| ofs | hex dump | ascii |
|---|
| 0000 | cb 0d 0d 0a 00 00 00 00 85 fa a7 68 d0 43 00 00 e3 00 00 00 00 00 00 00 00 00 00 00 00 05 00 00 | ...........h.C.................. |
| 0020 | 00 00 00 00 00 f3 58 01 00 00 97 00 64 00 5a 00 64 01 64 02 6c 01 5a 02 64 01 64 03 6c 03 6d 04 | ......X.....d.Z.d.d.l.Z.d.d.l.m. |
| 0040 | 5a 04 01 00 67 00 64 04 a2 01 5a 05 02 00 65 02 6a 0c 00 00 00 00 00 00 00 00 00 00 00 00 00 00 | Z...g.d...Z...e.j............... |
| 0060 | 00 00 00 00 64 05 ac 06 ab 01 00 00 00 00 00 00 64 0e 64 07 84 01 ab 00 00 00 00 00 00 00 5a 07 | ....d...........d.d...........Z. |
| 0080 | 02 00 65 02 6a 0c 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 64 05 ac 06 ab 01 00 00 | ..e.j...................d....... |
| 00a0 | 00 00 00 00 64 0e 64 08 84 01 ab 00 00 00 00 00 00 00 5a 08 02 00 65 04 64 09 ab 01 00 00 00 00 | ....d.d...........Z...e.d....... |
| 00c0 | 00 00 02 00 65 04 64 0a ab 01 00 00 00 00 00 00 02 00 65 02 6a 0c 00 00 00 00 00 00 00 00 00 00 | ....e.d...........e.j........... |
| 00e0 | 00 00 00 00 00 00 00 00 64 05 ac 06 ab 01 00 00 00 00 00 00 09 00 64 0f 64 0b 84 01 ab 00 00 00 | ........d.............d.d....... |
| 0100 | 00 00 00 00 ab 00 00 00 00 00 00 00 ab 00 00 00 00 00 00 00 5a 09 02 00 65 04 64 09 ab 01 00 00 | ....................Z...e.d..... |
| 0120 | 00 00 00 00 02 00 65 04 64 0a ab 01 00 00 00 00 00 00 02 00 65 02 6a 0c 00 00 00 00 00 00 00 00 | ......e.d...........e.j......... |
| 0140 | 00 00 00 00 00 00 00 00 00 00 64 05 ac 06 ab 01 00 00 00 00 00 00 09 00 64 0f 64 0c 84 01 ab 00 | ..........d.............d.d..... |
| 0160 | 00 00 00 00 00 00 ab 00 00 00 00 00 00 00 ab 00 00 00 00 00 00 00 5a 0a 64 0f 64 0d 84 01 5a 0b | ......................Z.d.d...Z. |
| 0180 | 79 02 29 10 61 7b 01 00 00 4c 61 70 6c 61 63 69 61 6e 20 6d 61 74 72 69 78 20 6f 66 20 67 72 61 | y.).a{...Laplacian.matrix.of.gra |
| 01a0 | 70 68 73 2e 0a 0a 41 6c 6c 20 63 61 6c 63 75 6c 61 74 69 6f 6e 73 20 68 65 72 65 20 61 72 65 20 | phs...All.calculations.here.are. |
| 01c0 | 64 6f 6e 65 20 75 73 69 6e 67 20 74 68 65 20 6f 75 74 2d 64 65 67 72 65 65 2e 20 46 6f 72 20 4c | done.using.the.out-degree..For.L |
| 01e0 | 61 70 6c 61 63 69 61 6e 73 20 75 73 69 6e 67 0a 69 6e 2d 64 65 67 72 65 65 2c 20 75 73 65 20 60 | aplacians.using.in-degree,.use.` |
| 0200 | 47 2e 72 65 76 65 72 73 65 28 63 6f 70 79 3d 46 61 6c 73 65 29 60 20 69 6e 73 74 65 61 64 20 6f | G.reverse(copy=False)`.instead.o |
| 0220 | 66 20 60 47 60 20 61 6e 64 20 74 61 6b 65 20 74 68 65 20 74 72 61 6e 73 70 6f 73 65 2e 0a 0a 54 | f.`G`.and.take.the.transpose...T |
| 0240 | 68 65 20 60 6c 61 70 6c 61 63 69 61 6e 5f 6d 61 74 72 69 78 60 20 66 75 6e 63 74 69 6f 6e 20 70 | he.`laplacian_matrix`.function.p |
| 0260 | 72 6f 76 69 64 65 73 20 61 6e 20 75 6e 6e 6f 72 6d 61 6c 69 7a 65 64 20 6d 61 74 72 69 78 2c 0a | rovides.an.unnormalized.matrix,. |
| 0280 | 77 68 69 6c 65 20 60 6e 6f 72 6d 61 6c 69 7a 65 64 5f 6c 61 70 6c 61 63 69 61 6e 5f 6d 61 74 72 | while.`normalized_laplacian_matr |
| 02a0 | 69 78 60 2c 20 60 64 69 72 65 63 74 65 64 5f 6c 61 70 6c 61 63 69 61 6e 5f 6d 61 74 72 69 78 60 | ix`,.`directed_laplacian_matrix` |
| 02c0 | 2c 0a 61 6e 64 20 60 64 69 72 65 63 74 65 64 5f 63 6f 6d 62 69 6e 61 74 6f 72 69 61 6c 5f 6c 61 | ,.and.`directed_combinatorial_la |
| 02e0 | 70 6c 61 63 69 61 6e 5f 6d 61 74 72 69 78 60 20 61 72 65 20 61 6c 6c 20 6e 6f 72 6d 61 6c 69 7a | placian_matrix`.are.all.normaliz |
| 0300 | 65 64 2e 0a e9 00 00 00 00 4e 29 01 da 13 6e 6f 74 5f 69 6d 70 6c 65 6d 65 6e 74 65 64 5f 66 6f | ed.......N)...not_implemented_fo |
| 0320 | 72 29 04 da 10 6c 61 70 6c 61 63 69 61 6e 5f 6d 61 74 72 69 78 da 1b 6e 6f 72 6d 61 6c 69 7a 65 | r)...laplacian_matrix..normalize |
| 0340 | 64 5f 6c 61 70 6c 61 63 69 61 6e 5f 6d 61 74 72 69 78 da 19 64 69 72 65 63 74 65 64 5f 6c 61 70 | d_laplacian_matrix..directed_lap |
| 0360 | 6c 61 63 69 61 6e 5f 6d 61 74 72 69 78 da 27 64 69 72 65 63 74 65 64 5f 63 6f 6d 62 69 6e 61 74 | lacian_matrix.'directed_combinat |
| 0380 | 6f 72 69 61 6c 5f 6c 61 70 6c 61 63 69 61 6e 5f 6d 61 74 72 69 78 da 06 77 65 69 67 68 74 29 01 | orial_laplacian_matrix..weight). |
| 03a0 | da 0a 65 64 67 65 5f 61 74 74 72 73 63 03 00 00 00 00 00 00 00 00 00 00 00 09 00 00 00 03 00 00 | ..edge_attrsc................... |
| 03c0 | 00 f3 10 01 00 00 97 00 64 01 64 02 6c 00 7d 03 7c 01 80 0b 74 03 00 00 00 00 00 00 00 00 7c 00 | ........d.d.l.}.|...t.........|. |
| 03e0 | ab 01 00 00 00 00 00 00 7d 01 74 05 00 00 00 00 00 00 00 00 6a 06 00 00 00 00 00 00 00 00 00 00 | ........}.t.........j........... |
| 0400 | 00 00 00 00 00 00 00 00 7c 00 7c 01 7c 02 64 03 ac 04 ab 04 00 00 00 00 00 00 7d 04 7c 04 6a 08 | ........|.|.|.d...........}.|.j. |
| 0420 | 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 5c 02 00 00 7d 05 7d 06 7c 03 6a 0a 00 00 | ..................\...}.}.|.j... |
| 0440 | 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 6a 0d 00 00 00 00 00 00 00 00 00 00 00 00 00 00 | ................j............... |
| 0460 | 00 00 00 00 7c 03 6a 0a 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 6a 0f 00 00 00 00 | ....|.j...................j..... |
| 0480 | 00 00 00 00 00 00 00 00 00 00 00 00 00 00 7c 04 6a 11 00 00 00 00 00 00 00 00 00 00 00 00 00 00 | ..............|.j............... |
| 04a0 | 00 00 00 00 64 05 ac 06 ab 01 00 00 00 00 00 00 64 01 7c 06 7c 05 64 03 ac 07 ab 05 00 00 00 00 | ....d...........d.|.|.d......... |
| 04c0 | 00 00 ab 01 00 00 00 00 00 00 7d 07 7c 07 7c 04 7a 0a 00 00 53 00 29 08 75 da 0b 00 00 52 65 74 | ..........}.|.|.z...S.).u....Ret |
| 04e0 | 75 72 6e 73 20 74 68 65 20 4c 61 70 6c 61 63 69 61 6e 20 6d 61 74 72 69 78 20 6f 66 20 47 2e 0a | urns.the.Laplacian.matrix.of.G.. |
| 0500 | 0a 20 20 20 20 54 68 65 20 67 72 61 70 68 20 4c 61 70 6c 61 63 69 61 6e 20 69 73 20 74 68 65 20 | .....The.graph.Laplacian.is.the. |
| 0520 | 6d 61 74 72 69 78 20 4c 20 3d 20 44 20 2d 20 41 2c 20 77 68 65 72 65 0a 20 20 20 20 41 20 69 73 | matrix.L.=.D.-.A,.where.....A.is |
| 0540 | 20 74 68 65 20 61 64 6a 61 63 65 6e 63 79 20 6d 61 74 72 69 78 20 61 6e 64 20 44 20 69 73 20 74 | .the.adjacency.matrix.and.D.is.t |
| 0560 | 68 65 20 64 69 61 67 6f 6e 61 6c 20 6d 61 74 72 69 78 20 6f 66 20 6e 6f 64 65 20 64 65 67 72 65 | he.diagonal.matrix.of.node.degre |
| 0580 | 65 73 2e 0a 0a 20 20 20 20 50 61 72 61 6d 65 74 65 72 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d | es.......Parameters.....-------- |
| 05a0 | 2d 2d 0a 20 20 20 20 47 20 3a 20 67 72 61 70 68 0a 20 20 20 20 20 20 20 41 20 4e 65 74 77 6f 72 | --.....G.:.graph........A.Networ |
| 05c0 | 6b 58 20 67 72 61 70 68 0a 0a 20 20 20 20 6e 6f 64 65 6c 69 73 74 20 3a 20 6c 69 73 74 2c 20 6f | kX.graph......nodelist.:.list,.o |
| 05e0 | 70 74 69 6f 6e 61 6c 0a 20 20 20 20 20 20 20 54 68 65 20 72 6f 77 73 20 61 6e 64 20 63 6f 6c 75 | ptional........The.rows.and.colu |
| 0600 | 6d 6e 73 20 61 72 65 20 6f 72 64 65 72 65 64 20 61 63 63 6f 72 64 69 6e 67 20 74 6f 20 74 68 65 | mns.are.ordered.according.to.the |
| 0620 | 20 6e 6f 64 65 73 20 69 6e 20 6e 6f 64 65 6c 69 73 74 2e 0a 20 20 20 20 20 20 20 49 66 20 6e 6f | .nodes.in.nodelist.........If.no |
| 0640 | 64 65 6c 69 73 74 20 69 73 20 4e 6f 6e 65 2c 20 74 68 65 6e 20 74 68 65 20 6f 72 64 65 72 69 6e | delist.is.None,.then.the.orderin |
| 0660 | 67 20 69 73 20 70 72 6f 64 75 63 65 64 20 62 79 20 47 2e 6e 6f 64 65 73 28 29 2e 0a 0a 20 20 20 | g.is.produced.by.G.nodes()...... |
| 0680 | 20 77 65 69 67 68 74 20 3a 20 73 74 72 69 6e 67 20 6f 72 20 4e 6f 6e 65 2c 20 6f 70 74 69 6f 6e | .weight.:.string.or.None,.option |
| 06a0 | 61 6c 20 28 64 65 66 61 75 6c 74 3d 27 77 65 69 67 68 74 27 29 0a 20 20 20 20 20 20 20 54 68 65 | al.(default='weight')........The |
| 06c0 | 20 65 64 67 65 20 64 61 74 61 20 6b 65 79 20 75 73 65 64 20 74 6f 20 63 6f 6d 70 75 74 65 20 65 | .edge.data.key.used.to.compute.e |
| 06e0 | 61 63 68 20 76 61 6c 75 65 20 69 6e 20 74 68 65 20 6d 61 74 72 69 78 2e 0a 20 20 20 20 20 20 20 | ach.value.in.the.matrix......... |
| 0700 | 49 66 20 4e 6f 6e 65 2c 20 74 68 65 6e 20 65 61 63 68 20 65 64 67 65 20 68 61 73 20 77 65 69 67 | If.None,.then.each.edge.has.weig |
| 0720 | 68 74 20 31 2e 0a 0a 20 20 20 20 52 65 74 75 72 6e 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 0a 20 | ht.1.......Returns.....-------.. |
| 0740 | 20 20 20 4c 20 3a 20 53 63 69 50 79 20 73 70 61 72 73 65 20 61 72 72 61 79 0a 20 20 20 20 20 20 | ...L.:.SciPy.sparse.array....... |
| 0760 | 54 68 65 20 4c 61 70 6c 61 63 69 61 6e 20 6d 61 74 72 69 78 20 6f 66 20 47 2e 0a 0a 20 20 20 20 | The.Laplacian.matrix.of.G....... |
| 0780 | 4e 6f 74 65 73 0a 20 20 20 20 2d 2d 2d 2d 2d 0a 20 20 20 20 46 6f 72 20 4d 75 6c 74 69 47 72 61 | Notes.....-----.....For.MultiGra |
| 07a0 | 70 68 2c 20 74 68 65 20 65 64 67 65 73 20 77 65 69 67 68 74 73 20 61 72 65 20 73 75 6d 6d 65 64 | ph,.the.edges.weights.are.summed |
| 07c0 | 2e 0a 0a 20 20 20 20 54 68 69 73 20 72 65 74 75 72 6e 73 20 61 6e 20 75 6e 6e 6f 72 6d 61 6c 69 | .......This.returns.an.unnormali |
| 07e0 | 7a 65 64 20 6d 61 74 72 69 78 2e 20 46 6f 72 20 61 20 6e 6f 72 6d 61 6c 69 7a 65 64 20 6f 75 74 | zed.matrix..For.a.normalized.out |
| 0800 | 70 75 74 2c 0a 20 20 20 20 75 73 65 20 60 6e 6f 72 6d 61 6c 69 7a 65 64 5f 6c 61 70 6c 61 63 69 | put,.....use.`normalized_laplaci |
| 0820 | 61 6e 5f 6d 61 74 72 69 78 60 2c 20 60 64 69 72 65 63 74 65 64 5f 6c 61 70 6c 61 63 69 61 6e 5f | an_matrix`,.`directed_laplacian_ |
| 0840 | 6d 61 74 72 69 78 60 2c 0a 20 20 20 20 6f 72 20 60 64 69 72 65 63 74 65 64 5f 63 6f 6d 62 69 6e | matrix`,.....or.`directed_combin |
| 0860 | 61 74 6f 72 69 61 6c 5f 6c 61 70 6c 61 63 69 61 6e 5f 6d 61 74 72 69 78 60 2e 0a 0a 20 20 20 20 | atorial_laplacian_matrix`....... |
| 0880 | 54 68 69 73 20 63 61 6c 63 75 6c 61 74 69 6f 6e 20 75 73 65 73 20 74 68 65 20 6f 75 74 2d 64 65 | This.calculation.uses.the.out-de |
| 08a0 | 67 72 65 65 20 6f 66 20 74 68 65 20 67 72 61 70 68 20 60 47 60 2e 20 54 6f 20 75 73 65 20 74 68 | gree.of.the.graph.`G`..To.use.th |
| 08c0 | 65 0a 20 20 20 20 69 6e 2d 64 65 67 72 65 65 20 66 6f 72 20 63 61 6c 63 75 6c 61 74 69 6f 6e 73 | e.....in-degree.for.calculations |
| 08e0 | 20 69 6e 73 74 65 61 64 2c 20 75 73 65 20 60 47 2e 72 65 76 65 72 73 65 28 63 6f 70 79 3d 46 61 | .instead,.use.`G.reverse(copy=Fa |
| 0900 | 6c 73 65 29 60 20 61 6e 64 0a 20 20 20 20 74 61 6b 65 20 74 68 65 20 74 72 61 6e 73 70 6f 73 65 | lse)`.and.....take.the.transpose |
| 0920 | 2e 0a 0a 20 20 20 20 53 65 65 20 41 6c 73 6f 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 | .......See.Also.....--------.... |
| 0940 | 20 3a 66 75 6e 63 3a 60 7e 6e 65 74 77 6f 72 6b 78 2e 63 6f 6e 76 65 72 74 5f 6d 61 74 72 69 78 | .:func:`~networkx.convert_matrix |
