(30).reshape((6, 5)) + match = "index can't contain negative values" + with pytest.raises(ValueError, match=match): + np.pad(arr, pad_width, mode) + + @pytest.mark.parametrize("pad_width, dtype", [ + ("3", None), + ("word", None), + (None, None), + (object(), None), + (3.4, None), + (((2, 3, 4), (3, 2)), object), + (complex(1, -1), None), + (((-2.1, 3), (3, 2)), None), + ]) + @pytest.mark.parametrize("mode", _all_modes.keys()) + def test_bad_type(self, pad_width, dtype, mode): + arr = np.arange(30).reshape((6, 5)) + match = "`pad_width` must be of integral type." + if dtype is not None: + # avoid DeprecationWarning when not specifying dtype + with pytest.raises(TypeError, match=match): + np.pad(arr, np.array(pad_width, dtype=dtype), mode) + else: + with pytest.raises(TypeError, match=match): + np.pad(arr, pad_width, mode) + with pytest.raises(TypeError, match=match): + np.pad(arr, np.array(pad_width), mode) + + def test_pad_width_as_ndarray(self): + a = np.arange(12) + a = np.reshape(a, (4, 3)) + a = np.pad(a, np.array(((2, 3), (3, 2))), 'edge') + b = np.array( + [[0, 0, 0, 0, 1, 2, 2, 2], + [0, 0, 0, 0, 1, 2, 2, 2], + + [0, 0, 0, 0, 1, 2, 2, 2], + [3, 3, 3, 3, 4, 5, 5, 5], + [6, 6, 6, 6, 7, 8, 8, 8], + [9, 9, 9, 9, 10, 11, 11, 11], + + [9, 9, 9, 9, 10, 11, 11, 11], + [9, 9, 9, 9, 10, 11, 11, 11], + [9, 9, 9, 9, 10, 11, 11, 11]] + ) + assert_array_equal(a, b) + + @pytest.mark.parametrize("pad_width", [0, (0, 0), ((0, 0), (0, 0))]) + @pytest.mark.parametrize("mode", _all_modes.keys()) + def test_zero_pad_width(self, pad_width, mode): + arr = np.arange(30).reshape(6, 5) + assert_array_equal(arr, np.pad(arr, pad_width, mode=mode)) + + +@pytest.mark.parametrize("mode", _all_modes.keys()) +def test_kwargs(mode): + """Test behavior of pad's kwargs for the given mode.""" + allowed = _all_modes[mode] + not_allowed = {} + for kwargs in _all_modes.values(): + if kwargs != allowed: + not_allowed.update(kwargs) + # Test if allowed keyword arguments pass + np.pad([1, 2, 3], 1, mode, **allowed) + # Test if prohibited keyword arguments of other modes raise an error + for key, value in not_allowed.items(): + match = f"unsupported keyword arguments for mode '{mode}'" + with pytest.raises(ValueError, match=match): + np.pad([1, 2, 3], 1, mode, **{key: value}) + + +def test_constant_zero_default(): + arr = np.array([1, 1]) + assert_array_equal(np.pad(arr, 2), [0, 0, 1, 1, 0, 0]) + + +@pytest.mark.parametrize("mode", [1, "const", object(), None, True, False]) +def test_unsupported_mode(mode): + match = f"mode '{mode}' is not supported" + with pytest.raises(ValueError, match=match): + np.pad([1, 2, 3], 4, mode=mode) + + +@pytest.mark.parametrize("mode", _all_modes.keys()) +def test_non_contiguous_array(mode): + arr = np.arange(24).reshape(4, 6)[::2, ::2] + result = np.pad(arr, (2, 3), mode) + assert result.shape == (7, 8) + assert_equal(result[2:-3, 2:-3], arr) + + +@pytest.mark.parametrize("mode", _all_modes.keys()) +def test_memory_layout_persistence(mode): + """Test if C and F order is preserved for all pad modes.""" + x = np.ones((5, 10), order='C') + assert np.pad(x, 5, mode).flags["C_CONTIGUOUS"] + x = np.ones((5, 10), order='F') + assert np.pad(x, 5, mode).flags["F_CONTIGUOUS"] + + +@pytest.mark.parametrize("dtype", _numeric_dtypes) +@pytest.mark.parametrize("mode", _all_modes.keys()) +def test_dtype_persistence(dtype, mode): + arr = np.zeros((3, 2, 1), dtype=dtype) + result = np.pad(arr, 1, mode=mode) + assert result.dtype == dtype diff --git a/.venv/lib/python3.12/site-packages/numpy/lib/tests/test_arraysetops.py b/.venv/lib/python3.12/site-packages/numpy/lib/tests/test_arraysetops.py new file mode 100644 index 0000000..7865e1b --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/lib/tests/test_arraysetops.py @@ -0,0 +1,1074 @@ +"""Test functions for 1D array set operations. + +""" +import pytest + +import numpy as np +from numpy import ediff1d, intersect1d, isin, setdiff1d, setxor1d, union1d, unique +from numpy.exceptions import AxisError +from numpy.testing import ( + assert_array_equal, + assert_equal, + assert_raises, + assert_raises_regex, +) + + +class TestSetOps: + + def test_intersect1d(self): + # unique inputs + a = np.array([5, 7, 1, 2]) + b = np.array([2, 4, 3, 1, 5]) + + ec = np.array([1, 2, 5]) + c = intersect1d(a, b, assume_unique=True) + assert_array_equal(c, ec) + + # non-unique inputs + a = np.array([5, 5, 7, 1, 2]) + b = np.array([2, 1, 4, 3, 3, 1, 5]) + + ed = np.array([1, 2, 5]) + c = intersect1d(a, b) + assert_array_equal(c, ed) + assert_array_equal([], intersect1d([], [])) + + def test_intersect1d_array_like(self): + # See gh-11772 + class Test: + def __array__(self, dtype=None, copy=None): + return np.arange(3) + + a = Test() + res = intersect1d(a, a) + assert_array_equal(res, a) + res = intersect1d([1, 2, 3], [1, 2, 3]) + assert_array_equal(res, [1, 2, 3]) + + def test_intersect1d_indices(self): + # unique inputs + a = np.array([1, 2, 3, 4]) + b = np.array([2, 1, 4, 6]) + c, i1, i2 = intersect1d(a, b, assume_unique=True, return_indices=True) + ee = np.array([1, 2, 4]) + assert_array_equal(c, ee) + assert_array_equal(a[i1], ee) + assert_array_equal(b[i2], ee) + + # non-unique inputs + a = np.array([1, 2, 2, 3, 4, 3, 2]) + b = np.array([1, 8, 4, 2, 2, 3, 2, 3]) + c, i1, i2 = intersect1d(a, b, return_indices=True) + ef = np.array([1, 2, 3, 4]) + assert_array_equal(c, ef) + assert_array_equal(a[i1], ef) + assert_array_equal(b[i2], ef) + + # non1d, unique inputs + a = np.array([[2, 4, 5, 6], [7, 8, 1, 15]]) + b = np.array([[3, 2, 7, 6], [10, 12, 8, 9]]) + c, i1, i2 = intersect1d(a, b, assume_unique=True, return_indices=True) + ui1 = np.unravel_index(i1, a.shape) + ui2 = np.unravel_index(i2, b.shape) + ea = np.array([2, 6, 7, 8]) + assert_array_equal(ea, a[ui1]) + assert_array_equal(ea, b[ui2]) + + # non1d, not assumed to be uniqueinputs + a = np.array([[2, 4, 5, 6, 6], [4, 7, 8, 7, 2]]) + b = np.array([[3, 2, 7, 7], [10, 12, 8, 7]]) + c, i1, i2 = intersect1d(a, b, return_indices=True) + ui1 = np.unravel_index(i1, a.shape) + ui2 = np.unravel_index(i2, b.shape) + ea = np.array([2, 7, 8]) + assert_array_equal(ea, a[ui1]) + assert_array_equal(ea, b[ui2]) + + def test_setxor1d(self): + a = np.array([5, 7, 1, 2]) + b = np.array([2, 4, 3, 1, 5]) + + ec = np.array([3, 4, 7]) + c = setxor1d(a, b) + assert_array_equal(c, ec) + + a = np.array([1, 2, 3]) + b = np.array([6, 5, 4]) + + ec = np.array([1, 2, 3, 4, 5, 6]) + c = setxor1d(a, b) + assert_array_equal(c, ec) + + a = np.array([1, 8, 2, 3]) + b = np.array([6, 5, 4, 8]) + + ec = np.array([1, 2, 3, 4, 5, 6]) + c = setxor1d(a, b) + assert_array_equal(c, ec) + + assert_array_equal([], setxor1d([], [])) + + def test_setxor1d_unique(self): + a = np.array([1, 8, 2, 3]) + b = np.array([6, 5, 4, 8]) + + ec = np.array([1, 2, 3, 4, 5, 6]) + c = setxor1d(a, b, assume_unique=True) + assert_array_equal(c, ec) + + a = np.array([[1], [8], [2], [3]]) + b = np.array([[6, 5], [4, 8]]) + + ec = np.array([1, 2, 3, 4, 5, 6]) + c = setxor1d(a, b, assume_unique=True) + assert_array_equal(c, ec) + + def test_ediff1d(self): + zero_elem = np.array([]) + one_elem = np.array([1]) + two_elem = np.array([1, 2]) + + assert_array_equal([], ediff1d(zero_elem)) + assert_array_equal([0], ediff1d(zero_elem, to_begin=0)) + assert_array_equal([0], ediff1d(zero_elem, to_end=0)) + assert_array_equal([-1, 0], ediff1d(zero_elem, to_begin=-1, to_end=0)) + assert_array_equal([], ediff1d(one_elem)) + assert_array_equal([1], ediff1d(two_elem)) + assert_array_equal([7, 1, 9], ediff1d(two_elem, to_begin=7, to_end=9)) + assert_array_equal([5, 6, 1, 7, 8], + ediff1d(two_elem, to_begin=[5, 6], to_end=[7, 8])) + assert_array_equal([1, 9], ediff1d(two_elem, to_end=9)) + assert_array_equal([1, 7, 8], ediff1d(two_elem, to_end=[7, 8])) + assert_array_equal([7, 1], ediff1d(two_elem, to_begin=7)) + assert_array_equal([5, 6, 1], ediff1d(two_elem, to_begin=[5, 6])) + + @pytest.mark.parametrize("ary, prepend, append, expected", [ + # should fail because trying to cast + # np.nan standard floating point value + # into an integer array: + (np.array([1, 2, 3], dtype=np.int64), + None, + np.nan, + 'to_end'), + # should fail because attempting + # to downcast to int type: + (np.array([1, 2, 3], dtype=np.int64), + np.array([5, 7, 2], dtype=np.float32), + None, + 'to_begin'), + # should fail because attempting to cast + # two special floating point values + # to integers (on both sides of ary), + # `to_begin` is in the error message as the impl checks this first: + (np.array([1., 3., 9.], dtype=np.int8), + np.nan, + np.nan, + 'to_begin'), + ]) + def test_ediff1d_forbidden_type_casts(self, ary, prepend, append, expected): + # verify resolution of gh-11490 + + # specifically, raise an appropriate + # Exception when attempting to append or + # prepend with an incompatible type + msg = f'dtype of `{expected}` must be compatible' + with assert_raises_regex(TypeError, msg): + ediff1d(ary=ary, + to_end=append, + to_begin=prepend) + + @pytest.mark.parametrize( + "ary,prepend,append,expected", + [ + (np.array([1, 2, 3], dtype=np.int16), + 2**16, # will be cast to int16 under same kind rule. + 2**16 + 4, + np.array([0, 1, 1, 4], dtype=np.int16)), + (np.array([1, 2, 3], dtype=np.float32), + np.array([5], dtype=np.float64), + None, + np.array([5, 1, 1], dtype=np.float32)), + (np.array([1, 2, 3], dtype=np.int32), + 0, + 0, + np.array([0, 1, 1, 0], dtype=np.int32)), + (np.array([1, 2, 3], dtype=np.int64), + 3, + -9, + np.array([3, 1, 1, -9], dtype=np.int64)), + ] + ) + def test_ediff1d_scalar_handling(self, + ary, + prepend, + append, + expected): + # maintain backwards-compatibility + # of scalar prepend / append behavior + # in ediff1d following fix for gh-11490 + actual = np.ediff1d(ary=ary, + to_end=append, + to_begin=prepend) + assert_equal(actual, expected) + assert actual.dtype == expected.dtype + + @pytest.mark.parametrize("kind", [None, "sort", "table"]) + def test_isin(self, kind): + def _isin_slow(a, b): + b = np.asarray(b).flatten().tolist() + return a in b + isin_slow = np.vectorize(_isin_slow, otypes=[bool], excluded={1}) + + def assert_isin_equal(a, b): + x = isin(a, b, kind=kind) + y = isin_slow(a, b) + assert_array_equal(x, y) + + # multidimensional arrays in both arguments + a = np.arange(24).reshape([2, 3, 4]) + b = np.array([[10, 20, 30], [0, 1, 3], [11, 22, 33]]) + assert_isin_equal(a, b) + + # array-likes as both arguments + c = [(9, 8), (7, 6)] + d = (9, 7) + assert_isin_equal(c, d) + + # zero-d array: + f = np.array(3) + assert_isin_equal(f, b) + assert_isin_equal(a, f) + assert_isin_equal(f, f) + + # scalar: + assert_isin_equal(5, b) + assert_isin_equal(a, 6) + assert_isin_equal(5, 6) + + # empty array-like: + if kind != "table": + # An empty list will become float64, + # which is invalid for kind="table" + x = [] + assert_isin_equal(x, b) + assert_isin_equal(a, x) + assert_isin_equal(x, x) + + # empty array with various types: + for dtype in [bool, np.int64, np.float64]: + if kind == "table" and dtype == np.float64: + continue + + if dtype in {np.int64, np.float64}: + ar = np.array([10, 20, 30], dtype=dtype) + elif dtype in {bool}: + ar = np.array([True, False, False]) + + empty_array = np.array([], dtype=dtype) + + assert_isin_equal(empty_array, ar) + assert_isin_equal(ar, empty_array) + assert_isin_equal(empty_array, empty_array) + + @pytest.mark.parametrize("kind", [None, "sort", "table"]) + def test_isin_additional(self, kind): + # we use two different sizes for the b array here to test the + # two different paths in isin(). + for mult in (1, 10): + # One check without np.array to make sure lists are handled correct + a = [5, 7, 1, 2] + b = [2, 4, 3, 1, 5] * mult + ec = np.array([True, False, True, True]) + c = isin(a, b, assume_unique=True, kind=kind) + assert_array_equal(c, ec) + + a[0] = 8 + ec = np.array([False, False, True, True]) + c = isin(a, b, assume_unique=True, kind=kind) + assert_array_equal(c, ec) + + a[0], a[3] = 4, 8 + ec = np.array([True, False, True, False]) + c = isin(a, b, assume_unique=True, kind=kind) + assert_array_equal(c, ec) + + a = np.array([5, 4, 5, 3, 4, 4, 3, 4, 3, 5, 2, 1, 5, 5]) + b = [2, 3, 4] * mult + ec = [False, True, False, True, True, True, True, True, True, + False, True, False, False, False] + c = isin(a, b, kind=kind) + assert_array_equal(c, ec) + + b = b + [5, 5, 4] * mult + ec = [True, True, True, True, True, True, True, True, True, True, + True, False, True, True] + c = isin(a, b, kind=kind) + assert_array_equal(c, ec) + + a = np.array([5, 7, 1, 2]) + b = np.array([2, 4, 3, 1, 5] * mult) + ec = np.array([True, False, True, True]) + c = isin(a, b, kind=kind) + assert_array_equal(c, ec) + + a = np.array([5, 7, 1, 1, 2]) + b = np.array([2, 4, 3, 3, 1, 5] * mult) + ec = np.array([True, False, True, True, True]) + c = isin(a, b, kind=kind) + assert_array_equal(c, ec) + + a = np.array([5, 5]) + b = np.array([2, 2] * mult) + ec = np.array([False, False]) + c = isin(a, b, kind=kind) + assert_array_equal(c, ec) + + a = np.array([5]) + b = np.array([2]) + ec = np.array([False]) + c = isin(a, b, kind=kind) + assert_array_equal(c, ec) + + if kind in {None, "sort"}: + assert_array_equal(isin([], [], kind=kind), []) + + def test_isin_char_array(self): + a = np.array(['a', 'b', 'c', 'd', 'e', 'c', 'e', 'b']) + b = np.array(['a', 'c']) + + ec = np.array([True, False, True, False, False, True, False, False]) + c = isin(a, b) + + assert_array_equal(c, ec) + + @pytest.mark.parametrize("kind", [None, "sort", "table"]) + def test_isin_invert(self, kind): + "Test isin's invert parameter" + # We use two different sizes for the b array here to test the + # two different paths in isin(). + for mult in (1, 10): + a = np.array([5, 4, 5, 3, 4, 4, 3, 4, 3, 5, 2, 1, 5, 5]) + b = [2, 3, 4] * mult + assert_array_equal(np.invert(isin(a, b, kind=kind)), + isin(a, b, invert=True, kind=kind)) + + # float: + if kind in {None, "sort"}: + for mult in (1, 10): + a = np.array([5, 4, 5, 3, 4, 4, 3, 4, 3, 5, 2, 1, 5, 5], + dtype=np.float32) + b = [2, 3, 4] * mult + b = np.array(b, dtype=np.float32) + assert_array_equal(np.invert(isin(a, b, kind=kind)), + isin(a, b, invert=True, kind=kind)) + + def test_isin_hit_alternate_algorithm(self): + """Hit the standard isin code with integers""" + # Need extreme range to hit standard code + # This hits it without the use of kind='table' + a = np.array([5, 4, 5, 3, 4, 4, 1e9], dtype=np.int64) + b = np.array([2, 3, 4, 1e9], dtype=np.int64) + expected = np.array([0, 1, 0, 1, 1, 1, 1], dtype=bool) + assert_array_equal(expected, isin(a, b)) + assert_array_equal(np.invert(expected), isin(a, b, invert=True)) + + a = np.array([5, 7, 1, 2], dtype=np.int64) + b = np.array([2, 4, 3, 1, 5, 1e9], dtype=np.int64) + ec = np.array([True, False, True, True]) + c = isin(a, b, assume_unique=True) + assert_array_equal(c, ec) + + @pytest.mark.parametrize("kind", [None, "sort", "table"]) + def test_isin_boolean(self, kind): + """Test that isin works for boolean input""" + a = np.array([True, False]) + b = np.array([False, False, False]) + expected = np.array([False, True]) + assert_array_equal(expected, + isin(a, b, kind=kind)) + assert_array_equal(np.invert(expected), + isin(a, b, invert=True, kind=kind)) + + @pytest.mark.parametrize("kind", [None, "sort"]) + def test_isin_timedelta(self, kind): + """Test that isin works for timedelta input""" + rstate = np.random.RandomState(0) + a = rstate.randint(0, 100, size=10) + b = rstate.randint(0, 100, size=10) + truth = isin(a, b) + a_timedelta = a.astype("timedelta64[s]") + b_timedelta = b.astype("timedelta64[s]") + assert_array_equal(truth, isin(a_timedelta, b_timedelta, kind=kind)) + + def test_isin_table_timedelta_fails(self): + a = np.array([0, 1, 2], dtype="timedelta64[s]") + b = a + # Make sure it raises a value error: + with pytest.raises(ValueError): + isin(a, b, kind="table") + + @pytest.mark.parametrize( + "dtype1,dtype2", + [ + (np.int8, np.int16), + (np.int16, np.int8), + (np.uint8, np.uint16), + (np.uint16, np.uint8), + (np.uint8, np.int16), + (np.int16, np.uint8), + (np.uint64, np.int64), + ] + ) + @pytest.mark.parametrize("kind", [None, "sort", "table"]) + def test_isin_mixed_dtype(self, dtype1, dtype2, kind): + """Test that isin works as expected for mixed dtype input.""" + is_dtype2_signed = np.issubdtype(dtype2, np.signedinteger) + ar1 = np.array([0, 0, 1, 1], dtype=dtype1) + + if is_dtype2_signed: + ar2 = np.array([-128, 0, 127], dtype=dtype2) + else: + ar2 = np.array([127, 0, 255], dtype=dtype2) + + expected = np.array([True, True, False, False]) + + expect_failure = kind == "table" and ( + dtype1 == np.int16 and dtype2 == np.int8) + + if expect_failure: + with pytest.raises(RuntimeError, match="exceed the maximum"): + isin(ar1, ar2, kind=kind) + else: + assert_array_equal(isin(ar1, ar2, kind=kind), expected) + + @pytest.mark.parametrize("data", [ + np.array([2**63, 2**63 + 1], dtype=np.uint64), + np.array([-2**62, -2**62 - 1], dtype=np.int64), + ]) + @pytest.mark.parametrize("kind", [None, "sort", "table"]) + def test_isin_mixed_huge_vals(self, kind, data): + """Test values outside intp range (negative ones if 32bit system)""" + query = data[1] + res = np.isin(data, query, kind=kind) + assert_array_equal(res, [False, True]) + # Also check that nothing weird happens for values can't possibly + # in range. + data = data.astype(np.int32) # clearly different values + res = np.isin(data, query, kind=kind) + assert_array_equal(res, [False, False]) + + @pytest.mark.parametrize("kind", [None, "sort", "table"]) + def test_isin_mixed_boolean(self, kind): + """Test that isin works as expected for bool/int input.""" + for dtype in np.typecodes["AllInteger"]: + a = np.array([True, False, False], dtype=bool) + b = np.array([0, 0, 0, 0], dtype=dtype) + expected = np.array([False, True, True], dtype=bool) + assert_array_equal(isin(a, b, kind=kind), expected) + + a, b = b, a + expected = np.array([True, True, True, True], dtype=bool) + assert_array_equal(isin(a, b, kind=kind), expected) + + def test_isin_first_array_is_object(self): + ar1 = [None] + ar2 = np.array([1] * 10) + expected = np.array([False]) + result = np.isin(ar1, ar2) + assert_array_equal(result, expected) + + def test_isin_second_array_is_object(self): + ar1 = 1 + ar2 = np.array([None] * 10) + expected = np.array([False]) + result = np.isin(ar1, ar2) + assert_array_equal(result, expected) + + def test_isin_both_arrays_are_object(self): + ar1 = [None] + ar2 = np.array([None] * 10) + expected = np.array([True]) + result = np.isin(ar1, ar2) + assert_array_equal(result, expected) + + def test_isin_both_arrays_have_structured_dtype(self): + # Test arrays of a structured data type containing an integer field + # and a field of dtype `object` allowing for arbitrary Python objects + dt = np.dtype([('field1', int), ('field2', object)]) + ar1 = np.array([(1, None)], dtype=dt) + ar2 = np.array([(1, None)] * 10, dtype=dt) + expected = np.array([True]) + result = np.isin(ar1, ar2) + assert_array_equal(result, expected) + + def test_isin_with_arrays_containing_tuples(self): + ar1 = np.array([(1,), 2], dtype=object) + ar2 = np.array([(1,), 2], dtype=object) + expected = np.array([True, True]) + result = np.isin(ar1, ar2) + assert_array_equal(result, expected) + result = np.isin(ar1, ar2, invert=True) + assert_array_equal(result, np.invert(expected)) + + # An integer is added at the end of the array to make sure + # that the array builder will create the array with tuples + # and after it's created the integer is removed. + # There's a bug in the array constructor that doesn't handle + # tuples properly and adding the integer fixes that. + ar1 = np.array([(1,), (2, 1), 1], dtype=object) + ar1 = ar1[:-1] + ar2 = np.array([(1,), (2, 1), 1], dtype=object) + ar2 = ar2[:-1] + expected = np.array([True, True]) + result = np.isin(ar1, ar2) + assert_array_equal(result, expected) + result = np.isin(ar1, ar2, invert=True) + assert_array_equal(result, np.invert(expected)) + + ar1 = np.array([(1,), (2, 3), 1], dtype=object) + ar1 = ar1[:-1] + ar2 = np.array([(1,), 2], dtype=object) + expected = np.array([True, False]) + result = np.isin(ar1, ar2) + assert_array_equal(result, expected) + result = np.isin(ar1, ar2, invert=True) + assert_array_equal(result, np.invert(expected)) + + def test_isin_errors(self): + """Test that isin raises expected errors.""" + + # Error 1: `kind` is not one of 'sort' 'table' or None. + ar1 = np.array([1, 2, 3, 4, 5]) + ar2 = np.array([2, 4, 6, 8, 10]) + assert_raises(ValueError, isin, ar1, ar2, kind='quicksort') + + # Error 2: `kind="table"` does not work for non-integral arrays. + obj_ar1 = np.array([1, 'a', 3, 'b', 5], dtype=object) + obj_ar2 = np.array([1, 'a', 3, 'b', 5], dtype=object) + assert_raises(ValueError, isin, obj_ar1, obj_ar2, kind='table') + + for dtype in [np.int32, np.int64]: + ar1 = np.array([-1, 2, 3, 4, 5], dtype=dtype) + # The range of this array will overflow: + overflow_ar2 = np.array([-1, np.iinfo(dtype).max], dtype=dtype) + + # Error 3: `kind="table"` will trigger a runtime error + # if there is an integer overflow expected when computing the + # range of ar2 + assert_raises( + RuntimeError, + isin, ar1, overflow_ar2, kind='table' + ) + + # Non-error: `kind=None` will *not* trigger a runtime error + # if there is an integer overflow, it will switch to + # the `sort` algorithm. + result = np.isin(ar1, overflow_ar2, kind=None) + assert_array_equal(result, [True] + [False] * 4) + result = np.isin(ar1, overflow_ar2, kind='sort') + assert_array_equal(result, [True] + [False] * 4) + + def test_union1d(self): + a = np.array([5, 4, 7, 1, 2]) + b = np.array([2, 4, 3, 3, 2, 1, 5]) + + ec = np.array([1, 2, 3, 4, 5, 7]) + c = union1d(a, b) + assert_array_equal(c, ec) + + # Tests gh-10340, arguments to union1d should be + # flattened if they are not already 1D + x = np.array([[0, 1, 2], [3, 4, 5]]) + y = np.array([0, 1, 2, 3, 4]) + ez = np.array([0, 1, 2, 3, 4, 5]) + z = union1d(x, y) + assert_array_equal(z, ez) + + assert_array_equal([], union1d([], [])) + + def test_setdiff1d(self): + a = np.array([6, 5, 4, 7, 1, 2, 7, 4]) + b = np.array([2, 4, 3, 3, 2, 1, 5]) + + ec = np.array([6, 7]) + c = setdiff1d(a, b) + assert_array_equal(c, ec) + + a = np.arange(21) + b = np.arange(19) + ec = np.array([19, 20]) + c = setdiff1d(a, b) + assert_array_equal(c, ec) + + assert_array_equal([], setdiff1d([], [])) + a = np.array((), np.uint32) + assert_equal(setdiff1d(a, []).dtype, np.uint32) + + def test_setdiff1d_unique(self): + a = np.array([3, 2, 1]) + b = np.array([7, 5, 2]) + expected = np.array([3, 1]) + actual = setdiff1d(a, b, assume_unique=True) + assert_equal(actual, expected) + + def test_setdiff1d_char_array(self): + a = np.array(['a', 'b', 'c']) + b = np.array(['a', 'b', 's']) + assert_array_equal(setdiff1d(a, b), np.array(['c'])) + + def test_manyways(self): + a = np.array([5, 7, 1, 2, 8]) + b = np.array([9, 8, 2, 4, 3, 1, 5]) + + c1 = setxor1d(a, b) + aux1 = intersect1d(a, b) + aux2 = union1d(a, b) + c2 = setdiff1d(aux2, aux1) + assert_array_equal(c1, c2) + + +class TestUnique: + + def check_all(self, a, b, i1, i2, c, dt): + base_msg = 'check {0} failed for type {1}' + + msg = base_msg.format('values', dt) + v = unique(a) + assert_array_equal(v, b, msg) + assert type(v) == type(b) + + msg = base_msg.format('return_index', dt) + v, j = unique(a, True, False, False) + assert_array_equal(v, b, msg) + assert_array_equal(j, i1, msg) + assert type(v) == type(b) + + msg = base_msg.format('return_inverse', dt) + v, j = unique(a, False, True, False) + assert_array_equal(v, b, msg) + assert_array_equal(j, i2, msg) + assert type(v) == type(b) + + msg = base_msg.format('return_counts', dt) + v, j = unique(a, False, False, True) + assert_array_equal(v, b, msg) + assert_array_equal(j, c, msg) + assert type(v) == type(b) + + msg = base_msg.format('return_index and return_inverse', dt) + v, j1, j2 = unique(a, True, True, False) + assert_array_equal(v, b, msg) + assert_array_equal(j1, i1, msg) + assert_array_equal(j2, i2, msg) + assert type(v) == type(b) + + msg = base_msg.format('return_index and return_counts', dt) + v, j1, j2 = unique(a, True, False, True) + assert_array_equal(v, b, msg) + assert_array_equal(j1, i1, msg) + assert_array_equal(j2, c, msg) + assert type(v) == type(b) + + msg = base_msg.format('return_inverse and return_counts', dt) + v, j1, j2 = unique(a, False, True, True) + assert_array_equal(v, b, msg) + assert_array_equal(j1, i2, msg) + assert_array_equal(j2, c, msg) + assert type(v) == type(b) + + msg = base_msg.format(('return_index, return_inverse ' + 'and return_counts'), dt) + v, j1, j2, j3 = unique(a, True, True, True) + assert_array_equal(v, b, msg) + assert_array_equal(j1, i1, msg) + assert_array_equal(j2, i2, msg) + assert_array_equal(j3, c, msg) + assert type(v) == type(b) + + def get_types(self): + types = [] + types.extend(np.typecodes['AllInteger']) + types.extend(np.typecodes['AllFloat']) + types.append('datetime64[D]') + types.append('timedelta64[D]') + return types + + def test_unique_1d(self): + + a = [5, 7, 1, 2, 1, 5, 7] * 10 + b = [1, 2, 5, 7] + i1 = [2, 3, 0, 1] + i2 = [2, 3, 0, 1, 0, 2, 3] * 10 + c = np.multiply([2, 1, 2, 2], 10) + + # test for numeric arrays + types = self.get_types() + for dt in types: + aa = np.array(a, dt) + bb = np.array(b, dt) + self.check_all(aa, bb, i1, i2, c, dt) + + # test for object arrays + dt = 'O' + aa = np.empty(len(a), dt) + aa[:] = a + bb = np.empty(len(b), dt) + bb[:] = b + self.check_all(aa, bb, i1, i2, c, dt) + + # test for structured arrays + dt = [('', 'i'), ('', 'i')] + aa = np.array(list(zip(a, a)), dt) + bb = np.array(list(zip(b, b)), dt) + self.check_all(aa, bb, i1, i2, c, dt) + + # test for ticket #2799 + aa = [1. + 0.j, 1 - 1.j, 1] + assert_array_equal(np.unique(aa), [1. - 1.j, 1. + 0.j]) + + # test for ticket #4785 + a = [(1, 2), (1, 2), (2, 3)] + unq = [1, 2, 3] + inv = [[0, 1], [0, 1], [1, 2]] + a1 = unique(a) + assert_array_equal(a1, unq) + a2, a2_inv = unique(a, return_inverse=True) + assert_array_equal(a2, unq) + assert_array_equal(a2_inv, inv) + + # test for chararrays with return_inverse (gh-5099) + a = np.char.chararray(5) + a[...] = '' + a2, a2_inv = np.unique(a, return_inverse=True) + assert_array_equal(a2_inv, np.zeros(5)) + + # test for ticket #9137 + a = [] + a1_idx = np.unique(a, return_index=True)[1] + a2_inv = np.unique(a, return_inverse=True)[1] + a3_idx, a3_inv = np.unique(a, return_index=True, + return_inverse=True)[1:] + assert_equal(a1_idx.dtype, np.intp) + assert_equal(a2_inv.dtype, np.intp) + assert_equal(a3_idx.dtype, np.intp) + assert_equal(a3_inv.dtype, np.intp) + + # test for ticket 2111 - float + a = [2.0, np.nan, 1.0, np.nan] + ua = [1.0, 2.0, np.nan] + ua_idx = [2, 0, 1] + ua_inv = [1, 2, 0, 2] + ua_cnt = [1, 1, 2] + assert_equal(np.unique(a), ua) + assert_equal(np.unique(a, return_index=True), (ua, ua_idx)) + assert_equal(np.unique(a, return_inverse=True), (ua, ua_inv)) + assert_equal(np.unique(a, return_counts=True), (ua, ua_cnt)) + + # test for ticket 2111 - complex + a = [2.0 - 1j, np.nan, 1.0 + 1j, complex(0.0, np.nan), complex(1.0, np.nan)] + ua = [1.0 + 1j, 2.0 - 1j, complex(0.0, np.nan)] + ua_idx = [2, 0, 3] + ua_inv = [1, 2, 0, 2, 2] + ua_cnt = [1, 1, 3] + assert_equal(np.unique(a), ua) + assert_equal(np.unique(a, return_index=True), (ua, ua_idx)) + assert_equal(np.unique(a, return_inverse=True), (ua, ua_inv)) + assert_equal(np.unique(a, return_counts=True), (ua, ua_cnt)) + + # test for ticket 2111 - datetime64 + nat = np.datetime64('nat') + a = [np.datetime64('2020-12-26'), nat, np.datetime64('2020-12-24'), nat] + ua = [np.datetime64('2020-12-24'), np.datetime64('2020-12-26'), nat] + ua_idx = [2, 0, 1] + ua_inv = [1, 2, 0, 2] + ua_cnt = [1, 1, 2] + assert_equal(np.unique(a), ua) + assert_equal(np.unique(a, return_index=True), (ua, ua_idx)) + assert_equal(np.unique(a, return_inverse=True), (ua, ua_inv)) + assert_equal(np.unique(a, return_counts=True), (ua, ua_cnt)) + + # test for ticket 2111 - timedelta + nat = np.timedelta64('nat') + a = [np.timedelta64(1, 'D'), nat, np.timedelta64(1, 'h'), nat] + ua = [np.timedelta64(1, 'h'), np.timedelta64(1, 'D'), nat] + ua_idx = [2, 0, 1] + ua_inv = [1, 2, 0, 2] + ua_cnt = [1, 1, 2] + assert_equal(np.unique(a), ua) + assert_equal(np.unique(a, return_index=True), (ua, ua_idx)) + assert_equal(np.unique(a, return_inverse=True), (ua, ua_inv)) + assert_equal(np.unique(a, return_counts=True), (ua, ua_cnt)) + + # test for gh-19300 + all_nans = [np.nan] * 4 + ua = [np.nan] + ua_idx = [0] + ua_inv = [0, 0, 0, 0] + ua_cnt = [4] + assert_equal(np.unique(all_nans), ua) + assert_equal(np.unique(all_nans, return_index=True), (ua, ua_idx)) + assert_equal(np.unique(all_nans, return_inverse=True), (ua, ua_inv)) + assert_equal(np.unique(all_nans, return_counts=True), (ua, ua_cnt)) + + def test_unique_zero_sized(self): + # test for zero-sized arrays + for dt in self.get_types(): + a = np.array([], dt) + b = np.array([], dt) + i1 = np.array([], np.int64) + i2 = np.array([], np.int64) + c = np.array([], np.int64) + self.check_all(a, b, i1, i2, c, dt) + + def test_unique_subclass(self): + class Subclass(np.ndarray): + pass + + i1 = [2, 3, 0, 1] + i2 = [2, 3, 0, 1, 0, 2, 3] * 10 + c = np.multiply([2, 1, 2, 2], 10) + + # test for numeric arrays + types = self.get_types() + for dt in types: + a = np.array([5, 7, 1, 2, 1, 5, 7] * 10, dtype=dt) + b = np.array([1, 2, 5, 7], dtype=dt) + aa = Subclass(a.shape, dtype=dt, buffer=a) + bb = Subclass(b.shape, dtype=dt, buffer=b) + self.check_all(aa, bb, i1, i2, c, dt) + + @pytest.mark.parametrize("arg", ["return_index", "return_inverse", "return_counts"]) + def test_unsupported_hash_based(self, arg): + """These currently never use the hash-based solution. However, + it seems easier to just allow it. + + When the hash-based solution is added, this test should fail and be + replaced with something more comprehensive. + """ + a = np.array([1, 5, 2, 3, 4, 8, 199, 1, 3, 5]) + + res_not_sorted = np.unique([1, 1], sorted=False, **{arg: True}) + res_sorted = np.unique([1, 1], sorted=True, **{arg: True}) + # The following should fail without first sorting `res_not_sorted`. + for arr, expected in zip(res_not_sorted, res_sorted): + assert_array_equal(arr, expected) + + def test_unique_axis_errors(self): + assert_raises(TypeError, self._run_axis_tests, object) + assert_raises(TypeError, self._run_axis_tests, + [('a', int), ('b', object)]) + + assert_raises(AxisError, unique, np.arange(10), axis=2) + assert_raises(AxisError, unique, np.arange(10), axis=-2) + + def test_unique_axis_list(self): + msg = "Unique failed on list of lists" + inp = [[0, 1, 0], [0, 1, 0]] + inp_arr = np.asarray(inp) + assert_array_equal(unique(inp, axis=0), unique(inp_arr, axis=0), msg) + assert_array_equal(unique(inp, axis=1), unique(inp_arr, axis=1), msg) + + def test_unique_axis(self): + types = [] + types.extend(np.typecodes['AllInteger']) + types.extend(np.typecodes['AllFloat']) + types.append('datetime64[D]') + types.append('timedelta64[D]') + types.append([('a', int), ('b', int)]) + types.append([('a', int), ('b', float)]) + + for dtype in types: + self._run_axis_tests(dtype) + + msg = 'Non-bitwise-equal booleans test failed' + data = np.arange(10, dtype=np.uint8).reshape(-1, 2).view(bool) + result = np.array([[False, True], [True, True]], dtype=bool) + assert_array_equal(unique(data, axis=0), result, msg) + + msg = 'Negative zero equality test failed' + data = np.array([[-0.0, 0.0], [0.0, -0.0], [-0.0, 0.0], [0.0, -0.0]]) + result = np.array([[-0.0, 0.0]]) + assert_array_equal(unique(data, axis=0), result, msg) + + @pytest.mark.parametrize("axis", [0, -1]) + def test_unique_1d_with_axis(self, axis): + x = np.array([4, 3, 2, 3, 2, 1, 2, 2]) + uniq = unique(x, axis=axis) + assert_array_equal(uniq, [1, 2, 3, 4]) + + @pytest.mark.parametrize("axis", [None, 0, -1]) + def test_unique_inverse_with_axis(self, axis): + x = np.array([[4, 4, 3], [2, 2, 1], [2, 2, 1], [4, 4, 3]]) + uniq, inv = unique(x, return_inverse=True, axis=axis) + assert_equal(inv.ndim, x.ndim if axis is None else 1) + assert_array_equal(x, np.take(uniq, inv, axis=axis)) + + def test_unique_axis_zeros(self): + # issue 15559 + single_zero = np.empty(shape=(2, 0), dtype=np.int8) + uniq, idx, inv, cnt = unique(single_zero, axis=0, return_index=True, + return_inverse=True, return_counts=True) + + # there's 1 element of shape (0,) along axis 0 + assert_equal(uniq.dtype, single_zero.dtype) + assert_array_equal(uniq, np.empty(shape=(1, 0))) + assert_array_equal(idx, np.array([0])) + assert_array_equal(inv, np.array([0, 0])) + assert_array_equal(cnt, np.array([2])) + + # there's 0 elements of shape (2,) along axis 1 + uniq, idx, inv, cnt = unique(single_zero, axis=1, return_index=True, + return_inverse=True, return_counts=True) + + assert_equal(uniq.dtype, single_zero.dtype) + assert_array_equal(uniq, np.empty(shape=(2, 0))) + assert_array_equal(idx, np.array([])) + assert_array_equal(inv, np.array([])) + assert_array_equal(cnt, np.array([])) + + # test a "complicated" shape + shape = (0, 2, 0, 3, 0, 4, 0) + multiple_zeros = np.empty(shape=shape) + for axis in range(len(shape)): + expected_shape = list(shape) + if shape[axis] == 0: + expected_shape[axis] = 0 + else: + expected_shape[axis] = 1 + + assert_array_equal(unique(multiple_zeros, axis=axis), + np.empty(shape=expected_shape)) + + def test_unique_masked(self): + # issue 8664 + x = np.array([64, 0, 1, 2, 3, 63, 63, 0, 0, 0, 1, 2, 0, 63, 0], + dtype='uint8') + y = np.ma.masked_equal(x, 0) + + v = np.unique(y) + v2, i, c = np.unique(y, return_index=True, return_counts=True) + + msg = 'Unique returned different results when asked for index' + assert_array_equal(v.data, v2.data, msg) + assert_array_equal(v.mask, v2.mask, msg) + + def test_unique_sort_order_with_axis(self): + # These tests fail if sorting along axis is done by treating subarrays + # as unsigned byte strings. See gh-10495. + fmt = "sort order incorrect for integer type '%s'" + for dt in 'bhilq': + a = np.array([[-1], [0]], dt) + b = np.unique(a, axis=0) + assert_array_equal(a, b, fmt % dt) + + def _run_axis_tests(self, dtype): + data = np.array([[0, 1, 0, 0], + [1, 0, 0, 0], + [0, 1, 0, 0], + [1, 0, 0, 0]]).astype(dtype) + + msg = 'Unique with 1d array and axis=0 failed' + result = np.array([0, 1]) + assert_array_equal(unique(data), result.astype(dtype), msg) + + msg = 'Unique with 2d array and axis=0 failed' + result = np.array([[0, 1, 0, 0], [1, 0, 0, 0]]) + assert_array_equal(unique(data, axis=0), result.astype(dtype), msg) + + msg = 'Unique with 2d array and axis=1 failed' + result = np.array([[0, 0, 1], [0, 1, 0], [0, 0, 1], [0, 1, 0]]) + assert_array_equal(unique(data, axis=1), result.astype(dtype), msg) + + msg = 'Unique with 3d array and axis=2 failed' + data3d = np.array([[[1, 1], + [1, 0]], + [[0, 1], + [0, 0]]]).astype(dtype) + result = np.take(data3d, [1, 0], axis=2) + assert_array_equal(unique(data3d, axis=2), result, msg) + + uniq, idx, inv, cnt = unique(data, axis=0, return_index=True, + return_inverse=True, return_counts=True) + msg = "Unique's return_index=True failed with axis=0" + assert_array_equal(data[idx], uniq, msg) + msg = "Unique's return_inverse=True failed with axis=0" + assert_array_equal(np.take(uniq, inv, axis=0), data) + msg = "Unique's return_counts=True failed with axis=0" + assert_array_equal(cnt, np.array([2, 2]), msg) + + uniq, idx, inv, cnt = unique(data, axis=1, return_index=True, + return_inverse=True, return_counts=True) + msg = "Unique's return_index=True failed with axis=1" + assert_array_equal(data[:, idx], uniq) + msg = "Unique's return_inverse=True failed with axis=1" + assert_array_equal(np.take(uniq, inv, axis=1), data) + msg = "Unique's return_counts=True failed with axis=1" + assert_array_equal(cnt, np.array([2, 1, 1]), msg) + + def test_unique_nanequals(self): + # issue 20326 + a = np.array([1, 1, np.nan, np.nan, np.nan]) + unq = np.unique(a) + not_unq = np.unique(a, equal_nan=False) + assert_array_equal(unq, np.array([1, np.nan])) + assert_array_equal(not_unq, np.array([1, np.nan, np.nan, np.nan])) + + def test_unique_array_api_functions(self): + arr = np.array([np.nan, 1, 4, 1, 3, 4, np.nan, 5, 1]) + + for res_unique_array_api, res_unique in [ + ( + np.unique_values(arr), + np.unique(arr, equal_nan=False) + ), + ( + np.unique_counts(arr), + np.unique(arr, return_counts=True, equal_nan=False) + ), + ( + np.unique_inverse(arr), + np.unique(arr, return_inverse=True, equal_nan=False) + ), + ( + np.unique_all(arr), + np.unique( + arr, + return_index=True, + return_inverse=True, + return_counts=True, + equal_nan=False + ) + ) + ]: + assert len(res_unique_array_api) == len(res_unique) + for actual, expected in zip(res_unique_array_api, res_unique): + assert_array_equal(actual, expected) + + def test_unique_inverse_shape(self): + # Regression test for https://github.com/numpy/numpy/issues/25552 + arr = np.array([[1, 2, 3], [2, 3, 1]]) + expected_values, expected_inverse = np.unique(arr, return_inverse=True) + expected_inverse = expected_inverse.reshape(arr.shape) + for func in np.unique_inverse, np.unique_all: + result = func(arr) + assert_array_equal(expected_values, result.values) + assert_array_equal(expected_inverse, result.inverse_indices) + assert_array_equal(arr, result.values[result.inverse_indices]) + + @pytest.mark.parametrize( + 'data', + [[[1, 1, 1], + [1, 1, 1]], + [1, 3, 2], + 1], + ) + @pytest.mark.parametrize('transpose', [False, True]) + @pytest.mark.parametrize('dtype', [np.int32, np.float64]) + def test_unique_with_matrix(self, data, transpose, dtype): + mat = np.matrix(data).astype(dtype) + if transpose: + mat = mat.T + u = np.unique(mat) + expected = np.unique(np.asarray(mat)) + assert_array_equal(u, expected, strict=True) diff --git a/.venv/lib/python3.12/site-packages/numpy/lib/tests/test_arrayterator.py b/.venv/lib/python3.12/site-packages/numpy/lib/tests/test_arrayterator.py new file mode 100644 index 0000000..800c9a2 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/lib/tests/test_arrayterator.py @@ -0,0 +1,46 @@ +from functools import reduce +from operator import mul + +import numpy as np +from numpy.lib import Arrayterator +from numpy.random import randint +from numpy.testing import assert_ + + +def test(): + np.random.seed(np.arange(10)) + + # Create a random array + ndims = randint(5) + 1 + shape = tuple(randint(10) + 1 for dim in range(ndims)) + els = reduce(mul, shape) + a = np.arange(els) + a.shape = shape + + buf_size = randint(2 * els) + b = Arrayterator(a, buf_size) + + # Check that each block has at most ``buf_size`` elements + for block in b: + assert_(len(block.flat) <= (buf_size or els)) + + # Check that all elements are iterated correctly + assert_(list(b.flat) == list(a.flat)) + + # Slice arrayterator + start = [randint(dim) for dim in shape] + stop = [randint(dim) + 1 for dim in shape] + step = [randint(dim) + 1 for dim in shape] + slice_ = tuple(slice(*t) for t in zip(start, stop, step)) + c = b[slice_] + d = a[slice_] + + # Check that each block has at most ``buf_size`` elements + for block in c: + assert_(len(block.flat) <= (buf_size or els)) + + # Check that the arrayterator is sliced correctly + assert_(np.all(c.__array__() == d)) + + # Check that all elements are iterated correctly + assert_(list(c.flat) == list(d.flat)) diff --git a/.venv/lib/python3.12/site-packages/numpy/lib/tests/test_format.py b/.venv/lib/python3.12/site-packages/numpy/lib/tests/test_format.py new file mode 100644 index 0000000..d805d34 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/lib/tests/test_format.py @@ -0,0 +1,1054 @@ +# doctest +r''' Test the .npy file format. + +Set up: + + >>> import sys + >>> from io import BytesIO + >>> from numpy.lib import format + >>> + >>> scalars = [ + ... np.uint8, + ... np.int8, + ... np.uint16, + ... np.int16, + ... np.uint32, + ... np.int32, + ... np.uint64, + ... np.int64, + ... np.float32, + ... np.float64, + ... np.complex64, + ... np.complex128, + ... object, + ... ] + >>> + >>> basic_arrays = [] + >>> + >>> for scalar in scalars: + ... for endian in '<>': + ... dtype = np.dtype(scalar).newbyteorder(endian) + ... basic = np.arange(15).astype(dtype) + ... basic_arrays.extend([ + ... np.array([], dtype=dtype), + ... np.array(10, dtype=dtype), + ... basic, + ... basic.reshape((3,5)), + ... basic.reshape((3,5)).T, + ... basic.reshape((3,5))[::-1,::2], + ... ]) + ... + >>> + >>> Pdescr = [ + ... ('x', 'i4', (2,)), + ... ('y', 'f8', (2, 2)), + ... ('z', 'u1')] + >>> + >>> + >>> PbufferT = [ + ... ([3,2], [[6.,4.],[6.,4.]], 8), + ... ([4,3], [[7.,5.],[7.,5.]], 9), + ... ] + >>> + >>> + >>> Ndescr = [ + ... ('x', 'i4', (2,)), + ... ('Info', [ + ... ('value', 'c16'), + ... ('y2', 'f8'), + ... ('Info2', [ + ... ('name', 'S2'), + ... ('value', 'c16', (2,)), + ... ('y3', 'f8', (2,)), + ... ('z3', 'u4', (2,))]), + ... ('name', 'S2'), + ... ('z2', 'b1')]), + ... ('color', 'S2'), + ... ('info', [ + ... ('Name', 'U8'), + ... ('Value', 'c16')]), + ... ('y', 'f8', (2, 2)), + ... ('z', 'u1')] + >>> + >>> + >>> NbufferT = [ + ... ([3,2], (6j, 6., ('nn', [6j,4j], [6.,4.], [1,2]), 'NN', True), 'cc', ('NN', 6j), [[6.,4.],[6.,4.]], 8), + ... ([4,3], (7j, 7., ('oo', [7j,5j], [7.,5.], [2,1]), 'OO', False), 'dd', ('OO', 7j), [[7.,5.],[7.,5.]], 9), + ... ] + >>> + >>> + >>> record_arrays = [ + ... np.array(PbufferT, dtype=np.dtype(Pdescr).newbyteorder('<')), + ... np.array(NbufferT, dtype=np.dtype(Ndescr).newbyteorder('<')), + ... np.array(PbufferT, dtype=np.dtype(Pdescr).newbyteorder('>')), + ... np.array(NbufferT, dtype=np.dtype(Ndescr).newbyteorder('>')), + ... ] + +Test the magic string writing. + + >>> format.magic(1, 0) + '\x93NUMPY\x01\x00' + >>> format.magic(0, 0) + '\x93NUMPY\x00\x00' + >>> format.magic(255, 255) + '\x93NUMPY\xff\xff' + >>> format.magic(2, 5) + '\x93NUMPY\x02\x05' + +Test the magic string reading. + + >>> format.read_magic(BytesIO(format.magic(1, 0))) + (1, 0) + >>> format.read_magic(BytesIO(format.magic(0, 0))) + (0, 0) + >>> format.read_magic(BytesIO(format.magic(255, 255))) + (255, 255) + >>> format.read_magic(BytesIO(format.magic(2, 5))) + (2, 5) + +Test the header writing. + + >>> for arr in basic_arrays + record_arrays: + ... f = BytesIO() + ... format.write_array_header_1_0(f, arr) # XXX: arr is not a dict, items gets called on it + ... print(repr(f.getvalue())) + ... + "F\x00{'descr': '|u1', 'fortran_order': False, 'shape': (0,)} \n" + "F\x00{'descr': '|u1', 'fortran_order': False, 'shape': ()} \n" + "F\x00{'descr': '|u1', 'fortran_order': False, 'shape': (15,)} \n" + "F\x00{'descr': '|u1', 'fortran_order': False, 'shape': (3, 5)} \n" + "F\x00{'descr': '|u1', 'fortran_order': True, 'shape': (5, 3)} \n" + "F\x00{'descr': '|u1', 'fortran_order': False, 'shape': (3, 3)} \n" + "F\x00{'descr': '|u1', 'fortran_order': False, 'shape': (0,)} \n" + "F\x00{'descr': '|u1', 'fortran_order': False, 'shape': ()} \n" + "F\x00{'descr': '|u1', 'fortran_order': False, 'shape': (15,)} \n" + "F\x00{'descr': '|u1', 'fortran_order': False, 'shape': (3, 5)} \n" + "F\x00{'descr': '|u1', 'fortran_order': True, 'shape': (5, 3)} \n" + "F\x00{'descr': '|u1', 'fortran_order': False, 'shape': (3, 3)} \n" + "F\x00{'descr': '|i1', 'fortran_order': False, 'shape': (0,)} \n" + "F\x00{'descr': '|i1', 'fortran_order': False, 'shape': ()} \n" + "F\x00{'descr': '|i1', 'fortran_order': False, 'shape': (15,)} \n" + "F\x00{'descr': '|i1', 'fortran_order': False, 'shape': (3, 5)} \n" + "F\x00{'descr': '|i1', 'fortran_order': True, 'shape': (5, 3)} \n" + "F\x00{'descr': '|i1', 'fortran_order': False, 'shape': (3, 3)} \n" + "F\x00{'descr': '|i1', 'fortran_order': False, 'shape': (0,)} \n" + "F\x00{'descr': '|i1', 'fortran_order': False, 'shape': ()} \n" + "F\x00{'descr': '|i1', 'fortran_order': False, 'shape': (15,)} \n" + "F\x00{'descr': '|i1', 'fortran_order': False, 'shape': (3, 5)} \n" + "F\x00{'descr': '|i1', 'fortran_order': True, 'shape': (5, 3)} \n" + "F\x00{'descr': '|i1', 'fortran_order': False, 'shape': (3, 3)} \n" + "F\x00{'descr': '<u2', 'fortran_order': False, 'shape': (0,)} \n" + "F\x00{'descr': '<u2', 'fortran_order': False, 'shape': ()} \n" + "F\x00{'descr': '<u2', 'fortran_order': False, 'shape': (15,)} \n" + "F\x00{'descr': '<u2', 'fortran_order': False, 'shape': (3, 5)} \n" + "F\x00{'descr': '<u2', 'fortran_order': True, 'shape': (5, 3)} \n" + "F\x00{'descr': '<u2', 'fortran_order': False, 'shape': (3, 3)} \n" + "F\x00{'descr': '>u2', 'fortran_order': False, 'shape': (0,)} \n" + "F\x00{'descr': '>u2', 'fortran_order': False, 'shape': ()} \n" + "F\x00{'descr': '>u2', 'fortran_order': False, 'shape': (15,)} \n" + "F\x00{'descr': '>u2', 'fortran_order': False, 'shape': (3, 5)} \n" + "F\x00{'descr': '>u2', 'fortran_order': True, 'shape': (5, 3)} \n" + "F\x00{'descr': '>u2', 'fortran_order': False, 'shape': (3, 3)} \n" + "F\x00{'descr': '<i2', 'fortran_order': False, 'shape': (0,)} \n" + "F\x00{'descr': '<i2', 'fortran_order': False, 'shape': ()} \n" + "F\x00{'descr': '<i2', 'fortran_order': False, 'shape': (15,)} \n" + "F\x00{'descr': '<i2', 'fortran_order': False, 'shape': (3, 5)} \n" + "F\x00{'descr': '<i2', 'fortran_order': True, 'shape': (5, 3)} \n" + "F\x00{'descr': '<i2', 'fortran_order': False, 'shape': (3, 3)} \n" + "F\x00{'descr': '>i2', 'fortran_order': False, 'shape': (0,)} \n" + "F\x00{'descr': '>i2', 'fortran_order': False, 'shape': ()} \n" + "F\x00{'descr': '>i2', 'fortran_order': False, 'shape': (15,)} \n" + "F\x00{'descr': '>i2', 'fortran_order': False, 'shape': (3, 5)} \n" + "F\x00{'descr': '>i2', 'fortran_order': True, 'shape': (5, 3)} \n" + "F\x00{'descr': '>i2', 'fortran_order': False, 'shape': (3, 3)} \n" + "F\x00{'descr': '<u4', 'fortran_order': False, 'shape': (0,)} \n" + "F\x00{'descr': '<u4', 'fortran_order': False, 'shape': ()} \n" + "F\x00{'descr': '<u4', 'fortran_order': False, 'shape': (15,)} \n" + "F\x00{'descr': '<u4', 'fortran_order': False, 'shape': (3, 5)} \n" + "F\x00{'descr': '<u4', 'fortran_order': True, 'shape': (5, 3)} \n" + "F\x00{'descr': '<u4', 'fortran_order': False, 'shape': (3, 3)} \n" + "F\x00{'descr': '>u4', 'fortran_order': False, 'shape': (0,)} \n" + "F\x00{'descr': '>u4', 'fortran_order': False, 'shape': ()} \n" + "F\x00{'descr': '>u4', 'fortran_order': False, 'shape': (15,)} \n" + "F\x00{'descr': '>u4', 'fortran_order': False, 'shape': (3, 5)} \n" + "F\x00{'descr': '>u4', 'fortran_order': True, 'shape': (5, 3)} \n" + "F\x00{'descr': '>u4', 'fortran_order': False, 'shape': (3, 3)} \n" + "F\x00{'descr': '<i4', 'fortran_order': False, 'shape': (0,)} \n" + "F\x00{'descr': '<i4', 'fortran_order': False, 'shape': ()} \n" + "F\x00{'descr': '<i4', 'fortran_order': False, 'shape': (15,)} \n" + "F\x00{'descr': '<i4', 'fortran_order': False, 'shape': (3, 5)} \n" + "F\x00{'descr': '<i4', 'fortran_order': True, 'shape': (5, 3)} \n" + "F\x00{'descr': '<i4', 'fortran_order': False, 'shape': (3, 3)} \n" + "F\x00{'descr': '>i4', 'fortran_order': False, 'shape': (0,)} \n" + "F\x00{'descr': '>i4', 'fortran_order': False, 'shape': ()} \n" + "F\x00{'descr': '>i4', 'fortran_order': False, 'shape': (15,)} \n" + "F\x00{'descr': '>i4', 'fortran_order': False, 'shape': (3, 5)} \n" + "F\x00{'descr': '>i4', 'fortran_order': True, 'shape': (5, 3)} \n" + "F\x00{'descr': '>i4', 'fortran_order': False, 'shape': (3, 3)} \n" + "F\x00{'descr': '<u8', 'fortran_order': False, 'shape': (0,)} \n" + "F\x00{'descr': '<u8', 'fortran_order': False, 'shape': ()} \n" + "F\x00{'descr': '<u8', 'fortran_order': False, 'shape': (15,)} \n" + "F\x00{'descr': '<u8', 'fortran_order': False, 'shape': (3, 5)} \n" + "F\x00{'descr': '<u8', 'fortran_order': True, 'shape': (5, 3)} \n" + "F\x00{'descr': '<u8', 'fortran_order': False, 'shape': (3, 3)} \n" + "F\x00{'descr': '>u8', 'fortran_order': False, 'shape': (0,)} \n" + "F\x00{'descr': '>u8', 'fortran_order': False, 'shape': ()} \n" + "F\x00{'descr': '>u8', 'fortran_order': False, 'shape': (15,)} \n" + "F\x00{'descr': '>u8', 'fortran_order': False, 'shape': (3, 5)} \n" + "F\x00{'descr': '>u8', 'fortran_order': True, 'shape': (5, 3)} \n" + "F\x00{'descr': '>u8', 'fortran_order': False, 'shape': (3, 3)} \n" + "F\x00{'descr': '<i8', 'fortran_order': False, 'shape': (0,)} \n" + "F\x00{'descr': '<i8', 'fortran_order': False, 'shape': ()} \n" + "F\x00{'descr': '<i8', 'fortran_order': False, 'shape': (15,)} \n" + "F\x00{'descr': '<i8', 'fortran_order': False, 'shape': (3, 5)} \n" + "F\x00{'descr': '<i8', 'fortran_order': True, 'shape': (5, 3)} \n" + "F\x00{'descr': '<i8', 'fortran_order': False, 'shape': (3, 3)} \n" + "F\x00{'descr': '>i8', 'fortran_order': False, 'shape': (0,)} \n" + "F\x00{'descr': '>i8', 'fortran_order': False, 'shape': ()} \n" + "F\x00{'descr': '>i8', 'fortran_order': False, 'shape': (15,)} \n" + "F\x00{'descr': '>i8', 'fortran_order': False, 'shape': (3, 5)} \n" + "F\x00{'descr': '>i8', 'fortran_order': True, 'shape': (5, 3)} \n" + "F\x00{'descr': '>i8', 'fortran_order': False, 'shape': (3, 3)} \n" + "F\x00{'descr': '<f4', 'fortran_order': False, 'shape': (0,)} \n" + "F\x00{'descr': '<f4', 'fortran_order': False, 'shape': ()} \n" + "F\x00{'descr': '<f4', 'fortran_order': False, 'shape': (15,)} \n" + "F\x00{'descr': '<f4', 'fortran_order': False, 'shape': (3, 5)} \n" + "F\x00{'descr': '<f4', 'fortran_order': True, 'shape': (5, 3)} \n" + "F\x00{'descr': '<f4', 'fortran_order': False, 'shape': (3, 3)} \n" + "F\x00{'descr': '>f4', 'fortran_order': False, 'shape': (0,)} \n" + "F\x00{'descr': '>f4', 'fortran_order': False, 'shape': ()} \n" + "F\x00{'descr': '>f4', 'fortran_order': False, 'shape': (15,)} \n" + "F\x00{'descr': '>f4', 'fortran_order': False, 'shape': (3, 5)} \n" + "F\x00{'descr': '>f4', 'fortran_order': True, 'shape': (5, 3)} \n" + "F\x00{'descr': '>f4', 'fortran_order': False, 'shape': (3, 3)} \n" + "F\x00{'descr': '<f8', 'fortran_order': False, 'shape': (0,)} \n" + "F\x00{'descr': '<f8', 'fortran_order': False, 'shape': ()} \n" + "F\x00{'descr': '<f8', 'fortran_order': False, 'shape': (15,)} \n" + "F\x00{'descr': '<f8', 'fortran_order': False, 'shape': (3, 5)} \n" + "F\x00{'descr': '<f8', 'fortran_order': True, 'shape': (5, 3)} \n" + "F\x00{'descr': '<f8', 'fortran_order': False, 'shape': (3, 3)} \n" + "F\x00{'descr': '>f8', 'fortran_order': False, 'shape': (0,)} \n" + "F\x00{'descr': '>f8', 'fortran_order': False, 'shape': ()} \n" + "F\x00{'descr': '>f8', 'fortran_order': False, 'shape': (15,)} \n" + "F\x00{'descr': '>f8', 'fortran_order': False, 'shape': (3, 5)} \n" + "F\x00{'descr': '>f8', 'fortran_order': True, 'shape': (5, 3)} \n" + "F\x00{'descr': '>f8', 'fortran_order': False, 'shape': (3, 3)} \n" + "F\x00{'descr': '<c8', 'fortran_order': False, 'shape': (0,)} \n" + "F\x00{'descr': '<c8', 'fortran_order': False, 'shape': ()} \n" + "F\x00{'descr': '<c8', 'fortran_order': False, 'shape': (15,)} \n" + "F\x00{'descr': '<c8', 'fortran_order': False, 'shape': (3, 5)} \n" + "F\x00{'descr': '<c8', 'fortran_order': True, 'shape': (5, 3)} \n" + "F\x00{'descr': '<c8', 'fortran_order': False, 'shape': (3, 3)} \n" + "F\x00{'descr': '>c8', 'fortran_order': False, 'shape': (0,)} \n" + "F\x00{'descr': '>c8', 'fortran_order': False, 'shape': ()} \n" + "F\x00{'descr': '>c8', 'fortran_order': False, 'shape': (15,)} \n" + "F\x00{'descr': '>c8', 'fortran_order': False, 'shape': (3, 5)} \n" + "F\x00{'descr': '>c8', 'fortran_order': True, 'shape': (5, 3)} \n" + "F\x00{'descr': '>c8', 'fortran_order': False, 'shape': (3, 3)} \n" + "F\x00{'descr': '<c16', 'fortran_order': False, 'shape': (0,)} \n" + "F\x00{'descr': '<c16', 'fortran_order': False, 'shape': ()} \n" + "F\x00{'descr': '<c16', 'fortran_order': False, 'shape': (15,)} \n" + "F\x00{'descr': '<c16', 'fortran_order': False, 'shape': (3, 5)} \n" + "F\x00{'descr': '<c16', 'fortran_order': True, 'shape': (5, 3)} \n" + "F\x00{'descr': '<c16', 'fortran_order': False, 'shape': (3, 3)} \n" + "F\x00{'descr': '>c16', 'fortran_order': False, 'shape': (0,)} \n" + "F\x00{'descr': '>c16', 'fortran_order': False, 'shape': ()} \n" + "F\x00{'descr': '>c16', 'fortran_order': False, 'shape': (15,)} \n" + "F\x00{'descr': '>c16', 'fortran_order': False, 'shape': (3, 5)} \n" + "F\x00{'descr': '>c16', 'fortran_order': True, 'shape': (5, 3)} \n" + "F\x00{'descr': '>c16', 'fortran_order': False, 'shape': (3, 3)} \n" + "F\x00{'descr': 'O', 'fortran_order': False, 'shape': (0,)} \n" + "F\x00{'descr': 'O', 'fortran_order': False, 'shape': ()} \n" + "F\x00{'descr': 'O', 'fortran_order': False, 'shape': (15,)} \n" + "F\x00{'descr': 'O', 'fortran_order': False, 'shape': (3, 5)} \n" + "F\x00{'descr': 'O', 'fortran_order': True, 'shape': (5, 3)} \n" + "F\x00{'descr': 'O', 'fortran_order': False, 'shape': (3, 3)} \n" + "F\x00{'descr': 'O', 'fortran_order': False, 'shape': (0,)} \n" + "F\x00{'descr': 'O', 'fortran_order': False, 'shape': ()} \n" + "F\x00{'descr': 'O', 'fortran_order': False, 'shape': (15,)} \n" + "F\x00{'descr': 'O', 'fortran_order': False, 'shape': (3, 5)} \n" + "F\x00{'descr': 'O', 'fortran_order': True, 'shape': (5, 3)} \n" + "F\x00{'descr': 'O', 'fortran_order': False, 'shape': (3, 3)} \n" + "v\x00{'descr': [('x', '<i4', (2,)), ('y', '<f8', (2, 2)), ('z', '|u1')],\n 'fortran_order': False,\n 'shape': (2,)} \n" + "\x16\x02{'descr': [('x', '<i4', (2,)),\n ('Info',\n [('value', '<c16'),\n ('y2', '<f8'),\n ('Info2',\n [('name', '|S2'),\n ('value', '<c16', (2,)),\n ('y3', '<f8', (2,)),\n ('z3', '<u4', (2,))]),\n ('name', '|S2'),\n ('z2', '|b1')]),\n ('color', '|S2'),\n ('info', [('Name', '<U8'), ('Value', '<c16')]),\n ('y', '<f8', (2, 2)),\n ('z', '|u1')],\n 'fortran_order': False,\n 'shape': (2,)} \n" + "v\x00{'descr': [('x', '>i4', (2,)), ('y', '>f8', (2, 2)), ('z', '|u1')],\n 'fortran_order': False,\n 'shape': (2,)} \n" + "\x16\x02{'descr': [('x', '>i4', (2,)),\n ('Info',\n [('value', '>c16'),\n ('y2', '>f8'),\n ('Info2',\n [('name', '|S2'),\n ('value', '>c16', (2,)),\n ('y3', '>f8', (2,)),\n ('z3', '>u4', (2,))]),\n ('name', '|S2'),\n ('z2', '|b1')]),\n ('color', '|S2'),\n ('info', [('Name', '>U8'), ('Value', '>c16')]),\n ('y', '>f8', (2, 2)),\n ('z', '|u1')],\n 'fortran_order': False,\n 'shape': (2,)} \n" +''' +import os +import sys +import warnings +from io import BytesIO + +import pytest + +import numpy as np +from numpy.lib import format +from numpy.testing import ( + IS_64BIT, + IS_PYPY, + IS_WASM, + assert_, + assert_array_equal, + assert_raises, + assert_raises_regex, + assert_warns, +) +from numpy.testing._private.utils import requires_memory + +# Generate some basic arrays to test with. +scalars = [ + np.uint8, + np.int8, + np.uint16, + np.int16, + np.uint32, + np.int32, + np.uint64, + np.int64, + np.float32, + np.float64, + np.complex64, + np.complex128, + object, +] +basic_arrays = [] +for scalar in scalars: + for endian in '<>': + dtype = np.dtype(scalar).newbyteorder(endian) + basic = np.arange(1500).astype(dtype) + basic_arrays.extend([ + # Empty + np.array([], dtype=dtype), + # Rank-0 + np.array(10, dtype=dtype), + # 1-D + basic, + # 2-D C-contiguous + basic.reshape((30, 50)), + # 2-D F-contiguous + basic.reshape((30, 50)).T, + # 2-D non-contiguous + basic.reshape((30, 50))[::-1, ::2], + ]) + +# More complicated record arrays. +# This is the structure of the table used for plain objects: +# +# +-+-+-+ +# |x|y|z| +# +-+-+-+ + +# Structure of a plain array description: +Pdescr = [ + ('x', 'i4', (2,)), + ('y', 'f8', (2, 2)), + ('z', 'u1')] + +# A plain list of tuples with values for testing: +PbufferT = [ + # x y z + ([3, 2], [[6., 4.], [6., 4.]], 8), + ([4, 3], [[7., 5.], [7., 5.]], 9), + ] + + +# This is the structure of the table used for nested objects (DON'T PANIC!): +# +# +-+---------------------------------+-----+----------+-+-+ +# |x|Info |color|info |y|z| +# | +-----+--+----------------+----+--+ +----+-----+ | | +# | |value|y2|Info2 |name|z2| |Name|Value| | | +# | | | +----+-----+--+--+ | | | | | | | +# | | | |name|value|y3|z3| | | | | | | | +# +-+-----+--+----+-----+--+--+----+--+-----+----+-----+-+-+ +# + +# The corresponding nested array description: +Ndescr = [ + ('x', 'i4', (2,)), + ('Info', [ + ('value', 'c16'), + ('y2', 'f8'), + ('Info2', [ + ('name', 'S2'), + ('value', 'c16', (2,)), + ('y3', 'f8', (2,)), + ('z3', 'u4', (2,))]), + ('name', 'S2'), + ('z2', 'b1')]), + ('color', 'S2'), + ('info', [ + ('Name', 'U8'), + ('Value', 'c16')]), + ('y', 'f8', (2, 2)), + ('z', 'u1')] + +NbufferT = [ + # x Info color info y z + # value y2 Info2 name z2 Name Value + # name value y3 z3 + ([3, 2], (6j, 6., ('nn', [6j, 4j], [6., 4.], [1, 2]), 'NN', True), + 'cc', ('NN', 6j), [[6., 4.], [6., 4.]], 8), + ([4, 3], (7j, 7., ('oo', [7j, 5j], [7., 5.], [2, 1]), 'OO', False), + 'dd', ('OO', 7j), [[7., 5.], [7., 5.]], 9), + ] + +record_arrays = [ + np.array(PbufferT, dtype=np.dtype(Pdescr).newbyteorder('<')), + np.array(NbufferT, dtype=np.dtype(Ndescr).newbyteorder('<')), + np.array(PbufferT, dtype=np.dtype(Pdescr).newbyteorder('>')), + np.array(NbufferT, dtype=np.dtype(Ndescr).newbyteorder('>')), + np.zeros(1, dtype=[('c', ('<f8', (5,)), (2,))]) +] + + +# BytesIO that reads a random number of bytes at a time +class BytesIOSRandomSize(BytesIO): + def read(self, size=None): + import random + size = random.randint(1, size) + return super().read(size) + + +def roundtrip(arr): + f = BytesIO() + format.write_array(f, arr) + f2 = BytesIO(f.getvalue()) + arr2 = format.read_array(f2, allow_pickle=True) + return arr2 + + +def roundtrip_randsize(arr): + f = BytesIO() + format.write_array(f, arr) + f2 = BytesIOSRandomSize(f.getvalue()) + arr2 = format.read_array(f2) + return arr2 + + +def roundtrip_truncated(arr): + f = BytesIO() + format.write_array(f, arr) + # BytesIO is one byte short + f2 = BytesIO(f.getvalue()[0:-1]) + arr2 = format.read_array(f2) + return arr2 + +def assert_equal_(o1, o2): + assert_(o1 == o2) + + +def test_roundtrip(): + for arr in basic_arrays + record_arrays: + arr2 = roundtrip(arr) + assert_array_equal(arr, arr2) + + +def test_roundtrip_randsize(): + for arr in basic_arrays + record_arrays: + if arr.dtype != object: + arr2 = roundtrip_randsize(arr) + assert_array_equal(arr, arr2) + + +def test_roundtrip_truncated(): + for arr in basic_arrays: + if arr.dtype != object: + assert_raises(ValueError, roundtrip_truncated, arr) + +def test_file_truncated(tmp_path): + path = tmp_path / "a.npy" + for arr in basic_arrays: + if arr.dtype != object: + with open(path, 'wb') as f: + format.write_array(f, arr) + # truncate the file by one byte + with open(path, 'rb+') as f: + f.seek(-1, os.SEEK_END) + f.truncate() + with open(path, 'rb') as f: + with pytest.raises( + ValueError, + match=( + r"EOF: reading array header, " + r"expected (\d+) bytes got (\d+)" + ) if arr.size == 0 else ( + r"Failed to read all data for array\. " + r"Expected \(.*?\) = (\d+) elements, " + r"could only read (\d+) elements\. " + r"\(file seems not fully written\?\)" + ) + ): + _ = format.read_array(f) + +def test_long_str(): + # check items larger than internal buffer size, gh-4027 + long_str_arr = np.ones(1, dtype=np.dtype((str, format.BUFFER_SIZE + 1))) + long_str_arr2 = roundtrip(long_str_arr) + assert_array_equal(long_str_arr, long_str_arr2) + + +@pytest.mark.skipif(IS_WASM, reason="memmap doesn't work correctly") +@pytest.mark.slow +def test_memmap_roundtrip(tmpdir): + for i, arr in enumerate(basic_arrays + record_arrays): + if arr.dtype.hasobject: + # Skip these since they can't be mmap'ed. + continue + # Write it out normally and through mmap. + nfn = os.path.join(tmpdir, f'normal{i}.npy') + mfn = os.path.join(tmpdir, f'memmap{i}.npy') + with open(nfn, 'wb') as fp: + format.write_array(fp, arr) + + fortran_order = ( + arr.flags.f_contiguous and not arr.flags.c_contiguous) + ma = format.open_memmap(mfn, mode='w+', dtype=arr.dtype, + shape=arr.shape, fortran_order=fortran_order) + ma[...] = arr + ma.flush() + + # Check that both of these files' contents are the same. + with open(nfn, 'rb') as fp: + normal_bytes = fp.read() + with open(mfn, 'rb') as fp: + memmap_bytes = fp.read() + assert_equal_(normal_bytes, memmap_bytes) + + # Check that reading the file using memmap works. + ma = format.open_memmap(nfn, mode='r') + ma.flush() + + +def test_compressed_roundtrip(tmpdir): + arr = np.random.rand(200, 200) + npz_file = os.path.join(tmpdir, 'compressed.npz') + np.savez_compressed(npz_file, arr=arr) + with np.load(npz_file) as npz: + arr1 = npz['arr'] + assert_array_equal(arr, arr1) + + +# aligned +dt1 = np.dtype('i1, i4, i1', align=True) +# non-aligned, explicit offsets +dt2 = np.dtype({'names': ['a', 'b'], 'formats': ['i4', 'i4'], + 'offsets': [1, 6]}) +# nested struct-in-struct +dt3 = np.dtype({'names': ['c', 'd'], 'formats': ['i4', dt2]}) +# field with '' name +dt4 = np.dtype({'names': ['a', '', 'b'], 'formats': ['i4'] * 3}) +# titles +dt5 = np.dtype({'names': ['a', 'b'], 'formats': ['i4', 'i4'], + 'offsets': [1, 6], 'titles': ['aa', 'bb']}) +# empty +dt6 = np.dtype({'names': [], 'formats': [], 'itemsize': 8}) + +@pytest.mark.parametrize("dt", [dt1, dt2, dt3, dt4, dt5, dt6]) +def test_load_padded_dtype(tmpdir, dt): + arr = np.zeros(3, dt) + for i in range(3): + arr[i] = i + 5 + npz_file = os.path.join(tmpdir, 'aligned.npz') + np.savez(npz_file, arr=arr) + with np.load(npz_file) as npz: + arr1 = npz['arr'] + assert_array_equal(arr, arr1) + + +@pytest.mark.skipif(sys.version_info >= (3, 12), reason="see gh-23988") +@pytest.mark.xfail(IS_WASM, reason="Emscripten NODEFS has a buggy dup") +def test_python2_python3_interoperability(): + fname = 'win64python2.npy' + path = os.path.join(os.path.dirname(__file__), 'data', fname) + with pytest.warns(UserWarning, match="Reading.*this warning\\."): + data = np.load(path) + assert_array_equal(data, np.ones(2)) + + +def test_pickle_python2_python3(): + # Test that loading object arrays saved on Python 2 works both on + # Python 2 and Python 3 and vice versa + data_dir = os.path.join(os.path.dirname(__file__), 'data') + + expected = np.array([None, range, '\u512a\u826f', + b'\xe4\xb8\x8d\xe8\x89\xaf'], + dtype=object) + + for fname in ['py2-np0-objarr.npy', 'py2-objarr.npy', 'py2-objarr.npz', + 'py3-objarr.npy', 'py3-objarr.npz']: + path = os.path.join(data_dir, fname) + + for encoding in ['bytes', 'latin1']: + data_f = np.load(path, allow_pickle=True, encoding=encoding) + if fname.endswith('.npz'): + data = data_f['x'] + data_f.close() + else: + data = data_f + + if encoding == 'latin1' and fname.startswith('py2'): + assert_(isinstance(data[3], str)) + assert_array_equal(data[:-1], expected[:-1]) + # mojibake occurs + assert_array_equal(data[-1].encode(encoding), expected[-1]) + else: + assert_(isinstance(data[3], bytes)) + assert_array_equal(data, expected) + + if fname.startswith('py2'): + if fname.endswith('.npz'): + data = np.load(path, allow_pickle=True) + assert_raises(UnicodeError, data.__getitem__, 'x') + data.close() + data = np.load(path, allow_pickle=True, fix_imports=False, + encoding='latin1') + assert_raises(ImportError, data.__getitem__, 'x') + data.close() + else: + assert_raises(UnicodeError, np.load, path, + allow_pickle=True) + assert_raises(ImportError, np.load, path, + allow_pickle=True, fix_imports=False, + encoding='latin1') + + +def test_pickle_disallow(tmpdir): + data_dir = os.path.join(os.path.dirname(__file__), 'data') + + path = os.path.join(data_dir, 'py2-objarr.npy') + assert_raises(ValueError, np.load, path, + allow_pickle=False, encoding='latin1') + + path = os.path.join(data_dir, 'py2-objarr.npz') + with np.load(path, allow_pickle=False, encoding='latin1') as f: + assert_raises(ValueError, f.__getitem__, 'x') + + path = os.path.join(tmpdir, 'pickle-disabled.npy') + assert_raises(ValueError, np.save, path, np.array([None], dtype=object), + allow_pickle=False) + +@pytest.mark.parametrize('dt', [ + np.dtype(np.dtype([('a', np.int8), + ('b', np.int16), + ('c', np.int32), + ], align=True), + (3,)), + np.dtype([('x', np.dtype({'names': ['a', 'b'], + 'formats': ['i1', 'i1'], + 'offsets': [0, 4], + 'itemsize': 8, + }, + (3,)), + (4,), + )]), + np.dtype([('x', + ('<f8', (5,)), + (2,), + )]), + np.dtype([('x', np.dtype(( + np.dtype(( + np.dtype({'names': ['a', 'b'], + 'formats': ['i1', 'i1'], + 'offsets': [0, 4], + 'itemsize': 8}), + (3,) + )), + (4,) + ))) + ]), + np.dtype([ + ('a', np.dtype(( + np.dtype(( + np.dtype(( + np.dtype([ + ('a', int), + ('b', np.dtype({'names': ['a', 'b'], + 'formats': ['i1', 'i1'], + 'offsets': [0, 4], + 'itemsize': 8})), + ]), + (3,), + )), + (4,), + )), + (5,), + ))) + ]), + ]) +def test_descr_to_dtype(dt): + dt1 = format.descr_to_dtype(dt.descr) + assert_equal_(dt1, dt) + arr1 = np.zeros(3, dt) + arr2 = roundtrip(arr1) + assert_array_equal(arr1, arr2) + +def test_version_2_0(): + f = BytesIO() + # requires more than 2 byte for header + dt = [(("%d" % i) * 100, float) for i in range(500)] + d = np.ones(1000, dtype=dt) + + format.write_array(f, d, version=(2, 0)) + with warnings.catch_warnings(record=True) as w: + warnings.filterwarnings('always', '', UserWarning) + format.write_array(f, d) + assert_(w[0].category is UserWarning) + + # check alignment of data portion + f.seek(0) + header = f.readline() + assert_(len(header) % format.ARRAY_ALIGN == 0) + + f.seek(0) + n = format.read_array(f, max_header_size=200000) + assert_array_equal(d, n) + + # 1.0 requested but data cannot be saved this way + assert_raises(ValueError, format.write_array, f, d, (1, 0)) + + +@pytest.mark.skipif(IS_WASM, reason="memmap doesn't work correctly") +def test_version_2_0_memmap(tmpdir): + # requires more than 2 byte for header + dt = [(("%d" % i) * 100, float) for i in range(500)] + d = np.ones(1000, dtype=dt) + tf1 = os.path.join(tmpdir, 'version2_01.npy') + tf2 = os.path.join(tmpdir, 'version2_02.npy') + + # 1.0 requested but data cannot be saved this way + assert_raises(ValueError, format.open_memmap, tf1, mode='w+', dtype=d.dtype, + shape=d.shape, version=(1, 0)) + + ma = format.open_memmap(tf1, mode='w+', dtype=d.dtype, + shape=d.shape, version=(2, 0)) + ma[...] = d + ma.flush() + ma = format.open_memmap(tf1, mode='r', max_header_size=200000) + assert_array_equal(ma, d) + + with warnings.catch_warnings(record=True) as w: + warnings.filterwarnings('always', '', UserWarning) + ma = format.open_memmap(tf2, mode='w+', dtype=d.dtype, + shape=d.shape, version=None) + assert_(w[0].category is UserWarning) + ma[...] = d + ma.flush() + + ma = format.open_memmap(tf2, mode='r', max_header_size=200000) + + assert_array_equal(ma, d) + +@pytest.mark.parametrize("mmap_mode", ["r", None]) +def test_huge_header(tmpdir, mmap_mode): + f = os.path.join(tmpdir, 'large_header.npy') + arr = np.array(1, dtype="i," * 10000 + "i") + + with pytest.warns(UserWarning, match=".*format 2.0"): + np.save(f, arr) + + with pytest.raises(ValueError, match="Header.*large"): + np.load(f, mmap_mode=mmap_mode) + + with pytest.raises(ValueError, match="Header.*large"): + np.load(f, mmap_mode=mmap_mode, max_header_size=20000) + + res = np.load(f, mmap_mode=mmap_mode, allow_pickle=True) + assert_array_equal(res, arr) + + res = np.load(f, mmap_mode=mmap_mode, max_header_size=180000) + assert_array_equal(res, arr) + +def test_huge_header_npz(tmpdir): + f = os.path.join(tmpdir, 'large_header.npz') + arr = np.array(1, dtype="i," * 10000 + "i") + + with pytest.warns(UserWarning, match=".*format 2.0"): + np.savez(f, arr=arr) + + # Only getting the array from the file actually reads it + with pytest.raises(ValueError, match="Header.*large"): + np.load(f)["arr"] + + with pytest.raises(ValueError, match="Header.*large"): + np.load(f, max_header_size=20000)["arr"] + + res = np.load(f, allow_pickle=True)["arr"] + assert_array_equal(res, arr) + + res = np.load(f, max_header_size=180000)["arr"] + assert_array_equal(res, arr) + +def test_write_version(): + f = BytesIO() + arr = np.arange(1) + # These should pass. + format.write_array(f, arr, version=(1, 0)) + format.write_array(f, arr) + + format.write_array(f, arr, version=None) + format.write_array(f, arr) + + format.write_array(f, arr, version=(2, 0)) + format.write_array(f, arr) + + # These should all fail. + bad_versions = [ + (1, 1), + (0, 0), + (0, 1), + (2, 2), + (255, 255), + ] + for version in bad_versions: + with assert_raises_regex(ValueError, + 'we only support format version.