summaryrefslogtreecommitdiff
path: root/.venv/lib/python3.12/site-packages/numpy/linalg/_linalg.pyi
diff options
context:
space:
mode:
Diffstat (limited to '.venv/lib/python3.12/site-packages/numpy/linalg/_linalg.pyi')
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/linalg/_linalg.pyi482
1 files changed, 482 insertions, 0 deletions
diff --git a/.venv/lib/python3.12/site-packages/numpy/linalg/_linalg.pyi b/.venv/lib/python3.12/site-packages/numpy/linalg/_linalg.pyi
new file mode 100644
index 0000000..3f318a8
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/linalg/_linalg.pyi
@@ -0,0 +1,482 @@
+from collections.abc import Iterable
+from typing import (
+ Any,
+ NamedTuple,
+ Never,
+ SupportsIndex,
+ SupportsInt,
+ TypeAlias,
+ TypeVar,
+ overload,
+)
+from typing import Literal as L
+
+import numpy as np
+from numpy import (
+ complex128,
+ complexfloating,
+ float64,
+ # other
+ floating,
+ int32,
+ object_,
+ signedinteger,
+ timedelta64,
+ unsignedinteger,
+ # re-exports
+ vecdot,
+)
+from numpy._core.fromnumeric import matrix_transpose
+from numpy._core.numeric import tensordot
+from numpy._typing import (
+ ArrayLike,
+ DTypeLike,
+ NDArray,
+ _ArrayLike,
+ _ArrayLikeBool_co,
+ _ArrayLikeComplex_co,
+ _ArrayLikeFloat_co,
+ _ArrayLikeInt_co,
+ _ArrayLikeObject_co,
+ _ArrayLikeTD64_co,
+ _ArrayLikeUInt_co,
+)
+from numpy.linalg import LinAlgError
+
+__all__ = [
+ "matrix_power",
+ "solve",
+ "tensorsolve",
+ "tensorinv",
+ "inv",
+ "cholesky",
+ "eigvals",
+ "eigvalsh",
+ "pinv",
+ "slogdet",
+ "det",
+ "svd",
+ "svdvals",
+ "eig",
+ "eigh",
+ "lstsq",
+ "norm",
+ "qr",
+ "cond",
+ "matrix_rank",
+ "LinAlgError",
+ "multi_dot",
+ "trace",
+ "diagonal",
+ "cross",
+ "outer",
+ "tensordot",
+ "matmul",
+ "matrix_transpose",
+ "matrix_norm",
+ "vector_norm",
+ "vecdot",
+]
+
+_ArrayT = TypeVar("_ArrayT", bound=NDArray[Any])
+
+_ModeKind: TypeAlias = L["reduced", "complete", "r", "raw"]
+
+###
+
+fortran_int = np.intc
+
+class EigResult(NamedTuple):
+ eigenvalues: NDArray[Any]
+ eigenvectors: NDArray[Any]
+
+class EighResult(NamedTuple):
+ eigenvalues: NDArray[Any]
+ eigenvectors: NDArray[Any]
+
+class QRResult(NamedTuple):
+ Q: NDArray[Any]
+ R: NDArray[Any]
+
+class SlogdetResult(NamedTuple):
+ # TODO: `sign` and `logabsdet` are scalars for input 2D arrays and
+ # a `(x.ndim - 2)`` dimensionl arrays otherwise
+ sign: Any
+ logabsdet: Any
+
+class SVDResult(NamedTuple):
+ U: NDArray[Any]
+ S: NDArray[Any]
+ Vh: NDArray[Any]
+
+@overload
+def tensorsolve(
+ a: _ArrayLikeInt_co,
+ b: _ArrayLikeInt_co,
+ axes: Iterable[int] | None = ...,
+) -> NDArray[float64]: ...
+@overload
+def tensorsolve(
+ a: _ArrayLikeFloat_co,
+ b: _ArrayLikeFloat_co,
+ axes: Iterable[int] | None = ...,
+) -> NDArray[floating]: ...
+@overload
+def tensorsolve(
+ a: _ArrayLikeComplex_co,
+ b: _ArrayLikeComplex_co,
+ axes: Iterable[int] | None = ...,
+) -> NDArray[complexfloating]: ...
+
+@overload
+def solve(
+ a: _ArrayLikeInt_co,
+ b: _ArrayLikeInt_co,
+) -> NDArray[float64]: ...
