summaryrefslogtreecommitdiff
path: root/.venv/lib/python3.12/site-packages/networkx/drawing/tests/test_pylab.py
blob: 5335dd4231f966106bf3e73fecfb5f5d132f01fe (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
"""Unit tests for matplotlib drawing functions."""

import itertools
import os
import warnings

import pytest

import networkx as nx

mpl = pytest.importorskip("matplotlib")
np = pytest.importorskip("numpy")
mpl.use("PS")
plt = pytest.importorskip("matplotlib.pyplot")
plt.rcParams["text.usetex"] = False


barbell = nx.barbell_graph(4, 6)

defaults = {
    "node_pos": None,
    "node_visible": True,
    "node_color": "#1f78b4",
    "node_size": 300,
    "node_label": {
        "size": 12,
        "color": "#000000",
        "family": "sans-serif",
        "weight": "normal",
        "alpha": 1.0,
        "background_color": None,
        "background_alpha": None,
        "h_align": "center",
        "v_align": "center",
        "bbox": None,
    },
    "node_shape": "o",
    "node_alpha": 1.0,
    "node_border_width": 1.0,
    "node_border_color": "face",
    "edge_visible": True,
    "edge_width": 1.0,
    "edge_color": "#000000",
    "edge_label": {
        "size": 12,
        "color": "#000000",
        "family": "sans-serif",
        "weight": "normal",
        "alpha": 1.0,
        "bbox": {"boxstyle": "round", "ec": (1.0, 1.0, 1.0), "fc": (1.0, 1.0, 1.0)},
        "h_align": "center",
        "v_align": "center",
        "pos": 0.5,
        "rotate": True,
    },
    "edge_style": "-",
    "edge_alpha": 1.0,
    # These are for undirected-graphs. Directed graphs shouls use "-|>" and 10, respectively
    "edge_arrowstyle": "-",
    "edge_arrowsize": 0,
    "edge_curvature": "arc3",
    "edge_source_margin": 0,
    "edge_target_margin": 0,
}


@pytest.mark.parametrize(
    ("param_name", "param_value", "expected"),
    (
        ("node_color", None, defaults["node_color"]),
        ("node_color", "#FF0000", "red"),
        ("node_color", "color", "lime"),
    ),
)
def test_display_arg_handling_node_color(param_name, param_value, expected):
    G = nx.path_graph(4)
    nx.set_node_attributes(G, "#00FF00", "color")
    canvas = plt.figure().add_subplot(111)
    nx.display(G, canvas=canvas, **{param_name: param_value})
    assert mpl.colors.same_color(canvas.get_children()[0].get_edgecolors()[0], expected)
    plt.close()


@pytest.mark.parametrize(
    ("param_value", "expected"),
    (
        (None, (1, 1, 1, 1)),  # default value
        (0.5, (0.5, 0.5, 0.5, 0.5)),
        ("n_alpha", (1.0, 1 / 2, 1 / 3, 0.25)),
    ),
)
def test_display_arg_handling_node_alpha(param_value, expected):
    G = nx.path_graph(4)
    nx.set_node_attributes(G, {n: 1 / (n + 1) for n in G.nodes()}, "n_alpha")
    canvas = plt.figure().add_subplot(111)
    nx.display(G, canvas=canvas, node_alpha=param_value)
    assert all(
        canvas.get_children()[0].get_fc()[:, 3] == expected
    )  # Extract just the alpha from the node colors
    plt.close()


def test_display_node_position():
    G = nx.path_graph(4)
    nx.set_node_attributes(G, {n: (n, n) for n in G.nodes()}, "pos")
    canvas = plt.figure().add_subplot(111)
    nx.display(G, canvas=canvas, node_pos="pos")
    assert np.all(
        canvas.get_children()[0].get_offsets().data == [[0, 0], [1, 1], [2, 2], [3, 3]]
    )
    plt.close()


@pytest.mark.mpl_image_compare
def test_display_house_with_colors():
    """
    Originally, I wanted to use the exact samge image as test_house_with_colors.
    But I can't seem to find the correct value for the margins to get the figures
    to line up perfectly. To the human eye, these visualizations are basically the
    same.
    """
    G = nx.house_graph()
    fig, ax = plt.subplots()
    nx.set_node_attributes(
        G, {0: (0, 0), 1: (1, 0), 2: (0, 1), 3: (1, 1), 4: (0.5, 2.0)}, "pos"
    )
    nx.set_node_attributes(
        G,
        {
            n: {
                "size": 3000 if n != 4 else 2000,
                "color": "tab:blue" if n != 4 else "tab:orange",
            }
            for n in G.nodes()
        },
    )
    nx.display(
        G,
        node_pos="pos",
        edge_alpha=0.5,
        edge_width=6,
        node_label=None,
        node_border_color="k",
    )
    ax.margins(0.17)
    plt.tight_layout()
    plt.axis("off")
    return fig


def test_display_line_collection():
    G = nx.karate_club_graph()
    nx.set_edge_attributes(
        G, {(u, v): "-|>" if (u + v) % 2 else "-" for u, v in G.edges()}, "arrowstyle"
    )
    canvas = plt.figure().add_subplot(111)
    nx.display(G, canvas=canvas, edge_arrowsize=10)
    # There should only be one line collection in any given visualization
    lc = [
        l
        for l in canvas.get_children()
        if isinstance(l, mpl.collections.LineCollection)
    ][0]
    assert len(lc.get_paths()) == sum([1 for u, v in G.edges() if (u + v) % 2])
    plt.close()


@pytest.mark.mpl_image_compare
def test_display_labels_and_colors():
    """See 'Labels and Colors' gallery example"""
    fig, ax = plt.subplots()
    G = nx.cubical_graph()
    pos = nx.spring_layout(G, seed=3113794652)  # positions for all nodes
    nx.set_node_attributes(G, pos, "pos")  # Will not be needed after PR 7571
    labels = iter(
        [
            r"$a$",
            r"$b$",
            r"$c$",
            r"$d$",
            r"$\alpha$",
            r"$\beta$",
            r"$\gamma$",
            r"$\delta$",
        ]
    )
    nx.set_node_attributes(
        G,
        {
            n: {
                "size": 800,
                "alpha": 0.9,
                "color": "tab:red" if n < 4 else "tab:blue",
                "label": {"label": next(labels), "size": 22, "color": "whitesmoke"},
            }
            for n in G.nodes()
        },
    )

    nx.display(G, node_pos="pos", edge_color="tab:grey")

    # The tricky bit is the highlighted colors for the edges
    edgelist = [(0, 1), (1, 2), (2, 3), (0, 3)]
    nx.set_edge_attributes(
        G,
        {
            (u, v): {
                "width": 8,
                "alpha": 0.5,
                "color": "tab:red",
                "visible": (u, v) in edgelist,
            }
            for u, v in G.edges()
        },
    )
    nx.display(G, node_pos="pos", node_visible=False)
    edgelist = [(4, 5), (5, 6), (6, 7), (4, 7)]
    nx.set_edge_attributes(
        G,
        {
            (u, v): {
                "color": "tab:blue",
                "visible": (u, v) in edgelist,
            }
            for u, v in G.edges()
        },
    )
    nx.display(G, node_pos="pos", node_visible=False)

    plt.tight_layout()
    plt.axis("off")
    return fig


@pytest.mark.mpl_image_compare
def test_display_complex():
    import itertools as it

    fig, ax = plt.subplots()
    G = nx.MultiDiGraph()
    nodes = "ABC"
    prod = list(it.product(nodes, repeat=2)) * 4
    G = nx.MultiDiGraph()
    for i, (u, v) in enumerate(prod):
        G.add_edge(u, v, w=round(i / 3, 2))
    nx.set_node_attributes(G, nx.spring_layout(G, seed=3113794652), "pos")
    csi = it.cycle([f"arc3,rad={r}" for r in it.accumulate([0.15] * 4)])
    nx.set_edge_attributes(G, {e: next(csi) for e in G.edges(keys=True)}, "curvature")
    nx.set_edge_attributes(
        G,
        {
            tuple(e): {"label": w, "bbox": {"alpha": 0}}
            for *e, w in G.edges(keys=True, data="w")
        },
        "label",
    )
    nx.apply_matplotlib_colors(G, "w", "color", mpl.colormaps["inferno"], nodes=False)
    nx.display(G, canvas=ax, node_pos="pos")

    plt.tight_layout()
    plt.axis("off")
    return fig


@pytest.mark.mpl_image_compare
def test_display_shortest_path():
    fig, ax = plt.subplots()
    G = nx.Graph()
    G.add_nodes_from(["A", "B", "C", "D", "E", "F", "G", "H"])
    G.add_edge("A", "B", weight=4)
    G.add_edge("A", "H", weight=8)
    G.add_edge("B", "C", weight=8)
    G.add_edge("B", "H", weight=11)
    G.add_edge("C", "D", weight=7)
    G.add_edge("C", "F", weight=4)
    G.add_edge("C", "I", weight=2)
    G.add_edge("D", "E", weight=9)
    G.add_edge("D", "F", weight=14)
    G.add_edge("E", "F", weight=10)
    G.add_edge("F", "G", weight=2)
    G.add_edge("G", "H", weight=1)
    G.add_edge("G", "I", weight=6)
    G.add_edge("H", "I", weight=7)

