| ofs | hex dump | ascii |
|---|
| 0000 | cb 0d 0d 0a 00 00 00 00 85 fa a7 68 77 10 00 00 e3 00 00 00 00 00 00 00 00 00 00 00 00 03 00 00 | ...........hw................... |
| 0020 | 00 00 00 00 00 f3 fe 00 00 00 97 00 64 00 5a 00 64 01 64 02 6c 01 5a 02 67 00 64 03 a2 01 5a 03 | ............d.Z.d.d.l.Z.g.d...Z. |
| 0040 | 02 00 65 02 6a 08 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 64 04 ac 05 ab 01 00 00 | ..e.j...................d....... |
| 0060 | 00 00 00 00 64 0b 64 06 84 01 ab 00 00 00 00 00 00 00 5a 05 02 00 65 02 6a 08 00 00 00 00 00 00 | ....d.d...........Z...e.j....... |
| 0080 | 00 00 00 00 00 00 00 00 00 00 00 00 64 04 ac 05 ab 01 00 00 00 00 00 00 64 0b 64 07 84 01 ab 00 | ............d...........d.d..... |
| 00a0 | 00 00 00 00 00 00 5a 06 02 00 65 02 6a 08 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 | ......Z...e.j................... |
| 00c0 | 64 04 ac 05 ab 01 00 00 00 00 00 00 64 0b 64 08 84 01 ab 00 00 00 00 00 00 00 5a 07 65 02 6a 08 | d...........d.d...........Z.e.j. |
| 00e0 | 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 64 09 84 00 ab 00 00 00 00 00 00 00 5a 08 | ..................d...........Z. |
| 0100 | 65 02 6a 08 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 64 0c 64 0a 84 01 ab 00 00 00 | e.j...................d.d....... |
| 0120 | 00 00 00 00 5a 09 79 02 29 0d 7a 20 0a 45 69 67 65 6e 76 61 6c 75 65 20 73 70 65 63 74 72 75 6d | ....Z.y.).z..Eigenvalue.spectrum |
| 0140 | 20 6f 66 20 67 72 61 70 68 73 2e 0a e9 00 00 00 00 4e 29 05 da 12 6c 61 70 6c 61 63 69 61 6e 5f | .of.graphs.......N)...laplacian_ |
| 0160 | 73 70 65 63 74 72 75 6d da 12 61 64 6a 61 63 65 6e 63 79 5f 73 70 65 63 74 72 75 6d da 13 6d 6f | spectrum..adjacency_spectrum..mo |
| 0180 | 64 75 6c 61 72 69 74 79 5f 73 70 65 63 74 72 75 6d da 1d 6e 6f 72 6d 61 6c 69 7a 65 64 5f 6c 61 | dularity_spectrum..normalized_la |
| 01a0 | 70 6c 61 63 69 61 6e 5f 73 70 65 63 74 72 75 6d da 16 62 65 74 68 65 5f 68 65 73 73 69 61 6e 5f | placian_spectrum..bethe_hessian_ |
| 01c0 | 73 70 65 63 74 72 75 6d da 06 77 65 69 67 68 74 29 01 da 0a 65 64 67 65 5f 61 74 74 72 73 63 02 | spectrum..weight)...edge_attrsc. |
| 01e0 | 00 00 00 00 00 00 00 00 00 00 00 06 00 00 00 03 00 00 00 f3 86 00 00 00 97 00 64 01 64 02 6c 00 | ..........................d.d.l. |
| 0200 | 7d 02 7c 02 6a 02 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 6a 05 00 00 00 00 00 00 | }.|.j...................j....... |
| 0220 | 00 00 00 00 00 00 00 00 00 00 00 00 74 07 00 00 00 00 00 00 00 00 6a 08 00 00 00 00 00 00 00 00 | ............t.........j......... |
| 0240 | 00 00 00 00 00 00 00 00 00 00 7c 00 7c 01 ac 03 ab 02 00 00 00 00 00 00 6a 0b 00 00 00 00 00 00 | ..........|.|...........j....... |
| 0260 | 00 00 00 00 00 00 00 00 00 00 00 00 ab 00 00 00 00 00 00 00 ab 01 00 00 00 00 00 00 53 00 29 04 | ............................S.). |
| 0280 | 61 a8 03 00 00 52 65 74 75 72 6e 73 20 65 69 67 65 6e 76 61 6c 75 65 73 20 6f 66 20 74 68 65 20 | a....Returns.eigenvalues.of.the. |
| 02a0 | 4c 61 70 6c 61 63 69 61 6e 20 6f 66 20 47 0a 0a 20 20 20 20 50 61 72 61 6d 65 74 65 72 73 0a 20 | Laplacian.of.G......Parameters.. |
