| ofs | hex dump | ascii |
|---|
| 0000 | cb 0d 0d 0a 00 00 00 00 0d fd a7 68 72 f3 00 00 e3 00 00 00 00 00 00 00 00 00 00 00 00 05 00 00 | ...........hr................... |
| 0020 | 00 00 00 00 00 f3 f4 01 00 00 97 00 64 00 5a 00 64 01 64 02 6c 01 5a 02 64 01 64 02 6c 03 6d 04 | ............d.Z.d.d.l.Z.d.d.l.m. |
| 0040 | 5a 05 01 00 64 01 64 03 6c 06 6d 07 5a 07 01 00 64 04 64 05 6c 08 6d 09 5a 0a 01 00 64 04 64 06 | Z...d.d.l.m.Z...d.d.l.m.Z...d.d. |
| 0060 | 6c 0b 6d 0c 5a 0c 01 00 67 00 64 07 a2 01 5a 0d 65 0a 6a 1c 00 00 00 00 00 00 00 00 00 00 00 00 | l.m.Z...g.d...Z.e.j............. |
| 0080 | 00 00 00 00 00 00 5a 0f 64 08 84 00 5a 10 64 09 84 00 5a 11 64 0a 84 00 5a 12 64 0b 84 00 5a 13 | ......Z.d...Z.d...Z.d...Z.d...Z. |
| 00a0 | 64 0c 84 00 5a 14 64 0d 84 00 5a 15 64 0e 84 00 5a 16 64 0f 84 00 5a 17 02 00 65 02 6a 30 00 00 | d...Z.d...Z.d...Z.d...Z...e.j0.. |
| 00c0 | 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 64 10 64 11 67 02 ab 01 00 00 00 00 00 00 5a 19 | ................d.d.g.........Z. |
| 00e0 | 02 00 65 02 6a 30 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 64 01 67 01 ab 01 00 00 | ..e.j0..................d.g..... |
| 0100 | 00 00 00 00 5a 1a 02 00 65 02 6a 30 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 64 04 | ....Z...e.j0..................d. |
| 0120 | 67 01 ab 01 00 00 00 00 00 00 5a 1b 02 00 65 02 6a 30 00 00 00 00 00 00 00 00 00 00 00 00 00 00 | g.........Z...e.j0.............. |
| 0140 | 00 00 00 00 64 01 64 04 67 02 ab 01 00 00 00 00 00 00 5a 1c 64 12 84 00 5a 1d 64 13 84 00 5a 1e | ....d.d.g.........Z.d...Z.d...Z. |
| 0160 | 64 14 84 00 5a 1f 64 15 84 00 5a 20 64 16 84 00 5a 21 64 17 84 00 5a 22 64 18 84 00 5a 23 64 2e | d...Z.d...Z.d...Z!d...Z"d...Z#d. |
| 0180 | 64 19 84 01 5a 24 64 2f 64 1a 84 01 5a 25 64 04 67 00 64 01 64 04 64 01 66 05 64 1b 84 01 5a 26 | d...Z$d/d...Z%d.g.d.d.d.f.d...Z& |
| 01a0 | 64 30 64 1c 84 01 5a 27 64 1d 84 00 5a 28 64 1e 84 00 5a 29 64 1f 84 00 5a 2a 64 20 84 00 5a 2b | d0d...Z'd...Z(d...Z)d...Z*d...Z+ |
| 01c0 | 64 21 84 00 5a 2c 64 22 84 00 5a 2d 64 23 84 00 5a 2e 64 31 64 24 84 01 5a 2f 64 25 84 00 5a 30 | d!..Z,d"..Z-d#..Z.d1d$..Z/d%..Z0 |
| 01e0 | 64 26 84 00 5a 31 64 32 64 27 84 01 5a 32 64 28 84 00 5a 33 64 29 84 00 5a 34 64 2a 84 00 5a 35 | d&..Z1d2d'..Z2d(..Z3d)..Z4d*..Z5 |
| 0200 | 64 2b 84 00 5a 36 02 00 47 00 64 2c 84 00 64 2d 65 0c ab 03 00 00 00 00 00 00 5a 37 79 02 29 33 | d+..Z6..G.d,..d-e.........Z7y.)3 |
| 0220 | 61 e7 07 00 00 0a 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d | a.....========================== |
| 0240 | 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 0a 43 68 65 62 79 | ==========================.Cheby |
| 0260 | 73 68 65 76 20 53 65 72 69 65 73 20 28 3a 6d 6f 64 3a 60 6e 75 6d 70 79 2e 70 6f 6c 79 6e 6f 6d | shev.Series.(:mod:`numpy.polynom |
| 0280 | 69 61 6c 2e 63 68 65 62 79 73 68 65 76 60 29 0a 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d | ial.chebyshev`).================ |
| 02a0 | 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d | ================================ |
| 02c0 | 3d 3d 3d 3d 0a 0a 54 68 69 73 20 6d 6f 64 75 6c 65 20 70 72 6f 76 69 64 65 73 20 61 20 6e 75 6d | ====..This.module.provides.a.num |
| 02e0 | 62 65 72 20 6f 66 20 6f 62 6a 65 63 74 73 20 28 6d 6f 73 74 6c 79 20 66 75 6e 63 74 69 6f 6e 73 | ber.of.objects.(mostly.functions |
| 0300 | 29 20 75 73 65 66 75 6c 20 66 6f 72 0a 64 65 61 6c 69 6e 67 20 77 69 74 68 20 43 68 65 62 79 73 | ).useful.for.dealing.with.Chebys |
| 0320 | 68 65 76 20 73 65 72 69 65 73 2c 20 69 6e 63 6c 75 64 69 6e 67 20 61 20 60 43 68 65 62 79 73 68 | hev.series,.including.a.`Chebysh |
| 0340 | 65 76 60 20 63 6c 61 73 73 20 74 68 61 74 0a 65 6e 63 61 70 73 75 6c 61 74 65 73 20 74 68 65 20 | ev`.class.that.encapsulates.the. |
| 0360 | 75 73 75 61 6c 20 61 72 69 74 68 6d 65 74 69 63 20 6f 70 65 72 61 74 69 6f 6e 73 2e 20 20 28 47 | usual.arithmetic.operations...(G |
| 0380 | 65 6e 65 72 61 6c 20 69 6e 66 6f 72 6d 61 74 69 6f 6e 0a 6f 6e 20 68 6f 77 20 74 68 69 73 20 6d | eneral.information.on.how.this.m |
| 03a0 | 6f 64 75 6c 65 20 72 65 70 72 65 73 65 6e 74 73 20 61 6e 64 20 77 6f 72 6b 73 20 77 69 74 68 20 | odule.represents.and.works.with. |
| 03c0 | 73 75 63 68 20 70 6f 6c 79 6e 6f 6d 69 61 6c 73 20 69 73 20 69 6e 20 74 68 65 0a 64 6f 63 73 74 | such.polynomials.is.in.the.docst |
| 03e0 | 72 69 6e 67 20 66 6f 72 20 69 74 73 20 22 70 61 72 65 6e 74 22 20 73 75 62 2d 70 61 63 6b 61 67 | ring.for.its."parent".sub-packag |
| 0400 | 65 2c 20 60 6e 75 6d 70 79 2e 70 6f 6c 79 6e 6f 6d 69 61 6c 60 29 2e 0a 0a 43 6c 61 73 73 65 73 | e,.`numpy.polynomial`)...Classes |
| 0420 | 0a 2d 2d 2d 2d 2d 2d 2d 0a 0a 2e 2e 20 61 75 74 6f 73 75 6d 6d 61 72 79 3a 3a 0a 20 20 20 3a 74 | .-------.....autosummary::....:t |
| 0440 | 6f 63 74 72 65 65 3a 20 67 65 6e 65 72 61 74 65 64 2f 0a 0a 20 20 20 43 68 65 62 79 73 68 65 76 | octree:.generated/.....Chebyshev |
| 0460 | 0a 0a 0a 43 6f 6e 73 74 61 6e 74 73 0a 2d 2d 2d 2d 2d 2d 2d 2d 2d 0a 0a 2e 2e 20 61 75 74 6f 73 | ...Constants.---------.....autos |
| 0480 | 75 6d 6d 61 72 79 3a 3a 0a 20 20 20 3a 74 6f 63 74 72 65 65 3a 20 67 65 6e 65 72 61 74 65 64 2f | ummary::....:toctree:.generated/ |
| 04a0 | 0a 0a 20 20 20 63 68 65 62 64 6f 6d 61 69 6e 0a 20 20 20 63 68 65 62 7a 65 72 6f 0a 20 20 20 63 | .....chebdomain....chebzero....c |
| 04c0 | 68 65 62 6f 6e 65 0a 20 20 20 63 68 65 62 78 0a 0a 41 72 69 74 68 6d 65 74 69 63 0a 2d 2d 2d 2d | hebone....chebx..Arithmetic.---- |
| 04e0 | 2d 2d 2d 2d 2d 2d 0a 0a 2e 2e 20 61 75 74 6f 73 75 6d 6d 61 72 79 3a 3a 0a 20 20 20 3a 74 6f 63 | ------.....autosummary::....:toc |
| 0500 | 74 72 65 65 3a 20 67 65 6e 65 72 61 74 65 64 2f 0a 0a 20 20 20 63 68 65 62 61 64 64 0a 20 20 20 | tree:.generated/.....chebadd.... |
| 0520 | 63 68 65 62 73 75 62 0a 20 20 20 63 68 65 62 6d 75 6c 78 0a 20 20 20 63 68 65 62 6d 75 6c 0a 20 | chebsub....chebmulx....chebmul.. |
| 0540 | 20 20 63 68 65 62 64 69 76 0a 20 20 20 63 68 65 62 70 6f 77 0a 20 20 20 63 68 65 62 76 61 6c 0a | ..chebdiv....chebpow....chebval. |
| 0560 | 20 20 20 63 68 65 62 76 61 6c 32 64 0a 20 20 20 63 68 65 62 76 61 6c 33 64 0a 20 20 20 63 68 65 | ...chebval2d....chebval3d....che |
| 0580 | 62 67 72 69 64 32 64 0a 20 20 20 63 68 65 62 67 72 69 64 33 64 0a 0a 43 61 6c 63 75 6c 75 73 0a | bgrid2d....chebgrid3d..Calculus. |
| 05a0 | 2d 2d 2d 2d 2d 2d 2d 2d 0a 0a 2e 2e 20 61 75 74 6f 73 75 6d 6d 61 72 79 3a 3a 0a 20 20 20 3a 74 | --------.....autosummary::....:t |
| 05c0 | 6f 63 74 72 65 65 3a 20 67 65 6e 65 72 61 74 65 64 2f 0a 0a 20 20 20 63 68 65 62 64 65 72 0a 20 | octree:.generated/.....chebder.. |
| 05e0 | 20 20 63 68 65 62 69 6e 74 0a 0a 4d 69 73 63 20 46 75 6e 63 74 69 6f 6e 73 0a 2d 2d 2d 2d 2d 2d | ..chebint..Misc.Functions.------ |
| 0600 | 2d 2d 2d 2d 2d 2d 2d 2d 0a 0a 2e 2e 20 61 75 74 6f 73 75 6d 6d 61 72 79 3a 3a 0a 20 20 20 3a 74 | --------.....autosummary::....:t |
| 0620 | 6f 63 74 72 65 65 3a 20 67 65 6e 65 72 61 74 65 64 2f 0a 0a 20 20 20 63 68 65 62 66 72 6f 6d 72 | octree:.generated/.....chebfromr |
| 0640 | 6f 6f 74 73 0a 20 20 20 63 68 65 62 72 6f 6f 74 73 0a 20 20 20 63 68 65 62 76 61 6e 64 65 72 0a | oots....chebroots....chebvander. |
| 0660 | 20 20 20 63 68 65 62 76 61 6e 64 65 72 32 64 0a 20 20 20 63 68 65 62 76 61 6e 64 65 72 33 64 0a | ...chebvander2d....chebvander3d. |
| 0680 | 20 20 20 63 68 65 62 67 61 75 73 73 0a 20 20 20 63 68 65 62 77 65 69 67 68 74 0a 20 20 20 63 68 | ...chebgauss....chebweight....ch |
| 06a0 | 65 62 63 6f 6d 70 61 6e 69 6f 6e 0a 20 20 20 63 68 65 62 66 69 74 0a 20 20 20 63 68 65 62 70 74 | ebcompanion....chebfit....chebpt |
| 06c0 | 73 31 0a 20 20 20 63 68 65 62 70 74 73 32 0a 20 20 20 63 68 65 62 74 72 69 6d 0a 20 20 20 63 68 | s1....chebpts2....chebtrim....ch |
| 06e0 | 65 62 6c 69 6e 65 0a 20 20 20 63 68 65 62 32 70 6f 6c 79 0a 20 20 20 70 6f 6c 79 32 63 68 65 62 | ebline....cheb2poly....poly2cheb |
| 0700 | 0a 20 20 20 63 68 65 62 69 6e 74 65 72 70 6f 6c 61 74 65 0a 0a 53 65 65 20 61 6c 73 6f 0a 2d 2d | ....chebinterpolate..See.also.-- |
| 0720 | 2d 2d 2d 2d 2d 2d 0a 60 6e 75 6d 70 79 2e 70 6f 6c 79 6e 6f 6d 69 61 6c 60 0a 0a 4e 6f 74 65 73 | ------.`numpy.polynomial`..Notes |
| 0740 | 0a 2d 2d 2d 2d 2d 0a 54 68 65 20 69 6d 70 6c 65 6d 65 6e 74 61 74 69 6f 6e 73 20 6f 66 20 6d 75 | .-----.The.implementations.of.mu |
| 0760 | 6c 74 69 70 6c 69 63 61 74 69 6f 6e 2c 20 64 69 76 69 73 69 6f 6e 2c 20 69 6e 74 65 67 72 61 74 | ltiplication,.division,.integrat |
| 0780 | 69 6f 6e 2c 20 61 6e 64 0a 64 69 66 66 65 72 65 6e 74 69 61 74 69 6f 6e 20 75 73 65 20 74 68 65 | ion,.and.differentiation.use.the |
| 07a0 | 20 61 6c 67 65 62 72 61 69 63 20 69 64 65 6e 74 69 74 69 65 73 20 5b 31 5d 5f 3a 0a 0a 2e 2e 20 | .algebraic.identities.[1]_:..... |
| 07c0 | 6d 61 74 68 3a 3a 0a 20 20 20 20 54 5f 6e 28 78 29 20 3d 20 5c 66 72 61 63 7b 7a 5e 6e 20 2b 20 | math::.....T_n(x).=.\frac{z^n.+. |
| 07e0 | 7a 5e 7b 2d 6e 7d 7d 7b 32 7d 20 5c 5c 0a 20 20 20 20 7a 5c 66 72 61 63 7b 64 78 7d 7b 64 7a 7d | z^{-n}}{2}.\\.....z\frac{dx}{dz} |
| 0800 | 20 3d 20 5c 66 72 61 63 7b 7a 20 2d 20 7a 5e 7b 2d 31 7d 7d 7b 32 7d 2e 0a 0a 77 68 65 72 65 0a | .=.\frac{z.-.z^{-1}}{2}...where. |
| 0820 | 0a 2e 2e 20 6d 61 74 68 3a 3a 20 78 20 3d 20 5c 66 72 61 63 7b 7a 20 2b 20 7a 5e 7b 2d 31 7d 7d | ....math::.x.=.\frac{z.+.z^{-1}} |
| 0840 | 7b 32 7d 2e 0a 0a 54 68 65 73 65 20 69 64 65 6e 74 69 74 69 65 73 20 61 6c 6c 6f 77 20 61 20 43 | {2}...These.identities.allow.a.C |
| 0860 | 68 65 62 79 73 68 65 76 20 73 65 72 69 65 73 20 74 6f 20 62 65 20 65 78 70 72 65 73 73 65 64 20 | hebyshev.series.to.be.expressed. |
| 0880 | 61 73 20 61 20 66 69 6e 69 74 65 2c 0a 73 79 6d 6d 65 74 72 69 63 20 4c 61 75 72 65 6e 74 20 73 | as.a.finite,.symmetric.Laurent.s |
| 08a0 | 65 72 69 65 73 2e 20 20 49 6e 20 74 68 69 73 20 6d 6f 64 75 6c 65 2c 20 74 68 69 73 20 73 6f 72 | eries...In.this.module,.this.sor |
| 08c0 | 74 20 6f 66 20 4c 61 75 72 65 6e 74 20 73 65 72 69 65 73 0a 69 73 20 72 65 66 65 72 72 65 64 20 | t.of.Laurent.series.is.referred. |
| 08e0 | 74 6f 20 61 73 20 61 20 22 7a 2d 73 65 72 69 65 73 2e 22 0a 0a 52 65 66 65 72 65 6e 63 65 73 0a | to.as.a."z-series."..References. |
| 0900 | 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 0a 2e 2e 20 5b 31 5d 20 41 2e 20 54 2e 20 42 65 6e 6a 61 6d 69 6e | ----------....[1].A..T..Benjamin |
| 0920 | 2c 20 65 74 20 61 6c 2e 2c 20 22 43 6f 6d 62 69 6e 61 74 6f 72 69 61 6c 20 54 72 69 67 6f 6e 6f | ,.et.al.,."Combinatorial.Trigono |
| 0940 | 6d 65 74 72 79 20 77 69 74 68 20 43 68 65 62 79 73 68 65 76 0a 20 20 50 6f 6c 79 6e 6f 6d 69 61 | metry.with.Chebyshev...Polynomia |
| 0960 | 6c 73 2c 22 20 2a 4a 6f 75 72 6e 61 6c 20 6f 66 20 53 74 61 74 69 73 74 69 63 61 6c 20 50 6c 61 | ls,".*Journal.of.Statistical.Pla |
| 0980 | 6e 6e 69 6e 67 20 61 6e 64 20 49 6e 66 65 72 65 6e 63 65 20 31 34 2a 2c 20 32 30 30 38 0a 20 20 | nning.and.Inference.14*,.2008... |
| 09a0 | 28 68 74 74 70 73 3a 2f 2f 77 65 62 2e 61 72 63 68 69 76 65 2e 6f 72 67 2f 77 65 62 2f 32 30 30 | (https://web.archive.org/web/200 |
| 09c0 | 38 30 32 32 31 32 30 32 31 35 33 2f 68 74 74 70 73 3a 2f 2f 77 77 77 2e 6d 61 74 68 2e 68 6d 63 | 80221202153/https://www.math.hmc |
| 09e0 | 2e 65 64 75 2f 7e 62 65 6e 6a 61 6d 69 6e 2f 70 61 70 65 72 73 2f 43 6f 6d 62 54 72 69 67 2e 70 | .edu/~benjamin/papers/CombTrig.p |
| 0a00 | 64 66 2c 20 70 67 2e 20 34 29 0a 0a e9 00 00 00 00 4e 29 01 da 14 6e 6f 72 6d 61 6c 69 7a 65 5f | df,.pg..4).......N)...normalize_ |
| 0a20 | 61 78 69 73 5f 69 6e 64 65 78 e9 01 00 00 00 29 01 da 09 70 6f 6c 79 75 74 69 6c 73 29 01 da 0b | axis_index.....)...polyutils)... |
| 0a40 | 41 42 43 50 6f 6c 79 42 61 73 65 29 22 da 08 63 68 65 62 7a 65 72 6f da 07 63 68 65 62 6f 6e 65 | ABCPolyBase)"..chebzero..chebone |
| 0a60 | da 05 63 68 65 62 78 da 0a 63 68 65 62 64 6f 6d 61 69 6e da 08 63 68 65 62 6c 69 6e 65 da 07 63 | ..chebx..chebdomain..chebline..c |
| 0a80 | 68 65 62 61 64 64 da 07 63 68 65 62 73 75 62 da 08 63 68 65 62 6d 75 6c 78 da 07 63 68 65 62 6d | hebadd..chebsub..chebmulx..chebm |
| 0aa0 | 75 6c da 07 63 68 65 62 64 69 76 da 07 63 68 65 62 70 6f 77 da 07 63 68 65 62 76 61 6c da 07 63 | ul..chebdiv..chebpow..chebval..c |
| 0ac0 | 68 65 62 64 65 72 da 07 63 68 65 62 69 6e 74 da 09 63 68 65 62 32 70 6f 6c 79 da 09 70 6f 6c 79 | hebder..chebint..cheb2poly..poly |
| 0ae0 | 32 63 68 65 62 da 0d 63 68 65 62 66 72 6f 6d 72 6f 6f 74 73 da 0a 63 68 65 62 76 61 6e 64 65 72 | 2cheb..chebfromroots..chebvander |
| 0b00 | da 07 63 68 65 62 66 69 74 da 08 63 68 65 62 74 72 69 6d da 09 63 68 65 62 72 6f 6f 74 73 da 08 | ..chebfit..chebtrim..chebroots.. |
| 0b20 | 63 68 65 62 70 74 73 31 da 08 63 68 65 62 70 74 73 32 da 09 43 68 65 62 79 73 68 65 76 da 09 63 | chebpts1..chebpts2..Chebyshev..c |
| 0b40 | 68 65 62 76 61 6c 32 64 da 09 63 68 65 62 76 61 6c 33 64 da 0a 63 68 65 62 67 72 69 64 32 64 da | hebval2d..chebval3d..chebgrid2d. |
| 0b60 | 0a 63 68 65 62 67 72 69 64 33 64 da 0c 63 68 65 62 76 61 6e 64 65 72 32 64 da 0c 63 68 65 62 76 | .chebgrid3d..chebvander2d..chebv |
| 0b80 | 61 6e 64 65 72 33 64 da 0d 63 68 65 62 63 6f 6d 70 61 6e 69 6f 6e da 09 63 68 65 62 67 61 75 73 | ander3d..chebcompanion..chebgaus |
| 0ba0 | 73 da 0a 63 68 65 62 77 65 69 67 68 74 da 0f 63 68 65 62 69 6e 74 65 72 70 6f 6c 61 74 65 63 01 | s..chebweight..chebinterpolatec. |
| 0bc0 | 00 00 00 00 00 00 00 00 00 00 00 05 00 00 00 03 00 00 00 f3 94 00 00 00 97 00 7c 00 6a 00 00 00 | ..........................|.j... |
| 0be0 | 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 7d 01 74 03 00 00 00 00 00 00 00 00 6a 04 00 00 | ................}.t.........j... |
| 0c00 | 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 64 01 7c 01 7a 05 00 00 64 02 7a 0a 00 00 7c 00 | ................d.|.z...d.z...|. |
| 0c20 | 6a 06 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ac 03 ab 02 00 00 00 00 00 00 7d 02 | j.............................}. |
| 0c40 | 7c 00 64 01 7a 0b 00 00 7c 02 7c 01 64 02 7a 0a 00 00 64 04 1b 00 7c 02 7c 02 64 04 64 04 64 05 | |.d.z...|.|.d.z...d...|.|.d.d.d. |
| 0c60 | 85 03 19 00 00 00 7a 00 00 00 53 00 29 06 61 f5 01 00 00 43 6f 6e 76 65 72 74 20 43 68 65 62 79 | ......z...S.).a....Convert.Cheby |
| 0c80 | 73 68 65 76 20 73 65 72 69 65 73 20 74 6f 20 7a 2d 73 65 72 69 65 73 2e 0a 0a 20 20 20 20 43 6f | shev.series.to.z-series.......Co |
| 0ca0 | 6e 76 65 72 74 20 61 20 43 68 65 62 79 73 68 65 76 20 73 65 72 69 65 73 20 74 6f 20 74 68 65 20 | nvert.a.Chebyshev.series.to.the. |
| 0cc0 | 65 71 75 69 76 61 6c 65 6e 74 20 7a 2d 73 65 72 69 65 73 2e 20 54 68 65 20 72 65 73 75 6c 74 20 | equivalent.z-series..The.result. |
| 0ce0 | 69 73 0a 20 20 20 20 6e 65 76 65 72 20 61 6e 20 65 6d 70 74 79 20 61 72 72 61 79 2e 20 54 68 65 | is.....never.an.empty.array..The |
| 0d00 | 20 64 74 79 70 65 20 6f 66 20 74 68 65 20 72 65 74 75 72 6e 20 69 73 20 74 68 65 20 73 61 6d 65 | .dtype.of.the.return.is.the.same |
| 0d20 | 20 61 73 20 74 68 61 74 20 6f 66 0a 20 20 20 20 74 68 65 20 69 6e 70 75 74 2e 20 4e 6f 20 63 68 | .as.that.of.....the.input..No.ch |
| 0d40 | 65 63 6b 73 20 61 72 65 20 72 75 6e 20 6f 6e 20 74 68 65 20 61 72 67 75 6d 65 6e 74 73 20 61 73 | ecks.are.run.on.the.arguments.as |
| 0d60 | 20 74 68 69 73 20 72 6f 75 74 69 6e 65 20 69 73 20 66 6f 72 0a 20 20 20 20 69 6e 74 65 72 6e 61 | .this.routine.is.for.....interna |
| 0d80 | 6c 20 75 73 65 2e 0a 0a 20 20 20 20 50 61 72 61 6d 65 74 65 72 73 0a 20 20 20 20 2d 2d 2d 2d 2d | l.use.......Parameters.....----- |
| 0da0 | 2d 2d 2d 2d 2d 0a 20 20 20 20 63 20 3a 20 31 2d 44 20 6e 64 61 72 72 61 79 0a 20 20 20 20 20 20 | -----.....c.:.1-D.ndarray....... |
| 0dc0 | 20 20 43 68 65 62 79 73 68 65 76 20 63 6f 65 66 66 69 63 69 65 6e 74 73 2c 20 6f 72 64 65 72 65 | ..Chebyshev.coefficients,.ordere |
| 0de0 | 64 20 66 72 6f 6d 20 6c 6f 77 20 74 6f 20 68 69 67 68 0a 0a 20 20 20 20 52 65 74 75 72 6e 73 0a | d.from.low.to.high......Returns. |
| 0e00 | 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 7a 73 20 3a 20 31 2d 44 20 6e 64 61 72 72 61 79 | ....-------.....zs.:.1-D.ndarray |
| 0e20 | 0a 20 20 20 20 20 20 20 20 4f 64 64 20 6c 65 6e 67 74 68 20 73 79 6d 6d 65 74 72 69 63 20 7a 2d | .........Odd.length.symmetric.z- |
| 0e40 | 73 65 72 69 65 73 2c 20 6f 72 64 65 72 65 64 20 66 72 6f 6d 20 20 6c 6f 77 20 74 6f 20 68 69 67 | series,.ordered.from..low.to.hig |
| 0e60 | 68 2e 0a 0a 20 20 20 20 e9 02 00 00 00 72 04 00 00 00 a9 01 da 05 64 74 79 70 65 4e e9 ff ff ff | h............r........dtypeN.... |
| 0e80 | ff 29 04 da 04 73 69 7a 65 da 02 6e 70 da 05 7a 65 72 6f 73 72 2c 00 00 00 29 03 da 01 63 da 01 | .)...size..np..zerosr,...)...c.. |
| 0ea0 | 6e da 02 7a 73 73 03 00 00 00 20 20 20 fa 61 2f 68 6f 6d 65 2f 62 6c 61 63 6b 68 61 6f 2f 75 69 | n..zss........a/home/blackhao/ui |
| 0ec0 | 75 63 2d 63 6f 75 72 73 65 2d 67 72 61 70 68 2f 2e 76 65 6e 76 2f 6c 69 62 2f 70 79 74 68 6f 6e | uc-course-graph/.venv/lib/python |
| 0ee0 | 33 2e 31 32 2f 73 69 74 65 2d 70 61 63 6b 61 67 65 73 2f 6e 75 6d 70 79 2f 70 6f 6c 79 6e 6f 6d | 3.12/site-packages/numpy/polynom |
| 0f00 | 69 61 6c 2f 63 68 65 62 79 73 68 65 76 2e 70 79 da 13 5f 63 73 65 72 69 65 73 5f 74 6f 5f 7a 73 | ial/chebyshev.py.._cseries_to_zs |
| 0f20 | 65 72 69 65 73 72 35 00 00 00 85 00 00 00 73 4e 00 00 00 80 00 f0 26 00 09 0a 8f 06 89 06 80 41 | eriesr5.......sN......&........A |
| 0f40 | dc 09 0b 8f 18 89 18 90 21 90 61 91 25 98 21 91 29 a0 31 a7 37 a1 37 d4 09 2b 80 42 d8 11 12 90 | ........!.a.%.!.).1.7.7..+.B.... |
| 0f60 | 51 91 15 80 42 80 71 88 31 81 75 80 76 80 4a d8 0b 0d 90 02 91 34 90 52 90 34 91 08 89 3d d0 04 | Q...B.q.1.u.v.J......4.R.4...=.. |
| 0f80 | 18 f3 00 00 00 00 63 01 00 00 00 00 00 00 00 00 00 00 00 06 00 00 00 03 00 00 00 f3 72 00 00 00 | ......c.....................r... |
| 0fa0 | 97 00 7c 00 6a 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 64 01 7a 00 00 00 64 02 | ..|.j...................d.z...d. |
| 0fc0 | 7a 02 00 00 7d 01 7c 00 7c 01 64 01 7a 0a 00 00 64 03 1a 00 6a 03 00 00 00 00 00 00 00 00 00 00 | z...}.|.|.d.z...d...j........... |
| 0fe0 | 00 00 00 00 00 00 00 00 ab 00 00 00 00 00 00 00 7d 02 7c 02 64 01 7c 01 78 03 78 03 78 03 1a 00 | ................}.|.d.|.x.x.x... |
| 1000 | 64 02 7a 12 00 00 63 04 63 03 63 02 1b 00 7c 02 53 00 29 04 61 f9 01 00 00 43 6f 6e 76 65 72 74 | d.z...c.c.c...|.S.).a....Convert |
| 1020 | 20 7a 2d 73 65 72 69 65 73 20 74 6f 20 61 20 43 68 65 62 79 73 68 65 76 20 73 65 72 69 65 73 2e | .z-series.to.a.Chebyshev.series. |
| 1040 | 0a 0a 20 20 20 20 43 6f 6e 76 65 72 74 20 61 20 7a 20 73 65 72 69 65 73 20 74 6f 20 74 68 65 20 | ......Convert.a.z.series.to.the. |
| 1060 | 65 71 75 69 76 61 6c 65 6e 74 20 43 68 65 62 79 73 68 65 76 20 73 65 72 69 65 73 2e 20 54 68 65 | equivalent.Chebyshev.series..The |
| 1080 | 20 72 65 73 75 6c 74 20 69 73 0a 20 20 20 20 6e 65 76 65 72 20 61 6e 20 65 6d 70 74 79 20 61 72 | .result.is.....never.an.empty.ar |
| 10a0 | 72 61 79 2e 20 54 68 65 20 64 74 79 70 65 20 6f 66 20 74 68 65 20 72 65 74 75 72 6e 20 69 73 20 | ray..The.dtype.of.the.return.is. |
| 10c0 | 74 68 65 20 73 61 6d 65 20 61 73 20 74 68 61 74 20 6f 66 0a 20 20 20 20 74 68 65 20 69 6e 70 75 | the.same.as.that.of.....the.inpu |
| 10e0 | 74 2e 20 4e 6f 20 63 68 65 63 6b 73 20 61 72 65 20 72 75 6e 20 6f 6e 20 74 68 65 20 61 72 67 75 | t..No.checks.are.run.on.the.argu |
| 1100 | 6d 65 6e 74 73 20 61 73 20 74 68 69 73 20 72 6f 75 74 69 6e 65 20 69 73 20 66 6f 72 0a 20 20 20 | ments.as.this.routine.is.for.... |
| 1120 | 20 69 6e 74 65 72 6e 61 6c 20 75 73 65 2e 0a 0a 20 20 20 20 50 61 72 61 6d 65 74 65 72 73 0a 20 | .internal.use.......Parameters.. |
| 1140 | 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 7a 73 20 3a 20 31 2d 44 20 6e 64 61 72 72 | ...----------.....zs.:.1-D.ndarr |
| 1160 | 61 79 0a 20 20 20 20 20 20 20 20 4f 64 64 20 6c 65 6e 67 74 68 20 73 79 6d 6d 65 74 72 69 63 20 | ay.........Odd.length.symmetric. |
