| ofs | hex dump | ascii |
|---|
| 0000 | cb 0d 0d 0a 00 00 00 00 85 fa a7 68 7d 37 00 00 e3 00 00 00 00 00 00 00 00 00 00 00 00 04 00 00 | ...........h}7.................. |
| 0020 | 00 00 00 00 00 f3 48 01 00 00 97 00 64 00 5a 00 64 01 64 02 6c 01 6d 02 5a 02 01 00 64 01 64 03 | ......H.....d.Z.d.d.l.m.Z...d.d. |
| 0040 | 6c 03 5a 04 64 04 64 05 6c 05 6d 06 5a 06 6d 07 5a 07 01 00 67 00 64 06 a2 01 5a 08 65 04 6a 12 | l.Z.d.d.l.m.Z.m.Z...g.d...Z.e.j. |
| 0060 | 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 64 07 84 00 ab 00 00 00 00 00 00 00 5a 0a | ..................d...........Z. |
| 0080 | 65 04 6a 12 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 64 08 84 00 ab 00 00 00 00 00 | e.j...................d......... |
| 00a0 | 00 00 5a 0b 64 09 84 00 5a 0c 64 0a 84 00 5a 0d 64 0b 84 00 5a 0e 65 04 6a 12 00 00 00 00 00 00 | ..Z.d...Z.d...Z.d...Z.e.j....... |
| 00c0 | 00 00 00 00 00 00 00 00 00 00 00 00 64 13 64 0c 84 01 ab 00 00 00 00 00 00 00 5a 0f 65 04 6a 12 | ............d.d...........Z.e.j. |
| 00e0 | 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 64 14 64 0d 84 01 ab 00 00 00 00 00 00 00 | ..................d.d........... |
| 0100 | 5a 10 65 04 6a 12 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 64 13 64 0e 84 01 ab 00 | Z.e.j...................d.d..... |
| 0120 | 00 00 00 00 00 00 5a 11 02 00 65 07 64 0f ab 01 00 00 00 00 00 00 02 00 65 04 6a 12 00 00 00 00 | ......Z...e.d...........e.j..... |
| 0140 | 00 00 00 00 00 00 00 00 00 00 00 00 00 00 64 10 ac 11 ab 01 00 00 00 00 00 00 64 12 84 00 ab 00 | ..............d...........d..... |
| 0160 | 00 00 00 00 00 00 ab 00 00 00 00 00 00 00 5a 12 79 03 29 15 7a 1f 0a 45 75 6c 65 72 69 61 6e 20 | ..............Z.y.).z..Eulerian. |
| 0180 | 63 69 72 63 75 69 74 73 20 61 6e 64 20 67 72 61 70 68 73 2e 0a e9 00 00 00 00 29 01 da 0c 63 6f | circuits.and.graphs.......)...co |
| 01a0 | 6d 62 69 6e 61 74 69 6f 6e 73 4e e9 02 00 00 00 29 02 da 11 61 72 62 69 74 72 61 72 79 5f 65 6c | mbinationsN.....)...arbitrary_el |
| 01c0 | 65 6d 65 6e 74 da 13 6e 6f 74 5f 69 6d 70 6c 65 6d 65 6e 74 65 64 5f 66 6f 72 29 06 da 0b 69 73 | ement..not_implemented_for)...is |
| 01e0 | 5f 65 75 6c 65 72 69 61 6e da 10 65 75 6c 65 72 69 61 6e 5f 63 69 72 63 75 69 74 da 08 65 75 6c | _eulerian..eulerian_circuit..eul |
| 0200 | 65 72 69 7a 65 da 0f 69 73 5f 73 65 6d 69 65 75 6c 65 72 69 61 6e da 11 68 61 73 5f 65 75 6c 65 | erize..is_semieulerian..has_eule |
| 0220 | 72 69 61 6e 5f 70 61 74 68 da 0d 65 75 6c 65 72 69 61 6e 5f 70 61 74 68 63 01 00 00 00 00 00 00 | rian_path..eulerian_pathc....... |
| 0240 | 00 00 00 00 00 05 00 00 00 03 00 00 00 f3 e8 00 00 00 87 00 97 00 89 00 6a 01 00 00 00 00 00 00 | ........................j....... |
| 0260 | 00 00 00 00 00 00 00 00 00 00 00 00 ab 00 00 00 00 00 00 00 72 2b 74 03 00 00 00 00 00 00 00 00 | ....................r+t......... |
| 0280 | 88 00 66 01 64 01 84 08 89 00 44 00 ab 00 00 00 00 00 00 00 ab 01 00 00 00 00 00 00 78 01 72 15 | ..f.d.....D.................x.r. |
| 02a0 | 01 00 74 05 00 00 00 00 00 00 00 00 6a 06 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 | ..t.........j................... |
| 02c0 | 89 00 ab 01 00 00 00 00 00 00 53 00 74 03 00 00 00 00 00 00 00 00 64 02 84 00 89 00 6a 09 00 00 | ..........S.t.........d.....j... |
| 02e0 | 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ab 00 00 00 00 00 00 00 44 00 ab 00 00 00 00 00 | ........................D....... |
| 0300 | 00 00 ab 01 00 00 00 00 00 00 78 01 72 15 01 00 74 05 00 00 00 00 00 00 00 00 6a 0a 00 00 00 00 | ..........x.r...t.........j..... |
| 0320 | 00 00 00 00 00 00 00 00 00 00 00 00 00 00 89 00 ab 01 00 00 00 00 00 00 53 00 29 03 61 70 04 00 | ........................S.).ap.. |
| 0340 | 00 52 65 74 75 72 6e 73 20 54 72 75 65 20 69 66 20 61 6e 64 20 6f 6e 6c 79 20 69 66 20 60 47 60 | .Returns.True.if.and.only.if.`G` |
| 0360 | 20 69 73 20 45 75 6c 65 72 69 61 6e 2e 0a 0a 20 20 20 20 41 20 67 72 61 70 68 20 69 73 20 2a 45 | .is.Eulerian.......A.graph.is.*E |
| 0380 | 75 6c 65 72 69 61 6e 2a 20 69 66 20 69 74 20 68 61 73 20 61 6e 20 45 75 6c 65 72 69 61 6e 20 63 | ulerian*.if.it.has.an.Eulerian.c |
| 03a0 | 69 72 63 75 69 74 2e 20 41 6e 20 2a 45 75 6c 65 72 69 61 6e 0a 20 20 20 20 63 69 72 63 75 69 74 | ircuit..An.*Eulerian.....circuit |
| 03c0 | 2a 20 69 73 20 61 20 63 6c 6f 73 65 64 20 77 61 6c 6b 20 74 68 61 74 20 69 6e 63 6c 75 64 65 73 | *.is.a.closed.walk.that.includes |
| 03e0 | 20 65 61 63 68 20 65 64 67 65 20 6f 66 20 61 20 67 72 61 70 68 20 65 78 61 63 74 6c 79 0a 20 20 | .each.edge.of.a.graph.exactly... |
| 0400 | 20 20 6f 6e 63 65 2e 0a 0a 20 20 20 20 47 72 61 70 68 73 20 77 69 74 68 20 69 73 6f 6c 61 74 65 | ..once.......Graphs.with.isolate |
| 0420 | 64 20 76 65 72 74 69 63 65 73 20 28 69 2e 65 2e 20 76 65 72 74 69 63 65 73 20 77 69 74 68 20 7a | d.vertices.(i.e..vertices.with.z |
| 0440 | 65 72 6f 20 64 65 67 72 65 65 29 20 61 72 65 20 6e 6f 74 0a 20 20 20 20 63 6f 6e 73 69 64 65 72 | ero.degree).are.not.....consider |
| 0460 | 65 64 20 74 6f 20 68 61 76 65 20 45 75 6c 65 72 69 61 6e 20 63 69 72 63 75 69 74 73 2e 20 54 68 | ed.to.have.Eulerian.circuits..Th |
| 0480 | 65 72 65 66 6f 72 65 2c 20 69 66 20 74 68 65 20 67 72 61 70 68 20 69 73 20 6e 6f 74 0a 20 20 20 | erefore,.if.the.graph.is.not.... |
| 04a0 | 20 63 6f 6e 6e 65 63 74 65 64 20 28 6f 72 20 6e 6f 74 20 73 74 72 6f 6e 67 6c 79 20 63 6f 6e 6e | .connected.(or.not.strongly.conn |
| 04c0 | 65 63 74 65 64 2c 20 66 6f 72 20 64 69 72 65 63 74 65 64 20 67 72 61 70 68 73 29 2c 20 74 68 69 | ected,.for.directed.graphs),.thi |
| 04e0 | 73 20 66 75 6e 63 74 69 6f 6e 0a 20 20 20 20 72 65 74 75 72 6e 73 20 46 61 6c 73 65 2e 0a 0a 20 | s.function.....returns.False.... |
| 0500 | 20 20 20 50 61 72 61 6d 65 74 65 72 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 | ...Parameters.....----------.... |
| 0520 | 20 47 20 3a 20 4e 65 74 77 6f 72 6b 58 20 67 72 61 70 68 0a 20 20 20 20 20 20 20 41 20 67 72 61 | .G.:.NetworkX.graph........A.gra |
| 0540 | 70 68 2c 20 65 69 74 68 65 72 20 64 69 72 65 63 74 65 64 20 6f 72 20 75 6e 64 69 72 65 63 74 65 | ph,.either.directed.or.undirecte |
| 0560 | 64 2e 0a 0a 20 20 20 20 45 78 61 6d 70 6c 65 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 | d.......Examples.....--------... |
| 0580 | 20 20 3e 3e 3e 20 6e 78 2e 69 73 5f 65 75 6c 65 72 69 61 6e 28 6e 78 2e 44 69 47 72 61 70 68 28 | ..>>>.nx.is_eulerian(nx.DiGraph( |
| 05a0 | 7b 30 3a 20 5b 33 5d 2c 20 31 3a 20 5b 32 5d 2c 20 32 3a 20 5b 33 5d 2c 20 33 3a 20 5b 30 2c 20 | {0:.[3],.1:.[2],.2:.[3],.3:.[0,. |
| 05c0 | 31 5d 7d 29 29 0a 20 20 20 20 54 72 75 65 0a 20 20 20 20 3e 3e 3e 20 6e 78 2e 69 73 5f 65 75 6c | 1]})).....True.....>>>.nx.is_eul |
| 05e0 | 65 72 69 61 6e 28 6e 78 2e 63 6f 6d 70 6c 65 74 65 5f 67 72 61 70 68 28 35 29 29 0a 20 20 20 20 | erian(nx.complete_graph(5))..... |
| 0600 | 54 72 75 65 0a 20 20 20 20 3e 3e 3e 20 6e 78 2e 69 73 5f 65 75 6c 65 72 69 61 6e 28 6e 78 2e 70 | True.....>>>.nx.is_eulerian(nx.p |
| 0620 | 65 74 65 72 73 65 6e 5f 67 72 61 70 68 28 29 29 0a 20 20 20 20 46 61 6c 73 65 0a 0a 20 20 20 20 | etersen_graph()).....False...... |
| 0640 | 49 66 20 79 6f 75 20 70 72 65 66 65 72 20 74 6f 20 61 6c 6c 6f 77 20 67 72 61 70 68 73 20 77 69 | If.you.prefer.to.allow.graphs.wi |
| 0660 | 74 68 20 69 73 6f 6c 61 74 65 64 20 76 65 72 74 69 63 65 73 20 74 6f 20 68 61 76 65 20 45 75 6c | th.isolated.vertices.to.have.Eul |
| 0680 | 65 72 69 61 6e 20 63 69 72 63 75 69 74 73 2c 0a 20 20 20 20 79 6f 75 20 63 61 6e 20 66 69 72 73 | erian.circuits,.....you.can.firs |
| 06a0 | 74 20 72 65 6d 6f 76 65 20 73 75 63 68 20 76 65 72 74 69 63 65 73 20 61 6e 64 20 74 68 65 6e 20 | t.remove.such.vertices.and.then. |
| 06c0 | 63 61 6c 6c 20 60 69 73 5f 65 75 6c 65 72 69 61 6e 60 20 61 73 20 62 65 6c 6f 77 20 65 78 61 6d | call.`is_eulerian`.as.below.exam |
| 06e0 | 70 6c 65 20 73 68 6f 77 73 2e 0a 0a 20 20 20 20 3e 3e 3e 20 47 20 3d 20 6e 78 2e 47 72 61 70 68 | ple.shows.......>>>.G.=.nx.Graph |
| 0700 | 28 5b 28 30 2c 20 31 29 2c 20 28 31 2c 20 32 29 2c 20 28 30 2c 20 32 29 5d 29 0a 20 20 20 20 3e | ([(0,.1),.(1,.2),.(0,.2)]).....> |
| 0720 | 3e 3e 20 47 2e 61 64 64 5f 6e 6f 64 65 28 33 29 0a 20 20 20 20 3e 3e 3e 20 6e 78 2e 69 73 5f 65 | >>.G.add_node(3).....>>>.nx.is_e |
| 0740 | 75 6c 65 72 69 61 6e 28 47 29 0a 20 20 20 20 46 61 6c 73 65 0a 0a 20 20 20 20 3e 3e 3e 20 47 2e | ulerian(G).....False......>>>.G. |
| 0760 | 72 65 6d 6f 76 65 5f 6e 6f 64 65 73 5f 66 72 6f 6d 28 6c 69 73 74 28 6e 78 2e 69 73 6f 6c 61 74 | remove_nodes_from(list(nx.isolat |
| 0780 | 65 73 28 47 29 29 29 0a 20 20 20 20 3e 3e 3e 20 6e 78 2e 69 73 5f 65 75 6c 65 72 69 61 6e 28 47 | es(G))).....>>>.nx.is_eulerian(G |
| 07a0 | 29 0a 20 20 20 20 54 72 75 65 0a 0a 0a 20 20 20 20 63 01 00 00 00 00 00 00 00 00 00 00 00 05 00 | ).....True.......c.............. |
| 07c0 | 00 00 33 00 00 00 f3 64 00 00 00 95 01 4b 00 01 00 97 00 7c 00 5d 27 00 00 7d 01 89 02 6a 01 00 | ..3....d.....K.....|.]'..}...j.. |
| 07e0 | 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 7c 01 ab 01 00 00 00 00 00 00 89 02 6a 03 00 | .................|...........j.. |
| 0800 | 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 7c 01 ab 01 00 00 00 00 00 00 6b 28 00 00 96 | .................|.........k(... |
| 0820 | 01 97 01 01 00 8c 29 04 00 79 00 ad 03 77 01 a9 01 4e a9 02 da 09 69 6e 5f 64 65 67 72 65 65 da | ......)..y...w...N....in_degree. |
