summaryrefslogtreecommitdiff
path: root/.venv/lib/python3.12/site-packages/networkx/generators/__pycache__/expanders.cpython-312.pyc
blob: 0cb93cc5841c043bd4cd7b46284b802ba80d6451 (plain)
ofshex dumpascii
0000 cb 0d 0d 0a 00 00 00 00 85 fa a7 68 7c 38 00 00 e3 00 00 00 00 00 00 00 00 00 00 00 00 07 00 00 ...........h|8..................
0020 00 00 00 00 00 f3 98 02 00 00 97 00 64 00 5a 00 64 01 64 02 6c 01 5a 01 64 01 64 02 6c 02 5a 03 ............d.Z.d.d.l.Z.d.d.l.Z.
0040 67 00 64 03 a2 01 5a 04 02 00 65 03 6a 0a 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 g.d...Z...e.j...................
0060 64 02 64 04 ac 05 ab 02 00 00 00 00 00 00 64 17 64 06 84 01 ab 00 00 00 00 00 00 00 5a 06 02 00 d.d...........d.d...........Z...
0080 65 03 6a 0a 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 64 02 64 04 ac 05 ab 02 00 00 e.j...................d.d.......
00a0 00 00 00 00 64 17 64 07 84 01 ab 00 00 00 00 00 00 00 5a 07 02 00 65 03 6a 0a 00 00 00 00 00 00 ....d.d...........Z...e.j.......
00c0 00 00 00 00 00 00 00 00 00 00 00 00 64 02 64 04 ac 05 ab 02 00 00 00 00 00 00 64 17 64 08 84 01 ............d.d...........d.d...
00e0 ab 00 00 00 00 00 00 00 5a 08 65 03 6a 12 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ........Z.e.j...................
0100 6a 14 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 6a 17 00 00 00 00 00 00 00 00 00 00 j...................j...........
0120 00 00 00 00 00 00 00 00 64 09 ab 01 00 00 00 00 00 00 02 00 65 03 6a 0a 00 00 00 00 00 00 00 00 ........d...........e.j.........
0140 00 00 00 00 00 00 00 00 00 00 64 02 64 04 ac 05 ab 02 00 00 00 00 00 00 64 02 64 0a 64 02 64 0b ..........d.d...........d.d.d.d.
0160 9c 03 64 0c 84 02 ab 00 00 00 00 00 00 00 ab 00 00 00 00 00 00 00 5a 0c 65 03 6a 12 00 00 00 00 ..d...................Z.e.j.....
0180 00 00 00 00 00 00 00 00 00 00 00 00 00 00 6a 1b 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ..............j.................
01a0 00 00 64 0d ab 01 00 00 00 00 00 00 65 03 6a 12 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ..d.........e.j.................
01c0 00 00 6a 1b 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 64 0e ab 01 00 00 00 00 00 00 ..j...................d.........
01e0 02 00 65 03 6a 0a 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 64 0f 64 10 64 11 69 01 ..e.j...................d.d.d.i.
0200 69 01 ac 12 ab 01 00 00 00 00 00 00 64 01 64 13 9c 01 64 14 84 02 ab 00 00 00 00 00 00 00 ab 00 i...........d.d...d.............
0220 00 00 00 00 00 00 ab 00 00 00 00 00 00 00 5a 0e 65 03 6a 12 00 00 00 00 00 00 00 00 00 00 00 00 ..............Z.e.j.............
0240 00 00 00 00 00 00 6a 14 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 6a 17 00 00 00 00 ......j...................j.....
0260 00 00 00 00 00 00 00 00 00 00 00 00 00 00 64 09 ab 01 00 00 00 00 00 00 02 00 65 03 6a 0a 00 00 ..............d...........e.j...
0280 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 64 02 64 04 ac 05 ab 02 00 00 00 00 00 00 64 01 ................d.d...........d.
02a0 64 02 64 0a 64 02 64 15 9c 04 64 16 84 02 ab 00 00 00 00 00 00 00 ab 00 00 00 00 00 00 00 5a 0f d.d.d.d...d...................Z.
02c0 79 02 29 18 7a 33 50 72 6f 76 69 64 65 73 20 65 78 70 6c 69 63 69 74 20 63 6f 6e 73 74 72 75 63 y.).z3Provides.explicit.construc
02e0 74 69 6f 6e 73 20 6f 66 20 65 78 70 61 6e 64 65 72 20 67 72 61 70 68 73 2e e9 00 00 00 00 4e 29 tions.of.expander.graphs......N)
0300 06 da 1b 6d 61 72 67 75 6c 69 73 5f 67 61 62 62 65 72 5f 67 61 6c 69 6c 5f 67 72 61 70 68 da 13 ...margulis_gabber_galil_graph..
0320 63 68 6f 72 64 61 6c 5f 63 79 63 6c 65 5f 67 72 61 70 68 da 0b 70 61 6c 65 79 5f 67 72 61 70 68 chordal_cycle_graph..paley_graph
0340 da 16 6d 61 79 62 65 5f 72 65 67 75 6c 61 72 5f 65 78 70 61 6e 64 65 72 da 13 69 73 5f 72 65 67 ..maybe_regular_expander..is_reg
0360 75 6c 61 72 5f 65 78 70 61 6e 64 65 72 da 1d 72 61 6e 64 6f 6d 5f 72 65 67 75 6c 61 72 5f 65 78 ular_expander..random_regular_ex
0380 70 61 6e 64 65 72 5f 67 72 61 70 68 54 29 02 da 06 67 72 61 70 68 73 da 0d 72 65 74 75 72 6e 73 pander_graphT)...graphs..returns
03a0 5f 67 72 61 70 68 63 02 00 00 00 00 00 00 00 00 00 00 00 08 00 00 00 03 00 00 00 f3 e2 01 00 00 _graphc.........................
03c0 97 00 74 01 00 00 00 00 00 00 00 00 6a 02 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ..t.........j...................
03e0 64 01 7c 01 74 00 00 00 00 00 00 00 00 00 6a 04 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 d.|.t.........j.................
0400 00 00 ac 02 ab 03 00 00 00 00 00 00 7d 02 7c 02 6a 07 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ............}.|.j...............
0420 00 00 00 00 ab 00 00 00 00 00 00 00 73 10 7c 02 6a 09 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ............s.|.j...............
0440 00 00 00 00 ab 00 00 00 00 00 00 00 73 17 64 03 7d 03 74 01 00 00 00 00 00 00 00 00 6a 0a 00 00 ............s.d.}.t.........j...
0460 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 7c 03 ab 01 00 00 00 00 00 00 82 01 74 0d 00 00 ................|...........t...
0480 00 00 00 00 00 00 6a 0e 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 74 11 00 00 00 00 ......j...................t.....
04a0 00 00 00 00 7c 00 ab 01 00 00 00 00 00 00 64 04 ac 05 ab 02 00 00 00 00 00 00 44 00 5d 5b 00 00 ....|.........d...........D.][..
04c0 5c 02 00 00 7d 04 7d 05 7c 04 64 04 7c 05 7a 05 00 00 7a 00 00 00 7c 00 7a 06 00 00 7c 05 66 02 \...}.}.|.d.|.z...z...|.z...|.f.
04e0 7c 04 64 04 7c 05 7a 05 00 00 64 06 7a 00 00 00 7a 00 00 00 7c 00 7a 06 00 00 7c 05 66 02 7c 04 |.d.|.z...d.z...z...|.z...|.f.|.
0500 7c 05 64 04 7c 04 7a 05 00 00 7a 00 00 00 7c 00 7a 06 00 00 66 02 7c 04 7c 05 64 04 7c 04 7a 05 |.d.|.z...z...|.z...f.|.|.d.|.z.
0520 00 00 64 06 7a 00 00 00 7a 00 00 00 7c 00 7a 06 00 00 66 02 66 04 44 00 5d 1b 00 00 5c 02 00 00 ..d.z...z...|.z...f.f.D.]...\...
0540 7d 06 7d 07 7c 02 6a 13 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 7c 04 7c 05 66 02 }.}.|.j...................|.|.f.
0560 7c 06 7c 07 66 02 ab 02 00 00 00 00 00 00 01 00 8c 1d 04 00 8c 5d 04 00 64 07 7c 00 9b 00 64 08 |.|.f................]..d.|...d.
0580 9d 03 7c 02 6a 14 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 64 09 3c 00 00 00 7c 02 ..|.j...................d.<...|.
05a0 53 00 29 0a 61 d0 02 00 00 52 65 74 75 72 6e 73 20 74 68 65 20 4d 61 72 67 75 6c 69 73 2d 47 61 S.).a....Returns.the.Margulis-Ga
05c0 62 62 65 72 2d 47 61 6c 69 6c 20 75 6e 64 69 72 65 63 74 65 64 20 4d 75 6c 74 69 47 72 61 70 68 bber-Galil.undirected.MultiGraph
05e0 20 6f 6e 20 60 6e 5e 32 60 20 6e 6f 64 65 73 2e 0a 0a 20 20 20 20 54 68 65 20 75 6e 64 69 72 65 .on.`n^2`.nodes.......The.undire
0600 63 74 65 64 20 4d 75 6c 74 69 47 72 61 70 68 20 69 73 20 72 65 67 75 6c 61 72 20 77 69 74 68 20 cted.MultiGraph.is.regular.with.
0620 64 65 67 72 65 65 20 60 38 60 2e 20 4e 6f 64 65 73 20 61 72 65 20 69 6e 74 65 67 65 72 0a 20 20 degree.`8`..Nodes.are.integer...
0640 20 20 70 61 69 72 73 2e 20 54 68 65 20 73 65 63 6f 6e 64 2d 6c 61 72 67 65 73 74 20 65 69 67 65 ..pairs..The.second-largest.eige
0660 6e 76 61 6c 75 65 20 6f 66 20 74 68 65 20 61 64 6a 61 63 65 6e 63 79 20 6d 61 74 72 69 78 20 6f nvalue.of.the.adjacency.matrix.o
0680 66 20 74 68 65 20 67 72 61 70 68 0a 20 20 20 20 69 73 20 61 74 20 6d 6f 73 74 20 60 35 20 5c 73 f.the.graph.....is.at.most.`5.\s
06a0 71 72 74 7b 32 7d 60 2c 20 72 65 67 61 72 64 6c 65 73 73 20 6f 66 20 60 6e 60 2e 0a 0a 20 20 20 qrt{2}`,.regardless.of.`n`......
06c0 20 50 61 72 61 6d 65 74 65 72 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 6e .Parameters.....----------.....n
06e0 20 3a 20 69 6e 74 0a 20 20 20 20 20 20 20 20 44 65 74 65 72 6d 69 6e 65 73 20 74 68 65 20 6e 75 .:.int.........Determines.the.nu
0700 6d 62 65 72 20 6f 66 20 6e 6f 64 65 73 20 69 6e 20 74 68 65 20 67 72 61 70 68 3a 20 60 6e 5e 32 mber.of.nodes.in.the.graph:.`n^2
0720 60 2e 0a 20 20 20 20 63 72 65 61 74 65 5f 75 73 69 6e 67 20 3a 20 4e 65 74 77 6f 72 6b 58 20 67 `......create_using.:.NetworkX.g
0740 72 61 70 68 20 63 6f 6e 73 74 72 75 63 74 6f 72 2c 20 6f 70 74 69 6f 6e 61 6c 20 28 64 65 66 61 raph.constructor,.optional.(defa
0760 75 6c 74 20 4d 75 6c 74 69 47 72 61 70 68 29 0a 20 20 20 20 20 20 20 47 72 61 70 68 20 74 79 70 ult.MultiGraph)........Graph.typ
0780 65 20 74 6f 20 63 72 65 61 74 65 2e 20 49 66 20 67 72 61 70 68 20 69 6e 73 74 61 6e 63 65 2c 20 e.to.create..If.graph.instance,.
07a0 74 68 65 6e 20 63 6c 65 61 72 65 64 20 62 65 66 6f 72 65 20 70 6f 70 75 6c 61 74 65 64 2e 0a 0a then.cleared.before.populated...
07c0 20 20 20 20 52 65 74 75 72 6e 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 47 20 3a 20 ....Returns.....-------.....G.:.
07e0 67 72 61 70 68 0a 20 20 20 20 20 20 20 20 54 68 65 20 63 6f 6e 73 74 72 75 63 74 65 64 20 75 6e graph.........The.constructed.un
0800 64 69 72 65 63 74 65 64 20 6d 75 6c 74 69 67 72 61 70 68 2e 0a 0a 20 20 20 20 52 61 69 73 65 73 directed.multigraph.......Raises
0820 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 4e 65 74 77 6f 72 6b 58 45 72 72 6f 72 0a 20 20 .....------.....NetworkXError...
0840 20 20 20 20 20 20 49 66 20 74 68 65 20 67 72 61 70 68 20 69 73 20 64 69 72 65 63 74 65 64 20 6f ......If.the.graph.is.directed.o
0860 72 20 6e 6f 74 20 61 20 6d 75 6c 74 69 67 72 61 70 68 2e 0a 0a 20 20 20 20 72 02 00 00 00 a9 01 r.not.a.multigraph.......r......