| 1180 | 7a 2d 73 65 72 69 65 73 2c 20 6f 72 64 65 72 65 64 20 66 72 6f 6d 20 20 6c 6f 77 20 74 6f 20 68 | z-series,.ordered.from..low.to.h |
| 11a0 | 69 67 68 2e 0a 0a 20 20 20 20 52 65 74 75 72 6e 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 0a 20 20 | igh.......Returns.....-------... |
| 11c0 | 20 20 63 20 3a 20 31 2d 44 20 6e 64 61 72 72 61 79 0a 20 20 20 20 20 20 20 20 43 68 65 62 79 73 | ..c.:.1-D.ndarray.........Chebys |
| 11e0 | 68 65 76 20 63 6f 65 66 66 69 63 69 65 6e 74 73 2c 20 6f 72 64 65 72 65 64 20 66 72 6f 6d 20 20 | hev.coefficients,.ordered.from.. |
| 1200 | 6c 6f 77 20 74 6f 20 68 69 67 68 2e 0a 0a 20 20 20 20 72 04 00 00 00 72 2a 00 00 00 4e 29 02 72 | low.to.high.......r....r*...N).r |
| 1220 | 2e 00 00 00 da 04 63 6f 70 79 29 03 72 33 00 00 00 72 32 00 00 00 72 31 00 00 00 73 03 00 00 00 | ......copy).r3...r2...r1...s.... |
| 1240 | 20 20 20 72 34 00 00 00 da 13 5f 7a 73 65 72 69 65 73 5f 74 6f 5f 63 73 65 72 69 65 73 72 39 00 | ...r4....._zseries_to_cseriesr9. |
| 1260 | 00 00 9e 00 00 00 73 40 00 00 00 80 00 f0 26 00 0a 0c 8f 17 89 17 90 31 89 1b 98 11 d1 08 1a 80 | ......s@......&........1........ |
| 1280 | 41 d8 08 0a 88 31 88 71 89 35 88 36 88 0a 8f 0f 89 0f d3 08 19 80 41 d8 04 05 80 61 88 01 83 46 | A....1.q.5.6..........A....a...F |
| 12a0 | 88 61 81 4b 83 46 d8 0b 0c 80 48 72 36 00 00 00 63 02 00 00 00 00 00 00 00 00 00 00 00 04 00 00 | .a.K.F....Hr6...c............... |
| 12c0 | 00 03 00 00 00 f3 2e 00 00 00 97 00 74 01 00 00 00 00 00 00 00 00 6a 02 00 00 00 00 00 00 00 00 | ............t.........j......... |
| 12e0 | 00 00 00 00 00 00 00 00 00 00 7c 00 7c 01 ab 02 00 00 00 00 00 00 53 00 29 01 61 c5 01 00 00 4d | ..........|.|.........S.).a....M |
| 1300 | 75 6c 74 69 70 6c 79 20 74 77 6f 20 7a 2d 73 65 72 69 65 73 2e 0a 0a 20 20 20 20 4d 75 6c 74 69 | ultiply.two.z-series.......Multi |
| 1320 | 70 6c 79 20 74 77 6f 20 7a 2d 73 65 72 69 65 73 20 74 6f 20 70 72 6f 64 75 63 65 20 61 20 7a 2d | ply.two.z-series.to.produce.a.z- |
| 1340 | 73 65 72 69 65 73 2e 0a 0a 20 20 20 20 50 61 72 61 6d 65 74 65 72 73 0a 20 20 20 20 2d 2d 2d 2d | series.......Parameters.....---- |
| 1360 | 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 7a 31 2c 20 7a 32 20 3a 20 31 2d 44 20 6e 64 61 72 72 61 79 0a | ------.....z1,.z2.:.1-D.ndarray. |
| 1380 | 20 20 20 20 20 20 20 20 54 68 65 20 61 72 72 61 79 73 20 6d 75 73 74 20 62 65 20 31 2d 44 20 62 | ........The.arrays.must.be.1-D.b |
| 13a0 | 75 74 20 74 68 69 73 20 69 73 20 6e 6f 74 20 63 68 65 63 6b 65 64 2e 0a 0a 20 20 20 20 52 65 74 | ut.this.is.not.checked.......Ret |
| 13c0 | 75 72 6e 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 70 72 6f 64 75 63 74 20 3a 20 31 | urns.....-------.....product.:.1 |
| 13e0 | 2d 44 20 6e 64 61 72 72 61 79 0a 20 20 20 20 20 20 20 20 54 68 65 20 70 72 6f 64 75 63 74 20 7a | -D.ndarray.........The.product.z |
| 1400 | 2d 73 65 72 69 65 73 2e 0a 0a 20 20 20 20 4e 6f 74 65 73 0a 20 20 20 20 2d 2d 2d 2d 2d 0a 20 20 | -series.......Notes.....-----... |
| 1420 | 20 20 54 68 69 73 20 69 73 20 73 69 6d 70 6c 79 20 63 6f 6e 76 6f 6c 75 74 69 6f 6e 2e 20 49 66 | ..This.is.simply.convolution..If |
| 1440 | 20 73 79 6d 6d 65 74 72 69 63 2f 61 6e 74 69 2d 73 79 6d 6d 65 74 72 69 63 20 7a 2d 73 65 72 69 | .symmetric/anti-symmetric.z-seri |
| 1460 | 65 73 20 61 72 65 0a 20 20 20 20 64 65 6e 6f 74 65 64 20 62 79 20 53 2f 41 20 74 68 65 6e 20 74 | es.are.....denoted.by.S/A.then.t |
| 1480 | 68 65 20 66 6f 6c 6c 6f 77 69 6e 67 20 72 75 6c 65 73 20 61 70 70 6c 79 3a 0a 0a 20 20 20 20 53 | he.following.rules.apply:......S |
| 14a0 | 2a 53 2c 20 41 2a 41 20 2d 3e 20 53 0a 20 20 20 20 53 2a 41 2c 20 41 2a 53 20 2d 3e 20 41 0a 0a | *S,.A*A.->.S.....S*A,.A*S.->.A.. |
| 14c0 | 20 20 20 20 29 02 72 2f 00 00 00 da 08 63 6f 6e 76 6f 6c 76 65 29 02 da 02 7a 31 da 02 7a 32 73 | ....).r/.....convolve)...z1..z2s |
| 14e0 | 02 00 00 00 20 20 72 34 00 00 00 da 0c 5f 7a 73 65 72 69 65 73 5f 6d 75 6c 72 3e 00 00 00 b7 00 | ......r4....._zseries_mulr>..... |
| 1500 | 00 00 73 15 00 00 00 80 00 f4 30 00 0c 0e 8f 3b 89 3b 90 72 98 32 d3 0b 1e d0 04 1e 72 36 00 00 | ..s.......0....;.;.r.2......r6.. |
| 1520 | 00 63 02 00 00 00 00 00 00 00 00 00 00 00 06 00 00 00 03 00 00 00 f3 4e 02 00 00 97 00 7c 00 6a | .c.....................N.....|.j |
| 1540 | 01 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ab 00 00 00 00 00 00 00 7d 00 7c 01 6a | ...........................}.|.j |
| 1560 | 01 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ab 00 00 00 00 00 00 00 7d 01 74 03 00 | ...........................}.t.. |
| 1580 | 00 00 00 00 00 00 00 7c 00 ab 01 00 00 00 00 00 00 7d 02 74 03 00 00 00 00 00 00 00 00 7c 01 ab | .......|.........}.t.........|.. |
| 15a0 | 01 00 00 00 00 00 00 7d 03 7c 03 64 01 6b 28 00 00 72 0f 7c 00 7c 01 7a 18 00 00 7d 00 7c 00 7c | .......}.|.d.k(..r.|.|.z...}.|.| |
| 15c0 | 00 64 02 64 01 1a 00 64 03 7a 05 00 00 66 02 53 00 7c 02 7c 03 6b 02 00 00 72 0a 7c 00 64 02 64 | .d.d...d.z...f.S.|.|.k...r.|.d.d |
| 15e0 | 01 1a 00 64 03 7a 05 00 00 7c 00 66 02 53 00 7c 02 7c 03 7a 0a 00 00 7d 04 7c 01 64 03 19 00 00 | ...d.z...|.f.S.|.|.z...}.|.d.... |
| 1600 | 00 7d 05 7c 01 7c 05 7a 18 00 00 7d 01 74 05 00 00 00 00 00 00 00 00 6a 06 00 00 00 00 00 00 00 | .}.|.|.z...}.t.........j........ |
| 1620 | 00 00 00 00 00 00 00 00 00 00 00 7c 04 64 01 7a 00 00 00 7c 00 6a 08 00 00 00 00 00 00 00 00 00 | ...........|.d.z...|.j.......... |
| 1640 | 00 00 00 00 00 00 00 00 00 ac 04 ab 02 00 00 00 00 00 00 7d 06 64 03 7d 07 7c 04 7d 08 7c 07 7c | ...................}.d.}.|.}.|.| |
| 1660 | 08 6b 02 00 00 72 4c 7c 00 7c 07 19 00 00 00 7d 09 7c 00 7c 07 19 00 00 00 7c 06 7c 07 3c 00 00 | .k...rL|.|.....}.|.|.....|.|.<.. |
| 1680 | 00 7c 09 7c 06 7c 04 7c 07 7a 0a 00 00 3c 00 00 00 7c 09 7c 01 7a 05 00 00 7d 0a 7c 00 7c 07 7c | .|.|.|.|.z...<...|.|.z...}.|.|.| |
| 16a0 | 07 7c 03 7a 00 00 00 78 03 78 03 78 03 1a 00 7c 0a 7a 17 00 00 63 04 63 03 63 02 1b 00 7c 00 7c | .|.z...x.x.x...|.z...c.c.c...|.| |
| 16c0 | 08 7c 08 7c 03 7a 00 00 00 78 03 78 03 78 03 1a 00 7c 0a 7a 17 00 00 63 04 63 03 63 02 1b 00 7c | .|.|.z...x.x.x...|.z...c.c.c...| |
| 16e0 | 07 64 01 7a 0d 00 00 7d 07 7c 08 64 01 7a 17 00 00 7d 08 7c 07 7c 08 6b 02 00 00 72 01 8c 4c 7c | .d.z...}.|.d.z...}.|.|.k...r..L| |
| 1700 | 00 7c 07 19 00 00 00 7d 09 7c 09 7c 06 7c 07 3c 00 00 00 7c 09 7c 01 7a 05 00 00 7d 0a 7c 00 7c | .|.....}.|.|.|.<...|.|.z...}.|.| |
| 1720 | 07 7c 07 7c 03 7a 00 00 00 78 03 78 03 78 03 1a 00 7c 0a 7a 17 00 00 63 04 63 03 63 02 1b 00 7c | .|.|.z...x.x.x...|.z...c.c.c...| |
| 1740 | 06 7c 05 7a 18 00 00 7d 06 7c 00 7c 07 64 01 7a 00 00 00 7c 07 64 01 7a 0a 00 00 7c 03 7a 00 00 | .|.z...}.|.|.d.z...|.d.z...|.z.. |
| 1760 | 00 1a 00 6a 01 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ab 00 00 00 00 00 00 00 7d | ...j...........................} |
| 1780 | 0b 7c 06 7c 0b 66 02 53 00 29 05 61 bb 03 00 00 44 69 76 69 64 65 20 74 68 65 20 66 69 72 73 74 | .|.|.f.S.).a....Divide.the.first |
| 17a0 | 20 7a 2d 73 65 72 69 65 73 20 62 79 20 74 68 65 20 73 65 63 6f 6e 64 2e 0a 0a 20 20 20 20 44 69 | .z-series.by.the.second.......Di |
| 17c0 | 76 69 64 65 20 60 7a 31 60 20 62 79 20 60 7a 32 60 20 61 6e 64 20 72 65 74 75 72 6e 20 74 68 65 | vide.`z1`.by.`z2`.and.return.the |
| 17e0 | 20 71 75 6f 74 69 65 6e 74 20 61 6e 64 20 72 65 6d 61 69 6e 64 65 72 20 61 73 20 7a 2d 73 65 72 | .quotient.and.remainder.as.z-ser |
| 1800 | 69 65 73 2e 0a 20 20 20 20 57 61 72 6e 69 6e 67 3a 20 74 68 69 73 20 69 6d 70 6c 65 6d 65 6e 74 | ies......Warning:.this.implement |
| 1820 | 61 74 69 6f 6e 20 6f 6e 6c 79 20 61 70 70 6c 69 65 73 20 77 68 65 6e 20 62 6f 74 68 20 7a 31 20 | ation.only.applies.when.both.z1. |
| 1840 | 61 6e 64 20 7a 32 20 68 61 76 65 20 74 68 65 0a 20 20 20 20 73 61 6d 65 20 73 79 6d 6d 65 74 72 | and.z2.have.the.....same.symmetr |
| 1860 | 79 2c 20 77 68 69 63 68 20 69 73 20 73 75 66 66 69 63 69 65 6e 74 20 66 6f 72 20 70 72 65 73 65 | y,.which.is.sufficient.for.prese |
| 1880 | 6e 74 20 70 75 72 70 6f 73 65 73 2e 0a 0a 20 20 20 20 50 61 72 61 6d 65 74 65 72 73 0a 20 20 20 | nt.purposes.......Parameters.... |
| 18a0 | 20 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 7a 31 2c 20 7a 32 20 3a 20 31 2d 44 20 6e 64 61 | .----------.....z1,.z2.:.1-D.nda |
| 18c0 | 72 72 61 79 0a 20 20 20 20 20 20 20 20 54 68 65 20 61 72 72 61 79 73 20 6d 75 73 74 20 62 65 20 | rray.........The.arrays.must.be. |
| 18e0 | 31 2d 44 20 61 6e 64 20 68 61 76 65 20 74 68 65 20 73 61 6d 65 20 73 79 6d 6d 65 74 72 79 2c 20 | 1-D.and.have.the.same.symmetry,. |
| 1900 | 62 75 74 20 74 68 69 73 20 69 73 20 6e 6f 74 0a 20 20 20 20 20 20 20 20 63 68 65 63 6b 65 64 2e | but.this.is.not.........checked. |
| 1920 | 0a 0a 20 20 20 20 52 65 74 75 72 6e 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 0a 0a 20 20 20 20 28 | ......Returns.....-------......( |
| 1940 | 71 75 6f 74 69 65 6e 74 2c 20 72 65 6d 61 69 6e 64 65 72 29 20 3a 20 31 2d 44 20 6e 64 61 72 72 | quotient,.remainder).:.1-D.ndarr |
| 1960 | 61 79 73 0a 20 20 20 20 20 20 20 20 51 75 6f 74 69 65 6e 74 20 61 6e 64 20 72 65 6d 61 69 6e 64 | ays.........Quotient.and.remaind |
| 1980 | 65 72 20 61 73 20 7a 2d 73 65 72 69 65 73 2e 0a 0a 20 20 20 20 4e 6f 74 65 73 0a 20 20 20 20 2d | er.as.z-series.......Notes.....- |
| 19a0 | 2d 2d 2d 2d 0a 20 20 20 20 54 68 69 73 20 69 73 20 6e 6f 74 20 74 68 65 20 73 61 6d 65 20 61 73 | ----.....This.is.not.the.same.as |
| 19c0 | 20 70 6f 6c 79 6e 6f 6d 69 61 6c 20 64 69 76 69 73 69 6f 6e 20 6f 6e 20 61 63 63 6f 75 6e 74 20 | .polynomial.division.on.account. |
| 19e0 | 6f 66 20 74 68 65 20 64 65 73 69 72 65 64 20 66 6f 72 6d 0a 20 20 20 20 6f 66 20 74 68 65 20 72 | of.the.desired.form.....of.the.r |
| 1a00 | 65 6d 61 69 6e 64 65 72 2e 20 49 66 20 73 79 6d 6d 65 74 72 69 63 2f 61 6e 74 69 2d 73 79 6d 6d | emainder..If.symmetric/anti-symm |
| 1a20 | 65 74 72 69 63 20 7a 2d 73 65 72 69 65 73 20 61 72 65 20 64 65 6e 6f 74 65 64 20 62 79 20 53 2f | etric.z-series.are.denoted.by.S/ |
| 1a40 | 41 0a 20 20 20 20 74 68 65 6e 20 74 68 65 20 66 6f 6c 6c 6f 77 69 6e 67 20 72 75 6c 65 73 20 61 | A.....then.the.following.rules.a |
| 1a60 | 70 70 6c 79 3a 0a 0a 20 20 20 20 53 2f 53 20 2d 3e 20 53 2c 53 0a 20 20 20 20 41 2f 41 20 2d 3e | pply:......S/S.->.S,S.....A/A.-> |
| 1a80 | 20 53 2c 41 0a 0a 20 20 20 20 54 68 65 20 72 65 73 74 72 69 63 74 69 6f 6e 20 74 6f 20 74 79 70 | .S,A......The.restriction.to.typ |
| 1aa0 | 65 73 20 6f 66 20 74 68 65 20 73 61 6d 65 20 73 79 6d 6d 65 74 72 79 20 63 6f 75 6c 64 20 62 65 | es.of.the.same.symmetry.could.be |
| 1ac0 | 20 66 69 78 65 64 20 62 75 74 20 73 65 65 6d 73 20 6c 69 6b 65 0a 20 20 20 20 75 6e 6e 65 65 64 | .fixed.but.seems.like.....unneed |
| 1ae0 | 65 64 20 67 65 6e 65 72 61 6c 69 74 79 2e 20 54 68 65 72 65 20 69 73 20 6e 6f 20 6e 61 74 75 72 | ed.generality..There.is.no.natur |
| 1b00 | 61 6c 20 66 6f 72 6d 20 66 6f 72 20 74 68 65 20 72 65 6d 61 69 6e 64 65 72 20 69 6e 20 74 68 65 | al.form.for.the.remainder.in.the |
| 1b20 | 20 63 61 73 65 0a 20 20 20 20 77 68 65 72 65 20 74 68 65 72 65 20 69 73 20 6e 6f 20 73 79 6d 6d | .case.....where.there.is.no.symm |
| 1b40 | 65 74 72 79 2e 0a 0a 20 20 20 20 72 04 00 00 00 4e 72 02 00 00 00 72 2b 00 00 00 29 05 72 38 00 | etry.......r....Nr....r+...).r8. |
| 1b60 | 00 00 da 03 6c 65 6e 72 2f 00 00 00 da 05 65 6d 70 74 79 72 2c 00 00 00 29 0c 72 3c 00 00 00 72 | ....lenr/.....emptyr,...).r<...r |
| 1b80 | 3d 00 00 00 da 03 6c 63 31 da 03 6c 63 32 da 04 64 6c 65 6e da 03 73 63 6c da 03 71 75 6f da 01 | =.....lc1..lc2..dlen..scl..quo.. |
| 1ba0 | 69 da 01 6a da 01 72 da 03 74 6d 70 da 03 72 65 6d 73 0c 00 00 00 20 20 20 20 20 20 20 20 20 20 | i..j..r..tmp..rems.............. |
| 1bc0 | 20 20 72 34 00 00 00 da 0c 5f 7a 73 65 72 69 65 73 5f 64 69 76 72 4c 00 00 00 d2 00 00 00 73 83 | ..r4....._zseries_divrL.......s. |
| 1be0 | 01 00 00 80 00 f0 42 01 00 0a 0c 8f 17 89 17 8b 19 80 42 d8 09 0b 8f 17 89 17 8b 19 80 42 dc 0a | ......B...........B..........B.. |
| 1c00 | 0d 88 62 8b 27 80 43 dc 0a 0d 88 62 8b 27 80 43 d8 07 0a 88 61 82 78 d8 08 0a 88 62 89 08 88 02 | ..b.'.C....b.'.C....a.x....b.... |
| 1c20 | d8 0f 11 90 32 90 62 90 71 90 36 98 41 91 3a 88 7e d0 08 1d d8 09 0c 88 73 8a 19 d8 0f 11 90 22 | ....2.b.q.6.A.:.~.......s......" |
| 1c40 | 90 31 88 76 98 01 89 7a 98 32 88 7e d0 08 1d e0 0f 12 90 53 89 79 88 04 d8 0e 10 90 11 89 65 88 | .1.v...z.2.~.......S.y........e. |
| 1c60 | 03 d8 08 0a 88 63 89 09 88 02 dc 0e 10 8f 68 89 68 90 74 98 61 91 78 a0 72 a7 78 a1 78 d4 0e 30 | .....c........h.h.t.a.x.r.x.x..0 |
| 1c80 | 88 03 d8 0c 0d 88 01 d8 0c 10 88 01 d8 0e 0f 90 21 8a 65 d8 10 12 90 31 91 05 88 41 d8 15 17 98 | ................!.e....1...A.... |
| 1ca0 | 01 91 55 88 43 90 01 89 46 d8 1c 1d 88 43 90 04 90 71 91 08 89 4d d8 12 13 90 62 91 26 88 43 d8 | ..U.C...F....C...q...M....b.&.C. |
| 1cc0 | 0c 0e 88 71 90 11 90 53 91 17 8b 4d 98 53 d1 0c 20 8b 4d d8 0c 0e 88 71 90 11 90 53 91 17 8b 4d | ...q...S...M.S....M....q...S...M |
| 1ce0 | 98 53 d1 0c 20 8b 4d d8 0c 0d 90 11 89 46 88 41 d8 0c 0d 90 11 89 46 88 41 f0 11 00 0f 10 90 21 | .S....M......F.A......F.A......! |
| 1d00 | 8b 65 f0 12 00 0d 0f 88 71 89 45 88 01 d8 11 12 88 03 88 41 89 06 d8 0e 0f 90 22 89 66 88 03 d8 | .e......q.E........A......".f... |
| 1d20 | 08 0a 88 31 88 51 90 13 89 57 8b 0d 98 13 d1 08 1c 8b 0d d8 08 0b 88 73 89 0a 88 03 d8 0e 10 90 | ...1.Q...W.............s........ |
| 1d40 | 11 90 51 91 15 90 71 98 31 91 75 98 73 91 7b d0 0e 23 d7 0e 28 d1 0e 28 d3 0e 2a 88 03 d8 0f 12 | ..Q...q.1.u.s.{..#..(..(..*..... |
| 1d60 | 90 43 88 78 88 0f 72 36 00 00 00 63 01 00 00 00 00 00 00 00 00 00 00 00 06 00 00 00 03 00 00 00 | .C.x..r6...c.................... |
| 1d80 | f3 c6 00 00 00 97 00 74 01 00 00 00 00 00 00 00 00 7c 00 ab 01 00 00 00 00 00 00 64 01 7a 02 00 | .......t.........|.........d.z.. |
| 1da0 | 00 7d 01 74 03 00 00 00 00 00 00 00 00 6a 04 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 | .}.t.........j.................. |
| 1dc0 | 00 67 00 64 02 a2 01 7c 00 6a 06 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ac 03 ab | .g.d...|.j...................... |
| 1de0 | 02 00 00 00 00 00 00 7d 02 7c 00 74 03 00 00 00 00 00 00 00 00 6a 08 00 00 00 00 00 00 00 00 00 | .......}.|.t.........j.......... |
| 1e00 | 00 00 00 00 00 00 00 00 00 7c 01 0b 00 7c 01 64 04 7a 00 00 00 ab 02 00 00 00 00 00 00 64 01 7a | .........|...|.d.z...........d.z |
| 1e20 | 05 00 00 7a 12 00 00 7d 00 74 0b 00 00 00 00 00 00 00 00 7c 00 7c 02 ab 02 00 00 00 00 00 00 5c | ...z...}.t.........|.|.........\ |
| 1e40 | 02 00 00 7d 03 7d 04 7c 03 53 00 29 05 61 8c 02 00 00 44 69 66 66 65 72 65 6e 74 69 61 74 65 20 | ...}.}.|.S.).a....Differentiate. |
| 1e60 | 61 20 7a 2d 73 65 72 69 65 73 2e 0a 0a 20 20 20 20 54 68 65 20 64 65 72 69 76 61 74 69 76 65 20 | a.z-series.......The.derivative. |
| 1e80 | 69 73 20 77 69 74 68 20 72 65 73 70 65 63 74 20 74 6f 20 78 2c 20 6e 6f 74 20 7a 2e 20 54 68 69 | is.with.respect.to.x,.not.z..Thi |
| 1ea0 | 73 20 69 73 20 61 63 68 69 65 76 65 64 20 75 73 69 6e 67 20 74 68 65 0a 20 20 20 20 63 68 61 69 | s.is.achieved.using.the.....chai |
| 1ec0 | 6e 20 72 75 6c 65 20 61 6e 64 20 74 68 65 20 76 61 6c 75 65 20 6f 66 20 64 78 2f 64 7a 20 67 69 | n.rule.and.the.value.of.dx/dz.gi |
| 1ee0 | 76 65 6e 20 69 6e 20 74 68 65 20 6d 6f 64 75 6c 65 20 6e 6f 74 65 73 2e 0a 0a 20 20 20 20 50 61 | ven.in.the.module.notes.......Pa |
| 1f00 | 72 61 6d 65 74 65 72 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 7a 73 20 3a | rameters.....----------.....zs.: |
| 1f20 | 20 7a 2d 73 65 72 69 65 73 0a 20 20 20 20 20 20 20 20 54 68 65 20 7a 2d 73 65 72 69 65 73 20 74 | .z-series.........The.z-series.t |
| 1f40 | 6f 20 64 69 66 66 65 72 65 6e 74 69 61 74 65 2e 0a 0a 20 20 20 20 52 65 74 75 72 6e 73 0a 20 20 | o.differentiate.......Returns... |
| 1f60 | 20 20 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 64 65 72 69 76 61 74 69 76 65 20 3a 20 7a 2d 73 65 72 | ..-------.....derivative.:.z-ser |
| 1f80 | 69 65 73 0a 20 20 20 20 20 20 20 20 54 68 65 20 64 65 72 69 76 61 74 69 76 65 0a 0a 20 20 20 20 | ies.........The.derivative...... |
| 1fa0 | 4e 6f 74 65 73 0a 20 20 20 20 2d 2d 2d 2d 2d 0a 20 20 20 20 54 68 65 20 7a 73 65 72 69 65 73 20 | Notes.....-----.....The.zseries. |
| 1fc0 | 66 6f 72 20 78 20 28 6e 73 29 20 68 61 73 20 62 65 65 6e 20 6d 75 6c 74 69 70 6c 69 65 64 20 62 | for.x.(ns).has.been.multiplied.b |
| 1fe0 | 79 20 74 77 6f 20 69 6e 20 6f 72 64 65 72 20 74 6f 20 61 76 6f 69 64 0a 20 20 20 20 75 73 69 6e | y.two.in.order.to.avoid.....usin |
| 2000 | 67 20 66 6c 6f 61 74 73 20 74 68 61 74 20 61 72 65 20 69 6e 63 6f 6d 70 61 74 69 62 6c 65 20 77 | g.floats.that.are.incompatible.w |
| 2020 | 69 74 68 20 44 65 63 69 6d 61 6c 20 61 6e 64 20 6c 69 6b 65 6c 79 20 6f 74 68 65 72 0a 20 20 20 | ith.Decimal.and.likely.other.... |
| 2040 | 20 73 70 65 63 69 61 6c 69 7a 65 64 20 73 63 61 6c 61 72 20 74 79 70 65 73 2e 20 54 68 69 73 20 | .specialized.scalar.types..This. |
| 2060 | 73 63 61 6c 69 6e 67 20 68 61 73 20 62 65 65 6e 20 63 6f 6d 70 65 6e 73 61 74 65 64 20 62 79 0a | scaling.has.been.compensated.by. |
| 2080 | 20 20 20 20 6d 75 6c 74 69 70 6c 79 69 6e 67 20 74 68 65 20 76 61 6c 75 65 20 6f 66 20 7a 73 20 | ....multiplying.the.value.of.zs. |
| 20a0 | 62 79 20 74 77 6f 20 61 6c 73 6f 20 73 6f 20 74 68 61 74 20 74 68 65 20 74 77 6f 20 63 61 6e 63 | by.two.also.so.that.the.two.canc |
| 20c0 | 65 6c 73 20 69 6e 20 74 68 65 0a 20 20 20 20 64 69 76 69 73 69 6f 6e 2e 0a 0a 20 20 20 20 72 2a | els.in.the.....division.......r* |
| 20e0 | 00 00 00 a9 03 72 2d 00 00 00 72 02 00 00 00 72 04 00 00 00 72 2b 00 00 00 72 04 00 00 00 29 06 | .....r-...r....r....r+...r....). |
| 2100 | 72 40 00 00 00 72 2f 00 00 00 da 05 61 72 72 61 79 72 2c 00 00 00 da 06 61 72 61 6e 67 65 72 4c | r@...r/.....arrayr,.....arangerL |
| 2120 | 00 00 00 29 05 72 33 00 00 00 72 32 00 00 00 da 02 6e 73 da 01 64 72 49 00 00 00 73 05 00 00 00 | ...).r3...r2.....ns..drI...s.... |
| 2140 | 20 20 20 20 20 72 34 00 00 00 da 0c 5f 7a 73 65 72 69 65 73 5f 64 65 72 72 53 00 00 00 15 01 00 | .....r4....._zseries_derrS...... |
| 2160 | 00 73 5a 00 00 00 80 00 f4 32 00 09 0c 88 42 8b 07 90 31 89 0c 80 41 dc 09 0b 8f 18 89 18 92 2a | .sZ......2....B...1...A........* |
| 2180 | a0 42 a7 48 a1 48 d4 09 2d 80 42 d8 04 06 8c 22 8f 29 89 29 90 51 90 42 98 01 98 41 99 05 d3 0a | .B.H.H..-.B....".).).Q.B...A.... |
| 21a0 | 1e a0 11 d1 0a 22 d1 04 22 80 42 dc 0b 17 98 02 98 42 d3 0b 1f 81 44 80 41 80 71 d8 0b 0c 80 48 | ....."..".B......B....D.A.q....H |
| 21c0 | 72 36 00 00 00 63 01 00 00 00 00 00 00 00 00 00 00 00 07 00 00 00 03 00 00 00 f3 1a 01 00 00 97 | r6...c.......................... |
| 21e0 | 00 64 01 74 01 00 00 00 00 00 00 00 00 7c 00 ab 01 00 00 00 00 00 00 64 02 7a 02 00 00 7a 00 00 | .d.t.........|.........d.z...z.. |
| 2200 | 00 7d 01 74 03 00 00 00 00 00 00 00 00 6a 04 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 | .}.t.........j.................. |
| 2220 | 00 67 00 64 03 a2 01 7c 00 6a 06 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ac 04 ab | .g.d...|.j...................... |
| 2240 | 02 00 00 00 00 00 00 7d 02 74 09 00 00 00 00 00 00 00 00 7c 00 7c 02 ab 02 00 00 00 00 00 00 7d | .......}.t.........|.|.........} |
| 2260 | 00 74 03 00 00 00 00 00 00 00 00 6a 0a 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 7c | .t.........j...................| |
| 2280 | 01 0b 00 7c 01 64 01 7a 00 00 00 ab 02 00 00 00 00 00 00 64 02 7a 05 00 00 7d 03 7c 00 64 05 7c | ...|.d.z...........d.z...}.|.d.| |
| 22a0 | 01 78 03 78 03 78 03 1a 00 7c 03 64 05 7c 01 1a 00 7a 18 00 00 63 04 63 03 63 02 1b 00 7c 00 7c | .x.x.x...|.d.|...z...c.c.c...|.| |
| 22c0 | 01 64 01 7a 00 00 00 64 05 78 03 78 03 78 03 1a 00 7c 03 7c 01 64 01 7a 00 00 00 64 05 1a 00 7a | .d.z...d.x.x.x...|.|.d.z...d...z |
