| ofs | hex dump | ascii |
|---|
| 0000 | cb 0d 0d 0a 00 00 00 00 0d fd a7 68 58 c1 01 00 e3 00 00 00 00 00 00 00 00 00 00 00 00 08 00 00 | ...........hX................... |
| 0020 | 00 00 00 00 00 f3 3e 08 00 00 97 00 64 00 5a 00 67 00 64 01 a2 01 5a 01 64 02 64 03 6c 02 5a 02 | ......>.....d.Z.g.d...Z.d.d.l.Z. |
| 0040 | 64 02 64 03 6c 03 5a 03 64 02 64 03 6c 04 5a 04 64 02 64 04 6c 05 6d 06 5a 06 6d 07 5a 07 01 00 | d.d.l.Z.d.d.l.Z.d.d.l.m.Z.m.Z... |
| 0060 | 64 02 64 05 6c 08 6d 09 5a 09 6d 0a 5a 0a 6d 0b 5a 0b 6d 0c 5a 0c 6d 0d 5a 0d 6d 0e 5a 0e 6d 0f | d.d.l.m.Z.m.Z.m.Z.m.Z.m.Z.m.Z.m. |
| 0080 | 5a 0f 6d 10 5a 10 6d 11 5a 11 6d 12 5a 12 6d 13 5a 13 6d 14 5a 14 6d 15 5a 15 6d 16 5a 16 6d 17 | Z.m.Z.m.Z.m.Z.m.Z.m.Z.m.Z.m.Z.m. |
| 00a0 | 5a 17 6d 18 5a 18 6d 19 5a 19 6d 1a 5a 1a 6d 1b 5a 1b 6d 1c 5a 1c 6d 1d 5a 1d 6d 1e 5a 1e 6d 1f | Z.m.Z.m.Z.m.Z.m.Z.m.Z.m.Z.m.Z.m. |
| 00c0 | 5a 1f 6d 20 5a 20 6d 21 5a 21 6d 22 5a 22 6d 23 5a 23 6d 24 5a 24 6d 25 5a 25 6d 26 5a 26 6d 27 | Z.m.Z.m!Z!m"Z"m#Z#m$Z$m%Z%m&Z&m' |
| 00e0 | 5a 27 6d 28 5a 28 6d 29 5a 29 6d 2a 5a 2a 6d 2b 5a 2b 6d 2c 5a 2c 6d 2d 5a 2d 6d 2e 5a 2e 6d 2f | Z'm(Z(m)Z)m*Z*m+Z+m,Z,m-Z-m.Z.m/ |
| 0100 | 5a 2f 6d 30 5a 30 6d 31 5a 31 01 00 64 02 64 06 6c 08 6d 32 5a 33 01 00 64 02 64 07 6c 08 6d 34 | Z/m0Z0m1Z1..d.d.l.m2Z3..d.d.l.m4 |
| 0120 | 5a 35 01 00 64 02 64 08 6c 08 6d 36 5a 37 01 00 64 02 64 09 6c 08 6d 38 5a 39 01 00 64 02 64 0a | Z5..d.d.l.m6Z7..d.d.l.m8Z9..d.d. |
| 0140 | 6c 08 6d 3a 5a 3b 01 00 64 02 64 0b 6c 08 6d 3c 5a 3d 01 00 64 02 64 0c 6c 08 6d 3e 5a 3f 01 00 | l.m:Z;..d.d.l.m<Z=..d.d.l.m>Z?.. |
| 0160 | 64 02 64 0d 6c 08 6d 40 5a 41 01 00 64 02 64 0e 6c 08 6d 42 5a 43 01 00 64 02 64 0f 6c 44 6d 45 | d.d.l.m@ZA..d.d.l.mBZC..d.d.lDmE |
| 0180 | 5a 45 01 00 64 02 64 10 6c 46 6d 47 5a 47 01 00 64 02 64 11 6c 48 6d 49 5a 49 01 00 64 02 64 12 | ZE..d.d.lFmGZG..d.d.lHmIZI..d.d. |
| 01a0 | 6c 4a 6d 4b 5a 4b 6d 4c 5a 4c 01 00 64 02 64 13 6c 4d 6d 4e 5a 4e 6d 4f 5a 4f 01 00 64 02 64 14 | lJmKZKmLZL..d.d.lMmNZNmOZO..d.d. |
| 01c0 | 6c 50 6d 51 5a 51 01 00 02 00 47 00 64 15 84 00 64 16 65 07 ab 03 00 00 00 00 00 00 5a 52 02 00 | lPmQZQ....G.d...d.e.........ZR.. |
| 01e0 | 47 00 64 17 84 00 64 18 65 07 ab 03 00 00 00 00 00 00 5a 53 02 00 47 00 64 19 84 00 64 1a 65 07 | G.d...d.e.........ZS..G.d...d.e. |
| 0200 | ab 03 00 00 00 00 00 00 5a 54 02 00 47 00 64 1b 84 00 64 1c 65 07 ab 03 00 00 00 00 00 00 5a 55 | ........ZT..G.d...d.e.........ZU |
| 0220 | 02 00 47 00 64 1d 84 00 64 1e 65 07 ab 03 00 00 00 00 00 00 5a 56 02 00 65 02 6a ae 00 00 00 00 | ..G.d...d.e.........ZV..e.j..... |
| 0240 | 00 00 00 00 00 00 00 00 00 00 00 00 00 00 65 28 6a b0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 | ..............e(j............... |
| 0260 | 00 00 00 00 64 1f ac 20 ab 02 00 00 00 00 00 00 5a 58 65 20 5a 59 02 00 65 49 64 1f ab 01 00 00 | ....d...........ZXe.ZY..eId..... |
| 0280 | 00 00 00 00 02 00 47 00 64 21 84 00 64 22 65 5a ab 03 00 00 00 00 00 00 ab 00 00 00 00 00 00 00 | ......G.d!..d"eZ................ |
| 02a0 | 5a 5b 64 23 84 00 5a 5c 64 24 84 00 5a 5d 64 25 84 00 5a 5e 64 26 84 00 5a 5f 64 27 84 00 5a 60 | Z[d#..Z\d$..Z]d%..Z^d&..Z_d'..Z` |
| 02c0 | 64 28 84 00 5a 61 64 29 84 00 5a 62 64 2a 84 00 5a 63 65 2c 65 2c 65 19 65 19 65 16 65 2c 65 13 | d(..Zad)..Zbd*..Zce,e,e.e.e.e,e. |
| 02e0 | 65 19 69 04 5a 64 65 2c 65 16 65 19 65 13 65 16 65 16 65 13 65 13 69 04 5a 65 65 19 66 01 64 2b | e.i.Zde,e.e.e.e.e.e.e.i.Zee.f.d+ |
| 0300 | 84 01 5a 66 65 13 66 01 64 2c 84 01 5a 67 64 2d 84 00 5a 68 64 2e 84 00 5a 69 64 2f 84 00 5a 6a | ..Zfe.f.d,..Zgd-..Zhd...Zid/..Zj |
| 0320 | 64 30 84 00 5a 6b 64 31 84 00 5a 6c 64 32 84 00 5a 6d 64 33 84 00 5a 6e 64 34 84 00 5a 40 64 80 | d0..Zkd1..Zld2..Zmd3..Znd4..Z@d. |
| 0340 | 64 35 84 01 5a 6f 02 00 65 58 65 6f ab 01 00 00 00 00 00 00 64 80 64 36 84 01 ab 00 00 00 00 00 | d5..Zo..eXeo........d.d6........ |
| 0360 | 00 00 5a 70 64 37 84 00 5a 71 02 00 65 58 65 71 ab 01 00 00 00 00 00 00 64 38 84 00 ab 00 00 00 | ..Zpd7..Zq..eXeq........d8...... |
| 0380 | 00 00 00 00 5a 72 64 80 64 39 84 01 5a 73 02 00 65 58 65 73 ab 01 00 00 00 00 00 00 64 81 64 3b | ....Zrd.d9..Zs..eXes........d.d; |
| 03a0 | 84 01 ab 00 00 00 00 00 00 00 5a 74 64 3c 84 00 5a 75 02 00 65 58 65 75 ab 01 00 00 00 00 00 00 | ..........Ztd<..Zu..eXeu........ |
| 03c0 | 64 3d 84 00 ab 00 00 00 00 00 00 00 5a 76 64 3e 84 00 5a 77 02 00 65 58 65 77 ab 01 00 00 00 00 | d=..........Zvd>..Zw..eXew...... |
| 03e0 | 00 00 64 3f 84 00 ab 00 00 00 00 00 00 00 5a 78 64 03 64 40 9c 01 64 41 84 02 5a 79 02 00 65 58 | ..d?..........Zxd.d@..dA..Zy..eX |
| 0400 | 65 79 ab 01 00 00 00 00 00 00 64 42 64 40 9c 01 64 43 84 02 ab 00 00 00 00 00 00 00 5a 7a 64 44 | ey........dBd@..dC..........ZzdD |
| 0420 | 84 00 5a 7b 02 00 65 58 65 7b ab 01 00 00 00 00 00 00 64 45 84 00 ab 00 00 00 00 00 00 00 5a 3a | ..Z{..eXe{........dE..........Z: |
| 0440 | 64 80 64 46 84 01 5a 7c 02 00 65 58 65 7c ab 01 00 00 00 00 00 00 64 82 64 47 84 01 ab 00 00 00 | d.dF..Z|..eXe|........d.dG...... |
| 0460 | 00 00 00 00 5a 7d 02 00 65 58 65 75 ab 01 00 00 00 00 00 00 64 48 84 00 ab 00 00 00 00 00 00 00 | ....Z}..eXeu........dH.......... |
| 0480 | 5a 7e 64 80 64 49 84 01 5a 7f 02 00 65 58 65 7f ab 01 00 00 00 00 00 00 64 83 64 4a 84 01 ab 00 | Z~d.dI..Z...eXe.........d.dJ.... |
| 04a0 | 00 00 00 00 00 00 5a 80 02 00 65 58 65 75 ab 01 00 00 00 00 00 00 64 4b 84 00 ab 00 00 00 00 00 | ......Z...eXeu........dK........ |
| 04c0 | 00 00 5a 81 02 00 65 58 65 7f ab 01 00 00 00 00 00 00 64 83 64 4c 84 01 ab 00 00 00 00 00 00 00 | ..Z...eXe.........d.dL.......... |
| 04e0 | 5a 82 64 84 64 4d 84 01 5a 83 02 00 65 58 65 83 ab 01 00 00 00 00 00 00 64 85 64 4e 84 01 ab 00 | Z.d.dM..Z...eXe.........d.dN.... |
| 0500 | 00 00 00 00 00 00 5a 84 64 4f 84 00 5a 85 02 00 65 58 65 85 ab 01 00 00 00 00 00 00 64 50 84 00 | ......Z.dO..Z...eXe.........dP.. |
| 0520 | ab 00 00 00 00 00 00 00 5a 86 64 80 64 51 84 01 5a 87 02 00 65 58 65 87 ab 01 00 00 00 00 00 00 | ........Z.d.dQ..Z...eXe......... |
| 0540 | 64 80 64 52 84 01 ab 00 00 00 00 00 00 00 5a 88 64 86 64 03 64 53 9c 01 64 54 84 03 5a 89 02 00 | d.dR..........Z.d.d.dS..dT..Z... |
| 0560 | 65 58 65 89 ab 01 00 00 00 00 00 00 64 87 64 03 64 53 9c 01 64 55 84 03 ab 00 00 00 00 00 00 00 | eXe.........d.d.dS..dU.......... |
| 0580 | 5a 8a 64 86 64 03 64 53 9c 01 64 56 84 03 5a 8b 02 00 65 58 65 8b ab 01 00 00 00 00 00 00 64 87 | Z.d.d.dS..dV..Z...eXe.........d. |
| 05a0 | 65 45 64 53 9c 01 64 57 84 03 ab 00 00 00 00 00 00 00 5a 8c 02 00 65 58 65 75 ab 01 00 00 00 00 | eEdS..dW..........Z...eXeu...... |
| 05c0 | 00 00 64 58 84 00 ab 00 00 00 00 00 00 00 5a 8d 02 00 65 58 65 75 ab 01 00 00 00 00 00 00 64 59 | ..dX..........Z...eXeu........dY |
| 05e0 | 84 00 ab 00 00 00 00 00 00 00 5a 8e 64 80 64 5a 84 01 5a 8f 02 00 65 58 65 8f ab 01 00 00 00 00 | ..........Z.d.dZ..Z...eXe....... |
| 0600 | 00 00 64 80 64 5b 84 01 ab 00 00 00 00 00 00 00 5a 90 64 80 64 5c 84 01 5a 91 64 84 64 5d 84 01 | ..d.d[..........Z.d.d\..Z.d.d].. |
| 0620 | 5a 92 02 00 65 58 65 92 ab 01 00 00 00 00 00 00 64 88 64 5e 84 01 ab 00 00 00 00 00 00 00 5a 93 | Z...eXe.........d.d^..........Z. |
| 0640 | 64 03 64 5f 9c 01 64 60 84 02 5a 94 02 00 65 58 65 94 ab 01 00 00 00 00 00 00 64 03 64 5f 9c 01 | d.d_..d`..Z...eXe.........d.d_.. |
| 0660 | 64 61 84 02 ab 00 00 00 00 00 00 00 5a 95 64 80 64 62 84 01 5a 96 64 89 64 63 84 01 5a 97 64 80 | da..........Z.d.db..Z.d.dc..Z.d. |
| 0680 | 64 64 84 01 5a 98 64 03 64 65 9c 01 64 66 84 02 5a 99 02 00 65 58 65 99 ab 01 00 00 00 00 00 00 | dd..Z.d.de..df..Z...eXe......... |
| 06a0 | 64 02 64 65 9c 01 64 67 84 02 ab 00 00 00 00 00 00 00 5a 34 64 03 64 03 64 68 9c 02 64 69 84 02 | d.de..dg..........Z4d.d.dh..di.. |
| 06c0 | 5a 9a 02 00 65 58 65 9a ab 01 00 00 00 00 00 00 64 02 64 03 64 68 9c 02 64 6a 84 02 ab 00 00 00 | Z...eXe.........d.d.dh..dj...... |
| 06e0 | 00 00 00 00 5a 3e 64 03 64 6b 9c 01 64 6c 84 02 5a 9b 02 00 65 58 65 9b ab 01 00 00 00 00 00 00 | ....Z>d.dk..dl..Z...eXe......... |
| 0700 | 64 6d 64 6b 9c 01 64 6e 84 02 ab 00 00 00 00 00 00 00 5a 32 64 6f 84 00 5a 9c 02 00 65 58 65 9c | dmdk..dn..........Z2do..Z...eXe. |
| 0720 | ab 01 00 00 00 00 00 00 64 70 84 00 ab 00 00 00 00 00 00 00 5a 36 64 03 64 71 9c 01 64 72 84 02 | ........dp..........Z6d.dq..dr.. |
| 0740 | 5a 9d 02 00 65 58 65 9d ab 01 00 00 00 00 00 00 64 3a 64 71 9c 01 64 73 84 02 ab 00 00 00 00 00 | Z...eXe.........d:dq..ds........ |
| 0760 | 00 00 5a 3c 65 3d 6a 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 65 3c 5f 00 00 00 | ..Z<e=j...................e<_... |
| 0780 | 00 00 00 00 00 00 64 74 84 00 5a 9e 02 00 65 58 65 9e ab 01 00 00 00 00 00 00 64 75 84 00 ab 00 | ......dt..Z...eXe.........du.... |
| 07a0 | 00 00 00 00 00 00 5a 38 65 39 6a 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 9b 00 | ......Z8e9j..................... |
| 07c0 | 64 76 9d 02 65 38 5f 00 00 00 00 00 00 00 00 00 64 03 64 03 64 77 9c 02 64 78 84 02 5a 9f 02 00 | dv..e8_.........d.d.dw..dx..Z... |
| 07e0 | 65 58 65 9f ab 01 00 00 00 00 00 00 64 42 64 79 64 77 9c 02 64 7a 84 02 ab 00 00 00 00 00 00 00 | eXe.........dBdydw..dz.......... |
| 0800 | 5a a0 64 03 64 03 64 03 64 7b 9c 03 64 7c 84 02 5a a1 02 00 65 58 65 a1 ab 01 00 00 00 00 00 00 | Z.d.d.d.d{..d|..Z...eXe......... |
| 0820 | 64 03 64 42 64 3a 64 7b 9c 03 64 7d 84 02 ab 00 00 00 00 00 00 00 5a a2 64 03 64 6b 9c 01 64 7e | d.dBd:d{..d}..........Z.d.dk..d~ |
| 0840 | 84 02 5a a3 02 00 65 58 65 a3 ab 01 00 00 00 00 00 00 64 6d 64 6b 9c 01 64 7f 84 02 ab 00 00 00 | ..Z...eXe.........dmdk..d....... |
| 0860 | 00 00 00 00 5a 42 79 03 29 8a 61 78 01 00 00 4c 69 74 65 20 76 65 72 73 69 6f 6e 20 6f 66 20 73 | ....ZBy.).ax...Lite.version.of.s |
| 0880 | 63 69 70 79 2e 6c 69 6e 61 6c 67 2e 0a 0a 4e 6f 74 65 73 0a 2d 2d 2d 2d 2d 0a 54 68 69 73 20 6d | cipy.linalg...Notes.-----.This.m |
| 08a0 | 6f 64 75 6c 65 20 69 73 20 61 20 6c 69 74 65 20 76 65 72 73 69 6f 6e 20 6f 66 20 74 68 65 20 6c | odule.is.a.lite.version.of.the.l |
| 08c0 | 69 6e 61 6c 67 2e 70 79 20 6d 6f 64 75 6c 65 20 69 6e 20 53 63 69 50 79 20 77 68 69 63 68 0a 63 | inalg.py.module.in.SciPy.which.c |
| 08e0 | 6f 6e 74 61 69 6e 73 20 68 69 67 68 2d 6c 65 76 65 6c 20 50 79 74 68 6f 6e 20 69 6e 74 65 72 66 | ontains.high-level.Python.interf |
| 0900 | 61 63 65 20 74 6f 20 74 68 65 20 4c 41 50 41 43 4b 20 6c 69 62 72 61 72 79 2e 20 20 54 68 65 20 | ace.to.the.LAPACK.library...The. |
| 0920 | 6c 69 74 65 0a 76 65 72 73 69 6f 6e 20 6f 6e 6c 79 20 61 63 63 65 73 73 65 73 20 74 68 65 20 66 | lite.version.only.accesses.the.f |
| 0940 | 6f 6c 6c 6f 77 69 6e 67 20 4c 41 50 41 43 4b 20 66 75 6e 63 74 69 6f 6e 73 3a 20 64 67 65 73 76 | ollowing.LAPACK.functions:.dgesv |
| 0960 | 2c 20 7a 67 65 73 76 2c 0a 64 67 65 65 76 2c 20 7a 67 65 65 76 2c 20 64 67 65 73 64 64 2c 20 7a | ,.zgesv,.dgeev,.zgeev,.dgesdd,.z |
| 0980 | 67 65 73 64 64 2c 20 64 67 65 6c 73 64 2c 20 7a 67 65 6c 73 64 2c 20 64 73 79 65 76 64 2c 20 7a | gesdd,.dgelsd,.zgelsd,.dsyevd,.z |
| 09a0 | 68 65 65 76 64 2c 20 64 67 65 74 72 66 2c 0a 7a 67 65 74 72 66 2c 20 64 70 6f 74 72 66 2c 20 7a | heevd,.dgetrf,.zgetrf,.dpotrf,.z |
| 09c0 | 70 6f 74 72 66 2c 20 64 67 65 71 72 66 2c 20 7a 67 65 71 72 66 2c 20 7a 75 6e 67 71 72 2c 20 64 | potrf,.dgeqrf,.zgeqrf,.zungqr,.d |
| 09e0 | 6f 72 67 71 72 2e 0a 29 20 da 0c 6d 61 74 72 69 78 5f 70 6f 77 65 72 da 05 73 6f 6c 76 65 da 0b | orgqr..)...matrix_power..solve.. |
| 0a00 | 74 65 6e 73 6f 72 73 6f 6c 76 65 da 09 74 65 6e 73 6f 72 69 6e 76 da 03 69 6e 76 da 08 63 68 6f | tensorsolve..tensorinv..inv..cho |
| 0a20 | 6c 65 73 6b 79 da 07 65 69 67 76 61 6c 73 da 08 65 69 67 76 61 6c 73 68 da 04 70 69 6e 76 da 07 | lesky..eigvals..eigvalsh..pinv.. |
| 0a40 | 73 6c 6f 67 64 65 74 da 03 64 65 74 da 03 73 76 64 da 07 73 76 64 76 61 6c 73 da 03 65 69 67 da | slogdet..det..svd..svdvals..eig. |
| 0a60 | 04 65 69 67 68 da 05 6c 73 74 73 71 da 04 6e 6f 72 6d da 02 71 72 da 04 63 6f 6e 64 da 0b 6d 61 | .eigh..lstsq..norm..qr..cond..ma |
| 0a80 | 74 72 69 78 5f 72 61 6e 6b da 0b 4c 69 6e 41 6c 67 45 72 72 6f 72 da 09 6d 75 6c 74 69 5f 64 6f | trix_rank..LinAlgError..multi_do |
| 0aa0 | 74 da 05 74 72 61 63 65 da 08 64 69 61 67 6f 6e 61 6c da 05 63 72 6f 73 73 da 05 6f 75 74 65 72 | t..trace..diagonal..cross..outer |
| 0ac0 | da 09 74 65 6e 73 6f 72 64 6f 74 da 06 6d 61 74 6d 75 6c da 10 6d 61 74 72 69 78 5f 74 72 61 6e | ..tensordot..matmul..matrix_tran |
| 0ae0 | 73 70 6f 73 65 da 0b 6d 61 74 72 69 78 5f 6e 6f 72 6d da 0b 76 65 63 74 6f 72 5f 6e 6f 72 6d da | spose..matrix_norm..vector_norm. |
| 0b00 | 06 76 65 63 64 6f 74 e9 00 00 00 00 4e 29 02 da 03 41 6e 79 da 0a 4e 61 6d 65 64 54 75 70 6c 65 | .vecdot.....N)...Any..NamedTuple |
| 0b20 | 29 29 da 03 61 62 73 da 03 61 64 64 da 03 61 6c 6c da 04 61 6d 61 78 da 04 61 6d 69 6e da 07 61 | ))..abs..add..all..amax..amin..a |
| 0b40 | 72 67 73 6f 72 74 da 05 61 72 72 61 79 da 0a 61 73 61 6e 79 61 72 72 61 79 da 07 61 73 61 72 72 | rgsort..array..asanyarray..asarr |
| 0b60 | 61 79 da 0a 61 74 6c 65 61 73 74 5f 32 64 da 07 63 64 6f 75 62 6c 65 da 0f 63 6f 6d 70 6c 65 78 | ay..atleast_2d..cdouble..complex |
| 0b80 | 66 6c 6f 61 74 69 6e 67 da 0d 63 6f 75 6e 74 5f 6e 6f 6e 7a 65 72 6f da 07 63 73 69 6e 67 6c 65 | floating..count_nonzero..csingle |
| 0ba0 | da 06 64 69 76 69 64 65 da 03 64 6f 74 da 06 64 6f 75 62 6c 65 da 05 65 6d 70 74 79 da 0a 65 6d | ..divide..dot..double..empty..em |
| 0bc0 | 70 74 79 5f 6c 69 6b 65 da 08 65 72 72 73 74 61 74 65 da 05 66 69 6e 66 6f da 07 69 6e 65 78 61 | pty_like..errstate..finfo..inexa |
| 0be0 | 63 74 da 03 69 6e 66 da 04 69 6e 74 63 da 04 69 6e 74 70 da 08 69 73 66 69 6e 69 74 65 da 05 69 | ct..inf..intc..intp..isfinite..i |
| 0c00 | 73 6e 61 6e da 08 6d 6f 76 65 61 78 69 73 da 08 6d 75 6c 74 69 70 6c 79 da 07 6e 65 77 61 78 69 | snan..moveaxis..multiply..newaxi |
| 0c20 | 73 da 07 6f 62 6a 65 63 74 5f da 09 6f 76 65 72 72 69 64 65 73 da 04 70 72 6f 64 da 0a 72 65 63 | s..object_..overrides..prod..rec |
| 0c40 | 69 70 72 6f 63 61 6c da 04 73 69 67 6e da 06 73 69 6e 67 6c 65 da 04 73 6f 72 74 da 04 73 71 72 | iprocal..sign..single..sort..sqr |
| 0c60 | 74 da 03 73 75 6d da 08 73 77 61 70 61 78 65 73 da 05 7a 65 72 6f 73 29 01 72 1a 00 00 00 29 01 | t..sum..swapaxes..zeros).r....). |
| 0c80 | 72 19 00 00 00 29 01 72 1d 00 00 00 29 01 72 1e 00 00 00 29 01 72 1b 00 00 00 29 01 72 1c 00 00 | r....).r....).r....).r....).r... |
| 0ca0 | 00 29 01 72 18 00 00 00 29 01 da 09 74 72 61 6e 73 70 6f 73 65 29 01 72 21 00 00 00 29 01 da 08 | .).r....)...transpose).r!...)... |
| 0cc0 | 5f 4e 6f 56 61 6c 75 65 29 01 da 07 4e 44 41 72 72 61 79 29 01 da 0a 73 65 74 5f 6d 6f 64 75 6c | _NoValue)...NDArray)...set_modul |
| 0ce0 | 65 29 02 da 03 65 79 65 da 04 74 72 69 75 29 02 da 14 6e 6f 72 6d 61 6c 69 7a 65 5f 61 78 69 73 | e)...eye..triu)...normalize_axis |
| 0d00 | 5f 69 6e 64 65 78 da 14 6e 6f 72 6d 61 6c 69 7a 65 5f 61 78 69 73 5f 74 75 70 6c 65 29 01 da 0d | _index..normalize_axis_tuple)... |
| 0d20 | 5f 75 6d 61 74 68 5f 6c 69 6e 61 6c 67 63 00 00 00 00 00 00 00 00 00 00 00 00 03 00 00 00 00 00 | _umath_linalgc.................. |
| 0d40 | 00 00 f3 2e 00 00 00 97 00 65 00 5a 01 64 00 5a 02 55 00 65 03 65 04 19 00 00 00 65 05 64 01 3c | .........e.Z.d.Z.U.e.e.....e.d.< |
| 0d60 | 00 00 00 65 03 65 04 19 00 00 00 65 05 64 02 3c 00 00 00 79 03 29 04 da 09 45 69 67 52 65 73 75 | ...e.e.....e.d.<...y.)...EigResu |
| 0d80 | 6c 74 da 0b 65 69 67 65 6e 76 61 6c 75 65 73 da 0c 65 69 67 65 6e 76 65 63 74 6f 72 73 4e a9 06 | lt..eigenvalues..eigenvectorsN.. |
| 0da0 | da 08 5f 5f 6e 61 6d 65 5f 5f da 0a 5f 5f 6d 6f 64 75 6c 65 5f 5f da 0c 5f 5f 71 75 61 6c 6e 61 | ..__name__..__module__..__qualna |
| 0dc0 | 6d 65 5f 5f 72 50 00 00 00 72 23 00 00 00 da 0f 5f 5f 61 6e 6e 6f 74 61 74 69 6f 6e 73 5f 5f a9 | me__rP...r#.....__annotations__. |
| 0de0 | 00 f3 00 00 00 00 fa 5b 2f 68 6f 6d 65 2f 62 6c 61 63 6b 68 61 6f 2f 75 69 75 63 2d 63 6f 75 72 | .......[/home/blackhao/uiuc-cour |
| 0e00 | 73 65 2d 67 72 61 70 68 2f 2e 76 65 6e 76 2f 6c 69 62 2f 70 79 74 68 6f 6e 33 2e 31 32 2f 73 69 | se-graph/.venv/lib/python3.12/si |
| 0e20 | 74 65 2d 70 61 63 6b 61 67 65 73 2f 6e 75 6d 70 79 2f 6c 69 6e 61 6c 67 2f 5f 6c 69 6e 61 6c 67 | te-packages/numpy/linalg/_linalg |
| 0e40 | 2e 70 79 72 58 00 00 00 72 58 00 00 00 66 00 00 00 f3 16 00 00 00 85 00 d8 11 18 98 13 91 1c d3 | .pyrX...rX...f.................. |
| 0e60 | 04 1d d8 12 19 98 23 91 2c d4 04 1e 72 61 00 00 00 72 58 00 00 00 63 00 00 00 00 00 00 00 00 00 | ......#.,...ra...rX...c......... |
| 0e80 | 00 00 00 03 00 00 00 00 00 00 00 f3 2e 00 00 00 97 00 65 00 5a 01 64 00 5a 02 55 00 65 03 65 04 | ..................e.Z.d.Z.U.e.e. |
| 0ea0 | 19 00 00 00 65 05 64 01 3c 00 00 00 65 03 65 04 19 00 00 00 65 05 64 02 3c 00 00 00 79 03 29 04 | ....e.d.<...e.e.....e.d.<...y.). |
| 0ec0 | da 0a 45 69 67 68 52 65 73 75 6c 74 72 59 00 00 00 72 5a 00 00 00 4e 72 5b 00 00 00 72 60 00 00 | ..EighResultrY...rZ...Nr[...r`.. |
| 0ee0 | 00 72 61 00 00 00 72 62 00 00 00 72 65 00 00 00 72 65 00 00 00 6a 00 00 00 72 63 00 00 00 72 61 | .ra...rb...re...re...j...rc...ra |
| 0f00 | 00 00 00 72 65 00 00 00 63 00 00 00 00 00 00 00 00 00 00 00 00 03 00 00 00 00 00 00 00 f3 2e 00 | ...re...c....................... |
| 0f20 | 00 00 97 00 65 00 5a 01 64 00 5a 02 55 00 65 03 65 04 19 00 00 00 65 05 64 01 3c 00 00 00 65 03 | ....e.Z.d.Z.U.e.e.....e.d.<...e. |
| 0f40 | 65 04 19 00 00 00 65 05 64 02 3c 00 00 00 79 03 29 04 da 08 51 52 52 65 73 75 6c 74 da 01 51 da | e.....e.d.<...y.)...QRResult..Q. |
| 0f60 | 01 52 4e 72 5b 00 00 00 72 60 00 00 00 72 61 00 00 00 72 62 00 00 00 72 67 00 00 00 72 67 00 00 | .RNr[...r`...ra...rb...rg...rg.. |
| 0f80 | 00 6e 00 00 00 73 14 00 00 00 85 00 d8 07 0e 88 73 81 7c 83 4f d8 07 0e 88 73 81 7c 84 4f 72 61 | .n...s..........s.|.O....s.|.Ora |
| 0fa0 | 00 00 00 72 67 00 00 00 63 00 00 00 00 00 00 00 00 00 00 00 00 03 00 00 00 00 00 00 00 f3 2e 00 | ...rg...c....................... |
| 0fc0 | 00 00 97 00 65 00 5a 01 64 00 5a 02 55 00 65 03 65 04 19 00 00 00 65 05 64 01 3c 00 00 00 65 03 | ....e.Z.d.Z.U.e.e.....e.d.<...e. |
| 0fe0 | 65 04 19 00 00 00 65 05 64 02 3c 00 00 00 79 03 29 04 da 0d 53 6c 6f 67 64 65 74 52 65 73 75 6c | e.....e.d.<...y.)...SlogdetResul |
| 1000 | 74 72 47 00 00 00 da 09 6c 6f 67 61 62 73 64 65 74 4e 72 5b 00 00 00 72 60 00 00 00 72 61 00 00 | trG.....logabsdetNr[...r`...ra.. |
| 1020 | 00 72 62 00 00 00 72 6b 00 00 00 72 6b 00 00 00 72 00 00 00 73 16 00 00 00 85 00 d8 0a 11 90 23 | .rb...rk...rk...r...s..........# |
| 1040 | 89 2c d3 04 16 d8 0f 16 90 73 89 7c d4 04 1b 72 61 00 00 00 72 6b 00 00 00 63 00 00 00 00 00 00 | .,.......s.|...ra...rk...c...... |
| 1060 | 00 00 00 00 00 00 03 00 00 00 00 00 00 00 f3 3e 00 00 00 97 00 65 00 5a 01 64 00 5a 02 55 00 65 | ...............>.....e.Z.d.Z.U.e |
| 1080 | 03 65 04 19 00 00 00 65 05 64 01 3c 00 00 00 65 03 65 04 19 00 00 00 65 05 64 02 3c 00 00 00 65 | .e.....e.d.<...e.e.....e.d.<...e |
| 10a0 | 03 65 04 19 00 00 00 65 05 64 03 3c 00 00 00 79 04 29 05 da 09 53 56 44 52 65 73 75 6c 74 da 01 | .e.....e.d.<...y.)...SVDResult.. |
| 10c0 | 55 da 01 53 da 02 56 68 4e 72 5b 00 00 00 72 60 00 00 00 72 61 00 00 00 72 62 00 00 00 72 6e 00 | U..S..VhNr[...r`...ra...rb...rn. |
| 10e0 | 00 00 72 6e 00 00 00 76 00 00 00 73 1e 00 00 00 85 00 d8 07 0e 88 73 81 7c 83 4f d8 07 0e 88 73 | ..rn...v...s..........s.|.O....s |
| 1100 | 81 7c 83 4f d8 08 0f 90 03 89 0c d4 04 14 72 61 00 00 00 72 6e 00 00 00 7a 0c 6e 75 6d 70 79 2e | .|.O..........ra...rn...z.numpy. |
| 1120 | 6c 69 6e 61 6c 67 29 01 da 06 6d 6f 64 75 6c 65 63 00 00 00 00 00 00 00 00 00 00 00 00 01 00 00 | linalg)...modulec............... |
| 1140 | 00 00 00 00 00 f3 10 00 00 00 97 00 65 00 5a 01 64 00 5a 02 64 01 5a 03 79 02 29 03 72 16 00 00 | ............e.Z.d.Z.d.Z.y.).r... |
| 1160 | 00 61 10 03 00 00 0a 20 20 20 20 47 65 6e 65 72 69 63 20 50 79 74 68 6f 6e 2d 65 78 63 65 70 74 | .a.........Generic.Python-except |
| 1180 | 69 6f 6e 2d 64 65 72 69 76 65 64 20 6f 62 6a 65 63 74 20 72 61 69 73 65 64 20 62 79 20 6c 69 6e | ion-derived.object.raised.by.lin |
| 11a0 | 61 6c 67 20 66 75 6e 63 74 69 6f 6e 73 2e 0a 0a 20 20 20 20 47 65 6e 65 72 61 6c 20 70 75 72 70 | alg.functions.......General.purp |
| 11c0 | 6f 73 65 20 65 78 63 65 70 74 69 6f 6e 20 63 6c 61 73 73 2c 20 64 65 72 69 76 65 64 20 66 72 6f | ose.exception.class,.derived.fro |
| 11e0 | 6d 20 50 79 74 68 6f 6e 27 73 20 56 61 6c 75 65 45 72 72 6f 72 0a 20 20 20 20 63 6c 61 73 73 2c | m.Python's.ValueError.....class, |
| 1200 | 20 70 72 6f 67 72 61 6d 6d 61 74 69 63 61 6c 6c 79 20 72 61 69 73 65 64 20 69 6e 20 6c 69 6e 61 | .programmatically.raised.in.lina |
| 1220 | 6c 67 20 66 75 6e 63 74 69 6f 6e 73 20 77 68 65 6e 20 61 20 4c 69 6e 65 61 72 0a 20 20 20 20 41 | lg.functions.when.a.Linear.....A |
| 1240 | 6c 67 65 62 72 61 2d 72 65 6c 61 74 65 64 20 63 6f 6e 64 69 74 69 6f 6e 20 77 6f 75 6c 64 20 70 | lgebra-related.condition.would.p |
| 1260 | 72 65 76 65 6e 74 20 66 75 72 74 68 65 72 20 63 6f 72 72 65 63 74 20 65 78 65 63 75 74 69 6f 6e | revent.further.correct.execution |
| 1280 | 20 6f 66 20 74 68 65 0a 20 20 20 20 66 75 6e 63 74 69 6f 6e 2e 0a 0a 20 20 20 20 50 61 72 61 6d | .of.the.....function.......Param |
| 12a0 | 65 74 65 72 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 4e 6f 6e 65 0a 0a 20 | eters.....----------.....None... |
| 12c0 | 20 20 20 45 78 61 6d 70 6c 65 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 3e 3e 3e | ...Examples.....--------.....>>> |
| 12e0 | 20 66 72 6f 6d 20 6e 75 6d 70 79 20 69 6d 70 6f 72 74 20 6c 69 6e 61 6c 67 20 61 73 20 4c 41 0a | .from.numpy.import.linalg.as.LA. |
| 1300 | 20 20 20 20 3e 3e 3e 20 4c 41 2e 69 6e 76 28 6e 70 2e 7a 65 72 6f 73 28 28 32 2c 32 29 29 29 0a | ....>>>.LA.inv(np.zeros((2,2))). |
| 1320 | 20 20 20 20 54 72 61 63 65 62 61 63 6b 20 28 6d 6f 73 74 20 72 65 63 65 6e 74 20 63 61 6c 6c 20 | ....Traceback.(most.recent.call. |
| 1340 | 6c 61 73 74 29 3a 0a 20 20 20 20 20 20 46 69 6c 65 20 22 3c 73 74 64 69 6e 3e 22 2c 20 6c 69 6e | last):.......File."<stdin>",.lin |
| 1360 | 65 20 31 2c 20 69 6e 20 3c 6d 6f 64 75 6c 65 3e 0a 20 20 20 20 20 20 46 69 6c 65 20 22 2e 2e 2e | e.1,.in.<module>.......File."... |
| 1380 | 6c 69 6e 61 6c 67 2e 70 79 22 2c 20 6c 69 6e 65 20 33 35 30 2c 0a 20 20 20 20 20 20 20 20 69 6e | linalg.py",.line.350,.........in |
| 13a0 | 20 69 6e 76 20 72 65 74 75 72 6e 20 77 72 61 70 28 73 6f 6c 76 65 28 61 2c 20 69 64 65 6e 74 69 | .inv.return.wrap(solve(a,.identi |
| 13c0 | 74 79 28 61 2e 73 68 61 70 65 5b 30 5d 2c 20 64 74 79 70 65 3d 61 2e 64 74 79 70 65 29 29 29 0a | ty(a.shape[0],.dtype=a.dtype))). |
| 13e0 | 20 20 20 20 20 20 46 69 6c 65 20 22 2e 2e 2e 6c 69 6e 61 6c 67 2e 70 79 22 2c 20 6c 69 6e 65 20 | ......File."...linalg.py",.line. |
| 1400 | 32 34 39 2c 0a 20 20 20 20 20 20 20 20 69 6e 20 73 6f 6c 76 65 0a 20 20 20 20 20 20 20 20 72 61 | 249,.........in.solve.........ra |
| 1420 | 69 73 65 20 4c 69 6e 41 6c 67 45 72 72 6f 72 28 27 53 69 6e 67 75 6c 61 72 20 6d 61 74 72 69 78 | ise.LinAlgError('Singular.matrix |
| 1440 | 27 29 0a 20 20 20 20 6e 75 6d 70 79 2e 6c 69 6e 61 6c 67 2e 4c 69 6e 41 6c 67 45 72 72 6f 72 3a | ').....numpy.linalg.LinAlgError: |
| 1460 | 20 53 69 6e 67 75 6c 61 72 20 6d 61 74 72 69 78 0a 0a 20 20 20 20 4e 29 04 72 5c 00 00 00 72 5d | .Singular.matrix......N).r\...r] |
| 1480 | 00 00 00 72 5e 00 00 00 da 07 5f 5f 64 6f 63 5f 5f 72 60 00 00 00 72 61 00 00 00 72 62 00 00 00 | ...r^.....__doc__r`...ra...rb... |
| 14a0 | 72 16 00 00 00 72 16 00 00 00 84 00 00 00 73 07 00 00 00 84 00 f2 04 19 05 08 72 61 00 00 00 72 | r....r........s...........ra...r |
| 14c0 | 16 00 00 00 63 02 00 00 00 00 00 00 00 00 00 00 00 03 00 00 00 03 00 00 00 f3 18 00 00 00 97 00 | ....c........................... |
| 14e0 | 74 01 00 00 00 00 00 00 00 00 64 01 ab 01 00 00 00 00 00 00 82 01 29 02 4e 7a 0f 53 69 6e 67 75 | t.........d...........).Nz.Singu |
| 1500 | 6c 61 72 20 6d 61 74 72 69 78 a9 01 72 16 00 00 00 a9 02 da 03 65 72 72 da 04 66 6c 61 67 73 02 | lar.matrix..r........err..flags. |
| 1520 | 00 00 00 20 20 72 62 00 00 00 da 1b 5f 72 61 69 73 65 5f 6c 69 6e 61 6c 67 65 72 72 6f 72 5f 73 | .....rb....._raise_linalgerror_s |
| 1540 | 69 6e 67 75 6c 61 72 72 7a 00 00 00 a2 00 00 00 73 0e 00 00 00 80 00 dc 0a 15 d0 16 27 d3 0a 28 | ingularrz.......s...........'..( |
| 1560 | d0 04 28 72 61 00 00 00 63 02 00 00 00 00 00 00 00 00 00 00 00 03 00 00 00 03 00 00 00 f3 18 00 | ..(ra...c....................... |
| 1580 | 00 00 97 00 74 01 00 00 00 00 00 00 00 00 64 01 ab 01 00 00 00 00 00 00 82 01 29 02 4e 7a 1f 4d | ....t.........d...........).Nz.M |
| 15a0 | 61 74 72 69 78 20 69 73 20 6e 6f 74 20 70 6f 73 69 74 69 76 65 20 64 65 66 69 6e 69 74 65 72 76 | atrix.is.not.positive.definiterv |
| 15c0 | 00 00 00 72 77 00 00 00 73 02 00 00 00 20 20 72 62 00 00 00 da 1c 5f 72 61 69 73 65 5f 6c 69 6e | ...rw...s......rb....._raise_lin |
| 15e0 | 61 6c 67 65 72 72 6f 72 5f 6e 6f 6e 70 6f 73 64 65 66 72 7c 00 00 00 a5 00 00 00 73 0e 00 00 00 | algerror_nonposdefr|.......s.... |
| 1600 | 80 00 dc 0a 15 d0 16 37 d3 0a 38 d0 04 38 72 61 00 00 00 63 02 00 00 00 00 00 00 00 00 00 00 00 | .......7..8..8ra...c............ |
| 1620 | 03 00 00 00 03 00 00 00 f3 18 00 00 00 97 00 74 01 00 00 00 00 00 00 00 00 64 01 ab 01 00 00 00 | ...............t.........d...... |
| 1640 | 00 00 00 82 01 29 02 4e 7a 1c 45 69 67 65 6e 76 61 6c 75 65 73 20 64 69 64 20 6e 6f 74 20 63 6f | .....).Nz.Eigenvalues.did.not.co |
| 1660 | 6e 76 65 72 67 65 72 76 00 00 00 72 77 00 00 00 73 02 00 00 00 20 20 72 62 00 00 00 da 2d 5f 72 | nvergerv...rw...s......rb....-_r |
| 1680 | 61 69 73 65 5f 6c 69 6e 61 6c 67 65 72 72 6f 72 5f 65 69 67 65 6e 76 61 6c 75 65 73 5f 6e 6f 6e | aise_linalgerror_eigenvalues_non |
| 16a0 | 63 6f 6e 76 65 72 67 65 6e 63 65 72 7e 00 00 00 a8 00 00 00 73 0e 00 00 00 80 00 dc 0a 15 d0 16 | convergencer~.......s........... |
| 16c0 | 34 d3 0a 35 d0 04 35 72 61 00 00 00 63 02 00 00 00 00 00 00 00 00 00 00 00 03 00 00 00 03 00 00 | 4..5..5ra...c................... |
| 16e0 | 00 f3 18 00 00 00 97 00 74 01 00 00 00 00 00 00 00 00 64 01 ab 01 00 00 00 00 00 00 82 01 29 02 | ........t.........d...........). |
| 1700 | 4e 7a 14 53 56 44 20 64 69 64 20 6e 6f 74 20 63 6f 6e 76 65 72 67 65 72 76 00 00 00 72 77 00 00 | Nz.SVD.did.not.convergerv...rw.. |
| 1720 | 00 73 02 00 00 00 20 20 72 62 00 00 00 da 25 5f 72 61 69 73 65 5f 6c 69 6e 61 6c 67 65 72 72 6f | .s......rb....%_raise_linalgerro |
| 1740 | 72 5f 73 76 64 5f 6e 6f 6e 63 6f 6e 76 65 72 67 65 6e 63 65 72 80 00 00 00 ab 00 00 00 73 0e 00 | r_svd_nonconvergencer........s.. |
| 1760 | 00 00 80 00 dc 0a 15 d0 16 2c d3 0a 2d d0 04 2d 72 61 00 00 00 63 02 00 00 00 00 00 00 00 00 00 | .........,..-..-ra...c.......... |
| 1780 | 00 00 03 00 00 00 03 00 00 00 f3 18 00 00 00 97 00 74 01 00 00 00 00 00 00 00 00 64 01 ab 01 00 | .................t.........d.... |
| 17a0 | 00 00 00 00 00 82 01 29 02 4e 7a 2c 53 56 44 20 64 69 64 20 6e 6f 74 20 63 6f 6e 76 65 72 67 65 | .......).Nz,SVD.did.not.converge |
| 17c0 | 20 69 6e 20 4c 69 6e 65 61 72 20 4c 65 61 73 74 20 53 71 75 61 72 65 73 72 76 00 00 00 72 77 00 | .in.Linear.Least.Squaresrv...rw. |
| 17e0 | 00 00 73 02 00 00 00 20 20 72 62 00 00 00 da 18 5f 72 61 69 73 65 5f 6c 69 6e 61 6c 67 65 72 72 | ..s......rb....._raise_linalgerr |
| 1800 | 6f 72 5f 6c 73 74 73 71 72 82 00 00 00 ae 00 00 00 73 0e 00 00 00 80 00 dc 0a 15 d0 16 44 d3 0a | or_lstsqr........s...........D.. |
| 1820 | 45 d0 04 45 72 61 00 00 00 63 02 00 00 00 00 00 00 00 00 00 00 00 03 00 00 00 03 00 00 00 f3 18 | E..Era...c...................... |
| 1840 | 00 00 00 97 00 74 01 00 00 00 00 00 00 00 00 64 01 ab 01 00 00 00 00 00 00 82 01 29 02 4e 7a 3a | .....t.........d...........).Nz: |
| 1860 | 49 6e 63 6f 72 72 65 63 74 20 61 72 67 75 6d 65 6e 74 20 66 6f 75 6e 64 20 77 68 69 6c 65 20 70 | Incorrect.argument.found.while.p |
| 1880 | 65 72 66 6f 72 6d 69 6e 67 20 51 52 20 66 61 63 74 6f 72 69 7a 61 74 69 6f 6e 72 76 00 00 00 72 | erforming.QR.factorizationrv...r |
| 18a0 | 77 00 00 00 73 02 00 00 00 20 20 72 62 00 00 00 da 15 5f 72 61 69 73 65 5f 6c 69 6e 61 6c 67 65 | w...s......rb....._raise_linalge |
| 18c0 | 72 72 6f 72 5f 71 72 72 84 00 00 00 b1 00 00 00 73 14 00 00 00 80 00 dc 0a 15 f0 00 01 17 29 f3 | rror_qrr........s.............). |
| 18e0 | 00 01 0b 2a f0 00 01 05 2a 72 61 00 00 00 63 01 00 00 00 00 00 00 00 00 00 00 00 05 00 00 00 03 | ...*....*ra...c................. |
| 1900 | 00 00 00 f3 4e 00 00 00 97 00 74 01 00 00 00 00 00 00 00 00 7c 00 ab 01 00 00 00 00 00 00 7d 01 | ....N.....t.........|.........}. |
| 1920 | 74 03 00 00 00 00 00 00 00 00 7c 00 64 01 7c 01 6a 04 00 00 00 00 00 00 00 00 00 00 00 00 00 00 | t.........|.d.|.j............... |
| 1940 | 00 00 00 00 ab 03 00 00 00 00 00 00 7d 02 7c 01 7c 02 66 02 53 00 29 02 4e da 0e 5f 5f 61 72 72 | ............}.|.|.f.S.).N..__arr |
| 1960 | 61 79 5f 77 72 61 70 5f 5f 29 03 72 2d 00 00 00 da 07 67 65 74 61 74 74 72 72 86 00 00 00 29 03 | ay_wrap__).r-.....getattrr....). |
| 1980 | da 01 61 da 03 6e 65 77 da 04 77 72 61 70 73 03 00 00 00 20 20 20 72 62 00 00 00 da 0a 5f 6d 61 | ..a..new..wraps.......rb....._ma |
| 19a0 | 6b 65 61 72 72 61 79 72 8b 00 00 00 b6 00 00 00 73 2a 00 00 00 80 00 dc 0a 11 90 21 8b 2a 80 43 | kearrayr........s*.........!.*.C |
| 19c0 | dc 0b 12 90 31 d0 16 26 a8 03 d7 28 3a d1 28 3a d3 0b 3b 80 44 d8 0b 0e 90 04 88 39 d0 04 14 72 | ....1..&...(:.(:..;.D......9...r |
| 19e0 | 61 00 00 00 63 01 00 00 00 00 00 00 00 00 00 00 00 04 00 00 00 03 00 00 00 f3 22 00 00 00 97 00 | a...c....................."..... |
| 1a00 | 74 01 00 00 00 00 00 00 00 00 7c 00 74 02 00 00 00 00 00 00 00 00 ab 02 00 00 00 00 00 00 53 00 | t.........|.t.................S. |
| 1a20 | a9 01 4e 29 02 da 0a 69 73 73 75 62 63 6c 61 73 73 72 30 00 00 00 29 01 da 01 74 73 01 00 00 00 | ..N)...issubclassr0...)...ts.... |
| 1a40 | 20 72 62 00 00 00 da 0d 69 73 43 6f 6d 70 6c 65 78 54 79 70 65 72 90 00 00 00 bb 00 00 00 73 0f | .rb.....isComplexTyper........s. |
| 1a60 | 00 00 00 80 00 dc 0b 15 90 61 9c 1f d3 0b 29 d0 04 29 72 61 00 00 00 63 02 00 00 00 00 00 00 00 | .........a....)..)ra...c........ |
| 1a80 | 00 00 00 00 04 00 00 00 03 00 00 00 f3 2e 00 00 00 97 00 74 00 00 00 00 00 00 00 00 00 6a 03 00 | ...................t.........j.. |
| 1aa0 | 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 7c 00 7c 01 ab 02 00 00 00 00 00 00 53 00 72 | .................|.|.........S.r |
| 1ac0 | 8d 00 00 00 29 02 da 0f 5f 72 65 61 6c 5f 74 79 70 65 73 5f 6d 61 70 da 03 67 65 74 a9 02 72 8f | ....)..._real_types_map..get..r. |
| 1ae0 | 00 00 00 da 07 64 65 66 61 75 6c 74 73 02 00 00 00 20 20 72 62 00 00 00 da 09 5f 72 65 61 6c 54 | .....defaults......rb....._realT |
| 1b00 | 79 70 65 72 96 00 00 00 c9 00 00 00 73 15 00 00 00 80 00 dc 0b 1a d7 0b 1e d1 0b 1e 98 71 a0 27 | yper........s................q.' |
| 1b20 | d3 0b 2a d0 04 2a 72 61 00 00 00 63 02 00 00 00 00 00 00 00 00 00 00 00 04 00 00 00 03 00 00 00 | ..*..*ra...c.................... |
| 1b40 | f3 2e 00 00 00 97 00 74 00 00 00 00 00 00 00 00 00 6a 03 00 00 00 00 00 00 00 00 00 00 00 00 00 | .......t.........j.............. |
| 1b60 | 00 00 00 00 00 7c 00 7c 01 ab 02 00 00 00 00 00 00 53 00 72 8d 00 00 00 29 02 da 12 5f 63 6f 6d | .....|.|.........S.r....)..._com |
| 1b80 | 70 6c 65 78 5f 74 79 70 65 73 5f 6d 61 70 72 93 00 00 00 72 94 00 00 00 73 02 00 00 00 20 20 72 | plex_types_mapr....r....s......r |
| 1ba0 | 62 00 00 00 da 0c 5f 63 6f 6d 70 6c 65 78 54 79 70 65 72 99 00 00 00 cc 00 00 00 73 15 00 00 00 | b....._complexTyper........s.... |
| 1bc0 | 80 00 dc 0b 1d d7 0b 21 d1 0b 21 a0 21 a0 57 d3 0b 2d d0 04 2d 72 61 00 00 00 63 00 00 00 00 00 | .......!..!.!.W..-..-ra...c..... |
| 1be0 | 00 00 00 00 00 00 00 06 00 00 00 07 00 00 00 f3 4c 01 00 00 97 00 74 00 00 00 00 00 00 00 00 00 | ................L.....t......... |
| 1c00 | 7d 01 64 01 7d 02 7c 00 44 00 5d 7d 00 00 7d 03 7c 03 6a 02 00 00 00 00 00 00 00 00 00 00 00 00 | }.d.}.|.D.]}..}.|.j............. |
| 1c20 | 00 00 00 00 00 00 6a 04 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 7d 04 74 07 00 00 | ......j...................}.t... |
| 1c40 | 00 00 00 00 00 00 7c 04 74 08 00 00 00 00 00 00 00 00 ab 02 00 00 00 00 00 00 72 4f 74 0b 00 00 | ......|.t.................rOt... |
| 1c60 | 00 00 00 00 00 00 7c 04 ab 01 00 00 00 00 00 00 72 02 64 02 7d 02 74 0d 00 00 00 00 00 00 00 00 | ......|.........r.d.}.t......... |
| 1c80 | 7c 04 64 00 ac 03 ab 02 00 00 00 00 00 00 7d 05 7c 05 74 0e 00 00 00 00 00 00 00 00 75 00 72 07 | |.d...........}.|.t.........u.r. |
| 1ca0 | 74 0e 00 00 00 00 00 00 00 00 7d 01 8c 52 7c 05 81 01 8c 55 74 11 00 00 00 00 00 00 00 00 64 04 | t.........}..R|....Ut.........d. |
| 1cc0 | 7c 03 6a 02 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 6a 12 00 00 00 00 00 00 00 00 | |.j...................j......... |
| 1ce0 | 00 00 00 00 00 00 00 00 00 00 9b 00 64 05 9d 03 ab 01 00 00 00 00 00 00 82 01 74 0e 00 00 00 00 | ............d.............t..... |
| 1d00 | 00 00 00 00 7d 01 8c 7f 04 00 7c 02 72 11 74 14 00 00 00 00 00 00 00 00 7c 01 19 00 00 00 7d 01 | ....}.....|.r.t.........|.....}. |
| 1d20 | 74 16 00 00 00 00 00 00 00 00 7c 01 66 02 53 00 74 0e 00 00 00 00 00 00 00 00 7c 01 66 02 53 00 | t.........|.f.S.t.........|.f.S. |
| 1d40 | 29 06 4e 46 54 29 01 72 95 00 00 00 7a 0b 61 72 72 61 79 20 74 79 70 65 20 7a 19 20 69 73 20 75 | ).NFT).r....z.array.type.z..is.u |
| 1d60 | 6e 73 75 70 70 6f 72 74 65 64 20 69 6e 20 6c 69 6e 61 6c 67 29 0c 72 48 00 00 00 da 05 64 74 79 | nsupported.in.linalg).rH.....dty |
| 1d80 | 70 65 da 04 74 79 70 65 72 8e 00 00 00 72 3a 00 00 00 72 90 00 00 00 72 96 00 00 00 72 35 00 00 | pe..typer....r:...r....r....r5.. |
| 1da0 | 00 da 09 54 79 70 65 45 72 72 6f 72 da 04 6e 61 6d 65 72 98 00 00 00 72 2f 00 00 00 29 06 da 06 | ...TypeError..namer....r/...)... |
| 1dc0 | 61 72 72 61 79 73 da 0b 72 65 73 75 6c 74 5f 74 79 70 65 da 0a 69 73 5f 63 6f 6d 70 6c 65 78 72 | arrays..result_type..is_complexr |
| 1de0 | 88 00 00 00 da 05 74 79 70 65 5f da 02 72 74 73 06 00 00 00 20 20 20 20 20 20 72 62 00 00 00 da | ......type_..rts..........rb.... |
| 1e00 | 0b 5f 63 6f 6d 6d 6f 6e 54 79 70 65 72 a4 00 00 00 cf 00 00 00 73 a3 00 00 00 80 00 e4 12 18 80 | ._commonTyper........s.......... |
| 1e20 | 4b d8 11 16 80 4a d8 0d 13 f2 00 0c 05 21 88 01 d8 10 11 97 07 91 07 97 0c 91 0c 88 05 dc 0b 15 | K....J.......!.................. |
| 1e40 | 90 65 9c 57 d4 0b 25 dc 0f 1c 98 55 d4 0f 23 d8 1d 21 90 0a dc 11 1a 98 35 a8 24 d4 11 2f 88 42 | .e.W..%....U..#..!......5.$../.B |
| 1e60 | d8 0f 11 94 56 89 7c dc 1e 24 91 0b d8 11 13 91 1a e4 16 1f a0 2b a8 61 af 67 a9 67 af 6c a9 6c | ....V.|..$...........+.a.g.g.l.l |
| 1e80 | a8 5e d0 3b 54 d0 20 55 d3 16 56 d0 10 56 e4 1a 20 89 4b f0 19 0c 05 21 f1 1a 00 08 12 dc 16 28 | .^.;T..U..V..V....K....!.......( |
| 1ea0 | a8 1b d1 16 35 88 0b dc 0f 16 98 0b d0 0f 23 d0 08 23 e4 0f 15 90 7b d0 0f 22 d0 08 22 72 61 00 | ....5.........#..#....{..".."ra. |
| 1ec0 | 00 00 63 00 00 00 00 00 00 00 00 00 00 00 00 09 00 00 00 07 00 00 00 f3 fc 00 00 00 97 00 67 00 | ..c...........................g. |
| 1ee0 | 7d 01 7c 00 44 00 5d 61 00 00 7d 02 7c 02 6a 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 | }.|.D.]a..}.|.j................. |
| 1f00 | 00 00 6a 02 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 64 01 76 01 72 36 7c 01 6a 05 | ..j...................d.v.r6|.j. |
| 1f20 | 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 74 07 00 00 00 00 00 00 00 00 7c 02 7c 02 | ..................t.........|.|. |
| 1f40 | 6a 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 6a 09 00 00 00 00 00 00 00 00 00 00 | j...................j........... |
| 1f60 | 00 00 00 00 00 00 00 00 64 02 ab 01 00 00 00 00 00 00 ac 03 ab 02 00 00 00 00 00 00 ab 01 00 00 | ........d....................... |
| 1f80 | 00 00 00 00 01 00 8c 51 7c 01 6a 05 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 7c 02 | .......Q|.j...................|. |
| 1fa0 | ab 01 00 00 00 00 00 00 01 00 8c 63 04 00 74 0b 00 00 00 00 00 00 00 00 7c 01 ab 01 00 00 00 00 | ...........c..t.........|....... |
| 1fc0 | 00 00 64 04 6b 28 00 00 72 05 7c 01 64 05 19 00 00 00 53 00 7c 01 53 00 29 06 4e 29 02 fa 01 3d | ..d.k(..r.|.d.....S.|.S.).N)...= |
| 1fe0 | fa 01 7c 72 a6 00 00 00 a9 01 72 9b 00 00 00 e9 01 00 00 00 72 22 00 00 00 29 06 72 9b 00 00 00 | ..|r......r.........r"...).r.... |
| 2000 | da 09 62 79 74 65 6f 72 64 65 72 da 06 61 70 70 65 6e 64 72 2d 00 00 00 da 0c 6e 65 77 62 79 74 | ..byteorder..appendr-.....newbyt |
| 2020 | 65 6f 72 64 65 72 da 03 6c 65 6e 29 03 72 9f 00 00 00 da 03 72 65 74 da 03 61 72 72 73 03 00 00 | eorder..len).r......ret..arrs... |
| 2040 | 00 20 20 20 72 62 00 00 00 da 15 5f 74 6f 5f 6e 61 74 69 76 65 5f 62 79 74 65 5f 6f 72 64 65 72 | ....rb....._to_native_byte_order |
| 2060 | 72 b0 00 00 00 e7 00 00 00 73 70 00 00 00 80 00 d8 0a 0c 80 43 d8 0f 15 f2 00 04 05 1c 88 03 d8 | r........sp.........C........... |
| 2080 | 0b 0e 8f 39 89 39 d7 0b 1e d1 0b 1e a0 6a d1 0b 30 d8 0c 0f 8f 4a 89 4a 94 77 98 73 a8 23 af 29 | ...9.9.......j..0....J.J.w.s.#.) |
| 20a0 | a9 29 d7 2a 40 d1 2a 40 c0 13 d3 2a 45 d4 17 46 d5 0c 47 e0 0c 0f 8f 4a 89 4a 90 73 8d 4f f0 09 | .).*@.*@...*E..F..G....J.J.s.O.. |
| 20c0 | 04 05 1c f4 0a 00 08 0b 88 33 83 78 90 31 82 7d d8 0f 12 90 31 89 76 88 0d e0 0f 12 88 0a 72 61 | .........3.x.1.}....1.v.......ra |
| 20e0 | 00 00 00 63 00 00 00 00 00 00 00 00 00 00 00 00 05 00 00 00 07 00 00 00 f3 60 00 00 00 97 00 7c | ...c.....................`.....| |
| 2100 | 00 44 00 5d 29 00 00 7d 01 7c 01 6a 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 64 | .D.])..}.|.j...................d |
| 2120 | 01 6b 37 00 00 73 01 8c 13 74 03 00 00 00 00 00 00 00 00 64 02 7c 01 6a 00 00 00 00 00 00 00 00 | .k7..s...t.........d.|.j........ |
| 2140 | 00 00 00 00 00 00 00 00 00 00 00 7a 06 00 00 ab 01 00 00 00 00 00 00 82 01 04 00 79 00 29 03 4e | ...........z...............y.).N |
| 2160 | e9 02 00 00 00 7a 39 25 64 2d 64 69 6d 65 6e 73 69 6f 6e 61 6c 20 61 72 72 61 79 20 67 69 76 65 | .....z9%d-dimensional.array.give |
| 2180 | 6e 2e 20 41 72 72 61 79 20 6d 75 73 74 20 62 65 20 74 77 6f 2d 64 69 6d 65 6e 73 69 6f 6e 61 6c | n..Array.must.be.two-dimensional |
| 21a0 | a9 02 da 04 6e 64 69 6d 72 16 00 00 00 a9 02 72 9f 00 00 00 72 88 00 00 00 73 02 00 00 00 20 20 | ....ndimr......r....r....s...... |
| 21c0 | 72 62 00 00 00 da 0a 5f 61 73 73 65 72 74 5f 32 64 72 b6 00 00 00 f4 00 00 00 73 3a 00 00 00 80 | rb....._assert_2dr........s:.... |
| 21e0 | 00 d8 0d 13 f2 00 03 05 30 88 01 d8 0b 0c 8f 36 89 36 90 51 8b 3b dc 12 1d f0 00 01 1f 26 d8 28 | ........0......6.6.Q.;.......&.( |
| 2200 | 29 af 06 a9 06 f1 03 01 1f 2f f3 00 01 13 30 f0 00 01 0d 30 f1 05 03 05 30 72 61 00 00 00 63 00 | )......../....0....0....0ra...c. |
| 2220 | 00 00 00 00 00 00 00 00 00 00 00 05 00 00 00 07 00 00 00 f3 60 00 00 00 97 00 7c 00 44 00 5d 29 | ....................`.....|.D.]) |
| 2240 | 00 00 7d 01 7c 01 6a 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 64 01 6b 02 00 00 | ..}.|.j...................d.k... |
| 2260 | 73 01 8c 13 74 03 00 00 00 00 00 00 00 00 64 02 7c 01 6a 00 00 00 00 00 00 00 00 00 00 00 00 00 | s...t.........d.|.j............. |
| 2280 | 00 00 00 00 00 00 7a 06 00 00 ab 01 00 00 00 00 00 00 82 01 04 00 79 00 29 03 4e 72 b2 00 00 00 | ......z...............y.).Nr.... |
| 22a0 | fa 42 25 64 2d 64 69 6d 65 6e 73 69 6f 6e 61 6c 20 61 72 72 61 79 20 67 69 76 65 6e 2e 20 41 72 | .B%d-dimensional.array.given..Ar |
| 22c0 | 72 61 79 20 6d 75 73 74 20 62 65 20 61 74 20 6c 65 61 73 74 20 74 77 6f 2d 64 69 6d 65 6e 73 69 | ray.must.be.at.least.two-dimensi |
| 22e0 | 6f 6e 61 6c 72 b3 00 00 00 72 b5 00 00 00 73 02 00 00 00 20 20 72 62 00 00 00 da 12 5f 61 73 73 | onalr....r....s......rb....._ass |
| 2300 | 65 72 74 5f 73 74 61 63 6b 65 64 5f 32 64 72 b9 00 00 00 fa 00 00 00 73 3a 00 00 00 80 00 d8 0d | ert_stacked_2dr........s:....... |
| 2320 | 13 f2 00 03 05 39 88 01 d8 0b 0c 8f 36 89 36 90 41 8b 3a dc 12 1d f0 00 01 1f 2f d8 31 32 b7 16 | .....9......6.6.A.:......./.12.. |
| 2340 | b1 16 f1 03 01 1f 38 f3 00 01 13 39 f0 00 01 0d 39 f1 05 03 05 39 72 61 00 00 00 63 00 00 00 00 | ......8....9....9....9ra...c.... |
| 2360 | 00 00 00 00 00 00 00 00 06 00 00 00 07 00 00 00 f3 a2 00 00 00 97 00 7c 00 44 00 5d 25 00 00 7d | .......................|.D.]%..} |
| 2380 | 01 09 00 7c 01 6a 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 64 01 64 00 1a 00 5c | ...|.j...................d.d...\ |
| 23a0 | 02 00 00 7d 02 7d 03 7c 02 7c 03 6b 37 00 00 73 01 8c 1c 74 05 00 00 00 00 00 00 00 00 64 03 ab | ...}.}.|.|.k7..s...t.........d.. |
| 23c0 | 01 00 00 00 00 00 00 82 01 04 00 79 00 23 00 74 02 00 00 00 00 00 00 00 00 24 00 72 19 01 00 74 | ...........y.#.t.........$.r...t |
| 23e0 | 05 00 00 00 00 00 00 00 00 64 02 7c 01 6a 06 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 | .........d.|.j.................. |
| 2400 | 00 7a 06 00 00 ab 01 00 00 00 00 00 00 82 01 77 00 78 03 59 00 77 01 29 04 4e e9 fe ff ff ff 72 | .z.............w.x.Y.w.).N.....r |
| 2420 | b8 00 00 00 7a 2d 4c 61 73 74 20 32 20 64 69 6d 65 6e 73 69 6f 6e 73 20 6f 66 20 74 68 65 20 61 | ....z-Last.2.dimensions.of.the.a |
| 2440 | 72 72 61 79 20 6d 75 73 74 20 62 65 20 73 71 75 61 72 65 29 04 da 05 73 68 61 70 65 da 0a 56 61 | rray.must.be.square)...shape..Va |
| 2460 | 6c 75 65 45 72 72 6f 72 72 16 00 00 00 72 b4 00 00 00 29 04 72 9f 00 00 00 72 88 00 00 00 da 01 | lueErrorr....r....).r....r...... |
| 2480 | 6d da 01 6e 73 04 00 00 00 20 20 20 20 72 62 00 00 00 da 16 5f 61 73 73 65 72 74 5f 73 74 61 63 | m..ns........rb....._assert_stac |
| 24a0 | 6b 65 64 5f 73 71 75 61 72 65 72 c0 00 00 00 00 01 00 00 73 6f 00 00 00 80 00 d8 0d 13 f2 00 07 | ked_squarer........so........... |
| 24c0 | 05 4f 01 88 01 f0 02 04 09 39 d8 13 14 97 37 91 37 98 32 98 33 90 3c 89 44 88 41 88 71 f0 08 00 | .O.......9....7.7.2.3.<.D.A.q... |
| 24e0 | 0c 0d 90 01 8b 36 dc 12 1d d0 1e 4d d3 12 4e d0 0c 4e f1 0f 07 05 4f 01 f8 f4 06 00 10 1a f2 00 | .....6.....M..N..N....O......... |
| 2500 | 02 09 39 dc 12 1d f0 00 01 1f 2f d8 31 32 b7 16 b1 16 f1 03 01 1f 38 f3 00 01 13 39 f0 00 01 0d | ..9......./.12........8....9.... |
| 2520 | 39 f0 03 02 09 39 fa 73 09 00 00 00 87 12 2c 02 ac 22 41 0e 05 63 00 00 00 00 00 00 00 00 00 00 | 9....9.s......,.."A..c.......... |
| 2540 | 00 00 04 00 00 00 07 00 00 00 f3 5a 00 00 00 97 00 7c 00 44 00 5d 26 00 00 7d 01 74 01 00 00 00 | ...........Z.....|.D.]&..}.t.... |
| 2560 | 00 00 00 00 00 7c 01 ab 01 00 00 00 00 00 00 6a 03 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 | .....|.........j................ |
| 2580 | 00 00 00 ab 00 00 00 00 00 00 00 72 01 8c 1d 74 05 00 00 00 00 00 00 00 00 64 01 ab 01 00 00 00 | ...........r...t.........d...... |
| 25a0 | 00 00 00 82 01 04 00 79 00 29 02 4e 7a 23 41 72 72 61 79 20 6d 75 73 74 20 6e 6f 74 20 63 6f 6e | .......y.).Nz#Array.must.not.con |
| 25c0 | 74 61 69 6e 20 69 6e 66 73 20 6f 72 20 4e 61 4e 73 29 03 72 3e 00 00 00 72 27 00 00 00 72 16 00 | tain.infs.or.NaNs).r>...r'...r.. |
| 25e0 | 00 00 72 b5 00 00 00 73 02 00 00 00 20 20 72 62 00 00 00 da 0e 5f 61 73 73 65 72 74 5f 66 69 6e | ..r....s......rb....._assert_fin |
| 2600 | 69 74 65 72 c2 00 00 00 0a 01 00 00 73 2d 00 00 00 80 00 d8 0d 13 f2 00 02 05 45 01 88 01 dc 0f | iter........s-............E..... |
| 2620 | 17 98 01 8b 7b 8f 7f 89 7f d5 0f 20 dc 12 1d d0 1e 43 d3 12 44 d0 0c 44 f1 05 02 05 45 01 72 61 | ....{............C..D..D....E.ra |
| 2640 | 00 00 00 63 01 00 00 00 00 00 00 00 00 00 00 00 05 00 00 00 03 00 00 00 f3 5a 00 00 00 97 00 7c | ...c.....................Z.....| |
| 2660 | 00 6a 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 64 01 6b 28 00 00 78 01 72 1b 01 | .j...................d.k(..x.r.. |
| 2680 | 00 74 03 00 00 00 00 00 00 00 00 7c 00 6a 04 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 | .t.........|.j.................. |
| 26a0 | 00 64 02 64 00 1a 00 ab 01 00 00 00 00 00 00 64 01 6b 28 00 00 53 00 29 03 4e 72 22 00 00 00 72 | .d.d...........d.k(..S.).Nr"...r |
| 26c0 | bb 00 00 00 29 03 da 04 73 69 7a 65 72 45 00 00 00 72 bc 00 00 00 29 01 72 af 00 00 00 73 01 00 | ....)...sizerE...r....).r....s.. |
| 26e0 | 00 00 20 72 62 00 00 00 da 0c 5f 69 73 5f 65 6d 70 74 79 5f 32 64 72 c5 00 00 00 0f 01 00 00 73 | ...rb....._is_empty_2dr........s |
| 2700 | 29 00 00 00 80 00 e0 0b 0e 8f 38 89 38 90 71 89 3d d2 0b 36 9c 54 a0 23 a7 29 a1 29 a8 42 a8 43 | ).........8.8.q.=..6.T.#.).).B.C |
| 2720 | a0 2e d3 1d 31 b0 51 d1 1d 36 d0 04 36 72 61 00 00 00 63 01 00 00 00 00 00 00 00 00 00 00 00 05 | ....1.Q..6..6ra...c............. |
| 2740 | 00 00 00 03 00 00 00 f3 1c 00 00 00 97 00 74 01 00 00 00 00 00 00 00 00 7c 00 64 01 64 02 ab 03 | ..............t.........|.d.d... |
| 2760 | 00 00 00 00 00 00 53 00 29 03 61 00 01 00 00 0a 20 20 20 20 54 72 61 6e 73 70 6f 73 65 20 65 61 | ......S.).a.........Transpose.ea |
| 2780 | 63 68 20 6d 61 74 72 69 78 20 69 6e 20 61 20 73 74 61 63 6b 20 6f 66 20 6d 61 74 72 69 63 65 73 | ch.matrix.in.a.stack.of.matrices |
| 27a0 | 2e 0a 0a 20 20 20 20 55 6e 6c 69 6b 65 20 6e 70 2e 74 72 61 6e 73 70 6f 73 65 2c 20 74 68 69 73 | .......Unlike.np.transpose,.this |
| 27c0 | 20 6f 6e 6c 79 20 73 77 61 70 73 20 74 68 65 20 6c 61 73 74 20 74 77 6f 20 61 78 65 73 2c 20 72 | .only.swaps.the.last.two.axes,.r |
| 27e0 | 61 74 68 65 72 20 74 68 61 6e 20 61 6c 6c 20 6f 66 0a 20 20 20 20 74 68 65 6d 0a 0a 20 20 20 20 | ather.than.all.of.....them...... |
| 2800 | 50 61 72 61 6d 65 74 65 72 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 61 20 | Parameters.....----------.....a. |
| 2820 | 3a 20 28 2e 2e 2e 2c 4d 2c 4e 29 20 61 72 72 61 79 5f 6c 69 6b 65 0a 0a 20 20 20 20 52 65 74 75 | :.(...,M,N).array_like......Retu |
| 2840 | 72 6e 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 61 54 20 3a 20 28 2e 2e 2e 2c 4e 2c | rns.....-------.....aT.:.(...,N, |
| 2860 | 4d 29 20 6e 64 61 72 72 61 79 0a 20 20 20 20 e9 ff ff ff ff 72 bb 00 00 00 29 01 72 4c 00 00 00 | M).ndarray..........r....).rL... |
| 2880 | a9 01 72 88 00 00 00 73 01 00 00 00 20 72 62 00 00 00 72 4e 00 00 00 72 4e 00 00 00 14 01 00 00 | ..r....s.....rb...rN...rN....... |
| 28a0 | 73 13 00 00 00 80 00 f4 1e 00 0c 14 90 41 90 72 98 32 d3 0b 1e d0 04 1e 72 61 00 00 00 63 03 00 | s............A.r.2......ra...c.. |
| 28c0 | 00 00 00 00 00 00 00 00 00 00 02 00 00 00 03 00 00 00 f3 0a 00 00 00 97 00 7c 00 7c 01 66 02 53 | .........................|.|.f.S |
| 28e0 | 00 72 8d 00 00 00 72 60 00 00 00 29 03 72 88 00 00 00 da 01 62 da 04 61 78 65 73 73 03 00 00 00 | .r....r`...).r......b..axess.... |
| 2900 | 20 20 20 72 62 00 00 00 da 17 5f 74 65 6e 73 6f 72 73 6f 6c 76 65 5f 64 69 73 70 61 74 63 68 65 | ...rb....._tensorsolve_dispatche |
| 2920 | 72 72 cc 00 00 00 27 01 00 00 f3 0b 00 00 00 80 00 d8 0c 0d 88 71 88 36 80 4d 72 61 00 00 00 63 | rr....'..............q.6.Mra...c |
| 2940 | 03 00 00 00 00 00 00 00 00 00 00 00 06 00 00 00 03 00 00 00 f3 f8 01 00 00 97 00 74 01 00 00 00 | ...........................t.... |
| 2960 | 00 00 00 00 00 7c 00 ab 01 00 00 00 00 00 00 5c 02 00 00 7d 00 7d 03 74 03 00 00 00 00 00 00 00 | .....|.........\...}.}.t........ |
| 2980 | 00 7c 01 ab 01 00 00 00 00 00 00 7d 01 7c 00 6a 04 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 | .|.........}.|.j................ |
| 29a0 | 00 00 00 7d 04 7c 02 81 4f 74 07 00 00 00 00 00 00 00 00 74 09 00 00 00 00 00 00 00 00 7c 04 ab | ...}.|..Ot.........t.........|.. |
| 29c0 | 01 00 00 00 00 00 00 ab 01 00 00 00 00 00 00 7d 05 7c 02 44 00 5d 25 00 00 7d 06 7c 05 6a 0b 00 | ...............}.|.D.]%..}.|.j.. |
| 29e0 | 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 7c 06 ab 01 00 00 00 00 00 00 01 00 7c 05 6a | .................|...........|.j |
| 2a00 | 0d 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 7c 04 7c 06 ab 02 00 00 00 00 00 00 01 | ...................|.|.......... |
| 2a20 | 00 8c 27 04 00 7c 00 6a 0f 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 7c 05 ab 01 00 | ..'..|.j...................|.... |
| 2a40 | 00 00 00 00 00 7d 00 7c 00 6a 10 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 7c 04 7c | .....}.|.j...................|.| |
| 2a60 | 01 6a 04 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 7a 0a 00 00 0b 00 64 01 1a 00 7d | .j...................z.....d...} |
| 2a80 | 07 64 02 7d 08 7c 07 44 00 5d 07 00 00 7d 06 7c 08 7c 06 7a 12 00 00 7d 08 8c 09 04 00 7c 00 6a | .d.}.|.D.]...}.|.|.z...}.....|.j |
| 2aa0 | 12 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 7c 08 64 03 7a 08 00 00 6b 37 00 00 72 | ...................|.d.z...k7..r |
| 2ac0 | 0b 74 15 00 00 00 00 00 00 00 00 64 04 ab 01 00 00 00 00 00 00 82 01 7c 00 6a 17 00 00 00 00 00 | .t.........d...........|.j...... |
| 2ae0 | 00 00 00 00 00 00 00 00 00 00 00 00 00 7c 08 7c 08 ab 02 00 00 00 00 00 00 7d 00 7c 01 6a 19 00 | .............|.|.........}.|.j.. |
| 2b00 | 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ab 00 00 00 00 00 00 00 7d 01 02 00 7c 03 74 | .........................}...|.t |
| 2b20 | 1b 00 00 00 00 00 00 00 00 7c 00 7c 01 ab 02 00 00 00 00 00 00 ab 01 00 00 00 00 00 00 7d 09 7c | .........|.|.................}.| |
| 2b40 | 07 7c 09 5f 08 00 00 00 00 00 00 00 00 7c 09 53 00 29 05 61 55 05 00 00 0a 20 20 20 20 53 6f 6c | .|._.........|.S.).aU........Sol |
| 2b60 | 76 65 20 74 68 65 20 74 65 6e 73 6f 72 20 65 71 75 61 74 69 6f 6e 20 60 60 61 20 78 20 3d 20 62 | ve.the.tensor.equation.``a.x.=.b |
| 2b80 | 60 60 20 66 6f 72 20 78 2e 0a 0a 20 20 20 20 49 74 20 69 73 20 61 73 73 75 6d 65 64 20 74 68 61 | ``.for.x.......It.is.assumed.tha |
| 2ba0 | 74 20 61 6c 6c 20 69 6e 64 69 63 65 73 20 6f 66 20 60 78 60 20 61 72 65 20 73 75 6d 6d 65 64 20 | t.all.indices.of.`x`.are.summed. |
| 2bc0 | 6f 76 65 72 20 69 6e 20 74 68 65 20 70 72 6f 64 75 63 74 2c 0a 20 20 20 20 74 6f 67 65 74 68 65 | over.in.the.product,.....togethe |
| 2be0 | 72 20 77 69 74 68 20 74 68 65 20 72 69 67 68 74 6d 6f 73 74 20 69 6e 64 69 63 65 73 20 6f 66 20 | r.with.the.rightmost.indices.of. |
| 2c00 | 60 61 60 2c 20 61 73 20 69 73 20 64 6f 6e 65 20 69 6e 2c 20 66 6f 72 20 65 78 61 6d 70 6c 65 2c | `a`,.as.is.done.in,.for.example, |
| 2c20 | 0a 20 20 20 20 60 60 74 65 6e 73 6f 72 64 6f 74 28 61 2c 20 78 2c 20 61 78 65 73 3d 78 2e 6e 64 | .....``tensordot(a,.x,.axes=x.nd |
| 2c40 | 69 6d 29 60 60 2e 0a 0a 20 20 20 20 50 61 72 61 6d 65 74 65 72 73 0a 20 20 20 20 2d 2d 2d 2d 2d | im)``.......Parameters.....----- |
| 2c60 | 2d 2d 2d 2d 2d 0a 20 20 20 20 61 20 3a 20 61 72 72 61 79 5f 6c 69 6b 65 0a 20 20 20 20 20 20 20 | -----.....a.:.array_like........ |
| 2c80 | 20 43 6f 65 66 66 69 63 69 65 6e 74 20 74 65 6e 73 6f 72 2c 20 6f 66 20 73 68 61 70 65 20 60 60 | .Coefficient.tensor,.of.shape.`` |
| 2ca0 | 62 2e 73 68 61 70 65 20 2b 20 51 60 60 2e 20 60 51 60 2c 20 61 20 74 75 70 6c 65 2c 20 65 71 75 | b.shape.+.Q``..`Q`,.a.tuple,.equ |
| 2cc0 | 61 6c 73 0a 20 20 20 20 20 20 20 20 74 68 65 20 73 68 61 70 65 20 6f 66 20 74 68 61 74 20 73 75 | als.........the.shape.of.that.su |
| 2ce0 | 62 2d 74 65 6e 73 6f 72 20 6f 66 20 60 61 60 20 63 6f 6e 73 69 73 74 69 6e 67 20 6f 66 20 74 68 | b-tensor.of.`a`.consisting.of.th |
| 2d00 | 65 20 61 70 70 72 6f 70 72 69 61 74 65 0a 20 20 20 20 20 20 20 20 6e 75 6d 62 65 72 20 6f 66 20 | e.appropriate.........number.of. |
| 2d20 | 69 74 73 20 72 69 67 68 74 6d 6f 73 74 20 69 6e 64 69 63 65 73 2c 20 61 6e 64 20 6d 75 73 74 20 | its.rightmost.indices,.and.must. |
| 2d40 | 62 65 20 73 75 63 68 20 74 68 61 74 0a 20 20 20 20 20 20 20 20 60 60 70 72 6f 64 28 51 29 20 3d | be.such.that.........``prod(Q).= |
| 2d60 | 3d 20 70 72 6f 64 28 62 2e 73 68 61 70 65 29 60 60 20 28 69 6e 20 77 68 69 63 68 20 73 65 6e 73 | =.prod(b.shape)``.(in.which.sens |
| 2d80 | 65 20 60 61 60 20 69 73 20 73 61 69 64 20 74 6f 20 62 65 0a 20 20 20 20 20 20 20 20 27 73 71 75 | e.`a`.is.said.to.be.........'squ |
| 2da0 | 61 72 65 27 29 2e 0a 20 20 20 20 62 20 3a 20 61 72 72 61 79 5f 6c 69 6b 65 0a 20 20 20 20 20 20 | are')......b.:.array_like....... |
| 2dc0 | 20 20 52 69 67 68 74 2d 68 61 6e 64 20 74 65 6e 73 6f 72 2c 20 77 68 69 63 68 20 63 61 6e 20 62 | ..Right-hand.tensor,.which.can.b |
| 2de0 | 65 20 6f 66 20 61 6e 79 20 73 68 61 70 65 2e 0a 20 20 20 20 61 78 65 73 20 3a 20 74 75 70 6c 65 | e.of.any.shape......axes.:.tuple |
| 2e00 | 20 6f 66 20 69 6e 74 73 2c 20 6f 70 74 69 6f 6e 61 6c 0a 20 20 20 20 20 20 20 20 41 78 65 73 20 | .of.ints,.optional.........Axes. |
| 2e20 | 69 6e 20 60 61 60 20 74 6f 20 72 65 6f 72 64 65 72 20 74 6f 20 74 68 65 20 72 69 67 68 74 2c 20 | in.`a`.to.reorder.to.the.right,. |
| 2e40 | 62 65 66 6f 72 65 20 69 6e 76 65 72 73 69 6f 6e 2e 0a 20 20 20 20 20 20 20 20 49 66 20 4e 6f 6e | before.inversion..........If.Non |
| 2e60 | 65 20 28 64 65 66 61 75 6c 74 29 2c 20 6e 6f 20 72 65 6f 72 64 65 72 69 6e 67 20 69 73 20 64 6f | e.(default),.no.reordering.is.do |
| 2e80 | 6e 65 2e 0a 0a 20 20 20 20 52 65 74 75 72 6e 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 | ne.......Returns.....-------.... |
| 2ea0 | 20 78 20 3a 20 6e 64 61 72 72 61 79 2c 20 73 68 61 70 65 20 51 0a 0a 20 20 20 20 52 61 69 73 65 | .x.:.ndarray,.shape.Q......Raise |
| 2ec0 | 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 4c 69 6e 41 6c 67 45 72 72 6f 72 0a 20 20 20 | s.....------.....LinAlgError.... |
| 2ee0 | 20 20 20 20 20 49 66 20 60 61 60 20 69 73 20 73 69 6e 67 75 6c 61 72 20 6f 72 20 6e 6f 74 20 27 | .....If.`a`.is.singular.or.not.' |
| 2f00 | 73 71 75 61 72 65 27 20 28 69 6e 20 74 68 65 20 61 62 6f 76 65 20 73 65 6e 73 65 29 2e 0a 0a 20 | square'.(in.the.above.sense).... |
| 2f20 | 20 20 20 53 65 65 20 41 6c 73 6f 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 6e 75 6d | ...See.Also.....--------.....num |
| 2f40 | 70 79 2e 74 65 6e 73 6f 72 64 6f 74 2c 20 74 65 6e 73 6f 72 69 6e 76 2c 20 6e 75 6d 70 79 2e 65 | py.tensordot,.tensorinv,.numpy.e |
| 2f60 | 69 6e 73 75 6d 0a 0a 20 20 20 20 45 78 61 6d 70 6c 65 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d | insum......Examples.....-------- |
| 2f80 | 0a 20 20 20 20 3e 3e 3e 20 69 6d 70 6f 72 74 20 6e 75 6d 70 79 20 61 73 20 6e 70 0a 20 20 20 20 | .....>>>.import.numpy.as.np..... |
| 2fa0 | 3e 3e 3e 20 61 20 3d 20 6e 70 2e 65 79 65 28 32 2a 33 2a 34 29 0a 20 20 20 20 3e 3e 3e 20 61 2e | >>>.a.=.np.eye(2*3*4).....>>>.a. |
| 2fc0 | 73 68 61 70 65 20 3d 20 28 32 2a 33 2c 20 34 2c 20 32 2c 20 33 2c 20 34 29 0a 20 20 20 20 3e 3e | shape.=.(2*3,.4,.2,.3,.4).....>> |
| 2fe0 | 3e 20 72 6e 67 20 3d 20 6e 70 2e 72 61 6e 64 6f 6d 2e 64 65 66 61 75 6c 74 5f 72 6e 67 28 29 0a | >.rng.=.np.random.default_rng(). |
| 3000 | 20 20 20 20 3e 3e 3e 20 62 20 3d 20 72 6e 67 2e 6e 6f 72 6d 61 6c 28 73 69 7a 65 3d 28 32 2a 33 | ....>>>.b.=.rng.normal(size=(2*3 |
| 3020 | 2c 20 34 29 29 0a 20 20 20 20 3e 3e 3e 20 78 20 3d 20 6e 70 2e 6c 69 6e 61 6c 67 2e 74 65 6e 73 | ,.4)).....>>>.x.=.np.linalg.tens |
| 3040 | 6f 72 73 6f 6c 76 65 28 61 2c 20 62 29 0a 20 20 20 20 3e 3e 3e 20 78 2e 73 68 61 70 65 0a 20 20 | orsolve(a,.b).....>>>.x.shape... |
| 3060 | 20 20 28 32 2c 20 33 2c 20 34 29 0a 20 20 20 20 3e 3e 3e 20 6e 70 2e 61 6c 6c 63 6c 6f 73 65 28 | ..(2,.3,.4).....>>>.np.allclose( |
| 3080 | 6e 70 2e 74 65 6e 73 6f 72 64 6f 74 28 61 2c 20 78 2c 20 61 78 65 73 3d 33 29 2c 20 62 29 0a 20 | np.tensordot(a,.x,.axes=3),.b).. |
| 30a0 | 20 20 20 54 72 75 65 0a 0a 20 20 20 20 4e 72 a9 00 00 00 72 b2 00 00 00 7a 66 49 6e 70 75 74 20 | ...True......Nr....r....zfInput. |
| 30c0 | 61 72 72 61 79 73 20 6d 75 73 74 20 73 61 74 69 73 66 79 20 74 68 65 20 72 65 71 75 69 72 65 6d | arrays.must.satisfy.the.requirem |
| 30e0 | 65 6e 74 20 20 20 20 20 20 20 20 20 20 20 20 20 70 72 6f 64 28 61 2e 73 68 61 70 65 5b 62 2e 6e | ent.............prod(a.shape[b.n |
| 3100 | 64 69 6d 3a 5d 29 20 3d 3d 20 70 72 6f 64 28 61 2e 73 68 61 70 65 5b 3a 62 2e 6e 64 69 6d 5d 29 | dim:]).==.prod(a.shape[:b.ndim]) |
| 3120 | 29 0e 72 8b 00 00 00 72 2d 00 00 00 72 b4 00 00 00 da 04 6c 69 73 74 da 05 72 61 6e 67 65 da 06 | ).r....r-...r......list..range.. |
| 3140 | 72 65 6d 6f 76 65 da 06 69 6e 73 65 72 74 72 4e 00 00 00 72 bc 00 00 00 72 c4 00 00 00 72 16 00 | remove..insertrN...r....r....r.. |
| 3160 | 00 00 da 07 72 65 73 68 61 70 65 da 05 72 61 76 65 6c 72 03 00 00 00 29 0a 72 88 00 00 00 72 ca | ....reshape..ravelr....).r....r. |
| 3180 | 00 00 00 72 cb 00 00 00 72 8a 00 00 00 da 02 61 6e da 07 61 6c 6c 61 78 65 73 da 01 6b da 08 6f | ...r....r......an..allaxes..k..o |
| 31a0 | 6c 64 73 68 61 70 65 72 45 00 00 00 da 03 72 65 73 73 0a 00 00 00 20 20 20 20 20 20 20 20 20 20 | ldshaperE.....ress.............. |
| 31c0 | 72 62 00 00 00 72 04 00 00 00 72 04 00 00 00 2b 01 00 00 73 04 01 00 00 80 00 f4 64 01 00 0f 19 | rb...r....r....+...s.......d.... |
| 31e0 | 98 11 8b 6d 81 47 80 41 80 74 dc 08 0f 90 01 8b 0a 80 41 d8 09 0a 8f 16 89 16 80 42 e0 07 0b d0 | ...m.G.A.t........A........B.... |
| 3200 | 07 17 dc 12 16 94 75 98 52 93 79 93 2f 88 07 d8 11 15 f2 00 02 09 22 88 41 d8 0c 13 8f 4e 89 4e | ......u.R.y./.........".A....N.N |
| 3220 | 98 31 d4 0c 1d d8 0c 13 8f 4e 89 4e 98 32 98 71 d5 0c 21 f0 05 02 09 22 f0 06 00 0d 0e 8f 4b 89 | .1.......N.N.2.q..!...."......K. |
| 3240 | 4b 98 07 d3 0c 20 88 01 e0 0f 10 8f 77 89 77 98 12 98 61 9f 66 99 66 99 1b 90 7e 90 7f d0 0f 27 | K...........w.w...a.f.f...~....' |
| 3260 | 80 48 d8 0b 0c 80 44 d8 0d 15 f2 00 01 05 12 88 01 d8 08 0c 90 01 89 09 89 04 f0 03 01 05 12 f0 | .H....D......................... |
| 3280 | 06 00 08 09 87 76 81 76 90 14 98 11 91 19 d2 07 1a dc 0e 19 f0 02 01 0d 3e f3 03 03 0f 0a f0 00 | .....v.v................>....... |
| 32a0 | 03 09 0a f0 0a 00 09 0a 8f 09 89 09 90 24 98 04 d3 08 1d 80 41 d8 08 09 8f 07 89 07 8b 09 80 41 | .............$......A..........A |
| 32c0 | d9 0a 0e 8c 75 90 51 98 01 8b 7b d3 0a 1b 80 43 d8 10 18 80 43 84 49 d8 0b 0e 80 4a 72 61 00 00 | ....u.Q...{....C....C.I....Jra.. |
| 32e0 | 00 63 02 00 00 00 00 00 00 00 00 00 00 00 02 00 00 00 03 00 00 00 f3 0a 00 00 00 97 00 7c 00 7c | .c...........................|.| |
| 3300 | 01 66 02 53 00 72 8d 00 00 00 72 60 00 00 00 29 02 72 88 00 00 00 72 ca 00 00 00 73 02 00 00 00 | .f.S.r....r`...).r....r....s.... |
| 3320 | 20 20 72 62 00 00 00 da 11 5f 73 6f 6c 76 65 5f 64 69 73 70 61 74 63 68 65 72 72 db 00 00 00 7a | ..rb....._solve_dispatcherr....z |
| 3340 | 01 00 00 72 cd 00 00 00 72 61 00 00 00 63 02 00 00 00 00 00 00 00 00 00 00 00 07 00 00 00 03 00 | ...r....ra...c.................. |
| 3360 | 00 00 f3 86 01 00 00 97 00 74 01 00 00 00 00 00 00 00 00 7c 00 ab 01 00 00 00 00 00 00 5c 02 00 | .........t.........|.........\.. |
| 3380 | 00 7d 00 7d 02 74 03 00 00 00 00 00 00 00 00 7c 00 ab 01 00 00 00 00 00 00 01 00 74 01 00 00 00 | .}.}.t.........|...........t.... |
| 33a0 | 00 00 00 00 00 7c 01 ab 01 00 00 00 00 00 00 5c 02 00 00 7d 01 7d 03 74 05 00 00 00 00 00 00 00 | .....|.........\...}.}.t........ |
| 33c0 | 00 7c 00 7c 01 ab 02 00 00 00 00 00 00 5c 02 00 00 7d 04 7d 05 7c 01 6a 06 00 00 00 00 00 00 00 | .|.|.........\...}.}.|.j........ |
| 33e0 | 00 00 00 00 00 00 00 00 00 00 00 64 01 6b 28 00 00 72 11 74 08 00 00 00 00 00 00 00 00 6a 0a 00 | ...........d.k(..r.t.........j.. |
| 3400 | 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 7d 06 6e 10 74 08 00 00 00 00 00 00 00 00 6a | .................}.n.t.........j |
| 3420 | 0c 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 7d 06 74 0f 00 00 00 00 00 00 00 00 7c | ...................}.t.........| |
| 3440 | 04 ab 01 00 00 00 00 00 00 72 02 64 02 6e 01 64 03 7d 07 74 11 00 00 00 00 00 00 00 00 74 12 00 | .........r.d.n.d.}.t.........t.. |
| 3460 | 00 00 00 00 00 00 00 64 04 64 05 64 05 64 05 ac 06 ab 05 00 00 00 00 00 00 35 00 01 00 02 00 7c | .......d.d.d.d...........5.....| |
| 3480 | 06 7c 00 7c 01 7c 07 ac 07 ab 03 00 00 00 00 00 00 7d 08 64 08 64 08 64 08 ab 02 00 00 00 00 00 | .|.|.|...........}.d.d.d........ |
| 34a0 | 00 01 00 02 00 7c 03 7f 08 6a 15 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 7c 05 64 | .....|...j...................|.d |
| 34c0 | 09 ac 0a ab 02 00 00 00 00 00 00 ab 01 00 00 00 00 00 00 53 00 23 00 31 00 73 01 77 02 01 00 59 | ...................S.#.1.s.w...Y |
| 34e0 | 00 01 00 01 00 8c 22 78 03 59 00 77 01 29 0b 61 ec 07 00 00 0a 20 20 20 20 53 6f 6c 76 65 20 61 | ......"x.Y.w.).a.........Solve.a |
| 3500 | 20 6c 69 6e 65 61 72 20 6d 61 74 72 69 78 20 65 71 75 61 74 69 6f 6e 2c 20 6f 72 20 73 79 73 74 | .linear.matrix.equation,.or.syst |
| 3520 | 65 6d 20 6f 66 20 6c 69 6e 65 61 72 20 73 63 61 6c 61 72 20 65 71 75 61 74 69 6f 6e 73 2e 0a 0a | em.of.linear.scalar.equations... |
| 3540 | 20 20 20 20 43 6f 6d 70 75 74 65 73 20 74 68 65 20 22 65 78 61 63 74 22 20 73 6f 6c 75 74 69 6f | ....Computes.the."exact".solutio |
| 3560 | 6e 2c 20 60 78 60 2c 20 6f 66 20 74 68 65 20 77 65 6c 6c 2d 64 65 74 65 72 6d 69 6e 65 64 2c 20 | n,.`x`,.of.the.well-determined,. |
| 3580 | 69 2e 65 2e 2c 20 66 75 6c 6c 0a 20 20 20 20 72 61 6e 6b 2c 20 6c 69 6e 65 61 72 20 6d 61 74 72 | i.e.,.full.....rank,.linear.matr |
| 35a0 | 69 78 20 65 71 75 61 74 69 6f 6e 20 60 61 78 20 3d 20 62 60 2e 0a 0a 20 20 20 20 50 61 72 61 6d | ix.equation.`ax.=.b`.......Param |
| 35c0 | 65 74 65 72 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 61 20 3a 20 28 2e 2e | eters.....----------.....a.:.(.. |
| 35e0 | 2e 2c 20 4d 2c 20 4d 29 20 61 72 72 61 79 5f 6c 69 6b 65 0a 20 20 20 20 20 20 20 20 43 6f 65 66 | .,.M,.M).array_like.........Coef |
| 3600 | 66 69 63 69 65 6e 74 20 6d 61 74 72 69 78 2e 0a 20 20 20 20 62 20 3a 20 7b 28 4d 2c 29 2c 20 28 | ficient.matrix......b.:.{(M,),.( |
| 3620 | 2e 2e 2e 2c 20 4d 2c 20 4b 29 7d 2c 20 61 72 72 61 79 5f 6c 69 6b 65 0a 20 20 20 20 20 20 20 20 | ...,.M,.K)},.array_like......... |
| 3640 | 4f 72 64 69 6e 61 74 65 20 6f 72 20 22 64 65 70 65 6e 64 65 6e 74 20 76 61 72 69 61 62 6c 65 22 | Ordinate.or."dependent.variable" |
| 3660 | 20 76 61 6c 75 65 73 2e 0a 0a 20 20 20 20 52 65 74 75 72 6e 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d | .values.......Returns.....------ |
| 3680 | 2d 0a 20 20 20 20 78 20 3a 20 7b 28 2e 2e 2e 2c 20 4d 2c 29 2c 20 28 2e 2e 2e 2c 20 4d 2c 20 4b | -.....x.:.{(...,.M,),.(...,.M,.K |
| 36a0 | 29 7d 20 6e 64 61 72 72 61 79 0a 20 20 20 20 20 20 20 20 53 6f 6c 75 74 69 6f 6e 20 74 6f 20 74 | )}.ndarray.........Solution.to.t |
| 36c0 | 68 65 20 73 79 73 74 65 6d 20 61 20 78 20 3d 20 62 2e 20 20 52 65 74 75 72 6e 65 64 20 73 68 61 | he.system.a.x.=.b...Returned.sha |
| 36e0 | 70 65 20 69 73 20 28 2e 2e 2e 2c 20 4d 29 20 69 66 20 62 20 69 73 0a 20 20 20 20 20 20 20 20 73 | pe.is.(...,.M).if.b.is.........s |
| 3700 | 68 61 70 65 20 28 4d 2c 29 20 61 6e 64 20 28 2e 2e 2e 2c 20 4d 2c 20 4b 29 20 69 66 20 62 20 69 | hape.(M,).and.(...,.M,.K).if.b.i |
| 3720 | 73 20 28 2e 2e 2e 2c 20 4d 2c 20 4b 29 2c 20 77 68 65 72 65 20 74 68 65 20 22 2e 2e 2e 22 20 70 | s.(...,.M,.K),.where.the."...".p |
| 3740 | 61 72 74 20 69 73 0a 20 20 20 20 20 20 20 20 62 72 6f 61 64 63 61 73 74 65 64 20 62 65 74 77 65 | art.is.........broadcasted.betwe |
| 3760 | 65 6e 20 61 20 61 6e 64 20 62 2e 0a 0a 20 20 20 20 52 61 69 73 65 73 0a 20 20 20 20 2d 2d 2d 2d | en.a.and.b.......Raises.....---- |
| 3780 | 2d 2d 0a 20 20 20 20 4c 69 6e 41 6c 67 45 72 72 6f 72 0a 20 20 20 20 20 20 20 20 49 66 20 60 61 | --.....LinAlgError.........If.`a |
| 37a0 | 60 20 69 73 20 73 69 6e 67 75 6c 61 72 20 6f 72 20 6e 6f 74 20 73 71 75 61 72 65 2e 0a 0a 20 20 | `.is.singular.or.not.square..... |
| 37c0 | 20 20 53 65 65 20 41 6c 73 6f 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 73 63 69 70 | ..See.Also.....--------.....scip |
| 37e0 | 79 2e 6c 69 6e 61 6c 67 2e 73 6f 6c 76 65 20 3a 20 53 69 6d 69 6c 61 72 20 66 75 6e 63 74 69 6f | y.linalg.solve.:.Similar.functio |
| 3800 | 6e 20 69 6e 20 53 63 69 50 79 2e 0a 0a 20 20 20 20 4e 6f 74 65 73 0a 20 20 20 20 2d 2d 2d 2d 2d | n.in.SciPy.......Notes.....----- |
| 3820 | 0a 20 20 20 20 42 72 6f 61 64 63 61 73 74 69 6e 67 20 72 75 6c 65 73 20 61 70 70 6c 79 2c 20 73 | .....Broadcasting.rules.apply,.s |
| 3840 | 65 65 20 74 68 65 20 60 6e 75 6d 70 79 2e 6c 69 6e 61 6c 67 60 20 64 6f 63 75 6d 65 6e 74 61 74 | ee.the.`numpy.linalg`.documentat |
| 3860 | 69 6f 6e 20 66 6f 72 0a 20 20 20 20 64 65 74 61 69 6c 73 2e 0a 0a 20 20 20 20 54 68 65 20 73 6f | ion.for.....details.......The.so |
| 3880 | 6c 75 74 69 6f 6e 73 20 61 72 65 20 63 6f 6d 70 75 74 65 64 20 75 73 69 6e 67 20 4c 41 50 41 43 | lutions.are.computed.using.LAPAC |
| 38a0 | 4b 20 72 6f 75 74 69 6e 65 20 60 60 5f 67 65 73 76 60 60 2e 0a 0a 20 20 20 20 60 61 60 20 6d 75 | K.routine.``_gesv``.......`a`.mu |
| 38c0 | 73 74 20 62 65 20 73 71 75 61 72 65 20 61 6e 64 20 6f 66 20 66 75 6c 6c 2d 72 61 6e 6b 2c 20 69 | st.be.square.and.of.full-rank,.i |
| 38e0 | 2e 65 2e 2c 20 61 6c 6c 20 72 6f 77 73 20 28 6f 72 2c 20 65 71 75 69 76 61 6c 65 6e 74 6c 79 2c | .e.,.all.rows.(or,.equivalently, |
| 3900 | 0a 20 20 20 20 63 6f 6c 75 6d 6e 73 29 20 6d 75 73 74 20 62 65 20 6c 69 6e 65 61 72 6c 79 20 69 | .....columns).must.be.linearly.i |
| 3920 | 6e 64 65 70 65 6e 64 65 6e 74 3b 20 69 66 20 65 69 74 68 65 72 20 69 73 20 6e 6f 74 20 74 72 75 | ndependent;.if.either.is.not.tru |
| 3940 | 65 2c 20 75 73 65 0a 20 20 20 20 60 6c 73 74 73 71 60 20 66 6f 72 20 74 68 65 20 6c 65 61 73 74 | e,.use.....`lstsq`.for.the.least |
| 3960 | 2d 73 71 75 61 72 65 73 20 62 65 73 74 20 22 73 6f 6c 75 74 69 6f 6e 22 20 6f 66 20 74 68 65 0a | -squares.best."solution".of.the. |
| 3980 | 20 20 20 20 73 79 73 74 65 6d 2f 65 71 75 61 74 69 6f 6e 2e 0a 0a 20 20 20 20 2e 2e 20 76 65 72 | ....system/equation..........ver |
| 39a0 | 73 69 6f 6e 63 68 61 6e 67 65 64 3a 3a 20 32 2e 30 0a 0a 20 20 20 20 20 20 20 54 68 65 20 62 20 | sionchanged::.2.0.........The.b. |
| 39c0 | 61 72 72 61 79 20 69 73 20 6f 6e 6c 79 20 74 72 65 61 74 65 64 20 61 73 20 61 20 73 68 61 70 65 | array.is.only.treated.as.a.shape |
| 39e0 | 20 28 4d 2c 29 20 63 6f 6c 75 6d 6e 20 76 65 63 74 6f 72 20 69 66 20 69 74 20 69 73 0a 20 20 20 | .(M,).column.vector.if.it.is.... |
| 3a00 | 20 20 20 20 65 78 61 63 74 6c 79 20 31 2d 64 69 6d 65 6e 73 69 6f 6e 61 6c 2e 20 49 6e 20 61 6c | ....exactly.1-dimensional..In.al |
| 3a20 | 6c 20 6f 74 68 65 72 20 69 6e 73 74 61 6e 63 65 73 20 69 74 20 69 73 20 74 72 65 61 74 65 64 20 | l.other.instances.it.is.treated. |
| 3a40 | 61 73 20 61 20 73 74 61 63 6b 0a 20 20 20 20 20 20 20 6f 66 20 28 4d 2c 20 4b 29 20 6d 61 74 72 | as.a.stack........of.(M,.K).matr |
| 3a60 | 69 63 65 73 2e 20 50 72 65 76 69 6f 75 73 6c 79 20 62 20 77 6f 75 6c 64 20 62 65 20 74 72 65 61 | ices..Previously.b.would.be.trea |
| 3a80 | 74 65 64 20 61 73 20 61 20 73 74 61 63 6b 20 6f 66 20 28 4d 2c 29 0a 20 20 20 20 20 20 20 76 65 | ted.as.a.stack.of.(M,)........ve |
| 3aa0 | 63 74 6f 72 73 20 69 66 20 62 2e 6e 64 69 6d 20 77 61 73 20 65 71 75 61 6c 20 74 6f 20 61 2e 6e | ctors.if.b.ndim.was.equal.to.a.n |
| 3ac0 | 64 69 6d 20 2d 20 31 2e 0a 0a 20 20 20 20 52 65 66 65 72 65 6e 63 65 73 0a 20 20 20 20 2d 2d 2d | dim.-.1.......References.....--- |
| 3ae0 | 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 2e 2e 20 5b 31 5d 20 47 2e 20 53 74 72 61 6e 67 2c 20 2a 4c | -------........[1].G..Strang,.*L |
| 3b00 | 69 6e 65 61 72 20 41 6c 67 65 62 72 61 20 61 6e 64 20 49 74 73 20 41 70 70 6c 69 63 61 74 69 6f | inear.Algebra.and.Its.Applicatio |
| 3b20 | 6e 73 2a 2c 20 32 6e 64 20 45 64 2e 2c 20 4f 72 6c 61 6e 64 6f 2c 0a 20 20 20 20 20 20 20 20 20 | ns*,.2nd.Ed.,.Orlando,.......... |
| 3b40 | 20 20 46 4c 2c 20 41 63 61 64 65 6d 69 63 20 50 72 65 73 73 2c 20 49 6e 63 2e 2c 20 31 39 38 30 | ..FL,.Academic.Press,.Inc.,.1980 |
| 3b60 | 2c 20 70 67 2e 20 32 32 2e 0a 0a 20 20 20 20 45 78 61 6d 70 6c 65 73 0a 20 20 20 20 2d 2d 2d 2d | ,.pg..22.......Examples.....---- |
| 3b80 | 2d 2d 2d 2d 0a 20 20 20 20 53 6f 6c 76 65 20 74 68 65 20 73 79 73 74 65 6d 20 6f 66 20 65 71 75 | ----.....Solve.the.system.of.equ |
| 3ba0 | 61 74 69 6f 6e 73 3a 0a 20 20 20 20 60 60 78 30 20 2b 20 32 20 2a 20 78 31 20 3d 20 31 60 60 20 | ations:.....``x0.+.2.*.x1.=.1``. |
| 3bc0 | 61 6e 64 0a 20 20 20 20 60 60 33 20 2a 20 78 30 20 2b 20 35 20 2a 20 78 31 20 3d 20 32 60 60 3a | and.....``3.*.x0.+.5.*.x1.=.2``: |
| 3be0 | 0a 0a 20 20 20 20 3e 3e 3e 20 69 6d 70 6f 72 74 20 6e 75 6d 70 79 20 61 73 20 6e 70 0a 20 20 20 | ......>>>.import.numpy.as.np.... |
| 3c00 | 20 3e 3e 3e 20 61 20 3d 20 6e 70 2e 61 72 72 61 79 28 5b 5b 31 2c 20 32 5d 2c 20 5b 33 2c 20 35 | .>>>.a.=.np.array([[1,.2],.[3,.5 |
| 3c20 | 5d 5d 29 0a 20 20 20 20 3e 3e 3e 20 62 20 3d 20 6e 70 2e 61 72 72 61 79 28 5b 31 2c 20 32 5d 29 | ]]).....>>>.b.=.np.array([1,.2]) |
| 3c40 | 0a 20 20 20 20 3e 3e 3e 20 78 20 3d 20 6e 70 2e 6c 69 6e 61 6c 67 2e 73 6f 6c 76 65 28 61 2c 20 | .....>>>.x.=.np.linalg.solve(a,. |
| 3c60 | 62 29 0a 20 20 20 20 3e 3e 3e 20 78 0a 20 20 20 20 61 72 72 61 79 28 5b 2d 31 2e 2c 20 20 31 2e | b).....>>>.x.....array([-1.,..1. |
| 3c80 | 5d 29 0a 0a 20 20 20 20 43 68 65 63 6b 20 74 68 61 74 20 74 68 65 20 73 6f 6c 75 74 69 6f 6e 20 | ])......Check.that.the.solution. |
| 3ca0 | 69 73 20 63 6f 72 72 65 63 74 3a 0a 0a 20 20 20 20 3e 3e 3e 20 6e 70 2e 61 6c 6c 63 6c 6f 73 65 | is.correct:......>>>.np.allclose |
| 3cc0 | 28 6e 70 2e 64 6f 74 28 61 2c 20 78 29 2c 20 62 29 0a 20 20 20 20 54 72 75 65 0a 0a 20 20 20 20 | (np.dot(a,.x),.b).....True...... |
| 3ce0 | 72 a9 00 00 00 fa 05 44 44 2d 3e 44 fa 05 64 64 2d 3e 64 da 04 63 61 6c 6c da 06 69 67 6e 6f 72 | r......DD->D..dd->d..call..ignor |
| 3d00 | 65 a9 05 72 df 00 00 00 da 07 69 6e 76 61 6c 69 64 da 04 6f 76 65 72 72 33 00 00 00 da 05 75 6e | e..r......invalid..overr3.....un |
| 3d20 | 64 65 72 a9 01 da 09 73 69 67 6e 61 74 75 72 65 4e 46 a9 01 da 04 63 6f 70 79 29 0b 72 8b 00 00 | der....signatureNF....copy).r... |
| 3d40 | 00 72 c0 00 00 00 72 a4 00 00 00 72 b4 00 00 00 72 56 00 00 00 da 06 73 6f 6c 76 65 31 72 03 00 | .r....r....r....rV.....solve1r.. |
| 3d60 | 00 00 72 90 00 00 00 72 38 00 00 00 72 7a 00 00 00 da 06 61 73 74 79 70 65 29 09 72 88 00 00 00 | ..r....r8...rz.....astype).r.... |
| 3d80 | 72 ca 00 00 00 da 01 5f 72 8a 00 00 00 72 8f 00 00 00 da 08 72 65 73 75 6c 74 5f 74 da 06 67 75 | r......_r....r......result_t..gu |
| 3da0 | 66 75 6e 63 72 e6 00 00 00 da 01 72 73 09 00 00 00 20 20 20 20 20 20 20 20 20 72 62 00 00 00 72 | funcr......rs.............rb...r |
