| ofs | hex dump | ascii |
|---|
| 0000 | cb 0d 0d 0a 00 00 00 00 85 fa a7 68 c0 10 00 00 e3 00 00 00 00 00 00 00 00 00 00 00 00 04 00 00 | ...........h.................... |
| 0020 | 00 00 00 00 00 f3 58 00 00 00 97 00 64 00 5a 00 64 01 64 02 6c 01 5a 02 64 01 64 03 6c 03 6d 04 | ......X.....d.Z.d.d.l.Z.d.d.l.m. |
| 0040 | 5a 04 01 00 64 04 67 01 5a 05 02 00 65 02 6a 0c 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 | Z...d.g.Z...e.j................. |
| 0060 | 00 00 64 02 64 05 ac 06 ab 02 00 00 00 00 00 00 64 08 64 07 84 01 ab 00 00 00 00 00 00 00 5a 07 | ..d.d...........d.d...........Z. |
| 0080 | 79 02 29 09 61 9b 06 00 00 47 65 6e 65 72 61 74 6f 72 20 66 6f 72 20 53 75 64 6f 6b 75 20 67 72 | y.).a....Generator.for.Sudoku.gr |
| 00a0 | 61 70 68 73 0a 0a 54 68 69 73 20 6d 6f 64 75 6c 65 20 67 69 76 65 73 20 61 20 67 65 6e 65 72 61 | aphs..This.module.gives.a.genera |
| 00c0 | 74 6f 72 20 66 6f 72 20 6e 2d 53 75 64 6f 6b 75 20 67 72 61 70 68 73 2e 20 49 74 20 63 61 6e 20 | tor.for.n-Sudoku.graphs..It.can. |
| 00e0 | 62 65 20 75 73 65 64 20 74 6f 20 64 65 76 65 6c 6f 70 0a 61 6c 67 6f 72 69 74 68 6d 73 20 66 6f | be.used.to.develop.algorithms.fo |
| 0100 | 72 20 73 6f 6c 76 69 6e 67 20 6f 72 20 67 65 6e 65 72 61 74 69 6e 67 20 53 75 64 6f 6b 75 20 70 | r.solving.or.generating.Sudoku.p |
| 0120 | 75 7a 7a 6c 65 73 2e 0a 0a 41 20 63 6f 6d 70 6c 65 74 65 64 20 53 75 64 6f 6b 75 20 67 72 69 64 | uzzles...A.completed.Sudoku.grid |
| 0140 | 20 69 73 20 61 20 39 78 39 20 61 72 72 61 79 20 6f 66 20 69 6e 74 65 67 65 72 73 20 62 65 74 77 | .is.a.9x9.array.of.integers.betw |
| 0160 | 65 65 6e 20 31 20 61 6e 64 20 39 2c 20 77 69 74 68 20 6e 6f 0a 6e 75 6d 62 65 72 20 61 70 70 65 | een.1.and.9,.with.no.number.appe |
| 0180 | 61 72 69 6e 67 20 74 77 69 63 65 20 69 6e 20 74 68 65 20 73 61 6d 65 20 72 6f 77 2c 20 63 6f 6c | aring.twice.in.the.same.row,.col |
| 01a0 | 75 6d 6e 2c 20 6f 72 20 33 78 33 20 62 6f 78 2e 0a 0a 2b 2d 2d 2d 2d 2d 2d 2d 2d 2d 2b 2d 2d 2d | umn,.or.3x3.box...+---------+--- |
| 01c0 | 2d 2d 2d 2d 2d 2d 2b 2d 2d 2d 2d 2d 2d 2d 2d 2d 2b 0a 7c 20 7c 20 38 20 36 20 34 20 7c 20 7c 20 | ------+---------+.|.|.8.6.4.|.|. |
| 01e0 | 33 20 37 20 31 20 7c 20 7c 20 32 20 35 20 39 20 7c 0a 7c 20 7c 20 33 20 32 20 35 20 7c 20 7c 20 | 3.7.1.|.|.2.5.9.|.|.|.3.2.5.|.|. |
| 0200 | 38 20 34 20 39 20 7c 20 7c 20 37 20 36 20 31 20 7c 0a 7c 20 7c 20 39 20 37 20 31 20 7c 20 7c 20 | 8.4.9.|.|.7.6.1.|.|.|.9.7.1.|.|. |
| 0220 | 32 20 36 20 35 20 7c 20 7c 20 38 20 34 20 33 20 7c 0a 2b 2d 2d 2d 2d 2d 2d 2d 2d 2d 2b 2d 2d 2d | 2.6.5.|.|.8.4.3.|.+---------+--- |
| 0240 | 2d 2d 2d 2d 2d 2d 2b 2d 2d 2d 2d 2d 2d 2d 2d 2d 2b 0a 7c 20 7c 20 34 20 33 20 36 20 7c 20 7c 20 | ------+---------+.|.|.4.3.6.|.|. |