*'): + format.write_array(f, arr, version=version) + + +bad_version_magic = [ + b'\x93NUMPY\x01\x01', + b'\x93NUMPY\x00\x00', + b'\x93NUMPY\x00\x01', + b'\x93NUMPY\x02\x00', + b'\x93NUMPY\x02\x02', + b'\x93NUMPY\xff\xff', +] +malformed_magic = [ + b'\x92NUMPY\x01\x00', + b'\x00NUMPY\x01\x00', + b'\x93numpy\x01\x00', + b'\x93MATLB\x01\x00', + b'\x93NUMPY\x01', + b'\x93NUMPY', + b'', +] + +def test_read_magic(): + s1 = BytesIO() + s2 = BytesIO() + + arr = np.ones((3, 6), dtype=float) + + format.write_array(s1, arr, version=(1, 0)) + format.write_array(s2, arr, version=(2, 0)) + + s1.seek(0) + s2.seek(0) + + version1 = format.read_magic(s1) + version2 = format.read_magic(s2) + + assert_(version1 == (1, 0)) + assert_(version2 == (2, 0)) + + assert_(s1.tell() == format.MAGIC_LEN) + assert_(s2.tell() == format.MAGIC_LEN) + +def test_read_magic_bad_magic(): + for magic in malformed_magic: + f = BytesIO(magic) + assert_raises(ValueError, format.read_array, f) + + +def test_read_version_1_0_bad_magic(): + for magic in bad_version_magic + malformed_magic: + f = BytesIO(magic) + assert_raises(ValueError, format.read_array, f) + + +def test_bad_magic_args(): + assert_raises(ValueError, format.magic, -1, 1) + assert_raises(ValueError, format.magic, 256, 1) + assert_raises(ValueError, format.magic, 1, -1) + assert_raises(ValueError, format.magic, 1, 256) + + +def test_large_header(): + s = BytesIO() + d = {'shape': (), 'fortran_order': False, 'descr': '<i8'} + format.write_array_header_1_0(s, d) + + s = BytesIO() + d['descr'] = [('x' * 256 * 256, '<i8')] + assert_raises(ValueError, format.write_array_header_1_0, s, d) + + +def test_read_array_header_1_0(): + s = BytesIO() + + arr = np.ones((3, 6), dtype=float) + format.write_array(s, arr, version=(1, 0)) + + s.seek(format.MAGIC_LEN) + shape, fortran, dtype = format.read_array_header_1_0(s) + + assert_(s.tell() % format.ARRAY_ALIGN == 0) + assert_((shape, fortran, dtype) == ((3, 6), False, float)) + + +def test_read_array_header_2_0(): + s = BytesIO() + + arr = np.ones((3, 6), dtype=float) + format.write_array(s, arr, version=(2, 0)) + + s.seek(format.MAGIC_LEN) + shape, fortran, dtype = format.read_array_header_2_0(s) + + assert_(s.tell() % format.ARRAY_ALIGN == 0) + assert_((shape, fortran, dtype) == ((3, 6), False, float)) + + +def test_bad_header(): + # header of length less than 2 should fail + s = BytesIO() + assert_raises(ValueError, format.read_array_header_1_0, s) + s = BytesIO(b'1') + assert_raises(ValueError, format.read_array_header_1_0, s) + + # header shorter than indicated size should fail + s = BytesIO(b'\x01\x00') + assert_raises(ValueError, format.read_array_header_1_0, s) + + # headers without the exact keys required should fail + # d = {"shape": (1, 2), + # "descr": "x"} + s = BytesIO( + b"\x93NUMPY\x01\x006\x00{'descr': 'x', 'shape': (1, 2), }" + b" \n" + ) + assert_raises(ValueError, format.read_array_header_1_0, s) + + d = {"shape": (1, 2), + "fortran_order": False, + "descr": "x", + "extrakey": -1} + s = BytesIO() + format.write_array_header_1_0(s, d) + assert_raises(ValueError, format.read_array_header_1_0, s) + + +def test_large_file_support(tmpdir): + if (sys.platform == 'win32' or sys.platform == 'cygwin'): + pytest.skip("Unknown if Windows has sparse filesystems") + # try creating a large sparse file + tf_name = os.path.join(tmpdir, 'sparse_file') + try: + # seek past end would work too, but linux truncate somewhat + # increases the chances that we have a sparse filesystem and can + # avoid actually writing 5GB + import subprocess as sp + sp.check_call(["truncate", "-s", "5368709120", tf_name]) + except Exception: + pytest.skip("Could not create 5GB large file") + # write a small array to the end + with open(tf_name, "wb") as f: + f.seek(5368709120) + d = np.arange(5) + np.save(f, d) + # read it back + with open(tf_name, "rb") as f: + f.seek(5368709120) + r = np.load(f) + assert_array_equal(r, d) + + +@pytest.mark.skipif(IS_PYPY, reason="flaky on PyPy") +@pytest.mark.skipif(not IS_64BIT, reason="test requires 64-bit system") +@pytest.mark.slow +@requires_memory(free_bytes=2 * 2**30) +def test_large_archive(tmpdir): + # Regression test for product of saving arrays with dimensions of array + # having a product that doesn't fit in int32. See gh-7598 for details. + shape = (2**30, 2) + try: + a = np.empty(shape, dtype=np.uint8) + except MemoryError: + pytest.skip("Could not create large file") + + fname = os.path.join(tmpdir, "large_archive") + + with open(fname, "wb") as f: + np.savez(f, arr=a) + + del a + + with open(fname, "rb") as f: + new_a = np.load(f)["arr"] + + assert new_a.shape == shape + + +def test_empty_npz(tmpdir): + # Test for gh-9989 + fname = os.path.join(tmpdir, "nothing.npz") + np.savez(fname) + with np.load(fname) as nps: + pass + + +def test_unicode_field_names(tmpdir): + # gh-7391 + arr = np.array([ + (1, 3), + (1, 2), + (1, 3), + (1, 2) + ], dtype=[ + ('int', int), + ('\N{CJK UNIFIED IDEOGRAPH-6574}\N{CJK UNIFIED IDEOGRAPH-5F62}', int) + ]) + fname = os.path.join(tmpdir, "unicode.npy") + with open(fname, 'wb') as f: + format.write_array(f, arr, version=(3, 0)) + with open(fname, 'rb') as f: + arr2 = format.read_array(f) + assert_array_equal(arr, arr2) + + # notifies the user that 3.0 is selected + with open(fname, 'wb') as f: + with assert_warns(UserWarning): + format.write_array(f, arr, version=None) + +def test_header_growth_axis(): + for is_fortran_array, dtype_space, expected_header_length in [ + [False, 22, 128], [False, 23, 192], [True, 23, 128], [True, 24, 192] + ]: + for size in [10**i for i in range(format.GROWTH_AXIS_MAX_DIGITS)]: + fp = BytesIO() + format.write_array_header_1_0(fp, { + 'shape': (2, size) if is_fortran_array else (size, 2), + 'fortran_order': is_fortran_array, + 'descr': np.dtype([(' ' * dtype_space, int)]) + }) + + assert len(fp.getvalue()) == expected_header_length + +@pytest.mark.parametrize('dt', [ + np.dtype({'names': ['a', 'b'], 'formats': [float, np.dtype('S3', + metadata={'some': 'stuff'})]}), + np.dtype(int, metadata={'some': 'stuff'}), + np.dtype([('subarray', (int, (2,)))], metadata={'some': 'stuff'}), + # recursive: metadata on the field of a dtype + np.dtype({'names': ['a', 'b'], 'formats': [ + float, np.dtype({'names': ['c'], 'formats': [np.dtype(int, metadata={})]}) + ]}), + ]) +@pytest.mark.skipif(IS_PYPY and sys.implementation.version <= (7, 3, 8), + reason="PyPy bug in error formatting") +def test_metadata_dtype(dt): + # gh-14142 + arr = np.ones(10, dtype=dt) + buf = BytesIO() + with assert_warns(UserWarning): + np.save(buf, arr) + buf.seek(0) + + # Loading should work (metadata was stripped): + arr2 = np.load(buf) + # BUG: assert_array_equal does not check metadata + from numpy.lib._utils_impl import drop_metadata + assert_array_equal(arr, arr2) + assert drop_metadata(arr.dtype) is not arr.dtype + assert drop_metadata(arr2.dtype) is arr2.dtype diff --git a/.venv/lib/python3.12/site-packages/numpy/lib/tests/test_function_base.py b/.venv/lib/python3.12/site-packages/numpy/lib/tests/test_function_base.py new file mode 100644 index 0000000..f2dba19 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/lib/tests/test_function_base.py @@ -0,0 +1,4573 @@ +import decimal +import math +import operator +import sys +import warnings +from fractions import Fraction +from functools import partial + +import hypothesis +import hypothesis.strategies as st +import pytest +from hypothesis.extra.numpy import arrays + +import numpy as np +import numpy.lib._function_base_impl as nfb +from numpy import ( + angle, + average, + bartlett, + blackman, + corrcoef, + cov, + delete, + diff, + digitize, + extract, + flipud, + gradient, + hamming, + hanning, + i0, + insert, + interp, + kaiser, + ma, + meshgrid, + piecewise, + place, + rot90, + select, + setxor1d, + sinc, + trapezoid, + trim_zeros, + unique, + unwrap, + vectorize, +) +from numpy._core.numeric import normalize_axis_tuple +from numpy.exceptions import AxisError +from numpy.random import rand +from numpy.testing import ( + HAS_REFCOUNT, + IS_WASM, + NOGIL_BUILD, + assert_, + assert_allclose, + assert_almost_equal, + assert_array_almost_equal, + assert_array_equal, + assert_equal, + assert_raises, + assert_raises_regex, + assert_warns, + suppress_warnings, +) + + +def get_mat(n): + data = np.arange(n) + data = np.add.outer(data, data) + return data + + +def _make_complex(real, imag): + """ + Like real + 1j * imag, but behaves as expected when imag contains non-finite + values + """ + ret = np.zeros(np.broadcast(real, imag).shape, np.complex128) + ret.real = real + ret.imag = imag + return ret + + +class TestRot90: + def test_basic(self): + assert_raises(ValueError, rot90, np.ones(4)) + assert_raises(ValueError, rot90, np.ones((2, 2, 2)), axes=(0, 1, 2)) + assert_raises(ValueError, rot90, np.ones((2, 2)), axes=(0, 2)) + assert_raises(ValueError, rot90, np.ones((2, 2)), axes=(1, 1)) + assert_raises(ValueError, rot90, np.ones((2, 2, 2)), axes=(-2, 1)) + + a = [[0, 1, 2], + [3, 4, 5]] + b1 = [[2, 5], + [1, 4], + [0, 3]] + b2 = [[5, 4, 3], + [2, 1, 0]] + b3 = [[3, 0], + [4, 1], + [5, 2]] + b4 = [[0, 1, 2], + [3, 4, 5]] + + for k in range(-3, 13, 4): + assert_equal(rot90(a, k=k), b1) + for k in range(-2, 13, 4): + assert_equal(rot90(a, k=k), b2) + for k in range(-1, 13, 4): + assert_equal(rot90(a, k=k), b3) + for k in range(0, 13, 4): + assert_equal(rot90(a, k=k), b4) + + assert_equal(rot90(rot90(a, axes=(0, 1)), axes=(1, 0)), a) + assert_equal(rot90(a, k=1, axes=(1, 0)), rot90(a, k=-1, axes=(0, 1))) + + def test_axes(self): + a = np.ones((50, 40, 3)) + assert_equal(rot90(a).shape, (40, 50, 3)) + assert_equal(rot90(a, axes=(0, 2)), rot90(a, axes=(0, -1))) + assert_equal(rot90(a, axes=(1, 2)), rot90(a, axes=(-2, -1))) + + def test_rotation_axes(self): + a = np.arange(8).reshape((2, 2, 2)) + + a_rot90_01 = [[[2, 3], + [6, 7]], + [[0, 1], + [4, 5]]] + a_rot90_12 = [[[1, 3], + [0, 2]], + [[5, 7], + [4, 6]]] + a_rot90_20 = [[[4, 0], + [6, 2]], + [[5, 1], + [7, 3]]] + a_rot90_10 = [[[4, 5], + [0, 1]], + [[6, 7], + [2, 3]]] + + assert_equal(rot90(a, axes=(0, 1)), a_rot90_01) + assert_equal(rot90(a, axes=(1, 0)), a_rot90_10) + assert_equal(rot90(a, axes=(1, 2)), a_rot90_12) + + for k in range(1, 5): + assert_equal(rot90(a, k=k, axes=(2, 0)), + rot90(a_rot90_20, k=k - 1, axes=(2, 0))) + + +class TestFlip: + + def test_axes(self): + assert_raises(AxisError, np.flip, np.ones(4), axis=1) + assert_raises(AxisError, np.flip, np.ones((4, 4)), axis=2) + assert_raises(AxisError, np.flip, np.ones((4, 4)), axis=-3) + assert_raises(AxisError, np.flip, np.ones((4, 4)), axis=(0, 3)) + + def test_basic_lr(self): + a = get_mat(4) + b = a[:, ::-1] + assert_equal(np.flip(a, 1), b) + a = [[0, 1, 2], + [3, 4, 5]] + b = [[2, 1, 0], + [5, 4, 3]] + assert_equal(np.flip(a, 1), b) + + def test_basic_ud(self): + a = get_mat(4) + b = a[::-1, :] + assert_equal(np.flip(a, 0), b) + a = [[0, 1, 2], + [3, 4, 5]] + b = [[3, 4, 5], + [0, 1, 2]] + assert_equal(np.flip(a, 0), b) + + def test_3d_swap_axis0(self): + a = np.array([[[0, 1], + [2, 3]], + [[4, 5], + [6, 7]]]) + + b = np.array([[[4, 5], + [6, 7]], + [[0, 1], + [2, 3]]]) + + assert_equal(np.flip(a, 0), b) + + def test_3d_swap_axis1(self): + a = np.array([[[0, 1], + [2, 3]], + [[4, 5], + [6, 7]]]) + + b = np.array([[[2, 3], + [0, 1]], + [[6, 7], + [4, 5]]]) + + assert_equal(np.flip(a, 1), b) + + def test_3d_swap_axis2(self): + a = np.array([[[0, 1], + [2, 3]], + [[4, 5], + [6, 7]]]) + + b = np.array([[[1, 0], + [3, 2]], + [[5, 4], + [7, 6]]]) + + assert_equal(np.flip(a, 2), b) + + def test_4d(self): + a = np.arange(2 * 3 * 4 * 5).reshape(2, 3, 4, 5) + for i in range(a.ndim): + assert_equal(np.flip(a, i), + np.flipud(a.swapaxes(0, i)).swapaxes(i, 0)) + + def test_default_axis(self): + a = np.array([[1, 2, 3], + [4, 5, 6]]) + b = np.array([[6, 5, 4], + [3, 2, 1]]) + assert_equal(np.flip(a), b) + + def test_multiple_axes(self): + a = np.array([[[0, 1], + [2, 3]], + [[4, 5], + [6, 7]]]) + + assert_equal(np.flip(a, axis=()), a) + + b = np.array([[[5, 4], + [7, 6]], + [[1, 0], + [3, 2]]]) + + assert_equal(np.flip(a, axis=(0, 2)), b) + + c = np.array([[[3, 2], + [1, 0]], + [[7, 6], + [5, 4]]]) + + assert_equal(np.flip(a, axis=(1, 2)), c) + + +class TestAny: + + def test_basic(self): + y1 = [0, 0, 1, 0] + y2 = [0, 0, 0, 0] + y3 = [1, 0, 1, 0] + assert_(np.any(y1)) + assert_(np.any(y3)) + assert_(not np.any(y2)) + + def test_nd(self): + y1 = [[0, 0, 0], [0, 1, 0], [1, 1, 0]] + assert_(np.any(y1)) + assert_array_equal(np.any(y1, axis=0), [1, 1, 0]) + assert_array_equal(np.any(y1, axis=1), [0, 1, 1]) + + +class TestAll: + + def test_basic(self): + y1 = [0, 1, 1, 0] + y2 = [0, 0, 0, 0] + y3 = [1, 1, 1, 1] + assert_(not np.all(y1)) + assert_(np.all(y3)) + assert_(not np.all(y2)) + assert_(np.all(~np.array(y2))) + + def test_nd(self): + y1 = [[0, 0, 1], [0, 1, 1], [1, 1, 1]] + assert_(not np.all(y1)) + assert_array_equal(np.all(y1, axis=0), [0, 0, 1]) + assert_array_equal(np.all(y1, axis=1), [0, 0, 1]) + + +@pytest.mark.parametrize("dtype", ["i8", "U10", "object", "datetime64[ms]"]) +def test_any_and_all_result_dtype(dtype): + arr = np.ones(3, dtype=dtype) + assert np.any(arr).dtype == np.bool + assert np.all(arr).dtype == np.bool + + +class TestCopy: + + def test_basic(self): + a = np.array([[1, 2], [3, 4]]) + a_copy = np.copy(a) + assert_array_equal(a, a_copy) + a_copy[0, 0] = 10 + assert_equal(a[0, 0], 1) + assert_equal(a_copy[0, 0], 10) + + def test_order(self): + # It turns out that people rely on np.copy() preserving order by + # default; changing this broke scikit-learn: + # github.com/scikit-learn/scikit-learn/commit/7842748cf777412c506a8c0ed28090711d3a3783 + a = np.array([[1, 2], [3, 4]]) + assert_(a.flags.c_contiguous) + assert_(not a.flags.f_contiguous) + a_fort = np.array([[1, 2], [3, 4]], order="F") + assert_(not a_fort.flags.c_contiguous) + assert_(a_fort.flags.f_contiguous) + a_copy = np.copy(a) + assert_(a_copy.flags.c_contiguous) + assert_(not a_copy.flags.f_contiguous) + a_fort_copy = np.copy(a_fort) + assert_(not a_fort_copy.flags.c_contiguous) + assert_(a_fort_copy.flags.f_contiguous) + + def test_subok(self): + mx = ma.ones(5) + assert_(not ma.isMaskedArray(np.copy(mx, subok=False))) + assert_(ma.isMaskedArray(np.copy(mx, subok=True))) + # Default behavior + assert_(not ma.isMaskedArray(np.copy(mx))) + + +class TestAverage: + + def test_basic(self): + y1 = np.array([1, 2, 3]) + assert_(average(y1, axis=0) == 2.) + y2 = np.array([1., 2., 3.]) + assert_(average(y2, axis=0) == 2.) + y3 = [0., 0., 0.] + assert_(average(y3, axis=0) == 0.) + + y4 = np.ones((4, 4)) + y4[0, 1] = 0 + y4[1, 0] = 2 + assert_almost_equal(y4.mean(0), average(y4, 0)) + assert_almost_equal(y4.mean(1), average(y4, 1)) + + y5 = rand(5, 5) + assert_almost_equal(y5.mean(0), average(y5, 0)) + assert_almost_equal(y5.mean(1), average(y5, 1)) + + @pytest.mark.parametrize( + 'x, axis, expected_avg, weights, expected_wavg, expected_wsum', + [([1, 2, 3], None, [2.0], [3, 4, 1], [1.75], [8.0]), + ([[1, 2, 5], [1, 6, 11]], 0, [[1.0, 4.0, 8.0]], + [1, 3], [[1.0, 5.0, 9.5]], [[4, 4, 4]])], + ) + def test_basic_keepdims(self, x, axis, expected_avg, + weights, expected_wavg, expected_wsum): + avg = np.average(x, axis=axis, keepdims=True) + assert avg.shape == np.shape(expected_avg) + assert_array_equal(avg, expected_avg) + + wavg = np.average(x, axis=axis, weights=weights, keepdims=True) + assert wavg.shape == np.shape(expected_wavg) + assert_array_equal(wavg, expected_wavg) + + wavg, wsum = np.average(x, axis=axis, weights=weights, returned=True, + keepdims=True) + assert wavg.shape == np.shape(expected_wavg) + assert_array_equal(wavg, expected_wavg) + assert wsum.shape == np.shape(expected_wsum) + assert_array_equal(wsum, expected_wsum) + + def test_weights(self): + y = np.arange(10) + w = np.arange(10) + actual = average(y, weights=w) + desired = (np.arange(10) ** 2).sum() * 1. / np.arange(10).sum() + assert_almost_equal(actual, desired) + + y1 = np.array([[1, 2, 3], [4, 5, 6]]) + w0 = [1, 2] + actual = average(y1, weights=w0, axis=0) + desired = np.array([3., 4., 5.]) + assert_almost_equal(actual, desired) + + w1 = [0, 0, 1] + actual = average(y1, weights=w1, axis=1) + desired = np.array([3., 6.]) + assert_almost_equal(actual, desired) + + # weights and input have different shapes but no axis is specified + with pytest.raises( + TypeError, + match="Axis must be specified when shapes of a " + "and weights differ"): + average(y1, weights=w1) + + # 2D Case + w2 = [[0, 0, 1], [0, 0, 2]] + desired = np.array([3., 6.]) + assert_array_equal(average(y1, weights=w2, axis=1), desired) + assert_equal(average(y1, weights=w2), 5.) + + y3 = rand(5).astype(np.float32) + w3 = rand(5).astype(np.float64) + + assert_(np.average(y3, weights=w3).dtype == np.result_type(y3, w3)) + + # test weights with `keepdims=False` and `keepdims=True` + x = np.array([2, 3, 4]).reshape(3, 1) + w = np.array([4, 5, 6]).reshape(3, 1) + + actual = np.average(x, weights=w, axis=1, keepdims=False) + desired = np.array([2., 3., 4.]) + assert_array_equal(actual, desired) + + actual = np.average(x, weights=w, axis=1, keepdims=True) + desired = np.array([[2.], [3.], [4.]]) + assert_array_equal(actual, desired) + + def test_weight_and_input_dims_different(self): + y = np.arange(12).reshape(2, 2, 3) + w = np.array([0., 0., 1., .5, .5, 0., 0., .5, .5, 1., 0., 0.])\ + .reshape(2, 2, 3) + + subw0 = w[:, :, 0] + actual = average(y, axis=(0, 1), weights=subw0) + desired = np.array([7., 8., 9.]) + assert_almost_equal(actual, desired) + + subw1 = w[1, :, :] + actual = average(y, axis=(1, 2), weights=subw1) + desired = np.array([2.25, 8.25]) + assert_almost_equal(actual, desired) + + subw2 = w[:, 0, :] + actual = average(y, axis=(0, 2), weights=subw2) + desired = np.array([4.75, 7.75]) + assert_almost_equal(actual, desired) + + # here the weights have the wrong shape for the specified axes + with pytest.raises( + ValueError, + match="Shape of weights must be consistent with " + "shape of a along specified axis"): + average(y, axis=(0, 1, 2), weights=subw0) + + with pytest.raises( + ValueError, + match="Shape of weights must be consistent with " + "shape of a along specified axis"): + average(y, axis=(0, 1), weights=subw1) + + # swapping the axes should be same as transposing weights + actual = average(y, axis=(1, 0), weights=subw0) + desired = average(y, axis=(0, 1), weights=subw0.T) + assert_almost_equal(actual, desired) + + # if average over all axes, should have float output + actual = average(y, axis=(0, 1, 2), weights=w) + assert_(actual.ndim == 0) + + def test_returned(self): + y = np.array([[1, 2, 3], [4, 5, 6]]) + + # No weights + avg, scl = average(y, returned=True) + assert_equal(scl, 6.) + + avg, scl = average(y, 0, returned=True) + assert_array_equal(scl, np.array([2., 2., 2.])) + + avg, scl = average(y, 1, returned=True) + assert_array_equal(scl, np.array([3., 3.])) + + # With weights + w0 = [1, 2] + avg, scl = average(y, weights=w0, axis=0, returned=True) + assert_array_equal(scl, np.array([3., 3., 3.])) + + w1 = [1, 2, 3] + avg, scl = average(y, weights=w1, axis=1, returned=True) + assert_array_equal(scl, np.array([6., 6.])) + + w2 = [[0, 0, 1], [1, 2, 3]] + avg, scl = average(y, weights=w2, axis=1, returned=True) + assert_array_equal(scl, np.array([1., 6.])) + + def test_subclasses(self): + class subclass(np.ndarray): + pass + a = np.array([[1, 2], [3, 4]]).view(subclass) + w = np.array([[1, 2], [3, 4]]).view(subclass) + + assert_equal(type(np.average(a)), subclass) + assert_equal(type(np.average(a, weights=w)), subclass) + + def test_upcasting(self): + typs = [('i4', 'i4', 'f8'), ('i4', 'f4', 'f8'), ('f4', 'i4', 'f8'), + ('f4', 'f4', 'f4'), ('f4', 'f8', 'f8')] + for at, wt, rt in typs: + a = np.array([[1, 2], [3, 4]], dtype=at) + w = np.array([[1, 2], [3, 4]], dtype=wt) + assert_equal(np.average(a, weights=w).dtype, np.dtype(rt)) + + def test_object_dtype(self): + a = np.array([decimal.Decimal(x) for x in range(10)]) + w = np.array([decimal.Decimal(1) for _ in range(10)]) + w /= w.sum() + assert_almost_equal(a.mean(0), average(a, weights=w)) + + def test_object_no_weights(self): + a = np.array([decimal.Decimal(x) for x in range(10)]) + m = average(a) + assert m == decimal.Decimal('4.5') + + def test_average_class_without_dtype(self): + # see gh-21988 + a = np.array([Fraction(1, 5), Fraction(3, 5)]) + assert_equal(np.average(a), Fraction(2, 5)) + + +class TestSelect: + choices = [np.array([1, 2, 3]), + np.array([4, 5, 6]), + np.array([7, 8, 9])] + conditions = [np.array([False, False, False]), + np.array([False, True, False]), + np.array([False, False, True])] + + def _select(self, cond, values, default=0): + output = [] + for m in range(len(cond)): + output += [V[m] for V, C in zip(values, cond) if C[m]] or [default] + return output + + def test_basic(self): + choices = self.choices + conditions = self.conditions + assert_array_equal(select(conditions, choices, default=15), + self._select(conditions, choices, default=15)) + + assert_equal(len(choices), 3) + assert_equal(len(conditions), 3) + + def test_broadcasting(self): + conditions = [np.array(True), np.array([False, True, False])] + choices = [1, np.arange(12).reshape(4, 3)] + assert_array_equal(select(conditions, choices), np.ones((4, 3))) + # default can broadcast too: + assert_equal(select([True], [0], default=[0]).shape, (1,)) + + def test_return_dtype(self): + assert_equal(select(self.conditions, self.choices, 1j).dtype, + np.complex128) + # But the conditions need to be stronger then the scalar default + # if it is scalar. + choices = [choice.astype(np.int8) for choice in self.choices] + assert_equal(select(self.conditions, choices).dtype, np.int8) + + d = np.array([1, 2, 3, np.nan, 5, 7]) + m = np.isnan(d) + assert_equal(select([m], [d]), [0, 0, 0, np.nan, 0, 0]) + + def test_deprecated_empty(self): + assert_raises(ValueError, select, [], [], 3j) + assert_raises(ValueError, select, [], []) + + def test_non_bool_deprecation(self): + choices = self.choices + conditions = self.conditions[:] + conditions[0] = conditions[0].astype(np.int_) + assert_raises(TypeError, select, conditions, choices) + conditions[0] = conditions[0].astype(np.uint8) + assert_raises(TypeError, select, conditions, choices) + assert_raises(TypeError, select, conditions, choices) + + def test_many_arguments(self): + # This used to be limited by NPY_MAXARGS == 32 + conditions = [np.array([False])] * 100 + choices = [np.array([1])] * 100 + select(conditions, choices) + + +class TestInsert: + + def test_basic(self): + a = [1, 2, 3] + assert_equal(insert(a, 0, 1), [1, 1, 2, 3]) + assert_equal(insert(a, 3, 1), [1, 2, 3, 1]) + assert_equal(insert(a, [1, 1, 1], [1, 2, 3]), [1, 1, 2, 3, 2, 3]) + assert_equal(insert(a, 1, [1, 2, 3]), [1, 1, 2, 3, 2, 3]) + assert_equal(insert(a, [1, -1, 3], 9), [1, 9, 2, 9, 3, 9]) + assert_equal(insert(a, slice(-1, None, -1), 9), [9, 1, 9, 2, 9, 3]) + assert_equal(insert(a, [-1, 1, 3], [7, 8, 9]), [1, 8, 2, 7, 3, 9]) + b = np.array([0, 1], dtype=np.float64) + assert_equal(insert(b, 0, b[0]), [0., 0., 1.]) + assert_equal(insert(b, [], []), b) + assert_equal(insert(a, np.array([True] * 4), 9), [9, 1, 9, 2, 9, 3, 9]) + assert_equal(insert(a, np.array([True, False, True, False]), 9), + [9, 1, 2, 9, 3]) + + def test_multidim(self): + a = [[1, 1, 1]] + r = [[2, 2, 2], + [1, 1, 1]] + assert_equal(insert(a, 0, [1]), [1, 1, 1, 1]) + assert_equal(insert(a, 0, [2, 2, 2], axis=0), r) + assert_equal(insert(a, 0, 2, axis=0), r) + assert_equal(insert(a, 2, 2, axis=1), [[1, 1, 2, 1]]) + + a = np.array([[1, 1], [2, 2], [3, 3]]) + b = np.arange(1, 4).repeat(3).reshape(3, 3) + c = np.concatenate( + (a[:, 0:1], np.arange(1, 4).repeat(3).reshape(3, 3).T, + a[:, 1:2]), axis=1) + assert_equal(insert(a, [1], [[1], [2], [3]], axis=1), b) + assert_equal(insert(a, [1], [1, 2, 3], axis=1), c) + # scalars behave differently, in this case exactly opposite: + assert_equal(insert(a, 1, [1, 2, 3], axis=1), b) + assert_equal(insert(a, 1, [[1], [2], [3]], axis=1), c) + + a = np.arange(4).reshape(2, 2) + assert_equal(insert(a[:, :1], 1, a[:, 1], axis=1), a) + assert_equal(insert(a[:1, :], 1, a[1, :], axis=0), a) + + # negative axis value + a = np.arange(24).reshape((2, 3, 4)) + assert_equal(insert(a, 1, a[:, :, 3], axis=-1), + insert(a, 1, a[:, :, 3], axis=2)) + assert_equal(insert(a, 1, a[:, 2, :], axis=-2), + insert(a, 1, a[:, 2, :], axis=1)) + + # invalid axis value + assert_raises(AxisError, insert, a, 1, a[:, 2, :], axis=3) + assert_raises(AxisError, insert, a, 1, a[:, 2, :], axis=-4) + + # negative axis value + a = np.arange(24).reshape((2, 3, 4)) + assert_equal(insert(a, 1, a[:, :, 3], axis=-1), + insert(a, 1, a[:, :, 3], axis=2)) + assert_equal(insert(a, 1, a[:, 2, :], axis=-2), + insert(a, 1, a[:, 2, :], axis=1)) + + def test_0d(self): + a = np.array(1) + with pytest.raises(AxisError): + insert(a, [], 2, axis=0) + with pytest.raises(TypeError): + insert(a, [], 2, axis="nonsense") + + def test_subclass(self): + class SubClass(np.ndarray): + pass + a = np.arange(10).view(SubClass) + assert_(isinstance(np.insert(a, 0, [0]), SubClass)) + assert_(isinstance(np.insert(a, [], []), SubClass)) + assert_(isinstance(np.insert(a, [0, 1], [1, 2]), SubClass)) + assert_(isinstance(np.insert(a, slice(1, 2), [1, 2]), SubClass)) + assert_(isinstance(np.insert(a, slice(1, -2, -1), []), SubClass)) + # This is an error in the future: + a = np.array(1).view(SubClass) + assert_(isinstance(np.insert(a, 0, [0]), SubClass)) + + def test_index_array_copied(self): + x = np.array([1, 1, 1]) + np.insert([0, 1, 2], x, [3, 4, 5]) + assert_equal(x, np.array([1, 1, 1])) + + def test_structured_array(self): + a = np.array([(1, 'a'), (2, 'b'), (3, 'c')], + dtype=[('foo', 'i'), ('bar', 'S1')]) + val = (4, 'd') + b = np.insert(a, 0, val) + assert_array_equal(b[0], np.array(val, dtype=b.dtype)) + val = [(4, 'd')] * 2 + b = np.insert(a, [0, 2], val) + assert_array_equal(b[[0, 3]], np.array(val, dtype=b.dtype)) + + def test_index_floats(self): + with pytest.raises(IndexError): + np.insert([0, 1, 2], np.array([1.0, 2.0]), [10, 20]) + with pytest.raises(IndexError): + np.insert([0, 1, 2], np.array([], dtype=float), []) + + @pytest.mark.parametrize('idx', [4, -4]) + def test_index_out_of_bounds(self, idx): + with pytest.raises(IndexError, match='out of bounds'): + np.insert([0, 1, 2], [idx], [3, 4]) + + +class TestAmax: + + def test_basic(self): + a = [3, 4, 5, 10, -3, -5, 6.0] + assert_equal(np.amax(a), 10.0) + b = [[3, 6.0, 9.0], + [4, 10.0, 5.0], + [8, 3.0, 2.0]] + assert_equal(np.amax(b, axis=0), [8.0, 10.0, 9.0]) + assert_equal(np.amax(b, axis=1), [9.0, 10.0, 8.0]) + + +class TestAmin: + + def test_basic(self): + a = [3, 4, 5, 10, -3, -5, 6.0] + assert_equal(np.amin(a), -5.0) + b = [[3, 6.0, 9.0], + [4, 10.0, 5.0], + [8, 3.0, 2.0]] + assert_equal(np.amin(b, axis=0), [3.0, 3.0, 2.0]) + assert_equal(np.amin(b, axis=1), [3.0, 4.0, 2.0]) + + +class TestPtp: + + def test_basic(self): + a = np.array([3, 4, 5, 10, -3, -5, 6.0]) + assert_equal(np.ptp(a, axis=0), 15.0) + b = np.array([[3, 6.0, 9.0], + [4, 10.0, 5.0], + [8, 3.0, 2.0]]) + assert_equal(np.ptp(b, axis=0), [5.0, 7.0, 7.0]) + assert_equal(np.ptp(b, axis=-1), [6.0, 6.0, 6.0]) + + assert_equal(np.ptp(b, axis=0, keepdims=True), [[5.0, 7.0, 7.0]]) + assert_equal(np.ptp(b, axis=(0, 1), keepdims=True), [[8.0]]) + + +class TestCumsum: + + @pytest.mark.parametrize("cumsum", [np.cumsum, np.cumulative_sum]) + def test_basic(self, cumsum): + ba = [1, 2, 10, 11, 6, 5, 4] + ba2 = [[1, 2, 3, 4], [5, 6, 7, 9], [10, 3, 4, 5]] + for ctype in [np.int8, np.uint8, np.int16, np.uint16, np.int32, + np.uint32, np.float32, np.float64, np.complex64, + np.complex128]: + a = np.array(ba, ctype) + a2 = np.array(ba2, ctype) + + tgt = np.array([1, 3, 13, 24, 30, 35, 39], ctype) + assert_array_equal(cumsum(a, axis=0), tgt) + + tgt = np.array( + [[1, 2, 3, 4], [6, 8, 10, 13], [16, 11, 14, 18]], ctype) + assert_array_equal(cumsum(a2, axis=0), tgt) + + tgt = np.array( + [[1, 3, 6, 10], [5, 11, 18, 27], [10, 13, 17, 22]], ctype) + assert_array_equal(cumsum(a2, axis=1), tgt) + + +class TestProd: + + def test_basic(self): + ba = [1, 2, 10, 11, 6, 5, 4] + ba2 = [[1, 2, 3, 4], [5, 6, 7, 9], [10, 3, 4, 5]] + for ctype in [np.int16, np.uint16, np.int32, np.uint32, + np.float32, np.float64, np.complex64, np.complex128]: + a = np.array(ba, ctype) + a2 = np.array(ba2, ctype) + if ctype in ['1', 'b']: + assert_raises(ArithmeticError, np.prod, a) + assert_raises(ArithmeticError, np.prod, a2, 1) + else: + assert_equal(a.prod(axis=0), 26400) + assert_array_equal(a2.prod(axis=0), + np.array([50, 36, 84, 180], ctype)) + assert_array_equal(a2.prod(axis=-1), + np.array([24, 1890, 600], ctype)) + + +class TestCumprod: + + @pytest.mark.parametrize("cumprod", [np.cumprod, np.cumulative_prod]) + def test_basic(self, cumprod): + ba = [1, 2, 10, 11, 6, 5, 4] + ba2 = [[1, 2, 3, 4], [5, 6, 7, 9], [10, 3, 4, 5]] + for ctype in [np.int16, np.uint16, np.int32, np.uint32, + np.float32, np.float64, np.complex64, np.complex128]: + a = np.array(ba, ctype) + a2 = np.array(ba2, ctype) + if ctype in ['1', 'b']: + assert_raises(ArithmeticError, cumprod, a) + assert_raises(ArithmeticError, cumprod, a2, 1) + assert_raises(ArithmeticError, cumprod, a) + else: + assert_array_equal(cumprod(a, axis=-1), + np.array([1, 2, 20, 220, + 1320, 6600, 26400], ctype)) + assert_array_equal(cumprod(a2, axis=0), + np.array([[1, 2, 3, 4], + [5, 12, 21, 36], + [50, 36, 84, 180]], ctype)) + assert_array_equal(cumprod(a2, axis=-1), + np.array([[1, 2, 6, 24], + [5, 30, 210, 1890], + [10, 30, 120, 600]], ctype)) + + +def test_cumulative_include_initial(): + arr = np.arange(8).reshape((2, 2, 2)) + + expected = np.array([ + [[0, 0], [0, 1], [2, 4]], [[0, 0], [4, 5], [10, 12]] + ]) + assert_array_equal( + np.cumulative_sum(arr, axis=1, include_initial=True), expected + ) + + expected = np.array([ + [[1, 0, 0], [1, 2, 6]], [[1, 4, 20], [1, 6, 42]] + ]) + assert_array_equal( + np.cumulative_prod(arr, axis=2, include_initial=True), expected + ) + + out = np.zeros((3, 2), dtype=np.float64) + expected = np.array([[0, 0], [1, 2], [4, 6]], dtype=np.float64) + arr = np.arange(1, 5).reshape((2, 2)) + np.cumulative_sum(arr, axis=0, out=out, include_initial=True) + assert_array_equal(out, expected) + + expected = np.array([1, 2, 4]) + assert_array_equal( + np.cumulative_prod(np.array([2, 2]), include_initial=True), expected + ) + + +class TestDiff: + + def test_basic(self): + x = [1, 4, 6, 7, 12] + out = np.array([3, 2, 1, 5]) + out2 = np.array([-1, -1, 4]) + out3 = np.array([0, 5]) + assert_array_equal(diff(x), out) + assert_array_equal(diff(x, n=2), out2) + assert_array_equal(diff(x, n=3), out3) + + x = [1.1, 2.2, 3.0, -0.2, -0.1] + out = np.array([1.1, 0.8, -3.2, 0.1]) + assert_almost_equal(diff(x), out) + + x = [True, True, False, False] + out = np.array([False, True, False]) + out2 = np.array([True, True]) + assert_array_equal(diff(x), out) + assert_array_equal(diff(x, n=2), out2) + + def test_axis(self): + x = np.zeros((10, 20, 30)) + x[:, 1::2, :] = 1 + exp = np.ones((10, 19, 30)) + exp[:, 1::2, :] = -1 + assert_array_equal(diff(x), np.zeros((10, 20, 29))) + assert_array_equal(diff(x, axis=-1), np.zeros((10, 20, 29))) + assert_array_equal(diff(x, axis=0), np.zeros((9, 20, 30))) + assert_array_equal(diff(x, axis=1), exp) + assert_array_equal(diff(x, axis=-2), exp) + assert_raises(AxisError, diff, x, axis=3) + assert_raises(AxisError, diff, x, axis=-4) + + x = np.array(1.11111111111, np.float64) + assert_raises(ValueError, diff, x) + + def test_nd(self): + x = 20 * rand(10, 20, 30) + out1 = x[:, :, 1:] - x[:, :, :-1] + out2 = out1[:, :, 1:] - out1[:, :, :-1] + out3 = x[1:, :, :] - x[:-1, :, :] + out4 = out3[1:, :, :] - out3[:-1, :, :] + assert_array_equal(diff(x), out1) + assert_array_equal(diff(x, n=2), out2) + assert_array_equal(diff(x, axis=0), out3) + assert_array_equal(diff(x, n=2, axis=0), out4) + + def test_n(self): + x = list(range(3)) + assert_raises(ValueError, diff, x, n=-1) + output = [diff(x, n=n) for n in range(1, 5)] + expected = [[1, 1], [0], [], []] + assert_(diff(x, n=0) is x) + for n, (expected_n, output_n) in enumerate(zip(expected, output), start=1): + assert_(type(output_n) is np.ndarray) + assert_array_equal(output_n, expected_n) + assert_equal(output_n.dtype, np.int_) + assert_equal(len(output_n), max(0, len(x) - n)) + + def test_times(self): + x = np.arange('1066-10-13', '1066-10-16', dtype=np.datetime64) + expected = [ + np.array([1, 1], dtype='timedelta64[D]'), + np.array([0], dtype='timedelta64[D]'), + ] + expected.extend([np.array([], dtype='timedelta64[D]')] * 3) + for n, exp in enumerate(expected, start=1): + out = diff(x, n=n) + assert_array_equal(out, exp) + assert_equal(out.dtype, exp.dtype) + + def test_subclass(self): + x = ma.array([[1, 2], [3, 4], [5, 6], [7, 8], [9, 10]], + mask=[[False, False], [True, False], + [False, True], [True, True], [False, False]]) + out = diff(x) + assert_array_equal(out.data, [[1], [1], [1], [1], [1]]) + assert_array_equal(out.mask, [[False], [True], + [True], [True], [False]]) + assert_(type(out) is type(x)) + + out3 = diff(x, n=3) + assert_array_equal(out3.data, [[], [], [], [], []]) + assert_array_equal(out3.mask, [[], [], [], [], []]) + assert_(type(out3) is type(x)) + + def test_prepend(self): + x = np.arange(5) + 1 + assert_array_equal(diff(x, prepend=0), np.ones(5)) + assert_array_equal(diff(x, prepend=[0]), np.ones(5)) + assert_array_equal(np.cumsum(np.diff(x, prepend=0)), x) + assert_array_equal(diff(x, prepend=[-1, 0]), np.ones(6)) + + x = np.arange(4).reshape(2, 2) + result = np.diff(x, axis=1, prepend=0) + expected = [[0, 1], [2, 1]] + assert_array_equal(result, expected) + result = np.diff(x, axis=1, prepend=[[0], [0]]) + assert_array_equal(result, expected) + + result = np.diff(x, axis=0, prepend=0) + expected = [[0, 1], [2, 2]] + assert_array_equal(result, expected) + result = np.diff(x, axis=0, prepend=[[0, 0]]) + assert_array_equal(result, expected) + + assert_raises(ValueError, np.diff, x, prepend=np.zeros((3, 3))) + + assert_raises(AxisError, diff, x, prepend=0, axis=3) + + def test_append(self): + x = np.arange(5) + result = diff(x, append=0) + expected = [1, 1, 1, 1, -4] + assert_array_equal(result, expected) + result = diff(x, append=[0]) + assert_array_equal(result, expected) + result = diff(x, append=[0, 2]) + expected = expected + [2] + assert_array_equal(result, expected) + + x = np.arange(4).reshape(2, 2) + result = np.diff(x, axis=1, append=0) + expected = [[1, -1], [1, -3]] + assert_array_equal(result, expected) + result = np.diff(x, axis=1, append=[[0], [0]]) + assert_array_equal(result, expected) + + result = np.diff(x, axis=0, append=0) + expected = [[2, 2], [-2, -3]] + assert_array_equal(result, expected) + result = np.diff(x, axis=0, append=[[0, 0]]) + assert_array_equal(result, expected) + + assert_raises(ValueError, np.diff, x, append=np.zeros((3, 3))) + + assert_raises(AxisError, diff, x, append=0, axis=3) + + +class TestDelete: + + def setup_method(self): + self.a = np.arange(5) + self.nd_a = np.arange(5).repeat(2).reshape(1, 5, 2) + + def _check_inverse_of_slicing(self, indices): + a_del = delete(self.a, indices) + nd_a_del = delete(self.nd_a, indices, axis=1) + msg = f'Delete failed for obj: {indices!r}' + assert_array_equal(setxor1d(a_del, self.a[indices, ]), self.a, + err_msg=msg) + xor = setxor1d(nd_a_del[0, :, 0], self.nd_a[0, indices, 0]) + assert_array_equal(xor, self.nd_a[0, :, 0], err_msg=msg) + + def test_slices(self): + lims = [-6, -2, 0, 1, 2, 4, 5] + steps = [-3, -1, 1, 3] + for start in lims: + for stop in lims: + for step in steps: + s = slice(start, stop, step) + self._check_inverse_of_slicing(s) + + def test_fancy(self): + self._check_inverse_of_slicing(np.array([[0, 1], [2, 1]])) + with pytest.raises(IndexError): + delete(self.a, [100]) + with pytest.raises(IndexError): + delete(self.a, [-100]) + + self._check_inverse_of_slicing([0, -1, 2, 2]) + + self._check_inverse_of_slicing([True, False, False, True, False]) + + # not legal, indexing with these would change the dimension + with pytest.raises(ValueError): + delete(self.a, True) + with pytest.raises(ValueError): + delete(self.a, False) + + # not enough items + with pytest.raises(ValueError): + delete(self.a, [False] * 4) + + def test_single(self): + self._check_inverse_of_slicing(0) + self._check_inverse_of_slicing(-4) + + def test_0d(self): + a = np.array(1) + with pytest.raises(AxisError): + delete(a, [], axis=0) + with pytest.raises(TypeError): + delete(a, [], axis="nonsense") + + def test_subclass(self): + class SubClass(np.ndarray): + pass + a = self.a.view(SubClass) + assert_(isinstance(delete(a, 0), SubClass)) + assert_(isinstance(delete(a, []), SubClass)) + assert_(isinstance(delete(a, [0, 1]), SubClass)) + assert_(isinstance(delete(a, slice(1, 2)), SubClass)) + assert_(isinstance(delete(a, slice(1, -2)), SubClass)) + + def test_array_order_preserve(self): + # See gh-7113 + k = np.arange(10).reshape(2, 5, order='F') + m = delete(k, slice(60, None), axis=1) + + # 'k' is Fortran ordered, and 'm' should have the + # same ordering as 'k' and NOT become C ordered + assert_equal(m.flags.c_contiguous, k.flags.c_contiguous) + assert_equal(m.flags.f_contiguous, k.flags.f_contiguous) + + def test_index_floats(self): + with pytest.raises(IndexError): + np.delete([0, 1, 2], np.array([1.0, 2.0])) + with pytest.raises(IndexError): + np.delete([0, 1, 2], np.array([], dtype=float)) + + @pytest.mark.parametrize("indexer", [np.array([1]), [1]]) + def test_single_item_array(self, indexer): + a_del_int = delete(self.a, 1) + a_del = delete(self.a, indexer) + assert_equal(a_del_int, a_del) + + nd_a_del_int = delete(self.nd_a, 1, axis=1) + nd_a_del = delete(self.nd_a, np.array([1]), axis=1) + assert_equal(nd_a_del_int, nd_a_del) + + def test_single_item_array_non_int(self): + # Special handling for integer arrays must not affect non-integer ones. + # If `False` was cast to `0` it would delete the element: + res = delete(np.ones(1), np.array([False])) + assert_array_equal(res, np.ones(1)) + + # Test the more complicated (with axis) case from gh-21840 + x = np.ones((3, 1)) + false_mask = np.array([False], dtype=bool) + true_mask = np.array([True], dtype=bool) + + res = delete(x, false_mask, axis=-1) + assert_array_equal(res, x) + res = delete(x, true_mask, axis=-1) + assert_array_equal(res, x[:, :0]) + + # Object or e.g. timedeltas should *not* be allowed + with pytest.raises(IndexError): + delete(np.ones(2), np.array([0], dtype=object)) + + with pytest.raises(IndexError): + # timedeltas are sometimes "integral, but clearly not allowed: + delete(np.ones(2), np.array([0], dtype="m8[ns]")) + + +class TestGradient: + + def test_basic(self): + v = [[1, 1], [3, 4]] + x = np.array(v) + dx = [np.array([[2., 3.], [2., 3.]]), + np.array([[0., 0.], [1., 1.]])] + assert_array_equal(gradient(x), dx) + assert_array_equal(gradient(v), dx) + + def test_args(self): + dx = np.cumsum(np.ones(5)) + dx_uneven = [1., 2., 5., 9., 11.] + f_2d = np.arange(25).reshape(5, 5) + + # distances must be scalars or have size equal to gradient[axis] + gradient(np.arange(5), 3.) + gradient(np.arange(5), np.array(3.)) + gradient(np.arange(5), dx) + # dy is set equal to dx because scalar + gradient(f_2d, 1.5) + gradient(f_2d, np.array(1.5)) + + gradient(f_2d, dx_uneven, dx_uneven) + # mix between even and uneven spaces and + # mix between scalar and vector + gradient(f_2d, dx, 2) + + # 2D but axis specified + gradient(f_2d, dx, axis=1) + + # 2d coordinate arguments are not yet allowed + assert_raises_regex(ValueError, '.*scalars or 1d', + gradient, f_2d, np.stack([dx] * 2, axis=-1), 1) + + def test_badargs(self): + f_2d = np.arange(25).reshape(5, 5) + x = np.cumsum(np.ones(5)) + + # wrong sizes + assert_raises(ValueError, gradient, f_2d, x, np.ones(2)) + assert_raises(ValueError, gradient, f_2d, 1, np.ones(2)) + assert_raises(ValueError, gradient, f_2d, np.ones(2), np.ones(2)) + # wrong number of arguments + assert_raises(TypeError, gradient, f_2d, x) + assert_raises(TypeError, gradient, f_2d, x, axis=(0, 1)) + assert_raises(TypeError, gradient, f_2d, x, x, x) + assert_raises(TypeError, gradient, f_2d, 1, 1, 1) + assert_raises(TypeError, gradient, f_2d, x, x, axis=1) + assert_raises(TypeError, gradient, f_2d, 1, 1, axis=1) + + def test_datetime64(self): + # Make sure gradient() can handle special types like datetime64 + x = np.array( + ['1910-08-16', '1910-08-11', '1910-08-10', '1910-08-12', + '1910-10-12', '1910-12-12', '1912-12-12'], + dtype='datetime64[D]') + dx = np.array( + [-5, -3, 0, 31, 61, 396, 731], + dtype='timedelta64[D]') + assert_array_equal(gradient(x), dx) + assert_(dx.dtype == np.dtype('timedelta64[D]')) + + def test_masked(self): + # Make sure that gradient supports subclasses like masked arrays + x = np.ma.array([[1, 1], [3, 4]], + mask=[[False, False], [False, False]]) + out = gradient(x)[0] + assert_equal(type(out), type(x)) + # And make sure that the output and input don't have aliased mask + # arrays + assert_(x._mask is not out._mask) + # Also check that edge_order=2 doesn't alter the original mask + x2 = np.ma.arange(5) + x2[2] = np.ma.masked + np.gradient(x2, edge_order=2) + assert_array_equal(x2.mask, [False, False, True, False, False]) + + def test_second_order_accurate(self): + # Testing that the relative numerical error is less that 3% for + # this example problem. This corresponds to second order + # accurate finite differences for all interior and boundary + # points. + x = np.linspace(0, 1, 10) + dx = x[1] - x[0] + y = 2 * x ** 3 + 4 * x ** 2 + 2 * x + analytical = 6 * x ** 2 + 8 * x + 2 + num_error = np.abs((np.gradient(y, dx, edge_order=2) / analytical) - 1) + assert_(np.all(num_error < 0.03) == True) + + # test with unevenly spaced + np.random.seed(0) + x = np.sort(np.random.random(10)) + y = 2 * x ** 3 + 4 * x ** 2 + 2 * x + analytical = 6 * x ** 2 + 8 * x + 2 + num_error = np.abs((np.gradient(y, x, edge_order=2) / analytical) - 1) + assert_(np.all(num_error < 0.03) == True) + + def test_spacing(self): + f = np.array([0, 2., 3., 4., 5., 5.]) + f = np.tile(f, (6, 1)) + f.reshape(-1, 1) + x_uneven = np.array([0., 0.5, 1., 3., 5., 7.]) + x_even = np.arange(6.) + + fdx_even_ord1 = np.tile([2., 1.5, 1., 1., 0.5, 0.], (6, 1)) + fdx_even_ord2 = np.tile([2.5, 1.5, 1., 1., 0.5, -0.5], (6, 1)) + fdx_uneven_ord1 = np.tile([4., 3., 1.7, 0.5, 0.25, 0.], (6, 1)) + fdx_uneven_ord2 = np.tile([5., 3., 1.7, 0.5, 0.25, -0.25], (6, 1)) + + # evenly spaced + for edge_order, exp_res in [(1, fdx_even_ord1), (2, fdx_even_ord2)]: + res1 = gradient(f, 1., axis=(0, 1), edge_order=edge_order) + res2 = gradient(f, x_even, x_even, + axis=(0, 1), edge_order=edge_order) + res3 = gradient(f, x_even, x_even, + axis=None, edge_order=edge_order) + assert_array_equal(res1, res2) + assert_array_equal(res2, res3) + assert_almost_equal(res1[0], exp_res.T) + assert_almost_equal(res1[1], exp_res) + + res1 = gradient(f, 1., axis=0, edge_order=edge_order) + res2 = gradient(f, x_even, axis=0, edge_order=edge_order) + assert_(res1.shape == res2.shape) + assert_almost_equal(res2, exp_res.T) + + res1 = gradient(f, 1., axis=1, edge_order=edge_order) + res2 = gradient(f, x_even, axis=1, edge_order=edge_order) + assert_(res1.shape == res2.shape) + assert_array_equal(res2, exp_res) + + # unevenly spaced + for edge_order, exp_res in [(1, fdx_uneven_ord1), (2, fdx_uneven_ord2)]: + res1 = gradient(f, x_uneven, x_uneven, + axis=(0, 1), edge_order=edge_order) + res2 = gradient(f, x_uneven, x_uneven, + axis=None, edge_order=edge_order) + assert_array_equal(res1, res2) + assert_almost_equal(res1[0], exp_res.T) + assert_almost_equal(res1[1], exp_res) + + res1 = gradient(f, x_uneven, axis=0, edge_order=edge_order) + assert_almost_equal(res1, exp_res.T) + + res1 = gradient(f, x_uneven, axis=1, edge_order=edge_order) + assert_almost_equal(res1, exp_res) + + # mixed + res1 = gradient(f, x_even, x_uneven, axis=(0, 1), edge_order=1) + res2 = gradient(f, x_uneven, x_even, axis=(1, 0), edge_order=1) + assert_array_equal(res1[0], res2[1]) + assert_array_equal(res1[1], res2[0]) + assert_almost_equal(res1[0], fdx_even_ord1.T) + assert_almost_equal(res1[1], fdx_uneven_ord1) + + res1 = gradient(f, x_even, x_uneven, axis=(0, 1), edge_order=2) + res2 = gradient(f, x_uneven, x_even, axis=(1, 0), edge_order=2) + assert_array_equal(res1[0], res2[1]) + assert_array_equal(res1[1], res2[0]) + assert_almost_equal(res1[0], fdx_even_ord2.T) + assert_almost_equal(res1[1], fdx_uneven_ord2) + + def test_specific_axes(self): + # Testing that gradient can work on a given axis only + v = [[1, 1], [3, 4]] + x = np.array(v) + dx = [np.array([[2., 3.], [2., 3.]]), + np.array([[0., 0.], [1., 1.]])] + assert_array_equal(gradient(x, axis=0), dx[0]) + assert_array_equal(gradient(x, axis=1), dx[1]) + assert_array_equal(gradient(x, axis=-1), dx[1]) + assert_array_equal(gradient(x, axis=(1, 0)), [dx[1], dx[0]]) + + # test axis=None which means all axes + assert_almost_equal(gradient(x, axis=None), [dx[0], dx[1]]) + # and is the same as no axis keyword given + assert_almost_equal(gradient(x, axis=None), gradient(x)) + + # test vararg order + assert_array_equal(gradient(x, 2, 3, axis=(1, 0)), + [dx[1] / 2.0, dx[0] / 3.0]) + # test maximal number of varargs + assert_raises(TypeError, gradient, x, 1, 2, axis=1) + + assert_raises(AxisError, gradient, x, axis=3) + assert_raises(AxisError, gradient, x, axis=-3) + # assert_raises(TypeError, gradient, x, axis=[1,]) + + def test_timedelta64(self): + # Make sure gradient() can handle special types like timedelta64 + x = np.array( + [-5, -3, 10, 12, 61, 321, 300], + dtype='timedelta64[D]') + dx = np.array( + [2, 7, 7, 25, 154, 119, -21], + dtype='timedelta64[D]') + assert_array_equal(gradient(x), dx) + assert_(dx.dtype == np.dtype('timedelta64[D]')) + + def test_inexact_dtypes(self): + for dt in [np.float16, np.float32, np.float64]: + # dtypes should not be promoted in a different way to what diff does + x = np.array([1, 2, 3], dtype=dt) + assert_equal(gradient(x).dtype, np.diff(x).dtype) + + def test_values(self): + # needs at least 2 points for edge_order ==1 + gradient(np.arange(2), edge_order=1) + # needs at least 3 points for edge_order ==1 + gradient(np.arange(3), edge_order=2) + + assert_raises(ValueError, gradient, np.arange(0), edge_order=1) + assert_raises(ValueError, gradient, np.arange(0), edge_order=2) + assert_raises(ValueError, gradient, np.arange(1), edge_order=1) + assert_raises(ValueError, gradient, np.arange(1), edge_order=2) + assert_raises(ValueError, gradient, np.arange(2), edge_order=2) + + @pytest.mark.parametrize('f_dtype', [np.uint8, np.uint16, + np.uint32, np.uint64]) + def test_f_decreasing_unsigned_int(self, f_dtype): + f = np.array([5, 4, 3, 2, 1], dtype=f_dtype) + g = gradient(f) + assert_array_equal(g, [-1] * len(f)) + + @pytest.mark.parametrize('f_dtype', [np.int8, np.int16, + np.int32, np.int64]) + def test_f_signed_int_big_jump(self, f_dtype): + maxint = np.iinfo(f_dtype).max + x = np.array([1, 3]) + f = np.array([-1, maxint], dtype=f_dtype) + dfdx = gradient(f, x) + assert_array_equal(dfdx, [(maxint + 1) // 2] * 2) + + @pytest.mark.parametrize('x_dtype', [np.uint8, np.uint16, + np.uint32, np.uint64]) + def test_x_decreasing_unsigned(self, x_dtype): + x = np.array([3, 2, 1], dtype=x_dtype) + f = np.array([0, 2, 4]) + dfdx = gradient(f, x) + assert_array_equal(dfdx, [-2] * len(x)) + + @pytest.mark.parametrize('x_dtype', [np.int8, np.int16, + np.int32, np.int64]) + def test_x_signed_int_big_jump(self, x_dtype): + minint = np.iinfo(x_dtype).min + maxint = np.iinfo(x_dtype).max + x = np.array([-1, maxint], dtype=x_dtype) + f = np.array([minint // 2, 0]) + dfdx = gradient(f, x) + assert_array_equal(dfdx, [0.5, 0.5]) + + def test_return_type(self): + res = np.gradient(([1, 2], [2, 3])) + assert type(res) is tuple + + +class TestAngle: + + def test_basic(self): + x = [1 + 3j, np.sqrt(2) / 2.0 + 1j * np.sqrt(2) / 2, + 1, 1j, -1, -1j, 1 - 3j, -1 + 3j] + y = angle(x) + yo = [ + np.arctan(3.0 / 1.0), + np.arctan(1.0), 0, np.pi / 2, np.pi, -np.pi / 2.0, + -np.arctan(3.0 / 1.0), np.pi - np.arctan(3.0 / 1.0)] + z = angle(x, deg=True) + zo = np.array(yo) * 180 / np.pi + assert_array_almost_equal(y, yo, 11) + assert_array_almost_equal(z, zo, 11) + + def test_subclass(self): + x = np.ma.array([1 + 3j, 1, np.sqrt(2) / 2 * (1 + 1j)]) + x[1] = np.ma.masked + expected = np.ma.array([np.arctan(3.0 / 1.0), 0, np.arctan(1.0)]) + expected[1] = np.ma.masked + actual = angle(x) + assert_equal(type(actual), type(expected)) + assert_equal(actual.mask, expected.mask) + assert_equal(actual, expected) + + +class TestTrimZeros: + + a = np.array([0, 0, 1, 0, 2, 3, 4, 0]) + b = a.astype(float) + c = a.astype(complex) + d = a.astype(object) + + def values(self): + attr_names = ('a', 'b', 'c', 'd') + return (getattr(self, name) for name in attr_names) + + def test_basic(self): + slc = np.s_[2:-1] + for arr in self.values(): + res = trim_zeros(arr) + assert_array_equal(res, arr[slc]) + + def test_leading_skip(self): + slc = np.s_[:-1] + for arr in self.values(): + res = trim_zeros(arr, trim='b') + assert_array_equal(res, arr[slc]) + + def test_trailing_skip(self): + slc = np.s_[2:] + for arr in self.values(): + res = trim_zeros(arr, trim='F') + assert_array_equal(res, arr[slc]) + + def test_all_zero(self): + for _arr in self.values(): + arr = np.zeros_like(_arr, dtype=_arr.dtype) + + res1 = trim_zeros(arr, trim='B') + assert len(res1) == 0 + + res2 = trim_zeros(arr, trim='f') + assert len(res2) == 0 + + def test_size_zero(self): + arr = np.zeros(0) + res = trim_zeros(arr) + assert_array_equal(arr, res) + + @pytest.mark.parametrize( + 'arr', + [np.array([0, 2**62, 0]), + np.array([0, 2**63, 0]), + np.array([0, 2**64, 0])] + ) + def test_overflow(self, arr): + slc = np.s_[1:2] + res = trim_zeros(arr) + assert_array_equal(res, arr[slc]) + + def test_no_trim(self): + arr = np.array([None, 1, None]) + res = trim_zeros(arr) + assert_array_equal(arr, res) + + def test_list_to_list(self): + res = trim_zeros(self.a.tolist()) + assert isinstance(res, list) + + @pytest.mark.parametrize("ndim", (0, 1, 2, 3, 10)) + def test_nd_basic(self, ndim): + a = np.ones((2,) * ndim) + b = np.pad(a, (2, 1), mode="constant", constant_values=0) + res = trim_zeros(b, axis=None) + assert_array_equal(a, res) + + @pytest.mark.parametrize("ndim", (0, 1, 2, 3)) + def test_allzero(self, ndim): + a = np.zeros((3,) * ndim) + res = trim_zeros(a, axis=None) + assert_array_equal(res, np.zeros((0,) * ndim)) + + def test_trim_arg(self): + a = np.array([0, 1, 2, 0]) + + res = trim_zeros(a, trim='f') + assert_array_equal(res, [1, 2, 0]) + + res = trim_zeros(a, trim='b') + assert_array_equal(res, [0, 1, 2]) + + @pytest.mark.parametrize("trim", ("front", "")) + def test_unexpected_trim_value(self, trim): + arr = self.a + with pytest.raises(ValueError, match=r"unexpected character\(s\) in `trim`"): + trim_zeros(arr, trim=trim) + + +class TestExtins: + + def test_basic(self): + a = np.array([1, 3, 2, 1, 2, 3, 3]) + b = extract(a > 1, a) + assert_array_equal(b, [3, 2, 2, 3, 3]) + + def test_place(self): + # Make sure that non-np.ndarray objects + # raise an error instead of doing nothing + assert_raises(TypeError, place, [1, 2, 3], [True, False], [0, 1]) + + a = np.array([1, 4, 3, 2, 5, 8, 7]) + place(a, [0, 1, 0, 1, 0, 1, 0], [2, 4, 6]) + assert_array_equal(a, [1, 2, 3, 4, 5, 6, 7]) + + place(a, np.zeros(7), []) + assert_array_equal(a, np.arange(1, 8)) + + place(a, [1, 0, 1, 0, 1, 0, 1], [8, 9]) + assert_array_equal(a, [8, 2, 9, 4, 8, 6, 9]) + assert_raises_regex(ValueError, "Cannot insert from an empty array", + lambda: place(a, [0, 0, 0, 0, 0, 1, 0], [])) + + # See Issue #6974 + a = np.array(['12', '34']) + place(a, [0, 1], '9') + assert_array_equal(a, ['12', '9']) + + def test_both(self): + a = rand(10) + mask = a > 0.5 + ac = a.copy() + c = extract(mask, a) + place(a, mask, 0) + place(a, mask, c) + assert_array_equal(a, ac) + + +# _foo1 and _foo2 are used in some tests in TestVectorize. + +def _foo1(x, y=1.0): + return y * math.floor(x) + + +def _foo2(x, y=1.0, z=0.0): + return y * math.floor(x) + z + + +class TestVectorize: + + def test_simple(self): + def addsubtract(a, b): + if a > b: + return a - b + else: + return a + b + + f = vectorize(addsubtract) + r = f([0, 3, 6, 9], [1, 3, 5, 7]) + assert_array_equal(r, [1, 6, 1, 2]) + + def test_scalar(self): + def addsubtract(a, b): + if a > b: + return a - b + else: + return a + b + + f = vectorize(addsubtract) + r = f([0, 3, 6, 9], 5) + assert_array_equal(r, [5, 8, 1, 4]) + + def test_large(self): + x = np.linspace(-3, 2, 10000) + f = vectorize(lambda x: x) + y = f(x) + assert_array_equal(y, x) + + def test_ufunc(self): + f = vectorize(math.cos) + args = np.array([0, 0.5 * np.pi, np.pi, 1.5 * np.pi, 2 * np.pi]) + r1 = f(args) + r2 = np.cos(args) + assert_array_almost_equal(r1, r2) + + def test_keywords(self): + + def foo(a, b=1): + return a + b + + f = vectorize(foo) + args = np.array([1, 2, 3]) + r1 = f(args) + r2 = np.array([2, 3, 4]) + assert_array_equal(r1, r2) + r1 = f(args, 2) + r2 = np.array([3, 4, 5]) + assert_array_equal(r1, r2) + + def test_keywords_with_otypes_order1(self): + # gh-1620: The second call of f would crash with + # `ValueError: invalid number of arguments`. + f = vectorize(_foo1, otypes=[float]) + # We're testing the caching of ufuncs by vectorize, so the order + # of these function calls is an important part of the test. + r1 = f(np.arange(3.0), 1.0) + r2 = f(np.arange(3.0)) + assert_array_equal(r1, r2) + + def test_keywords_with_otypes_order2(self): + # gh-1620: The second call of f would crash with + # `ValueError: non-broadcastable output operand with shape () + # doesn't match the broadcast shape (3,)`. + f = vectorize(_foo1, otypes=[float]) + # We're testing the caching of ufuncs by vectorize, so the order + # of these function calls is an important part of the test. + r1 = f(np.arange(3.0)) + r2 = f(np.arange(3.0), 1.0) + assert_array_equal(r1, r2) + + def test_keywords_with_otypes_order3(self): + # gh-1620: The third call of f would crash with + # `ValueError: invalid number of arguments`. + f = vectorize(_foo1, otypes=[float]) + # We're testing the caching of ufuncs by vectorize, so the order + # of these function calls is an important part of the test. + r1 = f(np.arange(3.0)) + r2 = f(np.arange(3.0), y=1.0) + r3 = f(np.arange(3.0)) + assert_array_equal(r1, r2) + assert_array_equal(r1, r3) + + def test_keywords_with_otypes_several_kwd_args1(self): + # gh-1620 Make sure different uses of keyword arguments + # don't break the vectorized function. + f = vectorize(_foo2, otypes=[float]) + # We're testing the caching of ufuncs by vectorize, so the order + # of these function calls is an important part of the test. + r1 = f(10.4, z=100) + r2 = f(10.4, y=-1) + r3 = f(10.4) + assert_equal(r1, _foo2(10.4, z=100)) + assert_equal(r2, _foo2(10.4, y=-1)) + assert_equal(r3, _foo2(10.4)) + + def test_keywords_with_otypes_several_kwd_args2(self): + # gh-1620 Make sure different uses of keyword arguments + # don't break the vectorized function. + f = vectorize(_foo2, otypes=[float]) + # We're testing the caching of ufuncs by vectorize, so the order + # of these function calls is an important part of the test. + r1 = f(z=100, x=10.4, y=-1) + r2 = f(1, 2, 3) + assert_equal(r1, _foo2(z=100, x=10.4, y=-1)) + assert_equal(r2, _foo2(1, 2, 3)) + + def test_keywords_no_func_code(self): + # This needs to test a function that has keywords but + # no func_code attribute, since otherwise vectorize will + # inspect the func_code. + import random + try: + vectorize(random.randrange) # Should succeed + except Exception: + raise AssertionError + + def test_keywords2_ticket_2100(self): + # Test kwarg support: enhancement ticket 2100 + + def foo(a, b=1): + return a + b + + f = vectorize(foo) + args = np.array([1, 2, 3]) + r1 = f(a=args) + r2 = np.array([2, 3, 4]) + assert_array_equal(r1, r2) + r1 = f(b=1, a=args) + assert_array_equal(r1, r2) + r1 = f(args, b=2) + r2 = np.array([3, 4, 5]) + assert_array_equal(r1, r2) + + def test_keywords3_ticket_2100(self): + # Test excluded with mixed positional and kwargs: ticket 2100 + def mypolyval(x, p): + _p = list(p) + res = _p.pop(0) + while _p: + res = res * x + _p.pop(0) + return res + + vpolyval = np.vectorize(mypolyval, excluded=['p', 1]) + ans = [3, 6] + assert_array_equal(ans, vpolyval(x=[0, 1], p=[1, 2, 3])) + assert_array_equal(ans, vpolyval([0, 1], p=[1, 2, 3])) + assert_array_equal(ans, vpolyval([0, 1], [1, 2, 3])) + + def test_keywords4_ticket_2100(self): + # Test vectorizing function with no positional args. + @vectorize + def f(**kw): + res = 1.0 + for _k in kw: + res *= kw[_k] + return res + + assert_array_equal(f(a=[1, 2], b=[3, 4]), [3, 8]) + + def test_keywords5_ticket_2100(self): + # Test vectorizing function with no kwargs args. + @vectorize + def f(*v): + return np.prod(v) + + assert_array_equal(f([1, 2], [3, 4]), [3, 8]) + + def test_coverage1_ticket_2100(self): + def foo(): + return 1 + + f = vectorize(foo) + assert_array_equal(f(), 1) + + def test_assigning_docstring(self): + def foo(x): + """Original documentation""" + return x + + f = vectorize(foo) + assert_equal(f.__doc__, foo.__doc__) + + doc = "Provided documentation" + f = vectorize(foo, doc=doc) + assert_equal(f.__doc__, doc) + + def test_UnboundMethod_ticket_1156(self): + # Regression test for issue 1156 + class Foo: + b = 2 + + def bar(self, a): + return a ** self.b + + assert_array_equal(vectorize(Foo().bar)(np.arange(9)), + np.arange(9) ** 2) + assert_array_equal(vectorize(Foo.bar)(Foo(), np.arange(9)), + np.arange(9) ** 2) + + def test_execution_order_ticket_1487(self): + # Regression test for dependence on execution order: issue 1487 + f1 = vectorize(lambda x: x) + res1a = f1(np.arange(3)) + res1b = f1(np.arange(0.1, 3)) + f2 = vectorize(lambda x: x) + res2b = f2(np.arange(0.1, 3)) + res2a = f2(np.arange(3)) + assert_equal(res1a, res2a) + assert_equal(res1b, res2b) + + def test_string_ticket_1892(self): + # Test vectorization over strings: issue 1892. + f = np.vectorize(lambda x: x) + s = '0123456789' * 10 + assert_equal(s, f(s)) + + def test_dtype_promotion_gh_29189(self): + # dtype should not be silently promoted (int32 -> int64) + dtypes = [np.int16, np.int32, np.int64, np.float16, np.float32, np.float64] + + for dtype in dtypes: + x = np.asarray([1, 2, 3], dtype=dtype) + y = np.vectorize(lambda x: x + x)(x) + assert x.dtype == y.dtype + + def test_cache(self): + # Ensure that vectorized func called exactly once per argument. + _calls = [0] + + @vectorize + def f(x): + _calls[0] += 1 + return x ** 2 + + f.cache = True + x = np.arange(5) + assert_array_equal(f(x), x * x) + assert_equal(_calls[0], len(x)) + + def test_otypes(self): + f = np.vectorize(lambda x: x) + f.otypes = 'i' + x = np.arange(5) + assert_array_equal(f(x), x) + + def test_otypes_object_28624(self): + # with object otype, the vectorized function should return y + # wrapped into an object array + y = np.arange(3) + f = vectorize(lambda x: y, otypes=[object]) + + assert f(None).item() is y + assert f([None]).item() is y + + y = [1, 2, 3] + f = vectorize(lambda x: y, otypes=[object]) + + assert f(None).item() is y + assert f([None]).item() is y + + def test_parse_gufunc_signature(self): + assert_equal(nfb._parse_gufunc_signature('(x)->()'), ([('x',)], [()])) + assert_equal(nfb._parse_gufunc_signature('(x,y)->()'), + ([('x', 'y')], [()])) + assert_equal(nfb._parse_gufunc_signature('(x),(y)->()'), + ([('x',), ('y',)], [()])) + assert_equal(nfb._parse_gufunc_signature('(x)->(y)'), + ([('x',)], [('y',)])) + assert_equal(nfb._parse_gufunc_signature('(x)->(y),()'), + ([('x',)], [('y',), ()])) + assert_equal(nfb._parse_gufunc_signature('(),(a,b,c),(d)->(d,e)'), + ([(), ('a', 'b', 'c'), ('d',)], [('d', 'e')])) + + # Tests to check if whitespaces are ignored + assert_equal(nfb._parse_gufunc_signature('(x )->()'), ([('x',)], [()])) + assert_equal(nfb._parse_gufunc_signature('( x , y )->( )'), + ([('x', 'y')], [()])) + assert_equal(nfb._parse_gufunc_signature('(x),( y) ->()'), + ([('x',), ('y',)], [()])) + assert_equal(nfb._parse_gufunc_signature('( x)-> (y ) '), + ([('x',)], [('y',)])) + assert_equal(nfb._parse_gufunc_signature(' (x)->( y),( )'), + ([('x',)], [('y',), ()])) + assert_equal(nfb._parse_gufunc_signature( + '( ), ( a, b,c ) ,( d) -> (d , e)'), + ([(), ('a', 'b', 'c'), ('d',)], [('d', 'e')])) + + with assert_raises(ValueError): + nfb._parse_gufunc_signature('(x)(y)->()') + with assert_raises(ValueError): + nfb._parse_gufunc_signature('(x),(y)->') + with assert_raises(ValueError): + nfb._parse_gufunc_signature('((x))->(x)') + + def test_signature_simple(self): + def addsubtract(a, b): + if a > b: + return a - b + else: + return a + b + + f = vectorize(addsubtract, signature='(),()->()') + r = f([0, 3, 6, 9], [1, 3, 5, 7]) + assert_array_equal(r, [1, 6, 1, 2]) + + def test_signature_mean_last(self): + def mean(a): + return a.mean() + + f = vectorize(mean, signature='(n)->()') + r = f([[1, 3], [2, 4]]) + assert_array_equal(r, [2, 3]) + + def test_signature_center(self): + def center(a): + return a - a.mean() + + f = vectorize(center, signature='(n)->(n)') + r = f([[1, 3], [2, 4]]) + assert_array_equal(r, [[-1, 1], [-1, 1]]) + + def test_signature_two_outputs(self): + f = vectorize(lambda x: (x, x), signature='()->(),()') + r = f([1, 2, 3]) + assert_(isinstance(r, tuple) and len(r) == 2) + assert_array_equal(r[0], [1, 2, 3]) + assert_array_equal(r[1], [1, 2, 3]) + + def test_signature_outer(self): + f = vectorize(np.outer, signature='(a),(b)->(a,b)') + r = f([1, 2], [1, 2, 3]) + assert_array_equal(r, [[1, 2, 3], [2, 4, 6]]) + + r = f([[[1, 2]]], [1, 2, 3]) + assert_array_equal(r, [[[[1, 2, 3], [2, 4, 6]]]]) + + r = f([[1, 0], [2, 0]], [1, 2, 3]) + assert_array_equal(r, [[[1, 2, 3], [0, 0, 0]], + [[2, 4, 6], [0, 0, 0]]]) + + r = f([1, 2], [[1, 2, 3], [0, 0, 0]]) + assert_array_equal(r, [[[1, 2, 3], [2, 4, 6]], + [[0, 0, 0], [0, 0, 0]]]) + + def test_signature_computed_size(self): + f = vectorize(lambda x: x[:-1], signature='(n)->(m)') + r = f([1, 2, 3]) + assert_array_equal(r, [1, 2]) + + r = f([[1, 2, 3], [2, 3, 4]]) + assert_array_equal(r, [[1, 2], [2, 3]]) + + def test_signature_excluded(self): + + def foo(a, b=1): + return a + b + + f = vectorize(foo, signature='()->()', excluded={'b'}) + assert_array_equal(f([1, 2, 3]), [2, 3, 4]) + assert_array_equal(f([1, 2, 3], b=0), [1, 2, 3]) + + def test_signature_otypes(self): + f = vectorize(lambda x: x, signature='(n)->(n)', otypes=['float64']) + r = f([1, 2, 3]) + assert_equal(r.dtype, np.dtype('float64')) + assert_array_equal(r, [1, 2, 3]) + + def test_signature_invalid_inputs(self): + f = vectorize(operator.add, signature='(n),(n)->(n)') + with assert_raises_regex(TypeError, 'wrong number of positional'): + f([1, 2]) + with assert_raises_regex( + ValueError, 'does not have enough dimensions'): + f(1, 2) + with assert_raises_regex( + ValueError, 'inconsistent size for core dimension'): + f([1, 2], [1, 2, 3]) + + f = vectorize(operator.add, signature='()->()') + with assert_raises_regex(TypeError, 'wrong number of positional'): + f(1, 2) + + def test_signature_invalid_outputs(self): + + f = vectorize(lambda x: x[:-1], signature='(n)->(n)') + with assert_raises_regex( + ValueError, 'inconsistent size for core dimension'): + f([1, 2, 3]) + + f = vectorize(lambda x: x, signature='()->(),()') + with assert_raises_regex(ValueError, 'wrong number of outputs'): + f(1) + + f = vectorize(lambda x: (x, x), signature='()->()') + with assert_raises_regex(ValueError, 'wrong number of outputs'): + f([1, 2]) + + def test_size_zero_output(self): + # see issue 5868 + f = np.vectorize(lambda x: x) + x = np.zeros([0, 5], dtype=int) + with assert_raises_regex(ValueError, 'otypes'): + f(x) + + f.otypes = 'i' + assert_array_equal(f(x), x) + + f = np.vectorize(lambda x: x, signature='()->()') + with assert_raises_regex(ValueError, 'otypes'): + f(x) + + f = np.vectorize(lambda x: x, signature='()->()', otypes='i') + assert_array_equal(f(x), x) + + f = np.vectorize(lambda x: x, signature='(n)->(n)', otypes='i') + assert_array_equal(f(x), x) + + f = np.vectorize(lambda x: x, signature='(n)->(n)') + assert_array_equal(f(x.T), x.T) + + f = np.vectorize(lambda x: [x], signature='()->(n)', otypes='i') + with assert_raises_regex(ValueError, 'new output dimensions'): + f(x) + + def test_subclasses(self): + class subclass(np.ndarray): + pass + + m = np.array([[1., 0., 0.], + [0., 0., 1.], + [0., 1., 0.]]).view(subclass) + v = np.array([[1., 2., 3.], [4., 5., 6.], [7., 8., 9.]]).view(subclass) + # generalized (gufunc) + matvec = np.vectorize(np.matmul, signature='(m,m),(m)->(m)') + r = matvec(m, v) + assert_equal(type(r), subclass) + assert_equal(r, [[1., 3., 2.], [4., 6., 5.], [7., 9., 8.]]) + + # element-wise (ufunc) + mult = np.vectorize(lambda x, y: x * y) + r = mult(m, v) + assert_equal(type(r), subclass) + assert_equal(r, m * v) + + def test_name(self): + # gh-23021 + @np.vectorize + def f2(a, b): + return a + b + + assert f2.__name__ == 'f2' + + def test_decorator(self): + @vectorize + def addsubtract(a, b): + if a > b: + return a - b + else: + return a + b + + r = addsubtract([0, 3, 6, 9], [1, 3, 5, 7]) + assert_array_equal(r, [1, 6, 1, 2]) + + def test_docstring(self): + @vectorize + def f(x): + """Docstring""" + return x + + if sys.flags.optimize < 2: + assert f.__doc__ == "Docstring" + + def test_partial(self): + def foo(x, y): + return x + y + + bar = partial(foo, 3) + vbar = np.vectorize(bar) + assert vbar(1) == 4 + + def test_signature_otypes_decorator(self): + @vectorize(signature='(n)->(n)', otypes=['float64']) + def f(x): + return x + + r = f([1, 2, 3]) + assert_equal(r.dtype, np.dtype('float64')) + assert_array_equal(r, [1, 2, 3]) + assert f.__name__ == 'f' + + def test_bad_input(self): + with assert_raises(TypeError): + A = np.vectorize(pyfunc=3) + + def test_no_keywords(self): + with assert_raises(TypeError): + @np.vectorize("string") + def foo(): + return "bar" + + def test_positional_regression_9477(self): + # This supplies the first keyword argument as a positional, + # to ensure that they are still properly forwarded after the + # enhancement for #9477 + f = vectorize((lambda x: x), ['float64']) + r = f([2]) + assert_equal(r.dtype, np.dtype('float64')) + + def test_datetime_conversion(self): + otype = "datetime64[ns]" + arr = np.array(['2024-01-01', '2024-01-02', '2024-01-03'], + dtype='datetime64[ns]') + assert_array_equal(np.vectorize(lambda x: x, signature="(i)->(j)", + otypes=[otype])(arr), arr) + + +class TestLeaks: + class A: + iters = 20 + + def bound(self, *args): + return 0 + + @staticmethod + def unbound(*args): + return 0 + + @pytest.mark.skipif(not HAS_REFCOUNT, reason="Python lacks refcounts") + @pytest.mark.skipif(NOGIL_BUILD, + reason=("Functions are immortalized if a thread is " + "launched, making this test flaky")) + @pytest.mark.parametrize('name, incr', [ + ('bound', A.iters), + ('unbound', 0), + ]) + def test_frompyfunc_leaks(self, name, incr): + # exposed in gh-11867 as np.vectorized, but the problem stems from + # frompyfunc. + # class.attribute = np.frompyfunc(<method>) creates a + # reference cycle if <method> is a bound class method. + # It requires a gc collection cycle to break the cycle. + import gc + A_func = getattr(self.A, name) + gc.disable() + try: + refcount = sys.getrefcount(A_func) + for i in range(self.A.iters): + a = self.A() + a.f = np.frompyfunc(getattr(a, name), 1, 1) + out = a.f(np.arange(10)) + a = None + # A.func is part of a reference cycle if incr is non-zero + assert_equal(sys.getrefcount(A_func), refcount + incr) + for i in range(5): + gc.collect() + assert_equal(sys.getrefcount(A_func), refcount) + finally: + gc.enable() + + +class TestDigitize: + + def test_forward(self): + x = np.arange(-6, 5) + bins = np.arange(-5, 5) + assert_array_equal(digitize(x, bins), np.arange(11)) + + def test_reverse(self): + x = np.arange(5, -6, -1) + bins = np.arange(5, -5, -1) + assert_array_equal(digitize(x, bins), np.arange(11)) + + def test_random(self): + x = rand(10) + bin = np.linspace(x.min(), x.max(), 10) + assert_(np.all(digitize(x, bin) != 0)) + + def test_right_basic(self): + x = [1, 5, 4, 10, 8, 11, 0] + bins = [1, 5, 10] + default_answer = [1, 2, 1, 3, 2, 3, 0] + assert_array_equal(digitize(x, bins), default_answer) + right_answer = [0, 1, 1, 2, 2, 3, 0] + assert_array_equal(digitize(x, bins, True), right_answer) + + def test_right_open(self): + x = np.arange(-6, 5) + bins = np.arange(-6, 4) + assert_array_equal(digitize(x, bins, True), np.arange(11)) + + def test_right_open_reverse(self): + x = np.arange(5, -6, -1) + bins = np.arange(4, -6, -1) + assert_array_equal(digitize(x, bins, True), np.arange(11)) + + def test_right_open_random(self): + x = rand(10) + bins = np.linspace(x.min(), x.max(), 10) + assert_(np.all(digitize(x, bins, True) != 10)) + + def test_monotonic(self): + x = [-1, 0, 1, 2] + bins = [0, 0, 1] + assert_array_equal(digitize(x, bins, False), [0, 2, 3, 3]) + assert_array_equal(digitize(x, bins, True), [0, 0, 2, 3]) + bins = [1, 1, 0] + assert_array_equal(digitize(x, bins, False), [3, 2, 0, 0]) + assert_array_equal(digitize(x, bins, True), [3, 3, 2, 0]) + bins = [1, 1, 1, 1] + assert_array_equal(digitize(x, bins, False), [0, 0, 4, 4]) + assert_array_equal(digitize(x, bins, True), [0, 0, 0, 4]) + bins = [0, 0, 1, 0] + assert_raises(ValueError, digitize, x, bins) + bins = [1, 1, 0, 1] + assert_raises(ValueError, digitize, x, bins) + + def test_casting_error(self): + x = [1, 2, 3 + 1.j] + bins = [1, 2, 3] + assert_raises(TypeError, digitize, x, bins) + x, bins = bins, x + assert_raises(TypeError, digitize, x, bins) + + def test_return_type(self): + # Functions returning indices should always return base ndarrays + class A(np.ndarray): + pass + a = np.arange(5).view(A) + b = np.arange(1, 3).view(A) + assert_(not isinstance(digitize(b, a, False), A)) + assert_(not isinstance(digitize(b, a, True), A)) + + def test_large_integers_increasing(self): + # gh-11022 + x = 2**54 # loses precision in a float + assert_equal(np.digitize(x, [x - 1, x + 1]), 1) + + @pytest.mark.xfail( + reason="gh-11022: np._core.multiarray._monoticity loses precision") + def test_large_integers_decreasing(self): + # gh-11022 + x = 2**54 # loses precision in a float + assert_equal(np.digitize(x, [x + 1, x - 1]), 1) + + +class TestUnwrap: + + def test_simple(self): + # check that unwrap removes jumps greater that 2*pi + assert_array_equal(unwrap([1, 1 + 2 * np.pi]), [1, 1]) + # check that unwrap maintains continuity + assert_(np.all(diff(unwrap(rand(10) * 100)) < np.pi)) + + def test_period(self): + # check that unwrap removes jumps greater that 255 + assert_array_equal(unwrap([1, 1 + 256], period=255), [1, 2]) + # check that unwrap maintains continuity + assert_(np.all(diff(unwrap(rand(10) * 1000, period=255)) < 255)) + # check simple case + simple_seq = np.array([0, 75, 150, 225, 300]) + wrap_seq = np.mod(simple_seq, 255) + assert_array_equal(unwrap(wrap_seq, period=255), simple_seq) + # check custom discont value + uneven_seq = np.array([0, 75, 150, 225, 300, 430]) + wrap_uneven = np.mod(uneven_seq, 250) + no_discont = unwrap(wrap_uneven, period=250) + assert_array_equal(no_discont, [0, 75, 150, 225, 300, 180]) + sm_discont = unwrap(wrap_uneven, period=250, discont=140) + assert_array_equal(sm_discont, [0, 75, 150, 225, 300, 430]) + assert sm_discont.dtype == wrap_uneven.dtype + + +@pytest.mark.parametrize( + "dtype", "O" + np.typecodes["AllInteger"] + np.typecodes["Float"] +) +@pytest.mark.parametrize("M", [0, 1, 10]) +class TestFilterwindows: + + def test_hanning(self, dtype: str, M: int) -> None: + scalar = np.array(M, dtype=dtype)[()] + + w = hanning(scalar) + if dtype == "O": + ref_dtype = np.float64 + else: + ref_dtype = np.result_type(scalar.dtype, np.float64) + assert w.dtype == ref_dtype + + # check symmetry + assert_equal(w, flipud(w)) + + # check known value + if scalar < 1: + assert_array_equal(w, np.array([])) + elif scalar == 1: + assert_array_equal(w, np.ones(1)) + else: + assert_almost_equal(np.sum(w, axis=0), 4.500, 4) + + def test_hamming(self, dtype: str, M: int) -> None: + scalar = np.array(M, dtype=dtype)[()] + + w = hamming(scalar) + if dtype == "O": + ref_dtype = np.float64 + else: + ref_dtype = np.result_type(scalar.dtype, np.float64) + assert w.dtype == ref_dtype + + # check symmetry + assert_equal(w, flipud(w)) + + # check known value + if scalar < 1: + assert_array_equal(w, np.array([])) + elif scalar == 1: + assert_array_equal(w, np.ones(1)) + else: + assert_almost_equal(np.sum(w, axis=0), 4.9400, 4) + + def test_bartlett(self, dtype: str, M: int) -> None: + scalar = np.array(M, dtype=dtype)[()] + + w = bartlett(scalar) + if dtype == "O": + ref_dtype = np.float64 + else: + ref_dtype = np.result_type(scalar.dtype, np.float64) + assert w.dtype == ref_dtype + + # check symmetry + assert_equal(w, flipud(w)) + + # check known value + if scalar < 1: + assert_array_equal(w, np.array([])) + elif scalar == 1: + assert_array_equal(w, np.ones(1)) + else: + assert_almost_equal(np.sum(w, axis=0), 4.4444, 4) + + def test_blackman(self, dtype: str, M: int) -> None: + scalar = np.array(M, dtype=dtype)[()] + + w = blackman(scalar) + if dtype == "O": + ref_dtype = np.float64 + else: + ref_dtype = np.result_type(scalar.dtype, np.float64) + assert w.dtype == ref_dtype + + # check symmetry + assert_equal(w, flipud(w)) + + # check known value + if scalar < 1: + assert_array_equal(w, np.array([])) + elif scalar == 1: + assert_array_equal(w, np.ones(1)) + else: + assert_almost_equal(np.sum(w, axis=0), 3.7800, 4) + + def test_kaiser(self, dtype: str, M: int) -> None: + scalar = np.array(M, dtype=dtype)[()] + + w = kaiser(scalar, 0) + if dtype == "O": + ref_dtype = np.float64 + else: + ref_dtype = np.result_type(scalar.dtype, np.float64) + assert w.dtype == ref_dtype + + # check symmetry + assert_equal(w, flipud(w)) + + # check known value + if scalar < 1: + assert_array_equal(w, np.array([])) + elif scalar == 1: + assert_array_equal(w, np.ones(1)) + else: + assert_almost_equal(np.sum(w, axis=0), 10, 15) + + +class TestTrapezoid: + + def test_simple(self): + x = np.arange(-10, 10, .1) + r = trapezoid(np.exp(-.5 * x ** 2) / np.sqrt(2 * np.pi), dx=0.1) + # check integral of normal equals 1 + assert_almost_equal(r, 1, 7) + + def test_ndim(self): + x = np.linspace(0, 1, 3) + y = np.linspace(0, 2, 8) + z = np.linspace(0, 3, 13) + + wx = np.ones_like(x) * (x[1] - x[0]) + wx[0] /= 2 + wx[-1] /= 2 + wy = np.ones_like(y) * (y[1] - y[0]) + wy[0] /= 2 + wy[-1] /= 2 + wz = np.ones_like(z) * (z[1] - z[0]) + wz[0] /= 2 + wz[-1] /= 2 + + q = x[:, None, None] + y[None, :, None] + z[None, None, :] + + qx = (q * wx[:, None, None]).sum(axis=0) + qy = (q * wy[None, :, None]).sum(axis=1) + qz = (q * wz[None, None, :]).sum(axis=2) + + # n-d `x` + r = trapezoid(q, x=x[:, None, None], axis=0) + assert_almost_equal(r, qx) + r = trapezoid(q, x=y[None, :, None], axis=1) + assert_almost_equal(r, qy) + r = trapezoid(q, x=z[None, None, :], axis=2) + assert_almost_equal(r, qz) + + # 1-d `x` + r = trapezoid(q, x=x, axis=0) + assert_almost_equal(r, qx) + r = trapezoid(q, x=y, axis=1) + assert_almost_equal(r, qy) + r = trapezoid(q, x=z, axis=2) + assert_almost_equal(r, qz) + + def test_masked(self): + # Testing that masked arrays behave as if the function is 0 where + # masked + x = np.arange(5) + y = x * x + mask = x == 2 + ym = np.ma.array(y, mask=mask) + r = 13.0 # sum(0.5 * (0 + 1) * 1.0 + 0.5 * (9 + 16)) + assert_almost_equal(trapezoid(ym, x), r) + + xm = np.ma.array(x, mask=mask) + assert_almost_equal(trapezoid(ym, xm), r) + + xm = np.ma.array(x, mask=mask) + assert_almost_equal(trapezoid(y, xm), r) + + +class TestSinc: + + def test_simple(self): + assert_(sinc(0) == 1) + w = sinc(np.linspace(-1, 1, 100)) + # check symmetry + assert_array_almost_equal(w, flipud(w), 7) + + def test_array_like(self): + x = [0, 0.5] + y1 = sinc(np.array(x)) + y2 = sinc(list(x)) + y3 = sinc(tuple(x)) + assert_array_equal(y1, y2) + assert_array_equal(y1, y3) + + def test_bool_dtype(self): + x = (np.arange(4, dtype=np.uint8) % 2 == 1) + actual = sinc(x) + expected = sinc(x.astype(np.float64)) + assert_allclose(actual, expected) + assert actual.dtype == np.float64 + + @pytest.mark.parametrize('dtype', [np.uint8, np.int16, np.uint64]) + def test_int_dtypes(self, dtype): + x = np.arange(4, dtype=dtype) + actual = sinc(x) + expected = sinc(x.astype(np.float64)) + assert_allclose(actual, expected) + assert actual.dtype == np.float64 + + @pytest.mark.parametrize( + 'dtype', + [np.float16, np.float32, np.longdouble, np.complex64, np.complex128] + ) + def test_float_dtypes(self, dtype): + x = np.arange(4, dtype=dtype) + assert sinc(x).dtype == x.dtype + + def test_float16_underflow(self): + x = np.float16(0) + # before gh-27784, fill value for 0 in input would underflow float16, + # resulting in nan + assert_array_equal(sinc(x), np.asarray(1.0)) + +class TestUnique: + + def test_simple(self): + x = np.array([4, 3, 2, 1, 1, 2, 3, 4, 0]) + assert_(np.all(unique(x) == [0, 1, 2, 3, 4])) + assert_(unique(np.array([1, 1, 1, 1, 1])) == np.array([1])) + x = ['widget', 'ham', 'foo', 'bar', 'foo', 'ham'] + assert_(np.all(unique(x) == ['bar', 'foo', 'ham', 'widget'])) + x = np.array([5 + 6j, 1 + 1j, 1 + 10j, 10, 5 + 6j]) + assert_(np.all(unique(x) == [1 + 1j, 1 + 10j, 5 + 6j, 10])) + + +class TestCheckFinite: + + def test_simple(self): + a = [1, 2, 3] + b = [1, 2, np.inf] + c = [1, 2, np.nan] + np.asarray_chkfinite(a) + assert_raises(ValueError, np.asarray_chkfinite, b) + assert_raises(ValueError, np.asarray_chkfinite, c) + + def test_dtype_order(self): + # Regression test for missing dtype and order arguments + a = [1, 2, 3] + a = np.asarray_chkfinite(a, order='F', dtype=np.float64) + assert_(a.dtype == np.float64) + + +class TestCorrCoef: + A = np.array( + [[0.15391142, 0.18045767, 0.14197213], + [0.70461506, 0.96474128, 0.27906989], + [0.9297531, 0.32296769, 0.19267156]]) + B = np.array( + [[0.10377691, 0.5417086, 0.49807457], + [0.82872117, 0.77801674, 0.39226705], + [0.9314666, 0.66800209, 0.03538394]]) + res1 = np.array( + [[1., 0.9379533, -0.04931983], + [0.9379533, 1., 0.30007991], + [-0.04931983, 0.30007991, 1.]]) + res2 = np.array( + [[1., 0.9379533, -0.04931983, 0.30151751, 0.66318558, 0.51532523], + [0.9379533, 1., 0.30007991, -0.04781421, 0.88157256, 0.78052386], + [-0.04931983, 0.30007991, 1., -0.96717111, 0.71483595, 0.83053601], + [0.30151751, -0.04781421, -0.96717111, 1., -0.51366032, -0.66173113], + [0.66318558, 0.88157256, 0.71483595, -0.51366032, 1., 0.98317823], + [0.51532523, 0.78052386, 0.83053601, -0.66173113, 0.98317823, 1.]]) + + def test_non_array(self): + assert_almost_equal(np.corrcoef([0, 1, 0], [1, 0, 1]), + [[1., -1.], [-1., 1.]]) + + def test_simple(self): + tgt1 = corrcoef(self.A) + assert_almost_equal(tgt1, self.res1) + assert_(np.all(np.abs(tgt1) <= 1.0)) + + tgt2 = corrcoef(self.A, self.B) + assert_almost_equal(tgt2, self.res2) + assert_(np.all(np.abs(tgt2) <= 1.0)) + + def test_ddof(self): + # ddof raises DeprecationWarning + with suppress_warnings() as sup: + warnings.simplefilter("always") + assert_warns(DeprecationWarning, corrcoef, self.A, ddof=-1) + sup.filter(DeprecationWarning) + # ddof has no or negligible effect on the function + assert_almost_equal(corrcoef(self.A, ddof=-1), self.res1) + assert_almost_equal(corrcoef(self.A, self.B, ddof=-1), self.res2) + assert_almost_equal(corrcoef(self.A, ddof=3), self.res1) + assert_almost_equal(corrcoef(self.A, self.B, ddof=3), self.res2) + + def test_bias(self): + # bias raises DeprecationWarning + with suppress_warnings() as sup: + warnings.simplefilter("always") + assert_warns(DeprecationWarning, corrcoef, self.A, self.B, 1, 0) + assert_warns(DeprecationWarning, corrcoef, self.A, bias=0) + sup.filter(DeprecationWarning) + # bias has no or negligible effect on the function + assert_almost_equal(corrcoef(self.A, bias=1), self.res1) + + def test_complex(self): + x = np.array([[1, 2, 3], [1j, 2j, 3j]]) + res = corrcoef(x) + tgt = np.array([[1., -1.j], [1.j, 1.]]) + assert_allclose(res, tgt) + assert_(np.all(np.abs(res) <= 1.0)) + + def test_xy(self): + x = np.array([[1, 2, 3]]) + y = np.array([[1j, 2j, 3j]]) + assert_allclose(np.corrcoef(x, y), np.array([[1., -1.j], [1.j, 1.]])) + + def test_empty(self): + with warnings.catch_warnings(record=True): + warnings.simplefilter('always', RuntimeWarning) + assert_array_equal(corrcoef(np.array([])), np.nan) + assert_array_equal(corrcoef(np.array([]).reshape(0, 2)), + np.array([]).reshape(0, 0)) + assert_array_equal(corrcoef(np.array([]).reshape(2, 0)), + np.array([[np.nan, np.nan], [np.nan, np.nan]])) + + def test_extreme(self): + x = [[1e-100, 1e100], [1e100, 1e-100]] + with np.errstate(all='raise'): + c = corrcoef(x) + assert_array_almost_equal(c, np.array([[1., -1.], [-1., 1.]])) + assert_(np.all(np.abs(c) <= 1.0)) + + @pytest.mark.parametrize("test_type", [np.half, np.single, np.double, np.longdouble]) + def test_corrcoef_dtype(self, test_type): + cast_A = self.A.astype(test_type) + res = corrcoef(cast_A, dtype=test_type) + assert test_type == res.dtype + + +class TestCov: + x1 = np.array([[0, 2], [1, 1], [2, 0]]).T + res1 = np.array([[1., -1.], [-1., 1.]]) + x2 = np.array([0.0, 1.0, 2.0], ndmin=2) + frequencies = np.array([1, 4, 1]) + x2_repeats = np.array([[0.0], [1.0], [1.0], [1.0], [1.0], [2.0]]).T + res2 = np.array([[0.4, -0.4], [-0.4, 0.4]]) + unit_frequencies = np.ones(3, dtype=np.int_) + weights = np.array([1.0, 4.0, 1.0]) + res3 = np.array([[2. / 3., -2. / 3.], [-2. / 3., 2. / 3.]]) + unit_weights = np.ones(3) + x3 = np.array([0.3942, 0.5969, 0.7730, 0.9918, 0.7964]) + + def test_basic(self): + assert_allclose(cov(self.x1), self.res1) + + def test_complex(self): + x = np.array([[1, 2, 3], [1j, 2j, 3j]]) + res = np.array([[1., -1.j], [1.j, 1.]]) + assert_allclose(cov(x), res) + assert_allclose(cov(x, aweights=np.ones(3)), res) + + def test_xy(self): + x = np.array([[1, 2, 3]]) + y = np.array([[1j, 2j, 3j]]) + assert_allclose(cov(x, y), np.array([[1., -1.j], [1.j, 1.]])) + + def test_empty(self): + with warnings.catch_warnings(record=True): + warnings.simplefilter('always', RuntimeWarning) + assert_array_equal(cov(np.array([])), np.nan) + assert_array_equal(cov(np.array([]).reshape(0, 2)), + np.array([]).reshape(0, 0)) + assert_array_equal(cov(np.array([]).reshape(2, 0)), + np.array([[np.nan, np.nan], [np.nan, np.nan]])) + + def test_wrong_ddof(self): + with warnings.catch_warnings(record=True): + warnings.simplefilter('always', RuntimeWarning) + assert_array_equal(cov(self.x1, ddof=5), + np.array([[np.inf, -np.inf], + [-np.inf, np.inf]])) + + def test_1D_rowvar(self): + assert_allclose(cov(self.x3), cov(self.x3, rowvar=False)) + y = np.array([0.0780, 0.3107, 0.2111, 0.0334, 0.8501]) + assert_allclose(cov(self.x3, y), cov(self.x3, y, rowvar=False)) + + def test_1D_variance(self): + assert_allclose(cov(self.x3, ddof=1), np.var(self.x3, ddof=1)) + + def test_fweights(self): + assert_allclose(cov(self.x2, fweights=self.frequencies), + cov(self.x2_repeats)) + assert_allclose(cov(self.x1, fweights=self.frequencies), + self.res2) + assert_allclose(cov(self.x1, fweights=self.unit_frequencies), + self.res1) + nonint = self.frequencies + 0.5 + assert_raises(TypeError, cov, self.x1, fweights=nonint) + f = np.ones((2, 3), dtype=np.int_) + assert_raises(RuntimeError, cov, self.x1, fweights=f) + f = np.ones(2, dtype=np.int_) + assert_raises(RuntimeError, cov, self.x1, fweights=f) + f = -1 * np.ones(3, dtype=np.int_) + assert_raises(ValueError, cov, self.x1, fweights=f) + + def test_aweights(self): + assert_allclose(cov(self.x1, aweights=self.weights), self.res3) + assert_allclose(cov(self.x1, aweights=3.0 * self.weights), + cov(self.x1, aweights=self.weights)) + assert_allclose(cov(self.x1, aweights=self.unit_weights), self.res1) + w = np.ones((2, 3)) + assert_raises(RuntimeError, cov, self.x1, aweights=w) + w = np.ones(2) + assert_raises(RuntimeError, cov, self.x1, aweights=w) + w = -1.0 * np.ones(3) + assert_raises(ValueError, cov, self.x1, aweights=w) + + def test_unit_fweights_and_aweights(self): + assert_allclose(cov(self.x2, fweights=self.frequencies, + aweights=self.unit_weights), + cov(self.x2_repeats)) + assert_allclose(cov(self.x1, fweights=self.frequencies, + aweights=self.unit_weights), + self.res2) + assert_allclose(cov(self.x1, fweights=self.unit_frequencies, + aweights=self.unit_weights), + self.res1) + assert_allclose(cov(self.x1, fweights=self.unit_frequencies, + aweights=self.weights), + self.res3) + assert_allclose(cov(self.x1, fweights=self.unit_frequencies, + aweights=3.0 * self.weights), + cov(self.x1, aweights=self.weights)) + assert_allclose(cov(self.x1, fweights=self.unit_frequencies, + aweights=self.unit_weights), + self.res1) + + @pytest.mark.parametrize("test_type", [np.half, np.single, np.double, np.longdouble]) + def test_cov_dtype(self, test_type): + cast_x1 = self.x1.astype(test_type) + res = cov(cast_x1, dtype=test_type) + assert test_type == res.dtype + + def test_gh_27658(self): + x = np.ones((3, 1)) + expected = np.cov(x, ddof=0, rowvar=True) + actual = np.cov(x.T, ddof=0, rowvar=False) + assert_allclose(actual, expected, strict=True) + + +class Test_I0: + + def test_simple(self): + assert_almost_equal( + i0(0.5), + np.array(1.0634833707413234)) + + # need at least one test above 8, as the implementation is piecewise + A = np.array([0.49842636, 0.6969809, 0.22011976, 0.0155549, 10.0]) + expected = np.array([1.06307822, 1.12518299, 1.01214991, 1.00006049, 2815.71662847]) + assert_almost_equal(i0(A), expected) + assert_almost_equal(i0(-A), expected) + + B = np.array([[0.827002, 0.99959078], + [0.89694769, 0.39298162], + [0.37954418, 0.05206293], + [0.36465447, 0.72446427], + [0.48164949, 0.50324519]]) + assert_almost_equal( + i0(B), + np.array([[1.17843223, 1.26583466], + [1.21147086, 1.03898290], + [1.03633899, 1.00067775], + [1.03352052, 1.13557954], + [1.05884290, 1.06432317]])) + # Regression test for gh-11205 + i0_0 = np.i0([0.]) + assert_equal(i0_0.shape, (1,)) + assert_array_equal(np.i0([0.]), np.array([1.])) + + def test_non_array(self): + a = np.arange(4) + + class array_like: + __array_interface__ = a.