| 0960 | 2e 74 6f 5f 6e 75 6d 70 79 5f 61 72 72 61 79 60 0a 20 20 20 20 6e 6f 72 6d 61 6c 69 7a 65 64 5f | .to_numpy_array`.....normalized_ |
| 0980 | 6c 61 70 6c 61 63 69 61 6e 5f 6d 61 74 72 69 78 0a 20 20 20 20 64 69 72 65 63 74 65 64 5f 6c 61 | laplacian_matrix.....directed_la |
| 09a0 | 70 6c 61 63 69 61 6e 5f 6d 61 74 72 69 78 0a 20 20 20 20 64 69 72 65 63 74 65 64 5f 63 6f 6d 62 | placian_matrix.....directed_comb |
| 09c0 | 69 6e 61 74 6f 72 69 61 6c 5f 6c 61 70 6c 61 63 69 61 6e 5f 6d 61 74 72 69 78 0a 20 20 20 20 3a | inatorial_laplacian_matrix.....: |
| 09e0 | 66 75 6e 63 3a 60 7e 6e 65 74 77 6f 72 6b 78 2e 6c 69 6e 61 6c 67 2e 73 70 65 63 74 72 75 6d 2e | func:`~networkx.linalg.spectrum. |
| 0a00 | 6c 61 70 6c 61 63 69 61 6e 5f 73 70 65 63 74 72 75 6d 60 0a 0a 20 20 20 20 45 78 61 6d 70 6c 65 | laplacian_spectrum`......Example |
| 0a20 | 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 46 6f 72 20 67 72 61 70 68 73 20 77 69 | s.....--------.....For.graphs.wi |
| 0a40 | 74 68 20 6d 75 6c 74 69 70 6c 65 20 63 6f 6e 6e 65 63 74 65 64 20 63 6f 6d 70 6f 6e 65 6e 74 73 | th.multiple.connected.components |
| 0a60 | 2c 20 4c 20 69 73 20 70 65 72 6d 75 74 61 74 69 6f 6e 2d 73 69 6d 69 6c 61 72 0a 20 20 20 20 74 | ,.L.is.permutation-similar.....t |
| 0a80 | 6f 20 61 20 62 6c 6f 63 6b 20 64 69 61 67 6f 6e 61 6c 20 6d 61 74 72 69 78 20 77 68 65 72 65 20 | o.a.block.diagonal.matrix.where. |
| 0aa0 | 65 61 63 68 20 62 6c 6f 63 6b 20 69 73 20 74 68 65 20 72 65 73 70 65 63 74 69 76 65 20 4c 61 70 | each.block.is.the.respective.Lap |
| 0ac0 | 6c 61 63 69 61 6e 0a 20 20 20 20 6d 61 74 72 69 78 20 66 6f 72 20 65 61 63 68 20 63 6f 6d 70 6f | lacian.....matrix.for.each.compo |
| 0ae0 | 6e 65 6e 74 2e 0a 0a 20 20 20 20 3e 3e 3e 20 47 20 3d 20 6e 78 2e 47 72 61 70 68 28 5b 28 31 2c | nent.......>>>.G.=.nx.Graph([(1, |
| 0b00 | 20 32 29 2c 20 28 32 2c 20 33 29 2c 20 28 34 2c 20 35 29 5d 29 0a 20 20 20 20 3e 3e 3e 20 70 72 | .2),.(2,.3),.(4,.5)]).....>>>.pr |
| 0b20 | 69 6e 74 28 6e 78 2e 6c 61 70 6c 61 63 69 61 6e 5f 6d 61 74 72 69 78 28 47 29 2e 74 6f 61 72 72 | int(nx.laplacian_matrix(G).toarr |
| 0b40 | 61 79 28 29 29 0a 20 20 20 20 5b 5b 20 31 20 2d 31 20 20 30 20 20 30 20 20 30 5d 0a 20 20 20 20 | ay()).....[[.1.-1..0..0..0]..... |
| 0b60 | 20 5b 2d 31 20 20 32 20 2d 31 20 20 30 20 20 30 5d 0a 20 20 20 20 20 5b 20 30 20 2d 31 20 20 31 | .[-1..2.-1..0..0]......[.0.-1..1 |
| 0b80 | 20 20 30 20 20 30 5d 0a 20 20 20 20 20 5b 20 30 20 20 30 20 20 30 20 20 31 20 2d 31 5d 0a 20 20 | ..0..0]......[.0..0..0..1.-1]... |
| 0ba0 | 20 20 20 5b 20 30 20 20 30 20 20 30 20 2d 31 20 20 31 5d 5d 0a 0a 20 20 20 20 3e 3e 3e 20 65 64 | ...[.0..0..0.-1..1]]......>>>.ed |
| 0bc0 | 67 65 73 20 3d 20 5b 0a 20 20 20 20 2e 2e 2e 20 20 20 20 20 28 31 2c 20 32 29 2c 0a 20 20 20 20 | ges.=.[.............(1,.2),..... |
| 0be0 | 2e 2e 2e 20 20 20 20 20 28 32 2c 20 31 29 2c 0a 20 20 20 20 2e 2e 2e 20 20 20 20 20 28 32 2c 20 | ........(2,.1),.............(2,. |
| 0c00 | 34 29 2c 0a 20 20 20 20 2e 2e 2e 20 20 20 20 20 28 34 2c 20 33 29 2c 0a 20 20 20 20 2e 2e 2e 20 | 4),.............(4,.3),......... |
| 0c20 | 20 20 20 20 28 33 2c 20 34 29 2c 0a 20 20 20 20 2e 2e 2e 20 5d 0a 20 20 20 20 3e 3e 3e 20 44 69 | ....(3,.4),.........].....>>>.Di |
| 0c40 | 47 20 3d 20 6e 78 2e 44 69 47 72 61 70 68 28 65 64 67 65 73 29 0a 20 20 20 20 3e 3e 3e 20 70 72 | G.=.nx.DiGraph(edges).....>>>.pr |
| 0c60 | 69 6e 74 28 6e 78 2e 6c 61 70 6c 61 63 69 61 6e 5f 6d 61 74 72 69 78 28 44 69 47 29 2e 74 6f 61 | int(nx.laplacian_matrix(DiG).toa |
| 0c80 | 72 72 61 79 28 29 29 0a 20 20 20 20 5b 5b 20 31 20 2d 31 20 20 30 20 20 30 5d 0a 20 20 20 20 20 | rray()).....[[.1.-1..0..0]...... |
| 0ca0 | 5b 2d 31 20 20 32 20 2d 31 20 20 30 5d 0a 20 20 20 20 20 5b 20 30 20 20 30 20 20 31 20 2d 31 5d | [-1..2.-1..0]......[.0..0..1.-1] |
| 0cc0 | 0a 20 20 20 20 20 5b 20 30 20 20 30 20 2d 31 20 20 31 5d 5d 0a 0a 20 20 20 20 4e 6f 74 69 63 65 | ......[.0..0.-1..1]]......Notice |
| 0ce0 | 20 74 68 61 74 20 6e 6f 64 65 20 34 20 69 73 20 72 65 70 72 65 73 65 6e 74 65 64 20 62 79 20 74 | .that.node.4.is.represented.by.t |
| 0d00 | 68 65 20 74 68 69 72 64 20 63 6f 6c 75 6d 6e 20 61 6e 64 20 72 6f 77 2e 20 54 68 69 73 20 69 73 | he.third.column.and.row..This.is |
| 0d20 | 20 62 65 63 61 75 73 65 0a 20 20 20 20 62 79 20 64 65 66 61 75 6c 74 20 74 68 65 20 72 6f 77 2f | .because.....by.default.the.row/ |
| 0d40 | 63 6f 6c 75 6d 6e 20 6f 72 64 65 72 20 69 73 20 74 68 65 20 6f 72 64 65 72 20 6f 66 20 60 47 2e | column.order.is.the.order.of.`G. |
| 0d60 | 6e 6f 64 65 73 60 20 28 69 2e 65 2e 20 74 68 65 20 6e 6f 64 65 20 61 64 64 65 64 0a 20 20 20 20 | nodes`.(i.e..the.node.added..... |
| 0d80 | 6f 72 64 65 72 20 2d 2d 20 69 6e 20 74 68 65 20 65 64 67 65 6c 69 73 74 2c 20 34 20 66 69 72 73 | order.--.in.the.edgelist,.4.firs |
| 0da0 | 74 20 61 70 70 65 61 72 73 20 69 6e 20 28 32 2c 20 34 29 2c 20 62 65 66 6f 72 65 20 6e 6f 64 65 | t.appears.in.(2,.4),.before.node |
| 0dc0 | 20 33 20 69 6e 20 65 64 67 65 20 28 34 2c 20 33 29 2e 29 0a 20 20 20 20 54 6f 20 63 6f 6e 74 72 | .3.in.edge.(4,.3).).....To.contr |
| 0de0 | 6f 6c 20 74 68 65 20 6e 6f 64 65 20 6f 72 64 65 72 20 6f 66 20 74 68 65 20 6d 61 74 72 69 78 2c | ol.the.node.order.of.the.matrix, |
| 0e00 | 20 75 73 65 20 74 68 65 20 60 6e 6f 64 65 6c 69 73 74 60 20 61 72 67 75 6d 65 6e 74 2e 0a 0a 20 | .use.the.`nodelist`.argument.... |
| 0e20 | 20 20 20 3e 3e 3e 20 70 72 69 6e 74 28 6e 78 2e 6c 61 70 6c 61 63 69 61 6e 5f 6d 61 74 72 69 78 | ...>>>.print(nx.laplacian_matrix |
| 0e40 | 28 44 69 47 2c 20 6e 6f 64 65 6c 69 73 74 3d 5b 31 2c 20 32 2c 20 33 2c 20 34 5d 29 2e 74 6f 61 | (DiG,.nodelist=[1,.2,.3,.4]).toa |
| 0e60 | 72 72 61 79 28 29 29 0a 20 20 20 20 5b 5b 20 31 20 2d 31 20 20 30 20 20 30 5d 0a 20 20 20 20 20 | rray()).....[[.1.-1..0..0]...... |
| 0e80 | 5b 2d 31 20 20 32 20 20 30 20 2d 31 5d 0a 20 20 20 20 20 5b 20 30 20 20 30 20 20 31 20 2d 31 5d | [-1..2..0.-1]......[.0..0..1.-1] |
| 0ea0 | 0a 20 20 20 20 20 5b 20 30 20 20 30 20 2d 31 20 20 31 5d 5d 0a 0a 20 20 20 20 54 68 69 73 20 63 | ......[.0..0.-1..1]]......This.c |
| 0ec0 | 61 6c 63 75 6c 61 74 69 6f 6e 20 75 73 65 73 20 74 68 65 20 6f 75 74 2d 64 65 67 72 65 65 20 6f | alculation.uses.the.out-degree.o |
| 0ee0 | 66 20 74 68 65 20 67 72 61 70 68 20 60 47 60 2e 20 54 6f 20 75 73 65 20 74 68 65 0a 20 20 20 20 | f.the.graph.`G`..To.use.the..... |
| 0f00 | 69 6e 2d 64 65 67 72 65 65 20 66 6f 72 20 63 61 6c 63 75 6c 61 74 69 6f 6e 73 20 69 6e 73 74 65 | in-degree.for.calculations.inste |
| 0f20 | 61 64 2c 20 75 73 65 20 60 47 2e 72 65 76 65 72 73 65 28 63 6f 70 79 3d 46 61 6c 73 65 29 60 20 | ad,.use.`G.reverse(copy=False)`. |
| 0f40 | 61 6e 64 0a 20 20 20 20 74 61 6b 65 20 74 68 65 20 74 72 61 6e 73 70 6f 73 65 2e 0a 0a 20 20 20 | and.....take.the.transpose...... |
| 0f60 | 20 3e 3e 3e 20 70 72 69 6e 74 28 6e 78 2e 6c 61 70 6c 61 63 69 61 6e 5f 6d 61 74 72 69 78 28 44 | .>>>.print(nx.laplacian_matrix(D |
| 0f80 | 69 47 2e 72 65 76 65 72 73 65 28 63 6f 70 79 3d 46 61 6c 73 65 29 29 2e 74 6f 61 72 72 61 79 28 | iG.reverse(copy=False)).toarray( |
| 0fa0 | 29 2e 54 29 0a 20 20 20 20 5b 5b 20 31 20 2d 31 20 20 30 20 20 30 5d 0a 20 20 20 20 20 5b 2d 31 | ).T).....[[.1.-1..0..0]......[-1 |
| 0fc0 | 20 20 31 20 2d 31 20 20 30 5d 0a 20 20 20 20 20 5b 20 30 20 20 30 20 20 32 20 2d 31 5d 0a 20 20 | ..1.-1..0]......[.0..0..2.-1]... |
| 0fe0 | 20 20 20 5b 20 30 20 20 30 20 2d 31 20 20 31 5d 5d 0a 0a 20 20 20 20 52 65 66 65 72 65 6e 63 65 | ...[.0..0.-1..1]]......Reference |
| 1000 | 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 2e 2e 20 5b 31 5d 20 4c 61 6e 67 | s.....----------........[1].Lang |
| 1020 | 76 69 6c 6c 65 2c 20 41 6d 79 20 4e 2e 2c 20 61 6e 64 20 43 61 72 6c 20 44 2e 20 4d 65 79 65 72 | ville,.Amy.N.,.and.Carl.D..Meyer |
| 1040 | 2e 20 47 6f 6f 67 6c 65 e2 80 99 73 20 50 61 67 65 52 61 6e 6b 20 61 6e 64 20 42 65 79 6f 6e 64 | ..Google...s.PageRank.and.Beyond |
| 1060 | 3a 0a 20 20 20 20 20 20 20 54 68 65 20 53 63 69 65 6e 63 65 20 6f 66 20 53 65 61 72 63 68 20 45 | :........The.Science.of.Search.E |
| 1080 | 6e 67 69 6e 65 20 52 61 6e 6b 69 6e 67 73 2e 20 50 72 69 6e 63 65 74 6f 6e 20 55 6e 69 76 65 72 | ngine.Rankings..Princeton.Univer |
| 10a0 | 73 69 74 79 20 50 72 65 73 73 2c 20 32 30 30 36 2e 0a 0a 20 20 20 20 72 02 00 00 00 4e da 03 63 | sity.Press,.2006.......r....N..c |
| 10c0 | 73 72 a9 03 da 08 6e 6f 64 65 6c 69 73 74 72 08 00 00 00 da 06 66 6f 72 6d 61 74 e9 01 00 00 00 | sr....nodelistr......format..... |
| 10e0 | a9 01 da 04 61 78 69 73 a9 01 72 0e 00 00 00 29 09 da 05 73 63 69 70 79 da 04 6c 69 73 74 da 02 | ....axis..r....)...scipy..list.. |
| 1100 | 6e 78 da 15 74 6f 5f 73 63 69 70 79 5f 73 70 61 72 73 65 5f 61 72 72 61 79 da 05 73 68 61 70 65 | nx..to_scipy_sparse_array..shape |
| 1120 | da 06 73 70 61 72 73 65 da 09 63 73 72 5f 61 72 72 61 79 da 07 73 70 64 69 61 67 73 da 03 73 75 | ..sparse..csr_array..spdiags..su |
| 1140 | 6d 29 08 da 01 47 72 0d 00 00 00 72 08 00 00 00 da 02 73 70 da 01 41 da 01 6e da 01 6d da 01 44 | m)...Gr....r......sp..A..n..m..D |
| 1160 | 73 08 00 00 00 20 20 20 20 20 20 20 20 fa 66 2f 68 6f 6d 65 2f 62 6c 61 63 6b 68 61 6f 2f 75 69 | s.............f/home/blackhao/ui |
| 1180 | 75 63 2d 63 6f 75 72 73 65 2d 67 72 61 70 68 2f 2e 76 65 6e 76 2f 6c 69 62 2f 70 79 74 68 6f 6e | uc-course-graph/.venv/lib/python |
| 11a0 | 33 2e 31 32 2f 73 69 74 65 2d 70 61 63 6b 61 67 65 73 2f 6e 65 74 77 6f 72 6b 78 2f 6c 69 6e 61 | 3.12/site-packages/networkx/lina |
| 11c0 | 6c 67 2f 6c 61 70 6c 61 63 69 61 6e 6d 61 74 72 69 78 2e 70 79 72 04 00 00 00 72 04 00 00 00 16 | lg/laplacianmatrix.pyr....r..... |
| 11e0 | 00 00 00 73 7b 00 00 00 80 00 f3 48 03 00 05 17 e0 07 0f d0 07 17 dc 13 17 98 01 93 37 88 08 dc | ...s{......H................7... |
| 1200 | 08 0a d7 08 20 d1 08 20 a0 11 a8 58 b8 66 c8 55 d4 08 53 80 41 d8 0b 0c 8f 37 89 37 81 44 80 41 | ...........X.f.U..S.A....7.7.D.A |
| 1220 | 80 71 e0 08 0a 8f 09 89 09 d7 08 1b d1 08 1b 98 42 9f 49 99 49 d7 1c 2d d1 1c 2d a8 61 af 65 a9 | .q..............B.I.I..-..-.a.e. |
| 1240 | 65 b8 11 a8 65 ab 6d b8 51 c0 01 c0 31 c8 55 d0 1c 2d d3 1c 53 d3 08 54 80 41 d8 0b 0c 88 71 89 | e...e.m.Q...1.U..-..S..T.A....q. |
| 1260 | 35 80 4c f3 00 00 00 00 63 03 00 00 00 00 00 00 00 00 00 00 00 09 00 00 00 03 00 00 00 f3 3c 02 | 5.L.....c.....................<. |
| 1280 | 00 00 97 00 64 01 64 02 6c 00 7d 03 64 01 64 02 6c 01 7d 04 7c 01 80 0b 74 05 00 00 00 00 00 00 | ....d.d.l.}.d.d.l.}.|...t....... |
| 12a0 | 00 00 7c 00 ab 01 00 00 00 00 00 00 7d 01 74 07 00 00 00 00 00 00 00 00 6a 08 00 00 00 00 00 00 | ..|.........}.t.........j....... |
