summaryrefslogtreecommitdiff
path: root/.venv/lib/python3.12/site-packages/~ip/_vendor/chardet/sbcharsetprober.py
diff options
context:
space:
mode:
Diffstat (limited to '.venv/lib/python3.12/site-packages/~ip/_vendor/chardet/sbcharsetprober.py')
-rw-r--r--.venv/lib/python3.12/site-packages/~ip/_vendor/chardet/sbcharsetprober.py162
1 files changed, 162 insertions, 0 deletions
diff --git a/.venv/lib/python3.12/site-packages/~ip/_vendor/chardet/sbcharsetprober.py b/.venv/lib/python3.12/site-packages/~ip/_vendor/chardet/sbcharsetprober.py
new file mode 100644
index 0000000..0ffbcdd
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/~ip/_vendor/chardet/sbcharsetprober.py
@@ -0,0 +1,162 @@
+######################## BEGIN LICENSE BLOCK ########################
+# The Original Code is Mozilla Universal charset detector code.
+#
+# The Initial Developer of the Original Code is
+# Netscape Communications Corporation.
+# Portions created by the Initial Developer are Copyright (C) 2001
+# the Initial Developer. All Rights Reserved.
+#
+# Contributor(s):
+# Mark Pilgrim - port to Python
+# Shy Shalom - original C code
+#
+# This library is free software; you can redistribute it and/or
+# modify it under the terms of the GNU Lesser General Public
+# License as published by the Free Software Foundation; either
+# version 2.1 of the License, or (at your option) any later version.
+#
+# This library is distributed in the hope that it will be useful,
+# but WITHOUT ANY WARRANTY; without even the implied warranty of
+# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+# Lesser General Public License for more details.
+#
+# You should have received a copy of the GNU Lesser General Public
+# License along with this library; if not, write to the Free Software
+# Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA
+# 02110-1301 USA
+######################### END LICENSE BLOCK #########################
+
+from typing import Dict, List, NamedTuple, Optional, Union
+
+from .charsetprober import CharSetProber
+from .enums import CharacterCategory, ProbingState, SequenceLikelihood
+
+
+class SingleByteCharSetModel(NamedTuple):
+ charset_name: str
+ language: str
+ char_to_order_map: Dict[int, int]
+ language_model: Dict[int, Dict[int, int]]
+ typical_positive_ratio: float
+ keep_ascii_letters: bool
+ alphabet: str
+
+
+class SingleByteCharSetProber(CharSetProber):
+ SAMPLE_SIZE = 64
+ SB_ENOUGH_REL_THRESHOLD = 1024 # 0.25 * SAMPLE_SIZE^2
+ POSITIVE_SHORTCUT_THRESHOLD = 0.95
+ NEGATIVE_SHORTCUT_THRESHOLD = 0.05
+
+ def __init__(
+ self,
+ model: SingleByteCharSetModel,
+ is_reversed: bool = False,
+ name_prober: Optional[CharSetProber] = None,
+ ) -> None:
+ super().__init__()
+ self._model = model
+ # TRUE if we need to reverse every pair in the model lookup
+ self._reversed = is_reversed
+ # Optional auxiliary prober for name decision
+ self._name_prober = name_prober
+ self._last_order = 255
+ self._seq_counters: List[int] = []
+ self._total_seqs = 0
+ self._total_char = 0
+ self._control_char = 0
+ self._freq_char = 0
+ self.reset()
+
+ def reset(self) -> None:
+ super().reset()
+ # char order of last character
+ self._last_order = 255
+ self._seq_counters = [0] * SequenceLikelihood.get_num_categories()
+ self._total_seqs = 0
+ self._total_char = 0
+ self._control_char = 0
+ # characters that fall in our sampling range
+ self._freq_char = 0
+
+ @property
+ def charset_name(self) -> Optional[str]:
+ if self._name_prober:
+ return self._name_prober.charset_name
+ return self._model.charset_name
+
+ @property
+ def language(self) -> Optional[str]:
+ if self._name_prober:
+ return self._name_prober.language
+ return self._model.language
+
+ def feed(self, byte_str: Union[bytes, bytearray]) -> ProbingState:
+ # TODO: Make filter_international_words keep things in self.alphabet
+ if not self._model.keep_ascii_letters:
+ byte_str = self.filter_international_words(byte_str)
+ else:
+ byte_str = self.remove_xml_tags(byte_str)
+ if not byte_str:
+ return self.state
+ char_to_order_map = self._model.char_to_order_map
+ language_model = self._model.language_model
+ for char in byte_str:
+ order = char_to_order_map.get(char, CharacterCategory.UNDEFINED)
+ # XXX: This was SYMBOL_CAT_ORDER before, with a value of 250, but
+ # CharacterCategory.SYMBOL is actually 253, so we use CONTROL
+ # to make it closer to the original intent. The only difference
+ # is whether or not we count digits and control characters for
+ # _total_char purposes.
+ if order < CharacterCategory.CONTROL:
+ self._total_char += 1
+ if order < self.SAMPLE_SIZE:
+ self._freq_char += 1
+ if self._last_order < self.SAMPLE_SIZE:
+ self._total_seqs += 1
+ if not self._reversed:
+ lm_cat = language_model[self._last_order][order]
+ else:
+ lm_cat = language_model[order][self._last_order]
+ self._seq_counters[lm_cat] += 1
+ self._last_order = order
+
+ charset_name = self._model.charset_name
+ if self.state == ProbingState.DETECTING:
+ if self._total_seqs > self.SB_ENOUGH_REL_THRESHOLD:
+ confidence = self.get_confidence()
+ if confidence > self.POSITIVE_SHORTCUT_THRESHOLD:
+ self.logger.debug(
+ "%s confidence = %s, we have a winner", charset_name, confidence
+ )
+ self._state = ProbingState.FOUND_IT
+ elif confidence < self.NEGATIVE_SHORTCUT_THRESHOLD:
+ self.logger.debug(
+ "%s confidence = %s, below negative shortcut threshold %s",
+ charset_name,
+ confidence,
+ self.NEGATIVE_SHORTCUT_THRESHOLD,
+ )
+ self._state = ProbingState.NOT_ME
+
+ return self.state
+
+ def get_confidence(self) -> float:
+ r = 0.01
+ if self._total_seqs > 0:
+ r = (
+ (
+ self._seq_counters[SequenceLikelihood.POSITIVE]
+ + 0.25 * self._seq_counters[SequenceLikelihood.LIKELY]
+ )
+ / self._total_seqs
+ / self._model.typical_positive_ratio
+ )
+ # The more control characters (proportionnaly to the size
+ # of the text), the less confident we become in the current
+ # charset.
+ r = r * (self._total_char - self._control_char) / self._total_char
+ r = r * self._freq_char / self._total_char
+ if r >= 1.0:
+ r = 0.99
+ return r