__array_interface__ + + def __array_wrap__(self, arr, context, return_scalar): + return self + + # E.g. pandas series survive ufunc calls through array-wrap: + assert isinstance(np.abs(array_like()), array_like) + exp = np.i0(a) + res = np.i0(array_like()) + + assert_array_equal(exp, res) + + def test_complex(self): + a = np.array([0, 1 + 2j]) + with pytest.raises(TypeError, match="i0 not supported for complex values"): + res = i0(a) + + +class TestKaiser: + + def test_simple(self): + assert_(np.isfinite(kaiser(1, 1.0))) + assert_almost_equal(kaiser(0, 1.0), + np.array([])) + assert_almost_equal(kaiser(2, 1.0), + np.array([0.78984831, 0.78984831])) + assert_almost_equal(kaiser(5, 1.0), + np.array([0.78984831, 0.94503323, 1., + 0.94503323, 0.78984831])) + assert_almost_equal(kaiser(5, 1.56789), + np.array([0.58285404, 0.88409679, 1., + 0.88409679, 0.58285404])) + + def test_int_beta(self): + kaiser(3, 4) + + +class TestMeshgrid: + + def test_simple(self): + [X, Y] = meshgrid([1, 2, 3], [4, 5, 6, 7]) + assert_array_equal(X, np.array([[1, 2, 3], + [1, 2, 3], + [1, 2, 3], + [1, 2, 3]])) + assert_array_equal(Y, np.array([[4, 4, 4], + [5, 5, 5], + [6, 6, 6], + [7, 7, 7]])) + + def test_single_input(self): + [X] = meshgrid([1, 2, 3, 4]) + assert_array_equal(X, np.array([1, 2, 3, 4])) + + def test_no_input(self): + args = [] + assert_array_equal([], meshgrid(*args)) + assert_array_equal([], meshgrid(*args, copy=False)) + + def test_indexing(self): + x = [1, 2, 3] + y = [4, 5, 6, 7] + [X, Y] = meshgrid(x, y, indexing='ij') + assert_array_equal(X, np.array([[1, 1, 1, 1], + [2, 2, 2, 2], + [3, 3, 3, 3]])) + assert_array_equal(Y, np.array([[4, 5, 6, 7], + [4, 5, 6, 7], + [4, 5, 6, 7]])) + + # Test expected shapes: + z = [8, 9] + assert_(meshgrid(x, y)[0].shape == (4, 3)) + assert_(meshgrid(x, y, indexing='ij')[0].shape == (3, 4)) + assert_(meshgrid(x, y, z)[0].shape == (4, 3, 2)) + assert_(meshgrid(x, y, z, indexing='ij')[0].shape == (3, 4, 2)) + + assert_raises(ValueError, meshgrid, x, y, indexing='notvalid') + + def test_sparse(self): + [X, Y] = meshgrid([1, 2, 3], [4, 5, 6, 7], sparse=True) + assert_array_equal(X, np.array([[1, 2, 3]])) + assert_array_equal(Y, np.array([[4], [5], [6], [7]])) + + def test_invalid_arguments(self): + # Test that meshgrid complains about invalid arguments + # Regression test for issue #4755: + # https://github.com/numpy/numpy/issues/4755 + assert_raises(TypeError, meshgrid, + [1, 2, 3], [4, 5, 6, 7], indices='ij') + + def test_return_type(self): + # Test for appropriate dtype in returned arrays. + # Regression test for issue #5297 + # https://github.com/numpy/numpy/issues/5297 + x = np.arange(0, 10, dtype=np.float32) + y = np.arange(10, 20, dtype=np.float64) + + X, Y = np.meshgrid(x, y) + + assert_(X.dtype == x.dtype) + assert_(Y.dtype == y.dtype) + + # copy + X, Y = np.meshgrid(x, y, copy=True) + + assert_(X.dtype == x.dtype) + assert_(Y.dtype == y.dtype) + + # sparse + X, Y = np.meshgrid(x, y, sparse=True) + + assert_(X.dtype == x.dtype) + assert_(Y.dtype == y.dtype) + + def test_writeback(self): + # Issue 8561 + X = np.array([1.1, 2.2]) + Y = np.array([3.3, 4.4]) + x, y = np.meshgrid(X, Y, sparse=False, copy=True) + + x[0, :] = 0 + assert_equal(x[0, :], 0) + assert_equal(x[1, :], X) + + def test_nd_shape(self): + a, b, c, d, e = np.meshgrid(*([0] * i for i in range(1, 6))) + expected_shape = (2, 1, 3, 4, 5) + assert_equal(a.shape, expected_shape) + assert_equal(b.shape, expected_shape) + assert_equal(c.shape, expected_shape) + assert_equal(d.shape, expected_shape) + assert_equal(e.shape, expected_shape) + + def test_nd_values(self): + a, b, c = np.meshgrid([0], [1, 2], [3, 4, 5]) + assert_equal(a, [[[0, 0, 0]], [[0, 0, 0]]]) + assert_equal(b, [[[1, 1, 1]], [[2, 2, 2]]]) + assert_equal(c, [[[3, 4, 5]], [[3, 4, 5]]]) + + def test_nd_indexing(self): + a, b, c = np.meshgrid([0], [1, 2], [3, 4, 5], indexing='ij') + assert_equal(a, [[[0, 0, 0], [0, 0, 0]]]) + assert_equal(b, [[[1, 1, 1], [2, 2, 2]]]) + assert_equal(c, [[[3, 4, 5], [3, 4, 5]]]) + + +class TestPiecewise: + + def test_simple(self): + # Condition is single bool list + x = piecewise([0, 0], [True, False], [1]) + assert_array_equal(x, [1, 0]) + + # List of conditions: single bool list + x = piecewise([0, 0], [[True, False]], [1]) + assert_array_equal(x, [1, 0]) + + # Conditions is single bool array + x = piecewise([0, 0], np.array([True, False]), [1]) + assert_array_equal(x, [1, 0]) + + # Condition is single int array + x = piecewise([0, 0], np.array([1, 0]), [1]) + assert_array_equal(x, [1, 0]) + + # List of conditions: int array + x = piecewise([0, 0], [np.array([1, 0])], [1]) + assert_array_equal(x, [1, 0]) + + x = piecewise([0, 0], [[False, True]], [lambda x:-1]) + assert_array_equal(x, [0, -1]) + + assert_raises_regex(ValueError, '1 or 2 functions are expected', + piecewise, [0, 0], [[False, True]], []) + assert_raises_regex(ValueError, '1 or 2 functions are expected', + piecewise, [0, 0], [[False, True]], [1, 2, 3]) + + def test_two_conditions(self): + x = piecewise([1, 2], [[True, False], [False, True]], [3, 4]) + assert_array_equal(x, [3, 4]) + + def test_scalar_domains_three_conditions(self): + x = piecewise(3, [True, False, False], [4, 2, 0]) + assert_equal(x, 4) + + def test_default(self): + # No value specified for x[1], should be 0 + x = piecewise([1, 2], [True, False], [2]) + assert_array_equal(x, [2, 0]) + + # Should set x[1] to 3 + x = piecewise([1, 2], [True, False], [2, 3]) + assert_array_equal(x, [2, 3]) + + def test_0d(self): + x = np.array(3) + y = piecewise(x, x > 3, [4, 0]) + assert_(y.ndim == 0) + assert_(y == 0) + + x = 5 + y = piecewise(x, [True, False], [1, 0]) + assert_(y.ndim == 0) + assert_(y == 1) + + # With 3 ranges (It was failing, before) + y = piecewise(x, [False, False, True], [1, 2, 3]) + assert_array_equal(y, 3) + + def test_0d_comparison(self): + x = 3 + y = piecewise(x, [x <= 3, x > 3], [4, 0]) # Should succeed. + assert_equal(y, 4) + + # With 3 ranges (It was failing, before) + x = 4 + y = piecewise(x, [x <= 3, (x > 3) * (x <= 5), x > 5], [1, 2, 3]) + assert_array_equal(y, 2) + + assert_raises_regex(ValueError, '2 or 3 functions are expected', + piecewise, x, [x <= 3, x > 3], [1]) + assert_raises_regex(ValueError, '2 or 3 functions are expected', + piecewise, x, [x <= 3, x > 3], [1, 1, 1, 1]) + + def test_0d_0d_condition(self): + x = np.array(3) + c = np.array(x > 3) + y = piecewise(x, [c], [1, 2]) + assert_equal(y, 2) + + def test_multidimensional_extrafunc(self): + x = np.array([[-2.5, -1.5, -0.5], + [0.5, 1.5, 2.5]]) + y = piecewise(x, [x < 0, x >= 2], [-1, 1, 3]) + assert_array_equal(y, np.array([[-1., -1., -1.], + [3., 3., 1.]])) + + def test_subclasses(self): + class subclass(np.ndarray): + pass + x = np.arange(5.).view(subclass) + r = piecewise(x, [x < 2., x >= 4], [-1., 1., 0.]) + assert_equal(type(r), subclass) + assert_equal(r, [-1., -1., 0., 0., 1.]) + + +class TestBincount: + + def test_simple(self): + y = np.bincount(np.arange(4)) + assert_array_equal(y, np.ones(4)) + + def test_simple2(self): + y = np.bincount(np.array([1, 5, 2, 4, 1])) + assert_array_equal(y, np.array([0, 2, 1, 0, 1, 1])) + + def test_simple_weight(self): + x = np.arange(4) + w = np.array([0.2, 0.3, 0.5, 0.1]) + y = np.bincount(x, w) + assert_array_equal(y, w) + + def test_simple_weight2(self): + x = np.array([1, 2, 4, 5, 2]) + w = np.array([0.2, 0.3, 0.5, 0.1, 0.2]) + y = np.bincount(x, w) + assert_array_equal(y, np.array([0, 0.2, 0.5, 0, 0.5, 0.1])) + + def test_with_minlength(self): + x = np.array([0, 1, 0, 1, 1]) + y = np.bincount(x, minlength=3) + assert_array_equal(y, np.array([2, 3, 0])) + x = [] + y = np.bincount(x, minlength=0) + assert_array_equal(y, np.array([])) + + def test_with_minlength_smaller_than_maxvalue(self): + x = np.array([0, 1, 1, 2, 2, 3, 3]) + y = np.bincount(x, minlength=2) + assert_array_equal(y, np.array([1, 2, 2, 2])) + y = np.bincount(x, minlength=0) + assert_array_equal(y, np.array([1, 2, 2, 2])) + + def test_with_minlength_and_weights(self): + x = np.array([1, 2, 4, 5, 2]) + w = np.array([0.2, 0.3, 0.5, 0.1, 0.2]) + y = np.bincount(x, w, 8) + assert_array_equal(y, np.array([0, 0.2, 0.5, 0, 0.5, 0.1, 0, 0])) + + def test_empty(self): + x = np.array([], dtype=int) + y = np.bincount(x) + assert_array_equal(x, y) + + def test_empty_with_minlength(self): + x = np.array([], dtype=int) + y = np.bincount(x, minlength=5) + assert_array_equal(y, np.zeros(5, dtype=int)) + + @pytest.mark.parametrize('minlength', [0, 3]) + def test_empty_list(self, minlength): + assert_array_equal(np.bincount([], minlength=minlength), + np.zeros(minlength, dtype=int)) + + def test_with_incorrect_minlength(self): + x = np.array([], dtype=int) + assert_raises_regex(TypeError, + "'str' object cannot be interpreted", + lambda: np.bincount(x, minlength="foobar")) + assert_raises_regex(ValueError, + "must not be negative", + lambda: np.bincount(x, minlength=-1)) + + x = np.arange(5) + assert_raises_regex(TypeError, + "'str' object cannot be interpreted", + lambda: np.bincount(x, minlength="foobar")) + assert_raises_regex(ValueError, + "must not be negative", + lambda: np.bincount(x, minlength=-1)) + + @pytest.mark.skipif(not HAS_REFCOUNT, reason="Python lacks refcounts") + def test_dtype_reference_leaks(self): + # gh-6805 + intp_refcount = sys.getrefcount(np.dtype(np.intp)) + double_refcount = sys.getrefcount(np.dtype(np.double)) + + for j in range(10): + np.bincount([1, 2, 3]) + assert_equal(sys.getrefcount(np.dtype(np.intp)), intp_refcount) + assert_equal(sys.getrefcount(np.dtype(np.double)), double_refcount) + + for j in range(10): + np.bincount([1, 2, 3], [4, 5, 6]) + assert_equal(sys.getrefcount(np.dtype(np.intp)), intp_refcount) + assert_equal(sys.getrefcount(np.dtype(np.double)), double_refcount) + + @pytest.mark.parametrize("vals", [[[2, 2]], 2]) + def test_error_not_1d(self, vals): + # Test that values has to be 1-D (both as array and nested list) + vals_arr = np.asarray(vals) + with assert_raises(ValueError): + np.bincount(vals_arr) + with assert_raises(ValueError): + np.bincount(vals) + + @pytest.mark.parametrize("dt", np.typecodes["AllInteger"]) + def test_gh_28354(self, dt): + a = np.array([0, 1, 1, 3, 2, 1, 7], dtype=dt) + actual = np.bincount(a) + expected = [1, 3, 1, 1, 0, 0, 0, 1] + assert_array_equal(actual, expected) + + def test_contiguous_handling(self): + # check for absence of hard crash + np.bincount(np.arange(10000)[::2]) + + def test_gh_28354_array_like(self): + class A: + def __array__(self): + return np.array([0, 1, 1, 3, 2, 1, 7], dtype=np.uint64) + + a = A() + actual = np.bincount(a) + expected = [1, 3, 1, 1, 0, 0, 0, 1] + assert_array_equal(actual, expected) + + +class TestInterp: + + def test_exceptions(self): + assert_raises(ValueError, interp, 0, [], []) + assert_raises(ValueError, interp, 0, [0], [1, 2]) + assert_raises(ValueError, interp, 0, [0, 1], [1, 2], period=0) + assert_raises(ValueError, interp, 0, [], [], period=360) + assert_raises(ValueError, interp, 0, [0], [1, 2], period=360) + + def test_basic(self): + x = np.linspace(0, 1, 5) + y = np.linspace(0, 1, 5) + x0 = np.linspace(0, 1, 50) + assert_almost_equal(np.interp(x0, x, y), x0) + + def test_right_left_behavior(self): + # Needs range of sizes to test different code paths. + # size ==1 is special cased, 1 < size < 5 is linear search, and + # size >= 5 goes through local search and possibly binary search. + for size in range(1, 10): + xp = np.arange(size, dtype=np.double) + yp = np.ones(size, dtype=np.double) + incpts = np.array([-1, 0, size - 1, size], dtype=np.double) + decpts = incpts[::-1] + + incres = interp(incpts, xp, yp) + decres = interp(decpts, xp, yp) + inctgt = np.array([1, 1, 1, 1], dtype=float) + dectgt = inctgt[::-1] + assert_equal(incres, inctgt) + assert_equal(decres, dectgt) + + incres = interp(incpts, xp, yp, left=0) + decres = interp(decpts, xp, yp, left=0) + inctgt = np.array([0, 1, 1, 1], dtype=float) + dectgt = inctgt[::-1] + assert_equal(incres, inctgt) + assert_equal(decres, dectgt) + + incres = interp(incpts, xp, yp, right=2) + decres = interp(decpts, xp, yp, right=2) + inctgt = np.array([1, 1, 1, 2], dtype=float) + dectgt = inctgt[::-1] + assert_equal(incres, inctgt) + assert_equal(decres, dectgt) + + incres = interp(incpts, xp, yp, left=0, right=2) + decres = interp(decpts, xp, yp, left=0, right=2) + inctgt = np.array([0, 1, 1, 2], dtype=float) + dectgt = inctgt[::-1] + assert_equal(incres, inctgt) + assert_equal(decres, dectgt) + + def test_scalar_interpolation_point(self): + x = np.linspace(0, 1, 5) + y = np.linspace(0, 1, 5) + x0 = 0 + assert_almost_equal(np.interp(x0, x, y), x0) + x0 = .3 + assert_almost_equal(np.interp(x0, x, y), x0) + x0 = np.float32(.3) + assert_almost_equal(np.interp(x0, x, y), x0) + x0 = np.float64(.3) + assert_almost_equal(np.interp(x0, x, y), x0) + x0 = np.nan + assert_almost_equal(np.interp(x0, x, y), x0) + + def test_non_finite_behavior_exact_x(self): + x = [1, 2, 2.5, 3, 4] + xp = [1, 2, 3, 4] + fp = [1, 2, np.inf, 4] + assert_almost_equal(np.interp(x, xp, fp), [1, 2, np.inf, np.inf, 4]) + fp = [1, 2, np.nan, 4] + assert_almost_equal(np.interp(x, xp, fp), [1, 2, np.nan, np.nan, 4]) + + @pytest.fixture(params=[ + np.float64, + lambda x: _make_complex(x, 0), + lambda x: _make_complex(0, x), + lambda x: _make_complex(x, np.multiply(x, -2)) + ], ids=[ + 'real', + 'complex-real', + 'complex-imag', + 'complex-both' + ]) + def sc(self, request): + """ scale function used by the below tests """ + return request.param + + def test_non_finite_any_nan(self, sc): + """ test that nans are propagated """ + assert_equal(np.interp(0.5, [np.nan, 1], sc([ 0, 10])), sc(np.nan)) + assert_equal(np.interp(0.5, [ 0, np.nan], sc([ 0, 10])), sc(np.nan)) + assert_equal(np.interp(0.5, [ 0, 1], sc([np.nan, 10])), sc(np.nan)) + assert_equal(np.interp(0.5, [ 0, 1], sc([ 0, np.nan])), sc(np.nan)) + + def test_non_finite_inf(self, sc): + """ Test that interp between opposite infs gives nan """ + assert_equal(np.interp(0.5, [-np.inf, +np.inf], sc([ 0, 10])), sc(np.nan)) + assert_equal(np.interp(0.5, [ 0, 1], sc([-np.inf, +np.inf])), sc(np.nan)) + assert_equal(np.interp(0.5, [ 0, 1], sc([+np.inf, -np.inf])), sc(np.nan)) + + # unless the y values are equal + assert_equal(np.interp(0.5, [-np.inf, +np.inf], sc([ 10, 10])), sc(10)) + + def test_non_finite_half_inf_xf(self, sc): + """ Test that interp where both axes have a bound at inf gives nan """ + assert_equal(np.interp(0.5, [-np.inf, 1], sc([-np.inf, 10])), sc(np.nan)) + assert_equal(np.interp(0.5, [-np.inf, 1], sc([+np.inf, 10])), sc(np.nan)) + assert_equal(np.interp(0.5, [-np.inf, 1], sc([ 0, -np.inf])), sc(np.nan)) + assert_equal(np.interp(0.5, [-np.inf, 1], sc([ 0, +np.inf])), sc(np.nan)) + assert_equal(np.interp(0.5, [ 0, +np.inf], sc([-np.inf, 10])), sc(np.nan)) + assert_equal(np.interp(0.5, [ 0, +np.inf], sc([+np.inf, 10])), sc(np.nan)) + assert_equal(np.interp(0.5, [ 0, +np.inf], sc([ 0, -np.inf])), sc(np.nan)) + assert_equal(np.interp(0.5, [ 0, +np.inf], sc([ 0, +np.inf])), sc(np.nan)) + + def test_non_finite_half_inf_x(self, sc): + """ Test interp where the x axis has a bound at inf """ + assert_equal(np.interp(0.5, [-np.inf, -np.inf], sc([0, 10])), sc(10)) + assert_equal(np.interp(0.5, [-np.inf, 1 ], sc([0, 10])), sc(10)) # noqa: E202 + assert_equal(np.interp(0.5, [ 0, +np.inf], sc([0, 10])), sc(0)) + assert_equal(np.interp(0.5, [+np.inf, +np.inf], sc([0, 10])), sc(0)) + + def test_non_finite_half_inf_f(self, sc): + """ Test interp where the f axis has a bound at inf """ + assert_equal(np.interp(0.5, [0, 1], sc([ 0, -np.inf])), sc(-np.inf)) + assert_equal(np.interp(0.5, [0, 1], sc([ 0, +np.inf])), sc(+np.inf)) + assert_equal(np.interp(0.5, [0, 1], sc([-np.inf, 10])), sc(-np.inf)) + assert_equal(np.interp(0.5, [0, 1], sc([+np.inf, 10])), sc(+np.inf)) + assert_equal(np.interp(0.5, [0, 1], sc([-np.inf, -np.inf])), sc(-np.inf)) + assert_equal(np.interp(0.5, [0, 1], sc([+np.inf, +np.inf])), sc(+np.inf)) + + def test_complex_interp(self): + # test complex interpolation + x = np.linspace(0, 1, 5) + y = np.linspace(0, 1, 5) + (1 + np.linspace(0, 1, 5)) * 1.0j + x0 = 0.3 + y0 = x0 + (1 + x0) * 1.0j + assert_almost_equal(np.interp(x0, x, y), y0) + # test complex left and right + x0 = -1 + left = 2 + 3.0j + assert_almost_equal(np.interp(x0, x, y, left=left), left) + x0 = 2.0 + right = 2 + 3.0j + assert_almost_equal(np.interp(x0, x, y, right=right), right) + # test complex non finite + x = [1, 2, 2.5, 3, 4] + xp = [1, 2, 3, 4] + fp = [1, 2 + 1j, np.inf, 4] + y = [1, 2 + 1j, np.inf + 0.5j, np.inf, 4] + assert_almost_equal(np.interp(x, xp, fp), y) + # test complex periodic + x = [-180, -170, -185, 185, -10, -5, 0, 365] + xp = [190, -190, 350, -350] + fp = [5 + 1.0j, 10 + 2j, 3 + 3j, 4 + 4j] + y = [7.5 + 1.5j, 5. + 1.0j, 8.75 + 1.75j, 6.25 + 1.25j, 3. + 3j, 3.25 + 3.25j, + 3.5 + 3.5j, 3.75 + 3.75j] + assert_almost_equal(np.interp(x, xp, fp, period=360), y) + + def test_zero_dimensional_interpolation_point(self): + x = np.linspace(0, 1, 5) + y = np.linspace(0, 1, 5) + x0 = np.array(.3) + assert_almost_equal(np.interp(x0, x, y), x0) + + xp = np.array([0, 2, 4]) + fp = np.array([1, -1, 1]) + + actual = np.interp(np.array(1), xp, fp) + assert_equal(actual, 0) + assert_(isinstance(actual, np.float64)) + + actual = np.interp(np.array(4.5), xp, fp, period=4) + assert_equal(actual, 0.5) + assert_(isinstance(actual, np.float64)) + + def test_if_len_x_is_small(self): + xp = np.arange(0, 10, 0.0001) + fp = np.sin(xp) + assert_almost_equal(np.interp(np.pi, xp, fp), 0.0) + + def test_period(self): + x = [-180, -170, -185, 185, -10, -5, 0, 365] + xp = [190, -190, 350, -350] + fp = [5, 10, 3, 4] + y = [7.5, 5., 8.75, 6.25, 3., 3.25, 3.5, 3.75] + assert_almost_equal(np.interp(x, xp, fp, period=360), y) + x = np.array(x, order='F').reshape(2, -1) + y = np.array(y, order='C').reshape(2, -1) + assert_almost_equal(np.interp(x, xp, fp, period=360), y) + + +class TestPercentile: + + def test_basic(self): + x = np.arange(8) * 0.5 + assert_equal(np.percentile(x, 0), 0.) + assert_equal(np.percentile(x, 100), 3.5) + assert_equal(np.percentile(x, 50), 1.75) + x[1] = np.nan + assert_equal(np.percentile(x, 0), np.nan) + assert_equal(np.percentile(x, 0, method='nearest'), np.nan) + assert_equal(np.percentile(x, 0, method='inverted_cdf'), np.nan) + assert_equal( + np.percentile(x, 0, method='inverted_cdf', + weights=np.ones_like(x)), + np.nan, + ) + + def test_fraction(self): + x = [Fraction(i, 2) for i in range(8)] + + p = np.percentile(x, Fraction(0)) + assert_equal(p, Fraction(0)) + assert_equal(type(p), Fraction) + + p = np.percentile(x, Fraction(100)) + assert_equal(p, Fraction(7, 2)) + assert_equal(type(p), Fraction) + + p = np.percentile(x, Fraction(50)) + assert_equal(p, Fraction(7, 4)) + assert_equal(type(p), Fraction) + + p = np.percentile(x, [Fraction(50)]) + assert_equal(p, np.array([Fraction(7, 4)])) + assert_equal(type(p), np.ndarray) + + def test_api(self): + d = np.ones(5) + np.percentile(d, 5, None, None, False) + np.percentile(d, 5, None, None, False, 'linear') + o = np.ones((1,)) + np.percentile(d, 5, None, o, False, 'linear') + + def test_complex(self): + arr_c = np.array([0.5 + 3.0j, 2.1 + 0.5j, 1.6 + 2.3j], dtype='G') + assert_raises(TypeError, np.percentile, arr_c, 0.5) + arr_c = np.array([0.5 + 3.0j, 2.1 + 0.5j, 1.6 + 2.3j], dtype='D') + assert_raises(TypeError, np.percentile, arr_c, 0.5) + arr_c = np.array([0.5 + 3.0j, 2.1 + 0.5j, 1.6 + 2.3j], dtype='F') + assert_raises(TypeError, np.percentile, arr_c, 0.5) + + def test_2D(self): + x = np.array([[1, 1, 1], + [1, 1, 1], + [4, 4, 3], + [1, 1, 1], + [1, 1, 1]]) + assert_array_equal(np.percentile(x, 50, axis=0), [1, 1, 1]) + + @pytest.mark.parametrize("dtype", np.typecodes["Float"]) + def test_linear_nan_1D(self, dtype): + # METHOD 1 of H&F + arr = np.asarray([15.0, np.nan, 35.0, 40.0, 50.0], dtype=dtype) + res = np.percentile( + arr, + 40.0, + method="linear") + np.testing.assert_equal(res, np.nan) + np.testing.assert_equal(res.dtype, arr.dtype) + + H_F_TYPE_CODES = [(int_type, np.float64) + for int_type in np.typecodes["AllInteger"] + ] + [(np.float16, np.float16), + (np.float32, np.float32), + (np.float64, np.float64), + (np.longdouble, np.longdouble), + (np.dtype("O"), np.float64)] + + @pytest.mark.parametrize(["function", "quantile"], + [(np.quantile, 0.4), + (np.percentile, 40.0)]) + @pytest.mark.parametrize(["input_dtype", "expected_dtype"], H_F_TYPE_CODES) + @pytest.mark.parametrize(["method", "weighted", "expected"], + [("inverted_cdf", False, 20), + ("inverted_cdf", True, 20), + ("averaged_inverted_cdf", False, 27.5), + ("closest_observation", False, 20), + ("interpolated_inverted_cdf", False, 20), + ("hazen", False, 27.5), + ("weibull", False, 26), + ("linear", False, 29), + ("median_unbiased", False, 27), + ("normal_unbiased", False, 27.125), + ]) + def test_linear_interpolation(self, + function, + quantile, + method, + weighted, + expected, + input_dtype, + expected_dtype): + expected_dtype = np.dtype(expected_dtype) + + arr = np.asarray([15.0, 20.0, 35.0, 40.0, 50.0], dtype=input_dtype) + weights = np.ones_like(arr) if weighted else None + if input_dtype is np.longdouble: + if function is np.quantile: + # 0.4 is not exactly representable and it matters + # for "averaged_inverted_cdf", so we need to cheat. + quantile = input_dtype("0.4") + # We want to use nulp, but that does not work for longdouble + test_function = np.testing.assert_almost_equal + else: + test_function = np.testing.assert_array_almost_equal_nulp + + actual = function(arr, quantile, method=method, weights=weights) + + test_function(actual, expected_dtype.type(expected)) + + if method in ["inverted_cdf", "closest_observation"]: + if input_dtype == "O": + np.testing.assert_equal(np.asarray(actual).dtype, np.float64) + else: + np.testing.assert_equal(np.asarray(actual).dtype, + np.dtype(input_dtype)) + else: + np.testing.assert_equal(np.asarray(actual).dtype, + np.dtype(expected_dtype)) + + TYPE_CODES = np.typecodes["AllInteger"] + np.typecodes["Float"] + "O" + + @pytest.mark.parametrize("dtype", TYPE_CODES) + def test_lower_higher(self, dtype): + assert_equal(np.percentile(np.arange(10, dtype=dtype), 50, + method='lower'), 4) + assert_equal(np.percentile(np.arange(10, dtype=dtype), 50, + method='higher'), 5) + + @pytest.mark.parametrize("dtype", TYPE_CODES) + def test_midpoint(self, dtype): + assert_equal(np.percentile(np.arange(10, dtype=dtype), 51, + method='midpoint'), 4.5) + assert_equal(np.percentile(np.arange(9, dtype=dtype) + 1, 50, + method='midpoint'), 5) + assert_equal(np.percentile(np.arange(11, dtype=dtype), 51, + method='midpoint'), 5.5) + assert_equal(np.percentile(np.arange(11, dtype=dtype), 50, + method='midpoint'), 5) + + @pytest.mark.parametrize("dtype", TYPE_CODES) + def test_nearest(self, dtype): + assert_equal(np.percentile(np.arange(10, dtype=dtype), 51, + method='nearest'), 5) + assert_equal(np.percentile(np.arange(10, dtype=dtype), 49, + method='nearest'), 4) + + def test_linear_interpolation_extrapolation(self): + arr = np.random.rand(5) + + actual = np.percentile(arr, 100) + np.testing.assert_equal(actual, arr.max()) + + actual = np.percentile(arr, 0) + np.testing.assert_equal(actual, arr.min()) + + def test_sequence(self): + x = np.arange(8) * 0.5 + assert_equal(np.percentile(x, [0, 100, 50]), [0, 3.5, 1.75]) + + def test_axis(self): + x = np.arange(12).reshape(3, 4) + + assert_equal(np.percentile(x, (25, 50, 100)), [2.75, 5.5, 11.0]) + + r0 = [[2, 3, 4, 5], [4, 5, 6, 7], [8, 9, 10, 11]] + assert_equal(np.percentile(x, (25, 50, 100), axis=0), r0) + + r1 = [[0.75, 1.5, 3], [4.75, 5.5, 7], [8.75, 9.5, 11]] + assert_equal(np.percentile(x, (25, 50, 100), axis=1), np.array(r1).T) + + # ensure qth axis is always first as with np.array(old_percentile(..)) + x = np.arange(3 * 4 * 5 * 6).reshape(3, 4, 5, 6) + assert_equal(np.percentile(x, (25, 50)).shape, (2,)) + assert_equal(np.percentile(x, (25, 50, 75)).shape, (3,)) + assert_equal(np.percentile(x, (25, 50), axis=0).shape, (2, 4, 5, 6)) + assert_equal(np.percentile(x, (25, 50), axis=1).shape, (2, 3, 5, 6)) + assert_equal(np.percentile(x, (25, 50), axis=2).shape, (2, 3, 4, 6)) + assert_equal(np.percentile(x, (25, 50), axis=3).shape, (2, 3, 4, 5)) + assert_equal( + np.percentile(x, (25, 50, 75), axis=1).shape, (3, 3, 5, 6)) + assert_equal(np.percentile(x, (25, 50), + method="higher").shape, (2,)) + assert_equal(np.percentile(x, (25, 50, 75), + method="higher").shape, (3,)) + assert_equal(np.percentile(x, (25, 50), axis=0, + method="higher").shape, (2, 4, 5, 6)) + assert_equal(np.percentile(x, (25, 50), axis=1, + method="higher").shape, (2, 3, 5, 6)) + assert_equal(np.percentile(x, (25, 50), axis=2, + method="higher").shape, (2, 3, 4, 6)) + assert_equal(np.percentile(x, (25, 50), axis=3, + method="higher").shape, (2, 3, 4, 5)) + assert_equal(np.percentile(x, (25, 50, 75), axis=1, + method="higher").shape, (3, 3, 5, 6)) + + def test_scalar_q(self): + # test for no empty dimensions for compatibility with old percentile + x = np.arange(12).reshape(3, 4) + assert_equal(np.percentile(x, 50), 5.5) + assert_(np.isscalar(np.percentile(x, 50))) + r0 = np.array([4., 5., 6., 7.]) + assert_equal(np.percentile(x, 50, axis=0), r0) + assert_equal(np.percentile(x, 50, axis=0).shape, r0.shape) + r1 = np.array([1.5, 5.5, 9.5]) + assert_almost_equal(np.percentile(x, 50, axis=1), r1) + assert_equal(np.percentile(x, 50, axis=1).shape, r1.shape) + + out = np.empty(1) + assert_equal(np.percentile(x, 50, out=out), 5.5) + assert_equal(out, 5.5) + out = np.empty(4) + assert_equal(np.percentile(x, 50, axis=0, out=out), r0) + assert_equal(out, r0) + out = np.empty(3) + assert_equal(np.percentile(x, 50, axis=1, out=out), r1) + assert_equal(out, r1) + + # test for no empty dimensions for compatibility with old percentile + x = np.arange(12).reshape(3, 4) + assert_equal(np.percentile(x, 50, method='lower'), 5.) + assert_(np.isscalar(np.percentile(x, 50))) + r0 = np.array([4., 5., 6., 7.]) + c0 = np.percentile(x, 50, method='lower', axis=0) + assert_equal(c0, r0) + assert_equal(c0.shape, r0.shape) + r1 = np.array([1., 5., 9.]) + c1 = np.percentile(x, 50, method='lower', axis=1) + assert_almost_equal(c1, r1) + assert_equal(c1.shape, r1.shape) + + out = np.empty((), dtype=x.dtype) + c = np.percentile(x, 50, method='lower', out=out) + assert_equal(c, 5) + assert_equal(out, 5) + out = np.empty(4, dtype=x.dtype) + c = np.percentile(x, 50, method='lower', axis=0, out=out) + assert_equal(c, r0) + assert_equal(out, r0) + out = np.empty(3, dtype=x.dtype) + c = np.percentile(x, 50, method='lower', axis=1, out=out) + assert_equal(c, r1) + assert_equal(out, r1) + + def test_exception(self): + assert_raises(ValueError, np.percentile, [1, 2], 56, + method='foobar') + assert_raises(ValueError, np.percentile, [1], 101) + assert_raises(ValueError, np.percentile, [1], -1) + assert_raises(ValueError, np.percentile, [1], list(range(50)) + [101]) + assert_raises(ValueError, np.percentile, [1], list(range(50)) + [-0.1]) + + def test_percentile_list(self): + assert_equal(np.percentile([1, 2, 3], 0), 1) + + @pytest.mark.parametrize( + "percentile, with_weights", + [ + (np.percentile, False), + (partial(np.percentile, method="inverted_cdf"), True), + ] + ) + def test_percentile_out(self, percentile, with_weights): + out_dtype = int if with_weights else float + x = np.array([1, 2, 3]) + y = np.zeros((3,), dtype=out_dtype) + p = (1, 2, 3) + weights = np.ones_like(x) if with_weights else None + r = percentile(x, p, out=y, weights=weights) + assert r is y + assert_equal(percentile(x, p, weights=weights), y) + + x = np.array([[1, 2, 3], + [4, 5, 6]]) + y = np.zeros((3, 3), dtype=out_dtype) + weights = np.ones_like(x) if with_weights else None + r = percentile(x, p, axis=0, out=y, weights=weights) + assert r is y + assert_equal(percentile(x, p, weights=weights, axis=0), y) + + y = np.zeros((3, 2), dtype=out_dtype) + percentile(x, p, axis=1, out=y, weights=weights) + assert_equal(percentile(x, p, weights=weights, axis=1), y) + + x = np.arange(12).reshape(3, 4) + # q.dim > 1, float + if with_weights: + r0 = np.array([[0, 1, 2, 3], [4, 5, 6, 7]]) + else: + r0 = np.array([[2., 3., 4., 5.], [4., 5., 6., 7.]]) + out = np.empty((2, 4), dtype=out_dtype) + weights = np.ones_like(x) if with_weights else None + assert_equal( + percentile(x, (25, 50), axis=0, out=out, weights=weights), r0 + ) + assert_equal(out, r0) + r1 = np.array([[0.75, 4.75, 8.75], [1.5, 5.5, 9.5]]) + out = np.empty((2, 3)) + assert_equal(np.percentile(x, (25, 50), axis=1, out=out), r1) + assert_equal(out, r1) + + # q.dim > 1, int + r0 = np.array([[0, 1, 2, 3], [4, 5, 6, 7]]) + out = np.empty((2, 4), dtype=x.dtype) + c = np.percentile(x, (25, 50), method='lower', axis=0, out=out) + assert_equal(c, r0) + assert_equal(out, r0) + r1 = np.array([[0, 4, 8], [1, 5, 9]]) + out = np.empty((2, 3), dtype=x.dtype) + c = np.percentile(x, (25, 50), method='lower', axis=1, out=out) + assert_equal(c, r1) + assert_equal(out, r1) + + def test_percentile_empty_dim(self): + # empty dims are preserved + d = np.arange(11 * 2).reshape(11, 1, 2, 1) + assert_array_equal(np.percentile(d, 50, axis=0).shape, (1, 2, 1)) + assert_array_equal(np.percentile(d, 50, axis=1).shape, (11, 2, 1)) + assert_array_equal(np.percentile(d, 50, axis=2).shape, (11, 1, 1)) + assert_array_equal(np.percentile(d, 50, axis=3).shape, (11, 1, 2)) + assert_array_equal(np.percentile(d, 50, axis=-1).shape, (11, 1, 2)) + assert_array_equal(np.percentile(d, 50, axis=-2).shape, (11, 1, 1)) + assert_array_equal(np.percentile(d, 50, axis=-3).shape, (11, 2, 1)) + assert_array_equal(np.percentile(d, 50, axis=-4).shape, (1, 2, 1)) + + assert_array_equal(np.percentile(d, 50, axis=2, + method='midpoint').shape, + (11, 1, 1)) + assert_array_equal(np.percentile(d, 50, axis=-2, + method='midpoint').shape, + (11, 1, 1)) + + assert_array_equal(np.array(np.percentile(d, [10, 50], axis=0)).shape, + (2, 1, 2, 1)) + assert_array_equal(np.array(np.percentile(d, [10, 50], axis=1)).shape, + (2, 11, 2, 1)) + assert_array_equal(np.array(np.percentile(d, [10, 50], axis=2)).shape, + (2, 11, 1, 1)) + assert_array_equal(np.array(np.percentile(d, [10, 50], axis=3)).shape, + (2, 11, 1, 2)) + + def test_percentile_no_overwrite(self): + a = np.array([2, 3, 4, 1]) + np.percentile(a, [50], overwrite_input=False) + assert_equal(a, np.array([2, 3, 4, 1])) + + a = np.array([2, 3, 4, 1]) + np.percentile(a, [50]) + assert_equal(a, np.array([2, 3, 4, 1])) + + def test_no_p_overwrite(self): + p = np.linspace(0., 100., num=5) + np.percentile(np.arange(100.), p, method="midpoint") + assert_array_equal(p, np.linspace(0., 100., num=5)) + p = np.linspace(0., 100., num=5).tolist() + np.percentile(np.arange(100.), p, method="midpoint") + assert_array_equal(p, np.linspace(0., 100., num=5).tolist()) + + def test_percentile_overwrite(self): + a = np.array([2, 3, 4, 1]) + b = np.percentile(a, [50], overwrite_input=True) + assert_equal(b, np.array([2.5])) + + b = np.percentile([2, 3, 4, 1], [50], overwrite_input=True) + assert_equal(b, np.array([2.5])) + + def test_extended_axis(self): + o = np.random.normal(size=(71, 23)) + x = np.dstack([o] * 10) + assert_equal(np.percentile(x, 30, axis=(0, 1)), np.percentile(o, 30)) + x = np.moveaxis(x, -1, 0) + assert_equal(np.percentile(x, 30, axis=(-2, -1)), np.percentile(o, 30)) + x = x.swapaxes(0, 1).copy() + assert_equal(np.percentile(x, 30, axis=(0, -1)), np.percentile(o, 30)) + x = x.swapaxes(0, 1).copy() + + assert_equal(np.percentile(x, [25, 60], axis=(0, 1, 2)), + np.percentile(x, [25, 60], axis=None)) + assert_equal(np.percentile(x, [25, 60], axis=(0,)), + np.percentile(x, [25, 60], axis=0)) + + d = np.arange(3 * 5 * 7 * 11).reshape((3, 5, 7, 11)) + np.random.shuffle(d.ravel()) + assert_equal(np.percentile(d, 25, axis=(0, 1, 2))[0], + np.percentile(d[:, :, :, 0].flatten(), 25)) + assert_equal(np.percentile(d, [10, 90], axis=(0, 1, 3))[:, 1], + np.percentile(d[:, :, 1, :].flatten(), [10, 90])) + assert_equal(np.percentile(d, 25, axis=(3, 1, -4))[2], + np.percentile(d[:, :, 2, :].flatten(), 25)) + assert_equal(np.percentile(d, 25, axis=(3, 1, 2))[2], + np.percentile(d[2, :, :, :].flatten(), 25)) + assert_equal(np.percentile(d, 25, axis=(3, 2))[2, 1], + np.percentile(d[2, 1, :, :].flatten(), 25)) + assert_equal(np.percentile(d, 25, axis=(1, -2))[2, 1], + np.percentile(d[2, :, :, 1].flatten(), 25)) + assert_equal(np.percentile(d, 25, axis=(1, 3))[2, 2], + np.percentile(d[2, :, 2, :].flatten(), 25)) + + def test_extended_axis_invalid(self): + d = np.ones((3, 5, 7, 11)) + assert_raises(AxisError, np.percentile, d, axis=-5, q=25) + assert_raises(AxisError, np.percentile, d, axis=(0, -5), q=25) + assert_raises(AxisError, np.percentile, d, axis=4, q=25) + assert_raises(AxisError, np.percentile, d, axis=(0, 4), q=25) + # each of these refers to the same axis twice + assert_raises(ValueError, np.percentile, d, axis=(1, 1), q=25) + assert_raises(ValueError, np.percentile, d, axis=(-1, -1), q=25) + assert_raises(ValueError, np.percentile, d, axis=(3, -1), q=25) + + def test_keepdims(self): + d = np.ones((3, 5, 7, 11)) + assert_equal(np.percentile(d, 7, axis=None, keepdims=True).shape, + (1, 1, 1, 1)) + assert_equal(np.percentile(d, 7, axis=(0, 1), keepdims=True).shape, + (1, 1, 7, 11)) + assert_equal(np.percentile(d, 7, axis=(0, 3), keepdims=True).shape, + (1, 5, 7, 1)) + assert_equal(np.percentile(d, 7, axis=(1,), keepdims=True).shape, + (3, 1, 7, 11)) + assert_equal(np.percentile(d, 7, (0, 1, 2, 3), keepdims=True).shape, + (1, 1, 1, 1)) + assert_equal(np.percentile(d, 7, axis=(0, 1, 3), keepdims=True).shape, + (1, 1, 7, 1)) + + assert_equal(np.percentile(d, [1, 7], axis=(0, 1, 3), + keepdims=True).shape, (2, 1, 1, 7, 1)) + assert_equal(np.percentile(d, [1, 7], axis=(0, 3), + keepdims=True).shape, (2, 1, 5, 7, 1)) + + @pytest.mark.parametrize('q', [7, [1, 7]]) + @pytest.mark.parametrize( + argnames='axis', + argvalues=[ + None, + 1, + (1,), + (0, 1), + (-3, -1), + ] + ) + def test_keepdims_out(self, q, axis): + d = np.ones((3, 5, 7, 11)) + if axis is None: + shape_out = (1,) * d.ndim + else: + axis_norm = normalize_axis_tuple(axis, d.ndim) + shape_out = tuple( + 1 if i in axis_norm else d.shape[i] for i in range(d.ndim)) + shape_out = np.shape(q) + shape_out + + out = np.empty(shape_out) + result = np.percentile(d, q, axis=axis, keepdims=True, out=out) + assert result is out + assert_equal(result.shape, shape_out) + + def test_out(self): + o = np.zeros((4,)) + d = np.ones((3, 4)) + assert_equal(np.percentile(d, 0, 0, out=o), o) + assert_equal(np.percentile(d, 0, 0, method='nearest', out=o), o) + o = np.zeros((3,)) + assert_equal(np.percentile(d, 1, 1, out=o), o) + assert_equal(np.percentile(d, 1, 1, method='nearest', out=o), o) + + o = np.zeros(()) + assert_equal(np.percentile(d, 2, out=o), o) + assert_equal(np.percentile(d, 2, method='nearest', out=o), o) + + @pytest.mark.parametrize("method, weighted", [ + ("linear", False), + ("nearest", False), + ("inverted_cdf", False), + ("inverted_cdf", True), + ]) + def test_out_nan(self, method, weighted): + if weighted: + kwargs = {"weights": np.ones((3, 4)), "method": method} + else: + kwargs = {"method": method} + with warnings.catch_warnings(record=True): + warnings.filterwarnings('always', '', RuntimeWarning) + o = np.zeros((4,)) + d = np.ones((3, 4)) + d[2, 1] = np.nan + assert_equal(np.percentile(d, 0, 0, out=o, **kwargs), o) + + o = np.zeros((3,)) + assert_equal(np.percentile(d, 1, 1, out=o, **kwargs), o) + + o = np.zeros(()) + assert_equal(np.percentile(d, 1, out=o, **kwargs), o) + + def test_nan_behavior(self): + a = np.arange(24, dtype=float) + a[2] = np.nan + assert_equal(np.percentile(a, 0.3), np.nan) + assert_equal(np.percentile(a, 0.3, axis=0), np.nan) + assert_equal(np.percentile(a, [0.3, 0.6], axis=0), + np.array([np.nan] * 2)) + + a = np.arange(24, dtype=float).reshape(2, 3, 4) + a[1, 2, 3] = np.nan + a[1, 1, 2] = np.nan + + # no axis + assert_equal(np.percentile(a, 0.3), np.nan) + assert_equal(np.percentile(a, 0.3).ndim, 0) + + # axis0 zerod + b = np.percentile(np.arange(24, dtype=float).reshape(2, 3, 4), 0.3, 0) + b[2, 3] = np.nan + b[1, 2] = np.nan + assert_equal(np.percentile(a, 0.3, 0), b) + + # axis0 not zerod + b = np.percentile(np.arange(24, dtype=float).reshape(2, 3, 4), + [0.3, 0.6], 0) + b[:, 2, 3] = np.nan + b[:, 1, 2] = np.nan + assert_equal(np.percentile(a, [0.3, 0.6], 0), b) + + # axis1 zerod + b = np.percentile(np.arange(24, dtype=float).reshape(2, 3, 4), 0.3, 1) + b[1, 3] = np.nan + b[1, 2] = np.nan + assert_equal(np.percentile(a, 0.3, 1), b) + # axis1 not zerod + b = np.percentile( + np.arange(24, dtype=float).reshape(2, 3, 4), [0.3, 0.6], 1) + b[:, 1, 3] = np.nan + b[:, 1, 2] = np.nan + assert_equal(np.percentile(a, [0.3, 0.6], 1), b) + + # axis02 zerod + b = np.percentile( + np.arange(24, dtype=float).reshape(2, 3, 4), 0.3, (0, 2)) + b[1] = np.nan + b[2] = np.nan + assert_equal(np.percentile(a, 0.3, (0, 2)), b) + # axis02 not zerod + b = np.percentile(np.arange(24, dtype=float).reshape(2, 3, 4), + [0.3, 0.6], (0, 2)) + b[:, 1] = np.nan + b[:, 2] = np.nan + assert_equal(np.percentile(a, [0.3, 0.6], (0, 2)), b) + # axis02 not zerod with method='nearest' + b = np.percentile(np.arange(24, dtype=float).reshape(2, 3, 4), + [0.3, 0.6], (0, 2), method='nearest') + b[:, 1] = np.nan + b[:, 2] = np.nan + assert_equal(np.percentile( + a, [0.3, 0.6], (0, 2), method='nearest'), b) + + def test_nan_q(self): + # GH18830 + with pytest.raises(ValueError, match="Percentiles must be in"): + np.percentile([1, 2, 3, 4.0], np.nan) + with pytest.raises(ValueError, match="Percentiles must be in"): + np.percentile([1, 2, 3, 4.0], [np.nan]) + q = np.linspace(1.0, 99.0, 16) + q[0] = np.nan + with pytest.raises(ValueError, match="Percentiles must be in"): + np.percentile([1, 2, 3, 4.0], q) + + @pytest.mark.parametrize("dtype", ["m8[D]", "M8[s]"]) + @pytest.mark.parametrize("pos", [0, 23, 10]) + def test_nat_basic(self, dtype, pos): + # TODO: Note that times have dubious rounding as of fixing NaTs! + # NaT and NaN should behave the same, do basic tests for NaT: + a = np.arange(0, 24, dtype=dtype) + a[pos] = "NaT" + res = np.percentile(a, 30) + assert res.dtype == dtype + assert np.isnat(res) + res = np.percentile(a, [30, 60]) + assert res.dtype == dtype + assert np.isnat(res).all() + + a = np.arange(0, 24 * 3, dtype=dtype).reshape(-1, 3) + a[pos, 1] = "NaT" + res = np.percentile(a, 30, axis=0) + assert_array_equal(np.isnat(res), [False, True, False]) + + +quantile_methods = [ + 'inverted_cdf', 'averaged_inverted_cdf', 'closest_observation', + 'interpolated_inverted_cdf', 'hazen', 'weibull', 'linear', + 'median_unbiased', 'normal_unbiased', 'nearest', 'lower', 'higher', + 'midpoint'] + + +methods_supporting_weights = ["inverted_cdf"] + + +class TestQuantile: + # most of this is already tested by TestPercentile + + def V(self, x, y, alpha): + # Identification function used in several tests. + return (x >= y) - alpha + + def test_max_ulp(self): + x = [0.0, 0.2, 0.4] + a = np.quantile(x, 0.45) + # The default linear method would result in 0 + 0.2 * (0.45/2) = 0.18. + # 0.18 is not exactly representable and the formula leads to a 1 ULP + # different result. Ensure it is this exact within 1 ULP, see gh-20331. + np.testing.assert_array_max_ulp(a, 0.18, maxulp=1) + + def test_basic(self): + x = np.arange(8) * 0.5 + assert_equal(np.quantile(x, 0), 0.) + assert_equal(np.quantile(x, 1), 3.5) + assert_equal(np.quantile(x, 0.5), 1.75) + + def test_correct_quantile_value(self): + a = np.array([True]) + tf_quant = np.quantile(True, False) + assert_equal(tf_quant, a[0]) + assert_equal(type(tf_quant), a.dtype) + a = np.array([False, True, True]) + quant_res = np.quantile(a, a) + assert_array_equal(quant_res, a) + assert_equal(quant_res.dtype, a.dtype) + + def test_fraction(self): + # fractional input, integral quantile + x = [Fraction(i, 2) for i in range(8)] + q = np.quantile(x, 0) + assert_equal(q, 0) + assert_equal(type(q), Fraction) + + q = np.quantile(x, 1) + assert_equal(q, Fraction(7, 2)) + assert_equal(type(q), Fraction) + + q = np.quantile(x, .5) + assert_equal(q, 1.75) + assert_equal(type(q), np.float64) + + q = np.quantile(x, Fraction(1, 2)) + assert_equal(q, Fraction(7, 4)) + assert_equal(type(q), Fraction) + + q = np.quantile(x, [Fraction(1, 2)]) + assert_equal(q, np.array([Fraction(7, 4)])) + assert_equal(type(q), np.ndarray) + + q = np.quantile(x, [[Fraction(1, 2)]]) + assert_equal(q, np.array([[Fraction(7, 4)]])) + assert_equal(type(q), np.ndarray) + + # repeat with integral input but fractional quantile + x = np.arange(8) + assert_equal(np.quantile(x, Fraction(1, 2)), Fraction(7, 2)) + + def test_complex(self): + # gh-22652 + arr_c = np.array([0.5 + 3.0j, 2.1 + 0.5j, 1.6 + 2.3j], dtype='G') + assert_raises(TypeError, np.quantile, arr_c, 0.5) + arr_c = np.array([0.5 + 3.0j, 2.1 + 0.5j, 1.6 + 2.3j], dtype='D') + assert_raises(TypeError, np.quantile, arr_c, 0.5) + arr_c = np.array([0.5 + 3.0j, 2.1 + 0.5j, 1.6 + 2.3j], dtype='F') + assert_raises(TypeError, np.quantile, arr_c, 0.5) + + def test_no_p_overwrite(self): + # this is worth retesting, because quantile does not make a copy + p0 = np.array([0, 0.75, 0.25, 0.5, 1.0]) + p = p0.copy() + np.quantile(np.arange(100.), p, method="midpoint") + assert_array_equal(p, p0) + + p0 = p0.tolist() + p = p.tolist() + np.quantile(np.arange(100.), p, method="midpoint") + assert_array_equal(p, p0) + + @pytest.mark.parametrize("dtype", np.typecodes["AllInteger"]) + def test_quantile_preserve_int_type(self, dtype): + res = np.quantile(np.array([1, 2], dtype=dtype), [0.5], + method="nearest") + assert res.dtype == dtype + + @pytest.mark.parametrize("method", quantile_methods) + def test_q_zero_one(self, method): + # gh-24710 + arr = [10, 11, 12] + quantile = np.quantile(arr, q=[0, 1], method=method) + assert_equal(quantile, np.array([10, 12])) + + @pytest.mark.parametrize("method", quantile_methods) + def test_quantile_monotonic(self, method): + # GH 14685 + # test that the return value of quantile is monotonic if p0 is ordered + # Also tests that the boundary values are not mishandled. + p0 = np.linspace(0, 1, 101) + quantile = np.quantile(np.array([0, 1, 1, 2, 2, 3, 3, 4, 5, 5, 1, 1, 9, 9, 9, + 8, 8, 7]) * 0.1, p0, method=method) + assert_equal(np.sort(quantile), quantile) + + # Also test one where the number of data points is clearly divisible: + quantile = np.quantile([0., 1., 2., 3.], p0, method=method) + assert_equal(np.sort(quantile), quantile) + + @hypothesis.given( + arr=arrays(dtype=np.float64, + shape=st.integers(min_value=3, max_value=1000), + elements=st.floats(allow_infinity=False, allow_nan=False, + min_value=-1e300, max_value=1e300))) + def test_quantile_monotonic_hypo(self, arr): + p0 = np.arange(0, 1, 0.01) + quantile = np.quantile(arr, p0) + assert_equal(np.sort(quantile), quantile) + + def test_quantile_scalar_nan(self): + a = np.array([[10., 7., 4.], [3., 2., 1.]]) + a[0][1] = np.nan + actual = np.quantile(a, 0.5) + assert np.isscalar(actual) + assert_equal(np.quantile(a, 0.5), np.nan) + + @pytest.mark.parametrize("weights", [False, True]) + @pytest.mark.parametrize("method", quantile_methods) + @pytest.mark.parametrize("alpha", [0.2, 0.5, 0.9]) + def test_quantile_identification_equation(self, weights, method, alpha): + # Test that the identification equation holds for the empirical + # CDF: + # E[V(x, Y)] = 0 <=> x is quantile + # with Y the random variable for which we have observed values and + # V(x, y) the canonical identification function for the quantile (at + # level alpha), see + # https://doi.org/10.48550/arXiv.0912.0902 + if weights and method not in methods_supporting_weights: + pytest.skip("Weights not supported by method.") + rng = np.random.default_rng(4321) + # We choose n and alpha such that we cover 3 cases: + # - n * alpha is an integer + # - n * alpha is a float that gets rounded down + # - n * alpha is a float that gest rounded up + n = 102 # n * alpha = 20.4, 51. , 91.8 + y = rng.random(n) + w = rng.integers(low=0, high=10, size=n) if weights else None + x = np.quantile(y, alpha, method=method, weights=w) + + if method in ("higher",): + # These methods do not fulfill the identification equation. + assert np.abs(np.mean(self.V(x, y, alpha))) > 0.1 / n + elif int(n * alpha) == n * alpha and not weights: + # We can expect exact results, up to machine precision. + assert_allclose( + np.average(self.V(x, y, alpha), weights=w), 0, atol=1e-14, + ) + else: + # V = (x >= y) - alpha cannot sum to zero exactly but within + # "sample precision". + assert_allclose(np.average(self.V(x, y, alpha), weights=w), 0, + atol=1 / n / np.amin([alpha, 1 - alpha])) + + @pytest.mark.parametrize("weights", [False, True]) + @pytest.mark.parametrize("method", quantile_methods) + @pytest.mark.parametrize("alpha", [0.2, 0.5, 0.9]) + def test_quantile_add_and_multiply_constant(self, weights, method, alpha): + # Test that + # 1. quantile(c + x) = c + quantile(x) + # 2. quantile(c * x) = c * quantile(x) + # 3. quantile(-x) = -quantile(x, 1 - alpha) + # On empirical quantiles, this equation does not hold exactly. + # Koenker (2005) "Quantile Regression" Chapter 2.2.3 calls these + # properties equivariance. + if weights and method not in methods_supporting_weights: + pytest.skip("Weights not supported by method.") + rng = np.random.default_rng(4321) + # We choose n and alpha such that we have cases for + # - n * alpha is an integer + # - n * alpha is a float that gets rounded down + # - n * alpha is a float that gest rounded up + n = 102 # n * alpha = 20.4, 51. , 91.8 + y = rng.random(n) + w = rng.integers(low=0, high=10, size=n) if weights else None + q = np.quantile(y, alpha, method=method, weights=w) + c = 13.5 + + # 1 + assert_allclose(np.quantile(c + y, alpha, method=method, weights=w), + c + q) + # 2 + assert_allclose(np.quantile(c * y, alpha, method=method, weights=w), + c * q) + # 3 + if weights: + # From here on, we would need more methods to support weights. + return + q = -np.quantile(-y, 1 - alpha, method=method) + if method == "inverted_cdf": + if ( + n * alpha == int(n * alpha) + or np.round(n * alpha) == int(n * alpha) + 1 + ): + assert_allclose(q, np.quantile(y, alpha, method="higher")) + else: + assert_allclose(q, np.quantile(y, alpha, method="lower")) + elif method == "closest_observation": + if n * alpha == int(n * alpha): + assert_allclose(q, np.quantile(y, alpha, method="higher")) + elif np.round(n * alpha) == int(n * alpha) + 1: + assert_allclose( + q, np.quantile(y, alpha + 1 / n, method="higher")) + else: + assert_allclose(q, np.quantile(y, alpha, method="lower")) + elif method == "interpolated_inverted_cdf": + assert_allclose(q, np.quantile(y, alpha + 1 / n, method=method)) + elif method == "nearest": + if n * alpha == int(n * alpha): + assert_allclose(q, np.quantile(y, alpha + 1 / n, method=method)) + else: + assert_allclose(q, np.quantile(y, alpha, method=method)) + elif method == "lower": + assert_allclose(q, np.quantile(y, alpha, method="higher")) + elif method == "higher": + assert_allclose(q, np.quantile(y, alpha, method="lower")) + else: + # "averaged_inverted_cdf", "hazen", "weibull", "linear", + # "median_unbiased", "normal_unbiased", "midpoint" + assert_allclose(q, np.quantile(y, alpha, method=method)) + + @pytest.mark.parametrize("method", methods_supporting_weights) + @pytest.mark.parametrize("alpha", [0.2, 0.5, 0.9]) + def test_quantile_constant_weights(self, method, alpha): + rng = np.random.default_rng(4321) + # We choose n and alpha such that we have cases for + # - n * alpha is an integer + # - n * alpha is a float that gets rounded down + # - n * alpha is a float that gest rounded up + n = 102 # n * alpha = 20.4, 51. , 91.8 + y = rng.random(n) + q = np.quantile(y, alpha, method=method) + + w = np.ones_like(y) + qw = np.quantile(y, alpha, method=method, weights=w) + assert_allclose(qw, q) + + w = 8.125 * np.ones_like(y) + qw = np.quantile(y, alpha, method=method, weights=w) + assert_allclose(qw, q) + + @pytest.mark.parametrize("method", methods_supporting_weights) + @pytest.mark.parametrize("alpha", [0, 0.2, 0.5, 0.9, 1]) + def test_quantile_with_integer_weights(self, method, alpha): + # Integer weights can be interpreted as repeated observations. + rng = np.random.default_rng(4321) + # We choose n and alpha such that we have cases for + # - n * alpha is an integer + # - n * alpha is a float that gets rounded down + # - n * alpha is a float that gest rounded up + n = 102 # n * alpha = 20.4, 51. , 91.8 + y = rng.random(n) + w = rng.integers(low=0, high=10, size=n, dtype=np.int32) + + qw = np.quantile(y, alpha, method=method, weights=w) + q = np.quantile(np.repeat(y, w), alpha, method=method) + assert_allclose(qw, q) + + @pytest.mark.parametrize("method", methods_supporting_weights) + def test_quantile_with_weights_and_axis(self, method): + rng = np.random.default_rng(4321) + + # 1d weight and single alpha + y = rng.random((2, 10, 3)) + w = np.abs(rng.random(10)) + alpha = 0.5 + q = np.quantile(y, alpha, weights=w, method=method, axis=1) + q_res = np.zeros(shape=(2, 3)) + for i in range(2): + for j in range(3): + q_res[i, j] = np.quantile( + y[i, :, j], alpha, method=method, weights=w + ) + assert_allclose(q, q_res) + + # 1d weight and 1d alpha + alpha = [0, 0.2, 0.4, 0.6, 0.8, 1] # shape (6,) + q = np.quantile(y, alpha, weights=w, method=method, axis=1) + q_res = np.zeros(shape=(6, 2, 3)) + for i in range(2): + for j in range(3): + q_res[:, i, j] = np.quantile( + y[i, :, j], alpha, method=method, weights=w + ) + assert_allclose(q, q_res) + + # 1d weight and 2d alpha + alpha = [[0, 0.2], [0.4, 0.6], [0.8, 1]] # shape (3, 2) + q = np.quantile(y, alpha, weights=w, method=method, axis=1) + q_res = q_res.reshape((3, 2, 2, 3)) + assert_allclose(q, q_res) + + # shape of weights equals shape of y + w = np.abs(rng.random((2, 10, 3))) + alpha = 0.5 + q = np.quantile(y, alpha, weights=w, method=method, axis=1) + q_res = np.zeros(shape=(2, 3)) + for i in range(2): + for j in range(3): + q_res[i, j] = np.quantile( + y[i, :, j], alpha, method=method, weights=w[i, :, j] + ) + assert_allclose(q, q_res) + + @pytest.mark.parametrize("method", methods_supporting_weights) + def test_quantile_weights_min_max(self, method): + # Test weighted quantile at 0 and 1 with leading and trailing zero + # weights. + w = [0, 0, 1, 2, 3, 0] + y = np.arange(6) + y_min = np.quantile(y, 0, weights=w, method="inverted_cdf") + y_max = np.quantile(y, 1, weights=w, method="inverted_cdf") + assert y_min == y[2] # == 2 + assert y_max == y[4] # == 4 + + def test_quantile_weights_raises_negative_weights(self): + y = [1, 2] + w = [-0.5, 1] + with pytest.raises(ValueError, match="Weights must be non-negative"): + np.quantile(y, 0.5, weights=w, method="inverted_cdf") + + @pytest.mark.parametrize( + "method", + sorted(set(quantile_methods) - set(methods_supporting_weights)), + ) + def test_quantile_weights_raises_unsupported_methods(self, method): + y = [1, 2] + w = [0.5, 1] + msg = "Only method 'inverted_cdf' supports weights" + with pytest.raises(ValueError, match=msg): + np.quantile(y, 0.5, weights=w, method=method) + + def test_weibull_fraction(self): + arr = [Fraction(0, 1), Fraction(1, 10)] + quantile = np.quantile(arr, [0, ], method='weibull') + assert_equal(quantile, np.array(Fraction(0, 1))) + quantile = np.quantile(arr, [Fraction(1, 2)], method='weibull') + assert_equal(quantile, np.array(Fraction(1, 20))) + + def test_closest_observation(self): + # Round ties to nearest even order statistic (see #26656) + m = 'closest_observation' + q = 0.5 + arr = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] + assert_equal(2, np.quantile(arr[0:3], q, method=m)) + assert_equal(2, np.quantile(arr[0:4], q, method=m)) + assert_equal(2, np.quantile(arr[0:5], q, method=m)) + assert_equal(3, np.quantile(arr[0:6], q, method=m)) + assert_equal(4, np.quantile(arr[0:7], q, method=m)) + assert_equal(4, np.quantile(arr[0:8], q, method=m)) + assert_equal(4, np.quantile(arr[0:9], q, method=m)) + assert_equal(5, np.quantile(arr, q, method=m)) + + +class TestLerp: + @hypothesis.given(t0=st.floats(allow_nan=False, allow_infinity=False, + min_value=0, max_value=1), + t1=st.floats(allow_nan=False, allow_infinity=False, + min_value=0, max_value=1), + a=st.floats(allow_nan=False, allow_infinity=False, + min_value=-1e300, max_value=1e300), + b=st.floats(allow_nan=False, allow_infinity=False, + min_value=-1e300, max_value=1e300)) + def test_linear_interpolation_formula_monotonic(self, t0, t1, a, b): + l0 = nfb._lerp(a, b, t0) + l1 = nfb._lerp(a, b, t1) + if t0 == t1 or a == b: + assert l0 == l1 # uninteresting + elif (t0 < t1) == (a < b): + assert l0 <= l1 + else: + assert l0 >= l1 + + @hypothesis.given(t=st.floats(allow_nan=False, allow_infinity=False, + min_value=0, max_value=1), + a=st.floats(allow_nan=False, allow_infinity=False, + min_value=-1e300, max_value=1e300), + b=st.floats(allow_nan=False, allow_infinity=False, + min_value=-1e300, max_value=1e300)) + def test_linear_interpolation_formula_bounded(self, t, a, b): + if a <= b: + assert a <= nfb._lerp(a, b, t) <= b + else: + assert b <= nfb._lerp(a, b, t) <= a + + @hypothesis.given(t=st.floats(allow_nan=False, allow_infinity=False, + min_value=0, max_value=1), + a=st.floats(allow_nan=False, allow_infinity=False, + min_value=-1e300, max_value=1e300), + b=st.floats(allow_nan=False, allow_infinity=False, + min_value=-1e300, max_value=1e300)) + def test_linear_interpolation_formula_symmetric(self, t, a, b): + # double subtraction is needed to remove the extra precision of t < 0.5 + left = nfb._lerp(a, b, 1 - (1 - t)) + right = nfb._lerp(b, a, 1 - t) + assert_allclose(left, right) + + def test_linear_interpolation_formula_0d_inputs(self): + a = np.array(2) + b = np.array(5) + t = np.array(0.2) + assert nfb._lerp(a, b, t) == 2.6 + + +class TestMedian: + + def test_basic(self): + a0 = np.array(1) + a1 = np.arange(2) + a2 = np.arange(6).reshape(2, 3) + assert_equal(np.median(a0), 1) + assert_allclose(np.median(a1), 0.5) + assert_allclose(np.median(a2), 2.5) + assert_allclose(np.median(a2, axis=0), [1.5, 2.5, 3.5]) + assert_equal(np.median(a2, axis=1), [1, 4]) + assert_allclose(np.median(a2, axis=None), 2.5) + + a = np.array([0.0444502, 0.0463301, 0.141249, 0.0606775]) + assert_almost_equal((a[1] + a[3]) / 2., np.median(a)) + a = np.array([0.0463301, 0.0444502, 0.141249]) + assert_equal(a[0], np.median(a)) + a = np.array([0.0444502, 0.141249, 0.0463301]) + assert_equal(a[-1], np.median(a)) + # check array scalar result + assert_equal(np.median(a).ndim, 0) + a[1] = np.nan + assert_equal(np.median(a).ndim, 0) + + def test_axis_keyword(self): + a3 = np.array([[2, 3], + [0, 1], + [6, 7], + [4, 5]]) + for a in [a3, np.random.randint(0, 100, size=(2, 3, 4))]: + orig = a.copy() + np.median(a, axis=None) + for ax in range(a.ndim): + np.median(a, axis=ax) + assert_array_equal(a, orig) + + assert_allclose(np.median(a3, axis=0), [3, 4]) + assert_allclose(np.median(a3.T, axis=1), [3, 4]) + assert_allclose(np.median(a3), 3.5) + assert_allclose(np.median(a3, axis=None), 3.5) + assert_allclose(np.median(a3.T), 3.5) + + def test_overwrite_keyword(self): + a3 = np.array([[2, 3], + [0, 1], + [6, 7], + [4, 5]]) + a0 = np.array(1) + a1 = np.arange(2) + a2 = np.arange(6).reshape(2, 3) + assert_allclose(np.median(a0.copy(), overwrite_input=True), 1) + assert_allclose(np.median(a1.copy(), overwrite_input=True), 0.5) + assert_allclose(np.median(a2.copy(), overwrite_input=True), 2.5) + assert_allclose( + np.median(a2.copy(), overwrite_input=True, axis=0), [1.5, 2.5, 3.5]) + assert_allclose( + np.median(a2.copy(), overwrite_input=True, axis=1), [1, 4]) + assert_allclose( + np.median(a2.copy(), overwrite_input=True, axis=None), 2.5) + assert_allclose( + np.median(a3.copy(), overwrite_input=True, axis=0), [3, 4]) + assert_allclose( + np.median(a3.T.copy(), overwrite_input=True, axis=1), [3, 4]) + + a4 = np.arange(3 * 4 * 5, dtype=np.float32).reshape((3, 4, 5)) + np.random.shuffle(a4.ravel()) + assert_allclose(np.median(a4, axis=None), + np.median(a4.copy(), axis=None, overwrite_input=True)) + assert_allclose(np.median(a4, axis=0), + np.median(a4.copy(), axis=0, overwrite_input=True)) + assert_allclose(np.median(a4, axis=1), + np.median(a4.copy(), axis=1, overwrite_input=True)) + assert_allclose(np.median(a4, axis=2), + np.median(a4.copy(), axis=2, overwrite_input=True)) + + def test_array_like(self): + x = [1, 2, 3] + assert_almost_equal(np.median(x), 2) + x2 = [x] + assert_almost_equal(np.median(x2), 2) + assert_allclose(np.median(x2, axis=0), x) + + def test_subclass(self): + # gh-3846 + class MySubClass(np.ndarray): + + def __new__(cls, input_array, info=None): + obj = np.asarray(input_array).view(cls) + obj.info = info + return obj + + def mean(self, axis=None, dtype=None, out=None): + return -7 + + a = MySubClass([1, 2, 3]) + assert_equal(np.median(a), -7) + + @pytest.mark.parametrize('arr', + ([1., 2., 3.], [1., np.nan, 3.], np.nan, 0.)) + def test_subclass2(self, arr): + """Check that we return subclasses, even if a NaN scalar.""" + class MySubclass(np.ndarray): + pass + + m = np.median(np.array(arr).view(MySubclass)) + assert isinstance(m, MySubclass) + + def test_out(self): + o = np.zeros((4,)) + d = np.ones((3, 4)) + assert_equal(np.median(d, 0, out=o), o) + o = np.zeros((3,)) + assert_equal(np.median(d, 1, out=o), o) + o = np.zeros(()) + assert_equal(np.median(d, out=o), o) + + def test_out_nan(self): + with warnings.catch_warnings(record=True): + warnings.filterwarnings('always', '', RuntimeWarning) + o = np.zeros((4,)) + d = np.ones((3, 4)) + d[2, 1] = np.nan + assert_equal(np.median(d, 0, out=o), o) + o = np.zeros((3,)) + assert_equal(np.median(d, 1, out=o), o) + o = np.zeros(()) + assert_equal(np.median(d, out=o), o) + + def test_nan_behavior(self): + a = np.arange(24, dtype=float) + a[2] = np.nan + assert_equal(np.median(a), np.nan) + assert_equal(np.median(a, axis=0), np.nan) + + a = np.arange(24, dtype=float).reshape(2, 3, 4) + a[1, 2, 3] = np.nan + a[1, 1, 2] = np.nan + + # no axis + assert_equal(np.median(a), np.nan) + assert_equal(np.median(a).ndim, 0) + + # axis0 + b = np.median(np.arange(24, dtype=float).reshape(2, 3, 4), 0) + b[2, 3] = np.nan + b[1, 2] = np.nan + assert_equal(np.median(a, 0), b) + + # axis1 + b = np.median(np.arange(24, dtype=float).reshape(2, 3, 4), 1) + b[1, 3] = np.nan + b[1, 2] = np.nan + assert_equal(np.median(a, 1), b) + + # axis02 + b = np.median(np.arange(24, dtype=float).reshape(2, 3, 4), (0, 2)) + b[1] = np.nan + b[2] = np.nan + assert_equal(np.median(a, (0, 2)), b) + + @pytest.mark.skipif(IS_WASM, reason="fp errors don't work correctly") + def test_empty(self): + # mean(empty array) emits two warnings: empty slice and divide by 0 + a = np.array([], dtype=float) + with warnings.catch_warnings(record=True) as w: + warnings.filterwarnings('always', '', RuntimeWarning) + assert_equal(np.median(a), np.nan) + assert_(w[0].category is RuntimeWarning) + assert_equal(len(w), 2) + + # multiple dimensions + a = np.array([], dtype=float, ndmin=3) + # no axis + with warnings.catch_warnings(record=True) as w: + warnings.filterwarnings('always', '', RuntimeWarning) + assert_equal(np.median(a), np.nan) + assert_(w[0].category is RuntimeWarning) + + # axis 0 and 1 + b = np.array([], dtype=float, ndmin=2) + assert_equal(np.median(a, axis=0), b) + assert_equal(np.median(a, axis=1), b) + + # axis 2 + b = np.array(np.nan, dtype=float, ndmin=2) + with warnings.catch_warnings(record=True) as w: + warnings.filterwarnings('always', '', RuntimeWarning) + assert_equal(np.median(a, axis=2), b) + assert_(w[0].category is RuntimeWarning) + + def test_object(self): + o = np.arange(7.) + assert_(type(np.median(o.astype(object))), float) + o[2] = np.nan + assert_(type(np.median(o.astype(object))), float) + + def test_extended_axis(self): + o = np.random.normal(size=(71, 23)) + x = np.dstack([o] * 10) + assert_equal(np.median(x, axis=(0, 1)), np.median(o)) + x = np.moveaxis(x, -1, 0) + assert_equal(np.median(x, axis=(-2, -1)), np.median(o)) + x = x.swapaxes(0, 1).copy() + assert_equal(np.median(x, axis=(0, -1)), np.median(o)) + + assert_equal(np.median(x, axis=(0, 1, 2)), np.median(x, axis=None)) + assert_equal(np.median(x, axis=(0, )), np.median(x, axis=0)) + assert_equal(np.median(x, axis=(-1, )), np.median(x, axis=-1)) + + d = np.arange(3 * 5 * 7 * 11).reshape((3, 5, 7, 11)) + np.random.shuffle(d.ravel()) + assert_equal(np.median(d, axis=(0, 1, 2))[0], + np.median(d[:, :, :, 0].flatten())) + assert_equal(np.median(d, axis=(0, 1, 3))[1], + np.median(d[:, :, 1, :].flatten())) + assert_equal(np.median(d, axis=(3, 1, -4))[2], + np.median(d[:, :, 2, :].flatten())) + assert_equal(np.median(d, axis=(3, 1, 2))[2], + np.median(d[2, :, :, :].flatten())) + assert_equal(np.median(d, axis=(3, 2))[2, 1], + np.median(d[2, 1, :, :].flatten())) + assert_equal(np.median(d, axis=(1, -2))[2, 1], + np.median(d[2, :, :, 1].flatten())) + assert_equal(np.median(d, axis=(1, 3))[2, 2], + np.median(d[2, :, 2, :].flatten())) + + def test_extended_axis_invalid(self): + d = np.ones((3, 5, 7, 11)) + assert_raises(AxisError, np.median, d, axis=-5) + assert_raises(AxisError, np.median, d, axis=(0, -5)) + assert_raises(AxisError, np.median, d, axis=4) + assert_raises(AxisError, np.median, d, axis=(0, 4)) + assert_raises(ValueError, np.median, d, axis=(1, 1)) + + def test_keepdims(self): + d = np.ones((3, 5, 7, 11)) + assert_equal(np.median(d, axis=None, keepdims=True).shape, + (1, 1, 1, 1)) + assert_equal(np.median(d, axis=(0, 1), keepdims=True).shape, + (1, 1, 7, 11)) + assert_equal(np.median(d, axis=(0, 3), keepdims=True).shape, + (1, 5, 7, 1)) + assert_equal(np.median(d, axis=(1,), keepdims=True).shape, + (3, 1, 7, 11)) + assert_equal(np.median(d, axis=(0, 1, 2, 3), keepdims=True).shape, + (1, 1, 1, 1)) + assert_equal(np.median(d, axis=(0, 1, 3), keepdims=True).shape, + (1, 1, 7, 1)) + + @pytest.mark.parametrize( + argnames='axis', + argvalues=[ + None, + 1, + (1, ), + (0, 1), + (-3, -1), + ] + ) + def test_keepdims_out(self, axis): + d = np.ones((3, 5, 7, 11)) + if axis is None: + shape_out = (1,) * d.ndim + else: + axis_norm = normalize_axis_tuple(axis, d.ndim) + shape_out = tuple( + 1 if i in axis_norm else d.shape[i] for i in range(d.ndim)) + out = np.empty(shape_out) + result = np.median(d, axis=axis, keepdims=True, out=out) + assert result is out + assert_equal(result.shape, shape_out) + + @pytest.mark.parametrize("dtype", ["m8[s]"]) + @pytest.mark.parametrize("pos", [0, 23, 10]) + def test_nat_behavior(self, dtype, pos): + # TODO: Median does not support Datetime, due to `mean`. + # NaT and NaN should behave the same, do basic tests for NaT. + a = np.arange(0, 24, dtype=dtype) + a[pos] = "NaT" + res = np.median(a) + assert res.dtype == dtype + assert np.isnat(res) + res = np.percentile(a, [30, 60]) + assert res.dtype == dtype + assert np.isnat(res).all() + + a = np.arange(0, 24 * 3, dtype=dtype).reshape(-1, 3) + a[pos, 1] = "NaT" + res = np.median(a, axis=0) + assert_array_equal(np.isnat(res), [False, True, False]) + + +class TestSortComplex: + + @pytest.mark.parametrize("type_in, type_out", [ + ('l', 'D'), + ('h', 'F'), + ('H', 'F'), + ('b', 'F'), + ('B', 'F'), + ('g', 'G'), + ]) + def test_sort_real(self, type_in, type_out): + # sort_complex() type casting for real input types + a = np.array([5, 3, 6, 2, 1], dtype=type_in) + actual = np.sort_complex(a) + expected = np.sort(a).astype(type_out) + assert_equal(actual, expected) + assert_equal(actual.dtype, expected.dtype) + + def test_sort_complex(self): + # sort_complex() handling of complex input + a = np.array([2 + 3j, 1 - 2j, 1 - 3j, 2 + 1j], dtype='D') + expected = np.array([1 - 3j, 1 - 2j, 2 + 1j, 2 + 3j], dtype='D') + actual = np.sort_complex(a) + assert_equal(actual, expected) + assert_equal(actual.dtype, expected.dtype) diff --git a/.venv/lib/python3.12/site-packages/numpy/lib/tests/test_histograms.py b/.venv/lib/python3.12/site-packages/numpy/lib/tests/test_histograms.py new file mode 100644 index 0000000..b7752d1 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/lib/tests/test_histograms.py @@ -0,0 +1,855 @@ +import pytest + +import numpy as np +from numpy import histogram, histogram_bin_edges, histogramdd +from numpy.testing import ( + assert_, + assert_allclose, + assert_almost_equal, + assert_array_almost_equal, + assert_array_equal, + assert_array_max_ulp, + assert_equal, + assert_raises, + assert_raises_regex, + suppress_warnings, +) + + +class TestHistogram: + + def setup_method(self): + pass + + def teardown_method(self): + pass + + def test_simple(self): + n = 100 + v = np.random.rand(n) + (a, b) = histogram(v) + # check if the sum of the bins equals the number of samples + assert_equal(np.sum(a, axis=0), n) + # check that the bin counts are evenly spaced when the data is from + # a linear function + (a, b) = histogram(np.linspace(0, 10, 100)) + assert_array_equal(a, 10) + + def test_one_bin(self): + # Ticket 632 + hist, edges = histogram([1, 2, 3, 4], [1, 2]) + assert_array_equal(hist, [2, ]) + assert_array_equal(edges, [1, 2]) + assert_raises(ValueError, histogram, [1, 2], bins=0) + h, e = histogram([1, 2], bins=1) + assert_equal(h, np.array([2])) + assert_allclose(e, np.array([1., 2.])) + + def test_density(self): + # Check that the integral of the density equals 1. + n = 100 + v = np.random.rand(n) + a, b = histogram(v, density=True) + area = np.sum(a * np.diff(b)) + assert_almost_equal(area, 1) + + # Check with non-constant bin widths + v = np.arange(10) + bins = [0, 1, 3, 6, 10] + a, b = histogram(v, bins, density=True) + assert_array_equal(a, .1) + assert_equal(np.sum(a * np.diff(b)), 1) + + # Test that passing False works too + a, b = histogram(v, bins, density=False) + assert_array_equal(a, [1, 2, 3, 4]) + + # Variable bin widths are especially useful to deal with + # infinities. + v = np.arange(10) + bins = [0, 1, 3, 6, np.inf] + a, b = histogram(v, bins, density=True) + assert_array_equal(a, [.1, .1, .1, 0.]) + + # Taken from a bug report from N. Becker on the numpy-discussion + # mailing list Aug. 6, 2010. + counts, dmy = np.histogram( + [1, 2, 3, 4], [0.5, 1.5, np.inf], density=True) + assert_equal(counts, [.25, 0]) + + def test_outliers(self): + # Check that outliers are not tallied + a = np.arange(10) + .5 + + # Lower outliers + h, b = histogram(a, range=[0, 9]) + assert_equal(h.sum(), 9) + + # Upper outliers + h, b = histogram(a, range=[1, 10]) + assert_equal(h.sum(), 9) + + # Normalization + h, b = histogram(a, range=[1, 9], density=True) + assert_almost_equal((h * np.diff(b)).sum(), 1, decimal=15) + + # Weights + w = np.arange(10) + .5 + h, b = histogram(a, range=[1, 9], weights=w, density=True) + assert_equal((h * np.diff(b)).sum(), 1) + + h, b = histogram(a, bins=8, range=[1, 9], weights=w) + assert_equal(h, w[1:-1]) + + def test_arr_weights_mismatch(self): + a = np.arange(10) + .5 + w = np.arange(11) + .5 + with assert_raises_regex(ValueError, "same shape as"): + h, b = histogram(a, range=[1, 9], weights=w, density=True) + + def test_type(self): + # Check the type of the returned histogram + a = np.arange(10) + .5 + h, b = histogram(a) + assert_(np.issubdtype(h.dtype, np.integer)) + + h, b = histogram(a, density=True) + assert_(np.issubdtype(h.dtype, np.floating)) + + h, b = histogram(a, weights=np.ones(10, int)) + assert_(np.issubdtype(h.dtype, np.integer)) + + h, b = histogram(a, weights=np.ones(10, float)) + assert_(np.issubdtype(h.dtype, np.floating)) + + def test_f32_rounding(self): + # gh-4799, check that the rounding of the edges works with float32 + x = np.array([276.318359, -69.593948, 21.329449], dtype=np.float32) + y = np.array([5005.689453, 4481.327637, 6010.369629], dtype=np.float32) + counts_hist, xedges, yedges = np.histogram2d(x, y, bins=100) + assert_equal(counts_hist.sum(), 3.) + + def test_bool_conversion(self): + # gh-12107 + # Reference integer histogram + a = np.array([1, 1, 0], dtype=np.uint8) + int_hist, int_edges = np.histogram(a) + + # Should raise an warning on booleans + # Ensure that the histograms are equivalent, need to suppress + # the warnings to get the actual outputs + with suppress_warnings() as sup: + rec = sup.record(RuntimeWarning, 'Converting input from .