0880 da 07 64 65 66 61 75 6c 74 fa 30 60 63 72 65 61 74 65 5f 75 73 69 6e 67 60 20 6d 75 73 74 20 62 ..default.0`create_using`.must.b
08a0 65 20 61 6e 20 75 6e 64 69 72 65 63 74 65 64 20 6d 75 6c 74 69 67 72 61 70 68 2e e9 02 00 00 00 e.an.undirected.multigraph......
08c0 29 01 da 06 72 65 70 65 61 74 e9 01 00 00 00 7a 1c 6d 61 72 67 75 6c 69 73 5f 67 61 62 62 65 72 )...repeat.....z.margulis_gabber
08e0 5f 67 61 6c 69 6c 5f 67 72 61 70 68 28 fa 01 29 da 04 6e 61 6d 65 29 0b da 02 6e 78 da 0b 65 6d _galil_graph(..)..name)...nx..em
0900 70 74 79 5f 67 72 61 70 68 da 0a 4d 75 6c 74 69 47 72 61 70 68 da 0b 69 73 5f 64 69 72 65 63 74 pty_graph..MultiGraph..is_direct
0920 65 64 da 0d 69 73 5f 6d 75 6c 74 69 67 72 61 70 68 da 0d 4e 65 74 77 6f 72 6b 58 45 72 72 6f 72 ed..is_multigraph..NetworkXError
0940 da 09 69 74 65 72 74 6f 6f 6c 73 da 07 70 72 6f 64 75 63 74 da 05 72 61 6e 67 65 da 08 61 64 64 ..itertools..product..range..add
0960 5f 65 64 67 65 da 05 67 72 61 70 68 29 08 da 01 6e da 0c 63 72 65 61 74 65 5f 75 73 69 6e 67 da _edge..graph)...n..create_using.
0980 01 47 da 03 6d 73 67 da 01 78 da 01 79 da 01 75 da 01 76 73 08 00 00 00 20 20 20 20 20 20 20 20 .G..msg..x..y..u..vs............
09a0 fa 64 2f 68 6f 6d 65 2f 62 6c 61 63 6b 68 61 6f 2f 75 69 75 63 2d 63 6f 75 72 73 65 2d 67 72 61 .d/home/blackhao/uiuc-course-gra
09c0 70 68 2f 2e 76 65 6e 76 2f 6c 69 62 2f 70 79 74 68 6f 6e 33 2e 31 32 2f 73 69 74 65 2d 70 61 63 ph/.venv/lib/python3.12/site-pac
09e0 6b 61 67 65 73 2f 6e 65 74 77 6f 72 6b 78 2f 67 65 6e 65 72 61 74 6f 72 73 2f 65 78 70 61 6e 64 kages/networkx/generators/expand
0a00 65 72 73 2e 70 79 72 03 00 00 00 72 03 00 00 00 31 00 00 00 73 0a 01 00 00 80 00 f4 34 00 09 0b ers.pyr....r....1...s.......4...
0a20 8f 0e 89 0e 90 71 98 2c b4 02 b7 0d b1 0d d4 08 3e 80 41 d8 07 08 87 7d 81 7d 84 7f 98 61 9f 6f .....q.,........>.A....}.}...a.o
0a40 99 6f d4 1e 2f d8 0e 40 88 03 dc 0e 10 d7 0e 1e d1 0e 1e 98 73 d3 0e 23 d0 08 23 e4 10 19 d7 10 .o../..@............s..#..#.....
0a60 21 d1 10 21 a4 25 a8 01 a3 28 b0 31 d4 10 35 f2 00 07 05 27 89 04 88 01 88 31 e0 0e 0f 90 21 90 !..!.%...(.1..5....'.....1....!.
0a80 61 91 25 89 69 98 31 89 5f 98 61 d0 0c 20 d8 0e 0f 90 31 90 71 91 35 98 31 91 39 89 6f a0 11 d1 a.%.i.1._.a.......1.q.5.1.9.o...
0aa0 0d 22 a0 41 d0 0c 26 d8 0d 0e 90 11 90 51 98 11 91 55 91 19 98 61 91 0f d0 0c 20 d8 0d 0e 90 11 .".A..&......Q...U...a..........
0ac0 90 61 98 21 91 65 98 61 91 69 91 1f a0 41 d1 10 25 d0 0c 26 f0 09 05 15 0a f2 00 06 09 27 89 44 .a.!.e.a.i...A..%..&.........'.D
0ae0 88 41 88 71 f0 0c 00 0d 0e 8f 4a 89 4a 98 01 98 31 90 76 a0 01 a0 31 98 76 d5 0c 26 f1 0d 06 09 .A.q......J.J...1.v...1.v..&....
0b00 27 f0 03 07 05 27 f0 10 00 19 35 b0 51 b0 43 b0 71 d0 16 39 80 41 87 47 81 47 88 46 81 4f d8 0b '....'....5.Q.C.q..9.A.G.G.F.O..
0b20 0c 80 48 f3 00 00 00 00 63 02 00 00 00 00 00 00 00 00 00 00 00 06 00 00 00 03 00 00 00 f3 8c 01 ..H.....c.......................
0b40 00 00 97 00 74 01 00 00 00 00 00 00 00 00 6a 02 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ....t.........j.................
0b60 00 00 64 01 7c 01 74 00 00 00 00 00 00 00 00 00 6a 04 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ..d.|.t.........j...............
0b80 00 00 00 00 ac 02 ab 03 00 00 00 00 00 00 7d 02 7c 02 6a 07 00 00 00 00 00 00 00 00 00 00 00 00 ..............}.|.j.............
0ba0 00 00 00 00 00 00 ab 00 00 00 00 00 00 00 73 10 7c 02 6a 09 00 00 00 00 00 00 00 00 00 00 00 00 ..............s.|.j.............
0bc0 00 00 00 00 00 00 ab 00 00 00 00 00 00 00 73 17 64 03 7d 03 74 01 00 00 00 00 00 00 00 00 6a 0a ..............s.d.}.t.........j.
0be0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 7c 03 ab 01 00 00 00 00 00 00 82 01 74 0d ..................|...........t.
0c00 00 00 00 00 00 00 00 00 7c 00 ab 01 00 00 00 00 00 00 44 00 5d 45 00 00 7d 04 7c 04 64 04 7a 0a ........|.........D.]E..}.|.d.z.
0c20 00 00 7c 00 7a 06 00 00 7d 05 7c 04 64 04 7a 00 00 00 7c 00 7a 06 00 00 7d 06 7c 04 64 01 6b 44 ..|.z...}.|.d.z...|.z...}.|.d.kD
0c40 00 00 72 10 74 0f 00 00 00 00 00 00 00 00 7c 04 7c 00 64 05 7a 0a 00 00 7c 00 ab 03 00 00 00 00 ..r.t.........|.|.d.z...|.......
0c60 00 00 6e 01 64 01 7d 07 7c 05 7c 06 7c 07 66 03 44 00 5d 14 00 00 7d 08 7c 02 6a 11 00 00 00 00 ..n.d.}.|.|.|.f.D.]...}.|.j.....
0c80 00 00 00 00 00 00 00 00 00 00 00 00 00 00 7c 04 7c 08 ab 02 00 00 00 00 00 00 01 00 8c 16 04 00 ..............|.|...............
0ca0 8c 47 04 00 64 06 7c 00 9b 00 64 07 9d 03 7c 02 6a 12 00 00 00 00 00 00 00 00 00 00 00 00 00 00 .G..d.|...d...|.j...............
0cc0 00 00 00 00 64 08 3c 00 00 00 7c 02 53 00 29 09 75 04 04 00 00 52 65 74 75 72 6e 73 20 74 68 65 ....d.<...|.S.).u....Returns.the
0ce0 20 63 68 6f 72 64 61 6c 20 63 79 63 6c 65 20 67 72 61 70 68 20 6f 6e 20 60 70 60 20 6e 6f 64 65 .chordal.cycle.graph.on.`p`.node
0d00 73 2e 0a 0a 20 20 20 20 54 68 65 20 72 65 74 75 72 6e 65 64 20 67 72 61 70 68 20 69 73 20 61 20 s.......The.returned.graph.is.a.
0d20 63 79 63 6c 65 20 67 72 61 70 68 20 6f 6e 20 60 70 60 20 6e 6f 64 65 73 20 77 69 74 68 20 63 68 cycle.graph.on.`p`.nodes.with.ch
0d40 6f 72 64 73 20 6a 6f 69 6e 69 6e 67 20 65 61 63 68 0a 20 20 20 20 76 65 72 74 65 78 20 60 78 60 ords.joining.each.....vertex.`x`
0d60 20 74 6f 20 69 74 73 20 69 6e 76 65 72 73 65 20 6d 6f 64 75 6c 6f 20 60 70 60 2e 20 54 68 69 73 .to.its.inverse.modulo.`p`..This
0d80 20 67 72 61 70 68 20 69 73 20 61 20 28 6d 69 6c 64 6c 79 20 65 78 70 6c 69 63 69 74 29 0a 20 20 .graph.is.a.(mildly.explicit)...
0da0 20 20 33 2d 72 65 67 75 6c 61 72 20 65 78 70 61 6e 64 65 72 20 5b 31 5d 5f 2e 0a 0a 20 20 20 20 ..3-regular.expander.[1]_.......
0dc0 60 70 60 20 2a 6d 75 73 74 2a 20 62 65 20 61 20 70 72 69 6d 65 20 6e 75 6d 62 65 72 2e 0a 0a 20 `p`.*must*.be.a.prime.number....
0de0 20 20 20 50 61 72 61 6d 65 74 65 72 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 ...Parameters.....----------....
0e00 20 70 20 3a 20 61 20 70 72 69 6d 65 20 6e 75 6d 62 65 72 0a 0a 20 20 20 20 20 20 20 20 54 68 65 .p.:.a.prime.number..........The
0e20 20 6e 75 6d 62 65 72 20 6f 66 20 76 65 72 74 69 63 65 73 20 69 6e 20 74 68 65 20 67 72 61 70 68 .number.of.vertices.in.the.graph
0e40 2e 20 54 68 69 73 20 61 6c 73 6f 20 69 6e 64 69 63 61 74 65 73 20 77 68 65 72 65 20 74 68 65 0a ..This.also.indicates.where.the.
0e60 20 20 20 20 20 20 20 20 63 68 6f 72 64 61 6c 20 65 64 67 65 73 20 69 6e 20 74 68 65 20 63 79 63 ........chordal.edges.in.the.cyc
0e80 6c 65 20 77 69 6c 6c 20 62 65 20 63 72 65 61 74 65 64 2e 0a 0a 20 20 20 20 63 72 65 61 74 65 5f le.will.be.created.......create_
0ea0 75 73 69 6e 67 20 3a 20 4e 65 74 77 6f 72 6b 58 20 67 72 61 70 68 20 63 6f 6e 73 74 72 75 63 74 using.:.NetworkX.graph.construct
0ec0 6f 72 2c 20 6f 70 74 69 6f 6e 61 6c 20 28 64 65 66 61 75 6c 74 3d 6e 78 2e 47 72 61 70 68 29 0a or,.optional.(default=nx.Graph).
0ee0 20 20 20 20 20 20 20 47 72 61 70 68 20 74 79 70 65 20 74 6f 20 63 72 65 61 74 65 2e 20 49 66 20 .......Graph.type.to.create..If.
0f00 67 72 61 70 68 20 69 6e 73 74 61 6e 63 65 2c 20 74 68 65 6e 20 63 6c 65 61 72 65 64 20 62 65 66 graph.instance,.then.cleared.bef
0f20 6f 72 65 20 70 6f 70 75 6c 61 74 65 64 2e 0a 0a 20 20 20 20 52 65 74 75 72 6e 73 0a 20 20 20 20 ore.populated.......Returns.....
0f40 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 47 20 3a 20 67 72 61 70 68 0a 20 20 20 20 20 20 20 20 54 68 -------.....G.:.graph.........Th
0f60 65 20 63 6f 6e 73 74 72 75 63 74 65 64 20 75 6e 64 69 72 65 63 74 65 64 20 6d 75 6c 74 69 67 72 e.constructed.undirected.multigr
0f80 61 70 68 2e 0a 0a 20 20 20 20 52 61 69 73 65 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 aph.......Raises.....------.....