| 12c0 | 00 00 00 00 00 00 00 00 00 00 00 00 7c 00 7c 01 7c 02 64 03 ac 04 ab 04 00 00 00 00 00 00 7d 05 | ............|.|.|.d...........}. |
| 12e0 | 7c 05 6a 0a 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 5c 02 00 00 7d 06 7d 07 7c 05 | |.j...................\...}.}.|. |
| 1300 | 6a 0d 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 64 05 ac 06 ab 01 00 00 00 00 00 00 | j...................d........... |
| 1320 | 7d 08 7c 04 6a 0e 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 6a 11 00 00 00 00 00 00 | }.|.j...................j....... |
| 1340 | 00 00 00 00 00 00 00 00 00 00 00 00 7c 04 6a 0e 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 | ............|.j................. |
| 1360 | 00 00 6a 13 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 7c 08 64 01 7c 06 7c 06 64 03 | ..j...................|.d.|.|.d. |
| 1380 | ac 07 ab 05 00 00 00 00 00 00 ab 01 00 00 00 00 00 00 7d 09 7c 09 7c 05 7a 0a 00 00 7d 0a 7c 03 | ..................}.|.|.z...}.|. |
| 13a0 | 6a 15 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 64 08 ac 09 ab 01 00 00 00 00 00 00 | j...................d........... |
| 13c0 | 35 00 01 00 64 0a 7c 03 6a 17 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 7c 08 ab 01 | 5...d.|.j...................|... |
| 13e0 | 00 00 00 00 00 00 7a 0b 00 00 7d 0b 64 02 64 02 64 02 ab 02 00 00 00 00 00 00 01 00 64 01 7f 0b | ......z...}.d.d.d...........d... |
| 1400 | 7c 03 6a 19 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 7c 0b ab 01 00 00 00 00 00 00 | |.j...................|......... |
| 1420 | 3c 00 00 00 7c 04 6a 0e 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 6a 11 00 00 00 00 | <...|.j...................j..... |
| 1440 | 00 00 00 00 00 00 00 00 00 00 00 00 00 00 7c 04 6a 0e 00 00 00 00 00 00 00 00 00 00 00 00 00 00 | ..............|.j............... |
| 1460 | 00 00 00 00 6a 13 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 7c 0b 64 01 7c 06 7c 06 | ....j...................|.d.|.|. |
| 1480 | 64 03 ac 07 ab 05 00 00 00 00 00 00 ab 01 00 00 00 00 00 00 7d 0c 7c 0c 7c 0a 7c 0c 7a 04 00 00 | d...................}.|.|.|.z... |
| 14a0 | 7a 04 00 00 53 00 23 00 31 00 73 01 77 02 01 00 59 00 01 00 01 00 8c 5e 78 03 59 00 77 01 29 0b | z...S.#.1.s.w...Y......^x.Y.w.). |
| 14c0 | 75 ea 0c 00 00 52 65 74 75 72 6e 73 20 74 68 65 20 6e 6f 72 6d 61 6c 69 7a 65 64 20 4c 61 70 6c | u....Returns.the.normalized.Lapl |
| 14e0 | 61 63 69 61 6e 20 6d 61 74 72 69 78 20 6f 66 20 47 2e 0a 0a 20 20 20 20 54 68 65 20 6e 6f 72 6d | acian.matrix.of.G.......The.norm |
| 1500 | 61 6c 69 7a 65 64 20 67 72 61 70 68 20 4c 61 70 6c 61 63 69 61 6e 20 69 73 20 74 68 65 20 6d 61 | alized.graph.Laplacian.is.the.ma |
| 1520 | 74 72 69 78 0a 0a 20 20 20 20 2e 2e 20 6d 61 74 68 3a 3a 0a 0a 20 20 20 20 20 20 20 20 4e 20 3d | trix.........math::..........N.= |
| 1540 | 20 44 5e 7b 2d 31 2f 32 7d 20 4c 20 44 5e 7b 2d 31 2f 32 7d 0a 0a 20 20 20 20 77 68 65 72 65 20 | .D^{-1/2}.L.D^{-1/2}......where. |
| 1560 | 60 4c 60 20 69 73 20 74 68 65 20 67 72 61 70 68 20 4c 61 70 6c 61 63 69 61 6e 20 61 6e 64 20 60 | `L`.is.the.graph.Laplacian.and.` |
| 1580 | 44 60 20 69 73 20 74 68 65 20 64 69 61 67 6f 6e 61 6c 20 6d 61 74 72 69 78 20 6f 66 0a 20 20 20 | D`.is.the.diagonal.matrix.of.... |
| 15a0 | 20 6e 6f 64 65 20 64 65 67 72 65 65 73 20 5b 31 5d 5f 2e 0a 0a 20 20 20 20 50 61 72 61 6d 65 74 | .node.degrees.[1]_.......Paramet |
| 15c0 | 65 72 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 47 20 3a 20 67 72 61 70 68 | ers.....----------.....G.:.graph |
| 15e0 | 0a 20 20 20 20 20 20 20 41 20 4e 65 74 77 6f 72 6b 58 20 67 72 61 70 68 0a 0a 20 20 20 20 6e 6f | ........A.NetworkX.graph......no |
| 1600 | 64 65 6c 69 73 74 20 3a 20 6c 69 73 74 2c 20 6f 70 74 69 6f 6e 61 6c 0a 20 20 20 20 20 20 20 54 | delist.:.list,.optional........T |
| 1620 | 68 65 20 72 6f 77 73 20 61 6e 64 20 63 6f 6c 75 6d 6e 73 20 61 72 65 20 6f 72 64 65 72 65 64 20 | he.rows.and.columns.are.ordered. |
| 1640 | 61 63 63 6f 72 64 69 6e 67 20 74 6f 20 74 68 65 20 6e 6f 64 65 73 20 69 6e 20 6e 6f 64 65 6c 69 | according.to.the.nodes.in.nodeli |
| 1660 | 73 74 2e 0a 20 20 20 20 20 20 20 49 66 20 6e 6f 64 65 6c 69 73 74 20 69 73 20 4e 6f 6e 65 2c 20 | st.........If.nodelist.is.None,. |
| 1680 | 74 68 65 6e 20 74 68 65 20 6f 72 64 65 72 69 6e 67 20 69 73 20 70 72 6f 64 75 63 65 64 20 62 79 | then.the.ordering.is.produced.by |
| 16a0 | 20 47 2e 6e 6f 64 65 73 28 29 2e 0a 0a 20 20 20 20 77 65 69 67 68 74 20 3a 20 73 74 72 69 6e 67 | .G.nodes().......weight.:.string |
| 16c0 | 20 6f 72 20 4e 6f 6e 65 2c 20 6f 70 74 69 6f 6e 61 6c 20 28 64 65 66 61 75 6c 74 3d 27 77 65 69 | .or.None,.optional.(default='wei |
| 16e0 | 67 68 74 27 29 0a 20 20 20 20 20 20 20 54 68 65 20 65 64 67 65 20 64 61 74 61 20 6b 65 79 20 75 | ght')........The.edge.data.key.u |
| 1700 | 73 65 64 20 74 6f 20 63 6f 6d 70 75 74 65 20 65 61 63 68 20 76 61 6c 75 65 20 69 6e 20 74 68 65 | sed.to.compute.each.value.in.the |
| 1720 | 20 6d 61 74 72 69 78 2e 0a 20 20 20 20 20 20 20 49 66 20 4e 6f 6e 65 2c 20 74 68 65 6e 20 65 61 | .matrix.........If.None,.then.ea |
| 1740 | 63 68 20 65 64 67 65 20 68 61 73 20 77 65 69 67 68 74 20 31 2e 0a 0a 20 20 20 20 52 65 74 75 72 | ch.edge.has.weight.1.......Retur |
| 1760 | 6e 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 4e 20 3a 20 53 63 69 50 79 20 73 70 61 | ns.....-------.....N.:.SciPy.spa |
| 1780 | 72 73 65 20 61 72 72 61 79 0a 20 20 20 20 20 20 54 68 65 20 6e 6f 72 6d 61 6c 69 7a 65 64 20 4c | rse.array.......The.normalized.L |
| 17a0 | 61 70 6c 61 63 69 61 6e 20 6d 61 74 72 69 78 20 6f 66 20 47 2e 0a 0a 20 20 20 20 4e 6f 74 65 73 | aplacian.matrix.of.G.......Notes |
| 17c0 | 0a 20 20 20 20 2d 2d 2d 2d 2d 0a 20 20 20 20 46 6f 72 20 4d 75 6c 74 69 47 72 61 70 68 2c 20 74 | .....-----.....For.MultiGraph,.t |
| 17e0 | 68 65 20 65 64 67 65 73 20 77 65 69 67 68 74 73 20 61 72 65 20 73 75 6d 6d 65 64 2e 0a 20 20 20 | he.edges.weights.are.summed..... |
| 1800 | 20 53 65 65 20 3a 66 75 6e 63 3a 60 74 6f 5f 6e 75 6d 70 79 5f 61 72 72 61 79 60 20 66 6f 72 20 | .See.:func:`to_numpy_array`.for. |
| 1820 | 6f 74 68 65 72 20 6f 70 74 69 6f 6e 73 2e 0a 0a 20 20 20 20 49 66 20 74 68 65 20 47 72 61 70 68 | other.options.......If.the.Graph |
| 1840 | 20 63 6f 6e 74 61 69 6e 73 20 73 65 6c 66 6c 6f 6f 70 73 2c 20 44 20 69 73 20 64 65 66 69 6e 65 | .contains.selfloops,.D.is.define |
| 1860 | 64 20 61 73 20 60 60 64 69 61 67 28 73 75 6d 28 41 2c 20 31 29 29 60 60 2c 20 77 68 65 72 65 20 | d.as.``diag(sum(A,.1))``,.where. |
| 1880 | 41 20 69 73 0a 20 20 20 20 74 68 65 20 61 64 6a 61 63 65 6e 63 79 20 6d 61 74 72 69 78 20 5b 32 | A.is.....the.adjacency.matrix.[2 |
| 18a0 | 5d 5f 2e 0a 0a 20 20 20 20 54 68 69 73 20 63 61 6c 63 75 6c 61 74 69 6f 6e 20 75 73 65 73 20 74 | ]_.......This.calculation.uses.t |
| 18c0 | 68 65 20 6f 75 74 2d 64 65 67 72 65 65 20 6f 66 20 74 68 65 20 67 72 61 70 68 20 60 47 60 2e 20 | he.out-degree.of.the.graph.`G`.. |
| 18e0 | 54 6f 20 75 73 65 20 74 68 65 0a 20 20 20 20 69 6e 2d 64 65 67 72 65 65 20 66 6f 72 20 63 61 6c | To.use.the.....in-degree.for.cal |
| 1900 | 63 75 6c 61 74 69 6f 6e 73 20 69 6e 73 74 65 61 64 2c 20 75 73 65 20 60 47 2e 72 65 76 65 72 73 | culations.instead,.use.`G.revers |
| 1920 | 65 28 63 6f 70 79 3d 46 61 6c 73 65 29 60 20 61 6e 64 0a 20 20 20 20 74 61 6b 65 20 74 68 65 20 | e(copy=False)`.and.....take.the. |
| 1940 | 74 72 61 6e 73 70 6f 73 65 2e 0a 0a 20 20 20 20 46 6f 72 20 61 6e 20 75 6e 6e 6f 72 6d 61 6c 69 | transpose.......For.an.unnormali |
| 1960 | 7a 65 64 20 6f 75 74 70 75 74 2c 20 75 73 65 20 60 6c 61 70 6c 61 63 69 61 6e 5f 6d 61 74 72 69 | zed.output,.use.`laplacian_matri |
| 1980 | 78 60 2e 0a 0a 20 20 20 20 45 78 61 6d 70 6c 65 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 0a 0a | x`.......Examples.....--------.. |
| 19a0 | 20 20 20 20 3e 3e 3e 20 69 6d 70 6f 72 74 20 6e 75 6d 70 79 20 61 73 20 6e 70 0a 20 20 20 20 3e | ....>>>.import.numpy.as.np.....> |
| 19c0 | 3e 3e 20 65 64 67 65 73 20 3d 20 5b 0a 20 20 20 20 2e 2e 2e 20 20 20 20 20 28 31 2c 20 32 29 2c | >>.edges.=.[.............(1,.2), |
| 19e0 | 0a 20 20 20 20 2e 2e 2e 20 20 20 20 20 28 32 2c 20 31 29 2c 0a 20 20 20 20 2e 2e 2e 20 20 20 20 | .............(2,.1),............ |
| 1a00 | 20 28 32 2c 20 34 29 2c 0a 20 20 20 20 2e 2e 2e 20 20 20 20 20 28 34 2c 20 33 29 2c 0a 20 20 20 | .(2,.4),.............(4,.3),.... |
| 1a20 | 20 2e 2e 2e 20 20 20 20 20 28 33 2c 20 34 29 2c 0a 20 20 20 20 2e 2e 2e 20 5d 0a 20 20 20 20 3e | .........(3,.4),.........].....> |
| 1a40 | 3e 3e 20 44 69 47 20 3d 20 6e 78 2e 44 69 47 72 61 70 68 28 65 64 67 65 73 29 0a 20 20 20 20 3e | >>.DiG.=.nx.DiGraph(edges).....> |
| 1a60 | 3e 3e 20 70 72 69 6e 74 28 6e 78 2e 6e 6f 72 6d 61 6c 69 7a 65 64 5f 6c 61 70 6c 61 63 69 61 6e | >>.print(nx.normalized_laplacian |
| 1a80 | 5f 6d 61 74 72 69 78 28 44 69 47 29 2e 74 6f 61 72 72 61 79 28 29 29 0a 20 20 20 20 5b 5b 20 31 | _matrix(DiG).toarray()).....[[.1 |
| 1aa0 | 2e 20 20 20 20 20 20 20 20 20 2d 30 2e 37 30 37 31 30 36 37 38 20 20 30 2e 20 20 20 20 20 20 20 | ..........-0.70710678..0........ |
| 1ac0 | 20 20 20 30 2e 20 20 20 20 20 20 20 20 5d 0a 20 20 20 20 20 5b 2d 30 2e 37 30 37 31 30 36 37 38 | ...0.........]......[-0.70710678 |
| 1ae0 | 20 20 31 2e 20 20 20 20 20 20 20 20 20 2d 30 2e 37 30 37 31 30 36 37 38 20 20 30 2e 20 20 20 20 | ..1..........-0.70710678..0..... |
| 1b00 | 20 20 20 20 5d 0a 20 20 20 20 20 5b 20 30 2e 20 20 20 20 20 20 20 20 20 20 30 2e 20 20 20 20 20 | ....]......[.0...........0...... |
| 1b20 | 20 20 20 20 20 31 2e 20 20 20 20 20 20 20 20 20 2d 31 2e 20 20 20 20 20 20 20 20 5d 0a 20 20 20 | .....1..........-1.........].... |
| 1b40 | 20 20 5b 20 30 2e 20 20 20 20 20 20 20 20 20 20 30 2e 20 20 20 20 20 20 20 20 20 2d 31 2e 20 20 | ..[.0...........0..........-1... |
| 1b60 | 20 20 20 20 20 20 20 20 31 2e 20 20 20 20 20 20 20 20 5d 5d 0a 0a 20 20 20 20 4e 6f 74 69 63 65 | ........1.........]]......Notice |
| 1b80 | 20 74 68 61 74 20 6e 6f 64 65 20 34 20 69 73 20 72 65 70 72 65 73 65 6e 74 65 64 20 62 79 20 74 | .that.node.4.is.represented.by.t |
| 1ba0 | 68 65 20 74 68 69 72 64 20 63 6f 6c 75 6d 6e 20 61 6e 64 20 72 6f 77 2e 20 54 68 69 73 20 69 73 | he.third.column.and.row..This.is |
| 1bc0 | 20 62 65 63 61 75 73 65 0a 20 20 20 20 62 79 20 64 65 66 61 75 6c 74 20 74 68 65 20 72 6f 77 2f | .because.....by.default.the.row/ |
| 1be0 | 63 6f 6c 75 6d 6e 20 6f 72 64 65 72 20 69 73 20 74 68 65 20 6f 72 64 65 72 20 6f 66 20 60 47 2e | column.order.is.the.order.of.`G. |
| 1c00 | 6e 6f 64 65 73 60 20 28 69 2e 65 2e 20 74 68 65 20 6e 6f 64 65 20 61 64 64 65 64 0a 20 20 20 20 | nodes`.(i.e..the.node.added..... |