| 0260 | 31 20 39 20 32 20 7c 20 7c 20 35 20 38 20 37 20 7c 0a 7c 20 7c 20 31 20 39 20 38 20 7c 20 7c 20 | 1.9.2.|.|.5.8.7.|.|.|.1.9.8.|.|. |
| 0280 | 36 20 35 20 37 20 7c 20 7c 20 34 20 33 20 32 20 7c 0a 7c 20 7c 20 32 20 35 20 37 20 7c 20 7c 20 | 6.5.7.|.|.4.3.2.|.|.|.2.5.7.|.|. |
| 02a0 | 34 20 38 20 33 20 7c 20 7c 20 39 20 31 20 36 20 7c 0a 2b 2d 2d 2d 2d 2d 2d 2d 2d 2d 2b 2d 2d 2d | 4.8.3.|.|.9.1.6.|.+---------+--- |
| 02c0 | 2d 2d 2d 2d 2d 2d 2b 2d 2d 2d 2d 2d 2d 2d 2d 2d 2b 0a 7c 20 7c 20 36 20 38 20 39 20 7c 20 7c 20 | ------+---------+.|.|.6.8.9.|.|. |
| 02e0 | 37 20 33 20 34 20 7c 20 7c 20 31 20 32 20 35 20 7c 0a 7c 20 7c 20 37 20 31 20 33 20 7c 20 7c 20 | 7.3.4.|.|.1.2.5.|.|.|.7.1.3.|.|. |
| 0300 | 35 20 32 20 38 20 7c 20 7c 20 36 20 39 20 34 20 7c 0a 7c 20 7c 20 35 20 34 20 32 20 7c 20 7c 20 | 5.2.8.|.|.6.9.4.|.|.|.5.4.2.|.|. |
| 0320 | 39 20 31 20 36 20 7c 20 7c 20 33 20 37 20 38 20 7c 0a 2b 2d 2d 2d 2d 2d 2d 2d 2d 2d 2b 2d 2d 2d | 9.1.6.|.|.3.7.8.|.+---------+--- |
| 0340 | 2d 2d 2d 2d 2d 2d 2b 2d 2d 2d 2d 2d 2d 2d 2d 2d 2b 0a 0a 0a 54 68 65 20 53 75 64 6f 6b 75 20 67 | ------+---------+...The.Sudoku.g |
| 0360 | 72 61 70 68 20 69 73 20 61 6e 20 75 6e 64 69 72 65 63 74 65 64 20 67 72 61 70 68 20 77 69 74 68 | raph.is.an.undirected.graph.with |
| 0380 | 20 38 31 20 76 65 72 74 69 63 65 73 2c 20 63 6f 72 72 65 73 70 6f 6e 64 69 6e 67 20 74 6f 0a 74 | .81.vertices,.corresponding.to.t |
| 03a0 | 68 65 20 63 65 6c 6c 73 20 6f 66 20 61 20 53 75 64 6f 6b 75 20 67 72 69 64 2e 20 49 74 20 69 73 | he.cells.of.a.Sudoku.grid..It.is |
| 03c0 | 20 61 20 72 65 67 75 6c 61 72 20 67 72 61 70 68 20 6f 66 20 64 65 67 72 65 65 20 32 30 2e 20 54 | .a.regular.graph.of.degree.20..T |
| 03e0 | 77 6f 20 64 69 73 74 69 6e 63 74 0a 76 65 72 74 69 63 65 73 20 61 72 65 20 61 64 6a 61 63 65 6e | wo.distinct.vertices.are.adjacen |
| 0400 | 74 20 69 66 20 61 6e 64 20 6f 6e 6c 79 20 69 66 20 74 68 65 20 63 6f 72 72 65 73 70 6f 6e 64 69 | t.if.and.only.if.the.correspondi |
| 0420 | 6e 67 20 63 65 6c 6c 73 20 62 65 6c 6f 6e 67 20 74 6f 20 74 68 65 0a 73 61 6d 65 20 72 6f 77 2c | ng.cells.belong.to.the.same.row, |
| 0440 | 20 63 6f 6c 75 6d 6e 2c 20 6f 72 20 62 6f 78 2e 20 41 20 63 6f 6d 70 6c 65 74 65 64 20 53 75 64 | .column,.or.box..A.completed.Sud |
| 0460 | 6f 6b 75 20 67 72 69 64 20 63 6f 72 72 65 73 70 6f 6e 64 73 20 74 6f 20 61 20 76 65 72 74 65 78 | oku.grid.corresponds.to.a.vertex |
| 0480 | 0a 63 6f 6c 6f 72 69 6e 67 20 6f 66 20 74 68 65 20 53 75 64 6f 6b 75 20 67 72 61 70 68 20 77 69 | .coloring.of.the.Sudoku.graph.wi |
| 04a0 | 74 68 20 6e 69 6e 65 20 63 6f 6c 6f 72 73 2e 0a 0a 4d 6f 72 65 20 67 65 6e 65 72 61 6c 6c 79 2c | th.nine.colors...More.generally, |