| 22e0 | 18 00 00 63 04 63 03 63 02 1b 00 64 06 7c 00 7c 01 3c 00 00 00 7c 00 53 00 29 07 61 4d 02 00 00 | ...c.c.c...d.|.|.<...|.S.).aM... |
| 2300 | 49 6e 74 65 67 72 61 74 65 20 61 20 7a 2d 73 65 72 69 65 73 2e 0a 0a 20 20 20 20 54 68 65 20 69 | Integrate.a.z-series.......The.i |
| 2320 | 6e 74 65 67 72 61 6c 20 69 73 20 77 69 74 68 20 72 65 73 70 65 63 74 20 74 6f 20 78 2c 20 6e 6f | ntegral.is.with.respect.to.x,.no |
| 2340 | 74 20 7a 2e 20 54 68 69 73 20 69 73 20 61 63 68 69 65 76 65 64 20 62 79 20 61 20 63 68 61 6e 67 | t.z..This.is.achieved.by.a.chang |
| 2360 | 65 0a 20 20 20 20 6f 66 20 76 61 72 69 61 62 6c 65 20 75 73 69 6e 67 20 64 78 2f 64 7a 20 67 69 | e.....of.variable.using.dx/dz.gi |
| 2380 | 76 65 6e 20 69 6e 20 74 68 65 20 6d 6f 64 75 6c 65 20 6e 6f 74 65 73 2e 0a 0a 20 20 20 20 50 61 | ven.in.the.module.notes.......Pa |
| 23a0 | 72 61 6d 65 74 65 72 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 7a 73 20 3a | rameters.....----------.....zs.: |
| 23c0 | 20 7a 2d 73 65 72 69 65 73 0a 20 20 20 20 20 20 20 20 54 68 65 20 7a 2d 73 65 72 69 65 73 20 74 | .z-series.........The.z-series.t |
| 23e0 | 6f 20 69 6e 74 65 67 72 61 74 65 0a 0a 20 20 20 20 52 65 74 75 72 6e 73 0a 20 20 20 20 2d 2d 2d | o.integrate......Returns.....--- |
| 2400 | 2d 2d 2d 2d 0a 20 20 20 20 69 6e 74 65 67 72 61 6c 20 3a 20 7a 2d 73 65 72 69 65 73 0a 20 20 20 | ----.....integral.:.z-series.... |
| 2420 | 20 20 20 20 20 54 68 65 20 69 6e 64 65 66 69 6e 69 74 65 20 69 6e 74 65 67 72 61 6c 0a 0a 20 20 | .....The.indefinite.integral.... |
| 2440 | 20 20 4e 6f 74 65 73 0a 20 20 20 20 2d 2d 2d 2d 2d 0a 20 20 20 20 54 68 65 20 7a 73 65 72 69 65 | ..Notes.....-----.....The.zserie |
| 2460 | 73 20 66 6f 72 20 78 20 28 6e 73 29 20 68 61 73 20 62 65 65 6e 20 6d 75 6c 74 69 70 6c 69 65 64 | s.for.x.(ns).has.been.multiplied |
| 2480 | 20 62 79 20 74 77 6f 20 69 6e 20 6f 72 64 65 72 20 74 6f 20 61 76 6f 69 64 0a 20 20 20 20 75 73 | .by.two.in.order.to.avoid.....us |
| 24a0 | 69 6e 67 20 66 6c 6f 61 74 73 20 74 68 61 74 20 61 72 65 20 69 6e 63 6f 6d 70 61 74 69 62 6c 65 | ing.floats.that.are.incompatible |
| 24c0 | 20 77 69 74 68 20 44 65 63 69 6d 61 6c 20 61 6e 64 20 6c 69 6b 65 6c 79 20 6f 74 68 65 72 0a 20 | .with.Decimal.and.likely.other.. |
| 24e0 | 20 20 20 73 70 65 63 69 61 6c 69 7a 65 64 20 73 63 61 6c 61 72 20 74 79 70 65 73 2e 20 54 68 69 | ...specialized.scalar.types..Thi |
| 2500 | 73 20 73 63 61 6c 69 6e 67 20 68 61 73 20 62 65 65 6e 20 63 6f 6d 70 65 6e 73 61 74 65 64 20 62 | s.scaling.has.been.compensated.b |
| 2520 | 79 0a 20 20 20 20 64 69 76 69 64 69 6e 67 20 74 68 65 20 72 65 73 75 6c 74 69 6e 67 20 7a 73 20 | y.....dividing.the.resulting.zs. |
| 2540 | 62 79 20 74 77 6f 2e 0a 0a 20 20 20 20 72 04 00 00 00 72 2a 00 00 00 72 4e 00 00 00 72 2b 00 00 | by.two.......r....r*...rN...r+.. |
| 2560 | 00 4e 72 02 00 00 00 29 06 72 40 00 00 00 72 2f 00 00 00 72 4f 00 00 00 72 2c 00 00 00 72 3e 00 | .Nr....).r@...r/...rO...r,...r>. |
| 2580 | 00 00 72 50 00 00 00 29 04 72 33 00 00 00 72 32 00 00 00 72 51 00 00 00 da 03 64 69 76 73 04 00 | ..rP...).r3...r2...rQ.....divs.. |
| 25a0 | 00 00 20 20 20 20 72 34 00 00 00 da 0c 5f 7a 73 65 72 69 65 73 5f 69 6e 74 72 56 00 00 00 35 01 | ......r4....._zseries_intrV...5. |
| 25c0 | 00 00 73 93 00 00 00 80 00 f0 30 00 09 0a 8c 43 90 02 8b 47 90 71 89 4c d1 08 18 80 41 dc 09 0b | ..s.......0....C...G.q.L....A... |
| 25e0 | 8f 18 89 18 92 2a a0 42 a7 48 a1 48 d4 09 2d 80 42 dc 09 15 90 62 98 22 d3 09 1d 80 42 dc 0a 0c | .....*.B.H.H..-.B....b."....B... |
| 2600 | 8f 29 89 29 90 51 90 42 98 01 98 41 99 05 d3 0a 1e a0 11 d1 0a 22 80 43 d8 04 06 80 72 88 01 83 | .).).Q.B...A.........".C....r... |
| 2620 | 46 88 63 90 22 90 31 88 67 d1 04 15 83 46 d8 04 06 80 71 88 31 81 75 80 76 83 4a 90 23 90 61 98 | F.c.".1.g....F....q.1.u.v.J.#.a. |
| 2640 | 21 91 65 90 66 90 2b d1 04 1d 83 4a d8 0c 0d 80 42 80 71 81 45 d8 0b 0d 80 49 72 36 00 00 00 63 | !.e.f.+....J....B.q.E....Ir6...c |
| 2660 | 01 00 00 00 00 00 00 00 00 00 00 00 06 00 00 00 03 00 00 00 f3 aa 00 00 00 97 00 74 01 00 00 00 | ...........................t.... |
| 2680 | 00 00 00 00 00 6a 02 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 7c 00 67 01 ab 01 00 | .....j...................|.g.... |
| 26a0 | 00 00 00 00 00 5c 01 00 00 7d 00 74 05 00 00 00 00 00 00 00 00 7c 00 ab 01 00 00 00 00 00 00 64 | .....\...}.t.........|.........d |
| 26c0 | 01 7a 0a 00 00 7d 01 64 02 7d 02 74 07 00 00 00 00 00 00 00 00 7c 01 64 03 64 03 ab 03 00 00 00 | .z...}.d.}.t.........|.d.d...... |
| 26e0 | 00 00 00 44 00 5d 1a 00 00 7d 03 74 09 00 00 00 00 00 00 00 00 74 0b 00 00 00 00 00 00 00 00 7c | ...D.]...}.t.........t.........| |
| 2700 | 02 ab 01 00 00 00 00 00 00 7c 00 7c 03 19 00 00 00 ab 02 00 00 00 00 00 00 7d 02 8c 1c 04 00 7c | .........|.|.............}.....| |
| 2720 | 02 53 00 29 04 61 6f 04 00 00 0a 20 20 20 20 43 6f 6e 76 65 72 74 20 61 20 70 6f 6c 79 6e 6f 6d | .S.).ao........Convert.a.polynom |
| 2740 | 69 61 6c 20 74 6f 20 61 20 43 68 65 62 79 73 68 65 76 20 73 65 72 69 65 73 2e 0a 0a 20 20 20 20 | ial.to.a.Chebyshev.series....... |
| 2760 | 43 6f 6e 76 65 72 74 20 61 6e 20 61 72 72 61 79 20 72 65 70 72 65 73 65 6e 74 69 6e 67 20 74 68 | Convert.an.array.representing.th |
| 2780 | 65 20 63 6f 65 66 66 69 63 69 65 6e 74 73 20 6f 66 20 61 20 70 6f 6c 79 6e 6f 6d 69 61 6c 20 28 | e.coefficients.of.a.polynomial.( |
| 27a0 | 72 65 6c 61 74 69 76 65 0a 20 20 20 20 74 6f 20 74 68 65 20 22 73 74 61 6e 64 61 72 64 22 20 62 | relative.....to.the."standard".b |
| 27c0 | 61 73 69 73 29 20 6f 72 64 65 72 65 64 20 66 72 6f 6d 20 6c 6f 77 65 73 74 20 64 65 67 72 65 65 | asis).ordered.from.lowest.degree |
| 27e0 | 20 74 6f 20 68 69 67 68 65 73 74 2c 20 74 6f 20 61 6e 0a 20 20 20 20 61 72 72 61 79 20 6f 66 20 | .to.highest,.to.an.....array.of. |
| 2800 | 74 68 65 20 63 6f 65 66 66 69 63 69 65 6e 74 73 20 6f 66 20 74 68 65 20 65 71 75 69 76 61 6c 65 | the.coefficients.of.the.equivale |
| 2820 | 6e 74 20 43 68 65 62 79 73 68 65 76 20 73 65 72 69 65 73 2c 20 6f 72 64 65 72 65 64 0a 20 20 20 | nt.Chebyshev.series,.ordered.... |
| 2840 | 20 66 72 6f 6d 20 6c 6f 77 65 73 74 20 74 6f 20 68 69 67 68 65 73 74 20 64 65 67 72 65 65 2e 0a | .from.lowest.to.highest.degree.. |
| 2860 | 0a 20 20 20 20 50 61 72 61 6d 65 74 65 72 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 | .....Parameters.....----------.. |
| 2880 | 20 20 20 70 6f 6c 20 3a 20 61 72 72 61 79 5f 6c 69 6b 65 0a 20 20 20 20 20 20 20 20 31 2d 44 20 | ...pol.:.array_like.........1-D. |
| 28a0 | 61 72 72 61 79 20 63 6f 6e 74 61 69 6e 69 6e 67 20 74 68 65 20 70 6f 6c 79 6e 6f 6d 69 61 6c 20 | array.containing.the.polynomial. |
| 28c0 | 63 6f 65 66 66 69 63 69 65 6e 74 73 0a 0a 20 20 20 20 52 65 74 75 72 6e 73 0a 20 20 20 20 2d 2d | coefficients......Returns.....-- |
| 28e0 | 2d 2d 2d 2d 2d 0a 20 20 20 20 63 20 3a 20 6e 64 61 72 72 61 79 0a 20 20 20 20 20 20 20 20 31 2d | -----.....c.:.ndarray.........1- |
| 2900 | 44 20 61 72 72 61 79 20 63 6f 6e 74 61 69 6e 69 6e 67 20 74 68 65 20 63 6f 65 66 66 69 63 69 65 | D.array.containing.the.coefficie |
| 2920 | 6e 74 73 20 6f 66 20 74 68 65 20 65 71 75 69 76 61 6c 65 6e 74 20 43 68 65 62 79 73 68 65 76 0a | nts.of.the.equivalent.Chebyshev. |
| 2940 | 20 20 20 20 20 20 20 20 73 65 72 69 65 73 2e 0a 0a 20 20 20 20 53 65 65 20 41 6c 73 6f 0a 20 20 | ........series.......See.Also... |
| 2960 | 20 20 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 63 68 65 62 32 70 6f 6c 79 0a 0a 20 20 20 20 4e 6f | ..--------.....cheb2poly......No |
| 2980 | 74 65 73 0a 20 20 20 20 2d 2d 2d 2d 2d 0a 20 20 20 20 54 68 65 20 65 61 73 79 20 77 61 79 20 74 | tes.....-----.....The.easy.way.t |
| 29a0 | 6f 20 64 6f 20 63 6f 6e 76 65 72 73 69 6f 6e 73 20 62 65 74 77 65 65 6e 20 70 6f 6c 79 6e 6f 6d | o.do.conversions.between.polynom |
| 29c0 | 69 61 6c 20 62 61 73 69 73 20 73 65 74 73 0a 20 20 20 20 69 73 20 74 6f 20 75 73 65 20 74 68 65 | ial.basis.sets.....is.to.use.the |
| 29e0 | 20 63 6f 6e 76 65 72 74 20 6d 65 74 68 6f 64 20 6f 66 20 61 20 63 6c 61 73 73 20 69 6e 73 74 61 | .convert.method.of.a.class.insta |
| 2a00 | 6e 63 65 2e 0a 0a 20 20 20 20 45 78 61 6d 70 6c 65 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 0a | nce.......Examples.....--------. |
| 2a20 | 20 20 20 20 3e 3e 3e 20 66 72 6f 6d 20 6e 75 6d 70 79 20 69 6d 70 6f 72 74 20 70 6f 6c 79 6e 6f | ....>>>.from.numpy.import.polyno |
| 2a40 | 6d 69 61 6c 20 61 73 20 50 0a 20 20 20 20 3e 3e 3e 20 70 20 3d 20 50 2e 50 6f 6c 79 6e 6f 6d 69 | mial.as.P.....>>>.p.=.P.Polynomi |
| 2a60 | 61 6c 28 72 61 6e 67 65 28 34 29 29 0a 20 20 20 20 3e 3e 3e 20 70 0a 20 20 20 20 50 6f 6c 79 6e | al(range(4)).....>>>.p.....Polyn |
| 2a80 | 6f 6d 69 61 6c 28 5b 30 2e 2c 20 31 2e 2c 20 32 2e 2c 20 33 2e 5d 2c 20 64 6f 6d 61 69 6e 3d 5b | omial([0.,.1.,.2.,.3.],.domain=[ |
| 2aa0 | 2d 31 2e 2c 20 20 31 2e 5d 2c 20 77 69 6e 64 6f 77 3d 5b 2d 31 2e 2c 20 20 31 2e 5d 2c 20 73 79 | -1.,..1.],.window=[-1.,..1.],.sy |
| 2ac0 | 6d 62 6f 6c 3d 27 78 27 29 0a 20 20 20 20 3e 3e 3e 20 63 20 3d 20 70 2e 63 6f 6e 76 65 72 74 28 | mbol='x').....>>>.c.=.p.convert( |
| 2ae0 | 6b 69 6e 64 3d 50 2e 43 68 65 62 79 73 68 65 76 29 0a 20 20 20 20 3e 3e 3e 20 63 0a 20 20 20 20 | kind=P.Chebyshev).....>>>.c..... |
| 2b00 | 43 68 65 62 79 73 68 65 76 28 5b 31 2e 20 20 2c 20 33 2e 32 35 2c 20 31 2e 20 20 2c 20 30 2e 37 | Chebyshev([1...,.3.25,.1...,.0.7 |
| 2b20 | 35 5d 2c 20 64 6f 6d 61 69 6e 3d 5b 2d 31 2e 2c 20 20 31 2e 5d 2c 20 77 69 6e 64 6f 77 3d 5b 2d | 5],.domain=[-1.,..1.],.window=[- |
| 2b40 | 31 2e 2c 20 2e 2e 2e 0a 20 20 20 20 3e 3e 3e 20 50 2e 63 68 65 62 79 73 68 65 76 2e 70 6f 6c 79 | 1.,.........>>>.P.chebyshev.poly |
| 2b60 | 32 63 68 65 62 28 72 61 6e 67 65 28 34 29 29 0a 20 20 20 20 61 72 72 61 79 28 5b 31 2e 20 20 2c | 2cheb(range(4)).....array([1..., |
| 2b80 | 20 33 2e 32 35 2c 20 31 2e 20 20 2c 20 30 2e 37 35 5d 29 0a 0a 20 20 20 20 72 04 00 00 00 72 02 | .3.25,.1...,.0.75])......r....r. |
| 2ba0 | 00 00 00 72 2d 00 00 00 29 06 da 02 70 75 da 09 61 73 5f 73 65 72 69 65 73 72 40 00 00 00 da 05 | ...r-...)...pu..as_seriesr@..... |
| 2bc0 | 72 61 6e 67 65 72 0c 00 00 00 72 0e 00 00 00 29 04 da 03 70 6f 6c da 03 64 65 67 da 03 72 65 73 | ranger....r....)...pol..deg..res |
| 2be0 | 72 47 00 00 00 73 04 00 00 00 20 20 20 20 72 34 00 00 00 72 16 00 00 00 72 16 00 00 00 5b 01 00 | rG...s........r4...r....r....[.. |
| 2c00 | 00 73 5a 00 00 00 80 00 f4 54 01 00 0d 0f 8f 4c 89 4c 98 23 98 15 d3 0c 1f 81 45 80 53 dc 0a 0d | .sZ......T.....L.L.#......E.S... |
| 2c20 | 88 63 8b 28 90 51 89 2c 80 43 d8 0a 0b 80 43 dc 0d 12 90 33 98 02 98 42 d3 0d 1f f2 00 01 05 2d | .c.(.Q.,.C....C....3...B.......- |
| 2c40 | 88 01 dc 0e 15 94 68 98 73 93 6d a0 53 a8 11 a1 56 d3 0e 2c 89 03 f0 03 01 05 2d e0 0b 0e 80 4a | ......h.s.m.S...V..,......-....J |
| 2c60 | 72 36 00 00 00 63 01 00 00 00 00 00 00 00 00 00 00 00 07 00 00 00 03 00 00 00 f3 0c 01 00 00 97 | r6...c.......................... |
| 2c80 | 00 64 01 64 02 6c 00 6d 01 7d 01 6d 02 7d 02 6d 03 7d 03 01 00 74 09 00 00 00 00 00 00 00 00 6a | .d.d.l.m.}.m.}.m.}...t.........j |
| 2ca0 | 0a 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 7c 00 67 01 ab 01 00 00 00 00 00 00 5c | ...................|.g.........\ |
| 2cc0 | 01 00 00 7d 00 74 0d 00 00 00 00 00 00 00 00 7c 00 ab 01 00 00 00 00 00 00 7d 04 7c 04 64 03 6b | ...}.t.........|.........}.|.d.k |
| 2ce0 | 02 00 00 72 02 7c 00 53 00 7c 00 64 04 19 00 00 00 7d 05 7c 00 64 05 19 00 00 00 7d 06 74 0f 00 | ...r.|.S.|.d.....}.|.d.....}.t.. |
| 2d00 | 00 00 00 00 00 00 00 7c 04 64 01 7a 0a 00 00 64 01 64 05 ab 03 00 00 00 00 00 00 44 00 5d 25 00 | .......|.d.z...d.d.........D.]%. |
| 2d20 | 00 7d 07 7c 05 7d 08 02 00 7c 03 7c 00 7c 07 64 06 7a 0a 00 00 19 00 00 00 7c 06 ab 02 00 00 00 | .}.|.}...|.|.|.d.z.......|...... |
| 2d40 | 00 00 00 7d 05 02 00 7c 01 7c 08 02 00 7c 02 7c 06 ab 01 00 00 00 00 00 00 64 06 7a 05 00 00 ab | ...}...|.|...|.|.........d.z.... |
| 2d60 | 02 00 00 00 00 00 00 7d 06 8c 27 04 00 02 00 7c 01 7c 05 02 00 7c 02 7c 06 ab 01 00 00 00 00 00 | .......}..'....|.|...|.|........ |
| 2d80 | 00 ab 02 00 00 00 00 00 00 53 00 29 07 61 f9 04 00 00 0a 20 20 20 20 43 6f 6e 76 65 72 74 20 61 | .........S.).a.........Convert.a |
| 2da0 | 20 43 68 65 62 79 73 68 65 76 20 73 65 72 69 65 73 20 74 6f 20 61 20 70 6f 6c 79 6e 6f 6d 69 61 | .Chebyshev.series.to.a.polynomia |
| 2dc0 | 6c 2e 0a 0a 20 20 20 20 43 6f 6e 76 65 72 74 20 61 6e 20 61 72 72 61 79 20 72 65 70 72 65 73 65 | l.......Convert.an.array.represe |
| 2de0 | 6e 74 69 6e 67 20 74 68 65 20 63 6f 65 66 66 69 63 69 65 6e 74 73 20 6f 66 20 61 20 43 68 65 62 | nting.the.coefficients.of.a.Cheb |
| 2e00 | 79 73 68 65 76 20 73 65 72 69 65 73 2c 0a 20 20 20 20 6f 72 64 65 72 65 64 20 66 72 6f 6d 20 6c | yshev.series,.....ordered.from.l |
| 2e20 | 6f 77 65 73 74 20 64 65 67 72 65 65 20 74 6f 20 68 69 67 68 65 73 74 2c 20 74 6f 20 61 6e 20 61 | owest.degree.to.highest,.to.an.a |
| 2e40 | 72 72 61 79 20 6f 66 20 74 68 65 20 63 6f 65 66 66 69 63 69 65 6e 74 73 0a 20 20 20 20 6f 66 20 | rray.of.the.coefficients.....of. |
| 2e60 | 74 68 65 20 65 71 75 69 76 61 6c 65 6e 74 20 70 6f 6c 79 6e 6f 6d 69 61 6c 20 28 72 65 6c 61 74 | the.equivalent.polynomial.(relat |
| 2e80 | 69 76 65 20 74 6f 20 74 68 65 20 22 73 74 61 6e 64 61 72 64 22 20 62 61 73 69 73 29 20 6f 72 64 | ive.to.the."standard".basis).ord |
| 2ea0 | 65 72 65 64 0a 20 20 20 20 66 72 6f 6d 20 6c 6f 77 65 73 74 20 74 6f 20 68 69 67 68 65 73 74 20 | ered.....from.lowest.to.highest. |
| 2ec0 | 64 65 67 72 65 65 2e 0a 0a 20 20 20 20 50 61 72 61 6d 65 74 65 72 73 0a 20 20 20 20 2d 2d 2d 2d | degree.......Parameters.....---- |
| 2ee0 | 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 63 20 3a 20 61 72 72 61 79 5f 6c 69 6b 65 0a 20 20 20 20 20 20 | ------.....c.:.array_like....... |
| 2f00 | 20 20 31 2d 44 20 61 72 72 61 79 20 63 6f 6e 74 61 69 6e 69 6e 67 20 74 68 65 20 43 68 65 62 79 | ..1-D.array.containing.the.Cheby |
| 2f20 | 73 68 65 76 20 73 65 72 69 65 73 20 63 6f 65 66 66 69 63 69 65 6e 74 73 2c 20 6f 72 64 65 72 65 | shev.series.coefficients,.ordere |
| 2f40 | 64 0a 20 20 20 20 20 20 20 20 66 72 6f 6d 20 6c 6f 77 65 73 74 20 6f 72 64 65 72 20 74 65 72 6d | d.........from.lowest.order.term |
| 2f60 | 20 74 6f 20 68 69 67 68 65 73 74 2e 0a 0a 20 20 20 20 52 65 74 75 72 6e 73 0a 20 20 20 20 2d 2d | .to.highest.......Returns.....-- |
| 2f80 | 2d 2d 2d 2d 2d 0a 20 20 20 20 70 6f 6c 20 3a 20 6e 64 61 72 72 61 79 0a 20 20 20 20 20 20 20 20 | -----.....pol.:.ndarray......... |
| 2fa0 | 31 2d 44 20 61 72 72 61 79 20 63 6f 6e 74 61 69 6e 69 6e 67 20 74 68 65 20 63 6f 65 66 66 69 63 | 1-D.array.containing.the.coeffic |
| 2fc0 | 69 65 6e 74 73 20 6f 66 20 74 68 65 20 65 71 75 69 76 61 6c 65 6e 74 20 70 6f 6c 79 6e 6f 6d 69 | ients.of.the.equivalent.polynomi |
| 2fe0 | 61 6c 0a 20 20 20 20 20 20 20 20 28 72 65 6c 61 74 69 76 65 20 74 6f 20 74 68 65 20 22 73 74 61 | al.........(relative.to.the."sta |
| 3000 | 6e 64 61 72 64 22 20 62 61 73 69 73 29 20 6f 72 64 65 72 65 64 20 66 72 6f 6d 20 6c 6f 77 65 73 | ndard".basis).ordered.from.lowes |
| 3020 | 74 20 6f 72 64 65 72 20 74 65 72 6d 0a 20 20 20 20 20 20 20 20 74 6f 20 68 69 67 68 65 73 74 2e | t.order.term.........to.highest. |
| 3040 | 0a 0a 20 20 20 20 53 65 65 20 41 6c 73 6f 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 | ......See.Also.....--------..... |
| 3060 | 70 6f 6c 79 32 63 68 65 62 0a 0a 20 20 20 20 4e 6f 74 65 73 0a 20 20 20 20 2d 2d 2d 2d 2d 0a 20 | poly2cheb......Notes.....-----.. |
| 3080 | 20 20 20 54 68 65 20 65 61 73 79 20 77 61 79 20 74 6f 20 64 6f 20 63 6f 6e 76 65 72 73 69 6f 6e | ...The.easy.way.to.do.conversion |
| 30a0 | 73 20 62 65 74 77 65 65 6e 20 70 6f 6c 79 6e 6f 6d 69 61 6c 20 62 61 73 69 73 20 73 65 74 73 0a | s.between.polynomial.basis.sets. |
| 30c0 | 20 20 20 20 69 73 20 74 6f 20 75 73 65 20 74 68 65 20 63 6f 6e 76 65 72 74 20 6d 65 74 68 6f 64 | ....is.to.use.the.convert.method |
| 30e0 | 20 6f 66 20 61 20 63 6c 61 73 73 20 69 6e 73 74 61 6e 63 65 2e 0a 0a 20 20 20 20 45 78 61 6d 70 | .of.a.class.instance.......Examp |
| 3100 | 6c 65 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 3e 3e 3e 20 66 72 6f 6d 20 6e 75 | les.....--------.....>>>.from.nu |
| 3120 | 6d 70 79 20 69 6d 70 6f 72 74 20 70 6f 6c 79 6e 6f 6d 69 61 6c 20 61 73 20 50 0a 20 20 20 20 3e | mpy.import.polynomial.as.P.....> |
| 3140 | 3e 3e 20 63 20 3d 20 50 2e 43 68 65 62 79 73 68 65 76 28 72 61 6e 67 65 28 34 29 29 0a 20 20 20 | >>.c.=.P.Chebyshev(range(4)).... |
| 3160 | 20 3e 3e 3e 20 63 0a 20 20 20 20 43 68 65 62 79 73 68 65 76 28 5b 30 2e 2c 20 31 2e 2c 20 32 2e | .>>>.c.....Chebyshev([0.,.1.,.2. |
| 3180 | 2c 20 33 2e 5d 2c 20 64 6f 6d 61 69 6e 3d 5b 2d 31 2e 2c 20 20 31 2e 5d 2c 20 77 69 6e 64 6f 77 | ,.3.],.domain=[-1.,..1.],.window |
| 31a0 | 3d 5b 2d 31 2e 2c 20 20 31 2e 5d 2c 20 73 79 6d 62 6f 6c 3d 27 78 27 29 0a 20 20 20 20 3e 3e 3e | =[-1.,..1.],.symbol='x').....>>> |
| 31c0 | 20 70 20 3d 20 63 2e 63 6f 6e 76 65 72 74 28 6b 69 6e 64 3d 50 2e 50 6f 6c 79 6e 6f 6d 69 61 6c | .p.=.c.convert(kind=P.Polynomial |
| 31e0 | 29 0a 20 20 20 20 3e 3e 3e 20 70 0a 20 20 20 20 50 6f 6c 79 6e 6f 6d 69 61 6c 28 5b 2d 32 2e 2c | ).....>>>.p.....Polynomial([-2., |
| 3200 | 20 2d 38 2e 2c 20 20 34 2e 2c 20 31 32 2e 5d 2c 20 64 6f 6d 61 69 6e 3d 5b 2d 31 2e 2c 20 20 31 | .-8.,..4.,.12.],.domain=[-1.,..1 |
| 3220 | 2e 5d 2c 20 77 69 6e 64 6f 77 3d 5b 2d 31 2e 2c 20 20 31 2e 5d 2c 20 2e 2e 2e 0a 20 20 20 20 3e | .],.window=[-1.,..1.],.........> |
| 3240 | 3e 3e 20 50 2e 63 68 65 62 79 73 68 65 76 2e 63 68 65 62 32 70 6f 6c 79 28 72 61 6e 67 65 28 34 | >>.P.chebyshev.cheb2poly(range(4 |
| 3260 | 29 29 0a 20 20 20 20 61 72 72 61 79 28 5b 2d 32 2e 2c 20 20 2d 38 2e 2c 20 20 20 34 2e 2c 20 20 | )).....array([-2.,..-8.,...4.,.. |
| 3280 | 31 32 2e 5d 29 0a 0a 20 20 20 20 72 04 00 00 00 29 03 da 07 70 6f 6c 79 61 64 64 da 08 70 6f 6c | 12.])......r....)...polyadd..pol |
| 32a0 | 79 6d 75 6c 78 da 07 70 6f 6c 79 73 75 62 e9 03 00 00 00 e9 fe ff ff ff 72 2d 00 00 00 72 2a 00 | ymulx..polysub..........r-...r*. |
| 32c0 | 00 00 29 08 da 0a 70 6f 6c 79 6e 6f 6d 69 61 6c 72 5f 00 00 00 72 60 00 00 00 72 61 00 00 00 72 | ..)...polynomialr_...r`...ra...r |
| 32e0 | 58 00 00 00 72 59 00 00 00 72 40 00 00 00 72 5a 00 00 00 29 09 72 31 00 00 00 72 5f 00 00 00 72 | X...rY...r@...rZ...).r1...r_...r |
| 3300 | 60 00 00 00 72 61 00 00 00 72 32 00 00 00 da 02 63 30 da 02 63 31 72 47 00 00 00 72 4a 00 00 00 | `...ra...r2.....c0..c1rG...rJ... |
| 3320 | 73 09 00 00 00 20 20 20 20 20 20 20 20 20 72 34 00 00 00 72 15 00 00 00 72 15 00 00 00 8d 01 00 | s.............r4...r....r....... |
| 3340 | 00 73 a1 00 00 00 80 00 f7 58 01 00 05 37 d1 04 36 e4 0a 0c 8f 2c 89 2c 98 01 90 73 d3 0a 1b 81 | .s.......X...7..6....,.,...s.... |
| 3360 | 43 80 51 dc 08 0b 88 41 8b 06 80 41 d8 07 08 88 31 82 75 d8 0f 10 88 08 e0 0d 0e 88 72 89 55 88 | C.Q....A...A....1.u.........r.U. |
| 3380 | 02 d8 0d 0e 88 72 89 55 88 02 e4 11 16 90 71 98 31 91 75 98 61 a0 12 d3 11 24 f2 00 03 09 30 88 | .....r.U......q.1.u.a....$....0. |
| 33a0 | 41 d8 12 14 88 43 d9 11 18 98 11 98 31 98 71 99 35 99 18 a0 32 d3 11 26 88 42 d9 11 18 98 13 99 | A....C......1.q.5...2..&.B...... |
| 33c0 | 68 a0 72 9b 6c a8 51 d1 1e 2e d3 11 2f 89 42 f0 07 03 09 30 f1 08 00 10 17 90 72 99 38 a0 42 9b | h.r.l.Q...../.B....0......r.8.B. |
| 33e0 | 3c d3 0f 28 d0 08 28 72 36 00 00 00 67 00 00 00 00 00 00 f0 bf e7 00 00 00 00 00 00 f0 3f 63 02 | <..(..(r6...g................?c. |
| 3400 | 00 00 00 00 00 00 00 00 00 00 00 04 00 00 00 03 00 00 00 f3 66 00 00 00 97 00 7c 01 64 01 6b 37 | ....................f.....|.d.k7 |
| 3420 | 00 00 72 17 74 01 00 00 00 00 00 00 00 00 6a 02 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 | ..r.t.........j................. |
| 3440 | 00 00 7c 00 7c 01 67 02 ab 01 00 00 00 00 00 00 53 00 74 01 00 00 00 00 00 00 00 00 6a 02 00 00 | ..|.|.g.........S.t.........j... |