| 1c20 | 6f 72 64 65 72 20 2d 2d 20 69 6e 20 74 68 65 20 65 64 67 65 6c 69 73 74 2c 20 34 20 66 69 72 73 | order.--.in.the.edgelist,.4.firs |
| 1c40 | 74 20 61 70 70 65 61 72 73 20 69 6e 20 28 32 2c 20 34 29 2c 20 62 65 66 6f 72 65 20 6e 6f 64 65 | t.appears.in.(2,.4),.before.node |
| 1c60 | 20 33 20 69 6e 20 65 64 67 65 20 28 34 2c 20 33 29 2e 29 0a 20 20 20 20 54 6f 20 63 6f 6e 74 72 | .3.in.edge.(4,.3).).....To.contr |
| 1c80 | 6f 6c 20 74 68 65 20 6e 6f 64 65 20 6f 72 64 65 72 20 6f 66 20 74 68 65 20 6d 61 74 72 69 78 2c | ol.the.node.order.of.the.matrix, |
| 1ca0 | 20 75 73 65 20 74 68 65 20 60 6e 6f 64 65 6c 69 73 74 60 20 61 72 67 75 6d 65 6e 74 2e 0a 0a 20 | .use.the.`nodelist`.argument.... |
| 1cc0 | 20 20 20 3e 3e 3e 20 70 72 69 6e 74 28 6e 78 2e 6e 6f 72 6d 61 6c 69 7a 65 64 5f 6c 61 70 6c 61 | ...>>>.print(nx.normalized_lapla |
| 1ce0 | 63 69 61 6e 5f 6d 61 74 72 69 78 28 44 69 47 2c 20 6e 6f 64 65 6c 69 73 74 3d 5b 31 2c 20 32 2c | cian_matrix(DiG,.nodelist=[1,.2, |
| 1d00 | 20 33 2c 20 34 5d 29 2e 74 6f 61 72 72 61 79 28 29 29 0a 20 20 20 20 5b 5b 20 31 2e 20 20 20 20 | .3,.4]).toarray()).....[[.1..... |
| 1d20 | 20 20 20 20 20 2d 30 2e 37 30 37 31 30 36 37 38 20 20 30 2e 20 20 20 20 20 20 20 20 20 20 30 2e | .....-0.70710678..0...........0. |
| 1d40 | 20 20 20 20 20 20 20 20 5d 0a 20 20 20 20 20 5b 2d 30 2e 37 30 37 31 30 36 37 38 20 20 31 2e 20 | ........]......[-0.70710678..1.. |
| 1d60 | 20 20 20 20 20 20 20 20 20 30 2e 20 20 20 20 20 20 20 20 20 2d 30 2e 37 30 37 31 30 36 37 38 5d | .........0..........-0.70710678] |
| 1d80 | 0a 20 20 20 20 20 5b 20 30 2e 20 20 20 20 20 20 20 20 20 20 30 2e 20 20 20 20 20 20 20 20 20 20 | ......[.0...........0........... |
| 1da0 | 31 2e 20 20 20 20 20 20 20 20 20 2d 31 2e 20 20 20 20 20 20 20 20 5d 0a 20 20 20 20 20 5b 20 30 | 1..........-1.........]......[.0 |
| 1dc0 | 2e 20 20 20 20 20 20 20 20 20 20 30 2e 20 20 20 20 20 20 20 20 20 2d 31 2e 20 20 20 20 20 20 20 | ...........0..........-1........ |
| 1de0 | 20 20 20 31 2e 20 20 20 20 20 20 20 20 5d 5d 0a 20 20 20 20 3e 3e 3e 20 47 20 3d 20 6e 78 2e 47 | ...1.........]].....>>>.G.=.nx.G |
| 1e00 | 72 61 70 68 28 65 64 67 65 73 29 0a 20 20 20 20 3e 3e 3e 20 70 72 69 6e 74 28 6e 78 2e 6e 6f 72 | raph(edges).....>>>.print(nx.nor |
| 1e20 | 6d 61 6c 69 7a 65 64 5f 6c 61 70 6c 61 63 69 61 6e 5f 6d 61 74 72 69 78 28 47 29 2e 74 6f 61 72 | malized_laplacian_matrix(G).toar |
| 1e40 | 72 61 79 28 29 29 0a 20 20 20 20 5b 5b 20 31 2e 20 20 20 20 20 20 20 20 20 2d 30 2e 37 30 37 31 | ray()).....[[.1..........-0.7071 |
| 1e60 | 30 36 37 38 20 20 30 2e 20 20 20 20 20 20 20 20 20 20 30 2e 20 20 20 20 20 20 20 20 5d 0a 20 20 | 0678..0...........0.........]... |
| 1e80 | 20 20 20 5b 2d 30 2e 37 30 37 31 30 36 37 38 20 20 31 2e 20 20 20 20 20 20 20 20 20 2d 30 2e 35 | ...[-0.70710678..1..........-0.5 |
| 1ea0 | 20 20 20 20 20 20 20 20 20 30 2e 20 20 20 20 20 20 20 20 5d 0a 20 20 20 20 20 5b 20 30 2e 20 20 | .........0.........]......[.0... |
| 1ec0 | 20 20 20 20 20 20 20 2d 30 2e 35 20 20 20 20 20 20 20 20 20 31 2e 20 20 20 20 20 20 20 20 20 2d | .......-0.5.........1..........- |
| 1ee0 | 30 2e 37 30 37 31 30 36 37 38 5d 0a 20 20 20 20 20 5b 20 30 2e 20 20 20 20 20 20 20 20 20 20 30 | 0.70710678]......[.0...........0 |
| 1f00 | 2e 20 20 20 20 20 20 20 20 20 2d 30 2e 37 30 37 31 30 36 37 38 20 20 31 2e 20 20 20 20 20 20 20 | ..........-0.70710678..1........ |
| 1f20 | 20 5d 5d 0a 0a 20 20 20 20 53 65 65 20 41 6c 73 6f 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 | .]]......See.Also.....--------.. |
| 1f40 | 20 20 20 6c 61 70 6c 61 63 69 61 6e 5f 6d 61 74 72 69 78 0a 20 20 20 20 6e 6f 72 6d 61 6c 69 7a | ...laplacian_matrix.....normaliz |
| 1f60 | 65 64 5f 6c 61 70 6c 61 63 69 61 6e 5f 73 70 65 63 74 72 75 6d 0a 20 20 20 20 64 69 72 65 63 74 | ed_laplacian_spectrum.....direct |
| 1f80 | 65 64 5f 6c 61 70 6c 61 63 69 61 6e 5f 6d 61 74 72 69 78 0a 20 20 20 20 64 69 72 65 63 74 65 64 | ed_laplacian_matrix.....directed |
| 1fa0 | 5f 63 6f 6d 62 69 6e 61 74 6f 72 69 61 6c 5f 6c 61 70 6c 61 63 69 61 6e 5f 6d 61 74 72 69 78 0a | _combinatorial_laplacian_matrix. |
| 1fc0 | 0a 20 20 20 20 52 65 66 65 72 65 6e 63 65 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 | .....References.....----------.. |
| 1fe0 | 20 20 20 2e 2e 20 5b 31 5d 20 46 61 6e 20 43 68 75 6e 67 2d 47 72 61 68 61 6d 2c 20 53 70 65 63 | ......[1].Fan.Chung-Graham,.Spec |
| 2000 | 74 72 61 6c 20 47 72 61 70 68 20 54 68 65 6f 72 79 2c 0a 20 20 20 20 20 20 20 43 42 4d 53 20 52 | tral.Graph.Theory,........CBMS.R |
| 2020 | 65 67 69 6f 6e 61 6c 20 43 6f 6e 66 65 72 65 6e 63 65 20 53 65 72 69 65 73 20 69 6e 20 4d 61 74 | egional.Conference.Series.in.Mat |
| 2040 | 68 65 6d 61 74 69 63 73 2c 20 4e 75 6d 62 65 72 20 39 32 2c 20 31 39 39 37 2e 0a 20 20 20 20 2e | hematics,.Number.92,.1997....... |
| 2060 | 2e 20 5b 32 5d 20 53 74 65 76 65 20 42 75 74 6c 65 72 2c 20 49 6e 74 65 72 6c 61 63 69 6e 67 20 | ..[2].Steve.Butler,.Interlacing. |
| 2080 | 46 6f 72 20 57 65 69 67 68 74 65 64 20 47 72 61 70 68 73 20 55 73 69 6e 67 20 54 68 65 20 4e 6f | For.Weighted.Graphs.Using.The.No |
| 20a0 | 72 6d 61 6c 69 7a 65 64 0a 20 20 20 20 20 20 20 4c 61 70 6c 61 63 69 61 6e 2c 20 45 6c 65 63 74 | rmalized........Laplacian,.Elect |
| 20c0 | 72 6f 6e 69 63 20 4a 6f 75 72 6e 61 6c 20 6f 66 20 4c 69 6e 65 61 72 20 41 6c 67 65 62 72 61 2c | ronic.Journal.of.Linear.Algebra, |
| 20e0 | 20 56 6f 6c 75 6d 65 20 31 36 2c 20 70 70 2e 20 39 30 2d 39 38 2c 0a 20 20 20 20 20 20 20 4d 61 | .Volume.16,.pp..90-98,........Ma |
| 2100 | 72 63 68 20 32 30 30 37 2e 0a 20 20 20 20 2e 2e 20 5b 33 5d 20 4c 61 6e 67 76 69 6c 6c 65 2c 20 | rch.2007.........[3].Langville,. |
| 2120 | 41 6d 79 20 4e 2e 2c 20 61 6e 64 20 43 61 72 6c 20 44 2e 20 4d 65 79 65 72 2e 20 47 6f 6f 67 6c | Amy.N.,.and.Carl.D..Meyer..Googl |
| 2140 | 65 e2 80 99 73 20 50 61 67 65 52 61 6e 6b 20 61 6e 64 20 42 65 79 6f 6e 64 3a 0a 20 20 20 20 20 | e...s.PageRank.and.Beyond:...... |
| 2160 | 20 20 54 68 65 20 53 63 69 65 6e 63 65 20 6f 66 20 53 65 61 72 63 68 20 45 6e 67 69 6e 65 20 52 | ..The.Science.of.Search.Engine.R |
| 2180 | 61 6e 6b 69 6e 67 73 2e 20 50 72 69 6e 63 65 74 6f 6e 20 55 6e 69 76 65 72 73 69 74 79 20 50 72 | ankings..Princeton.University.Pr |
| 21a0 | 65 73 73 2c 20 32 30 30 36 2e 0a 20 20 20 20 72 02 00 00 00 4e 72 0b 00 00 00 72 0c 00 00 00 72 | ess,.2006......r....Nr....r....r |
| 21c0 | 0f 00 00 00 72 10 00 00 00 72 12 00 00 00 da 06 69 67 6e 6f 72 65 29 01 da 06 64 69 76 69 64 65 | ....r....r......ignore)...divide |
| 21e0 | e7 00 00 00 00 00 00 f0 3f 29 0d da 05 6e 75 6d 70 79 72 13 00 00 00 72 14 00 00 00 72 15 00 00 | ........?)...numpyr....r....r... |
| 2200 | 00 72 16 00 00 00 72 17 00 00 00 72 1b 00 00 00 72 18 00 00 00 72 19 00 00 00 72 1a 00 00 00 da | .r....r....r....r....r....r..... |
| 2220 | 08 65 72 72 73 74 61 74 65 da 04 73 71 72 74 da 05 69 73 69 6e 66 29 0d 72 1c 00 00 00 72 0d 00 | .errstate..sqrt..isinf).r....r.. |
| 2240 | 00 00 72 08 00 00 00 da 02 6e 70 72 1d 00 00 00 72 1e 00 00 00 72 1f 00 00 00 da 01 5f da 05 64 | ..r......npr....r....r......_..d |
| 2260 | 69 61 67 73 72 21 00 00 00 da 01 4c da 0a 64 69 61 67 73 5f 73 71 72 74 da 02 44 48 73 0d 00 00 | iagsr!.....L..diags_sqrt..DHs... |
| 2280 | 00 20 20 20 20 20 20 20 20 20 20 20 20 20 72 22 00 00 00 72 05 00 00 00 72 05 00 00 00 85 00 00 | ..............r"...r....r....... |
| 22a0 | 00 73 07 01 00 00 80 00 f3 42 03 00 05 17 db 04 16 e0 07 0f d0 07 17 dc 13 17 98 01 93 37 88 08 | .s.......B...................7.. |
| 22c0 | dc 08 0a d7 08 20 d1 08 20 a0 11 a8 58 b8 66 c8 55 d4 08 53 80 41 d8 0b 0c 8f 37 89 37 81 44 80 | ............X.f.U..S.A....7.7.D. |
| 22e0 | 41 80 71 d8 0c 0d 8f 45 89 45 90 71 88 45 8b 4d 80 45 e0 08 0a 8f 09 89 09 d7 08 1b d1 08 1b 98 | A.q....E.E.q.E.M.E.............. |
| 2300 | 42 9f 49 99 49 d7 1c 2d d1 1c 2d a8 65 b0 51 b8 01 b8 31 c0 55 d0 1c 2d d3 1c 4b d3 08 4c 80 41 | B.I.I..-..-.e.Q...1.U..-..K..L.A |
| 2320 | d8 08 09 88 41 89 05 80 41 d8 09 0b 8f 1b 89 1b 98 48 88 1b d3 09 25 f1 00 01 05 2a d8 15 18 98 | ....A...A........H....%....*.... |
| 2340 | 32 9f 37 99 37 a0 35 9b 3e d1 15 29 88 0a f7 03 01 05 2a e0 27 28 80 4a 88 72 8f 78 89 78 98 0a | 2.7.7.5.>..)......*.'(.J.r.x.x.. |
| 2360 | d3 0f 23 d1 04 24 e0 09 0b 8f 19 89 19 d7 09 1c d1 09 1c 98 52 9f 59 99 59 d7 1d 2e d1 1d 2e a8 | ..#..$..............R.Y.Y....... |
| 2380 | 7a b8 31 b8 61 c0 11 c8 35 d0 1d 2e d3 1d 51 d3 09 52 80 42 d8 0b 0d 90 11 90 52 91 16 89 3d d0 | z.1.a...5.....Q..R.B......R...=. |
| 23a0 | 04 18 f7 0b 01 05 2a f0 00 01 05 2a fa 73 0c 00 00 00 c2 20 15 44 12 03 c4 12 05 44 1b 07 da 0a | ......*....*.s.......D.....D.... |
| 23c0 | 75 6e 64 69 72 65 63 74 65 64 da 0a 6d 75 6c 74 69 67 72 61 70 68 63 05 00 00 00 00 00 00 00 00 | undirected..multigraphc......... |
| 23e0 | 00 00 00 09 00 00 00 03 00 00 00 f3 9a 02 00 00 97 00 64 01 64 02 6c 00 7d 05 64 01 64 02 6c 01 | ..................d.d.l.}.d.d.l. |
| 2400 | 7d 06 74 05 00 00 00 00 00 00 00 00 7c 00 7c 01 7c 02 7c 03 7c 04 ac 03 ab 05 00 00 00 00 00 00 | }.t.........|.|.|.|.|........... |
| 2420 | 7d 07 7c 07 6a 06 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 5c 02 00 00 7d 08 7d 09 | }.|.j...................\...}.}. |
| 2440 | 7c 06 6a 08 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 6a 0a 00 00 00 00 00 00 00 00 | |.j...................j......... |
| 2460 | 00 00 00 00 00 00 00 00 00 00 6a 0d 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 7c 07 | ..........j...................|. |
| 2480 | 6a 0e 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 64 04 ac 05 ab 02 00 00 00 00 00 00 | j...................d........... |
| 24a0 | 5c 02 00 00 7d 0a 7d 0b 7c 0b 6a 11 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ab 00 | \...}.}.|.j..................... |
| 24c0 | 00 00 00 00 00 00 6a 12 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 7d 0c 7c 0c 7c 0c | ......j...................}.|.|. |
| 24e0 | 6a 15 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ab 00 00 00 00 00 00 00 7a 0b 00 00 | j...........................z... |
| 2500 | 7d 0d 7c 05 6a 17 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 7c 05 6a 19 00 00 00 00 | }.|.j...................|.j..... |
| 2520 | 00 00 00 00 00 00 00 00 00 00 00 00 00 00 7c 0d ab 01 00 00 00 00 00 00 ab 01 00 00 00 00 00 00 | ..............|................. |
| 2540 | 7d 0e 7c 06 6a 08 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 6a 1b 00 00 00 00 00 00 | }.|.j...................j....... |
| 2560 | 00 00 00 00 00 00 00 00 00 00 00 00 7c 06 6a 08 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 | ............|.j................. |