| 04c0 | 20 74 68 65 20 6e 2d 53 75 64 6f 6b 75 20 67 72 61 70 68 20 69 73 20 61 20 67 72 61 70 68 20 77 | .the.n-Sudoku.graph.is.a.graph.w |
| 04e0 | 69 74 68 20 6e 5e 34 20 76 65 72 74 69 63 65 73 2c 20 63 6f 72 72 65 73 70 6f 6e 64 69 6e 67 0a | ith.n^4.vertices,.corresponding. |
| 0500 | 74 6f 20 74 68 65 20 63 65 6c 6c 73 20 6f 66 20 61 6e 20 6e 5e 32 20 62 79 20 6e 5e 32 20 67 72 | to.the.cells.of.an.n^2.by.n^2.gr |
| 0520 | 69 64 2e 20 54 77 6f 20 64 69 73 74 69 6e 63 74 20 76 65 72 74 69 63 65 73 20 61 72 65 20 61 64 | id..Two.distinct.vertices.are.ad |
| 0540 | 6a 61 63 65 6e 74 20 69 66 20 61 6e 64 0a 6f 6e 6c 79 20 69 66 20 74 68 65 79 20 62 65 6c 6f 6e | jacent.if.and.only.if.they.belon |
| 0560 | 67 20 74 6f 20 74 68 65 20 73 61 6d 65 20 72 6f 77 2c 20 63 6f 6c 75 6d 6e 2c 20 6f 72 20 6e 20 | g.to.the.same.row,.column,.or.n. |
| 0580 | 62 79 20 6e 20 62 6f 78 2e 0a 0a 52 65 66 65 72 65 6e 63 65 73 0a 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d | by.n.box...References.---------- |
| 05a0 | 0a 2e 2e 20 5b 31 5d 20 48 65 72 7a 62 65 72 67 2c 20 41 2e 20 4d 2e 2c 20 26 20 4d 75 72 74 79 | ....[1].Herzberg,.A..M.,.&.Murty |
| 05c0 | 2c 20 4d 2e 20 52 2e 20 28 32 30 30 37 29 2e 20 53 75 64 6f 6b 75 20 73 71 75 61 72 65 73 20 61 | ,.M..R..(2007)..Sudoku.squares.a |
| 05e0 | 6e 64 20 63 68 72 6f 6d 61 74 69 63 0a 20 20 20 20 70 6f 6c 79 6e 6f 6d 69 61 6c 73 2e 20 4e 6f | nd.chromatic.....polynomials..No |
| 0600 | 74 69 63 65 73 20 6f 66 20 74 68 65 20 41 4d 53 2c 20 35 34 28 36 29 2c 20 37 30 38 2d 37 31 37 | tices.of.the.AMS,.54(6),.708-717 |
| 0620 | 2e 0a 2e 2e 20 5b 32 5d 20 53 61 6e 64 65 72 2c 20 54 6f 72 73 74 65 6e 20 28 32 30 30 39 29 2c | .....[2].Sander,.Torsten.(2009), |
| 0640 | 20 22 53 75 64 6f 6b 75 20 67 72 61 70 68 73 20 61 72 65 20 69 6e 74 65 67 72 61 6c 22 2c 0a 20 | ."Sudoku.graphs.are.integral",.. |
| 0660 | 20 20 20 45 6c 65 63 74 72 6f 6e 69 63 20 4a 6f 75 72 6e 61 6c 20 6f 66 20 43 6f 6d 62 69 6e 61 | ...Electronic.Journal.of.Combina |
| 0680 | 74 6f 72 69 63 73 2c 20 31 36 20 28 31 29 3a 20 4e 6f 74 65 20 32 35 2c 20 37 70 70 2c 20 4d 52 | torics,.16.(1):.Note.25,.7pp,.MR |
| 06a0 | 20 32 35 32 39 38 31 36 0a 2e 2e 20 5b 33 5d 20 57 69 6b 69 70 65 64 69 61 20 63 6f 6e 74 72 69 | .2529816....[3].Wikipedia.contri |
| 06c0 | 62 75 74 6f 72 73 2e 20 22 47 6c 6f 73 73 61 72 79 20 6f 66 20 53 75 64 6f 6b 75 2e 22 20 57 69 | butors.."Glossary.of.Sudoku.".Wi |
| 06e0 | 6b 69 70 65 64 69 61 2c 20 54 68 65 20 46 72 65 65 0a 20 20 20 20 45 6e 63 79 63 6c 6f 70 65 64 | kipedia,.The.Free.....Encycloped |
| 0700 | 69 61 2c 20 33 20 44 65 63 2e 20 32 30 31 39 2e 20 57 65 62 2e 20 32 32 20 44 65 63 2e 20 32 30 | ia,.3.Dec..2019..Web..22.Dec..20 |