0fa0 4e 65 74 77 6f 72 6b 58 45 72 72 6f 72 0a 0a 20 20 20 20 20 20 20 20 49 66 20 60 63 72 65 61 74 NetworkXError..........If.`creat
0fc0 65 5f 75 73 69 6e 67 60 20 69 6e 64 69 63 61 74 65 73 20 64 69 72 65 63 74 65 64 20 6f 72 20 6e e_using`.indicates.directed.or.n
0fe0 6f 74 20 61 20 6d 75 6c 74 69 67 72 61 70 68 2e 0a 0a 20 20 20 20 52 65 66 65 72 65 6e 63 65 73 ot.a.multigraph.......References
1000 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 0a 0a 20 20 20 20 2e 2e 20 5b 31 5d 20 54 68 65 6f .....----------.........[1].Theo
1020 72 65 6d 20 34 2e 34 2e 32 20 69 6e 20 41 2e 20 4c 75 62 6f 74 7a 6b 79 2e 20 22 44 69 73 63 72 rem.4.4.2.in.A..Lubotzky.."Discr
1040 65 74 65 20 67 72 6f 75 70 73 2c 20 65 78 70 61 6e 64 69 6e 67 20 67 72 61 70 68 73 20 61 6e 64 ete.groups,.expanding.graphs.and
1060 0a 20 20 20 20 20 20 20 20 20 20 20 69 6e 76 61 72 69 61 6e 74 20 6d 65 61 73 75 72 65 73 22 2c ............invariant.measures",
1080 20 76 6f 6c 75 6d 65 20 31 32 35 20 6f 66 20 50 72 6f 67 72 65 73 73 20 69 6e 20 4d 61 74 68 65 .volume.125.of.Progress.in.Mathe
10a0 6d 61 74 69 63 73 2e 0a 20 20 20 20 20 20 20 20 20 20 20 42 69 72 6b 68 c3 a4 75 73 65 72 20 56 matics.............Birkh..user.V
10c0 65 72 6c 61 67 2c 20 42 61 73 65 6c 2c 20 31 39 39 34 2e 0a 0a 20 20 20 20 72 02 00 00 00 72 0c erlag,.Basel,.1994.......r....r.
10e0 00 00 00 72 0e 00 00 00 72 11 00 00 00 72 0f 00 00 00 7a 14 63 68 6f 72 64 61 6c 5f 63 79 63 6c ...r....r....r....z.chordal_cycl
1100 65 5f 67 72 61 70 68 28 72 12 00 00 00 72 13 00 00 00 29 0a 72 14 00 00 00 72 15 00 00 00 72 16 e_graph(r....r....).r....r....r.
1120 00 00 00 72 17 00 00 00 72 18 00 00 00 72 19 00 00 00 72 1c 00 00 00 da 03 70 6f 77 72 1d 00 00 ...r....r....r....r......powr...
1140 00 72 1e 00 00 00 29 09 da 01 70 72 20 00 00 00 72 21 00 00 00 72 22 00 00 00 72 23 00 00 00 da .r....)...pr....r!...r"...r#....
1160 04 6c 65 66 74 da 05 72 69 67 68 74 da 05 63 68 6f 72 64 72 24 00 00 00 73 09 00 00 00 20 20 20 .left..right..chordr$...s.......
1180 20 20 20 20 20 20 72 27 00 00 00 72 04 00 00 00 72 04 00 00 00 5c 00 00 00 73 cd 00 00 00 80 00 ......r'...r....r....\...s......
11a0 f4 4e 01 00 09 0b 8f 0e 89 0e 90 71 98 2c b4 02 b7 0d b1 0d d4 08 3e 80 41 d8 07 08 87 7d 81 7d .N.........q.,........>.A....}.}
11c0 84 7f 98 61 9f 6f 99 6f d4 1e 2f d8 0e 40 88 03 dc 0e 10 d7 0e 1e d1 0e 1e 98 73 d3 0e 23 d0 08 ...a.o.o../..@............s..#..
11e0 23 e4 0d 12 90 31 8b 58 f2 00 0f 05 1d 88 01 d8 10 11 90 41 91 05 98 11 89 7b 88 04 d8 11 12 90 #....1.X...........A.....{......
1200 51 91 15 98 21 91 0b 88 05 f0 16 00 25 26 a8 01 a2 45 94 03 90 41 90 71 98 31 91 75 98 61 d4 10 Q...!.......%&...E...A.q.1.u.a..
1220 20 a8 71 88 05 d8 12 16 98 05 98 75 d0 11 25 f2 00 01 09 1d 88 41 d8 0c 0d 8f 4a 89 4a 90 71 98 ..q........u..%......A....J.J.q.
1240 21 d5 0c 1c f1 03 01 09 1d f0 1d 0f 05 1d f0 20 00 19 2d a8 51 a8 43 a8 71 d0 16 31 80 41 87 47 !.................-.Q.C.q..1.A.G
1260 81 47 88 46 81 4f d8 0b 0c 80 48 72 28 00 00 00 63 02 00 00 00 00 00 00 00 00 00 00 00 07 00 00 .G.F.O....Hr(...c...............
1280 00 03 00 00 00 f3 84 01 00 00 97 00 74 01 00 00 00 00 00 00 00 00 6a 02 00 00 00 00 00 00 00 00 ............t.........j.........
12a0 00 00 00 00 00 00 00 00 00 00 64 01 7c 01 74 00 00 00 00 00 00 00 00 00 6a 04 00 00 00 00 00 00 ..........d.|.t.........j.......
12c0 00 00 00 00 00 00 00 00 00 00 00 00 ac 02 ab 03 00 00 00 00 00 00 7d 02 7c 02 6a 07 00 00 00 00 ......................}.|.j.....
12e0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ab 00 00 00 00 00 00 00 72 17 64 03 7d 03 74 01 00 00 ......................r.d.}.t...
1300 00 00 00 00 00 00 6a 08 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 7c 03 ab 01 00 00 ......j...................|.....
1320 00 00 00 00 82 01 74 0b 00 00 00 00 00 00 00 00 64 04 7c 00 ab 02 00 00 00 00 00 00 44 00 8f 04 ......t.........d.|.........D...
1340 63 02 68 00 63 02 5d 16 00 00 7d 04 7c 04 64 05 7a 08 00 00 7c 00 7a 06 00 00 64 01 6b 37 00 00 c.h.c.]...}.|.d.z...|.z...d.k7..
1360 73 01 8c 0f 7c 04 64 05 7a 08 00 00 7c 00 7a 06 00 00 92 02 8c 18 04 00 7d 05 7d 04 74 0b 00 00 s...|.d.z...|.z.........}.}.t...
1380 00 00 00 00 00 00 7c 00 ab 01 00 00 00 00 00 00 44 00 5d 21 00 00 7d 04 7c 05 44 00 5d 1a 00 00 ......|.........D.]!..}.|.D.]...
13a0 7d 06 7c 02 6a 0d 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 7c 04 7c 04 7c 06 7a 00 }.|.j...................|.|.|.z.
13c0 00 00 7c 00 7a 06 00 00 ab 02 00 00 00 00 00 00 01 00 8c 1c 04 00 8c 23 04 00 64 06 7c 00 9b 00 ..|.z..................#..d.|...
13e0 64 07 9d 03 7c 02 6a 0e 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 64 08 3c 00 00 00 d...|.j...................d.<...
1400 7c 02 53 00 63 02 01 00 63 02 7d 04 77 00 29 09 61 2d 06 00 00 52 65 74 75 72 6e 73 20 74 68 65 |.S.c...c.}.w.).a-...Returns.the
1420 20 50 61 6c 65 79 20 24 5c 66 72 61 63 7b 28 70 2d 31 29 7d 7b 32 7d 24 20 2d 72 65 67 75 6c 61 .Paley.$\frac{(p-1)}{2}$.-regula
1440 72 20 67 72 61 70 68 20 6f 6e 20 24 70 24 20 6e 6f 64 65 73 2e 0a 0a 20 20 20 20 54 68 65 20 72 r.graph.on.$p$.nodes.......The.r
1460 65 74 75 72 6e 65 64 20 67 72 61 70 68 20 69 73 20 61 20 67 72 61 70 68 20 6f 6e 20 24 5c 6d 61 eturned.graph.is.a.graph.on.$\ma
1480 74 68 62 62 7b 5a 7d 2f 70 5c 6d 61 74 68 62 62 7b 5a 7d 24 20 77 69 74 68 20 65 64 67 65 73 20 thbb{Z}/p\mathbb{Z}$.with.edges.
14a0 62 65 74 77 65 65 6e 20 24 78 24 20 61 6e 64 20 24 79 24 0a 20 20 20 20 69 66 20 61 6e 64 20 6f between.$x$.and.$y$.....if.and.o
14c0 6e 6c 79 20 69 66 20 24 78 2d 79 24 20 69 73 20 61 20 6e 6f 6e 7a 65 72 6f 20 73 71 75 61 72 65 nly.if.$x-y$.is.a.nonzero.square
14e0 20 69 6e 20 24 5c 6d 61 74 68 62 62 7b 5a 7d 2f 70 5c 6d 61 74 68 62 62 7b 5a 7d 24 2e 0a 0a 20 .in.$\mathbb{Z}/p\mathbb{Z}$....
1500 20 20 20 49 66 20 24 70 20 5c 65 71 75 69 76 20 31 20 20 5c 70 6d 6f 64 20 34 24 2c 20 24 2d 31 ...If.$p.\equiv.1..\pmod.4$,.$-1
1520 24 20 69 73 20 61 20 73 71 75 61 72 65 20 69 6e 0a 20 20 20 20 24 5c 6d 61 74 68 62 62 7b 5a 7d $.is.a.square.in.....$\mathbb{Z}
1540 2f 70 5c 6d 61 74 68 62 62 7b 5a 7d 24 20 61 6e 64 20 74 68 65 72 65 66 6f 72 65 20 24 78 2d 79 /p\mathbb{Z}$.and.therefore.$x-y
1560 24 20 69 73 20 61 20 73 71 75 61 72 65 20 69 66 20 61 6e 64 0a 20 20 20 20 6f 6e 6c 79 20 69 66 $.is.a.square.if.and.....only.if
1580 20 24 79 2d 78 24 20 69 73 20 61 6c 73 6f 20 61 20 73 71 75 61 72 65 2c 20 69 2e 65 20 74 68 65 .$y-x$.is.also.a.square,.i.e.the
15a0 20 65 64 67 65 73 20 69 6e 20 74 68 65 20 50 61 6c 65 79 20 67 72 61 70 68 20 61 72 65 20 73 79 .edges.in.the.Paley.graph.are.sy
15c0 6d 6d 65 74 72 69 63 2e 0a 0a 20 20 20 20 49 66 20 24 70 20 5c 65 71 75 69 76 20 33 20 5c 70 6d mmetric.......If.$p.\equiv.3.\pm
15e0 6f 64 20 34 24 2c 20 24 2d 31 24 20 69 73 20 6e 6f 74 20 61 20 73 71 75 61 72 65 20 69 6e 20 24 od.4$,.$-1$.is.not.a.square.in.$
1600 5c 6d 61 74 68 62 62 7b 5a 7d 2f 70 5c 6d 61 74 68 62 62 7b 5a 7d 24 0a 20 20 20 20 61 6e 64 20 \mathbb{Z}/p\mathbb{Z}$.....and.
1620 74 68 65 72 65 66 6f 72 65 20 65 69 74 68 65 72 20 24 78 2d 79 24 20 6f 72 20 24 79 2d 78 24 20 therefore.either.$x-y$.or.$y-x$.
1640 69 73 20 61 20 73 71 75 61 72 65 20 69 6e 20 24 5c 6d 61 74 68 62 62 7b 5a 7d 2f 70 5c 6d 61 74 is.a.square.in.$\mathbb{Z}/p\mat
1660 68 62 62 7b 5a 7d 24 20 62 75 74 20 6e 6f 74 20 62 6f 74 68 2e 0a 0a 20 20 20 20 4e 6f 74 65 20 hbb{Z}$.but.not.both.......Note.
1680 74 68 61 74 20 61 20 6d 6f 72 65 20 67 65 6e 65 72 61 6c 20 64 65 66 69 6e 69 74 69 6f 6e 20 6f that.a.more.general.definition.o
16a0 66 20 50 61 6c 65 79 20 67 72 61 70 68 73 20 65 78 74 65 6e 64 73 20 74 68 69 73 20 63 6f 6e 73 f.Paley.graphs.extends.this.cons
16c0 74 72 75 63 74 69 6f 6e 0a 20 20 20 20 74 6f 20 67 72 61 70 68 73 20 6f 76 65 72 20 24 71 3d 70 truction.....to.graphs.over.$q=p
16e0 5e 6e 24 20 76 65 72 74 69 63 65 73 2c 20 62 79 20 75 73 69 6e 67 20 74 68 65 20 66 69 6e 69 74 ^n$.vertices,.by.using.the.finit
1700 65 20 66 69 65 6c 64 20 24 46 5f 71 24 20 69 6e 73 74 65 61 64 20 6f 66 0a 20 20 20 20 24 5c 6d e.field.$F_q$.instead.of.....$\m
1720 61 74 68 62 62 7b 5a 7d 2f 70 5c 6d 61 74 68 62 62 7b 5a 7d 24 2e 0a 20 20 20 20 54 68 69 73 20 athbb{Z}/p\mathbb{Z}$......This.
