| ofs | hex dump | ascii |
|---|
| 0000 | cb 0d 0d 0a 00 00 00 00 85 fa a7 68 0a 12 00 00 e3 00 00 00 00 00 00 00 00 00 00 00 00 02 00 00 | ...........h.................... |
| 0020 | 00 00 00 00 00 f3 5a 00 00 00 97 00 64 00 5a 00 64 01 64 02 6c 01 6d 02 5a 02 01 00 64 01 64 03 | ......Z.....d.Z.d.d.l.m.Z...d.d. |
| 0040 | 6c 03 6d 04 5a 04 01 00 64 01 64 04 6c 05 5a 06 64 05 64 06 6c 07 6d 08 5a 08 01 00 64 07 64 08 | l.m.Z...d.d.l.Z.d.d.l.m.Z...d.d. |
| 0060 | 67 02 5a 09 64 0d 64 09 84 01 5a 0a 64 0d 64 0a 84 01 5a 0b 64 0d 64 0b 84 01 5a 0c 64 0c 84 00 | g.Z.d.d...Z.d.d...Z.d.d...Z.d... |
| 0080 | 5a 0d 79 04 29 0e 7a 42 0a 43 75 74 68 69 6c 6c 2d 4d 63 4b 65 65 20 6f 72 64 65 72 69 6e 67 20 | Z.y.).zB.Cuthill-McKee.ordering. |
| 00a0 | 6f 66 20 67 72 61 70 68 20 6e 6f 64 65 73 20 74 6f 20 70 72 6f 64 75 63 65 20 73 70 61 72 73 65 | of.graph.nodes.to.produce.sparse |
| 00c0 | 20 6d 61 74 72 69 63 65 73 0a e9 00 00 00 00 29 01 da 05 64 65 71 75 65 29 01 da 0a 69 74 65 6d | .matrices......)...deque)...item |
| 00e0 | 67 65 74 74 65 72 4e e9 02 00 00 00 29 01 da 11 61 72 62 69 74 72 61 72 79 5f 65 6c 65 6d 65 6e | getterN.....)...arbitrary_elemen |
| 0100 | 74 da 16 63 75 74 68 69 6c 6c 5f 6d 63 6b 65 65 5f 6f 72 64 65 72 69 6e 67 da 1e 72 65 76 65 72 | t..cuthill_mckee_ordering..rever |
| 0120 | 73 65 5f 63 75 74 68 69 6c 6c 5f 6d 63 6b 65 65 5f 6f 72 64 65 72 69 6e 67 63 02 00 00 00 00 00 | se_cuthill_mckee_orderingc...... |
| 0140 | 00 00 00 00 00 00 06 00 00 00 23 00 00 00 f3 8a 00 00 00 4b 00 01 00 97 00 74 01 00 00 00 00 00 | ..........#........K.....t...... |
| 0160 | 00 00 00 6a 02 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 7c 00 ab 01 00 00 00 00 00 | ...j...................|........ |
| 0180 | 00 44 00 5d 25 00 00 7d 02 74 05 00 00 00 00 00 00 00 00 7c 00 6a 07 00 00 00 00 00 00 00 00 00 | .D.]%..}.t.........|.j.......... |
| 01a0 | 00 00 00 00 00 00 00 00 00 7c 02 ab 01 00 00 00 00 00 00 7c 01 ab 02 00 00 00 00 00 00 45 00 64 | .........|.........|.........E.d |
| 01c0 | 01 7b 03 00 00 96 02 97 02 86 05 05 00 01 00 8c 27 04 00 79 01 37 00 8c 07 ad 03 77 01 29 02 61 | .{..............'..y.7.....w.).a |
| 01e0 | dd 05 00 00 47 65 6e 65 72 61 74 65 20 61 6e 20 6f 72 64 65 72 69 6e 67 20 28 70 65 72 6d 75 74 | ....Generate.an.ordering.(permut |
| 0200 | 61 74 69 6f 6e 29 20 6f 66 20 74 68 65 20 67 72 61 70 68 20 6e 6f 64 65 73 20 74 6f 20 6d 61 6b | ation).of.the.graph.nodes.to.mak |
| 0220 | 65 0a 20 20 20 20 61 20 73 70 61 72 73 65 20 6d 61 74 72 69 78 2e 0a 0a 20 20 20 20 55 73 65 73 | e.....a.sparse.matrix.......Uses |
| 0240 | 20 74 68 65 20 43 75 74 68 69 6c 6c 2d 4d 63 4b 65 65 20 68 65 75 72 69 73 74 69 63 20 28 62 61 | .the.Cuthill-McKee.heuristic.(ba |
| 0260 | 73 65 64 20 6f 6e 20 62 72 65 61 64 74 68 2d 66 69 72 73 74 20 73 65 61 72 63 68 29 20 5b 31 5d | sed.on.breadth-first.search).[1] |
| 0280 | 5f 2e 0a 0a 20 20 20 20 50 61 72 61 6d 65 74 65 72 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 2d | _.......Parameters.....--------- |
| 02a0 | 2d 0a 20 20 20 20 47 20 3a 20 67 72 61 70 68 0a 20 20 20 20 20 20 41 20 4e 65 74 77 6f 72 6b 58 | -.....G.:.graph.......A.NetworkX |
| 02c0 | 20 67 72 61 70 68 0a 0a 20 20 20 20 68 65 75 72 69 73 74 69 63 20 3a 20 66 75 6e 63 74 69 6f 6e | .graph......heuristic.:.function |