| 0720 | 31 39 2e 0a e9 00 00 00 00 4e 29 01 da 0d 4e 65 74 77 6f 72 6b 58 45 72 72 6f 72 da 0c 73 75 64 | 19.......N)...NetworkXError..sud |
| 0740 | 6f 6b 75 5f 67 72 61 70 68 54 29 02 da 06 67 72 61 70 68 73 da 0d 72 65 74 75 72 6e 73 5f 67 72 | oku_graphT)...graphs..returns_gr |
| 0760 | 61 70 68 63 01 00 00 00 00 00 00 00 00 00 00 00 08 00 00 00 03 00 00 00 f3 a4 02 00 00 97 00 7c | aphc...........................| |
| 0780 | 00 64 01 6b 02 00 00 72 0b 74 01 00 00 00 00 00 00 00 00 64 02 ab 01 00 00 00 00 00 00 82 01 7c | .d.k...r.t.........d...........| |
| 07a0 | 00 7c 00 7a 05 00 00 7d 01 7c 01 7c 00 7a 05 00 00 7d 02 7c 02 7c 00 7a 05 00 00 7d 03 74 03 00 | .|.z...}.|.|.z...}.|.|.z...}.t.. |
| 07c0 | 00 00 00 00 00 00 00 6a 04 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 7c 03 ab 01 00 | .......j...................|.... |
| 07e0 | 00 00 00 00 00 7d 04 7c 00 64 03 6b 02 00 00 72 02 7c 04 53 00 74 07 00 00 00 00 00 00 00 00 7c | .....}.|.d.k...r.|.S.t.........| |
| 0800 | 01 ab 01 00 00 00 00 00 00 44 00 5d 40 00 00 7d 05 7c 05 7c 01 7a 05 00 00 7d 06 74 07 00 00 00 | .........D.]@..}.|.|.z...}.t.... |
| 0820 | 00 00 00 00 00 64 04 7c 01 ab 02 00 00 00 00 00 00 44 00 5d 2a 00 00 7d 07 74 07 00 00 00 00 00 | .....d.|.........D.]*..}.t...... |
| 0840 | 00 00 00 7c 07 ab 01 00 00 00 00 00 00 44 00 5d 1a 00 00 7d 08 7c 04 6a 09 00 00 00 00 00 00 00 | ...|.........D.]...}.|.j........ |
| 0860 | 00 00 00 00 00 00 00 00 00 00 00 7c 06 7c 08 7a 00 00 00 7c 06 7c 07 7a 00 00 00 ab 02 00 00 00 | ...........|.|.z...|.|.z........ |
| 0880 | 00 00 00 01 00 8c 1c 04 00 8c 2c 04 00 8c 42 04 00 74 07 00 00 00 00 00 00 00 00 7c 01 ab 01 00 | ..........,...B..t.........|.... |
| 08a0 | 00 00 00 00 00 44 00 5d 38 00 00 7d 09 74 07 00 00 00 00 00 00 00 00 7c 09 7c 03 7c 01 ab 03 00 | .....D.]8..}.t.........|.|.|.... |
| 08c0 | 00 00 00 00 00 44 00 5d 26 00 00 7d 07 74 07 00 00 00 00 00 00 00 00 7c 09 7c 07 7c 01 ab 03 00 | .....D.]&..}.t.........|.|.|.... |
| 08e0 | 00 00 00 00 00 44 00 5d 14 00 00 7d 08 7c 04 6a 09 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 | .....D.]...}.|.j................ |
| 0900 | 00 00 00 7c 08 7c 07 ab 02 00 00 00 00 00 00 01 00 8c 16 04 00 8c 28 04 00 8c 3a 04 00 74 07 00 | ...|.|................(...:..t.. |
| 0920 | 00 00 00 00 00 00 00 7c 00 ab 01 00 00 00 00 00 00 44 00 5d 72 00 00 7d 0a 74 07 00 00 00 00 00 | .......|.........D.]r..}.t...... |
| 0940 | 00 00 00 7c 00 ab 01 00 00 00 00 00 00 44 00 5d 62 00 00 7d 0b 7c 02 7c 0a 7a 05 00 00 7c 00 7c | ...|.........D.]b..}.|.|.z...|.| |
| 0960 | 0b 7a 05 00 00 7a 00 00 00 7d 0c 74 07 00 00 00 00 00 00 00 00 64 04 7c 01 ab 02 00 00 00 00 00 | .z...z...}.t.........d.|........ |
