| ofs | hex dump | ascii |
|---|
| 0000 | cb 0d 0d 0a 00 00 00 00 85 fa a7 68 b2 17 00 00 e3 00 00 00 00 00 00 00 00 00 00 00 00 05 00 00 | ...........h.................... |
| 0020 | 00 00 00 00 00 f3 08 01 00 00 97 00 64 00 5a 00 64 01 64 02 6c 01 6d 02 5a 02 01 00 64 01 64 03 | ............d.Z.d.d.l.m.Z...d.d. |
| 0040 | 6c 03 5a 04 64 01 64 04 6c 05 6d 06 5a 06 01 00 67 00 64 05 a2 01 5a 07 02 00 65 06 64 06 ab 01 | l.Z.d.d.l.m.Z...g.d...Z...e.d... |
| 0060 | 00 00 00 00 00 00 65 04 6a 10 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 64 0d 64 07 | ......e.j...................d.d. |
| 0080 | 84 01 ab 00 00 00 00 00 00 00 ab 00 00 00 00 00 00 00 5a 09 02 00 65 06 64 06 ab 01 00 00 00 00 | ..................Z...e.d....... |
| 00a0 | 00 00 65 04 6a 10 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 64 0d 64 08 84 01 ab 00 | ..e.j...................d.d..... |
| 00c0 | 00 00 00 00 00 00 ab 00 00 00 00 00 00 00 5a 0a 02 00 65 06 64 09 ab 01 00 00 00 00 00 00 02 00 | ..............Z...e.d........... |
| 00e0 | 65 06 64 06 ab 01 00 00 00 00 00 00 02 00 65 04 6a 10 00 00 00 00 00 00 00 00 00 00 00 00 00 00 | e.d...........e.j............... |
| 0100 | 00 00 00 00 64 0a ac 0b ab 01 00 00 00 00 00 00 64 0e 64 0c 84 01 ab 00 00 00 00 00 00 00 ab 00 | ....d...........d.d............. |
| 0120 | 00 00 00 00 00 00 ab 00 00 00 00 00 00 00 5a 0b 79 03 29 0f 7a 1a 42 72 69 64 67 65 2d 66 69 6e | ..............Z.y.).z.Bridge-fin |
| 0140 | 64 69 6e 67 20 61 6c 67 6f 72 69 74 68 6d 73 2e e9 00 00 00 00 29 01 da 05 63 68 61 69 6e 4e 29 | ding.algorithms......)...chainN) |
| 0160 | 01 da 13 6e 6f 74 5f 69 6d 70 6c 65 6d 65 6e 74 65 64 5f 66 6f 72 29 03 da 07 62 72 69 64 67 65 | ...not_implemented_for)...bridge |
| 0180 | 73 da 0b 68 61 73 5f 62 72 69 64 67 65 73 da 0d 6c 6f 63 61 6c 5f 62 72 69 64 67 65 73 da 08 64 | s..has_bridges..local_bridges..d |
| 01a0 | 69 72 65 63 74 65 64 63 02 00 00 00 00 00 00 00 00 00 00 00 06 00 00 00 23 00 00 00 f3 b8 01 00 | irectedc................#....... |
| 01c0 | 00 4b 00 01 00 97 00 7c 00 6a 01 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ab 00 00 | .K.....|.j...................... |
| 01e0 | 00 00 00 00 00 7d 02 7c 02 72 15 74 03 00 00 00 00 00 00 00 00 6a 04 00 00 00 00 00 00 00 00 00 | .....}.|.r.t.........j.......... |
| 0200 | 00 00 00 00 00 00 00 00 00 7c 00 ab 01 00 00 00 00 00 00 6e 01 7c 00 7d 03 74 03 00 00 00 00 00 | .........|.........n.|.}.t...... |
| 0220 | 00 00 00 6a 06 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 7c 03 7c 01 ac 01 ab 02 00 | ...j...................|.|...... |
| 0240 | 00 00 00 00 00 7d 04 74 09 00 00 00 00 00 00 00 00 74 0b 00 00 00 00 00 00 00 00 6a 0c 00 00 00 | .....}.t.........t.........j.... |
| 0260 | 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 7c 04 ab 01 00 00 00 00 00 00 ab 01 00 00 00 00 00 | ...............|................ |
| 0280 | 00 7d 05 7c 01 81 33 7c 03 6a 0f 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 74 03 00 | .}.|..3|.j...................t.. |
| 02a0 | 00 00 00 00 00 00 00 6a 10 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 7c 03 7c 01 ab | .......j...................|.|.. |
| 02c0 | 02 00 00 00 00 00 00 ab 01 00 00 00 00 00 00 6a 13 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 | ...............j................ |
| 02e0 | 00 00 00 ab 00 00 00 00 00 00 00 7d 03 7c 03 6a 15 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 | ...........}.|.j................ |
| 0300 | 00 00 00 ab 00 00 00 00 00 00 00 44 00 5d 30 00 00 5c 02 00 00 7d 06 7d 07 7c 06 7c 07 66 02 7c | ...........D.]0..\...}.}.|.|.f.| |
| 0320 | 05 76 01 73 01 8c 0d 7c 07 7c 06 66 02 7c 05 76 01 73 01 8c 14 7c 02 72 15 74 17 00 00 00 00 00 | .v.s...|.|.f.|.v.s...|.r.t...... |
| 0340 | 00 00 00 7c 00 7c 06 19 00 00 00 7c 07 19 00 00 00 ab 01 00 00 00 00 00 00 64 03 6b 44 00 00 72 | ...|.|.....|.............d.kD..r |
| 0360 | 01 8c 2b 7c 06 7c 07 66 02 96 01 97 01 01 00 8c 32 04 00 79 02 ad 03 77 01 29 04 61 40 07 00 00 | ..+|.|.f........2..y...w.).a@... |
| 0380 | 47 65 6e 65 72 61 74 65 20 61 6c 6c 20 62 72 69 64 67 65 73 20 69 6e 20 61 20 67 72 61 70 68 2e | Generate.all.bridges.in.a.graph. |
