| ofs | hex dump | ascii |
|---|
| 0000 | cb 0d 0d 0a 00 00 00 00 85 fa a7 68 d7 1d 00 00 e3 00 00 00 00 00 00 00 00 00 00 00 00 05 00 00 | ...........h.................... |
| 0020 | 00 00 00 00 00 f3 ac 01 00 00 97 00 64 00 5a 00 64 01 64 02 6c 01 5a 02 64 01 64 02 6c 03 5a 04 | ............d.Z.d.d.l.Z.d.d.l.Z. |
| 0040 | 67 00 64 03 a2 01 5a 05 02 00 65 04 6a 0c 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 | g.d...Z...e.j................... |
| 0060 | 64 04 ac 05 ab 01 00 00 00 00 00 00 64 0b 64 06 84 01 ab 00 00 00 00 00 00 00 5a 07 65 04 6a 10 | d...........d.d...........Z.e.j. |
| 0080 | 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 6a 13 00 00 00 00 00 00 00 00 00 00 00 00 | ..................j............. |
| 00a0 | 00 00 00 00 00 00 64 07 ab 01 00 00 00 00 00 00 65 04 6a 10 00 00 00 00 00 00 00 00 00 00 00 00 | ......d.........e.j............. |
| 00c0 | 00 00 00 00 00 00 6a 13 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 64 08 ab 01 00 00 | ......j...................d..... |
| 00e0 | 00 00 00 00 02 00 65 04 6a 0c 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 64 04 ac 05 | ......e.j...................d... |
| 0100 | ab 01 00 00 00 00 00 00 64 0b 64 09 84 01 ab 00 00 00 00 00 00 00 ab 00 00 00 00 00 00 00 ab 00 | ........d.d..................... |
| 0120 | 00 00 00 00 00 00 5a 0a 65 04 6a 10 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 6a 13 | ......Z.e.j...................j. |
| 0140 | 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 64 07 ab 01 00 00 00 00 00 00 65 04 6a 10 | ..................d.........e.j. |
| 0160 | 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 6a 13 00 00 00 00 00 00 00 00 00 00 00 00 | ..................j............. |
| 0180 | 00 00 00 00 00 00 64 08 ab 01 00 00 00 00 00 00 02 00 65 04 6a 0c 00 00 00 00 00 00 00 00 00 00 | ......d...........e.j........... |
| 01a0 | 00 00 00 00 00 00 00 00 64 04 ac 05 ab 01 00 00 00 00 00 00 64 0b 64 0a 84 01 ab 00 00 00 00 00 | ........d...........d.d......... |
| 01c0 | 00 00 ab 00 00 00 00 00 00 00 ab 00 00 00 00 00 00 00 5a 0b 79 02 29 0c 61 75 02 00 00 46 75 6e | ..................Z.y.).au...Fun |
| 01e0 | 63 74 69 6f 6e 73 20 72 65 6c 61 74 65 64 20 74 6f 20 74 68 65 20 57 69 65 6e 65 72 20 49 6e 64 | ctions.related.to.the.Wiener.Ind |
| 0200 | 65 78 20 6f 66 20 61 20 67 72 61 70 68 2e 0a 0a 54 68 65 20 57 69 65 6e 65 72 20 49 6e 64 65 78 | ex.of.a.graph...The.Wiener.Index |
| 0220 | 20 69 73 20 61 20 74 6f 70 6f 6c 6f 67 69 63 61 6c 20 6d 65 61 73 75 72 65 20 6f 66 20 61 20 67 | .is.a.topological.measure.of.a.g |
| 0240 | 72 61 70 68 0a 72 65 6c 61 74 65 64 20 74 6f 20 74 68 65 20 64 69 73 74 61 6e 63 65 20 62 65 74 | raph.related.to.the.distance.bet |
| 0260 | 77 65 65 6e 20 6e 6f 64 65 73 20 61 6e 64 20 74 68 65 69 72 20 64 65 67 72 65 65 2e 0a 54 68 65 | ween.nodes.and.their.degree..The |
| 0280 | 20 53 63 68 75 6c 74 7a 20 49 6e 64 65 78 20 61 6e 64 20 47 75 74 6d 61 6e 20 49 6e 64 65 78 20 | .Schultz.Index.and.Gutman.Index. |
| 02a0 | 61 72 65 20 73 69 6d 69 6c 61 72 20 6d 65 61 73 75 72 65 73 2e 0a 54 68 65 79 20 61 72 65 20 75 | are.similar.measures..They.are.u |
| 02c0 | 73 65 64 20 63 61 74 65 67 6f 72 69 7a 65 20 6d 6f 6c 65 63 75 6c 65 73 20 76 69 61 20 74 68 65 | sed.categorize.molecules.via.the |
| 02e0 | 20 6e 65 74 77 6f 72 6b 20 6f 66 0a 61 74 6f 6d 73 20 63 6f 6e 6e 65 63 74 65 64 20 62 79 20 63 | .network.of.atoms.connected.by.c |
| 0300 | 68 65 6d 69 63 61 6c 20 62 6f 6e 64 73 2e 20 54 68 65 20 69 6e 64 69 63 65 73 20 61 72 65 0a 63 | hemical.bonds..The.indices.are.c |
| 0320 | 6f 72 72 65 6c 61 74 65 64 20 77 69 74 68 20 66 75 6e 63 74 69 6f 6e 61 6c 20 61 73 70 65 63 74 | orrelated.with.functional.aspect |
| 0340 | 73 20 6f 66 20 74 68 65 20 6d 6f 6c 65 63 75 6c 65 73 2e 0a 0a 52 65 66 65 72 65 6e 63 65 73 0a | s.of.the.molecules...References. |
| 0360 | 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 0a 2e 2e 20 5b 31 5d 20 60 57 69 6b 69 70 65 64 69 61 3a 20 57 69 | ----------....[1].`Wikipedia:.Wi |
| 0380 | 65 6e 65 72 20 49 6e 64 65 78 20 3c 68 74 74 70 73 3a 2f 2f 65 6e 2e 77 69 6b 69 70 65 64 69 61 | ener.Index.<https://en.wikipedia |
| 03a0 | 2e 6f 72 67 2f 77 69 6b 69 2f 57 69 65 6e 65 72 5f 69 6e 64 65 78 3e 60 5f 0a 2e 2e 20 5b 32 5d | .org/wiki/Wiener_index>`_....[2] |
| 03c0 | 20 4d 2e 56 2e 20 44 69 75 64 65 61 61 20 61 6e 64 20 49 2e 20 47 75 74 6d 61 6e 2c 20 57 69 65 | .M.V..Diudeaa.and.I..Gutman,.Wie |
| 03e0 | 6e 65 72 2d 54 79 70 65 20 54 6f 70 6f 6c 6f 67 69 63 61 6c 20 49 6e 64 69 63 65 73 2c 0a 20 20 | ner-Type.Topological.Indices,... |
| 0400 | 20 20 20 20 20 43 72 6f 61 74 69 63 61 20 43 68 65 6d 69 63 61 20 41 63 74 61 2c 20 37 31 20 28 | .....Croatica.Chemica.Acta,.71.( |
| 0420 | 31 39 39 38 29 2c 20 32 31 2d 35 31 2e 0a 20 20 20 20 20 20 20 68 74 74 70 73 3a 2f 2f 68 72 63 | 1998),.21-51.........https://hrc |
| 0440 | 61 6b 2e 73 72 63 65 2e 68 72 2f 31 33 32 33 32 33 0a e9 00 00 00 00 4e 29 03 da 0c 77 69 65 6e | ak.srce.hr/132323......N)...wien |
| 0460 | 65 72 5f 69 6e 64 65 78 da 0d 73 63 68 75 6c 74 7a 5f 69 6e 64 65 78 da 0c 67 75 74 6d 61 6e 5f | er_index..schultz_index..gutman_ |
| 0480 | 69 6e 64 65 78 da 06 77 65 69 67 68 74 29 01 da 0a 65 64 67 65 5f 61 74 74 72 73 63 02 00 00 00 | index..weight)...edge_attrsc.... |