*') + hist, edges = np.histogram([True, True, False]) + # A warning should be issued + assert_equal(len(rec), 1) + assert_array_equal(hist, int_hist) + assert_array_equal(edges, int_edges) + + def test_weights(self): + v = np.random.rand(100) + w = np.ones(100) * 5 + a, b = histogram(v) + na, nb = histogram(v, density=True) + wa, wb = histogram(v, weights=w) + nwa, nwb = histogram(v, weights=w, density=True) + assert_array_almost_equal(a * 5, wa) + assert_array_almost_equal(na, nwa) + + # Check weights are properly applied. + v = np.linspace(0, 10, 10) + w = np.concatenate((np.zeros(5), np.ones(5))) + wa, wb = histogram(v, bins=np.arange(11), weights=w) + assert_array_almost_equal(wa, w) + + # Check with integer weights + wa, wb = histogram([1, 2, 2, 4], bins=4, weights=[4, 3, 2, 1]) + assert_array_equal(wa, [4, 5, 0, 1]) + wa, wb = histogram( + [1, 2, 2, 4], bins=4, weights=[4, 3, 2, 1], density=True) + assert_array_almost_equal(wa, np.array([4, 5, 0, 1]) / 10. / 3. * 4) + + # Check weights with non-uniform bin widths + a, b = histogram( + np.arange(9), [0, 1, 3, 6, 10], + weights=[2, 1, 1, 1, 1, 1, 1, 1, 1], density=True) + assert_almost_equal(a, [.2, .1, .1, .075]) + + def test_exotic_weights(self): + + # Test the use of weights that are not integer or floats, but e.g. + # complex numbers or object types. + + # Complex weights + values = np.array([1.3, 2.5, 2.3]) + weights = np.array([1, -1, 2]) + 1j * np.array([2, 1, 2]) + + # Check with custom bins + wa, wb = histogram(values, bins=[0, 2, 3], weights=weights) + assert_array_almost_equal(wa, np.array([1, 1]) + 1j * np.array([2, 3])) + + # Check with even bins + wa, wb = histogram(values, bins=2, range=[1, 3], weights=weights) + assert_array_almost_equal(wa, np.array([1, 1]) + 1j * np.array([2, 3])) + + # Decimal weights + from decimal import Decimal + values = np.array([1.3, 2.5, 2.3]) + weights = np.array([Decimal(1), Decimal(2), Decimal(3)]) + + # Check with custom bins + wa, wb = histogram(values, bins=[0, 2, 3], weights=weights) + assert_array_almost_equal(wa, [Decimal(1), Decimal(5)]) + + # Check with even bins + wa, wb = histogram(values, bins=2, range=[1, 3], weights=weights) + assert_array_almost_equal(wa, [Decimal(1), Decimal(5)]) + + def test_no_side_effects(self): + # This is a regression test that ensures that values passed to + # ``histogram`` are unchanged. + values = np.array([1.3, 2.5, 2.3]) + np.histogram(values, range=[-10, 10], bins=100) + assert_array_almost_equal(values, [1.3, 2.5, 2.3]) + + def test_empty(self): + a, b = histogram([], bins=([0, 1])) + assert_array_equal(a, np.array([0])) + assert_array_equal(b, np.array([0, 1])) + + def test_error_binnum_type(self): + # Tests if right Error is raised if bins argument is float + vals = np.linspace(0.0, 1.0, num=100) + histogram(vals, 5) + assert_raises(TypeError, histogram, vals, 2.4) + + def test_finite_range(self): + # Normal ranges should be fine + vals = np.linspace(0.0, 1.0, num=100) + histogram(vals, range=[0.25, 0.75]) + assert_raises(ValueError, histogram, vals, range=[np.nan, 0.75]) + assert_raises(ValueError, histogram, vals, range=[0.25, np.inf]) + + def test_invalid_range(self): + # start of range must be < end of range + vals = np.linspace(0.0, 1.0, num=100) + with assert_raises_regex(ValueError, "max must be larger than"): + np.histogram(vals, range=[0.1, 0.01]) + + def test_bin_edge_cases(self): + # Ensure that floating-point computations correctly place edge cases. + arr = np.array([337, 404, 739, 806, 1007, 1811, 2012]) + hist, edges = np.histogram(arr, bins=8296, range=(2, 2280)) + mask = hist > 0 + left_edges = edges[:-1][mask] + right_edges = edges[1:][mask] + for x, left, right in zip(arr, left_edges, right_edges): + assert_(x >= left) + assert_(x < right) + + def test_last_bin_inclusive_range(self): + arr = np.array([0., 0., 0., 1., 2., 3., 3., 4., 5.]) + hist, edges = np.histogram(arr, bins=30, range=(-0.5, 5)) + assert_equal(hist[-1], 1) + + def test_bin_array_dims(self): + # gracefully handle bins object > 1 dimension + vals = np.linspace(0.0, 1.0, num=100) + bins = np.array([[0, 0.5], [0.6, 1.0]]) + with assert_raises_regex(ValueError, "must be 1d"): + np.histogram(vals, bins=bins) + + def test_unsigned_monotonicity_check(self): + # Ensures ValueError is raised if bins not increasing monotonically + # when bins contain unsigned values (see #9222) + arr = np.array([2]) + bins = np.array([1, 3, 1], dtype='uint64') + with assert_raises(ValueError): + hist, edges = np.histogram(arr, bins=bins) + + def test_object_array_of_0d(self): + # gh-7864 + assert_raises(ValueError, + histogram, [np.array(0.4) for i in range(10)] + [-np.inf]) + assert_raises(ValueError, + histogram, [np.array(0.4) for i in range(10)] + [np.inf]) + + # these should not crash + np.histogram([np.array(0.5) for i in range(10)] + [.500000000000002]) + np.histogram([np.array(0.5) for i in range(10)] + [.5]) + + def test_some_nan_values(self): + # gh-7503 + one_nan = np.array([0, 1, np.nan]) + all_nan = np.array([np.nan, np.nan]) + + # the internal comparisons with NaN give warnings + sup = suppress_warnings() + sup.filter(RuntimeWarning) + with sup: + # can't infer range with nan + assert_raises(ValueError, histogram, one_nan, bins='auto') + assert_raises(ValueError, histogram, all_nan, bins='auto') + + # explicit range solves the problem + h, b = histogram(one_nan, bins='auto', range=(0, 1)) + assert_equal(h.sum(), 2) # nan is not counted + h, b = histogram(all_nan, bins='auto', range=(0, 1)) + assert_equal(h.sum(), 0) # nan is not counted + + # as does an explicit set of bins + h, b = histogram(one_nan, bins=[0, 1]) + assert_equal(h.sum(), 2) # nan is not counted + h, b = histogram(all_nan, bins=[0, 1]) + assert_equal(h.sum(), 0) # nan is not counted + + def test_datetime(self): + begin = np.datetime64('2000-01-01', 'D') + offsets = np.array([0, 0, 1, 1, 2, 3, 5, 10, 20]) + bins = np.array([0, 2, 7, 20]) + dates = begin + offsets + date_bins = begin + bins + + td = np.dtype('timedelta64[D]') + + # Results should be the same for integer offsets or datetime values. + # For now, only explicit bins are supported, since linspace does not + # work on datetimes or timedeltas + d_count, d_edge = histogram(dates, bins=date_bins) + t_count, t_edge = histogram(offsets.astype(td), bins=bins.astype(td)) + i_count, i_edge = histogram(offsets, bins=bins) + + assert_equal(d_count, i_count) + assert_equal(t_count, i_count) + + assert_equal((d_edge - begin).astype(int), i_edge) + assert_equal(t_edge.astype(int), i_edge) + + assert_equal(d_edge.dtype, dates.dtype) + assert_equal(t_edge.dtype, td) + + def do_signed_overflow_bounds(self, dtype): + exponent = 8 * np.dtype(dtype).itemsize - 1 + arr = np.array([-2**exponent + 4, 2**exponent - 4], dtype=dtype) + hist, e = histogram(arr, bins=2) + assert_equal(e, [-2**exponent + 4, 0, 2**exponent - 4]) + assert_equal(hist, [1, 1]) + + def test_signed_overflow_bounds(self): + self.do_signed_overflow_bounds(np.byte) + self.do_signed_overflow_bounds(np.short) + self.do_signed_overflow_bounds(np.intc) + self.do_signed_overflow_bounds(np.int_) + self.do_signed_overflow_bounds(np.longlong) + + def do_precision_lower_bound(self, float_small, float_large): + eps = np.finfo(float_large).eps + + arr = np.array([1.0], float_small) + range = np.array([1.0 + eps, 2.0], float_large) + + # test is looking for behavior when the bounds change between dtypes + if range.astype(float_small)[0] != 1: + return + + # previously crashed + count, x_loc = np.histogram(arr, bins=1, range=range) + assert_equal(count, [0]) + assert_equal(x_loc.dtype, float_large) + + def do_precision_upper_bound(self, float_small, float_large): + eps = np.finfo(float_large).eps + + arr = np.array([1.0], float_small) + range = np.array([0.0, 1.0 - eps], float_large) + + # test is looking for behavior when the bounds change between dtypes + if range.astype(float_small)[-1] != 1: + return + + # previously crashed + count, x_loc = np.histogram(arr, bins=1, range=range) + assert_equal(count, [0]) + + assert_equal(x_loc.dtype, float_large) + + def do_precision(self, float_small, float_large): + self.do_precision_lower_bound(float_small, float_large) + self.do_precision_upper_bound(float_small, float_large) + + def test_precision(self): + # not looping results in a useful stack trace upon failure + self.do_precision(np.half, np.single) + self.do_precision(np.half, np.double) + self.do_precision(np.half, np.longdouble) + self.do_precision(np.single, np.double) + self.do_precision(np.single, np.longdouble) + self.do_precision(np.double, np.longdouble) + + def test_histogram_bin_edges(self): + hist, e = histogram([1, 2, 3, 4], [1, 2]) + edges = histogram_bin_edges([1, 2, 3, 4], [1, 2]) + assert_array_equal(edges, e) + + arr = np.array([0., 0., 0., 1., 2., 3., 3., 4., 5.]) + hist, e = histogram(arr, bins=30, range=(-0.5, 5)) + edges = histogram_bin_edges(arr, bins=30, range=(-0.5, 5)) + assert_array_equal(edges, e) + + hist, e = histogram(arr, bins='auto', range=(0, 1)) + edges = histogram_bin_edges(arr, bins='auto', range=(0, 1)) + assert_array_equal(edges, e) + + def test_small_value_range(self): + arr = np.array([1, 1 + 2e-16] * 10) + with pytest.raises(ValueError, match="Too many bins for data range"): + histogram(arr, bins=10) + + # @requires_memory(free_bytes=1e10) + # @pytest.mark.slow + @pytest.mark.skip(reason="Bad memory reports lead to OOM in ci testing") + def test_big_arrays(self): + sample = np.zeros([100000000, 3]) + xbins = 400 + ybins = 400 + zbins = np.arange(16000) + hist = np.histogramdd(sample=sample, bins=(xbins, ybins, zbins)) + assert_equal(type(hist), type((1, 2))) + + def test_gh_23110(self): + hist, e = np.histogram(np.array([-0.9e-308], dtype='>f8'), + bins=2, + range=(-1e-308, -2e-313)) + expected_hist = np.array([1, 0]) + assert_array_equal(hist, expected_hist) + + def test_gh_28400(self): + e = 1 + 1e-12 + Z = [0, 1, 1, 1, 1, 1, e, e, e, e, e, e, 2] + counts, edges = np.histogram(Z, bins="auto") + assert len(counts) < 10 + assert edges[0] == Z[0] + assert edges[-1] == Z[-1] + +class TestHistogramOptimBinNums: + """ + Provide test coverage when using provided estimators for optimal number of + bins + """ + + def test_empty(self): + estimator_list = ['fd', 'scott', 'rice', 'sturges', + 'doane', 'sqrt', 'auto', 'stone'] + # check it can deal with empty data + for estimator in estimator_list: + a, b = histogram([], bins=estimator) + assert_array_equal(a, np.array([0])) + assert_array_equal(b, np.array([0, 1])) + + def test_simple(self): + """ + Straightforward testing with a mixture of linspace data (for + consistency). All test values have been precomputed and the values + shouldn't change + """ + # Some basic sanity checking, with some fixed data. + # Checking for the correct number of bins + basic_test = {50: {'fd': 4, 'scott': 4, 'rice': 8, 'sturges': 7, + 'doane': 8, 'sqrt': 8, 'auto': 7, 'stone': 2}, + 500: {'fd': 8, 'scott': 8, 'rice': 16, 'sturges': 10, + 'doane': 12, 'sqrt': 23, 'auto': 10, 'stone': 9}, + 5000: {'fd': 17, 'scott': 17, 'rice': 35, 'sturges': 14, + 'doane': 17, 'sqrt': 71, 'auto': 17, 'stone': 20}} + + for testlen, expectedResults in basic_test.items(): + # Create some sort of non uniform data to test with + # (2 peak uniform mixture) + x1 = np.linspace(-10, -1, testlen // 5 * 2) + x2 = np.linspace(1, 10, testlen // 5 * 3) + x = np.concatenate((x1, x2)) + for estimator, numbins in expectedResults.items(): + a, b = np.histogram(x, estimator) + assert_equal(len(a), numbins, err_msg=f"For the {estimator} estimator " + f"with datasize of {testlen}") + + def test_small(self): + """ + Smaller datasets have the potential to cause issues with the data + adaptive methods, especially the FD method. All bin numbers have been + precalculated. + """ + small_dat = {1: {'fd': 1, 'scott': 1, 'rice': 1, 'sturges': 1, + 'doane': 1, 'sqrt': 1, 'stone': 1}, + 2: {'fd': 2, 'scott': 1, 'rice': 3, 'sturges': 2, + 'doane': 1, 'sqrt': 2, 'stone': 1}, + 3: {'fd': 2, 'scott': 2, 'rice': 3, 'sturges': 3, + 'doane': 3, 'sqrt': 2, 'stone': 1}} + + for testlen, expectedResults in small_dat.items(): + testdat = np.arange(testlen).astype(float) + for estimator, expbins in expectedResults.items(): + a, b = np.histogram(testdat, estimator) + assert_equal(len(a), expbins, err_msg=f"For the {estimator} estimator " + f"with datasize of {testlen}") + + def test_incorrect_methods(self): + """ + Check a Value Error is thrown when an unknown string is passed in + """ + check_list = ['mad', 'freeman', 'histograms', 'IQR'] + for estimator in check_list: + assert_raises(ValueError, histogram, [1, 2, 3], estimator) + + def test_novariance(self): + """ + Check that methods handle no variance in data + Primarily for Scott and FD as the SD and IQR are both 0 in this case + """ + novar_dataset = np.ones(100) + novar_resultdict = {'fd': 1, 'scott': 1, 'rice': 1, 'sturges': 1, + 'doane': 1, 'sqrt': 1, 'auto': 1, 'stone': 1} + + for estimator, numbins in novar_resultdict.items(): + a, b = np.histogram(novar_dataset, estimator) + assert_equal(len(a), numbins, + err_msg=f"{estimator} estimator, No Variance test") + + def test_limited_variance(self): + """ + Check when IQR is 0, but variance exists, we return a reasonable value. + """ + lim_var_data = np.ones(1000) + lim_var_data[:3] = 0 + lim_var_data[-4:] = 100 + + edges_auto = histogram_bin_edges(lim_var_data, 'auto') + assert_equal(edges_auto[0], 0) + assert_equal(edges_auto[-1], 100.) + assert len(edges_auto) < 100 + + edges_fd = histogram_bin_edges(lim_var_data, 'fd') + assert_equal(edges_fd, np.array([0, 100])) + + edges_sturges = histogram_bin_edges(lim_var_data, 'sturges') + assert_equal(edges_sturges, np.linspace(0, 100, 12)) + + def test_outlier(self): + """ + Check the FD, Scott and Doane with outliers. + + The FD estimates a smaller binwidth since it's less affected by + outliers. Since the range is so (artificially) large, this means more + bins, most of which will be empty, but the data of interest usually is + unaffected. The Scott estimator is more affected and returns fewer bins, + despite most of the variance being in one area of the data. The Doane + estimator lies somewhere between the other two. + """ + xcenter = np.linspace(-10, 10, 50) + outlier_dataset = np.hstack((np.linspace(-110, -100, 5), xcenter)) + + outlier_resultdict = {'fd': 21, 'scott': 5, 'doane': 11, 'stone': 6} + + for estimator, numbins in outlier_resultdict.items(): + a, b = np.histogram(outlier_dataset, estimator) + assert_equal(len(a), numbins) + + def test_scott_vs_stone(self): + """Verify that Scott's rule and Stone's rule converges for normally distributed data""" + + def nbins_ratio(seed, size): + rng = np.random.RandomState(seed) + x = rng.normal(loc=0, scale=2, size=size) + a, b = len(np.histogram(x, 'stone')[0]), len(np.histogram(x, 'scott')[0]) + return a / (a + b) + + ll = [[nbins_ratio(seed, size) for size in np.geomspace(start=10, stop=100, num=4).round().astype(int)] + for seed in range(10)] + + # the average difference between the two methods decreases as the dataset size increases. + avg = abs(np.mean(ll, axis=0) - 0.5) + assert_almost_equal(avg, [0.15, 0.09, 0.08, 0.03], decimal=2) + + def test_simple_range(self): + """ + Straightforward testing with a mixture of linspace data (for + consistency). Adding in a 3rd mixture that will then be + completely ignored. All test values have been precomputed and + the shouldn't change. + """ + # some basic sanity checking, with some fixed data. + # Checking for the correct number of bins + basic_test = { + 50: {'fd': 8, 'scott': 8, 'rice': 15, + 'sturges': 14, 'auto': 14, 'stone': 8}, + 500: {'fd': 15, 'scott': 16, 'rice': 32, + 'sturges': 20, 'auto': 20, 'stone': 80}, + 5000: {'fd': 33, 'scott': 33, 'rice': 69, + 'sturges': 27, 'auto': 33, 'stone': 80} + } + + for testlen, expectedResults in basic_test.items(): + # create some sort of non uniform data to test with + # (3 peak uniform mixture) + x1 = np.linspace(-10, -1, testlen // 5 * 2) + x2 = np.linspace(1, 10, testlen // 5 * 3) + x3 = np.linspace(-100, -50, testlen) + x = np.hstack((x1, x2, x3)) + for estimator, numbins in expectedResults.items(): + a, b = np.histogram(x, estimator, range=(-20, 20)) + msg = f"For the {estimator} estimator" + msg += f" with datasize of {testlen}" + assert_equal(len(a), numbins, err_msg=msg) + + @pytest.mark.parametrize("bins", ['auto', 'fd', 'doane', 'scott', + 'stone', 'rice', 'sturges']) + def test_signed_integer_data(self, bins): + # Regression test for gh-14379. + a = np.array([-2, 0, 127], dtype=np.int8) + hist, edges = np.histogram(a, bins=bins) + hist32, edges32 = np.histogram(a.astype(np.int32), bins=bins) + assert_array_equal(hist, hist32) + assert_array_equal(edges, edges32) + + @pytest.mark.parametrize("bins", ['auto', 'fd', 'doane', 'scott', + 'stone', 'rice', 'sturges']) + def test_integer(self, bins): + """ + Test that bin width for integer data is at least 1. + """ + with suppress_warnings() as sup: + if bins == 'stone': + sup.filter(RuntimeWarning) + assert_equal( + np.histogram_bin_edges(np.tile(np.arange(9), 1000), bins), + np.arange(9)) + + def test_integer_non_auto(self): + """ + Test that the bin-width>=1 requirement *only* applies to auto binning. + """ + assert_equal( + np.histogram_bin_edges(np.tile(np.arange(9), 1000), 16), + np.arange(17) / 2) + assert_equal( + np.histogram_bin_edges(np.tile(np.arange(9), 1000), [.1, .2]), + [.1, .2]) + + def test_simple_weighted(self): + """ + Check that weighted data raises a TypeError + """ + estimator_list = ['fd', 'scott', 'rice', 'sturges', 'auto'] + for estimator in estimator_list: + assert_raises(TypeError, histogram, [1, 2, 3], + estimator, weights=[1, 2, 3]) + + +class TestHistogramdd: + + def test_simple(self): + x = np.array([[-.5, .5, 1.5], [-.5, 1.5, 2.5], [-.5, 2.5, .5], + [.5, .5, 1.5], [.5, 1.5, 2.5], [.5, 2.5, 2.5]]) + H, edges = histogramdd(x, (2, 3, 3), + range=[[-1, 1], [0, 3], [0, 3]]) + answer = np.array([[[0, 1, 0], [0, 0, 1], [1, 0, 0]], + [[0, 1, 0], [0, 0, 1], [0, 0, 1]]]) + assert_array_equal(H, answer) + + # Check normalization + ed = [[-2, 0, 2], [0, 1, 2, 3], [0, 1, 2, 3]] + H, edges = histogramdd(x, bins=ed, density=True) + assert_(np.all(H == answer / 12.)) + + # Check that H has the correct shape. + H, edges = histogramdd(x, (2, 3, 4), + range=[[-1, 1], [0, 3], [0, 4]], + density=True) + answer = np.array([[[0, 1, 0, 0], [0, 0, 1, 0], [1, 0, 0, 0]], + [[0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 1, 0]]]) + assert_array_almost_equal(H, answer / 6., 4) + # Check that a sequence of arrays is accepted and H has the correct + # shape. + z = [np.squeeze(y) for y in np.split(x, 3, axis=1)] + H, edges = histogramdd( + z, bins=(4, 3, 2), range=[[-2, 2], [0, 3], [0, 2]]) + answer = np.array([[[0, 0], [0, 0], [0, 0]], + [[0, 1], [0, 0], [1, 0]], + [[0, 1], [0, 0], [0, 0]], + [[0, 0], [0, 0], [0, 0]]]) + assert_array_equal(H, answer) + + Z = np.zeros((5, 5, 5)) + Z[list(range(5)), list(range(5)), list(range(5))] = 1. + H, edges = histogramdd([np.arange(5), np.arange(5), np.arange(5)], 5) + assert_array_equal(H, Z) + + def test_shape_3d(self): + # All possible permutations for bins of different lengths in 3D. + bins = ((5, 4, 6), (6, 4, 5), (5, 6, 4), (4, 6, 5), (6, 5, 4), + (4, 5, 6)) + r = np.random.rand(10, 3) + for b in bins: + H, edges = histogramdd(r, b) + assert_(H.shape == b) + + def test_shape_4d(self): + # All possible permutations for bins of different lengths in 4D. + bins = ((7, 4, 5, 6), (4, 5, 7, 6), (5, 6, 4, 7), (7, 6, 5, 4), + (5, 7, 6, 4), (4, 6, 7, 5), (6, 5, 7, 4), (7, 5, 4, 6), + (7, 4, 6, 5), (6, 4, 7, 5), (6, 7, 5, 4), (4, 6, 5, 7), + (4, 7, 5, 6), (5, 4, 6, 7), (5, 7, 4, 6), (6, 7, 4, 5), + (6, 5, 4, 7), (4, 7, 6, 5), (4, 5, 6, 7), (7, 6, 4, 5), + (5, 4, 7, 6), (5, 6, 7, 4), (6, 4, 5, 7), (7, 5, 6, 4)) + + r = np.random.rand(10, 4) + for b in bins: + H, edges = histogramdd(r, b) + assert_(H.shape == b) + + def test_weights(self): + v = np.random.rand(100, 2) + hist, edges = histogramdd(v) + n_hist, edges = histogramdd(v, density=True) + w_hist, edges = histogramdd(v, weights=np.ones(100)) + assert_array_equal(w_hist, hist) + w_hist, edges = histogramdd(v, weights=np.ones(100) * 2, density=True) + assert_array_equal(w_hist, n_hist) + w_hist, edges = histogramdd(v, weights=np.ones(100, int) * 2) + assert_array_equal(w_hist, 2 * hist) + + def test_identical_samples(self): + x = np.zeros((10, 2), int) + hist, edges = histogramdd(x, bins=2) + assert_array_equal(edges[0], np.array([-0.5, 0., 0.5])) + + def test_empty(self): + a, b = histogramdd([[], []], bins=([0, 1], [0, 1])) + assert_array_max_ulp(a, np.array([[0.]])) + a, b = np.histogramdd([[], [], []], bins=2) + assert_array_max_ulp(a, np.zeros((2, 2, 2))) + + def test_bins_errors(self): + # There are two ways to specify bins. Check for the right errors + # when mixing those. + x = np.arange(8).reshape(2, 4) + assert_raises(ValueError, np.histogramdd, x, bins=[-1, 2, 4, 5]) + assert_raises(ValueError, np.histogramdd, x, bins=[1, 0.99, 1, 1]) + assert_raises( + ValueError, np.histogramdd, x, bins=[1, 1, 1, [1, 2, 3, -3]]) + assert_(np.histogramdd(x, bins=[1, 1, 1, [1, 2, 3, 4]])) + + def test_inf_edges(self): + # Test using +/-inf bin edges works. See #1788. + with np.errstate(invalid='ignore'): + x = np.arange(6).reshape(3, 2) + expected = np.array([[1, 0], [0, 1], [0, 1]]) + h, e = np.histogramdd(x, bins=[3, [-np.inf, 2, 10]]) + assert_allclose(h, expected) + h, e = np.histogramdd(x, bins=[3, np.array([-1, 2, np.inf])]) + assert_allclose(h, expected) + h, e = np.histogramdd(x, bins=[3, [-np.inf, 3, np.inf]]) + assert_allclose(h, expected) + + def test_rightmost_binedge(self): + # Test event very close to rightmost binedge. See Github issue #4266 + x = [0.9999999995] + bins = [[0., 0.5, 1.0]] + hist, _ = histogramdd(x, bins=bins) + assert_(hist[0] == 0.0) + assert_(hist[1] == 1.) + x = [1.0] + bins = [[0., 0.5, 1.0]] + hist, _ = histogramdd(x, bins=bins) + assert_(hist[0] == 0.0) + assert_(hist[1] == 1.) + x = [1.0000000001] + bins = [[0., 0.5, 1.0]] + hist, _ = histogramdd(x, bins=bins) + assert_(hist[0] == 0.0) + assert_(hist[1] == 0.0) + x = [1.0001] + bins = [[0., 0.5, 1.0]] + hist, _ = histogramdd(x, bins=bins) + assert_(hist[0] == 0.0) + assert_(hist[1] == 0.0) + + def test_finite_range(self): + vals = np.random.random((100, 3)) + histogramdd(vals, range=[[0.0, 1.0], [0.25, 0.75], [0.25, 0.5]]) + assert_raises(ValueError, histogramdd, vals, + range=[[0.0, 1.0], [0.25, 0.75], [0.25, np.inf]]) + assert_raises(ValueError, histogramdd, vals, + range=[[0.0, 1.0], [np.nan, 0.75], [0.25, 0.5]]) + + def test_equal_edges(self): + """ Test that adjacent entries in an edge array can be equal """ + x = np.array([0, 1, 2]) + y = np.array([0, 1, 2]) + x_edges = np.array([0, 2, 2]) + y_edges = 1 + hist, edges = histogramdd((x, y), bins=(x_edges, y_edges)) + + hist_expected = np.array([ + [2.], + [1.], # x == 2 falls in the final bin + ]) + assert_equal(hist, hist_expected) + + def test_edge_dtype(self): + """ Test that if an edge array is input, its type is preserved """ + x = np.array([0, 10, 20]) + y = x / 10 + x_edges = np.array([0, 5, 15, 20]) + y_edges = x_edges / 10 + hist, edges = histogramdd((x, y), bins=(x_edges, y_edges)) + + assert_equal(edges[0].dtype, x_edges.dtype) + assert_equal(edges[1].dtype, y_edges.dtype) + + def test_large_integers(self): + big = 2**60 # Too large to represent with a full precision float + + x = np.array([0], np.int64) + x_edges = np.array([-1, +1], np.int64) + y = big + x + y_edges = big + x_edges + + hist, edges = histogramdd((x, y), bins=(x_edges, y_edges)) + + assert_equal(hist[0, 0], 1) + + def test_density_non_uniform_2d(self): + # Defines the following grid: + # + # 0 2 8 + # 0+-+-----+ + # + | + + # + | + + # 6+-+-----+ + # 8+-+-----+ + x_edges = np.array([0, 2, 8]) + y_edges = np.array([0, 6, 8]) + relative_areas = np.array([ + [3, 9], + [1, 3]]) + + # ensure the number of points in each region is proportional to its area + x = np.array([1] + [1] * 3 + [7] * 3 + [7] * 9) + y = np.array([7] + [1] * 3 + [7] * 3 + [1] * 9) + + # sanity check that the above worked as intended + hist, edges = histogramdd((y, x), bins=(y_edges, x_edges)) + assert_equal(hist, relative_areas) + + # resulting histogram should be uniform, since counts and areas are proportional + hist, edges = histogramdd((y, x), bins=(y_edges, x_edges), density=True) + assert_equal(hist, 1 / (8 * 8)) + + def test_density_non_uniform_1d(self): + # compare to histogram to show the results are the same + v = np.arange(10) + bins = np.array([0, 1, 3, 6, 10]) + hist, edges = histogram(v, bins, density=True) + hist_dd, edges_dd = histogramdd((v,), (bins,), density=True) + assert_equal(hist, hist_dd) + assert_equal(edges, edges_dd[0]) diff --git a/.venv/lib/python3.12/site-packages/numpy/lib/tests/test_index_tricks.py b/.venv/lib/python3.12/site-packages/numpy/lib/tests/test_index_tricks.py new file mode 100644 index 0000000..ed8709d --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/lib/tests/test_index_tricks.py @@ -0,0 +1,568 @@ +import pytest + +import numpy as np +from numpy.lib._index_tricks_impl import ( + c_, + diag_indices, + diag_indices_from, + fill_diagonal, + index_exp, + ix_, + mgrid, + ndenumerate, + ndindex, + ogrid, + r_, + s_, +) +from numpy.testing import ( + assert_, + assert_almost_equal, + assert_array_almost_equal, + assert_array_equal, + assert_equal, + assert_raises, + assert_raises_regex, +) + + +class TestRavelUnravelIndex: + def test_basic(self): + assert_equal(np.unravel_index(2, (2, 2)), (1, 0)) + + # test that new shape argument works properly + assert_equal(np.unravel_index(indices=2, + shape=(2, 2)), + (1, 0)) + + # test that an invalid second keyword argument + # is properly handled, including the old name `dims`. + with assert_raises(TypeError): + np.unravel_index(indices=2, hape=(2, 2)) + + with assert_raises(TypeError): + np.unravel_index(2, hape=(2, 2)) + + with assert_raises(TypeError): + np.unravel_index(254, ims=(17, 94)) + + with assert_raises(TypeError): + np.unravel_index(254, dims=(17, 94)) + + assert_equal(np.ravel_multi_index((1, 0), (2, 2)), 2) + assert_equal(np.unravel_index(254, (17, 94)), (2, 66)) + assert_equal(np.ravel_multi_index((2, 66), (17, 94)), 254) + assert_raises(ValueError, np.unravel_index, -1, (2, 2)) + assert_raises(TypeError, np.unravel_index, 0.5, (2, 2)) + assert_raises(ValueError, np.unravel_index, 4, (2, 2)) + assert_raises(ValueError, np.ravel_multi_index, (-3, 1), (2, 2)) + assert_raises(ValueError, np.ravel_multi_index, (2, 1), (2, 2)) + assert_raises(ValueError, np.ravel_multi_index, (0, -3), (2, 2)) + assert_raises(ValueError, np.ravel_multi_index, (0, 2), (2, 2)) + assert_raises(TypeError, np.ravel_multi_index, (0.1, 0.), (2, 2)) + + assert_equal(np.unravel_index((2 * 3 + 1) * 6 + 4, (4, 3, 6)), [2, 1, 4]) + assert_equal( + np.ravel_multi_index([2, 1, 4], (4, 3, 6)), (2 * 3 + 1) * 6 + 4) + + arr = np.array([[3, 6, 6], [4, 5, 1]]) + assert_equal(np.ravel_multi_index(arr, (7, 6)), [22, 41, 37]) + assert_equal( + np.ravel_multi_index(arr, (7, 6), order='F'), [31, 41, 13]) + assert_equal( + np.ravel_multi_index(arr, (4, 6), mode='clip'), [22, 23, 19]) + assert_equal(np.ravel_multi_index(arr, (4, 4), mode=('clip', 'wrap')), + [12, 13, 13]) + assert_equal(np.ravel_multi_index((3, 1, 4, 1), (6, 7, 8, 9)), 1621) + + assert_equal(np.unravel_index(np.array([22, 41, 37]), (7, 6)), + [[3, 6, 6], [4, 5, 1]]) + assert_equal( + np.unravel_index(np.array([31, 41, 13]), (7, 6), order='F'), + [[3, 6, 6], [4, 5, 1]]) + assert_equal(np.unravel_index(1621, (6, 7, 8, 9)), [3, 1, 4, 1]) + + def test_empty_indices(self): + msg1 = 'indices must be integral: the provided empty sequence was' + msg2 = 'only int indices permitted' + assert_raises_regex(TypeError, msg1, np.unravel_index, [], (10, 3, 5)) + assert_raises_regex(TypeError, msg1, np.unravel_index, (), (10, 3, 5)) + assert_raises_regex(TypeError, msg2, np.unravel_index, np.array([]), + (10, 3, 5)) + assert_equal(np.unravel_index(np.array([], dtype=int), (10, 3, 5)), + [[], [], []]) + assert_raises_regex(TypeError, msg1, np.ravel_multi_index, ([], []), + (10, 3)) + assert_raises_regex(TypeError, msg1, np.ravel_multi_index, ([], ['abc']), + (10, 3)) + assert_raises_regex(TypeError, msg2, np.ravel_multi_index, + (np.array([]), np.array([])), (5, 3)) + assert_equal(np.ravel_multi_index( + (np.array([], dtype=int), np.array([], dtype=int)), (5, 3)), []) + assert_equal(np.ravel_multi_index(np.array([[], []], dtype=int), + (5, 3)), []) + + def test_big_indices(self): + # ravel_multi_index for big indices (issue #7546) + if np.intp == np.int64: + arr = ([1, 29], [3, 5], [3, 117], [19, 2], + [2379, 1284], [2, 2], [0, 1]) + assert_equal( + np.ravel_multi_index(arr, (41, 7, 120, 36, 2706, 8, 6)), + [5627771580, 117259570957]) + + # test unravel_index for big indices (issue #9538) + assert_raises(ValueError, np.unravel_index, 1, (2**32 - 1, 2**31 + 1)) + + # test overflow checking for too big array (issue #7546) + dummy_arr = ([0], [0]) + half_max = np.iinfo(np.intp).max // 2 + assert_equal( + np.ravel_multi_index(dummy_arr, (half_max, 2)), [0]) + assert_raises(ValueError, + np.ravel_multi_index, dummy_arr, (half_max + 1, 2)) + assert_equal( + np.ravel_multi_index(dummy_arr, (half_max, 2), order='F'), [0]) + assert_raises(ValueError, + np.ravel_multi_index, dummy_arr, (half_max + 1, 2), order='F') + + def test_dtypes(self): + # Test with different data types + for dtype in [np.int16, np.uint16, np.int32, + np.uint32, np.int64, np.uint64]: + coords = np.array( + [[1, 0, 1, 2, 3, 4], [1, 6, 1, 3, 2, 0]], dtype=dtype) + shape = (5, 8) + uncoords = 8 * coords[0] + coords[1] + assert_equal(np.ravel_multi_index(coords, shape), uncoords) + assert_equal(coords, np.unravel_index(uncoords, shape)) + uncoords = coords[0] + 5 * coords[1] + assert_equal( + np.ravel_multi_index(coords, shape, order='F'), uncoords) + assert_equal(coords, np.unravel_index(uncoords, shape, order='F')) + + coords = np.array( + [[1, 0, 1, 2, 3, 4], [1, 6, 1, 3, 2, 0], [1, 3, 1, 0, 9, 5]], + dtype=dtype) + shape = (5, 8, 10) + uncoords = 10 * (8 * coords[0] + coords[1]) + coords[2] + assert_equal(np.ravel_multi_index(coords, shape), uncoords) + assert_equal(coords, np.unravel_index(uncoords, shape)) + uncoords = coords[0] + 5 * (coords[1] + 8 * coords[2]) + assert_equal( + np.ravel_multi_index(coords, shape, order='F'), uncoords) + assert_equal(coords, np.unravel_index(uncoords, shape, order='F')) + + def test_clipmodes(self): + # Test clipmodes + assert_equal( + np.ravel_multi_index([5, 1, -1, 2], (4, 3, 7, 12), mode='wrap'), + np.ravel_multi_index([1, 1, 6, 2], (4, 3, 7, 12))) + assert_equal(np.ravel_multi_index([5, 1, -1, 2], (4, 3, 7, 12), + mode=( + 'wrap', 'raise', 'clip', 'raise')), + np.ravel_multi_index([1, 1, 0, 2], (4, 3, 7, 12))) + assert_raises( + ValueError, np.ravel_multi_index, [5, 1, -1, 2], (4, 3, 7, 12)) + + def test_writeability(self): + # gh-7269 + x, y = np.unravel_index([1, 2, 3], (4, 5)) + assert_(x.flags.writeable) + assert_(y.flags.writeable) + + def test_0d(self): + # gh-580 + x = np.unravel_index(0, ()) + assert_equal(x, ()) + + assert_raises_regex(ValueError, "0d array", np.unravel_index, [0], ()) + assert_raises_regex( + ValueError, "out of bounds", np.unravel_index, [1], ()) + + @pytest.mark.parametrize("mode", ["clip", "wrap", "raise"]) + def test_empty_array_ravel(self, mode): + res = np.ravel_multi_index( + np.zeros((3, 0), dtype=np.intp), (2, 1, 0), mode=mode) + assert res.shape == (0,) + + with assert_raises(ValueError): + np.ravel_multi_index( + np.zeros((3, 1), dtype=np.intp), (2, 1, 0), mode=mode) + + def test_empty_array_unravel(self): + res = np.unravel_index(np.zeros(0, dtype=np.intp), (2, 1, 0)) + # res is a tuple of three empty arrays + assert len(res) == 3 + assert all(a.shape == (0,) for a in res) + + with assert_raises(ValueError): + np.unravel_index([1], (2, 1, 0)) + +class TestGrid: + def test_basic(self): + a = mgrid[-1:1:10j] + b = mgrid[-1:1:0.1] + assert_(a.shape == (10,)) + assert_(b.shape == (20,)) + assert_(a[0] == -1) + assert_almost_equal(a[-1], 1) + assert_(b[0] == -1) + assert_almost_equal(b[1] - b[0], 0.1, 11) + assert_almost_equal(b[-1], b[0] + 19 * 0.1, 11) + assert_almost_equal(a[1] - a[0], 2.0 / 9.0, 11) + + def test_linspace_equivalence(self): + y, st = np.linspace(2, 10, retstep=True) + assert_almost_equal(st, 8 / 49.0) + assert_array_almost_equal(y, mgrid[2:10:50j], 13) + + def test_nd(self): + c = mgrid[-1:1:10j, -2:2:10j] + d = mgrid[-1:1:0.1, -2:2:0.2] + assert_(c.shape == (2, 10, 10)) + assert_(d.shape == (2, 20, 20)) + assert_array_equal(c[0][0, :], -np.ones(10, 'd')) + assert_array_equal(c[1][:, 0], -2 * np.ones(10, 'd')) + assert_array_almost_equal(c[0][-1, :], np.ones(10, 'd'), 11) + assert_array_almost_equal(c[1][:, -1], 2 * np.ones(10, 'd'), 11) + assert_array_almost_equal(d[0, 1, :] - d[0, 0, :], + 0.1 * np.ones(20, 'd'), 11) + assert_array_almost_equal(d[1, :, 1] - d[1, :, 0], + 0.2 * np.ones(20, 'd'), 11) + + def test_sparse(self): + grid_full = mgrid[-1:1:10j, -2:2:10j] + grid_sparse = ogrid[-1:1:10j, -2:2:10j] + + # sparse grids can be made dense by broadcasting + grid_broadcast = np.broadcast_arrays(*grid_sparse) + for f, b in zip(grid_full, grid_broadcast): + assert_equal(f, b) + + @pytest.mark.parametrize("start, stop, step, expected", [ + (None, 10, 10j, (200, 10)), + (-10, 20, None, (1800, 30)), + ]) + def test_mgrid_size_none_handling(self, start, stop, step, expected): + # regression test None value handling for + # start and step values used by mgrid; + # internally, this aims to cover previously + # unexplored code paths in nd_grid() + grid = mgrid[start:stop:step, start:stop:step] + # need a smaller grid to explore one of the + # untested code paths + grid_small = mgrid[start:stop:step] + assert_equal(grid.size, expected[0]) + assert_equal(grid_small.size, expected[1]) + + def test_accepts_npfloating(self): + # regression test for #16466 + grid64 = mgrid[0.1:0.33:0.1, ] + grid32 = mgrid[np.float32(0.1):np.float32(0.33):np.float32(0.1), ] + assert_array_almost_equal(grid64, grid32) + # At some point this was float64, but NEP 50 changed it: + assert grid32.dtype == np.float32 + assert grid64.dtype == np.float64 + + # different code path for single slice + grid64 = mgrid[0.1:0.33:0.1] + grid32 = mgrid[np.float32(0.1):np.float32(0.33):np.float32(0.1)] + assert_(grid32.dtype == np.float64) + assert_array_almost_equal(grid64, grid32) + + def test_accepts_longdouble(self): + # regression tests for #16945 + grid64 = mgrid[0.1:0.33:0.1, ] + grid128 = mgrid[ + np.longdouble(0.1):np.longdouble(0.33):np.longdouble(0.1), + ] + assert_(grid128.dtype == np.longdouble) + assert_array_almost_equal(grid64, grid128) + + grid128c_a = mgrid[0:np.longdouble(1):3.4j] + grid128c_b = mgrid[0:np.longdouble(1):3.4j, ] + assert_(grid128c_a.dtype == grid128c_b.dtype == np.longdouble) + assert_array_equal(grid128c_a, grid128c_b[0]) + + # different code path for single slice + grid64 = mgrid[0.1:0.33:0.1] + grid128 = mgrid[ + np.longdouble(0.1):np.longdouble(0.33):np.longdouble(0.1) + ] + assert_(grid128.dtype == np.longdouble) + assert_array_almost_equal(grid64, grid128) + + def test_accepts_npcomplexfloating(self): + # Related to #16466 + assert_array_almost_equal( + mgrid[0.1:0.3:3j, ], mgrid[0.1:0.3:np.complex64(3j), ] + ) + + # different code path for single slice + assert_array_almost_equal( + mgrid[0.1:0.3:3j], mgrid[0.1:0.3:np.complex64(3j)] + ) + + # Related to #16945 + grid64_a = mgrid[0.1:0.3:3.3j] + grid64_b = mgrid[0.1:0.3:3.3j, ][0] + assert_(grid64_a.dtype == grid64_b.dtype == np.float64) + assert_array_equal(grid64_a, grid64_b) + + grid128_a = mgrid[0.1:0.3:np.clongdouble(3.3j)] + grid128_b = mgrid[0.1:0.3:np.clongdouble(3.3j), ][0] + assert_(grid128_a.dtype == grid128_b.dtype == np.longdouble) + assert_array_equal(grid64_a, grid64_b) + + +class TestConcatenator: + def test_1d(self): + assert_array_equal(r_[1, 2, 3, 4, 5, 6], np.array([1, 2, 3, 4, 5, 6])) + b = np.ones(5) + c = r_[b, 0, 0, b] + assert_array_equal(c, [1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1]) + + def test_mixed_type(self): + g = r_[10.1, 1:10] + assert_(g.dtype == 'f8') + + def test_more_mixed_type(self): + g = r_[-10.1, np.array([1]), np.array([2, 3, 4]), 10.0] + assert_(g.dtype == 'f8') + + def test_complex_step(self): + # Regression test for #12262 + g = r_[0:36:100j] + assert_(g.shape == (100,)) + + # Related to #16466 + g = r_[0:36:np.complex64(100j)] + assert_(g.shape == (100,)) + + def test_2d(self): + b = np.random.rand(5, 5) + c = np.random.rand(5, 5) + d = r_['1', b, c] # append columns + assert_(d.shape == (5, 10)) + assert_array_equal(d[:, :5], b) + assert_array_equal(d[:, 5:], c) + d = r_[b, c] + assert_(d.shape == (10, 5)) + assert_array_equal(d[:5, :], b) + assert_array_equal(d[5:, :], c) + + def test_0d(self): + assert_equal(r_[0, np.array(1), 2], [0, 1, 2]) + assert_equal(r_[[0, 1, 2], np.array(3)], [0, 1, 2, 3]) + assert_equal(r_[np.array(0), [1, 2, 3]], [0, 1, 2, 3]) + + +class TestNdenumerate: + def test_basic(self): + a = np.array([[1, 2], [3, 4]]) + assert_equal(list(ndenumerate(a)), + [((0, 0), 1), ((0, 1), 2), ((1, 0), 3), ((1, 1), 4)]) + + +class TestIndexExpression: + def test_regression_1(self): + # ticket #1196 + a = np.arange(2) + assert_equal(a[:-1], a[s_[:-1]]) + assert_equal(a[:-1], a[index_exp[:-1]]) + + def test_simple_1(self): + a = np.random.rand(4, 5, 6) + + assert_equal(a[:, :3, [1, 2]], a[index_exp[:, :3, [1, 2]]]) + assert_equal(a[:, :3, [1, 2]], a[s_[:, :3, [1, 2]]]) + + +class TestIx_: + def test_regression_1(self): + # Test empty untyped inputs create outputs of indexing type, gh-5804 + a, = np.ix_(range(0)) + assert_equal(a.dtype, np.intp) + + a, = np.ix_([]) + assert_equal(a.dtype, np.intp) + + # but if the type is specified, don't change it + a, = np.ix_(np.array([], dtype=np.float32)) + assert_equal(a.dtype, np.float32) + + def test_shape_and_dtype(self): + sizes = (4, 5, 3, 2) + # Test both lists and arrays + for func in (range, np.arange): + arrays = np.ix_(*[func(sz) for sz in sizes]) + for k, (a, sz) in enumerate(zip(arrays, sizes)): + assert_equal(a.shape[k], sz) + assert_(all(sh == 1 for j, sh in enumerate(a.shape) if j != k)) + assert_(np.issubdtype(a.dtype, np.integer)) + + def test_bool(self): + bool_a = [True, False, True, True] + int_a, = np.nonzero(bool_a) + assert_equal(np.ix_(bool_a)[0], int_a) + + def test_1d_only(self): + idx2d = [[1, 2, 3], [4, 5, 6]] + assert_raises(ValueError, np.ix_, idx2d) + + def test_repeated_input(self): + length_of_vector = 5 + x = np.arange(length_of_vector) + out = ix_(x, x) + assert_equal(out[0].shape, (length_of_vector, 1)) + assert_equal(out[1].shape, (1, length_of_vector)) + # check that input shape is not modified + assert_equal(x.shape, (length_of_vector,)) + + +def test_c_(): + a = c_[np.array([[1, 2, 3]]), 0, 0, np.array([[4, 5, 6]])] + assert_equal(a, [[1, 2, 3, 0, 0, 4, 5, 6]]) + + +class TestFillDiagonal: + def test_basic(self): + a = np.zeros((3, 3), int) + fill_diagonal(a, 5) + assert_array_equal( + a, np.array([[5, 0, 0], + [0, 5, 0], + [0, 0, 5]]) + ) + + def test_tall_matrix(self): + a = np.zeros((10, 3), int) + fill_diagonal(a, 5) + assert_array_equal( + a, np.array([[5, 0, 0], + [0, 5, 0], + [0, 0, 5], + [0, 0, 0], + [0, 0, 0], + [0, 0, 0], + [0, 0, 0], + [0, 0, 0], + [0, 0, 0], + [0, 0, 0]]) + ) + + def test_tall_matrix_wrap(self): + a = np.zeros((10, 3), int) + fill_diagonal(a, 5, True) + assert_array_equal( + a, np.array([[5, 0, 0], + [0, 5, 0], + [0, 0, 5], + [0, 0, 0], + [5, 0, 0], + [0, 5, 0], + [0, 0, 5], + [0, 0, 0], + [5, 0, 0], + [0, 5, 0]]) + ) + + def test_wide_matrix(self): + a = np.zeros((3, 10), int) + fill_diagonal(a, 5) + assert_array_equal( + a, np.array([[5, 0, 0, 0, 0, 0, 0, 0, 0, 0], + [0, 5, 0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 5, 0, 0, 0, 0, 0, 0, 0]]) + ) + + def test_operate_4d_array(self): + a = np.zeros((3, 3, 3, 3), int) + fill_diagonal(a, 4) + i = np.array([0, 1, 2]) + assert_equal(np.where(a != 0), (i, i, i, i)) + + def test_low_dim_handling(self): + # raise error with low dimensionality + a = np.zeros(3, int) + with assert_raises_regex(ValueError, "at least 2-d"): + fill_diagonal(a, 5) + + def test_hetero_shape_handling(self): + # raise error with high dimensionality and + # shape mismatch + a = np.zeros((3, 3, 7, 3), int) + with assert_raises_regex(ValueError, "equal length"): + fill_diagonal(a, 2) + + +def test_diag_indices(): + di = diag_indices(4) + a = np.array([[1, 2, 3, 4], + [5, 6, 7, 8], + [9, 10, 11, 12], + [13, 14, 15, 16]]) + a[di] = 100 + assert_array_equal( + a, np.array([[100, 2, 3, 4], + [5, 100, 7, 8], + [9, 10, 100, 12], + [13, 14, 15, 100]]) + ) + + # Now, we create indices to manipulate a 3-d array: + d3 = diag_indices(2, 3) + + # And use it to set the diagonal of a zeros array to 1: + a = np.zeros((2, 2, 2), int) + a[d3] = 1 + assert_array_equal( + a, np.array([[[1, 0], + [0, 0]], + [[0, 0], + [0, 1]]]) + ) + + +class TestDiagIndicesFrom: + + def test_diag_indices_from(self): + x = np.random.random((4, 4)) + r, c = diag_indices_from(x) + assert_array_equal(r, np.arange(4)) + assert_array_equal(c, np.arange(4)) + + def test_error_small_input(self): + x = np.ones(7) + with assert_raises_regex(ValueError, "at least 2-d"): + diag_indices_from(x) + + def test_error_shape_mismatch(self): + x = np.zeros((3, 3, 2, 3), int) + with assert_raises_regex(ValueError, "equal length"): + diag_indices_from(x) + + +def test_ndindex(): + x = list(ndindex(1, 2, 3)) + expected = [ix for ix, e in ndenumerate(np.zeros((1, 2, 3)))] + assert_array_equal(x, expected) + + x = list(ndindex((1, 2, 3))) + assert_array_equal(x, expected) + + # Test use of scalars and tuples + x = list(ndindex((3,))) + assert_array_equal(x, list(ndindex(3))) + + # Make sure size argument is optional + x = list(ndindex()) + assert_equal(x, [()]) + + x = list(ndindex(())) + assert_equal(x, [()]) + + # Make sure 0-sized ndindex works correctly + x = list(ndindex(*[0])) + assert_equal(x, []) diff --git a/.venv/lib/python3.12/site-packages/numpy/lib/tests/test_io.py b/.venv/lib/python3.12/site-packages/numpy/lib/tests/test_io.py new file mode 100644 index 0000000..303dcfe --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/lib/tests/test_io.py @@ -0,0 +1,2848 @@ +import gc +import gzip +import locale +import os +import re +import sys +import threading +import time +import warnings +import zipfile +from ctypes import c_bool +from datetime import datetime +from io import BytesIO, StringIO +from multiprocessing import Value, get_context +from pathlib import Path +from tempfile import NamedTemporaryFile + +import pytest + +import numpy as np +import numpy.ma as ma +from numpy._utils import asbytes +from numpy.exceptions import VisibleDeprecationWarning +from numpy.lib import _npyio_impl +from numpy.lib._iotools import ConversionWarning, ConverterError +from numpy.lib._npyio_impl import recfromcsv, recfromtxt +from numpy.ma.testutils import assert_equal +from numpy.testing import ( + HAS_REFCOUNT, + IS_PYPY, + IS_WASM, + assert_, + assert_allclose, + assert_array_equal, + assert_no_gc_cycles, + assert_no_warnings, + assert_raises, + assert_raises_regex, + assert_warns, + break_cycles, + suppress_warnings, + tempdir, + temppath, +) +from numpy.testing._private.utils import requires_memory + + +class TextIO(BytesIO): + """Helper IO class. + + Writes encode strings to bytes if needed, reads return bytes. + This makes it easier to emulate files opened in binary mode + without needing to explicitly convert strings to bytes in + setting up the test data. + + """ + def __init__(self, s=""): + BytesIO.__init__(self, asbytes(s)) + + def write(self, s): + BytesIO.write(self, asbytes(s)) + + def writelines(self, lines): + BytesIO.writelines(self, [asbytes(s) for s in lines]) + + +IS_64BIT = sys.maxsize > 2**32 +try: + import bz2 + HAS_BZ2 = True +except ImportError: + HAS_BZ2 = False +try: + import lzma + HAS_LZMA = True +except ImportError: + HAS_LZMA = False + + +def strptime(s, fmt=None): + """ + This function is available in the datetime module only from Python >= + 2.5. + + """ + if isinstance(s, bytes): + s = s.decode("latin1") + return datetime(*time.strptime(s, fmt)[:3]) + + +class RoundtripTest: + def roundtrip(self, save_func, *args, **kwargs): + """ + save_func : callable + Function used to save arrays to file. + file_on_disk : bool + If true, store the file on disk, instead of in a + string buffer. + save_kwds : dict + Parameters passed to `save_func`. + load_kwds : dict + Parameters passed to `numpy.load`. + args : tuple of arrays + Arrays stored to file. + + """ + save_kwds = kwargs.get('save_kwds', {}) + load_kwds = kwargs.get('load_kwds', {"allow_pickle": True}) + file_on_disk = kwargs.get('file_on_disk', False) + + if file_on_disk: + target_file = NamedTemporaryFile(delete=False) + load_file = target_file.name + else: + target_file = BytesIO() + load_file = target_file + + try: + arr = args + + save_func(target_file, *arr, **save_kwds) + target_file.flush() + target_file.seek(0) + + if sys.platform == 'win32' and not isinstance(target_file, BytesIO): + target_file.close() + + arr_reloaded = np.load(load_file, **load_kwds) + + self.arr = arr + self.arr_reloaded = arr_reloaded + finally: + if not isinstance(target_file, BytesIO): + target_file.close() + # holds an open file descriptor so it can't be deleted on win + if 'arr_reloaded' in locals(): + if not isinstance(arr_reloaded, np.lib.npyio.NpzFile): + os.remove(target_file.name) + + def check_roundtrips(self, a): + self.roundtrip(a) + self.roundtrip(a, file_on_disk=True) + self.roundtrip(np.asfortranarray(a)) + self.roundtrip(np.asfortranarray(a), file_on_disk=True) + if a.shape[0] > 1: + # neither C nor Fortran contiguous for 2D arrays or more + self.roundtrip(np.asfortranarray(a)[1:]) + self.roundtrip(np.asfortranarray(a)[1:], file_on_disk=True) + + def test_array(self): + a = np.array([], float) + self.check_roundtrips(a) + + a = np.array([[1, 2], [3, 4]], float) + self.check_roundtrips(a) + + a = np.array([[1, 2], [3, 4]], int) + self.check_roundtrips(a) + + a = np.array([[1 + 5j, 2 + 6j], [3 + 7j, 4 + 8j]], dtype=np.csingle) + self.check_roundtrips(a) + + a = np.array([[1 + 5j, 2 + 6j], [3 + 7j, 4 + 8j]], dtype=np.cdouble) + self.check_roundtrips(a) + + def test_array_object(self): + a = np.array([], object) + self.check_roundtrips(a) + + a = np.array([[1, 2], [3, 4]], object) + self.check_roundtrips(a) + + def test_1D(self): + a = np.array([1, 2, 3, 4], int) + self.roundtrip(a) + + @pytest.mark.skipif(sys.platform == 'win32', reason="Fails on Win32") + def test_mmap(self): + a = np.array([[1, 2.5], [4, 7.3]]) + self.roundtrip(a, file_on_disk=True, load_kwds={'mmap_mode': 'r'}) + + a = np.asfortranarray([[1, 2.5], [4, 7.3]]) + self.roundtrip(a, file_on_disk=True, load_kwds={'mmap_mode': 'r'}) + + def test_record(self): + a = np.array([(1, 2), (3, 4)], dtype=[('x', 'i4'), ('y', 'i4')]) + self.check_roundtrips(a) + + @pytest.mark.slow + def test_format_2_0(self): + dt = [(("%d" % i) * 100, float) for i in range(500)] + a = np.ones(1000, dtype=dt) + with warnings.catch_warnings(record=True): + warnings.filterwarnings('always', '', UserWarning) + self.check_roundtrips(a) + + +class TestSaveLoad(RoundtripTest): + def roundtrip(self, *args, **kwargs): + RoundtripTest.roundtrip(self, np.save, *args, **kwargs) + assert_equal(self.arr[0], self.arr_reloaded) + assert_equal(self.arr[0].dtype, self.arr_reloaded.dtype) + assert_equal(self.arr[0].flags.fnc, self.arr_reloaded.flags.fnc) + + +class TestSavezLoad(RoundtripTest): + def roundtrip(self, *args, **kwargs): + RoundtripTest.roundtrip(self, np.savez, *args, **kwargs) + try: + for n, arr in enumerate(self.arr): + reloaded = self.arr_reloaded['arr_%d' % n] + assert_equal(arr, reloaded) + assert_equal(arr.dtype, reloaded.dtype) + assert_equal(arr.flags.fnc, reloaded.flags.fnc) + finally: + # delete tempfile, must be done here on windows + if self.arr_reloaded.fid: + self.arr_reloaded.fid.close() + os.remove(self.arr_reloaded.fid.name) + + def test_load_non_npy(self): + """Test loading non-.npy files and name mapping in .npz.""" + with temppath(prefix="numpy_test_npz_load_non_npy_", suffix=".npz") as tmp: + with zipfile.ZipFile(tmp, "w") as npz: + with npz.open("test1.npy", "w") as out_file: + np.save(out_file, np.arange(10)) + with npz.open("test2", "w") as out_file: + np.save(out_file, np.arange(10)) + with npz.open("metadata", "w") as out_file: + out_file.write(b"Name: Test") + with np.load(tmp) as npz: + assert len(npz["test1"]) == 10 + assert len(npz["test1.npy"]) == 10 + assert len(npz["test2"]) == 10 + assert npz["metadata"] == b"Name: Test" + + @pytest.mark.skipif(IS_PYPY, reason="Hangs on PyPy") + @pytest.mark.skipif(not IS_64BIT, reason="Needs 64bit platform") + @pytest.mark.slow + def test_big_arrays(self): + L = (1 << 31) + 100000 + a = np.empty(L, dtype=np.uint8) + with temppath(prefix="numpy_test_big_arrays_", suffix=".npz") as tmp: + np.savez(tmp, a=a) + del a + npfile = np.load(tmp) + a = npfile['a'] # Should succeed + npfile.close() + + def test_multiple_arrays(self): + a = np.array([[1, 2], [3, 4]], float) + b = np.array([[1 + 2j, 2 + 7j], [3 - 6j, 4 + 12j]], complex) + self.roundtrip(a, b) + + def test_named_arrays(self): + a = np.array([[1, 2], [3, 4]], float) + b = np.array([[1 + 2j, 2 + 7j], [3 - 6j, 4 + 12j]], complex) + c = BytesIO() + np.savez(c, file_a=a, file_b=b) + c.seek(0) + l = np.load(c) + assert_equal(a, l['file_a']) + assert_equal(b, l['file_b']) + + def test_tuple_getitem_raises(self): + # gh-23748 + a = np.array([1, 2, 3]) + f = BytesIO() + np.savez(f, a=a) + f.seek(0) + l = np.load(f) + with pytest.raises(KeyError, match="(1, 2)"): + l[1, 2] + + def test_BagObj(self): + a = np.array([[1, 2], [3, 4]], float) + b = np.array([[1 + 2j, 2 + 7j], [3 - 6j, 4 + 12j]], complex) + c = BytesIO() + np.savez(c, file_a=a, file_b=b) + c.seek(0) + l = np.load(c) + assert_equal(sorted(dir(l.f)), ['file_a', 'file_b']) + assert_equal(a, l.f.file_a) + assert_equal(b, l.f.file_b) + + @pytest.mark.skipif(IS_WASM, reason="Cannot start thread") + def test_savez_filename_clashes(self): + # Test that issue #852 is fixed + # and savez functions in multithreaded environment + + def writer(error_list): + with temppath(suffix='.npz') as tmp: + arr = np.random.randn(500, 500) + try: + np.savez(tmp, arr=arr) + except OSError as err: + error_list.append(err) + + errors = [] + threads = [threading.Thread(target=writer, args=(errors,)) + for j in range(3)] + for t in threads: + t.start() + for t in threads: + t.join() + + if errors: + raise AssertionError(errors) + + def test_not_closing_opened_fid(self): + # Test that issue #2178 is fixed: + # verify could seek on 'loaded' file + with temppath(suffix='.npz') as tmp: + with open(tmp, 'wb') as fp: + np.savez(fp, data='LOVELY LOAD') + with open(tmp, 'rb', 10000) as fp: + fp.seek(0) + assert_(not fp.closed) + np.load(fp)['data'] + # fp must not get closed by .load + assert_(not fp.closed) + fp.seek(0) + assert_(not fp.closed) + + @pytest.mark.slow_pypy + def test_closing_fid(self): + # Test that issue #1517 (too many opened files) remains closed + # It might be a "weak" test since failed to get triggered on + # e.g. Debian sid of 2012 Jul 05 but was reported to + # trigger the failure on Ubuntu 10.04: + # http://projects.scipy.org/numpy/ticket/1517#comment:2 + with temppath(suffix='.npz') as tmp: + np.savez(tmp, data='LOVELY LOAD') + # We need to check if the garbage collector can properly close + # numpy npz file returned by np.load when their reference count + # goes to zero. Python running in debug mode raises a + # ResourceWarning when file closing is left to the garbage + # collector, so we catch the warnings. + with suppress_warnings() as sup: + sup.filter(ResourceWarning) # TODO: specify exact message + for i in range(1, 1025): + try: + np.load(tmp)["data"] + except Exception as e: + msg = f"Failed to load data from a file: {e}" + raise AssertionError(msg) + finally: + if IS_PYPY: + gc.collect() + + def test_closing_zipfile_after_load(self): + # Check that zipfile owns file and can close it. This needs to + # pass a file name to load for the test. On windows failure will + # cause a second error will be raised when the attempt to remove + # the open file is made. + prefix = 'numpy_test_closing_zipfile_after_load_' + with temppath(suffix='.npz', prefix=prefix) as tmp: + np.savez(tmp, lab='place holder') + data = np.load(tmp) + fp = data.zip.fp + data.close() + assert_(fp.closed) + + @pytest.mark.parametrize("count, expected_repr", [ + (1, "NpzFile {fname!r} with keys: arr_0"), + (5, "NpzFile {fname!r} with keys: arr_0, arr_1, arr_2, arr_3, arr_4"), + # _MAX_REPR_ARRAY_COUNT is 5, so files with more than 5 keys are + # expected to end in '...' + (6, "NpzFile {fname!r} with keys: arr_0, arr_1, arr_2, arr_3, arr_4..."), + ]) + def test_repr_lists_keys(self, count, expected_repr): + a = np.array([[1, 2], [3, 4]], float) + with temppath(suffix='.npz') as tmp: + np.savez(tmp, *[a] * count) + l = np.load(tmp) + assert repr(l) == expected_repr.format(fname=tmp) + l.close() + + +class TestSaveTxt: + def test_array(self): + a = np.array([[1, 2], [3, 4]], float) + fmt = "%.18e" + c = BytesIO() + np.savetxt(c, a, fmt=fmt) + c.seek(0) + assert_equal(c.readlines(), + [asbytes((fmt + ' ' + fmt + '\n') % (1, 2)), + asbytes((fmt + ' ' + fmt + '\n') % (3, 4))]) + + a = np.array([[1, 2], [3, 4]], int) + c = BytesIO() + np.savetxt(c, a, fmt='%d') + c.seek(0) + assert_equal(c.readlines(), [b'1 2\n', b'3 4\n']) + + def test_1D(self): + a = np.array([1, 2, 3, 4], int) + c = BytesIO() + np.savetxt(c, a, fmt='%d') + c.seek(0) + lines = c.readlines() + assert_equal(lines, [b'1\n', b'2\n', b'3\n', b'4\n']) + + def test_0D_3D(self): + c = BytesIO() + assert_raises(ValueError, np.savetxt, c, np.array(1)) + assert_raises(ValueError, np.savetxt, c, np.array([[[1], [2]]])) + + def test_structured(self): + a = np.array([(1, 2), (3, 4)], dtype=[('x', 'i4'), ('y', 'i4')]) + c = BytesIO() + np.savetxt(c, a, fmt='%d') + c.seek(0) + assert_equal(c.readlines(), [b'1 2\n', b'3 4\n']) + + def test_structured_padded(self): + # gh-13297 + a = np.array([(1, 2, 3), (4, 5, 6)], dtype=[ + ('foo', 'i4'), ('bar', 'i4'), ('baz', 'i4') + ]) + c = BytesIO() + np.savetxt(c, a[['foo', 'baz']], fmt='%d') + c.seek(0) + assert_equal(c.readlines(), [b'1 3\n', b'4 6\n']) + + def test_multifield_view(self): + a = np.ones(1, dtype=[('x', 'i4'), ('y', 'i4'), ('z', 'f4')]) + v = a[['x', 'z']] + with temppath(suffix='.npy') as path: + path = Path(path) + np.save(path, v) + data = np.load(path) + assert_array_equal(data, v) + + def test_delimiter(self): + a = np.array([[1., 2.], [3., 4.]]) + c = BytesIO() + np.savetxt(c, a, delimiter=',', fmt='%d') + c.seek(0) + assert_equal(c.readlines(), [b'1,2\n', b'3,4\n']) + + def test_format(self): + a = np.array([(1, 2), (3, 4)]) + c = BytesIO() + # Sequence of formats + np.savetxt(c, a, fmt=['%02d', '%3.1f']) + c.seek(0) + assert_equal(c.readlines(), [b'01 2.0\n', b'03 4.0\n']) + + # A single multiformat string + c = BytesIO() + np.savetxt(c, a, fmt='%02d : %3.1f') + c.seek(0) + lines = c.readlines() + assert_equal(lines, [b'01 : 2.0\n', b'03 : 4.0\n']) + + # Specify delimiter, should be overridden + c = BytesIO() + np.savetxt(c, a, fmt='%02d : %3.1f', delimiter=',') + c.seek(0) + lines = c.readlines() + assert_equal(lines, [b'01 : 2.0\n', b'03 : 4.0\n']) + + # Bad fmt, should raise a ValueError + c = BytesIO() + assert_raises(ValueError, np.savetxt, c, a, fmt=99) + + def test_header_footer(self): + # Test the functionality of the header and footer keyword argument. + + c = BytesIO() + a = np.array([(1, 2), (3, 4)], dtype=int) + test_header_footer = 'Test header / footer' + # Test the header keyword argument + np.savetxt(c, a, fmt='%1d', header=test_header_footer) + c.seek(0) + assert_equal(c.read(), + asbytes('# ' + test_header_footer + '\n1 2\n3 4\n')) + # Test the footer keyword argument + c = BytesIO() + np.savetxt(c, a, fmt='%1d', footer=test_header_footer) + c.seek(0) + assert_equal(c.read(), + asbytes('1 2\n3 4\n# ' + test_header_footer + '\n')) + # Test the commentstr keyword argument used on the header + c = BytesIO() + commentstr = '% ' + np.savetxt(c, a, fmt='%1d', + header=test_header_footer, comments=commentstr) + c.seek(0) + assert_equal(c.read(), + asbytes(commentstr + test_header_footer + '\n' + '1 2\n3 4\n')) + # Test the commentstr keyword argument used on the footer + c = BytesIO() + commentstr = '% ' + np.savetxt(c, a, fmt='%1d', + footer=test_header_footer, comments=commentstr) + c.seek(0) + assert_equal(c.read(), + asbytes('1 2\n3 4\n' + commentstr + test_header_footer + '\n')) + + @pytest.mark.parametrize("filename_type", [Path, str]) + def test_file_roundtrip(self, filename_type): + with temppath() as name: + a = np.array([(1, 2), (3, 4)]) + np.savetxt(filename_type(name), a) + b = np.loadtxt(filename_type(name)) + assert_array_equal(a, b) + + def test_complex_arrays(self): + ncols = 2 + nrows = 2 + a = np.zeros((ncols, nrows), dtype=np.complex128) + re = np.pi + im = np.e + a[:] = re + 1.0j * im + + # One format only + c = BytesIO() + np.savetxt(c, a, fmt=' %+.3e') + c.seek(0) + lines = c.readlines() + assert_equal( + lines, + [b' ( +3.142e+00+ +2.718e+00j) ( +3.142e+00+ +2.718e+00j)\n', + b' ( +3.142e+00+ +2.718e+00j) ( +3.142e+00+ +2.718e+00j)\n']) + + # One format for each real and imaginary part + c = BytesIO() + np.savetxt(c, a, fmt=' %+.3e' * 2 * ncols) + c.seek(0) + lines = c.readlines() + assert_equal( + lines, + [b' +3.142e+00 +2.718e+00 +3.142e+00 +2.718e+00\n', + b' +3.142e+00 +2.718e+00 +3.142e+00 +2.718e+00\n']) + + # One format for each complex number + c = BytesIO() + np.savetxt(c, a, fmt=['(%.3e%+.3ej)'] * ncols) + c.seek(0) + lines = c.readlines() + assert_equal( + lines, + [b'(3.142e+00+2.718e+00j) (3.142e+00+2.718e+00j)\n', + b'(3.142e+00+2.718e+00j) (3.142e+00+2.718e+00j)\n']) + + def test_complex_negative_exponent(self): + # Previous to 1.15, some formats generated x+-yj, gh 7895 + ncols = 2 + nrows = 2 + a = np.zeros((ncols, nrows), dtype=np.complex128) + re = np.pi + im = np.e + a[:] = re - 1.0j * im + c = BytesIO() + np.savetxt(c, a, fmt='%.3e') + c.seek(0) + lines = c.readlines() + assert_equal( + lines, + [b' (3.142e+00-2.718e+00j) (3.142e+00-2.718e+00j)\n', + b' (3.142e+00-2.718e+00j) (3.142e+00-2.718e+00j)\n']) + + def test_custom_writer(self): + + class CustomWriter(list): + def write(self, text): + self.extend(text.split(b'\n')) + + w = CustomWriter() + a = np.array([(1, 2), (3, 4)]) + np.savetxt(w, a) + b = np.loadtxt(w) + assert_array_equal(a, b) + + def test_unicode(self): + utf8 = b'\xcf\x96'.decode('UTF-8') + a = np.array([utf8], dtype=np.str_) + with tempdir() as tmpdir: + # set encoding as on windows it may not be unicode even on py3 + np.savetxt(os.path.join(tmpdir, 'test.csv'), a, fmt=['%s'], + encoding='UTF-8') + + def test_unicode_roundtrip(self): + utf8 = b'\xcf\x96'.decode('UTF-8') + a = np.array([utf8], dtype=np.str_) + # our gz wrapper support encoding + suffixes = ['', '.gz'] + if HAS_BZ2: + suffixes.append('.bz2') + if HAS_LZMA: + suffixes.extend(['.xz', '.lzma']) + with tempdir() as tmpdir: + for suffix in suffixes: + np.savetxt(os.path.join(tmpdir, 'test.csv' + suffix), a, + fmt=['%s'], encoding='UTF-16-LE') + b = np.loadtxt(os.path.join(tmpdir, 'test.csv' + suffix), + encoding='UTF-16-LE', dtype=np.str_) + assert_array_equal(a, b) + + def test_unicode_bytestream(self): + utf8 = b'\xcf\x96'.decode('UTF-8') + a = np.array([utf8], dtype=np.str_) + s = BytesIO() + np.savetxt(s, a, fmt=['%s'], encoding='UTF-8') + s.seek(0) + assert_equal(s.read().decode('UTF-8'), utf8 + '\n') + + def test_unicode_stringstream(self): + utf8 = b'\xcf\x96'.decode('UTF-8') + a = np.array([utf8], dtype=np.str_) + s = StringIO() + np.savetxt(s, a, fmt=['%s'], encoding='UTF-8') + s.seek(0) + assert_equal(s.read(), utf8 + '\n') + + @pytest.mark.parametrize("iotype", [StringIO, BytesIO]) + def test_unicode_and_bytes_fmt(self, iotype): + # string type of fmt should not matter, see also gh-4053 + a = np.array([1.]) + s = iotype() + np.savetxt(s, a, fmt="%f") + s.seek(0) + if iotype is StringIO: + assert_equal(s.read(), "%f\n" % 1.) + else: + assert_equal(s.read(), b"%f\n" % 1.) + + @pytest.mark.skipif(sys.platform == 'win32', reason="files>4GB may not work") + @pytest.mark.slow + @requires_memory(free_bytes=7e9) + def test_large_zip(self): + def check_large_zip(memoryerror_raised): + memoryerror_raised.value = False + try: + # The test takes at least 6GB of memory, writes a file larger + # than 4GB. This tests the ``allowZip64`` kwarg to ``zipfile`` + test_data = np.asarray([np.random.rand( + np.random.randint(50, 100), 4) + for i in range(800000)], dtype=object) + with tempdir() as tmpdir: + np.savez(os.path.join(tmpdir, 'test.npz'), + test_data=test_data) + except MemoryError: + memoryerror_raised.value = True + raise + # run in a subprocess to ensure memory is released on PyPy, see gh-15775 + # Use an object in shared memory to re-raise the MemoryError exception + # in our process if needed, see gh-16889 + memoryerror_raised = Value(c_bool) + + # Since Python 3.8, the default start method for multiprocessing has + # been changed from 'fork' to 'spawn' on macOS, causing inconsistency + # on memory sharing model, leading to failed test for check_large_zip + ctx = get_context('fork') + p = ctx.Process(target=check_large_zip, args=(memoryerror_raised,)) + p.start() + p.join() + if memoryerror_raised.value: + raise MemoryError("Child process raised a MemoryError exception") + # -9 indicates a SIGKILL, probably an OOM. + if p.exitcode == -9: + pytest.xfail("subprocess got a SIGKILL, apparently free memory was not sufficient") + assert p.exitcode == 0 + +class LoadTxtBase: + def check_compressed(self, fopen, suffixes): + # Test that we can load data from a compressed file + wanted = np.arange(6).reshape((2, 3)) + linesep = ('\n', '\r\n', '\r') + for sep in linesep: + data = '0 1 2' + sep + '3 4 5' + for suffix in suffixes: + with temppath(suffix=suffix) as name: + with fopen(name, mode='wt', encoding='UTF-32-LE') as f: + f.write(data) + res = self.loadfunc(name, encoding='UTF-32-LE') + assert_array_equal(res, wanted) + with fopen(name, "rt", encoding='UTF-32-LE') as f: + res = self.loadfunc(f) + assert_array_equal(res, wanted) + + def test_compressed_gzip(self): + self.check_compressed(gzip.open, ('.gz',)) + + @pytest.mark.skipif(not HAS_BZ2, reason="Needs bz2") + def test_compressed_bz2(self): + self.check_compressed(bz2.open, ('.bz2',)) + + @pytest.mark.skipif(not HAS_LZMA, reason="Needs lzma") + def test_compressed_lzma(self): + self.check_compressed(lzma.open, ('.xz', '.lzma')) + + def test_encoding(self): + with temppath() as path: + with open(path, "wb") as f: + f.write('0.\n1.\n2.'.encode("UTF-16")) + x = self.loadfunc(path, encoding="UTF-16") + assert_array_equal(x, [0., 1., 2.]) + + def test_stringload(self): + # umlaute + nonascii = b'\xc3\xb6\xc3\xbc\xc3\xb6'.decode("UTF-8") + with temppath() as path: + with open(path, "wb") as f: + f.write(nonascii.encode("UTF-16")) + x = self.loadfunc(path, encoding="UTF-16", dtype=np.str_) + assert_array_equal(x, nonascii) + + def test_binary_decode(self): + utf16 = b'\xff\xfeh\x04 \x00i\x04 \x00j\x04' + v = self.loadfunc(BytesIO(utf16), dtype=np.str_, encoding='UTF-16') + assert_array_equal(v, np.array(utf16.decode('UTF-16').split())) + + def test_converters_decode(self): + # test converters that decode strings + c = TextIO() + c.write(b'\xcf\x96') + c.seek(0) + x = self.loadfunc(c, dtype=np.str_, encoding="bytes", + converters={0: lambda x: x.decode('UTF-8')}) + a = np.array([b'\xcf\x96'.decode('UTF-8')]) + assert_array_equal(x, a) + + def test_converters_nodecode(self): + # test native string converters enabled by setting an encoding + utf8 = b'\xcf\x96'.decode('UTF-8') + with temppath() as path: + with open(path, 'wt', encoding='UTF-8') as f: + f.write(utf8) + x = self.loadfunc(path, dtype=np.str_, + converters={0: lambda x: x + 't'}, + encoding='UTF-8') + a = np.array([utf8 + 't']) + assert_array_equal(x, a) + + +class TestLoadTxt(LoadTxtBase): + loadfunc = staticmethod(np.loadtxt) + + def setup_method(self): + # lower chunksize for testing + self.orig_chunk = _npyio_impl._loadtxt_chunksize + _npyio_impl._loadtxt_chunksize = 1 + + def teardown_method(self): + _npyio_impl._loadtxt_chunksize = self.orig_chunk + + def test_record(self): + c = TextIO() + c.write('1 2\n3 4') + c.seek(0) + x = np.loadtxt(c, dtype=[('x', np.int32), ('y', np.int32)]) + a = np.array([(1, 2), (3, 4)], dtype=[('x', 'i4'), ('y', 'i4')]) + assert_array_equal(x, a) + + d = TextIO() + d.write('M 64 75.0\nF 25 60.0') + d.seek(0) + mydescriptor = {'names': ('gender', 'age', 'weight'), + 'formats': ('S1', 'i4', 'f4')} + b = np.array([('M', 64.0, 75.0), + ('F', 25.0, 60.0)], dtype=mydescriptor) + y = np.loadtxt(d, dtype=mydescriptor) + assert_array_equal(y, b) + + def test_array(self): + c = TextIO() + c.write('1 2\n3 4') + + c.seek(0) + x = np.loadtxt(c, dtype=int) + a = np.array([[1, 2], [3, 4]], int) + assert_array_equal(x, a) + + c.seek(0) + x = np.loadtxt(c, dtype=float) + a = np.array([[1, 2], [3, 4]], float) + assert_array_equal(x, a) + + def test_1D(self): + c = TextIO() + c.write('1\n2\n3\n4\n') + c.seek(0) + x = np.loadtxt(c, dtype=int) + a = np.array([1, 2, 3, 4], int) + assert_array_equal(x, a) + + c = TextIO() + c.write('1,2,3,4\n') + c.seek(0) + x = np.loadtxt(c, dtype=int, delimiter=',') + a = np.array([1, 2, 3, 4], int) + assert_array_equal(x, a) + + def test_missing(self): + c = TextIO() + c.write('1,2,3,,5\n') + c.seek(0) + x = np.loadtxt(c, dtype=int, delimiter=',', + converters={3: lambda s: int(s or - 999)}) + a = np.array([1, 2, 3, -999, 5], int) + assert_array_equal(x, a) + + def test_converters_with_usecols(self): + c = TextIO() + c.write('1,2,3,,5\n6,7,8,9,10\n') + c.seek(0) + x = np.loadtxt(c, dtype=int, delimiter=',', + converters={3: lambda s: int(s or - 999)}, + usecols=(1, 3,)) + a = np.array([[2, -999], [7, 9]], int) + assert_array_equal(x, a) + + def test_comments_unicode(self): + c = TextIO() + c.write('# comment\n1,2,3,5\n') + c.seek(0) + x = np.loadtxt(c, dtype=int, delimiter=',', + comments='#') + a = np.array([1, 2, 3, 5], int) + assert_array_equal(x, a) + + def test_comments_byte(self): + c = TextIO() + c.write('# comment\n1,2,3,5\n') + c.seek(0) + x = np.loadtxt(c, dtype=int, delimiter=',', + comments=b'#') + a = np.array([1, 2, 3, 5], int) + assert_array_equal(x, a) + + def test_comments_multiple(self): + c = TextIO() + c.write('# comment\n1,2,3\n@ comment2\n4,5,6 // comment3') + c.seek(0) + x = np.loadtxt(c, dtype=int, delimiter=',', + comments=['#', '@', '//']) + a = np.array([[1, 2, 3], [4, 5, 6]], int) + assert_array_equal(x, a) + + @pytest.mark.skipif(IS_PYPY and sys.implementation.version <= (7, 3, 8), + reason="PyPy bug in error formatting") + def test_comments_multi_chars(self): + c = TextIO() + c.write('/* comment\n1,2,3,5\n') + c.seek(0) + x = np.loadtxt(c, dtype=int, delimiter=',', + comments='/*') + a = np.array([1, 2, 3, 5], int) + assert_array_equal(x, a) + + # Check that '/*' is not transformed to ['/', '*'] + c = TextIO() + c.write('*/ comment\n1,2,3,5\n') + c.seek(0) + assert_raises(ValueError, np.loadtxt, c, dtype=int, delimiter=',', + comments='/*') + + def test_skiprows(self): + c = TextIO() + c.write('comment\n1,2,3,5\n') + c.seek(0) + x = np.loadtxt(c, dtype=int, delimiter=',', + skiprows=1) + a = np.array([1, 2, 3, 5], int) + assert_array_equal(x, a) + + c = TextIO() + c.write('# comment\n1,2,3,5\n') + c.seek(0) + x = np.loadtxt(c, dtype=int, delimiter=',', + skiprows=1) + a = np.array([1, 2, 3, 5], int) + assert_array_equal(x, a) + + def test_usecols(self): + a = np.array([[1, 2], [3, 4]], float) + c = BytesIO() + np.savetxt(c, a) + c.seek(0) + x = np.loadtxt(c, dtype=float, usecols=(1,)) + assert_array_equal(x, a[:, 1]) + + a = np.array([[1, 2, 3], [3, 4, 5]], float) + c = BytesIO() + np.savetxt(c, a) + c.seek(0) + x = np.loadtxt(c, dtype=float, usecols=(1, 2)) + assert_array_equal(x, a[:, 1:]) + + # Testing with arrays instead of tuples. + c.seek(0) + x = np.loadtxt(c, dtype=float, usecols=np.array([1, 2])) + assert_array_equal(x, a[:, 1:]) + + # Testing with an integer instead of a sequence + for int_type in [int, np.int8, np.int16, + np.int32, np.int64, np.uint8, np.uint16, + np.uint32, np.uint64]: + to_read = int_type(1) + c.seek(0) + x = np.loadtxt(c, dtype=float, usecols=to_read) + assert_array_equal(x, a[:, 1]) + + # Testing with some crazy custom integer type + class CrazyInt: + def __index__(self): + return 1 + + crazy_int = CrazyInt() + c.seek(0) + x = np.loadtxt(c, dtype=float, usecols=crazy_int) + assert_array_equal(x, a[:, 1]) + + c.seek(0) + x = np.loadtxt(c, dtype=float, usecols=(crazy_int,)) + assert_array_equal(x, a[:, 1]) + + # Checking with dtypes defined converters. + data = '''JOE 70.1 25.3 + BOB 60.5 27.9 + ''' + c = TextIO(data) + names = ['stid', 'temp'] + dtypes = ['S4', 'f8'] + arr = np.loadtxt(c, usecols=(0, 2), dtype=list(zip(names, dtypes))) + assert_equal(arr['stid'], [b"JOE", b"BOB"]) + assert_equal(arr['temp'], [25.3, 27.9]) + + # Testing non-ints in usecols + c.seek(0) + bogus_idx = 1.5 + assert_raises_regex( + TypeError, + f'^usecols must be.*{type(bogus_idx).__name__}', + np.loadtxt, c, usecols=bogus_idx + ) + + assert_raises_regex( + TypeError, + f'^usecols must be.*{type(bogus_idx).__name__}', + np.loadtxt, c, usecols=[0, bogus_idx, 0] + ) + + def test_bad_usecols(self): + with pytest.raises(OverflowError): + np.loadtxt(["1\n"], usecols=[2**64], delimiter=",") + with pytest.raises((ValueError, OverflowError)): + # Overflow error on 32bit platforms + np.loadtxt(["1\n"], usecols=[2**62], delimiter=",") + with pytest.raises(TypeError, + match="If a structured dtype .*. But 1 usecols were given and " + "the number of fields is 3."): + np.loadtxt(["1,1\n"], dtype="i,2i", usecols=[0], delimiter=",") + + def test_fancy_dtype(self): + c = TextIO() + c.write('1,2,3.0\n4,5,6.0\n') + c.seek(0) + dt = np.dtype([('x', int), ('y', [('t', int), ('s', float)])]) + x = np.loadtxt(c, dtype=dt, delimiter=',') + a = np.array([(1, (2, 3.0)), (4, (5, 6.0))], dt) + assert_array_equal(x, a) + + def test_shaped_dtype(self): + c = TextIO("aaaa 1.0 8.0 1 2 3 4 5 6") + dt = np.dtype([('name', 'S4'), ('x', float), ('y', float), + ('block', int, (2, 3))]) + x = np.loadtxt(c, dtype=dt) + a = np.array([('aaaa', 1.0, 8.0, [[1, 2, 3], [4, 5, 6]])], + dtype=dt) + assert_array_equal(x, a) + + def test_3d_shaped_dtype(self): + c = TextIO("aaaa 1.0 8.0 1 2 3 4 5 6 7 8 9 10 11 12") + dt = np.dtype([('name', 'S4'), ('x', float), ('y', float), + ('block', int, (2, 2, 3))]) + x = np.loadtxt(c, dtype=dt) + a = np.array([('aaaa', 1.0, 8.0, + [[[1, 2, 3], [4, 5, 6]], [[7, 8, 9], [10, 11, 12]]])], + dtype=dt) + assert_array_equal(x, a) + + def test_str_dtype(self): + # see gh-8033 + c = ["str1", "str2"] + + for dt in (str, np.bytes_): + a = np.array(["str1", "str2"], dtype=dt) + x = np.loadtxt(c, dtype=dt) + assert_array_equal(x, a) + + def test_empty_file(self): + with pytest.warns(UserWarning, match="input contained no data"): + c = TextIO() + x = np.loadtxt(c) + assert_equal(x.shape, (0,)) + x = np.loadtxt(c, dtype=np.int64) + assert_equal(x.shape, (0,)) + assert_(x.dtype == np.int64) + + def test_unused_converter(self): + c = TextIO() + c.writelines(['1 21\n', '3 42\n']) + c.seek(0) + data = np.loadtxt(c, usecols=(1,), + converters={0: lambda s: int(s, 16)}) + assert_array_equal(data, [21, 42]) + + c.seek(0) + data = np.loadtxt(c, usecols=(1,), + converters={1: lambda s: int(s, 16)}) + assert_array_equal(data, [33, 66]) + + def test_dtype_with_object(self): + # Test using an explicit dtype with an object + data = """ 1; 2001-01-01 + 2; 2002-01-31 """ + ndtype = [('idx', int), ('code', object)] + func = lambda s: strptime(s.strip(), "%Y-%m-%d") + converters = {1: func} + test = np.loadtxt(TextIO(data), delimiter=";", dtype=ndtype, + converters=converters) + control = np.array( + [(1, datetime(2001, 1, 1)), (2, datetime(2002, 1, 31))], + dtype=ndtype) + assert_equal(test, control) + + def test_uint64_type(self): + tgt = (9223372043271415339, 9223372043271415853) + c = TextIO() + c.write("%s %s" % tgt) + c.seek(0) + res = np.loadtxt(c, dtype=np.uint64) + assert_equal(res, tgt) + + def test_int64_type(self): + tgt = (-9223372036854775807, 9223372036854775807) + c = TextIO() + c.write("%s %s" % tgt) + c.seek(0) + res = np.loadtxt(c, dtype=np.int64) + assert_equal(res, tgt) + + def test_from_float_hex(self): + # IEEE doubles and floats only, otherwise the float32 + # conversion may fail. + tgt = np.logspace(-10, 10, 5).astype(np.float32) + tgt = np.hstack((tgt, -tgt)).astype(float) + inp = '\n'.join(map(float.hex, tgt)) + c = TextIO() + c.write(inp) + for dt in [float, np.float32]: + c.seek(0) + res = np.loadtxt( + c, dtype=dt, converters=float.fromhex, encoding="latin1") + assert_equal(res, tgt, err_msg=f"{dt}") + + @pytest.mark.skipif(IS_PYPY and sys.implementation.version <= (7, 3, 8), + reason="PyPy bug in error formatting") + def test_default_float_converter_no_default_hex_conversion(self): + """ + Ensure that fromhex is only used for values with the correct prefix and + is not called by default. Regression test related to gh-19598. + """ + c = TextIO("a b c") + with pytest.raises(ValueError, + match=".