    # Find the shortest path from node A to node E
    path = nx.shortest_path(G, "A", "E", weight="weight")

    # Create a list of edges in the shortest path
    path_edges = list(zip(path, path[1:]))
    nx.set_node_attributes(G, nx.spring_layout(G, seed=37), "pos")
    nx.set_edge_attributes(
        G,
        {
            (u, v): {
                "color": (
                    "red"
                    if (u, v) in path_edges or tuple(reversed((u, v))) in path_edges
                    else "black"
                ),
                "label": {"label": d["weight"], "rotate": False},
            }
            for u, v, d in G.edges(data=True)
        },
    )
    nx.display(G, canvas=ax)
    plt.tight_layout()
    plt.axis("off")
    return fig


@pytest.mark.parametrize(
    ("edge_color", "expected"),
    (
        (None, "black"),
        ("r", "red"),
        ((1.0, 1.0, 0.0), "yellow"),
        ((0, 1, 0, 1), "lime"),
        ("color", "blue"),
        ("#0000FF", "blue"),
    ),
)
@pytest.mark.parametrize("graph_type", (nx.Graph, nx.DiGraph))
def test_display_edge_single_color(edge_color, expected, graph_type):
    G = nx.path_graph(3, create_using=graph_type)
    nx.set_edge_attributes(G, "#0000FF", "color")
    canvas = plt.figure().add_subplot(111)
    nx.display(G, edge_color=edge_color, canvas=canvas)
    if G.is_directed():
        colors = [
            f.get_fc()
            for f in canvas.get_children()
            if isinstance(f, mpl.patches.FancyArrowPatch)
        ]
    else:
        colors = [
            l
            for l in canvas.collections
            if isinstance(l, mpl.collections.LineCollection)
        ][0].get_colors()
    assert all(mpl.colors.same_color(c, expected) for c in colors)
    plt.close()


@pytest.mark.parametrize("graph_type", (nx.Graph, nx.DiGraph))
def test_display_edge_multiple_colors(graph_type):
    G = nx.path_graph(3, create_using=graph_type)
    nx.set_edge_attributes(G, {(0, 1): "#FF0000", (1, 2): (0, 0, 1)}, "color")
    ax = plt.figure().add_subplot(111)
    nx.display(G, canvas=ax)
    expected = ["red", "blue"]
    if G.is_directed():
        colors = [
            f.get_fc()
            for f in ax.get_children()
            if isinstance(f, mpl.patches.FancyArrowPatch)
        ]
    else:
        colors = [
            l for l in ax.collections if isinstance(l, mpl.collections.LineCollection)
        ][0].get_colors()
    assert mpl.colors.same_color(colors, expected)
    plt.close()


@pytest.mark.parametrize("graph_type", (nx.Graph, nx.DiGraph))
def test_display_edge_position(graph_type):
    G = nx.path_graph(3, create_using=graph_type)
    nx.set_node_attributes(G, {n: (n, n) for n in G.nodes()}, "pos")
    ax = plt.figure().add_subplot(111)
    nx.display(G, canvas=ax)
    if G.is_directed():
        end_points = [
            (f.get_path().vertices[0, :], f.get_path().vertices[-2, :])
            for f in ax.get_children()
            if isinstance(f, mpl.patches.FancyArrowPatch)
        ]
    else:
        line_collection = [
            l for l in ax.collections if isinstance(l, mpl.collections.LineCollection)
        ][0]
        end_points = [
            (p.vertices[0, :], p.vertices[-1, :]) for p in line_collection.get_paths()
        ]
    expected = [((0, 0), (1, 1)), ((1, 1), (2, 2))]
    # Use the threshold to account for slight shifts in FancyArrowPatch margins to
    # avoid covering the arrow head with the node.
    threshold = 0.05
    for a, e in zip(end_points, expected):
        act_start, act_end = a
        exp_start, exp_end = e
        assert all(abs(act_start - exp_start) < (threshold, threshold)) and all(
            abs(act_end - exp_end) < (threshold, threshold)
        )
    plt.close()


def test_display_position_function():
    G = nx.karate_club_graph()

    def fixed_layout(G):
        return nx.spring_layout(G, seed=314159)

    pos = fixed_layout(G)
    ax = plt.figure().add_subplot(111)
    nx.display(G, node_pos=fixed_layout, canvas=ax)
    # rebuild the position dictionary from the canvas
    act_pos = {
        n: tuple(p) for n, p in zip(G.nodes(), ax.get_children()[0].get_offsets().data)
    }
    for n in G.nodes():
        assert all(pos[n] == act_pos[n])
    plt.close()


@pytest.mark.parametrize("graph_type", (nx.Graph, nx.DiGraph))
def test_display_edge_colormaps(graph_type):
    G = nx.path_graph(3, create_using=graph_type)
    nx.set_edge_attributes(G, {(0, 1): 0, (1, 2): 1}, "weight")
    cmap = mpl.colormaps["plasma"]
    nx.apply_matplotlib_colors(G, "weight", "color", cmap, nodes=False)
    canvas = plt.figure().add_subplot(111)
    nx.display(G, canvas=canvas)
    mapper = mpl.cm.ScalarMappable(cmap=cmap)
    mapper.set_clim(0, 1)
    expected = [mapper.to_rgba(0), mapper.to_rgba(1)]
    if G.is_directed():
        colors = [
            f.get_facecolor()
            for f in canvas.get_children()
            if isinstance(f, mpl.patches.FancyArrowPatch)
        ]
    else:
        colors = [
            l
            for l in canvas.collections
            if isinstance(l, mpl.collections.LineCollection)
        ][0].get_colors()
    assert mpl.colors.same_color(expected[0], G.edges[0, 1]["color"])
    assert mpl.colors.same_color(expected[1], G.edges[1, 2]["color"])
    assert mpl.colors.same_color(expected, colors)
    plt.close()


@pytest.mark.parametrize("graph_type", (nx.Graph, nx.DiGraph))
def test_display_node_colormaps(graph_type):
    G = nx.path_graph(3, create_using=graph_type)
    nx.set_node_attributes(G, {0: 0, 1: 0.5, 2: 1}, "weight")
    cmap = mpl.colormaps["plasma"]
    nx.apply_matplotlib_colors(G, "weight", "color", cmap)
    canvas = plt.figure().add_subplot(111)
    nx.display(G, canvas=canvas)
    mapper = mpl.cm.ScalarMappable(cmap=cmap)
    mapper.set_clim(0, 1)
    expected = [mapper.to_rgba(0), mapper.to_rgba(0.5), mapper.to_rgba(1)]
    colors = [
        s for s in canvas.collections if isinstance(s, mpl.collections.PathCollection)
    ][0].get_edgecolors()
    assert mpl.colors.same_color(expected[0], G.nodes[0]["color"])
    assert mpl.colors.same_color(expected[1], G.nodes[1]["color"])
    assert mpl.colors.same_color(expected[2], G.nodes[2]["color"])
    assert mpl.colors.same_color(expected, colors)
    plt.close()


