| ofs | hex dump | ascii |
|---|
| 0000 | cb 0d 0d 0a 00 00 00 00 85 fa a7 68 06 27 00 00 e3 00 00 00 00 00 00 00 00 00 00 00 00 03 00 00 | ...........h.'.................. |
| 0020 | 00 00 00 00 00 f3 a4 01 00 00 97 00 64 00 5a 00 64 01 64 02 6c 01 6d 02 5a 02 01 00 64 01 64 03 | ............d.Z.d.d.l.m.Z...d.d. |
| 0040 | 6c 03 5a 04 67 00 64 04 a2 01 5a 05 02 00 65 04 6a 0c 00 00 00 00 00 00 00 00 00 00 00 00 00 00 | l.Z.g.d...Z...e.j............... |
| 0060 | 00 00 00 00 64 05 ac 06 ab 01 00 00 00 00 00 00 64 0f 64 07 84 01 ab 00 00 00 00 00 00 00 5a 07 | ....d...........d.d...........Z. |
| 0080 | 02 00 65 04 6a 0c 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 64 05 ac 06 ab 01 00 00 | ..e.j...................d....... |
| 00a0 | 00 00 00 00 64 10 64 08 84 01 ab 00 00 00 00 00 00 00 5a 08 02 00 65 04 6a 0c 00 00 00 00 00 00 | ....d.d...........Z...e.j....... |
| 00c0 | 00 00 00 00 00 00 00 00 00 00 00 00 64 05 ac 06 ab 01 00 00 00 00 00 00 64 0f 64 09 84 01 ab 00 | ............d...........d.d..... |
| 00e0 | 00 00 00 00 00 00 5a 09 02 00 65 04 6a 0c 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 | ......Z...e.j................... |
| 0100 | 64 05 ac 06 ab 01 00 00 00 00 00 00 64 0f 64 0a 84 01 ab 00 00 00 00 00 00 00 5a 0a 02 00 65 04 | d...........d.d...........Z...e. |
| 0120 | 6a 0c 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 64 05 ac 06 ab 01 00 00 00 00 00 00 | j...................d........... |
| 0140 | 64 0f 64 0b 84 01 ab 00 00 00 00 00 00 00 5a 0b 02 00 65 04 6a 0c 00 00 00 00 00 00 00 00 00 00 | d.d...........Z...e.j........... |
| 0160 | 00 00 00 00 00 00 00 00 64 05 ac 06 ab 01 00 00 00 00 00 00 64 0f 64 0c 84 01 ab 00 00 00 00 00 | ........d...........d.d......... |
| 0180 | 00 00 5a 0c 65 04 6a 0c 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 64 0d 84 00 ab 00 | ..Z.e.j...................d..... |
| 01a0 | 00 00 00 00 00 00 5a 0d 65 04 6a 0c 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 64 0e | ......Z.e.j...................d. |
| 01c0 | 84 00 ab 00 00 00 00 00 00 00 5a 0e 79 03 29 11 7a 35 46 75 6e 63 74 69 6f 6e 73 20 66 6f 72 20 | ..........Z.y.).z5Functions.for. |
| 01e0 | 66 69 6e 64 69 6e 67 20 61 6e 64 20 65 76 61 6c 75 61 74 69 6e 67 20 63 75 74 73 20 69 6e 20 61 | finding.and.evaluating.cuts.in.a |
| 0200 | 20 67 72 61 70 68 2e e9 00 00 00 00 29 01 da 05 63 68 61 69 6e 4e 29 08 da 12 62 6f 75 6e 64 61 | .graph......)...chainN)...bounda |
| 0220 | 72 79 5f 65 78 70 61 6e 73 69 6f 6e da 0b 63 6f 6e 64 75 63 74 61 6e 63 65 da 08 63 75 74 5f 73 | ry_expansion..conductance..cut_s |
| 0240 | 69 7a 65 da 0e 65 64 67 65 5f 65 78 70 61 6e 73 69 6f 6e da 10 6d 69 78 69 6e 67 5f 65 78 70 61 | ize..edge_expansion..mixing_expa |
| 0260 | 6e 73 69 6f 6e da 0e 6e 6f 64 65 5f 65 78 70 61 6e 73 69 6f 6e da 13 6e 6f 72 6d 61 6c 69 7a 65 | nsion..node_expansion..normalize |
| 0280 | 64 5f 63 75 74 5f 73 69 7a 65 da 06 76 6f 6c 75 6d 65 da 06 77 65 69 67 68 74 29 01 da 0a 65 64 | d_cut_size..volume..weight)...ed |
| 02a0 | 67 65 5f 61 74 74 72 73 63 04 00 00 00 00 00 00 00 00 00 00 00 0a 00 00 00 03 00 00 00 f3 c2 00 | ge_attrsc....................... |
| 02c0 | 00 00 97 00 74 01 00 00 00 00 00 00 00 00 6a 02 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 | ....t.........j................. |
| 02e0 | 00 00 7c 00 7c 01 7c 02 7c 03 64 01 ac 02 ab 05 00 00 00 00 00 00 7d 04 7c 00 6a 05 00 00 00 00 | ..|.|.|.|.d...........}.|.j..... |
| 0300 | 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ab 00 00 00 00 00 00 00 72 24 74 07 00 00 00 00 00 00 | ......................r$t....... |
| 0320 | 00 00 7c 04 74 01 00 00 00 00 00 00 00 00 6a 02 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 | ..|.t.........j................. |
| 0340 | 00 00 7c 00 7c 02 7c 01 7c 03 64 01 ac 02 ab 05 00 00 00 00 00 00 ab 02 00 00 00 00 00 00 7d 04 | ..|.|.|.|.d...................}. |
| 0360 | 74 09 00 00 00 00 00 00 00 00 64 03 84 00 7c 04 44 00 ab 00 00 00 00 00 00 00 ab 01 00 00 00 00 | t.........d...|.D............... |
| 0380 | 00 00 53 00 29 04 61 b1 05 00 00 52 65 74 75 72 6e 73 20 74 68 65 20 73 69 7a 65 20 6f 66 20 74 | ..S.).a....Returns.the.size.of.t |
| 03a0 | 68 65 20 63 75 74 20 62 65 74 77 65 65 6e 20 74 77 6f 20 73 65 74 73 20 6f 66 20 6e 6f 64 65 73 | he.cut.between.two.sets.of.nodes |
| 03c0 | 2e 0a 0a 20 20 20 20 41 20 2a 63 75 74 2a 20 69 73 20 61 20 70 61 72 74 69 74 69 6f 6e 20 6f 66 | .......A.*cut*.is.a.partition.of |
| 03e0 | 20 74 68 65 20 6e 6f 64 65 73 20 6f 66 20 61 20 67 72 61 70 68 20 69 6e 74 6f 20 74 77 6f 20 73 | .the.nodes.of.a.graph.into.two.s |
| 0400 | 65 74 73 2e 20 54 68 65 0a 20 20 20 20 2a 63 75 74 20 73 69 7a 65 2a 20 69 73 20 74 68 65 20 73 | ets..The.....*cut.size*.is.the.s |
| 0420 | 75 6d 20 6f 66 20 74 68 65 20 77 65 69 67 68 74 73 20 6f 66 20 74 68 65 20 65 64 67 65 73 20 22 | um.of.the.weights.of.the.edges." |
| 0440 | 62 65 74 77 65 65 6e 22 20 74 68 65 20 74 77 6f 0a 20 20 20 20 73 65 74 73 20 6f 66 20 6e 6f 64 | between".the.two.....sets.of.nod |
| 0460 | 65 73 2e 0a 0a 20 20 20 20 50 61 72 61 6d 65 74 65 72 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d | es.......Parameters.....-------- |
| 0480 | 2d 2d 0a 20 20 20 20 47 20 3a 20 4e 65 74 77 6f 72 6b 58 20 67 72 61 70 68 0a 0a 20 20 20 20 53 | --.....G.:.NetworkX.graph......S |
| 04a0 | 20 3a 20 63 6f 6c 6c 65 63 74 69 6f 6e 0a 20 20 20 20 20 20 20 20 41 20 63 6f 6c 6c 65 63 74 69 | .:.collection.........A.collecti |
| 04c0 | 6f 6e 20 6f 66 20 6e 6f 64 65 73 20 69 6e 20 60 47 60 2e 0a 0a 20 20 20 20 54 20 3a 20 63 6f 6c | on.of.nodes.in.`G`.......T.:.col |
| 04e0 | 6c 65 63 74 69 6f 6e 0a 20 20 20 20 20 20 20 20 41 20 63 6f 6c 6c 65 63 74 69 6f 6e 20 6f 66 20 | lection.........A.collection.of. |
| 0500 | 6e 6f 64 65 73 20 69 6e 20 60 47 60 2e 20 49 66 20 6e 6f 74 20 73 70 65 63 69 66 69 65 64 2c 20 | nodes.in.`G`..If.not.specified,. |
| 0520 | 74 68 69 73 20 69 73 20 74 61 6b 65 6e 20 74 6f 0a 20 20 20 20 20 20 20 20 62 65 20 74 68 65 20 | this.is.taken.to.........be.the. |
| 0540 | 73 65 74 20 63 6f 6d 70 6c 65 6d 65 6e 74 20 6f 66 20 60 53 60 2e 0a 0a 20 20 20 20 77 65 69 67 | set.complement.of.`S`.......weig |
| 0560 | 68 74 20 3a 20 6f 62 6a 65 63 74 0a 20 20 20 20 20 20 20 20 45 64 67 65 20 61 74 74 72 69 62 75 | ht.:.object.........Edge.attribu |
| 0580 | 74 65 20 6b 65 79 20 74 6f 20 75 73 65 20 61 73 20 77 65 69 67 68 74 2e 20 49 66 20 6e 6f 74 20 | te.key.to.use.as.weight..If.not. |
| 05a0 | 73 70 65 63 69 66 69 65 64 2c 20 65 64 67 65 73 0a 20 20 20 20 20 20 20 20 68 61 76 65 20 77 65 | specified,.edges.........have.we |