| 02c0 | 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 47 20 3a 20 67 72 61 70 68 0a 20 20 20 20 | ...----------.....G.:.graph..... |
| 02e0 | 20 20 20 41 20 4e 65 74 77 6f 72 6b 58 20 67 72 61 70 68 0a 0a 20 20 20 20 77 65 69 67 68 74 20 | ...A.NetworkX.graph......weight. |
| 0300 | 3a 20 73 74 72 69 6e 67 20 6f 72 20 4e 6f 6e 65 2c 20 6f 70 74 69 6f 6e 61 6c 20 28 64 65 66 61 | :.string.or.None,.optional.(defa |
| 0320 | 75 6c 74 3d 27 77 65 69 67 68 74 27 29 0a 20 20 20 20 20 20 20 54 68 65 20 65 64 67 65 20 64 61 | ult='weight')........The.edge.da |
| 0340 | 74 61 20 6b 65 79 20 75 73 65 64 20 74 6f 20 63 6f 6d 70 75 74 65 20 65 61 63 68 20 76 61 6c 75 | ta.key.used.to.compute.each.valu |
| 0360 | 65 20 69 6e 20 74 68 65 20 6d 61 74 72 69 78 2e 0a 20 20 20 20 20 20 20 49 66 20 4e 6f 6e 65 2c | e.in.the.matrix.........If.None, |
| 0380 | 20 74 68 65 6e 20 65 61 63 68 20 65 64 67 65 20 68 61 73 20 77 65 69 67 68 74 20 31 2e 0a 0a 20 | .then.each.edge.has.weight.1.... |
| 03a0 | 20 20 20 52 65 74 75 72 6e 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 65 76 61 6c 73 | ...Returns.....-------.....evals |
| 03c0 | 20 3a 20 4e 75 6d 50 79 20 61 72 72 61 79 0a 20 20 20 20 20 20 45 69 67 65 6e 76 61 6c 75 65 73 | .:.NumPy.array.......Eigenvalues |
| 03e0 | 0a 0a 20 20 20 20 4e 6f 74 65 73 0a 20 20 20 20 2d 2d 2d 2d 2d 0a 20 20 20 20 46 6f 72 20 4d 75 | ......Notes.....-----.....For.Mu |
| 0400 | 6c 74 69 47 72 61 70 68 2f 4d 75 6c 74 69 44 69 47 72 61 70 68 2c 20 74 68 65 20 65 64 67 65 73 | ltiGraph/MultiDiGraph,.the.edges |
| 0420 | 20 77 65 69 67 68 74 73 20 61 72 65 20 73 75 6d 6d 65 64 2e 0a 20 20 20 20 53 65 65 20 3a 66 75 | .weights.are.summed......See.:fu |
| 0440 | 6e 63 3a 60 7e 6e 65 74 77 6f 72 6b 78 2e 63 6f 6e 76 65 72 74 5f 6d 61 74 72 69 78 2e 74 6f 5f | nc:`~networkx.convert_matrix.to_ |
| 0460 | 6e 75 6d 70 79 5f 61 72 72 61 79 60 20 66 6f 72 20 6f 74 68 65 72 20 6f 70 74 69 6f 6e 73 2e 0a | numpy_array`.for.other.options.. |
| 0480 | 0a 20 20 20 20 53 65 65 20 41 6c 73 6f 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 6c | .....See.Also.....--------.....l |
| 04a0 | 61 70 6c 61 63 69 61 6e 5f 6d 61 74 72 69 78 0a 0a 20 20 20 20 45 78 61 6d 70 6c 65 73 0a 20 20 | aplacian_matrix......Examples... |
| 04c0 | 20 20 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 54 68 65 20 6d 75 6c 74 69 70 6c 69 63 69 74 79 20 | ..--------.....The.multiplicity. |
| 04e0 | 6f 66 20 30 20 61 73 20 61 6e 20 65 69 67 65 6e 76 61 6c 75 65 20 6f 66 20 74 68 65 20 6c 61 70 | of.0.as.an.eigenvalue.of.the.lap |
| 0500 | 6c 61 63 69 61 6e 20 6d 61 74 72 69 78 20 69 73 20 65 71 75 61 6c 0a 20 20 20 20 74 6f 20 74 68 | lacian.matrix.is.equal.....to.th |
| 0520 | 65 20 6e 75 6d 62 65 72 20 6f 66 20 63 6f 6e 6e 65 63 74 65 64 20 63 6f 6d 70 6f 6e 65 6e 74 73 | e.number.of.connected.components |
| 0540 | 20 6f 66 20 47 2e 0a 0a 20 20 20 20 3e 3e 3e 20 47 20 3d 20 6e 78 2e 47 72 61 70 68 28 29 20 20 | .of.G.......>>>.G.=.nx.Graph().. |
| 0560 | 23 20 43 72 65 61 74 65 20 61 20 67 72 61 70 68 20 77 69 74 68 20 35 20 6e 6f 64 65 73 20 61 6e | #.Create.a.graph.with.5.nodes.an |