*convert string 'a' to float64 at row 0, column 1"): + np.loadtxt(c) + + @pytest.mark.skipif(IS_PYPY and sys.implementation.version <= (7, 3, 8), + reason="PyPy bug in error formatting") + def test_default_float_converter_exception(self): + """ + Ensure that the exception message raised during failed floating point + conversion is correct. Regression test related to gh-19598. + """ + c = TextIO("qrs tuv") # Invalid values for default float converter + with pytest.raises(ValueError, + match="could not convert string 'qrs' to float64"): + np.loadtxt(c) + + def test_from_complex(self): + tgt = (complex(1, 1), complex(1, -1)) + c = TextIO() + c.write("%s %s" % tgt) + c.seek(0) + res = np.loadtxt(c, dtype=complex) + assert_equal(res, tgt) + + def test_complex_misformatted(self): + # test for backward compatibility + # some complex formats used to generate x+-yj + a = np.zeros((2, 2), dtype=np.complex128) + re = np.pi + im = np.e + a[:] = re - 1.0j * im + c = BytesIO() + np.savetxt(c, a, fmt='%.16e') + c.seek(0) + txt = c.read() + c.seek(0) + # misformat the sign on the imaginary part, gh 7895 + txt_bad = txt.replace(b'e+00-', b'e00+-') + assert_(txt_bad != txt) + c.write(txt_bad) + c.seek(0) + res = np.loadtxt(c, dtype=complex) + assert_equal(res, a) + + def test_universal_newline(self): + with temppath() as name: + with open(name, 'w') as f: + f.write('1 21\r3 42\r') + data = np.loadtxt(name) + assert_array_equal(data, [[1, 21], [3, 42]]) + + def test_empty_field_after_tab(self): + c = TextIO() + c.write('1 \t2 \t3\tstart \n4\t5\t6\t \n7\t8\t9.5\t') + c.seek(0) + dt = {'names': ('x', 'y', 'z', 'comment'), + 'formats': ('<i4', '<i4', '<f4', '|S8')} + x = np.loadtxt(c, dtype=dt, delimiter='\t') + a = np.array([b'start ', b' ', b'']) + assert_array_equal(x['comment'], a) + + def test_unpack_structured(self): + txt = TextIO("M 21 72\nF 35 58") + dt = {'names': ('a', 'b', 'c'), 'formats': ('|S1', '<i4', '<f4')} + a, b, c = np.loadtxt(txt, dtype=dt, unpack=True) + assert_(a.dtype.str == '|S1') + assert_(b.dtype.str == '<i4') + assert_(c.dtype.str == '<f4') + assert_array_equal(a, np.array([b'M', b'F'])) + assert_array_equal(b, np.array([21, 35])) + assert_array_equal(c, np.array([72., 58.])) + + def test_ndmin_keyword(self): + c = TextIO() + c.write('1,2,3\n4,5,6') + c.seek(0) + assert_raises(ValueError, np.loadtxt, c, ndmin=3) + c.seek(0) + assert_raises(ValueError, np.loadtxt, c, ndmin=1.5) + c.seek(0) + x = np.loadtxt(c, dtype=int, delimiter=',', ndmin=1) + a = np.array([[1, 2, 3], [4, 5, 6]]) + assert_array_equal(x, a) + + d = TextIO() + d.write('0,1,2') + d.seek(0) + x = np.loadtxt(d, dtype=int, delimiter=',', ndmin=2) + assert_(x.shape == (1, 3)) + d.seek(0) + x = np.loadtxt(d, dtype=int, delimiter=',', ndmin=1) + assert_(x.shape == (3,)) + d.seek(0) + x = np.loadtxt(d, dtype=int, delimiter=',', ndmin=0) + assert_(x.shape == (3,)) + + e = TextIO() + e.write('0\n1\n2') + e.seek(0) + x = np.loadtxt(e, dtype=int, delimiter=',', ndmin=2) + assert_(x.shape == (3, 1)) + e.seek(0) + x = np.loadtxt(e, dtype=int, delimiter=',', ndmin=1) + assert_(x.shape == (3,)) + e.seek(0) + x = np.loadtxt(e, dtype=int, delimiter=',', ndmin=0) + assert_(x.shape == (3,)) + + # Test ndmin kw with empty file. + with pytest.warns(UserWarning, match="input contained no data"): + f = TextIO() + assert_(np.loadtxt(f, ndmin=2).shape == (0, 1,)) + assert_(np.loadtxt(f, ndmin=1).shape == (0,)) + + def test_generator_source(self): + def count(): + for i in range(10): + yield "%d" % i + + res = np.loadtxt(count()) + assert_array_equal(res, np.arange(10)) + + def test_bad_line(self): + c = TextIO() + c.write('1 2 3\n4 5 6\n2 3') + c.seek(0) + + # Check for exception and that exception contains line number + assert_raises_regex(ValueError, "3", np.loadtxt, c) + + def test_none_as_string(self): + # gh-5155, None should work as string when format demands it + c = TextIO() + c.write('100,foo,200\n300,None,400') + c.seek(0) + dt = np.dtype([('x', int), ('a', 'S10'), ('y', int)]) + np.loadtxt(c, delimiter=',', dtype=dt, comments=None) # Should succeed + + @pytest.mark.skipif(locale.getpreferredencoding() == 'ANSI_X3.4-1968', + reason="Wrong preferred encoding") + def test_binary_load(self): + butf8 = b"5,6,7,\xc3\x95scarscar\r\n15,2,3,hello\r\n"\ + b"20,2,3,\xc3\x95scar\r\n" + sutf8 = butf8.decode("UTF-8").replace("\r", "").splitlines() + with temppath() as path: + with open(path, "wb") as f: + f.write(butf8) + with open(path, "rb") as f: + x = np.loadtxt(f, encoding="UTF-8", dtype=np.str_) + assert_array_equal(x, sutf8) + # test broken latin1 conversion people now rely on + with open(path, "rb") as f: + x = np.loadtxt(f, encoding="UTF-8", dtype="S") + x = [b'5,6,7,\xc3\x95scarscar', b'15,2,3,hello', b'20,2,3,\xc3\x95scar'] + assert_array_equal(x, np.array(x, dtype="S")) + + def test_max_rows(self): + c = TextIO() + c.write('1,2,3,5\n4,5,7,8\n2,1,4,5') + c.seek(0) + x = np.loadtxt(c, dtype=int, delimiter=',', + max_rows=1) + a = np.array([1, 2, 3, 5], int) + assert_array_equal(x, a) + + def test_max_rows_with_skiprows(self): + c = TextIO() + c.write('comments\n1,2,3,5\n4,5,7,8\n2,1,4,5') + c.seek(0) + x = np.loadtxt(c, dtype=int, delimiter=',', + skiprows=1, max_rows=1) + a = np.array([1, 2, 3, 5], int) + assert_array_equal(x, a) + + c = TextIO() + c.write('comment\n1,2,3,5\n4,5,7,8\n2,1,4,5') + c.seek(0) + x = np.loadtxt(c, dtype=int, delimiter=',', + skiprows=1, max_rows=2) + a = np.array([[1, 2, 3, 5], [4, 5, 7, 8]], int) + assert_array_equal(x, a) + + def test_max_rows_with_read_continuation(self): + c = TextIO() + c.write('1,2,3,5\n4,5,7,8\n2,1,4,5') + c.seek(0) + x = np.loadtxt(c, dtype=int, delimiter=',', + max_rows=2) + a = np.array([[1, 2, 3, 5], [4, 5, 7, 8]], int) + assert_array_equal(x, a) + # test continuation + x = np.loadtxt(c, dtype=int, delimiter=',') + a = np.array([2, 1, 4, 5], int) + assert_array_equal(x, a) + + def test_max_rows_larger(self): + #test max_rows > num rows + c = TextIO() + c.write('comment\n1,2,3,5\n4,5,7,8\n2,1,4,5') + c.seek(0) + x = np.loadtxt(c, dtype=int, delimiter=',', + skiprows=1, max_rows=6) + a = np.array([[1, 2, 3, 5], [4, 5, 7, 8], [2, 1, 4, 5]], int) + assert_array_equal(x, a) + + @pytest.mark.parametrize(["skip", "data"], [ + (1, ["ignored\n", "1,2\n", "\n", "3,4\n"]), + # "Bad" lines that do not end in newlines: + (1, ["ignored", "1,2", "", "3,4"]), + (1, StringIO("ignored\n1,2\n\n3,4")), + # Same as above, but do not skip any lines: + (0, ["-1,0\n", "1,2\n", "\n", "3,4\n"]), + (0, ["-1,0", "1,2", "", "3,4"]), + (0, StringIO("-1,0\n1,2\n\n3,4"))]) + def test_max_rows_empty_lines(self, skip, data): + with pytest.warns(UserWarning, + match=f"Input line 3.*max_rows={3 - skip}"): + res = np.loadtxt(data, dtype=int, skiprows=skip, delimiter=",", + max_rows=3 - skip) + assert_array_equal(res, [[-1, 0], [1, 2], [3, 4]][skip:]) + + if isinstance(data, StringIO): + data.seek(0) + + with warnings.catch_warnings(): + warnings.simplefilter("error", UserWarning) + with pytest.raises(UserWarning): + np.loadtxt(data, dtype=int, skiprows=skip, delimiter=",", + max_rows=3 - skip) + +class Testfromregex: + def test_record(self): + c = TextIO() + c.write('1.312 foo\n1.534 bar\n4.444 qux') + c.seek(0) + + dt = [('num', np.float64), ('val', 'S3')] + x = np.fromregex(c, r"([0-9.]+)\s+(...)", dt) + a = np.array([(1.312, 'foo'), (1.534, 'bar'), (4.444, 'qux')], + dtype=dt) + assert_array_equal(x, a) + + def test_record_2(self): + c = TextIO() + c.write('1312 foo\n1534 bar\n4444 qux') + c.seek(0) + + dt = [('num', np.int32), ('val', 'S3')] + x = np.fromregex(c, r"(\d+)\s+(...)", dt) + a = np.array([(1312, 'foo'), (1534, 'bar'), (4444, 'qux')], + dtype=dt) + assert_array_equal(x, a) + + def test_record_3(self): + c = TextIO() + c.write('1312 foo\n1534 bar\n4444 qux') + c.seek(0) + + dt = [('num', np.float64)] + x = np.fromregex(c, r"(\d+)\s+...", dt) + a = np.array([(1312,), (1534,), (4444,)], dtype=dt) + assert_array_equal(x, a) + + @pytest.mark.parametrize("path_type", [str, Path]) + def test_record_unicode(self, path_type): + utf8 = b'\xcf\x96' + with temppath() as str_path: + path = path_type(str_path) + with open(path, 'wb') as f: + f.write(b'1.312 foo' + utf8 + b' \n1.534 bar\n4.444 qux') + + dt = [('num', np.float64), ('val', 'U4')] + x = np.fromregex(path, r"(?u)([0-9.]+)\s+(\w+)", dt, encoding='UTF-8') + a = np.array([(1.312, 'foo' + utf8.decode('UTF-8')), (1.534, 'bar'), + (4.444, 'qux')], dtype=dt) + assert_array_equal(x, a) + + regexp = re.compile(r"([0-9.]+)\s+(\w+)", re.UNICODE) + x = np.fromregex(path, regexp, dt, encoding='UTF-8') + assert_array_equal(x, a) + + def test_compiled_bytes(self): + regexp = re.compile(br'(\d)') + c = BytesIO(b'123') + dt = [('num', np.float64)] + a = np.array([1, 2, 3], dtype=dt) + x = np.fromregex(c, regexp, dt) + assert_array_equal(x, a) + + def test_bad_dtype_not_structured(self): + regexp = re.compile(br'(\d)') + c = BytesIO(b'123') + with pytest.raises(TypeError, match='structured datatype'): + np.fromregex(c, regexp, dtype=np.float64) + + +#####-------------------------------------------------------------------------- + + +class TestFromTxt(LoadTxtBase): + loadfunc = staticmethod(np.genfromtxt) + + def test_record(self): + # Test w/ explicit dtype + data = TextIO('1 2\n3 4') + test = np.genfromtxt(data, dtype=[('x', np.int32), ('y', np.int32)]) + control = np.array([(1, 2), (3, 4)], dtype=[('x', 'i4'), ('y', 'i4')]) + assert_equal(test, control) + # + data = TextIO('M 64.0 75.0\nF 25.0 60.0') + descriptor = {'names': ('gender', 'age', 'weight'), + 'formats': ('S1', 'i4', 'f4')} + control = np.array([('M', 64.0, 75.0), ('F', 25.0, 60.0)], + dtype=descriptor) + test = np.genfromtxt(data, dtype=descriptor) + assert_equal(test, control) + + def test_array(self): + # Test outputting a standard ndarray + data = TextIO('1 2\n3 4') + control = np.array([[1, 2], [3, 4]], dtype=int) + test = np.genfromtxt(data, dtype=int) + assert_array_equal(test, control) + # + data.seek(0) + control = np.array([[1, 2], [3, 4]], dtype=float) + test = np.loadtxt(data, dtype=float) + assert_array_equal(test, control) + + def test_1D(self): + # Test squeezing to 1D + control = np.array([1, 2, 3, 4], int) + # + data = TextIO('1\n2\n3\n4\n') + test = np.genfromtxt(data, dtype=int) + assert_array_equal(test, control) + # + data = TextIO('1,2,3,4\n') + test = np.genfromtxt(data, dtype=int, delimiter=',') + assert_array_equal(test, control) + + def test_comments(self): + # Test the stripping of comments + control = np.array([1, 2, 3, 5], int) + # Comment on its own line + data = TextIO('# comment\n1,2,3,5\n') + test = np.genfromtxt(data, dtype=int, delimiter=',', comments='#') + assert_equal(test, control) + # Comment at the end of a line + data = TextIO('1,2,3,5# comment\n') + test = np.genfromtxt(data, dtype=int, delimiter=',', comments='#') + assert_equal(test, control) + + def test_skiprows(self): + # Test row skipping + control = np.array([1, 2, 3, 5], int) + kwargs = {"dtype": int, "delimiter": ','} + # + data = TextIO('comment\n1,2,3,5\n') + test = np.genfromtxt(data, skip_header=1, **kwargs) + assert_equal(test, control) + # + data = TextIO('# comment\n1,2,3,5\n') + test = np.loadtxt(data, skiprows=1, **kwargs) + assert_equal(test, control) + + def test_skip_footer(self): + data = [f"# {i}" for i in range(1, 6)] + data.append("A, B, C") + data.extend([f"{i},{i:3.1f},{i:03d}" for i in range(51)]) + data[-1] = "99,99" + kwargs = {"delimiter": ",", "names": True, "skip_header": 5, "skip_footer": 10} + test = np.genfromtxt(TextIO("\n".join(data)), **kwargs) + ctrl = np.array([(f"{i:f}", f"{i:f}", f"{i:f}") for i in range(41)], + dtype=[(_, float) for _ in "ABC"]) + assert_equal(test, ctrl) + + def test_skip_footer_with_invalid(self): + with suppress_warnings() as sup: + sup.filter(ConversionWarning) + basestr = '1 1\n2 2\n3 3\n4 4\n5 \n6 \n7 \n' + # Footer too small to get rid of all invalid values + assert_raises(ValueError, np.genfromtxt, + TextIO(basestr), skip_footer=1) + # except ValueError: + # pass + a = np.genfromtxt( + TextIO(basestr), skip_footer=1, invalid_raise=False) + assert_equal(a, np.array([[1., 1.], [2., 2.], [3., 3.], [4., 4.]])) + # + a = np.genfromtxt(TextIO(basestr), skip_footer=3) + assert_equal(a, np.array([[1., 1.], [2., 2.], [3., 3.], [4., 4.]])) + # + basestr = '1 1\n2 \n3 3\n4 4\n5 \n6 6\n7 7\n' + a = np.genfromtxt( + TextIO(basestr), skip_footer=1, invalid_raise=False) + assert_equal(a, np.array([[1., 1.], [3., 3.], [4., 4.], [6., 6.]])) + a = np.genfromtxt( + TextIO(basestr), skip_footer=3, invalid_raise=False) + assert_equal(a, np.array([[1., 1.], [3., 3.], [4., 4.]])) + + def test_header(self): + # Test retrieving a header + data = TextIO('gender age weight\nM 64.0 75.0\nF 25.0 60.0') + with warnings.catch_warnings(record=True) as w: + warnings.filterwarnings('always', '', VisibleDeprecationWarning) + test = np.genfromtxt(data, dtype=None, names=True, + encoding='bytes') + assert_(w[0].category is VisibleDeprecationWarning) + control = {'gender': np.array([b'M', b'F']), + 'age': np.array([64.0, 25.0]), + 'weight': np.array([75.0, 60.0])} + assert_equal(test['gender'], control['gender']) + assert_equal(test['age'], control['age']) + assert_equal(test['weight'], control['weight']) + + def test_auto_dtype(self): + # Test the automatic definition of the output dtype + data = TextIO('A 64 75.0 3+4j True\nBCD 25 60.0 5+6j False') + with warnings.catch_warnings(record=True) as w: + warnings.filterwarnings('always', '', VisibleDeprecationWarning) + test = np.genfromtxt(data, dtype=None, encoding='bytes') + assert_(w[0].category is VisibleDeprecationWarning) + control = [np.array([b'A', b'BCD']), + np.array([64, 25]), + np.array([75.0, 60.0]), + np.array([3 + 4j, 5 + 6j]), + np.array([True, False]), ] + assert_equal(test.dtype.names, ['f0', 'f1', 'f2', 'f3', 'f4']) + for (i, ctrl) in enumerate(control): + assert_equal(test[f'f{i}'], ctrl) + + def test_auto_dtype_uniform(self): + # Tests whether the output dtype can be uniformized + data = TextIO('1 2 3 4\n5 6 7 8\n') + test = np.genfromtxt(data, dtype=None) + control = np.array([[1, 2, 3, 4], [5, 6, 7, 8]]) + assert_equal(test, control) + + def test_fancy_dtype(self): + # Check that a nested dtype isn't MIA + data = TextIO('1,2,3.0\n4,5,6.0\n') + fancydtype = np.dtype([('x', int), ('y', [('t', int), ('s', float)])]) + test = np.genfromtxt(data, dtype=fancydtype, delimiter=',') + control = np.array([(1, (2, 3.0)), (4, (5, 6.0))], dtype=fancydtype) + assert_equal(test, control) + + def test_names_overwrite(self): + # Test overwriting the names of the dtype + descriptor = {'names': ('g', 'a', 'w'), + 'formats': ('S1', 'i4', 'f4')} + data = TextIO(b'M 64.0 75.0\nF 25.0 60.0') + names = ('gender', 'age', 'weight') + test = np.genfromtxt(data, dtype=descriptor, names=names) + descriptor['names'] = names + control = np.array([('M', 64.0, 75.0), + ('F', 25.0, 60.0)], dtype=descriptor) + assert_equal(test, control) + + def test_bad_fname(self): + with pytest.raises(TypeError, match='fname must be a string,'): + np.genfromtxt(123) + + def test_commented_header(self): + # Check that names can be retrieved even if the line is commented out. + data = TextIO(""" +#gender age weight +M 21 72.100000 +F 35 58.330000 +M 33 21.99 + """) + # The # is part of the first name and should be deleted automatically. + with warnings.catch_warnings(record=True) as w: + warnings.filterwarnings('always', '', VisibleDeprecationWarning) + test = np.genfromtxt(data, names=True, dtype=None, + encoding="bytes") + assert_(w[0].category is VisibleDeprecationWarning) + ctrl = np.array([('M', 21, 72.1), ('F', 35, 58.33), ('M', 33, 21.99)], + dtype=[('gender', '|S1'), ('age', int), ('weight', float)]) + assert_equal(test, ctrl) + # Ditto, but we should get rid of the first element + data = TextIO(b""" +# gender age weight +M 21 72.100000 +F 35 58.330000 +M 33 21.99 + """) + with warnings.catch_warnings(record=True) as w: + warnings.filterwarnings('always', '', VisibleDeprecationWarning) + test = np.genfromtxt(data, names=True, dtype=None, + encoding="bytes") + assert_(w[0].category is VisibleDeprecationWarning) + assert_equal(test, ctrl) + + def test_names_and_comments_none(self): + # Tests case when names is true but comments is None (gh-10780) + data = TextIO('col1 col2\n 1 2\n 3 4') + test = np.genfromtxt(data, dtype=(int, int), comments=None, names=True) + control = np.array([(1, 2), (3, 4)], dtype=[('col1', int), ('col2', int)]) + assert_equal(test, control) + + def test_file_is_closed_on_error(self): + # gh-13200 + with tempdir() as tmpdir: + fpath = os.path.join(tmpdir, "test.csv") + with open(fpath, "wb") as f: + f.write('\N{GREEK PI SYMBOL}'.encode()) + + # ResourceWarnings are emitted from a destructor, so won't be + # detected by regular propagation to errors. + with assert_no_warnings(): + with pytest.raises(UnicodeDecodeError): + np.genfromtxt(fpath, encoding="ascii") + + def test_autonames_and_usecols(self): + # Tests names and usecols + data = TextIO('A B C D\n aaaa 121 45 9.1') + with warnings.catch_warnings(record=True) as w: + warnings.filterwarnings('always', '', VisibleDeprecationWarning) + test = np.genfromtxt(data, usecols=('A', 'C', 'D'), + names=True, dtype=None, encoding="bytes") + assert_(w[0].category is VisibleDeprecationWarning) + control = np.array(('aaaa', 45, 9.1), + dtype=[('A', '|S4'), ('C', int), ('D', float)]) + assert_equal(test, control) + + def test_converters_with_usecols(self): + # Test the combination user-defined converters and usecol + data = TextIO('1,2,3,,5\n6,7,8,9,10\n') + test = np.genfromtxt(data, dtype=int, delimiter=',', + converters={3: lambda s: int(s or - 999)}, + usecols=(1, 3,)) + control = np.array([[2, -999], [7, 9]], int) + assert_equal(test, control) + + def test_converters_with_usecols_and_names(self): + # Tests names and usecols + data = TextIO('A B C D\n aaaa 121 45 9.1') + with warnings.catch_warnings(record=True) as w: + warnings.filterwarnings('always', '', VisibleDeprecationWarning) + test = np.genfromtxt(data, usecols=('A', 'C', 'D'), names=True, + dtype=None, encoding="bytes", + converters={'C': lambda s: 2 * int(s)}) + assert_(w[0].category is VisibleDeprecationWarning) + control = np.array(('aaaa', 90, 9.1), + dtype=[('A', '|S4'), ('C', int), ('D', float)]) + assert_equal(test, control) + + def test_converters_cornercases(self): + # Test the conversion to datetime. + converter = { + 'date': lambda s: strptime(s, '%Y-%m-%d %H:%M:%SZ')} + data = TextIO('2009-02-03 12:00:00Z, 72214.0') + test = np.genfromtxt(data, delimiter=',', dtype=None, + names=['date', 'stid'], converters=converter) + control = np.array((datetime(2009, 2, 3), 72214.), + dtype=[('date', np.object_), ('stid', float)]) + assert_equal(test, control) + + def test_converters_cornercases2(self): + # Test the conversion to datetime64. + converter = { + 'date': lambda s: np.datetime64(strptime(s, '%Y-%m-%d %H:%M:%SZ'))} + data = TextIO('2009-02-03 12:00:00Z, 72214.0') + test = np.genfromtxt(data, delimiter=',', dtype=None, + names=['date', 'stid'], converters=converter) + control = np.array((datetime(2009, 2, 3), 72214.), + dtype=[('date', 'datetime64[us]'), ('stid', float)]) + assert_equal(test, control) + + def test_unused_converter(self): + # Test whether unused converters are forgotten + data = TextIO("1 21\n 3 42\n") + test = np.genfromtxt(data, usecols=(1,), + converters={0: lambda s: int(s, 16)}) + assert_equal(test, [21, 42]) + # + data.seek(0) + test = np.genfromtxt(data, usecols=(1,), + converters={1: lambda s: int(s, 16)}) + assert_equal(test, [33, 66]) + + def test_invalid_converter(self): + strip_rand = lambda x: float((b'r' in x.lower() and x.split()[-1]) or + ((b'r' not in x.lower() and x.strip()) or 0.0)) + strip_per = lambda x: float((b'%' in x.lower() and x.split()[0]) or + ((b'%' not in x.lower() and x.strip()) or 0.0)) + s = TextIO("D01N01,10/1/2003 ,1 %,R 75,400,600\r\n" + "L24U05,12/5/2003, 2 %,1,300, 150.5\r\n" + "D02N03,10/10/2004,R 1,,7,145.55") + kwargs = { + "converters": {2: strip_per, 3: strip_rand}, "delimiter": ",", + "dtype": None, "encoding": "bytes"} + assert_raises(ConverterError, np.genfromtxt, s, **kwargs) + + def test_tricky_converter_bug1666(self): + # Test some corner cases + s = TextIO('q1,2\nq3,4') + cnv = lambda s: float(s[1:]) + test = np.genfromtxt(s, delimiter=',', converters={0: cnv}) + control = np.array([[1., 2.], [3., 4.]]) + assert_equal(test, control) + + def test_dtype_with_converters(self): + dstr = "2009; 23; 46" + test = np.genfromtxt(TextIO(dstr,), + delimiter=";", dtype=float, converters={0: bytes}) + control = np.array([('2009', 23., 46)], + dtype=[('f0', '|S4'), ('f1', float), ('f2', float)]) + assert_equal(test, control) + test = np.genfromtxt(TextIO(dstr,), + delimiter=";", dtype=float, converters={0: float}) + control = np.array([2009., 23., 46],) + assert_equal(test, control) + + @pytest.mark.filterwarnings("ignore:.*recfromcsv.*:DeprecationWarning") + def test_dtype_with_converters_and_usecols(self): + dstr = "1,5,-1,1:1\n2,8,-1,1:n\n3,3,-2,m:n\n" + dmap = {'1:1': 0, '1:n': 1, 'm:1': 2, 'm:n': 3} + dtyp = [('e1', 'i4'), ('e2', 'i4'), ('e3', 'i2'), ('n', 'i1')] + conv = {0: int, 1: int, 2: int, 3: lambda r: dmap[r.decode()]} + test = recfromcsv(TextIO(dstr,), dtype=dtyp, delimiter=',', + names=None, converters=conv, encoding="bytes") + control = np.rec.array([(1, 5, -1, 0), (2, 8, -1, 1), (3, 3, -2, 3)], dtype=dtyp) + assert_equal(test, control) + dtyp = [('e1', 'i4'), ('e2', 'i4'), ('n', 'i1')] + test = recfromcsv(TextIO(dstr,), dtype=dtyp, delimiter=',', + usecols=(0, 1, 3), names=None, converters=conv, + encoding="bytes") + control = np.rec.array([(1, 5, 0), (2, 8, 1), (3, 3, 3)], dtype=dtyp) + assert_equal(test, control) + + def test_dtype_with_object(self): + # Test using an explicit dtype with an object + data = """ 1; 2001-01-01 + 2; 2002-01-31 """ + ndtype = [('idx', int), ('code', object)] + func = lambda s: strptime(s.strip(), "%Y-%m-%d") + converters = {1: func} + test = np.genfromtxt(TextIO(data), delimiter=";", dtype=ndtype, + converters=converters) + control = np.array( + [(1, datetime(2001, 1, 1)), (2, datetime(2002, 1, 31))], + dtype=ndtype) + assert_equal(test, control) + + ndtype = [('nest', [('idx', int), ('code', object)])] + with assert_raises_regex(NotImplementedError, + 'Nested fields.* not supported.*'): + test = np.genfromtxt(TextIO(data), delimiter=";", + dtype=ndtype, converters=converters) + + # nested but empty fields also aren't supported + ndtype = [('idx', int), ('code', object), ('nest', [])] + with assert_raises_regex(NotImplementedError, + 'Nested fields.* not supported.*'): + test = np.genfromtxt(TextIO(data), delimiter=";", + dtype=ndtype, converters=converters) + + def test_dtype_with_object_no_converter(self): + # Object without a converter uses bytes: + parsed = np.genfromtxt(TextIO("1"), dtype=object) + assert parsed[()] == b"1" + parsed = np.genfromtxt(TextIO("string"), dtype=object) + assert parsed[()] == b"string" + + def test_userconverters_with_explicit_dtype(self): + # Test user_converters w/ explicit (standard) dtype + data = TextIO('skip,skip,2001-01-01,1.0,skip') + test = np.genfromtxt(data, delimiter=",", names=None, dtype=float, + usecols=(2, 3), converters={2: bytes}) + control = np.array([('2001-01-01', 1.)], + dtype=[('', '|S10'), ('', float)]) + assert_equal(test, control) + + def test_utf8_userconverters_with_explicit_dtype(self): + utf8 = b'\xcf\x96' + with temppath() as path: + with open(path, 'wb') as f: + f.write(b'skip,skip,2001-01-01' + utf8 + b',1.0,skip') + test = np.genfromtxt(path, delimiter=",", names=None, dtype=float, + usecols=(2, 3), converters={2: str}, + encoding='UTF-8') + control = np.array([('2001-01-01' + utf8.decode('UTF-8'), 1.)], + dtype=[('', '|U11'), ('', float)]) + assert_equal(test, control) + + def test_spacedelimiter(self): + # Test space delimiter + data = TextIO("1 2 3 4 5\n6 7 8 9 10") + test = np.genfromtxt(data) + control = np.array([[1., 2., 3., 4., 5.], + [6., 7., 8., 9., 10.]]) + assert_equal(test, control) + + def test_integer_delimiter(self): + # Test using an integer for delimiter + data = " 1 2 3\n 4 5 67\n890123 4" + test = np.genfromtxt(TextIO(data), delimiter=3) + control = np.array([[1, 2, 3], [4, 5, 67], [890, 123, 4]]) + assert_equal(test, control) + + def test_missing(self): + data = TextIO('1,2,3,,5\n') + test = np.genfromtxt(data, dtype=int, delimiter=',', + converters={3: lambda s: int(s or - 999)}) + control = np.array([1, 2, 3, -999, 5], int) + assert_equal(test, control) + + def test_missing_with_tabs(self): + # Test w/ a delimiter tab + txt = "1\t2\t3\n\t2\t\n1\t\t3" + test = np.genfromtxt(TextIO(txt), delimiter="\t", + usemask=True,) + ctrl_d = np.array([(1, 2, 3), (np.nan, 2, np.nan), (1, np.nan, 3)],) + ctrl_m = np.array([(0, 0, 0), (1, 0, 1), (0, 1, 0)], dtype=bool) + assert_equal(test.data, ctrl_d) + assert_equal(test.mask, ctrl_m) + + def test_usecols(self): + # Test the selection of columns + # Select 1 column + control = np.array([[1, 2], [3, 4]], float) + data = TextIO() + np.savetxt(data, control) + data.seek(0) + test = np.genfromtxt(data, dtype=float, usecols=(1,)) + assert_equal(test, control[:, 1]) + # + control = np.array([[1, 2, 3], [3, 4, 5]], float) + data = TextIO() + np.savetxt(data, control) + data.seek(0) + test = np.genfromtxt(data, dtype=float, usecols=(1, 2)) + assert_equal(test, control[:, 1:]) + # Testing with arrays instead of tuples. + data.seek(0) + test = np.genfromtxt(data, dtype=float, usecols=np.array([1, 2])) + assert_equal(test, control[:, 1:]) + + def test_usecols_as_css(self): + # Test giving usecols with a comma-separated string + data = "1 2 3\n4 5 6" + test = np.genfromtxt(TextIO(data), + names="a, b, c", usecols="a, c") + ctrl = np.array([(1, 3), (4, 6)], dtype=[(_, float) for _ in "ac"]) + assert_equal(test, ctrl) + + def test_usecols_with_structured_dtype(self): + # Test usecols with an explicit structured dtype + data = TextIO("JOE 70.1 25.3\nBOB 60.5 27.9") + names = ['stid', 'temp'] + dtypes = ['S4', 'f8'] + test = np.genfromtxt( + data, usecols=(0, 2), dtype=list(zip(names, dtypes))) + assert_equal(test['stid'], [b"JOE", b"BOB"]) + assert_equal(test['temp'], [25.3, 27.9]) + + def test_usecols_with_integer(self): + # Test usecols with an integer + test = np.genfromtxt(TextIO(b"1 2 3\n4 5 6"), usecols=0) + assert_equal(test, np.array([1., 4.])) + + def test_usecols_with_named_columns(self): + # Test usecols with named columns + ctrl = np.array([(1, 3), (4, 6)], dtype=[('a', float), ('c', float)]) + data = "1 2 3\n4 5 6" + kwargs = {"names": "a, b, c"} + test = np.genfromtxt(TextIO(data), usecols=(0, -1), **kwargs) + assert_equal(test, ctrl) + test = np.genfromtxt(TextIO(data), + usecols=('a', 'c'), **kwargs) + assert_equal(test, ctrl) + + def test_empty_file(self): + # Test that an empty file raises the proper warning. + with suppress_warnings() as sup: + sup.filter(message="genfromtxt: Empty input file:") + data = TextIO() + test = np.genfromtxt(data) + assert_equal(test, np.array([])) + + # when skip_header > 0 + test = np.genfromtxt(data, skip_header=1) + assert_equal(test, np.array([])) + + def test_fancy_dtype_alt(self): + # Check that a nested dtype isn't MIA + data = TextIO('1,2,3.0\n4,5,6.0\n') + fancydtype = np.dtype([('x', int), ('y', [('t', int), ('s', float)])]) + test = np.genfromtxt(data, dtype=fancydtype, delimiter=',', usemask=True) + control = ma.array([(1, (2, 3.0)), (4, (5, 6.0))], dtype=fancydtype) + assert_equal(test, control) + + def test_shaped_dtype(self): + c = TextIO("aaaa 1.0 8.0 1 2 3 4 5 6") + dt = np.dtype([('name', 'S4'), ('x', float), ('y', float), + ('block', int, (2, 3))]) + x = np.genfromtxt(c, dtype=dt) + a = np.array([('aaaa', 1.0, 8.0, [[1, 2, 3], [4, 5, 6]])], + dtype=dt) + assert_array_equal(x, a) + + def test_withmissing(self): + data = TextIO('A,B\n0,1\n2,N/A') + kwargs = {"delimiter": ",", "missing_values": "N/A", "names": True} + test = np.genfromtxt(data, dtype=None, usemask=True, **kwargs) + control = ma.array([(0, 1), (2, -1)], + mask=[(False, False), (False, True)], + dtype=[('A', int), ('B', int)]) + assert_equal(test, control) + assert_equal(test.mask, control.mask) + # + data.seek(0) + test = np.genfromtxt(data, usemask=True, **kwargs) + control = ma.array([(0, 1), (2, -1)], + mask=[(False, False), (False, True)], + dtype=[('A', float), ('B', float)]) + assert_equal(test, control) + assert_equal(test.mask, control.mask) + + def test_user_missing_values(self): + data = "A, B, C\n0, 0., 0j\n1, N/A, 1j\n-9, 2.2, N/A\n3, -99, 3j" + basekwargs = {"dtype": None, "delimiter": ",", "names": True} + mdtype = [('A', int), ('B', float), ('C', complex)] + # + test = np.genfromtxt(TextIO(data), missing_values="N/A", + **basekwargs) + control = ma.array([(0, 0.0, 0j), (1, -999, 1j), + (-9, 2.2, -999j), (3, -99, 3j)], + mask=[(0, 0, 0), (0, 1, 0), (0, 0, 1), (0, 0, 0)], + dtype=mdtype) + assert_equal(test, control) + # + basekwargs['dtype'] = mdtype + test = np.genfromtxt(TextIO(data), + missing_values={0: -9, 1: -99, 2: -999j}, usemask=True, **basekwargs) + control = ma.array([(0, 0.0, 0j), (1, -999, 1j), + (-9, 2.2, -999j), (3, -99, 3j)], + mask=[(0, 0, 0), (0, 1, 0), (1, 0, 1), (0, 1, 0)], + dtype=mdtype) + assert_equal(test, control) + # + test = np.genfromtxt(TextIO(data), + missing_values={0: -9, 'B': -99, 'C': -999j}, + usemask=True, + **basekwargs) + control = ma.array([(0, 0.0, 0j), (1, -999, 1j), + (-9, 2.2, -999j), (3, -99, 3j)], + mask=[(0, 0, 0), (0, 1, 0), (1, 0, 1), (0, 1, 0)], + dtype=mdtype) + assert_equal(test, control) + + def test_user_filling_values(self): + # Test with missing and filling values + ctrl = np.array([(0, 3), (4, -999)], dtype=[('a', int), ('b', int)]) + data = "N/A, 2, 3\n4, ,???" + kwargs = {"delimiter": ",", + "dtype": int, + "names": "a,b,c", + "missing_values": {0: "N/A", 'b': " ", 2: "???"}, + "filling_values": {0: 0, 'b': 0, 2: -999}} + test = np.genfromtxt(TextIO(data), **kwargs) + ctrl = np.array([(0, 2, 3), (4, 0, -999)], + dtype=[(_, int) for _ in "abc"]) + assert_equal(test, ctrl) + # + test = np.genfromtxt(TextIO(data), usecols=(0, -1), **kwargs) + ctrl = np.array([(0, 3), (4, -999)], dtype=[(_, int) for _ in "ac"]) + assert_equal(test, ctrl) + + data2 = "1,2,*,4\n5,*,7,8\n" + test = np.genfromtxt(TextIO(data2), delimiter=',', dtype=int, + missing_values="*", filling_values=0) + ctrl = np.array([[1, 2, 0, 4], [5, 0, 7, 8]]) + assert_equal(test, ctrl) + test = np.genfromtxt(TextIO(data2), delimiter=',', dtype=int, + missing_values="*", filling_values=-1) + ctrl = np.array([[1, 2, -1, 4], [5, -1, 7, 8]]) + assert_equal(test, ctrl) + + def test_withmissing_float(self): + data = TextIO('A,B\n0,1.5\n2,-999.00') + test = np.genfromtxt(data, dtype=None, delimiter=',', + missing_values='-999.0', names=True, usemask=True) + control = ma.array([(0, 1.5), (2, -1.)], + mask=[(False, False), (False, True)], + dtype=[('A', int), ('B', float)]) + assert_equal(test, control) + assert_equal(test.mask, control.mask) + + def test_with_masked_column_uniform(self): + # Test masked column + data = TextIO('1 2 3\n4 5 6\n') + test = np.genfromtxt(data, dtype=None, + missing_values='2,5', usemask=True) + control = ma.array([[1, 2, 3], [4, 5, 6]], mask=[[0, 1, 0], [0, 1, 0]]) + assert_equal(test, control) + + def test_with_masked_column_various(self): + # Test masked column + data = TextIO('True 2 3\nFalse 5 6\n') + test = np.genfromtxt(data, dtype=None, + missing_values='2,5', usemask=True) + control = ma.array([(1, 2, 3), (0, 5, 6)], + mask=[(0, 1, 0), (0, 1, 0)], + dtype=[('f0', bool), ('f1', bool), ('f2', int)]) + assert_equal(test, control) + + def test_invalid_raise(self): + # Test invalid raise + data = ["1, 1, 1, 1, 1"] * 50 + for i in range(5): + data[10 * i] = "2, 2, 2, 2 2" + data.insert(0, "a, b, c, d, e") + mdata = TextIO("\n".join(data)) + + kwargs = {"delimiter": ",", "dtype": None, "names": True} + + def f(): + return np.genfromtxt(mdata, invalid_raise=False, **kwargs) + mtest = assert_warns(ConversionWarning, f) + assert_equal(len(mtest), 45) + assert_equal(mtest, np.ones(45, dtype=[(_, int) for _ in 'abcde'])) + # + mdata.seek(0) + assert_raises(ValueError, np.genfromtxt, mdata, + delimiter=",", names=True) + + def test_invalid_raise_with_usecols(self): + # Test invalid_raise with usecols + data = ["1, 1, 1, 1, 1"] * 50 + for i in range(5): + data[10 * i] = "2, 2, 2, 2 2" + data.insert(0, "a, b, c, d, e") + mdata = TextIO("\n".join(data)) + + kwargs = {"delimiter": ",", "dtype": None, "names": True, + "invalid_raise": False} + + def f(): + return np.genfromtxt(mdata, usecols=(0, 4), **kwargs) + mtest = assert_warns(ConversionWarning, f) + assert_equal(len(mtest), 45) + assert_equal(mtest, np.ones(45, dtype=[(_, int) for _ in 'ae'])) + # + mdata.seek(0) + mtest = np.genfromtxt(mdata, usecols=(0, 1), **kwargs) + assert_equal(len(mtest), 50) + control = np.ones(50, dtype=[(_, int) for _ in 'ab']) + control[[10 * _ for _ in range(5)]] = (2, 2) + assert_equal(mtest, control) + + def test_inconsistent_dtype(self): + # Test inconsistent dtype + data = ["1, 1, 1, 1, -1.1"] * 50 + mdata = TextIO("\n".join(data)) + + converters = {4: lambda x: f"({x.decode()})"} + kwargs = {"delimiter": ",", "converters": converters, + "dtype": [(_, int) for _ in 'abcde'], "encoding": "bytes"} + assert_raises(ValueError, np.genfromtxt, mdata, **kwargs) + + def test_default_field_format(self): + # Test default format + data = "0, 1, 2.3\n4, 5, 6.7" + mtest = np.genfromtxt(TextIO(data), + delimiter=",", dtype=None, defaultfmt="f%02i") + ctrl = np.array([(0, 1, 2.3), (4, 5, 6.7)], + dtype=[("f00", int), ("f01", int), ("f02", float)]) + assert_equal(mtest, ctrl) + + def test_single_dtype_wo_names(self): + # Test single dtype w/o names + data = "0, 1, 2.3\n4, 5, 6.7" + mtest = np.genfromtxt(TextIO(data), + delimiter=",", dtype=float, defaultfmt="f%02i") + ctrl = np.array([[0., 1., 2.3], [4., 5., 6.7]], dtype=float) + assert_equal(mtest, ctrl) + + def test_single_dtype_w_explicit_names(self): + # Test single dtype w explicit names + data = "0, 1, 2.3\n4, 5, 6.7" + mtest = np.genfromtxt(TextIO(data), + delimiter=",", dtype=float, names="a, b, c") + ctrl = np.array([(0., 1., 2.3), (4., 5., 6.7)], + dtype=[(_, float) for _ in "abc"]) + assert_equal(mtest, ctrl) + + def test_single_dtype_w_implicit_names(self): + # Test single dtype w implicit names + data = "a, b, c\n0, 1, 2.3\n4, 5, 6.7" + mtest = np.genfromtxt(TextIO(data), + delimiter=",", dtype=float, names=True) + ctrl = np.array([(0., 1., 2.3), (4., 5., 6.7)], + dtype=[(_, float) for _ in "abc"]) + assert_equal(mtest, ctrl) + + def test_easy_structured_dtype(self): + # Test easy structured dtype + data = "0, 1, 2.3\n4, 5, 6.7" + mtest = np.genfromtxt(TextIO(data), delimiter=",", + dtype=(int, float, float), defaultfmt="f_%02i") + ctrl = np.array([(0, 1., 2.3), (4, 5., 6.7)], + dtype=[("f_00", int), ("f_01", float), ("f_02", float)]) + assert_equal(mtest, ctrl) + + def test_autostrip(self): + # Test autostrip + data = "01/01/2003 , 1.3, abcde" + kwargs = {"delimiter": ",", "dtype": None, "encoding": "bytes"} + with warnings.catch_warnings(record=True) as w: + warnings.filterwarnings('always', '', VisibleDeprecationWarning) + mtest = np.genfromtxt(TextIO(data), **kwargs) + assert_(w[0].category is VisibleDeprecationWarning) + ctrl = np.array([('01/01/2003 ', 1.3, ' abcde')], + dtype=[('f0', '|S12'), ('f1', float), ('f2', '|S8')]) + assert_equal(mtest, ctrl) + with warnings.catch_warnings(record=True) as w: + warnings.filterwarnings('always', '', VisibleDeprecationWarning) + mtest = np.genfromtxt(TextIO(data), autostrip=True, **kwargs) + assert_(w[0].category is VisibleDeprecationWarning) + ctrl = np.array([('01/01/2003', 1.3, 'abcde')], + dtype=[('f0', '|S10'), ('f1', float), ('f2', '|S5')]) + assert_equal(mtest, ctrl) + + def test_replace_space(self): + # Test the 'replace_space' option + txt = "A.A, B (B), C:C\n1, 2, 3.14" + # Test default: replace ' ' by '_' and delete non-alphanum chars + test = np.genfromtxt(TextIO(txt), + delimiter=",", names=True, dtype=None) + ctrl_dtype = [("AA", int), ("B_B", int), ("CC", float)] + ctrl = np.array((1, 2, 3.14), dtype=ctrl_dtype) + assert_equal(test, ctrl) + # Test: no replace, no delete + test = np.genfromtxt(TextIO(txt), + delimiter=",", names=True, dtype=None, + replace_space='', deletechars='') + ctrl_dtype = [("A.A", int), ("B (B)", int), ("C:C", float)] + ctrl = np.array((1, 2, 3.14), dtype=ctrl_dtype) + assert_equal(test, ctrl) + # Test: no delete (spaces are replaced by _) + test = np.genfromtxt(TextIO(txt), + delimiter=",", names=True, dtype=None, + deletechars='') + ctrl_dtype = [("A.A", int), ("B_(B)", int), ("C:C", float)] + ctrl = np.array((1, 2, 3.14), dtype=ctrl_dtype) + assert_equal(test, ctrl) + + def test_replace_space_known_dtype(self): + # Test the 'replace_space' (and related) options when dtype != None + txt = "A.A, B (B), C:C\n1, 2, 3" + # Test default: replace ' ' by '_' and delete non-alphanum chars + test = np.genfromtxt(TextIO(txt), + delimiter=",", names=True, dtype=int) + ctrl_dtype = [("AA", int), ("B_B", int), ("CC", int)] + ctrl = np.array((1, 2, 3), dtype=ctrl_dtype) + assert_equal(test, ctrl) + # Test: no replace, no delete + test = np.genfromtxt(TextIO(txt), + delimiter=",", names=True, dtype=int, + replace_space='', deletechars='') + ctrl_dtype = [("A.A", int), ("B (B)", int), ("C:C", int)] + ctrl = np.array((1, 2, 3), dtype=ctrl_dtype) + assert_equal(test, ctrl) + # Test: no delete (spaces are replaced by _) + test = np.genfromtxt(TextIO(txt), + delimiter=",", names=True, dtype=int, + deletechars='') + ctrl_dtype = [("A.A", int), ("B_(B)", int), ("C:C", int)] + ctrl = np.array((1, 2, 3), dtype=ctrl_dtype) + assert_equal(test, ctrl) + + def test_incomplete_names(self): + # Test w/ incomplete names + data = "A,,C\n0,1,2\n3,4,5" + kwargs = {"delimiter": ",", "names": True} + # w/ dtype=None + ctrl = np.array([(0, 1, 2), (3, 4, 5)], + dtype=[(_, int) for _ in ('A', 'f0', 'C')]) + test = np.genfromtxt(TextIO(data), dtype=None, **kwargs) + assert_equal(test, ctrl) + # w/ default dtype + ctrl = np.array([(0, 1, 2), (3, 4, 5)], + dtype=[(_, float) for _ in ('A', 'f0', 'C')]) + test = np.genfromtxt(TextIO(data), **kwargs) + + def test_names_auto_completion(self): + # Make sure that names are properly completed + data = "1 2 3\n 4 5 6" + test = np.genfromtxt(TextIO(data), + dtype=(int, float, int), names="a") + ctrl = np.array([(1, 2, 3), (4, 5, 6)], + dtype=[('a', int), ('f0', float), ('f1', int)]) + assert_equal(test, ctrl) + + def test_names_with_usecols_bug1636(self): + # Make sure we pick up the right names w/ usecols + data = "A,B,C,D,E\n0,1,2,3,4\n0,1,2,3,4\n0,1,2,3,4" + ctrl_names = ("A", "C", "E") + test = np.genfromtxt(TextIO(data), + dtype=(int, int, int), delimiter=",", + usecols=(0, 2, 4), names=True) + assert_equal(test.dtype.names, ctrl_names) + # + test = np.genfromtxt(TextIO(data), + dtype=(int, int, int), delimiter=",", + usecols=("A", "C", "E"), names=True) + assert_equal(test.dtype.names, ctrl_names) + # + test = np.genfromtxt(TextIO(data), + dtype=int, delimiter=",", + usecols=("A", "C", "E"), names=True) + assert_equal(test.dtype.names, ctrl_names) + + def test_fixed_width_names(self): + # Test fix-width w/ names + data = " A B C\n 0 1 2.3\n 45 67 9." + kwargs = {"delimiter": (5, 5, 4), "names": True, "dtype": None} + ctrl = np.array([(0, 1, 2.3), (45, 67, 9.)], + dtype=[('A', int), ('B', int), ('C', float)]) + test = np.genfromtxt(TextIO(data), **kwargs) + assert_equal(test, ctrl) + # + kwargs = {"delimiter": 5, "names": True, "dtype": None} + ctrl = np.array([(0, 1, 2.3), (45, 67, 9.)], + dtype=[('A', int), ('B', int), ('C', float)]) + test = np.genfromtxt(TextIO(data), **kwargs) + assert_equal(test, ctrl) + + def test_filling_values(self): + # Test missing values + data = b"1, 2, 3\n1, , 5\n0, 6, \n" + kwargs = {"delimiter": ",", "dtype": None, "filling_values": -999} + ctrl = np.array([[1, 2, 3], [1, -999, 5], [0, 6, -999]], dtype=int) + test = np.genfromtxt(TextIO(data), **kwargs) + assert_equal(test, ctrl) + + def test_comments_is_none(self): + # Github issue 329 (None was previously being converted to 'None'). + with warnings.catch_warnings(record=True) as w: + warnings.filterwarnings('always', '', VisibleDeprecationWarning) + test = np.genfromtxt(TextIO("test1,testNonetherestofthedata"), + dtype=None, comments=None, delimiter=',', + encoding="bytes") + assert_(w[0].category is VisibleDeprecationWarning) + assert_equal(test[1], b'testNonetherestofthedata') + with warnings.catch_warnings(record=True) as w: + warnings.filterwarnings('always', '', VisibleDeprecationWarning) + test = np.genfromtxt(TextIO("test1, testNonetherestofthedata"), + dtype=None, comments=None, delimiter=',', + encoding="bytes") + assert_(w[0].category is VisibleDeprecationWarning) + assert_equal(test[1], b' testNonetherestofthedata') + + def test_latin1(self): + latin1 = b'\xf6\xfc\xf6' + norm = b"norm1,norm2,norm3\n" + enc = b"test1,testNonethe" + latin1 + b",test3\n" + s = norm + enc + norm + with warnings.catch_warnings(record=True) as w: + warnings.filterwarnings('always', '', VisibleDeprecationWarning) + test = np.genfromtxt(TextIO(s), + dtype=None, comments=None, delimiter=',', + encoding="bytes") + assert_(w[0].category is VisibleDeprecationWarning) + assert_equal(test[1, 0], b"test1") + assert_equal(test[1, 1], b"testNonethe" + latin1) + assert_equal(test[1, 2], b"test3") + test = np.genfromtxt(TextIO(s), + dtype=None, comments=None, delimiter=',', + encoding='latin1') + assert_equal(test[1, 0], "test1") + assert_equal(test[1, 1], "testNonethe" + latin1.decode('latin1')) + assert_equal(test[1, 2], "test3") + + with warnings.catch_warnings(record=True) as w: + warnings.filterwarnings('always', '', VisibleDeprecationWarning) + test = np.genfromtxt(TextIO(b"0,testNonethe" + latin1), + dtype=None, comments=None, delimiter=',', + encoding="bytes") + assert_(w[0].category is VisibleDeprecationWarning) + assert_equal(test['f0'], 0) + assert_equal(test['f1'], b"testNonethe" + latin1) + + def test_binary_decode_autodtype(self): + utf16 = b'\xff\xfeh\x04 \x00i\x04 \x00j\x04' + v = self.loadfunc(BytesIO(utf16), dtype=None, encoding='UTF-16') + assert_array_equal(v, np.array(utf16.decode('UTF-16').split())) + + def test_utf8_byte_encoding(self): + utf8 = b"\xcf\x96" + norm = b"norm1,norm2,norm3\n" + enc = b"test1,testNonethe" + utf8 + b",test3\n" + s = norm + enc + norm + with warnings.catch_warnings(record=True) as w: + warnings.filterwarnings('always', '', VisibleDeprecationWarning) + test = np.genfromtxt(TextIO(s), + dtype=None, comments=None, delimiter=',', + encoding="bytes") + assert_(w[0].category is VisibleDeprecationWarning) + ctl = np.array([ + [b'norm1', b'norm2', b'norm3'], + [b'test1', b'testNonethe' + utf8, b'test3'], + [b'norm1', b'norm2', b'norm3']]) + assert_array_equal(test, ctl) + + def test_utf8_file(self): + utf8 = b"\xcf\x96" + with temppath() as path: + with open(path, "wb") as f: + f.write((b"test1,testNonethe" + utf8 + b",test3\n") * 2) + test = np.genfromtxt(path, dtype=None, comments=None, + delimiter=',', encoding="UTF-8") + ctl = np.array([ + ["test1", "testNonethe" + utf8.decode("UTF-8"), "test3"], + ["test1", "testNonethe" + utf8.decode("UTF-8"), "test3"]], + dtype=np.str_) + assert_array_equal(test, ctl) + + # test a mixed dtype + with open(path, "wb") as f: + f.write(b"0,testNonethe" + utf8) + test = np.genfromtxt(path, dtype=None, comments=None, + delimiter=',', encoding="UTF-8") + assert_equal(test['f0'], 0) + assert_equal(test['f1'], "testNonethe" + utf8.decode("UTF-8")) + + def test_utf8_file_nodtype_unicode(self): + # bytes encoding with non-latin1 -> unicode upcast + utf8 = '\u03d6' + latin1 = '\xf6\xfc\xf6' + + # skip test if cannot encode utf8 test string with preferred + # encoding. The preferred encoding is assumed to be the default + # encoding of open. Will need to change this for PyTest, maybe + # using pytest.mark.xfail(raises=***). + try: + encoding = locale.getpreferredencoding() + utf8.encode(encoding) + except (UnicodeError, ImportError): + pytest.skip('Skipping test_utf8_file_nodtype_unicode, ' + 'unable to encode utf8 in preferred encoding') + + with temppath() as path: + with open(path, "wt") as f: + f.write("norm1,norm2,norm3\n") + f.write("norm1," + latin1 + ",norm3\n") + f.write("test1,testNonethe" + utf8 + ",test3\n") + with warnings.catch_warnings(record=True) as w: + warnings.filterwarnings('always', '', + VisibleDeprecationWarning) + test = np.genfromtxt(path, dtype=None, comments=None, + delimiter=',', encoding="bytes") + # Check for warning when encoding not specified. + assert_(w[0].category is VisibleDeprecationWarning) + ctl = np.array([ + ["norm1", "norm2", "norm3"], + ["norm1", latin1, "norm3"], + ["test1", "testNonethe" + utf8, "test3"]], + dtype=np.str_) + assert_array_equal(test, ctl) + + @pytest.mark.filterwarnings("ignore:.*recfromtxt.*:DeprecationWarning") + def test_recfromtxt(self): + # + data = TextIO('A,B\n0,1\n2,3') + kwargs = {"delimiter": ",", "missing_values": "N/A", "names": True} + test = recfromtxt(data, **kwargs) + control = np.array([(0, 1), (2, 3)], + dtype=[('A', int), ('B', int)]) + assert_(isinstance(test, np.recarray)) + assert_equal(test, control) + # + data = TextIO('A,B\n0,1\n2,N/A') + test = recfromtxt(data, dtype=None, usemask=True, **kwargs) + control = ma.array([(0, 1), (2, -1)], + mask=[(False, False), (False, True)], + dtype=[('A', int), ('B', int)]) + assert_equal(test, control) + assert_equal(test.mask, control.mask) + assert_equal(test.A, [0, 2]) + + @pytest.mark.filterwarnings("ignore:.*recfromcsv.*:DeprecationWarning") + def test_recfromcsv(self): + # + data = TextIO('A,B\n0,1\n2,3') + kwargs = {"missing_values": "N/A", "names": True, "case_sensitive": True, + "encoding": "bytes"} + test = recfromcsv(data, dtype=None, **kwargs) + control = np.array([(0, 1), (2, 3)], + dtype=[('A', int), ('B', int)]) + assert_(isinstance(test, np.recarray)) + assert_equal(test, control) + # + data = TextIO('A,B\n0,1\n2,N/A') + test = recfromcsv(data, dtype=None, usemask=True, **kwargs) + control = ma.array([(0, 1), (2, -1)], + mask=[(False, False), (False, True)], + dtype=[('A', int), ('B', int)]) + assert_equal(test, control) + assert_equal(test.mask, control.mask) + assert_equal(test.A, [0, 2]) + # + data = TextIO('A,B\n0,1\n2,3') + test = recfromcsv(data, missing_values='N/A',) + control = np.array([(0, 1), (2, 3)], + dtype=[('a', int), ('b', int)]) + assert_(isinstance(test, np.recarray)) + assert_equal(test, control) + # + data = TextIO('A,B\n0,1\n2,3') + dtype = [('a', int), ('b', float)] + test = recfromcsv(data, missing_values='N/A', dtype=dtype) + control = np.array([(0, 1), (2, 3)], + dtype=dtype) + assert_(isinstance(test, np.recarray)) + assert_equal(test, control) + + # gh-10394 + data = TextIO('color\n"red"\n"blue"') + test = recfromcsv(data, converters={0: lambda x: x.strip('\"')}) + control = np.array([('red',), ('blue',)], dtype=[('color', (str, 4))]) + assert_equal(test.dtype, control.dtype) + assert_equal(test, control) + + def test_max_rows(self): + # Test the `max_rows` keyword argument. + data = '1 2\n3 4\n5 6\n7 8\n9 10\n' + txt = TextIO(data) + a1 = np.genfromtxt(txt, max_rows=3) + a2 = np.genfromtxt(txt) + assert_equal(a1, [[1, 2], [3, 4], [5, 6]]) + assert_equal(a2, [[7, 8], [9, 10]]) + + # max_rows must be at least 1. + assert_raises(ValueError, np.genfromtxt, TextIO(data), max_rows=0) + + # An input with several invalid rows. + data = '1 1\n2 2\n0 \n3 3\n4 4\n5 \n6 \n7 \n' + + test = np.genfromtxt(TextIO(data), max_rows=2) + control = np.array([[1., 1.], [2., 2.]]) + assert_equal(test, control) + + # Test keywords conflict + assert_raises(ValueError, np.genfromtxt, TextIO(data), skip_footer=1, + max_rows=4) + + # Test with invalid value + assert_raises(ValueError, np.genfromtxt, TextIO(data), max_rows=4) + + # Test with invalid not raise + with suppress_warnings() as sup: + sup.filter(ConversionWarning) + + test = np.genfromtxt(TextIO(data), max_rows=4, invalid_raise=False) + control = np.array([[1., 1.], [2., 2.], [3., 3.], [4., 4.]]) + assert_equal(test, control) + + test = np.genfromtxt(TextIO(data), max_rows=5, invalid_raise=False) + control = np.array([[1., 1.], [2., 2.], [3., 3.], [4., 4.]]) + assert_equal(test, control) + + # Structured array with field names. + data = 'a b\n#c d\n1 1\n2 2\n#0 \n3 3\n4 4\n5 5\n' + + # Test with header, names and comments + txt = TextIO(data) + test = np.genfromtxt(txt, skip_header=1, max_rows=3, names=True) + control = np.array([(1.0, 1.0), (2.0, 2.0), (3.0, 3.0)], + dtype=[('c', '<f8'), ('d', '<f8')]) + assert_equal(test, control) + # To continue reading the same "file", don't use skip_header or + # names, and use the previously determined dtype. + test = np.genfromtxt(txt, max_rows=None, dtype=test.dtype) + control = np.array([(4.0, 4.0), (5.0, 5.0)], + dtype=[('c', '<f8'), ('d', '<f8')]) + assert_equal(test, control) + + def test_gft_using_filename(self): + # Test that we can load data from a filename as well as a file + # object + tgt = np.arange(6).reshape((2, 3)) + linesep = ('\n', '\r\n', '\r') + + for sep in linesep: + data = '0 1 2' + sep + '3 4 5' + with temppath() as name: + with open(name, 'w') as f: + f.write(data) + res = np.genfromtxt(name) + assert_array_equal(res, tgt) + + def test_gft_from_gzip(self): + # Test that we can load data from a gzipped file + wanted = np.arange(6).reshape((2, 3)) + linesep = ('\n', '\r\n', '\r') + + for sep in linesep: + data = '0 1 2' + sep + '3 4 5' + s = BytesIO() + with gzip.GzipFile(fileobj=s, mode='w') as g: + g.write(asbytes(data)) + + with temppath(suffix='.gz2') as name: + with open(name, 'w') as f: + f.write(data) + assert_array_equal(np.genfromtxt(name), wanted) + + def test_gft_using_generator(self): + # gft doesn't work with unicode. + def count(): + for i in range(10): + yield asbytes("%d" % i) + + res = np.genfromtxt(count()) + assert_array_equal(res, np.arange(10)) + + def test_auto_dtype_largeint(self): + # Regression test for numpy/numpy#5635 whereby large integers could + # cause OverflowErrors. + + # Test the automatic definition of the output dtype + # + # 2**66 = 73786976294838206464 => should convert to float + # 2**34 = 17179869184 => should convert to int64 + # 2**10 = 1024 => should convert to int (int32 on 32-bit systems, + # int64 on 64-bit systems) + + data = TextIO('73786976294838206464 17179869184 1024') + + test = np.genfromtxt(data, dtype=None) + + assert_equal(test.dtype.names, ['f0', 'f1', 'f2']) + + assert_(test.dtype['f0'] == float) + assert_(test.dtype['f1'] == np.int64) + assert_(test.dtype['f2'] == np.int_) + + assert_allclose(test['f0'], 73786976294838206464.) + assert_equal(test['f1'], 17179869184) + assert_equal(test['f2'], 1024) + + def test_unpack_float_data(self): + txt = TextIO("1,2,3\n4,5,6\n7,8,9\n0.0,1.0,2.0") + a, b, c = np.loadtxt(txt, delimiter=",", unpack=True) + assert_array_equal(a, np.array([1.0, 4.0, 7.0, 0.0])) + assert_array_equal(b, np.array([2.0, 5.0, 8.0, 1.0])) + assert_array_equal(c, np.array([3.0, 6.0, 9.0, 2.0])) + + def test_unpack_structured(self): + # Regression test for gh-4341 + # Unpacking should work on structured arrays + txt = TextIO("M 21 72\nF 35 58") + dt = {'names': ('a', 'b', 'c'), 'formats': ('S1', 'i4', 'f4')} + a, b, c = np.genfromtxt(txt, dtype=dt, unpack=True) + assert_equal(a.dtype, np.dtype('S1')) + assert_equal(b.dtype, np.dtype('i4')) + assert_equal(c.dtype, np.dtype('f4')) + assert_array_equal(a, np.array([b'M', b'F'])) + assert_array_equal(b, np.array([21, 35])) + assert_array_equal(c, np.array([72., 58.])) + + def test_unpack_auto_dtype(self): + # Regression test for gh-4341 + # Unpacking should work when dtype=None + txt = TextIO("M 21 72.\nF 35 58.") + expected = (np.array(["M", "F"]), np.array([21, 35]), np.array([72., 58.])) + test = np.genfromtxt(txt, dtype=None, unpack=True, encoding="utf-8") + for arr, result in zip(expected, test): + assert_array_equal(arr, result) + assert_equal(arr.dtype, result.dtype) + + def test_unpack_single_name(self): + # Regression test for gh-4341 + # Unpacking should work when structured dtype has only one field + txt = TextIO("21\n35") + dt = {'names': ('a',), 'formats': ('i4',)} + expected = np.array([21, 35], dtype=np.int32) + test = np.genfromtxt(txt, dtype=dt, unpack=True) + assert_array_equal(expected, test) + assert_equal(expected.dtype, test.dtype) + + def test_squeeze_scalar(self): + # Regression test for gh-4341 + # Unpacking a scalar should give zero-dim output, + # even if dtype is structured + txt = TextIO("1") + dt = {'names': ('a',), 'formats': ('i4',)} + expected = np.array((1,), dtype=np.int32) + test = np.genfromtxt(txt, dtype=dt, unpack=True) + assert_array_equal(expected, test) + assert_equal((), test.shape) + assert_equal(expected.dtype, test.dtype) + + @pytest.mark.parametrize("ndim", [0, 1, 2]) + def test_ndmin_keyword(self, ndim: int): + # lets have the same behaviour of ndmin as loadtxt + # as they should be the same for non-missing values + txt = "42" + + a = np.loadtxt(StringIO(txt), ndmin=ndim) + b = np.genfromtxt(StringIO(txt), ndmin=ndim) + + assert_array_equal(a, b) + + +class TestPathUsage: + # Test that pathlib.Path can be used + def test_loadtxt(self): + with temppath(suffix='.txt') as path: + path = Path(path) + a = np.array([[1.1, 2], [3, 4]]) + np.savetxt(path, a) + x = np.loadtxt(path) + assert_array_equal(x, a) + + def test_save_load(self): + # Test that pathlib.Path instances can be used with save. + with temppath(suffix='.npy') as path: + path = Path(path) + a = np.array([[1, 2], [3, 4]], int) + np.save(path, a) + data = np.load(path) + assert_array_equal(data, a) + + def test_save_load_memmap(self): + # Test that pathlib.Path instances can be loaded mem-mapped. + with temppath(suffix='.npy') as path: + path = Path(path) + a = np.array([[1, 2], [3, 4]], int) + np.save(path, a) + data = np.load(path, mmap_mode='r') + assert_array_equal(data, a) + # close the mem-mapped file + del data + if IS_PYPY: + break_cycles() + break_cycles() + + @pytest.mark.xfail(IS_WASM, reason="memmap doesn't work correctly") + @pytest.mark.parametrize("filename_type", [Path, str]) + def test_save_load_memmap_readwrite(self, filename_type): + with temppath(suffix='.npy') as path: + path = filename_type(path) + a = np.array([[1, 2], [3, 4]], int) + np.save(path, a) + b = np.load(path, mmap_mode='r+') + a[0][0] = 5 + b[0][0] = 5 + del b # closes the file + if IS_PYPY: + break_cycles() + break_cycles() + data = np.load(path) + assert_array_equal(data, a) + + @pytest.mark.parametrize("filename_type", [Path, str]) + def test_savez_load(self, filename_type): + with temppath(suffix='.npz') as path: + path = filename_type(path) + np.savez(path, lab='place holder') + with np.load(path) as data: + assert_array_equal(data['lab'], 'place holder') + + @pytest.mark.parametrize("filename_type", [Path, str]) + def test_savez_compressed_load(self, filename_type): + with temppath(suffix='.npz') as path: + path = filename_type(path) + np.savez_compressed(path, lab='place holder') + data = np.load(path) + assert_array_equal(data['lab'], 'place holder') + data.close() + + @pytest.mark.parametrize("filename_type", [Path, str]) + def test_genfromtxt(self, filename_type): + with temppath(suffix='.txt') as path: + path = filename_type(path) + a = np.array([(1, 2), (3, 4)]) + np.savetxt(path, a) + data = np.genfromtxt(path) + assert_array_equal(a, data) + + @pytest.mark.parametrize("filename_type", [Path, str]) + @pytest.mark.filterwarnings("ignore:.*recfromtxt.*:DeprecationWarning") + def test_recfromtxt(self, filename_type): + with temppath(suffix='.txt') as path: + path = filename_type(path) + with open(path, 'w') as f: + f.write('A,B\n0,1\n2,3') + + kwargs = {"delimiter": ",", "missing_values": "N/A", "names": True} + test = recfromtxt(path, **kwargs) + control = np.array([(0, 1), (2, 3)], + dtype=[('A', int), ('B', int)]) + assert_(isinstance(test, np.recarray)) + assert_equal(test, control) + + @pytest.mark.parametrize("filename_type", [Path, str]) + @pytest.mark.filterwarnings("ignore:.*recfromcsv.*:DeprecationWarning") + def test_recfromcsv(self, filename_type): + with temppath(suffix='.txt') as path: + path = filename_type(path) + with open(path, 'w') as f: + f.write('A,B\n0,1\n2,3') + + kwargs = { + "missing_values": "N/A", "names": True, "case_sensitive": True + } + test = recfromcsv(path, dtype=None, **kwargs) + control = np.array([(0, 1), (2, 3)], + dtype=[('A', int), ('B', int)]) + assert_(isinstance(test, np.recarray)) + assert_equal(test, control) + + +def test_gzip_load(): + a = np.random.random((5, 5)) + + s = BytesIO() + f = gzip.GzipFile(fileobj=s, mode="w") + + np.save(f, a) + f.close() + s.seek(0) + + f = gzip.GzipFile(fileobj=s, mode="r") + assert_array_equal(np.load(f), a) + + +# These next two classes encode the minimal API needed to save()/load() arrays. +# The `test_ducktyping` ensures they work correctly +class JustWriter: + def __init__(self, base): + self.base = base + + def write(self, s): + return self.base.write(s) + + def flush(self): + return self.base.flush() + +class JustReader: + def __init__(self, base): + self.base = base + + def read(self, n): + return self.base.read(n) + + def seek(self, off, whence=0): + return self.base.seek(off, whence) + + +def test_ducktyping(): + a = np.random.random((5, 5)) + + s = BytesIO() + f = JustWriter(s) + + np.save(f, a) + f.flush() + s.seek(0) + + f = JustReader(s) + assert_array_equal(np.load(f), a) + + +def test_gzip_loadtxt(): + # Thanks to another windows brokenness, we can't use + # NamedTemporaryFile: a file created from this function cannot be + # reopened by another open call. So we first put the gzipped string + # of the test reference array, write it to a securely opened file, + # which is then read from by the loadtxt function + s = BytesIO() + g = gzip.GzipFile(fileobj=s, mode='w') + g.write(b'1 2 3\n') + g.close() + + s.seek(0) + with temppath(suffix='.gz') as name: + with open(name, 'wb') as f: + f.write(s.read()) + res = np.loadtxt(name) + s.close() + + assert_array_equal(res, [1, 2, 3]) + + +def test_gzip_loadtxt_from_string(): + s = BytesIO() + f = gzip.GzipFile(fileobj=s, mode="w") + f.write(b'1 2 3\n') + f.close() + s.seek(0) + + f = gzip.GzipFile(fileobj=s, mode="r") + assert_array_equal(np.loadtxt(f), [1, 2, 3]) + + +def test_npzfile_dict(): + s = BytesIO() + x = np.zeros((3, 3)) + y = np.zeros((3, 3)) + + np.savez(s, x=x, y=y) + s.seek(0) + + z = np.load(s) + + assert_('x' in z) + assert_('y' in z) + assert_('x' in z.keys()) + assert_('y' in z.keys()) + + for f, a in z.items(): + assert_(f in ['x', 'y']) + assert_equal(a.shape, (3, 3)) + + for a in z.values(): + assert_equal(a.shape, (3, 3)) + + assert_(len(z.items()) == 2) + + for f in z: + assert_(f in ['x', 'y']) + + assert_('x' in z.keys()) + assert (z.get('x') == z['x']).all() + + +@pytest.mark.skipif(not HAS_REFCOUNT, reason="Python lacks refcounts") +def test_load_refcount(): + # Check that objects returned by np.load are directly freed based on + # their refcount, rather than needing the gc to collect them. + + f = BytesIO() + np.savez(f, [1, 2, 3]) + f.seek(0) + + with assert_no_gc_cycles(): + np.load(f) + + f.seek(0) + dt = [("a", 'u1', 2), ("b", 'u1', 2)] + with assert_no_gc_cycles(): + x = np.loadtxt(TextIO("0 1 2 3"), dtype=dt) + assert_equal(x, np.array([((0, 1), (2, 3))], dtype=dt)) + + +def test_load_multiple_arrays_until_eof(): + f = BytesIO() + np.save(f, 1) + np.save(f, 2) + f.seek(0) + out1 = np.load(f) + assert out1 == 1 + out2 = np.load(f) + assert out2 == 2 + with pytest.raises(EOFError): + np.load(f) + + +def test_savez_nopickle(): + obj_array = np.array([1, 'hello'], dtype=object) + with temppath(suffix='.npz') as tmp: + np.savez(tmp, obj_array) + + with temppath(suffix='.npz') as tmp: + with pytest.raises(ValueError, match="Object arrays cannot be saved when.*"): + np.savez(tmp, obj_array, allow_pickle=False) + + with temppath(suffix='.npz') as tmp: + np.savez_compressed(tmp, obj_array) + + with temppath(suffix='.npz') as tmp: + with pytest.raises(ValueError, match="Object arrays cannot be saved when.*"): + np.savez_compressed(tmp, obj_array, allow_pickle=False) diff --git a/.venv/lib/python3.12/site-packages/numpy/lib/tests/test_loadtxt.py b/.venv/lib/python3.12/site-packages/numpy/lib/tests/test_loadtxt.py new file mode 100644 index 0000000..a2022a0 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/lib/tests/test_loadtxt.py @@ -0,0 +1,1101 @@ +""" +Tests specific to `np.loadtxt` added during the move of loadtxt to be backed +by C code. +These tests complement those found in `test_io.py`. +""" + +import os +import sys +from io import StringIO +from tempfile import NamedTemporaryFile, mkstemp + +import pytest + +import numpy as np +from numpy.ma.testutils import assert_equal +from numpy.testing import HAS_REFCOUNT, IS_PYPY, assert_array_equal + + +def test_scientific_notation(): + """Test that both 'e' and 'E' are parsed correctly.""" + data = StringIO( + + "1.0e-1,2.0E1,3.0\n" + "4.0e-2,5.0E-1,6.0\n" + "7.0e-3,8.0E1,9.0\n" + "0.0e-4,1.0E-1,2.0" + + ) + expected = np.array( + [[0.1, 20., 3.0], [0.04, 0.5, 6], [0.007, 80., 9], [0, 0.1, 2]] + ) + assert_array_equal(np.loadtxt(data, delimiter=","), expected) + + +@pytest.mark.parametrize("comment", ["..", "//", "@-", "this is a comment:"]) +def test_comment_multiple_chars(comment): + content = "# IGNORE\n1.5, 2.5# ABC\n3.0,4.0# XXX\n5.5,6.0\n" + txt = StringIO(content.replace("#", comment)) + a = np.loadtxt(txt, delimiter=",", comments=comment) + assert_equal(a, [[1.5, 2.5], [3.0, 4.0], [5.5, 6.0]]) + + +@pytest.fixture +def mixed_types_structured(): + """ + Fixture providing heterogeneous input data with a structured dtype, along + with the associated structured array. + """ + data = StringIO( + + "1000;2.4;alpha;-34\n" + "2000;3.1;beta;29\n" + "3500;9.9;gamma;120\n" + "4090;8.1;delta;0\n" + "5001;4.4;epsilon;-99\n" + "6543;7.8;omega;-1\n" + + ) + dtype = np.dtype( + [('f0', np.uint16), ('f1', np.float64), ('f2', 'S7'), ('f3', np.int8)] + ) + expected = np.array( + [ + (1000, 2.4, "alpha", -34), + (2000, 3.1, "beta", 29), + (3500, 9.9, "gamma", 120), + (4090, 8.1, "delta", 0), + (5001, 4.4, "epsilon", -99), + (6543, 7.8, "omega", -1) + ], + dtype=dtype + ) + return data, dtype, expected + + +@pytest.mark.parametrize('skiprows', [0, 1, 2, 3]) +def test_structured_dtype_and_skiprows_no_empty_lines( + skiprows, mixed_types_structured): + data, dtype, expected = mixed_types_structured + a = np.loadtxt(data, dtype=dtype, delimiter=";", skiprows=skiprows) + assert_array_equal(a, expected[skiprows:]) + + +def test_unpack_structured(mixed_types_structured): + data, dtype, expected = mixed_types_structured + + a, b, c, d = np.loadtxt(data, dtype=dtype, delimiter=";", unpack=True) + assert_array_equal(a, expected["f0"]) + assert_array_equal(b, expected["f1"]) + assert_array_equal(c, expected["f2"]) + assert_array_equal(d, expected["f3"]) + + +def test_structured_dtype_with_shape(): + dtype = np.dtype([("a", "u1", 2), ("b", "u1", 2)]) + data = StringIO("0,1,2,3\n6,7,8,9\n") + expected = np.array([((0, 1), (2, 3)), ((6, 7), (8, 9))], dtype=dtype) + assert_array_equal(np.loadtxt(data, delimiter=",", dtype=dtype), expected) + + +def test_structured_dtype_with_multi_shape(): + dtype = np.dtype([("a", "u1", (2, 2))]) + data = StringIO("0 1 2 3\n") + expected = np.array([(((0, 1), (2, 3)),)], dtype=dtype) + assert_array_equal(np.loadtxt(data, dtype=dtype), expected) + + +def test_nested_structured_subarray(): + # Test from gh-16678 + point = np.dtype([('x', float), ('y', float)]) + dt = np.dtype([('code', int), ('points', point, (2,))]) + data = StringIO("100,1,2,3,4\n200,5,6,7,8\n") + expected = np.array( + [ + (100, [(1., 2.), (3., 4.)]), + (200, [(5., 6.), (7., 8.)]), + ], + dtype=dt + ) + assert_array_equal(np.loadtxt(data, dtype=dt, delimiter=","), expected) + + +def test_structured_dtype_offsets(): + # An aligned structured dtype will have additional padding + dt = np.dtype("i1, i4, i1, i4, i1, i4", align=True) + data = StringIO("1,2,3,4,5,6\n7,8,9,10,11,12\n") + expected = np.array([(1, 2, 3, 4, 5, 6), (7, 8, 9, 10, 11, 12)], dtype=dt) + assert_array_equal(np.loadtxt(data, delimiter=",", dtype=dt), expected) + + +@pytest.mark.parametrize("param", ("skiprows", "max_rows")) +def test_exception_negative_row_limits(param): + """skiprows and max_rows should raise for negative parameters.""" + with pytest.raises(ValueError, match="argument must be nonnegative"): + np.loadtxt("foo.bar", **{param: -3}) + + +@pytest.mark.parametrize("param", ("skiprows", "max_rows")) +def test_exception_noninteger_row_limits(param): + with pytest.raises(TypeError, match="argument must be an integer"): + np.loadtxt("foo.bar", **{param: 1.0}) + + +@pytest.mark.parametrize( + "data, shape", + [ + ("1 2 3 4 5\n", (1, 5)), # Single row + ("1\n2\n3\n4\n5\n", (5, 1)), # Single column + ] +) +def test_ndmin_single_row_or_col(data, shape): + arr = np.array([1, 2, 3, 4, 5]) + arr2d = arr.reshape(shape) + + assert_array_equal(np.loadtxt(StringIO(data), dtype=int), arr) + assert_array_equal(np.loadtxt(StringIO(data), dtype=int, ndmin=0), arr) + assert_array_equal(np.loadtxt(StringIO(data), dtype=int, ndmin=1), arr) + assert_array_equal(np.loadtxt(StringIO(data), dtype=int, ndmin=2), arr2d) + + +@pytest.mark.parametrize("badval", [-1, 3, None, "plate of shrimp"]) +def test_bad_ndmin(badval): + with pytest.raises(ValueError, match="Illegal value of ndmin keyword"): + np.loadtxt("foo.bar", ndmin=badval) + + +@pytest.mark.parametrize( + "ws", + ( + " ", # space + "\t", # tab + "\u2003", # em + "\u00A0", # non-break + "\u3000", # ideographic space + ) +) +def test_blank_lines_spaces_delimit(ws): + txt = StringIO( + f"1 2{ws}30\n\n{ws}\n" + f"4 5 60{ws}\n {ws} \n" + f"7 8 {ws} 90\n # comment\n" + f"3 2 1" + ) + # NOTE: It is unclear that the ` # comment` should succeed. Except + # for delimiter=None, which should use any whitespace (and maybe + # should just be implemented closer to Python + expected = np.array([[1, 2, 30], [4, 5, 60], [7, 8, 90], [3, 2, 1]]) + assert_equal( + np.loadtxt(txt, dtype=int, delimiter=None, comments="#"), expected + ) + + +def test_blank_lines_normal_delimiter(): + txt = StringIO('1,2,30\n\n4,5,60\n\n7,8,90\n# comment\n3,2,1') + expected = np.array([[1, 2, 30], [4, 5, 60], [7, 8, 90], [3, 2, 1]]) + assert_equal( + np.loadtxt(txt, dtype=int, delimiter=',', comments="#"), expected + ) + + +@pytest.mark.parametrize("dtype", (float, object)) +def test_maxrows_no_blank_lines(dtype): + txt = StringIO("1.5,2.5\n3.0,4.0\n5.5,6.0") + res = np.loadtxt(txt, dtype=dtype, delimiter=",", max_rows=2) + assert_equal(res.dtype, dtype) + assert_equal(res, np.array([["1.5", "2.5"], ["3.0", "4.0"]], dtype=dtype)) + + +@pytest.mark.skipif(IS_PYPY and sys.implementation.version <= (7, 3, 8), + reason="PyPy bug in error formatting") +@pytest.mark.parametrize("dtype", (np.dtype("f8"), np.dtype("i2"))) +def test_exception_message_bad_values(dtype): + txt = StringIO("1,2\n3,XXX\n5,6") + msg = f"could not convert string 'XXX' to {dtype} at row 1, column 2" + with pytest.raises(ValueError, match=msg): + np.loadtxt(txt, dtype=dtype, delimiter=",") + + +def test_converters_negative_indices(): + txt = StringIO('1.5,2.5\n3.0,XXX\n5.5,6.0') + conv = {-1: lambda s: np.nan if s == 'XXX' else float(s)} + expected = np.array([[1.5, 2.5], [3.0, np.nan], [5.5, 6.0]]) + res = np.loadtxt(txt, dtype=np.float64, delimiter=",", converters=conv) + assert_equal(res, expected) + + +def test_converters_negative_indices_with_usecols(): + txt = StringIO('1.5,2.5,3.5\n3.0,4.0,XXX\n5.5,6.0,7.5\n') + conv = {-1: lambda s: np.nan if s == 'XXX' else float(s)} + expected = np.array([[1.5, 3.5], [3.0, np.nan], [5.5, 7.5]]) + res = np.loadtxt( + txt, + dtype=np.float64, + delimiter=",", + converters=conv, + usecols=[0, -1], + ) + assert_equal(res, expected) + + # Second test with variable number of rows: + res = np.loadtxt(StringIO('''0,1,2\n0,1,2,3,4'''), delimiter=",", + usecols=[0, -1], converters={-1: (lambda x: -1)}) + assert_array_equal(res, [[0, -1], [0, -1]]) + + +def test_ragged_error(): + rows = ["1,2,3", "1,2,3", "4,3,2,1"] + with pytest.raises(ValueError, + match="the number of columns changed from 3 to 4 at row 3"): + np.loadtxt(rows, delimiter=",") + + +def test_ragged_usecols(): + # usecols, and negative ones, work even with varying number of columns. + txt = StringIO("0,0,XXX\n0,XXX,0,XXX\n0,XXX,XXX,0,XXX\n") + expected = np.array([[0, 0], [0, 0], [0, 0]]) + res = np.loadtxt(txt, dtype=float, delimiter=",", usecols=[0, -2]) + assert_equal(res, expected) + + txt = StringIO("0,0,XXX\n0\n0,XXX,XXX,0,XXX\n") + with pytest.raises(ValueError, + match="invalid column index -2 at row 2 with 1 columns"): + # There is no -2 column in the second row: + np.loadtxt(txt, dtype=float, delimiter=",", usecols=[0, -2]) + + +def test_empty_usecols(): + txt = StringIO("0,0,XXX\n0,XXX,0,XXX\n0,XXX,XXX,0,XXX\n") + res = np.loadtxt(txt, dtype=np.dtype([]), delimiter=",", usecols=[]) + assert res.shape == (3,) + assert res.dtype == np.dtype([]) + + +@pytest.mark.parametrize("c1", ["a", "の", "🫕"]) +@pytest.mark.parametrize("c2", ["a", "の", "🫕"]) +def test_large_unicode_characters(c1, c2): + # c1 and c2 span ascii, 16bit and 32bit range. + txt = StringIO(f"a,{c1},c,1.0\ne,{c2},2.0,g") + res = np.loadtxt(txt, dtype=np.dtype('U12'), delimiter=",") + expected = np.array( + [f"a,{c1},c,1.0".split(","), f"e,{c2},2.0,g".split(",")], + dtype=np.dtype('U12') + ) + assert_equal(res, expected) + + +def test_unicode_with_converter(): + txt = StringIO("cat,dog\nαβγ,δεζ\nabc,def\n") + conv = {0: lambda s: s.upper()} + res = np.loadtxt( + txt, + dtype=np.dtype("U12"), + converters=conv, + delimiter=",", + encoding=None + ) + expected = np.array([['CAT', 'dog'], ['ΑΒΓ', 'δεζ'], ['ABC', 'def']]) + assert_equal(res, expected) + + +def test_converter_with_structured_dtype(): + txt = StringIO('1.5,2.5,Abc\n3.0,4.0,dEf\n5.5,6.0,ghI\n') + dt = np.dtype([('m', np.int32), ('r', np.float32), ('code', 'U8')]) + conv = {0: lambda s: int(10 * float(s)), -1: lambda s: s.upper()} + res = np.loadtxt(txt, dtype=dt, delimiter=",", converters=conv) + expected = np.array( + [(15, 2.5, 'ABC'), (30, 4.0, 'DEF'), (55, 6.0, 'GHI')], dtype=dt + ) + assert_equal(res, expected) + + +def test_converter_with_unicode_dtype(): + """ + With the 'bytes' encoding, tokens are encoded prior to being + passed to the converter. This means that the output of the converter may + be bytes instead of unicode as expected by `read_rows`. + + This test checks that outputs from the above scenario are properly decoded + prior to parsing by `read_rows`. + """ + txt = StringIO('abc,def\nrst,xyz') + conv = bytes.upper + res = np.loadtxt( + txt, dtype=np.dtype("U3"), converters=conv, delimiter=",", + encoding="bytes") + expected = np.array([['ABC', 'DEF'], ['RST', 'XYZ']]) + assert_equal(res, expected) + + +def test_read_huge_row(): + row = "1.5, 2.5," * 50000 + row = row[:-1] + "\n" + txt = StringIO(row * 2) + res = np.loadtxt(txt, delimiter=",", dtype=float) + assert_equal(res, np.tile([1.5, 2.5], (2, 50000))) + + +@pytest.mark.parametrize("dtype", "edfgFDG") +def test_huge_float(dtype): + # Covers a non-optimized path that is rarely taken: + field = "0" * 1000 + ".123456789" + dtype = np.dtype(dtype) + value = np.loadtxt([field], dtype=dtype)[()] + assert value == dtype.type("0.123456789") + + +@pytest.mark.parametrize( + ("given_dtype", "expected_dtype"), + [ + ("S", np.dtype("S5")), + ("U", np.dtype("U5")), + ], +) +def test_string_no_length_given(given_dtype, expected_dtype): + """ + The given dtype is just 'S' or 'U' with no length. In these cases, the + length of the resulting dtype is determined by the longest string found + in the file. + """ + txt = StringIO("AAA,5-1\nBBBBB,0-3\nC,4-9\n") + res = np.loadtxt(txt, dtype=given_dtype, delimiter=",") + expected = np.array( + [['AAA', '5-1'], ['BBBBB', '0-3'], ['C', '4-9']], dtype=expected_dtype + ) + assert_equal(res, expected) + assert_equal(res.dtype, expected_dtype) + + +def test_float_conversion(): + """ + Some tests that the conversion to float64 works as accurately as the + Python built-in `float` function. In a naive version of the float parser, + these strings resulted in values that were off by an ULP or two. + """ + strings = [ + '0.9999999999999999', + '9876543210.123456', + '5.43215432154321e+300', + '0.901', + '0.333', + ] + txt = StringIO('\n'.join(strings)) + res = np.loadtxt(txt) + expected = np.array([float(s) for s in strings]) + assert_equal(res, expected) + + +def test_bool(): + # Simple test for bool via integer + txt = StringIO("1, 0\n10, -1") + res = np.loadtxt(txt, dtype=bool, delimiter=",") + assert res.dtype == bool + assert_array_equal(res, [[True, False], [True, True]]) + # Make sure we use only 1 and 0 on the byte level: + assert_array_equal(res.view(np.uint8), [[1, 0], [1, 1]]) + + +@pytest.mark.skipif(IS_PYPY and sys.implementation.version <= (7, 3, 8), + reason="PyPy bug in error formatting") +@pytest.mark.parametrize("dtype", np.typecodes["AllInteger"]) +@pytest.mark.filterwarnings("error:.