summaryrefslogtreecommitdiff
path: root/.venv/lib/python3.12/site-packages/numpy/ma/core.pyi
blob: 089469dbe38a2125f80bb4dbfab66703c3cd4791 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
# pyright: reportIncompatibleMethodOverride=false
# ruff: noqa: ANN001, ANN002, ANN003, ANN201, ANN202 ANN204, ANN401

from collections.abc import Sequence
from typing import Any, Literal, Self, SupportsIndex, TypeAlias, overload

from _typeshed import Incomplete
from typing_extensions import TypeIs, TypeVar

import numpy as np
from numpy import (
    _HasDTypeWithRealAndImag,
    _ModeKind,
    _OrderKACF,
    _PartitionKind,
    _SortKind,
    amax,
    amin,
    bool_,
    bytes_,
    character,
    complexfloating,
    datetime64,
    dtype,
    dtypes,
    expand_dims,
    float64,
    floating,
    generic,
    int_,
    integer,
    intp,
    ndarray,
    object_,
    str_,
    timedelta64,
)
from numpy._globals import _NoValueType
from numpy._typing import (
    ArrayLike,
    NDArray,
    _AnyShape,
    _ArrayLike,
    _ArrayLikeBool_co,
    _ArrayLikeBytes_co,
    _ArrayLikeComplex_co,
    _ArrayLikeFloat_co,
    _ArrayLikeInt,
    _ArrayLikeInt_co,
    _ArrayLikeStr_co,
    _ArrayLikeString_co,
    _ArrayLikeTD64_co,
    _DTypeLikeBool,
    _IntLike_co,
    _ScalarLike_co,
    _Shape,
    _ShapeLike,
)

__all__ = [
    "MAError",
    "MaskError",
    "MaskType",
    "MaskedArray",
    "abs",
    "absolute",
    "add",
    "all",
    "allclose",
    "allequal",
    "alltrue",
    "amax",
    "amin",
    "angle",
    "anom",
    "anomalies",
    "any",
    "append",
    "arange",
    "arccos",
    "arccosh",
    "arcsin",
    "arcsinh",
    "arctan",
    "arctan2",
    "arctanh",
    "argmax",
    "argmin",
    "argsort",
    "around",
    "array",
    "asanyarray",
    "asarray",
    "bitwise_and",
    "bitwise_or",
    "bitwise_xor",
    "bool_",
    "ceil",
    "choose",
    "clip",
    "common_fill_value",
    "compress",
    "compressed",
    "concatenate",
    "conjugate",
    "convolve",
    "copy",
    "correlate",
    "cos",
    "cosh",
    "count",
    "cumprod",
    "cumsum",
    "default_fill_value",
    "diag",
    "diagonal",
    "diff",
    "divide",
    "empty",
    "empty_like",
    "equal",
    "exp",
    "expand_dims",
    "fabs",
    "filled",
    "fix_invalid",
    "flatten_mask",
    "flatten_structured_array",
    "floor",
    "floor_divide",
    "fmod",
    "frombuffer",
    "fromflex",
    "fromfunction",
    "getdata",
    "getmask",
    "getmaskarray",
    "greater",
    "greater_equal",
    "harden_mask",
    "hypot",
    "identity",
    "ids",
    "indices",
    "inner",
    "innerproduct",
    "isMA",
    "isMaskedArray",
    "is_mask",
    "is_masked",
    "isarray",
    "left_shift",
    "less",
    "less_equal",
    "log",
    "log2",
    "log10",
    "logical_and",
    "logical_not",
    "logical_or",
    "logical_xor",
    "make_mask",
    "make_mask_descr",
    "make_mask_none",
    "mask_or",
    "masked",
    "masked_array",
    "masked_equal",
    "masked_greater",
    "masked_greater_equal",
    "masked_inside",
    "masked_invalid",
    "masked_less",
    "masked_less_equal",
    "masked_not_equal",
    "masked_object",
    "masked_outside",
    "masked_print_option",
    "masked_singleton",
    "masked_values",
    "masked_where",
    "max",
    "maximum",
    "maximum_fill_value",
    "mean",
    "min",
    "minimum",
    "minimum_fill_value",
    "mod",
    "multiply",
    "mvoid",
    "ndim",
    "negative",
    "nomask",
    "nonzero",
    "not_equal",
    "ones",
    "ones_like",
    "outer",
    "outerproduct",
    "power",
    "prod",
    "product",
    "ptp",
    "put",
    "putmask",
    "ravel",
    "remainder",
    "repeat",
    "reshape",
    "resize",
    "right_shift",
    "round",
    "round_",
    "set_fill_value",
    "shape",
    "sin",
    "sinh",
    "size",
    "soften_mask",
    "sometrue",
    "sort",
    "sqrt",
    "squeeze",
    "std",
    "subtract",
    "sum",
    "swapaxes",
    "take",
    "tan",
    "tanh",
    "trace",
    "transpose",
    "true_divide",
    "var",
    "where",
    "zeros",
    "zeros_like",
]

_ShapeT = TypeVar("_ShapeT", bound=_Shape)
_ShapeT_co = TypeVar("_ShapeT_co", bound=_Shape, default=_AnyShape, covariant=True)
_DTypeT = TypeVar("_DTypeT", bound=dtype)
_DTypeT_co = TypeVar("_DTypeT_co", bound=dtype, default=dtype, covariant=True)
_ArrayT = TypeVar("_ArrayT", bound=ndarray[Any, Any])
_ScalarT = TypeVar("_ScalarT", bound=generic)
_ScalarT_co = TypeVar("_ScalarT_co", bound=generic, covariant=True)
# A subset of `MaskedArray` that can be parametrized w.r.t. `np.generic`
_MaskedArray: TypeAlias = MaskedArray[_AnyShape, dtype[_ScalarT]]
_Array1D: TypeAlias = np.ndarray[tuple[int], np.dtype[_ScalarT]]

MaskType = bool_
nomask: bool_[Literal[False]]

class MaskedArrayFutureWarning(FutureWarning): ...
class MAError(Exception): ...
class MaskError(MAError): ...

