| ofs | hex dump | ascii |
|---|
| 0000 | cb 0d 0d 0a 00 00 00 00 85 fa a7 68 1c 13 00 00 e3 00 00 00 00 00 00 00 00 00 00 00 00 05 00 00 | ...........h.................... |
| 0020 | 00 00 00 00 00 f3 86 00 00 00 97 00 64 00 5a 00 64 01 64 02 6c 01 6d 02 5a 02 01 00 64 01 64 03 | ............d.Z.d.d.l.m.Z...d.d. |
| 0040 | 6c 03 5a 04 64 01 64 04 6c 05 6d 06 5a 06 01 00 64 05 67 01 5a 07 02 00 65 06 64 06 ab 01 00 00 | l.Z.d.d.l.m.Z...d.g.Z...e.d..... |
| 0060 | 00 00 00 00 02 00 65 06 64 07 ab 01 00 00 00 00 00 00 65 04 6a 10 00 00 00 00 00 00 00 00 00 00 | ......e.d.........e.j........... |
| 0080 | 00 00 00 00 00 00 00 00 64 0a 64 08 84 01 ab 00 00 00 00 00 00 00 ab 00 00 00 00 00 00 00 ab 00 | ........d.d..................... |
| 00a0 | 00 00 00 00 00 00 5a 09 64 09 84 00 5a 0a 79 03 29 0b 7a 2f 46 75 6e 63 74 69 6f 6e 73 20 66 6f | ......Z.d...Z.y.).z/Functions.fo |
| 00c0 | 72 20 63 6f 6d 70 75 74 69 6e 67 20 72 69 63 68 2d 63 6c 75 62 20 63 6f 65 66 66 69 63 69 65 6e | r.computing.rich-club.coefficien |
| 00e0 | 74 73 2e e9 00 00 00 00 29 01 da 0a 61 63 63 75 6d 75 6c 61 74 65 4e 29 01 da 13 6e 6f 74 5f 69 | ts......)...accumulateN)...not_i |
| 0100 | 6d 70 6c 65 6d 65 6e 74 65 64 5f 66 6f 72 da 15 72 69 63 68 5f 63 6c 75 62 5f 63 6f 65 66 66 69 | mplemented_for..rich_club_coeffi |
| 0120 | 63 69 65 6e 74 da 08 64 69 72 65 63 74 65 64 da 0a 6d 75 6c 74 69 67 72 61 70 68 63 04 00 00 00 | cient..directed..multigraphc.... |
| 0140 | 00 00 00 00 00 00 00 00 08 00 00 00 03 00 00 00 f3 5e 01 00 00 97 00 74 01 00 00 00 00 00 00 00 | .................^.....t........ |
| 0160 | 00 6a 02 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 7c 00 ab 01 00 00 00 00 00 00 64 | .j...................|.........d |
| 0180 | 01 6b 44 00 00 72 0b 74 05 00 00 00 00 00 00 00 00 64 02 ab 01 00 00 00 00 00 00 82 01 74 07 00 | .kD..r.t.........d...........t.. |
| 01a0 | 00 00 00 00 00 00 00 7c 00 ab 01 00 00 00 00 00 00 7d 04 7c 01 72 76 7c 00 6a 09 00 00 00 00 00 | .......|.........}.|.rv|.j...... |
| 01c0 | 00 00 00 00 00 00 00 00 00 00 00 00 00 ab 00 00 00 00 00 00 00 7d 05 7c 05 6a 0b 00 00 00 00 00 | .....................}.|.j...... |
| 01e0 | 00 00 00 00 00 00 00 00 00 00 00 00 00 ab 00 00 00 00 00 00 00 7d 06 74 01 00 00 00 00 00 00 00 | .....................}.t........ |
| 0200 | 00 6a 0c 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 7c 05 7c 02 7c 06 7a 05 00 00 7c | .j...................|.|.|.z...| |
| 0220 | 02 7c 06 7a 05 00 00 64 03 7a 05 00 00 7c 03 ac 04 ab 04 00 00 00 00 00 00 01 00 74 07 00 00 00 | .|.z...d.z...|.............t.... |
| 0240 | 00 00 00 00 00 7c 05 ab 01 00 00 00 00 00 00 7d 07 7c 04 6a 0f 00 00 00 00 00 00 00 00 00 00 00 | .....|.........}.|.j............ |
| 0260 | 00 00 00 00 00 00 00 ab 00 00 00 00 00 00 00 44 00 8f 08 8f 09 63 03 69 00 63 02 5d 0e 00 00 5c | ...............D.....c.i.c.]...\ |
| 0280 | 02 00 00 7d 08 7d 09 7c 08 7c 09 7c 07 7c 08 19 00 00 00 7a 0b 00 00 93 02 8c 10 04 00 7d 04 7d | ...}.}.|.|.|.|.....z.........}.} |
| 02a0 | 08 7d 09 7c 04 53 00 63 02 01 00 63 03 7d 09 7d 08 77 00 29 05 75 bf 0a 00 00 52 65 74 75 72 6e | .}.|.S.c...c.}.}.w.).u....Return |
| 02c0 | 73 20 74 68 65 20 72 69 63 68 2d 63 6c 75 62 20 63 6f 65 66 66 69 63 69 65 6e 74 20 6f 66 20 74 | s.the.rich-club.coefficient.of.t |