| 04a0 | 00 00 00 00 00 00 00 00 06 00 00 00 03 00 00 00 f3 4a 01 00 00 97 00 7c 00 6a 01 00 00 00 00 00 | .................J.....|.j...... |
| 04c0 | 00 00 00 00 00 00 00 00 00 00 00 00 00 ab 00 00 00 00 00 00 00 72 15 74 03 00 00 00 00 00 00 00 | .....................r.t........ |
| 04e0 | 00 6a 04 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 7c 00 ab 01 00 00 00 00 00 00 6e | .j...................|.........n |
| 0500 | 14 74 03 00 00 00 00 00 00 00 00 6a 06 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 7c | .t.........j...................| |
| 0520 | 00 ab 01 00 00 00 00 00 00 7d 02 7c 02 73 0b 74 09 00 00 00 00 00 00 00 00 64 01 ab 01 00 00 00 | .........}.|.s.t.........d...... |
| 0540 | 00 00 00 53 00 74 03 00 00 00 00 00 00 00 00 6a 0a 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 | ...S.t.........j................ |
| 0560 | 00 00 00 7c 00 7c 01 ac 02 ab 02 00 00 00 00 00 00 7d 03 74 0d 00 00 00 00 00 00 00 00 74 0e 00 | ...|.|...........}.t.........t.. |
| 0580 | 00 00 00 00 00 00 00 6a 10 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 6a 13 00 00 00 | .......j...................j.... |
| 05a0 | 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 64 03 84 00 7c 03 44 00 ab 00 00 00 00 00 00 00 ab | ...............d...|.D.......... |
| 05c0 | 01 00 00 00 00 00 00 ab 01 00 00 00 00 00 00 7d 04 7c 00 6a 01 00 00 00 00 00 00 00 00 00 00 00 | ...............}.|.j............ |
| 05e0 | 00 00 00 00 00 00 00 ab 00 00 00 00 00 00 00 72 02 7c 04 53 00 7c 04 64 04 7a 0b 00 00 53 00 29 | ...............r.|.S.|.d.z...S.) |
| 0600 | 05 61 bf 06 00 00 52 65 74 75 72 6e 73 20 74 68 65 20 57 69 65 6e 65 72 20 69 6e 64 65 78 20 6f | .a....Returns.the.Wiener.index.o |
| 0620 | 66 20 74 68 65 20 67 69 76 65 6e 20 67 72 61 70 68 2e 0a 0a 20 20 20 20 54 68 65 20 2a 57 69 65 | f.the.given.graph.......The.*Wie |
| 0640 | 6e 65 72 20 69 6e 64 65 78 2a 20 6f 66 20 61 20 67 72 61 70 68 20 69 73 20 74 68 65 20 73 75 6d | ner.index*.of.a.graph.is.the.sum |
| 0660 | 20 6f 66 20 74 68 65 20 73 68 6f 72 74 65 73 74 2d 70 61 74 68 0a 20 20 20 20 28 77 65 69 67 68 | .of.the.shortest-path.....(weigh |
| 0680 | 74 65 64 29 20 64 69 73 74 61 6e 63 65 73 20 62 65 74 77 65 65 6e 20 65 61 63 68 20 70 61 69 72 | ted).distances.between.each.pair |
| 06a0 | 20 6f 66 20 72 65 61 63 68 61 62 6c 65 20 6e 6f 64 65 73 2e 0a 20 20 20 20 46 6f 72 20 70 61 69 | .of.reachable.nodes......For.pai |
| 06c0 | 72 73 20 6f 66 20 6e 6f 64 65 73 20 69 6e 20 75 6e 64 69 72 65 63 74 65 64 20 67 72 61 70 68 73 | rs.of.nodes.in.undirected.graphs |
| 06e0 | 2c 20 6f 6e 6c 79 20 6f 6e 65 20 6f 72 69 65 6e 74 61 74 69 6f 6e 0a 20 20 20 20 6f 66 20 74 68 | ,.only.one.orientation.....of.th |
| 0700 | 65 20 70 61 69 72 20 69 73 20 63 6f 75 6e 74 65 64 2e 0a 0a 20 20 20 20 50 61 72 61 6d 65 74 65 | e.pair.is.counted.......Paramete |
| 0720 | 72 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 47 20 3a 20 4e 65 74 77 6f 72 | rs.....----------.....G.:.Networ |
| 0740 | 6b 58 20 67 72 61 70 68 0a 0a 20 20 20 20 77 65 69 67 68 74 20 3a 20 73 74 72 69 6e 67 20 6f 72 | kX.graph......weight.:.string.or |
| 0760 | 20 4e 6f 6e 65 2c 20 6f 70 74 69 6f 6e 61 6c 20 28 64 65 66 61 75 6c 74 3a 20 4e 6f 6e 65 29 0a | .None,.optional.(default:.None). |
| 0780 | 20 20 20 20 20 20 20 20 49 66 20 4e 6f 6e 65 2c 20 65 76 65 72 79 20 65 64 67 65 20 68 61 73 20 | ........If.None,.every.edge.has. |
| 07a0 | 77 65 69 67 68 74 20 31 2e 0a 20 20 20 20 20 20 20 20 49 66 20 61 20 73 74 72 69 6e 67 2c 20 75 | weight.1..........If.a.string,.u |
| 07c0 | 73 65 20 74 68 69 73 20 65 64 67 65 20 61 74 74 72 69 62 75 74 65 20 61 73 20 74 68 65 20 65 64 | se.this.edge.attribute.as.the.ed |
| 07e0 | 67 65 20 77 65 69 67 68 74 2e 0a 20 20 20 20 20 20 20 20 41 6e 79 20 65 64 67 65 20 61 74 74 72 | ge.weight..........Any.edge.attr |
| 0800 | 69 62 75 74 65 20 6e 6f 74 20 70 72 65 73 65 6e 74 20 64 65 66 61 75 6c 74 73 20 74 6f 20 31 2e | ibute.not.present.defaults.to.1. |
| 0820 | 0a 20 20 20 20 20 20 20 20 54 68 65 20 65 64 67 65 20 77 65 69 67 68 74 73 20 61 72 65 20 75 73 | .........The.edge.weights.are.us |
| 0840 | 65 64 20 74 6f 20 63 6f 6d 70 75 74 69 6e 67 20 73 68 6f 72 74 65 73 74 2d 70 61 74 68 20 64 69 | ed.to.computing.shortest-path.di |
| 0860 | 73 74 61 6e 63 65 73 2e 0a 0a 20 20 20 20 52 65 74 75 72 6e 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d | stances.......Returns.....------ |
| 0880 | 2d 0a 20 20 20 20 6e 75 6d 62 65 72 0a 20 20 20 20 20 20 20 20 54 68 65 20 57 69 65 6e 65 72 20 | -.....number.........The.Wiener. |
| 08a0 | 69 6e 64 65 78 20 6f 66 20 74 68 65 20 67 72 61 70 68 20 60 47 60 2e 0a 0a 20 20 20 20 52 61 69 | index.of.the.graph.`G`.......Rai |
| 08c0 | 73 65 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 4e 65 74 77 6f 72 6b 58 45 72 72 6f 72 | ses.....------.....NetworkXError |
| 08e0 | 0a 20 20 20 20 20 20 20 20 49 66 20 74 68 65 20 67 72 61 70 68 20 60 47 60 20 69 73 20 6e 6f 74 | .........If.the.graph.`G`.is.not |
| 0900 | 20 63 6f 6e 6e 65 63 74 65 64 2e 0a 0a 20 20 20 20 4e 6f 74 65 73 0a 20 20 20 20 2d 2d 2d 2d 2d | .connected.......Notes.....----- |
| 0920 | 0a 20 20 20 20 49 66 20 61 20 70 61 69 72 20 6f 66 20 6e 6f 64 65 73 20 69 73 20 6e 6f 74 20 72 | .....If.a.pair.of.nodes.is.not.r |
| 0940 | 65 61 63 68 61 62 6c 65 2c 20 74 68 65 20 64 69 73 74 61 6e 63 65 20 69 73 20 61 73 73 75 6d 65 | eachable,.the.distance.is.assume |