| 03a0 | 0a 0a 20 20 20 20 41 20 2a 62 72 69 64 67 65 2a 20 69 6e 20 61 20 67 72 61 70 68 20 69 73 20 61 | ......A.*bridge*.in.a.graph.is.a |
| 03c0 | 6e 20 65 64 67 65 20 77 68 6f 73 65 20 72 65 6d 6f 76 61 6c 20 63 61 75 73 65 73 20 74 68 65 20 | n.edge.whose.removal.causes.the. |
| 03e0 | 6e 75 6d 62 65 72 20 6f 66 0a 20 20 20 20 63 6f 6e 6e 65 63 74 65 64 20 63 6f 6d 70 6f 6e 65 6e | number.of.....connected.componen |
| 0400 | 74 73 20 6f 66 20 74 68 65 20 67 72 61 70 68 20 74 6f 20 69 6e 63 72 65 61 73 65 2e 20 20 45 71 | ts.of.the.graph.to.increase...Eq |
| 0420 | 75 69 76 61 6c 65 6e 74 6c 79 2c 20 61 20 62 72 69 64 67 65 20 69 73 20 61 6e 0a 20 20 20 20 65 | uivalently,.a.bridge.is.an.....e |
| 0440 | 64 67 65 20 74 68 61 74 20 64 6f 65 73 20 6e 6f 74 20 62 65 6c 6f 6e 67 20 74 6f 20 61 6e 79 20 | dge.that.does.not.belong.to.any. |
| 0460 | 63 79 63 6c 65 2e 20 42 72 69 64 67 65 73 20 61 72 65 20 61 6c 73 6f 20 6b 6e 6f 77 6e 20 61 73 | cycle..Bridges.are.also.known.as |
| 0480 | 20 63 75 74 2d 65 64 67 65 73 2c 0a 20 20 20 20 69 73 74 68 6d 75 73 65 73 2c 20 6f 72 20 63 75 | .cut-edges,.....isthmuses,.or.cu |
| 04a0 | 74 20 61 72 63 73 2e 0a 0a 20 20 20 20 50 61 72 61 6d 65 74 65 72 73 0a 20 20 20 20 2d 2d 2d 2d | t.arcs.......Parameters.....---- |
| 04c0 | 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 47 20 3a 20 75 6e 64 69 72 65 63 74 65 64 20 67 72 61 70 68 0a | ------.....G.:.undirected.graph. |
| 04e0 | 0a 20 20 20 20 72 6f 6f 74 20 3a 20 6e 6f 64 65 20 28 6f 70 74 69 6f 6e 61 6c 29 0a 20 20 20 20 | .....root.:.node.(optional)..... |
| 0500 | 20 20 20 41 20 6e 6f 64 65 20 69 6e 20 74 68 65 20 67 72 61 70 68 20 60 47 60 2e 20 49 66 20 73 | ...A.node.in.the.graph.`G`..If.s |
| 0520 | 70 65 63 69 66 69 65 64 2c 20 6f 6e 6c 79 20 74 68 65 20 62 72 69 64 67 65 73 20 69 6e 20 74 68 | pecified,.only.the.bridges.in.th |
| 0540 | 65 0a 20 20 20 20 20 20 20 63 6f 6e 6e 65 63 74 65 64 20 63 6f 6d 70 6f 6e 65 6e 74 20 63 6f 6e | e........connected.component.con |
| 0560 | 74 61 69 6e 69 6e 67 20 74 68 69 73 20 6e 6f 64 65 20 77 69 6c 6c 20 62 65 20 72 65 74 75 72 6e | taining.this.node.will.be.return |
| 0580 | 65 64 2e 0a 0a 20 20 20 20 59 69 65 6c 64 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 65 | ed.......Yields.....------.....e |
| 05a0 | 20 3a 20 65 64 67 65 0a 20 20 20 20 20 20 20 41 6e 20 65 64 67 65 20 69 6e 20 74 68 65 20 67 72 | .:.edge........An.edge.in.the.gr |
| 05c0 | 61 70 68 20 77 68 6f 73 65 20 72 65 6d 6f 76 61 6c 20 64 69 73 63 6f 6e 6e 65 63 74 73 20 74 68 | aph.whose.removal.disconnects.th |
| 05e0 | 65 20 67 72 61 70 68 20 28 6f 72 0a 20 20 20 20 20 20 20 63 61 75 73 65 73 20 74 68 65 20 6e 75 | e.graph.(or........causes.the.nu |
| 0600 | 6d 62 65 72 20 6f 66 20 63 6f 6e 6e 65 63 74 65 64 20 63 6f 6d 70 6f 6e 65 6e 74 73 20 74 6f 20 | mber.of.connected.components.to. |
| 0620 | 69 6e 63 72 65 61 73 65 29 2e 0a 0a 20 20 20 20 52 61 69 73 65 73 0a 20 20 20 20 2d 2d 2d 2d 2d | increase).......Raises.....----- |
| 0640 | 2d 0a 20 20 20 20 4e 6f 64 65 4e 6f 74 46 6f 75 6e 64 0a 20 20 20 20 20 20 20 49 66 20 60 72 6f | -.....NodeNotFound........If.`ro |
| 0660 | 6f 74 60 20 69 73 20 6e 6f 74 20 69 6e 20 74 68 65 20 67 72 61 70 68 20 60 47 60 2e 0a 0a 20 20 | ot`.is.not.in.the.graph.`G`..... |
| 0680 | 20 20 4e 65 74 77 6f 72 6b 58 4e 6f 74 49 6d 70 6c 65 6d 65 6e 74 65 64 0a 20 20 20 20 20 20 20 | ..NetworkXNotImplemented........ |
| 06a0 | 20 49 66 20 60 47 60 20 69 73 20 61 20 64 69 72 65 63 74 65 64 20 67 72 61 70 68 2e 0a 0a 20 20 | .If.`G`.is.a.directed.graph..... |
| 06c0 | 20 20 45 78 61 6d 70 6c 65 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 54 68 65 20 | ..Examples.....--------.....The. |
| 06e0 | 62 61 72 62 65 6c 6c 20 67 72 61 70 68 20 77 69 74 68 20 70 61 72 61 6d 65 74 65 72 20 7a 65 72 | barbell.graph.with.parameter.zer |
| 0700 | 6f 20 68 61 73 20 61 20 73 69 6e 67 6c 65 20 62 72 69 64 67 65 3a 0a 0a 20 20 20 20 3e 3e 3e 20 | o.has.a.single.bridge:......>>>. |
| 0720 | 47 20 3d 20 6e 78 2e 62 61 72 62 65 6c 6c 5f 67 72 61 70 68 28 31 30 2c 20 30 29 0a 20 20 20 20 | G.=.nx.barbell_graph(10,.0)..... |