| 02e0 | 68 65 20 67 72 61 70 68 20 60 47 60 2e 0a 0a 20 20 20 20 46 6f 72 20 65 61 63 68 20 64 65 67 72 | he.graph.`G`.......For.each.degr |
| 0300 | 65 65 20 2a 6b 2a 2c 20 74 68 65 20 2a 72 69 63 68 2d 63 6c 75 62 20 63 6f 65 66 66 69 63 69 65 | ee.*k*,.the.*rich-club.coefficie |
| 0320 | 6e 74 2a 20 69 73 20 74 68 65 20 72 61 74 69 6f 20 6f 66 20 74 68 65 0a 20 20 20 20 6e 75 6d 62 | nt*.is.the.ratio.of.the.....numb |
| 0340 | 65 72 20 6f 66 20 61 63 74 75 61 6c 20 74 6f 20 74 68 65 20 6e 75 6d 62 65 72 20 6f 66 20 70 6f | er.of.actual.to.the.number.of.po |
| 0360 | 74 65 6e 74 69 61 6c 20 65 64 67 65 73 20 66 6f 72 20 6e 6f 64 65 73 20 77 69 74 68 0a 20 20 20 | tential.edges.for.nodes.with.... |
| 0380 | 20 64 65 67 72 65 65 20 67 72 65 61 74 65 72 20 74 68 61 6e 20 2a 6b 2a 3a 0a 0a 20 20 20 20 2e | .degree.greater.than.*k*:....... |
| 03a0 | 2e 20 6d 61 74 68 3a 3a 0a 0a 20 20 20 20 20 20 20 20 5c 70 68 69 28 6b 29 20 3d 20 5c 66 72 61 | ..math::..........\phi(k).=.\fra |
| 03c0 | 63 7b 32 20 45 5f 6b 7d 7b 4e 5f 6b 20 28 4e 5f 6b 20 2d 20 31 29 7d 0a 0a 20 20 20 20 77 68 65 | c{2.E_k}{N_k.(N_k.-.1)}......whe |
| 03e0 | 72 65 20 60 4e 5f 6b 60 20 69 73 20 74 68 65 20 6e 75 6d 62 65 72 20 6f 66 20 6e 6f 64 65 73 20 | re.`N_k`.is.the.number.of.nodes. |
| 0400 | 77 69 74 68 20 64 65 67 72 65 65 20 6c 61 72 67 65 72 20 74 68 61 6e 20 2a 6b 2a 2c 20 61 6e 64 | with.degree.larger.than.*k*,.and |
| 0420 | 0a 20 20 20 20 60 45 5f 6b 60 20 69 73 20 74 68 65 20 6e 75 6d 62 65 72 20 6f 66 20 65 64 67 65 | .....`E_k`.is.the.number.of.edge |
| 0440 | 73 20 61 6d 6f 6e 67 20 74 68 6f 73 65 20 6e 6f 64 65 73 2e 0a 0a 20 20 20 20 50 61 72 61 6d 65 | s.among.those.nodes.......Parame |
| 0460 | 74 65 72 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 47 20 3a 20 4e 65 74 77 | ters.....----------.....G.:.Netw |
| 0480 | 6f 72 6b 58 20 67 72 61 70 68 0a 20 20 20 20 20 20 20 20 55 6e 64 69 72 65 63 74 65 64 20 67 72 | orkX.graph.........Undirected.gr |
| 04a0 | 61 70 68 20 77 69 74 68 20 6e 65 69 74 68 65 72 20 70 61 72 61 6c 6c 65 6c 20 65 64 67 65 73 20 | aph.with.neither.parallel.edges. |
| 04c0 | 6e 6f 72 20 73 65 6c 66 2d 6c 6f 6f 70 73 2e 0a 20 20 20 20 6e 6f 72 6d 61 6c 69 7a 65 64 20 3a | nor.self-loops......normalized.: |
| 04e0 | 20 62 6f 6f 6c 20 28 6f 70 74 69 6f 6e 61 6c 29 0a 20 20 20 20 20 20 20 20 4e 6f 72 6d 61 6c 69 | .bool.(optional).........Normali |
| 0500 | 7a 65 20 75 73 69 6e 67 20 72 61 6e 64 6f 6d 69 7a 65 64 20 6e 65 74 77 6f 72 6b 20 61 73 20 69 | ze.using.randomized.network.as.i |
| 0520 | 6e 20 5b 31 5d 5f 0a 20 20 20 20 51 20 3a 20 66 6c 6f 61 74 20 28 6f 70 74 69 6f 6e 61 6c 2c 20 | n.[1]_.....Q.:.float.(optional,. |
| 0540 | 64 65 66 61 75 6c 74 3d 31 30 30 29 0a 20 20 20 20 20 20 20 20 49 66 20 60 6e 6f 72 6d 61 6c 69 | default=100).........If.`normali |
| 0560 | 7a 65 64 60 20 69 73 20 54 72 75 65 2c 20 70 65 72 66 6f 72 6d 20 60 51 20 2a 20 6d 60 20 64 6f | zed`.is.True,.perform.`Q.*.m`.do |
| 0580 | 75 62 6c 65 2d 65 64 67 65 0a 20 20 20 20 20 20 20 20 73 77 61 70 73 2c 20 77 68 65 72 65 20 60 | uble-edge.........swaps,.where.` |
| 05a0 | 6d 60 20 69 73 20 74 68 65 20 6e 75 6d 62 65 72 20 6f 66 20 65 64 67 65 73 20 69 6e 20 60 47 60 | m`.is.the.number.of.edges.in.`G` |