| 3460 | 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 7c 00 67 01 ab 01 00 00 00 00 00 00 53 00 29 02 | ................|.g.........S.). |
| 3480 | 61 be 02 00 00 0a 20 20 20 20 43 68 65 62 79 73 68 65 76 20 73 65 72 69 65 73 20 77 68 6f 73 65 | a.........Chebyshev.series.whose |
| 34a0 | 20 67 72 61 70 68 20 69 73 20 61 20 73 74 72 61 69 67 68 74 20 6c 69 6e 65 2e 0a 0a 20 20 20 20 | .graph.is.a.straight.line....... |
| 34c0 | 50 61 72 61 6d 65 74 65 72 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 6f 66 | Parameters.....----------.....of |
| 34e0 | 66 2c 20 73 63 6c 20 3a 20 73 63 61 6c 61 72 73 0a 20 20 20 20 20 20 20 20 54 68 65 20 73 70 65 | f,.scl.:.scalars.........The.spe |
| 3500 | 63 69 66 69 65 64 20 6c 69 6e 65 20 69 73 20 67 69 76 65 6e 20 62 79 20 60 60 6f 66 66 20 2b 20 | cified.line.is.given.by.``off.+. |
| 3520 | 73 63 6c 2a 78 60 60 2e 0a 0a 20 20 20 20 52 65 74 75 72 6e 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d | scl*x``.......Returns.....------ |
| 3540 | 2d 0a 20 20 20 20 79 20 3a 20 6e 64 61 72 72 61 79 0a 20 20 20 20 20 20 20 20 54 68 69 73 20 6d | -.....y.:.ndarray.........This.m |
| 3560 | 6f 64 75 6c 65 27 73 20 72 65 70 72 65 73 65 6e 74 61 74 69 6f 6e 20 6f 66 20 74 68 65 20 43 68 | odule's.representation.of.the.Ch |
| 3580 | 65 62 79 73 68 65 76 20 73 65 72 69 65 73 20 66 6f 72 0a 20 20 20 20 20 20 20 20 60 60 6f 66 66 | ebyshev.series.for.........``off |
| 35a0 | 20 2b 20 73 63 6c 2a 78 60 60 2e 0a 0a 20 20 20 20 53 65 65 20 41 6c 73 6f 0a 20 20 20 20 2d 2d | .+.scl*x``.......See.Also.....-- |
| 35c0 | 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 6e 75 6d 70 79 2e 70 6f 6c 79 6e 6f 6d 69 61 6c 2e 70 6f 6c 79 | ------.....numpy.polynomial.poly |
| 35e0 | 6e 6f 6d 69 61 6c 2e 70 6f 6c 79 6c 69 6e 65 0a 20 20 20 20 6e 75 6d 70 79 2e 70 6f 6c 79 6e 6f | nomial.polyline.....numpy.polyno |
| 3600 | 6d 69 61 6c 2e 6c 65 67 65 6e 64 72 65 2e 6c 65 67 6c 69 6e 65 0a 20 20 20 20 6e 75 6d 70 79 2e | mial.legendre.legline.....numpy. |
| 3620 | 70 6f 6c 79 6e 6f 6d 69 61 6c 2e 6c 61 67 75 65 72 72 65 2e 6c 61 67 6c 69 6e 65 0a 20 20 20 20 | polynomial.laguerre.lagline..... |
| 3640 | 6e 75 6d 70 79 2e 70 6f 6c 79 6e 6f 6d 69 61 6c 2e 68 65 72 6d 69 74 65 2e 68 65 72 6d 6c 69 6e | numpy.polynomial.hermite.hermlin |
| 3660 | 65 0a 20 20 20 20 6e 75 6d 70 79 2e 70 6f 6c 79 6e 6f 6d 69 61 6c 2e 68 65 72 6d 69 74 65 5f 65 | e.....numpy.polynomial.hermite_e |
| 3680 | 2e 68 65 72 6d 65 6c 69 6e 65 0a 0a 20 20 20 20 45 78 61 6d 70 6c 65 73 0a 20 20 20 20 2d 2d 2d | .hermeline......Examples.....--- |
| 36a0 | 2d 2d 2d 2d 2d 0a 20 20 20 20 3e 3e 3e 20 69 6d 70 6f 72 74 20 6e 75 6d 70 79 2e 70 6f 6c 79 6e | -----.....>>>.import.numpy.polyn |
| 36c0 | 6f 6d 69 61 6c 2e 63 68 65 62 79 73 68 65 76 20 61 73 20 43 0a 20 20 20 20 3e 3e 3e 20 43 2e 63 | omial.chebyshev.as.C.....>>>.C.c |
| 36e0 | 68 65 62 6c 69 6e 65 28 33 2c 32 29 0a 20 20 20 20 61 72 72 61 79 28 5b 33 2c 20 32 5d 29 0a 20 | hebline(3,2).....array([3,.2]).. |
| 3700 | 20 20 20 3e 3e 3e 20 43 2e 63 68 65 62 76 61 6c 28 2d 33 2c 20 43 2e 63 68 65 62 6c 69 6e 65 28 | ...>>>.C.chebval(-3,.C.chebline( |
| 3720 | 33 2c 32 29 29 20 23 20 73 68 6f 75 6c 64 20 62 65 20 2d 33 0a 20 20 20 20 2d 33 2e 30 0a 0a 20 | 3,2)).#.should.be.-3.....-3.0... |
| 3740 | 20 20 20 72 02 00 00 00 29 02 72 2f 00 00 00 72 4f 00 00 00 29 02 da 03 6f 66 66 72 45 00 00 00 | ...r....).r/...rO...)...offrE... |
| 3760 | 73 02 00 00 00 20 20 72 34 00 00 00 72 0b 00 00 00 72 0b 00 00 00 dc 01 00 00 73 2f 00 00 00 80 | s......r4...r....r........s/.... |
| 3780 | 00 f0 40 01 00 08 0b 88 61 82 78 dc 0f 11 8f 78 89 78 98 13 98 63 98 0a d3 0f 23 d0 08 23 e4 0f | ..@.....a.x....x.x...c....#..#.. |
| 37a0 | 11 8f 78 89 78 98 13 98 05 8b 7f d0 08 1e 72 36 00 00 00 63 01 00 00 00 00 00 00 00 00 00 00 00 | ..x.x.........r6...c............ |
| 37c0 | 05 00 00 00 03 00 00 00 f3 40 00 00 00 97 00 74 01 00 00 00 00 00 00 00 00 6a 02 00 00 00 00 00 | .........@.....t.........j...... |
| 37e0 | 00 00 00 00 00 00 00 00 00 00 00 00 00 74 04 00 00 00 00 00 00 00 00 74 06 00 00 00 00 00 00 00 | .............t.........t........ |
| 3800 | 00 7c 00 ab 03 00 00 00 00 00 00 53 00 29 01 61 95 06 00 00 0a 20 20 20 20 47 65 6e 65 72 61 74 | .|.........S.).a.........Generat |
| 3820 | 65 20 61 20 43 68 65 62 79 73 68 65 76 20 73 65 72 69 65 73 20 77 69 74 68 20 67 69 76 65 6e 20 | e.a.Chebyshev.series.with.given. |
| 3840 | 72 6f 6f 74 73 2e 0a 0a 20 20 20 20 54 68 65 20 66 75 6e 63 74 69 6f 6e 20 72 65 74 75 72 6e 73 | roots.......The.function.returns |
| 3860 | 20 74 68 65 20 63 6f 65 66 66 69 63 69 65 6e 74 73 20 6f 66 20 74 68 65 20 70 6f 6c 79 6e 6f 6d | .the.coefficients.of.the.polynom |
| 3880 | 69 61 6c 0a 0a 20 20 20 20 2e 2e 20 6d 61 74 68 3a 3a 20 70 28 78 29 20 3d 20 28 78 20 2d 20 72 | ial.........math::.p(x).=.(x.-.r |
| 38a0 | 5f 30 29 20 2a 20 28 78 20 2d 20 72 5f 31 29 20 2a 20 2e 2e 2e 20 2a 20 28 78 20 2d 20 72 5f 6e | _0).*.(x.-.r_1).*.....*.(x.-.r_n |
| 38c0 | 29 2c 0a 0a 20 20 20 20 69 6e 20 43 68 65 62 79 73 68 65 76 20 66 6f 72 6d 2c 20 77 68 65 72 65 | ),......in.Chebyshev.form,.where |
| 38e0 | 20 74 68 65 20 3a 6d 61 74 68 3a 60 72 5f 6e 60 20 61 72 65 20 74 68 65 20 72 6f 6f 74 73 20 73 | .the.:math:`r_n`.are.the.roots.s |
| 3900 | 70 65 63 69 66 69 65 64 20 69 6e 0a 20 20 20 20 60 72 6f 6f 74 73 60 2e 20 20 49 66 20 61 20 7a | pecified.in.....`roots`...If.a.z |
| 3920 | 65 72 6f 20 68 61 73 20 6d 75 6c 74 69 70 6c 69 63 69 74 79 20 6e 2c 20 74 68 65 6e 20 69 74 20 | ero.has.multiplicity.n,.then.it. |
| 3940 | 6d 75 73 74 20 61 70 70 65 61 72 20 69 6e 20 60 72 6f 6f 74 73 60 0a 20 20 20 20 6e 20 74 69 6d | must.appear.in.`roots`.....n.tim |
| 3960 | 65 73 2e 20 20 46 6f 72 20 69 6e 73 74 61 6e 63 65 2c 20 69 66 20 32 20 69 73 20 61 20 72 6f 6f | es...For.instance,.if.2.is.a.roo |
| 3980 | 74 20 6f 66 20 6d 75 6c 74 69 70 6c 69 63 69 74 79 20 74 68 72 65 65 20 61 6e 64 20 33 20 69 73 | t.of.multiplicity.three.and.3.is |
| 39a0 | 20 61 0a 20 20 20 20 72 6f 6f 74 20 6f 66 20 6d 75 6c 74 69 70 6c 69 63 69 74 79 20 32 2c 20 74 | .a.....root.of.multiplicity.2,.t |
| 39c0 | 68 65 6e 20 60 72 6f 6f 74 73 60 20 6c 6f 6f 6b 73 20 73 6f 6d 65 74 68 69 6e 67 20 6c 69 6b 65 | hen.`roots`.looks.something.like |
| 39e0 | 20 5b 32 2c 20 32 2c 20 32 2c 20 33 2c 20 33 5d 2e 0a 20 20 20 20 54 68 65 20 72 6f 6f 74 73 20 | .[2,.2,.2,.3,.3]......The.roots. |
| 3a00 | 63 61 6e 20 61 70 70 65 61 72 20 69 6e 20 61 6e 79 20 6f 72 64 65 72 2e 0a 0a 20 20 20 20 49 66 | can.appear.in.any.order.......If |
| 3a20 | 20 74 68 65 20 72 65 74 75 72 6e 65 64 20 63 6f 65 66 66 69 63 69 65 6e 74 73 20 61 72 65 20 60 | .the.returned.coefficients.are.` |
| 3a40 | 63 60 2c 20 74 68 65 6e 0a 0a 20 20 20 20 2e 2e 20 6d 61 74 68 3a 3a 20 70 28 78 29 20 3d 20 63 | c`,.then.........math::.p(x).=.c |
| 3a60 | 5f 30 20 2b 20 63 5f 31 20 2a 20 54 5f 31 28 78 29 20 2b 20 2e 2e 2e 20 2b 20 20 63 5f 6e 20 2a | _0.+.c_1.*.T_1(x).+.....+..c_n.* |
| 3a80 | 20 54 5f 6e 28 78 29 0a 0a 20 20 20 20 54 68 65 20 63 6f 65 66 66 69 63 69 65 6e 74 20 6f 66 20 | .T_n(x)......The.coefficient.of. |
| 3aa0 | 74 68 65 20 6c 61 73 74 20 74 65 72 6d 20 69 73 20 6e 6f 74 20 67 65 6e 65 72 61 6c 6c 79 20 31 | the.last.term.is.not.generally.1 |
| 3ac0 | 20 66 6f 72 20 6d 6f 6e 69 63 0a 20 20 20 20 70 6f 6c 79 6e 6f 6d 69 61 6c 73 20 69 6e 20 43 68 | .for.monic.....polynomials.in.Ch |
| 3ae0 | 65 62 79 73 68 65 76 20 66 6f 72 6d 2e 0a 0a 20 20 20 20 50 61 72 61 6d 65 74 65 72 73 0a 20 20 | ebyshev.form.......Parameters... |
| 3b00 | 20 20 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 72 6f 6f 74 73 20 3a 20 61 72 72 61 79 5f 6c | ..----------.....roots.:.array_l |
| 3b20 | 69 6b 65 0a 20 20 20 20 20 20 20 20 53 65 71 75 65 6e 63 65 20 63 6f 6e 74 61 69 6e 69 6e 67 20 | ike.........Sequence.containing. |
| 3b40 | 74 68 65 20 72 6f 6f 74 73 2e 0a 0a 20 20 20 20 52 65 74 75 72 6e 73 0a 20 20 20 20 2d 2d 2d 2d | the.roots.......Returns.....---- |
| 3b60 | 2d 2d 2d 0a 20 20 20 20 6f 75 74 20 3a 20 6e 64 61 72 72 61 79 0a 20 20 20 20 20 20 20 20 31 2d | ---.....out.:.ndarray.........1- |
| 3b80 | 44 20 61 72 72 61 79 20 6f 66 20 63 6f 65 66 66 69 63 69 65 6e 74 73 2e 20 20 49 66 20 61 6c 6c | D.array.of.coefficients...If.all |
| 3ba0 | 20 72 6f 6f 74 73 20 61 72 65 20 72 65 61 6c 20 74 68 65 6e 20 60 6f 75 74 60 20 69 73 20 61 0a | .roots.are.real.then.`out`.is.a. |
| 3bc0 | 20 20 20 20 20 20 20 20 72 65 61 6c 20 61 72 72 61 79 2c 20 69 66 20 73 6f 6d 65 20 6f 66 20 74 | ........real.array,.if.some.of.t |
| 3be0 | 68 65 20 72 6f 6f 74 73 20 61 72 65 20 63 6f 6d 70 6c 65 78 2c 20 74 68 65 6e 20 60 6f 75 74 60 | he.roots.are.complex,.then.`out` |
| 3c00 | 20 69 73 20 63 6f 6d 70 6c 65 78 0a 20 20 20 20 20 20 20 20 65 76 65 6e 20 69 66 20 61 6c 6c 20 | .is.complex.........even.if.all. |
| 3c20 | 74 68 65 20 63 6f 65 66 66 69 63 69 65 6e 74 73 20 69 6e 20 74 68 65 20 72 65 73 75 6c 74 20 61 | the.coefficients.in.the.result.a |
| 3c40 | 72 65 20 72 65 61 6c 20 28 73 65 65 20 45 78 61 6d 70 6c 65 73 0a 20 20 20 20 20 20 20 20 62 65 | re.real.(see.Examples.........be |
| 3c60 | 6c 6f 77 29 2e 0a 0a 20 20 20 20 53 65 65 20 41 6c 73 6f 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d | low).......See.Also.....-------- |
| 3c80 | 0a 20 20 20 20 6e 75 6d 70 79 2e 70 6f 6c 79 6e 6f 6d 69 61 6c 2e 70 6f 6c 79 6e 6f 6d 69 61 6c | .....numpy.polynomial.polynomial |
| 3ca0 | 2e 70 6f 6c 79 66 72 6f 6d 72 6f 6f 74 73 0a 20 20 20 20 6e 75 6d 70 79 2e 70 6f 6c 79 6e 6f 6d | .polyfromroots.....numpy.polynom |
| 3cc0 | 69 61 6c 2e 6c 65 67 65 6e 64 72 65 2e 6c 65 67 66 72 6f 6d 72 6f 6f 74 73 0a 20 20 20 20 6e 75 | ial.legendre.legfromroots.....nu |
| 3ce0 | 6d 70 79 2e 70 6f 6c 79 6e 6f 6d 69 61 6c 2e 6c 61 67 75 65 72 72 65 2e 6c 61 67 66 72 6f 6d 72 | mpy.polynomial.laguerre.lagfromr |
| 3d00 | 6f 6f 74 73 0a 20 20 20 20 6e 75 6d 70 79 2e 70 6f 6c 79 6e 6f 6d 69 61 6c 2e 68 65 72 6d 69 74 | oots.....numpy.polynomial.hermit |
| 3d20 | 65 2e 68 65 72 6d 66 72 6f 6d 72 6f 6f 74 73 0a 20 20 20 20 6e 75 6d 70 79 2e 70 6f 6c 79 6e 6f | e.hermfromroots.....numpy.polyno |
| 3d40 | 6d 69 61 6c 2e 68 65 72 6d 69 74 65 5f 65 2e 68 65 72 6d 65 66 72 6f 6d 72 6f 6f 74 73 0a 0a 20 | mial.hermite_e.hermefromroots... |
| 3d60 | 20 20 20 45 78 61 6d 70 6c 65 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 3e 3e 3e | ...Examples.....--------.....>>> |
| 3d80 | 20 69 6d 70 6f 72 74 20 6e 75 6d 70 79 2e 70 6f 6c 79 6e 6f 6d 69 61 6c 2e 63 68 65 62 79 73 68 | .import.numpy.polynomial.chebysh |
| 3da0 | 65 76 20 61 73 20 43 0a 20 20 20 20 3e 3e 3e 20 43 2e 63 68 65 62 66 72 6f 6d 72 6f 6f 74 73 28 | ev.as.C.....>>>.C.chebfromroots( |
| 3dc0 | 28 2d 31 2c 30 2c 31 29 29 20 23 20 78 5e 33 20 2d 20 78 20 72 65 6c 61 74 69 76 65 20 74 6f 20 | (-1,0,1)).#.x^3.-.x.relative.to. |
| 3de0 | 74 68 65 20 73 74 61 6e 64 61 72 64 20 62 61 73 69 73 0a 20 20 20 20 61 72 72 61 79 28 5b 20 30 | the.standard.basis.....array([.0 |
| 3e00 | 2e 20 20 2c 20 2d 30 2e 32 35 2c 20 20 30 2e 20 20 2c 20 20 30 2e 32 35 5d 29 0a 20 20 20 20 3e | ...,.-0.25,..0...,..0.25]).....> |
| 3e20 | 3e 3e 20 6a 20 3d 20 63 6f 6d 70 6c 65 78 28 30 2c 31 29 0a 20 20 20 20 3e 3e 3e 20 43 2e 63 68 | >>.j.=.complex(0,1).....>>>.C.ch |
| 3e40 | 65 62 66 72 6f 6d 72 6f 6f 74 73 28 28 2d 6a 2c 6a 29 29 20 23 20 78 5e 32 20 2b 20 31 20 72 65 | ebfromroots((-j,j)).#.x^2.+.1.re |
| 3e60 | 6c 61 74 69 76 65 20 74 6f 20 74 68 65 20 73 74 61 6e 64 61 72 64 20 62 61 73 69 73 0a 20 20 20 | lative.to.the.standard.basis.... |
| 3e80 | 20 61 72 72 61 79 28 5b 31 2e 35 2b 30 2e 6a 2c 20 30 2e 20 2b 30 2e 6a 2c 20 30 2e 35 2b 30 2e | .array([1.5+0.j,.0..+0.j,.0.5+0. |
| 3ea0 | 6a 5d 29 0a 0a 20 20 20 20 29 04 72 58 00 00 00 da 0a 5f 66 72 6f 6d 72 6f 6f 74 73 72 0b 00 00 | j])......).rX....._fromrootsr... |
| 3ec0 | 00 72 0f 00 00 00 29 01 da 05 72 6f 6f 74 73 73 01 00 00 00 20 72 34 00 00 00 72 17 00 00 00 72 | .r....)...rootss.....r4...r....r |
| 3ee0 | 17 00 00 00 02 02 00 00 73 18 00 00 00 80 00 f4 68 01 00 0c 0e 8f 3d 89 3d 9c 18 a4 37 a8 45 d3 | ........s.......h.....=.=...7.E. |
| 3f00 | 0b 32 d0 04 32 72 36 00 00 00 63 02 00 00 00 00 00 00 00 00 00 00 00 04 00 00 00 03 00 00 00 f3 | .2..2r6...c..................... |
| 3f20 | 2e 00 00 00 97 00 74 01 00 00 00 00 00 00 00 00 6a 02 00 00 00 00 00 00 00 00 00 00 00 00 00 00 | ......t.........j............... |
| 3f40 | 00 00 00 00 7c 00 7c 01 ab 02 00 00 00 00 00 00 53 00 29 01 61 05 04 00 00 0a 20 20 20 20 41 64 | ....|.|.........S.).a.........Ad |
| 3f60 | 64 20 6f 6e 65 20 43 68 65 62 79 73 68 65 76 20 73 65 72 69 65 73 20 74 6f 20 61 6e 6f 74 68 65 | d.one.Chebyshev.series.to.anothe |
| 3f80 | 72 2e 0a 0a 20 20 20 20 52 65 74 75 72 6e 73 20 74 68 65 20 73 75 6d 20 6f 66 20 74 77 6f 20 43 | r.......Returns.the.sum.of.two.C |
| 3fa0 | 68 65 62 79 73 68 65 76 20 73 65 72 69 65 73 20 60 63 31 60 20 2b 20 60 63 32 60 2e 20 20 54 68 | hebyshev.series.`c1`.+.`c2`...Th |
| 3fc0 | 65 20 61 72 67 75 6d 65 6e 74 73 0a 20 20 20 20 61 72 65 20 73 65 71 75 65 6e 63 65 73 20 6f 66 | e.arguments.....are.sequences.of |
| 3fe0 | 20 63 6f 65 66 66 69 63 69 65 6e 74 73 20 6f 72 64 65 72 65 64 20 66 72 6f 6d 20 6c 6f 77 65 73 | .coefficients.ordered.from.lowes |
| 4000 | 74 20 6f 72 64 65 72 20 74 65 72 6d 20 74 6f 0a 20 20 20 20 68 69 67 68 65 73 74 2c 20 69 2e 65 | t.order.term.to.....highest,.i.e |
| 4020 | 2e 2c 20 5b 31 2c 32 2c 33 5d 20 72 65 70 72 65 73 65 6e 74 73 20 74 68 65 20 73 65 72 69 65 73 | .,.[1,2,3].represents.the.series |
| 4040 | 20 60 60 54 5f 30 20 2b 20 32 2a 54 5f 31 20 2b 20 33 2a 54 5f 32 60 60 2e 0a 0a 20 20 20 20 50 | .``T_0.+.2*T_1.+.3*T_2``.......P |
| 4060 | 61 72 61 6d 65 74 65 72 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 63 31 2c | arameters.....----------.....c1, |
| 4080 | 20 63 32 20 3a 20 61 72 72 61 79 5f 6c 69 6b 65 0a 20 20 20 20 20 20 20 20 31 2d 44 20 61 72 72 | .c2.:.array_like.........1-D.arr |
| 40a0 | 61 79 73 20 6f 66 20 43 68 65 62 79 73 68 65 76 20 73 65 72 69 65 73 20 63 6f 65 66 66 69 63 69 | ays.of.Chebyshev.series.coeffici |
| 40c0 | 65 6e 74 73 20 6f 72 64 65 72 65 64 20 66 72 6f 6d 20 6c 6f 77 20 74 6f 0a 20 20 20 20 20 20 20 | ents.ordered.from.low.to........ |
| 40e0 | 20 68 69 67 68 2e 0a 0a 20 20 20 20 52 65 74 75 72 6e 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 0a | .high.......Returns.....-------. |
| 4100 | 20 20 20 20 6f 75 74 20 3a 20 6e 64 61 72 72 61 79 0a 20 20 20 20 20 20 20 20 41 72 72 61 79 20 | ....out.:.ndarray.........Array. |
| 4120 | 72 65 70 72 65 73 65 6e 74 69 6e 67 20 74 68 65 20 43 68 65 62 79 73 68 65 76 20 73 65 72 69 65 | representing.the.Chebyshev.serie |
| 4140 | 73 20 6f 66 20 74 68 65 69 72 20 73 75 6d 2e 0a 0a 20 20 20 20 53 65 65 20 41 6c 73 6f 0a 20 20 | s.of.their.sum.......See.Also... |
| 4160 | 20 20 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 63 68 65 62 73 75 62 2c 20 63 68 65 62 6d 75 6c 78 | ..--------.....chebsub,.chebmulx |
| 4180 | 2c 20 63 68 65 62 6d 75 6c 2c 20 63 68 65 62 64 69 76 2c 20 63 68 65 62 70 6f 77 0a 0a 20 20 20 | ,.chebmul,.chebdiv,.chebpow..... |
| 41a0 | 20 4e 6f 74 65 73 0a 20 20 20 20 2d 2d 2d 2d 2d 0a 20 20 20 20 55 6e 6c 69 6b 65 20 6d 75 6c 74 | .Notes.....-----.....Unlike.mult |
| 41c0 | 69 70 6c 69 63 61 74 69 6f 6e 2c 20 64 69 76 69 73 69 6f 6e 2c 20 65 74 63 2e 2c 20 74 68 65 20 | iplication,.division,.etc.,.the. |
| 41e0 | 73 75 6d 20 6f 66 20 74 77 6f 20 43 68 65 62 79 73 68 65 76 20 73 65 72 69 65 73 0a 20 20 20 20 | sum.of.two.Chebyshev.series..... |
| 4200 | 69 73 20 61 20 43 68 65 62 79 73 68 65 76 20 73 65 72 69 65 73 20 28 77 69 74 68 6f 75 74 20 68 | is.a.Chebyshev.series.(without.h |
| 4220 | 61 76 69 6e 67 20 74 6f 20 22 72 65 70 72 6f 6a 65 63 74 22 20 74 68 65 20 72 65 73 75 6c 74 20 | aving.to."reproject".the.result. |
| 4240 | 6f 6e 74 6f 0a 20 20 20 20 74 68 65 20 62 61 73 69 73 20 73 65 74 29 20 73 6f 20 61 64 64 69 74 | onto.....the.basis.set).so.addit |
| 4260 | 69 6f 6e 2c 20 6a 75 73 74 20 6c 69 6b 65 20 74 68 61 74 20 6f 66 20 22 73 74 61 6e 64 61 72 64 | ion,.just.like.that.of."standard |
| 4280 | 22 20 70 6f 6c 79 6e 6f 6d 69 61 6c 73 2c 0a 20 20 20 20 69 73 20 73 69 6d 70 6c 79 20 22 63 6f | ".polynomials,.....is.simply."co |
| 42a0 | 6d 70 6f 6e 65 6e 74 2d 77 69 73 65 2e 22 0a 0a 20 20 20 20 45 78 61 6d 70 6c 65 73 0a 20 20 20 | mponent-wise."......Examples.... |
| 42c0 | 20 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 3e 3e 3e 20 66 72 6f 6d 20 6e 75 6d 70 79 2e 70 6f 6c | .--------.....>>>.from.numpy.pol |
| 42e0 | 79 6e 6f 6d 69 61 6c 20 69 6d 70 6f 72 74 20 63 68 65 62 79 73 68 65 76 20 61 73 20 43 0a 20 20 | ynomial.import.chebyshev.as.C... |
| 4300 | 20 20 3e 3e 3e 20 63 31 20 3d 20 28 31 2c 32 2c 33 29 0a 20 20 20 20 3e 3e 3e 20 63 32 20 3d 20 | ..>>>.c1.=.(1,2,3).....>>>.c2.=. |
| 4320 | 28 33 2c 32 2c 31 29 0a 20 20 20 20 3e 3e 3e 20 43 2e 63 68 65 62 61 64 64 28 63 31 2c 63 32 29 | (3,2,1).....>>>.C.chebadd(c1,c2) |
| 4340 | 0a 20 20 20 20 61 72 72 61 79 28 5b 34 2e 2c 20 34 2e 2c 20 34 2e 5d 29 0a 0a 20 20 20 20 29 02 | .....array([4.,.4.,.4.])......). |
| 4360 | 72 58 00 00 00 da 04 5f 61 64 64 a9 02 72 66 00 00 00 da 02 63 32 73 02 00 00 00 20 20 72 34 00 | rX....._add..rf.....c2s......r4. |
| 4380 | 00 00 72 0c 00 00 00 72 0c 00 00 00 39 02 00 00 73 15 00 00 00 80 00 f4 4e 01 00 0c 0e 8f 37 89 | ..r....r....9...s.......N.....7. |
| 43a0 | 37 90 32 90 72 8b 3f d0 04 1a 72 36 00 00 00 63 02 00 00 00 00 00 00 00 00 00 00 00 04 00 00 00 | 7.2.r.?...r6...c................ |
| 43c0 | 03 00 00 00 f3 2e 00 00 00 97 00 74 01 00 00 00 00 00 00 00 00 6a 02 00 00 00 00 00 00 00 00 00 | ...........t.........j.......... |
| 43e0 | 00 00 00 00 00 00 00 00 00 7c 00 7c 01 ab 02 00 00 00 00 00 00 53 00 29 01 61 60 04 00 00 0a 20 | .........|.|.........S.).a`..... |
| 4400 | 20 20 20 53 75 62 74 72 61 63 74 20 6f 6e 65 20 43 68 65 62 79 73 68 65 76 20 73 65 72 69 65 73 | ...Subtract.one.Chebyshev.series |
| 4420 | 20 66 72 6f 6d 20 61 6e 6f 74 68 65 72 2e 0a 0a 20 20 20 20 52 65 74 75 72 6e 73 20 74 68 65 20 | .from.another.......Returns.the. |
| 4440 | 64 69 66 66 65 72 65 6e 63 65 20 6f 66 20 74 77 6f 20 43 68 65 62 79 73 68 65 76 20 73 65 72 69 | difference.of.two.Chebyshev.seri |
| 4460 | 65 73 20 60 63 31 60 20 2d 20 60 63 32 60 2e 20 20 54 68 65 0a 20 20 20 20 73 65 71 75 65 6e 63 | es.`c1`.-.`c2`...The.....sequenc |
| 4480 | 65 73 20 6f 66 20 63 6f 65 66 66 69 63 69 65 6e 74 73 20 61 72 65 20 66 72 6f 6d 20 6c 6f 77 65 | es.of.coefficients.are.from.lowe |
| 44a0 | 73 74 20 6f 72 64 65 72 20 74 65 72 6d 20 74 6f 20 68 69 67 68 65 73 74 2c 20 69 2e 65 2e 2c 0a | st.order.term.to.highest,.i.e.,. |
| 44c0 | 20 20 20 20 5b 31 2c 32 2c 33 5d 20 72 65 70 72 65 73 65 6e 74 73 20 74 68 65 20 73 65 72 69 65 | ....[1,2,3].represents.the.serie |
| 44e0 | 73 20 60 60 54 5f 30 20 2b 20 32 2a 54 5f 31 20 2b 20 33 2a 54 5f 32 60 60 2e 0a 0a 20 20 20 20 | s.``T_0.+.2*T_1.+.3*T_2``....... |
| 4500 | 50 61 72 61 6d 65 74 65 72 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 63 31 | Parameters.....----------.....c1 |
| 4520 | 2c 20 63 32 20 3a 20 61 72 72 61 79 5f 6c 69 6b 65 0a 20 20 20 20 20 20 20 20 31 2d 44 20 61 72 | ,.c2.:.array_like.........1-D.ar |
| 4540 | 72 61 79 73 20 6f 66 20 43 68 65 62 79 73 68 65 76 20 73 65 72 69 65 73 20 63 6f 65 66 66 69 63 | rays.of.Chebyshev.series.coeffic |
| 4560 | 69 65 6e 74 73 20 6f 72 64 65 72 65 64 20 66 72 6f 6d 20 6c 6f 77 20 74 6f 0a 20 20 20 20 20 20 | ients.ordered.from.low.to....... |
| 4580 | 20 20 68 69 67 68 2e 0a 0a 20 20 20 20 52 65 74 75 72 6e 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d | ..high.......Returns.....------- |
| 45a0 | 0a 20 20 20 20 6f 75 74 20 3a 20 6e 64 61 72 72 61 79 0a 20 20 20 20 20 20 20 20 4f 66 20 43 68 | .....out.:.ndarray.........Of.Ch |