@pytest.mark.parametrize(
    ("param_value", "expected"),
    (
        (None, [defaults["edge_width"], defaults["edge_width"]]),
        (5, [5, 5]),
        ("width", [5, 10]),
    ),
)
@pytest.mark.parametrize("graph_type", (nx.Graph, nx.DiGraph))
def test_display_edge_width(param_value, expected, graph_type):
    G = nx.path_graph(3, create_using=graph_type)
    nx.set_edge_attributes(G, {(0, 1): 5, (1, 2): 10}, "width")
    canvas = plt.figure().add_subplot(111)
    nx.display(G, edge_width=param_value, canvas=canvas)
    if G.is_directed():
        widths = [
            f.get_linewidth()
            for f in canvas.get_children()
            if isinstance(f, mpl.patches.FancyArrowPatch)
        ]
    else:
        widths = list(
            [
                l
                for l in canvas.collections
                if isinstance(l, mpl.collections.LineCollection)
            ][0].get_linewidths()
        )
    assert widths == expected


@pytest.mark.parametrize(
    ("param_value", "expected"),
    (
        (None, [defaults["edge_style"], defaults["edge_style"]]),
        (":", [":", ":"]),
        ("style", ["-", ":"]),
    ),
)
@pytest.mark.parametrize("graph_type", (nx.Graph, nx.DiGraph))
def test_display_edge_style(param_value, expected, graph_type):
    G = nx.path_graph(3, create_using=graph_type)
    nx.set_edge_attributes(G, {(0, 1): "-", (1, 2): ":"}, "style")
    canvas = plt.figure().add_subplot(111)
    nx.display(G, edge_style=param_value, canvas=canvas)
    if G.is_directed():
        styles = [
            f.get_linestyle()
            for f in canvas.get_children()
            if isinstance(f, mpl.patches.FancyArrowPatch)
        ]
    else:
        # Convert back from tuple description to character form
        linestyles = {(0, None): "-", (0, (1, 1.65)): ":"}
        styles = [
            linestyles[(s[0], tuple(s[1]) if s[1] is not None else None)]
            for s in [
                l
                for l in canvas.collections
                if isinstance(l, mpl.collections.LineCollection)
            ][0].get_linestyles()
        ]
    assert styles == expected
    plt.close()


def test_display_node_labels():
    G = nx.path_graph(4)
    canvas = plt.figure().add_subplot(111)
    nx.display(G, canvas=canvas, node_label={"size": 20})
    labels = [t for t in canvas.get_children() if isinstance(t, mpl.text.Text)]
    for n, l in zip(G.nodes(), labels):
        assert l.get_text() == str(n)
        assert l.get_size() == 20.0
    plt.close()


def test_display_edge_labels():
    G = nx.path_graph(4)
    canvas = plt.figure().add_subplot(111)
    # While we can pass in dicts for edge label defaults without errors,
    # this isn't helpful unless we want one label for all edges.
    nx.set_edge_attributes(G, {(u, v): {"label": u + v} for u, v in G.edges()})
    nx.display(G, canvas=canvas, edge_label={"color": "r"}, node_label=None)
    labels = [t for t in canvas.get_children() if isinstance(t, mpl.text.Text)]
    print(labels)
    for e, l in zip(G.edges(), labels):
        assert l.get_text() == str(e[0] + e[1])
        assert l.get_color() == "r"
    plt.close()


@pytest.mark.mpl_image_compare
def test_display_empty_graph():
    G = nx.empty_graph()
    fig, ax = plt.subplots()
    nx.display(G, canvas=ax)
    plt.tight_layout()
    plt.axis("off")
    return fig


def test_display_multigraph_non_integer_keys():
    G = nx.MultiGraph()
    G.add_nodes_from(["A", "B", "C", "D"])
    G.add_edges_from(
        [
            ("A", "B", "0"),
            ("A", "B", "1"),
            ("B", "C", "-1"),
            ("B", "C", "1"),
            ("C", "D", "-1"),
            ("C", "D", "0"),
        ]
    )
    nx.set_edge_attributes(
        G, {e: f"arc3,rad={0.2 * int(e[2])}" for e in G.edges(keys=True)}, "curvature"
    )
    canvas = plt.figure().add_subplot(111)
    nx.display(G, canvas=canvas)
    rads = [
        f.get_connectionstyle().rad
        for f in canvas.get_children()
        if isinstance(f, mpl.patches.FancyArrowPatch)
    ]
    assert rads == [0.0, 0.2, -0.2, 0.2, -0.2, 0.0]
    plt.close()


def test_display_raises_for_bad_arg():
    G = nx.karate_club_graph()
    with pytest.raises(nx.NetworkXError):
        nx.display(G, bad_arg="bad_arg")
        plt.close()


def test_display_arrow_size():
    G = nx.path_graph(4, create_using=nx.DiGraph)
    nx.set_edge_attributes(
        G, {(u, v): (u + v + 2) ** 2 for u, v in G.edges()}, "arrowsize"
    )
    ax = plt.axes()
    nx.display(G, canvas=ax)
    assert [9, 25, 49] == [
        f.get_mutation_scale()
        for f in ax.get_children()
        if isinstance(f, mpl.patches.FancyArrowPatch)
    ]
    plt.close()


def test_display_mismatched_edge_position():
    """
    This test ensures that a error is raised for incomplete position data.
    """
    G = nx.path_graph(5)
    # Notice that there is no position for node 3
    nx.set_node_attributes(G, {0: (0, 0), 1: (1, 1), 2: (2, 2), 4: (4, 4)}, "pos")
    # But that's not a problem since we don't want to show node 4, right?
    nx.set_node_attributes(G, {n: n < 4 for n in G.nodes()}, "visible")
    # However, if we try to visualize every edge (including 3 -> 4)...
    # That's a problem since node 4 doesn't have a position
    with pytest.raises(nx.NetworkXError):
        nx.display(G)


# NOTE: parametrizing on marker to test both branches of internal
# to_marker_edge function
@pytest.mark.parametrize("node_shape", ("o", "s"))
def test_display_edge_margins(node_shape):
    """
    Test that there is a wider gap between the node and the start of an
    incident edge when min_source_margin is specified.

    This test checks that the use os min_{source/target}_margin edge
    attributes result is shorter (more padding) between the edges and
    source and target nodes.


    As a crude visual example, let 's' and 't' represent source and target
    nodes, respectively:

       Default:
       s-----------------------------t

       With margins:
       s   -----------------------   t

    """
    ax = plt.figure().add_subplot(111)
    G = nx.DiGraph([(0, 1)])
    nx.set_node_attributes(G, {0: (0, 0), 1: (1, 1)}, "pos")
    # Get the default patches from the regular visualization
    nx.display(G, canvas=ax, node_shape=node_shape)
    default_arrow = [
        f for f in ax.get_children() if isinstance(f, mpl.patches.FancyArrowPatch)
    ][0]
    default_extent = default_arrow.get_extents().corners()[::2, 0]
    # Now plot again with margins
    ax = plt.figure().add_subplot(111)
    nx.display(
        G,
        canvas=ax,
        edge_source_margin=100,
        edge_target_margin=100,
        node_shape=node_shape,
    )
    padded_arrow = [
        f for f in ax.get_children() if isinstance(f, mpl.patches.FancyArrowPatch)
    ][0]
    padded_extent = padded_arrow.get_extents().corners()[::2, 0]

    # With padding, the left-most extent of the edge should be further to the right
    assert padded_extent[0] > default_extent[0]
    # And the rightmost extent of the edge, further to the left
    assert padded_extent[1] < default_extent[1]
    plt.close()


@pytest.mark.parametrize("ticks", [False, True])
def test_display_hide_ticks(ticks):
    G = nx.path_graph(3)
    nx.set_node_attributes(G, {n: (n, n) for n in G.nodes()}, "pos")
    ax = plt.axes()
    nx.display(G, hide_ticks=ticks)
    for axis in [ax.xaxis, ax.yaxis]:
        assert bool(axis.get_ticklabels()) != ticks

    plt.close()


def test_display_self_loop():
    ax = plt.axes()
    G = nx.DiGraph()
    G.add_node(0)
    G.add_edge(0, 0)
    nx.set_node_attributes(G, {0: (0, 0)}, "pos")
    nx.display(G, canvas=ax)
    arrow = [
        f for f in ax.get_children() if isinstance(f, mpl.patches.FancyArrowPatch)
    ][0]
    bbox = arrow.get_extents()
    print(bbox.width)
    print(bbox.height)
    assert bbox.width > 0 and bbox.height > 0

    plt.delaxes(ax)
    plt.close()


def test_display_remove_pos_attr():
    """
    If the pos attribute isn't provided or is a function, display computes the layout
    and adds it to the graph. We need to ensure that this new attribute is removed from
    the returned graph.
    """
    G = nx.karate_club_graph()
    nx.display(G)
    assert nx.get_node_attributes(G, "display's position attribute name") == {}