| 02e0 | 2c 20 6f 70 74 69 6f 6e 61 6c 0a 20 20 20 20 20 20 46 75 6e 63 74 69 6f 6e 20 74 6f 20 63 68 6f | ,.optional.......Function.to.cho |
| 0300 | 6f 73 65 20 73 74 61 72 74 69 6e 67 20 6e 6f 64 65 20 66 6f 72 20 52 43 4d 20 61 6c 67 6f 72 69 | ose.starting.node.for.RCM.algori |
| 0320 | 74 68 6d 2e 20 20 49 66 20 4e 6f 6e 65 0a 20 20 20 20 20 20 61 20 6e 6f 64 65 20 66 72 6f 6d 20 | thm...If.None.......a.node.from. |
| 0340 | 61 20 70 73 65 75 64 6f 2d 70 65 72 69 70 68 65 72 61 6c 20 70 61 69 72 20 69 73 20 75 73 65 64 | a.pseudo-peripheral.pair.is.used |
| 0360 | 2e 20 20 41 20 75 73 65 72 2d 64 65 66 69 6e 65 64 20 66 75 6e 63 74 69 6f 6e 0a 20 20 20 20 20 | ...A.user-defined.function...... |
| 0380 | 20 63 61 6e 20 62 65 20 73 75 70 70 6c 69 65 64 20 74 68 61 74 20 74 61 6b 65 73 20 61 20 67 72 | .can.be.supplied.that.takes.a.gr |
| 03a0 | 61 70 68 20 6f 62 6a 65 63 74 20 61 6e 64 20 72 65 74 75 72 6e 73 20 61 20 73 69 6e 67 6c 65 20 | aph.object.and.returns.a.single. |
| 03c0 | 6e 6f 64 65 2e 0a 0a 20 20 20 20 52 65 74 75 72 6e 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 0a 20 | node.......Returns.....-------.. |
| 03e0 | 20 20 20 6e 6f 64 65 73 20 3a 20 67 65 6e 65 72 61 74 6f 72 0a 20 20 20 20 20 20 20 47 65 6e 65 | ...nodes.:.generator........Gene |
| 0400 | 72 61 74 6f 72 20 6f 66 20 6e 6f 64 65 73 20 69 6e 20 43 75 74 68 69 6c 6c 2d 4d 63 4b 65 65 20 | rator.of.nodes.in.Cuthill-McKee. |
| 0420 | 6f 72 64 65 72 69 6e 67 2e 0a 0a 20 20 20 20 45 78 61 6d 70 6c 65 73 0a 20 20 20 20 2d 2d 2d 2d | ordering.......Examples.....---- |
| 0440 | 2d 2d 2d 2d 0a 20 20 20 20 3e 3e 3e 20 66 72 6f 6d 20 6e 65 74 77 6f 72 6b 78 2e 75 74 69 6c 73 | ----.....>>>.from.networkx.utils |
| 0460 | 20 69 6d 70 6f 72 74 20 63 75 74 68 69 6c 6c 5f 6d 63 6b 65 65 5f 6f 72 64 65 72 69 6e 67 0a 20 | .import.cuthill_mckee_ordering.. |
| 0480 | 20 20 20 3e 3e 3e 20 47 20 3d 20 6e 78 2e 70 61 74 68 5f 67 72 61 70 68 28 34 29 0a 20 20 20 20 | ...>>>.G.=.nx.path_graph(4)..... |
| 04a0 | 3e 3e 3e 20 72 63 6d 20 3d 20 6c 69 73 74 28 63 75 74 68 69 6c 6c 5f 6d 63 6b 65 65 5f 6f 72 64 | >>>.rcm.=.list(cuthill_mckee_ord |
| 04c0 | 65 72 69 6e 67 28 47 29 29 0a 20 20 20 20 3e 3e 3e 20 41 20 3d 20 6e 78 2e 61 64 6a 61 63 65 6e | ering(G)).....>>>.A.=.nx.adjacen |
| 04e0 | 63 79 5f 6d 61 74 72 69 78 28 47 2c 20 6e 6f 64 65 6c 69 73 74 3d 72 63 6d 29 0a 0a 20 20 20 20 | cy_matrix(G,.nodelist=rcm)...... |
| 0500 | 53 6d 61 6c 6c 65 73 74 20 64 65 67 72 65 65 20 6e 6f 64 65 20 61 73 20 68 65 75 72 69 73 74 69 | Smallest.degree.node.as.heuristi |
| 0520 | 63 20 66 75 6e 63 74 69 6f 6e 3a 0a 0a 20 20 20 20 3e 3e 3e 20 64 65 66 20 73 6d 61 6c 6c 65 73 | c.function:......>>>.def.smalles |
| 0540 | 74 5f 64 65 67 72 65 65 28 47 29 3a 0a 20 20 20 20 2e 2e 2e 20 20 20 20 20 72 65 74 75 72 6e 20 | t_degree(G):.............return. |
| 0560 | 6d 69 6e 28 47 2c 20 6b 65 79 3d 47 2e 64 65 67 72 65 65 29 0a 20 20 20 20 3e 3e 3e 20 72 63 6d | min(G,.key=G.degree).....>>>.rcm |
| 0580 | 20 3d 20 6c 69 73 74 28 63 75 74 68 69 6c 6c 5f 6d 63 6b 65 65 5f 6f 72 64 65 72 69 6e 67 28 47 | .=.list(cuthill_mckee_ordering(G |