| 0980 | 00 44 00 5d 46 00 00 7d 07 74 07 00 00 00 00 00 00 00 00 7c 07 ab 01 00 00 00 00 00 00 44 00 5d | .D.]F..}.t.........|.........D.] |
| 09a0 | 36 00 00 7d 08 7c 0c 7c 08 7c 00 7a 06 00 00 7a 00 00 00 7c 01 7c 08 7c 00 7a 02 00 00 7a 05 00 | 6..}.|.|.|.z...z...|.|.|.z...z.. |
| 09c0 | 00 7a 00 00 00 7d 0d 7c 0c 7c 07 7c 00 7a 06 00 00 7a 00 00 00 7c 01 7c 07 7c 00 7a 02 00 00 7a | .z...}.|.|.|.z...z...|.|.|.z...z |
| 09e0 | 05 00 00 7a 00 00 00 7d 0e 7c 04 6a 09 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 7c | ...z...}.|.j...................| |
| 0a00 | 0d 7c 0e ab 02 00 00 00 00 00 00 01 00 8c 38 04 00 8c 48 04 00 8c 64 04 00 8c 74 04 00 7c 04 53 | .|............8...H...d...t..|.S |
| 0a20 | 00 29 05 61 0f 05 00 00 52 65 74 75 72 6e 73 20 74 68 65 20 6e 2d 53 75 64 6f 6b 75 20 67 72 61 | .).a....Returns.the.n-Sudoku.gra |
| 0a40 | 70 68 2e 20 54 68 65 20 64 65 66 61 75 6c 74 20 76 61 6c 75 65 20 6f 66 20 6e 20 69 73 20 33 2e | ph..The.default.value.of.n.is.3. |
| 0a60 | 0a 0a 20 20 20 20 54 68 65 20 6e 2d 53 75 64 6f 6b 75 20 67 72 61 70 68 20 69 73 20 61 20 67 72 | ......The.n-Sudoku.graph.is.a.gr |
| 0a80 | 61 70 68 20 77 69 74 68 20 6e 5e 34 20 76 65 72 74 69 63 65 73 2c 20 63 6f 72 72 65 73 70 6f 6e | aph.with.n^4.vertices,.correspon |
| 0aa0 | 64 69 6e 67 20 74 6f 20 74 68 65 0a 20 20 20 20 63 65 6c 6c 73 20 6f 66 20 61 6e 20 6e 5e 32 20 | ding.to.the.....cells.of.an.n^2. |
| 0ac0 | 62 79 20 6e 5e 32 20 67 72 69 64 2e 20 54 77 6f 20 64 69 73 74 69 6e 63 74 20 76 65 72 74 69 63 | by.n^2.grid..Two.distinct.vertic |
| 0ae0 | 65 73 20 61 72 65 20 61 64 6a 61 63 65 6e 74 20 69 66 20 61 6e 64 0a 20 20 20 20 6f 6e 6c 79 20 | es.are.adjacent.if.and.....only. |
| 0b00 | 69 66 20 74 68 65 79 20 62 65 6c 6f 6e 67 20 74 6f 20 74 68 65 20 73 61 6d 65 20 72 6f 77 2c 20 | if.they.belong.to.the.same.row,. |
| 0b20 | 63 6f 6c 75 6d 6e 2c 20 6f 72 20 6e 2d 62 79 2d 6e 20 62 6f 78 2e 0a 0a 20 20 20 20 50 61 72 61 | column,.or.n-by-n.box.......Para |
| 0b40 | 6d 65 74 65 72 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 6e 3a 20 69 6e 74 | meters.....----------.....n:.int |
| 0b60 | 65 67 65 72 0a 20 20 20 20 20 20 20 54 68 65 20 6f 72 64 65 72 20 6f 66 20 74 68 65 20 53 75 64 | eger........The.order.of.the.Sud |
| 0b80 | 6f 6b 75 20 67 72 61 70 68 2c 20 65 71 75 61 6c 20 74 6f 20 74 68 65 20 73 71 75 61 72 65 20 72 | oku.graph,.equal.to.the.square.r |
| 0ba0 | 6f 6f 74 20 6f 66 20 74 68 65 0a 20 20 20 20 20 20 20 6e 75 6d 62 65 72 20 6f 66 20 72 6f 77 73 | oot.of.the........number.of.rows |
| 0bc0 | 2e 20 54 68 65 20 64 65 66 61 75 6c 74 20 69 73 20 33 2e 0a 0a 20 20 20 20 52 65 74 75 72 6e 73 | ..The.default.is.3.......Returns |