| 3dc0 | 03 00 00 00 72 03 00 00 00 7e 01 00 00 73 ba 00 00 00 80 00 f4 54 02 00 0c 16 90 61 8b 3d 81 44 | ....r....~...s.......T.....a.=.D |
| 3de0 | 80 41 80 71 dc 04 1a 98 31 d4 04 1d dc 0e 18 98 11 8b 6d 81 47 80 41 80 74 dc 12 1d 98 61 a0 11 | .A.q....1.........m.G.A.t....a.. |
| 3e00 | d3 12 23 81 4b 80 41 80 78 f0 08 00 08 09 87 76 81 76 90 11 82 7b dc 11 1e d7 11 25 d1 11 25 89 | ..#.K.A.x......v.v...{.....%..%. |
| 3e20 | 06 e4 11 1e d7 11 24 d1 11 24 88 06 e4 1b 28 a8 11 d4 1b 2b 91 07 b0 17 80 49 dc 09 11 d4 17 32 | ......$..$....(....+.....I.....2 |
| 3e40 | b8 46 d8 17 1f a8 08 b8 08 f4 03 01 0a 42 01 f1 00 02 05 2e e1 0c 12 90 31 90 61 a0 39 d4 0c 2d | .F...........B..........1.a.9..- |
| 3e60 | 88 01 f7 05 02 05 2e f1 08 00 0c 10 90 01 97 08 91 08 98 18 a8 05 90 08 d3 10 2e d3 0b 2f d0 04 | ............................./.. |
| 3e80 | 2f f7 09 02 05 2e f0 00 02 05 2e fa 73 0c 00 00 00 c2 0a 0c 42 37 03 c2 37 05 43 00 07 63 02 00 | /...........s.......B7..7.C..c.. |
| 3ea0 | 00 00 00 00 00 00 00 00 00 00 01 00 00 00 03 00 00 00 f3 08 00 00 00 97 00 7c 00 66 01 53 00 72 | .........................|.f.S.r |
| 3ec0 | 8d 00 00 00 72 60 00 00 00 29 02 72 88 00 00 00 da 03 69 6e 64 73 02 00 00 00 20 20 72 62 00 00 | ....r`...).r......inds......rb.. |
| 3ee0 | 00 da 15 5f 74 65 6e 73 6f 72 69 6e 76 5f 64 69 73 70 61 74 63 68 65 72 72 f1 00 00 00 dc 01 00 | ..._tensorinv_dispatcherr....... |
| 3f00 | 00 f3 09 00 00 00 80 00 d8 0c 0d 88 34 80 4b 72 61 00 00 00 72 b2 00 00 00 63 02 00 00 00 00 00 | ............4.Kra...r....c...... |
| 3f20 | 00 00 00 00 00 00 04 00 00 00 03 00 00 00 f3 e2 00 00 00 97 00 74 01 00 00 00 00 00 00 00 00 7c | .....................t.........| |
| 3f40 | 00 ab 01 00 00 00 00 00 00 7d 00 7c 00 6a 02 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 | .........}.|.j.................. |
| 3f60 | 00 7d 02 64 01 7d 03 7c 01 64 02 6b 44 00 00 72 1b 7c 02 7c 01 64 03 1a 00 7c 02 64 03 7c 01 1a | .}.d.}.|.d.kD..r.|.|.d...|.d.|.. |
| 3f80 | 00 7a 00 00 00 7d 04 7c 02 7c 01 64 03 1a 00 44 00 5d 07 00 00 7d 05 7c 03 7c 05 7a 12 00 00 7d | .z...}.|.|.d...D.]...}.|.|.z...} |
| 3fa0 | 03 8c 09 04 00 6e 0b 74 05 00 00 00 00 00 00 00 00 64 04 ab 01 00 00 00 00 00 00 82 01 7c 00 6a | .....n.t.........d...........|.j |
| 3fc0 | 07 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 7c 03 64 05 ab 02 00 00 00 00 00 00 7d | ...................|.d.........} |
| 3fe0 | 00 74 09 00 00 00 00 00 00 00 00 7c 00 ab 01 00 00 00 00 00 00 7d 06 02 00 7c 06 6a 06 00 00 00 | .t.........|.........}...|.j.... |
| 4000 | 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 7c 04 8e 00 53 00 29 06 61 f3 05 00 00 0a 20 20 20 | ...............|...S.).a........ |
| 4020 | 20 43 6f 6d 70 75 74 65 20 74 68 65 20 27 69 6e 76 65 72 73 65 27 20 6f 66 20 61 6e 20 4e 2d 64 | .Compute.the.'inverse'.of.an.N-d |
| 4040 | 69 6d 65 6e 73 69 6f 6e 61 6c 20 61 72 72 61 79 2e 0a 0a 20 20 20 20 54 68 65 20 72 65 73 75 6c | imensional.array.......The.resul |
| 4060 | 74 20 69 73 20 61 6e 20 69 6e 76 65 72 73 65 20 66 6f 72 20 60 61 60 20 72 65 6c 61 74 69 76 65 | t.is.an.inverse.for.`a`.relative |
| 4080 | 20 74 6f 20 74 68 65 20 74 65 6e 73 6f 72 64 6f 74 20 6f 70 65 72 61 74 69 6f 6e 0a 20 20 20 20 | .to.the.tensordot.operation..... |
| 40a0 | 60 60 74 65 6e 73 6f 72 64 6f 74 28 61 2c 20 62 2c 20 69 6e 64 29 60 60 2c 20 69 2e 20 65 2e 2c | ``tensordot(a,.b,.ind)``,.i..e., |
| 40c0 | 20 75 70 20 74 6f 20 66 6c 6f 61 74 69 6e 67 2d 70 6f 69 6e 74 20 61 63 63 75 72 61 63 79 2c 0a | .up.to.floating-point.accuracy,. |
| 40e0 | 20 20 20 20 60 60 74 65 6e 73 6f 72 64 6f 74 28 74 65 6e 73 6f 72 69 6e 76 28 61 29 2c 20 61 2c | ....``tensordot(tensorinv(a),.a, |
| 4100 | 20 69 6e 64 29 60 60 20 69 73 20 74 68 65 20 22 69 64 65 6e 74 69 74 79 22 20 74 65 6e 73 6f 72 | .ind)``.is.the."identity".tensor |
| 4120 | 20 66 6f 72 20 74 68 65 0a 20 20 20 20 74 65 6e 73 6f 72 64 6f 74 20 6f 70 65 72 61 74 69 6f 6e | .for.the.....tensordot.operation |
| 4140 | 2e 0a 0a 20 20 20 20 50 61 72 61 6d 65 74 65 72 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d | .......Parameters.....---------- |
| 4160 | 0a 20 20 20 20 61 20 3a 20 61 72 72 61 79 5f 6c 69 6b 65 0a 20 20 20 20 20 20 20 20 54 65 6e 73 | .....a.:.array_like.........Tens |
| 4180 | 6f 72 20 74 6f 20 27 69 6e 76 65 72 74 27 2e 20 49 74 73 20 73 68 61 70 65 20 6d 75 73 74 20 62 | or.to.'invert'..Its.shape.must.b |
| 41a0 | 65 20 27 73 71 75 61 72 65 27 2c 20 69 2e 20 65 2e 2c 0a 20 20 20 20 20 20 20 20 60 60 70 72 6f | e.'square',.i..e.,.........``pro |
| 41c0 | 64 28 61 2e 73 68 61 70 65 5b 3a 69 6e 64 5d 29 20 3d 3d 20 70 72 6f 64 28 61 2e 73 68 61 70 65 | d(a.shape[:ind]).==.prod(a.shape |
| 41e0 | 5b 69 6e 64 3a 5d 29 60 60 2e 0a 20 20 20 20 69 6e 64 20 3a 20 69 6e 74 2c 20 6f 70 74 69 6f 6e | [ind:])``......ind.:.int,.option |
| 4200 | 61 6c 0a 20 20 20 20 20 20 20 20 4e 75 6d 62 65 72 20 6f 66 20 66 69 72 73 74 20 69 6e 64 69 63 | al.........Number.of.first.indic |
| 4220 | 65 73 20 74 68 61 74 20 61 72 65 20 69 6e 76 6f 6c 76 65 64 20 69 6e 20 74 68 65 20 69 6e 76 65 | es.that.are.involved.in.the.inve |
| 4240 | 72 73 65 20 73 75 6d 2e 0a 20 20 20 20 20 20 20 20 4d 75 73 74 20 62 65 20 61 20 70 6f 73 69 74 | rse.sum..........Must.be.a.posit |
| 4260 | 69 76 65 20 69 6e 74 65 67 65 72 2c 20 64 65 66 61 75 6c 74 20 69 73 20 32 2e 0a 0a 20 20 20 20 | ive.integer,.default.is.2....... |
| 4280 | 52 65 74 75 72 6e 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 62 20 3a 20 6e 64 61 72 | Returns.....-------.....b.:.ndar |
| 42a0 | 72 61 79 0a 20 20 20 20 20 20 20 20 60 61 60 27 73 20 74 65 6e 73 6f 72 64 6f 74 20 69 6e 76 65 | ray.........`a`'s.tensordot.inve |
| 42c0 | 72 73 65 2c 20 73 68 61 70 65 20 60 60 61 2e 73 68 61 70 65 5b 69 6e 64 3a 5d 20 2b 20 61 2e 73 | rse,.shape.``a.shape[ind:].+.a.s |
| 42e0 | 68 61 70 65 5b 3a 69 6e 64 5d 60 60 2e 0a 0a 20 20 20 20 52 61 69 73 65 73 0a 20 20 20 20 2d 2d | hape[:ind]``.......Raises.....-- |
| 4300 | 2d 2d 2d 2d 0a 20 20 20 20 4c 69 6e 41 6c 67 45 72 72 6f 72 0a 20 20 20 20 20 20 20 20 49 66 20 | ----.....LinAlgError.........If. |
| 4320 | 60 61 60 20 69 73 20 73 69 6e 67 75 6c 61 72 20 6f 72 20 6e 6f 74 20 27 73 71 75 61 72 65 27 20 | `a`.is.singular.or.not.'square'. |
| 4340 | 28 69 6e 20 74 68 65 20 61 62 6f 76 65 20 73 65 6e 73 65 29 2e 0a 0a 20 20 20 20 53 65 65 20 41 | (in.the.above.sense).......See.A |
| 4360 | 6c 73 6f 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 6e 75 6d 70 79 2e 74 65 6e 73 6f | lso.....--------.....numpy.tenso |
| 4380 | 72 64 6f 74 2c 20 74 65 6e 73 6f 72 73 6f 6c 76 65 0a 0a 20 20 20 20 45 78 61 6d 70 6c 65 73 0a | rdot,.tensorsolve......Examples. |
| 43a0 | 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 3e 3e 3e 20 69 6d 70 6f 72 74 20 6e 75 6d 70 | ....--------.....>>>.import.nump |
| 43c0 | 79 20 61 73 20 6e 70 0a 20 20 20 20 3e 3e 3e 20 61 20 3d 20 6e 70 2e 65 79 65 28 34 2a 36 29 0a | y.as.np.....>>>.a.=.np.eye(4*6). |
| 43e0 | 20 20 20 20 3e 3e 3e 20 61 2e 73 68 61 70 65 20 3d 20 28 34 2c 20 36 2c 20 38 2c 20 33 29 0a 20 | ....>>>.a.shape.=.(4,.6,.8,.3).. |
| 4400 | 20 20 20 3e 3e 3e 20 61 69 6e 76 20 3d 20 6e 70 2e 6c 69 6e 61 6c 67 2e 74 65 6e 73 6f 72 69 6e | ...>>>.ainv.=.np.linalg.tensorin |
| 4420 | 76 28 61 2c 20 69 6e 64 3d 32 29 0a 20 20 20 20 3e 3e 3e 20 61 69 6e 76 2e 73 68 61 70 65 0a 20 | v(a,.ind=2).....>>>.ainv.shape.. |
| 4440 | 20 20 20 28 38 2c 20 33 2c 20 34 2c 20 36 29 0a 20 20 20 20 3e 3e 3e 20 72 6e 67 20 3d 20 6e 70 | ...(8,.3,.4,.6).....>>>.rng.=.np |
| 4460 | 2e 72 61 6e 64 6f 6d 2e 64 65 66 61 75 6c 74 5f 72 6e 67 28 29 0a 20 20 20 20 3e 3e 3e 20 62 20 | .random.default_rng().....>>>.b. |
| 4480 | 3d 20 72 6e 67 2e 6e 6f 72 6d 61 6c 28 73 69 7a 65 3d 28 34 2c 20 36 29 29 0a 20 20 20 20 3e 3e | =.rng.normal(size=(4,.6)).....>> |
| 44a0 | 3e 20 6e 70 2e 61 6c 6c 63 6c 6f 73 65 28 6e 70 2e 74 65 6e 73 6f 72 64 6f 74 28 61 69 6e 76 2c | >.np.allclose(np.tensordot(ainv, |
| 44c0 | 20 62 29 2c 20 6e 70 2e 6c 69 6e 61 6c 67 2e 74 65 6e 73 6f 72 73 6f 6c 76 65 28 61 2c 20 62 29 | .b),.np.linalg.tensorsolve(a,.b) |
| 44e0 | 29 0a 20 20 20 20 54 72 75 65 0a 0a 20 20 20 20 3e 3e 3e 20 61 20 3d 20 6e 70 2e 65 79 65 28 34 | ).....True......>>>.a.=.np.eye(4 |
| 4500 | 2a 36 29 0a 20 20 20 20 3e 3e 3e 20 61 2e 73 68 61 70 65 20 3d 20 28 32 34 2c 20 38 2c 20 33 29 | *6).....>>>.a.shape.=.(24,.8,.3) |
| 4520 | 0a 20 20 20 20 3e 3e 3e 20 61 69 6e 76 20 3d 20 6e 70 2e 6c 69 6e 61 6c 67 2e 74 65 6e 73 6f 72 | .....>>>.ainv.=.np.linalg.tensor |
| 4540 | 69 6e 76 28 61 2c 20 69 6e 64 3d 31 29 0a 20 20 20 20 3e 3e 3e 20 61 69 6e 76 2e 73 68 61 70 65 | inv(a,.ind=1).....>>>.ainv.shape |
| 4560 | 0a 20 20 20 20 28 38 2c 20 33 2c 20 32 34 29 0a 20 20 20 20 3e 3e 3e 20 72 6e 67 20 3d 20 6e 70 | .....(8,.3,.24).....>>>.rng.=.np |
| 4580 | 2e 72 61 6e 64 6f 6d 2e 64 65 66 61 75 6c 74 5f 72 6e 67 28 29 0a 20 20 20 20 3e 3e 3e 20 62 20 | .random.default_rng().....>>>.b. |
| 45a0 | 3d 20 72 6e 67 2e 6e 6f 72 6d 61 6c 28 73 69 7a 65 3d 32 34 29 0a 20 20 20 20 3e 3e 3e 20 6e 70 | =.rng.normal(size=24).....>>>.np |
| 45c0 | 2e 61 6c 6c 63 6c 6f 73 65 28 6e 70 2e 74 65 6e 73 6f 72 64 6f 74 28 61 69 6e 76 2c 20 62 2c 20 | .allclose(np.tensordot(ainv,.b,. |
| 45e0 | 31 29 2c 20 6e 70 2e 6c 69 6e 61 6c 67 2e 74 65 6e 73 6f 72 73 6f 6c 76 65 28 61 2c 20 62 29 29 | 1),.np.linalg.tensorsolve(a,.b)) |
| 4600 | 0a 20 20 20 20 54 72 75 65 0a 0a 20 20 20 20 72 a9 00 00 00 72 22 00 00 00 4e 7a 15 49 6e 76 61 | .....True......r....r"...Nz.Inva |
| 4620 | 6c 69 64 20 69 6e 64 20 61 72 67 75 6d 65 6e 74 2e 72 c7 00 00 00 29 05 72 2d 00 00 00 72 bc 00 | lid.ind.argument.r....).r-...r.. |
| 4640 | 00 00 72 bd 00 00 00 72 d3 00 00 00 72 06 00 00 00 29 07 72 88 00 00 00 72 f0 00 00 00 72 d8 00 | ..r....r....r....).r....r....r.. |
| 4660 | 00 00 72 45 00 00 00 da 08 69 6e 76 73 68 61 70 65 72 d7 00 00 00 da 02 69 61 73 07 00 00 00 20 | ..rE.....invshaper......ias..... |
| 4680 | 20 20 20 20 20 20 72 62 00 00 00 72 05 00 00 00 72 05 00 00 00 e0 01 00 00 73 8f 00 00 00 80 00 | ......rb...r....r........s...... |
| 46a0 | f4 72 01 00 09 10 90 01 8b 0a 80 41 d8 0f 10 8f 77 89 77 80 48 d8 0b 0c 80 44 d8 07 0a 88 51 82 | .r.........A....w.w.H....D....Q. |
| 46c0 | 77 d8 13 1b 98 43 98 44 90 3e a0 48 a8 54 a8 63 a0 4e d1 13 32 88 08 d8 11 19 98 23 98 24 90 1e | w....C.D.>.H.T.c.N..2......#.$.. |
| 46e0 | f2 00 01 09 16 88 41 d8 0c 10 90 41 89 49 89 44 f1 03 01 09 16 f4 06 00 0f 19 d0 19 30 d3 0e 31 | ......A....A.I.D............0..1 |
| 4700 | d0 08 31 d8 08 09 8f 09 89 09 90 24 98 02 d3 08 1b 80 41 dc 09 0c 88 51 8b 16 80 42 d8 0b 15 88 | ..1........$......A....Q...B.... |
| 4720 | 32 8f 3a 89 3a 90 78 d0 0b 20 d0 04 20 72 61 00 00 00 63 01 00 00 00 00 00 00 00 00 00 00 00 01 | 2.:.:.x......ra...c............. |
| 4740 | 00 00 00 03 00 00 00 f3 08 00 00 00 97 00 7c 00 66 01 53 00 72 8d 00 00 00 72 60 00 00 00 72 c8 | ..............|.f.S.r....r`...r. |
| 4760 | 00 00 00 73 01 00 00 00 20 72 62 00 00 00 da 11 5f 75 6e 61 72 79 5f 64 69 73 70 61 74 63 68 65 | ...s.....rb....._unary_dispatche |
| 4780 | 72 72 f7 00 00 00 29 02 00 00 72 f2 00 00 00 72 61 00 00 00 63 01 00 00 00 00 00 00 00 00 00 00 | rr....)...r....ra...c........... |
| 47a0 | 00 07 00 00 00 03 00 00 00 f3 20 01 00 00 97 00 74 01 00 00 00 00 00 00 00 00 7c 00 ab 01 00 00 | ................t.........|..... |
| 47c0 | 00 00 00 00 5c 02 00 00 7d 00 7d 01 74 03 00 00 00 00 00 00 00 00 7c 00 ab 01 00 00 00 00 00 00 | ....\...}.}.t.........|......... |
| 47e0 | 01 00 74 05 00 00 00 00 00 00 00 00 7c 00 ab 01 00 00 00 00 00 00 5c 02 00 00 7d 02 7d 03 74 07 | ..t.........|.........\...}.}.t. |
| 4800 | 00 00 00 00 00 00 00 00 7c 02 ab 01 00 00 00 00 00 00 72 02 64 01 6e 01 64 02 7d 04 74 09 00 00 | ........|.........r.d.n.d.}.t... |
| 4820 | 00 00 00 00 00 00 74 0a 00 00 00 00 00 00 00 00 64 03 64 04 64 04 64 04 ac 05 ab 05 00 00 00 00 | ......t.........d.d.d.d......... |
| 4840 | 00 00 35 00 01 00 74 0d 00 00 00 00 00 00 00 00 6a 0e 00 00 00 00 00 00 00 00 00 00 00 00 00 00 | ..5...t.........j............... |
| 4860 | 00 00 00 00 7c 00 7c 04 ac 06 ab 02 00 00 00 00 00 00 7d 05 64 07 64 07 64 07 ab 02 00 00 00 00 | ....|.|...........}.d.d.d....... |
| 4880 | 00 00 01 00 02 00 7c 01 7f 05 6a 11 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 7c 03 | ......|...j...................|. |
| 48a0 | 64 08 ac 09 ab 02 00 00 00 00 00 00 ab 01 00 00 00 00 00 00 53 00 23 00 31 00 73 01 77 02 01 00 | d...................S.#.1.s.w... |
| 48c0 | 59 00 01 00 01 00 8c 22 78 03 59 00 77 01 29 0a 61 c8 0c 00 00 0a 20 20 20 20 43 6f 6d 70 75 74 | Y......"x.Y.w.).a.........Comput |
| 48e0 | 65 20 74 68 65 20 69 6e 76 65 72 73 65 20 6f 66 20 61 20 6d 61 74 72 69 78 2e 0a 0a 20 20 20 20 | e.the.inverse.of.a.matrix....... |
| 4900 | 47 69 76 65 6e 20 61 20 73 71 75 61 72 65 20 6d 61 74 72 69 78 20 60 61 60 2c 20 72 65 74 75 72 | Given.a.square.matrix.`a`,.retur |
| 4920 | 6e 20 74 68 65 20 6d 61 74 72 69 78 20 60 61 69 6e 76 60 20 73 61 74 69 73 66 79 69 6e 67 0a 20 | n.the.matrix.`ainv`.satisfying.. |
| 4940 | 20 20 20 60 60 61 20 40 20 61 69 6e 76 20 3d 20 61 69 6e 76 20 40 20 61 20 3d 20 65 79 65 28 61 | ...``a.@.ainv.=.ainv.@.a.=.eye(a |
| 4960 | 2e 73 68 61 70 65 5b 30 5d 29 60 60 2e 0a 0a 20 20 20 20 50 61 72 61 6d 65 74 65 72 73 0a 20 20 | .shape[0])``.......Parameters... |
| 4980 | 20 20 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 61 20 3a 20 28 2e 2e 2e 2c 20 4d 2c 20 4d 29 | ..----------.....a.:.(...,.M,.M) |
| 49a0 | 20 61 72 72 61 79 5f 6c 69 6b 65 0a 20 20 20 20 20 20 20 20 4d 61 74 72 69 78 20 74 6f 20 62 65 | .array_like.........Matrix.to.be |
| 49c0 | 20 69 6e 76 65 72 74 65 64 2e 0a 0a 20 20 20 20 52 65 74 75 72 6e 73 0a 20 20 20 20 2d 2d 2d 2d | .inverted.......Returns.....---- |
| 49e0 | 2d 2d 2d 0a 20 20 20 20 61 69 6e 76 20 3a 20 28 2e 2e 2e 2c 20 4d 2c 20 4d 29 20 6e 64 61 72 72 | ---.....ainv.:.(...,.M,.M).ndarr |
| 4a00 | 61 79 20 6f 72 20 6d 61 74 72 69 78 0a 20 20 20 20 20 20 20 20 49 6e 76 65 72 73 65 20 6f 66 20 | ay.or.matrix.........Inverse.of. |
| 4a20 | 74 68 65 20 6d 61 74 72 69 78 20 60 61 60 2e 0a 0a 20 20 20 20 52 61 69 73 65 73 0a 20 20 20 20 | the.matrix.`a`.......Raises..... |
| 4a40 | 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 4c 69 6e 41 6c 67 45 72 72 6f 72 0a 20 20 20 20 20 20 20 20 49 | ------.....LinAlgError.........I |
| 4a60 | 66 20 60 61 60 20 69 73 20 6e 6f 74 20 73 71 75 61 72 65 20 6f 72 20 69 6e 76 65 72 73 69 6f 6e | f.`a`.is.not.square.or.inversion |
| 4a80 | 20 66 61 69 6c 73 2e 0a 0a 20 20 20 20 53 65 65 20 41 6c 73 6f 0a 20 20 20 20 2d 2d 2d 2d 2d 2d | .fails.......See.Also.....------ |
| 4aa0 | 2d 2d 0a 20 20 20 20 73 63 69 70 79 2e 6c 69 6e 61 6c 67 2e 69 6e 76 20 3a 20 53 69 6d 69 6c 61 | --.....scipy.linalg.inv.:.Simila |
| 4ac0 | 72 20 66 75 6e 63 74 69 6f 6e 20 69 6e 20 53 63 69 50 79 2e 0a 20 20 20 20 6e 75 6d 70 79 2e 6c | r.function.in.SciPy......numpy.l |
| 4ae0 | 69 6e 61 6c 67 2e 63 6f 6e 64 20 3a 20 43 6f 6d 70 75 74 65 20 74 68 65 20 63 6f 6e 64 69 74 69 | inalg.cond.:.Compute.the.conditi |
| 4b00 | 6f 6e 20 6e 75 6d 62 65 72 20 6f 66 20 61 20 6d 61 74 72 69 78 2e 0a 20 20 20 20 6e 75 6d 70 79 | on.number.of.a.matrix......numpy |
| 4b20 | 2e 6c 69 6e 61 6c 67 2e 73 76 64 20 3a 20 43 6f 6d 70 75 74 65 20 74 68 65 20 73 69 6e 67 75 6c | .linalg.svd.:.Compute.the.singul |
| 4b40 | 61 72 20 76 61 6c 75 65 20 64 65 63 6f 6d 70 6f 73 69 74 69 6f 6e 20 6f 66 20 61 20 6d 61 74 72 | ar.value.decomposition.of.a.matr |
| 4b60 | 69 78 2e 0a 0a 20 20 20 20 4e 6f 74 65 73 0a 20 20 20 20 2d 2d 2d 2d 2d 0a 20 20 20 20 42 72 6f | ix.......Notes.....-----.....Bro |
| 4b80 | 61 64 63 61 73 74 69 6e 67 20 72 75 6c 65 73 20 61 70 70 6c 79 2c 20 73 65 65 20 74 68 65 20 60 | adcasting.rules.apply,.see.the.` |
| 4ba0 | 6e 75 6d 70 79 2e 6c 69 6e 61 6c 67 60 20 64 6f 63 75 6d 65 6e 74 61 74 69 6f 6e 20 66 6f 72 0a | numpy.linalg`.documentation.for. |
| 4bc0 | 20 20 20 20 64 65 74 61 69 6c 73 2e 0a 0a 20 20 20 20 49 66 20 60 61 60 20 69 73 20 64 65 74 65 | ....details.......If.`a`.is.dete |
| 4be0 | 63 74 65 64 20 74 6f 20 62 65 20 73 69 6e 67 75 6c 61 72 2c 20 61 20 60 4c 69 6e 41 6c 67 45 72 | cted.to.be.singular,.a.`LinAlgEr |
| 4c00 | 72 6f 72 60 20 69 73 20 72 61 69 73 65 64 2e 20 49 66 20 60 61 60 20 69 73 0a 20 20 20 20 69 6c | ror`.is.raised..If.`a`.is.....il |
| 4c20 | 6c 2d 63 6f 6e 64 69 74 69 6f 6e 65 64 2c 20 61 20 60 4c 69 6e 41 6c 67 45 72 72 6f 72 60 20 6d | l-conditioned,.a.`LinAlgError`.m |
| 4c40 | 61 79 20 6f 72 20 6d 61 79 20 6e 6f 74 20 62 65 20 72 61 69 73 65 64 2c 20 61 6e 64 20 72 65 73 | ay.or.may.not.be.raised,.and.res |
| 4c60 | 75 6c 74 73 20 6d 61 79 0a 20 20 20 20 62 65 20 69 6e 61 63 63 75 72 61 74 65 20 64 75 65 20 74 | ults.may.....be.inaccurate.due.t |
| 4c80 | 6f 20 66 6c 6f 61 74 69 6e 67 2d 70 6f 69 6e 74 20 65 72 72 6f 72 73 2e 0a 0a 20 20 20 20 52 65 | o.floating-point.errors.......Re |
| 4ca0 | 66 65 72 65 6e 63 65 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 2e 2e 20 5b | ferences.....----------........[ |
| 4cc0 | 31 5d 20 57 69 6b 69 70 65 64 69 61 2c 20 22 43 6f 6e 64 69 74 69 6f 6e 20 6e 75 6d 62 65 72 22 | 1].Wikipedia,."Condition.number" |
| 4ce0 | 2c 0a 20 20 20 20 20 20 20 20 20 20 20 68 74 74 70 73 3a 2f 2f 65 6e 2e 77 69 6b 69 70 65 64 69 | ,............https://en.wikipedi |
| 4d00 | 61 2e 6f 72 67 2f 77 69 6b 69 2f 43 6f 6e 64 69 74 69 6f 6e 5f 6e 75 6d 62 65 72 0a 0a 20 20 20 | a.org/wiki/Condition_number..... |
| 4d20 | 20 45 78 61 6d 70 6c 65 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 3e 3e 3e 20 69 | .Examples.....--------.....>>>.i |
| 4d40 | 6d 70 6f 72 74 20 6e 75 6d 70 79 20 61 73 20 6e 70 0a 20 20 20 20 3e 3e 3e 20 66 72 6f 6d 20 6e | mport.numpy.as.np.....>>>.from.n |
| 4d60 | 75 6d 70 79 2e 6c 69 6e 61 6c 67 20 69 6d 70 6f 72 74 20 69 6e 76 0a 20 20 20 20 3e 3e 3e 20 61 | umpy.linalg.import.inv.....>>>.a |
| 4d80 | 20 3d 20 6e 70 2e 61 72 72 61 79 28 5b 5b 31 2e 2c 20 32 2e 5d 2c 20 5b 33 2e 2c 20 34 2e 5d 5d | .=.np.array([[1.,.2.],.[3.,.4.]] |
| 4da0 | 29 0a 20 20 20 20 3e 3e 3e 20 61 69 6e 76 20 3d 20 69 6e 76 28 61 29 0a 20 20 20 20 3e 3e 3e 20 | ).....>>>.ainv.=.inv(a).....>>>. |
| 4dc0 | 6e 70 2e 61 6c 6c 63 6c 6f 73 65 28 61 20 40 20 61 69 6e 76 2c 20 6e 70 2e 65 79 65 28 32 29 29 | np.allclose(a.@.ainv,.np.eye(2)) |
| 4de0 | 0a 20 20 20 20 54 72 75 65 0a 20 20 20 20 3e 3e 3e 20 6e 70 2e 61 6c 6c 63 6c 6f 73 65 28 61 69 | .....True.....>>>.np.allclose(ai |
| 4e00 | 6e 76 20 40 20 61 2c 20 6e 70 2e 65 79 65 28 32 29 29 0a 20 20 20 20 54 72 75 65 0a 0a 20 20 20 | nv.@.a,.np.eye(2)).....True..... |
| 4e20 | 20 49 66 20 61 20 69 73 20 61 20 6d 61 74 72 69 78 20 6f 62 6a 65 63 74 2c 20 74 68 65 6e 20 74 | .If.a.is.a.matrix.object,.then.t |
| 4e40 | 68 65 20 72 65 74 75 72 6e 20 76 61 6c 75 65 20 69 73 20 61 20 6d 61 74 72 69 78 20 61 73 20 77 | he.return.value.is.a.matrix.as.w |
| 4e60 | 65 6c 6c 3a 0a 0a 20 20 20 20 3e 3e 3e 20 61 69 6e 76 20 3d 20 69 6e 76 28 6e 70 2e 6d 61 74 72 | ell:......>>>.ainv.=.inv(np.matr |
| 4e80 | 69 78 28 61 29 29 0a 20 20 20 20 3e 3e 3e 20 61 69 6e 76 0a 20 20 20 20 6d 61 74 72 69 78 28 5b | ix(a)).....>>>.ainv.....matrix([ |
| 4ea0 | 5b 2d 32 2e 20 2c 20 20 31 2e 20 5d 2c 0a 20 20 20 20 20 20 20 20 20 20 20 20 5b 20 31 2e 35 2c | [-2..,..1..],.............[.1.5, |
| 4ec0 | 20 2d 30 2e 35 5d 5d 29 0a 0a 20 20 20 20 49 6e 76 65 72 73 65 73 20 6f 66 20 73 65 76 65 72 61 | .-0.5]])......Inverses.of.severa |
| 4ee0 | 6c 20 6d 61 74 72 69 63 65 73 20 63 61 6e 20 62 65 20 63 6f 6d 70 75 74 65 64 20 61 74 20 6f 6e | l.matrices.can.be.computed.at.on |
| 4f00 | 63 65 3a 0a 0a 20 20 20 20 3e 3e 3e 20 61 20 3d 20 6e 70 2e 61 72 72 61 79 28 5b 5b 5b 31 2e 2c | ce:......>>>.a.=.np.array([[[1., |
| 4f20 | 20 32 2e 5d 2c 20 5b 33 2e 2c 20 34 2e 5d 5d 2c 20 5b 5b 31 2c 20 33 5d 2c 20 5b 33 2c 20 35 5d | .2.],.[3.,.4.]],.[[1,.3],.[3,.5] |
| 4f40 | 5d 5d 29 0a 20 20 20 20 3e 3e 3e 20 69 6e 76 28 61 29 0a 20 20 20 20 61 72 72 61 79 28 5b 5b 5b | ]]).....>>>.inv(a).....array([[[ |
| 4f60 | 2d 32 2e 20 20 2c 20 20 31 2e 20 20 5d 2c 0a 20 20 20 20 20 20 20 20 20 20 20 20 5b 20 31 2e 35 | -2...,..1...],.............[.1.5 |
| 4f80 | 20 2c 20 2d 30 2e 35 20 5d 5d 2c 0a 20 20 20 20 20 20 20 20 20 20 20 5b 5b 2d 31 2e 32 35 2c 20 | .,.-0.5.]],............[[-1.25,. |
| 4fa0 | 20 30 2e 37 35 5d 2c 0a 20 20 20 20 20 20 20 20 20 20 20 20 5b 20 30 2e 37 35 2c 20 2d 30 2e 32 | .0.75],.............[.0.75,.-0.2 |
| 4fc0 | 35 5d 5d 5d 29 0a 0a 20 20 20 20 49 66 20 61 20 6d 61 74 72 69 78 20 69 73 20 63 6c 6f 73 65 20 | 5]]])......If.a.matrix.is.close. |
| 4fe0 | 74 6f 20 73 69 6e 67 75 6c 61 72 2c 20 74 68 65 20 63 6f 6d 70 75 74 65 64 20 69 6e 76 65 72 73 | to.singular,.the.computed.invers |
| 5000 | 65 20 6d 61 79 20 6e 6f 74 20 73 61 74 69 73 66 79 0a 20 20 20 20 60 60 61 20 40 20 61 69 6e 76 | e.may.not.satisfy.....``a.@.ainv |
| 5020 | 20 3d 20 61 69 6e 76 20 40 20 61 20 3d 20 65 79 65 28 61 2e 73 68 61 70 65 5b 30 5d 29 60 60 20 | .=.ainv.@.a.=.eye(a.shape[0])``. |
| 5040 | 65 76 65 6e 20 69 66 20 61 20 60 4c 69 6e 41 6c 67 45 72 72 6f 72 60 0a 20 20 20 20 69 73 20 6e | even.if.a.`LinAlgError`.....is.n |
| 5060 | 6f 74 20 72 61 69 73 65 64 3a 0a 0a 20 20 20 20 3e 3e 3e 20 61 20 3d 20 6e 70 2e 61 72 72 61 79 | ot.raised:......>>>.a.=.np.array |
| 5080 | 28 5b 5b 32 2c 34 2c 36 5d 2c 5b 32 2c 30 2c 32 5d 2c 5b 36 2c 38 2c 31 34 5d 5d 29 0a 20 20 20 | ([[2,4,6],[2,0,2],[6,8,14]]).... |
| 50a0 | 20 3e 3e 3e 20 69 6e 76 28 61 29 20 20 23 20 4e 6f 20 65 72 72 6f 72 73 20 72 61 69 73 65 64 0a | .>>>.inv(a)..#.No.errors.raised. |
| 50c0 | 20 20 20 20 61 72 72 61 79 28 5b 5b 2d 31 2e 31 32 35 38 39 39 39 31 65 2b 31 35 2c 20 2d 35 2e | ....array([[-1.12589991e+15,.-5. |
| 50e0 | 36 32 39 34 39 39 35 33 65 2b 31 34 2c 20 20 35 2e 36 32 39 34 39 39 35 33 65 2b 31 34 5d 2c 0a | 62949953e+14,..5.62949953e+14],. |
| 5100 | 20 20 20 20 20 20 20 5b 2d 31 2e 31 32 35 38 39 39 39 31 65 2b 31 35 2c 20 2d 35 2e 36 32 39 34 | .......[-1.12589991e+15,.-5.6294 |
| 5120 | 39 39 35 33 65 2b 31 34 2c 20 20 35 2e 36 32 39 34 39 39 35 33 65 2b 31 34 5d 2c 0a 20 20 20 20 | 9953e+14,..5.62949953e+14],..... |
| 5140 | 20 20 20 5b 20 31 2e 31 32 35 38 39 39 39 31 65 2b 31 35 2c 20 20 35 2e 36 32 39 34 39 39 35 33 | ...[.1.12589991e+15,..5.62949953 |
| 5160 | 65 2b 31 34 2c 20 2d 35 2e 36 32 39 34 39 39 35 33 65 2b 31 34 5d 5d 29 0a 20 20 20 20 3e 3e 3e | e+14,.-5.62949953e+14]]).....>>> |
| 5180 | 20 61 20 40 20 69 6e 76 28 61 29 0a 20 20 20 20 61 72 72 61 79 28 5b 5b 20 30 2e 20 20 20 2c 20 | .a.@.inv(a).....array([[.0....,. |
| 51a0 | 2d 30 2e 35 20 20 2c 20 20 30 2e 20 20 20 5d 2c 20 20 23 20 6d 61 79 20 76 61 72 79 0a 20 20 20 | -0.5..,..0....],..#.may.vary.... |
| 51c0 | 20 20 20 20 20 20 20 20 5b 2d 30 2e 35 20 20 2c 20 20 30 2e 36 32 35 2c 20 20 30 2e 32 35 20 5d | ........[-0.5..,..0.625,..0.25.] |
| 51e0 | 2c 0a 20 20 20 20 20 20 20 20 20 20 20 5b 20 30 2e 20 20 20 2c 20 20 30 2e 20 20 20 2c 20 20 31 | ,............[.0....,..0....,..1 |
| 5200 | 2e 20 20 20 5d 5d 29 0a 0a 20 20 20 20 54 6f 20 64 65 74 65 63 74 20 69 6c 6c 2d 63 6f 6e 64 69 | ....]])......To.detect.ill-condi |
| 5220 | 74 69 6f 6e 65 64 20 6d 61 74 72 69 63 65 73 2c 20 79 6f 75 20 63 61 6e 20 75 73 65 20 60 6e 75 | tioned.matrices,.you.can.use.`nu |
| 5240 | 6d 70 79 2e 6c 69 6e 61 6c 67 2e 63 6f 6e 64 60 20 74 6f 0a 20 20 20 20 63 6f 6d 70 75 74 65 20 | mpy.linalg.cond`.to.....compute. |
| 5260 | 69 74 73 20 2a 63 6f 6e 64 69 74 69 6f 6e 20 6e 75 6d 62 65 72 2a 20 5b 31 5d 5f 2e 20 54 68 65 | its.*condition.number*.[1]_..The |
| 5280 | 20 6c 61 72 67 65 72 20 74 68 65 20 63 6f 6e 64 69 74 69 6f 6e 20 6e 75 6d 62 65 72 2c 20 74 68 | .larger.the.condition.number,.th |
| 52a0 | 65 0a 20 20 20 20 6d 6f 72 65 20 69 6c 6c 2d 63 6f 6e 64 69 74 69 6f 6e 65 64 20 74 68 65 20 6d | e.....more.ill-conditioned.the.m |
| 52c0 | 61 74 72 69 78 20 69 73 2e 20 41 73 20 61 20 72 75 6c 65 20 6f 66 20 74 68 75 6d 62 2c 20 69 66 | atrix.is..As.a.rule.of.thumb,.if |
| 52e0 | 20 74 68 65 20 63 6f 6e 64 69 74 69 6f 6e 0a 20 20 20 20 6e 75 6d 62 65 72 20 60 60 63 6f 6e 64 | .the.condition.....number.``cond |
| 5300 | 28 61 29 20 3d 20 31 30 2a 2a 6b 60 60 2c 20 74 68 65 6e 20 79 6f 75 20 6d 61 79 20 6c 6f 73 65 | (a).=.10**k``,.then.you.may.lose |
| 5320 | 20 75 70 20 74 6f 20 60 60 6b 60 60 20 64 69 67 69 74 73 20 6f 66 0a 20 20 20 20 61 63 63 75 72 | .up.to.``k``.digits.of.....accur |
| 5340 | 61 63 79 20 6f 6e 20 74 6f 70 20 6f 66 20 77 68 61 74 20 77 6f 75 6c 64 20 62 65 20 6c 6f 73 74 | acy.on.top.of.what.would.be.lost |
| 5360 | 20 74 6f 20 74 68 65 20 6e 75 6d 65 72 69 63 61 6c 20 6d 65 74 68 6f 64 20 64 75 65 20 74 6f 20 | .to.the.numerical.method.due.to. |
| 5380 | 6c 6f 73 73 0a 20 20 20 20 6f 66 20 70 72 65 63 69 73 69 6f 6e 20 66 72 6f 6d 20 61 72 69 74 68 | loss.....of.precision.from.arith |
| 53a0 | 6d 65 74 69 63 20 6d 65 74 68 6f 64 73 2e 0a 0a 20 20 20 20 3e 3e 3e 20 66 72 6f 6d 20 6e 75 6d | metic.methods.......>>>.from.num |
| 53c0 | 70 79 2e 6c 69 6e 61 6c 67 20 69 6d 70 6f 72 74 20 63 6f 6e 64 0a 20 20 20 20 3e 3e 3e 20 63 6f | py.linalg.import.cond.....>>>.co |
| 53e0 | 6e 64 28 61 29 0a 20 20 20 20 6e 70 2e 66 6c 6f 61 74 36 34 28 38 2e 36 35 39 38 38 35 36 33 34 | nd(a).....np.float64(8.659885634 |
| 5400 | 31 31 38 36 36 38 65 2b 31 37 29 20 20 23 20 6d 61 79 20 76 61 72 79 0a 0a 20 20 20 20 49 74 20 | 118668e+17)..#.may.vary......It. |
| 5420 | 69 73 20 61 6c 73 6f 20 70 6f 73 73 69 62 6c 65 20 74 6f 20 64 65 74 65 63 74 20 69 6c 6c 2d 63 | is.also.possible.to.detect.ill-c |
| 5440 | 6f 6e 64 69 74 69 6f 6e 69 6e 67 20 62 79 20 69 6e 73 70 65 63 74 69 6e 67 20 74 68 65 20 6d 61 | onditioning.by.inspecting.the.ma |
| 5460 | 74 72 69 78 27 73 0a 20 20 20 20 73 69 6e 67 75 6c 61 72 20 76 61 6c 75 65 73 20 64 69 72 65 63 | trix's.....singular.values.direc |
| 5480 | 74 6c 79 2e 20 54 68 65 20 72 61 74 69 6f 20 62 65 74 77 65 65 6e 20 74 68 65 20 6c 61 72 67 65 | tly..The.ratio.between.the.large |
| 54a0 | 73 74 20 61 6e 64 20 74 68 65 20 73 6d 61 6c 6c 65 73 74 0a 20 20 20 20 73 69 6e 67 75 6c 61 72 | st.and.the.smallest.....singular |
| 54c0 | 20 76 61 6c 75 65 20 69 73 20 74 68 65 20 63 6f 6e 64 69 74 69 6f 6e 20 6e 75 6d 62 65 72 3a 0a | .value.is.the.condition.number:. |
| 54e0 | 0a 20 20 20 20 3e 3e 3e 20 66 72 6f 6d 20 6e 75 6d 70 79 2e 6c 69 6e 61 6c 67 20 69 6d 70 6f 72 | .....>>>.from.numpy.linalg.impor |
| 5500 | 74 20 73 76 64 0a 20 20 20 20 3e 3e 3e 20 73 69 67 6d 61 20 3d 20 73 76 64 28 61 2c 20 63 6f 6d | t.svd.....>>>.sigma.=.svd(a,.com |
| 5520 | 70 75 74 65 5f 75 76 3d 46 61 6c 73 65 29 20 20 23 20 44 6f 20 6e 6f 74 20 63 6f 6d 70 75 74 65 | pute_uv=False)..#.Do.not.compute |
| 5540 | 20 73 69 6e 67 75 6c 61 72 20 76 65 63 74 6f 72 73 0a 20 20 20 20 3e 3e 3e 20 73 69 67 6d 61 2e | .singular.vectors.....>>>.sigma. |
| 5560 | 6d 61 78 28 29 2f 73 69 67 6d 61 2e 6d 69 6e 28 29 0a 20 20 20 20 38 2e 36 35 39 38 38 35 36 33 | max()/sigma.min().....8.65988563 |
| 5580 | 34 31 31 38 36 36 38 65 2b 31 37 20 20 23 20 6d 61 79 20 76 61 72 79 0a 0a 20 20 20 20 fa 04 44 | 4118668e+17..#.may.vary........D |
| 55a0 | 2d 3e 44 fa 04 64 2d 3e 64 72 df 00 00 00 72 e0 00 00 00 72 e1 00 00 00 72 e5 00 00 00 4e 46 72 | ->D..d->dr....r....r....r....NFr |
| 55c0 | e7 00 00 00 29 09 72 8b 00 00 00 72 c0 00 00 00 72 a4 00 00 00 72 90 00 00 00 72 38 00 00 00 72 | ....).r....r....r....r....r8...r |
| 55e0 | 7a 00 00 00 72 56 00 00 00 72 06 00 00 00 72 ea 00 00 00 29 06 72 88 00 00 00 72 8a 00 00 00 72 | z...rV...r....r....).r....r....r |
| 5600 | 8f 00 00 00 72 ec 00 00 00 72 e6 00 00 00 da 04 61 69 6e 76 73 06 00 00 00 20 20 20 20 20 20 72 | ....r....r......ainvs..........r |
| 5620 | 62 00 00 00 72 06 00 00 00 72 06 00 00 00 2d 02 00 00 73 8b 00 00 00 80 00 f4 52 03 00 0f 19 98 | b...r....r....-...s.......R..... |
| 5640 | 11 8b 6d 81 47 80 41 80 74 dc 04 1a 98 31 d4 04 1d dc 12 1d 98 61 93 2e 81 4b 80 41 80 78 e4 1a | ..m.G.A.t....1.......a...K.A.x.. |
| 5660 | 27 a8 01 d4 1a 2a 91 06 b0 06 80 49 dc 09 11 d4 17 32 b8 46 d8 17 1f a8 08 b8 08 f4 03 01 0a 42 | '....*.....I.....2.F...........B |
| 5680 | 01 f1 00 02 05 39 e4 0f 1c d7 0f 20 d1 0f 20 a0 11 a8 69 d4 0f 38 88 04 f7 05 02 05 39 f1 06 00 | .....9............i..8......9... |
| 56a0 | 0c 10 90 04 97 0b 91 0b 98 48 a8 35 90 0b d3 10 31 d3 0b 32 d0 04 32 f7 07 02 05 39 f0 00 02 05 | .........H.5....1..2..2....9.... |
| 56c0 | 39 fa 73 0c 00 00 00 c1 0b 18 42 04 03 c2 04 05 42 0d 07 63 02 00 00 00 00 00 00 00 00 00 00 00 | 9.s.......B.....B..c............ |
| 56e0 | 01 00 00 00 03 00 00 00 f3 08 00 00 00 97 00 7c 00 66 01 53 00 72 8d 00 00 00 72 60 00 00 00 29 | ...............|.f.S.r....r`...) |
| 5700 | 02 72 88 00 00 00 72 bf 00 00 00 73 02 00 00 00 20 20 72 62 00 00 00 da 18 5f 6d 61 74 72 69 78 | .r....r....s......rb....._matrix |
| 5720 | 5f 70 6f 77 65 72 5f 64 69 73 70 61 74 63 68 65 72 72 fd 00 00 00 a1 02 00 00 72 f2 00 00 00 72 | _power_dispatcherr........r....r |
| 5740 | 61 00 00 00 63 02 00 00 00 00 00 00 00 00 00 00 00 06 00 00 00 03 00 00 00 f3 7e 02 00 00 97 00 | a...c.....................~..... |
| 5760 | 74 01 00 00 00 00 00 00 00 00 7c 00 ab 01 00 00 00 00 00 00 7d 00 74 03 00 00 00 00 00 00 00 00 | t.........|.........}.t......... |
| 5780 | 7c 00 ab 01 00 00 00 00 00 00 01 00 09 00 74 05 00 00 00 00 00 00 00 00 6a 06 00 00 00 00 00 00 | |.............t.........j....... |
| 57a0 | 00 00 00 00 00 00 00 00 00 00 00 00 7c 01 ab 01 00 00 00 00 00 00 7d 01 7c 00 6a 0a 00 00 00 00 | ............|.........}.|.j..... |
| 57c0 | 00 00 00 00 00 00 00 00 00 00 00 00 00 00 74 0c 00 00 00 00 00 00 00 00 6b 37 00 00 72 07 74 0e | ..............t.........k7..r.t. |
| 57e0 | 00 00 00 00 00 00 00 00 7d 03 6e 21 7c 00 6a 10 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 | ........}.n!|.j................. |
| 5800 | 00 00 64 03 6b 28 00 00 72 07 74 12 00 00 00 00 00 00 00 00 7d 03 6e 0b 74 15 00 00 00 00 00 00 | ..d.k(..r.t.........}.n.t....... |
| 5820 | 00 00 64 04 ab 01 00 00 00 00 00 00 82 01 7c 01 64 05 6b 28 00 00 72 34 74 17 00 00 00 00 00 00 | ..d...........|.d.k(..r4t....... |
| 5840 | 00 00 7c 00 ab 01 00 00 00 00 00 00 7d 00 74 19 00 00 00 00 00 00 00 00 7c 00 6a 1a 00 00 00 00 | ..|.........}.t.........|.j..... |
| 5860 | 00 00 00 00 00 00 00 00 00 00 00 00 00 00 64 06 19 00 00 00 7c 00 6a 0a 00 00 00 00 00 00 00 00 | ..............d.....|.j......... |
| 5880 | 00 00 00 00 00 00 00 00 00 00 ac 07 ab 02 00 00 00 00 00 00 7c 00 64 08 3c 00 00 00 7c 00 53 00 | ....................|.d.<...|.S. |
| 58a0 | 7c 01 64 05 6b 02 00 00 72 16 74 1d 00 00 00 00 00 00 00 00 7c 00 ab 01 00 00 00 00 00 00 7d 00 | |.d.k...r.t.........|.........}. |
| 58c0 | 74 1f 00 00 00 00 00 00 00 00 7c 01 ab 01 00 00 00 00 00 00 7d 01 7c 01 64 09 6b 28 00 00 72 02 | t.........|.........}.|.d.k(..r. |
| 58e0 | 7c 00 53 00 7c 01 64 03 6b 28 00 00 72 09 02 00 7c 03 7c 00 7c 00 ab 02 00 00 00 00 00 00 53 00 | |.S.|.d.k(..r...|.|.|.........S. |
| 5900 | 7c 01 64 0a 6b 28 00 00 72 10 02 00 7c 03 02 00 7c 03 7c 00 7c 00 ab 02 00 00 00 00 00 00 7c 00 | |.d.k(..r...|...|.|.|.........|. |
| 5920 | ab 02 00 00 00 00 00 00 53 00 64 02 78 01 7d 04 7d 05 7c 01 64 05 6b 44 00 00 72 31 7c 04 80 02 | ........S.d.x.}.}.|.d.kD..r1|... |
| 5940 | 7c 00 6e 08 02 00 7c 03 7c 04 7c 04 ab 02 00 00 00 00 00 00 7d 04 74 21 00 00 00 00 00 00 00 00 | |.n...|.|.|.........}.t!........ |
| 5960 | 7c 01 64 03 ab 02 00 00 00 00 00 00 5c 02 00 00 7d 01 7d 06 7c 06 72 0d 7c 05 80 02 7c 04 6e 08 | |.d.........\...}.}.|.r.|...|.n. |
| 5980 | 02 00 7c 03 7c 05 7c 04 ab 02 00 00 00 00 00 00 7d 05 7c 01 64 05 6b 44 00 00 72 01 8c 31 7c 05 | ..|.|.|.........}.|.d.kD..r..1|. |
| 59a0 | 53 00 23 00 74 08 00 00 00 00 00 00 00 00 24 00 72 11 7d 02 74 09 00 00 00 00 00 00 00 00 64 01 | S.#.t.........$.r.}.t.........d. |
| 59c0 | ab 01 00 00 00 00 00 00 7c 02 82 02 64 02 7d 02 7e 02 77 01 77 00 78 03 59 00 77 01 29 0b 61 cc | ........|...d.}.~.w.w.x.Y.w.).a. |
| 59e0 | 07 00 00 0a 20 20 20 20 52 61 69 73 65 20 61 20 73 71 75 61 72 65 20 6d 61 74 72 69 78 20 74 6f | ........Raise.a.square.matrix.to |
| 5a00 | 20 74 68 65 20 28 69 6e 74 65 67 65 72 29 20 70 6f 77 65 72 20 60 6e 60 2e 0a 0a 20 20 20 20 46 | .the.(integer).power.`n`.......F |
| 5a20 | 6f 72 20 70 6f 73 69 74 69 76 65 20 69 6e 74 65 67 65 72 73 20 60 6e 60 2c 20 74 68 65 20 70 6f | or.positive.integers.`n`,.the.po |
| 5a40 | 77 65 72 20 69 73 20 63 6f 6d 70 75 74 65 64 20 62 79 20 72 65 70 65 61 74 65 64 20 6d 61 74 72 | wer.is.computed.by.repeated.matr |
| 5a60 | 69 78 0a 20 20 20 20 73 71 75 61 72 69 6e 67 73 20 61 6e 64 20 6d 61 74 72 69 78 20 6d 75 6c 74 | ix.....squarings.and.matrix.mult |
| 5a80 | 69 70 6c 69 63 61 74 69 6f 6e 73 2e 20 49 66 20 60 60 6e 20 3d 3d 20 30 60 60 2c 20 74 68 65 20 | iplications..If.``n.==.0``,.the. |
| 5aa0 | 69 64 65 6e 74 69 74 79 20 6d 61 74 72 69 78 0a 20 20 20 20 6f 66 20 74 68 65 20 73 61 6d 65 20 | identity.matrix.....of.the.same. |
| 5ac0 | 73 68 61 70 65 20 61 73 20 4d 20 69 73 20 72 65 74 75 72 6e 65 64 2e 20 49 66 20 60 60 6e 20 3c | shape.as.M.is.returned..If.``n.< |
| 5ae0 | 20 30 60 60 2c 20 74 68 65 20 69 6e 76 65 72 73 65 0a 20 20 20 20 69 73 20 63 6f 6d 70 75 74 65 | .0``,.the.inverse.....is.compute |
| 5b00 | 64 20 61 6e 64 20 74 68 65 6e 20 72 61 69 73 65 64 20 74 6f 20 74 68 65 20 60 60 61 62 73 28 6e | d.and.then.raised.to.the.``abs(n |
| 5b20 | 29 60 60 2e 0a 0a 20 20 20 20 2e 2e 20 6e 6f 74 65 3a 3a 20 53 74 61 63 6b 73 20 6f 66 20 6f 62 | )``..........note::.Stacks.of.ob |
| 5b40 | 6a 65 63 74 20 6d 61 74 72 69 63 65 73 20 61 72 65 20 6e 6f 74 20 63 75 72 72 65 6e 74 6c 79 20 | ject.matrices.are.not.currently. |
| 5b60 | 73 75 70 70 6f 72 74 65 64 2e 0a 0a 20 20 20 20 50 61 72 61 6d 65 74 65 72 73 0a 20 20 20 20 2d | supported.......Parameters.....- |
| 5b80 | 2d 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 61 20 3a 20 28 2e 2e 2e 2c 20 4d 2c 20 4d 29 20 61 72 | ---------.....a.:.(...,.M,.M).ar |
| 5ba0 | 72 61 79 5f 6c 69 6b 65 0a 20 20 20 20 20 20 20 20 4d 61 74 72 69 78 20 74 6f 20 62 65 20 22 70 | ray_like.........Matrix.to.be."p |
| 5bc0 | 6f 77 65 72 65 64 22 2e 0a 20 20 20 20 6e 20 3a 20 69 6e 74 0a 20 20 20 20 20 20 20 20 54 68 65 | owered"......n.:.int.........The |
| 5be0 | 20 65 78 70 6f 6e 65 6e 74 20 63 61 6e 20 62 65 20 61 6e 79 20 69 6e 74 65 67 65 72 20 6f 72 20 | .exponent.can.be.any.integer.or. |
| 5c00 | 6c 6f 6e 67 20 69 6e 74 65 67 65 72 2c 20 70 6f 73 69 74 69 76 65 2c 0a 20 20 20 20 20 20 20 20 | long.integer,.positive,......... |
| 5c20 | 6e 65 67 61 74 69 76 65 2c 20 6f 72 20 7a 65 72 6f 2e 0a 0a 20 20 20 20 52 65 74 75 72 6e 73 0a | negative,.or.zero.......Returns. |
| 5c40 | 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 61 2a 2a 6e 20 3a 20 28 2e 2e 2e 2c 20 4d 2c 20 | ....-------.....a**n.:.(...,.M,. |
| 5c60 | 4d 29 20 6e 64 61 72 72 61 79 20 6f 72 20 6d 61 74 72 69 78 20 6f 62 6a 65 63 74 0a 20 20 20 20 | M).ndarray.or.matrix.object..... |
| 5c80 | 20 20 20 20 54 68 65 20 72 65 74 75 72 6e 20 76 61 6c 75 65 20 69 73 20 74 68 65 20 73 61 6d 65 | ....The.return.value.is.the.same |
| 5ca0 | 20 73 68 61 70 65 20 61 6e 64 20 74 79 70 65 20 61 73 20 60 4d 60 3b 0a 20 20 20 20 20 20 20 20 | .shape.and.type.as.`M`;......... |
| 5cc0 | 69 66 20 74 68 65 20 65 78 70 6f 6e 65 6e 74 20 69 73 20 70 6f 73 69 74 69 76 65 20 6f 72 20 7a | if.the.exponent.is.positive.or.z |
| 5ce0 | 65 72 6f 20 74 68 65 6e 20 74 68 65 20 74 79 70 65 20 6f 66 20 74 68 65 0a 20 20 20 20 20 20 20 | ero.then.the.type.of.the........ |
| 5d00 | 20 65 6c 65 6d 65 6e 74 73 20 69 73 20 74 68 65 20 73 61 6d 65 20 61 73 20 74 68 6f 73 65 20 6f | .elements.is.the.same.as.those.o |
| 5d20 | 66 20 60 4d 60 2e 20 49 66 20 74 68 65 20 65 78 70 6f 6e 65 6e 74 20 69 73 0a 20 20 20 20 20 20 | f.`M`..If.the.exponent.is....... |
| 5d40 | 20 20 6e 65 67 61 74 69 76 65 20 74 68 65 20 65 6c 65 6d 65 6e 74 73 20 61 72 65 20 66 6c 6f 61 | ..negative.the.elements.are.floa |
| 5d60 | 74 69 6e 67 2d 70 6f 69 6e 74 2e 0a 0a 20 20 20 20 52 61 69 73 65 73 0a 20 20 20 20 2d 2d 2d 2d | ting-point.......Raises.....---- |
| 5d80 | 2d 2d 0a 20 20 20 20 4c 69 6e 41 6c 67 45 72 72 6f 72 0a 20 20 20 20 20 20 20 20 46 6f 72 20 6d | --.....LinAlgError.........For.m |
| 5da0 | 61 74 72 69 63 65 73 20 74 68 61 74 20 61 72 65 20 6e 6f 74 20 73 71 75 61 72 65 20 6f 72 20 74 | atrices.that.are.not.square.or.t |
| 5dc0 | 68 61 74 20 28 66 6f 72 20 6e 65 67 61 74 69 76 65 20 70 6f 77 65 72 73 29 20 63 61 6e 6e 6f 74 | hat.(for.negative.powers).cannot |
| 5de0 | 0a 20 20 20 20 20 20 20 20 62 65 20 69 6e 76 65 72 74 65 64 20 6e 75 6d 65 72 69 63 61 6c 6c 79 | .........be.inverted.numerically |
| 5e00 | 2e 0a 0a 20 20 20 20 45 78 61 6d 70 6c 65 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 | .......Examples.....--------.... |
| 5e20 | 20 3e 3e 3e 20 69 6d 70 6f 72 74 20 6e 75 6d 70 79 20 61 73 20 6e 70 0a 20 20 20 20 3e 3e 3e 20 | .>>>.import.numpy.as.np.....>>>. |
| 5e40 | 66 72 6f 6d 20 6e 75 6d 70 79 2e 6c 69 6e 61 6c 67 20 69 6d 70 6f 72 74 20 6d 61 74 72 69 78 5f | from.numpy.linalg.import.matrix_ |
| 5e60 | 70 6f 77 65 72 0a 20 20 20 20 3e 3e 3e 20 69 20 3d 20 6e 70 2e 61 72 72 61 79 28 5b 5b 30 2c 20 | power.....>>>.i.=.np.array([[0,. |
| 5e80 | 31 5d 2c 20 5b 2d 31 2c 20 30 5d 5d 29 20 23 20 6d 61 74 72 69 78 20 65 71 75 69 76 2e 20 6f 66 | 1],.[-1,.0]]).#.matrix.equiv..of |
| 5ea0 | 20 74 68 65 20 69 6d 61 67 69 6e 61 72 79 20 75 6e 69 74 0a 20 20 20 20 3e 3e 3e 20 6d 61 74 72 | .the.imaginary.unit.....>>>.matr |
| 5ec0 | 69 78 5f 70 6f 77 65 72 28 69 2c 20 33 29 20 23 20 73 68 6f 75 6c 64 20 3d 20 2d 69 0a 20 20 20 | ix_power(i,.3).#.should.=.-i.... |
| 5ee0 | 20 61 72 72 61 79 28 5b 5b 20 30 2c 20 2d 31 5d 2c 0a 20 20 20 20 20 20 20 20 20 20 20 5b 20 31 | .array([[.0,.-1],............[.1 |
| 5f00 | 2c 20 20 30 5d 5d 29 0a 20 20 20 20 3e 3e 3e 20 6d 61 74 72 69 78 5f 70 6f 77 65 72 28 69 2c 20 | ,..0]]).....>>>.matrix_power(i,. |
| 5f20 | 30 29 0a 20 20 20 20 61 72 72 61 79 28 5b 5b 31 2c 20 30 5d 2c 0a 20 20 20 20 20 20 20 20 20 20 | 0).....array([[1,.0],........... |
| 5f40 | 20 5b 30 2c 20 31 5d 5d 29 0a 20 20 20 20 3e 3e 3e 20 6d 61 74 72 69 78 5f 70 6f 77 65 72 28 69 | .[0,.1]]).....>>>.matrix_power(i |
| 5f60 | 2c 20 2d 33 29 20 23 20 73 68 6f 75 6c 64 20 3d 20 31 2f 28 2d 69 29 20 3d 20 69 2c 20 62 75 74 | ,.-3).#.should.=.1/(-i).=.i,.but |
| 5f80 | 20 77 2f 20 66 2e 70 2e 20 65 6c 65 6d 65 6e 74 73 0a 20 20 20 20 61 72 72 61 79 28 5b 5b 20 30 | .w/.f.p..elements.....array([[.0 |
| 5fa0 | 2e 2c 20 20 31 2e 5d 2c 0a 20 20 20 20 20 20 20 20 20 20 20 5b 2d 31 2e 2c 20 20 30 2e 5d 5d 29 | .,..1.],............[-1.,..0.]]) |
| 5fc0 | 0a 0a 20 20 20 20 53 6f 6d 65 77 68 61 74 20 6d 6f 72 65 20 73 6f 70 68 69 73 74 69 63 61 74 65 | ......Somewhat.more.sophisticate |
| 5fe0 | 64 20 65 78 61 6d 70 6c 65 0a 0a 20 20 20 20 3e 3e 3e 20 71 20 3d 20 6e 70 2e 7a 65 72 6f 73 28 | d.example......>>>.q.=.np.zeros( |
| 6000 | 28 34 2c 20 34 29 29 0a 20 20 20 20 3e 3e 3e 20 71 5b 30 3a 32 2c 20 30 3a 32 5d 20 3d 20 2d 69 | (4,.4)).....>>>.q[0:2,.0:2].=.-i |
| 6020 | 0a 20 20 20 20 3e 3e 3e 20 71 5b 32 3a 34 2c 20 32 3a 34 5d 20 3d 20 69 0a 20 20 20 20 3e 3e 3e | .....>>>.q[2:4,.2:4].=.i.....>>> |
| 6040 | 20 71 20 23 20 6f 6e 65 20 6f 66 20 74 68 65 20 74 68 72 65 65 20 71 75 61 74 65 72 6e 69 6f 6e | .q.#.one.of.the.three.quaternion |
| 6060 | 20 75 6e 69 74 73 20 6e 6f 74 20 65 71 75 61 6c 20 74 6f 20 31 0a 20 20 20 20 61 72 72 61 79 28 | .units.not.equal.to.1.....array( |
| 6080 | 5b 5b 20 30 2e 2c 20 2d 31 2e 2c 20 20 30 2e 2c 20 20 30 2e 5d 2c 0a 20 20 20 20 20 20 20 20 20 | [[.0.,.-1.,..0.,..0.],.......... |
| 60a0 | 20 20 5b 20 31 2e 2c 20 20 30 2e 2c 20 20 30 2e 2c 20 20 30 2e 5d 2c 0a 20 20 20 20 20 20 20 20 | ..[.1.,..0.,..0.,..0.],......... |
| 60c0 | 20 20 20 5b 20 30 2e 2c 20 20 30 2e 2c 20 20 30 2e 2c 20 20 31 2e 5d 2c 0a 20 20 20 20 20 20 20 | ...[.0.,..0.,..0.,..1.],........ |
| 60e0 | 20 20 20 20 5b 20 30 2e 2c 20 20 30 2e 2c 20 2d 31 2e 2c 20 20 30 2e 5d 5d 29 0a 20 20 20 20 3e | ....[.0.,..0.,.-1.,..0.]]).....> |
| 6100 | 3e 3e 20 6d 61 74 72 69 78 5f 70 6f 77 65 72 28 71 2c 20 32 29 20 23 20 3d 20 2d 6e 70 2e 65 79 | >>.matrix_power(q,.2).#.=.-np.ey |
| 6120 | 65 28 34 29 0a 20 20 20 20 61 72 72 61 79 28 5b 5b 2d 31 2e 2c 20 20 30 2e 2c 20 20 30 2e 2c 20 | e(4).....array([[-1.,..0.,..0.,. |
| 6140 | 20 30 2e 5d 2c 0a 20 20 20 20 20 20 20 20 20 20 20 5b 20 30 2e 2c 20 2d 31 2e 2c 20 20 30 2e 2c | .0.],............[.0.,.-1.,..0., |
| 6160 | 20 20 30 2e 5d 2c 0a 20 20 20 20 20 20 20 20 20 20 20 5b 20 30 2e 2c 20 20 30 2e 2c 20 2d 31 2e | ..0.],............[.0.,..0.,.-1. |
| 6180 | 2c 20 20 30 2e 5d 2c 0a 20 20 20 20 20 20 20 20 20 20 20 5b 20 30 2e 2c 20 20 30 2e 2c 20 20 30 | ,..0.],............[.0.,..0.,..0 |
| 61a0 | 2e 2c 20 2d 31 2e 5d 5d 29 0a 0a 20 20 20 20 7a 1b 65 78 70 6f 6e 65 6e 74 20 6d 75 73 74 20 62 | .,.-1.]])......z.exponent.must.b |
| 61c0 | 65 20 61 6e 20 69 6e 74 65 67 65 72 4e 72 b2 00 00 00 7a 36 6d 61 74 72 69 78 5f 70 6f 77 65 72 | e.an.integerNr....z6matrix_power |
| 61e0 | 20 6e 6f 74 20 73 75 70 70 6f 72 74 65 64 20 66 6f 72 20 73 74 61 63 6b 73 20 6f 66 20 6f 62 6a | .not.supported.for.stacks.of.obj |
| 6200 | 65 63 74 20 61 72 72 61 79 73 72 22 00 00 00 72 bb 00 00 00 72 a8 00 00 00 2e 72 a9 00 00 00 e9 | ect.arraysr"...r....r.....r..... |
| 6220 | 03 00 00 00 29 11 72 2c 00 00 00 72 c0 00 00 00 da 08 6f 70 65 72 61 74 6f 72 da 05 69 6e 64 65 | ....).r,...r......operator..inde |
| 6240 | 78 72 9d 00 00 00 72 9b 00 00 00 da 06 6f 62 6a 65 63 74 72 1d 00 00 00 72 b4 00 00 00 72 34 00 | xr....r......objectr....r....r4. |
| 6260 | 00 00 da 13 4e 6f 74 49 6d 70 6c 65 6d 65 6e 74 65 64 45 72 72 6f 72 72 37 00 00 00 72 52 00 00 | ....NotImplementedErrorr7...rR.. |
| 6280 | 00 72 bc 00 00 00 72 06 00 00 00 72 25 00 00 00 da 06 64 69 76 6d 6f 64 29 07 72 88 00 00 00 72 | .r....r....r%.....divmod).r....r |
| 62a0 | bf 00 00 00 da 01 65 da 07 66 6d 61 74 6d 75 6c da 01 7a da 06 72 65 73 75 6c 74 da 03 62 69 74 | ......e..fmatmul..z..result..bit |
| 62c0 | 73 07 00 00 00 20 20 20 20 20 20 20 72 62 00 00 00 72 02 00 00 00 72 02 00 00 00 a5 02 00 00 73 | s...........rb...r....r........s |
| 62e0 | 5e 01 00 00 80 00 f4 44 02 00 09 13 90 31 8b 0d 80 41 dc 04 1a 98 31 d4 04 1d f0 04 03 05 3e dc | ^......D.....1...A....1.......>. |
| 6300 | 0c 14 8f 4e 89 4e 98 31 d3 0c 1d 88 01 f0 0c 00 08 09 87 77 81 77 94 26 d2 07 18 dc 12 18 89 07 | ...N.N.1...........w.w.&........ |
| 6320 | d8 09 0a 8f 16 89 16 90 31 8a 1b dc 12 15 89 07 e4 0e 21 d8 0c 44 f3 03 01 0f 46 01 f0 00 01 09 | ........1.........!..D....F..... |
| 6340 | 46 01 f0 06 00 08 09 88 41 82 76 dc 0c 16 90 71 8b 4d 88 01 dc 11 14 90 51 97 57 91 57 98 52 91 | F.......A.v....q.M......Q.W.W.R. |
| 6360 | 5b a8 01 af 07 a9 07 d4 11 30 88 01 88 23 89 06 d8 0f 10 88 08 e0 09 0a 88 51 8a 15 dc 0c 0f 90 | [........0...#...........Q...... |
| 6380 | 01 8b 46 88 01 dc 0c 0f 90 01 8b 46 88 01 f0 06 00 08 09 88 41 82 76 d8 0f 10 88 08 e0 09 0a 88 | ..F........F........A.v......... |
| 63a0 | 61 8a 16 d9 0f 16 90 71 98 21 8b 7d d0 08 1c e0 09 0a 88 61 8a 16 d9 0f 16 91 77 98 71 a0 21 93 | a......q.!.}.......a......w.q.!. |
| 63c0 | 7d a0 61 d3 0f 28 d0 08 28 f0 0a 00 12 16 d0 04 15 80 41 88 06 d8 0a 0b 88 61 8a 25 d8 11 12 90 | }.a..(..(.........A......a.%.... |
| 63e0 | 19 89 41 a1 07 a8 01 a8 31 a3 0d 88 01 dc 11 17 98 01 98 31 93 1c 89 06 88 01 88 33 d9 0b 0e d8 | ..A.....1..........1.......3.... |
| 6400 | 1a 20 98 2e 91 51 a9 67 b0 66 b8 61 d3 2e 40 88 46 f0 09 00 0b 0c 88 61 8b 25 f0 0c 00 0c 12 80 | .....Q.g.f.a..@.F......a.%...... |
| 6420 | 4d f8 f4 55 01 00 0c 15 f2 00 01 05 3e dc 0e 17 d0 18 35 d3 0e 36 b8 41 d0 08 3d fb f0 03 01 05 | M..U........>.....5..6.A..=..... |
| 6440 | 3e fa 73 17 00 00 00 98 15 44 22 00 c4 22 09 44 3c 03 c4 2b 0c 44 37 03 c4 37 05 44 3c 03 29 01 | >.s......D"..".D<..+.D7..7.D<.). |
| 6460 | da 05 75 70 70 65 72 63 01 00 00 00 01 00 00 00 01 00 00 00 01 00 00 00 03 00 00 00 f3 08 00 00 | ..upperc........................ |
| 6480 | 00 97 00 7c 00 66 01 53 00 72 8d 00 00 00 72 60 00 00 00 29 02 72 88 00 00 00 72 0a 01 00 00 73 | ...|.f.S.r....r`...).r....r....s |
| 64a0 | 02 00 00 00 20 20 72 62 00 00 00 da 14 5f 63 68 6f 6c 65 73 6b 79 5f 64 69 73 70 61 74 63 68 65 | ......rb....._cholesky_dispatche |
| 64c0 | 72 72 0c 01 00 00 1b 03 00 00 72 f2 00 00 00 72 61 00 00 00 46 63 01 00 00 00 01 00 00 00 01 00 | rr........r....ra...Fc.......... |
| 64e0 | 00 00 07 00 00 00 03 00 00 00 f3 4a 01 00 00 97 00 7c 01 72 10 74 00 00 00 00 00 00 00 00 00 6a | ...........J.....|.r.t.........j |
| 6500 | 02 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 6e 0f 74 00 00 00 00 00 00 00 00 00 6a | ...................n.t.........j |
| 6520 | 04 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 7d 02 74 07 00 00 00 00 00 00 00 00 7c | ...................}.t.........| |
| 6540 | 00 ab 01 00 00 00 00 00 00 5c 02 00 00 7d 00 7d 03 74 09 00 00 00 00 00 00 00 00 7c 00 ab 01 00 | .........\...}.}.t.........|.... |
| 6560 | 00 00 00 00 00 01 00 74 0b 00 00 00 00 00 00 00 00 7c 00 ab 01 00 00 00 00 00 00 5c 02 00 00 7d | .......t.........|.........\...} |
| 6580 | 04 7d 05 74 0d 00 00 00 00 00 00 00 00 7c 04 ab 01 00 00 00 00 00 00 72 02 64 01 6e 01 64 02 7d | .}.t.........|.........r.d.n.d.} |
| 65a0 | 06 74 0f 00 00 00 00 00 00 00 00 74 10 00 00 00 00 00 00 00 00 64 03 64 04 64 04 64 04 ac 05 ab | .t.........t.........d.d.d.d.... |
| 65c0 | 05 00 00 00 00 00 00 35 00 01 00 02 00 7c 02 7c 00 7c 06 ac 06 ab 02 00 00 00 00 00 00 7d 07 64 | .......5.....|.|.|...........}.d |
| 65e0 | 07 64 07 64 07 ab 02 00 00 00 00 00 00 01 00 02 00 7c 03 7f 07 6a 13 00 00 00 00 00 00 00 00 00 | .d.d.............|...j.......... |
| 6600 | 00 00 00 00 00 00 00 00 00 7c 05 64 08 ac 09 ab 02 00 00 00 00 00 00 ab 01 00 00 00 00 00 00 53 | .........|.d...................S |
| 6620 | 00 23 00 31 00 73 01 77 02 01 00 59 00 01 00 01 00 8c 22 78 03 59 00 77 01 29 0a 61 b5 0b 00 00 | .#.1.s.w...Y......"x.Y.w.).a.... |
| 6640 | 0a 20 20 20 20 43 68 6f 6c 65 73 6b 79 20 64 65 63 6f 6d 70 6f 73 69 74 69 6f 6e 2e 0a 0a 20 20 | .....Cholesky.decomposition..... |
| 6660 | 20 20 52 65 74 75 72 6e 20 74 68 65 20 6c 6f 77 65 72 20 6f 72 20 75 70 70 65 72 20 43 68 6f 6c | ..Return.the.lower.or.upper.Chol |
| 6680 | 65 73 6b 79 20 64 65 63 6f 6d 70 6f 73 69 74 69 6f 6e 2c 20 60 60 4c 20 2a 20 4c 2e 48 60 60 20 | esky.decomposition,.``L.*.L.H``. |
| 66a0 | 6f 72 0a 20 20 20 20 60 60 55 2e 48 20 2a 20 55 60 60 2c 20 6f 66 20 74 68 65 20 73 71 75 61 72 | or.....``U.H.*.U``,.of.the.squar |
| 66c0 | 65 20 6d 61 74 72 69 78 20 60 60 61 60 60 2c 20 77 68 65 72 65 20 60 60 4c 60 60 20 69 73 20 6c | e.matrix.``a``,.where.``L``.is.l |
| 66e0 | 6f 77 65 72 2d 74 72 69 61 6e 67 75 6c 61 72 2c 0a 20 20 20 20 60 60 55 60 60 20 69 73 20 75 70 | ower-triangular,.....``U``.is.up |
| 6700 | 70 65 72 2d 74 72 69 61 6e 67 75 6c 61 72 2c 20 61 6e 64 20 60 60 2e 48 60 60 20 69 73 20 74 68 | per-triangular,.and.``.H``.is.th |
| 6720 | 65 20 63 6f 6e 6a 75 67 61 74 65 20 74 72 61 6e 73 70 6f 73 65 20 6f 70 65 72 61 74 6f 72 0a 20 | e.conjugate.transpose.operator.. |
| 6740 | 20 20 20 28 77 68 69 63 68 20 69 73 20 74 68 65 20 6f 72 64 69 6e 61 72 79 20 74 72 61 6e 73 70 | ...(which.is.the.ordinary.transp |
| 6760 | 6f 73 65 20 69 66 20 60 60 61 60 60 20 69 73 20 72 65 61 6c 2d 76 61 6c 75 65 64 29 2e 20 60 60 | ose.if.``a``.is.real-valued)..`` |
| 6780 | 61 60 60 20 6d 75 73 74 20 62 65 0a 20 20 20 20 48 65 72 6d 69 74 69 61 6e 20 28 73 79 6d 6d 65 | a``.must.be.....Hermitian.(symme |
| 67a0 | 74 72 69 63 20 69 66 20 72 65 61 6c 2d 76 61 6c 75 65 64 29 20 61 6e 64 20 70 6f 73 69 74 69 76 | tric.if.real-valued).and.positiv |
| 67c0 | 65 2d 64 65 66 69 6e 69 74 65 2e 20 4e 6f 20 63 68 65 63 6b 69 6e 67 20 69 73 0a 20 20 20 20 70 | e-definite..No.checking.is.....p |
| 67e0 | 65 72 66 6f 72 6d 65 64 20 74 6f 20 76 65 72 69 66 79 20 77 68 65 74 68 65 72 20 60 60 61 60 60 | erformed.to.verify.whether.``a`` |
| 6800 | 20 69 73 20 48 65 72 6d 69 74 69 61 6e 20 6f 72 20 6e 6f 74 2e 20 49 6e 20 61 64 64 69 74 69 6f | .is.Hermitian.or.not..In.additio |
| 6820 | 6e 2c 20 6f 6e 6c 79 0a 20 20 20 20 74 68 65 20 6c 6f 77 65 72 20 6f 72 20 75 70 70 65 72 2d 74 | n,.only.....the.lower.or.upper-t |
| 6840 | 72 69 61 6e 67 75 6c 61 72 20 61 6e 64 20 64 69 61 67 6f 6e 61 6c 20 65 6c 65 6d 65 6e 74 73 20 | riangular.and.diagonal.elements. |
| 6860 | 6f 66 20 60 60 61 60 60 20 61 72 65 20 75 73 65 64 2e 0a 20 20 20 20 4f 6e 6c 79 20 60 60 4c 60 | of.``a``.are.used......Only.``L` |
| 6880 | 60 20 6f 72 20 60 60 55 60 60 20 69 73 20 61 63 74 75 61 6c 6c 79 20 72 65 74 75 72 6e 65 64 2e | `.or.``U``.is.actually.returned. |
| 68a0 | 0a 0a 20 20 20 20 50 61 72 61 6d 65 74 65 72 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 0a | ......Parameters.....----------. |
| 68c0 | 20 20 20 20 61 20 3a 20 28 2e 2e 2e 2c 20 4d 2c 20 4d 29 20 61 72 72 61 79 5f 6c 69 6b 65 0a 20 | ....a.:.(...,.M,.M).array_like.. |
| 68e0 | 20 20 20 20 20 20 20 48 65 72 6d 69 74 69 61 6e 20 28 73 79 6d 6d 65 74 72 69 63 20 69 66 20 61 | .......Hermitian.(symmetric.if.a |
| 6900 | 6c 6c 20 65 6c 65 6d 65 6e 74 73 20 61 72 65 20 72 65 61 6c 29 2c 20 70 6f 73 69 74 69 76 65 2d | ll.elements.are.real),.positive- |
| 6920 | 64 65 66 69 6e 69 74 65 0a 20 20 20 20 20 20 20 20 69 6e 70 75 74 20 6d 61 74 72 69 78 2e 0a 20 | definite.........input.matrix... |
| 6940 | 20 20 20 75 70 70 65 72 20 3a 20 62 6f 6f 6c 0a 20 20 20 20 20 20 20 20 49 66 20 60 60 54 72 75 | ...upper.:.bool.........If.``Tru |
| 6960 | 65 60 60 2c 20 74 68 65 20 72 65 73 75 6c 74 20 6d 75 73 74 20 62 65 20 74 68 65 20 75 70 70 65 | e``,.the.result.must.be.the.uppe |
| 6980 | 72 2d 74 72 69 61 6e 67 75 6c 61 72 20 43 68 6f 6c 65 73 6b 79 20 66 61 63 74 6f 72 2e 0a 20 20 | r-triangular.Cholesky.factor.... |
| 69a0 | 20 20 20 20 20 20 49 66 20 60 60 46 61 6c 73 65 60 60 2c 20 74 68 65 20 72 65 73 75 6c 74 20 6d | ......If.``False``,.the.result.m |
| 69c0 | 75 73 74 20 62 65 20 74 68 65 20 6c 6f 77 65 72 2d 74 72 69 61 6e 67 75 6c 61 72 20 43 68 6f 6c | ust.be.the.lower-triangular.Chol |
| 69e0 | 65 73 6b 79 20 66 61 63 74 6f 72 2e 0a 20 20 20 20 20 20 20 20 44 65 66 61 75 6c 74 3a 20 60 60 | esky.factor..........Default:.`` |
| 6a00 | 46 61 6c 73 65 60 60 2e 0a 0a 20 20 20 20 52 65 74 75 72 6e 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d | False``.......Returns.....------ |
| 6a20 | 2d 0a 20 20 20 20 4c 20 3a 20 28 2e 2e 2e 2c 20 4d 2c 20 4d 29 20 61 72 72 61 79 5f 6c 69 6b 65 | -.....L.:.(...,.M,.M).array_like |
| 6a40 | 0a 20 20 20 20 20 20 20 20 4c 6f 77 65 72 20 6f 72 20 75 70 70 65 72 2d 74 72 69 61 6e 67 75 6c | .........Lower.or.upper-triangul |
| 6a60 | 61 72 20 43 68 6f 6c 65 73 6b 79 20 66 61 63 74 6f 72 20 6f 66 20 60 61 60 2e 20 52 65 74 75 72 | ar.Cholesky.factor.of.`a`..Retur |
| 6a80 | 6e 73 20 61 20 6d 61 74 72 69 78 0a 20 20 20 20 20 20 20 20 6f 62 6a 65 63 74 20 69 66 20 60 61 | ns.a.matrix.........object.if.`a |
| 6aa0 | 60 20 69 73 20 61 20 6d 61 74 72 69 78 20 6f 62 6a 65 63 74 2e 0a 0a 20 20 20 20 52 61 69 73 65 | `.is.a.matrix.object.......Raise |
| 6ac0 | 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 4c 69 6e 41 6c 67 45 72 72 6f 72 0a 20 20 20 | s.....------.....LinAlgError.... |
| 6ae0 | 20 20 20 20 49 66 20 74 68 65 20 64 65 63 6f 6d 70 6f 73 69 74 69 6f 6e 20 66 61 69 6c 73 2c 20 | ....If.the.decomposition.fails,. |
| 6b00 | 66 6f 72 20 65 78 61 6d 70 6c 65 2c 20 69 66 20 60 61 60 20 69 73 20 6e 6f 74 0a 20 20 20 20 20 | for.example,.if.`a`.is.not...... |
| 6b20 | 20 20 70 6f 73 69 74 69 76 65 2d 64 65 66 69 6e 69 74 65 2e 0a 0a 20 20 20 20 53 65 65 20 41 6c | ..positive-definite.......See.Al |
| 6b40 | 73 6f 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 73 63 69 70 79 2e 6c 69 6e 61 6c 67 | so.....--------.....scipy.linalg |
| 6b60 | 2e 63 68 6f 6c 65 73 6b 79 20 3a 20 53 69 6d 69 6c 61 72 20 66 75 6e 63 74 69 6f 6e 20 69 6e 20 | .cholesky.:.Similar.function.in. |
| 6b80 | 53 63 69 50 79 2e 0a 20 20 20 20 73 63 69 70 79 2e 6c 69 6e 61 6c 67 2e 63 68 6f 6c 65 73 6b 79 | SciPy......scipy.linalg.cholesky |
| 6ba0 | 5f 62 61 6e 64 65 64 20 3a 20 43 68 6f 6c 65 73 6b 79 20 64 65 63 6f 6d 70 6f 73 65 20 61 20 62 | _banded.:.Cholesky.decompose.a.b |
| 6bc0 | 61 6e 64 65 64 20 48 65 72 6d 69 74 69 61 6e 0a 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 | anded.Hermitian................. |
| 6be0 | 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 70 6f 73 69 74 69 76 65 2d 64 65 66 69 | ...................positive-defi |
| 6c00 | 6e 69 74 65 20 6d 61 74 72 69 78 2e 0a 20 20 20 20 73 63 69 70 79 2e 6c 69 6e 61 6c 67 2e 63 68 | nite.matrix......scipy.linalg.ch |
| 6c20 | 6f 5f 66 61 63 74 6f 72 20 3a 20 43 68 6f 6c 65 73 6b 79 20 64 65 63 6f 6d 70 6f 73 69 74 69 6f | o_factor.:.Cholesky.decompositio |
| 6c40 | 6e 20 6f 66 20 61 20 6d 61 74 72 69 78 2c 20 74 6f 20 75 73 65 20 69 6e 0a 20 20 20 20 20 20 20 | n.of.a.matrix,.to.use.in........ |
| 6c60 | 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 60 73 63 69 70 79 2e 6c 69 | .......................`scipy.li |
| 6c80 | 6e 61 6c 67 2e 63 68 6f 5f 73 6f 6c 76 65 60 2e 0a 0a 20 20 20 20 4e 6f 74 65 73 0a 20 20 20 20 | nalg.cho_solve`.......Notes..... |
| 6ca0 | 2d 2d 2d 2d 2d 0a 20 20 20 20 42 72 6f 61 64 63 61 73 74 69 6e 67 20 72 75 6c 65 73 20 61 70 70 | -----.....Broadcasting.rules.app |
| 6cc0 | 6c 79 2c 20 73 65 65 20 74 68 65 20 60 6e 75 6d 70 79 2e 6c 69 6e 61 6c 67 60 20 64 6f 63 75 6d | ly,.see.the.`numpy.linalg`.docum |
| 6ce0 | 65 6e 74 61 74 69 6f 6e 20 66 6f 72 0a 20 20 20 20 64 65 74 61 69 6c 73 2e 0a 0a 20 20 20 20 54 | entation.for.....details.......T |
| 6d00 | 68 65 20 43 68 6f 6c 65 73 6b 79 20 64 65 63 6f 6d 70 6f 73 69 74 69 6f 6e 20 69 73 20 6f 66 74 | he.Cholesky.decomposition.is.oft |
| 6d20 | 65 6e 20 75 73 65 64 20 61 73 20 61 20 66 61 73 74 20 77 61 79 20 6f 66 20 73 6f 6c 76 69 6e 67 | en.used.as.a.fast.way.of.solving |
| 6d40 | 0a 0a 20 20 20 20 2e 2e 20 6d 61 74 68 3a 3a 20 41 20 5c 6d 61 74 68 62 66 7b 78 7d 20 3d 20 5c | .........math::.A.\mathbf{x}.=.\ |
| 6d60 | 6d 61 74 68 62 66 7b 62 7d 0a 0a 20 20 20 20 28 77 68 65 6e 20 60 41 60 20 69 73 20 62 6f 74 68 | mathbf{b}......(when.`A`.is.both |
| 6d80 | 20 48 65 72 6d 69 74 69 61 6e 2f 73 79 6d 6d 65 74 72 69 63 20 61 6e 64 20 70 6f 73 69 74 69 76 | .Hermitian/symmetric.and.positiv |
| 6da0 | 65 2d 64 65 66 69 6e 69 74 65 29 2e 0a 0a 20 20 20 20 46 69 72 73 74 2c 20 77 65 20 73 6f 6c 76 | e-definite).......First,.we.solv |
| 6dc0 | 65 20 66 6f 72 20 3a 6d 61 74 68 3a 60 5c 6d 61 74 68 62 66 7b 79 7d 60 20 69 6e 0a 0a 20 20 20 | e.for.:math:`\mathbf{y}`.in..... |
| 6de0 | 20 2e 2e 20 6d 61 74 68 3a 3a 20 4c 20 5c 6d 61 74 68 62 66 7b 79 7d 20 3d 20 5c 6d 61 74 68 62 | ....math::.L.\mathbf{y}.=.\mathb |
| 6e00 | 66 7b 62 7d 2c 0a 0a 20 20 20 20 61 6e 64 20 74 68 65 6e 20 66 6f 72 20 3a 6d 61 74 68 3a 60 5c | f{b},......and.then.for.:math:`\ |
| 6e20 | 6d 61 74 68 62 66 7b 78 7d 60 20 69 6e 0a 0a 20 20 20 20 2e 2e 20 6d 61 74 68 3a 3a 20 4c 5e 7b | mathbf{x}`.in.........math::.L^{ |
| 6e40 | 48 7d 20 5c 6d 61 74 68 62 66 7b 78 7d 20 3d 20 5c 6d 61 74 68 62 66 7b 79 7d 2e 0a 0a 20 20 20 | H}.\mathbf{x}.=.\mathbf{y}...... |
| 6e60 | 20 45 78 61 6d 70 6c 65 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 3e 3e 3e 20 69 | .Examples.....--------.....>>>.i |
| 6e80 | 6d 70 6f 72 74 20 6e 75 6d 70 79 20 61 73 20 6e 70 0a 20 20 20 20 3e 3e 3e 20 41 20 3d 20 6e 70 | mport.numpy.as.np.....>>>.A.=.np |
| 6ea0 | 2e 61 72 72 61 79 28 5b 5b 31 2c 2d 32 6a 5d 2c 5b 32 6a 2c 35 5d 5d 29 0a 20 20 20 20 3e 3e 3e | .array([[1,-2j],[2j,5]]).....>>> |
| 6ec0 | 20 41 0a 20 20 20 20 61 72 72 61 79 28 5b 5b 20 31 2e 2b 30 2e 6a 2c 20 2d 30 2e 2d 32 2e 6a 5d | .A.....array([[.1.+0.j,.-0.-2.j] |
| 6ee0 | 2c 0a 20 20 20 20 20 20 20 20 20 20 20 5b 20 30 2e 2b 32 2e 6a 2c 20 20 35 2e 2b 30 2e 6a 5d 5d | ,............[.0.+2.j,..5.+0.j]] |
| 6f00 | 29 0a 20 20 20 20 3e 3e 3e 20 4c 20 3d 20 6e 70 2e 6c 69 6e 61 6c 67 2e 63 68 6f 6c 65 73 6b 79 | ).....>>>.L.=.np.linalg.cholesky |
| 6f20 | 28 41 29 0a 20 20 20 20 3e 3e 3e 20 4c 0a 20 20 20 20 61 72 72 61 79 28 5b 5b 31 2e 2b 30 2e 6a | (A).....>>>.L.....array([[1.+0.j |
| 6f40 | 2c 20 30 2e 2b 30 2e 6a 5d 2c 0a 20 20 20 20 20 20 20 20 20 20 20 5b 30 2e 2b 32 2e 6a 2c 20 31 | ,.0.+0.j],............[0.+2.j,.1 |
| 6f60 | 2e 2b 30 2e 6a 5d 5d 29 0a 20 20 20 20 3e 3e 3e 20 6e 70 2e 64 6f 74 28 4c 2c 20 4c 2e 54 2e 63 | .+0.j]]).....>>>.np.dot(L,.L.T.c |
| 6f80 | 6f 6e 6a 28 29 29 20 23 20 76 65 72 69 66 79 20 74 68 61 74 20 4c 20 2a 20 4c 2e 48 20 3d 20 41 | onj()).#.verify.that.L.*.L.H.=.A |
| 6fa0 | 0a 20 20 20 20 61 72 72 61 79 28 5b 5b 31 2e 2b 30 2e 6a 2c 20 30 2e 2d 32 2e 6a 5d 2c 0a 20 20 | .....array([[1.+0.j,.0.-2.j],... |
| 6fc0 | 20 20 20 20 20 20 20 20 20 5b 30 2e 2b 32 2e 6a 2c 20 35 2e 2b 30 2e 6a 5d 5d 29 0a 20 20 20 20 | .........[0.+2.j,.5.+0.j]])..... |
| 6fe0 | 3e 3e 3e 20 41 20 3d 20 5b 5b 31 2c 2d 32 6a 5d 2c 5b 32 6a 2c 35 5d 5d 20 23 20 77 68 61 74 20 | >>>.A.=.[[1,-2j],[2j,5]].#.what. |
| 7000 | 68 61 70 70 65 6e 73 20 69 66 20 41 20 69 73 20 6f 6e 6c 79 20 61 72 72 61 79 5f 6c 69 6b 65 3f | happens.if.A.is.only.array_like? |
| 7020 | 0a 20 20 20 20 3e 3e 3e 20 6e 70 2e 6c 69 6e 61 6c 67 2e 63 68 6f 6c 65 73 6b 79 28 41 29 20 23 | .....>>>.np.linalg.cholesky(A).# |
| 7040 | 20 61 6e 20 6e 64 61 72 72 61 79 20 6f 62 6a 65 63 74 20 69 73 20 72 65 74 75 72 6e 65 64 0a 20 | .an.ndarray.object.is.returned.. |
| 7060 | 20 20 20 61 72 72 61 79 28 5b 5b 31 2e 2b 30 2e 6a 2c 20 30 2e 2b 30 2e 6a 5d 2c 0a 20 20 20 20 | ...array([[1.+0.j,.0.+0.j],..... |
| 7080 | 20 20 20 20 20 20 20 5b 30 2e 2b 32 2e 6a 2c 20 31 2e 2b 30 2e 6a 5d 5d 29 0a 20 20 20 20 3e 3e | .......[0.+2.j,.1.+0.j]]).....>> |
| 70a0 | 3e 20 23 20 42 75 74 20 61 20 6d 61 74 72 69 78 20 6f 62 6a 65 63 74 20 69 73 20 72 65 74 75 72 | >.#.But.a.matrix.object.is.retur |
| 70c0 | 6e 65 64 20 69 66 20 41 20 69 73 20 61 20 6d 61 74 72 69 78 20 6f 62 6a 65 63 74 0a 20 20 20 20 | ned.if.A.is.a.matrix.object..... |
| 70e0 | 3e 3e 3e 20 6e 70 2e 6c 69 6e 61 6c 67 2e 63 68 6f 6c 65 73 6b 79 28 6e 70 2e 6d 61 74 72 69 78 | >>>.np.linalg.cholesky(np.matrix |
| 7100 | 28 41 29 29 0a 20 20 20 20 6d 61 74 72 69 78 28 5b 5b 20 31 2e 2b 30 2e 6a 2c 20 20 30 2e 2b 30 | (A)).....matrix([[.1.+0.j,..0.+0 |
| 7120 | 2e 6a 5d 2c 0a 20 20 20 20 20 20 20 20 20 20 20 20 5b 20 30 2e 2b 32 2e 6a 2c 20 20 31 2e 2b 30 | .j],.............[.0.+2.j,..1.+0 |
| 7140 | 2e 6a 5d 5d 29 0a 20 20 20 20 3e 3e 3e 20 23 20 54 68 65 20 75 70 70 65 72 2d 74 72 69 61 6e 67 | .j]]).....>>>.#.The.upper-triang |
| 7160 | 75 6c 61 72 20 43 68 6f 6c 65 73 6b 79 20 66 61 63 74 6f 72 20 63 61 6e 20 61 6c 73 6f 20 62 65 | ular.Cholesky.factor.can.also.be |
| 7180 | 20 6f 62 74 61 69 6e 65 64 2e 0a 20 20 20 20 3e 3e 3e 20 6e 70 2e 6c 69 6e 61 6c 67 2e 63 68 6f | .obtained......>>>.np.linalg.cho |
| 71a0 | 6c 65 73 6b 79 28 41 2c 20 75 70 70 65 72 3d 54 72 75 65 29 0a 20 20 20 20 61 72 72 61 79 28 5b | lesky(A,.upper=True).....array([ |
| 71c0 | 5b 31 2e 2d 30 2e 6a 2c 20 30 2e 2d 32 2e 6a 5d 2c 0a 20 20 20 20 20 20 20 20 20 20 20 5b 30 2e | [1.-0.j,.0.-2.j],............[0. |
| 71e0 | 2d 30 2e 6a 2c 20 31 2e 2d 30 2e 6a 5d 5d 29 0a 0a 20 20 20 20 72 f9 00 00 00 72 fa 00 00 00 72 | -0.j,.1.-0.j]])......r....r....r |
| 7200 | df 00 00 00 72 e0 00 00 00 72 e1 00 00 00 72 e5 00 00 00 4e 46 72 e7 00 00 00 29 0a 72 56 00 00 | ....r....r....r....NFr....).rV.. |
| 7220 | 00 da 0b 63 68 6f 6c 65 73 6b 79 5f 75 70 da 0b 63 68 6f 6c 65 73 6b 79 5f 6c 6f 72 8b 00 00 00 | ...cholesky_up..cholesky_lor.... |
| 7240 | 72 c0 00 00 00 72 a4 00 00 00 72 90 00 00 00 72 38 00 00 00 72 7c 00 00 00 72 ea 00 00 00 29 08 | r....r....r....r8...r|...r....). |
| 7260 | 72 88 00 00 00 72 0a 01 00 00 72 ed 00 00 00 72 8a 00 00 00 72 8f 00 00 00 72 ec 00 00 00 72 e6 | r....r....r....r....r....r....r. |
| 7280 | 00 00 00 72 ee 00 00 00 73 08 00 00 00 20 20 20 20 20 20 20 20 72 62 00 00 00 72 07 00 00 00 72 | ...r....s............rb...r....r |
| 72a0 | 07 00 00 00 1f 03 00 00 73 9a 00 00 00 80 00 f1 76 02 00 2b 30 8c 5d d7 0d 26 d2 0d 26 b4 5d d7 | ........s.......v..+0.]..&..&.]. |
| 72c0 | 35 4e d1 35 4e 80 46 dc 0e 18 98 11 8b 6d 81 47 80 41 80 74 dc 04 1a 98 31 d4 04 1d dc 12 1d 98 | 5N.5N.F......m.G.A.t....1....... |
| 72e0 | 61 93 2e 81 4b 80 41 80 78 dc 1a 27 a8 01 d4 1a 2a 91 06 b0 06 80 49 dc 09 11 d4 17 33 b8 56 d8 | a...K.A.x..'....*.....I.....3.V. |
| 7300 | 17 1f a8 08 b8 08 f4 03 01 0a 42 01 f1 00 02 05 2b e1 0c 12 90 31 a0 09 d4 0c 2a 88 01 f7 05 02 | ..........B.....+....1....*..... |
| 7320 | 05 2b f1 06 00 0c 10 90 01 97 08 91 08 98 18 a8 05 90 08 d3 10 2e d3 0b 2f d0 04 2f f7 07 02 05 | .+....................../../.... |
| 7340 | 2b f0 00 02 05 2b fa 73 0c 00 00 00 c1 2d 0b 42 19 03 c2 19 05 42 22 07 63 02 00 00 00 00 00 00 | +....+.s.....-.B.....B".c....... |
| 7360 | 00 00 00 00 00 02 00 00 00 03 00 00 00 f3 0a 00 00 00 97 00 7c 00 7c 01 66 02 53 00 72 8d 00 00 | ....................|.|.f.S.r... |
| 7380 | 00 72 60 00 00 00 a9 02 da 02 78 31 da 02 78 32 73 02 00 00 00 20 20 72 62 00 00 00 da 11 5f 6f | .r`.......x1..x2s......rb....._o |
| 73a0 | 75 74 65 72 5f 64 69 73 70 61 74 63 68 65 72 72 14 01 00 00 88 03 00 00 f3 0b 00 00 00 80 00 d8 | uter_dispatcherr................ |
| 73c0 | 0c 0e 90 02 88 38 80 4f 72 61 00 00 00 63 02 00 00 00 02 00 00 00 00 00 00 00 07 00 00 00 03 00 | .....8.Ora...c.................. |
| 73e0 | 00 00 f3 d2 00 00 00 97 00 74 01 00 00 00 00 00 00 00 00 7c 00 ab 01 00 00 00 00 00 00 7d 00 74 | .........t.........|.........}.t |
| 7400 | 01 00 00 00 00 00 00 00 00 7c 01 ab 01 00 00 00 00 00 00 7d 01 7c 00 6a 02 00 00 00 00 00 00 00 | .........|.........}.|.j........ |
| 7420 | 00 00 00 00 00 00 00 00 00 00 00 64 01 6b 37 00 00 73 0f 7c 01 6a 02 00 00 00 00 00 00 00 00 00 | ...........d.k7..s.|.j.......... |
| 7440 | 00 00 00 00 00 00 00 00 00 64 01 6b 37 00 00 72 26 74 05 00 00 00 00 00 00 00 00 64 02 7c 00 6a | .........d.k7..r&t.........d.|.j |
| 7460 | 02 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 9b 02 64 03 7c 01 6a 02 00 00 00 00 00 | .....................d.|.j...... |
| 7480 | 00 00 00 00 00 00 00 00 00 00 00 00 00 9b 02 64 04 9d 05 ab 01 00 00 00 00 00 00 82 01 74 07 00 | ...............d.............t.. |
| 74a0 | 00 00 00 00 00 00 00 7c 00 7c 01 64 05 ac 06 ab 03 00 00 00 00 00 00 53 00 29 07 61 22 07 00 00 | .......|.|.d...........S.).a"... |
| 74c0 | 0a 20 20 20 20 43 6f 6d 70 75 74 65 20 74 68 65 20 6f 75 74 65 72 20 70 72 6f 64 75 63 74 20 6f | .....Compute.the.outer.product.o |
| 74e0 | 66 20 74 77 6f 20 76 65 63 74 6f 72 73 2e 0a 0a 20 20 20 20 54 68 69 73 20 66 75 6e 63 74 69 6f | f.two.vectors.......This.functio |
| 7500 | 6e 20 69 73 20 41 72 72 61 79 20 41 50 49 20 63 6f 6d 70 61 74 69 62 6c 65 2e 20 43 6f 6d 70 61 | n.is.Array.API.compatible..Compa |
| 7520 | 72 65 64 20 74 6f 20 60 60 6e 70 2e 6f 75 74 65 72 60 60 0a 20 20 20 20 69 74 20 61 63 63 65 70 | red.to.``np.outer``.....it.accep |
| 7540 | 74 73 20 31 2d 64 69 6d 65 6e 73 69 6f 6e 61 6c 20 69 6e 70 75 74 73 20 6f 6e 6c 79 2e 0a 0a 20 | ts.1-dimensional.inputs.only.... |
| 7560 | 20 20 20 50 61 72 61 6d 65 74 65 72 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 | ...Parameters.....----------.... |
| 7580 | 20 78 31 20 3a 20 28 4d 2c 29 20 61 72 72 61 79 5f 6c 69 6b 65 0a 20 20 20 20 20 20 20 20 4f 6e | .x1.:.(M,).array_like.........On |
| 75a0 | 65 2d 64 69 6d 65 6e 73 69 6f 6e 61 6c 20 69 6e 70 75 74 20 61 72 72 61 79 20 6f 66 20 73 69 7a | e-dimensional.input.array.of.siz |
| 75c0 | 65 20 60 60 4e 60 60 2e 0a 20 20 20 20 20 20 20 20 4d 75 73 74 20 68 61 76 65 20 61 20 6e 75 6d | e.``N``..........Must.have.a.num |
| 75e0 | 65 72 69 63 20 64 61 74 61 20 74 79 70 65 2e 0a 20 20 20 20 78 32 20 3a 20 28 4e 2c 29 20 61 72 | eric.data.type......x2.:.(N,).ar |
| 7600 | 72 61 79 5f 6c 69 6b 65 0a 20 20 20 20 20 20 20 20 4f 6e 65 2d 64 69 6d 65 6e 73 69 6f 6e 61 6c | ray_like.........One-dimensional |
| 7620 | 20 69 6e 70 75 74 20 61 72 72 61 79 20 6f 66 20 73 69 7a 65 20 60 60 4d 60 60 2e 0a 20 20 20 20 | .input.array.of.size.``M``...... |
| 7640 | 20 20 20 20 4d 75 73 74 20 68 61 76 65 20 61 20 6e 75 6d 65 72 69 63 20 64 61 74 61 20 74 79 70 | ....Must.have.a.numeric.data.typ |
| 7660 | 65 2e 0a 0a 20 20 20 20 52 65 74 75 72 6e 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 | e.......Returns.....-------..... |
| 7680 | 6f 75 74 20 3a 20 28 4d 2c 20 4e 29 20 6e 64 61 72 72 61 79 0a 20 20 20 20 20 20 20 20 60 60 6f | out.:.(M,.N).ndarray.........``o |
| 76a0 | 75 74 5b 69 2c 20 6a 5d 20 3d 20 61 5b 69 5d 20 2a 20 62 5b 6a 5d 60 60 0a 0a 20 20 20 20 53 65 | ut[i,.j].=.a[i].*.b[j]``......Se |
| 76c0 | 65 20 61 6c 73 6f 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 6f 75 74 65 72 0a 0a 20 | e.also.....--------.....outer... |
| 76e0 | 20 20 20 45 78 61 6d 70 6c 65 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 4d 61 6b | ...Examples.....--------.....Mak |
| 7700 | 65 20 61 20 28 2a 76 65 72 79 2a 20 63 6f 61 72 73 65 29 20 67 72 69 64 20 66 6f 72 20 63 6f 6d | e.a.(*very*.coarse).grid.for.com |
| 7720 | 70 75 74 69 6e 67 20 61 20 4d 61 6e 64 65 6c 62 72 6f 74 20 73 65 74 3a 0a 0a 20 20 20 20 3e 3e | puting.a.Mandelbrot.set:......>> |
| 7740 | 3e 20 72 6c 20 3d 20 6e 70 2e 6c 69 6e 61 6c 67 2e 6f 75 74 65 72 28 6e 70 2e 6f 6e 65 73 28 28 | >.rl.=.np.linalg.outer(np.ones(( |
| 7760 | 35 2c 29 29 2c 20 6e 70 2e 6c 69 6e 73 70 61 63 65 28 2d 32 2c 20 32 2c 20 35 29 29 0a 20 20 20 | 5,)),.np.linspace(-2,.2,.5)).... |
| 7780 | 20 3e 3e 3e 20 72 6c 0a 20 20 20 20 61 72 72 61 79 28 5b 5b 2d 32 2e 2c 20 2d 31 2e 2c 20 20 30 | .>>>.rl.....array([[-2.,.-1.,..0 |
| 77a0 | 2e 2c 20 20 31 2e 2c 20 20 32 2e 5d 2c 0a 20 20 20 20 20 20 20 20 20 20 20 5b 2d 32 2e 2c 20 2d | .,..1.,..2.],............[-2.,.- |
| 77c0 | 31 2e 2c 20 20 30 2e 2c 20 20 31 2e 2c 20 20 32 2e 5d 2c 0a 20 20 20 20 20 20 20 20 20 20 20 5b | 1.,..0.,..1.,..2.],............[ |
| 77e0 | 2d 32 2e 2c 20 2d 31 2e 2c 20 20 30 2e 2c 20 20 31 2e 2c 20 20 32 2e 5d 2c 0a 20 20 20 20 20 20 | -2.,.-1.,..0.,..1.,..2.],....... |
| 7800 | 20 20 20 20 20 5b 2d 32 2e 2c 20 2d 31 2e 2c 20 20 30 2e 2c 20 20 31 2e 2c 20 20 32 2e 5d 2c 0a | .....[-2.,.-1.,..0.,..1.,..2.],. |
| 7820 | 20 20 20 20 20 20 20 20 20 20 20 5b 2d 32 2e 2c 20 2d 31 2e 2c 20 20 30 2e 2c 20 20 31 2e 2c 20 | ...........[-2.,.-1.,..0.,..1.,. |
| 7840 | 20 32 2e 5d 5d 29 0a 20 20 20 20 3e 3e 3e 20 69 6d 20 3d 20 6e 70 2e 6c 69 6e 61 6c 67 2e 6f 75 | .2.]]).....>>>.im.=.np.linalg.ou |
| 7860 | 74 65 72 28 31 6a 2a 6e 70 2e 6c 69 6e 73 70 61 63 65 28 32 2c 20 2d 32 2c 20 35 29 2c 20 6e 70 | ter(1j*np.linspace(2,.-2,.5),.np |
| 7880 | 2e 6f 6e 65 73 28 28 35 2c 29 29 29 0a 20 20 20 20 3e 3e 3e 20 69 6d 0a 20 20 20 20 61 72 72 61 | .ones((5,))).....>>>.im.....arra |
| 78a0 | 79 28 5b 5b 30 2e 2b 32 2e 6a 2c 20 30 2e 2b 32 2e 6a 2c 20 30 2e 2b 32 2e 6a 2c 20 30 2e 2b 32 | y([[0.+2.j,.0.+2.j,.0.+2.j,.0.+2 |
| 78c0 | 2e 6a 2c 20 30 2e 2b 32 2e 6a 5d 2c 0a 20 20 20 20 20 20 20 20 20 20 20 5b 30 2e 2b 31 2e 6a 2c | .j,.0.+2.j],............[0.+1.j, |
| 78e0 | 20 30 2e 2b 31 2e 6a 2c 20 30 2e 2b 31 2e 6a 2c 20 30 2e 2b 31 2e 6a 2c 20 30 2e 2b 31 2e 6a 5d | .0.+1.j,.0.+1.j,.0.+1.j,.0.+1.j] |
| 7900 | 2c 0a 20 20 20 20 20 20 20 20 20 20 20 5b 30 2e 2b 30 2e 6a 2c 20 30 2e 2b 30 2e 6a 2c 20 30 2e | ,............[0.+0.j,.0.+0.j,.0. |
| 7920 | 2b 30 2e 6a 2c 20 30 2e 2b 30 2e 6a 2c 20 30 2e 2b 30 2e 6a 5d 2c 0a 20 20 20 20 20 20 20 20 20 | +0.j,.0.+0.j,.0.+0.j],.......... |
| 7940 | 20 20 5b 30 2e 2d 31 2e 6a 2c 20 30 2e 2d 31 2e 6a 2c 20 30 2e 2d 31 2e 6a 2c 20 30 2e 2d 31 2e | ..[0.-1.j,.0.-1.j,.0.-1.j,.0.-1. |
| 7960 | 6a 2c 20 30 2e 2d 31 2e 6a 5d 2c 0a 20 20 20 20 20 20 20 20 20 20 20 5b 30 2e 2d 32 2e 6a 2c 20 | j,.0.-1.j],............[0.-2.j,. |
| 7980 | 30 2e 2d 32 2e 6a 2c 20 30 2e 2d 32 2e 6a 2c 20 30 2e 2d 32 2e 6a 2c 20 30 2e 2d 32 2e 6a 5d 5d | 0.-2.j,.0.-2.j,.0.-2.j,.0.-2.j]] |
| 79a0 | 29 0a 20 20 20 20 3e 3e 3e 20 67 72 69 64 20 3d 20 72 6c 20 2b 20 69 6d 0a 20 20 20 20 3e 3e 3e | ).....>>>.grid.=.rl.+.im.....>>> |
| 79c0 | 20 67 72 69 64 0a 20 20 20 20 61 72 72 61 79 28 5b 5b 2d 32 2e 2b 32 2e 6a 2c 20 2d 31 2e 2b 32 | .grid.....array([[-2.+2.j,.-1.+2 |
| 79e0 | 2e 6a 2c 20 20 30 2e 2b 32 2e 6a 2c 20 20 31 2e 2b 32 2e 6a 2c 20 20 32 2e 2b 32 2e 6a 5d 2c 0a | .j,..0.+2.j,..1.+2.j,..2.+2.j],. |
| 7a00 | 20 20 20 20 20 20 20 20 20 20 20 5b 2d 32 2e 2b 31 2e 6a 2c 20 2d 31 2e 2b 31 2e 6a 2c 20 20 30 | ...........[-2.+1.j,.-1.+1.j,..0 |
| 7a20 | 2e 2b 31 2e 6a 2c 20 20 31 2e 2b 31 2e 6a 2c 20 20 32 2e 2b 31 2e 6a 5d 2c 0a 20 20 20 20 20 20 | .+1.j,..1.+1.j,..2.+1.j],....... |
| 7a40 | 20 20 20 20 20 5b 2d 32 2e 2b 30 2e 6a 2c 20 2d 31 2e 2b 30 2e 6a 2c 20 20 30 2e 2b 30 2e 6a 2c | .....[-2.+0.j,.-1.+0.j,..0.+0.j, |
| 7a60 | 20 20 31 2e 2b 30 2e 6a 2c 20 20 32 2e 2b 30 2e 6a 5d 2c 0a 20 20 20 20 20 20 20 20 20 20 20 5b | ..1.+0.j,..2.+0.j],............[ |
| 7a80 | 2d 32 2e 2d 31 2e 6a 2c 20 2d 31 2e 2d 31 2e 6a 2c 20 20 30 2e 2d 31 2e 6a 2c 20 20 31 2e 2d 31 | -2.-1.j,.-1.-1.j,..0.-1.j,..1.-1 |
| 7aa0 | 2e 6a 2c 20 20 32 2e 2d 31 2e 6a 5d 2c 0a 20 20 20 20 20 20 20 20 20 20 20 5b 2d 32 2e 2d 32 2e | .j,..2.-1.j],............[-2.-2. |
| 7ac0 | 6a 2c 20 2d 31 2e 2d 32 2e 6a 2c 20 20 30 2e 2d 32 2e 6a 2c 20 20 31 2e 2d 32 2e 6a 2c 20 20 32 | j,.-1.-2.j,..0.-2.j,..1.-2.j,..2 |
| 7ae0 | 2e 2d 32 2e 6a 5d 5d 29 0a 0a 20 20 20 20 41 6e 20 65 78 61 6d 70 6c 65 20 75 73 69 6e 67 20 61 | .-2.j]])......An.example.using.a |
| 7b00 | 20 22 76 65 63 74 6f 72 22 20 6f 66 20 6c 65 74 74 65 72 73 3a 0a 0a 20 20 20 20 3e 3e 3e 20 78 | ."vector".of.letters:......>>>.x |
| 7b20 | 20 3d 20 6e 70 2e 61 72 72 61 79 28 5b 27 61 27 2c 20 27 62 27 2c 20 27 63 27 5d 2c 20 64 74 79 | .=.np.array(['a',.'b',.'c'],.dty |
| 7b40 | 70 65 3d 6f 62 6a 65 63 74 29 0a 20 20 20 20 3e 3e 3e 20 6e 70 2e 6c 69 6e 61 6c 67 2e 6f 75 74 | pe=object).....>>>.np.linalg.out |
| 7b60 | 65 72 28 78 2c 20 5b 31 2c 20 32 2c 20 33 5d 29 0a 20 20 20 20 61 72 72 61 79 28 5b 5b 27 61 27 | er(x,.[1,.2,.3]).....array([['a' |
| 7b80 | 2c 20 27 61 61 27 2c 20 27 61 61 61 27 5d 2c 0a 20 20 20 20 20 20 20 20 20 20 20 5b 27 62 27 2c | ,.'aa',.'aaa'],............['b', |