def default_fill_value(obj): ...
def minimum_fill_value(obj): ...
def maximum_fill_value(obj): ...
def set_fill_value(a, fill_value): ...
def common_fill_value(a, b): ...
@overload
def filled(a: ndarray[_ShapeT_co, _DTypeT_co], fill_value: _ScalarLike_co | None = None) -> ndarray[_ShapeT_co, _DTypeT_co]: ...
@overload
def filled(a: _ArrayLike[_ScalarT_co], fill_value: _ScalarLike_co | None = None) -> NDArray[_ScalarT_co]: ...
@overload
def filled(a: ArrayLike, fill_value: _ScalarLike_co | None = None) -> NDArray[Any]: ...
def getdata(a, subok=...): ...
get_data = getdata

def fix_invalid(a, mask=..., copy=..., fill_value=...): ...

class _MaskedUFunc:
    f: Any
    __doc__: Any
    __name__: Any
    def __init__(self, ufunc): ...

class _MaskedUnaryOperation(_MaskedUFunc):
    fill: Any
    domain: Any
    def __init__(self, mufunc, fill=..., domain=...): ...
    def __call__(self, a, *args, **kwargs): ...

class _MaskedBinaryOperation(_MaskedUFunc):
    fillx: Any
    filly: Any
    def __init__(self, mbfunc, fillx=..., filly=...): ...
    def __call__(self, a, b, *args, **kwargs): ...
    def reduce(self, target, axis=..., dtype=...): ...
    def outer(self, a, b): ...
    def accumulate(self, target, axis=...): ...

class _DomainedBinaryOperation(_MaskedUFunc):
    domain: Any
    fillx: Any
    filly: Any
    def __init__(self, dbfunc, domain, fillx=..., filly=...): ...
    def __call__(self, a, b, *args, **kwargs): ...

exp: _MaskedUnaryOperation
conjugate: _MaskedUnaryOperation
sin: _MaskedUnaryOperation
cos: _MaskedUnaryOperation
arctan: _MaskedUnaryOperation
arcsinh: _MaskedUnaryOperation
sinh: _MaskedUnaryOperation
cosh: _MaskedUnaryOperation
tanh: _MaskedUnaryOperation
abs: _MaskedUnaryOperation
absolute: _MaskedUnaryOperation
angle: _MaskedUnaryOperation
fabs: _MaskedUnaryOperation
negative: _MaskedUnaryOperation
floor: _MaskedUnaryOperation
ceil: _MaskedUnaryOperation
around: _MaskedUnaryOperation
logical_not: _MaskedUnaryOperation
sqrt: _MaskedUnaryOperation
log: _MaskedUnaryOperation
log2: _MaskedUnaryOperation
log10: _MaskedUnaryOperation
tan: _MaskedUnaryOperation
arcsin: _MaskedUnaryOperation
arccos: _MaskedUnaryOperation
arccosh: _MaskedUnaryOperation
arctanh: _MaskedUnaryOperation

add: _MaskedBinaryOperation
subtract: _MaskedBinaryOperation
multiply: _MaskedBinaryOperation
arctan2: _MaskedBinaryOperation
equal: _MaskedBinaryOperation
not_equal: _MaskedBinaryOperation
less_equal: _MaskedBinaryOperation
greater_equal: _MaskedBinaryOperation
less: _MaskedBinaryOperation
greater: _MaskedBinaryOperation
logical_and: _MaskedBinaryOperation
def alltrue(target: ArrayLike, axis: SupportsIndex | None = 0, dtype: _DTypeLikeBool | None = None) -> Incomplete: ...
logical_or: _MaskedBinaryOperation
def sometrue(target: ArrayLike, axis: SupportsIndex | None = 0, dtype: _DTypeLikeBool | None = None) -> Incomplete: ...
logical_xor: _MaskedBinaryOperation
bitwise_and: _MaskedBinaryOperation
bitwise_or: _MaskedBinaryOperation
bitwise_xor: _MaskedBinaryOperation
hypot: _MaskedBinaryOperation

divide: _DomainedBinaryOperation
true_divide: _DomainedBinaryOperation
floor_divide: _DomainedBinaryOperation
remainder: _DomainedBinaryOperation
fmod: _DomainedBinaryOperation
mod: _DomainedBinaryOperation

def make_mask_descr(ndtype): ...

@overload
def getmask(a: _ScalarLike_co) -> bool_: ...
@overload
def getmask(a: MaskedArray[_ShapeT_co, Any]) -> np.ndarray[_ShapeT_co, dtype[bool_]] | bool_: ...
@overload
def getmask(a: ArrayLike) -> NDArray[bool_] | bool_: ...

get_mask = getmask

def getmaskarray(arr): ...

# It's sufficient for `m` to have dtype with type: `type[np.bool_]`,
# which isn't necessarily a ndarray. Please open an issue if this causes issues.
def is_mask(m: object) -> TypeIs[NDArray[bool_]]: ...

def make_mask(m, copy=..., shrink=..., dtype=...): ...
def make_mask_none(newshape, dtype=...): ...
def mask_or(m1, m2, copy=..., shrink=...): ...
def flatten_mask(mask): ...
def masked_where(condition, a, copy=...): ...
def masked_greater(x, value, copy=...): ...
def masked_greater_equal(x, value, copy=...): ...
def masked_less(x, value, copy=...): ...
def masked_less_equal(x, value, copy=...): ...
def masked_not_equal(x, value, copy=...): ...
def masked_equal(x, value, copy=...): ...
def masked_inside(x, v1, v2, copy=...): ...
def masked_outside(x, v1, v2, copy=...): ...
def masked_object(x, value, copy=..., shrink=...): ...
def masked_values(x, value, rtol=..., atol=..., copy=..., shrink=...): ...
def masked_invalid(a, copy=...): ...

class _MaskedPrintOption:
    def __init__(self, display): ...
    def display(self): ...
    def set_display(self, s): ...
    def enabled(self): ...
    def enable(self, shrink=...): ...

masked_print_option: _MaskedPrintOption

def flatten_structured_array(a): ...