| 0580 | 64 20 33 20 63 6f 6e 6e 65 63 74 65 64 20 63 6f 6d 70 6f 6e 65 6e 74 73 0a 20 20 20 20 3e 3e 3e | d.3.connected.components.....>>> |
| 05a0 | 20 47 2e 61 64 64 5f 6e 6f 64 65 73 5f 66 72 6f 6d 28 72 61 6e 67 65 28 35 29 29 0a 20 20 20 20 | .G.add_nodes_from(range(5))..... |
| 05c0 | 3e 3e 3e 20 47 2e 61 64 64 5f 65 64 67 65 73 5f 66 72 6f 6d 28 5b 28 30 2c 20 32 29 2c 20 28 33 | >>>.G.add_edges_from([(0,.2),.(3 |
| 05e0 | 2c 20 34 29 5d 29 0a 20 20 20 20 3e 3e 3e 20 6e 78 2e 6c 61 70 6c 61 63 69 61 6e 5f 73 70 65 63 | ,.4)]).....>>>.nx.laplacian_spec |
| 0600 | 74 72 75 6d 28 47 29 0a 20 20 20 20 61 72 72 61 79 28 5b 30 2e 2c 20 30 2e 2c 20 30 2e 2c 20 32 | trum(G).....array([0.,.0.,.0.,.2 |
| 0620 | 2e 2c 20 32 2e 5d 29 0a 0a 20 20 20 20 72 02 00 00 00 4e a9 01 72 08 00 00 00 29 06 da 05 73 63 | .,.2.])......r....N..r....)...sc |
| 0640 | 69 70 79 da 06 6c 69 6e 61 6c 67 da 08 65 69 67 76 61 6c 73 68 da 02 6e 78 da 10 6c 61 70 6c 61 | ipy..linalg..eigvalsh..nx..lapla |
| 0660 | 63 69 61 6e 5f 6d 61 74 72 69 78 da 07 74 6f 64 65 6e 73 65 a9 03 da 01 47 72 08 00 00 00 da 02 | cian_matrix..todense....Gr...... |
| 0680 | 73 70 73 03 00 00 00 20 20 20 fa 5f 2f 68 6f 6d 65 2f 62 6c 61 63 6b 68 61 6f 2f 75 69 75 63 2d | sps........_/home/blackhao/uiuc- |
| 06a0 | 63 6f 75 72 73 65 2d 67 72 61 70 68 2f 2e 76 65 6e 76 2f 6c 69 62 2f 70 79 74 68 6f 6e 33 2e 31 | course-graph/.venv/lib/python3.1 |
| 06c0 | 32 2f 73 69 74 65 2d 70 61 63 6b 61 67 65 73 2f 6e 65 74 77 6f 72 6b 78 2f 6c 69 6e 61 6c 67 2f | 2/site-packages/networkx/linalg/ |
| 06e0 | 73 70 65 63 74 72 75 6d 2e 70 79 72 03 00 00 00 72 03 00 00 00 10 00 00 00 73 33 00 00 00 80 00 | spectrum.pyr....r........s3..... |
| 0700 | f3 4e 01 00 05 17 e0 0b 0d 8f 39 89 39 d7 0b 1d d1 0b 1d 9c 62 d7 1e 31 d1 1e 31 b0 21 b8 46 d4 | .N........9.9.......b..1..1.!.F. |
| 0720 | 1e 43 d7 1e 4b d1 1e 4b d3 1e 4d d3 0b 4e d0 04 4e f3 00 00 00 00 63 02 00 00 00 00 00 00 00 00 | .C..K..K..M..N..N.....c......... |
| 0740 | 00 00 00 06 00 00 00 03 00 00 00 f3 86 00 00 00 97 00 64 01 64 02 6c 00 7d 02 7c 02 6a 02 00 00 | ..................d.d.l.}.|.j... |
| 0760 | 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 6a 05 00 00 00 00 00 00 00 00 00 00 00 00 00 00 | ................j............... |
| 0780 | 00 00 00 00 74 07 00 00 00 00 00 00 00 00 6a 08 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 | ....t.........j................. |
| 07a0 | 00 00 7c 00 7c 01 ac 03 ab 02 00 00 00 00 00 00 6a 0b 00 00 00 00 00 00 00 00 00 00 00 00 00 00 | ..|.|...........j............... |
| 07c0 | 00 00 00 00 ab 00 00 00 00 00 00 00 ab 01 00 00 00 00 00 00 53 00 29 04 61 23 02 00 00 52 65 74 | ....................S.).a#...Ret |
| 07e0 | 75 72 6e 20 65 69 67 65 6e 76 61 6c 75 65 73 20 6f 66 20 74 68 65 20 6e 6f 72 6d 61 6c 69 7a 65 | urn.eigenvalues.of.the.normalize |
| 0800 | 64 20 4c 61 70 6c 61 63 69 61 6e 20 6f 66 20 47 0a 0a 20 20 20 20 50 61 72 61 6d 65 74 65 72 73 | d.Laplacian.of.G......Parameters |
| 0820 | 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 47 20 3a 20 67 72 61 70 68 0a 20 20 | .....----------.....G.:.graph... |
