| ofs | hex dump | ascii |
|---|
| 0000 | cb 0d 0d 0a 00 00 00 00 85 fa a7 68 8a 6e 00 00 e3 00 00 00 00 00 00 00 00 00 00 00 00 05 00 00 | ...........h.n.................. |
| 0020 | 00 00 00 00 00 f3 9c 05 00 00 97 00 64 00 5a 00 67 00 64 01 a2 01 5a 01 64 02 64 03 6c 02 6d 03 | ............d.Z.g.d...Z.d.d.l.m. |
| 0040 | 5a 03 01 00 64 02 64 04 6c 04 5a 05 64 02 64 05 6c 06 6d 07 5a 07 01 00 64 02 64 06 6c 08 6d 09 | Z...d.d.l.Z.d.d.l.m.Z...d.d.l.m. |
| 0060 | 5a 09 6d 0a 5a 0a 6d 0b 5a 0b 6d 0c 5a 0c 01 00 64 07 84 00 5a 0d 02 00 65 05 6a 1c 00 00 00 00 | Z.m.Z.m.Z.m.Z...d...Z...e.j..... |
| 0080 | 00 00 00 00 00 00 00 00 00 00 00 00 00 00 64 04 64 08 ac 09 ab 02 00 00 00 00 00 00 64 21 64 0a | ..............d.d...........d!d. |
| 00a0 | 84 01 ab 00 00 00 00 00 00 00 5a 0f 65 0d 02 00 65 05 6a 1c 00 00 00 00 00 00 00 00 00 00 00 00 | ..........Z.e...e.j............. |
| 00c0 | 00 00 00 00 00 00 64 04 64 08 ac 09 ab 02 00 00 00 00 00 00 64 21 64 0b 84 01 ab 00 00 00 00 00 | ......d.d...........d!d......... |
| 00e0 | 00 00 ab 00 00 00 00 00 00 00 5a 10 65 0d 02 00 65 05 6a 1c 00 00 00 00 00 00 00 00 00 00 00 00 | ..........Z.e...e.j............. |
| 0100 | 00 00 00 00 00 00 64 04 64 08 ac 09 ab 02 00 00 00 00 00 00 64 21 64 0c 84 01 ab 00 00 00 00 00 | ......d.d...........d!d......... |
| 0120 | 00 00 ab 00 00 00 00 00 00 00 5a 11 65 0d 02 00 65 05 6a 1c 00 00 00 00 00 00 00 00 00 00 00 00 | ..........Z.e...e.j............. |
| 0140 | 00 00 00 00 00 00 64 04 64 08 ac 09 ab 02 00 00 00 00 00 00 64 21 64 0d 84 01 ab 00 00 00 00 00 | ......d.d...........d!d......... |
| 0160 | 00 00 ab 00 00 00 00 00 00 00 5a 12 02 00 65 05 6a 1c 00 00 00 00 00 00 00 00 00 00 00 00 00 00 | ..........Z...e.j............... |
| 0180 | 00 00 00 00 64 04 64 08 ac 09 ab 02 00 00 00 00 00 00 64 21 64 0e 84 01 ab 00 00 00 00 00 00 00 | ....d.d...........d!d........... |
| 01a0 | 5a 13 65 0d 02 00 65 05 6a 1c 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 64 04 64 08 | Z.e...e.j...................d.d. |
| 01c0 | ac 09 ab 02 00 00 00 00 00 00 64 21 64 0f 84 01 ab 00 00 00 00 00 00 00 ab 00 00 00 00 00 00 00 | ..........d!d................... |
| 01e0 | 5a 14 02 00 65 05 6a 1c 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 64 04 64 08 ac 09 | Z...e.j...................d.d... |
| 0200 | ab 02 00 00 00 00 00 00 64 21 64 10 84 01 ab 00 00 00 00 00 00 00 5a 15 02 00 65 05 6a 1c 00 00 | ........d!d...........Z...e.j... |
| 0220 | 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 64 04 64 08 ac 09 ab 02 00 00 00 00 00 00 64 21 | ................d.d...........d! |
| 0240 | 64 11 84 01 ab 00 00 00 00 00 00 00 5a 16 02 00 65 05 6a 1c 00 00 00 00 00 00 00 00 00 00 00 00 | d...........Z...e.j............. |
| 0260 | 00 00 00 00 00 00 64 04 64 08 ac 09 ab 02 00 00 00 00 00 00 64 21 64 12 84 01 ab 00 00 00 00 00 | ......d.d...........d!d......... |
| 0280 | 00 00 5a 17 02 00 65 05 6a 1c 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 64 04 64 08 | ..Z...e.j...................d.d. |
| 02a0 | ac 09 ab 02 00 00 00 00 00 00 64 13 84 00 ab 00 00 00 00 00 00 00 5a 18 65 0d 02 00 65 05 6a 1c | ..........d...........Z.e...e.j. |
| 02c0 | 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 64 04 64 08 ac 09 ab 02 00 00 00 00 00 00 | ..................d.d........... |
| 02e0 | 64 21 64 14 84 01 ab 00 00 00 00 00 00 00 ab 00 00 00 00 00 00 00 5a 19 65 0d 02 00 65 05 6a 1c | d!d...................Z.e...e.j. |
| 0300 | 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 64 04 64 08 ac 09 ab 02 00 00 00 00 00 00 | ..................d.d........... |
| 0320 | 64 21 64 15 84 01 ab 00 00 00 00 00 00 00 ab 00 00 00 00 00 00 00 5a 1a 65 0d 02 00 65 05 6a 1c | d!d...................Z.e...e.j. |
| 0340 | 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 64 04 64 08 ac 09 ab 02 00 00 00 00 00 00 | ..................d.d........... |
| 0360 | 64 21 64 16 84 01 ab 00 00 00 00 00 00 00 ab 00 00 00 00 00 00 00 5a 1b 65 0d 02 00 65 05 6a 1c | d!d...................Z.e...e.j. |
| 0380 | 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 64 04 64 08 ac 09 ab 02 00 00 00 00 00 00 | ..................d.d........... |
| 03a0 | 64 21 64 17 84 01 ab 00 00 00 00 00 00 00 ab 00 00 00 00 00 00 00 5a 1c 02 00 65 05 6a 1c 00 00 | d!d...................Z...e.j... |
| 03c0 | 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 64 04 64 08 ac 09 ab 02 00 00 00 00 00 00 64 21 | ................d.d...........d! |
| 03e0 | 64 18 84 01 ab 00 00 00 00 00 00 00 5a 1d 65 0d 02 00 65 05 6a 1c 00 00 00 00 00 00 00 00 00 00 | d...........Z.e...e.j........... |
| 0400 | 00 00 00 00 00 00 00 00 64 04 64 08 ac 09 ab 02 00 00 00 00 00 00 64 21 64 19 84 01 ab 00 00 00 | ........d.d...........d!d....... |
| 0420 | 00 00 00 00 ab 00 00 00 00 00 00 00 5a 1e 02 00 65 05 6a 1c 00 00 00 00 00 00 00 00 00 00 00 00 | ............Z...e.j............. |
| 0440 | 00 00 00 00 00 00 64 04 64 08 ac 09 ab 02 00 00 00 00 00 00 64 1a 84 00 ab 00 00 00 00 00 00 00 | ......d.d...........d........... |
| 0460 | 5a 1f 65 0d 02 00 65 05 6a 1c 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 64 04 64 08 | Z.e...e.j...................d.d. |
| 0480 | ac 09 ab 02 00 00 00 00 00 00 64 21 64 1b 84 01 ab 00 00 00 00 00 00 00 ab 00 00 00 00 00 00 00 | ..........d!d................... |
| 04a0 | 5a 20 02 00 65 05 6a 1c 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 64 04 64 08 ac 09 | Z...e.j...................d.d... |
| 04c0 | ab 02 00 00 00 00 00 00 64 21 64 1c 84 01 ab 00 00 00 00 00 00 00 5a 21 02 00 65 05 6a 1c 00 00 | ........d!d...........Z!..e.j... |
| 04e0 | 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 64 04 64 08 ac 09 ab 02 00 00 00 00 00 00 64 21 | ................d.d...........d! |
| 0500 | 64 1d 84 01 ab 00 00 00 00 00 00 00 5a 22 65 0d 02 00 65 05 6a 1c 00 00 00 00 00 00 00 00 00 00 | d...........Z"e...e.j........... |
| 0520 | 00 00 00 00 00 00 00 00 64 04 64 08 ac 09 ab 02 00 00 00 00 00 00 64 21 64 1e 84 01 ab 00 00 00 | ........d.d...........d!d....... |
| 0540 | 00 00 00 00 ab 00 00 00 00 00 00 00 5a 23 02 00 65 05 6a 1c 00 00 00 00 00 00 00 00 00 00 00 00 | ............Z#..e.j............. |
| 0560 | 00 00 00 00 00 00 64 04 64 08 ac 09 ab 02 00 00 00 00 00 00 64 21 64 1f 84 01 ab 00 00 00 00 00 | ......d.d...........d!d......... |
| 0580 | 00 00 5a 24 65 0d 02 00 65 05 6a 1c 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 64 04 | ..Z$e...e.j...................d. |
| 05a0 | 64 08 ac 09 ab 02 00 00 00 00 00 00 64 21 64 20 84 01 ab 00 00 00 00 00 00 00 ab 00 00 00 00 00 | d...........d!d................. |
| 05c0 | 00 00 5a 25 79 04 29 22 7a 49 0a 56 61 72 69 6f 75 73 20 73 6d 61 6c 6c 20 61 6e 64 20 6e 61 6d | ..Z%y.)"zI.Various.small.and.nam |
| 05e0 | 65 64 20 67 72 61 70 68 73 2c 20 74 6f 67 65 74 68 65 72 20 77 69 74 68 20 73 6f 6d 65 20 63 6f | ed.graphs,.together.with.some.co |
| 0600 | 6d 70 61 63 74 20 67 65 6e 65 72 61 74 6f 72 73 2e 0a 0a 29 17 da 09 4c 43 46 5f 67 72 61 70 68 | mpact.generators...)...LCF_graph |
| 0620 | da 0a 62 75 6c 6c 5f 67 72 61 70 68 da 0d 63 68 76 61 74 61 6c 5f 67 72 61 70 68 da 0d 63 75 62 | ..bull_graph..chvatal_graph..cub |
| 0640 | 69 63 61 6c 5f 67 72 61 70 68 da 0f 64 65 73 61 72 67 75 65 73 5f 67 72 61 70 68 da 0d 64 69 61 | ical_graph..desargues_graph..dia |
| 0660 | 6d 6f 6e 64 5f 67 72 61 70 68 da 12 64 6f 64 65 63 61 68 65 64 72 61 6c 5f 67 72 61 70 68 da 0c | mond_graph..dodecahedral_graph.. |
| 0680 | 66 72 75 63 68 74 5f 67 72 61 70 68 da 0d 68 65 61 77 6f 6f 64 5f 67 72 61 70 68 da 17 68 6f 66 | frucht_graph..heawood_graph..hof |
| 06a0 | 66 6d 61 6e 5f 73 69 6e 67 6c 65 74 6f 6e 5f 67 72 61 70 68 da 0b 68 6f 75 73 65 5f 67 72 61 70 | fman_singleton_graph..house_grap |
| 06c0 | 68 da 0d 68 6f 75 73 65 5f 78 5f 67 72 61 70 68 da 11 69 63 6f 73 61 68 65 64 72 61 6c 5f 67 72 | h..house_x_graph..icosahedral_gr |
| 06e0 | 61 70 68 da 15 6b 72 61 63 6b 68 61 72 64 74 5f 6b 69 74 65 5f 67 72 61 70 68 da 14 6d 6f 65 62 | aph..krackhardt_kite_graph..moeb |
| 0700 | 69 75 73 5f 6b 61 6e 74 6f 72 5f 67 72 61 70 68 da 10 6f 63 74 61 68 65 64 72 61 6c 5f 67 72 61 | ius_kantor_graph..octahedral_gra |
| 0720 | 70 68 da 0c 70 61 70 70 75 73 5f 67 72 61 70 68 da 0e 70 65 74 65 72 73 65 6e 5f 67 72 61 70 68 | ph..pappus_graph..petersen_graph |
| 0740 | da 14 73 65 64 67 65 77 69 63 6b 5f 6d 61 7a 65 5f 67 72 61 70 68 da 11 74 65 74 72 61 68 65 64 | ..sedgewick_maze_graph..tetrahed |
| 0760 | 72 61 6c 5f 67 72 61 70 68 da 14 74 72 75 6e 63 61 74 65 64 5f 63 75 62 65 5f 67 72 61 70 68 da | ral_graph..truncated_cube_graph. |
| 0780 | 1b 74 72 75 6e 63 61 74 65 64 5f 74 65 74 72 61 68 65 64 72 6f 6e 5f 67 72 61 70 68 da 0b 74 75 | .truncated_tetrahedron_graph..tu |
| 07a0 | 74 74 65 5f 67 72 61 70 68 e9 00 00 00 00 a9 01 da 05 77 72 61 70 73 4e 29 01 da 0d 4e 65 74 77 | tte_graph.........wrapsN)...Netw |
| 07c0 | 6f 72 6b 58 45 72 72 6f 72 29 04 da 0e 63 6f 6d 70 6c 65 74 65 5f 67 72 61 70 68 da 0b 63 79 63 | orkXError)...complete_graph..cyc |
| 07e0 | 6c 65 5f 67 72 61 70 68 da 0b 65 6d 70 74 79 5f 67 72 61 70 68 da 0a 70 61 74 68 5f 67 72 61 70 | le_graph..empty_graph..path_grap |
| 0800 | 68 63 01 00 00 00 00 00 00 00 00 00 00 00 03 00 00 00 03 00 00 00 f3 2e 00 00 00 87 00 97 00 74 | hc.............................t |
| 0820 | 01 00 00 00 00 00 00 00 00 89 00 ab 01 00 00 00 00 00 00 88 00 66 01 64 01 84 08 ab 00 00 00 00 | .....................f.d........ |
| 0840 | 00 00 00 7d 01 7c 01 53 00 29 02 61 28 01 00 00 0a 20 20 20 20 41 20 64 65 63 6f 72 61 74 6f 72 | ...}.|.S.).a(........A.decorator |
| 0860 | 20 77 68 69 63 68 20 69 6e 73 70 65 63 74 73 20 74 68 65 20 60 63 72 65 61 74 65 5f 75 73 69 6e | .which.inspects.the.`create_usin |
| 0880 | 67 60 20 61 72 67 75 6d 65 6e 74 20 61 6e 64 20 72 61 69 73 65 73 20 61 0a 20 20 20 20 4e 65 74 | g`.argument.and.raises.a.....Net |
| 08a0 | 77 6f 72 6b 58 20 65 78 63 65 70 74 69 6f 6e 20 77 68 65 6e 20 60 63 72 65 61 74 65 5f 75 73 69 | workX.exception.when.`create_usi |
| 08c0 | 6e 67 60 20 69 73 20 61 20 44 69 47 72 61 70 68 20 28 63 6c 61 73 73 20 6f 72 20 69 6e 73 74 61 | ng`.is.a.DiGraph.(class.or.insta |
| 08e0 | 6e 63 65 29 20 66 6f 72 0a 20 20 20 20 67 72 61 70 68 20 67 65 6e 65 72 61 74 6f 72 73 20 74 68 | nce).for.....graph.generators.th |
| 0900 | 61 74 20 64 6f 20 6e 6f 74 20 73 75 70 70 6f 72 74 20 64 69 72 65 63 74 65 64 20 6f 75 74 70 75 | at.do.not.support.directed.outpu |
| 0920 | 74 73 2e 0a 0a 20 20 20 20 60 63 72 65 61 74 65 5f 75 73 69 6e 67 60 20 6d 61 79 20 62 65 20 61 | ts.......`create_using`.may.be.a |
| 0940 | 20 6b 65 79 77 6f 72 64 20 61 72 67 75 6d 65 6e 74 20 6f 72 20 74 68 65 20 66 69 72 73 74 20 70 | .keyword.argument.or.the.first.p |
| 0960 | 6f 73 69 74 69 6f 6e 61 6c 20 61 72 67 75 6d 65 6e 74 2e 0a 20 20 20 20 63 00 00 00 00 00 00 00 | ositional.argument......c....... |
| 0980 | 00 00 00 00 00 05 00 00 00 1f 00 00 00 f3 aa 00 00 00 95 01 97 00 7c 00 72 05 7c 00 64 01 19 00 | ......................|.r.|.d... |
| 09a0 | 00 00 6e 10 7c 01 6a 01 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 64 02 ab 01 00 00 | ..n.|.j...................d..... |
| 09c0 | 00 00 00 00 7d 02 7c 02 81 31 74 03 00 00 00 00 00 00 00 00 6a 04 00 00 00 00 00 00 00 00 00 00 | ....}.|..1t.........j........... |
| 09e0 | 00 00 00 00 00 00 00 00 7c 02 ac 03 ab 01 00 00 00 00 00 00 7d 03 7c 03 6a 07 00 00 00 00 00 00 | ........|...........}.|.j....... |
| 0a00 | 00 00 00 00 00 00 00 00 00 00 00 00 ab 00 00 00 00 00 00 00 72 0b 74 09 00 00 00 00 00 00 00 00 | ....................r.t......... |
| 0a20 | 64 04 ab 01 00 00 00 00 00 00 82 01 02 00 89 04 7c 00 69 00 7c 01 a4 01 8e 01 53 00 29 05 4e 72 | d...............|.i.|.....S.).Nr |
| 0a40 | 19 00 00 00 da 0c 63 72 65 61 74 65 5f 75 73 69 6e 67 a9 01 72 23 00 00 00 fa 1c 44 69 72 65 63 | ......create_using..r#.....Direc |
| 0a60 | 74 65 64 20 47 72 61 70 68 20 6e 6f 74 20 73 75 70 70 6f 72 74 65 64 29 05 da 03 67 65 74 da 02 | ted.Graph.not.supported)...get.. |
| 0a80 | 6e 78 72 1f 00 00 00 da 0b 69 73 5f 64 69 72 65 63 74 65 64 72 1c 00 00 00 29 05 da 04 61 72 67 | nxr......is_directedr....)...arg |
| 0aa0 | 73 da 06 6b 77 61 72 67 73 72 23 00 00 00 da 01 47 da 04 66 75 6e 63 73 05 00 00 00 20 20 20 20 | s..kwargsr#.....G..funcs........ |
| 0ac0 | 80 fa 60 2f 68 6f 6d 65 2f 62 6c 61 63 6b 68 61 6f 2f 75 69 75 63 2d 63 6f 75 72 73 65 2d 67 72 | ..`/home/blackhao/uiuc-course-gr |
| 0ae0 | 61 70 68 2f 2e 76 65 6e 76 2f 6c 69 62 2f 70 79 74 68 6f 6e 33 2e 31 32 2f 73 69 74 65 2d 70 61 | aph/.venv/lib/python3.12/site-pa |
| 0b00 | 63 6b 61 67 65 73 2f 6e 65 74 77 6f 72 6b 78 2f 67 65 6e 65 72 61 74 6f 72 73 2f 73 6d 61 6c 6c | ckages/networkx/generators/small |
| 0b20 | 2e 70 79 da 07 77 72 61 70 70 65 72 7a 23 5f 72 61 69 73 65 5f 6f 6e 5f 64 69 72 65 63 74 65 64 | .py..wrapperz#_raise_on_directed |
| 0b40 | 2e 3c 6c 6f 63 61 6c 73 3e 2e 77 72 61 70 70 65 72 35 00 00 00 73 52 00 00 00 f8 80 00 e1 22 26 | .<locals>.wrapper5...sR......."& |
| 0b60 | 90 74 98 41 92 77 a8 46 af 4a a9 4a b0 7e d3 2c 46 88 0c d8 0b 17 d0 0b 23 dc 10 12 97 0e 91 0e | .t.A.w.F.J.J.~.,F.......#....... |
| 0b80 | a8 4c d4 10 39 88 41 d8 0f 10 8f 7d 89 7d 8c 7f dc 16 23 d0 24 42 d3 16 43 d0 10 43 d9 0f 13 90 | .L..9.A....}.}....#.$B..C..C.... |
| 0ba0 | 54 d0 0f 24 98 56 d1 0f 24 d0 08 24 f3 00 00 00 00 72 1a 00 00 00 29 02 72 2c 00 00 00 72 2e 00 | T..$.V..$..$.....r....).r,...r.. |
| 0bc0 | 00 00 73 02 00 00 00 60 20 72 2d 00 00 00 da 12 5f 72 61 69 73 65 5f 6f 6e 5f 64 69 72 65 63 74 | ..s....`.r-....._raise_on_direct |
| 0be0 | 65 64 72 30 00 00 00 2c 00 00 00 73 22 00 00 00 f8 80 00 f4 12 00 06 0b 88 34 83 5b f3 02 06 05 | edr0...,...s"............4.[.... |
| 0c00 | 25 f3 03 00 06 11 f0 02 06 05 25 f0 10 00 0c 13 80 4e 72 2f 00 00 00 54 29 02 da 06 67 72 61 70 | %.........%......Nr/...T)...grap |
| 0c20 | 68 73 da 0d 72 65 74 75 72 6e 73 5f 67 72 61 70 68 63 04 00 00 00 00 00 00 00 00 00 00 00 06 00 | hs..returns_graphc.............. |
| 0c40 | 00 00 03 00 00 00 f3 50 01 00 00 97 00 7c 00 64 01 6b 1a 00 00 72 0c 74 01 00 00 00 00 00 00 00 | .......P.....|.d.k...r.t........ |
| 0c60 | 00 64 01 7c 03 ab 02 00 00 00 00 00 00 53 00 74 03 00 00 00 00 00 00 00 00 7c 00 7c 03 ab 02 00 | .d.|.........S.t.........|.|.... |
| 0c80 | 00 00 00 00 00 7d 04 7c 04 6a 05 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ab 00 00 | .....}.|.j...................... |
| 0ca0 | 00 00 00 00 00 72 0b 74 07 00 00 00 00 00 00 00 00 64 02 ab 01 00 00 00 00 00 00 82 01 64 03 7c | .....r.t.........d...........d.| |
| 0cc0 | 04 5f 04 00 00 00 00 00 00 00 00 74 0b 00 00 00 00 00 00 00 00 7c 04 ab 01 00 00 00 00 00 00 7d | ._.........t.........|.........} |
| 0ce0 | 05 7c 02 74 0d 00 00 00 00 00 00 00 00 7c 01 ab 01 00 00 00 00 00 00 7a 05 00 00 7d 06 7c 06 64 | .|.t.........|.........z...}.|.d |
| 0d00 | 04 6b 02 00 00 72 02 7c 04 53 00 74 0f 00 00 00 00 00 00 00 00 7c 06 ab 01 00 00 00 00 00 00 44 | .k...r.|.S.t.........|.........D |
| 0d20 | 00 5d 38 00 00 7d 07 7c 01 7c 07 74 0d 00 00 00 00 00 00 00 00 7c 01 ab 01 00 00 00 00 00 00 7a | .]8..}.|.|.t.........|.........z |
| 0d40 | 06 00 00 19 00 00 00 7d 08 7c 05 7c 07 7c 00 7a 06 00 00 19 00 00 00 7d 09 7c 05 7c 07 7c 08 7a | .......}.|.|.|.z.......}.|.|.|.z |
| 0d60 | 00 00 00 7c 00 7a 06 00 00 19 00 00 00 7d 0a 7c 04 6a 11 00 00 00 00 00 00 00 00 00 00 00 00 00 | ...|.z.......}.|.j.............. |
| 0d80 | 00 00 00 00 00 7c 09 7c 0a ab 02 00 00 00 00 00 00 01 00 8c 3a 04 00 7c 04 53 00 29 05 61 ee 05 | .....|.|............:..|.S.).a.. |
| 0da0 | 00 00 0a 20 20 20 20 52 65 74 75 72 6e 20 74 68 65 20 63 75 62 69 63 20 67 72 61 70 68 20 73 70 | .......Return.the.cubic.graph.sp |
| 0dc0 | 65 63 69 66 69 65 64 20 69 6e 20 4c 43 46 20 6e 6f 74 61 74 69 6f 6e 2e 0a 0a 20 20 20 20 4c 43 | ecified.in.LCF.notation.......LC |
| 0de0 | 46 20 28 4c 65 64 65 72 62 65 72 67 2d 43 6f 78 65 74 65 72 2d 46 72 75 63 68 74 65 29 20 6e 6f | F.(Lederberg-Coxeter-Fruchte).no |
| 0e00 | 74 61 74 69 6f 6e 5b 31 5d 5f 20 69 73 20 61 20 63 6f 6d 70 72 65 73 73 65 64 0a 20 20 20 20 6e | tation[1]_.is.a.compressed.....n |
| 0e20 | 6f 74 61 74 69 6f 6e 20 75 73 65 64 20 69 6e 20 74 68 65 20 67 65 6e 65 72 61 74 69 6f 6e 20 6f | otation.used.in.the.generation.o |
| 0e40 | 66 20 76 61 72 69 6f 75 73 20 63 75 62 69 63 20 48 61 6d 69 6c 74 6f 6e 69 61 6e 0a 20 20 20 20 | f.various.cubic.Hamiltonian..... |
| 0e60 | 67 72 61 70 68 73 20 6f 66 20 68 69 67 68 20 73 79 6d 6d 65 74 72 79 2e 20 53 65 65 2c 20 66 6f | graphs.of.high.symmetry..See,.fo |
| 0e80 | 72 20 65 78 61 6d 70 6c 65 2c 20 60 64 6f 64 65 63 61 68 65 64 72 61 6c 5f 67 72 61 70 68 60 2c | r.example,.`dodecahedral_graph`, |
| 0ea0 | 0a 20 20 20 20 60 64 65 73 61 72 67 75 65 73 5f 67 72 61 70 68 60 2c 20 60 68 65 61 77 6f 6f 64 | .....`desargues_graph`,.`heawood |
| 0ec0 | 5f 67 72 61 70 68 60 20 61 6e 64 20 60 70 61 70 70 75 73 5f 67 72 61 70 68 60 2e 0a 0a 20 20 20 | _graph`.and.`pappus_graph`...... |
| 0ee0 | 20 4e 6f 64 65 73 20 61 72 65 20 64 72 61 77 6e 20 66 72 6f 6d 20 60 60 72 61 6e 67 65 28 6e 29 | .Nodes.are.drawn.from.``range(n) |
| 0f00 | 60 60 2e 20 45 61 63 68 20 6e 6f 64 65 20 60 60 6e 5f 69 60 60 20 69 73 20 63 6f 6e 6e 65 63 74 | ``..Each.node.``n_i``.is.connect |
| 0f20 | 65 64 20 77 69 74 68 0a 20 20 20 20 6e 6f 64 65 20 60 60 6e 5f 69 20 2b 20 73 68 69 66 74 20 25 | ed.with.....node.``n_i.+.shift.% |
| 0f40 | 20 6e 60 60 20 77 68 65 72 65 20 60 60 73 68 69 66 74 60 60 20 69 73 20 67 69 76 65 6e 20 62 79 | .n``.where.``shift``.is.given.by |
| 0f60 | 20 63 79 63 6c 69 6e 67 20 74 68 72 6f 75 67 68 0a 20 20 20 20 74 68 65 20 69 6e 70 75 74 20 60 | .cycling.through.....the.input.` |