| 7ba0 | 20 27 62 62 27 2c 20 27 62 62 62 27 5d 2c 0a 20 20 20 20 20 20 20 20 20 20 20 5b 27 63 27 2c 20 | .'bb',.'bbb'],............['c',. |
| 7bc0 | 27 63 63 27 2c 20 27 63 63 63 27 5d 5d 2c 20 64 74 79 70 65 3d 6f 62 6a 65 63 74 29 0a 0a 20 20 | 'cc',.'ccc']],.dtype=object).... |
| 7be0 | 20 20 72 a9 00 00 00 7a 3b 49 6e 70 75 74 20 61 72 72 61 79 73 20 6d 75 73 74 20 62 65 20 6f 6e | ..r....z;Input.arrays.must.be.on |
| 7c00 | 65 2d 64 69 6d 65 6e 73 69 6f 6e 61 6c 2c 20 62 75 74 20 74 68 65 79 20 61 72 65 20 78 31 2e 6e | e-dimensional,.but.they.are.x1.n |
| 7c20 | 64 69 6d 3d 7a 0d 20 61 6e 64 20 78 32 2e 6e 64 69 6d 3d fa 01 2e 4e a9 01 da 03 6f 75 74 29 04 | dim=z..and.x2.ndim=...N....out). |
| 7c40 | 72 2c 00 00 00 72 b4 00 00 00 72 bd 00 00 00 da 0b 5f 63 6f 72 65 5f 6f 75 74 65 72 72 11 01 00 | r,...r....r......_core_outerr... |
| 7c60 | 00 73 02 00 00 00 20 20 72 62 00 00 00 72 1b 00 00 00 72 1b 00 00 00 8c 03 00 00 73 69 00 00 00 | .s......rb...r....r........si... |
| 7c80 | 80 00 f4 7a 01 00 0a 14 90 42 8b 1e 80 42 dc 09 13 90 42 8b 1e 80 42 d8 07 09 87 77 81 77 90 21 | ...z.....B...B....B...B....w.w.! |
| 7ca0 | 82 7c 90 72 97 77 91 77 a0 21 92 7c dc 0e 18 f0 02 01 0d 18 d8 0f 11 8f 77 89 77 88 6a 98 0e 98 | .|.r.w.w.!.|............w.w.j... |
| 7cc0 | 62 9f 67 99 67 98 5a a0 71 f0 03 01 0d 2a f3 03 03 0f 0a f0 00 03 09 0a f4 08 00 0c 17 90 72 98 | b.g.g.Z.q....*................r. |
| 7ce0 | 32 a0 34 d4 0b 28 d0 04 28 72 61 00 00 00 63 02 00 00 00 00 00 00 00 00 00 00 00 01 00 00 00 03 | 2.4..(..(ra...c................. |
| 7d00 | 00 00 00 f3 08 00 00 00 97 00 7c 00 66 01 53 00 72 8d 00 00 00 72 60 00 00 00 29 02 72 88 00 00 | ..........|.f.S.r....r`...).r... |
| 7d20 | 00 da 04 6d 6f 64 65 73 02 00 00 00 20 20 72 62 00 00 00 da 0e 5f 71 72 5f 64 69 73 70 61 74 63 | ...modes......rb....._qr_dispatc |
| 7d40 | 68 65 72 72 1d 01 00 00 d6 03 00 00 72 f2 00 00 00 72 61 00 00 00 63 02 00 00 00 00 00 00 00 00 | herr........r....ra...c......... |
| 7d60 | 00 00 00 07 00 00 00 03 00 00 00 f3 d6 04 00 00 97 00 7c 01 64 01 76 01 72 59 7c 01 64 02 76 00 | ..................|.d.v.rY|.d.v. |
| 7d80 | 72 21 64 03 7d 02 74 01 00 00 00 00 00 00 00 00 6a 02 00 00 00 00 00 00 00 00 00 00 00 00 00 00 | r!d.}.t.........j............... |
| 7da0 | 00 00 00 00 7c 02 74 04 00 00 00 00 00 00 00 00 64 04 ac 05 ab 03 00 00 00 00 00 00 01 00 64 06 | ....|.t.........d.............d. |
| 7dc0 | 7d 01 6e 34 7c 01 64 07 76 00 72 21 64 08 7d 02 74 01 00 00 00 00 00 00 00 00 6a 02 00 00 00 00 | }.n4|.d.v.r!d.}.t.........j..... |
| 7de0 | 00 00 00 00 00 00 00 00 00 00 00 00 00 00 7c 02 74 04 00 00 00 00 00 00 00 00 64 04 ac 05 ab 03 | ..............|.t.........d..... |
| 7e00 | 00 00 00 00 00 00 01 00 64 09 7d 01 6e 0f 74 07 00 00 00 00 00 00 00 00 64 0a 7c 01 9b 00 64 0b | ........d.}.n.t.........d.|...d. |
| 7e20 | 9d 03 ab 01 00 00 00 00 00 00 82 01 74 09 00 00 00 00 00 00 00 00 7c 00 ab 01 00 00 00 00 00 00 | ............t.........|......... |
| 7e40 | 5c 02 00 00 7d 00 7d 03 74 0b 00 00 00 00 00 00 00 00 7c 00 ab 01 00 00 00 00 00 00 01 00 7c 00 | \...}.}.t.........|...........|. |
| 7e60 | 6a 0c 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 64 0c 64 0d 1a 00 5c 02 00 00 7d 04 | j...................d.d...\...}. |
| 7e80 | 7d 05 74 0f 00 00 00 00 00 00 00 00 7c 00 ab 01 00 00 00 00 00 00 5c 02 00 00 7d 06 7d 07 7c 00 | }.t.........|.........\...}.}.|. |
| 7ea0 | 6a 11 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 7c 06 64 0e ac 0f ab 02 00 00 00 00 | j...................|.d......... |
| 7ec0 | 00 00 7d 00 74 13 00 00 00 00 00 00 00 00 7c 00 ab 01 00 00 00 00 00 00 7d 00 74 15 00 00 00 00 | ..}.t.........|.........}.t..... |
| 7ee0 | 00 00 00 00 7c 04 7c 05 ab 02 00 00 00 00 00 00 7d 08 74 17 00 00 00 00 00 00 00 00 7c 06 ab 01 | ....|.|.........}.t.........|... |
| 7f00 | 00 00 00 00 00 00 72 02 64 10 6e 01 64 11 7d 09 74 19 00 00 00 00 00 00 00 00 74 1a 00 00 00 00 | ......r.d.n.d.}.t.........t..... |
| 7f20 | 00 00 00 00 64 12 64 13 64 13 64 13 ac 14 ab 05 00 00 00 00 00 00 35 00 01 00 74 1d 00 00 00 00 | ....d.d.d.d...........5...t..... |
| 7f40 | 00 00 00 00 6a 1e 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 7c 00 7c 09 ac 15 ab 02 | ....j...................|.|..... |
| 7f60 | 00 00 00 00 00 00 7d 0a 64 0d 64 0d 64 0d ab 02 00 00 00 00 00 00 01 00 7c 01 64 16 6b 28 00 00 | ......}.d.d.d...........|.d.k(.. |
| 7f80 | 72 30 74 21 00 00 00 00 00 00 00 00 7c 00 64 17 64 0d 7c 08 85 02 64 0d 64 0d 85 02 66 03 19 00 | r0t!........|.d.d.|...d.d...f... |
| 7fa0 | 00 00 ab 01 00 00 00 00 00 00 7d 0b 7c 0b 6a 11 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 | ..........}.|.j................. |
| 7fc0 | 00 00 7c 07 64 18 ac 0f ab 02 00 00 00 00 00 00 7d 0b 02 00 7c 03 7c 0b ab 01 00 00 00 00 00 00 | ..|.d...........}...|.|......... |
| 7fe0 | 53 00 7c 01 64 19 6b 28 00 00 72 3b 74 23 00 00 00 00 00 00 00 00 7c 00 ab 01 00 00 00 00 00 00 | S.|.d.k(..r;t#........|......... |
| 8000 | 7d 0c 7c 0c 6a 11 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 7c 07 64 18 ac 0f ab 02 | }.|.j...................|.d..... |
| 8020 | 00 00 00 00 00 00 7d 0c 7f 0a 6a 11 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 7c 07 | ......}...j...................|. |
| 8040 | 64 18 ac 0f ab 02 00 00 00 00 00 00 7d 0a 02 00 7c 03 7c 0c ab 01 00 00 00 00 00 00 7c 0a 66 02 | d...........}...|.|.........|.f. |
| 8060 | 53 00 7c 01 64 09 6b 28 00 00 72 1b 7c 00 6a 11 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 | S.|.d.k(..r.|.j................. |
| 8080 | 00 00 7c 07 64 18 ac 0f ab 02 00 00 00 00 00 00 7d 00 02 00 7c 03 7c 00 ab 01 00 00 00 00 00 00 | ..|.d...........}...|.|......... |
| 80a0 | 53 00 7c 01 64 1a 6b 28 00 00 72 18 7c 04 7c 05 6b 44 00 00 72 13 7c 04 7d 0d 74 1c 00 00 00 00 | S.|.d.k(..r.|.|.kD..r.|.}.t..... |
| 80c0 | 00 00 00 00 6a 24 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 7d 0e 6e 12 7c 08 7d 0d | ....j$..................}.n.|.}. |
| 80e0 | 74 1c 00 00 00 00 00 00 00 00 6a 26 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 7d 0e | t.........j&..................}. |
| 8100 | 74 17 00 00 00 00 00 00 00 00 7c 06 ab 01 00 00 00 00 00 00 72 02 64 1b 6e 01 64 1c 7d 09 74 19 | t.........|.........r.d.n.d.}.t. |
| 8120 | 00 00 00 00 00 00 00 00 74 1a 00 00 00 00 00 00 00 00 64 12 64 13 64 13 64 13 ac 14 ab 05 00 00 | ........t.........d.d.d.d....... |
| 8140 | 00 00 00 00 35 00 01 00 02 00 7c 0e 7c 00 7f 0a 7c 09 ac 15 ab 03 00 00 00 00 00 00 7d 0c 64 0d | ....5.....|.|...|...........}.d. |
| 8160 | 64 0d 64 0d ab 02 00 00 00 00 00 00 01 00 74 21 00 00 00 00 00 00 00 00 7c 00 64 17 64 0d 7c 0d | d.d...........t!........|.d.d.|. |
| 8180 | 85 02 64 0d 64 0d 85 02 66 03 19 00 00 00 ab 01 00 00 00 00 00 00 7d 0b 7f 0c 6a 11 00 00 00 00 | ..d.d...f.............}...j..... |
| 81a0 | 00 00 00 00 00 00 00 00 00 00 00 00 00 00 7c 07 64 18 ac 0f ab 02 00 00 00 00 00 00 7d 0c 7c 0b | ..............|.d...........}.|. |
| 81c0 | 6a 11 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 7c 07 64 18 ac 0f ab 02 00 00 00 00 | j...................|.d......... |
| 81e0 | 00 00 7d 0b 74 29 00 00 00 00 00 00 00 00 02 00 7c 03 7c 0c ab 01 00 00 00 00 00 00 02 00 7c 03 | ..}.t)..........|.|...........|. |
| 8200 | 7c 0b ab 01 00 00 00 00 00 00 ab 02 00 00 00 00 00 00 53 00 23 00 31 00 73 01 77 02 01 00 59 00 | |.................S.#.1.s.w...Y. |
| 8220 | 01 00 01 00 90 01 8c 58 78 03 59 00 77 01 23 00 31 00 73 01 77 02 01 00 59 00 01 00 01 00 8c 69 | .......Xx.Y.w.#.1.s.w...Y......i |
| 8240 | 78 03 59 00 77 01 29 1d 61 98 14 00 00 0a 20 20 20 20 43 6f 6d 70 75 74 65 20 74 68 65 20 71 72 | x.Y.w.).a.........Compute.the.qr |
| 8260 | 20 66 61 63 74 6f 72 69 7a 61 74 69 6f 6e 20 6f 66 20 61 20 6d 61 74 72 69 78 2e 0a 0a 20 20 20 | .factorization.of.a.matrix...... |
| 8280 | 20 46 61 63 74 6f 72 20 74 68 65 20 6d 61 74 72 69 78 20 60 61 60 20 61 73 20 2a 71 72 2a 2c 20 | .Factor.the.matrix.`a`.as.*qr*,. |
| 82a0 | 77 68 65 72 65 20 60 71 60 20 69 73 20 6f 72 74 68 6f 6e 6f 72 6d 61 6c 20 61 6e 64 20 60 72 60 | where.`q`.is.orthonormal.and.`r` |
| 82c0 | 20 69 73 0a 20 20 20 20 75 70 70 65 72 2d 74 72 69 61 6e 67 75 6c 61 72 2e 0a 0a 20 20 20 20 50 | .is.....upper-triangular.......P |
| 82e0 | 61 72 61 6d 65 74 65 72 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 61 20 3a | arameters.....----------.....a.: |
| 8300 | 20 61 72 72 61 79 5f 6c 69 6b 65 2c 20 73 68 61 70 65 20 28 2e 2e 2e 2c 20 4d 2c 20 4e 29 0a 20 | .array_like,.shape.(...,.M,.N).. |
| 8320 | 20 20 20 20 20 20 20 41 6e 20 61 72 72 61 79 2d 6c 69 6b 65 20 6f 62 6a 65 63 74 20 77 69 74 68 | .......An.array-like.object.with |
| 8340 | 20 74 68 65 20 64 69 6d 65 6e 73 69 6f 6e 61 6c 69 74 79 20 6f 66 20 61 74 20 6c 65 61 73 74 20 | .the.dimensionality.of.at.least. |
| 8360 | 32 2e 0a 20 20 20 20 6d 6f 64 65 20 3a 20 7b 27 72 65 64 75 63 65 64 27 2c 20 27 63 6f 6d 70 6c | 2......mode.:.{'reduced',.'compl |
| 8380 | 65 74 65 27 2c 20 27 72 27 2c 20 27 72 61 77 27 7d 2c 20 6f 70 74 69 6f 6e 61 6c 2c 20 64 65 66 | ete',.'r',.'raw'},.optional,.def |
| 83a0 | 61 75 6c 74 3a 20 27 72 65 64 75 63 65 64 27 0a 20 20 20 20 20 20 20 20 49 66 20 4b 20 3d 20 6d | ault:.'reduced'.........If.K.=.m |
| 83c0 | 69 6e 28 4d 2c 20 4e 29 2c 20 74 68 65 6e 0a 0a 20 20 20 20 20 20 20 20 2a 20 27 72 65 64 75 63 | in(M,.N),.then..........*.'reduc |
| 83e0 | 65 64 27 20 20 3a 20 72 65 74 75 72 6e 73 20 51 2c 20 52 20 77 69 74 68 20 64 69 6d 65 6e 73 69 | ed'..:.returns.Q,.R.with.dimensi |
| 8400 | 6f 6e 73 20 28 2e 2e 2e 2c 20 4d 2c 20 4b 29 2c 20 28 2e 2e 2e 2c 20 4b 2c 20 4e 29 0a 20 20 20 | ons.(...,.M,.K),.(...,.K,.N).... |
| 8420 | 20 20 20 20 20 2a 20 27 63 6f 6d 70 6c 65 74 65 27 20 3a 20 72 65 74 75 72 6e 73 20 51 2c 20 52 | .....*.'complete'.:.returns.Q,.R |
| 8440 | 20 77 69 74 68 20 64 69 6d 65 6e 73 69 6f 6e 73 20 28 2e 2e 2e 2c 20 4d 2c 20 4d 29 2c 20 28 2e | .with.dimensions.(...,.M,.M),.(. |
| 8460 | 2e 2e 2c 20 4d 2c 20 4e 29 0a 20 20 20 20 20 20 20 20 2a 20 27 72 27 20 20 20 20 20 20 20 20 3a | ..,.M,.N).........*.'r'........: |
| 8480 | 20 72 65 74 75 72 6e 73 20 52 20 6f 6e 6c 79 20 77 69 74 68 20 64 69 6d 65 6e 73 69 6f 6e 73 20 | .returns.R.only.with.dimensions. |
| 84a0 | 28 2e 2e 2e 2c 20 4b 2c 20 4e 29 0a 20 20 20 20 20 20 20 20 2a 20 27 72 61 77 27 20 20 20 20 20 | (...,.K,.N).........*.'raw'..... |
| 84c0 | 20 3a 20 72 65 74 75 72 6e 73 20 68 2c 20 74 61 75 20 77 69 74 68 20 64 69 6d 65 6e 73 69 6f 6e | .:.returns.h,.tau.with.dimension |
| 84e0 | 73 20 28 2e 2e 2e 2c 20 4e 2c 20 4d 29 2c 20 28 2e 2e 2e 2c 20 4b 2c 29 0a 0a 20 20 20 20 20 20 | s.(...,.N,.M),.(...,.K,)........ |
| 8500 | 20 20 54 68 65 20 6f 70 74 69 6f 6e 73 20 27 72 65 64 75 63 65 64 27 2c 20 27 63 6f 6d 70 6c 65 | ..The.options.'reduced',.'comple |
| 8520 | 74 65 2c 20 61 6e 64 20 27 72 61 77 27 20 61 72 65 20 6e 65 77 20 69 6e 20 6e 75 6d 70 79 20 31 | te,.and.'raw'.are.new.in.numpy.1 |
| 8540 | 2e 38 2c 0a 20 20 20 20 20 20 20 20 73 65 65 20 74 68 65 20 6e 6f 74 65 73 20 66 6f 72 20 6d 6f | .8,.........see.the.notes.for.mo |
| 8560 | 72 65 20 69 6e 66 6f 72 6d 61 74 69 6f 6e 2e 20 54 68 65 20 64 65 66 61 75 6c 74 20 69 73 20 27 | re.information..The.default.is.' |
| 8580 | 72 65 64 75 63 65 64 27 2c 20 61 6e 64 20 74 6f 0a 20 20 20 20 20 20 20 20 6d 61 69 6e 74 61 69 | reduced',.and.to.........maintai |
| 85a0 | 6e 20 62 61 63 6b 77 61 72 64 20 63 6f 6d 70 61 74 69 62 69 6c 69 74 79 20 77 69 74 68 20 65 61 | n.backward.compatibility.with.ea |
| 85c0 | 72 6c 69 65 72 20 76 65 72 73 69 6f 6e 73 20 6f 66 20 6e 75 6d 70 79 20 62 6f 74 68 0a 20 20 20 | rlier.versions.of.numpy.both.... |
| 85e0 | 20 20 20 20 20 69 74 20 61 6e 64 20 74 68 65 20 6f 6c 64 20 64 65 66 61 75 6c 74 20 27 66 75 6c | .....it.and.the.old.default.'ful |
| 8600 | 6c 27 20 63 61 6e 20 62 65 20 6f 6d 69 74 74 65 64 2e 20 4e 6f 74 65 20 74 68 61 74 20 61 72 72 | l'.can.be.omitted..Note.that.arr |
| 8620 | 61 79 20 68 0a 20 20 20 20 20 20 20 20 72 65 74 75 72 6e 65 64 20 69 6e 20 27 72 61 77 27 20 6d | ay.h.........returned.in.'raw'.m |
| 8640 | 6f 64 65 20 69 73 20 74 72 61 6e 73 70 6f 73 65 64 20 66 6f 72 20 63 61 6c 6c 69 6e 67 20 46 6f | ode.is.transposed.for.calling.Fo |
| 8660 | 72 74 72 61 6e 2e 20 54 68 65 0a 20 20 20 20 20 20 20 20 27 65 63 6f 6e 6f 6d 69 63 27 20 6d 6f | rtran..The.........'economic'.mo |
| 8680 | 64 65 20 69 73 20 64 65 70 72 65 63 61 74 65 64 2e 20 20 54 68 65 20 6d 6f 64 65 73 20 27 66 75 | de.is.deprecated...The.modes.'fu |
| 86a0 | 6c 6c 27 20 61 6e 64 20 27 65 63 6f 6e 6f 6d 69 63 27 20 6d 61 79 0a 20 20 20 20 20 20 20 20 62 | ll'.and.'economic'.may.........b |
| 86c0 | 65 20 70 61 73 73 65 64 20 75 73 69 6e 67 20 6f 6e 6c 79 20 74 68 65 20 66 69 72 73 74 20 6c 65 | e.passed.using.only.the.first.le |
| 86e0 | 74 74 65 72 20 66 6f 72 20 62 61 63 6b 77 61 72 64 73 20 63 6f 6d 70 61 74 69 62 69 6c 69 74 79 | tter.for.backwards.compatibility |
| 8700 | 2c 0a 20 20 20 20 20 20 20 20 62 75 74 20 61 6c 6c 20 6f 74 68 65 72 73 20 6d 75 73 74 20 62 65 | ,.........but.all.others.must.be |
| 8720 | 20 73 70 65 6c 6c 65 64 20 6f 75 74 2e 20 53 65 65 20 74 68 65 20 4e 6f 74 65 73 20 66 6f 72 20 | .spelled.out..See.the.Notes.for. |
| 8740 | 6d 6f 72 65 0a 20 20 20 20 20 20 20 20 65 78 70 6c 61 6e 61 74 69 6f 6e 2e 0a 0a 0a 20 20 20 20 | more.........explanation........ |
| 8760 | 52 65 74 75 72 6e 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 57 68 65 6e 20 6d 6f 64 | Returns.....-------.....When.mod |
| 8780 | 65 20 69 73 20 27 72 65 64 75 63 65 64 27 20 6f 72 20 27 63 6f 6d 70 6c 65 74 65 27 2c 20 74 68 | e.is.'reduced'.or.'complete',.th |
| 87a0 | 65 20 72 65 73 75 6c 74 20 77 69 6c 6c 20 62 65 20 61 20 6e 61 6d 65 64 74 75 70 6c 65 20 77 69 | e.result.will.be.a.namedtuple.wi |
| 87c0 | 74 68 0a 20 20 20 20 74 68 65 20 61 74 74 72 69 62 75 74 65 73 20 60 51 60 20 61 6e 64 20 60 52 | th.....the.attributes.`Q`.and.`R |
| 87e0 | 60 2e 0a 0a 20 20 20 20 51 20 3a 20 6e 64 61 72 72 61 79 20 6f 66 20 66 6c 6f 61 74 20 6f 72 20 | `.......Q.:.ndarray.of.float.or. |
| 8800 | 63 6f 6d 70 6c 65 78 2c 20 6f 70 74 69 6f 6e 61 6c 0a 20 20 20 20 20 20 20 20 41 20 6d 61 74 72 | complex,.optional.........A.matr |
| 8820 | 69 78 20 77 69 74 68 20 6f 72 74 68 6f 6e 6f 72 6d 61 6c 20 63 6f 6c 75 6d 6e 73 2e 20 57 68 65 | ix.with.orthonormal.columns..Whe |
| 8840 | 6e 20 6d 6f 64 65 20 3d 20 27 63 6f 6d 70 6c 65 74 65 27 20 74 68 65 0a 20 20 20 20 20 20 20 20 | n.mode.=.'complete'.the......... |
| 8860 | 72 65 73 75 6c 74 20 69 73 20 61 6e 20 6f 72 74 68 6f 67 6f 6e 61 6c 2f 75 6e 69 74 61 72 79 20 | result.is.an.orthogonal/unitary. |
| 8880 | 6d 61 74 72 69 78 20 64 65 70 65 6e 64 69 6e 67 20 6f 6e 20 77 68 65 74 68 65 72 20 6f 72 20 6e | matrix.depending.on.whether.or.n |
| 88a0 | 6f 74 0a 20 20 20 20 20 20 20 20 61 20 69 73 20 72 65 61 6c 2f 63 6f 6d 70 6c 65 78 2e 20 54 68 | ot.........a.is.real/complex..Th |
| 88c0 | 65 20 64 65 74 65 72 6d 69 6e 61 6e 74 20 6d 61 79 20 62 65 20 65 69 74 68 65 72 20 2b 2f 2d 20 | e.determinant.may.be.either.+/-. |
| 88e0 | 31 20 69 6e 20 74 68 61 74 0a 20 20 20 20 20 20 20 20 63 61 73 65 2e 20 49 6e 20 63 61 73 65 20 | 1.in.that.........case..In.case. |
| 8900 | 74 68 65 20 6e 75 6d 62 65 72 20 6f 66 20 64 69 6d 65 6e 73 69 6f 6e 73 20 69 6e 20 74 68 65 20 | the.number.of.dimensions.in.the. |
| 8920 | 69 6e 70 75 74 20 61 72 72 61 79 20 69 73 0a 20 20 20 20 20 20 20 20 67 72 65 61 74 65 72 20 74 | input.array.is.........greater.t |
| 8940 | 68 61 6e 20 32 20 74 68 65 6e 20 61 20 73 74 61 63 6b 20 6f 66 20 74 68 65 20 6d 61 74 72 69 63 | han.2.then.a.stack.of.the.matric |
| 8960 | 65 73 20 77 69 74 68 20 61 62 6f 76 65 20 70 72 6f 70 65 72 74 69 65 73 0a 20 20 20 20 20 20 20 | es.with.above.properties........ |
| 8980 | 20 69 73 20 72 65 74 75 72 6e 65 64 2e 0a 20 20 20 20 52 20 3a 20 6e 64 61 72 72 61 79 20 6f 66 | .is.returned......R.:.ndarray.of |
| 89a0 | 20 66 6c 6f 61 74 20 6f 72 20 63 6f 6d 70 6c 65 78 2c 20 6f 70 74 69 6f 6e 61 6c 0a 20 20 20 20 | .float.or.complex,.optional..... |
| 89c0 | 20 20 20 20 54 68 65 20 75 70 70 65 72 2d 74 72 69 61 6e 67 75 6c 61 72 20 6d 61 74 72 69 78 20 | ....The.upper-triangular.matrix. |
| 89e0 | 6f 72 20 61 20 73 74 61 63 6b 20 6f 66 20 75 70 70 65 72 2d 74 72 69 61 6e 67 75 6c 61 72 0a 20 | or.a.stack.of.upper-triangular.. |
| 8a00 | 20 20 20 20 20 20 20 6d 61 74 72 69 63 65 73 20 69 66 20 74 68 65 20 6e 75 6d 62 65 72 20 6f 66 | .......matrices.if.the.number.of |
| 8a20 | 20 64 69 6d 65 6e 73 69 6f 6e 73 20 69 6e 20 74 68 65 20 69 6e 70 75 74 20 61 72 72 61 79 20 69 | .dimensions.in.the.input.array.i |
| 8a40 | 73 20 67 72 65 61 74 65 72 0a 20 20 20 20 20 20 20 20 74 68 61 6e 20 32 2e 0a 20 20 20 20 28 68 | s.greater.........than.2......(h |
| 8a60 | 2c 20 74 61 75 29 20 3a 20 6e 64 61 72 72 61 79 73 20 6f 66 20 6e 70 2e 64 6f 75 62 6c 65 20 6f | ,.tau).:.ndarrays.of.np.double.o |
| 8a80 | 72 20 6e 70 2e 63 64 6f 75 62 6c 65 2c 20 6f 70 74 69 6f 6e 61 6c 0a 20 20 20 20 20 20 20 20 54 | r.np.cdouble,.optional.........T |
| 8aa0 | 68 65 20 61 72 72 61 79 20 68 20 63 6f 6e 74 61 69 6e 73 20 74 68 65 20 48 6f 75 73 65 68 6f 6c | he.array.h.contains.the.Househol |
| 8ac0 | 64 65 72 20 72 65 66 6c 65 63 74 6f 72 73 20 74 68 61 74 20 67 65 6e 65 72 61 74 65 20 71 0a 20 | der.reflectors.that.generate.q.. |
| 8ae0 | 20 20 20 20 20 20 20 61 6c 6f 6e 67 20 77 69 74 68 20 72 2e 20 54 68 65 20 74 61 75 20 61 72 72 | .......along.with.r..The.tau.arr |
| 8b00 | 61 79 20 63 6f 6e 74 61 69 6e 73 20 73 63 61 6c 69 6e 67 20 66 61 63 74 6f 72 73 20 66 6f 72 20 | ay.contains.scaling.factors.for. |
| 8b20 | 74 68 65 0a 20 20 20 20 20 20 20 20 72 65 66 6c 65 63 74 6f 72 73 2e 20 49 6e 20 74 68 65 20 64 | the.........reflectors..In.the.d |
| 8b40 | 65 70 72 65 63 61 74 65 64 20 20 27 65 63 6f 6e 6f 6d 69 63 27 20 6d 6f 64 65 20 6f 6e 6c 79 20 | eprecated..'economic'.mode.only. |
| 8b60 | 68 20 69 73 20 72 65 74 75 72 6e 65 64 2e 0a 0a 20 20 20 20 52 61 69 73 65 73 0a 20 20 20 20 2d | h.is.returned.......Raises.....- |
| 8b80 | 2d 2d 2d 2d 2d 0a 20 20 20 20 4c 69 6e 41 6c 67 45 72 72 6f 72 0a 20 20 20 20 20 20 20 20 49 66 | -----.....LinAlgError.........If |
| 8ba0 | 20 66 61 63 74 6f 72 69 6e 67 20 66 61 69 6c 73 2e 0a 0a 20 20 20 20 53 65 65 20 41 6c 73 6f 0a | .factoring.fails.......See.Also. |
| 8bc0 | 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 73 63 69 70 79 2e 6c 69 6e 61 6c 67 2e 71 72 | ....--------.....scipy.linalg.qr |
| 8be0 | 20 3a 20 53 69 6d 69 6c 61 72 20 66 75 6e 63 74 69 6f 6e 20 69 6e 20 53 63 69 50 79 2e 0a 20 20 | .:.Similar.function.in.SciPy.... |
| 8c00 | 20 20 73 63 69 70 79 2e 6c 69 6e 61 6c 67 2e 72 71 20 3a 20 43 6f 6d 70 75 74 65 20 52 51 20 64 | ..scipy.linalg.rq.:.Compute.RQ.d |
| 8c20 | 65 63 6f 6d 70 6f 73 69 74 69 6f 6e 20 6f 66 20 61 20 6d 61 74 72 69 78 2e 0a 0a 20 20 20 20 4e | ecomposition.of.a.matrix.......N |
| 8c40 | 6f 74 65 73 0a 20 20 20 20 2d 2d 2d 2d 2d 0a 20 20 20 20 54 68 69 73 20 69 73 20 61 6e 20 69 6e | otes.....-----.....This.is.an.in |
| 8c60 | 74 65 72 66 61 63 65 20 74 6f 20 74 68 65 20 4c 41 50 41 43 4b 20 72 6f 75 74 69 6e 65 73 20 60 | terface.to.the.LAPACK.routines.` |
| 8c80 | 60 64 67 65 71 72 66 60 60 2c 20 60 60 7a 67 65 71 72 66 60 60 2c 0a 20 20 20 20 60 60 64 6f 72 | `dgeqrf``,.``zgeqrf``,.....``dor |
| 8ca0 | 67 71 72 60 60 2c 20 61 6e 64 20 60 60 7a 75 6e 67 71 72 60 60 2e 0a 0a 20 20 20 20 46 6f 72 20 | gqr``,.and.``zungqr``.......For. |
| 8cc0 | 6d 6f 72 65 20 69 6e 66 6f 72 6d 61 74 69 6f 6e 20 6f 6e 20 74 68 65 20 71 72 20 66 61 63 74 6f | more.information.on.the.qr.facto |
| 8ce0 | 72 69 7a 61 74 69 6f 6e 2c 20 73 65 65 20 66 6f 72 20 65 78 61 6d 70 6c 65 3a 0a 20 20 20 20 68 | rization,.see.for.example:.....h |
| 8d00 | 74 74 70 73 3a 2f 2f 65 6e 2e 77 69 6b 69 70 65 64 69 61 2e 6f 72 67 2f 77 69 6b 69 2f 51 52 5f | ttps://en.wikipedia.org/wiki/QR_ |
| 8d20 | 66 61 63 74 6f 72 69 7a 61 74 69 6f 6e 0a 0a 20 20 20 20 53 75 62 63 6c 61 73 73 65 73 20 6f 66 | factorization......Subclasses.of |
| 8d40 | 20 60 6e 64 61 72 72 61 79 60 20 61 72 65 20 70 72 65 73 65 72 76 65 64 20 65 78 63 65 70 74 20 | .`ndarray`.are.preserved.except. |
| 8d60 | 66 6f 72 20 74 68 65 20 27 72 61 77 27 20 6d 6f 64 65 2e 20 53 6f 20 69 66 0a 20 20 20 20 60 61 | for.the.'raw'.mode..So.if.....`a |
| 8d80 | 60 20 69 73 20 6f 66 20 74 79 70 65 20 60 6d 61 74 72 69 78 60 2c 20 61 6c 6c 20 74 68 65 20 72 | `.is.of.type.`matrix`,.all.the.r |
| 8da0 | 65 74 75 72 6e 20 76 61 6c 75 65 73 20 77 69 6c 6c 20 62 65 20 6d 61 74 72 69 63 65 73 20 74 6f | eturn.values.will.be.matrices.to |
| 8dc0 | 6f 2e 0a 0a 20 20 20 20 4e 65 77 20 27 72 65 64 75 63 65 64 27 2c 20 27 63 6f 6d 70 6c 65 74 65 | o.......New.'reduced',.'complete |
| 8de0 | 27 2c 20 61 6e 64 20 27 72 61 77 27 20 6f 70 74 69 6f 6e 73 20 66 6f 72 20 6d 6f 64 65 20 77 65 | ',.and.'raw'.options.for.mode.we |
| 8e00 | 72 65 20 61 64 64 65 64 20 69 6e 0a 20 20 20 20 4e 75 6d 50 79 20 31 2e 38 2e 30 20 61 6e 64 20 | re.added.in.....NumPy.1.8.0.and. |
| 8e20 | 74 68 65 20 6f 6c 64 20 6f 70 74 69 6f 6e 20 27 66 75 6c 6c 27 20 77 61 73 20 6d 61 64 65 20 61 | the.old.option.'full'.was.made.a |
| 8e40 | 6e 20 61 6c 69 61 73 20 6f 66 20 27 72 65 64 75 63 65 64 27 2e 20 20 49 6e 0a 20 20 20 20 61 64 | n.alias.of.'reduced'...In.....ad |
| 8e60 | 64 69 74 69 6f 6e 20 74 68 65 20 6f 70 74 69 6f 6e 73 20 27 66 75 6c 6c 27 20 61 6e 64 20 27 65 | dition.the.options.'full'.and.'e |
| 8e80 | 63 6f 6e 6f 6d 69 63 27 20 77 65 72 65 20 64 65 70 72 65 63 61 74 65 64 2e 20 20 42 65 63 61 75 | conomic'.were.deprecated...Becau |
| 8ea0 | 73 65 0a 20 20 20 20 27 66 75 6c 6c 27 20 77 61 73 20 74 68 65 20 70 72 65 76 69 6f 75 73 20 64 | se.....'full'.was.the.previous.d |
| 8ec0 | 65 66 61 75 6c 74 20 61 6e 64 20 27 72 65 64 75 63 65 64 27 20 69 73 20 74 68 65 20 6e 65 77 20 | efault.and.'reduced'.is.the.new. |
| 8ee0 | 64 65 66 61 75 6c 74 2c 0a 20 20 20 20 62 61 63 6b 77 61 72 64 20 63 6f 6d 70 61 74 69 62 69 6c | default,.....backward.compatibil |
| 8f00 | 69 74 79 20 63 61 6e 20 62 65 20 6d 61 69 6e 74 61 69 6e 65 64 20 62 79 20 6c 65 74 74 69 6e 67 | ity.can.be.maintained.by.letting |
| 8f20 | 20 60 6d 6f 64 65 60 20 64 65 66 61 75 6c 74 2e 0a 20 20 20 20 54 68 65 20 27 72 61 77 27 20 6f | .`mode`.default......The.'raw'.o |
| 8f40 | 70 74 69 6f 6e 20 77 61 73 20 61 64 64 65 64 20 73 6f 20 74 68 61 74 20 4c 41 50 41 43 4b 20 72 | ption.was.added.so.that.LAPACK.r |
| 8f60 | 6f 75 74 69 6e 65 73 20 74 68 61 74 20 63 61 6e 20 6d 75 6c 74 69 70 6c 79 0a 20 20 20 20 61 72 | outines.that.can.multiply.....ar |
| 8f80 | 72 61 79 73 20 62 79 20 71 20 75 73 69 6e 67 20 74 68 65 20 48 6f 75 73 65 68 6f 6c 64 65 72 20 | rays.by.q.using.the.Householder. |
| 8fa0 | 72 65 66 6c 65 63 74 6f 72 73 20 63 61 6e 20 62 65 20 75 73 65 64 2e 20 4e 6f 74 65 20 74 68 61 | reflectors.can.be.used..Note.tha |
| 8fc0 | 74 20 69 6e 0a 20 20 20 20 74 68 69 73 20 63 61 73 65 20 74 68 65 20 72 65 74 75 72 6e 65 64 20 | t.in.....this.case.the.returned. |
| 8fe0 | 61 72 72 61 79 73 20 61 72 65 20 6f 66 20 74 79 70 65 20 6e 70 2e 64 6f 75 62 6c 65 20 6f 72 20 | arrays.are.of.type.np.double.or. |
| 9000 | 6e 70 2e 63 64 6f 75 62 6c 65 20 61 6e 64 0a 20 20 20 20 74 68 65 20 68 20 61 72 72 61 79 20 69 | np.cdouble.and.....the.h.array.i |
| 9020 | 73 20 74 72 61 6e 73 70 6f 73 65 64 20 74 6f 20 62 65 20 46 4f 52 54 52 41 4e 20 63 6f 6d 70 61 | s.transposed.to.be.FORTRAN.compa |
| 9040 | 74 69 62 6c 65 2e 20 20 4e 6f 20 72 6f 75 74 69 6e 65 73 20 75 73 69 6e 67 0a 20 20 20 20 74 68 | tible...No.routines.using.....th |
| 9060 | 65 20 27 72 61 77 27 20 72 65 74 75 72 6e 20 61 72 65 20 63 75 72 72 65 6e 74 6c 79 20 65 78 70 | e.'raw'.return.are.currently.exp |
| 9080 | 6f 73 65 64 20 62 79 20 6e 75 6d 70 79 2c 20 62 75 74 20 73 6f 6d 65 20 61 72 65 20 61 76 61 69 | osed.by.numpy,.but.some.are.avai |
| 90a0 | 6c 61 62 6c 65 0a 20 20 20 20 69 6e 20 6c 61 70 61 63 6b 5f 6c 69 74 65 20 61 6e 64 20 6a 75 73 | lable.....in.lapack_lite.and.jus |
| 90c0 | 74 20 61 77 61 69 74 20 74 68 65 20 6e 65 63 65 73 73 61 72 79 20 77 6f 72 6b 2e 0a 0a 20 20 20 | t.await.the.necessary.work...... |
| 90e0 | 20 45 78 61 6d 70 6c 65 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 3e 3e 3e 20 69 | .Examples.....--------.....>>>.i |
| 9100 | 6d 70 6f 72 74 20 6e 75 6d 70 79 20 61 73 20 6e 70 0a 20 20 20 20 3e 3e 3e 20 72 6e 67 20 3d 20 | mport.numpy.as.np.....>>>.rng.=. |
| 9120 | 6e 70 2e 72 61 6e 64 6f 6d 2e 64 65 66 61 75 6c 74 5f 72 6e 67 28 29 0a 20 20 20 20 3e 3e 3e 20 | np.random.default_rng().....>>>. |
| 9140 | 61 20 3d 20 72 6e 67 2e 6e 6f 72 6d 61 6c 28 73 69 7a 65 3d 28 39 2c 20 36 29 29 0a 20 20 20 20 | a.=.rng.normal(size=(9,.6))..... |
| 9160 | 3e 3e 3e 20 51 2c 20 52 20 3d 20 6e 70 2e 6c 69 6e 61 6c 67 2e 71 72 28 61 29 0a 20 20 20 20 3e | >>>.Q,.R.=.np.linalg.qr(a).....> |
| 9180 | 3e 3e 20 6e 70 2e 61 6c 6c 63 6c 6f 73 65 28 61 2c 20 6e 70 2e 64 6f 74 28 51 2c 20 52 29 29 20 | >>.np.allclose(a,.np.dot(Q,.R)). |
| 91a0 | 20 23 20 61 20 64 6f 65 73 20 65 71 75 61 6c 20 51 52 0a 20 20 20 20 54 72 75 65 0a 20 20 20 20 | .#.a.does.equal.QR.....True..... |
| 91c0 | 3e 3e 3e 20 52 32 20 3d 20 6e 70 2e 6c 69 6e 61 6c 67 2e 71 72 28 61 2c 20 6d 6f 64 65 3d 27 72 | >>>.R2.=.np.linalg.qr(a,.mode='r |
| 91e0 | 27 29 0a 20 20 20 20 3e 3e 3e 20 6e 70 2e 61 6c 6c 63 6c 6f 73 65 28 52 2c 20 52 32 29 20 20 23 | ').....>>>.np.allclose(R,.R2)..# |
| 9200 | 20 6d 6f 64 65 3d 27 72 27 20 72 65 74 75 72 6e 73 20 74 68 65 20 73 61 6d 65 20 52 20 61 73 20 | .mode='r'.returns.the.same.R.as. |
| 9220 | 6d 6f 64 65 3d 27 66 75 6c 6c 27 0a 20 20 20 20 54 72 75 65 0a 20 20 20 20 3e 3e 3e 20 61 20 3d | mode='full'.....True.....>>>.a.= |
| 9240 | 20 6e 70 2e 72 61 6e 64 6f 6d 2e 6e 6f 72 6d 61 6c 28 73 69 7a 65 3d 28 33 2c 20 32 2c 20 32 29 | .np.random.normal(size=(3,.2,.2) |
| 9260 | 29 20 23 20 53 74 61 63 6b 20 6f 66 20 32 20 78 20 32 20 6d 61 74 72 69 63 65 73 20 61 73 20 69 | ).#.Stack.of.2.x.2.matrices.as.i |
| 9280 | 6e 70 75 74 0a 20 20 20 20 3e 3e 3e 20 51 2c 20 52 20 3d 20 6e 70 2e 6c 69 6e 61 6c 67 2e 71 72 | nput.....>>>.Q,.R.=.np.linalg.qr |
| 92a0 | 28 61 29 0a 20 20 20 20 3e 3e 3e 20 51 2e 73 68 61 70 65 0a 20 20 20 20 28 33 2c 20 32 2c 20 32 | (a).....>>>.Q.shape.....(3,.2,.2 |
| 92c0 | 29 0a 20 20 20 20 3e 3e 3e 20 52 2e 73 68 61 70 65 0a 20 20 20 20 28 33 2c 20 32 2c 20 32 29 0a | ).....>>>.R.shape.....(3,.2,.2). |
| 92e0 | 20 20 20 20 3e 3e 3e 20 6e 70 2e 61 6c 6c 63 6c 6f 73 65 28 61 2c 20 6e 70 2e 6d 61 74 6d 75 6c | ....>>>.np.allclose(a,.np.matmul |
| 9300 | 28 51 2c 20 52 29 29 0a 20 20 20 20 54 72 75 65 0a 0a 20 20 20 20 45 78 61 6d 70 6c 65 20 69 6c | (Q,.R)).....True......Example.il |
| 9320 | 6c 75 73 74 72 61 74 69 6e 67 20 61 20 63 6f 6d 6d 6f 6e 20 75 73 65 20 6f 66 20 60 71 72 60 3a | lustrating.a.common.use.of.`qr`: |
| 9340 | 20 73 6f 6c 76 69 6e 67 20 6f 66 20 6c 65 61 73 74 20 73 71 75 61 72 65 73 0a 20 20 20 20 70 72 | .solving.of.least.squares.....pr |
| 9360 | 6f 62 6c 65 6d 73 0a 0a 20 20 20 20 57 68 61 74 20 61 72 65 20 74 68 65 20 6c 65 61 73 74 2d 73 | oblems......What.are.the.least-s |
| 9380 | 71 75 61 72 65 73 2d 62 65 73 74 20 60 6d 60 20 61 6e 64 20 60 79 30 60 20 69 6e 20 60 60 79 20 | quares-best.`m`.and.`y0`.in.``y. |
| 93a0 | 3d 20 79 30 20 2b 20 6d 78 60 60 20 66 6f 72 0a 20 20 20 20 74 68 65 20 66 6f 6c 6c 6f 77 69 6e | =.y0.+.mx``.for.....the.followin |
| 93c0 | 67 20 64 61 74 61 3a 20 7b 28 30 2c 31 29 2c 20 28 31 2c 30 29 2c 20 28 31 2c 32 29 2c 20 28 32 | g.data:.{(0,1),.(1,0),.(1,2),.(2 |
| 93e0 | 2c 31 29 7d 2e 20 28 47 72 61 70 68 20 74 68 65 20 70 6f 69 6e 74 73 0a 20 20 20 20 61 6e 64 20 | ,1)}..(Graph.the.points.....and. |
| 9400 | 79 6f 75 27 6c 6c 20 73 65 65 20 74 68 61 74 20 69 74 20 73 68 6f 75 6c 64 20 62 65 20 79 30 20 | you'll.see.that.it.should.be.y0. |
| 9420 | 3d 20 30 2c 20 6d 20 3d 20 31 2e 29 20 20 54 68 65 20 61 6e 73 77 65 72 20 69 73 20 70 72 6f 76 | =.0,.m.=.1.)..The.answer.is.prov |
| 9440 | 69 64 65 64 0a 20 20 20 20 62 79 20 73 6f 6c 76 69 6e 67 20 74 68 65 20 6f 76 65 72 2d 64 65 74 | ided.....by.solving.the.over-det |
| 9460 | 65 72 6d 69 6e 65 64 20 6d 61 74 72 69 78 20 65 71 75 61 74 69 6f 6e 20 60 60 41 78 20 3d 20 62 | ermined.matrix.equation.``Ax.=.b |
| 9480 | 60 60 2c 20 77 68 65 72 65 3a 3a 0a 0a 20 20 20 20 20 20 41 20 3d 20 61 72 72 61 79 28 5b 5b 30 | ``,.where::........A.=.array([[0 |
| 94a0 | 2c 20 31 5d 2c 20 5b 31 2c 20 31 5d 2c 20 5b 31 2c 20 31 5d 2c 20 5b 32 2c 20 31 5d 5d 29 0a 20 | ,.1],.[1,.1],.[1,.1],.[2,.1]]).. |
| 94c0 | 20 20 20 20 20 78 20 3d 20 61 72 72 61 79 28 5b 5b 79 30 5d 2c 20 5b 6d 5d 5d 29 0a 20 20 20 20 | .....x.=.array([[y0],.[m]])..... |
| 94e0 | 20 20 62 20 3d 20 61 72 72 61 79 28 5b 5b 31 5d 2c 20 5b 30 5d 2c 20 5b 32 5d 2c 20 5b 31 5d 5d | ..b.=.array([[1],.[0],.[2],.[1]] |
| 9500 | 29 0a 0a 20 20 20 20 49 66 20 41 20 3d 20 51 52 20 73 75 63 68 20 74 68 61 74 20 51 20 69 73 20 | )......If.A.=.QR.such.that.Q.is. |
| 9520 | 6f 72 74 68 6f 6e 6f 72 6d 61 6c 20 28 77 68 69 63 68 20 69 73 20 61 6c 77 61 79 73 20 70 6f 73 | orthonormal.(which.is.always.pos |
| 9540 | 73 69 62 6c 65 20 76 69 61 0a 20 20 20 20 47 72 61 6d 2d 53 63 68 6d 69 64 74 29 2c 20 74 68 65 | sible.via.....Gram-Schmidt),.the |
| 9560 | 6e 20 60 60 78 20 3d 20 69 6e 76 28 52 29 20 2a 20 28 51 2e 54 29 20 2a 20 62 60 60 2e 20 20 28 | n.``x.=.inv(R).*.(Q.T).*.b``...( |
| 9580 | 49 6e 20 6e 75 6d 70 79 20 70 72 61 63 74 69 63 65 2c 0a 20 20 20 20 68 6f 77 65 76 65 72 2c 20 | In.numpy.practice,.....however,. |
| 95a0 | 77 65 20 73 69 6d 70 6c 79 20 75 73 65 20 60 6c 73 74 73 71 60 2e 29 0a 0a 20 20 20 20 3e 3e 3e | we.simply.use.`lstsq`.)......>>> |
| 95c0 | 20 41 20 3d 20 6e 70 2e 61 72 72 61 79 28 5b 5b 30 2c 20 31 5d 2c 20 5b 31 2c 20 31 5d 2c 20 5b | .A.=.np.array([[0,.1],.[1,.1],.[ |
| 95e0 | 31 2c 20 31 5d 2c 20 5b 32 2c 20 31 5d 5d 29 0a 20 20 20 20 3e 3e 3e 20 41 0a 20 20 20 20 61 72 | 1,.1],.[2,.1]]).....>>>.A.....ar |
| 9600 | 72 61 79 28 5b 5b 30 2c 20 31 5d 2c 0a 20 20 20 20 20 20 20 20 20 20 20 5b 31 2c 20 31 5d 2c 0a | ray([[0,.1],............[1,.1],. |
| 9620 | 20 20 20 20 20 20 20 20 20 20 20 5b 31 2c 20 31 5d 2c 0a 20 20 20 20 20 20 20 20 20 20 20 5b 32 | ...........[1,.1],............[2 |
| 9640 | 2c 20 31 5d 5d 29 0a 20 20 20 20 3e 3e 3e 20 62 20 3d 20 6e 70 2e 61 72 72 61 79 28 5b 31 2c 20 | ,.1]]).....>>>.b.=.np.array([1,. |
| 9660 | 32 2c 20 32 2c 20 33 5d 29 0a 20 20 20 20 3e 3e 3e 20 51 2c 20 52 20 3d 20 6e 70 2e 6c 69 6e 61 | 2,.2,.3]).....>>>.Q,.R.=.np.lina |
| 9680 | 6c 67 2e 71 72 28 41 29 0a 20 20 20 20 3e 3e 3e 20 70 20 3d 20 6e 70 2e 64 6f 74 28 51 2e 54 2c | lg.qr(A).....>>>.p.=.np.dot(Q.T, |
| 96a0 | 20 62 29 0a 20 20 20 20 3e 3e 3e 20 6e 70 2e 64 6f 74 28 6e 70 2e 6c 69 6e 61 6c 67 2e 69 6e 76 | .b).....>>>.np.dot(np.linalg.inv |
| 96c0 | 28 52 29 2c 20 70 29 0a 20 20 20 20 61 72 72 61 79 28 5b 20 20 31 2e 2c 20 20 20 31 2e 5d 29 0a | (R),.p).....array([..1.,...1.]). |
| 96e0 | 0a 20 20 20 20 29 04 da 07 72 65 64 75 63 65 64 da 08 63 6f 6d 70 6c 65 74 65 72 ee 00 00 00 da | .....)...reduced..completer..... |
| 9700 | 03 72 61 77 29 02 da 01 66 da 04 66 75 6c 6c 7a 63 54 68 65 20 27 66 75 6c 6c 27 20 6f 70 74 69 | .raw)...f..fullzcThe.'full'.opti |
| 9720 | 6f 6e 20 69 73 20 64 65 70 72 65 63 61 74 65 64 20 69 6e 20 66 61 76 6f 72 20 6f 66 20 27 72 65 | on.is.deprecated.in.favor.of.'re |
| 9740 | 64 75 63 65 64 27 2e 0a 46 6f 72 20 62 61 63 6b 77 61 72 64 20 63 6f 6d 70 61 74 69 62 69 6c 69 | duced'..For.backward.compatibili |
| 9760 | 74 79 20 6c 65 74 20 6d 6f 64 65 20 64 65 66 61 75 6c 74 2e 72 b2 00 00 00 29 01 da 0a 73 74 61 | ty.let.mode.default.r....)...sta |
| 9780 | 63 6b 6c 65 76 65 6c 72 1f 01 00 00 29 02 72 05 01 00 00 da 08 65 63 6f 6e 6f 6d 69 63 7a 24 54 | cklevelr....).r......economicz$T |
| 97a0 | 68 65 20 27 65 63 6f 6e 6f 6d 69 63 27 20 6f 70 74 69 6f 6e 20 69 73 20 64 65 70 72 65 63 61 74 | he.'economic'.option.is.deprecat |
| 97c0 | 65 64 2e 72 25 01 00 00 7a 13 55 6e 72 65 63 6f 67 6e 69 7a 65 64 20 6d 6f 64 65 20 27 fa 01 27 | ed.r%...z.Unrecognized.mode.'..' |
| 97e0 | 72 bb 00 00 00 4e 54 72 e7 00 00 00 72 f9 00 00 00 72 fa 00 00 00 72 df 00 00 00 72 e0 00 00 00 | r....NTr....r....r....r....r.... |
| 9800 | 72 e1 00 00 00 72 e5 00 00 00 72 ee 00 00 00 2e 46 72 21 01 00 00 72 20 01 00 00 72 dd 00 00 00 | r....r....r.....Fr!...r....r.... |
| 9820 | 72 de 00 00 00 29 15 da 08 77 61 72 6e 69 6e 67 73 da 04 77 61 72 6e da 12 44 65 70 72 65 63 61 | r....)...warnings..warn..Depreca |
| 9840 | 74 69 6f 6e 57 61 72 6e 69 6e 67 72 bd 00 00 00 72 8b 00 00 00 72 b9 00 00 00 72 bc 00 00 00 72 | tionWarningr....r....r....r....r |
| 9860 | a4 00 00 00 72 ea 00 00 00 72 b0 00 00 00 da 03 6d 69 6e 72 90 00 00 00 72 38 00 00 00 72 84 00 | ....r....r......minr....r8...r.. |
| 9880 | 00 00 72 56 00 00 00 da 08 71 72 5f 72 5f 72 61 77 72 53 00 00 00 72 4e 00 00 00 da 0b 71 72 5f | ..rV.....qr_r_rawrS...rN.....qr_ |
| 98a0 | 63 6f 6d 70 6c 65 74 65 da 0a 71 72 5f 72 65 64 75 63 65 64 72 67 00 00 00 29 0f 72 88 00 00 00 | complete..qr_reducedrg...).r.... |
| 98c0 | 72 1c 01 00 00 da 03 6d 73 67 72 8a 00 00 00 72 be 00 00 00 72 bf 00 00 00 72 8f 00 00 00 72 ec | r......msgr....r....r....r....r. |
| 98e0 | 00 00 00 da 02 6d 6e 72 e6 00 00 00 da 03 74 61 75 72 ee 00 00 00 da 01 71 da 02 6d 63 72 ed 00 | .....mnr......taur......q..mcr.. |
| 9900 | 00 00 73 0f 00 00 00 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 72 62 00 00 00 72 13 00 00 00 | ..s...................rb...r.... |
| 9920 | 72 13 00 00 00 da 03 00 00 73 83 02 00 00 80 00 f0 4c 04 00 08 0c d0 13 36 d1 07 36 d8 0b 0f 90 | r........s.......L......6..6.... |
| 9940 | 3d d1 0b 20 f0 06 01 11 3f f0 03 00 0d 10 f4 08 00 0d 15 8f 4d 89 4d 98 23 d4 1f 31 b8 61 d5 0c | =.......?...........M.M.#..1.a.. |
| 9960 | 40 d8 13 1c 89 44 d8 0d 11 d0 15 26 d1 0d 26 e0 12 38 88 43 dc 0c 14 8f 4d 89 4d 98 23 d4 1f 31 | @....D.....&..&..8.C....M.M.#..1 |
| 9980 | b8 61 d5 0c 40 d8 13 1d 89 44 e4 12 1c d0 1f 32 b0 34 b0 26 b8 01 d0 1d 3a d3 12 3b d0 0c 3b e4 | .a..@....D.....2.4.&....:..;..;. |
| 99a0 | 0e 18 98 11 8b 6d 81 47 80 41 80 74 dc 04 16 90 71 d4 04 19 d8 0b 0c 8f 37 89 37 90 32 90 33 88 | .....m.G.A.t....q.......7.7.2.3. |
| 99c0 | 3c 81 44 80 41 80 71 dc 12 1d 98 61 93 2e 81 4b 80 41 80 78 d8 08 09 8f 08 89 08 90 11 98 14 88 | <.D.A.q....a...K.A.x............ |
| 99e0 | 08 d3 08 1e 80 41 dc 08 1d 98 61 d3 08 20 80 41 dc 09 0c 88 51 90 01 8b 19 80 42 e4 1a 27 a8 01 | .....A....a....A....Q.....B..'.. |
| 9a00 | d4 1a 2a 91 06 b0 06 80 49 dc 09 11 d4 17 2c b0 66 d8 17 1f a8 08 b8 08 f4 03 01 0a 42 01 f1 00 | ..*.....I.....,.f...........B... |
| 9a20 | 02 05 3d e4 0e 1b d7 0e 24 d1 0e 24 a0 51 b0 29 d4 0e 3c 88 03 f7 05 02 05 3d f0 0a 00 08 0c 88 | ..=.....$..$.Q.)..<......=...... |
| 9a40 | 73 82 7b dc 0c 10 90 11 90 33 98 03 98 12 98 03 9a 51 90 3b 91 1e d3 0c 20 88 01 d8 0c 0d 8f 48 | s.{......3.......Q.;...........H |
| 9a60 | 89 48 90 58 a0 45 88 48 d3 0c 2a 88 01 d9 0f 13 90 41 8b 77 88 0e e0 07 0b 88 75 82 7d dc 0c 15 | .H.X.E.H..*......A.w......u.}... |
| 9a80 | 90 61 8b 4c 88 01 d8 0c 0d 8f 48 89 48 90 58 a0 45 88 48 d3 0c 2a 88 01 d8 0e 11 8f 6a 89 6a 98 | .a.L......H.H.X.E.H..*......j.j. |
| 9aa0 | 18 a8 05 88 6a d3 0e 2e 88 03 d9 0f 13 90 41 8b 77 98 03 88 7c d0 08 1b e0 07 0b 88 7a d2 07 19 | ....j.........A.w...|.......z... |
| 9ac0 | d8 0c 0d 8f 48 89 48 90 58 a0 45 88 48 d3 0c 2a 88 01 d9 0f 13 90 41 8b 77 88 0e f0 0c 00 08 0c | ....H.H.X.E.H..*......A.w....... |
| 9ae0 | 88 7a d2 07 19 98 61 a0 21 9a 65 d8 0d 0e 88 02 dc 11 1e d7 11 2a d1 11 2a 89 06 e0 0d 0f 88 02 | .z....a.!.e..........*..*....... |
| 9b00 | dc 11 1e d7 11 29 d1 11 29 88 06 e4 1b 28 a8 11 d4 1b 2b 91 07 b0 17 80 49 dc 09 11 d4 17 2c b0 | .....)..)....(....+.....I.....,. |
| 9b20 | 66 d8 17 1f a8 08 b8 08 f4 03 01 0a 42 01 f1 00 02 05 30 e1 0c 12 90 31 90 63 a0 59 d4 0c 2f 88 | f...........B.....0....1.c.Y../. |
| 9b40 | 01 f7 05 02 05 30 f4 06 00 09 0d 88 51 88 73 90 43 90 52 90 43 9a 11 88 7b 89 5e d3 08 1c 80 41 | .....0......Q.s.C.R.C...{.^....A |
| 9b60 | e0 08 09 8f 08 89 08 90 18 a0 05 88 08 d3 08 26 80 41 d8 08 09 8f 08 89 08 90 18 a0 05 88 08 d3 | ...............&.A.............. |
| 9b80 | 08 26 80 41 e4 0b 13 91 44 98 11 93 47 99 54 a0 21 9b 57 d3 0b 25 d0 04 25 f7 51 01 02 05 3d f1 | .&.A....D...G.T.!.W..%..%.Q...=. |
| 9ba0 | 00 02 05 3d fa f7 40 01 02 05 30 f0 00 02 05 30 fa 73 18 00 00 00 c3 24 18 49 12 03 c7 2b 0c 49 | ...=..@...0....0.s.....$.I...+.I |
| 9bc0 | 1f 03 c9 12 05 49 1c 07 c9 1f 05 49 28 07 63 01 00 00 00 00 00 00 00 00 00 00 00 07 00 00 00 03 | .....I.....I(.c................. |
| 9be0 | 00 00 00 f3 b6 01 00 00 97 00 74 01 00 00 00 00 00 00 00 00 7c 00 ab 01 00 00 00 00 00 00 5c 02 | ..........t.........|.........\. |
| 9c00 | 00 00 7d 00 7d 01 74 03 00 00 00 00 00 00 00 00 7c 00 ab 01 00 00 00 00 00 00 01 00 74 05 00 00 | ..}.}.t.........|...........t... |
| 9c20 | 00 00 00 00 00 00 7c 00 ab 01 00 00 00 00 00 00 01 00 74 07 00 00 00 00 00 00 00 00 7c 00 ab 01 | ......|...........t.........|... |
| 9c40 | 00 00 00 00 00 00 5c 02 00 00 7d 02 7d 03 74 09 00 00 00 00 00 00 00 00 7c 02 ab 01 00 00 00 00 | ......\...}.}.t.........|....... |
| 9c60 | 00 00 72 02 64 01 6e 01 64 02 7d 04 74 0b 00 00 00 00 00 00 00 00 74 0c 00 00 00 00 00 00 00 00 | ..r.d.n.d.}.t.........t......... |
| 9c80 | 64 03 64 04 64 04 64 04 ac 05 ab 05 00 00 00 00 00 00 35 00 01 00 74 0f 00 00 00 00 00 00 00 00 | d.d.d.d...........5...t......... |
| 9ca0 | 6a 10 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 7c 00 7c 04 ac 06 ab 02 00 00 00 00 | j...................|.|......... |
| 9cc0 | 00 00 7d 05 64 07 64 07 64 07 ab 02 00 00 00 00 00 00 01 00 74 09 00 00 00 00 00 00 00 00 7c 02 | ..}.d.d.d...........t.........|. |
| 9ce0 | ab 01 00 00 00 00 00 00 73 3b 74 13 00 00 00 00 00 00 00 00 7f 05 6a 14 00 00 00 00 00 00 00 00 | ........s;t...........j......... |
| 9d00 | 00 00 00 00 00 00 00 00 00 00 64 08 6b 28 00 00 ab 01 00 00 00 00 00 00 72 18 7c 05 6a 16 00 00 | ..........d.k(..........r.|.j... |
| 9d20 | 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 7d 05 74 19 00 00 00 00 00 00 00 00 7c 03 ab 01 | ................}.t.........|... |
| 9d40 | 00 00 00 00 00 00 7d 03 6e 0b 74 1b 00 00 00 00 00 00 00 00 7c 03 ab 01 00 00 00 00 00 00 7d 03 | ......}.n.t.........|.........}. |
| 9d60 | 7f 05 6a 1d 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 7c 03 64 09 ac 0a ab 02 00 00 | ..j...................|.d....... |
| 9d80 | 00 00 00 00 53 00 23 00 31 00 73 01 77 02 01 00 59 00 01 00 01 00 8c 62 78 03 59 00 77 01 29 0b | ....S.#.1.s.w...Y......bx.Y.w.). |
| 9da0 | 61 69 08 00 00 0a 20 20 20 20 43 6f 6d 70 75 74 65 20 74 68 65 20 65 69 67 65 6e 76 61 6c 75 65 | ai........Compute.the.eigenvalue |
| 9dc0 | 73 20 6f 66 20 61 20 67 65 6e 65 72 61 6c 20 6d 61 74 72 69 78 2e 0a 0a 20 20 20 20 4d 61 69 6e | s.of.a.general.matrix.......Main |
| 9de0 | 20 64 69 66 66 65 72 65 6e 63 65 20 62 65 74 77 65 65 6e 20 60 65 69 67 76 61 6c 73 60 20 61 6e | .difference.between.`eigvals`.an |
| 9e00 | 64 20 60 65 69 67 60 3a 20 74 68 65 20 65 69 67 65 6e 76 65 63 74 6f 72 73 20 61 72 65 6e 27 74 | d.`eig`:.the.eigenvectors.aren't |
| 9e20 | 0a 20 20 20 20 72 65 74 75 72 6e 65 64 2e 0a 0a 20 20 20 20 50 61 72 61 6d 65 74 65 72 73 0a 20 | .....returned.......Parameters.. |
| 9e40 | 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 61 20 3a 20 28 2e 2e 2e 2c 20 4d 2c 20 4d | ...----------.....a.:.(...,.M,.M |
| 9e60 | 29 20 61 72 72 61 79 5f 6c 69 6b 65 0a 20 20 20 20 20 20 20 20 41 20 63 6f 6d 70 6c 65 78 2d 20 | ).array_like.........A.complex-. |
| 9e80 | 6f 72 20 72 65 61 6c 2d 76 61 6c 75 65 64 20 6d 61 74 72 69 78 20 77 68 6f 73 65 20 65 69 67 65 | or.real-valued.matrix.whose.eige |
| 9ea0 | 6e 76 61 6c 75 65 73 20 77 69 6c 6c 20 62 65 20 63 6f 6d 70 75 74 65 64 2e 0a 0a 20 20 20 20 52 | nvalues.will.be.computed.......R |
| 9ec0 | 65 74 75 72 6e 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 77 20 3a 20 28 2e 2e 2e 2c | eturns.....-------.....w.:.(..., |
| 9ee0 | 20 4d 2c 29 20 6e 64 61 72 72 61 79 0a 20 20 20 20 20 20 20 20 54 68 65 20 65 69 67 65 6e 76 61 | .M,).ndarray.........The.eigenva |
| 9f00 | 6c 75 65 73 2c 20 65 61 63 68 20 72 65 70 65 61 74 65 64 20 61 63 63 6f 72 64 69 6e 67 20 74 6f | lues,.each.repeated.according.to |
| 9f20 | 20 69 74 73 20 6d 75 6c 74 69 70 6c 69 63 69 74 79 2e 0a 20 20 20 20 20 20 20 20 54 68 65 79 20 | .its.multiplicity..........They. |
| 9f40 | 61 72 65 20 6e 6f 74 20 6e 65 63 65 73 73 61 72 69 6c 79 20 6f 72 64 65 72 65 64 2c 20 6e 6f 72 | are.not.necessarily.ordered,.nor |
| 9f60 | 20 61 72 65 20 74 68 65 79 20 6e 65 63 65 73 73 61 72 69 6c 79 0a 20 20 20 20 20 20 20 20 72 65 | .are.they.necessarily.........re |
| 9f80 | 61 6c 20 66 6f 72 20 72 65 61 6c 20 6d 61 74 72 69 63 65 73 2e 0a 0a 20 20 20 20 52 61 69 73 65 | al.for.real.matrices.......Raise |
| 9fa0 | 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 4c 69 6e 41 6c 67 45 72 72 6f 72 0a 20 20 20 | s.....------.....LinAlgError.... |
| 9fc0 | 20 20 20 20 20 49 66 20 74 68 65 20 65 69 67 65 6e 76 61 6c 75 65 20 63 6f 6d 70 75 74 61 74 69 | .....If.the.eigenvalue.computati |
| 9fe0 | 6f 6e 20 64 6f 65 73 20 6e 6f 74 20 63 6f 6e 76 65 72 67 65 2e 0a 0a 20 20 20 20 53 65 65 20 41 | on.does.not.converge.......See.A |
| a000 | 6c 73 6f 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 65 69 67 20 3a 20 65 69 67 65 6e | lso.....--------.....eig.:.eigen |
| a020 | 76 61 6c 75 65 73 20 61 6e 64 20 72 69 67 68 74 20 65 69 67 65 6e 76 65 63 74 6f 72 73 20 6f 66 | values.and.right.eigenvectors.of |
| a040 | 20 67 65 6e 65 72 61 6c 20 61 72 72 61 79 73 0a 20 20 20 20 65 69 67 76 61 6c 73 68 20 3a 20 65 | .general.arrays.....eigvalsh.:.e |
| a060 | 69 67 65 6e 76 61 6c 75 65 73 20 6f 66 20 72 65 61 6c 20 73 79 6d 6d 65 74 72 69 63 20 6f 72 20 | igenvalues.of.real.symmetric.or. |
| a080 | 63 6f 6d 70 6c 65 78 20 48 65 72 6d 69 74 69 61 6e 0a 20 20 20 20 20 20 20 20 20 20 20 20 20 20 | complex.Hermitian............... |
| a0a0 | 20 28 63 6f 6e 6a 75 67 61 74 65 20 73 79 6d 6d 65 74 72 69 63 29 20 61 72 72 61 79 73 2e 0a 20 | .(conjugate.symmetric).arrays... |
| a0c0 | 20 20 20 65 69 67 68 20 3a 20 65 69 67 65 6e 76 61 6c 75 65 73 20 61 6e 64 20 65 69 67 65 6e 76 | ...eigh.:.eigenvalues.and.eigenv |
| a0e0 | 65 63 74 6f 72 73 20 6f 66 20 72 65 61 6c 20 73 79 6d 6d 65 74 72 69 63 20 6f 72 20 63 6f 6d 70 | ectors.of.real.symmetric.or.comp |
| a100 | 6c 65 78 0a 20 20 20 20 20 20 20 20 20 20 20 48 65 72 6d 69 74 69 61 6e 20 28 63 6f 6e 6a 75 67 | lex............Hermitian.(conjug |
| a120 | 61 74 65 20 73 79 6d 6d 65 74 72 69 63 29 20 61 72 72 61 79 73 2e 0a 20 20 20 20 73 63 69 70 79 | ate.symmetric).arrays......scipy |
| a140 | 2e 6c 69 6e 61 6c 67 2e 65 69 67 76 61 6c 73 20 3a 20 53 69 6d 69 6c 61 72 20 66 75 6e 63 74 69 | .linalg.eigvals.:.Similar.functi |
| a160 | 6f 6e 20 69 6e 20 53 63 69 50 79 2e 0a 0a 20 20 20 20 4e 6f 74 65 73 0a 20 20 20 20 2d 2d 2d 2d | on.in.SciPy.......Notes.....---- |
| a180 | 2d 0a 20 20 20 20 42 72 6f 61 64 63 61 73 74 69 6e 67 20 72 75 6c 65 73 20 61 70 70 6c 79 2c 20 | -.....Broadcasting.rules.apply,. |
| a1a0 | 73 65 65 20 74 68 65 20 60 6e 75 6d 70 79 2e 6c 69 6e 61 6c 67 60 20 64 6f 63 75 6d 65 6e 74 61 | see.the.`numpy.linalg`.documenta |
| a1c0 | 74 69 6f 6e 20 66 6f 72 0a 20 20 20 20 64 65 74 61 69 6c 73 2e 0a 0a 20 20 20 20 54 68 69 73 20 | tion.for.....details.......This. |
| a1e0 | 69 73 20 69 6d 70 6c 65 6d 65 6e 74 65 64 20 75 73 69 6e 67 20 74 68 65 20 60 60 5f 67 65 65 76 | is.implemented.using.the.``_geev |
| a200 | 60 60 20 4c 41 50 41 43 4b 20 72 6f 75 74 69 6e 65 73 20 77 68 69 63 68 20 63 6f 6d 70 75 74 65 | ``.LAPACK.routines.which.compute |
| a220 | 0a 20 20 20 20 74 68 65 20 65 69 67 65 6e 76 61 6c 75 65 73 20 61 6e 64 20 65 69 67 65 6e 76 65 | .....the.eigenvalues.and.eigenve |
| a240 | 63 74 6f 72 73 20 6f 66 20 67 65 6e 65 72 61 6c 20 73 71 75 61 72 65 20 61 72 72 61 79 73 2e 0a | ctors.of.general.square.arrays.. |
| a260 | 0a 20 20 20 20 45 78 61 6d 70 6c 65 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 49 | .....Examples.....--------.....I |
| a280 | 6c 6c 75 73 74 72 61 74 69 6f 6e 2c 20 75 73 69 6e 67 20 74 68 65 20 66 61 63 74 20 74 68 61 74 | llustration,.using.the.fact.that |
| a2a0 | 20 74 68 65 20 65 69 67 65 6e 76 61 6c 75 65 73 20 6f 66 20 61 20 64 69 61 67 6f 6e 61 6c 20 6d | .the.eigenvalues.of.a.diagonal.m |
| a2c0 | 61 74 72 69 78 0a 20 20 20 20 61 72 65 20 69 74 73 20 64 69 61 67 6f 6e 61 6c 20 65 6c 65 6d 65 | atrix.....are.its.diagonal.eleme |
| a2e0 | 6e 74 73 2c 20 74 68 61 74 20 6d 75 6c 74 69 70 6c 79 69 6e 67 20 61 20 6d 61 74 72 69 78 20 6f | nts,.that.multiplying.a.matrix.o |
| a300 | 6e 20 74 68 65 20 6c 65 66 74 0a 20 20 20 20 62 79 20 61 6e 20 6f 72 74 68 6f 67 6f 6e 61 6c 20 | n.the.left.....by.an.orthogonal. |
| a320 | 6d 61 74 72 69 78 2c 20 60 51 60 2c 20 61 6e 64 20 6f 6e 20 74 68 65 20 72 69 67 68 74 20 62 79 | matrix,.`Q`,.and.on.the.right.by |
| a340 | 20 60 51 2e 54 60 20 28 74 68 65 20 74 72 61 6e 73 70 6f 73 65 0a 20 20 20 20 6f 66 20 60 51 60 | .`Q.T`.(the.transpose.....of.`Q` |
| a360 | 29 2c 20 70 72 65 73 65 72 76 65 73 20 74 68 65 20 65 69 67 65 6e 76 61 6c 75 65 73 20 6f 66 20 | ),.preserves.the.eigenvalues.of. |
| a380 | 74 68 65 20 22 6d 69 64 64 6c 65 22 20 6d 61 74 72 69 78 2e 20 49 6e 20 6f 74 68 65 72 20 77 6f | the."middle".matrix..In.other.wo |
| a3a0 | 72 64 73 2c 0a 20 20 20 20 69 66 20 60 51 60 20 69 73 20 6f 72 74 68 6f 67 6f 6e 61 6c 2c 20 74 | rds,.....if.`Q`.is.orthogonal,.t |
| a3c0 | 68 65 6e 20 60 60 51 20 2a 20 41 20 2a 20 51 2e 54 60 60 20 68 61 73 20 74 68 65 20 73 61 6d 65 | hen.``Q.*.A.*.Q.T``.has.the.same |
| a3e0 | 20 65 69 67 65 6e 76 61 6c 75 65 73 20 61 73 0a 20 20 20 20 60 60 41 60 60 3a 0a 0a 20 20 20 20 | .eigenvalues.as.....``A``:...... |
| a400 | 3e 3e 3e 20 69 6d 70 6f 72 74 20 6e 75 6d 70 79 20 61 73 20 6e 70 0a 20 20 20 20 3e 3e 3e 20 66 | >>>.import.numpy.as.np.....>>>.f |
| a420 | 72 6f 6d 20 6e 75 6d 70 79 20 69 6d 70 6f 72 74 20 6c 69 6e 61 6c 67 20 61 73 20 4c 41 0a 20 20 | rom.numpy.import.linalg.as.LA... |
| a440 | 20 20 3e 3e 3e 20 78 20 3d 20 6e 70 2e 72 61 6e 64 6f 6d 2e 72 61 6e 64 6f 6d 28 29 0a 20 20 20 | ..>>>.x.=.np.random.random().... |
| a460 | 20 3e 3e 3e 20 51 20 3d 20 6e 70 2e 61 72 72 61 79 28 5b 5b 6e 70 2e 63 6f 73 28 78 29 2c 20 2d | .>>>.Q.=.np.array([[np.cos(x),.- |
| a480 | 6e 70 2e 73 69 6e 28 78 29 5d 2c 20 5b 6e 70 2e 73 69 6e 28 78 29 2c 20 6e 70 2e 63 6f 73 28 78 | np.sin(x)],.[np.sin(x),.np.cos(x |
| a4a0 | 29 5d 5d 29 0a 20 20 20 20 3e 3e 3e 20 4c 41 2e 6e 6f 72 6d 28 51 5b 30 2c 20 3a 5d 29 2c 20 4c | )]]).....>>>.LA.norm(Q[0,.:]),.L |
| a4c0 | 41 2e 6e 6f 72 6d 28 51 5b 31 2c 20 3a 5d 29 2c 20 6e 70 2e 64 6f 74 28 51 5b 30 2c 20 3a 5d 2c | A.norm(Q[1,.:]),.np.dot(Q[0,.:], |
| a4e0 | 51 5b 31 2c 20 3a 5d 29 0a 20 20 20 20 28 31 2e 30 2c 20 31 2e 30 2c 20 30 2e 30 29 0a 0a 20 20 | Q[1,.:]).....(1.0,.1.0,.0.0).... |
| a500 | 20 20 4e 6f 77 20 6d 75 6c 74 69 70 6c 79 20 61 20 64 69 61 67 6f 6e 61 6c 20 6d 61 74 72 69 78 | ..Now.multiply.a.diagonal.matrix |
| a520 | 20 62 79 20 60 60 51 60 60 20 6f 6e 20 6f 6e 65 20 73 69 64 65 20 61 6e 64 0a 20 20 20 20 62 79 | .by.``Q``.on.one.side.and.....by |
| a540 | 20 60 60 51 2e 54 60 60 20 6f 6e 20 74 68 65 20 6f 74 68 65 72 3a 0a 0a 20 20 20 20 3e 3e 3e 20 | .``Q.T``.on.the.other:......>>>. |
| a560 | 44 20 3d 20 6e 70 2e 64 69 61 67 28 28 2d 31 2c 31 29 29 0a 20 20 20 20 3e 3e 3e 20 4c 41 2e 65 | D.=.np.diag((-1,1)).....>>>.LA.e |
| a580 | 69 67 76 61 6c 73 28 44 29 0a 20 20 20 20 61 72 72 61 79 28 5b 2d 31 2e 2c 20 20 31 2e 5d 29 0a | igvals(D).....array([-1.,..1.]). |
| a5a0 | 20 20 20 20 3e 3e 3e 20 41 20 3d 20 6e 70 2e 64 6f 74 28 51 2c 20 44 29 0a 20 20 20 20 3e 3e 3e | ....>>>.A.=.np.dot(Q,.D).....>>> |
| a5c0 | 20 41 20 3d 20 6e 70 2e 64 6f 74 28 41 2c 20 51 2e 54 29 0a 20 20 20 20 3e 3e 3e 20 4c 41 2e 65 | .A.=.np.dot(A,.Q.T).....>>>.LA.e |
| a5e0 | 69 67 76 61 6c 73 28 41 29 0a 20 20 20 20 61 72 72 61 79 28 5b 20 31 2e 2c 20 2d 31 2e 5d 29 20 | igvals(A).....array([.1.,.-1.]). |
| a600 | 23 20 72 61 6e 64 6f 6d 0a 0a 20 20 20 20 72 f9 00 00 00 7a 04 64 2d 3e 44 72 df 00 00 00 72 e0 | #.random......r....z.d->Dr....r. |
| a620 | 00 00 00 72 e1 00 00 00 72 e5 00 00 00 4e 72 22 00 00 00 46 72 e7 00 00 00 29 0f 72 8b 00 00 00 | ...r....r....Nr"...Fr....).r.... |
| a640 | 72 c0 00 00 00 72 c2 00 00 00 72 a4 00 00 00 72 90 00 00 00 72 38 00 00 00 72 7e 00 00 00 72 56 | r....r....r....r....r8...r~...rV |
| a660 | 00 00 00 72 08 00 00 00 72 27 00 00 00 da 04 69 6d 61 67 da 04 72 65 61 6c 72 96 00 00 00 72 99 | ...r....r'.....imag..realr....r. |
| a680 | 00 00 00 72 ea 00 00 00 29 06 72 88 00 00 00 72 8a 00 00 00 72 8f 00 00 00 72 ec 00 00 00 72 e6 | ...r....).r....r....r....r....r. |
| a6a0 | 00 00 00 da 01 77 73 06 00 00 00 20 20 20 20 20 20 72 62 00 00 00 72 08 00 00 00 72 08 00 00 00 | .....ws..........rb...r....r.... |
| a6c0 | a7 04 00 00 73 c5 00 00 00 80 00 f4 4c 02 00 0f 19 98 11 8b 6d 81 47 80 41 80 74 dc 04 1a 98 31 | ....s.......L.......m.G.A.t....1 |
| a6e0 | d4 04 1d dc 04 12 90 31 d4 04 15 dc 12 1d 98 61 93 2e 81 4b 80 41 80 78 e4 1a 27 a8 01 d4 1a 2a | .......1.......a...K.A.x..'....* |
| a700 | 91 06 b0 06 80 49 dc 09 11 d4 17 44 d8 1a 20 a0 78 b8 08 d8 18 20 f4 05 02 0a 22 f1 00 03 05 3a | .....I.....D....x........."....: |
| a720 | f4 06 00 0d 1a d7 0c 21 d1 0c 21 a0 21 a8 79 d4 0c 39 88 01 f7 07 03 05 3a f4 0a 00 0c 19 98 11 | .......!..!.!.y..9......:....... |
| a740 | d4 0b 1b dc 0b 0e 88 71 8f 76 89 76 98 11 89 7b d4 0b 1b d8 10 11 97 06 91 06 88 41 dc 17 20 a0 | .......q.v.v...{...........A.... |
| a760 | 18 d3 17 2a 89 48 e4 17 23 a0 48 d3 17 2d 88 48 e0 0b 0c 8f 38 89 38 90 48 a0 35 88 38 d3 0b 29 | ...*.H..#.H..-.H....8.8.H.5.8..) |
| a780 | d0 04 29 f7 19 03 05 3a f0 00 03 05 3a fa 73 0c 00 00 00 c1 16 18 43 0f 03 c3 0f 05 43 18 07 63 | ..)....:....:.s.......C.....C..c |
| a7a0 | 02 00 00 00 00 00 00 00 00 00 00 00 01 00 00 00 03 00 00 00 f3 08 00 00 00 97 00 7c 00 66 01 53 | ...........................|.f.S |
| a7c0 | 00 72 8d 00 00 00 72 60 00 00 00 29 02 72 88 00 00 00 da 04 55 50 4c 4f 73 02 00 00 00 20 20 72 | .r....r`...).r......UPLOs......r |
| a7e0 | 62 00 00 00 da 14 5f 65 69 67 76 61 6c 73 68 5f 64 69 73 70 61 74 63 68 65 72 72 39 01 00 00 02 | b....._eigvalsh_dispatcherr9.... |
| a800 | 05 00 00 72 f2 00 00 00 72 61 00 00 00 63 02 00 00 00 00 00 00 00 00 00 00 00 07 00 00 00 03 00 | ...r....ra...c.................. |
| a820 | 00 00 f3 96 01 00 00 97 00 7c 01 6a 01 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ab | .........|.j.................... |
| a840 | 00 00 00 00 00 00 00 7d 01 7c 01 64 01 76 01 72 0b 74 03 00 00 00 00 00 00 00 00 64 02 ab 01 00 | .......}.|.d.v.r.t.........d.... |
| a860 | 00 00 00 00 00 82 01 7c 01 64 03 6b 28 00 00 72 11 74 04 00 00 00 00 00 00 00 00 6a 06 00 00 00 | .......|.d.k(..r.t.........j.... |
| a880 | 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 7d 02 6e 10 74 04 00 00 00 00 00 00 00 00 6a 08 00 | ...............}.n.t.........j.. |
| a8a0 | 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 7d 02 74 0b 00 00 00 00 00 00 00 00 7c 00 ab | .................}.t.........|.. |
| a8c0 | 01 00 00 00 00 00 00 5c 02 00 00 7d 00 7d 03 74 0d 00 00 00 00 00 00 00 00 7c 00 ab 01 00 00 00 | .......\...}.}.t.........|...... |
| a8e0 | 00 00 00 01 00 74 0f 00 00 00 00 00 00 00 00 7c 00 ab 01 00 00 00 00 00 00 5c 02 00 00 7d 04 7d | .....t.........|.........\...}.} |
| a900 | 05 74 11 00 00 00 00 00 00 00 00 7c 04 ab 01 00 00 00 00 00 00 72 02 64 04 6e 01 64 05 7d 06 74 | .t.........|.........r.d.n.d.}.t |
| a920 | 13 00 00 00 00 00 00 00 00 74 14 00 00 00 00 00 00 00 00 64 06 64 07 64 07 64 07 ac 08 ab 05 00 | .........t.........d.d.d.d...... |
| a940 | 00 00 00 00 00 35 00 01 00 02 00 7c 02 7c 00 7c 06 ac 09 ab 02 00 00 00 00 00 00 7d 07 64 0a 64 | .....5.....|.|.|...........}.d.d |
| a960 | 0a 64 0a ab 02 00 00 00 00 00 00 01 00 7f 07 6a 17 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 | .d.............j................ |
| a980 | 00 00 00 74 19 00 00 00 00 00 00 00 00 7c 05 ab 01 00 00 00 00 00 00 64 0b ac 0c ab 02 00 00 00 | ...t.........|.........d........ |
| a9a0 | 00 00 00 53 00 23 00 31 00 73 01 77 02 01 00 59 00 01 00 01 00 8c 25 78 03 59 00 77 01 29 0d 61 | ...S.#.1.s.w...Y......%x.Y.w.).a |
| a9c0 | e8 08 00 00 0a 20 20 20 20 43 6f 6d 70 75 74 65 20 74 68 65 20 65 69 67 65 6e 76 61 6c 75 65 73 | .........Compute.the.eigenvalues |
| a9e0 | 20 6f 66 20 61 20 63 6f 6d 70 6c 65 78 20 48 65 72 6d 69 74 69 61 6e 20 6f 72 20 72 65 61 6c 20 | .of.a.complex.Hermitian.or.real. |
| aa00 | 73 79 6d 6d 65 74 72 69 63 20 6d 61 74 72 69 78 2e 0a 0a 20 20 20 20 4d 61 69 6e 20 64 69 66 66 | symmetric.matrix.......Main.diff |
| aa20 | 65 72 65 6e 63 65 20 66 72 6f 6d 20 65 69 67 68 3a 20 74 68 65 20 65 69 67 65 6e 76 65 63 74 6f | erence.from.eigh:.the.eigenvecto |
| aa40 | 72 73 20 61 72 65 20 6e 6f 74 20 63 6f 6d 70 75 74 65 64 2e 0a 0a 20 20 20 20 50 61 72 61 6d 65 | rs.are.not.computed.......Parame |
| aa60 | 74 65 72 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 61 20 3a 20 28 2e 2e 2e | ters.....----------.....a.:.(... |
| aa80 | 2c 20 4d 2c 20 4d 29 20 61 72 72 61 79 5f 6c 69 6b 65 0a 20 20 20 20 20 20 20 20 41 20 63 6f 6d | ,.M,.M).array_like.........A.com |
| aaa0 | 70 6c 65 78 2d 20 6f 72 20 72 65 61 6c 2d 76 61 6c 75 65 64 20 6d 61 74 72 69 78 20 77 68 6f 73 | plex-.or.real-valued.matrix.whos |
| aac0 | 65 20 65 69 67 65 6e 76 61 6c 75 65 73 20 61 72 65 20 74 6f 20 62 65 0a 20 20 20 20 20 20 20 20 | e.eigenvalues.are.to.be......... |
| aae0 | 63 6f 6d 70 75 74 65 64 2e 0a 20 20 20 20 55 50 4c 4f 20 3a 20 7b 27 4c 27 2c 20 27 55 27 7d 2c | computed......UPLO.:.{'L',.'U'}, |
| ab00 | 20 6f 70 74 69 6f 6e 61 6c 0a 20 20 20 20 20 20 20 20 53 70 65 63 69 66 69 65 73 20 77 68 65 74 | .optional.........Specifies.whet |
| ab20 | 68 65 72 20 74 68 65 20 63 61 6c 63 75 6c 61 74 69 6f 6e 20 69 73 20 64 6f 6e 65 20 77 69 74 68 | her.the.calculation.is.done.with |
| ab40 | 20 74 68 65 20 6c 6f 77 65 72 20 74 72 69 61 6e 67 75 6c 61 72 0a 20 20 20 20 20 20 20 20 70 61 | .the.lower.triangular.........pa |
| ab60 | 72 74 20 6f 66 20 60 61 60 20 28 27 4c 27 2c 20 64 65 66 61 75 6c 74 29 20 6f 72 20 74 68 65 20 | rt.of.`a`.('L',.default).or.the. |
| ab80 | 75 70 70 65 72 20 74 72 69 61 6e 67 75 6c 61 72 20 70 61 72 74 20 28 27 55 27 29 2e 0a 20 20 20 | upper.triangular.part.('U')..... |
| aba0 | 20 20 20 20 20 49 72 72 65 73 70 65 63 74 69 76 65 20 6f 66 20 74 68 69 73 20 76 61 6c 75 65 20 | .....Irrespective.of.this.value. |
| abc0 | 6f 6e 6c 79 20 74 68 65 20 72 65 61 6c 20 70 61 72 74 73 20 6f 66 20 74 68 65 20 64 69 61 67 6f | only.the.real.parts.of.the.diago |
| abe0 | 6e 61 6c 20 77 69 6c 6c 0a 20 20 20 20 20 20 20 20 62 65 20 63 6f 6e 73 69 64 65 72 65 64 20 69 | nal.will.........be.considered.i |
| ac00 | 6e 20 74 68 65 20 63 6f 6d 70 75 74 61 74 69 6f 6e 20 74 6f 20 70 72 65 73 65 72 76 65 20 74 68 | n.the.computation.to.preserve.th |
| ac20 | 65 20 6e 6f 74 69 6f 6e 20 6f 66 20 61 20 48 65 72 6d 69 74 69 61 6e 0a 20 20 20 20 20 20 20 20 | e.notion.of.a.Hermitian......... |
| ac40 | 6d 61 74 72 69 78 2e 20 49 74 20 74 68 65 72 65 66 6f 72 65 20 66 6f 6c 6c 6f 77 73 20 74 68 61 | matrix..It.therefore.follows.tha |
| ac60 | 74 20 74 68 65 20 69 6d 61 67 69 6e 61 72 79 20 70 61 72 74 20 6f 66 20 74 68 65 20 64 69 61 67 | t.the.imaginary.part.of.the.diag |
| ac80 | 6f 6e 61 6c 0a 20 20 20 20 20 20 20 20 77 69 6c 6c 20 61 6c 77 61 79 73 20 62 65 20 74 72 65 61 | onal.........will.always.be.trea |
| aca0 | 74 65 64 20 61 73 20 7a 65 72 6f 2e 0a 0a 20 20 20 20 52 65 74 75 72 6e 73 0a 20 20 20 20 2d 2d | ted.as.zero.......Returns.....-- |
| acc0 | 2d 2d 2d 2d 2d 0a 20 20 20 20 77 20 3a 20 28 2e 2e 2e 2c 20 4d 2c 29 20 6e 64 61 72 72 61 79 0a | -----.....w.:.(...,.M,).ndarray. |
| ace0 | 20 20 20 20 20 20 20 20 54 68 65 20 65 69 67 65 6e 76 61 6c 75 65 73 20 69 6e 20 61 73 63 65 6e | ........The.eigenvalues.in.ascen |
| ad00 | 64 69 6e 67 20 6f 72 64 65 72 2c 20 65 61 63 68 20 72 65 70 65 61 74 65 64 20 61 63 63 6f 72 64 | ding.order,.each.repeated.accord |
| ad20 | 69 6e 67 20 74 6f 0a 20 20 20 20 20 20 20 20 69 74 73 20 6d 75 6c 74 69 70 6c 69 63 69 74 79 2e | ing.to.........its.multiplicity. |
| ad40 | 0a 0a 20 20 20 20 52 61 69 73 65 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 4c 69 6e 41 | ......Raises.....------.....LinA |
| ad60 | 6c 67 45 72 72 6f 72 0a 20 20 20 20 20 20 20 20 49 66 20 74 68 65 20 65 69 67 65 6e 76 61 6c 75 | lgError.........If.the.eigenvalu |
| ad80 | 65 20 63 6f 6d 70 75 74 61 74 69 6f 6e 20 64 6f 65 73 20 6e 6f 74 20 63 6f 6e 76 65 72 67 65 2e | e.computation.does.not.converge. |
| ada0 | 0a 0a 20 20 20 20 53 65 65 20 41 6c 73 6f 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 | ......See.Also.....--------..... |
| adc0 | 65 69 67 68 20 3a 20 65 69 67 65 6e 76 61 6c 75 65 73 20 61 6e 64 20 65 69 67 65 6e 76 65 63 74 | eigh.:.eigenvalues.and.eigenvect |
| ade0 | 6f 72 73 20 6f 66 20 72 65 61 6c 20 73 79 6d 6d 65 74 72 69 63 20 6f 72 20 63 6f 6d 70 6c 65 78 | ors.of.real.symmetric.or.complex |
| ae00 | 20 48 65 72 6d 69 74 69 61 6e 0a 20 20 20 20 20 20 20 20 20 20 20 28 63 6f 6e 6a 75 67 61 74 65 | .Hermitian............(conjugate |
| ae20 | 20 73 79 6d 6d 65 74 72 69 63 29 20 61 72 72 61 79 73 2e 0a 20 20 20 20 65 69 67 76 61 6c 73 20 | .symmetric).arrays......eigvals. |
| ae40 | 3a 20 65 69 67 65 6e 76 61 6c 75 65 73 20 6f 66 20 67 65 6e 65 72 61 6c 20 72 65 61 6c 20 6f 72 | :.eigenvalues.of.general.real.or |
| ae60 | 20 63 6f 6d 70 6c 65 78 20 61 72 72 61 79 73 2e 0a 20 20 20 20 65 69 67 20 3a 20 65 69 67 65 6e | .complex.arrays......eig.:.eigen |
| ae80 | 76 61 6c 75 65 73 20 61 6e 64 20 72 69 67 68 74 20 65 69 67 65 6e 76 65 63 74 6f 72 73 20 6f 66 | values.and.right.eigenvectors.of |
| aea0 | 20 67 65 6e 65 72 61 6c 20 72 65 61 6c 20 6f 72 20 63 6f 6d 70 6c 65 78 0a 20 20 20 20 20 20 20 | .general.real.or.complex........ |
| aec0 | 20 20 20 61 72 72 61 79 73 2e 0a 20 20 20 20 73 63 69 70 79 2e 6c 69 6e 61 6c 67 2e 65 69 67 76 | ...arrays......scipy.linalg.eigv |
| aee0 | 61 6c 73 68 20 3a 20 53 69 6d 69 6c 61 72 20 66 75 6e 63 74 69 6f 6e 20 69 6e 20 53 63 69 50 79 | alsh.:.Similar.function.in.SciPy |
| af00 | 2e 0a 0a 20 20 20 20 4e 6f 74 65 73 0a 20 20 20 20 2d 2d 2d 2d 2d 0a 20 20 20 20 42 72 6f 61 64 | .......Notes.....-----.....Broad |
| af20 | 63 61 73 74 69 6e 67 20 72 75 6c 65 73 20 61 70 70 6c 79 2c 20 73 65 65 20 74 68 65 20 60 6e 75 | casting.rules.apply,.see.the.`nu |
| af40 | 6d 70 79 2e 6c 69 6e 61 6c 67 60 20 64 6f 63 75 6d 65 6e 74 61 74 69 6f 6e 20 66 6f 72 0a 20 20 | mpy.linalg`.documentation.for... |
| af60 | 20 20 64 65 74 61 69 6c 73 2e 0a 0a 20 20 20 20 54 68 65 20 65 69 67 65 6e 76 61 6c 75 65 73 20 | ..details.......The.eigenvalues. |
| af80 | 61 72 65 20 63 6f 6d 70 75 74 65 64 20 75 73 69 6e 67 20 4c 41 50 41 43 4b 20 72 6f 75 74 69 6e | are.computed.using.LAPACK.routin |
| afa0 | 65 73 20 60 60 5f 73 79 65 76 64 60 60 2c 20 60 60 5f 68 65 65 76 64 60 60 2e 0a 0a 20 20 20 20 | es.``_syevd``,.``_heevd``....... |
| afc0 | 45 78 61 6d 70 6c 65 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 3e 3e 3e 20 69 6d | Examples.....--------.....>>>.im |
| afe0 | 70 6f 72 74 20 6e 75 6d 70 79 20 61 73 20 6e 70 0a 20 20 20 20 3e 3e 3e 20 66 72 6f 6d 20 6e 75 | port.numpy.as.np.....>>>.from.nu |
| b000 | 6d 70 79 20 69 6d 70 6f 72 74 20 6c 69 6e 61 6c 67 20 61 73 20 4c 41 0a 20 20 20 20 3e 3e 3e 20 | mpy.import.linalg.as.LA.....>>>. |
| b020 | 61 20 3d 20 6e 70 2e 61 72 72 61 79 28 5b 5b 31 2c 20 2d 32 6a 5d 2c 20 5b 32 6a 2c 20 35 5d 5d | a.=.np.array([[1,.-2j],.[2j,.5]] |
| b040 | 29 0a 20 20 20 20 3e 3e 3e 20 4c 41 2e 65 69 67 76 61 6c 73 68 28 61 29 0a 20 20 20 20 61 72 72 | ).....>>>.LA.eigvalsh(a).....arr |
| b060 | 61 79 28 5b 20 30 2e 31 37 31 35 37 32 38 38 2c 20 20 35 2e 38 32 38 34 32 37 31 32 5d 29 20 23 | ay([.0.17157288,..5.82842712]).# |
| b080 | 20 6d 61 79 20 76 61 72 79 0a 0a 20 20 20 20 3e 3e 3e 20 23 20 64 65 6d 6f 6e 73 74 72 61 74 65 | .may.vary......>>>.#.demonstrate |
| b0a0 | 20 74 68 65 20 74 72 65 61 74 6d 65 6e 74 20 6f 66 20 74 68 65 20 69 6d 61 67 69 6e 61 72 79 20 | .the.treatment.of.the.imaginary. |
| b0c0 | 70 61 72 74 20 6f 66 20 74 68 65 20 64 69 61 67 6f 6e 61 6c 0a 20 20 20 20 3e 3e 3e 20 61 20 3d | part.of.the.diagonal.....>>>.a.= |
| b0e0 | 20 6e 70 2e 61 72 72 61 79 28 5b 5b 35 2b 32 6a 2c 20 39 2d 32 6a 5d 2c 20 5b 30 2b 32 6a 2c 20 | .np.array([[5+2j,.9-2j],.[0+2j,. |
| b100 | 32 2d 31 6a 5d 5d 29 0a 20 20 20 20 3e 3e 3e 20 61 0a 20 20 20 20 61 72 72 61 79 28 5b 5b 35 2e | 2-1j]]).....>>>.a.....array([[5. |
| b120 | 2b 32 2e 6a 2c 20 39 2e 2d 32 2e 6a 5d 2c 0a 20 20 20 20 20 20 20 20 20 20 20 5b 30 2e 2b 32 2e | +2.j,.9.-2.j],............[0.+2. |
| b140 | 6a 2c 20 32 2e 2d 31 2e 6a 5d 5d 29 0a 20 20 20 20 3e 3e 3e 20 23 20 77 69 74 68 20 55 50 4c 4f | j,.2.-1.j]]).....>>>.#.with.UPLO |
| b160 | 3d 27 4c 27 20 74 68 69 73 20 69 73 20 6e 75 6d 65 72 69 63 61 6c 6c 79 20 65 71 75 69 76 61 6c | ='L'.this.is.numerically.equival |
| b180 | 65 6e 74 20 74 6f 20 75 73 69 6e 67 20 4c 41 2e 65 69 67 76 61 6c 73 28 29 0a 20 20 20 20 3e 3e | ent.to.using.LA.eigvals().....>> |
| b1a0 | 3e 20 23 20 77 69 74 68 3a 0a 20 20 20 20 3e 3e 3e 20 62 20 3d 20 6e 70 2e 61 72 72 61 79 28 5b | >.#.with:.....>>>.b.=.np.array([ |
| b1c0 | 5b 35 2e 2b 30 2e 6a 2c 20 30 2e 2d 32 2e 6a 5d 2c 20 5b 30 2e 2b 32 2e 6a 2c 20 32 2e 2d 30 2e | [5.+0.j,.0.-2.j],.[0.+2.j,.2.-0. |
| b1e0 | 6a 5d 5d 29 0a 20 20 20 20 3e 3e 3e 20 62 0a 20 20 20 20 61 72 72 61 79 28 5b 5b 35 2e 2b 30 2e | j]]).....>>>.b.....array([[5.+0. |
| b200 | 6a 2c 20 30 2e 2d 32 2e 6a 5d 2c 0a 20 20 20 20 20 20 20 20 20 20 20 5b 30 2e 2b 32 2e 6a 2c 20 | j,.0.-2.j],............[0.+2.j,. |
| b220 | 32 2e 2b 30 2e 6a 5d 5d 29 0a 20 20 20 20 3e 3e 3e 20 77 61 20 3d 20 4c 41 2e 65 69 67 76 61 6c | 2.+0.j]]).....>>>.wa.=.LA.eigval |
| b240 | 73 68 28 61 29 0a 20 20 20 20 3e 3e 3e 20 77 62 20 3d 20 4c 41 2e 65 69 67 76 61 6c 73 28 62 29 | sh(a).....>>>.wb.=.LA.eigvals(b) |
| b260 | 0a 20 20 20 20 3e 3e 3e 20 77 61 0a 20 20 20 20 61 72 72 61 79 28 5b 31 2e 2c 20 36 2e 5d 29 0a | .....>>>.wa.....array([1.,.6.]). |
| b280 | 20 20 20 20 3e 3e 3e 20 77 62 0a 20 20 20 20 61 72 72 61 79 28 5b 36 2e 2b 30 2e 6a 2c 20 31 2e | ....>>>.wb.....array([6.+0.j,.1. |
| b2a0 | 2b 30 2e 6a 5d 29 0a 0a 20 20 20 20 a9 02 da 01 4c 72 6f 00 00 00 fa 20 55 50 4c 4f 20 61 72 67 | +0.j])..........Lro.....UPLO.arg |
| b2c0 | 75 6d 65 6e 74 20 6d 75 73 74 20 62 65 20 27 4c 27 20 6f 72 20 27 55 27 72 3c 01 00 00 fa 04 44 | ument.must.be.'L'.or.'U'r<.....D |
| b2e0 | 2d 3e 64 72 fa 00 00 00 72 df 00 00 00 72 e0 00 00 00 72 e1 00 00 00 72 e5 00 00 00 4e 46 72 e7 | ->dr....r....r....r....r....NFr. |
| b300 | 00 00 00 29 0d 72 0a 01 00 00 72 bd 00 00 00 72 56 00 00 00 da 0b 65 69 67 76 61 6c 73 68 5f 6c | ...).r....r....rV.....eigvalsh_l |
| b320 | 6f da 0b 65 69 67 76 61 6c 73 68 5f 75 70 72 8b 00 00 00 72 c0 00 00 00 72 a4 00 00 00 72 90 00 | o..eigvalsh_upr....r....r....r.. |
| b340 | 00 00 72 38 00 00 00 72 7e 00 00 00 72 ea 00 00 00 72 96 00 00 00 29 08 72 88 00 00 00 72 38 01 | ..r8...r~...r....r....).r....r8. |
| b360 | 00 00 72 ed 00 00 00 72 8a 00 00 00 72 8f 00 00 00 72 ec 00 00 00 72 e6 00 00 00 72 36 01 00 00 | ..r....r....r....r....r....r6... |
| b380 | 73 08 00 00 00 20 20 20 20 20 20 20 20 72 62 00 00 00 72 09 00 00 00 72 09 00 00 00 06 05 00 00 | s............rb...r....r........ |
| b3a0 | 73 c3 00 00 00 80 00 f0 54 02 00 0c 10 8f 3a 89 3a 8b 3c 80 44 d8 07 0b 90 3a d1 07 1d dc 0e 18 | s.......T.....:.:.<.D....:...... |
| b3c0 | d0 19 3b d3 0e 3c d0 08 3c e0 07 0b 88 73 82 7b dc 11 1e d7 11 2a d1 11 2a 89 06 e4 11 1e d7 11 | ..;..<..<....s.{.....*..*....... |
| b3e0 | 2a d1 11 2a 88 06 e4 0e 18 98 11 8b 6d 81 47 80 41 80 74 dc 04 1a 98 31 d4 04 1d dc 12 1d 98 61 | *..*........m.G.A.t....1.......a |
| b400 | 93 2e 81 4b 80 41 80 78 dc 1a 27 a8 01 d4 1a 2a 91 06 b0 06 80 49 dc 09 11 d4 17 44 d8 1a 20 a0 | ...K.A.x..'....*.....I.....D.... |
| b420 | 78 b8 08 d8 18 20 f4 05 02 0a 22 f1 00 03 05 2b f1 06 00 0d 13 90 31 a0 09 d4 0c 2a 88 01 f7 07 | x........."....+......1....*.... |
| b440 | 03 05 2b f0 08 00 0c 0d 8f 38 89 38 94 49 98 68 d3 14 27 a8 65 88 38 d3 0b 34 d0 04 34 f7 09 03 | ..+......8.8.I.h..'.e.8..4..4... |
| b460 | 05 2b f0 00 03 05 2b fa 73 0c 00 00 00 c2 10 0b 42 3f 03 c2 3f 05 43 08 07 63 01 00 00 00 00 00 | .+....+.s.......B?..?.C..c...... |
| b480 | 00 00 00 00 00 00 07 00 00 00 03 00 00 00 f3 1a 02 00 00 97 00 74 01 00 00 00 00 00 00 00 00 7c | .....................t.........| |
| b4a0 | 00 ab 01 00 00 00 00 00 00 5c 02 00 00 7d 00 7d 01 74 03 00 00 00 00 00 00 00 00 7c 00 ab 01 00 | .........\...}.}.t.........|.... |
| b4c0 | 00 00 00 00 00 01 00 74 05 00 00 00 00 00 00 00 00 7c 00 ab 01 00 00 00 00 00 00 01 00 74 07 00 | .......t.........|...........t.. |
| b4e0 | 00 00 00 00 00 00 00 7c 00 ab 01 00 00 00 00 00 00 5c 02 00 00 7d 02 7d 03 74 09 00 00 00 00 00 | .......|.........\...}.}.t...... |
| b500 | 00 00 00 7c 02 ab 01 00 00 00 00 00 00 72 02 64 01 6e 01 64 02 7d 04 74 0b 00 00 00 00 00 00 00 | ...|.........r.d.n.d.}.t........ |
| b520 | 00 74 0c 00 00 00 00 00 00 00 00 64 03 64 04 64 04 64 04 ac 05 ab 05 00 00 00 00 00 00 35 00 01 | .t.........d.d.d.d...........5.. |
| b540 | 00 74 0f 00 00 00 00 00 00 00 00 6a 10 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 7c | .t.........j...................| |
| b560 | 00 7c 04 ac 06 ab 02 00 00 00 00 00 00 5c 02 00 00 7d 05 7d 06 64 07 64 07 64 07 ab 02 00 00 00 | .|...........\...}.}.d.d.d...... |
| b580 | 00 00 00 01 00 74 09 00 00 00 00 00 00 00 00 7c 02 ab 01 00 00 00 00 00 00 73 3c 74 13 00 00 00 | .....t.........|.........s<t.... |
| b5a0 | 00 00 00 00 00 7f 05 6a 14 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 64 08 6b 28 00 | .......j...................d.k(. |
| b5c0 | 00 ab 01 00 00 00 00 00 00 72 24 7c 05 6a 16 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 | .........r$|.j.................. |
| b5e0 | 00 7d 05 7f 06 6a 16 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 7d 06 74 19 00 00 00 | .}...j...................}.t.... |
| b600 | 00 00 00 00 00 7c 03 ab 01 00 00 00 00 00 00 7d 03 6e 0b 74 1b 00 00 00 00 00 00 00 00 7c 03 ab | .....|.........}.n.t.........|.. |
| b620 | 01 00 00 00 00 00 00 7d 03 7f 06 6a 1d 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 7c | .......}...j...................| |
| b640 | 03 64 09 ac 0a ab 02 00 00 00 00 00 00 7d 06 74 1f 00 00 00 00 00 00 00 00 7f 05 6a 1d 00 00 00 | .d...........}.t...........j.... |
| b660 | 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 7c 03 64 09 ac 0a ab 02 00 00 00 00 00 00 02 00 7c | ...............|.d.............| |
| b680 | 01 7c 06 ab 01 00 00 00 00 00 00 ab 02 00 00 00 00 00 00 53 00 23 00 31 00 73 01 77 02 01 00 59 | .|.................S.#.1.s.w...Y |
| b6a0 | 00 01 00 01 00 8c 91 78 03 59 00 77 01 29 0b 61 69 13 00 00 0a 20 20 20 20 43 6f 6d 70 75 74 65 | .......x.Y.w.).ai........Compute |
| b6c0 | 20 74 68 65 20 65 69 67 65 6e 76 61 6c 75 65 73 20 61 6e 64 20 72 69 67 68 74 20 65 69 67 65 6e | .the.eigenvalues.and.right.eigen |
| b6e0 | 76 65 63 74 6f 72 73 20 6f 66 20 61 20 73 71 75 61 72 65 20 61 72 72 61 79 2e 0a 0a 20 20 20 20 | vectors.of.a.square.array....... |
| b700 | 50 61 72 61 6d 65 74 65 72 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 61 20 | Parameters.....----------.....a. |
| b720 | 3a 20 28 2e 2e 2e 2c 20 4d 2c 20 4d 29 20 61 72 72 61 79 0a 20 20 20 20 20 20 20 20 4d 61 74 72 | :.(...,.M,.M).array.........Matr |
| b740 | 69 63 65 73 20 66 6f 72 20 77 68 69 63 68 20 74 68 65 20 65 69 67 65 6e 76 61 6c 75 65 73 20 61 | ices.for.which.the.eigenvalues.a |
| b760 | 6e 64 20 72 69 67 68 74 20 65 69 67 65 6e 76 65 63 74 6f 72 73 20 77 69 6c 6c 0a 20 20 20 20 20 | nd.right.eigenvectors.will...... |
| b780 | 20 20 20 62 65 20 63 6f 6d 70 75 74 65 64 0a 0a 20 20 20 20 52 65 74 75 72 6e 73 0a 20 20 20 20 | ...be.computed......Returns..... |
| b7a0 | 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 41 20 6e 61 6d 65 64 74 75 70 6c 65 20 77 69 74 68 20 74 68 | -------.....A.namedtuple.with.th |
| b7c0 | 65 20 66 6f 6c 6c 6f 77 69 6e 67 20 61 74 74 72 69 62 75 74 65 73 3a 0a 0a 20 20 20 20 65 69 67 | e.following.attributes:......eig |
| b7e0 | 65 6e 76 61 6c 75 65 73 20 3a 20 28 2e 2e 2e 2c 20 4d 29 20 61 72 72 61 79 0a 20 20 20 20 20 20 | envalues.:.(...,.M).array....... |
| b800 | 20 20 54 68 65 20 65 69 67 65 6e 76 61 6c 75 65 73 2c 20 65 61 63 68 20 72 65 70 65 61 74 65 64 | ..The.eigenvalues,.each.repeated |
| b820 | 20 61 63 63 6f 72 64 69 6e 67 20 74 6f 20 69 74 73 20 6d 75 6c 74 69 70 6c 69 63 69 74 79 2e 0a | .according.to.its.multiplicity.. |
| b840 | 20 20 20 20 20 20 20 20 54 68 65 20 65 69 67 65 6e 76 61 6c 75 65 73 20 61 72 65 20 6e 6f 74 20 | ........The.eigenvalues.are.not. |
| b860 | 6e 65 63 65 73 73 61 72 69 6c 79 20 6f 72 64 65 72 65 64 2e 20 54 68 65 20 72 65 73 75 6c 74 69 | necessarily.ordered..The.resulti |
| b880 | 6e 67 0a 20 20 20 20 20 20 20 20 61 72 72 61 79 20 77 69 6c 6c 20 62 65 20 6f 66 20 63 6f 6d 70 | ng.........array.will.be.of.comp |
| b8a0 | 6c 65 78 20 74 79 70 65 2c 20 75 6e 6c 65 73 73 20 74 68 65 20 69 6d 61 67 69 6e 61 72 79 20 70 | lex.type,.unless.the.imaginary.p |
| b8c0 | 61 72 74 20 69 73 0a 20 20 20 20 20 20 20 20 7a 65 72 6f 20 69 6e 20 77 68 69 63 68 20 63 61 73 | art.is.........zero.in.which.cas |
| b8e0 | 65 20 69 74 20 77 69 6c 6c 20 62 65 20 63 61 73 74 20 74 6f 20 61 20 72 65 61 6c 20 74 79 70 65 | e.it.will.be.cast.to.a.real.type |
| b900 | 2e 20 57 68 65 6e 20 60 61 60 0a 20 20 20 20 20 20 20 20 69 73 20 72 65 61 6c 20 74 68 65 20 72 | ..When.`a`.........is.real.the.r |
| b920 | 65 73 75 6c 74 69 6e 67 20 65 69 67 65 6e 76 61 6c 75 65 73 20 77 69 6c 6c 20 62 65 20 72 65 61 | esulting.eigenvalues.will.be.rea |
| b940 | 6c 20 28 30 20 69 6d 61 67 69 6e 61 72 79 0a 20 20 20 20 20 20 20 20 70 61 72 74 29 20 6f 72 20 | l.(0.imaginary.........part).or. |
