| ofs | hex dump | ascii |
|---|
| 0000 | cb 0d 0d 0a 00 00 00 00 85 fa a7 68 f2 0c 00 00 e3 00 00 00 00 00 00 00 00 00 00 00 00 05 00 00 | ...........h.................... |
| 0020 | 00 00 00 00 00 f3 b8 00 00 00 97 00 64 00 5a 00 64 01 64 02 6c 01 5a 02 64 01 64 03 6c 03 6d 04 | ............d.Z.d.d.l.Z.d.d.l.m. |
| 0040 | 5a 04 01 00 64 04 64 05 67 02 5a 05 02 00 65 04 64 06 ab 01 00 00 00 00 00 00 02 00 65 04 64 07 | Z...d.d.g.Z...e.d...........e.d. |
| 0060 | ab 01 00 00 00 00 00 00 02 00 65 02 6a 0c 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 | ..........e.j................... |
| 0080 | 64 08 ac 09 ab 01 00 00 00 00 00 00 64 0d 64 0a 84 01 ab 00 00 00 00 00 00 00 ab 00 00 00 00 00 | d...........d.d................. |
| 00a0 | 00 00 ab 00 00 00 00 00 00 00 5a 07 02 00 65 02 6a 0c 00 00 00 00 00 00 00 00 00 00 00 00 00 00 | ..........Z...e.j............... |
| 00c0 | 00 00 00 00 64 02 64 08 ac 0b ab 02 00 00 00 00 00 00 64 0c 84 00 ab 00 00 00 00 00 00 00 5a 08 | ....d.d...........d...........Z. |
| 00e0 | 79 02 29 0e 7a 54 46 75 6e 63 74 69 6f 6e 73 20 72 65 6c 61 74 65 64 20 74 6f 20 74 68 65 20 4d | y.).zTFunctions.related.to.the.M |
| 0100 | 79 63 69 65 6c 73 6b 69 20 4f 70 65 72 61 74 69 6f 6e 20 61 6e 64 20 74 68 65 20 4d 79 63 69 65 | ycielski.Operation.and.the.Mycie |
| 0120 | 6c 73 6b 69 61 6e 20 66 61 6d 69 6c 79 0a 6f 66 20 67 72 61 70 68 73 2e 0a 0a e9 00 00 00 00 4e | lskian.family.of.graphs........N |
| 0140 | 29 01 da 13 6e 6f 74 5f 69 6d 70 6c 65 6d 65 6e 74 65 64 5f 66 6f 72 da 0b 6d 79 63 69 65 6c 73 | )...not_implemented_for..myciels |
| 0160 | 6b 69 61 6e da 0f 6d 79 63 69 65 6c 73 6b 69 5f 67 72 61 70 68 da 08 64 69 72 65 63 74 65 64 da | kian..mycielski_graph..directed. |
| 0180 | 0a 6d 75 6c 74 69 67 72 61 70 68 54 29 01 da 0d 72 65 74 75 72 6e 73 5f 67 72 61 70 68 63 02 00 | .multigraphT)...returns_graphc.. |
| 01a0 | 00 00 00 00 00 00 00 00 00 00 08 00 00 00 03 00 00 00 f3 b6 01 00 00 87 05 97 00 74 01 00 00 00 | ...........................t.... |
| 01c0 | 00 00 00 00 00 6a 02 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 7c 00 ab 01 00 00 00 | .....j...................|...... |
| 01e0 | 00 00 00 7d 02 74 05 00 00 00 00 00 00 00 00 7c 01 ab 01 00 00 00 00 00 00 44 00 5d b4 00 00 7d | ...}.t.........|.........D.]...} |
| 0200 | 03 7c 02 6a 07 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ab 00 00 00 00 00 00 00 8a | .|.j............................ |
| 0220 | 05 7c 02 6a 09 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 74 05 00 00 00 00 00 00 00 | .|.j...................t........ |
| 0240 | 00 89 05 64 01 89 05 7a 05 00 00 ab 02 00 00 00 00 00 00 ab 01 00 00 00 00 00 00 01 00 74 0b 00 | ...d...z.....................t.. |