| 0f80 | 73 68 69 66 74 5f 6c 69 73 74 60 20 60 72 65 70 65 61 74 60 20 73 20 74 69 6d 65 73 2e 0a 0a 20 | shift_list`.`repeat`.s.times.... |
| 0fa0 | 20 20 20 50 61 72 61 6d 65 74 65 72 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 | ...Parameters.....----------.... |
| 0fc0 | 20 6e 20 3a 20 69 6e 74 0a 20 20 20 20 20 20 20 54 68 65 20 73 74 61 72 74 69 6e 67 20 67 72 61 | .n.:.int........The.starting.gra |
| 0fe0 | 70 68 20 69 73 20 74 68 65 20 60 6e 60 2d 63 79 63 6c 65 20 77 69 74 68 20 6e 6f 64 65 73 20 60 | ph.is.the.`n`-cycle.with.nodes.` |
| 1000 | 60 30 2c 20 2e 2e 2e 2c 20 6e 2d 31 60 60 2e 0a 20 20 20 20 20 20 20 54 68 65 20 6e 75 6c 6c 20 | `0,....,.n-1``.........The.null. |
| 1020 | 67 72 61 70 68 20 69 73 20 72 65 74 75 72 6e 65 64 20 69 66 20 60 6e 60 20 3c 20 31 2e 0a 0a 20 | graph.is.returned.if.`n`.<.1.... |
| 1040 | 20 20 20 73 68 69 66 74 5f 6c 69 73 74 20 3a 20 6c 69 73 74 0a 20 20 20 20 20 20 20 41 20 6c 69 | ...shift_list.:.list........A.li |
| 1060 | 73 74 20 6f 66 20 69 6e 74 65 67 65 72 20 73 68 69 66 74 73 20 6d 6f 64 20 60 6e 60 2c 20 60 60 | st.of.integer.shifts.mod.`n`,.`` |
| 1080 | 5b 73 31 2c 20 73 32 2c 20 2e 2e 2c 20 73 6b 5d 60 60 0a 0a 20 20 20 20 72 65 70 65 61 74 73 20 | [s1,.s2,...,.sk]``......repeats. |
| 10a0 | 3a 20 69 6e 74 0a 20 20 20 20 20 20 20 49 6e 74 65 67 65 72 20 73 70 65 63 69 66 79 69 6e 67 20 | :.int........Integer.specifying. |
| 10c0 | 74 68 65 20 6e 75 6d 62 65 72 20 6f 66 20 74 69 6d 65 73 20 74 68 61 74 20 73 68 69 66 74 73 20 | the.number.of.times.that.shifts. |
| 10e0 | 69 6e 20 60 73 68 69 66 74 5f 6c 69 73 74 60 0a 20 20 20 20 20 20 20 61 72 65 20 73 75 63 63 65 | in.`shift_list`........are.succe |
| 1100 | 73 73 69 76 65 6c 79 20 61 70 70 6c 69 65 64 20 74 6f 20 65 61 63 68 20 63 75 72 72 65 6e 74 20 | ssively.applied.to.each.current. |
| 1120 | 6e 6f 64 65 20 69 6e 20 74 68 65 20 6e 2d 63 79 63 6c 65 0a 20 20 20 20 20 20 20 74 6f 20 67 65 | node.in.the.n-cycle........to.ge |
| 1140 | 6e 65 72 61 74 65 20 61 6e 20 65 64 67 65 20 62 65 74 77 65 65 6e 20 60 60 6e 5f 63 75 72 72 65 | nerate.an.edge.between.``n_curre |
| 1160 | 6e 74 60 60 20 61 6e 64 20 60 60 6e 5f 63 75 72 72 65 6e 74 20 2b 20 73 68 69 66 74 20 6d 6f 64 | nt``.and.``n_current.+.shift.mod |
| 1180 | 20 6e 60 60 2e 0a 0a 20 20 20 20 52 65 74 75 72 6e 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 0a 20 | .n``.......Returns.....-------.. |
| 11a0 | 20 20 20 47 20 3a 20 47 72 61 70 68 0a 20 20 20 20 20 20 20 41 20 67 72 61 70 68 20 69 6e 73 74 | ...G.:.Graph........A.graph.inst |
| 11c0 | 61 6e 63 65 20 63 72 65 61 74 65 64 20 66 72 6f 6d 20 74 68 65 20 73 70 65 63 69 66 69 65 64 20 | ance.created.from.the.specified. |
| 11e0 | 4c 43 46 20 6e 6f 74 61 74 69 6f 6e 2e 0a 0a 20 20 20 20 45 78 61 6d 70 6c 65 73 0a 20 20 20 20 | LCF.notation.......Examples..... |
| 1200 | 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 54 68 65 20 75 74 69 6c 69 74 79 20 67 72 61 70 68 20 24 | --------.....The.utility.graph.$ |
| 1220 | 4b 5f 7b 33 2c 33 7d 24 0a 0a 20 20 20 20 3e 3e 3e 20 47 20 3d 20 6e 78 2e 4c 43 46 5f 67 72 61 | K_{3,3}$......>>>.G.=.nx.LCF_gra |
| 1240 | 70 68 28 36 2c 20 5b 33 2c 20 2d 33 5d 2c 20 33 29 0a 20 20 20 20 3e 3e 3e 20 47 2e 65 64 67 65 | ph(6,.[3,.-3],.3).....>>>.G.edge |
| 1260 | 73 28 29 0a 20 20 20 20 45 64 67 65 56 69 65 77 28 5b 28 30 2c 20 31 29 2c 20 28 30 2c 20 35 29 | s().....EdgeView([(0,.1),.(0,.5) |
| 1280 | 2c 20 28 30 2c 20 33 29 2c 20 28 31 2c 20 32 29 2c 20 28 31 2c 20 34 29 2c 20 28 32 2c 20 33 29 | ,.(0,.3),.(1,.2),.(1,.4),.(2,.3) |
| 12a0 | 2c 20 28 32 2c 20 35 29 2c 20 28 33 2c 20 34 29 2c 20 28 34 2c 20 35 29 5d 29 0a 0a 20 20 20 20 | ,.(2,.5),.(3,.4),.(4,.5)])...... |
| 12c0 | 54 68 65 20 48 65 61 77 6f 6f 64 20 67 72 61 70 68 3a 0a 0a 20 20 20 20 3e 3e 3e 20 47 20 3d 20 | The.Heawood.graph:......>>>.G.=. |
| 12e0 | 6e 78 2e 4c 43 46 5f 67 72 61 70 68 28 31 34 2c 20 5b 35 2c 20 2d 35 5d 2c 20 37 29 0a 20 20 20 | nx.LCF_graph(14,.[5,.-5],.7).... |
| 1300 | 20 3e 3e 3e 20 6e 78 2e 69 73 5f 69 73 6f 6d 6f 72 70 68 69 63 28 47 2c 20 6e 78 2e 68 65 61 77 | .>>>.nx.is_isomorphic(G,.nx.heaw |
| 1320 | 6f 6f 64 5f 67 72 61 70 68 28 29 29 0a 20 20 20 20 54 72 75 65 0a 0a 20 20 20 20 52 65 66 65 72 | ood_graph()).....True......Refer |
| 1340 | 65 6e 63 65 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 2e 2e 20 5b 31 5d 20 | ences.....----------........[1]. |
| 1360 | 68 74 74 70 73 3a 2f 2f 65 6e 2e 77 69 6b 69 70 65 64 69 61 2e 6f 72 67 2f 77 69 6b 69 2f 4c 43 | https://en.wikipedia.org/wiki/LC |
| 1380 | 46 5f 6e 6f 74 61 74 69 6f 6e 0a 0a 20 20 20 20 72 19 00 00 00 72 25 00 00 00 72 02 00 00 00 e9 | F_notation......r....r%...r..... |
| 13a0 | 01 00 00 00 29 09 72 1f 00 00 00 72 1e 00 00 00 72 28 00 00 00 72 1c 00 00 00 da 04 6e 61 6d 65 | ....).r....r....r(...r......name |
| 13c0 | da 06 73 6f 72 74 65 64 da 03 6c 65 6e da 05 72 61 6e 67 65 da 08 61 64 64 5f 65 64 67 65 29 0b | ..sorted..len..range..add_edge). |
| 13e0 | da 01 6e da 0a 73 68 69 66 74 5f 6c 69 73 74 da 07 72 65 70 65 61 74 73 72 23 00 00 00 72 2b 00 | ..n..shift_list..repeatsr#...r+. |
| 1400 | 00 00 da 05 6e 6f 64 65 73 da 0d 6e 5f 65 78 74 72 61 5f 65 64 67 65 73 da 01 69 da 05 73 68 69 | ....nodes..n_extra_edges..i..shi |
| 1420 | 66 74 da 02 76 31 da 02 76 32 73 0b 00 00 00 20 20 20 20 20 20 20 20 20 20 20 72 2d 00 00 00 72 | ft..v1..v2s...............r-...r |
| 1440 | 02 00 00 00 72 02 00 00 00 41 00 00 00 73 c4 00 00 00 80 00 f0 68 01 00 08 09 88 41 82 76 dc 0f | ....r....A...s.......h.....A.v.. |
| 1460 | 1a 98 31 98 6c d3 0f 2b d0 08 2b f4 06 00 09 14 90 41 90 7c d3 08 24 80 41 d8 07 08 87 7d 81 7d | ..1.l..+..+......A.|..$.A....}.} |
| 1480 | 84 7f dc 0e 1b d0 1c 3a d3 0e 3b d0 08 3b d8 0d 18 80 41 84 46 dc 0c 12 90 31 8b 49 80 45 e0 14 | .......:..;..;....A.F....1.I.E.. |
| 14a0 | 1b 9c 63 a0 2a 9b 6f d1 14 2d 80 4d f0 06 00 08 15 90 71 d2 07 18 d8 0f 10 88 08 e4 0d 12 90 3d | ..c.*.o..-.M......q............= |
| 14c0 | d3 0d 21 f2 00 04 05 1b 88 01 d8 10 1a 98 31 9c 73 a0 3a 9b 7f d1 1b 2e d1 10 2f 88 05 d8 0d 12 | ..!...........1.s.:......./..... |
| 14e0 | 90 31 90 71 91 35 89 5c 88 02 d8 0d 12 90 41 98 05 91 49 a0 11 91 3f d1 0d 23 88 02 d8 08 09 8f | .1.q.5.\......A...I...?..#...... |
| 1500 | 0a 89 0a 90 32 90 72 d5 08 1a f0 09 04 05 1b f0 0a 00 0c 0d 80 48 72 2f 00 00 00 63 01 00 00 00 | ....2.r..............Hr/...c.... |
| 1520 | 00 00 00 00 00 00 00 00 08 00 00 00 03 00 00 00 f3 5e 00 00 00 97 00 74 01 00 00 00 00 00 00 00 | .................^.....t........ |
| 1540 | 00 6a 02 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 64 01 64 02 67 02 67 00 64 03 a2 | .j...................d.d.g.g.d.. |
| 1560 | 01 67 00 64 04 a2 01 64 01 67 01 64 02 67 01 64 05 9c 05 7c 00 ac 06 ab 02 00 00 00 00 00 00 7d | .g.d...d.g.d.g.d...|...........} |
| 1580 | 01 64 07 7c 01 5f 02 00 00 00 00 00 00 00 00 7c 01 53 00 29 08 61 82 02 00 00 0a 20 20 20 20 52 | .d.|._.........|.S.).a.........R |
| 15a0 | 65 74 75 72 6e 73 20 74 68 65 20 42 75 6c 6c 20 47 72 61 70 68 0a 0a 20 20 20 20 54 68 65 20 42 | eturns.the.Bull.Graph......The.B |
| 15c0 | 75 6c 6c 20 47 72 61 70 68 20 68 61 73 20 35 20 6e 6f 64 65 73 20 61 6e 64 20 35 20 65 64 67 65 | ull.Graph.has.5.nodes.and.5.edge |
| 15e0 | 73 2e 20 49 74 20 69 73 20 61 20 70 6c 61 6e 61 72 20 75 6e 64 69 72 65 63 74 65 64 0a 20 20 20 | s..It.is.a.planar.undirected.... |
| 1600 | 20 67 72 61 70 68 20 69 6e 20 74 68 65 20 66 6f 72 6d 20 6f 66 20 61 20 74 72 69 61 6e 67 6c 65 | .graph.in.the.form.of.a.triangle |
| 1620 | 20 77 69 74 68 20 74 77 6f 20 64 69 73 6a 6f 69 6e 74 20 70 65 6e 64 61 6e 74 20 65 64 67 65 73 | .with.two.disjoint.pendant.edges |
| 1640 | 20 5b 31 5d 5f 0a 20 20 20 20 54 68 65 20 6e 61 6d 65 20 63 6f 6d 65 73 20 66 72 6f 6d 20 74 68 | .[1]_.....The.name.comes.from.th |
| 1660 | 65 20 74 72 69 61 6e 67 6c 65 20 61 6e 64 20 70 65 6e 64 61 6e 74 20 65 64 67 65 73 20 72 65 70 | e.triangle.and.pendant.edges.rep |
| 1680 | 72 65 73 65 6e 74 69 6e 67 0a 20 20 20 20 72 65 73 70 65 63 74 69 76 65 6c 79 20 74 68 65 20 62 | resenting.....respectively.the.b |
| 16a0 | 6f 64 79 20 61 6e 64 20 6c 65 67 73 20 6f 66 20 61 20 62 75 6c 6c 2e 0a 0a 20 20 20 20 50 61 72 | ody.and.legs.of.a.bull.......Par |
| 16c0 | 61 6d 65 74 65 72 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 63 72 65 61 74 | ameters.....----------.....creat |
| 16e0 | 65 5f 75 73 69 6e 67 20 3a 20 4e 65 74 77 6f 72 6b 58 20 67 72 61 70 68 20 63 6f 6e 73 74 72 75 | e_using.:.NetworkX.graph.constru |
| 1700 | 63 74 6f 72 2c 20 6f 70 74 69 6f 6e 61 6c 20 28 64 65 66 61 75 6c 74 3d 6e 78 2e 47 72 61 70 68 | ctor,.optional.(default=nx.Graph |
| 1720 | 29 0a 20 20 20 20 20 20 20 47 72 61 70 68 20 74 79 70 65 20 74 6f 20 63 72 65 61 74 65 2e 20 49 | )........Graph.type.to.create..I |
| 1740 | 66 20 67 72 61 70 68 20 69 6e 73 74 61 6e 63 65 2c 20 74 68 65 6e 20 63 6c 65 61 72 65 64 20 62 | f.graph.instance,.then.cleared.b |
| 1760 | 65 66 6f 72 65 20 70 6f 70 75 6c 61 74 65 64 2e 0a 0a 20 20 20 20 52 65 74 75 72 6e 73 0a 20 20 | efore.populated.......Returns... |
| 1780 | 20 20 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 47 20 3a 20 6e 65 74 77 6f 72 6b 78 20 47 72 61 70 68 | ..-------.....G.:.networkx.Graph |
| 17a0 | 0a 20 20 20 20 20 20 20 20 41 20 62 75 6c 6c 20 67 72 61 70 68 20 77 69 74 68 20 35 20 6e 6f 64 | .........A.bull.graph.with.5.nod |
| 17c0 | 65 73 0a 0a 20 20 20 20 52 65 66 65 72 65 6e 63 65 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 2d | es......References.....--------- |
| 17e0 | 2d 0a 20 20 20 20 2e 2e 20 5b 31 5d 20 68 74 74 70 73 3a 2f 2f 65 6e 2e 77 69 6b 69 70 65 64 69 | -........[1].https://en.wikipedi |
| 1800 | 61 2e 6f 72 67 2f 77 69 6b 69 2f 42 75 6c 6c 5f 67 72 61 70 68 2e 0a 0a 20 20 20 20 72 34 00 00 | a.org/wiki/Bull_graph.......r4.. |
| 1820 | 00 e9 02 00 00 00 a9 03 72 19 00 00 00 72 44 00 00 00 e9 03 00 00 00 29 03 72 19 00 00 00 72 34 | ........r....rD........).r....r4 |
| 1840 | 00 00 00 e9 04 00 00 00 a9 05 72 19 00 00 00 72 34 00 00 00 72 44 00 00 00 72 46 00 00 00 72 47 | ..........r....r4...rD...rF...rG |
| 1860 | 00 00 00 72 24 00 00 00 7a 0a 42 75 6c 6c 20 47 72 61 70 68 a9 03 72 27 00 00 00 da 12 66 72 6f | ...r$...z.Bull.Graph..r'.....fro |
| 1880 | 6d 5f 64 69 63 74 5f 6f 66 5f 6c 69 73 74 73 72 35 00 00 00 a9 02 72 23 00 00 00 72 2b 00 00 00 | m_dict_of_listsr5.....r#...r+... |
| 18a0 | 73 02 00 00 00 20 20 72 2d 00 00 00 72 03 00 00 00 72 03 00 00 00 92 00 00 00 73 3b 00 00 00 80 | s......r-...r....r........s;.... |
| 18c0 | 00 f4 34 00 09 0b d7 08 1d d1 08 1d d8 0d 0e 90 01 88 46 92 79 a2 59 b0 41 b0 33 b8 41 b8 33 d1 | ..4...............F.y.Y.A.3.A.3. |
| 18e0 | 08 3f d8 15 21 f4 05 03 09 06 80 41 f0 08 00 0e 1a 80 41 84 46 d8 0b 0c 80 48 72 2f 00 00 00 63 | .?..!......A......A.F....Hr/...c |
| 1900 | 01 00 00 00 00 00 00 00 00 00 00 00 0d 00 00 00 03 00 00 00 f3 7e 00 00 00 97 00 74 01 00 00 00 | .....................~.....t.... |
| 1920 | 00 00 00 00 00 6a 02 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 67 00 64 01 a2 01 67 | .....j...................g.d...g |
| 1940 | 00 64 02 a2 01 67 00 64 03 a2 01 67 00 64 04 a2 01 64 05 64 06 67 02 64 07 64 08 67 02 64 07 64 | .d...g.d...g.d...d.d.g.d.d.g.d.d |
| 1960 | 08 67 02 64 06 64 08 67 02 64 07 67 01 64 07 64 08 67 02 64 09 9c 0a 7c 00 ac 0a ab 02 00 00 00 | .g.d.d.g.d.g.d.d.g.d...|........ |
| 1980 | 00 00 00 7d 01 64 0b 7c 01 5f 02 00 00 00 00 00 00 00 00 7c 01 53 00 29 0c 75 c3 02 00 00 0a 20 | ...}.d.|._.........|.S.).u...... |
| 19a0 | 20 20 20 52 65 74 75 72 6e 73 20 74 68 65 20 43 68 76 c3 a1 74 61 6c 20 47 72 61 70 68 0a 0a 20 | ...Returns.the.Chv..tal.Graph... |
| 19c0 | 20 20 20 54 68 65 20 43 68 76 c3 a1 74 61 6c 20 47 72 61 70 68 20 69 73 20 61 6e 20 75 6e 64 69 | ...The.Chv..tal.Graph.is.an.undi |
| 19e0 | 72 65 63 74 65 64 20 67 72 61 70 68 20 77 69 74 68 20 31 32 20 6e 6f 64 65 73 20 61 6e 64 20 32 | rected.graph.with.12.nodes.and.2 |
| 1a00 | 34 20 65 64 67 65 73 20 5b 31 5d 5f 2e 0a 20 20 20 20 49 74 20 68 61 73 20 33 37 30 20 64 69 73 | 4.edges.[1]_......It.has.370.dis |
| 1a20 | 74 69 6e 63 74 20 28 64 69 72 65 63 74 65 64 29 20 48 61 6d 69 6c 74 6f 6e 69 61 6e 20 63 79 63 | tinct.(directed).Hamiltonian.cyc |
| 1a40 | 6c 65 73 2c 20 67 69 76 69 6e 67 20 61 20 75 6e 69 71 75 65 20 67 65 6e 65 72 61 6c 69 7a 65 64 | les,.giving.a.unique.generalized |
| 1a60 | 0a 20 20 20 20 4c 43 46 20 6e 6f 74 61 74 69 6f 6e 20 6f 66 20 6f 72 64 65 72 20 34 2c 20 74 77 | .....LCF.notation.of.order.4,.tw |
| 1a80 | 6f 20 6f 66 20 6f 72 64 65 72 20 36 20 2c 20 61 6e 64 20 34 33 20 6f 66 20 6f 72 64 65 72 20 31 | o.of.order.6.,.and.43.of.order.1 |
| 1aa0 | 20 5b 32 5d 5f 2e 0a 0a 20 20 20 20 50 61 72 61 6d 65 74 65 72 73 0a 20 20 20 20 2d 2d 2d 2d 2d | .[2]_.......Parameters.....----- |
| 1ac0 | 2d 2d 2d 2d 2d 0a 20 20 20 20 63 72 65 61 74 65 5f 75 73 69 6e 67 20 3a 20 4e 65 74 77 6f 72 6b | -----.....create_using.:.Network |
| 1ae0 | 58 20 67 72 61 70 68 20 63 6f 6e 73 74 72 75 63 74 6f 72 2c 20 6f 70 74 69 6f 6e 61 6c 20 28 64 | X.graph.constructor,.optional.(d |
| 1b00 | 65 66 61 75 6c 74 3d 6e 78 2e 47 72 61 70 68 29 0a 20 20 20 20 20 20 20 47 72 61 70 68 20 74 79 | efault=nx.Graph)........Graph.ty |
| 1b20 | 70 65 20 74 6f 20 63 72 65 61 74 65 2e 20 49 66 20 67 72 61 70 68 20 69 6e 73 74 61 6e 63 65 2c | pe.to.create..If.graph.instance, |
| 1b40 | 20 74 68 65 6e 20 63 6c 65 61 72 65 64 20 62 65 66 6f 72 65 20 70 6f 70 75 6c 61 74 65 64 2e 0a | .then.cleared.before.populated.. |
| 1b60 | 0a 20 20 20 20 52 65 74 75 72 6e 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 47 20 3a | .....Returns.....-------.....G.: |
| 1b80 | 20 6e 65 74 77 6f 72 6b 78 20 47 72 61 70 68 0a 20 20 20 20 20 20 20 20 54 68 65 20 43 68 76 c3 | .networkx.Graph.........The.Chv. |
| 1ba0 | a1 74 61 6c 20 67 72 61 70 68 20 77 69 74 68 20 31 32 20 6e 6f 64 65 73 20 61 6e 64 20 32 34 20 | .tal.graph.with.12.nodes.and.24. |
| 1bc0 | 65 64 67 65 73 0a 0a 20 20 20 20 52 65 66 65 72 65 6e 63 65 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d | edges......References.....------ |
| 1be0 | 2d 2d 2d 2d 0a 20 20 20 20 2e 2e 20 5b 31 5d 20 68 74 74 70 73 3a 2f 2f 65 6e 2e 77 69 6b 69 70 | ----........[1].https://en.wikip |
| 1c00 | 65 64 69 61 2e 6f 72 67 2f 77 69 6b 69 2f 43 68 76 25 43 33 25 41 31 74 61 6c 5f 67 72 61 70 68 | edia.org/wiki/Chv%C3%A1tal_graph |
| 1c20 | 0a 20 20 20 20 2e 2e 20 5b 32 5d 20 68 74 74 70 73 3a 2f 2f 6d 61 74 68 77 6f 72 6c 64 2e 77 6f | ........[2].https://mathworld.wo |
| 1c40 | 6c 66 72 61 6d 2e 63 6f 6d 2f 43 68 76 61 74 61 6c 47 72 61 70 68 2e 68 74 6d 6c 0a 0a 20 20 20 | lfram.com/ChvatalGraph.html..... |
| 1c60 | 20 29 04 72 34 00 00 00 72 47 00 00 00 e9 06 00 00 00 e9 09 00 00 00 a9 03 72 44 00 00 00 e9 05 | .).r4...rG...............rD..... |
| 1c80 | 00 00 00 e9 07 00 00 00 29 03 72 46 00 00 00 72 4d 00 00 00 e9 08 00 00 00 29 03 72 47 00 00 00 | ........).rF...rM........).rG... |
| 1ca0 | 72 51 00 00 00 72 4e 00 00 00 72 50 00 00 00 72 52 00 00 00 e9 0a 00 00 00 e9 0b 00 00 00 a9 0a | rQ...rN...rP...rR............... |
| 1cc0 | 72 19 00 00 00 72 34 00 00 00 72 44 00 00 00 72 46 00 00 00 72 47 00 00 00 72 50 00 00 00 72 4d | r....r4...rD...rF...rG...rP...rM |
| 1ce0 | 00 00 00 72 51 00 00 00 72 52 00 00 00 72 4e 00 00 00 72 24 00 00 00 7a 0d 43 68 76 61 74 61 6c | ...rQ...rR...rN...r$...z.Chvatal |
| 1d00 | 20 47 72 61 70 68 72 49 00 00 00 72 4b 00 00 00 73 02 00 00 00 20 20 72 2d 00 00 00 72 04 00 00 | .GraphrI...rK...s......r-...r... |
| 1d20 | 00 72 04 00 00 00 b4 00 00 00 73 60 00 00 00 80 00 f4 34 00 09 0b d7 08 1d d1 08 1d e2 0f 1b da | .r........s`......4............. |
| 1d40 | 0f 18 da 0f 18 da 0f 18 d8 10 11 90 31 88 76 d8 10 12 90 42 88 78 d8 10 12 90 42 88 78 d8 10 11 | ............1.v....B.x....B.x... |
| 1d60 | 90 32 88 77 d8 10 12 88 74 d8 10 12 90 42 88 78 f1 15 0b 09 0a f0 18 00 16 22 f4 1b 0e 09 06 80 | .2.w....t....B.x........."...... |
| 1d80 | 41 f0 1e 00 0e 1d 80 41 84 46 d8 0b 0c 80 48 72 2f 00 00 00 63 01 00 00 00 00 00 00 00 00 00 00 | A......A.F....Hr/...c........... |
| 1da0 | 00 0b 00 00 00 03 00 00 00 f3 74 00 00 00 97 00 74 01 00 00 00 00 00 00 00 00 6a 02 00 00 00 00 | ..........t.....t.........j..... |
| 1dc0 | 00 00 00 00 00 00 00 00 00 00 00 00 00 00 67 00 64 01 a2 01 67 00 64 02 a2 01 67 00 64 03 a2 01 | ..............g.d...g.d...g.d... |
| 1de0 | 67 00 64 04 a2 01 67 00 64 05 a2 01 67 00 64 06 a2 01 67 00 64 07 a2 01 67 00 64 08 a2 01 64 09 | g.d...g.d...g.d...g.d...g.d...d. |
| 1e00 | 9c 08 7c 00 ac 0a ab 02 00 00 00 00 00 00 7d 01 64 0b 7c 01 5f 02 00 00 00 00 00 00 00 00 7c 01 | ..|...........}.d.|._.........|. |
| 1e20 | 53 00 29 0c 61 cb 02 00 00 0a 20 20 20 20 52 65 74 75 72 6e 73 20 74 68 65 20 33 2d 72 65 67 75 | S.).a.........Returns.the.3-regu |
| 1e40 | 6c 61 72 20 50 6c 61 74 6f 6e 69 63 20 43 75 62 69 63 61 6c 20 47 72 61 70 68 0a 0a 20 20 20 20 | lar.Platonic.Cubical.Graph...... |
| 1e60 | 54 68 65 20 73 6b 65 6c 65 74 6f 6e 20 6f 66 20 74 68 65 20 63 75 62 65 20 28 74 68 65 20 6e 6f | The.skeleton.of.the.cube.(the.no |
| 1e80 | 64 65 73 20 61 6e 64 20 65 64 67 65 73 29 20 66 6f 72 6d 20 61 20 67 72 61 70 68 2c 20 77 69 74 | des.and.edges).form.a.graph,.wit |
| 1ea0 | 68 20 38 0a 20 20 20 20 6e 6f 64 65 73 2c 20 61 6e 64 20 31 32 20 65 64 67 65 73 2e 20 49 74 20 | h.8.....nodes,.and.12.edges..It. |
| 1ec0 | 69 73 20 61 20 73 70 65 63 69 61 6c 20 63 61 73 65 20 6f 66 20 74 68 65 20 68 79 70 65 72 63 75 | is.a.special.case.of.the.hypercu |
| 1ee0 | 62 65 20 67 72 61 70 68 2e 0a 20 20 20 20 49 74 20 69 73 20 6f 6e 65 20 6f 66 20 35 20 50 6c 61 | be.graph......It.is.one.of.5.Pla |