| 0840 | 20 20 20 20 20 41 20 4e 65 74 77 6f 72 6b 58 20 67 72 61 70 68 0a 0a 20 20 20 20 77 65 69 67 68 | .....A.NetworkX.graph......weigh |
| 0860 | 74 20 3a 20 73 74 72 69 6e 67 20 6f 72 20 4e 6f 6e 65 2c 20 6f 70 74 69 6f 6e 61 6c 20 28 64 65 | t.:.string.or.None,.optional.(de |
| 0880 | 66 61 75 6c 74 3d 27 77 65 69 67 68 74 27 29 0a 20 20 20 20 20 20 20 54 68 65 20 65 64 67 65 20 | fault='weight')........The.edge. |
| 08a0 | 64 61 74 61 20 6b 65 79 20 75 73 65 64 20 74 6f 20 63 6f 6d 70 75 74 65 20 65 61 63 68 20 76 61 | data.key.used.to.compute.each.va |
| 08c0 | 6c 75 65 20 69 6e 20 74 68 65 20 6d 61 74 72 69 78 2e 0a 20 20 20 20 20 20 20 49 66 20 4e 6f 6e | lue.in.the.matrix.........If.Non |
| 08e0 | 65 2c 20 74 68 65 6e 20 65 61 63 68 20 65 64 67 65 20 68 61 73 20 77 65 69 67 68 74 20 31 2e 0a | e,.then.each.edge.has.weight.1.. |
| 0900 | 0a 20 20 20 20 52 65 74 75 72 6e 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 65 76 61 | .....Returns.....-------.....eva |
| 0920 | 6c 73 20 3a 20 4e 75 6d 50 79 20 61 72 72 61 79 0a 20 20 20 20 20 20 45 69 67 65 6e 76 61 6c 75 | ls.:.NumPy.array.......Eigenvalu |
| 0940 | 65 73 0a 0a 20 20 20 20 4e 6f 74 65 73 0a 20 20 20 20 2d 2d 2d 2d 2d 0a 20 20 20 20 46 6f 72 20 | es......Notes.....-----.....For. |
| 0960 | 4d 75 6c 74 69 47 72 61 70 68 2f 4d 75 6c 74 69 44 69 47 72 61 70 68 2c 20 74 68 65 20 65 64 67 | MultiGraph/MultiDiGraph,.the.edg |
| 0980 | 65 73 20 77 65 69 67 68 74 73 20 61 72 65 20 73 75 6d 6d 65 64 2e 0a 20 20 20 20 53 65 65 20 74 | es.weights.are.summed......See.t |
| 09a0 | 6f 5f 6e 75 6d 70 79 5f 61 72 72 61 79 20 66 6f 72 20 6f 74 68 65 72 20 6f 70 74 69 6f 6e 73 2e | o_numpy_array.for.other.options. |
| 09c0 | 0a 0a 20 20 20 20 53 65 65 20 41 6c 73 6f 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 | ......See.Also.....--------..... |
| 09e0 | 6e 6f 72 6d 61 6c 69 7a 65 64 5f 6c 61 70 6c 61 63 69 61 6e 5f 6d 61 74 72 69 78 0a 20 20 20 20 | normalized_laplacian_matrix..... |
| 0a00 | 72 02 00 00 00 4e 72 0b 00 00 00 29 06 72 0c 00 00 00 72 0d 00 00 00 72 0e 00 00 00 72 0f 00 00 | r....Nr....).r....r....r....r... |
| 0a20 | 00 da 1b 6e 6f 72 6d 61 6c 69 7a 65 64 5f 6c 61 70 6c 61 63 69 61 6e 5f 6d 61 74 72 69 78 72 11 | ...normalized_laplacian_matrixr. |
| 0a40 | 00 00 00 72 12 00 00 00 73 03 00 00 00 20 20 20 72 15 00 00 00 72 06 00 00 00 72 06 00 00 00 3c | ...r....s.......r....r....r....< |
| 0a60 | 00 00 00 73 37 00 00 00 80 00 f3 36 00 05 17 e0 0b 0d 8f 39 89 39 d7 0b 1d d1 0b 1d dc 08 0a d7 | ...s7......6.......9.9.......... |
| 0a80 | 08 26 d1 08 26 a0 71 b0 16 d4 08 38 d7 08 40 d1 08 40 d3 08 42 f3 03 02 0c 06 f0 00 02 05 06 72 | .&..&.q....8..@..@..B..........r |
| 0aa0 | 16 00 00 00 63 02 00 00 00 00 00 00 00 00 00 00 00 06 00 00 00 03 00 00 00 f3 86 00 00 00 97 00 | ....c........................... |
| 0ac0 | 64 01 64 02 6c 00 7d 02 7c 02 6a 02 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 6a 05 | d.d.l.}.|.j...................j. |
| 0ae0 | 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 74 07 00 00 00 00 00 00 00 00 6a 08 00 00 | ..................t.........j... |
