| ofs | hex dump | ascii |
|---|
| 0000 | cb 0d 0d 0a 00 00 00 00 85 fa a7 68 90 b8 00 00 e3 00 00 00 00 00 00 00 00 00 00 00 00 05 00 00 | ...........h.................... |
| 0020 | 00 00 00 00 00 f3 b6 04 00 00 97 00 64 00 5a 00 64 01 64 02 6c 01 5a 01 64 01 64 03 6c 02 6d 03 | ............d.Z.d.d.l.Z.d.d.l.m. |
| 0040 | 5a 03 01 00 64 01 64 04 6c 04 6d 05 5a 05 01 00 64 01 64 05 6c 06 6d 07 5a 07 6d 08 5a 08 6d 09 | Z...d.d.l.m.Z...d.d.l.m.Z.m.Z.m. |
| 0060 | 5a 09 6d 0a 5a 0a 01 00 64 01 64 06 6c 0b 6d 0c 5a 0c 01 00 64 01 64 02 6c 0d 5a 0e 64 01 64 07 | Z.m.Z...d.d.l.m.Z...d.d.l.Z.d.d. |
| 0080 | 6c 0f 6d 10 5a 10 6d 11 5a 11 6d 12 5a 12 01 00 67 00 64 08 a2 01 5a 13 65 07 6a 28 00 00 00 00 | l.m.Z.m.Z.m.Z...g.d...Z.e.j(.... |
| 00a0 | 00 00 00 00 00 00 00 00 00 00 00 00 00 00 5a 15 65 0e 6a 2c 00 00 00 00 00 00 00 00 00 00 00 00 | ..............Z.e.j,............ |
| 00c0 | 00 00 00 00 00 00 64 09 84 00 ab 00 00 00 00 00 00 00 5a 17 65 0e 6a 2c 00 00 00 00 00 00 00 00 | ......d...........Z.e.j,........ |
| 00e0 | 00 00 00 00 00 00 00 00 00 00 64 0a 84 00 ab 00 00 00 00 00 00 00 5a 18 65 0e 6a 2c 00 00 00 00 | ..........d...........Z.e.j,.... |
| 0100 | 00 00 00 00 00 00 00 00 00 00 00 00 00 00 64 0b 84 00 ab 00 00 00 00 00 00 00 5a 19 65 0e 6a 2c | ..............d...........Z.e.j, |
| 0120 | 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 64 0c 84 00 ab 00 00 00 00 00 00 00 5a 1a | ..................d...........Z. |
| 0140 | 65 0e 6a 2c 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 64 0d 84 00 ab 00 00 00 00 00 | e.j,..................d......... |
| 0160 | 00 00 5a 1b 65 0e 6a 2c 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 64 0e 84 00 ab 00 | ..Z.e.j,..................d..... |
| 0180 | 00 00 00 00 00 00 5a 1c 65 0e 6a 2c 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 64 25 | ......Z.e.j,..................d% |
| 01a0 | 64 0f 84 01 ab 00 00 00 00 00 00 00 5a 1d 02 00 65 11 64 10 ab 01 00 00 00 00 00 00 65 0e 6a 2c | d...........Z...e.d.........e.j, |
| 01c0 | 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 64 11 84 00 ab 00 00 00 00 00 00 00 ab 00 | ..................d............. |
| 01e0 | 00 00 00 00 00 00 5a 1e 65 0e 6a 2c 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 64 12 | ......Z.e.j,..................d. |
| 0200 | 84 00 ab 00 00 00 00 00 00 00 5a 1f 02 00 65 0e 6a 2c 00 00 00 00 00 00 00 00 00 00 00 00 00 00 | ..........Z...e.j,.............. |
| 0220 | 00 00 00 00 64 13 64 13 ac 14 ab 02 00 00 00 00 00 00 64 26 64 15 84 01 ab 00 00 00 00 00 00 00 | ....d.d...........d&d........... |
| 0240 | 5a 20 02 00 65 11 64 10 ab 01 00 00 00 00 00 00 02 00 65 0e 6a 2c 00 00 00 00 00 00 00 00 00 00 | Z...e.d...........e.j,.......... |
| 0260 | 00 00 00 00 00 00 00 00 64 13 64 13 ac 14 ab 02 00 00 00 00 00 00 64 25 64 16 84 01 ab 00 00 00 | ........d.d...........d%d....... |
| 0280 | 00 00 00 00 ab 00 00 00 00 00 00 00 5a 21 02 00 65 11 64 10 ab 01 00 00 00 00 00 00 02 00 65 0e | ............Z!..e.d...........e. |
| 02a0 | 6a 2c 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 64 13 ac 17 ab 01 00 00 00 00 00 00 | j,..................d........... |
| 02c0 | 64 18 84 00 ab 00 00 00 00 00 00 00 ab 00 00 00 00 00 00 00 5a 22 02 00 65 11 64 10 ab 01 00 00 | d...................Z"..e.d..... |
| 02e0 | 00 00 00 00 65 0e 6a 2c 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 64 25 64 19 84 01 | ....e.j,..................d%d... |
| 0300 | ab 00 00 00 00 00 00 00 ab 00 00 00 00 00 00 00 5a 23 02 00 65 11 64 10 ab 01 00 00 00 00 00 00 | ................Z#..e.d......... |
| 0320 | 02 00 65 0e 6a 2c 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 64 1a 64 1b 69 01 ac 1c | ..e.j,..................d.d.i... |
| 0340 | ab 01 00 00 00 00 00 00 64 27 64 1d 84 01 ab 00 00 00 00 00 00 00 ab 00 00 00 00 00 00 00 5a 24 | ........d'd...................Z$ |
| 0360 | 02 00 65 11 64 10 ab 01 00 00 00 00 00 00 02 00 65 0e 6a 2c 00 00 00 00 00 00 00 00 00 00 00 00 | ..e.d...........e.j,............ |
| 0380 | 00 00 00 00 00 00 64 1a 64 1b 69 01 ac 1c ab 01 00 00 00 00 00 00 64 28 64 1e 84 01 ab 00 00 00 | ......d.d.i...........d(d....... |
| 03a0 | 00 00 00 00 ab 00 00 00 00 00 00 00 5a 25 65 0e 6a 2c 00 00 00 00 00 00 00 00 00 00 00 00 00 00 | ............Z%e.j,.............. |
| 03c0 | 00 00 00 00 64 1f 84 00 ab 00 00 00 00 00 00 00 5a 26 02 00 65 11 64 20 ab 01 00 00 00 00 00 00 | ....d...........Z&..e.d......... |
| 03e0 | 02 00 65 11 64 10 ab 01 00 00 00 00 00 00 02 00 65 0e 6a 2c 00 00 00 00 00 00 00 00 00 00 00 00 | ..e.d...........e.j,............ |
| 0400 | 00 00 00 00 00 00 64 13 ac 17 ab 01 00 00 00 00 00 00 64 21 84 00 ab 00 00 00 00 00 00 00 ab 00 | ......d...........d!............ |
| 0420 | 00 00 00 00 00 00 ab 00 00 00 00 00 00 00 5a 27 02 00 65 11 64 10 ab 01 00 00 00 00 00 00 65 0e | ..............Z'..e.d.........e. |
| 0440 | 6a 2c 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 64 22 84 00 ab 00 00 00 00 00 00 00 | j,..................d".......... |
| 0460 | ab 00 00 00 00 00 00 00 5a 28 02 00 65 11 64 10 ab 01 00 00 00 00 00 00 65 0e 6a 2c 00 00 00 00 | ........Z(..e.d.........e.j,.... |
| 0480 | 00 00 00 00 00 00 00 00 00 00 00 00 00 00 64 23 84 00 ab 00 00 00 00 00 00 00 ab 00 00 00 00 00 | ..............d#................ |
| 04a0 | 00 00 5a 29 02 00 65 11 64 10 ab 01 00 00 00 00 00 00 65 0e 6a 2c 00 00 00 00 00 00 00 00 00 00 | ..Z)..e.d.........e.j,.......... |
| 04c0 | 00 00 00 00 00 00 00 00 64 24 84 00 ab 00 00 00 00 00 00 00 ab 00 00 00 00 00 00 00 5a 2a 79 02 | ........d$..................Z*y. |
| 04e0 | 29 29 7a de 41 6c 67 6f 72 69 74 68 6d 73 20 66 6f 72 20 64 69 72 65 63 74 65 64 20 61 63 79 63 | ))z.Algorithms.for.directed.acyc |
| 0500 | 6c 69 63 20 67 72 61 70 68 73 20 28 44 41 47 73 29 2e 0a 0a 4e 6f 74 65 20 74 68 61 74 20 6d 6f | lic.graphs.(DAGs)...Note.that.mo |
| 0520 | 73 74 20 6f 66 20 74 68 65 73 65 20 66 75 6e 63 74 69 6f 6e 73 20 61 72 65 20 6f 6e 6c 79 20 67 | st.of.these.functions.are.only.g |
| 0540 | 75 61 72 61 6e 74 65 65 64 20 74 6f 20 77 6f 72 6b 20 66 6f 72 20 44 41 47 73 2e 0a 49 6e 20 67 | uaranteed.to.work.for.DAGs..In.g |
| 0560 | 65 6e 65 72 61 6c 2c 20 74 68 65 73 65 20 66 75 6e 63 74 69 6f 6e 73 20 64 6f 20 6e 6f 74 20 63 | eneral,.these.functions.do.not.c |
| 0580 | 68 65 63 6b 20 66 6f 72 20 61 63 79 63 6c 69 63 2d 6e 65 73 73 2c 20 73 6f 20 69 74 20 69 73 20 | heck.for.acyclic-ness,.so.it.is. |
| 05a0 | 75 70 0a 74 6f 20 74 68 65 20 75 73 65 72 20 74 6f 20 63 68 65 63 6b 20 66 6f 72 20 74 68 61 74 | up.to.the.user.to.check.for.that |
| 05c0 | 2e 0a e9 00 00 00 00 4e 29 01 da 05 64 65 71 75 65 29 01 da 07 70 61 72 74 69 61 6c 29 04 da 05 | .......N)...deque)...partial)... |
| 05e0 | 63 68 61 69 6e da 0c 63 6f 6d 62 69 6e 61 74 69 6f 6e 73 da 07 70 72 6f 64 75 63 74 da 07 73 74 | chain..combinations..product..st |
| 0600 | 61 72 6d 61 70 29 01 da 03 67 63 64 29 03 da 11 61 72 62 69 74 72 61 72 79 5f 65 6c 65 6d 65 6e | armap)...gcd)...arbitrary_elemen |
| 0620 | 74 da 13 6e 6f 74 5f 69 6d 70 6c 65 6d 65 6e 74 65 64 5f 66 6f 72 da 08 70 61 69 72 77 69 73 65 | t..not_implemented_for..pairwise |
| 0640 | 29 10 da 0b 64 65 73 63 65 6e 64 61 6e 74 73 da 09 61 6e 63 65 73 74 6f 72 73 da 10 74 6f 70 6f | )...descendants..ancestors..topo |
| 0660 | 6c 6f 67 69 63 61 6c 5f 73 6f 72 74 da 20 6c 65 78 69 63 6f 67 72 61 70 68 69 63 61 6c 5f 74 6f | logical_sort..lexicographical_to |
| 0680 | 70 6f 6c 6f 67 69 63 61 6c 5f 73 6f 72 74 da 15 61 6c 6c 5f 74 6f 70 6f 6c 6f 67 69 63 61 6c 5f | pological_sort..all_topological_ |
| 06a0 | 73 6f 72 74 73 da 17 74 6f 70 6f 6c 6f 67 69 63 61 6c 5f 67 65 6e 65 72 61 74 69 6f 6e 73 da 19 | sorts..topological_generations.. |
| 06c0 | 69 73 5f 64 69 72 65 63 74 65 64 5f 61 63 79 63 6c 69 63 5f 67 72 61 70 68 da 0c 69 73 5f 61 70 | is_directed_acyclic_graph..is_ap |
| 06e0 | 65 72 69 6f 64 69 63 da 12 74 72 61 6e 73 69 74 69 76 65 5f 63 6c 6f 73 75 72 65 da 16 74 72 61 | eriodic..transitive_closure..tra |
| 0700 | 6e 73 69 74 69 76 65 5f 63 6c 6f 73 75 72 65 5f 64 61 67 da 14 74 72 61 6e 73 69 74 69 76 65 5f | nsitive_closure_dag..transitive_ |
| 0720 | 72 65 64 75 63 74 69 6f 6e da 0a 61 6e 74 69 63 68 61 69 6e 73 da 10 64 61 67 5f 6c 6f 6e 67 65 | reduction..antichains..dag_longe |
| 0740 | 73 74 5f 70 61 74 68 da 17 64 61 67 5f 6c 6f 6e 67 65 73 74 5f 70 61 74 68 5f 6c 65 6e 67 74 68 | st_path..dag_longest_path_length |
| 0760 | da 10 64 61 67 5f 74 6f 5f 62 72 61 6e 63 68 69 6e 67 da 14 63 6f 6d 70 75 74 65 5f 76 5f 73 74 | ..dag_to_branching..compute_v_st |
| 0780 | 72 75 63 74 75 72 65 73 63 02 00 00 00 00 00 00 00 00 00 00 00 06 00 00 00 03 00 00 00 f3 60 00 | ructuresc.....................`. |
| 07a0 | 00 00 97 00 74 01 00 00 00 00 00 00 00 00 6a 02 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 | ....t.........j................. |
| 07c0 | 00 00 7c 00 7c 01 ab 02 00 00 00 00 00 00 44 00 8f 02 8f 03 63 03 68 00 63 02 5d 07 00 00 5c 02 | ..|.|.........D.....c.h.c.]...\. |
| 07e0 | 00 00 7d 02 7d 03 7c 03 92 02 8c 09 04 00 63 03 7d 03 7d 02 53 00 63 02 01 00 63 03 7d 03 7d 02 | ..}.}.|.......c.}.}.S.c...c.}.}. |
| 0800 | 77 00 29 01 61 5f 02 00 00 52 65 74 75 72 6e 73 20 61 6c 6c 20 6e 6f 64 65 73 20 72 65 61 63 68 | w.).a_...Returns.all.nodes.reach |
| 0820 | 61 62 6c 65 20 66 72 6f 6d 20 60 73 6f 75 72 63 65 60 20 69 6e 20 60 47 60 2e 0a 0a 20 20 20 20 | able.from.`source`.in.`G`....... |
| 0840 | 50 61 72 61 6d 65 74 65 72 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 47 20 | Parameters.....----------.....G. |
| 0860 | 3a 20 4e 65 74 77 6f 72 6b 58 20 47 72 61 70 68 0a 20 20 20 20 73 6f 75 72 63 65 20 3a 20 6e 6f | :.NetworkX.Graph.....source.:.no |
| 0880 | 64 65 20 69 6e 20 60 47 60 0a 0a 20 20 20 20 52 65 74 75 72 6e 73 0a 20 20 20 20 2d 2d 2d 2d 2d | de.in.`G`......Returns.....----- |
| 08a0 | 2d 2d 0a 20 20 20 20 73 65 74 28 29 0a 20 20 20 20 20 20 20 20 54 68 65 20 64 65 73 63 65 6e 64 | --.....set().........The.descend |
| 08c0 | 61 6e 74 73 20 6f 66 20 60 73 6f 75 72 63 65 60 20 69 6e 20 60 47 60 0a 0a 20 20 20 20 52 61 69 | ants.of.`source`.in.`G`......Rai |
| 08e0 | 73 65 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 4e 65 74 77 6f 72 6b 58 45 72 72 6f 72 | ses.....------.....NetworkXError |
| 0900 | 0a 20 20 20 20 20 20 20 20 49 66 20 6e 6f 64 65 20 60 73 6f 75 72 63 65 60 20 69 73 20 6e 6f 74 | .........If.node.`source`.is.not |
| 0920 | 20 69 6e 20 60 47 60 2e 0a 0a 20 20 20 20 45 78 61 6d 70 6c 65 73 0a 20 20 20 20 2d 2d 2d 2d 2d | .in.`G`.......Examples.....----- |
| 0940 | 2d 2d 2d 0a 20 20 20 20 3e 3e 3e 20 44 47 20 3d 20 6e 78 2e 70 61 74 68 5f 67 72 61 70 68 28 35 | ---.....>>>.DG.=.nx.path_graph(5 |
| 0960 | 2c 20 63 72 65 61 74 65 5f 75 73 69 6e 67 3d 6e 78 2e 44 69 47 72 61 70 68 29 0a 20 20 20 20 3e | ,.create_using=nx.DiGraph).....> |
| 0980 | 3e 3e 20 73 6f 72 74 65 64 28 6e 78 2e 64 65 73 63 65 6e 64 61 6e 74 73 28 44 47 2c 20 32 29 29 | >>.sorted(nx.descendants(DG,.2)) |
| 09a0 | 0a 20 20 20 20 5b 33 2c 20 34 5d 0a 0a 20 20 20 20 54 68 65 20 60 73 6f 75 72 63 65 60 20 6e 6f | .....[3,.4]......The.`source`.no |
| 09c0 | 64 65 20 69 73 20 6e 6f 74 20 61 20 64 65 73 63 65 6e 64 61 6e 74 20 6f 66 20 69 74 73 65 6c 66 | de.is.not.a.descendant.of.itself |
| 09e0 | 2c 20 62 75 74 20 63 61 6e 20 62 65 20 69 6e 63 6c 75 64 65 64 20 6d 61 6e 75 61 6c 6c 79 3a 0a | ,.but.can.be.included.manually:. |
| 0a00 | 0a 20 20 20 20 3e 3e 3e 20 73 6f 72 74 65 64 28 6e 78 2e 64 65 73 63 65 6e 64 61 6e 74 73 28 44 | .....>>>.sorted(nx.descendants(D |
| 0a20 | 47 2c 20 32 29 20 7c 20 7b 32 7d 29 0a 20 20 20 20 5b 32 2c 20 33 2c 20 34 5d 0a 0a 20 20 20 20 | G,.2).|.{2}).....[2,.3,.4]...... |
| 0a40 | 53 65 65 20 61 6c 73 6f 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 61 6e 63 65 73 74 | See.also.....--------.....ancest |
| 0a60 | 6f 72 73 0a 20 20 20 20 a9 02 da 02 6e 78 da 09 62 66 73 5f 65 64 67 65 73 a9 04 da 01 47 da 06 | ors.........nx..bfs_edges....G.. |
| 0a80 | 73 6f 75 72 63 65 da 06 70 61 72 65 6e 74 da 05 63 68 69 6c 64 73 04 00 00 00 20 20 20 20 fa 5e | source..parent..childs.........^ |
| 0aa0 | 2f 68 6f 6d 65 2f 62 6c 61 63 6b 68 61 6f 2f 75 69 75 63 2d 63 6f 75 72 73 65 2d 67 72 61 70 68 | /home/blackhao/uiuc-course-graph |
| 0ac0 | 2f 2e 76 65 6e 76 2f 6c 69 62 2f 70 79 74 68 6f 6e 33 2e 31 32 2f 73 69 74 65 2d 70 61 63 6b 61 | /.venv/lib/python3.12/site-packa |
| 0ae0 | 67 65 73 2f 6e 65 74 77 6f 72 6b 78 2f 61 6c 67 6f 72 69 74 68 6d 73 2f 64 61 67 2e 70 79 72 0d | ges/networkx/algorithms/dag.pyr. |
| 0b00 | 00 00 00 72 0d 00 00 00 27 00 00 00 73 28 00 00 00 80 00 f4 44 01 00 28 2a a7 7c a1 7c b0 41 b0 | ...r....'...s(......D..(*.|.|.A. |
| 0b20 | 76 d3 27 3e d7 0b 3f 91 6d 90 66 98 65 8a 45 d3 0b 3f d0 04 3f f9 d3 0b 3f 73 04 00 00 00 9a 0c | v.'>..?.m.f.e.E..?..?...?s...... |
| 0b40 | 2a 06 63 02 00 00 00 00 00 00 00 00 00 00 00 06 00 00 00 03 00 00 00 f3 64 00 00 00 97 00 74 01 | *.c.....................d.....t. |
| 0b60 | 00 00 00 00 00 00 00 00 6a 02 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 7c 00 7c 01 | ........j...................|.|. |
| 0b80 | 64 01 ac 02 ab 03 00 00 00 00 00 00 44 00 8f 02 8f 03 63 03 68 00 63 02 5d 07 00 00 5c 02 00 00 | d...........D.....c.h.c.]...\... |
| 0ba0 | 7d 02 7d 03 7c 03 92 02 8c 09 04 00 63 03 7d 03 7d 02 53 00 63 02 01 00 63 03 7d 03 7d 02 77 00 | }.}.|.......c.}.}.S.c...c.}.}.w. |
| 0bc0 | 29 03 61 5c 02 00 00 52 65 74 75 72 6e 73 20 61 6c 6c 20 6e 6f 64 65 73 20 68 61 76 69 6e 67 20 | ).a\...Returns.all.nodes.having. |
| 0be0 | 61 20 70 61 74 68 20 74 6f 20 60 73 6f 75 72 63 65 60 20 69 6e 20 60 47 60 2e 0a 0a 20 20 20 20 | a.path.to.`source`.in.`G`....... |
| 0c00 | 50 61 72 61 6d 65 74 65 72 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 47 20 | Parameters.....----------.....G. |
| 0c20 | 3a 20 4e 65 74 77 6f 72 6b 58 20 47 72 61 70 68 0a 20 20 20 20 73 6f 75 72 63 65 20 3a 20 6e 6f | :.NetworkX.Graph.....source.:.no |
| 0c40 | 64 65 20 69 6e 20 60 47 60 0a 0a 20 20 20 20 52 65 74 75 72 6e 73 0a 20 20 20 20 2d 2d 2d 2d 2d | de.in.`G`......Returns.....----- |
| 0c60 | 2d 2d 0a 20 20 20 20 73 65 74 28 29 0a 20 20 20 20 20 20 20 20 54 68 65 20 61 6e 63 65 73 74 6f | --.....set().........The.ancesto |
| 0c80 | 72 73 20 6f 66 20 60 73 6f 75 72 63 65 60 20 69 6e 20 60 47 60 0a 0a 20 20 20 20 52 61 69 73 65 | rs.of.`source`.in.`G`......Raise |
| 0ca0 | 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 4e 65 74 77 6f 72 6b 58 45 72 72 6f 72 0a 20 | s.....------.....NetworkXError.. |
| 0cc0 | 20 20 20 20 20 20 20 49 66 20 6e 6f 64 65 20 60 73 6f 75 72 63 65 60 20 69 73 20 6e 6f 74 20 69 | .......If.node.`source`.is.not.i |
| 0ce0 | 6e 20 60 47 60 2e 0a 0a 20 20 20 20 45 78 61 6d 70 6c 65 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d | n.`G`.......Examples.....------- |
| 0d00 | 2d 0a 20 20 20 20 3e 3e 3e 20 44 47 20 3d 20 6e 78 2e 70 61 74 68 5f 67 72 61 70 68 28 35 2c 20 | -.....>>>.DG.=.nx.path_graph(5,. |
| 0d20 | 63 72 65 61 74 65 5f 75 73 69 6e 67 3d 6e 78 2e 44 69 47 72 61 70 68 29 0a 20 20 20 20 3e 3e 3e | create_using=nx.DiGraph).....>>> |
| 0d40 | 20 73 6f 72 74 65 64 28 6e 78 2e 61 6e 63 65 73 74 6f 72 73 28 44 47 2c 20 32 29 29 0a 20 20 20 | .sorted(nx.ancestors(DG,.2)).... |
| 0d60 | 20 5b 30 2c 20 31 5d 0a 0a 20 20 20 20 54 68 65 20 60 73 6f 75 72 63 65 60 20 6e 6f 64 65 20 69 | .[0,.1]......The.`source`.node.i |
| 0d80 | 73 20 6e 6f 74 20 61 6e 20 61 6e 63 65 73 74 6f 72 20 6f 66 20 69 74 73 65 6c 66 2c 20 62 75 74 | s.not.an.ancestor.of.itself,.but |
| 0da0 | 20 63 61 6e 20 62 65 20 69 6e 63 6c 75 64 65 64 20 6d 61 6e 75 61 6c 6c 79 3a 0a 0a 20 20 20 20 | .can.be.included.manually:...... |
| 0dc0 | 3e 3e 3e 20 73 6f 72 74 65 64 28 6e 78 2e 61 6e 63 65 73 74 6f 72 73 28 44 47 2c 20 32 29 20 7c | >>>.sorted(nx.ancestors(DG,.2).| |
| 0de0 | 20 7b 32 7d 29 0a 20 20 20 20 5b 30 2c 20 31 2c 20 32 5d 0a 0a 20 20 20 20 53 65 65 20 61 6c 73 | .{2}).....[0,.1,.2]......See.als |
| 0e00 | 6f 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 64 65 73 63 65 6e 64 61 6e 74 73 0a 20 | o.....--------.....descendants.. |
| 0e20 | 20 20 20 54 29 01 da 07 72 65 76 65 72 73 65 72 1e 00 00 00 72 21 00 00 00 73 04 00 00 00 20 20 | ...T)...reverser....r!...s...... |
| 0e40 | 20 20 72 26 00 00 00 72 0e 00 00 00 72 0e 00 00 00 4c 00 00 00 73 2a 00 00 00 80 00 f4 44 01 00 | ..r&...r....r....L...s*......D.. |
| 0e60 | 28 2a a7 7c a1 7c b0 41 b0 76 c0 74 d4 27 4c d7 0b 4d 91 6d 90 66 98 65 8a 45 d3 0b 4d d0 04 4d | (*.|.|.A.v.t.'L..M.m.f.e.E..M..M |
| 0e80 | f9 d3 0b 4d 73 04 00 00 00 9c 0c 2c 06 63 01 00 00 00 00 00 00 00 00 00 00 00 05 00 00 00 03 00 | ...Ms......,.c.................. |
| 0ea0 | 00 00 f3 64 00 00 00 97 00 09 00 74 01 00 00 00 00 00 00 00 00 74 03 00 00 00 00 00 00 00 00 7c | ...d.......t.........t.........| |
| 0ec0 | 00 ab 01 00 00 00 00 00 00 64 01 ac 02 ab 02 00 00 00 00 00 00 01 00 79 03 23 00 74 04 00 00 00 | .........d.............y.#.t.... |
| 0ee0 | 00 00 00 00 00 6a 06 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 24 00 72 03 01 00 59 | .....j...................$.r...Y |
| 0f00 | 00 79 04 77 00 78 03 59 00 77 01 29 05 7a 2f 44 65 63 69 64 65 73 20 77 68 65 74 68 65 72 20 74 | .y.w.x.Y.w.).z/Decides.whether.t |
| 0f20 | 68 65 20 64 69 72 65 63 74 65 64 20 67 72 61 70 68 20 68 61 73 20 61 20 63 79 63 6c 65 2e 72 02 | he.directed.graph.has.a.cycle.r. |
| 0f40 | 00 00 00 29 01 da 06 6d 61 78 6c 65 6e 46 54 29 04 72 03 00 00 00 72 0f 00 00 00 72 1f 00 00 00 | ...)...maxlenFT).r....r....r.... |
| 0f60 | da 12 4e 65 74 77 6f 72 6b 58 55 6e 66 65 61 73 69 62 6c 65 a9 01 72 22 00 00 00 73 01 00 00 00 | ..NetworkXUnfeasible..r"...s.... |
| 0f80 | 20 72 26 00 00 00 da 09 68 61 73 5f 63 79 63 6c 65 72 2d 00 00 00 71 00 00 00 73 36 00 00 00 80 | .r&.....has_cycler-...q...s6.... |
| 0fa0 | 00 f0 06 06 05 15 e4 08 0d d4 0e 1e 98 71 d3 0e 21 a8 21 d5 08 2c f0 08 00 10 15 f8 f4 07 00 0c | .............q..!.!..,.......... |
| 0fc0 | 0e d7 0b 20 d1 0b 20 f2 00 01 05 14 d9 0f 13 f0 03 01 05 14 fa 73 0c 00 00 00 82 16 19 00 99 13 | .....................s.......... |
| 0fe0 | 2f 03 ae 01 2f 03 63 01 00 00 00 00 00 00 00 00 00 00 00 03 00 00 00 03 00 00 00 f3 3e 00 00 00 | /.../.c.....................>... |
| 1000 | 97 00 7c 00 6a 01 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ab 00 00 00 00 00 00 00 | ..|.j........................... |
| 1020 | 78 01 72 0c 01 00 74 03 00 00 00 00 00 00 00 00 7c 00 ab 01 00 00 00 00 00 00 0c 00 53 00 29 01 | x.r...t.........|...........S.). |
| 1040 | 61 bd 02 00 00 52 65 74 75 72 6e 73 20 54 72 75 65 20 69 66 20 74 68 65 20 67 72 61 70 68 20 60 | a....Returns.True.if.the.graph.` |
| 1060 | 47 60 20 69 73 20 61 20 64 69 72 65 63 74 65 64 20 61 63 79 63 6c 69 63 20 67 72 61 70 68 20 28 | G`.is.a.directed.acyclic.graph.( |
| 1080 | 44 41 47 29 20 6f 72 0a 20 20 20 20 46 61 6c 73 65 20 69 66 20 6e 6f 74 2e 0a 0a 20 20 20 20 50 | DAG).or.....False.if.not.......P |
| 10a0 | 61 72 61 6d 65 74 65 72 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 47 20 3a | arameters.....----------.....G.: |
| 10c0 | 20 4e 65 74 77 6f 72 6b 58 20 67 72 61 70 68 0a 0a 20 20 20 20 52 65 74 75 72 6e 73 0a 20 20 20 | .NetworkX.graph......Returns.... |
| 10e0 | 20 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 62 6f 6f 6c 0a 20 20 20 20 20 20 20 20 54 72 75 65 20 69 | .-------.....bool.........True.i |
| 1100 | 66 20 60 47 60 20 69 73 20 61 20 44 41 47 2c 20 46 61 6c 73 65 20 6f 74 68 65 72 77 69 73 65 0a | f.`G`.is.a.DAG,.False.otherwise. |
| 1120 | 0a 20 20 20 20 45 78 61 6d 70 6c 65 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 55 | .....Examples.....--------.....U |
| 1140 | 6e 64 69 72 65 63 74 65 64 20 67 72 61 70 68 3a 3a 0a 0a 20 20 20 20 20 20 20 20 3e 3e 3e 20 47 | ndirected.graph::..........>>>.G |
| 1160 | 20 3d 20 6e 78 2e 47 72 61 70 68 28 5b 28 31 2c 20 32 29 2c 20 28 32 2c 20 33 29 5d 29 0a 20 20 | .=.nx.Graph([(1,.2),.(2,.3)])... |
| 1180 | 20 20 20 20 20 20 3e 3e 3e 20 6e 78 2e 69 73 5f 64 69 72 65 63 74 65 64 5f 61 63 79 63 6c 69 63 | ......>>>.nx.is_directed_acyclic |
| 11a0 | 5f 67 72 61 70 68 28 47 29 0a 20 20 20 20 20 20 20 20 46 61 6c 73 65 0a 0a 20 20 20 20 44 69 72 | _graph(G).........False......Dir |
| 11c0 | 65 63 74 65 64 20 67 72 61 70 68 20 77 69 74 68 20 63 79 63 6c 65 3a 3a 0a 0a 20 20 20 20 20 20 | ected.graph.with.cycle::........ |
| 11e0 | 20 20 3e 3e 3e 20 47 20 3d 20 6e 78 2e 44 69 47 72 61 70 68 28 5b 28 31 2c 20 32 29 2c 20 28 32 | ..>>>.G.=.nx.DiGraph([(1,.2),.(2 |
| 1200 | 2c 20 33 29 2c 20 28 33 2c 20 31 29 5d 29 0a 20 20 20 20 20 20 20 20 3e 3e 3e 20 6e 78 2e 69 73 | ,.3),.(3,.1)]).........>>>.nx.is |
| 1220 | 5f 64 69 72 65 63 74 65 64 5f 61 63 79 63 6c 69 63 5f 67 72 61 70 68 28 47 29 0a 20 20 20 20 20 | _directed_acyclic_graph(G)...... |
| 1240 | 20 20 20 46 61 6c 73 65 0a 0a 20 20 20 20 44 69 72 65 63 74 65 64 20 61 63 79 63 6c 69 63 20 67 | ...False......Directed.acyclic.g |
| 1260 | 72 61 70 68 3a 3a 0a 0a 20 20 20 20 20 20 20 20 3e 3e 3e 20 47 20 3d 20 6e 78 2e 44 69 47 72 61 | raph::..........>>>.G.=.nx.DiGra |
| 1280 | 70 68 28 5b 28 31 2c 20 32 29 2c 20 28 32 2c 20 33 29 5d 29 0a 20 20 20 20 20 20 20 20 3e 3e 3e | ph([(1,.2),.(2,.3)]).........>>> |
| 12a0 | 20 6e 78 2e 69 73 5f 64 69 72 65 63 74 65 64 5f 61 63 79 63 6c 69 63 5f 67 72 61 70 68 28 47 29 | .nx.is_directed_acyclic_graph(G) |
| 12c0 | 0a 20 20 20 20 20 20 20 20 54 72 75 65 0a 0a 20 20 20 20 53 65 65 20 61 6c 73 6f 0a 20 20 20 20 | .........True......See.also..... |
| 12e0 | 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 74 6f 70 6f 6c 6f 67 69 63 61 6c 5f 73 6f 72 74 0a 20 20 | --------.....topological_sort... |
| 1300 | 20 20 29 02 da 0b 69 73 5f 64 69 72 65 63 74 65 64 72 2d 00 00 00 72 2c 00 00 00 73 01 00 00 00 | ..)...is_directedr-...r,...s.... |
| 1320 | 20 72 26 00 00 00 72 13 00 00 00 72 13 00 00 00 7d 00 00 00 73 1d 00 00 00 80 00 f0 4c 01 00 0c | .r&...r....r....}...s.......L... |
| 1340 | 0d 8f 3d 89 3d 8b 3f d2 0b 2f a4 39 a8 51 a3 3c d0 1f 2f d0 04 2f f3 00 00 00 00 63 01 00 00 00 | ..=.=.?../.9.Q.<../../.....c.... |
| 1360 | 00 00 00 00 00 00 00 00 09 00 00 00 23 00 00 00 f3 86 02 00 00 4b 00 01 00 97 00 7c 00 6a 01 00 | ............#........K.....|.j.. |
| 1380 | 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ab 00 00 00 00 00 00 00 73 15 74 03 00 00 00 | .........................s.t.... |
| 13a0 | 00 00 00 00 00 6a 04 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 64 01 ab 01 00 00 00 | .....j...................d...... |
| 13c0 | 00 00 00 82 01 7c 00 6a 07 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ab 00 00 00 00 | .....|.j........................ |
| 13e0 | 00 00 00 7d 01 7c 00 6a 09 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ab 00 00 00 00 | ...}.|.j........................ |
| 1400 | 00 00 00 44 00 8f 02 8f 03 63 03 69 00 63 02 5d 0e 00 00 5c 02 00 00 7d 02 7d 03 7c 03 64 02 6b | ...D.....c.i.c.]...\...}.}.|.d.k |
| 1420 | 44 00 00 73 01 8c 0c 7c 02 7c 03 93 02 8c 10 04 00 7d 04 7d 02 7d 03 7c 00 6a 09 00 00 00 00 00 | D..s...|.|.......}.}.}.|.j...... |
| 1440 | 00 00 00 00 00 00 00 00 00 00 00 00 00 ab 00 00 00 00 00 00 00 44 00 8f 02 8f 03 63 03 67 00 63 | .....................D.....c.g.c |
| 1460 | 02 5d 0d 00 00 5c 02 00 00 7d 02 7d 03 7c 03 64 02 6b 28 00 00 73 01 8c 0c 7c 02 91 02 8c 0f 04 | .]...\...}.}.|.d.k(..s...|...... |
| 1480 | 00 7d 05 7d 02 7d 03 7c 05 72 75 7c 05 7d 06 67 00 7d 05 7c 06 44 00 5d 65 00 00 7d 07 7c 07 7c | .}.}.}.|.ru|.}.g.}.|.D.]e..}.|.| |
| 14a0 | 00 76 01 72 0b 74 0b 00 00 00 00 00 00 00 00 64 03 ab 01 00 00 00 00 00 00 82 01 7c 00 6a 0d 00 | .v.r.t.........d...........|.j.. |
| 14c0 | 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 7c 07 ab 01 00 00 00 00 00 00 44 00 5d 40 00 | .................|.........D.]@. |
| 14e0 | 00 7d 08 09 00 7c 04 7c 08 78 02 78 02 19 00 00 00 7c 01 72 11 74 0f 00 00 00 00 00 00 00 00 7c | .}...|.|.x.x.....|.r.t.........| |
| 1500 | 00 7c 07 19 00 00 00 7c 08 19 00 00 00 ab 01 00 00 00 00 00 00 6e 01 64 04 7a 17 00 00 63 03 63 | .|.....|.............n.d.z...c.c |
| 1520 | 02 3c 00 00 00 7c 04 7c 08 19 00 00 00 64 02 6b 28 00 00 73 01 8c 2d 7c 05 6a 13 00 00 00 00 00 | .<...|.|.....d.k(..s..-|.j...... |
| 1540 | 00 00 00 00 00 00 00 00 00 00 00 00 00 7c 08 ab 01 00 00 00 00 00 00 01 00 7c 04 7c 08 3d 00 8c | .............|...........|.|.=.. |
| 1560 | 42 04 00 8c 67 04 00 7c 06 96 01 97 01 01 00 7c 05 72 01 8c 75 7c 04 72 15 74 03 00 00 00 00 00 | B...g..|.......|.r..u|.r.t...... |
| 1580 | 00 00 00 6a 14 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 64 06 ab 01 00 00 00 00 00 | ...j...................d........ |
| 15a0 | 00 82 01 79 05 63 02 01 00 63 03 7d 03 7d 02 77 00 63 02 01 00 63 03 7d 03 7d 02 77 00 23 00 74 | ...y.c...c.}.}.w.c...c.}.}.w.#.t |
| 15c0 | 10 00 00 00 00 00 00 00 00 24 00 72 11 7d 09 74 0b 00 00 00 00 00 00 00 00 64 03 ab 01 00 00 00 | .........$.r.}.t.........d...... |
| 15e0 | 00 00 00 7c 09 82 02 64 05 7d 09 7e 09 77 01 77 00 78 03 59 00 77 01 ad 03 77 01 29 07 61 1c 06 | ...|...d.}.~.w.w.x.Y.w...w.).a.. |
| 1600 | 00 00 53 74 72 61 74 69 66 69 65 73 20 61 20 44 41 47 20 69 6e 74 6f 20 67 65 6e 65 72 61 74 69 | ..Stratifies.a.DAG.into.generati |
| 1620 | 6f 6e 73 2e 0a 0a 20 20 20 20 41 20 74 6f 70 6f 6c 6f 67 69 63 61 6c 20 67 65 6e 65 72 61 74 69 | ons.......A.topological.generati |
| 1640 | 6f 6e 20 69 73 20 6e 6f 64 65 20 63 6f 6c 6c 65 63 74 69 6f 6e 20 69 6e 20 77 68 69 63 68 20 61 | on.is.node.collection.in.which.a |
| 1660 | 6e 63 65 73 74 6f 72 73 20 6f 66 20 61 20 6e 6f 64 65 20 69 6e 20 65 61 63 68 0a 20 20 20 20 67 | ncestors.of.a.node.in.each.....g |
| 1680 | 65 6e 65 72 61 74 69 6f 6e 20 61 72 65 20 67 75 61 72 61 6e 74 65 65 64 20 74 6f 20 62 65 20 69 | eneration.are.guaranteed.to.be.i |
| 16a0 | 6e 20 61 20 70 72 65 76 69 6f 75 73 20 67 65 6e 65 72 61 74 69 6f 6e 2c 20 61 6e 64 20 61 6e 79 | n.a.previous.generation,.and.any |
| 16c0 | 20 64 65 73 63 65 6e 64 61 6e 74 73 20 6f 66 0a 20 20 20 20 61 20 6e 6f 64 65 20 61 72 65 20 67 | .descendants.of.....a.node.are.g |
| 16e0 | 75 61 72 61 6e 74 65 65 64 20 74 6f 20 62 65 20 69 6e 20 61 20 66 6f 6c 6c 6f 77 69 6e 67 20 67 | uaranteed.to.be.in.a.following.g |
| 1700 | 65 6e 65 72 61 74 69 6f 6e 2e 20 4e 6f 64 65 73 20 61 72 65 20 67 75 61 72 61 6e 74 65 65 64 20 | eneration..Nodes.are.guaranteed. |
| 1720 | 74 6f 0a 20 20 20 20 62 65 20 69 6e 20 74 68 65 20 65 61 72 6c 69 65 73 74 20 70 6f 73 73 69 62 | to.....be.in.the.earliest.possib |
| 1740 | 6c 65 20 67 65 6e 65 72 61 74 69 6f 6e 20 74 68 61 74 20 74 68 65 79 20 63 61 6e 20 62 65 6c 6f | le.generation.that.they.can.belo |
| 1760 | 6e 67 20 74 6f 2e 0a 0a 20 20 20 20 50 61 72 61 6d 65 74 65 72 73 0a 20 20 20 20 2d 2d 2d 2d 2d | ng.to.......Parameters.....----- |
| 1780 | 2d 2d 2d 2d 2d 0a 20 20 20 20 47 20 3a 20 4e 65 74 77 6f 72 6b 58 20 64 69 67 72 61 70 68 0a 20 | -----.....G.:.NetworkX.digraph.. |
| 17a0 | 20 20 20 20 20 20 20 41 20 64 69 72 65 63 74 65 64 20 61 63 79 63 6c 69 63 20 67 72 61 70 68 20 | .......A.directed.acyclic.graph. |
| 17c0 | 28 44 41 47 29 0a 0a 20 20 20 20 59 69 65 6c 64 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 0a 20 20 20 | (DAG)......Yields.....------.... |
| 17e0 | 20 73 65 74 73 20 6f 66 20 6e 6f 64 65 73 0a 20 20 20 20 20 20 20 20 59 69 65 6c 64 73 20 73 65 | .sets.of.nodes.........Yields.se |
| 1800 | 74 73 20 6f 66 20 6e 6f 64 65 73 20 72 65 70 72 65 73 65 6e 74 69 6e 67 20 65 61 63 68 20 67 65 | ts.of.nodes.representing.each.ge |
| 1820 | 6e 65 72 61 74 69 6f 6e 2e 0a 0a 20 20 20 20 52 61 69 73 65 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d | neration.......Raises.....------ |
| 1840 | 0a 20 20 20 20 4e 65 74 77 6f 72 6b 58 45 72 72 6f 72 0a 20 20 20 20 20 20 20 20 47 65 6e 65 72 | .....NetworkXError.........Gener |
| 1860 | 61 74 69 6f 6e 73 20 61 72 65 20 64 65 66 69 6e 65 64 20 66 6f 72 20 64 69 72 65 63 74 65 64 20 | ations.are.defined.for.directed. |
| 1880 | 67 72 61 70 68 73 20 6f 6e 6c 79 2e 20 49 66 20 74 68 65 20 67 72 61 70 68 0a 20 20 20 20 20 20 | graphs.only..If.the.graph....... |
| 18a0 | 20 20 60 47 60 20 69 73 20 75 6e 64 69 72 65 63 74 65 64 2c 20 61 20 3a 65 78 63 3a 60 4e 65 74 | ..`G`.is.undirected,.a.:exc:`Net |
| 18c0 | 77 6f 72 6b 58 45 72 72 6f 72 60 20 69 73 20 72 61 69 73 65 64 2e 0a 0a 20 20 20 20 4e 65 74 77 | workXError`.is.raised.......Netw |
| 18e0 | 6f 72 6b 58 55 6e 66 65 61 73 69 62 6c 65 0a 20 20 20 20 20 20 20 20 49 66 20 60 47 60 20 69 73 | orkXUnfeasible.........If.`G`.is |
| 1900 | 20 6e 6f 74 20 61 20 64 69 72 65 63 74 65 64 20 61 63 79 63 6c 69 63 20 67 72 61 70 68 20 28 44 | .not.a.directed.acyclic.graph.(D |
| 1920 | 41 47 29 20 6e 6f 20 74 6f 70 6f 6c 6f 67 69 63 61 6c 20 67 65 6e 65 72 61 74 69 6f 6e 73 0a 20 | AG).no.topological.generations.. |
| 1940 | 20 20 20 20 20 20 20 65 78 69 73 74 20 61 6e 64 20 61 20 3a 65 78 63 3a 60 4e 65 74 77 6f 72 6b | .......exist.and.a.:exc:`Network |
| 1960 | 58 55 6e 66 65 61 73 69 62 6c 65 60 20 65 78 63 65 70 74 69 6f 6e 20 69 73 20 72 61 69 73 65 64 | XUnfeasible`.exception.is.raised |
| 1980 | 2e 20 20 54 68 69 73 20 63 61 6e 20 61 6c 73 6f 0a 20 20 20 20 20 20 20 20 62 65 20 72 61 69 73 | ...This.can.also.........be.rais |
| 19a0 | 65 64 20 69 66 20 60 47 60 20 69 73 20 63 68 61 6e 67 65 64 20 77 68 69 6c 65 20 74 68 65 20 72 | ed.if.`G`.is.changed.while.the.r |
| 19c0 | 65 74 75 72 6e 65 64 20 69 74 65 72 61 74 6f 72 20 69 73 20 62 65 69 6e 67 20 70 72 6f 63 65 73 | eturned.iterator.is.being.proces |
| 19e0 | 73 65 64 0a 0a 20 20 20 20 52 75 6e 74 69 6d 65 45 72 72 6f 72 0a 20 20 20 20 20 20 20 20 49 66 | sed......RuntimeError.........If |
| 1a00 | 20 60 47 60 20 69 73 20 63 68 61 6e 67 65 64 20 77 68 69 6c 65 20 74 68 65 20 72 65 74 75 72 6e | .`G`.is.changed.while.the.return |
| 1a20 | 65 64 20 69 74 65 72 61 74 6f 72 20 69 73 20 62 65 69 6e 67 20 70 72 6f 63 65 73 73 65 64 2e 0a | ed.iterator.is.being.processed.. |