class MaskedIterator:
    ma: Any
    dataiter: Any
    maskiter: Any
    def __init__(self, ma): ...
    def __iter__(self): ...
    def __getitem__(self, indx): ...
    def __setitem__(self, index, value): ...
    def __next__(self): ...

class MaskedArray(ndarray[_ShapeT_co, _DTypeT_co]):
    __array_priority__: Any
    def __new__(cls, data=..., mask=..., dtype=..., copy=..., subok=..., ndmin=..., fill_value=..., keep_mask=..., hard_mask=..., shrink=..., order=...): ...
    def __array_finalize__(self, obj): ...
    def __array_wrap__(self, obj, context=..., return_scalar=...): ...
    def view(self, dtype=..., type=..., fill_value=...): ...
    def __getitem__(self, indx): ...
    def __setitem__(self, indx, value): ...
    @property
    def shape(self) -> _ShapeT_co: ...
    @shape.setter
    def shape(self: MaskedArray[_ShapeT, Any], shape: _ShapeT, /) -> None: ...
    def __setmask__(self, mask: _ArrayLikeBool_co, copy: bool = False) -> None: ...
    @property
    def mask(self) -> NDArray[MaskType] | MaskType: ...
    @mask.setter
    def mask(self, value: _ArrayLikeBool_co, /) -> None: ...
    @property
    def recordmask(self): ...
    @recordmask.setter
    def recordmask(self, mask): ...
    def harden_mask(self) -> Self: ...
    def soften_mask(self) -> Self: ...
    @property
    def hardmask(self) -> bool: ...
    def unshare_mask(self) -> Self: ...
    @property
    def sharedmask(self) -> bool: ...
    def shrink_mask(self) -> Self: ...
    @property
    def baseclass(self) -> type[NDArray[Any]]: ...
    data: Any
    @property
    def flat(self): ...
    @flat.setter
    def flat(self, value): ...
    @property
    def fill_value(self): ...
    @fill_value.setter
    def fill_value(self, value=...): ...
    get_fill_value: Any
    set_fill_value: Any
    def filled(self, /, fill_value: _ScalarLike_co | None = None) -> ndarray[_ShapeT_co, _DTypeT_co]: ...
    def compressed(self) -> ndarray[tuple[int], _DTypeT_co]: ...
    def compress(self, condition, axis=..., out=...): ...
    def __eq__(self, other): ...
    def __ne__(self, other): ...
    def __ge__(self, other: ArrayLike, /) -> _MaskedArray[bool_]: ...  # type: ignore[override]
    def __gt__(self, other: ArrayLike, /) -> _MaskedArray[bool_]: ...  # type: ignore[override]
    def __le__(self, other: ArrayLike, /) -> _MaskedArray[bool_]: ...  # type: ignore[override]
    def __lt__(self, other: ArrayLike, /) -> _MaskedArray[bool_]: ...  # type: ignore[override]
    def __add__(self, other): ...
    def __radd__(self, other): ...
    def __sub__(self, other): ...
    def __rsub__(self, other): ...
    def __mul__(self, other): ...
    def __rmul__(self, other): ...
    def __truediv__(self, other): ...
    def __rtruediv__(self, other): ...
    def __floordiv__(self, other): ...
    def __rfloordiv__(self, other): ...
    def __pow__(self, other, mod: None = None, /): ...
    def __rpow__(self, other, mod: None = None, /): ...

    # Keep in sync with `ndarray.__iadd__`
    @overload
    def __iadd__(
        self: _MaskedArray[np.bool], other: _ArrayLikeBool_co, /
    ) -> MaskedArray[_ShapeT_co, _DTypeT_co]: ...
    @overload
    def __iadd__(self: _MaskedArray[integer], other: _ArrayLikeInt_co, /) -> MaskedArray[_ShapeT_co, _DTypeT_co]: ...
    @overload
    def __iadd__(
        self: _MaskedArray[floating], other: _ArrayLikeFloat_co, /
    ) -> MaskedArray[_ShapeT_co, _DTypeT_co]: ...
    @overload
    def __iadd__(
        self: _MaskedArray[complexfloating], other: _ArrayLikeComplex_co, /
    ) -> MaskedArray[_ShapeT_co, _DTypeT_co]: ...
    @overload
    def __iadd__(
        self: _MaskedArray[timedelta64 | datetime64], other: _ArrayLikeTD64_co, /
    ) -> MaskedArray[_ShapeT_co, _DTypeT_co]: ...
    @overload
    def __iadd__(self: _MaskedArray[bytes_], other: _ArrayLikeBytes_co, /) -> MaskedArray[_ShapeT_co, _DTypeT_co]: ...
    @overload
    def __iadd__(
        self: MaskedArray[Any, dtype[str_] | dtypes.StringDType],
        other: _ArrayLikeStr_co | _ArrayLikeString_co,
        /,
    ) -> MaskedArray[_ShapeT_co, _DTypeT_co]: ...
    @overload
    def __iadd__(
        self: _MaskedArray[object_], other: Any, /
    ) -> MaskedArray[_ShapeT_co, _DTypeT_co]: ...

    # Keep in sync with `ndarray.__isub__`
    @overload
    def __isub__(self: _MaskedArray[integer], other: _ArrayLikeInt_co, /) -> MaskedArray[_ShapeT_co, _DTypeT_co]: ...
    @overload
    def __isub__(
        self: _MaskedArray[floating], other: _ArrayLikeFloat_co, /
    ) -> MaskedArray[_ShapeT_co, _DTypeT_co]: ...
    @overload
    def __isub__(
        self: _MaskedArray[complexfloating], other: _ArrayLikeComplex_co, /
    ) -> MaskedArray[_ShapeT_co, _DTypeT_co]: ...
    @overload
    def __isub__(
        self: _MaskedArray[timedelta64 | datetime64], other: _ArrayLikeTD64_co, /
    ) -> MaskedArray[_ShapeT_co, _DTypeT_co]: ...
    @overload
    def __isub__(
        self: _MaskedArray[object_], other: Any, /
    ) -> MaskedArray[_ShapeT_co, _DTypeT_co]: ...