| 05c0 | 2c 20 74 6f 20 75 73 65 20 61 73 20 61 0a 20 20 20 20 20 20 20 20 6e 75 6c 6c 2d 6d 6f 64 65 6c | ,.to.use.as.a.........null-model |
| 05e0 | 20 66 6f 72 20 6e 6f 72 6d 61 6c 69 7a 61 74 69 6f 6e 2e 0a 20 20 20 20 73 65 65 64 20 3a 20 69 | .for.normalization......seed.:.i |
| 0600 | 6e 74 65 67 65 72 2c 20 72 61 6e 64 6f 6d 5f 73 74 61 74 65 2c 20 6f 72 20 4e 6f 6e 65 20 28 64 | nteger,.random_state,.or.None.(d |
| 0620 | 65 66 61 75 6c 74 29 0a 20 20 20 20 20 20 20 20 49 6e 64 69 63 61 74 6f 72 20 6f 66 20 72 61 6e | efault).........Indicator.of.ran |
| 0640 | 64 6f 6d 20 6e 75 6d 62 65 72 20 67 65 6e 65 72 61 74 69 6f 6e 20 73 74 61 74 65 2e 0a 20 20 20 | dom.number.generation.state..... |
| 0660 | 20 20 20 20 20 53 65 65 20 3a 72 65 66 3a 60 52 61 6e 64 6f 6d 6e 65 73 73 3c 72 61 6e 64 6f 6d | .....See.:ref:`Randomness<random |
| 0680 | 6e 65 73 73 3e 60 2e 0a 0a 20 20 20 20 52 65 74 75 72 6e 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d | ness>`.......Returns.....------- |
| 06a0 | 0a 20 20 20 20 72 63 20 3a 20 64 69 63 74 69 6f 6e 61 72 79 0a 20 20 20 20 20 20 20 41 20 64 69 | .....rc.:.dictionary........A.di |
| 06c0 | 63 74 69 6f 6e 61 72 79 2c 20 6b 65 79 65 64 20 62 79 20 64 65 67 72 65 65 2c 20 77 69 74 68 20 | ctionary,.keyed.by.degree,.with. |
| 06e0 | 72 69 63 68 2d 63 6c 75 62 20 63 6f 65 66 66 69 63 69 65 6e 74 20 76 61 6c 75 65 73 2e 0a 0a 20 | rich-club.coefficient.values.... |
| 0700 | 20 20 20 52 61 69 73 65 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 4e 65 74 77 6f 72 6b | ...Raises.....------.....Network |
| 0720 | 58 45 72 72 6f 72 0a 20 20 20 20 20 20 20 20 49 66 20 60 47 60 20 68 61 73 20 66 65 77 65 72 20 | XError.........If.`G`.has.fewer. |
| 0740 | 74 68 61 6e 20 66 6f 75 72 20 6e 6f 64 65 73 20 61 6e 64 20 60 60 6e 6f 72 6d 61 6c 69 7a 65 64 | than.four.nodes.and.``normalized |
| 0760 | 3d 54 72 75 65 60 60 2e 0a 20 20 20 20 20 20 20 20 41 20 72 61 6e 64 6f 6d 6c 79 20 73 61 6d 70 | =True``..........A.randomly.samp |
| 0780 | 6c 65 64 20 67 72 61 70 68 20 66 6f 72 20 6e 6f 72 6d 61 6c 69 7a 61 74 69 6f 6e 20 63 61 6e 6e | led.graph.for.normalization.cann |
| 07a0 | 6f 74 20 62 65 20 67 65 6e 65 72 61 74 65 64 20 69 6e 20 74 68 69 73 20 63 61 73 65 2e 0a 0a 20 | ot.be.generated.in.this.case.... |
| 07c0 | 20 20 20 45 78 61 6d 70 6c 65 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 3e 3e 3e | ...Examples.....--------.....>>> |
| 07e0 | 20 47 20 3d 20 6e 78 2e 47 72 61 70 68 28 5b 28 30 2c 20 31 29 2c 20 28 30 2c 20 32 29 2c 20 28 | .G.=.nx.Graph([(0,.1),.(0,.2),.( |
| 0800 | 31 2c 20 32 29 2c 20 28 31 2c 20 33 29 2c 20 28 31 2c 20 34 29 2c 20 28 34 2c 20 35 29 5d 29 0a | 1,.2),.(1,.3),.(1,.4),.(4,.5)]). |
| 0820 | 20 20 20 20 3e 3e 3e 20 72 63 20 3d 20 6e 78 2e 72 69 63 68 5f 63 6c 75 62 5f 63 6f 65 66 66 69 | ....>>>.rc.=.nx.rich_club_coeffi |
| 0840 | 63 69 65 6e 74 28 47 2c 20 6e 6f 72 6d 61 6c 69 7a 65 64 3d 46 61 6c 73 65 2c 20 73 65 65 64 3d | cient(G,.normalized=False,.seed= |
| 0860 | 34 32 29 0a 20 20 20 20 3e 3e 3e 20 72 63 5b 30 5d 0a 20 20 20 20 30 2e 34 0a 0a 20 20 20 20 4e | 42).....>>>.rc[0].....0.4......N |
| 0880 | 6f 74 65 73 0a 20 20 20 20 2d 2d 2d 2d 2d 0a 20 20 20 20 54 68 65 20 72 69 63 68 20 63 6c 75 62 | otes.....-----.....The.rich.club |