| 1a40 | 0a 20 20 20 20 45 78 61 6d 70 6c 65 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 3e | .....Examples.....--------.....> |
| 1a60 | 3e 3e 20 44 47 20 3d 20 6e 78 2e 44 69 47 72 61 70 68 28 5b 28 32 2c 20 31 29 2c 20 28 33 2c 20 | >>.DG.=.nx.DiGraph([(2,.1),.(3,. |
| 1a80 | 31 29 5d 29 0a 20 20 20 20 3e 3e 3e 20 5b 73 6f 72 74 65 64 28 67 65 6e 65 72 61 74 69 6f 6e 29 | 1)]).....>>>.[sorted(generation) |
| 1aa0 | 20 66 6f 72 20 67 65 6e 65 72 61 74 69 6f 6e 20 69 6e 20 6e 78 2e 74 6f 70 6f 6c 6f 67 69 63 61 | .for.generation.in.nx.topologica |
| 1ac0 | 6c 5f 67 65 6e 65 72 61 74 69 6f 6e 73 28 44 47 29 5d 0a 20 20 20 20 5b 5b 32 2c 20 33 5d 2c 20 | l_generations(DG)].....[[2,.3],. |
| 1ae0 | 5b 31 5d 5d 0a 0a 20 20 20 20 4e 6f 74 65 73 0a 20 20 20 20 2d 2d 2d 2d 2d 0a 20 20 20 20 54 68 | [1]]......Notes.....-----.....Th |
| 1b00 | 65 20 67 65 6e 65 72 61 74 69 6f 6e 20 69 6e 20 77 68 69 63 68 20 61 20 6e 6f 64 65 20 72 65 73 | e.generation.in.which.a.node.res |
| 1b20 | 69 64 65 73 20 63 61 6e 20 61 6c 73 6f 20 62 65 20 64 65 74 65 72 6d 69 6e 65 64 20 62 79 20 74 | ides.can.also.be.determined.by.t |
| 1b40 | 61 6b 69 6e 67 20 74 68 65 0a 20 20 20 20 6d 61 78 2d 70 61 74 68 2d 64 69 73 74 61 6e 63 65 20 | aking.the.....max-path-distance. |
| 1b60 | 66 72 6f 6d 20 74 68 65 20 6e 6f 64 65 20 74 6f 20 74 68 65 20 66 61 72 74 68 65 73 74 20 6c 65 | from.the.node.to.the.farthest.le |
| 1b80 | 61 66 20 6e 6f 64 65 2e 20 54 68 61 74 20 76 61 6c 75 65 20 63 61 6e 0a 20 20 20 20 62 65 20 6f | af.node..That.value.can.....be.o |
| 1ba0 | 62 74 61 69 6e 65 64 20 77 69 74 68 20 74 68 69 73 20 66 75 6e 63 74 69 6f 6e 20 75 73 69 6e 67 | btained.with.this.function.using |
| 1bc0 | 20 60 65 6e 75 6d 65 72 61 74 65 28 74 6f 70 6f 6c 6f 67 69 63 61 6c 5f 67 65 6e 65 72 61 74 69 | .`enumerate(topological_generati |
| 1be0 | 6f 6e 73 28 47 29 29 60 2e 0a 0a 20 20 20 20 53 65 65 20 61 6c 73 6f 0a 20 20 20 20 2d 2d 2d 2d | ons(G))`.......See.also.....---- |
| 1c00 | 2d 2d 2d 2d 0a 20 20 20 20 74 6f 70 6f 6c 6f 67 69 63 61 6c 5f 73 6f 72 74 0a 20 20 20 20 fa 32 | ----.....topological_sort......2 |
| 1c20 | 54 6f 70 6f 6c 6f 67 69 63 61 6c 20 73 6f 72 74 20 6e 6f 74 20 64 65 66 69 6e 65 64 20 6f 6e 20 | Topological.sort.not.defined.on. |
| 1c40 | 75 6e 64 69 72 65 63 74 65 64 20 67 72 61 70 68 73 2e 72 02 00 00 00 fa 1e 47 72 61 70 68 20 63 | undirected.graphs.r......Graph.c |
| 1c60 | 68 61 6e 67 65 64 20 64 75 72 69 6e 67 20 69 74 65 72 61 74 69 6f 6e e9 01 00 00 00 4e fa 38 47 | hanged.during.iteration.....N.8G |
| 1c80 | 72 61 70 68 20 63 6f 6e 74 61 69 6e 73 20 61 20 63 79 63 6c 65 20 6f 72 20 67 72 61 70 68 20 63 | raph.contains.a.cycle.or.graph.c |
| 1ca0 | 68 61 6e 67 65 64 20 64 75 72 69 6e 67 20 69 74 65 72 61 74 69 6f 6e 29 0b 72 2f 00 00 00 72 1f | hanged.during.iteration).r/...r. |
| 1cc0 | 00 00 00 da 0d 4e 65 74 77 6f 72 6b 58 45 72 72 6f 72 da 0d 69 73 5f 6d 75 6c 74 69 67 72 61 70 | .....NetworkXError..is_multigrap |
| 1ce0 | 68 da 09 69 6e 5f 64 65 67 72 65 65 da 0c 52 75 6e 74 69 6d 65 45 72 72 6f 72 da 09 6e 65 69 67 | h..in_degree..RuntimeError..neig |
| 1d00 | 68 62 6f 72 73 da 03 6c 65 6e da 08 4b 65 79 45 72 72 6f 72 da 06 61 70 70 65 6e 64 72 2b 00 00 | hbors..len..KeyError..appendr+.. |
| 1d20 | 00 29 0a 72 22 00 00 00 da 0a 6d 75 6c 74 69 67 72 61 70 68 da 01 76 da 01 64 da 0c 69 6e 64 65 | .).r".....multigraph..v..d..inde |
| 1d40 | 67 72 65 65 5f 6d 61 70 da 0d 7a 65 72 6f 5f 69 6e 64 65 67 72 65 65 da 0f 74 68 69 73 5f 67 65 | gree_map..zero_indegree..this_ge |
| 1d60 | 6e 65 72 61 74 69 6f 6e da 04 6e 6f 64 65 72 25 00 00 00 da 03 65 72 72 73 0a 00 00 00 20 20 20 | neration..noder%.....errs....... |
| 1d80 | 20 20 20 20 20 20 20 72 26 00 00 00 72 12 00 00 00 72 12 00 00 00 a6 00 00 00 73 64 01 00 00 e8 | .......r&...r....r........sd.... |
| 1da0 | 00 f8 80 00 f0 62 01 00 0c 0d 8f 3d 89 3d 8c 3f dc 0e 10 d7 0e 1e d1 0e 1e d0 1f 53 d3 0e 54 d0 | .....b.....=.=.?...........S..T. |
| 1dc0 | 08 54 e0 11 12 97 1f 91 1f d3 11 22 80 4a d8 25 26 a7 5b a1 5b a3 5d d7 13 3c 99 54 98 51 a0 01 | .T.........".J.%&.[.[.]..<.T.Q.. |
| 1de0 | b0 61 b8 21 b3 65 90 41 90 71 91 44 d0 13 3c 80 4c d1 13 3c d8 23 24 a7 3b a1 3b a3 3d d7 14 3b | .a.!.e.A.q.D..<.L..<.#$.;.;.=..; |
| 1e00 | 99 34 98 31 98 61 b0 41 b8 11 b3 46 92 51 d0 14 3b 80 4d d1 14 3b e1 0a 17 d8 1a 27 88 0f d8 18 | .4.1.a.A...F.Q..;.M..;.....'.... |
| 1e20 | 1a 88 0d d8 14 23 f2 00 0a 09 2c 88 44 d8 0f 13 98 31 89 7d dc 16 22 d0 23 43 d3 16 44 d0 10 44 | .....#....,.D....1.}..".#C..D..D |
| 1e40 | d8 19 1a 9f 1b 99 1b a0 54 d3 19 2a f2 00 07 0d 2c 90 05 f0 02 03 11 52 01 d8 14 20 a0 15 d3 14 | ........T..*....,......R........ |
| 1e60 | 27 c1 2a ac 33 a8 71 b0 14 a9 77 b0 75 a9 7e d4 2b 3e d0 52 53 d1 14 53 d3 14 27 f0 06 00 14 20 | '.*.3.q...w.u.~.+>.RS..S..'..... |
| 1e80 | a0 05 d1 13 26 a8 21 d3 13 2b d8 14 21 d7 14 28 d1 14 28 a8 15 d4 14 2f d8 18 24 a0 55 d1 18 2b | ....&.!..+..!..(..(..../..$.U..+ |
| 1ea0 | f1 0f 07 0d 2c f0 07 0a 09 2c f0 16 00 0f 1e d2 08 1d f2 1d 00 0b 18 f1 20 00 08 14 dc 0e 10 d7 | ....,....,...................... |
| 1ec0 | 0e 23 d1 0e 23 d8 0c 46 f3 03 02 0f 0a f0 00 02 09 0a f0 03 00 08 14 f9 f3 27 00 14 3d f9 db 14 | .#..#..F.................'..=... |
| 1ee0 | 3b f8 f4 16 00 18 20 f2 00 01 11 52 01 dc 1a 26 d0 27 47 d3 1a 48 c8 63 d0 14 51 fb f0 03 01 11 | ;..........R...&.'G..H.c..Q..... |
| 1f00 | 52 01 fc 73 5a 00 00 00 82 41 09 45 01 01 c1 0b 0d 44 18 06 c1 19 05 44 18 06 c1 1e 16 45 01 01 | R..sZ....A.E.....D.....D.....E.. |
| 1f20 | c1 34 0d 44 1e 06 c2 02 04 44 1e 06 c2 06 31 45 01 01 c2 38 20 44 24 04 c3 18 08 45 01 01 c3 21 | .4.D.....D....1E...8.D$....E...! |
| 1f40 | 1e 45 01 01 c4 00 24 45 01 01 c4 24 09 44 3e 07 c4 2d 0c 44 39 07 c4 39 05 44 3e 07 c4 3e 03 45 | .E....$E...$.D>..-.D9..9.D>..>.E |
| 1f60 | 01 01 63 01 00 00 00 00 00 00 00 00 00 00 00 04 00 00 00 23 00 00 00 f3 58 00 00 00 4b 00 01 00 | ..c................#....X...K... |
| 1f80 | 97 00 74 01 00 00 00 00 00 00 00 00 6a 02 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 | ..t.........j................... |
| 1fa0 | 7c 00 ab 01 00 00 00 00 00 00 44 00 5d 0c 00 00 7d 01 7c 01 45 00 64 01 7b 03 00 00 96 02 97 02 | |.........D.]...}.|.E.d.{....... |
| 1fc0 | 86 05 05 00 01 00 8c 0e 04 00 79 01 37 00 8c 07 ad 03 77 01 29 02 61 10 08 00 00 52 65 74 75 72 | ..........y.7.....w.).a....Retur |
| 1fe0 | 6e 73 20 61 20 67 65 6e 65 72 61 74 6f 72 20 6f 66 20 6e 6f 64 65 73 20 69 6e 20 74 6f 70 6f 6c | ns.a.generator.of.nodes.in.topol |
| 2000 | 6f 67 69 63 61 6c 6c 79 20 73 6f 72 74 65 64 20 6f 72 64 65 72 2e 0a 0a 20 20 20 20 41 20 74 6f | ogically.sorted.order.......A.to |
| 2020 | 70 6f 6c 6f 67 69 63 61 6c 20 73 6f 72 74 20 69 73 20 61 20 6e 6f 6e 75 6e 69 71 75 65 20 70 65 | pological.sort.is.a.nonunique.pe |
| 2040 | 72 6d 75 74 61 74 69 6f 6e 20 6f 66 20 74 68 65 20 6e 6f 64 65 73 20 6f 66 20 61 0a 20 20 20 20 | rmutation.of.the.nodes.of.a..... |
| 2060 | 64 69 72 65 63 74 65 64 20 67 72 61 70 68 20 73 75 63 68 20 74 68 61 74 20 61 6e 20 65 64 67 65 | directed.graph.such.that.an.edge |
| 2080 | 20 66 72 6f 6d 20 75 20 74 6f 20 76 20 69 6d 70 6c 69 65 73 20 74 68 61 74 20 75 0a 20 20 20 20 | .from.u.to.v.implies.that.u..... |
| 20a0 | 61 70 70 65 61 72 73 20 62 65 66 6f 72 65 20 76 20 69 6e 20 74 68 65 20 74 6f 70 6f 6c 6f 67 69 | appears.before.v.in.the.topologi |
| 20c0 | 63 61 6c 20 73 6f 72 74 20 6f 72 64 65 72 2e 20 54 68 69 73 20 6f 72 64 65 72 69 6e 67 20 69 73 | cal.sort.order..This.ordering.is |
| 20e0 | 0a 20 20 20 20 76 61 6c 69 64 20 6f 6e 6c 79 20 69 66 20 74 68 65 20 67 72 61 70 68 20 68 61 73 | .....valid.only.if.the.graph.has |
| 2100 | 20 6e 6f 20 64 69 72 65 63 74 65 64 20 63 79 63 6c 65 73 2e 0a 0a 20 20 20 20 50 61 72 61 6d 65 | .no.directed.cycles.......Parame |
| 2120 | 74 65 72 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 47 20 3a 20 4e 65 74 77 | ters.....----------.....G.:.Netw |
| 2140 | 6f 72 6b 58 20 64 69 67 72 61 70 68 0a 20 20 20 20 20 20 20 20 41 20 64 69 72 65 63 74 65 64 20 | orkX.digraph.........A.directed. |
| 2160 | 61 63 79 63 6c 69 63 20 67 72 61 70 68 20 28 44 41 47 29 0a 0a 20 20 20 20 59 69 65 6c 64 73 0a | acyclic.graph.(DAG)......Yields. |
| 2180 | 20 20 20 20 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 6e 6f 64 65 73 0a 20 20 20 20 20 20 20 20 59 69 65 | ....------.....nodes.........Yie |
| 21a0 | 6c 64 73 20 74 68 65 20 6e 6f 64 65 73 20 69 6e 20 74 6f 70 6f 6c 6f 67 69 63 61 6c 20 73 6f 72 | lds.the.nodes.in.topological.sor |
| 21c0 | 74 65 64 20 6f 72 64 65 72 2e 0a 0a 20 20 20 20 52 61 69 73 65 73 0a 20 20 20 20 2d 2d 2d 2d 2d | ted.order.......Raises.....----- |
| 21e0 | 2d 0a 20 20 20 20 4e 65 74 77 6f 72 6b 58 45 72 72 6f 72 0a 20 20 20 20 20 20 20 20 54 6f 70 6f | -.....NetworkXError.........Topo |
| 2200 | 6c 6f 67 69 63 61 6c 20 73 6f 72 74 20 69 73 20 64 65 66 69 6e 65 64 20 66 6f 72 20 64 69 72 65 | logical.sort.is.defined.for.dire |
| 2220 | 63 74 65 64 20 67 72 61 70 68 73 20 6f 6e 6c 79 2e 20 49 66 20 74 68 65 20 67 72 61 70 68 20 60 | cted.graphs.only..If.the.graph.` |
| 2240 | 47 60 0a 20 20 20 20 20 20 20 20 69 73 20 75 6e 64 69 72 65 63 74 65 64 2c 20 61 20 3a 65 78 63 | G`.........is.undirected,.a.:exc |
| 2260 | 3a 60 4e 65 74 77 6f 72 6b 58 45 72 72 6f 72 60 20 69 73 20 72 61 69 73 65 64 2e 0a 0a 20 20 20 | :`NetworkXError`.is.raised...... |
| 2280 | 20 4e 65 74 77 6f 72 6b 58 55 6e 66 65 61 73 69 62 6c 65 0a 20 20 20 20 20 20 20 20 49 66 20 60 | .NetworkXUnfeasible.........If.` |
| 22a0 | 47 60 20 69 73 20 6e 6f 74 20 61 20 64 69 72 65 63 74 65 64 20 61 63 79 63 6c 69 63 20 67 72 61 | G`.is.not.a.directed.acyclic.gra |
| 22c0 | 70 68 20 28 44 41 47 29 20 6e 6f 20 74 6f 70 6f 6c 6f 67 69 63 61 6c 20 73 6f 72 74 20 65 78 69 | ph.(DAG).no.topological.sort.exi |
| 22e0 | 73 74 73 0a 20 20 20 20 20 20 20 20 61 6e 64 20 61 20 3a 65 78 63 3a 60 4e 65 74 77 6f 72 6b 58 | sts.........and.a.:exc:`NetworkX |
| 2300 | 55 6e 66 65 61 73 69 62 6c 65 60 20 65 78 63 65 70 74 69 6f 6e 20 69 73 20 72 61 69 73 65 64 2e | Unfeasible`.exception.is.raised. |
| 2320 | 20 20 54 68 69 73 20 63 61 6e 20 61 6c 73 6f 20 62 65 0a 20 20 20 20 20 20 20 20 72 61 69 73 65 | ..This.can.also.be.........raise |
| 2340 | 64 20 69 66 20 60 47 60 20 69 73 20 63 68 61 6e 67 65 64 20 77 68 69 6c 65 20 74 68 65 20 72 65 | d.if.`G`.is.changed.while.the.re |
| 2360 | 74 75 72 6e 65 64 20 69 74 65 72 61 74 6f 72 20 69 73 20 62 65 69 6e 67 20 70 72 6f 63 65 73 73 | turned.iterator.is.being.process |
| 2380 | 65 64 0a 0a 20 20 20 20 52 75 6e 74 69 6d 65 45 72 72 6f 72 0a 20 20 20 20 20 20 20 20 49 66 20 | ed......RuntimeError.........If. |
| 23a0 | 60 47 60 20 69 73 20 63 68 61 6e 67 65 64 20 77 68 69 6c 65 20 74 68 65 20 72 65 74 75 72 6e 65 | `G`.is.changed.while.the.returne |
| 23c0 | 64 20 69 74 65 72 61 74 6f 72 20 69 73 20 62 65 69 6e 67 20 70 72 6f 63 65 73 73 65 64 2e 0a 0a | d.iterator.is.being.processed... |
| 23e0 | 20 20 20 20 45 78 61 6d 70 6c 65 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 54 6f | ....Examples.....--------.....To |
| 2400 | 20 67 65 74 20 74 68 65 20 72 65 76 65 72 73 65 20 6f 72 64 65 72 20 6f 66 20 74 68 65 20 74 6f | .get.the.reverse.order.of.the.to |
| 2420 | 70 6f 6c 6f 67 69 63 61 6c 20 73 6f 72 74 3a 0a 0a 20 20 20 20 3e 3e 3e 20 44 47 20 3d 20 6e 78 | pological.sort:......>>>.DG.=.nx |
| 2440 | 2e 44 69 47 72 61 70 68 28 5b 28 31 2c 20 32 29 2c 20 28 32 2c 20 33 29 5d 29 0a 20 20 20 20 3e | .DiGraph([(1,.2),.(2,.3)]).....> |
| 2460 | 3e 3e 20 6c 69 73 74 28 72 65 76 65 72 73 65 64 28 6c 69 73 74 28 6e 78 2e 74 6f 70 6f 6c 6f 67 | >>.list(reversed(list(nx.topolog |
| 2480 | 69 63 61 6c 5f 73 6f 72 74 28 44 47 29 29 29 29 0a 20 20 20 20 5b 33 2c 20 32 2c 20 31 5d 0a 0a | ical_sort(DG)))).....[3,.2,.1].. |
| 24a0 | 20 20 20 20 49 66 20 79 6f 75 72 20 44 69 47 72 61 70 68 20 6e 61 74 75 72 61 6c 6c 79 20 68 61 | ....If.your.DiGraph.naturally.ha |
| 24c0 | 73 20 74 68 65 20 65 64 67 65 73 20 72 65 70 72 65 73 65 6e 74 69 6e 67 20 74 61 73 6b 73 2f 69 | s.the.edges.representing.tasks/i |
| 24e0 | 6e 70 75 74 73 0a 20 20 20 20 61 6e 64 20 6e 6f 64 65 73 20 72 65 70 72 65 73 65 6e 74 69 6e 67 | nputs.....and.nodes.representing |
| 2500 | 20 70 65 6f 70 6c 65 2f 70 72 6f 63 65 73 73 65 73 20 74 68 61 74 20 69 6e 69 74 69 61 74 65 20 | .people/processes.that.initiate. |
| 2520 | 74 61 73 6b 73 2c 20 74 68 65 6e 0a 20 20 20 20 74 6f 70 6f 6c 6f 67 69 63 61 6c 5f 73 6f 72 74 | tasks,.then.....topological_sort |
| 2540 | 20 69 73 20 6e 6f 74 20 71 75 69 74 65 20 77 68 61 74 20 79 6f 75 20 6e 65 65 64 2e 20 59 6f 75 | .is.not.quite.what.you.need..You |
| 2560 | 20 77 69 6c 6c 20 68 61 76 65 20 74 6f 20 63 68 61 6e 67 65 0a 20 20 20 20 74 68 65 20 74 61 73 | .will.have.to.change.....the.tas |
| 2580 | 6b 73 20 74 6f 20 6e 6f 64 65 73 20 77 69 74 68 20 64 65 70 65 6e 64 65 6e 63 65 20 72 65 66 6c | ks.to.nodes.with.dependence.refl |
| 25a0 | 65 63 74 65 64 20 62 79 20 65 64 67 65 73 2e 20 54 68 65 20 72 65 73 75 6c 74 20 69 73 0a 20 20 | ected.by.edges..The.result.is... |
| 25c0 | 20 20 61 20 6b 69 6e 64 20 6f 66 20 74 6f 70 6f 6c 6f 67 69 63 61 6c 20 73 6f 72 74 20 6f 66 20 | ..a.kind.of.topological.sort.of. |
| 25e0 | 74 68 65 20 65 64 67 65 73 2e 20 54 68 69 73 20 63 61 6e 20 62 65 20 64 6f 6e 65 0a 20 20 20 20 | the.edges..This.can.be.done..... |
| 2600 | 77 69 74 68 20 3a 66 75 6e 63 3a 60 6e 65 74 77 6f 72 6b 78 2e 6c 69 6e 65 5f 67 72 61 70 68 60 | with.:func:`networkx.line_graph` |
| 2620 | 20 61 73 20 66 6f 6c 6c 6f 77 73 3a 0a 0a 20 20 20 20 3e 3e 3e 20 6c 69 73 74 28 6e 78 2e 74 6f | .as.follows:......>>>.list(nx.to |
| 2640 | 70 6f 6c 6f 67 69 63 61 6c 5f 73 6f 72 74 28 6e 78 2e 6c 69 6e 65 5f 67 72 61 70 68 28 44 47 29 | pological_sort(nx.line_graph(DG) |
| 2660 | 29 29 0a 20 20 20 20 5b 28 31 2c 20 32 29 2c 20 28 32 2c 20 33 29 5d 0a 0a 20 20 20 20 4e 6f 74 | )).....[(1,.2),.(2,.3)]......Not |
| 2680 | 65 73 0a 20 20 20 20 2d 2d 2d 2d 2d 0a 20 20 20 20 54 68 69 73 20 61 6c 67 6f 72 69 74 68 6d 20 | es.....-----.....This.algorithm. |
| 26a0 | 69 73 20 62 61 73 65 64 20 6f 6e 20 61 20 64 65 73 63 72 69 70 74 69 6f 6e 20 61 6e 64 20 70 72 | is.based.on.a.description.and.pr |
| 26c0 | 6f 6f 66 20 69 6e 0a 20 20 20 20 22 49 6e 74 72 6f 64 75 63 74 69 6f 6e 20 74 6f 20 41 6c 67 6f | oof.in....."Introduction.to.Algo |
| 26e0 | 72 69 74 68 6d 73 3a 20 41 20 43 72 65 61 74 69 76 65 20 41 70 70 72 6f 61 63 68 22 20 5b 31 5d | rithms:.A.Creative.Approach".[1] |
| 2700 | 5f 20 2e 0a 0a 20 20 20 20 53 65 65 20 61 6c 73 6f 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 | _........See.also.....--------.. |
| 2720 | 20 20 20 69 73 5f 64 69 72 65 63 74 65 64 5f 61 63 79 63 6c 69 63 5f 67 72 61 70 68 2c 20 6c 65 | ...is_directed_acyclic_graph,.le |
| 2740 | 78 69 63 6f 67 72 61 70 68 69 63 61 6c 5f 74 6f 70 6f 6c 6f 67 69 63 61 6c 5f 73 6f 72 74 0a 0a | xicographical_topological_sort.. |
| 2760 | 20 20 20 20 52 65 66 65 72 65 6e 63 65 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 | ....References.....----------... |
| 2780 | 20 20 2e 2e 20 5b 31 5d 20 4d 61 6e 62 65 72 2c 20 55 2e 20 28 31 39 38 39 29 2e 0a 20 20 20 20 | .....[1].Manber,.U..(1989)...... |
| 27a0 | 20 20 20 2a 49 6e 74 72 6f 64 75 63 74 69 6f 6e 20 74 6f 20 41 6c 67 6f 72 69 74 68 6d 73 20 2d | ...*Introduction.to.Algorithms.- |
| 27c0 | 20 41 20 43 72 65 61 74 69 76 65 20 41 70 70 72 6f 61 63 68 2e 2a 20 41 64 64 69 73 6f 6e 2d 57 | .A.Creative.Approach.*.Addison-W |
| 27e0 | 65 73 6c 65 79 2e 0a 20 20 20 20 4e 29 02 72 1f 00 00 00 72 12 00 00 00 29 02 72 22 00 00 00 da | esley......N).r....r....).r".... |
| 2800 | 0a 67 65 6e 65 72 61 74 69 6f 6e 73 02 00 00 00 20 20 72 26 00 00 00 72 0f 00 00 00 72 0f 00 00 | .generations......r&...r....r... |
| 2820 | 00 f4 00 00 00 73 2f 00 00 00 e8 00 f8 80 00 f4 42 02 00 17 19 d7 16 30 d1 16 30 b0 11 d3 16 33 | .....s/.........B......0..0....3 |
| 2840 | f2 00 01 05 1e 88 0a d8 13 1d d7 08 1d d1 08 1d f1 03 01 05 1e d8 08 1d fa 73 0c 00 00 00 82 1e | .........................s...... |
| 2860 | 2a 01 a0 01 28 06 a1 08 2a 01 63 02 00 00 00 00 00 00 00 00 00 00 00 07 00 00 00 23 00 00 00 f3 | *...(...*.c................#.... |
| 2880 | 5a 03 00 00 87 01 87 0e 4b 00 01 00 97 00 7c 00 6a 01 00 00 00 00 00 00 00 00 00 00 00 00 00 00 | Z.......K.....|.j............... |
| 28a0 | 00 00 00 00 ab 00 00 00 00 00 00 00 73 17 64 01 7d 02 74 03 00 00 00 00 00 00 00 00 6a 04 00 00 | ............s.d.}.t.........j... |
| 28c0 | 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 7c 02 ab 01 00 00 00 00 00 00 82 01 89 01 80 03 | ................|............... |
| 28e0 | 64 03 84 00 8a 01 74 07 00 00 00 00 00 00 00 00 7c 00 ab 01 00 00 00 00 00 00 44 00 8f 03 8f 04 | d.....t.........|.........D..... |
| 2900 | 63 03 69 00 63 02 5d 08 00 00 5c 02 00 00 7d 03 7d 04 7c 04 7c 03 93 02 8c 0a 04 00 63 03 7d 04 | c.i.c.]...\...}.}.|.|.......c.}. |
| 2920 | 7d 03 8a 0e 88 01 88 0e 66 02 64 04 84 08 7d 05 7c 00 6a 09 00 00 00 00 00 00 00 00 00 00 00 00 | }.......f.d...}.|.j............. |
| 2940 | 00 00 00 00 00 00 ab 00 00 00 00 00 00 00 44 00 8f 06 8f 07 63 03 69 00 63 02 5d 0e 00 00 5c 02 | ..............D.....c.i.c.]...\. |
| 2960 | 00 00 7d 06 7d 07 7c 07 64 05 6b 44 00 00 73 01 8c 0c 7c 06 7c 07 93 02 8c 10 04 00 7d 08 7d 06 | ..}.}.|.d.kD..s...|.|.......}.}. |
| 2980 | 7d 07 7c 00 6a 09 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ab 00 00 00 00 00 00 00 | }.|.j........................... |
| 29a0 | 44 00 8f 06 8f 07 63 03 67 00 63 02 5d 13 00 00 5c 02 00 00 7d 06 7d 07 7c 07 64 05 6b 28 00 00 | D.....c.g.c.]...\...}.}.|.d.k(.. |
| 29c0 | 73 01 8c 0c 02 00 7c 05 7c 06 ab 01 00 00 00 00 00 00 91 02 8c 15 04 00 7d 09 7d 06 7d 07 74 0b | s.....|.|...............}.}.}.t. |
| 29e0 | 00 00 00 00 00 00 00 00 6a 0c 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 7c 09 ab 01 | ........j...................|... |
| 2a00 | 00 00 00 00 00 00 01 00 7c 09 72 7f 74 0b 00 00 00 00 00 00 00 00 6a 0e 00 00 00 00 00 00 00 00 | ........|.r.t.........j......... |
| 2a20 | 00 00 00 00 00 00 00 00 00 00 7c 09 ab 01 00 00 00 00 00 00 5c 03 00 00 7d 0a 7d 0a 7d 0b 7c 0b | ..........|.........\...}.}.}.|. |
| 2a40 | 7c 00 76 01 72 0b 74 11 00 00 00 00 00 00 00 00 64 06 ab 01 00 00 00 00 00 00 82 01 7c 00 6a 13 | |.v.r.t.........d...........|.j. |
| 2a60 | 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 7c 0b ab 01 00 00 00 00 00 00 44 00 5d 3c | ..................|.........D.]< |
| 2a80 | 00 00 5c 02 00 00 7d 0a 7d 0c 09 00 7c 08 7c 0c 78 02 78 02 19 00 00 00 64 07 7a 17 00 00 63 03 | ..\...}.}...|.|.x.x.....d.z...c. |
| 2aa0 | 63 02 3c 00 00 00 7c 08 7c 0c 19 00 00 00 64 05 6b 28 00 00 73 01 8c 1d 09 00 74 0b 00 00 00 00 | c.<...|.|.....d.k(..s.....t..... |
| 2ac0 | 00 00 00 00 6a 16 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 7c 09 02 00 7c 05 7c 0c | ....j...................|...|.|. |
| 2ae0 | ab 01 00 00 00 00 00 00 ab 02 00 00 00 00 00 00 01 00 7c 08 7c 0c 3d 00 8c 3e 04 00 7c 0b 96 01 | ..................|.|.=..>..|... |
| 2b00 | 97 01 01 00 7c 09 72 01 8c 7f 7c 08 72 17 64 09 7d 02 74 03 00 00 00 00 00 00 00 00 6a 1a 00 00 | ....|.r...|.r.d.}.t.........j... |
| 2b20 | 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 7c 02 ab 01 00 00 00 00 00 00 82 01 79 02 63 02 | ................|...........y.c. |
| 2b40 | 01 00 63 03 7d 04 7d 03 77 00 63 02 01 00 63 03 7d 07 7d 06 77 00 63 02 01 00 63 03 7d 07 7d 06 | ..c.}.}.w.c...c.}.}.w.c...c.}.}. |
| 2b60 | 77 00 23 00 74 14 00 00 00 00 00 00 00 00 24 00 72 11 7d 0d 74 11 00 00 00 00 00 00 00 00 64 06 | w.#.t.........$.r.}.t.........d. |
| 2b80 | ab 01 00 00 00 00 00 00 7c 0d 82 02 64 02 7d 0d 7e 0d 77 01 77 00 78 03 59 00 77 01 23 00 74 18 | ........|...d.}.~.w.w.x.Y.w.#.t. |
| 2ba0 | 00 00 00 00 00 00 00 00 24 00 72 13 7d 0d 74 19 00 00 00 00 00 00 00 00 7c 0d 9b 00 64 08 9d 02 | ........$.r.}.t.........|...d... |
| 2bc0 | ab 01 00 00 00 00 00 00 82 01 64 02 7d 0d 7e 0d 77 01 77 00 78 03 59 00 77 01 ad 03 77 01 29 0a | ..........d.}.~.w.w.x.Y.w...w.). |
| 2be0 | 61 ed 0e 00 00 47 65 6e 65 72 61 74 65 20 74 68 65 20 6e 6f 64 65 73 20 69 6e 20 74 68 65 20 75 | a....Generate.the.nodes.in.the.u |
| 2c00 | 6e 69 71 75 65 20 6c 65 78 69 63 6f 67 72 61 70 68 69 63 61 6c 20 74 6f 70 6f 6c 6f 67 69 63 61 | nique.lexicographical.topologica |
| 2c20 | 6c 20 73 6f 72 74 20 6f 72 64 65 72 2e 0a 0a 20 20 20 20 47 65 6e 65 72 61 74 65 73 20 61 20 75 | l.sort.order.......Generates.a.u |
| 2c40 | 6e 69 71 75 65 20 6f 72 64 65 72 69 6e 67 20 6f 66 20 6e 6f 64 65 73 20 62 79 20 66 69 72 73 74 | nique.ordering.of.nodes.by.first |
| 2c60 | 20 73 6f 72 74 69 6e 67 20 74 6f 70 6f 6c 6f 67 69 63 61 6c 6c 79 20 28 66 6f 72 20 77 68 69 63 | .sorting.topologically.(for.whic |
| 2c80 | 68 20 74 68 65 72 65 20 61 72 65 20 6f 66 74 65 6e 0a 20 20 20 20 6d 75 6c 74 69 70 6c 65 20 76 | h.there.are.often.....multiple.v |
| 2ca0 | 61 6c 69 64 20 6f 72 64 65 72 69 6e 67 73 29 20 61 6e 64 20 74 68 65 6e 20 61 64 64 69 74 69 6f | alid.orderings).and.then.additio |
| 2cc0 | 6e 61 6c 6c 79 20 62 79 20 73 6f 72 74 69 6e 67 20 6c 65 78 69 63 6f 67 72 61 70 68 69 63 61 6c | nally.by.sorting.lexicographical |
| 2ce0 | 6c 79 2e 0a 0a 20 20 20 20 41 20 74 6f 70 6f 6c 6f 67 69 63 61 6c 20 73 6f 72 74 20 61 72 72 61 | ly.......A.topological.sort.arra |
| 2d00 | 6e 67 65 73 20 74 68 65 20 6e 6f 64 65 73 20 6f 66 20 61 20 64 69 72 65 63 74 65 64 20 67 72 61 | nges.the.nodes.of.a.directed.gra |
| 2d20 | 70 68 20 73 6f 20 74 68 61 74 20 74 68 65 0a 20 20 20 20 75 70 73 74 72 65 61 6d 20 6e 6f 64 65 | ph.so.that.the.....upstream.node |
| 2d40 | 20 6f 66 20 65 61 63 68 20 64 69 72 65 63 74 65 64 20 65 64 67 65 20 70 72 65 63 65 64 65 73 20 | .of.each.directed.edge.precedes. |
| 2d60 | 74 68 65 20 64 6f 77 6e 73 74 72 65 61 6d 20 6e 6f 64 65 2e 0a 20 20 20 20 49 74 20 69 73 20 61 | the.downstream.node......It.is.a |
| 2d80 | 6c 77 61 79 73 20 70 6f 73 73 69 62 6c 65 20 74 6f 20 66 69 6e 64 20 61 20 73 6f 6c 75 74 69 6f | lways.possible.to.find.a.solutio |
| 2da0 | 6e 20 66 6f 72 20 64 69 72 65 63 74 65 64 20 67 72 61 70 68 73 20 74 68 61 74 20 68 61 76 65 20 | n.for.directed.graphs.that.have. |
| 2dc0 | 6e 6f 20 63 79 63 6c 65 73 2e 0a 20 20 20 20 54 68 65 72 65 20 6d 61 79 20 62 65 20 6d 6f 72 65 | no.cycles......There.may.be.more |
| 2de0 | 20 74 68 61 6e 20 6f 6e 65 20 76 61 6c 69 64 20 73 6f 6c 75 74 69 6f 6e 2e 0a 0a 20 20 20 20 4c | .than.one.valid.solution.......L |
| 2e00 | 65 78 69 63 6f 67 72 61 70 68 69 63 61 6c 20 73 6f 72 74 69 6e 67 20 69 73 20 6a 75 73 74 20 73 | exicographical.sorting.is.just.s |
| 2e20 | 6f 72 74 69 6e 67 20 61 6c 70 68 61 62 65 74 69 63 61 6c 6c 79 2e 20 49 74 20 69 73 20 75 73 65 | orting.alphabetically..It.is.use |
| 2e40 | 64 20 68 65 72 65 20 74 6f 20 62 72 65 61 6b 20 74 69 65 73 20 69 6e 20 74 68 65 0a 20 20 20 20 | d.here.to.break.ties.in.the..... |
| 2e60 | 74 6f 70 6f 6c 6f 67 69 63 61 6c 20 73 6f 72 74 20 61 6e 64 20 74 6f 20 64 65 74 65 72 6d 69 6e | topological.sort.and.to.determin |
| 2e80 | 65 20 61 20 73 69 6e 67 6c 65 2c 20 75 6e 69 71 75 65 20 6f 72 64 65 72 69 6e 67 2e 20 20 54 68 | e.a.single,.unique.ordering...Th |
| 2ea0 | 69 73 20 63 61 6e 20 62 65 20 75 73 65 66 75 6c 20 69 6e 20 63 6f 6d 70 61 72 69 6e 67 0a 20 20 | is.can.be.useful.in.comparing... |
| 2ec0 | 20 20 73 6f 72 74 20 72 65 73 75 6c 74 73 2e 0a 0a 20 20 20 20 54 68 65 20 6c 65 78 69 63 6f 67 | ..sort.results.......The.lexicog |
| 2ee0 | 72 61 70 68 69 63 61 6c 20 6f 72 64 65 72 20 63 61 6e 20 62 65 20 63 75 73 74 6f 6d 69 7a 65 64 | raphical.order.can.be.customized |
| 2f00 | 20 62 79 20 70 72 6f 76 69 64 69 6e 67 20 61 20 66 75 6e 63 74 69 6f 6e 20 74 6f 20 74 68 65 20 | .by.providing.a.function.to.the. |
| 2f20 | 60 6b 65 79 3d 60 20 70 61 72 61 6d 65 74 65 72 2e 0a 20 20 20 20 54 68 65 20 64 65 66 69 6e 69 | `key=`.parameter......The.defini |
| 2f40 | 74 69 6f 6e 20 6f 66 20 74 68 65 20 6b 65 79 20 66 75 6e 63 74 69 6f 6e 20 69 73 20 74 68 65 20 | tion.of.the.key.function.is.the. |
| 2f60 | 73 61 6d 65 20 61 73 20 75 73 65 64 20 69 6e 20 70 79 74 68 6f 6e 27 73 20 62 75 69 6c 74 2d 69 | same.as.used.in.python's.built-i |
| 2f80 | 6e 20 60 73 6f 72 74 28 29 60 2e 0a 20 20 20 20 54 68 65 20 66 75 6e 63 74 69 6f 6e 20 74 61 6b | n.`sort()`......The.function.tak |
| 2fa0 | 65 73 20 61 20 73 69 6e 67 6c 65 20 61 72 67 75 6d 65 6e 74 20 61 6e 64 20 72 65 74 75 72 6e 73 | es.a.single.argument.and.returns |
| 2fc0 | 20 61 20 6b 65 79 20 74 6f 20 75 73 65 20 66 6f 72 20 73 6f 72 74 69 6e 67 20 70 75 72 70 6f 73 | .a.key.to.use.for.sorting.purpos |
| 2fe0 | 65 73 2e 0a 0a 20 20 20 20 4c 65 78 69 63 6f 67 72 61 70 68 69 63 61 6c 20 73 6f 72 74 69 6e 67 | es.......Lexicographical.sorting |
| 3000 | 20 63 61 6e 20 66 61 69 6c 20 69 66 20 74 68 65 20 6e 6f 64 65 20 6e 61 6d 65 73 20 61 72 65 20 | .can.fail.if.the.node.names.are. |
| 3020 | 75 6e 2d 73 6f 72 74 61 62 6c 65 2e 20 53 65 65 20 74 68 65 20 65 78 61 6d 70 6c 65 20 62 65 6c | un-sortable..See.the.example.bel |
| 3040 | 6f 77 2e 0a 20 20 20 20 54 68 65 20 73 6f 6c 75 74 69 6f 6e 20 69 73 20 74 6f 20 70 72 6f 76 69 | ow......The.solution.is.to.provi |
| 3060 | 64 65 20 61 20 66 75 6e 63 74 69 6f 6e 20 74 6f 20 74 68 65 20 60 6b 65 79 3d 60 20 61 72 67 75 | de.a.function.to.the.`key=`.argu |
| 3080 | 6d 65 6e 74 20 74 68 61 74 20 72 65 74 75 72 6e 73 20 73 6f 72 74 61 62 6c 65 20 6b 65 79 73 2e | ment.that.returns.sortable.keys. |
| 30a0 | 0a 0a 0a 20 20 20 20 50 61 72 61 6d 65 74 65 72 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d | .......Parameters.....---------- |
| 30c0 | 0a 20 20 20 20 47 20 3a 20 4e 65 74 77 6f 72 6b 58 20 64 69 67 72 61 70 68 0a 20 20 20 20 20 20 | .....G.:.NetworkX.digraph....... |
| 30e0 | 20 20 41 20 64 69 72 65 63 74 65 64 20 61 63 79 63 6c 69 63 20 67 72 61 70 68 20 28 44 41 47 29 | ..A.directed.acyclic.graph.(DAG) |
| 3100 | 0a 0a 20 20 20 20 6b 65 79 20 3a 20 66 75 6e 63 74 69 6f 6e 2c 20 6f 70 74 69 6f 6e 61 6c 0a 20 | ......key.:.function,.optional.. |
| 3120 | 20 20 20 20 20 20 20 41 20 66 75 6e 63 74 69 6f 6e 20 6f 66 20 6f 6e 65 20 61 72 67 75 6d 65 6e | .......A.function.of.one.argumen |
| 3140 | 74 20 74 68 61 74 20 63 6f 6e 76 65 72 74 73 20 61 20 6e 6f 64 65 20 6e 61 6d 65 20 74 6f 20 61 | t.that.converts.a.node.name.to.a |
| 3160 | 20 63 6f 6d 70 61 72 69 73 6f 6e 20 6b 65 79 2e 0a 20 20 20 20 20 20 20 20 49 74 20 64 65 66 69 | .comparison.key..........It.defi |
| 3180 | 6e 65 73 20 61 6e 64 20 72 65 73 6f 6c 76 65 73 20 61 6d 62 69 67 75 69 74 69 65 73 20 69 6e 20 | nes.and.resolves.ambiguities.in. |
| 31a0 | 74 68 65 20 73 6f 72 74 20 6f 72 64 65 72 2e 20 20 44 65 66 61 75 6c 74 73 20 74 6f 20 74 68 65 | the.sort.order...Defaults.to.the |
| 31c0 | 20 69 64 65 6e 74 69 74 79 20 66 75 6e 63 74 69 6f 6e 2e 0a 0a 20 20 20 20 59 69 65 6c 64 73 0a | .identity.function.......Yields. |
| 31e0 | 20 20 20 20 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 6e 6f 64 65 73 0a 20 20 20 20 20 20 20 20 59 69 65 | ....------.....nodes.........Yie |
| 3200 | 6c 64 73 20 74 68 65 20 6e 6f 64 65 73 20 6f 66 20 47 20 69 6e 20 6c 65 78 69 63 6f 67 72 61 70 | lds.the.nodes.of.G.in.lexicograp |
| 3220 | 68 69 63 61 6c 20 74 6f 70 6f 6c 6f 67 69 63 61 6c 20 73 6f 72 74 20 6f 72 64 65 72 2e 0a 0a 20 | hical.topological.sort.order.... |
| 3240 | 20 20 20 52 61 69 73 65 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 4e 65 74 77 6f 72 6b | ...Raises.....------.....Network |
| 3260 | 58 45 72 72 6f 72 0a 20 20 20 20 20 20 20 20 54 6f 70 6f 6c 6f 67 69 63 61 6c 20 73 6f 72 74 20 | XError.........Topological.sort. |
| 3280 | 69 73 20 64 65 66 69 6e 65 64 20 66 6f 72 20 64 69 72 65 63 74 65 64 20 67 72 61 70 68 73 20 6f | is.defined.for.directed.graphs.o |
| 32a0 | 6e 6c 79 2e 20 49 66 20 74 68 65 20 67 72 61 70 68 20 60 47 60 0a 20 20 20 20 20 20 20 20 69 73 | nly..If.the.graph.`G`.........is |
| 32c0 | 20 75 6e 64 69 72 65 63 74 65 64 2c 20 61 20 3a 65 78 63 3a 60 4e 65 74 77 6f 72 6b 58 45 72 72 | .undirected,.a.:exc:`NetworkXErr |
| 32e0 | 6f 72 60 20 69 73 20 72 61 69 73 65 64 2e 0a 0a 20 20 20 20 4e 65 74 77 6f 72 6b 58 55 6e 66 65 | or`.is.raised.......NetworkXUnfe |
| 3300 | 61 73 69 62 6c 65 0a 20 20 20 20 20 20 20 20 49 66 20 60 47 60 20 69 73 20 6e 6f 74 20 61 20 64 | asible.........If.`G`.is.not.a.d |
| 3320 | 69 72 65 63 74 65 64 20 61 63 79 63 6c 69 63 20 67 72 61 70 68 20 28 44 41 47 29 20 6e 6f 20 74 | irected.acyclic.graph.(DAG).no.t |
| 3340 | 6f 70 6f 6c 6f 67 69 63 61 6c 20 73 6f 72 74 20 65 78 69 73 74 73 0a 20 20 20 20 20 20 20 20 61 | opological.sort.exists.........a |
| 3360 | 6e 64 20 61 20 3a 65 78 63 3a 60 4e 65 74 77 6f 72 6b 58 55 6e 66 65 61 73 69 62 6c 65 60 20 65 | nd.a.:exc:`NetworkXUnfeasible`.e |
| 3380 | 78 63 65 70 74 69 6f 6e 20 69 73 20 72 61 69 73 65 64 2e 20 20 54 68 69 73 20 63 61 6e 20 61 6c | xception.is.raised...This.can.al |
| 33a0 | 73 6f 20 62 65 0a 20 20 20 20 20 20 20 20 72 61 69 73 65 64 20 69 66 20 60 47 60 20 69 73 20 63 | so.be.........raised.if.`G`.is.c |
| 33c0 | 68 61 6e 67 65 64 20 77 68 69 6c 65 20 74 68 65 20 72 65 74 75 72 6e 65 64 20 69 74 65 72 61 74 | hanged.while.the.returned.iterat |
| 33e0 | 6f 72 20 69 73 20 62 65 69 6e 67 20 70 72 6f 63 65 73 73 65 64 0a 0a 20 20 20 20 52 75 6e 74 69 | or.is.being.processed......Runti |
| 3400 | 6d 65 45 72 72 6f 72 0a 20 20 20 20 20 20 20 20 49 66 20 60 47 60 20 69 73 20 63 68 61 6e 67 65 | meError.........If.`G`.is.change |
| 3420 | 64 20 77 68 69 6c 65 20 74 68 65 20 72 65 74 75 72 6e 65 64 20 69 74 65 72 61 74 6f 72 20 69 73 | d.while.the.returned.iterator.is |
| 3440 | 20 62 65 69 6e 67 20 70 72 6f 63 65 73 73 65 64 2e 0a 0a 20 20 20 20 54 79 70 65 45 72 72 6f 72 | .being.processed.......TypeError |
| 3460 | 0a 20 20 20 20 20 20 20 20 52 65 73 75 6c 74 73 20 66 72 6f 6d 20 75 6e 2d 73 6f 72 74 61 62 6c | .........Results.from.un-sortabl |