| 2580 | 00 00 6a 1d 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 7c 0e 64 01 7c 08 7c 08 ab 04 | ..j...................|.d.|.|... |
| 25a0 | 00 00 00 00 00 00 ab 01 00 00 00 00 00 00 7c 07 7a 04 00 00 7c 06 6a 08 00 00 00 00 00 00 00 00 | ..............|.z...|.j......... |
| 25c0 | 00 00 00 00 00 00 00 00 00 00 6a 1b 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 7c 06 | ..........j...................|. |
| 25e0 | 6a 08 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 6a 1d 00 00 00 00 00 00 00 00 00 00 | j...................j........... |
| 2600 | 00 00 00 00 00 00 00 00 64 06 7c 0e 7a 0b 00 00 64 01 7c 08 7c 08 ab 04 00 00 00 00 00 00 ab 01 | ........d.|.z...d.|.|........... |
| 2620 | 00 00 00 00 00 00 7a 04 00 00 7d 0f 7c 05 6a 1f 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 | ......z...}.|.j................. |
| 2640 | 00 00 74 21 00 00 00 00 00 00 00 00 7c 00 ab 01 00 00 00 00 00 00 ab 01 00 00 00 00 00 00 7d 10 | ..t!........|.................}. |
| 2660 | 7c 10 7c 0f 7c 0f 6a 0e 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 7a 00 00 00 64 07 | |.|.|.j...................z...d. |
| 2680 | 7a 0b 00 00 7a 0a 00 00 53 00 29 08 61 62 08 00 00 52 65 74 75 72 6e 73 20 74 68 65 20 64 69 72 | z...z...S.).ab...Returns.the.dir |
| 26a0 | 65 63 74 65 64 20 4c 61 70 6c 61 63 69 61 6e 20 6d 61 74 72 69 78 20 6f 66 20 47 2e 0a 0a 20 20 | ected.Laplacian.matrix.of.G..... |
| 26c0 | 20 20 54 68 65 20 67 72 61 70 68 20 64 69 72 65 63 74 65 64 20 4c 61 70 6c 61 63 69 61 6e 20 69 | ..The.graph.directed.Laplacian.i |
| 26e0 | 73 20 74 68 65 20 6d 61 74 72 69 78 0a 0a 20 20 20 20 2e 2e 20 6d 61 74 68 3a 3a 0a 0a 20 20 20 | s.the.matrix.........math::..... |
| 2700 | 20 20 20 20 20 4c 20 3d 20 49 20 2d 20 5c 66 72 61 63 7b 31 7d 7b 32 7d 20 5c 6c 65 66 74 20 28 | .....L.=.I.-.\frac{1}{2}.\left.( |
| 2720 | 5c 50 68 69 5e 7b 31 2f 32 7d 20 50 20 5c 50 68 69 5e 7b 2d 31 2f 32 7d 20 2b 20 5c 50 68 69 5e | \Phi^{1/2}.P.\Phi^{-1/2}.+.\Phi^ |
| 2740 | 7b 2d 31 2f 32 7d 20 50 5e 54 20 5c 50 68 69 5e 7b 31 2f 32 7d 20 5c 72 69 67 68 74 20 29 0a 0a | {-1/2}.P^T.\Phi^{1/2}.\right.).. |
| 2760 | 20 20 20 20 77 68 65 72 65 20 60 49 60 20 69 73 20 74 68 65 20 69 64 65 6e 74 69 74 79 20 6d 61 | ....where.`I`.is.the.identity.ma |
| 2780 | 74 72 69 78 2c 20 60 50 60 20 69 73 20 74 68 65 20 74 72 61 6e 73 69 74 69 6f 6e 20 6d 61 74 72 | trix,.`P`.is.the.transition.matr |
| 27a0 | 69 78 20 6f 66 20 74 68 65 0a 20 20 20 20 67 72 61 70 68 2c 20 61 6e 64 20 60 5c 50 68 69 60 20 | ix.of.the.....graph,.and.`\Phi`. |
| 27c0 | 61 20 6d 61 74 72 69 78 20 77 69 74 68 20 74 68 65 20 50 65 72 72 6f 6e 20 76 65 63 74 6f 72 20 | a.matrix.with.the.Perron.vector. |
| 27e0 | 6f 66 20 60 50 60 20 69 6e 20 74 68 65 20 64 69 61 67 6f 6e 61 6c 20 61 6e 64 0a 20 20 20 20 7a | of.`P`.in.the.diagonal.and.....z |
| 2800 | 65 72 6f 73 20 65 6c 73 65 77 68 65 72 65 20 5b 31 5d 5f 2e 0a 0a 20 20 20 20 44 65 70 65 6e 64 | eros.elsewhere.[1]_.......Depend |
| 2820 | 69 6e 67 20 6f 6e 20 74 68 65 20 76 61 6c 75 65 20 6f 66 20 77 61 6c 6b 5f 74 79 70 65 2c 20 60 | ing.on.the.value.of.walk_type,.` |
| 2840 | 50 60 20 63 61 6e 20 62 65 20 74 68 65 20 74 72 61 6e 73 69 74 69 6f 6e 20 6d 61 74 72 69 78 0a | P`.can.be.the.transition.matrix. |
| 2860 | 20 20 20 20 69 6e 64 75 63 65 64 20 62 79 20 61 20 72 61 6e 64 6f 6d 20 77 61 6c 6b 2c 20 61 20 | ....induced.by.a.random.walk,.a. |
| 2880 | 6c 61 7a 79 20 72 61 6e 64 6f 6d 20 77 61 6c 6b 2c 20 6f 72 20 61 20 72 61 6e 64 6f 6d 20 77 61 | lazy.random.walk,.or.a.random.wa |
| 28a0 | 6c 6b 20 77 69 74 68 0a 20 20 20 20 74 65 6c 65 70 6f 72 74 61 74 69 6f 6e 20 28 50 61 67 65 52 | lk.with.....teleportation.(PageR |
| 28c0 | 61 6e 6b 29 2e 0a 0a 20 20 20 20 50 61 72 61 6d 65 74 65 72 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d | ank).......Parameters.....------ |
| 28e0 | 2d 2d 2d 2d 0a 20 20 20 20 47 20 3a 20 44 69 47 72 61 70 68 0a 20 20 20 20 20 20 20 41 20 4e 65 | ----.....G.:.DiGraph........A.Ne |
| 2900 | 74 77 6f 72 6b 58 20 67 72 61 70 68 0a 0a 20 20 20 20 6e 6f 64 65 6c 69 73 74 20 3a 20 6c 69 73 | tworkX.graph......nodelist.:.lis |
| 2920 | 74 2c 20 6f 70 74 69 6f 6e 61 6c 0a 20 20 20 20 20 20 20 54 68 65 20 72 6f 77 73 20 61 6e 64 20 | t,.optional........The.rows.and. |
| 2940 | 63 6f 6c 75 6d 6e 73 20 61 72 65 20 6f 72 64 65 72 65 64 20 61 63 63 6f 72 64 69 6e 67 20 74 6f | columns.are.ordered.according.to |
| 2960 | 20 74 68 65 20 6e 6f 64 65 73 20 69 6e 20 6e 6f 64 65 6c 69 73 74 2e 0a 20 20 20 20 20 20 20 49 | .the.nodes.in.nodelist.........I |
| 2980 | 66 20 6e 6f 64 65 6c 69 73 74 20 69 73 20 4e 6f 6e 65 2c 20 74 68 65 6e 20 74 68 65 20 6f 72 64 | f.nodelist.is.None,.then.the.ord |
| 29a0 | 65 72 69 6e 67 20 69 73 20 70 72 6f 64 75 63 65 64 20 62 79 20 47 2e 6e 6f 64 65 73 28 29 2e 0a | ering.is.produced.by.G.nodes().. |
| 29c0 | 0a 20 20 20 20 77 65 69 67 68 74 20 3a 20 73 74 72 69 6e 67 20 6f 72 20 4e 6f 6e 65 2c 20 6f 70 | .....weight.:.string.or.None,.op |
| 29e0 | 74 69 6f 6e 61 6c 20 28 64 65 66 61 75 6c 74 3d 27 77 65 69 67 68 74 27 29 0a 20 20 20 20 20 20 | tional.(default='weight')....... |
| 2a00 | 20 54 68 65 20 65 64 67 65 20 64 61 74 61 20 6b 65 79 20 75 73 65 64 20 74 6f 20 63 6f 6d 70 75 | .The.edge.data.key.used.to.compu |
| 2a20 | 74 65 20 65 61 63 68 20 76 61 6c 75 65 20 69 6e 20 74 68 65 20 6d 61 74 72 69 78 2e 0a 20 20 20 | te.each.value.in.the.matrix..... |
| 2a40 | 20 20 20 20 49 66 20 4e 6f 6e 65 2c 20 74 68 65 6e 20 65 61 63 68 20 65 64 67 65 20 68 61 73 20 | ....If.None,.then.each.edge.has. |
| 2a60 | 77 65 69 67 68 74 20 31 2e 0a 0a 20 20 20 20 77 61 6c 6b 5f 74 79 70 65 20 3a 20 73 74 72 69 6e | weight.1.......walk_type.:.strin |
| 2a80 | 67 20 6f 72 20 4e 6f 6e 65 2c 20 6f 70 74 69 6f 6e 61 6c 20 28 64 65 66 61 75 6c 74 3d 4e 6f 6e | g.or.None,.optional.(default=Non |
| 2aa0 | 65 29 0a 20 20 20 20 20 20 20 4f 6e 65 20 6f 66 20 60 60 22 72 61 6e 64 6f 6d 22 60 60 2c 20 60 | e)........One.of.``"random"``,.` |
| 2ac0 | 60 22 6c 61 7a 79 22 60 60 2c 20 6f 72 20 60 60 22 70 61 67 65 72 61 6e 6b 22 60 60 2e 20 49 66 | `"lazy"``,.or.``"pagerank"``..If |
| 2ae0 | 20 60 60 77 61 6c 6b 5f 74 79 70 65 3d 4e 6f 6e 65 60 60 0a 20 20 20 20 20 20 20 28 74 68 65 20 | .``walk_type=None``........(the. |
| 2b00 | 64 65 66 61 75 6c 74 29 2c 20 74 68 65 6e 20 61 20 76 61 6c 75 65 20 69 73 20 73 65 6c 65 63 74 | default),.then.a.value.is.select |
| 2b20 | 65 64 20 61 63 63 6f 72 64 69 6e 67 20 74 6f 20 74 68 65 20 70 72 6f 70 65 72 74 69 65 73 20 6f | ed.according.to.the.properties.o |
| 2b40 | 66 20 60 47 60 3a 0a 20 20 20 20 20 20 20 2d 20 60 60 77 61 6c 6b 5f 74 79 70 65 3d 22 72 61 6e | f.`G`:........-.``walk_type="ran |
| 2b60 | 64 6f 6d 22 60 60 20 69 66 20 60 47 60 20 69 73 20 73 74 72 6f 6e 67 6c 79 20 63 6f 6e 6e 65 63 | dom"``.if.`G`.is.strongly.connec |
| 2b80 | 74 65 64 20 61 6e 64 20 61 70 65 72 69 6f 64 69 63 0a 20 20 20 20 20 20 20 2d 20 60 60 77 61 6c | ted.and.aperiodic........-.``wal |
| 2ba0 | 6b 5f 74 79 70 65 3d 22 6c 61 7a 79 22 60 60 20 69 66 20 60 47 60 20 69 73 20 73 74 72 6f 6e 67 | k_type="lazy"``.if.`G`.is.strong |
| 2bc0 | 6c 79 20 63 6f 6e 6e 65 63 74 65 64 20 62 75 74 20 6e 6f 74 20 61 70 65 72 69 6f 64 69 63 0a 20 | ly.connected.but.not.aperiodic.. |
| 2be0 | 20 20 20 20 20 20 2d 20 60 60 77 61 6c 6b 5f 74 79 70 65 3d 22 70 61 67 65 72 61 6e 6b 22 60 60 | ......-.``walk_type="pagerank"`` |
| 2c00 | 20 66 6f 72 20 61 6c 6c 20 6f 74 68 65 72 20 63 61 73 65 73 2e 0a 0a 20 20 20 20 61 6c 70 68 61 | .for.all.other.cases.......alpha |
| 2c20 | 20 3a 20 72 65 61 6c 0a 20 20 20 20 20 20 20 28 31 20 2d 20 61 6c 70 68 61 29 20 69 73 20 74 68 | .:.real........(1.-.alpha).is.th |
| 2c40 | 65 20 74 65 6c 65 70 6f 72 74 61 74 69 6f 6e 20 70 72 6f 62 61 62 69 6c 69 74 79 20 75 73 65 64 | e.teleportation.probability.used |
| 2c60 | 20 77 69 74 68 20 70 61 67 65 72 61 6e 6b 0a 0a 20 20 20 20 52 65 74 75 72 6e 73 0a 20 20 20 20 | .with.pagerank......Returns..... |
| 2c80 | 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 4c 20 3a 20 4e 75 6d 50 79 20 6d 61 74 72 69 78 0a 20 20 20 | -------.....L.:.NumPy.matrix.... |
| 2ca0 | 20 20 20 4e 6f 72 6d 61 6c 69 7a 65 64 20 4c 61 70 6c 61 63 69 61 6e 20 6f 66 20 47 2e 0a 0a 20 | ...Normalized.Laplacian.of.G.... |
| 2cc0 | 20 20 20 4e 6f 74 65 73 0a 20 20 20 20 2d 2d 2d 2d 2d 0a 20 20 20 20 4f 6e 6c 79 20 69 6d 70 6c | ...Notes.....-----.....Only.impl |
| 2ce0 | 65 6d 65 6e 74 65 64 20 66 6f 72 20 44 69 47 72 61 70 68 73 0a 0a 20 20 20 20 54 68 65 20 72 65 | emented.for.DiGraphs......The.re |
| 2d00 | 73 75 6c 74 20 69 73 20 61 6c 77 61 79 73 20 61 20 73 79 6d 6d 65 74 72 69 63 20 6d 61 74 72 69 | sult.is.always.a.symmetric.matri |
| 2d20 | 78 2e 0a 0a 20 20 20 20 54 68 69 73 20 63 61 6c 63 75 6c 61 74 69 6f 6e 20 75 73 65 73 20 74 68 | x.......This.calculation.uses.th |
| 2d40 | 65 20 6f 75 74 2d 64 65 67 72 65 65 20 6f 66 20 74 68 65 20 67 72 61 70 68 20 60 47 60 2e 20 54 | e.out-degree.of.the.graph.`G`..T |
| 2d60 | 6f 20 75 73 65 20 74 68 65 0a 20 20 20 20 69 6e 2d 64 65 67 72 65 65 20 66 6f 72 20 63 61 6c 63 | o.use.the.....in-degree.for.calc |
| 2d80 | 75 6c 61 74 69 6f 6e 73 20 69 6e 73 74 65 61 64 2c 20 75 73 65 20 60 47 2e 72 65 76 65 72 73 65 | ulations.instead,.use.`G.reverse |
| 2da0 | 28 63 6f 70 79 3d 46 61 6c 73 65 29 60 20 61 6e 64 0a 20 20 20 20 74 61 6b 65 20 74 68 65 20 74 | (copy=False)`.and.....take.the.t |
| 2dc0 | 72 61 6e 73 70 6f 73 65 2e 0a 0a 20 20 20 20 53 65 65 20 41 6c 73 6f 0a 20 20 20 20 2d 2d 2d 2d | ranspose.......See.Also.....---- |
| 2de0 | 2d 2d 2d 2d 0a 20 20 20 20 6c 61 70 6c 61 63 69 61 6e 5f 6d 61 74 72 69 78 0a 20 20 20 20 6e 6f | ----.....laplacian_matrix.....no |
| 2e00 | 72 6d 61 6c 69 7a 65 64 5f 6c 61 70 6c 61 63 69 61 6e 5f 6d 61 74 72 69 78 0a 20 20 20 20 64 69 | rmalized_laplacian_matrix.....di |
| 2e20 | 72 65 63 74 65 64 5f 63 6f 6d 62 69 6e 61 74 6f 72 69 61 6c 5f 6c 61 70 6c 61 63 69 61 6e 5f 6d | rected_combinatorial_laplacian_m |
| 2e40 | 61 74 72 69 78 0a 0a 20 20 20 20 52 65 66 65 72 65 6e 63 65 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d | atrix......References.....------ |
| 2e60 | 2d 2d 2d 2d 0a 20 20 20 20 2e 2e 20 5b 31 5d 20 46 61 6e 20 43 68 75 6e 67 20 28 32 30 30 35 29 | ----........[1].Fan.Chung.(2005) |
| 2e80 | 2e 0a 20 20 20 20 20 20 20 4c 61 70 6c 61 63 69 61 6e 73 20 61 6e 64 20 74 68 65 20 43 68 65 65 | .........Laplacians.and.the.Chee |
| 2ea0 | 67 65 72 20 69 6e 65 71 75 61 6c 69 74 79 20 66 6f 72 20 64 69 72 65 63 74 65 64 20 67 72 61 70 | ger.inequality.for.directed.grap |
| 2ec0 | 68 73 2e 0a 20 20 20 20 20 20 20 41 6e 6e 61 6c 73 20 6f 66 20 43 6f 6d 62 69 6e 61 74 6f 72 69 | hs.........Annals.of.Combinatori |