| 0740 | 3e 3e 3e 20 6c 69 73 74 28 6e 78 2e 62 72 69 64 67 65 73 28 47 29 29 0a 20 20 20 20 5b 28 39 2c | >>>.list(nx.bridges(G)).....[(9, |
| 0760 | 20 31 30 29 5d 0a 0a 20 20 20 20 4e 6f 74 65 73 0a 20 20 20 20 2d 2d 2d 2d 2d 0a 20 20 20 20 54 | .10)]......Notes.....-----.....T |
| 0780 | 68 69 73 20 69 73 20 61 6e 20 69 6d 70 6c 65 6d 65 6e 74 61 74 69 6f 6e 20 6f 66 20 74 68 65 20 | his.is.an.implementation.of.the. |
| 07a0 | 61 6c 67 6f 72 69 74 68 6d 20 64 65 73 63 72 69 62 65 64 20 69 6e 20 5b 31 5d 5f 2e 20 20 41 6e | algorithm.described.in.[1]_...An |
| 07c0 | 20 65 64 67 65 20 69 73 20 61 0a 20 20 20 20 62 72 69 64 67 65 20 69 66 20 61 6e 64 20 6f 6e 6c | .edge.is.a.....bridge.if.and.onl |
| 07e0 | 79 20 69 66 20 69 74 20 69 73 20 6e 6f 74 20 63 6f 6e 74 61 69 6e 65 64 20 69 6e 20 61 6e 79 20 | y.if.it.is.not.contained.in.any. |
| 0800 | 63 68 61 69 6e 2e 20 43 68 61 69 6e 73 20 61 72 65 20 66 6f 75 6e 64 0a 20 20 20 20 75 73 69 6e | chain..Chains.are.found.....usin |
| 0820 | 67 20 74 68 65 20 3a 66 75 6e 63 3a 60 6e 65 74 77 6f 72 6b 78 2e 63 68 61 69 6e 5f 64 65 63 6f | g.the.:func:`networkx.chain_deco |
| 0840 | 6d 70 6f 73 69 74 69 6f 6e 60 20 66 75 6e 63 74 69 6f 6e 2e 0a 0a 20 20 20 20 54 68 65 20 61 6c | mposition`.function.......The.al |
| 0860 | 67 6f 72 69 74 68 6d 20 64 65 73 63 72 69 62 65 64 20 69 6e 20 5b 31 5d 5f 20 72 65 71 75 69 72 | gorithm.described.in.[1]_.requir |
| 0880 | 65 73 20 61 20 73 69 6d 70 6c 65 20 67 72 61 70 68 2e 20 49 66 20 74 68 65 20 70 72 6f 76 69 64 | es.a.simple.graph..If.the.provid |
| 08a0 | 65 64 0a 20 20 20 20 67 72 61 70 68 20 69 73 20 61 20 6d 75 6c 74 69 67 72 61 70 68 2c 20 77 65 | ed.....graph.is.a.multigraph,.we |
| 08c0 | 20 63 6f 6e 76 65 72 74 20 69 74 20 74 6f 20 61 20 73 69 6d 70 6c 65 20 67 72 61 70 68 20 61 6e | .convert.it.to.a.simple.graph.an |
| 08e0 | 64 20 76 65 72 69 66 79 20 74 68 61 74 20 61 6e 79 0a 20 20 20 20 62 72 69 64 67 65 73 20 64 69 | d.verify.that.any.....bridges.di |
| 0900 | 73 63 6f 76 65 72 65 64 20 62 79 20 74 68 65 20 63 68 61 69 6e 20 64 65 63 6f 6d 70 6f 73 69 74 | scovered.by.the.chain.decomposit |
| 0920 | 69 6f 6e 20 61 6c 67 6f 72 69 74 68 6d 20 61 72 65 20 6e 6f 74 20 6d 75 6c 74 69 2d 65 64 67 65 | ion.algorithm.are.not.multi-edge |
| 0940 | 73 2e 0a 0a 20 20 20 20 49 67 6e 6f 72 69 6e 67 20 70 6f 6c 79 6c 6f 67 61 72 69 74 68 6d 69 63 | s.......Ignoring.polylogarithmic |
| 0960 | 20 66 61 63 74 6f 72 73 2c 20 74 68 65 20 77 6f 72 73 74 2d 63 61 73 65 20 74 69 6d 65 20 63 6f | .factors,.the.worst-case.time.co |
| 0980 | 6d 70 6c 65 78 69 74 79 20 69 73 20 74 68 65 0a 20 20 20 20 73 61 6d 65 20 61 73 20 74 68 65 20 | mplexity.is.the.....same.as.the. |
| 09a0 | 3a 66 75 6e 63 3a 60 6e 65 74 77 6f 72 6b 78 2e 63 68 61 69 6e 5f 64 65 63 6f 6d 70 6f 73 69 74 | :func:`networkx.chain_decomposit |
| 09c0 | 69 6f 6e 60 20 66 75 6e 63 74 69 6f 6e 2c 0a 20 20 20 20 24 4f 28 6d 20 2b 20 6e 29 24 2c 20 77 | ion`.function,.....$O(m.+.n)$,.w |
| 09e0 | 68 65 72 65 20 24 6e 24 20 69 73 20 74 68 65 20 6e 75 6d 62 65 72 20 6f 66 20 6e 6f 64 65 73 20 | here.$n$.is.the.number.of.nodes. |
| 0a00 | 69 6e 20 74 68 65 20 67 72 61 70 68 20 61 6e 64 20 24 6d 24 20 69 73 0a 20 20 20 20 74 68 65 20 | in.the.graph.and.$m$.is.....the. |
| 0a20 | 6e 75 6d 62 65 72 20 6f 66 20 65 64 67 65 73 2e 0a 0a 20 20 20 20 52 65 66 65 72 65 6e 63 65 73 | number.of.edges.......References |
| 0a40 | 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 2e 2e 20 5b 31 5d 20 68 74 74 70 73 | .....----------........[1].https |
| 0a60 | 3a 2f 2f 65 6e 2e 77 69 6b 69 70 65 64 69 61 2e 6f 72 67 2f 77 69 6b 69 2f 42 72 69 64 67 65 5f | ://en.wikipedia.org/wiki/Bridge_ |
| 0a80 | 25 32 38 67 72 61 70 68 5f 74 68 65 6f 72 79 25 32 39 23 42 72 69 64 67 65 2d 46 69 6e 64 69 6e | %28graph_theory%29#Bridge-Findin |
| 0aa0 | 67 5f 77 69 74 68 5f 43 68 61 69 6e 5f 44 65 63 6f 6d 70 6f 73 69 74 69 6f 6e 73 0a 20 20 20 20 | g_with_Chain_Decompositions..... |
| 0ac0 | a9 01 da 04 72 6f 6f 74 4e e9 01 00 00 00 29 0c da 0d 69 73 5f 6d 75 6c 74 69 67 72 61 70 68 da | ....rootN.....)...is_multigraph. |