@pytest.fixture
def subplots():
    fig, ax = plt.subplots()
    yield fig, ax
    plt.delaxes(ax)
    plt.close()


def test_draw():
    try:
        functions = [
            nx.draw_circular,
            nx.draw_kamada_kawai,
            nx.draw_planar,
            nx.draw_random,
            nx.draw_spectral,
            nx.draw_spring,
            nx.draw_shell,
        ]
        options = [{"node_color": "black", "node_size": 100, "width": 3}]
        for function, option in itertools.product(functions, options):
            function(barbell, **option)
            plt.savefig("test.ps")
    except ModuleNotFoundError:  # draw_kamada_kawai requires scipy
        pass
    finally:
        try:
            os.unlink("test.ps")
        except OSError:
            pass


def test_draw_shell_nlist():
    try:
        nlist = [list(range(4)), list(range(4, 10)), list(range(10, 14))]
        nx.draw_shell(barbell, nlist=nlist)
        plt.savefig("test.ps")
    finally:
        try:
            os.unlink("test.ps")
        except OSError:
            pass


def test_draw_bipartite():
    try:
        G = nx.complete_bipartite_graph(2, 5)
        nx.draw_bipartite(G)
        plt.savefig("test.ps")
    finally:
        try:
            os.unlink("test.ps")
        except OSError:
            pass


def test_edge_colormap():
    colors = range(barbell.number_of_edges())
    nx.draw_spring(
        barbell, edge_color=colors, width=4, edge_cmap=plt.cm.Blues, with_labels=True
    )
    # plt.show()


def test_arrows():
    nx.draw_spring(barbell.to_directed())
    # plt.show()


@pytest.mark.parametrize(
    ("edge_color", "expected"),
    (
        (None, "black"),  # Default
        ("r", "red"),  # Non-default color string
        (["r"], "red"),  # Single non-default color in a list
        ((1.0, 1.0, 0.0), "yellow"),  # single color as rgb tuple
        ([(1.0, 1.0, 0.0)], "yellow"),  # single color as rgb tuple in list
        ((0, 1, 0, 1), "lime"),  # single color as rgba tuple
        ([(0, 1, 0, 1)], "lime"),  # single color as rgba tuple in list
        ("#0000ff", "blue"),  # single color hex code
        (["#0000ff"], "blue"),  # hex code in list
    ),
)
@pytest.mark.parametrize("edgelist", (None, [(0, 1)]))
def test_single_edge_color_undirected(edge_color, expected, edgelist):
    """Tests ways of specifying all edges have a single color for edges
    drawn with a LineCollection"""

    G = nx.path_graph(3)
    drawn_edges = nx.draw_networkx_edges(
        G, pos=nx.random_layout(G), edgelist=edgelist, edge_color=edge_color
    )
    assert mpl.colors.same_color(drawn_edges.get_color(), expected)


@pytest.mark.parametrize(
    ("edge_color", "expected"),
    (
        (None, "black"),  # Default
        ("r", "red"),  # Non-default color string
        (["r"], "red"),  # Single non-default color in a list
        ((1.0, 1.0, 0.0), "yellow"),  # single color as rgb tuple
        ([(1.0, 1.0, 0.0)], "yellow"),  # single color as rgb tuple in list
        ((0, 1, 0, 1), "lime"),  # single color as rgba tuple
        ([(0, 1, 0, 1)], "lime"),  # single color as rgba tuple in list
        ("#0000ff", "blue"),  # single color hex code
        (["#0000ff"], "blue"),  # hex code in list
    ),
)
@pytest.mark.parametrize("edgelist", (None, [(0, 1)]))
def test_single_edge_color_directed(edge_color, expected, edgelist):
    """Tests ways of specifying all edges have a single color for edges drawn
    with FancyArrowPatches"""

    G = nx.path_graph(3, create_using=nx.DiGraph)
    drawn_edges = nx.draw_networkx_edges(
        G, pos=nx.random_layout(G), edgelist=edgelist, edge_color=edge_color
    )
    for fap in drawn_edges:
        assert mpl.colors.same_color(fap.get_edgecolor(), expected)


def test_edge_color_tuple_interpretation():
    """If edge_color is a sequence with the same length as edgelist, then each
    value in edge_color is mapped onto each edge via colormap."""
    G = nx.path_graph(6, create_using=nx.DiGraph)
    pos = {n: (n, n) for n in range(len(G))}

    # num edges != 3 or 4 --> edge_color interpreted as rgb(a)
    for ec in ((0, 0, 1), (0, 0, 1, 1)):
        # More than 4 edges
        drawn_edges = nx.draw_networkx_edges(G, pos, edge_color=ec)
        for fap in drawn_edges:
            assert mpl.colors.same_color(fap.get_edgecolor(), ec)
        # Fewer than 3 edges
        drawn_edges = nx.draw_networkx_edges(
            G, pos, edgelist=[(0, 1), (1, 2)], edge_color=ec
        )
        for fap in drawn_edges:
            assert mpl.colors.same_color(fap.get_edgecolor(), ec)

    # num edges == 3, len(edge_color) == 4: interpreted as rgba
    drawn_edges = nx.draw_networkx_edges(
        G, pos, edgelist=[(0, 1), (1, 2), (2, 3)], edge_color=(0, 0, 1, 1)
    )
    for fap in drawn_edges:
        assert mpl.colors.same_color(fap.get_edgecolor(), "blue")

    # num edges == 4, len(edge_color) == 3: interpreted as rgb
    drawn_edges = nx.draw_networkx_edges(
        G, pos, edgelist=[(0, 1), (1, 2), (2, 3), (3, 4)], edge_color=(0, 0, 1)
    )
    for fap in drawn_edges:
        assert mpl.colors.same_color(fap.get_edgecolor(), "blue")

    # num edges == len(edge_color) == 3: interpreted with cmap, *not* as rgb
    drawn_edges = nx.draw_networkx_edges(
        G, pos, edgelist=[(0, 1), (1, 2), (2, 3)], edge_color=(0, 0, 1)
    )
    assert mpl.colors.same_color(
        drawn_edges[0].get_edgecolor(), drawn_edges[1].get_edgecolor()
    )
    for fap in drawn_edges:
        assert not mpl.colors.same_color(fap.get_edgecolor(), "blue")

    # num edges == len(edge_color) == 4: interpreted with cmap, *not* as rgba
    drawn_edges = nx.draw_networkx_edges(
        G, pos, edgelist=[(0, 1), (1, 2), (2, 3), (3, 4)], edge_color=(0, 0, 1, 1)
    )
    assert mpl.colors.same_color(
        drawn_edges[0].get_edgecolor(), drawn_edges[1].get_edgecolor()
    )
    assert mpl.colors.same_color(
        drawn_edges[2].get_edgecolor(), drawn_edges[3].get_edgecolor()
    )
    for fap in drawn_edges:
        assert not mpl.colors.same_color(fap.get_edgecolor(), "blue")


def test_fewer_edge_colors_than_num_edges_directed():
    """Test that the edge colors are cycled when there are fewer specified
    colors than edges."""
    G = barbell.to_directed()
    pos = nx.random_layout(barbell)
    edgecolors = ("r", "g", "b")
    drawn_edges = nx.draw_networkx_edges(G, pos, edge_color=edgecolors)
    for fap, expected in zip(drawn_edges, itertools.cycle(edgecolors)):
        assert mpl.colors.same_color(fap.get_edgecolor(), expected)


def test_more_edge_colors_than_num_edges_directed():
    """Test that extra edge colors are ignored when there are more specified
    colors than edges."""
    G = nx.path_graph(4, create_using=nx.DiGraph)  # 3 edges
    pos = nx.random_layout(barbell)
    edgecolors = ("r", "g", "b", "c")  # 4 edge colors
    drawn_edges = nx.draw_networkx_edges(G, pos, edge_color=edgecolors)
    for fap, expected in zip(drawn_edges, edgecolors[:-1]):
        assert mpl.colors.same_color(fap.get_edgecolor(), expected)


def test_edge_color_string_with_global_alpha_undirected():
    edge_collection = nx.draw_networkx_edges(
        barbell,
        pos=nx.random_layout(barbell),
        edgelist=[(0, 1), (1, 2)],
        edge_color="purple",
        alpha=0.2,
    )
    ec = edge_collection.get_color().squeeze()  # as rgba tuple
    assert len(edge_collection.get_paths()) == 2
    assert mpl.colors.same_color(ec[:-1], "purple")
    assert ec[-1] == 0.2


def test_edge_color_string_with_global_alpha_directed():
    drawn_edges = nx.draw_networkx_edges(
        barbell.to_directed(),
        pos=nx.random_layout(barbell),
        edgelist=[(0, 1), (1, 2)],
        edge_color="purple",
        alpha=0.2,
    )
    assert len(drawn_edges) == 2
    for fap in drawn_edges:
        ec = fap.get_edgecolor()  # As rgba tuple
        assert mpl.colors.same_color(ec[:-1], "purple")
        assert ec[-1] == 0.2