| 0b00 | 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 7c 00 7c 01 ac 03 ab 02 00 00 00 00 00 00 6a 0b | ................|.|...........j. |
| 0b20 | 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ab 00 00 00 00 00 00 00 ab 01 00 00 00 00 | ................................ |
| 0b40 | 00 00 53 00 29 04 61 16 02 00 00 52 65 74 75 72 6e 73 20 65 69 67 65 6e 76 61 6c 75 65 73 20 6f | ..S.).a....Returns.eigenvalues.o |
| 0b60 | 66 20 74 68 65 20 61 64 6a 61 63 65 6e 63 79 20 6d 61 74 72 69 78 20 6f 66 20 47 2e 0a 0a 20 20 | f.the.adjacency.matrix.of.G..... |
| 0b80 | 20 20 50 61 72 61 6d 65 74 65 72 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 | ..Parameters.....----------..... |
| 0ba0 | 47 20 3a 20 67 72 61 70 68 0a 20 20 20 20 20 20 20 41 20 4e 65 74 77 6f 72 6b 58 20 67 72 61 70 | G.:.graph........A.NetworkX.grap |
| 0bc0 | 68 0a 0a 20 20 20 20 77 65 69 67 68 74 20 3a 20 73 74 72 69 6e 67 20 6f 72 20 4e 6f 6e 65 2c 20 | h......weight.:.string.or.None,. |
| 0be0 | 6f 70 74 69 6f 6e 61 6c 20 28 64 65 66 61 75 6c 74 3d 27 77 65 69 67 68 74 27 29 0a 20 20 20 20 | optional.(default='weight')..... |
| 0c00 | 20 20 20 54 68 65 20 65 64 67 65 20 64 61 74 61 20 6b 65 79 20 75 73 65 64 20 74 6f 20 63 6f 6d | ...The.edge.data.key.used.to.com |
| 0c20 | 70 75 74 65 20 65 61 63 68 20 76 61 6c 75 65 20 69 6e 20 74 68 65 20 6d 61 74 72 69 78 2e 0a 20 | pute.each.value.in.the.matrix... |
| 0c40 | 20 20 20 20 20 20 49 66 20 4e 6f 6e 65 2c 20 74 68 65 6e 20 65 61 63 68 20 65 64 67 65 20 68 61 | ......If.None,.then.each.edge.ha |
| 0c60 | 73 20 77 65 69 67 68 74 20 31 2e 0a 0a 20 20 20 20 52 65 74 75 72 6e 73 0a 20 20 20 20 2d 2d 2d | s.weight.1.......Returns.....--- |
| 0c80 | 2d 2d 2d 2d 0a 20 20 20 20 65 76 61 6c 73 20 3a 20 4e 75 6d 50 79 20 61 72 72 61 79 0a 20 20 20 | ----.....evals.:.NumPy.array.... |
| 0ca0 | 20 20 20 45 69 67 65 6e 76 61 6c 75 65 73 0a 0a 20 20 20 20 4e 6f 74 65 73 0a 20 20 20 20 2d 2d | ...Eigenvalues......Notes.....-- |
| 0cc0 | 2d 2d 2d 0a 20 20 20 20 46 6f 72 20 4d 75 6c 74 69 47 72 61 70 68 2f 4d 75 6c 74 69 44 69 47 72 | ---.....For.MultiGraph/MultiDiGr |
| 0ce0 | 61 70 68 2c 20 74 68 65 20 65 64 67 65 73 20 77 65 69 67 68 74 73 20 61 72 65 20 73 75 6d 6d 65 | aph,.the.edges.weights.are.summe |
| 0d00 | 64 2e 0a 20 20 20 20 53 65 65 20 74 6f 5f 6e 75 6d 70 79 5f 61 72 72 61 79 20 66 6f 72 20 6f 74 | d......See.to_numpy_array.for.ot |
| 0d20 | 68 65 72 20 6f 70 74 69 6f 6e 73 2e 0a 0a 20 20 20 20 53 65 65 20 41 6c 73 6f 0a 20 20 20 20 2d | her.options.......See.Also.....- |
| 0d40 | 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 61 64 6a 61 63 65 6e 63 79 5f 6d 61 74 72 69 78 0a 20 20 20 | -------.....adjacency_matrix.... |
| 0d60 | 20 72 02 00 00 00 4e 72 0b 00 00 00 29 06 72 0c 00 00 00 72 0d 00 00 00 da 07 65 69 67 76 61 6c | .r....Nr....).r....r......eigval |
| 0d80 | 73 72 0f 00 00 00 da 10 61 64 6a 61 63 65 6e 63 79 5f 6d 61 74 72 69 78 72 11 00 00 00 72 12 00 | sr......adjacency_matrixr....r.. |
| 0da0 | 00 00 73 03 00 00 00 20 20 20 72 15 00 00 00 72 04 00 00 00 72 04 00 00 00 5e 00 00 00 73 32 00 | ..s.......r....r....r....^...s2. |