| b960 | 6f 63 63 75 72 20 69 6e 20 63 6f 6e 6a 75 67 61 74 65 20 70 61 69 72 73 0a 0a 20 20 20 20 65 69 | occur.in.conjugate.pairs......ei |
| b980 | 67 65 6e 76 65 63 74 6f 72 73 20 3a 20 28 2e 2e 2e 2c 20 4d 2c 20 4d 29 20 61 72 72 61 79 0a 20 | genvectors.:.(...,.M,.M).array.. |
| b9a0 | 20 20 20 20 20 20 20 54 68 65 20 6e 6f 72 6d 61 6c 69 7a 65 64 20 28 75 6e 69 74 20 22 6c 65 6e | .......The.normalized.(unit."len |
| b9c0 | 67 74 68 22 29 20 65 69 67 65 6e 76 65 63 74 6f 72 73 2c 20 73 75 63 68 20 74 68 61 74 20 74 68 | gth").eigenvectors,.such.that.th |
| b9e0 | 65 0a 20 20 20 20 20 20 20 20 63 6f 6c 75 6d 6e 20 60 60 65 69 67 65 6e 76 65 63 74 6f 72 73 5b | e.........column.``eigenvectors[ |
| ba00 | 3a 2c 69 5d 60 60 20 69 73 20 74 68 65 20 65 69 67 65 6e 76 65 63 74 6f 72 20 63 6f 72 72 65 73 | :,i]``.is.the.eigenvector.corres |
| ba20 | 70 6f 6e 64 69 6e 67 20 74 6f 20 74 68 65 0a 20 20 20 20 20 20 20 20 65 69 67 65 6e 76 61 6c 75 | ponding.to.the.........eigenvalu |
| ba40 | 65 20 60 60 65 69 67 65 6e 76 61 6c 75 65 73 5b 69 5d 60 60 2e 0a 0a 20 20 20 20 52 61 69 73 65 | e.``eigenvalues[i]``.......Raise |
| ba60 | 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 4c 69 6e 41 6c 67 45 72 72 6f 72 0a 20 20 20 | s.....------.....LinAlgError.... |
| ba80 | 20 20 20 20 20 49 66 20 74 68 65 20 65 69 67 65 6e 76 61 6c 75 65 20 63 6f 6d 70 75 74 61 74 69 | .....If.the.eigenvalue.computati |
| baa0 | 6f 6e 20 64 6f 65 73 20 6e 6f 74 20 63 6f 6e 76 65 72 67 65 2e 0a 0a 20 20 20 20 53 65 65 20 41 | on.does.not.converge.......See.A |
| bac0 | 6c 73 6f 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 65 69 67 76 61 6c 73 20 3a 20 65 | lso.....--------.....eigvals.:.e |
| bae0 | 69 67 65 6e 76 61 6c 75 65 73 20 6f 66 20 61 20 6e 6f 6e 2d 73 79 6d 6d 65 74 72 69 63 20 61 72 | igenvalues.of.a.non-symmetric.ar |
| bb00 | 72 61 79 2e 0a 20 20 20 20 65 69 67 68 20 3a 20 65 69 67 65 6e 76 61 6c 75 65 73 20 61 6e 64 20 | ray......eigh.:.eigenvalues.and. |
| bb20 | 65 69 67 65 6e 76 65 63 74 6f 72 73 20 6f 66 20 61 20 72 65 61 6c 20 73 79 6d 6d 65 74 72 69 63 | eigenvectors.of.a.real.symmetric |
| bb40 | 20 6f 72 20 63 6f 6d 70 6c 65 78 0a 20 20 20 20 20 20 20 20 20 20 20 48 65 72 6d 69 74 69 61 6e | .or.complex............Hermitian |
| bb60 | 20 28 63 6f 6e 6a 75 67 61 74 65 20 73 79 6d 6d 65 74 72 69 63 29 20 61 72 72 61 79 2e 0a 20 20 | .(conjugate.symmetric).array.... |
| bb80 | 20 20 65 69 67 76 61 6c 73 68 20 3a 20 65 69 67 65 6e 76 61 6c 75 65 73 20 6f 66 20 61 20 72 65 | ..eigvalsh.:.eigenvalues.of.a.re |
| bba0 | 61 6c 20 73 79 6d 6d 65 74 72 69 63 20 6f 72 20 63 6f 6d 70 6c 65 78 20 48 65 72 6d 69 74 69 61 | al.symmetric.or.complex.Hermitia |
| bbc0 | 6e 0a 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 28 63 6f 6e 6a 75 67 61 74 65 20 73 79 6d 6d | n................(conjugate.symm |
| bbe0 | 65 74 72 69 63 29 20 61 72 72 61 79 2e 0a 20 20 20 20 73 63 69 70 79 2e 6c 69 6e 61 6c 67 2e 65 | etric).array......scipy.linalg.e |
| bc00 | 69 67 20 3a 20 53 69 6d 69 6c 61 72 20 66 75 6e 63 74 69 6f 6e 20 69 6e 20 53 63 69 50 79 20 74 | ig.:.Similar.function.in.SciPy.t |
| bc20 | 68 61 74 20 61 6c 73 6f 20 73 6f 6c 76 65 73 20 74 68 65 0a 20 20 20 20 20 20 20 20 20 20 20 20 | hat.also.solves.the............. |
| bc40 | 20 20 20 20 20 20 20 20 20 20 20 67 65 6e 65 72 61 6c 69 7a 65 64 20 65 69 67 65 6e 76 61 6c 75 | ...........generalized.eigenvalu |
| bc60 | 65 20 70 72 6f 62 6c 65 6d 2e 0a 20 20 20 20 73 63 69 70 79 2e 6c 69 6e 61 6c 67 2e 73 63 68 75 | e.problem......scipy.linalg.schu |
| bc80 | 72 20 3a 20 42 65 73 74 20 63 68 6f 69 63 65 20 66 6f 72 20 75 6e 69 74 61 72 79 20 61 6e 64 20 | r.:.Best.choice.for.unitary.and. |
| bca0 | 6f 74 68 65 72 20 6e 6f 6e 2d 48 65 72 6d 69 74 69 61 6e 0a 20 20 20 20 20 20 20 20 20 20 20 20 | other.non-Hermitian............. |
| bcc0 | 20 20 20 20 20 20 20 20 20 20 20 20 20 6e 6f 72 6d 61 6c 20 6d 61 74 72 69 63 65 73 2e 0a 0a 20 | .............normal.matrices.... |
| bce0 | 20 20 20 4e 6f 74 65 73 0a 20 20 20 20 2d 2d 2d 2d 2d 0a 20 20 20 20 42 72 6f 61 64 63 61 73 74 | ...Notes.....-----.....Broadcast |
| bd00 | 69 6e 67 20 72 75 6c 65 73 20 61 70 70 6c 79 2c 20 73 65 65 20 74 68 65 20 60 6e 75 6d 70 79 2e | ing.rules.apply,.see.the.`numpy. |
| bd20 | 6c 69 6e 61 6c 67 60 20 64 6f 63 75 6d 65 6e 74 61 74 69 6f 6e 20 66 6f 72 0a 20 20 20 20 64 65 | linalg`.documentation.for.....de |
| bd40 | 74 61 69 6c 73 2e 0a 0a 20 20 20 20 54 68 69 73 20 69 73 20 69 6d 70 6c 65 6d 65 6e 74 65 64 20 | tails.......This.is.implemented. |
| bd60 | 75 73 69 6e 67 20 74 68 65 20 60 60 5f 67 65 65 76 60 60 20 4c 41 50 41 43 4b 20 72 6f 75 74 69 | using.the.``_geev``.LAPACK.routi |
| bd80 | 6e 65 73 20 77 68 69 63 68 20 63 6f 6d 70 75 74 65 0a 20 20 20 20 74 68 65 20 65 69 67 65 6e 76 | nes.which.compute.....the.eigenv |
| bda0 | 61 6c 75 65 73 20 61 6e 64 20 65 69 67 65 6e 76 65 63 74 6f 72 73 20 6f 66 20 67 65 6e 65 72 61 | alues.and.eigenvectors.of.genera |
| bdc0 | 6c 20 73 71 75 61 72 65 20 61 72 72 61 79 73 2e 0a 0a 20 20 20 20 54 68 65 20 6e 75 6d 62 65 72 | l.square.arrays.......The.number |
| bde0 | 20 60 77 60 20 69 73 20 61 6e 20 65 69 67 65 6e 76 61 6c 75 65 20 6f 66 20 60 61 60 20 69 66 20 | .`w`.is.an.eigenvalue.of.`a`.if. |
| be00 | 74 68 65 72 65 20 65 78 69 73 74 73 20 61 20 76 65 63 74 6f 72 20 60 76 60 20 73 75 63 68 0a 20 | there.exists.a.vector.`v`.such.. |
| be20 | 20 20 20 74 68 61 74 20 60 60 61 20 40 20 76 20 3d 20 77 20 2a 20 76 60 60 2e 20 54 68 75 73 2c | ...that.``a.@.v.=.w.*.v``..Thus, |
| be40 | 20 74 68 65 20 61 72 72 61 79 73 20 60 61 60 2c 20 60 65 69 67 65 6e 76 61 6c 75 65 73 60 2c 20 | .the.arrays.`a`,.`eigenvalues`,. |
| be60 | 61 6e 64 0a 20 20 20 20 60 65 69 67 65 6e 76 65 63 74 6f 72 73 60 20 73 61 74 69 73 66 79 20 74 | and.....`eigenvectors`.satisfy.t |
| be80 | 68 65 20 65 71 75 61 74 69 6f 6e 73 20 60 60 61 20 40 20 65 69 67 65 6e 76 65 63 74 6f 72 73 5b | he.equations.``a.@.eigenvectors[ |
| bea0 | 3a 2c 69 5d 20 3d 0a 20 20 20 20 65 69 67 65 6e 76 61 6c 75 65 73 5b 69 5d 20 2a 20 65 69 67 65 | :,i].=.....eigenvalues[i].*.eige |
| bec0 | 6e 76 65 63 74 6f 72 73 5b 3a 2c 69 5d 60 60 20 66 6f 72 20 3a 6d 61 74 68 3a 60 69 20 5c 69 6e | nvectors[:,i]``.for.:math:`i.\in |
| bee0 | 20 5c 7b 30 2c 2e 2e 2e 2c 4d 2d 31 5c 7d 60 2e 0a 0a 20 20 20 20 54 68 65 20 61 72 72 61 79 20 | .\{0,...,M-1\}`.......The.array. |
| bf00 | 60 65 69 67 65 6e 76 65 63 74 6f 72 73 60 20 6d 61 79 20 6e 6f 74 20 62 65 20 6f 66 20 6d 61 78 | `eigenvectors`.may.not.be.of.max |
| bf20 | 69 6d 75 6d 20 72 61 6e 6b 2c 20 74 68 61 74 20 69 73 2c 20 73 6f 6d 65 20 6f 66 20 74 68 65 0a | imum.rank,.that.is,.some.of.the. |
| bf40 | 20 20 20 20 63 6f 6c 75 6d 6e 73 20 6d 61 79 20 62 65 20 6c 69 6e 65 61 72 6c 79 20 64 65 70 65 | ....columns.may.be.linearly.depe |
| bf60 | 6e 64 65 6e 74 2c 20 61 6c 74 68 6f 75 67 68 20 72 6f 75 6e 64 2d 6f 66 66 20 65 72 72 6f 72 20 | ndent,.although.round-off.error. |
| bf80 | 6d 61 79 20 6f 62 73 63 75 72 65 0a 20 20 20 20 74 68 61 74 20 66 61 63 74 2e 20 49 66 20 74 68 | may.obscure.....that.fact..If.th |
| bfa0 | 65 20 65 69 67 65 6e 76 61 6c 75 65 73 20 61 72 65 20 61 6c 6c 20 64 69 66 66 65 72 65 6e 74 2c | e.eigenvalues.are.all.different, |
| bfc0 | 20 74 68 65 6e 20 74 68 65 6f 72 65 74 69 63 61 6c 6c 79 20 74 68 65 0a 20 20 20 20 65 69 67 65 | .then.theoretically.the.....eige |
| bfe0 | 6e 76 65 63 74 6f 72 73 20 61 72 65 20 6c 69 6e 65 61 72 6c 79 20 69 6e 64 65 70 65 6e 64 65 6e | nvectors.are.linearly.independen |
| c000 | 74 20 61 6e 64 20 60 61 60 20 63 61 6e 20 62 65 20 64 69 61 67 6f 6e 61 6c 69 7a 65 64 20 62 79 | t.and.`a`.can.be.diagonalized.by |
| c020 | 20 61 0a 20 20 20 20 73 69 6d 69 6c 61 72 69 74 79 20 74 72 61 6e 73 66 6f 72 6d 61 74 69 6f 6e | .a.....similarity.transformation |
| c040 | 20 75 73 69 6e 67 20 60 65 69 67 65 6e 76 65 63 74 6f 72 73 60 2c 20 69 2e 65 2c 20 60 60 69 6e | .using.`eigenvectors`,.i.e,.``in |
| c060 | 76 28 65 69 67 65 6e 76 65 63 74 6f 72 73 29 20 40 0a 20 20 20 20 61 20 40 20 65 69 67 65 6e 76 | v(eigenvectors).@.....a.@.eigenv |
| c080 | 65 63 74 6f 72 73 60 60 20 69 73 20 64 69 61 67 6f 6e 61 6c 2e 0a 0a 20 20 20 20 46 6f 72 20 6e | ectors``.is.diagonal.......For.n |
| c0a0 | 6f 6e 2d 48 65 72 6d 69 74 69 61 6e 20 6e 6f 72 6d 61 6c 20 6d 61 74 72 69 63 65 73 20 74 68 65 | on-Hermitian.normal.matrices.the |
| c0c0 | 20 53 63 69 50 79 20 66 75 6e 63 74 69 6f 6e 20 60 73 63 69 70 79 2e 6c 69 6e 61 6c 67 2e 73 63 | .SciPy.function.`scipy.linalg.sc |
| c0e0 | 68 75 72 60 0a 20 20 20 20 69 73 20 70 72 65 66 65 72 72 65 64 20 62 65 63 61 75 73 65 20 74 68 | hur`.....is.preferred.because.th |
| c100 | 65 20 6d 61 74 72 69 78 20 60 65 69 67 65 6e 76 65 63 74 6f 72 73 60 20 69 73 20 67 75 61 72 61 | e.matrix.`eigenvectors`.is.guara |
| c120 | 6e 74 65 65 64 20 74 6f 20 62 65 0a 20 20 20 20 75 6e 69 74 61 72 79 2c 20 77 68 69 63 68 20 69 | nteed.to.be.....unitary,.which.i |
| c140 | 73 20 6e 6f 74 20 74 68 65 20 63 61 73 65 20 77 68 65 6e 20 75 73 69 6e 67 20 60 65 69 67 60 2e | s.not.the.case.when.using.`eig`. |
| c160 | 20 54 68 65 20 53 63 68 75 72 20 66 61 63 74 6f 72 69 7a 61 74 69 6f 6e 0a 20 20 20 20 70 72 6f | .The.Schur.factorization.....pro |
| c180 | 64 75 63 65 73 20 61 6e 20 75 70 70 65 72 20 74 72 69 61 6e 67 75 6c 61 72 20 6d 61 74 72 69 78 | duces.an.upper.triangular.matrix |
| c1a0 | 20 72 61 74 68 65 72 20 74 68 61 6e 20 61 20 64 69 61 67 6f 6e 61 6c 20 6d 61 74 72 69 78 2c 20 | .rather.than.a.diagonal.matrix,. |
| c1c0 | 62 75 74 20 66 6f 72 0a 20 20 20 20 6e 6f 72 6d 61 6c 20 6d 61 74 72 69 63 65 73 20 6f 6e 6c 79 | but.for.....normal.matrices.only |
| c1e0 | 20 74 68 65 20 64 69 61 67 6f 6e 61 6c 20 6f 66 20 74 68 65 20 75 70 70 65 72 20 74 72 69 61 6e | .the.diagonal.of.the.upper.trian |
| c200 | 67 75 6c 61 72 20 6d 61 74 72 69 78 20 69 73 0a 20 20 20 20 6e 65 65 64 65 64 2c 20 74 68 65 20 | gular.matrix.is.....needed,.the. |
| c220 | 72 65 73 74 20 69 73 20 72 6f 75 6e 64 6f 66 66 20 65 72 72 6f 72 2e 0a 0a 20 20 20 20 46 69 6e | rest.is.roundoff.error.......Fin |
| c240 | 61 6c 6c 79 2c 20 69 74 20 69 73 20 65 6d 70 68 61 73 69 7a 65 64 20 74 68 61 74 20 60 65 69 67 | ally,.it.is.emphasized.that.`eig |
| c260 | 65 6e 76 65 63 74 6f 72 73 60 20 63 6f 6e 73 69 73 74 73 20 6f 66 20 74 68 65 20 2a 72 69 67 68 | envectors`.consists.of.the.*righ |
| c280 | 74 2a 20 28 61 73 0a 20 20 20 20 69 6e 20 72 69 67 68 74 2d 68 61 6e 64 20 73 69 64 65 29 20 65 | t*.(as.....in.right-hand.side).e |
| c2a0 | 69 67 65 6e 76 65 63 74 6f 72 73 20 6f 66 20 60 61 60 2e 20 41 20 76 65 63 74 6f 72 20 60 79 60 | igenvectors.of.`a`..A.vector.`y` |
| c2c0 | 20 73 61 74 69 73 66 79 69 6e 67 20 60 60 79 2e 54 20 40 20 61 0a 20 20 20 20 3d 20 7a 20 2a 20 | .satisfying.``y.T.@.a.....=.z.*. |
| c2e0 | 79 2e 54 60 60 20 66 6f 72 20 73 6f 6d 65 20 6e 75 6d 62 65 72 20 60 7a 60 20 69 73 20 63 61 6c | y.T``.for.some.number.`z`.is.cal |
| c300 | 6c 65 64 20 61 20 2a 6c 65 66 74 2a 20 65 69 67 65 6e 76 65 63 74 6f 72 20 6f 66 20 60 61 60 2c | led.a.*left*.eigenvector.of.`a`, |
| c320 | 0a 20 20 20 20 61 6e 64 2c 20 69 6e 20 67 65 6e 65 72 61 6c 2c 20 74 68 65 20 6c 65 66 74 20 61 | .....and,.in.general,.the.left.a |
| c340 | 6e 64 20 72 69 67 68 74 20 65 69 67 65 6e 76 65 63 74 6f 72 73 20 6f 66 20 61 20 6d 61 74 72 69 | nd.right.eigenvectors.of.a.matri |
| c360 | 78 20 61 72 65 20 6e 6f 74 0a 20 20 20 20 6e 65 63 65 73 73 61 72 69 6c 79 20 74 68 65 20 28 70 | x.are.not.....necessarily.the.(p |
| c380 | 65 72 68 61 70 73 20 63 6f 6e 6a 75 67 61 74 65 29 20 74 72 61 6e 73 70 6f 73 65 73 20 6f 66 20 | erhaps.conjugate).transposes.of. |
| c3a0 | 65 61 63 68 20 6f 74 68 65 72 2e 0a 0a 20 20 20 20 52 65 66 65 72 65 6e 63 65 73 0a 20 20 20 20 | each.other.......References..... |
| c3c0 | 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 47 2e 20 53 74 72 61 6e 67 2c 20 2a 4c 69 6e 65 61 | ----------.....G..Strang,.*Linea |
| c3e0 | 72 20 41 6c 67 65 62 72 61 20 61 6e 64 20 49 74 73 20 41 70 70 6c 69 63 61 74 69 6f 6e 73 2a 2c | r.Algebra.and.Its.Applications*, |
| c400 | 20 32 6e 64 20 45 64 2e 2c 20 4f 72 6c 61 6e 64 6f 2c 20 46 4c 2c 0a 20 20 20 20 41 63 61 64 65 | .2nd.Ed.,.Orlando,.FL,.....Acade |
| c420 | 6d 69 63 20 50 72 65 73 73 2c 20 49 6e 63 2e 2c 20 31 39 38 30 2c 20 56 61 72 69 6f 75 73 20 70 | mic.Press,.Inc.,.1980,.Various.p |
| c440 | 70 2e 0a 0a 20 20 20 20 45 78 61 6d 70 6c 65 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 | p.......Examples.....--------... |
| c460 | 20 20 3e 3e 3e 20 69 6d 70 6f 72 74 20 6e 75 6d 70 79 20 61 73 20 6e 70 0a 20 20 20 20 3e 3e 3e | ..>>>.import.numpy.as.np.....>>> |
| c480 | 20 66 72 6f 6d 20 6e 75 6d 70 79 20 69 6d 70 6f 72 74 20 6c 69 6e 61 6c 67 20 61 73 20 4c 41 0a | .from.numpy.import.linalg.as.LA. |
| c4a0 | 0a 20 20 20 20 28 41 6c 6d 6f 73 74 29 20 74 72 69 76 69 61 6c 20 65 78 61 6d 70 6c 65 20 77 69 | .....(Almost).trivial.example.wi |
| c4c0 | 74 68 20 72 65 61 6c 20 65 69 67 65 6e 76 61 6c 75 65 73 20 61 6e 64 20 65 69 67 65 6e 76 65 63 | th.real.eigenvalues.and.eigenvec |
| c4e0 | 74 6f 72 73 2e 0a 0a 20 20 20 20 3e 3e 3e 20 65 69 67 65 6e 76 61 6c 75 65 73 2c 20 65 69 67 65 | tors.......>>>.eigenvalues,.eige |
| c500 | 6e 76 65 63 74 6f 72 73 20 3d 20 4c 41 2e 65 69 67 28 6e 70 2e 64 69 61 67 28 28 31 2c 20 32 2c | nvectors.=.LA.eig(np.diag((1,.2, |
| c520 | 20 33 29 29 29 0a 20 20 20 20 3e 3e 3e 20 65 69 67 65 6e 76 61 6c 75 65 73 0a 20 20 20 20 61 72 | .3))).....>>>.eigenvalues.....ar |
| c540 | 72 61 79 28 5b 31 2e 2c 20 32 2e 2c 20 33 2e 5d 29 0a 20 20 20 20 3e 3e 3e 20 65 69 67 65 6e 76 | ray([1.,.2.,.3.]).....>>>.eigenv |
| c560 | 65 63 74 6f 72 73 0a 20 20 20 20 61 72 72 61 79 28 5b 5b 31 2e 2c 20 30 2e 2c 20 30 2e 5d 2c 0a | ectors.....array([[1.,.0.,.0.],. |
| c580 | 20 20 20 20 20 20 20 20 20 20 20 5b 30 2e 2c 20 31 2e 2c 20 30 2e 5d 2c 0a 20 20 20 20 20 20 20 | ...........[0.,.1.,.0.],........ |
| c5a0 | 20 20 20 20 5b 30 2e 2c 20 30 2e 2c 20 31 2e 5d 5d 29 0a 0a 20 20 20 20 52 65 61 6c 20 6d 61 74 | ....[0.,.0.,.1.]])......Real.mat |
| c5c0 | 72 69 78 20 70 6f 73 73 65 73 73 69 6e 67 20 63 6f 6d 70 6c 65 78 20 65 69 67 65 6e 76 61 6c 75 | rix.possessing.complex.eigenvalu |
| c5e0 | 65 73 20 61 6e 64 20 65 69 67 65 6e 76 65 63 74 6f 72 73 3b 0a 20 20 20 20 6e 6f 74 65 20 74 68 | es.and.eigenvectors;.....note.th |
| c600 | 61 74 20 74 68 65 20 65 69 67 65 6e 76 61 6c 75 65 73 20 61 72 65 20 63 6f 6d 70 6c 65 78 20 63 | at.the.eigenvalues.are.complex.c |
| c620 | 6f 6e 6a 75 67 61 74 65 73 20 6f 66 20 65 61 63 68 20 6f 74 68 65 72 2e 0a 0a 20 20 20 20 3e 3e | onjugates.of.each.other.......>> |
| c640 | 3e 20 65 69 67 65 6e 76 61 6c 75 65 73 2c 20 65 69 67 65 6e 76 65 63 74 6f 72 73 20 3d 20 4c 41 | >.eigenvalues,.eigenvectors.=.LA |
| c660 | 2e 65 69 67 28 6e 70 2e 61 72 72 61 79 28 5b 5b 31 2c 20 2d 31 5d 2c 20 5b 31 2c 20 31 5d 5d 29 | .eig(np.array([[1,.-1],.[1,.1]]) |
| c680 | 29 0a 20 20 20 20 3e 3e 3e 20 65 69 67 65 6e 76 61 6c 75 65 73 0a 20 20 20 20 61 72 72 61 79 28 | ).....>>>.eigenvalues.....array( |
| c6a0 | 5b 31 2e 2b 31 2e 6a 2c 20 31 2e 2d 31 2e 6a 5d 29 0a 20 20 20 20 3e 3e 3e 20 65 69 67 65 6e 76 | [1.+1.j,.1.-1.j]).....>>>.eigenv |
| c6c0 | 65 63 74 6f 72 73 0a 20 20 20 20 61 72 72 61 79 28 5b 5b 30 2e 37 30 37 31 30 36 37 38 2b 30 2e | ectors.....array([[0.70710678+0. |
| c6e0 | 6a 20 20 20 20 20 20 20 20 2c 20 30 2e 37 30 37 31 30 36 37 38 2d 30 2e 6a 20 20 20 20 20 20 20 | j........,.0.70710678-0.j....... |
| c700 | 20 5d 2c 0a 20 20 20 20 20 20 20 20 20 20 20 5b 30 2e 20 20 20 20 20 20 20 20 2d 30 2e 37 30 37 | .],............[0.........-0.707 |
| c720 | 31 30 36 37 38 6a 2c 20 30 2e 20 20 20 20 20 20 20 20 2b 30 2e 37 30 37 31 30 36 37 38 6a 5d 5d | 10678j,.0.........+0.70710678j]] |
| c740 | 29 0a 0a 20 20 20 20 43 6f 6d 70 6c 65 78 2d 76 61 6c 75 65 64 20 6d 61 74 72 69 78 20 77 69 74 | )......Complex-valued.matrix.wit |
| c760 | 68 20 72 65 61 6c 20 65 69 67 65 6e 76 61 6c 75 65 73 20 28 62 75 74 20 63 6f 6d 70 6c 65 78 2d | h.real.eigenvalues.(but.complex- |
| c780 | 76 61 6c 75 65 64 0a 20 20 20 20 65 69 67 65 6e 76 65 63 74 6f 72 73 29 3b 20 6e 6f 74 65 20 74 | valued.....eigenvectors);.note.t |
| c7a0 | 68 61 74 20 60 60 61 2e 63 6f 6e 6a 28 29 2e 54 20 3d 3d 20 61 60 60 2c 20 69 2e 65 2e 2c 20 60 | hat.``a.conj().T.==.a``,.i.e.,.` |
| c7c0 | 61 60 20 69 73 20 48 65 72 6d 69 74 69 61 6e 2e 0a 0a 20 20 20 20 3e 3e 3e 20 61 20 3d 20 6e 70 | a`.is.Hermitian.......>>>.a.=.np |
| c7e0 | 2e 61 72 72 61 79 28 5b 5b 31 2c 20 31 6a 5d 2c 20 5b 2d 31 6a 2c 20 31 5d 5d 29 0a 20 20 20 20 | .array([[1,.1j],.[-1j,.1]])..... |
| c800 | 3e 3e 3e 20 65 69 67 65 6e 76 61 6c 75 65 73 2c 20 65 69 67 65 6e 76 65 63 74 6f 72 73 20 3d 20 | >>>.eigenvalues,.eigenvectors.=. |
| c820 | 4c 41 2e 65 69 67 28 61 29 0a 20 20 20 20 3e 3e 3e 20 65 69 67 65 6e 76 61 6c 75 65 73 0a 20 20 | LA.eig(a).....>>>.eigenvalues... |
| c840 | 20 20 61 72 72 61 79 28 5b 32 2e 2b 30 2e 6a 2c 20 30 2e 2b 30 2e 6a 5d 29 0a 20 20 20 20 3e 3e | ..array([2.+0.j,.0.+0.j]).....>> |
| c860 | 3e 20 65 69 67 65 6e 76 65 63 74 6f 72 73 0a 20 20 20 20 61 72 72 61 79 28 5b 5b 20 30 2e 20 20 | >.eigenvectors.....array([[.0... |
| c880 | 20 20 20 20 20 20 2b 30 2e 37 30 37 31 30 36 37 38 6a 2c 20 20 30 2e 37 30 37 31 30 36 37 38 2b | ......+0.70710678j,..0.70710678+ |
| c8a0 | 30 2e 6a 20 20 20 20 20 20 20 20 5d 2c 20 23 20 6d 61 79 20 76 61 72 79 0a 20 20 20 20 20 20 20 | 0.j........],.#.may.vary........ |
| c8c0 | 20 20 20 20 5b 20 30 2e 37 30 37 31 30 36 37 38 2b 30 2e 6a 20 20 20 20 20 20 20 20 2c 20 2d 30 | ....[.0.70710678+0.j........,.-0 |
| c8e0 | 2e 20 20 20 20 20 20 20 20 2b 30 2e 37 30 37 31 30 36 37 38 6a 5d 5d 29 0a 0a 20 20 20 20 42 65 | .........+0.70710678j]])......Be |
| c900 | 20 63 61 72 65 66 75 6c 20 61 62 6f 75 74 20 72 6f 75 6e 64 2d 6f 66 66 20 65 72 72 6f 72 21 0a | .careful.about.round-off.error!. |
| c920 | 0a 20 20 20 20 3e 3e 3e 20 61 20 3d 20 6e 70 2e 61 72 72 61 79 28 5b 5b 31 20 2b 20 31 65 2d 39 | .....>>>.a.=.np.array([[1.+.1e-9 |
| c940 | 2c 20 30 5d 2c 20 5b 30 2c 20 31 20 2d 20 31 65 2d 39 5d 5d 29 0a 20 20 20 20 3e 3e 3e 20 23 20 | ,.0],.[0,.1.-.1e-9]]).....>>>.#. |
| c960 | 54 68 65 6f 72 2e 20 65 69 67 65 6e 76 61 6c 75 65 73 20 61 72 65 20 31 20 2b 2f 2d 20 31 65 2d | Theor..eigenvalues.are.1.+/-.1e- |
| c980 | 39 0a 20 20 20 20 3e 3e 3e 20 65 69 67 65 6e 76 61 6c 75 65 73 2c 20 65 69 67 65 6e 76 65 63 74 | 9.....>>>.eigenvalues,.eigenvect |
| c9a0 | 6f 72 73 20 3d 20 4c 41 2e 65 69 67 28 61 29 0a 20 20 20 20 3e 3e 3e 20 65 69 67 65 6e 76 61 6c | ors.=.LA.eig(a).....>>>.eigenval |
| c9c0 | 75 65 73 0a 20 20 20 20 61 72 72 61 79 28 5b 31 2e 2c 20 31 2e 5d 29 0a 20 20 20 20 3e 3e 3e 20 | ues.....array([1.,.1.]).....>>>. |
| c9e0 | 65 69 67 65 6e 76 65 63 74 6f 72 73 0a 20 20 20 20 61 72 72 61 79 28 5b 5b 31 2e 2c 20 30 2e 5d | eigenvectors.....array([[1.,.0.] |
| ca00 | 2c 0a 20 20 20 20 20 20 20 20 20 20 20 5b 30 2e 2c 20 31 2e 5d 5d 29 0a 0a 20 20 20 20 7a 05 44 | ,............[0.,.1.]])......z.D |
| ca20 | 2d 3e 44 44 7a 05 64 2d 3e 44 44 72 df 00 00 00 72 e0 00 00 00 72 e1 00 00 00 72 e5 00 00 00 4e | ->DDz.d->DDr....r....r....r....N |
| ca40 | 67 00 00 00 00 00 00 00 00 46 72 e7 00 00 00 29 10 72 8b 00 00 00 72 c0 00 00 00 72 c2 00 00 00 | g........Fr....).r....r....r.... |
| ca60 | 72 a4 00 00 00 72 90 00 00 00 72 38 00 00 00 72 7e 00 00 00 72 56 00 00 00 72 0f 00 00 00 72 27 | r....r....r8...r~...rV...r....r' |
| ca80 | 00 00 00 72 34 01 00 00 72 35 01 00 00 72 96 00 00 00 72 99 00 00 00 72 ea 00 00 00 72 58 00 00 | ...r4...r5...r....r....r....rX.. |
| caa0 | 00 29 07 72 88 00 00 00 72 8a 00 00 00 72 8f 00 00 00 72 ec 00 00 00 72 e6 00 00 00 72 36 01 00 | .).r....r....r....r....r....r6.. |
| cac0 | 00 da 02 76 74 73 07 00 00 00 20 20 20 20 20 20 20 72 62 00 00 00 72 0f 00 00 00 72 0f 00 00 00 | ...vts...........rb...r....r.... |
| cae0 | 67 05 00 00 73 ee 00 00 00 80 00 f4 46 04 00 0f 19 98 11 8b 6d 81 47 80 41 80 74 dc 04 1a 98 31 | g...s.......F.......m.G.A.t....1 |
| cb00 | d4 04 1d dc 04 12 90 31 d4 04 15 dc 12 1d 98 61 93 2e 81 4b 80 41 80 78 e4 1b 28 a8 11 d4 1b 2b | .......1.......a...K.A.x..(....+ |
| cb20 | 91 07 b0 17 80 49 dc 09 11 d4 17 44 d8 1a 20 a0 78 b8 08 d8 18 20 f4 05 02 0a 22 f1 00 03 05 3a | .....I.....D....x........."....: |
| cb40 | f4 06 00 11 1e d7 10 21 d1 10 21 a0 21 a8 79 d4 10 39 89 05 88 01 88 32 f7 07 03 05 3a f4 0a 00 | .......!..!.!.y..9.....2....:... |
| cb60 | 0c 19 98 11 d4 0b 1b a4 03 a0 41 a7 46 a1 46 a8 63 a1 4d d4 20 32 d8 0c 0d 8f 46 89 46 88 01 d8 | ..........A.F.F.c.M..2....F.F... |
| cb80 | 0d 0f 8f 57 89 57 88 02 dc 13 1c 98 58 d3 13 26 89 08 e4 13 1f a0 08 d3 13 29 88 08 e0 09 0b 8f | ...W.W......X..&.........)...... |
| cba0 | 19 89 19 90 38 a0 25 88 19 d3 09 28 80 42 dc 0b 14 90 51 97 58 91 58 98 68 a8 55 90 58 d3 15 33 | ....8.%....(.B....Q.X.X.h.U.X..3 |
| cbc0 | b1 54 b8 22 b3 58 d3 0b 3e d0 04 3e f7 1b 03 05 3a f0 00 03 05 3a fa 73 0c 00 00 00 c1 16 1b 44 | .T.".X..>..>....:....:.s.......D |
| cbe0 | 01 03 c4 01 05 44 0a 07 63 02 00 00 00 00 00 00 00 00 00 00 00 07 00 00 00 03 00 00 00 f3 e6 01 | .....D..c....................... |
| cc00 | 00 00 97 00 7c 01 6a 01 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ab 00 00 00 00 00 | ....|.j......................... |
| cc20 | 00 00 7d 01 7c 01 64 01 76 01 72 0b 74 03 00 00 00 00 00 00 00 00 64 02 ab 01 00 00 00 00 00 00 | ..}.|.d.v.r.t.........d......... |
| cc40 | 82 01 74 05 00 00 00 00 00 00 00 00 7c 00 ab 01 00 00 00 00 00 00 5c 02 00 00 7d 00 7d 02 74 07 | ..t.........|.........\...}.}.t. |
| cc60 | 00 00 00 00 00 00 00 00 7c 00 ab 01 00 00 00 00 00 00 01 00 74 09 00 00 00 00 00 00 00 00 7c 00 | ........|...........t.........|. |
| cc80 | ab 01 00 00 00 00 00 00 5c 02 00 00 7d 03 7d 04 7c 01 64 03 6b 28 00 00 72 11 74 0a 00 00 00 00 | ........\...}.}.|.d.k(..r.t..... |
| cca0 | 00 00 00 00 6a 0c 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 7d 05 6e 10 74 0a 00 00 | ....j...................}.n.t... |
| ccc0 | 00 00 00 00 00 00 6a 0e 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 7d 05 74 11 00 00 | ......j...................}.t... |
| cce0 | 00 00 00 00 00 00 7c 03 ab 01 00 00 00 00 00 00 72 02 64 04 6e 01 64 05 7d 06 74 13 00 00 00 00 | ......|.........r.d.n.d.}.t..... |
| cd00 | 00 00 00 00 74 14 00 00 00 00 00 00 00 00 64 06 64 07 64 07 64 07 ac 08 ab 05 00 00 00 00 00 00 | ....t.........d.d.d.d........... |
| cd20 | 35 00 01 00 02 00 7c 05 7c 00 7c 06 ac 09 ab 02 00 00 00 00 00 00 5c 02 00 00 7d 07 7d 08 64 0a | 5.....|.|.|...........\...}.}.d. |
| cd40 | 64 0a 64 0a ab 02 00 00 00 00 00 00 01 00 7f 07 6a 17 00 00 00 00 00 00 00 00 00 00 00 00 00 00 | d.d.............j............... |
| cd60 | 00 00 00 00 74 19 00 00 00 00 00 00 00 00 7c 04 ab 01 00 00 00 00 00 00 64 0b ac 0c ab 02 00 00 | ....t.........|.........d....... |
| cd80 | 00 00 00 00 7d 07 7f 08 6a 17 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 7c 04 64 0b | ....}...j...................|.d. |
| cda0 | ac 0c ab 02 00 00 00 00 00 00 7d 08 74 1b 00 00 00 00 00 00 00 00 7c 07 02 00 7c 02 7c 08 ab 01 | ..........}.t.........|...|.|... |
| cdc0 | 00 00 00 00 00 00 ab 02 00 00 00 00 00 00 53 00 23 00 31 00 73 01 77 02 01 00 59 00 01 00 01 00 | ..............S.#.1.s.w...Y..... |
| cde0 | 8c 4a 78 03 59 00 77 01 29 0d 61 db 11 00 00 0a 20 20 20 20 52 65 74 75 72 6e 20 74 68 65 20 65 | .Jx.Y.w.).a.........Return.the.e |
| ce00 | 69 67 65 6e 76 61 6c 75 65 73 20 61 6e 64 20 65 69 67 65 6e 76 65 63 74 6f 72 73 20 6f 66 20 61 | igenvalues.and.eigenvectors.of.a |
| ce20 | 20 63 6f 6d 70 6c 65 78 20 48 65 72 6d 69 74 69 61 6e 0a 20 20 20 20 28 63 6f 6e 6a 75 67 61 74 | .complex.Hermitian.....(conjugat |
| ce40 | 65 20 73 79 6d 6d 65 74 72 69 63 29 20 6f 72 20 61 20 72 65 61 6c 20 73 79 6d 6d 65 74 72 69 63 | e.symmetric).or.a.real.symmetric |
| ce60 | 20 6d 61 74 72 69 78 2e 0a 0a 20 20 20 20 52 65 74 75 72 6e 73 20 74 77 6f 20 6f 62 6a 65 63 74 | .matrix.......Returns.two.object |
| ce80 | 73 2c 20 61 20 31 2d 44 20 61 72 72 61 79 20 63 6f 6e 74 61 69 6e 69 6e 67 20 74 68 65 20 65 69 | s,.a.1-D.array.containing.the.ei |
| cea0 | 67 65 6e 76 61 6c 75 65 73 20 6f 66 20 60 61 60 2c 20 61 6e 64 0a 20 20 20 20 61 20 32 2d 44 20 | genvalues.of.`a`,.and.....a.2-D. |
| cec0 | 73 71 75 61 72 65 20 61 72 72 61 79 20 6f 72 20 6d 61 74 72 69 78 20 28 64 65 70 65 6e 64 69 6e | square.array.or.matrix.(dependin |
| cee0 | 67 20 6f 6e 20 74 68 65 20 69 6e 70 75 74 20 74 79 70 65 29 20 6f 66 20 74 68 65 0a 20 20 20 20 | g.on.the.input.type).of.the..... |
| cf00 | 63 6f 72 72 65 73 70 6f 6e 64 69 6e 67 20 65 69 67 65 6e 76 65 63 74 6f 72 73 20 28 69 6e 20 63 | corresponding.eigenvectors.(in.c |
| cf20 | 6f 6c 75 6d 6e 73 29 2e 0a 0a 20 20 20 20 50 61 72 61 6d 65 74 65 72 73 0a 20 20 20 20 2d 2d 2d | olumns).......Parameters.....--- |
| cf40 | 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 61 20 3a 20 28 2e 2e 2e 2c 20 4d 2c 20 4d 29 20 61 72 72 61 | -------.....a.:.(...,.M,.M).arra |
| cf60 | 79 0a 20 20 20 20 20 20 20 20 48 65 72 6d 69 74 69 61 6e 20 6f 72 20 72 65 61 6c 20 73 79 6d 6d | y.........Hermitian.or.real.symm |
| cf80 | 65 74 72 69 63 20 6d 61 74 72 69 63 65 73 20 77 68 6f 73 65 20 65 69 67 65 6e 76 61 6c 75 65 73 | etric.matrices.whose.eigenvalues |
| cfa0 | 20 61 6e 64 0a 20 20 20 20 20 20 20 20 65 69 67 65 6e 76 65 63 74 6f 72 73 20 61 72 65 20 74 6f | .and.........eigenvectors.are.to |
| cfc0 | 20 62 65 20 63 6f 6d 70 75 74 65 64 2e 0a 20 20 20 20 55 50 4c 4f 20 3a 20 7b 27 4c 27 2c 20 27 | .be.computed......UPLO.:.{'L',.' |
| cfe0 | 55 27 7d 2c 20 6f 70 74 69 6f 6e 61 6c 0a 20 20 20 20 20 20 20 20 53 70 65 63 69 66 69 65 73 20 | U'},.optional.........Specifies. |
| d000 | 77 68 65 74 68 65 72 20 74 68 65 20 63 61 6c 63 75 6c 61 74 69 6f 6e 20 69 73 20 64 6f 6e 65 20 | whether.the.calculation.is.done. |
| d020 | 77 69 74 68 20 74 68 65 20 6c 6f 77 65 72 20 74 72 69 61 6e 67 75 6c 61 72 0a 20 20 20 20 20 20 | with.the.lower.triangular....... |
| d040 | 20 20 70 61 72 74 20 6f 66 20 60 61 60 20 28 27 4c 27 2c 20 64 65 66 61 75 6c 74 29 20 6f 72 20 | ..part.of.`a`.('L',.default).or. |
| d060 | 74 68 65 20 75 70 70 65 72 20 74 72 69 61 6e 67 75 6c 61 72 20 70 61 72 74 20 28 27 55 27 29 2e | the.upper.triangular.part.('U'). |
| d080 | 0a 20 20 20 20 20 20 20 20 49 72 72 65 73 70 65 63 74 69 76 65 20 6f 66 20 74 68 69 73 20 76 61 | .........Irrespective.of.this.va |
| d0a0 | 6c 75 65 20 6f 6e 6c 79 20 74 68 65 20 72 65 61 6c 20 70 61 72 74 73 20 6f 66 20 74 68 65 20 64 | lue.only.the.real.parts.of.the.d |
| d0c0 | 69 61 67 6f 6e 61 6c 20 77 69 6c 6c 0a 20 20 20 20 20 20 20 20 62 65 20 63 6f 6e 73 69 64 65 72 | iagonal.will.........be.consider |
| d0e0 | 65 64 20 69 6e 20 74 68 65 20 63 6f 6d 70 75 74 61 74 69 6f 6e 20 74 6f 20 70 72 65 73 65 72 76 | ed.in.the.computation.to.preserv |
| d100 | 65 20 74 68 65 20 6e 6f 74 69 6f 6e 20 6f 66 20 61 20 48 65 72 6d 69 74 69 61 6e 0a 20 20 20 20 | e.the.notion.of.a.Hermitian..... |
| d120 | 20 20 20 20 6d 61 74 72 69 78 2e 20 49 74 20 74 68 65 72 65 66 6f 72 65 20 66 6f 6c 6c 6f 77 73 | ....matrix..It.therefore.follows |
| d140 | 20 74 68 61 74 20 74 68 65 20 69 6d 61 67 69 6e 61 72 79 20 70 61 72 74 20 6f 66 20 74 68 65 20 | .that.the.imaginary.part.of.the. |
| d160 | 64 69 61 67 6f 6e 61 6c 0a 20 20 20 20 20 20 20 20 77 69 6c 6c 20 61 6c 77 61 79 73 20 62 65 20 | diagonal.........will.always.be. |
| d180 | 74 72 65 61 74 65 64 20 61 73 20 7a 65 72 6f 2e 0a 0a 20 20 20 20 52 65 74 75 72 6e 73 0a 20 20 | treated.as.zero.......Returns... |
| d1a0 | 20 20 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 41 20 6e 61 6d 65 64 74 75 70 6c 65 20 77 69 74 68 20 | ..-------.....A.namedtuple.with. |
| d1c0 | 74 68 65 20 66 6f 6c 6c 6f 77 69 6e 67 20 61 74 74 72 69 62 75 74 65 73 3a 0a 0a 20 20 20 20 65 | the.following.attributes:......e |
| d1e0 | 69 67 65 6e 76 61 6c 75 65 73 20 3a 20 28 2e 2e 2e 2c 20 4d 29 20 6e 64 61 72 72 61 79 0a 20 20 | igenvalues.:.(...,.M).ndarray... |
| d200 | 20 20 20 20 20 20 54 68 65 20 65 69 67 65 6e 76 61 6c 75 65 73 20 69 6e 20 61 73 63 65 6e 64 69 | ......The.eigenvalues.in.ascendi |
| d220 | 6e 67 20 6f 72 64 65 72 2c 20 65 61 63 68 20 72 65 70 65 61 74 65 64 20 61 63 63 6f 72 64 69 6e | ng.order,.each.repeated.accordin |
| d240 | 67 20 74 6f 0a 20 20 20 20 20 20 20 20 69 74 73 20 6d 75 6c 74 69 70 6c 69 63 69 74 79 2e 0a 20 | g.to.........its.multiplicity... |
| d260 | 20 20 20 65 69 67 65 6e 76 65 63 74 6f 72 73 20 3a 20 7b 28 2e 2e 2e 2c 20 4d 2c 20 4d 29 20 6e | ...eigenvectors.:.{(...,.M,.M).n |
| d280 | 64 61 72 72 61 79 2c 20 28 2e 2e 2e 2c 20 4d 2c 20 4d 29 20 6d 61 74 72 69 78 7d 0a 20 20 20 20 | darray,.(...,.M,.M).matrix}..... |
| d2a0 | 20 20 20 20 54 68 65 20 63 6f 6c 75 6d 6e 20 60 60 65 69 67 65 6e 76 65 63 74 6f 72 73 5b 3a 2c | ....The.column.``eigenvectors[:, |
| d2c0 | 20 69 5d 60 60 20 69 73 20 74 68 65 20 6e 6f 72 6d 61 6c 69 7a 65 64 20 65 69 67 65 6e 76 65 63 | .i]``.is.the.normalized.eigenvec |
| d2e0 | 74 6f 72 0a 20 20 20 20 20 20 20 20 63 6f 72 72 65 73 70 6f 6e 64 69 6e 67 20 74 6f 20 74 68 65 | tor.........corresponding.to.the |
| d300 | 20 65 69 67 65 6e 76 61 6c 75 65 20 60 60 65 69 67 65 6e 76 61 6c 75 65 73 5b 69 5d 60 60 2e 20 | .eigenvalue.``eigenvalues[i]``.. |
| d320 | 20 57 69 6c 6c 20 72 65 74 75 72 6e 20 61 0a 20 20 20 20 20 20 20 20 6d 61 74 72 69 78 20 6f 62 | .Will.return.a.........matrix.ob |
| d340 | 6a 65 63 74 20 69 66 20 60 61 60 20 69 73 20 61 20 6d 61 74 72 69 78 20 6f 62 6a 65 63 74 2e 0a | ject.if.`a`.is.a.matrix.object.. |
| d360 | 0a 20 20 20 20 52 61 69 73 65 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 4c 69 6e 41 6c | .....Raises.....------.....LinAl |
| d380 | 67 45 72 72 6f 72 0a 20 20 20 20 20 20 20 20 49 66 20 74 68 65 20 65 69 67 65 6e 76 61 6c 75 65 | gError.........If.the.eigenvalue |
| d3a0 | 20 63 6f 6d 70 75 74 61 74 69 6f 6e 20 64 6f 65 73 20 6e 6f 74 20 63 6f 6e 76 65 72 67 65 2e 0a | .computation.does.not.converge.. |
| d3c0 | 0a 20 20 20 20 53 65 65 20 41 6c 73 6f 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 65 | .....See.Also.....--------.....e |
| d3e0 | 69 67 76 61 6c 73 68 20 3a 20 65 69 67 65 6e 76 61 6c 75 65 73 20 6f 66 20 72 65 61 6c 20 73 79 | igvalsh.:.eigenvalues.of.real.sy |
| d400 | 6d 6d 65 74 72 69 63 20 6f 72 20 63 6f 6d 70 6c 65 78 20 48 65 72 6d 69 74 69 61 6e 0a 20 20 20 | mmetric.or.complex.Hermitian.... |
| d420 | 20 20 20 20 20 20 20 20 20 20 20 20 28 63 6f 6e 6a 75 67 61 74 65 20 73 79 6d 6d 65 74 72 69 63 | ............(conjugate.symmetric |
| d440 | 29 20 61 72 72 61 79 73 2e 0a 20 20 20 20 65 69 67 20 3a 20 65 69 67 65 6e 76 61 6c 75 65 73 20 | ).arrays......eig.:.eigenvalues. |
| d460 | 61 6e 64 20 72 69 67 68 74 20 65 69 67 65 6e 76 65 63 74 6f 72 73 20 66 6f 72 20 6e 6f 6e 2d 73 | and.right.eigenvectors.for.non-s |
| d480 | 79 6d 6d 65 74 72 69 63 20 61 72 72 61 79 73 2e 0a 20 20 20 20 65 69 67 76 61 6c 73 20 3a 20 65 | ymmetric.arrays......eigvals.:.e |
| d4a0 | 69 67 65 6e 76 61 6c 75 65 73 20 6f 66 20 6e 6f 6e 2d 73 79 6d 6d 65 74 72 69 63 20 61 72 72 61 | igenvalues.of.non-symmetric.arra |
| d4c0 | 79 73 2e 0a 20 20 20 20 73 63 69 70 79 2e 6c 69 6e 61 6c 67 2e 65 69 67 68 20 3a 20 53 69 6d 69 | ys......scipy.linalg.eigh.:.Simi |
| d4e0 | 6c 61 72 20 66 75 6e 63 74 69 6f 6e 20 69 6e 20 53 63 69 50 79 20 28 62 75 74 20 61 6c 73 6f 20 | lar.function.in.SciPy.(but.also. |
| d500 | 73 6f 6c 76 65 73 20 74 68 65 0a 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 | solves.the...................... |
| d520 | 20 20 20 67 65 6e 65 72 61 6c 69 7a 65 64 20 65 69 67 65 6e 76 61 6c 75 65 20 70 72 6f 62 6c 65 | ...generalized.eigenvalue.proble |
| d540 | 6d 29 2e 0a 0a 20 20 20 20 4e 6f 74 65 73 0a 20 20 20 20 2d 2d 2d 2d 2d 0a 20 20 20 20 42 72 6f | m).......Notes.....-----.....Bro |
| d560 | 61 64 63 61 73 74 69 6e 67 20 72 75 6c 65 73 20 61 70 70 6c 79 2c 20 73 65 65 20 74 68 65 20 60 | adcasting.rules.apply,.see.the.` |
| d580 | 6e 75 6d 70 79 2e 6c 69 6e 61 6c 67 60 20 64 6f 63 75 6d 65 6e 74 61 74 69 6f 6e 20 66 6f 72 0a | numpy.linalg`.documentation.for. |
| d5a0 | 20 20 20 20 64 65 74 61 69 6c 73 2e 0a 0a 20 20 20 20 54 68 65 20 65 69 67 65 6e 76 61 6c 75 65 | ....details.......The.eigenvalue |
| d5c0 | 73 2f 65 69 67 65 6e 76 65 63 74 6f 72 73 20 61 72 65 20 63 6f 6d 70 75 74 65 64 20 75 73 69 6e | s/eigenvectors.are.computed.usin |
| d5e0 | 67 20 4c 41 50 41 43 4b 20 72 6f 75 74 69 6e 65 73 20 60 60 5f 73 79 65 76 64 60 60 2c 0a 20 20 | g.LAPACK.routines.``_syevd``,... |
| d600 | 20 20 60 60 5f 68 65 65 76 64 60 60 2e 0a 0a 20 20 20 20 54 68 65 20 65 69 67 65 6e 76 61 6c 75 | ..``_heevd``.......The.eigenvalu |
| d620 | 65 73 20 6f 66 20 72 65 61 6c 20 73 79 6d 6d 65 74 72 69 63 20 6f 72 20 63 6f 6d 70 6c 65 78 20 | es.of.real.symmetric.or.complex. |
| d640 | 48 65 72 6d 69 74 69 61 6e 20 6d 61 74 72 69 63 65 73 20 61 72 65 20 61 6c 77 61 79 73 0a 20 20 | Hermitian.matrices.are.always... |
| d660 | 20 20 72 65 61 6c 2e 20 5b 31 5d 5f 20 54 68 65 20 61 72 72 61 79 20 60 65 69 67 65 6e 76 61 6c | ..real..[1]_.The.array.`eigenval |
| d680 | 75 65 73 60 20 6f 66 20 28 63 6f 6c 75 6d 6e 29 20 65 69 67 65 6e 76 65 63 74 6f 72 73 20 69 73 | ues`.of.(column).eigenvectors.is |
| d6a0 | 20 75 6e 69 74 61 72 79 20 61 6e 64 0a 20 20 20 20 60 61 60 2c 20 60 65 69 67 65 6e 76 61 6c 75 | .unitary.and.....`a`,.`eigenvalu |
| d6c0 | 65 73 60 2c 20 61 6e 64 20 60 65 69 67 65 6e 76 65 63 74 6f 72 73 60 20 73 61 74 69 73 66 79 20 | es`,.and.`eigenvectors`.satisfy. |
| d6e0 | 74 68 65 20 65 71 75 61 74 69 6f 6e 73 20 60 60 64 6f 74 28 61 2c 0a 20 20 20 20 65 69 67 65 6e | the.equations.``dot(a,.....eigen |
| d700 | 76 65 63 74 6f 72 73 5b 3a 2c 20 69 5d 29 20 3d 20 65 69 67 65 6e 76 61 6c 75 65 73 5b 69 5d 20 | vectors[:,.i]).=.eigenvalues[i]. |
| d720 | 2a 20 65 69 67 65 6e 76 65 63 74 6f 72 73 5b 3a 2c 20 69 5d 60 60 2e 0a 0a 20 20 20 20 52 65 66 | *.eigenvectors[:,.i]``.......Ref |
| d740 | 65 72 65 6e 63 65 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 2e 2e 20 5b 31 | erences.....----------........[1 |
| d760 | 5d 20 47 2e 20 53 74 72 61 6e 67 2c 20 2a 4c 69 6e 65 61 72 20 41 6c 67 65 62 72 61 20 61 6e 64 | ].G..Strang,.*Linear.Algebra.and |
| d780 | 20 49 74 73 20 41 70 70 6c 69 63 61 74 69 6f 6e 73 2a 2c 20 32 6e 64 20 45 64 2e 2c 20 4f 72 6c | .Its.Applications*,.2nd.Ed.,.Orl |
| d7a0 | 61 6e 64 6f 2c 0a 20 20 20 20 20 20 20 20 20 20 20 46 4c 2c 20 41 63 61 64 65 6d 69 63 20 50 72 | ando,............FL,.Academic.Pr |
| d7c0 | 65 73 73 2c 20 49 6e 63 2e 2c 20 31 39 38 30 2c 20 70 67 2e 20 32 32 32 2e 0a 0a 20 20 20 20 45 | ess,.Inc.,.1980,.pg..222.......E |
| d7e0 | 78 61 6d 70 6c 65 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 3e 3e 3e 20 69 6d 70 | xamples.....--------.....>>>.imp |
| d800 | 6f 72 74 20 6e 75 6d 70 79 20 61 73 20 6e 70 0a 20 20 20 20 3e 3e 3e 20 66 72 6f 6d 20 6e 75 6d | ort.numpy.as.np.....>>>.from.num |
| d820 | 70 79 20 69 6d 70 6f 72 74 20 6c 69 6e 61 6c 67 20 61 73 20 4c 41 0a 20 20 20 20 3e 3e 3e 20 61 | py.import.linalg.as.LA.....>>>.a |
| d840 | 20 3d 20 6e 70 2e 61 72 72 61 79 28 5b 5b 31 2c 20 2d 32 6a 5d 2c 20 5b 32 6a 2c 20 35 5d 5d 29 | .=.np.array([[1,.-2j],.[2j,.5]]) |
| d860 | 0a 20 20 20 20 3e 3e 3e 20 61 0a 20 20 20 20 61 72 72 61 79 28 5b 5b 20 31 2e 2b 30 2e 6a 2c 20 | .....>>>.a.....array([[.1.+0.j,. |
| d880 | 2d 30 2e 2d 32 2e 6a 5d 2c 0a 20 20 20 20 20 20 20 20 20 20 20 5b 20 30 2e 2b 32 2e 6a 2c 20 20 | -0.-2.j],............[.0.+2.j,.. |
| d8a0 | 35 2e 2b 30 2e 6a 5d 5d 29 0a 20 20 20 20 3e 3e 3e 20 65 69 67 65 6e 76 61 6c 75 65 73 2c 20 65 | 5.+0.j]]).....>>>.eigenvalues,.e |
| d8c0 | 69 67 65 6e 76 65 63 74 6f 72 73 20 3d 20 4c 41 2e 65 69 67 68 28 61 29 0a 20 20 20 20 3e 3e 3e | igenvectors.=.LA.eigh(a).....>>> |
| d8e0 | 20 65 69 67 65 6e 76 61 6c 75 65 73 0a 20 20 20 20 61 72 72 61 79 28 5b 30 2e 31 37 31 35 37 32 | .eigenvalues.....array([0.171572 |
| d900 | 38 38 2c 20 35 2e 38 32 38 34 32 37 31 32 5d 29 0a 20 20 20 20 3e 3e 3e 20 65 69 67 65 6e 76 65 | 88,.5.82842712]).....>>>.eigenve |
| d920 | 63 74 6f 72 73 0a 20 20 20 20 61 72 72 61 79 28 5b 5b 2d 30 2e 39 32 33 38 37 39 35 33 2b 30 2e | ctors.....array([[-0.92387953+0. |
| d940 | 6a 20 20 20 20 20 20 20 20 2c 20 2d 30 2e 33 38 32 36 38 33 34 33 2b 30 2e 6a 20 20 20 20 20 20 | j........,.-0.38268343+0.j...... |
| d960 | 20 20 5d 2c 20 23 20 6d 61 79 20 76 61 72 79 0a 20 20 20 20 20 20 20 20 20 20 20 5b 20 30 2e 20 | ..],.#.may.vary............[.0.. |
| d980 | 20 20 20 20 20 20 20 2b 30 2e 33 38 32 36 38 33 34 33 6a 2c 20 20 30 2e 20 20 20 20 20 20 20 20 | .......+0.38268343j,..0......... |
| d9a0 | 2d 30 2e 39 32 33 38 37 39 35 33 6a 5d 5d 29 0a 0a 20 20 20 20 3e 3e 3e 20 28 6e 70 2e 64 6f 74 | -0.92387953j]])......>>>.(np.dot |
| d9c0 | 28 61 2c 20 65 69 67 65 6e 76 65 63 74 6f 72 73 5b 3a 2c 20 30 5d 29 20 2d 0a 20 20 20 20 2e 2e | (a,.eigenvectors[:,.0]).-....... |
| d9e0 | 2e 20 65 69 67 65 6e 76 61 6c 75 65 73 5b 30 5d 20 2a 20 65 69 67 65 6e 76 65 63 74 6f 72 73 5b | ..eigenvalues[0].*.eigenvectors[ |
| da00 | 3a 2c 20 30 5d 29 20 20 23 20 76 65 72 69 66 79 20 31 73 74 20 65 69 67 65 6e 76 61 6c 2f 76 65 | :,.0])..#.verify.1st.eigenval/ve |
| da20 | 63 20 70 61 69 72 0a 20 20 20 20 61 72 72 61 79 28 5b 35 2e 35 35 31 31 31 35 31 32 65 2d 31 37 | c.pair.....array([5.55111512e-17 |
| da40 | 2b 30 2e 30 30 30 30 30 30 30 65 2b 30 30 6a 2c 20 30 2e 30 30 30 30 30 30 30 30 65 2b 30 30 2b | +0.0000000e+00j,.0.00000000e+00+ |
| da60 | 31 2e 32 34 39 30 30 30 39 65 2d 31 36 6a 5d 29 0a 20 20 20 20 3e 3e 3e 20 28 6e 70 2e 64 6f 74 | 1.2490009e-16j]).....>>>.(np.dot |
| da80 | 28 61 2c 20 65 69 67 65 6e 76 65 63 74 6f 72 73 5b 3a 2c 20 31 5d 29 20 2d 0a 20 20 20 20 2e 2e | (a,.eigenvectors[:,.1]).-....... |
| daa0 | 2e 20 65 69 67 65 6e 76 61 6c 75 65 73 5b 31 5d 20 2a 20 65 69 67 65 6e 76 65 63 74 6f 72 73 5b | ..eigenvalues[1].*.eigenvectors[ |
| dac0 | 3a 2c 20 31 5d 29 20 20 23 20 76 65 72 69 66 79 20 32 6e 64 20 65 69 67 65 6e 76 61 6c 2f 76 65 | :,.1])..#.verify.2nd.eigenval/ve |
| dae0 | 63 20 70 61 69 72 0a 20 20 20 20 61 72 72 61 79 28 5b 30 2e 2b 30 2e 6a 2c 20 30 2e 2b 30 2e 6a | c.pair.....array([0.+0.j,.0.+0.j |
| db00 | 5d 29 0a 0a 20 20 20 20 3e 3e 3e 20 41 20 3d 20 6e 70 2e 6d 61 74 72 69 78 28 61 29 20 23 20 77 | ])......>>>.A.=.np.matrix(a).#.w |
| db20 | 68 61 74 20 68 61 70 70 65 6e 73 20 69 66 20 69 6e 70 75 74 20 69 73 20 61 20 6d 61 74 72 69 78 | hat.happens.if.input.is.a.matrix |
| db40 | 20 6f 62 6a 65 63 74 0a 20 20 20 20 3e 3e 3e 20 41 0a 20 20 20 20 6d 61 74 72 69 78 28 5b 5b 20 | .object.....>>>.A.....matrix([[. |
| db60 | 31 2e 2b 30 2e 6a 2c 20 2d 30 2e 2d 32 2e 6a 5d 2c 0a 20 20 20 20 20 20 20 20 20 20 20 20 5b 20 | 1.+0.j,.-0.-2.j],.............[. |
| db80 | 30 2e 2b 32 2e 6a 2c 20 20 35 2e 2b 30 2e 6a 5d 5d 29 0a 20 20 20 20 3e 3e 3e 20 65 69 67 65 6e | 0.+2.j,..5.+0.j]]).....>>>.eigen |
| dba0 | 76 61 6c 75 65 73 2c 20 65 69 67 65 6e 76 65 63 74 6f 72 73 20 3d 20 4c 41 2e 65 69 67 68 28 41 | values,.eigenvectors.=.LA.eigh(A |
| dbc0 | 29 0a 20 20 20 20 3e 3e 3e 20 65 69 67 65 6e 76 61 6c 75 65 73 0a 20 20 20 20 61 72 72 61 79 28 | ).....>>>.eigenvalues.....array( |
| dbe0 | 5b 30 2e 31 37 31 35 37 32 38 38 2c 20 35 2e 38 32 38 34 32 37 31 32 5d 29 0a 20 20 20 20 3e 3e | [0.17157288,.5.82842712]).....>> |
| dc00 | 3e 20 65 69 67 65 6e 76 65 63 74 6f 72 73 0a 20 20 20 20 6d 61 74 72 69 78 28 5b 5b 2d 30 2e 39 | >.eigenvectors.....matrix([[-0.9 |
| dc20 | 32 33 38 37 39 35 33 2b 30 2e 6a 20 20 20 20 20 20 20 20 2c 20 2d 30 2e 33 38 32 36 38 33 34 33 | 2387953+0.j........,.-0.38268343 |
| dc40 | 2b 30 2e 6a 20 20 20 20 20 20 20 20 5d 2c 20 23 20 6d 61 79 20 76 61 72 79 0a 20 20 20 20 20 20 | +0.j........],.#.may.vary....... |
| dc60 | 20 20 20 20 20 20 5b 20 30 2e 20 20 20 20 20 20 20 20 2b 30 2e 33 38 32 36 38 33 34 33 6a 2c 20 | ......[.0.........+0.38268343j,. |
| dc80 | 20 30 2e 20 20 20 20 20 20 20 20 2d 30 2e 39 32 33 38 37 39 35 33 6a 5d 5d 29 0a 0a 20 20 20 20 | .0.........-0.92387953j]])...... |
| dca0 | 3e 3e 3e 20 23 20 64 65 6d 6f 6e 73 74 72 61 74 65 20 74 68 65 20 74 72 65 61 74 6d 65 6e 74 20 | >>>.#.demonstrate.the.treatment. |
| dcc0 | 6f 66 20 74 68 65 20 69 6d 61 67 69 6e 61 72 79 20 70 61 72 74 20 6f 66 20 74 68 65 20 64 69 61 | of.the.imaginary.part.of.the.dia |
| dce0 | 67 6f 6e 61 6c 0a 20 20 20 20 3e 3e 3e 20 61 20 3d 20 6e 70 2e 61 72 72 61 79 28 5b 5b 35 2b 32 | gonal.....>>>.a.=.np.array([[5+2 |
| dd00 | 6a 2c 20 39 2d 32 6a 5d 2c 20 5b 30 2b 32 6a 2c 20 32 2d 31 6a 5d 5d 29 0a 20 20 20 20 3e 3e 3e | j,.9-2j],.[0+2j,.2-1j]]).....>>> |
| dd20 | 20 61 0a 20 20 20 20 61 72 72 61 79 28 5b 5b 35 2e 2b 32 2e 6a 2c 20 39 2e 2d 32 2e 6a 5d 2c 0a | .a.....array([[5.+2.j,.9.-2.j],. |
| dd40 | 20 20 20 20 20 20 20 20 20 20 20 5b 30 2e 2b 32 2e 6a 2c 20 32 2e 2d 31 2e 6a 5d 5d 29 0a 20 20 | ...........[0.+2.j,.2.-1.j]])... |
| dd60 | 20 20 3e 3e 3e 20 23 20 77 69 74 68 20 55 50 4c 4f 3d 27 4c 27 20 74 68 69 73 20 69 73 20 6e 75 | ..>>>.#.with.UPLO='L'.this.is.nu |
| dd80 | 6d 65 72 69 63 61 6c 6c 79 20 65 71 75 69 76 61 6c 65 6e 74 20 74 6f 20 75 73 69 6e 67 20 4c 41 | merically.equivalent.to.using.LA |
| dda0 | 2e 65 69 67 28 29 20 77 69 74 68 3a 0a 20 20 20 20 3e 3e 3e 20 62 20 3d 20 6e 70 2e 61 72 72 61 | .eig().with:.....>>>.b.=.np.arra |
| ddc0 | 79 28 5b 5b 35 2e 2b 30 2e 6a 2c 20 30 2e 2d 32 2e 6a 5d 2c 20 5b 30 2e 2b 32 2e 6a 2c 20 32 2e | y([[5.+0.j,.0.-2.j],.[0.+2.j,.2. |
| dde0 | 2d 30 2e 6a 5d 5d 29 0a 20 20 20 20 3e 3e 3e 20 62 0a 20 20 20 20 61 72 72 61 79 28 5b 5b 35 2e | -0.j]]).....>>>.b.....array([[5. |
| de00 | 2b 30 2e 6a 2c 20 30 2e 2d 32 2e 6a 5d 2c 0a 20 20 20 20 20 20 20 20 20 20 20 5b 30 2e 2b 32 2e | +0.j,.0.-2.j],............[0.+2. |
| de20 | 6a 2c 20 32 2e 2b 30 2e 6a 5d 5d 29 0a 20 20 20 20 3e 3e 3e 20 77 61 2c 20 76 61 20 3d 20 4c 41 | j,.2.+0.j]]).....>>>.wa,.va.=.LA |
| de40 | 2e 65 69 67 68 28 61 29 0a 20 20 20 20 3e 3e 3e 20 77 62 2c 20 76 62 20 3d 20 4c 41 2e 65 69 67 | .eigh(a).....>>>.wb,.vb.=.LA.eig |
| de60 | 28 62 29 0a 20 20 20 20 3e 3e 3e 20 77 61 0a 20 20 20 20 61 72 72 61 79 28 5b 31 2e 2c 20 36 2e | (b).....>>>.wa.....array([1.,.6. |
| de80 | 5d 29 0a 20 20 20 20 3e 3e 3e 20 77 62 0a 20 20 20 20 61 72 72 61 79 28 5b 36 2e 2b 30 2e 6a 2c | ]).....>>>.wb.....array([6.+0.j, |
| dea0 | 20 31 2e 2b 30 2e 6a 5d 29 0a 20 20 20 20 3e 3e 3e 20 76 61 0a 20 20 20 20 61 72 72 61 79 28 5b | .1.+0.j]).....>>>.va.....array([ |
| dec0 | 5b 2d 30 2e 34 34 37 32 31 33 36 20 2b 30 2e 6a 20 20 20 20 20 20 20 20 2c 20 2d 30 2e 38 39 34 | [-0.4472136.+0.j........,.-0.894 |
| dee0 | 34 32 37 31 39 2b 30 2e 6a 20 20 20 20 20 20 20 20 5d 2c 20 23 20 6d 61 79 20 76 61 72 79 0a 20 | 42719+0.j........],.#.may.vary.. |
| df00 | 20 20 20 20 20 20 20 20 20 20 5b 20 30 2e 20 20 20 20 20 20 20 20 2b 30 2e 38 39 34 34 32 37 31 | ..........[.0.........+0.8944271 |
| df20 | 39 6a 2c 20 20 30 2e 20 20 20 20 20 20 20 20 2d 30 2e 34 34 37 32 31 33 36 6a 20 5d 5d 29 0a 20 | 9j,..0.........-0.4472136j.]]).. |
| df40 | 20 20 20 3e 3e 3e 20 76 62 0a 20 20 20 20 61 72 72 61 79 28 5b 5b 20 30 2e 38 39 34 34 32 37 31 | ...>>>.vb.....array([[.0.8944271 |
| df60 | 39 2b 30 2e 6a 20 20 20 20 20 20 20 2c 20 2d 30 2e 20 20 20 20 20 20 20 20 2b 30 2e 34 34 37 32 | 9+0.j.......,.-0.........+0.4472 |
| df80 | 31 33 36 6a 5d 2c 0a 20 20 20 20 20 20 20 20 20 20 20 5b 2d 30 2e 20 20 20 20 20 20 20 20 2b 30 | 136j],............[-0.........+0 |
| dfa0 | 2e 34 34 37 32 31 33 36 6a 2c 20 20 30 2e 38 39 34 34 32 37 31 39 2b 30 2e 6a 20 20 20 20 20 20 | .4472136j,..0.89442719+0.j...... |
| dfc0 | 20 5d 5d 29 0a 0a 20 20 20 20 72 3b 01 00 00 72 3d 01 00 00 72 3c 01 00 00 7a 05 44 2d 3e 64 44 | .]])......r;...r=...r<...z.D->dD |
| dfe0 | fa 05 64 2d 3e 64 64 72 df 00 00 00 72 e0 00 00 00 72 e1 00 00 00 72 e5 00 00 00 4e 46 72 e7 00 | ..d->ddr....r....r....r....NFr.. |
| e000 | 00 00 29 0e 72 0a 01 00 00 72 bd 00 00 00 72 8b 00 00 00 72 c0 00 00 00 72 a4 00 00 00 72 56 00 | ..).r....r....r....r....r....rV. |
| e020 | 00 00 da 07 65 69 67 68 5f 6c 6f da 07 65 69 67 68 5f 75 70 72 90 00 00 00 72 38 00 00 00 72 7e | ....eigh_lo..eigh_upr....r8...r~ |
| e040 | 00 00 00 72 ea 00 00 00 72 96 00 00 00 72 65 00 00 00 29 09 72 88 00 00 00 72 38 01 00 00 72 8a | ...r....r....re...).r....r8...r. |
| e060 | 00 00 00 72 8f 00 00 00 72 ec 00 00 00 72 ed 00 00 00 72 e6 00 00 00 72 36 01 00 00 72 42 01 00 | ...r....r....r....r....r6...rB.. |
| e080 | 00 73 09 00 00 00 20 20 20 20 20 20 20 20 20 72 62 00 00 00 72 10 00 00 00 72 10 00 00 00 00 06 | .s.............rb...r....r...... |
| e0a0 | 00 00 73 e9 00 00 00 80 00 f0 78 03 00 0c 10 8f 3a 89 3a 8b 3c 80 44 d8 07 0b 90 3a d1 07 1d dc | ..s.......x.....:.:.<.D....:.... |
| e0c0 | 0e 18 d0 19 3b d3 0e 3c d0 08 3c e4 0e 18 98 11 8b 6d 81 47 80 41 80 74 dc 04 1a 98 31 d4 04 1d | ....;..<..<......m.G.A.t....1... |
| e0e0 | dc 12 1d 98 61 93 2e 81 4b 80 41 80 78 e0 07 0b 88 73 82 7b dc 11 1e d7 11 26 d1 11 26 89 06 e4 | ....a...K.A.x....s.{.....&..&... |
| e100 | 11 1e d7 11 26 d1 11 26 88 06 e4 1b 28 a8 11 d4 1b 2b 91 07 b0 17 80 49 dc 09 11 d4 17 44 d8 1a | ....&..&....(....+.....I.....D.. |
| e120 | 20 a0 78 b8 08 d8 18 20 f4 05 02 0a 22 f1 00 03 05 2f f1 06 00 11 17 90 71 a0 49 d4 10 2e 89 05 | ..x........."..../......q.I..... |
| e140 | 88 01 88 32 f7 07 03 05 2f f0 08 00 09 0a 8f 08 89 08 94 19 98 38 d3 11 24 a8 35 88 08 d3 08 31 | ...2..../............8..$.5....1 |
| e160 | 80 41 d8 09 0b 8f 19 89 19 90 38 a0 25 88 19 d3 09 28 80 42 dc 0b 15 90 61 99 14 98 62 9b 18 d3 | .A........8.%....(.B....a...b... |
| e180 | 0b 22 d0 04 22 f7 0d 03 05 2f f0 00 03 05 2f fa 73 0c 00 00 00 c2 10 0e 43 27 03 c3 27 05 43 30 | .".."..../..../.s.......C'..'.C0 |
| e1a0 | 07 63 04 00 00 00 00 00 00 00 00 00 00 00 01 00 00 00 03 00 00 00 f3 08 00 00 00 97 00 7c 00 66 | .c...........................|.f |
| e1c0 | 01 53 00 72 8d 00 00 00 72 60 00 00 00 29 04 72 88 00 00 00 da 0d 66 75 6c 6c 5f 6d 61 74 72 69 | .S.r....r`...).r......full_matri |
| e1e0 | 63 65 73 da 0a 63 6f 6d 70 75 74 65 5f 75 76 da 09 68 65 72 6d 69 74 69 61 6e 73 04 00 00 00 20 | ces..compute_uv..hermitians..... |
| e200 | 20 20 20 72 62 00 00 00 da 0f 5f 73 76 64 5f 64 69 73 70 61 74 63 68 65 72 72 4b 01 00 00 95 06 | ...rb....._svd_dispatcherrK..... |
| e220 | 00 00 72 f2 00 00 00 72 61 00 00 00 63 04 00 00 00 00 00 00 00 00 00 00 00 08 00 00 00 03 00 00 | ..r....ra...c................... |
| e240 | 00 f3 ac 04 00 00 97 00 64 01 64 02 6c 00 7d 04 74 03 00 00 00 00 00 00 00 00 7c 00 ab 01 00 00 | ........d.d.l.}.t.........|..... |
| e260 | 00 00 00 00 5c 02 00 00 7d 00 7d 05 7c 03 72 e3 7c 02 72 b8 74 05 00 00 00 00 00 00 00 00 7c 00 | ....\...}.}.|.r.|.r.t.........|. |
| e280 | ab 01 00 00 00 00 00 00 5c 02 00 00 7d 06 7d 07 74 07 00 00 00 00 00 00 00 00 7c 06 ab 01 00 00 | ........\...}.}.t.........|..... |
| e2a0 | 00 00 00 00 7d 08 74 09 00 00 00 00 00 00 00 00 7c 06 ab 01 00 00 00 00 00 00 7d 06 74 0b 00 00 | ....}.t.........|.........}.t... |
| e2c0 | 00 00 00 00 00 00 7c 06 ab 01 00 00 00 00 00 00 64 03 64 02 64 02 64 04 85 03 66 02 19 00 00 00 | ......|.........d.d.d.d...f..... |
| e2e0 | 7d 09 7c 04 6a 0d 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 7c 08 7c 09 64 04 ac 05 | }.|.j...................|.|.d... |
| e300 | ab 03 00 00 00 00 00 00 7d 08 7c 04 6a 0d 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 | ........}.|.j................... |
| e320 | 7c 06 7c 09 64 04 ac 05 ab 03 00 00 00 00 00 00 7d 06 7c 04 6a 0d 00 00 00 00 00 00 00 00 00 00 | |.|.d...........}.|.j........... |
| e340 | 00 00 00 00 00 00 00 00 7c 07 7c 09 64 03 64 02 64 02 64 02 85 02 66 03 19 00 00 00 64 04 ac 05 | ........|.|.d.d.d.d...f.....d... |
| e360 | ab 03 00 00 00 00 00 00 7d 07 74 0f 00 00 00 00 00 00 00 00 7c 07 7c 08 64 03 64 02 64 02 64 02 | ........}.t.........|.|.d.d.d.d. |
| e380 | 85 02 66 03 19 00 00 00 7a 05 00 00 ab 01 00 00 00 00 00 00 6a 11 00 00 00 00 00 00 00 00 00 00 | ..f.....z...........j........... |
| e3a0 | 00 00 00 00 00 00 00 00 ab 00 00 00 00 00 00 00 7d 0a 74 13 00 00 00 00 00 00 00 00 02 00 7c 05 | ................}.t...........|. |
| e3c0 | 7c 07 ab 01 00 00 00 00 00 00 7c 06 02 00 7c 05 7c 0a ab 01 00 00 00 00 00 00 ab 03 00 00 00 00 | |.........|...|.|............... |
| e3e0 | 00 00 53 00 74 15 00 00 00 00 00 00 00 00 7c 00 ab 01 00 00 00 00 00 00 7d 06 74 09 00 00 00 00 | ..S.t.........|.........}.t..... |
| e400 | 00 00 00 00 7c 06 ab 01 00 00 00 00 00 00 7d 06 74 17 00 00 00 00 00 00 00 00 7c 06 ab 01 00 00 | ....|.........}.t.........|..... |
| e420 | 00 00 00 00 64 03 64 02 64 02 64 04 85 03 66 02 19 00 00 00 53 00 74 19 00 00 00 00 00 00 00 00 | ....d.d.d.d...f.....S.t......... |
| e440 | 7c 00 ab 01 00 00 00 00 00 00 01 00 74 1b 00 00 00 00 00 00 00 00 7c 00 ab 01 00 00 00 00 00 00 | |...........t.........|......... |
| e460 | 5c 02 00 00 7d 0b 7d 0c 7c 00 6a 1c 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 64 06 | \...}.}.|.j...................d. |
| e480 | 64 02 1a 00 5c 02 00 00 7d 0d 7d 0e 7c 02 72 b8 7c 01 72 11 74 1e 00 00 00 00 00 00 00 00 6a 20 | d...\...}.}.|.r.|.r.t.........j. |
| e4a0 | 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 7d 0f 6e 10 74 1e 00 00 00 00 00 00 00 00 | ..................}.n.t......... |
| e4c0 | 6a 22 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 7d 0f 74 25 00 00 00 00 00 00 00 00 | j"..................}.t%........ |
| e4e0 | 7c 0b ab 01 00 00 00 00 00 00 72 02 64 07 6e 01 64 08 7d 10 74 27 00 00 00 00 00 00 00 00 74 28 | |.........r.d.n.d.}.t'........t( |
| e500 | 00 00 00 00 00 00 00 00 64 09 64 0a 64 0a 64 0a ac 0b ab 05 00 00 00 00 00 00 35 00 01 00 02 00 | ........d.d.d.d...........5..... |
| e520 | 7c 0f 7c 00 7c 10 ac 0c ab 02 00 00 00 00 00 00 5c 03 00 00 7d 07 7d 06 7d 11 64 02 64 02 64 02 | |.|.|...........\...}.}.}.d.d.d. |
| e540 | ab 02 00 00 00 00 00 00 01 00 7f 07 6a 2b 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 | ............j+.................. |
| e560 | 7c 0c 64 0d ac 0e ab 02 00 00 00 00 00 00 7d 07 7f 06 6a 2b 00 00 00 00 00 00 00 00 00 00 00 00 | |.d...........}...j+............ |
| e580 | 00 00 00 00 00 00 74 2d 00 00 00 00 00 00 00 00 7c 0c ab 01 00 00 00 00 00 00 64 0d ac 0e ab 02 | ......t-........|.........d..... |
| e5a0 | 00 00 00 00 00 00 7d 06 7f 11 6a 2b 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 7c 0c | ......}...j+..................|. |
| e5c0 | 64 0d ac 0e ab 02 00 00 00 00 00 00 7d 11 74 13 00 00 00 00 00 00 00 00 02 00 7c 05 7c 07 ab 01 | d...........}.t...........|.|... |
| e5e0 | 00 00 00 00 00 00 7c 06 02 00 7c 05 7c 11 ab 01 00 00 00 00 00 00 ab 03 00 00 00 00 00 00 53 00 | ......|...|.|.................S. |
| e600 | 74 25 00 00 00 00 00 00 00 00 7c 0b ab 01 00 00 00 00 00 00 72 02 64 0f 6e 01 64 10 7d 10 74 27 | t%........|.........r.d.n.d.}.t' |
| e620 | 00 00 00 00 00 00 00 00 74 28 00 00 00 00 00 00 00 00 64 09 64 0a 64 0a 64 0a ac 0b ab 05 00 00 | ........t(........d.d.d.d....... |
| e640 | 00 00 00 00 35 00 01 00 74 1f 00 00 00 00 00 00 00 00 6a 2e 00 00 00 00 00 00 00 00 00 00 00 00 | ....5...t.........j............. |
| e660 | 00 00 00 00 00 00 7c 00 7c 10 ac 0c ab 02 00 00 00 00 00 00 7d 06 64 02 64 02 64 02 ab 02 00 00 | ......|.|...........}.d.d.d..... |
| e680 | 00 00 00 00 01 00 7f 06 6a 2b 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 74 2d 00 00 | ........j+..................t-.. |
| e6a0 | 00 00 00 00 00 00 7c 0c ab 01 00 00 00 00 00 00 64 0d ac 0e ab 02 00 00 00 00 00 00 7d 06 7c 06 | ......|.........d...........}.|. |
| e6c0 | 53 00 23 00 31 00 73 01 77 02 01 00 59 00 01 00 01 00 8c c5 78 03 59 00 77 01 23 00 31 00 73 01 | S.#.1.s.w...Y.......x.Y.w.#.1.s. |
| e6e0 | 77 02 01 00 59 00 01 00 01 00 8c 33 78 03 59 00 77 01 29 11 61 3e 14 00 00 0a 20 20 20 20 53 69 | w...Y......3x.Y.w.).a>........Si |
| e700 | 6e 67 75 6c 61 72 20 56 61 6c 75 65 20 44 65 63 6f 6d 70 6f 73 69 74 69 6f 6e 2e 0a 0a 20 20 20 | ngular.Value.Decomposition...... |
| e720 | 20 57 68 65 6e 20 60 61 60 20 69 73 20 61 20 32 44 20 61 72 72 61 79 2c 20 61 6e 64 20 60 60 66 | .When.`a`.is.a.2D.array,.and.``f |
| e740 | 75 6c 6c 5f 6d 61 74 72 69 63 65 73 3d 46 61 6c 73 65 60 60 2c 20 74 68 65 6e 20 69 74 20 69 73 | ull_matrices=False``,.then.it.is |
| e760 | 0a 20 20 20 20 66 61 63 74 6f 72 69 7a 65 64 20 61 73 20 60 60 75 20 40 20 6e 70 2e 64 69 61 67 | .....factorized.as.``u.@.np.diag |
| e780 | 28 73 29 20 40 20 76 68 20 3d 20 28 75 20 2a 20 73 29 20 40 20 76 68 60 60 2c 20 77 68 65 72 65 | (s).@.vh.=.(u.*.s).@.vh``,.where |
| e7a0 | 0a 20 20 20 20 60 75 60 20 61 6e 64 20 74 68 65 20 48 65 72 6d 69 74 69 61 6e 20 74 72 61 6e 73 | .....`u`.and.the.Hermitian.trans |
| e7c0 | 70 6f 73 65 20 6f 66 20 60 76 68 60 20 61 72 65 20 32 44 20 61 72 72 61 79 73 20 77 69 74 68 0a | pose.of.`vh`.are.2D.arrays.with. |
| e7e0 | 20 20 20 20 6f 72 74 68 6f 6e 6f 72 6d 61 6c 20 63 6f 6c 75 6d 6e 73 20 61 6e 64 20 60 73 60 20 | ....orthonormal.columns.and.`s`. |
| e800 | 69 73 20 61 20 31 44 20 61 72 72 61 79 20 6f 66 20 60 61 60 27 73 20 73 69 6e 67 75 6c 61 72 0a | is.a.1D.array.of.`a`'s.singular. |
| e820 | 20 20 20 20 76 61 6c 75 65 73 2e 20 57 68 65 6e 20 60 61 60 20 69 73 20 68 69 67 68 65 72 2d 64 | ....values..When.`a`.is.higher-d |
| e840 | 69 6d 65 6e 73 69 6f 6e 61 6c 2c 20 53 56 44 20 69 73 20 61 70 70 6c 69 65 64 20 69 6e 0a 20 20 | imensional,.SVD.is.applied.in... |
| e860 | 20 20 73 74 61 63 6b 65 64 20 6d 6f 64 65 20 61 73 20 65 78 70 6c 61 69 6e 65 64 20 62 65 6c 6f | ..stacked.mode.as.explained.belo |
| e880 | 77 2e 0a 0a 20 20 20 20 50 61 72 61 6d 65 74 65 72 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 2d | w.......Parameters.....--------- |
| e8a0 | 2d 0a 20 20 20 20 61 20 3a 20 28 2e 2e 2e 2c 20 4d 2c 20 4e 29 20 61 72 72 61 79 5f 6c 69 6b 65 | -.....a.:.(...,.M,.N).array_like |
| e8c0 | 0a 20 20 20 20 20 20 20 20 41 20 72 65 61 6c 20 6f 72 20 63 6f 6d 70 6c 65 78 20 61 72 72 61 79 | .........A.real.or.complex.array |
| e8e0 | 20 77 69 74 68 20 60 60 61 2e 6e 64 69 6d 20 3e 3d 20 32 60 60 2e 0a 20 20 20 20 66 75 6c 6c 5f | .with.``a.ndim.>=.2``......full_ |
| e900 | 6d 61 74 72 69 63 65 73 20 3a 20 62 6f 6f 6c 2c 20 6f 70 74 69 6f 6e 61 6c 0a 20 20 20 20 20 20 | matrices.:.bool,.optional....... |
| e920 | 20 20 49 66 20 54 72 75 65 20 28 64 65 66 61 75 6c 74 29 2c 20 60 75 60 20 61 6e 64 20 60 76 68 | ..If.True.(default),.`u`.and.`vh |
| e940 | 60 20 68 61 76 65 20 74 68 65 20 73 68 61 70 65 73 20 60 60 28 2e 2e 2e 2c 20 4d 2c 20 4d 29 60 | `.have.the.shapes.``(...,.M,.M)` |
| e960 | 60 20 61 6e 64 0a 20 20 20 20 20 20 20 20 60 60 28 2e 2e 2e 2c 20 4e 2c 20 4e 29 60 60 2c 20 72 | `.and.........``(...,.N,.N)``,.r |
| e980 | 65 73 70 65 63 74 69 76 65 6c 79 2e 20 20 4f 74 68 65 72 77 69 73 65 2c 20 74 68 65 20 73 68 61 | espectively...Otherwise,.the.sha |
| e9a0 | 70 65 73 20 61 72 65 0a 20 20 20 20 20 20 20 20 60 60 28 2e 2e 2e 2c 20 4d 2c 20 4b 29 60 60 20 | pes.are.........``(...,.M,.K)``. |
| e9c0 | 61 6e 64 20 60 60 28 2e 2e 2e 2c 20 4b 2c 20 4e 29 60 60 2c 20 72 65 73 70 65 63 74 69 76 65 6c | and.``(...,.K,.N)``,.respectivel |
| e9e0 | 79 2c 20 77 68 65 72 65 0a 20 20 20 20 20 20 20 20 60 60 4b 20 3d 20 6d 69 6e 28 4d 2c 20 4e 29 | y,.where.........``K.=.min(M,.N) |
| ea00 | 60 60 2e 0a 20 20 20 20 63 6f 6d 70 75 74 65 5f 75 76 20 3a 20 62 6f 6f 6c 2c 20 6f 70 74 69 6f | ``......compute_uv.:.bool,.optio |
| ea20 | 6e 61 6c 0a 20 20 20 20 20 20 20 20 57 68 65 74 68 65 72 20 6f 72 20 6e 6f 74 20 74 6f 20 63 6f | nal.........Whether.or.not.to.co |
| ea40 | 6d 70 75 74 65 20 60 75 60 20 61 6e 64 20 60 76 68 60 20 69 6e 20 61 64 64 69 74 69 6f 6e 20 74 | mpute.`u`.and.`vh`.in.addition.t |
| ea60 | 6f 20 60 73 60 2e 20 20 54 72 75 65 0a 20 20 20 20 20 20 20 20 62 79 20 64 65 66 61 75 6c 74 2e | o.`s`...True.........by.default. |
| ea80 | 0a 20 20 20 20 68 65 72 6d 69 74 69 61 6e 20 3a 20 62 6f 6f 6c 2c 20 6f 70 74 69 6f 6e 61 6c 0a | .....hermitian.:.bool,.optional. |
| eaa0 | 20 20 20 20 20 20 20 20 49 66 20 54 72 75 65 2c 20 60 61 60 20 69 73 20 61 73 73 75 6d 65 64 20 | ........If.True,.`a`.is.assumed. |
| eac0 | 74 6f 20 62 65 20 48 65 72 6d 69 74 69 61 6e 20 28 73 79 6d 6d 65 74 72 69 63 20 69 66 20 72 65 | to.be.Hermitian.(symmetric.if.re |
| eae0 | 61 6c 2d 76 61 6c 75 65 64 29 2c 0a 20 20 20 20 20 20 20 20 65 6e 61 62 6c 69 6e 67 20 61 20 6d | al-valued),.........enabling.a.m |
| eb00 | 6f 72 65 20 65 66 66 69 63 69 65 6e 74 20 6d 65 74 68 6f 64 20 66 6f 72 20 66 69 6e 64 69 6e 67 | ore.efficient.method.for.finding |
| eb20 | 20 73 69 6e 67 75 6c 61 72 20 76 61 6c 75 65 73 2e 0a 20 20 20 20 20 20 20 20 44 65 66 61 75 6c | .singular.values..........Defaul |
| eb40 | 74 73 20 74 6f 20 46 61 6c 73 65 2e 0a 0a 20 20 20 20 52 65 74 75 72 6e 73 0a 20 20 20 20 2d 2d | ts.to.False.......Returns.....-- |
| eb60 | 2d 2d 2d 2d 2d 0a 20 20 20 20 57 68 65 6e 20 60 63 6f 6d 70 75 74 65 5f 75 76 60 20 69 73 20 54 | -----.....When.`compute_uv`.is.T |
| eb80 | 72 75 65 2c 20 74 68 65 20 72 65 73 75 6c 74 20 69 73 20 61 20 6e 61 6d 65 64 74 75 70 6c 65 20 | rue,.the.result.is.a.namedtuple. |
| eba0 | 77 69 74 68 20 74 68 65 20 66 6f 6c 6c 6f 77 69 6e 67 0a 20 20 20 20 61 74 74 72 69 62 75 74 65 | with.the.following.....attribute |
| ebc0 | 20 6e 61 6d 65 73 3a 0a 0a 20 20 20 20 55 20 3a 20 7b 20 28 2e 2e 2e 2c 20 4d 2c 20 4d 29 2c 20 | .names:......U.:.{.(...,.M,.M),. |
| ebe0 | 28 2e 2e 2e 2c 20 4d 2c 20 4b 29 20 7d 20 61 72 72 61 79 0a 20 20 20 20 20 20 20 20 55 6e 69 74 | (...,.M,.K).}.array.........Unit |
| ec00 | 61 72 79 20 61 72 72 61 79 28 73 29 2e 20 54 68 65 20 66 69 72 73 74 20 60 60 61 2e 6e 64 69 6d | ary.array(s)..The.first.``a.ndim |
| ec20 | 20 2d 20 32 60 60 20 64 69 6d 65 6e 73 69 6f 6e 73 20 68 61 76 65 20 74 68 65 20 73 61 6d 65 0a | .-.2``.dimensions.have.the.same. |
| ec40 | 20 20 20 20 20 20 20 20 73 69 7a 65 20 61 73 20 74 68 6f 73 65 20 6f 66 20 74 68 65 20 69 6e 70 | ........size.as.those.of.the.inp |
| ec60 | 75 74 20 60 61 60 2e 20 54 68 65 20 73 69 7a 65 20 6f 66 20 74 68 65 20 6c 61 73 74 20 74 77 6f | ut.`a`..The.size.of.the.last.two |
| ec80 | 20 64 69 6d 65 6e 73 69 6f 6e 73 0a 20 20 20 20 20 20 20 20 64 65 70 65 6e 64 73 20 6f 6e 20 74 | .dimensions.........depends.on.t |
| eca0 | 68 65 20 76 61 6c 75 65 20 6f 66 20 60 66 75 6c 6c 5f 6d 61 74 72 69 63 65 73 60 2e 20 4f 6e 6c | he.value.of.`full_matrices`..Onl |
| ecc0 | 79 20 72 65 74 75 72 6e 65 64 20 77 68 65 6e 0a 20 20 20 20 20 20 20 20 60 63 6f 6d 70 75 74 65 | y.returned.when.........`compute |
| ece0 | 5f 75 76 60 20 69 73 20 54 72 75 65 2e 0a 20 20 20 20 53 20 3a 20 28 2e 2e 2e 2c 20 4b 29 20 61 | _uv`.is.True......S.:.(...,.K).a |
| ed00 | 72 72 61 79 0a 20 20 20 20 20 20 20 20 56 65 63 74 6f 72 28 73 29 20 77 69 74 68 20 74 68 65 20 | rray.........Vector(s).with.the. |
| ed20 | 73 69 6e 67 75 6c 61 72 20 76 61 6c 75 65 73 2c 20 77 69 74 68 69 6e 20 65 61 63 68 20 76 65 63 | singular.values,.within.each.vec |
| ed40 | 74 6f 72 20 73 6f 72 74 65 64 20 69 6e 0a 20 20 20 20 20 20 20 20 64 65 73 63 65 6e 64 69 6e 67 | tor.sorted.in.........descending |
| ed60 | 20 6f 72 64 65 72 2e 20 54 68 65 20 66 69 72 73 74 20 60 60 61 2e 6e 64 69 6d 20 2d 20 32 60 60 | .order..The.first.``a.ndim.-.2`` |
| ed80 | 20 64 69 6d 65 6e 73 69 6f 6e 73 20 68 61 76 65 20 74 68 65 20 73 61 6d 65 0a 20 20 20 20 20 20 | .dimensions.have.the.same....... |
| eda0 | 20 20 73 69 7a 65 20 61 73 20 74 68 6f 73 65 20 6f 66 20 74 68 65 20 69 6e 70 75 74 20 60 61 60 | ..size.as.those.of.the.input.`a` |
| edc0 | 2e 0a 20 20 20 20 56 68 20 3a 20 7b 20 28 2e 2e 2e 2c 20 4e 2c 20 4e 29 2c 20 28 2e 2e 2e 2c 20 | ......Vh.:.{.(...,.N,.N),.(...,. |
| ede0 | 4b 2c 20 4e 29 20 7d 20 61 72 72 61 79 0a 20 20 20 20 20 20 20 20 55 6e 69 74 61 72 79 20 61 72 | K,.N).}.array.........Unitary.ar |
| ee00 | 72 61 79 28 73 29 2e 20 54 68 65 20 66 69 72 73 74 20 60 60 61 2e 6e 64 69 6d 20 2d 20 32 60 60 | ray(s)..The.first.``a.ndim.-.2`` |
| ee20 | 20 64 69 6d 65 6e 73 69 6f 6e 73 20 68 61 76 65 20 74 68 65 20 73 61 6d 65 0a 20 20 20 20 20 20 | .dimensions.have.the.same....... |
| ee40 | 20 20 73 69 7a 65 20 61 73 20 74 68 6f 73 65 20 6f 66 20 74 68 65 20 69 6e 70 75 74 20 60 61 60 | ..size.as.those.of.the.input.`a` |
| ee60 | 2e 20 54 68 65 20 73 69 7a 65 20 6f 66 20 74 68 65 20 6c 61 73 74 20 74 77 6f 20 64 69 6d 65 6e | ..The.size.of.the.last.two.dimen |
| ee80 | 73 69 6f 6e 73 0a 20 20 20 20 20 20 20 20 64 65 70 65 6e 64 73 20 6f 6e 20 74 68 65 20 76 61 6c | sions.........depends.on.the.val |
| eea0 | 75 65 20 6f 66 20 60 66 75 6c 6c 5f 6d 61 74 72 69 63 65 73 60 2e 20 4f 6e 6c 79 20 72 65 74 75 | ue.of.`full_matrices`..Only.retu |
| eec0 | 72 6e 65 64 20 77 68 65 6e 0a 20 20 20 20 20 20 20 20 60 63 6f 6d 70 75 74 65 5f 75 76 60 20 69 | rned.when.........`compute_uv`.i |
| eee0 | 73 20 54 72 75 65 2e 0a 0a 20 20 20 20 52 61 69 73 65 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 0a 20 | s.True.......Raises.....------.. |
| ef00 | 20 20 20 4c 69 6e 41 6c 67 45 72 72 6f 72 0a 20 20 20 20 20 20 20 20 49 66 20 53 56 44 20 63 6f | ...LinAlgError.........If.SVD.co |
| ef20 | 6d 70 75 74 61 74 69 6f 6e 20 64 6f 65 73 20 6e 6f 74 20 63 6f 6e 76 65 72 67 65 2e 0a 0a 20 20 | mputation.does.not.converge..... |
| ef40 | 20 20 53 65 65 20 41 6c 73 6f 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 73 63 69 70 | ..See.Also.....--------.....scip |
| ef60 | 79 2e 6c 69 6e 61 6c 67 2e 73 76 64 20 3a 20 53 69 6d 69 6c 61 72 20 66 75 6e 63 74 69 6f 6e 20 | y.linalg.svd.:.Similar.function. |
| ef80 | 69 6e 20 53 63 69 50 79 2e 0a 20 20 20 20 73 63 69 70 79 2e 6c 69 6e 61 6c 67 2e 73 76 64 76 61 | in.SciPy......scipy.linalg.svdva |
| efa0 | 6c 73 20 3a 20 43 6f 6d 70 75 74 65 20 73 69 6e 67 75 6c 61 72 20 76 61 6c 75 65 73 20 6f 66 20 | ls.:.Compute.singular.values.of. |
| efc0 | 61 20 6d 61 74 72 69 78 2e 0a 0a 20 20 20 20 4e 6f 74 65 73 0a 20 20 20 20 2d 2d 2d 2d 2d 0a 20 | a.matrix.......Notes.....-----.. |
| efe0 | 20 20 20 54 68 65 20 64 65 63 6f 6d 70 6f 73 69 74 69 6f 6e 20 69 73 20 70 65 72 66 6f 72 6d 65 | ...The.decomposition.is.performe |
| f000 | 64 20 75 73 69 6e 67 20 4c 41 50 41 43 4b 20 72 6f 75 74 69 6e 65 20 60 60 5f 67 65 73 64 64 60 | d.using.LAPACK.routine.``_gesdd` |
| f020 | 60 2e 0a 0a 20 20 20 20 53 56 44 20 69 73 20 75 73 75 61 6c 6c 79 20 64 65 73 63 72 69 62 65 64 | `.......SVD.is.usually.described |
| f040 | 20 66 6f 72 20 74 68 65 20 66 61 63 74 6f 72 69 7a 61 74 69 6f 6e 20 6f 66 20 61 20 32 44 20 6d | .for.the.factorization.of.a.2D.m |
| f060 | 61 74 72 69 78 20 3a 6d 61 74 68 3a 60 41 60 2e 0a 20 20 20 20 54 68 65 20 68 69 67 68 65 72 2d | atrix.:math:`A`......The.higher- |
| f080 | 64 69 6d 65 6e 73 69 6f 6e 61 6c 20 63 61 73 65 20 77 69 6c 6c 20 62 65 20 64 69 73 63 75 73 73 | dimensional.case.will.be.discuss |
| f0a0 | 65 64 20 62 65 6c 6f 77 2e 20 49 6e 20 74 68 65 20 32 44 20 63 61 73 65 2c 20 53 56 44 20 69 73 | ed.below..In.the.2D.case,.SVD.is |
| f0c0 | 0a 20 20 20 20 77 72 69 74 74 65 6e 20 61 73 20 3a 6d 61 74 68 3a 60 41 20 3d 20 55 20 53 20 56 | .....written.as.:math:`A.=.U.S.V |
| f0e0 | 5e 48 60 2c 20 77 68 65 72 65 20 3a 6d 61 74 68 3a 60 41 20 3d 20 61 60 2c 20 3a 6d 61 74 68 3a | ^H`,.where.:math:`A.=.a`,.:math: |
| f100 | 60 55 3d 20 75 60 2c 0a 20 20 20 20 3a 6d 61 74 68 3a 60 53 3d 20 5c 6d 61 74 68 74 74 7b 6e 70 | `U=.u`,.....:math:`S=.\mathtt{np |
| f120 | 2e 64 69 61 67 7d 28 73 29 60 20 61 6e 64 20 3a 6d 61 74 68 3a 60 56 5e 48 20 3d 20 76 68 60 2e | .diag}(s)`.and.:math:`V^H.=.vh`. |
| f140 | 20 54 68 65 20 31 44 20 61 72 72 61 79 20 60 73 60 0a 20 20 20 20 63 6f 6e 74 61 69 6e 73 20 74 | .The.1D.array.`s`.....contains.t |
| f160 | 68 65 20 73 69 6e 67 75 6c 61 72 20 76 61 6c 75 65 73 20 6f 66 20 60 61 60 20 61 6e 64 20 60 75 | he.singular.values.of.`a`.and.`u |
| f180 | 60 20 61 6e 64 20 60 76 68 60 20 61 72 65 20 75 6e 69 74 61 72 79 2e 20 54 68 65 20 72 6f 77 73 | `.and.`vh`.are.unitary..The.rows |
| f1a0 | 0a 20 20 20 20 6f 66 20 60 76 68 60 20 61 72 65 20 74 68 65 20 65 69 67 65 6e 76 65 63 74 6f 72 | .....of.`vh`.are.the.eigenvector |
| f1c0 | 73 20 6f 66 20 3a 6d 61 74 68 3a 60 41 5e 48 20 41 60 20 61 6e 64 20 74 68 65 20 63 6f 6c 75 6d | s.of.:math:`A^H.A`.and.the.colum |
| f1e0 | 6e 73 20 6f 66 20 60 75 60 20 61 72 65 0a 20 20 20 20 74 68 65 20 65 69 67 65 6e 76 65 63 74 6f | ns.of.`u`.are.....the.eigenvecto |
| f200 | 72 73 20 6f 66 20 3a 6d 61 74 68 3a 60 41 20 41 5e 48 60 2e 20 49 6e 20 62 6f 74 68 20 63 61 73 | rs.of.:math:`A.A^H`..In.both.cas |
| f220 | 65 73 20 74 68 65 20 63 6f 72 72 65 73 70 6f 6e 64 69 6e 67 0a 20 20 20 20 28 70 6f 73 73 69 62 | es.the.corresponding.....(possib |
| f240 | 6c 79 20 6e 6f 6e 2d 7a 65 72 6f 29 20 65 69 67 65 6e 76 61 6c 75 65 73 20 61 72 65 20 67 69 76 | ly.non-zero).eigenvalues.are.giv |
| f260 | 65 6e 20 62 79 20 60 60 73 2a 2a 32 60 60 2e 0a 0a 20 20 20 20 49 66 20 60 61 60 20 68 61 73 20 | en.by.``s**2``.......If.`a`.has. |
| f280 | 6d 6f 72 65 20 74 68 61 6e 20 74 77 6f 20 64 69 6d 65 6e 73 69 6f 6e 73 2c 20 74 68 65 6e 20 62 | more.than.two.dimensions,.then.b |
| f2a0 | 72 6f 61 64 63 61 73 74 69 6e 67 20 72 75 6c 65 73 20 61 70 70 6c 79 2c 20 61 73 0a 20 20 20 20 | roadcasting.rules.apply,.as..... |
| f2c0 | 65 78 70 6c 61 69 6e 65 64 20 69 6e 20 3a 72 65 66 3a 60 72 6f 75 74 69 6e 65 73 2e 6c 69 6e 61 | explained.in.:ref:`routines.lina |
| f2e0 | 6c 67 2d 62 72 6f 61 64 63 61 73 74 69 6e 67 60 2e 20 54 68 69 73 20 6d 65 61 6e 73 20 74 68 61 | lg-broadcasting`..This.means.tha |
| f300 | 74 20 53 56 44 20 69 73 0a 20 20 20 20 77 6f 72 6b 69 6e 67 20 69 6e 20 22 73 74 61 63 6b 65 64 | t.SVD.is.....working.in."stacked |
| f320 | 22 20 6d 6f 64 65 3a 20 69 74 20 69 74 65 72 61 74 65 73 20 6f 76 65 72 20 61 6c 6c 20 69 6e 64 | ".mode:.it.iterates.over.all.ind |
| f340 | 69 63 65 73 20 6f 66 20 74 68 65 20 66 69 72 73 74 0a 20 20 20 20 60 60 61 2e 6e 64 69 6d 20 2d | ices.of.the.first.....``a.ndim.- |
| f360 | 20 32 60 60 20 64 69 6d 65 6e 73 69 6f 6e 73 20 61 6e 64 20 66 6f 72 20 65 61 63 68 20 63 6f 6d | .2``.dimensions.and.for.each.com |
| f380 | 62 69 6e 61 74 69 6f 6e 20 53 56 44 20 69 73 20 61 70 70 6c 69 65 64 20 74 6f 20 74 68 65 0a 20 | bination.SVD.is.applied.to.the.. |
| f3a0 | 20 20 20 6c 61 73 74 20 74 77 6f 20 69 6e 64 69 63 65 73 2e 20 54 68 65 20 6d 61 74 72 69 78 20 | ...last.two.indices..The.matrix. |
| f3c0 | 60 61 60 20 63 61 6e 20 62 65 20 72 65 63 6f 6e 73 74 72 75 63 74 65 64 20 66 72 6f 6d 20 74 68 | `a`.can.be.reconstructed.from.th |
| f3e0 | 65 0a 20 20 20 20 64 65 63 6f 6d 70 6f 73 69 74 69 6f 6e 20 77 69 74 68 20 65 69 74 68 65 72 20 | e.....decomposition.with.either. |
| f400 | 60 60 28 75 20 2a 20 73 5b 2e 2e 2e 2c 20 4e 6f 6e 65 2c 20 3a 5d 29 20 40 20 76 68 60 60 20 6f | ``(u.*.s[...,.None,.:]).@.vh``.o |
| f420 | 72 0a 20 20 20 20 60 60 75 20 40 20 28 73 5b 2e 2e 2e 2c 20 4e 6f 6e 65 5d 20 2a 20 76 68 29 60 | r.....``u.@.(s[...,.None].*.vh)` |
| f440 | 60 2e 20 28 54 68 65 20 60 60 40 60 60 20 6f 70 65 72 61 74 6f 72 20 63 61 6e 20 62 65 20 72 65 | `..(The.``@``.operator.can.be.re |
| f460 | 70 6c 61 63 65 64 20 62 79 20 74 68 65 0a 20 20 20 20 66 75 6e 63 74 69 6f 6e 20 60 60 6e 70 2e | placed.by.the.....function.``np. |
| f480 | 6d 61 74 6d 75 6c 60 60 20 66 6f 72 20 70 79 74 68 6f 6e 20 76 65 72 73 69 6f 6e 73 20 62 65 6c | matmul``.for.python.versions.bel |
| f4a0 | 6f 77 20 33 2e 35 2e 29 0a 0a 20 20 20 20 49 66 20 60 61 60 20 69 73 20 61 20 60 60 6d 61 74 72 | ow.3.5.)......If.`a`.is.a.``matr |
| f4c0 | 69 78 60 60 20 6f 62 6a 65 63 74 20 28 61 73 20 6f 70 70 6f 73 65 64 20 74 6f 20 61 6e 20 60 60 | ix``.object.(as.opposed.to.an.`` |
| f4e0 | 6e 64 61 72 72 61 79 60 60 29 2c 20 74 68 65 6e 20 73 6f 20 61 72 65 0a 20 20 20 20 61 6c 6c 20 | ndarray``),.then.so.are.....all. |
| f500 | 74 68 65 20 72 65 74 75 72 6e 20 76 61 6c 75 65 73 2e 0a 0a 20 20 20 20 45 78 61 6d 70 6c 65 73 | the.return.values.......Examples |
| f520 | 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 3e 3e 3e 20 69 6d 70 6f 72 74 20 6e 75 6d | .....--------.....>>>.import.num |
| f540 | 70 79 20 61 73 20 6e 70 0a 20 20 20 20 3e 3e 3e 20 72 6e 67 20 3d 20 6e 70 2e 72 61 6e 64 6f 6d | py.as.np.....>>>.rng.=.np.random |
| f560 | 2e 64 65 66 61 75 6c 74 5f 72 6e 67 28 29 0a 20 20 20 20 3e 3e 3e 20 61 20 3d 20 72 6e 67 2e 6e | .default_rng().....>>>.a.=.rng.n |
| f580 | 6f 72 6d 61 6c 28 73 69 7a 65 3d 28 39 2c 20 36 29 29 20 2b 20 31 6a 2a 72 6e 67 2e 6e 6f 72 6d | ormal(size=(9,.6)).+.1j*rng.norm |
| f5a0 | 61 6c 28 73 69 7a 65 3d 28 39 2c 20 36 29 29 0a 20 20 20 20 3e 3e 3e 20 62 20 3d 20 72 6e 67 2e | al(size=(9,.6)).....>>>.b.=.rng. |
| f5c0 | 6e 6f 72 6d 61 6c 28 73 69 7a 65 3d 28 32 2c 20 37 2c 20 38 2c 20 33 29 29 20 2b 20 31 6a 2a 72 | normal(size=(2,.7,.8,.3)).+.1j*r |
| f5e0 | 6e 67 2e 6e 6f 72 6d 61 6c 28 73 69 7a 65 3d 28 32 2c 20 37 2c 20 38 2c 20 33 29 29 0a 0a 0a 20 | ng.normal(size=(2,.7,.8,.3)).... |
| f600 | 20 20 20 52 65 63 6f 6e 73 74 72 75 63 74 69 6f 6e 20 62 61 73 65 64 20 6f 6e 20 66 75 6c 6c 20 | ...Reconstruction.based.on.full. |
| f620 | 53 56 44 2c 20 32 44 20 63 61 73 65 3a 0a 0a 20 20 20 20 3e 3e 3e 20 55 2c 20 53 2c 20 56 68 20 | SVD,.2D.case:......>>>.U,.S,.Vh. |
| f640 | 3d 20 6e 70 2e 6c 69 6e 61 6c 67 2e 73 76 64 28 61 2c 20 66 75 6c 6c 5f 6d 61 74 72 69 63 65 73 | =.np.linalg.svd(a,.full_matrices |
| f660 | 3d 54 72 75 65 29 0a 20 20 20 20 3e 3e 3e 20 55 2e 73 68 61 70 65 2c 20 53 2e 73 68 61 70 65 2c | =True).....>>>.U.shape,.S.shape, |
| f680 | 20 56 68 2e 73 68 61 70 65 0a 20 20 20 20 28 28 39 2c 20 39 29 2c 20 28 36 2c 29 2c 20 28 36 2c | .Vh.shape.....((9,.9),.(6,),.(6, |
| f6a0 | 20 36 29 29 0a 20 20 20 20 3e 3e 3e 20 6e 70 2e 61 6c 6c 63 6c 6f 73 65 28 61 2c 20 6e 70 2e 64 | .6)).....>>>.np.allclose(a,.np.d |
| f6c0 | 6f 74 28 55 5b 3a 2c 20 3a 36 5d 20 2a 20 53 2c 20 56 68 29 29 0a 20 20 20 20 54 72 75 65 0a 20 | ot(U[:,.:6].*.S,.Vh)).....True.. |
| f6e0 | 20 20 20 3e 3e 3e 20 73 6d 61 74 20 3d 20 6e 70 2e 7a 65 72 6f 73 28 28 39 2c 20 36 29 2c 20 64 | ...>>>.smat.=.np.zeros((9,.6),.d |
| f700 | 74 79 70 65 3d 63 6f 6d 70 6c 65 78 29 0a 20 20 20 20 3e 3e 3e 20 73 6d 61 74 5b 3a 36 2c 20 3a | type=complex).....>>>.smat[:6,.: |
| f720 | 36 5d 20 3d 20 6e 70 2e 64 69 61 67 28 53 29 0a 20 20 20 20 3e 3e 3e 20 6e 70 2e 61 6c 6c 63 6c | 6].=.np.diag(S).....>>>.np.allcl |