| 3480 | 65 20 6e 6f 64 65 20 6e 61 6d 65 73 2e 0a 20 20 20 20 20 20 20 20 43 6f 6e 73 69 64 65 72 20 75 | e.node.names..........Consider.u |
| 34a0 | 73 69 6e 67 20 60 6b 65 79 3d 60 20 70 61 72 61 6d 65 74 65 72 20 74 6f 20 72 65 73 6f 6c 76 65 | sing.`key=`.parameter.to.resolve |
| 34c0 | 20 61 6d 62 69 67 75 69 74 69 65 73 20 69 6e 20 74 68 65 20 73 6f 72 74 20 6f 72 64 65 72 2e 0a | .ambiguities.in.the.sort.order.. |
| 34e0 | 0a 20 20 20 20 45 78 61 6d 70 6c 65 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 3e | .....Examples.....--------.....> |
| 3500 | 3e 3e 20 44 47 20 3d 20 6e 78 2e 44 69 47 72 61 70 68 28 5b 28 32 2c 20 31 29 2c 20 28 32 2c 20 | >>.DG.=.nx.DiGraph([(2,.1),.(2,. |
| 3520 | 35 29 2c 20 28 31 2c 20 33 29 2c 20 28 31 2c 20 34 29 2c 20 28 35 2c 20 34 29 5d 29 0a 20 20 20 | 5),.(1,.3),.(1,.4),.(5,.4)]).... |
| 3540 | 20 3e 3e 3e 20 6c 69 73 74 28 6e 78 2e 6c 65 78 69 63 6f 67 72 61 70 68 69 63 61 6c 5f 74 6f 70 | .>>>.list(nx.lexicographical_top |
| 3560 | 6f 6c 6f 67 69 63 61 6c 5f 73 6f 72 74 28 44 47 29 29 0a 20 20 20 20 5b 32 2c 20 31 2c 20 33 2c | ological_sort(DG)).....[2,.1,.3, |
| 3580 | 20 35 2c 20 34 5d 0a 20 20 20 20 3e 3e 3e 20 6c 69 73 74 28 6e 78 2e 6c 65 78 69 63 6f 67 72 61 | .5,.4].....>>>.list(nx.lexicogra |
| 35a0 | 70 68 69 63 61 6c 5f 74 6f 70 6f 6c 6f 67 69 63 61 6c 5f 73 6f 72 74 28 44 47 2c 20 6b 65 79 3d | phical_topological_sort(DG,.key= |
| 35c0 | 6c 61 6d 62 64 61 20 78 3a 20 2d 78 29 29 0a 20 20 20 20 5b 32 2c 20 35 2c 20 31 2c 20 34 2c 20 | lambda.x:.-x)).....[2,.5,.1,.4,. |
| 35e0 | 33 5d 0a 0a 20 20 20 20 54 68 65 20 73 6f 72 74 20 77 69 6c 6c 20 66 61 69 6c 20 66 6f 72 20 61 | 3]......The.sort.will.fail.for.a |
| 3600 | 6e 79 20 67 72 61 70 68 20 77 69 74 68 20 69 6e 74 65 67 65 72 20 61 6e 64 20 73 74 72 69 6e 67 | ny.graph.with.integer.and.string |
| 3620 | 20 6e 6f 64 65 73 2e 20 43 6f 6d 70 61 72 69 73 6f 6e 20 6f 66 20 69 6e 74 65 67 65 72 20 74 6f | .nodes..Comparison.of.integer.to |
| 3640 | 20 73 74 72 69 6e 67 73 0a 20 20 20 20 69 73 20 6e 6f 74 20 64 65 66 69 6e 65 64 20 69 6e 20 70 | .strings.....is.not.defined.in.p |
| 3660 | 79 74 68 6f 6e 2e 20 20 49 73 20 33 20 67 72 65 61 74 65 72 20 6f 72 20 6c 65 73 73 20 74 68 61 | ython...Is.3.greater.or.less.tha |
| 3680 | 6e 20 27 72 65 64 27 3f 0a 0a 20 20 20 20 3e 3e 3e 20 44 47 20 3d 20 6e 78 2e 44 69 47 72 61 70 | n.'red'?......>>>.DG.=.nx.DiGrap |
| 36a0 | 68 28 5b 28 31 2c 20 22 72 65 64 22 29 2c 20 28 33 2c 20 22 72 65 64 22 29 2c 20 28 31 2c 20 22 | h([(1,."red"),.(3,."red"),.(1,." |
| 36c0 | 67 72 65 65 6e 22 29 2c 20 28 32 2c 20 22 62 6c 75 65 22 29 5d 29 0a 20 20 20 20 3e 3e 3e 20 6c | green"),.(2,."blue")]).....>>>.l |
| 36e0 | 69 73 74 28 6e 78 2e 6c 65 78 69 63 6f 67 72 61 70 68 69 63 61 6c 5f 74 6f 70 6f 6c 6f 67 69 63 | ist(nx.lexicographical_topologic |
| 3700 | 61 6c 5f 73 6f 72 74 28 44 47 29 29 0a 20 20 20 20 54 72 61 63 65 62 61 63 6b 20 28 6d 6f 73 74 | al_sort(DG)).....Traceback.(most |
| 3720 | 20 72 65 63 65 6e 74 20 63 61 6c 6c 20 6c 61 73 74 29 3a 0a 20 20 20 20 2e 2e 2e 0a 20 20 20 20 | .recent.call.last):............. |
| 3740 | 54 79 70 65 45 72 72 6f 72 3a 20 27 3c 27 20 6e 6f 74 20 73 75 70 70 6f 72 74 65 64 20 62 65 74 | TypeError:.'<'.not.supported.bet |
| 3760 | 77 65 65 6e 20 69 6e 73 74 61 6e 63 65 73 20 6f 66 20 27 73 74 72 27 20 61 6e 64 20 27 69 6e 74 | ween.instances.of.'str'.and.'int |
| 3780 | 27 0a 20 20 20 20 2e 2e 2e 0a 0a 20 20 20 20 49 6e 63 6f 6d 70 61 72 61 62 6c 65 20 6e 6f 64 65 | '..............Incomparable.node |
| 37a0 | 73 20 63 61 6e 20 62 65 20 72 65 73 6f 6c 76 65 64 20 75 73 69 6e 67 20 61 20 60 6b 65 79 60 20 | s.can.be.resolved.using.a.`key`. |
| 37c0 | 66 75 6e 63 74 69 6f 6e 2e 20 54 68 69 73 20 65 78 61 6d 70 6c 65 20 66 75 6e 63 74 69 6f 6e 0a | function..This.example.function. |
| 37e0 | 20 20 20 20 61 6c 6c 6f 77 73 20 63 6f 6d 70 61 72 69 73 6f 6e 20 6f 66 20 69 6e 74 65 67 65 72 | ....allows.comparison.of.integer |
| 3800 | 73 20 61 6e 64 20 73 74 72 69 6e 67 73 20 62 79 20 72 65 74 75 72 6e 69 6e 67 20 61 20 74 75 70 | s.and.strings.by.returning.a.tup |
| 3820 | 6c 65 20 77 68 65 72 65 20 74 68 65 20 66 69 72 73 74 0a 20 20 20 20 65 6c 65 6d 65 6e 74 20 69 | le.where.the.first.....element.i |
| 3840 | 73 20 54 72 75 65 20 66 6f 72 20 60 73 74 72 60 2c 20 46 61 6c 73 65 20 6f 74 68 65 72 77 69 73 | s.True.for.`str`,.False.otherwis |
| 3860 | 65 2e 20 54 68 65 20 73 65 63 6f 6e 64 20 65 6c 65 6d 65 6e 74 20 69 73 20 74 68 65 20 6e 6f 64 | e..The.second.element.is.the.nod |
| 3880 | 65 20 6e 61 6d 65 2e 0a 20 20 20 20 54 68 69 73 20 67 72 6f 75 70 73 20 74 68 65 20 73 74 72 69 | e.name......This.groups.the.stri |
| 38a0 | 6e 67 73 20 61 6e 64 20 69 6e 74 65 67 65 72 73 20 73 65 70 61 72 61 74 65 6c 79 20 73 6f 20 74 | ngs.and.integers.separately.so.t |
| 38c0 | 68 65 79 20 63 61 6e 20 62 65 20 63 6f 6d 70 61 72 65 64 20 6f 6e 6c 79 20 61 6d 6f 6e 67 20 74 | hey.can.be.compared.only.among.t |
| 38e0 | 68 65 6d 73 65 6c 76 65 73 2e 0a 0a 20 20 20 20 3e 3e 3e 20 6b 65 79 20 3d 20 6c 61 6d 62 64 61 | hemselves.......>>>.key.=.lambda |
| 3900 | 20 6e 6f 64 65 3a 20 28 69 73 69 6e 73 74 61 6e 63 65 28 6e 6f 64 65 2c 20 73 74 72 29 2c 20 6e | .node:.(isinstance(node,.str),.n |
| 3920 | 6f 64 65 29 0a 20 20 20 20 3e 3e 3e 20 6c 69 73 74 28 6e 78 2e 6c 65 78 69 63 6f 67 72 61 70 68 | ode).....>>>.list(nx.lexicograph |
| 3940 | 69 63 61 6c 5f 74 6f 70 6f 6c 6f 67 69 63 61 6c 5f 73 6f 72 74 28 44 47 2c 20 6b 65 79 3d 6b 65 | ical_topological_sort(DG,.key=ke |
| 3960 | 79 29 29 0a 20 20 20 20 5b 31 2c 20 32 2c 20 33 2c 20 27 62 6c 75 65 27 2c 20 27 67 72 65 65 6e | y)).....[1,.2,.3,.'blue',.'green |
| 3980 | 27 2c 20 27 72 65 64 27 5d 0a 0a 20 20 20 20 4e 6f 74 65 73 0a 20 20 20 20 2d 2d 2d 2d 2d 0a 20 | ',.'red']......Notes.....-----.. |
| 39a0 | 20 20 20 54 68 69 73 20 61 6c 67 6f 72 69 74 68 6d 20 69 73 20 62 61 73 65 64 20 6f 6e 20 61 20 | ...This.algorithm.is.based.on.a. |
| 39c0 | 64 65 73 63 72 69 70 74 69 6f 6e 20 61 6e 64 20 70 72 6f 6f 66 20 69 6e 0a 20 20 20 20 22 49 6e | description.and.proof.in....."In |
| 39e0 | 74 72 6f 64 75 63 74 69 6f 6e 20 74 6f 20 41 6c 67 6f 72 69 74 68 6d 73 3a 20 41 20 43 72 65 61 | troduction.to.Algorithms:.A.Crea |
| 3a00 | 74 69 76 65 20 41 70 70 72 6f 61 63 68 22 20 5b 31 5d 5f 20 2e 0a 0a 20 20 20 20 53 65 65 20 61 | tive.Approach".[1]_........See.a |
| 3a20 | 6c 73 6f 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 74 6f 70 6f 6c 6f 67 69 63 61 6c | lso.....--------.....topological |
| 3a40 | 5f 73 6f 72 74 0a 0a 20 20 20 20 52 65 66 65 72 65 6e 63 65 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d | _sort......References.....------ |
| 3a60 | 2d 2d 2d 2d 0a 20 20 20 20 2e 2e 20 5b 31 5d 20 4d 61 6e 62 65 72 2c 20 55 2e 20 28 31 39 38 39 | ----........[1].Manber,.U..(1989 |
| 3a80 | 29 2e 0a 20 20 20 20 20 20 20 2a 49 6e 74 72 6f 64 75 63 74 69 6f 6e 20 74 6f 20 41 6c 67 6f 72 | ).........*Introduction.to.Algor |
| 3aa0 | 69 74 68 6d 73 20 2d 20 41 20 43 72 65 61 74 69 76 65 20 41 70 70 72 6f 61 63 68 2e 2a 20 41 64 | ithms.-.A.Creative.Approach.*.Ad |
| 3ac0 | 64 69 73 6f 6e 2d 57 65 73 6c 65 79 2e 0a 20 20 20 20 72 32 00 00 00 4e 63 01 00 00 00 00 00 00 | dison-Wesley......r2...Nc....... |
| 3ae0 | 00 00 00 00 00 01 00 00 00 13 00 00 00 f3 06 00 00 00 97 00 7c 00 53 00 a9 01 4e a9 00 29 01 72 | ....................|.S...N..).r |
| 3b00 | 44 00 00 00 73 01 00 00 00 20 72 26 00 00 00 da 03 6b 65 79 7a 2d 6c 65 78 69 63 6f 67 72 61 70 | D...s.....r&.....keyz-lexicograp |
| 3b20 | 68 69 63 61 6c 5f 74 6f 70 6f 6c 6f 67 69 63 61 6c 5f 73 6f 72 74 2e 3c 6c 6f 63 61 6c 73 3e 2e | hical_topological_sort.<locals>. |
| 3b40 | 6b 65 79 a0 01 00 00 73 07 00 00 00 80 00 d8 13 17 88 4b 72 30 00 00 00 63 01 00 00 00 00 00 00 | key....s..........Kr0...c....... |
| 3b60 | 00 00 00 00 00 03 00 00 00 13 00 00 00 f3 20 00 00 00 95 02 97 00 02 00 89 01 7c 00 ab 01 00 00 | ..........................|..... |
| 3b80 | 00 00 00 00 89 02 7c 00 19 00 00 00 7c 00 66 03 53 00 72 4a 00 00 00 72 4b 00 00 00 29 03 72 44 | ......|.....|.f.S.rJ...rK...).rD |
| 3ba0 | 00 00 00 72 4c 00 00 00 da 0a 6e 6f 64 65 69 64 5f 6d 61 70 73 03 00 00 00 20 80 80 72 26 00 00 | ...rL.....nodeid_maps.......r&.. |
| 3bc0 | 00 da 0c 63 72 65 61 74 65 5f 74 75 70 6c 65 7a 36 6c 65 78 69 63 6f 67 72 61 70 68 69 63 61 6c | ...create_tuplez6lexicographical |
| 3be0 | 5f 74 6f 70 6f 6c 6f 67 69 63 61 6c 5f 73 6f 72 74 2e 3c 6c 6f 63 61 6c 73 3e 2e 63 72 65 61 74 | _topological_sort.<locals>.creat |
| 3c00 | 65 5f 74 75 70 6c 65 a5 01 00 00 73 19 00 00 00 f8 80 00 d9 0f 12 90 34 8b 79 98 2a a0 54 d1 1a | e_tuple....s...........4.y.*.T.. |
| 3c20 | 2a a8 44 d0 0f 30 d0 08 30 72 30 00 00 00 72 02 00 00 00 72 33 00 00 00 72 34 00 00 00 7a 4a 0a | *.D..0..0r0...r....r3...r4...zJ. |
| 3c40 | 43 6f 6e 73 69 64 65 72 20 75 73 69 6e 67 20 60 6b 65 79 3d 60 20 70 61 72 61 6d 65 74 65 72 20 | Consider.using.`key=`.parameter. |
| 3c60 | 74 6f 20 72 65 73 6f 6c 76 65 20 61 6d 62 69 67 75 69 74 69 65 73 20 69 6e 20 74 68 65 20 73 6f | to.resolve.ambiguities.in.the.so |
| 3c80 | 72 74 20 6f 72 64 65 72 2e 72 35 00 00 00 29 0e 72 2f 00 00 00 72 1f 00 00 00 72 36 00 00 00 da | rt.order.r5...).r/...r....r6.... |
| 3ca0 | 09 65 6e 75 6d 65 72 61 74 65 72 38 00 00 00 da 05 68 65 61 70 71 da 07 68 65 61 70 69 66 79 da | .enumerater8.....heapq..heapify. |
| 3cc0 | 07 68 65 61 70 70 6f 70 72 39 00 00 00 da 05 65 64 67 65 73 72 3c 00 00 00 da 08 68 65 61 70 70 | .heappopr9.....edgesr<.....heapp |
| 3ce0 | 75 73 68 da 09 54 79 70 65 45 72 72 6f 72 72 2b 00 00 00 29 0f 72 22 00 00 00 72 4c 00 00 00 da | ush..TypeErrorr+...).r"...rL.... |
| 3d00 | 03 6d 73 67 da 01 69 da 01 6e 72 4f 00 00 00 72 3f 00 00 00 72 40 00 00 00 72 41 00 00 00 72 42 | .msg..i..nrO...r?...r@...rA...rB |
| 3d20 | 00 00 00 da 01 5f 72 44 00 00 00 72 25 00 00 00 72 45 00 00 00 72 4e 00 00 00 73 0f 00 00 00 20 | ....._rD...r%...rE...rN...s..... |
| 3d40 | 60 20 20 20 20 20 20 20 20 20 20 20 20 40 72 26 00 00 00 72 10 00 00 00 72 10 00 00 00 39 01 00 | `............@r&...r....r....9.. |
| 3d60 | 00 73 c1 01 00 00 f9 e8 00 f8 80 00 f0 42 03 00 0c 0d 8f 3d 89 3d 8c 3f d8 0e 42 88 03 dc 0e 10 | .s...........B.....=.=.?..B..... |
| 3d80 | d7 0e 1e d1 0e 1e 98 73 d3 0e 23 d0 08 23 e0 07 0a 80 7b f2 04 01 09 18 f4 06 00 24 2d a8 51 a3 | .......s..#..#....{........$-.Q. |
| 3da0 | 3c d7 11 30 99 34 98 31 98 61 90 21 90 51 91 24 d3 11 30 80 4a f5 04 01 05 31 f0 06 00 26 27 a7 | <..0.4.1.a.!.Q.$..0.J....1...&'. |
| 3dc0 | 5b a1 5b a3 5d d7 13 3c 99 54 98 51 a0 01 b0 61 b8 21 b3 65 90 41 90 71 91 44 d0 13 3c 80 4c d1 | [.[.]..<.T.Q...a.!.e.A.q.D..<.L. |
| 3de0 | 13 3c e0 31 32 b7 1b b1 1b b3 1d d7 14 49 a9 14 a8 11 a8 41 c0 21 c0 71 c3 26 91 5c a0 21 95 5f | .<.12........I.....A.!.q.&.\.!._ |
| 3e00 | d0 14 49 80 4d d1 14 49 dc 04 09 87 4d 81 4d 90 2d d4 04 20 e1 0a 17 dc 15 1a 97 5d 91 5d a0 3d | ..I.M..I....M.M.-..........].].= |
| 3e20 | d3 15 31 89 0a 88 01 88 31 88 64 e0 0b 0f 90 71 89 3d dc 12 1e d0 1f 3f d3 12 40 d0 0c 40 d8 18 | ..1.....1.d....q.=.....?..@..@.. |
| 3e40 | 19 9f 07 99 07 a0 04 9b 0d f2 00 0c 09 28 89 48 88 41 88 75 f0 02 03 0d 4e 01 d8 10 1c 98 55 d3 | .............(.H.A.u....N.....U. |
| 3e60 | 10 23 a0 71 d1 10 28 d3 10 23 f0 06 00 10 1c 98 45 d1 0f 22 a0 61 d3 0f 27 f0 02 05 11 16 dc 14 | .#.q..(..#......E..".a..'....... |
| 3e80 | 19 97 4e 91 4e a0 3d b1 2c b8 75 d3 32 45 d4 14 46 f0 0a 00 15 21 a0 15 d1 14 27 f0 19 0c 09 28 | ..N.N.=.,.u.2E..F....!....'....( |
| 3ea0 | f0 1c 00 0f 13 8a 0a f2 27 00 0b 18 f1 2a 00 08 14 d8 0e 48 88 03 dc 0e 10 d7 0e 23 d1 0e 23 a0 | ........'....*.....H.......#..#. |
| 3ec0 | 43 d3 0e 28 d0 08 28 f0 05 00 08 14 f9 f3 3f 00 12 31 f9 f3 0a 00 14 3d f9 e3 14 49 f8 f4 16 00 | C..(..(.......?..1.....=...I.... |
| 3ee0 | 14 1c f2 00 01 0d 4e 01 dc 16 22 d0 23 43 d3 16 44 c8 23 d0 10 4d fb f0 03 01 0d 4e 01 fb f4 0a | ......N...".#C..D.#..M.....N.... |
| 3f00 | 00 18 21 f2 00 03 11 16 dc 1a 23 d8 1b 1e 98 25 d0 1f 6a d0 18 6b f3 03 02 1b 16 f0 00 02 15 16 | ..!.......#....%..j..k.......... |
| 3f20 | fb f0 03 03 11 16 fc 73 83 00 00 00 84 3b 46 2b 01 bf 0d 45 1d 06 c1 0c 1d 46 2b 01 c1 29 0d 45 | .......s.....;F+...E.....F+..).E |
| 3f40 | 23 06 c1 37 05 45 23 06 c1 3c 16 46 2b 01 c2 12 0d 45 29 06 c2 20 0a 45 29 06 c2 2a 41 19 46 2b | #..7.E#..<.F+....E)....E)..*A.F+ |
| 3f60 | 01 c4 04 0d 45 2f 02 c4 11 08 46 2b 01 c4 1b 1c 46 0c 02 c4 37 0b 46 2b 01 c5 03 2c 46 2b 01 c5 | ....E/....F+....F...7.F+...,F+.. |
| 3f80 | 2f 09 46 09 05 c5 38 0c 46 04 05 c6 04 05 46 09 05 c6 09 03 46 2b 01 c6 0c 09 46 28 05 c6 15 0e | /.F...8.F.....F.....F+....F(.... |
| 3fa0 | 46 23 05 c6 23 05 46 28 05 c6 28 03 46 2b 01 da 0a 75 6e 64 69 72 65 63 74 65 64 63 01 00 00 00 | F#..#.F(..(.F+...undirectedc.... |
| 3fc0 | 00 00 00 00 00 00 00 00 08 00 00 00 23 00 00 00 f3 d6 04 00 00 87 09 4b 00 01 00 97 00 7c 00 6a | ............#..........K.....|.j |
| 3fe0 | 01 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ab 00 00 00 00 00 00 00 73 15 74 03 00 | ...........................s.t.. |
| 4000 | 00 00 00 00 00 00 00 6a 04 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 64 01 ab 01 00 | .......j...................d.... |
| 4020 | 00 00 00 00 00 82 01 74 07 00 00 00 00 00 00 00 00 7c 00 6a 09 00 00 00 00 00 00 00 00 00 00 00 | .......t.........|.j............ |
| 4040 | 00 00 00 00 00 00 00 ab 00 00 00 00 00 00 00 ab 01 00 00 00 00 00 00 8a 09 74 0b 00 00 00 00 00 | .........................t...... |
| 4060 | 00 00 00 7c 00 6a 09 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ab 00 00 00 00 00 00 | ...|.j.......................... |
| 4080 | 00 44 00 8f 01 8f 02 63 03 67 00 63 02 5d 0d 00 00 5c 02 00 00 7d 01 7d 02 7c 02 64 02 6b 28 00 | .D.....c.g.c.]...\...}.}.|.d.k(. |
| 40a0 | 00 73 01 8c 0c 7c 01 91 02 8c 0f 04 00 63 03 7d 02 7d 01 ab 01 00 00 00 00 00 00 7d 03 67 00 7d | .s...|.......c.}.}.........}.g.} |
| 40c0 | 04 67 00 7d 05 09 00 74 0d 00 00 00 00 00 00 00 00 88 09 66 01 64 03 84 08 7c 03 44 00 ab 00 00 | .g.}...t...........f.d...|.D.... |
| 40e0 | 00 00 00 00 00 ab 01 00 00 00 00 00 00 73 02 4a 00 82 01 74 0f 00 00 00 00 00 00 00 00 7c 05 ab | .............s.J...t.........|.. |
| 4100 | 01 00 00 00 00 00 00 74 0f 00 00 00 00 00 00 00 00 7c 00 ab 01 00 00 00 00 00 00 6b 28 00 00 72 | .......t.........|.........k(..r |
| 4120 | f6 74 11 00 00 00 00 00 00 00 00 7c 05 ab 01 00 00 00 00 00 00 96 01 97 01 01 00 74 0f 00 00 00 | .t.........|...............t.... |
| 4140 | 00 00 00 00 00 7c 05 ab 01 00 00 00 00 00 00 64 02 6b 44 00 00 90 01 72 90 74 0f 00 00 00 00 00 | .....|.........d.kD....r.t...... |
| 4160 | 00 00 00 7c 04 ab 01 00 00 00 00 00 00 74 0f 00 00 00 00 00 00 00 00 7c 05 ab 01 00 00 00 00 00 | ...|.........t.........|........ |
| 4180 | 00 6b 28 00 00 73 02 4a 00 82 01 7c 05 6a 13 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 | .k(..s.J...|.j.................. |
| 41a0 | 00 ab 00 00 00 00 00 00 00 7d 06 7c 00 6a 15 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 | .........}.|.j.................. |
| 41c0 | 00 7c 06 ab 01 00 00 00 00 00 00 44 00 5d 1c 00 00 5c 02 00 00 7d 07 7d 08 89 09 7c 08 78 02 78 | .|.........D.]...\...}.}...|.x.x |
| 41e0 | 02 19 00 00 00 64 04 7a 0d 00 00 63 03 63 02 3c 00 00 00 89 09 7c 08 19 00 00 00 64 02 6b 5c 00 | .....d.z...c.c.<.....|.....d.k\. |
| 4200 | 00 72 01 8c 1c 4a 00 82 01 04 00 74 0f 00 00 00 00 00 00 00 00 7c 03 ab 01 00 00 00 00 00 00 64 | .r...J.....t.........|.........d |
| 4220 | 02 6b 44 00 00 72 35 89 09 7c 03 64 05 19 00 00 00 19 00 00 00 64 02 6b 44 00 00 72 2a 7c 03 6a | .kD..r5..|.d.........d.kD..r*|.j |
| 4240 | 13 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ab 00 00 00 00 00 00 00 01 00 74 0f 00 | .............................t.. |
| 4260 | 00 00 00 00 00 00 00 7c 03 ab 01 00 00 00 00 00 00 64 02 6b 44 00 00 72 0c 89 09 7c 03 64 05 19 | .......|.........d.kD..r...|.d.. |
| 4280 | 00 00 00 19 00 00 00 64 02 6b 44 00 00 72 01 8c 2a 7c 03 6a 17 00 00 00 00 00 00 00 00 00 00 00 | .......d.kD..r..*|.j............ |
| 42a0 | 00 00 00 00 00 00 00 7c 06 ab 01 00 00 00 00 00 00 01 00 7c 03 64 05 19 00 00 00 7c 04 64 05 19 | .......|...........|.d.....|.d.. |
| 42c0 | 00 00 00 6b 28 00 00 72 11 7c 04 6a 13 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ab | ...k(..r.|.j.................... |
| 42e0 | 00 00 00 00 00 00 00 01 00 6e 01 6e c6 74 0f 00 00 00 00 00 00 00 00 7c 05 ab 01 00 00 00 00 00 | .........n.n.t.........|........ |
| 4300 | 00 64 02 6b 44 00 00 72 01 8c d9 6e b6 74 0f 00 00 00 00 00 00 00 00 7c 03 ab 01 00 00 00 00 00 | .d.kD..r...n.t.........|........ |
| 4320 | 00 64 02 6b 28 00 00 72 15 74 03 00 00 00 00 00 00 00 00 6a 18 00 00 00 00 00 00 00 00 00 00 00 | .d.k(..r.t.........j............ |
| 4340 | 00 00 00 00 00 00 00 64 06 ab 01 00 00 00 00 00 00 82 01 7c 03 6a 13 00 00 00 00 00 00 00 00 00 | .......d...........|.j.......... |
| 4360 | 00 00 00 00 00 00 00 00 00 ab 00 00 00 00 00 00 00 7d 06 7c 00 6a 15 00 00 00 00 00 00 00 00 00 | .................}.|.j.......... |
| 4380 | 00 00 00 00 00 00 00 00 00 7c 06 ab 01 00 00 00 00 00 00 44 00 5d 36 00 00 5c 02 00 00 7d 07 7d | .........|.........D.]6..\...}.} |
| 43a0 | 08 89 09 7c 08 78 02 78 02 19 00 00 00 64 04 7a 17 00 00 63 03 63 02 3c 00 00 00 89 09 7c 08 19 | ...|.x.x.....d.z...c.c.<.....|.. |
| 43c0 | 00 00 00 64 02 6b 5c 00 00 73 02 4a 00 82 01 89 09 7c 08 19 00 00 00 64 02 6b 28 00 00 73 01 8c | ...d.k\..s.J.....|.....d.k(..s.. |
| 43e0 | 26 7c 03 6a 1b 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 7c 08 ab 01 00 00 00 00 00 | &|.j...................|........ |
| 4400 | 00 01 00 8c 38 04 00 7c 05 6a 1b 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 7c 06 ab | ....8..|.j...................|.. |
| 4420 | 01 00 00 00 00 00 00 01 00 74 0f 00 00 00 00 00 00 00 00 7c 04 ab 01 00 00 00 00 00 00 74 0f 00 | .........t.........|.........t.. |
| 4440 | 00 00 00 00 00 00 00 7c 05 ab 01 00 00 00 00 00 00 6b 02 00 00 72 11 7c 04 6a 1b 00 00 00 00 00 | .......|.........k...r.|.j...... |
| 4460 | 00 00 00 00 00 00 00 00 00 00 00 00 00 7c 06 ab 01 00 00 00 00 00 00 01 00 74 0f 00 00 00 00 00 | .............|...........t...... |
| 4480 | 00 00 00 7c 04 ab 01 00 00 00 00 00 00 64 02 6b 28 00 00 72 01 79 07 90 01 8c ea 63 02 01 00 63 | ...|.........d.k(..r.y.....c...c |
| 44a0 | 03 7d 02 7d 01 77 00 ad 03 77 01 29 08 61 ec 04 00 00 52 65 74 75 72 6e 73 20 61 20 67 65 6e 65 | .}.}.w...w.).a....Returns.a.gene |
| 44c0 | 72 61 74 6f 72 20 6f 66 20 5f 61 6c 6c 5f 20 74 6f 70 6f 6c 6f 67 69 63 61 6c 20 73 6f 72 74 73 | rator.of._all_.topological.sorts |
| 44e0 | 20 6f 66 20 74 68 65 20 64 69 72 65 63 74 65 64 20 67 72 61 70 68 20 47 2e 0a 0a 20 20 20 20 41 | .of.the.directed.graph.G.......A |
| 4500 | 20 74 6f 70 6f 6c 6f 67 69 63 61 6c 20 73 6f 72 74 20 69 73 20 61 20 6e 6f 6e 75 6e 69 71 75 65 | .topological.sort.is.a.nonunique |
| 4520 | 20 70 65 72 6d 75 74 61 74 69 6f 6e 20 6f 66 20 74 68 65 20 6e 6f 64 65 73 20 73 75 63 68 20 74 | .permutation.of.the.nodes.such.t |
| 4540 | 68 61 74 20 61 6e 0a 20 20 20 20 65 64 67 65 20 66 72 6f 6d 20 75 20 74 6f 20 76 20 69 6d 70 6c | hat.an.....edge.from.u.to.v.impl |
| 4560 | 69 65 73 20 74 68 61 74 20 75 20 61 70 70 65 61 72 73 20 62 65 66 6f 72 65 20 76 20 69 6e 20 74 | ies.that.u.appears.before.v.in.t |
| 4580 | 68 65 20 74 6f 70 6f 6c 6f 67 69 63 61 6c 20 73 6f 72 74 0a 20 20 20 20 6f 72 64 65 72 2e 0a 0a | he.topological.sort.....order... |
| 45a0 | 20 20 20 20 50 61 72 61 6d 65 74 65 72 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 | ....Parameters.....----------... |
| 45c0 | 20 20 47 20 3a 20 4e 65 74 77 6f 72 6b 58 20 44 69 47 72 61 70 68 0a 20 20 20 20 20 20 20 20 41 | ..G.:.NetworkX.DiGraph.........A |
| 45e0 | 20 64 69 72 65 63 74 65 64 20 67 72 61 70 68 0a 0a 20 20 20 20 59 69 65 6c 64 73 0a 20 20 20 20 | .directed.graph......Yields..... |
| 4600 | 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 74 6f 70 6f 6c 6f 67 69 63 61 6c 5f 73 6f 72 74 5f 6f 72 64 65 | ------.....topological_sort_orde |
| 4620 | 72 20 3a 20 6c 69 73 74 0a 20 20 20 20 20 20 20 20 61 20 6c 69 73 74 20 6f 66 20 6e 6f 64 65 73 | r.:.list.........a.list.of.nodes |
| 4640 | 20 69 6e 20 60 47 60 2c 20 72 65 70 72 65 73 65 6e 74 69 6e 67 20 6f 6e 65 20 6f 66 20 74 68 65 | .in.`G`,.representing.one.of.the |
| 4660 | 20 74 6f 70 6f 6c 6f 67 69 63 61 6c 20 73 6f 72 74 20 6f 72 64 65 72 73 0a 0a 20 20 20 20 52 61 | .topological.sort.orders......Ra |
| 4680 | 69 73 65 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 4e 65 74 77 6f 72 6b 58 4e 6f 74 49 | ises.....------.....NetworkXNotI |
| 46a0 | 6d 70 6c 65 6d 65 6e 74 65 64 0a 20 20 20 20 20 20 20 20 49 66 20 60 47 60 20 69 73 20 6e 6f 74 | mplemented.........If.`G`.is.not |
| 46c0 | 20 64 69 72 65 63 74 65 64 0a 20 20 20 20 4e 65 74 77 6f 72 6b 58 55 6e 66 65 61 73 69 62 6c 65 | .directed.....NetworkXUnfeasible |
| 46e0 | 0a 20 20 20 20 20 20 20 20 49 66 20 60 47 60 20 69 73 20 6e 6f 74 20 61 63 79 63 6c 69 63 0a 0a | .........If.`G`.is.not.acyclic.. |
| 4700 | 20 20 20 20 45 78 61 6d 70 6c 65 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 54 6f | ....Examples.....--------.....To |
| 4720 | 20 65 6e 75 6d 65 72 61 74 65 20 61 6c 6c 20 74 6f 70 6f 6c 6f 67 69 63 61 6c 20 73 6f 72 74 73 | .enumerate.all.topological.sorts |
| 4740 | 20 6f 66 20 64 69 72 65 63 74 65 64 20 67 72 61 70 68 3a 0a 0a 20 20 20 20 3e 3e 3e 20 44 47 20 | .of.directed.graph:......>>>.DG. |
| 4760 | 3d 20 6e 78 2e 44 69 47 72 61 70 68 28 5b 28 31 2c 20 32 29 2c 20 28 32 2c 20 33 29 2c 20 28 32 | =.nx.DiGraph([(1,.2),.(2,.3),.(2 |
| 4780 | 2c 20 34 29 5d 29 0a 20 20 20 20 3e 3e 3e 20 6c 69 73 74 28 6e 78 2e 61 6c 6c 5f 74 6f 70 6f 6c | ,.4)]).....>>>.list(nx.all_topol |
| 47a0 | 6f 67 69 63 61 6c 5f 73 6f 72 74 73 28 44 47 29 29 0a 20 20 20 20 5b 5b 31 2c 20 32 2c 20 34 2c | ogical_sorts(DG)).....[[1,.2,.4, |
| 47c0 | 20 33 5d 2c 20 5b 31 2c 20 32 2c 20 33 2c 20 34 5d 5d 0a 0a 20 20 20 20 4e 6f 74 65 73 0a 20 20 | .3],.[1,.2,.3,.4]]......Notes... |
| 47e0 | 20 20 2d 2d 2d 2d 2d 0a 20 20 20 20 49 6d 70 6c 65 6d 65 6e 74 73 20 61 6e 20 69 74 65 72 61 74 | ..-----.....Implements.an.iterat |
| 4800 | 69 76 65 20 76 65 72 73 69 6f 6e 20 6f 66 20 74 68 65 20 61 6c 67 6f 72 69 74 68 6d 20 67 69 76 | ive.version.of.the.algorithm.giv |
| 4820 | 65 6e 20 69 6e 20 5b 31 5d 2e 0a 0a 20 20 20 20 52 65 66 65 72 65 6e 63 65 73 0a 20 20 20 20 2d | en.in.[1].......References.....- |
| 4840 | 2d 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 2e 2e 20 5b 31 5d 20 4b 6e 75 74 68 2c 20 44 6f 6e 61 | ---------........[1].Knuth,.Dona |
| 4860 | 6c 64 20 45 2e 2c 20 53 7a 77 61 72 63 66 69 74 65 72 2c 20 4a 61 79 6d 65 20 4c 2e 20 28 31 39 | ld.E.,.Szwarcfiter,.Jayme.L..(19 |
| 4880 | 37 34 29 2e 0a 20 20 20 20 20 20 20 22 41 20 53 74 72 75 63 74 75 72 65 64 20 50 72 6f 67 72 61 | 74)........."A.Structured.Progra |
| 48a0 | 6d 20 74 6f 20 47 65 6e 65 72 61 74 65 20 41 6c 6c 20 54 6f 70 6f 6c 6f 67 69 63 61 6c 20 53 6f | m.to.Generate.All.Topological.So |
| 48c0 | 72 74 69 6e 67 20 41 72 72 61 6e 67 65 6d 65 6e 74 73 22 0a 20 20 20 20 20 20 20 49 6e 66 6f 72 | rting.Arrangements"........Infor |
| 48e0 | 6d 61 74 69 6f 6e 20 50 72 6f 63 65 73 73 69 6e 67 20 4c 65 74 74 65 72 73 2c 20 56 6f 6c 75 6d | mation.Processing.Letters,.Volum |
| 4900 | 65 20 32 2c 20 49 73 73 75 65 20 36 2c 20 31 39 37 34 2c 20 50 61 67 65 73 20 31 35 33 2d 31 35 | e.2,.Issue.6,.1974,.Pages.153-15 |
| 4920 | 37 2c 0a 20 20 20 20 20 20 20 49 53 53 4e 20 30 30 32 30 2d 30 31 39 30 2c 0a 20 20 20 20 20 20 | 7,........ISSN.0020-0190,....... |
| 4940 | 20 68 74 74 70 73 3a 2f 2f 64 6f 69 2e 6f 72 67 2f 31 30 2e 31 30 31 36 2f 30 30 32 30 2d 30 31 | .https://doi.org/10.1016/0020-01 |
| 4960 | 39 30 28 37 34 29 39 30 30 30 31 2d 35 2e 0a 20 20 20 20 20 20 20 45 6c 73 65 76 69 65 72 20 28 | 90(74)90001-5.........Elsevier.( |
| 4980 | 4e 6f 72 74 68 2d 48 6f 6c 6c 61 6e 64 29 2c 20 41 6d 73 74 65 72 64 61 6d 0a 20 20 20 20 72 32 | North-Holland),.Amsterdam.....r2 |
| 49a0 | 00 00 00 72 02 00 00 00 63 01 00 00 00 00 00 00 00 00 00 00 00 03 00 00 00 33 00 00 00 f3 2e 00 | ...r....c................3...... |
| 49c0 | 00 00 95 01 4b 00 01 00 97 00 7c 00 5d 0c 00 00 7d 01 89 02 7c 01 19 00 00 00 64 00 6b 28 00 00 | ....K.....|.]...}...|.....d.k(.. |
| 49e0 | 96 01 97 01 01 00 8c 0e 04 00 79 01 ad 03 77 01 a9 02 72 02 00 00 00 4e 72 4b 00 00 00 29 03 da | ..........y...w...r....NrK...).. |
| 4a00 | 02 2e 30 72 3f 00 00 00 da 05 63 6f 75 6e 74 73 03 00 00 00 20 20 80 72 26 00 00 00 fa 09 3c 67 | ..0r?.....counts.......r&.....<g |
| 4a20 | 65 6e 65 78 70 72 3e 7a 28 61 6c 6c 5f 74 6f 70 6f 6c 6f 67 69 63 61 6c 5f 73 6f 72 74 73 2e 3c | enexpr>z(all_topological_sorts.< |
| 4a40 | 6c 6f 63 61 6c 73 3e 2e 3c 67 65 6e 65 78 70 72 3e 04 02 00 00 73 19 00 00 00 f8 e8 00 f8 80 00 | locals>.<genexpr>....s.......... |
| 4a60 | d2 12 2c a0 51 90 35 98 11 91 38 98 71 95 3d d1 12 2c f9 73 04 00 00 00 83 12 15 01 72 34 00 00 | ..,.Q.5...8.q.=..,.s........r4.. |
| 4a80 | 00 e9 ff ff ff ff 7a 17 47 72 61 70 68 20 63 6f 6e 74 61 69 6e 73 20 61 20 63 79 63 6c 65 2e 4e | ......z.Graph.contains.a.cycle.N |
| 4aa0 | 29 0e 72 2f 00 00 00 72 1f 00 00 00 72 36 00 00 00 da 04 64 69 63 74 72 38 00 00 00 72 03 00 00 | ).r/...r....r6.....dictr8...r... |
| 4ac0 | 00 da 03 61 6c 6c 72 3b 00 00 00 da 04 6c 69 73 74 da 03 70 6f 70 da 09 6f 75 74 5f 65 64 67 65 | ...allr;.....list..pop..out_edge |
| 4ae0 | 73 da 0a 61 70 70 65 6e 64 6c 65 66 74 72 2b 00 00 00 72 3d 00 00 00 29 0a 72 22 00 00 00 72 3f | s..appendleftr+...r=...).r"...r? |
| 4b00 | 00 00 00 72 40 00 00 00 da 01 44 da 05 62 61 73 65 73 da 0c 63 75 72 72 65 6e 74 5f 73 6f 72 74 | ...r@.....D..bases..current_sort |
| 4b20 | da 01 71 72 5a 00 00 00 da 01 6a 72 60 00 00 00 73 0a 00 00 00 20 20 20 20 20 20 20 20 20 40 72 | ..qrZ.....jr`...s.............@r |
| 4b40 | 26 00 00 00 72 11 00 00 00 72 11 00 00 00 c7 01 00 00 73 49 02 00 00 f8 e8 00 f8 80 00 f0 5e 01 | &...r....r........sI..........^. |
| 4b60 | 00 0c 0d 8f 3d 89 3d 8c 3f dc 0e 10 d7 0e 1e d1 0e 1e d0 1f 53 d3 0e 54 d0 08 54 f4 08 00 0d 11 | ....=.=.?...........S..T..T..... |
| 4b80 | 90 11 97 1b 91 1b 93 1d d3 0c 1f 80 45 e4 08 0d 98 51 9f 5b 99 5b 9b 5d d7 0e 35 91 54 90 51 98 | ............E....Q.[.[.]..5.T.Q. |
| 4ba0 | 01 a8 61 b0 31 ab 66 8a 71 d3 0e 35 d3 08 36 80 41 e0 0c 0e 80 45 d8 13 15 80 4c f0 06 00 0b 0f | ..a.1.f.q..5..6.A....E....L..... |
| 4bc0 | dc 0f 12 d3 12 2c a8 21 d4 12 2c d4 0f 2c d0 08 2c d0 0f 2c e4 0b 0e 88 7c d3 0b 1c a4 03 a0 41 | .....,.!..,..,..,..,....|......A |
| 4be0 | a3 06 d2 0b 26 dc 12 16 90 7c d3 12 24 d2 0c 24 f4 06 00 13 16 90 6c d3 12 23 a0 61 d3 12 27 dc | ....&....|..$..$......l..#.a..'. |
| 4c00 | 17 1a 98 35 93 7a a4 53 a8 1c d3 25 36 d2 17 36 d0 10 36 d0 17 36 d8 14 20 d7 14 24 d1 14 24 d3 | ...5.z.S...%6..6..6..6.....$..$. |
| 4c20 | 14 26 90 01 f0 0a 00 1d 1e 9f 4b 99 4b a8 01 9b 4e f2 00 02 11 29 91 44 90 41 90 71 d8 14 19 98 | .&........K.K...N....).D.A.q.... |
| 4c40 | 21 93 48 a0 01 91 4d 93 48 d8 1b 20 a0 11 99 38 a0 71 9b 3d d0 14 28 98 3d f0 05 02 11 29 f4 08 | !.H...M.H......8.q.=..(.=....).. |
| 4c60 | 00 17 1a 98 21 93 66 98 71 92 6a a0 55 a8 31 a8 52 a9 35 a1 5c b0 41 d2 25 35 d8 14 15 97 45 91 | ....!.f.q.j.U.1.R.5.\.A.%5....E. |
| 4c80 | 45 94 47 f4 03 00 17 1a 98 21 93 66 98 71 92 6a a0 55 a8 31 a8 52 a9 35 a1 5c b0 41 d3 25 35 f0 | E.G......!.f.q.j.U.1.R.5.\.A.%5. |
| 4ca0 | 0e 00 11 12 97 0c 91 0c 98 51 94 0f d8 13 14 90 52 91 35 98 45 a0 22 99 49 d2 13 25 f0 06 00 15 | .........Q......R.5.E.".I..%.... |
| 4cc0 | 1a 97 49 91 49 95 4b f0 0a 00 15 1a f4 37 00 13 16 90 6c d3 12 23 a0 61 d4 12 27 f4 3c 00 10 13 | ..I.I.K......7....l..#.a..'.<... |
| 4ce0 | 90 31 8b 76 98 11 8a 7b dc 16 18 d7 16 2b d1 16 2b d0 2c 45 d3 16 46 d0 10 46 f0 06 00 11 12 97 | .1.v...{.....+..+.,E..F..F...... |
| 4d00 | 05 91 05 93 07 88 41 f0 08 00 19 1a 9f 0b 99 0b a0 41 9b 0e f2 00 04 0d 20 91 04 90 01 90 31 d8 | ......A..........A............1. |
| 4d20 | 10 15 90 61 93 08 98 41 91 0d 93 08 d8 17 1c 98 51 91 78 a0 31 92 7d d0 10 24 90 7d d8 13 18 98 | ...a...A........Q.x.1.}..$.}.... |
| 4d40 | 11 91 38 98 71 93 3d d8 14 15 97 48 91 48 98 51 95 4b f0 09 04 0d 20 f0 0a 00 0d 19 d7 0c 1f d1 | ..8.q.=....H.H.Q.K.............. |
| 4d60 | 0c 1f a0 01 d4 0c 22 f4 06 00 10 13 90 35 8b 7a 9c 43 a0 0c d3 1c 2d d2 0f 2d d8 10 15 97 0c 91 | ......"......5.z.C....-..-...... |
| 4d80 | 0c 98 51 94 0f e4 0b 0e 88 75 8b 3a 98 11 8a 3f d8 0c 11 f1 73 01 00 0b 0f f9 f3 0d 00 0f 36 f9 | ..Q......u.:...?....s.........6. |
| 4da0 | 73 34 00 00 00 83 41 17 49 29 01 c1 1a 0d 49 23 0a c1 28 04 49 23 0a c1 2c 42 2b 49 29 01 c4 18 | s4....A.I)....I#..(.I#..,B+I)... |
| 4dc0 | 41 05 49 29 01 c5 1e 3c 49 29 01 c6 1b 41 2a 49 29 01 c8 06 41 23 49 29 01 63 01 00 00 00 00 00 | A.I)...<I)...A*I)...A#I).c...... |
| 4de0 | 00 00 00 00 00 00 08 00 00 00 03 00 00 00 f3 c0 01 00 00 97 00 7c 00 6a 01 00 00 00 00 00 00 00 | .....................|.j........ |
| 4e00 | 00 00 00 00 00 00 00 00 00 00 00 ab 00 00 00 00 00 00 00 73 15 74 03 00 00 00 00 00 00 00 00 6a | ...................s.t.........j |
| 4e20 | 04 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 64 01 ab 01 00 00 00 00 00 00 82 01 74 | ...................d...........t |
| 4e40 | 07 00 00 00 00 00 00 00 00 7c 00 ab 01 00 00 00 00 00 00 64 02 6b 28 00 00 72 15 74 03 00 00 00 | .........|.........d.k(..r.t.... |
| 4e60 | 00 00 00 00 00 6a 08 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 64 03 ab 01 00 00 00 | .....j...................d...... |
| 4e80 | 00 00 00 82 01 74 03 00 00 00 00 00 00 00 00 6a 0a 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 | .....t.........j................ |
| 4ea0 | 00 00 00 7c 00 ab 01 00 00 00 00 00 00 73 15 74 03 00 00 00 00 00 00 00 00 6a 04 00 00 00 00 00 | ...|.........s.t.........j...... |