| 05c0 | 69 67 68 74 20 6f 6e 65 2e 0a 0a 20 20 20 20 52 65 74 75 72 6e 73 0a 20 20 20 20 2d 2d 2d 2d 2d | ight.one.......Returns.....----- |
| 05e0 | 2d 2d 0a 20 20 20 20 6e 75 6d 62 65 72 0a 20 20 20 20 20 20 20 20 54 6f 74 61 6c 20 77 65 69 67 | --.....number.........Total.weig |
| 0600 | 68 74 20 6f 66 20 61 6c 6c 20 65 64 67 65 73 20 66 72 6f 6d 20 6e 6f 64 65 73 20 69 6e 20 73 65 | ht.of.all.edges.from.nodes.in.se |
| 0620 | 74 20 60 53 60 20 74 6f 20 6e 6f 64 65 73 20 69 6e 0a 20 20 20 20 20 20 20 20 73 65 74 20 60 54 | t.`S`.to.nodes.in.........set.`T |
| 0640 | 60 20 28 61 6e 64 2c 20 69 6e 20 74 68 65 20 63 61 73 65 20 6f 66 20 64 69 72 65 63 74 65 64 20 | `.(and,.in.the.case.of.directed. |
| 0660 | 67 72 61 70 68 73 2c 20 61 6c 6c 20 65 64 67 65 73 20 66 72 6f 6d 0a 20 20 20 20 20 20 20 20 6e | graphs,.all.edges.from.........n |
| 0680 | 6f 64 65 73 20 69 6e 20 60 54 60 20 74 6f 20 6e 6f 64 65 73 20 69 6e 20 60 53 60 29 2e 0a 0a 20 | odes.in.`T`.to.nodes.in.`S`).... |
| 06a0 | 20 20 20 45 78 61 6d 70 6c 65 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 49 6e 20 | ...Examples.....--------.....In. |
| 06c0 | 74 68 65 20 67 72 61 70 68 20 77 69 74 68 20 74 77 6f 20 63 6c 69 71 75 65 73 20 6a 6f 69 6e 65 | the.graph.with.two.cliques.joine |
| 06e0 | 64 20 62 79 20 61 20 73 69 6e 67 6c 65 20 65 64 67 65 73 2c 20 74 68 65 20 6e 61 74 75 72 61 6c | d.by.a.single.edges,.the.natural |
| 0700 | 0a 20 20 20 20 62 69 70 61 72 74 69 74 69 6f 6e 20 6f 66 20 74 68 65 20 67 72 61 70 68 20 69 6e | .....bipartition.of.the.graph.in |
| 0720 | 74 6f 20 74 77 6f 20 62 6c 6f 63 6b 73 2c 20 6f 6e 65 20 66 6f 72 20 65 61 63 68 20 63 6c 69 71 | to.two.blocks,.one.for.each.cliq |
| 0740 | 75 65 2c 0a 20 20 20 20 79 69 65 6c 64 73 20 61 20 63 75 74 20 6f 66 20 77 65 69 67 68 74 20 6f | ue,.....yields.a.cut.of.weight.o |
| 0760 | 6e 65 3a 3a 0a 0a 20 20 20 20 20 20 20 20 3e 3e 3e 20 47 20 3d 20 6e 78 2e 62 61 72 62 65 6c 6c | ne::..........>>>.G.=.nx.barbell |
| 0780 | 5f 67 72 61 70 68 28 33 2c 20 30 29 0a 20 20 20 20 20 20 20 20 3e 3e 3e 20 53 20 3d 20 7b 30 2c | _graph(3,.0).........>>>.S.=.{0, |
| 07a0 | 20 31 2c 20 32 7d 0a 20 20 20 20 20 20 20 20 3e 3e 3e 20 54 20 3d 20 7b 33 2c 20 34 2c 20 35 7d | .1,.2}.........>>>.T.=.{3,.4,.5} |
| 07c0 | 0a 20 20 20 20 20 20 20 20 3e 3e 3e 20 6e 78 2e 63 75 74 5f 73 69 7a 65 28 47 2c 20 53 2c 20 54 | .........>>>.nx.cut_size(G,.S,.T |
| 07e0 | 29 0a 20 20 20 20 20 20 20 20 31 0a 0a 20 20 20 20 45 61 63 68 20 70 61 72 61 6c 6c 65 6c 20 65 | ).........1......Each.parallel.e |
| 0800 | 64 67 65 20 69 6e 20 61 20 6d 75 6c 74 69 67 72 61 70 68 20 69 73 20 63 6f 75 6e 74 65 64 20 77 | dge.in.a.multigraph.is.counted.w |
| 0820 | 68 65 6e 20 64 65 74 65 72 6d 69 6e 69 6e 67 20 74 68 65 0a 20 20 20 20 63 75 74 20 73 69 7a 65 | hen.determining.the.....cut.size |
| 0840 | 3a 3a 0a 0a 20 20 20 20 20 20 20 20 3e 3e 3e 20 47 20 3d 20 6e 78 2e 4d 75 6c 74 69 47 72 61 70 | ::..........>>>.G.=.nx.MultiGrap |
| 0860 | 68 28 5b 22 61 62 22 2c 20 22 61 62 22 5d 29 0a 20 20 20 20 20 20 20 20 3e 3e 3e 20 53 20 3d 20 | h(["ab",."ab"]).........>>>.S.=. |
| 0880 | 7b 22 61 22 7d 0a 20 20 20 20 20 20 20 20 3e 3e 3e 20 54 20 3d 20 7b 22 62 22 7d 0a 20 20 20 20 | {"a"}.........>>>.T.=.{"b"}..... |
| 08a0 | 20 20 20 20 3e 3e 3e 20 6e 78 2e 63 75 74 5f 73 69 7a 65 28 47 2c 20 53 2c 20 54 29 0a 20 20 20 | ....>>>.nx.cut_size(G,.S,.T).... |
| 08c0 | 20 20 20 20 20 32 0a 0a 20 20 20 20 4e 6f 74 65 73 0a 20 20 20 20 2d 2d 2d 2d 2d 0a 20 20 20 20 | .....2......Notes.....-----..... |
| 08e0 | 49 6e 20 61 20 6d 75 6c 74 69 67 72 61 70 68 2c 20 74 68 65 20 63 75 74 20 73 69 7a 65 20 69 73 | In.a.multigraph,.the.cut.size.is |
| 0900 | 20 74 68 65 20 74 6f 74 61 6c 20 77 65 69 67 68 74 20 6f 66 20 65 64 67 65 73 20 69 6e 63 6c 75 | .the.total.weight.of.edges.inclu |
| 0920 | 64 69 6e 67 0a 20 20 20 20 6d 75 6c 74 69 70 6c 69 63 69 74 79 2e 0a 0a 20 20 20 20 e9 01 00 00 | ding.....multiplicity........... |
| 0940 | 00 29 02 da 04 64 61 74 61 da 07 64 65 66 61 75 6c 74 63 01 00 00 00 00 00 00 00 00 00 00 00 04 | .)...data..defaultc............. |
| 0960 | 00 00 00 33 00 00 00 f3 28 00 00 00 4b 00 01 00 97 00 7c 00 5d 0a 00 00 5c 03 00 00 7d 01 7d 02 | ...3....(...K.....|.]...\...}.}. |
| 0980 | 7d 03 7c 03 96 01 97 01 01 00 8c 0c 04 00 79 00 ad 03 77 01 a9 01 4e a9 00 29 04 da 02 2e 30 da | }.|...........y...w...N..)....0. |
| 09a0 | 01 75 da 01 76 72 0c 00 00 00 73 04 00 00 00 20 20 20 20 fa 5f 2f 68 6f 6d 65 2f 62 6c 61 63 6b | .u..vr....s........._/home/black |
| 09c0 | 68 61 6f 2f 75 69 75 63 2d 63 6f 75 72 73 65 2d 67 72 61 70 68 2f 2e 76 65 6e 76 2f 6c 69 62 2f | hao/uiuc-course-graph/.venv/lib/ |
| 09e0 | 70 79 74 68 6f 6e 33 2e 31 32 2f 73 69 74 65 2d 70 61 63 6b 61 67 65 73 2f 6e 65 74 77 6f 72 6b | python3.12/site-packages/network |
| 0a00 | 78 2f 61 6c 67 6f 72 69 74 68 6d 73 2f 63 75 74 73 2e 70 79 fa 09 3c 67 65 6e 65 78 70 72 3e 7a | x/algorithms/cuts.py..<genexpr>z |
| 0a20 | 1b 63 75 74 5f 73 69 7a 65 2e 3c 6c 6f 63 61 6c 73 3e 2e 3c 67 65 6e 65 78 70 72 3e 52 00 00 00 | .cut_size.<locals>.<genexpr>R... |
| 0a40 | 73 16 00 00 00 e8 00 f8 80 00 d2 0e 30 99 2c 98 21 98 51 a0 06 8c 76 d1 0e 30 f9 73 04 00 00 00 | s...........0.,.!.Q...v..0.s.... |
| 0a60 | 82 10 12 01 29 05 da 02 6e 78 da 0d 65 64 67 65 5f 62 6f 75 6e 64 61 72 79 da 0b 69 73 5f 64 69 | ....)...nx..edge_boundary..is_di |
| 0a80 | 72 65 63 74 65 64 72 03 00 00 00 da 03 73 75 6d 29 05 da 01 47 da 01 53 da 01 54 72 0c 00 00 00 | rectedr......sum)...G..S..Tr.... |
| 0aa0 | da 05 65 64 67 65 73 73 05 00 00 00 20 20 20 20 20 72 18 00 00 00 72 06 00 00 00 72 06 00 00 00 | ..edgess.........r....r....r.... |
| 0ac0 | 16 00 00 00 73 56 00 00 00 80 00 f4 72 01 00 0d 0f d7 0c 1c d1 0c 1c 98 51 a0 01 a0 31 a8 36 b8 | ....sV......r...........Q...1.6. |
| 0ae0 | 31 d4 0c 3d 80 45 d8 07 08 87 7d 81 7d 84 7f dc 10 15 90 65 9c 52 d7 1d 2d d1 1d 2d a8 61 b0 11 | 1..=.E....}.}......e.R..-..-.a.. |
| 0b00 | b0 41 b8 46 c8 41 d4 1d 4e d3 10 4f 88 05 dc 0b 0e d1 0e 30 a8 25 d4 0e 30 d3 0b 30 d0 04 30 f3 | .A.F.A..N..O.......0.%..0..0..0. |
| 0b20 | 00 00 00 00 63 03 00 00 00 00 00 00 00 00 00 00 00 07 00 00 00 03 00 00 00 f3 86 00 00 00 97 00 | ....c........................... |
| 0b40 | 7c 00 6a 01 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ab 00 00 00 00 00 00 00 72 0c | |.j...........................r. |
| 0b60 | 7c 00 6a 02 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 6e 0b 7c 00 6a 04 00 00 00 00 | |.j...................n.|.j..... |
| 0b80 | 00 00 00 00 00 00 00 00 00 00 00 00 00 00 7d 03 74 07 00 00 00 00 00 00 00 00 64 01 84 00 02 00 | ..............}.t.........d..... |