+@overload
+def solve(
+ a: _ArrayLikeFloat_co,
+ b: _ArrayLikeFloat_co,
+) -> NDArray[floating]: ...
+@overload
+def solve(
+ a: _ArrayLikeComplex_co,
+ b: _ArrayLikeComplex_co,
+) -> NDArray[complexfloating]: ...
+
+@overload
+def tensorinv(
+ a: _ArrayLikeInt_co,
+ ind: int = ...,
+) -> NDArray[float64]: ...
+@overload
+def tensorinv(
+ a: _ArrayLikeFloat_co,
+ ind: int = ...,
+) -> NDArray[floating]: ...
+@overload
+def tensorinv(
+ a: _ArrayLikeComplex_co,
+ ind: int = ...,
+) -> NDArray[complexfloating]: ...
+
+@overload
+def inv(a: _ArrayLikeInt_co) -> NDArray[float64]: ...
+@overload
+def inv(a: _ArrayLikeFloat_co) -> NDArray[floating]: ...
+@overload
+def inv(a: _ArrayLikeComplex_co) -> NDArray[complexfloating]: ...
+
+# TODO: The supported input and output dtypes are dependent on the value of `n`.
+# For example: `n < 0` always casts integer types to float64
+def matrix_power(
+ a: _ArrayLikeComplex_co | _ArrayLikeObject_co,
+ n: SupportsIndex,
+) -> NDArray[Any]: ...
+
+@overload
+def cholesky(a: _ArrayLikeInt_co, /, *, upper: bool = False) -> NDArray[float64]: ...
+@overload
+def cholesky(a: _ArrayLikeFloat_co, /, *, upper: bool = False) -> NDArray[floating]: ...
+@overload
+def cholesky(a: _ArrayLikeComplex_co, /, *, upper: bool = False) -> NDArray[complexfloating]: ...
+
+@overload
+def outer(x1: _ArrayLike[Never], x2: _ArrayLike[Never]) -> NDArray[Any]: ...
+@overload
+def outer(x1: _ArrayLikeBool_co, x2: _ArrayLikeBool_co) -> NDArray[np.bool]: ...
+@overload
+def outer(x1: _ArrayLikeUInt_co, x2: _ArrayLikeUInt_co) -> NDArray[unsignedinteger]: ...
+@overload
+def outer(x1: _ArrayLikeInt_co, x2: _ArrayLikeInt_co) -> NDArray[signedinteger]: ...
+@overload
+def outer(x1: _ArrayLikeFloat_co, x2: _ArrayLikeFloat_co) -> NDArray[floating]: ...
+@overload
+def outer(
+ x1: _ArrayLikeComplex_co,
+ x2: _ArrayLikeComplex_co,
+) -> NDArray[complexfloating]: ...
+@overload
+def outer(
+ x1: _ArrayLikeTD64_co,
+ x2: _ArrayLikeTD64_co,
+ out: None = ...,
+) -> NDArray[timedelta64]: ...
+@overload
+def outer(x1: _ArrayLikeObject_co, x2: _ArrayLikeObject_co) -> NDArray[object_]: ...
+@overload
+def outer(
+ x1: _ArrayLikeComplex_co | _ArrayLikeTD64_co | _ArrayLikeObject_co,
+ x2: _ArrayLikeComplex_co | _ArrayLikeTD64_co | _ArrayLikeObject_co,
+) -> _ArrayT: ...
+
+@overload
+def qr(a: _ArrayLikeInt_co, mode: _ModeKind = ...) -> QRResult: ...
+@overload
+def qr(a: _ArrayLikeFloat_co, mode: _ModeKind = ...) -> QRResult: ...
+@overload
+def qr(a: _ArrayLikeComplex_co, mode: _ModeKind = ...) -> QRResult: ...
+
+@overload
+def eigvals(a: _ArrayLikeInt_co) -> NDArray[float64] | NDArray[complex128]: ...
+@overload
+def eigvals(a: _ArrayLikeFloat_co) -> NDArray[floating] | NDArray[complexfloating]: ...
+@overload
+def eigvals(a: _ArrayLikeComplex_co) -> NDArray[complexfloating]: ...
+
+@overload
+def eigvalsh(a: _ArrayLikeInt_co, UPLO: L["L", "U", "l", "u"] = ...) -> NDArray[float64]: ...