| 0260 | 00 00 00 00 00 00 00 7c 02 6a 0d 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ab 00 00 | .......|.j...................... |
| 0280 | 00 00 00 00 00 ab 01 00 00 00 00 00 00 7d 04 7c 02 6a 0f 00 00 00 00 00 00 00 00 00 00 00 00 00 | .............}.|.j.............. |
| 02a0 | 00 00 00 00 00 88 05 66 01 64 02 84 08 7c 04 44 00 ab 00 00 00 00 00 00 00 ab 01 00 00 00 00 00 | .......f.d...|.D................ |
| 02c0 | 00 01 00 7c 02 6a 0f 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 88 05 66 01 64 03 84 | ...|.j.....................f.d.. |
| 02e0 | 08 7c 04 44 00 ab 00 00 00 00 00 00 00 ab 01 00 00 00 00 00 00 01 00 7c 02 6a 11 00 00 00 00 00 | .|.D...................|.j...... |
| 0300 | 00 00 00 00 00 00 00 00 00 00 00 00 00 64 01 89 05 7a 05 00 00 ab 01 00 00 00 00 00 00 01 00 7c | .............d...z.............| |
| 0320 | 02 6a 0f 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 88 05 66 01 64 04 84 08 74 05 00 | .j.....................f.d...t.. |
| 0340 | 00 00 00 00 00 00 00 89 05 ab 01 00 00 00 00 00 00 44 00 ab 00 00 00 00 00 00 00 ab 01 00 00 00 | .................D.............. |
| 0360 | 00 00 00 01 00 8c b6 04 00 7c 02 53 00 29 05 61 5e 05 00 00 52 65 74 75 72 6e 73 20 74 68 65 20 | .........|.S.).a^...Returns.the. |
| 0380 | 4d 79 63 69 65 6c 73 6b 69 61 6e 20 6f 66 20 61 20 73 69 6d 70 6c 65 2c 20 75 6e 64 69 72 65 63 | Mycielskian.of.a.simple,.undirec |
| 03a0 | 74 65 64 20 67 72 61 70 68 20 47 0a 0a 20 20 20 20 54 68 65 20 4d 79 63 69 65 6c 73 6b 69 61 6e | ted.graph.G......The.Mycielskian |
| 03c0 | 20 6f 66 20 67 72 61 70 68 20 70 72 65 73 65 72 76 65 73 20 61 20 67 72 61 70 68 27 73 20 74 72 | .of.graph.preserves.a.graph's.tr |
| 03e0 | 69 61 6e 67 6c 65 20 66 72 65 65 0a 20 20 20 20 70 72 6f 70 65 72 74 79 20 77 68 69 6c 65 20 69 | iangle.free.....property.while.i |
| 0400 | 6e 63 72 65 61 73 69 6e 67 20 74 68 65 20 63 68 72 6f 6d 61 74 69 63 20 6e 75 6d 62 65 72 20 62 | ncreasing.the.chromatic.number.b |
| 0420 | 79 20 31 2e 0a 0a 20 20 20 20 54 68 65 20 4d 79 63 69 65 6c 73 6b 69 20 4f 70 65 72 61 74 69 6f | y.1.......The.Mycielski.Operatio |
| 0440 | 6e 20 6f 6e 20 61 20 67 72 61 70 68 2c 20 3a 6d 61 74 68 3a 60 47 3d 28 56 2c 20 45 29 60 2c 20 | n.on.a.graph,.:math:`G=(V,.E)`,. |
| 0460 | 63 6f 6e 73 74 72 75 63 74 73 20 61 20 6e 65 77 0a 20 20 20 20 67 72 61 70 68 20 77 69 74 68 20 | constructs.a.new.....graph.with. |
| 0480 | 3a 6d 61 74 68 3a 60 32 7c 56 7c 20 2b 20 31 60 20 6e 6f 64 65 73 20 61 6e 64 20 3a 6d 61 74 68 | :math:`2|V|.+.1`.nodes.and.:math |
| 04a0 | 3a 60 33 7c 45 7c 20 2b 20 7c 56 7c 60 20 65 64 67 65 73 2e 0a 0a 20 20 20 20 54 68 65 20 63 6f | :`3|E|.+.|V|`.edges.......The.co |