| 0ba0 | 7c 03 7c 01 7c 02 ac 02 ab 02 00 00 00 00 00 00 44 00 ab 00 00 00 00 00 00 00 ab 01 00 00 00 00 | |.|.|...........D............... |
| 0bc0 | 00 00 53 00 29 03 61 7c 03 00 00 52 65 74 75 72 6e 73 20 74 68 65 20 76 6f 6c 75 6d 65 20 6f 66 | ..S.).a|...Returns.the.volume.of |
| 0be0 | 20 61 20 73 65 74 20 6f 66 20 6e 6f 64 65 73 2e 0a 0a 20 20 20 20 54 68 65 20 2a 76 6f 6c 75 6d | .a.set.of.nodes.......The.*volum |
| 0c00 | 65 2a 20 6f 66 20 61 20 73 65 74 20 2a 53 2a 20 69 73 20 74 68 65 20 73 75 6d 20 6f 66 20 74 68 | e*.of.a.set.*S*.is.the.sum.of.th |
| 0c20 | 65 20 28 6f 75 74 2d 29 64 65 67 72 65 65 73 20 6f 66 20 6e 6f 64 65 73 0a 20 20 20 20 69 6e 20 | e.(out-)degrees.of.nodes.....in. |
| 0c40 | 2a 53 2a 20 28 74 61 6b 69 6e 67 20 69 6e 74 6f 20 61 63 63 6f 75 6e 74 20 70 61 72 61 6c 6c 65 | *S*.(taking.into.account.paralle |
| 0c60 | 6c 20 65 64 67 65 73 20 69 6e 20 6d 75 6c 74 69 67 72 61 70 68 73 29 2e 20 5b 31 5d 0a 0a 20 20 | l.edges.in.multigraphs)..[1].... |
| 0c80 | 20 20 50 61 72 61 6d 65 74 65 72 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 | ..Parameters.....----------..... |
| 0ca0 | 47 20 3a 20 4e 65 74 77 6f 72 6b 58 20 67 72 61 70 68 0a 0a 20 20 20 20 53 20 3a 20 63 6f 6c 6c | G.:.NetworkX.graph......S.:.coll |
| 0cc0 | 65 63 74 69 6f 6e 0a 20 20 20 20 20 20 20 20 41 20 63 6f 6c 6c 65 63 74 69 6f 6e 20 6f 66 20 6e | ection.........A.collection.of.n |
| 0ce0 | 6f 64 65 73 20 69 6e 20 60 47 60 2e 0a 0a 20 20 20 20 77 65 69 67 68 74 20 3a 20 6f 62 6a 65 63 | odes.in.`G`.......weight.:.objec |
| 0d00 | 74 0a 20 20 20 20 20 20 20 20 45 64 67 65 20 61 74 74 72 69 62 75 74 65 20 6b 65 79 20 74 6f 20 | t.........Edge.attribute.key.to. |
| 0d20 | 75 73 65 20 61 73 20 77 65 69 67 68 74 2e 20 49 66 20 6e 6f 74 20 73 70 65 63 69 66 69 65 64 2c | use.as.weight..If.not.specified, |
| 0d40 | 20 65 64 67 65 73 0a 20 20 20 20 20 20 20 20 68 61 76 65 20 77 65 69 67 68 74 20 6f 6e 65 2e 0a | .edges.........have.weight.one.. |
| 0d60 | 0a 20 20 20 20 52 65 74 75 72 6e 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 6e 75 6d | .....Returns.....-------.....num |
| 0d80 | 62 65 72 0a 20 20 20 20 20 20 20 20 54 68 65 20 76 6f 6c 75 6d 65 20 6f 66 20 74 68 65 20 73 65 | ber.........The.volume.of.the.se |
| 0da0 | 74 20 6f 66 20 6e 6f 64 65 73 20 72 65 70 72 65 73 65 6e 74 65 64 20 62 79 20 60 53 60 20 69 6e | t.of.nodes.represented.by.`S`.in |
| 0dc0 | 20 74 68 65 20 67 72 61 70 68 0a 20 20 20 20 20 20 20 20 60 47 60 2e 0a 0a 20 20 20 20 53 65 65 | .the.graph.........`G`.......See |
| 0de0 | 20 61 6c 73 6f 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 63 6f 6e 64 75 63 74 61 6e | .also.....--------.....conductan |
| 0e00 | 63 65 0a 20 20 20 20 63 75 74 5f 73 69 7a 65 0a 20 20 20 20 65 64 67 65 5f 65 78 70 61 6e 73 69 | ce.....cut_size.....edge_expansi |
| 0e20 | 6f 6e 0a 20 20 20 20 65 64 67 65 5f 62 6f 75 6e 64 61 72 79 0a 20 20 20 20 6e 6f 72 6d 61 6c 69 | on.....edge_boundary.....normali |
| 0e40 | 7a 65 64 5f 63 75 74 5f 73 69 7a 65 0a 0a 20 20 20 20 52 65 66 65 72 65 6e 63 65 73 0a 20 20 20 | zed_cut_size......References.... |
| 0e60 | 20 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 2e 2e 20 5b 31 5d 20 44 61 76 69 64 20 47 6c 65 | .----------........[1].David.Gle |
| 0e80 | 69 63 68 2e 0a 20 20 20 20 20 20 20 20 20 20 20 2a 48 69 65 72 61 72 63 68 69 63 61 6c 20 44 69 | ich.............*Hierarchical.Di |
| 0ea0 | 72 65 63 74 65 64 20 53 70 65 63 74 72 61 6c 20 47 72 61 70 68 20 50 61 72 74 69 74 69 6f 6e 69 | rected.Spectral.Graph.Partitioni |
| 0ec0 | 6e 67 2a 2e 0a 20 20 20 20 20 20 20 20 20 20 20 3c 68 74 74 70 73 3a 2f 2f 77 77 77 2e 63 73 2e | ng*.............<https://www.cs. |
| 0ee0 | 70 75 72 64 75 65 2e 65 64 75 2f 68 6f 6d 65 73 2f 64 67 6c 65 69 63 68 2f 70 75 62 6c 69 63 61 | purdue.edu/homes/dgleich/publica |
| 0f00 | 74 69 6f 6e 73 2f 47 6c 65 69 63 68 25 32 30 32 30 30 35 25 32 30 2d 25 32 30 68 69 65 72 61 72 | tions/Gleich%202005%20-%20hierar |
| 0f20 | 63 68 69 63 61 6c 25 32 30 64 69 72 65 63 74 65 64 25 32 30 73 70 65 63 74 72 61 6c 2e 70 64 66 | chical%20directed%20spectral.pdf |
| 0f40 | 3e 0a 0a 20 20 20 20 63 01 00 00 00 00 00 00 00 00 00 00 00 03 00 00 00 33 00 00 00 f3 26 00 00 | >......c................3....&.. |
| 0f60 | 00 4b 00 01 00 97 00 7c 00 5d 09 00 00 5c 02 00 00 7d 01 7d 02 7c 02 96 01 97 01 01 00 8c 0b 04 | .K.....|.]...\...}.}.|.......... |
| 0f80 | 00 79 00 ad 03 77 01 72 13 00 00 00 72 14 00 00 00 29 03 72 15 00 00 00 72 17 00 00 00 da 01 64 | .y...w.r....r....).r....r......d |
| 0fa0 | 73 03 00 00 00 20 20 20 72 18 00 00 00 72 19 00 00 00 7a 19 76 6f 6c 75 6d 65 2e 3c 6c 6f 63 61 | s.......r....r....z.volume.<loca |
| 0fc0 | 6c 73 3e 2e 3c 67 65 6e 65 78 70 72 3e 7d 00 00 00 73 14 00 00 00 e8 00 f8 80 00 d2 0e 36 91 54 | ls>.<genexpr>}...s...........6.T |
| 0fe0 | 90 51 98 01 8c 71 d1 0e 36 f9 73 04 00 00 00 82 0f 11 01 a9 01 72 0c 00 00 00 29 04 72 1c 00 00 | .Q...q..6.s..........r....).r... |
| 1000 | 00 da 0a 6f 75 74 5f 64 65 67 72 65 65 da 06 64 65 67 72 65 65 72 1d 00 00 00 29 04 72 1e 00 00 | ...out_degree..degreer....).r... |
| 1020 | 00 72 1f 00 00 00 72 0c 00 00 00 72 28 00 00 00 73 04 00 00 00 20 20 20 20 72 18 00 00 00 72 0b | .r....r....r(...s........r....r. |
| 1040 | 00 00 00 72 0b 00 00 00 55 00 00 00 73 34 00 00 00 80 00 f0 4e 01 00 1e 1f 9f 5d 99 5d 9c 5f 88 | ...r....U...s4......N.....].]._. |
| 1060 | 51 8f 5c 8a 5c b0 21 b7 28 b1 28 80 46 dc 0b 0e d1 0e 36 99 56 a0 41 a8 66 d4 1d 35 d4 0e 36 d3 | Q.\.\.!.(.(.F.....6.V.A.f..5..6. |
| 1080 | 0b 36 d0 04 36 72 22 00 00 00 63 04 00 00 00 00 00 00 00 00 00 00 00 06 00 00 00 03 00 00 00 f3 | .6..6r"...c..................... |
| 10a0 | a6 00 00 00 97 00 7c 02 80 17 74 01 00 00 00 00 00 00 00 00 7c 00 ab 01 00 00 00 00 00 00 74 01 | ......|...t.........|.........t. |
| 10c0 | 00 00 00 00 00 00 00 00 7c 01 ab 01 00 00 00 00 00 00 7a 0a 00 00 7d 02 74 03 00 00 00 00 00 00 | ........|.........z...}.t....... |
| 10e0 | 00 00 7c 00 7c 01 7c 02 7c 03 ac 01 ab 04 00 00 00 00 00 00 7d 04 74 05 00 00 00 00 00 00 00 00 | ..|.|.|.|...........}.t......... |
| 1100 | 7c 00 7c 01 7c 03 ac 02 ab 03 00 00 00 00 00 00 7d 05 74 05 00 00 00 00 00 00 00 00 7c 00 7c 02 | |.|.|...........}.t.........|.|. |
| 1120 | 7c 03 ac 02 ab 03 00 00 00 00 00 00 7d 06 7c 04 64 03 7c 05 7a 0b 00 00 64 03 7c 06 7a 0b 00 00 | |...........}.|.d.|.z...d.|.z... |
| 1140 | 7a 00 00 00 7a 05 00 00 53 00 29 04 61 02 04 00 00 52 65 74 75 72 6e 73 20 74 68 65 20 6e 6f 72 | z...z...S.).a....Returns.the.nor |
| 1160 | 6d 61 6c 69 7a 65 64 20 73 69 7a 65 20 6f 66 20 74 68 65 20 63 75 74 20 62 65 74 77 65 65 6e 20 | malized.size.of.the.cut.between. |