    # Keep in sync with `ndarray.__imul__`
    @overload
    def __imul__(
        self: _MaskedArray[np.bool], other: _ArrayLikeBool_co, /
    ) -> MaskedArray[_ShapeT_co, _DTypeT_co]: ...
    @overload
    def __imul__(
        self: MaskedArray[Any, dtype[integer] | dtype[character] | dtypes.StringDType], other: _ArrayLikeInt_co, /
    ) -> MaskedArray[_ShapeT_co, _DTypeT_co]: ...
    @overload
    def __imul__(
        self: _MaskedArray[floating | timedelta64], other: _ArrayLikeFloat_co, /
    ) -> MaskedArray[_ShapeT_co, _DTypeT_co]: ...
    @overload
    def __imul__(
        self: _MaskedArray[complexfloating], other: _ArrayLikeComplex_co, /
    ) -> MaskedArray[_ShapeT_co, _DTypeT_co]: ...
    @overload
    def __imul__(
        self: _MaskedArray[object_], other: Any, /
    ) -> MaskedArray[_ShapeT_co, _DTypeT_co]: ...

    # Keep in sync with `ndarray.__ifloordiv__`
    @overload
    def __ifloordiv__(self: _MaskedArray[integer], other: _ArrayLikeInt_co, /) -> MaskedArray[_ShapeT_co, _DTypeT_co]: ...
    @overload
    def __ifloordiv__(
        self: _MaskedArray[floating | timedelta64], other: _ArrayLikeFloat_co, /
    ) -> MaskedArray[_ShapeT_co, _DTypeT_co]: ...
    @overload
    def __ifloordiv__(
        self: _MaskedArray[object_], other: Any, /
    ) -> MaskedArray[_ShapeT_co, _DTypeT_co]: ...

    # Keep in sync with `ndarray.__itruediv__`
    @overload
    def __itruediv__(
        self: _MaskedArray[floating | timedelta64], other: _ArrayLikeFloat_co, /
    ) -> MaskedArray[_ShapeT_co, _DTypeT_co]: ...
    @overload
    def __itruediv__(
        self: _MaskedArray[complexfloating],
        other: _ArrayLikeComplex_co,
        /,
    ) -> MaskedArray[_ShapeT_co, _DTypeT_co]: ...
    @overload
    def __itruediv__(
        self: _MaskedArray[object_], other: Any, /
    ) -> MaskedArray[_ShapeT_co, _DTypeT_co]: ...

    # Keep in sync with `ndarray.__ipow__`
    @overload
    def __ipow__(self: _MaskedArray[integer], other: _ArrayLikeInt_co, /) -> MaskedArray[_ShapeT_co, _DTypeT_co]: ...
    @overload
    def __ipow__(
        self: _MaskedArray[floating], other: _ArrayLikeFloat_co, /
    ) -> MaskedArray[_ShapeT_co, _DTypeT_co]: ...
    @overload
    def __ipow__(
        self: _MaskedArray[complexfloating], other: _ArrayLikeComplex_co, /
    ) -> MaskedArray[_ShapeT_co, _DTypeT_co]: ...
    @overload
    def __ipow__(
        self: _MaskedArray[object_], other: Any, /
    ) -> MaskedArray[_ShapeT_co, _DTypeT_co]: ...

    #
    @property  # type: ignore[misc]
    def imag(self: _HasDTypeWithRealAndImag[object, _ScalarT], /) -> MaskedArray[_ShapeT_co, dtype[_ScalarT]]: ...
    get_imag: Any
    @property  # type: ignore[misc]
    def real(self: _HasDTypeWithRealAndImag[_ScalarT, object], /) -> MaskedArray[_ShapeT_co, dtype[_ScalarT]]: ...
    get_real: Any

    # keep in sync with `np.ma.count`
    @overload
    def count(self, axis: None = None, keepdims: Literal[False] | _NoValueType = ...) -> int: ...
    @overload
    def count(self, axis: _ShapeLike, keepdims: bool | _NoValueType = ...) -> NDArray[int_]: ...
    @overload
    def count(self, axis: _ShapeLike | None = ..., *, keepdims: Literal[True]) -> NDArray[int_]: ...
    @overload
    def count(self, axis: _ShapeLike | None, keepdims: Literal[True]) -> NDArray[int_]: ...

    def ravel(self, order: _OrderKACF = "C") -> MaskedArray[tuple[int], _DTypeT_co]: ...
    def reshape(self, *s, **kwargs): ...
    def resize(self, newshape, refcheck=..., order=...): ...
    def put(self, indices: _ArrayLikeInt_co, values: ArrayLike, mode: _ModeKind = "raise") -> None: ...
    def ids(self) -> tuple[int, int]: ...
    def iscontiguous(self) -> bool: ...

    @overload
    def all(
        self,
        axis: None = None,
        out: None = None,
        keepdims: Literal[False] | _NoValueType = ...,
    ) -> bool_: ...
    @overload
    def all(
        self,
        axis: _ShapeLike | None = None,
        out: None = None,
        *,
        keepdims: Literal[True],
    ) -> _MaskedArray[bool_]: ...
    @overload
    def all(
        self,
        axis: _ShapeLike | None,
        out: None,
        keepdims: Literal[True],
    ) -> _MaskedArray[bool_]: ...
    @overload
    def all(
        self,
        axis: _ShapeLike | None = None,
        out: None = None,
        keepdims: bool | _NoValueType = ...,
    ) -> bool_ | _MaskedArray[bool_]: ...
    @overload
    def all(
        self,
        axis: _ShapeLike | None = None,
        *,
        out: _ArrayT,
        keepdims: bool | _NoValueType = ...,
    ) -> _ArrayT: ...
    @overload
    def all(
        self,
        axis: _ShapeLike | None,
        out: _ArrayT,
        keepdims: bool | _NoValueType = ...,
    ) -> _ArrayT: ...