| 05a0 | 2c 20 68 65 75 72 69 73 74 69 63 3d 73 6d 61 6c 6c 65 73 74 5f 64 65 67 72 65 65 29 29 0a 0a 0a | ,.heuristic=smallest_degree))... |
| 05c0 | 20 20 20 20 53 65 65 20 41 6c 73 6f 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 72 65 | ....See.Also.....--------.....re |
| 05e0 | 76 65 72 73 65 5f 63 75 74 68 69 6c 6c 5f 6d 63 6b 65 65 5f 6f 72 64 65 72 69 6e 67 0a 0a 20 20 | verse_cuthill_mckee_ordering.... |
| 0600 | 20 20 4e 6f 74 65 73 0a 20 20 20 20 2d 2d 2d 2d 2d 0a 20 20 20 20 54 68 65 20 6f 70 74 69 6d 61 | ..Notes.....-----.....The.optima |
| 0620 | 6c 20 73 6f 6c 75 74 69 6f 6e 20 74 68 65 20 62 61 6e 64 77 69 64 74 68 20 72 65 64 75 63 74 69 | l.solution.the.bandwidth.reducti |
| 0640 | 6f 6e 20 69 73 20 4e 50 2d 63 6f 6d 70 6c 65 74 65 20 5b 32 5d 5f 2e 0a 0a 0a 20 20 20 20 52 65 | on.is.NP-complete.[2]_........Re |
| 0660 | 66 65 72 65 6e 63 65 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 2e 2e 20 5b | ferences.....----------........[ |
| 0680 | 31 5d 20 45 2e 20 43 75 74 68 69 6c 6c 20 61 6e 64 20 4a 2e 20 4d 63 4b 65 65 2e 0a 20 20 20 20 | 1].E..Cuthill.and.J..McKee...... |
| 06a0 | 20 20 20 52 65 64 75 63 69 6e 67 20 74 68 65 20 62 61 6e 64 77 69 64 74 68 20 6f 66 20 73 70 61 | ...Reducing.the.bandwidth.of.spa |
| 06c0 | 72 73 65 20 73 79 6d 6d 65 74 72 69 63 20 6d 61 74 72 69 63 65 73 2c 0a 20 20 20 20 20 20 20 49 | rse.symmetric.matrices,........I |
| 06e0 | 6e 20 50 72 6f 63 2e 20 32 34 74 68 20 4e 61 74 2e 20 43 6f 6e 66 2e 20 41 43 4d 2c 20 70 61 67 | n.Proc..24th.Nat..Conf..ACM,.pag |
| 0700 | 65 73 20 31 35 37 2d 31 37 32 2c 20 31 39 36 39 2e 0a 20 20 20 20 20 20 20 68 74 74 70 3a 2f 2f | es.157-172,.1969.........http:// |
| 0720 | 64 6f 69 2e 61 63 6d 2e 6f 72 67 2f 31 30 2e 31 31 34 35 2f 38 30 30 31 39 35 2e 38 30 35 39 32 | doi.acm.org/10.1145/800195.80592 |
| 0740 | 38 0a 20 20 20 20 2e 2e 20 5b 32 5d 20 20 53 74 65 76 65 6e 20 53 2e 20 53 6b 69 65 6e 61 2e 20 | 8........[2]..Steven.S..Skiena.. |
| 0760 | 31 39 39 37 2e 20 54 68 65 20 41 6c 67 6f 72 69 74 68 6d 20 44 65 73 69 67 6e 20 4d 61 6e 75 61 | 1997..The.Algorithm.Design.Manua |
| 0780 | 6c 2e 0a 20 20 20 20 20 20 20 53 70 72 69 6e 67 65 72 2d 56 65 72 6c 61 67 20 4e 65 77 20 59 6f | l.........Springer-Verlag.New.Yo |
| 07a0 | 72 6b 2c 20 49 6e 63 2e 2c 20 4e 65 77 20 59 6f 72 6b 2c 20 4e 59 2c 20 55 53 41 2e 0a 20 20 20 | rk,.Inc.,.New.York,.NY,.USA..... |
| 07c0 | 20 4e 29 04 da 02 6e 78 da 14 63 6f 6e 6e 65 63 74 65 64 5f 63 6f 6d 70 6f 6e 65 6e 74 73 da 20 | .N)...nx..connected_components.. |
| 07e0 | 63 6f 6e 6e 65 63 74 65 64 5f 63 75 74 68 69 6c 6c 5f 6d 63 6b 65 65 5f 6f 72 64 65 72 69 6e 67 | connected_cuthill_mckee_ordering |
| 0800 | da 08 73 75 62 67 72 61 70 68 29 03 da 01 47 da 09 68 65 75 72 69 73 74 69 63 da 01 63 73 03 00 | ..subgraph)...G..heuristic..cs.. |
| 0820 | 00 00 20 20 20 fa 59 2f 68 6f 6d 65 2f 62 6c 61 63 6b 68 61 6f 2f 75 69 75 63 2d 63 6f 75 72 73 | ......Y/home/blackhao/uiuc-cours |
| 0840 | 65 2d 67 72 61 70 68 2f 2e 76 65 6e 76 2f 6c 69 62 2f 70 79 74 68 6f 6e 33 2e 31 32 2f 73 69 74 | e-graph/.venv/lib/python3.12/sit |
| 0860 | 65 2d 70 61 63 6b 61 67 65 73 2f 6e 65 74 77 6f 72 6b 78 2f 75 74 69 6c 73 2f 72 63 6d 2e 70 79 | e-packages/networkx/utils/rcm.py |