| 1180 | 74 77 6f 20 73 65 74 73 20 6f 66 20 6e 6f 64 65 73 2e 0a 0a 20 20 20 20 54 68 65 20 2a 6e 6f 72 | two.sets.of.nodes.......The.*nor |
| 11a0 | 6d 61 6c 69 7a 65 64 20 63 75 74 20 73 69 7a 65 2a 20 69 73 20 74 68 65 20 63 75 74 20 73 69 7a | malized.cut.size*.is.the.cut.siz |
| 11c0 | 65 20 74 69 6d 65 73 20 74 68 65 20 73 75 6d 20 6f 66 20 74 68 65 0a 20 20 20 20 72 65 63 69 70 | e.times.the.sum.of.the.....recip |
| 11e0 | 72 6f 63 61 6c 20 73 69 7a 65 73 20 6f 66 20 74 68 65 20 76 6f 6c 75 6d 65 73 20 6f 66 20 74 68 | rocal.sizes.of.the.volumes.of.th |
| 1200 | 65 20 74 77 6f 20 73 65 74 73 2e 20 5b 31 5d 0a 0a 20 20 20 20 50 61 72 61 6d 65 74 65 72 73 0a | e.two.sets..[1]......Parameters. |
| 1220 | 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 47 20 3a 20 4e 65 74 77 6f 72 6b 58 20 | ....----------.....G.:.NetworkX. |
| 1240 | 67 72 61 70 68 0a 0a 20 20 20 20 53 20 3a 20 63 6f 6c 6c 65 63 74 69 6f 6e 0a 20 20 20 20 20 20 | graph......S.:.collection....... |
| 1260 | 20 20 41 20 63 6f 6c 6c 65 63 74 69 6f 6e 20 6f 66 20 6e 6f 64 65 73 20 69 6e 20 60 47 60 2e 0a | ..A.collection.of.nodes.in.`G`.. |
| 1280 | 0a 20 20 20 20 54 20 3a 20 63 6f 6c 6c 65 63 74 69 6f 6e 0a 20 20 20 20 20 20 20 20 41 20 63 6f | .....T.:.collection.........A.co |
| 12a0 | 6c 6c 65 63 74 69 6f 6e 20 6f 66 20 6e 6f 64 65 73 20 69 6e 20 60 47 60 2e 0a 0a 20 20 20 20 77 | llection.of.nodes.in.`G`.......w |
| 12c0 | 65 69 67 68 74 20 3a 20 6f 62 6a 65 63 74 0a 20 20 20 20 20 20 20 20 45 64 67 65 20 61 74 74 72 | eight.:.object.........Edge.attr |
| 12e0 | 69 62 75 74 65 20 6b 65 79 20 74 6f 20 75 73 65 20 61 73 20 77 65 69 67 68 74 2e 20 49 66 20 6e | ibute.key.to.use.as.weight..If.n |
| 1300 | 6f 74 20 73 70 65 63 69 66 69 65 64 2c 20 65 64 67 65 73 0a 20 20 20 20 20 20 20 20 68 61 76 65 | ot.specified,.edges.........have |
| 1320 | 20 77 65 69 67 68 74 20 6f 6e 65 2e 0a 0a 20 20 20 20 52 65 74 75 72 6e 73 0a 20 20 20 20 2d 2d | .weight.one.......Returns.....-- |
| 1340 | 2d 2d 2d 2d 2d 0a 20 20 20 20 6e 75 6d 62 65 72 0a 20 20 20 20 20 20 20 20 54 68 65 20 6e 6f 72 | -----.....number.........The.nor |
| 1360 | 6d 61 6c 69 7a 65 64 20 63 75 74 20 73 69 7a 65 20 62 65 74 77 65 65 6e 20 74 68 65 20 74 77 6f | malized.cut.size.between.the.two |
| 1380 | 20 73 65 74 73 20 60 53 60 20 61 6e 64 20 60 54 60 2e 0a 0a 20 20 20 20 4e 6f 74 65 73 0a 20 20 | .sets.`S`.and.`T`.......Notes... |
| 13a0 | 20 20 2d 2d 2d 2d 2d 0a 20 20 20 20 49 6e 20 61 20 6d 75 6c 74 69 67 72 61 70 68 2c 20 74 68 65 | ..-----.....In.a.multigraph,.the |
| 13c0 | 20 63 75 74 20 73 69 7a 65 20 69 73 20 74 68 65 20 74 6f 74 61 6c 20 77 65 69 67 68 74 20 6f 66 | .cut.size.is.the.total.weight.of |
| 13e0 | 20 65 64 67 65 73 20 69 6e 63 6c 75 64 69 6e 67 0a 20 20 20 20 6d 75 6c 74 69 70 6c 69 63 69 74 | .edges.including.....multiplicit |
| 1400 | 79 2e 0a 0a 20 20 20 20 53 65 65 20 61 6c 73 6f 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 | y.......See.also.....--------... |
| 1420 | 20 20 63 6f 6e 64 75 63 74 61 6e 63 65 0a 20 20 20 20 63 75 74 5f 73 69 7a 65 0a 20 20 20 20 65 | ..conductance.....cut_size.....e |
| 1440 | 64 67 65 5f 65 78 70 61 6e 73 69 6f 6e 0a 20 20 20 20 76 6f 6c 75 6d 65 0a 0a 20 20 20 20 52 65 | dge_expansion.....volume......Re |
| 1460 | 66 65 72 65 6e 63 65 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 2e 2e 20 5b | ferences.....----------........[ |
| 1480 | 31 5d 20 44 61 76 69 64 20 47 6c 65 69 63 68 2e 0a 20 20 20 20 20 20 20 20 20 20 20 2a 48 69 65 | 1].David.Gleich.............*Hie |
| 14a0 | 72 61 72 63 68 69 63 61 6c 20 44 69 72 65 63 74 65 64 20 53 70 65 63 74 72 61 6c 20 47 72 61 70 | rarchical.Directed.Spectral.Grap |
| 14c0 | 68 20 50 61 72 74 69 74 69 6f 6e 69 6e 67 2a 2e 0a 20 20 20 20 20 20 20 20 20 20 20 3c 68 74 74 | h.Partitioning*.............<htt |
| 14e0 | 70 73 3a 2f 2f 77 77 77 2e 63 73 2e 70 75 72 64 75 65 2e 65 64 75 2f 68 6f 6d 65 73 2f 64 67 6c | ps://www.cs.purdue.edu/homes/dgl |
| 1500 | 65 69 63 68 2f 70 75 62 6c 69 63 61 74 69 6f 6e 73 2f 47 6c 65 69 63 68 25 32 30 32 30 30 35 25 | eich/publications/Gleich%202005% |
| 1520 | 32 30 2d 25 32 30 68 69 65 72 61 72 63 68 69 63 61 6c 25 32 30 64 69 72 65 63 74 65 64 25 32 30 | 20-%20hierarchical%20directed%20 |
| 1540 | 73 70 65 63 74 72 61 6c 2e 70 64 66 3e 0a 0a 20 20 20 20 a9 02 72 20 00 00 00 72 0c 00 00 00 72 | spectral.pdf>........r....r....r |
| 1560 | 26 00 00 00 72 0f 00 00 00 29 03 da 03 73 65 74 72 06 00 00 00 72 0b 00 00 00 a9 07 72 1e 00 00 | &...r....)...setr....r......r... |
| 1580 | 00 72 1f 00 00 00 72 20 00 00 00 72 0c 00 00 00 da 0d 6e 75 6d 5f 63 75 74 5f 65 64 67 65 73 da | .r....r....r......num_cut_edges. |
| 15a0 | 08 76 6f 6c 75 6d 65 5f 53 da 08 76 6f 6c 75 6d 65 5f 54 73 07 00 00 00 20 20 20 20 20 20 20 72 | .volume_S..volume_Ts...........r |
| 15c0 | 18 00 00 00 72 0a 00 00 00 72 0a 00 00 00 80 00 00 00 73 5f 00 00 00 80 00 f0 5a 01 00 08 09 80 | ....r....r........s_......Z..... |
| 15e0 | 79 dc 0c 0f 90 01 8b 46 94 53 98 11 93 56 89 4f 88 01 dc 14 1c 98 51 a0 01 a0 51 a8 76 d4 14 36 | y......F.S...V.O......Q...Q.v..6 |
| 1600 | 80 4d dc 0f 15 90 61 98 11 a0 36 d4 0f 2a 80 48 dc 0f 15 90 61 98 11 a0 36 d4 0f 2a 80 48 d8 0b | .M....a...6..*.H....a...6..*.H.. |
| 1620 | 18 98 51 a0 18 99 5c a8 61 b0 28 a9 6c d1 1c 3b d1 0b 3c d0 04 3c 72 22 00 00 00 63 04 00 00 00 | ..Q...\.a.(.l..;..<..<r"...c.... |
| 1640 | 00 00 00 00 00 00 00 00 06 00 00 00 03 00 00 00 f3 a8 00 00 00 97 00 7c 02 80 17 74 01 00 00 00 | .......................|...t.... |
| 1660 | 00 00 00 00 00 7c 00 ab 01 00 00 00 00 00 00 74 01 00 00 00 00 00 00 00 00 7c 01 ab 01 00 00 00 | .....|.........t.........|...... |
| 1680 | 00 00 00 7a 0a 00 00 7d 02 74 03 00 00 00 00 00 00 00 00 7c 00 7c 01 7c 02 7c 03 ac 01 ab 04 00 | ...z...}.t.........|.|.|.|...... |
| 16a0 | 00 00 00 00 00 7d 04 74 05 00 00 00 00 00 00 00 00 7c 00 7c 01 7c 03 ac 01 ab 03 00 00 00 00 00 | .....}.t.........|.|.|.......... |
| 16c0 | 00 7d 05 74 05 00 00 00 00 00 00 00 00 7c 00 7c 02 7c 03 ac 01 ab 03 00 00 00 00 00 00 7d 06 7c | .}.t.........|.|.|...........}.| |
| 16e0 | 04 74 07 00 00 00 00 00 00 00 00 7c 05 7c 06 ab 02 00 00 00 00 00 00 7a 0b 00 00 53 00 29 02 61 | .t.........|.|.........z...S.).a |
| 1700 | 70 03 00 00 52 65 74 75 72 6e 73 20 74 68 65 20 63 6f 6e 64 75 63 74 61 6e 63 65 20 6f 66 20 74 | p...Returns.the.conductance.of.t |
| 1720 | 77 6f 20 73 65 74 73 20 6f 66 20 6e 6f 64 65 73 2e 0a 0a 20 20 20 20 54 68 65 20 2a 63 6f 6e 64 | wo.sets.of.nodes.......The.*cond |
| 1740 | 75 63 74 61 6e 63 65 2a 20 69 73 20 74 68 65 20 71 75 6f 74 69 65 6e 74 20 6f 66 20 74 68 65 20 | uctance*.is.the.quotient.of.the. |