| 0be0 | 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 4e 65 74 77 6f 72 6b 58 20 67 72 61 70 68 0a | .....-------.....NetworkX.graph. |
| 0c00 | 20 20 20 20 20 20 20 20 54 68 65 20 6e 2d 53 75 64 6f 6b 75 20 67 72 61 70 68 20 53 75 64 28 6e | ........The.n-Sudoku.graph.Sud(n |
| 0c20 | 29 2e 0a 0a 20 20 20 20 45 78 61 6d 70 6c 65 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 | ).......Examples.....--------... |
| 0c40 | 20 20 3e 3e 3e 20 47 20 3d 20 6e 78 2e 73 75 64 6f 6b 75 5f 67 72 61 70 68 28 29 0a 20 20 20 20 | ..>>>.G.=.nx.sudoku_graph()..... |
| 0c60 | 3e 3e 3e 20 47 2e 6e 75 6d 62 65 72 5f 6f 66 5f 6e 6f 64 65 73 28 29 0a 20 20 20 20 38 31 0a 20 | >>>.G.number_of_nodes().....81.. |
| 0c80 | 20 20 20 3e 3e 3e 20 47 2e 6e 75 6d 62 65 72 5f 6f 66 5f 65 64 67 65 73 28 29 0a 20 20 20 20 38 | ...>>>.G.number_of_edges().....8 |
| 0ca0 | 31 30 0a 20 20 20 20 3e 3e 3e 20 73 6f 72 74 65 64 28 47 2e 6e 65 69 67 68 62 6f 72 73 28 34 32 | 10.....>>>.sorted(G.neighbors(42 |
| 0cc0 | 29 29 0a 20 20 20 20 5b 36 2c 20 31 35 2c 20 32 34 2c 20 33 33 2c 20 33 34 2c 20 33 35 2c 20 33 | )).....[6,.15,.24,.33,.34,.35,.3 |
| 0ce0 | 36 2c 20 33 37 2c 20 33 38 2c 20 33 39 2c 20 34 30 2c 20 34 31 2c 20 34 33 2c 20 34 34 2c 20 35 | 6,.37,.38,.39,.40,.41,.43,.44,.5 |
| 0d00 | 31 2c 20 35 32 2c 20 35 33 2c 20 36 30 2c 20 36 39 2c 20 37 38 5d 0a 20 20 20 20 3e 3e 3e 20 47 | 1,.52,.53,.60,.69,.78].....>>>.G |
| 0d20 | 20 3d 20 6e 78 2e 73 75 64 6f 6b 75 5f 67 72 61 70 68 28 32 29 0a 20 20 20 20 3e 3e 3e 20 47 2e | .=.nx.sudoku_graph(2).....>>>.G. |
| 0d40 | 6e 75 6d 62 65 72 5f 6f 66 5f 6e 6f 64 65 73 28 29 0a 20 20 20 20 31 36 0a 20 20 20 20 3e 3e 3e | number_of_nodes().....16.....>>> |
| 0d60 | 20 47 2e 6e 75 6d 62 65 72 5f 6f 66 5f 65 64 67 65 73 28 29 0a 20 20 20 20 35 36 0a 0a 20 20 20 | .G.number_of_edges().....56..... |
| 0d80 | 20 52 65 66 65 72 65 6e 63 65 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 2e | .References.....----------...... |
| 0da0 | 2e 20 5b 31 5d 20 48 65 72 7a 62 65 72 67 2c 20 41 2e 20 4d 2e 2c 20 26 20 4d 75 72 74 79 2c 20 | ..[1].Herzberg,.A..M.,.&.Murty,. |
| 0dc0 | 4d 2e 20 52 2e 20 28 32 30 30 37 29 2e 20 53 75 64 6f 6b 75 20 73 71 75 61 72 65 73 20 61 6e 64 | M..R..(2007)..Sudoku.squares.and |
| 0de0 | 20 63 68 72 6f 6d 61 74 69 63 0a 20 20 20 20 20 20 20 70 6f 6c 79 6e 6f 6d 69 61 6c 73 2e 20 4e | .chromatic........polynomials..N |
| 0e00 | 6f 74 69 63 65 73 20 6f 66 20 74 68 65 20 41 4d 53 2c 20 35 34 28 36 29 2c 20 37 30 38 2d 37 31 | otices.of.the.AMS,.54(6),.708-71 |
| 0e20 | 37 2e 0a 20 20 20 20 2e 2e 20 5b 32 5d 20 53 61 6e 64 65 72 2c 20 54 6f 72 73 74 65 6e 20 28 32 | 7.........[2].Sander,.Torsten.(2 |