| 0960 | 64 20 74 6f 20 62 65 0a 20 20 20 20 69 6e 66 69 6e 69 74 79 2e 20 54 68 69 73 20 6d 65 61 6e 73 | d.to.be.....infinity..This.means |
| 0980 | 20 74 68 61 74 20 66 6f 72 20 67 72 61 70 68 73 20 74 68 61 74 20 61 72 65 20 6e 6f 74 0a 20 20 | .that.for.graphs.that.are.not... |
| 09a0 | 20 20 73 74 72 6f 6e 67 6c 79 2d 63 6f 6e 6e 65 63 74 65 64 2c 20 74 68 69 73 20 66 75 6e 63 74 | ..strongly-connected,.this.funct |
| 09c0 | 69 6f 6e 20 72 65 74 75 72 6e 73 20 60 60 69 6e 66 60 60 2e 0a 0a 20 20 20 20 54 68 65 20 57 69 | ion.returns.``inf``.......The.Wi |
| 09e0 | 65 6e 65 72 20 69 6e 64 65 78 20 69 73 20 6e 6f 74 20 75 73 75 61 6c 6c 79 20 64 65 66 69 6e 65 | ener.index.is.not.usually.define |
| 0a00 | 64 20 66 6f 72 20 64 69 72 65 63 74 65 64 20 67 72 61 70 68 73 2c 20 68 6f 77 65 76 65 72 0a 20 | d.for.directed.graphs,.however.. |
| 0a20 | 20 20 20 74 68 69 73 20 66 75 6e 63 74 69 6f 6e 20 75 73 65 73 20 74 68 65 20 6e 61 74 75 72 61 | ...this.function.uses.the.natura |
| 0a40 | 6c 20 67 65 6e 65 72 61 6c 69 7a 61 74 69 6f 6e 20 6f 66 20 74 68 65 20 57 69 65 6e 65 72 20 69 | l.generalization.of.the.Wiener.i |
| 0a60 | 6e 64 65 78 20 74 6f 0a 20 20 20 20 64 69 72 65 63 74 65 64 20 67 72 61 70 68 73 2e 0a 0a 20 20 | ndex.to.....directed.graphs..... |
| 0a80 | 20 20 45 78 61 6d 70 6c 65 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 54 68 65 20 | ..Examples.....--------.....The. |
| 0aa0 | 57 69 65 6e 65 72 20 69 6e 64 65 78 20 6f 66 20 74 68 65 20 28 75 6e 77 65 69 67 68 74 65 64 29 | Wiener.index.of.the.(unweighted) |
| 0ac0 | 20 63 6f 6d 70 6c 65 74 65 20 67 72 61 70 68 20 6f 6e 20 2a 6e 2a 20 6e 6f 64 65 73 0a 20 20 20 | .complete.graph.on.*n*.nodes.... |
| 0ae0 | 20 65 71 75 61 6c 73 20 74 68 65 20 6e 75 6d 62 65 72 20 6f 66 20 70 61 69 72 73 20 6f 66 20 74 | .equals.the.number.of.pairs.of.t |
| 0b00 | 68 65 20 2a 6e 2a 20 6e 6f 64 65 73 2c 20 73 69 6e 63 65 20 65 61 63 68 20 70 61 69 72 20 6f 66 | he.*n*.nodes,.since.each.pair.of |
| 0b20 | 0a 20 20 20 20 6e 6f 64 65 73 20 69 73 20 61 74 20 64 69 73 74 61 6e 63 65 20 6f 6e 65 3a 3a 0a | .....nodes.is.at.distance.one::. |
| 0b40 | 0a 20 20 20 20 20 20 20 20 3e 3e 3e 20 6e 20 3d 20 31 30 0a 20 20 20 20 20 20 20 20 3e 3e 3e 20 | .........>>>.n.=.10.........>>>. |
| 0b60 | 47 20 3d 20 6e 78 2e 63 6f 6d 70 6c 65 74 65 5f 67 72 61 70 68 28 6e 29 0a 20 20 20 20 20 20 20 | G.=.nx.complete_graph(n)........ |
| 0b80 | 20 3e 3e 3e 20 6e 78 2e 77 69 65 6e 65 72 5f 69 6e 64 65 78 28 47 29 20 3d 3d 20 6e 20 2a 20 28 | .>>>.nx.wiener_index(G).==.n.*.( |
| 0ba0 | 6e 20 2d 20 31 29 20 2f 20 32 0a 20 20 20 20 20 20 20 20 54 72 75 65 0a 0a 20 20 20 20 47 72 61 | n.-.1)./.2.........True......Gra |
| 0bc0 | 70 68 73 20 74 68 61 74 20 61 72 65 20 6e 6f 74 20 73 74 72 6f 6e 67 6c 79 2d 63 6f 6e 6e 65 63 | phs.that.are.not.strongly-connec |
| 0be0 | 74 65 64 20 68 61 76 65 20 69 6e 66 69 6e 69 74 65 20 57 69 65 6e 65 72 20 69 6e 64 65 78 3a 3a | ted.have.infinite.Wiener.index:: |
| 0c00 | 0a 0a 20 20 20 20 20 20 20 20 3e 3e 3e 20 47 20 3d 20 6e 78 2e 65 6d 70 74 79 5f 67 72 61 70 68 | ..........>>>.G.=.nx.empty_graph |
| 0c20 | 28 32 29 0a 20 20 20 20 20 20 20 20 3e 3e 3e 20 6e 78 2e 77 69 65 6e 65 72 5f 69 6e 64 65 78 28 | (2).........>>>.nx.wiener_index( |
| 0c40 | 47 29 0a 20 20 20 20 20 20 20 20 69 6e 66 0a 0a 20 20 20 20 52 65 66 65 72 65 6e 63 65 73 0a 20 | G).........inf......References.. |
| 0c60 | 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 2e 2e 20 5b 31 5d 20 60 57 69 6b 69 70 65 | ...----------........[1].`Wikipe |
| 0c80 | 64 69 61 3a 20 57 69 65 6e 65 72 20 49 6e 64 65 78 20 3c 68 74 74 70 73 3a 2f 2f 65 6e 2e 77 69 | dia:.Wiener.Index.<https://en.wi |
| 0ca0 | 6b 69 70 65 64 69 61 2e 6f 72 67 2f 77 69 6b 69 2f 57 69 65 6e 65 72 5f 69 6e 64 65 78 3e 60 5f | kipedia.org/wiki/Wiener_index>`_ |
| 0cc0 | 0a 20 20 20 20 da 03 69 6e 66 a9 01 72 06 00 00 00 63 01 00 00 00 00 00 00 00 00 00 00 00 03 00 | .......inf..r....c.............. |
| 0ce0 | 00 00 33 00 00 00 f3 42 00 00 00 4b 00 01 00 97 00 7c 00 5d 17 00 00 5c 02 00 00 7d 01 7d 02 7c | ..3....B...K.....|.]...\...}.}.| |
| 0d00 | 02 6a 01 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ab 00 00 00 00 00 00 00 96 01 97 | .j.............................. |
| 0d20 | 01 01 00 8c 19 04 00 79 00 ad 03 77 01 a9 01 4e 29 01 da 06 76 61 6c 75 65 73 29 03 da 02 2e 30 | .......y...w...N)...values)....0 |
| 0d40 | da 04 6e 6f 64 65 da 04 6e 62 72 73 73 03 00 00 00 20 20 20 fa 61 2f 68 6f 6d 65 2f 62 6c 61 63 | ..node..nbrss........a/home/blac |
| 0d60 | 6b 68 61 6f 2f 75 69 75 63 2d 63 6f 75 72 73 65 2d 67 72 61 70 68 2f 2e 76 65 6e 76 2f 6c 69 62 | khao/uiuc-course-graph/.venv/lib |
| 0d80 | 2f 70 79 74 68 6f 6e 33 2e 31 32 2f 73 69 74 65 2d 70 61 63 6b 61 67 65 73 2f 6e 65 74 77 6f 72 | /python3.12/site-packages/networ |
| 0da0 | 6b 78 2f 61 6c 67 6f 72 69 74 68 6d 73 2f 77 69 65 6e 65 72 2e 70 79 fa 09 3c 67 65 6e 65 78 70 | kx/algorithms/wiener.py..<genexp |
| 0dc0 | 72 3e 7a 1f 77 69 65 6e 65 72 5f 69 6e 64 65 78 2e 3c 6c 6f 63 61 6c 73 3e 2e 3c 67 65 6e 65 78 | r>z.wiener_index.<locals>.<genex |
| 0de0 | 70 72 3e 5a 00 00 00 73 1a 00 00 00 e8 00 f8 80 00 d2 26 4b b9 1a b8 14 b8 74 a0 74 a7 7b a1 7b | pr>Z...s..........&K.....t.t.{.{ |
| 0e00 | a7 7d d1 26 4b f9 73 04 00 00 00 82 1d 1f 01 e9 02 00 00 00 29 0a da 0b 69 73 5f 64 69 72 65 63 | .}.&K.s.............)...is_direc |