| 0880 | 72 07 00 00 00 72 07 00 00 00 0f 00 00 00 73 40 00 00 00 e8 00 f8 80 00 f4 6a 01 00 0e 10 d7 0d | r....r........s@.........j...... |
| 08a0 | 24 d1 0d 24 a0 51 d3 0d 27 f2 00 01 05 4e 01 88 01 dc 13 33 b0 41 b7 4a b1 4a b8 71 b3 4d c0 39 | $..$.Q..'....N.....3.A.J.J.q.M.9 |
| 08c0 | d3 13 4d d7 08 4d d1 08 4d f1 03 01 05 4e 01 d8 08 4d fa 73 0f 00 00 00 82 37 41 03 01 b9 01 41 | ..M..M..M....N...M.s.....7A....A |
| 08e0 | 01 06 ba 08 41 03 01 63 02 00 00 00 00 00 00 00 00 00 00 00 08 00 00 00 03 00 00 00 f3 40 00 00 | ....A..c.....................@.. |
| 0900 | 00 97 00 74 01 00 00 00 00 00 00 00 00 74 03 00 00 00 00 00 00 00 00 74 05 00 00 00 00 00 00 00 | ...t.........t.........t........ |
| 0920 | 00 7c 00 7c 01 ac 01 ab 02 00 00 00 00 00 00 ab 01 00 00 00 00 00 00 ab 01 00 00 00 00 00 00 53 | .|.|...........................S |
| 0940 | 00 29 02 61 ff 05 00 00 47 65 6e 65 72 61 74 65 20 61 6e 20 6f 72 64 65 72 69 6e 67 20 28 70 65 | .).a....Generate.an.ordering.(pe |
| 0960 | 72 6d 75 74 61 74 69 6f 6e 29 20 6f 66 20 74 68 65 20 67 72 61 70 68 20 6e 6f 64 65 73 20 74 6f | rmutation).of.the.graph.nodes.to |
| 0980 | 20 6d 61 6b 65 0a 20 20 20 20 61 20 73 70 61 72 73 65 20 6d 61 74 72 69 78 2e 0a 0a 20 20 20 20 | .make.....a.sparse.matrix....... |
| 09a0 | 55 73 65 73 20 74 68 65 20 72 65 76 65 72 73 65 20 43 75 74 68 69 6c 6c 2d 4d 63 4b 65 65 20 68 | Uses.the.reverse.Cuthill-McKee.h |
| 09c0 | 65 75 72 69 73 74 69 63 20 28 62 61 73 65 64 20 6f 6e 20 62 72 65 61 64 74 68 2d 66 69 72 73 74 | euristic.(based.on.breadth-first |
| 09e0 | 20 73 65 61 72 63 68 29 0a 20 20 20 20 5b 31 5d 5f 2e 0a 0a 20 20 20 20 50 61 72 61 6d 65 74 65 | .search).....[1]_.......Paramete |
| 0a00 | 72 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 47 20 3a 20 67 72 61 70 68 0a | rs.....----------.....G.:.graph. |
| 0a20 | 20 20 20 20 20 20 41 20 4e 65 74 77 6f 72 6b 58 20 67 72 61 70 68 0a 0a 20 20 20 20 68 65 75 72 | ......A.NetworkX.graph......heur |
| 0a40 | 69 73 74 69 63 20 3a 20 66 75 6e 63 74 69 6f 6e 2c 20 6f 70 74 69 6f 6e 61 6c 0a 20 20 20 20 20 | istic.:.function,.optional...... |
| 0a60 | 20 46 75 6e 63 74 69 6f 6e 20 74 6f 20 63 68 6f 6f 73 65 20 73 74 61 72 74 69 6e 67 20 6e 6f 64 | .Function.to.choose.starting.nod |
| 0a80 | 65 20 66 6f 72 20 52 43 4d 20 61 6c 67 6f 72 69 74 68 6d 2e 20 20 49 66 20 4e 6f 6e 65 0a 20 20 | e.for.RCM.algorithm...If.None... |
| 0aa0 | 20 20 20 20 61 20 6e 6f 64 65 20 66 72 6f 6d 20 61 20 70 73 65 75 64 6f 2d 70 65 72 69 70 68 65 | ....a.node.from.a.pseudo-periphe |
| 0ac0 | 72 61 6c 20 70 61 69 72 20 69 73 20 75 73 65 64 2e 20 20 41 20 75 73 65 72 2d 64 65 66 69 6e 65 | ral.pair.is.used...A.user-define |
| 0ae0 | 64 20 66 75 6e 63 74 69 6f 6e 0a 20 20 20 20 20 20 63 61 6e 20 62 65 20 73 75 70 70 6c 69 65 64 | d.function.......can.be.supplied |
| 0b00 | 20 74 68 61 74 20 74 61 6b 65 73 20 61 20 67 72 61 70 68 20 6f 62 6a 65 63 74 20 61 6e 64 20 72 | .that.takes.a.graph.object.and.r |
| 0b20 | 65 74 75 72 6e 73 20 61 20 73 69 6e 67 6c 65 20 6e 6f 64 65 2e 0a 0a 20 20 20 20 52 65 74 75 72 | eturns.a.single.node.......Retur |
| 0b40 | 6e 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 6e 6f 64 65 73 20 3a 20 67 65 6e 65 72 | ns.....-------.....nodes.:.gener |