| 08a0 | 20 64 65 66 69 6e 69 74 69 6f 6e 20 61 6e 64 20 61 6c 67 6f 72 69 74 68 6d 20 61 72 65 20 66 6f | .definition.and.algorithm.are.fo |
| 08c0 | 75 6e 64 20 69 6e 20 5b 31 5d 5f 2e 20 20 54 68 69 73 0a 20 20 20 20 61 6c 67 6f 72 69 74 68 6d | und.in.[1]_...This.....algorithm |
| 08e0 | 20 69 67 6e 6f 72 65 73 20 61 6e 79 20 65 64 67 65 20 77 65 69 67 68 74 73 20 61 6e 64 20 69 73 | .ignores.any.edge.weights.and.is |
| 0900 | 20 6e 6f 74 20 64 65 66 69 6e 65 64 20 66 6f 72 20 64 69 72 65 63 74 65 64 0a 20 20 20 20 67 72 | .not.defined.for.directed.....gr |
| 0920 | 61 70 68 73 20 6f 72 20 67 72 61 70 68 73 20 77 69 74 68 20 70 61 72 61 6c 6c 65 6c 20 65 64 67 | aphs.or.graphs.with.parallel.edg |
| 0940 | 65 73 20 6f 72 20 73 65 6c 66 20 6c 6f 6f 70 73 2e 0a 0a 20 20 20 20 4e 6f 72 6d 61 6c 69 7a 61 | es.or.self.loops.......Normaliza |
| 0960 | 74 69 6f 6e 20 69 73 20 64 6f 6e 65 20 62 79 20 63 6f 6d 70 75 74 69 6e 67 20 74 68 65 20 72 69 | tion.is.done.by.computing.the.ri |
| 0980 | 63 68 20 63 6c 75 62 20 63 6f 65 66 66 69 63 69 65 6e 74 20 66 6f 72 20 61 20 72 61 6e 64 6f 6d | ch.club.coefficient.for.a.random |
| 09a0 | 6c 79 0a 20 20 20 20 73 61 6d 70 6c 65 64 20 67 72 61 70 68 20 77 69 74 68 20 74 68 65 20 73 61 | ly.....sampled.graph.with.the.sa |
| 09c0 | 6d 65 20 64 65 67 72 65 65 20 64 69 73 74 72 69 62 75 74 69 6f 6e 20 61 73 20 60 47 60 20 62 79 | me.degree.distribution.as.`G`.by |
| 09e0 | 0a 20 20 20 20 72 65 70 65 61 74 65 64 6c 79 20 73 77 61 70 70 69 6e 67 20 74 68 65 20 65 6e 64 | .....repeatedly.swapping.the.end |
| 0a00 | 70 6f 69 6e 74 73 20 6f 66 20 65 78 69 73 74 69 6e 67 20 65 64 67 65 73 2e 20 46 6f 72 20 67 72 | points.of.existing.edges..For.gr |
| 0a20 | 61 70 68 73 20 77 69 74 68 20 66 65 77 65 72 20 74 68 61 6e 20 34 0a 20 20 20 20 6e 6f 64 65 73 | aphs.with.fewer.than.4.....nodes |
| 0a40 | 2c 20 69 74 20 69 73 20 6e 6f 74 20 70 6f 73 73 69 62 6c 65 20 74 6f 20 67 65 6e 65 72 61 74 65 | ,.it.is.not.possible.to.generate |
| 0a60 | 20 61 20 72 61 6e 64 6f 6d 20 67 72 61 70 68 20 77 69 74 68 20 61 20 70 72 65 73 63 72 69 62 65 | .a.random.graph.with.a.prescribe |
| 0a80 | 64 0a 20 20 20 20 64 65 67 72 65 65 20 64 69 73 74 72 69 62 75 74 69 6f 6e 2c 20 61 73 20 74 68 | d.....degree.distribution,.as.th |
| 0aa0 | 65 20 64 65 67 72 65 65 20 64 69 73 74 72 69 62 75 74 69 6f 6e 20 66 75 6c 6c 79 20 64 65 74 65 | e.degree.distribution.fully.dete |
| 0ac0 | 72 6d 69 6e 65 73 20 74 68 65 20 67 72 61 70 68 0a 20 20 20 20 28 68 65 6e 63 65 20 6d 61 6b 69 | rmines.the.graph.....(hence.maki |
| 0ae0 | 6e 67 20 74 68 65 20 63 6f 65 66 66 69 63 69 65 6e 74 73 20 74 72 69 76 69 61 6c 6c 79 20 6e 6f | ng.the.coefficients.trivially.no |
| 0b00 | 72 6d 61 6c 69 7a 65 64 20 74 6f 20 31 29 2e 0a 20 20 20 20 54 68 69 73 20 66 75 6e 63 74 69 6f | rmalized.to.1)......This.functio |
| 0b20 | 6e 20 72 61 69 73 65 73 20 61 6e 20 65 78 63 65 70 74 69 6f 6e 20 69 6e 20 74 68 69 73 20 63 61 | n.raises.an.exception.in.this.ca |
| 0b40 | 73 65 2e 0a 0a 20 20 20 20 45 73 74 69 6d 61 74 65 73 20 66 6f 72 20 61 70 70 72 6f 70 72 69 61 | se.......Estimates.for.appropria |
| 0b60 | 74 65 20 76 61 6c 75 65 73 20 6f 66 20 60 51 60 20 61 72 65 20 66 6f 75 6e 64 20 69 6e 20 5b 32 | te.values.of.`Q`.are.found.in.[2 |