| 0dc0 | 00 00 80 00 f3 36 00 05 17 e0 0b 0d 8f 39 89 39 d7 0b 1c d1 0b 1c 9c 52 d7 1d 30 d1 1d 30 b0 11 | .....6.......9.9.......R..0..0.. |
| 0de0 | b8 36 d4 1d 42 d7 1d 4a d1 1d 4a d3 1d 4c d3 0b 4d d0 04 4d 72 16 00 00 00 63 01 00 00 00 00 00 | .6..B..J..J..L..M..Mr....c...... |
| 0e00 | 00 00 00 00 00 00 05 00 00 00 03 00 00 00 f3 e2 00 00 00 97 00 64 01 64 02 6c 00 7d 01 7c 00 6a | .....................d.d.l.}.|.j |
| 0e20 | 03 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ab 00 00 00 00 00 00 00 72 2e 7c 01 6a | ...........................r.|.j |
| 0e40 | 04 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 6a 07 00 00 00 00 00 00 00 00 00 00 00 | ...................j............ |
| 0e60 | 00 00 00 00 00 00 00 74 09 00 00 00 00 00 00 00 00 6a 0a 00 00 00 00 00 00 00 00 00 00 00 00 00 | .......t.........j.............. |
| 0e80 | 00 00 00 00 00 7c 00 ab 01 00 00 00 00 00 00 ab 01 00 00 00 00 00 00 53 00 7c 01 6a 04 00 00 00 | .....|.................S.|.j.... |
| 0ea0 | 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 6a 07 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 | ...............j................ |
| 0ec0 | 00 00 00 74 09 00 00 00 00 00 00 00 00 6a 0c 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 | ...t.........j.................. |
| 0ee0 | 00 7c 00 ab 01 00 00 00 00 00 00 ab 01 00 00 00 00 00 00 53 00 29 03 61 aa 01 00 00 52 65 74 75 | .|.................S.).a....Retu |
| 0f00 | 72 6e 73 20 65 69 67 65 6e 76 61 6c 75 65 73 20 6f 66 20 74 68 65 20 6d 6f 64 75 6c 61 72 69 74 | rns.eigenvalues.of.the.modularit |
| 0f20 | 79 20 6d 61 74 72 69 78 20 6f 66 20 47 2e 0a 0a 20 20 20 20 50 61 72 61 6d 65 74 65 72 73 0a 20 | y.matrix.of.G.......Parameters.. |
| 0f40 | 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 47 20 3a 20 47 72 61 70 68 0a 20 20 20 20 | ...----------.....G.:.Graph..... |
| 0f60 | 20 20 20 41 20 4e 65 74 77 6f 72 6b 58 20 47 72 61 70 68 20 6f 72 20 44 69 47 72 61 70 68 0a 0a | ...A.NetworkX.Graph.or.DiGraph.. |
| 0f80 | 20 20 20 20 52 65 74 75 72 6e 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 65 76 61 6c | ....Returns.....-------.....eval |
| 0fa0 | 73 20 3a 20 4e 75 6d 50 79 20 61 72 72 61 79 0a 20 20 20 20 20 20 45 69 67 65 6e 76 61 6c 75 65 | s.:.NumPy.array.......Eigenvalue |
| 0fc0 | 73 0a 0a 20 20 20 20 53 65 65 20 41 6c 73 6f 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 | s......See.Also.....--------.... |
| 0fe0 | 20 6d 6f 64 75 6c 61 72 69 74 79 5f 6d 61 74 72 69 78 0a 0a 20 20 20 20 52 65 66 65 72 65 6e 63 | .modularity_matrix......Referenc |
| 1000 | 65 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 2e 2e 20 5b 31 5d 20 4d 2e 20 | es.....----------........[1].M.. |
| 1020 | 45 2e 20 4a 2e 20 4e 65 77 6d 61 6e 2c 20 22 4d 6f 64 75 6c 61 72 69 74 79 20 61 6e 64 20 63 6f | E..J..Newman,."Modularity.and.co |
| 1040 | 6d 6d 75 6e 69 74 79 20 73 74 72 75 63 74 75 72 65 20 69 6e 20 6e 65 74 77 6f 72 6b 73 22 2c 0a | mmunity.structure.in.networks",. |