| 0ae0 | 02 6e 78 da 05 47 72 61 70 68 da 13 63 68 61 69 6e 5f 64 65 63 6f 6d 70 6f 73 69 74 69 6f 6e da | .nx..Graph..chain_decomposition. |
| 0b00 | 03 73 65 74 72 03 00 00 00 da 0d 66 72 6f 6d 5f 69 74 65 72 61 62 6c 65 da 08 73 75 62 67 72 61 | .setr......from_iterable..subgra |
| 0b20 | 70 68 da 18 6e 6f 64 65 5f 63 6f 6e 6e 65 63 74 65 64 5f 63 6f 6d 70 6f 6e 65 6e 74 da 04 63 6f | ph..node_connected_component..co |
| 0b40 | 70 79 da 05 65 64 67 65 73 da 03 6c 65 6e 29 08 da 01 47 72 0b 00 00 00 da 0a 6d 75 6c 74 69 67 | py..edges..len)...Gr......multig |
| 0b60 | 72 61 70 68 da 01 48 da 06 63 68 61 69 6e 73 da 0b 63 68 61 69 6e 5f 65 64 67 65 73 da 01 75 da | raph..H..chains..chain_edges..u. |
| 0b80 | 01 76 73 08 00 00 00 20 20 20 20 20 20 20 20 fa 62 2f 68 6f 6d 65 2f 62 6c 61 63 6b 68 61 6f 2f | .vs.............b/home/blackhao/ |
| 0ba0 | 75 69 75 63 2d 63 6f 75 72 73 65 2d 67 72 61 70 68 2f 2e 76 65 6e 76 2f 6c 69 62 2f 70 79 74 68 | uiuc-course-graph/.venv/lib/pyth |
| 0bc0 | 6f 6e 33 2e 31 32 2f 73 69 74 65 2d 70 61 63 6b 61 67 65 73 2f 6e 65 74 77 6f 72 6b 78 2f 61 6c | on3.12/site-packages/networkx/al |
| 0be0 | 67 6f 72 69 74 68 6d 73 2f 62 72 69 64 67 65 73 2e 70 79 72 05 00 00 00 72 05 00 00 00 0b 00 00 | gorithms/bridges.pyr....r....... |
| 0c00 | 00 73 c9 00 00 00 e8 00 f8 80 00 f0 76 01 00 12 13 97 1f 91 1f d3 11 22 80 4a d9 17 21 8c 02 8f | .s..........v..........".J..!... |
| 0c20 | 08 89 08 90 11 8c 0b a0 71 80 41 dc 0d 0f d7 0d 23 d1 0d 23 a0 41 a8 44 d4 0d 31 80 46 dc 12 15 | ........q.A.....#..#.A.D..1.F... |
| 0c40 | 94 65 d7 16 29 d1 16 29 a8 26 d3 16 31 d3 12 32 80 4b d8 07 0b d0 07 17 d8 0c 0d 8f 4a 89 4a 94 | .e..)..).&..1..2.K..........J.J. |
| 0c60 | 72 d7 17 32 d1 17 32 b0 31 b0 64 d3 17 3b d3 0c 3c d7 0c 41 d1 0c 41 d3 0c 43 88 01 d8 10 11 97 | r..2..2.1.d..;..<..A..A..C...... |
| 0c80 | 07 91 07 93 09 f2 00 04 05 17 89 04 88 01 88 31 d8 0c 0d 88 71 88 36 98 1b d2 0b 24 a8 21 a8 51 | ...............1....q.6....$.!.Q |
| 0ca0 | a8 16 b0 7b d2 29 42 d9 0f 19 9c 63 a0 21 a0 41 a1 24 a0 71 a1 27 9b 6c a8 51 d2 1e 2e d8 10 18 | ...{.)B....c.!.A.$.q.'.l.Q...... |
| 0cc0 | d8 12 13 90 51 90 24 8b 4a f1 09 04 05 17 f9 73 12 00 00 00 82 42 30 43 1a 01 c2 33 06 43 1a 01 | ....Q.$.J......s.....B0C...3.C.. |
| 0ce0 | c2 3a 20 43 1a 01 63 02 00 00 00 00 00 00 00 00 00 00 00 06 00 00 00 03 00 00 00 f3 50 00 00 00 | .:.C..c.....................P... |
| 0d00 | 97 00 09 00 74 01 00 00 00 00 00 00 00 00 74 03 00 00 00 00 00 00 00 00 7c 00 7c 01 ac 01 ab 02 | ....t.........t.........|.|..... |
| 0d20 | 00 00 00 00 00 00 ab 01 00 00 00 00 00 00 01 00 79 02 23 00 74 04 00 00 00 00 00 00 00 00 24 00 | ................y.#.t.........$. |
| 0d40 | 72 03 01 00 59 00 79 03 77 00 78 03 59 00 77 01 29 04 61 e0 04 00 00 44 65 63 69 64 65 20 77 68 | r...Y.y.w.x.Y.w.).a....Decide.wh |
| 0d60 | 65 74 68 65 72 20 61 20 67 72 61 70 68 20 68 61 73 20 61 6e 79 20 62 72 69 64 67 65 73 2e 0a 0a | ether.a.graph.has.any.bridges... |
| 0d80 | 20 20 20 20 41 20 2a 62 72 69 64 67 65 2a 20 69 6e 20 61 20 67 72 61 70 68 20 69 73 20 61 6e 20 | ....A.*bridge*.in.a.graph.is.an. |
| 0da0 | 65 64 67 65 20 77 68 6f 73 65 20 72 65 6d 6f 76 61 6c 20 63 61 75 73 65 73 20 74 68 65 20 6e 75 | edge.whose.removal.causes.the.nu |
| 0dc0 | 6d 62 65 72 20 6f 66 0a 20 20 20 20 63 6f 6e 6e 65 63 74 65 64 20 63 6f 6d 70 6f 6e 65 6e 74 73 | mber.of.....connected.components |
| 0de0 | 20 6f 66 20 74 68 65 20 67 72 61 70 68 20 74 6f 20 69 6e 63 72 65 61 73 65 2e 0a 0a 20 20 20 20 | .of.the.graph.to.increase....... |
| 0e00 | 50 61 72 61 6d 65 74 65 72 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 47 20 | Parameters.....----------.....G. |
| 0e20 | 3a 20 75 6e 64 69 72 65 63 74 65 64 20 67 72 61 70 68 0a 0a 20 20 20 20 72 6f 6f 74 20 3a 20 6e | :.undirected.graph......root.:.n |
| 0e40 | 6f 64 65 20 28 6f 70 74 69 6f 6e 61 6c 29 0a 20 20 20 20 20 20 20 41 20 6e 6f 64 65 20 69 6e 20 | ode.(optional)........A.node.in. |
| 0e60 | 74 68 65 20 67 72 61 70 68 20 60 47 60 2e 20 49 66 20 73 70 65 63 69 66 69 65 64 2c 20 6f 6e 6c | the.graph.`G`..If.specified,.onl |
| 0e80 | 79 20 74 68 65 20 62 72 69 64 67 65 73 20 69 6e 20 74 68 65 0a 20 20 20 20 20 20 20 63 6f 6e 6e | y.the.bridges.in.the........conn |