@pytest.mark.parametrize("graph_type", (nx.Graph, nx.DiGraph))
def test_edge_width_default_value(graph_type):
    """Test the default linewidth for edges drawn either via LineCollection or
    FancyArrowPatches."""
    G = nx.path_graph(2, create_using=graph_type)
    pos = {n: (n, n) for n in range(len(G))}
    drawn_edges = nx.draw_networkx_edges(G, pos)
    if isinstance(drawn_edges, list):  # directed case: list of FancyArrowPatch
        drawn_edges = drawn_edges[0]
    assert drawn_edges.get_linewidth() == 1


@pytest.mark.parametrize(
    ("edgewidth", "expected"),
    (
        (3, 3),  # single-value, non-default
        ([3], 3),  # Single value as a list
    ),
)
def test_edge_width_single_value_undirected(edgewidth, expected):
    G = nx.path_graph(4)
    pos = {n: (n, n) for n in range(len(G))}
    drawn_edges = nx.draw_networkx_edges(G, pos, width=edgewidth)
    assert len(drawn_edges.get_paths()) == 3
    assert drawn_edges.get_linewidth() == expected


@pytest.mark.parametrize(
    ("edgewidth", "expected"),
    (
        (3, 3),  # single-value, non-default
        ([3], 3),  # Single value as a list
    ),
)
def test_edge_width_single_value_directed(edgewidth, expected):
    G = nx.path_graph(4, create_using=nx.DiGraph)
    pos = {n: (n, n) for n in range(len(G))}
    drawn_edges = nx.draw_networkx_edges(G, pos, width=edgewidth)
    assert len(drawn_edges) == 3
    for fap in drawn_edges:
        assert fap.get_linewidth() == expected


@pytest.mark.parametrize(
    "edgelist",
    (
        [(0, 1), (1, 2), (2, 3)],  # one width specification per edge
        None,  #  fewer widths than edges - widths cycle
        [(0, 1), (1, 2)],  # More widths than edges - unused widths ignored
    ),
)
def test_edge_width_sequence(edgelist):
    G = barbell.to_directed()
    pos = nx.random_layout(G)
    widths = (0.5, 2.0, 12.0)
    drawn_edges = nx.draw_networkx_edges(G, pos, edgelist=edgelist, width=widths)
    for fap, expected_width in zip(drawn_edges, itertools.cycle(widths)):
        assert fap.get_linewidth() == expected_width


def test_edge_color_with_edge_vmin_vmax():
    """Test that edge_vmin and edge_vmax properly set the dynamic range of the
    color map when num edges == len(edge_colors)."""
    G = nx.path_graph(3, create_using=nx.DiGraph)
    pos = nx.random_layout(G)
    # Extract colors from the original (unscaled) colormap
    drawn_edges = nx.draw_networkx_edges(G, pos, edge_color=[0, 1.0])
    orig_colors = [e.get_edgecolor() for e in drawn_edges]
    # Colors from scaled colormap
    drawn_edges = nx.draw_networkx_edges(
        G, pos, edge_color=[0.2, 0.8], edge_vmin=0.2, edge_vmax=0.8
    )
    scaled_colors = [e.get_edgecolor() for e in drawn_edges]
    assert mpl.colors.same_color(orig_colors, scaled_colors)


def test_directed_edges_linestyle_default():
    """Test default linestyle for edges drawn with FancyArrowPatches."""
    G = nx.path_graph(4, create_using=nx.DiGraph)  # Graph with 3 edges
    pos = {n: (n, n) for n in range(len(G))}

    # edge with default style
    drawn_edges = nx.draw_networkx_edges(G, pos)
    assert len(drawn_edges) == 3
    for fap in drawn_edges:
        assert fap.get_linestyle() == "solid"


@pytest.mark.parametrize(
    "style",
    (
        "dashed",  # edge with string style
        "--",  # edge with simplified string style
        (1, (1, 1)),  # edge with (offset, onoffseq) style
    ),
)
def test_directed_edges_linestyle_single_value(style):
    """Tests support for specifying linestyles with a single value to be applied to
    all edges in ``draw_networkx_edges`` for FancyArrowPatch outputs
    (e.g. directed edges)."""

    G = nx.path_graph(4, create_using=nx.DiGraph)  # Graph with 3 edges
    pos = {n: (n, n) for n in range(len(G))}

    drawn_edges = nx.draw_networkx_edges(G, pos, style=style)
    assert len(drawn_edges) == 3
    for fap in drawn_edges:
        assert fap.get_linestyle() == style


@pytest.mark.parametrize(
    "style_seq",
    (
        ["dashed"],  # edge with string style in list
        ["--"],  # edge with simplified string style in list
        [(1, (1, 1))],  # edge with (offset, onoffseq) style in list
        ["--", "-", ":"],  # edges with styles for each edge
        ["--", "-"],  # edges with fewer styles than edges (styles cycle)
        ["--", "-", ":", "-."],  # edges with more styles than edges (extra unused)
    ),
)
def test_directed_edges_linestyle_sequence(style_seq):
    """Tests support for specifying linestyles with sequences in
    ``draw_networkx_edges`` for FancyArrowPatch outputs (e.g. directed edges)."""

    G = nx.path_graph(4, create_using=nx.DiGraph)  # Graph with 3 edges
    pos = {n: (n, n) for n in range(len(G))}

    drawn_edges = nx.draw_networkx_edges(G, pos, style=style_seq)
    assert len(drawn_edges) == 3
    for fap, style in zip(drawn_edges, itertools.cycle(style_seq)):
        assert fap.get_linestyle() == style


def test_return_types():
    from matplotlib.collections import LineCollection, PathCollection
    from matplotlib.patches import FancyArrowPatch

    G = nx.frucht_graph(create_using=nx.Graph)
    dG = nx.frucht_graph(create_using=nx.DiGraph)
    pos = nx.spring_layout(G)
    dpos = nx.spring_layout(dG)
    # nodes
    nodes = nx.draw_networkx_nodes(G, pos)
    assert isinstance(nodes, PathCollection)
    # edges
    edges = nx.draw_networkx_edges(dG, dpos, arrows=True)
    assert isinstance(edges, list)
    if len(edges) > 0:
        assert isinstance(edges[0], FancyArrowPatch)
    edges = nx.draw_networkx_edges(dG, dpos, arrows=False)
    assert isinstance(edges, LineCollection)
    edges = nx.draw_networkx_edges(G, dpos, arrows=None)
    assert isinstance(edges, LineCollection)
    edges = nx.draw_networkx_edges(dG, pos, arrows=None)
    assert isinstance(edges, list)
    if len(edges) > 0:
        assert isinstance(edges[0], FancyArrowPatch)


def test_labels_and_colors():
    G = nx.cubical_graph()
    pos = nx.spring_layout(G)  # positions for all nodes
    # nodes
    nx.draw_networkx_nodes(
        G, pos, nodelist=[0, 1, 2, 3], node_color="r", node_size=500, alpha=0.75
    )
    nx.draw_networkx_nodes(
        G,
        pos,
        nodelist=[4, 5, 6, 7],
        node_color="b",
        node_size=500,
        alpha=[0.25, 0.5, 0.75, 1.0],
    )
    # edges
    nx.draw_networkx_edges(G, pos, width=1.0, alpha=0.5)
    nx.draw_networkx_edges(
        G,
        pos,
        edgelist=[(0, 1), (1, 2), (2, 3), (3, 0)],
        width=8,
        alpha=0.5,
        edge_color="r",
    )
    nx.draw_networkx_edges(
        G,
        pos,
        edgelist=[(4, 5), (5, 6), (6, 7), (7, 4)],
        width=8,
        alpha=0.5,
        edge_color="b",
    )
    nx.draw_networkx_edges(
        G,
        pos,
        edgelist=[(4, 5), (5, 6), (6, 7), (7, 4)],
        arrows=True,
        min_source_margin=0.5,
        min_target_margin=0.75,
        width=8,
        edge_color="b",
    )
    # some math labels
    labels = {}
    labels[0] = r"$a$"
    labels[1] = r"$b$"
    labels[2] = r"$c$"
    labels[3] = r"$d$"
    labels[4] = r"$\alpha$"
    labels[5] = r"$\beta$"
    labels[6] = r"$\gamma$"
    labels[7] = r"$\delta$"
    colors = {n: "k" if n % 2 == 0 else "r" for n in range(8)}
    nx.draw_networkx_labels(G, pos, labels, font_size=16)
    nx.draw_networkx_labels(G, pos, labels, font_size=16, font_color=colors)
    nx.draw_networkx_edge_labels(G, pos, edge_labels=None, rotate=False)
    nx.draw_networkx_edge_labels(G, pos, edge_labels={(4, 5): "4-5"})
    # plt.show()