| 1060 | 20 20 20 20 20 20 20 50 72 6f 63 2e 20 4e 61 74 6c 2e 20 41 63 61 64 2e 20 53 63 69 2e 20 55 53 | .......Proc..Natl..Acad..Sci..US |
| 1080 | 41 2c 20 76 6f 6c 2e 20 31 30 33 2c 20 70 70 2e 20 38 35 37 37 2d 38 35 38 32 2c 20 32 30 30 36 | A,.vol..103,.pp..8577-8582,.2006 |
| 10a0 | 2e 0a 20 20 20 20 72 02 00 00 00 4e 29 07 72 0c 00 00 00 da 0b 69 73 5f 64 69 72 65 63 74 65 64 | ......r....N).r......is_directed |
| 10c0 | 72 0d 00 00 00 72 1a 00 00 00 72 0f 00 00 00 da 1a 64 69 72 65 63 74 65 64 5f 6d 6f 64 75 6c 61 | r....r....r......directed_modula |
| 10e0 | 72 69 74 79 5f 6d 61 74 72 69 78 da 11 6d 6f 64 75 6c 61 72 69 74 79 5f 6d 61 74 72 69 78 29 02 | rity_matrix..modularity_matrix). |
| 1100 | 72 13 00 00 00 72 14 00 00 00 73 02 00 00 00 20 20 72 15 00 00 00 72 05 00 00 00 72 05 00 00 00 | r....r....s......r....r....r.... |
| 1120 | 7e 00 00 00 73 50 00 00 00 80 00 f3 2e 00 05 17 e0 07 08 87 7d 81 7d 84 7f d8 0f 11 8f 79 89 79 | ~...sP..............}.}......y.y |
| 1140 | d7 0f 20 d1 0f 20 a4 12 d7 21 3e d1 21 3e b8 71 d3 21 41 d3 0f 42 d0 08 42 e0 0f 11 8f 79 89 79 | .........!>.!>.q.!A..B..B....y.y |
| 1160 | d7 0f 20 d1 0f 20 a4 12 d7 21 35 d1 21 35 b0 61 d3 21 38 d3 0f 39 d0 08 39 72 16 00 00 00 63 02 | .........!5.!5.a.!8..9..9r....c. |
| 1180 | 00 00 00 00 00 00 00 00 00 00 00 06 00 00 00 03 00 00 00 f3 84 00 00 00 97 00 64 01 64 02 6c 00 | ..........................d.d.l. |
| 11a0 | 7d 02 7c 02 6a 02 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 6a 05 00 00 00 00 00 00 | }.|.j...................j....... |
| 11c0 | 00 00 00 00 00 00 00 00 00 00 00 00 74 07 00 00 00 00 00 00 00 00 6a 08 00 00 00 00 00 00 00 00 | ............t.........j......... |
| 11e0 | 00 00 00 00 00 00 00 00 00 00 7c 00 7c 01 ab 02 00 00 00 00 00 00 6a 0b 00 00 00 00 00 00 00 00 | ..........|.|.........j......... |
| 1200 | 00 00 00 00 00 00 00 00 00 00 ab 00 00 00 00 00 00 00 ab 01 00 00 00 00 00 00 53 00 29 03 75 fe | ..........................S.).u. |
| 1220 | 01 00 00 52 65 74 75 72 6e 73 20 65 69 67 65 6e 76 61 6c 75 65 73 20 6f 66 20 74 68 65 20 42 65 | ...Returns.eigenvalues.of.the.Be |
| 1240 | 74 68 65 20 48 65 73 73 69 61 6e 20 6d 61 74 72 69 78 20 6f 66 20 47 2e 0a 0a 20 20 20 20 50 61 | the.Hessian.matrix.of.G.......Pa |
| 1260 | 72 61 6d 65 74 65 72 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 47 20 3a 20 | rameters.....----------.....G.:. |
| 1280 | 47 72 61 70 68 0a 20 20 20 20 20 20 20 41 20 4e 65 74 77 6f 72 6b 58 20 47 72 61 70 68 20 6f 72 | Graph........A.NetworkX.Graph.or |
| 12a0 | 20 44 69 47 72 61 70 68 0a 0a 20 20 20 20 72 20 3a 20 66 6c 6f 61 74 0a 20 20 20 20 20 20 20 52 | .DiGraph......r.:.float........R |
| 12c0 | 65 67 75 6c 61 72 69 7a 65 72 20 70 61 72 61 6d 65 74 65 72 0a 0a 20 20 20 20 52 65 74 75 72 6e | egularizer.parameter......Return |
| 12e0 | 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 65 76 61 6c 73 20 3a 20 4e 75 6d 50 79 20 | s.....-------.....evals.:.NumPy. |
| 1300 | 61 72 72 61 79 0a 20 20 20 20 20 20 45 69 67 65 6e 76 61 6c 75 65 73 0a 0a 20 20 20 20 53 65 65 | array.......Eigenvalues......See |
| 1320 | 20 41 6c 73 6f 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 62 65 74 68 65 5f 68 65 73 | .Also.....--------.....bethe_hes |