| 2ee0 | 63 73 2c 20 39 28 31 29 2c 20 32 30 30 35 0a 20 20 20 20 72 02 00 00 00 4e a9 04 72 0d 00 00 00 | cs,.9(1),.2005.....r....N..r.... |
| 2f00 | 72 08 00 00 00 da 09 77 61 6c 6b 5f 74 79 70 65 da 05 61 6c 70 68 61 72 0f 00 00 00 a9 01 da 01 | r......walk_type..alphar........ |
| 2f20 | 6b 72 27 00 00 00 e7 00 00 00 00 00 00 00 40 29 11 72 28 00 00 00 72 13 00 00 00 da 12 5f 74 72 | kr'...........@).r(...r......_tr |
| 2f40 | 61 6e 73 69 74 69 6f 6e 5f 6d 61 74 72 69 78 72 17 00 00 00 72 18 00 00 00 da 06 6c 69 6e 61 6c | ansition_matrixr....r......linal |
| 2f60 | 67 da 04 65 69 67 73 da 01 54 da 07 66 6c 61 74 74 65 6e da 04 72 65 61 6c 72 1b 00 00 00 72 2a | g..eigs..T..flatten..realr....r* |
| 2f80 | 00 00 00 da 03 61 62 73 72 19 00 00 00 72 1a 00 00 00 da 08 69 64 65 6e 74 69 74 79 da 03 6c 65 | .....absr....r......identity..le |
| 2fa0 | 6e 29 11 72 1c 00 00 00 72 0d 00 00 00 72 08 00 00 00 72 36 00 00 00 72 37 00 00 00 72 2c 00 00 | n).r....r....r....r6...r7...r,.. |
| 2fc0 | 00 72 1d 00 00 00 da 01 50 72 1f 00 00 00 72 20 00 00 00 da 05 65 76 61 6c 73 da 05 65 76 65 63 | .r......Pr....r......evals..evec |
| 2fe0 | 73 da 01 76 da 01 70 da 05 73 71 72 74 70 da 01 51 da 01 49 73 11 00 00 00 20 20 20 20 20 20 20 | s..v..p..sqrtp..Q..Is........... |
| 3000 | 20 20 20 20 20 20 20 20 20 20 72 22 00 00 00 72 06 00 00 00 72 06 00 00 00 fd 00 00 00 73 22 01 | ..........r"...r....r........s". |
| 3020 | 00 00 80 00 f3 50 02 00 05 17 db 04 16 f4 06 00 09 1b d8 08 09 90 48 a0 56 b0 79 c8 05 f4 03 02 | .....P................H.V.y..... |
| 3040 | 09 06 80 41 f0 08 00 0c 0d 8f 37 89 37 81 44 80 41 80 71 e0 13 15 97 39 91 39 d7 13 23 d1 13 23 | ...A......7.7.D.A.q....9.9..#..# |
| 3060 | d7 13 28 d1 13 28 a8 11 af 13 a9 13 b0 01 d0 13 28 d3 13 32 81 4c 80 45 88 35 d8 08 0d 8f 0d 89 | ..(..(..........(..2.L.E.5...... |
| 3080 | 0d 8b 0f d7 08 1c d1 08 1c 80 41 d8 08 09 88 41 8f 45 89 45 8b 47 89 0b 80 41 e0 0c 0e 8f 47 89 | ..........A....A.E.E.G...A....G. |
| 30a0 | 47 90 42 97 46 91 46 98 31 93 49 d3 0c 1e 80 45 f0 06 00 09 0b 8f 09 89 09 d7 08 1b d1 08 1b 98 | G.B.F.F.1.I....E................ |
| 30c0 | 42 9f 49 99 49 d7 1c 2d d1 1c 2d a8 65 b0 51 b8 01 b8 31 d3 1c 3d d3 08 3e d8 0a 0b f1 03 01 09 | B.I.I..-..-.e.Q...1..=..>....... |
| 30e0 | 0c f0 06 00 0b 0d 8f 29 89 29 d7 0a 1d d1 0a 1d 98 62 9f 69 99 69 d7 1e 2f d1 1e 2f b0 03 b0 65 | .......).).......b.i.i../../...e |
| 3100 | b1 0b b8 51 c0 01 c0 31 d3 1e 45 d3 0a 46 f1 07 03 09 47 01 f0 05 00 05 06 f0 10 00 09 0b 8f 0b | ...Q...1..E..F....G............. |
| 3120 | 89 0b 94 43 98 01 93 46 d3 08 1b 80 41 e0 0b 0c 90 01 90 41 97 43 91 43 91 07 98 33 89 7f d1 0b | ...C...F....A......A.C.C...3.... |
| 3140 | 1e d0 04 1e 72 23 00 00 00 63 05 00 00 00 00 00 00 00 00 00 00 00 08 00 00 00 03 00 00 00 f3 ca | ....r#...c...................... |
| 3160 | 01 00 00 97 00 64 01 64 02 6c 00 7d 05 74 03 00 00 00 00 00 00 00 00 7c 00 7c 01 7c 02 7c 03 7c | .....d.d.l.}.t.........|.|.|.|.| |
| 3180 | 04 ac 03 ab 05 00 00 00 00 00 00 7d 06 7c 06 6a 04 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 | ...........}.|.j................ |
| 31a0 | 00 00 00 5c 02 00 00 7d 07 7d 08 7c 05 6a 06 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 | ...\...}.}.|.j.................. |
| 31c0 | 00 6a 08 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 6a 0b 00 00 00 00 00 00 00 00 00 | .j...................j.......... |
| 31e0 | 00 00 00 00 00 00 00 00 00 7c 06 6a 0c 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 64 | .........|.j...................d |
| 3200 | 04 ac 05 ab 02 00 00 00 00 00 00 5c 02 00 00 7d 09 7d 0a 7c 0a 6a 0f 00 00 00 00 00 00 00 00 00 | ...........\...}.}.|.j.......... |
| 3220 | 00 00 00 00 00 00 00 00 00 ab 00 00 00 00 00 00 00 6a 10 00 00 00 00 00 00 00 00 00 00 00 00 00 | .................j.............. |
| 3240 | 00 00 00 00 00 7d 0b 7c 0b 7c 0b 6a 13 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ab | .....}.|.|.j.................... |
| 3260 | 00 00 00 00 00 00 00 7a 0b 00 00 7d 0c 7c 05 6a 06 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 | .......z...}.|.j................ |
| 3280 | 00 00 00 6a 15 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 7c 05 6a 06 00 00 00 00 00 | ...j...................|.j...... |
| 32a0 | 00 00 00 00 00 00 00 00 00 00 00 00 00 6a 17 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 | .............j.................. |
| 32c0 | 00 7c 0c 64 01 7c 07 7c 07 ab 04 00 00 00 00 00 00 ab 01 00 00 00 00 00 00 6a 19 00 00 00 00 00 | .|.d.|.|.................j...... |
| 32e0 | 00 00 00 00 00 00 00 00 00 00 00 00 00 ab 00 00 00 00 00 00 00 7d 0d 7c 0d 7c 0d 7c 06 7a 04 00 | .....................}.|.|.|.z.. |
| 3300 | 00 7c 06 6a 0c 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 7c 0d 7a 04 00 00 7a 00 00 | .|.j...................|.z...z.. |
| 3320 | 00 64 06 7a 0b 00 00 7a 0a 00 00 53 00 29 07 61 34 08 00 00 52 65 74 75 72 6e 20 74 68 65 20 64 | .d.z...z...S.).a4...Return.the.d |
| 3340 | 69 72 65 63 74 65 64 20 63 6f 6d 62 69 6e 61 74 6f 72 69 61 6c 20 4c 61 70 6c 61 63 69 61 6e 20 | irected.combinatorial.Laplacian. |
| 3360 | 6d 61 74 72 69 78 20 6f 66 20 47 2e 0a 0a 20 20 20 20 54 68 65 20 67 72 61 70 68 20 64 69 72 65 | matrix.of.G.......The.graph.dire |
| 3380 | 63 74 65 64 20 63 6f 6d 62 69 6e 61 74 6f 72 69 61 6c 20 4c 61 70 6c 61 63 69 61 6e 20 69 73 20 | cted.combinatorial.Laplacian.is. |
| 33a0 | 74 68 65 20 6d 61 74 72 69 78 0a 0a 20 20 20 20 2e 2e 20 6d 61 74 68 3a 3a 0a 0a 20 20 20 20 20 | the.matrix.........math::....... |
| 33c0 | 20 20 20 4c 20 3d 20 5c 50 68 69 20 2d 20 5c 66 72 61 63 7b 31 7d 7b 32 7d 20 5c 6c 65 66 74 20 | ...L.=.\Phi.-.\frac{1}{2}.\left. |
| 33e0 | 28 5c 50 68 69 20 50 20 2b 20 50 5e 54 20 5c 50 68 69 20 5c 72 69 67 68 74 29 0a 0a 20 20 20 20 | (\Phi.P.+.P^T.\Phi.\right)...... |
| 3400 | 77 68 65 72 65 20 60 50 60 20 69 73 20 74 68 65 20 74 72 61 6e 73 69 74 69 6f 6e 20 6d 61 74 72 | where.`P`.is.the.transition.matr |
| 3420 | 69 78 20 6f 66 20 74 68 65 20 67 72 61 70 68 20 61 6e 64 20 60 5c 50 68 69 60 20 61 20 6d 61 74 | ix.of.the.graph.and.`\Phi`.a.mat |
| 3440 | 72 69 78 0a 20 20 20 20 77 69 74 68 20 74 68 65 20 50 65 72 72 6f 6e 20 76 65 63 74 6f 72 20 6f | rix.....with.the.Perron.vector.o |
| 3460 | 66 20 60 50 60 20 69 6e 20 74 68 65 20 64 69 61 67 6f 6e 61 6c 20 61 6e 64 20 7a 65 72 6f 73 20 | f.`P`.in.the.diagonal.and.zeros. |
| 3480 | 65 6c 73 65 77 68 65 72 65 20 5b 31 5d 5f 2e 0a 0a 20 20 20 20 44 65 70 65 6e 64 69 6e 67 20 6f | elsewhere.[1]_.......Depending.o |
| 34a0 | 6e 20 74 68 65 20 76 61 6c 75 65 20 6f 66 20 77 61 6c 6b 5f 74 79 70 65 2c 20 60 50 60 20 63 61 | n.the.value.of.walk_type,.`P`.ca |
| 34c0 | 6e 20 62 65 20 74 68 65 20 74 72 61 6e 73 69 74 69 6f 6e 20 6d 61 74 72 69 78 0a 20 20 20 20 69 | n.be.the.transition.matrix.....i |
| 34e0 | 6e 64 75 63 65 64 20 62 79 20 61 20 72 61 6e 64 6f 6d 20 77 61 6c 6b 2c 20 61 20 6c 61 7a 79 20 | nduced.by.a.random.walk,.a.lazy. |
| 3500 | 72 61 6e 64 6f 6d 20 77 61 6c 6b 2c 20 6f 72 20 61 20 72 61 6e 64 6f 6d 20 77 61 6c 6b 20 77 69 | random.walk,.or.a.random.walk.wi |
| 3520 | 74 68 0a 20 20 20 20 74 65 6c 65 70 6f 72 74 61 74 69 6f 6e 20 28 50 61 67 65 52 61 6e 6b 29 2e | th.....teleportation.(PageRank). |
| 3540 | 0a 0a 20 20 20 20 50 61 72 61 6d 65 74 65 72 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 0a | ......Parameters.....----------. |
| 3560 | 20 20 20 20 47 20 3a 20 44 69 47 72 61 70 68 0a 20 20 20 20 20 20 20 41 20 4e 65 74 77 6f 72 6b | ....G.:.DiGraph........A.Network |
| 3580 | 58 20 67 72 61 70 68 0a 0a 20 20 20 20 6e 6f 64 65 6c 69 73 74 20 3a 20 6c 69 73 74 2c 20 6f 70 | X.graph......nodelist.:.list,.op |
| 35a0 | 74 69 6f 6e 61 6c 0a 20 20 20 20 20 20 20 54 68 65 20 72 6f 77 73 20 61 6e 64 20 63 6f 6c 75 6d | tional........The.rows.and.colum |
| 35c0 | 6e 73 20 61 72 65 20 6f 72 64 65 72 65 64 20 61 63 63 6f 72 64 69 6e 67 20 74 6f 20 74 68 65 20 | ns.are.ordered.according.to.the. |
| 35e0 | 6e 6f 64 65 73 20 69 6e 20 6e 6f 64 65 6c 69 73 74 2e 0a 20 20 20 20 20 20 20 49 66 20 6e 6f 64 | nodes.in.nodelist.........If.nod |
| 3600 | 65 6c 69 73 74 20 69 73 20 4e 6f 6e 65 2c 20 74 68 65 6e 20 74 68 65 20 6f 72 64 65 72 69 6e 67 | elist.is.None,.then.the.ordering |
| 3620 | 20 69 73 20 70 72 6f 64 75 63 65 64 20 62 79 20 47 2e 6e 6f 64 65 73 28 29 2e 0a 0a 20 20 20 20 | .is.produced.by.G.nodes()....... |
| 3640 | 77 65 69 67 68 74 20 3a 20 73 74 72 69 6e 67 20 6f 72 20 4e 6f 6e 65 2c 20 6f 70 74 69 6f 6e 61 | weight.:.string.or.None,.optiona |
| 3660 | 6c 20 28 64 65 66 61 75 6c 74 3d 27 77 65 69 67 68 74 27 29 0a 20 20 20 20 20 20 20 54 68 65 20 | l.(default='weight')........The. |
| 3680 | 65 64 67 65 20 64 61 74 61 20 6b 65 79 20 75 73 65 64 20 74 6f 20 63 6f 6d 70 75 74 65 20 65 61 | edge.data.key.used.to.compute.ea |
| 36a0 | 63 68 20 76 61 6c 75 65 20 69 6e 20 74 68 65 20 6d 61 74 72 69 78 2e 0a 20 20 20 20 20 20 20 49 | ch.value.in.the.matrix.........I |
| 36c0 | 66 20 4e 6f 6e 65 2c 20 74 68 65 6e 20 65 61 63 68 20 65 64 67 65 20 68 61 73 20 77 65 69 67 68 | f.None,.then.each.edge.has.weigh |
| 36e0 | 74 20 31 2e 0a 0a 20 20 20 20 77 61 6c 6b 5f 74 79 70 65 20 3a 20 73 74 72 69 6e 67 20 6f 72 20 | t.1.......walk_type.:.string.or. |
| 3700 | 4e 6f 6e 65 2c 20 6f 70 74 69 6f 6e 61 6c 20 28 64 65 66 61 75 6c 74 3d 4e 6f 6e 65 29 0a 20 20 | None,.optional.(default=None)... |
| 3720 | 20 20 20 20 20 20 4f 6e 65 20 6f 66 20 60 60 22 72 61 6e 64 6f 6d 22 60 60 2c 20 60 60 22 6c 61 | ......One.of.``"random"``,.``"la |
| 3740 | 7a 79 22 60 60 2c 20 6f 72 20 60 60 22 70 61 67 65 72 61 6e 6b 22 60 60 2e 20 49 66 20 60 60 77 | zy"``,.or.``"pagerank"``..If.``w |
| 3760 | 61 6c 6b 5f 74 79 70 65 3d 4e 6f 6e 65 60 60 0a 20 20 20 20 20 20 20 20 28 74 68 65 20 64 65 66 | alk_type=None``.........(the.def |
| 3780 | 61 75 6c 74 29 2c 20 74 68 65 6e 20 61 20 76 61 6c 75 65 20 69 73 20 73 65 6c 65 63 74 65 64 20 | ault),.then.a.value.is.selected. |
| 37a0 | 61 63 63 6f 72 64 69 6e 67 20 74 6f 20 74 68 65 20 70 72 6f 70 65 72 74 69 65 73 20 6f 66 20 60 | according.to.the.properties.of.` |
| 37c0 | 47 60 3a 0a 20 20 20 20 20 20 20 20 2d 20 60 60 77 61 6c 6b 5f 74 79 70 65 3d 22 72 61 6e 64 6f | G`:.........-.``walk_type="rando |
| 37e0 | 6d 22 60 60 20 69 66 20 60 47 60 20 69 73 20 73 74 72 6f 6e 67 6c 79 20 63 6f 6e 6e 65 63 74 65 | m"``.if.`G`.is.strongly.connecte |
| 3800 | 64 20 61 6e 64 20 61 70 65 72 69 6f 64 69 63 0a 20 20 20 20 20 20 20 20 2d 20 60 60 77 61 6c 6b | d.and.aperiodic.........-.``walk |
| 3820 | 5f 74 79 70 65 3d 22 6c 61 7a 79 22 60 60 20 69 66 20 60 47 60 20 69 73 20 73 74 72 6f 6e 67 6c | _type="lazy"``.if.`G`.is.strongl |