| 1f00 | 74 6f 6e 69 63 20 67 72 61 70 68 73 2c 20 65 61 63 68 20 61 20 73 6b 65 6c 65 74 6f 6e 20 6f 66 | tonic.graphs,.each.a.skeleton.of |
| 1f20 | 20 69 74 73 0a 20 20 20 20 50 6c 61 74 6f 6e 69 63 20 73 6f 6c 69 64 20 5b 31 5d 5f 2e 0a 20 20 | .its.....Platonic.solid.[1]_.... |
| 1f40 | 20 20 53 75 63 68 20 67 72 61 70 68 73 20 61 72 69 73 65 20 69 6e 20 70 61 72 61 6c 6c 65 6c 20 | ..Such.graphs.arise.in.parallel. |
| 1f60 | 70 72 6f 63 65 73 73 69 6e 67 20 69 6e 20 63 6f 6d 70 75 74 65 72 73 2e 0a 0a 20 20 20 20 50 61 | processing.in.computers.......Pa |
| 1f80 | 72 61 6d 65 74 65 72 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 63 72 65 61 | rameters.....----------.....crea |
| 1fa0 | 74 65 5f 75 73 69 6e 67 20 3a 20 4e 65 74 77 6f 72 6b 58 20 67 72 61 70 68 20 63 6f 6e 73 74 72 | te_using.:.NetworkX.graph.constr |
| 1fc0 | 75 63 74 6f 72 2c 20 6f 70 74 69 6f 6e 61 6c 20 28 64 65 66 61 75 6c 74 3d 6e 78 2e 47 72 61 70 | uctor,.optional.(default=nx.Grap |
| 1fe0 | 68 29 0a 20 20 20 20 20 20 20 47 72 61 70 68 20 74 79 70 65 20 74 6f 20 63 72 65 61 74 65 2e 20 | h)........Graph.type.to.create.. |
| 2000 | 49 66 20 67 72 61 70 68 20 69 6e 73 74 61 6e 63 65 2c 20 74 68 65 6e 20 63 6c 65 61 72 65 64 20 | If.graph.instance,.then.cleared. |
| 2020 | 62 65 66 6f 72 65 20 70 6f 70 75 6c 61 74 65 64 2e 0a 0a 20 20 20 20 52 65 74 75 72 6e 73 0a 20 | before.populated.......Returns.. |
| 2040 | 20 20 20 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 47 20 3a 20 6e 65 74 77 6f 72 6b 78 20 47 72 61 70 | ...-------.....G.:.networkx.Grap |
| 2060 | 68 0a 20 20 20 20 20 20 20 20 41 20 63 75 62 69 63 61 6c 20 67 72 61 70 68 20 77 69 74 68 20 38 | h.........A.cubical.graph.with.8 |
| 2080 | 20 6e 6f 64 65 73 20 61 6e 64 20 31 32 20 65 64 67 65 73 0a 0a 20 20 20 20 52 65 66 65 72 65 6e | .nodes.and.12.edges......Referen |
| 20a0 | 63 65 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 2e 2e 20 5b 31 5d 20 68 74 | ces.....----------........[1].ht |
| 20c0 | 74 70 73 3a 2f 2f 65 6e 2e 77 69 6b 69 70 65 64 69 61 2e 6f 72 67 2f 77 69 6b 69 2f 43 75 62 65 | tps://en.wikipedia.org/wiki/Cube |
| 20e0 | 23 43 75 62 69 63 61 6c 5f 67 72 61 70 68 0a 0a 20 20 20 20 29 03 72 34 00 00 00 72 46 00 00 00 | #Cubical_graph......).r4...rF... |
| 2100 | 72 47 00 00 00 29 03 72 19 00 00 00 72 44 00 00 00 72 51 00 00 00 a9 03 72 34 00 00 00 72 46 00 | rG...).r....rD...rQ.....r4...rF. |
| 2120 | 00 00 72 4d 00 00 00 29 03 72 19 00 00 00 72 44 00 00 00 72 50 00 00 00 29 03 72 19 00 00 00 72 | ..rM...).r....rD...rP...).r....r |
| 2140 | 50 00 00 00 72 51 00 00 00 29 03 72 46 00 00 00 72 47 00 00 00 72 4d 00 00 00 72 4f 00 00 00 29 | P...rQ...).rF...rG...rM...rO...) |
| 2160 | 03 72 34 00 00 00 72 47 00 00 00 72 4d 00 00 00 29 08 72 19 00 00 00 72 34 00 00 00 72 44 00 00 | .r4...rG...rM...).r....r4...rD.. |
| 2180 | 00 72 46 00 00 00 72 47 00 00 00 72 50 00 00 00 72 4d 00 00 00 72 51 00 00 00 72 24 00 00 00 7a | .rF...rG...rP...rM...rQ...r$...z |
| 21a0 | 16 50 6c 61 74 6f 6e 69 63 20 43 75 62 69 63 61 6c 20 47 72 61 70 68 72 49 00 00 00 72 4b 00 00 | .Platonic.Cubical.GraphrI...rK.. |
| 21c0 | 00 73 02 00 00 00 20 20 72 2d 00 00 00 72 05 00 00 00 72 05 00 00 00 e1 00 00 00 73 44 00 00 00 | .s......r-...r....r........sD... |
| 21e0 | 80 00 f4 36 00 09 0b d7 08 1d d1 08 1d e2 0f 18 da 0f 18 da 0f 18 da 0f 18 da 0f 18 da 0f 18 da | ...6............................ |
| 2200 | 0f 18 da 0f 18 f1 11 09 09 0a f0 14 00 16 22 f4 17 0c 09 06 80 41 f0 1a 00 0e 26 80 41 84 46 d8 | .............."......A....&.A.F. |
| 2220 | 0b 0c 80 48 72 2f 00 00 00 63 01 00 00 00 00 00 00 00 00 00 00 00 06 00 00 00 03 00 00 00 f3 34 | ...Hr/...c.....................4 |
| 2240 | 00 00 00 97 00 74 01 00 00 00 00 00 00 00 00 64 01 67 00 64 02 a2 01 64 03 7c 00 ab 04 00 00 00 | .....t.........d.g.d...d.|...... |
| 2260 | 00 00 00 7d 01 64 04 7c 01 5f 01 00 00 00 00 00 00 00 00 7c 01 53 00 29 05 61 a3 02 00 00 0a 20 | ...}.d.|._.........|.S.).a...... |
| 2280 | 20 20 20 52 65 74 75 72 6e 73 20 74 68 65 20 44 65 73 61 72 67 75 65 73 20 47 72 61 70 68 0a 0a | ...Returns.the.Desargues.Graph.. |
| 22a0 | 20 20 20 20 54 68 65 20 44 65 73 61 72 67 75 65 73 20 47 72 61 70 68 20 69 73 20 61 20 6e 6f 6e | ....The.Desargues.Graph.is.a.non |
| 22c0 | 2d 70 6c 61 6e 61 72 2c 20 64 69 73 74 61 6e 63 65 2d 74 72 61 6e 73 69 74 69 76 65 20 63 75 62 | -planar,.distance-transitive.cub |
| 22e0 | 69 63 20 67 72 61 70 68 0a 20 20 20 20 77 69 74 68 20 32 30 20 6e 6f 64 65 73 20 61 6e 64 20 33 | ic.graph.....with.20.nodes.and.3 |
| 2300 | 30 20 65 64 67 65 73 20 5b 31 5d 5f 2e 0a 20 20 20 20 49 74 20 69 73 20 61 20 73 79 6d 6d 65 74 | 0.edges.[1]_......It.is.a.symmet |
| 2320 | 72 69 63 20 67 72 61 70 68 2e 20 49 74 20 63 61 6e 20 62 65 20 72 65 70 72 65 73 65 6e 74 65 64 | ric.graph..It.can.be.represented |
| 2340 | 20 69 6e 20 4c 43 46 20 6e 6f 74 61 74 69 6f 6e 0a 20 20 20 20 61 73 20 5b 35 2c 2d 35 2c 39 2c | .in.LCF.notation.....as.[5,-5,9, |
| 2360 | 2d 39 5d 5e 35 20 5b 32 5d 5f 2e 0a 0a 20 20 20 20 50 61 72 61 6d 65 74 65 72 73 0a 20 20 20 20 | -9]^5.[2]_.......Parameters..... |
| 2380 | 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 63 72 65 61 74 65 5f 75 73 69 6e 67 20 3a 20 4e 65 | ----------.....create_using.:.Ne |
| 23a0 | 74 77 6f 72 6b 58 20 67 72 61 70 68 20 63 6f 6e 73 74 72 75 63 74 6f 72 2c 20 6f 70 74 69 6f 6e | tworkX.graph.constructor,.option |
| 23c0 | 61 6c 20 28 64 65 66 61 75 6c 74 3d 6e 78 2e 47 72 61 70 68 29 0a 20 20 20 20 20 20 20 47 72 61 | al.(default=nx.Graph)........Gra |
| 23e0 | 70 68 20 74 79 70 65 20 74 6f 20 63 72 65 61 74 65 2e 20 49 66 20 67 72 61 70 68 20 69 6e 73 74 | ph.type.to.create..If.graph.inst |
| 2400 | 61 6e 63 65 2c 20 74 68 65 6e 20 63 6c 65 61 72 65 64 20 62 65 66 6f 72 65 20 70 6f 70 75 6c 61 | ance,.then.cleared.before.popula |
| 2420 | 74 65 64 2e 0a 0a 20 20 20 20 52 65 74 75 72 6e 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 0a 20 20 | ted.......Returns.....-------... |
| 2440 | 20 20 47 20 3a 20 6e 65 74 77 6f 72 6b 78 20 47 72 61 70 68 0a 20 20 20 20 20 20 20 20 44 65 73 | ..G.:.networkx.Graph.........Des |
| 2460 | 61 72 67 75 65 73 20 47 72 61 70 68 20 77 69 74 68 20 32 30 20 6e 6f 64 65 73 20 61 6e 64 20 33 | argues.Graph.with.20.nodes.and.3 |
| 2480 | 30 20 65 64 67 65 73 0a 0a 20 20 20 20 52 65 66 65 72 65 6e 63 65 73 0a 20 20 20 20 2d 2d 2d 2d | 0.edges......References.....---- |
| 24a0 | 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 2e 2e 20 5b 31 5d 20 68 74 74 70 73 3a 2f 2f 65 6e 2e 77 69 6b | ------........[1].https://en.wik |
| 24c0 | 69 70 65 64 69 61 2e 6f 72 67 2f 77 69 6b 69 2f 44 65 73 61 72 67 75 65 73 5f 67 72 61 70 68 0a | ipedia.org/wiki/Desargues_graph. |
| 24e0 | 20 20 20 20 2e 2e 20 5b 32 5d 20 68 74 74 70 73 3a 2f 2f 6d 61 74 68 77 6f 72 6c 64 2e 77 6f 6c | .......[2].https://mathworld.wol |
| 2500 | 66 72 61 6d 2e 63 6f 6d 2f 44 65 73 61 72 67 75 65 73 47 72 61 70 68 2e 68 74 6d 6c 0a 20 20 20 | fram.com/DesarguesGraph.html.... |
| 2520 | 20 e9 14 00 00 00 29 04 72 50 00 00 00 e9 fb ff ff ff 72 4e 00 00 00 69 f7 ff ff ff 72 50 00 00 | ......).rP........rN...i....rP.. |
| 2540 | 00 7a 0f 44 65 73 61 72 67 75 65 73 20 47 72 61 70 68 a9 02 72 02 00 00 00 72 35 00 00 00 72 4b | .z.Desargues.Graph..r....r5...rK |
| 2560 | 00 00 00 73 02 00 00 00 20 20 72 2d 00 00 00 72 06 00 00 00 72 06 00 00 00 0d 01 00 00 73 20 00 | ...s......r-...r....r........s.. |
| 2580 | 00 00 80 00 f4 32 00 09 12 90 22 92 6e a0 61 a8 1c d3 08 36 80 41 d8 0d 1e 80 41 84 46 d8 0b 0c | .....2....".n.a....6.A....A.F... |
| 25a0 | 80 48 72 2f 00 00 00 63 01 00 00 00 00 00 00 00 00 00 00 00 07 00 00 00 03 00 00 00 f3 5c 00 00 | .Hr/...c.....................\.. |
| 25c0 | 00 97 00 74 01 00 00 00 00 00 00 00 00 6a 02 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 | ...t.........j.................. |
| 25e0 | 00 64 01 64 02 67 02 67 00 64 03 a2 01 67 00 64 04 a2 01 64 01 64 02 67 02 64 05 9c 04 7c 00 ac | .d.d.g.g.d...g.d...d.d.g.d...|.. |
| 2600 | 06 ab 02 00 00 00 00 00 00 7d 01 64 07 7c 01 5f 02 00 00 00 00 00 00 00 00 7c 01 53 00 29 08 61 | .........}.d.|._.........|.S.).a |
| 2620 | 32 02 00 00 0a 20 20 20 20 52 65 74 75 72 6e 73 20 74 68 65 20 44 69 61 6d 6f 6e 64 20 67 72 61 | 2........Returns.the.Diamond.gra |
| 2640 | 70 68 0a 0a 20 20 20 20 54 68 65 20 44 69 61 6d 6f 6e 64 20 47 72 61 70 68 20 69 73 20 20 70 6c | ph......The.Diamond.Graph.is..pl |
| 2660 | 61 6e 61 72 20 75 6e 64 69 72 65 63 74 65 64 20 67 72 61 70 68 20 77 69 74 68 20 34 20 6e 6f 64 | anar.undirected.graph.with.4.nod |
| 2680 | 65 73 20 61 6e 64 20 35 20 65 64 67 65 73 2e 0a 20 20 20 20 49 74 20 69 73 20 61 6c 73 6f 20 73 | es.and.5.edges......It.is.also.s |
| 26a0 | 6f 6d 65 74 69 6d 65 73 20 6b 6e 6f 77 6e 20 61 73 20 74 68 65 20 64 6f 75 62 6c 65 20 74 72 69 | ometimes.known.as.the.double.tri |
| 26c0 | 61 6e 67 6c 65 20 67 72 61 70 68 20 6f 72 20 6b 69 74 65 20 67 72 61 70 68 20 5b 31 5d 5f 2e 0a | angle.graph.or.kite.graph.[1]_.. |
| 26e0 | 0a 20 20 20 20 50 61 72 61 6d 65 74 65 72 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 | .....Parameters.....----------.. |
| 2700 | 20 20 20 63 72 65 61 74 65 5f 75 73 69 6e 67 20 3a 20 4e 65 74 77 6f 72 6b 58 20 67 72 61 70 68 | ...create_using.:.NetworkX.graph |
| 2720 | 20 63 6f 6e 73 74 72 75 63 74 6f 72 2c 20 6f 70 74 69 6f 6e 61 6c 20 28 64 65 66 61 75 6c 74 3d | .constructor,.optional.(default= |
| 2740 | 6e 78 2e 47 72 61 70 68 29 0a 20 20 20 20 20 20 20 47 72 61 70 68 20 74 79 70 65 20 74 6f 20 63 | nx.Graph)........Graph.type.to.c |
| 2760 | 72 65 61 74 65 2e 20 49 66 20 67 72 61 70 68 20 69 6e 73 74 61 6e 63 65 2c 20 74 68 65 6e 20 63 | reate..If.graph.instance,.then.c |
| 2780 | 6c 65 61 72 65 64 20 62 65 66 6f 72 65 20 70 6f 70 75 6c 61 74 65 64 2e 0a 0a 20 20 20 20 52 65 | leared.before.populated.......Re |
| 27a0 | 74 75 72 6e 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 47 20 3a 20 6e 65 74 77 6f 72 | turns.....-------.....G.:.networ |
| 27c0 | 6b 78 20 47 72 61 70 68 0a 20 20 20 20 20 20 20 20 44 69 61 6d 6f 6e 64 20 47 72 61 70 68 20 77 | kx.Graph.........Diamond.Graph.w |
| 27e0 | 69 74 68 20 34 20 6e 6f 64 65 73 20 61 6e 64 20 35 20 65 64 67 65 73 0a 0a 20 20 20 20 52 65 66 | ith.4.nodes.and.5.edges......Ref |
| 2800 | 65 72 65 6e 63 65 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 2e 2e 20 5b 31 | erences.....----------........[1 |
| 2820 | 5d 20 68 74 74 70 73 3a 2f 2f 6d 61 74 68 77 6f 72 6c 64 2e 77 6f 6c 66 72 61 6d 2e 63 6f 6d 2f | ].https://mathworld.wolfram.com/ |
| 2840 | 44 69 61 6d 6f 6e 64 47 72 61 70 68 2e 68 74 6d 6c 0a 20 20 20 20 72 34 00 00 00 72 44 00 00 00 | DiamondGraph.html.....r4...rD... |
| 2860 | 72 45 00 00 00 29 03 72 19 00 00 00 72 34 00 00 00 72 46 00 00 00 29 04 72 19 00 00 00 72 34 00 | rE...).r....r4...rF...).r....r4. |
| 2880 | 00 00 72 44 00 00 00 72 46 00 00 00 72 24 00 00 00 7a 0d 44 69 61 6d 6f 6e 64 20 47 72 61 70 68 | ..rD...rF...r$...z.Diamond.Graph |
| 28a0 | 72 49 00 00 00 72 4b 00 00 00 73 02 00 00 00 20 20 72 2d 00 00 00 72 07 00 00 00 72 07 00 00 00 | rI...rK...s......r-...r....r.... |
| 28c0 | 2b 01 00 00 73 38 00 00 00 80 00 f4 2e 00 09 0b d7 08 1d d1 08 1d d8 0d 0e 90 01 88 46 92 79 a2 | +...s8......................F.y. |
| 28e0 | 59 b0 41 b0 71 b0 36 d1 08 3a c8 1c f4 03 02 09 06 80 41 f0 06 00 0e 1d 80 41 84 46 d8 0b 0c 80 | Y.A.q.6..:........A......A.F.... |
| 2900 | 48 72 2f 00 00 00 63 01 00 00 00 00 00 00 00 00 00 00 00 06 00 00 00 03 00 00 00 f3 34 00 00 00 | Hr/...c.....................4... |
| 2920 | 97 00 74 01 00 00 00 00 00 00 00 00 64 01 67 00 64 02 a2 01 64 03 7c 00 ab 04 00 00 00 00 00 00 | ..t.........d.g.d...d.|......... |
| 2940 | 7d 01 64 04 7c 01 5f 01 00 00 00 00 00 00 00 00 7c 01 53 00 29 05 61 f3 02 00 00 0a 20 20 20 20 | }.d.|._.........|.S.).a......... |
| 2960 | 52 65 74 75 72 6e 73 20 74 68 65 20 50 6c 61 74 6f 6e 69 63 20 44 6f 64 65 63 61 68 65 64 72 61 | Returns.the.Platonic.Dodecahedra |
| 2980 | 6c 20 67 72 61 70 68 2e 0a 0a 20 20 20 20 54 68 65 20 64 6f 64 65 63 61 68 65 64 72 61 6c 20 67 | l.graph.......The.dodecahedral.g |
| 29a0 | 72 61 70 68 20 68 61 73 20 32 30 20 6e 6f 64 65 73 20 61 6e 64 20 33 30 20 65 64 67 65 73 2e 20 | raph.has.20.nodes.and.30.edges.. |
| 29c0 | 54 68 65 20 73 6b 65 6c 65 74 6f 6e 20 6f 66 20 74 68 65 0a 20 20 20 20 64 6f 64 65 63 61 68 65 | The.skeleton.of.the.....dodecahe |
| 29e0 | 64 72 6f 6e 20 66 6f 72 6d 73 20 61 20 67 72 61 70 68 2e 20 49 74 20 69 73 20 6f 6e 65 20 6f 66 | dron.forms.a.graph..It.is.one.of |
| 2a00 | 20 35 20 50 6c 61 74 6f 6e 69 63 20 67 72 61 70 68 73 20 5b 31 5d 5f 2e 0a 20 20 20 20 49 74 20 | .5.Platonic.graphs.[1]_......It. |
| 2a20 | 63 61 6e 20 62 65 20 64 65 73 63 72 69 62 65 64 20 69 6e 20 4c 43 46 20 6e 6f 74 61 74 69 6f 6e | can.be.described.in.LCF.notation |
| 2a40 | 20 61 73 3a 0a 20 20 20 20 60 60 5b 31 30 2c 20 37 2c 20 34 2c 20 2d 34 2c 20 2d 37 2c 20 31 30 | .as:.....``[10,.7,.4,.-4,.-7,.10 |
| 2a60 | 2c 20 2d 34 2c 20 37 2c 20 2d 37 2c 20 34 5d 5e 32 60 60 20 5b 32 5d 5f 2e 0a 0a 20 20 20 20 50 | ,.-4,.7,.-7,.4]^2``.[2]_.......P |
| 2a80 | 61 72 61 6d 65 74 65 72 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 63 72 65 | arameters.....----------.....cre |
| 2aa0 | 61 74 65 5f 75 73 69 6e 67 20 3a 20 4e 65 74 77 6f 72 6b 58 20 67 72 61 70 68 20 63 6f 6e 73 74 | ate_using.:.NetworkX.graph.const |
| 2ac0 | 72 75 63 74 6f 72 2c 20 6f 70 74 69 6f 6e 61 6c 20 28 64 65 66 61 75 6c 74 3d 6e 78 2e 47 72 61 | ructor,.optional.(default=nx.Gra |
| 2ae0 | 70 68 29 0a 20 20 20 20 20 20 20 47 72 61 70 68 20 74 79 70 65 20 74 6f 20 63 72 65 61 74 65 2e | ph)........Graph.type.to.create. |
| 2b00 | 20 49 66 20 67 72 61 70 68 20 69 6e 73 74 61 6e 63 65 2c 20 74 68 65 6e 20 63 6c 65 61 72 65 64 | .If.graph.instance,.then.cleared |
| 2b20 | 20 62 65 66 6f 72 65 20 70 6f 70 75 6c 61 74 65 64 2e 0a 0a 20 20 20 20 52 65 74 75 72 6e 73 0a | .before.populated.......Returns. |
| 2b40 | 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 47 20 3a 20 6e 65 74 77 6f 72 6b 78 20 47 72 61 | ....-------.....G.:.networkx.Gra |
| 2b60 | 70 68 0a 20 20 20 20 20 20 20 20 44 6f 64 65 63 61 68 65 64 72 61 6c 20 47 72 61 70 68 20 77 69 | ph.........Dodecahedral.Graph.wi |
| 2b80 | 74 68 20 32 30 20 6e 6f 64 65 73 20 61 6e 64 20 33 30 20 65 64 67 65 73 0a 0a 20 20 20 20 52 65 | th.20.nodes.and.30.edges......Re |
| 2ba0 | 66 65 72 65 6e 63 65 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 2e 2e 20 5b | ferences.....----------........[ |
| 2bc0 | 31 5d 20 68 74 74 70 73 3a 2f 2f 65 6e 2e 77 69 6b 69 70 65 64 69 61 2e 6f 72 67 2f 77 69 6b 69 | 1].https://en.wikipedia.org/wiki |
| 2be0 | 2f 52 65 67 75 6c 61 72 5f 64 6f 64 65 63 61 68 65 64 72 6f 6e 23 44 6f 64 65 63 61 68 65 64 72 | /Regular_dodecahedron#Dodecahedr |
| 2c00 | 61 6c 5f 67 72 61 70 68 0a 20 20 20 20 2e 2e 20 5b 32 5d 20 68 74 74 70 73 3a 2f 2f 6d 61 74 68 | al_graph........[2].https://math |
| 2c20 | 77 6f 72 6c 64 2e 77 6f 6c 66 72 61 6d 2e 63 6f 6d 2f 44 6f 64 65 63 61 68 65 64 72 61 6c 47 72 | world.wolfram.com/DodecahedralGr |
| 2c40 | 61 70 68 2e 68 74 6d 6c 0a 0a 20 20 20 20 72 59 00 00 00 29 0a 72 53 00 00 00 72 51 00 00 00 72 | aph.html......rY...).rS...rQ...r |
| 2c60 | 47 00 00 00 e9 fc ff ff ff e9 f9 ff ff ff 72 53 00 00 00 72 5e 00 00 00 72 51 00 00 00 72 5f 00 | G.............rS...r^...rQ...r_. |
| 2c80 | 00 00 72 47 00 00 00 72 44 00 00 00 7a 12 44 6f 64 65 63 61 68 65 64 72 61 6c 20 47 72 61 70 68 | ..rG...rD...z.Dodecahedral.Graph |
| 2ca0 | 72 5b 00 00 00 72 4b 00 00 00 73 02 00 00 00 20 20 72 2d 00 00 00 72 08 00 00 00 72 08 00 00 00 | r[...rK...s......r-...r....r.... |
| 2cc0 | 49 01 00 00 73 21 00 00 00 80 00 f4 34 00 09 12 90 22 d2 16 3a b8 41 b8 7c d3 08 4c 80 41 d8 0d | I...s!......4...."..:.A.|..L.A.. |
| 2ce0 | 21 80 41 84 46 d8 0b 0c 80 48 72 2f 00 00 00 63 01 00 00 00 00 00 00 00 00 00 00 00 0e 00 00 00 | !.A.F....Hr/...c................ |
| 2d00 | 03 00 00 00 f3 90 00 00 00 97 00 74 01 00 00 00 00 00 00 00 00 64 01 7c 00 ab 02 00 00 00 00 00 | ...........t.........d.|........ |
| 2d20 | 00 7d 01 7c 01 6a 03 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 64 02 64 01 67 02 64 | .}.|.j...................d.d.g.d |
| 2d40 | 03 64 01 67 02 64 04 64 05 67 02 64 06 64 07 67 02 64 08 64 07 67 02 64 09 64 0a 67 02 64 0b 64 | .d.g.d.d.g.d.d.g.d.d.g.d.d.g.d.d |
| 2d60 | 0a 67 02 64 01 64 0c 67 02 64 05 64 0c 67 02 64 05 64 07 67 02 64 0a 64 0c 67 02 67 0b ab 01 00 | .g.d.d.g.d.d.g.d.d.g.d.d.g.g.... |
| 2d80 | 00 00 00 00 00 01 00 64 0d 7c 01 5f 02 00 00 00 00 00 00 00 00 7c 01 53 00 29 0e 61 af 02 00 00 | .......d.|._.........|.S.).a.... |
| 2da0 | 0a 20 20 20 20 52 65 74 75 72 6e 73 20 74 68 65 20 46 72 75 63 68 74 20 47 72 61 70 68 2e 0a 0a | .....Returns.the.Frucht.Graph... |
| 2dc0 | 20 20 20 20 54 68 65 20 46 72 75 63 68 74 20 47 72 61 70 68 20 69 73 20 74 68 65 20 73 6d 61 6c | ....The.Frucht.Graph.is.the.smal |
| 2de0 | 6c 65 73 74 20 63 75 62 69 63 61 6c 20 67 72 61 70 68 20 77 68 6f 73 65 0a 20 20 20 20 61 75 74 | lest.cubical.graph.whose.....aut |
| 2e00 | 6f 6d 6f 72 70 68 69 73 6d 20 67 72 6f 75 70 20 63 6f 6e 73 69 73 74 73 20 6f 6e 6c 79 20 6f 66 | omorphism.group.consists.only.of |
| 2e20 | 20 74 68 65 20 69 64 65 6e 74 69 74 79 20 65 6c 65 6d 65 6e 74 20 5b 31 5d 5f 2e 0a 20 20 20 20 | .the.identity.element.[1]_...... |
| 2e40 | 49 74 20 68 61 73 20 31 32 20 6e 6f 64 65 73 20 61 6e 64 20 31 38 20 65 64 67 65 73 20 61 6e 64 | It.has.12.nodes.and.18.edges.and |
| 2e60 | 20 6e 6f 20 6e 6f 6e 74 72 69 76 69 61 6c 20 73 79 6d 6d 65 74 72 69 65 73 2e 0a 20 20 20 20 49 | .no.nontrivial.symmetries......I |