| 0b60 | 61 74 6f 72 0a 20 20 20 20 20 20 20 47 65 6e 65 72 61 74 6f 72 20 6f 66 20 6e 6f 64 65 73 20 69 | ator........Generator.of.nodes.i |
| 0b80 | 6e 20 72 65 76 65 72 73 65 20 43 75 74 68 69 6c 6c 2d 4d 63 4b 65 65 20 6f 72 64 65 72 69 6e 67 | n.reverse.Cuthill-McKee.ordering |
| 0ba0 | 2e 0a 0a 20 20 20 20 45 78 61 6d 70 6c 65 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 | .......Examples.....--------.... |
| 0bc0 | 20 3e 3e 3e 20 66 72 6f 6d 20 6e 65 74 77 6f 72 6b 78 2e 75 74 69 6c 73 20 69 6d 70 6f 72 74 20 | .>>>.from.networkx.utils.import. |
| 0be0 | 72 65 76 65 72 73 65 5f 63 75 74 68 69 6c 6c 5f 6d 63 6b 65 65 5f 6f 72 64 65 72 69 6e 67 0a 20 | reverse_cuthill_mckee_ordering.. |
| 0c00 | 20 20 20 3e 3e 3e 20 47 20 3d 20 6e 78 2e 70 61 74 68 5f 67 72 61 70 68 28 34 29 0a 20 20 20 20 | ...>>>.G.=.nx.path_graph(4)..... |
| 0c20 | 3e 3e 3e 20 72 63 6d 20 3d 20 6c 69 73 74 28 72 65 76 65 72 73 65 5f 63 75 74 68 69 6c 6c 5f 6d | >>>.rcm.=.list(reverse_cuthill_m |
| 0c40 | 63 6b 65 65 5f 6f 72 64 65 72 69 6e 67 28 47 29 29 0a 20 20 20 20 3e 3e 3e 20 41 20 3d 20 6e 78 | ckee_ordering(G)).....>>>.A.=.nx |
| 0c60 | 2e 61 64 6a 61 63 65 6e 63 79 5f 6d 61 74 72 69 78 28 47 2c 20 6e 6f 64 65 6c 69 73 74 3d 72 63 | .adjacency_matrix(G,.nodelist=rc |
| 0c80 | 6d 29 0a 0a 20 20 20 20 53 6d 61 6c 6c 65 73 74 20 64 65 67 72 65 65 20 6e 6f 64 65 20 61 73 20 | m)......Smallest.degree.node.as. |
| 0ca0 | 68 65 75 72 69 73 74 69 63 20 66 75 6e 63 74 69 6f 6e 3a 0a 0a 20 20 20 20 3e 3e 3e 20 64 65 66 | heuristic.function:......>>>.def |
| 0cc0 | 20 73 6d 61 6c 6c 65 73 74 5f 64 65 67 72 65 65 28 47 29 3a 0a 20 20 20 20 2e 2e 2e 20 20 20 20 | .smallest_degree(G):............ |
| 0ce0 | 20 72 65 74 75 72 6e 20 6d 69 6e 28 47 2c 20 6b 65 79 3d 47 2e 64 65 67 72 65 65 29 0a 20 20 20 | .return.min(G,.key=G.degree).... |
| 0d00 | 20 3e 3e 3e 20 72 63 6d 20 3d 20 6c 69 73 74 28 72 65 76 65 72 73 65 5f 63 75 74 68 69 6c 6c 5f | .>>>.rcm.=.list(reverse_cuthill_ |
| 0d20 | 6d 63 6b 65 65 5f 6f 72 64 65 72 69 6e 67 28 47 2c 20 68 65 75 72 69 73 74 69 63 3d 73 6d 61 6c | mckee_ordering(G,.heuristic=smal |
| 0d40 | 6c 65 73 74 5f 64 65 67 72 65 65 29 29 0a 0a 0a 20 20 20 20 53 65 65 20 41 6c 73 6f 0a 20 20 20 | lest_degree)).......See.Also.... |
| 0d60 | 20 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 63 75 74 68 69 6c 6c 5f 6d 63 6b 65 65 5f 6f 72 64 65 | .--------.....cuthill_mckee_orde |
| 0d80 | 72 69 6e 67 0a 0a 20 20 20 20 4e 6f 74 65 73 0a 20 20 20 20 2d 2d 2d 2d 2d 0a 20 20 20 20 54 68 | ring......Notes.....-----.....Th |
| 0da0 | 65 20 6f 70 74 69 6d 61 6c 20 73 6f 6c 75 74 69 6f 6e 20 74 68 65 20 62 61 6e 64 77 69 64 74 68 | e.optimal.solution.the.bandwidth |
| 0dc0 | 20 72 65 64 75 63 74 69 6f 6e 20 69 73 20 4e 50 2d 63 6f 6d 70 6c 65 74 65 20 5b 32 5d 5f 2e 0a | .reduction.is.NP-complete.[2]_.. |
| 0de0 | 0a 20 20 20 20 52 65 66 65 72 65 6e 63 65 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 | .....References.....----------.. |
| 0e00 | 20 20 20 2e 2e 20 5b 31 5d 20 45 2e 20 43 75 74 68 69 6c 6c 20 61 6e 64 20 4a 2e 20 4d 63 4b 65 | ......[1].E..Cuthill.and.J..McKe |
| 0e20 | 65 2e 0a 20 20 20 20 20 20 20 52 65 64 75 63 69 6e 67 20 74 68 65 20 62 61 6e 64 77 69 64 74 68 | e.........Reducing.the.bandwidth |