+@overload
+def eigvalsh(a: _ArrayLikeComplex_co, UPLO: L["L", "U", "l", "u"] = ...) -> NDArray[floating]: ...
+
+@overload
+def eig(a: _ArrayLikeInt_co) -> EigResult: ...
+@overload
+def eig(a: _ArrayLikeFloat_co) -> EigResult: ...
+@overload
+def eig(a: _ArrayLikeComplex_co) -> EigResult: ...
+
+@overload
+def eigh(
+ a: _ArrayLikeInt_co,
+ UPLO: L["L", "U", "l", "u"] = ...,
+) -> EighResult: ...
+@overload
+def eigh(
+ a: _ArrayLikeFloat_co,
+ UPLO: L["L", "U", "l", "u"] = ...,
+) -> EighResult: ...
+@overload
+def eigh(
+ a: _ArrayLikeComplex_co,
+ UPLO: L["L", "U", "l", "u"] = ...,
+) -> EighResult: ...
+
+@overload
+def svd(
+ a: _ArrayLikeInt_co,
+ full_matrices: bool = ...,
+ compute_uv: L[True] = ...,
+ hermitian: bool = ...,
+) -> SVDResult: ...
+@overload
+def svd(
+ a: _ArrayLikeFloat_co,
+ full_matrices: bool = ...,
+ compute_uv: L[True] = ...,
+ hermitian: bool = ...,
+) -> SVDResult: ...
+@overload
+def svd(
+ a: _ArrayLikeComplex_co,
+ full_matrices: bool = ...,
+ compute_uv: L[True] = ...,
+ hermitian: bool = ...,
+) -> SVDResult: ...
+@overload
+def svd(
+ a: _ArrayLikeInt_co,
+ full_matrices: bool = ...,
+ compute_uv: L[False] = ...,
+ hermitian: bool = ...,
+) -> NDArray[float64]: ...
+@overload
+def svd(
+ a: _ArrayLikeComplex_co,
+ full_matrices: bool = ...,
+ compute_uv: L[False] = ...,
+ hermitian: bool = ...,
+) -> NDArray[floating]: ...
+
+def svdvals(
+ x: _ArrayLikeInt_co | _ArrayLikeFloat_co | _ArrayLikeComplex_co
+) -> NDArray[floating]: ...
+
+# TODO: Returns a scalar for 2D arrays and
+# a `(x.ndim - 2)`` dimensionl array otherwise
+def cond(x: _ArrayLikeComplex_co, p: float | L["fro", "nuc"] | None = ...) -> Any: ...
+
+# TODO: Returns `int` for <2D arrays and `intp` otherwise
+def matrix_rank(
+ A: _ArrayLikeComplex_co,
+ tol: _ArrayLikeFloat_co | None = ...,
+ hermitian: bool = ...,
+ *,
+ rtol: _ArrayLikeFloat_co | None = ...,
+) -> Any: ...
+
+@overload
+def pinv(
+ a: _ArrayLikeInt_co,
+ rcond: _ArrayLikeFloat_co = ...,
+ hermitian: bool = ...,
+) -> NDArray[float64]: ...
+@overload
+def pinv(
+ a: _ArrayLikeFloat_co,
+ rcond: _ArrayLikeFloat_co = ...,
+ hermitian: bool = ...,
+) -> NDArray[floating]: ...
+@overload
+def pinv(
+ a: _ArrayLikeComplex_co,
+ rcond: _ArrayLikeFloat_co = ...,
+ hermitian: bool = ...,
+) -> NDArray[complexfloating]: ...
+
+# TODO: Returns a 2-tuple of scalars for 2D arrays and
+# a 2-tuple of `(a.ndim - 2)`` dimensionl arrays otherwise
+def slogdet(a: _ArrayLikeComplex_co) -> SlogdetResult: ...
+
+# TODO: Returns a 2-tuple of scalars for 2D arrays and
+# a 2-tuple of `(a.ndim - 2)`` dimensionl arrays otherwise
+def det(a: _ArrayLikeComplex_co) -> Any: ...
+
+@overload
+def lstsq(a: _ArrayLikeInt_co, b: _ArrayLikeInt_co, rcond: float | None = ...) -> tuple[
+ NDArray[float64],
+ NDArray[float64],
+ int32,
+ NDArray[float64],
+]: ...