    @overload
    def any(
        self,
        axis: None = None,
        out: None = None,
        keepdims: Literal[False] | _NoValueType = ...,
    ) -> bool_: ...
    @overload
    def any(
        self,
        axis: _ShapeLike | None = None,
        out: None = None,
        *,
        keepdims: Literal[True],
    ) -> _MaskedArray[bool_]: ...
    @overload
    def any(
        self,
        axis: _ShapeLike | None,
        out: None,
        keepdims: Literal[True],
    ) -> _MaskedArray[bool_]: ...
    @overload
    def any(
        self,
        axis: _ShapeLike | None = None,
        out: None = None,
        keepdims: bool | _NoValueType = ...,
    ) -> bool_ | _MaskedArray[bool_]: ...
    @overload
    def any(
        self,
        axis: _ShapeLike | None = None,
        *,
        out: _ArrayT,
        keepdims: bool | _NoValueType = ...,
    ) -> _ArrayT: ...
    @overload
    def any(
        self,
        axis: _ShapeLike | None,
        out: _ArrayT,
        keepdims: bool | _NoValueType = ...,
    ) -> _ArrayT: ...

    def nonzero(self) -> tuple[_Array1D[intp], *tuple[_Array1D[intp], ...]]: ...
    def trace(self, offset=..., axis1=..., axis2=..., dtype=..., out=...): ...
    def dot(self, b, out=..., strict=...): ...
    def sum(self, axis=..., dtype=..., out=..., keepdims=...): ...
    def cumsum(self, axis=..., dtype=..., out=...): ...
    def prod(self, axis=..., dtype=..., out=..., keepdims=...): ...
    product: Any
    def cumprod(self, axis=..., dtype=..., out=...): ...
    def mean(self, axis=..., dtype=..., out=..., keepdims=...): ...
    def anom(self, axis=..., dtype=...): ...
    def var(self, axis=..., dtype=..., out=..., ddof=..., keepdims=...): ...
    def std(self, axis=..., dtype=..., out=..., ddof=..., keepdims=...): ...
    def round(self, decimals=..., out=...): ...
    def argsort(self, axis=..., kind=..., order=..., endwith=..., fill_value=..., *, stable=...): ...

    # Keep in-sync with np.ma.argmin
    @overload  # type: ignore[override]
    def argmin(
        self,
        axis: None = None,
        fill_value: _ScalarLike_co | None = None,
        out: None = None,
        *,
        keepdims: Literal[False] | _NoValueType = ...,
    ) -> intp: ...
    @overload
    def argmin(
        self,
        axis: SupportsIndex | None = None,
        fill_value: _ScalarLike_co | None = None,
        out: None = None,
        *,
        keepdims: bool | _NoValueType = ...,
    ) -> Any: ...
    @overload
    def argmin(
        self,
        axis: SupportsIndex | None = None,
        fill_value: _ScalarLike_co | None = None,
        *,
        out: _ArrayT,
        keepdims: bool | _NoValueType = ...,
    ) -> _ArrayT: ...
    @overload
    def argmin(
        self,
        axis: SupportsIndex | None,
        fill_value: _ScalarLike_co | None,
        out: _ArrayT,
        *,
        keepdims: bool | _NoValueType = ...,
    ) -> _ArrayT: ...

    # Keep in-sync with np.ma.argmax
    @overload  # type: ignore[override]
    def argmax(
        self,
        axis: None = None,
        fill_value: _ScalarLike_co | None = None,
        out: None = None,
        *,
        keepdims: Literal[False] | _NoValueType = ...,
    ) -> intp: ...
    @overload
    def argmax(
        self,
        axis: SupportsIndex | None = None,
        fill_value: _ScalarLike_co | None = None,
        out: None = None,
        *,
        keepdims: bool | _NoValueType = ...,
    ) -> Any: ...
    @overload
    def argmax(
        self,
        axis: SupportsIndex | None = None,
        fill_value: _ScalarLike_co | None = None,
        *,
        out: _ArrayT,
        keepdims: bool | _NoValueType = ...,
    ) -> _ArrayT: ...
    @overload
    def argmax(
        self,
        axis: SupportsIndex | None,
        fill_value: _ScalarLike_co | None,
        out: _ArrayT,
        *,
        keepdims: bool | _NoValueType = ...,
    ) -> _ArrayT: ...

    #
    def sort(  # type: ignore[override]
        self,
        axis: SupportsIndex = -1,
        kind: _SortKind | None = None,
        order: str | Sequence[str] | None = None,
        endwith: bool | None = True,
        fill_value: _ScalarLike_co | None = None,
        *,
        stable: Literal[False] | None = False,
    ) -> None: ...

    #
    @overload  # type: ignore[override]
    def min(
        self: _MaskedArray[_ScalarT],
        axis: None = None,
        out: None = None,
        fill_value: _ScalarLike_co | None = None,
        keepdims: Literal[False] | _NoValueType = ...,
    ) -> _ScalarT: ...
    @overload
    def min(
        self,
        axis: _ShapeLike | None = None,
        out: None = None,
        fill_value: _ScalarLike_co | None = None,
        keepdims: bool | _NoValueType = ...
    ) -> Any: ...
    @overload
    def min(
        self,
        axis: _ShapeLike | None,
        out: _ArrayT,
        fill_value: _ScalarLike_co | None = None,
        keepdims: bool | _NoValueType = ...,
    ) -> _ArrayT: ...
    @overload
    def min(
        self,
        axis: _ShapeLike | None = None,
        *,
        out: _ArrayT,
        fill_value: _ScalarLike_co | None = None,
        keepdims: bool | _NoValueType = ...,
    ) -> _ArrayT: ...

    #
    @overload  # type: ignore[override]
    def max(
        self: _MaskedArray[_ScalarT],
        axis: None = None,
        out: None = None,
        fill_value: _ScalarLike_co | None = None,
        keepdims: Literal[False] | _NoValueType = ...,
    ) -> _ScalarT: ...
    @overload
    def max(
        self,
        axis: _ShapeLike | None = None,
        out: None = None,
        fill_value: _ScalarLike_co | None = None,
        keepdims: bool | _NoValueType = ...
    ) -> Any: ...
    @overload
    def max(
        self,
        axis: _ShapeLike | None,
        out: _ArrayT,
        fill_value: _ScalarLike_co | None = None,
        keepdims: bool | _NoValueType = ...,
    ) -> _ArrayT: ...
    @overload
    def max(
        self,
        axis: _ShapeLike | None = None,
        *,
        out: _ArrayT,
        fill_value: _ScalarLike_co | None = None,
        keepdims: bool | _NoValueType = ...,
    ) -> _ArrayT: ...