| 0b80 | 5d 5f 2e 0a 0a 20 20 20 20 52 65 66 65 72 65 6e 63 65 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d | ]_.......References.....-------- |
| 0ba0 | 2d 2d 0a 20 20 20 20 2e 2e 20 5b 31 5d 20 4a 75 6c 69 61 6e 20 4a 2e 20 4d 63 41 75 6c 65 79 2c | --........[1].Julian.J..McAuley, |
| 0bc0 | 20 4c 75 63 69 61 6e 6f 20 64 61 20 46 6f 6e 74 6f 75 72 61 20 43 6f 73 74 61 2c 0a 20 20 20 20 | .Luciano.da.Fontoura.Costa,..... |
| 0be0 | 20 20 20 61 6e 64 20 54 69 62 c3 a9 72 69 6f 20 53 2e 20 43 61 65 74 61 6e 6f 2c 0a 20 20 20 20 | ...and.Tib..rio.S..Caetano,..... |
| 0c00 | 20 20 20 22 54 68 65 20 72 69 63 68 2d 63 6c 75 62 20 70 68 65 6e 6f 6d 65 6e 6f 6e 20 61 63 72 | ..."The.rich-club.phenomenon.acr |
| 0c20 | 6f 73 73 20 63 6f 6d 70 6c 65 78 20 6e 65 74 77 6f 72 6b 20 68 69 65 72 61 72 63 68 69 65 73 22 | oss.complex.network.hierarchies" |
| 0c40 | 2c 0a 20 20 20 20 20 20 20 41 70 70 6c 69 65 64 20 50 68 79 73 69 63 73 20 4c 65 74 74 65 72 73 | ,........Applied.Physics.Letters |
| 0c60 | 20 56 6f 6c 20 39 31 20 49 73 73 75 65 20 38 2c 20 41 75 67 75 73 74 20 32 30 30 37 2e 0a 20 20 | .Vol.91.Issue.8,.August.2007.... |
| 0c80 | 20 20 20 20 20 68 74 74 70 73 3a 2f 2f 61 72 78 69 76 2e 6f 72 67 2f 61 62 73 2f 70 68 79 73 69 | .....https://arxiv.org/abs/physi |
| 0ca0 | 63 73 2f 30 37 30 31 32 39 30 0a 20 20 20 20 2e 2e 20 5b 32 5d 20 52 2e 20 4d 69 6c 6f 2c 20 4e | cs/0701290........[2].R..Milo,.N |
| 0cc0 | 2e 20 4b 61 73 68 74 61 6e 2c 20 53 2e 20 49 74 7a 6b 6f 76 69 74 7a 2c 20 4d 2e 20 45 2e 20 4a | ..Kashtan,.S..Itzkovitz,.M..E..J |
| 0ce0 | 2e 20 4e 65 77 6d 61 6e 2c 20 55 2e 20 41 6c 6f 6e 2c 0a 20 20 20 20 20 20 20 22 55 6e 69 66 6f | ..Newman,.U..Alon,........"Unifo |
| 0d00 | 72 6d 20 67 65 6e 65 72 61 74 69 6f 6e 20 6f 66 20 72 61 6e 64 6f 6d 20 67 72 61 70 68 73 20 77 | rm.generation.of.random.graphs.w |
| 0d20 | 69 74 68 20 61 72 62 69 74 72 61 72 79 20 64 65 67 72 65 65 0a 20 20 20 20 20 20 20 73 65 71 75 | ith.arbitrary.degree........sequ |
| 0d40 | 65 6e 63 65 73 22 2c 20 32 30 30 36 2e 20 68 74 74 70 73 3a 2f 2f 61 72 78 69 76 2e 6f 72 67 2f | ences",.2006..https://arxiv.org/ |
| 0d60 | 61 62 73 2f 63 6f 6e 64 2d 6d 61 74 2f 30 33 31 32 30 32 38 0a 20 20 20 20 72 02 00 00 00 7a 44 | abs/cond-mat/0312028.....r....zD |
| 0d80 | 72 69 63 68 5f 63 6c 75 62 5f 63 6f 65 66 66 69 63 69 65 6e 74 20 69 73 20 6e 6f 74 20 69 6d 70 | rich_club_coefficient.is.not.imp |
| 0da0 | 6c 65 6d 65 6e 74 65 64 20 66 6f 72 20 67 72 61 70 68 73 20 77 69 74 68 20 73 65 6c 66 20 6c 6f | lemented.for.graphs.with.self.lo |
| 0dc0 | 6f 70 73 2e e9 0a 00 00 00 29 02 da 09 6d 61 78 5f 74 72 69 65 73 da 04 73 65 65 64 29 08 da 02 | ops......)...max_tries..seed)... |
| 0de0 | 6e 78 da 13 6e 75 6d 62 65 72 5f 6f 66 5f 73 65 6c 66 6c 6f 6f 70 73 da 09 45 78 63 65 70 74 69 | nx..number_of_selfloops..Excepti |
| 0e00 | 6f 6e da 0b 5f 63 6f 6d 70 75 74 65 5f 72 63 da 04 63 6f 70 79 da 0f 6e 75 6d 62 65 72 5f 6f 66 | on.._compute_rc..copy..number_of |
| 0e20 | 5f 65 64 67 65 73 da 10 64 6f 75 62 6c 65 5f 65 64 67 65 5f 73 77 61 70 da 05 69 74 65 6d 73 29 | _edges..double_edge_swap..items) |
| 0e40 | 0a da 01 47 da 0a 6e 6f 72 6d 61 6c 69 7a 65 64 da 01 51 72 0b 00 00 00 da 02 72 63 da 01 52 da | ...G..normalized..Qr......rc..R. |