| 0840 | 0a 6f 75 74 5f 64 65 67 72 65 65 29 03 da 02 2e 30 da 01 6e da 01 47 73 03 00 00 00 20 20 80 fa | .out_degree)....0..n..Gs........ |
| 0860 | 60 2f 68 6f 6d 65 2f 62 6c 61 63 6b 68 61 6f 2f 75 69 75 63 2d 63 6f 75 72 73 65 2d 67 72 61 70 | `/home/blackhao/uiuc-course-grap |
| 0880 | 68 2f 2e 76 65 6e 76 2f 6c 69 62 2f 70 79 74 68 6f 6e 33 2e 31 32 2f 73 69 74 65 2d 70 61 63 6b | h/.venv/lib/python3.12/site-pack |
| 08a0 | 61 67 65 73 2f 6e 65 74 77 6f 72 6b 78 2f 61 6c 67 6f 72 69 74 68 6d 73 2f 65 75 6c 65 72 2e 70 | ages/networkx/algorithms/euler.p |
| 08c0 | 79 fa 09 3c 67 65 6e 65 78 70 72 3e 7a 1e 69 73 5f 65 75 6c 65 72 69 61 6e 2e 3c 6c 6f 63 61 6c | y..<genexpr>z.is_eulerian.<local |
| 08e0 | 73 3e 2e 3c 67 65 6e 65 78 70 72 3e 41 00 00 00 73 2b 00 00 00 f8 e8 00 f8 80 00 f2 00 02 13 0a | s>.<genexpr>A...s+.............. |
| 0900 | d8 32 33 88 41 8f 4b 89 4b 98 01 8b 4e 98 61 9f 6c 99 6c a8 31 9b 6f d5 0c 2d f1 03 02 13 0a f9 | .23.A.K.K...N.a.l.l.1.o..-...... |
| 0920 | 73 04 00 00 00 83 2d 30 01 63 01 00 00 00 00 00 00 00 00 00 00 00 03 00 00 00 33 00 00 00 f3 32 | s.....-0.c................3....2 |
| 0940 | 00 00 00 4b 00 01 00 97 00 7c 00 5d 0f 00 00 5c 02 00 00 7d 01 7d 02 7c 02 64 00 7a 06 00 00 64 | ...K.....|.]...\...}.}.|.d.z...d |
| 0960 | 01 6b 28 00 00 96 01 97 01 01 00 8c 11 04 00 79 02 ad 03 77 01 29 03 72 04 00 00 00 72 02 00 00 | .k(............y...w.).r....r... |
| 0980 | 00 4e a9 00 a9 03 72 13 00 00 00 da 01 76 da 01 64 73 03 00 00 00 20 20 20 72 16 00 00 00 72 17 | .N....r......v..ds.......r....r. |
| 09a0 | 00 00 00 7a 1e 69 73 5f 65 75 6c 65 72 69 61 6e 2e 3c 6c 6f 63 61 6c 73 3e 2e 3c 67 65 6e 65 78 | ...z.is_eulerian.<locals>.<genex |
| 09c0 | 70 72 3e 46 00 00 00 73 1c 00 00 00 e8 00 f8 80 00 d2 0e 31 99 64 98 61 a0 11 88 71 90 31 89 75 | pr>F...s...........1.d.a...q.1.u |
| 09e0 | 98 01 8d 7a d1 0e 31 f9 f3 04 00 00 00 82 15 17 01 29 06 da 0b 69 73 5f 64 69 72 65 63 74 65 64 | ...z..1..........)...is_directed |
| 0a00 | da 03 61 6c 6c da 02 6e 78 da 15 69 73 5f 73 74 72 6f 6e 67 6c 79 5f 63 6f 6e 6e 65 63 74 65 64 | ..all..nx..is_strongly_connected |
| 0a20 | da 06 64 65 67 72 65 65 da 0c 69 73 5f 63 6f 6e 6e 65 63 74 65 64 a9 01 72 15 00 00 00 73 01 00 | ..degree..is_connected..r....s.. |
| 0a40 | 00 00 60 72 16 00 00 00 72 07 00 00 00 72 07 00 00 00 15 00 00 00 73 65 00 00 00 f8 80 00 f0 52 | ..`r....r....r........se.......R |
| 0a60 | 01 00 08 09 87 7d 81 7d 84 7f f4 06 00 10 13 f3 00 02 13 0a d8 37 38 f4 03 02 13 0a f3 00 02 10 | .....}.}.............78......... |
| 0a80 | 0a f2 00 02 10 2a e4 0e 10 d7 0e 26 d1 0e 26 a0 71 d3 0e 29 f0 05 02 09 2a f4 0a 00 0c 0f d1 0e | .....*.....&..&.q..)....*....... |
| 0aa0 | 31 a0 61 a7 68 a1 68 a3 6a d4 0e 31 d3 0b 31 d2 0b 48 b4 62 b7 6f b1 6f c0 61 d3 36 48 d0 04 48 | 1.a.h.h.j..1..1..H.b.o.o.a.6H..H |
| 0ac0 | f3 00 00 00 00 63 01 00 00 00 00 00 00 00 00 00 00 00 03 00 00 00 03 00 00 00 f3 34 00 00 00 97 | .....c.....................4.... |
| 0ae0 | 00 74 01 00 00 00 00 00 00 00 00 7c 00 ab 01 00 00 00 00 00 00 78 01 72 0c 01 00 74 03 00 00 00 | .t.........|.........x.r...t.... |
| 0b00 | 00 00 00 00 00 7c 00 ab 01 00 00 00 00 00 00 0c 00 53 00 29 01 7a b7 52 65 74 75 72 6e 20 54 72 | .....|...........S.).z.Return.Tr |
| 0b20 | 75 65 20 69 66 66 20 60 47 60 20 69 73 20 73 65 6d 69 2d 45 75 6c 65 72 69 61 6e 2e 0a 0a 20 20 | ue.iff.`G`.is.semi-Eulerian..... |
| 0b40 | 20 20 47 20 69 73 20 73 65 6d 69 2d 45 75 6c 65 72 69 61 6e 20 69 66 20 69 74 20 68 61 73 20 61 | ..G.is.semi-Eulerian.if.it.has.a |
| 0b60 | 6e 20 45 75 6c 65 72 69 61 6e 20 70 61 74 68 20 62 75 74 20 6e 6f 20 45 75 6c 65 72 69 61 6e 20 | n.Eulerian.path.but.no.Eulerian. |
| 0b80 | 63 69 72 63 75 69 74 2e 0a 0a 20 20 20 20 53 65 65 20 41 6c 73 6f 0a 20 20 20 20 2d 2d 2d 2d 2d | circuit.......See.Also.....----- |
| 0ba0 | 2d 2d 2d 0a 20 20 20 20 68 61 73 5f 65 75 6c 65 72 69 61 6e 5f 70 61 74 68 0a 20 20 20 20 69 73 | ---.....has_eulerian_path.....is |
| 0bc0 | 5f 65 75 6c 65 72 69 61 6e 0a 20 20 20 20 29 02 72 0b 00 00 00 72 07 00 00 00 72 24 00 00 00 73 | _eulerian.....).r....r....r$...s |
| 0be0 | 01 00 00 00 20 72 16 00 00 00 72 0a 00 00 00 72 0a 00 00 00 49 00 00 00 73 1b 00 00 00 80 00 f4 | .....r....r....r....I...s....... |
| 0c00 | 16 00 0c 1d 98 51 d3 0b 1f d2 0b 36 ac 0b b0 41 ab 0e d0 24 36 d0 04 36 72 25 00 00 00 63 01 00 | .....Q.....6...A...$6..6r%...c.. |
| 0c20 | 00 00 00 00 00 00 00 00 00 00 06 00 00 00 03 00 00 00 f3 36 01 00 00 87 00 97 00 74 01 00 00 00 | ...................6.......t.... |
| 0c40 | 00 00 00 00 00 89 00 ab 01 00 00 00 00 00 00 73 01 79 01 74 03 00 00 00 00 00 00 00 00 89 00 ab | ...............s.y.t............ |
| 0c60 | 01 00 00 00 00 00 00 72 0b 74 05 00 00 00 00 00 00 00 00 89 00 ab 01 00 00 00 00 00 00 53 00 89 | .......r.t...................S.. |
| 0c80 | 00 6a 07 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ab 00 00 00 00 00 00 00 72 35 88 | .j...........................r5. |
| 0ca0 | 00 66 01 64 02 84 08 89 00 44 00 ab 00 00 00 00 00 00 00 5c 02 00 00 7d 01 7d 02 89 00 6a 09 00 | .f.d.....D.........\...}.}...j.. |
| 0cc0 | 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 7c 01 ab 01 00 00 00 00 00 00 89 00 6a 0b 00 | .................|...........j.. |
| 0ce0 | 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 7c 01 ab 01 00 00 00 00 00 00 6b 44 00 00 72 | .................|.........kD..r |
| 0d00 | 02 7c 01 53 00 7c 02 53 00 89 00 44 00 8f 03 63 02 67 00 63 02 5d 1c 00 00 7d 03 89 00 6a 0d 00 | .|.S.|.S...D...c.g.c.]...}...j.. |
| 0d20 | 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 7c 03 ab 01 00 00 00 00 00 00 64 03 7a 06 00 | .................|.........d.z.. |
| 0d40 | 00 64 04 6b 37 00 00 73 01 8c 1b 7c 03 91 02 8c 1e 04 00 63 02 7d 03 64 04 19 00 00 00 7d 04 7c | .d.k7..s...|.......c.}.d.....}.| |
| 0d60 | 04 53 00 63 02 01 00 63 02 7d 03 77 00 29 05 7a 61 52 65 74 75 72 6e 20 61 20 73 75 69 74 61 62 | .S.c...c.}.w.).zaReturn.a.suitab |
| 0d80 | 6c 65 20 73 74 61 72 74 69 6e 67 20 76 65 72 74 65 78 20 66 6f 72 20 61 6e 20 45 75 6c 65 72 69 | le.starting.vertex.for.an.Euleri |
| 0da0 | 61 6e 20 70 61 74 68 2e 0a 0a 20 20 20 20 49 66 20 6e 6f 20 70 61 74 68 20 65 78 69 73 74 73 2c | an.path.......If.no.path.exists, |
| 0dc0 | 20 72 65 74 75 72 6e 20 4e 6f 6e 65 2e 0a 20 20 20 20 4e 63 01 00 00 00 00 00 00 00 00 00 00 00 | .return.None......Nc............ |
| 0de0 | 05 00 00 00 33 00 00 00 f3 6a 00 00 00 95 01 4b 00 01 00 97 00 7c 00 5d 2a 00 00 7d 01 89 02 6a | ....3....j.....K.....|.]*..}...j |
| 0e00 | 01 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 7c 01 ab 01 00 00 00 00 00 00 89 02 6a | ...................|...........j |
| 0e20 | 03 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 7c 01 ab 01 00 00 00 00 00 00 6b 37 00 | ...................|.........k7. |
| 0e40 | 00 73 01 8c 27 7c 01 96 01 97 01 01 00 8c 2c 04 00 79 00 ad 03 77 01 72 0f 00 00 00 72 10 00 00 | .s..'|........,..y...w.r....r... |
| 0e60 | 00 29 03 72 13 00 00 00 72 1b 00 00 00 72 15 00 00 00 73 03 00 00 00 20 20 80 72 16 00 00 00 72 | .).r....r....r....s.......r....r |
| 0e80 | 17 00 00 00 7a 23 5f 66 69 6e 64 5f 70 61 74 68 5f 73 74 61 72 74 2e 3c 6c 6f 63 61 6c 73 3e 2e | ....z#_find_path_start.<locals>. |
| 0ea0 | 3c 67 65 6e 65 78 70 72 3e 63 00 00 00 73 28 00 00 00 f8 e8 00 f8 80 00 d2 11 44 98 01 a0 21 a7 | <genexpr>c...s(...........D...!. |
| 0ec0 | 2b a1 2b a8 61 a3 2e b0 41 b7 4c b1 4c c0 11 b3 4f d3 22 43 94 21 d1 11 44 f9 73 08 00 00 00 83 | +.+.a...A.L.L...O."C.!..D.s..... |
| 0ee0 | 28 33 01 ac 07 33 01 72 04 00 00 00 72 02 00 00 00 29 07 72 0b 00 00 00 72 07 00 00 00 72 05 00 | (3...3.r....r....).r....r....r.. |
| 0f00 | 00 00 72 1e 00 00 00 72 12 00 00 00 72 11 00 00 00 72 22 00 00 00 29 05 72 15 00 00 00 da 02 76 | ..r....r....r....r"...).r......v |
| 0f20 | 31 da 02 76 32 72 1b 00 00 00 da 05 73 74 61 72 74 73 05 00 00 00 60 20 20 20 20 72 16 00 00 00 | 1..v2r......starts....`....r.... |
| 0f40 | da 10 5f 66 69 6e 64 5f 70 61 74 68 5f 73 74 61 72 74 72 2c 00 00 00 57 00 00 00 73 90 00 00 00 | .._find_path_startr,...W...s.... |
| 0f60 | f8 80 00 f4 0a 00 0c 1d 98 51 d4 0b 1f d8 0f 13 e4 07 12 90 31 84 7e dc 0f 20 a0 11 d3 0f 23 d0 | .........Q..........1.~.......#. |
| 0f80 | 08 23 e0 07 08 87 7d 81 7d 84 7f db 11 44 98 51 d4 11 44 89 06 88 02 88 42 e0 0b 0c 8f 3c 89 3c | .#....}.}....D.Q..D.....B....<.< |
| 0fa0 | 98 02 d3 0b 1b 98 61 9f 6b 99 6b a8 22 9b 6f d2 0b 2d d8 13 15 88 49 e0 13 15 88 49 f0 08 00 1d | ......a.k.k.".o..-....I....I.... |
| 0fc0 | 1e d6 10 36 90 71 a0 11 a7 18 a1 18 a8 21 a3 1b a8 71 a1 1f b0 41 d3 21 35 92 11 d2 10 36 b0 71 | ...6.q.......!...q...A.!5....6.q |
| 0fe0 | d1 10 39 88 05 d8 0f 14 88 0c f9 f2 03 00 11 37 73 0c 00 00 00 c1 2d 1c 42 16 04 c2 0a 04 42 16 | ..9............7s.....-.B.....B. |
| 1000 | 04 63 02 00 00 00 00 00 00 00 00 00 00 00 05 00 00 00 23 00 00 00 f3 68 01 00 00 4b 00 01 00 97 | .c................#....h...K.... |
| 1020 | 00 7c 00 6a 01 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ab 00 00 00 00 00 00 00 72 | .|.j...........................r |
| 1040 | 19 7c 00 6a 02 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 7d 02 7c 00 6a 04 00 00 00 | .|.j...................}.|.j.... |
| 1060 | 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 7d 03 6e 18 7c 00 6a 06 00 00 00 00 00 00 00 00 00 | ...............}.n.|.j.......... |