    #
    @overload
    def ptp(
        self: _MaskedArray[_ScalarT],
        axis: None = None,
        out: None = None,
        fill_value: _ScalarLike_co | None = None,
        keepdims: Literal[False] = False,
    ) -> _ScalarT: ...
    @overload
    def ptp(
        self,
        axis: _ShapeLike | None = None,
        out: None = None,
        fill_value: _ScalarLike_co | None = None,
        keepdims: bool = False,
    ) -> Any: ...
    @overload
    def ptp(
        self,
        axis: _ShapeLike | None,
        out: _ArrayT,
        fill_value: _ScalarLike_co | None = None,
        keepdims: bool = False,
    ) -> _ArrayT: ...
    @overload
    def ptp(
        self,
        axis: _ShapeLike | None = None,
        *,
        out: _ArrayT,
        fill_value: _ScalarLike_co | None = None,
        keepdims: bool = False,
    ) -> _ArrayT: ...

    #
    @overload
    def partition(
        self,
        /,
        kth: _ArrayLikeInt,
        axis: SupportsIndex = -1,
        kind: _PartitionKind = "introselect",
        order: None = None
    ) -> None: ...
    @overload
    def partition(
        self: _MaskedArray[np.void],
        /,
        kth: _ArrayLikeInt,
        axis: SupportsIndex = -1,
        kind: _PartitionKind = "introselect",
        order: str | Sequence[str] | None = None,
    ) -> None: ...

    #
    @overload
    def argpartition(
        self,
        /,
        kth: _ArrayLikeInt,
        axis: SupportsIndex | None = -1,
        kind: _PartitionKind = "introselect",
        order: None = None,
    ) -> _MaskedArray[intp]: ...
    @overload
    def argpartition(
        self: _MaskedArray[np.void],
        /,
        kth: _ArrayLikeInt,
        axis: SupportsIndex | None = -1,
        kind: _PartitionKind = "introselect",
        order: str | Sequence[str] | None = None,
    ) -> _MaskedArray[intp]: ...

    # Keep in-sync with np.ma.take
    @overload
    def take(  # type: ignore[overload-overlap]
        self: _MaskedArray[_ScalarT],
        indices: _IntLike_co,
        axis: None = None,
        out: None = None,
        mode: _ModeKind = 'raise'
    ) -> _ScalarT: ...
    @overload
    def take(
        self: _MaskedArray[_ScalarT],
        indices: _ArrayLikeInt_co,
        axis: SupportsIndex | None = None,
        out: None = None,
        mode: _ModeKind = 'raise',
    ) -> _MaskedArray[_ScalarT]: ...
    @overload
    def take(
        self,
        indices: _ArrayLikeInt_co,
        axis: SupportsIndex | None,
        out: _ArrayT,
        mode: _ModeKind = 'raise',
    ) -> _ArrayT: ...
    @overload
    def take(
        self,
        indices: _ArrayLikeInt_co,
        axis: SupportsIndex | None = None,
        *,
        out: _ArrayT,
        mode: _ModeKind = 'raise',
    ) -> _ArrayT: ...

    copy: Any
    diagonal: Any
    flatten: Any

    @overload
    def repeat(
        self,
        repeats: _ArrayLikeInt_co,
        axis: None = None,
    ) -> MaskedArray[tuple[int], _DTypeT_co]: ...
    @overload
    def repeat(
        self,
        repeats: _ArrayLikeInt_co,
        axis: SupportsIndex,
    ) -> MaskedArray[_AnyShape, _DTypeT_co]: ...

    squeeze: Any

    def swapaxes(
        self,
        axis1: SupportsIndex,
        axis2: SupportsIndex,
        /
    ) -> MaskedArray[_AnyShape, _DTypeT_co]: ...

    #
    def toflex(self) -> Incomplete: ...
    def torecords(self) -> Incomplete: ...
    def tolist(self, fill_value: Incomplete | None = None) -> Incomplete: ...
    def tobytes(self, /, fill_value: Incomplete | None = None, order: _OrderKACF = "C") -> bytes: ...  # type: ignore[override]
    def tofile(self, /, fid: Incomplete, sep: str = "", format: str = "%s") -> Incomplete: ...

    #
    def __reduce__(self): ...
    def __deepcopy__(self, memo=...): ...

    # Keep `dtype` at the bottom to avoid name conflicts with `np.dtype`
    @property
    def dtype(self) -> _DTypeT_co: ...
    @dtype.setter
    def dtype(self: MaskedArray[_AnyShape, _DTypeT], dtype: _DTypeT, /) -> None: ...

class mvoid(MaskedArray[_ShapeT_co, _DTypeT_co]):
    def __new__(
        self,  # pyright: ignore[reportSelfClsParameterName]
        data,
        mask=...,
        dtype=...,
        fill_value=...,
        hardmask=...,
        copy=...,
        subok=...,
    ): ...
    def __getitem__(self, indx): ...
    def __setitem__(self, indx, value): ...
    def __iter__(self): ...
    def __len__(self): ...
    def filled(self, fill_value=...): ...
    def tolist(self): ...

def isMaskedArray(x): ...
isarray = isMaskedArray
isMA = isMaskedArray

# 0D float64 array
class MaskedConstant(MaskedArray[_AnyShape, dtype[float64]]):
    def __new__(cls): ...
    __class__: Any
    def __array_finalize__(self, obj): ...
    def __array_wrap__(self, obj, context=..., return_scalar=...): ...
    def __format__(self, format_spec): ...
    def __reduce__(self): ...
    def __iop__(self, other): ...
    __iadd__: Any
    __isub__: Any
    __imul__: Any
    __ifloordiv__: Any
    __itruediv__: Any
    __ipow__: Any
    def copy(self, *args, **kwargs): ...
    def __copy__(self): ...
    def __deepcopy__(self, memo): ...
    def __setattr__(self, attr, value): ...

masked: MaskedConstant
masked_singleton: MaskedConstant
masked_array = MaskedArray

def array(
    data,
    dtype=...,
    copy=...,
    order=...,
    mask=...,
    fill_value=...,
    keep_mask=...,
    hard_mask=...,
    shrink=...,
    subok=...,
    ndmin=...,
): ...
def is_masked(x: object) -> bool: ...

class _extrema_operation(_MaskedUFunc):
    compare: Any
    fill_value_func: Any
    def __init__(self, ufunc, compare, fill_value): ...
    # NOTE: in practice `b` has a default value, but users should
    # explicitly provide a value here as the default is deprecated
    def __call__(self, a, b): ...
    def reduce(self, target, axis=...): ...
    def outer(self, a, b): ...