| 45c0 | 65 62 79 73 68 65 76 20 73 65 72 69 65 73 20 63 6f 65 66 66 69 63 69 65 6e 74 73 20 72 65 70 72 | ebyshev.series.coefficients.repr |
| 45e0 | 65 73 65 6e 74 69 6e 67 20 74 68 65 69 72 20 64 69 66 66 65 72 65 6e 63 65 2e 0a 0a 20 20 20 20 | esenting.their.difference....... |
| 4600 | 53 65 65 20 41 6c 73 6f 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 63 68 65 62 61 64 | See.Also.....--------.....chebad |
| 4620 | 64 2c 20 63 68 65 62 6d 75 6c 78 2c 20 63 68 65 62 6d 75 6c 2c 20 63 68 65 62 64 69 76 2c 20 63 | d,.chebmulx,.chebmul,.chebdiv,.c |
| 4640 | 68 65 62 70 6f 77 0a 0a 20 20 20 20 4e 6f 74 65 73 0a 20 20 20 20 2d 2d 2d 2d 2d 0a 20 20 20 20 | hebpow......Notes.....-----..... |
| 4660 | 55 6e 6c 69 6b 65 20 6d 75 6c 74 69 70 6c 69 63 61 74 69 6f 6e 2c 20 64 69 76 69 73 69 6f 6e 2c | Unlike.multiplication,.division, |
| 4680 | 20 65 74 63 2e 2c 20 74 68 65 20 64 69 66 66 65 72 65 6e 63 65 20 6f 66 20 74 77 6f 20 43 68 65 | .etc.,.the.difference.of.two.Che |
| 46a0 | 62 79 73 68 65 76 0a 20 20 20 20 73 65 72 69 65 73 20 69 73 20 61 20 43 68 65 62 79 73 68 65 76 | byshev.....series.is.a.Chebyshev |
| 46c0 | 20 73 65 72 69 65 73 20 28 77 69 74 68 6f 75 74 20 68 61 76 69 6e 67 20 74 6f 20 22 72 65 70 72 | .series.(without.having.to."repr |
| 46e0 | 6f 6a 65 63 74 22 20 74 68 65 20 72 65 73 75 6c 74 0a 20 20 20 20 6f 6e 74 6f 20 74 68 65 20 62 | oject".the.result.....onto.the.b |
| 4700 | 61 73 69 73 20 73 65 74 29 20 73 6f 20 73 75 62 74 72 61 63 74 69 6f 6e 2c 20 6a 75 73 74 20 6c | asis.set).so.subtraction,.just.l |
| 4720 | 69 6b 65 20 74 68 61 74 20 6f 66 20 22 73 74 61 6e 64 61 72 64 22 0a 20 20 20 20 70 6f 6c 79 6e | ike.that.of."standard".....polyn |
| 4740 | 6f 6d 69 61 6c 73 2c 20 69 73 20 73 69 6d 70 6c 79 20 22 63 6f 6d 70 6f 6e 65 6e 74 2d 77 69 73 | omials,.is.simply."component-wis |
| 4760 | 65 2e 22 0a 0a 20 20 20 20 45 78 61 6d 70 6c 65 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 | e."......Examples.....--------.. |
| 4780 | 20 20 20 3e 3e 3e 20 66 72 6f 6d 20 6e 75 6d 70 79 2e 70 6f 6c 79 6e 6f 6d 69 61 6c 20 69 6d 70 | ...>>>.from.numpy.polynomial.imp |
| 47a0 | 6f 72 74 20 63 68 65 62 79 73 68 65 76 20 61 73 20 43 0a 20 20 20 20 3e 3e 3e 20 63 31 20 3d 20 | ort.chebyshev.as.C.....>>>.c1.=. |
| 47c0 | 28 31 2c 32 2c 33 29 0a 20 20 20 20 3e 3e 3e 20 63 32 20 3d 20 28 33 2c 32 2c 31 29 0a 20 20 20 | (1,2,3).....>>>.c2.=.(3,2,1).... |
| 47e0 | 20 3e 3e 3e 20 43 2e 63 68 65 62 73 75 62 28 63 31 2c 63 32 29 0a 20 20 20 20 61 72 72 61 79 28 | .>>>.C.chebsub(c1,c2).....array( |
| 4800 | 5b 2d 32 2e 2c 20 20 30 2e 2c 20 20 32 2e 5d 29 0a 20 20 20 20 3e 3e 3e 20 43 2e 63 68 65 62 73 | [-2.,..0.,..2.]).....>>>.C.chebs |
| 4820 | 75 62 28 63 32 2c 63 31 29 20 23 20 2d 43 2e 63 68 65 62 73 75 62 28 63 31 2c 63 32 29 0a 20 20 | ub(c2,c1).#.-C.chebsub(c1,c2)... |
| 4840 | 20 20 61 72 72 61 79 28 5b 20 32 2e 2c 20 20 30 2e 2c 20 2d 32 2e 5d 29 0a 0a 20 20 20 20 29 02 | ..array([.2.,..0.,.-2.])......). |
| 4860 | 72 58 00 00 00 da 04 5f 73 75 62 72 6f 00 00 00 73 02 00 00 00 20 20 72 34 00 00 00 72 0d 00 00 | rX....._subro...s......r4...r... |
| 4880 | 00 72 0d 00 00 00 63 02 00 00 73 15 00 00 00 80 00 f4 52 01 00 0c 0e 8f 37 89 37 90 32 90 72 8b | .r....c...s.......R.....7.7.2.r. |
| 48a0 | 3f d0 04 1a 72 36 00 00 00 63 01 00 00 00 00 00 00 00 00 00 00 00 06 00 00 00 03 00 00 00 f3 38 | ?...r6...c.....................8 |
| 48c0 | 01 00 00 97 00 74 01 00 00 00 00 00 00 00 00 6a 02 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 | .....t.........j................ |
| 48e0 | 00 00 00 7c 00 67 01 ab 01 00 00 00 00 00 00 5c 01 00 00 7d 00 74 05 00 00 00 00 00 00 00 00 7c | ...|.g.........\...}.t.........| |
| 4900 | 00 ab 01 00 00 00 00 00 00 64 01 6b 28 00 00 72 0a 7c 00 64 02 19 00 00 00 64 02 6b 28 00 00 72 | .........d.k(..r.|.d.....d.k(..r |
| 4920 | 02 7c 00 53 00 74 07 00 00 00 00 00 00 00 00 6a 08 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 | .|.S.t.........j................ |
| 4940 | 00 00 00 74 05 00 00 00 00 00 00 00 00 7c 00 ab 01 00 00 00 00 00 00 64 01 7a 00 00 00 7c 00 6a | ...t.........|.........d.z...|.j |
| 4960 | 0a 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ac 03 ab 02 00 00 00 00 00 00 7d 01 7c | .............................}.| |
| 4980 | 00 64 02 19 00 00 00 64 02 7a 05 00 00 7c 01 64 02 3c 00 00 00 7c 00 64 02 19 00 00 00 7c 01 64 | .d.....d.z...|.d.<...|.d.....|.d |
| 49a0 | 01 3c 00 00 00 74 05 00 00 00 00 00 00 00 00 7c 00 ab 01 00 00 00 00 00 00 64 01 6b 44 00 00 72 | .<...t.........|.........d.kD..r |
| 49c0 | 1b 7c 00 64 01 64 04 1a 00 64 05 7a 0b 00 00 7d 02 7c 02 7c 01 64 05 64 04 1b 00 7c 01 64 02 64 | .|.d.d...d.z...}.|.|.d.d...|.d.d |
| 49e0 | 06 78 03 78 03 78 03 1a 00 7c 02 7a 0d 00 00 63 04 63 03 63 02 1b 00 7c 01 53 00 29 07 61 3d 02 | .x.x.x...|.z...c.c.c...|.S.).a=. |
| 4a00 | 00 00 4d 75 6c 74 69 70 6c 79 20 61 20 43 68 65 62 79 73 68 65 76 20 73 65 72 69 65 73 20 62 79 | ..Multiply.a.Chebyshev.series.by |
| 4a20 | 20 78 2e 0a 0a 20 20 20 20 4d 75 6c 74 69 70 6c 79 20 74 68 65 20 70 6f 6c 79 6e 6f 6d 69 61 6c | .x.......Multiply.the.polynomial |
| 4a40 | 20 60 63 60 20 62 79 20 78 2c 20 77 68 65 72 65 20 78 20 69 73 20 74 68 65 20 69 6e 64 65 70 65 | .`c`.by.x,.where.x.is.the.indepe |
| 4a60 | 6e 64 65 6e 74 0a 20 20 20 20 76 61 72 69 61 62 6c 65 2e 0a 0a 0a 20 20 20 20 50 61 72 61 6d 65 | ndent.....variable........Parame |
| 4a80 | 74 65 72 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 63 20 3a 20 61 72 72 61 | ters.....----------.....c.:.arra |
| 4aa0 | 79 5f 6c 69 6b 65 0a 20 20 20 20 20 20 20 20 31 2d 44 20 61 72 72 61 79 20 6f 66 20 43 68 65 62 | y_like.........1-D.array.of.Cheb |
| 4ac0 | 79 73 68 65 76 20 73 65 72 69 65 73 20 63 6f 65 66 66 69 63 69 65 6e 74 73 20 6f 72 64 65 72 65 | yshev.series.coefficients.ordere |
| 4ae0 | 64 20 66 72 6f 6d 20 6c 6f 77 20 74 6f 0a 20 20 20 20 20 20 20 20 68 69 67 68 2e 0a 0a 20 20 20 | d.from.low.to.........high...... |
| 4b00 | 20 52 65 74 75 72 6e 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 6f 75 74 20 3a 20 6e | .Returns.....-------.....out.:.n |
| 4b20 | 64 61 72 72 61 79 0a 20 20 20 20 20 20 20 20 41 72 72 61 79 20 72 65 70 72 65 73 65 6e 74 69 6e | darray.........Array.representin |
| 4b40 | 67 20 74 68 65 20 72 65 73 75 6c 74 20 6f 66 20 74 68 65 20 6d 75 6c 74 69 70 6c 69 63 61 74 69 | g.the.result.of.the.multiplicati |
| 4b60 | 6f 6e 2e 0a 0a 20 20 20 20 53 65 65 20 41 6c 73 6f 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 | on.......See.Also.....--------.. |
| 4b80 | 20 20 20 63 68 65 62 61 64 64 2c 20 63 68 65 62 73 75 62 2c 20 63 68 65 62 6d 75 6c 2c 20 63 68 | ...chebadd,.chebsub,.chebmul,.ch |
| 4ba0 | 65 62 64 69 76 2c 20 63 68 65 62 70 6f 77 0a 0a 20 20 20 20 45 78 61 6d 70 6c 65 73 0a 20 20 20 | ebdiv,.chebpow......Examples.... |
| 4bc0 | 20 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 3e 3e 3e 20 66 72 6f 6d 20 6e 75 6d 70 79 2e 70 6f 6c | .--------.....>>>.from.numpy.pol |
| 4be0 | 79 6e 6f 6d 69 61 6c 20 69 6d 70 6f 72 74 20 63 68 65 62 79 73 68 65 76 20 61 73 20 43 0a 20 20 | ynomial.import.chebyshev.as.C... |
| 4c00 | 20 20 3e 3e 3e 20 43 2e 63 68 65 62 6d 75 6c 78 28 5b 31 2c 32 2c 33 5d 29 0a 20 20 20 20 61 72 | ..>>>.C.chebmulx([1,2,3]).....ar |
| 4c20 | 72 61 79 28 5b 31 2e 20 2c 20 32 2e 35 2c 20 31 2e 20 2c 20 31 2e 35 5d 29 0a 0a 20 20 20 20 72 | ray([1..,.2.5,.1..,.1.5])......r |
| 4c40 | 04 00 00 00 72 02 00 00 00 72 2b 00 00 00 4e 72 2a 00 00 00 72 63 00 00 00 29 06 72 58 00 00 00 | ....r....r+...Nr*...rc...).rX... |
| 4c60 | 72 59 00 00 00 72 40 00 00 00 72 2f 00 00 00 72 41 00 00 00 72 2c 00 00 00 29 03 72 31 00 00 00 | rY...r@...r/...rA...r,...).r1... |
| 4c80 | da 03 70 72 64 72 4a 00 00 00 73 03 00 00 00 20 20 20 72 34 00 00 00 72 0e 00 00 00 72 0e 00 00 | ..prdrJ...s.......r4...r....r... |
| 4ca0 | 00 8f 02 00 00 73 a4 00 00 00 80 00 f4 3c 00 0b 0d 8f 2c 89 2c 98 01 90 73 d3 0a 1b 81 43 80 51 | .....s.......<....,.,...s....C.Q |
| 4cc0 | e4 07 0a 88 31 83 76 90 11 82 7b 90 71 98 11 91 74 98 71 92 79 d8 0f 10 88 08 e4 0a 0c 8f 28 89 | ....1.v...{.q...t.q.y.........(. |
| 4ce0 | 28 94 33 90 71 93 36 98 41 91 3a a0 51 a7 57 a1 57 d4 0a 2d 80 43 d8 0d 0e 88 71 89 54 90 41 89 | (.3.q.6.A.:.Q.W.W..-.C....q.T.A. |
| 4d00 | 58 80 43 88 01 81 46 d8 0d 0e 88 71 89 54 80 43 88 01 81 46 dc 07 0a 88 31 83 76 90 01 82 7a d8 | X.C...F....q.T.C...F....1.v...z. |
| 4d20 | 0e 0f 90 01 90 02 88 65 90 61 89 69 88 03 d8 12 15 88 03 88 41 88 42 88 07 d8 08 0b 88 41 88 62 | .......e.a.i........A.B......A.b |
| 4d40 | 8b 09 90 53 d1 08 18 8b 09 d8 0b 0e 80 4a 72 36 00 00 00 63 02 00 00 00 00 00 00 00 00 00 00 00 | ...S.........Jr6...c............ |
| 4d60 | 04 00 00 00 03 00 00 00 f3 ba 00 00 00 97 00 74 01 00 00 00 00 00 00 00 00 6a 02 00 00 00 00 00 | ...............t.........j...... |
| 4d80 | 00 00 00 00 00 00 00 00 00 00 00 00 00 7c 00 7c 01 67 02 ab 01 00 00 00 00 00 00 5c 02 00 00 7d | .............|.|.g.........\...} |
| 4da0 | 00 7d 01 74 05 00 00 00 00 00 00 00 00 7c 00 ab 01 00 00 00 00 00 00 7d 02 74 05 00 00 00 00 00 | .}.t.........|.........}.t...... |
| 4dc0 | 00 00 00 7c 01 ab 01 00 00 00 00 00 00 7d 03 74 07 00 00 00 00 00 00 00 00 7c 02 7c 03 ab 02 00 | ...|.........}.t.........|.|.... |
| 4de0 | 00 00 00 00 00 7d 04 74 09 00 00 00 00 00 00 00 00 7c 04 ab 01 00 00 00 00 00 00 7d 05 74 01 00 | .....}.t.........|.........}.t.. |
| 4e00 | 00 00 00 00 00 00 00 6a 0a 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 7c 05 ab 01 00 | .......j...................|.... |
| 4e20 | 00 00 00 00 00 53 00 29 01 61 b6 04 00 00 0a 20 20 20 20 4d 75 6c 74 69 70 6c 79 20 6f 6e 65 20 | .....S.).a.........Multiply.one. |
| 4e40 | 43 68 65 62 79 73 68 65 76 20 73 65 72 69 65 73 20 62 79 20 61 6e 6f 74 68 65 72 2e 0a 0a 20 20 | Chebyshev.series.by.another..... |
| 4e60 | 20 20 52 65 74 75 72 6e 73 20 74 68 65 20 70 72 6f 64 75 63 74 20 6f 66 20 74 77 6f 20 43 68 65 | ..Returns.the.product.of.two.Che |
| 4e80 | 62 79 73 68 65 76 20 73 65 72 69 65 73 20 60 63 31 60 20 2a 20 60 63 32 60 2e 20 20 54 68 65 20 | byshev.series.`c1`.*.`c2`...The. |
| 4ea0 | 61 72 67 75 6d 65 6e 74 73 0a 20 20 20 20 61 72 65 20 73 65 71 75 65 6e 63 65 73 20 6f 66 20 63 | arguments.....are.sequences.of.c |
| 4ec0 | 6f 65 66 66 69 63 69 65 6e 74 73 2c 20 66 72 6f 6d 20 6c 6f 77 65 73 74 20 6f 72 64 65 72 20 22 | oefficients,.from.lowest.order." |
| 4ee0 | 74 65 72 6d 22 20 74 6f 20 68 69 67 68 65 73 74 2c 0a 20 20 20 20 65 2e 67 2e 2c 20 5b 31 2c 32 | term".to.highest,.....e.g.,.[1,2 |
| 4f00 | 2c 33 5d 20 72 65 70 72 65 73 65 6e 74 73 20 74 68 65 20 73 65 72 69 65 73 20 60 60 54 5f 30 20 | ,3].represents.the.series.``T_0. |
| 4f20 | 2b 20 32 2a 54 5f 31 20 2b 20 33 2a 54 5f 32 60 60 2e 0a 0a 20 20 20 20 50 61 72 61 6d 65 74 65 | +.2*T_1.+.3*T_2``.......Paramete |
| 4f40 | 72 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 63 31 2c 20 63 32 20 3a 20 61 | rs.....----------.....c1,.c2.:.a |
| 4f60 | 72 72 61 79 5f 6c 69 6b 65 0a 20 20 20 20 20 20 20 20 31 2d 44 20 61 72 72 61 79 73 20 6f 66 20 | rray_like.........1-D.arrays.of. |
| 4f80 | 43 68 65 62 79 73 68 65 76 20 73 65 72 69 65 73 20 63 6f 65 66 66 69 63 69 65 6e 74 73 20 6f 72 | Chebyshev.series.coefficients.or |
| 4fa0 | 64 65 72 65 64 20 66 72 6f 6d 20 6c 6f 77 20 74 6f 0a 20 20 20 20 20 20 20 20 68 69 67 68 2e 0a | dered.from.low.to.........high.. |
| 4fc0 | 0a 20 20 20 20 52 65 74 75 72 6e 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 6f 75 74 | .....Returns.....-------.....out |
| 4fe0 | 20 3a 20 6e 64 61 72 72 61 79 0a 20 20 20 20 20 20 20 20 4f 66 20 43 68 65 62 79 73 68 65 76 20 | .:.ndarray.........Of.Chebyshev. |
| 5000 | 73 65 72 69 65 73 20 63 6f 65 66 66 69 63 69 65 6e 74 73 20 72 65 70 72 65 73 65 6e 74 69 6e 67 | series.coefficients.representing |
| 5020 | 20 74 68 65 69 72 20 70 72 6f 64 75 63 74 2e 0a 0a 20 20 20 20 53 65 65 20 41 6c 73 6f 0a 20 20 | .their.product.......See.Also... |
| 5040 | 20 20 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 63 68 65 62 61 64 64 2c 20 63 68 65 62 73 75 62 2c | ..--------.....chebadd,.chebsub, |
| 5060 | 20 63 68 65 62 6d 75 6c 78 2c 20 63 68 65 62 64 69 76 2c 20 63 68 65 62 70 6f 77 0a 0a 20 20 20 | .chebmulx,.chebdiv,.chebpow..... |
| 5080 | 20 4e 6f 74 65 73 0a 20 20 20 20 2d 2d 2d 2d 2d 0a 20 20 20 20 49 6e 20 67 65 6e 65 72 61 6c 2c | .Notes.....-----.....In.general, |
| 50a0 | 20 74 68 65 20 28 70 6f 6c 79 6e 6f 6d 69 61 6c 29 20 70 72 6f 64 75 63 74 20 6f 66 20 74 77 6f | .the.(polynomial).product.of.two |
| 50c0 | 20 43 2d 73 65 72 69 65 73 20 72 65 73 75 6c 74 73 20 69 6e 20 74 65 72 6d 73 0a 20 20 20 20 74 | .C-series.results.in.terms.....t |
| 50e0 | 68 61 74 20 61 72 65 20 6e 6f 74 20 69 6e 20 74 68 65 20 43 68 65 62 79 73 68 65 76 20 70 6f 6c | hat.are.not.in.the.Chebyshev.pol |
| 5100 | 79 6e 6f 6d 69 61 6c 20 62 61 73 69 73 20 73 65 74 2e 20 20 54 68 75 73 2c 20 74 6f 20 65 78 70 | ynomial.basis.set...Thus,.to.exp |
| 5120 | 72 65 73 73 0a 20 20 20 20 74 68 65 20 70 72 6f 64 75 63 74 20 61 73 20 61 20 43 2d 73 65 72 69 | ress.....the.product.as.a.C-seri |
| 5140 | 65 73 2c 20 69 74 20 69 73 20 74 79 70 69 63 61 6c 6c 79 20 6e 65 63 65 73 73 61 72 79 20 74 6f | es,.it.is.typically.necessary.to |
| 5160 | 20 22 72 65 70 72 6f 6a 65 63 74 22 0a 20 20 20 20 74 68 65 20 70 72 6f 64 75 63 74 20 6f 6e 74 | ."reproject".....the.product.ont |
| 5180 | 6f 20 73 61 69 64 20 62 61 73 69 73 20 73 65 74 2c 20 77 68 69 63 68 20 74 79 70 69 63 61 6c 6c | o.said.basis.set,.which.typicall |
| 51a0 | 79 20 70 72 6f 64 75 63 65 73 0a 20 20 20 20 22 75 6e 69 6e 74 75 69 74 69 76 65 20 6c 69 76 65 | y.produces....."unintuitive.live |
| 51c0 | 22 20 28 62 75 74 20 63 6f 72 72 65 63 74 29 20 72 65 73 75 6c 74 73 3b 20 73 65 65 20 45 78 61 | ".(but.correct).results;.see.Exa |
| 51e0 | 6d 70 6c 65 73 20 73 65 63 74 69 6f 6e 20 62 65 6c 6f 77 2e 0a 0a 20 20 20 20 45 78 61 6d 70 6c | mples.section.below.......Exampl |
| 5200 | 65 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 3e 3e 3e 20 66 72 6f 6d 20 6e 75 6d | es.....--------.....>>>.from.num |
| 5220 | 70 79 2e 70 6f 6c 79 6e 6f 6d 69 61 6c 20 69 6d 70 6f 72 74 20 63 68 65 62 79 73 68 65 76 20 61 | py.polynomial.import.chebyshev.a |
| 5240 | 73 20 43 0a 20 20 20 20 3e 3e 3e 20 63 31 20 3d 20 28 31 2c 32 2c 33 29 0a 20 20 20 20 3e 3e 3e | s.C.....>>>.c1.=.(1,2,3).....>>> |
| 5260 | 20 63 32 20 3d 20 28 33 2c 32 2c 31 29 0a 20 20 20 20 3e 3e 3e 20 43 2e 63 68 65 62 6d 75 6c 28 | .c2.=.(3,2,1).....>>>.C.chebmul( |
| 5280 | 63 31 2c 63 32 29 20 23 20 6d 75 6c 74 69 70 6c 69 63 61 74 69 6f 6e 20 72 65 71 75 69 72 65 73 | c1,c2).#.multiplication.requires |
| 52a0 | 20 22 72 65 70 72 6f 6a 65 63 74 69 6f 6e 22 0a 20 20 20 20 61 72 72 61 79 28 5b 20 20 36 2e 35 | ."reprojection".....array([..6.5 |
| 52c0 | 2c 20 20 31 32 2e 20 2c 20 20 31 32 2e 20 2c 20 20 20 34 2e 20 2c 20 20 20 31 2e 35 5d 29 0a 0a | ,..12..,..12..,...4..,...1.5]).. |
| 52e0 | 20 20 20 20 29 06 72 58 00 00 00 72 59 00 00 00 72 35 00 00 00 72 3e 00 00 00 72 39 00 00 00 da | ....).rX...rY...r5...r>...r9.... |
| 5300 | 07 74 72 69 6d 73 65 71 29 06 72 66 00 00 00 72 70 00 00 00 72 3c 00 00 00 72 3d 00 00 00 72 74 | .trimseq).rf...rp...r<...r=...rt |
| 5320 | 00 00 00 da 03 72 65 74 73 06 00 00 00 20 20 20 20 20 20 72 34 00 00 00 72 0f 00 00 00 72 0f 00 | .....rets..........r4...r....r.. |
| 5340 | 00 00 bc 02 00 00 73 53 00 00 00 80 00 f4 52 01 00 10 12 8f 7c 89 7c 98 52 a0 12 98 48 d3 0f 25 | ......sS......R.....|.|.R...H..% |
| 5360 | 81 48 80 52 88 12 dc 09 1c 98 52 d3 09 20 80 42 dc 09 1c 98 52 d3 09 20 80 42 dc 0a 16 90 72 98 | .H.R......R....B....R....B....r. |
| 5380 | 32 d3 0a 1e 80 43 dc 0a 1d 98 63 d3 0a 22 80 43 dc 0b 0d 8f 3a 89 3a 90 63 8b 3f d0 04 1a 72 36 | 2....C....c..".C....:.:.c.?...r6 |
| 53a0 | 00 00 00 63 02 00 00 00 00 00 00 00 00 00 00 00 05 00 00 00 03 00 00 00 f3 90 01 00 00 97 00 74 | ...c...........................t |
| 53c0 | 01 00 00 00 00 00 00 00 00 6a 02 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 7c 00 7c | .........j...................|.| |
| 53e0 | 01 67 02 ab 01 00 00 00 00 00 00 5c 02 00 00 7d 00 7d 01 7c 01 64 01 19 00 00 00 64 02 6b 28 00 | .g.........\...}.}.|.d.....d.k(. |
| 5400 | 00 72 06 74 04 00 00 00 00 00 00 00 00 82 01 74 07 00 00 00 00 00 00 00 00 7c 00 ab 01 00 00 00 | .r.t...........t.........|...... |
| 5420 | 00 00 00 7d 02 74 07 00 00 00 00 00 00 00 00 7c 01 ab 01 00 00 00 00 00 00 7d 03 7c 02 7c 03 6b | ...}.t.........|.........}.|.|.k |
| 5440 | 02 00 00 72 0a 7c 00 64 03 64 04 1a 00 64 02 7a 05 00 00 7c 00 66 02 53 00 7c 03 64 04 6b 28 00 | ...r.|.d.d...d.z...|.f.S.|.d.k(. |
| 5460 | 00 72 10 7c 00 7c 01 64 01 19 00 00 00 7a 0b 00 00 7c 00 64 03 64 04 1a 00 64 02 7a 05 00 00 66 | .r.|.|.d.....z...|.d.d...d.z...f |
| 5480 | 02 53 00 74 09 00 00 00 00 00 00 00 00 7c 00 ab 01 00 00 00 00 00 00 7d 04 74 09 00 00 00 00 00 | .S.t.........|.........}.t...... |
| 54a0 | 00 00 00 7c 01 ab 01 00 00 00 00 00 00 7d 05 74 0b 00 00 00 00 00 00 00 00 7c 04 7c 05 ab 02 00 | ...|.........}.t.........|.|.... |
| 54c0 | 00 00 00 00 00 5c 02 00 00 7d 06 7d 07 74 01 00 00 00 00 00 00 00 00 6a 0c 00 00 00 00 00 00 00 | .....\...}.}.t.........j........ |
| 54e0 | 00 00 00 00 00 00 00 00 00 00 00 74 0f 00 00 00 00 00 00 00 00 7c 06 ab 01 00 00 00 00 00 00 ab | ...........t.........|.......... |
| 5500 | 01 00 00 00 00 00 00 7d 06 74 01 00 00 00 00 00 00 00 00 6a 0c 00 00 00 00 00 00 00 00 00 00 00 | .......}.t.........j............ |
| 5520 | 00 00 00 00 00 00 00 74 0f 00 00 00 00 00 00 00 00 7c 07 ab 01 00 00 00 00 00 00 ab 01 00 00 00 | .......t.........|.............. |
| 5540 | 00 00 00 7d 07 7c 06 7c 07 66 02 53 00 29 05 61 68 05 00 00 0a 20 20 20 20 44 69 76 69 64 65 20 | ...}.|.|.f.S.).ah........Divide. |
| 5560 | 6f 6e 65 20 43 68 65 62 79 73 68 65 76 20 73 65 72 69 65 73 20 62 79 20 61 6e 6f 74 68 65 72 2e | one.Chebyshev.series.by.another. |
| 5580 | 0a 0a 20 20 20 20 52 65 74 75 72 6e 73 20 74 68 65 20 71 75 6f 74 69 65 6e 74 2d 77 69 74 68 2d | ......Returns.the.quotient-with- |
| 55a0 | 72 65 6d 61 69 6e 64 65 72 20 6f 66 20 74 77 6f 20 43 68 65 62 79 73 68 65 76 20 73 65 72 69 65 | remainder.of.two.Chebyshev.serie |
| 55c0 | 73 0a 20 20 20 20 60 63 31 60 20 2f 20 60 63 32 60 2e 20 20 54 68 65 20 61 72 67 75 6d 65 6e 74 | s.....`c1`./.`c2`...The.argument |
| 55e0 | 73 20 61 72 65 20 73 65 71 75 65 6e 63 65 73 20 6f 66 20 63 6f 65 66 66 69 63 69 65 6e 74 73 20 | s.are.sequences.of.coefficients. |
| 5600 | 66 72 6f 6d 20 6c 6f 77 65 73 74 0a 20 20 20 20 6f 72 64 65 72 20 22 74 65 72 6d 22 20 74 6f 20 | from.lowest.....order."term".to. |
| 5620 | 68 69 67 68 65 73 74 2c 20 65 2e 67 2e 2c 20 5b 31 2c 32 2c 33 5d 20 72 65 70 72 65 73 65 6e 74 | highest,.e.g.,.[1,2,3].represent |
| 5640 | 73 20 74 68 65 20 73 65 72 69 65 73 0a 20 20 20 20 60 60 54 5f 30 20 2b 20 32 2a 54 5f 31 20 2b | s.the.series.....``T_0.+.2*T_1.+ |
| 5660 | 20 33 2a 54 5f 32 60 60 2e 0a 0a 20 20 20 20 50 61 72 61 6d 65 74 65 72 73 0a 20 20 20 20 2d 2d | .3*T_2``.......Parameters.....-- |
| 5680 | 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 63 31 2c 20 63 32 20 3a 20 61 72 72 61 79 5f 6c 69 6b 65 | --------.....c1,.c2.:.array_like |
| 56a0 | 0a 20 20 20 20 20 20 20 20 31 2d 44 20 61 72 72 61 79 73 20 6f 66 20 43 68 65 62 79 73 68 65 76 | .........1-D.arrays.of.Chebyshev |
| 56c0 | 20 73 65 72 69 65 73 20 63 6f 65 66 66 69 63 69 65 6e 74 73 20 6f 72 64 65 72 65 64 20 66 72 6f | .series.coefficients.ordered.fro |
| 56e0 | 6d 20 6c 6f 77 20 74 6f 0a 20 20 20 20 20 20 20 20 68 69 67 68 2e 0a 0a 20 20 20 20 52 65 74 75 | m.low.to.........high.......Retu |
| 5700 | 72 6e 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 5b 71 75 6f 2c 20 72 65 6d 5d 20 3a | rns.....-------.....[quo,.rem].: |
| 5720 | 20 6e 64 61 72 72 61 79 73 0a 20 20 20 20 20 20 20 20 4f 66 20 43 68 65 62 79 73 68 65 76 20 73 | .ndarrays.........Of.Chebyshev.s |