| 2e80 | 74 20 69 73 20 70 6c 61 6e 61 72 20 61 6e 64 20 48 61 6d 69 6c 74 6f 6e 69 61 6e 20 5b 32 5d 5f | t.is.planar.and.Hamiltonian.[2]_ |
| 2ea0 | 2e 0a 0a 20 20 20 20 50 61 72 61 6d 65 74 65 72 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d | .......Parameters.....---------- |
| 2ec0 | 0a 20 20 20 20 63 72 65 61 74 65 5f 75 73 69 6e 67 20 3a 20 4e 65 74 77 6f 72 6b 58 20 67 72 61 | .....create_using.:.NetworkX.gra |
| 2ee0 | 70 68 20 63 6f 6e 73 74 72 75 63 74 6f 72 2c 20 6f 70 74 69 6f 6e 61 6c 20 28 64 65 66 61 75 6c | ph.constructor,.optional.(defaul |
| 2f00 | 74 3d 6e 78 2e 47 72 61 70 68 29 0a 20 20 20 20 20 20 20 47 72 61 70 68 20 74 79 70 65 20 74 6f | t=nx.Graph)........Graph.type.to |
| 2f20 | 20 63 72 65 61 74 65 2e 20 49 66 20 67 72 61 70 68 20 69 6e 73 74 61 6e 63 65 2c 20 74 68 65 6e | .create..If.graph.instance,.then |
| 2f40 | 20 63 6c 65 61 72 65 64 20 62 65 66 6f 72 65 20 70 6f 70 75 6c 61 74 65 64 2e 0a 0a 20 20 20 20 | .cleared.before.populated....... |
| 2f60 | 52 65 74 75 72 6e 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 47 20 3a 20 6e 65 74 77 | Returns.....-------.....G.:.netw |
| 2f80 | 6f 72 6b 78 20 47 72 61 70 68 0a 20 20 20 20 20 20 20 20 46 72 75 63 68 74 20 47 72 61 70 68 20 | orkx.Graph.........Frucht.Graph. |
| 2fa0 | 77 69 74 68 20 31 32 20 6e 6f 64 65 73 20 61 6e 64 20 31 38 20 65 64 67 65 73 0a 0a 20 20 20 20 | with.12.nodes.and.18.edges...... |
| 2fc0 | 52 65 66 65 72 65 6e 63 65 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 2e 2e | References.....----------....... |
| 2fe0 | 20 5b 31 5d 20 68 74 74 70 73 3a 2f 2f 65 6e 2e 77 69 6b 69 70 65 64 69 61 2e 6f 72 67 2f 77 69 | .[1].https://en.wikipedia.org/wi |
| 3000 | 6b 69 2f 46 72 75 63 68 74 5f 67 72 61 70 68 0a 20 20 20 20 2e 2e 20 5b 32 5d 20 68 74 74 70 73 | ki/Frucht_graph........[2].https |
| 3020 | 3a 2f 2f 6d 61 74 68 77 6f 72 6c 64 2e 77 6f 6c 66 72 61 6d 2e 63 6f 6d 2f 46 72 75 63 68 74 47 | ://mathworld.wolfram.com/FruchtG |
| 3040 | 72 61 70 68 2e 68 74 6d 6c 0a 0a 20 20 20 20 72 51 00 00 00 72 19 00 00 00 72 34 00 00 00 72 44 | raph.html......rQ...r....r4...rD |
| 3060 | 00 00 00 72 52 00 00 00 72 46 00 00 00 72 4e 00 00 00 72 47 00 00 00 72 50 00 00 00 72 53 00 00 | ...rR...rF...rN...rG...rP...rS.. |
| 3080 | 00 72 4d 00 00 00 72 54 00 00 00 7a 0c 46 72 75 63 68 74 20 47 72 61 70 68 29 03 72 1e 00 00 00 | .rM...rT...z.Frucht.Graph).r.... |
| 30a0 | da 0e 61 64 64 5f 65 64 67 65 73 5f 66 72 6f 6d 72 35 00 00 00 72 4b 00 00 00 73 02 00 00 00 20 | ..add_edges_fromr5...rK...s..... |
| 30c0 | 20 72 2d 00 00 00 72 09 00 00 00 72 09 00 00 00 68 01 00 00 73 7e 00 00 00 80 00 f4 34 00 09 14 | .r-...r....r....h...s~......4... |
| 30e0 | 90 41 90 7c d3 08 24 80 41 d8 04 05 d7 04 14 d1 04 14 e0 0d 0e 90 01 88 46 d8 0d 0e 90 01 88 46 | .A.|..$.A...............F......F |
| 3100 | d8 0d 0e 90 01 88 46 d8 0d 0e 90 01 88 46 d8 0d 0e 90 01 88 46 d8 0d 0e 90 02 88 47 d8 0d 0e 90 | ......F......F......F......G.... |
| 3120 | 02 88 47 d8 0d 0e 90 02 88 47 d8 0d 0e 90 02 88 47 d8 0d 0e 90 01 88 46 d8 0d 0f 90 12 88 48 f0 | ..G......G......G......F......H. |
| 3140 | 17 0c 09 0a f4 03 0e 05 06 f0 20 00 0e 1c 80 41 84 46 d8 0b 0c 80 48 72 2f 00 00 00 63 01 00 00 | ...............A.F....Hr/...c... |
| 3160 | 00 00 00 00 00 00 00 00 00 06 00 00 00 03 00 00 00 f3 34 00 00 00 97 00 74 01 00 00 00 00 00 00 | ..................4.....t....... |
| 3180 | 00 00 64 01 64 02 64 03 67 02 64 04 7c 00 ab 04 00 00 00 00 00 00 7d 01 64 05 7c 01 5f 01 00 00 | ..d.d.d.g.d.|.........}.d.|._... |
| 31a0 | 00 00 00 00 00 00 7c 01 53 00 29 06 61 6e 03 00 00 0a 20 20 20 20 52 65 74 75 72 6e 73 20 74 68 | ......|.S.).an........Returns.th |
| 31c0 | 65 20 48 65 61 77 6f 6f 64 20 47 72 61 70 68 2c 20 61 20 28 33 2c 36 29 20 63 61 67 65 2e 0a 0a | e.Heawood.Graph,.a.(3,6).cage... |
| 31e0 | 20 20 20 20 54 68 65 20 48 65 61 77 6f 6f 64 20 47 72 61 70 68 20 69 73 20 61 6e 20 75 6e 64 69 | ....The.Heawood.Graph.is.an.undi |
| 3200 | 72 65 63 74 65 64 20 67 72 61 70 68 20 77 69 74 68 20 31 34 20 6e 6f 64 65 73 20 61 6e 64 20 32 | rected.graph.with.14.nodes.and.2 |
| 3220 | 31 20 65 64 67 65 73 2c 0a 20 20 20 20 6e 61 6d 65 64 20 61 66 74 65 72 20 50 65 72 63 79 20 4a | 1.edges,.....named.after.Percy.J |
| 3240 | 6f 68 6e 20 48 65 61 77 6f 6f 64 20 5b 31 5d 5f 2e 0a 20 20 20 20 49 74 20 69 73 20 63 75 62 69 | ohn.Heawood.[1]_......It.is.cubi |
| 3260 | 63 20 73 79 6d 6d 65 74 72 69 63 2c 20 6e 6f 6e 70 6c 61 6e 61 72 2c 20 48 61 6d 69 6c 74 6f 6e | c.symmetric,.nonplanar,.Hamilton |
| 3280 | 69 61 6e 2c 20 61 6e 64 20 63 61 6e 20 62 65 20 72 65 70 72 65 73 65 6e 74 65 64 0a 20 20 20 20 | ian,.and.can.be.represented..... |
| 32a0 | 69 6e 20 4c 43 46 20 6e 6f 74 61 74 69 6f 6e 20 61 73 20 60 60 5b 35 2c 2d 35 5d 5e 37 60 60 20 | in.LCF.notation.as.``[5,-5]^7``. |
| 32c0 | 5b 32 5d 5f 2e 0a 20 20 20 20 49 74 20 69 73 20 74 68 65 20 75 6e 69 71 75 65 20 28 33 2c 36 29 | [2]_......It.is.the.unique.(3,6) |
| 32e0 | 2d 63 61 67 65 3a 20 74 68 65 20 72 65 67 75 6c 61 72 20 63 75 62 69 63 20 67 72 61 70 68 20 6f | -cage:.the.regular.cubic.graph.o |
| 3300 | 66 20 67 69 72 74 68 20 36 20 77 69 74 68 0a 20 20 20 20 6d 69 6e 69 6d 61 6c 20 6e 75 6d 62 65 | f.girth.6.with.....minimal.numbe |
| 3320 | 72 20 6f 66 20 76 65 72 74 69 63 65 73 20 5b 33 5d 5f 2e 0a 0a 20 20 20 20 50 61 72 61 6d 65 74 | r.of.vertices.[3]_.......Paramet |
| 3340 | 65 72 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 63 72 65 61 74 65 5f 75 73 | ers.....----------.....create_us |
| 3360 | 69 6e 67 20 3a 20 4e 65 74 77 6f 72 6b 58 20 67 72 61 70 68 20 63 6f 6e 73 74 72 75 63 74 6f 72 | ing.:.NetworkX.graph.constructor |
| 3380 | 2c 20 6f 70 74 69 6f 6e 61 6c 20 28 64 65 66 61 75 6c 74 3d 6e 78 2e 47 72 61 70 68 29 0a 20 20 | ,.optional.(default=nx.Graph)... |
| 33a0 | 20 20 20 20 20 47 72 61 70 68 20 74 79 70 65 20 74 6f 20 63 72 65 61 74 65 2e 20 49 66 20 67 72 | .....Graph.type.to.create..If.gr |
| 33c0 | 61 70 68 20 69 6e 73 74 61 6e 63 65 2c 20 74 68 65 6e 20 63 6c 65 61 72 65 64 20 62 65 66 6f 72 | aph.instance,.then.cleared.befor |
| 33e0 | 65 20 70 6f 70 75 6c 61 74 65 64 2e 0a 0a 20 20 20 20 52 65 74 75 72 6e 73 0a 20 20 20 20 2d 2d | e.populated.......Returns.....-- |
| 3400 | 2d 2d 2d 2d 2d 0a 20 20 20 20 47 20 3a 20 6e 65 74 77 6f 72 6b 78 20 47 72 61 70 68 0a 20 20 20 | -----.....G.:.networkx.Graph.... |
| 3420 | 20 20 20 20 20 48 65 61 77 6f 6f 64 20 47 72 61 70 68 20 77 69 74 68 20 31 34 20 6e 6f 64 65 73 | .....Heawood.Graph.with.14.nodes |
| 3440 | 20 61 6e 64 20 32 31 20 65 64 67 65 73 0a 0a 20 20 20 20 52 65 66 65 72 65 6e 63 65 73 0a 20 20 | .and.21.edges......References... |
| 3460 | 20 20 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 2e 2e 20 5b 31 5d 20 68 74 74 70 73 3a 2f 2f | ..----------........[1].https:// |
| 3480 | 65 6e 2e 77 69 6b 69 70 65 64 69 61 2e 6f 72 67 2f 77 69 6b 69 2f 48 65 61 77 6f 6f 64 5f 67 72 | en.wikipedia.org/wiki/Heawood_gr |
| 34a0 | 61 70 68 0a 20 20 20 20 2e 2e 20 5b 32 5d 20 68 74 74 70 73 3a 2f 2f 6d 61 74 68 77 6f 72 6c 64 | aph........[2].https://mathworld |
| 34c0 | 2e 77 6f 6c 66 72 61 6d 2e 63 6f 6d 2f 48 65 61 77 6f 6f 64 47 72 61 70 68 2e 68 74 6d 6c 0a 20 | .wolfram.com/HeawoodGraph.html.. |
| 34e0 | 20 20 20 2e 2e 20 5b 33 5d 20 68 74 74 70 73 3a 2f 2f 77 77 77 2e 77 69 6e 2e 74 75 65 2e 6e 6c | ......[3].https://www.win.tue.nl |
| 3500 | 2f 7e 61 65 62 2f 67 72 61 70 68 73 2f 48 65 61 77 6f 6f 64 2e 68 74 6d 6c 0a 0a 20 20 20 20 e9 | /~aeb/graphs/Heawood.html....... |
| 3520 | 0e 00 00 00 72 50 00 00 00 72 5a 00 00 00 72 51 00 00 00 7a 0d 48 65 61 77 6f 6f 64 20 47 72 61 | ....rP...rZ...rQ...z.Heawood.Gra |
| 3540 | 70 68 72 5b 00 00 00 72 4b 00 00 00 73 02 00 00 00 20 20 72 2d 00 00 00 72 0a 00 00 00 72 0a 00 | phr[...rK...s......r-...r....r.. |
| 3560 | 00 00 97 01 00 00 73 24 00 00 00 80 00 f4 3a 00 09 12 90 22 90 71 98 22 90 67 98 71 a0 2c d3 08 | ......s$......:....".q.".g.q.,.. |
| 3580 | 2f 80 41 d8 0d 1c 80 41 84 46 d8 0b 0c 80 48 72 2f 00 00 00 63 00 00 00 00 00 00 00 00 00 00 00 | /.A....A.F....Hr/...c........... |
| 35a0 | 00 0a 00 00 00 03 00 00 00 f3 f8 01 00 00 97 00 74 01 00 00 00 00 00 00 00 00 6a 02 00 00 00 00 | ................t.........j..... |
| 35c0 | 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ab 00 00 00 00 00 00 00 7d 00 74 05 00 00 00 00 00 00 | ......................}.t....... |
| 35e0 | 00 00 64 01 ab 01 00 00 00 00 00 00 44 00 5d bb 00 00 7d 01 74 05 00 00 00 00 00 00 00 00 64 01 | ..d.........D.]...}.t.........d. |
| 3600 | ab 01 00 00 00 00 00 00 44 00 5d ab 00 00 7d 02 7c 00 6a 07 00 00 00 00 00 00 00 00 00 00 00 00 | ........D.]...}.|.j............. |
| 3620 | 00 00 00 00 00 00 64 02 7c 01 7c 02 66 03 64 02 7c 01 7c 02 64 03 7a 0a 00 00 64 01 7a 06 00 00 | ......d.|.|.f.d.|.|.d.z...d.z... |
| 3640 | 66 03 ab 02 00 00 00 00 00 00 01 00 7c 00 6a 07 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 | f...........|.j................. |
| 3660 | 00 00 64 02 7c 01 7c 02 66 03 64 02 7c 01 7c 02 64 03 7a 00 00 00 64 01 7a 06 00 00 66 03 ab 02 | ..d.|.|.f.d.|.|.d.z...d.z...f... |
| 3680 | 00 00 00 00 00 00 01 00 7c 00 6a 07 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 64 04 | ........|.j...................d. |
| 36a0 | 7c 01 7c 02 66 03 64 04 7c 01 7c 02 64 05 7a 0a 00 00 64 01 7a 06 00 00 66 03 ab 02 00 00 00 00 | |.|.f.d.|.|.d.z...d.z...f....... |
| 36c0 | 00 00 01 00 7c 00 6a 07 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 64 04 7c 01 7c 02 | ....|.j...................d.|.|. |
| 36e0 | 66 03 64 04 7c 01 7c 02 64 05 7a 00 00 00 64 01 7a 06 00 00 66 03 ab 02 00 00 00 00 00 00 01 00 | f.d.|.|.d.z...d.z...f........... |
| 3700 | 74 05 00 00 00 00 00 00 00 00 64 01 ab 01 00 00 00 00 00 00 44 00 5d 23 00 00 7d 03 7c 00 6a 07 | t.........d.........D.]#..}.|.j. |
| 3720 | 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 64 02 7c 01 7c 02 66 03 64 04 7c 03 7c 01 | ..................d.|.|.f.d.|.|. |
| 3740 | 7c 03 7a 05 00 00 7c 02 7a 00 00 00 64 01 7a 06 00 00 66 03 ab 02 00 00 00 00 00 00 01 00 8c 25 | |.z...|.z...d.z...f............% |
| 3760 | 04 00 8c ad 04 00 8c bd 04 00 74 01 00 00 00 00 00 00 00 00 6a 08 00 00 00 00 00 00 00 00 00 00 | ..........t.........j........... |
| 3780 | 00 00 00 00 00 00 00 00 7c 00 ab 01 00 00 00 00 00 00 7d 00 64 06 7c 00 5f 05 00 00 00 00 00 00 | ........|.........}.d.|._....... |
| 37a0 | 00 00 7c 00 53 00 29 07 75 c7 03 00 00 0a 20 20 20 20 52 65 74 75 72 6e 73 20 74 68 65 20 48 6f | ..|.S.).u.........Returns.the.Ho |
| 37c0 | 66 66 6d 61 6e 2d 53 69 6e 67 6c 65 74 6f 6e 20 47 72 61 70 68 2e 0a 0a 20 20 20 20 54 68 65 20 | ffman-Singleton.Graph.......The. |
| 37e0 | 48 6f 66 66 6d 61 6e e2 80 93 53 69 6e 67 6c 65 74 6f 6e 20 67 72 61 70 68 20 69 73 20 61 20 73 | Hoffman...Singleton.graph.is.a.s |
| 3800 | 79 6d 6d 65 74 72 69 63 61 6c 20 75 6e 64 69 72 65 63 74 65 64 20 67 72 61 70 68 0a 20 20 20 20 | ymmetrical.undirected.graph..... |
| 3820 | 77 69 74 68 20 35 30 20 6e 6f 64 65 73 20 61 6e 64 20 31 37 35 20 65 64 67 65 73 2e 0a 20 20 20 | with.50.nodes.and.175.edges..... |
| 3840 | 20 41 6c 6c 20 69 6e 64 69 63 65 73 20 6c 69 65 20 69 6e 20 60 60 5a 20 25 20 35 60 60 3a 20 74 | .All.indices.lie.in.``Z.%.5``:.t |
| 3860 | 68 61 74 20 69 73 2c 20 74 68 65 20 69 6e 74 65 67 65 72 73 20 6d 6f 64 20 35 20 5b 31 5d 5f 2e | hat.is,.the.integers.mod.5.[1]_. |
| 3880 | 0a 20 20 20 20 49 74 20 69 73 20 74 68 65 20 6f 6e 6c 79 20 72 65 67 75 6c 61 72 20 67 72 61 70 | .....It.is.the.only.regular.grap |
| 38a0 | 68 20 6f 66 20 76 65 72 74 65 78 20 64 65 67 72 65 65 20 37 2c 20 64 69 61 6d 65 74 65 72 20 32 | h.of.vertex.degree.7,.diameter.2 |
| 38c0 | 2c 20 61 6e 64 20 67 69 72 74 68 20 35 2e 0a 20 20 20 20 49 74 20 69 73 20 74 68 65 20 75 6e 69 | ,.and.girth.5......It.is.the.uni |
| 38e0 | 71 75 65 20 28 37 2c 35 29 2d 63 61 67 65 20 67 72 61 70 68 20 61 6e 64 20 4d 6f 6f 72 65 20 67 | que.(7,5)-cage.graph.and.Moore.g |
| 3900 | 72 61 70 68 2c 20 61 6e 64 20 63 6f 6e 74 61 69 6e 73 20 6d 61 6e 79 0a 20 20 20 20 63 6f 70 69 | raph,.and.contains.many.....copi |
| 3920 | 65 73 20 6f 66 20 74 68 65 20 50 65 74 65 72 73 65 6e 20 67 72 61 70 68 20 5b 32 5d 5f 2e 0a 0a | es.of.the.Petersen.graph.[2]_... |
| 3940 | 20 20 20 20 52 65 74 75 72 6e 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 47 20 3a 20 | ....Returns.....-------.....G.:. |
| 3960 | 6e 65 74 77 6f 72 6b 78 20 47 72 61 70 68 0a 20 20 20 20 20 20 20 20 48 6f 66 66 6d 61 6e e2 80 | networkx.Graph.........Hoffman.. |
| 3980 | 93 53 69 6e 67 6c 65 74 6f 6e 20 47 72 61 70 68 20 77 69 74 68 20 35 30 20 6e 6f 64 65 73 20 61 | .Singleton.Graph.with.50.nodes.a |
| 39a0 | 6e 64 20 31 37 35 20 65 64 67 65 73 0a 0a 20 20 20 20 4e 6f 74 65 73 0a 20 20 20 20 2d 2d 2d 2d | nd.175.edges......Notes.....---- |
| 39c0 | 2d 0a 20 20 20 20 43 6f 6e 73 74 72 75 63 74 65 64 20 66 72 6f 6d 20 70 65 6e 74 61 67 6f 6e 20 | -.....Constructed.from.pentagon. |
| 39e0 | 61 6e 64 20 70 65 6e 74 61 67 72 61 6d 20 61 73 20 66 6f 6c 6c 6f 77 73 3a 20 54 61 6b 65 20 66 | and.pentagram.as.follows:.Take.f |
| 3a00 | 69 76 65 20 70 65 6e 74 61 67 6f 6e 73 20 24 50 5f 68 24 0a 20 20 20 20 61 6e 64 20 66 69 76 65 | ive.pentagons.$P_h$.....and.five |
| 3a20 | 20 70 65 6e 74 61 67 72 61 6d 73 20 24 51 5f 69 24 20 2e 20 4a 6f 69 6e 20 76 65 72 74 65 78 20 | .pentagrams.$Q_i$...Join.vertex. |
| 3a40 | 24 6a 24 20 6f 66 20 24 50 5f 68 24 20 74 6f 20 76 65 72 74 65 78 20 24 68 c2 b7 69 2b 6a 24 20 | $j$.of.$P_h$.to.vertex.$h..i+j$. |
| 3a60 | 6f 66 20 24 51 5f 69 24 20 5b 33 5d 5f 2e 0a 0a 20 20 20 20 52 65 66 65 72 65 6e 63 65 73 0a 20 | of.$Q_i$.[3]_.......References.. |
| 3a80 | 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 2e 2e 20 5b 31 5d 20 68 74 74 70 73 3a 2f | ...----------........[1].https:/ |
| 3aa0 | 2f 62 6c 6f 67 73 2e 61 6d 73 2e 6f 72 67 2f 76 69 73 75 61 6c 69 6e 73 69 67 68 74 2f 32 30 31 | /blogs.ams.org/visualinsight/201 |
| 3ac0 | 36 2f 30 32 2f 30 31 2f 68 6f 66 66 6d 61 6e 2d 73 69 6e 67 6c 65 74 6f 6e 2d 67 72 61 70 68 2f | 6/02/01/hoffman-singleton-graph/ |
| 3ae0 | 0a 20 20 20 20 2e 2e 20 5b 32 5d 20 68 74 74 70 73 3a 2f 2f 6d 61 74 68 77 6f 72 6c 64 2e 77 6f | ........[2].https://mathworld.wo |
| 3b00 | 6c 66 72 61 6d 2e 63 6f 6d 2f 48 6f 66 66 6d 61 6e 2d 53 69 6e 67 6c 65 74 6f 6e 47 72 61 70 68 | lfram.com/Hoffman-SingletonGraph |
| 3b20 | 2e 68 74 6d 6c 0a 20 20 20 20 2e 2e 20 5b 33 5d 20 68 74 74 70 73 3a 2f 2f 65 6e 2e 77 69 6b 69 | .html........[3].https://en.wiki |
| 3b40 | 70 65 64 69 61 2e 6f 72 67 2f 77 69 6b 69 2f 48 6f 66 66 6d 61 6e 25 45 32 25 38 30 25 39 33 53 | pedia.org/wiki/Hoffman%E2%80%93S |
| 3b60 | 69 6e 67 6c 65 74 6f 6e 5f 67 72 61 70 68 0a 0a 20 20 20 20 72 50 00 00 00 da 08 70 65 6e 74 61 | ingleton_graph......rP.....penta |
| 3b80 | 67 6f 6e 72 34 00 00 00 da 09 70 65 6e 74 61 67 72 61 6d 72 44 00 00 00 7a 17 48 6f 66 66 6d 61 | gonr4.....pentagramrD...z.Hoffma |
| 3ba0 | 6e 2d 53 69 6e 67 6c 65 74 6f 6e 20 47 72 61 70 68 29 06 72 27 00 00 00 da 05 47 72 61 70 68 72 | n-Singleton.Graph).r'.....Graphr |
| 3bc0 | 38 00 00 00 72 39 00 00 00 da 1f 63 6f 6e 76 65 72 74 5f 6e 6f 64 65 5f 6c 61 62 65 6c 73 5f 74 | 8...r9.....convert_node_labels_t |
| 3be0 | 6f 5f 69 6e 74 65 67 65 72 73 72 35 00 00 00 29 04 72 2b 00 00 00 72 3f 00 00 00 da 01 6a da 01 | o_integersr5...).r+...r?.....j.. |
| 3c00 | 6b 73 04 00 00 00 20 20 20 20 72 2d 00 00 00 72 0b 00 00 00 72 0b 00 00 00 b9 01 00 00 73 24 01 | ks........r-...r....r........s$. |
| 3c20 | 00 00 80 00 f4 3a 00 09 0b 8f 08 89 08 8b 0a 80 41 dc 0d 12 90 31 8b 58 f2 00 07 05 52 01 88 01 | .....:..........A....1.X....R... |
| 3c40 | dc 11 16 90 71 93 18 f2 00 06 09 52 01 88 41 d8 0c 0d 8f 4a 89 4a 98 0a a0 41 a0 71 d0 17 29 a8 | ....q......R..A....J.J...A.q..). |
| 3c60 | 4a b8 01 b8 41 c0 01 b9 45 c0 51 b9 3b d0 2b 47 d4 0c 48 d8 0c 0d 8f 4a 89 4a 98 0a a0 41 a0 71 | J...A...E.Q.;.+G..H....J.J...A.q |
| 3c80 | d0 17 29 a8 4a b8 01 b8 41 c0 01 b9 45 c0 51 b9 3b d0 2b 47 d4 0c 48 d8 0c 0d 8f 4a 89 4a 98 0b | ..).J...A...E.Q.;.+G..H....J.J.. |
| 3ca0 | a0 51 a8 01 d0 17 2a a8 5b b8 21 b8 61 c0 21 b9 65 c0 71 b9 5b d0 2c 49 d4 0c 4a d8 0c 0d 8f 4a | .Q....*.[.!.a.!.e.q.[.,I..J....J |
| 3cc0 | 89 4a 98 0b a0 51 a8 01 d0 17 2a a8 5b b8 21 b8 61 c0 21 b9 65 c0 71 b9 5b d0 2c 49 d4 0c 4a dc | .J...Q....*.[.!.a.!.e.q.[.,I..J. |
| 3ce0 | 15 1a 98 31 93 58 f2 00 01 0d 52 01 90 01 d8 10 11 97 0a 91 0a 98 4a a8 01 a8 31 d0 1b 2d b0 0b | ...1.X....R...........J...1..-.. |
| 3d00 | b8 51 c0 11 c0 51 c1 15 c8 11 c1 19 c8 61 c1 0f d0 2f 50 d5 10 51 f1 03 01 0d 52 01 f1 0b 06 09 | .Q...Q.......a.../P..Q....R..... |
| 3d20 | 52 01 f0 03 07 05 52 01 f4 10 00 09 0b d7 08 2a d1 08 2a a8 31 d3 08 2d 80 41 d8 0d 26 80 41 84 | R.....R........*..*.1..-.A..&.A. |
| 3d40 | 46 d8 0b 0c 80 48 72 2f 00 00 00 63 01 00 00 00 00 00 00 00 00 00 00 00 08 00 00 00 03 00 00 00 | F....Hr/...c.................... |
| 3d60 | f3 62 00 00 00 97 00 74 01 00 00 00 00 00 00 00 00 6a 02 00 00 00 00 00 00 00 00 00 00 00 00 00 | .b.....t.........j.............. |
| 3d80 | 00 00 00 00 00 64 01 64 02 67 02 64 03 64 04 67 02 67 00 64 05 a2 01 67 00 64 06 a2 01 64 02 64 | .....d.d.g.d.d.g.g.d...g.d...d.d |
| 3da0 | 04 67 02 64 07 9c 05 7c 00 ac 08 ab 02 00 00 00 00 00 00 7d 01 64 09 7c 01 5f 02 00 00 00 00 00 | .g.d...|...........}.d.|._...... |
| 3dc0 | 00 00 00 7c 01 53 00 29 0a 61 18 02 00 00 0a 20 20 20 20 52 65 74 75 72 6e 73 20 74 68 65 20 48 | ...|.S.).a.........Returns.the.H |
| 3de0 | 6f 75 73 65 20 67 72 61 70 68 20 28 73 71 75 61 72 65 20 77 69 74 68 20 74 72 69 61 6e 67 6c 65 | ouse.graph.(square.with.triangle |