| 0ea0 | 65 63 74 65 64 20 63 6f 6d 70 6f 6e 65 6e 74 20 63 6f 6e 74 61 69 6e 69 6e 67 20 74 68 69 73 20 | ected.component.containing.this. |
| 0ec0 | 6e 6f 64 65 20 77 69 6c 6c 20 62 65 20 63 6f 6e 73 69 64 65 72 65 64 2e 0a 0a 20 20 20 20 52 65 | node.will.be.considered.......Re |
| 0ee0 | 74 75 72 6e 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 62 6f 6f 6c 0a 20 20 20 20 20 | turns.....-------.....bool...... |
| 0f00 | 20 20 57 68 65 74 68 65 72 20 74 68 65 20 67 72 61 70 68 20 28 6f 72 20 74 68 65 20 63 6f 6e 6e | ..Whether.the.graph.(or.the.conn |
| 0f20 | 65 63 74 65 64 20 63 6f 6d 70 6f 6e 65 6e 74 20 63 6f 6e 74 61 69 6e 69 6e 67 20 60 72 6f 6f 74 | ected.component.containing.`root |
| 0f40 | 60 29 0a 20 20 20 20 20 20 20 68 61 73 20 61 6e 79 20 62 72 69 64 67 65 73 2e 0a 0a 20 20 20 20 | `)........has.any.bridges....... |
| 0f60 | 52 61 69 73 65 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 4e 6f 64 65 4e 6f 74 46 6f 75 | Raises.....------.....NodeNotFou |
| 0f80 | 6e 64 0a 20 20 20 20 20 20 20 49 66 20 60 72 6f 6f 74 60 20 69 73 20 6e 6f 74 20 69 6e 20 74 68 | nd........If.`root`.is.not.in.th |
| 0fa0 | 65 20 67 72 61 70 68 20 60 47 60 2e 0a 0a 20 20 20 20 4e 65 74 77 6f 72 6b 58 4e 6f 74 49 6d 70 | e.graph.`G`.......NetworkXNotImp |
| 0fc0 | 6c 65 6d 65 6e 74 65 64 0a 20 20 20 20 20 20 20 20 49 66 20 60 47 60 20 69 73 20 61 20 64 69 72 | lemented.........If.`G`.is.a.dir |
| 0fe0 | 65 63 74 65 64 20 67 72 61 70 68 2e 0a 0a 20 20 20 20 45 78 61 6d 70 6c 65 73 0a 20 20 20 20 2d | ected.graph.......Examples.....- |
| 1000 | 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 54 68 65 20 62 61 72 62 65 6c 6c 20 67 72 61 70 68 20 77 69 | -------.....The.barbell.graph.wi |
| 1020 | 74 68 20 70 61 72 61 6d 65 74 65 72 20 7a 65 72 6f 20 68 61 73 20 61 20 73 69 6e 67 6c 65 20 62 | th.parameter.zero.has.a.single.b |
| 1040 | 72 69 64 67 65 3a 3a 0a 0a 20 20 20 20 20 20 20 20 3e 3e 3e 20 47 20 3d 20 6e 78 2e 62 61 72 62 | ridge::..........>>>.G.=.nx.barb |
| 1060 | 65 6c 6c 5f 67 72 61 70 68 28 31 30 2c 20 30 29 0a 20 20 20 20 20 20 20 20 3e 3e 3e 20 6e 78 2e | ell_graph(10,.0).........>>>.nx. |
| 1080 | 68 61 73 5f 62 72 69 64 67 65 73 28 47 29 0a 20 20 20 20 20 20 20 20 54 72 75 65 0a 0a 20 20 20 | has_bridges(G).........True..... |
| 10a0 | 20 4f 6e 20 74 68 65 20 6f 74 68 65 72 20 68 61 6e 64 2c 20 74 68 65 20 63 79 63 6c 65 20 67 72 | .On.the.other.hand,.the.cycle.gr |
| 10c0 | 61 70 68 20 68 61 73 20 6e 6f 20 62 72 69 64 67 65 73 3a 3a 0a 0a 20 20 20 20 20 20 20 20 3e 3e | aph.has.no.bridges::..........>> |
| 10e0 | 3e 20 47 20 3d 20 6e 78 2e 63 79 63 6c 65 5f 67 72 61 70 68 28 35 29 0a 20 20 20 20 20 20 20 20 | >.G.=.nx.cycle_graph(5)......... |
| 1100 | 3e 3e 3e 20 6e 78 2e 68 61 73 5f 62 72 69 64 67 65 73 28 47 29 0a 20 20 20 20 20 20 20 20 46 61 | >>>.nx.has_bridges(G).........Fa |
| 1120 | 6c 73 65 0a 0a 20 20 20 20 4e 6f 74 65 73 0a 20 20 20 20 2d 2d 2d 2d 2d 0a 20 20 20 20 54 68 69 | lse......Notes.....-----.....Thi |
| 1140 | 73 20 69 6d 70 6c 65 6d 65 6e 74 61 74 69 6f 6e 20 75 73 65 73 20 74 68 65 20 3a 66 75 6e 63 3a | s.implementation.uses.the.:func: |
| 1160 | 60 6e 65 74 77 6f 72 6b 78 2e 62 72 69 64 67 65 73 60 20 66 75 6e 63 74 69 6f 6e 2c 20 73 6f 0a | `networkx.bridges`.function,.so. |
| 1180 | 20 20 20 20 69 74 20 73 68 61 72 65 73 20 69 74 73 20 77 6f 72 73 74 2d 63 61 73 65 20 74 69 6d | ....it.shares.its.worst-case.tim |
| 11a0 | 65 20 63 6f 6d 70 6c 65 78 69 74 79 2c 20 24 4f 28 6d 20 2b 20 6e 29 24 2c 20 69 67 6e 6f 72 69 | e.complexity,.$O(m.+.n)$,.ignori |
| 11c0 | 6e 67 0a 20 20 20 20 70 6f 6c 79 6c 6f 67 61 72 69 74 68 6d 69 63 20 66 61 63 74 6f 72 73 2c 20 | ng.....polylogarithmic.factors,. |
| 11e0 | 77 68 65 72 65 20 24 6e 24 20 69 73 20 74 68 65 20 6e 75 6d 62 65 72 20 6f 66 20 6e 6f 64 65 73 | where.$n$.is.the.number.of.nodes |
| 1200 | 20 69 6e 20 74 68 65 0a 20 20 20 20 67 72 61 70 68 20 61 6e 64 20 24 6d 24 20 69 73 20 74 68 65 | .in.the.....graph.and.$m$.is.the |
| 1220 | 20 6e 75 6d 62 65 72 20 6f 66 20 65 64 67 65 73 2e 0a 0a 20 20 20 20 72 0a 00 00 00 54 46 29 03 | .number.of.edges.......r....TF). |