| 0e40 | 20 6f 66 20 73 70 61 72 73 65 20 73 79 6d 6d 65 74 72 69 63 20 6d 61 74 72 69 63 65 73 2c 0a 20 | .of.sparse.symmetric.matrices,.. |
| 0e60 | 20 20 20 20 20 20 49 6e 20 50 72 6f 63 2e 20 32 34 74 68 20 4e 61 74 2e 20 43 6f 6e 66 2e 20 41 | ......In.Proc..24th.Nat..Conf..A |
| 0e80 | 43 4d 2c 20 70 61 67 65 73 20 31 35 37 2d 37 32 2c 20 31 39 36 39 2e 0a 20 20 20 20 20 20 20 68 | CM,.pages.157-72,.1969.........h |
| 0ea0 | 74 74 70 3a 2f 2f 64 6f 69 2e 61 63 6d 2e 6f 72 67 2f 31 30 2e 31 31 34 35 2f 38 30 30 31 39 35 | ttp://doi.acm.org/10.1145/800195 |
| 0ec0 | 2e 38 30 35 39 32 38 0a 20 20 20 20 2e 2e 20 5b 32 5d 20 20 53 74 65 76 65 6e 20 53 2e 20 53 6b | .805928........[2]..Steven.S..Sk |
| 0ee0 | 69 65 6e 61 2e 20 31 39 39 37 2e 20 54 68 65 20 41 6c 67 6f 72 69 74 68 6d 20 44 65 73 69 67 6e | iena..1997..The.Algorithm.Design |
| 0f00 | 20 4d 61 6e 75 61 6c 2e 0a 20 20 20 20 20 20 20 53 70 72 69 6e 67 65 72 2d 56 65 72 6c 61 67 20 | .Manual.........Springer-Verlag. |
| 0f20 | 4e 65 77 20 59 6f 72 6b 2c 20 49 6e 63 2e 2c 20 4e 65 77 20 59 6f 72 6b 2c 20 4e 59 2c 20 55 53 | New.York,.Inc.,.New.York,.NY,.US |
| 0f40 | 41 2e 0a 20 20 20 20 29 01 72 0f 00 00 00 29 03 da 08 72 65 76 65 72 73 65 64 da 04 6c 69 73 74 | A......).r....)...reversed..list |
| 0f60 | 72 07 00 00 00 29 02 72 0e 00 00 00 72 0f 00 00 00 73 02 00 00 00 20 20 72 11 00 00 00 72 08 00 | r....).r....r....s......r....r.. |
| 0f80 | 00 00 72 08 00 00 00 48 00 00 00 73 1d 00 00 00 80 00 f4 6a 01 00 0c 14 94 44 d4 19 2f b0 01 b8 | ..r....H...s.......j.....D../... |
| 0fa0 | 59 d4 19 47 d3 14 48 d3 0b 49 d0 04 49 f3 00 00 00 00 63 02 00 00 00 00 00 00 00 00 00 00 00 08 | Y..G..H..I..I.....c............. |
| 0fc0 | 00 00 00 23 00 00 00 f3 6a 01 00 00 4b 00 01 00 97 00 7c 01 80 0c 74 01 00 00 00 00 00 00 00 00 | ...#....j...K.....|...t......... |
| 0fe0 | 7c 00 ab 01 00 00 00 00 00 00 7d 02 6e 08 02 00 7c 01 7c 00 ab 01 00 00 00 00 00 00 7d 02 7c 02 | |.........}.n...|.|.........}.|. |
| 1000 | 68 01 7d 03 74 03 00 00 00 00 00 00 00 00 7c 02 67 01 ab 01 00 00 00 00 00 00 7d 04 7c 04 72 82 | h.}.t.........|.g.........}.|.r. |
| 1020 | 7c 04 6a 05 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ab 00 00 00 00 00 00 00 7d 05 | |.j...........................}. |
| 1040 | 7c 05 96 01 97 01 01 00 74 07 00 00 00 00 00 00 00 00 7c 00 6a 09 00 00 00 00 00 00 00 00 00 00 | |.......t.........|.j........... |
| 1060 | 00 00 00 00 00 00 00 00 74 0b 00 00 00 00 00 00 00 00 7c 00 7c 05 19 00 00 00 ab 01 00 00 00 00 | ........t.........|.|........... |
| 1080 | 00 00 7c 03 7a 0a 00 00 ab 01 00 00 00 00 00 00 74 0d 00 00 00 00 00 00 00 00 64 01 ab 01 00 00 | ..|.z...........t.........d..... |
| 10a0 | 00 00 00 00 ac 02 ab 02 00 00 00 00 00 00 7d 06 7c 06 44 00 8f 07 8f 08 63 03 67 00 63 02 5d 07 | ..............}.|.D.....c.g.c.]. |
| 10c0 | 00 00 5c 02 00 00 7d 07 7d 08 7c 07 91 02 8c 09 04 00 7d 09 7d 07 7d 08 7c 03 6a 0f 00 00 00 00 | ..\...}.}.|.......}.}.}.|.j..... |
| 10e0 | 00 00 00 00 00 00 00 00 00 00 00 00 00 00 7c 09 ab 01 00 00 00 00 00 00 01 00 7c 04 6a 11 00 00 | ..............|...........|.j... |
| 1100 | 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 7c 09 ab 01 00 00 00 00 00 00 01 00 7c 04 72 01 | ................|...........|.r. |