| 3e00 | 20 6f 6e 20 74 6f 70 29 0a 0a 20 20 20 20 54 68 65 20 68 6f 75 73 65 20 67 72 61 70 68 20 69 73 | .on.top)......The.house.graph.is |
| 3e20 | 20 61 20 73 69 6d 70 6c 65 20 75 6e 64 69 72 65 63 74 65 64 20 67 72 61 70 68 20 77 69 74 68 0a | .a.simple.undirected.graph.with. |
| 3e40 | 20 20 20 20 35 20 6e 6f 64 65 73 20 61 6e 64 20 36 20 65 64 67 65 73 20 5b 31 5d 5f 2e 0a 0a 20 | ....5.nodes.and.6.edges.[1]_.... |
| 3e60 | 20 20 20 50 61 72 61 6d 65 74 65 72 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 | ...Parameters.....----------.... |
| 3e80 | 20 63 72 65 61 74 65 5f 75 73 69 6e 67 20 3a 20 4e 65 74 77 6f 72 6b 58 20 67 72 61 70 68 20 63 | .create_using.:.NetworkX.graph.c |
| 3ea0 | 6f 6e 73 74 72 75 63 74 6f 72 2c 20 6f 70 74 69 6f 6e 61 6c 20 28 64 65 66 61 75 6c 74 3d 6e 78 | onstructor,.optional.(default=nx |
| 3ec0 | 2e 47 72 61 70 68 29 0a 20 20 20 20 20 20 20 47 72 61 70 68 20 74 79 70 65 20 74 6f 20 63 72 65 | .Graph)........Graph.type.to.cre |
| 3ee0 | 61 74 65 2e 20 49 66 20 67 72 61 70 68 20 69 6e 73 74 61 6e 63 65 2c 20 74 68 65 6e 20 63 6c 65 | ate..If.graph.instance,.then.cle |
| 3f00 | 61 72 65 64 20 62 65 66 6f 72 65 20 70 6f 70 75 6c 61 74 65 64 2e 0a 0a 20 20 20 20 52 65 74 75 | ared.before.populated.......Retu |
| 3f20 | 72 6e 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 47 20 3a 20 6e 65 74 77 6f 72 6b 78 | rns.....-------.....G.:.networkx |
| 3f40 | 20 47 72 61 70 68 0a 20 20 20 20 20 20 20 20 48 6f 75 73 65 20 67 72 61 70 68 20 69 6e 20 74 68 | .Graph.........House.graph.in.th |
| 3f60 | 65 20 66 6f 72 6d 20 6f 66 20 61 20 73 71 75 61 72 65 20 77 69 74 68 20 61 20 74 72 69 61 6e 67 | e.form.of.a.square.with.a.triang |
| 3f80 | 6c 65 20 6f 6e 20 74 6f 70 0a 0a 20 20 20 20 52 65 66 65 72 65 6e 63 65 73 0a 20 20 20 20 2d 2d | le.on.top......References.....-- |
| 3fa0 | 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 2e 2e 20 5b 31 5d 20 68 74 74 70 73 3a 2f 2f 6d 61 74 68 | --------........[1].https://math |
| 3fc0 | 77 6f 72 6c 64 2e 77 6f 6c 66 72 61 6d 2e 63 6f 6d 2f 48 6f 75 73 65 47 72 61 70 68 2e 68 74 6d | world.wolfram.com/HouseGraph.htm |
| 3fe0 | 6c 0a 20 20 20 20 72 34 00 00 00 72 44 00 00 00 72 19 00 00 00 72 46 00 00 00 29 03 72 19 00 00 | l.....r4...rD...r....rF...).r... |
| 4000 | 00 72 46 00 00 00 72 47 00 00 00 a9 03 72 34 00 00 00 72 44 00 00 00 72 47 00 00 00 72 48 00 00 | .rF...rG.....r4...rD...rG...rH.. |
| 4020 | 00 72 24 00 00 00 7a 0b 48 6f 75 73 65 20 47 72 61 70 68 72 49 00 00 00 72 4b 00 00 00 73 02 00 | .r$...z.House.GraphrI...rK...s.. |
| 4040 | 00 00 20 20 72 2d 00 00 00 72 0c 00 00 00 72 0c 00 00 00 e4 01 00 00 73 3f 00 00 00 80 00 f4 2e | ....r-...r....r........s?....... |
| 4060 | 00 09 0b d7 08 1d d1 08 1d d8 0d 0e 90 01 88 46 98 01 98 31 90 76 a2 29 b2 09 b8 71 c0 21 b8 66 | ...............F...1.v.)...q.!.f |
| 4080 | d1 08 45 d8 15 21 f4 05 03 09 06 80 41 f0 08 00 0e 1b 80 41 84 46 d8 0b 0c 80 48 72 2f 00 00 00 | ..E..!......A......A.F....Hr/... |
| 40a0 | 63 01 00 00 00 00 00 00 00 00 00 00 00 04 00 00 00 03 00 00 00 f3 50 00 00 00 97 00 74 01 00 00 | c.....................P.....t... |
| 40c0 | 00 00 00 00 00 00 7c 00 ab 01 00 00 00 00 00 00 7d 01 7c 01 6a 03 00 00 00 00 00 00 00 00 00 00 | ......|.........}.|.j........... |
| 40e0 | 00 00 00 00 00 00 00 00 64 01 64 02 67 02 ab 01 00 00 00 00 00 00 01 00 64 03 7c 01 5f 02 00 00 | ........d.d.g...........d.|._... |
| 4100 | 00 00 00 00 00 00 7c 01 53 00 29 04 61 9d 02 00 00 0a 20 20 20 20 52 65 74 75 72 6e 73 20 74 68 | ......|.S.).a.........Returns.th |
| 4120 | 65 20 48 6f 75 73 65 20 67 72 61 70 68 20 77 69 74 68 20 61 20 63 72 6f 73 73 20 69 6e 73 69 64 | e.House.graph.with.a.cross.insid |
| 4140 | 65 20 74 68 65 20 68 6f 75 73 65 20 73 71 75 61 72 65 2e 0a 0a 20 20 20 20 54 68 65 20 48 6f 75 | e.the.house.square.......The.Hou |
| 4160 | 73 65 20 58 2d 67 72 61 70 68 20 69 73 20 74 68 65 20 48 6f 75 73 65 20 67 72 61 70 68 20 70 6c | se.X-graph.is.the.House.graph.pl |
| 4180 | 75 73 20 74 68 65 20 74 77 6f 20 65 64 67 65 73 20 63 6f 6e 6e 65 63 74 69 6e 67 20 64 69 61 67 | us.the.two.edges.connecting.diag |
| 41a0 | 6f 6e 61 6c 6c 79 0a 20 20 20 20 6f 70 70 6f 73 69 74 65 20 76 65 72 74 69 63 65 73 20 6f 66 20 | onally.....opposite.vertices.of. |
| 41c0 | 74 68 65 20 73 71 75 61 72 65 20 62 61 73 65 2e 20 49 74 20 69 73 20 61 6c 73 6f 20 6f 6e 65 20 | the.square.base..It.is.also.one. |
| 41e0 | 6f 66 20 74 68 65 20 74 77 6f 20 67 72 61 70 68 73 0a 20 20 20 20 6f 62 74 61 69 6e 65 64 20 62 | of.the.two.graphs.....obtained.b |
| 4200 | 79 20 72 65 6d 6f 76 69 6e 67 20 74 77 6f 20 65 64 67 65 73 20 66 72 6f 6d 20 74 68 65 20 70 65 | y.removing.two.edges.from.the.pe |
| 4220 | 6e 74 61 74 6f 70 65 20 67 72 61 70 68 20 5b 31 5d 5f 2e 0a 0a 20 20 20 20 50 61 72 61 6d 65 74 | ntatope.graph.[1]_.......Paramet |
| 4240 | 65 72 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 63 72 65 61 74 65 5f 75 73 | ers.....----------.....create_us |
| 4260 | 69 6e 67 20 3a 20 4e 65 74 77 6f 72 6b 58 20 67 72 61 70 68 20 63 6f 6e 73 74 72 75 63 74 6f 72 | ing.:.NetworkX.graph.constructor |
| 4280 | 2c 20 6f 70 74 69 6f 6e 61 6c 20 28 64 65 66 61 75 6c 74 3d 6e 78 2e 47 72 61 70 68 29 0a 20 20 | ,.optional.(default=nx.Graph)... |
| 42a0 | 20 20 20 20 20 47 72 61 70 68 20 74 79 70 65 20 74 6f 20 63 72 65 61 74 65 2e 20 49 66 20 67 72 | .....Graph.type.to.create..If.gr |
| 42c0 | 61 70 68 20 69 6e 73 74 61 6e 63 65 2c 20 74 68 65 6e 20 63 6c 65 61 72 65 64 20 62 65 66 6f 72 | aph.instance,.then.cleared.befor |
| 42e0 | 65 20 70 6f 70 75 6c 61 74 65 64 2e 0a 0a 20 20 20 20 52 65 74 75 72 6e 73 0a 20 20 20 20 2d 2d | e.populated.......Returns.....-- |
| 4300 | 2d 2d 2d 2d 2d 0a 20 20 20 20 47 20 3a 20 6e 65 74 77 6f 72 6b 78 20 47 72 61 70 68 0a 20 20 20 | -----.....G.:.networkx.Graph.... |
| 4320 | 20 20 20 20 20 48 6f 75 73 65 20 67 72 61 70 68 20 77 69 74 68 20 64 69 61 67 6f 6e 61 6c 20 76 | .....House.graph.with.diagonal.v |
| 4340 | 65 72 74 69 63 65 73 20 63 6f 6e 6e 65 63 74 65 64 0a 0a 20 20 20 20 52 65 66 65 72 65 6e 63 65 | ertices.connected......Reference |
| 4360 | 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 2e 2e 20 5b 31 5d 20 68 74 74 70 | s.....----------........[1].http |
| 4380 | 73 3a 2f 2f 6d 61 74 68 77 6f 72 6c 64 2e 77 6f 6c 66 72 61 6d 2e 63 6f 6d 2f 48 6f 75 73 65 47 | s://mathworld.wolfram.com/HouseG |
| 43a0 | 72 61 70 68 2e 68 74 6d 6c 0a 20 20 20 20 29 02 72 19 00 00 00 72 46 00 00 00 29 02 72 34 00 00 | raph.html.....).r....rF...).r4.. |
| 43c0 | 00 72 44 00 00 00 7a 19 48 6f 75 73 65 2d 77 69 74 68 2d 58 2d 69 6e 73 69 64 65 20 47 72 61 70 | .rD...z.House-with-X-inside.Grap |
| 43e0 | 68 29 03 72 0c 00 00 00 72 61 00 00 00 72 35 00 00 00 72 4b 00 00 00 73 02 00 00 00 20 20 72 2d | h).r....ra...r5...rK...s......r- |
| 4400 | 00 00 00 72 0d 00 00 00 72 0d 00 00 00 03 02 00 00 73 2d 00 00 00 80 00 f4 30 00 09 14 90 4c d3 | ...r....r........s-......0....L. |
| 4420 | 08 21 80 41 d8 04 05 d7 04 14 d1 04 14 90 66 98 66 d0 15 25 d4 04 26 d8 0d 28 80 41 84 46 d8 0b | .!.A..........f.f..%..&..(.A.F.. |
| 4440 | 0c 80 48 72 2f 00 00 00 63 01 00 00 00 00 00 00 00 00 00 00 00 0d 00 00 00 03 00 00 00 f3 7a 00 | ..Hr/...c.....................z. |
| 4460 | 00 00 97 00 74 01 00 00 00 00 00 00 00 00 6a 02 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 | ....t.........j................. |
| 4480 | 00 00 67 00 64 01 a2 01 67 00 64 02 a2 01 67 00 64 03 a2 01 67 00 64 04 a2 01 67 00 64 05 a2 01 | ..g.d...g.d...g.d...g.d...g.d... |
| 44a0 | 64 06 64 07 67 02 67 00 64 08 a2 01 64 09 67 01 64 0a 67 01 64 07 67 01 64 0b 9c 0a 7c 00 ac 0c | d.d.g.g.d...d.g.d.g.d.g.d...|... |
| 44c0 | ab 02 00 00 00 00 00 00 7d 01 64 0d 7c 01 5f 02 00 00 00 00 00 00 00 00 7c 01 53 00 29 0e 61 69 | ........}.d.|._.........|.S.).ai |
| 44e0 | 02 00 00 0a 20 20 20 20 52 65 74 75 72 6e 73 20 74 68 65 20 50 6c 61 74 6f 6e 69 63 20 49 63 6f | ........Returns.the.Platonic.Ico |
| 4500 | 73 61 68 65 64 72 61 6c 20 67 72 61 70 68 2e 0a 0a 20 20 20 20 54 68 65 20 69 63 6f 73 61 68 65 | sahedral.graph.......The.icosahe |
| 4520 | 64 72 61 6c 20 67 72 61 70 68 20 68 61 73 20 31 32 20 6e 6f 64 65 73 20 61 6e 64 20 33 30 20 65 | dral.graph.has.12.nodes.and.30.e |
| 4540 | 64 67 65 73 2e 20 49 74 20 69 73 20 61 20 50 6c 61 74 6f 6e 69 63 20 67 72 61 70 68 0a 20 20 20 | dges..It.is.a.Platonic.graph.... |
| 4560 | 20 77 68 6f 73 65 20 6e 6f 64 65 73 20 68 61 76 65 20 74 68 65 20 63 6f 6e 6e 65 63 74 69 76 69 | .whose.nodes.have.the.connectivi |
| 4580 | 74 79 20 6f 66 20 74 68 65 20 69 63 6f 73 61 68 65 64 72 6f 6e 2e 20 49 74 20 69 73 20 75 6e 64 | ty.of.the.icosahedron..It.is.und |
| 45a0 | 69 72 65 63 74 65 64 2c 0a 20 20 20 20 72 65 67 75 6c 61 72 20 61 6e 64 20 48 61 6d 69 6c 74 6f | irected,.....regular.and.Hamilto |
| 45c0 | 6e 69 61 6e 20 5b 31 5d 5f 2e 0a 0a 20 20 20 20 50 61 72 61 6d 65 74 65 72 73 0a 20 20 20 20 2d | nian.[1]_.......Parameters.....- |
| 45e0 | 2d 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 63 72 65 61 74 65 5f 75 73 69 6e 67 20 3a 20 4e 65 74 | ---------.....create_using.:.Net |
| 4600 | 77 6f 72 6b 58 20 67 72 61 70 68 20 63 6f 6e 73 74 72 75 63 74 6f 72 2c 20 6f 70 74 69 6f 6e 61 | workX.graph.constructor,.optiona |
| 4620 | 6c 20 28 64 65 66 61 75 6c 74 3d 6e 78 2e 47 72 61 70 68 29 0a 20 20 20 20 20 20 20 47 72 61 70 | l.(default=nx.Graph)........Grap |
| 4640 | 68 20 74 79 70 65 20 74 6f 20 63 72 65 61 74 65 2e 20 49 66 20 67 72 61 70 68 20 69 6e 73 74 61 | h.type.to.create..If.graph.insta |
| 4660 | 6e 63 65 2c 20 74 68 65 6e 20 63 6c 65 61 72 65 64 20 62 65 66 6f 72 65 20 70 6f 70 75 6c 61 74 | nce,.then.cleared.before.populat |
| 4680 | 65 64 2e 0a 0a 20 20 20 20 52 65 74 75 72 6e 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 | ed.......Returns.....-------.... |
| 46a0 | 20 47 20 3a 20 6e 65 74 77 6f 72 6b 78 20 47 72 61 70 68 0a 20 20 20 20 20 20 20 20 49 63 6f 73 | .G.:.networkx.Graph.........Icos |
| 46c0 | 61 68 65 64 72 61 6c 20 67 72 61 70 68 20 77 69 74 68 20 31 32 20 6e 6f 64 65 73 20 61 6e 64 20 | ahedral.graph.with.12.nodes.and. |
| 46e0 | 33 30 20 65 64 67 65 73 2e 0a 0a 20 20 20 20 52 65 66 65 72 65 6e 63 65 73 0a 20 20 20 20 2d 2d | 30.edges.......References.....-- |
| 4700 | 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 2e 2e 20 5b 31 5d 20 68 74 74 70 73 3a 2f 2f 6d 61 74 68 | --------........[1].https://math |
| 4720 | 77 6f 72 6c 64 2e 77 6f 6c 66 72 61 6d 2e 63 6f 6d 2f 49 63 6f 73 61 68 65 64 72 61 6c 47 72 61 | world.wolfram.com/IcosahedralGra |
| 4740 | 70 68 2e 68 74 6d 6c 0a 20 20 20 20 29 05 72 34 00 00 00 72 50 00 00 00 72 51 00 00 00 72 52 00 | ph.html.....).r4...rP...rQ...rR. |
| 4760 | 00 00 72 54 00 00 00 29 04 72 44 00 00 00 72 50 00 00 00 72 4d 00 00 00 72 52 00 00 00 29 04 72 | ..rT...).rD...rP...rM...rR...).r |
| 4780 | 46 00 00 00 72 4d 00 00 00 72 52 00 00 00 72 4e 00 00 00 29 04 72 47 00 00 00 72 4d 00 00 00 72 | F...rM...rR...rN...).rG...rM...r |
| 47a0 | 4e 00 00 00 72 53 00 00 00 29 04 72 50 00 00 00 72 4d 00 00 00 72 53 00 00 00 72 54 00 00 00 72 | N...rS...).rP...rM...rS...rT...r |
| 47c0 | 4d 00 00 00 72 54 00 00 00 29 04 72 52 00 00 00 72 4e 00 00 00 72 53 00 00 00 72 54 00 00 00 72 | M...rT...).rR...rN...rS...rT...r |
| 47e0 | 4e 00 00 00 72 53 00 00 00 29 0a 72 19 00 00 00 72 34 00 00 00 72 44 00 00 00 72 46 00 00 00 72 | N...rS...).r....r4...rD...rF...r |
| 4800 | 47 00 00 00 72 50 00 00 00 72 51 00 00 00 72 52 00 00 00 72 4e 00 00 00 72 53 00 00 00 72 24 00 | G...rP...rQ...rR...rN...rS...r$. |
| 4820 | 00 00 7a 1a 50 6c 61 74 6f 6e 69 63 20 49 63 6f 73 61 68 65 64 72 61 6c 20 47 72 61 70 68 72 49 | ..z.Platonic.Icosahedral.GraphrI |
| 4840 | 00 00 00 72 4b 00 00 00 73 02 00 00 00 20 20 72 2d 00 00 00 72 0e 00 00 00 72 0e 00 00 00 21 02 | ...rK...s......r-...r....r....!. |
| 4860 | 00 00 73 54 00 00 00 80 00 f4 30 00 09 0b d7 08 1d d1 08 1d e2 0f 1f da 0f 1b da 0f 1b da 0f 1c | ..sT......0..................... |
| 4880 | da 0f 1d d8 10 11 90 32 88 77 da 0f 1d d8 10 11 88 73 d8 10 12 88 74 d8 11 13 90 04 f1 15 0b 09 | .......2.w.......s....t......... |
| 48a0 | 0a f0 18 00 16 22 f4 1b 0e 09 06 80 41 f0 1e 00 0e 2a 80 41 84 46 d8 0b 0c 80 48 72 2f 00 00 00 | ....."......A....*.A.F....Hr/... |
| 48c0 | 63 01 00 00 00 00 00 00 00 00 00 00 00 0d 00 00 00 03 00 00 00 f3 7e 00 00 00 97 00 74 01 00 00 | c.....................~.....t... |
| 48e0 | 00 00 00 00 00 00 6a 02 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 67 00 64 01 a2 01 | ......j...................g.d... |
| 4900 | 67 00 64 02 a2 01 67 00 64 03 a2 01 67 00 64 04 a2 01 67 00 64 05 a2 01 67 00 64 06 a2 01 67 00 | g.d...g.d...g.d...g.d...g.d...g. |
| 4920 | 64 07 a2 01 67 00 64 08 a2 01 64 09 64 0a 67 02 64 0b 67 01 64 0c 9c 0a 7c 00 ac 0d ab 02 00 00 | d...g.d...d.d.g.d.g.d...|....... |
| 4940 | 00 00 00 00 7d 01 64 0e 7c 01 5f 02 00 00 00 00 00 00 00 00 7c 01 53 00 29 0f 75 6d 03 00 00 0a | ....}.d.|._.........|.S.).um.... |
| 4960 | 20 20 20 20 52 65 74 75 72 6e 73 20 74 68 65 20 4b 72 61 63 6b 68 61 72 64 74 20 4b 69 74 65 20 | ....Returns.the.Krackhardt.Kite. |
| 4980 | 53 6f 63 69 61 6c 20 4e 65 74 77 6f 72 6b 2e 0a 0a 20 20 20 20 41 20 31 30 20 61 63 74 6f 72 20 | Social.Network.......A.10.actor. |
| 49a0 | 73 6f 63 69 61 6c 20 6e 65 74 77 6f 72 6b 20 69 6e 74 72 6f 64 75 63 65 64 20 62 79 20 44 61 76 | social.network.introduced.by.Dav |
| 49c0 | 69 64 20 4b 72 61 63 6b 68 61 72 64 74 0a 20 20 20 20 74 6f 20 69 6c 6c 75 73 74 72 61 74 65 20 | id.Krackhardt.....to.illustrate. |
| 49e0 | 64 69 66 66 65 72 65 6e 74 20 63 65 6e 74 72 61 6c 69 74 79 20 6d 65 61 73 75 72 65 73 20 5b 31 | different.centrality.measures.[1 |
| 4a00 | 5d 5f 2e 0a 0a 20 20 20 20 50 61 72 61 6d 65 74 65 72 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d | ]_.......Parameters.....-------- |
| 4a20 | 2d 2d 0a 20 20 20 20 63 72 65 61 74 65 5f 75 73 69 6e 67 20 3a 20 4e 65 74 77 6f 72 6b 58 20 67 | --.....create_using.:.NetworkX.g |
| 4a40 | 72 61 70 68 20 63 6f 6e 73 74 72 75 63 74 6f 72 2c 20 6f 70 74 69 6f 6e 61 6c 20 28 64 65 66 61 | raph.constructor,.optional.(defa |
| 4a60 | 75 6c 74 3d 6e 78 2e 47 72 61 70 68 29 0a 20 20 20 20 20 20 20 47 72 61 70 68 20 74 79 70 65 20 | ult=nx.Graph)........Graph.type. |
| 4a80 | 74 6f 20 63 72 65 61 74 65 2e 20 49 66 20 67 72 61 70 68 20 69 6e 73 74 61 6e 63 65 2c 20 74 68 | to.create..If.graph.instance,.th |
| 4aa0 | 65 6e 20 63 6c 65 61 72 65 64 20 62 65 66 6f 72 65 20 70 6f 70 75 6c 61 74 65 64 2e 0a 0a 20 20 | en.cleared.before.populated..... |
| 4ac0 | 20 20 52 65 74 75 72 6e 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 47 20 3a 20 6e 65 | ..Returns.....-------.....G.:.ne |
| 4ae0 | 74 77 6f 72 6b 78 20 47 72 61 70 68 0a 20 20 20 20 20 20 20 20 4b 72 61 63 6b 68 61 72 64 74 20 | tworkx.Graph.........Krackhardt. |
| 4b00 | 4b 69 74 65 20 67 72 61 70 68 20 77 69 74 68 20 31 30 20 6e 6f 64 65 73 20 61 6e 64 20 31 38 20 | Kite.graph.with.10.nodes.and.18. |
| 4b20 | 65 64 67 65 73 0a 0a 20 20 20 20 4e 6f 74 65 73 0a 20 20 20 20 2d 2d 2d 2d 2d 0a 20 20 20 20 54 | edges......Notes.....-----.....T |
| 4b40 | 68 65 20 74 72 61 64 69 74 69 6f 6e 61 6c 20 6c 61 62 65 6c 69 6e 67 20 69 73 3a 0a 20 20 20 20 | he.traditional.labeling.is:..... |
| 4b60 | 41 6e 64 72 65 3d 31 2c 20 42 65 76 65 72 6c 65 79 3d 32 2c 20 43 61 72 6f 6c 3d 33 2c 20 44 69 | Andre=1,.Beverley=2,.Carol=3,.Di |
| 4b80 | 61 6e 65 3d 34 2c 0a 20 20 20 20 45 64 3d 35 2c 20 46 65 72 6e 61 6e 64 6f 3d 36 2c 20 47 61 72 | ane=4,.....Ed=5,.Fernando=6,.Gar |
| 4ba0 | 74 68 3d 37 2c 20 48 65 61 74 68 65 72 3d 38 2c 20 49 6b 65 3d 39 2c 20 4a 61 6e 65 3d 31 30 2e | th=7,.Heather=8,.Ike=9,.Jane=10. |
| 4bc0 | 0a 0a 20 20 20 20 52 65 66 65 72 65 6e 63 65 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 0a | ......References.....----------. |
| 4be0 | 20 20 20 20 2e 2e 20 5b 31 5d 20 4b 72 61 63 6b 68 61 72 64 74 2c 20 44 61 76 69 64 2e 20 22 41 | .......[1].Krackhardt,.David.."A |
| 4c00 | 73 73 65 73 73 69 6e 67 20 74 68 65 20 50 6f 6c 69 74 69 63 61 6c 20 4c 61 6e 64 73 63 61 70 65 | ssessing.the.Political.Landscape |
| 4c20 | 3a 20 53 74 72 75 63 74 75 72 65 2c 0a 20 20 20 20 20 20 20 43 6f 67 6e 69 74 69 6f 6e 2c 20 61 | :.Structure,........Cognition,.a |
| 4c40 | 6e 64 20 50 6f 77 65 72 20 69 6e 20 4f 72 67 61 6e 69 7a 61 74 69 6f 6e 73 22 2e 20 41 64 6d 69 | nd.Power.in.Organizations"..Admi |
| 4c60 | 6e 69 73 74 72 61 74 69 76 65 20 53 63 69 65 6e 63 65 20 51 75 61 72 74 65 72 6c 79 2e 0a 20 20 | nistrative.Science.Quarterly.... |
| 4c80 | 20 20 20 20 20 33 35 20 28 32 29 3a 20 33 34 32 e2 80 93 33 36 39 2e 20 64 6f 69 3a 31 30 2e 32 | .....35.(2):.342...369..doi:10.2 |
| 4ca0 | 33 30 37 2f 32 33 39 33 33 39 34 2e 20 4a 53 54 4f 52 20 32 33 39 33 33 39 34 2e 20 4a 75 6e 65 | 307/2393394..JSTOR.2393394..June |
| 4cc0 | 20 31 39 39 30 2e 0a 0a 20 20 20 20 29 04 72 34 00 00 00 72 44 00 00 00 72 46 00 00 00 72 50 00 | .1990.......).r4...rD...rF...rP. |
| 4ce0 | 00 00 29 04 72 19 00 00 00 72 46 00 00 00 72 47 00 00 00 72 4d 00 00 00 29 03 72 19 00 00 00 72 | ..).r....rF...rG...rM...).r....r |
| 4d00 | 46 00 00 00 72 50 00 00 00 29 06 72 19 00 00 00 72 34 00 00 00 72 44 00 00 00 72 47 00 00 00 72 | F...rP...).r....r4...rD...rG...r |
| 4d20 | 50 00 00 00 72 4d 00 00 00 72 57 00 00 00 29 05 72 19 00 00 00 72 44 00 00 00 72 46 00 00 00 72 | P...rM...rW...).r....rD...rF...r |
| 4d40 | 4d 00 00 00 72 51 00 00 00 29 05 72 34 00 00 00 72 46 00 00 00 72 47 00 00 00 72 50 00 00 00 72 | M...rQ...).r4...rF...rG...rP...r |
| 4d60 | 51 00 00 00 29 03 72 50 00 00 00 72 4d 00 00 00 72 52 00 00 00 72 51 00 00 00 72 4e 00 00 00 72 | Q...).rP...rM...rR...rQ...rN...r |