@pytest.mark.mpl_image_compare
def test_house_with_colors():
    G = nx.house_graph()
    # explicitly set positions
    fig, ax = plt.subplots()
    pos = {0: (0, 0), 1: (1, 0), 2: (0, 1), 3: (1, 1), 4: (0.5, 2.0)}

    # Plot nodes with different properties for the "wall" and "roof" nodes
    nx.draw_networkx_nodes(
        G,
        pos,
        node_size=3000,
        nodelist=[0, 1, 2, 3],
        node_color="tab:blue",
    )
    nx.draw_networkx_nodes(
        G, pos, node_size=2000, nodelist=[4], node_color="tab:orange"
    )
    nx.draw_networkx_edges(G, pos, alpha=0.5, width=6)
    # Customize axes
    ax.margins(0.11)
    plt.tight_layout()
    plt.axis("off")
    return fig


def test_axes(subplots):
    fig, ax = subplots
    nx.draw(barbell, ax=ax)
    nx.draw_networkx_edge_labels(barbell, nx.circular_layout(barbell), ax=ax)


def test_empty_graph():
    G = nx.Graph()
    nx.draw(G)


def test_draw_empty_nodes_return_values():
    # See Issue #3833
    import matplotlib.collections  # call as mpl.collections

    G = nx.Graph([(1, 2), (2, 3)])
    DG = nx.DiGraph([(1, 2), (2, 3)])
    pos = nx.circular_layout(G)
    assert isinstance(
        nx.draw_networkx_nodes(G, pos, nodelist=[]), mpl.collections.PathCollection
    )
    assert isinstance(
        nx.draw_networkx_nodes(DG, pos, nodelist=[]), mpl.collections.PathCollection
    )

    # drawing empty edges used to return an empty LineCollection or empty list.
    # Now it is always an empty list (because edges are now lists of FancyArrows)
    assert nx.draw_networkx_edges(G, pos, edgelist=[], arrows=True) == []
    assert nx.draw_networkx_edges(G, pos, edgelist=[], arrows=False) == []
    assert nx.draw_networkx_edges(DG, pos, edgelist=[], arrows=False) == []
    assert nx.draw_networkx_edges(DG, pos, edgelist=[], arrows=True) == []


def test_multigraph_edgelist_tuples():
    # See Issue #3295
    G = nx.path_graph(3, create_using=nx.MultiDiGraph)
    nx.draw_networkx(G, edgelist=[(0, 1, 0)])
    nx.draw_networkx(G, edgelist=[(0, 1, 0)], node_size=[10, 20, 0])


def test_alpha_iter():
    pos = nx.random_layout(barbell)
    fig = plt.figure()
    # with fewer alpha elements than nodes
    fig.add_subplot(131)  # Each test in a new axis object
    nx.draw_networkx_nodes(barbell, pos, alpha=[0.1, 0.2])
    # with equal alpha elements and nodes
    num_nodes = len(barbell.nodes)
    alpha = [x / num_nodes for x in range(num_nodes)]
    colors = range(num_nodes)
    fig.add_subplot(132)
    nx.draw_networkx_nodes(barbell, pos, node_color=colors, alpha=alpha)
    # with more alpha elements than nodes
    alpha.append(1)
    fig.add_subplot(133)
    nx.draw_networkx_nodes(barbell, pos, alpha=alpha)


def test_multiple_node_shapes(subplots):
    fig, ax = subplots
    G = nx.path_graph(4)
    nx.draw(G, node_shape=["o", "h", "s", "^"], ax=ax)
    scatters = [
        s for s in ax.get_children() if isinstance(s, mpl.collections.PathCollection)
    ]
    assert len(scatters) == 4


def test_individualized_font_attributes(subplots):
    G = nx.karate_club_graph()
    fig, ax = subplots
    nx.draw(
        G,
        ax=ax,
        font_color={n: "k" if n % 2 else "r" for n in G.nodes()},
        font_size={n: int(n / (34 / 15) + 5) for n in G.nodes()},
    )
    for n, t in zip(
        G.nodes(),
        [
            t
            for t in ax.get_children()
            if isinstance(t, mpl.text.Text) and len(t.get_text()) > 0
        ],
    ):
        expected = "black" if n % 2 else "red"

        assert mpl.colors.same_color(t.get_color(), expected)
        assert int(n / (34 / 15) + 5) == t.get_size()


def test_individualized_edge_attributes(subplots):
    G = nx.karate_club_graph()
    fig, ax = subplots
    arrowstyles = ["-|>" if (u + v) % 2 == 0 else "-[" for u, v in G.edges()]
    arrowsizes = [10 * (u % 2 + v % 2) + 10 for u, v in G.edges()]
    nx.draw(G, ax=ax, arrows=True, arrowstyle=arrowstyles, arrowsize=arrowsizes)
    arrows = [
        f for f in ax.get_children() if isinstance(f, mpl.patches.FancyArrowPatch)
    ]
    for e, a in zip(G.edges(), arrows):
        assert a.get_mutation_scale() == 10 * (e[0] % 2 + e[1] % 2) + 10
        expected = (
            mpl.patches.ArrowStyle.BracketB
            if sum(e) % 2
            else mpl.patches.ArrowStyle.CurveFilledB
        )
        assert isinstance(a.get_arrowstyle(), expected)


def test_error_invalid_kwds():
    with pytest.raises(ValueError, match="Received invalid argument"):
        nx.draw(barbell, foo="bar")


def test_draw_networkx_arrowsize_incorrect_size():
    G = nx.DiGraph([(0, 1), (0, 2), (0, 3), (1, 3)])
    arrowsize = [1, 2, 3]
    with pytest.raises(
        ValueError, match="arrowsize should have the same length as edgelist"
    ):
        nx.draw(G, arrowsize=arrowsize)


@pytest.mark.parametrize("arrowsize", (30, [10, 20, 30]))
def test_draw_edges_arrowsize(arrowsize):
    G = nx.DiGraph([(0, 1), (0, 2), (1, 2)])
    pos = {0: (0, 0), 1: (0, 1), 2: (1, 0)}
    edges = nx.draw_networkx_edges(G, pos=pos, arrowsize=arrowsize)

    arrowsize = itertools.repeat(arrowsize) if isinstance(arrowsize, int) else arrowsize

    for fap, expected in zip(edges, arrowsize):
        assert isinstance(fap, mpl.patches.FancyArrowPatch)
        assert fap.get_mutation_scale() == expected


@pytest.mark.parametrize("arrowstyle", ("-|>", ["-|>", "-[", "<|-|>"]))
def test_draw_edges_arrowstyle(arrowstyle):
    G = nx.DiGraph([(0, 1), (0, 2), (1, 2)])
    pos = {0: (0, 0), 1: (0, 1), 2: (1, 0)}
    edges = nx.draw_networkx_edges(G, pos=pos, arrowstyle=arrowstyle)

    arrowstyle = (
        itertools.repeat(arrowstyle) if isinstance(arrowstyle, str) else arrowstyle
    )

    arrow_objects = {
        "-|>": mpl.patches.ArrowStyle.CurveFilledB,
        "-[": mpl.patches.ArrowStyle.BracketB,
        "<|-|>": mpl.patches.ArrowStyle.CurveFilledAB,
    }

    for fap, expected in zip(edges, arrowstyle):
        assert isinstance(fap, mpl.patches.FancyArrowPatch)
        assert isinstance(fap.get_arrowstyle(), arrow_objects[expected])


def test_np_edgelist():
    # see issue #4129
    nx.draw_networkx(barbell, edgelist=np.array([(0, 2), (0, 3)]))


def test_draw_nodes_missing_node_from_position():
    G = nx.path_graph(3)
    pos = {0: (0, 0), 1: (1, 1)}  # No position for node 2
    with pytest.raises(nx.NetworkXError, match="has no position"):
        nx.draw_networkx_nodes(G, pos)


# NOTE: parametrizing on marker to test both branches of internal
# nx.draw_networkx_edges.to_marker_edge function
@pytest.mark.parametrize("node_shape", ("o", "s"))
def test_draw_edges_min_source_target_margins(node_shape, subplots):
    """Test that there is a wider gap between the node and the start of an
    incident edge when min_source_margin is specified.