| 1080 | 00 00 00 00 00 00 00 00 00 7d 02 7c 00 6a 08 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 | .........}.|.j.................. |
| 10a0 | 00 7d 03 7c 01 67 01 7d 04 64 00 7d 05 7c 04 72 66 7c 04 64 01 19 00 00 00 7d 06 02 00 7c 02 7c | .}.|.g.}.d.}.|.rf|.d.....}...|.| |
| 10c0 | 06 ab 01 00 00 00 00 00 00 64 02 6b 28 00 00 72 1b 7c 05 81 06 7c 05 7c 06 66 02 96 01 97 01 01 | .........d.k(..r.|...|.|.f...... |
| 10e0 | 00 7c 06 7d 05 7c 04 6a 0b 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ab 00 00 00 00 | .|.}.|.j........................ |
| 1100 | 00 00 00 01 00 6e 37 74 0d 00 00 00 00 00 00 00 00 02 00 7c 03 7c 06 ab 01 00 00 00 00 00 00 ab | .....n7t...........|.|.......... |
| 1120 | 01 00 00 00 00 00 00 5c 02 00 00 7d 07 7d 08 7c 04 6a 0f 00 00 00 00 00 00 00 00 00 00 00 00 00 | .......\...}.}.|.j.............. |
| 1140 | 00 00 00 00 00 7c 08 ab 01 00 00 00 00 00 00 01 00 7c 00 6a 11 00 00 00 00 00 00 00 00 00 00 00 | .....|...........|.j............ |
| 1160 | 00 00 00 00 00 00 00 7c 06 7c 08 ab 02 00 00 00 00 00 00 01 00 7c 04 72 01 8c 65 79 00 79 00 ad | .......|.|...........|.r..ey.y.. |
| 1180 | 03 77 01 29 03 4e e9 ff ff ff ff 72 02 00 00 00 a9 09 72 1e 00 00 00 72 12 00 00 00 da 09 6f 75 | .w.).N.....r......r....r......ou |
| 11a0 | 74 5f 65 64 67 65 73 72 22 00 00 00 da 05 65 64 67 65 73 da 03 70 6f 70 72 05 00 00 00 da 06 61 | t_edgesr".....edges..popr......a |
| 11c0 | 70 70 65 6e 64 da 0b 72 65 6d 6f 76 65 5f 65 64 67 65 29 09 72 15 00 00 00 da 06 73 6f 75 72 63 | ppend..remove_edge).r......sourc |
| 11e0 | 65 72 22 00 00 00 72 31 00 00 00 da 0c 76 65 72 74 65 78 5f 73 74 61 63 6b da 0b 6c 61 73 74 5f | er"...r1.....vertex_stack..last_ |
| 1200 | 76 65 72 74 65 78 da 0e 63 75 72 72 65 6e 74 5f 76 65 72 74 65 78 da 01 5f da 0b 6e 65 78 74 5f | vertex..current_vertex.._..next_ |
| 1220 | 76 65 72 74 65 78 73 09 00 00 00 20 20 20 20 20 20 20 20 20 72 16 00 00 00 da 1d 5f 73 69 6d 70 | vertexs.............r......_simp |
| 1240 | 6c 65 67 72 61 70 68 5f 65 75 6c 65 72 69 61 6e 5f 63 69 72 63 75 69 74 72 3b 00 00 00 70 00 00 | legraph_eulerian_circuitr;...p.. |
| 1260 | 00 73 af 00 00 00 e8 00 f8 80 00 d8 07 08 87 7d 81 7d 84 7f d8 11 12 97 1c 91 1c 88 06 d8 10 11 | .s.............}.}.............. |
| 1280 | 97 0b 91 0b 89 05 e0 11 12 97 18 91 18 88 06 d8 10 11 97 07 91 07 88 05 d8 14 1a 90 38 80 4c d8 | ............................8.L. |
| 12a0 | 12 16 80 4b d9 0a 16 d8 19 25 a0 62 d1 19 29 88 0e d9 0b 11 90 2e d3 0b 21 a0 51 d2 0b 26 d8 0f | ...K.....%.b..).........!.Q..&.. |
| 12c0 | 1a d0 0f 26 d8 17 22 a0 4e d0 16 33 d2 10 33 d8 1a 28 88 4b d8 0c 18 d7 0c 1c d1 0c 1c d5 0c 1e | ...&..".N..3..3..(.K............ |
| 12e0 | e4 1d 2e a9 75 b0 5e d3 2f 44 d3 1d 45 89 4e 88 41 88 7b d8 0c 18 d7 0c 1f d1 0c 1f a0 0b d4 0c | ....u.^./D..E.N.A.{............. |
| 1300 | 2c d8 0c 0d 8f 4d 89 4d 98 2e a8 2b d4 0c 36 f4 15 00 0b 17 f9 73 0c 00 00 00 82 42 2d 42 32 01 | ,....M.M...+..6......s.....B-B2. |
| 1320 | c2 30 02 42 32 01 63 02 00 00 00 00 00 00 00 00 00 00 00 06 00 00 00 23 00 00 00 f3 8c 01 00 00 | .0.B2.c................#........ |
| 1340 | 4b 00 01 00 97 00 7c 00 6a 01 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ab 00 00 00 | K.....|.j....................... |
| 1360 | 00 00 00 00 72 19 7c 00 6a 02 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 7d 02 7c 00 | ....r.|.j...................}.|. |
| 1380 | 6a 04 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 7d 03 6e 18 7c 00 6a 06 00 00 00 00 | j...................}.n.|.j..... |
| 13a0 | 00 00 00 00 00 00 00 00 00 00 00 00 00 00 7d 02 7c 00 6a 08 00 00 00 00 00 00 00 00 00 00 00 00 | ..............}.|.j............. |
| 13c0 | 00 00 00 00 00 00 7d 03 7c 01 64 00 66 02 67 01 7d 04 64 00 7d 05 64 00 7d 06 7c 04 72 74 7c 04 | ......}.|.d.f.g.}.d.}.d.}.|.rt|. |
| 13e0 | 64 01 19 00 00 00 5c 02 00 00 7d 07 7d 08 02 00 7c 02 7c 07 ab 01 00 00 00 00 00 00 64 02 6b 28 | d.....\...}.}...|.|.........d.k( |
| 1400 | 00 00 72 1e 7c 05 81 07 7c 05 7c 07 7c 06 66 03 96 01 97 01 01 00 7c 07 7c 08 7d 06 7d 05 7c 04 | ..r.|...|.|.|.f.......|.|.}.}.|. |
| 1420 | 6a 0b 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ab 00 00 00 00 00 00 00 01 00 6e 3f | j.............................n? |
| 1440 | 74 0d 00 00 00 00 00 00 00 00 02 00 7c 03 7c 07 64 03 ac 04 ab 02 00 00 00 00 00 00 ab 01 00 00 | t...........|.|.d............... |
| 1460 | 00 00 00 00 7d 09 7c 09 5c 03 00 00 7d 0a 7d 0b 7d 0c 7c 04 6a 0f 00 00 00 00 00 00 00 00 00 00 | ....}.|.\...}.}.}.|.j........... |
| 1480 | 00 00 00 00 00 00 00 00 7c 0b 7c 0c 66 02 ab 01 00 00 00 00 00 00 01 00 7c 00 6a 11 00 00 00 00 | ........|.|.f...........|.j..... |
| 14a0 | 00 00 00 00 00 00 00 00 00 00 00 00 00 00 7c 07 7c 0b 7c 0c ab 03 00 00 00 00 00 00 01 00 7c 04 | ..............|.|.|...........|. |
| 14c0 | 72 01 8c 73 79 00 79 00 ad 03 77 01 29 05 4e 72 2e 00 00 00 72 02 00 00 00 54 29 01 da 04 6b 65 | r..sy.y...w.).Nr....r....T)...ke |
| 14e0 | 79 73 72 2f 00 00 00 29 0d 72 15 00 00 00 72 35 00 00 00 72 22 00 00 00 72 31 00 00 00 72 36 00 | ysr/...).r....r5...r"...r1...r6. |
| 1500 | 00 00 72 37 00 00 00 da 08 6c 61 73 74 5f 6b 65 79 72 38 00 00 00 da 0b 63 75 72 72 65 6e 74 5f | ..r7.....last_keyr8.....current_ |
| 1520 | 6b 65 79 da 06 74 72 69 70 6c 65 72 39 00 00 00 72 3a 00 00 00 da 08 6e 65 78 74 5f 6b 65 79 73 | key..tripler9...r:.....next_keys |
| 1540 | 0d 00 00 00 20 20 20 20 20 20 20 20 20 20 20 20 20 72 16 00 00 00 da 1c 5f 6d 75 6c 74 69 67 72 | .................r......_multigr |
| 1560 | 61 70 68 5f 65 75 6c 65 72 69 61 6e 5f 63 69 72 63 75 69 74 72 42 00 00 00 86 00 00 00 73 d5 00 | aph_eulerian_circuitrB.......s.. |
| 1580 | 00 00 e8 00 f8 80 00 d8 07 08 87 7d 81 7d 84 7f d8 11 12 97 1c 91 1c 88 06 d8 10 11 97 0b 91 0b | ...........}.}.................. |
| 15a0 | 89 05 e0 11 12 97 18 91 18 88 06 d8 10 11 97 07 91 07 88 05 d8 15 1b 98 54 90 4e d0 13 23 80 4c | ........................T.N..#.L |
| 15c0 | d8 12 16 80 4b d8 0f 13 80 48 d9 0a 16 d8 26 32 b0 32 d1 26 36 d1 08 23 88 0e 98 0b d9 0b 11 90 | ....K....H....&2.2.&6..#........ |
| 15e0 | 2e d3 0b 21 a0 51 d2 0b 26 d8 0f 1a d0 0f 26 d8 17 22 a0 4e b0 48 d0 16 3d d2 10 3d d8 24 32 b0 | ...!.Q..&.....&..".N.H..=..=.$2. |
| 1600 | 4b 98 18 88 4b d8 0c 18 d7 0c 1c d1 0c 1c d5 0c 1e e4 15 26 a1 75 a8 5e c0 24 d4 27 47 d3 15 48 | K...K..............&.u.^.$.'G..H |
| 1620 | 88 46 d8 27 2d d1 0c 24 88 41 88 7b 98 48 d8 0c 18 d7 0c 1f d1 0c 1f a0 1b a8 68 d0 20 37 d4 0c | .F.'-..$.A.{.H............h..7.. |
| 1640 | 38 d8 0c 0d 8f 4d 89 4d 98 2e a8 2b b0 78 d4 0c 40 f4 17 00 0b 17 f9 73 0c 00 00 00 82 42 3f 43 | 8....M.M...+.x..@......s.....B?C |
| 1660 | 04 01 c3 02 02 43 04 01 63 03 00 00 00 00 00 00 00 00 00 00 00 04 00 00 00 23 00 00 00 f3 60 01 | .....C..c................#....`. |
| 1680 | 00 00 4b 00 01 00 97 00 74 01 00 00 00 00 00 00 00 00 7c 00 ab 01 00 00 00 00 00 00 73 15 74 03 | ..K.....t.........|.........s.t. |
| 16a0 | 00 00 00 00 00 00 00 00 6a 04 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 64 01 ab 01 | ........j...................d... |
| 16c0 | 00 00 00 00 00 00 82 01 7c 00 6a 07 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ab 00 | ........|.j..................... |
| 16e0 | 00 00 00 00 00 00 72 11 7c 00 6a 09 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ab 00 | ......r.|.j..................... |
| 1700 | 00 00 00 00 00 00 7d 00 6e 10 7c 00 6a 0b 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 | ......}.n.|.j................... |
| 1720 | ab 00 00 00 00 00 00 00 7d 00 7c 01 80 0b 74 0d 00 00 00 00 00 00 00 00 7c 00 ab 01 00 00 00 00 | ........}.|...t.........|....... |
| 1740 | 00 00 7d 01 7c 00 6a 0f 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ab 00 00 00 00 00 | ..}.|.j......................... |
| 1760 | 00 00 72 26 74 11 00 00 00 00 00 00 00 00 7c 00 7c 01 ab 02 00 00 00 00 00 00 44 00 5d 16 00 00 | ..r&t.........|.|.........D.]... |
| 1780 | 5c 03 00 00 7d 03 7d 04 7d 05 7c 02 72 08 7c 03 7c 04 7c 05 66 03 96 01 97 01 01 00 8c 11 7c 03 | \...}.}.}.|.r.|.|.|.f.........|. |
| 17a0 | 7c 04 66 02 96 01 97 01 01 00 8c 18 04 00 79 02 74 13 00 00 00 00 00 00 00 00 7c 00 7c 01 ab 02 | |.f...........y.t.........|.|... |
| 17c0 | 00 00 00 00 00 00 45 00 64 02 7b 03 00 00 96 02 97 02 86 05 05 00 01 00 79 02 37 00 8c 05 ad 03 | ......E.d.{.............y.7..... |
| 17e0 | 77 01 29 03 61 2e 06 00 00 52 65 74 75 72 6e 73 20 61 6e 20 69 74 65 72 61 74 6f 72 20 6f 76 65 | w.).a....Returns.an.iterator.ove |
| 1800 | 72 20 74 68 65 20 65 64 67 65 73 20 6f 66 20 61 6e 20 45 75 6c 65 72 69 61 6e 20 63 69 72 63 75 | r.the.edges.of.an.Eulerian.circu |
| 1820 | 69 74 20 69 6e 20 60 47 60 2e 0a 0a 20 20 20 20 41 6e 20 2a 45 75 6c 65 72 69 61 6e 20 63 69 72 | it.in.`G`.......An.*Eulerian.cir |
| 1840 | 63 75 69 74 2a 20 69 73 20 61 20 63 6c 6f 73 65 64 20 77 61 6c 6b 20 74 68 61 74 20 69 6e 63 6c | cuit*.is.a.closed.walk.that.incl |
| 1860 | 75 64 65 73 20 65 61 63 68 20 65 64 67 65 20 6f 66 20 61 0a 20 20 20 20 67 72 61 70 68 20 65 78 | udes.each.edge.of.a.....graph.ex |
| 1880 | 61 63 74 6c 79 20 6f 6e 63 65 2e 0a 0a 20 20 20 20 50 61 72 61 6d 65 74 65 72 73 0a 20 20 20 20 | actly.once.......Parameters..... |
| 18a0 | 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 47 20 3a 20 4e 65 74 77 6f 72 6b 58 20 67 72 61 70 | ----------.....G.:.NetworkX.grap |
| 18c0 | 68 0a 20 20 20 20 20 20 20 41 20 67 72 61 70 68 2c 20 65 69 74 68 65 72 20 64 69 72 65 63 74 65 | h........A.graph,.either.directe |