| f740 | 6f 73 65 28 61 2c 20 6e 70 2e 64 6f 74 28 55 2c 20 6e 70 2e 64 6f 74 28 73 6d 61 74 2c 20 56 68 | ose(a,.np.dot(U,.np.dot(smat,.Vh |
| f760 | 29 29 29 0a 20 20 20 20 54 72 75 65 0a 0a 20 20 20 20 52 65 63 6f 6e 73 74 72 75 63 74 69 6f 6e | ))).....True......Reconstruction |
| f780 | 20 62 61 73 65 64 20 6f 6e 20 72 65 64 75 63 65 64 20 53 56 44 2c 20 32 44 20 63 61 73 65 3a 0a | .based.on.reduced.SVD,.2D.case:. |
| f7a0 | 0a 20 20 20 20 3e 3e 3e 20 55 2c 20 53 2c 20 56 68 20 3d 20 6e 70 2e 6c 69 6e 61 6c 67 2e 73 76 | .....>>>.U,.S,.Vh.=.np.linalg.sv |
| f7c0 | 64 28 61 2c 20 66 75 6c 6c 5f 6d 61 74 72 69 63 65 73 3d 46 61 6c 73 65 29 0a 20 20 20 20 3e 3e | d(a,.full_matrices=False).....>> |
| f7e0 | 3e 20 55 2e 73 68 61 70 65 2c 20 53 2e 73 68 61 70 65 2c 20 56 68 2e 73 68 61 70 65 0a 20 20 20 | >.U.shape,.S.shape,.Vh.shape.... |
| f800 | 20 28 28 39 2c 20 36 29 2c 20 28 36 2c 29 2c 20 28 36 2c 20 36 29 29 0a 20 20 20 20 3e 3e 3e 20 | .((9,.6),.(6,),.(6,.6)).....>>>. |
| f820 | 6e 70 2e 61 6c 6c 63 6c 6f 73 65 28 61 2c 20 6e 70 2e 64 6f 74 28 55 20 2a 20 53 2c 20 56 68 29 | np.allclose(a,.np.dot(U.*.S,.Vh) |
| f840 | 29 0a 20 20 20 20 54 72 75 65 0a 20 20 20 20 3e 3e 3e 20 73 6d 61 74 20 3d 20 6e 70 2e 64 69 61 | ).....True.....>>>.smat.=.np.dia |
| f860 | 67 28 53 29 0a 20 20 20 20 3e 3e 3e 20 6e 70 2e 61 6c 6c 63 6c 6f 73 65 28 61 2c 20 6e 70 2e 64 | g(S).....>>>.np.allclose(a,.np.d |
| f880 | 6f 74 28 55 2c 20 6e 70 2e 64 6f 74 28 73 6d 61 74 2c 20 56 68 29 29 29 0a 20 20 20 20 54 72 75 | ot(U,.np.dot(smat,.Vh))).....Tru |
| f8a0 | 65 0a 0a 20 20 20 20 52 65 63 6f 6e 73 74 72 75 63 74 69 6f 6e 20 62 61 73 65 64 20 6f 6e 20 66 | e......Reconstruction.based.on.f |
| f8c0 | 75 6c 6c 20 53 56 44 2c 20 34 44 20 63 61 73 65 3a 0a 0a 20 20 20 20 3e 3e 3e 20 55 2c 20 53 2c | ull.SVD,.4D.case:......>>>.U,.S, |
| f8e0 | 20 56 68 20 3d 20 6e 70 2e 6c 69 6e 61 6c 67 2e 73 76 64 28 62 2c 20 66 75 6c 6c 5f 6d 61 74 72 | .Vh.=.np.linalg.svd(b,.full_matr |
| f900 | 69 63 65 73 3d 54 72 75 65 29 0a 20 20 20 20 3e 3e 3e 20 55 2e 73 68 61 70 65 2c 20 53 2e 73 68 | ices=True).....>>>.U.shape,.S.sh |
| f920 | 61 70 65 2c 20 56 68 2e 73 68 61 70 65 0a 20 20 20 20 28 28 32 2c 20 37 2c 20 38 2c 20 38 29 2c | ape,.Vh.shape.....((2,.7,.8,.8), |
| f940 | 20 28 32 2c 20 37 2c 20 33 29 2c 20 28 32 2c 20 37 2c 20 33 2c 20 33 29 29 0a 20 20 20 20 3e 3e | .(2,.7,.3),.(2,.7,.3,.3)).....>> |
| f960 | 3e 20 6e 70 2e 61 6c 6c 63 6c 6f 73 65 28 62 2c 20 6e 70 2e 6d 61 74 6d 75 6c 28 55 5b 2e 2e 2e | >.np.allclose(b,.np.matmul(U[... |
| f980 | 2c 20 3a 33 5d 20 2a 20 53 5b 2e 2e 2e 2c 20 4e 6f 6e 65 2c 20 3a 5d 2c 20 56 68 29 29 0a 20 20 | ,.:3].*.S[...,.None,.:],.Vh))... |
| f9a0 | 20 20 54 72 75 65 0a 20 20 20 20 3e 3e 3e 20 6e 70 2e 61 6c 6c 63 6c 6f 73 65 28 62 2c 20 6e 70 | ..True.....>>>.np.allclose(b,.np |
| f9c0 | 2e 6d 61 74 6d 75 6c 28 55 5b 2e 2e 2e 2c 20 3a 33 5d 2c 20 53 5b 2e 2e 2e 2c 20 4e 6f 6e 65 5d | .matmul(U[...,.:3],.S[...,.None] |
| f9e0 | 20 2a 20 56 68 29 29 0a 20 20 20 20 54 72 75 65 0a 0a 20 20 20 20 52 65 63 6f 6e 73 74 72 75 63 | .*.Vh)).....True......Reconstruc |
| fa00 | 74 69 6f 6e 20 62 61 73 65 64 20 6f 6e 20 72 65 64 75 63 65 64 20 53 56 44 2c 20 34 44 20 63 61 | tion.based.on.reduced.SVD,.4D.ca |
| fa20 | 73 65 3a 0a 0a 20 20 20 20 3e 3e 3e 20 55 2c 20 53 2c 20 56 68 20 3d 20 6e 70 2e 6c 69 6e 61 6c | se:......>>>.U,.S,.Vh.=.np.linal |
| fa40 | 67 2e 73 76 64 28 62 2c 20 66 75 6c 6c 5f 6d 61 74 72 69 63 65 73 3d 46 61 6c 73 65 29 0a 20 20 | g.svd(b,.full_matrices=False)... |
| fa60 | 20 20 3e 3e 3e 20 55 2e 73 68 61 70 65 2c 20 53 2e 73 68 61 70 65 2c 20 56 68 2e 73 68 61 70 65 | ..>>>.U.shape,.S.shape,.Vh.shape |
| fa80 | 0a 20 20 20 20 28 28 32 2c 20 37 2c 20 38 2c 20 33 29 2c 20 28 32 2c 20 37 2c 20 33 29 2c 20 28 | .....((2,.7,.8,.3),.(2,.7,.3),.( |
| faa0 | 32 2c 20 37 2c 20 33 2c 20 33 29 29 0a 20 20 20 20 3e 3e 3e 20 6e 70 2e 61 6c 6c 63 6c 6f 73 65 | 2,.7,.3,.3)).....>>>.np.allclose |
| fac0 | 28 62 2c 20 6e 70 2e 6d 61 74 6d 75 6c 28 55 20 2a 20 53 5b 2e 2e 2e 2c 20 4e 6f 6e 65 2c 20 3a | (b,.np.matmul(U.*.S[...,.None,.: |
| fae0 | 5d 2c 20 56 68 29 29 0a 20 20 20 20 54 72 75 65 0a 20 20 20 20 3e 3e 3e 20 6e 70 2e 61 6c 6c 63 | ],.Vh)).....True.....>>>.np.allc |
| fb00 | 6c 6f 73 65 28 62 2c 20 6e 70 2e 6d 61 74 6d 75 6c 28 55 2c 20 53 5b 2e 2e 2e 2c 20 4e 6f 6e 65 | lose(b,.np.matmul(U,.S[...,.None |
| fb20 | 5d 20 2a 20 56 68 29 29 0a 20 20 20 20 54 72 75 65 0a 0a 20 20 20 20 72 22 00 00 00 4e 2e 72 c7 | ].*.Vh)).....True......r"...N.r. |
| fb40 | 00 00 00 a9 01 da 04 61 78 69 73 72 bb 00 00 00 7a 06 44 2d 3e 44 64 44 7a 06 64 2d 3e 64 64 64 | .......axisr....z.D->DdDz.d->ddd |
| fb60 | 72 df 00 00 00 72 e0 00 00 00 72 e1 00 00 00 72 e5 00 00 00 46 72 e7 00 00 00 72 3e 01 00 00 72 | r....r....r....r....Fr....r>...r |
| fb80 | fa 00 00 00 29 18 da 05 6e 75 6d 70 79 72 8b 00 00 00 72 10 00 00 00 72 47 00 00 00 72 25 00 00 | ....)...numpyr....r....rG...r%.. |
| fba0 | 00 72 2a 00 00 00 da 0f 74 61 6b 65 5f 61 6c 6f 6e 67 5f 61 78 69 73 72 4e 00 00 00 da 09 63 6f | .r*.....take_along_axisrN.....co |
| fbc0 | 6e 6a 75 67 61 74 65 72 6e 00 00 00 72 09 00 00 00 72 49 00 00 00 72 b9 00 00 00 72 a4 00 00 00 | njugatern...r....rI...r....r.... |
| fbe0 | 72 bc 00 00 00 72 56 00 00 00 da 05 73 76 64 5f 66 da 05 73 76 64 5f 73 72 90 00 00 00 72 38 00 | r....rV.....svd_f..svd_sr....r8. |
| fc00 | 00 00 72 80 00 00 00 72 ea 00 00 00 72 96 00 00 00 72 0d 00 00 00 29 12 72 88 00 00 00 72 48 01 | ..r....r....r....r....).r....rH. |
| fc20 | 00 00 72 49 01 00 00 72 4a 01 00 00 da 02 6e 70 72 8a 00 00 00 da 01 73 da 01 75 da 03 73 67 6e | ..rI...rJ.....npr......s..u..sgn |
| fc40 | da 04 73 69 64 78 72 42 01 00 00 72 8f 00 00 00 72 ec 00 00 00 72 be 00 00 00 72 bf 00 00 00 72 | ..sidxrB...r....r....r....r....r |
| fc60 | ed 00 00 00 72 e6 00 00 00 da 02 76 68 73 12 00 00 00 20 20 20 20 20 20 20 20 20 20 20 20 20 20 | ....r......vhs.................. |
| fc80 | 20 20 20 20 72 62 00 00 00 72 0d 00 00 00 72 0d 00 00 00 99 06 00 00 73 53 02 00 00 80 00 f3 50 | ....rb...r....r........sS......P |
| fca0 | 04 00 05 17 dc 0e 18 98 11 8b 6d 81 47 80 41 80 74 e1 07 10 f1 08 00 0c 16 dc 13 17 98 01 93 37 | ..........m.G.A.t..............7 |
| fcc0 | 89 44 88 41 88 71 dc 12 16 90 71 93 27 88 43 dc 10 13 90 41 93 06 88 41 dc 13 1a 98 31 93 3a 98 | .D.A.q....q.'.C....A...A....1.:. |
| fce0 | 63 a1 34 a0 52 a0 34 98 69 d1 13 28 88 44 d8 12 14 d7 12 24 d1 12 24 a0 53 a8 24 b0 52 d0 12 24 | c.4.R.4.i..(.D.....$..$.S.$.R..$ |
| fd00 | d3 12 38 88 43 d8 10 12 d7 10 22 d1 10 22 a0 31 a0 64 b0 12 d0 10 22 d3 10 34 88 41 d8 10 12 d7 | ..8.C....."..".1.d...."..4.A.... |
| fd20 | 10 22 d1 10 22 a0 31 a0 64 a8 33 b0 04 b2 61 a8 3c d1 26 38 b8 72 d0 10 22 d3 10 42 88 41 e4 11 | ."..".1.d.3...a.<.&8.r.."..B.A.. |
| fd40 | 1a 98 31 98 73 a0 33 a8 04 aa 61 a0 3c d1 1f 30 d1 1b 30 d3 11 31 d7 11 3b d1 11 3b d3 11 3d 88 | ..1.s.3...a.<..0..0..1..;..;..=. |
| fd60 | 42 dc 13 1c 99 54 a0 21 9b 57 a0 61 a9 14 a8 62 ab 18 d3 13 32 d0 0c 32 e4 10 18 98 11 93 0b 88 | B....T.!.W.a...b....2..2........ |
| fd80 | 41 dc 10 13 90 41 93 06 88 41 dc 13 17 98 01 93 37 98 33 a1 04 a0 22 a0 04 98 39 d1 13 25 d0 0c | A....A...A......7.3..."...9..%.. |
| fda0 | 25 e4 04 16 90 71 d4 04 19 dc 12 1d 98 61 93 2e 81 4b 80 41 80 78 e0 0b 0c 8f 37 89 37 90 32 90 | %....q.......a...K.A.x....7.7.2. |
| fdc0 | 33 88 3c 81 44 80 41 80 71 d9 07 11 d9 0b 18 dc 15 22 d7 15 28 d1 15 28 89 46 e4 15 22 d7 15 28 | 3.<.D.A.q........"..(..(.F.."..( |
| fde0 | d1 15 28 88 46 e4 20 2d a8 61 d4 20 30 91 48 b0 68 88 09 dc 0d 15 d4 1b 40 d8 1e 24 a8 38 b8 48 | ..(.F..-.a..0.H.h.......@..$.8.H |
| fe00 | d8 1c 24 f4 05 02 0e 26 f1 00 03 09 36 f1 06 00 18 1e 98 61 a8 39 d4 17 35 89 48 88 41 88 71 90 | ..$....&....6......a.9..5.H.A.q. |
| fe20 | 22 f7 07 03 09 36 f0 08 00 0d 0e 8f 48 89 48 90 58 a0 45 88 48 d3 0c 2a 88 01 d8 0c 0d 8f 48 89 | "....6......H.H.X.E.H..*......H. |
| fe40 | 48 94 59 98 78 d3 15 28 a8 75 88 48 d3 0c 35 88 01 d8 0d 0f 8f 59 89 59 90 78 a0 65 88 59 d3 0d | H.Y.x..(.u.H..5......Y.Y.x.e.Y.. |
| fe60 | 2c 88 02 dc 0f 18 99 14 98 61 9b 17 a0 21 a1 54 a8 22 a3 58 d3 0f 2e d0 08 2e e4 1e 2b a8 41 d4 | ,........a...!.T.".X........+.A. |
| fe80 | 1e 2e 91 46 b0 46 88 09 dc 0d 15 d4 1b 40 d8 1e 24 a8 38 b8 48 d8 1c 24 f4 05 02 0e 26 f1 00 03 | ...F.F.......@..$.8.H..$....&... |
| fea0 | 09 3a f4 06 00 11 1e d7 10 21 d1 10 21 a0 21 a8 79 d4 10 39 88 41 f7 07 03 09 3a f0 08 00 0d 0e | .:.......!..!.!.y..9.A....:..... |
| fec0 | 8f 48 89 48 94 59 98 78 d3 15 28 a8 75 88 48 d3 0c 35 88 01 d8 0f 10 88 08 f7 1f 03 09 36 f0 00 | .H.H.Y.x..(.u.H..5...........6.. |
| fee0 | 03 09 36 fa f7 14 03 09 3a f0 00 03 09 3a fa 73 18 00 00 00 c5 2b 0f 48 3e 03 c8 00 18 49 0a 03 | ..6.....:....:.s.....+.H>....I.. |
| ff00 | c8 3e 05 49 07 07 c9 0a 05 49 13 07 63 01 00 00 00 00 00 00 00 00 00 00 00 01 00 00 00 03 00 00 | .>.I.....I..c................... |
| ff20 | 00 f3 08 00 00 00 97 00 7c 00 66 01 53 00 72 8d 00 00 00 72 60 00 00 00 a9 01 da 01 78 73 01 00 | ........|.f.S.r....r`.......xs.. |
| ff40 | 00 00 20 72 62 00 00 00 da 13 5f 73 76 64 76 61 6c 73 5f 64 69 73 70 61 74 63 68 65 72 72 5d 01 | ...rb....._svdvals_dispatcherr]. |
| ff60 | 00 00 55 07 00 00 72 f2 00 00 00 72 61 00 00 00 63 01 00 00 00 01 00 00 00 00 00 00 00 05 00 00 | ..U...r....ra...c............... |
| ff80 | 00 03 00 00 00 f3 1e 00 00 00 97 00 74 01 00 00 00 00 00 00 00 00 7c 00 64 01 64 01 ac 02 ab 03 | ............t.........|.d.d..... |
| ffa0 | 00 00 00 00 00 00 53 00 29 03 61 88 05 00 00 0a 20 20 20 20 52 65 74 75 72 6e 73 20 74 68 65 20 | ......S.).a.........Returns.the. |
| ffc0 | 73 69 6e 67 75 6c 61 72 20 76 61 6c 75 65 73 20 6f 66 20 61 20 6d 61 74 72 69 78 20 28 6f 72 20 | singular.values.of.a.matrix.(or. |
| ffe0 | 61 20 73 74 61 63 6b 20 6f 66 20 6d 61 74 72 69 63 65 73 29 20 60 60 78 60 60 2e 0a 20 20 20 20 | a.stack.of.matrices).``x``...... |
| 10000 | 57 68 65 6e 20 78 20 69 73 20 61 20 73 74 61 63 6b 20 6f 66 20 6d 61 74 72 69 63 65 73 2c 20 74 | When.x.is.a.stack.of.matrices,.t |
| 10020 | 68 65 20 66 75 6e 63 74 69 6f 6e 20 77 69 6c 6c 20 63 6f 6d 70 75 74 65 20 74 68 65 20 73 69 6e | he.function.will.compute.the.sin |
| 10040 | 67 75 6c 61 72 0a 20 20 20 20 76 61 6c 75 65 73 20 66 6f 72 20 65 61 63 68 20 6d 61 74 72 69 78 | gular.....values.for.each.matrix |
| 10060 | 20 69 6e 20 74 68 65 20 73 74 61 63 6b 2e 0a 0a 20 20 20 20 54 68 69 73 20 66 75 6e 63 74 69 6f | .in.the.stack.......This.functio |
| 10080 | 6e 20 69 73 20 41 72 72 61 79 20 41 50 49 20 63 6f 6d 70 61 74 69 62 6c 65 2e 0a 0a 20 20 20 20 | n.is.Array.API.compatible....... |
| 100a0 | 43 61 6c 6c 69 6e 67 20 60 60 6e 70 2e 73 76 64 76 61 6c 73 28 78 29 60 60 20 74 6f 20 67 65 74 | Calling.``np.svdvals(x)``.to.get |
| 100c0 | 20 73 69 6e 67 75 6c 61 72 20 76 61 6c 75 65 73 20 69 73 20 74 68 65 20 73 61 6d 65 20 61 73 0a | .singular.values.is.the.same.as. |
| 100e0 | 20 20 20 20 60 60 6e 70 2e 73 76 64 28 78 2c 20 63 6f 6d 70 75 74 65 5f 75 76 3d 46 61 6c 73 65 | ....``np.svd(x,.compute_uv=False |
| 10100 | 2c 20 68 65 72 6d 69 74 69 61 6e 3d 46 61 6c 73 65 29 60 60 2e 0a 0a 20 20 20 20 50 61 72 61 6d | ,.hermitian=False)``.......Param |
| 10120 | 65 74 65 72 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 78 20 3a 20 28 2e 2e | eters.....----------.....x.:.(.. |
| 10140 | 2e 2c 20 4d 2c 20 4e 29 20 61 72 72 61 79 5f 6c 69 6b 65 0a 20 20 20 20 20 20 20 20 49 6e 70 75 | .,.M,.N).array_like.........Inpu |
| 10160 | 74 20 61 72 72 61 79 20 68 61 76 69 6e 67 20 73 68 61 70 65 20 28 2e 2e 2e 2c 20 4d 2c 20 4e 29 | t.array.having.shape.(...,.M,.N) |
| 10180 | 20 61 6e 64 20 77 68 6f 73 65 20 6c 61 73 74 20 74 77 6f 0a 20 20 20 20 20 20 20 20 64 69 6d 65 | .and.whose.last.two.........dime |
| 101a0 | 6e 73 69 6f 6e 73 20 66 6f 72 6d 20 6d 61 74 72 69 63 65 73 20 6f 6e 20 77 68 69 63 68 20 74 6f | nsions.form.matrices.on.which.to |
| 101c0 | 20 70 65 72 66 6f 72 6d 20 73 69 6e 67 75 6c 61 72 20 76 61 6c 75 65 0a 20 20 20 20 20 20 20 20 | .perform.singular.value......... |
| 101e0 | 64 65 63 6f 6d 70 6f 73 69 74 69 6f 6e 2e 20 53 68 6f 75 6c 64 20 68 61 76 65 20 61 20 66 6c 6f | decomposition..Should.have.a.flo |
| 10200 | 61 74 69 6e 67 2d 70 6f 69 6e 74 20 64 61 74 61 20 74 79 70 65 2e 0a 0a 20 20 20 20 52 65 74 75 | ating-point.data.type.......Retu |
| 10220 | 72 6e 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 6f 75 74 20 3a 20 6e 64 61 72 72 61 | rns.....-------.....out.:.ndarra |
| 10240 | 79 0a 20 20 20 20 20 20 20 20 41 6e 20 61 72 72 61 79 20 77 69 74 68 20 73 68 61 70 65 20 28 2e | y.........An.array.with.shape.(. |
| 10260 | 2e 2e 2c 20 4b 29 20 74 68 61 74 20 63 6f 6e 74 61 69 6e 73 20 74 68 65 20 76 65 63 74 6f 72 28 | ..,.K).that.contains.the.vector( |
| 10280 | 73 29 0a 20 20 20 20 20 20 20 20 6f 66 20 73 69 6e 67 75 6c 61 72 20 76 61 6c 75 65 73 20 6f 66 | s).........of.singular.values.of |
| 102a0 | 20 6c 65 6e 67 74 68 20 4b 2c 20 77 68 65 72 65 20 4b 20 3d 20 6d 69 6e 28 4d 2c 20 4e 29 2e 0a | .length.K,.where.K.=.min(M,.N).. |
| 102c0 | 0a 20 20 20 20 53 65 65 20 41 6c 73 6f 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 73 | .....See.Also.....--------.....s |
| 102e0 | 63 69 70 79 2e 6c 69 6e 61 6c 67 2e 73 76 64 76 61 6c 73 20 3a 20 43 6f 6d 70 75 74 65 20 73 69 | cipy.linalg.svdvals.:.Compute.si |
| 10300 | 6e 67 75 6c 61 72 20 76 61 6c 75 65 73 20 6f 66 20 61 20 6d 61 74 72 69 78 2e 0a 0a 20 20 20 20 | ngular.values.of.a.matrix....... |
| 10320 | 45 78 61 6d 70 6c 65 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 0a 0a 20 20 20 20 3e 3e 3e 20 6e | Examples.....--------......>>>.n |
| 10340 | 70 2e 6c 69 6e 61 6c 67 2e 73 76 64 76 61 6c 73 28 5b 5b 31 2c 20 32 2c 20 33 2c 20 34 2c 20 35 | p.linalg.svdvals([[1,.2,.3,.4,.5 |
| 10360 | 5d 2c 0a 20 20 20 20 2e 2e 2e 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 5b 31 | ],............................[1 |
| 10380 | 2c 20 34 2c 20 39 2c 20 31 36 2c 20 32 35 5d 2c 0a 20 20 20 20 2e 2e 2e 20 20 20 20 20 20 20 20 | ,.4,.9,.16,.25],................ |
| 103a0 | 20 20 20 20 20 20 20 20 20 20 20 20 5b 31 2c 20 38 2c 20 32 37 2c 20 36 34 2c 20 31 32 35 5d 5d | ............[1,.8,.27,.64,.125]] |
| 103c0 | 29 0a 20 20 20 20 61 72 72 61 79 28 5b 31 34 36 2e 36 38 38 36 32 37 35 37 2c 20 20 20 35 2e 35 | ).....array([146.68862757,...5.5 |
| 103e0 | 37 35 31 30 36 31 32 2c 20 20 20 30 2e 36 30 33 39 33 32 34 35 5d 29 0a 0a 20 20 20 20 44 65 74 | 7510612,...0.60393245])......Det |
| 10400 | 65 72 6d 69 6e 65 20 74 68 65 20 72 61 6e 6b 20 6f 66 20 61 20 6d 61 74 72 69 78 20 75 73 69 6e | ermine.the.rank.of.a.matrix.usin |
| 10420 | 67 20 73 69 6e 67 75 6c 61 72 20 76 61 6c 75 65 73 3a 0a 0a 20 20 20 20 3e 3e 3e 20 73 20 3d 20 | g.singular.values:......>>>.s.=. |
| 10440 | 6e 70 2e 6c 69 6e 61 6c 67 2e 73 76 64 76 61 6c 73 28 5b 5b 31 2c 20 32 2c 20 33 5d 2c 0a 20 20 | np.linalg.svdvals([[1,.2,.3],... |
| 10460 | 20 20 2e 2e 2e 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 5b 32 2c | .............................[2, |
| 10480 | 20 34 2c 20 36 5d 2c 0a 20 20 20 20 2e 2e 2e 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 | .4,.6],......................... |
| 104a0 | 20 20 20 20 20 20 20 5b 2d 31 2c 20 31 2c 20 2d 31 5d 5d 29 3b 20 73 0a 20 20 20 20 61 72 72 61 | .......[-1,.1,.-1]]);.s.....arra |
| 104c0 | 79 28 5b 38 2e 33 38 34 33 34 31 39 31 65 2b 30 30 2c 20 31 2e 36 34 34 30 32 32 37 34 65 2b 30 | y([8.38434191e+00,.1.64402274e+0 |
| 104e0 | 30 2c 20 32 2e 33 31 35 33 34 33 37 38 65 2d 31 36 5d 29 0a 20 20 20 20 3e 3e 3e 20 6e 70 2e 63 | 0,.2.31534378e-16]).....>>>.np.c |
| 10500 | 6f 75 6e 74 5f 6e 6f 6e 7a 65 72 6f 28 73 20 3e 20 31 65 2d 31 30 29 20 20 23 20 4d 61 74 72 69 | ount_nonzero(s.>.1e-10)..#.Matri |
| 10520 | 78 20 6f 66 20 72 61 6e 6b 20 32 0a 20 20 20 20 32 0a 0a 20 20 20 20 46 a9 02 72 49 01 00 00 72 | x.of.rank.2.....2......F..rI...r |
| 10540 | 4a 01 00 00 29 01 72 0d 00 00 00 72 5b 01 00 00 73 01 00 00 00 20 72 62 00 00 00 72 0e 00 00 00 | J...).r....r[...s.....rb...r.... |
| 10560 | 72 0e 00 00 00 59 07 00 00 73 14 00 00 00 80 00 f4 5e 01 00 0c 0f 88 71 98 55 a8 65 d4 0b 34 d0 | r....Y...s.......^.....q.U.e..4. |
| 10580 | 04 34 72 61 00 00 00 63 02 00 00 00 00 00 00 00 00 00 00 00 01 00 00 00 03 00 00 00 f3 08 00 00 | .4ra...c........................ |
| 105a0 | 00 97 00 7c 00 66 01 53 00 72 8d 00 00 00 72 60 00 00 00 29 02 72 5c 01 00 00 da 01 70 73 02 00 | ...|.f.S.r....r`...).r\.....ps.. |
| 105c0 | 00 00 20 20 72 62 00 00 00 da 10 5f 63 6f 6e 64 5f 64 69 73 70 61 74 63 68 65 72 72 62 01 00 00 | ....rb....._cond_dispatcherrb... |
| 105e0 | 8b 07 00 00 72 f2 00 00 00 72 61 00 00 00 63 02 00 00 00 00 00 00 00 00 00 00 00 07 00 00 00 03 | ....r....ra...c................. |
| 10600 | 00 00 00 f3 04 03 00 00 97 00 74 01 00 00 00 00 00 00 00 00 7c 00 ab 01 00 00 00 00 00 00 7d 00 | ..........t.........|.........}. |
| 10620 | 74 03 00 00 00 00 00 00 00 00 7c 00 ab 01 00 00 00 00 00 00 72 0b 74 05 00 00 00 00 00 00 00 00 | t.........|.........r.t......... |
| 10640 | 64 01 ab 01 00 00 00 00 00 00 82 01 7c 01 81 04 7c 01 64 03 76 00 72 3f 74 07 00 00 00 00 00 00 | d...........|...|.d.v.r?t....... |
| 10660 | 00 00 7c 00 64 04 ac 05 ab 02 00 00 00 00 00 00 7d 02 74 09 00 00 00 00 00 00 00 00 64 06 ac 07 | ..|.d...........}.t.........d... |
| 10680 | ab 01 00 00 00 00 00 00 35 00 01 00 7c 01 64 08 6b 28 00 00 72 0c 7c 02 64 09 19 00 00 00 7c 02 | ........5...|.d.k(..r.|.d.....|. |
| 106a0 | 64 0a 19 00 00 00 7a 0b 00 00 7d 03 6e 0b 7c 02 64 0a 19 00 00 00 7c 02 64 09 19 00 00 00 7a 0b | d.....z...}.n.|.d.....|.d.....z. |
| 106c0 | 00 00 7d 03 64 02 64 02 64 02 ab 02 00 00 00 00 00 00 01 00 6e 84 74 0b 00 00 00 00 00 00 00 00 | ..}.d.d.d...........n.t......... |
| 106e0 | 7c 00 ab 01 00 00 00 00 00 00 01 00 74 0d 00 00 00 00 00 00 00 00 7c 00 ab 01 00 00 00 00 00 00 | |...........t.........|......... |
| 10700 | 5c 02 00 00 7d 04 7d 05 74 0f 00 00 00 00 00 00 00 00 7c 04 ab 01 00 00 00 00 00 00 72 02 64 0b | \...}.}.t.........|.........r.d. |
| 10720 | 6e 01 64 0c 7d 06 74 09 00 00 00 00 00 00 00 00 64 06 ac 07 ab 01 00 00 00 00 00 00 35 00 01 00 | n.d.}.t.........d...........5... |
| 10740 | 74 11 00 00 00 00 00 00 00 00 6a 12 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 7c 00 | t.........j...................|. |
| 10760 | 7c 06 ac 0d ab 02 00 00 00 00 00 00 7d 07 74 15 00 00 00 00 00 00 00 00 7c 00 7c 01 64 0e ac 0f | |...........}.t.........|.|.d... |
| 10780 | ab 03 00 00 00 00 00 00 74 15 00 00 00 00 00 00 00 00 7c 07 7c 01 64 0e ac 0f ab 03 00 00 00 00 | ........t.........|.|.d......... |
| 107a0 | 00 00 7a 05 00 00 7d 03 64 02 64 02 64 02 ab 02 00 00 00 00 00 00 01 00 7f 03 6a 17 00 00 00 00 | ..z...}.d.d.d.............j..... |
| 107c0 | 00 00 00 00 00 00 00 00 00 00 00 00 00 00 7c 05 64 04 ac 10 ab 02 00 00 00 00 00 00 7d 03 74 01 | ..............|.d...........}.t. |
| 107e0 | 00 00 00 00 00 00 00 00 7f 03 ab 01 00 00 00 00 00 00 7d 03 74 19 00 00 00 00 00 00 00 00 7c 03 | ..................}.t.........|. |
| 10800 | ab 01 00 00 00 00 00 00 7d 08 7c 08 6a 1b 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 | ........}.|.j................... |
| 10820 | ab 00 00 00 00 00 00 00 72 43 7c 08 74 19 00 00 00 00 00 00 00 00 7c 00 ab 01 00 00 00 00 00 00 | ........rC|.t.........|......... |
| 10840 | 6a 1b 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 64 0e ac 0f ab 01 00 00 00 00 00 00 | j...................d........... |
| 10860 | 0f 00 7a 0e 00 00 7d 08 7c 03 6a 1c 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 64 11 | ..z...}.|.j...................d. |
| 10880 | 6b 44 00 00 72 0a 74 1e 00 00 00 00 00 00 00 00 7c 03 7c 08 3c 00 00 00 6e 0b 7c 08 72 09 74 1e | kD..r.t.........|.|.<...n.|.r.t. |
| 108a0 | 00 00 00 00 00 00 00 00 7c 03 64 12 3c 00 00 00 7c 03 6a 1c 00 00 00 00 00 00 00 00 00 00 00 00 | ........|.d.<...|.j............. |
| 108c0 | 00 00 00 00 00 00 64 11 6b 28 00 00 72 05 7c 03 64 12 19 00 00 00 7d 03 7c 03 53 00 23 00 31 00 | ......d.k(..r.|.d.....}.|.S.#.1. |
| 108e0 | 73 01 77 02 01 00 59 00 01 00 01 00 8c 88 78 03 59 00 77 01 23 00 31 00 73 01 77 02 01 00 59 00 | s.w...Y.......x.Y.w.#.1.s.w...Y. |
| 10900 | 01 00 01 00 8c a7 78 03 59 00 77 01 29 13 61 f9 08 00 00 0a 20 20 20 20 43 6f 6d 70 75 74 65 20 | ......x.Y.w.).a.........Compute. |
| 10920 | 74 68 65 20 63 6f 6e 64 69 74 69 6f 6e 20 6e 75 6d 62 65 72 20 6f 66 20 61 20 6d 61 74 72 69 78 | the.condition.number.of.a.matrix |
| 10940 | 2e 0a 0a 20 20 20 20 54 68 69 73 20 66 75 6e 63 74 69 6f 6e 20 69 73 20 63 61 70 61 62 6c 65 20 | .......This.function.is.capable. |
| 10960 | 6f 66 20 72 65 74 75 72 6e 69 6e 67 20 74 68 65 20 63 6f 6e 64 69 74 69 6f 6e 20 6e 75 6d 62 65 | of.returning.the.condition.numbe |
| 10980 | 72 20 75 73 69 6e 67 0a 20 20 20 20 6f 6e 65 20 6f 66 20 73 65 76 65 6e 20 64 69 66 66 65 72 65 | r.using.....one.of.seven.differe |
| 109a0 | 6e 74 20 6e 6f 72 6d 73 2c 20 64 65 70 65 6e 64 69 6e 67 20 6f 6e 20 74 68 65 20 76 61 6c 75 65 | nt.norms,.depending.on.the.value |
| 109c0 | 20 6f 66 20 60 70 60 20 28 73 65 65 0a 20 20 20 20 50 61 72 61 6d 65 74 65 72 73 20 62 65 6c 6f | .of.`p`.(see.....Parameters.belo |
| 109e0 | 77 29 2e 0a 0a 20 20 20 20 50 61 72 61 6d 65 74 65 72 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d | w).......Parameters.....-------- |
| 10a00 | 2d 2d 0a 20 20 20 20 78 20 3a 20 28 2e 2e 2e 2c 20 4d 2c 20 4e 29 20 61 72 72 61 79 5f 6c 69 6b | --.....x.:.(...,.M,.N).array_lik |
| 10a20 | 65 0a 20 20 20 20 20 20 20 20 54 68 65 20 6d 61 74 72 69 78 20 77 68 6f 73 65 20 63 6f 6e 64 69 | e.........The.matrix.whose.condi |
| 10a40 | 74 69 6f 6e 20 6e 75 6d 62 65 72 20 69 73 20 73 6f 75 67 68 74 2e 0a 20 20 20 20 70 20 3a 20 7b | tion.number.is.sought......p.:.{ |
| 10a60 | 4e 6f 6e 65 2c 20 31 2c 20 2d 31 2c 20 32 2c 20 2d 32 2c 20 69 6e 66 2c 20 2d 69 6e 66 2c 20 27 | None,.1,.-1,.2,.-2,.inf,.-inf,.' |
| 10a80 | 66 72 6f 27 7d 2c 20 6f 70 74 69 6f 6e 61 6c 0a 20 20 20 20 20 20 20 20 4f 72 64 65 72 20 6f 66 | fro'},.optional.........Order.of |
| 10aa0 | 20 74 68 65 20 6e 6f 72 6d 20 75 73 65 64 20 69 6e 20 74 68 65 20 63 6f 6e 64 69 74 69 6f 6e 20 | .the.norm.used.in.the.condition. |
| 10ac0 | 6e 75 6d 62 65 72 20 63 6f 6d 70 75 74 61 74 69 6f 6e 3a 0a 0a 20 20 20 20 20 20 20 20 3d 3d 3d | number.computation:..........=== |
| 10ae0 | 3d 3d 20 20 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d | ==..============================ |
| 10b00 | 0a 20 20 20 20 20 20 20 20 70 20 20 20 20 20 20 6e 6f 72 6d 20 66 6f 72 20 6d 61 74 72 69 63 65 | .........p......norm.for.matrice |
| 10b20 | 73 0a 20 20 20 20 20 20 20 20 3d 3d 3d 3d 3d 20 20 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d | s.........=====..=============== |
| 10b40 | 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 0a 20 20 20 20 20 20 20 20 4e 6f 6e 65 20 20 20 32 2d 6e | =============.........None...2-n |
| 10b60 | 6f 72 6d 2c 20 63 6f 6d 70 75 74 65 64 20 64 69 72 65 63 74 6c 79 20 75 73 69 6e 67 20 74 68 65 | orm,.computed.directly.using.the |
| 10b80 | 20 60 60 53 56 44 60 60 0a 20 20 20 20 20 20 20 20 27 66 72 6f 27 20 20 46 72 6f 62 65 6e 69 75 | .``SVD``.........'fro'..Frobeniu |
| 10ba0 | 73 20 6e 6f 72 6d 0a 20 20 20 20 20 20 20 20 69 6e 66 20 20 20 20 6d 61 78 28 73 75 6d 28 61 62 | s.norm.........inf....max(sum(ab |
| 10bc0 | 73 28 78 29 2c 20 61 78 69 73 3d 31 29 29 0a 20 20 20 20 20 20 20 20 2d 69 6e 66 20 20 20 6d 69 | s(x),.axis=1)).........-inf...mi |
| 10be0 | 6e 28 73 75 6d 28 61 62 73 28 78 29 2c 20 61 78 69 73 3d 31 29 29 0a 20 20 20 20 20 20 20 20 31 | n(sum(abs(x),.axis=1)).........1 |
| 10c00 | 20 20 20 20 20 20 6d 61 78 28 73 75 6d 28 61 62 73 28 78 29 2c 20 61 78 69 73 3d 30 29 29 0a 20 | ......max(sum(abs(x),.axis=0)).. |
| 10c20 | 20 20 20 20 20 20 20 2d 31 20 20 20 20 20 6d 69 6e 28 73 75 6d 28 61 62 73 28 78 29 2c 20 61 78 | .......-1.....min(sum(abs(x),.ax |
| 10c40 | 69 73 3d 30 29 29 0a 20 20 20 20 20 20 20 20 32 20 20 20 20 20 20 32 2d 6e 6f 72 6d 20 28 6c 61 | is=0)).........2......2-norm.(la |
| 10c60 | 72 67 65 73 74 20 73 69 6e 67 2e 20 76 61 6c 75 65 29 0a 20 20 20 20 20 20 20 20 2d 32 20 20 20 | rgest.sing..value).........-2... |
| 10c80 | 20 20 73 6d 61 6c 6c 65 73 74 20 73 69 6e 67 75 6c 61 72 20 76 61 6c 75 65 0a 20 20 20 20 20 20 | ..smallest.singular.value....... |
| 10ca0 | 20 20 3d 3d 3d 3d 3d 20 20 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d | ..=====..======================= |
| 10cc0 | 3d 3d 3d 3d 3d 0a 0a 20 20 20 20 20 20 20 20 69 6e 66 20 6d 65 61 6e 73 20 74 68 65 20 60 6e 75 | =====..........inf.means.the.`nu |
| 10ce0 | 6d 70 79 2e 69 6e 66 60 20 6f 62 6a 65 63 74 2c 20 61 6e 64 20 74 68 65 20 46 72 6f 62 65 6e 69 | mpy.inf`.object,.and.the.Frobeni |
| 10d00 | 75 73 20 6e 6f 72 6d 20 69 73 0a 20 20 20 20 20 20 20 20 74 68 65 20 72 6f 6f 74 2d 6f 66 2d 73 | us.norm.is.........the.root-of-s |
| 10d20 | 75 6d 2d 6f 66 2d 73 71 75 61 72 65 73 20 6e 6f 72 6d 2e 0a 0a 20 20 20 20 52 65 74 75 72 6e 73 | um-of-squares.norm.......Returns |
| 10d40 | 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 63 20 3a 20 7b 66 6c 6f 61 74 2c 20 69 6e 66 | .....-------.....c.:.{float,.inf |
| 10d60 | 7d 0a 20 20 20 20 20 20 20 20 54 68 65 20 63 6f 6e 64 69 74 69 6f 6e 20 6e 75 6d 62 65 72 20 6f | }.........The.condition.number.o |
| 10d80 | 66 20 74 68 65 20 6d 61 74 72 69 78 2e 20 4d 61 79 20 62 65 20 69 6e 66 69 6e 69 74 65 2e 0a 0a | f.the.matrix..May.be.infinite... |
| 10da0 | 20 20 20 20 53 65 65 20 41 6c 73 6f 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 6e 75 | ....See.Also.....--------.....nu |
| 10dc0 | 6d 70 79 2e 6c 69 6e 61 6c 67 2e 6e 6f 72 6d 0a 0a 20 20 20 20 4e 6f 74 65 73 0a 20 20 20 20 2d | mpy.linalg.norm......Notes.....- |
| 10de0 | 2d 2d 2d 2d 0a 20 20 20 20 54 68 65 20 63 6f 6e 64 69 74 69 6f 6e 20 6e 75 6d 62 65 72 20 6f 66 | ----.....The.condition.number.of |
| 10e00 | 20 60 78 60 20 69 73 20 64 65 66 69 6e 65 64 20 61 73 20 74 68 65 20 6e 6f 72 6d 20 6f 66 20 60 | .`x`.is.defined.as.the.norm.of.` |
| 10e20 | 78 60 20 74 69 6d 65 73 20 74 68 65 0a 20 20 20 20 6e 6f 72 6d 20 6f 66 20 74 68 65 20 69 6e 76 | x`.times.the.....norm.of.the.inv |
| 10e40 | 65 72 73 65 20 6f 66 20 60 78 60 20 5b 31 5d 5f 3b 20 74 68 65 20 6e 6f 72 6d 20 63 61 6e 20 62 | erse.of.`x`.[1]_;.the.norm.can.b |
| 10e60 | 65 20 74 68 65 20 75 73 75 61 6c 20 4c 32 2d 6e 6f 72 6d 0a 20 20 20 20 28 72 6f 6f 74 2d 6f 66 | e.the.usual.L2-norm.....(root-of |
| 10e80 | 2d 73 75 6d 2d 6f 66 2d 73 71 75 61 72 65 73 29 20 6f 72 20 6f 6e 65 20 6f 66 20 61 20 6e 75 6d | -sum-of-squares).or.one.of.a.num |
| 10ea0 | 62 65 72 20 6f 66 20 6f 74 68 65 72 20 6d 61 74 72 69 78 20 6e 6f 72 6d 73 2e 0a 0a 20 20 20 20 | ber.of.other.matrix.norms....... |
| 10ec0 | 52 65 66 65 72 65 6e 63 65 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 2e 2e | References.....----------....... |
| 10ee0 | 20 5b 31 5d 20 47 2e 20 53 74 72 61 6e 67 2c 20 2a 4c 69 6e 65 61 72 20 41 6c 67 65 62 72 61 20 | .[1].G..Strang,.*Linear.Algebra. |
| 10f00 | 61 6e 64 20 49 74 73 20 41 70 70 6c 69 63 61 74 69 6f 6e 73 2a 2c 20 4f 72 6c 61 6e 64 6f 2c 20 | and.Its.Applications*,.Orlando,. |
| 10f20 | 46 4c 2c 0a 20 20 20 20 20 20 20 20 20 20 20 41 63 61 64 65 6d 69 63 20 50 72 65 73 73 2c 20 49 | FL,............Academic.Press,.I |
| 10f40 | 6e 63 2e 2c 20 31 39 38 30 2c 20 70 67 2e 20 32 38 35 2e 0a 0a 20 20 20 20 45 78 61 6d 70 6c 65 | nc.,.1980,.pg..285.......Example |
| 10f60 | 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 3e 3e 3e 20 69 6d 70 6f 72 74 20 6e 75 | s.....--------.....>>>.import.nu |
| 10f80 | 6d 70 79 20 61 73 20 6e 70 0a 20 20 20 20 3e 3e 3e 20 66 72 6f 6d 20 6e 75 6d 70 79 20 69 6d 70 | mpy.as.np.....>>>.from.numpy.imp |
| 10fa0 | 6f 72 74 20 6c 69 6e 61 6c 67 20 61 73 20 4c 41 0a 20 20 20 20 3e 3e 3e 20 61 20 3d 20 6e 70 2e | ort.linalg.as.LA.....>>>.a.=.np. |
| 10fc0 | 61 72 72 61 79 28 5b 5b 31 2c 20 30 2c 20 2d 31 5d 2c 20 5b 30 2c 20 31 2c 20 30 5d 2c 20 5b 31 | array([[1,.0,.-1],.[0,.1,.0],.[1 |
| 10fe0 | 2c 20 30 2c 20 31 5d 5d 29 0a 20 20 20 20 3e 3e 3e 20 61 0a 20 20 20 20 61 72 72 61 79 28 5b 5b | ,.0,.1]]).....>>>.a.....array([[ |
| 11000 | 20 31 2c 20 20 30 2c 20 2d 31 5d 2c 0a 20 20 20 20 20 20 20 20 20 20 20 5b 20 30 2c 20 20 31 2c | .1,..0,.-1],............[.0,..1, |
| 11020 | 20 20 30 5d 2c 0a 20 20 20 20 20 20 20 20 20 20 20 5b 20 31 2c 20 20 30 2c 20 20 31 5d 5d 29 0a | ..0],............[.1,..0,..1]]). |
| 11040 | 20 20 20 20 3e 3e 3e 20 4c 41 2e 63 6f 6e 64 28 61 29 0a 20 20 20 20 31 2e 34 31 34 32 31 33 35 | ....>>>.LA.cond(a).....1.4142135 |
| 11060 | 36 32 33 37 33 30 39 35 31 0a 20 20 20 20 3e 3e 3e 20 4c 41 2e 63 6f 6e 64 28 61 2c 20 27 66 72 | 623730951.....>>>.LA.cond(a,.'fr |
| 11080 | 6f 27 29 0a 20 20 20 20 33 2e 31 36 32 32 37 37 36 36 30 31 36 38 33 37 39 35 0a 20 20 20 20 3e | o').....3.1622776601683795.....> |
| 110a0 | 3e 3e 20 4c 41 2e 63 6f 6e 64 28 61 2c 20 6e 70 2e 69 6e 66 29 0a 20 20 20 20 32 2e 30 0a 20 20 | >>.LA.cond(a,.np.inf).....2.0... |
| 110c0 | 20 20 3e 3e 3e 20 4c 41 2e 63 6f 6e 64 28 61 2c 20 2d 6e 70 2e 69 6e 66 29 0a 20 20 20 20 31 2e | ..>>>.LA.cond(a,.-np.inf).....1. |
| 110e0 | 30 0a 20 20 20 20 3e 3e 3e 20 4c 41 2e 63 6f 6e 64 28 61 2c 20 31 29 0a 20 20 20 20 32 2e 30 0a | 0.....>>>.LA.cond(a,.1).....2.0. |
| 11100 | 20 20 20 20 3e 3e 3e 20 4c 41 2e 63 6f 6e 64 28 61 2c 20 2d 31 29 0a 20 20 20 20 31 2e 30 0a 20 | ....>>>.LA.cond(a,.-1).....1.0.. |
| 11120 | 20 20 20 3e 3e 3e 20 4c 41 2e 63 6f 6e 64 28 61 2c 20 32 29 0a 20 20 20 20 31 2e 34 31 34 32 31 | ...>>>.LA.cond(a,.2).....1.41421 |
| 11140 | 33 35 36 32 33 37 33 30 39 35 31 0a 20 20 20 20 3e 3e 3e 20 4c 41 2e 63 6f 6e 64 28 61 2c 20 2d | 35623730951.....>>>.LA.cond(a,.- |
| 11160 | 32 29 0a 20 20 20 20 30 2e 37 30 37 31 30 36 37 38 31 31 38 36 35 34 37 34 36 20 23 20 6d 61 79 | 2).....0.70710678118654746.#.may |
| 11180 | 20 76 61 72 79 0a 20 20 20 20 3e 3e 3e 20 28 6d 69 6e 28 4c 41 2e 73 76 64 28 61 2c 20 63 6f 6d | .vary.....>>>.(min(LA.svd(a,.com |
| 111a0 | 70 75 74 65 5f 75 76 3d 46 61 6c 73 65 29 29 20 2a 0a 20 20 20 20 2e 2e 2e 20 6d 69 6e 28 4c 41 | pute_uv=False)).*.........min(LA |
| 111c0 | 2e 73 76 64 28 4c 41 2e 69 6e 76 28 61 29 2c 20 63 6f 6d 70 75 74 65 5f 75 76 3d 46 61 6c 73 65 | .svd(LA.inv(a),.compute_uv=False |
| 111e0 | 29 29 29 0a 20 20 20 20 30 2e 37 30 37 31 30 36 37 38 31 31 38 36 35 34 37 34 36 20 23 20 6d 61 | ))).....0.70710678118654746.#.ma |
| 11200 | 79 20 76 61 72 79 0a 0a 20 20 20 20 7a 23 63 6f 6e 64 20 69 73 20 6e 6f 74 20 64 65 66 69 6e 65 | y.vary......z#cond.is.not.define |
| 11220 | 64 20 6f 6e 20 65 6d 70 74 79 20 61 72 72 61 79 73 4e 3e 02 00 00 00 72 b2 00 00 00 72 bb 00 00 | d.on.empty.arraysN>....r....r... |
| 11240 | 00 46 a9 01 72 49 01 00 00 72 e0 00 00 00 29 01 72 27 00 00 00 72 bb 00 00 00 29 02 2e 72 c7 00 | .F..rI...r....).r'...r....)..r.. |
| 11260 | 00 00 29 02 2e 72 22 00 00 00 72 f9 00 00 00 72 fa 00 00 00 72 e5 00 00 00 a9 02 72 bb 00 00 00 | ..)..r"...r....r....r......r.... |
| 11280 | 72 c7 00 00 00 72 4d 01 00 00 72 e7 00 00 00 72 22 00 00 00 72 60 00 00 00 29 10 72 2d 00 00 00 | r....rM...r....r"...r`...).r-... |
| 112a0 | 72 c5 00 00 00 72 16 00 00 00 72 0d 00 00 00 72 38 00 00 00 72 c0 00 00 00 72 a4 00 00 00 72 90 | r....r....r....r8...r....r....r. |
| 112c0 | 00 00 00 72 56 00 00 00 72 06 00 00 00 72 12 00 00 00 72 ea 00 00 00 72 3f 00 00 00 da 03 61 6e | ...rV...r....r....r....r?.....an |
| 112e0 | 79 72 b4 00 00 00 72 3b 00 00 00 29 09 72 5c 01 00 00 72 61 01 00 00 72 55 01 00 00 72 ee 00 00 | yr....r;...).r\...ra...rU...r... |
| 11300 | 00 72 8f 00 00 00 72 ec 00 00 00 72 e6 00 00 00 da 04 69 6e 76 78 da 08 6e 61 6e 5f 6d 61 73 6b | .r....r....r......invx..nan_mask |
| 11320 | 73 09 00 00 00 20 20 20 20 20 20 20 20 20 72 62 00 00 00 72 14 00 00 00 72 14 00 00 00 8f 07 00 | s.............rb...r....r....... |
| 11340 | 00 73 81 01 00 00 80 00 f4 64 02 00 09 10 90 01 8b 0a 80 41 dc 07 13 90 41 84 7f dc 0e 19 d0 1a | .s.......d.........A....A....... |
| 11360 | 3f d3 0e 40 d0 08 40 d8 07 08 80 79 90 41 98 17 91 4c dc 0c 0f 90 01 98 65 d4 0c 24 88 01 dc 0d | ?..@..@....y.A...L......e..$.... |
| 11380 | 15 98 28 d4 0d 23 f1 00 04 09 2b d8 0f 10 90 42 8a 77 d8 14 15 90 67 91 4a a0 11 a0 36 a1 19 d1 | ..(..#....+....B.w....g.J...6... |
| 113a0 | 14 2a 91 01 e0 14 15 90 66 91 49 a0 01 a0 27 a1 0a d1 14 2a 90 01 f7 09 04 09 2b f0 00 04 09 2b | .*......f.I...'....*......+....+ |
| 113c0 | f4 10 00 09 1f 98 71 d4 08 21 dc 16 21 a0 21 93 6e 89 0b 88 01 88 38 dc 1e 2b a8 41 d4 1e 2e 91 | ......q..!..!.!.n.....8..+.A.... |
| 113e0 | 46 b0 46 88 09 dc 0d 15 98 28 d4 0d 23 f1 00 02 09 49 01 dc 13 20 d7 13 24 d1 13 24 a0 51 b0 29 | F.F......(..#....I......$..$.Q.) |
| 11400 | d4 13 3c 88 44 dc 10 14 90 51 98 01 a0 08 d4 10 29 ac 44 b0 14 b0 71 b8 78 d4 2c 48 d1 10 48 88 | ..<.D....Q......).D...q.x.,H..H. |
| 11420 | 41 f7 05 02 09 49 01 f0 06 00 0d 0e 8f 48 89 48 90 58 a0 45 88 48 d3 0c 2a 88 01 f4 06 00 09 10 | A....I.......H.H.X.E.H..*....... |
| 11440 | 90 01 8b 0a 80 41 dc 0f 14 90 51 8b 78 80 48 d8 07 0f 87 7c 81 7c 84 7e d8 08 10 94 55 98 31 93 | .....A....Q.x.H....|.|.~....U.1. |
| 11460 | 58 97 5c 91 5c a0 78 90 5c d3 15 30 d0 14 30 d1 08 30 88 08 d8 0b 0c 8f 36 89 36 90 41 8a 3a dc | X.\.\.x.\..0..0..0......6.6.A.:. |
| 11480 | 1a 1d 88 41 88 68 8a 4b d9 0d 15 dc 14 17 88 41 88 62 89 45 f0 06 00 08 09 87 76 81 76 90 11 82 | ...A.h.K.......A.b.E......v.v... |
| 114a0 | 7b d8 0c 0d 88 62 89 45 88 01 e0 0b 0c 80 48 f7 3d 04 09 2b f0 00 04 09 2b fa f7 16 02 09 49 01 | {....b.E......H.=..+....+.....I. |
| 114c0 | f0 00 02 09 49 01 fa 73 18 00 00 00 c1 01 1d 45 2a 03 c2 1b 35 45 36 03 c5 2a 05 45 33 07 c5 36 | ....I..s.......E*...5E6..*.E3..6 |
| 114e0 | 05 45 3f 07 29 01 da 04 72 74 6f 6c 63 03 00 00 00 00 00 00 00 01 00 00 00 01 00 00 00 03 00 00 | .E?.)...rtolc................... |
| 11500 | 00 f3 08 00 00 00 97 00 7c 00 66 01 53 00 72 8d 00 00 00 72 60 00 00 00 29 04 da 01 41 da 03 74 | ........|.f.S.r....r`...)...A..t |
| 11520 | 6f 6c 72 4a 01 00 00 72 69 01 00 00 73 04 00 00 00 20 20 20 20 72 62 00 00 00 da 17 5f 6d 61 74 | olrJ...ri...s........rb....._mat |
| 11540 | 72 69 78 5f 72 61 6e 6b 5f 64 69 73 70 61 74 63 68 65 72 72 6d 01 00 00 07 08 00 00 72 f2 00 00 | rix_rank_dispatcherrm.......r... |
| 11560 | 00 72 61 00 00 00 63 03 00 00 00 00 00 00 00 01 00 00 00 06 00 00 00 03 00 00 00 f3 b8 01 00 00 | .ra...c......................... |
| 11580 | 97 00 7c 03 81 0d 7c 01 81 0b 74 01 00 00 00 00 00 00 00 00 64 02 ab 01 00 00 00 00 00 00 82 01 | ..|...|...t.........d........... |
| 115a0 | 74 03 00 00 00 00 00 00 00 00 7c 00 ab 01 00 00 00 00 00 00 7d 00 7c 00 6a 04 00 00 00 00 00 00 | t.........|.........}.|.j....... |
| 115c0 | 00 00 00 00 00 00 00 00 00 00 00 00 64 03 6b 02 00 00 72 18 74 07 00 00 00 00 00 00 00 00 74 09 | ............d.k...r.t.........t. |
| 115e0 | 00 00 00 00 00 00 00 00 7c 00 64 04 6b 28 00 00 ab 01 00 00 00 00 00 00 0c 00 ab 01 00 00 00 00 | ........|.d.k(.................. |
| 11600 | 00 00 53 00 74 0b 00 00 00 00 00 00 00 00 7c 00 64 05 7c 02 ac 06 ab 03 00 00 00 00 00 00 7d 04 | ..S.t.........|.d.|...........}. |
| 11620 | 7c 01 80 66 7c 03 80 39 74 0d 00 00 00 00 00 00 00 00 7c 00 6a 0e 00 00 00 00 00 00 00 00 00 00 | |..f|..9t.........|.j........... |
| 11640 | 00 00 00 00 00 00 00 00 64 07 64 01 1a 00 ab 01 00 00 00 00 00 00 74 11 00 00 00 00 00 00 00 00 | ........d.d...........t......... |
| 11660 | 7c 04 6a 12 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ab 01 00 00 00 00 00 00 6a 14 | |.j...........................j. |
| 11680 | 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 7a 05 00 00 7d 03 6e 14 74 03 00 00 00 00 | ..................z...}.n.t..... |
| 116a0 | 00 00 00 00 7c 03 ab 01 00 00 00 00 00 00 64 08 74 16 00 00 00 00 00 00 00 00 66 02 19 00 00 00 | ....|.........d.t.........f..... |
| 116c0 | 7d 03 7c 04 6a 0d 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 64 09 64 0a ac 0b ab 02 | }.|.j...................d.d..... |
| 116e0 | 00 00 00 00 00 00 7c 03 7a 05 00 00 7d 01 6e 14 74 03 00 00 00 00 00 00 00 00 7c 01 ab 01 00 00 | ......|.z...}.n.t.........|..... |
| 11700 | 00 00 00 00 64 08 74 16 00 00 00 00 00 00 00 00 66 02 19 00 00 00 7d 01 74 19 00 00 00 00 00 00 | ....d.t.........f.....}.t....... |
| 11720 | 00 00 7c 04 7c 01 6b 44 00 00 64 09 ac 0c ab 02 00 00 00 00 00 00 53 00 29 0d 61 f6 0f 00 00 0a | ..|.|.kD..d...........S.).a..... |
| 11740 | 20 20 20 20 52 65 74 75 72 6e 20 6d 61 74 72 69 78 20 72 61 6e 6b 20 6f 66 20 61 72 72 61 79 20 | ....Return.matrix.rank.of.array. |
| 11760 | 75 73 69 6e 67 20 53 56 44 20 6d 65 74 68 6f 64 0a 0a 20 20 20 20 52 61 6e 6b 20 6f 66 20 74 68 | using.SVD.method......Rank.of.th |
| 11780 | 65 20 61 72 72 61 79 20 69 73 20 74 68 65 20 6e 75 6d 62 65 72 20 6f 66 20 73 69 6e 67 75 6c 61 | e.array.is.the.number.of.singula |
| 117a0 | 72 20 76 61 6c 75 65 73 20 6f 66 20 74 68 65 20 61 72 72 61 79 20 74 68 61 74 20 61 72 65 0a 20 | r.values.of.the.array.that.are.. |
| 117c0 | 20 20 20 67 72 65 61 74 65 72 20 74 68 61 6e 20 60 74 6f 6c 60 2e 0a 0a 20 20 20 20 50 61 72 61 | ...greater.than.`tol`.......Para |
| 117e0 | 6d 65 74 65 72 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 41 20 3a 20 7b 28 | meters.....----------.....A.:.{( |
| 11800 | 4d 2c 29 2c 20 28 2e 2e 2e 2c 20 4d 2c 20 4e 29 7d 20 61 72 72 61 79 5f 6c 69 6b 65 0a 20 20 20 | M,),.(...,.M,.N)}.array_like.... |
| 11820 | 20 20 20 20 20 49 6e 70 75 74 20 76 65 63 74 6f 72 20 6f 72 20 73 74 61 63 6b 20 6f 66 20 6d 61 | .....Input.vector.or.stack.of.ma |
| 11840 | 74 72 69 63 65 73 2e 0a 20 20 20 20 74 6f 6c 20 3a 20 28 2e 2e 2e 29 20 61 72 72 61 79 5f 6c 69 | trices......tol.:.(...).array_li |
| 11860 | 6b 65 2c 20 66 6c 6f 61 74 2c 20 6f 70 74 69 6f 6e 61 6c 0a 20 20 20 20 20 20 20 20 54 68 72 65 | ke,.float,.optional.........Thre |
| 11880 | 73 68 6f 6c 64 20 62 65 6c 6f 77 20 77 68 69 63 68 20 53 56 44 20 76 61 6c 75 65 73 20 61 72 65 | shold.below.which.SVD.values.are |
| 118a0 | 20 63 6f 6e 73 69 64 65 72 65 64 20 7a 65 72 6f 2e 20 49 66 20 60 74 6f 6c 60 20 69 73 0a 20 20 | .considered.zero..If.`tol`.is... |
| 118c0 | 20 20 20 20 20 20 4e 6f 6e 65 2c 20 61 6e 64 20 60 60 53 60 60 20 69 73 20 61 6e 20 61 72 72 61 | ......None,.and.``S``.is.an.arra |
| 118e0 | 79 20 77 69 74 68 20 73 69 6e 67 75 6c 61 72 20 76 61 6c 75 65 73 20 66 6f 72 20 60 4d 60 2c 20 | y.with.singular.values.for.`M`,. |
| 11900 | 61 6e 64 0a 20 20 20 20 20 20 20 20 60 60 65 70 73 60 60 20 69 73 20 74 68 65 20 65 70 73 69 6c | and.........``eps``.is.the.epsil |
| 11920 | 6f 6e 20 76 61 6c 75 65 20 66 6f 72 20 64 61 74 61 74 79 70 65 20 6f 66 20 60 60 53 60 60 2c 20 | on.value.for.datatype.of.``S``,. |
| 11940 | 74 68 65 6e 20 60 74 6f 6c 60 20 69 73 0a 20 20 20 20 20 20 20 20 73 65 74 20 74 6f 20 60 60 53 | then.`tol`.is.........set.to.``S |
| 11960 | 2e 6d 61 78 28 29 20 2a 20 6d 61 78 28 4d 2c 20 4e 29 20 2a 20 65 70 73 60 60 2e 0a 20 20 20 20 | .max().*.max(M,.N).*.eps``...... |
| 11980 | 68 65 72 6d 69 74 69 61 6e 20 3a 20 62 6f 6f 6c 2c 20 6f 70 74 69 6f 6e 61 6c 0a 20 20 20 20 20 | hermitian.:.bool,.optional...... |
| 119a0 | 20 20 20 49 66 20 54 72 75 65 2c 20 60 41 60 20 69 73 20 61 73 73 75 6d 65 64 20 74 6f 20 62 65 | ...If.True,.`A`.is.assumed.to.be |
| 119c0 | 20 48 65 72 6d 69 74 69 61 6e 20 28 73 79 6d 6d 65 74 72 69 63 20 69 66 20 72 65 61 6c 2d 76 61 | .Hermitian.(symmetric.if.real-va |
| 119e0 | 6c 75 65 64 29 2c 0a 20 20 20 20 20 20 20 20 65 6e 61 62 6c 69 6e 67 20 61 20 6d 6f 72 65 20 65 | lued),.........enabling.a.more.e |
| 11a00 | 66 66 69 63 69 65 6e 74 20 6d 65 74 68 6f 64 20 66 6f 72 20 66 69 6e 64 69 6e 67 20 73 69 6e 67 | fficient.method.for.finding.sing |
| 11a20 | 75 6c 61 72 20 76 61 6c 75 65 73 2e 0a 20 20 20 20 20 20 20 20 44 65 66 61 75 6c 74 73 20 74 6f | ular.values..........Defaults.to |
| 11a40 | 20 46 61 6c 73 65 2e 0a 20 20 20 20 72 74 6f 6c 20 3a 20 28 2e 2e 2e 29 20 61 72 72 61 79 5f 6c | .False......rtol.:.(...).array_l |
| 11a60 | 69 6b 65 2c 20 66 6c 6f 61 74 2c 20 6f 70 74 69 6f 6e 61 6c 0a 20 20 20 20 20 20 20 20 50 61 72 | ike,.float,.optional.........Par |
| 11a80 | 61 6d 65 74 65 72 20 66 6f 72 20 74 68 65 20 72 65 6c 61 74 69 76 65 20 74 6f 6c 65 72 61 6e 63 | ameter.for.the.relative.toleranc |
| 11aa0 | 65 20 63 6f 6d 70 6f 6e 65 6e 74 2e 20 4f 6e 6c 79 20 60 60 74 6f 6c 60 60 20 6f 72 0a 20 20 20 | e.component..Only.``tol``.or.... |
| 11ac0 | 20 20 20 20 20 60 60 72 74 6f 6c 60 60 20 63 61 6e 20 62 65 20 73 65 74 20 61 74 20 61 20 74 69 | .....``rtol``.can.be.set.at.a.ti |
| 11ae0 | 6d 65 2e 20 44 65 66 61 75 6c 74 73 20 74 6f 20 60 60 6d 61 78 28 4d 2c 20 4e 29 20 2a 20 65 70 | me..Defaults.to.``max(M,.N).*.ep |
| 11b00 | 73 60 60 2e 0a 0a 20 20 20 20 20 20 20 20 2e 2e 20 76 65 72 73 69 6f 6e 61 64 64 65 64 3a 3a 20 | s``..............versionadded::. |
| 11b20 | 32 2e 30 2e 30 0a 0a 20 20 20 20 52 65 74 75 72 6e 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 0a 20 | 2.0.0......Returns.....-------.. |
| 11b40 | 20 20 20 72 61 6e 6b 20 3a 20 28 2e 2e 2e 29 20 61 72 72 61 79 5f 6c 69 6b 65 0a 20 20 20 20 20 | ...rank.:.(...).array_like...... |
| 11b60 | 20 20 20 52 61 6e 6b 20 6f 66 20 41 2e 0a 0a 20 20 20 20 4e 6f 74 65 73 0a 20 20 20 20 2d 2d 2d | ...Rank.of.A.......Notes.....--- |
| 11b80 | 2d 2d 0a 20 20 20 20 54 68 65 20 64 65 66 61 75 6c 74 20 74 68 72 65 73 68 6f 6c 64 20 74 6f 20 | --.....The.default.threshold.to. |
| 11ba0 | 64 65 74 65 63 74 20 72 61 6e 6b 20 64 65 66 69 63 69 65 6e 63 79 20 69 73 20 61 20 74 65 73 74 | detect.rank.deficiency.is.a.test |
| 11bc0 | 20 6f 6e 20 74 68 65 20 6d 61 67 6e 69 74 75 64 65 0a 20 20 20 20 6f 66 20 74 68 65 20 73 69 6e | .on.the.magnitude.....of.the.sin |
| 11be0 | 67 75 6c 61 72 20 76 61 6c 75 65 73 20 6f 66 20 60 41 60 2e 20 20 42 79 20 64 65 66 61 75 6c 74 | gular.values.of.`A`...By.default |
| 11c00 | 2c 20 77 65 20 69 64 65 6e 74 69 66 79 20 73 69 6e 67 75 6c 61 72 20 76 61 6c 75 65 73 0a 20 20 | ,.we.identify.singular.values... |
| 11c20 | 20 20 6c 65 73 73 20 74 68 61 6e 20 60 60 53 2e 6d 61 78 28 29 20 2a 20 6d 61 78 28 4d 2c 20 4e | ..less.than.``S.max().*.max(M,.N |
| 11c40 | 29 20 2a 20 65 70 73 60 60 20 61 73 20 69 6e 64 69 63 61 74 69 6e 67 20 72 61 6e 6b 20 64 65 66 | ).*.eps``.as.indicating.rank.def |
| 11c60 | 69 63 69 65 6e 63 79 0a 20 20 20 20 28 77 69 74 68 20 74 68 65 20 73 79 6d 62 6f 6c 73 20 64 65 | iciency.....(with.the.symbols.de |
| 11c80 | 66 69 6e 65 64 20 61 62 6f 76 65 29 2e 20 54 68 69 73 20 69 73 20 74 68 65 20 61 6c 67 6f 72 69 | fined.above)..This.is.the.algori |
| 11ca0 | 74 68 6d 20 4d 41 54 4c 41 42 20 75 73 65 73 20 5b 31 5d 2e 0a 20 20 20 20 49 74 20 61 6c 73 6f | thm.MATLAB.uses.[1]......It.also |
| 11cc0 | 20 61 70 70 65 61 72 73 20 69 6e 20 2a 4e 75 6d 65 72 69 63 61 6c 20 72 65 63 69 70 65 73 2a 20 | .appears.in.*Numerical.recipes*. |
| 11ce0 | 69 6e 20 74 68 65 20 64 69 73 63 75 73 73 69 6f 6e 20 6f 66 20 53 56 44 20 73 6f 6c 75 74 69 6f | in.the.discussion.of.SVD.solutio |
| 11d00 | 6e 73 0a 20 20 20 20 66 6f 72 20 6c 69 6e 65 61 72 20 6c 65 61 73 74 20 73 71 75 61 72 65 73 20 | ns.....for.linear.least.squares. |
| 11d20 | 5b 32 5d 2e 0a 0a 20 20 20 20 54 68 69 73 20 64 65 66 61 75 6c 74 20 74 68 72 65 73 68 6f 6c 64 | [2].......This.default.threshold |
| 11d40 | 20 69 73 20 64 65 73 69 67 6e 65 64 20 74 6f 20 64 65 74 65 63 74 20 72 61 6e 6b 20 64 65 66 69 | .is.designed.to.detect.rank.defi |
| 11d60 | 63 69 65 6e 63 79 20 61 63 63 6f 75 6e 74 69 6e 67 0a 20 20 20 20 66 6f 72 20 74 68 65 20 6e 75 | ciency.accounting.....for.the.nu |
| 11d80 | 6d 65 72 69 63 61 6c 20 65 72 72 6f 72 73 20 6f 66 20 74 68 65 20 53 56 44 20 63 6f 6d 70 75 74 | merical.errors.of.the.SVD.comput |
| 11da0 | 61 74 69 6f 6e 2e 20 49 6d 61 67 69 6e 65 20 74 68 61 74 20 74 68 65 72 65 0a 20 20 20 20 69 73 | ation..Imagine.that.there.....is |
| 11dc0 | 20 61 20 63 6f 6c 75 6d 6e 20 69 6e 20 60 41 60 20 74 68 61 74 20 69 73 20 61 6e 20 65 78 61 63 | .a.column.in.`A`.that.is.an.exac |
| 11de0 | 74 20 28 69 6e 20 66 6c 6f 61 74 69 6e 67 20 70 6f 69 6e 74 29 20 6c 69 6e 65 61 72 20 63 6f 6d | t.(in.floating.point).linear.com |
| 11e00 | 62 69 6e 61 74 69 6f 6e 0a 20 20 20 20 6f 66 20 6f 74 68 65 72 20 63 6f 6c 75 6d 6e 73 20 69 6e | bination.....of.other.columns.in |
| 11e20 | 20 60 41 60 2e 20 43 6f 6d 70 75 74 69 6e 67 20 74 68 65 20 53 56 44 20 6f 6e 20 60 41 60 20 77 | .`A`..Computing.the.SVD.on.`A`.w |
| 11e40 | 69 6c 6c 20 6e 6f 74 20 70 72 6f 64 75 63 65 0a 20 20 20 20 61 20 73 69 6e 67 75 6c 61 72 20 76 | ill.not.produce.....a.singular.v |
| 11e60 | 61 6c 75 65 20 65 78 61 63 74 6c 79 20 65 71 75 61 6c 20 74 6f 20 30 20 69 6e 20 67 65 6e 65 72 | alue.exactly.equal.to.0.in.gener |
| 11e80 | 61 6c 3a 20 61 6e 79 20 64 69 66 66 65 72 65 6e 63 65 20 6f 66 0a 20 20 20 20 74 68 65 20 73 6d | al:.any.difference.of.....the.sm |
| 11ea0 | 61 6c 6c 65 73 74 20 53 56 44 20 76 61 6c 75 65 20 66 72 6f 6d 20 30 20 77 69 6c 6c 20 62 65 20 | allest.SVD.value.from.0.will.be. |
| 11ec0 | 63 61 75 73 65 64 20 62 79 20 6e 75 6d 65 72 69 63 61 6c 20 69 6d 70 72 65 63 69 73 69 6f 6e 0a | caused.by.numerical.imprecision. |
| 11ee0 | 20 20 20 20 69 6e 20 74 68 65 20 63 61 6c 63 75 6c 61 74 69 6f 6e 20 6f 66 20 74 68 65 20 53 56 | ....in.the.calculation.of.the.SV |
| 11f00 | 44 2e 20 4f 75 72 20 74 68 72 65 73 68 6f 6c 64 20 66 6f 72 20 73 6d 61 6c 6c 20 53 56 44 20 76 | D..Our.threshold.for.small.SVD.v |
| 11f20 | 61 6c 75 65 73 20 74 61 6b 65 73 0a 20 20 20 20 74 68 69 73 20 6e 75 6d 65 72 69 63 61 6c 20 69 | alues.takes.....this.numerical.i |
| 11f40 | 6d 70 72 65 63 69 73 69 6f 6e 20 69 6e 74 6f 20 61 63 63 6f 75 6e 74 2c 20 61 6e 64 20 74 68 65 | mprecision.into.account,.and.the |
| 11f60 | 20 64 65 66 61 75 6c 74 20 74 68 72 65 73 68 6f 6c 64 20 77 69 6c 6c 0a 20 20 20 20 64 65 74 65 | .default.threshold.will.....dete |
| 11f80 | 63 74 20 73 75 63 68 20 6e 75 6d 65 72 69 63 61 6c 20 72 61 6e 6b 20 64 65 66 69 63 69 65 6e 63 | ct.such.numerical.rank.deficienc |
| 11fa0 | 79 2e 20 54 68 65 20 74 68 72 65 73 68 6f 6c 64 20 6d 61 79 20 64 65 63 6c 61 72 65 20 61 20 6d | y..The.threshold.may.declare.a.m |
| 11fc0 | 61 74 72 69 78 0a 20 20 20 20 60 41 60 20 72 61 6e 6b 20 64 65 66 69 63 69 65 6e 74 20 65 76 65 | atrix.....`A`.rank.deficient.eve |
| 11fe0 | 6e 20 69 66 20 74 68 65 20 6c 69 6e 65 61 72 20 63 6f 6d 62 69 6e 61 74 69 6f 6e 20 6f 66 20 73 | n.if.the.linear.combination.of.s |
| 12000 | 6f 6d 65 20 63 6f 6c 75 6d 6e 73 20 6f 66 20 60 41 60 0a 20 20 20 20 69 73 20 6e 6f 74 20 65 78 | ome.columns.of.`A`.....is.not.ex |
| 12020 | 61 63 74 6c 79 20 65 71 75 61 6c 20 74 6f 20 61 6e 6f 74 68 65 72 20 63 6f 6c 75 6d 6e 20 6f 66 | actly.equal.to.another.column.of |
| 12040 | 20 60 41 60 20 62 75 74 20 6f 6e 6c 79 20 6e 75 6d 65 72 69 63 61 6c 6c 79 20 76 65 72 79 0a 20 | .`A`.but.only.numerically.very.. |
| 12060 | 20 20 20 63 6c 6f 73 65 20 74 6f 20 61 6e 6f 74 68 65 72 20 63 6f 6c 75 6d 6e 20 6f 66 20 60 41 | ...close.to.another.column.of.`A |
| 12080 | 60 2e 0a 0a 20 20 20 20 57 65 20 63 68 6f 73 65 20 6f 75 72 20 64 65 66 61 75 6c 74 20 74 68 72 | `.......We.chose.our.default.thr |
| 120a0 | 65 73 68 6f 6c 64 20 62 65 63 61 75 73 65 20 69 74 20 69 73 20 69 6e 20 77 69 64 65 20 75 73 65 | eshold.because.it.is.in.wide.use |
| 120c0 | 2e 20 4f 74 68 65 72 20 74 68 72 65 73 68 6f 6c 64 73 0a 20 20 20 20 61 72 65 20 70 6f 73 73 69 | ..Other.thresholds.....are.possi |
| 120e0 | 62 6c 65 2e 20 20 46 6f 72 20 65 78 61 6d 70 6c 65 2c 20 65 6c 73 65 77 68 65 72 65 20 69 6e 20 | ble...For.example,.elsewhere.in. |
| 12100 | 74 68 65 20 32 30 30 37 20 65 64 69 74 69 6f 6e 20 6f 66 20 2a 4e 75 6d 65 72 69 63 61 6c 0a 20 | the.2007.edition.of.*Numerical.. |
| 12120 | 20 20 20 72 65 63 69 70 65 73 2a 20 74 68 65 72 65 20 69 73 20 61 6e 20 61 6c 74 65 72 6e 61 74 | ...recipes*.there.is.an.alternat |
| 12140 | 69 76 65 20 74 68 72 65 73 68 6f 6c 64 20 6f 66 20 60 60 53 2e 6d 61 78 28 29 20 2a 0a 20 20 20 | ive.threshold.of.``S.max().*.... |
| 12160 | 20 6e 70 2e 66 69 6e 66 6f 28 41 2e 64 74 79 70 65 29 2e 65 70 73 20 2f 20 32 2e 20 2a 20 6e 70 | .np.finfo(A.dtype).eps./.2..*.np |
| 12180 | 2e 73 71 72 74 28 6d 20 2b 20 6e 20 2b 20 31 2e 29 60 60 2e 20 54 68 65 20 61 75 74 68 6f 72 73 | .sqrt(m.+.n.+.1.)``..The.authors |
| 121a0 | 20 64 65 73 63 72 69 62 65 0a 20 20 20 20 74 68 69 73 20 74 68 72 65 73 68 6f 6c 64 20 61 73 20 | .describe.....this.threshold.as. |
| 121c0 | 62 65 69 6e 67 20 62 61 73 65 64 20 6f 6e 20 22 65 78 70 65 63 74 65 64 20 72 6f 75 6e 64 6f 66 | being.based.on."expected.roundof |
| 121e0 | 66 20 65 72 72 6f 72 22 20 28 70 20 37 31 29 2e 0a 0a 20 20 20 20 54 68 65 20 74 68 72 65 73 68 | f.error".(p.71).......The.thresh |
| 12200 | 6f 6c 64 73 20 61 62 6f 76 65 20 64 65 61 6c 20 77 69 74 68 20 66 6c 6f 61 74 69 6e 67 20 70 6f | olds.above.deal.with.floating.po |
| 12220 | 69 6e 74 20 72 6f 75 6e 64 6f 66 66 20 65 72 72 6f 72 20 69 6e 20 74 68 65 0a 20 20 20 20 63 61 | int.roundoff.error.in.the.....ca |
| 12240 | 6c 63 75 6c 61 74 69 6f 6e 20 6f 66 20 74 68 65 20 53 56 44 2e 20 20 48 6f 77 65 76 65 72 2c 20 | lculation.of.the.SVD...However,. |
| 12260 | 79 6f 75 20 6d 61 79 20 68 61 76 65 20 6d 6f 72 65 20 69 6e 66 6f 72 6d 61 74 69 6f 6e 20 61 62 | you.may.have.more.information.ab |
| 12280 | 6f 75 74 0a 20 20 20 20 74 68 65 20 73 6f 75 72 63 65 73 20 6f 66 20 65 72 72 6f 72 20 69 6e 20 | out.....the.sources.of.error.in. |
| 122a0 | 60 41 60 20 74 68 61 74 20 77 6f 75 6c 64 20 6d 61 6b 65 20 79 6f 75 20 63 6f 6e 73 69 64 65 72 | `A`.that.would.make.you.consider |
| 122c0 | 20 6f 74 68 65 72 20 74 6f 6c 65 72 61 6e 63 65 0a 20 20 20 20 76 61 6c 75 65 73 20 74 6f 20 64 | .other.tolerance.....values.to.d |
| 122e0 | 65 74 65 63 74 20 2a 65 66 66 65 63 74 69 76 65 2a 20 72 61 6e 6b 20 64 65 66 69 63 69 65 6e 63 | etect.*effective*.rank.deficienc |
| 12300 | 79 2e 20 54 68 65 20 6d 6f 73 74 20 75 73 65 66 75 6c 20 6d 65 61 73 75 72 65 0a 20 20 20 20 6f | y..The.most.useful.measure.....o |
| 12320 | 66 20 74 68 65 20 74 6f 6c 65 72 61 6e 63 65 20 64 65 70 65 6e 64 73 20 6f 6e 20 74 68 65 20 6f | f.the.tolerance.depends.on.the.o |
| 12340 | 70 65 72 61 74 69 6f 6e 73 20 79 6f 75 20 69 6e 74 65 6e 64 20 74 6f 20 75 73 65 20 6f 6e 20 79 | perations.you.intend.to.use.on.y |
| 12360 | 6f 75 72 0a 20 20 20 20 6d 61 74 72 69 78 2e 20 46 6f 72 20 65 78 61 6d 70 6c 65 2c 20 69 66 20 | our.....matrix..For.example,.if. |
| 12380 | 79 6f 75 72 20 64 61 74 61 20 63 6f 6d 65 20 66 72 6f 6d 20 75 6e 63 65 72 74 61 69 6e 20 6d 65 | your.data.come.from.uncertain.me |
| 123a0 | 61 73 75 72 65 6d 65 6e 74 73 20 77 69 74 68 0a 20 20 20 20 75 6e 63 65 72 74 61 69 6e 74 69 65 | asurements.with.....uncertaintie |
| 123c0 | 73 20 67 72 65 61 74 65 72 20 74 68 61 6e 20 66 6c 6f 61 74 69 6e 67 20 70 6f 69 6e 74 20 65 70 | s.greater.than.floating.point.ep |
| 123e0 | 73 69 6c 6f 6e 2c 20 63 68 6f 6f 73 69 6e 67 20 61 20 74 6f 6c 65 72 61 6e 63 65 0a 20 20 20 20 | silon,.choosing.a.tolerance..... |
| 12400 | 6e 65 61 72 20 74 68 61 74 20 75 6e 63 65 72 74 61 69 6e 74 79 20 6d 61 79 20 62 65 20 70 72 65 | near.that.uncertainty.may.be.pre |
| 12420 | 66 65 72 61 62 6c 65 2e 20 54 68 65 20 74 6f 6c 65 72 61 6e 63 65 20 6d 61 79 20 62 65 20 61 62 | ferable..The.tolerance.may.be.ab |
| 12440 | 73 6f 6c 75 74 65 0a 20 20 20 20 69 66 20 74 68 65 20 75 6e 63 65 72 74 61 69 6e 74 69 65 73 20 | solute.....if.the.uncertainties. |
| 12460 | 61 72 65 20 61 62 73 6f 6c 75 74 65 20 72 61 74 68 65 72 20 74 68 61 6e 20 72 65 6c 61 74 69 76 | are.absolute.rather.than.relativ |
| 12480 | 65 2e 0a 0a 20 20 20 20 52 65 66 65 72 65 6e 63 65 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 2d | e.......References.....--------- |
| 124a0 | 2d 0a 20 20 20 20 2e 2e 20 5b 31 5d 20 4d 41 54 4c 41 42 20 72 65 66 65 72 65 6e 63 65 20 64 6f | -........[1].MATLAB.reference.do |
| 124c0 | 63 75 6d 65 6e 74 61 74 69 6f 6e 2c 20 22 52 61 6e 6b 22 0a 20 20 20 20 20 20 20 20 20 20 20 68 | cumentation,."Rank"............h |
| 124e0 | 74 74 70 73 3a 2f 2f 77 77 77 2e 6d 61 74 68 77 6f 72 6b 73 2e 63 6f 6d 2f 68 65 6c 70 2f 74 65 | ttps://www.mathworks.com/help/te |
| 12500 | 63 68 64 6f 63 2f 72 65 66 2f 72 61 6e 6b 2e 68 74 6d 6c 0a 20 20 20 20 2e 2e 20 5b 32 5d 20 57 | chdoc/ref/rank.html........[2].W |
| 12520 | 2e 20 48 2e 20 50 72 65 73 73 2c 20 53 2e 20 41 2e 20 54 65 75 6b 6f 6c 73 6b 79 2c 20 57 2e 20 | ..H..Press,.S..A..Teukolsky,.W.. |
| 12540 | 54 2e 20 56 65 74 74 65 72 6c 69 6e 67 20 61 6e 64 20 42 2e 20 50 2e 20 46 6c 61 6e 6e 65 72 79 | T..Vetterling.and.B..P..Flannery |
| 12560 | 2c 0a 20 20 20 20 20 20 20 20 20 20 20 22 4e 75 6d 65 72 69 63 61 6c 20 52 65 63 69 70 65 73 20 | ,............"Numerical.Recipes. |
| 12580 | 28 33 72 64 20 65 64 69 74 69 6f 6e 29 22 2c 20 43 61 6d 62 72 69 64 67 65 20 55 6e 69 76 65 72 | (3rd.edition)",.Cambridge.Univer |
| 125a0 | 73 69 74 79 20 50 72 65 73 73 2c 20 32 30 30 37 2c 0a 20 20 20 20 20 20 20 20 20 20 20 70 61 67 | sity.Press,.2007,............pag |
| 125c0 | 65 20 37 39 35 2e 0a 0a 20 20 20 20 45 78 61 6d 70 6c 65 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d | e.795.......Examples.....------- |
| 125e0 | 2d 0a 20 20 20 20 3e 3e 3e 20 69 6d 70 6f 72 74 20 6e 75 6d 70 79 20 61 73 20 6e 70 0a 20 20 20 | -.....>>>.import.numpy.as.np.... |
| 12600 | 20 3e 3e 3e 20 66 72 6f 6d 20 6e 75 6d 70 79 2e 6c 69 6e 61 6c 67 20 69 6d 70 6f 72 74 20 6d 61 | .>>>.from.numpy.linalg.import.ma |
| 12620 | 74 72 69 78 5f 72 61 6e 6b 0a 20 20 20 20 3e 3e 3e 20 6d 61 74 72 69 78 5f 72 61 6e 6b 28 6e 70 | trix_rank.....>>>.matrix_rank(np |
| 12640 | 2e 65 79 65 28 34 29 29 20 23 20 46 75 6c 6c 20 72 61 6e 6b 20 6d 61 74 72 69 78 0a 20 20 20 20 | .eye(4)).#.Full.rank.matrix..... |
| 12660 | 34 0a 20 20 20 20 3e 3e 3e 20 49 3d 6e 70 2e 65 79 65 28 34 29 3b 20 49 5b 2d 31 2c 2d 31 5d 20 | 4.....>>>.I=np.eye(4);.I[-1,-1]. |
| 12680 | 3d 20 30 2e 20 23 20 72 61 6e 6b 20 64 65 66 69 63 69 65 6e 74 20 6d 61 74 72 69 78 0a 20 20 20 | =.0..#.rank.deficient.matrix.... |
| 126a0 | 20 3e 3e 3e 20 6d 61 74 72 69 78 5f 72 61 6e 6b 28 49 29 0a 20 20 20 20 33 0a 20 20 20 20 3e 3e | .>>>.matrix_rank(I).....3.....>> |
| 126c0 | 3e 20 6d 61 74 72 69 78 5f 72 61 6e 6b 28 6e 70 2e 6f 6e 65 73 28 28 34 2c 29 29 29 20 23 20 31 | >.matrix_rank(np.ones((4,))).#.1 |
| 126e0 | 20 64 69 6d 65 6e 73 69 6f 6e 20 2d 20 72 61 6e 6b 20 31 20 75 6e 6c 65 73 73 20 61 6c 6c 20 30 | .dimension.-.rank.1.unless.all.0 |
| 12700 | 0a 20 20 20 20 31 0a 20 20 20 20 3e 3e 3e 20 6d 61 74 72 69 78 5f 72 61 6e 6b 28 6e 70 2e 7a 65 | .....1.....>>>.matrix_rank(np.ze |
| 12720 | 72 6f 73 28 28 34 2c 29 29 29 0a 20 20 20 20 30 0a 20 20 20 20 4e 7a 23 60 74 6f 6c 60 20 61 6e | ros((4,))).....0.....Nz#`tol`.an |
| 12740 | 64 20 60 72 74 6f 6c 60 20 63 61 6e 27 74 20 62 65 20 62 6f 74 68 20 73 65 74 2e 72 b2 00 00 00 | d.`rtol`.can't.be.both.set.r.... |
| 12760 | 72 22 00 00 00 46 72 5f 01 00 00 72 bb 00 00 00 2e 72 c7 00 00 00 54 a9 02 72 4e 01 00 00 da 08 | r"...Fr_...r.....r....T..rN..... |
| 12780 | 6b 65 65 70 64 69 6d 73 72 4d 01 00 00 29 0d 72 bd 00 00 00 72 2d 00 00 00 72 b4 00 00 00 da 03 | keepdimsrM...).r....r-...r...... |
| 127a0 | 69 6e 74 72 27 00 00 00 72 0d 00 00 00 da 03 6d 61 78 72 bc 00 00 00 72 39 00 00 00 72 9b 00 00 | intr'...r......maxr....r9...r... |
| 127c0 | 00 da 03 65 70 73 72 42 00 00 00 72 31 00 00 00 29 05 72 6b 01 00 00 72 6c 01 00 00 72 4a 01 00 | ...epsrB...r1...).rk...rl...rJ.. |
| 127e0 | 00 72 69 01 00 00 72 70 00 00 00 73 05 00 00 00 20 20 20 20 20 72 62 00 00 00 72 15 00 00 00 72 | .ri...rp...s.........rb...r....r |
| 12800 | 15 00 00 00 0b 08 00 00 73 cf 00 00 00 80 00 f0 78 02 00 08 0c d0 07 17 98 43 98 4f dc 0e 18 d0 | ........s.......x........C.O.... |
| 12820 | 19 3e d3 0e 3f d0 08 3f e4 08 0f 90 01 8b 0a 80 41 d8 07 08 87 76 81 76 90 01 82 7a dc 0f 12 94 | .>..?..?........A....v.v...z.... |
| 12840 | 73 98 31 a0 01 99 36 93 7b 90 3f d3 0f 23 d0 08 23 dc 08 0b 88 41 98 25 a8 39 d4 08 35 80 41 e0 | s.1...6.{.?..#..#....A.%.9..5.A. |
| 12860 | 07 0a 80 7b d8 0b 0f 88 3c dc 13 16 90 71 97 77 91 77 98 72 98 73 90 7c d3 13 24 a4 75 a8 51 af | ...{....<....q.w.w.r.s.|..$.u.Q. |
| 12880 | 57 a9 57 a3 7e d7 27 39 d1 27 39 d1 13 39 89 44 e4 13 1a 98 34 93 3d a0 13 a4 67 a0 1c d1 13 2e | W.W.~.'9.'9..9.D....4.=...g..... |
| 128a0 | 88 44 d8 0e 0f 8f 65 89 65 98 12 a0 64 88 65 d3 0e 2b a8 64 d1 0e 32 89 03 e4 0e 15 90 63 8b 6c | .D....e.e...d.e..+.d..2......c.l |
| 128c0 | 98 33 a4 07 98 3c d1 0e 28 88 03 e4 0b 18 98 11 98 53 99 17 a0 72 d4 0b 2a d0 04 2a 72 61 00 00 | .3...<..(........S...r..*..*ra.. |
| 128e0 | 00 63 03 00 00 00 00 00 00 00 01 00 00 00 01 00 00 00 03 00 00 00 f3 08 00 00 00 97 00 7c 00 66 | .c...........................|.f |
| 12900 | 01 53 00 72 8d 00 00 00 72 60 00 00 00 29 04 72 88 00 00 00 da 05 72 63 6f 6e 64 72 4a 01 00 00 | .S.r....r`...).r......rcondrJ... |
| 12920 | 72 69 01 00 00 73 04 00 00 00 20 20 20 20 72 62 00 00 00 da 10 5f 70 69 6e 76 5f 64 69 73 70 61 | ri...s........rb....._pinv_dispa |
| 12940 | 74 63 68 65 72 72 76 01 00 00 7d 08 00 00 72 f2 00 00 00 72 61 00 00 00 63 03 00 00 00 00 00 00 | tcherrv...}...r....ra...c....... |
| 12960 | 00 01 00 00 00 09 00 00 00 03 00 00 00 f3 ac 02 00 00 97 00 74 01 00 00 00 00 00 00 00 00 7c 00 | ....................t.........|. |
| 12980 | ab 01 00 00 00 00 00 00 5c 02 00 00 7d 00 7d 04 7c 01 80 49 7c 03 74 02 00 00 00 00 00 00 00 00 | ........\...}.}.|..I|.t......... |
| 129a0 | 75 00 72 03 64 02 7d 01 6e 52 7c 03 80 39 74 05 00 00 00 00 00 00 00 00 7c 00 6a 06 00 00 00 00 | u.r.d.}.nR|..9t.........|.j..... |
| 129c0 | 00 00 00 00 00 00 00 00 00 00 00 00 00 00 64 03 64 01 1a 00 ab 01 00 00 00 00 00 00 74 09 00 00 | ..............d.d...........t... |
| 129e0 | 00 00 00 00 00 00 7c 00 6a 0a 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ab 01 00 00 | ......|.j....................... |
| 12a00 | 00 00 00 00 6a 0c 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 7a 05 00 00 7d 01 6e 17 | ....j...................z...}.n. |
| 12a20 | 7c 03 7d 01 6e 14 7c 03 74 02 00 00 00 00 00 00 00 00 75 01 72 0b 74 0f 00 00 00 00 00 00 00 00 | |.}.n.|.t.........u.r.t......... |
| 12a40 | 64 04 ab 01 00 00 00 00 00 00 82 01 09 00 74 11 00 00 00 00 00 00 00 00 7c 01 ab 01 00 00 00 00 | d.............t.........|....... |
| 12a60 | 00 00 7d 01 74 13 00 00 00 00 00 00 00 00 7c 00 ab 01 00 00 00 00 00 00 72 43 7c 00 6a 06 00 00 | ..}.t.........|.........rC|.j... |
| 12a80 | 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 64 03 64 01 1a 00 5c 02 00 00 7d 05 7d 06 74 15 | ................d.d...\...}.}.t. |
| 12aa0 | 00 00 00 00 00 00 00 00 7c 00 6a 06 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 64 01 | ........|.j...................d. |
| 12ac0 | 64 03 1a 00 7c 06 7c 05 66 02 7a 00 00 00 7c 00 6a 0a 00 00 00 00 00 00 00 00 00 00 00 00 00 00 | d...|.|.f.z...|.j............... |
| 12ae0 | 00 00 00 00 ac 05 ab 02 00 00 00 00 00 00 7d 07 02 00 7c 04 7c 07 ab 01 00 00 00 00 00 00 53 00 | ..............}...|.|.........S. |
| 12b00 | 7c 00 6a 17 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ab 00 00 00 00 00 00 00 7d 00 | |.j...........................}. |
| 12b20 | 74 19 00 00 00 00 00 00 00 00 7c 00 64 06 7c 02 ac 07 ab 03 00 00 00 00 00 00 5c 03 00 00 7d 08 | t.........|.d.|...........\...}. |
| 12b40 | 7d 09 7d 0a 7c 01 64 08 74 1a 00 00 00 00 00 00 00 00 66 02 19 00 00 00 74 1d 00 00 00 00 00 00 | }.}.|.d.t.........f.....t....... |
| 12b60 | 00 00 7c 09 64 09 64 0a ac 0b ab 03 00 00 00 00 00 00 7a 05 00 00 7d 0b 7c 09 7c 0b 6b 44 00 00 | ..|.d.d...........z...}.|.|.kD.. |
| 12b80 | 7d 0c 74 1f 00 00 00 00 00 00 00 00 64 0c 7c 09 7c 0c 7c 09 ac 0d ab 04 00 00 00 00 00 00 7d 09 | }.t.........d.|.|.|...........}. |
| 12ba0 | 64 0e 7c 09 7c 0c 0f 00 3c 00 00 00 74 21 00 00 00 00 00 00 00 00 74 23 00 00 00 00 00 00 00 00 | d.|.|...<...t!........t#........ |
| 12bc0 | 7c 0a ab 01 00 00 00 00 00 00 74 25 00 00 00 00 00 00 00 00 7c 09 64 08 74 1a 00 00 00 00 00 00 | |.........t%........|.d.t....... |
| 12be0 | 00 00 66 02 19 00 00 00 74 23 00 00 00 00 00 00 00 00 7c 08 ab 01 00 00 00 00 00 00 ab 02 00 00 | ..f.....t#........|............. |
| 12c00 | 00 00 00 00 ab 02 00 00 00 00 00 00 7d 07 02 00 7c 04 7c 07 ab 01 00 00 00 00 00 00 53 00 29 0f | ............}...|.|.........S.). |
| 12c20 | 61 39 0b 00 00 0a 20 20 20 20 43 6f 6d 70 75 74 65 20 74 68 65 20 28 4d 6f 6f 72 65 2d 50 65 6e | a9........Compute.the.(Moore-Pen |
| 12c40 | 72 6f 73 65 29 20 70 73 65 75 64 6f 2d 69 6e 76 65 72 73 65 20 6f 66 20 61 20 6d 61 74 72 69 78 | rose).pseudo-inverse.of.a.matrix |
| 12c60 | 2e 0a 0a 20 20 20 20 43 61 6c 63 75 6c 61 74 65 20 74 68 65 20 67 65 6e 65 72 61 6c 69 7a 65 64 | .......Calculate.the.generalized |
| 12c80 | 20 69 6e 76 65 72 73 65 20 6f 66 20 61 20 6d 61 74 72 69 78 20 75 73 69 6e 67 20 69 74 73 0a 20 | .inverse.of.a.matrix.using.its.. |
| 12ca0 | 20 20 20 73 69 6e 67 75 6c 61 72 2d 76 61 6c 75 65 20 64 65 63 6f 6d 70 6f 73 69 74 69 6f 6e 20 | ...singular-value.decomposition. |
| 12cc0 | 28 53 56 44 29 20 61 6e 64 20 69 6e 63 6c 75 64 69 6e 67 20 61 6c 6c 0a 20 20 20 20 2a 6c 61 72 | (SVD).and.including.all.....*lar |
| 12ce0 | 67 65 2a 20 73 69 6e 67 75 6c 61 72 20 76 61 6c 75 65 73 2e 0a 0a 20 20 20 20 50 61 72 61 6d 65 | ge*.singular.values.......Parame |
| 12d00 | 74 65 72 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 61 20 3a 20 28 2e 2e 2e | ters.....----------.....a.:.(... |
| 12d20 | 2c 20 4d 2c 20 4e 29 20 61 72 72 61 79 5f 6c 69 6b 65 0a 20 20 20 20 20 20 20 20 4d 61 74 72 69 | ,.M,.N).array_like.........Matri |
| 12d40 | 78 20 6f 72 20 73 74 61 63 6b 20 6f 66 20 6d 61 74 72 69 63 65 73 20 74 6f 20 62 65 20 70 73 65 | x.or.stack.of.matrices.to.be.pse |
| 12d60 | 75 64 6f 2d 69 6e 76 65 72 74 65 64 2e 0a 20 20 20 20 72 63 6f 6e 64 20 3a 20 28 2e 2e 2e 29 20 | udo-inverted......rcond.:.(...). |
| 12d80 | 61 72 72 61 79 5f 6c 69 6b 65 20 6f 66 20 66 6c 6f 61 74 2c 20 6f 70 74 69 6f 6e 61 6c 0a 20 20 | array_like.of.float,.optional... |
| 12da0 | 20 20 20 20 20 20 43 75 74 6f 66 66 20 66 6f 72 20 73 6d 61 6c 6c 20 73 69 6e 67 75 6c 61 72 20 | ......Cutoff.for.small.singular. |
| 12dc0 | 76 61 6c 75 65 73 2e 0a 20 20 20 20 20 20 20 20 53 69 6e 67 75 6c 61 72 20 76 61 6c 75 65 73 20 | values..........Singular.values. |
| 12de0 | 6c 65 73 73 20 74 68 61 6e 20 6f 72 20 65 71 75 61 6c 20 74 6f 0a 20 20 20 20 20 20 20 20 60 60 | less.than.or.equal.to.........`` |
| 12e00 | 72 63 6f 6e 64 20 2a 20 6c 61 72 67 65 73 74 5f 73 69 6e 67 75 6c 61 72 5f 76 61 6c 75 65 60 60 | rcond.*.largest_singular_value`` |
| 12e20 | 20 61 72 65 20 73 65 74 20 74 6f 20 7a 65 72 6f 2e 0a 20 20 20 20 20 20 20 20 42 72 6f 61 64 63 | .are.set.to.zero..........Broadc |
| 12e40 | 61 73 74 73 20 61 67 61 69 6e 73 74 20 74 68 65 20 73 74 61 63 6b 20 6f 66 20 6d 61 74 72 69 63 | asts.against.the.stack.of.matric |
| 12e60 | 65 73 2e 20 44 65 66 61 75 6c 74 3a 20 60 60 31 65 2d 31 35 60 60 2e 0a 20 20 20 20 68 65 72 6d | es..Default:.``1e-15``......herm |
| 12e80 | 69 74 69 61 6e 20 3a 20 62 6f 6f 6c 2c 20 6f 70 74 69 6f 6e 61 6c 0a 20 20 20 20 20 20 20 20 49 | itian.:.bool,.optional.........I |
| 12ea0 | 66 20 54 72 75 65 2c 20 60 61 60 20 69 73 20 61 73 73 75 6d 65 64 20 74 6f 20 62 65 20 48 65 72 | f.True,.`a`.is.assumed.to.be.Her |
| 12ec0 | 6d 69 74 69 61 6e 20 28 73 79 6d 6d 65 74 72 69 63 20 69 66 20 72 65 61 6c 2d 76 61 6c 75 65 64 | mitian.(symmetric.if.real-valued |
| 12ee0 | 29 2c 0a 20 20 20 20 20 20 20 20 65 6e 61 62 6c 69 6e 67 20 61 20 6d 6f 72 65 20 65 66 66 69 63 | ),.........enabling.a.more.effic |
| 12f00 | 69 65 6e 74 20 6d 65 74 68 6f 64 20 66 6f 72 20 66 69 6e 64 69 6e 67 20 73 69 6e 67 75 6c 61 72 | ient.method.for.finding.singular |
| 12f20 | 20 76 61 6c 75 65 73 2e 0a 20 20 20 20 20 20 20 20 44 65 66 61 75 6c 74 73 20 74 6f 20 46 61 6c | .values..........Defaults.to.Fal |
| 12f40 | 73 65 2e 0a 20 20 20 20 72 74 6f 6c 20 3a 20 28 2e 2e 2e 29 20 61 72 72 61 79 5f 6c 69 6b 65 20 | se......rtol.:.(...).array_like. |
| 12f60 | 6f 66 20 66 6c 6f 61 74 2c 20 6f 70 74 69 6f 6e 61 6c 0a 20 20 20 20 20 20 20 20 53 61 6d 65 20 | of.float,.optional.........Same. |
| 12f80 | 61 73 20 60 72 63 6f 6e 64 60 2c 20 62 75 74 20 69 74 27 73 20 61 6e 20 41 72 72 61 79 20 41 50 | as.`rcond`,.but.it's.an.Array.AP |
| 12fa0 | 49 20 63 6f 6d 70 61 74 69 62 6c 65 20 70 61 72 61 6d 65 74 65 72 20 6e 61 6d 65 2e 0a 20 20 20 | I.compatible.parameter.name..... |
| 12fc0 | 20 20 20 20 20 4f 6e 6c 79 20 60 72 63 6f 6e 64 60 20 6f 72 20 60 72 74 6f 6c 60 20 63 61 6e 20 | .....Only.`rcond`.or.`rtol`.can. |
| 12fe0 | 62 65 20 73 65 74 20 61 74 20 61 20 74 69 6d 65 2e 20 49 66 20 6e 6f 6e 65 20 6f 66 20 74 68 65 | be.set.at.a.time..If.none.of.the |
| 13000 | 6d 20 61 72 65 0a 20 20 20 20 20 20 20 20 70 72 6f 76 69 64 65 64 20 74 68 65 6e 20 4e 75 6d 50 | m.are.........provided.then.NumP |
| 13020 | 79 27 73 20 60 60 31 65 2d 31 35 60 60 20 64 65 66 61 75 6c 74 20 69 73 20 75 73 65 64 2e 20 49 | y's.``1e-15``.default.is.used..I |
| 13040 | 66 20 60 60 72 74 6f 6c 3d 4e 6f 6e 65 60 60 0a 20 20 20 20 20 20 20 20 69 73 20 70 61 73 73 65 | f.``rtol=None``.........is.passe |
| 13060 | 64 20 74 68 65 6e 20 74 68 65 20 41 50 49 20 73 74 61 6e 64 61 72 64 20 64 65 66 61 75 6c 74 20 | d.then.the.API.standard.default. |
| 13080 | 69 73 20 75 73 65 64 2e 0a 0a 20 20 20 20 20 20 20 20 2e 2e 20 76 65 72 73 69 6f 6e 61 64 64 65 | is.used..............versionadde |
| 130a0 | 64 3a 3a 20 32 2e 30 2e 30 0a 0a 20 20 20 20 52 65 74 75 72 6e 73 0a 20 20 20 20 2d 2d 2d 2d 2d | d::.2.0.0......Returns.....----- |
| 130c0 | 2d 2d 0a 20 20 20 20 42 20 3a 20 28 2e 2e 2e 2c 20 4e 2c 20 4d 29 20 6e 64 61 72 72 61 79 0a 20 | --.....B.:.(...,.N,.M).ndarray.. |
| 130e0 | 20 20 20 20 20 20 20 54 68 65 20 70 73 65 75 64 6f 2d 69 6e 76 65 72 73 65 20 6f 66 20 60 61 60 | .......The.pseudo-inverse.of.`a` |
| 13100 | 2e 20 49 66 20 60 61 60 20 69 73 20 61 20 60 6d 61 74 72 69 78 60 20 69 6e 73 74 61 6e 63 65 2c | ..If.`a`.is.a.`matrix`.instance, |
| 13120 | 20 74 68 65 6e 20 73 6f 0a 20 20 20 20 20 20 20 20 69 73 20 60 42 60 2e 0a 0a 20 20 20 20 52 61 | .then.so.........is.`B`.......Ra |
| 13140 | 69 73 65 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 4c 69 6e 41 6c 67 45 72 72 6f 72 0a | ises.....------.....LinAlgError. |
| 13160 | 20 20 20 20 20 20 20 20 49 66 20 74 68 65 20 53 56 44 20 63 6f 6d 70 75 74 61 74 69 6f 6e 20 64 | ........If.the.SVD.computation.d |
| 13180 | 6f 65 73 20 6e 6f 74 20 63 6f 6e 76 65 72 67 65 2e 0a 0a 20 20 20 20 53 65 65 20 41 6c 73 6f 0a | oes.not.converge.......See.Also. |
| 131a0 | 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 73 63 69 70 79 2e 6c 69 6e 61 6c 67 2e 70 69 | ....--------.....scipy.linalg.pi |
| 131c0 | 6e 76 20 3a 20 53 69 6d 69 6c 61 72 20 66 75 6e 63 74 69 6f 6e 20 69 6e 20 53 63 69 50 79 2e 0a | nv.:.Similar.function.in.SciPy.. |
| 131e0 | 20 20 20 20 73 63 69 70 79 2e 6c 69 6e 61 6c 67 2e 70 69 6e 76 68 20 3a 20 43 6f 6d 70 75 74 65 | ....scipy.linalg.pinvh.:.Compute |
| 13200 | 20 74 68 65 20 28 4d 6f 6f 72 65 2d 50 65 6e 72 6f 73 65 29 20 70 73 65 75 64 6f 2d 69 6e 76 65 | .the.(Moore-Penrose).pseudo-inve |
| 13220 | 72 73 65 20 6f 66 20 61 0a 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 | rse.of.a........................ |
| 13240 | 20 20 48 65 72 6d 69 74 69 61 6e 20 6d 61 74 72 69 78 2e 0a 0a 20 20 20 20 4e 6f 74 65 73 0a 20 | ..Hermitian.matrix.......Notes.. |
| 13260 | 20 20 20 2d 2d 2d 2d 2d 0a 20 20 20 20 54 68 65 20 70 73 65 75 64 6f 2d 69 6e 76 65 72 73 65 20 | ...-----.....The.pseudo-inverse. |
| 13280 | 6f 66 20 61 20 6d 61 74 72 69 78 20 41 2c 20 64 65 6e 6f 74 65 64 20 3a 6d 61 74 68 3a 60 41 5e | of.a.matrix.A,.denoted.:math:`A^ |
| 132a0 | 2b 60 2c 20 69 73 0a 20 20 20 20 64 65 66 69 6e 65 64 20 61 73 3a 20 22 74 68 65 20 6d 61 74 72 | +`,.is.....defined.as:."the.matr |
| 132c0 | 69 78 20 74 68 61 74 20 27 73 6f 6c 76 65 73 27 20 5b 74 68 65 20 6c 65 61 73 74 2d 73 71 75 61 | ix.that.'solves'.[the.least-squa |
| 132e0 | 72 65 73 20 70 72 6f 62 6c 65 6d 5d 0a 20 20 20 20 3a 6d 61 74 68 3a 60 41 78 20 3d 20 62 60 2c | res.problem].....:math:`Ax.=.b`, |
| 13300 | 22 20 69 2e 65 2e 2c 20 69 66 20 3a 6d 61 74 68 3a 60 5c 62 61 72 7b 78 7d 60 20 69 73 20 73 61 | ".i.e.,.if.:math:`\bar{x}`.is.sa |
| 13320 | 69 64 20 73 6f 6c 75 74 69 6f 6e 2c 20 74 68 65 6e 0a 20 20 20 20 3a 6d 61 74 68 3a 60 41 5e 2b | id.solution,.then.....:math:`A^+ |
| 13340 | 60 20 69 73 20 74 68 61 74 20 6d 61 74 72 69 78 20 73 75 63 68 20 74 68 61 74 20 3a 6d 61 74 68 | `.is.that.matrix.such.that.:math |
| 13360 | 3a 60 5c 62 61 72 7b 78 7d 20 3d 20 41 5e 2b 62 60 2e 0a 0a 20 20 20 20 49 74 20 63 61 6e 20 62 | :`\bar{x}.=.A^+b`.......It.can.b |
| 13380 | 65 20 73 68 6f 77 6e 20 74 68 61 74 20 69 66 20 3a 6d 61 74 68 3a 60 51 5f 31 20 5c 53 69 67 6d | e.shown.that.if.:math:`Q_1.\Sigm |
| 133a0 | 61 20 51 5f 32 5e 54 20 3d 20 41 60 20 69 73 20 74 68 65 20 73 69 6e 67 75 6c 61 72 0a 20 20 20 | a.Q_2^T.=.A`.is.the.singular.... |
| 133c0 | 20 76 61 6c 75 65 20 64 65 63 6f 6d 70 6f 73 69 74 69 6f 6e 20 6f 66 20 41 2c 20 74 68 65 6e 0a | .value.decomposition.of.A,.then. |
| 133e0 | 20 20 20 20 3a 6d 61 74 68 3a 60 41 5e 2b 20 3d 20 51 5f 32 20 5c 53 69 67 6d 61 5e 2b 20 51 5f | ....:math:`A^+.=.Q_2.\Sigma^+.Q_ |
| 13400 | 31 5e 54 60 2c 20 77 68 65 72 65 20 3a 6d 61 74 68 3a 60 51 5f 7b 31 2c 32 7d 60 20 61 72 65 0a | 1^T`,.where.:math:`Q_{1,2}`.are. |
| 13420 | 20 20 20 20 6f 72 74 68 6f 67 6f 6e 61 6c 20 6d 61 74 72 69 63 65 73 2c 20 3a 6d 61 74 68 3a 60 | ....orthogonal.matrices,.:math:` |
| 13440 | 5c 53 69 67 6d 61 60 20 69 73 20 61 20 64 69 61 67 6f 6e 61 6c 20 6d 61 74 72 69 78 20 63 6f 6e | \Sigma`.is.a.diagonal.matrix.con |
| 13460 | 73 69 73 74 69 6e 67 0a 20 20 20 20 6f 66 20 41 27 73 20 73 6f 2d 63 61 6c 6c 65 64 20 73 69 6e | sisting.....of.A's.so-called.sin |
| 13480 | 67 75 6c 61 72 20 76 61 6c 75 65 73 2c 20 28 66 6f 6c 6c 6f 77 65 64 2c 20 74 79 70 69 63 61 6c | gular.values,.(followed,.typical |