| 4ec0 | 00 00 00 00 00 00 00 00 00 00 00 00 00 64 04 ab 01 00 00 00 00 00 00 82 01 74 0d 00 00 00 00 00 | .............d...........t...... |
| 4ee0 | 00 00 00 7c 00 ab 01 00 00 00 00 00 00 7d 01 7c 01 64 02 69 01 7d 02 7c 01 67 01 7d 03 64 02 7d | ...|.........}.|.d.i.}.|.g.}.d.} |
| 4f00 | 04 64 05 7d 05 7c 03 72 50 67 00 7d 06 7c 03 44 00 5d 3f 00 00 7d 07 7c 00 7c 07 19 00 00 00 44 | .d.}.|.rPg.}.|.D.]?..}.|.|.....D |
| 4f20 | 00 5d 35 00 00 7d 08 7c 08 7c 02 76 00 72 19 74 0f 00 00 00 00 00 00 00 00 7c 04 7c 02 7c 07 19 | .]5..}.|.|.v.r.t.........|.|.|.. |
| 4f40 | 00 00 00 7c 02 7c 08 19 00 00 00 7a 0a 00 00 64 05 7a 00 00 00 ab 02 00 00 00 00 00 00 7d 04 8c | ...|.|.....z...d.z...........}.. |
| 4f60 | 20 7c 06 6a 11 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 7c 08 ab 01 00 00 00 00 00 | .|.j...................|........ |
| 4f80 | 00 01 00 7c 05 7c 02 7c 08 3c 00 00 00 8c 37 04 00 8c 41 04 00 7c 06 7d 03 7c 05 64 05 7a 0d 00 | ...|.|.|.<....7...A..|.}.|.d.z.. |
| 4fa0 | 00 7d 05 7c 03 72 01 8c 50 7c 04 64 05 6b 28 00 00 53 00 29 06 61 83 10 00 00 52 65 74 75 72 6e | .}.|.r..P|.d.k(..S.).a....Return |
| 4fc0 | 73 20 54 72 75 65 20 69 66 20 60 47 60 20 69 73 20 61 70 65 72 69 6f 64 69 63 2e 0a 0a 20 20 20 | s.True.if.`G`.is.aperiodic...... |
| 4fe0 | 20 41 20 73 74 72 6f 6e 67 6c 79 20 63 6f 6e 6e 65 63 74 65 64 20 64 69 72 65 63 74 65 64 20 67 | .A.strongly.connected.directed.g |
| 5000 | 72 61 70 68 20 69 73 20 61 70 65 72 69 6f 64 69 63 20 69 66 20 74 68 65 72 65 20 69 73 20 6e 6f | raph.is.aperiodic.if.there.is.no |
| 5020 | 20 69 6e 74 65 67 65 72 20 60 60 6b 20 3e 20 31 60 60 0a 20 20 20 20 74 68 61 74 20 64 69 76 69 | .integer.``k.>.1``.....that.divi |
| 5040 | 64 65 73 20 74 68 65 20 6c 65 6e 67 74 68 20 6f 66 20 65 76 65 72 79 20 63 79 63 6c 65 20 69 6e | des.the.length.of.every.cycle.in |
| 5060 | 20 74 68 65 20 67 72 61 70 68 2e 0a 0a 20 20 20 20 54 68 69 73 20 66 75 6e 63 74 69 6f 6e 20 72 | .the.graph.......This.function.r |
| 5080 | 65 71 75 69 72 65 73 20 74 68 65 20 67 72 61 70 68 20 60 47 60 20 74 6f 20 62 65 20 73 74 72 6f | equires.the.graph.`G`.to.be.stro |
| 50a0 | 6e 67 6c 79 20 63 6f 6e 6e 65 63 74 65 64 20 61 6e 64 20 77 69 6c 6c 20 72 61 69 73 65 0a 20 20 | ngly.connected.and.will.raise... |
| 50c0 | 20 20 61 6e 20 65 72 72 6f 72 20 69 66 20 69 74 27 73 20 6e 6f 74 2e 20 46 6f 72 20 67 72 61 70 | ..an.error.if.it's.not..For.grap |
| 50e0 | 68 73 20 74 68 61 74 20 61 72 65 20 6e 6f 74 20 73 74 72 6f 6e 67 6c 79 20 63 6f 6e 6e 65 63 74 | hs.that.are.not.strongly.connect |
| 5100 | 65 64 2c 20 79 6f 75 20 73 68 6f 75 6c 64 0a 20 20 20 20 66 69 72 73 74 20 69 64 65 6e 74 69 66 | ed,.you.should.....first.identif |
| 5120 | 79 20 74 68 65 69 72 20 73 74 72 6f 6e 67 6c 79 20 63 6f 6e 6e 65 63 74 65 64 20 63 6f 6d 70 6f | y.their.strongly.connected.compo |
| 5140 | 6e 65 6e 74 73 0a 20 20 20 20 28 75 73 69 6e 67 20 3a 66 75 6e 63 3a 60 7e 6e 65 74 77 6f 72 6b | nents.....(using.:func:`~network |
| 5160 | 78 2e 61 6c 67 6f 72 69 74 68 6d 73 2e 63 6f 6d 70 6f 6e 65 6e 74 73 2e 73 74 72 6f 6e 67 6c 79 | x.algorithms.components.strongly |
| 5180 | 5f 63 6f 6e 6e 65 63 74 65 64 5f 63 6f 6d 70 6f 6e 65 6e 74 73 60 29 0a 20 20 20 20 6f 72 20 61 | _connected_components`).....or.a |
| 51a0 | 74 74 72 61 63 74 69 6e 67 20 63 6f 6d 70 6f 6e 65 6e 74 73 0a 20 20 20 20 28 75 73 69 6e 67 20 | ttracting.components.....(using. |
| 51c0 | 3a 66 75 6e 63 3a 60 7e 6e 65 74 77 6f 72 6b 78 2e 61 6c 67 6f 72 69 74 68 6d 73 2e 63 6f 6d 70 | :func:`~networkx.algorithms.comp |
| 51e0 | 6f 6e 65 6e 74 73 2e 61 74 74 72 61 63 74 69 6e 67 5f 63 6f 6d 70 6f 6e 65 6e 74 73 60 29 2c 0a | onents.attracting_components`),. |
| 5200 | 20 20 20 20 61 6e 64 20 74 68 65 6e 20 61 70 70 6c 79 20 74 68 69 73 20 66 75 6e 63 74 69 6f 6e | ....and.then.apply.this.function |
| 5220 | 20 74 6f 20 74 68 6f 73 65 20 69 6e 64 69 76 69 64 75 61 6c 20 63 6f 6d 70 6f 6e 65 6e 74 73 2e | .to.those.individual.components. |
| 5240 | 0a 0a 20 20 20 20 50 61 72 61 6d 65 74 65 72 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 0a | ......Parameters.....----------. |
| 5260 | 20 20 20 20 47 20 3a 20 4e 65 74 77 6f 72 6b 58 20 44 69 47 72 61 70 68 0a 20 20 20 20 20 20 20 | ....G.:.NetworkX.DiGraph........ |
| 5280 | 20 41 20 64 69 72 65 63 74 65 64 20 67 72 61 70 68 0a 0a 20 20 20 20 52 65 74 75 72 6e 73 0a 20 | .A.directed.graph......Returns.. |
| 52a0 | 20 20 20 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 62 6f 6f 6c 0a 20 20 20 20 20 20 20 20 54 72 75 65 | ...-------.....bool.........True |
| 52c0 | 20 69 66 20 74 68 65 20 67 72 61 70 68 20 69 73 20 61 70 65 72 69 6f 64 69 63 20 46 61 6c 73 65 | .if.the.graph.is.aperiodic.False |
| 52e0 | 20 6f 74 68 65 72 77 69 73 65 0a 0a 20 20 20 20 52 61 69 73 65 73 0a 20 20 20 20 2d 2d 2d 2d 2d | .otherwise......Raises.....----- |
| 5300 | 2d 0a 20 20 20 20 4e 65 74 77 6f 72 6b 58 45 72 72 6f 72 0a 20 20 20 20 20 20 20 20 49 66 20 60 | -.....NetworkXError.........If.` |
| 5320 | 47 60 20 69 73 20 6e 6f 74 20 64 69 72 65 63 74 65 64 0a 20 20 20 20 4e 65 74 77 6f 72 6b 58 45 | G`.is.not.directed.....NetworkXE |
| 5340 | 72 72 6f 72 0a 20 20 20 20 20 20 20 20 49 66 20 60 47 60 20 69 73 20 6e 6f 74 20 73 74 72 6f 6e | rror.........If.`G`.is.not.stron |
| 5360 | 67 6c 79 20 63 6f 6e 6e 65 63 74 65 64 0a 20 20 20 20 4e 65 74 77 6f 72 6b 58 50 6f 69 6e 74 6c | gly.connected.....NetworkXPointl |
| 5380 | 65 73 73 43 6f 6e 63 65 70 74 0a 20 20 20 20 20 20 20 20 49 66 20 60 47 60 20 68 61 73 20 6e 6f | essConcept.........If.`G`.has.no |
| 53a0 | 20 6e 6f 64 65 73 0a 0a 20 20 20 20 45 78 61 6d 70 6c 65 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d | .nodes......Examples.....------- |
| 53c0 | 2d 0a 20 20 20 20 41 20 67 72 61 70 68 20 63 6f 6e 73 69 73 74 69 6e 67 20 6f 66 20 6f 6e 65 20 | -.....A.graph.consisting.of.one. |
| 53e0 | 63 79 63 6c 65 2c 20 74 68 65 20 6c 65 6e 67 74 68 20 6f 66 20 77 68 69 63 68 20 69 73 20 32 2e | cycle,.the.length.of.which.is.2. |
| 5400 | 20 54 68 65 72 65 66 6f 72 65 20 60 60 6b 20 3d 20 32 60 60 0a 20 20 20 20 64 69 76 69 64 65 73 | .Therefore.``k.=.2``.....divides |
| 5420 | 20 74 68 65 20 6c 65 6e 67 74 68 20 6f 66 20 65 76 65 72 79 20 63 79 63 6c 65 20 69 6e 20 74 68 | .the.length.of.every.cycle.in.th |
| 5440 | 65 20 67 72 61 70 68 20 61 6e 64 20 74 68 75 73 20 74 68 65 20 67 72 61 70 68 0a 20 20 20 20 69 | e.graph.and.thus.the.graph.....i |
| 5460 | 73 20 2a 6e 6f 74 20 61 70 65 72 69 6f 64 69 63 2a 3a 3a 0a 0a 20 20 20 20 20 20 20 20 3e 3e 3e | s.*not.aperiodic*::..........>>> |
| 5480 | 20 44 47 20 3d 20 6e 78 2e 44 69 47 72 61 70 68 28 5b 28 31 2c 20 32 29 2c 20 28 32 2c 20 31 29 | .DG.=.nx.DiGraph([(1,.2),.(2,.1) |
| 54a0 | 5d 29 0a 20 20 20 20 20 20 20 20 3e 3e 3e 20 6e 78 2e 69 73 5f 61 70 65 72 69 6f 64 69 63 28 44 | ]).........>>>.nx.is_aperiodic(D |
| 54c0 | 47 29 0a 20 20 20 20 20 20 20 20 46 61 6c 73 65 0a 0a 20 20 20 20 41 20 67 72 61 70 68 20 63 6f | G).........False......A.graph.co |
| 54e0 | 6e 73 69 73 74 69 6e 67 20 6f 66 20 74 77 6f 20 63 79 63 6c 65 73 3a 20 6f 6e 65 20 6f 66 20 6c | nsisting.of.two.cycles:.one.of.l |
| 5500 | 65 6e 67 74 68 20 32 20 61 6e 64 20 74 68 65 20 6f 74 68 65 72 20 6f 66 20 6c 65 6e 67 74 68 20 | ength.2.and.the.other.of.length. |
| 5520 | 33 2e 0a 20 20 20 20 54 68 65 20 63 79 63 6c 65 20 6c 65 6e 67 74 68 73 20 61 72 65 20 63 6f 70 | 3......The.cycle.lengths.are.cop |
| 5540 | 72 69 6d 65 2c 20 73 6f 20 74 68 65 72 65 20 69 73 20 6e 6f 20 73 69 6e 67 6c 65 20 76 61 6c 75 | rime,.so.there.is.no.single.valu |
| 5560 | 65 20 6f 66 20 6b 20 77 68 65 72 65 20 60 60 6b 20 3e 20 31 60 60 0a 20 20 20 20 74 68 61 74 20 | e.of.k.where.``k.>.1``.....that. |
| 5580 | 64 69 76 69 64 65 73 20 65 61 63 68 20 63 79 63 6c 65 20 6c 65 6e 67 74 68 20 61 6e 64 20 74 68 | divides.each.cycle.length.and.th |
| 55a0 | 65 72 65 66 6f 72 65 20 74 68 65 20 67 72 61 70 68 20 69 73 20 2a 61 70 65 72 69 6f 64 69 63 2a | erefore.the.graph.is.*aperiodic* |
| 55c0 | 3a 3a 0a 0a 20 20 20 20 20 20 20 20 3e 3e 3e 20 44 47 20 3d 20 6e 78 2e 44 69 47 72 61 70 68 28 | ::..........>>>.DG.=.nx.DiGraph( |
| 55e0 | 5b 28 31 2c 20 32 29 2c 20 28 32 2c 20 33 29 2c 20 28 33 2c 20 31 29 2c 20 28 31 2c 20 34 29 2c | [(1,.2),.(2,.3),.(3,.1),.(1,.4), |
| 5600 | 20 28 34 2c 20 31 29 5d 29 0a 20 20 20 20 20 20 20 20 3e 3e 3e 20 6e 78 2e 69 73 5f 61 70 65 72 | .(4,.1)]).........>>>.nx.is_aper |
| 5620 | 69 6f 64 69 63 28 44 47 29 0a 20 20 20 20 20 20 20 20 54 72 75 65 0a 0a 20 20 20 20 41 20 67 72 | iodic(DG).........True......A.gr |
| 5640 | 61 70 68 20 63 72 65 61 74 65 64 20 66 72 6f 6d 20 63 79 63 6c 65 73 20 6f 66 20 74 68 65 20 73 | aph.created.from.cycles.of.the.s |
| 5660 | 61 6d 65 20 6c 65 6e 67 74 68 20 63 61 6e 20 73 74 69 6c 6c 20 62 65 20 61 70 65 72 69 6f 64 69 | ame.length.can.still.be.aperiodi |
| 5680 | 63 20 73 69 6e 63 65 0a 20 20 20 20 74 68 65 20 63 79 63 6c 65 73 20 63 61 6e 20 6f 76 65 72 6c | c.since.....the.cycles.can.overl |
| 56a0 | 61 70 20 61 6e 64 20 66 6f 72 6d 20 6e 65 77 20 63 79 63 6c 65 73 20 6f 66 20 64 69 66 66 65 72 | ap.and.form.new.cycles.of.differ |
| 56c0 | 65 6e 74 20 6c 65 6e 67 74 68 73 2e 20 46 6f 72 20 65 78 61 6d 70 6c 65 2c 0a 20 20 20 20 74 68 | ent.lengths..For.example,.....th |
| 56e0 | 65 20 66 6f 6c 6c 6f 77 69 6e 67 20 67 72 61 70 68 20 63 6f 6e 74 61 69 6e 73 20 61 20 63 79 63 | e.following.graph.contains.a.cyc |
| 5700 | 6c 65 20 60 60 5b 34 2c 20 32 2c 20 33 2c 20 31 5d 60 60 20 6f 66 20 6c 65 6e 67 74 68 20 34 2c | le.``[4,.2,.3,.1]``.of.length.4, |
| 5720 | 20 77 68 69 63 68 20 69 73 20 63 6f 70 72 69 6d 65 0a 20 20 20 20 77 69 74 68 20 74 68 65 20 65 | .which.is.coprime.....with.the.e |
| 5740 | 78 70 6c 69 63 69 74 6c 79 20 61 64 64 65 64 20 63 79 63 6c 65 73 20 6f 66 20 6c 65 6e 67 74 68 | xplicitly.added.cycles.of.length |
| 5760 | 20 33 2c 20 73 6f 20 74 68 65 20 67 72 61 70 68 20 69 73 20 61 70 65 72 69 6f 64 69 63 3a 3a 0a | .3,.so.the.graph.is.aperiodic::. |
| 5780 | 0a 20 20 20 20 20 20 20 20 3e 3e 3e 20 44 47 20 3d 20 6e 78 2e 44 69 47 72 61 70 68 28 29 0a 20 | .........>>>.DG.=.nx.DiGraph().. |
| 57a0 | 20 20 20 20 20 20 20 3e 3e 3e 20 6e 78 2e 61 64 64 5f 63 79 63 6c 65 28 44 47 2c 20 5b 31 2c 20 | .......>>>.nx.add_cycle(DG,.[1,. |
| 57c0 | 32 2c 20 33 5d 29 0a 20 20 20 20 20 20 20 20 3e 3e 3e 20 6e 78 2e 61 64 64 5f 63 79 63 6c 65 28 | 2,.3]).........>>>.nx.add_cycle( |
| 57e0 | 44 47 2c 20 5b 32 2c 20 31 2c 20 34 5d 29 0a 20 20 20 20 20 20 20 20 3e 3e 3e 20 6e 78 2e 69 73 | DG,.[2,.1,.4]).........>>>.nx.is |
| 5800 | 5f 61 70 65 72 69 6f 64 69 63 28 44 47 29 0a 20 20 20 20 20 20 20 20 54 72 75 65 0a 0a 20 20 20 | _aperiodic(DG).........True..... |
| 5820 | 20 41 20 73 69 6e 67 6c 65 2d 6e 6f 64 65 20 67 72 61 70 68 27 73 20 61 70 65 72 69 6f 64 69 63 | .A.single-node.graph's.aperiodic |
| 5840 | 69 74 79 20 64 65 70 65 6e 64 73 20 6f 6e 20 77 68 65 74 68 65 72 20 69 74 20 68 61 73 20 61 20 | ity.depends.on.whether.it.has.a. |
| 5860 | 73 65 6c 66 2d 6c 6f 6f 70 3a 0a 20 20 20 20 69 74 20 69 73 20 61 70 65 72 69 6f 64 69 63 20 69 | self-loop:.....it.is.aperiodic.i |
| 5880 | 66 20 61 20 73 65 6c 66 2d 6c 6f 6f 70 20 65 78 69 73 74 73 2c 20 61 6e 64 20 70 65 72 69 6f 64 | f.a.self-loop.exists,.and.period |
| 58a0 | 69 63 20 6f 74 68 65 72 77 69 73 65 3a 3a 0a 0a 20 20 20 20 20 20 20 20 3e 3e 3e 20 47 20 3d 20 | ic.otherwise::..........>>>.G.=. |
| 58c0 | 6e 78 2e 44 69 47 72 61 70 68 28 29 0a 20 20 20 20 20 20 20 20 3e 3e 3e 20 47 2e 61 64 64 5f 6e | nx.DiGraph().........>>>.G.add_n |
| 58e0 | 6f 64 65 28 31 29 0a 20 20 20 20 20 20 20 20 3e 3e 3e 20 6e 78 2e 69 73 5f 61 70 65 72 69 6f 64 | ode(1).........>>>.nx.is_aperiod |
| 5900 | 69 63 28 47 29 0a 20 20 20 20 20 20 20 20 46 61 6c 73 65 0a 20 20 20 20 20 20 20 20 3e 3e 3e 20 | ic(G).........False.........>>>. |
| 5920 | 47 2e 61 64 64 5f 65 64 67 65 28 31 2c 20 31 29 0a 20 20 20 20 20 20 20 20 3e 3e 3e 20 6e 78 2e | G.add_edge(1,.1).........>>>.nx. |
| 5940 | 69 73 5f 61 70 65 72 69 6f 64 69 63 28 47 29 0a 20 20 20 20 20 20 20 20 54 72 75 65 0a 0a 20 20 | is_aperiodic(G).........True.... |
| 5960 | 20 20 41 20 4d 61 72 6b 6f 76 20 63 68 61 69 6e 20 63 61 6e 20 62 65 20 6d 6f 64 65 6c 65 64 20 | ..A.Markov.chain.can.be.modeled. |
| 5980 | 61 73 20 61 20 64 69 72 65 63 74 65 64 20 67 72 61 70 68 2c 20 77 69 74 68 20 6e 6f 64 65 73 20 | as.a.directed.graph,.with.nodes. |
| 59a0 | 72 65 70 72 65 73 65 6e 74 69 6e 67 0a 20 20 20 20 73 74 61 74 65 73 20 61 6e 64 20 65 64 67 65 | representing.....states.and.edge |
| 59c0 | 73 20 72 65 70 72 65 73 65 6e 74 69 6e 67 20 74 72 61 6e 73 69 74 69 6f 6e 73 20 77 69 74 68 20 | s.representing.transitions.with. |
| 59e0 | 6e 6f 6e 2d 7a 65 72 6f 20 70 72 6f 62 61 62 69 6c 69 74 79 2e 0a 20 20 20 20 41 70 65 72 69 6f | non-zero.probability......Aperio |
| 5a00 | 64 69 63 69 74 79 20 69 73 20 74 79 70 69 63 61 6c 6c 79 20 63 6f 6e 73 69 64 65 72 65 64 20 66 | dicity.is.typically.considered.f |
| 5a20 | 6f 72 20 69 72 72 65 64 75 63 69 62 6c 65 20 4d 61 72 6b 6f 76 20 63 68 61 69 6e 73 2c 0a 20 20 | or.irreducible.Markov.chains,... |
| 5a40 | 20 20 77 68 69 63 68 20 61 72 65 20 74 68 6f 73 65 20 74 68 61 74 20 61 72 65 20 2a 73 74 72 6f | ..which.are.those.that.are.*stro |
| 5a60 | 6e 67 6c 79 20 63 6f 6e 6e 65 63 74 65 64 2a 20 61 73 20 67 72 61 70 68 73 2e 0a 0a 20 20 20 20 | ngly.connected*.as.graphs....... |
| 5a80 | 54 68 65 20 66 6f 6c 6c 6f 77 69 6e 67 20 4d 61 72 6b 6f 76 20 63 68 61 69 6e 20 69 73 20 69 72 | The.following.Markov.chain.is.ir |
| 5aa0 | 72 65 64 75 63 69 62 6c 65 20 61 6e 64 20 61 70 65 72 69 6f 64 69 63 2c 20 61 6e 64 20 74 68 75 | reducible.and.aperiodic,.and.thu |
| 5ac0 | 73 0a 20 20 20 20 65 72 67 6f 64 69 63 2e 20 49 74 20 69 73 20 67 75 61 72 61 6e 74 65 65 64 20 | s.....ergodic..It.is.guaranteed. |
| 5ae0 | 74 6f 20 68 61 76 65 20 61 20 75 6e 69 71 75 65 20 73 74 61 74 69 6f 6e 61 72 79 20 64 69 73 74 | to.have.a.unique.stationary.dist |
| 5b00 | 72 69 62 75 74 69 6f 6e 3a 3a 0a 0a 20 20 20 20 20 20 20 20 3e 3e 3e 20 47 20 3d 20 6e 78 2e 44 | ribution::..........>>>.G.=.nx.D |
| 5b20 | 69 47 72 61 70 68 28 29 0a 20 20 20 20 20 20 20 20 3e 3e 3e 20 6e 78 2e 61 64 64 5f 63 79 63 6c | iGraph().........>>>.nx.add_cycl |
| 5b40 | 65 28 47 2c 20 5b 31 2c 20 32 2c 20 33 2c 20 34 5d 29 0a 20 20 20 20 20 20 20 20 3e 3e 3e 20 47 | e(G,.[1,.2,.3,.4]).........>>>.G |
| 5b60 | 2e 61 64 64 5f 65 64 67 65 28 31 2c 20 33 29 0a 20 20 20 20 20 20 20 20 3e 3e 3e 20 6e 78 2e 69 | .add_edge(1,.3).........>>>.nx.i |
| 5b80 | 73 5f 61 70 65 72 69 6f 64 69 63 28 47 29 0a 20 20 20 20 20 20 20 20 54 72 75 65 0a 0a 20 20 20 | s_aperiodic(G).........True..... |
| 5ba0 | 20 52 65 64 75 63 69 62 6c 65 20 4d 61 72 6b 6f 76 20 63 68 61 69 6e 73 20 63 61 6e 20 73 6f 6d | .Reducible.Markov.chains.can.som |
| 5bc0 | 65 74 69 6d 65 73 20 68 61 76 65 20 61 20 75 6e 69 71 75 65 20 73 74 61 74 69 6f 6e 61 72 79 20 | etimes.have.a.unique.stationary. |
| 5be0 | 64 69 73 74 72 69 62 75 74 69 6f 6e 2e 0a 20 20 20 20 54 68 69 73 20 6f 63 63 75 72 73 20 69 66 | distribution......This.occurs.if |
| 5c00 | 20 74 68 65 20 63 68 61 69 6e 20 68 61 73 20 65 78 61 63 74 6c 79 20 6f 6e 65 20 63 6c 6f 73 65 | .the.chain.has.exactly.one.close |
| 5c20 | 64 20 63 6f 6d 6d 75 6e 69 63 61 74 69 6e 67 20 63 6c 61 73 73 20 61 6e 64 0a 20 20 20 20 74 68 | d.communicating.class.and.....th |
| 5c40 | 61 74 20 63 6c 61 73 73 20 69 74 73 65 6c 66 20 69 73 20 61 70 65 72 69 6f 64 69 63 20 28 73 65 | at.class.itself.is.aperiodic.(se |
| 5c60 | 65 20 5b 31 5d 5f 29 2e 20 59 6f 75 20 63 61 6e 20 75 73 65 0a 20 20 20 20 3a 66 75 6e 63 3a 60 | e.[1]_)..You.can.use.....:func:` |
| 5c80 | 7e 6e 65 74 77 6f 72 6b 78 2e 61 6c 67 6f 72 69 74 68 6d 73 2e 63 6f 6d 70 6f 6e 65 6e 74 73 2e | ~networkx.algorithms.components. |
| 5ca0 | 61 74 74 72 61 63 74 69 6e 67 5f 63 6f 6d 70 6f 6e 65 6e 74 73 60 0a 20 20 20 20 74 6f 20 66 69 | attracting_components`.....to.fi |
| 5cc0 | 6e 64 20 74 68 65 73 65 20 63 6c 6f 73 65 64 20 63 6f 6d 6d 75 6e 69 63 61 74 69 6e 67 20 63 6c | nd.these.closed.communicating.cl |
| 5ce0 | 61 73 73 65 73 3a 3a 0a 0a 20 20 20 20 20 20 20 20 3e 3e 3e 20 47 20 3d 20 6e 78 2e 44 69 47 72 | asses::..........>>>.G.=.nx.DiGr |
| 5d00 | 61 70 68 28 5b 28 31 2c 20 33 29 2c 20 28 32 2c 20 33 29 5d 29 0a 20 20 20 20 20 20 20 20 3e 3e | aph([(1,.3),.(2,.3)]).........>> |
| 5d20 | 3e 20 6e 78 2e 61 64 64 5f 63 79 63 6c 65 28 47 2c 20 5b 33 2c 20 34 2c 20 35 2c 20 36 5d 29 0a | >.nx.add_cycle(G,.[3,.4,.5,.6]). |
| 5d40 | 20 20 20 20 20 20 20 20 3e 3e 3e 20 6e 78 2e 61 64 64 5f 63 79 63 6c 65 28 47 2c 20 5b 33 2c 20 | ........>>>.nx.add_cycle(G,.[3,. |
| 5d60 | 35 2c 20 36 5d 29 0a 20 20 20 20 20 20 20 20 3e 3e 3e 20 63 6f 6d 6d 75 6e 69 63 61 74 69 6e 67 | 5,.6]).........>>>.communicating |
| 5d80 | 5f 63 6c 61 73 73 65 73 20 3d 20 6c 69 73 74 28 6e 78 2e 73 74 72 6f 6e 67 6c 79 5f 63 6f 6e 6e | _classes.=.list(nx.strongly_conn |
| 5da0 | 65 63 74 65 64 5f 63 6f 6d 70 6f 6e 65 6e 74 73 28 47 29 29 0a 20 20 20 20 20 20 20 20 3e 3e 3e | ected_components(G)).........>>> |
| 5dc0 | 20 6c 65 6e 28 63 6f 6d 6d 75 6e 69 63 61 74 69 6e 67 5f 63 6c 61 73 73 65 73 29 0a 20 20 20 20 | .len(communicating_classes)..... |
| 5de0 | 20 20 20 20 33 0a 20 20 20 20 20 20 20 20 3e 3e 3e 20 63 6c 6f 73 65 64 5f 63 6f 6d 6d 75 6e 69 | ....3.........>>>.closed_communi |
| 5e00 | 63 61 74 69 6e 67 5f 63 6c 61 73 73 65 73 20 3d 20 6c 69 73 74 28 6e 78 2e 61 74 74 72 61 63 74 | cating_classes.=.list(nx.attract |
| 5e20 | 69 6e 67 5f 63 6f 6d 70 6f 6e 65 6e 74 73 28 47 29 29 0a 20 20 20 20 20 20 20 20 3e 3e 3e 20 6c | ing_components(G)).........>>>.l |
| 5e40 | 65 6e 28 63 6c 6f 73 65 64 5f 63 6f 6d 6d 75 6e 69 63 61 74 69 6e 67 5f 63 6c 61 73 73 65 73 29 | en(closed_communicating_classes) |
| 5e60 | 0a 20 20 20 20 20 20 20 20 31 0a 20 20 20 20 20 20 20 20 3e 3e 3e 20 6e 78 2e 69 73 5f 61 70 65 | .........1.........>>>.nx.is_ape |
| 5e80 | 72 69 6f 64 69 63 28 47 2e 73 75 62 67 72 61 70 68 28 63 6c 6f 73 65 64 5f 63 6f 6d 6d 75 6e 69 | riodic(G.subgraph(closed_communi |
| 5ea0 | 63 61 74 69 6e 67 5f 63 6c 61 73 73 65 73 5b 30 5d 29 29 0a 20 20 20 20 20 20 20 20 54 72 75 65 | cating_classes[0])).........True |
| 5ec0 | 0a 0a 20 20 20 20 4e 6f 74 65 73 0a 20 20 20 20 2d 2d 2d 2d 2d 0a 20 20 20 20 54 68 69 73 20 75 | ......Notes.....-----.....This.u |
| 5ee0 | 73 65 73 20 74 68 65 20 6d 65 74 68 6f 64 20 6f 75 74 6c 69 6e 65 64 20 69 6e 20 5b 31 5d 5f 2c | ses.the.method.outlined.in.[1]_, |
| 5f00 | 20 77 68 69 63 68 20 72 75 6e 73 20 69 6e 20 24 4f 28 6d 29 24 20 74 69 6d 65 0a 20 20 20 20 67 | .which.runs.in.$O(m)$.time.....g |
| 5f20 | 69 76 65 6e 20 24 6d 24 20 65 64 67 65 73 20 69 6e 20 60 47 60 2e 0a 0a 20 20 20 20 52 65 66 65 | iven.$m$.edges.in.`G`.......Refe |
| 5f40 | 72 65 6e 63 65 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 2e 2e 20 5b 31 5d | rences.....----------........[1] |
| 5f60 | 20 4a 61 72 76 69 73 2c 20 4a 2e 20 50 2e 3b 20 53 68 69 65 72 2c 20 44 2e 20 52 2e 20 28 31 39 | .Jarvis,.J..P.;.Shier,.D..R..(19 |
| 5f80 | 39 36 29 2c 0a 20 20 20 20 20 20 20 22 47 72 61 70 68 2d 74 68 65 6f 72 65 74 69 63 20 61 6e 61 | 96),........"Graph-theoretic.ana |
| 5fa0 | 6c 79 73 69 73 20 6f 66 20 66 69 6e 69 74 65 20 4d 61 72 6b 6f 76 20 63 68 61 69 6e 73 2c 22 0a | lysis.of.finite.Markov.chains,". |
| 5fc0 | 20 20 20 20 20 20 20 69 6e 20 53 68 69 65 72 2c 20 44 2e 20 52 2e 3b 20 57 61 6c 6c 65 6e 69 75 | .......in.Shier,.D..R.;.Walleniu |
| 5fe0 | 73 2c 20 4b 2e 20 54 2e 2c 20 41 70 70 6c 69 65 64 20 4d 61 74 68 65 6d 61 74 69 63 61 6c 20 4d | s,.K..T.,.Applied.Mathematical.M |
| 6000 | 6f 64 65 6c 69 6e 67 3a 0a 20 20 20 20 20 20 20 41 20 4d 75 6c 74 69 64 69 73 63 69 70 6c 69 6e | odeling:........A.Multidisciplin |
| 6020 | 61 72 79 20 41 70 70 72 6f 61 63 68 2c 20 43 52 43 20 50 72 65 73 73 2e 0a 20 20 20 20 7a 2e 69 | ary.Approach,.CRC.Press......z.i |
| 6040 | 73 5f 61 70 65 72 69 6f 64 69 63 20 6e 6f 74 20 64 65 66 69 6e 65 64 20 66 6f 72 20 75 6e 64 69 | s_aperiodic.not.defined.for.undi |
| 6060 | 72 65 63 74 65 64 20 67 72 61 70 68 73 72 02 00 00 00 7a 13 47 72 61 70 68 20 68 61 73 20 6e 6f | rected.graphsr....z.Graph.has.no |
| 6080 | 20 6e 6f 64 65 73 2e 7a 20 47 72 61 70 68 20 69 73 20 6e 6f 74 20 73 74 72 6f 6e 67 6c 79 20 63 | .nodes.z.Graph.is.not.strongly.c |
| 60a0 | 6f 6e 6e 65 63 74 65 64 2e 72 34 00 00 00 29 09 72 2f 00 00 00 72 1f 00 00 00 72 36 00 00 00 72 | onnected.r4...).r/...r....r6...r |
| 60c0 | 3b 00 00 00 da 18 4e 65 74 77 6f 72 6b 58 50 6f 69 6e 74 6c 65 73 73 43 6f 6e 63 65 70 74 da 15 | ;.....NetworkXPointlessConcept.. |
| 60e0 | 69 73 5f 73 74 72 6f 6e 67 6c 79 5f 63 6f 6e 6e 65 63 74 65 64 72 0a 00 00 00 72 09 00 00 00 72 | is_strongly_connectedr....r....r |
| 6100 | 3d 00 00 00 29 09 72 22 00 00 00 da 01 73 da 06 6c 65 76 65 6c 73 da 0a 74 68 69 73 5f 6c 65 76 | =...).r".....s..levels..this_lev |
| 6120 | 65 6c da 01 67 da 03 6c 65 76 da 0a 6e 65 78 74 5f 6c 65 76 65 6c da 01 75 72 3f 00 00 00 73 09 | el..g..lev..next_level..ur?...s. |
| 6140 | 00 00 00 20 20 20 20 20 20 20 20 20 72 26 00 00 00 72 14 00 00 00 72 14 00 00 00 3f 02 00 00 73 | ............r&...r....r....?...s |
| 6160 | 07 01 00 00 80 00 f0 6c 03 00 0c 0d 8f 3d 89 3d 8c 3f dc 0e 10 d7 0e 1e d1 0e 1e d0 1f 4f d3 0e | .......l.....=.=.?...........O.. |
| 6180 | 50 d0 08 50 dc 07 0a 88 31 83 76 90 11 82 7b dc 0e 10 d7 0e 29 d1 0e 29 d0 2a 3f d3 0e 40 d0 08 | P..P....1.v...{.....)..).*?..@.. |
| 61a0 | 40 dc 0b 0d d7 0b 23 d1 0b 23 a0 41 d4 0b 26 dc 0e 10 d7 0e 1e d1 0e 1e d0 1f 41 d3 0e 42 d0 08 | @.....#..#.A..&...........A..B.. |
| 61c0 | 42 dc 08 19 98 21 d3 08 1c 80 41 d8 0e 0f 90 11 88 56 80 46 d8 12 13 90 13 80 4a d8 08 09 80 41 | B....!....A......V.F......J....A |
| 61e0 | d8 0a 0b 80 43 d9 0a 14 d8 15 17 88 0a d8 11 1b f2 00 06 09 24 88 41 d8 15 16 90 71 91 54 f2 00 | ....C...............$.A....q.T.. |
| 6200 | 05 0d 24 90 01 d8 13 14 98 06 91 3b dc 18 1b 98 41 98 76 a0 61 99 79 a8 36 b0 21 a9 39 d1 1f 34 | ..$........;....A.v.a.y.6.!.9..4 |
| 6220 | b0 71 d1 1f 38 d3 18 39 91 41 e0 14 1e d7 14 25 d1 14 25 a0 61 d4 14 28 d8 20 23 90 46 98 31 92 | .q..8..9.A.....%..%.a..(..#.F.1. |
| 6240 | 49 f1 0b 05 0d 24 f0 03 06 09 24 f0 0e 00 16 20 88 0a d8 08 0b 88 71 89 08 88 03 f2 15 00 0b 15 | I....$....$...........q......... |
| 6260 | f0 16 00 0c 0d 90 01 89 36 80 4d 72 30 00 00 00 54 29 02 da 12 70 72 65 73 65 72 76 65 5f 61 6c | ........6.Mr0...T)...preserve_al |
| 6280 | 6c 5f 61 74 74 72 73 da 0d 72 65 74 75 72 6e 73 5f 67 72 61 70 68 63 02 00 00 00 00 00 00 00 00 | l_attrs..returns_graphc......... |
| 62a0 | 00 00 00 08 00 00 00 03 00 00 00 f3 a6 01 00 00 87 02 87 03 97 00 7c 00 6a 01 00 00 00 00 00 00 | ......................|.j....... |
| 62c0 | 00 00 00 00 00 00 00 00 00 00 00 00 ab 00 00 00 00 00 00 00 8a 02 7c 01 64 01 76 01 72 15 74 03 | ......................|.d.v.r.t. |
| 62e0 | 00 00 00 00 00 00 00 00 6a 04 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 64 02 ab 01 | ........j...................d... |
| 6300 | 00 00 00 00 00 00 82 01 7c 00 44 00 5d a0 00 00 8a 03 7c 01 80 30 89 02 6a 07 00 00 00 00 00 00 | ........|.D.].....|..0..j....... |
| 6320 | 00 00 00 00 00 00 00 00 00 00 00 00 88 02 88 03 66 02 64 03 84 08 74 03 00 00 00 00 00 00 00 00 | ................f.d...t......... |
| 6340 | 6a 08 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 7c 00 89 03 ab 02 00 00 00 00 00 00 | j...................|........... |
| 6360 | 44 00 ab 00 00 00 00 00 00 00 ab 01 00 00 00 00 00 00 01 00 8c 35 7c 01 64 04 75 00 72 34 89 02 | D....................5|.d.u.r4.. |
| 6380 | 6a 07 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 88 02 88 03 66 02 64 05 84 08 74 03 | j.......................f.d...t. |
| 63a0 | 00 00 00 00 00 00 00 00 6a 08 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 7c 00 89 03 | ........j...................|... |
| 63c0 | ab 02 00 00 00 00 00 00 89 03 68 01 7a 07 00 00 44 00 ab 00 00 00 00 00 00 00 ab 01 00 00 00 00 | ..........h.z...D............... |
| 63e0 | 00 00 01 00 8c 6d 7c 01 64 06 75 00 73 01 8c 72 89 02 6a 07 00 00 00 00 00 00 00 00 00 00 00 00 | .....m|.d.u.s..r..j............. |
| 6400 | 00 00 00 00 00 00 88 02 88 03 66 02 64 07 84 08 74 03 00 00 00 00 00 00 00 00 6a 0a 00 00 00 00 | ..........f.d...t.........j..... |
| 6420 | 00 00 00 00 00 00 00 00 00 00 00 00 00 00 7c 00 89 03 ab 02 00 00 00 00 00 00 44 00 ab 00 00 00 | ..............|...........D..... |
| 6440 | 00 00 00 00 ab 01 00 00 00 00 00 00 01 00 8c a2 04 00 89 02 53 00 29 08 61 49 0a 00 00 52 65 74 | ....................S.).aI...Ret |
| 6460 | 75 72 6e 73 20 74 72 61 6e 73 69 74 69 76 65 20 63 6c 6f 73 75 72 65 20 6f 66 20 61 20 67 72 61 | urns.transitive.closure.of.a.gra |
| 6480 | 70 68 0a 0a 20 20 20 20 54 68 65 20 74 72 61 6e 73 69 74 69 76 65 20 63 6c 6f 73 75 72 65 20 6f | ph......The.transitive.closure.o |
| 64a0 | 66 20 47 20 3d 20 28 56 2c 45 29 20 69 73 20 61 20 67 72 61 70 68 20 47 2b 20 3d 20 28 56 2c 45 | f.G.=.(V,E).is.a.graph.G+.=.(V,E |
| 64c0 | 2b 29 20 73 75 63 68 20 74 68 61 74 0a 20 20 20 20 66 6f 72 20 61 6c 6c 20 76 2c 20 77 20 69 6e | +).such.that.....for.all.v,.w.in |
| 64e0 | 20 56 20 74 68 65 72 65 20 69 73 20 61 6e 20 65 64 67 65 20 28 76 2c 20 77 29 20 69 6e 20 45 2b | .V.there.is.an.edge.(v,.w).in.E+ |
| 6500 | 20 69 66 20 61 6e 64 20 6f 6e 6c 79 20 69 66 20 74 68 65 72 65 0a 20 20 20 20 69 73 20 61 20 70 | .if.and.only.if.there.....is.a.p |
| 6520 | 61 74 68 20 66 72 6f 6d 20 76 20 74 6f 20 77 20 69 6e 20 47 2e 0a 0a 20 20 20 20 48 61 6e 64 6c | ath.from.v.to.w.in.G.......Handl |
| 6540 | 69 6e 67 20 6f 66 20 70 61 74 68 73 20 66 72 6f 6d 20 76 20 74 6f 20 76 20 68 61 73 20 73 6f 6d | ing.of.paths.from.v.to.v.has.som |
| 6560 | 65 20 66 6c 65 78 69 62 69 6c 69 74 79 20 77 69 74 68 69 6e 20 74 68 69 73 20 64 65 66 69 6e 69 | e.flexibility.within.this.defini |
| 6580 | 74 69 6f 6e 2e 0a 20 20 20 20 41 20 72 65 66 6c 65 78 69 76 65 20 74 72 61 6e 73 69 74 69 76 65 | tion......A.reflexive.transitive |
| 65a0 | 20 63 6c 6f 73 75 72 65 20 63 72 65 61 74 65 73 20 61 20 73 65 6c 66 2d 6c 6f 6f 70 20 66 6f 72 | .closure.creates.a.self-loop.for |
| 65c0 | 20 74 68 65 20 70 61 74 68 0a 20 20 20 20 66 72 6f 6d 20 76 20 74 6f 20 76 20 6f 66 20 6c 65 6e | .the.path.....from.v.to.v.of.len |
| 65e0 | 67 74 68 20 30 2e 20 54 68 65 20 75 73 75 61 6c 20 74 72 61 6e 73 69 74 69 76 65 20 63 6c 6f 73 | gth.0..The.usual.transitive.clos |
| 6600 | 75 72 65 20 63 72 65 61 74 65 73 20 61 0a 20 20 20 20 73 65 6c 66 2d 6c 6f 6f 70 20 6f 6e 6c 79 | ure.creates.a.....self-loop.only |
| 6620 | 20 69 66 20 61 20 63 79 63 6c 65 20 65 78 69 73 74 73 20 28 61 20 70 61 74 68 20 66 72 6f 6d 20 | .if.a.cycle.exists.(a.path.from. |
| 6640 | 76 20 74 6f 20 76 20 77 69 74 68 20 6c 65 6e 67 74 68 20 3e 20 30 29 2e 0a 20 20 20 20 57 65 20 | v.to.v.with.length.>.0)......We. |
| 6660 | 61 6c 73 6f 20 61 6c 6c 6f 77 20 61 6e 20 6f 70 74 69 6f 6e 20 66 6f 72 20 6e 6f 20 73 65 6c 66 | also.allow.an.option.for.no.self |
| 6680 | 2d 6c 6f 6f 70 73 2e 0a 0a 20 20 20 20 50 61 72 61 6d 65 74 65 72 73 0a 20 20 20 20 2d 2d 2d 2d | -loops.......Parameters.....---- |
| 66a0 | 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 47 20 3a 20 4e 65 74 77 6f 72 6b 58 20 47 72 61 70 68 0a 20 20 | ------.....G.:.NetworkX.Graph... |
| 66c0 | 20 20 20 20 20 20 41 20 64 69 72 65 63 74 65 64 2f 75 6e 64 69 72 65 63 74 65 64 20 67 72 61 70 | ......A.directed/undirected.grap |
| 66e0 | 68 2f 6d 75 6c 74 69 67 72 61 70 68 2e 0a 20 20 20 20 72 65 66 6c 65 78 69 76 65 20 3a 20 42 6f | h/multigraph......reflexive.:.Bo |
| 6700 | 6f 6c 20 6f 72 20 4e 6f 6e 65 2c 20 6f 70 74 69 6f 6e 61 6c 20 28 64 65 66 61 75 6c 74 3a 20 46 | ol.or.None,.optional.(default:.F |
| 6720 | 61 6c 73 65 29 0a 20 20 20 20 20 20 20 20 44 65 74 65 72 6d 69 6e 65 73 20 77 68 65 6e 20 63 79 | alse).........Determines.when.cy |
| 6740 | 63 6c 65 73 20 63 72 65 61 74 65 20 73 65 6c 66 2d 6c 6f 6f 70 73 20 69 6e 20 74 68 65 20 54 72 | cles.create.self-loops.in.the.Tr |
| 6760 | 61 6e 73 69 74 69 76 65 20 43 6c 6f 73 75 72 65 2e 0a 20 20 20 20 20 20 20 20 49 66 20 54 72 75 | ansitive.Closure..........If.Tru |
| 6780 | 65 2c 20 74 72 69 76 69 61 6c 20 63 79 63 6c 65 73 20 28 6c 65 6e 67 74 68 20 30 29 20 63 72 65 | e,.trivial.cycles.(length.0).cre |
| 67a0 | 61 74 65 20 73 65 6c 66 2d 6c 6f 6f 70 73 2e 20 54 68 65 20 72 65 73 75 6c 74 0a 20 20 20 20 20 | ate.self-loops..The.result...... |
| 67c0 | 20 20 20 69 73 20 61 20 72 65 66 6c 65 78 69 76 65 20 74 72 61 6e 73 69 74 69 76 65 20 63 6c 6f | ...is.a.reflexive.transitive.clo |
| 67e0 | 73 75 72 65 20 6f 66 20 47 2e 0a 20 20 20 20 20 20 20 20 49 66 20 46 61 6c 73 65 20 28 74 68 65 | sure.of.G..........If.False.(the |
| 6800 | 20 64 65 66 61 75 6c 74 29 20 6e 6f 6e 2d 74 72 69 76 69 61 6c 20 63 79 63 6c 65 73 20 63 72 65 | .default).non-trivial.cycles.cre |
| 6820 | 61 74 65 20 73 65 6c 66 2d 6c 6f 6f 70 73 2e 0a 20 20 20 20 20 20 20 20 49 66 20 4e 6f 6e 65 2c | ate.self-loops..........If.None, |
| 6840 | 20 73 65 6c 66 2d 6c 6f 6f 70 73 20 61 72 65 20 6e 6f 74 20 63 72 65 61 74 65 64 2e 0a 0a 20 20 | .self-loops.are.not.created..... |
| 6860 | 20 20 52 65 74 75 72 6e 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 4e 65 74 77 6f 72 | ..Returns.....-------.....Networ |
| 6880 | 6b 58 20 67 72 61 70 68 0a 20 20 20 20 20 20 20 20 54 68 65 20 74 72 61 6e 73 69 74 69 76 65 20 | kX.graph.........The.transitive. |
| 68a0 | 63 6c 6f 73 75 72 65 20 6f 66 20 60 47 60 0a 0a 20 20 20 20 52 61 69 73 65 73 0a 20 20 20 20 2d | closure.of.`G`......Raises.....- |
| 68c0 | 2d 2d 2d 2d 2d 0a 20 20 20 20 4e 65 74 77 6f 72 6b 58 45 72 72 6f 72 0a 20 20 20 20 20 20 20 20 | -----.....NetworkXError......... |
| 68e0 | 49 66 20 60 72 65 66 6c 65 78 69 76 65 60 20 6e 6f 74 20 69 6e 20 60 7b 4e 6f 6e 65 2c 20 54 72 | If.`reflexive`.not.in.`{None,.Tr |
| 6900 | 75 65 2c 20 46 61 6c 73 65 7d 60 0a 0a 20 20 20 20 45 78 61 6d 70 6c 65 73 0a 20 20 20 20 2d 2d | ue,.False}`......Examples.....-- |