| 5740 | 65 72 69 65 73 20 63 6f 65 66 66 69 63 69 65 6e 74 73 20 72 65 70 72 65 73 65 6e 74 69 6e 67 20 | eries.coefficients.representing. |
| 5760 | 74 68 65 20 71 75 6f 74 69 65 6e 74 20 61 6e 64 0a 20 20 20 20 20 20 20 20 72 65 6d 61 69 6e 64 | the.quotient.and.........remaind |
| 5780 | 65 72 2e 0a 0a 20 20 20 20 53 65 65 20 41 6c 73 6f 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 | er.......See.Also.....--------.. |
| 57a0 | 20 20 20 63 68 65 62 61 64 64 2c 20 63 68 65 62 73 75 62 2c 20 63 68 65 62 6d 75 6c 78 2c 20 63 | ...chebadd,.chebsub,.chebmulx,.c |
| 57c0 | 68 65 62 6d 75 6c 2c 20 63 68 65 62 70 6f 77 0a 0a 20 20 20 20 4e 6f 74 65 73 0a 20 20 20 20 2d | hebmul,.chebpow......Notes.....- |
| 57e0 | 2d 2d 2d 2d 0a 20 20 20 20 49 6e 20 67 65 6e 65 72 61 6c 2c 20 74 68 65 20 28 70 6f 6c 79 6e 6f | ----.....In.general,.the.(polyno |
| 5800 | 6d 69 61 6c 29 20 64 69 76 69 73 69 6f 6e 20 6f 66 20 6f 6e 65 20 43 2d 73 65 72 69 65 73 20 62 | mial).division.of.one.C-series.b |
| 5820 | 79 20 61 6e 6f 74 68 65 72 0a 20 20 20 20 72 65 73 75 6c 74 73 20 69 6e 20 71 75 6f 74 69 65 6e | y.another.....results.in.quotien |
| 5840 | 74 20 61 6e 64 20 72 65 6d 61 69 6e 64 65 72 20 74 65 72 6d 73 20 74 68 61 74 20 61 72 65 20 6e | t.and.remainder.terms.that.are.n |
| 5860 | 6f 74 20 69 6e 20 74 68 65 20 43 68 65 62 79 73 68 65 76 0a 20 20 20 20 70 6f 6c 79 6e 6f 6d 69 | ot.in.the.Chebyshev.....polynomi |
| 5880 | 61 6c 20 62 61 73 69 73 20 73 65 74 2e 20 20 54 68 75 73 2c 20 74 6f 20 65 78 70 72 65 73 73 20 | al.basis.set...Thus,.to.express. |
| 58a0 | 74 68 65 73 65 20 72 65 73 75 6c 74 73 20 61 73 20 43 2d 73 65 72 69 65 73 2c 20 69 74 0a 20 20 | these.results.as.C-series,.it... |
| 58c0 | 20 20 69 73 20 74 79 70 69 63 61 6c 6c 79 20 6e 65 63 65 73 73 61 72 79 20 74 6f 20 22 72 65 70 | ..is.typically.necessary.to."rep |
| 58e0 | 72 6f 6a 65 63 74 22 20 74 68 65 20 72 65 73 75 6c 74 73 20 6f 6e 74 6f 20 73 61 69 64 20 62 61 | roject".the.results.onto.said.ba |
| 5900 | 73 69 73 0a 20 20 20 20 73 65 74 2c 20 77 68 69 63 68 20 74 79 70 69 63 61 6c 6c 79 20 70 72 6f | sis.....set,.which.typically.pro |
| 5920 | 64 75 63 65 73 20 22 75 6e 69 6e 74 75 69 74 69 76 65 22 20 28 62 75 74 20 63 6f 72 72 65 63 74 | duces."unintuitive".(but.correct |
| 5940 | 29 20 72 65 73 75 6c 74 73 3b 0a 20 20 20 20 73 65 65 20 45 78 61 6d 70 6c 65 73 20 73 65 63 74 | ).results;.....see.Examples.sect |
| 5960 | 69 6f 6e 20 62 65 6c 6f 77 2e 0a 0a 20 20 20 20 45 78 61 6d 70 6c 65 73 0a 20 20 20 20 2d 2d 2d | ion.below.......Examples.....--- |
| 5980 | 2d 2d 2d 2d 2d 0a 20 20 20 20 3e 3e 3e 20 66 72 6f 6d 20 6e 75 6d 70 79 2e 70 6f 6c 79 6e 6f 6d | -----.....>>>.from.numpy.polynom |
| 59a0 | 69 61 6c 20 69 6d 70 6f 72 74 20 63 68 65 62 79 73 68 65 76 20 61 73 20 43 0a 20 20 20 20 3e 3e | ial.import.chebyshev.as.C.....>> |
| 59c0 | 3e 20 63 31 20 3d 20 28 31 2c 32 2c 33 29 0a 20 20 20 20 3e 3e 3e 20 63 32 20 3d 20 28 33 2c 32 | >.c1.=.(1,2,3).....>>>.c2.=.(3,2 |
| 59e0 | 2c 31 29 0a 20 20 20 20 3e 3e 3e 20 43 2e 63 68 65 62 64 69 76 28 63 31 2c 63 32 29 20 23 20 71 | ,1).....>>>.C.chebdiv(c1,c2).#.q |
| 5a00 | 75 6f 74 69 65 6e 74 20 22 69 6e 74 75 69 74 69 76 65 2c 22 20 72 65 6d 61 69 6e 64 65 72 20 6e | uotient."intuitive,".remainder.n |
| 5a20 | 6f 74 0a 20 20 20 20 28 61 72 72 61 79 28 5b 33 2e 5d 29 2c 20 61 72 72 61 79 28 5b 2d 38 2e 2c | ot.....(array([3.]),.array([-8., |
| 5a40 | 20 2d 34 2e 5d 29 29 0a 20 20 20 20 3e 3e 3e 20 63 32 20 3d 20 28 30 2c 31 2c 32 2c 33 29 0a 20 | .-4.])).....>>>.c2.=.(0,1,2,3).. |
| 5a60 | 20 20 20 3e 3e 3e 20 43 2e 63 68 65 62 64 69 76 28 63 32 2c 63 31 29 20 23 20 6e 65 69 74 68 65 | ...>>>.C.chebdiv(c2,c1).#.neithe |
| 5a80 | 72 20 22 69 6e 74 75 69 74 69 76 65 22 0a 20 20 20 20 28 61 72 72 61 79 28 5b 30 2e 2c 20 32 2e | r."intuitive".....(array([0.,.2. |
| 5aa0 | 5d 29 2c 20 61 72 72 61 79 28 5b 2d 32 2e 2c 20 2d 34 2e 5d 29 29 0a 0a 20 20 20 20 72 2d 00 00 | ]),.array([-2.,.-4.]))......r-.. |
| 5ac0 | 00 72 02 00 00 00 4e 72 04 00 00 00 29 08 72 58 00 00 00 72 59 00 00 00 da 11 5a 65 72 6f 44 69 | .r....Nr....).rX...rY.....ZeroDi |
| 5ae0 | 76 69 73 69 6f 6e 45 72 72 6f 72 72 40 00 00 00 72 35 00 00 00 72 4c 00 00 00 72 76 00 00 00 72 | visionErrorr@...r5...rL...rv...r |
| 5b00 | 39 00 00 00 29 08 72 66 00 00 00 72 70 00 00 00 72 42 00 00 00 72 43 00 00 00 72 3c 00 00 00 72 | 9...).rf...rp...rB...rC...r<...r |
| 5b20 | 3d 00 00 00 72 46 00 00 00 72 4b 00 00 00 73 08 00 00 00 20 20 20 20 20 20 20 20 72 34 00 00 00 | =...rF...rK...s............r4... |
| 5b40 | 72 10 00 00 00 72 10 00 00 00 ed 02 00 00 73 d4 00 00 00 80 00 f4 5e 01 00 10 12 8f 7c 89 7c 98 | r....r........s.......^.....|.|. |
| 5b60 | 52 a0 12 98 48 d3 0f 25 81 48 80 52 88 12 d8 07 09 88 22 81 76 90 11 82 7b dc 0e 1f d0 08 1f f4 | R...H..%.H.R......".v...{....... |
| 5b80 | 06 00 0b 0e 88 62 8b 27 80 43 dc 0a 0d 88 62 8b 27 80 43 d8 07 0a 88 53 82 79 d8 0f 11 90 22 90 | .....b.'.C....b.'.C....S.y....". |
| 5ba0 | 31 88 76 98 01 89 7a 98 32 88 7e d0 08 1d d8 09 0c 90 01 8a 18 d8 0f 11 90 42 90 72 91 46 89 7b | 1.v...z.2.~..............B.r.F.{ |
| 5bc0 | 98 42 98 72 a0 01 98 46 a0 51 99 4a d0 0f 26 d0 08 26 e4 0d 20 a0 12 d3 0d 24 88 02 dc 0d 20 a0 | .B.r...F.Q.J..&..&.......$...... |
| 5be0 | 12 d3 0d 24 88 02 dc 13 1f a0 02 a0 42 d3 13 27 89 08 88 03 88 53 dc 0e 10 8f 6a 89 6a d4 19 2c | ...$........B..'.....S....j.j.., |
| 5c00 | a8 53 d3 19 31 d3 0e 32 88 03 dc 0e 10 8f 6a 89 6a d4 19 2c a8 53 d3 19 31 d3 0e 32 88 03 d8 0f | .S..1..2......j.j..,.S..1..2.... |
| 5c20 | 12 90 43 88 78 88 0f 72 36 00 00 00 63 03 00 00 00 00 00 00 00 00 00 00 00 05 00 00 00 03 00 00 | ..C.x..r6...c................... |
| 5c40 | 00 f3 76 01 00 00 97 00 74 01 00 00 00 00 00 00 00 00 6a 02 00 00 00 00 00 00 00 00 00 00 00 00 | ..v.....t.........j............. |
| 5c60 | 00 00 00 00 00 00 7c 00 67 01 ab 01 00 00 00 00 00 00 5c 01 00 00 7d 00 74 05 00 00 00 00 00 00 | ......|.g.........\...}.t....... |
| 5c80 | 00 00 7c 01 ab 01 00 00 00 00 00 00 7d 03 7c 03 7c 01 6b 37 00 00 73 05 7c 03 64 01 6b 02 00 00 | ..|.........}.|.|.k7..s.|.d.k... |
| 5ca0 | 72 0b 74 07 00 00 00 00 00 00 00 00 64 02 ab 01 00 00 00 00 00 00 82 01 7c 02 81 10 7c 03 7c 02 | r.t.........d...........|...|.|. |
| 5cc0 | 6b 44 00 00 72 0b 74 07 00 00 00 00 00 00 00 00 64 03 ab 01 00 00 00 00 00 00 82 01 7c 03 64 01 | kD..r.t.........d...........|.d. |
| 5ce0 | 6b 28 00 00 72 22 74 09 00 00 00 00 00 00 00 00 6a 0a 00 00 00 00 00 00 00 00 00 00 00 00 00 00 | k(..r"t.........j............... |
| 5d00 | 00 00 00 00 64 04 67 01 7c 00 6a 0c 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ac 05 | ....d.g.|.j..................... |
| 5d20 | ab 02 00 00 00 00 00 00 53 00 7c 03 64 04 6b 28 00 00 72 02 7c 00 53 00 74 0f 00 00 00 00 00 00 | ........S.|.d.k(..r.|.S.t....... |
| 5d40 | 00 00 7c 00 ab 01 00 00 00 00 00 00 7d 04 7c 04 7d 05 74 11 00 00 00 00 00 00 00 00 64 06 7c 03 | ..|.........}.|.}.t.........d.|. |
| 5d60 | 64 04 7a 00 00 00 ab 02 00 00 00 00 00 00 44 00 5d 18 00 00 7d 06 74 09 00 00 00 00 00 00 00 00 | d.z...........D.]...}.t......... |
| 5d80 | 6a 12 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 7c 05 7c 04 ab 02 00 00 00 00 00 00 | j...................|.|......... |
| 5da0 | 7d 05 8c 1a 04 00 74 15 00 00 00 00 00 00 00 00 7c 05 ab 01 00 00 00 00 00 00 53 00 29 07 61 97 | }.....t.........|.........S.).a. |
| 5dc0 | 03 00 00 52 61 69 73 65 20 61 20 43 68 65 62 79 73 68 65 76 20 73 65 72 69 65 73 20 74 6f 20 61 | ...Raise.a.Chebyshev.series.to.a |
| 5de0 | 20 70 6f 77 65 72 2e 0a 0a 20 20 20 20 52 65 74 75 72 6e 73 20 74 68 65 20 43 68 65 62 79 73 68 | .power.......Returns.the.Chebysh |
| 5e00 | 65 76 20 73 65 72 69 65 73 20 60 63 60 20 72 61 69 73 65 64 20 74 6f 20 74 68 65 20 70 6f 77 65 | ev.series.`c`.raised.to.the.powe |
| 5e20 | 72 20 60 70 6f 77 60 2e 20 54 68 65 0a 20 20 20 20 61 72 67 75 6d 65 6e 74 20 60 63 60 20 69 73 | r.`pow`..The.....argument.`c`.is |
| 5e40 | 20 61 20 73 65 71 75 65 6e 63 65 20 6f 66 20 63 6f 65 66 66 69 63 69 65 6e 74 73 20 6f 72 64 65 | .a.sequence.of.coefficients.orde |
| 5e60 | 72 65 64 20 66 72 6f 6d 20 6c 6f 77 20 74 6f 20 68 69 67 68 2e 0a 20 20 20 20 69 2e 65 2e 2c 20 | red.from.low.to.high......i.e.,. |
| 5e80 | 5b 31 2c 32 2c 33 5d 20 69 73 20 74 68 65 20 73 65 72 69 65 73 20 20 60 60 54 5f 30 20 2b 20 32 | [1,2,3].is.the.series..``T_0.+.2 |
| 5ea0 | 2a 54 5f 31 20 2b 20 33 2a 54 5f 32 2e 60 60 0a 0a 20 20 20 20 50 61 72 61 6d 65 74 65 72 73 0a | *T_1.+.3*T_2.``......Parameters. |
| 5ec0 | 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 63 20 3a 20 61 72 72 61 79 5f 6c 69 6b | ....----------.....c.:.array_lik |
| 5ee0 | 65 0a 20 20 20 20 20 20 20 20 31 2d 44 20 61 72 72 61 79 20 6f 66 20 43 68 65 62 79 73 68 65 76 | e.........1-D.array.of.Chebyshev |
| 5f00 | 20 73 65 72 69 65 73 20 63 6f 65 66 66 69 63 69 65 6e 74 73 20 6f 72 64 65 72 65 64 20 66 72 6f | .series.coefficients.ordered.fro |
| 5f20 | 6d 20 6c 6f 77 20 74 6f 0a 20 20 20 20 20 20 20 20 68 69 67 68 2e 0a 20 20 20 20 70 6f 77 20 3a | m.low.to.........high......pow.: |
| 5f40 | 20 69 6e 74 65 67 65 72 0a 20 20 20 20 20 20 20 20 50 6f 77 65 72 20 74 6f 20 77 68 69 63 68 20 | .integer.........Power.to.which. |
| 5f60 | 74 68 65 20 73 65 72 69 65 73 20 77 69 6c 6c 20 62 65 20 72 61 69 73 65 64 0a 20 20 20 20 6d 61 | the.series.will.be.raised.....ma |
| 5f80 | 78 70 6f 77 65 72 20 3a 20 69 6e 74 65 67 65 72 2c 20 6f 70 74 69 6f 6e 61 6c 0a 20 20 20 20 20 | xpower.:.integer,.optional...... |
| 5fa0 | 20 20 20 4d 61 78 69 6d 75 6d 20 70 6f 77 65 72 20 61 6c 6c 6f 77 65 64 2e 20 54 68 69 73 20 69 | ...Maximum.power.allowed..This.i |
| 5fc0 | 73 20 6d 61 69 6e 6c 79 20 74 6f 20 6c 69 6d 69 74 20 67 72 6f 77 74 68 20 6f 66 20 74 68 65 20 | s.mainly.to.limit.growth.of.the. |
| 5fe0 | 73 65 72 69 65 73 0a 20 20 20 20 20 20 20 20 74 6f 20 75 6e 6d 61 6e 61 67 65 61 62 6c 65 20 73 | series.........to.unmanageable.s |
| 6000 | 69 7a 65 2e 20 44 65 66 61 75 6c 74 20 69 73 20 31 36 0a 0a 20 20 20 20 52 65 74 75 72 6e 73 0a | ize..Default.is.16......Returns. |
| 6020 | 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 63 6f 65 66 20 3a 20 6e 64 61 72 72 61 79 0a 20 | ....-------.....coef.:.ndarray.. |
| 6040 | 20 20 20 20 20 20 20 43 68 65 62 79 73 68 65 76 20 73 65 72 69 65 73 20 6f 66 20 70 6f 77 65 72 | .......Chebyshev.series.of.power |
| 6060 | 2e 0a 0a 20 20 20 20 53 65 65 20 41 6c 73 6f 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 | .......See.Also.....--------.... |
| 6080 | 20 63 68 65 62 61 64 64 2c 20 63 68 65 62 73 75 62 2c 20 63 68 65 62 6d 75 6c 78 2c 20 63 68 65 | .chebadd,.chebsub,.chebmulx,.che |
| 60a0 | 62 6d 75 6c 2c 20 63 68 65 62 64 69 76 0a 0a 20 20 20 20 45 78 61 6d 70 6c 65 73 0a 20 20 20 20 | bmul,.chebdiv......Examples..... |
| 60c0 | 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 3e 3e 3e 20 66 72 6f 6d 20 6e 75 6d 70 79 2e 70 6f 6c 79 | --------.....>>>.from.numpy.poly |
| 60e0 | 6e 6f 6d 69 61 6c 20 69 6d 70 6f 72 74 20 63 68 65 62 79 73 68 65 76 20 61 73 20 43 0a 20 20 20 | nomial.import.chebyshev.as.C.... |
| 6100 | 20 3e 3e 3e 20 43 2e 63 68 65 62 70 6f 77 28 5b 31 2c 20 32 2c 20 33 2c 20 34 5d 2c 20 32 29 0a | .>>>.C.chebpow([1,.2,.3,.4],.2). |
| 6120 | 20 20 20 20 61 72 72 61 79 28 5b 31 35 2e 35 2c 20 32 32 2e 20 2c 20 31 36 2e 20 2c 20 2e 2e 2e | ....array([15.5,.22..,.16..,.... |
| 6140 | 2c 20 31 32 2e 35 2c 20 31 32 2e 20 2c 20 20 38 2e 20 5d 29 0a 0a 20 20 20 20 72 02 00 00 00 7a | ,.12.5,.12..,..8..])......r....z |
| 6160 | 25 50 6f 77 65 72 20 6d 75 73 74 20 62 65 20 61 20 6e 6f 6e 2d 6e 65 67 61 74 69 76 65 20 69 6e | %Power.must.be.a.non-negative.in |
| 6180 | 74 65 67 65 72 2e 7a 12 50 6f 77 65 72 20 69 73 20 74 6f 6f 20 6c 61 72 67 65 72 04 00 00 00 72 | teger.z.Power.is.too.larger....r |
| 61a0 | 2b 00 00 00 72 2a 00 00 00 29 0b 72 58 00 00 00 72 59 00 00 00 da 03 69 6e 74 da 0a 56 61 6c 75 | +...r*...).rX...rY.....int..Valu |
| 61c0 | 65 45 72 72 6f 72 72 2f 00 00 00 72 4f 00 00 00 72 2c 00 00 00 72 35 00 00 00 72 5a 00 00 00 72 | eErrorr/...rO...r,...r5...rZ...r |
| 61e0 | 3b 00 00 00 72 39 00 00 00 29 07 72 31 00 00 00 da 03 70 6f 77 da 08 6d 61 78 70 6f 77 65 72 da | ;...r9...).r1.....pow..maxpower. |
| 6200 | 05 70 6f 77 65 72 72 33 00 00 00 72 74 00 00 00 72 47 00 00 00 73 07 00 00 00 20 20 20 20 20 20 | .powerr3...rt...rG...s.......... |
| 6220 | 20 72 34 00 00 00 72 11 00 00 00 72 11 00 00 00 30 03 00 00 73 c2 00 00 00 80 00 f4 4c 01 00 0b | .r4...r....r....0...s.......L... |
| 6240 | 0d 8f 2c 89 2c 98 01 90 73 d3 0a 1b 81 43 80 51 dc 0c 0f 90 03 8b 48 80 45 d8 07 0c 90 03 82 7c | ..,.,...s....C.Q......H.E......| |
| 6260 | 90 75 98 71 92 79 dc 0e 18 d0 19 40 d3 0e 41 d0 08 41 d8 09 11 d0 09 1d a0 25 a8 28 d2 22 32 dc | .u.q.y.....@..A..A.......%.(."2. |
| 6280 | 0e 18 d0 19 2d d3 0e 2e d0 08 2e d8 09 0e 90 21 8a 1a dc 0f 11 8f 78 89 78 98 11 98 03 a0 31 a7 | ....-..........!......x.x.....1. |
| 62a0 | 37 a1 37 d4 0f 2b d0 08 2b d8 09 0e 90 21 8a 1a d8 0f 10 88 08 f4 08 00 0e 21 a0 11 d3 0d 23 88 | 7.7..+..+....!...........!....#. |
| 62c0 | 02 d8 0e 10 88 03 dc 11 16 90 71 98 25 a0 21 99 29 d3 11 24 f2 00 01 09 27 88 41 dc 12 14 97 2b | ..........q.%.!.)..$....'.A....+ |
| 62e0 | 91 2b 98 63 a0 32 d3 12 26 89 43 f0 03 01 09 27 e4 0f 22 a0 33 d3 0f 27 d0 08 27 72 36 00 00 00 | .+.c.2..&.C....'..".3..'..'r6... |
| 6300 | 63 04 00 00 00 00 00 00 00 00 00 00 00 08 00 00 00 03 00 00 00 f3 2e 03 00 00 97 00 74 01 00 00 | c...........................t... |
| 6320 | 00 00 00 00 00 00 6a 02 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 7c 00 64 01 64 02 | ......j...................|.d.d. |
| 6340 | ac 03 ab 03 00 00 00 00 00 00 7d 00 7c 00 6a 04 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 | ..........}.|.j................. |
| 6360 | 00 00 6a 06 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 64 04 76 00 72 1f 7c 00 6a 09 | ..j...................d.v.r.|.j. |
| 6380 | 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 74 00 00 00 00 00 00 00 00 00 6a 0a 00 00 | ..................t.........j... |
| 63a0 | 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ab 01 00 00 00 00 00 00 7d 00 74 0d 00 00 00 00 | ........................}.t..... |
| 63c0 | 00 00 00 00 6a 0e 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 7c 01 64 05 ab 02 00 00 | ....j...................|.d..... |
| 63e0 | 00 00 00 00 7d 04 74 0d 00 00 00 00 00 00 00 00 6a 0e 00 00 00 00 00 00 00 00 00 00 00 00 00 00 | ....}.t.........j............... |
| 6400 | 00 00 00 00 7c 03 64 06 ab 02 00 00 00 00 00 00 7d 05 7c 04 64 07 6b 02 00 00 72 0b 74 11 00 00 | ....|.d.........}.|.d.k...r.t... |
| 6420 | 00 00 00 00 00 00 64 08 ab 01 00 00 00 00 00 00 82 01 74 13 00 00 00 00 00 00 00 00 7c 05 7c 00 | ......d...........t.........|.|. |
| 6440 | 6a 14 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ab 02 00 00 00 00 00 00 7d 05 7c 04 | j...........................}.|. |
| 6460 | 64 07 6b 28 00 00 72 02 7c 00 53 00 74 01 00 00 00 00 00 00 00 00 6a 16 00 00 00 00 00 00 00 00 | d.k(..r.|.S.t.........j......... |
| 6480 | 00 00 00 00 00 00 00 00 00 00 7c 00 7c 05 64 07 ab 03 00 00 00 00 00 00 7d 00 74 19 00 00 00 00 | ..........|.|.d.........}.t..... |
| 64a0 | 00 00 00 00 7c 00 ab 01 00 00 00 00 00 00 7d 06 7c 04 7c 06 6b 5c 00 00 72 09 7c 00 64 09 64 01 | ....|.........}.|.|.k\..r.|.d.d. |
| 64c0 | 1a 00 64 07 7a 05 00 00 7d 00 6e a5 74 1b 00 00 00 00 00 00 00 00 7c 04 ab 01 00 00 00 00 00 00 | ..d.z...}.n.t.........|......... |
| 64e0 | 44 00 5d 97 00 00 7d 07 7c 06 64 01 7a 0a 00 00 7d 06 7c 00 7c 02 7a 12 00 00 7d 00 74 01 00 00 | D.]...}.|.d.z...}.|.|.z...}.t... |
| 6500 | 00 00 00 00 00 00 6a 1c 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 7c 06 66 01 7c 00 | ......j...................|.f.|. |
| 6520 | 6a 1e 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 64 01 64 09 1a 00 7a 00 00 00 7c 00 | j...................d.d...z...|. |
| 6540 | 6a 04 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ac 0a ab 02 00 00 00 00 00 00 7d 08 | j.............................}. |
| 6560 | 74 1b 00 00 00 00 00 00 00 00 7c 06 64 0b 64 0c ab 03 00 00 00 00 00 00 44 00 5d 2f 00 00 7d 09 | t.........|.d.d.........D.]/..}. |
| 6580 | 64 0b 7c 09 7a 05 00 00 7c 00 7c 09 19 00 00 00 7a 05 00 00 7c 08 7c 09 64 01 7a 0a 00 00 3c 00 | d.|.z...|.|.....z...|.|.d.z...<. |
| 65a0 | 00 00 7c 00 7c 09 64 0b 7a 0a 00 00 78 02 78 02 19 00 00 00 7c 09 7c 00 7c 09 19 00 00 00 7a 05 | ..|.|.d.z...x.x.....|.|.|.....z. |
| 65c0 | 00 00 7c 09 64 0b 7a 0a 00 00 7a 0b 00 00 7a 0d 00 00 63 03 63 02 3c 00 00 00 8c 31 04 00 7c 06 | ..|.d.z...z...z...c.c.<....1..|. |
| 65e0 | 64 01 6b 44 00 00 72 0b 64 0d 7c 00 64 0b 19 00 00 00 7a 05 00 00 7c 08 64 01 3c 00 00 00 7c 00 | d.kD..r.d.|.d.....z...|.d.<...|. |
| 6600 | 64 01 19 00 00 00 7c 08 64 07 3c 00 00 00 7c 08 7d 00 8c 99 04 00 74 01 00 00 00 00 00 00 00 00 | d.....|.d.<...|.}.....t......... |
| 6620 | 6a 16 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 7c 00 64 07 7c 05 ab 03 00 00 00 00 | j...................|.d.|....... |
| 6640 | 00 00 7d 00 7c 00 53 00 29 0e 61 62 07 00 00 0a 20 20 20 20 44 69 66 66 65 72 65 6e 74 69 61 74 | ..}.|.S.).ab........Differentiat |
| 6660 | 65 20 61 20 43 68 65 62 79 73 68 65 76 20 73 65 72 69 65 73 2e 0a 0a 20 20 20 20 52 65 74 75 72 | e.a.Chebyshev.series.......Retur |
| 6680 | 6e 73 20 74 68 65 20 43 68 65 62 79 73 68 65 76 20 73 65 72 69 65 73 20 63 6f 65 66 66 69 63 69 | ns.the.Chebyshev.series.coeffici |
| 66a0 | 65 6e 74 73 20 60 63 60 20 64 69 66 66 65 72 65 6e 74 69 61 74 65 64 20 60 6d 60 20 74 69 6d 65 | ents.`c`.differentiated.`m`.time |
| 66c0 | 73 0a 20 20 20 20 61 6c 6f 6e 67 20 60 61 78 69 73 60 2e 20 20 41 74 20 65 61 63 68 20 69 74 65 | s.....along.`axis`...At.each.ite |
| 66e0 | 72 61 74 69 6f 6e 20 74 68 65 20 72 65 73 75 6c 74 20 69 73 20 6d 75 6c 74 69 70 6c 69 65 64 20 | ration.the.result.is.multiplied. |
| 6700 | 62 79 20 60 73 63 6c 60 20 28 74 68 65 0a 20 20 20 20 73 63 61 6c 69 6e 67 20 66 61 63 74 6f 72 | by.`scl`.(the.....scaling.factor |
| 6720 | 20 69 73 20 66 6f 72 20 75 73 65 20 69 6e 20 61 20 6c 69 6e 65 61 72 20 63 68 61 6e 67 65 20 6f | .is.for.use.in.a.linear.change.o |
| 6740 | 66 20 76 61 72 69 61 62 6c 65 29 2e 20 54 68 65 20 61 72 67 75 6d 65 6e 74 0a 20 20 20 20 60 63 | f.variable)..The.argument.....`c |
| 6760 | 60 20 69 73 20 61 6e 20 61 72 72 61 79 20 6f 66 20 63 6f 65 66 66 69 63 69 65 6e 74 73 20 66 72 | `.is.an.array.of.coefficients.fr |
| 6780 | 6f 6d 20 6c 6f 77 20 74 6f 20 68 69 67 68 20 64 65 67 72 65 65 20 61 6c 6f 6e 67 20 65 61 63 68 | om.low.to.high.degree.along.each |
| 67a0 | 0a 20 20 20 20 61 78 69 73 2c 20 65 2e 67 2e 2c 20 5b 31 2c 32 2c 33 5d 20 72 65 70 72 65 73 65 | .....axis,.e.g.,.[1,2,3].represe |
| 67c0 | 6e 74 73 20 74 68 65 20 73 65 72 69 65 73 20 60 60 31 2a 54 5f 30 20 2b 20 32 2a 54 5f 31 20 2b | nts.the.series.``1*T_0.+.2*T_1.+ |
| 67e0 | 20 33 2a 54 5f 32 60 60 0a 20 20 20 20 77 68 69 6c 65 20 5b 5b 31 2c 32 5d 2c 5b 31 2c 32 5d 5d | .3*T_2``.....while.[[1,2],[1,2]] |
| 6800 | 20 72 65 70 72 65 73 65 6e 74 73 20 60 60 31 2a 54 5f 30 28 78 29 2a 54 5f 30 28 79 29 20 2b 20 | .represents.``1*T_0(x)*T_0(y).+. |
| 6820 | 31 2a 54 5f 31 28 78 29 2a 54 5f 30 28 79 29 20 2b 0a 20 20 20 20 32 2a 54 5f 30 28 78 29 2a 54 | 1*T_1(x)*T_0(y).+.....2*T_0(x)*T |
| 6840 | 5f 31 28 79 29 20 2b 20 32 2a 54 5f 31 28 78 29 2a 54 5f 31 28 79 29 60 60 20 69 66 20 61 78 69 | _1(y).+.2*T_1(x)*T_1(y)``.if.axi |
| 6860 | 73 3d 30 20 69 73 20 60 60 78 60 60 20 61 6e 64 20 61 78 69 73 3d 31 20 69 73 0a 20 20 20 20 60 | s=0.is.``x``.and.axis=1.is.....` |
| 6880 | 60 79 60 60 2e 0a 0a 20 20 20 20 50 61 72 61 6d 65 74 65 72 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d | `y``.......Parameters.....------ |