| 0e20 | 74 65 64 da 02 6e 78 da 15 69 73 5f 73 74 72 6f 6e 67 6c 79 5f 63 6f 6e 6e 65 63 74 65 64 da 0c | ted..nx..is_strongly_connected.. |
| 0e40 | 69 73 5f 63 6f 6e 6e 65 63 74 65 64 da 05 66 6c 6f 61 74 da 14 73 68 6f 72 74 65 73 74 5f 70 61 | is_connected..float..shortest_pa |
| 0e60 | 74 68 5f 6c 65 6e 67 74 68 da 03 73 75 6d da 02 69 74 da 05 63 68 61 69 6e da 0d 66 72 6f 6d 5f | th_length..sum..it..chain..from_ |
| 0e80 | 69 74 65 72 61 62 6c 65 29 05 da 01 47 72 06 00 00 00 da 09 63 6f 6e 6e 65 63 74 65 64 da 03 73 | iterable)...Gr......connected..s |
| 0ea0 | 70 6c da 05 74 6f 74 61 6c 73 05 00 00 00 20 20 20 20 20 72 11 00 00 00 72 03 00 00 00 72 03 00 | pl..totals.........r....r....r.. |
| 0ec0 | 00 00 19 00 00 00 73 7e 00 00 00 80 00 f0 78 01 00 30 31 af 7d a9 7d ac 7f 94 02 d7 10 28 d1 10 | ......s~......x..01.}.}......(.. |
| 0ee0 | 28 a8 11 d4 10 2b c4 42 c7 4f c1 4f d0 54 55 d3 44 56 80 49 d9 0b 14 dc 0f 14 90 55 8b 7c d0 08 | (....+.B.O.O.TU.DV.I.......U.|.. |
| 0f00 | 1b e4 0a 0c d7 0a 21 d1 0a 21 a0 21 a8 46 d4 0a 33 80 43 dc 0c 0f 94 02 97 08 91 08 d7 10 26 d1 | ......!..!.!.F..3.C...........&. |
| 0f20 | 10 26 d1 26 4b c0 73 d4 26 4b d3 10 4b d3 0c 4c 80 45 e0 14 15 97 4d 91 4d 94 4f 88 35 d0 04 32 | .&.&K.s.&K..K..L.E....M.M.O.5..2 |
| 0f40 | a8 15 b0 11 a9 19 d0 04 32 f3 00 00 00 00 da 08 64 69 72 65 63 74 65 64 da 0a 6d 75 6c 74 69 67 | ........2.......directed..multig |
| 0f60 | 72 61 70 68 63 02 00 00 00 00 00 00 00 00 00 00 00 04 00 00 00 03 00 00 00 f3 ce 00 00 00 87 03 | raphc........................... |
| 0f80 | 97 00 74 01 00 00 00 00 00 00 00 00 6a 02 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 | ..t.........j................... |
| 0fa0 | 7c 00 ab 01 00 00 00 00 00 00 73 0b 74 05 00 00 00 00 00 00 00 00 64 01 ab 01 00 00 00 00 00 00 | |.........s.t.........d......... |
| 0fc0 | 53 00 74 01 00 00 00 00 00 00 00 00 6a 06 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 | S.t.........j................... |
| 0fe0 | 7c 00 7c 01 ac 02 ab 02 00 00 00 00 00 00 7d 02 74 09 00 00 00 00 00 00 00 00 7c 00 6a 0a 00 00 | |.|...........}.t.........|.j... |
| 1000 | 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 7c 01 ac 02 ab 02 00 00 00 00 00 00 8a 03 74 0d | ................|.............t. |
| 1020 | 00 00 00 00 00 00 00 00 88 03 66 01 64 03 84 08 7c 02 44 00 ab 00 00 00 00 00 00 00 ab 01 00 00 | ..........f.d...|.D............. |
| 1040 | 00 00 00 00 64 04 7a 0b 00 00 53 00 29 05 75 df 07 00 00 52 65 74 75 72 6e 73 20 74 68 65 20 53 | ....d.z...S.).u....Returns.the.S |
| 1060 | 63 68 75 6c 74 7a 20 49 6e 64 65 78 20 28 6f 66 20 74 68 65 20 66 69 72 73 74 20 6b 69 6e 64 29 | chultz.Index.(of.the.first.kind) |
| 1080 | 20 6f 66 20 60 47 60 0a 0a 20 20 20 20 54 68 65 20 2a 53 63 68 75 6c 74 7a 20 49 6e 64 65 78 2a | .of.`G`......The.*Schultz.Index* |
| 10a0 | 20 5b 33 5d 5f 20 6f 66 20 61 20 67 72 61 70 68 20 69 73 20 74 68 65 20 73 75 6d 20 6f 76 65 72 | .[3]_.of.a.graph.is.the.sum.over |
| 10c0 | 20 61 6c 6c 20 6e 6f 64 65 20 70 61 69 72 73 20 6f 66 0a 20 20 20 20 64 69 73 74 61 6e 63 65 73 | .all.node.pairs.of.....distances |
| 10e0 | 20 74 69 6d 65 73 20 74 68 65 20 73 75 6d 20 6f 66 20 64 65 67 72 65 65 73 2e 20 43 6f 6e 73 69 | .times.the.sum.of.degrees..Consi |
| 1100 | 64 65 72 20 61 6e 20 75 6e 64 69 72 65 63 74 65 64 20 67 72 61 70 68 20 60 47 60 2e 0a 20 20 20 | der.an.undirected.graph.`G`..... |
| 1120 | 20 46 6f 72 20 65 61 63 68 20 6e 6f 64 65 20 70 61 69 72 20 60 60 28 75 2c 20 76 29 60 60 20 63 | .For.each.node.pair.``(u,.v)``.c |
| 1140 | 6f 6d 70 75 74 65 20 60 60 64 69 73 74 28 75 2c 20 76 29 20 2a 20 28 64 65 67 28 75 29 20 2b 20 | ompute.``dist(u,.v).*.(deg(u).+. |
| 1160 | 64 65 67 28 76 29 60 60 0a 20 20 20 20 77 68 65 72 65 20 60 60 64 69 73 74 60 60 20 69 73 20 74 | deg(v)``.....where.``dist``.is.t |
| 1180 | 68 65 20 73 68 6f 72 74 65 73 74 20 70 61 74 68 20 6c 65 6e 67 74 68 20 62 65 74 77 65 65 6e 20 | he.shortest.path.length.between. |
| 11a0 | 74 77 6f 20 6e 6f 64 65 73 20 61 6e 64 20 60 60 64 65 67 60 60 0a 20 20 20 20 69 73 20 74 68 65 | two.nodes.and.``deg``.....is.the |
| 11c0 | 20 64 65 67 72 65 65 20 6f 66 20 61 20 6e 6f 64 65 2e 0a 0a 20 20 20 20 54 68 65 20 53 63 68 75 | .degree.of.a.node.......The.Schu |
| 11e0 | 6c 74 7a 20 49 6e 64 65 78 20 69 73 20 74 68 65 20 73 75 6d 20 6f 66 20 74 68 65 73 65 20 71 75 | ltz.Index.is.the.sum.of.these.qu |
| 1200 | 61 6e 74 69 74 69 65 73 20 6f 76 65 72 20 61 6c 6c 20 28 75 6e 6f 72 64 65 72 65 64 29 0a 20 20 | antities.over.all.(unordered)... |
| 1220 | 20 20 70 61 69 72 73 20 6f 66 20 6e 6f 64 65 73 2e 0a 0a 20 20 20 20 50 61 72 61 6d 65 74 65 72 | ..pairs.of.nodes.......Parameter |
| 1240 | 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 47 20 3a 20 4e 65 74 77 6f 72 6b | s.....----------.....G.:.Network |
| 1260 | 58 20 67 72 61 70 68 0a 20 20 20 20 20 20 20 20 54 68 65 20 75 6e 64 69 72 65 63 74 65 64 20 67 | X.graph.........The.undirected.g |
| 1280 | 72 61 70 68 20 6f 66 20 69 6e 74 65 72 65 73 74 2e 0a 20 20 20 20 77 65 69 67 68 74 20 3a 20 73 | raph.of.interest......weight.:.s |
| 12a0 | 74 72 69 6e 67 20 6f 72 20 4e 6f 6e 65 2c 20 6f 70 74 69 6f 6e 61 6c 20 28 64 65 66 61 75 6c 74 | tring.or.None,.optional.(default |