1740 63 6f 6e 73 74 72 75 63 74 69 6f 6e 20 72 65 71 75 69 72 65 73 20 74 6f 20 63 6f 6d 70 75 74 65 construction.requires.to.compute
1760 20 73 71 75 61 72 65 73 20 69 6e 20 67 65 6e 65 72 61 6c 20 66 69 6e 69 74 65 20 66 69 65 6c 64 .squares.in.general.finite.field
1780 73 20 61 6e 64 20 69 73 0a 20 20 20 20 6e 6f 74 20 77 68 61 74 20 69 73 20 69 6d 70 6c 65 6d 65 s.and.is.....not.what.is.impleme
17a0 6e 74 65 64 20 68 65 72 65 20 28 69 2e 65 20 60 70 61 6c 65 79 5f 67 72 61 70 68 28 32 35 29 60 nted.here.(i.e.`paley_graph(25)`
17c0 20 64 6f 65 73 20 6e 6f 74 20 72 65 74 75 72 6e 20 74 68 65 20 74 72 75 65 0a 20 20 20 20 50 61 .does.not.return.the.true.....Pa
17e0 6c 65 79 20 67 72 61 70 68 20 61 73 73 6f 63 69 61 74 65 64 20 77 69 74 68 20 24 35 5e 32 24 29 ley.graph.associated.with.$5^2$)
1800 2e 0a 0a 20 20 20 20 50 61 72 61 6d 65 74 65 72 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d .......Parameters.....----------
1820 0a 20 20 20 20 70 20 3a 20 69 6e 74 2c 20 61 6e 20 6f 64 64 20 70 72 69 6d 65 20 6e 75 6d 62 65 .....p.:.int,.an.odd.prime.numbe
1840 72 2e 0a 0a 20 20 20 20 63 72 65 61 74 65 5f 75 73 69 6e 67 20 3a 20 4e 65 74 77 6f 72 6b 58 20 r.......create_using.:.NetworkX.
1860 67 72 61 70 68 20 63 6f 6e 73 74 72 75 63 74 6f 72 2c 20 6f 70 74 69 6f 6e 61 6c 20 28 64 65 66 graph.constructor,.optional.(def
1880 61 75 6c 74 3d 6e 78 2e 47 72 61 70 68 29 0a 20 20 20 20 20 20 20 47 72 61 70 68 20 74 79 70 65 ault=nx.Graph)........Graph.type
18a0 20 74 6f 20 63 72 65 61 74 65 2e 20 49 66 20 67 72 61 70 68 20 69 6e 73 74 61 6e 63 65 2c 20 74 .to.create..If.graph.instance,.t
18c0 68 65 6e 20 63 6c 65 61 72 65 64 20 62 65 66 6f 72 65 20 70 6f 70 75 6c 61 74 65 64 2e 0a 0a 20 hen.cleared.before.populated....
18e0 20 20 20 52 65 74 75 72 6e 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 47 20 3a 20 67 ...Returns.....-------.....G.:.g
1900 72 61 70 68 0a 20 20 20 20 20 20 20 20 54 68 65 20 63 6f 6e 73 74 72 75 63 74 65 64 20 64 69 72 raph.........The.constructed.dir
1920 65 63 74 65 64 20 67 72 61 70 68 2e 0a 0a 20 20 20 20 52 61 69 73 65 73 0a 20 20 20 20 2d 2d 2d ected.graph.......Raises.....---
1940 2d 2d 2d 0a 20 20 20 20 4e 65 74 77 6f 72 6b 58 45 72 72 6f 72 0a 20 20 20 20 20 20 20 20 49 66 ---.....NetworkXError.........If
1960 20 74 68 65 20 67 72 61 70 68 20 69 73 20 61 20 6d 75 6c 74 69 67 72 61 70 68 2e 0a 0a 20 20 20 .the.graph.is.a.multigraph......
1980 20 52 65 66 65 72 65 6e 63 65 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 43 .References.....----------.....C
19a0 68 61 70 74 65 72 20 31 33 20 69 6e 20 42 2e 20 42 6f 6c 6c 6f 62 61 73 2c 20 52 61 6e 64 6f 6d hapter.13.in.B..Bollobas,.Random
19c0 20 47 72 61 70 68 73 2e 20 53 65 63 6f 6e 64 20 65 64 69 74 69 6f 6e 2e 0a 20 20 20 20 43 61 6d .Graphs..Second.edition......Cam
19e0 62 72 69 64 67 65 20 53 74 75 64 69 65 73 20 69 6e 20 41 64 76 61 6e 63 65 64 20 4d 61 74 68 65 bridge.Studies.in.Advanced.Mathe
1a00 6d 61 74 69 63 73 2c 20 37 33 2e 0a 20 20 20 20 43 61 6d 62 72 69 64 67 65 20 55 6e 69 76 65 72 matics,.73......Cambridge.Univer
1a20 73 69 74 79 20 50 72 65 73 73 2c 20 43 61 6d 62 72 69 64 67 65 20 28 32 30 30 31 29 2e 0a 20 20 sity.Press,.Cambridge.(2001)....
1a40 20 20 72 02 00 00 00 72 0c 00 00 00 7a 26 60 63 72 65 61 74 65 5f 75 73 69 6e 67 60 20 63 61 6e ..r....r....z&`create_using`.can
1a60 6e 6f 74 20 62 65 20 61 20 6d 75 6c 74 69 67 72 61 70 68 2e 72 11 00 00 00 72 0f 00 00 00 7a 06 not.be.a.multigraph.r....r....z.
1a80 70 61 6c 65 79 28 72 12 00 00 00 72 13 00 00 00 29 08 72 14 00 00 00 72 15 00 00 00 da 07 44 69 paley(r....r....).r....r......Di
1aa0 47 72 61 70 68 72 18 00 00 00 72 19 00 00 00 72 1c 00 00 00 72 1d 00 00 00 72 1e 00 00 00 29 07 Graphr....r....r....r....r....).
1ac0 72 2b 00 00 00 72 20 00 00 00 72 21 00 00 00 72 22 00 00 00 72 23 00 00 00 da 0a 73 71 75 61 72 r+...r....r!...r"...r#.....squar
1ae0 65 5f 73 65 74 da 02 78 32 73 07 00 00 00 20 20 20 20 20 20 20 72 27 00 00 00 72 05 00 00 00 72 e_set..x2s...........r'...r....r
1b00 05 00 00 00 9c 00 00 00 73 c6 00 00 00 80 00 f4 58 01 00 09 0b 8f 0e 89 0e 90 71 98 2c b4 02 b7 ........s.......X.........q.,...
1b20 0a b1 0a d4 08 3b 80 41 d8 07 08 87 7f 81 7f d4 07 18 d8 0e 36 88 03 dc 0e 10 d7 0e 1e d1 0e 1e .....;.A............6...........
1b40 98 73 d3 0e 23 d0 08 23 f4 0a 00 27 2c a8 41 a8 71 a3 6b d6 11 45 a0 11 b0 61 b8 11 b1 64 b8 61 .s..#..#...',.A.q.k..E...a...d.a
1b60 b1 5a c0 31 b3 5f 90 31 90 61 91 34 98 31 93 2a d0 11 45 80 4a d0 11 45 e4 0d 12 90 31 8b 58 f2 .Z.1._.1.a.4.1.*..E.J..E....1.X.
1b80 00 02 05 28 88 01 d8 12 1c f2 00 01 09 28 88 42 d8 0c 0d 8f 4a 89 4a 90 71 98 31 98 72 99 36 a0 ...(.........(.B....J.J.q.1.r.6.
1ba0 51 99 2c d5 0c 27 f1 03 01 09 28 f0 03 02 05 28 f0 06 00 19 1f 98 71 98 63 a0 11 90 6d 80 41 87 Q.,..'....(....(......q.c...m.A.
1bc0 47 81 47 88 46 81 4f d8 0b 0c 80 48 f9 f2 0d 00 12 46 01 73 0c 00 00 00 c1 1c 10 42 3d 04 c1 2d G.G.F.O....H.....F.s.......B=..-
1be0 0a 42 3d 04 da 04 73 65 65 64 e9 64 00 00 00 a9 03 72 20 00 00 00 da 09 6d 61 78 5f 74 72 69 65 .B=...seed.d.....r......max_trie
1c00 73 72 33 00 00 00 63 02 00 00 00 00 00 00 00 03 00 00 00 07 00 00 00 03 00 00 00 f3 88 03 00 00 sr3...c.........................
1c20 97 00 64 01 64 02 6c 00 7d 05 7c 00 64 03 6b 02 00 00 72 15 74 03 00 00 00 00 00 00 00 00 6a 04 ..d.d.l.}.|.d.k...r.t.........j.
1c40 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 64 04 ab 01 00 00 00 00 00 00 82 01 7c 01 ..................d...........|.
1c60 64 05 6b 5c 00 00 73 15 74 03 00 00 00 00 00 00 00 00 6a 04 00 00 00 00 00 00 00 00 00 00 00 00 d.k\..s.t.........j.............
1c80 00 00 00 00 00 00 64 06 ab 01 00 00 00 00 00 00 82 01 7c 01 64 05 7a 06 00 00 64 01 6b 28 00 00 ......d...........|.d.z...d.k(..
1ca0 73 15 74 03 00 00 00 00 00 00 00 00 6a 04 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 s.t.........j...................
1cc0 64 07 ab 01 00 00 00 00 00 00 82 01 7c 00 64 03 7a 0a 00 00 7c 01 6b 5c 00 00 73 1f 74 03 00 00 d...........|.d.z...|.k\..s.t...
1ce0 00 00 00 00 00 00 6a 04 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 64 08 7c 01 64 05 ......j...................d.|.d.
1d00 7a 02 00 00 9b 00 64 09 7c 00 9b 00 64 0a 9d 05 ab 01 00 00 00 00 00 00 82 01 74 03 00 00 00 00 z.....d.|...d.............t.....
1d20 00 00 00 00 6a 06 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 7c 00 7c 02 ab 02 00 00 ....j...................|.|.....
1d40 00 00 00 00 7d 06 7c 00 64 05 6b 02 00 00 72 02 7c 06 53 00 67 00 7d 07 74 09 00 00 00 00 00 00 ....}.|.d.k...r.|.S.g.}.t.......
1d60 00 00 ab 00 00 00 00 00 00 00 7d 08 74 0b 00 00 00 00 00 00 00 00 7c 01 64 05 7a 02 00 00 ab 01 ..........}.t.........|.d.z.....
1d80 00 00 00 00 00 00 44 00 5d f4 00 00 7d 09 7c 03 7d 0a 74 0d 00 00 00 00 00 00 00 00 7c 08 ab 01 ......D.]...}.|.}.t.........|...
1da0 00 00 00 00 00 00 7c 09 64 03 7a 00 00 00 7c 00 7a 05 00 00 6b 37 00 00 73 01 8c 1a 7c 0a 64 03 ......|.d.z...|.z...k7..s...|.d.
1dc0 7a 17 00 00 7d 0a 7c 04 6a 0f 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 7c 00 64 03 z...}.|.j...................|.d.
1de0 7a 0a 00 00 ab 01 00 00 00 00 00 00 6a 11 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 z...........j...................
1e00 ab 00 00 00 00 00 00 00 7d 0b 7c 0b 6a 13 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ........}.|.j...................
1e20 7c 00 64 03 7a 0a 00 00 ab 01 00 00 00 00 00 00 01 00 74 02 00 00 00 00 00 00 00 00 6a 14 00 00 |.d.z.............t.........j...
1e40 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 6a 17 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................j...............
1e60 00 00 00 00 7c 0b 64 0b ac 0c ab 02 00 00 00 00 00 00 44 00 8f 0c 8f 0d 63 03 68 00 63 02 5d 15 ....|.d...........D.....c.h.c.].
1e80 00 00 5c 02 00 00 7d 0c 7d 0d 7c 0c 7c 0d 66 02 7c 08 76 01 72 0a 7c 0d 7c 0c 66 02 7c 08 76 01 ..\...}.}.|.|.f.|.v.r.|.|.f.|.v.
1ea0 72 04 7c 0c 7c 0d 66 02 92 02 8c 17 04 00 7d 0e 7d 0c 7d 0d 74 0d 00 00 00 00 00 00 00 00 7c 0e r.|.|.f.......}.}.}.t.........|.
1ec0 ab 01 00 00 00 00 00 00 7c 00 6b 28 00 00 72 22 7c 07 6a 13 00 00 00 00 00 00 00 00 00 00 00 00 ........|.k(..r"|.j.............
1ee0 00 00 00 00 00 00 7c 0b ab 01 00 00 00 00 00 00 01 00 7c 08 6a 19 00 00 00 00 00 00 00 00 00 00 ......|...........|.j...........
1f00 00 00 00 00 00 00 00 00 7c 0e ab 01 00 00 00 00 00 00 01 00 7c 0a 64 01 6b 28 00 00 72 15 74 03 ........|...........|.d.k(..r.t.
1f20 00 00 00 00 00 00 00 00 6a 04 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 64 0d ab 01 ........j...................d...
1f40 00 00 00 00 00 00 82 01 74 0d 00 00 00 00 00 00 00 00 7c 08 ab 01 00 00 00 00 00 00 7c 09 64 03 ........t.........|.........|.d.
1f60 7a 00 00 00 7c 00 7a 05 00 00 6b 37 00 00 72 01 8c db 8c f6 04 00 7c 06 6a 1b 00 00 00 00 00 00 z...|.z...k7..r.......|.j.......
1f80 00 00 00 00 00 00 00 00 00 00 00 00 7c 08 ab 01 00 00 00 00 00 00 01 00 7c 06 53 00 63 02 01 00 ............|...........|.S.c...