| 04c0 | 6e 73 74 72 75 63 74 69 6f 6e 20 69 73 20 61 73 20 66 6f 6c 6c 6f 77 73 3a 0a 0a 20 20 20 20 4c | nstruction.is.as.follows:......L |
| 04e0 | 65 74 20 3a 6d 61 74 68 3a 60 56 20 3d 20 7b 30 2c 20 2e 2e 2e 2c 20 6e 2d 31 7d 60 2e 20 43 6f | et.:math:`V.=.{0,....,.n-1}`..Co |
| 0500 | 6e 73 74 72 75 63 74 20 61 6e 6f 74 68 65 72 20 76 65 72 74 65 78 20 73 65 74 0a 20 20 20 20 3a | nstruct.another.vertex.set.....: |
| 0520 | 6d 61 74 68 3a 60 55 20 3d 20 7b 6e 2c 20 2e 2e 2e 2c 20 32 6e 7d 60 20 61 6e 64 20 61 20 76 65 | math:`U.=.{n,....,.2n}`.and.a.ve |
| 0540 | 72 74 65 78 2c 20 60 77 60 2e 0a 20 20 20 20 43 6f 6e 73 74 72 75 63 74 20 61 20 6e 65 77 20 67 | rtex,.`w`......Construct.a.new.g |
| 0560 | 72 61 70 68 2c 20 60 4d 60 2c 20 77 69 74 68 20 76 65 72 74 69 63 65 73 20 3a 6d 61 74 68 3a 60 | raph,.`M`,.with.vertices.:math:` |
| 0580 | 55 20 5c 62 69 67 63 75 70 20 56 20 5c 62 69 67 63 75 70 20 77 60 2e 0a 20 20 20 20 46 6f 72 20 | U.\bigcup.V.\bigcup.w`......For. |
| 05a0 | 65 64 67 65 73 2c 20 3a 6d 61 74 68 3a 60 28 75 2c 20 76 29 20 5c 69 6e 20 45 60 20 61 64 64 20 | edges,.:math:`(u,.v).\in.E`.add. |
| 05c0 | 65 64 67 65 73 20 3a 6d 61 74 68 3a 60 28 75 2c 20 76 29 2c 20 28 75 2c 20 76 20 2b 20 6e 29 60 | edges.:math:`(u,.v),.(u,.v.+.n)` |
| 05e0 | 2c 20 61 6e 64 0a 20 20 20 20 3a 6d 61 74 68 3a 60 28 75 20 2b 20 6e 2c 20 76 29 60 20 74 6f 20 | ,.and.....:math:`(u.+.n,.v)`.to. |
| 0600 | 4d 2e 20 46 69 6e 61 6c 6c 79 2c 20 66 6f 72 20 61 6c 6c 20 76 65 72 74 69 63 65 73 20 3a 6d 61 | M..Finally,.for.all.vertices.:ma |
| 0620 | 74 68 3a 60 75 20 5c 69 6e 20 55 60 2c 20 61 64 64 0a 20 20 20 20 65 64 67 65 20 3a 6d 61 74 68 | th:`u.\in.U`,.add.....edge.:math |
| 0640 | 3a 60 28 75 2c 20 77 29 60 20 74 6f 20 4d 2e 0a 0a 20 20 20 20 54 68 65 20 4d 79 63 69 65 6c 73 | :`(u,.w)`.to.M.......The.Myciels |
| 0660 | 6b 69 20 4f 70 65 72 61 74 69 6f 6e 20 63 61 6e 20 62 65 20 64 6f 6e 65 20 6d 75 6c 74 69 70 6c | ki.Operation.can.be.done.multipl |
| 0680 | 65 20 74 69 6d 65 73 20 62 79 20 72 65 70 65 61 74 69 6e 67 20 74 68 65 20 61 62 6f 76 65 0a 20 | e.times.by.repeating.the.above.. |
| 06a0 | 20 20 20 70 72 6f 63 65 73 73 20 69 74 65 72 61 74 69 76 65 6c 79 2e 0a 0a 20 20 20 20 4d 6f 72 | ...process.iteratively.......Mor |
| 06c0 | 65 20 69 6e 66 6f 72 6d 61 74 69 6f 6e 20 63 61 6e 20 62 65 20 66 6f 75 6e 64 20 61 74 20 68 74 | e.information.can.be.found.at.ht |
| 06e0 | 74 70 73 3a 2f 2f 65 6e 2e 77 69 6b 69 70 65 64 69 61 2e 6f 72 67 2f 77 69 6b 69 2f 4d 79 63 69 | tps://en.wikipedia.org/wiki/Myci |
| 0700 | 65 6c 73 6b 69 61 6e 0a 0a 20 20 20 20 50 61 72 61 6d 65 74 65 72 73 0a 20 20 20 20 2d 2d 2d 2d | elskian......Parameters.....---- |