| 12c0 | 3a 20 4e 6f 6e 65 29 0a 20 20 20 20 20 20 20 20 49 66 20 4e 6f 6e 65 2c 20 65 76 65 72 79 20 65 | :.None).........If.None,.every.e |
| 12e0 | 64 67 65 20 68 61 73 20 77 65 69 67 68 74 20 31 2e 0a 20 20 20 20 20 20 20 20 49 66 20 61 20 73 | dge.has.weight.1..........If.a.s |
| 1300 | 74 72 69 6e 67 2c 20 75 73 65 20 74 68 69 73 20 65 64 67 65 20 61 74 74 72 69 62 75 74 65 20 61 | tring,.use.this.edge.attribute.a |
| 1320 | 73 20 74 68 65 20 65 64 67 65 20 77 65 69 67 68 74 2e 0a 20 20 20 20 20 20 20 20 41 6e 79 20 65 | s.the.edge.weight..........Any.e |
| 1340 | 64 67 65 20 61 74 74 72 69 62 75 74 65 20 6e 6f 74 20 70 72 65 73 65 6e 74 20 64 65 66 61 75 6c | dge.attribute.not.present.defaul |
| 1360 | 74 73 20 74 6f 20 31 2e 0a 20 20 20 20 20 20 20 20 54 68 65 20 65 64 67 65 20 77 65 69 67 68 74 | ts.to.1..........The.edge.weight |
| 1380 | 73 20 61 72 65 20 75 73 65 64 20 74 6f 20 63 6f 6d 70 75 74 69 6e 67 20 73 68 6f 72 74 65 73 74 | s.are.used.to.computing.shortest |
| 13a0 | 2d 70 61 74 68 20 64 69 73 74 61 6e 63 65 73 2e 0a 0a 20 20 20 20 52 65 74 75 72 6e 73 0a 20 20 | -path.distances.......Returns... |
| 13c0 | 20 20 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 6e 75 6d 62 65 72 0a 20 20 20 20 20 20 20 20 54 68 65 | ..-------.....number.........The |
| 13e0 | 20 66 69 72 73 74 20 6b 69 6e 64 20 6f 66 20 53 63 68 75 6c 74 7a 20 49 6e 64 65 78 20 6f 66 20 | .first.kind.of.Schultz.Index.of. |
| 1400 | 74 68 65 20 67 72 61 70 68 20 60 47 60 2e 0a 0a 20 20 20 20 45 78 61 6d 70 6c 65 73 0a 20 20 20 | the.graph.`G`.......Examples.... |
| 1420 | 20 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 54 68 65 20 53 63 68 75 6c 74 7a 20 49 6e 64 65 78 20 | .--------.....The.Schultz.Index. |
| 1440 | 6f 66 20 74 68 65 20 28 75 6e 77 65 69 67 68 74 65 64 29 20 63 6f 6d 70 6c 65 74 65 20 67 72 61 | of.the.(unweighted).complete.gra |
| 1460 | 70 68 20 6f 6e 20 2a 6e 2a 20 6e 6f 64 65 73 0a 20 20 20 20 65 71 75 61 6c 73 20 74 68 65 20 6e | ph.on.*n*.nodes.....equals.the.n |
| 1480 | 75 6d 62 65 72 20 6f 66 20 70 61 69 72 73 20 6f 66 20 74 68 65 20 2a 6e 2a 20 6e 6f 64 65 73 20 | umber.of.pairs.of.the.*n*.nodes. |
| 14a0 | 74 69 6d 65 73 20 60 60 32 20 2a 20 28 6e 20 2d 20 31 29 60 60 2c 0a 20 20 20 20 73 69 6e 63 65 | times.``2.*.(n.-.1)``,.....since |
| 14c0 | 20 65 61 63 68 20 70 61 69 72 20 6f 66 20 6e 6f 64 65 73 20 69 73 20 61 74 20 64 69 73 74 61 6e | .each.pair.of.nodes.is.at.distan |
| 14e0 | 63 65 20 6f 6e 65 20 61 6e 64 20 74 68 65 20 73 75 6d 20 6f 66 20 64 65 67 72 65 65 0a 20 20 20 | ce.one.and.the.sum.of.degree.... |
| 1500 | 20 6f 66 20 74 77 6f 20 6e 6f 64 65 73 20 69 73 20 60 60 32 20 2a 20 28 6e 20 2d 20 31 29 60 60 | .of.two.nodes.is.``2.*.(n.-.1)`` |
| 1520 | 2e 0a 0a 20 20 20 20 3e 3e 3e 20 6e 20 3d 20 31 30 0a 20 20 20 20 3e 3e 3e 20 47 20 3d 20 6e 78 | .......>>>.n.=.10.....>>>.G.=.nx |
| 1540 | 2e 63 6f 6d 70 6c 65 74 65 5f 67 72 61 70 68 28 6e 29 0a 20 20 20 20 3e 3e 3e 20 6e 78 2e 73 63 | .complete_graph(n).....>>>.nx.sc |
| 1560 | 68 75 6c 74 7a 5f 69 6e 64 65 78 28 47 29 20 3d 3d 20 28 6e 20 2a 20 28 6e 20 2d 20 31 29 20 2f | hultz_index(G).==.(n.*.(n.-.1)./ |
| 1580 | 20 32 29 20 2a 20 28 32 20 2a 20 28 6e 20 2d 20 31 29 29 0a 20 20 20 20 54 72 75 65 0a 0a 20 20 | .2).*.(2.*.(n.-.1)).....True.... |
| 15a0 | 20 20 47 72 61 70 68 20 74 68 61 74 20 69 73 20 64 69 73 63 6f 6e 6e 65 63 74 65 64 0a 0a 20 20 | ..Graph.that.is.disconnected.... |
| 15c0 | 20 20 3e 3e 3e 20 6e 78 2e 73 63 68 75 6c 74 7a 5f 69 6e 64 65 78 28 6e 78 2e 65 6d 70 74 79 5f | ..>>>.nx.schultz_index(nx.empty_ |
| 15e0 | 67 72 61 70 68 28 32 29 29 0a 20 20 20 20 69 6e 66 0a 0a 20 20 20 20 52 65 66 65 72 65 6e 63 65 | graph(2)).....inf......Reference |
| 1600 | 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 2e 2e 20 5b 31 5d 20 49 2e 20 47 | s.....----------........[1].I..G |
| 1620 | 75 74 6d 61 6e 2c 20 53 65 6c 65 63 74 65 64 20 70 72 6f 70 65 72 74 69 65 73 20 6f 66 20 74 68 | utman,.Selected.properties.of.th |
| 1640 | 65 20 53 63 68 75 6c 74 7a 20 6d 6f 6c 65 63 75 6c 61 72 20 74 6f 70 6f 6c 6f 67 69 63 61 6c 20 | e.Schultz.molecular.topological. |
| 1660 | 69 6e 64 65 78 2c 0a 20 20 20 20 20 20 20 20 20 20 20 4a 2e 20 43 68 65 6d 2e 20 49 6e 66 2e 20 | index,............J..Chem..Inf.. |
| 1680 | 43 6f 6d 70 75 74 2e 20 53 63 69 2e 20 33 34 20 28 31 39 39 34 29 2c 20 31 30 38 37 e2 80 93 31 | Comput..Sci..34.(1994),.1087...1 |
| 16a0 | 30 38 39 2e 0a 20 20 20 20 20 20 20 20 20 20 20 68 74 74 70 73 3a 2f 2f 64 6f 69 2e 6f 72 67 2f | 089.............https://doi.org/ |
| 16c0 | 31 30 2e 31 30 32 31 2f 63 69 30 30 30 32 31 61 30 30 39 0a 20 20 20 20 2e 2e 20 5b 32 5d 20 4d | 10.1021/ci00021a009........[2].M |
| 16e0 | 2e 56 2e 20 44 69 75 64 65 61 61 20 61 6e 64 20 49 2e 20 47 75 74 6d 61 6e 2c 20 57 69 65 6e 65 | .V..Diudeaa.and.I..Gutman,.Wiene |
| 1700 | 72 2d 54 79 70 65 20 54 6f 70 6f 6c 6f 67 69 63 61 6c 20 49 6e 64 69 63 65 73 2c 0a 20 20 20 20 | r-Type.Topological.Indices,..... |
| 1720 | 20 20 20 20 20 20 20 43 72 6f 61 74 69 63 61 20 43 68 65 6d 69 63 61 20 41 63 74 61 2c 20 37 31 | .......Croatica.Chemica.Acta,.71 |
| 1740 | 20 28 31 39 39 38 29 2c 20 32 31 2d 35 31 2e 0a 20 20 20 20 20 20 20 20 20 20 20 68 74 74 70 73 | .(1998),.21-51.............https |
| 1760 | 3a 2f 2f 68 72 63 61 6b 2e 73 72 63 65 2e 68 72 2f 31 33 32 33 32 33 0a 20 20 20 20 2e 2e 20 5b | ://hrcak.srce.hr/132323........[ |