| 6920 | 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 54 68 65 20 74 72 65 61 74 6d 65 6e 74 20 6f 66 20 74 72 69 76 | ------.....The.treatment.of.triv |
| 6940 | 69 61 6c 20 28 69 2e 65 2e 20 6c 65 6e 67 74 68 20 30 29 20 63 79 63 6c 65 73 20 69 73 20 63 6f | ial.(i.e..length.0).cycles.is.co |
| 6960 | 6e 74 72 6f 6c 6c 65 64 20 62 79 20 74 68 65 0a 20 20 20 20 60 72 65 66 6c 65 78 69 76 65 60 20 | ntrolled.by.the.....`reflexive`. |
| 6980 | 70 61 72 61 6d 65 74 65 72 2e 0a 0a 20 20 20 20 54 72 69 76 69 61 6c 20 28 69 2e 65 2e 20 6c 65 | parameter.......Trivial.(i.e..le |
| 69a0 | 6e 67 74 68 20 30 29 20 63 79 63 6c 65 73 20 64 6f 20 6e 6f 74 20 63 72 65 61 74 65 20 73 65 6c | ngth.0).cycles.do.not.create.sel |
| 69c0 | 66 2d 6c 6f 6f 70 73 20 77 68 65 6e 0a 20 20 20 20 60 60 72 65 66 6c 65 78 69 76 65 3d 46 61 6c | f-loops.when.....``reflexive=Fal |
| 69e0 | 73 65 60 60 20 28 74 68 65 20 64 65 66 61 75 6c 74 29 3a 3a 0a 0a 20 20 20 20 20 20 20 20 3e 3e | se``.(the.default)::..........>> |
| 6a00 | 3e 20 44 47 20 3d 20 6e 78 2e 44 69 47 72 61 70 68 28 5b 28 31 2c 20 32 29 2c 20 28 32 2c 20 33 | >.DG.=.nx.DiGraph([(1,.2),.(2,.3 |
| 6a20 | 29 5d 29 0a 20 20 20 20 20 20 20 20 3e 3e 3e 20 54 43 20 3d 20 6e 78 2e 74 72 61 6e 73 69 74 69 | )]).........>>>.TC.=.nx.transiti |
| 6a40 | 76 65 5f 63 6c 6f 73 75 72 65 28 44 47 2c 20 72 65 66 6c 65 78 69 76 65 3d 46 61 6c 73 65 29 0a | ve_closure(DG,.reflexive=False). |
| 6a60 | 20 20 20 20 20 20 20 20 3e 3e 3e 20 54 43 2e 65 64 67 65 73 28 29 0a 20 20 20 20 20 20 20 20 4f | ........>>>.TC.edges().........O |
| 6a80 | 75 74 45 64 67 65 56 69 65 77 28 5b 28 31 2c 20 32 29 2c 20 28 31 2c 20 33 29 2c 20 28 32 2c 20 | utEdgeView([(1,.2),.(1,.3),.(2,. |
| 6aa0 | 33 29 5d 29 0a 0a 20 20 20 20 48 6f 77 65 76 65 72 2c 20 6e 6f 6e 74 72 69 76 69 61 6c 20 28 69 | 3)])......However,.nontrivial.(i |
| 6ac0 | 2e 65 2e 20 6c 65 6e 67 74 68 20 67 72 65 61 74 65 72 20 74 68 61 6e 20 30 29 20 63 79 63 6c 65 | .e..length.greater.than.0).cycle |
| 6ae0 | 73 20 63 72 65 61 74 65 20 73 65 6c 66 2d 6c 6f 6f 70 73 0a 20 20 20 20 77 68 65 6e 20 60 60 72 | s.create.self-loops.....when.``r |
| 6b00 | 65 66 6c 65 78 69 76 65 3d 46 61 6c 73 65 60 60 20 28 74 68 65 20 64 65 66 61 75 6c 74 29 3a 3a | eflexive=False``.(the.default):: |
| 6b20 | 0a 0a 20 20 20 20 20 20 20 20 3e 3e 3e 20 44 47 20 3d 20 6e 78 2e 44 69 47 72 61 70 68 28 5b 28 | ..........>>>.DG.=.nx.DiGraph([( |
| 6b40 | 31 2c 20 32 29 2c 20 28 32 2c 20 33 29 2c 20 28 33 2c 20 31 29 5d 29 0a 20 20 20 20 20 20 20 20 | 1,.2),.(2,.3),.(3,.1)])......... |
| 6b60 | 3e 3e 3e 20 54 43 20 3d 20 6e 78 2e 74 72 61 6e 73 69 74 69 76 65 5f 63 6c 6f 73 75 72 65 28 44 | >>>.TC.=.nx.transitive_closure(D |
| 6b80 | 47 2c 20 72 65 66 6c 65 78 69 76 65 3d 46 61 6c 73 65 29 0a 20 20 20 20 20 20 20 20 3e 3e 3e 20 | G,.reflexive=False).........>>>. |
| 6ba0 | 54 43 2e 65 64 67 65 73 28 29 0a 20 20 20 20 20 20 20 20 4f 75 74 45 64 67 65 56 69 65 77 28 5b | TC.edges().........OutEdgeView([ |
| 6bc0 | 28 31 2c 20 32 29 2c 20 28 31 2c 20 33 29 2c 20 28 31 2c 20 31 29 2c 20 28 32 2c 20 33 29 2c 20 | (1,.2),.(1,.3),.(1,.1),.(2,.3),. |
| 6be0 | 28 32 2c 20 31 29 2c 20 28 32 2c 20 32 29 2c 20 28 33 2c 20 31 29 2c 20 28 33 2c 20 32 29 2c 20 | (2,.1),.(2,.2),.(3,.1),.(3,.2),. |
| 6c00 | 28 33 2c 20 33 29 5d 29 0a 0a 20 20 20 20 54 72 69 76 69 61 6c 20 63 79 63 6c 65 73 20 28 6c 65 | (3,.3)])......Trivial.cycles.(le |
| 6c20 | 6e 67 74 68 20 30 29 20 63 72 65 61 74 65 20 73 65 6c 66 2d 6c 6f 6f 70 73 20 77 68 65 6e 20 60 | ngth.0).create.self-loops.when.` |
| 6c40 | 60 72 65 66 6c 65 78 69 76 65 3d 54 72 75 65 60 60 3a 3a 0a 0a 20 20 20 20 20 20 20 20 3e 3e 3e | `reflexive=True``::..........>>> |
| 6c60 | 20 44 47 20 3d 20 6e 78 2e 44 69 47 72 61 70 68 28 5b 28 31 2c 20 32 29 2c 20 28 32 2c 20 33 29 | .DG.=.nx.DiGraph([(1,.2),.(2,.3) |
| 6c80 | 5d 29 0a 20 20 20 20 20 20 20 20 3e 3e 3e 20 54 43 20 3d 20 6e 78 2e 74 72 61 6e 73 69 74 69 76 | ]).........>>>.TC.=.nx.transitiv |
| 6ca0 | 65 5f 63 6c 6f 73 75 72 65 28 44 47 2c 20 72 65 66 6c 65 78 69 76 65 3d 54 72 75 65 29 0a 20 20 | e_closure(DG,.reflexive=True)... |
| 6cc0 | 20 20 20 20 20 20 3e 3e 3e 20 54 43 2e 65 64 67 65 73 28 29 0a 20 20 20 20 20 20 20 20 4f 75 74 | ......>>>.TC.edges().........Out |
| 6ce0 | 45 64 67 65 56 69 65 77 28 5b 28 31 2c 20 32 29 2c 20 28 31 2c 20 31 29 2c 20 28 31 2c 20 33 29 | EdgeView([(1,.2),.(1,.1),.(1,.3) |
| 6d00 | 2c 20 28 32 2c 20 33 29 2c 20 28 32 2c 20 32 29 2c 20 28 33 2c 20 33 29 5d 29 0a 0a 20 20 20 20 | ,.(2,.3),.(2,.2),.(3,.3)])...... |
| 6d20 | 41 6e 64 20 74 68 65 20 74 68 69 72 64 20 6f 70 74 69 6f 6e 20 69 73 20 6e 6f 74 20 74 6f 20 63 | And.the.third.option.is.not.to.c |
| 6d40 | 72 65 61 74 65 20 73 65 6c 66 2d 6c 6f 6f 70 73 20 61 74 20 61 6c 6c 20 77 68 65 6e 20 60 60 72 | reate.self-loops.at.all.when.``r |
| 6d60 | 65 66 6c 65 78 69 76 65 3d 4e 6f 6e 65 60 60 3a 3a 0a 0a 20 20 20 20 20 20 20 20 3e 3e 3e 20 44 | eflexive=None``::..........>>>.D |
| 6d80 | 47 20 3d 20 6e 78 2e 44 69 47 72 61 70 68 28 5b 28 31 2c 20 32 29 2c 20 28 32 2c 20 33 29 2c 20 | G.=.nx.DiGraph([(1,.2),.(2,.3),. |
| 6da0 | 28 33 2c 20 31 29 5d 29 0a 20 20 20 20 20 20 20 20 3e 3e 3e 20 54 43 20 3d 20 6e 78 2e 74 72 61 | (3,.1)]).........>>>.TC.=.nx.tra |
| 6dc0 | 6e 73 69 74 69 76 65 5f 63 6c 6f 73 75 72 65 28 44 47 2c 20 72 65 66 6c 65 78 69 76 65 3d 4e 6f | nsitive_closure(DG,.reflexive=No |
| 6de0 | 6e 65 29 0a 20 20 20 20 20 20 20 20 3e 3e 3e 20 54 43 2e 65 64 67 65 73 28 29 0a 20 20 20 20 20 | ne).........>>>.TC.edges()...... |
| 6e00 | 20 20 20 4f 75 74 45 64 67 65 56 69 65 77 28 5b 28 31 2c 20 32 29 2c 20 28 31 2c 20 33 29 2c 20 | ...OutEdgeView([(1,.2),.(1,.3),. |
| 6e20 | 28 32 2c 20 33 29 2c 20 28 32 2c 20 31 29 2c 20 28 33 2c 20 31 29 2c 20 28 33 2c 20 32 29 5d 29 | (2,.3),.(2,.1),.(3,.1),.(3,.2)]) |
| 6e40 | 0a 0a 20 20 20 20 52 65 66 65 72 65 6e 63 65 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 0a | ......References.....----------. |
| 6e60 | 20 20 20 20 2e 2e 20 5b 31 5d 20 68 74 74 70 73 3a 2f 2f 77 77 77 2e 69 63 73 2e 75 63 69 2e 65 | .......[1].https://www.ics.uci.e |
| 6e80 | 64 75 2f 7e 65 70 70 73 74 65 69 6e 2f 50 41 44 53 2f 50 61 72 74 69 61 6c 4f 72 64 65 72 2e 70 | du/~eppstein/PADS/PartialOrder.p |
| 6ea0 | 79 0a 20 20 20 20 3e 03 00 00 00 46 4e 54 7a 2d 49 6e 63 6f 72 72 65 63 74 20 76 61 6c 75 65 20 | y.....>....FNTz-Incorrect.value. |
| 6ec0 | 66 6f 72 20 74 68 65 20 70 61 72 61 6d 65 74 65 72 20 60 72 65 66 6c 65 78 69 76 65 60 63 01 00 | for.the.parameter.`reflexive`c.. |
| 6ee0 | 00 00 00 00 00 00 00 00 00 00 04 00 00 00 33 00 00 00 f3 36 00 00 00 95 02 4b 00 01 00 97 00 7c | ..............3....6.....K.....| |
| 6f00 | 00 5d 10 00 00 7d 01 7c 01 89 02 89 03 19 00 00 00 76 01 73 01 8c 0b 89 03 7c 01 66 02 96 01 97 | .]...}.|.........v.s.....|.f.... |
| 6f20 | 01 01 00 8c 12 04 00 79 00 ad 03 77 01 72 4a 00 00 00 72 4b 00 00 00 a9 04 72 5f 00 00 00 72 77 | .......y...w.rJ...rK.....r_...rw |
| 6f40 | 00 00 00 da 02 54 43 72 3f 00 00 00 73 04 00 00 00 20 20 80 80 72 26 00 00 00 72 61 00 00 00 7a | .....TCr?...s........r&...ra...z |
| 6f60 | 25 74 72 61 6e 73 69 74 69 76 65 5f 63 6c 6f 73 75 72 65 2e 3c 6c 6f 63 61 6c 73 3e 2e 3c 67 65 | %transitive_closure.<locals>.<ge |
| 6f80 | 6e 65 78 70 72 3e 1f 03 00 00 73 20 00 00 00 f8 e8 00 f8 80 00 d2 1d 55 a8 11 c0 61 c8 72 d0 52 | nexpr>....s............U...a.r.R |
| 6fa0 | 53 c9 75 c2 6e 98 71 a0 21 9c 66 d1 1d 55 f9 f3 08 00 00 00 83 0c 19 01 90 09 19 01 54 63 01 00 | S.u.n.q.!.f..U..............Tc.. |
| 6fc0 | 00 00 00 00 00 00 00 00 00 00 04 00 00 00 33 00 00 00 f3 36 00 00 00 95 02 4b 00 01 00 97 00 7c | ..............3....6.....K.....| |
| 6fe0 | 00 5d 10 00 00 7d 01 7c 01 89 02 89 03 19 00 00 00 76 01 73 01 8c 0b 89 03 7c 01 66 02 96 01 97 | .]...}.|.........v.s.....|.f.... |
| 7000 | 01 01 00 8c 12 04 00 79 00 ad 03 77 01 72 4a 00 00 00 72 4b 00 00 00 72 7c 00 00 00 73 04 00 00 | .......y...w.rJ...rK...r|...s... |
| 7020 | 00 20 20 80 80 72 26 00 00 00 72 61 00 00 00 7a 25 74 72 61 6e 73 69 74 69 76 65 5f 63 6c 6f 73 | .....r&...ra...z%transitive_clos |
| 7040 | 75 72 65 2e 3c 6c 6f 63 61 6c 73 3e 2e 3c 67 65 6e 65 78 70 72 3e 21 03 00 00 73 24 00 00 00 f8 | ure.<locals>.<genexpr>!...s$.... |
| 7060 | e8 00 f8 80 00 f2 00 02 1e 0e d8 1b 1c b8 61 c0 72 c8 21 c1 75 ba 6e 90 11 90 41 94 06 f1 03 02 | ..............a.r.!.u.n...A..... |
| 7080 | 1e 0e f9 72 7e 00 00 00 46 63 01 00 00 00 00 00 00 00 00 00 00 00 04 00 00 00 33 00 00 00 f3 42 | ...r~...Fc................3....B |
| 70a0 | 00 00 00 95 02 4b 00 01 00 97 00 7c 00 5d 16 00 00 7d 01 7c 01 64 00 19 00 00 00 89 02 89 03 19 | .....K.....|.]...}.|.d.......... |
| 70c0 | 00 00 00 76 01 73 01 8c 0e 89 03 7c 01 64 00 19 00 00 00 66 02 96 01 97 01 01 00 8c 18 04 00 79 | ...v.s.....|.d.....f...........y |
| 70e0 | 01 ad 03 77 01 29 02 72 34 00 00 00 4e 72 4b 00 00 00 29 04 72 5f 00 00 00 da 01 65 72 7d 00 00 | ...w.).r4...NrK...).r_.....er}.. |
| 7100 | 00 72 3f 00 00 00 73 04 00 00 00 20 20 80 80 72 26 00 00 00 72 61 00 00 00 7a 25 74 72 61 6e 73 | .r?...s........r&...ra...z%trans |
| 7120 | 69 74 69 76 65 5f 63 6c 6f 73 75 72 65 2e 3c 6c 6f 63 61 6c 73 3e 2e 3c 67 65 6e 65 78 70 72 3e | itive_closure.<locals>.<genexpr> |
| 7140 | 25 03 00 00 73 2b 00 00 00 f8 e8 00 f8 80 00 d2 1d 58 a8 41 c0 61 c8 01 c1 64 d0 52 54 d0 55 56 | %...s+...........X.A.a...d.RT.UV |
| 7160 | d1 52 57 d2 46 57 98 71 a0 21 a0 41 a1 24 9c 69 d1 1d 58 f9 73 08 00 00 00 83 0f 1f 01 93 0c 1f | .RW.FW.q.!.A.$.i..X.s........... |
| 7180 | 01 29 06 da 04 63 6f 70 79 72 1f 00 00 00 72 36 00 00 00 da 0e 61 64 64 5f 65 64 67 65 73 5f 66 | .)...copyr....r6.....add_edges_f |
| 71a0 | 72 6f 6d 72 0d 00 00 00 da 08 65 64 67 65 5f 62 66 73 29 04 72 22 00 00 00 da 09 72 65 66 6c 65 | romr......edge_bfs).r".....refle |
| 71c0 | 78 69 76 65 72 7d 00 00 00 72 3f 00 00 00 73 04 00 00 00 20 20 40 40 72 26 00 00 00 72 15 00 00 | xiver}...r?...s......@@r&...r... |
| 71e0 | 00 72 15 00 00 00 ce 02 00 00 73 c7 00 00 00 f9 80 00 f0 54 02 00 0a 0b 8f 16 89 16 8b 18 80 42 | .r........s........T...........B |
| 7200 | e0 07 10 d0 18 2b d1 07 2b dc 0e 10 d7 0e 1e d1 0e 1e d0 1f 4e d3 0e 4f d0 08 4f e0 0d 0e f2 00 | .....+..+...........N..O..O..... |
| 7220 | 08 05 59 01 88 01 d8 0b 14 d0 0b 1c d8 0c 0e d7 0c 1d d1 0c 1d d4 1d 55 ac 62 af 6e a9 6e b8 51 | ..Y....................U.b.n.n.Q |
| 7240 | c0 01 d3 2e 42 d4 1d 55 d5 0c 55 d8 0d 16 98 24 d1 0d 1e d8 0c 0e d7 0c 1d d1 0c 1d f4 00 02 1e | ....B..U..U....$................ |
| 7260 | 0e dc 20 22 a7 0e a1 0e a8 71 b0 21 d3 20 34 b8 01 b0 73 d1 20 3a f4 03 02 1e 0e f5 00 02 0d 0e | ...".....q.!..4...s..:.......... |
| 7280 | f0 06 00 0e 17 98 25 d2 0d 1f d8 0c 0e d7 0c 1d d1 0c 1d d4 1d 58 b4 12 b7 1b b1 1b b8 51 c0 01 | ......%..............X.......Q.. |
| 72a0 | d3 31 42 d4 1d 58 d5 0c 58 f0 11 08 05 59 01 f0 14 00 0c 0e 80 49 72 30 00 00 00 63 02 00 00 00 | .1B..X..X....Y.......Ir0...c.... |
| 72c0 | 00 00 00 00 00 00 00 00 09 00 00 00 03 00 00 00 f3 d2 00 00 00 87 03 97 00 7c 01 80 14 74 01 00 | .........................|...t.. |
| 72e0 | 00 00 00 00 00 00 00 74 03 00 00 00 00 00 00 00 00 7c 00 ab 01 00 00 00 00 00 00 ab 01 00 00 00 | .......t.........|.............. |
| 7300 | 00 00 00 7d 01 7c 00 6a 05 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ab 00 00 00 00 | ...}.|.j........................ |
| 7320 | 00 00 00 7d 02 74 07 00 00 00 00 00 00 00 00 7c 01 ab 01 00 00 00 00 00 00 44 00 5d 31 00 00 8a | ...}.t.........|.........D.]1... |
| 7340 | 03 7c 02 6a 09 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 88 03 66 01 64 01 84 08 74 | .|.j.....................f.d...t |
| 7360 | 0b 00 00 00 00 00 00 00 00 6a 0c 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 7c 02 89 | .........j...................|.. |
| 7380 | 03 64 02 ab 03 00 00 00 00 00 00 44 00 ab 00 00 00 00 00 00 00 ab 01 00 00 00 00 00 00 01 00 8c | .d.........D.................... |
| 73a0 | 33 04 00 7c 02 53 00 29 03 61 46 04 00 00 52 65 74 75 72 6e 73 20 74 68 65 20 74 72 61 6e 73 69 | 3..|.S.).aF...Returns.the.transi |
| 73c0 | 74 69 76 65 20 63 6c 6f 73 75 72 65 20 6f 66 20 61 20 64 69 72 65 63 74 65 64 20 61 63 79 63 6c | tive.closure.of.a.directed.acycl |
| 73e0 | 69 63 20 67 72 61 70 68 2e 0a 0a 20 20 20 20 54 68 69 73 20 66 75 6e 63 74 69 6f 6e 20 69 73 20 | ic.graph.......This.function.is. |
| 7400 | 66 61 73 74 65 72 20 74 68 61 6e 20 74 68 65 20 66 75 6e 63 74 69 6f 6e 20 60 74 72 61 6e 73 69 | faster.than.the.function.`transi |
| 7420 | 74 69 76 65 5f 63 6c 6f 73 75 72 65 60 2c 20 62 75 74 20 66 61 69 6c 73 0a 20 20 20 20 69 66 20 | tive_closure`,.but.fails.....if. |
| 7440 | 74 68 65 20 67 72 61 70 68 20 68 61 73 20 61 20 63 79 63 6c 65 2e 0a 0a 20 20 20 20 54 68 65 20 | the.graph.has.a.cycle.......The. |
| 7460 | 74 72 61 6e 73 69 74 69 76 65 20 63 6c 6f 73 75 72 65 20 6f 66 20 47 20 3d 20 28 56 2c 45 29 20 | transitive.closure.of.G.=.(V,E). |
| 7480 | 69 73 20 61 20 67 72 61 70 68 20 47 2b 20 3d 20 28 56 2c 45 2b 29 20 73 75 63 68 20 74 68 61 74 | is.a.graph.G+.=.(V,E+).such.that |
| 74a0 | 0a 20 20 20 20 66 6f 72 20 61 6c 6c 20 76 2c 20 77 20 69 6e 20 56 20 74 68 65 72 65 20 69 73 20 | .....for.all.v,.w.in.V.there.is. |
| 74c0 | 61 6e 20 65 64 67 65 20 28 76 2c 20 77 29 20 69 6e 20 45 2b 20 69 66 20 61 6e 64 20 6f 6e 6c 79 | an.edge.(v,.w).in.E+.if.and.only |
| 74e0 | 20 69 66 20 74 68 65 72 65 0a 20 20 20 20 69 73 20 61 20 6e 6f 6e 2d 6e 75 6c 6c 20 70 61 74 68 | .if.there.....is.a.non-null.path |
| 7500 | 20 66 72 6f 6d 20 76 20 74 6f 20 77 20 69 6e 20 47 2e 0a 0a 20 20 20 20 50 61 72 61 6d 65 74 65 | .from.v.to.w.in.G.......Paramete |
| 7520 | 72 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 47 20 3a 20 4e 65 74 77 6f 72 | rs.....----------.....G.:.Networ |
| 7540 | 6b 58 20 44 69 47 72 61 70 68 0a 20 20 20 20 20 20 20 20 41 20 64 69 72 65 63 74 65 64 20 61 63 | kX.DiGraph.........A.directed.ac |
| 7560 | 79 63 6c 69 63 20 67 72 61 70 68 20 28 44 41 47 29 0a 0a 20 20 20 20 74 6f 70 6f 5f 6f 72 64 65 | yclic.graph.(DAG)......topo_orde |
| 7580 | 72 3a 20 6c 69 73 74 20 6f 72 20 74 75 70 6c 65 2c 20 6f 70 74 69 6f 6e 61 6c 0a 20 20 20 20 20 | r:.list.or.tuple,.optional...... |
| 75a0 | 20 20 20 41 20 74 6f 70 6f 6c 6f 67 69 63 61 6c 20 6f 72 64 65 72 20 66 6f 72 20 47 20 28 69 66 | ...A.topological.order.for.G.(if |
| 75c0 | 20 4e 6f 6e 65 2c 20 74 68 65 20 66 75 6e 63 74 69 6f 6e 20 77 69 6c 6c 20 63 6f 6d 70 75 74 65 | .None,.the.function.will.compute |
| 75e0 | 20 6f 6e 65 29 0a 0a 20 20 20 20 52 65 74 75 72 6e 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 0a 20 | .one)......Returns.....-------.. |
| 7600 | 20 20 20 4e 65 74 77 6f 72 6b 58 20 44 69 47 72 61 70 68 0a 20 20 20 20 20 20 20 20 54 68 65 20 | ...NetworkX.DiGraph.........The. |
| 7620 | 74 72 61 6e 73 69 74 69 76 65 20 63 6c 6f 73 75 72 65 20 6f 66 20 60 47 60 0a 0a 20 20 20 20 52 | transitive.closure.of.`G`......R |
| 7640 | 61 69 73 65 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 4e 65 74 77 6f 72 6b 58 4e 6f 74 | aises.....------.....NetworkXNot |
| 7660 | 49 6d 70 6c 65 6d 65 6e 74 65 64 0a 20 20 20 20 20 20 20 20 49 66 20 60 47 60 20 69 73 20 6e 6f | Implemented.........If.`G`.is.no |
| 7680 | 74 20 64 69 72 65 63 74 65 64 0a 20 20 20 20 4e 65 74 77 6f 72 6b 58 55 6e 66 65 61 73 69 62 6c | t.directed.....NetworkXUnfeasibl |
| 76a0 | 65 0a 20 20 20 20 20 20 20 20 49 66 20 60 47 60 20 68 61 73 20 61 20 63 79 63 6c 65 0a 0a 20 20 | e.........If.`G`.has.a.cycle.... |
| 76c0 | 20 20 45 78 61 6d 70 6c 65 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 3e 3e 3e 20 | ..Examples.....--------.....>>>. |
| 76e0 | 44 47 20 3d 20 6e 78 2e 44 69 47 72 61 70 68 28 5b 28 31 2c 20 32 29 2c 20 28 32 2c 20 33 29 5d | DG.=.nx.DiGraph([(1,.2),.(2,.3)] |
| 7700 | 29 0a 20 20 20 20 3e 3e 3e 20 54 43 20 3d 20 6e 78 2e 74 72 61 6e 73 69 74 69 76 65 5f 63 6c 6f | ).....>>>.TC.=.nx.transitive_clo |
| 7720 | 73 75 72 65 5f 64 61 67 28 44 47 29 0a 20 20 20 20 3e 3e 3e 20 54 43 2e 65 64 67 65 73 28 29 0a | sure_dag(DG).....>>>.TC.edges(). |
| 7740 | 20 20 20 20 4f 75 74 45 64 67 65 56 69 65 77 28 5b 28 31 2c 20 32 29 2c 20 28 31 2c 20 33 29 2c | ....OutEdgeView([(1,.2),.(1,.3), |
| 7760 | 20 28 32 2c 20 33 29 5d 29 0a 0a 20 20 20 20 4e 6f 74 65 73 0a 20 20 20 20 2d 2d 2d 2d 2d 0a 20 | .(2,.3)])......Notes.....-----.. |
| 7780 | 20 20 20 54 68 69 73 20 61 6c 67 6f 72 69 74 68 6d 20 69 73 20 70 72 6f 62 61 62 6c 79 20 73 69 | ...This.algorithm.is.probably.si |
| 77a0 | 6d 70 6c 65 20 65 6e 6f 75 67 68 20 74 6f 20 62 65 20 77 65 6c 6c 2d 6b 6e 6f 77 6e 20 62 75 74 | mple.enough.to.be.well-known.but |
| 77c0 | 20 49 20 64 69 64 6e 27 74 20 66 69 6e 64 0a 20 20 20 20 61 20 6d 65 6e 74 69 6f 6e 20 69 6e 20 | .I.didn't.find.....a.mention.in. |
| 77e0 | 74 68 65 20 6c 69 74 65 72 61 74 75 72 65 2e 0a 20 20 20 20 63 01 00 00 00 00 00 00 00 00 00 00 | the.literature......c........... |
| 7800 | 00 03 00 00 00 33 00 00 00 f3 26 00 00 00 95 01 4b 00 01 00 97 00 7c 00 5d 08 00 00 7d 01 89 02 | .....3....&.....K.....|.]...}... |
| 7820 | 7c 01 66 02 96 01 97 01 01 00 8c 0a 04 00 79 00 ad 03 77 01 72 4a 00 00 00 72 4b 00 00 00 29 03 | |.f...........y...w.rJ...rK...). |
| 7840 | 72 5f 00 00 00 72 77 00 00 00 72 3f 00 00 00 73 03 00 00 00 20 20 80 72 26 00 00 00 72 61 00 00 | r_...rw...r?...s.......r&...ra.. |
| 7860 | 00 7a 29 74 72 61 6e 73 69 74 69 76 65 5f 63 6c 6f 73 75 72 65 5f 64 61 67 2e 3c 6c 6f 63 61 6c | .z)transitive_closure_dag.<local |
| 7880 | 73 3e 2e 3c 67 65 6e 65 78 70 72 3e 5e 03 00 00 73 15 00 00 00 f8 e8 00 f8 80 00 d2 19 4f a0 51 | s>.<genexpr>^...s............O.Q |
| 78a0 | 98 31 98 61 9c 26 d1 19 4f f9 f3 04 00 00 00 83 0e 11 01 e9 02 00 00 00 29 07 72 65 00 00 00 72 | .1.a.&..O...............).re...r |
| 78c0 | 0f 00 00 00 72 82 00 00 00 da 08 72 65 76 65 72 73 65 64 72 83 00 00 00 72 1f 00 00 00 da 17 64 | ....r......reversedr....r......d |
| 78e0 | 65 73 63 65 6e 64 61 6e 74 73 5f 61 74 5f 64 69 73 74 61 6e 63 65 29 04 72 22 00 00 00 da 0a 74 | escendants_at_distance).r".....t |
| 7900 | 6f 70 6f 5f 6f 72 64 65 72 72 7d 00 00 00 72 3f 00 00 00 73 04 00 00 00 20 20 20 40 72 26 00 00 | opo_orderr}...r?...s.......@r&.. |
| 7920 | 00 72 16 00 00 00 72 16 00 00 00 2a 03 00 00 73 69 00 00 00 f8 80 00 f0 58 01 00 08 12 d0 07 19 | .r....r....*...si.......X....... |
| 7940 | dc 15 19 d4 1a 2a a8 31 d3 1a 2d d3 15 2e 88 0a e0 09 0a 8f 16 89 16 8b 18 80 42 f4 08 00 0e 16 | .....*.1..-...............B..... |
| 7960 | 90 6a d3 0d 21 f2 00 01 05 50 01 88 01 d8 08 0a d7 08 19 d1 08 19 d3 19 4f ac 22 d7 2a 44 d1 2a | .j..!....P..............O.".*D.* |
| 7980 | 44 c0 52 c8 11 c8 41 d3 2a 4e d4 19 4f d5 08 4f f0 03 01 05 50 01 f0 06 00 0c 0e 80 49 72 30 00 | D.R...A.*N..O..O....P.......Ir0. |
| 79a0 | 00 00 29 01 72 79 00 00 00 63 01 00 00 00 00 00 00 00 00 00 00 00 08 00 00 00 03 00 00 00 f3 08 | ..).ry...c...................... |
| 79c0 | 02 00 00 87 09 97 00 74 01 00 00 00 00 00 00 00 00 7c 00 ab 01 00 00 00 00 00 00 73 17 64 01 7d | .......t.........|.........s.d.} |
| 79e0 | 01 74 03 00 00 00 00 00 00 00 00 6a 04 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 7c | .t.........j...................| |
| 7a00 | 01 ab 01 00 00 00 00 00 00 82 01 74 03 00 00 00 00 00 00 00 00 6a 06 00 00 00 00 00 00 00 00 00 | ...........t.........j.......... |
| 7a20 | 00 00 00 00 00 00 00 00 00 ab 00 00 00 00 00 00 00 7d 02 7c 02 6a 09 00 00 00 00 00 00 00 00 00 | .................}.|.j.......... |
| 7a40 | 00 00 00 00 00 00 00 00 00 7c 00 6a 0b 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ab | .........|.j.................... |
| 7a60 | 00 00 00 00 00 00 00 ab 01 00 00 00 00 00 00 01 00 69 00 7d 03 74 0d 00 00 00 00 00 00 00 00 7c | .................i.}.t.........| |
| 7a80 | 00 6a 0e 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ab 01 00 00 00 00 00 00 7d 04 7c | .j...........................}.| |
| 7aa0 | 00 44 00 5d 89 00 00 8a 09 74 11 00 00 00 00 00 00 00 00 7c 00 89 09 19 00 00 00 ab 01 00 00 00 | .D.].....t.........|............ |
| 7ac0 | 00 00 00 7d 05 7c 00 89 09 19 00 00 00 44 00 5d 57 00 00 7d 06 7c 06 7c 05 76 00 72 38 7c 06 7c | ...}.|.......D.]W..}.|.|.v.r8|.| |
| 7ae0 | 03 76 01 72 2c 74 03 00 00 00 00 00 00 00 00 6a 12 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 | .v.r,t.........j................ |
| 7b00 | 00 00 00 7c 00 7c 06 ab 02 00 00 00 00 00 00 44 00 8f 07 8f 08 63 03 68 00 63 02 5d 07 00 00 5c | ...|.|.........D.....c.h.c.]...\ |
| 7b20 | 02 00 00 7d 07 7d 08 7c 08 92 02 8c 09 04 00 63 03 7d 08 7d 07 7c 03 7c 06 3c 00 00 00 7c 05 7c | ...}.}.|.......c.}.}.|.|.<...|.| |
| 7b40 | 03 7c 06 19 00 00 00 7a 17 00 00 7d 05 7c 04 7c 06 78 02 78 02 19 00 00 00 64 02 7a 17 00 00 63 | .|.....z...}.|.|.x.x.....d.z...c |
| 7b60 | 03 63 02 3c 00 00 00 7c 04 7c 06 19 00 00 00 64 03 6b 28 00 00 73 01 8c 55 7c 03 7c 06 3d 00 8c | .c.<...|.|.....d.k(..s..U|.|.=.. |
| 7b80 | 59 04 00 7c 02 6a 15 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 88 09 66 01 64 04 84 | Y..|.j.....................f.d.. |
| 7ba0 | 08 7c 05 44 00 ab 00 00 00 00 00 00 00 ab 01 00 00 00 00 00 00 01 00 8c 8b 04 00 7c 02 53 00 63 | .|.D.......................|.S.c |
| 7bc0 | 02 01 00 63 03 7d 08 7d 07 77 00 29 05 61 cc 05 00 00 52 65 74 75 72 6e 73 20 74 72 61 6e 73 69 | ...c.}.}.w.).a....Returns.transi |
| 7be0 | 74 69 76 65 20 72 65 64 75 63 74 69 6f 6e 20 6f 66 20 61 20 64 69 72 65 63 74 65 64 20 67 72 61 | tive.reduction.of.a.directed.gra |
| 7c00 | 70 68 0a 0a 20 20 20 20 54 68 65 20 74 72 61 6e 73 69 74 69 76 65 20 72 65 64 75 63 74 69 6f 6e | ph......The.transitive.reduction |
| 7c20 | 20 6f 66 20 47 20 3d 20 28 56 2c 45 29 20 69 73 20 61 20 67 72 61 70 68 20 47 2d 20 3d 20 28 56 | .of.G.=.(V,E).is.a.graph.G-.=.(V |
| 7c40 | 2c 45 2d 29 20 73 75 63 68 20 74 68 61 74 0a 20 20 20 20 66 6f 72 20 61 6c 6c 20 76 2c 77 20 69 | ,E-).such.that.....for.all.v,w.i |
| 7c60 | 6e 20 56 20 74 68 65 72 65 20 69 73 20 61 6e 20 65 64 67 65 20 28 76 2c 77 29 20 69 6e 20 45 2d | n.V.there.is.an.edge.(v,w).in.E- |
| 7c80 | 20 69 66 20 61 6e 64 20 6f 6e 6c 79 20 69 66 20 28 76 2c 77 29 20 69 73 0a 20 20 20 20 69 6e 20 | .if.and.only.if.(v,w).is.....in. |
| 7ca0 | 45 20 61 6e 64 20 74 68 65 72 65 20 69 73 20 6e 6f 20 70 61 74 68 20 66 72 6f 6d 20 76 20 74 6f | E.and.there.is.no.path.from.v.to |
| 7cc0 | 20 77 20 69 6e 20 47 20 77 69 74 68 20 6c 65 6e 67 74 68 20 67 72 65 61 74 65 72 20 74 68 61 6e | .w.in.G.with.length.greater.than |
| 7ce0 | 20 31 2e 0a 0a 20 20 20 20 50 61 72 61 6d 65 74 65 72 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d | .1.......Parameters.....-------- |
| 7d00 | 2d 2d 0a 20 20 20 20 47 20 3a 20 4e 65 74 77 6f 72 6b 58 20 44 69 47 72 61 70 68 0a 20 20 20 20 | --.....G.:.NetworkX.DiGraph..... |
| 7d20 | 20 20 20 20 41 20 64 69 72 65 63 74 65 64 20 61 63 79 63 6c 69 63 20 67 72 61 70 68 20 28 44 41 | ....A.directed.acyclic.graph.(DA |
| 7d40 | 47 29 0a 0a 20 20 20 20 52 65 74 75 72 6e 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 | G)......Returns.....-------..... |
| 7d60 | 4e 65 74 77 6f 72 6b 58 20 44 69 47 72 61 70 68 0a 20 20 20 20 20 20 20 20 54 68 65 20 74 72 61 | NetworkX.DiGraph.........The.tra |
| 7d80 | 6e 73 69 74 69 76 65 20 72 65 64 75 63 74 69 6f 6e 20 6f 66 20 60 47 60 0a 0a 20 20 20 20 52 61 | nsitive.reduction.of.`G`......Ra |
| 7da0 | 69 73 65 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 4e 65 74 77 6f 72 6b 58 45 72 72 6f | ises.....------.....NetworkXErro |
| 7dc0 | 72 0a 20 20 20 20 20 20 20 20 49 66 20 60 47 60 20 69 73 20 6e 6f 74 20 61 20 64 69 72 65 63 74 | r.........If.`G`.is.not.a.direct |
| 7de0 | 65 64 20 61 63 79 63 6c 69 63 20 67 72 61 70 68 20 28 44 41 47 29 20 74 72 61 6e 73 69 74 69 76 | ed.acyclic.graph.(DAG).transitiv |
| 7e00 | 65 20 72 65 64 75 63 74 69 6f 6e 20 69 73 0a 20 20 20 20 20 20 20 20 6e 6f 74 20 75 6e 69 71 75 | e.reduction.is.........not.uniqu |
| 7e20 | 65 6c 79 20 64 65 66 69 6e 65 64 20 61 6e 64 20 61 20 3a 65 78 63 3a 60 4e 65 74 77 6f 72 6b 58 | ely.defined.and.a.:exc:`NetworkX |
| 7e40 | 45 72 72 6f 72 60 20 65 78 63 65 70 74 69 6f 6e 20 69 73 20 72 61 69 73 65 64 2e 0a 0a 20 20 20 | Error`.exception.is.raised...... |
| 7e60 | 20 45 78 61 6d 70 6c 65 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 54 6f 20 70 65 | .Examples.....--------.....To.pe |
| 7e80 | 72 66 6f 72 6d 20 74 72 61 6e 73 69 74 69 76 65 20 72 65 64 75 63 74 69 6f 6e 20 6f 6e 20 61 20 | rform.transitive.reduction.on.a. |
| 7ea0 | 44 69 47 72 61 70 68 3a 0a 0a 20 20 20 20 3e 3e 3e 20 44 47 20 3d 20 6e 78 2e 44 69 47 72 61 70 | DiGraph:......>>>.DG.=.nx.DiGrap |
| 7ec0 | 68 28 5b 28 31 2c 20 32 29 2c 20 28 32 2c 20 33 29 2c 20 28 31 2c 20 33 29 5d 29 0a 20 20 20 20 | h([(1,.2),.(2,.3),.(1,.3)])..... |
| 7ee0 | 3e 3e 3e 20 54 52 20 3d 20 6e 78 2e 74 72 61 6e 73 69 74 69 76 65 5f 72 65 64 75 63 74 69 6f 6e | >>>.TR.=.nx.transitive_reduction |
| 7f00 | 28 44 47 29 0a 20 20 20 20 3e 3e 3e 20 6c 69 73 74 28 54 52 2e 65 64 67 65 73 29 0a 20 20 20 20 | (DG).....>>>.list(TR.edges)..... |
| 7f20 | 5b 28 31 2c 20 32 29 2c 20 28 32 2c 20 33 29 5d 0a 0a 20 20 20 20 54 6f 20 61 76 6f 69 64 20 75 | [(1,.2),.(2,.3)]......To.avoid.u |
| 7f40 | 6e 6e 65 63 65 73 73 61 72 79 20 64 61 74 61 20 63 6f 70 69 65 73 2c 20 74 68 69 73 20 69 6d 70 | nnecessary.data.copies,.this.imp |
| 7f60 | 6c 65 6d 65 6e 74 61 74 69 6f 6e 20 64 6f 65 73 20 6e 6f 74 20 72 65 74 75 72 6e 20 61 0a 20 20 | lementation.does.not.return.a... |
| 7f80 | 20 20 44 69 47 72 61 70 68 20 77 69 74 68 20 6e 6f 64 65 2f 65 64 67 65 20 64 61 74 61 2e 0a 20 | ..DiGraph.with.node/edge.data... |
| 7fa0 | 20 20 20 54 6f 20 70 65 72 66 6f 72 6d 20 74 72 61 6e 73 69 74 69 76 65 20 72 65 64 75 63 74 69 | ...To.perform.transitive.reducti |
| 7fc0 | 6f 6e 20 6f 6e 20 61 20 44 69 47 72 61 70 68 20 61 6e 64 20 74 72 61 6e 73 66 65 72 20 6e 6f 64 | on.on.a.DiGraph.and.transfer.nod |
| 7fe0 | 65 2f 65 64 67 65 20 64 61 74 61 3a 0a 0a 20 20 20 20 3e 3e 3e 20 44 47 20 3d 20 6e 78 2e 44 69 | e/edge.data:......>>>.DG.=.nx.Di |
| 8000 | 47 72 61 70 68 28 29 0a 20 20 20 20 3e 3e 3e 20 44 47 2e 61 64 64 5f 65 64 67 65 73 5f 66 72 6f | Graph().....>>>.DG.add_edges_fro |
| 8020 | 6d 28 5b 28 31 2c 20 32 29 2c 20 28 32 2c 20 33 29 2c 20 28 31 2c 20 33 29 5d 2c 20 63 6f 6c 6f | m([(1,.2),.(2,.3),.(1,.3)],.colo |
| 8040 | 72 3d 22 72 65 64 22 29 0a 20 20 20 20 3e 3e 3e 20 54 52 20 3d 20 6e 78 2e 74 72 61 6e 73 69 74 | r="red").....>>>.TR.=.nx.transit |
| 8060 | 69 76 65 5f 72 65 64 75 63 74 69 6f 6e 28 44 47 29 0a 20 20 20 20 3e 3e 3e 20 54 52 2e 61 64 64 | ive_reduction(DG).....>>>.TR.add |
| 8080 | 5f 6e 6f 64 65 73 5f 66 72 6f 6d 28 44 47 2e 6e 6f 64 65 73 28 64 61 74 61 3d 54 72 75 65 29 29 | _nodes_from(DG.nodes(data=True)) |
| 80a0 | 0a 20 20 20 20 3e 3e 3e 20 54 52 2e 61 64 64 5f 65 64 67 65 73 5f 66 72 6f 6d 28 28 75 2c 20 76 | .....>>>.TR.add_edges_from((u,.v |
| 80c0 | 2c 20 44 47 2e 65 64 67 65 73 5b 75 2c 20 76 5d 29 20 66 6f 72 20 75 2c 20 76 20 69 6e 20 54 52 | ,.DG.edges[u,.v]).for.u,.v.in.TR |
| 80e0 | 2e 65 64 67 65 73 29 0a 20 20 20 20 3e 3e 3e 20 6c 69 73 74 28 54 52 2e 65 64 67 65 73 28 64 61 | .edges).....>>>.list(TR.edges(da |
| 8100 | 74 61 3d 54 72 75 65 29 29 0a 20 20 20 20 5b 28 31 2c 20 32 2c 20 7b 27 63 6f 6c 6f 72 27 3a 20 | ta=True)).....[(1,.2,.{'color':. |
| 8120 | 27 72 65 64 27 7d 29 2c 20 28 32 2c 20 33 2c 20 7b 27 63 6f 6c 6f 72 27 3a 20 27 72 65 64 27 7d | 'red'}),.(2,.3,.{'color':.'red'} |
| 8140 | 29 5d 0a 0a 20 20 20 20 52 65 66 65 72 65 6e 63 65 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 2d | )]......References.....--------- |
| 8160 | 2d 0a 20 20 20 20 68 74 74 70 73 3a 2f 2f 65 6e 2e 77 69 6b 69 70 65 64 69 61 2e 6f 72 67 2f 77 | -.....https://en.wikipedia.org/w |
| 8180 | 69 6b 69 2f 54 72 61 6e 73 69 74 69 76 65 5f 72 65 64 75 63 74 69 6f 6e 0a 0a 20 20 20 20 7a 38 | iki/Transitive_reduction......z8 |
| 81a0 | 44 69 72 65 63 74 65 64 20 41 63 79 63 6c 69 63 20 47 72 61 70 68 20 72 65 71 75 69 72 65 64 20 | Directed.Acyclic.Graph.required. |
| 81c0 | 66 6f 72 20 74 72 61 6e 73 69 74 69 76 65 5f 72 65 64 75 63 74 69 6f 6e 72 34 00 00 00 72 02 00 | for.transitive_reductionr4...r.. |
| 81e0 | 00 00 63 01 00 00 00 00 00 00 00 00 00 00 00 03 00 00 00 33 00 00 00 f3 26 00 00 00 95 01 4b 00 | ..c................3....&.....K. |
| 8200 | 01 00 97 00 7c 00 5d 08 00 00 7d 01 89 02 7c 01 66 02 96 01 97 01 01 00 8c 0a 04 00 79 00 ad 03 | ....|.]...}...|.f...........y... |
| 8220 | 77 01 72 4a 00 00 00 72 4b 00 00 00 29 03 72 5f 00 00 00 72 3f 00 00 00 72 77 00 00 00 73 03 00 | w.rJ...rK...).r_...r?...rw...s.. |
| 8240 | 00 00 20 20 80 72 26 00 00 00 72 61 00 00 00 7a 27 74 72 61 6e 73 69 74 69 76 65 5f 72 65 64 75 | .....r&...ra...z'transitive_redu |
| 8260 | 63 74 69 6f 6e 2e 3c 6c 6f 63 61 6c 73 3e 2e 3c 67 65 6e 65 78 70 72 3e a8 03 00 00 73 15 00 00 | ction.<locals>.<genexpr>....s... |
| 8280 | 00 f8 e8 00 f8 80 00 d2 19 31 a0 51 98 31 98 61 9c 26 d1 19 31 f9 72 88 00 00 00 29 0b 72 13 00 | .........1.Q.1.a.&..1.r....).r.. |
| 82a0 | 00 00 72 1f 00 00 00 72 36 00 00 00 da 07 44 69 47 72 61 70 68 da 0e 61 64 64 5f 6e 6f 64 65 73 | ..r....r6.....DiGraph..add_nodes |
| 82c0 | 5f 66 72 6f 6d da 05 6e 6f 64 65 73 72 63 00 00 00 72 38 00 00 00 da 03 73 65 74 da 09 64 66 73 | _from..nodesrc...r8.....set..dfs |
| 82e0 | 5f 65 64 67 65 73 72 83 00 00 00 29 0a 72 22 00 00 00 72 57 00 00 00 da 02 54 52 72 0d 00 00 00 | _edgesr....).r"...rW.....TRr.... |
| 8300 | da 0b 63 68 65 63 6b 5f 63 6f 75 6e 74 da 06 75 5f 6e 62 72 73 72 3f 00 00 00 da 01 78 da 01 79 | ..check_count..u_nbrsr?.....x..y |
| 8320 | 72 77 00 00 00 73 0a 00 00 00 20 20 20 20 20 20 20 20 20 40 72 26 00 00 00 72 17 00 00 00 72 17 | rw...s.............@r&...r....r. |
| 8340 | 00 00 00 63 03 00 00 73 09 01 00 00 f8 80 00 f4 66 01 00 0c 25 a0 51 d4 0b 27 d8 0e 48 88 03 dc | ...c...s........f...%.Q..'..H... |