| 4d80 | 52 00 00 00 72 55 00 00 00 72 24 00 00 00 7a 1e 4b 72 61 63 6b 68 61 72 64 74 20 4b 69 74 65 20 | R...rU...r$...z.Krackhardt.Kite. |
| 4da0 | 53 6f 63 69 61 6c 20 4e 65 74 77 6f 72 6b 72 49 00 00 00 72 4b 00 00 00 73 02 00 00 00 20 20 72 | Social.NetworkrI...rK...s......r |
| 4dc0 | 2d 00 00 00 72 0f 00 00 00 72 0f 00 00 00 4c 02 00 00 73 51 00 00 00 80 00 f4 40 01 00 09 0b d7 | -...r....r....L...sQ......@..... |
| 4de0 | 08 1d d1 08 1d e2 0f 1b da 0f 1b da 0f 18 da 0f 21 da 0f 18 da 0f 1e da 0f 1e da 0f 18 d8 10 11 | ................!............... |
| 4e00 | 90 31 88 76 d8 10 11 88 73 f1 15 0b 09 0a f0 18 00 16 22 f4 1b 0e 09 06 80 41 f0 1e 00 0e 2e 80 | .1.v....s........."......A...... |
| 4e20 | 41 84 46 d8 0b 0c 80 48 72 2f 00 00 00 63 01 00 00 00 00 00 00 00 00 00 00 00 06 00 00 00 03 00 | A.F....Hr/...c.................. |
| 4e40 | 00 00 f3 34 00 00 00 97 00 74 01 00 00 00 00 00 00 00 00 64 01 64 02 64 03 67 02 64 04 7c 00 ab | ...4.....t.........d.d.d.g.d.|.. |
| 4e60 | 04 00 00 00 00 00 00 7d 01 64 05 7c 01 5f 01 00 00 00 00 00 00 00 00 7c 01 53 00 29 06 75 46 02 | .......}.d.|._.........|.S.).uF. |
| 4e80 | 00 00 0a 20 20 20 20 52 65 74 75 72 6e 73 20 74 68 65 20 4d 6f 65 62 69 75 73 2d 4b 61 6e 74 6f | .......Returns.the.Moebius-Kanto |
| 4ea0 | 72 20 67 72 61 70 68 2e 0a 0a 20 20 20 20 54 68 65 20 4d c3 b6 62 69 75 73 2d 4b 61 6e 74 6f 72 | r.graph.......The.M..bius-Kantor |
| 4ec0 | 20 67 72 61 70 68 20 69 73 20 74 68 65 20 63 75 62 69 63 20 73 79 6d 6d 65 74 72 69 63 20 67 72 | .graph.is.the.cubic.symmetric.gr |
| 4ee0 | 61 70 68 20 6f 6e 20 31 36 20 6e 6f 64 65 73 2e 0a 20 20 20 20 49 74 73 20 4c 43 46 20 6e 6f 74 | aph.on.16.nodes......Its.LCF.not |
| 4f00 | 61 74 69 6f 6e 20 69 73 20 5b 35 2c 2d 35 5d 5e 38 2c 20 61 6e 64 20 69 74 20 69 73 20 69 73 6f | ation.is.[5,-5]^8,.and.it.is.iso |
| 4f20 | 6d 6f 72 70 68 69 63 20 74 6f 20 74 68 65 20 67 65 6e 65 72 61 6c 69 7a 65 64 0a 20 20 20 20 50 | morphic.to.the.generalized.....P |
| 4f40 | 65 74 65 72 73 65 6e 20 67 72 61 70 68 20 5b 31 5d 5f 2e 0a 0a 20 20 20 20 50 61 72 61 6d 65 74 | etersen.graph.[1]_.......Paramet |
| 4f60 | 65 72 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 63 72 65 61 74 65 5f 75 73 | ers.....----------.....create_us |
| 4f80 | 69 6e 67 20 3a 20 4e 65 74 77 6f 72 6b 58 20 67 72 61 70 68 20 63 6f 6e 73 74 72 75 63 74 6f 72 | ing.:.NetworkX.graph.constructor |
| 4fa0 | 2c 20 6f 70 74 69 6f 6e 61 6c 20 28 64 65 66 61 75 6c 74 3d 6e 78 2e 47 72 61 70 68 29 0a 20 20 | ,.optional.(default=nx.Graph)... |
| 4fc0 | 20 20 20 20 20 47 72 61 70 68 20 74 79 70 65 20 74 6f 20 63 72 65 61 74 65 2e 20 49 66 20 67 72 | .....Graph.type.to.create..If.gr |
| 4fe0 | 61 70 68 20 69 6e 73 74 61 6e 63 65 2c 20 74 68 65 6e 20 63 6c 65 61 72 65 64 20 62 65 66 6f 72 | aph.instance,.then.cleared.befor |
| 5000 | 65 20 70 6f 70 75 6c 61 74 65 64 2e 0a 0a 20 20 20 20 52 65 74 75 72 6e 73 0a 20 20 20 20 2d 2d | e.populated.......Returns.....-- |
| 5020 | 2d 2d 2d 2d 2d 0a 20 20 20 20 47 20 3a 20 6e 65 74 77 6f 72 6b 78 20 47 72 61 70 68 0a 20 20 20 | -----.....G.:.networkx.Graph.... |
| 5040 | 20 20 20 20 20 4d 6f 65 62 69 75 73 2d 4b 61 6e 74 6f 72 20 67 72 61 70 68 0a 0a 20 20 20 20 52 | .....Moebius-Kantor.graph......R |
| 5060 | 65 66 65 72 65 6e 63 65 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 2e 2e 20 | eferences.....----------........ |
| 5080 | 5b 31 5d 20 68 74 74 70 73 3a 2f 2f 65 6e 2e 77 69 6b 69 70 65 64 69 61 2e 6f 72 67 2f 77 69 6b | [1].https://en.wikipedia.org/wik |
| 50a0 | 69 2f 4d 25 43 33 25 42 36 62 69 75 73 25 45 32 25 38 30 25 39 33 4b 61 6e 74 6f 72 5f 67 72 61 | i/M%C3%B6bius%E2%80%93Kantor_gra |
| 50c0 | 70 68 0a 0a 20 20 20 20 e9 10 00 00 00 72 50 00 00 00 72 5a 00 00 00 72 52 00 00 00 7a 14 4d 6f | ph...........rP...rZ...rR...z.Mo |
| 50e0 | 65 62 69 75 73 2d 4b 61 6e 74 6f 72 20 47 72 61 70 68 72 5b 00 00 00 72 4b 00 00 00 73 02 00 00 | ebius-Kantor.Graphr[...rK...s... |
| 5100 | 00 20 20 72 2d 00 00 00 72 10 00 00 00 72 10 00 00 00 7f 02 00 00 73 24 00 00 00 80 00 f4 30 00 | ...r-...r....r........s$......0. |
| 5120 | 09 12 90 22 90 71 98 22 90 67 98 71 a0 2c d3 08 2f 80 41 d8 0d 23 80 41 84 46 d8 0b 0c 80 48 72 | ...".q.".g.q.,../.A..#.A.F....Hr |
| 5140 | 2f 00 00 00 63 01 00 00 00 00 00 00 00 00 00 00 00 08 00 00 00 03 00 00 00 f3 60 00 00 00 97 00 | /...c.....................`..... |
| 5160 | 74 01 00 00 00 00 00 00 00 00 6a 02 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 67 00 | t.........j...................g. |
| 5180 | 64 01 a2 01 67 00 64 02 a2 01 64 03 64 04 67 02 64 03 64 04 67 02 64 04 67 01 64 05 9c 05 7c 00 | d...g.d...d.d.g.d.d.g.d.g.d...|. |
| 51a0 | ac 06 ab 02 00 00 00 00 00 00 7d 01 64 07 7c 01 5f 02 00 00 00 00 00 00 00 00 7c 01 53 00 29 08 | ..........}.d.|._.........|.S.). |
| 51c0 | 61 3f 03 00 00 0a 20 20 20 20 52 65 74 75 72 6e 73 20 74 68 65 20 50 6c 61 74 6f 6e 69 63 20 4f | a?........Returns.the.Platonic.O |
| 51e0 | 63 74 61 68 65 64 72 61 6c 20 67 72 61 70 68 2e 0a 0a 20 20 20 20 54 68 65 20 6f 63 74 61 68 65 | ctahedral.graph.......The.octahe |
| 5200 | 64 72 61 6c 20 67 72 61 70 68 20 69 73 20 74 68 65 20 36 2d 6e 6f 64 65 20 31 32 2d 65 64 67 65 | dral.graph.is.the.6-node.12-edge |
| 5220 | 20 50 6c 61 74 6f 6e 69 63 20 67 72 61 70 68 20 68 61 76 69 6e 67 20 74 68 65 0a 20 20 20 20 63 | .Platonic.graph.having.the.....c |
| 5240 | 6f 6e 6e 65 63 74 69 76 69 74 79 20 6f 66 20 74 68 65 20 6f 63 74 61 68 65 64 72 6f 6e 20 5b 31 | onnectivity.of.the.octahedron.[1 |
| 5260 | 5d 5f 2e 20 49 66 20 36 20 63 6f 75 70 6c 65 73 20 67 6f 20 74 6f 20 61 20 70 61 72 74 79 2c 0a | ]_..If.6.couples.go.to.a.party,. |
| 5280 | 20 20 20 20 61 6e 64 20 65 61 63 68 20 70 65 72 73 6f 6e 20 73 68 61 6b 65 73 20 68 61 6e 64 73 | ....and.each.person.shakes.hands |
| 52a0 | 20 77 69 74 68 20 65 76 65 72 79 20 70 65 72 73 6f 6e 20 65 78 63 65 70 74 20 68 69 73 20 6f 72 | .with.every.person.except.his.or |
| 52c0 | 20 68 65 72 20 70 61 72 74 6e 65 72 2c 0a 20 20 20 20 74 68 65 6e 20 74 68 69 73 20 67 72 61 70 | .her.partner,.....then.this.grap |
| 52e0 | 68 20 64 65 73 63 72 69 62 65 73 20 74 68 65 20 73 65 74 20 6f 66 20 68 61 6e 64 73 68 61 6b 65 | h.describes.the.set.of.handshake |
| 5300 | 73 20 74 68 61 74 20 74 61 6b 65 20 70 6c 61 63 65 3b 0a 20 20 20 20 66 6f 72 20 74 68 69 73 20 | s.that.take.place;.....for.this. |
| 5320 | 72 65 61 73 6f 6e 20 69 74 20 69 73 20 61 6c 73 6f 20 63 61 6c 6c 65 64 20 74 68 65 20 63 6f 63 | reason.it.is.also.called.the.coc |
| 5340 | 6b 74 61 69 6c 20 70 61 72 74 79 20 67 72 61 70 68 20 5b 32 5d 5f 2e 0a 0a 20 20 20 20 50 61 72 | ktail.party.graph.[2]_.......Par |
| 5360 | 61 6d 65 74 65 72 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 63 72 65 61 74 | ameters.....----------.....creat |
| 5380 | 65 5f 75 73 69 6e 67 20 3a 20 4e 65 74 77 6f 72 6b 58 20 67 72 61 70 68 20 63 6f 6e 73 74 72 75 | e_using.:.NetworkX.graph.constru |
| 53a0 | 63 74 6f 72 2c 20 6f 70 74 69 6f 6e 61 6c 20 28 64 65 66 61 75 6c 74 3d 6e 78 2e 47 72 61 70 68 | ctor,.optional.(default=nx.Graph |
| 53c0 | 29 0a 20 20 20 20 20 20 20 47 72 61 70 68 20 74 79 70 65 20 74 6f 20 63 72 65 61 74 65 2e 20 49 | )........Graph.type.to.create..I |
| 53e0 | 66 20 67 72 61 70 68 20 69 6e 73 74 61 6e 63 65 2c 20 74 68 65 6e 20 63 6c 65 61 72 65 64 20 62 | f.graph.instance,.then.cleared.b |
| 5400 | 65 66 6f 72 65 20 70 6f 70 75 6c 61 74 65 64 2e 0a 0a 20 20 20 20 52 65 74 75 72 6e 73 0a 20 20 | efore.populated.......Returns... |
| 5420 | 20 20 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 47 20 3a 20 6e 65 74 77 6f 72 6b 78 20 47 72 61 70 68 | ..-------.....G.:.networkx.Graph |
| 5440 | 0a 20 20 20 20 20 20 20 20 4f 63 74 61 68 65 64 72 61 6c 20 67 72 61 70 68 0a 0a 20 20 20 20 52 | .........Octahedral.graph......R |
| 5460 | 65 66 65 72 65 6e 63 65 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 2e 2e 20 | eferences.....----------........ |
| 5480 | 5b 31 5d 20 68 74 74 70 73 3a 2f 2f 6d 61 74 68 77 6f 72 6c 64 2e 77 6f 6c 66 72 61 6d 2e 63 6f | [1].https://mathworld.wolfram.co |
| 54a0 | 6d 2f 4f 63 74 61 68 65 64 72 61 6c 47 72 61 70 68 2e 68 74 6d 6c 0a 20 20 20 20 2e 2e 20 5b 32 | m/OctahedralGraph.html........[2 |
| 54c0 | 5d 20 68 74 74 70 73 3a 2f 2f 65 6e 2e 77 69 6b 69 70 65 64 69 61 2e 6f 72 67 2f 77 69 6b 69 2f | ].https://en.wikipedia.org/wiki/ |
| 54e0 | 54 75 72 25 43 33 25 41 31 6e 5f 67 72 61 70 68 23 53 70 65 63 69 61 6c 5f 63 61 73 65 73 0a 0a | Tur%C3%A1n_graph#Special_cases.. |
| 5500 | 20 20 20 20 29 04 72 34 00 00 00 72 44 00 00 00 72 46 00 00 00 72 47 00 00 00 29 03 72 44 00 00 | ....).r4...rD...rF...rG...).rD.. |
| 5520 | 00 72 46 00 00 00 72 50 00 00 00 72 47 00 00 00 72 50 00 00 00 72 48 00 00 00 72 24 00 00 00 7a | .rF...rP...rG...rP...rH...r$...z |
| 5540 | 19 50 6c 61 74 6f 6e 69 63 20 4f 63 74 61 68 65 64 72 61 6c 20 47 72 61 70 68 72 49 00 00 00 72 | .Platonic.Octahedral.GraphrI...r |
| 5560 | 4b 00 00 00 73 02 00 00 00 20 20 72 2d 00 00 00 72 11 00 00 00 72 11 00 00 00 9c 02 00 00 73 3d | K...s......r-...r....r........s= |
| 5580 | 00 00 00 80 00 f4 38 00 09 0b d7 08 1d d1 08 1d da 0c 18 9a 59 a8 41 a8 71 a8 36 b0 71 b8 21 b0 | ......8.............Y.A.q.6.q.!. |
| 55a0 | 66 c0 21 c0 13 d1 08 45 d8 15 21 f4 05 03 09 06 80 41 f0 08 00 0e 29 80 41 84 46 d8 0b 0c 80 48 | f.!....E..!......A....).A.F....H |
| 55c0 | 72 2f 00 00 00 63 00 00 00 00 00 00 00 00 00 00 00 00 05 00 00 00 03 00 00 00 f3 32 00 00 00 97 | r/...c.....................2.... |
| 55e0 | 00 74 01 00 00 00 00 00 00 00 00 64 01 67 00 64 02 a2 01 64 03 ab 03 00 00 00 00 00 00 7d 00 64 | .t.........d.g.d...d.........}.d |
| 5600 | 04 7c 00 5f 01 00 00 00 00 00 00 00 00 7c 00 53 00 29 05 61 78 01 00 00 0a 20 20 20 20 52 65 74 | .|._.........|.S.).ax........Ret |
| 5620 | 75 72 6e 73 20 74 68 65 20 50 61 70 70 75 73 20 67 72 61 70 68 2e 0a 0a 20 20 20 20 54 68 65 20 | urns.the.Pappus.graph.......The. |
| 5640 | 50 61 70 70 75 73 20 67 72 61 70 68 20 69 73 20 61 20 63 75 62 69 63 20 73 79 6d 6d 65 74 72 69 | Pappus.graph.is.a.cubic.symmetri |
| 5660 | 63 20 64 69 73 74 61 6e 63 65 2d 72 65 67 75 6c 61 72 20 67 72 61 70 68 20 77 69 74 68 20 31 38 | c.distance-regular.graph.with.18 |
| 5680 | 20 6e 6f 64 65 73 0a 20 20 20 20 61 6e 64 20 32 37 20 65 64 67 65 73 2e 20 49 74 20 69 73 20 48 | .nodes.....and.27.edges..It.is.H |
| 56a0 | 61 6d 69 6c 74 6f 6e 69 61 6e 20 61 6e 64 20 63 61 6e 20 62 65 20 72 65 70 72 65 73 65 6e 74 65 | amiltonian.and.can.be.represente |
| 56c0 | 64 20 69 6e 20 4c 43 46 20 6e 6f 74 61 74 69 6f 6e 20 61 73 0a 20 20 20 20 5b 35 2c 37 2c 2d 37 | d.in.LCF.notation.as.....[5,7,-7 |
| 56e0 | 2c 37 2c 2d 37 2c 2d 35 5d 5e 33 20 5b 31 5d 5f 2e 0a 0a 20 20 20 20 52 65 74 75 72 6e 73 0a 20 | ,7,-7,-5]^3.[1]_.......Returns.. |
| 5700 | 20 20 20 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 47 20 3a 20 6e 65 74 77 6f 72 6b 78 20 47 72 61 70 | ...-------.....G.:.networkx.Grap |
| 5720 | 68 0a 20 20 20 20 20 20 20 20 50 61 70 70 75 73 20 67 72 61 70 68 0a 0a 20 20 20 20 52 65 66 65 | h.........Pappus.graph......Refe |
| 5740 | 72 65 6e 63 65 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 2e 2e 20 5b 31 5d | rences.....----------........[1] |
| 5760 | 20 68 74 74 70 73 3a 2f 2f 65 6e 2e 77 69 6b 69 70 65 64 69 61 2e 6f 72 67 2f 77 69 6b 69 2f 50 | .https://en.wikipedia.org/wiki/P |
| 5780 | 61 70 70 75 73 5f 67 72 61 70 68 0a 20 20 20 20 e9 12 00 00 00 29 06 72 50 00 00 00 72 51 00 00 | appus_graph..........).rP...rQ.. |
| 57a0 | 00 72 5f 00 00 00 72 51 00 00 00 72 5f 00 00 00 72 5a 00 00 00 72 46 00 00 00 7a 0c 50 61 70 70 | .r_...rQ...r_...rZ...rF...z.Papp |
| 57c0 | 75 73 20 47 72 61 70 68 72 5b 00 00 00 29 01 72 2b 00 00 00 73 01 00 00 00 20 72 2d 00 00 00 72 | us.Graphr[...).r+...s.....r-...r |
| 57e0 | 12 00 00 00 72 12 00 00 00 c0 02 00 00 73 1f 00 00 00 80 00 f4 24 00 09 12 90 22 d2 16 2b a8 51 | ....r........s.......$...."..+.Q |
| 5800 | d3 08 2f 80 41 d8 0d 1b 80 41 84 46 d8 0b 0c 80 48 72 2f 00 00 00 63 01 00 00 00 00 00 00 00 00 | ../.A....A.F....Hr/...c......... |
| 5820 | 00 00 00 0d 00 00 00 03 00 00 00 f3 80 00 00 00 97 00 74 01 00 00 00 00 00 00 00 00 6a 02 00 00 | ..................t.........j... |
| 5840 | 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 67 00 64 01 a2 01 67 00 64 02 a2 01 67 00 64 03 | ................g.d...g.d...g.d. |
| 5860 | a2 01 67 00 64 04 a2 01 67 00 64 05 a2 01 67 00 64 06 a2 01 67 00 64 07 a2 01 67 00 64 08 a2 01 | ..g.d...g.d...g.d...g.d...g.d... |
| 5880 | 67 00 64 09 a2 01 67 00 64 0a a2 01 64 0b 9c 0a 7c 00 ac 0c ab 02 00 00 00 00 00 00 7d 01 64 0d | g.d...g.d...d...|...........}.d. |
| 58a0 | 7c 01 5f 02 00 00 00 00 00 00 00 00 7c 01 53 00 29 0e 61 cc 02 00 00 0a 20 20 20 20 52 65 74 75 | |._.........|.S.).a.........Retu |
| 58c0 | 72 6e 73 20 74 68 65 20 50 65 74 65 72 73 65 6e 20 67 72 61 70 68 2e 0a 0a 20 20 20 20 54 68 65 | rns.the.Petersen.graph.......The |
| 58e0 | 20 50 65 74 65 72 73 6f 6e 20 67 72 61 70 68 20 69 73 20 61 20 63 75 62 69 63 2c 20 75 6e 64 69 | .Peterson.graph.is.a.cubic,.undi |
| 5900 | 72 65 63 74 65 64 20 67 72 61 70 68 20 77 69 74 68 20 31 30 20 6e 6f 64 65 73 20 61 6e 64 20 31 | rected.graph.with.10.nodes.and.1 |
| 5920 | 35 20 65 64 67 65 73 20 5b 31 5d 5f 2e 0a 20 20 20 20 4a 75 6c 69 75 73 20 50 65 74 65 72 73 65 | 5.edges.[1]_......Julius.Peterse |
| 5940 | 6e 20 63 6f 6e 73 74 72 75 63 74 65 64 20 74 68 65 20 67 72 61 70 68 20 61 73 20 74 68 65 20 73 | n.constructed.the.graph.as.the.s |
| 5960 | 6d 61 6c 6c 65 73 74 20 63 6f 75 6e 74 65 72 65 78 61 6d 70 6c 65 0a 20 20 20 20 61 67 61 69 6e | mallest.counterexample.....again |
| 5980 | 73 74 20 74 68 65 20 63 6c 61 69 6d 20 74 68 61 74 20 61 20 63 6f 6e 6e 65 63 74 65 64 20 62 72 | st.the.claim.that.a.connected.br |
| 59a0 | 69 64 67 65 6c 65 73 73 20 63 75 62 69 63 20 67 72 61 70 68 0a 20 20 20 20 68 61 73 20 61 6e 20 | idgeless.cubic.graph.....has.an. |
| 59c0 | 65 64 67 65 20 63 6f 6c 6f 75 72 69 6e 67 20 77 69 74 68 20 74 68 72 65 65 20 63 6f 6c 6f 75 72 | edge.colouring.with.three.colour |
| 59e0 | 73 20 5b 32 5d 5f 2e 0a 0a 20 20 20 20 50 61 72 61 6d 65 74 65 72 73 0a 20 20 20 20 2d 2d 2d 2d | s.[2]_.......Parameters.....---- |
| 5a00 | 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 63 72 65 61 74 65 5f 75 73 69 6e 67 20 3a 20 4e 65 74 77 6f 72 | ------.....create_using.:.Networ |
| 5a20 | 6b 58 20 67 72 61 70 68 20 63 6f 6e 73 74 72 75 63 74 6f 72 2c 20 6f 70 74 69 6f 6e 61 6c 20 28 | kX.graph.constructor,.optional.( |
| 5a40 | 64 65 66 61 75 6c 74 3d 6e 78 2e 47 72 61 70 68 29 0a 20 20 20 20 20 20 20 47 72 61 70 68 20 74 | default=nx.Graph)........Graph.t |
| 5a60 | 79 70 65 20 74 6f 20 63 72 65 61 74 65 2e 20 49 66 20 67 72 61 70 68 20 69 6e 73 74 61 6e 63 65 | ype.to.create..If.graph.instance |
| 5a80 | 2c 20 74 68 65 6e 20 63 6c 65 61 72 65 64 20 62 65 66 6f 72 65 20 70 6f 70 75 6c 61 74 65 64 2e | ,.then.cleared.before.populated. |
| 5aa0 | 0a 0a 20 20 20 20 52 65 74 75 72 6e 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 47 20 | ......Returns.....-------.....G. |
| 5ac0 | 3a 20 6e 65 74 77 6f 72 6b 78 20 47 72 61 70 68 0a 20 20 20 20 20 20 20 20 50 65 74 65 72 73 65 | :.networkx.Graph.........Peterse |
| 5ae0 | 6e 20 67 72 61 70 68 0a 0a 20 20 20 20 52 65 66 65 72 65 6e 63 65 73 0a 20 20 20 20 2d 2d 2d 2d | n.graph......References.....---- |
| 5b00 | 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 2e 2e 20 5b 31 5d 20 68 74 74 70 73 3a 2f 2f 65 6e 2e 77 69 6b | ------........[1].https://en.wik |
| 5b20 | 69 70 65 64 69 61 2e 6f 72 67 2f 77 69 6b 69 2f 50 65 74 65 72 73 65 6e 5f 67 72 61 70 68 0a 20 | ipedia.org/wiki/Petersen_graph.. |
| 5b40 | 20 20 20 2e 2e 20 5b 32 5d 20 68 74 74 70 73 3a 2f 2f 77 77 77 2e 77 69 6e 2e 74 75 65 2e 6e 6c | ......[2].https://www.win.tue.nl |
| 5b60 | 2f 7e 61 65 62 2f 64 72 67 2f 67 72 61 70 68 73 2f 50 65 74 65 72 73 65 6e 2e 68 74 6d 6c 0a 20 | /~aeb/drg/graphs/Petersen.html.. |
| 5b80 | 20 20 20 29 03 72 34 00 00 00 72 47 00 00 00 72 50 00 00 00 29 03 72 19 00 00 00 72 44 00 00 00 | ...).r4...rG...rP...).r....rD... |
| 5ba0 | 72 4d 00 00 00 29 03 72 34 00 00 00 72 46 00 00 00 72 51 00 00 00 29 03 72 44 00 00 00 72 47 00 | rM...).r4...rF...rQ...).rD...rG. |
| 5bc0 | 00 00 72 52 00 00 00 29 03 72 46 00 00 00 72 19 00 00 00 72 4e 00 00 00 29 03 72 19 00 00 00 72 | ..rR...).rF...r....rN...).r....r |
| 5be0 | 51 00 00 00 72 52 00 00 00 29 03 72 34 00 00 00 72 52 00 00 00 72 4e 00 00 00 29 03 72 44 00 00 | Q...rR...).r4...rR...rN...).rD.. |
| 5c00 | 00 72 50 00 00 00 72 4e 00 00 00 29 03 72 46 00 00 00 72 50 00 00 00 72 4d 00 00 00 29 03 72 47 | .rP...rN...).rF...rP...rM...).rG |
| 5c20 | 00 00 00 72 4d 00 00 00 72 51 00 00 00 72 55 00 00 00 72 24 00 00 00 7a 0e 50 65 74 65 72 73 65 | ...rM...rQ...rU...r$...z.Peterse |
| 5c40 | 6e 20 47 72 61 70 68 72 49 00 00 00 72 4b 00 00 00 73 02 00 00 00 20 20 72 2d 00 00 00 72 13 00 | n.GraphrI...rK...s......r-...r.. |
| 5c60 | 00 00 72 13 00 00 00 d7 02 00 00 73 4a 00 00 00 80 00 f4 34 00 09 0b d7 08 1d d1 08 1d e2 0f 18 | ..r........sJ......4............ |
| 5c80 | da 0f 18 da 0f 18 da 0f 18 da 0f 18 da 0f 18 da 0f 18 da 0f 18 da 0f 18 da 0f 18 f1 15 0b 09 0a | ................................ |
| 5ca0 | f0 18 00 16 22 f4 1b 0e 09 06 80 41 f0 1e 00 0e 1e 80 41 84 46 d8 0b 0c 80 48 72 2f 00 00 00 63 | ...."......A......A.F....Hr/...c |
| 5cc0 | 01 00 00 00 00 00 00 00 00 00 00 00 06 00 00 00 03 00 00 00 f3 24 01 00 00 97 00 74 01 00 00 00 | .....................$.....t.... |
| 5ce0 | 00 00 00 00 00 64 01 7c 00 ab 02 00 00 00 00 00 00 7d 01 7c 01 6a 03 00 00 00 00 00 00 00 00 00 | .....d.|.........}.|.j.......... |