| 0720 | 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 47 20 3a 20 67 72 61 70 68 0a 20 20 20 20 20 20 20 20 41 20 73 | ------.....G.:.graph.........A.s |
| 0740 | 69 6d 70 6c 65 2c 20 75 6e 64 69 72 65 63 74 65 64 20 4e 65 74 77 6f 72 6b 58 20 67 72 61 70 68 | imple,.undirected.NetworkX.graph |
| 0760 | 0a 20 20 20 20 69 74 65 72 61 74 69 6f 6e 73 20 3a 20 69 6e 74 0a 20 20 20 20 20 20 20 20 54 68 | .....iterations.:.int.........Th |
| 0780 | 65 20 6e 75 6d 62 65 72 20 6f 66 20 69 74 65 72 61 74 69 6f 6e 73 20 6f 66 20 74 68 65 20 4d 79 | e.number.of.iterations.of.the.My |
| 07a0 | 63 69 65 6c 73 6b 69 20 6f 70 65 72 61 74 69 6f 6e 20 74 6f 0a 20 20 20 20 20 20 20 20 70 65 72 | cielski.operation.to.........per |
| 07c0 | 66 6f 72 6d 20 6f 6e 20 47 2e 20 44 65 66 61 75 6c 74 73 20 74 6f 20 31 2e 20 4d 75 73 74 20 62 | form.on.G..Defaults.to.1..Must.b |
| 07e0 | 65 20 61 20 6e 6f 6e 2d 6e 65 67 61 74 69 76 65 20 69 6e 74 65 67 65 72 2e 0a 0a 20 20 20 20 52 | e.a.non-negative.integer.......R |
| 0800 | 65 74 75 72 6e 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 4d 20 3a 20 67 72 61 70 68 | eturns.....-------.....M.:.graph |
| 0820 | 0a 20 20 20 20 20 20 20 20 54 68 65 20 4d 79 63 69 65 6c 73 6b 69 61 6e 20 6f 66 20 47 20 61 66 | .........The.Mycielskian.of.G.af |
| 0840 | 74 65 72 20 74 68 65 20 73 70 65 63 69 66 69 65 64 20 6e 75 6d 62 65 72 20 6f 66 20 69 74 65 72 | ter.the.specified.number.of.iter |
| 0860 | 61 74 69 6f 6e 73 2e 0a 0a 20 20 20 20 4e 6f 74 65 73 0a 20 20 20 20 2d 2d 2d 2d 2d 0a 20 20 20 | ations.......Notes.....-----.... |
| 0880 | 20 47 72 61 70 68 2c 20 6e 6f 64 65 2c 20 61 6e 64 20 65 64 67 65 20 64 61 74 61 20 61 72 65 20 | .Graph,.node,.and.edge.data.are. |
| 08a0 | 6e 6f 74 20 6e 65 63 65 73 73 61 72 69 6c 79 20 70 72 6f 70 61 67 61 74 65 64 20 74 6f 20 74 68 | not.necessarily.propagated.to.th |
| 08c0 | 65 20 6e 65 77 20 67 72 61 70 68 2e 0a 0a 20 20 20 20 e9 02 00 00 00 63 01 00 00 00 00 00 00 00 | e.new.graph............c........ |
| 08e0 | 00 00 00 00 04 00 00 00 33 00 00 00 f3 32 00 00 00 95 01 4b 00 01 00 97 00 7c 00 5d 0e 00 00 5c | ........3....2.....K.....|.]...\ |
| 0900 | 02 00 00 7d 01 7d 02 7c 01 7c 02 89 03 7a 00 00 00 66 02 96 01 97 01 01 00 8c 10 04 00 79 00 ad | ...}.}.|.|...z...f...........y.. |
| 0920 | 03 77 01 a9 01 4e a9 00 a9 04 da 02 2e 30 da 01 75 da 01 76 da 01 6e 73 04 00 00 00 20 20 20 80 | .w...N.......0..u..v..ns........ |
| 0940 | fa 64 2f 68 6f 6d 65 2f 62 6c 61 63 6b 68 61 6f 2f 75 69 75 63 2d 63 6f 75 72 73 65 2d 67 72 61 | .d/home/blackhao/uiuc-course-gra |
| 0960 | 70 68 2f 2e 76 65 6e 76 2f 6c 69 62 2f 70 79 74 68 6f 6e 33 2e 31 32 2f 73 69 74 65 2d 70 61 63 | ph/.venv/lib/python3.12/site-pac |
| 0980 | 6b 61 67 65 73 2f 6e 65 74 77 6f 72 6b 78 2f 67 65 6e 65 72 61 74 6f 72 73 2f 6d 79 63 69 65 6c | kages/networkx/generators/myciel |