| 18e0 | 64 20 6f 72 20 75 6e 64 69 72 65 63 74 65 64 2e 0a 0a 20 20 20 20 73 6f 75 72 63 65 20 3a 20 6e | d.or.undirected.......source.:.n |
| 1900 | 6f 64 65 2c 20 6f 70 74 69 6f 6e 61 6c 0a 20 20 20 20 20 20 20 53 74 61 72 74 69 6e 67 20 6e 6f | ode,.optional........Starting.no |
| 1920 | 64 65 20 66 6f 72 20 63 69 72 63 75 69 74 2e 0a 0a 20 20 20 20 6b 65 79 73 20 3a 20 62 6f 6f 6c | de.for.circuit.......keys.:.bool |
| 1940 | 0a 20 20 20 20 20 20 20 49 66 20 46 61 6c 73 65 2c 20 65 64 67 65 73 20 67 65 6e 65 72 61 74 65 | ........If.False,.edges.generate |
| 1960 | 64 20 62 79 20 74 68 69 73 20 66 75 6e 63 74 69 6f 6e 20 77 69 6c 6c 20 62 65 20 6f 66 20 74 68 | d.by.this.function.will.be.of.th |
| 1980 | 65 20 66 6f 72 6d 0a 20 20 20 20 20 20 20 60 60 28 75 2c 20 76 29 60 60 2e 20 4f 74 68 65 72 77 | e.form........``(u,.v)``..Otherw |
| 19a0 | 69 73 65 2c 20 65 64 67 65 73 20 77 69 6c 6c 20 62 65 20 6f 66 20 74 68 65 20 66 6f 72 6d 20 60 | ise,.edges.will.be.of.the.form.` |
| 19c0 | 60 28 75 2c 20 76 2c 20 6b 29 60 60 2e 0a 20 20 20 20 20 20 20 54 68 69 73 20 6f 70 74 69 6f 6e | `(u,.v,.k)``.........This.option |
| 19e0 | 20 69 73 20 69 67 6e 6f 72 65 64 20 75 6e 6c 65 73 73 20 60 47 60 20 69 73 20 61 20 6d 75 6c 74 | .is.ignored.unless.`G`.is.a.mult |
| 1a00 | 69 67 72 61 70 68 2e 0a 0a 20 20 20 20 52 65 74 75 72 6e 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d | igraph.......Returns.....------- |
| 1a20 | 0a 20 20 20 20 65 64 67 65 73 20 3a 20 69 74 65 72 61 74 6f 72 0a 20 20 20 20 20 20 20 41 6e 20 | .....edges.:.iterator........An. |
| 1a40 | 69 74 65 72 61 74 6f 72 20 6f 76 65 72 20 65 64 67 65 73 20 69 6e 20 74 68 65 20 45 75 6c 65 72 | iterator.over.edges.in.the.Euler |
| 1a60 | 69 61 6e 20 63 69 72 63 75 69 74 2e 0a 0a 20 20 20 20 52 61 69 73 65 73 0a 20 20 20 20 2d 2d 2d | ian.circuit.......Raises.....--- |
| 1a80 | 2d 2d 2d 0a 20 20 20 20 4e 65 74 77 6f 72 6b 58 45 72 72 6f 72 0a 20 20 20 20 20 20 20 49 66 20 | ---.....NetworkXError........If. |
| 1aa0 | 74 68 65 20 67 72 61 70 68 20 69 73 20 6e 6f 74 20 45 75 6c 65 72 69 61 6e 2e 0a 0a 20 20 20 20 | the.graph.is.not.Eulerian....... |
| 1ac0 | 53 65 65 20 41 6c 73 6f 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 69 73 5f 65 75 6c | See.Also.....--------.....is_eul |
| 1ae0 | 65 72 69 61 6e 0a 0a 20 20 20 20 4e 6f 74 65 73 0a 20 20 20 20 2d 2d 2d 2d 2d 0a 20 20 20 20 54 | erian......Notes.....-----.....T |
| 1b00 | 68 69 73 20 69 73 20 61 20 6c 69 6e 65 61 72 20 74 69 6d 65 20 69 6d 70 6c 65 6d 65 6e 74 61 74 | his.is.a.linear.time.implementat |
| 1b20 | 69 6f 6e 20 6f 66 20 61 6e 20 61 6c 67 6f 72 69 74 68 6d 20 61 64 61 70 74 65 64 20 66 72 6f 6d | ion.of.an.algorithm.adapted.from |
| 1b40 | 20 5b 31 5d 5f 2e 0a 0a 20 20 20 20 46 6f 72 20 67 65 6e 65 72 61 6c 20 69 6e 66 6f 72 6d 61 74 | .[1]_.......For.general.informat |
| 1b60 | 69 6f 6e 20 61 62 6f 75 74 20 45 75 6c 65 72 20 74 6f 75 72 73 2c 20 73 65 65 20 5b 32 5d 5f 2e | ion.about.Euler.tours,.see.[2]_. |
| 1b80 | 0a 0a 20 20 20 20 52 65 66 65 72 65 6e 63 65 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 0a | ......References.....----------. |
| 1ba0 | 20 20 20 20 2e 2e 20 5b 31 5d 20 4a 2e 20 45 64 6d 6f 6e 64 73 2c 20 45 2e 20 4c 2e 20 4a 6f 68 | .......[1].J..Edmonds,.E..L..Joh |
| 1bc0 | 6e 73 6f 6e 2e 0a 20 20 20 20 20 20 20 4d 61 74 63 68 69 6e 67 2c 20 45 75 6c 65 72 20 74 6f 75 | nson.........Matching,.Euler.tou |
| 1be0 | 72 73 20 61 6e 64 20 74 68 65 20 43 68 69 6e 65 73 65 20 70 6f 73 74 6d 61 6e 2e 0a 20 20 20 20 | rs.and.the.Chinese.postman...... |
| 1c00 | 20 20 20 4d 61 74 68 65 6d 61 74 69 63 61 6c 20 70 72 6f 67 72 61 6d 6d 69 6e 67 2c 20 56 6f 6c | ...Mathematical.programming,.Vol |
| 1c20 | 75 6d 65 20 35 2c 20 49 73 73 75 65 20 31 20 28 31 39 37 33 29 2c 20 31 31 31 2d 31 31 34 2e 0a | ume.5,.Issue.1.(1973),.111-114.. |
| 1c40 | 20 20 20 20 2e 2e 20 5b 32 5d 20 68 74 74 70 73 3a 2f 2f 65 6e 2e 77 69 6b 69 70 65 64 69 61 2e | .......[2].https://en.wikipedia. |
| 1c60 | 6f 72 67 2f 77 69 6b 69 2f 45 75 6c 65 72 69 61 6e 5f 70 61 74 68 0a 0a 20 20 20 20 45 78 61 6d | org/wiki/Eulerian_path......Exam |
| 1c80 | 70 6c 65 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 54 6f 20 67 65 74 20 61 6e 20 | ples.....--------.....To.get.an. |
| 1ca0 | 45 75 6c 65 72 69 61 6e 20 63 69 72 63 75 69 74 20 69 6e 20 61 6e 20 75 6e 64 69 72 65 63 74 65 | Eulerian.circuit.in.an.undirecte |
| 1cc0 | 64 20 67 72 61 70 68 3a 3a 0a 0a 20 20 20 20 20 20 20 20 3e 3e 3e 20 47 20 3d 20 6e 78 2e 63 6f | d.graph::..........>>>.G.=.nx.co |
| 1ce0 | 6d 70 6c 65 74 65 5f 67 72 61 70 68 28 33 29 0a 20 20 20 20 20 20 20 20 3e 3e 3e 20 6c 69 73 74 | mplete_graph(3).........>>>.list |
| 1d00 | 28 6e 78 2e 65 75 6c 65 72 69 61 6e 5f 63 69 72 63 75 69 74 28 47 29 29 0a 20 20 20 20 20 20 20 | (nx.eulerian_circuit(G))........ |
| 1d20 | 20 5b 28 30 2c 20 32 29 2c 20 28 32 2c 20 31 29 2c 20 28 31 2c 20 30 29 5d 0a 20 20 20 20 20 20 | .[(0,.2),.(2,.1),.(1,.0)]....... |
| 1d40 | 20 20 3e 3e 3e 20 6c 69 73 74 28 6e 78 2e 65 75 6c 65 72 69 61 6e 5f 63 69 72 63 75 69 74 28 47 | ..>>>.list(nx.eulerian_circuit(G |
| 1d60 | 2c 20 73 6f 75 72 63 65 3d 31 29 29 0a 20 20 20 20 20 20 20 20 5b 28 31 2c 20 32 29 2c 20 28 32 | ,.source=1)).........[(1,.2),.(2 |
| 1d80 | 2c 20 30 29 2c 20 28 30 2c 20 31 29 5d 0a 0a 20 20 20 20 54 6f 20 67 65 74 20 74 68 65 20 73 65 | ,.0),.(0,.1)]......To.get.the.se |
| 1da0 | 71 75 65 6e 63 65 20 6f 66 20 76 65 72 74 69 63 65 73 20 69 6e 20 61 6e 20 45 75 6c 65 72 69 61 | quence.of.vertices.in.an.Euleria |
| 1dc0 | 6e 20 63 69 72 63 75 69 74 3a 3a 0a 0a 20 20 20 20 20 20 20 20 3e 3e 3e 20 5b 75 20 66 6f 72 20 | n.circuit::..........>>>.[u.for. |
| 1de0 | 75 2c 20 76 20 69 6e 20 6e 78 2e 65 75 6c 65 72 69 61 6e 5f 63 69 72 63 75 69 74 28 47 29 5d 0a | u,.v.in.nx.eulerian_circuit(G)]. |
| 1e00 | 20 20 20 20 20 20 20 20 5b 30 2c 20 32 2c 20 31 5d 0a 0a 20 20 20 20 7a 12 47 20 69 73 20 6e 6f | ........[0,.2,.1]......z.G.is.no |
| 1e20 | 74 20 45 75 6c 65 72 69 61 6e 2e 4e 29 0a 72 07 00 00 00 72 20 00 00 00 da 0d 4e 65 74 77 6f 72 | t.Eulerian.N).r....r......Networ |
| 1e40 | 6b 58 45 72 72 6f 72 72 1e 00 00 00 da 07 72 65 76 65 72 73 65 da 04 63 6f 70 79 72 05 00 00 00 | kXErrorr......reverse..copyr.... |
| 1e60 | da 0d 69 73 5f 6d 75 6c 74 69 67 72 61 70 68 72 42 00 00 00 72 3b 00 00 00 a9 06 72 15 00 00 00 | ..is_multigraphrB...r;.....r.... |
| 1e80 | 72 35 00 00 00 72 3d 00 00 00 da 01 75 72 1b 00 00 00 da 01 6b 73 06 00 00 00 20 20 20 20 20 20 | r5...r=.....ur......ks.......... |
| 1ea0 | 72 16 00 00 00 72 08 00 00 00 72 08 00 00 00 9e 00 00 00 73 9f 00 00 00 e8 00 f8 80 00 f4 7e 01 | r....r....r........s..........~. |
| 1ec0 | 00 0c 17 90 71 8c 3e dc 0e 10 d7 0e 1e d1 0e 1e d0 1f 33 d3 0e 34 d0 08 34 d8 07 08 87 7d 81 7d | ....q.>...........3..4..4....}.} |
| 1ee0 | 84 7f d8 0c 0d 8f 49 89 49 8b 4b 89 01 e0 0c 0d 8f 46 89 46 8b 48 88 01 d8 07 0d 80 7e dc 11 22 | ......I.I.K......F.F.H......~.." |
| 1f00 | a0 31 d3 11 25 88 06 d8 07 08 87 7f 81 7f d4 07 18 dc 17 33 b0 41 b0 76 d3 17 3e f2 00 04 09 1b | .1..%..............3.A.v..>..... |
| 1f20 | 89 47 88 41 88 71 90 21 d9 0f 13 d8 16 17 98 11 98 41 90 67 93 0d e0 16 17 98 11 90 64 93 0a f1 | .G.A.q.!.........A.g........d... |
| 1f40 | 09 04 09 1b f4 0c 00 14 31 b0 11 b0 46 d3 13 3b d7 08 3b d2 08 3b fa 73 12 00 00 00 82 42 24 42 | ........1...F..;..;..;.s.....B$B |
| 1f60 | 2e 01 c2 26 01 42 2c 04 c2 27 06 42 2e 01 63 02 00 00 00 00 00 00 00 00 00 00 00 05 00 00 00 03 | ...&.B,..'.B..c................. |
| 1f80 | 00 00 00 f3 0a 02 00 00 97 00 74 01 00 00 00 00 00 00 00 00 6a 02 00 00 00 00 00 00 00 00 00 00 | ..........t.........j........... |
| 1fa0 | 00 00 00 00 00 00 00 00 7c 00 ab 01 00 00 00 00 00 00 72 01 79 01 7c 00 6a 05 00 00 00 00 00 00 | ........|.........r.y.|.j....... |
| 1fc0 | 00 00 00 00 00 00 00 00 00 00 00 00 ab 00 00 00 00 00 00 00 72 8c 7c 00 6a 06 00 00 00 00 00 00 | ....................r.|.j....... |
| 1fe0 | 00 00 00 00 00 00 00 00 00 00 00 00 7d 02 7c 00 6a 08 00 00 00 00 00 00 00 00 00 00 00 00 00 00 | ............}.|.j............... |
| 2000 | 00 00 00 00 7d 03 7c 01 81 0f 7c 03 7c 01 19 00 00 00 7c 02 7c 01 19 00 00 00 7a 0a 00 00 64 02 | ....}.|...|.|.....|.|.....z...d. |
| 2020 | 6b 37 00 00 72 01 79 03 64 04 7d 04 64 04 7d 05 7c 00 44 00 5d 37 00 00 7d 06 7c 02 7c 06 19 00 | k7..r.y.d.}.d.}.|.D.]7..}.|.|... |
| 2040 | 00 00 7c 03 7c 06 19 00 00 00 7a 0a 00 00 64 02 6b 28 00 00 72 06 7c 04 64 02 7a 0d 00 00 7d 04 | ..|.|.....z...d.k(..r.|.d.z...}. |
| 2060 | 8c 17 7c 03 7c 06 19 00 00 00 7c 02 7c 06 19 00 00 00 7a 0a 00 00 64 02 6b 28 00 00 72 06 7c 05 | ..|.|.....|.|.....z...d.k(..r.|. |
| 2080 | 64 02 7a 0d 00 00 7d 05 8c 2b 7c 02 7c 06 19 00 00 00 7c 03 7c 06 19 00 00 00 6b 37 00 00 73 01 | d.z...}..+|.|.....|.|.....k7..s. |
| 20a0 | 8c 37 01 00 79 03 04 00 7c 04 64 02 6b 1a 00 00 78 01 72 1c 01 00 7c 05 64 02 6b 1a 00 00 78 01 | .7..y...|.d.k...x.r...|.d.k...x. |
| 20c0 | 72 15 01 00 74 01 00 00 00 00 00 00 00 00 6a 0a 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 | r...t.........j................. |
| 20e0 | 00 00 7c 00 ab 01 00 00 00 00 00 00 53 00 7c 01 81 16 7c 00 6a 0c 00 00 00 00 00 00 00 00 00 00 | ..|.........S.|...|.j........... |
| 2100 | 00 00 00 00 00 00 00 00 7c 01 19 00 00 00 64 05 7a 06 00 00 64 02 6b 37 00 00 72 01 79 03 74 0f | ........|.....d.z...d.k7..r.y.t. |