| 5d00 | 00 00 00 00 00 00 00 00 00 74 05 00 00 00 00 00 00 00 00 64 02 ab 01 00 00 00 00 00 00 ab 01 00 | .........t.........d............ |
| 5d20 | 00 00 00 00 00 01 00 7c 01 6a 07 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 64 01 64 | .......|.j...................d.d |
| 5d40 | 03 67 02 64 01 64 04 67 02 64 01 64 05 67 02 67 03 ab 01 00 00 00 00 00 00 01 00 7c 01 6a 07 00 | .g.d.d.g.d.d.g.g...........|.j.. |
| 5d60 | 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 64 06 64 04 67 02 64 03 64 07 67 02 67 02 ab | .................d.d.g.d.d.g.g.. |
| 5d80 | 01 00 00 00 00 00 00 01 00 7c 01 6a 07 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 64 | .........|.j...................d |
| 5da0 | 08 64 09 67 02 64 08 64 05 67 02 67 02 ab 01 00 00 00 00 00 00 01 00 7c 01 6a 07 00 00 00 00 00 | .d.g.d.d.g.g...........|.j...... |
| 5dc0 | 00 00 00 00 00 00 00 00 00 00 00 00 00 64 09 64 05 67 02 64 09 64 04 67 02 64 09 64 07 67 02 67 | .............d.d.g.d.d.g.d.d.g.g |
| 5de0 | 03 ab 01 00 00 00 00 00 00 01 00 64 0a 7c 01 5f 04 00 00 00 00 00 00 00 00 7c 01 53 00 29 0b 61 | ...........d.|._.........|.S.).a |
| 5e00 | 3f 02 00 00 0a 20 20 20 20 52 65 74 75 72 6e 20 61 20 73 6d 61 6c 6c 20 6d 61 7a 65 20 77 69 74 | ?........Return.a.small.maze.wit |
| 5e20 | 68 20 61 20 63 79 63 6c 65 2e 0a 0a 20 20 20 20 54 68 69 73 20 69 73 20 74 68 65 20 6d 61 7a 65 | h.a.cycle.......This.is.the.maze |
| 5e40 | 20 75 73 65 64 20 69 6e 20 53 65 64 67 65 77 69 63 6b 2c 20 33 72 64 20 45 64 69 74 69 6f 6e 2c | .used.in.Sedgewick,.3rd.Edition, |
| 5e60 | 20 50 61 72 74 20 35 2c 20 47 72 61 70 68 0a 20 20 20 20 41 6c 67 6f 72 69 74 68 6d 73 2c 20 43 | .Part.5,.Graph.....Algorithms,.C |
| 5e80 | 68 61 70 74 65 72 20 31 38 2c 20 65 2e 67 2e 20 46 69 67 75 72 65 20 31 38 2e 32 20 61 6e 64 20 | hapter.18,.e.g..Figure.18.2.and. |
| 5ea0 | 66 6f 6c 6c 6f 77 69 6e 67 20 5b 31 5d 5f 2e 0a 20 20 20 20 4e 6f 64 65 73 20 61 72 65 20 6e 75 | following.[1]_......Nodes.are.nu |
| 5ec0 | 6d 62 65 72 65 64 20 30 2c 2e 2e 2c 37 0a 0a 20 20 20 20 50 61 72 61 6d 65 74 65 72 73 0a 20 20 | mbered.0,..,7......Parameters... |
| 5ee0 | 20 20 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 63 72 65 61 74 65 5f 75 73 69 6e 67 20 3a 20 | ..----------.....create_using.:. |
| 5f00 | 4e 65 74 77 6f 72 6b 58 20 67 72 61 70 68 20 63 6f 6e 73 74 72 75 63 74 6f 72 2c 20 6f 70 74 69 | NetworkX.graph.constructor,.opti |
| 5f20 | 6f 6e 61 6c 20 28 64 65 66 61 75 6c 74 3d 6e 78 2e 47 72 61 70 68 29 0a 20 20 20 20 20 20 20 47 | onal.(default=nx.Graph)........G |
| 5f40 | 72 61 70 68 20 74 79 70 65 20 74 6f 20 63 72 65 61 74 65 2e 20 49 66 20 67 72 61 70 68 20 69 6e | raph.type.to.create..If.graph.in |
| 5f60 | 73 74 61 6e 63 65 2c 20 74 68 65 6e 20 63 6c 65 61 72 65 64 20 62 65 66 6f 72 65 20 70 6f 70 75 | stance,.then.cleared.before.popu |
| 5f80 | 6c 61 74 65 64 2e 0a 0a 20 20 20 20 52 65 74 75 72 6e 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 0a | lated.......Returns.....-------. |
| 5fa0 | 20 20 20 20 47 20 3a 20 6e 65 74 77 6f 72 6b 78 20 47 72 61 70 68 0a 20 20 20 20 20 20 20 20 53 | ....G.:.networkx.Graph.........S |
| 5fc0 | 6d 61 6c 6c 20 6d 61 7a 65 20 77 69 74 68 20 61 20 63 79 63 6c 65 0a 0a 20 20 20 20 52 65 66 65 | mall.maze.with.a.cycle......Refe |
| 5fe0 | 72 65 6e 63 65 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 2e 2e 20 5b 31 5d | rences.....----------........[1] |
| 6000 | 20 46 69 67 75 72 65 20 31 38 2e 32 2c 20 43 68 61 70 74 65 72 20 31 38 2c 20 47 72 61 70 68 20 | .Figure.18.2,.Chapter.18,.Graph. |
| 6020 | 41 6c 67 6f 72 69 74 68 6d 73 20 28 33 72 64 20 45 64 29 2c 20 53 65 64 67 65 77 69 63 6b 0a 20 | Algorithms.(3rd.Ed),.Sedgewick.. |
| 6040 | 20 20 20 72 19 00 00 00 72 52 00 00 00 72 44 00 00 00 72 51 00 00 00 72 50 00 00 00 72 34 00 00 | ...r....rR...rD...rQ...rP...r4.. |
| 6060 | 00 72 4d 00 00 00 72 46 00 00 00 72 47 00 00 00 7a 0e 53 65 64 67 65 77 69 63 6b 20 4d 61 7a 65 | .rM...rF...rG...z.Sedgewick.Maze |
| 6080 | 29 05 72 1f 00 00 00 da 0e 61 64 64 5f 6e 6f 64 65 73 5f 66 72 6f 6d 72 38 00 00 00 72 61 00 00 | ).r......add_nodes_fromr8...ra.. |
| 60a0 | 00 72 35 00 00 00 72 4b 00 00 00 73 02 00 00 00 20 20 72 2d 00 00 00 72 14 00 00 00 72 14 00 00 | .r5...rK...s......r-...r....r... |
| 60c0 | 00 04 03 00 00 73 a6 00 00 00 80 00 f4 2e 00 09 14 90 41 90 7c d3 08 24 80 41 d8 04 05 d7 04 14 | .....s............A.|..$.A...... |
| 60e0 | d1 04 14 94 55 98 31 93 58 d4 04 1e d8 04 05 d7 04 14 d1 04 14 90 71 98 21 90 66 98 71 a0 21 98 | ....U.1.X.............q.!.f.q.!. |
| 6100 | 66 a0 71 a8 21 a0 66 d0 15 2d d4 04 2e d8 04 05 d7 04 14 d1 04 14 90 71 98 21 90 66 98 71 a0 21 | f.q.!.f..-.............q.!.f.q.! |
| 6120 | 98 66 d0 15 25 d4 04 26 d8 04 05 d7 04 14 d1 04 14 90 71 98 21 90 66 98 71 a0 21 98 66 d0 15 25 | .f..%..&..........q.!.f.q.!.f..% |
| 6140 | d4 04 26 d8 04 05 d7 04 14 d1 04 14 90 71 98 21 90 66 98 71 a0 21 98 66 a0 71 a8 21 a0 66 d0 15 | ..&..........q.!.f.q.!.f.q.!.f.. |
| 6160 | 2d d4 04 2e d8 0d 1d 80 41 84 46 d8 0b 0c 80 48 72 2f 00 00 00 63 01 00 00 00 00 00 00 00 00 00 | -.......A.F....Hr/...c.......... |
| 6180 | 00 00 04 00 00 00 03 00 00 00 f3 2c 00 00 00 97 00 74 01 00 00 00 00 00 00 00 00 64 01 7c 00 ab | ...........,.....t.........d.|.. |
| 61a0 | 02 00 00 00 00 00 00 7d 01 64 02 7c 01 5f 01 00 00 00 00 00 00 00 00 7c 01 53 00 29 03 61 4b 02 | .......}.d.|._.........|.S.).aK. |
| 61c0 | 00 00 0a 20 20 20 20 52 65 74 75 72 6e 73 20 74 68 65 20 33 2d 72 65 67 75 6c 61 72 20 50 6c 61 | .......Returns.the.3-regular.Pla |
| 61e0 | 74 6f 6e 69 63 20 54 65 74 72 61 68 65 64 72 61 6c 20 67 72 61 70 68 2e 0a 0a 20 20 20 20 54 65 | tonic.Tetrahedral.graph.......Te |
| 6200 | 74 72 61 68 65 64 72 61 6c 20 67 72 61 70 68 20 68 61 73 20 34 20 6e 6f 64 65 73 20 61 6e 64 20 | trahedral.graph.has.4.nodes.and. |
| 6220 | 36 20 65 64 67 65 73 2e 20 49 74 20 69 73 20 61 0a 20 20 20 20 73 70 65 63 69 61 6c 20 63 61 73 | 6.edges..It.is.a.....special.cas |
| 6240 | 65 20 6f 66 20 74 68 65 20 63 6f 6d 70 6c 65 74 65 20 67 72 61 70 68 2c 20 4b 34 2c 20 61 6e 64 | e.of.the.complete.graph,.K4,.and |
| 6260 | 20 77 68 65 65 6c 20 67 72 61 70 68 2c 20 57 34 2e 0a 20 20 20 20 49 74 20 69 73 20 6f 6e 65 20 | .wheel.graph,.W4......It.is.one. |
| 6280 | 6f 66 20 74 68 65 20 35 20 70 6c 61 74 6f 6e 69 63 20 67 72 61 70 68 73 20 5b 31 5d 5f 2e 0a 0a | of.the.5.platonic.graphs.[1]_... |
| 62a0 | 20 20 20 20 50 61 72 61 6d 65 74 65 72 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 | ....Parameters.....----------... |
| 62c0 | 20 20 63 72 65 61 74 65 5f 75 73 69 6e 67 20 3a 20 4e 65 74 77 6f 72 6b 58 20 67 72 61 70 68 20 | ..create_using.:.NetworkX.graph. |
| 62e0 | 63 6f 6e 73 74 72 75 63 74 6f 72 2c 20 6f 70 74 69 6f 6e 61 6c 20 28 64 65 66 61 75 6c 74 3d 6e | constructor,.optional.(default=n |
| 6300 | 78 2e 47 72 61 70 68 29 0a 20 20 20 20 20 20 20 47 72 61 70 68 20 74 79 70 65 20 74 6f 20 63 72 | x.Graph)........Graph.type.to.cr |
| 6320 | 65 61 74 65 2e 20 49 66 20 67 72 61 70 68 20 69 6e 73 74 61 6e 63 65 2c 20 74 68 65 6e 20 63 6c | eate..If.graph.instance,.then.cl |
| 6340 | 65 61 72 65 64 20 62 65 66 6f 72 65 20 70 6f 70 75 6c 61 74 65 64 2e 0a 0a 20 20 20 20 52 65 74 | eared.before.populated.......Ret |
| 6360 | 75 72 6e 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 47 20 3a 20 6e 65 74 77 6f 72 6b | urns.....-------.....G.:.network |
| 6380 | 78 20 47 72 61 70 68 0a 20 20 20 20 20 20 20 20 54 65 74 72 61 68 65 64 72 61 6c 20 47 72 61 70 | x.Graph.........Tetrahedral.Grap |
| 63a0 | 68 0a 0a 20 20 20 20 52 65 66 65 72 65 6e 63 65 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d | h......References.....---------- |
| 63c0 | 0a 20 20 20 20 2e 2e 20 5b 31 5d 20 68 74 74 70 73 3a 2f 2f 65 6e 2e 77 69 6b 69 70 65 64 69 61 | ........[1].https://en.wikipedia |
| 63e0 | 2e 6f 72 67 2f 77 69 6b 69 2f 54 65 74 72 61 68 65 64 72 6f 6e 23 54 65 74 72 61 68 65 64 72 61 | .org/wiki/Tetrahedron#Tetrahedra |
| 6400 | 6c 5f 67 72 61 70 68 0a 0a 20 20 20 20 72 47 00 00 00 7a 1a 50 6c 61 74 6f 6e 69 63 20 54 65 74 | l_graph......rG...z.Platonic.Tet |
| 6420 | 72 61 68 65 64 72 61 6c 20 47 72 61 70 68 29 02 72 1d 00 00 00 72 35 00 00 00 72 4b 00 00 00 73 | rahedral.Graph).r....r5...rK...s |
| 6440 | 02 00 00 00 20 20 72 2d 00 00 00 72 15 00 00 00 72 15 00 00 00 25 03 00 00 73 1c 00 00 00 80 00 | ......r-...r....r....%...s...... |
| 6460 | f4 30 00 09 17 90 71 98 2c d3 08 27 80 41 d8 0d 29 80 41 84 46 d8 0b 0c 80 48 72 2f 00 00 00 63 | .0....q.,..'.A..).A.F....Hr/...c |
| 6480 | 01 00 00 00 00 00 00 00 00 00 00 00 0a 00 00 00 03 00 00 00 f3 00 01 00 00 97 00 74 01 00 00 00 | ...........................t.... |
| 64a0 | 00 00 00 00 00 6a 02 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 69 00 64 01 67 00 64 | .....j...................i.d.g.d |
| 64c0 | 02 a2 01 93 01 64 03 64 04 64 05 67 02 93 01 64 06 64 07 64 08 67 02 93 01 64 07 64 09 64 0a 67 | .....d.d.d.g...d.d.d.g...d.d.d.g |
| 64e0 | 02 93 01 64 08 64 0b 67 01 93 01 64 0b 64 0c 64 0d 67 02 93 01 64 09 64 0e 64 0a 67 02 93 01 64 | ...d.d.g...d.d.d.g...d.d.d.g...d |
| 6500 | 0e 64 0f 64 10 67 02 93 01 64 0a 64 11 67 01 93 01 64 11 64 12 64 13 67 02 93 01 64 0f 64 04 64 | .d.d.g...d.d.g...d.d.d.g...d.d.d |
| 6520 | 10 67 02 93 01 64 04 64 05 67 01 93 01 64 10 64 14 67 01 93 01 64 14 64 15 64 16 67 02 93 01 64 | .g...d.d.g...d.d.g...d.d.d.g...d |
| 6540 | 05 64 17 67 01 93 01 64 17 64 18 64 19 67 02 93 01 64 0c 64 12 64 0d 67 02 93 01 64 13 67 01 64 | .d.g...d.d.d.g...d.d.d.g...d.g.d |
| 6560 | 18 67 01 64 19 67 01 64 15 67 01 64 16 67 01 64 19 67 01 64 1a 9c 06 a5 01 7c 00 ac 1b ab 02 00 | .g.d.g.d.g.d.g.d.g.d.....|...... |
| 6580 | 00 00 00 00 00 7d 01 64 1c 7c 01 5f 02 00 00 00 00 00 00 00 00 7c 01 53 00 29 1d 61 eb 02 00 00 | .....}.d.|._.........|.S.).a.... |
| 65a0 | 0a 20 20 20 20 52 65 74 75 72 6e 73 20 74 68 65 20 73 6b 65 6c 65 74 6f 6e 20 6f 66 20 74 68 65 | .....Returns.the.skeleton.of.the |
| 65c0 | 20 74 72 75 6e 63 61 74 65 64 20 63 75 62 65 2e 0a 0a 20 20 20 20 54 68 65 20 74 72 75 6e 63 61 | .truncated.cube.......The.trunca |
| 65e0 | 74 65 64 20 63 75 62 65 20 69 73 20 61 6e 20 41 72 63 68 69 6d 65 64 65 61 6e 20 73 6f 6c 69 64 | ted.cube.is.an.Archimedean.solid |
| 6600 | 20 77 69 74 68 20 31 34 20 72 65 67 75 6c 61 72 0a 20 20 20 20 66 61 63 65 73 20 28 36 20 6f 63 | .with.14.regular.....faces.(6.oc |
| 6620 | 74 61 67 6f 6e 61 6c 20 61 6e 64 20 38 20 74 72 69 61 6e 67 75 6c 61 72 29 2c 20 33 36 20 65 64 | tagonal.and.8.triangular),.36.ed |
| 6640 | 67 65 73 20 61 6e 64 20 32 34 20 6e 6f 64 65 73 20 5b 31 5d 5f 2e 0a 20 20 20 20 54 68 65 20 74 | ges.and.24.nodes.[1]_......The.t |
| 6660 | 72 75 6e 63 61 74 65 64 20 63 75 62 65 20 69 73 20 63 72 65 61 74 65 64 20 62 79 20 74 72 75 6e | runcated.cube.is.created.by.trun |
| 6680 | 63 61 74 69 6e 67 20 28 63 75 74 74 69 6e 67 20 6f 66 66 29 20 74 68 65 20 74 69 70 73 0a 20 20 | cating.(cutting.off).the.tips... |
| 66a0 | 20 20 6f 66 20 74 68 65 20 63 75 62 65 20 6f 6e 65 20 74 68 69 72 64 20 6f 66 20 74 68 65 20 77 | ..of.the.cube.one.third.of.the.w |
| 66c0 | 61 79 20 69 6e 74 6f 20 65 61 63 68 20 65 64 67 65 20 5b 32 5d 5f 2e 0a 0a 20 20 20 20 50 61 72 | ay.into.each.edge.[2]_.......Par |
| 66e0 | 61 6d 65 74 65 72 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 63 72 65 61 74 | ameters.....----------.....creat |
| 6700 | 65 5f 75 73 69 6e 67 20 3a 20 4e 65 74 77 6f 72 6b 58 20 67 72 61 70 68 20 63 6f 6e 73 74 72 75 | e_using.:.NetworkX.graph.constru |
| 6720 | 63 74 6f 72 2c 20 6f 70 74 69 6f 6e 61 6c 20 28 64 65 66 61 75 6c 74 3d 6e 78 2e 47 72 61 70 68 | ctor,.optional.(default=nx.Graph |
| 6740 | 29 0a 20 20 20 20 20 20 20 47 72 61 70 68 20 74 79 70 65 20 74 6f 20 63 72 65 61 74 65 2e 20 49 | )........Graph.type.to.create..I |
| 6760 | 66 20 67 72 61 70 68 20 69 6e 73 74 61 6e 63 65 2c 20 74 68 65 6e 20 63 6c 65 61 72 65 64 20 62 | f.graph.instance,.then.cleared.b |
| 6780 | 65 66 6f 72 65 20 70 6f 70 75 6c 61 74 65 64 2e 0a 0a 20 20 20 20 52 65 74 75 72 6e 73 0a 20 20 | efore.populated.......Returns... |
| 67a0 | 20 20 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 47 20 3a 20 6e 65 74 77 6f 72 6b 78 20 47 72 61 70 68 | ..-------.....G.:.networkx.Graph |
| 67c0 | 0a 20 20 20 20 20 20 20 20 53 6b 65 6c 65 74 6f 6e 20 6f 66 20 74 68 65 20 74 72 75 6e 63 61 74 | .........Skeleton.of.the.truncat |
| 67e0 | 65 64 20 63 75 62 65 0a 0a 20 20 20 20 52 65 66 65 72 65 6e 63 65 73 0a 20 20 20 20 2d 2d 2d 2d | ed.cube......References.....---- |
| 6800 | 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 2e 2e 20 5b 31 5d 20 68 74 74 70 73 3a 2f 2f 65 6e 2e 77 69 6b | ------........[1].https://en.wik |
| 6820 | 69 70 65 64 69 61 2e 6f 72 67 2f 77 69 6b 69 2f 54 72 75 6e 63 61 74 65 64 5f 63 75 62 65 0a 20 | ipedia.org/wiki/Truncated_cube.. |
| 6840 | 20 20 20 2e 2e 20 5b 32 5d 20 68 74 74 70 73 3a 2f 2f 77 77 77 2e 63 6f 6f 6c 6d 61 74 68 2e 63 | ......[2].https://www.coolmath.c |
| 6860 | 6f 6d 2f 72 65 66 65 72 65 6e 63 65 2f 70 6f 6c 79 68 65 64 72 61 2d 74 72 75 6e 63 61 74 65 64 | om/reference/polyhedra-truncated |
| 6880 | 2d 63 75 62 65 0a 0a 20 20 20 20 72 19 00 00 00 72 6c 00 00 00 72 34 00 00 00 72 54 00 00 00 72 | -cube......r....rl...r4...rT...r |
| 68a0 | 63 00 00 00 72 44 00 00 00 72 46 00 00 00 72 47 00 00 00 72 4d 00 00 00 72 52 00 00 00 72 50 00 | c...rD...rF...rG...rM...rR...rP. |
| 68c0 | 00 00 72 71 00 00 00 72 74 00 00 00 72 51 00 00 00 72 53 00 00 00 e9 0c 00 00 00 72 4e 00 00 00 | ..rq...rt...rQ...rS........rN... |
| 68e0 | e9 11 00 00 00 72 59 00 00 00 e9 0d 00 00 00 e9 15 00 00 00 e9 16 00 00 00 e9 0f 00 00 00 e9 13 | .....rY......................... |
| 6900 | 00 00 00 e9 17 00 00 00 29 06 72 7b 00 00 00 72 74 00 00 00 72 80 00 00 00 72 59 00 00 00 72 7d | ........).r{...rt...r....rY...r} |
| 6920 | 00 00 00 72 7e 00 00 00 72 24 00 00 00 7a 14 54 72 75 6e 63 61 74 65 64 20 43 75 62 65 20 47 72 | ...r~...r$...z.Truncated.Cube.Gr |
| 6940 | 61 70 68 72 49 00 00 00 72 4b 00 00 00 73 02 00 00 00 20 20 72 2d 00 00 00 72 16 00 00 00 72 16 | aphrI...rK...s......r-...r....r. |
| 6960 | 00 00 00 42 03 00 00 73 4f 01 00 00 80 00 f4 36 00 09 0b d7 08 1d d1 08 1d f0 02 18 09 0a d8 0c | ...B...sO......6................ |
| 6980 | 0d 8a 79 f0 03 18 09 0a e0 0c 0d 90 02 90 42 88 78 f0 05 18 09 0a f0 06 00 0d 0e 90 01 90 31 88 | ..y...........B.x.............1. |
| 69a0 | 76 f0 07 18 09 0a f0 08 00 0d 0e 90 01 90 31 88 76 f0 09 18 09 0a f0 0a 00 0d 0e 90 01 88 73 f0 | v.............1.v.............s. |
| 69c0 | 0b 18 09 0a f0 0c 00 0d 0e 90 02 90 42 88 78 f0 0d 18 09 0a f0 0e 00 0d 0e 90 01 90 31 88 76 f0 | ............B.x.............1.v. |
| 69e0 | 0f 18 09 0a f0 10 00 0d 0e 90 02 90 42 88 78 f0 11 18 09 0a f0 12 00 0d 0e 90 01 88 73 f0 13 18 | ............B.x.............s... |
| 6a00 | 09 0a f0 14 00 0d 0e 90 02 90 42 88 78 f0 15 18 09 0a f0 16 00 0d 0f 90 12 90 52 90 08 f0 17 18 | ..........B.x.............R..... |
| 6a20 | 09 0a f0 18 00 0d 0f 90 12 90 04 f0 19 18 09 0a f0 1a 00 0d 0f 90 12 90 04 f0 1b 18 09 0a f0 1c | ................................ |
| 6a40 | 00 0d 0f 90 12 90 52 90 08 f0 1d 18 09 0a f0 1e 00 0d 0f 90 12 90 04 f0 1f 18 09 0a f0 20 00 0d | ......R......................... |
| 6a60 | 0f 90 12 90 52 90 08 f0 21 18 09 0a f0 22 00 0d 0f 90 12 90 52 90 08 f0 23 18 09 0a f0 24 00 12 | ....R...!...."......R...#....$.. |
| 6a80 | 14 90 04 d8 11 13 90 04 d8 11 13 90 04 d8 11 13 90 04 d8 11 13 90 04 d8 11 13 90 04 f2 2f 18 09 | ............................./.. |
| 6aa0 | 0a f0 32 00 16 22 f4 35 1b 09 06 80 41 f0 38 00 0e 24 80 41 84 46 d8 0b 0c 80 48 72 2f 00 00 00 | ..2..".5....A.8..$.A.F....Hr/... |
| 6ac0 | 63 01 00 00 00 00 00 00 00 00 00 00 00 04 00 00 00 03 00 00 00 f3 52 00 00 00 97 00 74 01 00 00 | c.....................R.....t... |
| 6ae0 | 00 00 00 00 00 00 64 01 7c 00 ab 02 00 00 00 00 00 00 7d 01 7c 01 6a 03 00 00 00 00 00 00 00 00 | ......d.|.........}.|.j......... |
| 6b00 | 00 00 00 00 00 00 00 00 00 00 67 00 64 02 a2 01 ab 01 00 00 00 00 00 00 01 00 64 03 7c 01 5f 02 | ..........g.d.............d.|._. |
| 6b20 | 00 00 00 00 00 00 00 00 7c 01 53 00 29 04 61 ca 02 00 00 0a 20 20 20 20 52 65 74 75 72 6e 73 20 | ........|.S.).a.........Returns. |
| 6b40 | 74 68 65 20 73 6b 65 6c 65 74 6f 6e 20 6f 66 20 74 68 65 20 74 72 75 6e 63 61 74 65 64 20 50 6c | the.skeleton.of.the.truncated.Pl |
| 6b60 | 61 74 6f 6e 69 63 20 74 65 74 72 61 68 65 64 72 6f 6e 2e 0a 0a 20 20 20 20 54 68 65 20 74 72 75 | atonic.tetrahedron.......The.tru |
| 6b80 | 6e 63 61 74 65 64 20 74 65 74 72 61 68 65 64 72 6f 6e 20 69 73 20 61 6e 20 41 72 63 68 69 6d 65 | ncated.tetrahedron.is.an.Archime |
| 6ba0 | 64 65 61 6e 20 73 6f 6c 69 64 20 77 69 74 68 20 34 20 72 65 67 75 6c 61 72 20 68 65 78 61 67 6f | dean.solid.with.4.regular.hexago |
| 6bc0 | 6e 61 6c 20 66 61 63 65 73 2c 0a 20 20 20 20 34 20 65 71 75 69 6c 61 74 65 72 61 6c 20 74 72 69 | nal.faces,.....4.equilateral.tri |
| 6be0 | 61 6e 67 6c 65 20 66 61 63 65 73 2c 20 31 32 20 6e 6f 64 65 73 20 61 6e 64 20 31 38 20 65 64 67 | angle.faces,.12.nodes.and.18.edg |
| 6c00 | 65 73 2e 20 49 74 20 63 61 6e 20 62 65 20 63 6f 6e 73 74 72 75 63 74 65 64 20 62 79 20 74 72 75 | es..It.can.be.constructed.by.tru |
| 6c20 | 6e 63 61 74 69 6e 67 0a 20 20 20 20 61 6c 6c 20 34 20 76 65 72 74 69 63 65 73 20 6f 66 20 61 20 | ncating.....all.4.vertices.of.a. |
| 6c40 | 72 65 67 75 6c 61 72 20 74 65 74 72 61 68 65 64 72 6f 6e 20 61 74 20 6f 6e 65 20 74 68 69 72 64 | regular.tetrahedron.at.one.third |
| 6c60 | 20 6f 66 20 74 68 65 20 6f 72 69 67 69 6e 61 6c 20 65 64 67 65 20 6c 65 6e 67 74 68 20 5b 31 5d | .of.the.original.edge.length.[1] |