| 1760 | 63 75 74 20 73 69 7a 65 20 61 6e 64 20 74 68 65 20 73 6d 61 6c 6c 65 72 20 6f 66 0a 20 20 20 20 | cut.size.and.the.smaller.of..... |
| 1780 | 74 68 65 20 76 6f 6c 75 6d 65 73 20 6f 66 20 74 68 65 20 74 77 6f 20 73 65 74 73 2e 20 5b 31 5d | the.volumes.of.the.two.sets..[1] |
| 17a0 | 0a 0a 20 20 20 20 50 61 72 61 6d 65 74 65 72 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 0a | ......Parameters.....----------. |
| 17c0 | 20 20 20 20 47 20 3a 20 4e 65 74 77 6f 72 6b 58 20 67 72 61 70 68 0a 0a 20 20 20 20 53 20 3a 20 | ....G.:.NetworkX.graph......S.:. |
| 17e0 | 63 6f 6c 6c 65 63 74 69 6f 6e 0a 20 20 20 20 20 20 20 20 41 20 63 6f 6c 6c 65 63 74 69 6f 6e 20 | collection.........A.collection. |
| 1800 | 6f 66 20 6e 6f 64 65 73 20 69 6e 20 60 47 60 2e 0a 0a 20 20 20 20 54 20 3a 20 63 6f 6c 6c 65 63 | of.nodes.in.`G`.......T.:.collec |
| 1820 | 74 69 6f 6e 0a 20 20 20 20 20 20 20 20 41 20 63 6f 6c 6c 65 63 74 69 6f 6e 20 6f 66 20 6e 6f 64 | tion.........A.collection.of.nod |
| 1840 | 65 73 20 69 6e 20 60 47 60 2e 0a 0a 20 20 20 20 77 65 69 67 68 74 20 3a 20 6f 62 6a 65 63 74 0a | es.in.`G`.......weight.:.object. |
| 1860 | 20 20 20 20 20 20 20 20 45 64 67 65 20 61 74 74 72 69 62 75 74 65 20 6b 65 79 20 74 6f 20 75 73 | ........Edge.attribute.key.to.us |
| 1880 | 65 20 61 73 20 77 65 69 67 68 74 2e 20 49 66 20 6e 6f 74 20 73 70 65 63 69 66 69 65 64 2c 20 65 | e.as.weight..If.not.specified,.e |
| 18a0 | 64 67 65 73 0a 20 20 20 20 20 20 20 20 68 61 76 65 20 77 65 69 67 68 74 20 6f 6e 65 2e 0a 0a 20 | dges.........have.weight.one.... |
| 18c0 | 20 20 20 52 65 74 75 72 6e 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 6e 75 6d 62 65 | ...Returns.....-------.....numbe |
| 18e0 | 72 0a 20 20 20 20 20 20 20 20 54 68 65 20 63 6f 6e 64 75 63 74 61 6e 63 65 20 62 65 74 77 65 65 | r.........The.conductance.betwee |
| 1900 | 6e 20 74 68 65 20 74 77 6f 20 73 65 74 73 20 60 53 60 20 61 6e 64 20 60 54 60 2e 0a 0a 20 20 20 | n.the.two.sets.`S`.and.`T`...... |
| 1920 | 20 53 65 65 20 61 6c 73 6f 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 63 75 74 5f 73 | .See.also.....--------.....cut_s |
| 1940 | 69 7a 65 0a 20 20 20 20 65 64 67 65 5f 65 78 70 61 6e 73 69 6f 6e 0a 20 20 20 20 6e 6f 72 6d 61 | ize.....edge_expansion.....norma |
| 1960 | 6c 69 7a 65 64 5f 63 75 74 5f 73 69 7a 65 0a 20 20 20 20 76 6f 6c 75 6d 65 0a 0a 20 20 20 20 52 | lized_cut_size.....volume......R |
| 1980 | 65 66 65 72 65 6e 63 65 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 2e 2e 20 | eferences.....----------........ |
| 19a0 | 5b 31 5d 20 44 61 76 69 64 20 47 6c 65 69 63 68 2e 0a 20 20 20 20 20 20 20 20 20 20 20 2a 48 69 | [1].David.Gleich.............*Hi |
| 19c0 | 65 72 61 72 63 68 69 63 61 6c 20 44 69 72 65 63 74 65 64 20 53 70 65 63 74 72 61 6c 20 47 72 61 | erarchical.Directed.Spectral.Gra |
| 19e0 | 70 68 20 50 61 72 74 69 74 69 6f 6e 69 6e 67 2a 2e 0a 20 20 20 20 20 20 20 20 20 20 20 3c 68 74 | ph.Partitioning*.............<ht |
| 1a00 | 74 70 73 3a 2f 2f 77 77 77 2e 63 73 2e 70 75 72 64 75 65 2e 65 64 75 2f 68 6f 6d 65 73 2f 64 67 | tps://www.cs.purdue.edu/homes/dg |
| 1a20 | 6c 65 69 63 68 2f 70 75 62 6c 69 63 61 74 69 6f 6e 73 2f 47 6c 65 69 63 68 25 32 30 32 30 30 35 | leich/publications/Gleich%202005 |
| 1a40 | 25 32 30 2d 25 32 30 68 69 65 72 61 72 63 68 69 63 61 6c 25 32 30 64 69 72 65 63 74 65 64 25 32 | %20-%20hierarchical%20directed%2 |
| 1a60 | 30 73 70 65 63 74 72 61 6c 2e 70 64 66 3e 0a 0a 20 20 20 20 72 26 00 00 00 29 04 72 2b 00 00 00 | 0spectral.pdf>......r&...).r+... |
| 1a80 | 72 06 00 00 00 72 0b 00 00 00 da 03 6d 69 6e 72 2c 00 00 00 73 07 00 00 00 20 20 20 20 20 20 20 | r....r......minr,...s........... |
| 1aa0 | 72 18 00 00 00 72 05 00 00 00 72 05 00 00 00 b5 00 00 00 73 59 00 00 00 80 00 f0 50 01 00 08 09 | r....r....r........sY......P.... |
| 1ac0 | 80 79 dc 0c 0f 90 01 8b 46 94 53 98 11 93 56 89 4f 88 01 dc 14 1c 98 51 a0 01 a0 31 a8 56 d4 14 | .y......F.S...V.O......Q...1.V.. |
| 1ae0 | 34 80 4d dc 0f 15 90 61 98 11 a0 36 d4 0f 2a 80 48 dc 0f 15 90 61 98 11 a0 36 d4 0f 2a 80 48 d8 | 4.M....a...6..*.H....a...6..*.H. |
| 1b00 | 0b 18 9c 33 98 78 a8 18 d3 1b 32 d1 0b 32 d0 04 32 72 22 00 00 00 63 04 00 00 00 00 00 00 00 00 | ...3.x....2..2..2r"...c......... |
| 1b20 | 00 00 00 07 00 00 00 03 00 00 00 f3 94 00 00 00 97 00 7c 02 80 17 74 01 00 00 00 00 00 00 00 00 | ..................|...t......... |
| 1b40 | 7c 00 ab 01 00 00 00 00 00 00 74 01 00 00 00 00 00 00 00 00 7c 01 ab 01 00 00 00 00 00 00 7a 0a | |.........t.........|.........z. |
| 1b60 | 00 00 7d 02 74 03 00 00 00 00 00 00 00 00 7c 00 7c 01 7c 02 7c 03 ac 01 ab 04 00 00 00 00 00 00 | ..}.t.........|.|.|.|........... |
| 1b80 | 7d 04 7c 04 74 05 00 00 00 00 00 00 00 00 74 07 00 00 00 00 00 00 00 00 7c 01 ab 01 00 00 00 00 | }.|.t.........t.........|....... |
| 1ba0 | 00 00 74 07 00 00 00 00 00 00 00 00 7c 02 ab 01 00 00 00 00 00 00 ab 02 00 00 00 00 00 00 7a 0b | ..t.........|.................z. |
| 1bc0 | 00 00 53 00 29 02 61 a9 03 00 00 52 65 74 75 72 6e 73 20 74 68 65 20 65 64 67 65 20 65 78 70 61 | ..S.).a....Returns.the.edge.expa |
| 1be0 | 6e 73 69 6f 6e 20 62 65 74 77 65 65 6e 20 74 77 6f 20 6e 6f 64 65 20 73 65 74 73 2e 0a 0a 20 20 | nsion.between.two.node.sets..... |
| 1c00 | 20 20 54 68 65 20 2a 65 64 67 65 20 65 78 70 61 6e 73 69 6f 6e 2a 20 69 73 20 74 68 65 20 71 75 | ..The.*edge.expansion*.is.the.qu |
| 1c20 | 6f 74 69 65 6e 74 20 6f 66 20 74 68 65 20 63 75 74 20 73 69 7a 65 20 61 6e 64 20 74 68 65 20 73 | otient.of.the.cut.size.and.the.s |
| 1c40 | 6d 61 6c 6c 65 72 0a 20 20 20 20 6f 66 20 74 68 65 20 63 61 72 64 69 6e 61 6c 69 74 69 65 73 20 | maller.....of.the.cardinalities. |
| 1c60 | 6f 66 20 74 68 65 20 74 77 6f 20 73 65 74 73 2e 20 5b 31 5d 0a 0a 20 20 20 20 50 61 72 61 6d 65 | of.the.two.sets..[1]......Parame |
| 1c80 | 74 65 72 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 47 20 3a 20 4e 65 74 77 | ters.....----------.....G.:.Netw |
| 1ca0 | 6f 72 6b 58 20 67 72 61 70 68 0a 0a 20 20 20 20 53 20 3a 20 63 6f 6c 6c 65 63 74 69 6f 6e 0a 20 | orkX.graph......S.:.collection.. |
| 1cc0 | 20 20 20 20 20 20 20 41 20 63 6f 6c 6c 65 63 74 69 6f 6e 20 6f 66 20 6e 6f 64 65 73 20 69 6e 20 | .......A.collection.of.nodes.in. |
| 1ce0 | 60 47 60 2e 0a 0a 20 20 20 20 54 20 3a 20 63 6f 6c 6c 65 63 74 69 6f 6e 0a 20 20 20 20 20 20 20 | `G`.......T.:.collection........ |
| 1d00 | 20 41 20 63 6f 6c 6c 65 63 74 69 6f 6e 20 6f 66 20 6e 6f 64 65 73 20 69 6e 20 60 47 60 2e 0a 0a | .A.collection.of.nodes.in.`G`... |
| 1d20 | 20 20 20 20 77 65 69 67 68 74 20 3a 20 6f 62 6a 65 63 74 0a 20 20 20 20 20 20 20 20 45 64 67 65 | ....weight.:.object.........Edge |