| 2120 | 00 00 00 00 00 00 00 00 64 06 84 00 7c 00 6a 0d 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 | ........d...|.j................. |
| 2140 | 00 00 ab 00 00 00 00 00 00 00 44 00 ab 00 00 00 00 00 00 00 ab 01 00 00 00 00 00 00 64 05 6b 28 | ..........D.................d.k( |
| 2160 | 00 00 78 01 72 15 01 00 74 01 00 00 00 00 00 00 00 00 6a 10 00 00 00 00 00 00 00 00 00 00 00 00 | ..x.r...t.........j............. |
| 2180 | 00 00 00 00 00 00 7c 00 ab 01 00 00 00 00 00 00 53 00 29 07 61 8c 08 00 00 52 65 74 75 72 6e 20 | ......|.........S.).a....Return. |
| 21a0 | 54 72 75 65 20 69 66 66 20 60 47 60 20 68 61 73 20 61 6e 20 45 75 6c 65 72 69 61 6e 20 70 61 74 | True.iff.`G`.has.an.Eulerian.pat |
| 21c0 | 68 2e 0a 0a 20 20 20 20 41 6e 20 45 75 6c 65 72 69 61 6e 20 70 61 74 68 20 69 73 20 61 20 70 61 | h.......An.Eulerian.path.is.a.pa |
| 21e0 | 74 68 20 69 6e 20 61 20 67 72 61 70 68 20 77 68 69 63 68 20 75 73 65 73 20 65 61 63 68 20 65 64 | th.in.a.graph.which.uses.each.ed |
| 2200 | 67 65 20 6f 66 20 61 20 67 72 61 70 68 0a 20 20 20 20 65 78 61 63 74 6c 79 20 6f 6e 63 65 2e 20 | ge.of.a.graph.....exactly.once.. |
| 2220 | 49 66 20 60 73 6f 75 72 63 65 60 20 69 73 20 73 70 65 63 69 66 69 65 64 2c 20 74 68 65 6e 20 74 | If.`source`.is.specified,.then.t |
| 2240 | 68 69 73 20 66 75 6e 63 74 69 6f 6e 20 63 68 65 63 6b 73 0a 20 20 20 20 77 68 65 74 68 65 72 20 | his.function.checks.....whether. |
| 2260 | 61 6e 20 45 75 6c 65 72 69 61 6e 20 70 61 74 68 20 74 68 61 74 20 73 74 61 72 74 73 20 61 74 20 | an.Eulerian.path.that.starts.at. |
| 2280 | 6e 6f 64 65 20 60 73 6f 75 72 63 65 60 20 65 78 69 73 74 73 2e 0a 0a 20 20 20 20 41 20 64 69 72 | node.`source`.exists.......A.dir |
| 22a0 | 65 63 74 65 64 20 67 72 61 70 68 20 68 61 73 20 61 6e 20 45 75 6c 65 72 69 61 6e 20 70 61 74 68 | ected.graph.has.an.Eulerian.path |
| 22c0 | 20 69 66 66 3a 0a 20 20 20 20 20 20 20 20 2d 20 61 74 20 6d 6f 73 74 20 6f 6e 65 20 76 65 72 74 | .iff:.........-.at.most.one.vert |
| 22e0 | 65 78 20 68 61 73 20 6f 75 74 5f 64 65 67 72 65 65 20 2d 20 69 6e 5f 64 65 67 72 65 65 20 3d 20 | ex.has.out_degree.-.in_degree.=. |
| 2300 | 31 2c 0a 20 20 20 20 20 20 20 20 2d 20 61 74 20 6d 6f 73 74 20 6f 6e 65 20 76 65 72 74 65 78 20 | 1,.........-.at.most.one.vertex. |
| 2320 | 68 61 73 20 69 6e 5f 64 65 67 72 65 65 20 2d 20 6f 75 74 5f 64 65 67 72 65 65 20 3d 20 31 2c 0a | has.in_degree.-.out_degree.=.1,. |
| 2340 | 20 20 20 20 20 20 20 20 2d 20 65 76 65 72 79 20 6f 74 68 65 72 20 76 65 72 74 65 78 20 68 61 73 | ........-.every.other.vertex.has |
| 2360 | 20 65 71 75 61 6c 20 69 6e 5f 64 65 67 72 65 65 20 61 6e 64 20 6f 75 74 5f 64 65 67 72 65 65 2c | .equal.in_degree.and.out_degree, |
| 2380 | 0a 20 20 20 20 20 20 20 20 2d 20 61 6e 64 20 61 6c 6c 20 6f 66 20 69 74 73 20 76 65 72 74 69 63 | .........-.and.all.of.its.vertic |
| 23a0 | 65 73 20 62 65 6c 6f 6e 67 20 74 6f 20 61 20 73 69 6e 67 6c 65 20 63 6f 6e 6e 65 63 74 65 64 0a | es.belong.to.a.single.connected. |
| 23c0 | 20 20 20 20 20 20 20 20 20 20 63 6f 6d 70 6f 6e 65 6e 74 20 6f 66 20 74 68 65 20 75 6e 64 65 72 | ..........component.of.the.under |
| 23e0 | 6c 79 69 6e 67 20 75 6e 64 69 72 65 63 74 65 64 20 67 72 61 70 68 2e 0a 0a 20 20 20 20 49 66 20 | lying.undirected.graph.......If. |
| 2400 | 60 73 6f 75 72 63 65 60 20 69 73 20 6e 6f 74 20 4e 6f 6e 65 2c 20 61 6e 20 45 75 6c 65 72 69 61 | `source`.is.not.None,.an.Euleria |
| 2420 | 6e 20 70 61 74 68 20 73 74 61 72 74 69 6e 67 20 61 74 20 60 73 6f 75 72 63 65 60 20 65 78 69 73 | n.path.starting.at.`source`.exis |
| 2440 | 74 73 20 69 66 20 6e 6f 0a 20 20 20 20 6f 74 68 65 72 20 6e 6f 64 65 20 68 61 73 20 6f 75 74 5f | ts.if.no.....other.node.has.out_ |
| 2460 | 64 65 67 72 65 65 20 2d 20 69 6e 5f 64 65 67 72 65 65 20 3d 20 31 2e 20 54 68 69 73 20 69 73 20 | degree.-.in_degree.=.1..This.is. |
| 2480 | 65 71 75 69 76 61 6c 65 6e 74 20 74 6f 20 65 69 74 68 65 72 0a 20 20 20 20 74 68 65 72 65 20 65 | equivalent.to.either.....there.e |
| 24a0 | 78 69 73 74 73 20 61 6e 20 45 75 6c 65 72 69 61 6e 20 63 69 72 63 75 69 74 20 6f 72 20 60 73 6f | xists.an.Eulerian.circuit.or.`so |
| 24c0 | 75 72 63 65 60 20 68 61 73 20 6f 75 74 5f 64 65 67 72 65 65 20 2d 20 69 6e 5f 64 65 67 72 65 65 | urce`.has.out_degree.-.in_degree |
| 24e0 | 20 3d 20 31 0a 20 20 20 20 61 6e 64 20 74 68 65 20 63 6f 6e 64 69 74 69 6f 6e 73 20 61 62 6f 76 | .=.1.....and.the.conditions.abov |
| 2500 | 65 20 68 6f 6c 64 2e 0a 0a 20 20 20 20 41 6e 20 75 6e 64 69 72 65 63 74 65 64 20 67 72 61 70 68 | e.hold.......An.undirected.graph |
| 2520 | 20 68 61 73 20 61 6e 20 45 75 6c 65 72 69 61 6e 20 70 61 74 68 20 69 66 66 3a 0a 20 20 20 20 20 | .has.an.Eulerian.path.iff:...... |
| 2540 | 20 20 20 2d 20 65 78 61 63 74 6c 79 20 7a 65 72 6f 20 6f 72 20 74 77 6f 20 76 65 72 74 69 63 65 | ...-.exactly.zero.or.two.vertice |
| 2560 | 73 20 68 61 76 65 20 6f 64 64 20 64 65 67 72 65 65 2c 0a 20 20 20 20 20 20 20 20 2d 20 61 6e 64 | s.have.odd.degree,.........-.and |
| 2580 | 20 61 6c 6c 20 6f 66 20 69 74 73 20 76 65 72 74 69 63 65 73 20 62 65 6c 6f 6e 67 20 74 6f 20 61 | .all.of.its.vertices.belong.to.a |
| 25a0 | 20 73 69 6e 67 6c 65 20 63 6f 6e 6e 65 63 74 65 64 20 63 6f 6d 70 6f 6e 65 6e 74 2e 0a 0a 20 20 | .single.connected.component..... |
| 25c0 | 20 20 49 66 20 60 73 6f 75 72 63 65 60 20 69 73 20 6e 6f 74 20 4e 6f 6e 65 2c 20 61 6e 20 45 75 | ..If.`source`.is.not.None,.an.Eu |
| 25e0 | 6c 65 72 69 61 6e 20 70 61 74 68 20 73 74 61 72 74 69 6e 67 20 61 74 20 60 73 6f 75 72 63 65 60 | lerian.path.starting.at.`source` |
| 2600 | 20 65 78 69 73 74 73 20 69 66 0a 20 20 20 20 65 69 74 68 65 72 20 74 68 65 72 65 20 65 78 69 73 | .exists.if.....either.there.exis |
| 2620 | 74 73 20 61 6e 20 45 75 6c 65 72 69 61 6e 20 63 69 72 63 75 69 74 20 6f 72 20 60 73 6f 75 72 63 | ts.an.Eulerian.circuit.or.`sourc |
| 2640 | 65 60 20 68 61 73 20 61 6e 20 6f 64 64 20 64 65 67 72 65 65 20 61 6e 64 20 74 68 65 0a 20 20 20 | e`.has.an.odd.degree.and.the.... |
| 2660 | 20 63 6f 6e 64 69 74 69 6f 6e 73 20 61 62 6f 76 65 20 68 6f 6c 64 2e 0a 0a 20 20 20 20 47 72 61 | .conditions.above.hold.......Gra |
| 2680 | 70 68 73 20 77 69 74 68 20 69 73 6f 6c 61 74 65 64 20 76 65 72 74 69 63 65 73 20 28 69 2e 65 2e | phs.with.isolated.vertices.(i.e. |
| 26a0 | 20 76 65 72 74 69 63 65 73 20 77 69 74 68 20 7a 65 72 6f 20 64 65 67 72 65 65 29 20 61 72 65 20 | .vertices.with.zero.degree).are. |
| 26c0 | 6e 6f 74 20 63 6f 6e 73 69 64 65 72 65 64 0a 20 20 20 20 74 6f 20 68 61 76 65 20 61 6e 20 45 75 | not.considered.....to.have.an.Eu |
| 26e0 | 6c 65 72 69 61 6e 20 70 61 74 68 2e 20 54 68 65 72 65 66 6f 72 65 2c 20 69 66 20 74 68 65 20 67 | lerian.path..Therefore,.if.the.g |
| 2700 | 72 61 70 68 20 69 73 20 6e 6f 74 20 63 6f 6e 6e 65 63 74 65 64 20 28 6f 72 20 6e 6f 74 20 73 74 | raph.is.not.connected.(or.not.st |
| 2720 | 72 6f 6e 67 6c 79 0a 20 20 20 20 63 6f 6e 6e 65 63 74 65 64 2c 20 66 6f 72 20 64 69 72 65 63 74 | rongly.....connected,.for.direct |
| 2740 | 65 64 20 67 72 61 70 68 73 29 2c 20 74 68 69 73 20 66 75 6e 63 74 69 6f 6e 20 72 65 74 75 72 6e | ed.graphs),.this.function.return |
| 2760 | 73 20 46 61 6c 73 65 2e 0a 0a 20 20 20 20 50 61 72 61 6d 65 74 65 72 73 0a 20 20 20 20 2d 2d 2d | s.False.......Parameters.....--- |
| 2780 | 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 47 20 3a 20 4e 65 74 77 6f 72 6b 58 20 47 72 61 70 68 0a 20 | -------.....G.:.NetworkX.Graph.. |
| 27a0 | 20 20 20 20 20 20 20 54 68 65 20 67 72 61 70 68 20 74 6f 20 66 69 6e 64 20 61 6e 20 65 75 6c 65 | .......The.graph.to.find.an.eule |
| 27c0 | 72 20 70 61 74 68 20 69 6e 2e 0a 0a 20 20 20 20 73 6f 75 72 63 65 20 3a 20 6e 6f 64 65 2c 20 6f | r.path.in.......source.:.node,.o |
| 27e0 | 70 74 69 6f 6e 61 6c 0a 20 20 20 20 20 20 20 20 53 74 61 72 74 69 6e 67 20 6e 6f 64 65 20 66 6f | ptional.........Starting.node.fo |
| 2800 | 72 20 70 61 74 68 2e 0a 0a 20 20 20 20 52 65 74 75 72 6e 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d | r.path.......Returns.....------- |
| 2820 | 0a 20 20 20 20 42 6f 6f 6c 20 3a 20 54 72 75 65 20 69 66 20 47 20 68 61 73 20 61 6e 20 45 75 6c | .....Bool.:.True.if.G.has.an.Eul |
| 2840 | 65 72 69 61 6e 20 70 61 74 68 2e 0a 0a 20 20 20 20 45 78 61 6d 70 6c 65 73 0a 20 20 20 20 2d 2d | erian.path.......Examples.....-- |
| 2860 | 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 49 66 20 79 6f 75 20 70 72 65 66 65 72 20 74 6f 20 61 6c 6c 6f | ------.....If.you.prefer.to.allo |
| 2880 | 77 20 67 72 61 70 68 73 20 77 69 74 68 20 69 73 6f 6c 61 74 65 64 20 76 65 72 74 69 63 65 73 20 | w.graphs.with.isolated.vertices. |
| 28a0 | 74 6f 20 68 61 76 65 20 45 75 6c 65 72 69 61 6e 20 70 61 74 68 2c 0a 20 20 20 20 79 6f 75 20 63 | to.have.Eulerian.path,.....you.c |
| 28c0 | 61 6e 20 66 69 72 73 74 20 72 65 6d 6f 76 65 20 73 75 63 68 20 76 65 72 74 69 63 65 73 20 61 6e | an.first.remove.such.vertices.an |
| 28e0 | 64 20 74 68 65 6e 20 63 61 6c 6c 20 60 68 61 73 5f 65 75 6c 65 72 69 61 6e 5f 70 61 74 68 60 20 | d.then.call.`has_eulerian_path`. |
| 2900 | 61 73 20 62 65 6c 6f 77 20 65 78 61 6d 70 6c 65 20 73 68 6f 77 73 2e 0a 0a 20 20 20 20 3e 3e 3e | as.below.example.shows.......>>> |
| 2920 | 20 47 20 3d 20 6e 78 2e 47 72 61 70 68 28 5b 28 30 2c 20 31 29 2c 20 28 31 2c 20 32 29 2c 20 28 | .G.=.nx.Graph([(0,.1),.(1,.2),.( |
| 2940 | 30 2c 20 32 29 5d 29 0a 20 20 20 20 3e 3e 3e 20 47 2e 61 64 64 5f 6e 6f 64 65 28 33 29 0a 20 20 | 0,.2)]).....>>>.G.add_node(3)... |