| 134a0 | 6c 79 2c 20 62 79 0a 20 20 20 20 7a 65 72 6f 73 29 2c 20 61 6e 64 20 74 68 65 6e 20 3a 6d 61 74 | ly,.by.....zeros),.and.then.:mat |
| 134c0 | 68 3a 60 5c 53 69 67 6d 61 5e 2b 60 20 69 73 20 73 69 6d 70 6c 79 20 74 68 65 20 64 69 61 67 6f | h:`\Sigma^+`.is.simply.the.diago |
| 134e0 | 6e 61 6c 20 6d 61 74 72 69 78 0a 20 20 20 20 63 6f 6e 73 69 73 74 69 6e 67 20 6f 66 20 74 68 65 | nal.matrix.....consisting.of.the |
| 13500 | 20 72 65 63 69 70 72 6f 63 61 6c 73 20 6f 66 20 41 27 73 20 73 69 6e 67 75 6c 61 72 20 76 61 6c | .reciprocals.of.A's.singular.val |
| 13520 | 75 65 73 0a 20 20 20 20 28 61 67 61 69 6e 2c 20 66 6f 6c 6c 6f 77 65 64 20 62 79 20 7a 65 72 6f | ues.....(again,.followed.by.zero |
| 13540 | 73 29 2e 20 5b 31 5d 5f 0a 0a 20 20 20 20 52 65 66 65 72 65 6e 63 65 73 0a 20 20 20 20 2d 2d 2d | s)..[1]_......References.....--- |
| 13560 | 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 2e 2e 20 5b 31 5d 20 47 2e 20 53 74 72 61 6e 67 2c 20 2a 4c | -------........[1].G..Strang,.*L |
| 13580 | 69 6e 65 61 72 20 41 6c 67 65 62 72 61 20 61 6e 64 20 49 74 73 20 41 70 70 6c 69 63 61 74 69 6f | inear.Algebra.and.Its.Applicatio |
| 135a0 | 6e 73 2a 2c 20 32 6e 64 20 45 64 2e 2c 20 4f 72 6c 61 6e 64 6f 2c 0a 20 20 20 20 20 20 20 20 20 | ns*,.2nd.Ed.,.Orlando,.......... |
| 135c0 | 20 20 46 4c 2c 20 41 63 61 64 65 6d 69 63 20 50 72 65 73 73 2c 20 49 6e 63 2e 2c 20 31 39 38 30 | ..FL,.Academic.Press,.Inc.,.1980 |
| 135e0 | 2c 20 70 70 2e 20 31 33 39 2d 31 34 32 2e 0a 0a 20 20 20 20 45 78 61 6d 70 6c 65 73 0a 20 20 20 | ,.pp..139-142.......Examples.... |
| 13600 | 20 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 54 68 65 20 66 6f 6c 6c 6f 77 69 6e 67 20 65 78 61 6d | .--------.....The.following.exam |
| 13620 | 70 6c 65 20 63 68 65 63 6b 73 20 74 68 61 74 20 60 60 61 20 2a 20 61 2b 20 2a 20 61 20 3d 3d 20 | ple.checks.that.``a.*.a+.*.a.==. |
| 13640 | 61 60 60 20 61 6e 64 0a 20 20 20 20 60 60 61 2b 20 2a 20 61 20 2a 20 61 2b 20 3d 3d 20 61 2b 60 | a``.and.....``a+.*.a.*.a+.==.a+` |
| 13660 | 60 3a 0a 0a 20 20 20 20 3e 3e 3e 20 69 6d 70 6f 72 74 20 6e 75 6d 70 79 20 61 73 20 6e 70 0a 20 | `:......>>>.import.numpy.as.np.. |
| 13680 | 20 20 20 3e 3e 3e 20 72 6e 67 20 3d 20 6e 70 2e 72 61 6e 64 6f 6d 2e 64 65 66 61 75 6c 74 5f 72 | ...>>>.rng.=.np.random.default_r |
| 136a0 | 6e 67 28 29 0a 20 20 20 20 3e 3e 3e 20 61 20 3d 20 72 6e 67 2e 6e 6f 72 6d 61 6c 28 73 69 7a 65 | ng().....>>>.a.=.rng.normal(size |
| 136c0 | 3d 28 39 2c 20 36 29 29 0a 20 20 20 20 3e 3e 3e 20 42 20 3d 20 6e 70 2e 6c 69 6e 61 6c 67 2e 70 | =(9,.6)).....>>>.B.=.np.linalg.p |
| 136e0 | 69 6e 76 28 61 29 0a 20 20 20 20 3e 3e 3e 20 6e 70 2e 61 6c 6c 63 6c 6f 73 65 28 61 2c 20 6e 70 | inv(a).....>>>.np.allclose(a,.np |
| 13700 | 2e 64 6f 74 28 61 2c 20 6e 70 2e 64 6f 74 28 42 2c 20 61 29 29 29 0a 20 20 20 20 54 72 75 65 0a | .dot(a,.np.dot(B,.a))).....True. |
| 13720 | 20 20 20 20 3e 3e 3e 20 6e 70 2e 61 6c 6c 63 6c 6f 73 65 28 42 2c 20 6e 70 2e 64 6f 74 28 42 2c | ....>>>.np.allclose(B,.np.dot(B, |
| 13740 | 20 6e 70 2e 64 6f 74 28 61 2c 20 42 29 29 29 0a 20 20 20 20 54 72 75 65 0a 0a 20 20 20 20 4e 67 | .np.dot(a,.B))).....True......Ng |
| 13760 | 16 56 e7 9e af 03 d2 3c 72 bb 00 00 00 7a 25 60 72 74 6f 6c 60 20 61 6e 64 20 60 72 63 6f 6e 64 | .V.....<r....z%`rtol`.and.`rcond |
| 13780 | 60 20 63 61 6e 27 74 20 62 65 20 62 6f 74 68 20 73 65 74 2e 72 a8 00 00 00 46 29 02 72 48 01 00 | `.can't.be.both.set.r....F).rH.. |
| 137a0 | 00 72 4a 01 00 00 2e 72 c7 00 00 00 54 72 6f 01 00 00 72 a9 00 00 00 29 02 da 05 77 68 65 72 65 | .rJ....r....Tro...r....)...where |
| 137c0 | 72 19 01 00 00 72 22 00 00 00 29 13 72 8b 00 00 00 72 4f 00 00 00 72 72 01 00 00 72 bc 00 00 00 | r....r"...).r....rO...rr...r.... |
| 137e0 | 72 39 00 00 00 72 9b 00 00 00 72 73 01 00 00 72 bd 00 00 00 72 2d 00 00 00 72 c5 00 00 00 72 36 | r9...r....rs...r....r-...r....r6 |
| 13800 | 00 00 00 72 51 01 00 00 72 0d 00 00 00 72 42 00 00 00 72 28 00 00 00 72 33 00 00 00 72 1d 00 00 | ...rQ...r....rB...r(...r3...r... |
| 13820 | 00 72 4e 00 00 00 72 41 00 00 00 29 0d 72 88 00 00 00 72 75 01 00 00 72 4a 01 00 00 72 69 01 00 | .rN...rA...).r....ru...rJ...ri.. |
| 13840 | 00 72 8a 00 00 00 72 be 00 00 00 72 bf 00 00 00 72 d9 00 00 00 72 56 01 00 00 72 55 01 00 00 72 | .r....r....r....r....rV...rU...r |
| 13860 | 42 01 00 00 da 06 63 75 74 6f 66 66 da 05 6c 61 72 67 65 73 0d 00 00 00 20 20 20 20 20 20 20 20 | B.....cutoff..larges............ |
| 13880 | 20 20 20 20 20 72 62 00 00 00 72 0a 00 00 00 72 0a 00 00 00 81 08 00 00 73 4c 01 00 00 80 00 f4 | .....rb...r....r........sL...... |
| 138a0 | 66 02 00 0f 19 98 11 8b 6d 81 47 80 41 80 74 d8 07 0c 80 7d d8 0b 0f 94 38 d1 0b 1b d8 14 19 89 | f.......m.G.A.t....}....8....... |
| 138c0 | 45 d8 0d 11 88 5c dc 14 17 98 01 9f 07 99 07 a0 02 a0 03 98 0c d3 14 25 ac 05 a8 61 af 67 a9 67 | E....\.................%...a.g.g |
| 138e0 | ab 0e d7 28 3a d1 28 3a d1 14 3a 89 45 e0 14 18 89 45 d8 09 0d 94 58 d1 09 1d dc 0e 18 d0 19 40 | ...(:.(:..:.E....E....X........@ |
| 13900 | d3 0e 41 d0 08 41 f0 06 00 09 0d e4 0c 13 90 45 8b 4e 80 45 dc 07 13 90 41 84 7f d8 0f 10 8f 77 | ..A..A.........E.N.E....A......w |
| 13920 | 89 77 90 72 90 73 88 7c 89 04 88 01 88 31 dc 0e 13 90 41 97 47 91 47 98 43 98 52 90 4c a0 41 a0 | .w.r.s.|.....1....A.G.G.C.R.L.A. |
| 13940 | 71 a0 36 d1 14 29 b0 11 b7 17 b1 17 d4 0e 39 88 03 d9 0f 13 90 43 8b 79 d0 08 18 d8 08 09 8f 0b | q.6..)........9......C.y........ |
| 13960 | 89 0b 8b 0d 80 41 dc 0f 12 90 31 a0 45 b0 59 d4 0f 3f 81 48 80 41 80 71 88 22 f0 06 00 0e 13 90 | .....A....1.E.Y..?.H.A.q."...... |
| 13980 | 33 9c 07 90 3c d1 0d 20 a4 34 a8 01 b0 02 b8 54 d4 23 42 d1 0d 42 80 46 d8 0c 0d 90 06 89 4a 80 | 3...<....4.....T.#B..B.F......J. |
| 139a0 | 45 dc 08 0e 88 71 90 21 98 35 a0 61 d4 08 28 80 41 d8 10 11 80 41 80 75 80 66 81 49 e4 0a 10 94 | E....q.!.5.a..(.A....A.u.f.I.... |
| 139c0 | 19 98 32 93 1d a4 08 a8 11 a8 33 b4 07 a8 3c a9 1f bc 29 c0 41 bb 2c d3 20 47 d3 0a 48 80 43 d9 | ..2.......3...<...).A.,..G..H.C. |
| 139e0 | 0b 0f 90 03 8b 39 d0 04 14 72 61 00 00 00 63 01 00 00 00 00 00 00 00 00 00 00 00 04 00 00 00 03 | .....9...ra...c................. |
| 13a00 | 00 00 00 f3 18 01 00 00 97 00 74 01 00 00 00 00 00 00 00 00 7c 00 ab 01 00 00 00 00 00 00 7d 00 | ..........t.........|.........}. |
| 13a20 | 74 03 00 00 00 00 00 00 00 00 7c 00 ab 01 00 00 00 00 00 00 01 00 74 05 00 00 00 00 00 00 00 00 | t.........|...........t......... |
| 13a40 | 7c 00 ab 01 00 00 00 00 00 00 5c 02 00 00 7d 01 7d 02 74 07 00 00 00 00 00 00 00 00 7c 02 ab 01 | |.........\...}.}.t.........|... |
| 13a60 | 00 00 00 00 00 00 7d 03 74 09 00 00 00 00 00 00 00 00 7c 01 ab 01 00 00 00 00 00 00 72 02 64 01 | ......}.t.........|.........r.d. |
| 13a80 | 6e 01 64 02 7d 04 74 0b 00 00 00 00 00 00 00 00 6a 0c 00 00 00 00 00 00 00 00 00 00 00 00 00 00 | n.d.}.t.........j............... |
| 13aa0 | 00 00 00 00 7c 00 7c 04 ac 03 ab 02 00 00 00 00 00 00 5c 02 00 00 7d 05 7d 06 02 00 7c 05 6a 0e | ....|.|...........\...}.}...|.j. |
| 13ac0 | 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 7c 02 64 04 ac 05 ab 02 00 00 00 00 00 00 | ..................|.d........... |
| 13ae0 | 7d 05 7c 06 6a 0f 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 7c 03 64 04 ac 05 ab 02 | }.|.j...................|.d..... |
| 13b00 | 00 00 00 00 00 00 7d 06 74 11 00 00 00 00 00 00 00 00 7c 05 7c 06 ab 02 00 00 00 00 00 00 53 00 | ......}.t.........|.|.........S. |
| 13b20 | 29 06 61 7a 08 00 00 0a 20 20 20 20 43 6f 6d 70 75 74 65 20 74 68 65 20 73 69 67 6e 20 61 6e 64 | ).az........Compute.the.sign.and |
| 13b40 | 20 28 6e 61 74 75 72 61 6c 29 20 6c 6f 67 61 72 69 74 68 6d 20 6f 66 20 74 68 65 20 64 65 74 65 | .(natural).logarithm.of.the.dete |
| 13b60 | 72 6d 69 6e 61 6e 74 20 6f 66 20 61 6e 20 61 72 72 61 79 2e 0a 0a 20 20 20 20 49 66 20 61 6e 20 | rminant.of.an.array.......If.an. |
| 13b80 | 61 72 72 61 79 20 68 61 73 20 61 20 76 65 72 79 20 73 6d 61 6c 6c 20 6f 72 20 76 65 72 79 20 6c | array.has.a.very.small.or.very.l |
| 13ba0 | 61 72 67 65 20 64 65 74 65 72 6d 69 6e 61 6e 74 2c 20 74 68 65 6e 20 61 20 63 61 6c 6c 20 74 6f | arge.determinant,.then.a.call.to |
| 13bc0 | 0a 20 20 20 20 60 64 65 74 60 20 6d 61 79 20 6f 76 65 72 66 6c 6f 77 20 6f 72 20 75 6e 64 65 72 | .....`det`.may.overflow.or.under |
| 13be0 | 66 6c 6f 77 2e 20 54 68 69 73 20 72 6f 75 74 69 6e 65 20 69 73 20 6d 6f 72 65 20 72 6f 62 75 73 | flow..This.routine.is.more.robus |
| 13c00 | 74 20 61 67 61 69 6e 73 74 20 73 75 63 68 0a 20 20 20 20 69 73 73 75 65 73 2c 20 62 65 63 61 75 | t.against.such.....issues,.becau |
| 13c20 | 73 65 20 69 74 20 63 6f 6d 70 75 74 65 73 20 74 68 65 20 6c 6f 67 61 72 69 74 68 6d 20 6f 66 20 | se.it.computes.the.logarithm.of. |
| 13c40 | 74 68 65 20 64 65 74 65 72 6d 69 6e 61 6e 74 20 72 61 74 68 65 72 20 74 68 61 6e 0a 20 20 20 20 | the.determinant.rather.than..... |
| 13c60 | 74 68 65 20 64 65 74 65 72 6d 69 6e 61 6e 74 20 69 74 73 65 6c 66 2e 0a 0a 20 20 20 20 50 61 72 | the.determinant.itself.......Par |
| 13c80 | 61 6d 65 74 65 72 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 61 20 3a 20 28 | ameters.....----------.....a.:.( |
| 13ca0 | 2e 2e 2e 2c 20 4d 2c 20 4d 29 20 61 72 72 61 79 5f 6c 69 6b 65 0a 20 20 20 20 20 20 20 20 49 6e | ...,.M,.M).array_like.........In |
| 13cc0 | 70 75 74 20 61 72 72 61 79 2c 20 68 61 73 20 74 6f 20 62 65 20 61 20 73 71 75 61 72 65 20 32 2d | put.array,.has.to.be.a.square.2- |
| 13ce0 | 44 20 61 72 72 61 79 2e 0a 0a 20 20 20 20 52 65 74 75 72 6e 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d | D.array.......Returns.....------ |
| 13d00 | 2d 0a 20 20 20 20 41 20 6e 61 6d 65 64 74 75 70 6c 65 20 77 69 74 68 20 74 68 65 20 66 6f 6c 6c | -.....A.namedtuple.with.the.foll |
| 13d20 | 6f 77 69 6e 67 20 61 74 74 72 69 62 75 74 65 73 3a 0a 0a 20 20 20 20 73 69 67 6e 20 3a 20 28 2e | owing.attributes:......sign.:.(. |
| 13d40 | 2e 2e 29 20 61 72 72 61 79 5f 6c 69 6b 65 0a 20 20 20 20 20 20 20 20 41 20 6e 75 6d 62 65 72 20 | ..).array_like.........A.number. |
| 13d60 | 72 65 70 72 65 73 65 6e 74 69 6e 67 20 74 68 65 20 73 69 67 6e 20 6f 66 20 74 68 65 20 64 65 74 | representing.the.sign.of.the.det |
| 13d80 | 65 72 6d 69 6e 61 6e 74 2e 20 46 6f 72 20 61 20 72 65 61 6c 20 6d 61 74 72 69 78 2c 0a 20 20 20 | erminant..For.a.real.matrix,.... |
| 13da0 | 20 20 20 20 20 74 68 69 73 20 69 73 20 31 2c 20 30 2c 20 6f 72 20 2d 31 2e 20 46 6f 72 20 61 20 | .....this.is.1,.0,.or.-1..For.a. |
| 13dc0 | 63 6f 6d 70 6c 65 78 20 6d 61 74 72 69 78 2c 20 74 68 69 73 20 69 73 20 61 20 63 6f 6d 70 6c 65 | complex.matrix,.this.is.a.comple |
| 13de0 | 78 20 6e 75 6d 62 65 72 0a 20 20 20 20 20 20 20 20 77 69 74 68 20 61 62 73 6f 6c 75 74 65 20 76 | x.number.........with.absolute.v |
| 13e00 | 61 6c 75 65 20 31 20 28 69 2e 65 2e 2c 20 69 74 20 69 73 20 6f 6e 20 74 68 65 20 75 6e 69 74 20 | alue.1.(i.e.,.it.is.on.the.unit. |
| 13e20 | 63 69 72 63 6c 65 29 2c 20 6f 72 20 65 6c 73 65 20 30 2e 0a 20 20 20 20 6c 6f 67 61 62 73 64 65 | circle),.or.else.0......logabsde |
| 13e40 | 74 20 3a 20 28 2e 2e 2e 29 20 61 72 72 61 79 5f 6c 69 6b 65 0a 20 20 20 20 20 20 20 20 54 68 65 | t.:.(...).array_like.........The |
| 13e60 | 20 6e 61 74 75 72 61 6c 20 6c 6f 67 20 6f 66 20 74 68 65 20 61 62 73 6f 6c 75 74 65 20 76 61 6c | .natural.log.of.the.absolute.val |
| 13e80 | 75 65 20 6f 66 20 74 68 65 20 64 65 74 65 72 6d 69 6e 61 6e 74 2e 0a 0a 20 20 20 20 49 66 20 74 | ue.of.the.determinant.......If.t |
| 13ea0 | 68 65 20 64 65 74 65 72 6d 69 6e 61 6e 74 20 69 73 20 7a 65 72 6f 2c 20 74 68 65 6e 20 60 73 69 | he.determinant.is.zero,.then.`si |
| 13ec0 | 67 6e 60 20 77 69 6c 6c 20 62 65 20 30 20 61 6e 64 20 60 6c 6f 67 61 62 73 64 65 74 60 0a 20 20 | gn`.will.be.0.and.`logabsdet`... |
| 13ee0 | 20 20 77 69 6c 6c 20 62 65 20 2d 69 6e 66 2e 20 49 6e 20 61 6c 6c 20 63 61 73 65 73 2c 20 74 68 | ..will.be.-inf..In.all.cases,.th |
| 13f00 | 65 20 64 65 74 65 72 6d 69 6e 61 6e 74 20 69 73 20 65 71 75 61 6c 20 74 6f 0a 20 20 20 20 60 60 | e.determinant.is.equal.to.....`` |
| 13f20 | 73 69 67 6e 20 2a 20 6e 70 2e 65 78 70 28 6c 6f 67 61 62 73 64 65 74 29 60 60 2e 0a 0a 20 20 20 | sign.*.np.exp(logabsdet)``...... |
| 13f40 | 20 53 65 65 20 41 6c 73 6f 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 64 65 74 0a 0a | .See.Also.....--------.....det.. |
| 13f60 | 20 20 20 20 4e 6f 74 65 73 0a 20 20 20 20 2d 2d 2d 2d 2d 0a 20 20 20 20 42 72 6f 61 64 63 61 73 | ....Notes.....-----.....Broadcas |
| 13f80 | 74 69 6e 67 20 72 75 6c 65 73 20 61 70 70 6c 79 2c 20 73 65 65 20 74 68 65 20 60 6e 75 6d 70 79 | ting.rules.apply,.see.the.`numpy |
| 13fa0 | 2e 6c 69 6e 61 6c 67 60 20 64 6f 63 75 6d 65 6e 74 61 74 69 6f 6e 20 66 6f 72 0a 20 20 20 20 64 | .linalg`.documentation.for.....d |
| 13fc0 | 65 74 61 69 6c 73 2e 0a 0a 20 20 20 20 54 68 65 20 64 65 74 65 72 6d 69 6e 61 6e 74 20 69 73 20 | etails.......The.determinant.is. |
| 13fe0 | 63 6f 6d 70 75 74 65 64 20 76 69 61 20 4c 55 20 66 61 63 74 6f 72 69 7a 61 74 69 6f 6e 20 75 73 | computed.via.LU.factorization.us |
| 14000 | 69 6e 67 20 74 68 65 20 4c 41 50 41 43 4b 0a 20 20 20 20 72 6f 75 74 69 6e 65 20 60 60 7a 2f 64 | ing.the.LAPACK.....routine.``z/d |
| 14020 | 67 65 74 72 66 60 60 2e 0a 0a 20 20 20 20 45 78 61 6d 70 6c 65 73 0a 20 20 20 20 2d 2d 2d 2d 2d | getrf``.......Examples.....----- |
| 14040 | 2d 2d 2d 0a 20 20 20 20 54 68 65 20 64 65 74 65 72 6d 69 6e 61 6e 74 20 6f 66 20 61 20 32 2d 44 | ---.....The.determinant.of.a.2-D |
| 14060 | 20 61 72 72 61 79 20 60 60 5b 5b 61 2c 20 62 5d 2c 20 5b 63 2c 20 64 5d 5d 60 60 20 69 73 20 60 | .array.``[[a,.b],.[c,.d]]``.is.` |
| 14080 | 60 61 64 20 2d 20 62 63 60 60 3a 0a 0a 20 20 20 20 3e 3e 3e 20 69 6d 70 6f 72 74 20 6e 75 6d 70 | `ad.-.bc``:......>>>.import.nump |
| 140a0 | 79 20 61 73 20 6e 70 0a 20 20 20 20 3e 3e 3e 20 61 20 3d 20 6e 70 2e 61 72 72 61 79 28 5b 5b 31 | y.as.np.....>>>.a.=.np.array([[1 |
| 140c0 | 2c 20 32 5d 2c 20 5b 33 2c 20 34 5d 5d 29 0a 20 20 20 20 3e 3e 3e 20 28 73 69 67 6e 2c 20 6c 6f | ,.2],.[3,.4]]).....>>>.(sign,.lo |
| 140e0 | 67 61 62 73 64 65 74 29 20 3d 20 6e 70 2e 6c 69 6e 61 6c 67 2e 73 6c 6f 67 64 65 74 28 61 29 0a | gabsdet).=.np.linalg.slogdet(a). |
| 14100 | 20 20 20 20 3e 3e 3e 20 28 73 69 67 6e 2c 20 6c 6f 67 61 62 73 64 65 74 29 0a 20 20 20 20 28 2d | ....>>>.(sign,.logabsdet).....(- |
| 14120 | 31 2c 20 30 2e 36 39 33 31 34 37 31 38 30 35 35 39 39 34 35 32 39 29 20 23 20 6d 61 79 20 76 61 | 1,.0.69314718055994529).#.may.va |
| 14140 | 72 79 0a 20 20 20 20 3e 3e 3e 20 73 69 67 6e 20 2a 20 6e 70 2e 65 78 70 28 6c 6f 67 61 62 73 64 | ry.....>>>.sign.*.np.exp(logabsd |
| 14160 | 65 74 29 0a 20 20 20 20 2d 32 2e 30 0a 0a 20 20 20 20 43 6f 6d 70 75 74 69 6e 67 20 6c 6f 67 2d | et).....-2.0......Computing.log- |
| 14180 | 64 65 74 65 72 6d 69 6e 61 6e 74 73 20 66 6f 72 20 61 20 73 74 61 63 6b 20 6f 66 20 6d 61 74 72 | determinants.for.a.stack.of.matr |
| 141a0 | 69 63 65 73 3a 0a 0a 20 20 20 20 3e 3e 3e 20 61 20 3d 20 6e 70 2e 61 72 72 61 79 28 5b 20 5b 5b | ices:......>>>.a.=.np.array([.[[ |
| 141c0 | 31 2c 20 32 5d 2c 20 5b 33 2c 20 34 5d 5d 2c 20 5b 5b 31 2c 20 32 5d 2c 20 5b 32 2c 20 31 5d 5d | 1,.2],.[3,.4]],.[[1,.2],.[2,.1]] |
| 141e0 | 2c 20 5b 5b 31 2c 20 33 5d 2c 20 5b 33 2c 20 31 5d 5d 20 5d 29 0a 20 20 20 20 3e 3e 3e 20 61 2e | ,.[[1,.3],.[3,.1]].]).....>>>.a. |
| 14200 | 73 68 61 70 65 0a 20 20 20 20 28 33 2c 20 32 2c 20 32 29 0a 20 20 20 20 3e 3e 3e 20 73 69 67 6e | shape.....(3,.2,.2).....>>>.sign |
| 14220 | 2c 20 6c 6f 67 61 62 73 64 65 74 20 3d 20 6e 70 2e 6c 69 6e 61 6c 67 2e 73 6c 6f 67 64 65 74 28 | ,.logabsdet.=.np.linalg.slogdet( |
| 14240 | 61 29 0a 20 20 20 20 3e 3e 3e 20 28 73 69 67 6e 2c 20 6c 6f 67 61 62 73 64 65 74 29 0a 20 20 20 | a).....>>>.(sign,.logabsdet).... |
| 14260 | 20 28 61 72 72 61 79 28 5b 2d 31 2e 2c 20 2d 31 2e 2c 20 2d 31 2e 5d 29 2c 20 61 72 72 61 79 28 | .(array([-1.,.-1.,.-1.]),.array( |
| 14280 | 5b 20 30 2e 36 39 33 31 34 37 31 38 2c 20 20 31 2e 30 39 38 36 31 32 32 39 2c 20 20 32 2e 30 37 | [.0.69314718,..1.09861229,..2.07 |
| 142a0 | 39 34 34 31 35 34 5d 29 29 0a 20 20 20 20 3e 3e 3e 20 73 69 67 6e 20 2a 20 6e 70 2e 65 78 70 28 | 944154])).....>>>.sign.*.np.exp( |
| 142c0 | 6c 6f 67 61 62 73 64 65 74 29 0a 20 20 20 20 61 72 72 61 79 28 5b 2d 32 2e 2c 20 2d 33 2e 2c 20 | logabsdet).....array([-2.,.-3.,. |
| 142e0 | 2d 38 2e 5d 29 0a 0a 20 20 20 20 54 68 69 73 20 72 6f 75 74 69 6e 65 20 73 75 63 63 65 65 64 73 | -8.])......This.routine.succeeds |
| 14300 | 20 77 68 65 72 65 20 6f 72 64 69 6e 61 72 79 20 60 64 65 74 60 20 64 6f 65 73 20 6e 6f 74 3a 0a | .where.ordinary.`det`.does.not:. |
| 14320 | 0a 20 20 20 20 3e 3e 3e 20 6e 70 2e 6c 69 6e 61 6c 67 2e 64 65 74 28 6e 70 2e 65 79 65 28 35 30 | .....>>>.np.linalg.det(np.eye(50 |
| 14340 | 30 29 20 2a 20 30 2e 31 29 0a 20 20 20 20 30 2e 30 0a 20 20 20 20 3e 3e 3e 20 6e 70 2e 6c 69 6e | 0).*.0.1).....0.0.....>>>.np.lin |
| 14360 | 61 6c 67 2e 73 6c 6f 67 64 65 74 28 6e 70 2e 65 79 65 28 35 30 30 29 20 2a 20 30 2e 31 29 0a 20 | alg.slogdet(np.eye(500).*.0.1).. |
| 14380 | 20 20 20 28 31 2c 20 2d 31 31 35 31 2e 32 39 32 35 34 36 34 39 37 30 32 32 38 29 0a 0a 20 20 20 | ...(1,.-1151.2925464970228)..... |
| 143a0 | 20 7a 05 44 2d 3e 44 64 72 44 01 00 00 72 e5 00 00 00 46 72 e7 00 00 00 29 09 72 2d 00 00 00 72 | .z.D->DdrD...r....Fr....).r-...r |
| 143c0 | c0 00 00 00 72 a4 00 00 00 72 96 00 00 00 72 90 00 00 00 72 56 00 00 00 72 0b 00 00 00 72 ea 00 | ....r....r....r....rV...r....r.. |
| 143e0 | 00 00 72 6b 00 00 00 29 07 72 88 00 00 00 72 8f 00 00 00 72 ec 00 00 00 da 06 72 65 61 6c 5f 74 | ..rk...).r....r....r......real_t |
| 14400 | 72 e6 00 00 00 72 47 00 00 00 da 06 6c 6f 67 64 65 74 73 07 00 00 00 20 20 20 20 20 20 20 72 62 | r....rG.....logdets...........rb |
| 14420 | 00 00 00 72 0b 00 00 00 72 0b 00 00 00 f7 08 00 00 73 82 00 00 00 80 00 f4 52 02 00 09 10 90 01 | ...r....r........s.......R...... |
| 14440 | 8b 0a 80 41 dc 04 1a 98 31 d4 04 1d dc 12 1d 98 61 93 2e 81 4b 80 41 80 78 dc 0d 16 90 78 d3 0d | ...A....1.......a...K.A.x....x.. |
| 14460 | 20 80 46 dc 1b 28 a8 11 d4 1b 2b 91 07 b0 17 80 49 dc 13 20 d7 13 28 d1 13 28 a8 11 b0 69 d4 13 | ..F..(....+.....I.....(..(...i.. |
| 14480 | 40 81 4c 80 44 88 26 d8 0b 16 88 34 8f 3b 89 3b 90 78 a0 65 d4 0b 2c 80 44 d8 0d 13 8f 5d 89 5d | @.L.D.&....4.;.;.x.e..,.D....].] |
| 144a0 | 98 36 a8 05 88 5d d3 0d 2e 80 46 dc 0b 18 98 14 98 76 d3 0b 26 d0 04 26 72 61 00 00 00 63 01 00 | .6...]....F......v..&..&ra...c.. |
| 144c0 | 00 00 00 00 00 00 00 00 00 00 04 00 00 00 03 00 00 00 f3 c0 00 00 00 97 00 74 01 00 00 00 00 00 | .........................t...... |
| 144e0 | 00 00 00 7c 00 ab 01 00 00 00 00 00 00 7d 00 74 03 00 00 00 00 00 00 00 00 7c 00 ab 01 00 00 00 | ...|.........}.t.........|...... |
| 14500 | 00 00 00 01 00 74 05 00 00 00 00 00 00 00 00 7c 00 ab 01 00 00 00 00 00 00 5c 02 00 00 7d 01 7d | .....t.........|.........\...}.} |
| 14520 | 02 74 07 00 00 00 00 00 00 00 00 7c 01 ab 01 00 00 00 00 00 00 72 02 64 01 6e 01 64 02 7d 03 74 | .t.........|.........r.d.n.d.}.t |
| 14540 | 09 00 00 00 00 00 00 00 00 6a 0a 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 7c 00 7c | .........j...................|.| |
| 14560 | 03 ac 03 ab 02 00 00 00 00 00 00 7d 04 7c 04 6a 0d 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 | ...........}.|.j................ |
| 14580 | 00 00 00 7c 02 64 04 ac 05 ab 02 00 00 00 00 00 00 7d 04 7c 04 53 00 29 06 61 2a 04 00 00 0a 20 | ...|.d...........}.|.S.).a*..... |
| 145a0 | 20 20 20 43 6f 6d 70 75 74 65 20 74 68 65 20 64 65 74 65 72 6d 69 6e 61 6e 74 20 6f 66 20 61 6e | ...Compute.the.determinant.of.an |
| 145c0 | 20 61 72 72 61 79 2e 0a 0a 20 20 20 20 50 61 72 61 6d 65 74 65 72 73 0a 20 20 20 20 2d 2d 2d 2d | .array.......Parameters.....---- |
| 145e0 | 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 61 20 3a 20 28 2e 2e 2e 2c 20 4d 2c 20 4d 29 20 61 72 72 61 79 | ------.....a.:.(...,.M,.M).array |
| 14600 | 5f 6c 69 6b 65 0a 20 20 20 20 20 20 20 20 49 6e 70 75 74 20 61 72 72 61 79 20 74 6f 20 63 6f 6d | _like.........Input.array.to.com |
| 14620 | 70 75 74 65 20 64 65 74 65 72 6d 69 6e 61 6e 74 73 20 66 6f 72 2e 0a 0a 20 20 20 20 52 65 74 75 | pute.determinants.for.......Retu |
| 14640 | 72 6e 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 64 65 74 20 3a 20 28 2e 2e 2e 29 20 | rns.....-------.....det.:.(...). |
| 14660 | 61 72 72 61 79 5f 6c 69 6b 65 0a 20 20 20 20 20 20 20 20 44 65 74 65 72 6d 69 6e 61 6e 74 20 6f | array_like.........Determinant.o |
| 14680 | 66 20 60 61 60 2e 0a 0a 20 20 20 20 53 65 65 20 41 6c 73 6f 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d | f.`a`.......See.Also.....------- |
| 146a0 | 2d 0a 20 20 20 20 73 6c 6f 67 64 65 74 20 3a 20 41 6e 6f 74 68 65 72 20 77 61 79 20 74 6f 20 72 | -.....slogdet.:.Another.way.to.r |
| 146c0 | 65 70 72 65 73 65 6e 74 20 74 68 65 20 64 65 74 65 72 6d 69 6e 61 6e 74 2c 20 6d 6f 72 65 20 73 | epresent.the.determinant,.more.s |
| 146e0 | 75 69 74 61 62 6c 65 0a 20 20 20 20 20 20 66 6f 72 20 6c 61 72 67 65 20 6d 61 74 72 69 63 65 73 | uitable.......for.large.matrices |
| 14700 | 20 77 68 65 72 65 20 75 6e 64 65 72 66 6c 6f 77 2f 6f 76 65 72 66 6c 6f 77 20 6d 61 79 20 6f 63 | .where.underflow/overflow.may.oc |
| 14720 | 63 75 72 2e 0a 20 20 20 20 73 63 69 70 79 2e 6c 69 6e 61 6c 67 2e 64 65 74 20 3a 20 53 69 6d 69 | cur......scipy.linalg.det.:.Simi |
| 14740 | 6c 61 72 20 66 75 6e 63 74 69 6f 6e 20 69 6e 20 53 63 69 50 79 2e 0a 0a 20 20 20 20 4e 6f 74 65 | lar.function.in.SciPy.......Note |
| 14760 | 73 0a 20 20 20 20 2d 2d 2d 2d 2d 0a 20 20 20 20 42 72 6f 61 64 63 61 73 74 69 6e 67 20 72 75 6c | s.....-----.....Broadcasting.rul |
| 14780 | 65 73 20 61 70 70 6c 79 2c 20 73 65 65 20 74 68 65 20 60 6e 75 6d 70 79 2e 6c 69 6e 61 6c 67 60 | es.apply,.see.the.`numpy.linalg` |
| 147a0 | 20 64 6f 63 75 6d 65 6e 74 61 74 69 6f 6e 20 66 6f 72 0a 20 20 20 20 64 65 74 61 69 6c 73 2e 0a | .documentation.for.....details.. |
| 147c0 | 0a 20 20 20 20 54 68 65 20 64 65 74 65 72 6d 69 6e 61 6e 74 20 69 73 20 63 6f 6d 70 75 74 65 64 | .....The.determinant.is.computed |
| 147e0 | 20 76 69 61 20 4c 55 20 66 61 63 74 6f 72 69 7a 61 74 69 6f 6e 20 75 73 69 6e 67 20 74 68 65 20 | .via.LU.factorization.using.the. |
| 14800 | 4c 41 50 41 43 4b 0a 20 20 20 20 72 6f 75 74 69 6e 65 20 60 60 7a 2f 64 67 65 74 72 66 60 60 2e | LAPACK.....routine.``z/dgetrf``. |
| 14820 | 0a 0a 20 20 20 20 45 78 61 6d 70 6c 65 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 | ......Examples.....--------..... |
| 14840 | 54 68 65 20 64 65 74 65 72 6d 69 6e 61 6e 74 20 6f 66 20 61 20 32 2d 44 20 61 72 72 61 79 20 5b | The.determinant.of.a.2-D.array.[ |
| 14860 | 5b 61 2c 20 62 5d 2c 20 5b 63 2c 20 64 5d 5d 20 69 73 20 61 64 20 2d 20 62 63 3a 0a 0a 20 20 20 | [a,.b],.[c,.d]].is.ad.-.bc:..... |
| 14880 | 20 3e 3e 3e 20 69 6d 70 6f 72 74 20 6e 75 6d 70 79 20 61 73 20 6e 70 0a 20 20 20 20 3e 3e 3e 20 | .>>>.import.numpy.as.np.....>>>. |
| 148a0 | 61 20 3d 20 6e 70 2e 61 72 72 61 79 28 5b 5b 31 2c 20 32 5d 2c 20 5b 33 2c 20 34 5d 5d 29 0a 20 | a.=.np.array([[1,.2],.[3,.4]]).. |
| 148c0 | 20 20 20 3e 3e 3e 20 6e 70 2e 6c 69 6e 61 6c 67 2e 64 65 74 28 61 29 0a 20 20 20 20 2d 32 2e 30 | ...>>>.np.linalg.det(a).....-2.0 |
| 148e0 | 20 23 20 6d 61 79 20 76 61 72 79 0a 0a 20 20 20 20 43 6f 6d 70 75 74 69 6e 67 20 64 65 74 65 72 | .#.may.vary......Computing.deter |
| 14900 | 6d 69 6e 61 6e 74 73 20 66 6f 72 20 61 20 73 74 61 63 6b 20 6f 66 20 6d 61 74 72 69 63 65 73 3a | minants.for.a.stack.of.matrices: |
| 14920 | 0a 0a 20 20 20 20 3e 3e 3e 20 61 20 3d 20 6e 70 2e 61 72 72 61 79 28 5b 20 5b 5b 31 2c 20 32 5d | ......>>>.a.=.np.array([.[[1,.2] |
| 14940 | 2c 20 5b 33 2c 20 34 5d 5d 2c 20 5b 5b 31 2c 20 32 5d 2c 20 5b 32 2c 20 31 5d 5d 2c 20 5b 5b 31 | ,.[3,.4]],.[[1,.2],.[2,.1]],.[[1 |
| 14960 | 2c 20 33 5d 2c 20 5b 33 2c 20 31 5d 5d 20 5d 29 0a 20 20 20 20 3e 3e 3e 20 61 2e 73 68 61 70 65 | ,.3],.[3,.1]].]).....>>>.a.shape |
| 14980 | 0a 20 20 20 20 28 33 2c 20 32 2c 20 32 29 0a 20 20 20 20 3e 3e 3e 20 6e 70 2e 6c 69 6e 61 6c 67 | .....(3,.2,.2).....>>>.np.linalg |
| 149a0 | 2e 64 65 74 28 61 29 0a 20 20 20 20 61 72 72 61 79 28 5b 2d 32 2e 2c 20 2d 33 2e 2c 20 2d 38 2e | .det(a).....array([-2.,.-3.,.-8. |
| 149c0 | 5d 29 0a 0a 20 20 20 20 72 f9 00 00 00 72 fa 00 00 00 72 e5 00 00 00 46 72 e7 00 00 00 29 07 72 | ])......r....r....r....Fr....).r |
| 149e0 | 2d 00 00 00 72 c0 00 00 00 72 a4 00 00 00 72 90 00 00 00 72 56 00 00 00 72 0c 00 00 00 72 ea 00 | -...r....r....r....rV...r....r.. |
| 14a00 | 00 00 29 05 72 88 00 00 00 72 8f 00 00 00 72 ec 00 00 00 72 e6 00 00 00 72 ee 00 00 00 73 05 00 | ..).r....r....r....r....r....s.. |
| 14a20 | 00 00 20 20 20 20 20 72 62 00 00 00 72 0c 00 00 00 72 0c 00 00 00 4b 09 00 00 73 5a 00 00 00 80 | .......rb...r....r....K...sZ.... |
| 14a40 | 00 f4 5e 01 00 09 10 90 01 8b 0a 80 41 dc 04 1a 98 31 d4 04 1d dc 12 1d 98 61 93 2e 81 4b 80 41 | ..^.........A....1.......a...K.A |
| 14a60 | 80 78 dc 1a 27 a8 01 d4 1a 2a 91 06 b0 06 80 49 dc 08 15 d7 08 19 d1 08 19 98 21 a0 79 d4 08 31 | .x..'....*.....I..........!.y..1 |
| 14a80 | 80 41 d8 08 09 8f 08 89 08 90 18 a0 05 88 08 d3 08 26 80 41 d8 0b 0c 80 48 72 61 00 00 00 63 03 | .A...............&.A....Hra...c. |
| 14aa0 | 00 00 00 00 00 00 00 00 00 00 00 02 00 00 00 03 00 00 00 f3 0a 00 00 00 97 00 7c 00 7c 01 66 02 | ..........................|.|.f. |
| 14ac0 | 53 00 72 8d 00 00 00 72 60 00 00 00 29 03 72 88 00 00 00 72 ca 00 00 00 72 75 01 00 00 73 03 00 | S.r....r`...).r....r....ru...s.. |
| 14ae0 | 00 00 20 20 20 72 62 00 00 00 da 11 5f 6c 73 74 73 71 5f 64 69 73 70 61 74 63 68 65 72 72 80 01 | .....rb....._lstsq_dispatcherr.. |
| 14b00 | 00 00 85 09 00 00 72 cd 00 00 00 72 61 00 00 00 63 03 00 00 00 00 00 00 00 00 00 00 00 07 00 00 | ......r....ra...c............... |
| 14b20 | 00 03 00 00 00 f3 ac 03 00 00 97 00 74 01 00 00 00 00 00 00 00 00 7c 00 ab 01 00 00 00 00 00 00 | ............t.........|......... |
| 14b40 | 5c 02 00 00 7d 00 7d 03 74 01 00 00 00 00 00 00 00 00 7c 01 ab 01 00 00 00 00 00 00 5c 02 00 00 | \...}.}.t.........|.........\... |
| 14b60 | 7d 01 7d 04 7c 01 6a 02 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 64 01 6b 28 00 00 | }.}.|.j...................d.k(.. |
| 14b80 | 7d 05 7c 05 72 0d 7c 01 64 02 64 02 85 02 74 04 00 00 00 00 00 00 00 00 66 02 19 00 00 00 7d 01 | }.|.r.|.d.d...t.........f.....}. |
| 14ba0 | 74 07 00 00 00 00 00 00 00 00 7c 00 7c 01 ab 02 00 00 00 00 00 00 01 00 7c 00 6a 08 00 00 00 00 | t.........|.|...........|.j..... |
| 14bc0 | 00 00 00 00 00 00 00 00 00 00 00 00 00 00 64 03 64 02 1a 00 5c 02 00 00 7d 06 7d 07 7c 01 6a 08 | ..............d.d...\...}.}.|.j. |
| 14be0 | 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 64 03 64 02 1a 00 5c 02 00 00 7d 08 7d 09 | ..................d.d...\...}.}. |
| 14c00 | 7c 06 7c 08 6b 37 00 00 72 0b 74 0b 00 00 00 00 00 00 00 00 64 04 ab 01 00 00 00 00 00 00 82 01 | |.|.k7..r.t.........d........... |
| 14c20 | 74 0d 00 00 00 00 00 00 00 00 7c 00 7c 01 ab 02 00 00 00 00 00 00 5c 02 00 00 7d 0a 7d 0b 74 0f | t.........|.|.........\...}.}.t. |
| 14c40 | 00 00 00 00 00 00 00 00 7c 0b ab 01 00 00 00 00 00 00 7d 0c 7c 02 80 22 74 11 00 00 00 00 00 00 | ........|.........}.|.."t....... |
| 14c60 | 00 00 7c 0a ab 01 00 00 00 00 00 00 6a 12 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 | ..|.........j................... |
| 14c80 | 74 15 00 00 00 00 00 00 00 00 7c 07 7c 06 ab 02 00 00 00 00 00 00 7a 05 00 00 7d 02 74 17 00 00 | t.........|.|.........z...}.t... |
| 14ca0 | 00 00 00 00 00 00 7c 0a ab 01 00 00 00 00 00 00 72 02 64 05 6e 01 64 06 7d 0d 7c 09 64 07 6b 28 | ......|.........r.d.n.d.}.|.d.k( |
| 14cc0 | 00 00 72 2c 74 19 00 00 00 00 00 00 00 00 7c 01 6a 08 00 00 00 00 00 00 00 00 00 00 00 00 00 00 | ..r,t.........|.j............... |
| 14ce0 | 00 00 00 00 64 02 64 03 1a 00 7c 06 7c 09 64 01 7a 00 00 00 66 02 7a 00 00 00 7c 01 6a 1a 00 00 | ....d.d...|.|.d.z...f.z...|.j... |
| 14d00 | 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ac 08 ab 02 00 00 00 00 00 00 7d 01 74 1d 00 00 | ..........................}.t... |
| 14d20 | 00 00 00 00 00 00 74 1e 00 00 00 00 00 00 00 00 64 09 64 0a 64 0a 64 0a ac 0b ab 05 00 00 00 00 | ......t.........d.d.d.d......... |
| 14d40 | 00 00 35 00 01 00 74 21 00 00 00 00 00 00 00 00 6a 22 00 00 00 00 00 00 00 00 00 00 00 00 00 00 | ..5...t!........j".............. |
| 14d60 | 00 00 00 00 7c 00 7c 01 7c 02 7c 0d ac 0c ab 04 00 00 00 00 00 00 5c 04 00 00 7d 0e 7d 0f 7d 10 | ....|.|.|.|...........\...}.}.}. |
| 14d80 | 7d 11 64 02 64 02 64 02 ab 02 00 00 00 00 00 00 01 00 7c 06 64 07 6b 28 00 00 72 05 64 07 7f 0e | }.d.d.d...........|.d.k(..r.d... |
| 14da0 | 64 0d 3c 00 00 00 7c 09 64 07 6b 28 00 00 72 12 7f 0e 64 0d 64 02 7c 09 85 02 66 02 19 00 00 00 | d.<...|.d.k(..r...d.d.|...f..... |
| 14dc0 | 7d 0e 7f 0f 64 0d 64 02 7c 09 85 02 66 02 19 00 00 00 7d 0f 7c 05 72 12 7f 0e 6a 25 00 00 00 00 | }...d.d.|...f.....}.|.r...j%.... |
| 14de0 | 00 00 00 00 00 00 00 00 00 00 00 00 00 00 64 0e ac 0f ab 01 00 00 00 00 00 00 7d 0e 7f 10 7c 07 | ..............d...........}...|. |
| 14e00 | 6b 37 00 00 73 05 7c 06 7c 07 6b 1a 00 00 72 0c 74 27 00 00 00 00 00 00 00 00 67 00 7c 0c ab 02 | k7..s.|.|.k...r.t'........g.|... |
| 14e20 | 00 00 00 00 00 00 7d 0f 7f 11 6a 29 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 7c 0c | ......}...j)..................|. |
| 14e40 | 64 10 ac 11 ab 02 00 00 00 00 00 00 7d 11 7f 0f 6a 29 00 00 00 00 00 00 00 00 00 00 00 00 00 00 | d...........}...j).............. |
| 14e60 | 00 00 00 00 7c 0c 64 10 ac 11 ab 02 00 00 00 00 00 00 7d 0f 7f 0e 6a 29 00 00 00 00 00 00 00 00 | ....|.d...........}...j)........ |
| 14e80 | 00 00 00 00 00 00 00 00 00 00 7c 0b 64 12 ac 11 ab 02 00 00 00 00 00 00 7d 0e 02 00 7c 04 7c 0e | ..........|.d...........}...|.|. |
| 14ea0 | ab 01 00 00 00 00 00 00 02 00 7c 04 7c 0f ab 01 00 00 00 00 00 00 7c 10 7c 11 66 04 53 00 23 00 | ..........|.|.........|.|.f.S.#. |
| 14ec0 | 31 00 73 01 77 02 01 00 59 00 01 00 01 00 8c 9f 78 03 59 00 77 01 29 13 61 c4 0c 00 00 0a 20 20 | 1.s.w...Y.......x.Y.w.).a....... |
| 14ee0 | 20 20 52 65 74 75 72 6e 20 74 68 65 20 6c 65 61 73 74 2d 73 71 75 61 72 65 73 20 73 6f 6c 75 74 | ..Return.the.least-squares.solut |
| 14f00 | 69 6f 6e 20 74 6f 20 61 20 6c 69 6e 65 61 72 20 6d 61 74 72 69 78 20 65 71 75 61 74 69 6f 6e 2e | ion.to.a.linear.matrix.equation. |
| 14f20 | 0a 0a 20 20 20 20 43 6f 6d 70 75 74 65 73 20 74 68 65 20 76 65 63 74 6f 72 20 60 78 60 20 74 68 | ......Computes.the.vector.`x`.th |
| 14f40 | 61 74 20 61 70 70 72 6f 78 69 6d 61 74 65 6c 79 20 73 6f 6c 76 65 73 20 74 68 65 20 65 71 75 61 | at.approximately.solves.the.equa |
| 14f60 | 74 69 6f 6e 0a 20 20 20 20 60 60 61 20 40 20 78 20 3d 20 62 60 60 2e 20 54 68 65 20 65 71 75 61 | tion.....``a.@.x.=.b``..The.equa |
| 14f80 | 74 69 6f 6e 20 6d 61 79 20 62 65 20 75 6e 64 65 72 2d 2c 20 77 65 6c 6c 2d 2c 20 6f 72 20 6f 76 | tion.may.be.under-,.well-,.or.ov |
| 14fa0 | 65 72 2d 64 65 74 65 72 6d 69 6e 65 64 0a 20 20 20 20 28 69 2e 65 2e 2c 20 74 68 65 20 6e 75 6d | er-determined.....(i.e.,.the.num |
| 14fc0 | 62 65 72 20 6f 66 20 6c 69 6e 65 61 72 6c 79 20 69 6e 64 65 70 65 6e 64 65 6e 74 20 72 6f 77 73 | ber.of.linearly.independent.rows |
| 14fe0 | 20 6f 66 20 60 61 60 20 63 61 6e 20 62 65 20 6c 65 73 73 20 74 68 61 6e 2c 0a 20 20 20 20 65 71 | .of.`a`.can.be.less.than,.....eq |
| 15000 | 75 61 6c 20 74 6f 2c 20 6f 72 20 67 72 65 61 74 65 72 20 74 68 61 6e 20 69 74 73 20 6e 75 6d 62 | ual.to,.or.greater.than.its.numb |
| 15020 | 65 72 20 6f 66 20 6c 69 6e 65 61 72 6c 79 20 69 6e 64 65 70 65 6e 64 65 6e 74 20 63 6f 6c 75 6d | er.of.linearly.independent.colum |
| 15040 | 6e 73 29 2e 0a 20 20 20 20 49 66 20 60 61 60 20 69 73 20 73 71 75 61 72 65 20 61 6e 64 20 6f 66 | ns)......If.`a`.is.square.and.of |
| 15060 | 20 66 75 6c 6c 20 72 61 6e 6b 2c 20 74 68 65 6e 20 60 78 60 20 28 62 75 74 20 66 6f 72 20 72 6f | .full.rank,.then.`x`.(but.for.ro |
| 15080 | 75 6e 64 2d 6f 66 66 20 65 72 72 6f 72 29 0a 20 20 20 20 69 73 20 74 68 65 20 22 65 78 61 63 74 | und-off.error).....is.the."exact |
| 150a0 | 22 20 73 6f 6c 75 74 69 6f 6e 20 6f 66 20 74 68 65 20 65 71 75 61 74 69 6f 6e 2e 20 45 6c 73 65 | ".solution.of.the.equation..Else |
| 150c0 | 2c 20 60 78 60 20 6d 69 6e 69 6d 69 7a 65 73 20 74 68 65 0a 20 20 20 20 45 75 63 6c 69 64 65 61 | ,.`x`.minimizes.the.....Euclidea |
| 150e0 | 6e 20 32 2d 6e 6f 72 6d 20 3a 6d 61 74 68 3a 60 7c 7c 62 20 2d 20 61 78 7c 7c 60 2e 20 49 66 20 | n.2-norm.:math:`||b.-.ax||`..If. |
| 15100 | 74 68 65 72 65 20 61 72 65 20 6d 75 6c 74 69 70 6c 65 20 6d 69 6e 69 6d 69 7a 69 6e 67 0a 20 20 | there.are.multiple.minimizing... |
| 15120 | 20 20 73 6f 6c 75 74 69 6f 6e 73 2c 20 74 68 65 20 6f 6e 65 20 77 69 74 68 20 74 68 65 20 73 6d | ..solutions,.the.one.with.the.sm |
| 15140 | 61 6c 6c 65 73 74 20 32 2d 6e 6f 72 6d 20 3a 6d 61 74 68 3a 60 7c 7c 78 7c 7c 60 20 69 73 20 72 | allest.2-norm.:math:`||x||`.is.r |
| 15160 | 65 74 75 72 6e 65 64 2e 0a 0a 20 20 20 20 50 61 72 61 6d 65 74 65 72 73 0a 20 20 20 20 2d 2d 2d | eturned.......Parameters.....--- |
| 15180 | 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 61 20 3a 20 28 4d 2c 20 4e 29 20 61 72 72 61 79 5f 6c 69 6b | -------.....a.:.(M,.N).array_lik |
| 151a0 | 65 0a 20 20 20 20 20 20 20 20 22 43 6f 65 66 66 69 63 69 65 6e 74 22 20 6d 61 74 72 69 78 2e 0a | e........."Coefficient".matrix.. |
| 151c0 | 20 20 20 20 62 20 3a 20 7b 28 4d 2c 29 2c 20 28 4d 2c 20 4b 29 7d 20 61 72 72 61 79 5f 6c 69 6b | ....b.:.{(M,),.(M,.K)}.array_lik |
| 151e0 | 65 0a 20 20 20 20 20 20 20 20 4f 72 64 69 6e 61 74 65 20 6f 72 20 22 64 65 70 65 6e 64 65 6e 74 | e.........Ordinate.or."dependent |
| 15200 | 20 76 61 72 69 61 62 6c 65 22 20 76 61 6c 75 65 73 2e 20 49 66 20 60 62 60 20 69 73 20 74 77 6f | .variable".values..If.`b`.is.two |
| 15220 | 2d 64 69 6d 65 6e 73 69 6f 6e 61 6c 2c 0a 20 20 20 20 20 20 20 20 74 68 65 20 6c 65 61 73 74 2d | -dimensional,.........the.least- |
| 15240 | 73 71 75 61 72 65 73 20 73 6f 6c 75 74 69 6f 6e 20 69 73 20 63 61 6c 63 75 6c 61 74 65 64 20 66 | squares.solution.is.calculated.f |
| 15260 | 6f 72 20 65 61 63 68 20 6f 66 20 74 68 65 20 60 4b 60 20 63 6f 6c 75 6d 6e 73 0a 20 20 20 20 20 | or.each.of.the.`K`.columns...... |
| 15280 | 20 20 20 6f 66 20 60 62 60 2e 0a 20 20 20 20 72 63 6f 6e 64 20 3a 20 66 6c 6f 61 74 2c 20 6f 70 | ...of.`b`......rcond.:.float,.op |
| 152a0 | 74 69 6f 6e 61 6c 0a 20 20 20 20 20 20 20 20 43 75 74 2d 6f 66 66 20 72 61 74 69 6f 20 66 6f 72 | tional.........Cut-off.ratio.for |
| 152c0 | 20 73 6d 61 6c 6c 20 73 69 6e 67 75 6c 61 72 20 76 61 6c 75 65 73 20 6f 66 20 60 61 60 2e 0a 20 | .small.singular.values.of.`a`... |
| 152e0 | 20 20 20 20 20 20 20 46 6f 72 20 74 68 65 20 70 75 72 70 6f 73 65 73 20 6f 66 20 72 61 6e 6b 20 | .......For.the.purposes.of.rank. |
| 15300 | 64 65 74 65 72 6d 69 6e 61 74 69 6f 6e 2c 20 73 69 6e 67 75 6c 61 72 20 76 61 6c 75 65 73 20 61 | determination,.singular.values.a |
| 15320 | 72 65 20 74 72 65 61 74 65 64 0a 20 20 20 20 20 20 20 20 61 73 20 7a 65 72 6f 20 69 66 20 74 68 | re.treated.........as.zero.if.th |
| 15340 | 65 79 20 61 72 65 20 73 6d 61 6c 6c 65 72 20 74 68 61 6e 20 60 72 63 6f 6e 64 60 20 74 69 6d 65 | ey.are.smaller.than.`rcond`.time |
| 15360 | 73 20 74 68 65 20 6c 61 72 67 65 73 74 20 73 69 6e 67 75 6c 61 72 0a 20 20 20 20 20 20 20 20 76 | s.the.largest.singular.........v |
| 15380 | 61 6c 75 65 20 6f 66 20 60 61 60 2e 0a 20 20 20 20 20 20 20 20 54 68 65 20 64 65 66 61 75 6c 74 | alue.of.`a`..........The.default |
| 153a0 | 20 75 73 65 73 20 74 68 65 20 6d 61 63 68 69 6e 65 20 70 72 65 63 69 73 69 6f 6e 20 74 69 6d 65 | .uses.the.machine.precision.time |
| 153c0 | 73 20 60 60 6d 61 78 28 4d 2c 20 4e 29 60 60 2e 20 20 50 61 73 73 69 6e 67 0a 20 20 20 20 20 20 | s.``max(M,.N)``...Passing....... |
| 153e0 | 20 20 60 60 2d 31 60 60 20 77 69 6c 6c 20 75 73 65 20 6d 61 63 68 69 6e 65 20 70 72 65 63 69 73 | ..``-1``.will.use.machine.precis |
| 15400 | 69 6f 6e 2e 0a 0a 20 20 20 20 20 20 20 20 2e 2e 20 76 65 72 73 69 6f 6e 63 68 61 6e 67 65 64 3a | ion..............versionchanged: |
| 15420 | 3a 20 32 2e 30 0a 20 20 20 20 20 20 20 20 20 20 20 20 50 72 65 76 69 6f 75 73 6c 79 2c 20 74 68 | :.2.0.............Previously,.th |
| 15440 | 65 20 64 65 66 61 75 6c 74 20 77 61 73 20 60 60 2d 31 60 60 2c 20 62 75 74 20 61 20 77 61 72 6e | e.default.was.``-1``,.but.a.warn |
| 15460 | 69 6e 67 20 77 61 73 20 67 69 76 65 6e 20 74 68 61 74 0a 20 20 20 20 20 20 20 20 20 20 20 20 74 | ing.was.given.that.............t |
| 15480 | 68 69 73 20 77 6f 75 6c 64 20 63 68 61 6e 67 65 2e 0a 0a 20 20 20 20 52 65 74 75 72 6e 73 0a 20 | his.would.change.......Returns.. |
| 154a0 | 20 20 20 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 78 20 3a 20 7b 28 4e 2c 29 2c 20 28 4e 2c 20 4b 29 | ...-------.....x.:.{(N,),.(N,.K) |
| 154c0 | 7d 20 6e 64 61 72 72 61 79 0a 20 20 20 20 20 20 20 20 4c 65 61 73 74 2d 73 71 75 61 72 65 73 20 | }.ndarray.........Least-squares. |
| 154e0 | 73 6f 6c 75 74 69 6f 6e 2e 20 49 66 20 60 62 60 20 69 73 20 74 77 6f 2d 64 69 6d 65 6e 73 69 6f | solution..If.`b`.is.two-dimensio |
| 15500 | 6e 61 6c 2c 0a 20 20 20 20 20 20 20 20 74 68 65 20 73 6f 6c 75 74 69 6f 6e 73 20 61 72 65 20 69 | nal,.........the.solutions.are.i |
| 15520 | 6e 20 74 68 65 20 60 4b 60 20 63 6f 6c 75 6d 6e 73 20 6f 66 20 60 78 60 2e 0a 20 20 20 20 72 65 | n.the.`K`.columns.of.`x`......re |
| 15540 | 73 69 64 75 61 6c 73 20 3a 20 7b 28 31 2c 29 2c 20 28 4b 2c 29 2c 20 28 30 2c 29 7d 20 6e 64 61 | siduals.:.{(1,),.(K,),.(0,)}.nda |
| 15560 | 72 72 61 79 0a 20 20 20 20 20 20 20 20 53 75 6d 73 20 6f 66 20 73 71 75 61 72 65 64 20 72 65 73 | rray.........Sums.of.squared.res |
| 15580 | 69 64 75 61 6c 73 3a 20 53 71 75 61 72 65 64 20 45 75 63 6c 69 64 65 61 6e 20 32 2d 6e 6f 72 6d | iduals:.Squared.Euclidean.2-norm |
| 155a0 | 20 66 6f 72 20 65 61 63 68 20 63 6f 6c 75 6d 6e 20 69 6e 0a 20 20 20 20 20 20 20 20 60 60 62 20 | .for.each.column.in.........``b. |
| 155c0 | 2d 20 61 20 40 20 78 60 60 2e 0a 20 20 20 20 20 20 20 20 49 66 20 74 68 65 20 72 61 6e 6b 20 6f | -.a.@.x``..........If.the.rank.o |
| 155e0 | 66 20 60 61 60 20 69 73 20 3c 20 4e 20 6f 72 20 4d 20 3c 3d 20 4e 2c 20 74 68 69 73 20 69 73 20 | f.`a`.is.<.N.or.M.<=.N,.this.is. |
| 15600 | 61 6e 20 65 6d 70 74 79 20 61 72 72 61 79 2e 0a 20 20 20 20 20 20 20 20 49 66 20 60 62 60 20 69 | an.empty.array..........If.`b`.i |
| 15620 | 73 20 31 2d 64 69 6d 65 6e 73 69 6f 6e 61 6c 2c 20 74 68 69 73 20 69 73 20 61 20 28 31 2c 29 20 | s.1-dimensional,.this.is.a.(1,). |
| 15640 | 73 68 61 70 65 20 61 72 72 61 79 2e 0a 20 20 20 20 20 20 20 20 4f 74 68 65 72 77 69 73 65 20 74 | shape.array..........Otherwise.t |
| 15660 | 68 65 20 73 68 61 70 65 20 69 73 20 28 4b 2c 29 2e 0a 20 20 20 20 72 61 6e 6b 20 3a 20 69 6e 74 | he.shape.is.(K,)......rank.:.int |
| 15680 | 0a 20 20 20 20 20 20 20 20 52 61 6e 6b 20 6f 66 20 6d 61 74 72 69 78 20 60 61 60 2e 0a 20 20 20 | .........Rank.of.matrix.`a`..... |
| 156a0 | 20 73 20 3a 20 28 6d 69 6e 28 4d 2c 20 4e 29 2c 29 20 6e 64 61 72 72 61 79 0a 20 20 20 20 20 20 | .s.:.(min(M,.N),).ndarray....... |
| 156c0 | 20 20 53 69 6e 67 75 6c 61 72 20 76 61 6c 75 65 73 20 6f 66 20 60 61 60 2e 0a 0a 20 20 20 20 52 | ..Singular.values.of.`a`.......R |
| 156e0 | 61 69 73 65 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 4c 69 6e 41 6c 67 45 72 72 6f 72 | aises.....------.....LinAlgError |
| 15700 | 0a 20 20 20 20 20 20 20 20 49 66 20 63 6f 6d 70 75 74 61 74 69 6f 6e 20 64 6f 65 73 20 6e 6f 74 | .........If.computation.does.not |
| 15720 | 20 63 6f 6e 76 65 72 67 65 2e 0a 0a 20 20 20 20 53 65 65 20 41 6c 73 6f 0a 20 20 20 20 2d 2d 2d | .converge.......See.Also.....--- |
| 15740 | 2d 2d 2d 2d 2d 0a 20 20 20 20 73 63 69 70 79 2e 6c 69 6e 61 6c 67 2e 6c 73 74 73 71 20 3a 20 53 | -----.....scipy.linalg.lstsq.:.S |
| 15760 | 69 6d 69 6c 61 72 20 66 75 6e 63 74 69 6f 6e 20 69 6e 20 53 63 69 50 79 2e 0a 0a 20 20 20 20 4e | imilar.function.in.SciPy.......N |
| 15780 | 6f 74 65 73 0a 20 20 20 20 2d 2d 2d 2d 2d 0a 20 20 20 20 49 66 20 60 62 60 20 69 73 20 61 20 6d | otes.....-----.....If.`b`.is.a.m |
| 157a0 | 61 74 72 69 78 2c 20 74 68 65 6e 20 61 6c 6c 20 61 72 72 61 79 20 72 65 73 75 6c 74 73 20 61 72 | atrix,.then.all.array.results.ar |
| 157c0 | 65 20 72 65 74 75 72 6e 65 64 20 61 73 20 6d 61 74 72 69 63 65 73 2e 0a 0a 20 20 20 20 45 78 61 | e.returned.as.matrices.......Exa |
| 157e0 | 6d 70 6c 65 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 46 69 74 20 61 20 6c 69 6e | mples.....--------.....Fit.a.lin |
| 15800 | 65 2c 20 60 60 79 20 3d 20 6d 78 20 2b 20 63 60 60 2c 20 74 68 72 6f 75 67 68 20 73 6f 6d 65 20 | e,.``y.=.mx.+.c``,.through.some. |
| 15820 | 6e 6f 69 73 79 20 64 61 74 61 2d 70 6f 69 6e 74 73 3a 0a 0a 20 20 20 20 3e 3e 3e 20 69 6d 70 6f | noisy.data-points:......>>>.impo |
| 15840 | 72 74 20 6e 75 6d 70 79 20 61 73 20 6e 70 0a 20 20 20 20 3e 3e 3e 20 78 20 3d 20 6e 70 2e 61 72 | rt.numpy.as.np.....>>>.x.=.np.ar |
| 15860 | 72 61 79 28 5b 30 2c 20 31 2c 20 32 2c 20 33 5d 29 0a 20 20 20 20 3e 3e 3e 20 79 20 3d 20 6e 70 | ray([0,.1,.2,.3]).....>>>.y.=.np |
| 15880 | 2e 61 72 72 61 79 28 5b 2d 31 2c 20 30 2e 32 2c 20 30 2e 39 2c 20 32 2e 31 5d 29 0a 0a 20 20 20 | .array([-1,.0.2,.0.9,.2.1])..... |
| 158a0 | 20 42 79 20 65 78 61 6d 69 6e 69 6e 67 20 74 68 65 20 63 6f 65 66 66 69 63 69 65 6e 74 73 2c 20 | .By.examining.the.coefficients,. |
| 158c0 | 77 65 20 73 65 65 20 74 68 61 74 20 74 68 65 20 6c 69 6e 65 20 73 68 6f 75 6c 64 20 68 61 76 65 | we.see.that.the.line.should.have |
| 158e0 | 20 61 0a 20 20 20 20 67 72 61 64 69 65 6e 74 20 6f 66 20 72 6f 75 67 68 6c 79 20 31 20 61 6e 64 | .a.....gradient.of.roughly.1.and |
| 15900 | 20 63 75 74 20 74 68 65 20 79 2d 61 78 69 73 20 61 74 2c 20 6d 6f 72 65 20 6f 72 20 6c 65 73 73 | .cut.the.y-axis.at,.more.or.less |
| 15920 | 2c 20 2d 31 2e 0a 0a 20 20 20 20 57 65 20 63 61 6e 20 72 65 77 72 69 74 65 20 74 68 65 20 6c 69 | ,.-1.......We.can.rewrite.the.li |
| 15940 | 6e 65 20 65 71 75 61 74 69 6f 6e 20 61 73 20 60 60 79 20 3d 20 41 70 60 60 2c 20 77 68 65 72 65 | ne.equation.as.``y.=.Ap``,.where |
| 15960 | 20 60 60 41 20 3d 20 5b 5b 78 20 31 5d 5d 60 60 0a 20 20 20 20 61 6e 64 20 60 60 70 20 3d 20 5b | .``A.=.[[x.1]]``.....and.``p.=.[ |
| 15980 | 5b 6d 5d 2c 20 5b 63 5d 5d 60 60 2e 20 20 4e 6f 77 20 75 73 65 20 60 6c 73 74 73 71 60 20 74 6f | [m],.[c]]``...Now.use.`lstsq`.to |
| 159a0 | 20 73 6f 6c 76 65 20 66 6f 72 20 60 70 60 3a 0a 0a 20 20 20 20 3e 3e 3e 20 41 20 3d 20 6e 70 2e | .solve.for.`p`:......>>>.A.=.np. |
| 159c0 | 76 73 74 61 63 6b 28 5b 78 2c 20 6e 70 2e 6f 6e 65 73 28 6c 65 6e 28 78 29 29 5d 29 2e 54 0a 20 | vstack([x,.np.ones(len(x))]).T.. |
| 159e0 | 20 20 20 3e 3e 3e 20 41 0a 20 20 20 20 61 72 72 61 79 28 5b 5b 20 30 2e 2c 20 20 31 2e 5d 2c 0a | ...>>>.A.....array([[.0.,..1.],. |
| 15a00 | 20 20 20 20 20 20 20 20 20 20 20 5b 20 31 2e 2c 20 20 31 2e 5d 2c 0a 20 20 20 20 20 20 20 20 20 | ...........[.1.,..1.],.......... |
| 15a20 | 20 20 5b 20 32 2e 2c 20 20 31 2e 5d 2c 0a 20 20 20 20 20 20 20 20 20 20 20 5b 20 33 2e 2c 20 20 | ..[.2.,..1.],............[.3.,.. |
| 15a40 | 31 2e 5d 5d 29 0a 0a 20 20 20 20 3e 3e 3e 20 6d 2c 20 63 20 3d 20 6e 70 2e 6c 69 6e 61 6c 67 2e | 1.]])......>>>.m,.c.=.np.linalg. |
| 15a60 | 6c 73 74 73 71 28 41 2c 20 79 29 5b 30 5d 0a 20 20 20 20 3e 3e 3e 20 6d 2c 20 63 0a 20 20 20 20 | lstsq(A,.y)[0].....>>>.m,.c..... |
| 15a80 | 28 31 2e 30 20 2d 30 2e 39 35 29 20 23 20 6d 61 79 20 76 61 72 79 0a 0a 20 20 20 20 50 6c 6f 74 | (1.0.-0.95).#.may.vary......Plot |
| 15aa0 | 20 74 68 65 20 64 61 74 61 20 61 6c 6f 6e 67 20 77 69 74 68 20 74 68 65 20 66 69 74 74 65 64 20 | .the.data.along.with.the.fitted. |
| 15ac0 | 6c 69 6e 65 3a 0a 0a 20 20 20 20 3e 3e 3e 20 69 6d 70 6f 72 74 20 6d 61 74 70 6c 6f 74 6c 69 62 | line:......>>>.import.matplotlib |
| 15ae0 | 2e 70 79 70 6c 6f 74 20 61 73 20 70 6c 74 0a 20 20 20 20 3e 3e 3e 20 5f 20 3d 20 70 6c 74 2e 70 | .pyplot.as.plt.....>>>._.=.plt.p |
| 15b00 | 6c 6f 74 28 78 2c 20 79 2c 20 27 6f 27 2c 20 6c 61 62 65 6c 3d 27 4f 72 69 67 69 6e 61 6c 20 64 | lot(x,.y,.'o',.label='Original.d |
| 15b20 | 61 74 61 27 2c 20 6d 61 72 6b 65 72 73 69 7a 65 3d 31 30 29 0a 20 20 20 20 3e 3e 3e 20 5f 20 3d | ata',.markersize=10).....>>>._.= |
| 15b40 | 20 70 6c 74 2e 70 6c 6f 74 28 78 2c 20 6d 2a 78 20 2b 20 63 2c 20 27 72 27 2c 20 6c 61 62 65 6c | .plt.plot(x,.m*x.+.c,.'r',.label |
| 15b60 | 3d 27 46 69 74 74 65 64 20 6c 69 6e 65 27 29 0a 20 20 20 20 3e 3e 3e 20 5f 20 3d 20 70 6c 74 2e | ='Fitted.line').....>>>._.=.plt. |
| 15b80 | 6c 65 67 65 6e 64 28 29 0a 20 20 20 20 3e 3e 3e 20 70 6c 74 2e 73 68 6f 77 28 29 0a 0a 20 20 20 | legend().....>>>.plt.show()..... |
| 15ba0 | 20 72 a9 00 00 00 4e 72 bb 00 00 00 7a 17 49 6e 63 6f 6d 70 61 74 69 62 6c 65 20 64 69 6d 65 6e | .r....Nr....z.Incompatible.dimen |
| 15bc0 | 73 69 6f 6e 73 7a 09 44 44 64 2d 3e 44 64 69 64 7a 09 64 64 64 2d 3e 64 64 69 64 72 22 00 00 00 | sionsz.DDd->Ddidz.ddd->ddidr"... |
| 15be0 | 72 a8 00 00 00 72 df 00 00 00 72 e0 00 00 00 72 e1 00 00 00 72 e5 00 00 00 2e 72 c7 00 00 00 72 | r....r....r....r....r.....r....r |
| 15c00 | 4d 01 00 00 46 72 e7 00 00 00 54 29 15 72 8b 00 00 00 72 b4 00 00 00 72 42 00 00 00 72 b6 00 00 | M...Fr....T).r....r....rB...r... |
| 15c20 | 00 72 bc 00 00 00 72 16 00 00 00 72 a4 00 00 00 72 96 00 00 00 72 39 00 00 00 72 73 01 00 00 72 | .r....r....r....r....r9...rs...r |
| 15c40 | 72 01 00 00 72 90 00 00 00 72 4d 00 00 00 72 9b 00 00 00 72 38 00 00 00 72 82 00 00 00 72 56 00 | r...r....rM...r....r8...r....rV. |
| 15c60 | 00 00 72 11 00 00 00 da 07 73 71 75 65 65 7a 65 72 2b 00 00 00 72 ea 00 00 00 29 12 72 88 00 00 | ..r......squeezer+...r....).r... |
| 15c80 | 00 72 ca 00 00 00 72 75 01 00 00 72 eb 00 00 00 72 8a 00 00 00 da 05 69 73 5f 31 64 72 be 00 00 | .r....ru...r....r......is_1dr... |
| 15ca0 | 00 72 bf 00 00 00 da 02 6d 32 da 05 6e 5f 72 68 73 72 8f 00 00 00 72 ec 00 00 00 da 0d 72 65 73 | .r......m2..n_rhsr....r......res |
| 15cc0 | 75 6c 74 5f 72 65 61 6c 5f 74 72 e6 00 00 00 72 5c 01 00 00 da 06 72 65 73 69 64 73 da 04 72 61 | ult_real_tr....r\.....resids..ra |
| 15ce0 | 6e 6b 72 55 01 00 00 73 12 00 00 00 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 72 62 | nkrU...s......................rb |
| 15d00 | 00 00 00 72 11 00 00 00 72 11 00 00 00 89 09 00 00 73 00 02 00 00 80 00 f4 42 03 00 0c 16 90 61 | ...r....r........s.......B.....a |
| 15d20 | 8b 3d 81 44 80 41 80 71 dc 0e 18 98 11 8b 6d 81 47 80 41 80 74 d8 0c 0d 8f 46 89 46 90 61 89 4b | .=.D.A.q......m.G.A.t....F.F.a.K |
| 15d40 | 80 45 d9 07 0c d8 0c 0d 8a 61 94 17 88 6a 89 4d 88 01 dc 04 0e 88 71 90 21 d4 04 14 d8 0b 0c 8f | .E.......a...j.M......q.!....... |
| 15d60 | 37 89 37 90 32 90 33 88 3c 81 44 80 41 80 71 d8 10 11 97 07 91 07 98 02 98 03 90 0c 81 49 80 42 | 7.7.2.3.<.D.A.q..............I.B |
| 15d80 | 88 05 d8 07 08 88 42 82 77 dc 0e 19 d0 1a 33 d3 0e 34 d0 08 34 e4 12 1d 98 61 a0 11 d3 12 23 81 | ......B.w.....3..4..4....a....#. |
| 15da0 | 4b 80 41 80 78 dc 14 1d 98 68 d3 14 27 80 4d e0 07 0c 80 7d dc 10 15 90 61 93 08 97 0c 91 0c 9c | K.A.x....h..'.M....}....a....... |
| 15dc0 | 73 a0 31 a0 61 9b 79 d1 10 28 88 05 e4 1f 2c a8 51 d4 1f 2f 91 0b b0 5b 80 49 d8 07 0c 90 01 82 | s.1.a.y..(....,.Q../...[.I...... |
| 15de0 | 7a f4 06 00 0d 12 90 21 97 27 91 27 98 23 98 32 90 2c a0 21 a0 55 a8 51 a1 59 a0 1e d1 12 2f b0 | z......!.'.'.#.2.,.!.U.Q.Y..../. |
| 15e00 | 71 b7 77 b1 77 d4 0c 3f 88 01 e4 09 11 d4 17 2f b8 16 d8 17 1f a8 08 b8 08 f4 03 01 0a 42 01 f1 | q.w.w..?......./.............B.. |
| 15e20 | 00 03 05 46 01 e4 1d 2a d7 1d 30 d1 1d 30 b0 11 b0 41 b0 75 d8 3b 44 f4 03 01 1e 46 01 d1 08 1a | ...F...*..0..0...A.u.;D....F.... |
| 15e40 | 88 01 88 36 90 34 98 11 f7 05 03 05 46 01 f0 08 00 08 09 88 41 82 76 d8 11 12 88 01 88 23 89 06 | ...6.4......F.......A.v......#.. |
| 15e60 | d8 07 0c 90 01 82 7a e0 0c 0d 88 63 90 36 90 45 90 36 88 6b 89 4e 88 01 d8 11 17 98 03 98 56 98 | ......z....c.6.E.6.k.N........V. |
| 15e80 | 65 98 56 98 0b d1 11 24 88 06 f1 06 00 08 0d d8 0c 0d 8f 49 89 49 98 32 88 49 d3 0c 1e 88 01 f0 | e.V....$...........I.I.2.I...... |
| 15ea0 | 0a 00 08 0c 88 71 82 79 90 41 98 11 92 46 dc 11 16 90 72 98 3d d3 11 29 88 06 f0 06 00 09 0a 8f | .....q.y.A...F....r.=..)........ |
| 15ec0 | 08 89 08 90 1d a0 55 88 08 d3 08 2b 80 41 d8 0d 13 8f 5d 89 5d 98 3d a8 75 88 5d d3 0d 35 80 46 | ......U....+.A....].].=.u.]..5.F |
| 15ee0 | e0 08 09 8f 08 89 08 90 18 a0 04 88 08 d3 08 25 80 41 d9 0b 0f 90 01 8b 37 91 44 98 16 93 4c a0 | ...............%.A......7.D...L. |
| 15f00 | 24 a8 01 d0 0b 29 d0 04 29 f7 35 03 05 46 01 f0 00 03 05 46 01 fa 73 0c 00 00 00 c4 0d 1f 47 0a | $....)..).5..F.....F..s.......G. |
| 15f20 | 03 c7 0a 05 47 13 07 63 05 00 00 00 00 00 00 00 00 00 00 00 06 00 00 00 03 00 00 00 f3 50 00 00 | ....G..c.....................P.. |
| 15f40 | 00 97 00 74 01 00 00 00 00 00 00 00 00 7c 00 7c 01 7c 02 66 02 64 01 ab 03 00 00 00 00 00 00 7d | ...t.........|.|.|.f.d.........} |
| 15f60 | 05 02 00 7c 03 74 03 00 00 00 00 00 00 00 00 7c 05 64 02 ac 03 ab 02 00 00 00 00 00 00 64 04 7c | ...|.t.........|.d...........d.| |
| 15f80 | 04 ac 05 ab 03 00 00 00 00 00 00 7d 06 7c 06 53 00 29 06 61 e0 02 00 00 43 6f 6d 70 75 74 65 20 | ...........}.|.S.).a....Compute. |
| 15fa0 | 61 20 66 75 6e 63 74 69 6f 6e 20 6f 66 20 74 68 65 20 73 69 6e 67 75 6c 61 72 20 76 61 6c 75 65 | a.function.of.the.singular.value |
| 15fc0 | 73 20 6f 66 20 74 68 65 20 32 2d 44 20 6d 61 74 72 69 63 65 73 20 69 6e 20 60 78 60 2e 0a 0a 20 | s.of.the.2-D.matrices.in.`x`.... |
| 15fe0 | 20 20 20 54 68 69 73 20 69 73 20 61 20 70 72 69 76 61 74 65 20 75 74 69 6c 69 74 79 20 66 75 6e | ...This.is.a.private.utility.fun |
| 16000 | 63 74 69 6f 6e 20 75 73 65 64 20 62 79 20 60 6e 75 6d 70 79 2e 6c 69 6e 61 6c 67 2e 6e 6f 72 6d | ction.used.by.`numpy.linalg.norm |
| 16020 | 28 29 60 2e 0a 0a 20 20 20 20 50 61 72 61 6d 65 74 65 72 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d | ()`.......Parameters.....------- |
| 16040 | 2d 2d 2d 0a 20 20 20 20 78 20 3a 20 6e 64 61 72 72 61 79 0a 20 20 20 20 72 6f 77 5f 61 78 69 73 | ---.....x.:.ndarray.....row_axis |
| 16060 | 2c 20 63 6f 6c 5f 61 78 69 73 20 3a 20 69 6e 74 0a 20 20 20 20 20 20 20 20 54 68 65 20 61 78 65 | ,.col_axis.:.int.........The.axe |
| 16080 | 73 20 6f 66 20 60 78 60 20 74 68 61 74 20 68 6f 6c 64 20 74 68 65 20 32 2d 44 20 6d 61 74 72 69 | s.of.`x`.that.hold.the.2-D.matri |
| 160a0 | 63 65 73 2e 0a 20 20 20 20 6f 70 20 3a 20 63 61 6c 6c 61 62 6c 65 0a 20 20 20 20 20 20 20 20 54 | ces......op.:.callable.........T |
| 160c0 | 68 69 73 20 73 68 6f 75 6c 64 20 62 65 20 65 69 74 68 65 72 20 6e 75 6d 70 79 2e 61 6d 69 6e 20 | his.should.be.either.numpy.amin. |
| 160e0 | 6f 72 20 60 6e 75 6d 70 79 2e 61 6d 61 78 60 20 6f 72 20 60 6e 75 6d 70 79 2e 73 75 6d 60 2e 0a | or.`numpy.amax`.or.`numpy.sum`.. |
| 16100 | 0a 20 20 20 20 52 65 74 75 72 6e 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 72 65 73 | .....Returns.....-------.....res |
| 16120 | 75 6c 74 20 3a 20 66 6c 6f 61 74 20 6f 72 20 6e 64 61 72 72 61 79 0a 20 20 20 20 20 20 20 20 49 | ult.:.float.or.ndarray.........I |
| 16140 | 66 20 60 78 60 20 69 73 20 32 2d 44 2c 20 74 68 65 20 72 65 74 75 72 6e 20 76 61 6c 75 65 73 20 | f.`x`.is.2-D,.the.return.values. |
| 16160 | 69 73 20 61 20 66 6c 6f 61 74 2e 0a 20 20 20 20 20 20 20 20 4f 74 68 65 72 77 69 73 65 2c 20 69 | is.a.float..........Otherwise,.i |
| 16180 | 74 20 69 73 20 61 6e 20 61 72 72 61 79 20 77 69 74 68 20 60 60 78 2e 6e 64 69 6d 20 2d 20 32 60 | t.is.an.array.with.``x.ndim.-.2` |
| 161a0 | 60 20 64 69 6d 65 6e 73 69 6f 6e 73 2e 0a 20 20 20 20 20 20 20 20 54 68 65 20 72 65 74 75 72 6e | `.dimensions..........The.return |
| 161c0 | 20 76 61 6c 75 65 73 20 61 72 65 20 65 69 74 68 65 72 20 74 68 65 20 6d 69 6e 69 6d 75 6d 20 6f | .values.are.either.the.minimum.o |
| 161e0 | 72 20 6d 61 78 69 6d 75 6d 20 6f 72 20 73 75 6d 20 6f 66 20 74 68 65 0a 20 20 20 20 20 20 20 20 | r.maximum.or.sum.of.the......... |
| 16200 | 73 69 6e 67 75 6c 61 72 20 76 61 6c 75 65 73 20 6f 66 20 74 68 65 20 6d 61 74 72 69 63 65 73 2c | singular.values.of.the.matrices, |
| 16220 | 20 64 65 70 65 6e 64 69 6e 67 20 6f 6e 20 77 68 65 74 68 65 72 20 60 6f 70 60 0a 20 20 20 20 20 | .depending.on.whether.`op`...... |
| 16240 | 20 20 20 69 73 20 60 6e 75 6d 70 79 2e 61 6d 69 6e 60 20 6f 72 20 60 6e 75 6d 70 79 2e 61 6d 61 | ...is.`numpy.amin`.or.`numpy.ama |
| 16260 | 78 60 20 6f 72 20 60 6e 75 6d 70 79 2e 73 75 6d 60 2e 0a 0a 20 20 20 20 72 65 01 00 00 46 72 64 | x`.or.`numpy.sum`.......re...Frd |
| 16280 | 01 00 00 72 c7 00 00 00 a9 02 72 4e 01 00 00 da 07 69 6e 69 74 69 61 6c 29 02 72 40 00 00 00 72 | ...r......rN.....initial).r@...r |
| 162a0 | 0d 00 00 00 29 07 72 5c 01 00 00 da 08 72 6f 77 5f 61 78 69 73 da 08 63 6f 6c 5f 61 78 69 73 da | ....).r\.....row_axis..col_axis. |
| 162c0 | 02 6f 70 72 8b 01 00 00 da 01 79 72 08 01 00 00 73 07 00 00 00 20 20 20 20 20 20 20 72 62 00 00 | .opr......yr....s...........rb.. |
| 162e0 | 00 da 0f 5f 6d 75 6c 74 69 5f 73 76 64 5f 6e 6f 72 6d 72 90 01 00 00 1e 0a 00 00 73 31 00 00 00 | ..._multi_svd_normr........s1... |
| 16300 | 80 00 f4 2e 00 09 11 90 11 90 58 98 78 d0 14 28 a8 28 d3 08 33 80 41 d9 0d 0f 94 03 90 41 a0 25 | ..........X.x..(.(..3.A......A.% |
| 16320 | d4 10 28 a8 72 b8 37 d4 0d 43 80 46 d8 0b 11 80 4d 72 61 00 00 00 63 04 00 00 00 00 00 00 00 00 | ..(.r.7..C.F....Mra...c......... |
| 16340 | 00 00 00 01 00 00 00 03 00 00 00 f3 08 00 00 00 97 00 7c 00 66 01 53 00 72 8d 00 00 00 72 60 00 | ..................|.f.S.r....r`. |
| 16360 | 00 00 29 04 72 5c 01 00 00 da 03 6f 72 64 72 4e 01 00 00 72 70 01 00 00 73 04 00 00 00 20 20 20 | ..).r\.....ordrN...rp...s....... |
| 16380 | 20 72 62 00 00 00 da 10 5f 6e 6f 72 6d 5f 64 69 73 70 61 74 63 68 65 72 72 93 01 00 00 3a 0a 00 | .rb....._norm_dispatcherr....:.. |
| 163a0 | 00 72 f2 00 00 00 72 61 00 00 00 63 04 00 00 00 00 00 00 00 00 00 00 00 07 00 00 00 03 00 00 00 | .r....ra...c.................... |
| 163c0 | f3 f4 09 00 00 97 00 74 01 00 00 00 00 00 00 00 00 7c 00 ab 01 00 00 00 00 00 00 7d 00 74 03 00 | .......t.........|.........}.t.. |
| 163e0 | 00 00 00 00 00 00 00 7c 00 6a 04 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 6a 06 00 | .......|.j...................j.. |
| 16400 | 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 74 08 00 00 00 00 00 00 00 00 74 0a 00 00 00 | .................t.........t.... |
| 16420 | 00 00 00 00 00 66 02 ab 02 00 00 00 00 00 00 73 15 7c 00 6a 0d 00 00 00 00 00 00 00 00 00 00 00 | .....f.........s.|.j............ |
| 16440 | 00 00 00 00 00 00 00 74 0e 00 00 00 00 00 00 00 00 ab 01 00 00 00 00 00 00 7d 00 7c 02 80 c3 7c | .......t.................}.|...| |
| 16460 | 00 6a 10 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 7d 04 7c 01 81 13 7c 01 64 02 76 | .j...................}.|...|.d.v |
| 16480 | 00 72 05 7c 04 64 03 6b 28 00 00 73 0a 7c 01 64 03 6b 28 00 00 72 a7 7c 04 64 04 6b 28 00 00 72 | .r.|.d.k(..s.|.d.k(..r.|.d.k(..r |
| 164a0 | a2 7c 00 6a 13 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 64 05 ac 06 ab 01 00 00 00 | .|.j...................d........ |
| 164c0 | 00 00 00 7d 00 74 15 00 00 00 00 00 00 00 00 7c 00 6a 04 00 00 00 00 00 00 00 00 00 00 00 00 00 | ...}.t.........|.j.............. |
| 164e0 | 00 00 00 00 00 6a 06 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ab 01 00 00 00 00 00 | .....j.......................... |
| 16500 | 00 72 3c 7c 00 6a 16 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 7d 05 7c 00 6a 18 00 | .r<|.j...................}.|.j.. |
| 16520 | 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 7d 06 7c 05 6a 1b 00 00 00 00 00 00 00 00 00 | .................}.|.j.......... |
| 16540 | 00 00 00 00 00 00 00 00 00 7c 05 ab 01 00 00 00 00 00 00 7c 06 6a 1b 00 00 00 00 00 00 00 00 00 | .........|.........|.j.......... |
| 16560 | 00 00 00 00 00 00 00 00 00 7c 06 ab 01 00 00 00 00 00 00 7a 00 00 00 7d 07 6e 11 7c 00 6a 1b 00 | .........|.........z...}.n.|.j.. |
| 16580 | 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 7c 00 ab 01 00 00 00 00 00 00 7d 07 74 1d 00 | .................|.........}.t.. |
| 165a0 | 00 00 00 00 00 00 00 7c 07 ab 01 00 00 00 00 00 00 7d 08 7c 03 72 15 7c 08 6a 1f 00 00 00 00 00 | .......|.........}.|.r.|.j...... |
| 165c0 | 00 00 00 00 00 00 00 00 00 00 00 00 00 7c 04 64 04 67 01 7a 05 00 00 ab 01 00 00 00 00 00 00 7d | .............|.d.g.z...........} |
| 165e0 | 08 7c 08 53 00 7c 00 6a 10 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 7d 09 7c 02 80 | .|.S.|.j...................}.|.. |
| 16600 | 15 74 21 00 00 00 00 00 00 00 00 74 23 00 00 00 00 00 00 00 00 7c 09 ab 01 00 00 00 00 00 00 ab | .t!........t#........|.......... |
| 16620 | 01 00 00 00 00 00 00 7d 02 6e 1f 74 25 00 00 00 00 00 00 00 00 7c 02 74 20 00 00 00 00 00 00 00 | .......}.n.t%........|.t........ |
| 16640 | 00 ab 02 00 00 00 00 00 00 73 0f 09 00 74 27 00 00 00 00 00 00 00 00 7c 02 ab 01 00 00 00 00 00 | .........s...t'........|........ |
| 16660 | 00 7d 02 7c 02 66 01 7d 02 74 2d 00 00 00 00 00 00 00 00 7c 02 ab 01 00 00 00 00 00 00 64 04 6b | .}.|.f.}.t-........|.........d.k |
| 16680 | 28 00 00 90 01 72 58 7c 01 74 2e 00 00 00 00 00 00 00 00 6b 28 00 00 72 1d 74 31 00 00 00 00 00 | (....rX|.t.........k(..r.t1..... |
| 166a0 | 00 00 00 7c 00 ab 01 00 00 00 00 00 00 6a 33 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 | ...|.........j3................. |
| 166c0 | 00 7c 02 7c 03 64 08 ac 09 ab 03 00 00 00 00 00 00 53 00 7c 01 74 2e 00 00 00 00 00 00 00 00 0b | .|.|.d...........S.|.t.......... |
| 166e0 | 00 6b 28 00 00 72 1c 74 31 00 00 00 00 00 00 00 00 7c 00 ab 01 00 00 00 00 00 00 6a 35 00 00 00 | .k(..r.t1........|.........j5... |
| 16700 | 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 7c 02 7c 03 ac 0a ab 02 00 00 00 00 00 00 53 00 7c | ...............|.|...........S.| |
| 16720 | 01 64 08 6b 28 00 00 72 39 7c 00 64 08 6b 37 00 00 6a 0d 00 00 00 00 00 00 00 00 00 00 00 00 00 | .d.k(..r9|.d.k7..j.............. |
| 16740 | 00 00 00 00 00 7c 00 6a 16 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 6a 04 00 00 00 | .....|.j...................j.... |
| 16760 | 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ab 01 00 00 00 00 00 00 6a 37 00 00 00 00 00 00 00 | .......................j7....... |
| 16780 | 00 00 00 00 00 00 00 00 00 00 00 7c 02 7c 03 ac 0a ab 02 00 00 00 00 00 00 53 00 7c 01 64 04 6b | ...........|.|...........S.|.d.k |
| 167a0 | 28 00 00 72 21 74 39 00 00 00 00 00 00 00 00 6a 3a 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 | (..r!t9........j:............... |
| 167c0 | 00 00 00 74 31 00 00 00 00 00 00 00 00 7c 00 ab 01 00 00 00 00 00 00 7c 02 7c 03 ac 0a ab 03 00 | ...t1........|.........|.|...... |
| 167e0 | 00 00 00 00 00 53 00 7c 01 81 05 7c 01 64 03 6b 28 00 00 72 3e 7c 00 6a 3d 00 00 00 00 00 00 00 | .....S.|...|.d.k(..r>|.j=....... |
| 16800 | 00 00 00 00 00 00 00 00 00 00 00 ab 00 00 00 00 00 00 00 7c 00 7a 05 00 00 6a 16 00 00 00 00 00 | ...................|.z...j...... |
| 16820 | 00 00 00 00 00 00 00 00 00 00 00 00 00 7d 0b 74 1d 00 00 00 00 00 00 00 00 74 39 00 00 00 00 00 | .............}.t.........t9..... |
| 16840 | 00 00 00 6a 3a 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 7c 0b 7c 02 7c 03 ac 0a ab | ...j:..................|.|.|.... |
| 16860 | 03 00 00 00 00 00 00 ab 01 00 00 00 00 00 00 53 00 74 25 00 00 00 00 00 00 00 00 7c 01 74 3e 00 | ...............S.t%........|.t>. |
| 16880 | 00 00 00 00 00 00 00 ab 02 00 00 00 00 00 00 72 0f 74 41 00 00 00 00 00 00 00 00 64 0b 7c 01 9b | ...............r.tA........d.|.. |
| 168a0 | 00 64 0c 9d 03 ab 01 00 00 00 00 00 00 82 01 74 31 00 00 00 00 00 00 00 00 7c 00 ab 01 00 00 00 | .d.............t1........|...... |
| 168c0 | 00 00 00 7d 0c 7c 0c 7c 01 7a 15 00 00 7d 0c 74 39 00 00 00 00 00 00 00 00 6a 3a 00 00 00 00 00 | ...}.|.|.z...}.t9........j:..... |
| 168e0 | 00 00 00 00 00 00 00 00 00 00 00 00 00 7c 0c 7c 02 7c 03 ac 0a ab 03 00 00 00 00 00 00 7d 08 7c | .............|.|.|...........}.| |
| 16900 | 08 74 43 00 00 00 00 00 00 00 00 7c 01 7c 08 6a 04 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 | .tC........|.|.j................ |
| 16920 | 00 00 00 ac 0d ab 02 00 00 00 00 00 00 7a 15 00 00 7d 08 7c 08 53 00 74 2d 00 00 00 00 00 00 00 | .............z...}.|.S.t-....... |
| 16940 | 00 7c 02 ab 01 00 00 00 00 00 00 64 03 6b 28 00 00 90 02 72 0a 7c 02 5c 02 00 00 7d 0d 7d 0e 74 | .|.........d.k(....r.|.\...}.}.t |
| 16960 | 45 00 00 00 00 00 00 00 00 7c 0d 7c 09 ab 02 00 00 00 00 00 00 7d 0d 74 45 00 00 00 00 00 00 00 | E........|.|.........}.tE....... |
| 16980 | 00 7c 0e 7c 09 ab 02 00 00 00 00 00 00 7d 0e 7c 0d 7c 0e 6b 28 00 00 72 0b 74 41 00 00 00 00 00 | .|.|.........}.|.|.k(..r.tA..... |
| 169a0 | 00 00 00 64 0e ab 01 00 00 00 00 00 00 82 01 7c 01 64 03 6b 28 00 00 72 15 74 47 00 00 00 00 00 | ...d...........|.d.k(..r.tG..... |
| 169c0 | 00 00 00 7c 00 7c 0d 7c 0e 74 48 00 00 00 00 00 00 00 00 64 08 ab 05 00 00 00 00 00 00 7d 08 90 | ...|.|.|.tH........d.........}.. |
| 169e0 | 01 6e 89 7c 01 64 0f 6b 28 00 00 72 14 74 47 00 00 00 00 00 00 00 00 7c 00 7c 0d 7c 0e 74 4a 00 | .n.|.d.k(..r.tG........|.|.|.tJ. |
| 16a00 | 00 00 00 00 00 00 00 ab 04 00 00 00 00 00 00 7d 08 90 01 6e 70 7c 01 64 04 6b 28 00 00 72 3d 7c | ...............}...np|.d.k(..r=| |
| 16a20 | 0e 7c 0d 6b 44 00 00 72 05 7c 0e 64 04 7a 17 00 00 7d 0e 74 39 00 00 00 00 00 00 00 00 6a 3a 00 | .|.kD..r.|.d.z...}.t9........j:. |
| 16a40 | 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 74 31 00 00 00 00 00 00 00 00 7c 00 ab 01 00 | .................t1........|.... |
| 16a60 | 00 00 00 00 00 7c 0d ac 10 ab 02 00 00 00 00 00 00 6a 33 00 00 00 00 00 00 00 00 00 00 00 00 00 | .....|...........j3............. |
| 16a80 | 00 00 00 00 00 7c 0e 64 08 ac 11 ab 02 00 00 00 00 00 00 7d 08 90 01 6e 2e 7c 01 74 2e 00 00 00 | .....|.d...........}...n.|.t.... |
| 16aa0 | 00 00 00 00 00 6b 28 00 00 72 3c 7c 0d 7c 0e 6b 44 00 00 72 05 7c 0d 64 04 7a 17 00 00 7d 0d 74 | .....k(..r<|.|.kD..r.|.d.z...}.t |
| 16ac0 | 39 00 00 00 00 00 00 00 00 6a 3a 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 74 31 00 | 9........j:..................t1. |
| 16ae0 | 00 00 00 00 00 00 00 7c 00 ab 01 00 00 00 00 00 00 7c 0e ac 10 ab 02 00 00 00 00 00 00 6a 33 00 | .......|.........|...........j3. |
| 16b00 | 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 7c 0d 64 08 ac 11 ab 02 00 00 00 00 00 00 7d | .................|.d...........} |
| 16b20 | 08 6e e9 7c 01 64 12 6b 28 00 00 72 3b 7c 0e 7c 0d 6b 44 00 00 72 05 7c 0e 64 04 7a 17 00 00 7d | .n.|.d.k(..r;|.|.kD..r.|.d.z...} |
| 16b40 | 0e 74 39 00 00 00 00 00 00 00 00 6a 3a 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 74 | .t9........j:..................t |
| 16b60 | 31 00 00 00 00 00 00 00 00 7c 00 ab 01 00 00 00 00 00 00 7c 0d ac 10 ab 02 00 00 00 00 00 00 6a | 1........|.........|...........j |
| 16b80 | 35 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 7c 0e ac 10 ab 01 00 00 00 00 00 00 7d | 5..................|...........} |
| 16ba0 | 08 6e a9 7c 01 74 2e 00 00 00 00 00 00 00 00 0b 00 6b 28 00 00 72 3b 7c 0d 7c 0e 6b 44 00 00 72 | .n.|.t...........k(..r;|.|.kD..r |
| 16bc0 | 05 7c 0d 64 04 7a 17 00 00 7d 0d 74 39 00 00 00 00 00 00 00 00 6a 3a 00 00 00 00 00 00 00 00 00 | .|.d.z...}.t9........j:......... |
| 16be0 | 00 00 00 00 00 00 00 00 00 74 31 00 00 00 00 00 00 00 00 7c 00 ab 01 00 00 00 00 00 00 7c 0e ac | .........t1........|.........|.. |
| 16c00 | 10 ab 02 00 00 00 00 00 00 6a 35 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 7c 0d ac | .........j5..................|.. |
| 16c20 | 10 ab 01 00 00 00 00 00 00 7d 08 6e 64 7c 01 64 13 76 00 72 3c 74 1d 00 00 00 00 00 00 00 00 74 | .........}.nd|.d.v.r<t.........t |
| 16c40 | 39 00 00 00 00 00 00 00 00 6a 3a 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 7c 00 6a | 9........j:..................|.j |
| 16c60 | 3d 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ab 00 00 00 00 00 00 00 7c 00 7a 05 00 | =..........................|.z.. |
| 16c80 | 00 6a 16 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 7c 02 ac 10 ab 02 00 00 00 00 00 | .j...................|.......... |
| 16ca0 | 00 ab 01 00 00 00 00 00 00 7d 08 6e 24 7c 01 64 14 6b 28 00 00 72 14 74 47 00 00 00 00 00 00 00 | .........}.n$|.d.k(..r.tG....... |
| 16cc0 | 00 7c 00 7c 0d 7c 0e 74 36 00 00 00 00 00 00 00 00 64 08 ab 05 00 00 00 00 00 00 7d 08 6e 0b 74 | .|.|.|.t6........d.........}.n.t |
| 16ce0 | 41 00 00 00 00 00 00 00 00 64 15 ab 01 00 00 00 00 00 00 82 01 7c 03 72 36 74 4d 00 00 00 00 00 | A........d...........|.r6tM..... |
| 16d00 | 00 00 00 7c 00 6a 4e 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ab 01 00 00 00 00 00 | ...|.jN......................... |
| 16d20 | 00 7d 0f 64 04 7c 0f 7c 02 64 08 19 00 00 00 3c 00 00 00 64 04 7c 0f 7c 02 64 04 19 00 00 00 3c | .}.d.|.|.d.....<...d.|.|.d.....< |
| 16d40 | 00 00 00 7c 08 6a 1f 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 7c 0f ab 01 00 00 00 | ...|.j...................|...... |
| 16d60 | 00 00 00 7d 08 7c 08 53 00 74 41 00 00 00 00 00 00 00 00 64 16 ab 01 00 00 00 00 00 00 82 01 23 | ...}.|.S.tA........d...........# |
| 16d80 | 00 74 28 00 00 00 00 00 00 00 00 24 00 72 11 7d 0a 74 2b 00 00 00 00 00 00 00 00 64 07 ab 01 00 | .t(........$.r.}.t+........d.... |
| 16da0 | 00 00 00 00 00 7c 0a 82 02 64 01 7d 0a 7e 0a 77 01 77 00 78 03 59 00 77 01 29 17 61 1d 12 00 00 | .....|...d.}.~.w.w.x.Y.w.).a.... |
| 16dc0 | 0a 20 20 20 20 4d 61 74 72 69 78 20 6f 72 20 76 65 63 74 6f 72 20 6e 6f 72 6d 2e 0a 0a 20 20 20 | .....Matrix.or.vector.norm...... |
| 16de0 | 20 54 68 69 73 20 66 75 6e 63 74 69 6f 6e 20 69 73 20 61 62 6c 65 20 74 6f 20 72 65 74 75 72 6e | .This.function.is.able.to.return |
| 16e00 | 20 6f 6e 65 20 6f 66 20 65 69 67 68 74 20 64 69 66 66 65 72 65 6e 74 20 6d 61 74 72 69 78 20 6e | .one.of.eight.different.matrix.n |
| 16e20 | 6f 72 6d 73 2c 0a 20 20 20 20 6f 72 20 6f 6e 65 20 6f 66 20 61 6e 20 69 6e 66 69 6e 69 74 65 20 | orms,.....or.one.of.an.infinite. |
| 16e40 | 6e 75 6d 62 65 72 20 6f 66 20 76 65 63 74 6f 72 20 6e 6f 72 6d 73 20 28 64 65 73 63 72 69 62 65 | number.of.vector.norms.(describe |
| 16e60 | 64 20 62 65 6c 6f 77 29 2c 20 64 65 70 65 6e 64 69 6e 67 0a 20 20 20 20 6f 6e 20 74 68 65 20 76 | d.below),.depending.....on.the.v |
| 16e80 | 61 6c 75 65 20 6f 66 20 74 68 65 20 60 60 6f 72 64 60 60 20 70 61 72 61 6d 65 74 65 72 2e 0a 0a | alue.of.the.``ord``.parameter... |
| 16ea0 | 20 20 20 20 50 61 72 61 6d 65 74 65 72 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 | ....Parameters.....----------... |
| 16ec0 | 20 20 78 20 3a 20 61 72 72 61 79 5f 6c 69 6b 65 0a 20 20 20 20 20 20 20 20 49 6e 70 75 74 20 61 | ..x.:.array_like.........Input.a |
| 16ee0 | 72 72 61 79 2e 20 20 49 66 20 60 61 78 69 73 60 20 69 73 20 4e 6f 6e 65 2c 20 60 78 60 20 6d 75 | rray...If.`axis`.is.None,.`x`.mu |
| 16f00 | 73 74 20 62 65 20 31 2d 44 20 6f 72 20 32 2d 44 2c 20 75 6e 6c 65 73 73 20 60 6f 72 64 60 0a 20 | st.be.1-D.or.2-D,.unless.`ord`.. |
| 16f20 | 20 20 20 20 20 20 20 69 73 20 4e 6f 6e 65 2e 20 49 66 20 62 6f 74 68 20 60 61 78 69 73 60 20 61 | .......is.None..If.both.`axis`.a |
| 16f40 | 6e 64 20 60 6f 72 64 60 20 61 72 65 20 4e 6f 6e 65 2c 20 74 68 65 20 32 2d 6e 6f 72 6d 20 6f 66 | nd.`ord`.are.None,.the.2-norm.of |
| 16f60 | 0a 20 20 20 20 20 20 20 20 60 60 78 2e 72 61 76 65 6c 60 60 20 77 69 6c 6c 20 62 65 20 72 65 74 | .........``x.ravel``.will.be.ret |
| 16f80 | 75 72 6e 65 64 2e 0a 20 20 20 20 6f 72 64 20 3a 20 7b 69 6e 74 2c 20 66 6c 6f 61 74 2c 20 69 6e | urned......ord.:.{int,.float,.in |
| 16fa0 | 66 2c 20 2d 69 6e 66 2c 20 27 66 72 6f 27 2c 20 27 6e 75 63 27 7d 2c 20 6f 70 74 69 6f 6e 61 6c | f,.-inf,.'fro',.'nuc'},.optional |
| 16fc0 | 0a 20 20 20 20 20 20 20 20 4f 72 64 65 72 20 6f 66 20 74 68 65 20 6e 6f 72 6d 20 28 73 65 65 20 | .........Order.of.the.norm.(see. |
| 16fe0 | 74 61 62 6c 65 20 75 6e 64 65 72 20 60 60 4e 6f 74 65 73 60 60 20 66 6f 72 20 77 68 61 74 20 76 | table.under.``Notes``.for.what.v |
| 17000 | 61 6c 75 65 73 20 61 72 65 0a 20 20 20 20 20 20 20 20 73 75 70 70 6f 72 74 65 64 20 66 6f 72 20 | alues.are.........supported.for. |
| 17020 | 6d 61 74 72 69 63 65 73 20 61 6e 64 20 76 65 63 74 6f 72 73 20 72 65 73 70 65 63 74 69 76 65 6c | matrices.and.vectors.respectivel |
| 17040 | 79 29 2e 20 69 6e 66 20 6d 65 61 6e 73 20 6e 75 6d 70 79 27 73 0a 20 20 20 20 20 20 20 20 60 69 | y)..inf.means.numpy's.........`i |
| 17060 | 6e 66 60 20 6f 62 6a 65 63 74 2e 20 54 68 65 20 64 65 66 61 75 6c 74 20 69 73 20 4e 6f 6e 65 2e | nf`.object..The.default.is.None. |
| 17080 | 0a 20 20 20 20 61 78 69 73 20 3a 20 7b 4e 6f 6e 65 2c 20 69 6e 74 2c 20 32 2d 74 75 70 6c 65 20 | .....axis.:.{None,.int,.2-tuple. |
| 170a0 | 6f 66 20 69 6e 74 73 7d 2c 20 6f 70 74 69 6f 6e 61 6c 2e 0a 20 20 20 20 20 20 20 20 49 66 20 60 | of.ints},.optional..........If.` |
| 170c0 | 61 78 69 73 60 20 69 73 20 61 6e 20 69 6e 74 65 67 65 72 2c 20 69 74 20 73 70 65 63 69 66 69 65 | axis`.is.an.integer,.it.specifie |
| 170e0 | 73 20 74 68 65 20 61 78 69 73 20 6f 66 20 60 78 60 20 61 6c 6f 6e 67 20 77 68 69 63 68 20 74 6f | s.the.axis.of.`x`.along.which.to |
| 17100 | 0a 20 20 20 20 20 20 20 20 63 6f 6d 70 75 74 65 20 74 68 65 20 76 65 63 74 6f 72 20 6e 6f 72 6d | .........compute.the.vector.norm |
| 17120 | 73 2e 20 20 49 66 20 60 61 78 69 73 60 20 69 73 20 61 20 32 2d 74 75 70 6c 65 2c 20 69 74 20 73 | s...If.`axis`.is.a.2-tuple,.it.s |
| 17140 | 70 65 63 69 66 69 65 73 20 74 68 65 0a 20 20 20 20 20 20 20 20 61 78 65 73 20 74 68 61 74 20 68 | pecifies.the.........axes.that.h |
| 17160 | 6f 6c 64 20 32 2d 44 20 6d 61 74 72 69 63 65 73 2c 20 61 6e 64 20 74 68 65 20 6d 61 74 72 69 78 | old.2-D.matrices,.and.the.matrix |
| 17180 | 20 6e 6f 72 6d 73 20 6f 66 20 74 68 65 73 65 20 6d 61 74 72 69 63 65 73 0a 20 20 20 20 20 20 20 | .norms.of.these.matrices........ |
| 171a0 | 20 61 72 65 20 63 6f 6d 70 75 74 65 64 2e 20 20 49 66 20 60 61 78 69 73 60 20 69 73 20 4e 6f 6e | .are.computed...If.`axis`.is.Non |
| 171c0 | 65 20 74 68 65 6e 20 65 69 74 68 65 72 20 61 20 76 65 63 74 6f 72 20 6e 6f 72 6d 20 28 77 68 65 | e.then.either.a.vector.norm.(whe |
| 171e0 | 6e 20 60 78 60 0a 20 20 20 20 20 20 20 20 69 73 20 31 2d 44 29 20 6f 72 20 61 20 6d 61 74 72 69 | n.`x`.........is.1-D).or.a.matri |