| 3840 | 79 20 63 6f 6e 6e 65 63 74 65 64 20 62 75 74 20 6e 6f 74 20 61 70 65 72 69 6f 64 69 63 0a 20 20 | y.connected.but.not.aperiodic... |
| 3860 | 20 20 20 20 20 20 2d 20 60 60 77 61 6c 6b 5f 74 79 70 65 3d 22 70 61 67 65 72 61 6e 6b 22 60 60 | ......-.``walk_type="pagerank"`` |
| 3880 | 20 66 6f 72 20 61 6c 6c 20 6f 74 68 65 72 20 63 61 73 65 73 2e 0a 0a 20 20 20 20 61 6c 70 68 61 | .for.all.other.cases.......alpha |
| 38a0 | 20 3a 20 72 65 61 6c 0a 20 20 20 20 20 20 20 28 31 20 2d 20 61 6c 70 68 61 29 20 69 73 20 74 68 | .:.real........(1.-.alpha).is.th |
| 38c0 | 65 20 74 65 6c 65 70 6f 72 74 61 74 69 6f 6e 20 70 72 6f 62 61 62 69 6c 69 74 79 20 75 73 65 64 | e.teleportation.probability.used |
| 38e0 | 20 77 69 74 68 20 70 61 67 65 72 61 6e 6b 0a 0a 20 20 20 20 52 65 74 75 72 6e 73 0a 20 20 20 20 | .with.pagerank......Returns..... |
| 3900 | 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 4c 20 3a 20 4e 75 6d 50 79 20 6d 61 74 72 69 78 0a 20 20 20 | -------.....L.:.NumPy.matrix.... |
| 3920 | 20 20 20 43 6f 6d 62 69 6e 61 74 6f 72 69 61 6c 20 4c 61 70 6c 61 63 69 61 6e 20 6f 66 20 47 2e | ...Combinatorial.Laplacian.of.G. |
| 3940 | 0a 0a 20 20 20 20 4e 6f 74 65 73 0a 20 20 20 20 2d 2d 2d 2d 2d 0a 20 20 20 20 4f 6e 6c 79 20 69 | ......Notes.....-----.....Only.i |
| 3960 | 6d 70 6c 65 6d 65 6e 74 65 64 20 66 6f 72 20 44 69 47 72 61 70 68 73 0a 0a 20 20 20 20 54 68 65 | mplemented.for.DiGraphs......The |
| 3980 | 20 72 65 73 75 6c 74 20 69 73 20 61 6c 77 61 79 73 20 61 20 73 79 6d 6d 65 74 72 69 63 20 6d 61 | .result.is.always.a.symmetric.ma |
| 39a0 | 74 72 69 78 2e 0a 0a 20 20 20 20 54 68 69 73 20 63 61 6c 63 75 6c 61 74 69 6f 6e 20 75 73 65 73 | trix.......This.calculation.uses |
| 39c0 | 20 74 68 65 20 6f 75 74 2d 64 65 67 72 65 65 20 6f 66 20 74 68 65 20 67 72 61 70 68 20 60 47 60 | .the.out-degree.of.the.graph.`G` |
| 39e0 | 2e 20 54 6f 20 75 73 65 20 74 68 65 0a 20 20 20 20 69 6e 2d 64 65 67 72 65 65 20 66 6f 72 20 63 | ..To.use.the.....in-degree.for.c |
| 3a00 | 61 6c 63 75 6c 61 74 69 6f 6e 73 20 69 6e 73 74 65 61 64 2c 20 75 73 65 20 60 47 2e 72 65 76 65 | alculations.instead,.use.`G.reve |
| 3a20 | 72 73 65 28 63 6f 70 79 3d 46 61 6c 73 65 29 60 20 61 6e 64 0a 20 20 20 20 74 61 6b 65 20 74 68 | rse(copy=False)`.and.....take.th |
| 3a40 | 65 20 74 72 61 6e 73 70 6f 73 65 2e 0a 0a 20 20 20 20 53 65 65 20 41 6c 73 6f 0a 20 20 20 20 2d | e.transpose.......See.Also.....- |
| 3a60 | 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 6c 61 70 6c 61 63 69 61 6e 5f 6d 61 74 72 69 78 0a 20 20 20 | -------.....laplacian_matrix.... |
| 3a80 | 20 6e 6f 72 6d 61 6c 69 7a 65 64 5f 6c 61 70 6c 61 63 69 61 6e 5f 6d 61 74 72 69 78 0a 20 20 20 | .normalized_laplacian_matrix.... |
| 3aa0 | 20 64 69 72 65 63 74 65 64 5f 6c 61 70 6c 61 63 69 61 6e 5f 6d 61 74 72 69 78 0a 0a 20 20 20 20 | .directed_laplacian_matrix...... |
| 3ac0 | 52 65 66 65 72 65 6e 63 65 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 2e 2e | References.....----------....... |
| 3ae0 | 20 5b 31 5d 20 46 61 6e 20 43 68 75 6e 67 20 28 32 30 30 35 29 2e 0a 20 20 20 20 20 20 20 4c 61 | .[1].Fan.Chung.(2005).........La |
| 3b00 | 70 6c 61 63 69 61 6e 73 20 61 6e 64 20 74 68 65 20 43 68 65 65 67 65 72 20 69 6e 65 71 75 61 6c | placians.and.the.Cheeger.inequal |
| 3b20 | 69 74 79 20 66 6f 72 20 64 69 72 65 63 74 65 64 20 67 72 61 70 68 73 2e 0a 20 20 20 20 20 20 20 | ity.for.directed.graphs......... |
| 3b40 | 41 6e 6e 61 6c 73 20 6f 66 20 43 6f 6d 62 69 6e 61 74 6f 72 69 63 73 2c 20 39 28 31 29 2c 20 32 | Annals.of.Combinatorics,.9(1),.2 |
| 3b60 | 30 30 35 0a 20 20 20 20 72 02 00 00 00 4e 72 35 00 00 00 72 0f 00 00 00 72 38 00 00 00 72 3a 00 | 005.....r....Nr5...r....r8...r:. |
| 3b80 | 00 00 29 0d 72 13 00 00 00 72 3b 00 00 00 72 17 00 00 00 72 18 00 00 00 72 3c 00 00 00 72 3d 00 | ..).r....r;...r....r....r<...r=. |
| 3ba0 | 00 00 72 3e 00 00 00 72 3f 00 00 00 72 40 00 00 00 72 1b 00 00 00 72 19 00 00 00 72 1a 00 00 00 | ..r>...r?...r@...r....r....r.... |
| 3bc0 | da 07 74 6f 61 72 72 61 79 29 0e 72 1c 00 00 00 72 0d 00 00 00 72 08 00 00 00 72 36 00 00 00 72 | ..toarray).r....r....r....r6...r |
| 3be0 | 37 00 00 00 72 1d 00 00 00 72 44 00 00 00 72 1f 00 00 00 72 20 00 00 00 72 45 00 00 00 72 46 00 | 7...r....rD...r....r....rE...rF. |
| 3c00 | 00 00 72 47 00 00 00 72 48 00 00 00 da 03 50 68 69 73 0e 00 00 00 20 20 20 20 20 20 20 20 20 20 | ..rG...rH.....Phis.............. |
| 3c20 | 20 20 20 20 72 22 00 00 00 72 07 00 00 00 72 07 00 00 00 61 01 00 00 73 c8 00 00 00 80 00 f3 4e | ....r"...r....r....a...s.......N |
| 3c40 | 02 00 05 17 e4 08 1a d8 08 09 90 48 a0 56 b0 79 c8 05 f4 03 02 09 06 80 41 f0 08 00 0c 0d 8f 37 | ...........H.V.y........A......7 |
| 3c60 | 89 37 81 44 80 41 80 71 e0 13 15 97 39 91 39 d7 13 23 d1 13 23 d7 13 28 d1 13 28 a8 11 af 13 a9 | .7.D.A.q....9.9..#..#..(..(..... |
| 3c80 | 13 b0 01 d0 13 28 d3 13 32 81 4c 80 45 88 35 d8 08 0d 8f 0d 89 0d 8b 0f d7 08 1c d1 08 1c 80 41 | .....(..2.L.E.5................A |
| 3ca0 | d8 08 09 88 41 8f 45 89 45 8b 47 89 0b 80 41 f0 06 00 0b 0d 8f 29 89 29 d7 0a 1d d1 0a 1d 98 62 | ....A.E.E.G...A......).).......b |
| 3cc0 | 9f 69 99 69 d7 1e 2f d1 1e 2f b0 01 b0 31 b0 61 b8 11 d3 1e 3b d3 0a 3c d7 0a 44 d1 0a 44 d3 0a | .i.i../../...1.a....;..<..D..D.. |
| 3ce0 | 46 80 43 e0 0b 0e 90 23 98 01 91 27 98 41 9f 43 99 43 a0 23 99 49 d1 12 25 a8 13 d1 11 2c d1 0b | F.C....#...'.A.C.C.#.I..%....,.. |
| 3d00 | 2c d0 04 2c 72 23 00 00 00 63 05 00 00 00 00 00 00 00 00 00 00 00 08 00 00 00 03 00 00 00 f3 5e | ,..,r#...c.....................^ |
| 3d20 | 03 00 00 97 00 64 01 64 02 6c 00 7d 05 64 01 64 02 6c 01 7d 06 7c 03 80 32 74 05 00 00 00 00 00 | .....d.d.l.}.d.d.l.}.|..2t...... |
| 3d40 | 00 00 00 6a 06 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 7c 00 ab 01 00 00 00 00 00 | ...j...................|........ |
| 3d60 | 00 72 1b 74 05 00 00 00 00 00 00 00 00 6a 08 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 | .r.t.........j.................. |
| 3d80 | 00 7c 00 ab 01 00 00 00 00 00 00 72 03 64 03 7d 03 6e 05 64 04 7d 03 6e 02 64 05 7d 03 74 05 00 | .|.........r.d.}.n.d.}.n.d.}.t.. |
| 3da0 | 00 00 00 00 00 00 00 6a 0a 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 7c 00 7c 01 7c | .......j...................|.|.| |
| 3dc0 | 02 74 0c 00 00 00 00 00 00 00 00 ac 06 ab 04 00 00 00 00 00 00 7d 07 7c 07 6a 0e 00 00 00 00 00 | .t...................}.|.j...... |
| 3de0 | 00 00 00 00 00 00 00 00 00 00 00 00 00 5c 02 00 00 7d 08 7d 09 7c 03 64 07 76 00 72 97 7c 06 6a | .............\...}.}.|.d.v.r.|.j |
| 3e00 | 10 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 6a 13 00 00 00 00 00 00 00 00 00 00 00 | ...................j............ |
| 3e20 | 00 00 00 00 00 00 00 7c 06 6a 10 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 6a 15 00 | .......|.j...................j.. |
| 3e40 | 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 64 08 7c 07 6a 17 00 00 00 00 00 00 00 00 00 | .................d.|.j.......... |
| 3e60 | 00 00 00 00 00 00 00 00 00 64 09 ac 0a ab 01 00 00 00 00 00 00 7a 0b 00 00 64 01 7c 08 7c 08 ab | .........d...........z...d.|.|.. |
| 3e80 | 04 00 00 00 00 00 00 ab 01 00 00 00 00 00 00 7d 0a 7c 03 64 03 6b 28 00 00 72 07 7c 0a 7c 07 7a | ...............}.|.d.k(..r.|.|.z |
| 3ea0 | 04 00 00 7d 0b 7c 0b 53 00 7c 06 6a 10 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 6a | ...}.|.S.|.j...................j |
| 3ec0 | 13 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 7c 06 6a 10 00 00 00 00 00 00 00 00 00 | ...................|.j.......... |
| 3ee0 | 00 00 00 00 00 00 00 00 00 6a 19 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 7c 08 ab | .........j...................|.. |
| 3f00 | 01 00 00 00 00 00 00 ab 01 00 00 00 00 00 00 7d 0c 7c 0c 7c 0a 7c 07 7a 04 00 00 7a 00 00 00 64 | ...............}.|.|.|.z...z...d |
| 3f20 | 0b 7a 0b 00 00 7d 0b 7c 0b 53 00 7c 03 64 05 6b 28 00 00 72 91 64 01 7c 04 63 02 78 02 6b 02 00 | .z...}.|.S.|.d.k(..r.d.|.c.x.k.. |
| 3f40 | 00 72 05 64 09 6b 02 00 00 73 17 6e 01 01 00 74 05 00 00 00 00 00 00 00 00 6a 1a 00 00 00 00 00 | .r.d.k...s.n...t.........j...... |
| 3f60 | 00 00 00 00 00 00 00 00 00 00 00 00 00 64 0c ab 01 00 00 00 00 00 00 82 01 7c 07 6a 1d 00 00 00 | .............d...........|.j.... |
| 3f80 | 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ab 00 00 00 00 00 00 00 7d 07 64 09 7c 08 7a 0b 00 | .......................}.d.|.z.. |
| 3fa0 | 00 7c 07 7c 07 6a 17 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 64 09 ac 0a ab 01 00 | .|.|.j...................d...... |
| 3fc0 | 00 00 00 00 00 64 01 6b 28 00 00 64 02 64 02 85 02 66 02 3c 00 00 00 7c 07 7c 07 6a 17 00 00 00 | .....d.k(..d.d...f.<...|.|.j.... |
| 3fe0 | 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 64 09 ac 0a ab 01 00 00 00 00 00 00 7c 05 6a 1e 00 | ...............d...........|.j.. |
| 4000 | 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 64 02 64 02 85 02 66 02 19 00 00 00 6a 20 00 | .................d.d...f.....j.. |
| 4020 | 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 7a 0b 00 00 7d 07 7c 04 7c 07 7a 05 00 00 64 | .................z...}.|.|.z...d |
| 4040 | 09 7c 04 7a 0a 00 00 7c 08 7a 0b 00 00 7a 00 00 00 7d 0b 7c 0b 53 00 74 05 00 00 00 00 00 00 00 | .|.z...|.z...z...}.|.S.t........ |
| 4060 | 00 6a 1a 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 64 0d ab 01 00 00 00 00 00 00 82 | .j...................d.......... |
| 4080 | 01 29 0e 61 a6 05 00 00 52 65 74 75 72 6e 73 20 74 68 65 20 74 72 61 6e 73 69 74 69 6f 6e 20 6d | .).a....Returns.the.transition.m |
| 40a0 | 61 74 72 69 78 20 6f 66 20 47 2e 0a 0a 20 20 20 20 54 68 69 73 20 69 73 20 61 20 72 6f 77 20 73 | atrix.of.G.......This.is.a.row.s |
| 40c0 | 74 6f 63 68 61 73 74 69 63 20 67 69 76 69 6e 67 20 74 68 65 20 74 72 61 6e 73 69 74 69 6f 6e 20 | tochastic.giving.the.transition. |
| 40e0 | 70 72 6f 62 61 62 69 6c 69 74 69 65 73 20 77 68 69 6c 65 0a 20 20 20 20 70 65 72 66 6f 72 6d 69 | probabilities.while.....performi |
| 4100 | 6e 67 20 61 20 72 61 6e 64 6f 6d 20 77 61 6c 6b 20 6f 6e 20 74 68 65 20 67 72 61 70 68 2e 20 44 | ng.a.random.walk.on.the.graph..D |
| 4120 | 65 70 65 6e 64 69 6e 67 20 6f 6e 20 74 68 65 20 76 61 6c 75 65 20 6f 66 20 77 61 6c 6b 5f 74 79 | epending.on.the.value.of.walk_ty |
| 4140 | 70 65 2c 0a 20 20 20 20 50 20 63 61 6e 20 62 65 20 74 68 65 20 74 72 61 6e 73 69 74 69 6f 6e 20 | pe,.....P.can.be.the.transition. |
| 4160 | 6d 61 74 72 69 78 20 69 6e 64 75 63 65 64 20 62 79 20 61 20 72 61 6e 64 6f 6d 20 77 61 6c 6b 2c | matrix.induced.by.a.random.walk, |