| 1d40 | 20 61 74 74 72 69 62 75 74 65 20 6b 65 79 20 74 6f 20 75 73 65 20 61 73 20 77 65 69 67 68 74 2e | .attribute.key.to.use.as.weight. |
| 1d60 | 20 49 66 20 6e 6f 74 20 73 70 65 63 69 66 69 65 64 2c 20 65 64 67 65 73 0a 20 20 20 20 20 20 20 | .If.not.specified,.edges........ |
| 1d80 | 20 68 61 76 65 20 77 65 69 67 68 74 20 6f 6e 65 2e 0a 0a 20 20 20 20 52 65 74 75 72 6e 73 0a 20 | .have.weight.one.......Returns.. |
| 1da0 | 20 20 20 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 6e 75 6d 62 65 72 0a 20 20 20 20 20 20 20 20 54 68 | ...-------.....number.........Th |
| 1dc0 | 65 20 65 64 67 65 20 65 78 70 61 6e 73 69 6f 6e 20 62 65 74 77 65 65 6e 20 74 68 65 20 74 77 6f | e.edge.expansion.between.the.two |
| 1de0 | 20 73 65 74 73 20 60 53 60 20 61 6e 64 20 60 54 60 2e 0a 0a 20 20 20 20 53 65 65 20 61 6c 73 6f | .sets.`S`.and.`T`.......See.also |
| 1e00 | 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 62 6f 75 6e 64 61 72 79 5f 65 78 70 61 6e | .....--------.....boundary_expan |
| 1e20 | 73 69 6f 6e 0a 20 20 20 20 6d 69 78 69 6e 67 5f 65 78 70 61 6e 73 69 6f 6e 0a 20 20 20 20 6e 6f | sion.....mixing_expansion.....no |
| 1e40 | 64 65 5f 65 78 70 61 6e 73 69 6f 6e 0a 0a 20 20 20 20 52 65 66 65 72 65 6e 63 65 73 0a 20 20 20 | de_expansion......References.... |
| 1e60 | 20 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 2e 2e 20 5b 31 5d 20 46 61 6e 20 43 68 75 6e 67 | .----------........[1].Fan.Chung |
| 1e80 | 2e 0a 20 20 20 20 20 20 20 20 20 20 20 2a 53 70 65 63 74 72 61 6c 20 47 72 61 70 68 20 54 68 65 | .............*Spectral.Graph.The |
| 1ea0 | 6f 72 79 2a 2e 0a 20 20 20 20 20 20 20 20 20 20 20 28 43 42 4d 53 20 52 65 67 69 6f 6e 61 6c 20 | ory*.............(CBMS.Regional. |
| 1ec0 | 43 6f 6e 66 65 72 65 6e 63 65 20 53 65 72 69 65 73 20 69 6e 20 4d 61 74 68 65 6d 61 74 69 63 73 | Conference.Series.in.Mathematics |
| 1ee0 | 2c 20 4e 6f 2e 20 39 32 29 2c 0a 20 20 20 20 20 20 20 20 20 20 20 41 6d 65 72 69 63 61 6e 20 4d | ,.No..92),............American.M |
| 1f00 | 61 74 68 65 6d 61 74 69 63 61 6c 20 53 6f 63 69 65 74 79 2c 20 31 39 39 37 2c 20 49 53 42 4e 20 | athematical.Society,.1997,.ISBN. |
| 1f20 | 30 2d 38 32 31 38 2d 30 33 31 35 2d 38 0a 20 20 20 20 20 20 20 20 20 20 20 3c 68 74 74 70 3a 2f | 0-8218-0315-8............<http:/ |
| 1f40 | 2f 77 77 77 2e 6d 61 74 68 2e 75 63 73 64 2e 65 64 75 2f 7e 66 61 6e 2f 72 65 73 65 61 72 63 68 | /www.math.ucsd.edu/~fan/research |
| 1f60 | 2f 72 65 76 69 73 65 64 2e 68 74 6d 6c 3e 0a 0a 20 20 20 20 72 2a 00 00 00 29 04 72 2b 00 00 00 | /revised.html>......r*...).r+... |
| 1f80 | 72 06 00 00 00 72 31 00 00 00 da 03 6c 65 6e 29 05 72 1e 00 00 00 72 1f 00 00 00 72 20 00 00 00 | r....r1.....len).r....r....r.... |
| 1fa0 | 72 0c 00 00 00 72 2d 00 00 00 73 05 00 00 00 20 20 20 20 20 72 18 00 00 00 72 07 00 00 00 72 07 | r....r-...s.........r....r....r. |
| 1fc0 | 00 00 00 e5 00 00 00 73 45 00 00 00 80 00 f0 52 01 00 08 09 80 79 dc 0c 0f 90 01 8b 46 94 53 98 | .......sE......R.....y......F.S. |
| 1fe0 | 11 93 56 89 4f 88 01 dc 14 1c 98 51 a0 01 a0 51 a8 76 d4 14 36 80 4d d8 0b 18 9c 33 9c 73 a0 31 | ..V.O......Q...Q.v..6.M....3.s.1 |
| 2000 | 9b 76 a4 73 a8 31 a3 76 d3 1b 2e d1 0b 2e d0 04 2e 72 22 00 00 00 63 04 00 00 00 00 00 00 00 00 | .v.s.1.v.........r"...c......... |
| 2020 | 00 00 00 06 00 00 00 03 00 00 00 f3 50 00 00 00 97 00 74 01 00 00 00 00 00 00 00 00 7c 00 7c 01 | ............P.....t.........|.|. |
| 2040 | 7c 02 7c 03 ac 01 ab 04 00 00 00 00 00 00 7d 04 7c 00 6a 03 00 00 00 00 00 00 00 00 00 00 00 00 | |.|...........}.|.j............. |
| 2060 | 00 00 00 00 00 00 ab 00 00 00 00 00 00 00 7d 05 7c 04 64 02 7c 05 7a 05 00 00 7a 0b 00 00 53 00 | ..............}.|.d.|.z...z...S. |
| 2080 | 29 03 75 73 03 00 00 52 65 74 75 72 6e 73 20 74 68 65 20 6d 69 78 69 6e 67 20 65 78 70 61 6e 73 | ).us...Returns.the.mixing.expans |
| 20a0 | 69 6f 6e 20 62 65 74 77 65 65 6e 20 74 77 6f 20 6e 6f 64 65 20 73 65 74 73 2e 0a 0a 20 20 20 20 | ion.between.two.node.sets....... |
| 20c0 | 54 68 65 20 2a 6d 69 78 69 6e 67 20 65 78 70 61 6e 73 69 6f 6e 2a 20 69 73 20 74 68 65 20 71 75 | The.*mixing.expansion*.is.the.qu |
| 20e0 | 6f 74 69 65 6e 74 20 6f 66 20 74 68 65 20 63 75 74 20 73 69 7a 65 20 61 6e 64 20 74 77 69 63 65 | otient.of.the.cut.size.and.twice |
| 2100 | 20 74 68 65 0a 20 20 20 20 6e 75 6d 62 65 72 20 6f 66 20 65 64 67 65 73 20 69 6e 20 74 68 65 20 | .the.....number.of.edges.in.the. |
| 2120 | 67 72 61 70 68 2e 20 5b 31 5d 0a 0a 20 20 20 20 50 61 72 61 6d 65 74 65 72 73 0a 20 20 20 20 2d | graph..[1]......Parameters.....- |
| 2140 | 2d 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 47 20 3a 20 4e 65 74 77 6f 72 6b 58 20 67 72 61 70 68 | ---------.....G.:.NetworkX.graph |
| 2160 | 0a 0a 20 20 20 20 53 20 3a 20 63 6f 6c 6c 65 63 74 69 6f 6e 0a 20 20 20 20 20 20 20 20 41 20 63 | ......S.:.collection.........A.c |
| 2180 | 6f 6c 6c 65 63 74 69 6f 6e 20 6f 66 20 6e 6f 64 65 73 20 69 6e 20 60 47 60 2e 0a 0a 20 20 20 20 | ollection.of.nodes.in.`G`....... |
| 21a0 | 54 20 3a 20 63 6f 6c 6c 65 63 74 69 6f 6e 0a 20 20 20 20 20 20 20 20 41 20 63 6f 6c 6c 65 63 74 | T.:.collection.........A.collect |
| 21c0 | 69 6f 6e 20 6f 66 20 6e 6f 64 65 73 20 69 6e 20 60 47 60 2e 0a 0a 20 20 20 20 77 65 69 67 68 74 | ion.of.nodes.in.`G`.......weight |
| 21e0 | 20 3a 20 6f 62 6a 65 63 74 0a 20 20 20 20 20 20 20 20 45 64 67 65 20 61 74 74 72 69 62 75 74 65 | .:.object.........Edge.attribute |
| 2200 | 20 6b 65 79 20 74 6f 20 75 73 65 20 61 73 20 77 65 69 67 68 74 2e 20 49 66 20 6e 6f 74 20 73 70 | .key.to.use.as.weight..If.not.sp |
| 2220 | 65 63 69 66 69 65 64 2c 20 65 64 67 65 73 0a 20 20 20 20 20 20 20 20 68 61 76 65 20 77 65 69 67 | ecified,.edges.........have.weig |
| 2240 | 68 74 20 6f 6e 65 2e 0a 0a 20 20 20 20 52 65 74 75 72 6e 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d | ht.one.......Returns.....------- |
| 2260 | 0a 20 20 20 20 6e 75 6d 62 65 72 0a 20 20 20 20 20 20 20 20 54 68 65 20 6d 69 78 69 6e 67 20 65 | .....number.........The.mixing.e |
| 2280 | 78 70 61 6e 73 69 6f 6e 20 62 65 74 77 65 65 6e 20 74 68 65 20 74 77 6f 20 73 65 74 73 20 60 53 | xpansion.between.the.two.sets.`S |
| 22a0 | 60 20 61 6e 64 20 60 54 60 2e 0a 0a 20 20 20 20 53 65 65 20 61 6c 73 6f 0a 20 20 20 20 2d 2d 2d | `.and.`T`.......See.also.....--- |
| 22c0 | 2d 2d 2d 2d 2d 0a 20 20 20 20 62 6f 75 6e 64 61 72 79 5f 65 78 70 61 6e 73 69 6f 6e 0a 20 20 20 | -----.....boundary_expansion.... |
| 22e0 | 20 65 64 67 65 5f 65 78 70 61 6e 73 69 6f 6e 0a 20 20 20 20 6e 6f 64 65 5f 65 78 70 61 6e 73 69 | .edge_expansion.....node_expansi |