1fa0 63 03 7d 0d 7d 0c 77 00 29 0e 61 ab 06 00 00 55 74 69 6c 69 74 79 20 66 6f 72 20 63 72 65 61 74 c.}.}.w.).a....Utility.for.creat
1fc0 69 6e 67 20 61 20 72 61 6e 64 6f 6d 20 72 65 67 75 6c 61 72 20 65 78 70 61 6e 64 65 72 2e 0a 0a ing.a.random.regular.expander...
1fe0 20 20 20 20 52 65 74 75 72 6e 73 20 61 20 72 61 6e 64 6f 6d 20 24 64 24 2d 72 65 67 75 6c 61 72 ....Returns.a.random.$d$-regular
2000 20 67 72 61 70 68 20 6f 6e 20 24 6e 24 20 6e 6f 64 65 73 20 77 68 69 63 68 20 69 73 20 61 6e 20 .graph.on.$n$.nodes.which.is.an.
2020 65 78 70 61 6e 64 65 72 0a 20 20 20 20 67 72 61 70 68 20 77 69 74 68 20 76 65 72 79 20 67 6f 6f expander.....graph.with.very.goo
2040 64 20 70 72 6f 62 61 62 69 6c 69 74 79 2e 0a 0a 20 20 20 20 50 61 72 61 6d 65 74 65 72 73 0a 20 d.probability.......Parameters..
2060 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 6e 20 3a 20 69 6e 74 0a 20 20 20 20 20 20 ...----------.....n.:.int.......
2080 54 68 65 20 6e 75 6d 62 65 72 20 6f 66 20 6e 6f 64 65 73 2e 0a 20 20 20 20 64 20 3a 20 69 6e 74 The.number.of.nodes......d.:.int
20a0 0a 20 20 20 20 20 20 54 68 65 20 64 65 67 72 65 65 20 6f 66 20 65 61 63 68 20 6e 6f 64 65 2e 0a .......The.degree.of.each.node..
20c0 20 20 20 20 63 72 65 61 74 65 5f 75 73 69 6e 67 20 3a 20 47 72 61 70 68 20 49 6e 73 74 61 6e 63 ....create_using.:.Graph.Instanc
20e0 65 20 6f 72 20 43 6f 6e 73 74 72 75 63 74 6f 72 0a 20 20 20 20 20 20 49 6e 64 69 63 61 74 6f 72 e.or.Constructor.......Indicator
2100 20 6f 66 20 74 79 70 65 20 6f 66 20 67 72 61 70 68 20 74 6f 20 72 65 74 75 72 6e 2e 0a 20 20 20 .of.type.of.graph.to.return.....
2120 20 20 20 49 66 20 61 20 47 72 61 70 68 2d 74 79 70 65 20 69 6e 73 74 61 6e 63 65 2c 20 74 68 65 ...If.a.Graph-type.instance,.the
2140 6e 20 63 6c 65 61 72 20 61 6e 64 20 75 73 65 20 69 74 2e 0a 20 20 20 20 20 20 49 66 20 61 20 63 n.clear.and.use.it........If.a.c
2160 6f 6e 73 74 72 75 63 74 6f 72 2c 20 63 61 6c 6c 20 69 74 20 74 6f 20 63 72 65 61 74 65 20 61 6e onstructor,.call.it.to.create.an
2180 20 65 6d 70 74 79 20 67 72 61 70 68 2e 0a 20 20 20 20 20 20 55 73 65 20 74 68 65 20 47 72 61 70 .empty.graph........Use.the.Grap
21a0 68 20 63 6f 6e 73 74 72 75 63 74 6f 72 20 62 79 20 64 65 66 61 75 6c 74 2e 0a 20 20 20 20 6d 61 h.constructor.by.default......ma
21c0 78 5f 74 72 69 65 73 20 3a 20 69 6e 74 2e 20 28 64 65 66 61 75 6c 74 3a 20 31 30 30 29 0a 20 20 x_tries.:.int..(default:.100)...
21e0 20 20 20 20 54 68 65 20 6e 75 6d 62 65 72 20 6f 66 20 61 6c 6c 6f 77 65 64 20 6c 6f 6f 70 73 20 ....The.number.of.allowed.loops.
2200 77 68 65 6e 20 67 65 6e 65 72 61 74 69 6e 67 20 65 61 63 68 20 69 6e 64 65 70 65 6e 64 65 6e 74 when.generating.each.independent
2220 20 63 79 63 6c 65 0a 20 20 20 20 73 65 65 64 20 3a 20 28 64 65 66 61 75 6c 74 3a 20 4e 6f 6e 65 .cycle.....seed.:.(default:.None
2240 29 0a 20 20 20 20 20 20 53 65 65 64 20 75 73 65 64 20 74 6f 20 73 65 74 20 72 61 6e 64 6f 6d 20 ).......Seed.used.to.set.random.
2260 6e 75 6d 62 65 72 20 67 65 6e 65 72 61 74 69 6f 6e 20 73 74 61 74 65 2e 20 53 65 65 20 3a 72 65 number.generation.state..See.:re
2280 66 60 52 61 6e 64 6f 6d 6e 65 73 73 3c 72 61 6e 64 6f 6d 6e 65 73 73 3e 60 2e 0a 0a 20 20 20 20 f`Randomness<randomness>`.......
22a0 4e 6f 74 65 73 0a 20 20 20 20 2d 2d 2d 2d 2d 0a 20 20 20 20 54 68 65 20 6e 6f 64 65 73 20 61 72 Notes.....-----.....The.nodes.ar
22c0 65 20 6e 75 6d 62 65 72 65 64 20 66 72 6f 6d 20 24 30 24 20 74 6f 20 24 6e 20 2d 20 31 24 2e 0a e.numbered.from.$0$.to.$n.-.1$..
22e0 0a 20 20 20 20 54 68 65 20 67 72 61 70 68 20 69 73 20 67 65 6e 65 72 61 74 65 64 20 62 79 20 74 .....The.graph.is.generated.by.t
2300 61 6b 69 6e 67 20 24 64 20 2f 20 32 24 20 72 61 6e 64 6f 6d 20 69 6e 64 65 70 65 6e 64 65 6e 74 aking.$d./.2$.random.independent
2320 20 63 79 63 6c 65 73 2e 0a 0a 20 20 20 20 4a 6f 65 6c 20 46 72 69 65 64 6d 61 6e 20 70 72 6f 76 .cycles.......Joel.Friedman.prov
2340 65 64 20 74 68 61 74 20 69 6e 20 74 68 69 73 20 6d 6f 64 65 6c 20 74 68 65 20 72 65 73 75 6c 74 ed.that.in.this.model.the.result
2360 69 6e 67 0a 20 20 20 20 67 72 61 70 68 20 69 73 20 61 6e 20 65 78 70 61 6e 64 65 72 20 77 69 74 ing.....graph.is.an.expander.wit
2380 68 20 70 72 6f 62 61 62 69 6c 69 74 79 0a 20 20 20 20 24 31 20 2d 20 4f 28 6e 5e 7b 2d 5c 74 61 h.probability.....$1.-.O(n^{-\ta
23a0 75 7d 29 24 20 77 68 65 72 65 20 24 5c 74 61 75 20 3d 20 5c 6c 63 65 69 6c 20 28 5c 73 71 72 74 u})$.where.$\tau.=.\lceil.(\sqrt
23c0 7b 64 20 2d 20 31 7d 29 20 2f 20 32 20 5c 72 63 65 69 6c 20 2d 20 31 24 2e 20 5b 31 5d 5f 0a 0a {d.-.1})./.2.\rceil.-.1$..[1]_..
23e0 20 20 20 20 45 78 61 6d 70 6c 65 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 3e 3e ....Examples.....--------.....>>
2400 3e 20 47 20 3d 20 6e 78 2e 6d 61 79 62 65 5f 72 65 67 75 6c 61 72 5f 65 78 70 61 6e 64 65 72 28 >.G.=.nx.maybe_regular_expander(
2420 6e 3d 32 30 30 2c 20 64 3d 36 2c 20 73 65 65 64 3d 38 30 32 30 29 0a 0a 20 20 20 20 52 65 74 75 n=200,.d=6,.seed=8020)......Retu
2440 72 6e 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 47 20 3a 20 67 72 61 70 68 0a 20 20 rns.....-------.....G.:.graph...
2460 20 20 20 20 20 20 54 68 65 20 63 6f 6e 73 74 72 75 63 74 65 64 20 75 6e 64 69 72 65 63 74 65 64 ......The.constructed.undirected
2480 20 67 72 61 70 68 2e 0a 0a 20 20 20 20 52 61 69 73 65 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 0a 20 .graph.......Raises.....------..
24a0 20 20 20 4e 65 74 77 6f 72 6b 58 45 72 72 6f 72 0a 20 20 20 20 20 20 20 20 49 66 20 24 64 20 25 ...NetworkXError.........If.$d.%
24c0 20 32 20 21 3d 20 30 24 20 61 73 20 74 68 65 20 64 65 67 72 65 65 20 6d 75 73 74 20 62 65 20 65 .2.!=.0$.as.the.degree.must.be.e
24e0 76 65 6e 2e 0a 20 20 20 20 20 20 20 20 49 66 20 24 6e 20 2d 20 31 24 20 69 73 20 6c 65 73 73 20 ven..........If.$n.-.1$.is.less.
2500 74 68 61 6e 20 24 20 32 64 20 24 20 61 73 20 74 68 65 20 67 72 61 70 68 20 69 73 20 63 6f 6d 70 than.$.2d.$.as.the.graph.is.comp
2520 6c 65 74 65 20 61 74 20 6d 6f 73 74 2e 0a 20 20 20 20 20 20 20 20 49 66 20 6d 61 78 5f 74 72 69 lete.at.most..........If.max_tri
2540 65 73 20 69 73 20 72 65 61 63 68 65 64 0a 0a 20 20 20 20 53 65 65 20 41 6c 73 6f 0a 20 20 20 20 es.is.reached......See.Also.....
2560 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 69 73 5f 72 65 67 75 6c 61 72 5f 65 78 70 61 6e 64 65 72 --------.....is_regular_expander
2580 0a 20 20 20 20 72 61 6e 64 6f 6d 5f 72 65 67 75 6c 61 72 5f 65 78 70 61 6e 64 65 72 5f 67 72 61 .....random_regular_expander_gra
25a0 70 68 0a 0a 20 20 20 20 52 65 66 65 72 65 6e 63 65 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 2d ph......References.....---------
25c0 2d 0a 20 20 20 20 2e 2e 20 5b 31 5d 20 4a 6f 65 6c 20 46 72 69 65 64 6d 61 6e 2c 0a 20 20 20 20 -........[1].Joel.Friedman,.....
25e0 20 20 20 41 20 50 72 6f 6f 66 20 6f 66 20 41 6c 6f 6e 27 73 20 53 65 63 6f 6e 64 20 45 69 67 65 ...A.Proof.of.Alon's.Second.Eige
2600 6e 76 61 6c 75 65 20 43 6f 6e 6a 65 63 74 75 72 65 20 61 6e 64 20 52 65 6c 61 74 65 64 20 50 72 nvalue.Conjecture.and.Related.Pr
2620 6f 62 6c 65 6d 73 2c 20 32 30 30 34 0a 20 20 20 20 20 20 20 68 74 74 70 73 3a 2f 2f 61 72 78 69 oblems,.2004........https://arxi
2640 76 2e 6f 72 67 2f 61 62 73 2f 63 73 2f 30 34 30 35 30 32 30 0a 0a 20 20 20 20 72 02 00 00 00 4e v.org/abs/cs/0405020......r....N
2660 72 11 00 00 00 7a 1c 6e 20 6d 75 73 74 20 62 65 20 61 20 70 6f 73 69 74 69 76 65 20 69 6e 74 65 r....z.n.must.be.a.positive.inte
2680 67 65 72 72 0f 00 00 00 7a 24 64 20 6d 75 73 74 20 62 65 20 67 72 65 61 74 65 72 20 74 68 61 6e gerr....z$d.must.be.greater.than
26a0 20 6f 72 20 65 71 75 61 6c 20 74 6f 20 32 7a 0e 64 20 6d 75 73 74 20 62 65 20 65 76 65 6e 7a 1e .or.equal.to.2z.d.must.be.evenz.
26c0 4e 65 65 64 20 6e 2d 31 3e 3d 20 64 20 74 6f 20 68 61 76 65 20 72 6f 6f 6d 20 66 6f 72 20 7a 19 Need.n-1>=.d.to.have.room.for.z.
26e0 20 69 6e 64 65 70 65 6e 64 65 6e 74 20 63 79 63 6c 65 73 20 77 69 74 68 20 7a 06 20 6e 6f 64 65 .independent.cycles.with.z..node
2700 73 54 29 01 da 06 63 79 63 6c 69 63 7a 2d 54 6f 6f 20 6d 61 6e 79 20 69 74 65 72 61 74 69 6f 6e sT)...cyclicz-Too.many.iteration
2720 73 20 69 6e 20 6d 61 79 62 65 5f 72 65 67 75 6c 61 72 5f 65 78 70 61 6e 64 65 72 29 0e da 05 6e s.in.maybe_regular_expander)...n
2740 75 6d 70 79 72 14 00 00 00 72 19 00 00 00 72 15 00 00 00 da 03 73 65 74 72 1c 00 00 00 da 03 6c umpyr....r....r......setr......l
2760 65 6e da 0b 70 65 72 6d 75 74 61 74 69 6f 6e da 06 74 6f 6c 69 73 74 da 06 61 70 70 65 6e 64 da en..permutation..tolist..append.