    This test checks that the use of min_{source/target}_margin kwargs result
    in shorter (more padding) between the edges and source and target nodes.
    As a crude visual example, let 's' and 't' represent source and target
    nodes, respectively:

       Default:
       s-----------------------------t

       With margins:
       s   -----------------------   t

    """
    # Create a single axis object to get consistent pixel coords across
    # multiple draws
    fig, ax = subplots
    G = nx.DiGraph([(0, 1)])
    pos = {0: (0, 0), 1: (1, 0)}  # horizontal layout
    # Get leftmost and rightmost points of the FancyArrowPatch object
    # representing the edge between nodes 0 and 1 (in pixel coordinates)
    default_patch = nx.draw_networkx_edges(G, pos, ax=ax, node_shape=node_shape)[0]
    default_extent = default_patch.get_extents().corners()[::2, 0]
    # Now, do the same but with "padding" for the source and target via the
    # min_{source/target}_margin kwargs
    padded_patch = nx.draw_networkx_edges(
        G,
        pos,
        ax=ax,
        node_shape=node_shape,
        min_source_margin=100,
        min_target_margin=100,
    )[0]
    padded_extent = padded_patch.get_extents().corners()[::2, 0]

    # With padding, the left-most extent of the edge should be further to the
    # right
    assert padded_extent[0] > default_extent[0]
    # And the rightmost extent of the edge, further to the left
    assert padded_extent[1] < default_extent[1]


# NOTE: parametrizing on marker to test both branches of internal
# nx.draw_networkx_edges.to_marker_edge function
@pytest.mark.parametrize("node_shape", ("o", "s"))
def test_draw_edges_min_source_target_margins_individual(node_shape, subplots):
    """Test that there is a wider gap between the node and the start of an
    incident edge when min_source_margin is specified.

    This test checks that the use of min_{source/target}_margin kwargs result
    in shorter (more padding) between the edges and source and target nodes.
    As a crude visual example, let 's' and 't' represent source and target
    nodes, respectively:

       Default:
       s-----------------------------t

       With margins:
       s   -----------------------   t

    """
    # Create a single axis object to get consistent pixel coords across
    # multiple draws
    fig, ax = subplots
    G = nx.DiGraph([(0, 1), (1, 2)])
    pos = {0: (0, 0), 1: (1, 0), 2: (2, 0)}  # horizontal layout
    # Get leftmost and rightmost points of the FancyArrowPatch object
    # representing the edge between nodes 0 and 1 (in pixel coordinates)
    default_patch = nx.draw_networkx_edges(G, pos, ax=ax, node_shape=node_shape)
    default_extent = [d.get_extents().corners()[::2, 0] for d in default_patch]
    # Now, do the same but with "padding" for the source and target via the
    # min_{source/target}_margin kwargs
    padded_patch = nx.draw_networkx_edges(
        G,
        pos,
        ax=ax,
        node_shape=node_shape,
        min_source_margin=[98, 102],
        min_target_margin=[98, 102],
    )
    padded_extent = [p.get_extents().corners()[::2, 0] for p in padded_patch]
    for d, p in zip(default_extent, padded_extent):
        # With padding, the left-most extent of the edge should be further to the
        # right
        assert p[0] > d[0]
        # And the rightmost extent of the edge, further to the left
        assert p[1] < d[1]


def test_nonzero_selfloop_with_single_node(subplots):
    """Ensure that selfloop extent is non-zero when there is only one node."""
    # Create explicit axis object for test
    fig, ax = subplots
    # Graph with single node + self loop
    G = nx.DiGraph()
    G.add_node(0)
    G.add_edge(0, 0)
    # Draw
    patch = nx.draw_networkx_edges(G, {0: (0, 0)})[0]
    # The resulting patch must have non-zero extent
    bbox = patch.get_extents()
    assert bbox.width > 0 and bbox.height > 0


def test_nonzero_selfloop_with_single_edge_in_edgelist(subplots):
    """Ensure that selfloop extent is non-zero when only a single edge is
    specified in the edgelist.
    """
    # Create explicit axis object for test
    fig, ax = subplots
    # Graph with selfloop
    G = nx.path_graph(2, create_using=nx.DiGraph)
    G.add_edge(1, 1)
    pos = {n: (n, n) for n in G.nodes}
    # Draw only the selfloop edge via the `edgelist` kwarg
    patch = nx.draw_networkx_edges(G, pos, edgelist=[(1, 1)])[0]
    # The resulting patch must have non-zero extent
    bbox = patch.get_extents()
    assert bbox.width > 0 and bbox.height > 0


def test_apply_alpha():
    """Test apply_alpha when there is a mismatch between the number of
    supplied colors and elements.
    """
    nodelist = [0, 1, 2]
    colorlist = ["r", "g", "b"]
    alpha = 0.5
    rgba_colors = nx.drawing.nx_pylab.apply_alpha(colorlist, alpha, nodelist)
    assert all(rgba_colors[:, -1] == alpha)


def test_draw_edges_toggling_with_arrows_kwarg():
    """
    The `arrows` keyword argument is used as a 3-way switch to select which
    type of object to use for drawing edges:
      - ``arrows=None`` -> default (FancyArrowPatches for directed, else LineCollection)
      - ``arrows=True`` -> FancyArrowPatches
      - ``arrows=False`` -> LineCollection
    """
    import matplotlib.collections
    import matplotlib.patches

    UG = nx.path_graph(3)
    DG = nx.path_graph(3, create_using=nx.DiGraph)
    pos = {n: (n, n) for n in UG}

    # Use FancyArrowPatches when arrows=True, regardless of graph type
    for G in (UG, DG):
        edges = nx.draw_networkx_edges(G, pos, arrows=True)
        assert len(edges) == len(G.edges)
        assert isinstance(edges[0], mpl.patches.FancyArrowPatch)

    # Use LineCollection when arrows=False, regardless of graph type
    for G in (UG, DG):
        edges = nx.draw_networkx_edges(G, pos, arrows=False)
        assert isinstance(edges, mpl.collections.LineCollection)

    # Default behavior when arrows=None: FAPs for directed, LC's for undirected
    edges = nx.draw_networkx_edges(UG, pos)
    assert isinstance(edges, mpl.collections.LineCollection)
    edges = nx.draw_networkx_edges(DG, pos)
    assert len(edges) == len(G.edges)
    assert isinstance(edges[0], mpl.patches.FancyArrowPatch)


@pytest.mark.parametrize("drawing_func", (nx.draw, nx.draw_networkx))
def test_draw_networkx_arrows_default_undirected(drawing_func, subplots):
    import matplotlib.collections

    G = nx.path_graph(3)
    fig, ax = subplots
    drawing_func(G, ax=ax)
    assert any(isinstance(c, mpl.collections.LineCollection) for c in ax.collections)
    assert not ax.patches


@pytest.mark.parametrize("drawing_func", (nx.draw, nx.draw_networkx))
def test_draw_networkx_arrows_default_directed(drawing_func, subplots):
    import matplotlib.collections

    G = nx.path_graph(3, create_using=nx.DiGraph)
    fig, ax = subplots
    drawing_func(G, ax=ax)
    assert not any(
        isinstance(c, mpl.collections.LineCollection) for c in ax.collections
    )
    assert ax.patches


def test_edgelist_kwarg_not_ignored(subplots):
    # See gh-4994
    G = nx.path_graph(3)
    G.add_edge(0, 0)
    fig, ax = subplots
    nx.draw(G, edgelist=[(0, 1), (1, 2)], ax=ax)  # Exclude self-loop from edgelist
    assert not ax.patches