| 1240 | da 04 6e 65 78 74 72 05 00 00 00 da 0d 53 74 6f 70 49 74 65 72 61 74 69 6f 6e 29 02 72 18 00 00 | ..nextr......StopIteration).r... |
| 1260 | 00 72 0b 00 00 00 73 02 00 00 00 20 20 72 1f 00 00 00 72 06 00 00 00 72 06 00 00 00 53 00 00 00 | .r....s......r....r....r....S... |
| 1280 | 73 30 00 00 00 80 00 f0 68 01 05 05 14 dc 08 0c 8c 57 90 51 98 54 d4 0d 22 d4 08 23 f0 08 00 10 | s0......h........W.Q.T.."..#.... |
| 12a0 | 14 f8 f4 07 00 0c 19 f2 00 01 05 15 d9 0f 14 f0 03 01 05 15 fa 73 0c 00 00 00 82 16 19 00 99 09 | .....................s.......... |
| 12c0 | 25 03 a4 01 25 03 72 19 00 00 00 da 06 77 65 69 67 68 74 29 01 da 0a 65 64 67 65 5f 61 74 74 72 | %...%.r......weight)...edge_attr |
| 12e0 | 73 63 03 00 00 00 00 00 00 00 00 00 00 00 07 00 00 00 23 00 00 00 f3 d6 01 00 00 87 07 87 08 4b | sc................#............K |
| 1300 | 00 01 00 97 00 7c 01 64 01 75 01 72 39 7c 00 6a 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 | .....|.d.u.r9|.j................ |
| 1320 | 00 00 00 44 00 5d 29 00 00 5c 02 00 00 7d 03 7d 04 74 03 00 00 00 00 00 00 00 00 7c 00 7c 03 19 | ...D.])..\...}.}.t.........|.|.. |
| 1340 | 00 00 00 ab 01 00 00 00 00 00 00 74 03 00 00 00 00 00 00 00 00 7c 00 7c 04 19 00 00 00 ab 01 00 | ...........t.........|.|........ |
| 1360 | 00 00 00 00 00 7a 01 00 00 72 01 8c 24 7c 03 7c 04 66 02 96 01 97 01 01 00 8c 2b 04 00 79 05 74 | .....z...r..$|.|.f........+..y.t |
| 1380 | 04 00 00 00 00 00 00 00 00 6a 06 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 6a 09 00 | .........j...................j.. |
| 13a0 | 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 7c 00 7c 02 ab 02 00 00 00 00 00 00 8a 08 7c | .................|.|...........| |
| 13c0 | 00 6a 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 44 00 5d 4e 00 00 5c 02 00 00 7d | .j...................D.]N..\...} |
| 13e0 | 03 7d 04 74 03 00 00 00 00 00 00 00 00 7c 00 7c 03 19 00 00 00 ab 01 00 00 00 00 00 00 74 03 00 | .}.t.........|.|.............t.. |
| 1400 | 00 00 00 00 00 00 00 7c 00 7c 04 19 00 00 00 ab 01 00 00 00 00 00 00 7a 01 00 00 72 01 8c 24 7c | .......|.|.............z...r..$| |
| 1420 | 03 7c 04 68 02 8a 07 88 07 88 08 66 02 64 02 84 08 7d 05 09 00 74 05 00 00 00 00 00 00 00 00 6a | .|.h.......f.d...}...t.........j |
| 1440 | 0a 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 7c 00 7c 03 7c 04 7c 05 ac 03 ab 04 00 | ...................|.|.|.|...... |
| 1460 | 00 00 00 00 00 7d 06 7c 03 7c 04 7c 06 66 03 96 02 97 01 01 00 8c 50 04 00 79 05 23 00 74 04 00 | .....}.|.|.|.f........P..y.#.t.. |
| 1480 | 00 00 00 00 00 00 00 6a 0c 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 24 00 72 13 01 | .......j...................$.r.. |
| 14a0 | 00 7c 03 7c 04 74 0f 00 00 00 00 00 00 00 00 64 04 ab 01 00 00 00 00 00 00 66 03 96 02 97 01 01 | .|.|.t.........d.........f...... |
| 14c0 | 00 59 00 8c 77 77 00 78 03 59 00 77 01 ad 03 77 01 29 06 61 6c 04 00 00 49 74 65 72 61 74 65 20 | .Y..ww.x.Y.w...w.).al...Iterate. |
| 14e0 | 6f 76 65 72 20 6c 6f 63 61 6c 20 62 72 69 64 67 65 73 20 6f 66 20 60 47 60 20 6f 70 74 69 6f 6e | over.local.bridges.of.`G`.option |
| 1500 | 61 6c 6c 79 20 63 6f 6d 70 75 74 69 6e 67 20 74 68 65 20 73 70 61 6e 0a 0a 20 20 20 20 41 20 2a | ally.computing.the.span......A.* |
| 1520 | 6c 6f 63 61 6c 20 62 72 69 64 67 65 2a 20 69 73 20 61 6e 20 65 64 67 65 20 77 68 6f 73 65 20 65 | local.bridge*.is.an.edge.whose.e |
| 1540 | 6e 64 70 6f 69 6e 74 73 20 68 61 76 65 20 6e 6f 20 63 6f 6d 6d 6f 6e 20 6e 65 69 67 68 62 6f 72 | ndpoints.have.no.common.neighbor |
| 1560 | 73 2e 0a 20 20 20 20 54 68 61 74 20 69 73 2c 20 74 68 65 20 65 64 67 65 20 69 73 20 6e 6f 74 20 | s......That.is,.the.edge.is.not. |
| 1580 | 70 61 72 74 20 6f 66 20 61 20 74 72 69 61 6e 67 6c 65 20 69 6e 20 74 68 65 20 67 72 61 70 68 2e | part.of.a.triangle.in.the.graph. |
| 15a0 | 0a 0a 20 20 20 20 54 68 65 20 2a 73 70 61 6e 2a 20 6f 66 20 61 20 2a 6c 6f 63 61 6c 20 62 72 69 | ......The.*span*.of.a.*local.bri |
| 15c0 | 64 67 65 2a 20 69 73 20 74 68 65 20 73 68 6f 72 74 65 73 74 20 70 61 74 68 20 6c 65 6e 67 74 68 | dge*.is.the.shortest.path.length |