| 0e60 | 01 45 da 05 72 63 72 61 6e da 01 6b da 01 76 73 0a 00 00 00 20 20 20 20 20 20 20 20 20 20 fa 63 | .E..rcran..k..vs...............c |
| 0e80 | 2f 68 6f 6d 65 2f 62 6c 61 63 6b 68 61 6f 2f 75 69 75 63 2d 63 6f 75 72 73 65 2d 67 72 61 70 68 | /home/blackhao/uiuc-course-graph |
| 0ea0 | 2f 2e 76 65 6e 76 2f 6c 69 62 2f 70 79 74 68 6f 6e 33 2e 31 32 2f 73 69 74 65 2d 70 61 63 6b 61 | /.venv/lib/python3.12/site-packa |
| 0ec0 | 67 65 73 2f 6e 65 74 77 6f 72 6b 78 2f 61 6c 67 6f 72 69 74 68 6d 73 2f 72 69 63 68 63 6c 75 62 | ges/networkx/algorithms/richclub |
| 0ee0 | 2e 70 79 72 05 00 00 00 72 05 00 00 00 0b 00 00 00 73 ad 00 00 00 80 00 f4 58 02 00 08 0a d7 07 | .pyr....r........s.......X...... |
| 0f00 | 1d d1 07 1d 98 61 d3 07 20 a0 31 d2 07 24 dc 0e 17 d8 0c 52 f3 03 02 0f 0a f0 00 02 09 0a f4 06 | .....a....1..$.....R............ |
| 0f20 | 00 0a 15 90 51 8b 1e 80 42 d9 07 11 f0 06 00 0d 0e 8f 46 89 46 8b 48 88 01 d8 0c 0d d7 0c 1d d1 | ....Q...B.........F.F.H......... |
| 0f40 | 0c 1d d3 0c 1f 88 01 dc 08 0a d7 08 1b d1 08 1b 98 41 98 71 a0 31 99 75 b0 01 b0 41 b1 05 b8 02 | .................A.q.1.u...A.... |
| 0f60 | b1 0a c0 14 d5 08 46 dc 10 1b 98 41 93 0e 88 05 d8 2a 2c af 28 a9 28 ab 2a d7 0d 35 a1 24 a0 21 | ......F....A.....*,.(.(.*..5.$.! |
| 0f80 | a0 51 88 61 90 11 90 55 98 31 91 58 91 1c 89 6f d0 0d 35 88 02 d1 0d 35 d8 0b 0d 80 49 f9 f3 03 | .Q.a...U.1.X...o..5....5....I... |
| 0fa0 | 00 0e 36 73 06 00 00 00 c2 11 13 42 29 06 63 01 00 00 00 00 00 00 00 00 00 00 00 05 00 00 00 03 | ..6s.......B).c................. |
| 0fc0 | 00 00 00 f3 c2 01 00 00 87 00 87 0a 97 00 74 01 00 00 00 00 00 00 00 00 6a 02 00 00 00 00 00 00 | ..............t.........j....... |
| 0fe0 | 00 00 00 00 00 00 00 00 00 00 00 00 89 00 ab 01 00 00 00 00 00 00 7d 01 74 05 00 00 00 00 00 00 | ......................}.t....... |
| 1000 | 00 00 7c 01 ab 01 00 00 00 00 00 00 8a 0a 88 0a 66 01 64 01 84 08 74 07 00 00 00 00 00 00 00 00 | ..|.............f.d...t......... |
| 1020 | 7c 01 ab 01 00 00 00 00 00 00 44 00 ab 00 00 00 00 00 00 00 7d 02 74 09 00 00 00 00 00 00 00 00 | |.........D.........}.t......... |
| 1040 | 88 00 66 01 64 02 84 08 89 00 6a 0b 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ab 00 | ..f.d.....j..................... |
| 1060 | 00 00 00 00 00 00 44 00 ab 00 00 00 00 00 00 00 64 03 ac 04 ab 02 00 00 00 00 00 00 7d 03 89 00 | ......D.........d...........}... |
| 1080 | 6a 0d 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ab 00 00 00 00 00 00 00 7d 04 7c 04 | j...........................}.|. |
| 10a0 | 64 05 6b 28 00 00 72 02 69 00 53 00 7c 03 6a 0f 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 | d.k(..r.i.S.|.j................. |
| 10c0 | 00 00 ab 00 00 00 00 00 00 00 5c 02 00 00 7d 05 7d 06 69 00 7d 07 74 11 00 00 00 00 00 00 00 00 | ..........\...}.}.i.}.t......... |
| 10e0 | 7c 02 ab 01 00 00 00 00 00 00 44 00 5d 4a 00 00 5c 02 00 00 7d 08 7d 09 7c 05 7c 08 6b 1a 00 00 | |.........D.]J..\...}.}.|.|.k... |
| 1100 | 72 2f 74 13 00 00 00 00 00 00 00 00 7c 03 ab 01 00 00 00 00 00 00 64 05 6b 28 00 00 72 03 64 05 | r/t.........|.........d.k(..r.d. |
| 1120 | 7d 04 6e 1e 7c 03 6a 0f 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ab 00 00 00 00 00 | }.n.|.j......................... |