@pytest.mark.parametrize(
    ("G", "expected_n_edges"),
    ([nx.DiGraph(), 2], [nx.MultiGraph(), 4], [nx.MultiDiGraph(), 4]),
)
def test_draw_networkx_edges_multiedge_connectionstyle(G, expected_n_edges):
    """Draws edges correctly for 3 types of graphs and checks for valid length"""
    for i, (u, v) in enumerate([(0, 1), (0, 1), (0, 1), (0, 2)]):
        G.add_edge(u, v, weight=round(i / 3, 2))
    pos = {n: (n, n) for n in G}
    # Raises on insufficient connectionstyle length
    for conn_style in [
        "arc3,rad=0.1",
        ["arc3,rad=0.1", "arc3,rad=0.1"],
        ["arc3,rad=0.1", "arc3,rad=0.1", "arc3,rad=0.2"],
    ]:
        nx.draw_networkx_edges(G, pos, connectionstyle=conn_style)
        arrows = nx.draw_networkx_edges(G, pos, connectionstyle=conn_style)
        assert len(arrows) == expected_n_edges


@pytest.mark.parametrize(
    ("G", "expected_n_edges"),
    ([nx.DiGraph(), 2], [nx.MultiGraph(), 4], [nx.MultiDiGraph(), 4]),
)
def test_draw_networkx_edge_labels_multiedge_connectionstyle(G, expected_n_edges):
    """Draws labels correctly for 3 types of graphs and checks for valid length and class names"""
    for i, (u, v) in enumerate([(0, 1), (0, 1), (0, 1), (0, 2)]):
        G.add_edge(u, v, weight=round(i / 3, 2))
    pos = {n: (n, n) for n in G}
    # Raises on insufficient connectionstyle length
    arrows = nx.draw_networkx_edges(
        G, pos, connectionstyle=["arc3,rad=0.1", "arc3,rad=0.1", "arc3,rad=0.1"]
    )
    for conn_style in [
        "arc3,rad=0.1",
        ["arc3,rad=0.1", "arc3,rad=0.2"],
        ["arc3,rad=0.1", "arc3,rad=0.1", "arc3,rad=0.1"],
    ]:
        text_items = nx.draw_networkx_edge_labels(G, pos, connectionstyle=conn_style)
        assert len(text_items) == expected_n_edges
        for ti in text_items.values():
            assert ti.__class__.__name__ == "CurvedArrowText"


def test_draw_networkx_edge_label_multiedge():
    G = nx.MultiGraph()
    G.add_edge(0, 1, weight=10)
    G.add_edge(0, 1, weight=20)
    edge_labels = nx.get_edge_attributes(G, "weight")  # Includes edge keys
    pos = {n: (n, n) for n in G}
    text_items = nx.draw_networkx_edge_labels(
        G,
        pos,
        edge_labels=edge_labels,
        connectionstyle=["arc3,rad=0.1", "arc3,rad=0.2"],
    )
    assert len(text_items) == 2


def test_draw_networkx_edge_label_empty_dict():
    """Regression test for draw_networkx_edge_labels with empty dict. See
    gh-5372."""
    G = nx.path_graph(3)
    pos = {n: (n, n) for n in G.nodes}
    assert nx.draw_networkx_edge_labels(G, pos, edge_labels={}) == {}


def test_draw_networkx_edges_undirected_selfloop_colors(subplots):
    """When an edgelist is supplied along with a sequence of colors, check that
    the self-loops have the correct colors."""
    fig, ax = subplots
    # Edge list and corresponding colors
    edgelist = [(1, 3), (1, 2), (2, 3), (1, 1), (3, 3), (2, 2)]
    edge_colors = ["pink", "cyan", "black", "red", "blue", "green"]

    G = nx.Graph(edgelist)
    pos = {n: (n, n) for n in G.nodes}
    nx.draw_networkx_edges(G, pos, ax=ax, edgelist=edgelist, edge_color=edge_colors)

    # Verify that there are three fancy arrow patches (1 per self loop)
    assert len(ax.patches) == 3

    # These are points that should be contained in the self loops. For example,
    # sl_points[0] will be (1, 1.1), which is inside the "path" of the first
    # self-loop but outside the others
    sl_points = np.array(edgelist[-3:]) + np.array([0, 0.1])

    # Check that the mapping between self-loop locations and their colors is
    # correct
    for fap, clr, slp in zip(ax.patches, edge_colors[-3:], sl_points):
        assert fap.get_path().contains_point(slp)
        assert mpl.colors.same_color(fap.get_edgecolor(), clr)


@pytest.mark.parametrize(
    "fap_only_kwarg",  # Non-default values for kwargs that only apply to FAPs
    (
        {"arrowstyle": "-"},
        {"arrowsize": 20},
        {"connectionstyle": "arc3,rad=0.2"},
        {"min_source_margin": 10},
        {"min_target_margin": 10},
    ),
)
def test_user_warnings_for_unused_edge_drawing_kwargs(fap_only_kwarg, subplots):
    """Users should get a warning when they specify a non-default value for
    one of the kwargs that applies only to edges drawn with FancyArrowPatches,
    but FancyArrowPatches aren't being used under the hood."""
    G = nx.path_graph(3)
    pos = {n: (n, n) for n in G}
    fig, ax = subplots
    # By default, an undirected graph will use LineCollection to represent
    # the edges
    kwarg_name = list(fap_only_kwarg.keys())[0]
    with pytest.warns(
        UserWarning, match=f"\n\nThe {kwarg_name} keyword argument is not applicable"
    ):
        nx.draw_networkx_edges(G, pos, ax=ax, **fap_only_kwarg)
    # FancyArrowPatches are always used when `arrows=True` is specified.
    # Check that warnings are *not* raised in this case
    with warnings.catch_warnings():
        # Escalate warnings -> errors so tests fail if warnings are raised
        warnings.simplefilter("error")
        warnings.filterwarnings("ignore", category=DeprecationWarning)
        nx.draw_networkx_edges(G, pos, ax=ax, arrows=True, **fap_only_kwarg)


@pytest.mark.parametrize("draw_fn", (nx.draw, nx.draw_circular))
def test_no_warning_on_default_draw_arrowstyle(draw_fn, subplots):
    # See gh-7284
    fig, ax = subplots
    G = nx.cycle_graph(5)
    with warnings.catch_warnings(record=True) as w:
        draw_fn(G, ax=ax)
    assert len(w) == 0


@pytest.mark.parametrize("hide_ticks", [False, True])
@pytest.mark.parametrize(
    "method",
    [
        nx.draw_networkx,
        nx.draw_networkx_edge_labels,
        nx.draw_networkx_edges,
        nx.draw_networkx_labels,
        nx.draw_networkx_nodes,
    ],
)
def test_hide_ticks(method, hide_ticks, subplots):
    G = nx.path_graph(3)
    pos = {n: (n, n) for n in G.nodes}
    _, ax = subplots
    method(G, pos=pos, ax=ax, hide_ticks=hide_ticks)
    for axis in [ax.xaxis, ax.yaxis]:
        assert bool(axis.get_ticklabels()) != hide_ticks


def test_edge_label_bar_connectionstyle(subplots):
    """Check that FancyArrowPatches with `bar` connectionstyle are also supported
    in edge label rendering. See gh-7735."""
    fig, ax = subplots
    edge = (0, 1)
    G = nx.DiGraph([edge])
    pos = {n: (n, 0) for n in G}  # Edge is horizontal line between (0, 0) and (1, 0)

    style_arc = "arc3,rad=0.0"
    style_bar = "bar,fraction=0.1"

    arc_lbl = nx.draw_networkx_edge_labels(
        G, pos, edge_labels={edge: "edge"}, connectionstyle=style_arc
    )
    # This would fail prior to gh-7739
    bar_lbl = nx.draw_networkx_edge_labels(
        G, pos, edge_labels={edge: "edge"}, connectionstyle=style_bar
    )

    # For the "arc" style, the label should be at roughly the midpoint
    assert arc_lbl[edge].x, arc_lbl[edge].y == pytest.approx((0.5, 0))
    # The label should be below the x-axis for the "bar" style
    assert bar_lbl[edge].y < arc_lbl[edge].y