| 4180 | 20 61 20 6c 61 7a 79 20 72 61 6e 64 6f 6d 20 77 61 6c 6b 2c 0a 20 20 20 20 6f 72 20 61 20 72 61 | .a.lazy.random.walk,.....or.a.ra |
| 41a0 | 6e 64 6f 6d 20 77 61 6c 6b 20 77 69 74 68 20 74 65 6c 65 70 6f 72 74 61 74 69 6f 6e 20 28 50 61 | ndom.walk.with.teleportation.(Pa |
| 41c0 | 67 65 52 61 6e 6b 29 2e 0a 0a 20 20 20 20 50 61 72 61 6d 65 74 65 72 73 0a 20 20 20 20 2d 2d 2d | geRank).......Parameters.....--- |
| 41e0 | 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 47 20 3a 20 44 69 47 72 61 70 68 0a 20 20 20 20 20 20 20 41 | -------.....G.:.DiGraph........A |
| 4200 | 20 4e 65 74 77 6f 72 6b 58 20 67 72 61 70 68 0a 0a 20 20 20 20 6e 6f 64 65 6c 69 73 74 20 3a 20 | .NetworkX.graph......nodelist.:. |
| 4220 | 6c 69 73 74 2c 20 6f 70 74 69 6f 6e 61 6c 0a 20 20 20 20 20 20 20 54 68 65 20 72 6f 77 73 20 61 | list,.optional........The.rows.a |
| 4240 | 6e 64 20 63 6f 6c 75 6d 6e 73 20 61 72 65 20 6f 72 64 65 72 65 64 20 61 63 63 6f 72 64 69 6e 67 | nd.columns.are.ordered.according |
| 4260 | 20 74 6f 20 74 68 65 20 6e 6f 64 65 73 20 69 6e 20 6e 6f 64 65 6c 69 73 74 2e 0a 20 20 20 20 20 | .to.the.nodes.in.nodelist....... |
| 4280 | 20 20 49 66 20 6e 6f 64 65 6c 69 73 74 20 69 73 20 4e 6f 6e 65 2c 20 74 68 65 6e 20 74 68 65 20 | ..If.nodelist.is.None,.then.the. |
| 42a0 | 6f 72 64 65 72 69 6e 67 20 69 73 20 70 72 6f 64 75 63 65 64 20 62 79 20 47 2e 6e 6f 64 65 73 28 | ordering.is.produced.by.G.nodes( |
| 42c0 | 29 2e 0a 0a 20 20 20 20 77 65 69 67 68 74 20 3a 20 73 74 72 69 6e 67 20 6f 72 20 4e 6f 6e 65 2c | ).......weight.:.string.or.None, |
| 42e0 | 20 6f 70 74 69 6f 6e 61 6c 20 28 64 65 66 61 75 6c 74 3d 27 77 65 69 67 68 74 27 29 0a 20 20 20 | .optional.(default='weight').... |
| 4300 | 20 20 20 20 54 68 65 20 65 64 67 65 20 64 61 74 61 20 6b 65 79 20 75 73 65 64 20 74 6f 20 63 6f | ....The.edge.data.key.used.to.co |
| 4320 | 6d 70 75 74 65 20 65 61 63 68 20 76 61 6c 75 65 20 69 6e 20 74 68 65 20 6d 61 74 72 69 78 2e 0a | mpute.each.value.in.the.matrix.. |
| 4340 | 20 20 20 20 20 20 20 49 66 20 4e 6f 6e 65 2c 20 74 68 65 6e 20 65 61 63 68 20 65 64 67 65 20 68 | .......If.None,.then.each.edge.h |
| 4360 | 61 73 20 77 65 69 67 68 74 20 31 2e 0a 0a 20 20 20 20 77 61 6c 6b 5f 74 79 70 65 20 3a 20 73 74 | as.weight.1.......walk_type.:.st |
| 4380 | 72 69 6e 67 20 6f 72 20 4e 6f 6e 65 2c 20 6f 70 74 69 6f 6e 61 6c 20 28 64 65 66 61 75 6c 74 3d | ring.or.None,.optional.(default= |
| 43a0 | 4e 6f 6e 65 29 0a 20 20 20 20 20 20 20 4f 6e 65 20 6f 66 20 60 60 22 72 61 6e 64 6f 6d 22 60 60 | None)........One.of.``"random"`` |
| 43c0 | 2c 20 60 60 22 6c 61 7a 79 22 60 60 2c 20 6f 72 20 60 60 22 70 61 67 65 72 61 6e 6b 22 60 60 2e | ,.``"lazy"``,.or.``"pagerank"``. |
| 43e0 | 20 49 66 20 60 60 77 61 6c 6b 5f 74 79 70 65 3d 4e 6f 6e 65 60 60 0a 20 20 20 20 20 20 20 28 74 | .If.``walk_type=None``........(t |
| 4400 | 68 65 20 64 65 66 61 75 6c 74 29 2c 20 74 68 65 6e 20 61 20 76 61 6c 75 65 20 69 73 20 73 65 6c | he.default),.then.a.value.is.sel |
| 4420 | 65 63 74 65 64 20 61 63 63 6f 72 64 69 6e 67 20 74 6f 20 74 68 65 20 70 72 6f 70 65 72 74 69 65 | ected.according.to.the.propertie |
| 4440 | 73 20 6f 66 20 60 47 60 3a 0a 20 20 20 20 20 20 20 20 2d 20 60 60 77 61 6c 6b 5f 74 79 70 65 3d | s.of.`G`:.........-.``walk_type= |
| 4460 | 22 72 61 6e 64 6f 6d 22 60 60 20 69 66 20 60 47 60 20 69 73 20 73 74 72 6f 6e 67 6c 79 20 63 6f | "random"``.if.`G`.is.strongly.co |
| 4480 | 6e 6e 65 63 74 65 64 20 61 6e 64 20 61 70 65 72 69 6f 64 69 63 0a 20 20 20 20 20 20 20 20 2d 20 | nnected.and.aperiodic.........-. |
| 44a0 | 60 60 77 61 6c 6b 5f 74 79 70 65 3d 22 6c 61 7a 79 22 60 60 20 69 66 20 60 47 60 20 69 73 20 73 | ``walk_type="lazy"``.if.`G`.is.s |
| 44c0 | 74 72 6f 6e 67 6c 79 20 63 6f 6e 6e 65 63 74 65 64 20 62 75 74 20 6e 6f 74 20 61 70 65 72 69 6f | trongly.connected.but.not.aperio |
| 44e0 | 64 69 63 0a 20 20 20 20 20 20 20 20 2d 20 60 60 77 61 6c 6b 5f 74 79 70 65 3d 22 70 61 67 65 72 | dic.........-.``walk_type="pager |
| 4500 | 61 6e 6b 22 60 60 20 66 6f 72 20 61 6c 6c 20 6f 74 68 65 72 20 63 61 73 65 73 2e 0a 0a 20 20 20 | ank"``.for.all.other.cases...... |
| 4520 | 20 61 6c 70 68 61 20 3a 20 72 65 61 6c 0a 20 20 20 20 20 20 20 28 31 20 2d 20 61 6c 70 68 61 29 | .alpha.:.real........(1.-.alpha) |
| 4540 | 20 69 73 20 74 68 65 20 74 65 6c 65 70 6f 72 74 61 74 69 6f 6e 20 70 72 6f 62 61 62 69 6c 69 74 | .is.the.teleportation.probabilit |
| 4560 | 79 20 75 73 65 64 20 77 69 74 68 20 70 61 67 65 72 61 6e 6b 0a 0a 20 20 20 20 52 65 74 75 72 6e | y.used.with.pagerank......Return |
| 4580 | 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 50 20 3a 20 6e 75 6d 70 79 2e 6e 64 61 72 | s.....-------.....P.:.numpy.ndar |
| 45a0 | 72 61 79 0a 20 20 20 20 20 20 74 72 61 6e 73 69 74 69 6f 6e 20 6d 61 74 72 69 78 20 6f 66 20 47 | ray.......transition.matrix.of.G |
| 45c0 | 2e 0a 0a 20 20 20 20 52 61 69 73 65 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 4e 65 74 | .......Raises.....------.....Net |
| 45e0 | 77 6f 72 6b 58 45 72 72 6f 72 0a 20 20 20 20 20 20 20 20 49 66 20 77 61 6c 6b 5f 74 79 70 65 20 | workXError.........If.walk_type. |
| 4600 | 6e 6f 74 20 73 70 65 63 69 66 69 65 64 20 6f 72 20 61 6c 70 68 61 20 6e 6f 74 20 69 6e 20 76 61 | not.specified.or.alpha.not.in.va |
| 4620 | 6c 69 64 20 72 61 6e 67 65 0a 20 20 20 20 72 02 00 00 00 4e da 06 72 61 6e 64 6f 6d da 04 6c 61 | lid.range.....r....N..random..la |
| 4640 | 7a 79 da 08 70 61 67 65 72 61 6e 6b 29 03 72 0d 00 00 00 72 08 00 00 00 da 05 64 74 79 70 65 29 | zy..pagerank).r....r......dtype) |
| 4660 | 02 72 50 00 00 00 72 51 00 00 00 72 27 00 00 00 72 0f 00 00 00 72 10 00 00 00 72 3a 00 00 00 7a | .rP...rQ...r'...r....r....r:...z |
| 4680 | 1d 61 6c 70 68 61 20 6d 75 73 74 20 62 65 20 62 65 74 77 65 65 6e 20 30 20 61 6e 64 20 31 7a 2b | .alpha.must.be.between.0.and.1z+ |
| 46a0 | 77 61 6c 6b 5f 74 79 70 65 20 6d 75 73 74 20 62 65 20 72 61 6e 64 6f 6d 2c 20 6c 61 7a 79 2c 20 | walk_type.must.be.random,.lazy,. |
| 46c0 | 6f 72 20 70 61 67 65 72 61 6e 6b 29 11 72 28 00 00 00 72 13 00 00 00 72 15 00 00 00 da 15 69 73 | or.pagerank).r(...r....r......is |
| 46e0 | 5f 73 74 72 6f 6e 67 6c 79 5f 63 6f 6e 6e 65 63 74 65 64 da 0c 69 73 5f 61 70 65 72 69 6f 64 69 | _strongly_connected..is_aperiodi |
| 4700 | 63 72 16 00 00 00 da 05 66 6c 6f 61 74 72 17 00 00 00 72 18 00 00 00 72 19 00 00 00 72 1a 00 00 | cr......floatr....r....r....r... |
| 4720 | 00 72 1b 00 00 00 72 42 00 00 00 da 0d 4e 65 74 77 6f 72 6b 58 45 72 72 6f 72 72 4d 00 00 00 da | .r....rB.....NetworkXErrorrM.... |
| 4740 | 07 6e 65 77 61 78 69 73 72 3e 00 00 00 29 0d 72 1c 00 00 00 72 0d 00 00 00 72 08 00 00 00 72 36 | .newaxisr>...).r....r....r....r6 |
| 4760 | 00 00 00 72 37 00 00 00 72 2c 00 00 00 72 1d 00 00 00 72 1e 00 00 00 72 1f 00 00 00 72 20 00 00 | ...r7...r,...r....r....r....r... |
| 4780 | 00 da 02 44 49 72 44 00 00 00 72 4b 00 00 00 73 0d 00 00 00 20 20 20 20 20 20 20 20 20 20 20 20 | ...DIrD...rK...s................ |
| 47a0 | 20 72 22 00 00 00 72 3b 00 00 00 72 3b 00 00 00 ba 01 00 00 73 a0 01 00 00 80 00 f3 52 01 00 05 | .r"...r;...r;.......s.......R... |
| 47c0 | 17 db 04 16 e0 07 10 d0 07 18 dc 0b 0d d7 0b 23 d1 0b 23 a0 41 d4 0b 26 dc 0f 11 8f 7f 89 7f 98 | ...............#..#.A..&........ |
| 47e0 | 71 d4 0f 21 d8 1c 24 91 09 e0 1c 22 91 09 e0 18 22 88 49 e4 08 0a d7 08 20 d1 08 20 a0 11 a8 58 | q..!..$...."....".I............X |
| 4800 | b8 66 cc 45 d4 08 52 80 41 d8 0b 0c 8f 37 89 37 81 44 80 41 80 71 d8 07 10 d0 14 26 d1 07 26 e0 | .f.E..R.A....7.7.D.A.q.....&..&. |
| 4820 | 0d 0f 8f 59 89 59 d7 0d 20 d1 0d 20 a0 12 a7 19 a1 19 d7 21 32 d1 21 32 b0 33 b8 11 bf 15 b9 15 | ...Y.Y.............!2.!2.3...... |
| 4840 | c0 41 b8 15 bb 1d d1 33 46 c8 01 c8 31 c8 61 d3 21 50 d3 0d 51 88 02 d8 0b 14 98 08 d2 0b 20 d8 | .A.....3F...1.a.!P..Q........... |
| 4860 | 10 12 90 51 91 06 88 41 f0 26 00 0c 0d 80 48 f0 21 00 11 13 97 09 91 09 d7 10 23 d1 10 23 a0 42 | ...Q...A.&....H.!.........#..#.B |
| 4880 | a7 49 a1 49 d7 24 36 d1 24 36 b0 71 d3 24 39 d3 10 3a 88 41 d8 11 12 90 52 98 21 91 56 91 1a 98 | .I.I.$6.$6.q.$9..:.A....R.!.V... |
| 48a0 | 73 d1 10 22 88 41 f0 1e 00 0c 0d 80 48 f0 1b 00 0a 13 90 6a d2 09 20 d8 10 11 90 45 94 0d 98 41 | s..".A......H......j.......E...A |
| 48c0 | 94 0d dc 12 14 d7 12 22 d1 12 22 d0 23 42 d3 12 43 d0 0c 43 e0 0c 0d 8f 49 89 49 8b 4b 88 01 e0 | ......."..".#B..C..C....I.I.K... |
| 48e0 | 23 24 a0 71 a1 35 88 01 88 21 8f 25 89 25 90 51 88 25 8b 2d 98 31 d1 0a 1c 9a 61 d0 0a 1f d1 08 | #$.q.5...!.%.%.Q.%.-.1....a..... |
| 4900 | 20 e0 0c 0d 90 01 97 05 91 05 98 31 90 05 93 0d 98 62 9f 6a 99 6a aa 21 98 6d d1 10 2c d7 10 2e | ...........1.....b.j.j.!.m..,... |
| 4920 | d1 10 2e d1 0c 2e 88 01 d8 0c 11 90 41 89 49 98 11 98 55 99 19 a0 61 99 0f d1 0c 27 88 01 f0 08 | ............A.I...U...a....'.... |
| 4940 | 00 0c 0d 80 48 f4 05 00 0f 11 d7 0e 1e d1 0e 1e d0 1f 4c d3 0e 4d d0 08 4d 72 23 00 00 00 29 02 | ....H.............L..M..Mr#...). |
| 4960 | 4e 72 08 00 00 00 29 04 4e 72 08 00 00 00 4e 67 66 66 66 66 66 66 ee 3f 29 0c da 07 5f 5f 64 6f | Nr....).Nr....Ngffffff.?)...__do |
| 4980 | 63 5f 5f da 08 6e 65 74 77 6f 72 6b 78 72 15 00 00 00 da 0e 6e 65 74 77 6f 72 6b 78 2e 75 74 69 | c__..networkxr......networkx.uti |
| 49a0 | 6c 73 72 03 00 00 00 da 07 5f 5f 61 6c 6c 5f 5f da 0d 5f 64 69 73 70 61 74 63 68 61 62 6c 65 72 | lsr......__all__.._dispatchabler |
| 49c0 | 04 00 00 00 72 05 00 00 00 72 06 00 00 00 72 07 00 00 00 72 3b 00 00 00 a9 00 72 23 00 00 00 72 | ....r....r....r....r;.....r#...r |
| 49e0 | 22 00 00 00 fa 08 3c 6d 6f 64 75 6c 65 3e 72 60 00 00 00 01 00 00 00 73 e9 00 00 00 f0 03 01 01 | ".....<module>r`.......s........ |
| 4a00 | 01 f1 02 08 01 04 f3 14 00 01 16 dd 00 2e f2 04 05 0b 02 80 07 f0 10 00 02 12 80 12 d7 01 11 d1 | ................................ |
| 4a20 | 01 11 98 58 d4 01 26 f2 02 6b 01 01 11 f3 03 00 02 27 f0 02 6b 01 01 11 f0 5c 03 00 02 12 80 12 | ...X..&..k.......'..k....\...... |
| 4a40 | d7 01 11 d1 01 11 98 58 d4 01 26 f2 02 70 01 01 19 f3 03 00 02 27 f0 02 70 01 01 19 f1 6e 03 00 | .......X..&..p.......'..p....n.. |
| 4a60 | 02 15 90 5c d3 01 22 d9 01 14 90 5c d3 01 22 d8 01 11 80 12 d7 01 11 d1 01 11 98 58 d4 01 26 e0 | ...\.."....\.."............X..&. |
| 4a80 | 3d 41 f2 03 5e 01 01 1f f3 03 00 02 27 f3 03 00 02 23 f3 03 00 02 23 f0 06 5e 01 01 1f f1 42 03 | =A..^.......'....#....#..^....B. |
| 4aa0 | 00 02 15 90 5c d3 01 22 d9 01 14 90 5c d3 01 22 d8 01 11 80 12 d7 01 11 d1 01 11 98 58 d4 01 26 | ....\.."....\.."............X..& |
| 4ac0 | e0 3d 41 f2 03 53 01 01 2d f3 03 00 02 27 f3 03 00 02 23 f3 03 00 02 23 f0 06 53 01 01 2d f4 6c | .=A..S..-....'....#....#..S..-.l |
| 4ae0 | 02 4e 01 01 0d 72 23 00 00 00 | .N...r#... |