| 1120 | 8c 81 79 00 79 00 63 02 01 00 63 03 7d 08 7d 07 77 00 ad 03 77 01 29 03 4e e9 01 00 00 00 a9 01 | ..y.y.c...c.}.}.w...w.).N....... |
| 1140 | da 03 6b 65 79 29 09 da 16 70 73 65 75 64 6f 5f 70 65 72 69 70 68 65 72 61 6c 5f 6e 6f 64 65 72 | ..key)...pseudo_peripheral_noder |
| 1160 | 03 00 00 00 da 07 70 6f 70 6c 65 66 74 da 06 73 6f 72 74 65 64 da 06 64 65 67 72 65 65 da 03 73 | ......popleft..sorted..degree..s |
| 1180 | 65 74 72 04 00 00 00 da 06 75 70 64 61 74 65 da 06 65 78 74 65 6e 64 29 0a 72 0e 00 00 00 72 0f | etr......update..extend).r....r. |
| 11a0 | 00 00 00 da 05 73 74 61 72 74 da 07 76 69 73 69 74 65 64 da 05 71 75 65 75 65 da 06 70 61 72 65 | .....start..visited..queue..pare |
| 11c0 | 6e 74 da 02 6e 64 da 01 6e da 01 64 da 08 63 68 69 6c 64 72 65 6e 73 0a 00 00 00 20 20 20 20 20 | nt..nd..n..d..childrens......... |
| 11e0 | 20 20 20 20 20 72 11 00 00 00 72 0c 00 00 00 72 0c 00 00 00 80 00 00 00 73 a3 00 00 00 e8 00 f8 | .....r....r....r........s....... |
| 1200 | 80 00 e0 07 10 d0 07 18 dc 10 26 a0 71 d3 10 29 89 05 e1 10 19 98 21 93 0c 88 05 d8 0f 14 88 67 | ..........&.q..)......!........g |
| 1220 | 80 47 dc 0c 11 90 35 90 27 8b 4e 80 45 d9 0a 0f d8 11 16 97 1d 91 1d 93 1f 88 06 d8 0e 14 8a 0c | .G....5.'.N.E................... |
| 1240 | dc 0d 13 90 41 97 48 91 48 9c 53 a0 11 a0 36 a1 19 9b 5e a8 67 d1 1d 35 d3 14 36 bc 4a c0 71 bb | ....A.H.H.S...6...^.g..5..6.J.q. |
| 1260 | 4d d4 0d 4a 88 02 d8 22 24 d7 13 25 99 24 98 21 98 51 92 41 d0 13 25 88 08 d1 13 25 d8 08 0f 8f | M..J..."$..%.$.!.Q.A..%....%.... |
| 1280 | 0e 89 0e 90 78 d4 08 20 d8 08 0d 8f 0c 89 0c 90 58 d4 08 1e f4 0d 00 0b 10 f9 f3 08 00 14 26 f9 | ....x...........X.............&. |
| 12a0 | 73 18 00 00 00 82 41 35 42 33 01 c1 37 0c 42 2d 06 c2 03 27 42 33 01 c2 2b 08 42 33 01 63 01 00 | s.....A5B3..7.B-...'B3..+.B3.c.. |
| 12c0 | 00 00 00 00 00 00 00 00 00 00 06 00 00 00 03 00 00 00 f3 1a 01 00 00 87 07 97 00 74 01 00 00 00 | ...........................t.... |
| 12e0 | 00 00 00 00 00 7c 00 ab 01 00 00 00 00 00 00 7d 01 64 01 7d 02 7c 01 7d 03 09 00 74 03 00 00 00 | .....|.........}.d.}.|.}...t.... |
| 1300 | 00 00 00 00 00 6a 04 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 7c 00 7c 03 ab 02 00 | .....j...................|.|.... |
| 1320 | 00 00 00 00 00 7d 04 74 07 00 00 00 00 00 00 00 00 7c 04 6a 09 00 00 00 00 00 00 00 00 00 00 00 | .....}.t.........|.j............ |
| 1340 | 00 00 00 00 00 00 00 ab 00 00 00 00 00 00 00 ab 01 00 00 00 00 00 00 8a 07 89 07 7c 02 6b 1a 00 | ...........................|.k.. |
| 1360 | 00 72 03 09 00 7c 03 53 00 89 07 7d 02 88 07 66 01 64 02 84 08 7c 04 6a 0b 00 00 00 00 00 00 00 | .r...|.S...}...f.d...|.j........ |
| 1380 | 00 00 00 00 00 00 00 00 00 00 00 ab 00 00 00 00 00 00 00 44 00 ab 00 00 00 00 00 00 00 7d 05 74 | ...................D.........}.t |
| 13a0 | 0d 00 00 00 00 00 00 00 00 7c 00 6a 0f 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 7c | .........|.j...................| |
| 13c0 | 05 ab 01 00 00 00 00 00 00 74 11 00 00 00 00 00 00 00 00 64 03 ab 01 00 00 00 00 00 00 ac 04 ab | .........t.........d............ |
| 13e0 | 02 00 00 00 00 00 00 5c 02 00 00 7d 03 7d 06 8c 7b 29 05 4e 72 02 00 00 00 63 01 00 00 00 00 00 | .......\...}.}..{).Nr....c...... |