| 09a0 | 73 6b 69 2e 70 79 fa 09 3c 67 65 6e 65 78 70 72 3e 7a 1e 6d 79 63 69 65 6c 73 6b 69 61 6e 2e 3c | ski.py..<genexpr>z.mycielskian.< |
| 09c0 | 6c 6f 63 61 6c 73 3e 2e 3c 67 65 6e 65 78 70 72 3e 3f 00 00 00 73 1d 00 00 00 f8 e8 00 f8 80 00 | locals>.<genexpr>?...s.......... |
| 09e0 | d2 18 3a a9 04 a8 01 a8 31 98 21 98 51 a0 11 99 55 9c 1a d1 18 3a f9 f3 04 00 00 00 83 14 17 01 | ..:.....1.!.Q...U....:.......... |
| 0a00 | 63 01 00 00 00 00 00 00 00 00 00 00 00 03 00 00 00 33 00 00 00 f3 32 00 00 00 95 01 4b 00 01 00 | c................3....2.....K... |
| 0a20 | 97 00 7c 00 5d 0e 00 00 5c 02 00 00 7d 01 7d 02 7c 01 89 03 7a 00 00 00 7c 02 66 02 96 01 97 01 | ..|.]...\...}.}.|...z...|.f..... |
| 0a40 | 01 00 8c 10 04 00 79 00 ad 03 77 01 72 0c 00 00 00 72 0d 00 00 00 72 0e 00 00 00 73 04 00 00 00 | ......y...w.r....r....r....s.... |
| 0a60 | 20 20 20 80 72 13 00 00 00 72 14 00 00 00 7a 1e 6d 79 63 69 65 6c 73 6b 69 61 6e 2e 3c 6c 6f 63 | ....r....r....z.mycielskian.<loc |
| 0a80 | 61 6c 73 3e 2e 3c 67 65 6e 65 78 70 72 3e 40 00 00 00 73 1d 00 00 00 f8 e8 00 f8 80 00 d2 18 3a | als>.<genexpr>@...s............: |
| 0aa0 | a9 04 a8 01 a8 31 98 21 98 61 99 25 a0 11 9c 1a d1 18 3a f9 72 15 00 00 00 63 01 00 00 00 00 00 | .....1.!.a.%......:.r....c...... |
| 0ac0 | 00 00 00 00 00 00 04 00 00 00 33 00 00 00 f3 32 00 00 00 95 01 4b 00 01 00 97 00 7c 00 5d 0e 00 | ..........3....2.....K.....|.].. |
| 0ae0 | 00 7d 01 7c 01 89 02 7a 00 00 00 64 00 89 02 7a 05 00 00 66 02 96 01 97 01 01 00 8c 10 04 00 79 | .}.|...z...d...z...f...........y |
| 0b00 | 01 ad 03 77 01 29 02 72 0a 00 00 00 4e 72 0d 00 00 00 29 03 72 0f 00 00 00 72 10 00 00 00 72 12 | ...w.).r....Nr....).r....r....r. |
| 0b20 | 00 00 00 73 03 00 00 00 20 20 80 72 13 00 00 00 72 14 00 00 00 7a 1e 6d 79 63 69 65 6c 73 6b 69 | ...s.......r....r....z.mycielski |
| 0b40 | 61 6e 2e 3c 6c 6f 63 61 6c 73 3e 2e 3c 67 65 6e 65 78 70 72 3e 42 00 00 00 73 1d 00 00 00 f8 e8 | an.<locals>.<genexpr>B...s...... |
| 0b60 | 00 f8 80 00 d2 18 3a a8 41 98 21 98 61 99 25 a0 11 a0 51 a1 15 9c 1e d1 18 3a f9 72 15 00 00 00 | ......:.A.!.a.%...Q......:.r.... |
| 0b80 | 29 09 da 02 6e 78 da 1f 63 6f 6e 76 65 72 74 5f 6e 6f 64 65 5f 6c 61 62 65 6c 73 5f 74 6f 5f 69 | )...nx..convert_node_labels_to_i |
| 0ba0 | 6e 74 65 67 65 72 73 da 05 72 61 6e 67 65 da 0f 6e 75 6d 62 65 72 5f 6f 66 5f 6e 6f 64 65 73 da | ntegers..range..number_of_nodes. |
| 0bc0 | 0e 61 64 64 5f 6e 6f 64 65 73 5f 66 72 6f 6d da 04 6c 69 73 74 da 05 65 64 67 65 73 da 0e 61 64 | .add_nodes_from..list..edges..ad |
| 0be0 | 64 5f 65 64 67 65 73 5f 66 72 6f 6d da 08 61 64 64 5f 6e 6f 64 65 29 06 da 01 47 da 0a 69 74 65 | d_edges_from..add_node)...G..ite |