| 1340 | 73 69 61 6e 5f 6d 61 74 72 69 78 0a 0a 20 20 20 20 52 65 66 65 72 65 6e 63 65 73 0a 20 20 20 20 | sian_matrix......References..... |
| 1360 | 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 2e 2e 20 5b 31 5d 20 41 2e 20 53 61 61 64 65 2c 20 | ----------........[1].A..Saade,. |
| 1380 | 46 2e 20 4b 72 7a 61 6b 61 6c 61 20 61 6e 64 20 4c 2e 20 5a 64 65 62 6f 72 6f 76 c3 a1 0a 20 20 | F..Krzakala.and.L..Zdeborov..... |
| 13a0 | 20 20 20 20 20 22 53 70 65 63 74 72 61 6c 20 63 6c 75 73 74 65 72 69 6e 67 20 6f 66 20 67 72 61 | ....."Spectral.clustering.of.gra |
| 13c0 | 70 68 73 20 77 69 74 68 20 74 68 65 20 62 65 74 68 65 20 68 65 73 73 69 61 6e 22 2c 0a 20 20 20 | phs.with.the.bethe.hessian",.... |
| 13e0 | 20 20 20 20 41 64 76 61 6e 63 65 73 20 69 6e 20 4e 65 75 72 61 6c 20 49 6e 66 6f 72 6d 61 74 69 | ....Advances.in.Neural.Informati |
| 1400 | 6f 6e 20 50 72 6f 63 65 73 73 69 6e 67 20 53 79 73 74 65 6d 73 2e 20 32 30 31 34 2e 0a 20 20 20 | on.Processing.Systems..2014..... |
| 1420 | 20 72 02 00 00 00 4e 29 06 72 0c 00 00 00 72 0d 00 00 00 72 0e 00 00 00 72 0f 00 00 00 da 14 62 | .r....N).r....r....r....r......b |
| 1440 | 65 74 68 65 5f 68 65 73 73 69 61 6e 5f 6d 61 74 72 69 78 72 11 00 00 00 29 03 72 13 00 00 00 da | ethe_hessian_matrixr....).r..... |
| 1460 | 01 72 72 14 00 00 00 73 03 00 00 00 20 20 20 72 15 00 00 00 72 07 00 00 00 72 07 00 00 00 9d 00 | .rr....s.......r....r....r...... |
| 1480 | 00 00 73 32 00 00 00 80 00 f3 36 00 05 17 e0 0b 0d 8f 39 89 39 d7 0b 1d d1 0b 1d 9c 62 d7 1e 35 | ..s2......6.......9.9.......b..5 |
| 14a0 | d1 1e 35 b0 61 b8 11 d3 1e 3b d7 1e 43 d1 1e 43 d3 1e 45 d3 0b 46 d0 04 46 72 16 00 00 00 72 0b | ..5.a....;..C..C..E..F..Fr....r. |
| 14c0 | 00 00 00 29 01 4e 29 0a da 07 5f 5f 64 6f 63 5f 5f da 08 6e 65 74 77 6f 72 6b 78 72 0f 00 00 00 | ...).N)...__doc__..networkxr.... |
| 14e0 | da 07 5f 5f 61 6c 6c 5f 5f da 0d 5f 64 69 73 70 61 74 63 68 61 62 6c 65 72 03 00 00 00 72 06 00 | ..__all__.._dispatchabler....r.. |
| 1500 | 00 00 72 04 00 00 00 72 05 00 00 00 72 07 00 00 00 a9 00 72 16 00 00 00 72 15 00 00 00 fa 08 3c | ..r....r....r......r....r......< |
| 1520 | 6d 6f 64 75 6c 65 3e 72 28 00 00 00 01 00 00 00 73 b5 00 00 00 f0 03 01 01 01 f1 02 02 01 04 f3 | module>r(.......s............... |
| 1540 | 08 00 01 16 f2 04 06 0b 02 80 07 f0 12 00 02 12 80 12 d7 01 11 d1 01 11 98 58 d4 01 26 f2 02 28 | .........................X..&..( |
| 1560 | 01 4f 01 f3 03 00 02 27 f0 02 28 01 4f 01 f0 56 01 00 02 12 80 12 d7 01 11 d1 01 11 98 58 d4 01 | .O.....'..(.O..V.............X.. |
| 1580 | 26 f2 02 1e 01 06 f3 03 00 02 27 f0 02 1e 01 06 f0 42 01 00 02 12 80 12 d7 01 11 d1 01 11 98 58 | &.........'......B.............X |
| 15a0 | d4 01 26 f2 02 1c 01 4e 01 f3 03 00 02 27 f0 02 1c 01 4e 01 f0 3e 00 02 04 d7 01 11 d1 01 11 f1 | ..&....N.....'....N..>.......... |
| 15c0 | 02 1b 01 3a f3 03 00 02 12 f0 02 1b 01 3a f0 3c 00 02 04 d7 01 11 d1 01 11 f2 02 1c 01 47 01 f3 | ...:.........:.<.............G.. |
| 15e0 | 03 00 02 12 f1 02 1c 01 47 01 72 16 00 00 00 | ........G.r.... |