| 8360 | 0e 10 d7 0e 1e d1 0e 1e 98 73 d3 0e 23 d0 08 23 dc 09 0b 8f 1a 89 1a 8b 1c 80 42 d8 04 06 d7 04 | .........s..#..#..........B..... |
| 8380 | 15 d1 04 15 90 61 97 67 91 67 93 69 d4 04 20 d8 12 14 80 4b e4 12 16 90 71 97 7b 91 7b d3 12 23 | .....a.g.g.i.......K....q.{.{..# |
| 83a0 | 80 4b d8 0d 0e f2 00 0a 05 32 88 01 dc 11 14 90 51 90 71 91 54 93 19 88 06 d8 11 12 90 31 91 14 | .K.......2......Q.q.T........1.. |
| 83c0 | f2 00 07 09 23 88 41 d8 0f 10 90 46 89 7b d8 13 14 98 4b d1 13 27 dc 34 36 b7 4c b1 4c c0 11 c0 | ....#.A....F.{....K..'.46.L.L... |
| 83e0 | 41 d3 34 46 d7 25 47 a9 44 a8 41 a8 71 a2 61 d3 25 47 90 4b a0 01 91 4e d8 10 16 98 2b a0 61 99 | A.4F.%G.D.A.q.a.%G.K...N....+.a. |
| 8400 | 2e d1 10 28 90 06 d8 0c 17 98 01 8b 4e 98 61 d1 0c 1f 8b 4e d8 0f 1a 98 31 89 7e a0 11 d3 0f 22 | ...(........N.a....N....1.~...." |
| 8420 | d8 14 1f a0 01 91 4e f0 0f 07 09 23 f0 10 00 09 0b d7 08 19 d1 08 19 d3 19 31 a8 26 d4 19 31 d5 | ......N....#.............1.&..1. |
| 8440 | 08 31 f0 15 0a 05 32 f0 16 00 0c 0e 80 49 f9 f3 0d 00 26 48 01 73 06 00 00 00 c2 2a 0c 43 3e 0a | .1....2......I....&H.s.....*.C>. |
| 8460 | 63 02 00 00 00 00 00 00 00 00 00 00 00 06 00 00 00 23 00 00 00 f3 84 01 00 00 4b 00 01 00 97 00 | c................#........K..... |
| 8480 | 7c 01 80 1e 74 01 00 00 00 00 00 00 00 00 74 03 00 00 00 00 00 00 00 00 6a 04 00 00 00 00 00 00 | |...t.........t.........j....... |
| 84a0 | 00 00 00 00 00 00 00 00 00 00 00 00 7c 00 ab 01 00 00 00 00 00 00 ab 01 00 00 00 00 00 00 7d 01 | ............|.................}. |
| 84c0 | 74 03 00 00 00 00 00 00 00 00 6a 06 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 7c 00 | t.........j...................|. |
| 84e0 | 7c 01 ab 02 00 00 00 00 00 00 7d 02 67 00 74 01 00 00 00 00 00 00 00 00 74 09 00 00 00 00 00 00 | |.........}.g.t.........t....... |
| 8500 | 00 00 7c 01 ab 01 00 00 00 00 00 00 ab 01 00 00 00 00 00 00 66 02 67 01 7d 03 7c 03 72 68 7c 03 | ..|.................f.g.}.|.rh|. |
| 8520 | 6a 0b 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ab 00 00 00 00 00 00 00 5c 02 00 00 | j...........................\... |
| 8540 | 7d 04 7d 05 7c 04 96 01 97 01 01 00 7c 05 72 4b 7c 05 6a 0b 00 00 00 00 00 00 00 00 00 00 00 00 | }.}.|.......|.rK|.j............. |
| 8560 | 00 00 00 00 00 00 ab 00 00 00 00 00 00 00 7d 06 7c 04 7c 06 67 01 7a 00 00 00 7d 07 7c 05 44 00 | ..............}.|.|.g.z...}.|.D. |
| 8580 | 8f 08 63 02 67 00 63 02 5d 14 00 00 7d 08 7c 08 7c 02 7c 06 19 00 00 00 76 00 72 01 8c 0b 7c 06 | ..c.g.c.]...}.|.|.|.....v.r...|. |
| 85a0 | 7c 02 7c 08 19 00 00 00 76 00 72 01 8c 13 7c 08 91 02 8c 16 04 00 7d 09 7d 08 7c 03 6a 0d 00 00 | |.|.....v.r...|.......}.}.|.j... |
| 85c0 | 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 7c 07 7c 09 66 02 ab 01 00 00 00 00 00 00 01 00 | ................|.|.f........... |
| 85e0 | 7c 05 72 01 8c 4b 7c 03 72 01 8c 67 79 01 79 01 63 02 01 00 63 02 7d 08 77 00 ad 03 77 01 29 02 | |.r..K|.r..gy.y.c...c.}.w...w.). |
| 8600 | 61 b0 04 00 00 47 65 6e 65 72 61 74 65 73 20 61 6e 74 69 63 68 61 69 6e 73 20 66 72 6f 6d 20 61 | a....Generates.antichains.from.a |
| 8620 | 20 64 69 72 65 63 74 65 64 20 61 63 79 63 6c 69 63 20 67 72 61 70 68 20 28 44 41 47 29 2e 0a 0a | .directed.acyclic.graph.(DAG)... |
| 8640 | 20 20 20 20 41 6e 20 61 6e 74 69 63 68 61 69 6e 20 69 73 20 61 20 73 75 62 73 65 74 20 6f 66 20 | ....An.antichain.is.a.subset.of. |
| 8660 | 61 20 70 61 72 74 69 61 6c 6c 79 20 6f 72 64 65 72 65 64 20 73 65 74 20 73 75 63 68 20 74 68 61 | a.partially.ordered.set.such.tha |
| 8680 | 74 20 61 6e 79 0a 20 20 20 20 74 77 6f 20 65 6c 65 6d 65 6e 74 73 20 69 6e 20 74 68 65 20 73 75 | t.any.....two.elements.in.the.su |
| 86a0 | 62 73 65 74 20 61 72 65 20 69 6e 63 6f 6d 70 61 72 61 62 6c 65 2e 0a 0a 20 20 20 20 50 61 72 61 | bset.are.incomparable.......Para |
| 86c0 | 6d 65 74 65 72 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 47 20 3a 20 4e 65 | meters.....----------.....G.:.Ne |
| 86e0 | 74 77 6f 72 6b 58 20 44 69 47 72 61 70 68 0a 20 20 20 20 20 20 20 20 41 20 64 69 72 65 63 74 65 | tworkX.DiGraph.........A.directe |
| 8700 | 64 20 61 63 79 63 6c 69 63 20 67 72 61 70 68 20 28 44 41 47 29 0a 0a 20 20 20 20 74 6f 70 6f 5f | d.acyclic.graph.(DAG)......topo_ |
| 8720 | 6f 72 64 65 72 3a 20 6c 69 73 74 20 6f 72 20 74 75 70 6c 65 2c 20 6f 70 74 69 6f 6e 61 6c 0a 20 | order:.list.or.tuple,.optional.. |
| 8740 | 20 20 20 20 20 20 20 41 20 74 6f 70 6f 6c 6f 67 69 63 61 6c 20 6f 72 64 65 72 20 66 6f 72 20 47 | .......A.topological.order.for.G |
| 8760 | 20 28 69 66 20 4e 6f 6e 65 2c 20 74 68 65 20 66 75 6e 63 74 69 6f 6e 20 77 69 6c 6c 20 63 6f 6d | .(if.None,.the.function.will.com |
| 8780 | 70 75 74 65 20 6f 6e 65 29 0a 0a 20 20 20 20 59 69 65 6c 64 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d | pute.one)......Yields.....------ |
| 87a0 | 0a 20 20 20 20 61 6e 74 69 63 68 61 69 6e 20 3a 20 6c 69 73 74 0a 20 20 20 20 20 20 20 20 61 20 | .....antichain.:.list.........a. |
| 87c0 | 6c 69 73 74 20 6f 66 20 6e 6f 64 65 73 20 69 6e 20 60 47 60 20 72 65 70 72 65 73 65 6e 74 69 6e | list.of.nodes.in.`G`.representin |
| 87e0 | 67 20 61 6e 20 61 6e 74 69 63 68 61 69 6e 0a 0a 20 20 20 20 52 61 69 73 65 73 0a 20 20 20 20 2d | g.an.antichain......Raises.....- |
| 8800 | 2d 2d 2d 2d 2d 0a 20 20 20 20 4e 65 74 77 6f 72 6b 58 4e 6f 74 49 6d 70 6c 65 6d 65 6e 74 65 64 | -----.....NetworkXNotImplemented |
| 8820 | 0a 20 20 20 20 20 20 20 20 49 66 20 60 47 60 20 69 73 20 6e 6f 74 20 64 69 72 65 63 74 65 64 0a | .........If.`G`.is.not.directed. |
| 8840 | 0a 20 20 20 20 4e 65 74 77 6f 72 6b 58 55 6e 66 65 61 73 69 62 6c 65 0a 20 20 20 20 20 20 20 20 | .....NetworkXUnfeasible......... |
| 8860 | 49 66 20 60 47 60 20 63 6f 6e 74 61 69 6e 73 20 61 20 63 79 63 6c 65 0a 0a 20 20 20 20 45 78 61 | If.`G`.contains.a.cycle......Exa |
| 8880 | 6d 70 6c 65 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 3e 3e 3e 20 44 47 20 3d 20 | mples.....--------.....>>>.DG.=. |
| 88a0 | 6e 78 2e 44 69 47 72 61 70 68 28 5b 28 31 2c 20 32 29 2c 20 28 31 2c 20 33 29 5d 29 0a 20 20 20 | nx.DiGraph([(1,.2),.(1,.3)]).... |
| 88c0 | 20 3e 3e 3e 20 6c 69 73 74 28 6e 78 2e 61 6e 74 69 63 68 61 69 6e 73 28 44 47 29 29 0a 20 20 20 | .>>>.list(nx.antichains(DG)).... |
| 88e0 | 20 5b 5b 5d 2c 20 5b 33 5d 2c 20 5b 32 5d 2c 20 5b 32 2c 20 33 5d 2c 20 5b 31 5d 5d 0a 0a 20 20 | .[[],.[3],.[2],.[2,.3],.[1]].... |
| 8900 | 20 20 4e 6f 74 65 73 0a 20 20 20 20 2d 2d 2d 2d 2d 0a 20 20 20 20 54 68 69 73 20 66 75 6e 63 74 | ..Notes.....-----.....This.funct |
| 8920 | 69 6f 6e 20 77 61 73 20 6f 72 69 67 69 6e 61 6c 6c 79 20 64 65 76 65 6c 6f 70 65 64 20 62 79 20 | ion.was.originally.developed.by. |
| 8940 | 50 65 74 65 72 20 4a 69 70 73 65 6e 20 61 6e 64 20 46 72 61 6e 63 6f 20 53 61 6c 69 6f 6c 61 0a | Peter.Jipsen.and.Franco.Saliola. |
| 8960 | 20 20 20 20 66 6f 72 20 74 68 65 20 53 41 47 45 20 70 72 6f 6a 65 63 74 2e 20 49 74 27 73 20 69 | ....for.the.SAGE.project..It's.i |
| 8980 | 6e 63 6c 75 64 65 64 20 69 6e 20 4e 65 74 77 6f 72 6b 58 20 77 69 74 68 20 70 65 72 6d 69 73 73 | ncluded.in.NetworkX.with.permiss |
| 89a0 | 69 6f 6e 20 66 72 6f 6d 20 74 68 65 0a 20 20 20 20 61 75 74 68 6f 72 73 2e 20 4f 72 69 67 69 6e | ion.from.the.....authors..Origin |
| 89c0 | 61 6c 20 53 41 47 45 20 63 6f 64 65 20 61 74 3a 0a 0a 20 20 20 20 68 74 74 70 73 3a 2f 2f 67 69 | al.SAGE.code.at:......https://gi |
| 89e0 | 74 68 75 62 2e 63 6f 6d 2f 73 61 67 65 6d 61 74 68 2f 73 61 67 65 2f 62 6c 6f 62 2f 6d 61 73 74 | thub.com/sagemath/sage/blob/mast |
| 8a00 | 65 72 2f 73 72 63 2f 73 61 67 65 2f 63 6f 6d 62 69 6e 61 74 2f 70 6f 73 65 74 73 2f 68 61 73 73 | er/src/sage/combinat/posets/hass |
| 8a20 | 65 5f 64 69 61 67 72 61 6d 2e 70 79 0a 0a 20 20 20 20 52 65 66 65 72 65 6e 63 65 73 0a 20 20 20 | e_diagram.py......References.... |
| 8a40 | 20 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 2e 2e 20 5b 31 5d 20 46 72 65 65 20 4c 61 74 74 | .----------........[1].Free.Latt |
| 8a60 | 69 63 65 73 2c 20 62 79 20 52 2e 20 46 72 65 65 73 65 2c 20 4a 2e 20 4a 65 7a 65 6b 20 61 6e 64 | ices,.by.R..Freese,.J..Jezek.and |
| 8a80 | 20 4a 2e 20 42 2e 20 4e 61 74 69 6f 6e 2c 0a 20 20 20 20 20 20 20 41 4d 53 2c 20 56 6f 6c 20 34 | .J..B..Nation,........AMS,.Vol.4 |
| 8aa0 | 32 2c 20 31 39 39 35 2c 20 70 2e 20 32 32 36 2e 0a 20 20 20 20 4e 29 07 72 65 00 00 00 72 1f 00 | 2,.1995,.p..226......N).re...r.. |
| 8ac0 | 00 00 72 0f 00 00 00 72 16 00 00 00 72 8a 00 00 00 72 66 00 00 00 72 3d 00 00 00 29 0a 72 22 00 | ..r....r....r....rf...r=...).r". |
| 8ae0 | 00 00 72 8c 00 00 00 72 7d 00 00 00 da 11 61 6e 74 69 63 68 61 69 6e 73 5f 73 74 61 63 6b 73 da | ..r....r}.....antichains_stacks. |
| 8b00 | 09 61 6e 74 69 63 68 61 69 6e da 05 73 74 61 63 6b 72 97 00 00 00 da 0d 6e 65 77 5f 61 6e 74 69 | .antichain..stackr......new_anti |
| 8b20 | 63 68 61 69 6e da 01 74 da 09 6e 65 77 5f 73 74 61 63 6b 73 0a 00 00 00 20 20 20 20 20 20 20 20 | chain..t..new_stacks............ |
| 8b40 | 20 20 72 26 00 00 00 72 18 00 00 00 72 18 00 00 00 ac 03 00 00 73 ce 00 00 00 e8 00 f8 80 00 f0 | ..r&...r....r........s.......... |
| 8b60 | 60 01 00 08 12 d0 07 19 dc 15 19 9c 22 d7 1a 2d d1 1a 2d a8 61 d3 1a 30 d3 15 31 88 0a e4 09 0b | `..........."..-..-.a..0..1..... |
| 8b80 | d7 09 22 d1 09 22 a0 31 a0 6a d3 09 31 80 42 d8 1a 1c 9c 64 a4 38 a8 4a d3 23 37 d3 1e 38 d0 19 | .."..".1.j..1.B....d.8.J.#7..8.. |
| 8ba0 | 39 d0 18 3a d0 04 15 e1 0a 1b d8 1d 2e d7 1d 32 d1 1d 32 d3 1d 34 d1 08 1a 88 19 90 45 f0 08 00 | 9..:...........2..2..4......E... |
| 8bc0 | 0f 18 8a 0f d9 0e 13 d8 10 15 97 09 91 09 93 0b 88 41 d8 1c 25 a8 11 a8 03 99 4f 88 4d d8 24 29 | .................A..%.....O.M.$) |
| 8be0 | d6 18 50 98 71 b0 31 b8 02 b8 31 b9 05 b2 3a c0 31 c8 02 c8 31 c9 05 c2 3a 9a 11 d0 18 50 88 49 | ..P.q.1...1...:.1...1...:....P.I |
| 8c00 | d0 18 50 d8 0c 1d d7 0c 24 d1 0c 24 a0 6d b0 59 d0 25 3f d4 0c 40 f2 09 00 0f 14 f4 0d 00 0b 1c | ..P.....$..$.m.Y.%?..@.......... |
| 8c20 | f9 f2 12 00 19 51 01 f9 73 2a 00 00 00 82 42 03 43 00 01 c2 05 0c 42 3b 04 c2 12 07 42 3b 04 c2 | .....Q..s*....B.C.....B;....B;.. |
| 8c40 | 1a 04 42 3b 04 c2 1e 17 43 00 01 c2 36 02 43 00 01 c2 39 07 43 00 01 da 06 77 65 69 67 68 74 da | ..B;....C...6.C...9.C....weight. |
| 8c60 | 0e 64 65 66 61 75 6c 74 5f 77 65 69 67 68 74 29 01 da 0a 65 64 67 65 5f 61 74 74 72 73 63 04 00 | .default_weight)...edge_attrsc.. |
| 8c80 | 00 00 00 00 00 00 00 00 00 00 0b 00 00 00 03 00 00 00 f3 30 02 00 00 87 01 87 02 87 0a 97 00 7c | ...................0...........| |
| 8ca0 | 00 73 02 67 00 53 00 7c 03 80 15 74 01 00 00 00 00 00 00 00 00 6a 02 00 00 00 00 00 00 00 00 00 | .s.g.S.|...t.........j.......... |
| 8cc0 | 00 00 00 00 00 00 00 00 00 7c 00 ab 01 00 00 00 00 00 00 7d 03 69 00 8a 0a 7c 03 44 00 5d a0 00 | .........|.........}.i...|.D.].. |
| 8ce0 | 00 7d 04 7c 00 6a 04 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 7c 04 19 00 00 00 6a | .}.|.j...................|.....j |
| 8d00 | 07 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ab 00 00 00 00 00 00 00 44 00 8f 05 8f | ...........................D.... |
| 8d20 | 06 63 03 67 00 63 02 5d 51 00 00 5c 02 00 00 7d 05 7d 06 89 0a 7c 05 19 00 00 00 64 02 19 00 00 | .c.g.c.]Q..\...}.}...|.....d.... |
| 8d40 | 00 7c 00 6a 09 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ab 00 00 00 00 00 00 00 72 | .|.j...........................r |
| 8d60 | 1f 74 0b 00 00 00 00 00 00 00 00 7c 06 6a 0d 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 | .t.........|.j.................. |
| 8d80 | 00 ab 00 00 00 00 00 00 00 88 02 88 01 66 02 64 03 84 08 ac 04 ab 02 00 00 00 00 00 00 6e 01 7c | .............f.d.............n.| |
| 8da0 | 06 6a 0f 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 89 01 89 02 ab 02 00 00 00 00 00 | .j.............................. |
| 8dc0 | 00 7a 00 00 00 7c 05 66 02 91 02 8c 53 04 00 7d 07 7d 05 7d 06 7c 07 72 0e 74 0b 00 00 00 00 00 | .z...|.f....S..}.}.}.|.r.t...... |
| 8de0 | 00 00 00 7c 07 64 05 84 00 ac 04 ab 02 00 00 00 00 00 00 6e 03 64 02 7c 04 66 02 7d 08 7c 08 64 | ...|.d.............n.d.|.f.}.|.d |
| 8e00 | 02 19 00 00 00 64 02 6b 5c 00 00 72 02 7c 08 6e 03 64 02 7c 04 66 02 89 0a 7c 04 3c 00 00 00 8c | .....d.k\..r.|.n.d.|.f...|.<.... |
| 8e20 | a2 04 00 64 01 7d 05 74 0b 00 00 00 00 00 00 00 00 89 0a 88 0a 66 01 64 06 84 08 ac 04 ab 02 00 | ...d.}.t.............f.d........ |
| 8e40 | 00 00 00 00 00 7d 04 67 00 7d 09 7c 05 7c 04 6b 37 00 00 72 21 7c 09 6a 11 00 00 00 00 00 00 00 | .....}.g.}.|.|.k7..r!|.j........ |
| 8e60 | 00 00 00 00 00 00 00 00 00 00 00 7c 04 ab 01 00 00 00 00 00 00 01 00 7c 04 7d 05 89 0a 7c 04 19 | ...........|...........|.}...|.. |
| 8e80 | 00 00 00 64 07 19 00 00 00 7d 04 7c 05 7c 04 6b 37 00 00 72 01 8c 21 7c 09 6a 13 00 00 00 00 00 | ...d.....}.|.|.k7..r..!|.j...... |
| 8ea0 | 00 00 00 00 00 00 00 00 00 00 00 00 00 ab 00 00 00 00 00 00 00 01 00 7c 09 53 00 63 02 01 00 63 | .......................|.S.c...c |
| 8ec0 | 03 7d 06 7d 05 77 00 29 08 61 a3 05 00 00 52 65 74 75 72 6e 73 20 74 68 65 20 6c 6f 6e 67 65 73 | .}.}.w.).a....Returns.the.longes |
| 8ee0 | 74 20 70 61 74 68 20 69 6e 20 61 20 64 69 72 65 63 74 65 64 20 61 63 79 63 6c 69 63 20 67 72 61 | t.path.in.a.directed.acyclic.gra |
| 8f00 | 70 68 20 28 44 41 47 29 2e 0a 0a 20 20 20 20 49 66 20 60 47 60 20 68 61 73 20 65 64 67 65 73 20 | ph.(DAG).......If.`G`.has.edges. |
| 8f20 | 77 69 74 68 20 60 77 65 69 67 68 74 60 20 61 74 74 72 69 62 75 74 65 20 74 68 65 20 65 64 67 65 | with.`weight`.attribute.the.edge |
| 8f40 | 20 64 61 74 61 20 61 72 65 20 75 73 65 64 20 61 73 0a 20 20 20 20 77 65 69 67 68 74 20 76 61 6c | .data.are.used.as.....weight.val |
| 8f60 | 75 65 73 2e 0a 0a 20 20 20 20 50 61 72 61 6d 65 74 65 72 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d | ues.......Parameters.....------- |
| 8f80 | 2d 2d 2d 0a 20 20 20 20 47 20 3a 20 4e 65 74 77 6f 72 6b 58 20 44 69 47 72 61 70 68 0a 20 20 20 | ---.....G.:.NetworkX.DiGraph.... |
| 8fa0 | 20 20 20 20 20 41 20 64 69 72 65 63 74 65 64 20 61 63 79 63 6c 69 63 20 67 72 61 70 68 20 28 44 | .....A.directed.acyclic.graph.(D |
| 8fc0 | 41 47 29 0a 0a 20 20 20 20 77 65 69 67 68 74 20 3a 20 73 74 72 2c 20 6f 70 74 69 6f 6e 61 6c 0a | AG)......weight.:.str,.optional. |
| 8fe0 | 20 20 20 20 20 20 20 20 45 64 67 65 20 64 61 74 61 20 6b 65 79 20 74 6f 20 75 73 65 20 66 6f 72 | ........Edge.data.key.to.use.for |
| 9000 | 20 77 65 69 67 68 74 0a 0a 20 20 20 20 64 65 66 61 75 6c 74 5f 77 65 69 67 68 74 20 3a 20 69 6e | .weight......default_weight.:.in |
| 9020 | 74 2c 20 6f 70 74 69 6f 6e 61 6c 0a 20 20 20 20 20 20 20 20 54 68 65 20 77 65 69 67 68 74 20 6f | t,.optional.........The.weight.o |
| 9040 | 66 20 65 64 67 65 73 20 74 68 61 74 20 64 6f 20 6e 6f 74 20 68 61 76 65 20 61 20 77 65 69 67 68 | f.edges.that.do.not.have.a.weigh |
| 9060 | 74 20 61 74 74 72 69 62 75 74 65 0a 0a 20 20 20 20 74 6f 70 6f 5f 6f 72 64 65 72 3a 20 6c 69 73 | t.attribute......topo_order:.lis |
| 9080 | 74 20 6f 72 20 74 75 70 6c 65 2c 20 6f 70 74 69 6f 6e 61 6c 0a 20 20 20 20 20 20 20 20 41 20 74 | t.or.tuple,.optional.........A.t |
| 90a0 | 6f 70 6f 6c 6f 67 69 63 61 6c 20 6f 72 64 65 72 20 66 6f 72 20 60 47 60 20 28 69 66 20 4e 6f 6e | opological.order.for.`G`.(if.Non |
| 90c0 | 65 2c 20 74 68 65 20 66 75 6e 63 74 69 6f 6e 20 77 69 6c 6c 20 63 6f 6d 70 75 74 65 20 6f 6e 65 | e,.the.function.will.compute.one |
| 90e0 | 29 0a 0a 20 20 20 20 52 65 74 75 72 6e 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 6c | )......Returns.....-------.....l |
| 9100 | 69 73 74 0a 20 20 20 20 20 20 20 20 4c 6f 6e 67 65 73 74 20 70 61 74 68 0a 0a 20 20 20 20 52 61 | ist.........Longest.path......Ra |
| 9120 | 69 73 65 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 4e 65 74 77 6f 72 6b 58 4e 6f 74 49 | ises.....------.....NetworkXNotI |
| 9140 | 6d 70 6c 65 6d 65 6e 74 65 64 0a 20 20 20 20 20 20 20 20 49 66 20 60 47 60 20 69 73 20 6e 6f 74 | mplemented.........If.`G`.is.not |
| 9160 | 20 64 69 72 65 63 74 65 64 0a 0a 20 20 20 20 45 78 61 6d 70 6c 65 73 0a 20 20 20 20 2d 2d 2d 2d | .directed......Examples.....---- |
| 9180 | 2d 2d 2d 2d 0a 20 20 20 20 3e 3e 3e 20 44 47 20 3d 20 6e 78 2e 44 69 47 72 61 70 68 28 0a 20 20 | ----.....>>>.DG.=.nx.DiGraph(... |
| 91a0 | 20 20 2e 2e 2e 20 20 20 20 20 5b 28 30 2c 20 31 2c 20 7b 22 63 6f 73 74 22 3a 20 31 7d 29 2c 20 | ..........[(0,.1,.{"cost":.1}),. |
| 91c0 | 28 31 2c 20 32 2c 20 7b 22 63 6f 73 74 22 3a 20 31 7d 29 2c 20 28 30 2c 20 32 2c 20 7b 22 63 6f | (1,.2,.{"cost":.1}),.(0,.2,.{"co |
| 91e0 | 73 74 22 3a 20 34 32 7d 29 5d 0a 20 20 20 20 2e 2e 2e 20 29 0a 20 20 20 20 3e 3e 3e 20 6c 69 73 | st":.42})].........).....>>>.lis |
| 9200 | 74 28 6e 78 2e 61 6c 6c 5f 73 69 6d 70 6c 65 5f 70 61 74 68 73 28 44 47 2c 20 30 2c 20 32 29 29 | t(nx.all_simple_paths(DG,.0,.2)) |
| 9220 | 0a 20 20 20 20 5b 5b 30 2c 20 31 2c 20 32 5d 2c 20 5b 30 2c 20 32 5d 5d 0a 20 20 20 20 3e 3e 3e | .....[[0,.1,.2],.[0,.2]].....>>> |
| 9240 | 20 6e 78 2e 64 61 67 5f 6c 6f 6e 67 65 73 74 5f 70 61 74 68 28 44 47 29 0a 20 20 20 20 5b 30 2c | .nx.dag_longest_path(DG).....[0, |
| 9260 | 20 31 2c 20 32 5d 0a 20 20 20 20 3e 3e 3e 20 6e 78 2e 64 61 67 5f 6c 6f 6e 67 65 73 74 5f 70 61 | .1,.2].....>>>.nx.dag_longest_pa |
| 9280 | 74 68 28 44 47 2c 20 77 65 69 67 68 74 3d 22 63 6f 73 74 22 29 0a 20 20 20 20 5b 30 2c 20 32 5d | th(DG,.weight="cost").....[0,.2] |
| 92a0 | 0a 0a 20 20 20 20 49 6e 20 74 68 65 20 63 61 73 65 20 77 68 65 72 65 20 6d 75 6c 74 69 70 6c 65 | ......In.the.case.where.multiple |
| 92c0 | 20 76 61 6c 69 64 20 74 6f 70 6f 6c 6f 67 69 63 61 6c 20 6f 72 64 65 72 69 6e 67 73 20 65 78 69 | .valid.topological.orderings.exi |
| 92e0 | 73 74 2c 20 60 74 6f 70 6f 5f 6f 72 64 65 72 60 0a 20 20 20 20 63 61 6e 20 62 65 20 75 73 65 64 | st,.`topo_order`.....can.be.used |
| 9300 | 20 74 6f 20 73 70 65 63 69 66 79 20 61 20 73 70 65 63 69 66 69 63 20 6f 72 64 65 72 69 6e 67 3a | .to.specify.a.specific.ordering: |
| 9320 | 0a 0a 20 20 20 20 3e 3e 3e 20 44 47 20 3d 20 6e 78 2e 44 69 47 72 61 70 68 28 5b 28 30 2c 20 31 | ......>>>.DG.=.nx.DiGraph([(0,.1 |
| 9340 | 29 2c 20 28 30 2c 20 32 29 5d 29 0a 20 20 20 20 3e 3e 3e 20 73 6f 72 74 65 64 28 6e 78 2e 61 6c | ),.(0,.2)]).....>>>.sorted(nx.al |
| 9360 | 6c 5f 74 6f 70 6f 6c 6f 67 69 63 61 6c 5f 73 6f 72 74 73 28 44 47 29 29 20 20 23 20 56 61 6c 69 | l_topological_sorts(DG))..#.Vali |
| 9380 | 64 20 74 6f 70 6f 6c 6f 67 69 63 61 6c 20 6f 72 64 65 72 69 6e 67 73 0a 20 20 20 20 5b 5b 30 2c | d.topological.orderings.....[[0, |
| 93a0 | 20 31 2c 20 32 5d 2c 20 5b 30 2c 20 32 2c 20 31 5d 5d 0a 20 20 20 20 3e 3e 3e 20 6e 78 2e 64 61 | .1,.2],.[0,.2,.1]].....>>>.nx.da |
| 93c0 | 67 5f 6c 6f 6e 67 65 73 74 5f 70 61 74 68 28 44 47 2c 20 74 6f 70 6f 5f 6f 72 64 65 72 3d 5b 30 | g_longest_path(DG,.topo_order=[0 |
| 93e0 | 2c 20 31 2c 20 32 5d 29 0a 20 20 20 20 5b 30 2c 20 31 5d 0a 20 20 20 20 3e 3e 3e 20 6e 78 2e 64 | ,.1,.2]).....[0,.1].....>>>.nx.d |
| 9400 | 61 67 5f 6c 6f 6e 67 65 73 74 5f 70 61 74 68 28 44 47 2c 20 74 6f 70 6f 5f 6f 72 64 65 72 3d 5b | ag_longest_path(DG,.topo_order=[ |
| 9420 | 30 2c 20 32 2c 20 31 5d 29 0a 20 20 20 20 5b 30 2c 20 32 5d 0a 0a 20 20 20 20 53 65 65 20 61 6c | 0,.2,.1]).....[0,.2]......See.al |
| 9440 | 73 6f 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 64 61 67 5f 6c 6f 6e 67 65 73 74 5f | so.....--------.....dag_longest_ |
| 9460 | 70 61 74 68 5f 6c 65 6e 67 74 68 0a 0a 20 20 20 20 4e 72 02 00 00 00 63 01 00 00 00 00 00 00 00 | path_length......Nr....c........ |
| 9480 | 00 00 00 00 04 00 00 00 13 00 00 00 f3 28 00 00 00 95 02 97 00 7c 00 6a 01 00 00 00 00 00 00 00 | .............(.......|.j........ |
| 94a0 | 00 00 00 00 00 00 00 00 00 00 00 89 02 89 01 ab 02 00 00 00 00 00 00 53 00 72 4a 00 00 00 a9 01 | .......................S.rJ..... |
| 94c0 | da 03 67 65 74 29 03 72 97 00 00 00 72 a1 00 00 00 72 a0 00 00 00 73 03 00 00 00 20 80 80 72 26 | ..get).r....r....r....s.......r& |
| 94e0 | 00 00 00 fa 08 3c 6c 61 6d 62 64 61 3e 7a 22 64 61 67 5f 6c 6f 6e 67 65 73 74 5f 70 61 74 68 2e | .....<lambda>z"dag_longest_path. |
| 9500 | 3c 6c 6f 63 61 6c 73 3e 2e 3c 6c 61 6d 62 64 61 3e 37 04 00 00 73 12 00 00 00 f8 80 00 b0 51 b7 | <locals>.<lambda>7...s........Q. |
| 9520 | 55 b1 55 b8 36 c0 3e d3 35 52 80 00 72 30 00 00 00 a9 01 72 4c 00 00 00 63 01 00 00 00 00 00 00 | U.U.6.>.5R..r0.....rL...c....... |
| 9540 | 00 00 00 00 00 02 00 00 00 13 00 00 00 f3 0c 00 00 00 97 00 7c 00 64 01 19 00 00 00 53 00 a9 02 | ....................|.d.....S... |
| 9560 | 4e 72 02 00 00 00 72 4b 00 00 00 29 01 72 97 00 00 00 73 01 00 00 00 20 72 26 00 00 00 72 a7 00 | Nr....rK...).r....s.....r&...r.. |
| 9580 | 00 00 7a 22 64 61 67 5f 6c 6f 6e 67 65 73 74 5f 70 61 74 68 2e 3c 6c 6f 63 61 6c 73 3e 2e 3c 6c | ..z"dag_longest_path.<locals>.<l |
| 95a0 | 61 6d 62 64 61 3e 42 04 00 00 73 0a 00 00 00 80 00 a0 51 a0 71 a1 54 80 00 72 30 00 00 00 63 01 | ambda>B...s.......Q.q.T..r0...c. |
| 95c0 | 00 00 00 00 00 00 00 00 00 00 00 02 00 00 00 13 00 00 00 f3 14 00 00 00 95 01 97 00 89 01 7c 00 | ..............................|. |
| 95e0 | 19 00 00 00 64 01 19 00 00 00 53 00 72 aa 00 00 00 72 4b 00 00 00 29 02 72 97 00 00 00 da 04 64 | ....d.....S.r....rK...).r......d |
| 9600 | 69 73 74 73 02 00 00 00 20 80 72 26 00 00 00 72 a7 00 00 00 7a 22 64 61 67 5f 6c 6f 6e 67 65 73 | ists......r&...r....z"dag_longes |
| 9620 | 74 5f 70 61 74 68 2e 3c 6c 6f 63 61 6c 73 3e 2e 3c 6c 61 6d 62 64 61 3e 46 04 00 00 73 0f 00 00 | t_path.<locals>.<lambda>F...s... |
| 9640 | 00 f8 80 00 a0 04 a0 51 a1 07 a8 01 a1 0a 80 00 72 30 00 00 00 72 34 00 00 00 29 0a 72 1f 00 00 | .......Q........r0...r4...).r... |
| 9660 | 00 72 0f 00 00 00 da 04 70 72 65 64 da 05 69 74 65 6d 73 72 37 00 00 00 da 03 6d 61 78 da 06 76 | .r......pred..itemsr7.....max..v |
| 9680 | 61 6c 75 65 73 72 a6 00 00 00 72 3d 00 00 00 72 28 00 00 00 29 0b 72 22 00 00 00 72 a0 00 00 00 | aluesr....r=...r(...).r"...r.... |
| 96a0 | 72 a1 00 00 00 72 8c 00 00 00 72 3f 00 00 00 72 77 00 00 00 da 04 64 61 74 61 da 02 75 73 da 04 | r....r....r?...rw.....data..us.. |
| 96c0 | 6d 61 78 75 da 04 70 61 74 68 72 ac 00 00 00 73 0b 00 00 00 20 60 60 20 20 20 20 20 20 20 40 72 | maxu..pathr....s.....``.......@r |
| 96e0 | 26 00 00 00 72 19 00 00 00 72 19 00 00 00 ef 03 00 00 73 3b 01 00 00 fa 80 00 f1 78 01 00 0c 0d | &...r....r........s;.......x.... |
| 9700 | d8 0f 11 88 09 e0 07 11 d0 07 19 dc 15 17 d7 15 28 d1 15 28 a8 11 d3 15 2b 88 0a e0 0b 0d 80 44 | ................(..(....+......D |
| 9720 | d8 0d 17 f2 00 11 05 33 88 01 f0 16 00 1c 1d 9f 36 99 36 a0 21 99 39 9f 3f 99 3f d3 1b 2c f7 15 | .......3........6.6.!.9.?.?..,.. |
| 9740 | 0b 0e 0a f1 14 00 11 18 90 01 90 34 f0 11 00 11 15 90 51 91 07 98 01 91 0a f0 06 00 18 19 97 7f | ...........4......Q............. |
| 9760 | 91 7f d4 17 28 f4 03 00 15 18 98 04 9f 0b 99 0b 9b 0d d4 2b 52 d5 14 53 e0 19 1d df 12 15 91 23 | ....(..............+R..S.......# |
| 9780 | 90 66 98 6e d3 12 2d f1 0b 05 11 2e f0 0c 00 11 12 f2 0f 08 0d 0e f0 03 0b 0e 0a 88 02 f1 00 0b | .f.n..-......................... |
| 97a0 | 0e 0a f1 1e 00 2f 31 8c 73 90 32 99 3e d5 0f 2a b0 71 b8 21 b0 66 88 04 d8 1a 1e 98 71 99 27 a0 | ...../1.s.2.>..*.q.!.f......q.'. |
| 97c0 | 51 9a 2c 91 24 a8 51 b0 01 a8 46 88 04 88 51 8a 07 f0 23 11 05 33 f0 26 00 09 0d 80 41 dc 08 0b | Q.,.$.Q...F...Q...#..3.&....A... |
| 97e0 | 88 44 d3 16 2a d4 08 2b 80 41 d8 0b 0d 80 44 d8 0a 0b 88 71 8a 26 d8 08 0c 8f 0b 89 0b 90 41 8c | .D..*..+.A....D....q.&........A. |
| 9800 | 0e d8 0c 0d 88 01 d8 0c 10 90 11 89 47 90 41 89 4a 88 01 f0 07 00 0b 0c 88 71 8b 26 f0 0a 00 05 | ............G.A.J........q.&.... |
| 9820 | 09 87 4c 81 4c 84 4e d8 0b 0f 80 4b f9 f3 37 0b 0e 0a 73 07 00 00 00 c1 06 41 16 44 12 08 63 03 | ..L.L.N....K..7...s......A.D..c. |
| 9840 | 00 00 00 00 00 00 00 00 00 00 00 09 00 00 00 03 00 00 00 f3 58 01 00 00 87 00 87 01 87 02 87 06 | ....................X........... |
| 9860 | 87 07 97 00 74 01 00 00 00 00 00 00 00 00 6a 02 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 | ....t.........j................. |
| 9880 | 00 00 89 00 89 01 89 02 ab 03 00 00 00 00 00 00 7d 03 64 01 7d 04 89 00 6a 05 00 00 00 00 00 00 | ................}.d.}...j....... |
| 98a0 | 00 00 00 00 00 00 00 00 00 00 00 00 ab 00 00 00 00 00 00 00 72 4d 74 07 00 00 00 00 00 00 00 00 | ....................rMt......... |
| 98c0 | 7c 03 ab 01 00 00 00 00 00 00 44 00 5d 3d 00 00 5c 02 00 00 8a 06 8a 07 74 09 00 00 00 00 00 00 | |.........D.]=..\.......t....... |
| 98e0 | 00 00 89 00 89 06 19 00 00 00 89 07 19 00 00 00 88 00 88 02 88 06 88 07 88 01 66 05 64 02 84 08 | ..........................f.d... |
| 9900 | ac 03 ab 02 00 00 00 00 00 00 7d 05 7c 04 89 00 89 06 19 00 00 00 89 07 19 00 00 00 7c 05 19 00 | ..........}.|...............|... |
| 9920 | 00 00 6a 0b 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 89 01 89 02 ab 02 00 00 00 00 | ..j............................. |
| 9940 | 00 00 7a 0d 00 00 7d 04 8c 3f 04 00 7c 04 53 00 74 07 00 00 00 00 00 00 00 00 7c 03 ab 01 00 00 | ..z...}..?..|.S.t.........|..... |
| 9960 | 00 00 00 00 44 00 5d 20 00 00 5c 02 00 00 8a 06 8a 07 7c 04 89 00 89 06 19 00 00 00 89 07 19 00 | ....D.]...\.......|............. |
| 9980 | 00 00 6a 0b 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 89 01 89 02 ab 02 00 00 00 00 | ..j............................. |
| 99a0 | 00 00 7a 0d 00 00 7d 04 8c 22 04 00 7c 04 53 00 29 04 61 2e 03 00 00 52 65 74 75 72 6e 73 20 74 | ..z...}.."..|.S.).a....Returns.t |
| 99c0 | 68 65 20 6c 6f 6e 67 65 73 74 20 70 61 74 68 20 6c 65 6e 67 74 68 20 69 6e 20 61 20 44 41 47 0a | he.longest.path.length.in.a.DAG. |
| 99e0 | 0a 20 20 20 20 50 61 72 61 6d 65 74 65 72 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 | .....Parameters.....----------.. |
| 9a00 | 20 20 20 47 20 3a 20 4e 65 74 77 6f 72 6b 58 20 44 69 47 72 61 70 68 0a 20 20 20 20 20 20 20 20 | ...G.:.NetworkX.DiGraph......... |
| 9a20 | 41 20 64 69 72 65 63 74 65 64 20 61 63 79 63 6c 69 63 20 67 72 61 70 68 20 28 44 41 47 29 0a 0a | A.directed.acyclic.graph.(DAG).. |
| 9a40 | 20 20 20 20 77 65 69 67 68 74 20 3a 20 73 74 72 69 6e 67 2c 20 6f 70 74 69 6f 6e 61 6c 0a 20 20 | ....weight.:.string,.optional... |
| 9a60 | 20 20 20 20 20 20 45 64 67 65 20 64 61 74 61 20 6b 65 79 20 74 6f 20 75 73 65 20 66 6f 72 20 77 | ......Edge.data.key.to.use.for.w |
| 9a80 | 65 69 67 68 74 0a 0a 20 20 20 20 64 65 66 61 75 6c 74 5f 77 65 69 67 68 74 20 3a 20 69 6e 74 2c | eight......default_weight.:.int, |
| 9aa0 | 20 6f 70 74 69 6f 6e 61 6c 0a 20 20 20 20 20 20 20 20 54 68 65 20 77 65 69 67 68 74 20 6f 66 20 | .optional.........The.weight.of. |
| 9ac0 | 65 64 67 65 73 20 74 68 61 74 20 64 6f 20 6e 6f 74 20 68 61 76 65 20 61 20 77 65 69 67 68 74 20 | edges.that.do.not.have.a.weight. |
| 9ae0 | 61 74 74 72 69 62 75 74 65 0a 0a 20 20 20 20 52 65 74 75 72 6e 73 0a 20 20 20 20 2d 2d 2d 2d 2d | attribute......Returns.....----- |
| 9b00 | 2d 2d 0a 20 20 20 20 69 6e 74 0a 20 20 20 20 20 20 20 20 4c 6f 6e 67 65 73 74 20 70 61 74 68 20 | --.....int.........Longest.path. |
| 9b20 | 6c 65 6e 67 74 68 0a 0a 20 20 20 20 52 61 69 73 65 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 0a 20 20 | length......Raises.....------... |
| 9b40 | 20 20 4e 65 74 77 6f 72 6b 58 4e 6f 74 49 6d 70 6c 65 6d 65 6e 74 65 64 0a 20 20 20 20 20 20 20 | ..NetworkXNotImplemented........ |
| 9b60 | 20 49 66 20 60 47 60 20 69 73 20 6e 6f 74 20 64 69 72 65 63 74 65 64 0a 0a 20 20 20 20 45 78 61 | .If.`G`.is.not.directed......Exa |
| 9b80 | 6d 70 6c 65 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 3e 3e 3e 20 44 47 20 3d 20 | mples.....--------.....>>>.DG.=. |
| 9ba0 | 6e 78 2e 44 69 47 72 61 70 68 28 0a 20 20 20 20 2e 2e 2e 20 20 20 20 20 5b 28 30 2c 20 31 2c 20 | nx.DiGraph(.............[(0,.1,. |
| 9bc0 | 7b 22 63 6f 73 74 22 3a 20 31 7d 29 2c 20 28 31 2c 20 32 2c 20 7b 22 63 6f 73 74 22 3a 20 31 7d | {"cost":.1}),.(1,.2,.{"cost":.1} |
| 9be0 | 29 2c 20 28 30 2c 20 32 2c 20 7b 22 63 6f 73 74 22 3a 20 34 32 7d 29 5d 0a 20 20 20 20 2e 2e 2e | ),.(0,.2,.{"cost":.42})]........ |
| 9c00 | 20 29 0a 20 20 20 20 3e 3e 3e 20 6c 69 73 74 28 6e 78 2e 61 6c 6c 5f 73 69 6d 70 6c 65 5f 70 61 | .).....>>>.list(nx.all_simple_pa |
| 9c20 | 74 68 73 28 44 47 2c 20 30 2c 20 32 29 29 0a 20 20 20 20 5b 5b 30 2c 20 31 2c 20 32 5d 2c 20 5b | ths(DG,.0,.2)).....[[0,.1,.2],.[ |
| 9c40 | 30 2c 20 32 5d 5d 0a 20 20 20 20 3e 3e 3e 20 6e 78 2e 64 61 67 5f 6c 6f 6e 67 65 73 74 5f 70 61 | 0,.2]].....>>>.nx.dag_longest_pa |
| 9c60 | 74 68 5f 6c 65 6e 67 74 68 28 44 47 29 0a 20 20 20 20 32 0a 20 20 20 20 3e 3e 3e 20 6e 78 2e 64 | th_length(DG).....2.....>>>.nx.d |
| 9c80 | 61 67 5f 6c 6f 6e 67 65 73 74 5f 70 61 74 68 5f 6c 65 6e 67 74 68 28 44 47 2c 20 77 65 69 67 68 | ag_longest_path_length(DG,.weigh |
| 9ca0 | 74 3d 22 63 6f 73 74 22 29 0a 20 20 20 20 34 32 0a 0a 20 20 20 20 53 65 65 20 61 6c 73 6f 0a 20 | t="cost").....42......See.also.. |
| 9cc0 | 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 64 61 67 5f 6c 6f 6e 67 65 73 74 5f 70 61 74 68 | ...--------.....dag_longest_path |
| 9ce0 | 0a 20 20 20 20 72 02 00 00 00 63 01 00 00 00 00 00 00 00 00 00 00 00 04 00 00 00 13 00 00 00 f3 | .....r....c..................... |
| 9d00 | 3a 00 00 00 95 05 97 00 89 01 89 03 19 00 00 00 89 04 19 00 00 00 7c 00 19 00 00 00 6a 01 00 00 | :.....................|.....j... |
| 9d20 | 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 89 05 89 02 ab 02 00 00 00 00 00 00 53 00 72 4a | ............................S.rJ |
| 9d40 | 00 00 00 72 a5 00 00 00 29 06 72 97 00 00 00 72 22 00 00 00 72 a1 00 00 00 72 77 00 00 00 72 3f | ...r....).r....r"...r....rw...r? |
| 9d60 | 00 00 00 72 a0 00 00 00 73 06 00 00 00 20 80 80 80 80 80 72 26 00 00 00 72 a7 00 00 00 7a 29 64 | ...r....s..........r&...r....z)d |
| 9d80 | 61 67 5f 6c 6f 6e 67 65 73 74 5f 70 61 74 68 5f 6c 65 6e 67 74 68 2e 3c 6c 6f 63 61 6c 73 3e 2e | ag_longest_path_length.<locals>. |