| 0e40 | 30 30 39 29 2c 20 22 53 75 64 6f 6b 75 20 67 72 61 70 68 73 20 61 72 65 20 69 6e 74 65 67 72 61 | 009),."Sudoku.graphs.are.integra |
| 0e60 | 6c 22 2c 0a 20 20 20 20 20 20 20 45 6c 65 63 74 72 6f 6e 69 63 20 4a 6f 75 72 6e 61 6c 20 6f 66 | l",........Electronic.Journal.of |
| 0e80 | 20 43 6f 6d 62 69 6e 61 74 6f 72 69 63 73 2c 20 31 36 20 28 31 29 3a 20 4e 6f 74 65 20 32 35 2c | .Combinatorics,.16.(1):.Note.25, |
| 0ea0 | 20 37 70 70 2c 20 4d 52 20 32 35 32 39 38 31 36 0a 20 20 20 20 2e 2e 20 5b 33 5d 20 57 69 6b 69 | .7pp,.MR.2529816........[3].Wiki |
| 0ec0 | 70 65 64 69 61 20 63 6f 6e 74 72 69 62 75 74 6f 72 73 2e 20 22 47 6c 6f 73 73 61 72 79 20 6f 66 | pedia.contributors.."Glossary.of |
| 0ee0 | 20 53 75 64 6f 6b 75 2e 22 20 57 69 6b 69 70 65 64 69 61 2c 20 54 68 65 20 46 72 65 65 0a 20 20 | .Sudoku.".Wikipedia,.The.Free... |
| 0f00 | 20 20 20 20 20 45 6e 63 79 63 6c 6f 70 65 64 69 61 2c 20 33 20 44 65 63 2e 20 32 30 31 39 2e 20 | .....Encyclopedia,.3.Dec..2019.. |
| 0f20 | 57 65 62 2e 20 32 32 20 44 65 63 2e 20 32 30 31 39 2e 0a 20 20 20 20 72 02 00 00 00 7a 30 54 68 | Web..22.Dec..2019......r....z0Th |
| 0f40 | 65 20 6f 72 64 65 72 20 6d 75 73 74 20 62 65 20 67 72 65 61 74 65 72 20 74 68 61 6e 20 6f 72 20 | e.order.must.be.greater.than.or. |
| 0f60 | 65 71 75 61 6c 20 74 6f 20 7a 65 72 6f 2e e9 02 00 00 00 e9 01 00 00 00 29 05 72 03 00 00 00 da | equal.to.zero...........).r..... |
| 0f80 | 02 6e 78 da 0b 65 6d 70 74 79 5f 67 72 61 70 68 da 05 72 61 6e 67 65 da 08 61 64 64 5f 65 64 67 | .nx..empty_graph..range..add_edg |
| 0fa0 | 65 29 0f da 01 6e da 02 6e 32 da 02 6e 33 da 02 6e 34 da 01 47 da 06 72 6f 77 5f 6e 6f da 09 72 | e)...n..n2..n3..n4..G..row_no..r |
| 0fc0 | 6f 77 5f 73 74 61 72 74 da 01 6a da 01 69 da 06 63 6f 6c 5f 6e 6f da 07 62 61 6e 64 5f 6e 6f da | ow_start..j..i..col_no..band_no. |
| 0fe0 | 08 73 74 61 63 6b 5f 6e 6f da 09 62 6f 78 5f 73 74 61 72 74 da 01 75 da 01 76 73 0f 00 00 00 20 | .stack_no..box_start..u..vs..... |
| 1000 | 20 20 20 20 20 20 20 20 20 20 20 20 20 20 fa 61 2f 68 6f 6d 65 2f 62 6c 61 63 6b 68 61 6f 2f 75 | ...............a/home/blackhao/u |
| 1020 | 69 75 63 2d 63 6f 75 72 73 65 2d 67 72 61 70 68 2f 2e 76 65 6e 76 2f 6c 69 62 2f 70 79 74 68 6f | iuc-course-graph/.venv/lib/pytho |
| 1040 | 6e 33 2e 31 32 2f 73 69 74 65 2d 70 61 63 6b 61 67 65 73 2f 6e 65 74 77 6f 72 6b 78 2f 67 65 6e | n3.12/site-packages/networkx/gen |
| 1060 | 65 72 61 74 6f 72 73 2f 73 75 64 6f 6b 75 2e 70 79 72 04 00 00 00 72 04 00 00 00 32 00 00 00 73 | erators/sudoku.pyr....r....2...s |
| 1080 | ad 01 00 00 80 00 f0 58 01 00 08 09 88 31 82 75 dc 0e 1b d0 1c 4e d3 0e 4f d0 08 4f e0 09 0a 88 | .......X.....1.u.....N..O..O.... |