*integer via a float.*:DeprecationWarning") +def test_integer_signs(dtype): + dtype = np.dtype(dtype) + assert np.loadtxt(["+2"], dtype=dtype) == 2 + if dtype.kind == "u": + with pytest.raises(ValueError): + np.loadtxt(["-1\n"], dtype=dtype) + else: + assert np.loadtxt(["-2\n"], dtype=dtype) == -2 + + for sign in ["++", "+-", "--", "-+"]: + with pytest.raises(ValueError): + np.loadtxt([f"{sign}2\n"], dtype=dtype) + + +@pytest.mark.skipif(IS_PYPY and sys.implementation.version <= (7, 3, 8), + reason="PyPy bug in error formatting") +@pytest.mark.parametrize("dtype", np.typecodes["AllInteger"]) +@pytest.mark.filterwarnings("error:.*integer via a float.*:DeprecationWarning") +def test_implicit_cast_float_to_int_fails(dtype): + txt = StringIO("1.0, 2.1, 3.7\n4, 5, 6") + with pytest.raises(ValueError): + np.loadtxt(txt, dtype=dtype, delimiter=",") + +@pytest.mark.parametrize("dtype", (np.complex64, np.complex128)) +@pytest.mark.parametrize("with_parens", (False, True)) +def test_complex_parsing(dtype, with_parens): + s = "(1.0-2.5j),3.75,(7+-5.0j)\n(4),(-19e2j),(0)" + if not with_parens: + s = s.replace("(", "").replace(")", "") + + res = np.loadtxt(StringIO(s), dtype=dtype, delimiter=",") + expected = np.array( + [[1.0 - 2.5j, 3.75, 7 - 5j], [4.0, -1900j, 0]], dtype=dtype + ) + assert_equal(res, expected) + + +def test_read_from_generator(): + def gen(): + for i in range(4): + yield f"{i},{2 * i},{i**2}" + + res = np.loadtxt(gen(), dtype=int, delimiter=",") + expected = np.array([[0, 0, 0], [1, 2, 1], [2, 4, 4], [3, 6, 9]]) + assert_equal(res, expected) + + +def test_read_from_generator_multitype(): + def gen(): + for i in range(3): + yield f"{i} {i / 4}" + + res = np.loadtxt(gen(), dtype="i, d", delimiter=" ") + expected = np.array([(0, 0.0), (1, 0.25), (2, 0.5)], dtype="i, d") + assert_equal(res, expected) + + +def test_read_from_bad_generator(): + def gen(): + yield from ["1,2", b"3, 5", 12738] + + with pytest.raises( + TypeError, match=r"non-string returned while reading data"): + np.loadtxt(gen(), dtype="i, i", delimiter=",") + + +@pytest.mark.skipif(not HAS_REFCOUNT, reason="Python lacks refcounts") +def test_object_cleanup_on_read_error(): + sentinel = object() + already_read = 0 + + def conv(x): + nonlocal already_read + if already_read > 4999: + raise ValueError("failed half-way through!") + already_read += 1 + return sentinel + + txt = StringIO("x\n" * 10000) + + with pytest.raises(ValueError, match="at row 5000, column 1"): + np.loadtxt(txt, dtype=object, converters={0: conv}) + + assert sys.getrefcount(sentinel) == 2 + + +@pytest.mark.skipif(IS_PYPY and sys.implementation.version <= (7, 3, 8), + reason="PyPy bug in error formatting") +def test_character_not_bytes_compatible(): + """Test exception when a character cannot be encoded as 'S'.""" + data = StringIO("–") # == \u2013 + with pytest.raises(ValueError): + np.loadtxt(data, dtype="S5") + + +@pytest.mark.parametrize("conv", (0, [float], "")) +def test_invalid_converter(conv): + msg = ( + "converters must be a dictionary mapping columns to converter " + "functions or a single callable." + ) + with pytest.raises(TypeError, match=msg): + np.loadtxt(StringIO("1 2\n3 4"), converters=conv) + + +@pytest.mark.skipif(IS_PYPY and sys.implementation.version <= (7, 3, 8), + reason="PyPy bug in error formatting") +def test_converters_dict_raises_non_integer_key(): + with pytest.raises(TypeError, match="keys of the converters dict"): + np.loadtxt(StringIO("1 2\n3 4"), converters={"a": int}) + with pytest.raises(TypeError, match="keys of the converters dict"): + np.loadtxt(StringIO("1 2\n3 4"), converters={"a": int}, usecols=0) + + +@pytest.mark.parametrize("bad_col_ind", (3, -3)) +def test_converters_dict_raises_non_col_key(bad_col_ind): + data = StringIO("1 2\n3 4") + with pytest.raises(ValueError, match="converter specified for column"): + np.loadtxt(data, converters={bad_col_ind: int}) + + +def test_converters_dict_raises_val_not_callable(): + with pytest.raises(TypeError, + match="values of the converters dictionary must be callable"): + np.loadtxt(StringIO("1 2\n3 4"), converters={0: 1}) + + +@pytest.mark.parametrize("q", ('"', "'", "`")) +def test_quoted_field(q): + txt = StringIO( + f"{q}alpha, x{q}, 2.5\n{q}beta, y{q}, 4.5\n{q}gamma, z{q}, 5.0\n" + ) + dtype = np.dtype([('f0', 'U8'), ('f1', np.float64)]) + expected = np.array( + [("alpha, x", 2.5), ("beta, y", 4.5), ("gamma, z", 5.0)], dtype=dtype + ) + + res = np.loadtxt(txt, dtype=dtype, delimiter=",", quotechar=q) + assert_array_equal(res, expected) + + +@pytest.mark.parametrize("q", ('"', "'", "`")) +def test_quoted_field_with_whitepace_delimiter(q): + txt = StringIO( + f"{q}alpha, x{q} 2.5\n{q}beta, y{q} 4.5\n{q}gamma, z{q} 5.0\n" + ) + dtype = np.dtype([('f0', 'U8'), ('f1', np.float64)]) + expected = np.array( + [("alpha, x", 2.5), ("beta, y", 4.5), ("gamma, z", 5.0)], dtype=dtype + ) + + res = np.loadtxt(txt, dtype=dtype, delimiter=None, quotechar=q) + assert_array_equal(res, expected) + + +def test_quote_support_default(): + """Support for quoted fields is disabled by default.""" + txt = StringIO('"lat,long", 45, 30\n') + dtype = np.dtype([('f0', 'U24'), ('f1', np.float64), ('f2', np.float64)]) + + with pytest.raises(ValueError, + match="the dtype passed requires 3 columns but 4 were"): + np.loadtxt(txt, dtype=dtype, delimiter=",") + + # Enable quoting support with non-None value for quotechar param + txt.seek(0) + expected = np.array([("lat,long", 45., 30.)], dtype=dtype) + + res = np.loadtxt(txt, dtype=dtype, delimiter=",", quotechar='"') + assert_array_equal(res, expected) + + +@pytest.mark.skipif(IS_PYPY and sys.implementation.version <= (7, 3, 8), + reason="PyPy bug in error formatting") +def test_quotechar_multichar_error(): + txt = StringIO("1,2\n3,4") + msg = r".*must be a single unicode character or None" + with pytest.raises(TypeError, match=msg): + np.loadtxt(txt, delimiter=",", quotechar="''") + + +def test_comment_multichar_error_with_quote(): + txt = StringIO("1,2\n3,4") + msg = ( + "when multiple comments or a multi-character comment is given, " + "quotes are not supported." + ) + with pytest.raises(ValueError, match=msg): + np.loadtxt(txt, delimiter=",", comments="123", quotechar='"') + with pytest.raises(ValueError, match=msg): + np.loadtxt(txt, delimiter=",", comments=["#", "%"], quotechar='"') + + # A single character string in a tuple is unpacked though: + res = np.loadtxt(txt, delimiter=",", comments=("#",), quotechar="'") + assert_equal(res, [[1, 2], [3, 4]]) + + +def test_structured_dtype_with_quotes(): + data = StringIO( + + "1000;2.4;'alpha';-34\n" + "2000;3.1;'beta';29\n" + "3500;9.9;'gamma';120\n" + "4090;8.1;'delta';0\n" + "5001;4.4;'epsilon';-99\n" + "6543;7.8;'omega';-1\n" + + ) + dtype = np.dtype( + [('f0', np.uint16), ('f1', np.float64), ('f2', 'S7'), ('f3', np.int8)] + ) + expected = np.array( + [ + (1000, 2.4, "alpha", -34), + (2000, 3.1, "beta", 29), + (3500, 9.9, "gamma", 120), + (4090, 8.1, "delta", 0), + (5001, 4.4, "epsilon", -99), + (6543, 7.8, "omega", -1) + ], + dtype=dtype + ) + res = np.loadtxt(data, dtype=dtype, delimiter=";", quotechar="'") + assert_array_equal(res, expected) + + +def test_quoted_field_is_not_empty(): + txt = StringIO('1\n\n"4"\n""') + expected = np.array(["1", "4", ""], dtype="U1") + res = np.loadtxt(txt, delimiter=",", dtype="U1", quotechar='"') + assert_equal(res, expected) + +def test_quoted_field_is_not_empty_nonstrict(): + # Same as test_quoted_field_is_not_empty but check that we are not strict + # about missing closing quote (this is the `csv.reader` default also) + txt = StringIO('1\n\n"4"\n"') + expected = np.array(["1", "4", ""], dtype="U1") + res = np.loadtxt(txt, delimiter=",", dtype="U1", quotechar='"') + assert_equal(res, expected) + +def test_consecutive_quotechar_escaped(): + txt = StringIO('"Hello, my name is ""Monty""!"') + expected = np.array('Hello, my name is "Monty"!', dtype="U40") + res = np.loadtxt(txt, dtype="U40", delimiter=",", quotechar='"') + assert_equal(res, expected) + + +@pytest.mark.parametrize("data", ("", "\n\n\n", "# 1 2 3\n# 4 5 6\n")) +@pytest.mark.parametrize("ndmin", (0, 1, 2)) +@pytest.mark.parametrize("usecols", [None, (1, 2, 3)]) +def test_warn_on_no_data(data, ndmin, usecols): + """Check that a UserWarning is emitted when no data is read from input.""" + if usecols is not None: + expected_shape = (0, 3) + elif ndmin == 2: + expected_shape = (0, 1) # guess a single column?! + else: + expected_shape = (0,) + + txt = StringIO(data) + with pytest.warns(UserWarning, match="input contained no data"): + res = np.loadtxt(txt, ndmin=ndmin, usecols=usecols) + assert res.shape == expected_shape + + with NamedTemporaryFile(mode="w") as fh: + fh.write(data) + fh.seek(0) + with pytest.warns(UserWarning, match="input contained no data"): + res = np.loadtxt(txt, ndmin=ndmin, usecols=usecols) + assert res.shape == expected_shape + +@pytest.mark.parametrize("skiprows", (2, 3)) +def test_warn_on_skipped_data(skiprows): + data = "1 2 3\n4 5 6" + txt = StringIO(data) + with pytest.warns(UserWarning, match="input contained no data"): + np.loadtxt(txt, skiprows=skiprows) + + +@pytest.mark.parametrize(["dtype", "value"], [ + ("i2", 0x0001), ("u2", 0x0001), + ("i4", 0x00010203), ("u4", 0x00010203), + ("i8", 0x0001020304050607), ("u8", 0x0001020304050607), + # The following values are constructed to lead to unique bytes: + ("float16", 3.07e-05), + ("float32", 9.2557e-41), ("complex64", 9.2557e-41 + 2.8622554e-29j), + ("float64", -1.758571353180402e-24), + # Here and below, the repr side-steps a small loss of precision in + # complex `str` in PyPy (which is probably fine, as repr works): + ("complex128", repr(5.406409232372729e-29 - 1.758571353180402e-24j)), + # Use integer values that fit into double. Everything else leads to + # problems due to longdoubles going via double and decimal strings + # causing rounding errors. + ("longdouble", 0x01020304050607), + ("clongdouble", repr(0x01020304050607 + (0x00121314151617 * 1j))), + ("U2", "\U00010203\U000a0b0c")]) +@pytest.mark.parametrize("swap", [True, False]) +def test_byteswapping_and_unaligned(dtype, value, swap): + # Try to create "interesting" values within the valid unicode range: + dtype = np.dtype(dtype) + data = [f"x,{value}\n"] # repr as PyPy `str` truncates some + if swap: + dtype = dtype.newbyteorder() + full_dt = np.dtype([("a", "S1"), ("b", dtype)], align=False) + # The above ensures that the interesting "b" field is unaligned: + assert full_dt.fields["b"][1] == 1 + res = np.loadtxt(data, dtype=full_dt, delimiter=",", + max_rows=1) # max-rows prevents over-allocation + assert res["b"] == dtype.type(value) + + +@pytest.mark.parametrize("dtype", + np.typecodes["AllInteger"] + "efdFD" + "?") +def test_unicode_whitespace_stripping(dtype): + # Test that all numeric types (and bool) strip whitespace correctly + # \u202F is a narrow no-break space, `\n` is just a whitespace if quoted. + # Currently, skip float128 as it did not always support this and has no + # "custom" parsing: + txt = StringIO(' 3 ,"\u202F2\n"') + res = np.loadtxt(txt, dtype=dtype, delimiter=",", quotechar='"') + assert_array_equal(res, np.array([3, 2]).astype(dtype)) + + +@pytest.mark.parametrize("dtype", "FD") +def test_unicode_whitespace_stripping_complex(dtype): + # Complex has a few extra cases since it has two components and + # parentheses + line = " 1 , 2+3j , ( 4+5j ), ( 6+-7j ) , 8j , ( 9j ) \n" + data = [line, line.replace(" ", "\u202F")] + res = np.loadtxt(data, dtype=dtype, delimiter=',') + assert_array_equal(res, np.array([[1, 2 + 3j, 4 + 5j, 6 - 7j, 8j, 9j]] * 2)) + + +@pytest.mark.skipif(IS_PYPY and sys.implementation.version <= (7, 3, 8), + reason="PyPy bug in error formatting") +@pytest.mark.parametrize("dtype", "FD") +@pytest.mark.parametrize("field", + ["1 +2j", "1+ 2j", "1+2 j", "1+-+3", "(1j", "(1", "(1+2j", "1+2j)"]) +def test_bad_complex(dtype, field): + with pytest.raises(ValueError): + np.loadtxt([field + "\n"], dtype=dtype, delimiter=",") + + +@pytest.mark.skipif(IS_PYPY and sys.implementation.version <= (7, 3, 8), + reason="PyPy bug in error formatting") +@pytest.mark.parametrize("dtype", + np.typecodes["AllInteger"] + "efgdFDG" + "?") +def test_nul_character_error(dtype): + # Test that a \0 character is correctly recognized as an error even if + # what comes before is valid (not everything gets parsed internally). + if dtype.lower() == "g": + pytest.xfail("longdouble/clongdouble assignment may misbehave.") + with pytest.raises(ValueError): + np.loadtxt(["1\000"], dtype=dtype, delimiter=",", quotechar='"') + + +@pytest.mark.skipif(IS_PYPY and sys.implementation.version <= (7, 3, 8), + reason="PyPy bug in error formatting") +@pytest.mark.parametrize("dtype", + np.typecodes["AllInteger"] + "efgdFDG" + "?") +def test_no_thousands_support(dtype): + # Mainly to document behaviour, Python supports thousands like 1_1. + # (e and G may end up using different conversion and support it, this is + # a bug but happens...) + if dtype == "e": + pytest.skip("half assignment currently uses Python float converter") + if dtype in "eG": + pytest.xfail("clongdouble assignment is buggy (uses `complex`?).") + + assert int("1_1") == float("1_1") == complex("1_1") == 11 + with pytest.raises(ValueError): + np.loadtxt(["1_1\n"], dtype=dtype) + + +@pytest.mark.parametrize("data", [ + ["1,2\n", "2\n,3\n"], + ["1,2\n", "2\r,3\n"]]) +def test_bad_newline_in_iterator(data): + # In NumPy <=1.22 this was accepted, because newlines were completely + # ignored when the input was an iterable. This could be changed, but right + # now, we raise an error. + msg = "Found an unquoted embedded newline within a single line" + with pytest.raises(ValueError, match=msg): + np.loadtxt(data, delimiter=",") + + +@pytest.mark.parametrize("data", [ + ["1,2\n", "2,3\r\n"], # a universal newline + ["1,2\n", "'2\n',3\n"], # a quoted newline + ["1,2\n", "'2\r',3\n"], + ["1,2\n", "'2\r\n',3\n"], +]) +def test_good_newline_in_iterator(data): + # The quoted newlines will be untransformed here, but are just whitespace. + res = np.loadtxt(data, delimiter=",", quotechar="'") + assert_array_equal(res, [[1., 2.], [2., 3.]]) + + +@pytest.mark.parametrize("newline", ["\n", "\r", "\r\n"]) +def test_universal_newlines_quoted(newline): + # Check that universal newline support within the tokenizer is not applied + # to quoted fields. (note that lines must end in newline or quoted + # fields will not include a newline at all) + data = ['1,"2\n"\n', '3,"4\n', '1"\n'] + data = [row.replace("\n", newline) for row in data] + res = np.loadtxt(data, dtype=object, delimiter=",", quotechar='"') + assert_array_equal(res, [['1', f'2{newline}'], ['3', f'4{newline}1']]) + + +def test_null_character(): + # Basic tests to check that the NUL character is not special: + res = np.loadtxt(["1\0002\0003\n", "4\0005\0006"], delimiter="\000") + assert_array_equal(res, [[1, 2, 3], [4, 5, 6]]) + + # Also not as part of a field (avoid unicode/arrays as unicode strips \0) + res = np.loadtxt(["1\000,2\000,3\n", "4\000,5\000,6"], + delimiter=",", dtype=object) + assert res.tolist() == [["1\000", "2\000", "3"], ["4\000", "5\000", "6"]] + + +def test_iterator_fails_getting_next_line(): + class BadSequence: + def __len__(self): + return 100 + + def __getitem__(self, item): + if item == 50: + raise RuntimeError("Bad things happened!") + return f"{item}, {item + 1}" + + with pytest.raises(RuntimeError, match="Bad things happened!"): + np.loadtxt(BadSequence(), dtype=int, delimiter=",") + + +class TestCReaderUnitTests: + # These are internal tests for path that should not be possible to hit + # unless things go very very wrong somewhere. + def test_not_an_filelike(self): + with pytest.raises(AttributeError, match=".*read"): + np._core._multiarray_umath._load_from_filelike( + object(), dtype=np.dtype("i"), filelike=True) + + def test_filelike_read_fails(self): + # Can only be reached if loadtxt opens the file, so it is hard to do + # via the public interface (although maybe not impossible considering + # the current "DataClass" backing). + class BadFileLike: + counter = 0 + + def read(self, size): + self.counter += 1 + if self.counter > 20: + raise RuntimeError("Bad bad bad!") + return "1,2,3\n" + + with pytest.raises(RuntimeError, match="Bad bad bad!"): + np._core._multiarray_umath._load_from_filelike( + BadFileLike(), dtype=np.dtype("i"), filelike=True) + + def test_filelike_bad_read(self): + # Can only be reached if loadtxt opens the file, so it is hard to do + # via the public interface (although maybe not impossible considering + # the current "DataClass" backing). + + class BadFileLike: + counter = 0 + + def read(self, size): + return 1234 # not a string! + + with pytest.raises(TypeError, + match="non-string returned while reading data"): + np._core._multiarray_umath._load_from_filelike( + BadFileLike(), dtype=np.dtype("i"), filelike=True) + + def test_not_an_iter(self): + with pytest.raises(TypeError, + match="error reading from object, expected an iterable"): + np._core._multiarray_umath._load_from_filelike( + object(), dtype=np.dtype("i"), filelike=False) + + def test_bad_type(self): + with pytest.raises(TypeError, match="internal error: dtype must"): + np._core._multiarray_umath._load_from_filelike( + object(), dtype="i", filelike=False) + + def test_bad_encoding(self): + with pytest.raises(TypeError, match="encoding must be a unicode"): + np._core._multiarray_umath._load_from_filelike( + object(), dtype=np.dtype("i"), filelike=False, encoding=123) + + @pytest.mark.parametrize("newline", ["\r", "\n", "\r\n"]) + def test_manual_universal_newlines(self, newline): + # This is currently not available to users, because we should always + # open files with universal newlines enabled `newlines=None`. + # (And reading from an iterator uses slightly different code paths.) + # We have no real support for `newline="\r"` or `newline="\n" as the + # user cannot specify those options. + data = StringIO('0\n1\n"2\n"\n3\n4 #\n'.replace("\n", newline), + newline="") + + res = np._core._multiarray_umath._load_from_filelike( + data, dtype=np.dtype("U10"), filelike=True, + quote='"', comment="#", skiplines=1) + assert_array_equal(res[:, 0], ["1", f"2{newline}", "3", "4 "]) + + +def test_delimiter_comment_collision_raises(): + with pytest.raises(TypeError, match=".*control characters.*incompatible"): + np.loadtxt(StringIO("1, 2, 3"), delimiter=",", comments=",") + + +def test_delimiter_quotechar_collision_raises(): + with pytest.raises(TypeError, match=".*control characters.*incompatible"): + np.loadtxt(StringIO("1, 2, 3"), delimiter=",", quotechar=",") + + +def test_comment_quotechar_collision_raises(): + with pytest.raises(TypeError, match=".*control characters.*incompatible"): + np.loadtxt(StringIO("1 2 3"), comments="#", quotechar="#") + + +def test_delimiter_and_multiple_comments_collision_raises(): + with pytest.raises( + TypeError, match="Comment characters.*cannot include the delimiter" + ): + np.loadtxt(StringIO("1, 2, 3"), delimiter=",", comments=["#", ","]) + + +@pytest.mark.parametrize( + "ws", + ( + " ", # space + "\t", # tab + "\u2003", # em + "\u00A0", # non-break + "\u3000", # ideographic space + ) +) +def test_collision_with_default_delimiter_raises(ws): + with pytest.raises(TypeError, match=".*control characters.*incompatible"): + np.loadtxt(StringIO(f"1{ws}2{ws}3\n4{ws}5{ws}6\n"), comments=ws) + with pytest.raises(TypeError, match=".*control characters.*incompatible"): + np.loadtxt(StringIO(f"1{ws}2{ws}3\n4{ws}5{ws}6\n"), quotechar=ws) + + +@pytest.mark.parametrize("nl", ("\n", "\r")) +def test_control_character_newline_raises(nl): + txt = StringIO(f"1{nl}2{nl}3{nl}{nl}4{nl}5{nl}6{nl}{nl}") + msg = "control character.*cannot be a newline" + with pytest.raises(TypeError, match=msg): + np.loadtxt(txt, delimiter=nl) + with pytest.raises(TypeError, match=msg): + np.loadtxt(txt, comments=nl) + with pytest.raises(TypeError, match=msg): + np.loadtxt(txt, quotechar=nl) + + +@pytest.mark.parametrize( + ("generic_data", "long_datum", "unitless_dtype", "expected_dtype"), + [ + ("2012-03", "2013-01-15", "M8", "M8[D]"), # Datetimes + ("spam-a-lot", "tis_but_a_scratch", "U", "U17"), # str + ], +) +@pytest.mark.parametrize("nrows", (10, 50000, 60000)) # lt, eq, gt chunksize +def test_parametric_unit_discovery( + generic_data, long_datum, unitless_dtype, expected_dtype, nrows +): + """Check that the correct unit (e.g. month, day, second) is discovered from + the data when a user specifies a unitless datetime.""" + # Unit should be "D" (days) due to last entry + data = [generic_data] * nrows + [long_datum] + expected = np.array(data, dtype=expected_dtype) + assert len(data) == nrows + 1 + assert len(data) == len(expected) + + # file-like path + txt = StringIO("\n".join(data)) + a = np.loadtxt(txt, dtype=unitless_dtype) + assert len(a) == len(expected) + assert a.dtype == expected.dtype + assert_equal(a, expected) + + # file-obj path + fd, fname = mkstemp() + os.close(fd) + with open(fname, "w") as fh: + fh.write("\n".join(data) + "\n") + # loading the full file... + a = np.loadtxt(fname, dtype=unitless_dtype) + assert len(a) == len(expected) + assert a.dtype == expected.dtype + assert_equal(a, expected) + # loading half of the file... + a = np.loadtxt(fname, dtype=unitless_dtype, max_rows=int(nrows / 2)) + os.remove(fname) + assert len(a) == int(nrows / 2) + assert_equal(a, expected[:int(nrows / 2)]) + + +def test_str_dtype_unit_discovery_with_converter(): + data = ["spam-a-lot"] * 60000 + ["XXXtis_but_a_scratch"] + expected = np.array( + ["spam-a-lot"] * 60000 + ["tis_but_a_scratch"], dtype="U17" + ) + conv = lambda s: s.removeprefix("XXX") + + # file-like path + txt = StringIO("\n".join(data)) + a = np.loadtxt(txt, dtype="U", converters=conv) + assert a.dtype == expected.dtype + assert_equal(a, expected) + + # file-obj path + fd, fname = mkstemp() + os.close(fd) + with open(fname, "w") as fh: + fh.write("\n".join(data)) + a = np.loadtxt(fname, dtype="U", converters=conv) + os.remove(fname) + assert a.dtype == expected.dtype + assert_equal(a, expected) + + +@pytest.mark.skipif(IS_PYPY and sys.implementation.version <= (7, 3, 8), + reason="PyPy bug in error formatting") +def test_control_character_empty(): + with pytest.raises(TypeError, match="Text reading control character must"): + np.loadtxt(StringIO("1 2 3"), delimiter="") + with pytest.raises(TypeError, match="Text reading control character must"): + np.loadtxt(StringIO("1 2 3"), quotechar="") + with pytest.raises(ValueError, match="comments cannot be an empty string"): + np.loadtxt(StringIO("1 2 3"), comments="") + with pytest.raises(ValueError, match="comments cannot be an empty string"): + np.loadtxt(StringIO("1 2 3"), comments=["#", ""]) + + +def test_control_characters_as_bytes(): + """Byte control characters (comments, delimiter) are supported.""" + a = np.loadtxt(StringIO("#header\n1,2,3"), comments=b"#", delimiter=b",") + assert_equal(a, [1, 2, 3]) + + +@pytest.mark.filterwarnings('ignore::UserWarning') +def test_field_growing_cases(): + # Test empty field appending/growing (each field still takes 1 character) + # to see if the final field appending does not create issues. + res = np.loadtxt([""], delimiter=",", dtype=bytes) + assert len(res) == 0 + + for i in range(1, 1024): + res = np.loadtxt(["," * i], delimiter=",", dtype=bytes, max_rows=10) + assert len(res) == i + 1 + +@pytest.mark.parametrize("nmax", (10000, 50000, 55000, 60000)) +def test_maxrows_exceeding_chunksize(nmax): + # tries to read all of the file, + # or less, equal, greater than _loadtxt_chunksize + file_length = 60000 + + # file-like path + data = ["a 0.5 1"] * file_length + txt = StringIO("\n".join(data)) + res = np.loadtxt(txt, dtype=str, delimiter=" ", max_rows=nmax) + assert len(res) == nmax + + # file-obj path + fd, fname = mkstemp() + os.close(fd) + with open(fname, "w") as fh: + fh.write("\n".join(data)) + res = np.loadtxt(fname, dtype=str, delimiter=" ", max_rows=nmax) + os.remove(fname) + assert len(res) == nmax + +@pytest.mark.parametrize("nskip", (0, 10000, 12345, 50000, 67891, 100000)) +def test_skiprow_exceeding_maxrows_exceeding_chunksize(tmpdir, nskip): + # tries to read a file in chunks by skipping a variable amount of lines, + # less, equal, greater than max_rows + file_length = 110000 + data = "\n".join(f"{i} a 0.5 1" for i in range(1, file_length + 1)) + expected_length = min(60000, file_length - nskip) + expected = np.arange(nskip + 1, nskip + 1 + expected_length).astype(str) + + # file-like path + txt = StringIO(data) + res = np.loadtxt(txt, dtype='str', delimiter=" ", skiprows=nskip, max_rows=60000) + assert len(res) == expected_length + # are the right lines read in res? + assert_array_equal(expected, res[:, 0]) + + # file-obj path + tmp_file = tmpdir / "test_data.txt" + tmp_file.write(data) + fname = str(tmp_file) + res = np.loadtxt(fname, dtype='str', delimiter=" ", skiprows=nskip, max_rows=60000) + assert len(res) == expected_length + # are the right lines read in res? + assert_array_equal(expected, res[:, 0]) diff --git a/.venv/lib/python3.12/site-packages/numpy/lib/tests/test_mixins.py b/.venv/lib/python3.12/site-packages/numpy/lib/tests/test_mixins.py new file mode 100644 index 0000000..f0aec15 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/lib/tests/test_mixins.py @@ -0,0 +1,215 @@ +import numbers +import operator + +import numpy as np +from numpy.testing import assert_, assert_equal, assert_raises + +# NOTE: This class should be kept as an exact copy of the example from the +# docstring for NDArrayOperatorsMixin. + +class ArrayLike(np.lib.mixins.NDArrayOperatorsMixin): + def __init__(self, value): + self.value = np.asarray(value) + + # One might also consider adding the built-in list type to this + # list, to support operations like np.add(array_like, list) + _HANDLED_TYPES = (np.ndarray, numbers.Number) + + def __array_ufunc__(self, ufunc, method, *inputs, **kwargs): + out = kwargs.get('out', ()) + for x in inputs + out: + # Only support operations with instances of _HANDLED_TYPES. + # Use ArrayLike instead of type(self) for isinstance to + # allow subclasses that don't override __array_ufunc__ to + # handle ArrayLike objects. + if not isinstance(x, self._HANDLED_TYPES + (ArrayLike,)): + return NotImplemented + + # Defer to the implementation of the ufunc on unwrapped values. + inputs = tuple(x.value if isinstance(x, ArrayLike) else x + for x in inputs) + if out: + kwargs['out'] = tuple( + x.value if isinstance(x, ArrayLike) else x + for x in out) + result = getattr(ufunc, method)(*inputs, **kwargs) + + if type(result) is tuple: + # multiple return values + return tuple(type(self)(x) for x in result) + elif method == 'at': + # no return value + return None + else: + # one return value + return type(self)(result) + + def __repr__(self): + return f'{type(self).__name__}({self.value!r})' + + +def wrap_array_like(result): + if type(result) is tuple: + return tuple(ArrayLike(r) for r in result) + else: + return ArrayLike(result) + + +def _assert_equal_type_and_value(result, expected, err_msg=None): + assert_equal(type(result), type(expected), err_msg=err_msg) + if isinstance(result, tuple): + assert_equal(len(result), len(expected), err_msg=err_msg) + for result_item, expected_item in zip(result, expected): + _assert_equal_type_and_value(result_item, expected_item, err_msg) + else: + assert_equal(result.value, expected.value, err_msg=err_msg) + assert_equal(getattr(result.value, 'dtype', None), + getattr(expected.value, 'dtype', None), err_msg=err_msg) + + +_ALL_BINARY_OPERATORS = [ + operator.lt, + operator.le, + operator.eq, + operator.ne, + operator.gt, + operator.ge, + operator.add, + operator.sub, + operator.mul, + operator.truediv, + operator.floordiv, + operator.mod, + divmod, + pow, + operator.lshift, + operator.rshift, + operator.and_, + operator.xor, + operator.or_, +] + + +class TestNDArrayOperatorsMixin: + + def test_array_like_add(self): + + def check(result): + _assert_equal_type_and_value(result, ArrayLike(0)) + + check(ArrayLike(0) + 0) + check(0 + ArrayLike(0)) + + check(ArrayLike(0) + np.array(0)) + check(np.array(0) + ArrayLike(0)) + + check(ArrayLike(np.array(0)) + 0) + check(0 + ArrayLike(np.array(0))) + + check(ArrayLike(np.array(0)) + np.array(0)) + check(np.array(0) + ArrayLike(np.array(0))) + + def test_inplace(self): + array_like = ArrayLike(np.array([0])) + array_like += 1 + _assert_equal_type_and_value(array_like, ArrayLike(np.array([1]))) + + array = np.array([0]) + array += ArrayLike(1) + _assert_equal_type_and_value(array, ArrayLike(np.array([1]))) + + def test_opt_out(self): + + class OptOut: + """Object that opts out of __array_ufunc__.""" + __array_ufunc__ = None + + def __add__(self, other): + return self + + def __radd__(self, other): + return self + + array_like = ArrayLike(1) + opt_out = OptOut() + + # supported operations + assert_(array_like + opt_out is opt_out) + assert_(opt_out + array_like is opt_out) + + # not supported + with assert_raises(TypeError): + # don't use the Python default, array_like = array_like + opt_out + array_like += opt_out + with assert_raises(TypeError): + array_like - opt_out + with assert_raises(TypeError): + opt_out - array_like + + def test_subclass(self): + + class SubArrayLike(ArrayLike): + """Should take precedence over ArrayLike.""" + + x = ArrayLike(0) + y = SubArrayLike(1) + _assert_equal_type_and_value(x + y, y) + _assert_equal_type_and_value(y + x, y) + + def test_object(self): + x = ArrayLike(0) + obj = object() + with assert_raises(TypeError): + x + obj + with assert_raises(TypeError): + obj + x + with assert_raises(TypeError): + x += obj + + def test_unary_methods(self): + array = np.array([-1, 0, 1, 2]) + array_like = ArrayLike(array) + for op in [operator.neg, + operator.pos, + abs, + operator.invert]: + _assert_equal_type_and_value(op(array_like), ArrayLike(op(array))) + + def test_forward_binary_methods(self): + array = np.array([-1, 0, 1, 2]) + array_like = ArrayLike(array) + for op in _ALL_BINARY_OPERATORS: + expected = wrap_array_like(op(array, 1)) + actual = op(array_like, 1) + err_msg = f'failed for operator {op}' + _assert_equal_type_and_value(expected, actual, err_msg=err_msg) + + def test_reflected_binary_methods(self): + for op in _ALL_BINARY_OPERATORS: + expected = wrap_array_like(op(2, 1)) + actual = op(2, ArrayLike(1)) + err_msg = f'failed for operator {op}' + _assert_equal_type_and_value(expected, actual, err_msg=err_msg) + + def test_matmul(self): + array = np.array([1, 2], dtype=np.float64) + array_like = ArrayLike(array) + expected = ArrayLike(np.float64(5)) + _assert_equal_type_and_value(expected, np.matmul(array_like, array)) + _assert_equal_type_and_value( + expected, operator.matmul(array_like, array)) + _assert_equal_type_and_value( + expected, operator.matmul(array, array_like)) + + def test_ufunc_at(self): + array = ArrayLike(np.array([1, 2, 3, 4])) + assert_(np.negative.at(array, np.array([0, 1])) is None) + _assert_equal_type_and_value(array, ArrayLike([-1, -2, 3, 4])) + + def test_ufunc_two_outputs(self): + mantissa, exponent = np.frexp(2 ** -3) + expected = (ArrayLike(mantissa), ArrayLike(exponent)) + _assert_equal_type_and_value( + np.frexp(ArrayLike(2 ** -3)), expected) + _assert_equal_type_and_value( + np.frexp(ArrayLike(np.array(2 ** -3))), expected) diff --git a/.venv/lib/python3.12/site-packages/numpy/lib/tests/test_nanfunctions.py b/.venv/lib/python3.12/site-packages/numpy/lib/tests/test_nanfunctions.py new file mode 100644 index 0000000..89a6d1f --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/lib/tests/test_nanfunctions.py @@ -0,0 +1,1438 @@ +import inspect +import warnings +from functools import partial + +import pytest + +import numpy as np +from numpy._core.numeric import normalize_axis_tuple +from numpy.exceptions import AxisError, ComplexWarning +from numpy.lib._nanfunctions_impl import _nan_mask, _replace_nan +from numpy.testing import ( + assert_, + assert_almost_equal, + assert_array_equal, + assert_equal, + assert_raises, + assert_raises_regex, + suppress_warnings, +) + +# Test data +_ndat = np.array([[0.6244, np.nan, 0.2692, 0.0116, np.nan, 0.1170], + [0.5351, -0.9403, np.nan, 0.2100, 0.4759, 0.2833], + [np.nan, np.nan, np.nan, 0.1042, np.nan, -0.5954], + [0.1610, np.nan, np.nan, 0.1859, 0.3146, np.nan]]) + + +# Rows of _ndat with nans removed +_rdat = [np.array([0.6244, 0.2692, 0.0116, 0.1170]), + np.array([0.5351, -0.9403, 0.2100, 0.4759, 0.2833]), + np.array([0.1042, -0.5954]), + np.array([0.1610, 0.1859, 0.3146])] + +# Rows of _ndat with nans converted to ones +_ndat_ones = np.array([[0.6244, 1.0, 0.2692, 0.0116, 1.0, 0.1170], + [0.5351, -0.9403, 1.0, 0.2100, 0.4759, 0.2833], + [1.0, 1.0, 1.0, 0.1042, 1.0, -0.5954], + [0.1610, 1.0, 1.0, 0.1859, 0.3146, 1.0]]) + +# Rows of _ndat with nans converted to zeros +_ndat_zeros = np.array([[0.6244, 0.0, 0.2692, 0.0116, 0.0, 0.1170], + [0.5351, -0.9403, 0.0, 0.2100, 0.4759, 0.2833], + [0.0, 0.0, 0.0, 0.1042, 0.0, -0.5954], + [0.1610, 0.0, 0.0, 0.1859, 0.3146, 0.0]]) + + +class TestSignatureMatch: + NANFUNCS = { + np.nanmin: np.amin, + np.nanmax: np.amax, + np.nanargmin: np.argmin, + np.nanargmax: np.argmax, + np.nansum: np.sum, + np.nanprod: np.prod, + np.nancumsum: np.cumsum, + np.nancumprod: np.cumprod, + np.nanmean: np.mean, + np.nanmedian: np.median, + np.nanpercentile: np.percentile, + np.nanquantile: np.quantile, + np.nanvar: np.var, + np.nanstd: np.std, + } + IDS = [k.__name__ for k in NANFUNCS] + + @staticmethod + def get_signature(func, default="..."): + """Construct a signature and replace all default parameter-values.""" + prm_list = [] + signature = inspect.signature(func) + for prm in signature.parameters.values(): + if prm.default is inspect.Parameter.empty: + prm_list.append(prm) + else: + prm_list.append(prm.replace(default=default)) + return inspect.Signature(prm_list) + + @pytest.mark.parametrize("nan_func,func", NANFUNCS.items(), ids=IDS) + def test_signature_match(self, nan_func, func): + # Ignore the default parameter-values as they can sometimes differ + # between the two functions (*e.g.* one has `False` while the other + # has `np._NoValue`) + signature = self.get_signature(func) + nan_signature = self.get_signature(nan_func) + np.testing.assert_equal(signature, nan_signature) + + def test_exhaustiveness(self): + """Validate that all nan functions are actually tested.""" + np.testing.assert_equal( + set(self.IDS), set(np.lib._nanfunctions_impl.__all__) + ) + + +class TestNanFunctions_MinMax: + + nanfuncs = [np.nanmin, np.nanmax] + stdfuncs = [np.min, np.max] + + def test_mutation(self): + # Check that passed array is not modified. + ndat = _ndat.copy() + for f in self.nanfuncs: + f(ndat) + assert_equal(ndat, _ndat) + + def test_keepdims(self): + mat = np.eye(3) + for nf, rf in zip(self.nanfuncs, self.stdfuncs): + for axis in [None, 0, 1]: + tgt = rf(mat, axis=axis, keepdims=True) + res = nf(mat, axis=axis, keepdims=True) + assert_(res.ndim == tgt.ndim) + + def test_out(self): + mat = np.eye(3) + for nf, rf in zip(self.nanfuncs, self.stdfuncs): + resout = np.zeros(3) + tgt = rf(mat, axis=1) + res = nf(mat, axis=1, out=resout) + assert_almost_equal(res, resout) + assert_almost_equal(res, tgt) + + def test_dtype_from_input(self): + codes = 'efdgFDG' + for nf, rf in zip(self.nanfuncs, self.stdfuncs): + for c in codes: + mat = np.eye(3, dtype=c) + tgt = rf(mat, axis=1).dtype.type + res = nf(mat, axis=1).dtype.type + assert_(res is tgt) + # scalar case + tgt = rf(mat, axis=None).dtype.type + res = nf(mat, axis=None).dtype.type + assert_(res is tgt) + + def test_result_values(self): + for nf, rf in zip(self.nanfuncs, self.stdfuncs): + tgt = [rf(d) for d in _rdat] + res = nf(_ndat, axis=1) + assert_almost_equal(res, tgt) + + @pytest.mark.parametrize("axis", [None, 0, 1]) + @pytest.mark.parametrize("dtype", np.typecodes["AllFloat"]) + @pytest.mark.parametrize("array", [ + np.array(np.nan), + np.full((3, 3), np.nan), + ], ids=["0d", "2d"]) + def test_allnans(self, axis, dtype, array): + if axis is not None and array.ndim == 0: + pytest.skip("`axis != None` not supported for 0d arrays") + + array = array.astype(dtype) + match = "All-NaN slice encountered" + for func in self.nanfuncs: + with pytest.warns(RuntimeWarning, match=match): + out = func(array, axis=axis) + assert np.isnan(out).all() + assert out.dtype == array.dtype + + def test_masked(self): + mat = np.ma.fix_invalid(_ndat) + msk = mat._mask.copy() + for f in [np.nanmin]: + res = f(mat, axis=1) + tgt = f(_ndat, axis=1) + assert_equal(res, tgt) + assert_equal(mat._mask, msk) + assert_(not np.isinf(mat).any()) + + def test_scalar(self): + for f in self.nanfuncs: + assert_(f(0.) == 0.) + + def test_subclass(self): + class MyNDArray(np.ndarray): + pass + + # Check that it works and that type and + # shape are preserved + mine = np.eye(3).view(MyNDArray) + for f in self.nanfuncs: + res = f(mine, axis=0) + assert_(isinstance(res, MyNDArray)) + assert_(res.shape == (3,)) + res = f(mine, axis=1) + assert_(isinstance(res, MyNDArray)) + assert_(res.shape == (3,)) + res = f(mine) + assert_(res.shape == ()) + + # check that rows of nan are dealt with for subclasses (#4628) + mine[1] = np.nan + for f in self.nanfuncs: + with warnings.catch_warnings(record=True) as w: + warnings.simplefilter('always') + res = f(mine, axis=0) + assert_(isinstance(res, MyNDArray)) + assert_(not np.any(np.isnan(res))) + assert_(len(w) == 0) + + with warnings.catch_warnings(record=True) as w: + warnings.simplefilter('always') + res = f(mine, axis=1) + assert_(isinstance(res, MyNDArray)) + assert_(np.isnan(res[1]) and not np.isnan(res[0]) + and not np.isnan(res[2])) + assert_(len(w) == 1, 'no warning raised') + assert_(issubclass(w[0].category, RuntimeWarning)) + + with warnings.catch_warnings(record=True) as w: + warnings.simplefilter('always') + res = f(mine) + assert_(res.shape == ()) + assert_(res != np.nan) + assert_(len(w) == 0) + + def test_object_array(self): + arr = np.array([[1.0, 2.0], [np.nan, 4.0], [np.nan, np.nan]], dtype=object) + assert_equal(np.nanmin(arr), 1.0) + assert_equal(np.nanmin(arr, axis=0), [1.0, 2.0]) + + with warnings.catch_warnings(record=True) as w: + warnings.simplefilter('always') + # assert_equal does not work on object arrays of nan + assert_equal(list(np.nanmin(arr, axis=1)), [1.0, 4.0, np.nan]) + assert_(len(w) == 1, 'no warning raised') + assert_(issubclass(w[0].category, RuntimeWarning)) + + @pytest.mark.parametrize("dtype", np.typecodes["AllFloat"]) + def test_initial(self, dtype): + class MyNDArray(np.ndarray): + pass + + ar = np.arange(9).astype(dtype) + ar[:5] = np.nan + + for f in self.nanfuncs: + initial = 100 if f is np.nanmax else 0 + + ret1 = f(ar, initial=initial) + assert ret1.dtype == dtype + assert ret1 == initial + + ret2 = f(ar.view(MyNDArray), initial=initial) + assert ret2.dtype == dtype + assert ret2 == initial + + @pytest.mark.parametrize("dtype", np.typecodes["AllFloat"]) + def test_where(self, dtype): + class MyNDArray(np.ndarray): + pass + + ar = np.arange(9).reshape(3, 3).astype(dtype) + ar[0, :] = np.nan + where = np.ones_like(ar, dtype=np.bool) + where[:, 0] = False + + for f in self.nanfuncs: + reference = 4 if f is np.nanmin else 8 + + ret1 = f(ar, where=where, initial=5) + assert ret1.dtype == dtype + assert ret1 == reference + + ret2 = f(ar.view(MyNDArray), where=where, initial=5) + assert ret2.dtype == dtype + assert ret2 == reference + + +class TestNanFunctions_ArgminArgmax: + + nanfuncs = [np.nanargmin, np.nanargmax] + + def test_mutation(self): + # Check that passed array is not modified. + ndat = _ndat.copy() + for f in self.nanfuncs: + f(ndat) + assert_equal(ndat, _ndat) + + def test_result_values(self): + for f, fcmp in zip(self.nanfuncs, [np.greater, np.less]): + for row in _ndat: + with suppress_warnings() as sup: + sup.filter(RuntimeWarning, "invalid value encountered in") + ind = f(row) + val = row[ind] + # comparing with NaN is tricky as the result + # is always false except for NaN != NaN + assert_(not np.isnan(val)) + assert_(not fcmp(val, row).any()) + assert_(not np.equal(val, row[:ind]).any()) + + @pytest.mark.parametrize("axis", [None, 0, 1]) + @pytest.mark.parametrize("dtype", np.typecodes["AllFloat"]) + @pytest.mark.parametrize("array", [ + np.array(np.nan), + np.full((3, 3), np.nan), + ], ids=["0d", "2d"]) + def test_allnans(self, axis, dtype, array): + if axis is not None and array.ndim == 0: + pytest.skip("`axis != None` not supported for 0d arrays") + + array = array.astype(dtype) + for func in self.nanfuncs: + with pytest.raises(ValueError, match="All-NaN slice encountered"): + func(array, axis=axis) + + def test_empty(self): + mat = np.zeros((0, 3)) + for f in self.nanfuncs: + for axis in [0, None]: + assert_raises_regex( + ValueError, + "attempt to get argm.. of an empty sequence", + f, mat, axis=axis) + for axis in [1]: + res = f(mat, axis=axis) + assert_equal(res, np.zeros(0)) + + def test_scalar(self): + for f in self.nanfuncs: + assert_(f(0.) == 0.) + + def test_subclass(self): + class MyNDArray(np.ndarray): + pass + + # Check that it works and that type and + # shape are preserved + mine = np.eye(3).view(MyNDArray) + for f in self.nanfuncs: + res = f(mine, axis=0) + assert_(isinstance(res, MyNDArray)) + assert_(res.shape == (3,)) + res = f(mine, axis=1) + assert_(isinstance(res, MyNDArray)) + assert_(res.shape == (3,)) + res = f(mine) + assert_(res.shape == ()) + + @pytest.mark.parametrize("dtype", np.typecodes["AllFloat"]) + def test_keepdims(self, dtype): + ar = np.arange(9).astype(dtype) + ar[:5] = np.nan + + for f in self.nanfuncs: + reference = 5 if f is np.nanargmin else 8 + ret = f(ar, keepdims=True) + assert ret.ndim == ar.ndim + assert ret == reference + + @pytest.mark.parametrize("dtype", np.typecodes["AllFloat"]) + def test_out(self, dtype): + ar = np.arange(9).astype(dtype) + ar[:5] = np.nan + + for f in self.nanfuncs: + out = np.zeros((), dtype=np.intp) + reference = 5 if f is np.nanargmin else 8 + ret = f(ar, out=out) + assert ret is out + assert ret == reference + + +_TEST_ARRAYS = { + "0d": np.array(5), + "1d": np.array([127, 39, 93, 87, 46]) +} +for _v in _TEST_ARRAYS.values(): + _v.setflags(write=False) + + +@pytest.mark.parametrize( + "dtype", + np.typecodes["AllInteger"] + np.typecodes["AllFloat"] + "O", +) +@pytest.mark.parametrize("mat", _TEST_ARRAYS.values(), ids=_TEST_ARRAYS.keys()) +class TestNanFunctions_NumberTypes: + nanfuncs = { + np.nanmin: np.min, + np.nanmax: np.max, + np.nanargmin: np.argmin, + np.nanargmax: np.argmax, + np.nansum: np.sum, + np.nanprod: np.prod, + np.nancumsum: np.cumsum, + np.nancumprod: np.cumprod, + np.nanmean: np.mean, + np.nanmedian: np.median, + np.nanvar: np.var, + np.nanstd: np.std, + } + nanfunc_ids = [i.__name__ for i in nanfuncs] + + @pytest.mark.parametrize("nanfunc,func", nanfuncs.items(), ids=nanfunc_ids) + @np.errstate(over="ignore") + def test_nanfunc(self, mat, dtype, nanfunc, func): + mat = mat.astype(dtype) + tgt = func(mat) + out = nanfunc(mat) + + assert_almost_equal(out, tgt) + if dtype == "O": + assert type(out) is type(tgt) + else: + assert out.dtype == tgt.dtype + + @pytest.mark.parametrize( + "nanfunc,func", + [(np.nanquantile, np.quantile), (np.nanpercentile, np.percentile)], + ids=["nanquantile", "nanpercentile"], + ) + def test_nanfunc_q(self, mat, dtype, nanfunc, func): + mat = mat.astype(dtype) + if mat.dtype.kind == "c": + assert_raises(TypeError, func, mat, q=1) + assert_raises(TypeError, nanfunc, mat, q=1) + + else: + tgt = func(mat, q=1) + out = nanfunc(mat, q=1) + + assert_almost_equal(out, tgt) + + if dtype == "O": + assert type(out) is type(tgt) + else: + assert out.dtype == tgt.dtype + + @pytest.mark.parametrize( + "nanfunc,func", + [(np.nanvar, np.var), (np.nanstd, np.std)], + ids=["nanvar", "nanstd"], + ) + def test_nanfunc_ddof(self, mat, dtype, nanfunc, func): + mat = mat.astype(dtype) + tgt = func(mat, ddof=0.5) + out = nanfunc(mat, ddof=0.5) + + assert_almost_equal(out, tgt) + if dtype == "O": + assert type(out) is type(tgt) + else: + assert out.dtype == tgt.dtype + + @pytest.mark.parametrize( + "nanfunc", [np.nanvar, np.nanstd] + ) + def test_nanfunc_correction(self, mat, dtype, nanfunc): + mat = mat.astype(dtype) + assert_almost_equal( + nanfunc(mat, correction=0.5), nanfunc(mat, ddof=0.5) + ) + + err_msg = "ddof and correction can't be provided simultaneously." + with assert_raises_regex(ValueError, err_msg): + nanfunc(mat, ddof=0.5, correction=0.5) + + with assert_raises_regex(ValueError, err_msg): + nanfunc(mat, ddof=1, correction=0) + + +class SharedNanFunctionsTestsMixin: + def test_mutation(self): + # Check that passed array is not modified. + ndat = _ndat.copy() + for f in self.nanfuncs: + f(ndat) + assert_equal(ndat, _ndat) + + def test_keepdims(self): + mat = np.eye(3) + for nf, rf in zip(self.nanfuncs, self.stdfuncs): + for axis in [None, 0, 1]: + tgt = rf(mat, axis=axis, keepdims=True) + res = nf(mat, axis=axis, keepdims=True) + assert_(res.ndim == tgt.ndim) + + def test_out(self): + mat = np.eye(3) + for nf, rf in zip(self.nanfuncs, self.stdfuncs): + resout = np.zeros(3) + tgt = rf(mat, axis=1) + res = nf(mat, axis=1, out=resout) + assert_almost_equal(res, resout) + assert_almost_equal(res, tgt) + + def test_dtype_from_dtype(self): + mat = np.eye(3) + codes = 'efdgFDG' + for nf, rf in zip(self.nanfuncs, self.stdfuncs): + for c in codes: + with suppress_warnings() as sup: + if nf in {np.nanstd, np.nanvar} and c in 'FDG': + # Giving the warning is a small bug, see gh-8000 + sup.filter(ComplexWarning) + tgt = rf(mat, dtype=np.dtype(c), axis=1).dtype.type + res = nf(mat, dtype=np.dtype(c), axis=1).dtype.type + assert_(res is tgt) + # scalar case + tgt = rf(mat, dtype=np.dtype(c), axis=None).dtype.type + res = nf(mat, dtype=np.dtype(c), axis=None).dtype.type + assert_(res is tgt) + + def test_dtype_from_char(self): + mat = np.eye(3) + codes = 'efdgFDG' + for nf, rf in zip(self.nanfuncs, self.stdfuncs): + for c in codes: + with suppress_warnings() as sup: + if nf in {np.nanstd, np.nanvar} and c in 'FDG': + # Giving the warning is a small bug, see gh-8000 + sup.filter(ComplexWarning) + tgt = rf(mat, dtype=c, axis=1).dtype.type + res = nf(mat, dtype=c, axis=1).dtype.type + assert_(res is tgt) + # scalar case + tgt = rf(mat, dtype=c, axis=None).dtype.type + res = nf(mat, dtype=c, axis=None).dtype.type + assert_(res is tgt) + + def test_dtype_from_input(self): + codes = 'efdgFDG' + for nf, rf in zip(self.nanfuncs, self.stdfuncs): + for c in codes: + mat = np.eye(3, dtype=c) + tgt = rf(mat, axis=1).dtype.type + res = nf(mat, axis=1).dtype.type + assert_(res is tgt, f"res {res}, tgt {tgt}") + # scalar case + tgt = rf(mat, axis=None).dtype.type + res = nf(mat, axis=None).dtype.type + assert_(res is tgt) + + def test_result_values(self): + for nf, rf in zip(self.nanfuncs, self.stdfuncs): + tgt = [rf(d) for d in _rdat] + res = nf(_ndat, axis=1) + assert_almost_equal(res, tgt) + + def test_scalar(self): + for f in self.nanfuncs: + assert_(f(0.) == 0.) + + def test_subclass(self): + class MyNDArray(np.ndarray): + pass + + # Check that it works and that type and + # shape are preserved + array = np.eye(3) + mine = array.view(MyNDArray) + for f in self.nanfuncs: + expected_shape = f(array, axis=0).shape + res = f(mine, axis=0) + assert_(isinstance(res, MyNDArray)) + assert_(res.shape == expected_shape) + expected_shape = f(array, axis=1).shape + res = f(mine, axis=1) + assert_(isinstance(res, MyNDArray)) + assert_(res.shape == expected_shape) + expected_shape = f(array).shape + res = f(mine) + assert_(isinstance(res, MyNDArray)) + assert_(res.shape == expected_shape) + + +class TestNanFunctions_SumProd(SharedNanFunctionsTestsMixin): + + nanfuncs = [np.nansum, np.nanprod] + stdfuncs = [np.sum, np.prod] + + @pytest.mark.parametrize("axis", [None, 0, 1]) + @pytest.mark.parametrize("dtype", np.typecodes["AllFloat"]) + @pytest.mark.parametrize("array", [ + np.array(np.nan), + np.full((3, 3), np.nan), + ], ids=["0d", "2d"]) + def test_allnans(self, axis, dtype, array): + if axis is not None and array.ndim == 0: + pytest.skip("`axis != None` not supported for 0d arrays") + + array = array.astype(dtype) + for func, identity in zip(self.nanfuncs, [0, 1]): + out = func(array, axis=axis) + assert np.all(out == identity) + assert out.dtype == array.dtype + + def test_empty(self): + for f, tgt_value in zip([np.nansum, np.nanprod], [0, 1]): + mat = np.zeros((0, 3)) + tgt = [tgt_value] * 3 + res = f(mat, axis=0) + assert_equal(res, tgt) + tgt = [] + res = f(mat, axis=1) + assert_equal(res, tgt) + tgt = tgt_value + res = f(mat, axis=None) + assert_equal(res, tgt) + + @pytest.mark.parametrize("dtype", np.typecodes["AllFloat"]) + def test_initial(self, dtype): + ar = np.arange(9).astype(dtype) + ar[:5] = np.nan + + for f in self.nanfuncs: + reference = 28 if f is np.nansum else 3360 + ret = f(ar, initial=2) + assert ret.dtype == dtype + assert ret == reference + + @pytest.mark.parametrize("dtype", np.typecodes["AllFloat"]) + def test_where(self, dtype): + ar = np.arange(9).reshape(3, 3).astype(dtype) + ar[0, :] = np.nan + where = np.ones_like(ar, dtype=np.bool) + where[:, 0] = False + + for f in self.nanfuncs: + reference = 26 if f is np.nansum else 2240 + ret = f(ar, where=where, initial=2) + assert ret.dtype == dtype + assert ret == reference + + +class TestNanFunctions_CumSumProd(SharedNanFunctionsTestsMixin): + + nanfuncs = [np.nancumsum, np.nancumprod] + stdfuncs = [np.cumsum, np.cumprod] + + @pytest.mark.parametrize("axis", [None, 0, 1]) + @pytest.mark.parametrize("dtype", np.typecodes["AllFloat"]) + @pytest.mark.parametrize("array", [ + np.array(np.nan), + np.full((3, 3), np.nan) + ], ids=["0d", "2d"]) + def test_allnans(self, axis, dtype, array): + if axis is not None and array.ndim == 0: + pytest.skip("`axis != None` not supported for 0d arrays") + + array = array.astype(dtype) + for func, identity in zip(self.nanfuncs, [0, 1]): + out = func(array) + assert np.all(out == identity) + assert out.dtype == array.dtype + + def test_empty(self): + for f, tgt_value in zip(self.nanfuncs, [0, 1]): + mat = np.zeros((0, 3)) + tgt = tgt_value * np.ones((0, 3)) + res = f(mat, axis=0) + assert_equal(res, tgt) + tgt = mat + res = f(mat, axis=1) + assert_equal(res, tgt) + tgt = np.zeros(0) + res = f(mat, axis=None) + assert_equal(res, tgt) + + def test_keepdims(self): + for f, g in zip(self.nanfuncs, self.stdfuncs): + mat = np.eye(3) + for axis in [None, 0, 1]: + tgt = f(mat, axis=axis, out=None) + res = g(mat, axis=axis, out=None) + assert_(res.ndim == tgt.ndim) + + for f in self.nanfuncs: + d = np.ones((3, 5, 7, 11)) + # Randomly set some elements to NaN: + rs = np.random.RandomState(0) + d[rs.rand(*d.shape) < 0.5] = np.nan + res = f(d, axis=None) + assert_equal(res.shape, (1155,)) + for axis in np.arange(4): + res = f(d, axis=axis) + assert_equal(res.shape, (3, 5, 7, 11)) + + def test_result_values(self): + for axis in (-2, -1, 0, 1, None): + tgt = np.cumprod(_ndat_ones, axis=axis) + res = np.nancumprod(_ndat, axis=axis) + assert_almost_equal(res, tgt) + tgt = np.cumsum(_ndat_zeros, axis=axis) + res = np.nancumsum(_ndat, axis=axis) + assert_almost_equal(res, tgt) + + def test_out(self): + mat = np.eye(3) + for nf, rf in zip(self.nanfuncs, self.stdfuncs): + resout = np.eye(3) + for axis in (-2, -1, 0, 1): + tgt = rf(mat, axis=axis) + res = nf(mat, axis=axis, out=resout) + assert_almost_equal(res, resout) + assert_almost_equal(res, tgt) + + +class TestNanFunctions_MeanVarStd(SharedNanFunctionsTestsMixin): + + nanfuncs = [np.nanmean, np.nanvar, np.nanstd] + stdfuncs = [np.mean, np.var, np.std] + + def test_dtype_error(self): + for f in self.nanfuncs: + for dtype in [np.bool, np.int_, np.object_]: + assert_raises(TypeError, f, _ndat, axis=1, dtype=dtype) + + def test_out_dtype_error(self): + for f in self.nanfuncs: + for dtype in [np.bool, np.int_, np.object_]: + out = np.empty(_ndat.shape[0], dtype=dtype) + assert_raises(TypeError, f, _ndat, axis=1, out=out) + + def test_ddof(self): + nanfuncs = [np.nanvar, np.nanstd] + stdfuncs = [np.var, np.std] + for nf, rf in zip(nanfuncs, stdfuncs): + for ddof in [0, 1]: + tgt = [rf(d, ddof=ddof) for d in _rdat] + res = nf(_ndat, axis=1, ddof=ddof) + assert_almost_equal(res, tgt) + + def test_ddof_too_big(self): + nanfuncs = [np.nanvar, np.nanstd] + stdfuncs = [np.var, np.std] + dsize = [len(d) for d in _rdat] + for nf, rf in zip(nanfuncs, stdfuncs): + for ddof in range(5): + with suppress_warnings() as sup: + sup.record(RuntimeWarning) + sup.filter(ComplexWarning) + tgt = [ddof >= d for d in dsize] + res = nf(_ndat, axis=1, ddof=ddof) + assert_equal(np.isnan(res), tgt) + if any(tgt): + assert_(len(sup.log) == 1) + else: + assert_(len(sup.log) == 0) + + @pytest.mark.parametrize("axis", [None, 0, 1]) + @pytest.mark.parametrize("dtype", np.typecodes["AllFloat"]) + @pytest.mark.parametrize("array", [ + np.array(np.nan), + np.full((3, 3), np.nan), + ], ids=["0d", "2d"]) + def test_allnans(self, axis, dtype, array): + if axis is not None and array.ndim == 0: + pytest.skip("`axis != None` not supported for 0d arrays") + + array = array.astype(dtype) + match = "(Degrees of freedom <= 0 for slice.)|(Mean of empty slice)" + for func in self.nanfuncs: + with pytest.warns(RuntimeWarning, match=match): + out = func(array, axis=axis) + assert np.isnan(out).all() + + # `nanvar` and `nanstd` convert complex inputs to their + # corresponding floating dtype + if func is np.nanmean: + assert out.dtype == array.dtype + else: + assert out.dtype == np.abs(array).dtype + + def test_empty(self): + mat = np.zeros((0, 3)) + for f in self.nanfuncs: + for axis in [0, None]: + with warnings.catch_warnings(record=True) as w: + warnings.simplefilter('always') + assert_(np.isnan(f(mat, axis=axis)).all()) + assert_(len(w) == 1) + assert_(issubclass(w[0].category, RuntimeWarning)) + for axis in [1]: + with warnings.catch_warnings(record=True) as w: + warnings.simplefilter('always') + assert_equal(f(mat, axis=axis), np.zeros([])) + assert_(len(w) == 0) + + @pytest.mark.parametrize("dtype", np.typecodes["AllFloat"]) + def test_where(self, dtype): + ar = np.arange(9).reshape(3, 3).astype(dtype) + ar[0, :] = np.nan + where = np.ones_like(ar, dtype=np.bool) + where[:, 0] = False + + for f, f_std in zip(self.nanfuncs, self.stdfuncs): + reference = f_std(ar[where][2:]) + dtype_reference = dtype if f is np.nanmean else ar.real.dtype + + ret = f(ar, where=where) + assert ret.dtype == dtype_reference + np.testing.assert_allclose(ret, reference) + + def test_nanstd_with_mean_keyword(self): + # Setting the seed to make the test reproducible + rng = np.random.RandomState(1234) + A = rng.randn(10, 20, 5) + 0.5 + A[:, 5, :] = np.nan + + mean_out = np.zeros((10, 1, 5)) + std_out = np.zeros((10, 1, 5)) + + mean = np.nanmean(A, + out=mean_out, + axis=1, + keepdims=True) + + # The returned object should be the object specified during calling + assert mean_out is mean + + std = np.nanstd(A, + out=std_out, + axis=1, + keepdims=True, + mean=mean) + + # The returned object should be the object specified during calling + assert std_out is std + + # Shape of returned mean and std should be same + assert std.shape == mean.shape + assert std.shape == (10, 1, 5) + + # Output should be the same as from the individual algorithms + std_old = np.nanstd(A, axis=1, keepdims=True) + + assert std_old.shape == mean.shape + assert_almost_equal(std, std_old) + + +_TIME_UNITS = ( + "Y", "M", "W", "D", "h", "m", "s", "ms", "us", "ns", "ps", "fs", "as" +) + +# All `inexact` + `timdelta64` type codes +_TYPE_CODES = list(np.typecodes["AllFloat"]) +_TYPE_CODES += [f"m8[{unit}]" for unit in _TIME_UNITS] + + +class TestNanFunctions_Median: + + def test_mutation(self): + # Check that passed array is not modified. + ndat = _ndat.copy() + np.nanmedian(ndat) + assert_equal(ndat, _ndat) + + def test_keepdims(self): + mat = np.eye(3) + for axis in [None, 0, 1]: + tgt = np.median(mat, axis=axis, out=None, overwrite_input=False) + res = np.nanmedian(mat, axis=axis, out=None, overwrite_input=False) + assert_(res.ndim == tgt.ndim) + + d = np.ones((3, 5, 7, 11)) + # Randomly set some elements to NaN: + w = np.random.random((4, 200)) * np.array(d.shape)[:, None] + w = w.astype(np.intp) + d[tuple(w)] = np.nan + with suppress_warnings() as sup: + sup.filter(RuntimeWarning) + res = np.nanmedian(d, axis=None, keepdims=True) + assert_equal(res.shape, (1, 1, 1, 1)) + res = np.nanmedian(d, axis=(0, 1), keepdims=True) + assert_equal(res.shape, (1, 1, 7, 11)) + res = np.nanmedian(d, axis=(0, 3), keepdims=True) + assert_equal(res.shape, (1, 5, 7, 1)) + res = np.nanmedian(d, axis=(1,), keepdims=True) + assert_equal(res.shape, (3, 1, 7, 11)) + res = np.nanmedian(d, axis=(0, 1, 2, 3), keepdims=True) + assert_equal(res.shape, (1, 1, 1, 1)) + res = np.nanmedian(d, axis=(0, 1, 3), keepdims=True) + assert_equal(res.shape, (1, 1, 7, 1)) + + @pytest.mark.parametrize( + argnames='axis', + argvalues=[ + None, + 1, + (1, ), + (0, 1), + (-3, -1), + ] + ) + @pytest.mark.filterwarnings("ignore:All-NaN slice:RuntimeWarning") + def test_keepdims_out(self, axis): + d = np.ones((3, 5, 7, 11)) + # Randomly set some elements to NaN: + w = np.random.random((4, 200)) * np.array(d.shape)[:, None] + w = w.astype(np.intp) + d[tuple(w)] = np.nan + if axis is None: + shape_out = (1,) * d.ndim + else: + axis_norm = normalize_axis_tuple(axis, d.ndim) + shape_out = tuple( + 1 if i in axis_norm else d.shape[i] for i in range(d.ndim)) + out = np.empty(shape_out) + result = np.nanmedian(d, axis=axis, keepdims=True, out=out) + assert result is out + assert_equal(result.shape, shape_out) + + def test_out(self): + mat = np.random.rand(3, 3) + nan_mat = np.insert(mat, [0, 2], np.nan, axis=1) + resout = np.zeros(3) + tgt = np.median(mat, axis=1) + res = np.nanmedian(nan_mat, axis=1, out=resout) + assert_almost_equal(res, resout) + assert_almost_equal(res, tgt) + # 0-d output: + resout = np.zeros(()) + tgt = np.median(mat, axis=None) + res = np.nanmedian(nan_mat, axis=None, out=resout) + assert_almost_equal(res, resout) + assert_almost_equal(res, tgt) + res = np.nanmedian(nan_mat, axis=(0, 1), out=resout) + assert_almost_equal(res, resout) + assert_almost_equal(res, tgt) + + def test_small_large(self): + # test the small and large code paths, current cutoff 400 elements + for s in [5, 20, 51, 200, 1000]: + d = np.random.randn(4, s) + # Randomly set some elements to NaN: + w = np.random.randint(0, d.size, size=d.size // 5) + d.ravel()[w] = np.nan + d[:, 0] = 1. # ensure at least one good value + # use normal median without nans to compare + tgt = [] + for x in d: + nonan = np.compress(~np.isnan(x), x) + tgt.append(np.median(nonan, overwrite_input=True)) + + assert_array_equal(np.nanmedian(d, axis=-1), tgt) + + def test_result_values(self): + tgt = [np.median(d) for d in _rdat] + res = np.nanmedian(_ndat, axis=1) + assert_almost_equal(res, tgt) + + @pytest.mark.parametrize("axis", [None, 0, 1]) + @pytest.mark.parametrize("dtype", _TYPE_CODES) + def test_allnans(self, dtype, axis): + mat = np.full((3, 3), np.nan).astype(dtype) + with suppress_warnings() as sup: + sup.record(RuntimeWarning) + + output = np.nanmedian(mat, axis=axis) + assert output.dtype == mat.dtype + assert np.isnan(output).all() + + if axis is None: + assert_(len(sup.log) == 1) + else: + assert_(len(sup.log) == 3) + + # Check scalar + scalar = np.array(np.nan).astype(dtype)[()] + output_scalar = np.nanmedian(scalar) + assert output_scalar.dtype == scalar.dtype + assert np.isnan(output_scalar) + + if axis is None: + assert_(len(sup.log) == 2) + else: + assert_(len(sup.log) == 4) + + def test_empty(self): + mat = np.zeros((0, 3)) + for axis in [0, None]: + with warnings.catch_warnings(record=True) as w: + warnings.simplefilter('always') + assert_(np.isnan(np.nanmedian(mat, axis=axis)).all()) + assert_(len(w) == 1) + assert_(issubclass(w[0].category, RuntimeWarning)) + for axis in [1]: + with warnings.catch_warnings(record=True) as w: + warnings.simplefilter('always') + assert_equal(np.nanmedian(mat, axis=axis), np.zeros([])) + assert_(len(w) == 0) + + def test_scalar(self): + assert_(np.nanmedian(0.) == 0.) + + def test_extended_axis_invalid(self): + d = np.ones((3, 5, 7, 11)) + assert_raises(AxisError, np.nanmedian, d, axis=-5) + assert_raises(AxisError, np.nanmedian, d, axis=(0, -5)) + assert_raises(AxisError, np.nanmedian, d, axis=4) + assert_raises(AxisError, np.nanmedian, d, axis=(0, 4)) + assert_raises(ValueError, np.nanmedian, d, axis=(1, 1)) + + def test_float_special(self): + with suppress_warnings() as sup: + sup.filter(RuntimeWarning) + for inf in [np.inf, -np.inf]: + a = np.array([[inf, np.nan], [np.nan, np.nan]]) + assert_equal(np.nanmedian(a, axis=0), [inf, np.nan]) + assert_equal(np.nanmedian(a, axis=1), [inf, np.nan]) + assert_equal(np.nanmedian(a), inf) + + # minimum fill value check + a = np.array([[np.nan, np.nan, inf], + [np.nan, np.nan, inf]]) + assert_equal(np.nanmedian(a), inf) + assert_equal(np.nanmedian(a, axis=0), [np.nan, np.nan, inf]) + assert_equal(np.nanmedian(a, axis=1), inf) + + # no mask path + a = np.array([[inf, inf], [inf, inf]]) + assert_equal(np.nanmedian(a, axis=1), inf) + + a = np.array([[inf, 7, -inf, -9], + [-10, np.nan, np.nan, 5], + [4, np.nan, np.nan, inf]], + dtype=np.float32) + if inf > 0: + assert_equal(np.nanmedian(a, axis=0), [4., 7., -inf, 5.]) + assert_equal(np.nanmedian(a), 4.5) + else: + assert_equal(np.nanmedian(a, axis=0), [-10., 7., -inf, -9.]) + assert_equal(np.nanmedian(a), -2.5) + assert_equal(np.nanmedian(a, axis=-1), [-1., -2.5, inf]) + + for i in range(10): + for j in range(1, 10): + a = np.array([([np.nan] * i) + ([inf] * j)] * 2) + assert_equal(np.nanmedian(a), inf) + assert_equal(np.nanmedian(a, axis=1), inf) + assert_equal(np.nanmedian(a, axis=0), + ([np.nan] * i) + [inf] * j) + + a = np.array([([np.nan] * i) + ([-inf] * j)] * 2) + assert_equal(np.nanmedian(a), -inf) + assert_equal(np.nanmedian(a, axis=1), -inf) + assert_equal(np.nanmedian(a, axis=0), + ([np.nan] * i) + [-inf] * j) + + +class TestNanFunctions_Percentile: + + def test_mutation(self): + # Check that passed array is not modified. + ndat = _ndat.copy() + np.nanpercentile(ndat, 30) + assert_equal(ndat, _ndat) + + def test_keepdims(self): + mat = np.eye(3) + for axis in [None, 0, 1]: + tgt = np.percentile(mat, 70, axis=axis, out=None, + overwrite_input=False) + res = np.nanpercentile(mat, 70, axis=axis, out=None, + overwrite_input=False) + assert_(res.ndim == tgt.ndim) + + d = np.ones((3, 5, 7, 11)) + # Randomly set some elements to NaN: + w = np.random.random((4, 200)) * np.array(d.shape)[:, None] + w = w.astype(np.intp) + d[tuple(w)] = np.nan + with suppress_warnings() as sup: + sup.filter(RuntimeWarning) + res = np.nanpercentile(d, 90, axis=None, keepdims=True) + assert_equal(res.shape, (1, 1, 1, 1)) + res = np.nanpercentile(d, 90, axis=(0, 1), keepdims=True) + assert_equal(res.shape, (1, 1, 7, 11)) + res = np.nanpercentile(d, 90, axis=(0, 3), keepdims=True) + assert_equal(res.shape, (1, 5, 7, 1)) + res = np.nanpercentile(d, 90, axis=(1,), keepdims=True) + assert_equal(res.shape, (3, 1, 7, 11)) + res = np.nanpercentile(d, 90, axis=(0, 1, 2, 3), keepdims=True) + assert_equal(res.shape, (1, 1, 1, 1)) + res = np.nanpercentile(d, 90, axis=(0, 1, 3), keepdims=True) + assert_equal(res.shape, (1, 1, 7, 1)) + + @pytest.mark.parametrize('q', [7, [1, 7]]) + @pytest.mark.parametrize( + argnames='axis', + argvalues=[ + None, + 1, + (1,), + (0, 1), + (-3, -1), + ] + ) + @pytest.mark.filterwarnings("ignore:All-NaN slice:RuntimeWarning") + def test_keepdims_out(self, q, axis): + d = np.ones((3, 5, 7, 11)) + # Randomly set some elements to NaN: + w = np.random.random((4, 200)) * np.array(d.shape)[:, None] + w = w.astype(np.intp) + d[tuple(w)] = np.nan + if axis is None: + shape_out = (1,) * d.ndim + else: + axis_norm = normalize_axis_tuple(axis, d.ndim) + shape_out = tuple( + 1 if i in axis_norm else d.shape[i] for i in range(d.ndim)) + shape_out = np.shape(q) + shape_out + + out = np.empty(shape_out) + result = np.nanpercentile(d, q, axis=axis, keepdims=True, out=out) + assert result is out + assert_equal(result.shape, shape_out) + + @pytest.mark.parametrize("weighted", [False, True]) + def test_out(self, weighted): + mat = np.random.rand(3, 3) + nan_mat = np.insert(mat, [0, 2], np.nan, axis=1) + resout = np.zeros(3) + if weighted: + w_args = {"weights": np.ones_like(mat), "method": "inverted_cdf"} + nan_w_args = { + "weights": np.ones_like(nan_mat), "method": "inverted_cdf" + } + else: + w_args = {} + nan_w_args = {} + tgt = np.percentile(mat, 42, axis=1, **w_args) + res = np.nanpercentile(nan_mat, 42, axis=1, out=resout, **nan_w_args) + assert_almost_equal(res, resout) + assert_almost_equal(res, tgt) + # 0-d output: + resout = np.zeros(()) + tgt = np.percentile(mat, 42, axis=None, **w_args) + res = np.nanpercentile( + nan_mat, 42, axis=None, out=resout, **nan_w_args + ) + assert_almost_equal(res, resout) + assert_almost_equal(res, tgt) + res = np.nanpercentile( + nan_mat, 42, axis=(0, 1), out=resout, **nan_w_args + ) + assert_almost_equal(res, resout) + assert_almost_equal(res, tgt) + + def test_complex(self): + arr_c = np.array([0.5 + 3.0j, 2.1 + 0.5j, 1.6 + 2.3j], dtype='G') + assert_raises(TypeError, np.nanpercentile, arr_c, 0.5) + arr_c = np.array([0.5 + 3.0j, 2.1 + 0.5j, 1.6 + 2.3j], dtype='D') + assert_raises(TypeError, np.nanpercentile, arr_c, 0.5) + arr_c = np.array([0.5 + 3.0j, 2.1 + 0.5j, 1.6 + 2.3j], dtype='F') + assert_raises(TypeError, np.nanpercentile, arr_c, 0.5) + + @pytest.mark.parametrize("weighted", [False, True]) + @pytest.mark.parametrize("use_out", [False, True]) + def test_result_values(self, weighted, use_out): + if weighted: + percentile = partial(np.percentile, method="inverted_cdf") + nanpercentile = partial(np.nanpercentile, method="inverted_cdf") + + def gen_weights(d): + return np.ones_like(d) + + else: + percentile = np.percentile + nanpercentile = np.nanpercentile + + def gen_weights(d): + return None + + tgt = [percentile(d, 28, weights=gen_weights(d)) for d in _rdat] + out = np.empty_like(tgt) if use_out else None + res = nanpercentile(_ndat, 28, axis=1, + weights=gen_weights(_ndat), out=out) + assert_almost_equal(res, tgt) + # Transpose the array to fit the output convention of numpy.percentile + tgt = np.transpose([percentile(d, (28, 98), weights=gen_weights(d)) + for d in _rdat]) + out = np.empty_like(tgt) if use_out else None + res = nanpercentile(_ndat, (28, 98), axis=1, + weights=gen_weights(_ndat), out=out) + assert_almost_equal(res, tgt) + + @pytest.mark.parametrize("axis", [None, 0, 1]) + @pytest.mark.parametrize("dtype", np.typecodes["Float"]) + @pytest.mark.parametrize("array", [ + np.array(np.nan), + np.full((3, 3), np.nan), + ], ids=["0d", "2d"]) + def test_allnans(self, axis, dtype, array): + if axis is not None and array.ndim == 0: + pytest.skip("`axis != None` not supported for 0d arrays") + + array = array.astype(dtype) + with pytest.warns(RuntimeWarning, match="All-NaN slice encountered"): + out = np.nanpercentile(array, 60, axis=axis) + assert np.isnan(out).all() + assert out.dtype == array.dtype + + def test_empty(self): + mat = np.zeros((0, 3)) + for axis in [0, None]: + with warnings.catch_warnings(record=True) as w: + warnings.simplefilter('always') + assert_(np.isnan(np.nanpercentile(mat, 40, axis=axis)).all()) + assert_(len(w) == 1) + assert_(issubclass(w[0].category, RuntimeWarning)) + for axis in [1]: + with warnings.catch_warnings(record=True) as w: + warnings.simplefilter('always') + assert_equal(np.nanpercentile(mat, 40, axis=axis), np.zeros([])) + assert_(len(w) == 0) + + def test_scalar(self): + assert_equal(np.nanpercentile(0., 100), 0.) + a = np.arange(6) + r = np.nanpercentile(a, 50, axis=0) + assert_equal(r, 2.5) + assert_(np.isscalar(r)) + + def test_extended_axis_invalid(self): + d = np.ones((3, 5, 7, 11)) + assert_raises(AxisError, np.nanpercentile, d, q=5, axis=-5) + assert_raises(AxisError, np.nanpercentile, d, q=5, axis=(0, -5)) + assert_raises(AxisError, np.nanpercentile, d, q=5, axis=4) + assert_raises(AxisError, np.nanpercentile, d, q=5, axis=(0, 4)) + assert_raises(ValueError, np.nanpercentile, d, q=5, axis=(1, 1)) + + def test_multiple_percentiles(self): + perc = [50, 100] + mat = np.ones((4, 3)) + nan_mat = np.nan * mat + # For checking consistency in higher dimensional case + large_mat = np.ones((3, 4, 5)) + large_mat[:, 0:2:4, :] = 0 + large_mat[:, :, 3:] *= 2 + for axis in [None, 0, 1]: + for keepdim in [False, True]: + with suppress_warnings() as sup: + sup.filter(RuntimeWarning, "All-NaN slice encountered") + val = np.percentile(mat, perc, axis=axis, keepdims=keepdim) + nan_val = np.nanpercentile(nan_mat, perc, axis=axis, + keepdims=keepdim) + assert_equal(nan_val.shape, val.shape) + + val = np.percentile(large_mat, perc, axis=axis, + keepdims=keepdim) + nan_val = np.nanpercentile(large_mat, perc, axis=axis, + keepdims=keepdim) + assert_equal(nan_val, val) + + megamat = np.ones((3, 4, 5, 6)) + assert_equal( + np.nanpercentile(megamat, perc, axis=(1, 2)).shape, (2, 3, 6) + ) + + @pytest.mark.parametrize("nan_weight", [0, 1, 2, 3, 1e200]) + def test_nan_value_with_weight(self, nan_weight): + x = [1, np.nan, 2, 3] + result = np.float64(2.0) + q_unweighted = np.nanpercentile(x, 50, method="inverted_cdf") + assert_equal(q_unweighted, result) + + # The weight value at the nan position should not matter. + w = [1.0, nan_weight, 1.0, 1.0] + q_weighted = np.nanpercentile(x, 50, weights=w, method="inverted_cdf") + assert_equal(q_weighted, result) + + @pytest.mark.parametrize("axis", [0, 1, 2]) + def test_nan_value_with_weight_ndim(self, axis): + # Create a multi-dimensional array to test + np.random.seed(1) + x_no_nan = np.random.random(size=(100, 99, 2)) + # Set some places to NaN (not particularly smart) so there is always + # some non-Nan. + x = x_no_nan.copy() + x[np.arange(99), np.arange(99), 0] = np.nan + + p = np.array([[20., 50., 30], [70, 33, 80]]) + + # We just use ones as weights, but replace it with 0 or 1e200 at the + # NaN positions below. + weights = np.ones_like(x) + + # For comparison use weighted normal percentile with nan weights at + # 0 (and no NaNs); not sure this is strictly identical but should be + # sufficiently so (if a percentile lies exactly on a 0 value). + weights[np.isnan(x)] = 0 + p_expected = np.percentile( + x_no_nan, p, axis=axis, weights=weights, method="inverted_cdf") + + p_unweighted = np.nanpercentile( + x, p, axis=axis, method="inverted_cdf") + # The normal and unweighted versions should be identical: + assert_equal(p_unweighted, p_expected) + + weights[np.isnan(x)] = 1e200 # huge value, shouldn't matter + p_weighted = np.nanpercentile( + x, p, axis=axis, weights=weights, method="inverted_cdf") + assert_equal(p_weighted, p_expected) + # Also check with out passed: + out = np.empty_like(p_weighted) + res = np.nanpercentile( + x, p, axis=axis, weights=weights, out=out, method="inverted_cdf") + + assert res is out + assert_equal(out, p_expected) + + +class TestNanFunctions_Quantile: + # most of this is already tested by TestPercentile + + @pytest.mark.parametrize("weighted", [False, True]) + def test_regression(self, weighted): + ar = np.arange(24).reshape(2, 3, 4).astype(float) + ar[0][1] = np.nan + if weighted: + w_args = {"weights": np.ones_like(ar), "method": "inverted_cdf"} + else: + w_args = {} + + assert_equal(np.nanquantile(ar, q=0.5, **w_args), + np.nanpercentile(ar, q=50, **w_args)) + assert_equal(np.nanquantile(ar, q=0.5, axis=0, **w_args), + np.nanpercentile(ar, q=50, axis=0, **w_args)) + assert_equal(np.nanquantile(ar, q=0.5, axis=1, **w_args), + np.nanpercentile(ar, q=50, axis=1, **w_args)) + assert_equal(np.nanquantile(ar, q=[0.5], axis=1, **w_args), + np.nanpercentile(ar, q=[50], axis=1, **w_args)) + assert_equal(np.nanquantile(ar, q=[0.25, 0.5, 0.75], axis=1, **w_args), + np.nanpercentile(ar, q=[25, 50, 75], axis=1, **w_args)) + + def test_basic(self): + x = np.arange(8) * 0.5 + assert_equal(np.nanquantile(x, 0), 0.) + assert_equal(np.nanquantile(x, 1), 3.5) + assert_equal(np.nanquantile(x, 0.5), 1.75) + + def test_complex(self): + arr_c = np.array([0.5 + 3.0j, 2.1 + 0.5j, 1.6 + 2.3j], dtype='G') + assert_raises(TypeError, np.nanquantile, arr_c, 0.5) + arr_c = np.array([0.5 + 3.0j, 2.1 + 0.5j, 1.6 + 2.3j], dtype='D') + assert_raises(TypeError, np.nanquantile, arr_c, 0.5) + arr_c = np.array([0.5 + 3.0j, 2.1 + 0.5j, 1.6 + 2.3j], dtype='F') + assert_raises(TypeError, np.nanquantile, arr_c, 0.5) + + def test_no_p_overwrite(self): + # this is worth retesting, because quantile does not make a copy + p0 = np.array([0, 0.75, 0.25, 0.5, 1.0]) + p = p0.copy() + np.nanquantile(np.arange(100.), p, method="midpoint") + assert_array_equal(p, p0) + + p0 = p0.tolist() + p = p.tolist() + np.nanquantile(np.arange(100.), p, method="midpoint") + assert_array_equal(p, p0) + + @pytest.mark.parametrize("axis", [None, 0, 1]) + @pytest.mark.parametrize("dtype", np.typecodes["Float"]) + @pytest.mark.parametrize("array", [ + np.array(np.nan), + np.full((3, 3), np.nan), + ], ids=["0d", "2d"]) + def test_allnans(self, axis, dtype, array): + if axis is not None and array.ndim == 0: + pytest.skip("`axis != None` not supported for 0d arrays") + + array = array.astype(dtype) + with pytest.warns(RuntimeWarning, match="All-NaN slice encountered"): + out = np.nanquantile(array, 1, axis=axis) + assert np.isnan(out).all() + assert out.dtype == array.dtype + +@pytest.mark.parametrize("arr, expected", [ + # array of floats with some nans + (np.array([np.nan, 5.0, np.nan, np.inf]), + np.array([False, True, False, True])), + # int64 array that can't possibly have nans + (np.array([1, 5, 7, 9], dtype=np.int64), + True), + # bool array that can't possibly have nans + (np.array([False, True, False, True]), + True), + # 2-D complex array with nans + (np.array([[np.nan, 5.0], + [np.nan, np.inf]], dtype=np.complex64), + np.array([[False, True], + [False, True]])), + ]) +def test__nan_mask(arr, expected): + for out in [None, np.empty(arr.shape, dtype=np.bool)]: + actual = _nan_mask(arr, out=out) + assert_equal(actual, expected) + # the above won't distinguish between True proper + # and an array of True values; we want True proper + # for types that can't possibly contain NaN + if type(expected) is not np.ndarray: + assert actual is True + + +def test__replace_nan(): + """ Test that _replace_nan returns the original array if there are no + NaNs, not a copy. + """ + for dtype in [np.bool, np.int32, np.int64]: + arr = np.array([0, 1], dtype=dtype) + result, mask = _replace_nan(arr, 0) + assert mask is None + # do not make a copy if there are no nans + assert result is arr + + for dtype in [np.float32, np.float64]: + arr = np.array([0, 1], dtype=dtype) + result, mask = _replace_nan(arr, 2) + assert (mask == False).all() + # mask is not None, so we make a copy + assert result is not arr + assert_equal(result, arr) + + arr_nan = np.array([0, 1, np.nan], dtype=dtype) + result_nan, mask_nan = _replace_nan(arr_nan, 2) + assert_equal(mask_nan, np.array([False, False, True])) + assert result_nan is not arr_nan + assert_equal(result_nan, np.array([0, 1, 2])) + assert np.isnan(arr_nan[-1]) + + +def test_memmap_takes_fast_route(tmpdir): + # We want memory mapped arrays to take the fast route through nanmax, + # which avoids creating a mask by using fmax.reduce (see gh-28721). So we + # check that on bad input, the error is from fmax (rather than maximum). + a = np.arange(10., dtype=float) + with open(tmpdir.join("data.bin"), "w+b") as fh: + fh.write(a.tobytes()) + mm = np.memmap(fh, dtype=a.dtype, shape=a.shape) + with pytest.raises(ValueError, match="reduction operation fmax"): + np.nanmax(mm, out=np.zeros(2)) + # For completeness, same for nanmin. + with pytest.raises(ValueError, match="reduction operation fmin"): + np.nanmin(mm, out=np.zeros(2)) diff --git a/.venv/lib/python3.12/site-packages/numpy/lib/tests/test_packbits.py b/.venv/lib/python3.12/site-packages/numpy/lib/tests/test_packbits.py new file mode 100644 index 0000000..0b0e9d1 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/lib/tests/test_packbits.py @@ -0,0 +1,376 @@ +from itertools import chain + +import pytest + +import numpy as np +from numpy.testing import assert_array_equal, assert_equal, assert_raises + + +def test_packbits(): + # Copied from the docstring. + a = [[[1, 0, 1], [0, 1, 0]], + [[1, 1, 0], [0, 0, 1]]] + for dt in '?bBhHiIlLqQ': + arr = np.array(a, dtype=dt) + b = np.packbits(arr, axis=-1) + assert_equal(b.dtype, np.uint8) + assert_array_equal(b, np.array([[[160], [64]], [[192], [32]]])) + + assert_raises(TypeError, np.packbits, np.array(a, dtype=float)) + + +def test_packbits_empty(): + shapes = [ + (0,), (10, 20, 0), (10, 0, 20), (0, 10, 20), (20, 0, 0), (0, 20, 0), + (0, 0, 20), (0, 0, 0), + ] + for dt in '?bBhHiIlLqQ': + for shape in shapes: + a = np.empty(shape, dtype=dt) + b = np.packbits(a) + assert_equal(b.dtype, np.uint8) + assert_equal(b.shape, (0,)) + + +def test_packbits_empty_with_axis(): + # Original shapes and lists of packed shapes for different axes. + shapes = [ + ((0,), [(0,)]), + ((10, 20, 0), [(2, 20, 0), (10, 3, 0), (10, 20, 0)]), + ((10, 0, 20), [(2, 0, 20), (10, 0, 20), (10, 0, 3)]), + ((0, 10, 20), [(0, 10, 20), (0, 2, 20), (0, 10, 3)]), + ((20, 0, 0), [(3, 0, 0), (20, 0, 0), (20, 0, 0)]), + ((0, 20, 0), [(0, 20, 0), (0, 3, 0), (0, 20, 0)]), + ((0, 0, 20), [(0, 0, 20), (0, 0, 20), (0, 0, 3)]), + ((0, 0, 0), [(0, 0, 0), (0, 0, 0), (0, 0, 0)]), + ] + for dt in '?bBhHiIlLqQ': + for in_shape, out_shapes in shapes: + for ax, out_shape in enumerate(out_shapes): + a = np.empty(in_shape, dtype=dt) + b = np.packbits(a, axis=ax) + assert_equal(b.dtype, np.uint8) + assert_equal(b.shape, out_shape) + +@pytest.mark.parametrize('bitorder', ('little', 'big')) +def test_packbits_large(bitorder): + # test data large enough for 16 byte vectorization + a = np.array([1, 1, 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 0, 0, + 0, 0, 0, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1, + 1, 1, 0, 1, 0, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, + 1, 1, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 1, 1, 1, + 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, + 1, 0, 1, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 1, + 1, 0, 0, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 1, 1, + 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 1, + 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, + 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 1, 1, 1, + 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 0, 0, 0, + 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 1, + 1, 1, 0, 1, 0, 1, 1, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 0, + 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 0, + 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 1, 0]) + a = a.repeat(3) + for dtype in '?bBhHiIlLqQ': + arr = np.array(a, dtype=dtype) + b = np.packbits(arr, axis=None, bitorder=bitorder) + assert_equal(b.dtype, np.uint8) + r = [252, 127, 192, 3, 254, 7, 252, 0, 7, 31, 240, 0, 28, 1, 255, 252, + 113, 248, 3, 255, 192, 28, 15, 192, 28, 126, 0, 224, 127, 255, + 227, 142, 7, 31, 142, 63, 28, 126, 56, 227, 240, 0, 227, 128, 63, + 224, 14, 56, 252, 112, 56, 255, 241, 248, 3, 240, 56, 224, 112, + 63, 255, 255, 199, 224, 14, 0, 31, 143, 192, 3, 255, 199, 0, 1, + 255, 224, 1, 255, 252, 126, 63, 0, 1, 192, 252, 14, 63, 0, 15, + 199, 252, 113, 255, 3, 128, 56, 252, 14, 7, 0, 113, 255, 255, 142, 56, 227, + 129, 248, 227, 129, 199, 31, 128] + if bitorder == 'big': + assert_array_equal(b, r) + # equal for size being multiple of 8 + assert_array_equal(np.unpackbits(b, bitorder=bitorder)[:-4], a) + + # check last byte of different remainders (16 byte vectorization) + b = [np.packbits(arr[:-i], axis=None)[-1] for i in range(1, 16)] + assert_array_equal(b, [128, 128, 128, 31, 30, 28, 24, 16, 0, 0, 0, 199, + 198, 196, 192]) + + arr = arr.reshape(36, 25) + b = np.packbits(arr, axis=0) + assert_equal(b.dtype, np.uint8) + assert_array_equal(b, [[190, 186, 178, 178, 150, 215, 87, 83, 83, 195, + 199, 206, 204, 204, 140, 140, 136, 136, 8, 40, 105, + 107, 75, 74, 88], + [72, 216, 248, 241, 227, 195, 202, 90, 90, 83, + 83, 119, 127, 109, 73, 64, 208, 244, 189, 45, + 41, 104, 122, 90, 18], + [113, 120, 248, 216, 152, 24, 60, 52, 182, 150, + 150, 150, 146, 210, 210, 246, 255, 255, 223, + 151, 21, 17, 17, 131, 163], + [214, 210, 210, 64, 68, 5, 5, 1, 72, 88, 92, + 92, 78, 110, 39, 181, 149, 220, 222, 218, 218, + 202, 234, 170, 168], + [0, 128, 128, 192, 80, 112, 48, 160, 160, 224, + 240, 208, 144, 128, 160, 224, 240, 208, 144, + 144, 176, 240, 224, 192, 128]]) + + b = np.packbits(arr, axis=1) + assert_equal(b.dtype, np.uint8) + assert_array_equal(b, [[252, 127, 192, 0], + [ 7, 252, 15, 128], + [240, 0, 28, 0], + [255, 128, 0, 128], + [192, 31, 255, 128], + [142, 63, 0, 0], + [255, 240, 7, 0], + [ 7, 224, 14, 0], + [126, 0, 224, 0], + [255, 255, 199, 0], + [ 56, 28, 126, 0], + [113, 248, 227, 128], + [227, 142, 63, 0], + [ 0, 28, 112, 0], + [ 15, 248, 3, 128], + [ 28, 126, 56, 0], + [ 56, 255, 241, 128], + [240, 7, 224, 0], + [227, 129, 192, 128], + [255, 255, 254, 0], + [126, 0, 224, 0], + [ 3, 241, 248, 0], + [ 0, 255, 241, 128], + [128, 0, 255, 128], + [224, 1, 255, 128], + [248, 252, 126, 0], + [ 0, 7, 3, 128], + [224, 113, 248, 0], + [ 0, 252, 127, 128], + [142, 63, 224, 0], + [224, 14, 63, 0], + [ 7, 3, 128, 0], + [113, 255, 255, 128], + [ 28, 113, 199, 0], + [ 7, 227, 142, 0], + [ 14, 56, 252, 0]]) + + arr = arr.T.copy() + b = np.packbits(arr, axis=0) + assert_equal(b.dtype, np.uint8) + assert_array_equal(b, [[252, 7, 240, 255, 192, 142, 255, 7, 126, 255, + 56, 113, 227, 0, 15, 28, 56, 240, 227, 255, + 126, 3, 0, 128, 224, 248, 0, 224, 0, 142, 224, + 7, 113, 28, 7, 14], + [127, 252, 0, 128, 31, 63, 240, 224, 0, 255, + 28, 248, 142, 28, 248, 126, 255, 7, 129, 255, + 0, 241, 255, 0, 1, 252, 7, 113, 252, 63, 14, + 3, 255, 113, 227, 56], + [192, 15, 28, 0, 255, 0, 7, 14, 224, 199, 126, + 227, 63, 112, 3, 56, 241, 224, 192, 254, 224, + 248, 241, 255, 255, 126, 3, 248, 127, 224, 63, + 128, 255, 199, 142, 252], + [0, 128, 0, 128, 128, 0, 0, 0, 0, 0, 0, 128, 0, + 0, 128, 0, 128, 0, 128, 0, 0, 0, 128, 128, + 128, 0, 128, 0, 128, 0, 0, 0, 128, 0, 0, 0]]) + + b = np.packbits(arr, axis=1) + assert_equal(b.dtype, np.uint8) + assert_array_equal(b, [[190, 72, 113, 214, 0], + [186, 216, 120, 210, 128], + [178, 248, 248, 210, 128], + [178, 241, 216, 64, 192], + [150, 227, 152, 68, 80], + [215, 195, 24, 5, 112], + [ 87, 202, 60, 5, 48], + [ 83, 90, 52, 1, 160], + [ 83, 90, 182, 72, 160], + [195, 83, 150, 88, 224], + [199, 83, 150, 92, 240], + [206, 119, 150, 92, 208], + [204, 127, 146, 78, 144], + [204, 109, 210, 110, 128], + [140, 73, 210, 39, 160], + [140, 64, 246, 181, 224], + [136, 208, 255, 149, 240], + [136, 244, 255, 220, 208], + [ 8, 189, 223, 222, 144], + [ 40, 45, 151, 218, 144], + [105, 41, 21, 218, 176], + [107, 104, 17, 202, 240], + [ 75, 122, 17, 234, 224], + [ 74, 90, 131, 170, 192], + [ 88, 18, 163, 168, 128]]) + + # result is the same if input is multiplied with a nonzero value + for dtype in 'bBhHiIlLqQ': + arr = np.array(a, dtype=dtype) + rnd = np.random.randint(low=np.iinfo(dtype).min, + high=np.iinfo(dtype).max, size=arr.size, + dtype=dtype) + rnd[rnd == 0] = 1 + arr *= rnd.astype(dtype) + b = np.packbits(arr, axis=-1) + assert_array_equal(np.unpackbits(b)[:-4], a) + + assert_raises(TypeError, np.packbits, np.array(a, dtype=float)) + + +def test_packbits_very_large(): + # test some with a larger arrays gh-8637 + # code is covered earlier but larger array makes crash on bug more likely + for s in range(950, 1050): + for dt in '?bBhHiIlLqQ': + x = np.ones((200, s), dtype=bool) + np.packbits(x, axis=1) + + +def test_unpackbits(): + # Copied from the docstring. + a = np.array([[2], [7], [23]], dtype=np.uint8) + b = np.unpackbits(a, axis=1) + assert_equal(b.dtype, np.uint8) + assert_array_equal(b, np.array([[0, 0, 0, 0, 0, 0, 1, 0], + [0, 0, 0, 0, 0, 1, 1, 1], + [0, 0, 0, 1, 0, 1, 1, 1]])) + +def test_pack_unpack_order(): + a = np.array([[2], [7], [23]], dtype=np.uint8) + b = np.unpackbits(a, axis=1) + assert_equal(b.dtype, np.uint8) + b_little = np.unpackbits(a, axis=1, bitorder='little') + b_big = np.unpackbits(a, axis=1, bitorder='big') + assert_array_equal(b, b_big) + assert_array_equal(a, np.packbits(b_little, axis=1, bitorder='little')) + assert_array_equal(b[:, ::-1], b_little) + assert_array_equal(a, np.packbits(b_big, axis=1, bitorder='big')) + assert_raises(ValueError, np.unpackbits, a, bitorder='r') + assert_raises(TypeError, np.unpackbits, a, bitorder=10) + + +def test_unpackbits_empty(): + a = np.empty((0,), dtype=np.uint8) + b = np.unpackbits(a) + assert_equal(b.dtype, np.uint8) + assert_array_equal(b, np.empty((0,))) + + +def test_unpackbits_empty_with_axis(): + # Lists of packed shapes for different axes and unpacked shapes. + shapes = [ + ([(0,)], (0,)), + ([(2, 24, 0), (16, 3, 0), (16, 24, 0)], (16, 24, 0)), + ([(2, 0, 24), (16, 0, 24), (16, 0, 3)], (16, 0, 24)), + ([(0, 16, 24), (0, 2, 24), (0, 16, 3)], (0, 16, 24)), + ([(3, 0, 0), (24, 0, 0), (24, 0, 0)], (24, 0, 0)), + ([(0, 24, 0), (0, 3, 0), (0, 24, 0)], (0, 24, 0)), + ([(0, 0, 24), (0, 0, 24), (0, 0, 3)], (0, 0, 24)), + ([(0, 0, 0), (0, 0, 0), (0, 0, 0)], (0, 0, 0)), + ] + for in_shapes, out_shape in shapes: + for ax, in_shape in enumerate(in_shapes): + a = np.empty(in_shape, dtype=np.uint8) + b = np.unpackbits(a, axis=ax) + assert_equal(b.dtype, np.uint8) + assert_equal(b.shape, out_shape) + + +def test_unpackbits_large(): + # test all possible numbers via comparison to already tested packbits + d = np.arange(277, dtype=np.uint8) + assert_array_equal(np.packbits(np.unpackbits(d)), d) + assert_array_equal(np.packbits(np.unpackbits(d[::2])), d[::2]) + d = np.tile(d, (3, 1)) + assert_array_equal(np.packbits(np.unpackbits(d, axis=1), axis=1), d) + d = d.T.copy() + assert_array_equal(np.packbits(np.unpackbits(d, axis=0), axis=0), d) + + +class TestCount: + x = np.array([ + [1, 0, 1, 0, 0, 1, 0], + [0, 1, 1, 1, 0, 0, 0], + [0, 0, 1, 0, 0, 1, 1], + [1, 1, 0, 0, 0, 1, 1], + [1, 0, 1, 0, 1, 0, 1], + [0, 0, 1, 1, 1, 0, 0], + [0, 1, 0, 1, 0, 1, 0], + ], dtype=np.uint8) + padded1 = np.zeros(57, dtype=np.uint8) + padded1[:49] = x.ravel() + padded1b = np.zeros(57, dtype=np.uint8) + padded1b[:49] = x[::-1].copy().ravel() + padded2 = np.zeros((9, 9), dtype=np.uint8) + padded2[:7, :7] = x + + @pytest.mark.parametrize('bitorder', ('little', 'big')) + @pytest.mark.parametrize('count', chain(range(58), range(-1, -57, -1))) + def test_roundtrip(self, bitorder, count): + if count < 0: + # one extra zero of padding + cutoff = count - 1 + else: + cutoff = count + # test complete invertibility of packbits and unpackbits with count + packed = np.packbits(self.x, bitorder=bitorder) + unpacked = np.unpackbits(packed, count=count, bitorder=bitorder) + assert_equal(unpacked.dtype, np.uint8) + assert_array_equal(unpacked, self.padded1[:cutoff]) + + @pytest.mark.parametrize('kwargs', [ + {}, {'count': None}, + ]) + def test_count(self, kwargs): + packed = np.packbits(self.x) + unpacked = np.unpackbits(packed, **kwargs) + assert_equal(unpacked.dtype, np.uint8) + assert_array_equal(unpacked, self.padded1[:-1]) + + @pytest.mark.parametrize('bitorder', ('little', 'big')) + # delta==-1 when count<0 because one extra zero of padding + @pytest.mark.parametrize('count', chain(range(8), range(-1, -9, -1))) + def test_roundtrip_axis(self, bitorder, count): + if count < 0: + # one extra zero of padding + cutoff = count - 1 + else: + cutoff = count + packed0 = np.packbits(self.x, axis=0, bitorder=bitorder) + unpacked0 = np.unpackbits(packed0, axis=0, count=count, + bitorder=bitorder) + assert_equal(unpacked0.dtype, np.uint8) + assert_array_equal(unpacked0, self.padded2[:cutoff, :self.x.shape[1]]) + + packed1 = np.packbits(self.x, axis=1, bitorder=bitorder) + unpacked1 = np.unpackbits(packed1, axis=1, count=count, + bitorder=bitorder) + assert_equal(unpacked1.dtype, np.uint8) + assert_array_equal(unpacked1, self.padded2[:self.x.shape[0], :cutoff]) + + @pytest.mark.parametrize('kwargs', [ + {}, {'count': None}, + {'bitorder': 'little'}, + {'bitorder': 'little', 'count': None}, + {'bitorder': 'big'}, + {'bitorder': 'big', 'count': None}, + ]) + def test_axis_count(self, kwargs): + packed0 = np.packbits(self.x, axis=0) + unpacked0 = np.unpackbits(packed0, axis=0, **kwargs) + assert_equal(unpacked0.dtype, np.uint8) + if kwargs.get('bitorder', 'big') == 'big': + assert_array_equal(unpacked0, self.padded2[:-1, :self.x.shape[1]]) + else: + assert_array_equal(unpacked0[::-1, :], self.padded2[:-1, :self.x.shape[1]]) + + packed1 = np.packbits(self.x, axis=1) + unpacked1 = np.unpackbits(packed1, axis=1, **kwargs) + assert_equal(unpacked1.dtype, np.uint8) + if kwargs.get('bitorder', 'big') == 'big': + assert_array_equal(unpacked1, self.padded2[:self.x.shape[0], :-1]) + else: + assert_array_equal(unpacked1[:, ::-1], self.padded2[:self.x.shape[0], :-1]) + + def test_bad_count(self): + packed0 = np.packbits(self.x, axis=0) + assert_raises(ValueError, np.unpackbits, packed0, axis=0, count=-9) + packed1 = np.packbits(self.x, axis=1) + assert_raises(ValueError, np.unpackbits, packed1, axis=1, count=-9) + packed = np.packbits(self.x) + assert_raises(ValueError, np.unpackbits, packed, count=-57) diff --git a/.venv/lib/python3.12/site-packages/numpy/lib/tests/test_polynomial.py b/.venv/lib/python3.12/site-packages/numpy/lib/tests/test_polynomial.py new file mode 100644 index 0000000..c173ac3 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/lib/tests/test_polynomial.py @@ -0,0 +1,320 @@ +import pytest + +import numpy as np +import numpy.polynomial.polynomial as poly +from numpy.testing import ( + assert_, + assert_allclose, + assert_almost_equal, + assert_array_almost_equal, + assert_array_equal, + assert_equal, + assert_raises, +) + +# `poly1d` has some support for `np.bool` and `np.timedelta64`, +# but it is limited and they are therefore excluded here +TYPE_CODES = np.typecodes["AllInteger"] + np.typecodes["AllFloat"] + "O" + + +class TestPolynomial: + def test_poly1d_str_and_repr(self): + p = np.poly1d([1., 2, 3]) + assert_equal(repr(p), 'poly1d([1., 2., 3.])') + assert_equal(str(p), + ' 2\n' + '1 x + 2 x + 3') + + q = np.poly1d([3., 2, 1]) + assert_equal(repr(q), 'poly1d([3., 2., 1.])') + assert_equal(str(q), + ' 2\n' + '3 x + 2 x + 1') + + r = np.poly1d([1.89999 + 2j, -3j, -5.12345678, 2 + 1j]) + assert_equal(str(r), + ' 3 2\n' + '(1.9 + 2j) x - 3j x - 5.123 x + (2 + 1j)') + + assert_equal(str(np.poly1d([-3, -2, -1])), + ' 2\n' + '-3 x - 2 x - 1') + + def test_poly1d_resolution(self): + p = np.poly1d([1., 2, 3]) + q = np.poly1d([3., 2, 1]) + assert_equal(p(0), 3.0) + assert_equal(p(5), 38.0) + assert_equal(q(0), 1.0) + assert_equal(q(5), 86.0) + + def test_poly1d_math(self): + # here we use some simple coeffs to make calculations easier + p = np.poly1d([1., 2, 4]) + q = np.poly1d([4., 2, 1]) + assert_equal(p / q, (np.poly1d([0.25]), np.poly1d([1.5, 3.75]))) + assert_equal(p.integ(), np.poly1d([1 / 3, 1., 4., 0.])) + assert_equal(p.integ(1), np.poly1d([1 / 3, 1., 4., 0.])) + + p = np.poly1d([1., 2, 3]) + q = np.poly1d([3., 2, 1]) + assert_equal(p * q, np.poly1d([3., 8., 14., 8., 3.])) + assert_equal(p + q, np.poly1d([4., 4., 4.])) + assert_equal(p - q, np.poly1d([-2., 0., 2.])) + assert_equal(p ** 4, np.poly1d([1., 8., 36., 104., 214., 312., 324., 216., 81.])) + assert_equal(p(q), np.poly1d([9., 12., 16., 8., 6.])) + assert_equal(q(p), np.poly1d([3., 12., 32., 40., 34.])) + assert_equal(p.deriv(), np.poly1d([2., 2.])) + assert_equal(p.deriv(2), np.poly1d([2.])) + assert_equal(np.polydiv(np.poly1d([1, 0, -1]), np.poly1d([1, 1])), + (np.poly1d([1., -1.]), np.poly1d([0.]))) + + @pytest.mark.parametrize("type_code", TYPE_CODES) + def test_poly1d_misc(self, type_code: str) -> None: + dtype = np.dtype(type_code) + ar = np.array([1, 2, 3], dtype=dtype) + p = np.poly1d(ar) + + # `__eq__` + assert_equal(np.asarray(p), ar) + assert_equal(np.asarray(p).dtype, dtype) + assert_equal(len(p), 2) + + # `__getitem__` + comparison_dct = {-1: 0, 0: 3, 1: 2, 2: 1, 3: 0} + for index, ref in comparison_dct.items(): + scalar = p[index] + assert_equal(scalar, ref) + if dtype == np.object_: + assert isinstance(scalar, int) + else: + assert_equal(scalar.dtype, dtype) + + def test_poly1d_variable_arg(self): + q = np.poly1d([1., 2, 3], variable='y') + assert_equal(str(q), + ' 2\n' + '1 y + 2 y + 3') + q = np.poly1d([1., 2, 3], variable='lambda') + assert_equal(str(q), + ' 2\n' + '1 lambda + 2 lambda + 3') + + def test_poly(self): + assert_array_almost_equal(np.poly([3, -np.sqrt(2), np.sqrt(2)]), + [1, -3, -2, 6]) + + # From matlab docs + A = [[1, 2, 3], [4, 5, 6], [7, 8, 0]] + assert_array_almost_equal(np.poly(A), [1, -6, -72, -27]) + + # Should produce real output for perfect conjugates + assert_(np.isrealobj(np.poly([+1.082j, +2.613j, -2.613j, -1.082j]))) + assert_(np.isrealobj(np.poly([0 + 1j, -0 + -1j, 1 + 2j, + 1 - 2j, 1. + 3.5j, 1 - 3.5j]))) + assert_(np.isrealobj(np.poly([1j, -1j, 1 + 2j, 1 - 2j, 1 + 3j, 1 - 3.j]))) + assert_(np.isrealobj(np.poly([1j, -1j, 1 + 2j, 1 - 2j]))) + assert_(np.isrealobj(np.poly([1j, -1j, 2j, -2j]))) + assert_(np.isrealobj(np.poly([1j, -1j]))) + assert_(np.isrealobj(np.poly([1, -1]))) + + assert_(np.iscomplexobj(np.poly([1j, -1.0000001j]))) + + np.random.seed(42) + a = np.random.randn(100) + 1j * np.random.randn(100) + assert_(np.isrealobj(np.poly(np.concatenate((a, np.conjugate(a)))))) + + def test_roots(self): + assert_array_equal(np.roots([1, 0, 0]), [0, 0]) + + # Testing for larger root values + for i in np.logspace(10, 25, num=1000, base=10): + tgt = np.array([-1, 1, i]) + res = np.sort(np.roots(poly.polyfromroots(tgt)[::-1])) + assert_almost_equal(res, tgt, 14 - int(np.log10(i))) # Adapting the expected precision according to the root value, to take into account numerical calculation error + + for i in np.logspace(10, 25, num=1000, base=10): + tgt = np.array([-1, 1.01, i]) + res = np.sort(np.roots(poly.polyfromroots(tgt)[::-1])) + assert_almost_equal(res, tgt, 14 - int(np.log10(i))) # Adapting the expected precision according to the root value, to take into account numerical calculation error + + def test_str_leading_zeros(self): + p = np.poly1d([4, 3, 2, 1]) + p[3] = 0 + assert_equal(str(p), + " 2\n" + "3 x + 2 x + 1") + + p = np.poly1d([1, 2]) + p[0] = 0 + p[1] = 0 + assert_equal(str(p), " \n0") + + def test_polyfit(self): + c = np.array([3., 2., 1.]) + x = np.linspace(0, 2, 7) + y = np.polyval(c, x) + err = [1, -1, 1, -1, 1, -1, 1] + weights = np.arange(8, 1, -1)**2 / 7.0 + + # Check exception when too few points for variance estimate. Note that + # the estimate requires the number of data points to exceed + # degree + 1 + assert_raises(ValueError, np.polyfit, + [1], [1], deg=0, cov=True) + + # check 1D case + m, cov = np.polyfit(x, y + err, 2, cov=True) + est = [3.8571, 0.2857, 1.619] + assert_almost_equal(est, m, decimal=4) + val0 = [[ 1.4694, -2.9388, 0.8163], + [-2.9388, 6.3673, -2.1224], + [ 0.8163, -2.1224, 1.161 ]] # noqa: E202 + assert_almost_equal(val0, cov, decimal=4) + + m2, cov2 = np.polyfit(x, y + err, 2, w=weights, cov=True) + assert_almost_equal([4.8927, -1.0177, 1.7768], m2, decimal=4) + val = [[ 4.3964, -5.0052, 0.4878], + [-5.0052, 6.8067, -0.9089], + [ 0.4878, -0.9089, 0.3337]] + assert_almost_equal(val, cov2, decimal=4) + + m3, cov3 = np.polyfit(x, y + err, 2, w=weights, cov="unscaled") + assert_almost_equal([4.8927, -1.0177, 1.7768], m3, decimal=4) + val = [[ 0.1473, -0.1677, 0.0163], + [-0.1677, 0.228 , -0.0304], # noqa: E203 + [ 0.0163, -0.0304, 0.0112]] + assert_almost_equal(val, cov3, decimal=4) + + # check 2D (n,1) case + y = y[:, np.newaxis] + c = c[:, np.newaxis] + assert_almost_equal(c, np.polyfit(x, y, 2)) + # check 2D (n,2) case + yy = np.concatenate((y, y), axis=1) + cc = np.concatenate((c, c), axis=1) + assert_almost_equal(cc, np.polyfit(x, yy, 2)) + + m, cov = np.polyfit(x, yy + np.array(err)[:, np.newaxis], 2, cov=True) + assert_almost_equal(est, m[:, 0], decimal=4) + assert_almost_equal(est, m[:, 1], decimal=4) + assert_almost_equal(val0, cov[:, :, 0], decimal=4) + assert_almost_equal(val0, cov[:, :, 1], decimal=4) + + # check order 1 (deg=0) case, were the analytic results are simple + np.random.seed(123) + y = np.random.normal(size=(4, 10000)) + mean, cov = np.polyfit(np.zeros(y.shape[0]), y, deg=0, cov=True) + # Should get sigma_mean = sigma/sqrt(N) = 1./sqrt(4) = 0.5. + assert_allclose(mean.std(), 0.5, atol=0.01) + assert_allclose(np.sqrt(cov.mean()), 0.5, atol=0.01) + # Without scaling, since reduced chi2 is 1, the result should be the same. + mean, cov = np.polyfit(np.zeros(y.shape[0]), y, w=np.ones(y.shape[0]), + deg=0, cov="unscaled") + assert_allclose(mean.std(), 0.5, atol=0.01) + assert_almost_equal(np.sqrt(cov.mean()), 0.5) + # If we estimate our errors wrong, no change with scaling: + w = np.full(y.shape[0], 1. / 0.5) + mean, cov = np.polyfit(np.zeros(y.shape[0]), y, w=w, deg=0, cov=True) + assert_allclose(mean.std(), 0.5, atol=0.01) + assert_allclose(np.sqrt(cov.mean()), 0.5, atol=0.01) + # But if we do not scale, our estimate for the error in the mean will + # differ. + mean, cov = np.polyfit(np.zeros(y.shape[0]), y, w=w, deg=0, cov="unscaled") + assert_allclose(mean.std(), 0.5, atol=0.01) + assert_almost_equal(np.sqrt(cov.mean()), 0.25) + + def test_objects(self): + from decimal import Decimal + p = np.poly1d([Decimal('4.0'), Decimal('3.0'), Decimal('2.0')]) + p2 = p * Decimal('1.333333333333333') + assert_(p2[1] == Decimal("3.9999999999999990")) + p2 = p.deriv() + assert_(p2[1] == Decimal('8.0')) + p2 = p.integ() + assert_(p2[3] == Decimal("1.333333333333333333333333333")) + assert_(p2[2] == Decimal('1.5')) + assert_(np.issubdtype(p2.coeffs.dtype, np.object_)) + p = np.poly([Decimal(1), Decimal(2)]) + assert_equal(np.poly([Decimal(1), Decimal(2)]), + [1, Decimal(-3), Decimal(2)]) + + def test_complex(self): + p = np.poly1d([3j, 2j, 1j]) + p2 = p.integ() + assert_((p2.coeffs == [1j, 1j, 1j, 0]).all()) + p2 = p.deriv() + assert_((p2.coeffs == [6j, 2j]).all()) + + def test_integ_coeffs(self): + p = np.poly1d([3, 2, 1]) + p2 = p.integ(3, k=[9, 7, 6]) + assert_( + (p2.coeffs == [1 / 4. / 5., 1 / 3. / 4., 1 / 2. / 3., 9 / 1. / 2., 7, 6]).all()) + + def test_zero_dims(self): + try: + np.poly(np.zeros((0, 0))) + except ValueError: + pass + + def test_poly_int_overflow(self): + """ + Regression test for gh-5096. + """ + v = np.arange(1, 21) + assert_almost_equal(np.poly(v), np.poly(np.diag(v))) + + def test_zero_poly_dtype(self): + """ + Regression test for gh-16354. + """ + z = np.array([0, 0, 0]) + p = np.poly1d(z.astype(np.int64)) + assert_equal(p.coeffs.dtype, np.int64) + + p = np.poly1d(z.astype(np.float32)) + assert_equal(p.coeffs.dtype, np.float32) + + p = np.poly1d(z.astype(np.complex64)) + assert_equal(p.coeffs.dtype, np.complex64) + + def test_poly_eq(self): + p = np.poly1d([1, 2, 3]) + p2 = np.poly1d([1, 2, 4]) + assert_equal(p == None, False) # noqa: E711 + assert_equal(p != None, True) # noqa: E711 + assert_equal(p == p, True) + assert_equal(p == p2, False) + assert_equal(p != p2, True) + + def test_polydiv(self): + b = np.poly1d([2, 6, 6, 1]) + a = np.poly1d([-1j, (1 + 2j), -(2 + 1j), 1]) + q, r = np.polydiv(b, a) + assert_equal(q.coeffs.dtype, np.complex128) + assert_equal(r.coeffs.dtype, np.complex128) + assert_equal(q * a + r, b) + + c = [1, 2, 3] + d = np.poly1d([1, 2, 3]) + s, t = np.polydiv(c, d) + assert isinstance(s, np.poly1d) + assert isinstance(t, np.poly1d) + u, v = np.polydiv(d, c) + assert isinstance(u, np.poly1d) + assert isinstance(v, np.poly1d) + + def test_poly_coeffs_mutable(self): + """ Coefficients should be modifiable """ + p = np.poly1d([1, 2, 3]) + + p.coeffs += 1 + assert_equal(p.coeffs, [2, 3, 4]) + + p.coeffs[2] += 10 + assert_equal(p.coeffs, [2, 3, 14]) + + # this never used to be allowed - let's not add features to deprecated + # APIs + assert_raises(AttributeError, setattr, p, 'coeffs', np.array(1)) diff --git a/.venv/lib/python3.12/site-packages/numpy/lib/tests/test_recfunctions.py b/.venv/lib/python3.12/site-packages/numpy/lib/tests/test_recfunctions.py new file mode 100644 index 0000000..eee1f47 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/lib/tests/test_recfunctions.py @@ -0,0 +1,1052 @@ + +import numpy as np +import numpy.ma as ma +from numpy.lib.recfunctions import ( + append_fields, + apply_along_fields, + assign_fields_by_name, + drop_fields, + find_duplicates, + get_fieldstructure, + join_by, + merge_arrays, + recursive_fill_fields, + rename_fields, + repack_fields, + require_fields, + stack_arrays, + structured_to_unstructured, + unstructured_to_structured, +) +from numpy.ma.mrecords import MaskedRecords +from numpy.ma.testutils import assert_equal +from numpy.testing import assert_, assert_raises + +get_fieldspec = np.lib.recfunctions._get_fieldspec +get_names = np.lib.recfunctions.get_names +get_names_flat = np.lib.recfunctions.get_names_flat +zip_descr = np.lib.recfunctions._zip_descr +zip_dtype = np.lib.recfunctions._zip_dtype + + +class TestRecFunctions: + # Misc tests + + def setup_method(self): + x = np.array([1, 2, ]) + y = np.array([10, 20, 30]) + z = np.array([('A', 1.), ('B', 2.)], + dtype=[('A', '|S3'), ('B', float)]) + w = np.array([(1, (2, 3.0)), (4, (5, 6.0))], + dtype=[('a', int), ('b', [('ba', float), ('bb', int)])]) + self.data = (w, x, y, z) + + def test_zip_descr(self): + # Test zip_descr + (w, x, y, z) = self.data + + # Std array + test = zip_descr((x, x), flatten=True) + assert_equal(test, + np.dtype([('', int), ('', int)])) + test = zip_descr((x, x), flatten=False) + assert_equal(test, + np.dtype([('', int), ('', int)])) + + # Std & flexible-dtype + test = zip_descr((x, z), flatten=True) + assert_equal(test, + np.dtype([('', int), ('A', '|S3'), ('B', float)])) + test = zip_descr((x, z), flatten=False) + assert_equal(test, + np.dtype([('', int), + ('', [('A', '|S3'), ('B', float)])])) + + # Standard & nested dtype + test = zip_descr((x, w), flatten=True) + assert_equal(test, + np.dtype([('', int), + ('a', int), + ('ba', float), ('bb', int)])) + test = zip_descr((x, w), flatten=False) + assert_equal(test, + np.dtype([('', int), + ('', [('a', int), + ('b', [('ba', float), ('bb', int)])])])) + + def test_drop_fields(self): + # Test drop_fields + a = np.array([(1, (2, 3.0)), (4, (5, 6.0))], + dtype=[('a', int), ('b', [('ba', float), ('bb', int)])]) + + # A basic field + test = drop_fields(a, 'a') + control = np.array([((2, 3.0),), ((5, 6.0),)], + dtype=[('b', [('ba', float), ('bb', int)])]) + assert_equal(test, control) + + # Another basic field (but nesting two fields) + test = drop_fields(a, 'b') + control = np.array([(1,), (4,)], dtype=[('a', int)]) + assert_equal(test, control) + + # A nested sub-field + test = drop_fields(a, ['ba', ]) + control = np.array([(1, (3.0,)), (4, (6.0,))], + dtype=[('a', int), ('b', [('bb', int)])]) + assert_equal(test, control) + + # All the nested sub-field from a field: zap that field + test = drop_fields(a, ['ba', 'bb']) + control = np.array([(1,), (4,)], dtype=[('a', int)]) + assert_equal(test, control) + + # dropping all fields results in an array with no fields + test = drop_fields(a, ['a', 'b']) + control = np.array([(), ()], dtype=[]) + assert_equal(test, control) + + def test_rename_fields(self): + # Test rename fields + a = np.array([(1, (2, [3.0, 30.])), (4, (5, [6.0, 60.]))], + dtype=[('a', int), + ('b', [('ba', float), ('bb', (float, 2))])]) + test = rename_fields(a, {'a': 'A', 'bb': 'BB'}) + newdtype = [('A', int), ('b', [('ba', float), ('BB', (float, 2))])] + control = a.view(newdtype) + assert_equal(test.dtype, newdtype) + assert_equal(test, control) + + def test_get_names(self): + # Test get_names + ndtype = np.dtype([('A', '|S3'), ('B', float)]) + test = get_names(ndtype) + assert_equal(test, ('A', 'B')) + + ndtype = np.dtype([('a', int), ('b', [('ba', float), ('bb', int)])]) + test = get_names(ndtype) + assert_equal(test, ('a', ('b', ('ba', 'bb')))) + + ndtype = np.dtype([('a', int), ('b', [])]) + test = get_names(ndtype) + assert_equal(test, ('a', ('b', ()))) + + ndtype = np.dtype([]) + test = get_names(ndtype) + assert_equal(test, ()) + + def test_get_names_flat(self): + # Test get_names_flat + ndtype = np.dtype([('A', '|S3'), ('B', float)]) + test = get_names_flat(ndtype) + assert_equal(test, ('A', 'B')) + + ndtype = np.dtype([('a', int), ('b', [('ba', float), ('bb', int)])]) + test = get_names_flat(ndtype) + assert_equal(test, ('a', 'b', 'ba', 'bb')) + + ndtype = np.dtype([('a', int), ('b', [])]) + test = get_names_flat(ndtype) + assert_equal(test, ('a', 'b')) + + ndtype = np.dtype([]) + test = get_names_flat(ndtype) + assert_equal(test, ()) + + def test_get_fieldstructure(self): + # Test get_fieldstructure + + # No nested fields + ndtype = np.dtype([('A', '|S3'), ('B', float)]) + test = get_fieldstructure(ndtype) + assert_equal(test, {'A': [], 'B': []}) + + # One 1-nested field + ndtype = np.dtype([('A', int), ('B', [('BA', float), ('BB', '|S1')])]) + test = get_fieldstructure(ndtype) + assert_equal(test, {'A': [], 'B': [], 'BA': ['B', ], 'BB': ['B']}) + + # One 2-nested fields + ndtype = np.dtype([('A', int), + ('B', [('BA', int), + ('BB', [('BBA', int), ('BBB', int)])])]) + test = get_fieldstructure(ndtype) + control = {'A': [], 'B': [], 'BA': ['B'], 'BB': ['B'], + 'BBA': ['B', 'BB'], 'BBB': ['B', 'BB']} + assert_equal(test, control) + + # 0 fields + ndtype = np.dtype([]) + test = get_fieldstructure(ndtype) + assert_equal(test, {}) + + def test_find_duplicates(self): + # Test find_duplicates + a = ma.array([(2, (2., 'B')), (1, (2., 'B')), (2, (2., 'B')), + (1, (1., 'B')), (2, (2., 'B')), (2, (2., 'C'))], + mask=[(0, (0, 0)), (0, (0, 0)), (0, (0, 0)), + (0, (0, 0)), (1, (0, 0)), (0, (1, 0))], + dtype=[('A', int), ('B', [('BA', float), ('BB', '|S1')])]) + + test = find_duplicates(a, ignoremask=False, return_index=True) + control = [0, 2] + assert_equal(sorted(test[-1]), control) + assert_equal(test[0], a[test[-1]]) + + test = find_duplicates(a, key='A', return_index=True) + control = [0, 1, 2, 3, 5] + assert_equal(sorted(test[-1]), control) + assert_equal(test[0], a[test[-1]]) + + test = find_duplicates(a, key='B', return_index=True) + control = [0, 1, 2, 4] + assert_equal(sorted(test[-1]), control) + assert_equal(test[0], a[test[-1]]) + + test = find_duplicates(a, key='BA', return_index=True) + control = [0, 1, 2, 4] + assert_equal(sorted(test[-1]), control) + assert_equal(test[0], a[test[-1]]) + + test = find_duplicates(a, key='BB', return_index=True) + control = [0, 1, 2, 3, 4] + assert_equal(sorted(test[-1]), control) + assert_equal(test[0], a[test[-1]]) + + def test_find_duplicates_ignoremask(self): + # Test the ignoremask option of find_duplicates + ndtype = [('a', int)] + a = ma.array([1, 1, 1, 2, 2, 3, 3], + mask=[0, 0, 1, 0, 0, 0, 1]).view(ndtype) + test = find_duplicates(a, ignoremask=True, return_index=True) + control = [0, 1, 3, 4] + assert_equal(sorted(test[-1]), control) + assert_equal(test[0], a[test[-1]]) + + test = find_duplicates(a, ignoremask=False, return_index=True) + control = [0, 1, 2, 3, 4, 6] + assert_equal(sorted(test[-1]), control) + assert_equal(test[0], a[test[-1]]) + + def test_repack_fields(self): + dt = np.dtype('u1,f4,i8', align=True) + a = np.zeros(2, dtype=dt) + + assert_equal(repack_fields(dt), np.dtype('u1,f4,i8')) + assert_equal(repack_fields(a).itemsize, 13) + assert_equal(repack_fields(repack_fields(dt), align=True), dt) + + # make sure type is preserved + dt = np.dtype((np.record, dt)) + assert_(repack_fields(dt).type is np.record) + + def test_structured_to_unstructured(self, tmp_path): + a = np.zeros(4, dtype=[('a', 'i4'), ('b', 'f4,u2'), ('c', 'f4', 2)]) + out = structured_to_unstructured(a) + assert_equal(out, np.zeros((4, 5), dtype='f8')) + + b = np.array([(1, 2, 5), (4, 5, 7), (7, 8, 11), (10, 11, 12)], + dtype=[('x', 'i4'), ('y', 'f4'), ('z', 'f8')]) + out = np.mean(structured_to_unstructured(b[['x', 'z']]), axis=-1) + assert_equal(out, np.array([3., 5.5, 9., 11.])) + out = np.mean(structured_to_unstructured(b[['x']]), axis=-1) + assert_equal(out, np.array([1., 4. , 7., 10.])) # noqa: E203 + + c = np.arange(20).reshape((4, 5)) + out = unstructured_to_structured(c, a.dtype) + want = np.array([( 0, ( 1., 2), [ 3., 4.]), + ( 5, ( 6., 7), [ 8., 9.]), + (10, (11., 12), [13., 14.]), + (15, (16., 17), [18., 19.])], + dtype=[('a', 'i4'), + ('b', [('f0', 'f4'), ('f1', 'u2')]), + ('c', 'f4', (2,))]) + assert_equal(out, want) + + d = np.array([(1, 2, 5), (4, 5, 7), (7, 8, 11), (10, 11, 12)], + dtype=[('x', 'i4'), ('y', 'f4'), ('z', 'f8')]) + assert_equal(apply_along_fields(np.mean, d), + np.array([ 8.0 / 3, 16.0 / 3, 26.0 / 3, 11.])) + assert_equal(apply_along_fields(np.mean, d[['x', 'z']]), + np.array([ 3., 5.5, 9., 11.])) + + # check that for uniform field dtypes we get a view, not a copy: + d = np.array([(1, 2, 5), (4, 5, 7), (7, 8, 11), (10, 11, 12)], + dtype=[('x', 'i4'), ('y', 'i4'), ('z', 'i4')]) + dd = structured_to_unstructured(d) + ddd = unstructured_to_structured(dd, d.dtype) + assert_(np.shares_memory(dd, d)) + assert_(np.shares_memory(ddd, d)) + + # check that reversing the order of attributes works + dd_attrib_rev = structured_to_unstructured(d[['z', 'x']]) + assert_equal(dd_attrib_rev, [[5, 1], [7, 4], [11, 7], [12, 10]]) + assert_(np.shares_memory(dd_attrib_rev, d)) + + # including uniform fields with subarrays unpacked + d = np.array([(1, [2, 3], [[ 4, 5], [ 6, 7]]), + (8, [9, 10], [[11, 12], [13, 14]])], + dtype=[('x0', 'i4'), ('x1', ('i4', 2)), + ('x2', ('i4', (2, 2)))]) + dd = structured_to_unstructured(d) + ddd = unstructured_to_structured(dd, d.dtype) + assert_(np.shares_memory(dd, d)) + assert_(np.shares_memory(ddd, d)) + + # check that reversing with sub-arrays works as expected + d_rev = d[::-1] + dd_rev = structured_to_unstructured(d_rev) + assert_equal(dd_rev, [[8, 9, 10, 11, 12, 13, 14], + [1, 2, 3, 4, 5, 6, 7]]) + + # check that sub-arrays keep the order of their values + d_attrib_rev = d[['x2', 'x1', 'x0']] + dd_attrib_rev = structured_to_unstructured(d_attrib_rev) + assert_equal(dd_attrib_rev, [[4, 5, 6, 7, 2, 3, 1], + [11, 12, 13, 14, 9, 10, 8]]) + + # with ignored field at the end + d = np.array([(1, [2, 3], [[4, 5], [6, 7]], 32), + (8, [9, 10], [[11, 12], [13, 14]], 64)], + dtype=[('x0', 'i4'), ('x1', ('i4', 2)), + ('x2', ('i4', (2, 2))), ('ignored', 'u1')]) + dd = structured_to_unstructured(d[['x0', 'x1', 'x2']]) + assert_(np.shares_memory(dd, d)) + assert_equal(dd, [[1, 2, 3, 4, 5, 6, 7], + [8, 9, 10, 11, 12, 13, 14]]) + + # test that nested fields with identical names don't break anything + point = np.dtype([('x', int), ('y', int)]) + triangle = np.dtype([('a', point), ('b', point), ('c', point)]) + arr = np.zeros(10, triangle) + res = structured_to_unstructured(arr, dtype=int) + assert_equal(res, np.zeros((10, 6), dtype=int)) + + # test nested combinations of subarrays and structured arrays, gh-13333 + def subarray(dt, shape): + return np.dtype((dt, shape)) + + def structured(*dts): + return np.dtype([(f'x{i}', dt) for i, dt in enumerate(dts)]) + + def inspect(dt, dtype=None): + arr = np.zeros((), dt) + ret = structured_to_unstructured(arr, dtype=dtype) + backarr = unstructured_to_structured(ret, dt) + return ret.shape, ret.dtype, backarr.dtype + + dt = structured(subarray(structured(np.int32, np.int32), 3)) + assert_equal(inspect(dt), ((6,), np.int32, dt)) + + dt = structured(subarray(subarray(np.int32, 2), 2)) + assert_equal(inspect(dt), ((4,), np.int32, dt)) + + dt = structured(np.int32) + assert_equal(inspect(dt), ((1,), np.int32, dt)) + + dt = structured(np.int32, subarray(subarray(np.int32, 2), 2)) + assert_equal(inspect(dt), ((5,), np.int32, dt)) + + dt = structured() + assert_raises(ValueError, structured_to_unstructured, np.zeros(3, dt)) + + # these currently don't work, but we may make it work in the future + assert_raises(NotImplementedError, structured_to_unstructured, + np.zeros(3, dt), dtype=np.int32) + assert_raises(NotImplementedError, unstructured_to_structured, + np.zeros((3, 0), dtype=np.int32)) + + # test supported ndarray subclasses + d_plain = np.array([(1, 2), (3, 4)], dtype=[('a', 'i4'), ('b', 'i4')]) + dd_expected = structured_to_unstructured(d_plain, copy=True) + + # recarray + d = d_plain.view(np.recarray) + + dd = structured_to_unstructured(d, copy=False) + ddd = structured_to_unstructured(d, copy=True) + assert_(np.shares_memory(d, dd)) + assert_(type(dd) is np.recarray) + assert_(type(ddd) is np.recarray) + assert_equal(dd, dd_expected) + assert_equal(ddd, dd_expected) + + # memmap + d = np.memmap(tmp_path / 'memmap', + mode='w+', + dtype=d_plain.dtype, + shape=d_plain.shape) + d[:] = d_plain + dd = structured_to_unstructured(d, copy=False) + ddd = structured_to_unstructured(d, copy=True) + assert_(np.shares_memory(d, dd)) + assert_(type(dd) is np.memmap) + assert_(type(ddd) is np.memmap) + assert_equal(dd, dd_expected) + assert_equal(ddd, dd_expected) + + def test_unstructured_to_structured(self): + # test if dtype is the args of np.dtype + a = np.zeros((20, 2)) + test_dtype_args = [('x', float), ('y', float)] + test_dtype = np.dtype(test_dtype_args) + field1 = unstructured_to_structured(a, dtype=test_dtype_args) # now + field2 = unstructured_to_structured(a, dtype=test_dtype) # before + assert_equal(field1, field2) + + def test_field_assignment_by_name(self): + a = np.ones(2, dtype=[('a', 'i4'), ('b', 'f8'), ('c', 'u1')]) + newdt = [('b', 'f4'), ('c', 'u1')] + + assert_equal(require_fields(a, newdt), np.ones(2, newdt)) + + b = np.array([(1, 2), (3, 4)], dtype=newdt) + assign_fields_by_name(a, b, zero_unassigned=False) + assert_equal(a, np.array([(1, 1, 2), (1, 3, 4)], dtype=a.dtype)) + assign_fields_by_name(a, b) + assert_equal(a, np.array([(0, 1, 2), (0, 3, 4)], dtype=a.dtype)) + + # test nested fields + a = np.ones(2, dtype=[('a', [('b', 'f8'), ('c', 'u1')])]) + newdt = [('a', [('c', 'u1')])] + assert_equal(require_fields(a, newdt), np.ones(2, newdt)) + b = np.array([((2,),), ((3,),)], dtype=newdt) + assign_fields_by_name(a, b, zero_unassigned=False) + assert_equal(a, np.array([((1, 2),), ((1, 3),)], dtype=a.dtype)) + assign_fields_by_name(a, b) + assert_equal(a, np.array([((0, 2),), ((0, 3),)], dtype=a.dtype)) + + # test unstructured code path for 0d arrays + a, b = np.array(3), np.array(0) + assign_fields_by_name(b, a) + assert_equal(b[()], 3) + + +class TestRecursiveFillFields: + # Test recursive_fill_fields. + def test_simple_flexible(self): + # Test recursive_fill_fields on flexible-array + a = np.array([(1, 10.), (2, 20.)], dtype=[('A', int), ('B', float)]) + b = np.zeros((3,), dtype=a.dtype) + test = recursive_fill_fields(a, b) + control = np.array([(1, 10.), (2, 20.), (0, 0.)], + dtype=[('A', int), ('B', float)]) + assert_equal(test, control) + + def test_masked_flexible(self): + # Test recursive_fill_fields on masked flexible-array + a = ma.array([(1, 10.), (2, 20.)], mask=[(0, 1), (1, 0)], + dtype=[('A', int), ('B', float)]) + b = ma.zeros((3,), dtype=a.dtype) + test = recursive_fill_fields(a, b) + control = ma.array([(1, 10.), (2, 20.), (0, 0.)], + mask=[(0, 1), (1, 0), (0, 0)], + dtype=[('A', int), ('B', float)]) + assert_equal(test, control) + + +class TestMergeArrays: + # Test merge_arrays + + def setup_method(self): + x = np.array([1, 2, ]) + y = np.array([10, 20, 30]) + z = np.array( + [('A', 1.), ('B', 2.)], dtype=[('A', '|S3'), ('B', float)]) + w = np.array( + [(1, (2, 3.0, ())), (4, (5, 6.0, ()))], + dtype=[('a', int), ('b', [('ba', float), ('bb', int), ('bc', [])])]) + self.data = (w, x, y, z) + + def test_solo(self): + # Test merge_arrays on a single array. + (_, x, _, z) = self.data + + test = merge_arrays(x) + control = np.array([(1,), (2,)], dtype=[('f0', int)]) + assert_equal(test, control) + test = merge_arrays((x,)) + assert_equal(test, control) + + test = merge_arrays(z, flatten=False) + assert_equal(test, z) + test = merge_arrays(z, flatten=True) + assert_equal(test, z) + + def test_solo_w_flatten(self): + # Test merge_arrays on a single array w & w/o flattening + w = self.data[0] + test = merge_arrays(w, flatten=False) + assert_equal(test, w) + + test = merge_arrays(w, flatten=True) + control = np.array([(1, 2, 3.0), (4, 5, 6.0)], + dtype=[('a', int), ('ba', float), ('bb', int)]) + assert_equal(test, control) + + def test_standard(self): + # Test standard & standard + # Test merge arrays + (_, x, y, _) = self.data + test = merge_arrays((x, y), usemask=False) + control = np.array([(1, 10), (2, 20), (-1, 30)], + dtype=[('f0', int), ('f1', int)]) + assert_equal(test, control) + + test = merge_arrays((x, y), usemask=True) + control = ma.array([(1, 10), (2, 20), (-1, 30)], + mask=[(0, 0), (0, 0), (1, 0)], + dtype=[('f0', int), ('f1', int)]) + assert_equal(test, control) + assert_equal(test.mask, control.mask) + + def test_flatten(self): + # Test standard & flexible + (_, x, _, z) = self.data + test = merge_arrays((x, z), flatten=True) + control = np.array([(1, 'A', 1.), (2, 'B', 2.)], + dtype=[('f0', int), ('A', '|S3'), ('B', float)]) + assert_equal(test, control) + + test = merge_arrays((x, z), flatten=False) + control = np.array([(1, ('A', 1.)), (2, ('B', 2.))], + dtype=[('f0', int), + ('f1', [('A', '|S3'), ('B', float)])]) + assert_equal(test, control) + + def test_flatten_wflexible(self): + # Test flatten standard & nested + (w, x, _, _) = self.data + test = merge_arrays((x, w), flatten=True) + control = np.array([(1, 1, 2, 3.0), (2, 4, 5, 6.0)], + dtype=[('f0', int), + ('a', int), ('ba', float), ('bb', int)]) + assert_equal(test, control) + + test = merge_arrays((x, w), flatten=False) + controldtype = [('f0', int), + ('f1', [('a', int), + ('b', [('ba', float), ('bb', int), ('bc', [])])])] + control = np.array([(1., (1, (2, 3.0, ()))), (2, (4, (5, 6.0, ())))], + dtype=controldtype) + assert_equal(test, control) + + def test_wmasked_arrays(self): + # Test merge_arrays masked arrays + (_, x, _, _) = self.data + mx = ma.array([1, 2, 3], mask=[1, 0, 0]) + test = merge_arrays((x, mx), usemask=True) + control = ma.array([(1, 1), (2, 2), (-1, 3)], + mask=[(0, 1), (0, 0), (1, 0)], + dtype=[('f0', int), ('f1', int)]) + assert_equal(test, control) + test = merge_arrays((x, mx), usemask=True, asrecarray=True) + assert_equal(test, control) + assert_(isinstance(test, MaskedRecords)) + + def test_w_singlefield(self): + # Test single field + test = merge_arrays((np.array([1, 2]).view([('a', int)]), + np.array([10., 20., 30.])),) + control = ma.array([(1, 10.), (2, 20.), (-1, 30.)], + mask=[(0, 0), (0, 0), (1, 0)], + dtype=[('a', int), ('f1', float)]) + assert_equal(test, control) + + def test_w_shorter_flex(self): + # Test merge_arrays w/ a shorter flexndarray. + z = self.data[-1] + + # Fixme, this test looks incomplete and broken + #test = merge_arrays((z, np.array([10, 20, 30]).view([('C', int)]))) + #control = np.array([('A', 1., 10), ('B', 2., 20), ('-1', -1, 20)], + # dtype=[('A', '|S3'), ('B', float), ('C', int)]) + #assert_equal(test, control) + + merge_arrays((z, np.array([10, 20, 30]).view([('C', int)]))) + np.array([('A', 1., 10), ('B', 2., 20), ('-1', -1, 20)], + dtype=[('A', '|S3'), ('B', float), ('C', int)]) + + def test_singlerecord(self): + (_, x, y, z) = self.data + test = merge_arrays((x[0], y[0], z[0]), usemask=False) + control = np.array([(1, 10, ('A', 1))], + dtype=[('f0', int), + ('f1', int), + ('f2', [('A', '|S3'), ('B', float)])]) + assert_equal(test, control) + + +class TestAppendFields: + # Test append_fields + + def setup_method(self): + x = np.array([1, 2, ]) + y = np.array([10, 20, 30]) + z = np.array( + [('A', 1.), ('B', 2.)], dtype=[('A', '|S3'), ('B', float)]) + w = np.array([(1, (2, 3.0)), (4, (5, 6.0))], + dtype=[('a', int), ('b', [('ba', float), ('bb', int)])]) + self.data = (w, x, y, z) + + def test_append_single(self): + # Test simple case + (_, x, _, _) = self.data + test = append_fields(x, 'A', data=[10, 20, 30]) + control = ma.array([(1, 10), (2, 20), (-1, 30)], + mask=[(0, 0), (0, 0), (1, 0)], + dtype=[('f0', int), ('A', int)],) + assert_equal(test, control) + + def test_append_double(self): + # Test simple case + (_, x, _, _) = self.data + test = append_fields(x, ('A', 'B'), data=[[10, 20, 30], [100, 200]]) + control = ma.array([(1, 10, 100), (2, 20, 200), (-1, 30, -1)], + mask=[(0, 0, 0), (0, 0, 0), (1, 0, 1)], + dtype=[('f0', int), ('A', int), ('B', int)],) + assert_equal(test, control) + + def test_append_on_flex(self): + # Test append_fields on flexible type arrays + z = self.data[-1] + test = append_fields(z, 'C', data=[10, 20, 30]) + control = ma.array([('A', 1., 10), ('B', 2., 20), (-1, -1., 30)], + mask=[(0, 0, 0), (0, 0, 0), (1, 1, 0)], + dtype=[('A', '|S3'), ('B', float), ('C', int)],) + assert_equal(test, control) + + def test_append_on_nested(self): + # Test append_fields on nested fields + w = self.data[0] + test = append_fields(w, 'C', data=[10, 20, 30]) + control = ma.array([(1, (2, 3.0), 10), + (4, (5, 6.0), 20), + (-1, (-1, -1.), 30)], + mask=[( + 0, (0, 0), 0), (0, (0, 0), 0), (1, (1, 1), 0)], + dtype=[('a', int), + ('b', [('ba', float), ('bb', int)]), + ('C', int)],) + assert_equal(test, control) + + +class TestStackArrays: + # Test stack_arrays + def setup_method(self): + x = np.array([1, 2, ]) + y = np.array([10, 20, 30]) + z = np.array( + [('A', 1.), ('B', 2.)], dtype=[('A', '|S3'), ('B', float)]) + w = np.array([(1, (2, 3.0)), (4, (5, 6.0))], + dtype=[('a', int), ('b', [('ba', float), ('bb', int)])]) + self.data = (w, x, y, z) + + def test_solo(self): + # Test stack_arrays on single arrays + (_, x, _, _) = self.data + test = stack_arrays((x,)) + assert_equal(test, x) + assert_(test is x) + + test = stack_arrays(x) + assert_equal(test, x) + assert_(test is x) + + def test_unnamed_fields(self): + # Tests combinations of arrays w/o named fields + (_, x, y, _) = self.data + + test = stack_arrays((x, x), usemask=False) + control = np.array([1, 2, 1, 2]) + assert_equal(test, control) + + test = stack_arrays((x, y), usemask=False) + control = np.array([1, 2, 10, 20, 30]) + assert_equal(test, control) + + test = stack_arrays((y, x), usemask=False) + control = np.array([10, 20, 30, 1, 2]) + assert_equal(test, control) + + def test_unnamed_and_named_fields(self): + # Test combination of arrays w/ & w/o named fields + (_, x, _, z) = self.data + + test = stack_arrays((x, z)) + control = ma.array([(1, -1, -1), (2, -1, -1), + (-1, 'A', 1), (-1, 'B', 2)], + mask=[(0, 1, 1), (0, 1, 1), + (1, 0, 0), (1, 0, 0)], + dtype=[('f0', int), ('A', '|S3'), ('B', float)]) + assert_equal(test, control) + assert_equal(test.mask, control.mask) + + test = stack_arrays((z, x)) + control = ma.array([('A', 1, -1), ('B', 2, -1), + (-1, -1, 1), (-1, -1, 2), ], + mask=[(0, 0, 1), (0, 0, 1), + (1, 1, 0), (1, 1, 0)], + dtype=[('A', '|S3'), ('B', float), ('f2', int)]) + assert_equal(test, control) + assert_equal(test.mask, control.mask) + + test = stack_arrays((z, z, x)) + control = ma.array([('A', 1, -1), ('B', 2, -1), + ('A', 1, -1), ('B', 2, -1), + (-1, -1, 1), (-1, -1, 2), ], + mask=[(0, 0, 1), (0, 0, 1), + (0, 0, 1), (0, 0, 1), + (1, 1, 0), (1, 1, 0)], + dtype=[('A', '|S3'), ('B', float), ('f2', int)]) + assert_equal(test, control) + + def test_matching_named_fields(self): + # Test combination of arrays w/ matching field names + (_, x, _, z) = self.data + zz = np.array([('a', 10., 100.), ('b', 20., 200.), ('c', 30., 300.)], + dtype=[('A', '|S3'), ('B', float), ('C', float)]) + test = stack_arrays((z, zz)) + control = ma.array([('A', 1, -1), ('B', 2, -1), + ( + 'a', 10., 100.), ('b', 20., 200.), ('c', 30., 300.)], + dtype=[('A', '|S3'), ('B', float), ('C', float)], + mask=[(0, 0, 1), (0, 0, 1), + (0, 0, 0), (0, 0, 0), (0, 0, 0)]) + assert_equal(test, control) + assert_equal(test.mask, control.mask) + + test = stack_arrays((z, zz, x)) + ndtype = [('A', '|S3'), ('B', float), ('C', float), ('f3', int)] + control = ma.array([('A', 1, -1, -1), ('B', 2, -1, -1), + ('a', 10., 100., -1), ('b', 20., 200., -1), + ('c', 30., 300., -1), + (-1, -1, -1, 1), (-1, -1, -1, 2)], + dtype=ndtype, + mask=[(0, 0, 1, 1), (0, 0, 1, 1), + (0, 0, 0, 1), (0, 0, 0, 1), (0, 0, 0, 1), + (1, 1, 1, 0), (1, 1, 1, 0)]) + assert_equal(test, control) + assert_equal(test.mask, control.mask) + + def test_defaults(self): + # Test defaults: no exception raised if keys of defaults are not fields. + (_, _, _, z) = self.data + zz = np.array([('a', 10., 100.), ('b', 20., 200.), ('c', 30., 300.)], + dtype=[('A', '|S3'), ('B', float), ('C', float)]) + defaults = {'A': '???', 'B': -999., 'C': -9999., 'D': -99999.} + test = stack_arrays((z, zz), defaults=defaults) + control = ma.array([('A', 1, -9999.), ('B', 2, -9999.), + ( + 'a', 10., 100.), ('b', 20., 200.), ('c', 30., 300.)], + dtype=[('A', '|S3'), ('B', float), ('C', float)], + mask=[(0, 0, 1), (0, 0, 1), + (0, 0, 0), (0, 0, 0), (0, 0, 0)]) + assert_equal(test, control) + assert_equal(test.data, control.data) + assert_equal(test.mask, control.mask) + + def test_autoconversion(self): + # Tests autoconversion + adtype = [('A', int), ('B', bool), ('C', float)] + a = ma.array([(1, 2, 3)], mask=[(0, 1, 0)], dtype=adtype) + bdtype = [('A', int), ('B', float), ('C', float)] + b = ma.array([(4, 5, 6)], dtype=bdtype) + control = ma.array([(1, 2, 3), (4, 5, 6)], mask=[(0, 1, 0), (0, 0, 0)], + dtype=bdtype) + test = stack_arrays((a, b), autoconvert=True) + assert_equal(test, control) + assert_equal(test.mask, control.mask) + with assert_raises(TypeError): + stack_arrays((a, b), autoconvert=False) + + def test_checktitles(self): + # Test using titles in the field names + adtype = [(('a', 'A'), int), (('b', 'B'), bool), (('c', 'C'), float)] + a = ma.array([(1, 2, 3)], mask=[(0, 1, 0)], dtype=adtype) + bdtype = [(('a', 'A'), int), (('b', 'B'), bool), (('c', 'C'), float)] + b = ma.array([(4, 5, 6)], dtype=bdtype) + test = stack_arrays((a, b)) + control = ma.array([(1, 2, 3), (4, 5, 6)], mask=[(0, 1, 0), (0, 0, 0)], + dtype=bdtype) + assert_equal(test, control) + assert_equal(test.mask, control.mask) + + def test_subdtype(self): + z = np.array([ + ('A', 1), ('B', 2) + ], dtype=[('A', '|S3'), ('B', float, (1,))]) + zz = np.array([ + ('a', [10.], 100.), ('b', [20.], 200.), ('c', [30.], 300.) + ], dtype=[('A', '|S3'), ('B', float, (1,)), ('C', float)]) + + res = stack_arrays((z, zz)) + expected = ma.array( + data=[ + (b'A', [1.0], 0), + (b'B', [2.0], 0), + (b'a', [10.0], 100.0), + (b'b', [20.0], 200.0), + (b'c', [30.0], 300.0)], + mask=[ + (False, [False], True), + (False, [False], True), + (False, [False], False), + (False, [False], False), + (False, [False], False) + ], + dtype=zz.dtype + ) + assert_equal(res.dtype, expected.dtype) + assert_equal(res, expected) + assert_equal(res.mask, expected.mask) + + +class TestJoinBy: + def setup_method(self): + self.a = np.array(list(zip(np.arange(10), np.arange(50, 60), + np.arange(100, 110))), + dtype=[('a', int), ('b', int), ('c', int)]) + self.b = np.array(list(zip(np.arange(5, 15), np.arange(65, 75), + np.arange(100, 110))), + dtype=[('a', int), ('b', int), ('d', int)]) + + def test_inner_join(self): + # Basic test of join_by + a, b = self.a, self.b + + test = join_by('a', a, b, jointype='inner') + control = np.array([(5, 55, 65, 105, 100), (6, 56, 66, 106, 101), + (7, 57, 67, 107, 102), (8, 58, 68, 108, 103), + (9, 59, 69, 109, 104)], + dtype=[('a', int), ('b1', int), ('b2', int), + ('c', int), ('d', int)]) + assert_equal(test, control) + + def test_join(self): + a, b = self.a, self.b + + # Fixme, this test is broken + #test = join_by(('a', 'b'), a, b) + #control = np.array([(5, 55, 105, 100), (6, 56, 106, 101), + # (7, 57, 107, 102), (8, 58, 108, 103), + # (9, 59, 109, 104)], + # dtype=[('a', int), ('b', int), + # ('c', int), ('d', int)]) + #assert_equal(test, control) + + join_by(('a', 'b'), a, b) + np.array([(5, 55, 105, 100), (6, 56, 106, 101), + (7, 57, 107, 102), (8, 58, 108, 103), + (9, 59, 109, 104)], + dtype=[('a', int), ('b', int), + ('c', int), ('d', int)]) + + def test_join_subdtype(self): + # tests the bug in https://stackoverflow.com/q/44769632/102441 + foo = np.array([(1,)], + dtype=[('key', int)]) + bar = np.array([(1, np.array([1, 2, 3]))], + dtype=[('key', int), ('value', 'uint16', 3)]) + res = join_by('key', foo, bar) + assert_equal(res, bar.view(ma.MaskedArray)) + + def test_outer_join(self): + a, b = self.a, self.b + + test = join_by(('a', 'b'), a, b, 'outer') + control = ma.array([(0, 50, 100, -1), (1, 51, 101, -1), + (2, 52, 102, -1), (3, 53, 103, -1), + (4, 54, 104, -1), (5, 55, 105, -1), + (5, 65, -1, 100), (6, 56, 106, -1), + (6, 66, -1, 101), (7, 57, 107, -1), + (7, 67, -1, 102), (8, 58, 108, -1), + (8, 68, -1, 103), (9, 59, 109, -1), + (9, 69, -1, 104), (10, 70, -1, 105), + (11, 71, -1, 106), (12, 72, -1, 107), + (13, 73, -1, 108), (14, 74, -1, 109)], + mask=[(0, 0, 0, 1), (0, 0, 0, 1), + (0, 0, 0, 1), (0, 0, 0, 1), + (0, 0, 0, 1), (0, 0, 0, 1), + (0, 0, 1, 0), (0, 0, 0, 1), + (0, 0, 1, 0), (0, 0, 0, 1), + (0, 0, 1, 0), (0, 0, 0, 1), + (0, 0, 1, 0), (0, 0, 0, 1), + (0, 0, 1, 0), (0, 0, 1, 0), + (0, 0, 1, 0), (0, 0, 1, 0), + (0, 0, 1, 0), (0, 0, 1, 0)], + dtype=[('a', int), ('b', int), + ('c', int), ('d', int)]) + assert_equal(test, control) + + def test_leftouter_join(self): + a, b = self.a, self.b + + test = join_by(('a', 'b'), a, b, 'leftouter') + control = ma.array([(0, 50, 100, -1), (1, 51, 101, -1), + (2, 52, 102, -1), (3, 53, 103, -1), + (4, 54, 104, -1), (5, 55, 105, -1), + (6, 56, 106, -1), (7, 57, 107, -1), + (8, 58, 108, -1), (9, 59, 109, -1)], + mask=[(0, 0, 0, 1), (0, 0, 0, 1), + (0, 0, 0, 1), (0, 0, 0, 1), + (0, 0, 0, 1), (0, 0, 0, 1), + (0, 0, 0, 1), (0, 0, 0, 1), + (0, 0, 0, 1), (0, 0, 0, 1)], + dtype=[('a', int), ('b', int), ('c', int), ('d', int)]) + assert_equal(test, control) + + def test_different_field_order(self): + # gh-8940 + a = np.zeros(3, dtype=[('a', 'i4'), ('b', 'f4'), ('c', 'u1')]) + b = np.ones(3, dtype=[('c', 'u1'), ('b', 'f4'), ('a', 'i4')]) + # this should not give a FutureWarning: + j = join_by(['c', 'b'], a, b, jointype='inner', usemask=False) + assert_equal(j.dtype.names, ['b', 'c', 'a1', 'a2']) + + def test_duplicate_keys(self): + a = np.zeros(3, dtype=[('a', 'i4'), ('b', 'f4'), ('c', 'u1')]) + b = np.ones(3, dtype=[('c', 'u1'), ('b', 'f4'), ('a', 'i4')]) + assert_raises(ValueError, join_by, ['a', 'b', 'b'], a, b) + + def test_same_name_different_dtypes_key(self): + a_dtype = np.dtype([('key', 'S5'), ('value', '<f4')]) + b_dtype = np.dtype([('key', 'S10'), ('value', '<f4')]) + expected_dtype = np.dtype([ + ('key', 'S10'), ('value1', '<f4'), ('value2', '<f4')]) + + a = np.array([('Sarah', 8.0), ('John', 6.0)], dtype=a_dtype) + b = np.array([('Sarah', 10.0), ('John', 7.0)], dtype=b_dtype) + res = join_by('key', a, b) + + assert_equal(res.dtype, expected_dtype) + + def test_same_name_different_dtypes(self): + # gh-9338 + a_dtype = np.dtype([('key', 'S10'), ('value', '<f4')]) + b_dtype = np.dtype([('key', 'S10'), ('value', '<f8')]) + expected_dtype = np.dtype([ + ('key', '|S10'), ('value1', '<f4'), ('value2', '<f8')]) + + a = np.array([('Sarah', 8.0), ('John', 6.0)], dtype=a_dtype) + b = np.array([('Sarah', 10.0), ('John', 7.0)], dtype=b_dtype) + res = join_by('key', a, b) + + assert_equal(res.dtype, expected_dtype) + + def test_subarray_key(self): + a_dtype = np.dtype([('pos', int, 3), ('f', '<f4')]) + a = np.array([([1, 1, 1], np.pi), ([1, 2, 3], 0.0)], dtype=a_dtype) + + b_dtype = np.dtype([('pos', int, 3), ('g', '<f4')]) + b = np.array([([1, 1, 1], 3), ([3, 2, 1], 0.0)], dtype=b_dtype) + + expected_dtype = np.dtype([('pos', int, 3), ('f', '<f4'), ('g', '<f4')]) + expected = np.array([([1, 1, 1], np.pi, 3)], dtype=expected_dtype) + + res = join_by('pos', a, b) + assert_equal(res.dtype, expected_dtype) + assert_equal(res, expected) + + def test_padded_dtype(self): + dt = np.dtype('i1,f4', align=True) + dt.names = ('k', 'v') + assert_(len(dt.descr), 3) # padding field is inserted + + a = np.array([(1, 3), (3, 2)], dt) + b = np.array([(1, 1), (2, 2)], dt) + res = join_by('k', a, b) + + # no padding fields remain + expected_dtype = np.dtype([ + ('k', 'i1'), ('v1', 'f4'), ('v2', 'f4') + ]) + + assert_equal(res.dtype, expected_dtype) + + +class TestJoinBy2: + @classmethod + def setup_method(cls): + cls.a = np.array(list(zip(np.arange(10), np.arange(50, 60), + np.arange(100, 110))), + dtype=[('a', int), ('b', int), ('c', int)]) + cls.b = np.array(list(zip(np.arange(10), np.arange(65, 75), + np.arange(100, 110))), + dtype=[('a', int), ('b', int), ('d', int)]) + + def test_no_r1postfix(self): + # Basic test of join_by no_r1postfix + a, b = self.a, self.b + + test = join_by( + 'a', a, b, r1postfix='', r2postfix='2', jointype='inner') + control = np.array([(0, 50, 65, 100, 100), (1, 51, 66, 101, 101), + (2, 52, 67, 102, 102), (3, 53, 68, 103, 103), + (4, 54, 69, 104, 104), (5, 55, 70, 105, 105), + (6, 56, 71, 106, 106), (7, 57, 72, 107, 107), + (8, 58, 73, 108, 108), (9, 59, 74, 109, 109)], + dtype=[('a', int), ('b', int), ('b2', int), + ('c', int), ('d', int)]) + assert_equal(test, control) + + def test_no_postfix(self): + assert_raises(ValueError, join_by, 'a', self.a, self.b, + r1postfix='', r2postfix='') + + def test_no_r2postfix(self): + # Basic test of join_by no_r2postfix + a, b = self.a, self.b + + test = join_by( + 'a', a, b, r1postfix='1', r2postfix='', jointype='inner') + control = np.array([(0, 50, 65, 100, 100), (1, 51, 66, 101, 101), + (2, 52, 67, 102, 102), (3, 53, 68, 103, 103), + (4, 54, 69, 104, 104), (5, 55, 70, 105, 105), + (6, 56, 71, 106, 106), (7, 57, 72, 107, 107), + (8, 58, 73, 108, 108), (9, 59, 74, 109, 109)], + dtype=[('a', int), ('b1', int), ('b', int), + ('c', int), ('d', int)]) + assert_equal(test, control) + + def test_two_keys_two_vars(self): + a = np.array(list(zip(np.tile([10, 11], 5), np.repeat(np.arange(5), 2), + np.arange(50, 60), np.arange(10, 20))), + dtype=[('k', int), ('a', int), ('b', int), ('c', int)]) + + b = np.array(list(zip(np.tile([10, 11], 5), np.repeat(np.arange(5), 2), + np.arange(65, 75), np.arange(0, 10))), + dtype=[('k', int), ('a', int), ('b', int), ('c', int)]) + + control = np.array([(10, 0, 50, 65, 10, 0), (11, 0, 51, 66, 11, 1), + (10, 1, 52, 67, 12, 2), (11, 1, 53, 68, 13, 3), + (10, 2, 54, 69, 14, 4), (11, 2, 55, 70, 15, 5), + (10, 3, 56, 71, 16, 6), (11, 3, 57, 72, 17, 7), + (10, 4, 58, 73, 18, 8), (11, 4, 59, 74, 19, 9)], + dtype=[('k', int), ('a', int), ('b1', int), + ('b2', int), ('c1', int), ('c2', int)]) + test = join_by( + ['a', 'k'], a, b, r1postfix='1', r2postfix='2', jointype='inner') + assert_equal(test.dtype, control.dtype) + assert_equal(test, control) + +class TestAppendFieldsObj: + """ + Test append_fields with arrays containing objects + """ + # https://github.com/numpy/numpy/issues/2346 + + def setup_method(self): + from datetime import date + self.data = {'obj': date(2000, 1, 1)} + + def test_append_to_objects(self): + "Test append_fields when the base array contains objects" + obj = self.data['obj'] + x = np.array([(obj, 1.), (obj, 2.)], + dtype=[('A', object), ('B', float)]) + y = np.array([10, 20], dtype=int) + test = append_fields(x, 'C', data=y, usemask=False) + control = np.array([(obj, 1.0, 10), (obj, 2.0, 20)], + dtype=[('A', object), ('B', float), ('C', int)]) + assert_equal(test, control) diff --git a/.venv/lib/python3.12/site-packages/numpy/lib/tests/test_regression.py b/.venv/lib/python3.12/site-packages/numpy/lib/tests/test_regression.py new file mode 100644 index 0000000..8839ed5 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/lib/tests/test_regression.py @@ -0,0 +1,231 @@ +import os + +import numpy as np +from numpy.testing import ( + _assert_valid_refcount, + assert_, + assert_array_almost_equal, + assert_array_equal, + assert_equal, + assert_raises, +) + + +class TestRegression: + def test_poly1d(self): + # Ticket #28 + assert_equal(np.poly1d([1]) - np.poly1d([1, 0]), + np.poly1d([-1, 1])) + + def test_cov_parameters(self): + # Ticket #91 + x = np.random.random((3, 3)) + y = x.copy() + np.cov(x, rowvar=True) + np.cov(y, rowvar=False) + assert_array_equal(x, y) + + def test_mem_digitize(self): + # Ticket #95 + for i in range(100): + np.digitize([1, 2, 3, 4], [1, 3]) + np.digitize([0, 1, 2, 3, 4], [1, 3]) + + def test_unique_zero_sized(self): + # Ticket #205 + assert_array_equal([], np.unique(np.array([]))) + + def test_mem_vectorise(self): + # Ticket #325 + vt = np.vectorize(lambda *args: args) + vt(np.zeros((1, 2, 1)), np.zeros((2, 1, 1)), np.zeros((1, 1, 2))) + vt(np.zeros((1, 2, 1)), np.zeros((2, 1, 1)), np.zeros((1, + 1, 2)), np.zeros((2, 2))) + + def test_mgrid_single_element(self): + # Ticket #339 + assert_array_equal(np.mgrid[0:0:1j], [0]) + assert_array_equal(np.mgrid[0:0], []) + + def test_refcount_vectorize(self): + # Ticket #378 + def p(x, y): + return 123 + v = np.vectorize(p) + _assert_valid_refcount(v) + + def test_poly1d_nan_roots(self): + # Ticket #396 + p = np.poly1d([np.nan, np.nan, 1], r=False) + assert_raises(np.linalg.LinAlgError, getattr, p, "r") + + def test_mem_polymul(self): + # Ticket #448 + np.polymul([], [1.]) + + def test_mem_string_concat(self): + # Ticket #469 + x = np.array([]) + np.append(x, 'asdasd\tasdasd') + + def test_poly_div(self): + # Ticket #553 + u = np.poly1d([1, 2, 3]) + v = np.poly1d([1, 2, 3, 4, 5]) + q, r = np.polydiv(u, v) + assert_equal(q * v + r, u) + + def test_poly_eq(self): + # Ticket #554 + x = np.poly1d([1, 2, 3]) + y = np.poly1d([3, 4]) + assert_(x != y) + assert_(x == x) + + def test_polyfit_build(self): + # Ticket #628 + ref = [-1.06123820e-06, 5.70886914e-04, -1.13822012e-01, + 9.95368241e+00, -3.14526520e+02] + x = [90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, + 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, + 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 129, + 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, + 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, + 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, + 170, 171, 172, 173, 174, 175, 176] + y = [9.0, 3.0, 7.0, 4.0, 4.0, 8.0, 6.0, 11.0, 9.0, 8.0, 11.0, 5.0, + 6.0, 5.0, 9.0, 8.0, 6.0, 10.0, 6.0, 10.0, 7.0, 6.0, 6.0, 6.0, + 13.0, 4.0, 9.0, 11.0, 4.0, 5.0, 8.0, 5.0, 7.0, 7.0, 6.0, 12.0, + 7.0, 7.0, 9.0, 4.0, 12.0, 6.0, 6.0, 4.0, 3.0, 9.0, 8.0, 8.0, + 6.0, 7.0, 9.0, 10.0, 6.0, 8.0, 4.0, 7.0, 7.0, 10.0, 8.0, 8.0, + 6.0, 3.0, 8.0, 4.0, 5.0, 7.0, 8.0, 6.0, 6.0, 4.0, 12.0, 9.0, + 8.0, 8.0, 8.0, 6.0, 7.0, 4.0, 4.0, 5.0, 7.0] + tested = np.polyfit(x, y, 4) + assert_array_almost_equal(ref, tested) + + def test_polydiv_type(self): + # Make polydiv work for complex types + msg = "Wrong type, should be complex" + x = np.ones(3, dtype=complex) + q, r = np.polydiv(x, x) + assert_(q.dtype == complex, msg) + msg = "Wrong type, should be float" + x = np.ones(3, dtype=int) + q, r = np.polydiv(x, x) + assert_(q.dtype == float, msg) + + def test_histogramdd_too_many_bins(self): + # Ticket 928. + assert_raises(ValueError, np.histogramdd, np.ones((1, 10)), bins=2**10) + + def test_polyint_type(self): + # Ticket #944 + msg = "Wrong type, should be complex" + x = np.ones(3, dtype=complex) + assert_(np.polyint(x).dtype == complex, msg) + msg = "Wrong type, should be float" + x = np.ones(3, dtype=int) + assert_(np.polyint(x).dtype == float, msg) + + def test_ndenumerate_crash(self): + # Ticket 1140 + # Shouldn't crash: + list(np.ndenumerate(np.array([[]]))) + + def test_large_fancy_indexing(self): + # Large enough to fail on 64-bit. + nbits = np.dtype(np.intp).itemsize * 8 + thesize = int((2**nbits)**(1.0 / 5.0) + 1) + + def dp(): + n = 3 + a = np.ones((n,) * 5) + i = np.random.randint(0, n, size=thesize) + a[np.ix_(i, i, i, i, i)] = 0 + + def dp2(): + n = 3 + a = np.ones((n,) * 5) + i = np.random.randint(0, n, size=thesize) + a[np.ix_(i, i, i, i, i)] + + assert_raises(ValueError, dp) + assert_raises(ValueError, dp2) + + def test_void_coercion(self): + dt = np.dtype([('a', 'f4'), ('b', 'i4')]) + x = np.zeros((1,), dt) + assert_(np.r_[x, x].dtype == dt) + + def test_include_dirs(self): + # As a sanity check, just test that get_include + # includes something reasonable. Somewhat + # related to ticket #1405. + include_dirs = [np.get_include()] + for path in include_dirs: + assert_(isinstance(path, str)) + assert_(path != '') + + def test_polyder_return_type(self): + # Ticket #1249 + assert_(isinstance(np.polyder(np.poly1d([1]), 0), np.poly1d)) + assert_(isinstance(np.polyder([1], 0), np.ndarray)) + assert_(isinstance(np.polyder(np.poly1d([1]), 1), np.poly1d)) + assert_(isinstance(np.polyder([1], 1), np.ndarray)) + + def test_append_fields_dtype_list(self): + # Ticket #1676 + from numpy.lib.recfunctions import append_fields + + base = np.array([1, 2, 3], dtype=np.int32) + names = ['a', 'b', 'c'] + data = np.eye(3).astype(np.int32) + dlist = [np.float64, np.int32, np.int32] + try: + append_fields(base, names, data, dlist) + except Exception: + raise AssertionError + + def test_loadtxt_fields_subarrays(self): + # For ticket #1936 + from io import StringIO + + dt = [("a", 'u1', 2), ("b", 'u1', 2)] + x = np.loadtxt(StringIO("0 1 2 3"), dtype=dt) + assert_equal(x, np.array([((0, 1), (2, 3))], dtype=dt)) + + dt = [("a", [("a", 'u1', (1, 3)), ("b", 'u1')])] + x = np.loadtxt(StringIO("0 1 2 3"), dtype=dt) + assert_equal(x, np.array([(((0, 1, 2), 3),)], dtype=dt)) + + dt = [("a", 'u1', (2, 2))] + x = np.loadtxt(StringIO("0 1 2 3"), dtype=dt) + assert_equal(x, np.array([(((0, 1), (2, 3)),)], dtype=dt)) + + dt = [("a", 'u1', (2, 3, 2))] + x = np.loadtxt(StringIO("0 1 2 3 4 5 6 7 8 9 10 11"), dtype=dt) + data = [((((0, 1), (2, 3), (4, 5)), ((6, 7), (8, 9), (10, 11))),)] + assert_equal(x, np.array(data, dtype=dt)) + + def test_nansum_with_boolean(self): + # gh-2978 + a = np.zeros(2, dtype=bool) + try: + np.nansum(a) + except Exception: + raise AssertionError + + def test_py3_compat(self): + # gh-2561 + # Test if the oldstyle class test is bypassed in python3 + class C: + """Old-style class in python2, normal class in python3""" + pass + + out = open(os.devnull, 'w') + try: + np.info(C(), output=out) + except AttributeError: + raise AssertionError + finally: + out.close() diff --git a/.venv/lib/python3.12/site-packages/numpy/lib/tests/test_shape_base.py b/.venv/lib/python3.12/site-packages/numpy/lib/tests/test_shape_base.py new file mode 100644 index 0000000..b0b68dd --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/lib/tests/test_shape_base.py @@ -0,0 +1,813 @@ +import functools +import sys + +import pytest + +import numpy as np +from numpy import ( + apply_along_axis, + apply_over_axes, + array_split, + column_stack, + dsplit, + dstack, + expand_dims, + hsplit, + kron, + put_along_axis, + split, + take_along_axis, + tile, + vsplit, +) +from numpy.exceptions import AxisError +from numpy.testing import assert_, assert_array_equal, assert_equal, assert_raises + +IS_64BIT = sys.maxsize > 2**32 + + +def _add_keepdims(func): + """ hack in keepdims behavior into a function taking an axis """ + @functools.wraps(func) + def wrapped(a, axis, **kwargs): + res = func(a, axis=axis, **kwargs) + if axis is None: + axis = 0 # res is now a scalar, so we can insert this anywhere + return np.expand_dims(res, axis=axis) + return wrapped + + +class TestTakeAlongAxis: + def test_argequivalent(self): + """ Test it translates from arg<func> to <func> """ + from numpy.random import rand + a = rand(3, 4, 5) + + funcs = [ + (np.sort, np.argsort, {}), + (_add_keepdims(np.min), _add_keepdims(np.argmin), {}), + (_add_keepdims(np.max), _add_keepdims(np.argmax), {}), + #(np.partition, np.argpartition, dict(kth=2)), + ] + + for func, argfunc, kwargs in funcs: + for axis in list(range(a.ndim)) + [None]: + a_func = func(a, axis=axis, **kwargs) + ai_func = argfunc(a, axis=axis, **kwargs) + assert_equal(a_func, take_along_axis(a, ai_func, axis=axis)) + + def test_invalid(self): + """ Test it errors when indices has too few dimensions """ + a = np.ones((10, 10)) + ai = np.ones((10, 2), dtype=np.intp) + + # sanity check + take_along_axis(a, ai, axis=1) + + # not enough indices + assert_raises(ValueError, take_along_axis, a, np.array(1), axis=1) + # bool arrays not allowed + assert_raises(IndexError, take_along_axis, a, ai.astype(bool), axis=1) + # float arrays not allowed + assert_raises(IndexError, take_along_axis, a, ai.astype(float), axis=1) + # invalid axis + assert_raises(AxisError, take_along_axis, a, ai, axis=10) + # invalid indices + assert_raises(ValueError, take_along_axis, a, ai, axis=None) + + def test_empty(self): + """ Test everything is ok with empty results, even with inserted dims """ + a = np.ones((3, 4, 5)) + ai = np.ones((3, 0, 5), dtype=np.intp) + + actual = take_along_axis(a, ai, axis=1) + assert_equal(actual.shape, ai.shape) + + def test_broadcast(self): + """ Test that non-indexing dimensions are broadcast in both directions """ + a = np.ones((3, 4, 1)) + ai = np.ones((1, 2, 5), dtype=np.intp) + actual = take_along_axis(a, ai, axis=1) + assert_equal(actual.shape, (3, 2, 5)) + + +class TestPutAlongAxis: + def test_replace_max(self): + a_base = np.array([[10, 30, 20], [60, 40, 50]]) + + for axis in list(range(a_base.ndim)) + [None]: + # we mutate this in the loop + a = a_base.copy() + + # replace the max with a small value + i_max = _add_keepdims(np.argmax)(a, axis=axis) + put_along_axis(a, i_max, -99, axis=axis) + + # find the new minimum, which should max + i_min = _add_keepdims(np.argmin)(a, axis=axis) + + assert_equal(i_min, i_max) + + def test_broadcast(self): + """ Test that non-indexing dimensions are broadcast in both directions """ + a = np.ones((3, 4, 1)) + ai = np.arange(10, dtype=np.intp).reshape((1, 2, 5)) % 4 + put_along_axis(a, ai, 20, axis=1) + assert_equal(take_along_axis(a, ai, axis=1), 20) + + def test_invalid(self): + """ Test invalid inputs """ + a_base = np.array([[10, 30, 20], [60, 40, 50]]) + indices = np.array([[0], [1]]) + values = np.array([[2], [1]]) + + # sanity check + a = a_base.copy() + put_along_axis(a, indices, values, axis=0) + assert np.all(a == [[2, 2, 2], [1, 1, 1]]) + + # invalid indices + a = a_base.copy() + with assert_raises(ValueError) as exc: + put_along_axis(a, indices, values, axis=None) + assert "single dimension" in str(exc.exception) + + +class TestApplyAlongAxis: + def test_simple(self): + a = np.ones((20, 10), 'd') + assert_array_equal( + apply_along_axis(len, 