| 2960 | 20 20 3e 3e 3e 20 6e 78 2e 68 61 73 5f 65 75 6c 65 72 69 61 6e 5f 70 61 74 68 28 47 29 0a 20 20 | ..>>>.nx.has_eulerian_path(G)... |
| 2980 | 20 20 46 61 6c 73 65 0a 0a 20 20 20 20 3e 3e 3e 20 47 2e 72 65 6d 6f 76 65 5f 6e 6f 64 65 73 5f | ..False......>>>.G.remove_nodes_ |
| 29a0 | 66 72 6f 6d 28 6c 69 73 74 28 6e 78 2e 69 73 6f 6c 61 74 65 73 28 47 29 29 29 0a 20 20 20 20 3e | from(list(nx.isolates(G))).....> |
| 29c0 | 3e 3e 20 6e 78 2e 68 61 73 5f 65 75 6c 65 72 69 61 6e 5f 70 61 74 68 28 47 29 0a 20 20 20 20 54 | >>.nx.has_eulerian_path(G).....T |
| 29e0 | 72 75 65 0a 0a 20 20 20 20 53 65 65 20 41 6c 73 6f 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 | rue......See.Also.....--------.. |
| 2a00 | 20 20 20 69 73 5f 65 75 6c 65 72 69 61 6e 0a 20 20 20 20 65 75 6c 65 72 69 61 6e 5f 70 61 74 68 | ...is_eulerian.....eulerian_path |
| 2a20 | 0a 20 20 20 20 54 e9 01 00 00 00 46 72 02 00 00 00 72 04 00 00 00 63 01 00 00 00 00 00 00 00 00 | .....T.....Fr....r....c......... |
| 2a40 | 00 00 00 03 00 00 00 33 00 00 00 f3 32 00 00 00 4b 00 01 00 97 00 7c 00 5d 0f 00 00 5c 02 00 00 | .......3....2...K.....|.]...\... |
| 2a60 | 7d 01 7d 02 7c 02 64 00 7a 06 00 00 64 01 6b 28 00 00 96 01 97 01 01 00 8c 11 04 00 79 02 ad 03 | }.}.|.d.z...d.k(............y... |
| 2a80 | 77 01 29 03 72 04 00 00 00 72 4c 00 00 00 4e 72 19 00 00 00 72 1a 00 00 00 73 03 00 00 00 20 20 | w.).r....rL...Nr....r....s...... |
| 2aa0 | 20 72 16 00 00 00 72 17 00 00 00 7a 24 68 61 73 5f 65 75 6c 65 72 69 61 6e 5f 70 61 74 68 2e 3c | .r....r....z$has_eulerian_path.< |
| 2ac0 | 6c 6f 63 61 6c 73 3e 2e 3c 67 65 6e 65 78 70 72 3e 4b 01 00 00 73 1c 00 00 00 e8 00 f8 80 00 d2 | locals>.<genexpr>K...s.......... |
| 2ae0 | 12 35 a1 24 a0 21 a0 51 90 31 90 71 91 35 98 41 95 3a d1 12 35 f9 72 1d 00 00 00 29 09 72 20 00 | .5.$.!.Q.1.q.5.A.:..5.r....).r.. |
| 2b00 | 00 00 72 07 00 00 00 72 1e 00 00 00 72 11 00 00 00 72 12 00 00 00 da 13 69 73 5f 77 65 61 6b 6c | ..r....r....r....r......is_weakl |
| 2b20 | 79 5f 63 6f 6e 6e 65 63 74 65 64 72 22 00 00 00 da 03 73 75 6d 72 23 00 00 00 29 07 72 15 00 00 | y_connectedr".....sumr#...).r... |
| 2b40 | 00 72 35 00 00 00 da 03 69 6e 73 da 04 6f 75 74 73 da 0e 75 6e 62 61 6c 61 6e 63 65 64 5f 69 6e | .r5.....ins..outs..unbalanced_in |
| 2b60 | 73 da 0f 75 6e 62 61 6c 61 6e 63 65 64 5f 6f 75 74 73 72 1b 00 00 00 73 07 00 00 00 20 20 20 20 | s..unbalanced_outsr....s........ |
| 2b80 | 20 20 20 72 16 00 00 00 72 0b 00 00 00 72 0b 00 00 00 ef 00 00 00 73 2c 01 00 00 80 00 f4 7e 01 | ...r....r....r........s,......~. |
| 2ba0 | 00 08 0a 87 7e 81 7e 90 61 d4 07 18 d8 0f 13 e0 07 08 87 7d 81 7d 84 7f d8 0e 0f 8f 6b 89 6b 88 | ....~.~.a..........}.}......k.k. |
| 2bc0 | 03 d8 0f 10 8f 7c 89 7c 88 04 e0 0b 11 d0 0b 1d a0 24 a0 76 a1 2c b0 13 b0 56 b1 1b d1 22 3c c0 | .....|.|.........$.v.,...V..."<. |
| 2be0 | 01 d2 22 41 d8 13 18 e0 19 1a 88 0e d8 1a 1b 88 0f d8 11 12 f2 00 06 09 1d 88 41 d8 0f 12 90 31 | .."A......................A....1 |
| 2c00 | 89 76 98 04 98 51 99 07 d1 0f 1f a0 31 d2 0f 24 d8 10 1e a0 21 d1 10 23 91 0e d8 11 15 90 61 91 | .v...Q......1..$....!..#......a. |
| 2c20 | 17 98 33 98 71 99 36 d1 11 21 a0 51 d2 11 26 d8 10 1f a0 31 d1 10 24 91 0f d8 11 14 90 51 91 16 | ..3.q.6..!.Q..&....1..$......Q.. |
| 2c40 | 98 34 a0 01 99 37 d3 11 22 d9 17 1c f0 0d 06 09 1d f0 12 00 0d 1b 98 61 d1 0c 1f d2 0c 56 a0 4f | .4...7.."..............a.....V.O |
| 2c60 | b0 71 d1 24 38 d2 0c 56 bc 52 d7 3d 53 d1 3d 53 d0 54 55 d3 3d 56 f0 03 02 09 0a f0 0a 00 0c 12 | .q.$8..V.R.=S.=S.TU.=V.......... |
| 2c80 | d0 0b 1d a0 21 a7 28 a1 28 a8 36 d1 22 32 b0 51 d1 22 36 b8 21 d2 22 3b d8 13 18 f4 06 00 10 13 | ....!.(.(.6."2.Q."6.!.";........ |
| 2ca0 | d1 12 35 a8 21 af 28 a9 28 ab 2a d4 12 35 d3 0f 35 b8 11 d1 0f 3a d2 0f 51 bc 72 bf 7f b9 7f c8 | ..5.!.(.(.*..5..5....:..Q.r..... |
| 2cc0 | 71 d3 3f 51 d0 08 51 72 25 00 00 00 63 03 00 00 00 00 00 00 00 00 00 00 00 0a 00 00 00 23 00 00 | q.?Q..Qr%...c................#.. |
| 2ce0 | 00 f3 40 03 00 00 4b 00 01 00 97 00 74 01 00 00 00 00 00 00 00 00 7c 00 7c 01 ab 02 00 00 00 00 | ..@...K.....t.........|.|....... |
| 2d00 | 00 00 73 15 74 03 00 00 00 00 00 00 00 00 6a 04 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 | ..s.t.........j................. |
| 2d20 | 00 00 64 01 ab 01 00 00 00 00 00 00 82 01 7c 00 6a 07 00 00 00 00 00 00 00 00 00 00 00 00 00 00 | ..d...........|.j............... |
| 2d40 | 00 00 00 00 ab 00 00 00 00 00 00 00 72 7f 7c 00 6a 09 00 00 00 00 00 00 00 00 00 00 00 00 00 00 | ............r.|.j............... |
| 2d60 | 00 00 00 00 ab 00 00 00 00 00 00 00 7d 00 7c 01 81 17 74 03 00 00 00 00 00 00 00 00 6a 0a 00 00 | ............}.|...t.........j... |
| 2d80 | 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 7c 00 ab 01 00 00 00 00 00 00 64 03 75 00 72 0b | ................|.........d.u.r. |
| 2da0 | 74 0d 00 00 00 00 00 00 00 00 7c 00 ab 01 00 00 00 00 00 00 7d 01 7c 00 6a 0f 00 00 00 00 00 00 | t.........|.........}.|.j....... |
| 2dc0 | 00 00 00 00 00 00 00 00 00 00 00 00 ab 00 00 00 00 00 00 00 72 26 74 11 00 00 00 00 00 00 00 00 | ....................r&t......... |
| 2de0 | 7c 00 7c 01 ab 02 00 00 00 00 00 00 44 00 5d 16 00 00 5c 03 00 00 7d 03 7d 04 7d 05 7c 02 72 08 | |.|.........D.]...\...}.}.}.|.r. |
| 2e00 | 7c 03 7c 04 7c 05 66 03 96 01 97 01 01 00 8c 11 7c 03 7c 04 66 02 96 01 97 01 01 00 8c 18 04 00 | |.|.|.f.........|.|.f........... |
| 2e20 | 79 02 74 13 00 00 00 00 00 00 00 00 7c 00 7c 01 ab 02 00 00 00 00 00 00 45 00 64 02 7b 03 00 00 | y.t.........|.|.........E.d.{... |
| 2e40 | 96 02 97 02 86 05 05 00 01 00 79 02 7c 00 6a 15 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 | ..........y.|.j................. |
| 2e60 | 00 00 ab 00 00 00 00 00 00 00 7d 00 7c 01 80 0b 74 0d 00 00 00 00 00 00 00 00 7c 00 ab 01 00 00 | ..........}.|...t.........|..... |
| 2e80 | 00 00 00 00 7d 01 7c 00 6a 0f 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ab 00 00 00 | ....}.|.j....................... |
| 2ea0 | 00 00 00 00 72 6f 7c 02 72 37 74 17 00 00 00 00 00 00 00 00 74 11 00 00 00 00 00 00 00 00 7c 00 | ....ro|.r7t.........t.........|. |
| 2ec0 | 7c 01 ab 02 00 00 00 00 00 00 44 00 8f 03 8f 04 8f 05 63 04 67 00 63 02 5d 0b 00 00 5c 03 00 00 | |.........D.......c.g.c.]...\... |
| 2ee0 | 7d 03 7d 04 7d 05 7c 04 7c 03 7c 05 66 03 91 02 8c 0d 04 00 63 04 7d 05 7d 04 7d 03 ab 01 00 00 | }.}.}.|.|.|.f.......c.}.}.}..... |
| 2f00 | 00 00 00 00 45 00 64 02 7b 03 00 00 96 02 97 02 86 05 05 00 01 00 79 02 74 17 00 00 00 00 00 00 | ....E.d.{.............y.t....... |
| 2f20 | 00 00 74 11 00 00 00 00 00 00 00 00 7c 00 7c 01 ab 02 00 00 00 00 00 00 44 00 8f 03 8f 04 8f 05 | ..t.........|.|.........D....... |
| 2f40 | 63 04 67 00 63 02 5d 0a 00 00 5c 03 00 00 7d 03 7d 04 7d 05 7c 04 7c 03 66 02 91 02 8c 0c 04 00 | c.g.c.]...\...}.}.}.|.|.f....... |
| 2f60 | 63 04 7d 05 7d 04 7d 03 ab 01 00 00 00 00 00 00 45 00 64 02 7b 03 00 00 96 02 97 02 86 05 05 00 | c.}.}.}.........E.d.{........... |
| 2f80 | 01 00 79 02 74 17 00 00 00 00 00 00 00 00 74 13 00 00 00 00 00 00 00 00 7c 00 7c 01 ab 02 00 00 | ..y.t.........t.........|.|..... |
| 2fa0 | 00 00 00 00 44 00 8f 03 8f 04 63 03 67 00 63 02 5d 09 00 00 5c 02 00 00 7d 03 7d 04 7c 04 7c 03 | ....D.....c.g.c.]...\...}.}.|.|. |
| 2fc0 | 66 02 91 02 8c 0b 04 00 63 03 7d 04 7d 03 ab 01 00 00 00 00 00 00 45 00 64 02 7b 03 00 00 96 02 | f.......c.}.}.........E.d.{..... |
| 2fe0 | 97 02 86 05 05 00 01 00 79 02 37 00 8c d4 63 02 01 00 63 04 7d 05 7d 04 7d 03 77 00 37 00 8c 77 | ........y.7...c...c.}.}.}.w.7..w |
| 3000 | 63 02 01 00 63 04 7d 05 7d 04 7d 03 77 00 37 00 8c 4a 63 02 01 00 63 03 7d 04 7d 03 77 00 37 00 | c...c.}.}.}.w.7..Jc...c.}.}.w.7. |
| 3020 | 8c 1f ad 03 77 01 29 04 61 87 02 00 00 52 65 74 75 72 6e 20 61 6e 20 69 74 65 72 61 74 6f 72 20 | ....w.).a....Return.an.iterator. |
| 3040 | 6f 76 65 72 20 74 68 65 20 65 64 67 65 73 20 6f 66 20 61 6e 20 45 75 6c 65 72 69 61 6e 20 70 61 | over.the.edges.of.an.Eulerian.pa |
| 3060 | 74 68 20 69 6e 20 60 47 60 2e 0a 0a 20 20 20 20 50 61 72 61 6d 65 74 65 72 73 0a 20 20 20 20 2d | th.in.`G`.......Parameters.....- |
| 3080 | 2d 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 47 20 3a 20 4e 65 74 77 6f 72 6b 58 20 47 72 61 70 68 | ---------.....G.:.NetworkX.Graph |
| 30a0 | 0a 20 20 20 20 20 20 20 20 54 68 65 20 67 72 61 70 68 20 69 6e 20 77 68 69 63 68 20 74 6f 20 6c | .........The.graph.in.which.to.l |
| 30c0 | 6f 6f 6b 20 66 6f 72 20 61 6e 20 65 75 6c 65 72 69 61 6e 20 70 61 74 68 2e 0a 20 20 20 20 73 6f | ook.for.an.eulerian.path......so |
| 30e0 | 75 72 63 65 20 3a 20 6e 6f 64 65 20 6f 72 20 4e 6f 6e 65 20 28 64 65 66 61 75 6c 74 3a 20 4e 6f | urce.:.node.or.None.(default:.No |
| 3100 | 6e 65 29 0a 20 20 20 20 20 20 20 20 54 68 65 20 6e 6f 64 65 20 61 74 20 77 68 69 63 68 20 74 6f | ne).........The.node.at.which.to |
| 3120 | 20 73 74 61 72 74 20 74 68 65 20 73 65 61 72 63 68 2e 20 4e 6f 6e 65 20 6d 65 61 6e 73 20 73 65 | .start.the.search..None.means.se |
| 3140 | 61 72 63 68 20 6f 76 65 72 20 61 6c 6c 0a 20 20 20 20 20 20 20 20 73 74 61 72 74 69 6e 67 20 6e | arch.over.all.........starting.n |
| 3160 | 6f 64 65 73 2e 0a 20 20 20 20 6b 65 79 73 20 3a 20 42 6f 6f 6c 20 28 64 65 66 61 75 6c 74 3a 20 | odes......keys.:.Bool.(default:. |
| 3180 | 46 61 6c 73 65 29 0a 20 20 20 20 20 20 20 20 49 6e 64 69 63 61 74 65 73 20 77 68 65 74 68 65 72 | False).........Indicates.whether |