| 1780 | 33 5d 20 48 2e 20 50 2e 20 53 63 68 75 6c 74 7a 2c 20 54 6f 70 6f 6c 6f 67 69 63 61 6c 20 6f 72 | 3].H..P..Schultz,.Topological.or |
| 17a0 | 67 61 6e 69 63 20 63 68 65 6d 69 73 74 72 79 2e 20 31 2e 0a 20 20 20 20 20 20 20 20 20 20 20 47 | ganic.chemistry..1.............G |
| 17c0 | 72 61 70 68 20 74 68 65 6f 72 79 20 61 6e 64 20 74 6f 70 6f 6c 6f 67 69 63 61 6c 20 69 6e 64 69 | raph.theory.and.topological.indi |
| 17e0 | 63 65 73 20 6f 66 20 61 6c 6b 61 6e 65 73 2c 69 0a 20 20 20 20 20 20 20 20 20 20 20 4a 2e 20 43 | ces.of.alkanes,i............J..C |
| 1800 | 68 65 6d 2e 20 49 6e 66 2e 20 43 6f 6d 70 75 74 2e 20 53 63 69 2e 20 32 39 20 28 31 39 38 39 29 | hem..Inf..Comput..Sci..29.(1989) |
| 1820 | 2c 20 32 33 39 e2 80 93 32 35 37 2e 0a 0a 20 20 20 20 72 09 00 00 00 72 0a 00 00 00 63 01 00 00 | ,.239...257.......r....r....c... |
| 1840 | 00 00 00 00 00 00 00 00 00 06 00 00 00 33 00 00 00 f3 70 00 00 00 95 01 4b 00 01 00 97 00 7c 00 | .............3....p.....K.....|. |
| 1860 | 5d 2d 00 00 5c 02 00 00 7d 01 7d 02 7c 02 6a 01 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 | ]-..\...}.}.|.j................. |
| 1880 | 00 00 ab 00 00 00 00 00 00 00 44 00 5d 15 00 00 5c 02 00 00 7d 03 7d 04 7c 04 89 05 7c 01 19 00 | ..........D.]...\...}.}.|...|... |
| 18a0 | 00 00 89 05 7c 03 19 00 00 00 7a 00 00 00 7a 05 00 00 96 01 97 01 01 00 8c 17 04 00 8c 2f 04 00 | ....|.....z...z............../.. |
| 18c0 | 79 00 ad 03 77 01 72 0c 00 00 00 a9 01 da 05 69 74 65 6d 73 29 06 72 0e 00 00 00 da 01 75 da 04 | y...w.r........items).r......u.. |
| 18e0 | 69 6e 66 6f da 01 76 da 04 64 69 73 74 da 01 64 73 06 00 00 00 20 20 20 20 20 80 72 11 00 00 00 | info..v..dist..ds..........r.... |
| 1900 | 72 12 00 00 00 7a 20 73 63 68 75 6c 74 7a 5f 69 6e 64 65 78 2e 3c 6c 6f 63 61 6c 73 3e 2e 3c 67 | r....z.schultz_index.<locals>.<g |
| 1920 | 65 6e 65 78 70 72 3e a0 00 00 00 73 3d 00 00 00 f8 e8 00 f8 80 00 d2 0e 53 a9 07 a8 01 a8 34 c0 | enexpr>....s=...........S.....4. |
| 1940 | 64 c7 6a c1 6a c3 6c d2 0e 53 b9 37 b8 31 b8 64 88 74 90 71 98 11 91 74 98 61 a0 01 99 64 91 7b | d.j.j.l..S.7.1.d.t.q...t.a...d.{ |
| 1960 | d5 0f 23 d0 0e 53 d0 0f 23 d1 0e 53 f9 f3 04 00 00 00 83 33 36 01 72 13 00 00 00 a9 07 72 15 00 | ..#..S..#..S.......36.r......r.. |
| 1980 | 00 00 72 17 00 00 00 72 18 00 00 00 72 19 00 00 00 da 04 64 69 63 74 da 06 64 65 67 72 65 65 72 | ..r....r....r......dict..degreer |
| 19a0 | 1a 00 00 00 a9 04 72 1e 00 00 00 72 06 00 00 00 72 20 00 00 00 72 2d 00 00 00 73 04 00 00 00 20 | ......r....r....r....r-...s..... |
| 19c0 | 20 20 40 72 11 00 00 00 72 04 00 00 00 72 04 00 00 00 5f 00 00 00 73 55 00 00 00 f8 80 00 f4 78 | ..@r....r....r...._...sU.......x |
| 19e0 | 01 00 0c 0e 8f 3f 89 3f 98 31 d4 0b 1d dc 0f 14 90 55 8b 7c d0 08 1b e4 0a 0c d7 0a 21 d1 0a 21 | .....?.?.1.......U.|........!..! |
| 1a00 | a0 21 a8 46 d4 0a 33 80 43 dc 08 0c 88 51 8f 58 89 58 98 66 d4 08 25 80 41 dc 0b 0e d3 0e 53 b0 | .!.F..3.C....Q.X.X.f..%.A.....S. |
| 1a20 | 33 d4 0e 53 d3 0b 53 d0 56 57 d1 0b 57 d0 04 57 72 22 00 00 00 63 02 00 00 00 00 00 00 00 00 00 | 3..S..S.VW..W..Wr"...c.......... |
| 1a40 | 00 00 04 00 00 00 03 00 00 00 f3 ce 00 00 00 87 03 97 00 74 01 00 00 00 00 00 00 00 00 6a 02 00 | ...................t.........j.. |
| 1a60 | 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 7c 00 ab 01 00 00 00 00 00 00 73 0b 74 05 00 | .................|.........s.t.. |
| 1a80 | 00 00 00 00 00 00 00 64 01 ab 01 00 00 00 00 00 00 53 00 74 01 00 00 00 00 00 00 00 00 6a 06 00 | .......d.........S.t.........j.. |
| 1aa0 | 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 7c 00 7c 01 ac 02 ab 02 00 00 00 00 00 00 7d | .................|.|...........} |
| 1ac0 | 02 74 09 00 00 00 00 00 00 00 00 7c 00 6a 0a 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 | .t.........|.j.................. |
| 1ae0 | 00 7c 01 ac 02 ab 02 00 00 00 00 00 00 8a 03 74 0d 00 00 00 00 00 00 00 00 88 03 66 01 64 03 84 | .|.............t...........f.d.. |
| 1b00 | 08 7c 02 44 00 ab 00 00 00 00 00 00 00 ab 01 00 00 00 00 00 00 64 04 7a 0b 00 00 53 00 29 05 75 | .|.D.................d.z...S.).u |
| 1b20 | 37 07 00 00 52 65 74 75 72 6e 73 20 74 68 65 20 47 75 74 6d 61 6e 20 49 6e 64 65 78 20 66 6f 72 | 7...Returns.the.Gutman.Index.for |
| 1b40 | 20 74 68 65 20 67 72 61 70 68 20 60 47 60 2e 0a 0a 20 20 20 20 54 68 65 20 2a 47 75 74 6d 61 6e | .the.graph.`G`.......The.*Gutman |
| 1b60 | 20 49 6e 64 65 78 2a 20 6d 65 61 73 75 72 65 73 20 74 68 65 20 74 6f 70 6f 6c 6f 67 79 20 6f 66 | .Index*.measures.the.topology.of |
| 1b80 | 20 6e 65 74 77 6f 72 6b 73 2c 20 65 73 70 65 63 69 61 6c 6c 79 20 66 6f 72 20 6d 6f 6c 65 63 75 | .networks,.especially.for.molecu |
| 1ba0 | 6c 65 0a 20 20 20 20 6e 65 74 77 6f 72 6b 73 20 6f 66 20 61 74 6f 6d 73 20 63 6f 6e 6e 65 63 74 | le.....networks.of.atoms.connect |
| 1bc0 | 65 64 20 62 79 20 62 6f 6e 64 73 20 5b 31 5d 5f 2e 20 49 74 20 69 73 20 61 6c 73 6f 20 63 61 6c | ed.by.bonds.[1]_..It.is.also.cal |
| 1be0 | 6c 65 64 20 74 68 65 20 53 63 68 75 6c 74 7a 20 49 6e 64 65 78 0a 20 20 20 20 6f 66 20 74 68 65 | led.the.Schultz.Index.....of.the |
| 1c00 | 20 73 65 63 6f 6e 64 20 6b 69 6e 64 20 5b 32 5d 5f 2e 0a 0a 20 20 20 20 43 6f 6e 73 69 64 65 72 | .second.kind.[2]_.......Consider |
| 1c20 | 20 61 6e 20 75 6e 64 69 72 65 63 74 65 64 20 67 72 61 70 68 20 60 47 60 20 77 69 74 68 20 6e 6f | .an.undirected.graph.`G`.with.no |