| 9da0 | 3c 6c 61 6d 62 64 61 3e 7f 04 00 00 73 1e 00 00 00 f8 80 00 a8 31 a8 51 a9 34 b0 01 a9 37 b0 31 | <lambda>....s........1.Q.4...7.1 |
| 9dc0 | a9 3a af 3e a9 3e b8 26 c0 2e d3 2b 51 80 00 72 30 00 00 00 72 a8 00 00 00 29 06 72 1f 00 00 00 | .:.>.>.&...+Q..r0...r....).r.... |
| 9de0 | 72 19 00 00 00 72 37 00 00 00 72 0c 00 00 00 72 af 00 00 00 72 a6 00 00 00 29 08 72 22 00 00 00 | r....r7...r....r....r....).r"... |
| 9e00 | 72 a0 00 00 00 72 a1 00 00 00 72 b4 00 00 00 da 0b 70 61 74 68 5f 6c 65 6e 67 74 68 72 58 00 00 | r....r....r......path_lengthrX.. |
| 9e20 | 00 72 77 00 00 00 72 3f 00 00 00 73 08 00 00 00 60 60 60 20 20 20 40 40 72 26 00 00 00 72 1a 00 | .rw...r?...s....```...@@r&...r.. |
| 9e40 | 00 00 72 1a 00 00 00 51 04 00 00 73 be 00 00 00 fc 80 00 f4 54 01 00 0c 0e d7 0b 1e d1 0b 1e 98 | ..r....Q...s........T........... |
| 9e60 | 71 a0 26 a8 2e d3 0b 39 80 44 d8 12 13 80 4b d8 07 08 87 7f 81 7f d4 07 18 dc 14 1c 98 54 93 4e | q.&....9.D....K..............T.N |
| 9e80 | f2 00 02 09 42 01 89 44 88 41 88 71 dc 10 13 90 41 90 61 91 44 98 11 91 47 d7 21 51 d4 10 52 88 | ....B..D.A.q....A.a.D...G.!Q..R. |
| 9ea0 | 41 d8 0c 17 98 31 98 51 99 34 a0 01 99 37 a0 31 99 3a 9f 3e 99 3e a8 26 b0 2e d3 1b 41 d1 0c 41 | A....1.Q.4...7.1.:.>.>.&....A..A |
| 9ec0 | 89 4b f0 05 02 09 42 01 f0 0e 00 0c 17 d0 04 16 f4 07 00 15 1d 98 54 93 4e f2 00 01 09 3f 89 44 | .K....B...............T.N....?.D |
| 9ee0 | 88 41 88 71 d8 0c 17 98 31 98 51 99 34 a0 01 99 37 9f 3b 99 3b a0 76 a8 7e d3 1b 3e d1 0c 3e 89 | .A.q....1.Q.4...7.;.;.v.~..>..>. |
| 9f00 | 4b f0 03 01 09 3f f0 06 00 0c 17 d0 04 16 72 30 00 00 00 63 01 00 00 00 00 00 00 00 00 00 00 00 | K....?........r0...c............ |
| 9f20 | 09 00 00 00 03 00 00 00 f3 d0 00 00 00 97 00 64 01 84 00 7c 00 6a 01 00 00 00 00 00 00 00 00 00 | ...............d...|.j.......... |
| 9f40 | 00 00 00 00 00 00 00 00 00 ab 00 00 00 00 00 00 00 44 00 ab 00 00 00 00 00 00 00 7d 01 64 02 84 | .................D.........}.d.. |
| 9f60 | 00 7c 00 6a 03 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ab 00 00 00 00 00 00 00 44 | .|.j...........................D |
| 9f80 | 00 ab 00 00 00 00 00 00 00 7d 02 74 05 00 00 00 00 00 00 00 00 74 06 00 00 00 00 00 00 00 00 6a | .........}.t.........t.........j |
| 9fa0 | 08 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 7c 00 ab 02 00 00 00 00 00 00 7d 03 74 | ...................|.........}.t |
| 9fc0 | 0b 00 00 00 00 00 00 00 00 74 0d 00 00 00 00 00 00 00 00 7c 03 74 0f 00 00 00 00 00 00 00 00 7c | .........t.........|.t.........| |
| 9fe0 | 01 7c 02 ab 02 00 00 00 00 00 00 ab 02 00 00 00 00 00 00 ab 01 00 00 00 00 00 00 53 00 29 03 61 | .|.........................S.).a |
| a000 | 71 01 00 00 59 69 65 6c 64 73 20 72 6f 6f 74 2d 74 6f 2d 6c 65 61 66 20 70 61 74 68 73 20 69 6e | q...Yields.root-to-leaf.paths.in |
| a020 | 20 61 20 64 69 72 65 63 74 65 64 20 61 63 79 63 6c 69 63 20 67 72 61 70 68 2e 0a 0a 20 20 20 20 | .a.directed.acyclic.graph....... |
| a040 | 60 47 60 20 6d 75 73 74 20 62 65 20 61 20 64 69 72 65 63 74 65 64 20 61 63 79 63 6c 69 63 20 67 | `G`.must.be.a.directed.acyclic.g |
| a060 | 72 61 70 68 2e 20 49 66 20 6e 6f 74 2c 20 74 68 65 20 62 65 68 61 76 69 6f 72 20 6f 66 20 74 68 | raph..If.not,.the.behavior.of.th |
| a080 | 69 73 0a 20 20 20 20 66 75 6e 63 74 69 6f 6e 20 69 73 20 75 6e 64 65 66 69 6e 65 64 2e 20 41 20 | is.....function.is.undefined..A. |
| a0a0 | 22 72 6f 6f 74 22 20 69 6e 20 74 68 69 73 20 67 72 61 70 68 20 69 73 20 61 20 6e 6f 64 65 20 6f | "root".in.this.graph.is.a.node.o |
| a0c0 | 66 20 69 6e 2d 64 65 67 72 65 65 0a 20 20 20 20 7a 65 72 6f 20 61 6e 64 20 61 20 22 6c 65 61 66 | f.in-degree.....zero.and.a."leaf |
| a0e0 | 22 20 61 20 6e 6f 64 65 20 6f 66 20 6f 75 74 2d 64 65 67 72 65 65 20 7a 65 72 6f 2e 0a 0a 20 20 | ".a.node.of.out-degree.zero..... |
| a100 | 20 20 57 68 65 6e 20 69 6e 76 6f 6b 65 64 2c 20 74 68 69 73 20 66 75 6e 63 74 69 6f 6e 20 69 74 | ..When.invoked,.this.function.it |
| a120 | 65 72 61 74 65 73 20 6f 76 65 72 20 65 61 63 68 20 70 61 74 68 20 66 72 6f 6d 20 61 6e 79 20 72 | erates.over.each.path.from.any.r |
| a140 | 6f 6f 74 20 74 6f 0a 20 20 20 20 61 6e 79 20 6c 65 61 66 2e 20 41 20 70 61 74 68 20 69 73 20 61 | oot.to.....any.leaf..A.path.is.a |
| a160 | 20 6c 69 73 74 20 6f 66 20 6e 6f 64 65 73 2e 0a 0a 20 20 20 20 63 01 00 00 00 00 00 00 00 00 00 | .list.of.nodes.......c.......... |
| a180 | 00 00 03 00 00 00 33 00 00 00 f3 32 00 00 00 4b 00 01 00 97 00 7c 00 5d 0f 00 00 5c 02 00 00 7d | ......3....2...K.....|.]...\...} |
| a1a0 | 01 7d 02 7c 02 64 00 6b 28 00 00 73 01 8c 0c 7c 01 96 01 97 01 01 00 8c 11 04 00 79 01 ad 03 77 | .}.|.d.k(..s...|...........y...w |
| a1c0 | 01 72 5e 00 00 00 72 4b 00 00 00 a9 03 72 5f 00 00 00 72 3f 00 00 00 72 40 00 00 00 73 03 00 00 | .r^...rK.....r_...r?...r@...s... |
| a1e0 | 00 20 20 20 72 26 00 00 00 72 61 00 00 00 7a 25 72 6f 6f 74 5f 74 6f 5f 6c 65 61 66 5f 70 61 74 | ....r&...ra...z%root_to_leaf_pat |
| a200 | 68 73 2e 3c 6c 6f 63 61 6c 73 3e 2e 3c 67 65 6e 65 78 70 72 3e 94 04 00 00 73 1a 00 00 00 e8 00 | hs.<locals>.<genexpr>....s...... |
| a220 | f8 80 00 d2 0c 33 91 34 90 31 90 61 a8 41 b0 11 ab 46 8c 51 d1 0c 33 f9 f3 08 00 00 00 82 0d 17 | .....3.4.1.a.A...F.Q..3......... |
| a240 | 01 90 07 17 01 63 01 00 00 00 00 00 00 00 00 00 00 00 03 00 00 00 33 00 00 00 f3 32 00 00 00 4b | .....c................3....2...K |
| a260 | 00 01 00 97 00 7c 00 5d 0f 00 00 5c 02 00 00 7d 01 7d 02 7c 02 64 00 6b 28 00 00 73 01 8c 0c 7c | .....|.]...\...}.}.|.d.k(..s...| |
| a280 | 01 96 01 97 01 01 00 8c 11 04 00 79 01 ad 03 77 01 72 5e 00 00 00 72 4b 00 00 00 72 ba 00 00 00 | ...........y...w.r^...rK...r.... |
| a2a0 | 73 03 00 00 00 20 20 20 72 26 00 00 00 72 61 00 00 00 7a 25 72 6f 6f 74 5f 74 6f 5f 6c 65 61 66 | s.......r&...ra...z%root_to_leaf |
| a2c0 | 5f 70 61 74 68 73 2e 3c 6c 6f 63 61 6c 73 3e 2e 3c 67 65 6e 65 78 70 72 3e 95 04 00 00 73 1a 00 | _paths.<locals>.<genexpr>....s.. |
| a2e0 | 00 00 e8 00 f8 80 00 d2 0d 35 91 44 90 41 90 71 a8 61 b0 31 ab 66 8c 61 d1 0d 35 f9 72 bb 00 00 | .........5.D.A.q.a.1.f.a..5.r... |
| a300 | 00 29 08 72 38 00 00 00 da 0a 6f 75 74 5f 64 65 67 72 65 65 72 04 00 00 00 72 1f 00 00 00 da 10 | .).r8.....out_degreer....r...... |
| a320 | 61 6c 6c 5f 73 69 6d 70 6c 65 5f 70 61 74 68 73 da 06 63 68 61 69 6e 69 72 08 00 00 00 72 07 00 | all_simple_paths..chainir....r.. |
| a340 | 00 00 29 04 72 22 00 00 00 da 05 72 6f 6f 74 73 da 06 6c 65 61 76 65 73 da 09 61 6c 6c 5f 70 61 | ..).r".....roots..leaves..all_pa |
| a360 | 74 68 73 73 04 00 00 00 20 20 20 20 72 26 00 00 00 da 12 72 6f 6f 74 5f 74 6f 5f 6c 65 61 66 5f | thss........r&.....root_to_leaf_ |
| a380 | 70 61 74 68 73 72 c3 00 00 00 88 04 00 00 73 4f 00 00 00 80 00 f1 18 00 0d 34 98 31 9f 3b 99 3b | pathsr........sO.........4.1.;.; |
| a3a0 | 9b 3d d4 0c 33 80 45 d9 0d 35 98 41 9f 4c 99 4c 9b 4e d4 0d 35 80 46 dc 10 17 9c 02 d7 18 2b d1 | .=..3.E..5.A.L.L.N..5.F.......+. |
| a3c0 | 18 2b a8 51 d3 10 2f 80 49 e4 0b 11 94 27 98 29 a4 57 a8 55 b0 46 d3 25 3b d3 12 3c d3 0b 3d d0 | .+.Q../.I....'.).W.U.F.%;..<..=. |
| a3e0 | 04 3d 72 30 00 00 00 72 3e 00 00 00 63 01 00 00 00 00 00 00 00 00 00 00 00 03 00 00 00 03 00 00 | .=r0...r>...c................... |
| a400 | 00 f3 ce 00 00 00 97 00 74 01 00 00 00 00 00 00 00 00 7c 00 ab 01 00 00 00 00 00 00 72 17 64 01 | ........t.........|.........r.d. |
| a420 | 7d 01 74 03 00 00 00 00 00 00 00 00 6a 04 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 | }.t.........j................... |
| a440 | 7c 01 ab 01 00 00 00 00 00 00 82 01 74 07 00 00 00 00 00 00 00 00 7c 00 ab 01 00 00 00 00 00 00 | |...........t.........|......... |
| a460 | 7d 02 74 03 00 00 00 00 00 00 00 00 6a 08 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 | }.t.........j................... |
| a480 | 7c 02 ab 01 00 00 00 00 00 00 7d 03 7c 03 6a 0b 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 | |.........}.|.j................. |
| a4a0 | 00 00 64 02 ab 01 00 00 00 00 00 00 01 00 7c 03 6a 0b 00 00 00 00 00 00 00 00 00 00 00 00 00 00 | ..d...........|.j............... |
| a4c0 | 00 00 00 00 64 03 ab 01 00 00 00 00 00 00 01 00 7c 03 53 00 29 04 61 2a 0c 00 00 52 65 74 75 72 | ....d...........|.S.).a*...Retur |
| a4e0 | 6e 73 20 61 20 62 72 61 6e 63 68 69 6e 67 20 72 65 70 72 65 73 65 6e 74 69 6e 67 20 61 6c 6c 20 | ns.a.branching.representing.all. |
| a500 | 28 6f 76 65 72 6c 61 70 70 69 6e 67 29 20 70 61 74 68 73 20 66 72 6f 6d 0a 20 20 20 20 72 6f 6f | (overlapping).paths.from.....roo |
| a520 | 74 20 6e 6f 64 65 73 20 74 6f 20 6c 65 61 66 20 6e 6f 64 65 73 20 69 6e 20 74 68 65 20 67 69 76 | t.nodes.to.leaf.nodes.in.the.giv |
| a540 | 65 6e 20 64 69 72 65 63 74 65 64 20 61 63 79 63 6c 69 63 20 67 72 61 70 68 2e 0a 0a 20 20 20 20 | en.directed.acyclic.graph....... |
| a560 | 41 73 20 64 65 73 63 72 69 62 65 64 20 69 6e 20 3a 6d 6f 64 3a 60 6e 65 74 77 6f 72 6b 78 2e 61 | As.described.in.:mod:`networkx.a |
| a580 | 6c 67 6f 72 69 74 68 6d 73 2e 74 72 65 65 2e 72 65 63 6f 67 6e 69 74 69 6f 6e 60 2c 20 61 0a 20 | lgorithms.tree.recognition`,.a.. |
| a5a0 | 20 20 20 2a 62 72 61 6e 63 68 69 6e 67 2a 20 69 73 20 61 20 64 69 72 65 63 74 65 64 20 66 6f 72 | ...*branching*.is.a.directed.for |
| a5c0 | 65 73 74 20 69 6e 20 77 68 69 63 68 20 65 61 63 68 20 6e 6f 64 65 20 68 61 73 20 61 74 20 6d 6f | est.in.which.each.node.has.at.mo |
| a5e0 | 73 74 20 6f 6e 65 0a 20 20 20 20 70 61 72 65 6e 74 2e 20 49 6e 20 6f 74 68 65 72 20 77 6f 72 64 | st.one.....parent..In.other.word |
| a600 | 73 2c 20 61 20 62 72 61 6e 63 68 69 6e 67 20 69 73 20 61 20 64 69 73 6a 6f 69 6e 74 20 75 6e 69 | s,.a.branching.is.a.disjoint.uni |
| a620 | 6f 6e 20 6f 66 0a 20 20 20 20 2a 61 72 62 6f 72 65 73 63 65 6e 63 65 73 2a 2e 20 46 6f 72 20 74 | on.of.....*arborescences*..For.t |
| a640 | 68 69 73 20 66 75 6e 63 74 69 6f 6e 2c 20 65 61 63 68 20 6e 6f 64 65 20 6f 66 20 69 6e 2d 64 65 | his.function,.each.node.of.in-de |
| a660 | 67 72 65 65 20 7a 65 72 6f 20 69 6e 0a 20 20 20 20 60 47 60 20 62 65 63 6f 6d 65 73 20 61 20 72 | gree.zero.in.....`G`.becomes.a.r |
| a680 | 6f 6f 74 20 6f 66 20 6f 6e 65 20 6f 66 20 74 68 65 20 61 72 62 6f 72 65 73 63 65 6e 63 65 73 2c | oot.of.one.of.the.arborescences, |
| a6a0 | 20 61 6e 64 20 74 68 65 72 65 20 77 69 6c 6c 20 62 65 0a 20 20 20 20 6f 6e 65 20 6c 65 61 66 20 | .and.there.will.be.....one.leaf. |
| a6c0 | 6e 6f 64 65 20 66 6f 72 20 65 61 63 68 20 64 69 73 74 69 6e 63 74 20 70 61 74 68 20 66 72 6f 6d | node.for.each.distinct.path.from |
| a6e0 | 20 74 68 61 74 20 72 6f 6f 74 20 74 6f 20 61 20 6c 65 61 66 20 6e 6f 64 65 0a 20 20 20 20 69 6e | .that.root.to.a.leaf.node.....in |
| a700 | 20 60 47 60 2e 0a 0a 20 20 20 20 45 61 63 68 20 6e 6f 64 65 20 60 76 60 20 69 6e 20 60 47 60 20 | .`G`.......Each.node.`v`.in.`G`. |
| a720 | 77 69 74 68 20 2a 6b 2a 20 70 61 72 65 6e 74 73 20 62 65 63 6f 6d 65 73 20 2a 6b 2a 20 64 69 73 | with.*k*.parents.becomes.*k*.dis |
| a740 | 74 69 6e 63 74 20 6e 6f 64 65 73 20 69 6e 0a 20 20 20 20 74 68 65 20 72 65 74 75 72 6e 65 64 20 | tinct.nodes.in.....the.returned. |
| a760 | 62 72 61 6e 63 68 69 6e 67 2c 20 6f 6e 65 20 66 6f 72 20 65 61 63 68 20 70 61 72 65 6e 74 2c 20 | branching,.one.for.each.parent,. |
| a780 | 61 6e 64 20 74 68 65 20 73 75 62 2d 44 41 47 20 72 6f 6f 74 65 64 0a 20 20 20 20 61 74 20 60 76 | and.the.sub-DAG.rooted.....at.`v |
| a7a0 | 60 20 69 73 20 64 75 70 6c 69 63 61 74 65 64 20 66 6f 72 20 65 61 63 68 20 63 6f 70 79 2e 20 54 | `.is.duplicated.for.each.copy..T |
| a7c0 | 68 65 20 61 6c 67 6f 72 69 74 68 6d 20 74 68 65 6e 20 72 65 63 75 72 73 65 73 20 6f 6e 0a 20 20 | he.algorithm.then.recurses.on... |
| a7e0 | 20 20 74 68 65 20 63 68 69 6c 64 72 65 6e 20 6f 66 20 65 61 63 68 20 63 6f 70 79 20 6f 66 20 60 | ..the.children.of.each.copy.of.` |
| a800 | 76 60 2e 0a 0a 20 20 20 20 50 61 72 61 6d 65 74 65 72 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d | v`.......Parameters.....-------- |
| a820 | 2d 2d 0a 20 20 20 20 47 20 3a 20 4e 65 74 77 6f 72 6b 58 20 67 72 61 70 68 0a 20 20 20 20 20 20 | --.....G.:.NetworkX.graph....... |
| a840 | 20 20 41 20 64 69 72 65 63 74 65 64 20 61 63 79 63 6c 69 63 20 67 72 61 70 68 2e 0a 0a 20 20 20 | ..A.directed.acyclic.graph...... |
| a860 | 20 52 65 74 75 72 6e 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 44 69 47 72 61 70 68 | .Returns.....-------.....DiGraph |
| a880 | 0a 20 20 20 20 20 20 20 20 54 68 65 20 62 72 61 6e 63 68 69 6e 67 20 69 6e 20 77 68 69 63 68 20 | .........The.branching.in.which. |
| a8a0 | 74 68 65 72 65 20 69 73 20 61 20 62 69 6a 65 63 74 69 6f 6e 20 62 65 74 77 65 65 6e 20 72 6f 6f | there.is.a.bijection.between.roo |
| a8c0 | 74 2d 74 6f 2d 6c 65 61 66 0a 20 20 20 20 20 20 20 20 70 61 74 68 73 20 69 6e 20 60 47 60 20 28 | t-to-leaf.........paths.in.`G`.( |
| a8e0 | 69 6e 20 77 68 69 63 68 20 6d 75 6c 74 69 70 6c 65 20 70 61 74 68 73 20 6d 61 79 20 73 68 61 72 | in.which.multiple.paths.may.shar |
| a900 | 65 20 74 68 65 20 73 61 6d 65 20 6c 65 61 66 29 0a 20 20 20 20 20 20 20 20 61 6e 64 20 72 6f 6f | e.the.same.leaf).........and.roo |
| a920 | 74 2d 74 6f 2d 6c 65 61 66 20 70 61 74 68 73 20 69 6e 20 74 68 65 20 62 72 61 6e 63 68 69 6e 67 | t-to-leaf.paths.in.the.branching |
| a940 | 20 28 69 6e 20 77 68 69 63 68 20 74 68 65 72 65 20 69 73 20 61 0a 20 20 20 20 20 20 20 20 75 6e | .(in.which.there.is.a.........un |
| a960 | 69 71 75 65 20 70 61 74 68 20 66 72 6f 6d 20 61 20 72 6f 6f 74 20 74 6f 20 61 20 6c 65 61 66 29 | ique.path.from.a.root.to.a.leaf) |
| a980 | 2e 0a 0a 20 20 20 20 20 20 20 20 45 61 63 68 20 6e 6f 64 65 20 68 61 73 20 61 6e 20 61 74 74 72 | ...........Each.node.has.an.attr |
| a9a0 | 69 62 75 74 65 20 27 73 6f 75 72 63 65 27 20 77 68 6f 73 65 20 76 61 6c 75 65 20 69 73 20 74 68 | ibute.'source'.whose.value.is.th |
| a9c0 | 65 20 6f 72 69 67 69 6e 61 6c 0a 20 20 20 20 20 20 20 20 6e 6f 64 65 20 74 6f 20 77 68 69 63 68 | e.original.........node.to.which |
| a9e0 | 20 74 68 69 73 20 6e 6f 64 65 20 63 6f 72 72 65 73 70 6f 6e 64 73 2e 20 4e 6f 20 6f 74 68 65 72 | .this.node.corresponds..No.other |
| aa00 | 20 67 72 61 70 68 2c 20 6e 6f 64 65 2c 20 6f 72 0a 20 20 20 20 20 20 20 20 65 64 67 65 20 61 74 | .graph,.node,.or.........edge.at |
| aa20 | 74 72 69 62 75 74 65 73 20 61 72 65 20 63 6f 70 69 65 64 20 69 6e 74 6f 20 74 68 69 73 20 6e 65 | tributes.are.copied.into.this.ne |
| aa40 | 77 20 67 72 61 70 68 2e 0a 0a 20 20 20 20 52 61 69 73 65 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 0a | w.graph.......Raises.....------. |
| aa60 | 20 20 20 20 4e 65 74 77 6f 72 6b 58 4e 6f 74 49 6d 70 6c 65 6d 65 6e 74 65 64 0a 20 20 20 20 20 | ....NetworkXNotImplemented...... |
| aa80 | 20 20 20 49 66 20 60 47 60 20 69 73 20 6e 6f 74 20 64 69 72 65 63 74 65 64 2c 20 6f 72 20 69 66 | ...If.`G`.is.not.directed,.or.if |
| aaa0 | 20 60 47 60 20 69 73 20 61 20 6d 75 6c 74 69 67 72 61 70 68 2e 0a 0a 20 20 20 20 48 61 73 41 43 | .`G`.is.a.multigraph.......HasAC |
| aac0 | 79 63 6c 65 0a 20 20 20 20 20 20 20 20 49 66 20 60 47 60 20 69 73 20 6e 6f 74 20 61 63 79 63 6c | ycle.........If.`G`.is.not.acycl |
| aae0 | 69 63 2e 0a 0a 20 20 20 20 45 78 61 6d 70 6c 65 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 | ic.......Examples.....--------.. |
| ab00 | 20 20 20 54 6f 20 65 78 61 6d 69 6e 65 20 77 68 69 63 68 20 6e 6f 64 65 73 20 69 6e 20 74 68 65 | ...To.examine.which.nodes.in.the |
| ab20 | 20 72 65 74 75 72 6e 65 64 20 62 72 61 6e 63 68 69 6e 67 20 77 65 72 65 20 70 72 6f 64 75 63 65 | .returned.branching.were.produce |
| ab40 | 64 20 62 79 0a 20 20 20 20 77 68 69 63 68 20 6f 72 69 67 69 6e 61 6c 20 6e 6f 64 65 20 69 6e 20 | d.by.....which.original.node.in. |
| ab60 | 74 68 65 20 64 69 72 65 63 74 65 64 20 61 63 79 63 6c 69 63 20 67 72 61 70 68 2c 20 77 65 20 63 | the.directed.acyclic.graph,.we.c |
| ab80 | 61 6e 20 63 6f 6c 6c 65 63 74 0a 20 20 20 20 74 68 65 20 6d 61 70 70 69 6e 67 20 66 72 6f 6d 20 | an.collect.....the.mapping.from. |
| aba0 | 73 6f 75 72 63 65 20 6e 6f 64 65 20 74 6f 20 6e 65 77 20 6e 6f 64 65 73 20 69 6e 74 6f 20 61 20 | source.node.to.new.nodes.into.a. |
| abc0 | 64 69 63 74 69 6f 6e 61 72 79 2e 20 46 6f 72 0a 20 20 20 20 65 78 61 6d 70 6c 65 2c 20 63 6f 6e | dictionary..For.....example,.con |
| abe0 | 73 69 64 65 72 20 74 68 65 20 64 69 72 65 63 74 65 64 20 64 69 61 6d 6f 6e 64 20 67 72 61 70 68 | sider.the.directed.diamond.graph |
| ac00 | 3a 3a 0a 0a 20 20 20 20 20 20 20 20 3e 3e 3e 20 66 72 6f 6d 20 63 6f 6c 6c 65 63 74 69 6f 6e 73 | ::..........>>>.from.collections |
| ac20 | 20 69 6d 70 6f 72 74 20 64 65 66 61 75 6c 74 64 69 63 74 0a 20 20 20 20 20 20 20 20 3e 3e 3e 20 | .import.defaultdict.........>>>. |
| ac40 | 66 72 6f 6d 20 6f 70 65 72 61 74 6f 72 20 69 6d 70 6f 72 74 20 69 74 65 6d 67 65 74 74 65 72 0a | from.operator.import.itemgetter. |
| ac60 | 20 20 20 20 20 20 20 20 3e 3e 3e 0a 20 20 20 20 20 20 20 20 3e 3e 3e 20 47 20 3d 20 6e 78 2e 44 | ........>>>.........>>>.G.=.nx.D |
| ac80 | 69 47 72 61 70 68 28 6e 78 2e 75 74 69 6c 73 2e 70 61 69 72 77 69 73 65 28 22 61 62 64 22 29 29 | iGraph(nx.utils.pairwise("abd")) |
| aca0 | 0a 20 20 20 20 20 20 20 20 3e 3e 3e 20 47 2e 61 64 64 5f 65 64 67 65 73 5f 66 72 6f 6d 28 6e 78 | .........>>>.G.add_edges_from(nx |
| acc0 | 2e 75 74 69 6c 73 2e 70 61 69 72 77 69 73 65 28 22 61 63 64 22 29 29 0a 20 20 20 20 20 20 20 20 | .utils.pairwise("acd"))......... |
| ace0 | 3e 3e 3e 20 42 20 3d 20 6e 78 2e 64 61 67 5f 74 6f 5f 62 72 61 6e 63 68 69 6e 67 28 47 29 0a 20 | >>>.B.=.nx.dag_to_branching(G).. |
| ad00 | 20 20 20 20 20 20 20 3e 3e 3e 0a 20 20 20 20 20 20 20 20 3e 3e 3e 20 73 6f 75 72 63 65 73 20 3d | .......>>>.........>>>.sources.= |
| ad20 | 20 64 65 66 61 75 6c 74 64 69 63 74 28 73 65 74 29 0a 20 20 20 20 20 20 20 20 3e 3e 3e 20 66 6f | .defaultdict(set).........>>>.fo |
| ad40 | 72 20 76 2c 20 73 6f 75 72 63 65 20 69 6e 20 42 2e 6e 6f 64 65 73 28 64 61 74 61 3d 22 73 6f 75 | r.v,.source.in.B.nodes(data="sou |
| ad60 | 72 63 65 22 29 3a 0a 20 20 20 20 20 20 20 20 2e 2e 2e 20 20 20 20 20 73 6f 75 72 63 65 73 5b 73 | rce"):.................sources[s |
| ad80 | 6f 75 72 63 65 5d 2e 61 64 64 28 76 29 0a 20 20 20 20 20 20 20 20 3e 3e 3e 20 6c 65 6e 28 73 6f | ource].add(v).........>>>.len(so |
| ada0 | 75 72 63 65 73 5b 22 61 22 5d 29 0a 20 20 20 20 20 20 20 20 31 0a 20 20 20 20 20 20 20 20 3e 3e | urces["a"]).........1.........>> |
| adc0 | 3e 20 6c 65 6e 28 73 6f 75 72 63 65 73 5b 22 64 22 5d 29 0a 20 20 20 20 20 20 20 20 32 0a 0a 20 | >.len(sources["d"]).........2... |
| ade0 | 20 20 20 54 6f 20 63 6f 70 79 20 6e 6f 64 65 20 61 74 74 72 69 62 75 74 65 73 20 66 72 6f 6d 20 | ...To.copy.node.attributes.from. |
| ae00 | 74 68 65 20 6f 72 69 67 69 6e 61 6c 20 67 72 61 70 68 20 74 6f 20 74 68 65 20 6e 65 77 20 67 72 | the.original.graph.to.the.new.gr |
| ae20 | 61 70 68 2c 0a 20 20 20 20 79 6f 75 20 63 61 6e 20 75 73 65 20 61 20 64 69 63 74 69 6f 6e 61 72 | aph,.....you.can.use.a.dictionar |
| ae40 | 79 20 6c 69 6b 65 20 74 68 65 20 6f 6e 65 20 63 6f 6e 73 74 72 75 63 74 65 64 20 69 6e 20 74 68 | y.like.the.one.constructed.in.th |
| ae60 | 65 20 61 62 6f 76 65 0a 20 20 20 20 65 78 61 6d 70 6c 65 3a 3a 0a 0a 20 20 20 20 20 20 20 20 3e | e.above.....example::..........> |
| ae80 | 3e 3e 20 66 6f 72 20 73 6f 75 72 63 65 2c 20 6e 6f 64 65 73 20 69 6e 20 73 6f 75 72 63 65 73 2e | >>.for.source,.nodes.in.sources. |
| aea0 | 69 74 65 6d 73 28 29 3a 0a 20 20 20 20 20 20 20 20 2e 2e 2e 20 20 20 20 20 66 6f 72 20 76 20 69 | items():.................for.v.i |
| aec0 | 6e 20 6e 6f 64 65 73 3a 0a 20 20 20 20 20 20 20 20 2e 2e 2e 20 20 20 20 20 20 20 20 20 42 2e 6e | n.nodes:.....................B.n |
| aee0 | 6f 64 65 73 5b 76 5d 2e 75 70 64 61 74 65 28 47 2e 6e 6f 64 65 73 5b 73 6f 75 72 63 65 5d 29 0a | odes[v].update(G.nodes[source]). |
| af00 | 0a 20 20 20 20 4e 6f 74 65 73 0a 20 20 20 20 2d 2d 2d 2d 2d 0a 20 20 20 20 54 68 69 73 20 66 75 | .....Notes.....-----.....This.fu |
| af20 | 6e 63 74 69 6f 6e 20 69 73 20 6e 6f 74 20 69 64 65 6d 70 6f 74 65 6e 74 20 69 6e 20 74 68 65 20 | nction.is.not.idempotent.in.the. |
| af40 | 73 65 6e 73 65 20 74 68 61 74 20 74 68 65 20 6e 6f 64 65 20 6c 61 62 65 6c 73 20 69 6e 0a 20 20 | sense.that.the.node.labels.in... |
| af60 | 20 20 74 68 65 20 72 65 74 75 72 6e 65 64 20 62 72 61 6e 63 68 69 6e 67 20 6d 61 79 20 62 65 20 | ..the.returned.branching.may.be. |
| af80 | 75 6e 69 71 75 65 6c 79 20 67 65 6e 65 72 61 74 65 64 20 65 61 63 68 20 74 69 6d 65 20 74 68 65 | uniquely.generated.each.time.the |
| afa0 | 0a 20 20 20 20 66 75 6e 63 74 69 6f 6e 20 69 73 20 69 6e 76 6f 6b 65 64 2e 20 49 6e 20 66 61 63 | .....function.is.invoked..In.fac |
| afc0 | 74 2c 20 74 68 65 20 6e 6f 64 65 20 6c 61 62 65 6c 73 20 6d 61 79 20 6e 6f 74 20 62 65 20 69 6e | t,.the.node.labels.may.not.be.in |
| afe0 | 74 65 67 65 72 73 3b 0a 20 20 20 20 69 6e 20 6f 72 64 65 72 20 74 6f 20 72 65 6c 61 62 65 6c 20 | tegers;.....in.order.to.relabel. |
| b000 | 74 68 65 20 6e 6f 64 65 73 20 74 6f 20 62 65 20 6d 6f 72 65 20 72 65 61 64 61 62 6c 65 2c 20 79 | the.nodes.to.be.more.readable,.y |
| b020 | 6f 75 20 63 61 6e 20 75 73 65 20 74 68 65 0a 20 20 20 20 3a 66 75 6e 63 3a 60 6e 65 74 77 6f 72 | ou.can.use.the.....:func:`networ |
| b040 | 6b 78 2e 63 6f 6e 76 65 72 74 5f 6e 6f 64 65 5f 6c 61 62 65 6c 73 5f 74 6f 5f 69 6e 74 65 67 65 | kx.convert_node_labels_to_intege |
| b060 | 72 73 60 20 66 75 6e 63 74 69 6f 6e 2e 0a 0a 20 20 20 20 54 68 65 20 63 75 72 72 65 6e 74 20 69 | rs`.function.......The.current.i |
| b080 | 6d 70 6c 65 6d 65 6e 74 61 74 69 6f 6e 20 6f 66 20 74 68 69 73 20 66 75 6e 63 74 69 6f 6e 20 75 | mplementation.of.this.function.u |
| b0a0 | 73 65 73 0a 20 20 20 20 3a 66 75 6e 63 3a 60 6e 65 74 77 6f 72 6b 78 2e 70 72 65 66 69 78 5f 74 | ses.....:func:`networkx.prefix_t |
| b0c0 | 72 65 65 60 2c 20 73 6f 20 69 74 20 69 73 20 73 75 62 6a 65 63 74 20 74 6f 20 74 68 65 20 6c 69 | ree`,.so.it.is.subject.to.the.li |
| b0e0 | 6d 69 74 61 74 69 6f 6e 73 20 6f 66 0a 20 20 20 20 74 68 61 74 20 66 75 6e 63 74 69 6f 6e 2e 0a | mitations.of.....that.function.. |
| b100 | 0a 20 20 20 20 7a 33 64 61 67 5f 74 6f 5f 62 72 61 6e 63 68 69 6e 67 20 69 73 20 6f 6e 6c 79 20 | .....z3dag_to_branching.is.only. |
| b120 | 64 65 66 69 6e 65 64 20 66 6f 72 20 61 63 79 63 6c 69 63 20 67 72 61 70 68 73 72 02 00 00 00 72 | defined.for.acyclic.graphsr....r |
| b140 | 62 00 00 00 29 06 72 2d 00 00 00 72 1f 00 00 00 da 09 48 61 73 41 43 79 63 6c 65 72 c3 00 00 00 | b...).r-...r......HasACycler.... |
| b160 | da 0b 70 72 65 66 69 78 5f 74 72 65 65 da 0b 72 65 6d 6f 76 65 5f 6e 6f 64 65 29 04 72 22 00 00 | ..prefix_tree..remove_node).r".. |
| b180 | 00 72 57 00 00 00 da 05 70 61 74 68 73 da 01 42 73 04 00 00 00 20 20 20 20 72 26 00 00 00 72 1b | .rW.....paths..Bs........r&...r. |
| b1a0 | 00 00 00 72 1b 00 00 00 9b 04 00 00 73 55 00 00 00 80 00 f4 70 02 00 08 11 90 11 84 7c d8 0e 43 | ...r........sU......p.......|..C |
| b1c0 | 88 03 dc 0e 10 8f 6c 89 6c 98 33 d3 0e 1f d0 08 1f dc 0c 1e 98 71 d3 0c 21 80 45 dc 08 0a 8f 0e | ......l.l.3..........q..!.E..... |
| b1e0 | 89 0e 90 75 d3 08 1d 80 41 e0 04 05 87 4d 81 4d 90 21 d4 04 14 d8 04 05 87 4d 81 4d 90 22 d4 04 | ...u....A....M.M.!.......M.M.".. |
| b200 | 15 d8 0b 0c 80 48 72 30 00 00 00 63 01 00 00 00 00 00 00 00 00 00 00 00 05 00 00 00 03 00 00 00 | .....Hr0...c.................... |
| b220 | f3 50 00 00 00 97 00 64 01 64 02 6c 00 7d 01 7c 01 6a 03 00 00 00 00 00 00 00 00 00 00 00 00 00 | .P.....d.d.l.}.|.j.............. |
| b240 | 00 00 00 00 00 64 03 74 04 00 00 00 00 00 00 00 00 64 04 ac 05 ab 03 00 00 00 00 00 00 01 00 74 | .....d.t.........d.............t |
| b260 | 07 00 00 00 00 00 00 00 00 7c 00 ab 01 00 00 00 00 00 00 53 00 29 06 75 3b 08 00 00 59 69 65 6c | .........|.........S.).u;...Yiel |
| b280 | 64 73 20 33 2d 6e 6f 64 65 20 74 75 70 6c 65 73 20 74 68 61 74 20 72 65 70 72 65 73 65 6e 74 20 | ds.3-node.tuples.that.represent. |
| b2a0 | 74 68 65 20 76 2d 73 74 72 75 63 74 75 72 65 73 20 69 6e 20 60 47 60 2e 0a 0a 20 20 20 20 2e 2e | the.v-structures.in.`G`......... |
| b2c0 | 20 64 65 70 72 65 63 61 74 65 64 3a 3a 20 33 2e 34 0a 0a 20 20 20 20 20 20 20 60 63 6f 6d 70 75 | .deprecated::.3.4.........`compu |
| b2e0 | 74 65 5f 76 5f 73 74 72 75 63 74 75 72 65 73 60 20 61 63 74 75 61 6c 6c 79 20 79 69 65 6c 64 73 | te_v_structures`.actually.yields |
| b300 | 20 63 6f 6c 6c 69 64 65 72 73 2e 20 49 74 20 77 69 6c 6c 20 62 65 20 72 65 6d 6f 76 65 64 20 69 | .colliders..It.will.be.removed.i |
| b320 | 6e 0a 20 20 20 20 20 20 20 76 65 72 73 69 6f 6e 20 33 2e 36 2e 20 55 73 65 20 60 6e 78 2e 64 61 | n........version.3.6..Use.`nx.da |
| b340 | 67 2e 76 5f 73 74 72 75 63 74 75 72 65 73 60 20 6f 72 20 60 6e 78 2e 64 61 67 2e 63 6f 6c 6c 69 | g.v_structures`.or.`nx.dag.colli |
| b360 | 64 65 72 73 60 20 69 6e 73 74 65 61 64 2e 0a 0a 20 20 20 20 43 6f 6c 6c 69 64 65 72 73 20 61 72 | ders`.instead.......Colliders.ar |
| b380 | 65 20 74 72 69 70 6c 65 73 20 69 6e 20 74 68 65 20 64 69 72 65 63 74 65 64 20 61 63 79 63 6c 69 | e.triples.in.the.directed.acycli |
| b3a0 | 63 20 67 72 61 70 68 20 28 44 41 47 29 20 77 68 65 72 65 20 74 77 6f 20 70 61 72 65 6e 74 20 6e | c.graph.(DAG).where.two.parent.n |
| b3c0 | 6f 64 65 73 0a 20 20 20 20 70 6f 69 6e 74 20 74 6f 20 74 68 65 20 73 61 6d 65 20 63 68 69 6c 64 | odes.....point.to.the.same.child |
| b3e0 | 20 6e 6f 64 65 2e 20 56 2d 73 74 72 75 63 74 75 72 65 73 20 61 72 65 20 63 6f 6c 6c 69 64 65 72 | .node..V-structures.are.collider |
| b400 | 73 20 77 68 65 72 65 20 74 68 65 20 74 77 6f 20 70 61 72 65 6e 74 0a 20 20 20 20 6e 6f 64 65 73 | s.where.the.two.parent.....nodes |
| b420 | 20 61 72 65 20 6e 6f 74 20 61 64 6a 61 63 65 6e 74 2e 20 49 6e 20 61 20 63 61 75 73 61 6c 20 67 | .are.not.adjacent..In.a.causal.g |
| b440 | 72 61 70 68 20 73 65 74 74 69 6e 67 2c 20 74 68 65 20 70 61 72 65 6e 74 73 20 64 6f 20 6e 6f 74 | raph.setting,.the.parents.do.not |
| b460 | 20 64 69 72 65 63 74 6c 79 0a 20 20 20 20 64 65 70 65 6e 64 20 6f 6e 20 65 61 63 68 20 6f 74 68 | .directly.....depend.on.each.oth |
| b480 | 65 72 2c 20 62 75 74 20 63 6f 6e 64 69 74 69 6f 6e 69 6e 67 20 6f 6e 20 74 68 65 20 63 68 69 6c | er,.but.conditioning.on.the.chil |
| b4a0 | 64 20 6e 6f 64 65 20 70 72 6f 76 69 64 65 73 20 61 6e 20 61 73 73 6f 63 69 61 74 69 6f 6e 2e 0a | d.node.provides.an.association.. |
| b4c0 | 0a 20 20 20 20 50 61 72 61 6d 65 74 65 72 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 | .....Parameters.....----------.. |
| b4e0 | 20 20 20 47 20 3a 20 67 72 61 70 68 0a 20 20 20 20 20 20 20 20 41 20 6e 65 74 77 6f 72 6b 78 20 | ...G.:.graph.........A.networkx. |
| b500 | 60 7e 6e 65 74 77 6f 72 6b 78 2e 44 69 47 72 61 70 68 60 2e 0a 0a 20 20 20 20 59 69 65 6c 64 73 | `~networkx.DiGraph`.......Yields |
| b520 | 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 41 20 33 2d 74 75 70 6c 65 20 72 65 70 72 65 73 | .....------.....A.3-tuple.repres |
| b540 | 65 6e 74 61 74 69 6f 6e 20 6f 66 20 61 20 76 2d 73 74 72 75 63 74 75 72 65 0a 20 20 20 20 20 20 | entation.of.a.v-structure....... |
| b560 | 20 20 45 61 63 68 20 76 2d 73 74 72 75 63 74 75 72 65 20 69 73 20 61 20 33 2d 74 75 70 6c 65 20 | ..Each.v-structure.is.a.3-tuple. |
| b580 | 77 69 74 68 20 74 68 65 20 70 61 72 65 6e 74 2c 20 63 6f 6c 6c 69 64 65 72 2c 20 61 6e 64 20 6f | with.the.parent,.collider,.and.o |
| b5a0 | 74 68 65 72 20 70 61 72 65 6e 74 2e 0a 0a 20 20 20 20 52 61 69 73 65 73 0a 20 20 20 20 2d 2d 2d | ther.parent.......Raises.....--- |
| b5c0 | 2d 2d 2d 0a 20 20 20 20 4e 65 74 77 6f 72 6b 58 4e 6f 74 49 6d 70 6c 65 6d 65 6e 74 65 64 0a 20 | ---.....NetworkXNotImplemented.. |
| b5e0 | 20 20 20 20 20 20 20 49 66 20 60 47 60 20 69 73 20 61 6e 20 75 6e 64 69 72 65 63 74 65 64 20 67 | .......If.`G`.is.an.undirected.g |
| b600 | 72 61 70 68 2e 0a 0a 20 20 20 20 45 78 61 6d 70 6c 65 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d | raph.......Examples.....-------- |
| b620 | 0a 20 20 20 20 3e 3e 3e 20 47 20 3d 20 6e 78 2e 44 69 47 72 61 70 68 28 5b 28 31 2c 20 32 29 2c | .....>>>.G.=.nx.DiGraph([(1,.2), |
| b640 | 20 28 30 2c 20 34 29 2c 20 28 33 2c 20 31 29 2c 20 28 32 2c 20 34 29 2c 20 28 30 2c 20 35 29 2c | .(0,.4),.(3,.1),.(2,.4),.(0,.5), |
| b660 | 20 28 34 2c 20 35 29 2c 20 28 31 2c 20 35 29 5d 29 0a 20 20 20 20 3e 3e 3e 20 6e 78 2e 69 73 5f | .(4,.5),.(1,.5)]).....>>>.nx.is_ |
| b680 | 64 69 72 65 63 74 65 64 5f 61 63 79 63 6c 69 63 5f 67 72 61 70 68 28 47 29 0a 20 20 20 20 54 72 | directed_acyclic_graph(G).....Tr |
| b6a0 | 75 65 0a 20 20 20 20 3e 3e 3e 20 6c 69 73 74 28 6e 78 2e 63 6f 6d 70 75 74 65 5f 76 5f 73 74 72 | ue.....>>>.list(nx.compute_v_str |
| b6c0 | 75 63 74 75 72 65 73 28 47 29 29 0a 20 20 20 20 5b 28 30 2c 20 34 2c 20 32 29 2c 20 28 30 2c 20 | uctures(G)).....[(0,.4,.2),.(0,. |
| b6e0 | 35 2c 20 34 29 2c 20 28 30 2c 20 35 2c 20 31 29 2c 20 28 34 2c 20 35 2c 20 31 29 5d 0a 0a 20 20 | 5,.4),.(0,.5,.1),.(4,.5,.1)].... |
| b700 | 20 20 53 65 65 20 41 6c 73 6f 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 76 5f 73 74 | ..See.Also.....--------.....v_st |
| b720 | 72 75 63 74 75 72 65 73 0a 20 20 20 20 63 6f 6c 6c 69 64 65 72 73 0a 0a 20 20 20 20 4e 6f 74 65 | ructures.....colliders......Note |
| b740 | 73 0a 20 20 20 20 2d 2d 2d 2d 2d 0a 20 20 20 20 54 68 69 73 20 66 75 6e 63 74 69 6f 6e 20 77 61 | s.....-----.....This.function.wa |
| b760 | 73 20 77 72 69 74 74 65 6e 20 74 6f 20 62 65 20 75 73 65 64 20 6f 6e 20 44 41 47 73 2c 20 68 6f | s.written.to.be.used.on.DAGs,.ho |
| b780 | 77 65 76 65 72 20 69 74 20 77 6f 72 6b 73 20 6f 6e 20 63 79 63 6c 69 63 20 67 72 61 70 68 73 0a | wever.it.works.on.cyclic.graphs. |
| b7a0 | 20 20 20 20 74 6f 6f 2e 20 53 69 6e 63 65 20 63 6f 6c 6c 69 64 65 72 73 20 61 72 65 20 72 65 66 | ....too..Since.colliders.are.ref |
| b7c0 | 65 72 72 65 64 20 74 6f 20 69 6e 20 74 68 65 20 63 79 63 6c 69 63 20 63 61 75 73 61 6c 20 67 72 | erred.to.in.the.cyclic.causal.gr |