| 1140 | 00 00 5c 02 00 00 7d 05 7d 06 7c 04 64 06 7a 17 00 00 7d 04 7c 05 7c 08 6b 1a 00 00 72 01 8c 2f | ..\...}.}.|.d.z...}.|.|.k...r../ |
| 1160 | 64 07 7c 04 7a 05 00 00 7c 09 7c 09 64 06 7a 0a 00 00 7a 05 00 00 7a 0b 00 00 7c 07 7c 08 3c 00 | d.|.z...|.|.d.z...z...z...|.|.<. |
| 1180 | 00 00 8c 4c 04 00 7c 07 53 00 29 08 7a d8 52 65 74 75 72 6e 73 20 74 68 65 20 72 69 63 68 2d 63 | ...L..|.S.).z.Returns.the.rich-c |
| 11a0 | 6c 75 62 20 63 6f 65 66 66 69 63 69 65 6e 74 20 66 6f 72 20 65 61 63 68 20 64 65 67 72 65 65 20 | lub.coefficient.for.each.degree. |
| 11c0 | 69 6e 20 74 68 65 20 67 72 61 70 68 0a 20 20 20 20 60 47 60 2e 0a 0a 20 20 20 20 60 47 60 20 69 | in.the.graph.....`G`.......`G`.i |
| 11e0 | 73 20 61 6e 20 75 6e 64 69 72 65 63 74 65 64 20 67 72 61 70 68 20 77 69 74 68 6f 75 74 20 6d 75 | s.an.undirected.graph.without.mu |
| 1200 | 6c 74 69 65 64 67 65 73 2e 0a 0a 20 20 20 20 52 65 74 75 72 6e 73 20 61 20 64 69 63 74 69 6f 6e | ltiedges.......Returns.a.diction |
| 1220 | 61 72 79 20 6d 61 70 70 69 6e 67 20 64 65 67 72 65 65 20 74 6f 20 72 69 63 68 2d 63 6c 75 62 20 | ary.mapping.degree.to.rich-club. |
| 1240 | 63 6f 65 66 66 69 63 69 65 6e 74 20 66 6f 72 0a 20 20 20 20 74 68 61 74 20 64 65 67 72 65 65 2e | coefficient.for.....that.degree. |
| 1260 | 0a 0a 20 20 20 20 63 01 00 00 00 00 00 00 00 00 00 00 00 03 00 00 00 33 00 00 00 f3 3a 00 00 00 | ......c................3....:... |
| 1280 | 95 01 4b 00 01 00 97 00 7c 00 5d 12 00 00 7d 01 89 02 7c 01 7a 0a 00 00 64 00 6b 44 00 00 73 01 | ..K.....|.]...}...|.z...d.kD..s. |
| 12a0 | 8c 0c 89 02 7c 01 7a 0a 00 00 96 01 97 01 01 00 8c 14 04 00 79 01 ad 03 77 01 29 02 e9 01 00 00 | ....|.z.............y...w.)..... |
| 12c0 | 00 4e a9 00 29 03 da 02 2e 30 da 02 63 73 da 05 74 6f 74 61 6c 73 03 00 00 00 20 20 80 72 1d 00 | .N..)....0..cs..totals.......r.. |
| 12e0 | 00 00 fa 09 3c 67 65 6e 65 78 70 72 3e 7a 1e 5f 63 6f 6d 70 75 74 65 5f 72 63 2e 3c 6c 6f 63 61 | ....<genexpr>z._compute_rc.<loca |
| 1300 | 6c 73 3e 2e 3c 67 65 6e 65 78 70 72 3e 75 00 00 00 73 1f 00 00 00 f8 e8 00 f8 80 00 d2 0a 46 98 | ls>.<genexpr>u...s............F. |
| 1320 | 22 b0 75 b8 72 b1 7a c0 41 b3 7e 88 35 90 32 8d 3a d1 0a 46 f9 73 08 00 00 00 83 0d 1b 01 91 0a | ".u.r.z.A.~.5.2.:..F.s.......... |
| 1340 | 1b 01 63 01 00 00 00 00 00 00 00 00 00 00 00 07 00 00 00 33 00 00 00 f3 5c 00 00 00 95 01 4b 00 | ..c................3....\.....K. |
| 1360 | 01 00 97 00 7c 00 5d 23 00 00 7d 01 74 01 00 00 00 00 00 00 00 00 74 03 00 00 00 00 00 00 00 00 | ....|.]#..}.t.........t......... |
| 1380 | 89 02 6a 04 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 7c 01 ab 02 00 00 00 00 00 00 | ..j...................|......... |
| 13a0 | ab 01 00 00 00 00 00 00 96 01 97 01 01 00 8c 25 04 00 79 00 ad 03 77 01 29 01 4e 29 03 da 06 73 | ...............%..y...w.).N)...s |
| 13c0 | 6f 72 74 65 64 da 03 6d 61 70 da 06 64 65 67 72 65 65 29 03 72 22 00 00 00 da 01 65 72 14 00 00 | orted..map..degree).r".....er... |
| 13e0 | 00 73 03 00 00 00 20 20 80 72 1d 00 00 00 72 25 00 00 00 7a 1e 5f 63 6f 6d 70 75 74 65 5f 72 63 | .s.......r....r%...z._compute_rc |
| 1400 | 2e 3c 6c 6f 63 61 6c 73 3e 2e 3c 67 65 6e 65 78 70 72 3e 7b 00 00 00 73 21 00 00 00 f8 e8 00 f8 | .<locals>.<genexpr>{...s!....... |