| 1c40 | 64 65 20 73 65 74 20 60 60 56 60 60 2e 0a 20 20 20 20 54 68 65 20 47 75 74 6d 61 6e 20 49 6e 64 | de.set.``V``......The.Gutman.Ind |
| 1c60 | 65 78 20 6f 66 20 61 20 67 72 61 70 68 20 69 73 20 74 68 65 20 73 75 6d 20 6f 76 65 72 20 61 6c | ex.of.a.graph.is.the.sum.over.al |
| 1c80 | 6c 20 28 75 6e 6f 72 64 65 72 65 64 29 20 70 61 69 72 73 20 6f 66 20 6e 6f 64 65 73 0a 20 20 20 | l.(unordered).pairs.of.nodes.... |
| 1ca0 | 20 6f 66 20 6e 6f 64 65 73 20 60 60 28 75 2c 20 76 29 60 60 2c 20 77 69 74 68 20 64 69 73 74 61 | .of.nodes.``(u,.v)``,.with.dista |
| 1cc0 | 6e 63 65 20 60 60 64 69 73 74 28 75 2c 20 76 29 60 60 20 61 6e 64 20 64 65 67 72 65 65 73 20 60 | nce.``dist(u,.v)``.and.degrees.` |
| 1ce0 | 60 64 65 67 28 75 29 60 60 0a 20 20 20 20 61 6e 64 20 60 60 64 65 67 28 76 29 60 60 2c 20 6f 66 | `deg(u)``.....and.``deg(v)``,.of |
| 1d00 | 20 60 60 64 69 73 74 28 75 2c 20 76 29 20 2a 20 64 65 67 28 75 29 20 2a 20 64 65 67 28 76 29 60 | .``dist(u,.v).*.deg(u).*.deg(v)` |
| 1d20 | 60 0a 0a 20 20 20 20 50 61 72 61 6d 65 74 65 72 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d | `......Parameters.....---------- |
| 1d40 | 0a 20 20 20 20 47 20 3a 20 4e 65 74 77 6f 72 6b 58 20 67 72 61 70 68 0a 0a 20 20 20 20 77 65 69 | .....G.:.NetworkX.graph......wei |
| 1d60 | 67 68 74 20 3a 20 73 74 72 69 6e 67 20 6f 72 20 4e 6f 6e 65 2c 20 6f 70 74 69 6f 6e 61 6c 20 28 | ght.:.string.or.None,.optional.( |
| 1d80 | 64 65 66 61 75 6c 74 3a 20 4e 6f 6e 65 29 0a 20 20 20 20 20 20 20 20 49 66 20 4e 6f 6e 65 2c 20 | default:.None).........If.None,. |
| 1da0 | 65 76 65 72 79 20 65 64 67 65 20 68 61 73 20 77 65 69 67 68 74 20 31 2e 0a 20 20 20 20 20 20 20 | every.edge.has.weight.1......... |
| 1dc0 | 20 49 66 20 61 20 73 74 72 69 6e 67 2c 20 75 73 65 20 74 68 69 73 20 65 64 67 65 20 61 74 74 72 | .If.a.string,.use.this.edge.attr |
| 1de0 | 69 62 75 74 65 20 61 73 20 74 68 65 20 65 64 67 65 20 77 65 69 67 68 74 2e 0a 20 20 20 20 20 20 | ibute.as.the.edge.weight........ |
| 1e00 | 20 20 41 6e 79 20 65 64 67 65 20 61 74 74 72 69 62 75 74 65 20 6e 6f 74 20 70 72 65 73 65 6e 74 | ..Any.edge.attribute.not.present |
| 1e20 | 20 64 65 66 61 75 6c 74 73 20 74 6f 20 31 2e 0a 20 20 20 20 20 20 20 20 54 68 65 20 65 64 67 65 | .defaults.to.1..........The.edge |
| 1e40 | 20 77 65 69 67 68 74 73 20 61 72 65 20 75 73 65 64 20 74 6f 20 63 6f 6d 70 75 74 69 6e 67 20 73 | .weights.are.used.to.computing.s |
| 1e60 | 68 6f 72 74 65 73 74 2d 70 61 74 68 20 64 69 73 74 61 6e 63 65 73 2e 0a 0a 20 20 20 20 52 65 74 | hortest-path.distances.......Ret |
| 1e80 | 75 72 6e 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 6e 75 6d 62 65 72 0a 20 20 20 20 | urns.....-------.....number..... |
| 1ea0 | 20 20 20 20 54 68 65 20 47 75 74 6d 61 6e 20 49 6e 64 65 78 20 6f 66 20 74 68 65 20 67 72 61 70 | ....The.Gutman.Index.of.the.grap |
| 1ec0 | 68 20 60 47 60 2e 0a 0a 20 20 20 20 45 78 61 6d 70 6c 65 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d | h.`G`.......Examples.....------- |
| 1ee0 | 2d 0a 20 20 20 20 54 68 65 20 47 75 74 6d 61 6e 20 49 6e 64 65 78 20 6f 66 20 74 68 65 20 28 75 | -.....The.Gutman.Index.of.the.(u |
| 1f00 | 6e 77 65 69 67 68 74 65 64 29 20 63 6f 6d 70 6c 65 74 65 20 67 72 61 70 68 20 6f 6e 20 2a 6e 2a | nweighted).complete.graph.on.*n* |
| 1f20 | 20 6e 6f 64 65 73 0a 20 20 20 20 65 71 75 61 6c 73 20 74 68 65 20 6e 75 6d 62 65 72 20 6f 66 20 | .nodes.....equals.the.number.of. |
| 1f40 | 70 61 69 72 73 20 6f 66 20 74 68 65 20 2a 6e 2a 20 6e 6f 64 65 73 20 74 69 6d 65 73 20 60 60 28 | pairs.of.the.*n*.nodes.times.``( |
| 1f60 | 6e 20 2d 20 31 29 20 2a 20 28 6e 20 2d 20 31 29 60 60 2c 0a 20 20 20 20 73 69 6e 63 65 20 65 61 | n.-.1).*.(n.-.1)``,.....since.ea |
| 1f80 | 63 68 20 70 61 69 72 20 6f 66 20 6e 6f 64 65 73 20 69 73 20 61 74 20 64 69 73 74 61 6e 63 65 20 | ch.pair.of.nodes.is.at.distance. |
| 1fa0 | 6f 6e 65 20 61 6e 64 20 74 68 65 20 70 72 6f 64 75 63 74 20 6f 66 20 64 65 67 72 65 65 20 6f 66 | one.and.the.product.of.degree.of |
| 1fc0 | 20 74 77 6f 0a 20 20 20 20 76 65 72 74 69 63 65 73 20 69 73 20 60 60 28 6e 20 2d 20 31 29 20 2a | .two.....vertices.is.``(n.-.1).* |
| 1fe0 | 20 28 6e 20 2d 20 31 29 60 60 2e 0a 0a 20 20 20 20 3e 3e 3e 20 6e 20 3d 20 31 30 0a 20 20 20 20 | .(n.-.1)``.......>>>.n.=.10..... |
| 2000 | 3e 3e 3e 20 47 20 3d 20 6e 78 2e 63 6f 6d 70 6c 65 74 65 5f 67 72 61 70 68 28 6e 29 0a 20 20 20 | >>>.G.=.nx.complete_graph(n).... |
| 2020 | 20 3e 3e 3e 20 6e 78 2e 67 75 74 6d 61 6e 5f 69 6e 64 65 78 28 47 29 20 3d 3d 20 28 6e 20 2a 20 | .>>>.nx.gutman_index(G).==.(n.*. |
| 2040 | 28 6e 20 2d 20 31 29 20 2f 20 32 29 20 2a 20 28 28 6e 20 2d 20 31 29 20 2a 20 28 6e 20 2d 20 31 | (n.-.1)./.2).*.((n.-.1).*.(n.-.1 |
| 2060 | 29 29 0a 20 20 20 20 54 72 75 65 0a 0a 20 20 20 20 47 72 61 70 68 73 20 74 68 61 74 20 61 72 65 | )).....True......Graphs.that.are |
| 2080 | 20 64 69 73 63 6f 6e 6e 65 63 74 65 64 0a 0a 20 20 20 20 3e 3e 3e 20 47 20 3d 20 6e 78 2e 65 6d | .disconnected......>>>.G.=.nx.em |
| 20a0 | 70 74 79 5f 67 72 61 70 68 28 32 29 0a 20 20 20 20 3e 3e 3e 20 6e 78 2e 67 75 74 6d 61 6e 5f 69 | pty_graph(2).....>>>.nx.gutman_i |
| 20c0 | 6e 64 65 78 28 47 29 0a 20 20 20 20 69 6e 66 0a 0a 20 20 20 20 52 65 66 65 72 65 6e 63 65 73 0a | ndex(G).....inf......References. |