| 15e0 | 20 62 65 74 77 65 65 6e 0a 20 20 20 20 74 68 65 20 65 6e 64 70 6f 69 6e 74 73 20 69 66 20 74 68 | .between.....the.endpoints.if.th |
| 1600 | 65 20 6c 6f 63 61 6c 20 62 72 69 64 67 65 20 69 73 20 72 65 6d 6f 76 65 64 2e 0a 0a 20 20 20 20 | e.local.bridge.is.removed....... |
| 1620 | 50 61 72 61 6d 65 74 65 72 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 47 20 | Parameters.....----------.....G. |
| 1640 | 3a 20 75 6e 64 69 72 65 63 74 65 64 20 67 72 61 70 68 0a 0a 20 20 20 20 77 69 74 68 5f 73 70 61 | :.undirected.graph......with_spa |
| 1660 | 6e 20 3a 20 62 6f 6f 6c 0a 20 20 20 20 20 20 20 20 49 66 20 54 72 75 65 2c 20 79 69 65 6c 64 20 | n.:.bool.........If.True,.yield. |
| 1680 | 61 20 33 2d 74 75 70 6c 65 20 60 28 75 2c 20 76 2c 20 73 70 61 6e 29 60 0a 0a 20 20 20 20 77 65 | a.3-tuple.`(u,.v,.span)`......we |
| 16a0 | 69 67 68 74 20 3a 20 66 75 6e 63 74 69 6f 6e 2c 20 73 74 72 69 6e 67 20 6f 72 20 4e 6f 6e 65 20 | ight.:.function,.string.or.None. |
| 16c0 | 28 64 65 66 61 75 6c 74 3a 20 4e 6f 6e 65 29 0a 20 20 20 20 20 20 20 20 49 66 20 66 75 6e 63 74 | (default:.None).........If.funct |
| 16e0 | 69 6f 6e 2c 20 75 73 65 64 20 74 6f 20 63 6f 6d 70 75 74 65 20 65 64 67 65 20 77 65 69 67 68 74 | ion,.used.to.compute.edge.weight |
| 1700 | 73 20 66 6f 72 20 74 68 65 20 73 70 61 6e 2e 0a 20 20 20 20 20 20 20 20 49 66 20 73 74 72 69 6e | s.for.the.span..........If.strin |
| 1720 | 67 2c 20 74 68 65 20 65 64 67 65 20 64 61 74 61 20 61 74 74 72 69 62 75 74 65 20 75 73 65 64 20 | g,.the.edge.data.attribute.used. |
| 1740 | 69 6e 20 63 61 6c 63 75 6c 61 74 69 6e 67 20 73 70 61 6e 2e 0a 20 20 20 20 20 20 20 20 49 66 20 | in.calculating.span..........If. |
| 1760 | 4e 6f 6e 65 2c 20 61 6c 6c 20 65 64 67 65 73 20 68 61 76 65 20 77 65 69 67 68 74 20 31 2e 0a 0a | None,.all.edges.have.weight.1... |
| 1780 | 20 20 20 20 59 69 65 6c 64 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 65 20 3a 20 65 64 | ....Yields.....------.....e.:.ed |
| 17a0 | 67 65 0a 20 20 20 20 20 20 20 20 54 68 65 20 6c 6f 63 61 6c 20 62 72 69 64 67 65 73 20 61 73 20 | ge.........The.local.bridges.as. |
| 17c0 | 61 6e 20 65 64 67 65 20 32 2d 74 75 70 6c 65 20 6f 66 20 6e 6f 64 65 73 20 60 28 75 2c 20 76 29 | an.edge.2-tuple.of.nodes.`(u,.v) |
| 17e0 | 60 20 6f 72 0a 20 20 20 20 20 20 20 20 61 73 20 61 20 33 2d 74 75 70 6c 65 20 60 28 75 2c 20 76 | `.or.........as.a.3-tuple.`(u,.v |
| 1800 | 2c 20 73 70 61 6e 29 60 20 77 68 65 6e 20 60 77 69 74 68 5f 73 70 61 6e 20 69 73 20 54 72 75 65 | ,.span)`.when.`with_span.is.True |
| 1820 | 60 2e 0a 0a 20 20 20 20 52 61 69 73 65 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 4e 65 | `.......Raises.....------.....Ne |
| 1840 | 74 77 6f 72 6b 58 4e 6f 74 49 6d 70 6c 65 6d 65 6e 74 65 64 0a 20 20 20 20 20 20 20 20 49 66 20 | tworkXNotImplemented.........If. |
| 1860 | 60 47 60 20 69 73 20 61 20 64 69 72 65 63 74 65 64 20 67 72 61 70 68 20 6f 72 20 6d 75 6c 74 69 | `G`.is.a.directed.graph.or.multi |
| 1880 | 67 72 61 70 68 2e 0a 0a 20 20 20 20 45 78 61 6d 70 6c 65 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d | graph.......Examples.....------- |
| 18a0 | 2d 0a 20 20 20 20 41 20 63 79 63 6c 65 20 67 72 61 70 68 20 68 61 73 20 65 76 65 72 79 20 65 64 | -.....A.cycle.graph.has.every.ed |
| 18c0 | 67 65 20 61 20 6c 6f 63 61 6c 20 62 72 69 64 67 65 20 77 69 74 68 20 73 70 61 6e 20 4e 2d 31 2e | ge.a.local.bridge.with.span.N-1. |
| 18e0 | 0a 0a 20 20 20 20 20 20 20 3e 3e 3e 20 47 20 3d 20 6e 78 2e 63 79 63 6c 65 5f 67 72 61 70 68 28 | .........>>>.G.=.nx.cycle_graph( |
| 1900 | 39 29 0a 20 20 20 20 20 20 20 3e 3e 3e 20 28 30 2c 20 38 2c 20 38 29 20 69 6e 20 73 65 74 28 6e | 9)........>>>.(0,.8,.8).in.set(n |
| 1920 | 78 2e 6c 6f 63 61 6c 5f 62 72 69 64 67 65 73 28 47 29 29 0a 20 20 20 20 20 20 20 54 72 75 65 0a | x.local_bridges(G))........True. |
| 1940 | 20 20 20 20 54 63 03 00 00 00 00 00 00 00 00 00 00 00 05 00 00 00 13 00 00 00 f3 2a 00 00 00 95 | ....Tc.....................*.... |
| 1960 | 02 97 00 7c 00 89 03 76 01 73 04 7c 01 89 03 76 01 72 0a 02 00 89 04 7c 00 7c 01 7c 02 ab 03 00 | ...|...v.s.|...v.r.....|.|.|.... |
| 1980 | 00 00 00 00 00 53 00 79 00 a9 01 4e a9 00 29 05 da 01 6e da 03 6e 62 72 da 01 64 da 06 65 6e 6f | .....S.y...N..)...n..nbr..d..eno |