| 68a0 | 2d 2d 2d 2d 0a 20 20 20 20 63 20 3a 20 61 72 72 61 79 5f 6c 69 6b 65 0a 20 20 20 20 20 20 20 20 | ----.....c.:.array_like......... |
| 68c0 | 41 72 72 61 79 20 6f 66 20 43 68 65 62 79 73 68 65 76 20 73 65 72 69 65 73 20 63 6f 65 66 66 69 | Array.of.Chebyshev.series.coeffi |
| 68e0 | 63 69 65 6e 74 73 2e 20 49 66 20 63 20 69 73 20 6d 75 6c 74 69 64 69 6d 65 6e 73 69 6f 6e 61 6c | cients..If.c.is.multidimensional |
| 6900 | 0a 20 20 20 20 20 20 20 20 74 68 65 20 64 69 66 66 65 72 65 6e 74 20 61 78 69 73 20 63 6f 72 72 | .........the.different.axis.corr |
| 6920 | 65 73 70 6f 6e 64 20 74 6f 20 64 69 66 66 65 72 65 6e 74 20 76 61 72 69 61 62 6c 65 73 20 77 69 | espond.to.different.variables.wi |
| 6940 | 74 68 20 74 68 65 0a 20 20 20 20 20 20 20 20 64 65 67 72 65 65 20 69 6e 20 65 61 63 68 20 61 78 | th.the.........degree.in.each.ax |
| 6960 | 69 73 20 67 69 76 65 6e 20 62 79 20 74 68 65 20 63 6f 72 72 65 73 70 6f 6e 64 69 6e 67 20 69 6e | is.given.by.the.corresponding.in |
| 6980 | 64 65 78 2e 0a 20 20 20 20 6d 20 3a 20 69 6e 74 2c 20 6f 70 74 69 6f 6e 61 6c 0a 20 20 20 20 20 | dex......m.:.int,.optional...... |
| 69a0 | 20 20 20 4e 75 6d 62 65 72 20 6f 66 20 64 65 72 69 76 61 74 69 76 65 73 20 74 61 6b 65 6e 2c 20 | ...Number.of.derivatives.taken,. |
| 69c0 | 6d 75 73 74 20 62 65 20 6e 6f 6e 2d 6e 65 67 61 74 69 76 65 2e 20 28 44 65 66 61 75 6c 74 3a 20 | must.be.non-negative..(Default:. |
| 69e0 | 31 29 0a 20 20 20 20 73 63 6c 20 3a 20 73 63 61 6c 61 72 2c 20 6f 70 74 69 6f 6e 61 6c 0a 20 20 | 1).....scl.:.scalar,.optional... |
| 6a00 | 20 20 20 20 20 20 45 61 63 68 20 64 69 66 66 65 72 65 6e 74 69 61 74 69 6f 6e 20 69 73 20 6d 75 | ......Each.differentiation.is.mu |
| 6a20 | 6c 74 69 70 6c 69 65 64 20 62 79 20 60 73 63 6c 60 2e 20 20 54 68 65 20 65 6e 64 20 72 65 73 75 | ltiplied.by.`scl`...The.end.resu |
| 6a40 | 6c 74 20 69 73 0a 20 20 20 20 20 20 20 20 6d 75 6c 74 69 70 6c 69 63 61 74 69 6f 6e 20 62 79 20 | lt.is.........multiplication.by. |
| 6a60 | 60 60 73 63 6c 2a 2a 6d 60 60 2e 20 20 54 68 69 73 20 69 73 20 66 6f 72 20 75 73 65 20 69 6e 20 | ``scl**m``...This.is.for.use.in. |
| 6a80 | 61 20 6c 69 6e 65 61 72 20 63 68 61 6e 67 65 20 6f 66 0a 20 20 20 20 20 20 20 20 76 61 72 69 61 | a.linear.change.of.........varia |
| 6aa0 | 62 6c 65 2e 20 28 44 65 66 61 75 6c 74 3a 20 31 29 0a 20 20 20 20 61 78 69 73 20 3a 20 69 6e 74 | ble..(Default:.1).....axis.:.int |
| 6ac0 | 2c 20 6f 70 74 69 6f 6e 61 6c 0a 20 20 20 20 20 20 20 20 41 78 69 73 20 6f 76 65 72 20 77 68 69 | ,.optional.........Axis.over.whi |
| 6ae0 | 63 68 20 74 68 65 20 64 65 72 69 76 61 74 69 76 65 20 69 73 20 74 61 6b 65 6e 2e 20 28 44 65 66 | ch.the.derivative.is.taken..(Def |
| 6b00 | 61 75 6c 74 3a 20 30 29 2e 0a 0a 20 20 20 20 52 65 74 75 72 6e 73 0a 20 20 20 20 2d 2d 2d 2d 2d | ault:.0).......Returns.....----- |
| 6b20 | 2d 2d 0a 20 20 20 20 64 65 72 20 3a 20 6e 64 61 72 72 61 79 0a 20 20 20 20 20 20 20 20 43 68 65 | --.....der.:.ndarray.........Che |
| 6b40 | 62 79 73 68 65 76 20 73 65 72 69 65 73 20 6f 66 20 74 68 65 20 64 65 72 69 76 61 74 69 76 65 2e | byshev.series.of.the.derivative. |
| 6b60 | 0a 0a 20 20 20 20 53 65 65 20 41 6c 73 6f 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 | ......See.Also.....--------..... |
| 6b80 | 63 68 65 62 69 6e 74 0a 0a 20 20 20 20 4e 6f 74 65 73 0a 20 20 20 20 2d 2d 2d 2d 2d 0a 20 20 20 | chebint......Notes.....-----.... |
| 6ba0 | 20 49 6e 20 67 65 6e 65 72 61 6c 2c 20 74 68 65 20 72 65 73 75 6c 74 20 6f 66 20 64 69 66 66 65 | .In.general,.the.result.of.diffe |
| 6bc0 | 72 65 6e 74 69 61 74 69 6e 67 20 61 20 43 2d 73 65 72 69 65 73 20 6e 65 65 64 73 20 74 6f 20 62 | rentiating.a.C-series.needs.to.b |
| 6be0 | 65 0a 20 20 20 20 22 72 65 70 72 6f 6a 65 63 74 65 64 22 20 6f 6e 74 6f 20 74 68 65 20 43 2d 73 | e....."reprojected".onto.the.C-s |
| 6c00 | 65 72 69 65 73 20 62 61 73 69 73 20 73 65 74 2e 20 54 68 75 73 2c 20 74 79 70 69 63 61 6c 6c 79 | eries.basis.set..Thus,.typically |
| 6c20 | 2c 20 74 68 65 0a 20 20 20 20 72 65 73 75 6c 74 20 6f 66 20 74 68 69 73 20 66 75 6e 63 74 69 6f | ,.the.....result.of.this.functio |
| 6c40 | 6e 20 69 73 20 22 75 6e 69 6e 74 75 69 74 69 76 65 2c 22 20 61 6c 62 65 69 74 20 63 6f 72 72 65 | n.is."unintuitive,".albeit.corre |
| 6c60 | 63 74 3b 20 73 65 65 20 45 78 61 6d 70 6c 65 73 0a 20 20 20 20 73 65 63 74 69 6f 6e 20 62 65 6c | ct;.see.Examples.....section.bel |
| 6c80 | 6f 77 2e 0a 0a 20 20 20 20 45 78 61 6d 70 6c 65 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 | ow.......Examples.....--------.. |
| 6ca0 | 20 20 20 3e 3e 3e 20 66 72 6f 6d 20 6e 75 6d 70 79 2e 70 6f 6c 79 6e 6f 6d 69 61 6c 20 69 6d 70 | ...>>>.from.numpy.polynomial.imp |
| 6cc0 | 6f 72 74 20 63 68 65 62 79 73 68 65 76 20 61 73 20 43 0a 20 20 20 20 3e 3e 3e 20 63 20 3d 20 28 | ort.chebyshev.as.C.....>>>.c.=.( |
| 6ce0 | 31 2c 32 2c 33 2c 34 29 0a 20 20 20 20 3e 3e 3e 20 43 2e 63 68 65 62 64 65 72 28 63 29 0a 20 20 | 1,2,3,4).....>>>.C.chebder(c)... |
| 6d00 | 20 20 61 72 72 61 79 28 5b 31 34 2e 2c 20 31 32 2e 2c 20 32 34 2e 5d 29 0a 20 20 20 20 3e 3e 3e | ..array([14.,.12.,.24.]).....>>> |
| 6d20 | 20 43 2e 63 68 65 62 64 65 72 28 63 2c 33 29 0a 20 20 20 20 61 72 72 61 79 28 5b 39 36 2e 5d 29 | .C.chebder(c,3).....array([96.]) |
| 6d40 | 0a 20 20 20 20 3e 3e 3e 20 43 2e 63 68 65 62 64 65 72 28 63 2c 73 63 6c 3d 2d 31 29 0a 20 20 20 | .....>>>.C.chebder(c,scl=-1).... |
| 6d60 | 20 61 72 72 61 79 28 5b 2d 31 34 2e 2c 20 2d 31 32 2e 2c 20 2d 32 34 2e 5d 29 0a 20 20 20 20 3e | .array([-14.,.-12.,.-24.]).....> |
| 6d80 | 3e 3e 20 43 2e 63 68 65 62 64 65 72 28 63 2c 32 2c 2d 31 29 0a 20 20 20 20 61 72 72 61 79 28 5b | >>.C.chebder(c,2,-1).....array([ |
| 6da0 | 31 32 2e 2c 20 20 39 36 2e 5d 29 0a 0a 20 20 20 20 72 04 00 00 00 54 a9 02 da 05 6e 64 6d 69 6e | 12.,..96.])......r....T....ndmin |
| 6dc0 | 72 38 00 00 00 fa 0d 3f 62 42 68 48 69 49 6c 4c 71 51 70 50 7a 17 74 68 65 20 6f 72 64 65 72 20 | r8.....?bBhHiIlLqQpPz.the.order. |
| 6de0 | 6f 66 20 64 65 72 69 76 61 74 69 6f 6e fa 08 74 68 65 20 61 78 69 73 72 02 00 00 00 7a 2c 54 68 | of.derivation..the.axisr....z,Th |
| 6e00 | 65 20 6f 72 64 65 72 20 6f 66 20 64 65 72 69 76 61 74 69 6f 6e 20 6d 75 73 74 20 62 65 20 6e 6f | e.order.of.derivation.must.be.no |
| 6e20 | 6e 2d 6e 65 67 61 74 69 76 65 4e 72 2b 00 00 00 72 2a 00 00 00 72 2d 00 00 00 e9 04 00 00 00 29 | n-negativeNr+...r*...r-........) |
| 6e40 | 10 72 2f 00 00 00 72 4f 00 00 00 72 2c 00 00 00 da 04 63 68 61 72 da 06 61 73 74 79 70 65 da 06 | .r/...rO...r,.....char..astype.. |
| 6e60 | 64 6f 75 62 6c 65 72 58 00 00 00 da 07 5f 61 73 5f 69 6e 74 72 7c 00 00 00 72 03 00 00 00 da 04 | doublerX....._as_intr|...r...... |
| 6e80 | 6e 64 69 6d da 08 6d 6f 76 65 61 78 69 73 72 40 00 00 00 72 5a 00 00 00 72 41 00 00 00 da 05 73 | ndim..moveaxisr@...rZ...rA.....s |
| 6ea0 | 68 61 70 65 29 0a 72 31 00 00 00 da 01 6d 72 45 00 00 00 da 04 61 78 69 73 da 03 63 6e 74 da 05 | hape).r1.....mrE.....axis..cnt.. |
| 6ec0 | 69 61 78 69 73 72 32 00 00 00 72 47 00 00 00 da 03 64 65 72 72 48 00 00 00 73 0a 00 00 00 20 20 | iaxisr2...rG.....derrH...s...... |
| 6ee0 | 20 20 20 20 20 20 20 20 72 34 00 00 00 72 13 00 00 00 72 13 00 00 00 6a 03 00 00 73 9c 01 00 00 | ........r4...r....r....j...s.... |
| 6f00 | 80 00 f4 74 01 00 09 0b 8f 08 89 08 90 11 98 21 a0 24 d4 08 27 80 41 d8 07 08 87 77 81 77 87 7c | ...t...........!.$..'.A....w.w.| |
| 6f20 | 81 7c 90 7f d1 07 26 d8 0c 0d 8f 48 89 48 94 52 97 59 91 59 d3 0c 1f 88 01 dc 0a 0c 8f 2a 89 2a | .|....&....H.H.R.Y.Y.........*.* |
| 6f40 | 90 51 d0 18 31 d3 0a 32 80 43 dc 0c 0e 8f 4a 89 4a 90 74 98 5a d3 0c 28 80 45 d8 07 0a 88 51 82 | .Q..1..2.C....J.J.t.Z..(.E....Q. |
| 6f60 | 77 dc 0e 18 d0 19 47 d3 0e 48 d0 08 48 dc 0c 20 a0 15 a8 01 af 06 a9 06 d3 0c 2f 80 45 e0 07 0a | w.....G..H..H............./.E... |
| 6f80 | 88 61 82 78 d8 0f 10 88 08 e4 08 0a 8f 0b 89 0b 90 41 90 75 98 61 d3 08 20 80 41 dc 08 0b 88 41 | .a.x.............A.u.a....A....A |
| 6fa0 | 8b 06 80 41 d8 07 0a 88 61 82 78 d8 0c 0d 88 62 88 71 88 45 90 41 89 49 89 01 e4 11 16 90 73 93 | ...A....a.x....b.q.E.A.I......s. |
| 6fc0 | 1a f2 00 0a 09 14 88 41 d8 10 11 90 41 91 05 88 41 d8 0c 0d 90 13 89 48 88 41 dc 12 14 97 28 91 | .......A....A...A......H.A....(. |
| 6fe0 | 28 98 41 98 34 a0 21 a7 27 a1 27 a8 21 a8 22 a0 2b d1 1b 2d b0 51 b7 57 b1 57 d4 12 3d 88 43 dc | (.A.4.!.'.'.!.".+..-.Q.W.W..=.C. |
| 7000 | 15 1a 98 31 98 61 a0 12 93 5f f2 00 02 0d 31 90 01 d8 1e 1f a0 21 99 65 a0 71 a8 11 a1 74 99 5e | ...1.a..._....1......!.e.q...t.^ |
| 7020 | 90 03 90 41 98 01 91 45 91 0a d8 10 11 90 21 90 61 91 25 93 08 98 51 a0 11 a0 31 a1 14 99 58 a8 | ...A...E......!.a.%...Q...1...X. |
| 7040 | 21 a8 61 a9 25 d1 1c 30 d1 10 30 94 08 f0 05 02 0d 31 f0 06 00 10 11 90 31 8a 75 d8 19 1a 98 51 | !.a.%..0..0......1......1.u....Q |
| 7060 | 98 71 99 54 99 18 90 03 90 41 91 06 d8 15 16 90 71 91 54 88 43 90 01 89 46 d8 10 13 89 41 f0 15 | .q.T.....A......q.T.C...F....A.. |
| 7080 | 0a 09 14 f4 16 00 09 0b 8f 0b 89 0b 90 41 90 71 98 25 d3 08 20 80 41 d8 0b 0c 80 48 72 36 00 00 | .............A.q.%....A....Hr6.. |
| 70a0 | 00 63 06 00 00 00 00 00 00 00 00 00 00 00 09 00 00 00 03 00 00 00 f3 ee 04 00 00 97 00 74 01 00 | .c...........................t.. |
| 70c0 | 00 00 00 00 00 00 00 6a 02 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 7c 00 64 01 64 | .......j...................|.d.d |
| 70e0 | 02 ac 03 ab 03 00 00 00 00 00 00 7d 00 7c 00 6a 04 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 | ...........}.|.j................ |
| 7100 | 00 00 00 6a 06 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 64 04 76 00 72 1f 7c 00 6a | ...j...................d.v.r.|.j |
| 7120 | 09 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 74 00 00 00 00 00 00 00 00 00 6a 0a 00 | ...................t.........j.. |
| 7140 | 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ab 01 00 00 00 00 00 00 7d 00 74 01 00 00 00 | .........................}.t.... |
| 7160 | 00 00 00 00 00 6a 0c 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 7c 02 ab 01 00 00 00 | .....j...................|...... |
| 7180 | 00 00 00 73 03 7c 02 67 01 7d 02 74 0f 00 00 00 00 00 00 00 00 6a 10 00 00 00 00 00 00 00 00 00 | ...s.|.g.}.t.........j.......... |
| 71a0 | 00 00 00 00 00 00 00 00 00 7c 01 64 05 ab 02 00 00 00 00 00 00 7d 06 74 0f 00 00 00 00 00 00 00 | .........|.d.........}.t........ |
| 71c0 | 00 6a 10 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 7c 05 64 06 ab 02 00 00 00 00 00 | .j...................|.d........ |
| 71e0 | 00 7d 07 7c 06 64 07 6b 02 00 00 72 0b 74 13 00 00 00 00 00 00 00 00 64 08 ab 01 00 00 00 00 00 | .}.|.d.k...r.t.........d........ |
| 7200 | 00 82 01 74 15 00 00 00 00 00 00 00 00 7c 02 ab 01 00 00 00 00 00 00 7c 06 6b 44 00 00 72 0b 74 | ...t.........|.........|.kD..r.t |
| 7220 | 13 00 00 00 00 00 00 00 00 64 09 ab 01 00 00 00 00 00 00 82 01 74 01 00 00 00 00 00 00 00 00 6a | .........d...........t.........j |
| 7240 | 16 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 7c 03 ab 01 00 00 00 00 00 00 64 07 6b | ...................|.........d.k |
| 7260 | 37 00 00 72 0b 74 13 00 00 00 00 00 00 00 00 64 0a ab 01 00 00 00 00 00 00 82 01 74 01 00 00 00 | 7..r.t.........d...........t.... |
| 7280 | 00 00 00 00 00 6a 16 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 7c 04 ab 01 00 00 00 | .....j...................|...... |
| 72a0 | 00 00 00 64 07 6b 37 00 00 72 0b 74 13 00 00 00 00 00 00 00 00 64 0b ab 01 00 00 00 00 00 00 82 | ...d.k7..r.t.........d.......... |
| 72c0 | 01 74 19 00 00 00 00 00 00 00 00 7c 07 7c 00 6a 16 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 | .t.........|.|.j................ |
| 72e0 | 00 00 00 ab 02 00 00 00 00 00 00 7d 07 7c 06 64 07 6b 28 00 00 72 02 7c 00 53 00 74 01 00 00 00 | ...........}.|.d.k(..r.|.S.t.... |
| 7300 | 00 00 00 00 00 6a 1a 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 7c 00 7c 07 64 07 ab | .....j...................|.|.d.. |
| 7320 | 03 00 00 00 00 00 00 7d 00 74 1d 00 00 00 00 00 00 00 00 7c 02 ab 01 00 00 00 00 00 00 64 07 67 | .......}.t.........|.........d.g |
| 7340 | 01 7c 06 74 15 00 00 00 00 00 00 00 00 7c 02 ab 01 00 00 00 00 00 00 7a 0a 00 00 7a 05 00 00 7a | .|.t.........|.........z...z...z |
| 7360 | 00 00 00 7d 02 74 1f 00 00 00 00 00 00 00 00 7c 06 ab 01 00 00 00 00 00 00 44 00 5d fb 00 00 7d | ...}.t.........|.........D.]...} |
| 7380 | 08 74 15 00 00 00 00 00 00 00 00 7c 00 ab 01 00 00 00 00 00 00 7d 09 7c 00 7c 04 7a 12 00 00 7d | .t.........|.........}.|.|.z...} |
| 73a0 | 00 7c 09 64 01 6b 28 00 00 72 2c 74 01 00 00 00 00 00 00 00 00 6a 20 00 00 00 00 00 00 00 00 00 | .|.d.k(..r,t.........j.......... |
| 73c0 | 00 00 00 00 00 00 00 00 00 7c 00 64 07 19 00 00 00 64 07 6b 28 00 00 ab 01 00 00 00 00 00 00 72 | .........|.d.....d.k(..........r |
| 73e0 | 11 7c 00 64 07 78 02 78 02 19 00 00 00 7c 02 7c 08 19 00 00 00 7a 0d 00 00 63 03 63 02 3c 00 00 | .|.d.x.x.....|.|.....z...c.c.<.. |
| 7400 | 00 8c 44 74 01 00 00 00 00 00 00 00 00 6a 22 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 | ..Dt.........j"................. |
| 7420 | 00 7c 09 64 01 7a 00 00 00 66 01 7c 00 6a 24 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 | .|.d.z...f.|.j$................. |
| 7440 | 00 64 01 64 0c 1a 00 7a 00 00 00 7c 00 6a 04 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 | .d.d...z...|.j.................. |
| 7460 | 00 ac 0d ab 02 00 00 00 00 00 00 7d 0a 7c 00 64 07 19 00 00 00 64 07 7a 05 00 00 7c 0a 64 07 3c | ...........}.|.d.....d.z...|.d.< |
| 7480 | 00 00 00 7c 00 64 07 19 00 00 00 7c 0a 64 01 3c 00 00 00 7c 09 64 01 6b 44 00 00 72 0b 7c 00 64 | ...|.d.....|.d.<...|.d.kD..r.|.d |
| 74a0 | 01 19 00 00 00 64 0e 7a 0b 00 00 7c 0a 64 0f 3c 00 00 00 74 1f 00 00 00 00 00 00 00 00 64 0f 7c | .....d.z...|.d.<...t.........d.| |
| 74c0 | 09 ab 02 00 00 00 00 00 00 44 00 5d 32 00 00 7d 0b 7c 00 7c 0b 19 00 00 00 64 0f 7c 0b 64 01 7a | .........D.]2..}.|.|.....d.|.d.z |
| 74e0 | 00 00 00 7a 05 00 00 7a 0b 00 00 7c 0a 7c 0b 64 01 7a 00 00 00 3c 00 00 00 7c 0a 7c 0b 64 01 7a | ...z...z...|.|.d.z...<...|.|.d.z |
| 7500 | 0a 00 00 78 02 78 02 19 00 00 00 7c 00 7c 0b 19 00 00 00 64 0f 7c 0b 64 01 7a 0a 00 00 7a 05 00 | ...x.x.....|.|.....d.|.d.z...z.. |
| 7520 | 00 7a 0b 00 00 7a 17 00 00 63 03 63 02 3c 00 00 00 8c 34 04 00 7c 0a 64 07 78 02 78 02 19 00 00 | .z...z...c.c.<....4..|.d.x.x.... |
| 7540 | 00 7c 02 7c 08 19 00 00 00 74 27 00 00 00 00 00 00 00 00 7c 03 7c 0a ab 02 00 00 00 00 00 00 7a | .|.|.....t'........|.|.........z |
| 7560 | 0a 00 00 7a 0d 00 00 63 03 63 02 3c 00 00 00 7c 0a 7d 00 8c fd 04 00 74 01 00 00 00 00 00 00 00 | ...z...c.c.<...|.}.....t........ |
| 7580 | 00 6a 1a 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 7c 00 64 07 7c 07 ab 03 00 00 00 | .j...................|.d.|...... |
| 75a0 | 00 00 00 7d 00 7c 00 53 00 29 10 61 7d 0c 00 00 0a 20 20 20 20 49 6e 74 65 67 72 61 74 65 20 61 | ...}.|.S.).a}........Integrate.a |
| 75c0 | 20 43 68 65 62 79 73 68 65 76 20 73 65 72 69 65 73 2e 0a 0a 20 20 20 20 52 65 74 75 72 6e 73 20 | .Chebyshev.series.......Returns. |
| 75e0 | 74 68 65 20 43 68 65 62 79 73 68 65 76 20 73 65 72 69 65 73 20 63 6f 65 66 66 69 63 69 65 6e 74 | the.Chebyshev.series.coefficient |
| 7600 | 73 20 60 63 60 20 69 6e 74 65 67 72 61 74 65 64 20 60 6d 60 20 74 69 6d 65 73 20 66 72 6f 6d 0a | s.`c`.integrated.`m`.times.from. |
| 7620 | 20 20 20 20 60 6c 62 6e 64 60 20 61 6c 6f 6e 67 20 60 61 78 69 73 60 2e 20 41 74 20 65 61 63 68 | ....`lbnd`.along.`axis`..At.each |
| 7640 | 20 69 74 65 72 61 74 69 6f 6e 20 74 68 65 20 72 65 73 75 6c 74 69 6e 67 20 73 65 72 69 65 73 20 | .iteration.the.resulting.series. |
| 7660 | 69 73 0a 20 20 20 20 2a 2a 6d 75 6c 74 69 70 6c 69 65 64 2a 2a 20 62 79 20 60 73 63 6c 60 20 61 | is.....**multiplied**.by.`scl`.a |
| 7680 | 6e 64 20 61 6e 20 69 6e 74 65 67 72 61 74 69 6f 6e 20 63 6f 6e 73 74 61 6e 74 2c 20 60 6b 60 2c | nd.an.integration.constant,.`k`, |
| 76a0 | 20 69 73 20 61 64 64 65 64 2e 0a 20 20 20 20 54 68 65 20 73 63 61 6c 69 6e 67 20 66 61 63 74 6f | .is.added......The.scaling.facto |
| 76c0 | 72 20 69 73 20 66 6f 72 20 75 73 65 20 69 6e 20 61 20 6c 69 6e 65 61 72 20 63 68 61 6e 67 65 20 | r.is.for.use.in.a.linear.change. |
| 76e0 | 6f 66 20 76 61 72 69 61 62 6c 65 2e 20 20 28 22 42 75 79 65 72 0a 20 20 20 20 62 65 77 61 72 65 | of.variable...("Buyer.....beware |
| 7700 | 22 3a 20 6e 6f 74 65 20 74 68 61 74 2c 20 64 65 70 65 6e 64 69 6e 67 20 6f 6e 20 77 68 61 74 20 | ":.note.that,.depending.on.what. |
| 7720 | 6f 6e 65 20 69 73 20 64 6f 69 6e 67 2c 20 6f 6e 65 20 6d 61 79 20 77 61 6e 74 20 60 73 63 6c 60 | one.is.doing,.one.may.want.`scl` |
| 7740 | 0a 20 20 20 20 74 6f 20 62 65 20 74 68 65 20 72 65 63 69 70 72 6f 63 61 6c 20 6f 66 20 77 68 61 | .....to.be.the.reciprocal.of.wha |
| 7760 | 74 20 6f 6e 65 20 6d 69 67 68 74 20 65 78 70 65 63 74 3b 20 66 6f 72 20 6d 6f 72 65 20 69 6e 66 | t.one.might.expect;.for.more.inf |
| 7780 | 6f 72 6d 61 74 69 6f 6e 2c 0a 20 20 20 20 73 65 65 20 74 68 65 20 4e 6f 74 65 73 20 73 65 63 74 | ormation,.....see.the.Notes.sect |
| 77a0 | 69 6f 6e 20 62 65 6c 6f 77 2e 29 20 20 54 68 65 20 61 72 67 75 6d 65 6e 74 20 60 63 60 20 69 73 | ion.below.)..The.argument.`c`.is |
| 77c0 | 20 61 6e 20 61 72 72 61 79 20 6f 66 0a 20 20 20 20 63 6f 65 66 66 69 63 69 65 6e 74 73 20 66 72 | .an.array.of.....coefficients.fr |
| 77e0 | 6f 6d 20 6c 6f 77 20 74 6f 20 68 69 67 68 20 64 65 67 72 65 65 20 61 6c 6f 6e 67 20 65 61 63 68 | om.low.to.high.degree.along.each |
| 7800 | 20 61 78 69 73 2c 20 65 2e 67 2e 2c 20 5b 31 2c 32 2c 33 5d 0a 20 20 20 20 72 65 70 72 65 73 65 | .axis,.e.g.,.[1,2,3].....represe |
| 7820 | 6e 74 73 20 74 68 65 20 73 65 72 69 65 73 20 60 60 54 5f 30 20 2b 20 32 2a 54 5f 31 20 2b 20 33 | nts.the.series.``T_0.+.2*T_1.+.3 |
| 7840 | 2a 54 5f 32 60 60 20 77 68 69 6c 65 20 5b 5b 31 2c 32 5d 2c 5b 31 2c 32 5d 5d 0a 20 20 20 20 72 | *T_2``.while.[[1,2],[1,2]].....r |
| 7860 | 65 70 72 65 73 65 6e 74 73 20 60 60 31 2a 54 5f 30 28 78 29 2a 54 5f 30 28 79 29 20 2b 20 31 2a | epresents.``1*T_0(x)*T_0(y).+.1* |
| 7880 | 54 5f 31 28 78 29 2a 54 5f 30 28 79 29 20 2b 20 32 2a 54 5f 30 28 78 29 2a 54 5f 31 28 79 29 20 | T_1(x)*T_0(y).+.2*T_0(x)*T_1(y). |
| 78a0 | 2b 0a 20 20 20 20 32 2a 54 5f 31 28 78 29 2a 54 5f 31 28 79 29 60 60 20 69 66 20 61 78 69 73 3d | +.....2*T_1(x)*T_1(y)``.if.axis= |
| 78c0 | 30 20 69 73 20 60 60 78 60 60 20 61 6e 64 20 61 78 69 73 3d 31 20 69 73 20 60 60 79 60 60 2e 0a | 0.is.``x``.and.axis=1.is.``y``.. |
| 78e0 | 0a 20 20 20 20 50 61 72 61 6d 65 74 65 72 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 | .....Parameters.....----------.. |
| 7900 | 20 20 20 63 20 3a 20 61 72 72 61 79 5f 6c 69 6b 65 0a 20 20 20 20 20 20 20 20 41 72 72 61 79 20 | ...c.:.array_like.........Array. |
| 7920 | 6f 66 20 43 68 65 62 79 73 68 65 76 20 73 65 72 69 65 73 20 63 6f 65 66 66 69 63 69 65 6e 74 73 | of.Chebyshev.series.coefficients |
| 7940 | 2e 20 49 66 20 63 20 69 73 20 6d 75 6c 74 69 64 69 6d 65 6e 73 69 6f 6e 61 6c 0a 20 20 20 20 20 | ..If.c.is.multidimensional...... |
| 7960 | 20 20 20 74 68 65 20 64 69 66 66 65 72 65 6e 74 20 61 78 69 73 20 63 6f 72 72 65 73 70 6f 6e 64 | ...the.different.axis.correspond |
| 7980 | 20 74 6f 20 64 69 66 66 65 72 65 6e 74 20 76 61 72 69 61 62 6c 65 73 20 77 69 74 68 20 74 68 65 | .to.different.variables.with.the |
| 79a0 | 0a 20 20 20 20 20 20 20 20 64 65 67 72 65 65 20 69 6e 20 65 61 63 68 20 61 78 69 73 20 67 69 76 | .........degree.in.each.axis.giv |
| 79c0 | 65 6e 20 62 79 20 74 68 65 20 63 6f 72 72 65 73 70 6f 6e 64 69 6e 67 20 69 6e 64 65 78 2e 0a 20 | en.by.the.corresponding.index... |
| 79e0 | 20 20 20 6d 20 3a 20 69 6e 74 2c 20 6f 70 74 69 6f 6e 61 6c 0a 20 20 20 20 20 20 20 20 4f 72 64 | ...m.:.int,.optional.........Ord |
| 7a00 | 65 72 20 6f 66 20 69 6e 74 65 67 72 61 74 69 6f 6e 2c 20 6d 75 73 74 20 62 65 20 70 6f 73 69 74 | er.of.integration,.must.be.posit |