| 2300 | 6f 6e 0a 0a 20 20 20 20 52 65 66 65 72 65 6e 63 65 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 2d | on......References.....--------- |
| 2320 | 2d 0a 20 20 20 20 2e 2e 20 5b 31 5d 20 56 61 64 68 61 6e 2c 20 53 61 6c 69 6c 20 50 2e 0a 20 20 | -........[1].Vadhan,.Salil.P.... |
| 2340 | 20 20 20 20 20 20 20 20 20 22 50 73 65 75 64 6f 72 61 6e 64 6f 6d 6e 65 73 73 2e 22 0a 20 20 20 | ........."Pseudorandomness.".... |
| 2360 | 20 20 20 20 20 20 20 20 2a 46 6f 75 6e 64 61 74 69 6f 6e 73 20 61 6e 64 20 54 72 65 6e 64 73 0a | ........*Foundations.and.Trends. |
| 2380 | 20 20 20 20 20 20 20 20 20 20 20 69 6e 20 54 68 65 6f 72 65 74 69 63 61 6c 20 43 6f 6d 70 75 74 | ...........in.Theoretical.Comput |
| 23a0 | 65 72 20 53 63 69 65 6e 63 65 2a 20 37 2e 31 e2 80 93 33 20 28 32 30 31 31 29 3a 20 31 e2 80 93 | er.Science*.7.1...3.(2011):.1... |
| 23c0 | 33 33 36 2e 0a 20 20 20 20 20 20 20 20 20 20 20 3c 68 74 74 70 73 3a 2f 2f 64 6f 69 2e 6f 72 67 | 336.............<https://doi.org |
| 23e0 | 2f 31 30 2e 31 35 36 31 2f 30 34 30 30 30 30 30 30 31 30 3e 0a 0a 20 20 20 20 72 2a 00 00 00 e9 | /10.1561/0400000010>......r*.... |
| 2400 | 02 00 00 00 29 02 72 06 00 00 00 da 0f 6e 75 6d 62 65 72 5f 6f 66 5f 65 64 67 65 73 29 06 72 1e | ....).r......number_of_edges).r. |
| 2420 | 00 00 00 72 1f 00 00 00 72 20 00 00 00 72 0c 00 00 00 72 2d 00 00 00 da 0f 6e 75 6d 5f 74 6f 74 | ...r....r....r....r-.....num_tot |
| 2440 | 61 6c 5f 65 64 67 65 73 73 06 00 00 00 20 20 20 20 20 20 72 18 00 00 00 72 08 00 00 00 72 08 00 | al_edgess..........r....r....r.. |
| 2460 | 00 00 14 01 00 00 73 33 00 00 00 80 00 f4 52 01 00 15 1d 98 51 a0 01 a0 51 a8 76 d4 14 36 80 4d | ......s3......R.....Q...Q.v..6.M |
| 2480 | d8 16 17 d7 16 27 d1 16 27 d3 16 29 80 4f d8 0b 18 98 41 a0 0f d1 1c 2f d1 0b 30 d0 04 30 72 22 | .....'..'..).O....A..../..0..0r" |
| 24a0 | 00 00 00 63 02 00 00 00 00 00 00 00 00 00 00 00 06 00 00 00 03 00 00 00 f3 80 00 00 00 87 00 97 | ...c............................ |
| 24c0 | 00 74 01 00 00 00 00 00 00 00 00 74 03 00 00 00 00 00 00 00 00 6a 04 00 00 00 00 00 00 00 00 00 | .t.........t.........j.......... |
| 24e0 | 00 00 00 00 00 00 00 00 00 88 00 66 01 64 01 84 08 7c 01 44 00 ab 00 00 00 00 00 00 00 ab 01 00 | ...........f.d...|.D............ |
| 2500 | 00 00 00 00 00 ab 01 00 00 00 00 00 00 7d 02 74 07 00 00 00 00 00 00 00 00 7c 02 ab 01 00 00 00 | .............}.t.........|...... |
| 2520 | 00 00 00 74 07 00 00 00 00 00 00 00 00 7c 01 ab 01 00 00 00 00 00 00 7a 0b 00 00 53 00 29 02 75 | ...t.........|.........z...S.).u |
| 2540 | b1 02 00 00 52 65 74 75 72 6e 73 20 74 68 65 20 6e 6f 64 65 20 65 78 70 61 6e 73 69 6f 6e 20 6f | ....Returns.the.node.expansion.o |
| 2560 | 66 20 74 68 65 20 73 65 74 20 60 53 60 2e 0a 0a 20 20 20 20 54 68 65 20 2a 6e 6f 64 65 20 65 78 | f.the.set.`S`.......The.*node.ex |
| 2580 | 70 61 6e 73 69 6f 6e 2a 20 69 73 20 74 68 65 20 71 75 6f 74 69 65 6e 74 20 6f 66 20 74 68 65 20 | pansion*.is.the.quotient.of.the. |
| 25a0 | 73 69 7a 65 20 6f 66 20 74 68 65 20 6e 6f 64 65 0a 20 20 20 20 62 6f 75 6e 64 61 72 79 20 6f 66 | size.of.the.node.....boundary.of |
| 25c0 | 20 2a 53 2a 20 61 6e 64 20 74 68 65 20 63 61 72 64 69 6e 61 6c 69 74 79 20 6f 66 20 2a 53 2a 2e | .*S*.and.the.cardinality.of.*S*. |
| 25e0 | 20 5b 31 5d 0a 0a 20 20 20 20 50 61 72 61 6d 65 74 65 72 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d | .[1]......Parameters.....------- |
| 2600 | 2d 2d 2d 0a 20 20 20 20 47 20 3a 20 4e 65 74 77 6f 72 6b 58 20 67 72 61 70 68 0a 0a 20 20 20 20 | ---.....G.:.NetworkX.graph...... |
| 2620 | 53 20 3a 20 63 6f 6c 6c 65 63 74 69 6f 6e 0a 20 20 20 20 20 20 20 20 41 20 63 6f 6c 6c 65 63 74 | S.:.collection.........A.collect |
| 2640 | 69 6f 6e 20 6f 66 20 6e 6f 64 65 73 20 69 6e 20 60 47 60 2e 0a 0a 20 20 20 20 52 65 74 75 72 6e | ion.of.nodes.in.`G`.......Return |
| 2660 | 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 6e 75 6d 62 65 72 0a 20 20 20 20 20 20 20 | s.....-------.....number........ |
| 2680 | 20 54 68 65 20 6e 6f 64 65 20 65 78 70 61 6e 73 69 6f 6e 20 6f 66 20 74 68 65 20 73 65 74 20 60 | .The.node.expansion.of.the.set.` |
| 26a0 | 53 60 2e 0a 0a 20 20 20 20 53 65 65 20 61 6c 73 6f 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 | S`.......See.also.....--------.. |
| 26c0 | 20 20 20 62 6f 75 6e 64 61 72 79 5f 65 78 70 61 6e 73 69 6f 6e 0a 20 20 20 20 65 64 67 65 5f 65 | ...boundary_expansion.....edge_e |
| 26e0 | 78 70 61 6e 73 69 6f 6e 0a 20 20 20 20 6d 69 78 69 6e 67 5f 65 78 70 61 6e 73 69 6f 6e 0a 0a 20 | xpansion.....mixing_expansion... |
| 2700 | 20 20 20 52 65 66 65 72 65 6e 63 65 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 | ...References.....----------.... |
| 2720 | 20 2e 2e 20 5b 31 5d 20 56 61 64 68 61 6e 2c 20 53 61 6c 69 6c 20 50 2e 0a 20 20 20 20 20 20 20 | ....[1].Vadhan,.Salil.P......... |
| 2740 | 20 20 20 20 22 50 73 65 75 64 6f 72 61 6e 64 6f 6d 6e 65 73 73 2e 22 0a 20 20 20 20 20 20 20 20 | ...."Pseudorandomness."......... |
| 2760 | 20 20 20 2a 46 6f 75 6e 64 61 74 69 6f 6e 73 20 61 6e 64 20 54 72 65 6e 64 73 0a 20 20 20 20 20 | ...*Foundations.and.Trends...... |
| 2780 | 20 20 20 20 20 20 69 6e 20 54 68 65 6f 72 65 74 69 63 61 6c 20 43 6f 6d 70 75 74 65 72 20 53 63 | ......in.Theoretical.Computer.Sc |
| 27a0 | 69 65 6e 63 65 2a 20 37 2e 31 e2 80 93 33 20 28 32 30 31 31 29 3a 20 31 e2 80 93 33 33 36 2e 0a | ience*.7.1...3.(2011):.1...336.. |
| 27c0 | 20 20 20 20 20 20 20 20 20 20 20 3c 68 74 74 70 73 3a 2f 2f 64 6f 69 2e 6f 72 67 2f 31 30 2e 31 | ...........<https://doi.org/10.1 |
| 27e0 | 35 36 31 2f 30 34 30 30 30 30 30 30 31 30 3e 0a 0a 20 20 20 20 63 01 00 00 00 00 00 00 00 00 00 | 561/0400000010>......c.......... |
| 2800 | 00 00 04 00 00 00 33 00 00 00 f3 40 00 00 00 95 01 4b 00 01 00 97 00 7c 00 5d 15 00 00 7d 01 89 | ......3....@.....K.....|.]...}.. |
| 2820 | 02 6a 01 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 7c 01 ab 01 00 00 00 00 00 00 96 | .j...................|.......... |
| 2840 | 01 97 01 01 00 8c 17 04 00 79 00 ad 03 77 01 72 13 00 00 00 29 01 da 09 6e 65 69 67 68 62 6f 72 | .........y...w.r....)...neighbor |
| 2860 | 73 29 03 72 15 00 00 00 72 17 00 00 00 72 1e 00 00 00 73 03 00 00 00 20 20 80 72 18 00 00 00 72 | s).r....r....r....s.......r....r |
| 2880 | 19 00 00 00 7a 21 6e 6f 64 65 5f 65 78 70 61 6e 73 69 6f 6e 2e 3c 6c 6f 63 61 6c 73 3e 2e 3c 67 | ....z!node_expansion.<locals>.<g |
| 28a0 | 65 6e 65 78 70 72 3e 66 01 00 00 73 19 00 00 00 f8 e8 00 f8 80 00 d2 2a 45 b8 61 a8 31 af 3b a9 | enexpr>f...s...........*E.a.1.;. |
| 28c0 | 3b b0 71 af 3e d1 2a 45 f9 73 04 00 00 00 83 1b 1e 01 29 04 72 2b 00 00 00 72 03 00 00 00 da 0d | ;.q.>.*E.s........).r+...r...... |