| 19a0 | 64 65 73 da 02 77 74 73 05 00 00 00 20 20 20 80 80 72 1f 00 00 00 da 09 68 69 64 65 5f 65 64 67 | des..wts.........r......hide_edg |
| 19c0 | 65 7a 20 6c 6f 63 61 6c 5f 62 72 69 64 67 65 73 2e 3c 6c 6f 63 61 6c 73 3e 2e 68 69 64 65 5f 65 | ez.local_bridges.<locals>.hide_e |
| 19e0 | 64 67 65 c4 00 00 00 73 22 00 00 00 f8 80 00 d8 17 18 a0 06 91 7f a8 23 b0 56 d1 2a 3b d9 1f 21 | dge....s"..............#.V.*;..! |
| 1a00 | a0 21 a0 53 a8 21 9b 7d d0 18 2c d8 1b 1f f3 00 00 00 00 29 01 72 23 00 00 00 da 03 69 6e 66 4e | .!.S.!.}..,........).r#.....infN |
| 1a20 | 29 08 72 16 00 00 00 72 11 00 00 00 72 0e 00 00 00 da 08 77 65 69 67 68 74 65 64 da 10 5f 77 65 | ).r....r....r......weighted.._we |
| 1a40 | 69 67 68 74 5f 66 75 6e 63 74 69 6f 6e da 14 73 68 6f 72 74 65 73 74 5f 70 61 74 68 5f 6c 65 6e | ight_function..shortest_path_len |
| 1a60 | 67 74 68 da 0e 4e 65 74 77 6f 72 6b 58 4e 6f 50 61 74 68 da 05 66 6c 6f 61 74 29 09 72 18 00 00 | gth..NetworkXNoPath..float).r... |
| 1a80 | 00 da 09 77 69 74 68 5f 73 70 61 6e 72 23 00 00 00 72 1d 00 00 00 72 1e 00 00 00 72 2e 00 00 00 | ...with_spanr#...r....r....r.... |
| 1aa0 | da 04 73 70 61 6e 72 2c 00 00 00 72 2d 00 00 00 73 09 00 00 00 20 20 20 20 20 20 20 40 40 72 1f | ..spanr,...r-...s...........@@r. |
| 1ac0 | 00 00 00 72 07 00 00 00 72 07 00 00 00 8f 00 00 00 73 ed 00 00 00 f9 e8 00 f8 80 00 f0 56 01 00 | ...r....r........s...........V.. |
| 1ae0 | 08 11 98 04 d1 07 1c d8 14 15 97 47 91 47 f2 00 02 09 1b 89 44 88 41 88 71 dc 14 17 98 01 98 21 | ...........G.G......D.A.q......! |
| 1b00 | 99 04 93 49 a4 03 a0 41 a0 61 a1 44 a3 09 d3 14 29 d8 16 17 98 11 90 64 93 0a f1 05 02 09 1b f4 | ...I...A.a.D....)......d........ |
| 1b20 | 08 00 0e 10 8f 5b 89 5b d7 0d 29 d1 0d 29 a8 21 a8 56 d3 0d 34 88 02 d8 14 15 97 47 91 47 f2 00 | .....[.[..)..).!.V..4......G.G.. |
| 1b40 | 0d 09 2d 89 44 88 41 88 71 dc 14 17 98 01 98 21 99 04 93 49 a4 03 a0 41 a0 61 a1 44 a3 09 d3 14 | ..-.D.A.q......!...I...A.a.D.... |
| 1b60 | 29 d8 1a 1b 98 51 98 16 90 06 f5 04 03 11 20 f0 0a 04 11 2d dc 1b 1d d7 1b 32 d1 1b 32 b0 31 b0 | )....Q.............-.....2..2.1. |
| 1b80 | 61 b8 11 c0 39 d4 1b 4d 90 44 d8 1a 1b 98 51 a0 04 98 2a d3 14 24 f1 17 0d 09 2d f8 f4 18 00 18 | a...9..M.D....Q...*..$....-..... |
| 1ba0 | 1a d7 17 28 d1 17 28 f2 00 01 11 2d d8 1a 1b 98 51 a4 05 a0 65 a3 0c d0 1a 2c d4 14 2c f0 03 01 | ...(..(....-....Q...e....,..,... |
| 1bc0 | 11 2d fc 73 35 00 00 00 84 34 43 29 01 b9 41 18 43 29 01 c2 12 0a 43 29 01 c2 1d 20 43 00 02 c2 | .-.s5....4C)..A.C)....C)....C... |
| 1be0 | 3d 03 43 29 01 c3 00 23 43 26 05 c3 23 02 43 29 01 c3 25 01 43 26 05 c3 26 03 43 29 01 72 27 00 | =.C)...#C&..#.C)..%.C&..&.C).r'. |
| 1c00 | 00 00 29 02 54 4e 29 0c da 07 5f 5f 64 6f 63 5f 5f da 09 69 74 65 72 74 6f 6f 6c 73 72 03 00 00 | ..).TN)...__doc__..itertoolsr... |
| 1c20 | 00 da 08 6e 65 74 77 6f 72 6b 78 72 0e 00 00 00 da 0e 6e 65 74 77 6f 72 6b 78 2e 75 74 69 6c 73 | ...networkxr......networkx.utils |
| 1c40 | 72 04 00 00 00 da 07 5f 5f 61 6c 6c 5f 5f da 0d 5f 64 69 73 70 61 74 63 68 61 62 6c 65 72 05 00 | r......__all__.._dispatchabler.. |
| 1c60 | 00 00 72 06 00 00 00 72 07 00 00 00 72 28 00 00 00 72 2f 00 00 00 72 1f 00 00 00 fa 08 3c 6d 6f | ..r....r....r(...r/...r......<mo |
| 1c80 | 64 75 6c 65 3e 72 3e 00 00 00 01 00 00 00 73 a3 00 00 00 f0 03 01 01 01 d9 00 20 e5 00 1b e3 00 | dule>r>.......s................. |
| 1ca0 | 15 dd 00 2e e2 0a 35 80 07 f1 06 00 02 15 90 5a d3 01 20 d8 01 03 d7 01 11 d1 01 11 f2 02 43 01 | ......5........Z..............C. |
| 1cc0 | 01 17 f3 03 00 02 12 f3 03 00 02 21 f0 04 43 01 01 17 f1 4c 02 00 02 15 90 5a d3 01 20 d8 01 03 | ...........!..C....L.....Z...... |
| 1ce0 | d7 01 11 d1 01 11 f2 02 37 01 14 f3 03 00 02 12 f3 03 00 02 21 f0 04 37 01 14 f1 74 01 00 02 15 | ........7...........!..7...t.... |
| 1d00 | 90 5c d3 01 22 d9 01 14 90 5a d3 01 20 d8 01 11 80 12 d7 01 11 d1 01 11 98 58 d4 01 26 f2 02 3b | .\.."....Z...............X..&..; |
| 1d20 | 01 2d f3 03 00 02 27 f3 03 00 02 21 f3 03 00 02 23 f1 06 3b 01 2d 72 2f 00 00 00 | .-....'....!....#..;.-r/... |