| 31a0 | 20 74 6f 20 79 69 65 6c 64 20 65 64 67 65 20 33 2d 74 75 70 6c 65 73 20 28 75 2c 20 76 2c 20 65 | .to.yield.edge.3-tuples.(u,.v,.e |
| 31c0 | 64 67 65 5f 6b 65 79 29 2e 0a 20 20 20 20 20 20 20 20 54 68 65 20 64 65 66 61 75 6c 74 20 79 69 | dge_key)..........The.default.yi |
| 31e0 | 65 6c 64 73 20 65 64 67 65 20 32 2d 74 75 70 6c 65 73 0a 0a 20 20 20 20 59 69 65 6c 64 73 0a 20 | elds.edge.2-tuples......Yields.. |
| 3200 | 20 20 20 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 45 64 67 65 20 74 75 70 6c 65 73 20 61 6c 6f 6e 67 20 | ...------.....Edge.tuples.along. |
| 3220 | 74 68 65 20 65 75 6c 65 72 69 61 6e 20 70 61 74 68 2e 0a 0a 20 20 20 20 57 61 72 6e 69 6e 67 3a | the.eulerian.path.......Warning: |
| 3240 | 20 49 66 20 60 73 6f 75 72 63 65 60 20 70 72 6f 76 69 64 65 64 20 69 73 20 6e 6f 74 20 74 68 65 | .If.`source`.provided.is.not.the |
| 3260 | 20 73 74 61 72 74 20 6e 6f 64 65 20 6f 66 20 61 6e 20 45 75 6c 65 72 20 70 61 74 68 0a 20 20 20 | .start.node.of.an.Euler.path.... |
| 3280 | 20 77 69 6c 6c 20 72 61 69 73 65 20 65 72 72 6f 72 20 65 76 65 6e 20 69 66 20 61 6e 20 45 75 6c | .will.raise.error.even.if.an.Eul |
| 32a0 | 65 72 20 50 61 74 68 20 65 78 69 73 74 73 2e 0a 20 20 20 20 7a 1c 47 72 61 70 68 20 68 61 73 20 | er.Path.exists......z.Graph.has. |
| 32c0 | 6e 6f 20 45 75 6c 65 72 69 61 6e 20 70 61 74 68 73 2e 4e 46 29 0c 72 0b 00 00 00 72 20 00 00 00 | no.Eulerian.paths.NF).r....r.... |
| 32e0 | 72 44 00 00 00 72 1e 00 00 00 72 45 00 00 00 72 07 00 00 00 72 2c 00 00 00 72 47 00 00 00 72 42 | rD...r....rE...r....r,...rG...rB |
| 3300 | 00 00 00 72 3b 00 00 00 72 46 00 00 00 da 08 72 65 76 65 72 73 65 64 72 48 00 00 00 73 06 00 00 | ...r;...rF.....reversedrH...s... |
| 3320 | 00 20 20 20 20 20 20 72 16 00 00 00 72 0c 00 00 00 72 0c 00 00 00 4e 01 00 00 73 91 01 00 00 e8 | .......r....r....r....N...s..... |
| 3340 | 00 f8 80 00 f4 2c 00 0c 1d 98 51 a0 06 d4 0b 27 dc 0e 10 d7 0e 1e d1 0e 1e d0 1f 3d d3 0e 3e d0 | .....,....Q....'...........=..>. |
| 3360 | 08 3e d8 07 08 87 7d 81 7d 84 7f d8 0c 0d 8f 49 89 49 8b 4b 88 01 d8 0b 11 88 3e 9c 52 9f 5e 99 | .>....}.}......I.I.K......>.R.^. |
| 3380 | 5e a8 41 d3 1d 2e b0 25 d1 1d 37 dc 15 25 a0 61 d3 15 28 88 46 d8 0b 0c 8f 3f 89 3f d4 0b 1c dc | ^.A....%..7..%.a..(.F....?.?.... |
| 33a0 | 1b 37 b8 01 b8 36 d3 1b 42 f2 00 04 0d 1f 91 07 90 01 90 31 90 61 d9 13 17 d8 1a 1b 98 51 a0 01 | .7...6..B..........1.a.......Q.. |
| 33c0 | 98 27 93 4d e0 1a 1b 98 51 98 24 93 4a f1 09 04 0d 1f f4 0c 00 18 35 b0 51 b8 06 d3 17 3f d7 0c | .'.M....Q.$.J.........5.Q....?.. |
| 33e0 | 3f d1 0c 3f e0 0c 0d 8f 46 89 46 8b 48 88 01 d8 0b 11 88 3e dc 15 25 a0 61 d3 15 28 88 46 d8 0b | ?..?....F.F.H......>..%.a..(.F.. |
| 3400 | 0c 8f 3f 89 3f d4 0b 1c d9 0f 13 dc 1b 23 dc 2e 4a c8 31 c8 66 d3 2e 55 d7 14 56 d0 14 56 a1 37 | ..?.?........#..J.1.f..U..V..V.7 |
| 3420 | a0 31 a0 61 a8 11 90 61 98 11 98 41 92 59 d4 14 56 f3 03 02 1c 12 f7 00 02 11 12 f1 00 02 11 12 | .1.a...a...A.Y..V............... |
| 3440 | f4 08 00 1c 24 dc 2b 47 c8 01 c8 36 d3 2b 52 d7 14 53 d0 14 53 a1 07 a0 01 a0 31 a0 61 90 61 98 | ....$.+G...6.+R..S..S.....1.a.a. |
| 3460 | 11 92 56 d4 14 53 f3 03 02 1c 12 f7 00 02 11 12 f1 00 02 11 12 f4 08 00 18 20 dc 24 41 c0 21 c0 | ..V..S.....................$A.!. |
| 3480 | 56 d3 24 4c d7 10 4d 99 44 98 41 98 71 90 21 90 51 92 16 d3 10 4d f3 03 02 18 0e f7 00 02 0d 0e | V.$L..M.D.A.q.!.Q....M.......... |
| 34a0 | f1 00 02 0d 0e f0 1f 00 0d 40 01 fa f4 10 00 15 57 01 f0 03 02 11 12 fa f4 0a 00 15 54 01 f0 03 | .........@......W...........T... |
| 34c0 | 02 11 12 fa f3 0a 00 11 4e 01 f0 03 02 0d 0e fa 73 6d 00 00 00 82 42 2b 46 1e 01 c2 2d 01 46 02 | ........N.......sm....B+F...-.F. |
| 34e0 | 04 c2 2e 41 09 46 1e 01 c3 37 10 46 04 0c c4 07 0c 46 1e 01 c4 13 01 46 0b 04 c4 14 1a 46 1e 01 | ...A.F...7.F.....F.....F.....F.. |
| 3500 | c4 2e 0f 46 0d 0c c4 3d 0c 46 1e 01 c5 09 01 46 14 04 c5 0a 19 46 1e 01 c5 23 0e 46 16 0a c5 31 | ...F...=.F.....F.....F...#.F...1 |
| 3520 | 0b 46 1e 01 c5 3c 01 46 1c 04 c5 3d 06 46 1e 01 c6 04 08 46 1e 01 c6 0d 08 46 1e 01 c6 16 07 46 | .F...<.F...=.F.....F.....F.....F |
| 3540 | 1e 01 da 08 64 69 72 65 63 74 65 64 54 29 01 da 0d 72 65 74 75 72 6e 73 5f 67 72 61 70 68 63 01 | ....directedT)...returns_graphc. |
| 3560 | 00 00 00 00 00 00 00 00 00 00 00 0b 00 00 00 03 00 00 00 f3 ac 03 00 00 97 00 7c 00 6a 01 00 00 | ..........................|.j... |
| 3580 | 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ab 00 00 00 00 00 00 00 64 01 6b 28 00 00 72 15 | ........................d.k(..r. |
| 35a0 | 74 03 00 00 00 00 00 00 00 00 6a 04 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 64 02 | t.........j...................d. |
| 35c0 | ab 01 00 00 00 00 00 00 82 01 74 03 00 00 00 00 00 00 00 00 6a 06 00 00 00 00 00 00 00 00 00 00 | ..........t.........j........... |
| 35e0 | 00 00 00 00 00 00 00 00 7c 00 ab 01 00 00 00 00 00 00 73 15 74 03 00 00 00 00 00 00 00 00 6a 08 | ........|.........s.t.........j. |
| 3600 | 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 64 03 ab 01 00 00 00 00 00 00 82 01 7c 00 | ..................d...........|. |
| 3620 | 6a 0b 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ab 00 00 00 00 00 00 00 44 00 8f 01 | j...........................D... |
| 3640 | 8f 02 63 03 67 00 63 02 5d 10 00 00 5c 02 00 00 7d 01 7d 02 7c 02 64 04 7a 06 00 00 64 05 6b 28 | ..c.g.c.]...\...}.}.|.d.z...d.k( |
| 3660 | 00 00 73 01 8c 0f 7c 01 91 02 8c 12 04 00 7d 03 7d 01 7d 02 74 03 00 00 00 00 00 00 00 00 6a 0c | ..s...|.......}.}.}.t.........j. |
| 3680 | 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 7c 00 ab 01 00 00 00 00 00 00 7d 00 74 0f | ..................|.........}.t. |
| 36a0 | 00 00 00 00 00 00 00 00 7c 03 ab 01 00 00 00 00 00 00 64 01 6b 28 00 00 72 02 7c 00 53 00 74 11 | ........|.........d.k(..r.|.S.t. |
| 36c0 | 00 00 00 00 00 00 00 00 7c 03 64 04 ab 02 00 00 00 00 00 00 44 00 8f 04 8f 01 63 03 67 00 63 02 | ........|.d.........D.....c.g.c. |
| 36e0 | 5d 21 00 00 5c 02 00 00 7d 04 7d 01 7c 04 7c 01 74 03 00 00 00 00 00 00 00 00 6a 12 00 00 00 00 | ]!..\...}.}.|.|.t.........j..... |
| 3700 | 00 00 00 00 00 00 00 00 00 00 00 00 00 00 7c 00 7c 04 7c 01 ac 06 ab 03 00 00 00 00 00 00 69 01 | ..............|.|.|...........i. |
| 3720 | 66 02 91 02 8c 23 04 00 7d 05 7d 04 7d 01 74 0f 00 00 00 00 00 00 00 00 7c 00 ab 01 00 00 00 00 | f....#..}.}.}.t.........|....... |
| 3740 | 00 00 64 05 7a 00 00 00 7d 06 74 03 00 00 00 00 00 00 00 00 6a 14 00 00 00 00 00 00 00 00 00 00 | ..d.z...}.t.........j........... |
| 3760 | 00 00 00 00 00 00 00 00 ab 00 00 00 00 00 00 00 7d 07 7c 05 44 00 5d 44 00 00 5c 02 00 00 7d 01 | ................}.|.D.]D..\...}. |
| 3780 | 7d 08 7c 08 6a 17 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ab 00 00 00 00 00 00 00 | }.|.j........................... |
| 37a0 | 44 00 5d 2c 00 00 5c 02 00 00 7d 04 7d 09 7c 01 7c 04 6b 37 00 00 73 01 8c 0c 7c 07 6a 19 00 00 | D.],..\...}.}.|.|.k7..s...|.j... |
| 37c0 | 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 7c 04 7c 01 7c 06 74 0f 00 00 00 00 00 00 00 00 | ................|.|.|.t......... |
| 37e0 | 7c 09 ab 01 00 00 00 00 00 00 7a 0a 00 00 7c 09 ac 07 ab 04 00 00 00 00 00 00 01 00 8c 2e 04 00 | |.........z...|................. |
| 3800 | 8c 46 04 00 74 03 00 00 00 00 00 00 00 00 6a 14 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 | .F..t.........j................. |
| 3820 | 00 00 74 1b 00 00 00 00 00 00 00 00 74 03 00 00 00 00 00 00 00 00 6a 1c 00 00 00 00 00 00 00 00 | ..t.........t.........j......... |
| 3840 | 00 00 00 00 00 00 00 00 00 00 7c 07 ab 01 00 00 00 00 00 00 ab 01 00 00 00 00 00 00 ab 01 00 00 | ..........|..................... |
| 3860 | 00 00 00 00 7d 0a 7c 0a 6a 1f 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ab 00 00 00 | ....}.|.j....................... |
| 3880 | 00 00 00 00 44 00 5d 3e 00 00 5c 02 00 00 7d 04 7d 01 7c 07 7c 04 19 00 00 00 7c 01 19 00 00 00 | ....D.]>..\...}.}.|.|.....|..... |
| 38a0 | 64 08 19 00 00 00 7d 0b 7c 00 6a 21 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 74 02 | d.....}.|.j!..................t. |
| 38c0 | 00 00 00 00 00 00 00 00 6a 22 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 6a 25 00 00 | ........j"..................j%.. |
| 38e0 | 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 7c 0b ab 01 00 00 00 00 00 00 ab 01 00 00 00 00 | ................|............... |
| 3900 | 00 00 01 00 8c 40 04 00 7c 00 53 00 63 02 01 00 63 03 7d 02 7d 01 77 00 63 02 01 00 63 03 7d 01 | .....@..|.S.c...c.}.}.w.c...c.}. |
| 3920 | 7d 04 77 00 29 09 61 bc 03 00 00 54 72 61 6e 73 66 6f 72 6d 73 20 61 20 67 72 61 70 68 20 69 6e | }.w.).a....Transforms.a.graph.in |
| 3940 | 74 6f 20 61 6e 20 45 75 6c 65 72 69 61 6e 20 67 72 61 70 68 2e 0a 0a 20 20 20 20 49 66 20 60 47 | to.an.Eulerian.graph.......If.`G |
| 3960 | 60 20 69 73 20 45 75 6c 65 72 69 61 6e 20 74 68 65 20 72 65 73 75 6c 74 20 69 73 20 60 47 60 20 | `.is.Eulerian.the.result.is.`G`. |
| 3980 | 61 73 20 61 20 4d 75 6c 74 69 47 72 61 70 68 2c 20 6f 74 68 65 72 77 69 73 65 20 74 68 65 20 72 | as.a.MultiGraph,.otherwise.the.r |
| 39a0 | 65 73 75 6c 74 20 69 73 20 61 20 73 6d 61 6c 6c 65 73 74 0a 20 20 20 20 28 69 6e 20 74 65 72 6d | esult.is.a.smallest.....(in.term |
| 39c0 | 73 20 6f 66 20 74 68 65 20 6e 75 6d 62 65 72 20 6f 66 20 65 64 67 65 73 29 20 6d 75 6c 74 69 67 | s.of.the.number.of.edges).multig |