| 1400 | 00 00 00 00 00 00 03 00 00 00 33 00 00 00 f3 34 00 00 00 95 01 4b 00 01 00 97 00 7c 00 5d 0f 00 | ..........3....4.....K.....|.].. |
| 1420 | 00 5c 02 00 00 7d 01 7d 02 7c 02 89 03 6b 28 00 00 73 01 8c 0c 7c 01 96 01 97 01 01 00 8c 11 04 | .\...}.}.|...k(..s...|.......... |
| 1440 | 00 79 00 ad 03 77 01 a9 01 4e a9 00 29 04 da 02 2e 30 72 26 00 00 00 da 04 64 69 73 74 da 01 6c | .y...w...N..)....0r&.....dist..l |
| 1460 | 73 04 00 00 00 20 20 20 80 72 11 00 00 00 fa 09 3c 67 65 6e 65 78 70 72 3e 7a 29 70 73 65 75 64 | s........r......<genexpr>z)pseud |
| 1480 | 6f 5f 70 65 72 69 70 68 65 72 61 6c 5f 6e 6f 64 65 2e 3c 6c 6f 63 61 6c 73 3e 2e 3c 67 65 6e 65 | o_peripheral_node.<locals>.<gene |
| 14a0 | 78 70 72 3e 9d 00 00 00 73 1b 00 00 00 f8 e8 00 f8 80 00 d2 13 3e 99 27 98 21 98 54 b0 44 b8 41 | xpr>....s............>.'.!.T.D.A |
| 14c0 | b3 49 94 41 d1 13 3e f9 73 08 00 00 00 83 0d 18 01 91 07 18 01 72 17 00 00 00 72 18 00 00 00 29 | .I.A..>.s............r....r....) |
| 14e0 | 09 72 06 00 00 00 72 0a 00 00 00 da 14 73 68 6f 72 74 65 73 74 5f 70 61 74 68 5f 6c 65 6e 67 74 | .r....r......shortest_path_lengt |
| 1500 | 68 da 03 6d 61 78 da 06 76 61 6c 75 65 73 da 05 69 74 65 6d 73 da 03 6d 69 6e 72 1d 00 00 00 72 | h..max..values..items..minr....r |
| 1520 | 04 00 00 00 29 08 72 0e 00 00 00 da 01 75 da 02 6c 70 da 01 76 da 03 73 70 6c da 08 66 61 72 74 | ....).r......u..lp..v..spl..fart |
| 1540 | 68 65 73 74 da 03 64 65 67 72 2f 00 00 00 73 08 00 00 00 20 20 20 20 20 20 20 40 72 11 00 00 00 | hest..degr/...s...........@r.... |
| 1560 | 72 1a 00 00 00 72 1a 00 00 00 91 00 00 00 73 88 00 00 00 f8 80 00 f4 06 00 09 1a 98 21 d3 08 1c | r....r........s.............!... |
| 1580 | 80 41 d8 09 0a 80 42 d8 08 09 80 41 d8 0a 0e dc 0e 10 d7 0e 25 d1 0e 25 a0 61 a8 11 d3 0e 2b 88 | .A....B....A........%..%.a....+. |
| 15a0 | 03 dc 0c 0f 90 03 97 0a 91 0a 93 0c d3 0c 1d 88 01 d8 0b 0c 90 02 8a 37 d8 0c 11 f0 08 00 0c 0d | .......................7........ |
| 15c0 | 80 48 f0 07 00 0e 0f 88 02 db 13 3e a0 53 a7 59 a1 59 a3 5b d4 13 3e 88 08 dc 11 14 90 51 97 58 | .H.........>.S.Y.Y.[..>......Q.X |
| 15e0 | 91 58 98 68 d3 15 27 ac 5a b8 01 ab 5d d4 11 3b 89 06 88 01 88 33 f0 0f 00 0b 0f 72 15 00 00 00 | .X.h..'.Z...]..;.....3.....r.... |
| 1600 | 72 2b 00 00 00 29 0e da 07 5f 5f 64 6f 63 5f 5f da 0b 63 6f 6c 6c 65 63 74 69 6f 6e 73 72 03 00 | r+...)...__doc__..collectionsr.. |
| 1620 | 00 00 da 08 6f 70 65 72 61 74 6f 72 72 04 00 00 00 da 08 6e 65 74 77 6f 72 6b 78 72 0a 00 00 00 | ....operatorr......networkxr.... |
| 1640 | da 05 75 74 69 6c 73 72 06 00 00 00 da 07 5f 5f 61 6c 6c 5f 5f 72 07 00 00 00 72 08 00 00 00 72 | ..utilsr......__all__r....r....r |
| 1660 | 0c 00 00 00 72 1a 00 00 00 72 2c 00 00 00 72 15 00 00 00 72 11 00 00 00 fa 08 3c 6d 6f 64 75 6c | ....r....r,...r....r......<modul |
| 1680 | 65 3e 72 42 00 00 00 01 00 00 00 73 3b 00 00 00 f0 03 01 01 01 f1 02 02 01 04 f5 08 00 01 1e dd | e>rB.......s;................... |
| 16a0 | 00 1f e3 00 15 e5 00 25 e0 0b 23 d0 25 45 d0 0a 46 80 07 f3 06 36 01 4e 01 f3 72 01 35 01 4a 01 | .......%..#.%E..F....6.N..r.5.J. |
| 16c0 | f3 70 01 0e 01 1f f3 22 0e 01 0d 72 15 00 00 00 | .p....."...r.... |