2780 05 75 74 69 6c 73 da 08 70 61 69 72 77 69 73 65 da 06 75 70 64 61 74 65 da 0e 61 64 64 5f 65 64 .utils..pairwise..update..add_ed
27a0 67 65 73 5f 66 72 6f 6d 29 0f 72 1f 00 00 00 da 01 64 72 20 00 00 00 72 36 00 00 00 72 33 00 00 ges_from).r......dr....r6...r3..
27c0 00 da 02 6e 70 72 21 00 00 00 da 06 63 79 63 6c 65 73 da 05 65 64 67 65 73 da 01 69 da 0a 69 74 ...npr!.....cycles..edges..i..it
27e0 65 72 61 74 69 6f 6e 73 da 05 63 79 63 6c 65 72 25 00 00 00 72 26 00 00 00 da 09 6e 65 77 5f 65 erations..cycler%...r&.....new_e
2800 64 67 65 73 73 0f 00 00 00 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 72 27 00 00 00 72 06 00 dgess...................r'...r..
2820 00 00 72 06 00 00 00 d9 00 00 00 73 e4 01 00 00 80 00 f3 7e 01 00 05 17 e0 07 08 88 31 82 75 dc ..r........s.......~........1.u.
2840 0e 10 d7 0e 1e d1 0e 1e d0 1f 3d d3 0e 3e d0 08 3e e0 0c 0d 90 11 8a 46 dc 0e 10 d7 0e 1e d1 0e ..........=..>..>......F........
2860 1e d0 1f 45 d3 0e 46 d0 08 46 e0 0c 0d 90 01 89 45 90 51 8a 4a dc 0e 10 d7 0e 1e d1 0e 1e d0 1f ...E..F..F......E.Q.J...........
2880 2f d3 0e 30 d0 08 30 e0 0c 0d 90 01 89 45 90 51 8a 4a dc 0e 10 d7 0e 1e d1 0e 1e d8 0e 2c a8 51 /..0..0......E.Q.J...........,.Q
28a0 b0 21 a9 56 a8 48 d0 34 4d c8 61 c8 53 d0 50 56 d0 0c 57 f3 03 02 0f 0a f0 00 02 09 0a f4 08 00 .!.V.H.4M.a.S.PV..W.............
28c0 09 0b 8f 0e 89 0e 90 71 98 2c d3 08 27 80 41 e0 07 08 88 31 82 75 d8 0f 10 88 08 e0 0d 0f 80 46 .......q.,..'.A....1.u.........F
28e0 dc 0c 0f 8b 45 80 45 f4 06 00 0e 13 90 31 98 01 91 36 8b 5d f2 00 16 05 58 01 88 01 d8 15 1e 88 ....E.E......1...6.]....X.......
2900 0a e4 0e 11 90 25 8b 6a 98 51 a0 11 99 55 a0 61 99 4b d3 0e 27 d8 0c 16 98 21 89 4f 88 4a f0 06 .....%.j.Q...U.a.K..'....!.O.J..
2920 00 15 19 d7 14 24 d1 14 24 a0 51 a8 11 a1 55 d3 14 2b d7 14 32 d1 14 32 d3 14 34 88 45 d8 0c 11 .....$..$.Q...U..+..2..2..4.E...
2940 8f 4c 89 4c 98 11 98 51 99 15 d4 0c 1f f4 08 00 1d 1f 9f 48 99 48 d7 1c 2d d1 1c 2d a8 65 b8 44 .L.L...Q...........H.H..-..-.e.D
2960 d0 1c 2d d3 1c 41 f7 05 04 19 0e e1 14 18 90 41 90 71 d8 14 15 90 71 90 36 a0 15 d1 13 26 a8 41 ..-..A.........A.q....q.6....&.A
2980 a8 71 a8 36 b8 15 d1 2b 3e f0 05 00 12 13 90 41 92 06 f0 03 04 19 0e 88 49 f1 00 04 19 0e f4 0e .q.6...+>......A........I.......
29a0 00 10 13 90 39 8b 7e a0 11 d2 0f 22 d8 10 16 97 0d 91 0d 98 65 d4 10 24 d8 10 15 97 0c 91 0c 98 ....9.~...."........e..$........
29c0 59 d4 10 27 e0 0f 19 98 51 8a 7f dc 16 18 d7 16 26 d1 16 26 d0 27 56 d3 16 57 d0 10 57 f4 27 00 Y..'....Q.......&..&.'V..W..W.'.
29e0 0f 12 90 25 8b 6a 98 51 a0 11 99 55 a0 61 99 4b d4 0e 27 f0 07 16 05 58 01 f0 30 00 05 06 d7 04 ...%.j.Q...U.a.K..'....X..0.....
2a00 14 d1 04 14 90 55 d4 04 1b e0 0b 0c 80 48 f9 f3 21 04 19 0e 73 06 00 00 00 c4 2d 1a 46 3e 08 da .....U.......H..!...s.....-.F>..
2a20 08 64 69 72 65 63 74 65 64 da 0a 6d 75 6c 74 69 67 72 61 70 68 72 21 00 00 00 da 06 77 65 69 67 .directed..multigraphr!.....weig
2a40 68 74 72 11 00 00 00 29 01 da 13 70 72 65 73 65 72 76 65 5f 65 64 67 65 5f 61 74 74 72 73 a9 01 htr....)...preserve_edge_attrs..
2a60 da 07 65 70 73 69 6c 6f 6e 63 01 00 00 00 00 00 00 00 01 00 00 00 08 00 00 00 03 00 00 00 f3 c6 ..epsilonc......................
2a80 01 00 00 97 00 64 01 64 02 6c 00 7d 02 64 01 64 02 6c 01 7d 03 7c 01 64 01 6b 02 00 00 72 15 74 .....d.d.l.}.d.d.l.}.|.d.k...r.t
2aa0 05 00 00 00 00 00 00 00 00 6a 06 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 64 03 ab .........j...................d..
2ac0 01 00 00 00 00 00 00 82 01 74 05 00 00 00 00 00 00 00 00 6a 08 00 00 00 00 00 00 00 00 00 00 00 .........t.........j............
2ae0 00 00 00 00 00 00 00 7c 00 ab 01 00 00 00 00 00 00 73 01 79 04 74 04 00 00 00 00 00 00 00 00 6a .......|.........s.y.t.........j
2b00 0a 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 6a 0d 00 00 00 00 00 00 00 00 00 00 00 ...................j............
2b20 00 00 00 00 00 00 00 7c 00 6a 0e 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ab 01 00 .......|.j......................
2b40 00 00 00 00 00 5c 02 00 00 7d 04 7d 05 74 05 00 00 00 00 00 00 00 00 6a 10 00 00 00 00 00 00 00 .....\...}.}.t.........j........
2b60 00 00 00 00 00 00 00 00 00 00 00 7c 00 74 12 00 00 00 00 00 00 00 00 ac 05 ab 02 00 00 00 00 00 ...........|.t..................
2b80 00 7d 06 7c 03 6a 14 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 6a 16 00 00 00 00 00 .}.|.j...................j......
2ba0 00 00 00 00 00 00 00 00 00 00 00 00 00 6a 19 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 .............j..................
2bc0 00 7c 06 64 06 64 07 64 04 ac 08 ab 04 00 00 00 00 00 00 7d 07 74 1b 00 00 00 00 00 00 00 00 7c .|.d.d.d...........}.t.........|
2be0 07 ab 01 00 00 00 00 00 00 7d 08 74 1d 00 00 00 00 00 00 00 00 74 1f 00 00 00 00 00 00 00 00 7c .........}.t.........t.........|
2c00 08 ab 01 00 00 00 00 00 00 64 07 7c 02 6a 21 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 .........d.|.j!.................
2c20 00 7c 05 64 09 7a 0a 00 00 ab 01 00 00 00 00 00 00 7a 05 00 00 7c 01 7a 00 00 00 6b 02 00 00 ab .|.d.z...........z...|.z...k....
2c40 01 00 00 00 00 00 00 53 00 29 0a 61 1f 05 00 00 44 65 74 65 72 6d 69 6e 65 73 20 77 68 65 74 68 .......S.).a....Determines.wheth
2c60 65 72 20 74 68 65 20 67 72 61 70 68 20 47 20 69 73 20 61 20 72 65 67 75 6c 61 72 20 65 78 70 61 er.the.graph.G.is.a.regular.expa
2c80 6e 64 65 72 2e 20 5b 31 5d 5f 0a 0a 20 20 20 20 41 6e 20 65 78 70 61 6e 64 65 72 20 67 72 61 70 nder..[1]_......An.expander.grap
2ca0 68 20 69 73 20 61 20 73 70 61 72 73 65 20 67 72 61 70 68 20 77 69 74 68 20 73 74 72 6f 6e 67 20 h.is.a.sparse.graph.with.strong.
2cc0 63 6f 6e 6e 65 63 74 69 76 69 74 79 20 70 72 6f 70 65 72 74 69 65 73 2e 0a 0a 20 20 20 20 4d 6f connectivity.properties.......Mo
2ce0 72 65 20 70 72 65 63 69 73 65 6c 79 2c 20 74 68 69 73 20 68 65 6c 70 65 72 20 63 68 65 63 6b 73 re.precisely,.this.helper.checks
2d00 20 77 68 65 74 68 65 72 20 74 68 65 20 67 72 61 70 68 20 69 73 20 61 0a 20 20 20 20 72 65 67 75 .whether.the.graph.is.a.....regu
2d20 6c 61 72 20 24 28 6e 2c 20 64 2c 20 5c 6c 61 6d 62 64 61 29 24 2d 65 78 70 61 6e 64 65 72 20 77 lar.$(n,.d,.\lambda)$-expander.w
2d40 69 74 68 20 24 5c 6c 61 6d 62 64 61 24 20 63 6c 6f 73 65 20 74 6f 0a 20 20 20 20 74 68 65 20 41 ith.$\lambda$.close.to.....the.A
2d60 6c 6f 6e 2d 42 6f 70 70 61 6e 61 20 62 6f 75 6e 64 20 61 6e 64 20 67 69 76 65 6e 20 62 79 0a 20 lon-Boppana.bound.and.given.by..
2d80 20 20 20 24 5c 6c 61 6d 62 64 61 20 3d 20 32 20 5c 73 71 72 74 7b 64 20 2d 20 31 7d 20 2b 20 5c ...$\lambda.=.2.\sqrt{d.-.1}.+.\
2da0 65 70 73 69 6c 6f 6e 24 2e 20 5b 32 5d 5f 0a 0a 20 20 20 20 49 6e 20 74 68 65 20 63 61 73 65 20 epsilon$..[2]_......In.the.case.
2dc0 77 68 65 72 65 20 24 5c 65 70 73 69 6c 6f 6e 20 3d 20 30 24 20 74 68 65 6e 20 69 66 20 74 68 65 where.$\epsilon.=.0$.then.if.the
2de0 20 67 72 61 70 68 20 73 75 63 63 65 73 73 66 75 6c 6c 79 20 70 61 73 73 65 73 20 74 68 65 20 74 .graph.successfully.passes.the.t
2e00 65 73 74 0a 20 20 20 20 69 74 20 69 73 20 61 20 52 61 6d 61 6e 75 6a 61 6e 20 67 72 61 70 68 2e est.....it.is.a.Ramanujan.graph.
2e20 20 5b 33 5d 5f 0a 0a 20 20 20 20 41 20 52 61 6d 61 6e 75 6a 61 6e 20 67 72 61 70 68 20 68 61 73 .[3]_......A.Ramanujan.graph.has
2e40 20 73 70 65 63 74 72 61 6c 20 67 61 70 20 61 6c 6d 6f 73 74 20 61 73 20 6c 61 72 67 65 20 61 73 .spectral.gap.almost.as.large.as
2e60 20 70 6f 73 73 69 62 6c 65 2c 20 77 68 69 63 68 20 6d 61 6b 65 73 20 74 68 65 6d 0a 20 20 20 20 .possible,.which.makes.them.....
2e80 65 78 63 65 6c 6c 65 6e 74 20 65 78 70 61 6e 64 65 72 73 2e 0a 0a 20 20 20 20 50 61 72 61 6d 65 excellent.expanders.......Parame
2ea0 74 65 72 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 47 20 3a 20 4e 65 74 77 ters.....----------.....G.:.Netw
2ec0 6f 72 6b 58 20 67 72 61 70 68 0a 20 20 20 20 65 70 73 69 6c 6f 6e 20 3a 20 69 6e 74 2c 20 66 6c orkX.graph.....epsilon.:.int,.fl
2ee0 6f 61 74 2c 20 64 65 66 61 75 6c 74 3d 30 0a 0a 20 20 20 20 52 65 74 75 72 6e 73 0a 20 20 20 20 oat,.default=0......Returns.....