| 6c80 | 5f 2e 0a 0a 20 20 20 20 50 61 72 61 6d 65 74 65 72 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 2d | _.......Parameters.....--------- |
| 6ca0 | 2d 0a 20 20 20 20 63 72 65 61 74 65 5f 75 73 69 6e 67 20 3a 20 4e 65 74 77 6f 72 6b 58 20 67 72 | -.....create_using.:.NetworkX.gr |
| 6cc0 | 61 70 68 20 63 6f 6e 73 74 72 75 63 74 6f 72 2c 20 6f 70 74 69 6f 6e 61 6c 20 28 64 65 66 61 75 | aph.constructor,.optional.(defau |
| 6ce0 | 6c 74 3d 6e 78 2e 47 72 61 70 68 29 0a 20 20 20 20 20 20 20 47 72 61 70 68 20 74 79 70 65 20 74 | lt=nx.Graph)........Graph.type.t |
| 6d00 | 6f 20 63 72 65 61 74 65 2e 20 49 66 20 67 72 61 70 68 20 69 6e 73 74 61 6e 63 65 2c 20 74 68 65 | o.create..If.graph.instance,.the |
| 6d20 | 6e 20 63 6c 65 61 72 65 64 20 62 65 66 6f 72 65 20 70 6f 70 75 6c 61 74 65 64 2e 0a 0a 20 20 20 | n.cleared.before.populated...... |
| 6d40 | 20 52 65 74 75 72 6e 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 47 20 3a 20 6e 65 74 | .Returns.....-------.....G.:.net |
| 6d60 | 77 6f 72 6b 78 20 47 72 61 70 68 0a 20 20 20 20 20 20 20 20 53 6b 65 6c 65 74 6f 6e 20 6f 66 20 | workx.Graph.........Skeleton.of. |
| 6d80 | 74 68 65 20 74 72 75 6e 63 61 74 65 64 20 74 65 74 72 61 68 65 64 72 6f 6e 0a 0a 20 20 20 20 52 | the.truncated.tetrahedron......R |
| 6da0 | 65 66 65 72 65 6e 63 65 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 2e 2e 20 | eferences.....----------........ |
| 6dc0 | 5b 31 5d 20 68 74 74 70 73 3a 2f 2f 65 6e 2e 77 69 6b 69 70 65 64 69 61 2e 6f 72 67 2f 77 69 6b | [1].https://en.wikipedia.org/wik |
| 6de0 | 69 2f 54 72 75 6e 63 61 74 65 64 5f 74 65 74 72 61 68 65 64 72 6f 6e 0a 0a 20 20 20 20 72 7a 00 | i/Truncated_tetrahedron......rz. |
| 6e00 | 00 00 29 07 29 02 72 19 00 00 00 72 44 00 00 00 29 02 72 19 00 00 00 72 4e 00 00 00 29 02 72 34 | ..).).r....rD...).r....rN...).r4 |
| 6e20 | 00 00 00 72 4d 00 00 00 29 02 72 46 00 00 00 72 54 00 00 00 29 02 72 47 00 00 00 72 54 00 00 00 | ...rM...).rF...rT...).rG...rT... |
| 6e40 | 29 02 72 50 00 00 00 72 51 00 00 00 29 02 72 52 00 00 00 72 53 00 00 00 7a 1b 54 72 75 6e 63 61 | ).rP...rQ...).rR...rS...z.Trunca |
| 6e60 | 74 65 64 20 54 65 74 72 61 68 65 64 72 6f 6e 20 47 72 61 70 68 29 03 72 20 00 00 00 72 61 00 00 | ted.Tetrahedron.Graph).r....ra.. |
| 6e80 | 00 72 35 00 00 00 72 4b 00 00 00 73 02 00 00 00 20 20 72 2d 00 00 00 72 17 00 00 00 72 17 00 00 | .r5...rK...s......r-...r....r... |
| 6ea0 | 00 7d 03 00 00 73 2b 00 00 00 80 00 f4 30 00 09 13 90 32 90 7c d3 08 24 80 41 d8 04 05 d7 04 14 | .}...s+......0....2.|..$.A...... |
| 6ec0 | d1 04 14 d2 15 50 d4 04 51 d8 0d 2a 80 41 84 46 d8 0b 0c 80 48 72 2f 00 00 00 63 01 00 00 00 00 | .....P..Q..*.A.F....Hr/...c..... |
| 6ee0 | 00 00 00 00 00 00 00 0a 00 00 00 03 00 00 00 f3 ac 01 00 00 97 00 74 01 00 00 00 00 00 00 00 00 | ......................t......... |
| 6f00 | 6a 02 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 69 00 64 01 67 00 64 02 a2 01 93 01 | j...................i.d.g.d..... |
| 6f20 | 64 03 64 04 64 05 67 02 93 01 64 06 64 07 64 08 67 02 93 01 64 09 64 0a 64 0b 67 02 93 01 64 04 | d.d.d.g...d.d.d.g...d.d.d.g...d. |
| 6f40 | 64 0c 64 0d 67 02 93 01 64 0c 64 0e 64 0f 67 02 93 01 64 0e 64 10 64 11 67 02 93 01 64 10 64 12 | d.d.g...d.d.d.g...d.d.d.g...d.d. |
| 6f60 | 64 13 67 02 93 01 64 12 64 14 64 15 67 02 93 01 64 14 64 07 64 16 67 02 93 01 64 07 64 17 67 01 | d.g...d.d.d.g...d.d.d.g...d.d.g. |
| 6f80 | 93 01 64 08 64 18 64 17 67 02 93 01 64 18 64 19 64 1a 67 02 93 01 64 19 64 13 64 1b 67 02 93 01 | ..d.d.d.g...d.d.d.g...d.d.d.g... |
| 6fa0 | 64 13 64 1c 67 01 93 01 64 1b 64 1d 64 1e 67 02 93 01 64 1d 64 1f 64 20 67 02 93 01 69 00 64 1f | d.d.g...d.d.d.g...d.d.d.g...i.d. |
| 6fc0 | 64 0a 64 21 67 02 93 01 64 0a 64 22 67 01 93 01 64 0b 64 23 64 22 67 02 93 01 64 23 64 24 64 25 | d.d!g...d.d"g...d.d#d"g...d#d$d% |
| 6fe0 | 67 02 93 01 64 24 64 1e 64 26 67 02 93 01 64 1e 64 27 67 01 93 01 64 26 64 28 64 11 67 02 93 01 | g...d$d.d&g...d.d'g...d&d(d.g... |
| 7000 | 64 28 64 29 64 2a 67 02 93 01 64 29 64 05 64 2b 67 02 93 01 64 05 64 0d 67 01 93 01 64 11 64 2c | d(d)d*g...d)d.d+g...d.d.g...d.d, |
| 7020 | 67 01 93 01 64 2c 64 0f 64 2a 67 02 93 01 64 0f 64 2d 67 01 93 01 64 2d 64 2b 64 0d 67 02 93 01 | g...d,d.d*g...d.d-g...d-d+d.g... |
| 7040 | 64 2b 64 2a 67 01 93 01 64 1c 64 1a 64 15 67 02 93 01 64 1a 64 2e 67 01 93 01 a5 01 64 16 64 17 | d+d*g...d.d.d.g...d.d.g.....d.d. |
| 7060 | 67 02 64 15 67 01 64 25 64 20 67 02 64 2f 67 01 64 21 64 22 67 02 64 20 67 01 64 30 9c 06 a5 01 | g.d.g.d%d.g.d/g.d!d"g.d.g.d0.... |
| 7080 | 7c 00 ac 31 ab 02 00 00 00 00 00 00 7d 01 64 32 7c 01 5f 02 00 00 00 00 00 00 00 00 7c 01 53 00 | |..1........}.d2|._.........|.S. |
| 70a0 | 29 33 61 b4 02 00 00 0a 20 20 20 20 52 65 74 75 72 6e 73 20 74 68 65 20 54 75 74 74 65 20 67 72 | )3a.........Returns.the.Tutte.gr |
| 70c0 | 61 70 68 2e 0a 0a 20 20 20 20 54 68 65 20 54 75 74 74 65 20 67 72 61 70 68 20 69 73 20 61 20 63 | aph.......The.Tutte.graph.is.a.c |
| 70e0 | 75 62 69 63 20 70 6f 6c 79 68 65 64 72 61 6c 2c 20 6e 6f 6e 2d 48 61 6d 69 6c 74 6f 6e 69 61 6e | ubic.polyhedral,.non-Hamiltonian |
| 7100 | 20 67 72 61 70 68 2e 20 49 74 20 68 61 73 0a 20 20 20 20 34 36 20 6e 6f 64 65 73 20 61 6e 64 20 | .graph..It.has.....46.nodes.and. |
| 7120 | 36 39 20 65 64 67 65 73 2e 0a 20 20 20 20 49 74 20 69 73 20 61 20 63 6f 75 6e 74 65 72 65 78 61 | 69.edges......It.is.a.counterexa |
| 7140 | 6d 70 6c 65 20 74 6f 20 54 61 69 74 27 73 20 63 6f 6e 6a 65 63 74 75 72 65 20 74 68 61 74 20 65 | mple.to.Tait's.conjecture.that.e |
| 7160 | 76 65 72 79 20 33 2d 72 65 67 75 6c 61 72 20 70 6f 6c 79 68 65 64 72 6f 6e 0a 20 20 20 20 68 61 | very.3-regular.polyhedron.....ha |
| 7180 | 73 20 61 20 48 61 6d 69 6c 74 6f 6e 69 61 6e 20 63 79 63 6c 65 2e 0a 20 20 20 20 49 74 20 63 61 | s.a.Hamiltonian.cycle......It.ca |
| 71a0 | 6e 20 62 65 20 72 65 61 6c 69 7a 65 64 20 67 65 6f 6d 65 74 72 69 63 61 6c 6c 79 20 66 72 6f 6d | n.be.realized.geometrically.from |
| 71c0 | 20 61 20 74 65 74 72 61 68 65 64 72 6f 6e 20 62 79 20 6d 75 6c 74 69 70 6c 79 20 74 72 75 6e 63 | .a.tetrahedron.by.multiply.trunc |
| 71e0 | 61 74 69 6e 67 0a 20 20 20 20 74 68 72 65 65 20 6f 66 20 69 74 73 20 76 65 72 74 69 63 65 73 20 | ating.....three.of.its.vertices. |
| 7200 | 5b 31 5d 5f 2e 0a 0a 20 20 20 20 50 61 72 61 6d 65 74 65 72 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d | [1]_.......Parameters.....------ |
| 7220 | 2d 2d 2d 2d 0a 20 20 20 20 63 72 65 61 74 65 5f 75 73 69 6e 67 20 3a 20 4e 65 74 77 6f 72 6b 58 | ----.....create_using.:.NetworkX |
| 7240 | 20 67 72 61 70 68 20 63 6f 6e 73 74 72 75 63 74 6f 72 2c 20 6f 70 74 69 6f 6e 61 6c 20 28 64 65 | .graph.constructor,.optional.(de |
| 7260 | 66 61 75 6c 74 3d 6e 78 2e 47 72 61 70 68 29 0a 20 20 20 20 20 20 20 47 72 61 70 68 20 74 79 70 | fault=nx.Graph)........Graph.typ |
| 7280 | 65 20 74 6f 20 63 72 65 61 74 65 2e 20 49 66 20 67 72 61 70 68 20 69 6e 73 74 61 6e 63 65 2c 20 | e.to.create..If.graph.instance,. |
| 72a0 | 74 68 65 6e 20 63 6c 65 61 72 65 64 20 62 65 66 6f 72 65 20 70 6f 70 75 6c 61 74 65 64 2e 0a 0a | then.cleared.before.populated... |
| 72c0 | 20 20 20 20 52 65 74 75 72 6e 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 47 20 3a 20 | ....Returns.....-------.....G.:. |
| 72e0 | 6e 65 74 77 6f 72 6b 78 20 47 72 61 70 68 0a 20 20 20 20 20 20 20 20 54 75 74 74 65 20 67 72 61 | networkx.Graph.........Tutte.gra |
| 7300 | 70 68 0a 0a 20 20 20 20 52 65 66 65 72 65 6e 63 65 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 2d | ph......References.....--------- |
| 7320 | 2d 0a 20 20 20 20 2e 2e 20 5b 31 5d 20 68 74 74 70 73 3a 2f 2f 65 6e 2e 77 69 6b 69 70 65 64 69 | -........[1].https://en.wikipedi |
| 7340 | 61 2e 6f 72 67 2f 77 69 6b 69 2f 54 75 74 74 65 5f 67 72 61 70 68 0a 20 20 20 20 72 19 00 00 00 | a.org/wiki/Tutte_graph.....r.... |
| 7360 | 29 03 72 34 00 00 00 72 44 00 00 00 72 46 00 00 00 72 34 00 00 00 72 47 00 00 00 e9 1a 00 00 00 | ).r4...rD...rF...r4...rG........ |
| 7380 | 72 44 00 00 00 72 53 00 00 00 72 54 00 00 00 72 46 00 00 00 72 74 00 00 00 72 80 00 00 00 72 50 | rD...rS...rT...rF...rt...r....rP |
| 73a0 | 00 00 00 e9 21 00 00 00 72 4d 00 00 00 e9 1d 00 00 00 72 51 00 00 00 e9 1b 00 00 00 72 52 00 00 | ....!...rM........rQ........rR.. |
| 73c0 | 00 72 63 00 00 00 72 4e 00 00 00 e9 26 00 00 00 e9 25 00 00 00 e9 27 00 00 00 72 7a 00 00 00 72 | .rc...rN....&....%....'...rz...r |
| 73e0 | 7c 00 00 00 e9 23 00 00 00 72 7f 00 00 00 e9 22 00 00 00 72 71 00 00 00 72 7e 00 00 00 72 7b 00 | |....#...r....."...rq...r~...r{. |
| 7400 | 00 00 e9 2c 00 00 00 e9 2b 00 00 00 e9 2d 00 00 00 72 59 00 00 00 72 7d 00 00 00 e9 29 00 00 00 | ...,....+....-...rY...r}....)... |
| 7420 | 72 81 00 00 00 e9 28 00 00 00 e9 18 00 00 00 e9 19 00 00 00 e9 20 00 00 00 e9 1f 00 00 00 e9 1c | r.....(......................... |
| 7440 | 00 00 00 e9 1e 00 00 00 e9 24 00 00 00 e9 2a 00 00 00 29 06 72 98 00 00 00 72 89 00 00 00 72 91 | .........$....*...).r....r....r. |
| 7460 | 00 00 00 72 90 00 00 00 72 99 00 00 00 72 8e 00 00 00 72 24 00 00 00 7a 0d 54 75 74 74 65 27 73 | ...r....r....r....r$...z.Tutte's |
| 7480 | 20 47 72 61 70 68 72 49 00 00 00 72 4b 00 00 00 73 02 00 00 00 20 20 72 2d 00 00 00 72 18 00 00 | .GraphrI...rK...s......r-...r... |
| 74a0 | 00 72 18 00 00 00 9b 03 00 00 73 68 02 00 00 80 00 f4 36 00 09 0b d7 08 1d d1 08 1d f0 02 29 09 | .r........sh......6...........). |
| 74c0 | 0a d8 0c 0d 8a 79 f0 03 29 09 0a e0 0c 0d 90 01 90 32 88 77 f0 05 29 09 0a f0 06 00 0d 0e 90 02 | .....y..)........2.w..)......... |
| 74e0 | 90 42 88 78 f0 07 29 09 0a f0 08 00 0d 0e 90 02 90 42 88 78 f0 09 29 09 0a f0 0a 00 0d 0e 90 01 | .B.x..)..........B.x..)......... |
| 7500 | 90 32 88 77 f0 0b 29 09 0a f0 0c 00 0d 0e 90 01 90 32 88 77 f0 0d 29 09 0a f0 0e 00 0d 0e 90 01 | .2.w..)..........2.w..)......... |
| 7520 | 90 32 88 77 f0 0f 29 09 0a f0 10 00 0d 0e 90 01 90 32 88 77 f0 11 29 09 0a f0 12 00 0d 0e 90 01 | .2.w..)..........2.w..)......... |
| 7540 | 90 32 88 77 f0 13 29 09 0a f0 14 00 0d 0e 90 02 90 42 88 78 f0 15 29 09 0a f0 16 00 0d 0f 90 12 | .2.w..)..........B.x..)......... |
| 7560 | 90 04 f0 17 29 09 0a f0 18 00 0d 0f 90 12 90 52 90 08 f0 19 29 09 0a f0 1a 00 0d 0f 90 12 90 52 | ....)..........R....)..........R |
| 7580 | 90 08 f0 1b 29 09 0a f0 1c 00 0d 0f 90 12 90 52 90 08 f0 1d 29 09 0a f0 1e 00 0d 0f 90 12 90 04 | ....)..........R....)........... |
| 75a0 | f0 1f 29 09 0a f0 20 00 0d 0f 90 12 90 52 90 08 f0 21 29 09 0a f0 22 00 0d 0f 90 12 90 52 90 08 | ..)..........R...!)..."......R.. |
| 75c0 | f1 23 29 09 0a f0 24 00 0d 0f 90 12 90 52 90 08 f0 25 29 09 0a f0 26 00 0d 0f 90 12 90 04 f0 27 | .#)...$......R...%)...&........' |
| 75e0 | 29 09 0a f0 28 00 0d 0f 90 12 90 52 90 08 f0 29 29 09 0a f0 2a 00 0d 0f 90 12 90 52 90 08 f0 2b | )...(......R...))...*......R...+ |
| 7600 | 29 09 0a f0 2c 00 0d 0f 90 12 90 52 90 08 f0 2d 29 09 0a f0 2e 00 0d 0f 90 12 90 04 f0 2f 29 09 | )...,......R...-)............/). |
| 7620 | 0a f0 30 00 0d 0f 90 12 90 52 90 08 f0 31 29 09 0a f0 32 00 0d 0f 90 12 90 52 90 08 f0 33 29 09 | ..0......R...1)...2......R...3). |
| 7640 | 0a f0 34 00 0d 0f 90 12 90 52 90 08 f0 35 29 09 0a f0 36 00 0d 0f 90 12 90 04 f0 37 29 09 0a f0 | ..4......R...5)...6........7)... |
| 7660 | 38 00 0d 0f 90 12 90 04 f0 39 29 09 0a f0 3a 00 0d 0f 90 12 90 52 90 08 f0 3b 29 09 0a f0 3c 00 | 8........9)...:......R...;)...<. |
| 7680 | 0d 0f 90 12 90 04 f0 3d 29 09 0a f0 3e 00 0d 0f 90 12 90 52 90 08 f0 3f 29 09 0a f0 40 01 00 0d | .......=)...>......R...?)...@... |
| 76a0 | 0f 90 12 90 04 f0 41 01 29 09 0a f0 42 01 00 0d 0f 90 12 90 52 90 08 f0 43 01 29 09 0a f0 44 01 | ......A.)...B.......R...C.)...D. |
| 76c0 | 00 0d 0f 90 12 90 04 f1 45 01 29 09 0a f0 46 01 00 12 14 90 52 90 08 d8 11 13 90 04 d8 11 13 90 | ........E.)...F.....R........... |
| 76e0 | 52 90 08 d8 11 13 90 04 d8 11 13 90 52 90 08 d8 11 13 90 04 f2 51 01 29 09 0a f0 54 01 00 16 22 | R...........R........Q.)...T..." |
| 7700 | f4 57 01 2c 09 06 80 41 f0 5a 01 00 0e 1d 80 41 84 46 d8 0b 0c 80 48 72 2f 00 00 00 29 01 4e 29 | .W.,...A.Z.....A.F....Hr/...).N) |
| 7720 | 26 da 07 5f 5f 64 6f 63 5f 5f da 07 5f 5f 61 6c 6c 5f 5f da 09 66 75 6e 63 74 6f 6f 6c 73 72 1b | &..__doc__..__all__..functoolsr. |
| 7740 | 00 00 00 da 08 6e 65 74 77 6f 72 6b 78 72 27 00 00 00 da 12 6e 65 74 77 6f 72 6b 78 2e 65 78 63 | .....networkxr'.....networkx.exc |
| 7760 | 65 70 74 69 6f 6e 72 1c 00 00 00 da 1b 6e 65 74 77 6f 72 6b 78 2e 67 65 6e 65 72 61 74 6f 72 73 | eptionr......networkx.generators |
| 7780 | 2e 63 6c 61 73 73 69 63 72 1d 00 00 00 72 1e 00 00 00 72 1f 00 00 00 72 20 00 00 00 72 30 00 00 | .classicr....r....r....r....r0.. |
| 77a0 | 00 da 0d 5f 64 69 73 70 61 74 63 68 61 62 6c 65 72 02 00 00 00 72 03 00 00 00 72 04 00 00 00 72 | ..._dispatchabler....r....r....r |
| 77c0 | 05 00 00 00 72 06 00 00 00 72 07 00 00 00 72 08 00 00 00 72 09 00 00 00 72 0a 00 00 00 72 0b 00 | ....r....r....r....r....r....r.. |
| 77e0 | 00 00 72 0c 00 00 00 72 0d 00 00 00 72 0e 00 00 00 72 0f 00 00 00 72 10 00 00 00 72 11 00 00 00 | ..r....r....r....r....r....r.... |
| 7800 | 72 12 00 00 00 72 13 00 00 00 72 14 00 00 00 72 15 00 00 00 72 16 00 00 00 72 17 00 00 00 72 18 | r....r....r....r....r....r....r. |
| 7820 | 00 00 00 a9 00 72 2f 00 00 00 72 2d 00 00 00 fa 08 3c 6d 6f 64 75 6c 65 3e 72 a2 00 00 00 01 00 | .....r/...r-.....<module>r...... |
| 7840 | 00 00 73 c1 03 00 00 f0 03 01 01 01 f1 02 03 01 04 f2 0a 18 0b 02 80 07 f5 34 00 01 1c e3 00 15 | ..s......................4...... |
| 7860 | dd 00 2c f7 02 05 01 02 f3 00 05 01 02 f2 10 12 01 13 f0 2a 00 02 12 80 12 d7 01 11 d1 01 11 98 | ..,................*............ |
| 7880 | 14 a8 54 d4 01 32 f2 02 48 01 01 0d f3 03 00 02 33 f0 02 48 01 01 0d f0 60 02 00 02 14 d8 01 11 | ..T..2..H.......3..H....`....... |
| 78a0 | 80 12 d7 01 11 d1 01 11 98 14 a8 54 d4 01 32 f2 02 1d 01 0d f3 03 00 02 33 f3 03 00 02 14 f0 04 | ...........T..2.........3....... |
| 78c0 | 1d 01 0d f0 40 01 00 02 14 d8 01 11 80 12 d7 01 11 d1 01 11 98 14 a8 54 d4 01 32 f2 02 28 01 0d | ....@..................T..2..(.. |
| 78e0 | f3 03 00 02 33 f3 03 00 02 14 f0 04 28 01 0d f0 56 01 00 02 14 d8 01 11 80 12 d7 01 11 d1 01 11 | ....3.......(...V............... |
| 7900 | 98 14 a8 54 d4 01 32 f2 02 27 01 0d f3 03 00 02 33 f3 03 00 02 14 f0 04 27 01 0d f0 54 01 00 02 | ...T..2..'......3.......'...T... |
| 7920 | 12 80 12 d7 01 11 d1 01 11 98 14 a8 54 d4 01 32 f2 02 1a 01 0d f3 03 00 02 33 f0 02 1a 01 0d f0 | ............T..2.........3...... |
| 7940 | 3a 00 02 14 d8 01 11 80 12 d7 01 11 d1 01 11 98 14 a8 54 d4 01 32 f2 02 19 01 0d f3 03 00 02 33 | :.................T..2.........3 |
| 7960 | f3 03 00 02 14 f0 04 19 01 0d f0 38 00 02 12 80 12 d7 01 11 d1 01 11 98 14 a8 54 d4 01 32 f2 02 | ...........8..............T..2.. |
| 7980 | 1b 01 0d f3 03 00 02 33 f0 02 1b 01 0d f0 3c 00 02 12 80 12 d7 01 11 d1 01 11 98 14 a8 54 d4 01 | .......3......<..............T.. |
| 79a0 | 32 f2 02 2b 01 0d f3 03 00 02 33 f0 02 2b 01 0d f0 5c 01 00 02 12 80 12 d7 01 11 d1 01 11 98 14 | 2..+......3..+...\.............. |
| 79c0 | a8 54 d4 01 32 f2 02 1e 01 0d f3 03 00 02 33 f0 02 1e 01 0d f0 42 01 00 02 12 80 12 d7 01 11 d1 | .T..2.........3......B.......... |
| 79e0 | 01 11 98 14 a8 54 d4 01 32 f1 02 27 01 0d f3 03 00 02 33 f0 02 27 01 0d f0 54 01 00 02 14 d8 01 | .....T..2..'......3..'...T...... |
| 7a00 | 11 80 12 d7 01 11 d1 01 11 98 14 a8 54 d4 01 32 f2 02 1a 01 0d f3 03 00 02 33 f3 03 00 02 14 f0 | ............T..2.........3...... |
| 7a20 | 04 1a 01 0d f0 3a 00 02 14 d8 01 11 80 12 d7 01 11 d1 01 11 98 14 a8 54 d4 01 32 f2 02 19 01 0d | .....:.................T..2..... |
| 7a40 | f3 03 00 02 33 f3 03 00 02 14 f0 04 19 01 0d f0 38 00 02 14 d8 01 11 80 12 d7 01 11 d1 01 11 98 | ....3...........8............... |
| 7a60 | 14 a8 54 d4 01 32 f2 02 26 01 0d f3 03 00 02 33 f3 03 00 02 14 f0 04 26 01 0d f0 52 01 00 02 14 | ..T..2..&......3.......&...R.... |
| 7a80 | d8 01 11 80 12 d7 01 11 d1 01 11 98 14 a8 54 d4 01 32 f2 02 2e 01 0d f3 03 00 02 33 f3 03 00 02 | ..............T..2.........3.... |
| 7aa0 | 14 f0 04 2e 01 0d f0 62 01 00 02 12 80 12 d7 01 11 d1 01 11 98 14 a8 54 d4 01 32 f2 02 19 01 0d | .......b...............T..2..... |
| 7ac0 | f3 03 00 02 33 f0 02 19 01 0d f0 38 00 02 14 d8 01 11 80 12 d7 01 11 d1 01 11 98 14 a8 54 d4 01 | ....3......8.................T.. |
| 7ae0 | 32 f2 02 1f 01 0d f3 03 00 02 33 f3 03 00 02 14 f0 04 1f 01 0d f0 44 01 00 02 12 80 12 d7 01 11 | 2.........3...........D......... |
| 7b00 | d1 01 11 98 14 a8 54 d4 01 32 f1 02 13 01 0d f3 03 00 02 33 f0 02 13 01 0d f0 2c 00 02 14 d8 01 | ......T..2.........3......,..... |
| 7b20 | 11 80 12 d7 01 11 d1 01 11 98 14 a8 54 d4 01 32 f2 02 28 01 0d f3 03 00 02 33 f3 03 00 02 14 f0 | ............T..2..(......3...... |
| 7b40 | 04 28 01 0d f0 56 01 00 02 12 80 12 d7 01 11 d1 01 11 98 14 a8 54 d4 01 32 f2 02 1d 01 0d f3 03 | .(...V...............T..2....... |
| 7b60 | 00 02 33 f0 02 1d 01 0d f0 40 01 00 02 12 80 12 d7 01 11 d1 01 11 98 14 a8 54 d4 01 32 f2 02 19 | ..3......@...............T..2... |
| 7b80 | 01 0d f3 03 00 02 33 f0 02 19 01 0d f0 38 00 02 14 d8 01 11 80 12 d7 01 11 d1 01 11 98 14 a8 54 | ......3......8.................T |
| 7ba0 | d4 01 32 f2 02 36 01 0d f3 03 00 02 33 f3 03 00 02 14 f0 04 36 01 0d f0 72 01 00 02 12 80 12 d7 | ..2..6......3.......6...r....... |
| 7bc0 | 01 11 d1 01 11 98 14 a8 54 d4 01 32 f2 02 1a 01 0d f3 03 00 02 33 f0 02 1a 01 0d f0 3a 00 02 14 | ........T..2.........3......:... |
| 7be0 | d8 01 11 80 12 d7 01 11 d1 01 11 98 14 a8 54 d4 01 32 f2 02 47 01 01 0d f3 03 00 02 33 f3 03 00 | ..............T..2..G.......3... |
| 7c00 | 02 14 f1 04 47 01 01 0d 72 2f 00 00 00 | ....G...r/... |