@overload
def min(
    obj: _ArrayLike[_ScalarT],
    axis: None = None,
    out: None = None,
    fill_value: _ScalarLike_co | None = None,
    keepdims: Literal[False] | _NoValueType = ...,
) -> _ScalarT: ...
@overload
def min(
    obj: ArrayLike,
    axis: _ShapeLike | None = None,
    out: None = None,
    fill_value: _ScalarLike_co | None = None,
    keepdims: bool | _NoValueType = ...
) -> Any: ...
@overload
def min(
    obj: ArrayLike,
    axis: _ShapeLike | None,
    out: _ArrayT,
    fill_value: _ScalarLike_co | None = None,
    keepdims: bool | _NoValueType = ...,
) -> _ArrayT: ...
@overload
def min(
    obj: ArrayLike,
    axis: _ShapeLike | None = None,
    *,
    out: _ArrayT,
    fill_value: _ScalarLike_co | None = None,
    keepdims: bool | _NoValueType = ...,
) -> _ArrayT: ...

@overload
def max(
    obj: _ArrayLike[_ScalarT],
    axis: None = None,
    out: None = None,
    fill_value: _ScalarLike_co | None = None,
    keepdims: Literal[False] | _NoValueType = ...,
) -> _ScalarT: ...
@overload
def max(
    obj: ArrayLike,
    axis: _ShapeLike | None = None,
    out: None = None,
    fill_value: _ScalarLike_co | None = None,
    keepdims: bool | _NoValueType = ...
) -> Any: ...
@overload
def max(
    obj: ArrayLike,
    axis: _ShapeLike | None,
    out: _ArrayT,
    fill_value: _ScalarLike_co | None = None,
    keepdims: bool | _NoValueType = ...,
) -> _ArrayT: ...
@overload
def max(
    obj: ArrayLike,
    axis: _ShapeLike | None = None,
    *,
    out: _ArrayT,
    fill_value: _ScalarLike_co | None = None,
    keepdims: bool | _NoValueType = ...,
) -> _ArrayT: ...

@overload
def ptp(
    obj: _ArrayLike[_ScalarT],
    axis: None = None,
    out: None = None,
    fill_value: _ScalarLike_co | None = None,
    keepdims: Literal[False] | _NoValueType = ...,
) -> _ScalarT: ...
@overload
def ptp(
    obj: ArrayLike,
    axis: _ShapeLike | None = None,
    out: None = None,
    fill_value: _ScalarLike_co | None = None,
    keepdims: bool | _NoValueType = ...
) -> Any: ...
@overload
def ptp(
    obj: ArrayLike,
    axis: _ShapeLike | None,
    out: _ArrayT,
    fill_value: _ScalarLike_co | None = None,
    keepdims: bool | _NoValueType = ...,
) -> _ArrayT: ...
@overload
def ptp(
    obj: ArrayLike,
    axis: _ShapeLike | None = None,
    *,
    out: _ArrayT,
    fill_value: _ScalarLike_co | None = None,
    keepdims: bool | _NoValueType = ...,
) -> _ArrayT: ...

class _frommethod:
    __name__: Any
    __doc__: Any
    reversed: Any
    def __init__(self, methodname, reversed=...): ...
    def getdoc(self): ...
    def __call__(self, a, *args, **params): ...

all: _frommethod
anomalies: _frommethod
anom: _frommethod
any: _frommethod
compress: _frommethod
cumprod: _frommethod
cumsum: _frommethod
copy: _frommethod
diagonal: _frommethod
harden_mask: _frommethod
ids: _frommethod
mean: _frommethod
nonzero: _frommethod
prod: _frommethod
product: _frommethod
ravel: _frommethod
repeat: _frommethod
soften_mask: _frommethod
std: _frommethod
sum: _frommethod
swapaxes: _frommethod
trace: _frommethod
var: _frommethod

@overload
def count(self: ArrayLike, axis: None = None, keepdims: Literal[False] | _NoValueType = ...) -> int: ...
@overload
def count(self: ArrayLike, axis: _ShapeLike, keepdims: bool | _NoValueType = ...) -> NDArray[int_]: ...
@overload
def count(self: ArrayLike, axis: _ShapeLike | None = ..., *, keepdims: Literal[True]) -> NDArray[int_]: ...
@overload
def count(self: ArrayLike, axis: _ShapeLike | None, keepdims: Literal[True]) -> NDArray[int_]: ...

@overload
def argmin(
    self: ArrayLike,
    axis: None = None,
    fill_value: _ScalarLike_co | None = None,
    out: None = None,
    *,
    keepdims: Literal[False] | _NoValueType = ...,
) -> intp: ...
@overload
def argmin(
    self: ArrayLike,
    axis: SupportsIndex | None = None,
    fill_value: _ScalarLike_co | None = None,
    out: None = None,
    *,
    keepdims: bool | _NoValueType = ...,
) -> Any: ...
@overload
def argmin(
    self: ArrayLike,
    axis: SupportsIndex | None = None,
    fill_value: _ScalarLike_co | None = None,
    *,
    out: _ArrayT,
    keepdims: bool | _NoValueType = ...,
) -> _ArrayT: ...
@overload
def argmin(
    self: ArrayLike,
    axis: SupportsIndex | None,
    fill_value: _ScalarLike_co | None,
    out: _ArrayT,
    *,
    keepdims: bool | _NoValueType = ...,
) -> _ArrayT: ...