2f00 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 62 6f 6f 6c 0a 20 20 20 20 20 20 20 20 57 68 65 74 68 65 72 -------.....bool.........Whether
2f20 20 74 68 65 20 67 69 76 65 6e 20 67 72 61 70 68 20 69 73 20 61 20 72 65 67 75 6c 61 72 20 24 28 .the.given.graph.is.a.regular.$(
2f40 6e 2c 20 64 2c 20 5c 6c 61 6d 62 64 61 29 24 2d 65 78 70 61 6e 64 65 72 0a 20 20 20 20 20 20 20 n,.d,.\lambda)$-expander........
2f60 20 77 68 65 72 65 20 24 5c 6c 61 6d 62 64 61 20 3d 20 32 20 5c 73 71 72 74 7b 64 20 2d 20 31 7d .where.$\lambda.=.2.\sqrt{d.-.1}
2f80 20 2b 20 5c 65 70 73 69 6c 6f 6e 24 2e 0a 0a 20 20 20 20 45 78 61 6d 70 6c 65 73 0a 20 20 20 20 .+.\epsilon$.......Examples.....
2fa0 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 3e 3e 3e 20 47 20 3d 20 6e 78 2e 72 61 6e 64 6f 6d 5f 72 --------.....>>>.G.=.nx.random_r
2fc0 65 67 75 6c 61 72 5f 65 78 70 61 6e 64 65 72 5f 67 72 61 70 68 28 32 30 2c 20 34 29 0a 20 20 20 egular_expander_graph(20,.4)....
2fe0 20 3e 3e 3e 20 6e 78 2e 69 73 5f 72 65 67 75 6c 61 72 5f 65 78 70 61 6e 64 65 72 28 47 29 0a 20 .>>>.nx.is_regular_expander(G)..
3000 20 20 20 54 72 75 65 0a 0a 20 20 20 20 53 65 65 20 41 6c 73 6f 0a 20 20 20 20 2d 2d 2d 2d 2d 2d ...True......See.Also.....------
3020 2d 2d 0a 20 20 20 20 6d 61 79 62 65 5f 72 65 67 75 6c 61 72 5f 65 78 70 61 6e 64 65 72 0a 20 20 --.....maybe_regular_expander...
3040 20 20 72 61 6e 64 6f 6d 5f 72 65 67 75 6c 61 72 5f 65 78 70 61 6e 64 65 72 5f 67 72 61 70 68 0a ..random_regular_expander_graph.
3060 0a 20 20 20 20 52 65 66 65 72 65 6e 63 65 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 .....References.....----------..
3080 20 20 20 2e 2e 20 5b 31 5d 20 45 78 70 61 6e 64 65 72 20 67 72 61 70 68 2c 20 68 74 74 70 73 3a ......[1].Expander.graph,.https:
30a0 2f 2f 65 6e 2e 77 69 6b 69 70 65 64 69 61 2e 6f 72 67 2f 77 69 6b 69 2f 45 78 70 61 6e 64 65 72 //en.wikipedia.org/wiki/Expander
30c0 5f 67 72 61 70 68 0a 20 20 20 20 2e 2e 20 5b 32 5d 20 41 6c 6f 6e 2d 42 6f 70 70 61 6e 61 20 62 _graph........[2].Alon-Boppana.b
30e0 6f 75 6e 64 2c 20 68 74 74 70 73 3a 2f 2f 65 6e 2e 77 69 6b 69 70 65 64 69 61 2e 6f 72 67 2f 77 ound,.https://en.wikipedia.org/w
3100 69 6b 69 2f 41 6c 6f 6e 25 45 32 25 38 30 25 39 33 42 6f 70 70 61 6e 61 5f 62 6f 75 6e 64 0a 20 iki/Alon%E2%80%93Boppana_bound..
3120 20 20 20 2e 2e 20 5b 33 5d 20 52 61 6d 61 6e 75 6a 61 6e 20 67 72 61 70 68 73 2c 20 68 74 74 70 ......[3].Ramanujan.graphs,.http
3140 73 3a 2f 2f 65 6e 2e 77 69 6b 69 70 65 64 69 61 2e 6f 72 67 2f 77 69 6b 69 2f 52 61 6d 61 6e 75 s://en.wikipedia.org/wiki/Ramanu
3160 6a 61 6e 5f 67 72 61 70 68 0a 0a 20 20 20 20 72 02 00 00 00 4e 7a 1c 65 70 73 69 6c 6f 6e 20 6d jan_graph......r....Nz.epsilon.m
3180 75 73 74 20 62 65 20 6e 6f 6e 20 6e 65 67 61 74 69 76 65 46 29 01 da 05 64 74 79 70 65 da 02 4c ust.be.non.negativeF)...dtype..L
31a0 4d 72 0f 00 00 00 29 03 da 05 77 68 69 63 68 da 01 6b da 13 72 65 74 75 72 6e 5f 65 69 67 65 6e Mr....)...which..k..return_eigen
31c0 76 65 63 74 6f 72 73 72 11 00 00 00 29 11 72 39 00 00 00 da 05 73 63 69 70 79 72 14 00 00 00 72 vectorsr....).r9.....scipyr....r
31e0 19 00 00 00 da 0a 69 73 5f 72 65 67 75 6c 61 72 72 3f 00 00 00 da 11 61 72 62 69 74 72 61 72 79 ......is_regularr?.....arbitrary
3200 5f 65 6c 65 6d 65 6e 74 da 06 64 65 67 72 65 65 da 10 61 64 6a 61 63 65 6e 63 79 5f 6d 61 74 72 _element..degree..adjacency_matr
3220 69 78 da 05 66 6c 6f 61 74 da 06 73 70 61 72 73 65 da 06 6c 69 6e 61 6c 67 da 05 65 69 67 73 68 ix..float..sparse..linalg..eigsh
3240 da 03 6d 69 6e da 04 62 6f 6f 6c da 03 61 62 73 da 04 73 71 72 74 29 09 72 21 00 00 00 72 50 00 ..min..bool..abs..sqrt).r!...rP.
3260 00 00 72 44 00 00 00 da 02 73 70 da 01 5f 72 43 00 00 00 da 01 41 da 04 6c 61 6d 73 da 07 6c 61 ..rD.....sp.._rC.....A..lams..la
3280 6d 62 64 61 32 73 09 00 00 00 20 20 20 20 20 20 20 20 20 72 27 00 00 00 72 07 00 00 00 72 07 00 mbda2s.............r'...r....r..
32a0 00 00 4e 01 00 00 73 bb 00 00 00 80 00 f3 62 01 00 05 17 db 04 16 e0 07 0e 90 11 82 7b dc 0e 10 ..N...s.......b.............{...
32c0 d7 0e 1e d1 0e 1e d0 1f 3d d3 0e 3e d0 08 3e e4 0b 0d 8f 3d 89 3d 98 11 d4 0b 1b d8 0f 14 e4 0b ........=..>..>....=.=..........
32e0 0d 8f 38 89 38 d7 0b 25 d1 0b 25 a0 61 a7 68 a1 68 d3 0b 2f 81 44 80 41 80 71 e4 08 0a d7 08 1b ..8.8..%..%.a.h.h../.D.A.q......
3300 d1 08 1b 98 41 a4 55 d4 08 2b 80 41 d8 0b 0d 8f 39 89 39 d7 0b 1b d1 0b 1b d7 0b 21 d1 0b 21 a0 ....A.U..+.A....9.9........!..!.
3320 21 a8 34 b0 31 c8 25 d0 0b 21 d3 0b 50 80 44 f4 06 00 0f 12 90 24 8b 69 80 47 f4 06 00 0c 10 94 !.4.1.%..!..P.D......$.i.G......
3340 03 90 47 93 0c 98 71 a0 32 a7 37 a1 37 a8 31 a8 71 a9 35 a3 3e d1 1f 31 b0 47 d1 1f 3b d1 10 3b ..G...q.2.7.7.1.q.5.>..1.G..;..;
3360 d3 0b 3c d0 04 3c 72 28 00 00 00 29 04 72 50 00 00 00 72 20 00 00 00 72 36 00 00 00 72 33 00 00 ..<..<r(...).rP...r....r6...r3..
3380 00 63 02 00 00 00 00 00 00 00 04 00 00 00 07 00 00 00 03 00 00 00 f3 be 00 00 00 97 00 74 01 00 .c...........................t..
33a0 00 00 00 00 00 00 00 7c 00 7c 01 7c 03 7c 04 7c 05 ac 01 ab 05 00 00 00 00 00 00 7d 06 7c 04 7d .......|.|.|.|.|...........}.|.}
33c0 07 74 03 00 00 00 00 00 00 00 00 7c 06 7c 02 ac 02 ab 02 00 00 00 00 00 00 73 3d 7c 07 64 03 7a .t.........|.|...........s=|.d.z
33e0 17 00 00 7d 07 74 01 00 00 00 00 00 00 00 00 7c 00 7c 01 7c 03 7c 04 7c 05 ac 04 ab 05 00 00 00 ...}.t.........|.|.|.|.|........
3400 00 00 00 7d 06 7c 07 64 05 6b 28 00 00 72 15 74 05 00 00 00 00 00 00 00 00 6a 06 00 00 00 00 00 ...}.|.d.k(..r.t.........j......
3420 00 00 00 00 00 00 00 00 00 00 00 00 00 64 06 ab 01 00 00 00 00 00 00 82 01 74 03 00 00 00 00 00 .............d...........t......
3440 00 00 00 7c 06 7c 02 ac 02 ab 02 00 00 00 00 00 00 73 01 8c 3d 7c 06 53 00 29 07 61 10 06 00 00 ...|.|...........s..=|.S.).a....
3460 52 65 74 75 72 6e 73 20 61 20 72 61 6e 64 6f 6d 20 72 65 67 75 6c 61 72 20 65 78 70 61 6e 64 65 Returns.a.random.regular.expande
3480 72 20 67 72 61 70 68 20 6f 6e 20 24 6e 24 20 6e 6f 64 65 73 20 77 69 74 68 20 64 65 67 72 65 65 r.graph.on.$n$.nodes.with.degree
34a0 20 24 64 24 2e 0a 0a 20 20 20 20 41 6e 20 65 78 70 61 6e 64 65 72 20 67 72 61 70 68 20 69 73 20 .$d$.......An.expander.graph.is.
34c0 61 20 73 70 61 72 73 65 20 67 72 61 70 68 20 77 69 74 68 20 73 74 72 6f 6e 67 20 63 6f 6e 6e 65 a.sparse.graph.with.strong.conne
34e0 63 74 69 76 69 74 79 20 70 72 6f 70 65 72 74 69 65 73 2e 20 5b 31 5d 5f 0a 0a 20 20 20 20 4d 6f ctivity.properties..[1]_......Mo
3500 72 65 20 70 72 65 63 69 73 65 6c 79 20 74 68 65 20 72 65 74 75 72 6e 65 64 20 67 72 61 70 68 20 re.precisely.the.returned.graph.
3520 69 73 20 61 20 24 28 6e 2c 20 64 2c 20 5c 6c 61 6d 62 64 61 29 24 2d 65 78 70 61 6e 64 65 72 20 is.a.$(n,.d,.\lambda)$-expander.
3540 77 69 74 68 0a 20 20 20 20 24 5c 6c 61 6d 62 64 61 20 3d 20 32 20 5c 73 71 72 74 7b 64 20 2d 20 with.....$\lambda.=.2.\sqrt{d.-.
3560 31 7d 20 2b 20 5c 65 70 73 69 6c 6f 6e 24 2c 20 63 6c 6f 73 65 20 74 6f 20 74 68 65 20 41 6c 6f 1}.+.\epsilon$,.close.to.the.Alo
3580 6e 2d 42 6f 70 70 61 6e 61 20 62 6f 75 6e 64 2e 20 5b 32 5d 5f 0a 0a 20 20 20 20 49 6e 20 74 68 n-Boppana.bound..[2]_......In.th
35a0 65 20 63 61 73 65 20 77 68 65 72 65 20 24 5c 65 70 73 69 6c 6f 6e 20 3d 20 30 24 20 69 74 20 72 e.case.where.$\epsilon.=.0$.it.r
35c0 65 74 75 72 6e 73 20 61 20 52 61 6d 61 6e 75 6a 61 6e 20 67 72 61 70 68 2e 0a 20 20 20 20 41 20 eturns.a.Ramanujan.graph......A.
35e0 52 61 6d 61 6e 75 6a 61 6e 20 67 72 61 70 68 20 68 61 73 20 73 70 65 63 74 72 61 6c 20 67 61 70 Ramanujan.graph.has.spectral.gap
3600 20 61 6c 6d 6f 73 74 20 61 73 20 6c 61 72 67 65 20 61 73 20 70 6f 73 73 69 62 6c 65 2c 0a 20 20 .almost.as.large.as.possible,...
3620 20 20 77 68 69 63 68 20 6d 61 6b 65 73 20 74 68 65 6d 20 65 78 63 65 6c 6c 65 6e 74 20 65 78 70 ..which.makes.them.excellent.exp
3640 61 6e 64 65 72 73 2e 20 5b 33 5d 5f 0a 0a 20 20 20 20 50 61 72 61 6d 65 74 65 72 73 0a 20 20 20 anders..[3]_......Parameters....