| 0c00 | 72 61 74 69 6f 6e 73 da 01 4d da 01 69 da 09 6f 6c 64 5f 65 64 67 65 73 72 12 00 00 00 73 06 00 | rations..M..i..old_edgesr....s.. |
| 0c20 | 00 00 20 20 20 20 20 40 72 13 00 00 00 72 04 00 00 00 72 04 00 00 00 0c 00 00 00 73 b6 00 00 00 | .......@r....r....r........s.... |
| 0c40 | f8 80 00 f4 5a 01 00 09 0b d7 08 2a d1 08 2a a8 31 d3 08 2d 80 41 e4 0d 12 90 3a d3 0d 1e f2 00 | ....Z......*..*.1..-.A....:..... |
| 0c60 | 07 05 3b 88 01 d8 0c 0d d7 0c 1d d1 0c 1d d3 0c 1f 88 01 d8 08 09 d7 08 18 d1 08 18 9c 15 98 71 | ..;............................q |
| 0c80 | a0 21 a0 61 a1 25 9b 1f d4 08 29 dc 14 18 98 11 9f 17 99 17 9b 19 93 4f 88 09 d8 08 09 d7 08 18 | .!.a.%....)............O........ |
| 0ca0 | d1 08 18 d3 18 3a b0 09 d4 18 3a d4 08 3a d8 08 09 d7 08 18 d1 08 18 d3 18 3a b0 09 d4 18 3a d4 | .....:....:..:...........:....:. |
| 0cc0 | 08 3a d8 08 09 8f 0a 89 0a 90 31 90 71 91 35 d4 08 19 d8 08 09 d7 08 18 d1 08 18 d3 18 3a b4 15 | .:........1.q.5..............:.. |
| 0ce0 | b0 71 b3 18 d4 18 3a d5 08 3a f0 0f 07 05 3b f0 12 00 0c 0d 80 48 f3 00 00 00 00 29 02 da 06 67 | .q....:..:....;......H.....)...g |
| 0d00 | 72 61 70 68 73 72 08 00 00 00 63 01 00 00 00 00 00 00 00 00 00 00 00 05 00 00 00 03 00 00 00 f3 | raphsr....c..................... |
| 0d20 | ae 00 00 00 97 00 7c 00 64 01 6b 02 00 00 72 15 74 01 00 00 00 00 00 00 00 00 6a 02 00 00 00 00 | ......|.d.k...r.t.........j..... |
| 0d40 | 00 00 00 00 00 00 00 00 00 00 00 00 00 00 64 02 ab 01 00 00 00 00 00 00 82 01 7c 00 64 01 6b 28 | ..............d...........|.d.k( |
| 0d60 | 00 00 72 15 74 01 00 00 00 00 00 00 00 00 6a 04 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 | ..r.t.........j................. |
| 0d80 | 00 00 64 01 ab 01 00 00 00 00 00 00 53 00 74 07 00 00 00 00 00 00 00 00 74 01 00 00 00 00 00 00 | ..d.........S.t.........t....... |
| 0da0 | 00 00 6a 08 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 64 03 ab 01 00 00 00 00 00 00 | ..j...................d......... |
| 0dc0 | 7c 00 64 03 7a 0a 00 00 ab 02 00 00 00 00 00 00 53 00 29 04 61 87 03 00 00 47 65 6e 65 72 61 74 | |.d.z...........S.).a....Generat |
| 0de0 | 6f 72 20 66 6f 72 20 74 68 65 20 6e 5f 74 68 20 4d 79 63 69 65 6c 73 6b 69 20 47 72 61 70 68 2e | or.for.the.n_th.Mycielski.Graph. |
| 0e00 | 0a 0a 20 20 20 20 54 68 65 20 4d 79 63 69 65 6c 73 6b 69 20 66 61 6d 69 6c 79 20 6f 66 20 67 72 | ......The.Mycielski.family.of.gr |
| 0e20 | 61 70 68 73 20 69 73 20 61 6e 20 69 6e 66 69 6e 69 74 65 20 73 65 74 20 6f 66 20 67 72 61 70 68 | aphs.is.an.infinite.set.of.graph |
| 0e40 | 73 2e 0a 20 20 20 20 3a 6d 61 74 68 3a 60 4d 5f 31 60 20 69 73 20 74 68 65 20 73 69 6e 67 6c 65 | s......:math:`M_1`.is.the.single |