| 28e0 | 66 72 6f 6d 5f 69 74 65 72 61 62 6c 65 72 33 00 00 00 29 03 72 1e 00 00 00 72 1f 00 00 00 da 0c | from_iterabler3...).r....r...... |
| 2900 | 6e 65 69 67 68 62 6f 72 68 6f 6f 64 73 03 00 00 00 60 20 20 72 18 00 00 00 72 09 00 00 00 72 09 | neighborhoods....`..r....r....r. |
| 2920 | 00 00 00 44 01 00 00 73 35 00 00 00 f8 80 00 f4 44 01 00 14 17 94 75 d7 17 2a d1 17 2a d3 2a 45 | ...D...s5.......D.....u..*..*.*E |
| 2940 | c0 31 d4 2a 45 d3 17 45 d3 13 46 80 4c dc 0b 0e 88 7c d3 0b 1c 9c 73 a0 31 9b 76 d1 0b 25 d0 04 | .1.*E..E..F.L....|....s.1.v..%.. |
| 2960 | 25 72 22 00 00 00 63 02 00 00 00 00 00 00 00 00 00 00 00 06 00 00 00 03 00 00 00 f3 58 00 00 00 | %r"...c.....................X... |
| 2980 | 97 00 74 01 00 00 00 00 00 00 00 00 74 03 00 00 00 00 00 00 00 00 6a 04 00 00 00 00 00 00 00 00 | ..t.........t.........j......... |
| 29a0 | 00 00 00 00 00 00 00 00 00 00 7c 00 7c 01 ab 02 00 00 00 00 00 00 ab 01 00 00 00 00 00 00 74 01 | ..........|.|.................t. |
| 29c0 | 00 00 00 00 00 00 00 00 7c 01 ab 01 00 00 00 00 00 00 7a 0b 00 00 53 00 29 01 75 b2 02 00 00 52 | ........|.........z...S.).u....R |
| 29e0 | 65 74 75 72 6e 73 20 74 68 65 20 62 6f 75 6e 64 61 72 79 20 65 78 70 61 6e 73 69 6f 6e 20 6f 66 | eturns.the.boundary.expansion.of |
| 2a00 | 20 74 68 65 20 73 65 74 20 60 53 60 2e 0a 0a 20 20 20 20 54 68 65 20 2a 62 6f 75 6e 64 61 72 79 | .the.set.`S`.......The.*boundary |
| 2a20 | 20 65 78 70 61 6e 73 69 6f 6e 2a 20 69 73 20 74 68 65 20 71 75 6f 74 69 65 6e 74 20 6f 66 20 74 | .expansion*.is.the.quotient.of.t |
| 2a40 | 68 65 20 73 69 7a 65 0a 20 20 20 20 6f 66 20 74 68 65 20 6e 6f 64 65 20 62 6f 75 6e 64 61 72 79 | he.size.....of.the.node.boundary |
| 2a60 | 20 61 6e 64 20 74 68 65 20 63 61 72 64 69 6e 61 6c 69 74 79 20 6f 66 20 2a 53 2a 2e 20 5b 31 5d | .and.the.cardinality.of.*S*..[1] |
| 2a80 | 0a 0a 20 20 20 20 50 61 72 61 6d 65 74 65 72 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 0a | ......Parameters.....----------. |
| 2aa0 | 20 20 20 20 47 20 3a 20 4e 65 74 77 6f 72 6b 58 20 67 72 61 70 68 0a 0a 20 20 20 20 53 20 3a 20 | ....G.:.NetworkX.graph......S.:. |
| 2ac0 | 63 6f 6c 6c 65 63 74 69 6f 6e 0a 20 20 20 20 20 20 20 20 41 20 63 6f 6c 6c 65 63 74 69 6f 6e 20 | collection.........A.collection. |
| 2ae0 | 6f 66 20 6e 6f 64 65 73 20 69 6e 20 60 47 60 2e 0a 0a 20 20 20 20 52 65 74 75 72 6e 73 0a 20 20 | of.nodes.in.`G`.......Returns... |
| 2b00 | 20 20 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 6e 75 6d 62 65 72 0a 20 20 20 20 20 20 20 20 54 68 65 | ..-------.....number.........The |
| 2b20 | 20 62 6f 75 6e 64 61 72 79 20 65 78 70 61 6e 73 69 6f 6e 20 6f 66 20 74 68 65 20 73 65 74 20 60 | .boundary.expansion.of.the.set.` |
| 2b40 | 53 60 2e 0a 0a 20 20 20 20 53 65 65 20 61 6c 73 6f 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 | S`.......See.also.....--------.. |
| 2b60 | 20 20 20 65 64 67 65 5f 65 78 70 61 6e 73 69 6f 6e 0a 20 20 20 20 6d 69 78 69 6e 67 5f 65 78 70 | ...edge_expansion.....mixing_exp |
| 2b80 | 61 6e 73 69 6f 6e 0a 20 20 20 20 6e 6f 64 65 5f 65 78 70 61 6e 73 69 6f 6e 0a 0a 20 20 20 20 52 | ansion.....node_expansion......R |
| 2ba0 | 65 66 65 72 65 6e 63 65 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 2e 2e 20 | eferences.....----------........ |
| 2bc0 | 5b 31 5d 20 56 61 64 68 61 6e 2c 20 53 61 6c 69 6c 20 50 2e 0a 20 20 20 20 20 20 20 20 20 20 20 | [1].Vadhan,.Salil.P............. |
| 2be0 | 22 50 73 65 75 64 6f 72 61 6e 64 6f 6d 6e 65 73 73 2e 22 0a 20 20 20 20 20 20 20 20 20 20 20 2a | "Pseudorandomness."............* |
| 2c00 | 46 6f 75 6e 64 61 74 69 6f 6e 73 20 61 6e 64 20 54 72 65 6e 64 73 20 69 6e 20 54 68 65 6f 72 65 | Foundations.and.Trends.in.Theore |
| 2c20 | 74 69 63 61 6c 20 43 6f 6d 70 75 74 65 72 20 53 63 69 65 6e 63 65 2a 0a 20 20 20 20 20 20 20 20 | tical.Computer.Science*......... |
| 2c40 | 20 20 20 37 2e 31 e2 80 93 33 20 28 32 30 31 31 29 3a 20 31 e2 80 93 33 33 36 2e 0a 20 20 20 20 | ...7.1...3.(2011):.1...336...... |
| 2c60 | 20 20 20 20 20 20 20 3c 68 74 74 70 73 3a 2f 2f 64 6f 69 2e 6f 72 67 2f 31 30 2e 31 35 36 31 2f | .......<https://doi.org/10.1561/ |
| 2c80 | 30 34 30 30 30 30 30 30 31 30 3e 0a 0a 20 20 20 20 29 03 72 33 00 00 00 72 1a 00 00 00 da 0d 6e | 0400000010>......).r3...r......n |
| 2ca0 | 6f 64 65 5f 62 6f 75 6e 64 61 72 79 29 02 72 1e 00 00 00 72 1f 00 00 00 73 02 00 00 00 20 20 72 | ode_boundary).r....r....s......r |
| 2cc0 | 18 00 00 00 72 04 00 00 00 72 04 00 00 00 6c 01 00 00 73 26 00 00 00 80 00 f4 44 01 00 0c 0f 8c | ....r....r....l...s&......D..... |
| 2ce0 | 72 d7 0f 1f d1 0f 1f a0 01 a0 31 d3 0f 25 d3 0b 26 ac 13 a8 51 ab 16 d1 0b 2f d0 04 2f 72 22 00 | r.........1..%..&...Q..../../r". |
| 2d00 | 00 00 29 02 4e 4e 72 13 00 00 00 29 0f da 07 5f 5f 64 6f 63 5f 5f da 09 69 74 65 72 74 6f 6f 6c | ..).NNr....)...__doc__..itertool |
| 2d20 | 73 72 03 00 00 00 da 08 6e 65 74 77 6f 72 6b 78 72 1a 00 00 00 da 07 5f 5f 61 6c 6c 5f 5f da 0d | sr......networkxr......__all__.. |
| 2d40 | 5f 64 69 73 70 61 74 63 68 61 62 6c 65 72 06 00 00 00 72 0b 00 00 00 72 0a 00 00 00 72 05 00 00 | _dispatchabler....r....r....r... |
| 2d60 | 00 72 07 00 00 00 72 08 00 00 00 72 09 00 00 00 72 04 00 00 00 72 14 00 00 00 72 22 00 00 00 72 | .r....r....r....r....r....r"...r |
| 2d80 | 18 00 00 00 fa 08 3c 6d 6f 64 75 6c 65 3e 72 44 00 00 00 01 00 00 00 73 16 01 00 00 f0 03 01 01 | ......<module>rD.......s........ |
| 2da0 | 01 d9 00 3b e5 00 1b e3 00 15 f2 04 09 0b 02 80 07 f0 1e 00 02 12 80 12 d7 01 11 d1 01 11 98 58 | ...;...........................X |
| 2dc0 | d4 01 26 f2 02 3b 01 31 f3 03 00 02 27 f0 02 3b 01 31 f0 7c 01 00 02 12 80 12 d7 01 11 d1 01 11 | ..&..;.1....'..;.1.|............ |
| 2de0 | 98 58 d4 01 26 f2 02 27 01 37 f3 03 00 02 27 f0 02 27 01 37 f0 54 01 00 02 12 80 12 d7 01 11 d1 | .X..&..'.7....'..'.7.T.......... |
| 2e00 | 01 11 98 58 d4 01 26 f2 02 31 01 3d f3 03 00 02 27 f0 02 31 01 3d f0 68 01 00 02 12 80 12 d7 01 | ...X..&..1.=....'..1.=.h........ |
| 2e20 | 11 d1 01 11 98 58 d4 01 26 f2 02 2c 01 33 f3 03 00 02 27 f0 02 2c 01 33 f0 5e 01 00 02 12 80 12 | .....X..&..,.3....'..,.3.^...... |
| 2e40 | d7 01 11 d1 01 11 98 58 d4 01 26 f2 02 2b 01 2f f3 03 00 02 27 f0 02 2b 01 2f f0 5c 01 00 02 12 | .......X..&..+./....'..+./.\.... |
| 2e60 | 80 12 d7 01 11 d1 01 11 98 58 d4 01 26 f2 02 2a 01 31 f3 03 00 02 27 f0 02 2a 01 31 f0 5e 01 00 | .........X..&..*.1....'..*.1.^.. |
| 2e80 | 02 04 d7 01 11 d1 01 11 f1 02 22 01 26 f3 03 00 02 12 f0 02 22 01 26 f0 4e 01 00 02 04 d7 01 11 | ..........".&.......".&.N....... |
| 2ea0 | d1 01 11 f1 02 21 01 30 f3 03 00 02 12 f1 02 21 01 30 72 22 00 00 00 | .....!.0.......!.0r"... |