| b7e0 | 61 70 68 20 6c 69 74 65 72 61 74 75 72 65 0a 20 20 20 20 5b 32 5d 5f 20 77 65 20 61 6c 6c 6f 77 | aph.literature.....[2]_.we.allow |
| b800 | 20 63 79 63 6c 69 63 20 67 72 61 70 68 73 20 69 6e 20 74 68 69 73 20 66 75 6e 63 74 69 6f 6e 2e | .cyclic.graphs.in.this.function. |
| b820 | 20 49 74 20 69 73 20 73 75 67 67 65 73 74 65 64 20 74 68 61 74 20 79 6f 75 20 74 65 73 74 20 69 | .It.is.suggested.that.you.test.i |
| b840 | 66 0a 20 20 20 20 79 6f 75 72 20 69 6e 70 75 74 20 67 72 61 70 68 20 69 73 20 61 63 79 63 6c 69 | f.....your.input.graph.is.acycli |
| b860 | 63 20 61 73 20 69 6e 20 74 68 65 20 65 78 61 6d 70 6c 65 20 69 66 20 79 6f 75 20 77 61 6e 74 20 | c.as.in.the.example.if.you.want. |
| b880 | 74 68 61 74 20 70 72 6f 70 65 72 74 79 2e 0a 0a 20 20 20 20 52 65 66 65 72 65 6e 63 65 73 0a 20 | that.property.......References.. |
| b8a0 | 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 2e 2e 20 5b 31 5d 20 20 60 50 65 61 72 6c | ...----------........[1]..`Pearl |
| b8c0 | 27 73 20 50 52 49 4d 45 52 20 3c 68 74 74 70 73 3a 2f 2f 62 61 79 65 73 2e 63 73 2e 75 63 6c 61 | 's.PRIMER.<https://bayes.cs.ucla |
| b8e0 | 2e 65 64 75 2f 50 52 49 4d 45 52 2f 70 72 69 6d 65 72 2d 63 68 32 2e 70 64 66 3e 60 5f 0a 20 20 | .edu/PRIMER/primer-ch2.pdf>`_... |
| b900 | 20 20 20 20 20 20 20 20 20 20 43 68 2d 32 20 70 61 67 65 20 35 30 3a 20 76 2d 73 74 72 75 63 74 | ..........Ch-2.page.50:.v-struct |
| b920 | 75 72 65 73 20 64 65 66 2e 0a 20 20 20 20 2e 2e 20 5b 32 5d 20 41 20 48 79 74 74 69 6e 65 6e 2c | ures.def.........[2].A.Hyttinen, |
| b940 | 20 50 2e 4f 2e 20 48 6f 79 65 72 2c 20 46 2e 20 45 62 65 72 68 61 72 64 74 2c 20 4d 20 4a 20 cc | .P.O..Hoyer,.F..Eberhardt,.M.J.. |
| b960 | 88 61 72 76 69 73 61 6c 6f 2c 20 28 32 30 31 33 29 0a 20 20 20 20 20 20 20 20 20 20 20 22 44 69 | .arvisalo,.(2013)............"Di |
| b980 | 73 63 6f 76 65 72 69 6e 67 20 63 79 63 6c 69 63 20 63 61 75 73 61 6c 20 6d 6f 64 65 6c 73 20 77 | scovering.cyclic.causal.models.w |
| b9a0 | 69 74 68 20 6c 61 74 65 6e 74 20 76 61 72 69 61 62 6c 65 73 3a 0a 20 20 20 20 20 20 20 20 20 20 | ith.latent.variables:........... |
| b9c0 | 20 61 20 67 65 6e 65 72 61 6c 20 53 41 54 2d 62 61 73 65 64 20 70 72 6f 63 65 64 75 72 65 22 2c | .a.general.SAT-based.procedure", |
| b9e0 | 20 55 41 49 27 31 33 3a 20 50 72 6f 63 65 65 64 69 6e 67 73 20 6f 66 20 74 68 65 20 54 77 65 6e | .UAI'13:.Proceedings.of.the.Twen |
| ba00 | 74 79 2d 4e 69 6e 74 68 0a 20 20 20 20 20 20 20 20 20 20 20 43 6f 6e 66 65 72 65 6e 63 65 20 6f | ty-Ninth............Conference.o |
| ba20 | 6e 20 55 6e 63 65 72 74 61 69 6e 74 79 20 69 6e 20 41 72 74 69 66 69 63 69 61 6c 20 49 6e 74 65 | n.Uncertainty.in.Artificial.Inte |
| ba40 | 6c 6c 69 67 65 6e 63 65 2c 20 70 67 20 33 30 31 e2 80 93 33 31 30 2c 0a 20 20 20 20 20 20 20 20 | lligence,.pg.301...310,......... |
| ba60 | 20 20 20 60 64 6f 69 3a 31 30 2e 35 35 35 35 2f 33 30 32 33 36 33 38 2e 33 30 32 33 36 36 39 20 | ...`doi:10.5555/3023638.3023669. |
| ba80 | 3c 68 74 74 70 73 3a 2f 2f 64 6c 2e 61 63 6d 2e 6f 72 67 2f 64 6f 69 2f 31 30 2e 35 35 35 35 2f | <https://dl.acm.org/doi/10.5555/ |
| baa0 | 33 30 32 33 36 33 38 2e 33 30 32 33 36 36 39 3e 60 5f 0a 20 20 20 20 72 02 00 00 00 4e 7a 90 0a | 3023638.3023669>`_.....r....Nz.. |
| bac0 | 0a 60 63 6f 6d 70 75 74 65 5f 76 5f 73 74 72 75 63 74 75 72 65 73 60 20 61 63 74 75 61 6c 6c 79 | .`compute_v_structures`.actually |
| bae0 | 20 79 69 65 6c 64 73 20 63 6f 6c 6c 69 64 65 72 73 2e 20 49 74 20 77 69 6c 6c 20 62 65 0a 72 65 | .yields.colliders..It.will.be.re |
| bb00 | 6d 6f 76 65 64 20 69 6e 20 76 65 72 73 69 6f 6e 20 33 2e 36 2e 20 55 73 65 20 60 6e 78 2e 64 61 | moved.in.version.3.6..Use.`nx.da |
| bb20 | 67 2e 76 5f 73 74 72 75 63 74 75 72 65 73 60 20 6f 72 20 60 6e 78 2e 64 61 67 2e 63 6f 6c 6c 69 | g.v_structures`.or.`nx.dag.colli |
| bb40 | 64 65 72 73 60 0a 69 6e 73 74 65 61 64 2e 0a e9 05 00 00 00 29 02 da 08 63 61 74 65 67 6f 72 79 | ders`.instead.......)...category |
| bb60 | da 0a 73 74 61 63 6b 6c 65 76 65 6c 29 04 da 08 77 61 72 6e 69 6e 67 73 da 04 77 61 72 6e da 12 | ..stacklevel)...warnings..warn.. |
| bb80 | 44 65 70 72 65 63 61 74 69 6f 6e 57 61 72 6e 69 6e 67 da 09 63 6f 6c 6c 69 64 65 72 73 29 02 72 | DeprecationWarning..colliders).r |
| bba0 | 22 00 00 00 72 ce 00 00 00 73 02 00 00 00 20 20 72 26 00 00 00 72 1c 00 00 00 72 1c 00 00 00 fe | "...r....s......r&...r....r..... |
| bbc0 | 04 00 00 73 32 00 00 00 80 00 f3 78 01 00 05 14 e0 04 0c 87 4d 81 4d f0 04 02 0d 19 f4 08 00 12 | ...s2......x........M.M......... |
| bbe0 | 24 d8 13 14 f0 0f 00 05 12 f4 00 08 05 06 f4 14 00 0c 15 90 51 8b 3c d0 04 17 72 30 00 00 00 63 | $...................Q.<...r0...c |
| bc00 | 01 00 00 00 00 00 00 00 00 00 00 00 05 00 00 00 23 00 00 00 f3 8e 00 00 00 4b 00 01 00 97 00 74 | ................#........K.....t |
| bc20 | 01 00 00 00 00 00 00 00 00 7c 00 ab 01 00 00 00 00 00 00 44 00 5d 33 00 00 5c 03 00 00 7d 01 7d | .........|.........D.]3..\...}.} |
| bc40 | 02 7d 03 7c 00 6a 03 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 7c 01 7c 03 ab 02 00 | .}.|.j...................|.|.... |
| bc60 | 00 00 00 00 00 72 01 8c 1a 7c 00 6a 03 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 7c | .....r...|.j...................| |
| bc80 | 03 7c 01 ab 02 00 00 00 00 00 00 72 01 8c 2d 7c 01 7c 02 7c 03 66 03 96 01 97 01 01 00 8c 35 04 | .|.........r..-|.|.|.f........5. |
| bca0 | 00 79 01 ad 03 77 01 29 02 75 65 07 00 00 59 69 65 6c 64 73 20 33 2d 6e 6f 64 65 20 74 75 70 6c | .y...w.).ue...Yields.3-node.tupl |
| bcc0 | 65 73 20 74 68 61 74 20 72 65 70 72 65 73 65 6e 74 20 74 68 65 20 76 2d 73 74 72 75 63 74 75 72 | es.that.represent.the.v-structur |
| bce0 | 65 73 20 69 6e 20 60 47 60 2e 0a 0a 20 20 20 20 43 6f 6c 6c 69 64 65 72 73 20 61 72 65 20 74 72 | es.in.`G`.......Colliders.are.tr |
| bd00 | 69 70 6c 65 73 20 69 6e 20 74 68 65 20 64 69 72 65 63 74 65 64 20 61 63 79 63 6c 69 63 20 67 72 | iples.in.the.directed.acyclic.gr |
| bd20 | 61 70 68 20 28 44 41 47 29 20 77 68 65 72 65 20 74 77 6f 20 70 61 72 65 6e 74 20 6e 6f 64 65 73 | aph.(DAG).where.two.parent.nodes |
| bd40 | 0a 20 20 20 20 70 6f 69 6e 74 20 74 6f 20 74 68 65 20 73 61 6d 65 20 63 68 69 6c 64 20 6e 6f 64 | .....point.to.the.same.child.nod |
| bd60 | 65 2e 20 56 2d 73 74 72 75 63 74 75 72 65 73 20 61 72 65 20 63 6f 6c 6c 69 64 65 72 73 20 77 68 | e..V-structures.are.colliders.wh |
| bd80 | 65 72 65 20 74 68 65 20 74 77 6f 20 70 61 72 65 6e 74 0a 20 20 20 20 6e 6f 64 65 73 20 61 72 65 | ere.the.two.parent.....nodes.are |
| bda0 | 20 6e 6f 74 20 61 64 6a 61 63 65 6e 74 2e 20 49 6e 20 61 20 63 61 75 73 61 6c 20 67 72 61 70 68 | .not.adjacent..In.a.causal.graph |
| bdc0 | 20 73 65 74 74 69 6e 67 2c 20 74 68 65 20 70 61 72 65 6e 74 73 20 64 6f 20 6e 6f 74 20 64 69 72 | .setting,.the.parents.do.not.dir |
| bde0 | 65 63 74 6c 79 0a 20 20 20 20 64 65 70 65 6e 64 20 6f 6e 20 65 61 63 68 20 6f 74 68 65 72 2c 20 | ectly.....depend.on.each.other,. |
| be00 | 62 75 74 20 63 6f 6e 64 69 74 69 6f 6e 69 6e 67 20 6f 6e 20 74 68 65 20 63 68 69 6c 64 20 6e 6f | but.conditioning.on.the.child.no |
| be20 | 64 65 20 70 72 6f 76 69 64 65 73 20 61 6e 20 61 73 73 6f 63 69 61 74 69 6f 6e 2e 0a 0a 20 20 20 | de.provides.an.association...... |
| be40 | 20 50 61 72 61 6d 65 74 65 72 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 47 | .Parameters.....----------.....G |
| be60 | 20 3a 20 67 72 61 70 68 0a 20 20 20 20 20 20 20 20 41 20 6e 65 74 77 6f 72 6b 78 20 60 7e 6e 65 | .:.graph.........A.networkx.`~ne |
| be80 | 74 77 6f 72 6b 78 2e 44 69 47 72 61 70 68 60 2e 0a 0a 20 20 20 20 59 69 65 6c 64 73 0a 20 20 20 | tworkx.DiGraph`.......Yields.... |
| bea0 | 20 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 41 20 33 2d 74 75 70 6c 65 20 72 65 70 72 65 73 65 6e 74 61 | .------.....A.3-tuple.representa |
| bec0 | 74 69 6f 6e 20 6f 66 20 61 20 76 2d 73 74 72 75 63 74 75 72 65 0a 20 20 20 20 20 20 20 20 45 61 | tion.of.a.v-structure.........Ea |
| bee0 | 63 68 20 76 2d 73 74 72 75 63 74 75 72 65 20 69 73 20 61 20 33 2d 74 75 70 6c 65 20 77 69 74 68 | ch.v-structure.is.a.3-tuple.with |
| bf00 | 20 74 68 65 20 70 61 72 65 6e 74 2c 20 63 6f 6c 6c 69 64 65 72 2c 20 61 6e 64 20 6f 74 68 65 72 | .the.parent,.collider,.and.other |
| bf20 | 20 70 61 72 65 6e 74 2e 0a 0a 20 20 20 20 52 61 69 73 65 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 0a | .parent.......Raises.....------. |
| bf40 | 20 20 20 20 4e 65 74 77 6f 72 6b 58 4e 6f 74 49 6d 70 6c 65 6d 65 6e 74 65 64 0a 20 20 20 20 20 | ....NetworkXNotImplemented...... |
| bf60 | 20 20 20 49 66 20 60 47 60 20 69 73 20 61 6e 20 75 6e 64 69 72 65 63 74 65 64 20 67 72 61 70 68 | ...If.`G`.is.an.undirected.graph |
| bf80 | 2e 0a 0a 20 20 20 20 45 78 61 6d 70 6c 65 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 | .......Examples.....--------.... |
| bfa0 | 20 3e 3e 3e 20 47 20 3d 20 6e 78 2e 44 69 47 72 61 70 68 28 5b 28 31 2c 20 32 29 2c 20 28 30 2c | .>>>.G.=.nx.DiGraph([(1,.2),.(0, |
| bfc0 | 20 34 29 2c 20 28 33 2c 20 31 29 2c 20 28 32 2c 20 34 29 2c 20 28 30 2c 20 35 29 2c 20 28 34 2c | .4),.(3,.1),.(2,.4),.(0,.5),.(4, |
| bfe0 | 20 35 29 2c 20 28 31 2c 20 35 29 5d 29 0a 20 20 20 20 3e 3e 3e 20 6e 78 2e 69 73 5f 64 69 72 65 | .5),.(1,.5)]).....>>>.nx.is_dire |
| c000 | 63 74 65 64 5f 61 63 79 63 6c 69 63 5f 67 72 61 70 68 28 47 29 0a 20 20 20 20 54 72 75 65 0a 20 | cted_acyclic_graph(G).....True.. |
| c020 | 20 20 20 3e 3e 3e 20 6c 69 73 74 28 6e 78 2e 64 61 67 2e 76 5f 73 74 72 75 63 74 75 72 65 73 28 | ...>>>.list(nx.dag.v_structures( |
| c040 | 47 29 29 0a 20 20 20 20 5b 28 30 2c 20 34 2c 20 32 29 2c 20 28 30 2c 20 35 2c 20 31 29 2c 20 28 | G)).....[(0,.4,.2),.(0,.5,.1),.( |
| c060 | 34 2c 20 35 2c 20 31 29 5d 0a 0a 20 20 20 20 53 65 65 20 41 6c 73 6f 0a 20 20 20 20 2d 2d 2d 2d | 4,.5,.1)]......See.Also.....---- |
| c080 | 2d 2d 2d 2d 0a 20 20 20 20 63 6f 6c 6c 69 64 65 72 73 0a 0a 20 20 20 20 4e 6f 74 65 73 0a 20 20 | ----.....colliders......Notes... |
| c0a0 | 20 20 2d 2d 2d 2d 2d 0a 20 20 20 20 54 68 69 73 20 66 75 6e 63 74 69 6f 6e 20 77 61 73 20 77 72 | ..-----.....This.function.was.wr |
| c0c0 | 69 74 74 65 6e 20 74 6f 20 62 65 20 75 73 65 64 20 6f 6e 20 44 41 47 73 2c 20 68 6f 77 65 76 65 | itten.to.be.used.on.DAGs,.howeve |
| c0e0 | 72 20 69 74 20 77 6f 72 6b 73 20 6f 6e 20 63 79 63 6c 69 63 20 67 72 61 70 68 73 0a 20 20 20 20 | r.it.works.on.cyclic.graphs..... |
| c100 | 74 6f 6f 2e 20 53 69 6e 63 65 20 63 6f 6c 6c 69 64 65 72 73 20 61 72 65 20 72 65 66 65 72 72 65 | too..Since.colliders.are.referre |
| c120 | 64 20 74 6f 20 69 6e 20 74 68 65 20 63 79 63 6c 69 63 20 63 61 75 73 61 6c 20 67 72 61 70 68 20 | d.to.in.the.cyclic.causal.graph. |
| c140 | 6c 69 74 65 72 61 74 75 72 65 0a 20 20 20 20 5b 32 5d 5f 20 77 65 20 61 6c 6c 6f 77 20 63 79 63 | literature.....[2]_.we.allow.cyc |
| c160 | 6c 69 63 20 67 72 61 70 68 73 20 69 6e 20 74 68 69 73 20 66 75 6e 63 74 69 6f 6e 2e 20 49 74 20 | lic.graphs.in.this.function..It. |
| c180 | 69 73 20 73 75 67 67 65 73 74 65 64 20 74 68 61 74 20 79 6f 75 20 74 65 73 74 20 69 66 0a 20 20 | is.suggested.that.you.test.if... |
| c1a0 | 20 20 79 6f 75 72 20 69 6e 70 75 74 20 67 72 61 70 68 20 69 73 20 61 63 79 63 6c 69 63 20 61 73 | ..your.input.graph.is.acyclic.as |
| c1c0 | 20 69 6e 20 74 68 65 20 65 78 61 6d 70 6c 65 20 69 66 20 79 6f 75 20 77 61 6e 74 20 74 68 61 74 | .in.the.example.if.you.want.that |
| c1e0 | 20 70 72 6f 70 65 72 74 79 2e 0a 0a 20 20 20 20 52 65 66 65 72 65 6e 63 65 73 0a 20 20 20 20 2d | .property.......References.....- |
| c200 | 2d 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 2e 2e 20 5b 31 5d 20 20 60 50 65 61 72 6c 27 73 20 50 | ---------........[1]..`Pearl's.P |
| c220 | 52 49 4d 45 52 20 3c 68 74 74 70 73 3a 2f 2f 62 61 79 65 73 2e 63 73 2e 75 63 6c 61 2e 65 64 75 | RIMER.<https://bayes.cs.ucla.edu |
| c240 | 2f 50 52 49 4d 45 52 2f 70 72 69 6d 65 72 2d 63 68 32 2e 70 64 66 3e 60 5f 0a 20 20 20 20 20 20 | /PRIMER/primer-ch2.pdf>`_....... |
| c260 | 20 20 20 20 20 20 43 68 2d 32 20 70 61 67 65 20 35 30 3a 20 76 2d 73 74 72 75 63 74 75 72 65 73 | ......Ch-2.page.50:.v-structures |
| c280 | 20 64 65 66 2e 0a 20 20 20 20 2e 2e 20 5b 32 5d 20 41 20 48 79 74 74 69 6e 65 6e 2c 20 50 2e 4f | .def.........[2].A.Hyttinen,.P.O |
| c2a0 | 2e 20 48 6f 79 65 72 2c 20 46 2e 20 45 62 65 72 68 61 72 64 74 2c 20 4d 20 4a 20 cc 88 61 72 76 | ..Hoyer,.F..Eberhardt,.M.J...arv |
| c2c0 | 69 73 61 6c 6f 2c 20 28 32 30 31 33 29 0a 20 20 20 20 20 20 20 20 20 20 20 22 44 69 73 63 6f 76 | isalo,.(2013)............"Discov |
| c2e0 | 65 72 69 6e 67 20 63 79 63 6c 69 63 20 63 61 75 73 61 6c 20 6d 6f 64 65 6c 73 20 77 69 74 68 20 | ering.cyclic.causal.models.with. |
| c300 | 6c 61 74 65 6e 74 20 76 61 72 69 61 62 6c 65 73 3a 0a 20 20 20 20 20 20 20 20 20 20 20 61 20 67 | latent.variables:............a.g |
| c320 | 65 6e 65 72 61 6c 20 53 41 54 2d 62 61 73 65 64 20 70 72 6f 63 65 64 75 72 65 22 2c 20 55 41 49 | eneral.SAT-based.procedure",.UAI |
| c340 | 27 31 33 3a 20 50 72 6f 63 65 65 64 69 6e 67 73 20 6f 66 20 74 68 65 20 54 77 65 6e 74 79 2d 4e | '13:.Proceedings.of.the.Twenty-N |
| c360 | 69 6e 74 68 0a 20 20 20 20 20 20 20 20 20 20 20 43 6f 6e 66 65 72 65 6e 63 65 20 6f 6e 20 55 6e | inth............Conference.on.Un |
| c380 | 63 65 72 74 61 69 6e 74 79 20 69 6e 20 41 72 74 69 66 69 63 69 61 6c 20 49 6e 74 65 6c 6c 69 67 | certainty.in.Artificial.Intellig |
| c3a0 | 65 6e 63 65 2c 20 70 67 20 33 30 31 e2 80 93 33 31 30 2c 0a 20 20 20 20 20 20 20 20 20 20 20 60 | ence,.pg.301...310,............` |
| c3c0 | 64 6f 69 3a 31 30 2e 35 35 35 35 2f 33 30 32 33 36 33 38 2e 33 30 32 33 36 36 39 20 3c 68 74 74 | doi:10.5555/3023638.3023669.<htt |
| c3e0 | 70 73 3a 2f 2f 64 6c 2e 61 63 6d 2e 6f 72 67 2f 64 6f 69 2f 31 30 2e 35 35 35 35 2f 33 30 32 33 | ps://dl.acm.org/doi/10.5555/3023 |
| c400 | 36 33 38 2e 33 30 32 33 36 36 39 3e 60 5f 0a 20 20 20 20 4e 29 02 72 d1 00 00 00 da 08 68 61 73 | 638.3023669>`_.....N).r......has |
| c420 | 5f 65 64 67 65 29 04 72 22 00 00 00 da 02 70 31 da 01 63 da 02 70 32 73 04 00 00 00 20 20 20 20 | _edge).r".....p1..c..p2s........ |
| c440 | 72 26 00 00 00 da 0c 76 5f 73 74 72 75 63 74 75 72 65 73 72 d7 00 00 00 49 05 00 00 73 49 00 00 | r&.....v_structuresr....I...sI.. |
| c460 | 00 e8 00 f8 80 00 f4 6c 01 00 16 1f 98 71 93 5c f2 00 02 05 1e 89 09 88 02 88 41 88 72 d8 10 11 | .......l.....q.\..........A.r... |
| c480 | 97 0a 91 0a 98 32 98 72 d5 10 22 a0 61 a7 6a a1 6a b0 12 b0 52 d5 26 38 d8 13 15 90 71 98 22 90 | .....2.r..".a.j.j...R.&8....q.". |
| c4a0 | 2b d3 0c 1d f1 05 02 05 1e f9 73 0f 00 00 00 82 25 41 05 01 a8 12 41 05 01 bb 0a 41 05 01 63 01 | +.........s.....%A....A....A..c. |
| c4c0 | 00 00 00 00 00 00 00 00 00 00 00 06 00 00 00 23 00 00 00 f3 82 00 00 00 4b 00 01 00 97 00 7c 00 | ...............#........K.....|. |
| c4e0 | 6a 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 44 00 5d 2c 00 00 7d 01 74 03 00 00 | j...................D.],..}.t... |
| c500 | 00 00 00 00 00 00 7c 00 6a 05 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 7c 01 ab 01 | ......|.j...................|... |
| c520 | 00 00 00 00 00 00 64 01 ab 02 00 00 00 00 00 00 44 00 5d 0c 00 00 5c 02 00 00 7d 02 7d 03 7c 02 | ......d.........D.]...\...}.}.|. |
| c540 | 7c 01 7c 03 66 03 96 01 97 01 01 00 8c 0e 04 00 8c 2e 04 00 79 02 ad 03 77 01 29 03 75 78 07 00 | |.|.f...............y...w.).ux.. |
| c560 | 00 59 69 65 6c 64 73 20 33 2d 6e 6f 64 65 20 74 75 70 6c 65 73 20 74 68 61 74 20 72 65 70 72 65 | .Yields.3-node.tuples.that.repre |
| c580 | 73 65 6e 74 20 74 68 65 20 63 6f 6c 6c 69 64 65 72 73 20 69 6e 20 60 47 60 2e 0a 0a 20 20 20 20 | sent.the.colliders.in.`G`....... |
| c5a0 | 49 6e 20 61 20 44 69 72 65 63 74 65 64 20 41 63 79 63 6c 69 63 20 47 72 61 70 68 20 28 44 41 47 | In.a.Directed.Acyclic.Graph.(DAG |
| c5c0 | 29 2c 20 69 66 20 79 6f 75 20 68 61 76 65 20 74 68 72 65 65 20 6e 6f 64 65 73 20 41 2c 20 42 2c | ),.if.you.have.three.nodes.A,.B, |
| c5e0 | 20 61 6e 64 20 43 2c 20 61 6e 64 0a 20 20 20 20 74 68 65 72 65 20 61 72 65 20 65 64 67 65 73 20 | .and.C,.and.....there.are.edges. |
| c600 | 66 72 6f 6d 20 41 20 74 6f 20 43 20 61 6e 64 20 66 72 6f 6d 20 42 20 74 6f 20 43 2c 20 74 68 65 | from.A.to.C.and.from.B.to.C,.the |
| c620 | 6e 20 43 20 69 73 20 61 20 63 6f 6c 6c 69 64 65 72 20 5b 31 5d 5f 20 2e 20 49 6e 0a 20 20 20 20 | n.C.is.a.collider.[1]_...In..... |
| c640 | 61 20 63 61 75 73 61 6c 20 67 72 61 70 68 20 73 65 74 74 69 6e 67 2c 20 74 68 69 73 20 6d 65 61 | a.causal.graph.setting,.this.mea |
| c660 | 6e 73 20 74 68 61 74 20 62 6f 74 68 20 65 76 65 6e 74 73 20 41 20 61 6e 64 20 42 20 61 72 65 20 | ns.that.both.events.A.and.B.are. |
| c680 | 22 63 61 75 73 69 6e 67 22 20 43 2c 0a 20 20 20 20 61 6e 64 20 63 6f 6e 64 69 74 69 6f 6e 69 6e | "causing".C,.....and.conditionin |
| c6a0 | 67 20 6f 6e 20 43 20 70 72 6f 76 69 64 65 20 61 6e 20 61 73 73 6f 63 69 61 74 69 6f 6e 20 62 65 | g.on.C.provide.an.association.be |
| c6c0 | 74 77 65 65 6e 20 41 20 61 6e 64 20 42 20 65 76 65 6e 20 69 66 0a 20 20 20 20 6e 6f 20 64 69 72 | tween.A.and.B.even.if.....no.dir |
| c6e0 | 65 63 74 20 63 61 75 73 61 6c 20 72 65 6c 61 74 69 6f 6e 73 68 69 70 20 65 78 69 73 74 73 20 62 | ect.causal.relationship.exists.b |
| c700 | 65 74 77 65 65 6e 20 41 20 61 6e 64 20 42 2e 0a 0a 20 20 20 20 50 61 72 61 6d 65 74 65 72 73 0a | etween.A.and.B.......Parameters. |
| c720 | 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 47 20 3a 20 67 72 61 70 68 0a 20 20 20 | ....----------.....G.:.graph.... |
| c740 | 20 20 20 20 20 41 20 6e 65 74 77 6f 72 6b 78 20 60 7e 6e 65 74 77 6f 72 6b 78 2e 44 69 47 72 61 | .....A.networkx.`~networkx.DiGra |
| c760 | 70 68 60 2e 0a 0a 20 20 20 20 59 69 65 6c 64 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 | ph`.......Yields.....------..... |
| c780 | 41 20 33 2d 74 75 70 6c 65 20 72 65 70 72 65 73 65 6e 74 61 74 69 6f 6e 20 6f 66 20 61 20 63 6f | A.3-tuple.representation.of.a.co |
| c7a0 | 6c 6c 69 64 65 72 0a 20 20 20 20 20 20 20 20 45 61 63 68 20 63 6f 6c 6c 69 64 65 72 20 69 73 20 | llider.........Each.collider.is. |
| c7c0 | 61 20 33 2d 74 75 70 6c 65 20 77 69 74 68 20 74 68 65 20 70 61 72 65 6e 74 2c 20 63 6f 6c 6c 69 | a.3-tuple.with.the.parent,.colli |
| c7e0 | 64 65 72 2c 20 61 6e 64 20 6f 74 68 65 72 20 70 61 72 65 6e 74 2e 0a 0a 20 20 20 20 52 61 69 73 | der,.and.other.parent.......Rais |
| c800 | 65 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 4e 65 74 77 6f 72 6b 58 4e 6f 74 49 6d 70 | es.....------.....NetworkXNotImp |
| c820 | 6c 65 6d 65 6e 74 65 64 0a 20 20 20 20 20 20 20 20 49 66 20 60 47 60 20 69 73 20 61 6e 20 75 6e | lemented.........If.`G`.is.an.un |
| c840 | 64 69 72 65 63 74 65 64 20 67 72 61 70 68 2e 0a 0a 20 20 20 20 45 78 61 6d 70 6c 65 73 0a 20 20 | directed.graph.......Examples... |
| c860 | 20 20 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 3e 3e 3e 20 47 20 3d 20 6e 78 2e 44 69 47 72 61 70 | ..--------.....>>>.G.=.nx.DiGrap |
| c880 | 68 28 5b 28 31 2c 20 32 29 2c 20 28 30 2c 20 34 29 2c 20 28 33 2c 20 31 29 2c 20 28 32 2c 20 34 | h([(1,.2),.(0,.4),.(3,.1),.(2,.4 |
| c8a0 | 29 2c 20 28 30 2c 20 35 29 2c 20 28 34 2c 20 35 29 2c 20 28 31 2c 20 35 29 5d 29 0a 20 20 20 20 | ),.(0,.5),.(4,.5),.(1,.5)])..... |
| c8c0 | 3e 3e 3e 20 6e 78 2e 69 73 5f 64 69 72 65 63 74 65 64 5f 61 63 79 63 6c 69 63 5f 67 72 61 70 68 | >>>.nx.is_directed_acyclic_graph |
| c8e0 | 28 47 29 0a 20 20 20 20 54 72 75 65 0a 20 20 20 20 3e 3e 3e 20 6c 69 73 74 28 6e 78 2e 64 61 67 | (G).....True.....>>>.list(nx.dag |
| c900 | 2e 63 6f 6c 6c 69 64 65 72 73 28 47 29 29 0a 20 20 20 20 5b 28 30 2c 20 34 2c 20 32 29 2c 20 28 | .colliders(G)).....[(0,.4,.2),.( |
| c920 | 30 2c 20 35 2c 20 34 29 2c 20 28 30 2c 20 35 2c 20 31 29 2c 20 28 34 2c 20 35 2c 20 31 29 5d 0a | 0,.5,.4),.(0,.5,.1),.(4,.5,.1)]. |
| c940 | 0a 20 20 20 20 53 65 65 20 41 6c 73 6f 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 76 | .....See.Also.....--------.....v |
| c960 | 5f 73 74 72 75 63 74 75 72 65 73 0a 0a 20 20 20 20 4e 6f 74 65 73 0a 20 20 20 20 2d 2d 2d 2d 2d | _structures......Notes.....----- |
| c980 | 0a 20 20 20 20 54 68 69 73 20 66 75 6e 63 74 69 6f 6e 20 77 61 73 20 77 72 69 74 74 65 6e 20 74 | .....This.function.was.written.t |
| c9a0 | 6f 20 62 65 20 75 73 65 64 20 6f 6e 20 44 41 47 73 2c 20 68 6f 77 65 76 65 72 20 69 74 20 77 6f | o.be.used.on.DAGs,.however.it.wo |
| c9c0 | 72 6b 73 20 6f 6e 20 63 79 63 6c 69 63 20 67 72 61 70 68 73 0a 20 20 20 20 74 6f 6f 2e 20 53 69 | rks.on.cyclic.graphs.....too..Si |
| c9e0 | 6e 63 65 20 63 6f 6c 6c 69 64 65 72 73 20 61 72 65 20 72 65 66 65 72 72 65 64 20 74 6f 20 69 6e | nce.colliders.are.referred.to.in |
| ca00 | 20 74 68 65 20 63 79 63 6c 69 63 20 63 61 75 73 61 6c 20 67 72 61 70 68 20 6c 69 74 65 72 61 74 | .the.cyclic.causal.graph.literat |
| ca20 | 75 72 65 0a 20 20 20 20 5b 32 5d 5f 20 77 65 20 61 6c 6c 6f 77 20 63 79 63 6c 69 63 20 67 72 61 | ure.....[2]_.we.allow.cyclic.gra |
| ca40 | 70 68 73 20 69 6e 20 74 68 69 73 20 66 75 6e 63 74 69 6f 6e 2e 20 49 74 20 69 73 20 73 75 67 67 | phs.in.this.function..It.is.sugg |
| ca60 | 65 73 74 65 64 20 74 68 61 74 20 79 6f 75 20 74 65 73 74 20 69 66 0a 20 20 20 20 79 6f 75 72 20 | ested.that.you.test.if.....your. |
| ca80 | 69 6e 70 75 74 20 67 72 61 70 68 20 69 73 20 61 63 79 63 6c 69 63 20 61 73 20 69 6e 20 74 68 65 | input.graph.is.acyclic.as.in.the |
| caa0 | 20 65 78 61 6d 70 6c 65 20 69 66 20 79 6f 75 20 77 61 6e 74 20 74 68 61 74 20 70 72 6f 70 65 72 | .example.if.you.want.that.proper |
| cac0 | 74 79 2e 0a 0a 20 20 20 20 52 65 66 65 72 65 6e 63 65 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d | ty.......References.....-------- |
| cae0 | 2d 2d 0a 20 20 20 20 2e 2e 20 5b 31 5d 20 60 57 69 6b 69 70 65 64 69 61 3a 20 43 6f 6c 6c 69 64 | --........[1].`Wikipedia:.Collid |
| cb00 | 65 72 20 69 6e 20 63 61 75 73 61 6c 20 67 72 61 70 68 73 20 3c 68 74 74 70 73 3a 2f 2f 65 6e 2e | er.in.causal.graphs.<https://en. |
| cb20 | 77 69 6b 69 70 65 64 69 61 2e 6f 72 67 2f 77 69 6b 69 2f 43 6f 6c 6c 69 64 65 72 5f 28 73 74 61 | wikipedia.org/wiki/Collider_(sta |
| cb40 | 74 69 73 74 69 63 73 29 3e 60 5f 0a 20 20 20 20 2e 2e 20 5b 32 5d 20 41 20 48 79 74 74 69 6e 65 | tistics)>`_........[2].A.Hyttine |
| cb60 | 6e 2c 20 50 2e 4f 2e 20 48 6f 79 65 72 2c 20 46 2e 20 45 62 65 72 68 61 72 64 74 2c 20 4d 20 4a | n,.P.O..Hoyer,.F..Eberhardt,.M.J |
| cb80 | 20 cc 88 61 72 76 69 73 61 6c 6f 2c 20 28 32 30 31 33 29 0a 20 20 20 20 20 20 20 20 20 20 20 22 | ...arvisalo,.(2013)............" |
| cba0 | 44 69 73 63 6f 76 65 72 69 6e 67 20 63 79 63 6c 69 63 20 63 61 75 73 61 6c 20 6d 6f 64 65 6c 73 | Discovering.cyclic.causal.models |
| cbc0 | 20 77 69 74 68 20 6c 61 74 65 6e 74 20 76 61 72 69 61 62 6c 65 73 3a 0a 20 20 20 20 20 20 20 20 | .with.latent.variables:......... |
| cbe0 | 20 20 20 61 20 67 65 6e 65 72 61 6c 20 53 41 54 2d 62 61 73 65 64 20 70 72 6f 63 65 64 75 72 65 | ...a.general.SAT-based.procedure |
| cc00 | 22 2c 20 55 41 49 27 31 33 3a 20 50 72 6f 63 65 65 64 69 6e 67 73 20 6f 66 20 74 68 65 20 54 77 | ",.UAI'13:.Proceedings.of.the.Tw |
| cc20 | 65 6e 74 79 2d 4e 69 6e 74 68 0a 20 20 20 20 20 20 20 20 20 20 20 43 6f 6e 66 65 72 65 6e 63 65 | enty-Ninth............Conference |
| cc40 | 20 6f 6e 20 55 6e 63 65 72 74 61 69 6e 74 79 20 69 6e 20 41 72 74 69 66 69 63 69 61 6c 20 49 6e | .on.Uncertainty.in.Artificial.In |
| cc60 | 74 65 6c 6c 69 67 65 6e 63 65 2c 20 70 67 20 33 30 31 e2 80 93 33 31 30 2c 0a 20 20 20 20 20 20 | telligence,.pg.301...310,....... |
| cc80 | 20 20 20 20 20 60 64 6f 69 3a 31 30 2e 35 35 35 35 2f 33 30 32 33 36 33 38 2e 33 30 32 33 36 36 | .....`doi:10.5555/3023638.302366 |
| cca0 | 39 20 3c 68 74 74 70 73 3a 2f 2f 64 6c 2e 61 63 6d 2e 6f 72 67 2f 64 6f 69 2f 31 30 2e 35 35 35 | 9.<https://dl.acm.org/doi/10.555 |
| ccc0 | 35 2f 33 30 32 33 36 33 38 2e 33 30 32 33 36 36 39 3e 60 5f 0a 20 20 20 20 72 89 00 00 00 4e 29 | 5/3023638.3023669>`_.....r....N) |
| cce0 | 03 72 91 00 00 00 72 06 00 00 00 da 0c 70 72 65 64 65 63 65 73 73 6f 72 73 29 04 72 22 00 00 00 | .r....r......predecessors).r"... |
| cd00 | 72 44 00 00 00 72 d4 00 00 00 72 d6 00 00 00 73 04 00 00 00 20 20 20 20 72 26 00 00 00 72 d1 00 | rD...r....r....s........r&...r.. |
| cd20 | 00 00 72 d1 00 00 00 84 05 00 00 73 4b 00 00 00 e8 00 f8 80 00 f0 6c 01 00 11 12 97 07 91 07 f2 | ..r........sK.........l......... |
| cd40 | 00 02 05 21 88 04 dc 16 22 a0 31 a7 3e a1 3e b0 24 d3 23 37 b8 11 d3 16 3b f2 00 01 09 21 89 46 | ...!....".1.>.>.$.#7....;....!.F |
| cd60 | 88 42 90 02 d8 13 15 90 74 98 52 90 2e d3 0c 20 f1 03 01 09 21 f1 03 02 05 21 f9 73 04 00 00 00 | .B......t.R.........!....!.s.... |
| cd80 | 82 3d 3f 01 72 4a 00 00 00 29 01 46 29 03 72 a0 00 00 00 72 34 00 00 00 4e 29 02 72 a0 00 00 00 | .=?.rJ...).F).r....r4...N).r.... |
| cda0 | 72 34 00 00 00 29 2b da 07 5f 5f 64 6f 63 5f 5f 72 51 00 00 00 da 0b 63 6f 6c 6c 65 63 74 69 6f | r4...)+..__doc__rQ.....collectio |
| cdc0 | 6e 73 72 03 00 00 00 da 09 66 75 6e 63 74 6f 6f 6c 73 72 04 00 00 00 da 09 69 74 65 72 74 6f 6f | nsr......functoolsr......itertoo |
| cde0 | 6c 73 72 05 00 00 00 72 06 00 00 00 72 07 00 00 00 72 08 00 00 00 da 04 6d 61 74 68 72 09 00 00 | lsr....r....r....r......mathr... |
| ce00 | 00 da 08 6e 65 74 77 6f 72 6b 78 72 1f 00 00 00 da 0e 6e 65 74 77 6f 72 6b 78 2e 75 74 69 6c 73 | ...networkxr......networkx.utils |
| ce20 | 72 0a 00 00 00 72 0b 00 00 00 72 0c 00 00 00 da 07 5f 5f 61 6c 6c 5f 5f da 0d 66 72 6f 6d 5f 69 | r....r....r......__all__..from_i |
| ce40 | 74 65 72 61 62 6c 65 72 bf 00 00 00 da 0d 5f 64 69 73 70 61 74 63 68 61 62 6c 65 72 0d 00 00 00 | terabler......_dispatchabler.... |
| ce60 | 72 0e 00 00 00 72 2d 00 00 00 72 13 00 00 00 72 12 00 00 00 72 0f 00 00 00 72 10 00 00 00 72 11 | r....r-...r....r....r....r....r. |
| ce80 | 00 00 00 72 14 00 00 00 72 15 00 00 00 72 16 00 00 00 72 17 00 00 00 72 18 00 00 00 72 19 00 00 | ...r....r....r....r....r....r... |
| cea0 | 00 72 1a 00 00 00 72 c3 00 00 00 72 1b 00 00 00 72 1c 00 00 00 72 d7 00 00 00 72 d1 00 00 00 72 | .r....r....r....r....r....r....r |
| cec0 | 4b 00 00 00 72 30 00 00 00 72 26 00 00 00 fa 08 3c 6d 6f 64 75 6c 65 3e 72 e4 00 00 00 01 00 00 | K...r0...r&.....<module>r....... |
| cee0 | 00 73 37 03 00 00 f0 03 01 01 01 f1 02 05 01 04 f3 0e 00 01 0d dd 00 1d dd 00 1d df 00 3b d3 00 | .s7..........................;.. |
| cf00 | 3b dd 00 14 e3 00 15 df 00 4b d1 00 4b f2 04 11 0b 02 80 07 f0 26 00 0a 0f d7 09 1c d1 09 1c 80 | ;........K..K........&.......... |
| cf20 | 06 f0 06 00 02 04 d7 01 11 d1 01 11 f1 02 21 01 40 01 f3 03 00 02 12 f0 02 21 01 40 01 f0 48 01 | ..............!.@........!.@..H. |
| cf40 | 00 02 04 d7 01 11 d1 01 11 f1 02 21 01 4e 01 f3 03 00 02 12 f0 02 21 01 4e 01 f0 48 01 00 02 04 | ...........!.N........!.N..H.... |
| cf60 | d7 01 11 d1 01 11 f1 02 08 01 15 f3 03 00 02 12 f0 02 08 01 15 f0 16 00 02 04 d7 01 11 d1 01 11 | ................................ |
| cf80 | f1 02 25 01 30 f3 03 00 02 12 f0 02 25 01 30 f0 50 01 00 02 04 d7 01 11 d1 01 11 f1 02 4a 01 01 | ..%.0.......%.0.P............J.. |
| cfa0 | 0a f3 03 00 02 12 f0 02 4a 01 01 0a f0 5a 02 00 02 04 d7 01 11 d1 01 11 f1 02 41 01 01 1e f3 03 | ........J....Z............A..... |
| cfc0 | 00 02 12 f0 02 41 01 01 1e f0 48 02 00 02 04 d7 01 11 d1 01 11 f2 02 4a 02 01 29 f3 03 00 02 12 | .....A....H............J..)..... |
| cfe0 | f0 02 4a 02 01 29 f1 5a 04 00 02 15 90 5c d3 01 22 d8 01 03 d7 01 11 d1 01 11 f1 02 73 01 01 12 | ..J..).Z.....\.."...........s... |
| d000 | f3 03 00 02 12 f3 03 00 02 23 f0 04 73 01 01 12 f0 6c 03 00 02 04 d7 01 11 d1 01 11 f1 02 4b 02 | .........#..s....l............K. |
| d020 | 01 12 f3 03 00 02 12 f0 02 4b 02 01 12 f0 5c 04 00 02 12 80 12 d7 01 11 d1 01 11 a0 54 b8 14 d4 | .........K....\.............T... |
| d040 | 01 3e f2 02 58 01 01 0e f3 03 00 02 3f f0 02 58 01 01 0e f1 76 02 00 02 15 90 5c d3 01 22 d8 01 | .>..X.......?..X....v.....\..".. |
| d060 | 11 80 12 d7 01 11 d1 01 11 a0 54 b8 14 d4 01 3e f2 02 34 01 0e f3 03 00 02 3f f3 03 00 02 23 f0 | ..........T....>..4......?....#. |
| d080 | 04 34 01 0e f1 6e 01 00 02 15 90 5c d3 01 22 d8 01 11 80 12 d7 01 11 d1 01 11 a0 04 d4 01 25 f1 | .4...n.....\.."...............%. |
| d0a0 | 02 44 01 01 0e f3 03 00 02 26 f3 03 00 02 23 f0 04 44 01 01 0e f1 4e 02 00 02 15 90 5c d3 01 22 | .D.......&....#..D....N.....\.." |
| d0c0 | d8 01 03 d7 01 11 d1 01 11 f2 02 3e 01 41 01 f3 03 00 02 12 f3 03 00 02 23 f0 04 3e 01 41 01 f1 | ...........>.A..........#..>.A.. |
| d0e0 | 42 02 00 02 15 90 5c d3 01 22 d8 01 11 80 12 d7 01 11 d1 01 11 98 68 d0 28 38 d0 1d 39 d4 01 3a | B.....\.."............h.(8..9..: |
| d100 | f2 02 5d 01 01 10 f3 03 00 02 3b f3 03 00 02 23 f0 04 5d 01 01 10 f1 40 03 00 02 15 90 5c d3 01 | ..].......;....#..]....@.....\.. |
| d120 | 22 d8 01 11 80 12 d7 01 11 d1 01 11 98 68 d0 28 38 d0 1d 39 d4 01 3a f2 02 32 01 17 f3 03 00 02 | "............h.(8..9..:..2...... |
| d140 | 3b f3 03 00 02 23 f0 04 32 01 17 f0 6a 01 00 02 04 d7 01 11 d1 01 11 f1 02 0f 01 3e f3 03 00 02 | ;....#..2...j..............>.... |
| d160 | 12 f0 02 0f 01 3e f1 24 00 02 15 90 5c d3 01 22 d9 01 14 90 5c d3 01 22 d8 01 11 80 12 d7 01 11 | .....>.$....\.."....\.."........ |
| d180 | d1 01 11 a0 04 d4 01 25 f1 02 5d 01 01 0d f3 03 00 02 26 f3 03 00 02 23 f3 03 00 02 23 f0 06 5d | .......%..].......&....#....#..] |
| d1a0 | 01 01 0d f1 40 03 00 02 15 90 5c d3 01 22 d8 01 03 d7 01 11 d1 01 11 f1 02 46 01 01 18 f3 03 00 | ....@.....\.."...........F...... |
| d1c0 | 02 12 f3 03 00 02 23 f0 04 46 01 01 18 f1 52 02 00 02 15 90 5c d3 01 22 d8 01 03 d7 01 11 d1 01 | ......#..F....R.....\.."........ |
| d1e0 | 11 f1 02 36 01 1e f3 03 00 02 12 f3 03 00 02 23 f0 04 36 01 1e f1 72 01 00 02 15 90 5c d3 01 22 | ...6...........#..6...r.....\.." |
| d200 | d8 01 03 d7 01 11 d1 01 11 f1 02 36 01 21 f3 03 00 02 12 f3 03 00 02 23 f1 04 36 01 21 72 30 00 | ...........6.!.........#..6.!r0. |
| d220 | 00 00 | .. |