| 20e0 | 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 2e 2e 20 5b 31 5d 20 4d 2e 56 2e 20 44 | ....----------........[1].M.V..D |
| 2100 | 69 75 64 65 61 61 20 61 6e 64 20 49 2e 20 47 75 74 6d 61 6e 2c 20 57 69 65 6e 65 72 2d 54 79 70 | iudeaa.and.I..Gutman,.Wiener-Typ |
| 2120 | 65 20 54 6f 70 6f 6c 6f 67 69 63 61 6c 20 49 6e 64 69 63 65 73 2c 0a 20 20 20 20 20 20 20 20 20 | e.Topological.Indices,.......... |
| 2140 | 20 20 43 72 6f 61 74 69 63 61 20 43 68 65 6d 69 63 61 20 41 63 74 61 2c 20 37 31 20 28 31 39 39 | ..Croatica.Chemica.Acta,.71.(199 |
| 2160 | 38 29 2c 20 32 31 2d 35 31 2e 0a 20 20 20 20 20 20 20 20 20 20 20 68 74 74 70 73 3a 2f 2f 68 72 | 8),.21-51.............https://hr |
| 2180 | 63 61 6b 2e 73 72 63 65 2e 68 72 2f 31 33 32 33 32 33 0a 20 20 20 20 2e 2e 20 5b 32 5d 20 49 2e | cak.srce.hr/132323........[2].I. |
| 21a0 | 20 47 75 74 6d 61 6e 2c 20 53 65 6c 65 63 74 65 64 20 70 72 6f 70 65 72 74 69 65 73 20 6f 66 20 | .Gutman,.Selected.properties.of. |
| 21c0 | 74 68 65 20 53 63 68 75 6c 74 7a 20 6d 6f 6c 65 63 75 6c 61 72 20 74 6f 70 6f 6c 6f 67 69 63 61 | the.Schultz.molecular.topologica |
| 21e0 | 6c 20 69 6e 64 65 78 2c 0a 20 20 20 20 20 20 20 20 20 20 20 4a 2e 20 43 68 65 6d 2e 20 49 6e 66 | l.index,............J..Chem..Inf |
| 2200 | 2e 20 43 6f 6d 70 75 74 2e 20 53 63 69 2e 20 33 34 20 28 31 39 39 34 29 2c 20 31 30 38 37 e2 80 | ..Comput..Sci..34.(1994),.1087.. |
| 2220 | 93 31 30 38 39 2e 0a 20 20 20 20 20 20 20 20 20 20 20 68 74 74 70 73 3a 2f 2f 64 6f 69 2e 6f 72 | .1089.............https://doi.or |
| 2240 | 67 2f 31 30 2e 31 30 32 31 2f 63 69 30 30 30 32 31 61 30 30 39 0a 0a 20 20 20 20 72 09 00 00 00 | g/10.1021/ci00021a009......r.... |
| 2260 | 72 0a 00 00 00 63 01 00 00 00 00 00 00 00 00 00 00 00 05 00 00 00 33 00 00 00 f3 70 00 00 00 95 | r....c................3....p.... |
| 2280 | 01 4b 00 01 00 97 00 7c 00 5d 2d 00 00 5c 02 00 00 7d 01 7d 02 7c 02 6a 01 00 00 00 00 00 00 00 | .K.....|.]-..\...}.}.|.j........ |
| 22a0 | 00 00 00 00 00 00 00 00 00 00 00 ab 00 00 00 00 00 00 00 44 00 5d 15 00 00 5c 02 00 00 7d 03 7d | ...................D.]...\...}.} |
| 22c0 | 04 7c 04 89 05 7c 01 19 00 00 00 7a 05 00 00 89 05 7c 03 19 00 00 00 7a 05 00 00 96 01 97 01 01 | .|...|.....z.....|.....z........ |
| 22e0 | 00 8c 17 04 00 8c 2f 04 00 79 00 ad 03 77 01 72 0c 00 00 00 72 27 00 00 00 29 06 72 0e 00 00 00 | ....../..y...w.r....r'...).r.... |
| 2300 | 72 29 00 00 00 da 05 76 69 6e 66 6f 72 2b 00 00 00 72 2c 00 00 00 72 2d 00 00 00 73 06 00 00 00 | r).....vinfor+...r,...r-...s.... |
| 2320 | 20 20 20 20 20 80 72 11 00 00 00 72 12 00 00 00 7a 1f 67 75 74 6d 61 6e 5f 69 6e 64 65 78 2e 3c | ......r....r....z.gutman_index.< |
| 2340 | 6c 6f 63 61 6c 73 3e 2e 3c 67 65 6e 65 78 70 72 3e e2 00 00 00 73 3d 00 00 00 f8 e8 00 f8 80 00 | locals>.<genexpr>....s=......... |
| 2360 | d2 0e 53 a1 68 a0 61 a8 15 c0 55 c7 5b c1 5b c3 5d d2 0e 53 b9 27 b8 21 b8 54 88 74 90 61 98 01 | ..S.h.a...U.[.[.]..S.'.!.T.t.a.. |
| 2380 | 91 64 89 7b 98 51 98 71 99 54 d5 0f 21 d0 0e 53 d0 0f 21 d1 0e 53 f9 72 2e 00 00 00 72 13 00 00 | .d.{.Q.q.T..!..S..!..S.r....r... |
| 23a0 | 00 72 2f 00 00 00 72 32 00 00 00 73 04 00 00 00 20 20 20 40 72 11 00 00 00 72 05 00 00 00 72 05 | .r/...r2...s.......@r....r....r. |
| 23c0 | 00 00 00 a3 00 00 00 73 55 00 00 00 f8 80 00 f4 74 01 00 0c 0e 8f 3f 89 3f 98 31 d4 0b 1d dc 0f | .......sU.......t.....?.?.1..... |
| 23e0 | 14 90 55 8b 7c d0 08 1b e4 0a 0c d7 0a 21 d1 0a 21 a0 21 a8 46 d4 0a 33 80 43 dc 08 0c 88 51 8f | ..U.|........!..!.!.F..3.C....Q. |
| 2400 | 58 89 58 98 66 d4 08 25 80 41 dc 0b 0e d3 0e 53 b0 23 d4 0e 53 d3 0b 53 d0 56 57 d1 0b 57 d0 04 | X.X.f..%.A.....S.#..S..S.VW..W.. |
| 2420 | 57 72 22 00 00 00 72 0c 00 00 00 29 0c da 07 5f 5f 64 6f 63 5f 5f da 09 69 74 65 72 74 6f 6f 6c | Wr"...r....)...__doc__..itertool |
| 2440 | 73 72 1b 00 00 00 da 08 6e 65 74 77 6f 72 6b 78 72 15 00 00 00 da 07 5f 5f 61 6c 6c 5f 5f da 0d | sr......networkxr......__all__.. |
| 2460 | 5f 64 69 73 70 61 74 63 68 61 62 6c 65 72 03 00 00 00 da 05 75 74 69 6c 73 da 13 6e 6f 74 5f 69 | _dispatchabler......utils..not_i |
| 2480 | 6d 70 6c 65 6d 65 6e 74 65 64 5f 66 6f 72 72 04 00 00 00 72 05 00 00 00 a9 00 72 22 00 00 00 72 | mplemented_forr....r......r"...r |
| 24a0 | 11 00 00 00 fa 08 3c 6d 6f 64 75 6c 65 3e 72 3e 00 00 00 01 00 00 00 73 de 00 00 00 f0 03 01 01 | ......<module>r>.......s........ |
| 24c0 | 01 f1 02 0f 01 04 f3 22 00 01 17 e3 00 15 e2 0a 3b 80 07 f0 06 00 02 12 80 12 d7 01 11 d1 01 11 | ......."........;............... |
| 24e0 | 98 58 d4 01 26 f2 02 42 01 01 33 f3 03 00 02 27 f0 02 42 01 01 33 f0 4a 02 00 02 04 87 18 81 18 | .X..&..B..3....'..B..3.J........ |
| 2500 | d7 01 1d d1 01 1d 98 6a d3 01 29 d8 01 03 87 18 81 18 d7 01 1d d1 01 1d 98 6c d3 01 2b d8 01 11 | .......j..)..............l..+... |
| 2520 | 80 12 d7 01 11 d1 01 11 98 58 d4 01 26 f2 02 3e 01 58 01 f3 03 00 02 27 f3 03 00 02 2c f3 03 00 | .........X..&..>.X.....'....,... |
| 2540 | 02 2a f0 06 3e 01 58 01 f0 42 02 00 02 04 87 18 81 18 d7 01 1d d1 01 1d 98 6a d3 01 29 d8 01 03 | .*..>.X..B...............j..)... |
| 2560 | 87 18 81 18 d7 01 1d d1 01 1d 98 6c d3 01 2b d8 01 11 80 12 d7 01 11 d1 01 11 98 58 d4 01 26 f2 | ...........l..+............X..&. |
| 2580 | 02 3c 01 58 01 f3 03 00 02 27 f3 03 00 02 2c f3 03 00 02 2a f1 06 3c 01 58 01 72 22 00 00 00 | .<.X.....'....,....*..<.X.r"... |