| 1420 | 80 00 d2 1a 47 b8 01 9c 36 a4 23 a0 61 a7 68 a1 68 b0 01 d3 22 32 d7 1b 33 d1 1a 47 f9 73 04 00 | ....G...6.#.a.h.h..."2..3..G.s.. |
| 1440 | 00 00 83 29 2c 01 54 29 01 da 07 72 65 76 65 72 73 65 72 02 00 00 00 72 20 00 00 00 e9 02 00 00 | ...),.T)...reverser....r........ |
| 1460 | 00 29 0a 72 0c 00 00 00 da 10 64 65 67 72 65 65 5f 68 69 73 74 6f 67 72 61 6d da 03 73 75 6d 72 | .).r......degree_histogram..sumr |
| 1480 | 03 00 00 00 72 27 00 00 00 da 05 65 64 67 65 73 72 11 00 00 00 da 03 70 6f 70 da 09 65 6e 75 6d | ....r'.....edgesr......pop..enum |
| 14a0 | 65 72 61 74 65 da 03 6c 65 6e 29 0b 72 14 00 00 00 da 07 64 65 67 68 69 73 74 da 03 6e 6b 73 da | erate..len).r......deghist..nks. |
| 14c0 | 0c 65 64 67 65 5f 64 65 67 72 65 65 73 da 02 65 6b da 02 6b 31 da 02 6b 32 72 17 00 00 00 da 01 | .edge_degrees..ek..k1..k2r...... |
| 14e0 | 64 da 02 6e 6b 72 24 00 00 00 73 0b 00 00 00 60 20 20 20 20 20 20 20 20 20 40 72 1d 00 00 00 72 | d..nkr$...s....`.........@r....r |
| 1500 | 0f 00 00 00 72 0f 00 00 00 67 00 00 00 73 f6 00 00 00 f9 80 00 f4 14 00 0f 11 d7 0e 21 d1 0e 21 | ....r....g...s..............!..! |
| 1520 | a0 21 d3 0e 24 80 47 dc 0c 0f 90 07 8b 4c 80 45 f3 06 00 0b 47 01 a4 0a a8 37 d3 20 33 d4 0a 46 | .!..$.G......L.E....G....7..3..F |
| 1540 | 80 43 f4 0c 00 14 1a d3 1a 47 b8 51 bf 57 b9 57 bb 59 d4 1a 47 d0 51 55 d4 13 56 80 4c d8 09 0a | .C.......G.Q.W.W.Y..G.QU..V.L... |
| 1560 | d7 09 1a d1 09 1a d3 09 1c 80 42 d8 07 09 88 51 82 77 d8 0f 11 88 09 e0 0d 19 d7 0d 1d d1 0d 1d | ..........B....Q.w.............. |
| 1580 | d3 0d 1f 81 46 80 42 88 02 d8 09 0b 80 42 dc 11 1a 98 33 93 1e f2 00 07 05 29 89 05 88 01 88 32 | ....F.B......B....3......).....2 |
| 15a0 | d8 0e 10 90 41 8a 67 dc 0f 12 90 3c d3 0f 20 a0 41 d2 0f 25 d8 15 16 90 02 d8 10 15 d8 15 21 d7 | ....A.g....<....A..%..........!. |
| 15c0 | 15 25 d1 15 25 d3 15 27 89 46 88 42 90 02 d8 0c 0e 90 21 89 47 88 42 f0 0b 00 0f 11 90 41 8b 67 | .%..%..'.F.B......!.G.B......A.g |
| 15e0 | f0 0c 00 11 12 90 42 91 06 98 22 a0 02 a0 51 a1 06 99 2d d1 10 28 88 02 88 31 8a 05 f0 0f 07 05 | ......B..."...Q...-..(...1...... |
| 1600 | 29 f0 10 00 0c 0e 80 49 f3 00 00 00 00 29 03 54 e9 64 00 00 00 4e 29 0b da 07 5f 5f 64 6f 63 5f | )......I.....).T.d...N)...__doc_ |
| 1620 | 5f da 09 69 74 65 72 74 6f 6f 6c 73 72 03 00 00 00 da 08 6e 65 74 77 6f 72 6b 78 72 0c 00 00 00 | _..itertoolsr......networkxr.... |
| 1640 | da 0e 6e 65 74 77 6f 72 6b 78 2e 75 74 69 6c 73 72 04 00 00 00 da 07 5f 5f 61 6c 6c 5f 5f da 0d | ..networkx.utilsr......__all__.. |
| 1660 | 5f 64 69 73 70 61 74 63 68 61 62 6c 65 72 05 00 00 00 72 0f 00 00 00 72 21 00 00 00 72 3b 00 00 | _dispatchabler....r....r!...r;.. |
| 1680 | 00 72 1d 00 00 00 fa 08 3c 6d 6f 64 75 6c 65 3e 72 43 00 00 00 01 00 00 00 73 55 00 00 00 f0 03 | .r......<module>rC.......sU..... |
| 16a0 | 01 01 01 d9 00 35 e5 00 20 e3 00 15 dd 00 2e e0 0b 22 d0 0a 23 80 07 f1 06 00 02 15 90 5a d3 01 | .....5..........."..#........Z.. |
| 16c0 | 20 d9 01 14 90 5c d3 01 22 d8 01 03 d7 01 11 d1 01 11 f2 02 56 01 01 0e f3 03 00 02 12 f3 03 00 | .....\.."...........V........... |
| 16e0 | 02 23 f3 03 00 02 21 f0 06 56 01 01 0e f3 72 02 23 01 0e 72 3b 00 00 00 | .#....!..V....r.#..r;... |