| 39e0 | 72 61 70 68 20 77 68 6f 73 65 20 75 6e 64 65 72 6c 79 69 6e 67 20 73 69 6d 70 6c 65 20 67 72 61 | raph.whose.underlying.simple.gra |
| 3a00 | 70 68 20 69 73 20 60 47 60 2e 0a 0a 20 20 20 20 50 61 72 61 6d 65 74 65 72 73 0a 20 20 20 20 2d | ph.is.`G`.......Parameters.....- |
| 3a20 | 2d 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 47 20 3a 20 4e 65 74 77 6f 72 6b 58 20 67 72 61 70 68 | ---------.....G.:.NetworkX.graph |
| 3a40 | 0a 20 20 20 20 20 20 20 41 6e 20 75 6e 64 69 72 65 63 74 65 64 20 67 72 61 70 68 0a 0a 20 20 20 | ........An.undirected.graph..... |
| 3a60 | 20 52 65 74 75 72 6e 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 47 20 3a 20 4e 65 74 | .Returns.....-------.....G.:.Net |
| 3a80 | 77 6f 72 6b 58 20 6d 75 6c 74 69 67 72 61 70 68 0a 0a 20 20 20 20 52 61 69 73 65 73 0a 20 20 20 | workX.multigraph......Raises.... |
| 3aa0 | 20 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 4e 65 74 77 6f 72 6b 58 45 72 72 6f 72 0a 20 20 20 20 20 20 | .------.....NetworkXError....... |
| 3ac0 | 20 49 66 20 74 68 65 20 67 72 61 70 68 20 69 73 20 6e 6f 74 20 63 6f 6e 6e 65 63 74 65 64 2e 0a | .If.the.graph.is.not.connected.. |
| 3ae0 | 0a 20 20 20 20 53 65 65 20 41 6c 73 6f 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 69 | .....See.Also.....--------.....i |
| 3b00 | 73 5f 65 75 6c 65 72 69 61 6e 0a 20 20 20 20 65 75 6c 65 72 69 61 6e 5f 63 69 72 63 75 69 74 0a | s_eulerian.....eulerian_circuit. |
| 3b20 | 0a 20 20 20 20 52 65 66 65 72 65 6e 63 65 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 | .....References.....----------.. |
| 3b40 | 20 20 20 2e 2e 20 5b 31 5d 20 4a 2e 20 45 64 6d 6f 6e 64 73 2c 20 45 2e 20 4c 2e 20 4a 6f 68 6e | ......[1].J..Edmonds,.E..L..John |
| 3b60 | 73 6f 6e 2e 0a 20 20 20 20 20 20 20 4d 61 74 63 68 69 6e 67 2c 20 45 75 6c 65 72 20 74 6f 75 72 | son.........Matching,.Euler.tour |
| 3b80 | 73 20 61 6e 64 20 74 68 65 20 43 68 69 6e 65 73 65 20 70 6f 73 74 6d 61 6e 2e 0a 20 20 20 20 20 | s.and.the.Chinese.postman....... |
| 3ba0 | 20 20 4d 61 74 68 65 6d 61 74 69 63 61 6c 20 70 72 6f 67 72 61 6d 6d 69 6e 67 2c 20 56 6f 6c 75 | ..Mathematical.programming,.Volu |
| 3bc0 | 6d 65 20 35 2c 20 49 73 73 75 65 20 31 20 28 31 39 37 33 29 2c 20 31 31 31 2d 31 31 34 2e 0a 20 | me.5,.Issue.1.(1973),.111-114... |
| 3be0 | 20 20 20 2e 2e 20 5b 32 5d 20 68 74 74 70 73 3a 2f 2f 65 6e 2e 77 69 6b 69 70 65 64 69 61 2e 6f | ......[2].https://en.wikipedia.o |
| 3c00 | 72 67 2f 77 69 6b 69 2f 45 75 6c 65 72 69 61 6e 5f 70 61 74 68 0a 20 20 20 20 2e 2e 20 5b 33 5d | rg/wiki/Eulerian_path........[3] |
| 3c20 | 20 68 74 74 70 3a 2f 2f 77 65 62 2e 6d 61 74 68 2e 70 72 69 6e 63 65 74 6f 6e 2e 65 64 75 2f 6d | .http://web.math.princeton.edu/m |
| 3c40 | 61 74 68 5f 61 6c 69 76 65 2f 35 2f 4e 6f 74 65 73 31 2e 70 64 66 0a 0a 20 20 20 20 45 78 61 6d | ath_alive/5/Notes1.pdf......Exam |
| 3c60 | 70 6c 65 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 20 20 20 20 3e 3e 3e 20 47 20 | ples.....--------.........>>>.G. |
| 3c80 | 3d 20 6e 78 2e 63 6f 6d 70 6c 65 74 65 5f 67 72 61 70 68 28 31 30 29 0a 20 20 20 20 20 20 20 20 | =.nx.complete_graph(10)......... |
| 3ca0 | 3e 3e 3e 20 48 20 3d 20 6e 78 2e 65 75 6c 65 72 69 7a 65 28 47 29 0a 20 20 20 20 20 20 20 20 3e | >>>.H.=.nx.eulerize(G).........> |
| 3cc0 | 3e 3e 20 6e 78 2e 69 73 5f 65 75 6c 65 72 69 61 6e 28 48 29 0a 20 20 20 20 20 20 20 20 54 72 75 | >>.nx.is_eulerian(H).........Tru |
| 3ce0 | 65 0a 0a 20 20 20 20 72 02 00 00 00 7a 1a 43 61 6e 6e 6f 74 20 45 75 6c 65 72 69 7a 65 20 6e 75 | e......r....z.Cannot.Eulerize.nu |
| 3d00 | 6c 6c 20 67 72 61 70 68 7a 12 47 20 69 73 20 6e 6f 74 20 63 6f 6e 6e 65 63 74 65 64 72 04 00 00 | ll.graphz.G.is.not.connectedr... |
| 3d20 | 00 72 4c 00 00 00 29 02 72 35 00 00 00 da 06 74 61 72 67 65 74 29 02 da 06 77 65 69 67 68 74 da | .rL...).r5.....target)...weight. |
| 3d40 | 04 70 61 74 68 72 5b 00 00 00 29 13 da 05 6f 72 64 65 72 72 20 00 00 00 da 18 4e 65 74 77 6f 72 | .pathr[...)...orderr......Networ |
| 3d60 | 6b 58 50 6f 69 6e 74 6c 65 73 73 43 6f 6e 63 65 70 74 72 23 00 00 00 72 44 00 00 00 72 22 00 00 | kXPointlessConceptr#...rD...r".. |
| 3d80 | 00 da 0a 4d 75 6c 74 69 47 72 61 70 68 da 03 6c 65 6e 72 03 00 00 00 da 0d 73 68 6f 72 74 65 73 | ...MultiGraph..lenr......shortes |
| 3da0 | 74 5f 70 61 74 68 da 05 47 72 61 70 68 da 05 69 74 65 6d 73 da 08 61 64 64 5f 65 64 67 65 da 04 | t_path..Graph..items..add_edge.. |
| 3dc0 | 6c 69 73 74 da 13 6d 61 78 5f 77 65 69 67 68 74 5f 6d 61 74 63 68 69 6e 67 72 31 00 00 00 da 0e | list..max_weight_matchingr1..... |
| 3de0 | 61 64 64 5f 65 64 67 65 73 5f 66 72 6f 6d da 05 75 74 69 6c 73 da 08 70 61 69 72 77 69 73 65 29 | add_edges_from..utils..pairwise) |
| 3e00 | 0c 72 15 00 00 00 72 14 00 00 00 72 1c 00 00 00 da 10 6f 64 64 5f 64 65 67 72 65 65 5f 6e 6f 64 | .r....r....r......odd_degree_nod |
| 3e20 | 65 73 da 01 6d da 13 6f 64 64 5f 64 65 67 5f 70 61 69 72 73 5f 70 61 74 68 73 da 1e 75 70 70 65 | es..m..odd_deg_pairs_paths..uppe |
| 3e40 | 72 5f 62 6f 75 6e 64 5f 6f 6e 5f 6d 61 78 5f 70 61 74 68 5f 6c 65 6e 67 74 68 da 02 47 70 da 02 | r_bound_on_max_path_length..Gp.. |
| 3e60 | 50 73 da 01 50 da 0d 62 65 73 74 5f 6d 61 74 63 68 69 6e 67 72 5b 00 00 00 73 0c 00 00 00 20 20 | Ps..P..best_matchingr[...s...... |
| 3e80 | 20 20 20 20 20 20 20 20 20 20 72 16 00 00 00 72 09 00 00 00 72 09 00 00 00 85 01 00 00 73 c4 01 | ..........r....r....r........s.. |
| 3ea0 | 00 00 80 00 f0 56 01 00 08 09 87 77 81 77 83 79 90 41 82 7e dc 0e 10 d7 0e 29 d1 0e 29 d0 2a 46 | .....V.....w.w.y.A.~.....)..).*F |
| 3ec0 | d3 0e 47 d0 08 47 dc 0b 0d 8f 3f 89 3f 98 31 d4 0b 1d dc 0e 10 d7 0e 1e d1 0e 1e d0 1f 33 d3 0e | ..G..G....?.?.1..............3.. |
| 3ee0 | 34 d0 08 34 d8 26 27 a7 68 a1 68 a3 6a d7 17 3f 99 64 98 61 a0 11 b0 41 b8 01 b1 45 b8 51 b3 4a | 4..4.&'.h.h.j..?.d.a...A...E.Q.J |
| 3f00 | 9a 01 d0 17 3f d0 04 14 d1 17 3f dc 08 0a 8f 0d 89 0d 90 61 d3 08 18 80 41 dc 07 0a d0 0b 1b d3 | ....?.....?........a....A....... |
| 3f20 | 07 1c a0 01 d2 07 21 d8 0f 10 88 08 f4 0a 00 15 21 d0 21 31 b0 31 d3 14 35 f7 05 03 1b 06 e1 0c | ......!.........!.!1.1..5....... |
| 3f40 | 10 88 41 88 71 f0 03 00 0a 0b 88 51 94 02 d7 10 20 d1 10 20 a0 11 a8 31 b0 51 d4 10 37 d0 0c 38 | ..A.q......Q...........1.Q..7..8 |
| 3f60 | d2 08 39 f0 03 03 1b 06 d0 04 17 f1 00 03 1b 06 f4 0e 00 26 29 a8 11 a3 56 a8 61 a1 5a d0 04 22 | ..9................&)...V.a.Z.." |
| 3f80 | f4 0c 00 0a 0c 8f 18 89 18 8b 1a 80 42 d8 11 24 f2 00 05 05 12 89 05 88 01 88 32 d8 14 16 97 48 | ............B..$..........2....H |
| 3fa0 | 91 48 93 4a f2 00 04 09 12 89 44 88 41 88 71 d8 0f 10 90 41 8b 76 d8 10 12 97 0b 91 0b d8 14 15 | .H.J......D.A.q....A.v.......... |
| 3fc0 | 90 71 d0 21 3f c4 23 c0 61 c3 26 d1 21 48 c8 71 f0 03 00 11 1c f5 00 02 11 12 f1 05 04 09 12 f0 | .q.!?.#.a.&.!H.q................ |
| 3fe0 | 03 05 05 12 f4 10 00 15 17 97 48 91 48 9c 54 a4 22 d7 22 38 d1 22 38 b8 12 d3 22 3c d3 1d 3d d3 | ..........H.H.T."."8."8..."<..=. |
| 4000 | 14 3e 80 4d f0 06 00 11 1e d7 10 23 d1 10 23 d3 10 25 f2 00 02 05 32 89 04 88 01 88 31 d8 0f 11 | .>.M.......#..#..%....2.....1... |
| 4020 | 90 21 89 75 90 51 89 78 98 06 d1 0f 1f 88 04 d8 08 09 d7 08 18 d1 08 18 9c 12 9f 18 99 18 d7 19 | .!.u.Q.x........................ |
| 4040 | 2a d1 19 2a a8 34 d3 19 30 d5 08 31 f0 05 02 05 32 f0 06 00 0c 0d 80 48 f9 f3 45 01 00 18 40 01 | *..*.4..0..1....2......H..E...@. |
| 4060 | f9 f3 0c 03 1b 06 73 12 00 00 00 c1 26 10 47 0a 06 c1 37 04 47 0a 06 c2 32 26 47 10 06 29 02 4e | ......s.....&.G...7.G...2&G..).N |
| 4080 | 46 72 0f 00 00 00 29 13 da 07 5f 5f 64 6f 63 5f 5f da 09 69 74 65 72 74 6f 6f 6c 73 72 03 00 00 | Fr....)...__doc__..itertoolsr... |
| 40a0 | 00 da 08 6e 65 74 77 6f 72 6b 78 72 20 00 00 00 72 67 00 00 00 72 05 00 00 00 72 06 00 00 00 da | ...networkxr....rg...r....r..... |
| 40c0 | 07 5f 5f 61 6c 6c 5f 5f da 0d 5f 64 69 73 70 61 74 63 68 61 62 6c 65 72 07 00 00 00 72 0a 00 00 | .__all__.._dispatchabler....r... |
| 40e0 | 00 72 2c 00 00 00 72 3b 00 00 00 72 42 00 00 00 72 08 00 00 00 72 0b 00 00 00 72 0c 00 00 00 72 | .r,...r;...rB...r....r....r....r |
| 4100 | 09 00 00 00 72 19 00 00 00 72 25 00 00 00 72 16 00 00 00 fa 08 3c 6d 6f 64 75 6c 65 3e 72 76 00 | ....r....r%...r......<module>rv. |
| 4120 | 00 00 01 00 00 00 73 ea 00 00 00 f0 03 01 01 01 f1 02 02 01 04 f5 08 00 01 23 e3 00 15 e7 00 3a | ......s..................#.....: |
| 4140 | f2 04 07 0b 02 80 07 f0 14 00 02 04 d7 01 11 d1 01 11 f1 02 30 01 49 01 f3 03 00 02 12 f0 02 30 | ....................0.I........0 |
| 4160 | 01 49 01 f0 66 01 00 02 04 d7 01 11 d1 01 11 f1 02 0a 01 37 f3 03 00 02 12 f0 02 0a 01 37 f2 1a | .I..f..............7.........7.. |
| 4180 | 16 01 15 f2 32 13 01 37 f2 2c 15 01 41 01 f0 30 00 02 04 d7 01 11 d1 01 11 f2 02 4d 01 01 3c f3 | ....2..7.,..A..0...........M..<. |
| 41a0 | 03 00 02 12 f0 02 4d 01 01 3c f0 60 02 00 02 04 d7 01 11 d1 01 11 f2 02 5b 01 01 52 01 f3 03 00 | ......M..<.`............[..R.... |
| 41c0 | 02 12 f0 02 5b 01 01 52 01 f0 7c 02 00 02 04 d7 01 11 d1 01 11 f2 02 33 01 0e f3 03 00 02 12 f0 | ....[..R..|............3........ |
| 41e0 | 02 33 01 0e f1 6c 01 00 02 15 90 5a d3 01 20 d8 01 11 80 12 d7 01 11 d1 01 11 a0 04 d4 01 25 f1 | .3...l.....Z..................%. |
| 4200 | 02 4f 01 01 0d f3 03 00 02 26 f3 03 00 02 21 f1 04 4f 01 01 0d 72 25 00 00 00 | .O.......&....!..O...r%... |