+@overload
+def lstsq(a: _ArrayLikeFloat_co, b: _ArrayLikeFloat_co, rcond: float | None = ...) -> tuple[
+ NDArray[floating],
+ NDArray[floating],
+ int32,
+ NDArray[floating],
+]: ...
+@overload
+def lstsq(a: _ArrayLikeComplex_co, b: _ArrayLikeComplex_co, rcond: float | None = ...) -> tuple[
+ NDArray[complexfloating],
+ NDArray[floating],
+ int32,
+ NDArray[floating],
+]: ...
+
+@overload
+def norm(
+ x: ArrayLike,
+ ord: float | L["fro", "nuc"] | None = ...,
+ axis: None = ...,
+ keepdims: bool = ...,
+) -> floating: ...
+@overload
+def norm(
+ x: ArrayLike,
+ ord: float | L["fro", "nuc"] | None = ...,
+ axis: SupportsInt | SupportsIndex | tuple[int, ...] = ...,
+ keepdims: bool = ...,
+) -> Any: ...
+
+@overload
+def matrix_norm(
+ x: ArrayLike,
+ /,
+ *,
+ ord: float | L["fro", "nuc"] | None = ...,
+ keepdims: bool = ...,
+) -> floating: ...
+@overload
+def matrix_norm(
+ x: ArrayLike,
+ /,
+ *,
+ ord: float | L["fro", "nuc"] | None = ...,
+ keepdims: bool = ...,
+) -> Any: ...
+
+@overload
+def vector_norm(
+ x: ArrayLike,
+ /,
+ *,
+ axis: None = ...,
+ ord: float | None = ...,
+ keepdims: bool = ...,
+) -> floating: ...
+@overload
+def vector_norm(
+ x: ArrayLike,
+ /,
+ *,
+ axis: SupportsInt | SupportsIndex | tuple[int, ...] = ...,
+ ord: float | None = ...,
+ keepdims: bool = ...,
+) -> Any: ...
+
+# TODO: Returns a scalar or array
+def multi_dot(
+ arrays: Iterable[_ArrayLikeComplex_co | _ArrayLikeObject_co | _ArrayLikeTD64_co],
+ *,
+ out: NDArray[Any] | None = ...,
+) -> Any: ...
+
+def diagonal(
+ x: ArrayLike, # >= 2D array
+ /,
+ *,
+ offset: SupportsIndex = ...,
+) -> NDArray[Any]: ...
+
+def trace(
+ x: ArrayLike, # >= 2D array
+ /,
+ *,
+ offset: SupportsIndex = ...,
+ dtype: DTypeLike = ...,
+) -> Any: ...
+
+@overload
+def cross(
+ x1: _ArrayLikeUInt_co,
+ x2: _ArrayLikeUInt_co,
+ /,
+ *,
+ axis: int = ...,
+) -> NDArray[unsignedinteger]: ...
+@overload
+def cross(
+ x1: _ArrayLikeInt_co,
+ x2: _ArrayLikeInt_co,
+ /,
+ *,
+ axis: int = ...,
+) -> NDArray[signedinteger]: ...
+@overload
+def cross(
+ x1: _ArrayLikeFloat_co,
+ x2: _ArrayLikeFloat_co,
+ /,
+ *,
+ axis: int = ...,
+) -> NDArray[floating]: ...
+@overload
+def cross(
+ x1: _ArrayLikeComplex_co,
+ x2: _ArrayLikeComplex_co,
+ /,
+ *,
+ axis: int = ...,
+) -> NDArray[complexfloating]: ...
+
+@overload
+def matmul(
+ x1: _ArrayLikeInt_co,
+ x2: _ArrayLikeInt_co,
+) -> NDArray[signedinteger]: ...
+@overload
+def matmul(
+ x1: _ArrayLikeUInt_co,
+ x2: _ArrayLikeUInt_co,
+) -> NDArray[unsignedinteger]: ...
+@overload
+def matmul(
+ x1: _ArrayLikeFloat_co,
+ x2: _ArrayLikeFloat_co,
+) -> NDArray[floating]: ...
+@overload
+def matmul(
+ x1: _ArrayLikeComplex_co,
+ x2: _ArrayLikeComplex_co,
+) -> NDArray[complexfloating]: ...