3660 20 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 6e 20 3a 20 69 6e 74 0a 20 20 20 20 20 20 54 68 .----------.....n.:.int.......Th
3680 65 20 6e 75 6d 62 65 72 20 6f 66 20 6e 6f 64 65 73 2e 0a 20 20 20 20 64 20 3a 20 69 6e 74 0a 20 e.number.of.nodes......d.:.int..
36a0 20 20 20 20 20 54 68 65 20 64 65 67 72 65 65 20 6f 66 20 65 61 63 68 20 6e 6f 64 65 2e 0a 20 20 .....The.degree.of.each.node....
36c0 20 20 65 70 73 69 6c 6f 6e 20 3a 20 69 6e 74 2c 20 66 6c 6f 61 74 2c 20 64 65 66 61 75 6c 74 3d ..epsilon.:.int,.float,.default=
36e0 30 0a 20 20 20 20 6d 61 78 5f 74 72 69 65 73 20 3a 20 69 6e 74 2c 20 28 64 65 66 61 75 6c 74 3a 0.....max_tries.:.int,.(default:
3700 20 31 30 30 29 0a 20 20 20 20 20 20 54 68 65 20 6e 75 6d 62 65 72 20 6f 66 20 61 6c 6c 6f 77 65 .100).......The.number.of.allowe
3720 64 20 6c 6f 6f 70 73 2c 20 61 6c 73 6f 20 75 73 65 64 20 69 6e 20 74 68 65 20 6d 61 79 62 65 5f d.loops,.also.used.in.the.maybe_
3740 72 65 67 75 6c 61 72 5f 65 78 70 61 6e 64 65 72 20 75 74 69 6c 69 74 79 0a 20 20 20 20 73 65 65 regular_expander.utility.....see
3760 64 20 3a 20 28 64 65 66 61 75 6c 74 3a 20 4e 6f 6e 65 29 0a 20 20 20 20 20 20 53 65 65 64 20 75 d.:.(default:.None).......Seed.u
3780 73 65 64 20 74 6f 20 73 65 74 20 72 61 6e 64 6f 6d 20 6e 75 6d 62 65 72 20 67 65 6e 65 72 61 74 sed.to.set.random.number.generat
37a0 69 6f 6e 20 73 74 61 74 65 2e 20 53 65 65 20 3a 72 65 66 60 52 61 6e 64 6f 6d 6e 65 73 73 3c 72 ion.state..See.:ref`Randomness<r
37c0 61 6e 64 6f 6d 6e 65 73 73 3e 60 2e 0a 0a 20 20 20 20 52 61 69 73 65 73 0a 20 20 20 20 2d 2d 2d andomness>`.......Raises.....---
37e0 2d 2d 2d 0a 20 20 20 20 4e 65 74 77 6f 72 6b 58 45 72 72 6f 72 0a 20 20 20 20 20 20 20 20 49 66 ---.....NetworkXError.........If
3800 20 6d 61 78 5f 74 72 69 65 73 20 69 73 20 72 65 61 63 68 65 64 0a 0a 20 20 20 20 45 78 61 6d 70 .max_tries.is.reached......Examp
3820 6c 65 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 3e 3e 3e 20 47 20 3d 20 6e 78 2e les.....--------.....>>>.G.=.nx.
3840 72 61 6e 64 6f 6d 5f 72 65 67 75 6c 61 72 5f 65 78 70 61 6e 64 65 72 5f 67 72 61 70 68 28 32 30 random_regular_expander_graph(20
3860 2c 20 34 29 0a 20 20 20 20 3e 3e 3e 20 6e 78 2e 69 73 5f 72 65 67 75 6c 61 72 5f 65 78 70 61 6e ,.4).....>>>.nx.is_regular_expan
3880 64 65 72 28 47 29 0a 20 20 20 20 54 72 75 65 0a 0a 20 20 20 20 4e 6f 74 65 73 0a 20 20 20 20 2d der(G).....True......Notes.....-
38a0 2d 2d 2d 2d 0a 20 20 20 20 54 68 69 73 20 6c 6f 6f 70 73 20 6f 76 65 72 20 60 6d 61 79 62 65 5f ----.....This.loops.over.`maybe_
38c0 72 65 67 75 6c 61 72 5f 65 78 70 61 6e 64 65 72 60 20 61 6e 64 20 63 61 6e 20 62 65 20 73 6c 6f regular_expander`.and.can.be.slo
38e0 77 20 77 68 65 6e 0a 20 20 20 20 24 6e 24 20 69 73 20 74 6f 6f 20 62 69 67 20 6f 72 20 24 5c 65 w.when.....$n$.is.too.big.or.$\e
3900 70 73 69 6c 6f 6e 24 20 74 6f 6f 20 73 6d 61 6c 6c 2e 0a 0a 20 20 20 20 53 65 65 20 41 6c 73 6f psilon$.too.small.......See.Also
3920 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 6d 61 79 62 65 5f 72 65 67 75 6c 61 72 5f .....--------.....maybe_regular_
3940 65 78 70 61 6e 64 65 72 0a 20 20 20 20 69 73 5f 72 65 67 75 6c 61 72 5f 65 78 70 61 6e 64 65 72 expander.....is_regular_expander
3960 0a 0a 20 20 20 20 52 65 66 65 72 65 6e 63 65 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 0a ......References.....----------.
3980 20 20 20 20 2e 2e 20 5b 31 5d 20 45 78 70 61 6e 64 65 72 20 67 72 61 70 68 2c 20 68 74 74 70 73 .......[1].Expander.graph,.https
39a0 3a 2f 2f 65 6e 2e 77 69 6b 69 70 65 64 69 61 2e 6f 72 67 2f 77 69 6b 69 2f 45 78 70 61 6e 64 65 ://en.wikipedia.org/wiki/Expande
39c0 72 5f 67 72 61 70 68 0a 20 20 20 20 2e 2e 20 5b 32 5d 20 41 6c 6f 6e 2d 42 6f 70 70 61 6e 61 20 r_graph........[2].Alon-Boppana.
39e0 62 6f 75 6e 64 2c 20 68 74 74 70 73 3a 2f 2f 65 6e 2e 77 69 6b 69 70 65 64 69 61 2e 6f 72 67 2f bound,.https://en.wikipedia.org/
3a00 77 69 6b 69 2f 41 6c 6f 6e 25 45 32 25 38 30 25 39 33 42 6f 70 70 61 6e 61 5f 62 6f 75 6e 64 0a wiki/Alon%E2%80%93Boppana_bound.
3a20 20 20 20 20 2e 2e 20 5b 33 5d 20 52 61 6d 61 6e 75 6a 61 6e 20 67 72 61 70 68 73 2c 20 68 74 74 .......[3].Ramanujan.graphs,.htt
3a40 70 73 3a 2f 2f 65 6e 2e 77 69 6b 69 70 65 64 69 61 2e 6f 72 67 2f 77 69 6b 69 2f 52 61 6d 61 6e ps://en.wikipedia.org/wiki/Raman
3a60 75 6a 61 6e 5f 67 72 61 70 68 0a 0a 20 20 20 20 72 35 00 00 00 72 4f 00 00 00 72 11 00 00 00 29 ujan_graph......r5...rO...r....)
3a80 05 72 1f 00 00 00 72 43 00 00 00 72 20 00 00 00 72 36 00 00 00 72 33 00 00 00 72 02 00 00 00 7a .r....rC...r....r6...r3...r....z
3aa0 34 54 6f 6f 20 6d 61 6e 79 20 69 74 65 72 61 74 69 6f 6e 73 20 69 6e 20 72 61 6e 64 6f 6d 5f 72 4Too.many.iterations.in.random_r
3ac0 65 67 75 6c 61 72 5f 65 78 70 61 6e 64 65 72 5f 67 72 61 70 68 29 04 72 06 00 00 00 72 07 00 00 egular_expander_graph).r....r...
3ae0 00 72 14 00 00 00 72 19 00 00 00 29 08 72 1f 00 00 00 72 43 00 00 00 72 50 00 00 00 72 20 00 00 .r....r....).r....rC...rP...r...
3b00 00 72 36 00 00 00 72 33 00 00 00 72 21 00 00 00 72 48 00 00 00 73 08 00 00 00 20 20 20 20 20 20 .r6...r3...r!...rH...s..........
3b20 20 20 72 27 00 00 00 72 08 00 00 00 72 08 00 00 00 94 01 00 00 73 7b 00 00 00 80 00 f4 70 01 00 ..r'...r....r........s{......p..
3b40 09 1f d8 08 09 88 31 98 3c b0 39 c0 34 f4 03 02 09 06 80 41 f0 06 00 12 1b 80 4a e4 0e 21 a0 21 ......1.<.9.4......A......J..!.!
3b60 a8 57 d5 0e 35 d8 08 12 90 61 89 0f 88 0a dc 0c 22 d8 0e 0f 90 31 a0 3c b8 39 c8 34 f4 03 02 0d .W..5....a......"....1.<.9.4....
3b80 0a 88 01 f0 08 00 0c 16 98 11 8a 3f dc 12 14 d7 12 22 d1 12 22 d8 10 46 f3 03 02 13 0e f0 00 02 ...........?.....".."..F........
3ba0 0d 0e f4 0f 00 0f 22 a0 21 a8 57 d6 0e 35 f0 16 00 0c 0d 80 48 72 28 00 00 00 29 01 4e 29 10 da ......".!.W..5......Hr(...).N)..
3bc0 07 5f 5f 64 6f 63 5f 5f 72 1a 00 00 00 da 08 6e 65 74 77 6f 72 6b 78 72 14 00 00 00 da 07 5f 5f .__doc__r......networkxr......__
3be0 61 6c 6c 5f 5f da 0d 5f 64 69 73 70 61 74 63 68 61 62 6c 65 72 03 00 00 00 72 04 00 00 00 72 05 all__.._dispatchabler....r....r.
3c00 00 00 00 72 3f 00 00 00 da 0a 64 65 63 6f 72 61 74 6f 72 73 da 0f 6e 70 5f 72 61 6e 64 6f 6d 5f ...r?.....decorators..np_random_
3c20 73 74 61 74 65 72 06 00 00 00 da 13 6e 6f 74 5f 69 6d 70 6c 65 6d 65 6e 74 65 64 5f 66 6f 72 72 stater......not_implemented_forr
3c40 07 00 00 00 72 08 00 00 00 a9 00 72 28 00 00 00 72 27 00 00 00 fa 08 3c 6d 6f 64 75 6c 65 3e 72 ....r......r(...r'.....<module>r
3c60 72 00 00 00 01 00 00 00 73 75 01 00 00 f0 03 01 01 01 d9 00 39 e3 00 10 e3 00 15 f2 04 07 0b 02 r.......su..........9...........
3c80 80 07 f0 54 01 00 02 12 80 12 d7 01 11 d1 01 11 98 14 a8 54 d4 01 32 f2 02 27 01 0d f3 03 00 02 ...T...............T..2..'......
3ca0 33 f0 02 27 01 0d f0 54 01 00 02 12 80 12 d7 01 11 d1 01 11 98 14 a8 54 d4 01 32 f2 02 3c 01 0d 3..'...T...............T..2..<..
3cc0 f3 03 00 02 33 f0 02 3c 01 0d f0 7e 01 00 02 12 80 12 d7 01 11 d1 01 11 98 14 a8 54 d4 01 32 f2 ....3..<...~...............T..2.
3ce0 02 39 01 0d f3 03 00 02 33 f0 02 39 01 0d f0 78 01 00 02 04 87 18 81 18 d7 01 14 d1 01 14 d7 01 .9......3..9...x................
3d00 24 d1 01 24 a0 56 d3 01 2c d8 01 11 80 12 d7 01 11 d1 01 11 98 14 a8 54 d4 01 32 d8 31 35 c0 13 $..$.V..,..............T..2.15..
3d20 c8 34 f3 00 70 01 01 0d f3 03 00 02 33 f3 03 00 02 2d f0 04 70 01 01 0d f0 66 03 00 02 04 87 18 .4..p.......3....-..p....f......
3d40 81 18 d7 01 1d d1 01 1d 98 6a d3 01 29 d8 01 03 87 18 81 18 d7 01 1d d1 01 1d 98 6c d3 01 2b d8 .........j..)..............l..+.
3d60 01 11 80 12 d7 01 11 d1 01 11 a0 73 a8 58 b0 71 a8 4d d0 26 3a d4 01 3b d8 26 27 f3 00 40 01 01 ...........s.X.q.M.&:..;.&'..@..
3d80 3d f3 03 00 02 3c f3 03 00 02 2c f3 03 00 02 2a f0 06 40 01 01 3d f0 46 02 00 02 04 87 18 81 18 =....<....,....*..@..=.F........
3da0 d7 01 14 d1 01 14 d7 01 24 d1 01 24 a0 56 d3 01 2c d8 01 11 80 12 d7 01 11 d1 01 11 98 14 a8 54 ........$..$.V..,..............T
3dc0 d4 01 32 e0 15 16 a0 54 b0 53 b8 74 f3 03 46 01 01 0d f3 03 00 02 33 f3 03 00 02 2d f1 04 46 01 ..2....T.S.t..F.......3....-..F.
3de0 01 0d 72 28 00 00 00 ..r(...