| 0e60 | 74 6f 6e 20 67 72 61 70 68 2c 20 3a 6d 61 74 68 3a 60 4d 5f 32 60 20 69 73 20 74 77 6f 20 76 65 | ton.graph,.:math:`M_2`.is.two.ve |
| 0e80 | 72 74 69 63 65 73 20 77 69 74 68 20 61 6e 0a 20 20 20 20 65 64 67 65 2c 20 61 6e 64 2c 20 66 6f | rtices.with.an.....edge,.and,.fo |
| 0ea0 | 72 20 3a 6d 61 74 68 3a 60 69 20 3e 20 32 60 2c 20 3a 6d 61 74 68 3a 60 4d 5f 69 60 20 69 73 20 | r.:math:`i.>.2`,.:math:`M_i`.is. |
| 0ec0 | 74 68 65 20 4d 79 63 69 65 6c 73 6b 69 61 6e 20 6f 66 0a 20 20 20 20 3a 6d 61 74 68 3a 60 4d 5f | the.Mycielskian.of.....:math:`M_ |
| 0ee0 | 7b 69 2d 31 7d 60 2e 0a 0a 20 20 20 20 4d 6f 72 65 20 69 6e 66 6f 72 6d 61 74 69 6f 6e 20 63 61 | {i-1}`.......More.information.ca |
| 0f00 | 6e 20 62 65 20 66 6f 75 6e 64 20 61 74 0a 20 20 20 20 68 74 74 70 3a 2f 2f 6d 61 74 68 77 6f 72 | n.be.found.at.....http://mathwor |
| 0f20 | 6c 64 2e 77 6f 6c 66 72 61 6d 2e 63 6f 6d 2f 4d 79 63 69 65 6c 73 6b 69 47 72 61 70 68 2e 68 74 | ld.wolfram.com/MycielskiGraph.ht |
| 0f40 | 6d 6c 0a 0a 20 20 20 20 50 61 72 61 6d 65 74 65 72 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 2d | ml......Parameters.....--------- |
| 0f60 | 2d 0a 20 20 20 20 6e 20 3a 20 69 6e 74 0a 20 20 20 20 20 20 20 20 54 68 65 20 64 65 73 69 72 65 | -.....n.:.int.........The.desire |
| 0f80 | 64 20 4d 79 63 69 65 6c 73 6b 69 20 47 72 61 70 68 2e 0a 0a 20 20 20 20 52 65 74 75 72 6e 73 0a | d.Mycielski.Graph.......Returns. |
| 0fa0 | 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 4d 20 3a 20 67 72 61 70 68 0a 20 20 20 20 20 20 | ....-------.....M.:.graph....... |
| 0fc0 | 20 20 54 68 65 20 6e 5f 74 68 20 4d 79 63 69 65 6c 73 6b 69 20 47 72 61 70 68 0a 0a 20 20 20 20 | ..The.n_th.Mycielski.Graph...... |
| 0fe0 | 4e 6f 74 65 73 0a 20 20 20 20 2d 2d 2d 2d 2d 0a 20 20 20 20 54 68 65 20 66 69 72 73 74 20 67 72 | Notes.....-----.....The.first.gr |
| 1000 | 61 70 68 20 69 6e 20 74 68 65 20 4d 79 63 69 65 6c 73 6b 69 20 73 65 71 75 65 6e 63 65 20 69 73 | aph.in.the.Mycielski.sequence.is |
| 1020 | 20 74 68 65 20 73 69 6e 67 6c 65 74 6f 6e 20 67 72 61 70 68 2e 0a 20 20 20 20 54 68 65 20 4d 79 | .the.singleton.graph......The.My |
| 1040 | 63 69 65 6c 73 6b 69 61 6e 20 6f 66 20 74 68 69 73 20 67 72 61 70 68 20 69 73 20 6e 6f 74 20 74 | cielskian.of.this.graph.is.not.t |
| 1060 | 68 65 20 3a 6d 61 74 68 3a 60 50 5f 32 60 20 67 72 61 70 68 2c 20 62 75 74 20 72 61 74 68 65 72 | he.:math:`P_2`.graph,.but.rather |
| 1080 | 20 74 68 65 0a 20 20 20 20 3a 6d 61 74 68 3a 60 50 5f 32 60 20 67 72 61 70 68 20 77 69 74 68 20 | .the.....:math:`P_2`.graph.with. |
| 10a0 | 61 6e 20 65 78 74 72 61 2c 20 69 73 6f 6c 61 74 65 64 20 76 65 72 74 65 78 2e 20 54 68 65 20 73 | an.extra,.isolated.vertex..The.s |