0, a), len(a) * np.ones(a.shape[1])) + + def test_simple101(self): + a = np.ones((10, 101), 'd') + assert_array_equal( + apply_along_axis(len, 0, a), len(a) * np.ones(a.shape[1])) + + def test_3d(self): + a = np.arange(27).reshape((3, 3, 3)) + assert_array_equal(apply_along_axis(np.sum, 0, a), + [[27, 30, 33], [36, 39, 42], [45, 48, 51]]) + + def test_preserve_subclass(self): + def double(row): + return row * 2 + + class MyNDArray(np.ndarray): + pass + + m = np.array([[0, 1], [2, 3]]).view(MyNDArray) + expected = np.array([[0, 2], [4, 6]]).view(MyNDArray) + + result = apply_along_axis(double, 0, m) + assert_(isinstance(result, MyNDArray)) + assert_array_equal(result, expected) + + result = apply_along_axis(double, 1, m) + assert_(isinstance(result, MyNDArray)) + assert_array_equal(result, expected) + + def test_subclass(self): + class MinimalSubclass(np.ndarray): + data = 1 + + def minimal_function(array): + return array.data + + a = np.zeros((6, 3)).view(MinimalSubclass) + + assert_array_equal( + apply_along_axis(minimal_function, 0, a), np.array([1, 1, 1]) + ) + + def test_scalar_array(self, cls=np.ndarray): + a = np.ones((6, 3)).view(cls) + res = apply_along_axis(np.sum, 0, a) + assert_(isinstance(res, cls)) + assert_array_equal(res, np.array([6, 6, 6]).view(cls)) + + def test_0d_array(self, cls=np.ndarray): + def sum_to_0d(x): + """ Sum x, returning a 0d array of the same class """ + assert_equal(x.ndim, 1) + return np.squeeze(np.sum(x, keepdims=True)) + a = np.ones((6, 3)).view(cls) + res = apply_along_axis(sum_to_0d, 0, a) + assert_(isinstance(res, cls)) + assert_array_equal(res, np.array([6, 6, 6]).view(cls)) + + res = apply_along_axis(sum_to_0d, 1, a) + assert_(isinstance(res, cls)) + assert_array_equal(res, np.array([3, 3, 3, 3, 3, 3]).view(cls)) + + def test_axis_insertion(self, cls=np.ndarray): + def f1to2(x): + """produces an asymmetric non-square matrix from x""" + assert_equal(x.ndim, 1) + return (x[::-1] * x[1:, None]).view(cls) + + a2d = np.arange(6 * 3).reshape((6, 3)) + + # 2d insertion along first axis + actual = apply_along_axis(f1to2, 0, a2d) + expected = np.stack([ + f1to2(a2d[:, i]) for i in range(a2d.shape[1]) + ], axis=-1).view(cls) + assert_equal(type(actual), type(expected)) + assert_equal(actual, expected) + + # 2d insertion along last axis + actual = apply_along_axis(f1to2, 1, a2d) + expected = np.stack([ + f1to2(a2d[i, :]) for i in range(a2d.shape[0]) + ], axis=0).view(cls) + assert_equal(type(actual), type(expected)) + assert_equal(actual, expected) + + # 3d insertion along middle axis + a3d = np.arange(6 * 5 * 3).reshape((6, 5, 3)) + + actual = apply_along_axis(f1to2, 1, a3d) + expected = np.stack([ + np.stack([ + f1to2(a3d[i, :, j]) for i in range(a3d.shape[0]) + ], axis=0) + for j in range(a3d.shape[2]) + ], axis=-1).view(cls) + assert_equal(type(actual), type(expected)) + assert_equal(actual, expected) + + def test_subclass_preservation(self): + class MinimalSubclass(np.ndarray): + pass + self.test_scalar_array(MinimalSubclass) + self.test_0d_array(MinimalSubclass) + self.test_axis_insertion(MinimalSubclass) + + def test_axis_insertion_ma(self): + def f1to2(x): + """produces an asymmetric non-square matrix from x""" + assert_equal(x.ndim, 1) + res = x[::-1] * x[1:, None] + return np.ma.masked_where(res % 5 == 0, res) + a = np.arange(6 * 3).reshape((6, 3)) + res = apply_along_axis(f1to2, 0, a) + assert_(isinstance(res, np.ma.masked_array)) + assert_equal(res.ndim, 3) + assert_array_equal(res[:, :, 0].mask, f1to2(a[:, 0]).mask) + assert_array_equal(res[:, :, 1].mask, f1to2(a[:, 1]).mask) + assert_array_equal(res[:, :, 2].mask, f1to2(a[:, 2]).mask) + + def test_tuple_func1d(self): + def sample_1d(x): + return x[1], x[0] + res = np.apply_along_axis(sample_1d, 1, np.array([[1, 2], [3, 4]])) + assert_array_equal(res, np.array([[2, 1], [4, 3]])) + + def test_empty(self): + # can't apply_along_axis when there's no chance to call the function + def never_call(x): + assert_(False) # should never be reached + + a = np.empty((0, 0)) + assert_raises(ValueError, np.apply_along_axis, never_call, 0, a) + assert_raises(ValueError, np.apply_along_axis, never_call, 1, a) + + # but it's sometimes ok with some non-zero dimensions + def empty_to_1(x): + assert_(len(x) == 0) + return 1 + + a = np.empty((10, 0)) + actual = np.apply_along_axis(empty_to_1, 1, a) + assert_equal(actual, np.ones(10)) + assert_raises(ValueError, np.apply_along_axis, empty_to_1, 0, a) + + def test_with_iterable_object(self): + # from issue 5248 + d = np.array([ + [{1, 11}, {2, 22}, {3, 33}], + [{4, 44}, {5, 55}, {6, 66}] + ]) + actual = np.apply_along_axis(lambda a: set.union(*a), 0, d) + expected = np.array([{1, 11, 4, 44}, {2, 22, 5, 55}, {3, 33, 6, 66}]) + + assert_equal(actual, expected) + + # issue 8642 - assert_equal doesn't detect this! + for i in np.ndindex(actual.shape): + assert_equal(type(actual[i]), type(expected[i])) + + +class TestApplyOverAxes: + def test_simple(self): + a = np.arange(24).reshape(2, 3, 4) + aoa_a = apply_over_axes(np.sum, a, [0, 2]) + assert_array_equal(aoa_a, np.array([[[60], [92], [124]]])) + + +class TestExpandDims: + def test_functionality(self): + s = (2, 3, 4, 5) + a = np.empty(s) + for axis in range(-5, 4): + b = expand_dims(a, axis) + assert_(b.shape[axis] == 1) + assert_(np.squeeze(b).shape == s) + + def test_axis_tuple(self): + a = np.empty((3, 3, 3)) + assert np.expand_dims(a, axis=(0, 1, 2)).shape == (1, 1, 1, 3, 3, 3) + assert np.expand_dims(a, axis=(0, -1, -2)).shape == (1, 3, 3, 3, 1, 1) + assert np.expand_dims(a, axis=(0, 3, 5)).shape == (1, 3, 3, 1, 3, 1) + assert np.expand_dims(a, axis=(0, -3, -5)).shape == (1, 1, 3, 1, 3, 3) + + def test_axis_out_of_range(self): + s = (2, 3, 4, 5) + a = np.empty(s) + assert_raises(AxisError, expand_dims, a, -6) + assert_raises(AxisError, expand_dims, a, 5) + + a = np.empty((3, 3, 3)) + assert_raises(AxisError, expand_dims, a, (0, -6)) + assert_raises(AxisError, expand_dims, a, (0, 5)) + + def test_repeated_axis(self): + a = np.empty((3, 3, 3)) + assert_raises(ValueError, expand_dims, a, axis=(1, 1)) + + def test_subclasses(self): + a = np.arange(10).reshape((2, 5)) + a = np.ma.array(a, mask=a % 3 == 0) + + expanded = np.expand_dims(a, axis=1) + assert_(isinstance(expanded, np.ma.MaskedArray)) + assert_equal(expanded.shape, (2, 1, 5)) + assert_equal(expanded.mask.shape, (2, 1, 5)) + + +class TestArraySplit: + def test_integer_0_split(self): + a = np.arange(10) + assert_raises(ValueError, array_split, a, 0) + + def test_integer_split(self): + a = np.arange(10) + res = array_split(a, 1) + desired = [np.arange(10)] + compare_results(res, desired) + + res = array_split(a, 2) + desired = [np.arange(5), np.arange(5, 10)] + compare_results(res, desired) + + res = array_split(a, 3) + desired = [np.arange(4), np.arange(4, 7), np.arange(7, 10)] + compare_results(res, desired) + + res = array_split(a, 4) + desired = [np.arange(3), np.arange(3, 6), np.arange(6, 8), + np.arange(8, 10)] + compare_results(res, desired) + + res = array_split(a, 5) + desired = [np.arange(2), np.arange(2, 4), np.arange(4, 6), + np.arange(6, 8), np.arange(8, 10)] + compare_results(res, desired) + + res = array_split(a, 6) + desired = [np.arange(2), np.arange(2, 4), np.arange(4, 6), + np.arange(6, 8), np.arange(8, 9), np.arange(9, 10)] + compare_results(res, desired) + + res = array_split(a, 7) + desired = [np.arange(2), np.arange(2, 4), np.arange(4, 6), + np.arange(6, 7), np.arange(7, 8), np.arange(8, 9), + np.arange(9, 10)] + compare_results(res, desired) + + res = array_split(a, 8) + desired = [np.arange(2), np.arange(2, 4), np.arange(4, 5), + np.arange(5, 6), np.arange(6, 7), np.arange(7, 8), + np.arange(8, 9), np.arange(9, 10)] + compare_results(res, desired) + + res = array_split(a, 9) + desired = [np.arange(2), np.arange(2, 3), np.arange(3, 4), + np.arange(4, 5), np.arange(5, 6), np.arange(6, 7), + np.arange(7, 8), np.arange(8, 9), np.arange(9, 10)] + compare_results(res, desired) + + res = array_split(a, 10) + desired = [np.arange(1), np.arange(1, 2), np.arange(2, 3), + np.arange(3, 4), np.arange(4, 5), np.arange(5, 6), + np.arange(6, 7), np.arange(7, 8), np.arange(8, 9), + np.arange(9, 10)] + compare_results(res, desired) + + res = array_split(a, 11) + desired = [np.arange(1), np.arange(1, 2), np.arange(2, 3), + np.arange(3, 4), np.arange(4, 5), np.arange(5, 6), + np.arange(6, 7), np.arange(7, 8), np.arange(8, 9), + np.arange(9, 10), np.array([])] + compare_results(res, desired) + + def test_integer_split_2D_rows(self): + a = np.array([np.arange(10), np.arange(10)]) + res = array_split(a, 3, axis=0) + tgt = [np.array([np.arange(10)]), np.array([np.arange(10)]), + np.zeros((0, 10))] + compare_results(res, tgt) + assert_(a.dtype.type is res[-1].dtype.type) + + # Same thing for manual splits: + res = array_split(a, [0, 1], axis=0) + tgt = [np.zeros((0, 10)), np.array([np.arange(10)]), + np.array([np.arange(10)])] + compare_results(res, tgt) + assert_(a.dtype.type is res[-1].dtype.type) + + def test_integer_split_2D_cols(self): + a = np.array([np.arange(10), np.arange(10)]) + res = array_split(a, 3, axis=-1) + desired = [np.array([np.arange(4), np.arange(4)]), + np.array([np.arange(4, 7), np.arange(4, 7)]), + np.array([np.arange(7, 10), np.arange(7, 10)])] + compare_results(res, desired) + + def test_integer_split_2D_default(self): + """ This will fail if we change default axis + """ + a = np.array([np.arange(10), np.arange(10)]) + res = array_split(a, 3) + tgt = [np.array([np.arange(10)]), np.array([np.arange(10)]), + np.zeros((0, 10))] + compare_results(res, tgt) + assert_(a.dtype.type is res[-1].dtype.type) + # perhaps should check higher dimensions + + @pytest.mark.skipif(not IS_64BIT, reason="Needs 64bit platform") + def test_integer_split_2D_rows_greater_max_int32(self): + a = np.broadcast_to([0], (1 << 32, 2)) + res = array_split(a, 4) + chunk = np.broadcast_to([0], (1 << 30, 2)) + tgt = [chunk] * 4 + for i in range(len(tgt)): + assert_equal(res[i].shape, tgt[i].shape) + + def test_index_split_simple(self): + a = np.arange(10) + indices = [1, 5, 7] + res = array_split(a, indices, axis=-1) + desired = [np.arange(0, 1), np.arange(1, 5), np.arange(5, 7), + np.arange(7, 10)] + compare_results(res, desired) + + def test_index_split_low_bound(self): + a = np.arange(10) + indices = [0, 5, 7] + res = array_split(a, indices, axis=-1) + desired = [np.array([]), np.arange(0, 5), np.arange(5, 7), + np.arange(7, 10)] + compare_results(res, desired) + + def test_index_split_high_bound(self): + a = np.arange(10) + indices = [0, 5, 7, 10, 12] + res = array_split(a, indices, axis=-1) + desired = [np.array([]), np.arange(0, 5), np.arange(5, 7), + np.arange(7, 10), np.array([]), np.array([])] + compare_results(res, desired) + + +class TestSplit: + # The split function is essentially the same as array_split, + # except that it test if splitting will result in an + # equal split. Only test for this case. + + def test_equal_split(self): + a = np.arange(10) + res = split(a, 2) + desired = [np.arange(5), np.arange(5, 10)] + compare_results(res, desired) + + def test_unequal_split(self): + a = np.arange(10) + assert_raises(ValueError, split, a, 3) + + +class TestColumnStack: + def test_non_iterable(self): + assert_raises(TypeError, column_stack, 1) + + def test_1D_arrays(self): + # example from docstring + a = np.array((1, 2, 3)) + b = np.array((2, 3, 4)) + expected = np.array([[1, 2], + [2, 3], + [3, 4]]) + actual = np.column_stack((a, b)) + assert_equal(actual, expected) + + def test_2D_arrays(self): + # same as hstack 2D docstring example + a = np.array([[1], [2], [3]]) + b = np.array([[2], [3], [4]]) + expected = np.array([[1, 2], + [2, 3], + [3, 4]]) + actual = np.column_stack((a, b)) + assert_equal(actual, expected) + + def test_generator(self): + with pytest.raises(TypeError, match="arrays to stack must be"): + column_stack(np.arange(3) for _ in range(2)) + + +class TestDstack: + def test_non_iterable(self): + assert_raises(TypeError, dstack, 1) + + def test_0D_array(self): + a = np.array(1) + b = np.array(2) + res = dstack([a, b]) + desired = np.array([[[1, 2]]]) + assert_array_equal(res, desired) + + def test_1D_array(self): + a = np.array([1]) + b = np.array([2]) + res = dstack([a, b]) + desired = np.array([[[1, 2]]]) + assert_array_equal(res, desired) + + def test_2D_array(self): + a = np.array([[1], [2]]) + b = np.array([[1], [2]]) + res = dstack([a, b]) + desired = np.array([[[1, 1]], [[2, 2, ]]]) + assert_array_equal(res, desired) + + def test_2D_array2(self): + a = np.array([1, 2]) + b = np.array([1, 2]) + res = dstack([a, b]) + desired = np.array([[[1, 1], [2, 2]]]) + assert_array_equal(res, desired) + + def test_generator(self): + with pytest.raises(TypeError, match="arrays to stack must be"): + dstack(np.arange(3) for _ in range(2)) + + +# array_split has more comprehensive test of splitting. +# only do simple test on hsplit, vsplit, and dsplit +class TestHsplit: + """Only testing for integer splits. + + """ + def test_non_iterable(self): + assert_raises(ValueError, hsplit, 1, 1) + + def test_0D_array(self): + a = np.array(1) + try: + hsplit(a, 2) + assert_(0) + except ValueError: + pass + + def test_1D_array(self): + a = np.array([1, 2, 3, 4]) + res = hsplit(a, 2) + desired = [np.array([1, 2]), np.array([3, 4])] + compare_results(res, desired) + + def test_2D_array(self): + a = np.array([[1, 2, 3, 4], + [1, 2, 3, 4]]) + res = hsplit(a, 2) + desired = [np.array([[1, 2], [1, 2]]), np.array([[3, 4], [3, 4]])] + compare_results(res, desired) + + +class TestVsplit: + """Only testing for integer splits. + + """ + def test_non_iterable(self): + assert_raises(ValueError, vsplit, 1, 1) + + def test_0D_array(self): + a = np.array(1) + assert_raises(ValueError, vsplit, a, 2) + + def test_1D_array(self): + a = np.array([1, 2, 3, 4]) + try: + vsplit(a, 2) + assert_(0) + except ValueError: + pass + + def test_2D_array(self): + a = np.array([[1, 2, 3, 4], + [1, 2, 3, 4]]) + res = vsplit(a, 2) + desired = [np.array([[1, 2, 3, 4]]), np.array([[1, 2, 3, 4]])] + compare_results(res, desired) + + +class TestDsplit: + # Only testing for integer splits. + def test_non_iterable(self): + assert_raises(ValueError, dsplit, 1, 1) + + def test_0D_array(self): + a = np.array(1) + assert_raises(ValueError, dsplit, a, 2) + + def test_1D_array(self): + a = np.array([1, 2, 3, 4]) + assert_raises(ValueError, dsplit, a, 2) + + def test_2D_array(self): + a = np.array([[1, 2, 3, 4], + [1, 2, 3, 4]]) + try: + dsplit(a, 2) + assert_(0) + except ValueError: + pass + + def test_3D_array(self): + a = np.array([[[1, 2, 3, 4], + [1, 2, 3, 4]], + [[1, 2, 3, 4], + [1, 2, 3, 4]]]) + res = dsplit(a, 2) + desired = [np.array([[[1, 2], [1, 2]], [[1, 2], [1, 2]]]), + np.array([[[3, 4], [3, 4]], [[3, 4], [3, 4]]])] + compare_results(res, desired) + + +class TestSqueeze: + def test_basic(self): + from numpy.random import rand + + a = rand(20, 10, 10, 1, 1) + b = rand(20, 1, 10, 1, 20) + c = rand(1, 1, 20, 10) + assert_array_equal(np.squeeze(a), np.reshape(a, (20, 10, 10))) + assert_array_equal(np.squeeze(b), np.reshape(b, (20, 10, 20))) + assert_array_equal(np.squeeze(c), np.reshape(c, (20, 10))) + + # Squeezing to 0-dim should still give an ndarray + a = [[[1.5]]] + res = np.squeeze(a) + assert_equal(res, 1.5) + assert_equal(res.ndim, 0) + assert_equal(type(res), np.ndarray) + + +class TestKron: + def test_basic(self): + # Using 0-dimensional ndarray + a = np.array(1) + b = np.array([[1, 2], [3, 4]]) + k = np.array([[1, 2], [3, 4]]) + assert_array_equal(np.kron(a, b), k) + a = np.array([[1, 2], [3, 4]]) + b = np.array(1) + assert_array_equal(np.kron(a, b), k) + + # Using 1-dimensional ndarray + a = np.array([3]) + b = np.array([[1, 2], [3, 4]]) + k = np.array([[3, 6], [9, 12]]) + assert_array_equal(np.kron(a, b), k) + a = np.array([[1, 2], [3, 4]]) + b = np.array([3]) + assert_array_equal(np.kron(a, b), k) + + # Using 3-dimensional ndarray + a = np.array([[[1]], [[2]]]) + b = np.array([[1, 2], [3, 4]]) + k = np.array([[[1, 2], [3, 4]], [[2, 4], [6, 8]]]) + assert_array_equal(np.kron(a, b), k) + a = np.array([[1, 2], [3, 4]]) + b = np.array([[[1]], [[2]]]) + k = np.array([[[1, 2], [3, 4]], [[2, 4], [6, 8]]]) + assert_array_equal(np.kron(a, b), k) + + def test_return_type(self): + class myarray(np.ndarray): + __array_priority__ = 1.0 + + a = np.ones([2, 2]) + ma = myarray(a.shape, a.dtype, a.data) + assert_equal(type(kron(a, a)), np.ndarray) + assert_equal(type(kron(ma, ma)), myarray) + assert_equal(type(kron(a, ma)), myarray) + assert_equal(type(kron(ma, a)), myarray) + + @pytest.mark.parametrize( + "array_class", [np.asarray, np.asmatrix] + ) + def test_kron_smoke(self, array_class): + a = array_class(np.ones([3, 3])) + b = array_class(np.ones([3, 3])) + k = array_class(np.ones([9, 9])) + + assert_array_equal(np.kron(a, b), k) + + def test_kron_ma(self): + x = np.ma.array([[1, 2], [3, 4]], mask=[[0, 1], [1, 0]]) + k = np.ma.array(np.diag([1, 4, 4, 16]), + mask=~np.array(np.identity(4), dtype=bool)) + + assert_array_equal(k, np.kron(x, x)) + + @pytest.mark.parametrize( + "shape_a,shape_b", [ + ((1, 1), (1, 1)), + ((1, 2, 3), (4, 5, 6)), + ((2, 2), (2, 2, 2)), + ((1, 0), (1, 1)), + ((2, 0, 2), (2, 2)), + ((2, 0, 0, 2), (2, 0, 2)), + ]) + def test_kron_shape(self, shape_a, shape_b): + a = np.ones(shape_a) + b = np.ones(shape_b) + normalised_shape_a = (1,) * max(0, len(shape_b) - len(shape_a)) + shape_a + normalised_shape_b = (1,) * max(0, len(shape_a) - len(shape_b)) + shape_b + expected_shape = np.multiply(normalised_shape_a, normalised_shape_b) + + k = np.kron(a, b) + assert np.array_equal( + k.shape, expected_shape), "Unexpected shape from kron" + + +class TestTile: + def test_basic(self): + a = np.array([0, 1, 2]) + b = [[1, 2], [3, 4]] + assert_equal(tile(a, 2), [0, 1, 2, 0, 1, 2]) + assert_equal(tile(a, (2, 2)), [[0, 1, 2, 0, 1, 2], [0, 1, 2, 0, 1, 2]]) + assert_equal(tile(a, (1, 2)), [[0, 1, 2, 0, 1, 2]]) + assert_equal(tile(b, 2), [[1, 2, 1, 2], [3, 4, 3, 4]]) + assert_equal(tile(b, (2, 1)), [[1, 2], [3, 4], [1, 2], [3, 4]]) + assert_equal(tile(b, (2, 2)), [[1, 2, 1, 2], [3, 4, 3, 4], + [1, 2, 1, 2], [3, 4, 3, 4]]) + + def test_tile_one_repetition_on_array_gh4679(self): + a = np.arange(5) + b = tile(a, 1) + b += 2 + assert_equal(a, np.arange(5)) + + def test_empty(self): + a = np.array([[[]]]) + b = np.array([[], []]) + c = tile(b, 2).shape + d = tile(a, (3, 2, 5)).shape + assert_equal(c, (2, 0)) + assert_equal(d, (3, 2, 0)) + + def test_kroncompare(self): + from numpy.random import randint + + reps = [(2,), (1, 2), (2, 1), (2, 2), (2, 3, 2), (3, 2)] + shape = [(3,), (2, 3), (3, 4, 3), (3, 2, 3), (4, 3, 2, 4), (2, 2)] + for s in shape: + b = randint(0, 10, size=s) + for r in reps: + a = np.ones(r, b.dtype) + large = tile(b, r) + klarge = kron(a, b) + assert_equal(large, klarge) + + +class TestMayShareMemory: + def test_basic(self): + d = np.ones((50, 60)) + d2 = np.ones((30, 60, 6)) + assert_(np.may_share_memory(d, d)) + assert_(np.may_share_memory(d, d[::-1])) + assert_(np.may_share_memory(d, d[::2])) + assert_(np.may_share_memory(d, d[1:, ::-1])) + + assert_(not np.may_share_memory(d[::-1], d2)) + assert_(not np.may_share_memory(d[::2], d2)) + assert_(not np.may_share_memory(d[1:, ::-1], d2)) + assert_(np.may_share_memory(d2[1:, ::-1], d2)) + + +# Utility +def compare_results(res, desired): + """Compare lists of arrays.""" + for x, y in zip(res, desired, strict=False): + assert_array_equal(x, y) diff --git a/.venv/lib/python3.12/site-packages/numpy/lib/tests/test_stride_tricks.py b/.venv/lib/python3.12/site-packages/numpy/lib/tests/test_stride_tricks.py new file mode 100644 index 0000000..fe40c95 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/lib/tests/test_stride_tricks.py @@ -0,0 +1,656 @@ +import pytest + +import numpy as np +from numpy._core._rational_tests import rational +from numpy.lib._stride_tricks_impl import ( + _broadcast_shape, + as_strided, + broadcast_arrays, + broadcast_shapes, + broadcast_to, + sliding_window_view, +) +from numpy.testing import ( + assert_, + assert_array_equal, + assert_equal, + assert_raises, + assert_raises_regex, + assert_warns, +) + + +def assert_shapes_correct(input_shapes, expected_shape): + # Broadcast a list of arrays with the given input shapes and check the + # common output shape. + + inarrays = [np.zeros(s) for s in input_shapes] + outarrays = broadcast_arrays(*inarrays) + outshapes = [a.shape for a in outarrays] + expected = [expected_shape] * len(inarrays) + assert_equal(outshapes, expected) + + +def assert_incompatible_shapes_raise(input_shapes): + # Broadcast a list of arrays with the given (incompatible) input shapes + # and check that they raise a ValueError. + + inarrays = [np.zeros(s) for s in input_shapes] + assert_raises(ValueError, broadcast_arrays, *inarrays) + + +def assert_same_as_ufunc(shape0, shape1, transposed=False, flipped=False): + # Broadcast two shapes against each other and check that the data layout + # is the same as if a ufunc did the broadcasting. + + x0 = np.zeros(shape0, dtype=int) + # Note that multiply.reduce's identity element is 1.0, so when shape1==(), + # this gives the desired n==1. + n = int(np.multiply.reduce(shape1)) + x1 = np.arange(n).reshape(shape1) + if transposed: + x0 = x0.T + x1 = x1.T + if flipped: + x0 = x0[::-1] + x1 = x1[::-1] + # Use the add ufunc to do the broadcasting. Since we're adding 0s to x1, the + # result should be exactly the same as the broadcasted view of x1. + y = x0 + x1 + b0, b1 = broadcast_arrays(x0, x1) + assert_array_equal(y, b1) + + +def test_same(): + x = np.arange(10) + y = np.arange(10) + bx, by = broadcast_arrays(x, y) + assert_array_equal(x, bx) + assert_array_equal(y, by) + +def test_broadcast_kwargs(): + # ensure that a TypeError is appropriately raised when + # np.broadcast_arrays() is called with any keyword + # argument other than 'subok' + x = np.arange(10) + y = np.arange(10) + + with assert_raises_regex(TypeError, 'got an unexpected keyword'): + broadcast_arrays(x, y, dtype='float64') + + +def test_one_off(): + x = np.array([[1, 2, 3]]) + y = np.array([[1], [2], [3]]) + bx, by = broadcast_arrays(x, y) + bx0 = np.array([[1, 2, 3], [1, 2, 3], [1, 2, 3]]) + by0 = bx0.T + assert_array_equal(bx0, bx) + assert_array_equal(by0, by) + + +def test_same_input_shapes(): + # Check that the final shape is just the input shape. + + data = [ + (), + (1,), + (3,), + (0, 1), + (0, 3), + (1, 0), + (3, 0), + (1, 3), + (3, 1), + (3, 3), + ] + for shape in data: + input_shapes = [shape] + # Single input. + assert_shapes_correct(input_shapes, shape) + # Double input. + input_shapes2 = [shape, shape] + assert_shapes_correct(input_shapes2, shape) + # Triple input. + input_shapes3 = [shape, shape, shape] + assert_shapes_correct(input_shapes3, shape) + + +def test_two_compatible_by_ones_input_shapes(): + # Check that two different input shapes of the same length, but some have + # ones, broadcast to the correct shape. + + data = [ + [[(1,), (3,)], (3,)], + [[(1, 3), (3, 3)], (3, 3)], + [[(3, 1), (3, 3)], (3, 3)], + [[(1, 3), (3, 1)], (3, 3)], + [[(1, 1), (3, 3)], (3, 3)], + [[(1, 1), (1, 3)], (1, 3)], + [[(1, 1), (3, 1)], (3, 1)], + [[(1, 0), (0, 0)], (0, 0)], + [[(0, 1), (0, 0)], (0, 0)], + [[(1, 0), (0, 1)], (0, 0)], + [[(1, 1), (0, 0)], (0, 0)], + [[(1, 1), (1, 0)], (1, 0)], + [[(1, 1), (0, 1)], (0, 1)], + ] + for input_shapes, expected_shape in data: + assert_shapes_correct(input_shapes, expected_shape) + # Reverse the input shapes since broadcasting should be symmetric. + assert_shapes_correct(input_shapes[::-1], expected_shape) + + +def test_two_compatible_by_prepending_ones_input_shapes(): + # Check that two different input shapes (of different lengths) broadcast + # to the correct shape. + + data = [ + [[(), (3,)], (3,)], + [[(3,), (3, 3)], (3, 3)], + [[(3,), (3, 1)], (3, 3)], + [[(1,), (3, 3)], (3, 3)], + [[(), (3, 3)], (3, 3)], + [[(1, 1), (3,)], (1, 3)], + [[(1,), (3, 1)], (3, 1)], + [[(1,), (1, 3)], (1, 3)], + [[(), (1, 3)], (1, 3)], + [[(), (3, 1)], (3, 1)], + [[(), (0,)], (0,)], + [[(0,), (0, 0)], (0, 0)], + [[(0,), (0, 1)], (0, 0)], + [[(1,), (0, 0)], (0, 0)], + [[(), (0, 0)], (0, 0)], + [[(1, 1), (0,)], (1, 0)], + [[(1,), (0, 1)], (0, 1)], + [[(1,), (1, 0)], (1, 0)], + [[(), (1, 0)], (1, 0)], + [[(), (0, 1)], (0, 1)], + ] + for input_shapes, expected_shape in data: + assert_shapes_correct(input_shapes, expected_shape) + # Reverse the input shapes since broadcasting should be symmetric. + assert_shapes_correct(input_shapes[::-1], expected_shape) + + +def test_incompatible_shapes_raise_valueerror(): + # Check that a ValueError is raised for incompatible shapes. + + data = [ + [(3,), (4,)], + [(2, 3), (2,)], + [(3,), (3,), (4,)], + [(1, 3, 4), (2, 3, 3)], + ] + for input_shapes in data: + assert_incompatible_shapes_raise(input_shapes) + # Reverse the input shapes since broadcasting should be symmetric. + assert_incompatible_shapes_raise(input_shapes[::-1]) + + +def test_same_as_ufunc(): + # Check that the data layout is the same as if a ufunc did the operation. + + data = [ + [[(1,), (3,)], (3,)], + [[(1, 3), (3, 3)], (3, 3)], + [[(3, 1), (3, 3)], (3, 3)], + [[(1, 3), (3, 1)], (3, 3)], + [[(1, 1), (3, 3)], (3, 3)], + [[(1, 1), (1, 3)], (1, 3)], + [[(1, 1), (3, 1)], (3, 1)], + [[(1, 0), (0, 0)], (0, 0)], + [[(0, 1), (0, 0)], (0, 0)], + [[(1, 0), (0, 1)], (0, 0)], + [[(1, 1), (0, 0)], (0, 0)], + [[(1, 1), (1, 0)], (1, 0)], + [[(1, 1), (0, 1)], (0, 1)], + [[(), (3,)], (3,)], + [[(3,), (3, 3)], (3, 3)], + [[(3,), (3, 1)], (3, 3)], + [[(1,), (3, 3)], (3, 3)], + [[(), (3, 3)], (3, 3)], + [[(1, 1), (3,)], (1, 3)], + [[(1,), (3, 1)], (3, 1)], + [[(1,), (1, 3)], (1, 3)], + [[(), (1, 3)], (1, 3)], + [[(), (3, 1)], (3, 1)], + [[(), (0,)], (0,)], + [[(0,), (0, 0)], (0, 0)], + [[(0,), (0, 1)], (0, 0)], + [[(1,), (0, 0)], (0, 0)], + [[(), (0, 0)], (0, 0)], + [[(1, 1), (0,)], (1, 0)], + [[(1,), (0, 1)], (0, 1)], + [[(1,), (1, 0)], (1, 0)], + [[(), (1, 0)], (1, 0)], + [[(), (0, 1)], (0, 1)], + ] + for input_shapes, expected_shape in data: + assert_same_as_ufunc(input_shapes[0], input_shapes[1], + f"Shapes: {input_shapes[0]} {input_shapes[1]}") + # Reverse the input shapes since broadcasting should be symmetric. + assert_same_as_ufunc(input_shapes[1], input_shapes[0]) + # Try them transposed, too. + assert_same_as_ufunc(input_shapes[0], input_shapes[1], True) + # ... and flipped for non-rank-0 inputs in order to test negative + # strides. + if () not in input_shapes: + assert_same_as_ufunc(input_shapes[0], input_shapes[1], False, True) + assert_same_as_ufunc(input_shapes[0], input_shapes[1], True, True) + + +def test_broadcast_to_succeeds(): + data = [ + [np.array(0), (0,), np.array(0)], + [np.array(0), (1,), np.zeros(1)], + [np.array(0), (3,), np.zeros(3)], + [np.ones(1), (1,), np.ones(1)], + [np.ones(1), (2,), np.ones(2)], + [np.ones(1), (1, 2, 3), np.ones((1, 2, 3))], + [np.arange(3), (3,), np.arange(3)], + [np.arange(3), (1, 3), np.arange(3).reshape(1, -1)], + [np.arange(3), (2, 3), np.array([[0, 1, 2], [0, 1, 2]])], + # test if shape is not a tuple + [np.ones(0), 0, np.ones(0)], + [np.ones(1), 1, np.ones(1)], + [np.ones(1), 2, np.ones(2)], + # these cases with size 0 are strange, but they reproduce the behavior + # of broadcasting with ufuncs (see test_same_as_ufunc above) + [np.ones(1), (0,), np.ones(0)], + [np.ones((1, 2)), (0, 2), np.ones((0, 2))], + [np.ones((2, 1)), (2, 0), np.ones((2, 0))], + ] + for input_array, shape, expected in data: + actual = broadcast_to(input_array, shape) + assert_array_equal(expected, actual) + + +def test_broadcast_to_raises(): + data = [ + [(0,), ()], + [(1,), ()], + [(3,), ()], + [(3,), (1,)], + [(3,), (2,)], + [(3,), (4,)], + [(1, 2), (2, 1)], + [(1, 1), (1,)], + [(1,), -1], + [(1,), (-1,)], + [(1, 2), (-1, 2)], + ] + for orig_shape, target_shape in data: + arr = np.zeros(orig_shape) + assert_raises(ValueError, lambda: broadcast_to(arr, target_shape)) + + +def test_broadcast_shape(): + # tests internal _broadcast_shape + # _broadcast_shape is already exercised indirectly by broadcast_arrays + # _broadcast_shape is also exercised by the public broadcast_shapes function + assert_equal(_broadcast_shape(), ()) + assert_equal(_broadcast_shape([1, 2]), (2,)) + assert_equal(_broadcast_shape(np.ones((1, 1))), (1, 1)) + assert_equal(_broadcast_shape(np.ones((1, 1)), np.ones((3, 4))), (3, 4)) + assert_equal(_broadcast_shape(*([np.ones((1, 2))] * 32)), (1, 2)) + assert_equal(_broadcast_shape(*([np.ones((1, 2))] * 100)), (1, 2)) + + # regression tests for gh-5862 + assert_equal(_broadcast_shape(*([np.ones(2)] * 32 + [1])), (2,)) + bad_args = [np.ones(2)] * 32 + [np.ones(3)] * 32 + assert_raises(ValueError, lambda: _broadcast_shape(*bad_args)) + + +def test_broadcast_shapes_succeeds(): + # tests public broadcast_shapes + data = [ + [[], ()], + [[()], ()], + [[(7,)], (7,)], + [[(1, 2), (2,)], (1, 2)], + [[(1, 1)], (1, 1)], + [[(1, 1), (3, 4)], (3, 4)], + [[(6, 7), (5, 6, 1), (7,), (5, 1, 7)], (5, 6, 7)], + [[(5, 6, 1)], (5, 6, 1)], + [[(1, 3), (3, 1)], (3, 3)], + [[(1, 0), (0, 0)], (0, 0)], + [[(0, 1), (0, 0)], (0, 0)], + [[(1, 0), (0, 1)], (0, 0)], + [[(1, 1), (0, 0)], (0, 0)], + [[(1, 1), (1, 0)], (1, 0)], + [[(1, 1), (0, 1)], (0, 1)], + [[(), (0,)], (0,)], + [[(0,), (0, 0)], (0, 0)], + [[(0,), (0, 1)], (0, 0)], + [[(1,), (0, 0)], (0, 0)], + [[(), (0, 0)], (0, 0)], + [[(1, 1), (0,)], (1, 0)], + [[(1,), (0, 1)], (0, 1)], + [[(1,), (1, 0)], (1, 0)], + [[(), (1, 0)], (1, 0)], + [[(), (0, 1)], (0, 1)], + [[(1,), (3,)], (3,)], + [[2, (3, 2)], (3, 2)], + ] + for input_shapes, target_shape in data: + assert_equal(broadcast_shapes(*input_shapes), target_shape) + + assert_equal(broadcast_shapes(*([(1, 2)] * 32)), (1, 2)) + assert_equal(broadcast_shapes(*([(1, 2)] * 100)), (1, 2)) + + # regression tests for gh-5862 + assert_equal(broadcast_shapes(*([(2,)] * 32)), (2,)) + + +def test_broadcast_shapes_raises(): + # tests public broadcast_shapes + data = [ + [(3,), (4,)], + [(2, 3), (2,)], + [(3,), (3,), (4,)], + [(1, 3, 4), (2, 3, 3)], + [(1, 2), (3, 1), (3, 2), (10, 5)], + [2, (2, 3)], + ] + for input_shapes in data: + assert_raises(ValueError, lambda: broadcast_shapes(*input_shapes)) + + bad_args = [(2,)] * 32 + [(3,)] * 32 + assert_raises(ValueError, lambda: broadcast_shapes(*bad_args)) + + +def test_as_strided(): + a = np.array([None]) + a_view = as_strided(a) + expected = np.array([None]) + assert_array_equal(a_view, np.array([None])) + + a = np.array([1, 2, 3, 4]) + a_view = as_strided(a, shape=(2,), strides=(2 * a.itemsize,)) + expected = np.array([1, 3]) + assert_array_equal(a_view, expected) + + a = np.array([1, 2, 3, 4]) + a_view = as_strided(a, shape=(3, 4), strides=(0, 1 * a.itemsize)) + expected = np.array([[1, 2, 3, 4], [1, 2, 3, 4], [1, 2, 3, 4]]) + assert_array_equal(a_view, expected) + + # Regression test for gh-5081 + dt = np.dtype([('num', 'i4'), ('obj', 'O')]) + a = np.empty((4,), dtype=dt) + a['num'] = np.arange(1, 5) + a_view = as_strided(a, shape=(3, 4), strides=(0, a.itemsize)) + expected_num = [[1, 2, 3, 4]] * 3 + expected_obj = [[None] * 4] * 3 + assert_equal(a_view.dtype, dt) + assert_array_equal(expected_num, a_view['num']) + assert_array_equal(expected_obj, a_view['obj']) + + # Make sure that void types without fields are kept unchanged + a = np.empty((4,), dtype='V4') + a_view = as_strided(a, shape=(3, 4), strides=(0, a.itemsize)) + assert_equal(a.dtype, a_view.dtype) + + # Make sure that the only type that could fail is properly handled + dt = np.dtype({'names': [''], 'formats': ['V4']}) + a = np.empty((4,), dtype=dt) + a_view = as_strided(a, shape=(3, 4), strides=(0, a.itemsize)) + assert_equal(a.dtype, a_view.dtype) + + # Custom dtypes should not be lost (gh-9161) + r = [rational(i) for i in range(4)] + a = np.array(r, dtype=rational) + a_view = as_strided(a, shape=(3, 4), strides=(0, a.itemsize)) + assert_equal(a.dtype, a_view.dtype) + assert_array_equal([r] * 3, a_view) + + +class TestSlidingWindowView: + def test_1d(self): + arr = np.arange(5) + arr_view = sliding_window_view(arr, 2) + expected = np.array([[0, 1], + [1, 2], + [2, 3], + [3, 4]]) + assert_array_equal(arr_view, expected) + + def test_2d(self): + i, j = np.ogrid[:3, :4] + arr = 10 * i + j + shape = (2, 2) + arr_view = sliding_window_view(arr, shape) + expected = np.array([[[[0, 1], [10, 11]], + [[1, 2], [11, 12]], + [[2, 3], [12, 13]]], + [[[10, 11], [20, 21]], + [[11, 12], [21, 22]], + [[12, 13], [22, 23]]]]) + assert_array_equal(arr_view, expected) + + def test_2d_with_axis(self): + i, j = np.ogrid[:3, :4] + arr = 10 * i + j + arr_view = sliding_window_view(arr, 3, 0) + expected = np.array([[[0, 10, 20], + [1, 11, 21], + [2, 12, 22], + [3, 13, 23]]]) + assert_array_equal(arr_view, expected) + + def test_2d_repeated_axis(self): + i, j = np.ogrid[:3, :4] + arr = 10 * i + j + arr_view = sliding_window_view(arr, (2, 3), (1, 1)) + expected = np.array([[[[0, 1, 2], + [1, 2, 3]]], + [[[10, 11, 12], + [11, 12, 13]]], + [[[20, 21, 22], + [21, 22, 23]]]]) + assert_array_equal(arr_view, expected) + + def test_2d_without_axis(self): + i, j = np.ogrid[:4, :4] + arr = 10 * i + j + shape = (2, 3) + arr_view = sliding_window_view(arr, shape) + expected = np.array([[[[0, 1, 2], [10, 11, 12]], + [[1, 2, 3], [11, 12, 13]]], + [[[10, 11, 12], [20, 21, 22]], + [[11, 12, 13], [21, 22, 23]]], + [[[20, 21, 22], [30, 31, 32]], + [[21, 22, 23], [31, 32, 33]]]]) + assert_array_equal(arr_view, expected) + + def test_errors(self): + i, j = np.ogrid[:4, :4] + arr = 10 * i + j + with pytest.raises(ValueError, match='cannot contain negative values'): + sliding_window_view(arr, (-1, 3)) + with pytest.raises( + ValueError, + match='must provide window_shape for all dimensions of `x`'): + sliding_window_view(arr, (1,)) + with pytest.raises( + ValueError, + match='Must provide matching length window_shape and axis'): + sliding_window_view(arr, (1, 3, 4), axis=(0, 1)) + with pytest.raises( + ValueError, + match='window shape cannot be larger than input array'): + sliding_window_view(arr, (5, 5)) + + def test_writeable(self): + arr = np.arange(5) + view = sliding_window_view(arr, 2, writeable=False) + assert_(not view.flags.writeable) + with pytest.raises( + ValueError, + match='assignment destination is read-only'): + view[0, 0] = 3 + view = sliding_window_view(arr, 2, writeable=True) + assert_(view.flags.writeable) + view[0, 1] = 3 + assert_array_equal(arr, np.array([0, 3, 2, 3, 4])) + + def test_subok(self): + class MyArray(np.ndarray): + pass + + arr = np.arange(5).view(MyArray) + assert_(not isinstance(sliding_window_view(arr, 2, + subok=False), + MyArray)) + assert_(isinstance(sliding_window_view(arr, 2, subok=True), MyArray)) + # Default behavior + assert_(not isinstance(sliding_window_view(arr, 2), MyArray)) + + +def as_strided_writeable(): + arr = np.ones(10) + view = as_strided(arr, writeable=False) + assert_(not view.flags.writeable) + + # Check that writeable also is fine: + view = as_strided(arr, writeable=True) + assert_(view.flags.writeable) + view[...] = 3 + assert_array_equal(arr, np.full_like(arr, 3)) + + # Test that things do not break down for readonly: + arr.flags.writeable = False + view = as_strided(arr, writeable=False) + view = as_strided(arr, writeable=True) + assert_(not view.flags.writeable) + + +class VerySimpleSubClass(np.ndarray): + def __new__(cls, *args, **kwargs): + return np.array(*args, subok=True, **kwargs).view(cls) + + +class SimpleSubClass(VerySimpleSubClass): + def __new__(cls, *args, **kwargs): + self = np.array(*args, subok=True, **kwargs).view(cls) + self.info = 'simple' + return self + + def __array_finalize__(self, obj): + self.info = getattr(obj, 'info', '') + ' finalized' + + +def test_subclasses(): + # test that subclass is preserved only if subok=True + a = VerySimpleSubClass([1, 2, 3, 4]) + assert_(type(a) is VerySimpleSubClass) + a_view = as_strided(a, shape=(2,), strides=(2 * a.itemsize,)) + assert_(type(a_view) is np.ndarray) + a_view = as_strided(a, shape=(2,), strides=(2 * a.itemsize,), subok=True) + assert_(type(a_view) is VerySimpleSubClass) + # test that if a subclass has __array_finalize__, it is used + a = SimpleSubClass([1, 2, 3, 4]) + a_view = as_strided(a, shape=(2,), strides=(2 * a.itemsize,), subok=True) + assert_(type(a_view) is SimpleSubClass) + assert_(a_view.info == 'simple finalized') + + # similar tests for broadcast_arrays + b = np.arange(len(a)).reshape(-1, 1) + a_view, b_view = broadcast_arrays(a, b) + assert_(type(a_view) is np.ndarray) + assert_(type(b_view) is np.ndarray) + assert_(a_view.shape == b_view.shape) + a_view, b_view = broadcast_arrays(a, b, subok=True) + assert_(type(a_view) is SimpleSubClass) + assert_(a_view.info == 'simple finalized') + assert_(type(b_view) is np.ndarray) + assert_(a_view.shape == b_view.shape) + + # and for broadcast_to + shape = (2, 4) + a_view = broadcast_to(a, shape) + assert_(type(a_view) is np.ndarray) + assert_(a_view.shape == shape) + a_view = broadcast_to(a, shape, subok=True) + assert_(type(a_view) is SimpleSubClass) + assert_(a_view.info == 'simple finalized') + assert_(a_view.shape == shape) + + +def test_writeable(): + # broadcast_to should return a readonly array + original = np.array([1, 2, 3]) + result = broadcast_to(original, (2, 3)) + assert_equal(result.flags.writeable, False) + assert_raises(ValueError, result.__setitem__, slice(None), 0) + + # but the result of broadcast_arrays needs to be writeable, to + # preserve backwards compatibility + test_cases = [((False,), broadcast_arrays(original,)), + ((True, False), broadcast_arrays(0, original))] + for is_broadcast, results in test_cases: + for array_is_broadcast, result in zip(is_broadcast, results): + # This will change to False in a future version + if array_is_broadcast: + with assert_warns(FutureWarning): + assert_equal(result.flags.writeable, True) + with assert_warns(DeprecationWarning): + result[:] = 0 + # Warning not emitted, writing to the array resets it + assert_equal(result.flags.writeable, True) + else: + # No warning: + assert_equal(result.flags.writeable, True) + + for results in [broadcast_arrays(original), + broadcast_arrays(0, original)]: + for result in results: + # resets the warn_on_write DeprecationWarning + result.flags.writeable = True + # check: no warning emitted + assert_equal(result.flags.writeable, True) + result[:] = 0 + + # keep readonly input readonly + original.flags.writeable = False + _, result = broadcast_arrays(0, original) + assert_equal(result.flags.writeable, False) + + # regression test for GH6491 + shape = (2,) + strides = [0] + tricky_array = as_strided(np.array(0), shape, strides) + other = np.zeros((1,)) + first, second = broadcast_arrays(tricky_array, other) + assert_(first.shape == second.shape) + + +def test_writeable_memoryview(): + # The result of broadcast_arrays exports as a non-writeable memoryview + # because otherwise there is no good way to opt in to the new behaviour + # (i.e. you would need to set writeable to False explicitly). + # See gh-13929. + original = np.array([1, 2, 3]) + + test_cases = [((False, ), broadcast_arrays(original,)), + ((True, False), broadcast_arrays(0, original))] + for is_broadcast, results in test_cases: + for array_is_broadcast, result in zip(is_broadcast, results): + # This will change to False in a future version + if array_is_broadcast: + # memoryview(result, writable=True) will give warning but cannot + # be tested using the python API. + assert memoryview(result).readonly + else: + assert not memoryview(result).readonly + + +def test_reference_types(): + input_array = np.array('a', dtype=object) + expected = np.array(['a'] * 3, dtype=object) + actual = broadcast_to(input_array, (3,)) + assert_array_equal(expected, actual) + + actual, _ = broadcast_arrays(input_array, np.ones(3)) + assert_array_equal(expected, actual) diff --git a/.venv/lib/python3.12/site-packages/numpy/lib/tests/test_twodim_base.py b/.venv/lib/python3.12/site-packages/numpy/lib/tests/test_twodim_base.py new file mode 100644 index 0000000..eb6aa69 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/lib/tests/test_twodim_base.py @@ -0,0 +1,559 @@ +"""Test functions for matrix module + +""" +import pytest + +import numpy as np +from numpy import ( + add, + arange, + array, + diag, + eye, + fliplr, + flipud, + histogram2d, + mask_indices, + ones, + tri, + tril_indices, + tril_indices_from, + triu_indices, + triu_indices_from, + vander, + zeros, +) +from numpy.testing import ( + assert_, + assert_array_almost_equal, + assert_array_equal, + assert_array_max_ulp, + assert_equal, + assert_raises, +) + + +def get_mat(n): + data = arange(n) + data = add.outer(data, data) + return data + + +class TestEye: + def test_basic(self): + assert_equal(eye(4), + array([[1, 0, 0, 0], + [0, 1, 0, 0], + [0, 0, 1, 0], + [0, 0, 0, 1]])) + + assert_equal(eye(4, dtype='f'), + array([[1, 0, 0, 0], + [0, 1, 0, 0], + [0, 0, 1, 0], + [0, 0, 0, 1]], 'f')) + + assert_equal(eye(3) == 1, + eye(3, dtype=bool)) + + def test_uint64(self): + # Regression test for gh-9982 + assert_equal(eye(np.uint64(2), dtype=int), array([[1, 0], [0, 1]])) + assert_equal(eye(np.uint64(2), M=np.uint64(4), k=np.uint64(1)), + array([[0, 1, 0, 0], [0, 0, 1, 0]])) + + def test_diag(self): + assert_equal(eye(4, k=1), + array([[0, 1, 0, 0], + [0, 0, 1, 0], + [0, 0, 0, 1], + [0, 0, 0, 0]])) + + assert_equal(eye(4, k=-1), + array([[0, 0, 0, 0], + [1, 0, 0, 0], + [0, 1, 0, 0], + [0, 0, 1, 0]])) + + def test_2d(self): + assert_equal(eye(4, 3), + array([[1, 0, 0], + [0, 1, 0], + [0, 0, 1], + [0, 0, 0]])) + + assert_equal(eye(3, 4), + array([[1, 0, 0, 0], + [0, 1, 0, 0], + [0, 0, 1, 0]])) + + def test_diag2d(self): + assert_equal(eye(3, 4, k=2), + array([[0, 0, 1, 0], + [0, 0, 0, 1], + [0, 0, 0, 0]])) + + assert_equal(eye(4, 3, k=-2), + array([[0, 0, 0], + [0, 0, 0], + [1, 0, 0], + [0, 1, 0]])) + + def test_eye_bounds(self): + assert_equal(eye(2, 2, 1), [[0, 1], [0, 0]]) + assert_equal(eye(2, 2, -1), [[0, 0], [1, 0]]) + assert_equal(eye(2, 2, 2), [[0, 0], [0, 0]]) + assert_equal(eye(2, 2, -2), [[0, 0], [0, 0]]) + assert_equal(eye(3, 2, 2), [[0, 0], [0, 0], [0, 0]]) + assert_equal(eye(3, 2, 1), [[0, 1], [0, 0], [0, 0]]) + assert_equal(eye(3, 2, -1), [[0, 0], [1, 0], [0, 1]]) + assert_equal(eye(3, 2, -2), [[0, 0], [0, 0], [1, 0]]) + assert_equal(eye(3, 2, -3), [[0, 0], [0, 0], [0, 0]]) + + def test_strings(self): + assert_equal(eye(2, 2, dtype='S3'), + [[b'1', b''], [b'', b'1']]) + + def test_bool(self): + assert_equal(eye(2, 2, dtype=bool), [[True, False], [False, True]]) + + def test_order(self): + mat_c = eye(4, 3, k=-1) + mat_f = eye(4, 3, k=-1, order='F') + assert_equal(mat_c, mat_f) + assert mat_c.flags.c_contiguous + assert not mat_c.flags.f_contiguous + assert not mat_f.flags.c_contiguous + assert mat_f.flags.f_contiguous + + +class TestDiag: + def test_vector(self): + vals = (100 * arange(5)).astype('l') + b = zeros((5, 5)) + for k in range(5): + b[k, k] = vals[k] + assert_equal(diag(vals), b) + b = zeros((7, 7)) + c = b.copy() + for k in range(5): + b[k, k + 2] = vals[k] + c[k + 2, k] = vals[k] + assert_equal(diag(vals, k=2), b) + assert_equal(diag(vals, k=-2), c) + + def test_matrix(self, vals=None): + if vals is None: + vals = (100 * get_mat(5) + 1).astype('l') + b = zeros((5,)) + for k in range(5): + b[k] = vals[k, k] + assert_equal(diag(vals), b) + b = b * 0 + for k in range(3): + b[k] = vals[k, k + 2] + assert_equal(diag(vals, 2), b[:3]) + for k in range(3): + b[k] = vals[k + 2, k] + assert_equal(diag(vals, -2), b[:3]) + + def test_fortran_order(self): + vals = array((100 * get_mat(5) + 1), order='F', dtype='l') + self.test_matrix(vals) + + def test_diag_bounds(self): + A = [[1, 2], [3, 4], [5, 6]] + assert_equal(diag(A, k=2), []) + assert_equal(diag(A, k=1), [2]) + assert_equal(diag(A, k=0), [1, 4]) + assert_equal(diag(A, k=-1), [3, 6]) + assert_equal(diag(A, k=-2), [5]) + assert_equal(diag(A, k=-3), []) + + def test_failure(self): + assert_raises(ValueError, diag, [[[1]]]) + + +class TestFliplr: + def test_basic(self): + assert_raises(ValueError, fliplr, ones(4)) + a = get_mat(4) + b = a[:, ::-1] + assert_equal(fliplr(a), b) + a = [[0, 1, 2], + [3, 4, 5]] + b = [[2, 1, 0], + [5, 4, 3]] + assert_equal(fliplr(a), b) + + +class TestFlipud: + def test_basic(self): + a = get_mat(4) + b = a[::-1, :] + assert_equal(flipud(a), b) + a = [[0, 1, 2], + [3, 4, 5]] + b = [[3, 4, 5], + [0, 1, 2]] + assert_equal(flipud(a), b) + + +class TestHistogram2d: + def test_simple(self): + x = array( + [0.41702200, 0.72032449, 1.1437481e-4, 0.302332573, 0.146755891]) + y = array( + [0.09233859, 0.18626021, 0.34556073, 0.39676747, 0.53881673]) + xedges = np.linspace(0, 1, 10) + yedges = np.linspace(0, 1, 10) + H = histogram2d(x, y, (xedges, yedges))[0] + answer = array( + [[0, 0, 0, 1, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 1, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0, 0], + [1, 0, 1, 0, 0, 0, 0, 0, 0], + [0, 1, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0, 0]]) + assert_array_equal(H.T, answer) + H = histogram2d(x, y, xedges)[0] + assert_array_equal(H.T, answer) + H, xedges, yedges = histogram2d(list(range(10)), list(range(10))) + assert_array_equal(H, eye(10, 10)) + assert_array_equal(xedges, np.linspace(0, 9, 11)) + assert_array_equal(yedges, np.linspace(0, 9, 11)) + + def test_asym(self): + x = array([1, 1, 2, 3, 4, 4, 4, 5]) + y = array([1, 3, 2, 0, 1, 2, 3, 4]) + H, xed, yed = histogram2d( + x, y, (6, 5), range=[[0, 6], [0, 5]], density=True) + answer = array( + [[0., 0, 0, 0, 0], + [0, 1, 0, 1, 0], + [0, 0, 1, 0, 0], + [1, 0, 0, 0, 0], + [0, 1, 1, 1, 0], + [0, 0, 0, 0, 1]]) + assert_array_almost_equal(H, answer / 8., 3) + assert_array_equal(xed, np.linspace(0, 6, 7)) + assert_array_equal(yed, np.linspace(0, 5, 6)) + + def test_density(self): + x = array([1, 2, 3, 1, 2, 3, 1, 2, 3]) + y = array([1, 1, 1, 2, 2, 2, 3, 3, 3]) + H, xed, yed = histogram2d( + x, y, [[1, 2, 3, 5], [1, 2, 3, 5]], density=True) + answer = array([[1, 1, .5], + [1, 1, .5], + [.5, .5, .25]]) / 9. + assert_array_almost_equal(H, answer, 3) + + def test_all_outliers(self): + r = np.random.rand(100) + 1. + 1e6 # histogramdd rounds by decimal=6 + H, xed, yed = histogram2d(r, r, (4, 5), range=([0, 1], [0, 1])) + assert_array_equal(H, 0) + + def test_empty(self): + a, edge1, edge2 = histogram2d([], [], bins=([0, 1], [0, 1])) + assert_array_max_ulp(a, array([[0.]])) + + a, edge1, edge2 = histogram2d([], [], bins=4) + assert_array_max_ulp(a, np.zeros((4, 4))) + + def test_binparameter_combination(self): + x = array( + [0, 0.09207008, 0.64575234, 0.12875982, 0.47390599, + 0.59944483, 1]) + y = array( + [0, 0.14344267, 0.48988575, 0.30558665, 0.44700682, + 0.15886423, 1]) + edges = (0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1) + H, xe, ye = histogram2d(x, y, (edges, 4)) + answer = array( + [[2., 0., 0., 0.], + [0., 1., 0., 0.], + [0., 0., 0., 0.], + [0., 0., 0., 0.], + [0., 1., 0., 0.], + [1., 0., 0., 0.], + [0., 1., 0., 0.], + [0., 0., 0., 0.], + [0., 0., 0., 0.], + [0., 0., 0., 1.]]) + assert_array_equal(H, answer) + assert_array_equal(ye, array([0., 0.25, 0.5, 0.75, 1])) + H, xe, ye = histogram2d(x, y, (4, edges)) + answer = array( + [[1., 1., 0., 1., 0., 0., 0., 0., 0., 0.], + [0., 0., 0., 0., 1., 0., 0., 0., 0., 0.], + [0., 1., 0., 0., 1., 0., 0., 0., 0., 0.], + [0., 0., 0., 0., 0., 0., 0., 0., 0., 1.]]) + assert_array_equal(H, answer) + assert_array_equal(xe, array([0., 0.25, 0.5, 0.75, 1])) + + def test_dispatch(self): + class ShouldDispatch: + def __array_function__(self, function, types, args, kwargs): + return types, args, kwargs + + xy = [1, 2] + s_d = ShouldDispatch() + r = histogram2d(s_d, xy) + # Cannot use assert_equal since that dispatches... + assert_(r == ((ShouldDispatch,), (s_d, xy), {})) + r = histogram2d(xy, s_d) + assert_(r == ((ShouldDispatch,), (xy, s_d), {})) + r = histogram2d(xy, xy, bins=s_d) + assert_(r, ((ShouldDispatch,), (xy, xy), {'bins': s_d})) + r = histogram2d(xy, xy, bins=[s_d, 5]) + assert_(r, ((ShouldDispatch,), (xy, xy), {'bins': [s_d, 5]})) + assert_raises(Exception, histogram2d, xy, xy, bins=[s_d]) + r = histogram2d(xy, xy, weights=s_d) + assert_(r, ((ShouldDispatch,), (xy, xy), {'weights': s_d})) + + @pytest.mark.parametrize(("x_len", "y_len"), [(10, 11), (20, 19)]) + def test_bad_length(self, x_len, y_len): + x, y = np.ones(x_len), np.ones(y_len) + with pytest.raises(ValueError, + match='x and y must have the same length.'): + histogram2d(x, y) + + +class TestTri: + def test_dtype(self): + out = array([[1, 0, 0], + [1, 1, 0], + [1, 1, 1]]) + assert_array_equal(tri(3), out) + assert_array_equal(tri(3, dtype=bool), out.astype(bool)) + + +def test_tril_triu_ndim2(): + for dtype in np.typecodes['AllFloat'] + np.typecodes['AllInteger']: + a = np.ones((2, 2), dtype=dtype) + b = np.tril(a) + c = np.triu(a) + assert_array_equal(b, [[1, 0], [1, 1]]) + assert_array_equal(c, b.T) + # should return the same dtype as the original array + assert_equal(b.dtype, a.dtype) + assert_equal(c.dtype, a.dtype) + + +def test_tril_triu_ndim3(): + for dtype in np.typecodes['AllFloat'] + np.typecodes['AllInteger']: + a = np.array([ + [[1, 1], [1, 1]], + [[1, 1], [1, 0]], + [[1, 1], [0, 0]], + ], dtype=dtype) + a_tril_desired = np.array([ + [[1, 0], [1, 1]], + [[1, 0], [1, 0]], + [[1, 0], [0, 0]], + ], dtype=dtype) + a_triu_desired = np.array([ + [[1, 1], [0, 1]], + [[1, 1], [0, 0]], + [[1, 1], [0, 0]], + ], dtype=dtype) + a_triu_observed = np.triu(a) + a_tril_observed = np.tril(a) + assert_array_equal(a_triu_observed, a_triu_desired) + assert_array_equal(a_tril_observed, a_tril_desired) + assert_equal(a_triu_observed.dtype, a.dtype) + assert_equal(a_tril_observed.dtype, a.dtype) + + +def test_tril_triu_with_inf(): + # Issue 4859 + arr = np.array([[1, 1, np.inf], + [1, 1, 1], + [np.inf, 1, 1]]) + out_tril = np.array([[1, 0, 0], + [1, 1, 0], + [np.inf, 1, 1]]) + out_triu = out_tril.T + assert_array_equal(np.triu(arr), out_triu) + assert_array_equal(np.tril(arr), out_tril) + + +def test_tril_triu_dtype(): + # Issue 4916 + # tril and triu should return the same dtype as input + for c in np.typecodes['All']: + if c == 'V': + continue + arr = np.zeros((3, 3), dtype=c) + assert_equal(np.triu(arr).dtype, arr.dtype) + assert_equal(np.tril(arr).dtype, arr.dtype) + + # check special cases + arr = np.array([['2001-01-01T12:00', '2002-02-03T13:56'], + ['2004-01-01T12:00', '2003-01-03T13:45']], + dtype='datetime64') + assert_equal(np.triu(arr).dtype, arr.dtype) + assert_equal(np.tril(arr).dtype, arr.dtype) + + arr = np.zeros((3, 3), dtype='f4,f4') + assert_equal(np.triu(arr).dtype, arr.dtype) + assert_equal(np.tril(arr).dtype, arr.dtype) + + +def test_mask_indices(): + # simple test without offset + iu = mask_indices(3, np.triu) + a = np.arange(9).reshape(3, 3) + assert_array_equal(a[iu], array([0, 1, 2, 4, 5, 8])) + # Now with an offset + iu1 = mask_indices(3, np.triu, 1) + assert_array_equal(a[iu1], array([1, 2, 5])) + + +def test_tril_indices(): + # indices without and with offset + il1 = tril_indices(4) + il2 = tril_indices(4, k=2) + il3 = tril_indices(4, m=5) + il4 = tril_indices(4, k=2, m=5) + + a = np.array([[1, 2, 3, 4], + [5, 6, 7, 8], + [9, 10, 11, 12], + [13, 14, 15, 16]]) + b = np.arange(1, 21).reshape(4, 5) + + # indexing: + assert_array_equal(a[il1], + array([1, 5, 6, 9, 10, 11, 13, 14, 15, 16])) + assert_array_equal(b[il3], + array([1, 6, 7, 11, 12, 13, 16, 17, 18, 19])) + + # And for assigning values: + a[il1] = -1 + assert_array_equal(a, + array([[-1, 2, 3, 4], + [-1, -1, 7, 8], + [-1, -1, -1, 12], + [-1, -1, -1, -1]])) + b[il3] = -1 + assert_array_equal(b, + array([[-1, 2, 3, 4, 5], + [-1, -1, 8, 9, 10], + [-1, -1, -1, 14, 15], + [-1, -1, -1, -1, 20]])) + # These cover almost the whole array (two diagonals right of the main one): + a[il2] = -10 + assert_array_equal(a, + array([[-10, -10, -10, 4], + [-10, -10, -10, -10], + [-10, -10, -10, -10], + [-10, -10, -10, -10]])) + b[il4] = -10 + assert_array_equal(b, + array([[-10, -10, -10, 4, 5], + [-10, -10, -10, -10, 10], + [-10, -10, -10, -10, -10], + [-10, -10, -10, -10, -10]])) + + +class TestTriuIndices: + def test_triu_indices(self): + iu1 = triu_indices(4) + iu2 = triu_indices(4, k=2) + iu3 = triu_indices(4, m=5) + iu4 = triu_indices(4, k=2, m=5) + + a = np.array([[1, 2, 3, 4], + [5, 6, 7, 8], + [9, 10, 11, 12], + [13, 14, 15, 16]]) + b = np.arange(1, 21).reshape(4, 5) + + # Both for indexing: + assert_array_equal(a[iu1], + array([1, 2, 3, 4, 6, 7, 8, 11, 12, 16])) + assert_array_equal(b[iu3], + array([1, 2, 3, 4, 5, 7, 8, 9, + 10, 13, 14, 15, 19, 20])) + + # And for assigning values: + a[iu1] = -1 + assert_array_equal(a, + array([[-1, -1, -1, -1], + [5, -1, -1, -1], + [9, 10, -1, -1], + [13, 14, 15, -1]])) + b[iu3] = -1 + assert_array_equal(b, + array([[-1, -1, -1, -1, -1], + [6, -1, -1, -1, -1], + [11, 12, -1, -1, -1], + [16, 17, 18, -1, -1]])) + + # These cover almost the whole array (two diagonals right of the + # main one): + a[iu2] = -10 + assert_array_equal(a, + array([[-1, -1, -10, -10], + [5, -1, -1, -10], + [9, 10, -1, -1], + [13, 14, 15, -1]])) + b[iu4] = -10 + assert_array_equal(b, + array([[-1, -1, -10, -10, -10], + [6, -1, -1, -10, -10], + [11, 12, -1, -1, -10], + [16, 17, 18, -1, -1]])) + + +class TestTrilIndicesFrom: + def test_exceptions(self): + assert_raises(ValueError, tril_indices_from, np.ones((2,))) + assert_raises(ValueError, tril_indices_from, np.ones((2, 2, 2))) + # assert_raises(ValueError, tril_indices_from, np.ones((2, 3))) + + +class TestTriuIndicesFrom: + def test_exceptions(self): + assert_raises(ValueError, triu_indices_from, np.ones((2,))) + assert_raises(ValueError, triu_indices_from, np.ones((2, 2, 2))) + # assert_raises(ValueError, triu_indices_from, np.ones((2, 3))) + + +class TestVander: + def test_basic(self): + c = np.array([0, 1, -2, 3]) + v = vander(c) + powers = np.array([[0, 0, 0, 0, 1], + [1, 1, 1, 1, 1], + [16, -8, 4, -2, 1], + [81, 27, 9, 3, 1]]) + # Check default value of N: + assert_array_equal(v, powers[:, 1:]) + # Check a range of N values, including 0 and 5 (greater than default) + m = powers.shape[1] + for n in range(6): + v = vander(c, N=n) + assert_array_equal(v, powers[:, m - n:m]) + + def test_dtypes(self): + c = array([11, -12, 13], dtype=np.int8) + v = vander(c) + expected = np.array([[121, 11, 1], + [144, -12, 1], + [169, 13, 1]]) + assert_array_equal(v, expected) + + c = array([1.0 + 1j, 1.0 - 1j]) + v = vander(c, N=3) + expected = np.array([[2j, 1 + 1j, 1], + [-2j, 1 - 1j, 1]]) + # The data is floating point, but the values are small integers, + # so assert_array_equal *should* be safe here (rather than, say, + # assert_array_almost_equal). + assert_array_equal(v, expected) diff --git a/.venv/lib/python3.12/site-packages/numpy/lib/tests/test_type_check.py b/.venv/lib/python3.12/site-packages/numpy/lib/tests/test_type_check.py new file mode 100644 index 0000000..447c2c3 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/lib/tests/test_type_check.py @@ -0,0 +1,473 @@ +import numpy as np +from numpy import ( + common_type, + iscomplex, + iscomplexobj, + isneginf, + isposinf, + isreal, + isrealobj, + mintypecode, + nan_to_num, + real_if_close, +) +from numpy.testing import assert_, assert_array_equal, assert_equal + + +def assert_all(x): + assert_(np.all(x), x) + + +class TestCommonType: + def test_basic(self): + ai32 = np.array([[1, 2], [3, 4]], dtype=np.int32) + af16 = np.array([[1, 2], [3, 4]], dtype=np.float16) + af32 = np.array([[1, 2], [3, 4]], dtype=np.float32) + af64 = np.array([[1, 2], [3, 4]], dtype=np.float64) + acs = np.array([[1 + 5j, 2 + 6j], [3 + 7j, 4 + 8j]], dtype=np.complex64) + acd = np.array([[1 + 5j, 2 + 6j], [3 + 7j, 4 + 8j]], dtype=np.complex128) + assert_(common_type(ai32) == np.float64) + assert_(common_type(af16) == np.float16) + assert_(common_type(af32) == np.float32) + assert_(common_type(af64) == np.float64) + assert_(common_type(acs) == np.complex64) + assert_(common_type(acd) == np.complex128) + + +class TestMintypecode: + + def test_default_1(self): + for itype in '1bcsuwil': + assert_equal(mintypecode(itype), 'd') + assert_equal(mintypecode('f'), 'f') + assert_equal(mintypecode('d'), 'd') + assert_equal(mintypecode('F'), 'F') + assert_equal(mintypecode('D'), 'D') + + def test_default_2(self): + for itype in '1bcsuwil': + assert_equal(mintypecode(itype + 'f'), 'f') + assert_equal(mintypecode(itype + 'd'), 'd') + assert_equal(mintypecode(itype + 'F'), 'F') + assert_equal(mintypecode(itype + 'D'), 'D') + assert_equal(mintypecode('ff'), 'f') + assert_equal(mintypecode('fd'), 'd') + assert_equal(mintypecode('fF'), 'F') + assert_equal(mintypecode('fD'), 'D') + assert_equal(mintypecode('df'), 'd') + assert_equal(mintypecode('dd'), 'd') + #assert_equal(mintypecode('dF',savespace=1),'F') + assert_equal(mintypecode('dF'), 'D') + assert_equal(mintypecode('dD'), 'D') + assert_equal(mintypecode('Ff'), 'F') + #assert_equal(mintypecode('Fd',savespace=1),'F') + assert_equal(mintypecode('Fd'), 'D') + assert_equal(mintypecode('FF'), 'F') + assert_equal(mintypecode('FD'), 'D') + assert_equal(mintypecode('Df'), 'D') + assert_equal(mintypecode('Dd'), 'D') + assert_equal(mintypecode('DF'), 'D') + assert_equal(mintypecode('DD'), 'D') + + def test_default_3(self): + assert_equal(mintypecode('fdF'), 'D') + #assert_equal(mintypecode('fdF',savespace=1),'F') + assert_equal(mintypecode('fdD'), 'D') + assert_equal(mintypecode('fFD'), 'D') + assert_equal(mintypecode('dFD'), 'D') + + assert_equal(mintypecode('ifd'), 'd') + assert_equal(mintypecode('ifF'), 'F') + assert_equal(mintypecode('ifD'), 'D') + assert_equal(mintypecode('idF'), 'D') + #assert_equal(mintypecode('idF',savespace=1),'F') + assert_equal(mintypecode('idD'), 'D') + + +class TestIsscalar: + + def test_basic(self): + assert_(np.isscalar(3)) + assert_(not np.isscalar([3])) + assert_(not np.isscalar((3,))) + assert_(np.isscalar(3j)) + assert_(np.isscalar(4.0)) + + +class TestReal: + + def test_real(self): + y = np.random.rand(10,) + assert_array_equal(y, np.real(y)) + + y = np.array(1) + out = np.real(y) + assert_array_equal(y, out) + assert_(isinstance(out, np.ndarray)) + + y = 1 + out = np.real(y) + assert_equal(y, out) + assert_(not isinstance(out, np.ndarray)) + + def test_cmplx(self): + y = np.random.rand(10,) + 1j * np.random.rand(10,) + assert_array_equal(y.real, np.real(y)) + + y = np.array(1 + 1j) + out = np.real(y) + assert_array_equal(y.real, out) + assert_(isinstance(out, np.ndarray)) + + y = 1 + 1j + out = np.real(y) + assert_equal(1.0, out) + assert_(not isinstance(out, np.ndarray)) + + +class TestImag: + + def test_real(self): + y = np.random.rand(10,) + assert_array_equal(0, np.imag(y)) + + y = np.array(1) + out = np.imag(y) + assert_array_equal(0, out) + assert_(isinstance(out, np.ndarray)) + + y = 1 + out = np.imag(y) + assert_equal(0, out) + assert_(not isinstance(out, np.ndarray)) + + def test_cmplx(self): + y = np.random.rand(10,) + 1j * np.random.rand(10,) + assert_array_equal(y.imag, np.imag(y)) + + y = np.array(1 + 1j) + out = np.imag(y) + assert_array_equal(y.imag, out) + assert_(isinstance(out, np.ndarray)) + + y = 1 + 1j + out = np.imag(y) + assert_equal(1.0, out) + assert_(not isinstance(out, np.ndarray)) + + +class TestIscomplex: + + def test_fail(self): + z = np.array([-1, 0, 1]) + res = iscomplex(z) + assert_(not np.any(res, axis=0)) + + def test_pass(self): + z = np.array([-1j, 1, 0]) + res = iscomplex(z) + assert_array_equal(res, [1, 0, 0]) + + +class TestIsreal: + + def test_pass(self): + z = np.array([-1, 0, 1j]) + res = isreal(z) + assert_array_equal(res, [1, 1, 0]) + + def test_fail(self): + z = np.array([-1j, 1, 0]) + res = isreal(z) + assert_array_equal(res, [0, 1, 1]) + + +class TestIscomplexobj: + + def test_basic(self): + z = np.array([-1, 0, 1]) + assert_(not iscomplexobj(z)) + z = np.array([-1j, 0, -1]) + assert_(iscomplexobj(z)) + + def test_scalar(self): + assert_(not iscomplexobj(1.0)) + assert_(iscomplexobj(1 + 0j)) + + def test_list(self): + assert_(iscomplexobj([3, 1 + 0j, True])) + assert_(not iscomplexobj([3, 1, True])) + + def test_duck(self): + class DummyComplexArray: + @property + def dtype(self): + return np.dtype(complex) + dummy = DummyComplexArray() + assert_(iscomplexobj(dummy)) + + def test_pandas_duck(self): + # This tests a custom np.dtype duck-typed class, such as used by pandas + # (pandas.core.dtypes) + class PdComplex(np.complex128): + pass + + class PdDtype: + name = 'category' + names = None + type = PdComplex + kind = 'c' + str = '<c16' + base = np.dtype('complex128') + + class DummyPd: + @property + def dtype(self): + return PdDtype + dummy = DummyPd() + assert_(iscomplexobj(dummy)) + + def test_custom_dtype_duck(self): + class MyArray(list): + @property + def dtype(self): + return complex + + a = MyArray([1 + 0j, 2 + 0j, 3 + 0j]) + assert_(iscomplexobj(a)) + + +class TestIsrealobj: + def test_basic(self): + z = np.array([-1, 0, 1]) + assert_(isrealobj(z)) + z = np.array([-1j, 0, -1]) + assert_(not isrealobj(z)) + + +class TestIsnan: + + def test_goodvalues(self): + z = np.array((-1., 0., 1.)) + res = np.isnan(z) == 0 + assert_all(np.all(res, axis=0)) + + def test_posinf(self): + with np.errstate(divide='ignore'): + assert_all(np.isnan(np.array((1.,)) / 0.) == 0) + + def test_neginf(self): + with np.errstate(divide='ignore'): + assert_all(np.isnan(np.array((-1.,)) / 0.) == 0) + + def test_ind(self): + with np.errstate(divide='ignore', invalid='ignore'): + assert_all(np.isnan(np.array((0.,)) / 0.) == 1) + + def test_integer(self): + assert_all(np.isnan(1) == 0) + + def test_complex(self): + assert_all(np.isnan(1 + 1j) == 0) + + def test_complex1(self): + with np.errstate(divide='ignore', invalid='ignore'): + assert_all(np.isnan(np.array(0 + 0j) / 0.) == 1) + + +class TestIsfinite: + # Fixme, wrong place, isfinite now ufunc + + def test_goodvalues(self): + z = np.array((-1., 0., 1.)) + res = np.isfinite(z) == 1 + assert_all(np.all(res, axis=0)) + + def test_posinf(self): + with np.errstate(divide='ignore', invalid='ignore'): + assert_all(np.isfinite(np.array((1.,)) / 0.) == 0) + + def test_neginf(self): + with np.errstate(divide='ignore', invalid='ignore'): + assert_all(np.isfinite(np.array((-1.,)) / 0.) == 0) + + def test_ind(self): + with np.errstate(divide='ignore', invalid='ignore'): + assert_all(np.isfinite(np.array((0.,)) / 0.) == 0) + + def test_integer(self): + assert_all(np.isfinite(1) == 1) + + def test_complex(self): + assert_all(np.isfinite(1 + 1j) == 1) + + def test_complex1(self): + with np.errstate(divide='ignore', invalid='ignore'): + assert_all(np.isfinite(np.array(1 + 1j) / 0.) == 0) + + +class TestIsinf: + # Fixme, wrong place, isinf now ufunc + + def test_goodvalues(self): + z = np.array((-1., 0., 1.)) + res = np.isinf(z) == 0 + assert_all(np.all(res, axis=0)) + + def test_posinf(self): + with np.errstate(divide='ignore', invalid='ignore'): + assert_all(np.isinf(np.array((1.,)) / 0.) == 1) + + def test_posinf_scalar(self): + with np.errstate(divide='ignore', invalid='ignore'): + assert_all(np.isinf(np.array(1.,) / 0.) == 1) + + def test_neginf(self): + with np.errstate(divide='ignore', invalid='ignore'): + assert_all(np.isinf(np.array((-1.,)) / 0.) == 1) + + def test_neginf_scalar(self): + with np.errstate(divide='ignore', invalid='ignore'): + assert_all(np.isinf(np.array(-1.) / 0.) == 1) + + def test_ind(self): + with np.errstate(divide='ignore', invalid='ignore'): + assert_all(np.isinf(np.array((0.,)) / 0.) == 0) + + +class TestIsposinf: + + def test_generic(self): + with np.errstate(divide='ignore', invalid='ignore'): + vals = isposinf(np.array((-1., 0, 1)) / 0.) + assert_(vals[0] == 0) + assert_(vals[1] == 0) + assert_(vals[2] == 1) + + +class TestIsneginf: + + def test_generic(self): + with np.errstate(divide='ignore', invalid='ignore'): + vals = isneginf(np.array((-1., 0, 1)) / 0.) + assert_(vals[0] == 1) + assert_(vals[1] == 0) + assert_(vals[2] == 0) + + +class TestNanToNum: + + def test_generic(self): + with np.errstate(divide='ignore', invalid='ignore'): + vals = nan_to_num(np.array((-1., 0, 1)) / 0.) + assert_all(vals[0] < -1e10) and assert_all(np.isfinite(vals[0])) + assert_(vals[1] == 0) + assert_all(vals[2] > 1e10) and assert_all(np.isfinite(vals[2])) + assert_equal(type(vals), np.ndarray) + + # perform the same tests but with nan, posinf and neginf keywords + with np.errstate(divide='ignore', invalid='ignore'): + vals = nan_to_num(np.array((-1., 0, 1)) / 0., + nan=10, posinf=20, neginf=30) + assert_equal(vals, [30, 10, 20]) + assert_all(np.isfinite(vals[[0, 2]])) + assert_equal(type(vals), np.ndarray) + + # perform the same test but in-place + with np.errstate(divide='ignore', invalid='ignore'): + vals = np.array((-1., 0, 1)) / 0. + result = nan_to_num(vals, copy=False) + + assert_(result is vals) + assert_all(vals[0] < -1e10) and assert_all(np.isfinite(vals[0])) + assert_(vals[1] == 0) + assert_all(vals[2] > 1e10) and assert_all(np.isfinite(vals[2])) + assert_equal(type(vals), np.ndarray) + + # perform the same test but in-place + with np.errstate(divide='ignore', invalid='ignore'): + vals = np.array((-1., 0, 1)) / 0. + result = nan_to_num(vals, copy=False, nan=10, posinf=20, neginf=30) + + assert_(result is vals) + assert_equal(vals, [30, 10, 20]) + assert_all(np.isfinite(vals[[0, 2]])) + assert_equal(type(vals), np.ndarray) + + def test_array(self): + vals = nan_to_num([1]) + assert_array_equal(vals, np.array([1], int)) + assert_equal(type(vals), np.ndarray) + vals = nan_to_num([1], nan=10, posinf=20, neginf=30) + assert_array_equal(vals, np.array([1], int)) + assert_equal(type(vals), np.ndarray) + + def test_integer(self): + vals = nan_to_num(1) + assert_all(vals == 1) + assert_equal(type(vals), np.int_) + vals = nan_to_num(1, nan=10, posinf=20, neginf=30) + assert_all(vals == 1) + assert_equal(type(vals), np.int_) + + def test_float(self): + vals = nan_to_num(1.0) + assert_all(vals == 1.0) + assert_equal(type(vals), np.float64) + vals = nan_to_num(1.1, nan=10, posinf=20, neginf=30) + assert_all(vals == 1.1) + assert_equal(type(vals), np.float64) + + def test_complex_good(self): + vals = nan_to_num(1 + 1j) + assert_all(vals == 1 + 1j) + assert_equal(type(vals), np.complex128) + vals = nan_to_num(1 + 1j, nan=10, posinf=20, neginf=30) + assert_all(vals == 1 + 1j) + assert_equal(type(vals), np.complex128) + + def test_complex_bad(self): + with np.errstate(divide='ignore', invalid='ignore'): + v = 1 + 1j + v += np.array(0 + 1.j) / 0. + vals = nan_to_num(v) + # !! This is actually (unexpectedly) zero + assert_all(np.isfinite(vals)) + assert_equal(type(vals), np.complex128) + + def test_complex_bad2(self): + with np.errstate(divide='ignore', invalid='ignore'): + v = 1 + 1j + v += np.array(-1 + 1.j) / 0. + vals = nan_to_num(v) + assert_all(np.isfinite(vals)) + assert_equal(type(vals), np.complex128) + # Fixme + #assert_all(vals.imag > 1e10) and assert_all(np.isfinite(vals)) + # !! This is actually (unexpectedly) positive + # !! inf. Comment out for now, and see if it + # !! changes + #assert_all(vals.real < -1e10) and assert_all(np.isfinite(vals)) + + def test_do_not_rewrite_previous_keyword(self): + # This is done to test that when, for instance, nan=np.inf then these + # values are not rewritten by posinf keyword to the posinf value. + with np.errstate(divide='ignore', invalid='ignore'): + vals = nan_to_num(np.array((-1., 0, 1)) / 0., nan=np.inf, posinf=999) + assert_all(np.isfinite(vals[[0, 2]])) + assert_all(vals[0] < -1e10) + assert_equal(vals[[1, 2]], [np.inf, 999]) + assert_equal(type(vals), np.ndarray) + + +class TestRealIfClose: + + def test_basic(self): + a = np.random.rand(10) + b = real_if_close(a + 1e-15j) + assert_all(isrealobj(b)) + assert_array_equal(a, b) + b = real_if_close(a + 1e-7j) + assert_all(iscomplexobj(b)) + b = real_if_close(a + 1e-7j, tol=1e-6) + assert_all(isrealobj(b)) diff --git a/.venv/lib/python3.12/site-packages/numpy/lib/tests/test_ufunclike.py b/.venv/lib/python3.12/site-packages/numpy/lib/tests/test_ufunclike.py new file mode 100644 index 0000000..b4257eb --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/lib/tests/test_ufunclike.py @@ -0,0 +1,97 @@ +import numpy as np +from numpy import fix, isneginf, isposinf +from numpy.testing import assert_, assert_array_equal, assert_equal, assert_raises + + +class TestUfunclike: + + def test_isposinf(self): + a = np.array([np.inf, -np.inf, np.nan, 0.0, 3.0, -3.0]) + out = np.zeros(a.shape, bool) + tgt = np.array([True, False, False, False, False, False]) + + res = isposinf(a) + assert_equal(res, tgt) + res = isposinf(a, out) + assert_equal(res, tgt) + assert_equal(out, tgt) + + a = a.astype(np.complex128) + with assert_raises(TypeError): + isposinf(a) + + def test_isneginf(self): + a = np.array([np.inf, -np.inf, np.nan, 0.0, 3.0, -3.0]) + out = np.zeros(a.shape, bool) + tgt = np.array([False, True, False, False, False, False]) + + res = isneginf(a) + assert_equal(res, tgt) + res = isneginf(a, out) + assert_equal(res, tgt) + assert_equal(out, tgt) + + a = a.astype(np.complex128) + with assert_raises(TypeError): + isneginf(a) + + def test_fix(self): + a = np.array([[1.0, 1.1, 1.5, 1.8], [-1.0, -1.1, -1.5, -1.8]]) + out = np.zeros(a.shape, float) + tgt = np.array([[1., 1., 1., 1.], [-1., -1., -1., -1.]]) + + res = fix(a) + assert_equal(res, tgt) + res = fix(a, out) + assert_equal(res, tgt) + assert_equal(out, tgt) + assert_equal(fix(3.14), 3) + + def test_fix_with_subclass(self): + class MyArray(np.ndarray): + def __new__(cls, data, metadata=None): + res = np.array(data, copy=True).view(cls) + res.metadata = metadata + return res + + def __array_wrap__(self, obj, context=None, return_scalar=False): + if not isinstance(obj, MyArray): + obj = obj.view(MyArray) + if obj.metadata is None: + obj.metadata = self.metadata + return obj + + def __array_finalize__(self, obj): + self.metadata = getattr(obj, 'metadata', None) + return self + + a = np.array([1.1, -1.1]) + m = MyArray(a, metadata='foo') + f = fix(m) + assert_array_equal(f, np.array([1, -1])) + assert_(isinstance(f, MyArray)) + assert_equal(f.metadata, 'foo') + + # check 0d arrays don't decay to scalars + m0d = m[0, ...] + m0d.metadata = 'bar' + f0d = fix(m0d) + assert_(isinstance(f0d, MyArray)) + assert_equal(f0d.metadata, 'bar') + + def test_scalar(self): + x = np.inf + actual = np.isposinf(x) + expected = np.True_ + assert_equal(actual, expected) + assert_equal(type(actual), type(expected)) + + x = -3.4 + actual = np.fix(x) + expected = np.float64(-3.0) + assert_equal(actual, expected) + assert_equal(type(actual), type(expected)) + + out = np.array(0.0) + actual = np.fix(x, out=out) + assert_(actual is out) diff --git a/.venv/lib/python3.12/site-packages/numpy/lib/tests/test_utils.py b/.venv/lib/python3.12/site-packages/numpy/lib/tests/test_utils.py new file mode 100644 index 0000000..0106ee0 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/lib/tests/test_utils.py @@ -0,0 +1,80 @@ +from io import StringIO + +import pytest + +import numpy as np +import numpy.lib._utils_impl as _utils_impl +from numpy.testing import assert_raises_regex + + +def test_assert_raises_regex_context_manager(): + with assert_raises_regex(ValueError, 'no deprecation warning'): + raise ValueError('no deprecation warning') + + +def test_info_method_heading(): + # info(class) should only print "Methods:" heading if methods exist + + class NoPublicMethods: + pass + + class WithPublicMethods: + def first_method(): + pass + + def _has_method_heading(cls): + out = StringIO() + np.info(cls, output=out) + return 'Methods:' in out.getvalue() + + assert _has_method_heading(WithPublicMethods) + assert not _has_method_heading(NoPublicMethods) + + +def test_drop_metadata(): + def _compare_dtypes(dt1, dt2): + return np.can_cast(dt1, dt2, casting='no') + + # structured dtype + dt = np.dtype([('l1', [('l2', np.dtype('S8', metadata={'msg': 'toto'}))])], + metadata={'msg': 'titi'}) + dt_m = _utils_impl.drop_metadata(dt) + assert _compare_dtypes(dt, dt_m) is True + assert dt_m.metadata is None + assert dt_m['l1'].metadata is None + assert dt_m['l1']['l2'].metadata is None + + # alignment + dt = np.dtype([('x', '<f8'), ('y', '<i4')], + align=True, + metadata={'msg': 'toto'}) + dt_m = _utils_impl.drop_metadata(dt) + assert _compare_dtypes(dt, dt_m) is True + assert dt_m.metadata is None + + # subdtype + dt = np.dtype('8f', + metadata={'msg': 'toto'}) + dt_m = _utils_impl.drop_metadata(dt) + assert _compare_dtypes(dt, dt_m) is True + assert dt_m.metadata is None + + # scalar + dt = np.dtype('uint32', + metadata={'msg': 'toto'}) + dt_m = _utils_impl.drop_metadata(dt) + assert _compare_dtypes(dt, dt_m) is True + assert dt_m.metadata is None + + +@pytest.mark.parametrize("dtype", + [np.dtype("i,i,i,i")[["f1", "f3"]], + np.dtype("f8"), + np.dtype("10i")]) +def test_drop_metadata_identity_and_copy(dtype): + # If there is no metadata, the identity is preserved: + assert _utils_impl.drop_metadata(dtype) is dtype + + # If there is any, it is dropped (subforms are checked above) + dtype = np.dtype(dtype, metadata={1: 2}) + assert _utils_impl.drop_metadata(dtype).metadata is None diff --git a/.venv/lib/python3.12/site-packages/numpy/lib/user_array.py b/.venv/lib/python3.12/site-packages/numpy/lib/user_array.py new file mode 100644 index 0000000..2e96d03 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/lib/user_array.py @@ -0,0 +1 @@ +from ._user_array_impl import __doc__, container # noqa: F401 diff --git a/.venv/lib/python3.12/site-packages/numpy/lib/user_array.pyi b/.venv/lib/python3.12/site-packages/numpy/lib/user_array.pyi new file mode 100644 index 0000000..9b90d89 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/lib/user_array.pyi @@ -0,0 +1 @@ +from ._user_array_impl import container as container |