| 17200 | 78 20 6e 6f 72 6d 20 28 77 68 65 6e 20 60 78 60 20 69 73 20 32 2d 44 29 20 69 73 20 72 65 74 75 | x.norm.(when.`x`.is.2-D).is.retu |
| 17220 | 72 6e 65 64 2e 20 54 68 65 20 64 65 66 61 75 6c 74 0a 20 20 20 20 20 20 20 20 69 73 20 4e 6f 6e | rned..The.default.........is.Non |
| 17240 | 65 2e 0a 0a 20 20 20 20 6b 65 65 70 64 69 6d 73 20 3a 20 62 6f 6f 6c 2c 20 6f 70 74 69 6f 6e 61 | e.......keepdims.:.bool,.optiona |
| 17260 | 6c 0a 20 20 20 20 20 20 20 20 49 66 20 74 68 69 73 20 69 73 20 73 65 74 20 74 6f 20 54 72 75 65 | l.........If.this.is.set.to.True |
| 17280 | 2c 20 74 68 65 20 61 78 65 73 20 77 68 69 63 68 20 61 72 65 20 6e 6f 72 6d 65 64 20 6f 76 65 72 | ,.the.axes.which.are.normed.over |
| 172a0 | 20 61 72 65 20 6c 65 66 74 20 69 6e 20 74 68 65 0a 20 20 20 20 20 20 20 20 72 65 73 75 6c 74 20 | .are.left.in.the.........result. |
| 172c0 | 61 73 20 64 69 6d 65 6e 73 69 6f 6e 73 20 77 69 74 68 20 73 69 7a 65 20 6f 6e 65 2e 20 20 57 69 | as.dimensions.with.size.one...Wi |
| 172e0 | 74 68 20 74 68 69 73 20 6f 70 74 69 6f 6e 20 74 68 65 20 72 65 73 75 6c 74 20 77 69 6c 6c 0a 20 | th.this.option.the.result.will.. |
| 17300 | 20 20 20 20 20 20 20 62 72 6f 61 64 63 61 73 74 20 63 6f 72 72 65 63 74 6c 79 20 61 67 61 69 6e | .......broadcast.correctly.again |
| 17320 | 73 74 20 74 68 65 20 6f 72 69 67 69 6e 61 6c 20 60 78 60 2e 0a 0a 20 20 20 20 52 65 74 75 72 6e | st.the.original.`x`.......Return |
| 17340 | 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 6e 20 3a 20 66 6c 6f 61 74 20 6f 72 20 6e | s.....-------.....n.:.float.or.n |
| 17360 | 64 61 72 72 61 79 0a 20 20 20 20 20 20 20 20 4e 6f 72 6d 20 6f 66 20 74 68 65 20 6d 61 74 72 69 | darray.........Norm.of.the.matri |
| 17380 | 78 20 6f 72 20 76 65 63 74 6f 72 28 73 29 2e 0a 0a 20 20 20 20 53 65 65 20 41 6c 73 6f 0a 20 20 | x.or.vector(s).......See.Also... |
| 173a0 | 20 20 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 73 63 69 70 79 2e 6c 69 6e 61 6c 67 2e 6e 6f 72 6d | ..--------.....scipy.linalg.norm |
| 173c0 | 20 3a 20 53 69 6d 69 6c 61 72 20 66 75 6e 63 74 69 6f 6e 20 69 6e 20 53 63 69 50 79 2e 0a 0a 20 | .:.Similar.function.in.SciPy.... |
| 173e0 | 20 20 20 4e 6f 74 65 73 0a 20 20 20 20 2d 2d 2d 2d 2d 0a 20 20 20 20 46 6f 72 20 76 61 6c 75 65 | ...Notes.....-----.....For.value |
| 17400 | 73 20 6f 66 20 60 60 6f 72 64 20 3c 20 31 60 60 2c 20 74 68 65 20 72 65 73 75 6c 74 20 69 73 2c | s.of.``ord.<.1``,.the.result.is, |
| 17420 | 20 73 74 72 69 63 74 6c 79 20 73 70 65 61 6b 69 6e 67 2c 20 6e 6f 74 20 61 0a 20 20 20 20 6d 61 | .strictly.speaking,.not.a.....ma |
| 17440 | 74 68 65 6d 61 74 69 63 61 6c 20 27 6e 6f 72 6d 27 2c 20 62 75 74 20 69 74 20 6d 61 79 20 73 74 | thematical.'norm',.but.it.may.st |
| 17460 | 69 6c 6c 20 62 65 20 75 73 65 66 75 6c 20 66 6f 72 20 76 61 72 69 6f 75 73 20 6e 75 6d 65 72 69 | ill.be.useful.for.various.numeri |
| 17480 | 63 61 6c 0a 20 20 20 20 70 75 72 70 6f 73 65 73 2e 0a 0a 20 20 20 20 54 68 65 20 66 6f 6c 6c 6f | cal.....purposes.......The.follo |
| 174a0 | 77 69 6e 67 20 6e 6f 72 6d 73 20 63 61 6e 20 62 65 20 63 61 6c 63 75 6c 61 74 65 64 3a 0a 0a 20 | wing.norms.can.be.calculated:... |
| 174c0 | 20 20 20 3d 3d 3d 3d 3d 20 20 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d | ...=====..====================== |
| 174e0 | 3d 3d 3d 3d 3d 3d 20 20 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d | ======..======================== |
| 17500 | 3d 3d 0a 20 20 20 20 6f 72 64 20 20 20 20 6e 6f 72 6d 20 66 6f 72 20 6d 61 74 72 69 63 65 73 20 | ==.....ord....norm.for.matrices. |
| 17520 | 20 20 20 20 20 20 20 20 20 20 20 20 6e 6f 72 6d 20 66 6f 72 20 76 65 63 74 6f 72 73 0a 20 20 20 | ............norm.for.vectors.... |
| 17540 | 20 3d 3d 3d 3d 3d 20 20 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d | .=====..======================== |
| 17560 | 3d 3d 3d 3d 20 20 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d | ====..========================== |
| 17580 | 0a 20 20 20 20 4e 6f 6e 65 20 20 20 46 72 6f 62 65 6e 69 75 73 20 6e 6f 72 6d 20 20 20 20 20 20 | .....None...Frobenius.norm...... |
| 175a0 | 20 20 20 20 20 20 20 20 20 20 32 2d 6e 6f 72 6d 0a 20 20 20 20 27 66 72 6f 27 20 20 46 72 6f 62 | ..........2-norm.....'fro'..Frob |
| 175c0 | 65 6e 69 75 73 20 6e 6f 72 6d 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 2d 2d 0a 20 20 20 | enius.norm................--.... |
| 175e0 | 20 27 6e 75 63 27 20 20 6e 75 63 6c 65 61 72 20 6e 6f 72 6d 20 20 20 20 20 20 20 20 20 20 20 20 | .'nuc'..nuclear.norm............ |
| 17600 | 20 20 20 20 20 20 2d 2d 0a 20 20 20 20 69 6e 66 20 20 20 20 6d 61 78 28 73 75 6d 28 61 62 73 28 | ......--.....inf....max(sum(abs( |
| 17620 | 78 29 2c 20 61 78 69 73 3d 31 29 29 20 20 20 20 20 20 6d 61 78 28 61 62 73 28 78 29 29 0a 20 20 | x),.axis=1))......max(abs(x))... |
| 17640 | 20 20 2d 69 6e 66 20 20 20 6d 69 6e 28 73 75 6d 28 61 62 73 28 78 29 2c 20 61 78 69 73 3d 31 29 | ..-inf...min(sum(abs(x),.axis=1) |
| 17660 | 29 20 20 20 20 20 20 6d 69 6e 28 61 62 73 28 78 29 29 0a 20 20 20 20 30 20 20 20 20 20 20 2d 2d | )......min(abs(x)).....0......-- |
| 17680 | 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 73 75 6d 28 | ............................sum( |
| 176a0 | 78 20 21 3d 20 30 29 0a 20 20 20 20 31 20 20 20 20 20 20 6d 61 78 28 73 75 6d 28 61 62 73 28 78 | x.!=.0).....1......max(sum(abs(x |
| 176c0 | 29 2c 20 61 78 69 73 3d 30 29 29 20 20 20 20 20 20 61 73 20 62 65 6c 6f 77 0a 20 20 20 20 2d 31 | ),.axis=0))......as.below.....-1 |
| 176e0 | 20 20 20 20 20 6d 69 6e 28 73 75 6d 28 61 62 73 28 78 29 2c 20 61 78 69 73 3d 30 29 29 20 20 20 | .....min(sum(abs(x),.axis=0))... |
| 17700 | 20 20 20 61 73 20 62 65 6c 6f 77 0a 20 20 20 20 32 20 20 20 20 20 20 32 2d 6e 6f 72 6d 20 28 6c | ...as.below.....2......2-norm.(l |
| 17720 | 61 72 67 65 73 74 20 73 69 6e 67 2e 20 76 61 6c 75 65 29 20 20 61 73 20 62 65 6c 6f 77 0a 20 20 | argest.sing..value)..as.below... |
| 17740 | 20 20 2d 32 20 20 20 20 20 73 6d 61 6c 6c 65 73 74 20 73 69 6e 67 75 6c 61 72 20 76 61 6c 75 65 | ..-2.....smallest.singular.value |
| 17760 | 20 20 20 20 20 20 20 61 73 20 62 65 6c 6f 77 0a 20 20 20 20 6f 74 68 65 72 20 20 2d 2d 20 20 20 | .......as.below.....other..--... |
| 17780 | 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 73 75 6d 28 61 62 73 | .........................sum(abs |
| 177a0 | 28 78 29 2a 2a 6f 72 64 29 2a 2a 28 31 2e 2f 6f 72 64 29 0a 20 20 20 20 3d 3d 3d 3d 3d 20 20 3d | (x)**ord)**(1./ord).....=====..= |
| 177c0 | 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 20 20 3d 3d 3d | ===========================..=== |
| 177e0 | 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 0a 0a 20 20 20 20 54 68 65 | =======================......The |
| 17800 | 20 46 72 6f 62 65 6e 69 75 73 20 6e 6f 72 6d 20 69 73 20 67 69 76 65 6e 20 62 79 20 5b 31 5d 5f | .Frobenius.norm.is.given.by.[1]_ |
| 17820 | 3a 0a 0a 20 20 20 20 3a 6d 61 74 68 3a 60 7c 7c 41 7c 7c 5f 46 20 3d 20 5b 5c 73 75 6d 5f 7b 69 | :......:math:`||A||_F.=.[\sum_{i |
| 17840 | 2c 6a 7d 20 61 62 73 28 61 5f 7b 69 2c 6a 7d 29 5e 32 5d 5e 7b 31 2f 32 7d 60 0a 0a 20 20 20 20 | ,j}.abs(a_{i,j})^2]^{1/2}`...... |
| 17860 | 54 68 65 20 6e 75 63 6c 65 61 72 20 6e 6f 72 6d 20 69 73 20 74 68 65 20 73 75 6d 20 6f 66 20 74 | The.nuclear.norm.is.the.sum.of.t |
| 17880 | 68 65 20 73 69 6e 67 75 6c 61 72 20 76 61 6c 75 65 73 2e 0a 0a 20 20 20 20 42 6f 74 68 20 74 68 | he.singular.values.......Both.th |
| 178a0 | 65 20 46 72 6f 62 65 6e 69 75 73 20 61 6e 64 20 6e 75 63 6c 65 61 72 20 6e 6f 72 6d 20 6f 72 64 | e.Frobenius.and.nuclear.norm.ord |
| 178c0 | 65 72 73 20 61 72 65 20 6f 6e 6c 79 20 64 65 66 69 6e 65 64 20 66 6f 72 0a 20 20 20 20 6d 61 74 | ers.are.only.defined.for.....mat |
| 178e0 | 72 69 63 65 73 20 61 6e 64 20 72 61 69 73 65 20 61 20 56 61 6c 75 65 45 72 72 6f 72 20 77 68 65 | rices.and.raise.a.ValueError.whe |
| 17900 | 6e 20 60 60 78 2e 6e 64 69 6d 20 21 3d 20 32 60 60 2e 0a 0a 20 20 20 20 52 65 66 65 72 65 6e 63 | n.``x.ndim.!=.2``.......Referenc |
| 17920 | 65 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 2e 2e 20 5b 31 5d 20 47 2e 20 | es.....----------........[1].G.. |
| 17940 | 48 2e 20 47 6f 6c 75 62 20 61 6e 64 20 43 2e 20 46 2e 20 56 61 6e 20 4c 6f 61 6e 2c 20 2a 4d 61 | H..Golub.and.C..F..Van.Loan,.*Ma |
| 17960 | 74 72 69 78 20 43 6f 6d 70 75 74 61 74 69 6f 6e 73 2a 2c 0a 20 20 20 20 20 20 20 20 20 20 20 42 | trix.Computations*,............B |
| 17980 | 61 6c 74 69 6d 6f 72 65 2c 20 4d 44 2c 20 4a 6f 68 6e 73 20 48 6f 70 6b 69 6e 73 20 55 6e 69 76 | altimore,.MD,.Johns.Hopkins.Univ |
| 179a0 | 65 72 73 69 74 79 20 50 72 65 73 73 2c 20 31 39 38 35 2c 20 70 67 2e 20 31 35 0a 0a 20 20 20 20 | ersity.Press,.1985,.pg..15...... |
| 179c0 | 45 78 61 6d 70 6c 65 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 0a 0a 20 20 20 20 3e 3e 3e 20 69 | Examples.....--------......>>>.i |
| 179e0 | 6d 70 6f 72 74 20 6e 75 6d 70 79 20 61 73 20 6e 70 0a 20 20 20 20 3e 3e 3e 20 66 72 6f 6d 20 6e | mport.numpy.as.np.....>>>.from.n |
| 17a00 | 75 6d 70 79 20 69 6d 70 6f 72 74 20 6c 69 6e 61 6c 67 20 61 73 20 4c 41 0a 20 20 20 20 3e 3e 3e | umpy.import.linalg.as.LA.....>>> |
| 17a20 | 20 61 20 3d 20 6e 70 2e 61 72 61 6e 67 65 28 39 29 20 2d 20 34 0a 20 20 20 20 3e 3e 3e 20 61 0a | .a.=.np.arange(9).-.4.....>>>.a. |
| 17a40 | 20 20 20 20 61 72 72 61 79 28 5b 2d 34 2c 20 2d 33 2c 20 2d 32 2c 20 2e 2e 2e 2c 20 20 32 2c 20 | ....array([-4,.-3,.-2,....,..2,. |
| 17a60 | 20 33 2c 20 20 34 5d 29 0a 20 20 20 20 3e 3e 3e 20 62 20 3d 20 61 2e 72 65 73 68 61 70 65 28 28 | .3,..4]).....>>>.b.=.a.reshape(( |
| 17a80 | 33 2c 20 33 29 29 0a 20 20 20 20 3e 3e 3e 20 62 0a 20 20 20 20 61 72 72 61 79 28 5b 5b 2d 34 2c | 3,.3)).....>>>.b.....array([[-4, |
| 17aa0 | 20 2d 33 2c 20 2d 32 5d 2c 0a 20 20 20 20 20 20 20 20 20 20 20 5b 2d 31 2c 20 20 30 2c 20 20 31 | .-3,.-2],............[-1,..0,..1 |
| 17ac0 | 5d 2c 0a 20 20 20 20 20 20 20 20 20 20 20 5b 20 32 2c 20 20 33 2c 20 20 34 5d 5d 29 0a 0a 20 20 | ],............[.2,..3,..4]]).... |
| 17ae0 | 20 20 3e 3e 3e 20 4c 41 2e 6e 6f 72 6d 28 61 29 0a 20 20 20 20 37 2e 37 34 35 39 36 36 36 39 32 | ..>>>.LA.norm(a).....7.745966692 |
| 17b00 | 34 31 34 38 33 34 0a 20 20 20 20 3e 3e 3e 20 4c 41 2e 6e 6f 72 6d 28 62 29 0a 20 20 20 20 37 2e | 414834.....>>>.LA.norm(b).....7. |
| 17b20 | 37 34 35 39 36 36 36 39 32 34 31 34 38 33 34 0a 20 20 20 20 3e 3e 3e 20 4c 41 2e 6e 6f 72 6d 28 | 745966692414834.....>>>.LA.norm( |
| 17b40 | 62 2c 20 27 66 72 6f 27 29 0a 20 20 20 20 37 2e 37 34 35 39 36 36 36 39 32 34 31 34 38 33 34 0a | b,.'fro').....7.745966692414834. |
| 17b60 | 20 20 20 20 3e 3e 3e 20 4c 41 2e 6e 6f 72 6d 28 61 2c 20 6e 70 2e 69 6e 66 29 0a 20 20 20 20 34 | ....>>>.LA.norm(a,.np.inf).....4 |
| 17b80 | 2e 30 0a 20 20 20 20 3e 3e 3e 20 4c 41 2e 6e 6f 72 6d 28 62 2c 20 6e 70 2e 69 6e 66 29 0a 20 20 | .0.....>>>.LA.norm(b,.np.inf)... |
| 17ba0 | 20 20 39 2e 30 0a 20 20 20 20 3e 3e 3e 20 4c 41 2e 6e 6f 72 6d 28 61 2c 20 2d 6e 70 2e 69 6e 66 | ..9.0.....>>>.LA.norm(a,.-np.inf |
| 17bc0 | 29 0a 20 20 20 20 30 2e 30 0a 20 20 20 20 3e 3e 3e 20 4c 41 2e 6e 6f 72 6d 28 62 2c 20 2d 6e 70 | ).....0.0.....>>>.LA.norm(b,.-np |
| 17be0 | 2e 69 6e 66 29 0a 20 20 20 20 32 2e 30 0a 0a 20 20 20 20 3e 3e 3e 20 4c 41 2e 6e 6f 72 6d 28 61 | .inf).....2.0......>>>.LA.norm(a |
| 17c00 | 2c 20 31 29 0a 20 20 20 20 32 30 2e 30 0a 20 20 20 20 3e 3e 3e 20 4c 41 2e 6e 6f 72 6d 28 62 2c | ,.1).....20.0.....>>>.LA.norm(b, |
| 17c20 | 20 31 29 0a 20 20 20 20 37 2e 30 0a 20 20 20 20 3e 3e 3e 20 4c 41 2e 6e 6f 72 6d 28 61 2c 20 2d | .1).....7.0.....>>>.LA.norm(a,.- |
| 17c40 | 31 29 0a 20 20 20 20 2d 34 2e 36 35 36 36 31 32 38 37 37 34 31 34 32 30 31 33 65 2d 30 31 30 0a | 1).....-4.6566128774142013e-010. |
| 17c60 | 20 20 20 20 3e 3e 3e 20 4c 41 2e 6e 6f 72 6d 28 62 2c 20 2d 31 29 0a 20 20 20 20 36 2e 30 0a 20 | ....>>>.LA.norm(b,.-1).....6.0.. |
| 17c80 | 20 20 20 3e 3e 3e 20 4c 41 2e 6e 6f 72 6d 28 61 2c 20 32 29 0a 20 20 20 20 37 2e 37 34 35 39 36 | ...>>>.LA.norm(a,.2).....7.74596 |
| 17ca0 | 36 36 39 32 34 31 34 38 33 34 0a 20 20 20 20 3e 3e 3e 20 4c 41 2e 6e 6f 72 6d 28 62 2c 20 32 29 | 6692414834.....>>>.LA.norm(b,.2) |
| 17cc0 | 0a 20 20 20 20 37 2e 33 34 38 34 36 39 32 32 38 33 34 39 35 33 34 35 0a 0a 20 20 20 20 3e 3e 3e | .....7.3484692283495345......>>> |
| 17ce0 | 20 4c 41 2e 6e 6f 72 6d 28 61 2c 20 2d 32 29 0a 20 20 20 20 30 2e 30 0a 20 20 20 20 3e 3e 3e 20 | .LA.norm(a,.-2).....0.0.....>>>. |
| 17d00 | 4c 41 2e 6e 6f 72 6d 28 62 2c 20 2d 32 29 0a 20 20 20 20 31 2e 38 35 37 30 33 33 31 38 38 35 31 | LA.norm(b,.-2).....1.85703318851 |
| 17d20 | 39 30 35 36 33 65 2d 30 31 36 20 23 20 6d 61 79 20 76 61 72 79 0a 20 20 20 20 3e 3e 3e 20 4c 41 | 90563e-016.#.may.vary.....>>>.LA |
| 17d40 | 2e 6e 6f 72 6d 28 61 2c 20 33 29 0a 20 20 20 20 35 2e 38 34 38 30 33 35 34 37 36 34 32 35 37 33 | .norm(a,.3).....5.84803547642573 |
| 17d60 | 31 32 20 23 20 6d 61 79 20 76 61 72 79 0a 20 20 20 20 3e 3e 3e 20 4c 41 2e 6e 6f 72 6d 28 61 2c | 12.#.may.vary.....>>>.LA.norm(a, |
| 17d80 | 20 2d 33 29 0a 20 20 20 20 30 2e 30 0a 0a 20 20 20 20 55 73 69 6e 67 20 74 68 65 20 60 61 78 69 | .-3).....0.0......Using.the.`axi |
| 17da0 | 73 60 20 61 72 67 75 6d 65 6e 74 20 74 6f 20 63 6f 6d 70 75 74 65 20 76 65 63 74 6f 72 20 6e 6f | s`.argument.to.compute.vector.no |
| 17dc0 | 72 6d 73 3a 0a 0a 20 20 20 20 3e 3e 3e 20 63 20 3d 20 6e 70 2e 61 72 72 61 79 28 5b 5b 20 31 2c | rms:......>>>.c.=.np.array([[.1, |
| 17de0 | 20 32 2c 20 33 5d 2c 0a 20 20 20 20 2e 2e 2e 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 5b 2d | .2,.3],.......................[- |
| 17e00 | 31 2c 20 31 2c 20 34 5d 5d 29 0a 20 20 20 20 3e 3e 3e 20 4c 41 2e 6e 6f 72 6d 28 63 2c 20 61 78 | 1,.1,.4]]).....>>>.LA.norm(c,.ax |
| 17e20 | 69 73 3d 30 29 0a 20 20 20 20 61 72 72 61 79 28 5b 20 31 2e 34 31 34 32 31 33 35 36 2c 20 20 32 | is=0).....array([.1.41421356,..2 |
| 17e40 | 2e 32 33 36 30 36 37 39 38 2c 20 20 35 2e 20 20 20 20 20 20 20 20 5d 29 0a 20 20 20 20 3e 3e 3e | .23606798,..5.........]).....>>> |
| 17e60 | 20 4c 41 2e 6e 6f 72 6d 28 63 2c 20 61 78 69 73 3d 31 29 0a 20 20 20 20 61 72 72 61 79 28 5b 20 | .LA.norm(c,.axis=1).....array([. |
| 17e80 | 33 2e 37 34 31 36 35 37 33 39 2c 20 20 34 2e 32 34 32 36 34 30 36 39 5d 29 0a 20 20 20 20 3e 3e | 3.74165739,..4.24264069]).....>> |
| 17ea0 | 3e 20 4c 41 2e 6e 6f 72 6d 28 63 2c 20 6f 72 64 3d 31 2c 20 61 78 69 73 3d 31 29 0a 20 20 20 20 | >.LA.norm(c,.ord=1,.axis=1)..... |
| 17ec0 | 61 72 72 61 79 28 5b 20 36 2e 2c 20 20 36 2e 5d 29 0a 0a 20 20 20 20 55 73 69 6e 67 20 74 68 65 | array([.6.,..6.])......Using.the |
| 17ee0 | 20 60 61 78 69 73 60 20 61 72 67 75 6d 65 6e 74 20 74 6f 20 63 6f 6d 70 75 74 65 20 6d 61 74 72 | .`axis`.argument.to.compute.matr |
| 17f00 | 69 78 20 6e 6f 72 6d 73 3a 0a 0a 20 20 20 20 3e 3e 3e 20 6d 20 3d 20 6e 70 2e 61 72 61 6e 67 65 | ix.norms:......>>>.m.=.np.arange |
| 17f20 | 28 38 29 2e 72 65 73 68 61 70 65 28 32 2c 32 2c 32 29 0a 20 20 20 20 3e 3e 3e 20 4c 41 2e 6e 6f | (8).reshape(2,2,2).....>>>.LA.no |
| 17f40 | 72 6d 28 6d 2c 20 61 78 69 73 3d 28 31 2c 32 29 29 0a 20 20 20 20 61 72 72 61 79 28 5b 20 20 33 | rm(m,.axis=(1,2)).....array([..3 |
| 17f60 | 2e 37 34 31 36 35 37 33 39 2c 20 20 31 31 2e 32 32 34 39 37 32 31 36 5d 29 0a 20 20 20 20 3e 3e | .74165739,..11.22497216]).....>> |
| 17f80 | 3e 20 4c 41 2e 6e 6f 72 6d 28 6d 5b 30 2c 20 3a 2c 20 3a 5d 29 2c 20 4c 41 2e 6e 6f 72 6d 28 6d | >.LA.norm(m[0,.:,.:]),.LA.norm(m |
| 17fa0 | 5b 31 2c 20 3a 2c 20 3a 5d 29 0a 20 20 20 20 28 33 2e 37 34 31 36 35 37 33 38 36 37 37 33 39 34 | [1,.:,.:]).....(3.74165738677394 |
| 17fc0 | 31 33 2c 20 31 31 2e 32 32 34 39 37 32 31 36 30 33 32 31 38 32 34 29 0a 0a 20 20 20 20 4e 29 02 | 13,.11.224972160321824)......N). |
| 17fe0 | 72 22 01 00 00 da 03 66 72 6f 72 b2 00 00 00 72 a9 00 00 00 da 01 4b 29 01 da 05 6f 72 64 65 72 | r".....fror....r......K)...order |
| 18000 | 7a 36 27 61 78 69 73 27 20 6d 75 73 74 20 62 65 20 4e 6f 6e 65 2c 20 61 6e 20 69 6e 74 65 67 65 | z6'axis'.must.be.None,.an.intege |
| 18020 | 72 20 6f 72 20 61 20 74 75 70 6c 65 20 6f 66 20 69 6e 74 65 67 65 72 73 72 22 00 00 00 29 03 72 | r.or.a.tuple.of.integersr"...).r |
| 18040 | 4e 01 00 00 72 70 01 00 00 72 8b 01 00 00 72 6f 01 00 00 7a 14 49 6e 76 61 6c 69 64 20 6e 6f 72 | N...rp...r....ro...z.Invalid.nor |
| 18060 | 6d 20 6f 72 64 65 72 20 27 7a 0d 27 20 66 6f 72 20 76 65 63 74 6f 72 73 72 a8 00 00 00 7a 15 44 | m.order.'z.'.for.vectorsr....z.D |
| 18080 | 75 70 6c 69 63 61 74 65 20 61 78 65 73 20 67 69 76 65 6e 2e 72 bb 00 00 00 72 4d 01 00 00 72 8a | uplicate.axes.given.r....rM...r. |
| 180a0 | 01 00 00 72 c7 00 00 00 29 03 4e 72 95 01 00 00 72 22 01 00 00 da 03 6e 75 63 7a 20 49 6e 76 61 | ...r....).Nr....r".....nucz.Inva |
| 180c0 | 6c 69 64 20 6e 6f 72 6d 20 6f 72 64 65 72 20 66 6f 72 20 6d 61 74 72 69 63 65 73 2e 7a 26 49 6d | lid.norm.order.for.matrices.z&Im |
| 180e0 | 70 72 6f 70 65 72 20 6e 75 6d 62 65 72 20 6f 66 20 64 69 6d 65 6e 73 69 6f 6e 73 20 74 6f 20 6e | proper.number.of.dimensions.to.n |
| 18100 | 6f 72 6d 2e 29 28 72 2d 00 00 00 72 8e 00 00 00 72 9b 00 00 00 72 9c 00 00 00 72 3a 00 00 00 72 | orm.)(r-...r....r....r....r:...r |
| 18120 | 43 00 00 00 72 ea 00 00 00 da 05 66 6c 6f 61 74 72 b4 00 00 00 72 d4 00 00 00 72 90 00 00 00 72 | C...r......floatr....r....r....r |
| 18140 | 35 01 00 00 72 34 01 00 00 72 34 00 00 00 72 4a 00 00 00 72 d3 00 00 00 da 05 74 75 70 6c 65 72 | 5...r4...r4...rJ...r......tupler |
| 18160 | d0 00 00 00 da 0a 69 73 69 6e 73 74 61 6e 63 65 72 71 01 00 00 da 09 45 78 63 65 70 74 69 6f 6e | ......isinstancerq.....Exception |
| 18180 | 72 9d 00 00 00 72 ad 00 00 00 72 3b 00 00 00 72 25 00 00 00 72 72 01 00 00 72 2a 01 00 00 72 4b | r....r....r;...r%...rr...r*...rK |
| 181a0 | 00 00 00 72 26 00 00 00 da 06 72 65 64 75 63 65 da 04 63 6f 6e 6a da 03 73 74 72 72 bd 00 00 00 | ...r&.....reduce..conj..strr.... |
| 181c0 | 72 46 00 00 00 72 54 00 00 00 72 90 01 00 00 72 28 00 00 00 72 29 00 00 00 72 cf 00 00 00 72 bc | rF...rT...r....r(...r)...r....r. |
| 181e0 | 00 00 00 29 10 72 5c 01 00 00 72 92 01 00 00 72 4e 01 00 00 72 70 01 00 00 72 b4 00 00 00 da 06 | ...).r\...r....rN...rp...r...... |
| 18200 | 78 5f 72 65 61 6c da 06 78 5f 69 6d 61 67 da 06 73 71 6e 6f 72 6d 72 ae 00 00 00 da 02 6e 64 72 | x_real..x_imag..sqnormr......ndr |
| 18220 | 05 01 00 00 72 55 01 00 00 da 04 61 62 73 78 72 8c 01 00 00 72 8d 01 00 00 da 09 72 65 74 5f 73 | ....rU.....absxr....r......ret_s |
| 18240 | 68 61 70 65 73 10 00 00 00 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 72 62 00 00 00 72 12 | hapes....................rb...r. |
| 18260 | 00 00 00 72 12 00 00 00 3e 0a 00 00 73 7b 04 00 00 80 00 f4 6c 04 00 09 10 90 01 8b 0a 80 41 e4 | ...r....>...s{......l.........A. |
| 18280 | 0b 15 90 61 97 67 91 67 97 6c 91 6c a4 57 ac 67 d0 24 36 d4 0b 37 d8 0c 0d 8f 48 89 48 94 55 8b | ...a.g.g.l.l.W.g.$6..7....H.H.U. |
| 182a0 | 4f 88 01 f0 06 00 08 0c 80 7c d8 0f 10 8f 76 89 76 88 04 e0 0d 10 88 5b d8 0d 10 90 4c d1 0d 20 | O........|....v.v......[....L... |
| 182c0 | a0 54 a8 51 a2 59 d8 0d 10 90 41 8a 58 98 24 a0 21 9a 29 e0 10 11 97 07 91 07 98 63 90 07 d3 10 | .T.Q.Y....A.X.$.!.)........c.... |
| 182e0 | 22 88 41 dc 0f 1c 98 51 9f 57 99 57 9f 5c 99 5c d4 0f 2a d8 19 1a 9f 16 99 16 90 06 d8 19 1a 9f | ".A....Q.W.W.\.\..*............. |
| 18300 | 16 99 16 90 06 d8 19 1f 9f 1a 99 1a a0 46 d3 19 2b a8 66 af 6a a9 6a b8 16 d3 2e 40 d1 19 40 91 | .............F..+.f.j.j....@..@. |
| 18320 | 06 e0 19 1a 9f 15 99 15 98 71 9b 18 90 06 dc 12 16 90 76 93 2c 88 43 d9 0f 17 d8 16 19 97 6b 91 | .........q........v.,.C.......k. |
| 18340 | 6b a0 24 a8 21 a8 13 a1 2a d3 16 2d 90 03 d8 13 16 88 4a f0 06 00 0a 0b 8f 16 89 16 80 42 d8 07 | k.$.!...*..-......J..........B.. |
| 18360 | 0b 80 7c dc 0f 14 94 55 98 32 93 59 d3 0f 1f 89 04 dc 0d 17 98 04 9c 65 d4 0d 24 f0 02 05 09 15 | ..|....U.2.Y...........e..$..... |
| 18380 | dc 13 16 90 74 93 39 88 44 f0 0a 00 11 15 88 77 88 04 e4 07 0a 88 34 83 79 90 41 83 7e d8 0b 0e | ....t.9.D......w......4.y.A.~... |
| 183a0 | 94 23 8a 3a dc 13 16 90 71 93 36 97 3a 91 3a a0 34 b0 28 c0 41 90 3a d3 13 46 d0 0c 46 d8 0d 10 | .#.:....q.6.:.:.4.(.A.:..F..F... |
| 183c0 | 94 53 90 44 8a 5b dc 13 16 90 71 93 36 97 3a 91 3a a0 34 b0 28 90 3a d3 13 3b d0 0c 3b d8 0d 10 | .S.D.[....q.6.:.:.4.(.:..;..;... |
| 183e0 | 90 41 8a 58 f0 06 00 12 13 90 61 91 16 df 11 17 91 16 98 01 9f 06 99 06 9f 0c 99 0c d3 11 25 df | .A.X......a...................%. |
| 18400 | 11 14 91 13 98 24 a8 18 90 13 d3 11 32 f0 07 04 0d 0e f0 0a 00 0e 11 90 41 8a 58 e4 13 16 97 3a | .....$......2...........A.X....: |
| 18420 | 91 3a 9c 63 a0 21 9b 66 a8 34 b8 28 d4 13 43 d0 0c 43 d8 0d 10 88 5b 98 43 a0 31 9a 48 e0 11 12 | .:.c.!.f.4.(..C..C....[.C.1.H... |
| 18440 | 97 16 91 16 93 18 98 41 91 1c d7 10 23 d1 10 23 88 41 dc 13 17 9c 03 9f 0a 99 0a a0 31 a8 34 b8 | .......A....#..#.A..........1.4. |
| 18460 | 28 d4 18 43 d3 13 44 d0 0c 44 f4 06 00 0e 18 98 03 9c 53 d4 0d 21 dc 12 1c d0 1f 33 b0 43 b0 35 | (..C..D..D........S..!.....3.C.5 |
| 18480 | b8 0d d0 1d 46 d3 12 47 d0 0c 47 e4 13 16 90 71 93 36 88 44 d8 0c 10 90 53 89 4c 88 44 dc 12 15 | ....F..G..G....q.6.D....S.L.D... |
| 184a0 | 97 2a 91 2a 98 54 a8 04 b0 78 d4 12 40 88 43 d8 0c 0f 94 4a 98 73 a8 23 af 29 a9 29 d4 14 34 d1 | .*.*.T...x..@.C....J.s.#.).)..4. |
| 184c0 | 0c 34 88 43 d8 13 16 88 4a dc 09 0c 88 54 8b 19 90 61 8b 1e d8 1d 21 d1 08 1a 88 08 90 28 dc 13 | .4.C....J....T...a....!......(.. |
| 184e0 | 27 a8 08 b0 22 d3 13 35 88 08 dc 13 27 a8 08 b0 22 d3 13 35 88 08 d8 0b 13 90 78 d2 0b 1f dc 12 | '..."..5....'..."..5......x..... |
| 18500 | 1c d0 1d 34 d3 12 35 d0 0c 35 d8 0b 0e 90 21 8a 38 dc 12 21 a0 21 a0 58 a8 78 bc 14 b8 71 d3 12 | ...4..5..5....!.8..!.!.X.x...q.. |
| 18520 | 41 8a 43 d8 0d 10 90 42 8a 59 dc 12 21 a0 21 a0 58 a8 78 bc 14 d3 12 3e 8a 43 d8 0d 10 90 41 8a | A.C....B.Y..!.!.X.x....>.C....A. |
| 18540 | 58 d8 0f 17 98 28 d2 0f 22 d8 10 18 98 41 91 0d 90 08 dc 12 15 97 2a 91 2a 9c 53 a0 11 9b 56 a8 | X....(.."....A........*.*.S...V. |
| 18560 | 28 d4 12 33 d7 12 37 d1 12 37 b8 58 c8 71 d0 12 37 d3 12 51 8a 43 d8 0d 10 94 43 8a 5a d8 0f 17 | (..3..7..7.X.q..7..Q.C....C.Z... |
| 18580 | 98 28 d2 0f 22 d8 10 18 98 41 91 0d 90 08 dc 12 15 97 2a 91 2a 9c 53 a0 11 9b 56 a8 28 d4 12 33 | .(.."....A........*.*.S...V.(..3 |
| 185a0 | d7 12 37 d1 12 37 b8 58 c8 71 d0 12 37 d3 12 51 89 43 d8 0d 10 90 42 8a 59 d8 0f 17 98 28 d2 0f | ..7..7.X.q..7..Q.C....B.Y....(.. |
| 185c0 | 22 d8 10 18 98 41 91 0d 90 08 dc 12 15 97 2a 91 2a 9c 53 a0 11 9b 56 a8 28 d4 12 33 d7 12 37 d1 | "....A........*.*.S...V.(..3..7. |
| 185e0 | 12 37 b8 58 d0 12 37 d3 12 46 89 43 d8 0d 10 94 53 90 44 8a 5b d8 0f 17 98 28 d2 0f 22 d8 10 18 | .7.X..7..F.C....S.D.[....(.."... |
| 18600 | 98 41 91 0d 90 08 dc 12 15 97 2a 91 2a 9c 53 a0 11 9b 56 a8 28 d4 12 33 d7 12 37 d1 12 37 b8 58 | .A........*.*.S...V.(..3..7..7.X |
| 18620 | d0 12 37 d3 12 46 89 43 d8 0d 10 d0 14 26 d1 0d 26 dc 12 16 94 73 97 7a 91 7a a0 31 a7 36 a1 36 | ..7..F.C.....&..&....s.z.z.1.6.6 |
| 18640 | a3 38 a8 61 a1 3c d7 22 35 d1 22 35 b8 44 d4 17 41 d3 12 42 89 43 d8 0d 10 90 45 8a 5c dc 12 21 | .8.a.<."5."5.D..A..B.C....E.\..! |
| 18660 | a0 21 a0 58 a8 78 bc 13 b8 61 d3 12 40 89 43 e4 12 1c d0 1d 3f d3 12 40 d0 0c 40 d9 0b 13 dc 18 | .!.X.x...a..@.C.....?..@..@..... |
| 18680 | 1c 98 51 9f 57 99 57 9b 0d 88 49 d8 21 22 88 49 90 64 98 31 91 67 d1 0c 1e d8 21 22 88 49 90 64 | ..Q.W.W...I.!".I.d.1.g....!".I.d |
| 186a0 | 98 31 91 67 d1 0c 1e d8 12 15 97 2b 91 2b 98 69 d3 12 28 88 43 d8 0f 12 88 0a e4 0e 18 d0 19 41 | .1.g.......+.+.i..(.C..........A |
| 186c0 | d3 0e 42 d0 08 42 f8 f4 55 02 00 10 19 f2 00 03 09 15 dc 12 1b d8 10 48 f3 03 02 13 0e e0 13 14 | ..B..B..U..............H........ |
| 186e0 | f0 05 02 0d 15 fb f0 03 03 09 15 fa 73 18 00 00 00 c5 04 0b 53 1d 00 d3 1d 09 53 37 03 d3 26 0c | ............s.......S.....S7..&. |
| 18700 | 53 32 03 d3 32 05 53 37 03 72 18 01 00 00 63 01 00 00 00 00 00 00 00 01 00 00 00 03 00 00 00 23 | S2..2.S7.r....c................# |
| 18720 | 00 00 00 f3 2c 00 00 00 4b 00 01 00 97 00 7c 00 45 00 64 00 7b 03 00 00 96 02 97 02 86 05 05 00 | ....,...K.....|.E.d.{........... |
| 18740 | 01 00 7c 01 96 01 97 01 01 00 79 00 37 00 8c 09 ad 03 77 01 72 8d 00 00 00 72 60 00 00 00 29 02 | ..|.......y.7.....w.r....r`...). |
| 18760 | 72 9f 00 00 00 72 19 01 00 00 73 02 00 00 00 20 20 72 62 00 00 00 da 14 5f 6d 75 6c 74 69 64 6f | r....r....s......rb....._multido |
| 18780 | 74 5f 64 69 73 70 61 74 63 68 65 72 72 a7 01 00 00 43 0b 00 00 73 19 00 00 00 e8 00 f8 80 00 d8 | t_dispatcherr....C...s.......... |
| 187a0 | 0f 15 d7 04 15 d0 04 15 d8 0a 0d 83 49 f0 03 00 05 16 fa 73 0c 00 00 00 82 06 14 01 88 01 12 04 | ............I......s............ |
| 187c0 | 89 0a 14 01 63 01 00 00 00 00 00 00 00 01 00 00 00 07 00 00 00 03 00 00 00 f3 5e 02 00 00 97 00 | ....c.....................^..... |
| 187e0 | 74 01 00 00 00 00 00 00 00 00 7c 00 ab 01 00 00 00 00 00 00 7d 02 7c 02 64 01 6b 02 00 00 72 0b | t.........|.........}.|.d.k...r. |
| 18800 | 74 03 00 00 00 00 00 00 00 00 64 02 ab 01 00 00 00 00 00 00 82 01 7c 02 64 01 6b 28 00 00 72 14 | t.........d...........|.d.k(..r. |
| 18820 | 74 05 00 00 00 00 00 00 00 00 7c 00 64 03 19 00 00 00 7c 00 64 04 19 00 00 00 7c 01 ac 05 ab 03 | t.........|.d.....|.d.....|..... |
| 18840 | 00 00 00 00 00 00 53 00 7c 00 44 00 8f 03 63 02 67 00 63 02 5d 0d 00 00 7d 03 74 07 00 00 00 00 | ......S.|.D...c.g.c.]...}.t..... |
| 18860 | 00 00 00 00 7c 03 ab 01 00 00 00 00 00 00 91 02 8c 0f 04 00 7d 00 7d 03 7c 00 64 03 19 00 00 00 | ....|...............}.}.|.d..... |
| 18880 | 6a 08 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 7c 00 64 06 19 00 00 00 6a 08 00 00 | j...................|.d.....j... |
| 188a0 | 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 7d 05 7d 04 7c 00 64 03 19 00 00 00 6a 08 00 00 | ................}.}.|.d.....j... |
| 188c0 | 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 64 04 6b 28 00 00 72 11 74 0b 00 00 00 00 00 00 | ................d.k(..r.t....... |
| 188e0 | 00 00 7c 00 64 03 19 00 00 00 ab 01 00 00 00 00 00 00 7c 00 64 03 3c 00 00 00 7c 00 64 06 19 00 | ..|.d.............|.d.<...|.d... |
| 18900 | 00 00 6a 08 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 64 04 6b 28 00 00 72 1b 74 0b | ..j...................d.k(..r.t. |
| 18920 | 00 00 00 00 00 00 00 00 7c 00 64 06 19 00 00 00 ab 01 00 00 00 00 00 00 6a 0c 00 00 00 00 00 00 | ........|.d.............j....... |
| 18940 | 00 00 00 00 00 00 00 00 00 00 00 00 7c 00 64 06 3c 00 00 00 74 0f 00 00 00 00 00 00 00 00 7c 00 | ............|.d.<...t.........|. |
| 18960 | 8e 00 01 00 7c 02 64 07 6b 28 00 00 72 19 74 11 00 00 00 00 00 00 00 00 7c 00 64 03 19 00 00 00 | ....|.d.k(..r.t.........|.d..... |
| 18980 | 7c 00 64 04 19 00 00 00 7c 00 64 01 19 00 00 00 7c 01 ac 05 ab 04 00 00 00 00 00 00 7d 06 6e 1e | |.d.....|.d.....|...........}.n. |
| 189a0 | 74 13 00 00 00 00 00 00 00 00 7c 00 ab 01 00 00 00 00 00 00 7d 07 74 15 00 00 00 00 00 00 00 00 | t.........|.........}.t......... |
| 189c0 | 7c 00 7c 07 64 03 7c 02 64 04 7a 0a 00 00 7c 01 ac 05 ab 05 00 00 00 00 00 00 7d 06 7c 04 64 04 | |.|.d.|.d.z...|...........}.|.d. |
| 189e0 | 6b 28 00 00 72 0a 7c 05 64 04 6b 28 00 00 72 05 7c 06 64 08 19 00 00 00 53 00 7c 04 64 04 6b 28 | k(..r.|.d.k(..r.|.d.....S.|.d.k( |
| 18a00 | 00 00 73 05 7c 05 64 04 6b 28 00 00 72 10 7c 06 6a 17 00 00 00 00 00 00 00 00 00 00 00 00 00 00 | ..s.|.d.k(..r.|.j............... |
| 18a20 | 00 00 00 00 ab 00 00 00 00 00 00 00 53 00 7c 06 53 00 63 02 01 00 63 02 7d 03 77 00 29 09 61 6c | ............S.|.S.c...c.}.w.).al |
| 18a40 | 0a 00 00 0a 20 20 20 20 43 6f 6d 70 75 74 65 20 74 68 65 20 64 6f 74 20 70 72 6f 64 75 63 74 20 | ........Compute.the.dot.product. |
| 18a60 | 6f 66 20 74 77 6f 20 6f 72 20 6d 6f 72 65 20 61 72 72 61 79 73 20 69 6e 20 61 20 73 69 6e 67 6c | of.two.or.more.arrays.in.a.singl |
| 18a80 | 65 20 66 75 6e 63 74 69 6f 6e 20 63 61 6c 6c 2c 0a 20 20 20 20 77 68 69 6c 65 20 61 75 74 6f 6d | e.function.call,.....while.autom |
| 18aa0 | 61 74 69 63 61 6c 6c 79 20 73 65 6c 65 63 74 69 6e 67 20 74 68 65 20 66 61 73 74 65 73 74 20 65 | atically.selecting.the.fastest.e |
| 18ac0 | 76 61 6c 75 61 74 69 6f 6e 20 6f 72 64 65 72 2e 0a 0a 20 20 20 20 60 6d 75 6c 74 69 5f 64 6f 74 | valuation.order.......`multi_dot |
| 18ae0 | 60 20 63 68 61 69 6e 73 20 60 6e 75 6d 70 79 2e 64 6f 74 60 20 61 6e 64 20 75 73 65 73 20 6f 70 | `.chains.`numpy.dot`.and.uses.op |
| 18b00 | 74 69 6d 61 6c 20 70 61 72 65 6e 74 68 65 73 69 7a 61 74 69 6f 6e 0a 20 20 20 20 6f 66 20 74 68 | timal.parenthesization.....of.th |
| 18b20 | 65 20 6d 61 74 72 69 63 65 73 20 5b 31 5d 5f 20 5b 32 5d 5f 2e 20 44 65 70 65 6e 64 69 6e 67 20 | e.matrices.[1]_.[2]_..Depending. |
| 18b40 | 6f 6e 20 74 68 65 20 73 68 61 70 65 73 20 6f 66 20 74 68 65 20 6d 61 74 72 69 63 65 73 2c 0a 20 | on.the.shapes.of.the.matrices,.. |
| 18b60 | 20 20 20 74 68 69 73 20 63 61 6e 20 73 70 65 65 64 20 75 70 20 74 68 65 20 6d 75 6c 74 69 70 6c | ...this.can.speed.up.the.multipl |
| 18b80 | 69 63 61 74 69 6f 6e 20 61 20 6c 6f 74 2e 0a 0a 20 20 20 20 49 66 20 74 68 65 20 66 69 72 73 74 | ication.a.lot.......If.the.first |
| 18ba0 | 20 61 72 67 75 6d 65 6e 74 20 69 73 20 31 2d 44 20 69 74 20 69 73 20 74 72 65 61 74 65 64 20 61 | .argument.is.1-D.it.is.treated.a |
| 18bc0 | 73 20 61 20 72 6f 77 20 76 65 63 74 6f 72 2e 0a 20 20 20 20 49 66 20 74 68 65 20 6c 61 73 74 20 | s.a.row.vector......If.the.last. |
| 18be0 | 61 72 67 75 6d 65 6e 74 20 69 73 20 31 2d 44 20 69 74 20 69 73 20 74 72 65 61 74 65 64 20 61 73 | argument.is.1-D.it.is.treated.as |
| 18c00 | 20 61 20 63 6f 6c 75 6d 6e 20 76 65 63 74 6f 72 2e 0a 20 20 20 20 54 68 65 20 6f 74 68 65 72 20 | .a.column.vector......The.other. |
| 18c20 | 61 72 67 75 6d 65 6e 74 73 20 6d 75 73 74 20 62 65 20 32 2d 44 2e 0a 0a 20 20 20 20 54 68 69 6e | arguments.must.be.2-D.......Thin |
| 18c40 | 6b 20 6f 66 20 60 6d 75 6c 74 69 5f 64 6f 74 60 20 61 73 3a 3a 0a 0a 20 20 20 20 20 20 20 20 64 | k.of.`multi_dot`.as::..........d |
| 18c60 | 65 66 20 6d 75 6c 74 69 5f 64 6f 74 28 61 72 72 61 79 73 29 3a 20 72 65 74 75 72 6e 20 66 75 6e | ef.multi_dot(arrays):.return.fun |
| 18c80 | 63 74 6f 6f 6c 73 2e 72 65 64 75 63 65 28 6e 70 2e 64 6f 74 2c 20 61 72 72 61 79 73 29 0a 0a 0a | ctools.reduce(np.dot,.arrays)... |
| 18ca0 | 20 20 20 20 50 61 72 61 6d 65 74 65 72 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 | ....Parameters.....----------... |
| 18cc0 | 20 20 61 72 72 61 79 73 20 3a 20 73 65 71 75 65 6e 63 65 20 6f 66 20 61 72 72 61 79 5f 6c 69 6b | ..arrays.:.sequence.of.array_lik |
| 18ce0 | 65 0a 20 20 20 20 20 20 20 20 49 66 20 74 68 65 20 66 69 72 73 74 20 61 72 67 75 6d 65 6e 74 20 | e.........If.the.first.argument. |
| 18d00 | 69 73 20 31 2d 44 20 69 74 20 69 73 20 74 72 65 61 74 65 64 20 61 73 20 72 6f 77 20 76 65 63 74 | is.1-D.it.is.treated.as.row.vect |
| 18d20 | 6f 72 2e 0a 20 20 20 20 20 20 20 20 49 66 20 74 68 65 20 6c 61 73 74 20 61 72 67 75 6d 65 6e 74 | or..........If.the.last.argument |
| 18d40 | 20 69 73 20 31 2d 44 20 69 74 20 69 73 20 74 72 65 61 74 65 64 20 61 73 20 63 6f 6c 75 6d 6e 20 | .is.1-D.it.is.treated.as.column. |
| 18d60 | 76 65 63 74 6f 72 2e 0a 20 20 20 20 20 20 20 20 54 68 65 20 6f 74 68 65 72 20 61 72 67 75 6d 65 | vector..........The.other.argume |
| 18d80 | 6e 74 73 20 6d 75 73 74 20 62 65 20 32 2d 44 2e 0a 20 20 20 20 6f 75 74 20 3a 20 6e 64 61 72 72 | nts.must.be.2-D......out.:.ndarr |
| 18da0 | 61 79 2c 20 6f 70 74 69 6f 6e 61 6c 0a 20 20 20 20 20 20 20 20 4f 75 74 70 75 74 20 61 72 67 75 | ay,.optional.........Output.argu |
| 18dc0 | 6d 65 6e 74 2e 20 54 68 69 73 20 6d 75 73 74 20 68 61 76 65 20 74 68 65 20 65 78 61 63 74 20 6b | ment..This.must.have.the.exact.k |
| 18de0 | 69 6e 64 20 74 68 61 74 20 77 6f 75 6c 64 20 62 65 20 72 65 74 75 72 6e 65 64 0a 20 20 20 20 20 | ind.that.would.be.returned...... |
| 18e00 | 20 20 20 69 66 20 69 74 20 77 61 73 20 6e 6f 74 20 75 73 65 64 2e 20 49 6e 20 70 61 72 74 69 63 | ...if.it.was.not.used..In.partic |
| 18e20 | 75 6c 61 72 2c 20 69 74 20 6d 75 73 74 20 68 61 76 65 20 74 68 65 20 72 69 67 68 74 20 74 79 70 | ular,.it.must.have.the.right.typ |
| 18e40 | 65 2c 20 6d 75 73 74 20 62 65 0a 20 20 20 20 20 20 20 20 43 2d 63 6f 6e 74 69 67 75 6f 75 73 2c | e,.must.be.........C-contiguous, |
| 18e60 | 20 61 6e 64 20 69 74 73 20 64 74 79 70 65 20 6d 75 73 74 20 62 65 20 74 68 65 20 64 74 79 70 65 | .and.its.dtype.must.be.the.dtype |
| 18e80 | 20 74 68 61 74 20 77 6f 75 6c 64 20 62 65 20 72 65 74 75 72 6e 65 64 0a 20 20 20 20 20 20 20 20 | .that.would.be.returned......... |
| 18ea0 | 66 6f 72 20 60 64 6f 74 28 61 2c 20 62 29 60 2e 20 54 68 69 73 20 69 73 20 61 20 70 65 72 66 6f | for.`dot(a,.b)`..This.is.a.perfo |
| 18ec0 | 72 6d 61 6e 63 65 20 66 65 61 74 75 72 65 2e 20 54 68 65 72 65 66 6f 72 65 2c 20 69 66 20 74 68 | rmance.feature..Therefore,.if.th |
| 18ee0 | 65 73 65 0a 20 20 20 20 20 20 20 20 63 6f 6e 64 69 74 69 6f 6e 73 20 61 72 65 20 6e 6f 74 20 6d | ese.........conditions.are.not.m |
| 18f00 | 65 74 2c 20 61 6e 20 65 78 63 65 70 74 69 6f 6e 20 69 73 20 72 61 69 73 65 64 2c 20 69 6e 73 74 | et,.an.exception.is.raised,.inst |
| 18f20 | 65 61 64 20 6f 66 20 61 74 74 65 6d 70 74 69 6e 67 0a 20 20 20 20 20 20 20 20 74 6f 20 62 65 20 | ead.of.attempting.........to.be. |
| 18f40 | 66 6c 65 78 69 62 6c 65 2e 0a 0a 20 20 20 20 52 65 74 75 72 6e 73 0a 20 20 20 20 2d 2d 2d 2d 2d | flexible.......Returns.....----- |
| 18f60 | 2d 2d 0a 20 20 20 20 6f 75 74 70 75 74 20 3a 20 6e 64 61 72 72 61 79 0a 20 20 20 20 20 20 20 20 | --.....output.:.ndarray......... |
| 18f80 | 52 65 74 75 72 6e 73 20 74 68 65 20 64 6f 74 20 70 72 6f 64 75 63 74 20 6f 66 20 74 68 65 20 73 | Returns.the.dot.product.of.the.s |
| 18fa0 | 75 70 70 6c 69 65 64 20 61 72 72 61 79 73 2e 0a 0a 20 20 20 20 53 65 65 20 41 6c 73 6f 0a 20 20 | upplied.arrays.......See.Also... |
| 18fc0 | 20 20 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 6e 75 6d 70 79 2e 64 6f 74 20 3a 20 64 6f 74 20 6d | ..--------.....numpy.dot.:.dot.m |
| 18fe0 | 75 6c 74 69 70 6c 69 63 61 74 69 6f 6e 20 77 69 74 68 20 74 77 6f 20 61 72 67 75 6d 65 6e 74 73 | ultiplication.with.two.arguments |
| 19000 | 2e 0a 0a 20 20 20 20 52 65 66 65 72 65 6e 63 65 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d | .......References.....---------- |
| 19020 | 0a 0a 20 20 20 20 2e 2e 20 5b 31 5d 20 43 6f 72 6d 65 6e 2c 20 22 49 6e 74 72 6f 64 75 63 74 69 | .........[1].Cormen,."Introducti |
| 19040 | 6f 6e 20 74 6f 20 41 6c 67 6f 72 69 74 68 6d 73 22 2c 20 43 68 61 70 74 65 72 20 31 35 2e 32 2c | on.to.Algorithms",.Chapter.15.2, |
| 19060 | 20 70 2e 20 33 37 30 2d 33 37 38 0a 20 20 20 20 2e 2e 20 5b 32 5d 20 68 74 74 70 73 3a 2f 2f 65 | .p..370-378........[2].https://e |
| 19080 | 6e 2e 77 69 6b 69 70 65 64 69 61 2e 6f 72 67 2f 77 69 6b 69 2f 4d 61 74 72 69 78 5f 63 68 61 69 | n.wikipedia.org/wiki/Matrix_chai |
| 190a0 | 6e 5f 6d 75 6c 74 69 70 6c 69 63 61 74 69 6f 6e 0a 0a 20 20 20 20 45 78 61 6d 70 6c 65 73 0a 20 | n_multiplication......Examples.. |
| 190c0 | 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 60 6d 75 6c 74 69 5f 64 6f 74 60 20 61 6c 6c 6f | ...--------.....`multi_dot`.allo |
| 190e0 | 77 73 20 79 6f 75 20 74 6f 20 77 72 69 74 65 3a 3a 0a 0a 20 20 20 20 3e 3e 3e 20 69 6d 70 6f 72 | ws.you.to.write::......>>>.impor |
| 19100 | 74 20 6e 75 6d 70 79 20 61 73 20 6e 70 0a 20 20 20 20 3e 3e 3e 20 66 72 6f 6d 20 6e 75 6d 70 79 | t.numpy.as.np.....>>>.from.numpy |
| 19120 | 2e 6c 69 6e 61 6c 67 20 69 6d 70 6f 72 74 20 6d 75 6c 74 69 5f 64 6f 74 0a 20 20 20 20 3e 3e 3e | .linalg.import.multi_dot.....>>> |
| 19140 | 20 23 20 50 72 65 70 61 72 65 20 73 6f 6d 65 20 64 61 74 61 0a 20 20 20 20 3e 3e 3e 20 41 20 3d | .#.Prepare.some.data.....>>>.A.= |
| 19160 | 20 6e 70 2e 72 61 6e 64 6f 6d 2e 72 61 6e 64 6f 6d 28 28 31 30 30 30 30 2c 20 31 30 30 29 29 0a | .np.random.random((10000,.100)). |
| 19180 | 20 20 20 20 3e 3e 3e 20 42 20 3d 20 6e 70 2e 72 61 6e 64 6f 6d 2e 72 61 6e 64 6f 6d 28 28 31 30 | ....>>>.B.=.np.random.random((10 |
| 191a0 | 30 2c 20 31 30 30 30 29 29 0a 20 20 20 20 3e 3e 3e 20 43 20 3d 20 6e 70 2e 72 61 6e 64 6f 6d 2e | 0,.1000)).....>>>.C.=.np.random. |
| 191c0 | 72 61 6e 64 6f 6d 28 28 31 30 30 30 2c 20 35 29 29 0a 20 20 20 20 3e 3e 3e 20 44 20 3d 20 6e 70 | random((1000,.5)).....>>>.D.=.np |
| 191e0 | 2e 72 61 6e 64 6f 6d 2e 72 61 6e 64 6f 6d 28 28 35 2c 20 33 33 33 29 29 0a 20 20 20 20 3e 3e 3e | .random.random((5,.333)).....>>> |
| 19200 | 20 23 20 74 68 65 20 61 63 74 75 61 6c 20 64 6f 74 20 6d 75 6c 74 69 70 6c 69 63 61 74 69 6f 6e | .#.the.actual.dot.multiplication |
| 19220 | 0a 20 20 20 20 3e 3e 3e 20 5f 20 3d 20 6d 75 6c 74 69 5f 64 6f 74 28 5b 41 2c 20 42 2c 20 43 2c | .....>>>._.=.multi_dot([A,.B,.C, |
| 19240 | 20 44 5d 29 0a 0a 20 20 20 20 69 6e 73 74 65 61 64 20 6f 66 3a 3a 0a 0a 20 20 20 20 3e 3e 3e 20 | .D])......instead.of::......>>>. |
| 19260 | 5f 20 3d 20 6e 70 2e 64 6f 74 28 6e 70 2e 64 6f 74 28 6e 70 2e 64 6f 74 28 41 2c 20 42 29 2c 20 | _.=.np.dot(np.dot(np.dot(A,.B),. |
| 19280 | 43 29 2c 20 44 29 0a 20 20 20 20 3e 3e 3e 20 23 20 6f 72 0a 20 20 20 20 3e 3e 3e 20 5f 20 3d 20 | C),.D).....>>>.#.or.....>>>._.=. |
| 192a0 | 41 2e 64 6f 74 28 42 29 2e 64 6f 74 28 43 29 2e 64 6f 74 28 44 29 0a 0a 20 20 20 20 4e 6f 74 65 | A.dot(B).dot(C).dot(D)......Note |
| 192c0 | 73 0a 20 20 20 20 2d 2d 2d 2d 2d 0a 20 20 20 20 54 68 65 20 63 6f 73 74 20 66 6f 72 20 61 20 6d | s.....-----.....The.cost.for.a.m |
| 192e0 | 61 74 72 69 78 20 6d 75 6c 74 69 70 6c 69 63 61 74 69 6f 6e 20 63 61 6e 20 62 65 20 63 61 6c 63 | atrix.multiplication.can.be.calc |
| 19300 | 75 6c 61 74 65 64 20 77 69 74 68 20 74 68 65 0a 20 20 20 20 66 6f 6c 6c 6f 77 69 6e 67 20 66 75 | ulated.with.the.....following.fu |
| 19320 | 6e 63 74 69 6f 6e 3a 3a 0a 0a 20 20 20 20 20 20 20 20 64 65 66 20 63 6f 73 74 28 41 2c 20 42 29 | nction::..........def.cost(A,.B) |
| 19340 | 3a 0a 20 20 20 20 20 20 20 20 20 20 20 20 72 65 74 75 72 6e 20 41 2e 73 68 61 70 65 5b 30 5d 20 | :.............return.A.shape[0]. |
| 19360 | 2a 20 41 2e 73 68 61 70 65 5b 31 5d 20 2a 20 42 2e 73 68 61 70 65 5b 31 5d 0a 0a 20 20 20 20 41 | *.A.shape[1].*.B.shape[1]......A |
| 19380 | 73 73 75 6d 65 20 77 65 20 68 61 76 65 20 74 68 72 65 65 20 6d 61 74 72 69 63 65 73 0a 20 20 20 | ssume.we.have.three.matrices.... |
| 193a0 | 20 3a 6d 61 74 68 3a 60 41 5f 7b 31 30 20 09 69 6d 65 73 20 31 30 30 7d 2c 20 42 5f 7b 31 30 30 | .:math:`A_{10..imes.100},.B_{100 |
| 193c0 | 20 09 69 6d 65 73 20 35 7d 2c 20 43 5f 7b 35 20 09 69 6d 65 73 20 35 30 7d 60 2e 0a 0a 20 20 20 | ..imes.5},.C_{5..imes.50}`...... |
| 193e0 | 20 54 68 65 20 63 6f 73 74 73 20 66 6f 72 20 74 68 65 20 74 77 6f 20 64 69 66 66 65 72 65 6e 74 | .The.costs.for.the.two.different |
| 19400 | 20 70 61 72 65 6e 74 68 65 73 69 7a 61 74 69 6f 6e 73 20 61 72 65 20 61 73 20 66 6f 6c 6c 6f 77 | .parenthesizations.are.as.follow |
| 19420 | 73 3a 3a 0a 0a 20 20 20 20 20 20 20 20 63 6f 73 74 28 28 41 42 29 43 29 20 3d 20 31 30 2a 31 30 | s::..........cost((AB)C).=.10*10 |
| 19440 | 30 2a 35 20 2b 20 31 30 2a 35 2a 35 30 20 20 20 3d 20 35 30 30 30 20 2b 20 32 35 30 30 20 20 20 | 0*5.+.10*5*50...=.5000.+.2500... |
| 19460 | 3d 20 37 35 30 30 0a 20 20 20 20 20 20 20 20 63 6f 73 74 28 41 28 42 43 29 29 20 3d 20 31 30 2a | =.7500.........cost(A(BC)).=.10* |
| 19480 | 31 30 30 2a 35 30 20 2b 20 31 30 30 2a 35 2a 35 30 20 3d 20 35 30 30 30 30 20 2b 20 32 35 30 30 | 100*50.+.100*5*50.=.50000.+.2500 |
| 194a0 | 30 20 3d 20 37 35 30 30 30 0a 0a 20 20 20 20 72 b2 00 00 00 7a 1e 45 78 70 65 63 74 69 6e 67 20 | 0.=.75000......r....z.Expecting. |
| 194c0 | 61 74 20 6c 65 61 73 74 20 74 77 6f 20 61 72 72 61 79 73 2e 72 22 00 00 00 72 a9 00 00 00 72 18 | at.least.two.arrays.r"...r....r. |
| 194e0 | 01 00 00 72 c7 00 00 00 72 ff 00 00 00 29 02 72 22 00 00 00 72 22 00 00 00 29 0c 72 ad 00 00 00 | ...r....r....).r"...r"...).r.... |
| 19500 | 72 bd 00 00 00 72 34 00 00 00 72 2c 00 00 00 72 b4 00 00 00 72 2e 00 00 00 da 01 54 72 b6 00 00 | r....r4...r,...r....r......Tr... |
| 19520 | 00 da 10 5f 6d 75 6c 74 69 5f 64 6f 74 5f 74 68 72 65 65 da 1d 5f 6d 75 6c 74 69 5f 64 6f 74 5f | ..._multi_dot_three.._multi_dot_ |
| 19540 | 6d 61 74 72 69 78 5f 63 68 61 69 6e 5f 6f 72 64 65 72 da 0a 5f 6d 75 6c 74 69 5f 64 6f 74 72 d4 | matrix_chain_order.._multi_dotr. |
| 19560 | 00 00 00 29 08 72 9f 00 00 00 72 19 01 00 00 72 bf 00 00 00 72 88 00 00 00 da 0a 6e 64 69 6d 5f | ...).r....r....r....r......ndim_ |
| 19580 | 66 69 72 73 74 da 09 6e 64 69 6d 5f 6c 61 73 74 72 08 01 00 00 72 97 01 00 00 73 08 00 00 00 20 | first..ndim_lastr....r....s..... |
| 195a0 | 20 20 20 20 20 20 20 72 62 00 00 00 72 17 00 00 00 72 17 00 00 00 48 0b 00 00 73 46 01 00 00 80 | .......rb...r....r....H...sF.... |
| 195c0 | 00 f4 6a 02 00 09 0c 88 46 8b 0b 80 41 e0 07 08 88 31 82 75 dc 0e 18 d0 19 39 d3 0e 3a d0 08 3a | ..j.....F...A....1.u.....9..:..: |
| 195e0 | d8 09 0a 88 61 8a 16 dc 0f 12 90 36 98 21 91 39 98 66 a0 51 99 69 a8 53 d4 0f 31 d0 08 31 e0 25 | ....a......6.!.9.f.Q.i.S..1..1.% |
| 19600 | 2b d6 0d 2c a0 01 8c 6a 98 11 8d 6d d0 0d 2c 80 46 d0 0d 2c f0 06 00 1d 23 a0 31 99 49 9f 4e 99 | +..,...j...m..,.F..,....#.1.I.N. |
| 19620 | 4e a8 46 b0 32 a9 4a af 4f a9 4f 90 09 80 4a f0 06 00 08 0e 88 61 81 79 87 7e 81 7e 98 11 d2 07 | N.F.2.J.O.O...J......a.y.~.~.... |
| 19640 | 1a dc 14 1e 98 76 a0 61 99 79 d3 14 29 88 06 88 71 89 09 d8 07 0d 88 62 81 7a 87 7f 81 7f 98 21 | .....v.a.y..)...q......b.z.....! |
| 19660 | d2 07 1b dc 15 1f a0 06 a0 72 a1 0a d3 15 2b d7 15 2d d1 15 2d 88 06 88 72 89 0a dc 04 0e 90 06 | .........r....+..-..-...r....... |
| 19680 | d1 04 17 f0 06 00 08 09 88 41 82 76 dc 11 21 a0 26 a8 11 a1 29 a8 56 b0 41 a9 59 b8 06 b8 71 b9 | .........A.v..!.&...).V.A.Y...q. |
| 196a0 | 09 c0 73 d4 11 4b 89 06 e4 10 2d a8 66 d3 10 35 88 05 dc 11 1b 98 46 a0 45 a8 31 a8 61 b0 21 a9 | ..s..K....-.f..5......F.E.1.a.!. |
| 196c0 | 65 b8 13 d4 11 3d 88 06 f0 06 00 08 12 90 51 82 7f 98 39 a8 01 9a 3e d8 0f 15 90 64 89 7c d0 08 | e....=........Q...9...>....d.|.. |
| 196e0 | 1b d8 09 13 90 71 8a 1f 98 49 a8 11 9a 4e d8 0f 15 8f 7c 89 7c 8b 7e d0 08 1d e0 0f 15 88 0d f9 | .....q...I...N....|.|.~......... |
| 19700 | f2 33 00 0e 2d 73 05 00 00 00 b9 12 44 2a 04 63 04 00 00 00 00 00 00 00 00 00 00 00 07 00 00 00 | .3..-s......D*.c................ |
| 19720 | 03 00 00 00 f3 d4 00 00 00 97 00 7c 00 6a 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 | ...........|.j.................. |
| 19740 | 00 5c 02 00 00 7d 04 7d 05 7c 02 6a 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 5c | .\...}.}.|.j...................\ |
| 19760 | 02 00 00 7d 06 7d 07 7c 04 7c 06 7a 05 00 00 7c 05 7c 07 7a 00 00 00 7a 05 00 00 7d 08 7c 05 7c | ...}.}.|.|.z...|.|.z...z...}.|.| |
| 19780 | 07 7a 05 00 00 7c 04 7c 06 7a 00 00 00 7a 05 00 00 7d 09 7c 08 7c 09 6b 02 00 00 72 18 74 03 00 | .z...|.|.z...z...}.|.|.k...r.t.. |
| 197a0 | 00 00 00 00 00 00 00 74 03 00 00 00 00 00 00 00 00 7c 00 7c 01 ab 02 00 00 00 00 00 00 7c 02 7c | .......t.........|.|.........|.| |
| 197c0 | 03 ac 01 ab 03 00 00 00 00 00 00 53 00 74 03 00 00 00 00 00 00 00 00 7c 00 74 03 00 00 00 00 00 | ...........S.t.........|.t...... |
| 197e0 | 00 00 00 7c 01 7c 02 ab 02 00 00 00 00 00 00 7c 03 ac 01 ab 03 00 00 00 00 00 00 53 00 29 02 7a | ...|.|.........|...........S.).z |
| 19800 | c0 0a 20 20 20 20 46 69 6e 64 20 74 68 65 20 62 65 73 74 20 6f 72 64 65 72 20 66 6f 72 20 74 68 | ......Find.the.best.order.for.th |
| 19820 | 72 65 65 20 61 72 72 61 79 73 20 61 6e 64 20 64 6f 20 74 68 65 20 6d 75 6c 74 69 70 6c 69 63 61 | ree.arrays.and.do.the.multiplica |
| 19840 | 74 69 6f 6e 2e 0a 0a 20 20 20 20 46 6f 72 20 74 68 72 65 65 20 61 72 67 75 6d 65 6e 74 73 20 60 | tion.......For.three.arguments.` |
| 19860 | 5f 6d 75 6c 74 69 5f 64 6f 74 5f 74 68 72 65 65 60 20 69 73 20 61 70 70 72 6f 78 69 6d 61 74 65 | _multi_dot_three`.is.approximate |
| 19880 | 6c 79 20 31 35 20 74 69 6d 65 73 20 66 61 73 74 65 72 0a 20 20 20 20 74 68 61 6e 20 60 5f 6d 75 | ly.15.times.faster.....than.`_mu |
| 198a0 | 6c 74 69 5f 64 6f 74 5f 6d 61 74 72 69 78 5f 63 68 61 69 6e 5f 6f 72 64 65 72 60 0a 0a 20 20 20 | lti_dot_matrix_chain_order`..... |
| 198c0 | 20 72 18 01 00 00 29 02 72 bc 00 00 00 72 34 00 00 00 29 0a 72 6b 01 00 00 da 01 42 da 01 43 72 | .r....).r....r4...).rk.....B..Cr |
| 198e0 | 19 01 00 00 da 02 61 30 da 04 61 31 62 30 da 04 62 31 63 30 da 02 63 31 da 05 63 6f 73 74 31 da | ......a0..a1b0..b1c0..c1..cost1. |
| 19900 | 05 63 6f 73 74 32 73 0a 00 00 00 20 20 20 20 20 20 20 20 20 20 72 62 00 00 00 72 aa 01 00 00 72 | .cost2s..............rb...r....r |
| 19920 | aa 01 00 00 c0 0b 00 00 73 73 00 00 00 80 00 f0 10 00 10 11 8f 77 89 77 81 48 80 42 88 04 d8 0f | ........ss...........w.w.H.B.... |
| 19940 | 10 8f 77 89 77 81 48 80 44 88 22 e0 0c 0e 90 14 89 49 98 14 a0 02 99 19 d1 0c 23 80 45 e0 0c 10 | ..w.w.H.D."......I........#.E... |
| 19960 | 90 32 89 49 98 12 98 64 99 19 d1 0c 23 80 45 e0 07 0c 88 75 82 7d dc 0f 12 94 33 90 71 98 21 93 | .2.I...d....#.E....u.}....3.q.!. |
| 19980 | 39 98 61 a0 53 d4 0f 29 d0 08 29 e4 0f 12 90 31 94 63 98 21 98 51 93 69 a0 53 d4 0f 29 d0 08 29 | 9.a.S..)..)....1.c.!.Q.i.S..)..) |
| 199a0 | 72 61 00 00 00 63 02 00 00 00 00 00 00 00 00 00 00 00 08 00 00 00 03 00 00 00 f3 f0 01 00 00 97 | ra...c.......................... |
| 199c0 | 00 74 01 00 00 00 00 00 00 00 00 7c 00 ab 01 00 00 00 00 00 00 7d 02 7c 00 44 00 8f 03 63 02 67 | .t.........|.........}.|.D...c.g |
| 199e0 | 00 63 02 5d 11 00 00 7d 03 7c 03 6a 02 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 64 | .c.]...}.|.j...................d |
| 19a00 | 01 19 00 00 00 91 02 8c 13 04 00 63 02 7d 03 7c 00 64 02 19 00 00 00 6a 02 00 00 00 00 00 00 00 | ...........c.}.|.d.....j........ |
| 19a20 | 00 00 00 00 00 00 00 00 00 00 00 64 03 19 00 00 00 67 01 7a 00 00 00 7d 04 74 05 00 00 00 00 00 | ...........d.....g.z...}.t...... |
| 19a40 | 00 00 00 7c 02 7c 02 66 02 74 06 00 00 00 00 00 00 00 00 ac 04 ab 02 00 00 00 00 00 00 7d 05 74 | ...|.|.f.t...................}.t |
| 19a60 | 09 00 00 00 00 00 00 00 00 7c 02 7c 02 66 02 74 0a 00 00 00 00 00 00 00 00 ac 04 ab 02 00 00 00 | .........|.|.f.t................ |
| 19a80 | 00 00 00 7d 06 74 0d 00 00 00 00 00 00 00 00 64 03 7c 02 ab 02 00 00 00 00 00 00 44 00 5d 79 00 | ...}.t.........d.|.........D.]y. |
| 19aa0 | 00 7d 07 74 0d 00 00 00 00 00 00 00 00 7c 02 7c 07 7a 0a 00 00 ab 01 00 00 00 00 00 00 44 00 5d | .}.t.........|.|.z...........D.] |
| 19ac0 | 66 00 00 7d 08 7c 08 7c 07 7a 00 00 00 7d 09 74 0e 00 00 00 00 00 00 00 00 7c 05 7c 08 7c 09 66 | f..}.|.|.z...}.t.........|.|.|.f |
| 19ae0 | 02 3c 00 00 00 74 0d 00 00 00 00 00 00 00 00 7c 08 7c 09 ab 02 00 00 00 00 00 00 44 00 5d 45 00 | .<...t.........|.|.........D.]E. |
| 19b00 | 00 7d 0a 7c 05 7c 08 7c 0a 66 02 19 00 00 00 7c 05 7c 0a 64 03 7a 00 00 00 7c 09 66 02 19 00 00 | .}.|.|.|.f.....|.|.d.z...|.f.... |
| 19b20 | 00 7a 00 00 00 7c 04 7c 08 19 00 00 00 7c 04 7c 0a 64 03 7a 00 00 00 19 00 00 00 7a 05 00 00 7c | .z...|.|.....|.|.d.z.......z...| |
| 19b40 | 04 7c 09 64 03 7a 00 00 00 19 00 00 00 7a 05 00 00 7a 00 00 00 7d 0b 7c 0b 7c 05 7c 08 7c 09 66 | .|.d.z.......z...z...}.|.|.|.|.f |
| 19b60 | 02 19 00 00 00 6b 02 00 00 73 01 8c 38 7c 0b 7c 05 7c 08 7c 09 66 02 3c 00 00 00 7c 0a 7c 06 7c | .....k...s..8|.|.|.|.f.<...|.|.| |
| 19b80 | 08 7c 09 66 02 3c 00 00 00 8c 47 04 00 8c 68 04 00 8c 7b 04 00 7c 01 72 04 7c 06 7c 05 66 02 53 | .|.f.<....G...h...{..|.r.|.|.f.S |
| 19ba0 | 00 7c 06 53 00 63 02 01 00 63 02 7d 03 77 00 29 05 61 fd 01 00 00 0a 20 20 20 20 52 65 74 75 72 | .|.S.c...c.}.w.).a.........Retur |
| 19bc0 | 6e 20 61 20 6e 70 2e 61 72 72 61 79 20 74 68 61 74 20 65 6e 63 6f 64 65 73 20 74 68 65 20 6f 70 | n.a.np.array.that.encodes.the.op |
| 19be0 | 74 69 6d 61 6c 20 6f 72 64 65 72 20 6f 66 20 6d 75 6c 74 69 70 6c 69 63 61 74 69 6f 6e 73 2e 0a | timal.order.of.multiplications.. |
| 19c00 | 0a 20 20 20 20 54 68 65 20 6f 70 74 69 6d 61 6c 20 6f 72 64 65 72 20 61 72 72 61 79 20 69 73 20 | .....The.optimal.order.array.is. |
| 19c20 | 74 68 65 6e 20 75 73 65 64 20 62 79 20 60 5f 6d 75 6c 74 69 5f 64 6f 74 28 29 60 20 74 6f 20 64 | then.used.by.`_multi_dot()`.to.d |
| 19c40 | 6f 20 74 68 65 0a 20 20 20 20 6d 75 6c 74 69 70 6c 69 63 61 74 69 6f 6e 2e 0a 0a 20 20 20 20 41 | o.the.....multiplication.......A |
| 19c60 | 6c 73 6f 20 72 65 74 75 72 6e 20 74 68 65 20 63 6f 73 74 20 6d 61 74 72 69 78 20 69 66 20 60 72 | lso.return.the.cost.matrix.if.`r |
| 19c80 | 65 74 75 72 6e 5f 63 6f 73 74 73 60 20 69 73 20 60 54 72 75 65 60 0a 0a 20 20 20 20 54 68 65 20 | eturn_costs`.is.`True`......The. |
| 19ca0 | 69 6d 70 6c 65 6d 65 6e 74 61 74 69 6f 6e 20 43 4c 4f 53 45 4c 59 20 66 6f 6c 6c 6f 77 73 20 43 | implementation.CLOSELY.follows.C |
| 19cc0 | 6f 72 6d 65 6e 2c 20 22 49 6e 74 72 6f 64 75 63 74 69 6f 6e 20 74 6f 20 41 6c 67 6f 72 69 74 68 | ormen,."Introduction.to.Algorith |
| 19ce0 | 6d 73 22 2c 0a 20 20 20 20 43 68 61 70 74 65 72 20 31 35 2e 32 2c 20 70 2e 20 33 37 30 2d 33 37 | ms",.....Chapter.15.2,.p..370-37 |
| 19d00 | 38 2e 20 20 4e 6f 74 65 20 74 68 61 74 20 43 6f 72 6d 65 6e 20 75 73 65 73 20 31 2d 62 61 73 65 | 8...Note.that.Cormen.uses.1-base |
| 19d20 | 64 20 69 6e 64 69 63 65 73 2e 0a 0a 20 20 20 20 20 20 20 20 63 6f 73 74 5b 69 2c 20 6a 5d 20 3d | d.indices...........cost[i,.j].= |
| 19d40 | 20 6d 69 6e 28 5b 0a 20 20 20 20 20 20 20 20 20 20 20 20 63 6f 73 74 5b 70 72 65 66 69 78 5d 20 | .min([.............cost[prefix]. |
| 19d60 | 2b 20 63 6f 73 74 5b 73 75 66 66 69 78 5d 20 2b 20 63 6f 73 74 5f 6d 75 6c 74 28 70 72 65 66 69 | +.cost[suffix].+.cost_mult(prefi |
| 19d80 | 78 2c 20 73 75 66 66 69 78 29 0a 20 20 20 20 20 20 20 20 20 20 20 20 66 6f 72 20 6b 20 69 6e 20 | x,.suffix).............for.k.in. |
| 19da0 | 72 61 6e 67 65 28 69 2c 20 6a 29 5d 29 0a 0a 20 20 20 20 72 22 00 00 00 72 c7 00 00 00 72 a9 00 | range(i,.j)])......r"...r....r.. |
| 19dc0 | 00 00 72 a8 00 00 00 29 08 72 ad 00 00 00 72 bc 00 00 00 72 4d 00 00 00 72 35 00 00 00 72 36 00 | ..r....).r....r....rM...r5...r6. |
| 19de0 | 00 00 72 3d 00 00 00 72 d0 00 00 00 72 3b 00 00 00 29 0c 72 9f 00 00 00 da 0c 72 65 74 75 72 6e | ..r=...r....r;...).r......return |
| 19e00 | 5f 63 6f 73 74 73 72 bf 00 00 00 72 88 00 00 00 72 61 01 00 00 72 be 00 00 00 72 55 01 00 00 da | _costsr....r....ra...r....rU.... |
| 19e20 | 01 6c da 01 69 da 01 6a 72 d7 00 00 00 72 31 01 00 00 73 0c 00 00 00 20 20 20 20 20 20 20 20 20 | .l..i..jr....r1...s............. |
| 19e40 | 20 20 20 72 62 00 00 00 72 ab 01 00 00 72 ab 01 00 00 d5 0b 00 00 73 3a 01 00 00 80 00 f4 22 00 | ...rb...r....r........s:......". |
| 19e60 | 09 0c 88 46 8b 0b 80 41 f0 06 00 1e 24 d6 08 24 98 01 88 11 8f 17 89 17 90 11 8b 1a d2 08 24 a8 | ...F...A....$..$..............$. |
| 19e80 | 06 a8 72 a9 0a d7 28 38 d1 28 38 b8 11 d1 28 3b d0 27 3c d1 08 3c 80 41 f4 06 00 09 0e 88 71 90 | ..r...(8.(8...(;.'<..<.A......q. |
| 19ea0 | 21 88 66 9c 46 d4 08 23 80 41 f4 06 00 09 0e 88 71 90 21 88 66 9c 44 d4 08 21 80 41 e4 0d 12 90 | !.f.F..#.A......q.!.f.D..!.A.... |
| 19ec0 | 31 90 61 8b 5b f2 00 08 05 20 88 01 dc 11 16 90 71 98 31 91 75 93 1c f2 00 07 09 20 88 41 d8 10 | 1.a.[...........q.1.u........A.. |
| 19ee0 | 11 90 41 91 05 88 41 dc 16 19 88 41 88 61 90 11 88 64 89 47 dc 15 1a 98 31 98 61 93 5b f2 00 04 | ..A...A....A.a...d.G....1.a.[... |
| 19f00 | 0d 20 90 01 d8 14 15 90 61 98 11 90 64 91 47 98 61 a0 01 a0 41 a1 05 a0 71 a0 08 99 6b d1 14 29 | ........a...d.G.a...A...q...k..) |
| 19f20 | a8 41 a8 61 a9 44 b0 31 b0 51 b8 11 b1 55 b1 38 a9 4f b8 61 c0 01 c0 41 c1 05 b9 68 d1 2c 46 d1 | .A.a.D.1.Q...U.8.O.a...A...h.,F. |
| 19f40 | 14 46 90 01 d8 13 14 90 71 98 11 98 41 98 14 91 77 93 3b d8 1e 1f 90 41 90 61 98 11 90 64 91 47 | .F......q...A...w.;....A.a...d.G |
| 19f60 | d8 1e 1f 90 41 90 61 98 11 90 64 92 47 f1 09 04 0d 20 f1 07 07 09 20 f0 03 08 05 20 f1 14 00 16 | ....A.a...d.G................... |
| 19f80 | 22 88 41 88 71 88 36 d0 04 28 a0 71 d0 04 28 f9 f2 25 00 09 25 73 05 00 00 00 90 16 43 33 04 63 | ".A.q.6..(.q..(..%..%s......C3.c |
| 19fa0 | 05 00 00 00 00 00 00 00 00 00 00 00 0a 00 00 00 03 00 00 00 f3 84 00 00 00 97 00 7c 02 7c 03 6b | ...........................|.|.k |
| 19fc0 | 28 00 00 72 09 7c 04 81 02 4a 00 82 01 7c 00 7c 02 19 00 00 00 53 00 74 01 00 00 00 00 00 00 00 | (..r.|...J...|.|.....S.t........ |
| 19fe0 | 00 74 03 00 00 00 00 00 00 00 00 7c 00 7c 01 7c 02 7c 01 7c 02 7c 03 66 02 19 00 00 00 ab 04 00 | .t.........|.|.|.|.|.|.f........ |
| 1a000 | 00 00 00 00 00 74 03 00 00 00 00 00 00 00 00 7c 00 7c 01 7c 01 7c 02 7c 03 66 02 19 00 00 00 64 | .....t.........|.|.|.|.|.f.....d |
| 1a020 | 01 7a 00 00 00 7c 03 ab 04 00 00 00 00 00 00 7c 04 ac 02 ab 03 00 00 00 00 00 00 53 00 29 03 7a | .z...|.........|...........S.).z |
| 1a040 | 34 41 63 74 75 61 6c 6c 79 20 64 6f 20 74 68 65 20 6d 75 6c 74 69 70 6c 69 63 61 74 69 6f 6e 20 | 4Actually.do.the.multiplication. |
| 1a060 | 77 69 74 68 20 74 68 65 20 67 69 76 65 6e 20 6f 72 64 65 72 2e 72 a9 00 00 00 72 18 01 00 00 29 | with.the.given.order.r....r....) |
| 1a080 | 02 72 34 00 00 00 72 ac 01 00 00 29 05 72 9f 00 00 00 72 97 01 00 00 72 bb 01 00 00 72 bc 01 00 | .r4...r....).r....r....r....r... |
| 1a0a0 | 00 72 19 01 00 00 73 05 00 00 00 20 20 20 20 20 72 62 00 00 00 72 ac 01 00 00 72 ac 01 00 00 fe | .r....s.........rb...r....r..... |
| 1a0c0 | 0b 00 00 73 5c 00 00 00 80 00 e0 07 08 88 41 82 76 e0 0f 12 88 7b d0 08 1a 88 7b e0 0f 15 90 61 | ...s\.........A.v....{....{....a |
| 1a0e0 | 89 79 d0 08 18 e4 0f 12 94 3a 98 66 a0 65 a8 51 b0 05 b0 61 b8 11 b0 64 b1 0b d3 13 3c dc 13 1d | .y.......:.f.e.Q...a...d....<... |
| 1a100 | 98 66 a0 65 a8 55 b0 31 b0 61 b0 34 a9 5b b8 31 a9 5f b8 61 d3 13 40 d8 17 1a f4 05 02 10 1c f0 | .f.e.U.1.a.4.[.1._.a..@......... |
| 1a120 | 00 02 09 1c 72 61 00 00 00 29 01 da 06 6f 66 66 73 65 74 63 01 00 00 00 01 00 00 00 01 00 00 00 | ....ra...)...offsetc............ |
| 1a140 | 01 00 00 00 03 00 00 00 f3 08 00 00 00 97 00 7c 00 66 01 53 00 72 8d 00 00 00 72 60 00 00 00 a9 | ...............|.f.S.r....r`.... |
| 1a160 | 02 72 5c 01 00 00 72 be 01 00 00 73 02 00 00 00 20 20 72 62 00 00 00 da 14 5f 64 69 61 67 6f 6e | .r\...r....s......rb....._diagon |
| 1a180 | 61 6c 5f 64 69 73 70 61 74 63 68 65 72 72 c1 01 00 00 0d 0c 00 00 72 f2 00 00 00 72 61 00 00 00 | al_dispatcherr........r....ra... |
| 1a1a0 | 63 01 00 00 00 01 00 00 00 01 00 00 00 06 00 00 00 03 00 00 00 f3 20 00 00 00 97 00 74 01 00 00 | c...........................t... |
| 1a1c0 | 00 00 00 00 00 00 7c 00 7c 01 64 01 64 02 ac 03 ab 04 00 00 00 00 00 00 53 00 29 04 61 a8 09 00 | ......|.|.d.d...........S.).a... |
| 1a1e0 | 00 0a 20 20 20 20 52 65 74 75 72 6e 73 20 73 70 65 63 69 66 69 65 64 20 64 69 61 67 6f 6e 61 6c | ......Returns.specified.diagonal |
| 1a200 | 73 20 6f 66 20 61 20 6d 61 74 72 69 78 20 28 6f 72 20 61 20 73 74 61 63 6b 20 6f 66 20 6d 61 74 | s.of.a.matrix.(or.a.stack.of.mat |
| 1a220 | 72 69 63 65 73 29 20 60 60 78 60 60 2e 0a 0a 20 20 20 20 54 68 69 73 20 66 75 6e 63 74 69 6f 6e | rices).``x``.......This.function |
| 1a240 | 20 69 73 20 41 72 72 61 79 20 41 50 49 20 63 6f 6d 70 61 74 69 62 6c 65 2c 20 63 6f 6e 74 72 61 | .is.Array.API.compatible,.contra |
| 1a260 | 72 79 20 74 6f 0a 20 20 20 20 3a 70 79 3a 66 75 6e 63 3a 60 6e 75 6d 70 79 2e 64 69 61 67 6f 6e | ry.to.....:py:func:`numpy.diagon |
| 1a280 | 61 6c 60 2c 20 74 68 65 20 6d 61 74 72 69 78 20 69 73 20 61 73 73 75 6d 65 64 0a 20 20 20 20 74 | al`,.the.matrix.is.assumed.....t |
| 1a2a0 | 6f 20 62 65 20 64 65 66 69 6e 65 64 20 62 79 20 74 68 65 20 6c 61 73 74 20 74 77 6f 20 64 69 6d | o.be.defined.by.the.last.two.dim |
| 1a2c0 | 65 6e 73 69 6f 6e 73 2e 0a 0a 20 20 20 20 50 61 72 61 6d 65 74 65 72 73 0a 20 20 20 20 2d 2d 2d | ensions.......Parameters.....--- |
| 1a2e0 | 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 78 20 3a 20 28 2e 2e 2e 2c 4d 2c 4e 29 20 61 72 72 61 79 5f | -------.....x.:.(...,M,N).array_ |
| 1a300 | 6c 69 6b 65 0a 20 20 20 20 20 20 20 20 49 6e 70 75 74 20 61 72 72 61 79 20 68 61 76 69 6e 67 20 | like.........Input.array.having. |
| 1a320 | 73 68 61 70 65 20 28 2e 2e 2e 2c 20 4d 2c 20 4e 29 20 61 6e 64 20 77 68 6f 73 65 20 69 6e 6e 65 | shape.(...,.M,.N).and.whose.inne |
| 1a340 | 72 6d 6f 73 74 20 74 77 6f 0a 20 20 20 20 20 20 20 20 64 69 6d 65 6e 73 69 6f 6e 73 20 66 6f 72 | rmost.two.........dimensions.for |
| 1a360 | 6d 20 4d 78 4e 20 6d 61 74 72 69 63 65 73 2e 0a 20 20 20 20 6f 66 66 73 65 74 20 3a 20 69 6e 74 | m.MxN.matrices......offset.:.int |
| 1a380 | 2c 20 6f 70 74 69 6f 6e 61 6c 0a 20 20 20 20 20 20 20 20 4f 66 66 73 65 74 20 73 70 65 63 69 66 | ,.optional.........Offset.specif |
| 1a3a0 | 79 69 6e 67 20 74 68 65 20 6f 66 66 2d 64 69 61 67 6f 6e 61 6c 20 72 65 6c 61 74 69 76 65 20 74 | ying.the.off-diagonal.relative.t |
| 1a3c0 | 6f 20 74 68 65 20 6d 61 69 6e 20 64 69 61 67 6f 6e 61 6c 2c 0a 20 20 20 20 20 20 20 20 77 68 65 | o.the.main.diagonal,.........whe |
| 1a3e0 | 72 65 3a 3a 0a 0a 20 20 20 20 20 20 20 20 20 20 20 20 2a 20 6f 66 66 73 65 74 20 3d 20 30 3a 20 | re::..............*.offset.=.0:. |
| 1a400 | 74 68 65 20 6d 61 69 6e 20 64 69 61 67 6f 6e 61 6c 2e 0a 20 20 20 20 20 20 20 20 20 20 20 20 2a | the.main.diagonal..............* |
| 1a420 | 20 6f 66 66 73 65 74 20 3e 20 30 3a 20 6f 66 66 2d 64 69 61 67 6f 6e 61 6c 20 61 62 6f 76 65 20 | .offset.>.0:.off-diagonal.above. |
| 1a440 | 74 68 65 20 6d 61 69 6e 20 64 69 61 67 6f 6e 61 6c 2e 0a 20 20 20 20 20 20 20 20 20 20 20 20 2a | the.main.diagonal..............* |
| 1a460 | 20 6f 66 66 73 65 74 20 3c 20 30 3a 20 6f 66 66 2d 64 69 61 67 6f 6e 61 6c 20 62 65 6c 6f 77 20 | .offset.<.0:.off-diagonal.below. |
| 1a480 | 74 68 65 20 6d 61 69 6e 20 64 69 61 67 6f 6e 61 6c 2e 0a 0a 20 20 20 20 52 65 74 75 72 6e 73 0a | the.main.diagonal.......Returns. |
| 1a4a0 | 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 6f 75 74 20 3a 20 28 2e 2e 2e 2c 6d 69 6e 28 4e | ....-------.....out.:.(...,min(N |
| 1a4c0 | 2c 4d 29 29 20 6e 64 61 72 72 61 79 0a 20 20 20 20 20 20 20 20 41 6e 20 61 72 72 61 79 20 63 6f | ,M)).ndarray.........An.array.co |
| 1a4e0 | 6e 74 61 69 6e 69 6e 67 20 74 68 65 20 64 69 61 67 6f 6e 61 6c 73 20 61 6e 64 20 77 68 6f 73 65 | ntaining.the.diagonals.and.whose |
| 1a500 | 20 73 68 61 70 65 20 69 73 20 64 65 74 65 72 6d 69 6e 65 64 20 62 79 0a 20 20 20 20 20 20 20 20 | .shape.is.determined.by......... |
| 1a520 | 72 65 6d 6f 76 69 6e 67 20 74 68 65 20 6c 61 73 74 20 74 77 6f 20 64 69 6d 65 6e 73 69 6f 6e 73 | removing.the.last.two.dimensions |
| 1a540 | 20 61 6e 64 20 61 70 70 65 6e 64 69 6e 67 20 61 20 64 69 6d 65 6e 73 69 6f 6e 20 65 71 75 61 6c | .and.appending.a.dimension.equal |
| 1a560 | 20 74 6f 0a 20 20 20 20 20 20 20 20 74 68 65 20 73 69 7a 65 20 6f 66 20 74 68 65 20 72 65 73 75 | .to.........the.size.of.the.resu |
| 1a580 | 6c 74 69 6e 67 20 64 69 61 67 6f 6e 61 6c 73 2e 20 54 68 65 20 72 65 74 75 72 6e 65 64 20 61 72 | lting.diagonals..The.returned.ar |
| 1a5a0 | 72 61 79 20 6d 75 73 74 20 68 61 76 65 0a 20 20 20 20 20 20 20 20 74 68 65 20 73 61 6d 65 20 64 | ray.must.have.........the.same.d |
| 1a5c0 | 61 74 61 20 74 79 70 65 20 61 73 20 60 60 78 60 60 2e 0a 0a 20 20 20 20 53 65 65 20 41 6c 73 6f | ata.type.as.``x``.......See.Also |
| 1a5e0 | 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 6e 75 6d 70 79 2e 64 69 61 67 6f 6e 61 6c | .....--------.....numpy.diagonal |
| 1a600 | 0a 0a 20 20 20 20 45 78 61 6d 70 6c 65 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 | ......Examples.....--------..... |
| 1a620 | 3e 3e 3e 20 61 20 3d 20 6e 70 2e 61 72 61 6e 67 65 28 34 29 2e 72 65 73 68 61 70 65 28 32 2c 20 | >>>.a.=.np.arange(4).reshape(2,. |
| 1a640 | 32 29 3b 20 61 0a 20 20 20 20 61 72 72 61 79 28 5b 5b 30 2c 20 31 5d 2c 0a 20 20 20 20 20 20 20 | 2);.a.....array([[0,.1],........ |
| 1a660 | 20 20 20 20 5b 32 2c 20 33 5d 5d 29 0a 20 20 20 20 3e 3e 3e 20 6e 70 2e 6c 69 6e 61 6c 67 2e 64 | ....[2,.3]]).....>>>.np.linalg.d |
| 1a680 | 69 61 67 6f 6e 61 6c 28 61 29 0a 20 20 20 20 61 72 72 61 79 28 5b 30 2c 20 33 5d 29 0a 0a 20 20 | iagonal(a).....array([0,.3]).... |
| 1a6a0 | 20 20 41 20 33 2d 44 20 65 78 61 6d 70 6c 65 3a 0a 0a 20 20 20 20 3e 3e 3e 20 61 20 3d 20 6e 70 | ..A.3-D.example:......>>>.a.=.np |
| 1a6c0 | 2e 61 72 61 6e 67 65 28 38 29 2e 72 65 73 68 61 70 65 28 32 2c 20 32 2c 20 32 29 3b 20 61 0a 20 | .arange(8).reshape(2,.2,.2);.a.. |
| 1a6e0 | 20 20 20 61 72 72 61 79 28 5b 5b 5b 30 2c 20 31 5d 2c 0a 20 20 20 20 20 20 20 20 20 20 20 20 5b | ...array([[[0,.1],.............[ |
| 1a700 | 32 2c 20 33 5d 5d 2c 0a 20 20 20 20 20 20 20 20 20 20 20 5b 5b 34 2c 20 35 5d 2c 0a 20 20 20 20 | 2,.3]],............[[4,.5],..... |
| 1a720 | 20 20 20 20 20 20 20 20 5b 36 2c 20 37 5d 5d 5d 29 0a 20 20 20 20 3e 3e 3e 20 6e 70 2e 6c 69 6e | ........[6,.7]]]).....>>>.np.lin |
| 1a740 | 61 6c 67 2e 64 69 61 67 6f 6e 61 6c 28 61 29 0a 20 20 20 20 61 72 72 61 79 28 5b 5b 30 2c 20 33 | alg.diagonal(a).....array([[0,.3 |
| 1a760 | 5d 2c 0a 20 20 20 20 20 20 20 20 20 20 20 5b 34 2c 20 37 5d 5d 29 0a 0a 20 20 20 20 44 69 61 67 | ],............[4,.7]])......Diag |
| 1a780 | 6f 6e 61 6c 73 20 61 64 6a 61 63 65 6e 74 20 74 6f 20 74 68 65 20 6d 61 69 6e 20 64 69 61 67 6f | onals.adjacent.to.the.main.diago |
| 1a7a0 | 6e 61 6c 20 63 61 6e 20 62 65 20 6f 62 74 61 69 6e 65 64 20 62 79 20 75 73 69 6e 67 20 74 68 65 | nal.can.be.obtained.by.using.the |
| 1a7c0 | 0a 20 20 20 20 60 6f 66 66 73 65 74 60 20 61 72 67 75 6d 65 6e 74 3a 0a 0a 20 20 20 20 3e 3e 3e | .....`offset`.argument:......>>> |
| 1a7e0 | 20 61 20 3d 20 6e 70 2e 61 72 61 6e 67 65 28 39 29 2e 72 65 73 68 61 70 65 28 33 2c 20 33 29 0a | .a.=.np.arange(9).reshape(3,.3). |
| 1a800 | 20 20 20 20 3e 3e 3e 20 61 0a 20 20 20 20 61 72 72 61 79 28 5b 5b 30 2c 20 31 2c 20 32 5d 2c 0a | ....>>>.a.....array([[0,.1,.2],. |
| 1a820 | 20 20 20 20 20 20 20 20 20 20 20 5b 33 2c 20 34 2c 20 35 5d 2c 0a 20 20 20 20 20 20 20 20 20 20 | ...........[3,.4,.5],........... |
| 1a840 | 20 5b 36 2c 20 37 2c 20 38 5d 5d 29 0a 20 20 20 20 3e 3e 3e 20 6e 70 2e 6c 69 6e 61 6c 67 2e 64 | .[6,.7,.8]]).....>>>.np.linalg.d |
| 1a860 | 69 61 67 6f 6e 61 6c 28 61 2c 20 6f 66 66 73 65 74 3d 31 29 20 20 23 20 46 69 72 73 74 20 73 75 | iagonal(a,.offset=1)..#.First.su |
| 1a880 | 70 65 72 64 69 61 67 6f 6e 61 6c 0a 20 20 20 20 61 72 72 61 79 28 5b 31 2c 20 35 5d 29 0a 20 20 | perdiagonal.....array([1,.5])... |
| 1a8a0 | 20 20 3e 3e 3e 20 6e 70 2e 6c 69 6e 61 6c 67 2e 64 69 61 67 6f 6e 61 6c 28 61 2c 20 6f 66 66 73 | ..>>>.np.linalg.diagonal(a,.offs |
| 1a8c0 | 65 74 3d 32 29 20 20 23 20 53 65 63 6f 6e 64 20 73 75 70 65 72 64 69 61 67 6f 6e 61 6c 0a 20 20 | et=2)..#.Second.superdiagonal... |
| 1a8e0 | 20 20 61 72 72 61 79 28 5b 32 5d 29 0a 20 20 20 20 3e 3e 3e 20 6e 70 2e 6c 69 6e 61 6c 67 2e 64 | ..array([2]).....>>>.np.linalg.d |
| 1a900 | 69 61 67 6f 6e 61 6c 28 61 2c 20 6f 66 66 73 65 74 3d 2d 31 29 20 20 23 20 46 69 72 73 74 20 73 | iagonal(a,.offset=-1)..#.First.s |
| 1a920 | 75 62 64 69 61 67 6f 6e 61 6c 0a 20 20 20 20 61 72 72 61 79 28 5b 33 2c 20 37 5d 29 0a 20 20 20 | ubdiagonal.....array([3,.7]).... |
| 1a940 | 20 3e 3e 3e 20 6e 70 2e 6c 69 6e 61 6c 67 2e 64 69 61 67 6f 6e 61 6c 28 61 2c 20 6f 66 66 73 65 | .>>>.np.linalg.diagonal(a,.offse |
| 1a960 | 74 3d 2d 32 29 20 20 23 20 53 65 63 6f 6e 64 20 73 75 62 64 69 61 67 6f 6e 61 6c 0a 20 20 20 20 | t=-2)..#.Second.subdiagonal..... |
| 1a980 | 61 72 72 61 79 28 5b 36 5d 29 0a 0a 20 20 20 20 54 68 65 20 61 6e 74 69 2d 64 69 61 67 6f 6e 61 | array([6])......The.anti-diagona |
| 1a9a0 | 6c 20 63 61 6e 20 62 65 20 6f 62 74 61 69 6e 65 64 20 62 79 20 72 65 76 65 72 73 69 6e 67 20 74 | l.can.be.obtained.by.reversing.t |
| 1a9c0 | 68 65 20 6f 72 64 65 72 20 6f 66 20 65 6c 65 6d 65 6e 74 73 0a 20 20 20 20 75 73 69 6e 67 20 65 | he.order.of.elements.....using.e |
| 1a9e0 | 69 74 68 65 72 20 60 6e 75 6d 70 79 2e 66 6c 69 70 75 64 60 20 6f 72 20 60 6e 75 6d 70 79 2e 66 | ither.`numpy.flipud`.or.`numpy.f |
| 1aa00 | 6c 69 70 6c 72 60 2e 0a 0a 20 20 20 20 3e 3e 3e 20 61 20 3d 20 6e 70 2e 61 72 61 6e 67 65 28 39 | liplr`.......>>>.a.=.np.arange(9 |
| 1aa20 | 29 2e 72 65 73 68 61 70 65 28 33 2c 20 33 29 0a 20 20 20 20 3e 3e 3e 20 61 0a 20 20 20 20 61 72 | ).reshape(3,.3).....>>>.a.....ar |
| 1aa40 | 72 61 79 28 5b 5b 30 2c 20 31 2c 20 32 5d 2c 0a 20 20 20 20 20 20 20 20 20 20 20 5b 33 2c 20 34 | ray([[0,.1,.2],............[3,.4 |
| 1aa60 | 2c 20 35 5d 2c 0a 20 20 20 20 20 20 20 20 20 20 20 5b 36 2c 20 37 2c 20 38 5d 5d 29 0a 20 20 20 | ,.5],............[6,.7,.8]]).... |
| 1aa80 | 20 3e 3e 3e 20 6e 70 2e 6c 69 6e 61 6c 67 2e 64 69 61 67 6f 6e 61 6c 28 6e 70 2e 66 6c 69 70 6c | .>>>.np.linalg.diagonal(np.flipl |
| 1aaa0 | 72 28 61 29 29 20 20 23 20 48 6f 72 69 7a 6f 6e 74 61 6c 20 66 6c 69 70 0a 20 20 20 20 61 72 72 | r(a))..#.Horizontal.flip.....arr |
| 1aac0 | 61 79 28 5b 32 2c 20 34 2c 20 36 5d 29 0a 20 20 20 20 3e 3e 3e 20 6e 70 2e 6c 69 6e 61 6c 67 2e | ay([2,.4,.6]).....>>>.np.linalg. |
| 1aae0 | 64 69 61 67 6f 6e 61 6c 28 6e 70 2e 66 6c 69 70 75 64 28 61 29 29 20 20 23 20 56 65 72 74 69 63 | diagonal(np.flipud(a))..#.Vertic |
| 1ab00 | 61 6c 20 66 6c 69 70 0a 20 20 20 20 61 72 72 61 79 28 5b 36 2c 20 34 2c 20 32 5d 29 0a 0a 20 20 | al.flip.....array([6,.4,.2]).... |
| 1ab20 | 20 20 4e 6f 74 65 20 74 68 61 74 20 74 68 65 20 6f 72 64 65 72 20 69 6e 20 77 68 69 63 68 20 74 | ..Note.that.the.order.in.which.t |
| 1ab40 | 68 65 20 64 69 61 67 6f 6e 61 6c 20 69 73 20 72 65 74 72 69 65 76 65 64 20 76 61 72 69 65 73 20 | he.diagonal.is.retrieved.varies. |
| 1ab60 | 64 65 70 65 6e 64 69 6e 67 0a 20 20 20 20 6f 6e 20 74 68 65 20 66 6c 69 70 20 66 75 6e 63 74 69 | depending.....on.the.flip.functi |
| 1ab80 | 6f 6e 2e 0a 0a 20 20 20 20 72 bb 00 00 00 72 c7 00 00 00 29 02 da 05 61 78 69 73 31 da 05 61 78 | on.......r....r....)...axis1..ax |
| 1aba0 | 69 73 32 29 01 da 0e 5f 63 6f 72 65 5f 64 69 61 67 6f 6e 61 6c 72 c0 01 00 00 73 02 00 00 00 20 | is2)..._core_diagonalr....s..... |
| 1abc0 | 20 72 62 00 00 00 72 19 00 00 00 72 19 00 00 00 11 0c 00 00 73 16 00 00 00 80 00 f4 6e 02 00 0c | .rb...r....r........s.......n... |
| 1abe0 | 1a 98 21 98 56 a8 32 b0 52 d4 0b 38 d0 04 38 72 61 00 00 00 29 02 72 be 01 00 00 72 9b 00 00 00 | ..!.V.2.R..8..8ra...).r....r.... |
| 1ac00 | 63 01 00 00 00 01 00 00 00 02 00 00 00 01 00 00 00 03 00 00 00 f3 08 00 00 00 97 00 7c 00 66 01 | c...........................|.f. |
| 1ac20 | 53 00 72 8d 00 00 00 72 60 00 00 00 a9 03 72 5c 01 00 00 72 be 01 00 00 72 9b 00 00 00 73 03 00 | S.r....r`.....r\...r....r....s.. |
| 1ac40 | 00 00 20 20 20 72 62 00 00 00 da 11 5f 74 72 61 63 65 5f 64 69 73 70 61 74 63 68 65 72 72 c8 01 | .....rb....._trace_dispatcherr.. |
| 1ac60 | 00 00 6d 0c 00 00 72 f2 00 00 00 72 61 00 00 00 63 01 00 00 00 01 00 00 00 02 00 00 00 07 00 00 | ..m...r....ra...c............... |
| 1ac80 | 00 03 00 00 00 f3 22 00 00 00 97 00 74 01 00 00 00 00 00 00 00 00 7c 00 7c 01 64 01 64 02 7c 02 | ......".....t.........|.|.d.d.|. |
| 1aca0 | ac 03 ab 05 00 00 00 00 00 00 53 00 29 04 61 8d 08 00 00 0a 20 20 20 20 52 65 74 75 72 6e 73 20 | ..........S.).a.........Returns. |
| 1acc0 | 74 68 65 20 73 75 6d 20 61 6c 6f 6e 67 20 74 68 65 20 73 70 65 63 69 66 69 65 64 20 64 69 61 67 | the.sum.along.the.specified.diag |
| 1ace0 | 6f 6e 61 6c 73 20 6f 66 20 61 20 6d 61 74 72 69 78 0a 20 20 20 20 28 6f 72 20 61 20 73 74 61 63 | onals.of.a.matrix.....(or.a.stac |
| 1ad00 | 6b 20 6f 66 20 6d 61 74 72 69 63 65 73 29 20 60 60 78 60 60 2e 0a 0a 20 20 20 20 54 68 69 73 20 | k.of.matrices).``x``.......This. |
| 1ad20 | 66 75 6e 63 74 69 6f 6e 20 69 73 20 41 72 72 61 79 20 41 50 49 20 63 6f 6d 70 61 74 69 62 6c 65 | function.is.Array.API.compatible |
| 1ad40 | 2c 20 63 6f 6e 74 72 61 72 79 20 74 6f 0a 20 20 20 20 3a 70 79 3a 66 75 6e 63 3a 60 6e 75 6d 70 | ,.contrary.to.....:py:func:`nump |
| 1ad60 | 79 2e 74 72 61 63 65 60 2e 0a 0a 20 20 20 20 50 61 72 61 6d 65 74 65 72 73 0a 20 20 20 20 2d 2d | y.trace`.......Parameters.....-- |
| 1ad80 | 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 78 20 3a 20 28 2e 2e 2e 2c 4d 2c 4e 29 20 61 72 72 61 79 | --------.....x.:.(...,M,N).array |
| 1ada0 | 5f 6c 69 6b 65 0a 20 20 20 20 20 20 20 20 49 6e 70 75 74 20 61 72 72 61 79 20 68 61 76 69 6e 67 | _like.........Input.array.having |
| 1adc0 | 20 73 68 61 70 65 20 28 2e 2e 2e 2c 20 4d 2c 20 4e 29 20 61 6e 64 20 77 68 6f 73 65 20 69 6e 6e | .shape.(...,.M,.N).and.whose.inn |
| 1ade0 | 65 72 6d 6f 73 74 20 74 77 6f 0a 20 20 20 20 20 20 20 20 64 69 6d 65 6e 73 69 6f 6e 73 20 66 6f | ermost.two.........dimensions.fo |
| 1ae00 | 72 6d 20 4d 78 4e 20 6d 61 74 72 69 63 65 73 2e 0a 20 20 20 20 6f 66 66 73 65 74 20 3a 20 69 6e | rm.MxN.matrices......offset.:.in |
| 1ae20 | 74 2c 20 6f 70 74 69 6f 6e 61 6c 0a 20 20 20 20 20 20 20 20 4f 66 66 73 65 74 20 73 70 65 63 69 | t,.optional.........Offset.speci |
| 1ae40 | 66 79 69 6e 67 20 74 68 65 20 6f 66 66 2d 64 69 61 67 6f 6e 61 6c 20 72 65 6c 61 74 69 76 65 20 | fying.the.off-diagonal.relative. |
| 1ae60 | 74 6f 20 74 68 65 20 6d 61 69 6e 20 64 69 61 67 6f 6e 61 6c 2c 0a 20 20 20 20 20 20 20 20 77 68 | to.the.main.diagonal,.........wh |
| 1ae80 | 65 72 65 3a 3a 0a 0a 20 20 20 20 20 20 20 20 20 20 20 20 2a 20 6f 66 66 73 65 74 20 3d 20 30 3a | ere::..............*.offset.=.0: |
| 1aea0 | 20 74 68 65 20 6d 61 69 6e 20 64 69 61 67 6f 6e 61 6c 2e 0a 20 20 20 20 20 20 20 20 20 20 20 20 | .the.main.diagonal.............. |
| 1aec0 | 2a 20 6f 66 66 73 65 74 20 3e 20 30 3a 20 6f 66 66 2d 64 69 61 67 6f 6e 61 6c 20 61 62 6f 76 65 | *.offset.>.0:.off-diagonal.above |
| 1aee0 | 20 74 68 65 20 6d 61 69 6e 20 64 69 61 67 6f 6e 61 6c 2e 0a 20 20 20 20 20 20 20 20 20 20 20 20 | .the.main.diagonal.............. |
| 1af00 | 2a 20 6f 66 66 73 65 74 20 3c 20 30 3a 20 6f 66 66 2d 64 69 61 67 6f 6e 61 6c 20 62 65 6c 6f 77 | *.offset.<.0:.off-diagonal.below |
| 1af20 | 20 74 68 65 20 6d 61 69 6e 20 64 69 61 67 6f 6e 61 6c 2e 0a 0a 20 20 20 20 64 74 79 70 65 20 3a | .the.main.diagonal.......dtype.: |
| 1af40 | 20 64 74 79 70 65 2c 20 6f 70 74 69 6f 6e 61 6c 0a 20 20 20 20 20 20 20 20 44 61 74 61 20 74 79 | .dtype,.optional.........Data.ty |