| 10a0 | 51 89 15 80 42 d8 09 0b 88 61 89 16 80 42 d8 09 0b 88 61 89 16 80 42 f4 06 00 09 0b 8f 0e 89 0e | Q...B....a...B....a...B......... |
| 10c0 | 90 72 d3 08 1a 80 41 f0 06 00 08 09 88 31 82 75 d8 0f 10 88 08 f4 06 00 13 18 98 02 93 29 f2 00 | .r....A......1.u.............).. |
| 10e0 | 04 05 39 88 06 d8 14 1a 98 52 91 4b 88 09 dc 11 16 90 71 98 22 93 1c f2 00 02 09 39 88 41 dc 15 | ..9......R.K......q."......9.A.. |
| 1100 | 1a 98 31 93 58 f2 00 01 0d 39 90 01 d8 10 11 97 0a 91 0a 98 39 a0 71 99 3d a8 29 b0 61 a9 2d d5 | ..1.X....9..........9.q.=.).a.-. |
| 1120 | 10 38 f1 03 01 0d 39 f1 03 02 09 39 f0 05 04 05 39 f4 0e 00 13 18 98 02 93 29 f2 00 03 05 21 88 | .8....9....9....9........)....!. |
| 1140 | 06 dc 11 16 90 76 98 72 a0 32 d3 11 26 f2 00 02 09 21 88 41 dc 15 1a 98 36 a0 31 a0 62 d3 15 29 | .....v.r.2..&....!.A....6.1.b..) |
| 1160 | f2 00 01 0d 21 90 01 d8 10 11 97 0a 91 0a 98 31 98 61 d5 10 20 f1 03 01 0d 21 f1 03 02 09 21 f0 | ....!..........1.a.......!....!. |
| 1180 | 03 03 05 21 f4 0c 00 14 19 98 11 93 38 f2 00 07 05 25 88 07 dc 18 1d 98 61 9b 08 f2 00 06 09 25 | ...!........8....%......a......% |
| 11a0 | 88 48 d8 18 1a 98 57 99 0c a0 71 a8 38 a1 7c d1 18 33 88 49 dc 15 1a 98 31 98 62 93 5c f2 00 04 | .H....W...q.8.|..3.I....1.b.\... |
| 11c0 | 0d 25 90 01 dc 19 1e 98 71 9b 18 f2 00 03 11 25 90 41 d8 18 21 a0 51 a8 11 a1 55 d1 18 2b a8 62 | .%......q......%.A..!.Q...U..+.b |
| 11e0 | b0 41 b8 11 b1 46 a9 6d d1 18 3b 90 41 d8 18 21 a0 51 a8 11 a1 55 d1 18 2b a8 62 b0 41 b8 11 b1 | .A...F.m..;.A..!.Q...U..+.b.A... |
| 1200 | 46 a9 6d d1 18 3b 90 41 d8 14 15 97 4a 91 4a 98 71 a0 21 d5 14 24 f1 07 03 11 25 f1 03 04 0d 25 | F.m..;.A....J.J.q.!..$....%....% |
| 1220 | f1 05 06 09 25 f0 03 07 05 25 f0 12 00 0c 0d 80 48 f3 00 00 00 00 29 01 e9 03 00 00 00 29 08 da | ....%....%......H.....)......).. |
| 1240 | 07 5f 5f 64 6f 63 5f 5f da 08 6e 65 74 77 6f 72 6b 78 72 0a 00 00 00 da 12 6e 65 74 77 6f 72 6b | .__doc__..networkxr......network |
| 1260 | 78 2e 65 78 63 65 70 74 69 6f 6e 72 03 00 00 00 da 07 5f 5f 61 6c 6c 5f 5f da 0d 5f 64 69 73 70 | x.exceptionr......__all__.._disp |
| 1280 | 61 74 63 68 61 62 6c 65 72 04 00 00 00 a9 00 72 1e 00 00 00 72 1d 00 00 00 fa 08 3c 6d 6f 64 75 | atchabler......r....r......<modu |
| 12a0 | 6c 65 3e 72 26 00 00 00 01 00 00 00 73 40 00 00 00 f0 03 01 01 01 f1 02 29 01 04 f3 56 01 00 01 | le>r&.......s@..........)...V... |
| 12c0 | 16 dd 00 2c e0 0b 19 d0 0a 1a 80 07 f0 06 00 02 12 80 12 d7 01 11 d1 01 11 98 14 a8 54 d4 01 32 | ...,........................T..2 |
| 12e0 | f2 02 50 01 01 0d f3 03 00 02 33 f1 02 50 01 01 0d 72 1e 00 00 00 | ..P.......3..P...r.... |