#
@overload
def argmax(
    self: ArrayLike,
    axis: None = None,
    fill_value: _ScalarLike_co | None = None,
    out: None = None,
    *,
    keepdims: Literal[False] | _NoValueType = ...,
) -> intp: ...
@overload
def argmax(
    self: ArrayLike,
    axis: SupportsIndex | None = None,
    fill_value: _ScalarLike_co | None = None,
    out: None = None,
    *,
    keepdims: bool | _NoValueType = ...,
) -> Any: ...
@overload
def argmax(
    self: ArrayLike,
    axis: SupportsIndex | None = None,
    fill_value: _ScalarLike_co | None = None,
    *,
    out: _ArrayT,
    keepdims: bool | _NoValueType = ...,
) -> _ArrayT: ...
@overload
def argmax(
    self: ArrayLike,
    axis: SupportsIndex | None,
    fill_value: _ScalarLike_co | None,
    out: _ArrayT,
    *,
    keepdims: bool | _NoValueType = ...,
) -> _ArrayT: ...

minimum: _extrema_operation
maximum: _extrema_operation

@overload
def take(
    a: _ArrayLike[_ScalarT],
    indices: _IntLike_co,
    axis: None = None,
    out: None = None,
    mode: _ModeKind = 'raise'
) -> _ScalarT: ...
@overload
def take(
    a: _ArrayLike[_ScalarT],
    indices: _ArrayLikeInt_co,
    axis: SupportsIndex | None = None,
    out: None = None,
    mode: _ModeKind = 'raise',
) -> _MaskedArray[_ScalarT]: ...
@overload
def take(
    a: ArrayLike,
    indices: _IntLike_co,
    axis: SupportsIndex | None = None,
    out: None = None,
    mode: _ModeKind = 'raise',
) -> Any: ...
@overload
def take(
    a: ArrayLike,
    indices: _ArrayLikeInt_co,
    axis: SupportsIndex | None = None,
    out: None = None,
    mode: _ModeKind = 'raise',
) -> _MaskedArray[Any]: ...
@overload
def take(
    a: ArrayLike,
    indices: _ArrayLikeInt_co,
    axis: SupportsIndex | None,
    out: _ArrayT,
    mode: _ModeKind = 'raise',
) -> _ArrayT: ...
@overload
def take(
    a: ArrayLike,
    indices: _ArrayLikeInt_co,
    axis: SupportsIndex | None = None,
    *,
    out: _ArrayT,
    mode: _ModeKind = 'raise',
) -> _ArrayT: ...

def power(a, b, third=...): ...
def argsort(a, axis=..., kind=..., order=..., endwith=..., fill_value=..., *, stable=...): ...
@overload
def sort(
    a: _ArrayT,
    axis: SupportsIndex = -1,
    kind: _SortKind | None = None,
    order: str | Sequence[str] | None = None,
    endwith: bool | None = True,
    fill_value: _ScalarLike_co | None = None,
    *,
    stable: Literal[False] | None = False,
) -> _ArrayT: ...
@overload
def sort(
    a: ArrayLike,
    axis: SupportsIndex = -1,
    kind: _SortKind | None = None,
    order: str | Sequence[str] | None = None,
    endwith: bool | None = True,
    fill_value: _ScalarLike_co | None = None,
    *,
    stable: Literal[False] | None = False,
) -> NDArray[Any]: ...
@overload
def compressed(x: _ArrayLike[_ScalarT_co]) -> _Array1D[_ScalarT_co]: ...
@overload
def compressed(x: ArrayLike) -> _Array1D[Any]: ...
def concatenate(arrays, axis=...): ...
def diag(v, k=...): ...
def left_shift(a, n): ...
def right_shift(a, n): ...
def put(a: NDArray[Any], indices: _ArrayLikeInt_co, values: ArrayLike, mode: _ModeKind = 'raise') -> None: ...
def putmask(a: NDArray[Any], mask: _ArrayLikeBool_co, values: ArrayLike) -> None: ...
def transpose(a, axes=...): ...
def reshape(a, new_shape, order=...): ...
def resize(x, new_shape): ...
def ndim(obj: ArrayLike) -> int: ...
def shape(obj): ...
def size(obj: ArrayLike, axis: SupportsIndex | None = None) -> int: ...
def diff(a, /, n=..., axis=..., prepend=..., append=...): ...
def where(condition, x=..., y=...): ...
def choose(indices, choices, out=..., mode=...): ...
def round_(a, decimals=..., out=...): ...
round = round_

def inner(a, b): ...
innerproduct = inner

def outer(a, b): ...
outerproduct = outer

def correlate(a, v, mode=..., propagate_mask=...): ...
def convolve(a, v, mode=..., propagate_mask=...): ...

def allequal(a: ArrayLike, b: ArrayLike, fill_value: bool = True) -> bool: ...

def allclose(a: ArrayLike, b: ArrayLike, masked_equal: bool = True, rtol: float = 1e-5, atol: float = 1e-8) -> bool: ...

def asarray(a, dtype=..., order=...): ...
def asanyarray(a, dtype=...): ...
def fromflex(fxarray): ...

class _convert2ma:
    def __init__(self, /, funcname: str, np_ret: str, np_ma_ret: str, params: dict[str, Any] | None = None) -> None: ...
    def __call__(self, /, *args: object, **params: object) -> Any: ...
    def getdoc(self, /, np_ret: str, np_ma_ret: str) -> str | None: ...

arange: _convert2ma
clip: _convert2ma
empty: _convert2ma
empty_like: _convert2ma
frombuffer: _convert2ma
fromfunction: _convert2ma
identity: _convert2ma
indices: _convert2ma
ones: _convert2ma
ones_like: _convert2ma
squeeze: _convert2ma
zeros: _convert2ma
zeros_like: _convert2ma

def append(a, b, axis=...): ...
def dot(a, b, strict=..., out=...): ...
def mask_rowcols(a, axis=...): ...