| 1af60 | 70 65 20 6f 66 20 74 68 65 20 72 65 74 75 72 6e 65 64 20 61 72 72 61 79 2e 0a 0a 20 20 20 20 52 | pe.of.the.returned.array.......R |
| 1af80 | 65 74 75 72 6e 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 6f 75 74 20 3a 20 6e 64 61 | eturns.....-------.....out.:.nda |
| 1afa0 | 72 72 61 79 0a 20 20 20 20 20 20 20 20 41 6e 20 61 72 72 61 79 20 63 6f 6e 74 61 69 6e 69 6e 67 | rray.........An.array.containing |
| 1afc0 | 20 74 68 65 20 74 72 61 63 65 73 20 61 6e 64 20 77 68 6f 73 65 20 73 68 61 70 65 20 69 73 20 64 | .the.traces.and.whose.shape.is.d |
| 1afe0 | 65 74 65 72 6d 69 6e 65 64 20 62 79 0a 20 20 20 20 20 20 20 20 72 65 6d 6f 76 69 6e 67 20 74 68 | etermined.by.........removing.th |
| 1b000 | 65 20 6c 61 73 74 20 74 77 6f 20 64 69 6d 65 6e 73 69 6f 6e 73 20 61 6e 64 20 73 74 6f 72 69 6e | e.last.two.dimensions.and.storin |
| 1b020 | 67 20 74 68 65 20 74 72 61 63 65 73 20 69 6e 20 74 68 65 20 6c 61 73 74 0a 20 20 20 20 20 20 20 | g.the.traces.in.the.last........ |
| 1b040 | 20 61 72 72 61 79 20 64 69 6d 65 6e 73 69 6f 6e 2e 20 46 6f 72 20 65 78 61 6d 70 6c 65 2c 20 69 | .array.dimension..For.example,.i |
| 1b060 | 66 20 78 20 68 61 73 20 72 61 6e 6b 20 6b 20 61 6e 64 20 73 68 61 70 65 3a 0a 20 20 20 20 20 20 | f.x.has.rank.k.and.shape:....... |
| 1b080 | 20 20 28 49 2c 20 4a 2c 20 4b 2c 20 2e 2e 2e 2c 20 4c 2c 20 4d 2c 20 4e 29 2c 20 74 68 65 6e 20 | ..(I,.J,.K,....,.L,.M,.N),.then. |
| 1b0a0 | 61 6e 20 6f 75 74 70 75 74 20 61 72 72 61 79 20 68 61 73 20 72 61 6e 6b 20 6b 2d 32 20 61 6e 64 | an.output.array.has.rank.k-2.and |
| 1b0c0 | 20 73 68 61 70 65 3a 0a 20 20 20 20 20 20 20 20 28 49 2c 20 4a 2c 20 4b 2c 20 2e 2e 2e 2c 20 4c | .shape:.........(I,.J,.K,....,.L |
| 1b0e0 | 29 20 77 68 65 72 65 3a 3a 0a 0a 20 20 20 20 20 20 20 20 20 20 20 20 6f 75 74 5b 69 2c 20 6a 2c | ).where::..............out[i,.j, |
| 1b100 | 20 6b 2c 20 2e 2e 2e 2c 20 6c 5d 20 3d 20 74 72 61 63 65 28 61 5b 69 2c 20 6a 2c 20 6b 2c 20 2e | .k,....,.l].=.trace(a[i,.j,.k,.. |
| 1b120 | 2e 2e 2c 20 6c 2c 20 3a 2c 20 3a 5d 29 0a 0a 20 20 20 20 20 20 20 20 54 68 65 20 72 65 74 75 72 | ..,.l,.:,.:])..........The.retur |
| 1b140 | 6e 65 64 20 61 72 72 61 79 20 6d 75 73 74 20 68 61 76 65 20 61 20 64 61 74 61 20 74 79 70 65 20 | ned.array.must.have.a.data.type. |
| 1b160 | 61 73 20 64 65 73 63 72 69 62 65 64 20 62 79 20 74 68 65 20 64 74 79 70 65 0a 20 20 20 20 20 20 | as.described.by.the.dtype....... |
| 1b180 | 20 20 70 61 72 61 6d 65 74 65 72 20 61 62 6f 76 65 2e 0a 0a 20 20 20 20 53 65 65 20 41 6c 73 6f | ..parameter.above.......See.Also |
| 1b1a0 | 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 6e 75 6d 70 79 2e 74 72 61 63 65 0a 0a 20 | .....--------.....numpy.trace... |
| 1b1c0 | 20 20 20 45 78 61 6d 70 6c 65 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 3e 3e 3e | ...Examples.....--------.....>>> |
| 1b1e0 | 20 6e 70 2e 6c 69 6e 61 6c 67 2e 74 72 61 63 65 28 6e 70 2e 65 79 65 28 33 29 29 0a 20 20 20 20 | .np.linalg.trace(np.eye(3))..... |
| 1b200 | 33 2e 30 0a 20 20 20 20 3e 3e 3e 20 61 20 3d 20 6e 70 2e 61 72 61 6e 67 65 28 38 29 2e 72 65 73 | 3.0.....>>>.a.=.np.arange(8).res |
| 1b220 | 68 61 70 65 28 28 32 2c 20 32 2c 20 32 29 29 0a 20 20 20 20 3e 3e 3e 20 6e 70 2e 6c 69 6e 61 6c | hape((2,.2,.2)).....>>>.np.linal |
| 1b240 | 67 2e 74 72 61 63 65 28 61 29 0a 20 20 20 20 61 72 72 61 79 28 5b 33 2c 20 31 31 5d 29 0a 0a 20 | g.trace(a).....array([3,.11])... |
| 1b260 | 20 20 20 54 72 61 63 65 20 69 73 20 63 6f 6d 70 75 74 65 64 20 77 69 74 68 20 74 68 65 20 6c 61 | ...Trace.is.computed.with.the.la |
| 1b280 | 73 74 20 74 77 6f 20 61 78 65 73 20 61 73 20 74 68 65 20 32 2d 64 20 73 75 62 2d 61 72 72 61 79 | st.two.axes.as.the.2-d.sub-array |
| 1b2a0 | 73 2e 0a 20 20 20 20 54 68 69 73 20 62 65 68 61 76 69 6f 72 20 64 69 66 66 65 72 73 20 66 72 6f | s......This.behavior.differs.fro |
| 1b2c0 | 6d 20 3a 70 79 3a 66 75 6e 63 3a 60 6e 75 6d 70 79 2e 74 72 61 63 65 60 20 77 68 69 63 68 20 75 | m.:py:func:`numpy.trace`.which.u |
| 1b2e0 | 73 65 73 20 74 68 65 20 66 69 72 73 74 20 74 77 6f 0a 20 20 20 20 61 78 65 73 20 62 79 20 64 65 | ses.the.first.two.....axes.by.de |
| 1b300 | 66 61 75 6c 74 2e 0a 0a 20 20 20 20 3e 3e 3e 20 61 20 3d 20 6e 70 2e 61 72 61 6e 67 65 28 32 34 | fault.......>>>.a.=.np.arange(24 |
| 1b320 | 29 2e 72 65 73 68 61 70 65 28 28 33 2c 20 32 2c 20 32 2c 20 32 29 29 0a 20 20 20 20 3e 3e 3e 20 | ).reshape((3,.2,.2,.2)).....>>>. |
| 1b340 | 6e 70 2e 6c 69 6e 61 6c 67 2e 74 72 61 63 65 28 61 29 2e 73 68 61 70 65 0a 20 20 20 20 28 33 2c | np.linalg.trace(a).shape.....(3, |
| 1b360 | 20 32 29 0a 0a 20 20 20 20 54 72 61 63 65 73 20 61 64 6a 61 63 65 6e 74 20 74 6f 20 74 68 65 20 | .2)......Traces.adjacent.to.the. |
| 1b380 | 6d 61 69 6e 20 64 69 61 67 6f 6e 61 6c 20 63 61 6e 20 62 65 20 6f 62 74 61 69 6e 65 64 20 62 79 | main.diagonal.can.be.obtained.by |
| 1b3a0 | 20 75 73 69 6e 67 20 74 68 65 0a 20 20 20 20 60 6f 66 66 73 65 74 60 20 61 72 67 75 6d 65 6e 74 | .using.the.....`offset`.argument |
| 1b3c0 | 3a 0a 0a 20 20 20 20 3e 3e 3e 20 61 20 3d 20 6e 70 2e 61 72 61 6e 67 65 28 39 29 2e 72 65 73 68 | :......>>>.a.=.np.arange(9).resh |
| 1b3e0 | 61 70 65 28 28 33 2c 20 33 29 29 3b 20 61 0a 20 20 20 20 61 72 72 61 79 28 5b 5b 30 2c 20 31 2c | ape((3,.3));.a.....array([[0,.1, |
| 1b400 | 20 32 5d 2c 0a 20 20 20 20 20 20 20 20 20 20 20 5b 33 2c 20 34 2c 20 35 5d 2c 0a 20 20 20 20 20 | .2],............[3,.4,.5],...... |
| 1b420 | 20 20 20 20 20 20 5b 36 2c 20 37 2c 20 38 5d 5d 29 0a 20 20 20 20 3e 3e 3e 20 6e 70 2e 6c 69 6e | ......[6,.7,.8]]).....>>>.np.lin |
| 1b440 | 61 6c 67 2e 74 72 61 63 65 28 61 2c 20 6f 66 66 73 65 74 3d 31 29 20 20 23 20 46 69 72 73 74 20 | alg.trace(a,.offset=1)..#.First. |
| 1b460 | 73 75 70 65 72 64 69 61 67 6f 6e 61 6c 0a 20 20 20 20 36 0a 20 20 20 20 3e 3e 3e 20 6e 70 2e 6c | superdiagonal.....6.....>>>.np.l |
| 1b480 | 69 6e 61 6c 67 2e 74 72 61 63 65 28 61 2c 20 6f 66 66 73 65 74 3d 32 29 20 20 23 20 53 65 63 6f | inalg.trace(a,.offset=2)..#.Seco |
| 1b4a0 | 6e 64 20 73 75 70 65 72 64 69 61 67 6f 6e 61 6c 0a 20 20 20 20 32 0a 20 20 20 20 3e 3e 3e 20 6e | nd.superdiagonal.....2.....>>>.n |
| 1b4c0 | 70 2e 6c 69 6e 61 6c 67 2e 74 72 61 63 65 28 61 2c 20 6f 66 66 73 65 74 3d 2d 31 29 20 20 23 20 | p.linalg.trace(a,.offset=-1)..#. |
| 1b4e0 | 46 69 72 73 74 20 73 75 62 64 69 61 67 6f 6e 61 6c 0a 20 20 20 20 31 30 0a 20 20 20 20 3e 3e 3e | First.subdiagonal.....10.....>>> |
| 1b500 | 20 6e 70 2e 6c 69 6e 61 6c 67 2e 74 72 61 63 65 28 61 2c 20 6f 66 66 73 65 74 3d 2d 32 29 20 20 | .np.linalg.trace(a,.offset=-2).. |
| 1b520 | 23 20 53 65 63 6f 6e 64 20 73 75 62 64 69 61 67 6f 6e 61 6c 0a 20 20 20 20 36 0a 0a 20 20 20 20 | #.Second.subdiagonal.....6...... |
| 1b540 | 72 bb 00 00 00 72 c7 00 00 00 29 03 72 c3 01 00 00 72 c4 01 00 00 72 9b 00 00 00 29 01 da 0b 5f | r....r....).r....r....r....)..._ |
| 1b560 | 63 6f 72 65 5f 74 72 61 63 65 72 c7 01 00 00 73 03 00 00 00 20 20 20 72 62 00 00 00 72 18 00 00 | core_tracer....s.......rb...r... |
| 1b580 | 00 72 18 00 00 00 71 0c 00 00 73 18 00 00 00 80 00 f4 58 02 00 0c 17 90 71 98 26 a8 02 b0 22 b8 | .r....q...s.......X.....q.&...". |
| 1b5a0 | 45 d4 0b 42 d0 04 42 72 61 00 00 00 72 4d 01 00 00 63 02 00 00 00 02 00 00 00 01 00 00 00 02 00 | E..B..Bra...rM...c.............. |
| 1b5c0 | 00 00 03 00 00 00 f3 0a 00 00 00 97 00 7c 00 7c 01 66 02 53 00 72 8d 00 00 00 72 60 00 00 00 a9 | .............|.|.f.S.r....r`.... |
| 1b5e0 | 03 72 12 01 00 00 72 13 01 00 00 72 4e 01 00 00 73 03 00 00 00 20 20 20 72 62 00 00 00 da 11 5f | .r....r....rN...s.......rb....._ |
| 1b600 | 63 72 6f 73 73 5f 64 69 73 70 61 74 63 68 65 72 72 cd 01 00 00 c2 0c 00 00 73 0c 00 00 00 80 00 | cross_dispatcherr........s...... |
| 1b620 | d8 0c 0e 90 02 88 39 d0 04 14 72 61 00 00 00 72 c7 00 00 00 63 02 00 00 00 02 00 00 00 01 00 00 | ......9...ra...r....c........... |
| 1b640 | 00 07 00 00 00 03 00 00 00 f3 ea 00 00 00 97 00 74 01 00 00 00 00 00 00 00 00 7c 00 ab 01 00 00 | ................t.........|..... |
| 1b660 | 00 00 00 00 7d 00 74 01 00 00 00 00 00 00 00 00 7c 01 ab 01 00 00 00 00 00 00 7d 01 7c 00 6a 02 | ....}.t.........|.........}.|.j. |
| 1b680 | 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 7c 02 19 00 00 00 64 01 6b 37 00 00 73 12 | ..................|.....d.k7..s. |
| 1b6a0 | 7c 01 6a 02 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 7c 02 19 00 00 00 64 01 6b 37 | |.j...................|.....d.k7 |
| 1b6c0 | 00 00 72 2c 74 05 00 00 00 00 00 00 00 00 64 02 7c 00 6a 02 00 00 00 00 00 00 00 00 00 00 00 00 | ..r,t.........d.|.j............. |
| 1b6e0 | 00 00 00 00 00 00 7c 02 19 00 00 00 9b 00 64 03 7c 01 6a 02 00 00 00 00 00 00 00 00 00 00 00 00 | ......|.......d.|.j............. |
| 1b700 | 00 00 00 00 00 00 7c 02 19 00 00 00 9b 00 64 04 9d 05 ab 01 00 00 00 00 00 00 82 01 74 07 00 00 | ......|.......d.............t... |
| 1b720 | 00 00 00 00 00 00 7c 00 7c 01 7c 02 ac 05 ab 03 00 00 00 00 00 00 53 00 29 06 61 40 06 00 00 0a | ......|.|.|...........S.).a@.... |
| 1b740 | 20 20 20 20 52 65 74 75 72 6e 73 20 74 68 65 20 63 72 6f 73 73 20 70 72 6f 64 75 63 74 20 6f 66 | ....Returns.the.cross.product.of |
| 1b760 | 20 33 2d 65 6c 65 6d 65 6e 74 20 76 65 63 74 6f 72 73 2e 0a 0a 20 20 20 20 49 66 20 60 60 78 31 | .3-element.vectors.......If.``x1 |
| 1b780 | 60 60 20 61 6e 64 2f 6f 72 20 60 60 78 32 60 60 20 61 72 65 20 6d 75 6c 74 69 2d 64 69 6d 65 6e | ``.and/or.``x2``.are.multi-dimen |
| 1b7a0 | 73 69 6f 6e 61 6c 20 61 72 72 61 79 73 2c 20 74 68 65 6e 0a 20 20 20 20 74 68 65 20 63 72 6f 73 | sional.arrays,.then.....the.cros |
| 1b7c0 | 73 2d 70 72 6f 64 75 63 74 20 6f 66 20 65 61 63 68 20 70 61 69 72 20 6f 66 20 63 6f 72 72 65 73 | s-product.of.each.pair.of.corres |
| 1b7e0 | 70 6f 6e 64 69 6e 67 20 33 2d 65 6c 65 6d 65 6e 74 20 76 65 63 74 6f 72 73 0a 20 20 20 20 69 73 | ponding.3-element.vectors.....is |
| 1b800 | 20 69 6e 64 65 70 65 6e 64 65 6e 74 6c 79 20 63 6f 6d 70 75 74 65 64 2e 0a 0a 20 20 20 20 54 68 | .independently.computed.......Th |
| 1b820 | 69 73 20 66 75 6e 63 74 69 6f 6e 20 69 73 20 41 72 72 61 79 20 41 50 49 20 63 6f 6d 70 61 74 69 | is.function.is.Array.API.compati |
| 1b840 | 62 6c 65 2c 20 63 6f 6e 74 72 61 72 79 20 74 6f 0a 20 20 20 20 3a 66 75 6e 63 3a 60 6e 75 6d 70 | ble,.contrary.to.....:func:`nump |
| 1b860 | 79 2e 63 72 6f 73 73 60 2e 0a 0a 20 20 20 20 50 61 72 61 6d 65 74 65 72 73 0a 20 20 20 20 2d 2d | y.cross`.......Parameters.....-- |
| 1b880 | 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 78 31 20 3a 20 61 72 72 61 79 5f 6c 69 6b 65 0a 20 20 20 | --------.....x1.:.array_like.... |
| 1b8a0 | 20 20 20 20 20 54 68 65 20 66 69 72 73 74 20 69 6e 70 75 74 20 61 72 72 61 79 2e 0a 20 20 20 20 | .....The.first.input.array...... |
| 1b8c0 | 78 32 20 3a 20 61 72 72 61 79 5f 6c 69 6b 65 0a 20 20 20 20 20 20 20 20 54 68 65 20 73 65 63 6f | x2.:.array_like.........The.seco |
| 1b8e0 | 6e 64 20 69 6e 70 75 74 20 61 72 72 61 79 2e 20 4d 75 73 74 20 62 65 20 63 6f 6d 70 61 74 69 62 | nd.input.array..Must.be.compatib |
| 1b900 | 6c 65 20 77 69 74 68 20 60 60 78 31 60 60 20 66 6f 72 20 61 6c 6c 0a 20 20 20 20 20 20 20 20 6e | le.with.``x1``.for.all.........n |
| 1b920 | 6f 6e 2d 63 6f 6d 70 75 74 65 20 61 78 65 73 2e 20 54 68 65 20 73 69 7a 65 20 6f 66 20 74 68 65 | on-compute.axes..The.size.of.the |
| 1b940 | 20 61 78 69 73 20 6f 76 65 72 20 77 68 69 63 68 20 74 6f 20 63 6f 6d 70 75 74 65 0a 20 20 20 20 | .axis.over.which.to.compute..... |
| 1b960 | 20 20 20 20 74 68 65 20 63 72 6f 73 73 2d 70 72 6f 64 75 63 74 20 6d 75 73 74 20 62 65 20 74 68 | ....the.cross-product.must.be.th |
| 1b980 | 65 20 73 61 6d 65 20 73 69 7a 65 20 61 73 20 74 68 65 20 72 65 73 70 65 63 74 69 76 65 20 61 78 | e.same.size.as.the.respective.ax |
| 1b9a0 | 69 73 0a 20 20 20 20 20 20 20 20 69 6e 20 60 60 78 31 60 60 2e 0a 20 20 20 20 61 78 69 73 20 3a | is.........in.``x1``......axis.: |
| 1b9c0 | 20 69 6e 74 2c 20 6f 70 74 69 6f 6e 61 6c 0a 20 20 20 20 20 20 20 20 54 68 65 20 61 78 69 73 20 | .int,.optional.........The.axis. |
| 1b9e0 | 28 64 69 6d 65 6e 73 69 6f 6e 29 20 6f 66 20 60 60 78 31 60 60 20 61 6e 64 20 60 60 78 32 60 60 | (dimension).of.``x1``.and.``x2`` |
| 1ba00 | 20 63 6f 6e 74 61 69 6e 69 6e 67 20 74 68 65 20 76 65 63 74 6f 72 73 20 66 6f 72 0a 20 20 20 20 | .containing.the.vectors.for..... |
| 1ba20 | 20 20 20 20 77 68 69 63 68 20 74 6f 20 63 6f 6d 70 75 74 65 20 74 68 65 20 63 72 6f 73 73 2d 70 | ....which.to.compute.the.cross-p |
| 1ba40 | 72 6f 64 75 63 74 2e 20 44 65 66 61 75 6c 74 3a 20 60 60 2d 31 60 60 2e 0a 0a 20 20 20 20 52 65 | roduct..Default:.``-1``.......Re |
| 1ba60 | 74 75 72 6e 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 6f 75 74 20 3a 20 6e 64 61 72 | turns.....-------.....out.:.ndar |
| 1ba80 | 72 61 79 0a 20 20 20 20 20 20 20 20 41 6e 20 61 72 72 61 79 20 63 6f 6e 74 61 69 6e 69 6e 67 20 | ray.........An.array.containing. |
| 1baa0 | 74 68 65 20 63 72 6f 73 73 20 70 72 6f 64 75 63 74 73 2e 0a 0a 20 20 20 20 53 65 65 20 41 6c 73 | the.cross.products.......See.Als |
| 1bac0 | 6f 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 6e 75 6d 70 79 2e 63 72 6f 73 73 0a 0a | o.....--------.....numpy.cross.. |
| 1bae0 | 20 20 20 20 45 78 61 6d 70 6c 65 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 56 65 | ....Examples.....--------.....Ve |
| 1bb00 | 63 74 6f 72 20 63 72 6f 73 73 2d 70 72 6f 64 75 63 74 2e 0a 0a 20 20 20 20 3e 3e 3e 20 78 20 3d | ctor.cross-product.......>>>.x.= |
| 1bb20 | 20 6e 70 2e 61 72 72 61 79 28 5b 31 2c 20 32 2c 20 33 5d 29 0a 20 20 20 20 3e 3e 3e 20 79 20 3d | .np.array([1,.2,.3]).....>>>.y.= |
| 1bb40 | 20 6e 70 2e 61 72 72 61 79 28 5b 34 2c 20 35 2c 20 36 5d 29 0a 20 20 20 20 3e 3e 3e 20 6e 70 2e | .np.array([4,.5,.6]).....>>>.np. |
| 1bb60 | 6c 69 6e 61 6c 67 2e 63 72 6f 73 73 28 78 2c 20 79 29 0a 20 20 20 20 61 72 72 61 79 28 5b 2d 33 | linalg.cross(x,.y).....array([-3 |
| 1bb80 | 2c 20 20 36 2c 20 2d 33 5d 29 0a 0a 20 20 20 20 4d 75 6c 74 69 70 6c 65 20 76 65 63 74 6f 72 20 | ,..6,.-3])......Multiple.vector. |
| 1bba0 | 63 72 6f 73 73 2d 70 72 6f 64 75 63 74 73 2e 20 4e 6f 74 65 20 74 68 61 74 20 74 68 65 20 64 69 | cross-products..Note.that.the.di |
| 1bbc0 | 72 65 63 74 69 6f 6e 20 6f 66 20 74 68 65 20 63 72 6f 73 73 0a 20 20 20 20 70 72 6f 64 75 63 74 | rection.of.the.cross.....product |
| 1bbe0 | 20 76 65 63 74 6f 72 20 69 73 20 64 65 66 69 6e 65 64 20 62 79 20 74 68 65 20 2a 72 69 67 68 74 | .vector.is.defined.by.the.*right |
| 1bc00 | 2d 68 61 6e 64 20 72 75 6c 65 2a 2e 0a 0a 20 20 20 20 3e 3e 3e 20 78 20 3d 20 6e 70 2e 61 72 72 | -hand.rule*.......>>>.x.=.np.arr |
| 1bc20 | 61 79 28 5b 5b 31 2c 32 2c 33 5d 2c 20 5b 34 2c 35 2c 36 5d 5d 29 0a 20 20 20 20 3e 3e 3e 20 79 | ay([[1,2,3],.[4,5,6]]).....>>>.y |
| 1bc40 | 20 3d 20 6e 70 2e 61 72 72 61 79 28 5b 5b 34 2c 35 2c 36 5d 2c 20 5b 31 2c 32 2c 33 5d 5d 29 0a | .=.np.array([[4,5,6],.[1,2,3]]). |
| 1bc60 | 20 20 20 20 3e 3e 3e 20 6e 70 2e 6c 69 6e 61 6c 67 2e 63 72 6f 73 73 28 78 2c 20 79 29 0a 20 20 | ....>>>.np.linalg.cross(x,.y)... |
| 1bc80 | 20 20 61 72 72 61 79 28 5b 5b 2d 33 2c 20 20 36 2c 20 2d 33 5d 2c 0a 20 20 20 20 20 20 20 20 20 | ..array([[-3,..6,.-3],.......... |
| 1bca0 | 20 20 5b 20 33 2c 20 2d 36 2c 20 20 33 5d 5d 29 0a 0a 20 20 20 20 3e 3e 3e 20 78 20 3d 20 6e 70 | ..[.3,.-6,..3]])......>>>.x.=.np |
| 1bcc0 | 2e 61 72 72 61 79 28 5b 5b 31 2c 20 32 5d 2c 20 5b 33 2c 20 34 5d 2c 20 5b 35 2c 20 36 5d 5d 29 | .array([[1,.2],.[3,.4],.[5,.6]]) |
| 1bce0 | 0a 20 20 20 20 3e 3e 3e 20 79 20 3d 20 6e 70 2e 61 72 72 61 79 28 5b 5b 34 2c 20 35 5d 2c 20 5b | .....>>>.y.=.np.array([[4,.5],.[ |
| 1bd00 | 36 2c 20 31 5d 2c 20 5b 32 2c 20 33 5d 5d 29 0a 20 20 20 20 3e 3e 3e 20 6e 70 2e 6c 69 6e 61 6c | 6,.1],.[2,.3]]).....>>>.np.linal |
| 1bd20 | 67 2e 63 72 6f 73 73 28 78 2c 20 79 2c 20 61 78 69 73 3d 30 29 0a 20 20 20 20 61 72 72 61 79 28 | g.cross(x,.y,.axis=0).....array( |
| 1bd40 | 5b 5b 2d 32 34 2c 20 20 36 5d 2c 0a 20 20 20 20 20 20 20 20 20 20 20 5b 20 31 38 2c 20 32 34 5d | [[-24,..6],............[.18,.24] |
| 1bd60 | 2c 0a 20 20 20 20 20 20 20 20 20 20 20 5b 2d 36 2c 20 20 2d 31 38 5d 5d 29 0a 0a 20 20 20 20 72 | ,............[-6,..-18]])......r |
| 1bd80 | ff 00 00 00 7a 4a 42 6f 74 68 20 69 6e 70 75 74 20 61 72 72 61 79 73 20 6d 75 73 74 20 62 65 20 | ....zJBoth.input.arrays.must.be. |
| 1bda0 | 28 61 72 72 61 79 73 20 6f 66 29 20 33 2d 64 69 6d 65 6e 73 69 6f 6e 61 6c 20 76 65 63 74 6f 72 | (arrays.of).3-dimensional.vector |
| 1bdc0 | 73 2c 20 62 75 74 20 74 68 65 79 20 61 72 65 20 7a 05 20 61 6e 64 20 7a 15 20 64 69 6d 65 6e 73 | s,.but.they.are.z..and.z..dimens |
| 1bde0 | 69 6f 6e 61 6c 20 69 6e 73 74 65 61 64 2e 72 4d 01 00 00 29 04 72 2c 00 00 00 72 bc 00 00 00 72 | ional.instead.rM...).r,...r....r |
| 1be00 | bd 00 00 00 da 0b 5f 63 6f 72 65 5f 63 72 6f 73 73 72 cc 01 00 00 73 03 00 00 00 20 20 20 72 62 | ......_core_crossr....s.......rb |
| 1be20 | 00 00 00 72 1a 00 00 00 72 1a 00 00 00 c6 0c 00 00 73 81 00 00 00 80 00 f4 78 01 00 0a 14 90 42 | ...r....r........s.......x.....B |
| 1be40 | 8b 1e 80 42 dc 09 13 90 42 8b 1e 80 42 e0 07 09 87 78 81 78 90 04 81 7e 98 11 d2 07 1a 98 62 9f | ...B....B...B....x.x...~......b. |
| 1be60 | 68 99 68 a0 74 99 6e b0 01 d2 1e 31 dc 0e 18 f0 02 01 0d 1c d8 1c 1e 9f 48 99 48 a0 54 99 4e d0 | h.h.t.n....1............H.H.T.N. |
| 1be80 | 1b 2b a8 35 b0 12 b7 18 b1 18 b8 24 b1 1e d0 30 40 f0 00 01 41 01 23 f0 03 02 0d 23 f3 03 04 0f | .+.5.......$...0@...A.#....#.... |
| 1bea0 | 0a f0 00 04 09 0a f4 0c 00 0c 17 90 72 98 32 a0 44 d4 0b 29 d0 04 29 72 61 00 00 00 63 02 00 00 | ............r.2.D..)..)ra...c... |
| 1bec0 | 00 02 00 00 00 00 00 00 00 02 00 00 00 03 00 00 00 f3 0a 00 00 00 97 00 7c 00 7c 01 66 02 53 00 | ........................|.|.f.S. |
| 1bee0 | 72 8d 00 00 00 72 60 00 00 00 72 11 01 00 00 73 02 00 00 00 20 20 72 62 00 00 00 da 12 5f 6d 61 | r....r`...r....s......rb....._ma |
| 1bf00 | 74 6d 75 6c 5f 64 69 73 70 61 74 63 68 65 72 72 d1 01 00 00 11 0d 00 00 72 15 01 00 00 72 61 00 | tmul_dispatcherr........r....ra. |
| 1bf20 | 00 00 63 02 00 00 00 02 00 00 00 00 00 00 00 04 00 00 00 03 00 00 00 f3 1a 00 00 00 97 00 74 01 | ..c...........................t. |
| 1bf40 | 00 00 00 00 00 00 00 00 7c 00 7c 01 ab 02 00 00 00 00 00 00 53 00 29 01 61 1e 07 00 00 0a 20 20 | ........|.|.........S.).a....... |
| 1bf60 | 20 20 43 6f 6d 70 75 74 65 73 20 74 68 65 20 6d 61 74 72 69 78 20 70 72 6f 64 75 63 74 2e 0a 0a | ..Computes.the.matrix.product... |
| 1bf80 | 20 20 20 20 54 68 69 73 20 66 75 6e 63 74 69 6f 6e 20 69 73 20 41 72 72 61 79 20 41 50 49 20 63 | ....This.function.is.Array.API.c |
| 1bfa0 | 6f 6d 70 61 74 69 62 6c 65 2c 20 63 6f 6e 74 72 61 72 79 20 74 6f 0a 20 20 20 20 3a 66 75 6e 63 | ompatible,.contrary.to.....:func |
| 1bfc0 | 3a 60 6e 75 6d 70 79 2e 6d 61 74 6d 75 6c 60 2e 0a 0a 20 20 20 20 50 61 72 61 6d 65 74 65 72 73 | :`numpy.matmul`.......Parameters |
| 1bfe0 | 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 78 31 20 3a 20 61 72 72 61 79 5f 6c | .....----------.....x1.:.array_l |
| 1c000 | 69 6b 65 0a 20 20 20 20 20 20 20 20 54 68 65 20 66 69 72 73 74 20 69 6e 70 75 74 20 61 72 72 61 | ike.........The.first.input.arra |
| 1c020 | 79 2e 0a 20 20 20 20 78 32 20 3a 20 61 72 72 61 79 5f 6c 69 6b 65 0a 20 20 20 20 20 20 20 20 54 | y......x2.:.array_like.........T |
| 1c040 | 68 65 20 73 65 63 6f 6e 64 20 69 6e 70 75 74 20 61 72 72 61 79 2e 0a 0a 20 20 20 20 52 65 74 75 | he.second.input.array.......Retu |
| 1c060 | 72 6e 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 6f 75 74 20 3a 20 6e 64 61 72 72 61 | rns.....-------.....out.:.ndarra |
| 1c080 | 79 0a 20 20 20 20 20 20 20 20 54 68 65 20 6d 61 74 72 69 78 20 70 72 6f 64 75 63 74 20 6f 66 20 | y.........The.matrix.product.of. |
| 1c0a0 | 74 68 65 20 69 6e 70 75 74 73 2e 0a 20 20 20 20 20 20 20 20 54 68 69 73 20 69 73 20 61 20 73 63 | the.inputs..........This.is.a.sc |
| 1c0c0 | 61 6c 61 72 20 6f 6e 6c 79 20 77 68 65 6e 20 62 6f 74 68 20 60 60 78 31 60 60 2c 20 60 60 78 32 | alar.only.when.both.``x1``,.``x2 |
| 1c0e0 | 60 60 20 61 72 65 20 31 2d 64 20 76 65 63 74 6f 72 73 2e 0a 0a 20 20 20 20 52 61 69 73 65 73 0a | ``.are.1-d.vectors.......Raises. |
| 1c100 | 20 20 20 20 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 56 61 6c 75 65 45 72 72 6f 72 0a 20 20 20 20 20 20 | ....------.....ValueError....... |
| 1c120 | 20 20 49 66 20 74 68 65 20 6c 61 73 74 20 64 69 6d 65 6e 73 69 6f 6e 20 6f 66 20 60 60 78 31 60 | ..If.the.last.dimension.of.``x1` |
| 1c140 | 60 20 69 73 20 6e 6f 74 20 74 68 65 20 73 61 6d 65 20 73 69 7a 65 20 61 73 0a 20 20 20 20 20 20 | `.is.not.the.same.size.as....... |
| 1c160 | 20 20 74 68 65 20 73 65 63 6f 6e 64 2d 74 6f 2d 6c 61 73 74 20 64 69 6d 65 6e 73 69 6f 6e 20 6f | ..the.second-to-last.dimension.o |
| 1c180 | 66 20 60 60 78 32 60 60 2e 0a 0a 20 20 20 20 20 20 20 20 49 66 20 61 20 73 63 61 6c 61 72 20 76 | f.``x2``...........If.a.scalar.v |
| 1c1a0 | 61 6c 75 65 20 69 73 20 70 61 73 73 65 64 20 69 6e 2e 0a 0a 20 20 20 20 53 65 65 20 41 6c 73 6f | alue.is.passed.in.......See.Also |
| 1c1c0 | 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 6e 75 6d 70 79 2e 6d 61 74 6d 75 6c 0a 0a | .....--------.....numpy.matmul.. |
| 1c1e0 | 20 20 20 20 45 78 61 6d 70 6c 65 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 46 6f | ....Examples.....--------.....Fo |
| 1c200 | 72 20 32 2d 44 20 61 72 72 61 79 73 20 69 74 20 69 73 20 74 68 65 20 6d 61 74 72 69 78 20 70 72 | r.2-D.arrays.it.is.the.matrix.pr |
| 1c220 | 6f 64 75 63 74 3a 0a 0a 20 20 20 20 3e 3e 3e 20 61 20 3d 20 6e 70 2e 61 72 72 61 79 28 5b 5b 31 | oduct:......>>>.a.=.np.array([[1 |
| 1c240 | 2c 20 30 5d 2c 0a 20 20 20 20 2e 2e 2e 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 5b 30 2c 20 | ,.0],.......................[0,. |
| 1c260 | 31 5d 5d 29 0a 20 20 20 20 3e 3e 3e 20 62 20 3d 20 6e 70 2e 61 72 72 61 79 28 5b 5b 34 2c 20 31 | 1]]).....>>>.b.=.np.array([[4,.1 |
| 1c280 | 5d 2c 0a 20 20 20 20 2e 2e 2e 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 5b 32 2c 20 32 5d 5d | ],.......................[2,.2]] |
| 1c2a0 | 29 0a 20 20 20 20 3e 3e 3e 20 6e 70 2e 6c 69 6e 61 6c 67 2e 6d 61 74 6d 75 6c 28 61 2c 20 62 29 | ).....>>>.np.linalg.matmul(a,.b) |
| 1c2c0 | 0a 20 20 20 20 61 72 72 61 79 28 5b 5b 34 2c 20 31 5d 2c 0a 20 20 20 20 20 20 20 20 20 20 20 5b | .....array([[4,.1],............[ |
| 1c2e0 | 32 2c 20 32 5d 5d 29 0a 0a 20 20 20 20 46 6f 72 20 32 2d 44 20 6d 69 78 65 64 20 77 69 74 68 20 | 2,.2]])......For.2-D.mixed.with. |
| 1c300 | 31 2d 44 2c 20 74 68 65 20 72 65 73 75 6c 74 20 69 73 20 74 68 65 20 75 73 75 61 6c 2e 0a 0a 20 | 1-D,.the.result.is.the.usual.... |
| 1c320 | 20 20 20 3e 3e 3e 20 61 20 3d 20 6e 70 2e 61 72 72 61 79 28 5b 5b 31 2c 20 30 5d 2c 0a 20 20 20 | ...>>>.a.=.np.array([[1,.0],.... |
| 1c340 | 20 2e 2e 2e 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 5b 30 2c 20 31 5d 5d 29 0a 20 20 20 20 | ...................[0,.1]])..... |
| 1c360 | 3e 3e 3e 20 62 20 3d 20 6e 70 2e 61 72 72 61 79 28 5b 31 2c 20 32 5d 29 0a 20 20 20 20 3e 3e 3e | >>>.b.=.np.array([1,.2]).....>>> |
| 1c380 | 20 6e 70 2e 6c 69 6e 61 6c 67 2e 6d 61 74 6d 75 6c 28 61 2c 20 62 29 0a 20 20 20 20 61 72 72 61 | .np.linalg.matmul(a,.b).....arra |
| 1c3a0 | 79 28 5b 31 2c 20 32 5d 29 0a 20 20 20 20 3e 3e 3e 20 6e 70 2e 6c 69 6e 61 6c 67 2e 6d 61 74 6d | y([1,.2]).....>>>.np.linalg.matm |
| 1c3c0 | 75 6c 28 62 2c 20 61 29 0a 20 20 20 20 61 72 72 61 79 28 5b 31 2c 20 32 5d 29 0a 0a 0a 20 20 20 | ul(b,.a).....array([1,.2])...... |
| 1c3e0 | 20 42 72 6f 61 64 63 61 73 74 69 6e 67 20 69 73 20 63 6f 6e 76 65 6e 74 69 6f 6e 61 6c 20 66 6f | .Broadcasting.is.conventional.fo |
| 1c400 | 72 20 73 74 61 63 6b 73 20 6f 66 20 61 72 72 61 79 73 0a 0a 20 20 20 20 3e 3e 3e 20 61 20 3d 20 | r.stacks.of.arrays......>>>.a.=. |
| 1c420 | 6e 70 2e 61 72 61 6e 67 65 28 32 20 2a 20 32 20 2a 20 34 29 2e 72 65 73 68 61 70 65 28 28 32 2c | np.arange(2.*.2.*.4).reshape((2, |
| 1c440 | 20 32 2c 20 34 29 29 0a 20 20 20 20 3e 3e 3e 20 62 20 3d 20 6e 70 2e 61 72 61 6e 67 65 28 32 20 | .2,.4)).....>>>.b.=.np.arange(2. |
| 1c460 | 2a 20 32 20 2a 20 34 29 2e 72 65 73 68 61 70 65 28 28 32 2c 20 34 2c 20 32 29 29 0a 20 20 20 20 | *.2.*.4).reshape((2,.4,.2))..... |
| 1c480 | 3e 3e 3e 20 6e 70 2e 6c 69 6e 61 6c 67 2e 6d 61 74 6d 75 6c 28 61 2c 62 29 2e 73 68 61 70 65 0a | >>>.np.linalg.matmul(a,b).shape. |
| 1c4a0 | 20 20 20 20 28 32 2c 20 32 2c 20 32 29 0a 20 20 20 20 3e 3e 3e 20 6e 70 2e 6c 69 6e 61 6c 67 2e | ....(2,.2,.2).....>>>.np.linalg. |
| 1c4c0 | 6d 61 74 6d 75 6c 28 61 2c 20 62 29 5b 30 2c 20 31 2c 20 31 5d 0a 20 20 20 20 39 38 0a 20 20 20 | matmul(a,.b)[0,.1,.1].....98.... |
| 1c4e0 | 20 3e 3e 3e 20 73 75 6d 28 61 5b 30 2c 20 31 2c 20 3a 5d 20 2a 20 62 5b 30 20 2c 20 3a 2c 20 31 | .>>>.sum(a[0,.1,.:].*.b[0.,.:,.1 |
| 1c500 | 5d 29 0a 20 20 20 20 39 38 0a 0a 20 20 20 20 56 65 63 74 6f 72 2c 20 76 65 63 74 6f 72 20 72 65 | ]).....98......Vector,.vector.re |
| 1c520 | 74 75 72 6e 73 20 74 68 65 20 73 63 61 6c 61 72 20 69 6e 6e 65 72 20 70 72 6f 64 75 63 74 2c 20 | turns.the.scalar.inner.product,. |
| 1c540 | 62 75 74 20 6e 65 69 74 68 65 72 20 61 72 67 75 6d 65 6e 74 0a 20 20 20 20 69 73 20 63 6f 6d 70 | but.neither.argument.....is.comp |
| 1c560 | 6c 65 78 2d 63 6f 6e 6a 75 67 61 74 65 64 3a 0a 0a 20 20 20 20 3e 3e 3e 20 6e 70 2e 6c 69 6e 61 | lex-conjugated:......>>>.np.lina |
| 1c580 | 6c 67 2e 6d 61 74 6d 75 6c 28 5b 32 6a 2c 20 33 6a 5d 2c 20 5b 32 6a 2c 20 33 6a 5d 29 0a 20 20 | lg.matmul([2j,.3j],.[2j,.3j])... |
| 1c5a0 | 20 20 28 2d 31 33 2b 30 6a 29 0a 0a 20 20 20 20 53 63 61 6c 61 72 20 6d 75 6c 74 69 70 6c 69 63 | ..(-13+0j)......Scalar.multiplic |
| 1c5c0 | 61 74 69 6f 6e 20 72 61 69 73 65 73 20 61 6e 20 65 72 72 6f 72 2e 0a 0a 20 20 20 20 3e 3e 3e 20 | ation.raises.an.error.......>>>. |
| 1c5e0 | 6e 70 2e 6c 69 6e 61 6c 67 2e 6d 61 74 6d 75 6c 28 5b 31 2c 32 5d 2c 20 33 29 0a 20 20 20 20 54 | np.linalg.matmul([1,2],.3).....T |
| 1c600 | 72 61 63 65 62 61 63 6b 20 28 6d 6f 73 74 20 72 65 63 65 6e 74 20 63 61 6c 6c 20 6c 61 73 74 29 | raceback.(most.recent.call.last) |
| 1c620 | 3a 0a 20 20 20 20 2e 2e 2e 0a 20 20 20 20 56 61 6c 75 65 45 72 72 6f 72 3a 20 6d 61 74 6d 75 6c | :.............ValueError:.matmul |
| 1c640 | 3a 20 49 6e 70 75 74 20 6f 70 65 72 61 6e 64 20 31 20 64 6f 65 73 20 6e 6f 74 20 68 61 76 65 20 | :.Input.operand.1.does.not.have. |
| 1c660 | 65 6e 6f 75 67 68 20 64 69 6d 65 6e 73 69 6f 6e 73 20 2e 2e 2e 0a 0a 20 20 20 20 29 01 da 0c 5f | enough.dimensions..........)..._ |
| 1c680 | 63 6f 72 65 5f 6d 61 74 6d 75 6c 72 11 01 00 00 73 02 00 00 00 20 20 72 62 00 00 00 72 1d 00 00 | core_matmulr....s......rb...r... |
| 1c6a0 | 00 72 1d 00 00 00 15 0d 00 00 73 12 00 00 00 80 00 f4 62 02 00 0c 18 98 02 98 42 d3 0b 1f d0 04 | .r........s.......b.......B..... |
| 1c6c0 | 1f 72 61 00 00 00 a9 01 72 cb 00 00 00 63 02 00 00 00 02 00 00 00 01 00 00 00 02 00 00 00 03 00 | .ra.....r....c.................. |
| 1c6e0 | 00 00 f3 0a 00 00 00 97 00 7c 00 7c 01 66 02 53 00 72 8d 00 00 00 72 60 00 00 00 a9 03 72 12 01 | .........|.|.f.S.r....r`.....r.. |
| 1c700 | 00 00 72 13 01 00 00 72 cb 00 00 00 73 03 00 00 00 20 20 20 72 62 00 00 00 da 15 5f 74 65 6e 73 | ..r....r....s.......rb....._tens |
| 1c720 | 6f 72 64 6f 74 5f 64 69 73 70 61 74 63 68 65 72 72 d7 01 00 00 6b 0d 00 00 72 15 01 00 00 72 61 | ordot_dispatcherr....k...r....ra |
| 1c740 | 00 00 00 63 02 00 00 00 02 00 00 00 01 00 00 00 05 00 00 00 03 00 00 00 f3 1e 00 00 00 97 00 74 | ...c...........................t |
| 1c760 | 01 00 00 00 00 00 00 00 00 7c 00 7c 01 7c 02 ac 01 ab 03 00 00 00 00 00 00 53 00 29 02 4e 72 d4 | .........|.|.|...........S.).Nr. |
| 1c780 | 01 00 00 29 01 da 0f 5f 63 6f 72 65 5f 74 65 6e 73 6f 72 64 6f 74 72 d6 01 00 00 73 03 00 00 00 | ...)..._core_tensordotr....s.... |
| 1c7a0 | 20 20 20 72 62 00 00 00 72 1c 00 00 00 72 1c 00 00 00 6f 0d 00 00 73 11 00 00 00 80 00 e4 0b 1a | ...rb...r....r....o...s......... |
| 1c7c0 | 98 32 98 72 a8 04 d4 0b 2d d0 04 2d 72 61 00 00 00 63 01 00 00 00 00 00 00 00 00 00 00 00 01 00 | .2.r....-..-ra...c.............. |
| 1c7e0 | 00 00 03 00 00 00 f3 08 00 00 00 97 00 7c 00 66 01 53 00 72 8d 00 00 00 72 60 00 00 00 72 5b 01 | .............|.f.S.r....r`...r[. |
| 1c800 | 00 00 73 01 00 00 00 20 72 62 00 00 00 da 1c 5f 6d 61 74 72 69 78 5f 74 72 61 6e 73 70 6f 73 65 | ..s.....rb....._matrix_transpose |
| 1c820 | 5f 64 69 73 70 61 74 63 68 65 72 72 db 01 00 00 79 0d 00 00 72 f2 00 00 00 72 61 00 00 00 63 01 | _dispatcherr....y...r....ra...c. |
| 1c840 | 00 00 00 01 00 00 00 00 00 00 00 03 00 00 00 03 00 00 00 f3 18 00 00 00 97 00 74 01 00 00 00 00 | ..........................t..... |
| 1c860 | 00 00 00 00 7c 00 ab 01 00 00 00 00 00 00 53 00 72 8d 00 00 00 29 01 da 16 5f 63 6f 72 65 5f 6d | ....|.........S.r....)..._core_m |
| 1c880 | 61 74 72 69 78 5f 74 72 61 6e 73 70 6f 73 65 72 5b 01 00 00 73 01 00 00 00 20 72 62 00 00 00 72 | atrix_transposer[...s.....rb...r |
| 1c8a0 | 1e 00 00 00 72 1e 00 00 00 7c 0d 00 00 73 0d 00 00 00 80 00 e4 0b 21 a0 21 d3 0b 24 d0 04 24 72 | ....r....|...s........!.!..$..$r |
| 1c8c0 | 61 00 00 00 7a 51 0a 0a 20 20 20 20 4e 6f 74 65 73 0a 20 20 20 20 2d 2d 2d 2d 2d 0a 20 20 20 20 | a...zQ......Notes.....-----..... |
| 1c8e0 | 54 68 69 73 20 66 75 6e 63 74 69 6f 6e 20 69 73 20 61 6e 20 61 6c 69 61 73 20 6f 66 20 60 6e 75 | This.function.is.an.alias.of.`nu |
| 1c900 | 6d 70 79 2e 6d 61 74 72 69 78 5f 74 72 61 6e 73 70 6f 73 65 60 2e 0a 29 02 72 70 01 00 00 72 92 | mpy.matrix_transpose`..).rp...r. |
| 1c920 | 01 00 00 63 01 00 00 00 01 00 00 00 02 00 00 00 01 00 00 00 03 00 00 00 f3 08 00 00 00 97 00 7c | ...c...........................| |
| 1c940 | 00 66 01 53 00 72 8d 00 00 00 72 60 00 00 00 a9 03 72 5c 01 00 00 72 70 01 00 00 72 92 01 00 00 | .f.S.r....r`.....r\...rp...r.... |
| 1c960 | 73 03 00 00 00 20 20 20 72 62 00 00 00 da 17 5f 6d 61 74 72 69 78 5f 6e 6f 72 6d 5f 64 69 73 70 | s.......rb....._matrix_norm_disp |
| 1c980 | 61 74 63 68 65 72 72 e0 01 00 00 8b 0d 00 00 72 f2 00 00 00 72 61 00 00 00 72 95 01 00 00 63 01 | atcherr........r....ra...r....c. |
| 1c9a0 | 00 00 00 01 00 00 00 02 00 00 00 06 00 00 00 03 00 00 00 f3 36 00 00 00 97 00 74 01 00 00 00 00 | ....................6.....t..... |
| 1c9c0 | 00 00 00 00 7c 00 ab 01 00 00 00 00 00 00 7d 00 74 03 00 00 00 00 00 00 00 00 7c 00 64 01 7c 01 | ....|.........}.t.........|.d.|. |
| 1c9e0 | 7c 02 ac 02 ab 04 00 00 00 00 00 00 53 00 29 03 61 57 05 00 00 0a 20 20 20 20 43 6f 6d 70 75 74 | |...........S.).aW........Comput |
| 1ca00 | 65 73 20 74 68 65 20 6d 61 74 72 69 78 20 6e 6f 72 6d 20 6f 66 20 61 20 6d 61 74 72 69 78 20 28 | es.the.matrix.norm.of.a.matrix.( |
| 1ca20 | 6f 72 20 61 20 73 74 61 63 6b 20 6f 66 20 6d 61 74 72 69 63 65 73 29 20 60 60 78 60 60 2e 0a 0a | or.a.stack.of.matrices).``x``... |
| 1ca40 | 20 20 20 20 54 68 69 73 20 66 75 6e 63 74 69 6f 6e 20 69 73 20 41 72 72 61 79 20 41 50 49 20 63 | ....This.function.is.Array.API.c |
| 1ca60 | 6f 6d 70 61 74 69 62 6c 65 2e 0a 0a 20 20 20 20 50 61 72 61 6d 65 74 65 72 73 0a 20 20 20 20 2d | ompatible.......Parameters.....- |
| 1ca80 | 2d 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 78 20 3a 20 61 72 72 61 79 5f 6c 69 6b 65 0a 20 20 20 | ---------.....x.:.array_like.... |
| 1caa0 | 20 20 20 20 20 49 6e 70 75 74 20 61 72 72 61 79 20 68 61 76 69 6e 67 20 73 68 61 70 65 20 28 2e | .....Input.array.having.shape.(. |
| 1cac0 | 2e 2e 2c 20 4d 2c 20 4e 29 20 61 6e 64 20 77 68 6f 73 65 20 74 77 6f 20 69 6e 6e 65 72 6d 6f 73 | ..,.M,.N).and.whose.two.innermos |
| 1cae0 | 74 0a 20 20 20 20 20 20 20 20 64 69 6d 65 6e 73 69 6f 6e 73 20 66 6f 72 6d 20 60 60 4d 78 4e 60 | t.........dimensions.form.``MxN` |
| 1cb00 | 60 20 6d 61 74 72 69 63 65 73 2e 0a 20 20 20 20 6b 65 65 70 64 69 6d 73 20 3a 20 62 6f 6f 6c 2c | `.matrices......keepdims.:.bool, |
| 1cb20 | 20 6f 70 74 69 6f 6e 61 6c 0a 20 20 20 20 20 20 20 20 49 66 20 74 68 69 73 20 69 73 20 73 65 74 | .optional.........If.this.is.set |
| 1cb40 | 20 74 6f 20 54 72 75 65 2c 20 74 68 65 20 61 78 65 73 20 77 68 69 63 68 20 61 72 65 20 6e 6f 72 | .to.True,.the.axes.which.are.nor |
| 1cb60 | 6d 65 64 20 6f 76 65 72 20 61 72 65 20 6c 65 66 74 20 69 6e 0a 20 20 20 20 20 20 20 20 74 68 65 | med.over.are.left.in.........the |
| 1cb80 | 20 72 65 73 75 6c 74 20 61 73 20 64 69 6d 65 6e 73 69 6f 6e 73 20 77 69 74 68 20 73 69 7a 65 20 | .result.as.dimensions.with.size. |
| 1cba0 | 6f 6e 65 2e 20 44 65 66 61 75 6c 74 3a 20 46 61 6c 73 65 2e 0a 20 20 20 20 6f 72 64 20 3a 20 7b | one..Default:.False......ord.:.{ |
| 1cbc0 | 31 2c 20 2d 31 2c 20 32 2c 20 2d 32 2c 20 69 6e 66 2c 20 2d 69 6e 66 2c 20 27 66 72 6f 27 2c 20 | 1,.-1,.2,.-2,.inf,.-inf,.'fro',. |
| 1cbe0 | 27 6e 75 63 27 7d 2c 20 6f 70 74 69 6f 6e 61 6c 0a 20 20 20 20 20 20 20 20 54 68 65 20 6f 72 64 | 'nuc'},.optional.........The.ord |
| 1cc00 | 65 72 20 6f 66 20 74 68 65 20 6e 6f 72 6d 2e 20 46 6f 72 20 64 65 74 61 69 6c 73 20 73 65 65 20 | er.of.the.norm..For.details.see. |
| 1cc20 | 74 68 65 20 74 61 62 6c 65 20 75 6e 64 65 72 20 60 60 4e 6f 74 65 73 60 60 0a 20 20 20 20 20 20 | the.table.under.``Notes``....... |
| 1cc40 | 20 20 69 6e 20 60 6e 75 6d 70 79 2e 6c 69 6e 61 6c 67 2e 6e 6f 72 6d 60 2e 0a 0a 20 20 20 20 53 | ..in.`numpy.linalg.norm`.......S |
| 1cc60 | 65 65 20 41 6c 73 6f 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 6e 75 6d 70 79 2e 6c | ee.Also.....--------.....numpy.l |
| 1cc80 | 69 6e 61 6c 67 2e 6e 6f 72 6d 20 3a 20 47 65 6e 65 72 69 63 20 6e 6f 72 6d 20 66 75 6e 63 74 69 | inalg.norm.:.Generic.norm.functi |
| 1cca0 | 6f 6e 0a 0a 20 20 20 20 45 78 61 6d 70 6c 65 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 | on......Examples.....--------... |
| 1ccc0 | 20 20 3e 3e 3e 20 66 72 6f 6d 20 6e 75 6d 70 79 20 69 6d 70 6f 72 74 20 6c 69 6e 61 6c 67 20 61 | ..>>>.from.numpy.import.linalg.a |
| 1cce0 | 73 20 4c 41 0a 20 20 20 20 3e 3e 3e 20 61 20 3d 20 6e 70 2e 61 72 61 6e 67 65 28 39 29 20 2d 20 | s.LA.....>>>.a.=.np.arange(9).-. |
| 1cd00 | 34 0a 20 20 20 20 3e 3e 3e 20 61 0a 20 20 20 20 61 72 72 61 79 28 5b 2d 34 2c 20 2d 33 2c 20 2d | 4.....>>>.a.....array([-4,.-3,.- |
| 1cd20 | 32 2c 20 2e 2e 2e 2c 20 20 32 2c 20 20 33 2c 20 20 34 5d 29 0a 20 20 20 20 3e 3e 3e 20 62 20 3d | 2,....,..2,..3,..4]).....>>>.b.= |
| 1cd40 | 20 61 2e 72 65 73 68 61 70 65 28 28 33 2c 20 33 29 29 0a 20 20 20 20 3e 3e 3e 20 62 0a 20 20 20 | .a.reshape((3,.3)).....>>>.b.... |
| 1cd60 | 20 61 72 72 61 79 28 5b 5b 2d 34 2c 20 2d 33 2c 20 2d 32 5d 2c 0a 20 20 20 20 20 20 20 20 20 20 | .array([[-4,.-3,.-2],........... |
| 1cd80 | 20 5b 2d 31 2c 20 20 30 2c 20 20 31 5d 2c 0a 20 20 20 20 20 20 20 20 20 20 20 5b 20 32 2c 20 20 | .[-1,..0,..1],............[.2,.. |
| 1cda0 | 33 2c 20 20 34 5d 5d 29 0a 0a 20 20 20 20 3e 3e 3e 20 4c 41 2e 6d 61 74 72 69 78 5f 6e 6f 72 6d | 3,..4]])......>>>.LA.matrix_norm |
| 1cdc0 | 28 62 29 0a 20 20 20 20 37 2e 37 34 35 39 36 36 36 39 32 34 31 34 38 33 34 0a 20 20 20 20 3e 3e | (b).....7.745966692414834.....>> |
| 1cde0 | 3e 20 4c 41 2e 6d 61 74 72 69 78 5f 6e 6f 72 6d 28 62 2c 20 6f 72 64 3d 27 66 72 6f 27 29 0a 20 | >.LA.matrix_norm(b,.ord='fro').. |
| 1ce00 | 20 20 20 37 2e 37 34 35 39 36 36 36 39 32 34 31 34 38 33 34 0a 20 20 20 20 3e 3e 3e 20 4c 41 2e | ...7.745966692414834.....>>>.LA. |
| 1ce20 | 6d 61 74 72 69 78 5f 6e 6f 72 6d 28 62 2c 20 6f 72 64 3d 6e 70 2e 69 6e 66 29 0a 20 20 20 20 39 | matrix_norm(b,.ord=np.inf).....9 |
| 1ce40 | 2e 30 0a 20 20 20 20 3e 3e 3e 20 4c 41 2e 6d 61 74 72 69 78 5f 6e 6f 72 6d 28 62 2c 20 6f 72 64 | .0.....>>>.LA.matrix_norm(b,.ord |
| 1ce60 | 3d 2d 6e 70 2e 69 6e 66 29 0a 20 20 20 20 32 2e 30 0a 0a 20 20 20 20 3e 3e 3e 20 4c 41 2e 6d 61 | =-np.inf).....2.0......>>>.LA.ma |
| 1ce80 | 74 72 69 78 5f 6e 6f 72 6d 28 62 2c 20 6f 72 64 3d 31 29 0a 20 20 20 20 37 2e 30 0a 20 20 20 20 | trix_norm(b,.ord=1).....7.0..... |
| 1cea0 | 3e 3e 3e 20 4c 41 2e 6d 61 74 72 69 78 5f 6e 6f 72 6d 28 62 2c 20 6f 72 64 3d 2d 31 29 0a 20 20 | >>>.LA.matrix_norm(b,.ord=-1)... |
| 1cec0 | 20 20 36 2e 30 0a 20 20 20 20 3e 3e 3e 20 4c 41 2e 6d 61 74 72 69 78 5f 6e 6f 72 6d 28 62 2c 20 | ..6.0.....>>>.LA.matrix_norm(b,. |
| 1cee0 | 6f 72 64 3d 32 29 0a 20 20 20 20 37 2e 33 34 38 34 36 39 32 32 38 33 34 39 35 33 34 35 0a 20 20 | ord=2).....7.3484692283495345... |
| 1cf00 | 20 20 3e 3e 3e 20 4c 41 2e 6d 61 74 72 69 78 5f 6e 6f 72 6d 28 62 2c 20 6f 72 64 3d 2d 32 29 0a | ..>>>.LA.matrix_norm(b,.ord=-2). |
| 1cf20 | 20 20 20 20 31 2e 38 35 37 30 33 33 31 38 38 35 31 39 30 35 36 33 65 2d 30 31 36 20 23 20 6d 61 | ....1.8570331885190563e-016.#.ma |
| 1cf40 | 79 20 76 61 72 79 0a 0a 20 20 20 20 72 65 01 00 00 a9 03 72 4e 01 00 00 72 70 01 00 00 72 92 01 | y.vary......re.....rN...rp...r.. |
| 1cf60 | 00 00 29 02 72 2c 00 00 00 72 12 00 00 00 72 df 01 00 00 73 03 00 00 00 20 20 20 72 62 00 00 00 | ..).r,...r....r....s.......rb... |
| 1cf80 | 72 1f 00 00 00 72 1f 00 00 00 8e 0d 00 00 73 1f 00 00 00 80 00 f4 6c 01 00 09 13 90 31 8b 0d 80 | r....r........s.......l.....1... |
| 1cfa0 | 41 dc 0b 0f 90 01 98 08 a8 38 b8 13 d4 0b 3d d0 04 3d 72 61 00 00 00 72 e2 01 00 00 63 01 00 00 | A........8....=..=ra...r....c... |
| 1cfc0 | 00 01 00 00 00 03 00 00 00 01 00 00 00 03 00 00 00 f3 08 00 00 00 97 00 7c 00 66 01 53 00 72 8d | ........................|.f.S.r. |
| 1cfe0 | 00 00 00 72 60 00 00 00 29 04 72 5c 01 00 00 72 4e 01 00 00 72 70 01 00 00 72 92 01 00 00 73 04 | ...r`...).r\...rN...rp...r....s. |
| 1d000 | 00 00 00 20 20 20 20 72 62 00 00 00 da 17 5f 76 65 63 74 6f 72 5f 6e 6f 72 6d 5f 64 69 73 70 61 | .......rb....._vector_norm_dispa |
| 1d020 | 74 63 68 65 72 72 e4 01 00 00 ca 0d 00 00 72 f2 00 00 00 72 61 00 00 00 63 01 00 00 00 01 00 00 | tcherr........r....ra...c....... |
| 1d040 | 00 03 00 00 00 09 00 00 00 03 00 00 00 f3 be 02 00 00 87 0a 97 00 74 01 00 00 00 00 00 00 00 00 | ......................t......... |
| 1d060 | 7c 00 ab 01 00 00 00 00 00 00 7d 00 74 03 00 00 00 00 00 00 00 00 7c 00 6a 04 00 00 00 00 00 00 | |.........}.t.........|.j....... |
| 1d080 | 00 00 00 00 00 00 00 00 00 00 00 00 ab 01 00 00 00 00 00 00 7d 04 7c 01 80 13 7c 00 6a 07 00 00 | ....................}.|...|.j... |
| 1d0a0 | 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ab 00 00 00 00 00 00 00 7d 00 64 01 7d 05 6e bb | ........................}.d.}.n. |
| 1d0c0 | 74 09 00 00 00 00 00 00 00 00 7c 01 74 0a 00 00 00 00 00 00 00 00 ab 02 00 00 00 00 00 00 72 a9 | t.........|.t.................r. |
| 1d0e0 | 74 0d 00 00 00 00 00 00 00 00 7c 01 7c 00 6a 0e 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 | t.........|.|.j................. |
| 1d100 | 00 00 ab 02 00 00 00 00 00 00 8a 0a 74 0b 00 00 00 00 00 00 00 00 88 0a 66 01 64 02 84 08 74 11 | ............t...........f.d...t. |
| 1d120 | 00 00 00 00 00 00 00 00 7c 00 6a 0e 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ab 01 | ........|.j..................... |
| 1d140 | 00 00 00 00 00 00 44 00 ab 00 00 00 00 00 00 00 ab 01 00 00 00 00 00 00 7d 06 7c 01 7c 06 7a 00 | ......D.................}.|.|.z. |
| 1d160 | 00 00 7d 07 74 13 00 00 00 00 00 00 00 00 7c 00 7c 07 ab 02 00 00 00 00 00 00 6a 15 00 00 00 00 | ..}.t.........|.|.........j..... |
| 1d180 | 00 00 00 00 00 00 00 00 00 00 00 00 00 00 74 17 00 00 00 00 00 00 00 00 7c 01 44 00 8f 08 63 02 | ..............t.........|.D...c. |
| 1d1a0 | 67 00 63 02 5d 11 00 00 7d 08 7c 00 6a 04 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 | g.c.]...}.|.j................... |
| 1d1c0 | 7c 08 19 00 00 00 91 02 8c 13 04 00 63 02 7d 08 74 18 00 00 00 00 00 00 00 00 ac 03 ab 02 00 00 | |...........c.}.t............... |
| 1d1e0 | 00 00 00 00 67 01 7c 06 44 00 8f 08 63 02 67 00 63 02 5d 11 00 00 7d 08 7c 00 6a 04 00 00 00 00 | ....g.|.D...c.g.c.]...}.|.j..... |
| 1d200 | 00 00 00 00 00 00 00 00 00 00 00 00 00 00 7c 08 19 00 00 00 91 02 8c 13 04 00 63 02 7d 08 a2 01 | ..............|...........c.}... |
| 1d220 | ad 06 ab 01 00 00 00 00 00 00 7d 00 64 01 7d 05 6e 02 7c 01 7d 05 74 1b 00 00 00 00 00 00 00 00 | ..........}.d.}.n.|.}.t......... |
| 1d240 | 7c 00 7c 05 7c 03 ac 04 ab 03 00 00 00 00 00 00 7d 09 7c 02 72 51 74 0d 00 00 00 00 00 00 00 00 | |.|.|...........}.|.rQt......... |
| 1d260 | 7c 01 80 14 74 11 00 00 00 00 00 00 00 00 74 1d 00 00 00 00 00 00 00 00 7c 04 ab 01 00 00 00 00 | |...t.........t.........|....... |
| 1d280 | 00 00 ab 01 00 00 00 00 00 00 6e 01 7c 01 74 1d 00 00 00 00 00 00 00 00 7c 04 ab 01 00 00 00 00 | ..........n.|.t.........|....... |
| 1d2a0 | 00 00 ab 02 00 00 00 00 00 00 7d 05 7c 05 44 00 5d 07 00 00 7d 08 64 05 7c 04 7c 08 3c 00 00 00 | ..........}.|.D.]...}.d.|.|.<... |
| 1d2c0 | 8c 09 04 00 7c 09 6a 15 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 74 0b 00 00 00 00 | ....|.j...................t..... |
| 1d2e0 | 00 00 00 00 7c 04 ab 01 00 00 00 00 00 00 ab 01 00 00 00 00 00 00 7d 09 7c 09 53 00 63 02 01 00 | ....|.................}.|.S.c... |
| 1d300 | 63 02 7d 08 77 00 63 02 01 00 63 02 7d 08 77 00 29 06 61 8e 06 00 00 0a 20 20 20 20 43 6f 6d 70 | c.}.w.c...c.}.w.).a.........Comp |
| 1d320 | 75 74 65 73 20 74 68 65 20 76 65 63 74 6f 72 20 6e 6f 72 6d 20 6f 66 20 61 20 76 65 63 74 6f 72 | utes.the.vector.norm.of.a.vector |
| 1d340 | 20 28 6f 72 20 62 61 74 63 68 20 6f 66 20 76 65 63 74 6f 72 73 29 20 60 60 78 60 60 2e 0a 0a 20 | .(or.batch.of.vectors).``x``.... |
| 1d360 | 20 20 20 54 68 69 73 20 66 75 6e 63 74 69 6f 6e 20 69 73 20 41 72 72 61 79 20 41 50 49 20 63 6f | ...This.function.is.Array.API.co |
| 1d380 | 6d 70 61 74 69 62 6c 65 2e 0a 0a 20 20 20 20 50 61 72 61 6d 65 74 65 72 73 0a 20 20 20 20 2d 2d | mpatible.......Parameters.....-- |
| 1d3a0 | 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 78 20 3a 20 61 72 72 61 79 5f 6c 69 6b 65 0a 20 20 20 20 | --------.....x.:.array_like..... |
| 1d3c0 | 20 20 20 20 49 6e 70 75 74 20 61 72 72 61 79 2e 0a 20 20 20 20 61 78 69 73 20 3a 20 7b 4e 6f 6e | ....Input.array......axis.:.{Non |
| 1d3e0 | 65 2c 20 69 6e 74 2c 20 32 2d 74 75 70 6c 65 20 6f 66 20 69 6e 74 73 7d 2c 20 6f 70 74 69 6f 6e | e,.int,.2-tuple.of.ints},.option |
| 1d400 | 61 6c 0a 20 20 20 20 20 20 20 20 49 66 20 61 6e 20 69 6e 74 65 67 65 72 2c 20 60 60 61 78 69 73 | al.........If.an.integer,.``axis |
| 1d420 | 60 60 20 73 70 65 63 69 66 69 65 73 20 74 68 65 20 61 78 69 73 20 28 64 69 6d 65 6e 73 69 6f 6e | ``.specifies.the.axis.(dimension |
| 1d440 | 29 20 61 6c 6f 6e 67 20 77 68 69 63 68 0a 20 20 20 20 20 20 20 20 74 6f 20 63 6f 6d 70 75 74 65 | ).along.which.........to.compute |
| 1d460 | 20 76 65 63 74 6f 72 20 6e 6f 72 6d 73 2e 20 49 66 20 61 6e 20 6e 2d 74 75 70 6c 65 2c 20 60 60 | .vector.norms..If.an.n-tuple,.`` |
| 1d480 | 61 78 69 73 60 60 20 73 70 65 63 69 66 69 65 73 20 74 68 65 20 61 78 65 73 0a 20 20 20 20 20 20 | axis``.specifies.the.axes....... |
| 1d4a0 | 20 20 28 64 69 6d 65 6e 73 69 6f 6e 73 29 20 61 6c 6f 6e 67 20 77 68 69 63 68 20 74 6f 20 63 6f | ..(dimensions).along.which.to.co |
| 1d4c0 | 6d 70 75 74 65 20 62 61 74 63 68 65 64 20 76 65 63 74 6f 72 20 6e 6f 72 6d 73 2e 20 49 66 20 60 | mpute.batched.vector.norms..If.` |
| 1d4e0 | 60 4e 6f 6e 65 60 60 2c 0a 20 20 20 20 20 20 20 20 74 68 65 20 76 65 63 74 6f 72 20 6e 6f 72 6d | `None``,.........the.vector.norm |
| 1d500 | 20 6d 75 73 74 20 62 65 20 63 6f 6d 70 75 74 65 64 20 6f 76 65 72 20 61 6c 6c 20 61 72 72 61 79 | .must.be.computed.over.all.array |
| 1d520 | 20 76 61 6c 75 65 73 20 28 69 2e 65 2e 2c 0a 20 20 20 20 20 20 20 20 65 71 75 69 76 61 6c 65 6e | .values.(i.e.,.........equivalen |
| 1d540 | 74 20 74 6f 20 63 6f 6d 70 75 74 69 6e 67 20 74 68 65 20 76 65 63 74 6f 72 20 6e 6f 72 6d 20 6f | t.to.computing.the.vector.norm.o |
| 1d560 | 66 20 61 20 66 6c 61 74 74 65 6e 65 64 20 61 72 72 61 79 29 2e 0a 20 20 20 20 20 20 20 20 44 65 | f.a.flattened.array)..........De |
| 1d580 | 66 61 75 6c 74 3a 20 60 60 4e 6f 6e 65 60 60 2e 0a 20 20 20 20 6b 65 65 70 64 69 6d 73 20 3a 20 | fault:.``None``......keepdims.:. |
| 1d5a0 | 62 6f 6f 6c 2c 20 6f 70 74 69 6f 6e 61 6c 0a 20 20 20 20 20 20 20 20 49 66 20 74 68 69 73 20 69 | bool,.optional.........If.this.i |
| 1d5c0 | 73 20 73 65 74 20 74 6f 20 54 72 75 65 2c 20 74 68 65 20 61 78 65 73 20 77 68 69 63 68 20 61 72 | s.set.to.True,.the.axes.which.ar |
| 1d5e0 | 65 20 6e 6f 72 6d 65 64 20 6f 76 65 72 20 61 72 65 20 6c 65 66 74 20 69 6e 0a 20 20 20 20 20 20 | e.normed.over.are.left.in....... |
| 1d600 | 20 20 74 68 65 20 72 65 73 75 6c 74 20 61 73 20 64 69 6d 65 6e 73 69 6f 6e 73 20 77 69 74 68 20 | ..the.result.as.dimensions.with. |
| 1d620 | 73 69 7a 65 20 6f 6e 65 2e 20 44 65 66 61 75 6c 74 3a 20 46 61 6c 73 65 2e 0a 20 20 20 20 6f 72 | size.one..Default:.False......or |
| 1d640 | 64 20 3a 20 7b 69 6e 74 2c 20 66 6c 6f 61 74 2c 20 69 6e 66 2c 20 2d 69 6e 66 7d 2c 20 6f 70 74 | d.:.{int,.float,.inf,.-inf},.opt |
| 1d660 | 69 6f 6e 61 6c 0a 20 20 20 20 20 20 20 20 54 68 65 20 6f 72 64 65 72 20 6f 66 20 74 68 65 20 6e | ional.........The.order.of.the.n |
| 1d680 | 6f 72 6d 2e 20 46 6f 72 20 64 65 74 61 69 6c 73 20 73 65 65 20 74 68 65 20 74 61 62 6c 65 20 75 | orm..For.details.see.the.table.u |
| 1d6a0 | 6e 64 65 72 20 60 60 4e 6f 74 65 73 60 60 0a 20 20 20 20 20 20 20 20 69 6e 20 60 6e 75 6d 70 79 | nder.``Notes``.........in.`numpy |
| 1d6c0 | 2e 6c 69 6e 61 6c 67 2e 6e 6f 72 6d 60 2e 0a 0a 20 20 20 20 53 65 65 20 41 6c 73 6f 0a 20 20 20 | .linalg.norm`.......See.Also.... |
| 1d6e0 | 20 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 6e 75 6d 70 79 2e 6c 69 6e 61 6c 67 2e 6e 6f 72 6d 20 | .--------.....numpy.linalg.norm. |
| 1d700 | 3a 20 47 65 6e 65 72 69 63 20 6e 6f 72 6d 20 66 75 6e 63 74 69 6f 6e 0a 0a 20 20 20 20 45 78 61 | :.Generic.norm.function......Exa |
| 1d720 | 6d 70 6c 65 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 3e 3e 3e 20 66 72 6f 6d 20 | mples.....--------.....>>>.from. |
| 1d740 | 6e 75 6d 70 79 20 69 6d 70 6f 72 74 20 6c 69 6e 61 6c 67 20 61 73 20 4c 41 0a 20 20 20 20 3e 3e | numpy.import.linalg.as.LA.....>> |
| 1d760 | 3e 20 61 20 3d 20 6e 70 2e 61 72 61 6e 67 65 28 39 29 20 2b 20 31 0a 20 20 20 20 3e 3e 3e 20 61 | >.a.=.np.arange(9).+.1.....>>>.a |
| 1d780 | 0a 20 20 20 20 61 72 72 61 79 28 5b 31 2c 20 32 2c 20 33 2c 20 34 2c 20 35 2c 20 36 2c 20 37 2c | .....array([1,.2,.3,.4,.5,.6,.7, |
| 1d7a0 | 20 38 2c 20 39 5d 29 0a 20 20 20 20 3e 3e 3e 20 62 20 3d 20 61 2e 72 65 73 68 61 70 65 28 28 33 | .8,.9]).....>>>.b.=.a.reshape((3 |
| 1d7c0 | 2c 20 33 29 29 0a 20 20 20 20 3e 3e 3e 20 62 0a 20 20 20 20 61 72 72 61 79 28 5b 5b 31 2c 20 32 | ,.3)).....>>>.b.....array([[1,.2 |
| 1d7e0 | 2c 20 33 5d 2c 0a 20 20 20 20 20 20 20 20 20 20 20 5b 34 2c 20 35 2c 20 36 5d 2c 0a 20 20 20 20 | ,.3],............[4,.5,.6],..... |
| 1d800 | 20 20 20 20 20 20 20 5b 37 2c 20 38 2c 20 39 5d 5d 29 0a 0a 20 20 20 20 3e 3e 3e 20 4c 41 2e 76 | .......[7,.8,.9]])......>>>.LA.v |
| 1d820 | 65 63 74 6f 72 5f 6e 6f 72 6d 28 62 29 0a 20 20 20 20 31 36 2e 38 38 31 39 34 33 30 31 36 31 33 | ector_norm(b).....16.88194301613 |
| 1d840 | 34 31 33 34 0a 20 20 20 20 3e 3e 3e 20 4c 41 2e 76 65 63 74 6f 72 5f 6e 6f 72 6d 28 62 2c 20 6f | 4134.....>>>.LA.vector_norm(b,.o |
| 1d860 | 72 64 3d 6e 70 2e 69 6e 66 29 0a 20 20 20 20 39 2e 30 0a 20 20 20 20 3e 3e 3e 20 4c 41 2e 76 65 | rd=np.inf).....9.0.....>>>.LA.ve |
| 1d880 | 63 74 6f 72 5f 6e 6f 72 6d 28 62 2c 20 6f 72 64 3d 2d 6e 70 2e 69 6e 66 29 0a 20 20 20 20 31 2e | ctor_norm(b,.ord=-np.inf).....1. |
| 1d8a0 | 30 0a 0a 20 20 20 20 3e 3e 3e 20 4c 41 2e 76 65 63 74 6f 72 5f 6e 6f 72 6d 28 62 2c 20 6f 72 64 | 0......>>>.LA.vector_norm(b,.ord |
| 1d8c0 | 3d 30 29 0a 20 20 20 20 39 2e 30 0a 20 20 20 20 3e 3e 3e 20 4c 41 2e 76 65 63 74 6f 72 5f 6e 6f | =0).....9.0.....>>>.LA.vector_no |
| 1d8e0 | 72 6d 28 62 2c 20 6f 72 64 3d 31 29 0a 20 20 20 20 34 35 2e 30 0a 20 20 20 20 3e 3e 3e 20 4c 41 | rm(b,.ord=1).....45.0.....>>>.LA |
| 1d900 | 2e 76 65 63 74 6f 72 5f 6e 6f 72 6d 28 62 2c 20 6f 72 64 3d 2d 31 29 0a 20 20 20 20 30 2e 33 35 | .vector_norm(b,.ord=-1).....0.35 |
| 1d920 | 33 34 38 35 37 36 32 33 37 39 30 31 35 33 0a 20 20 20 20 3e 3e 3e 20 4c 41 2e 76 65 63 74 6f 72 | 34857623790153.....>>>.LA.vector |
| 1d940 | 5f 6e 6f 72 6d 28 62 2c 20 6f 72 64 3d 32 29 0a 20 20 20 20 31 36 2e 38 38 31 39 34 33 30 31 36 | _norm(b,.ord=2).....16.881943016 |
| 1d960 | 31 33 34 31 33 34 0a 20 20 20 20 3e 3e 3e 20 4c 41 2e 76 65 63 74 6f 72 5f 6e 6f 72 6d 28 62 2c | 134134.....>>>.LA.vector_norm(b, |
| 1d980 | 20 6f 72 64 3d 2d 32 29 0a 20 20 20 20 30 2e 38 30 35 38 38 33 37 33 39 35 38 38 35 32 39 32 0a | .ord=-2).....0.8058837395885292. |
| 1d9a0 | 0a 20 20 20 20 72 22 00 00 00 63 01 00 00 00 00 00 00 00 00 00 00 00 03 00 00 00 33 00 00 00 f3 | .....r"...c................3.... |
| 1d9c0 | 2c 00 00 00 95 01 4b 00 01 00 97 00 7c 00 5d 0b 00 00 7d 01 7c 01 89 02 76 01 73 01 8c 08 7c 01 | ,.....K.....|.]...}.|...v.s...|. |
| 1d9e0 | 96 01 97 01 01 00 8c 0d 04 00 79 00 ad 03 77 01 72 8d 00 00 00 72 60 00 00 00 29 03 da 02 2e 30 | ..........y...w.r....r`...)....0 |
| 1da00 | 72 bb 01 00 00 da 0f 6e 6f 72 6d 61 6c 69 7a 65 64 5f 61 78 69 73 73 03 00 00 00 20 20 80 72 62 | r......normalized_axiss.......rb |
| 1da20 | 00 00 00 fa 09 3c 67 65 6e 65 78 70 72 3e 7a 1e 76 65 63 74 6f 72 5f 6e 6f 72 6d 2e 3c 6c 6f 63 | .....<genexpr>z.vector_norm.<loc |
| 1da40 | 61 6c 73 3e 2e 3c 67 65 6e 65 78 70 72 3e 13 0e 00 00 73 18 00 00 00 f8 e8 00 f8 80 00 d2 14 4a | als>.<genexpr>....s............J |
| 1da60 | 98 31 b0 11 b8 2f d2 31 49 94 51 d1 14 4a f9 73 08 00 00 00 83 09 14 01 8d 07 14 01 72 a8 00 00 | .1.../.1I.Q..J.s............r... |
| 1da80 | 00 29 02 72 4e 01 00 00 72 92 01 00 00 72 a9 00 00 00 29 0f 72 2c 00 00 00 72 cf 00 00 00 72 bc | .).rN...r....r....).r,...r....r. |
| 1daa0 | 00 00 00 72 d4 00 00 00 72 9b 01 00 00 72 9a 01 00 00 72 55 00 00 00 72 b4 00 00 00 72 d0 00 00 | ...r....r....r....rU...r....r... |
| 1dac0 | 00 da 0f 5f 63 6f 72 65 5f 74 72 61 6e 73 70 6f 73 65 72 d3 00 00 00 72 45 00 00 00 72 71 01 00 | ..._core_transposer....rE...rq.. |
| 1dae0 | 00 72 12 00 00 00 72 ad 00 00 00 29 0b 72 5c 01 00 00 72 4e 01 00 00 72 70 01 00 00 72 92 01 00 | .r....r....).r\...rN...rp...r... |
| 1db00 | 00 72 bc 00 00 00 da 05 5f 61 78 69 73 da 04 72 65 73 74 da 08 6e 65 77 73 68 61 70 65 72 bb 01 | .r......_axis..rest..newshaper.. |
| 1db20 | 00 00 72 d9 00 00 00 72 e8 01 00 00 73 0b 00 00 00 20 20 20 20 20 20 20 20 20 20 40 72 62 00 00 | ..r....r....s..............@rb.. |
| 1db40 | 00 72 20 00 00 00 72 20 00 00 00 cd 0d 00 00 73 3c 01 00 00 f8 80 00 f4 78 01 00 09 13 90 31 8b | .r....r........s<.......x.....1. |
| 1db60 | 0d 80 41 dc 0c 10 90 11 97 17 91 17 8b 4d 80 45 d8 07 0b 80 7c e0 0c 0d 8f 47 89 47 8b 49 88 01 | ..A..........M.E....|....G.G.I.. |
| 1db80 | d8 10 11 89 05 dc 09 13 90 44 9c 25 d4 09 20 f4 06 00 1b 2f a8 74 b0 51 b7 56 b1 56 d3 1a 3c 88 | .........D.%......./.t.Q.V.V..<. |
| 1dba0 | 0f dc 0f 14 d3 14 4a a4 05 a0 61 a7 66 a1 66 a3 0d d4 14 4a d3 0f 4a 88 04 d8 13 17 98 24 91 3b | ......J...a.f.f....J..J......$.; |
| 1dbc0 | 88 08 dc 0c 1b 98 41 98 78 d3 0c 28 d7 0c 30 d1 0c 30 e4 10 14 a8 24 d6 15 2f a0 51 90 61 97 67 | ......A.x..(..0..0....$../.Q.a.g |
| 1dbe0 | 91 67 98 61 93 6a d2 15 2f b4 73 d4 10 3b f0 03 03 0d 0e e0 26 2a d6 11 2b a0 11 90 21 97 27 91 | .g.a.j../.s..;......&*..+...!.'. |
| 1dc00 | 27 98 21 93 2a d2 11 2b f1 05 03 0d 0e f3 03 05 0d 0a 88 01 f0 0c 00 11 12 89 05 e0 10 14 88 05 | '.!.*..+........................ |
| 1dc20 | e4 0a 0e 88 71 90 75 a0 23 d4 0a 26 80 43 e1 07 0f f4 06 00 11 25 d8 21 25 a0 1c 8c 45 94 23 90 | ....q.u.#..&.C.......%.!%...E.#. |
| 1dc40 | 65 93 2a d4 0c 1d b0 34 bc 13 b8 55 bb 1a f3 03 02 11 0a 88 05 f0 06 00 12 17 f2 00 01 09 19 88 | e.*....4...U.................... |
| 1dc60 | 41 d8 17 18 88 45 90 21 8a 48 f0 03 01 09 19 e0 0e 11 8f 6b 89 6b 9c 25 a0 05 9b 2c d3 0e 27 88 | A....E.!.H.........k.k.%...,..'. |
| 1dc80 | 03 e0 0b 0e 80 4a f9 f2 29 00 16 30 f9 da 11 2b 73 0c 00 00 00 c2 27 16 45 15 0c c3 0e 16 45 1a | .....J..)..0...+s.....'.E.....E. |
| 1dca0 | 0a 63 02 00 00 00 02 00 00 00 01 00 00 00 02 00 00 00 03 00 00 00 f3 0a 00 00 00 97 00 7c 00 7c | .c...........................|.| |
| 1dcc0 | 01 66 02 53 00 72 8d 00 00 00 72 60 00 00 00 72 cc 01 00 00 73 03 00 00 00 20 20 20 72 62 00 00 | .f.S.r....r`...r....s.......rb.. |
| 1dce0 | 00 da 12 5f 76 65 63 64 6f 74 5f 64 69 73 70 61 74 63 68 65 72 72 ef 01 00 00 30 0e 00 00 72 15 | ..._vecdot_dispatcherr....0...r. |
| 1dd00 | 01 00 00 72 61 00 00 00 63 02 00 00 00 02 00 00 00 01 00 00 00 05 00 00 00 03 00 00 00 f3 1e 00 | ...ra...c....................... |
| 1dd20 | 00 00 97 00 74 01 00 00 00 00 00 00 00 00 7c 00 7c 01 7c 02 ac 01 ab 03 00 00 00 00 00 00 53 00 | ....t.........|.|.|...........S. |
| 1dd40 | 29 02 61 9a 04 00 00 0a 20 20 20 20 43 6f 6d 70 75 74 65 73 20 74 68 65 20 76 65 63 74 6f 72 20 | ).a.........Computes.the.vector. |
| 1dd60 | 64 6f 74 20 70 72 6f 64 75 63 74 2e 0a 0a 20 20 20 20 54 68 69 73 20 66 75 6e 63 74 69 6f 6e 20 | dot.product.......This.function. |
| 1dd80 | 69 73 20 72 65 73 74 72 69 63 74 65 64 20 74 6f 20 61 72 67 75 6d 65 6e 74 73 20 63 6f 6d 70 61 | is.restricted.to.arguments.compa |
| 1dda0 | 74 69 62 6c 65 20 77 69 74 68 20 74 68 65 20 41 72 72 61 79 20 41 50 49 2c 0a 20 20 20 20 63 6f | tible.with.the.Array.API,.....co |
| 1ddc0 | 6e 74 72 61 72 79 20 74 6f 20 3a 66 75 6e 63 3a 60 6e 75 6d 70 79 2e 76 65 63 64 6f 74 60 2e 0a | ntrary.to.:func:`numpy.vecdot`.. |
| 1dde0 | 0a 20 20 20 20 4c 65 74 20 3a 6d 61 74 68 3a 60 5c 6d 61 74 68 62 66 7b 61 7d 60 20 62 65 20 61 | .....Let.:math:`\mathbf{a}`.be.a |
| 1de00 | 20 76 65 63 74 6f 72 20 69 6e 20 60 60 78 31 60 60 20 61 6e 64 20 3a 6d 61 74 68 3a 60 5c 6d 61 | .vector.in.``x1``.and.:math:`\ma |
| 1de20 | 74 68 62 66 7b 62 7d 60 20 62 65 0a 20 20 20 20 61 20 63 6f 72 72 65 73 70 6f 6e 64 69 6e 67 20 | thbf{b}`.be.....a.corresponding. |
| 1de40 | 76 65 63 74 6f 72 20 69 6e 20 60 60 78 32 60 60 2e 20 54 68 65 20 64 6f 74 20 70 72 6f 64 75 63 | vector.in.``x2``..The.dot.produc |
| 1de60 | 74 20 69 73 20 64 65 66 69 6e 65 64 20 61 73 3a 0a 0a 20 20 20 20 2e 2e 20 6d 61 74 68 3a 3a 0a | t.is.defined.as:.........math::. |
| 1de80 | 20 20 20 20 20 20 20 5c 6d 61 74 68 62 66 7b 61 7d 20 5c 63 64 6f 74 20 5c 6d 61 74 68 62 66 7b | .......\mathbf{a}.\cdot.\mathbf{ |
| 1dea0 | 62 7d 20 3d 20 5c 73 75 6d 5f 7b 69 3d 30 7d 5e 7b 6e 2d 31 7d 20 5c 6f 76 65 72 6c 69 6e 65 7b | b}.=.\sum_{i=0}^{n-1}.\overline{ |
| 1dec0 | 61 5f 69 7d 62 5f 69 0a 0a 20 20 20 20 6f 76 65 72 20 74 68 65 20 64 69 6d 65 6e 73 69 6f 6e 20 | a_i}b_i......over.the.dimension. |
| 1dee0 | 73 70 65 63 69 66 69 65 64 20 62 79 20 60 60 61 78 69 73 60 60 20 61 6e 64 20 77 68 65 72 65 20 | specified.by.``axis``.and.where. |
| 1df00 | 3a 6d 61 74 68 3a 60 5c 6f 76 65 72 6c 69 6e 65 7b 61 5f 69 7d 60 0a 20 20 20 20 64 65 6e 6f 74 | :math:`\overline{a_i}`.....denot |
| 1df20 | 65 73 20 74 68 65 20 63 6f 6d 70 6c 65 78 20 63 6f 6e 6a 75 67 61 74 65 20 69 66 20 3a 6d 61 74 | es.the.complex.conjugate.if.:mat |
| 1df40 | 68 3a 60 61 5f 69 60 20 69 73 20 63 6f 6d 70 6c 65 78 20 61 6e 64 20 74 68 65 20 69 64 65 6e 74 | h:`a_i`.is.complex.and.the.ident |
| 1df60 | 69 74 79 0a 20 20 20 20 6f 74 68 65 72 77 69 73 65 2e 0a 0a 20 20 20 20 50 61 72 61 6d 65 74 65 | ity.....otherwise.......Paramete |
| 1df80 | 72 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 78 31 20 3a 20 61 72 72 61 79 | rs.....----------.....x1.:.array |
| 1dfa0 | 5f 6c 69 6b 65 0a 20 20 20 20 20 20 20 20 46 69 72 73 74 20 69 6e 70 75 74 20 61 72 72 61 79 2e | _like.........First.input.array. |
| 1dfc0 | 0a 20 20 20 20 78 32 20 3a 20 61 72 72 61 79 5f 6c 69 6b 65 0a 20 20 20 20 20 20 20 20 53 65 63 | .....x2.:.array_like.........Sec |
| 1dfe0 | 6f 6e 64 20 69 6e 70 75 74 20 61 72 72 61 79 2e 0a 20 20 20 20 61 78 69 73 20 3a 20 69 6e 74 2c | ond.input.array......axis.:.int, |
| 1e000 | 20 6f 70 74 69 6f 6e 61 6c 0a 20 20 20 20 20 20 20 20 41 78 69 73 20 6f 76 65 72 20 77 68 69 63 | .optional.........Axis.over.whic |
| 1e020 | 68 20 74 6f 20 63 6f 6d 70 75 74 65 20 74 68 65 20 64 6f 74 20 70 72 6f 64 75 63 74 2e 20 44 65 | h.to.compute.the.dot.product..De |
| 1e040 | 66 61 75 6c 74 3a 20 60 60 2d 31 60 60 2e 0a 0a 20 20 20 20 52 65 74 75 72 6e 73 0a 20 20 20 20 | fault:.``-1``.......Returns..... |
| 1e060 | 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 6f 75 74 70 75 74 20 3a 20 6e 64 61 72 72 61 79 0a 20 20 20 | -------.....output.:.ndarray.... |
| 1e080 | 20 20 20 20 20 54 68 65 20 76 65 63 74 6f 72 20 64 6f 74 20 70 72 6f 64 75 63 74 20 6f 66 20 74 | .....The.vector.dot.product.of.t |
| 1e0a0 | 68 65 20 69 6e 70 75 74 2e 0a 0a 20 20 20 20 53 65 65 20 41 6c 73 6f 0a 20 20 20 20 2d 2d 2d 2d | he.input.......See.Also.....---- |
| 1e0c0 | 2d 2d 2d 2d 0a 20 20 20 20 6e 75 6d 70 79 2e 76 65 63 64 6f 74 0a 0a 20 20 20 20 45 78 61 6d 70 | ----.....numpy.vecdot......Examp |
| 1e0e0 | 6c 65 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 47 65 74 20 74 68 65 20 70 72 6f | les.....--------.....Get.the.pro |
| 1e100 | 6a 65 63 74 65 64 20 73 69 7a 65 20 61 6c 6f 6e 67 20 61 20 67 69 76 65 6e 20 6e 6f 72 6d 61 6c | jected.size.along.a.given.normal |
| 1e120 | 20 66 6f 72 20 61 6e 20 61 72 72 61 79 20 6f 66 20 76 65 63 74 6f 72 73 2e 0a 0a 20 20 20 20 3e | .for.an.array.of.vectors.......> |
| 1e140 | 3e 3e 20 76 20 3d 20 6e 70 2e 61 72 72 61 79 28 5b 5b 30 2e 2c 20 35 2e 2c 20 30 2e 5d 2c 20 5b | >>.v.=.np.array([[0.,.5.,.0.],.[ |
| 1e160 | 30 2e 2c 20 30 2e 2c 20 31 30 2e 5d 2c 20 5b 30 2e 2c 20 36 2e 2c 20 38 2e 5d 5d 29 0a 20 20 20 | 0.,.0.,.10.],.[0.,.6.,.8.]]).... |
| 1e180 | 20 3e 3e 3e 20 6e 20 3d 20 6e 70 2e 61 72 72 61 79 28 5b 30 2e 2c 20 30 2e 36 2c 20 30 2e 38 5d | .>>>.n.=.np.array([0.,.0.6,.0.8] |
| 1e1a0 | 29 0a 20 20 20 20 3e 3e 3e 20 6e 70 2e 6c 69 6e 61 6c 67 2e 76 65 63 64 6f 74 28 76 2c 20 6e 29 | ).....>>>.np.linalg.vecdot(v,.n) |
| 1e1c0 | 0a 20 20 20 20 61 72 72 61 79 28 5b 20 33 2e 2c 20 20 38 2e 2c 20 31 30 2e 5d 29 0a 0a 20 20 20 | .....array([.3.,..8.,.10.])..... |
| 1e1e0 | 20 72 4d 01 00 00 29 01 da 0c 5f 63 6f 72 65 5f 76 65 63 64 6f 74 72 cc 01 00 00 73 03 00 00 00 | .rM...)..._core_vecdotr....s.... |
| 1e200 | 20 20 20 72 62 00 00 00 72 21 00 00 00 72 21 00 00 00 33 0e 00 00 73 14 00 00 00 80 00 f4 5c 01 | ...rb...r!...r!...3...s.......\. |
| 1e220 | 00 0c 18 98 02 98 42 a0 54 d4 0b 2a d0 04 2a 72 61 00 00 00 72 8d 00 00 00 29 01 72 b2 00 00 00 | ......B.T..*..*ra...r....).r.... |
| 1e240 | 29 01 72 1f 01 00 00 29 01 72 3c 01 00 00 29 03 4e 4e 4e 29 03 54 54 46 29 02 4e 4e 29 02 4e 46 | ).r....).r<...).NNN).TTF).NN).NF |
| 1e260 | 29 03 4e 4e 46 29 01 46 29 a4 72 74 00 00 00 da 07 5f 5f 61 6c 6c 5f 5f da 09 66 75 6e 63 74 6f | ).NNF).F).rt.....__all__..functo |
| 1e280 | 6f 6c 73 72 00 01 00 00 72 27 01 00 00 da 06 74 79 70 69 6e 67 72 23 00 00 00 72 24 00 00 00 da | olsr....r'.....typingr#...r$.... |
| 1e2a0 | 0b 6e 75 6d 70 79 2e 5f 63 6f 72 65 72 25 00 00 00 72 26 00 00 00 72 27 00 00 00 72 28 00 00 00 | .numpy._corer%...r&...r'...r(... |
| 1e2c0 | 72 29 00 00 00 72 2a 00 00 00 72 2b 00 00 00 72 2c 00 00 00 72 2d 00 00 00 72 2e 00 00 00 72 2f | r)...r*...r+...r,...r-...r....r/ |
| 1e2e0 | 00 00 00 72 30 00 00 00 72 31 00 00 00 72 32 00 00 00 72 33 00 00 00 72 34 00 00 00 72 35 00 00 | ...r0...r1...r2...r3...r4...r5.. |
| 1e300 | 00 72 36 00 00 00 72 37 00 00 00 72 38 00 00 00 72 39 00 00 00 72 3a 00 00 00 72 3b 00 00 00 72 | .r6...r7...r8...r9...r:...r;...r |
| 1e320 | 3c 00 00 00 72 3d 00 00 00 72 3e 00 00 00 72 3f 00 00 00 72 40 00 00 00 72 41 00 00 00 72 42 00 | <...r=...r>...r?...r@...rA...rB. |
| 1e340 | 00 00 72 43 00 00 00 72 44 00 00 00 72 45 00 00 00 72 46 00 00 00 72 47 00 00 00 72 48 00 00 00 | ..rC...rD...rE...rF...rG...rH... |
| 1e360 | 72 49 00 00 00 72 4a 00 00 00 72 4b 00 00 00 72 4c 00 00 00 72 4d 00 00 00 72 1a 00 00 00 72 cf | rI...rJ...rK...rL...rM...r....r. |
| 1e380 | 01 00 00 72 19 00 00 00 72 c5 01 00 00 72 1d 00 00 00 72 d3 01 00 00 72 1e 00 00 00 72 dd 01 00 | ...r....r....r....r....r....r... |
| 1e3a0 | 00 72 1b 00 00 00 72 1a 01 00 00 72 1c 00 00 00 72 d9 01 00 00 72 18 00 00 00 72 ca 01 00 00 72 | .r....r....r....r....r....r....r |
| 1e3c0 | 4e 00 00 00 72 ea 01 00 00 72 21 00 00 00 72 f1 01 00 00 da 0e 6e 75 6d 70 79 2e 5f 67 6c 6f 62 | N...r....r!...r......numpy._glob |
| 1e3e0 | 61 6c 73 72 4f 00 00 00 da 0d 6e 75 6d 70 79 2e 5f 74 79 70 69 6e 67 72 50 00 00 00 da 0c 6e 75 | alsrO.....numpy._typingrP.....nu |
| 1e400 | 6d 70 79 2e 5f 75 74 69 6c 73 72 51 00 00 00 da 1b 6e 75 6d 70 79 2e 6c 69 62 2e 5f 74 77 6f 64 | mpy._utilsrQ.....numpy.lib._twod |
| 1e420 | 69 6d 5f 62 61 73 65 5f 69 6d 70 6c 72 52 00 00 00 72 53 00 00 00 da 15 6e 75 6d 70 79 2e 6c 69 | im_base_implrR...rS.....numpy.li |
| 1e440 | 62 2e 61 72 72 61 79 5f 75 74 69 6c 73 72 54 00 00 00 72 55 00 00 00 da 0c 6e 75 6d 70 79 2e 6c | b.array_utilsrT...rU.....numpy.l |
| 1e460 | 69 6e 61 6c 67 72 56 00 00 00 72 58 00 00 00 72 65 00 00 00 72 67 00 00 00 72 6b 00 00 00 72 6e | inalgrV...rX...re...rg...rk...rn |
| 1e480 | 00 00 00 da 07 70 61 72 74 69 61 6c da 17 61 72 72 61 79 5f 66 75 6e 63 74 69 6f 6e 5f 64 69 73 | .....partial..array_function_dis |
| 1e4a0 | 70 61 74 63 68 da 0b 66 6f 72 74 72 61 6e 5f 69 6e 74 72 bd 00 00 00 72 16 00 00 00 72 7a 00 00 | patch..fortran_intr....r....rz.. |
| 1e4c0 | 00 72 7c 00 00 00 72 7e 00 00 00 72 80 00 00 00 72 82 00 00 00 72 84 00 00 00 72 8b 00 00 00 72 | .r|...r~...r....r....r....r....r |
| 1e4e0 | 90 00 00 00 72 92 00 00 00 72 98 00 00 00 72 96 00 00 00 72 99 00 00 00 72 a4 00 00 00 72 b0 00 | ....r....r....r....r....r....r.. |
| 1e500 | 00 00 72 b6 00 00 00 72 b9 00 00 00 72 c0 00 00 00 72 c2 00 00 00 72 c5 00 00 00 72 cc 00 00 00 | ..r....r....r....r....r....r.... |
| 1e520 | 72 04 00 00 00 72 db 00 00 00 72 03 00 00 00 72 f1 00 00 00 72 05 00 00 00 72 f7 00 00 00 72 06 | r....r....r....r....r....r....r. |
| 1e540 | 00 00 00 72 fd 00 00 00 72 02 00 00 00 72 0c 01 00 00 72 07 00 00 00 72 14 01 00 00 72 1d 01 00 | ...r....r....r....r....r....r... |
| 1e560 | 00 72 13 00 00 00 72 08 00 00 00 72 39 01 00 00 72 09 00 00 00 72 0f 00 00 00 72 10 00 00 00 72 | .r....r....r9...r....r....r....r |
| 1e580 | 4b 01 00 00 72 0d 00 00 00 72 5d 01 00 00 72 0e 00 00 00 72 62 01 00 00 72 14 00 00 00 72 6d 01 | K...r....r]...r....rb...r....rm. |
| 1e5a0 | 00 00 72 15 00 00 00 72 76 01 00 00 72 0a 00 00 00 72 0b 00 00 00 72 0c 00 00 00 72 80 01 00 00 | ..r....rv...r....r....r....r.... |
| 1e5c0 | 72 11 00 00 00 72 90 01 00 00 72 93 01 00 00 72 12 00 00 00 72 a7 01 00 00 72 17 00 00 00 72 aa | r....r....r....r....r....r....r. |
| 1e5e0 | 01 00 00 72 ab 01 00 00 72 ac 01 00 00 72 c1 01 00 00 72 c8 01 00 00 72 cd 01 00 00 72 d1 01 00 | ...r....r....r....r....r....r... |
| 1e600 | 00 72 d7 01 00 00 72 db 01 00 00 72 e0 01 00 00 72 1f 00 00 00 72 e4 01 00 00 72 20 00 00 00 72 | .r....r....r....r....r....r....r |
| 1e620 | ef 01 00 00 72 60 00 00 00 72 61 00 00 00 72 62 00 00 00 fa 08 3c 6d 6f 64 75 6c 65 3e 72 ff 01 | ....r`...ra...rb.....<module>r.. |
| 1e640 | 00 00 01 00 00 00 73 6f 06 00 00 f0 03 01 01 01 f1 02 09 01 04 f2 16 05 0b 33 80 07 f3 0e 00 01 | ......so.................3...... |
| 1e660 | 11 db 00 0f db 00 0f df 00 22 f7 04 2a 01 02 f7 00 2a 01 02 f7 00 2a 01 02 f7 00 2a 01 02 f7 00 | ........."..*....*....*....*.... |
| 1e680 | 2a 01 02 f7 00 2a 01 02 f7 00 2a 01 02 f7 00 2a 01 02 f7 00 2a 01 02 f7 00 2a 01 02 f5 00 2a 01 | *....*....*....*....*....*....*. |
| 1e6a0 | 02 f5 56 01 02 01 02 f5 06 02 01 02 f5 06 02 01 02 f5 06 02 01 02 f5 06 02 01 02 f5 06 02 01 02 | ..V............................. |
| 1e6c0 | f5 06 02 01 02 f5 06 02 01 02 f5 06 02 01 02 f5 06 00 01 24 dd 00 21 dd 00 23 df 00 31 df 00 4c | ...................$..!..#..1..L |
| 1e6e0 | dd 00 26 f4 06 02 01 1f 90 0a f4 00 02 01 1f f4 08 02 01 1f 90 1a f4 00 02 01 1f f4 08 02 01 14 | ..&............................. |
| 1e700 | 88 7a f4 00 02 01 14 f4 08 02 01 1c 90 4a f4 00 02 01 1c f4 08 03 01 15 90 0a f4 00 03 01 15 f0 | .z...........J.................. |
| 1e720 | 0c 00 1b 2c 98 29 d7 1a 2b d1 1a 2b d8 04 0d d7 04 25 d1 04 25 a8 6e f4 03 02 1b 02 d0 00 17 f0 | ...,.)..+..+.....%..%.n......... |
| 1e740 | 0a 00 0f 13 80 0b f1 06 00 02 0c 88 4e d3 01 1b f4 02 1a 01 08 90 2a f3 00 1a 01 08 f3 03 00 02 | ............N.........*......... |
| 1e760 | 1c f0 02 1a 01 08 f2 3a 01 01 29 f2 06 01 01 39 f2 06 01 01 36 f2 06 01 01 2e f2 06 01 01 46 01 | .......:..)....9....6.........F. |
| 1e780 | f2 06 02 01 2a f2 0a 03 01 15 f2 0a 01 01 2a f0 08 00 14 1a 98 36 d8 13 19 98 36 d8 13 1a 98 46 | ....*.........*......6....6....F |
| 1e7a0 | d8 13 1a 98 46 f0 07 03 13 24 80 0f f0 0a 00 17 1d 98 67 d8 16 1c 98 67 d8 16 1d 98 77 d8 16 1d | ....F....$........g....g....w... |
| 1e7c0 | 98 77 f0 07 03 16 28 d0 00 12 f0 0a 00 1a 20 f3 00 01 01 2b f0 06 00 1d 24 f3 00 01 01 2e f2 06 | .w....(............+....$....... |
| 1e7e0 | 15 01 23 f2 30 0a 01 13 f2 1a 04 01 30 f2 0c 04 01 39 f2 0c 08 01 4f 01 f2 14 03 01 45 01 f2 0a | ..#.0.......0....9....O.....E... |
| 1e800 | 02 01 37 f2 0a 0f 01 1f f3 26 01 01 12 f1 08 00 02 19 d0 19 30 d3 01 31 f2 02 4b 01 01 0f f3 03 | ..7......&..........0..1..K..... |
| 1e820 | 00 02 32 f0 02 4b 01 01 0f f2 5c 02 01 01 12 f1 08 00 02 19 d0 19 2a d3 01 2b f1 02 5a 01 01 30 | ..2..K....\...........*..+..Z..0 |
| 1e840 | f3 03 00 02 2c f0 02 5a 01 01 30 f3 7a 02 01 01 10 f1 08 00 02 19 d0 19 2e d3 01 2f f2 02 43 01 | ....,..Z..0.z............../..C. |
| 1e860 | 01 21 f3 03 00 02 30 f0 02 43 01 01 21 f2 50 02 01 01 10 f1 08 00 02 19 d0 19 2a d3 01 2b f1 02 | .!....0..C..!.P...........*..+.. |
| 1e880 | 70 01 01 33 f3 03 00 02 2c f0 02 70 01 01 33 f2 66 03 01 01 10 f1 08 00 02 19 d0 19 31 d3 01 32 | p..3....,..p..3.f...........1..2 |
| 1e8a0 | f1 02 70 01 01 12 f3 03 00 02 33 f0 02 70 01 01 12 f0 6a 03 00 29 2d f4 00 01 01 10 f1 08 00 02 | ..p.......3..p....j..)-......... |
| 1e8c0 | 19 d0 19 2d d3 01 2e d8 1c 21 f3 00 62 01 01 30 f3 03 00 02 2f f0 02 62 01 01 30 f2 50 03 01 01 | ...-.....!..b..0..../..b..0.P... |
| 1e8e0 | 14 f1 08 00 02 19 d0 19 2a d3 01 2b f1 02 43 01 01 29 f3 03 00 02 2c f0 02 43 01 01 29 f3 52 02 | ........*..+..C..)....,..C..).R. |
| 1e900 | 01 01 10 f1 08 00 02 19 98 1e d3 01 28 f2 02 47 03 01 26 f3 03 00 02 29 f0 02 47 03 01 26 f1 58 | ............(..G..&....)..G..&.X |
| 1e920 | 06 00 02 19 d0 19 2a d3 01 2b f1 02 57 01 01 2a f3 03 00 02 2c f0 02 57 01 01 2a f3 74 02 01 01 | ......*..+..W..*....,..W..*.t... |
| 1e940 | 10 f1 08 00 02 19 d0 19 2d d3 01 2e f2 02 5a 01 01 35 f3 03 00 02 2f f0 02 5a 01 01 35 f1 40 03 | ........-.....Z..5..../..Z..5.@. |
| 1e960 | 00 02 19 d0 19 2a d3 01 2b f1 02 55 02 01 3f f3 03 00 02 2c f0 02 55 02 01 3f f1 70 04 00 02 19 | .....*..+..U..?....,..U..?.p.... |
| 1e980 | d0 19 2d d3 01 2e f2 02 4f 02 01 23 f3 03 00 02 2f f0 02 4f 02 01 23 f3 68 04 01 01 10 f1 08 00 | ..-.....O..#..../..O..#.h....... |
| 1e9a0 | 02 19 98 1f d3 01 29 f2 02 78 02 01 11 f3 03 00 02 2a f0 02 78 02 01 11 f2 76 05 01 01 10 f1 08 | ......)..x.......*..x....v...... |
| 1e9c0 | 00 02 19 d0 19 2c d3 01 2d f1 02 2e 01 35 f3 03 00 02 2e f0 02 2e 01 35 f3 62 01 01 01 10 f1 08 | .....,..-....5.........5.b...... |
| 1e9e0 | 00 02 19 d0 19 29 d3 01 2a f2 02 74 01 01 0d f3 03 00 02 2b f0 02 74 01 01 0d f0 6e 03 01 01 10 | .....)..*..t.......+..t....n.... |
| 1ea00 | c0 14 f4 00 01 01 10 f1 08 00 02 19 d0 19 30 d3 01 31 f0 02 6c 01 01 2b b0 64 f3 00 6c 01 01 2b | ..............0..1..l..+.d..l..+ |
| 1ea20 | f3 03 00 02 32 f0 02 6c 01 01 2b f0 62 03 01 01 10 b8 44 f4 00 01 01 10 f1 08 00 02 19 d0 19 29 | ....2..l..+.b.....D............) |
| 1ea40 | d3 01 2a f0 02 6f 01 01 15 b0 18 f3 00 6f 01 01 15 f3 03 00 02 2b f0 02 6f 01 01 15 f1 6a 03 00 | ..*..o.......o.......+..o....j.. |
| 1ea60 | 02 19 d0 19 2a d3 01 2b f1 02 50 01 01 27 f3 03 00 02 2c f0 02 50 01 01 27 f1 66 02 00 02 19 d0 | ....*..+..P..'....,..P..'.f..... |
| 1ea80 | 19 2a d3 01 2b f1 02 34 01 0d f3 03 00 02 2c f0 02 34 01 0d f3 72 01 01 01 12 f1 08 00 02 19 d0 | .*..+..4......,..4...r.......... |
| 1eaa0 | 19 2a d3 01 2b f2 02 51 02 01 2a f3 03 00 02 2c f0 02 51 02 01 2a f3 68 04 19 01 12 f3 38 01 01 | .*..+..Q..*....,..Q..*.h.....8.. |
| 1eac0 | 10 f1 08 00 02 19 d0 19 29 d3 01 2a f2 02 7f 03 01 43 01 f3 03 00 02 2b f0 02 7f 03 01 43 01 f0 | ........)..*.....C.....+.....C.. |
| 1eae0 | 48 08 00 29 2d f4 00 02 01 0e f1 0a 00 02 19 d0 19 2d d3 01 2e d8 1d 21 f3 00 74 01 01 16 f3 03 | H..)-............-.....!..t..... |
| 1eb00 | 00 02 2f f0 02 74 01 01 16 f3 6e 03 12 01 2a f3 2a 26 01 29 f3 52 01 0a 01 1c f0 1e 00 2a 2e f4 | ../..t....n...*.*&.).R.......*.. |
| 1eb20 | 00 01 01 10 f1 08 00 02 19 d0 19 2d d3 01 2e d8 1d 1e f3 00 56 01 01 39 f3 03 00 02 2f f0 02 56 | ...........-........V..9..../..V |
| 1eb40 | 01 01 39 f0 76 02 00 27 2b b0 24 f4 00 01 01 10 f1 08 00 02 19 d0 19 2a d3 01 2b d8 1a 1b a0 34 | ..9.v..'+.$............*..+....4 |
| 1eb60 | f3 00 4b 01 01 43 01 f3 03 00 02 2c f0 02 4b 01 01 43 01 f0 60 02 00 2a 2e f4 00 01 01 15 f1 08 | ..K..C.....,..K..C..`..*........ |
| 1eb80 | 00 02 19 d0 19 2a d3 01 2b d8 1d 1f f3 00 45 01 01 2a f3 03 00 02 2c f0 02 45 01 01 2a f2 54 02 | .....*..+.....E..*....,..E..*.T. |
| 1eba0 | 01 01 14 f1 08 00 02 19 d0 19 2b d3 01 2c f1 02 50 01 01 20 f3 03 00 02 2d f0 02 50 01 01 20 f0 | ..........+..,..P.......-..P.... |
| 1ebc0 | 6a 02 00 2e 32 f4 00 01 01 14 f1 08 00 02 19 d0 19 2e d3 01 2f d8 21 22 f3 00 01 01 2e f3 03 00 | j...2.............../.!"........ |
| 1ebe0 | 02 30 f0 02 01 01 2e f0 08 00 15 24 d7 14 2b d1 14 2b 80 09 d4 00 11 f2 0a 01 01 10 f1 06 00 02 | .0.........$..+..+.............. |
| 1ec00 | 19 d0 19 35 d3 01 36 f1 02 01 01 25 f3 03 00 02 37 f0 02 01 01 25 f0 08 00 21 37 d7 20 3e d1 20 | ...5..6....%....7....%...!7..>.. |
| 1ec20 | 3e d0 1f 3f f0 00 05 40 01 01 f0 00 05 1c 04 d0 00 10 d4 00 18 f0 14 00 2f 33 b8 04 f4 00 01 01 | >..?...@................/3...... |
| 1ec40 | 10 f1 06 00 02 19 d0 19 30 d3 01 31 d8 22 27 a8 55 f3 00 36 01 3e f3 03 00 02 32 f0 02 36 01 3e | ........0..1."'.U..6.>....2..6.> |
| 1ec60 | f0 76 01 00 2b 2f b8 14 c0 34 f4 00 01 01 10 f1 06 00 02 19 d0 19 30 d3 01 31 d8 1e 22 a8 55 b8 | .v..+/...4............0..1..".U. |
| 1ec80 | 01 f3 00 5d 01 01 0f f3 03 00 02 32 f0 02 5d 01 01 0f f0 44 03 00 2b 2f f4 00 01 01 14 f1 06 00 | ...].......2..]....D..+/........ |
| 1eca0 | 02 19 d0 19 2b d3 01 2c d8 1e 20 f3 00 2d 01 2b f3 03 00 02 2d f1 02 2d 01 2b 72 61 00 00 00 | ....+..,.....-.+....-..-.+ra... |