| 10c0 | 65 63 6f 6e 64 20 4d 79 63 69 65 6c 73 6b 69 0a 20 20 20 20 67 72 61 70 68 20 69 73 20 74 68 65 | econd.Mycielski.....graph.is.the |
| 10e0 | 20 3a 6d 61 74 68 3a 60 50 5f 32 60 20 67 72 61 70 68 2c 20 73 6f 20 74 68 65 20 66 69 72 73 74 | .:math:`P_2`.graph,.so.the.first |
| 1100 | 20 74 77 6f 20 61 72 65 20 68 61 72 64 20 63 6f 64 65 64 2e 0a 20 20 20 20 54 68 65 20 72 65 6d | .two.are.hard.coded......The.rem |
| 1120 | 61 69 6e 69 6e 67 20 67 72 61 70 68 73 20 61 72 65 20 67 65 6e 65 72 61 74 65 64 20 75 73 69 6e | aining.graphs.are.generated.usin |
| 1140 | 67 20 74 68 65 20 4d 79 63 69 65 6c 73 6b 69 20 6f 70 65 72 61 74 69 6f 6e 2e 0a 0a 20 20 20 20 | g.the.Mycielski.operation....... |
| 1160 | e9 01 00 00 00 7a 13 6d 75 73 74 20 73 61 74 69 73 66 79 20 6e 20 3e 3d 20 31 72 0a 00 00 00 29 | .....z.must.satisfy.n.>=.1r....) |
| 1180 | 05 72 18 00 00 00 da 0d 4e 65 74 77 6f 72 6b 58 45 72 72 6f 72 da 0b 65 6d 70 74 79 5f 67 72 61 | .r......NetworkXError..empty_gra |
| 11a0 | 70 68 72 04 00 00 00 da 0a 70 61 74 68 5f 67 72 61 70 68 29 01 72 12 00 00 00 73 01 00 00 00 20 | phr......path_graph).r....s..... |
| 11c0 | 72 13 00 00 00 72 05 00 00 00 72 05 00 00 00 47 00 00 00 73 50 00 00 00 80 00 f0 40 01 00 08 09 | r....r....r....G...sP......@.... |
| 11e0 | 88 31 82 75 dc 0e 10 d7 0e 1e d1 0e 1e d0 1f 34 d3 0e 35 d0 08 35 e0 07 08 88 41 82 76 dc 0f 11 | .1.u...........4..5..5....A.v... |
| 1200 | 8f 7e 89 7e 98 61 d3 0f 20 d0 08 20 f4 06 00 10 1b 9c 32 9f 3d 99 3d a8 11 d3 1b 2b a8 51 b0 11 | .~.~.a............2.=.=....+.Q.. |
| 1220 | a9 55 d3 0f 33 d0 08 33 72 26 00 00 00 29 01 72 29 00 00 00 29 09 da 07 5f 5f 64 6f 63 5f 5f da | .U..3..3r&...).r)...)...__doc__. |
| 1240 | 08 6e 65 74 77 6f 72 6b 78 72 18 00 00 00 da 0e 6e 65 74 77 6f 72 6b 78 2e 75 74 69 6c 73 72 03 | .networkxr......networkx.utilsr. |
| 1260 | 00 00 00 da 07 5f 5f 61 6c 6c 5f 5f da 0d 5f 64 69 73 70 61 74 63 68 61 62 6c 65 72 04 00 00 00 | .....__all__.._dispatchabler.... |
| 1280 | 72 05 00 00 00 72 0d 00 00 00 72 26 00 00 00 72 13 00 00 00 fa 08 3c 6d 6f 64 75 6c 65 3e 72 32 | r....r....r&...r......<module>r2 |
| 12a0 | 00 00 00 01 00 00 00 73 7c 00 00 00 f0 03 01 01 01 f1 02 03 01 04 f3 0a 00 01 16 dd 00 2e e0 0b | .......s|....................... |
| 12c0 | 18 d0 1a 2b d0 0a 2c 80 07 f1 06 00 02 15 90 5a d3 01 20 d9 01 14 90 5c d3 01 22 d8 01 11 80 12 | ...+..,........Z.......\.."..... |
| 12e0 | d7 01 11 d1 01 11 a0 04 d4 01 25 f2 02 35 01 0d f3 03 00 02 26 f3 03 00 02 23 f3 03 00 02 21 f0 | ..........%..5......&....#....!. |
| 1300 | 06 35 01 0d f0 70 01 00 02 12 80 12 d7 01 11 d1 01 11 98 14 a8 54 d4 01 32 f1 02 26 01 34 f3 03 | .5...p...............T..2..&.4.. |
| 1320 | 00 02 33 f1 02 26 01 34 72 26 00 00 00 | ..3..&.4r&... |