| 7a20 | 69 76 65 2e 20 28 44 65 66 61 75 6c 74 3a 20 31 29 0a 20 20 20 20 6b 20 3a 20 7b 5b 5d 2c 20 6c | ive..(Default:.1).....k.:.{[],.l |
| 7a40 | 69 73 74 2c 20 73 63 61 6c 61 72 7d 2c 20 6f 70 74 69 6f 6e 61 6c 0a 20 20 20 20 20 20 20 20 49 | ist,.scalar},.optional.........I |
| 7a60 | 6e 74 65 67 72 61 74 69 6f 6e 20 63 6f 6e 73 74 61 6e 74 28 73 29 2e 20 20 54 68 65 20 76 61 6c | ntegration.constant(s)...The.val |
| 7a80 | 75 65 20 6f 66 20 74 68 65 20 66 69 72 73 74 20 69 6e 74 65 67 72 61 6c 20 61 74 20 7a 65 72 6f | ue.of.the.first.integral.at.zero |
| 7aa0 | 0a 20 20 20 20 20 20 20 20 69 73 20 74 68 65 20 66 69 72 73 74 20 76 61 6c 75 65 20 69 6e 20 74 | .........is.the.first.value.in.t |
| 7ac0 | 68 65 20 6c 69 73 74 2c 20 74 68 65 20 76 61 6c 75 65 20 6f 66 20 74 68 65 20 73 65 63 6f 6e 64 | he.list,.the.value.of.the.second |
| 7ae0 | 20 69 6e 74 65 67 72 61 6c 0a 20 20 20 20 20 20 20 20 61 74 20 7a 65 72 6f 20 69 73 20 74 68 65 | .integral.........at.zero.is.the |
| 7b00 | 20 73 65 63 6f 6e 64 20 76 61 6c 75 65 2c 20 65 74 63 2e 20 20 49 66 20 60 60 6b 20 3d 3d 20 5b | .second.value,.etc...If.``k.==.[ |
| 7b20 | 5d 60 60 20 28 74 68 65 20 64 65 66 61 75 6c 74 29 2c 0a 20 20 20 20 20 20 20 20 61 6c 6c 20 63 | ]``.(the.default),.........all.c |
| 7b40 | 6f 6e 73 74 61 6e 74 73 20 61 72 65 20 73 65 74 20 74 6f 20 7a 65 72 6f 2e 20 20 49 66 20 60 60 | onstants.are.set.to.zero...If.`` |
| 7b60 | 6d 20 3d 3d 20 31 60 60 2c 20 61 20 73 69 6e 67 6c 65 20 73 63 61 6c 61 72 20 63 61 6e 0a 20 20 | m.==.1``,.a.single.scalar.can... |
| 7b80 | 20 20 20 20 20 20 62 65 20 67 69 76 65 6e 20 69 6e 73 74 65 61 64 20 6f 66 20 61 20 6c 69 73 74 | ......be.given.instead.of.a.list |
| 7ba0 | 2e 0a 20 20 20 20 6c 62 6e 64 20 3a 20 73 63 61 6c 61 72 2c 20 6f 70 74 69 6f 6e 61 6c 0a 20 20 | ......lbnd.:.scalar,.optional... |
| 7bc0 | 20 20 20 20 20 20 54 68 65 20 6c 6f 77 65 72 20 62 6f 75 6e 64 20 6f 66 20 74 68 65 20 69 6e 74 | ......The.lower.bound.of.the.int |
| 7be0 | 65 67 72 61 6c 2e 20 28 44 65 66 61 75 6c 74 3a 20 30 29 0a 20 20 20 20 73 63 6c 20 3a 20 73 63 | egral..(Default:.0).....scl.:.sc |
| 7c00 | 61 6c 61 72 2c 20 6f 70 74 69 6f 6e 61 6c 0a 20 20 20 20 20 20 20 20 46 6f 6c 6c 6f 77 69 6e 67 | alar,.optional.........Following |
| 7c20 | 20 65 61 63 68 20 69 6e 74 65 67 72 61 74 69 6f 6e 20 74 68 65 20 72 65 73 75 6c 74 20 69 73 20 | .each.integration.the.result.is. |
| 7c40 | 2a 6d 75 6c 74 69 70 6c 69 65 64 2a 20 62 79 20 60 73 63 6c 60 0a 20 20 20 20 20 20 20 20 62 65 | *multiplied*.by.`scl`.........be |
| 7c60 | 66 6f 72 65 20 74 68 65 20 69 6e 74 65 67 72 61 74 69 6f 6e 20 63 6f 6e 73 74 61 6e 74 20 69 73 | fore.the.integration.constant.is |
| 7c80 | 20 61 64 64 65 64 2e 20 28 44 65 66 61 75 6c 74 3a 20 31 29 0a 20 20 20 20 61 78 69 73 20 3a 20 | .added..(Default:.1).....axis.:. |
| 7ca0 | 69 6e 74 2c 20 6f 70 74 69 6f 6e 61 6c 0a 20 20 20 20 20 20 20 20 41 78 69 73 20 6f 76 65 72 20 | int,.optional.........Axis.over. |
| 7cc0 | 77 68 69 63 68 20 74 68 65 20 69 6e 74 65 67 72 61 6c 20 69 73 20 74 61 6b 65 6e 2e 20 28 44 65 | which.the.integral.is.taken..(De |
| 7ce0 | 66 61 75 6c 74 3a 20 30 29 2e 0a 0a 20 20 20 20 52 65 74 75 72 6e 73 0a 20 20 20 20 2d 2d 2d 2d | fault:.0).......Returns.....---- |
| 7d00 | 2d 2d 2d 0a 20 20 20 20 53 20 3a 20 6e 64 61 72 72 61 79 0a 20 20 20 20 20 20 20 20 43 2d 73 65 | ---.....S.:.ndarray.........C-se |
| 7d20 | 72 69 65 73 20 63 6f 65 66 66 69 63 69 65 6e 74 73 20 6f 66 20 74 68 65 20 69 6e 74 65 67 72 61 | ries.coefficients.of.the.integra |
| 7d40 | 6c 2e 0a 0a 20 20 20 20 52 61 69 73 65 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 56 61 | l.......Raises.....------.....Va |
| 7d60 | 6c 75 65 45 72 72 6f 72 0a 20 20 20 20 20 20 20 20 49 66 20 60 60 6d 20 3c 20 31 60 60 2c 20 60 | lueError.........If.``m.<.1``,.` |
| 7d80 | 60 6c 65 6e 28 6b 29 20 3e 20 6d 60 60 2c 20 60 60 6e 70 2e 6e 64 69 6d 28 6c 62 6e 64 29 20 21 | `len(k).>.m``,.``np.ndim(lbnd).! |
| 7da0 | 3d 20 30 60 60 2c 20 6f 72 0a 20 20 20 20 20 20 20 20 60 60 6e 70 2e 6e 64 69 6d 28 73 63 6c 29 | =.0``,.or.........``np.ndim(scl) |
| 7dc0 | 20 21 3d 20 30 60 60 2e 0a 0a 20 20 20 20 53 65 65 20 41 6c 73 6f 0a 20 20 20 20 2d 2d 2d 2d 2d | .!=.0``.......See.Also.....----- |
| 7de0 | 2d 2d 2d 0a 20 20 20 20 63 68 65 62 64 65 72 0a 0a 20 20 20 20 4e 6f 74 65 73 0a 20 20 20 20 2d | ---.....chebder......Notes.....- |
| 7e00 | 2d 2d 2d 2d 0a 20 20 20 20 4e 6f 74 65 20 74 68 61 74 20 74 68 65 20 72 65 73 75 6c 74 20 6f 66 | ----.....Note.that.the.result.of |
| 7e20 | 20 65 61 63 68 20 69 6e 74 65 67 72 61 74 69 6f 6e 20 69 73 20 2a 6d 75 6c 74 69 70 6c 69 65 64 | .each.integration.is.*multiplied |
| 7e40 | 2a 20 62 79 20 60 73 63 6c 60 2e 0a 20 20 20 20 57 68 79 20 69 73 20 74 68 69 73 20 69 6d 70 6f | *.by.`scl`......Why.is.this.impo |
| 7e60 | 72 74 61 6e 74 20 74 6f 20 6e 6f 74 65 3f 20 20 53 61 79 20 6f 6e 65 20 69 73 20 6d 61 6b 69 6e | rtant.to.note?..Say.one.is.makin |
| 7e80 | 67 20 61 20 6c 69 6e 65 61 72 20 63 68 61 6e 67 65 20 6f 66 0a 20 20 20 20 76 61 72 69 61 62 6c | g.a.linear.change.of.....variabl |
| 7ea0 | 65 20 3a 6d 61 74 68 3a 60 75 20 3d 20 61 78 20 2b 20 62 60 20 69 6e 20 61 6e 20 69 6e 74 65 67 | e.:math:`u.=.ax.+.b`.in.an.integ |
| 7ec0 | 72 61 6c 20 72 65 6c 61 74 69 76 65 20 74 6f 20 60 78 60 2e 20 20 54 68 65 6e 0a 20 20 20 20 3a | ral.relative.to.`x`...Then.....: |
| 7ee0 | 6d 61 74 68 3a 60 64 78 20 3d 20 64 75 2f 61 60 2c 20 73 6f 20 6f 6e 65 20 77 69 6c 6c 20 6e 65 | math:`dx.=.du/a`,.so.one.will.ne |
| 7f00 | 65 64 20 74 6f 20 73 65 74 20 60 73 63 6c 60 20 65 71 75 61 6c 20 74 6f 0a 20 20 20 20 3a 6d 61 | ed.to.set.`scl`.equal.to.....:ma |
| 7f20 | 74 68 3a 60 31 2f 61 60 2d 20 70 65 72 68 61 70 73 20 6e 6f 74 20 77 68 61 74 20 6f 6e 65 20 77 | th:`1/a`-.perhaps.not.what.one.w |
| 7f40 | 6f 75 6c 64 20 68 61 76 65 20 66 69 72 73 74 20 74 68 6f 75 67 68 74 2e 0a 0a 20 20 20 20 41 6c | ould.have.first.thought.......Al |
| 7f60 | 73 6f 20 6e 6f 74 65 20 74 68 61 74 2c 20 69 6e 20 67 65 6e 65 72 61 6c 2c 20 74 68 65 20 72 65 | so.note.that,.in.general,.the.re |
| 7f80 | 73 75 6c 74 20 6f 66 20 69 6e 74 65 67 72 61 74 69 6e 67 20 61 20 43 2d 73 65 72 69 65 73 20 6e | sult.of.integrating.a.C-series.n |
| 7fa0 | 65 65 64 73 0a 20 20 20 20 74 6f 20 62 65 20 22 72 65 70 72 6f 6a 65 63 74 65 64 22 20 6f 6e 74 | eeds.....to.be."reprojected".ont |
| 7fc0 | 6f 20 74 68 65 20 43 2d 73 65 72 69 65 73 20 62 61 73 69 73 20 73 65 74 2e 20 20 54 68 75 73 2c | o.the.C-series.basis.set...Thus, |
| 7fe0 | 20 74 79 70 69 63 61 6c 6c 79 2c 0a 20 20 20 20 74 68 65 20 72 65 73 75 6c 74 20 6f 66 20 74 68 | .typically,.....the.result.of.th |
| 8000 | 69 73 20 66 75 6e 63 74 69 6f 6e 20 69 73 20 22 75 6e 69 6e 74 75 69 74 69 76 65 2c 22 20 61 6c | is.function.is."unintuitive,".al |
| 8020 | 62 65 69 74 20 63 6f 72 72 65 63 74 3b 20 73 65 65 0a 20 20 20 20 45 78 61 6d 70 6c 65 73 20 73 | beit.correct;.see.....Examples.s |
| 8040 | 65 63 74 69 6f 6e 20 62 65 6c 6f 77 2e 0a 0a 20 20 20 20 45 78 61 6d 70 6c 65 73 0a 20 20 20 20 | ection.below.......Examples..... |
| 8060 | 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 3e 3e 3e 20 66 72 6f 6d 20 6e 75 6d 70 79 2e 70 6f 6c 79 | --------.....>>>.from.numpy.poly |
| 8080 | 6e 6f 6d 69 61 6c 20 69 6d 70 6f 72 74 20 63 68 65 62 79 73 68 65 76 20 61 73 20 43 0a 20 20 20 | nomial.import.chebyshev.as.C.... |
| 80a0 | 20 3e 3e 3e 20 63 20 3d 20 28 31 2c 32 2c 33 29 0a 20 20 20 20 3e 3e 3e 20 43 2e 63 68 65 62 69 | .>>>.c.=.(1,2,3).....>>>.C.chebi |
| 80c0 | 6e 74 28 63 29 0a 20 20 20 20 61 72 72 61 79 28 5b 20 30 2e 35 2c 20 2d 30 2e 35 2c 20 20 30 2e | nt(c).....array([.0.5,.-0.5,..0. |
| 80e0 | 35 2c 20 20 30 2e 35 5d 29 0a 20 20 20 20 3e 3e 3e 20 43 2e 63 68 65 62 69 6e 74 28 63 2c 33 29 | 5,..0.5]).....>>>.C.chebint(c,3) |
| 8100 | 0a 20 20 20 20 61 72 72 61 79 28 5b 20 30 2e 30 33 31 32 35 20 20 20 2c 20 2d 30 2e 31 38 37 35 | .....array([.0.03125...,.-0.1875 |
| 8120 | 20 20 20 20 2c 20 20 30 2e 30 34 31 36 36 36 36 37 2c 20 2d 30 2e 30 35 32 30 38 33 33 33 2c 20 | ....,..0.04166667,.-0.05208333,. |
| 8140 | 20 30 2e 30 31 30 34 31 36 36 37 2c 20 23 20 6d 61 79 20 76 61 72 79 0a 20 20 20 20 20 20 20 20 | .0.01041667,.#.may.vary......... |
| 8160 | 30 2e 30 30 36 32 35 20 20 20 5d 29 0a 20 20 20 20 3e 3e 3e 20 43 2e 63 68 65 62 69 6e 74 28 63 | 0.00625...]).....>>>.C.chebint(c |
| 8180 | 2c 20 6b 3d 33 29 0a 20 20 20 20 61 72 72 61 79 28 5b 20 33 2e 35 2c 20 2d 30 2e 35 2c 20 20 30 | ,.k=3).....array([.3.5,.-0.5,..0 |
| 81a0 | 2e 35 2c 20 20 30 2e 35 5d 29 0a 20 20 20 20 3e 3e 3e 20 43 2e 63 68 65 62 69 6e 74 28 63 2c 6c | .5,..0.5]).....>>>.C.chebint(c,l |
| 81c0 | 62 6e 64 3d 2d 32 29 0a 20 20 20 20 61 72 72 61 79 28 5b 20 38 2e 35 2c 20 2d 30 2e 35 2c 20 20 | bnd=-2).....array([.8.5,.-0.5,.. |
| 81e0 | 30 2e 35 2c 20 20 30 2e 35 5d 29 0a 20 20 20 20 3e 3e 3e 20 43 2e 63 68 65 62 69 6e 74 28 63 2c | 0.5,..0.5]).....>>>.C.chebint(c, |
| 8200 | 73 63 6c 3d 2d 32 29 0a 20 20 20 20 61 72 72 61 79 28 5b 2d 31 2e 2c 20 20 31 2e 2c 20 2d 31 2e | scl=-2).....array([-1.,..1.,.-1. |
| 8220 | 2c 20 2d 31 2e 5d 29 0a 0a 20 20 20 20 72 04 00 00 00 54 72 81 00 00 00 72 83 00 00 00 7a 18 74 | ,.-1.])......r....Tr....r....z.t |
| 8240 | 68 65 20 6f 72 64 65 72 20 6f 66 20 69 6e 74 65 67 72 61 74 69 6f 6e 72 84 00 00 00 72 02 00 00 | he.order.of.integrationr....r... |
| 8260 | 00 7a 2d 54 68 65 20 6f 72 64 65 72 20 6f 66 20 69 6e 74 65 67 72 61 74 69 6f 6e 20 6d 75 73 74 | .z-The.order.of.integration.must |
| 8280 | 20 62 65 20 6e 6f 6e 2d 6e 65 67 61 74 69 76 65 7a 1e 54 6f 6f 20 6d 61 6e 79 20 69 6e 74 65 67 | .be.non-negativez.Too.many.integ |
| 82a0 | 72 61 74 69 6f 6e 20 63 6f 6e 73 74 61 6e 74 73 7a 16 6c 62 6e 64 20 6d 75 73 74 20 62 65 20 61 | ration.constantsz.lbnd.must.be.a |
| 82c0 | 20 73 63 61 6c 61 72 2e 7a 15 73 63 6c 20 6d 75 73 74 20 62 65 20 61 20 73 63 61 6c 61 72 2e 4e | .scalar.z.scl.must.be.a.scalar.N |
| 82e0 | 72 2b 00 00 00 72 85 00 00 00 72 2a 00 00 00 29 14 72 2f 00 00 00 72 4f 00 00 00 72 2c 00 00 00 | r+...r....r*...).r/...rO...r,... |
| 8300 | 72 86 00 00 00 72 87 00 00 00 72 88 00 00 00 da 08 69 74 65 72 61 62 6c 65 72 58 00 00 00 72 89 | r....r....r......iterablerX...r. |
| 8320 | 00 00 00 72 7c 00 00 00 72 40 00 00 00 72 8a 00 00 00 72 03 00 00 00 72 8b 00 00 00 da 04 6c 69 | ...r|...r@...r....r....r......li |
| 8340 | 73 74 72 5a 00 00 00 da 03 61 6c 6c 72 41 00 00 00 72 8c 00 00 00 72 12 00 00 00 29 0c 72 31 00 | strZ.....allrA...r....r....).r1. |
| 8360 | 00 00 72 8d 00 00 00 da 01 6b da 04 6c 62 6e 64 72 45 00 00 00 72 8e 00 00 00 72 8f 00 00 00 72 | ..r......k..lbndrE...r....r....r |
| 8380 | 90 00 00 00 72 47 00 00 00 72 32 00 00 00 72 4a 00 00 00 72 48 00 00 00 73 0c 00 00 00 20 20 20 | ....rG...r2...rJ...rH...s....... |
| 83a0 | 20 20 20 20 20 20 20 20 20 72 34 00 00 00 72 14 00 00 00 72 14 00 00 00 c4 03 00 00 73 5c 02 00 | .........r4...r....r........s\.. |
| 83c0 | 00 80 00 f4 66 02 00 09 0b 8f 08 89 08 90 11 98 21 a0 24 d4 08 27 80 41 d8 07 08 87 77 81 77 87 | ....f...........!.$..'.A....w.w. |
| 83e0 | 7c 81 7c 90 7f d1 07 26 d8 0c 0d 8f 48 89 48 94 52 97 59 91 59 d3 0c 1f 88 01 dc 0b 0d 8f 3b 89 | |.|....&....H.H.R.Y.Y.........;. |
| 8400 | 3b 90 71 8c 3e d8 0d 0e 88 43 88 01 dc 0a 0c 8f 2a 89 2a 90 51 d0 18 32 d3 0a 33 80 43 dc 0c 0e | ;.q.>....C......*.*.Q..2..3.C... |
| 8420 | 8f 4a 89 4a 90 74 98 5a d3 0c 28 80 45 d8 07 0a 88 51 82 77 dc 0e 18 d0 19 48 d3 0e 49 d0 08 49 | .J.J.t.Z..(.E....Q.w.....H..I..I |
| 8440 | dc 07 0a 88 31 83 76 90 03 82 7c dc 0e 18 d0 19 39 d3 0e 3a d0 08 3a dc 07 09 87 77 81 77 88 74 | ....1.v...|.....9..:..:....w.w.t |
| 8460 | 83 7d 98 01 d2 07 19 dc 0e 18 d0 19 31 d3 0e 32 d0 08 32 dc 07 09 87 77 81 77 88 73 83 7c 90 71 | .}..........1..2..2....w.w.s.|.q |
| 8480 | d2 07 18 dc 0e 18 d0 19 30 d3 0e 31 d0 08 31 dc 0c 20 a0 15 a8 01 af 06 a9 06 d3 0c 2f 80 45 e0 | ........0..1..1............./.E. |
| 84a0 | 07 0a 88 61 82 78 d8 0f 10 88 08 e4 08 0a 8f 0b 89 0b 90 41 90 75 98 61 d3 08 20 80 41 dc 08 0c | ...a.x.............A.u.a....A... |
| 84c0 | 88 51 8b 07 90 31 90 23 98 13 9c 73 a0 31 9b 76 99 1c d1 12 26 d1 08 26 80 41 dc 0d 12 90 33 8b | .Q...1.#...s.1.v....&..&.A....3. |
| 84e0 | 5a f2 00 0f 05 14 88 01 dc 0c 0f 90 01 8b 46 88 01 d8 08 09 88 53 89 08 88 01 d8 0b 0c 90 01 8a | Z.............F......S.......... |
| 8500 | 36 94 62 97 66 91 66 98 51 98 71 99 54 a0 51 99 59 d4 16 27 d8 0c 0d 88 61 8b 44 90 41 90 61 91 | 6.b.f.f.Q.q.T.Q.Y..'....a.D.A.a. |
| 8520 | 44 89 4c 8c 44 e4 12 14 97 28 91 28 98 41 a0 01 99 45 98 38 a0 61 a7 67 a1 67 a8 61 a8 62 a0 6b | D.L.D....(.(.A...E.8.a.g.g.a.b.k |
| 8540 | d1 1b 31 b8 11 bf 17 b9 17 d4 12 41 88 43 d8 15 16 90 71 91 54 98 41 91 58 88 43 90 01 89 46 d8 | ..1........A.C....q.T.A.X.C...F. |
| 8560 | 15 16 90 71 91 54 88 43 90 01 89 46 d8 0f 10 90 31 8a 75 d8 19 1a 98 31 99 14 a0 01 99 18 90 03 | ...q.T.C...F....1.u....1........ |
| 8580 | 90 41 91 06 dc 15 1a 98 31 98 61 93 5b f2 00 02 0d 33 90 01 d8 1d 1e 98 71 99 54 a0 51 a8 21 a8 | .A......1.a.[....3......q.T.Q.!. |
| 85a0 | 61 a9 25 a1 5b d1 1d 31 90 03 90 41 98 01 91 45 91 0a d8 10 13 90 41 98 01 91 45 93 0a 98 61 a0 | a.%.[..1...A...E......A...E...a. |
| 85c0 | 01 99 64 a0 61 a8 31 a8 71 a9 35 a1 6b d1 1e 32 d1 10 32 94 0a f0 05 02 0d 33 f0 06 00 0d 10 90 | ..d.a.1.q.5.k..2..2......3...... |
| 85e0 | 01 8b 46 90 61 98 01 91 64 9c 57 a0 54 a8 33 d3 1d 2f d1 16 2f d1 0c 2f 8b 46 d8 10 13 89 41 f0 | ..F.a...d.W.T.3../../../.F....A. |
| 8600 | 1f 0f 05 14 f4 20 00 09 0b 8f 0b 89 0b 90 41 90 71 98 25 d3 08 20 80 41 d8 0b 0c 80 48 72 36 00 | ..............A.q.%....A....Hr6. |
| 8620 | 00 00 63 03 00 00 00 00 00 00 00 00 00 00 00 06 00 00 00 03 00 00 00 f3 70 02 00 00 97 00 74 01 | ..c.....................p.....t. |
| 8640 | 00 00 00 00 00 00 00 00 6a 02 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 7c 01 64 01 | ........j...................|.d. |
| 8660 | 64 02 ac 03 ab 03 00 00 00 00 00 00 7d 01 7c 01 6a 04 00 00 00 00 00 00 00 00 00 00 00 00 00 00 | d...........}.|.j............... |
| 8680 | 00 00 00 00 6a 06 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 64 04 76 00 72 1f 7c 01 | ....j...................d.v.r.|. |
| 86a0 | 6a 09 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 74 00 00 00 00 00 00 00 00 00 6a 0a | j...................t.........j. |
| 86c0 | 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ab 01 00 00 00 00 00 00 7d 01 74 0d 00 00 | ..........................}.t... |
| 86e0 | 00 00 00 00 00 00 7c 00 74 0e 00 00 00 00 00 00 00 00 74 10 00 00 00 00 00 00 00 00 66 02 ab 02 | ......|.t.........t.........f... |
| 8700 | 00 00 00 00 00 00 72 15 74 01 00 00 00 00 00 00 00 00 6a 12 00 00 00 00 00 00 00 00 00 00 00 00 | ......r.t.........j............. |
| 8720 | 00 00 00 00 00 00 7c 00 ab 01 00 00 00 00 00 00 7d 00 74 0d 00 00 00 00 00 00 00 00 7c 00 74 00 | ......|.........}.t.........|.t. |
| 8740 | 00 00 00 00 00 00 00 00 6a 14 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ab 02 00 00 | ........j....................... |
| 8760 | 00 00 00 00 72 2d 7c 02 72 2b 7c 01 6a 17 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 | ....r-|.r+|.j................... |
| 8780 | 7c 01 6a 18 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 64 05 7c 00 6a 1a 00 00 00 00 | |.j...................d.|.j..... |
| 87a0 | 00 00 00 00 00 00 00 00 00 00 00 00 00 00 7a 05 00 00 7a 00 00 00 ab 01 00 00 00 00 00 00 7d 01 | ..............z...z...........}. |
| 87c0 | 74 1d 00 00 00 00 00 00 00 00 7c 01 ab 01 00 00 00 00 00 00 64 01 6b 28 00 00 72 08 7c 01 64 06 | t.........|.........d.k(..r.|.d. |
| 87e0 | 19 00 00 00 7d 03 64 06 7d 04 6e 58 74 1d 00 00 00 00 00 00 00 00 7c 01 ab 01 00 00 00 00 00 00 | ....}.d.}.nXt.........|......... |
| 8800 | 64 07 6b 28 00 00 72 0b 7c 01 64 06 19 00 00 00 7d 03 7c 01 64 01 19 00 00 00 7d 04 6e 3f 64 07 | d.k(..r.|.d.....}.|.d.....}.n?d. |
| 8820 | 7c 00 7a 05 00 00 7d 05 7c 01 64 08 19 00 00 00 7d 03 7c 01 64 09 19 00 00 00 7d 04 74 1f 00 00 | |.z...}.|.d.....}.|.d.....}.t... |
| 8840 | 00 00 00 00 00 00 64 0a 74 1d 00 00 00 00 00 00 00 00 7c 01 ab 01 00 00 00 00 00 00 64 01 7a 00 | ......d.t.........|.........d.z. |
| 8860 | 00 00 ab 02 00 00 00 00 00 00 44 00 5d 15 00 00 7d 06 7c 03 7d 07 7c 01 7c 06 0b 00 19 00 00 00 | ..........D.]...}.|.}.|.|....... |
| 8880 | 7c 04 7a 0a 00 00 7d 03 7c 07 7c 04 7c 05 7a 05 00 00 7a 00 00 00 7d 04 8c 17 04 00 7c 03 7c 04 | |.z...}.|.|.|.z...z...}.....|.|. |
| 88a0 | 7c 00 7a 05 00 00 7a 00 00 00 53 00 29 0b 61 2d 09 00 00 0a 20 20 20 20 45 76 61 6c 75 61 74 65 | |.z...z...S.).a-........Evaluate |
| 88c0 | 20 61 20 43 68 65 62 79 73 68 65 76 20 73 65 72 69 65 73 20 61 74 20 70 6f 69 6e 74 73 20 78 2e | .a.Chebyshev.series.at.points.x. |
| 88e0 | 0a 0a 20 20 20 20 49 66 20 60 63 60 20 69 73 20 6f 66 20 6c 65 6e 67 74 68 20 60 6e 20 2b 20 31 | ......If.`c`.is.of.length.`n.+.1 |
| 8900 | 60 2c 20 74 68 69 73 20 66 75 6e 63 74 69 6f 6e 20 72 65 74 75 72 6e 73 20 74 68 65 20 76 61 6c | `,.this.function.returns.the.val |
| 8920 | 75 65 3a 0a 0a 20 20 20 20 2e 2e 20 6d 61 74 68 3a 3a 20 70 28 78 29 20 3d 20 63 5f 30 20 2a 20 | ue:.........math::.p(x).=.c_0.*. |
| 8940 | 54 5f 30 28 78 29 20 2b 20 63 5f 31 20 2a 20 54 5f 31 28 78 29 20 2b 20 2e 2e 2e 20 2b 20 63 5f | T_0(x).+.c_1.*.T_1(x).+.....+.c_ |
| 8960 | 6e 20 2a 20 54 5f 6e 28 78 29 0a 0a 20 20 20 20 54 68 65 20 70 61 72 61 6d 65 74 65 72 20 60 78 | n.*.T_n(x)......The.parameter.`x |
| 8980 | 60 20 69 73 20 63 6f 6e 76 65 72 74 65 64 20 74 6f 20 61 6e 20 61 72 72 61 79 20 6f 6e 6c 79 20 | `.is.converted.to.an.array.only. |
| 89a0 | 69 66 20 69 74 20 69 73 20 61 20 74 75 70 6c 65 20 6f 72 20 61 0a 20 20 20 20 6c 69 73 74 2c 20 | if.it.is.a.tuple.or.a.....list,. |
| 89c0 | 6f 74 68 65 72 77 69 73 65 20 69 74 20 69 73 20 74 72 65 61 74 65 64 20 61 73 20 61 20 73 63 61 | otherwise.it.is.treated.as.a.sca |
| 89e0 | 6c 61 72 2e 20 49 6e 20 65 69 74 68 65 72 20 63 61 73 65 2c 20 65 69 74 68 65 72 20 60 78 60 0a | lar..In.either.case,.either.`x`. |
| 8a00 | 20 20 20 20 6f 72 20 69 74 73 20 65 6c 65 6d 65 6e 74 73 20 6d 75 73 74 20 73 75 70 70 6f 72 74 | ....or.its.elements.must.support |
| 8a20 | 20 6d 75 6c 74 69 70 6c 69 63 61 74 69 6f 6e 20 61 6e 64 20 61 64 64 69 74 69 6f 6e 20 62 6f 74 | .multiplication.and.addition.bot |
| 8a40 | 68 20 77 69 74 68 0a 20 20 20 20 74 68 65 6d 73 65 6c 76 65 73 20 61 6e 64 20 77 69 74 68 20 74 | h.with.....themselves.and.with.t |
| 8a60 | 68 65 20 65 6c 65 6d 65 6e 74 73 20 6f 66 20 60 63 60 2e 0a 0a 20 20 20 20 49 66 20 60 63 60 20 | he.elements.of.`c`.......If.`c`. |
| 8a80 | 69 73 20 61 20 31 2d 44 20 61 72 72 61 79 2c 20 74 68 65 6e 20 60 60 70 28 78 29 60 60 20 77 69 | is.a.1-D.array,.then.``p(x)``.wi |
| 8aa0 | 6c 6c 20 68 61 76 65 20 74 68 65 20 73 61 6d 65 20 73 68 61 70 65 20 61 73 20 60 78 60 2e 20 20 | ll.have.the.same.shape.as.`x`... |
| 8ac0 | 49 66 0a 20 20 20 20 60 63 60 20 69 73 20 6d 75 6c 74 69 64 69 6d 65 6e 73 69 6f 6e 61 6c 2c 20 | If.....`c`.is.multidimensional,. |
| 8ae0 | 74 68 65 6e 20 74 68 65 20 73 68 61 70 65 20 6f 66 20 74 68 65 20 72 65 73 75 6c 74 20 64 65 70 | then.the.shape.of.the.result.dep |
| 8b00 | 65 6e 64 73 20 6f 6e 20 74 68 65 0a 20 20 20 20 76 61 6c 75 65 20 6f 66 20 60 74 65 6e 73 6f 72 | ends.on.the.....value.of.`tensor |
| 8b20 | 60 2e 20 49 66 20 60 74 65 6e 73 6f 72 60 20 69 73 20 74 72 75 65 20 74 68 65 20 73 68 61 70 65 | `..If.`tensor`.is.true.the.shape |
| 8b40 | 20 77 69 6c 6c 20 62 65 20 63 2e 73 68 61 70 65 5b 31 3a 5d 20 2b 0a 20 20 20 20 78 2e 73 68 61 | .will.be.c.shape[1:].+.....x.sha |
| 8b60 | 70 65 2e 20 49 66 20 60 74 65 6e 73 6f 72 60 20 69 73 20 66 61 6c 73 65 20 74 68 65 20 73 68 61 | pe..If.`tensor`.is.false.the.sha |
| 8b80 | 70 65 20 77 69 6c 6c 20 62 65 20 63 2e 73 68 61 70 65 5b 31 3a 5d 2e 20 4e 6f 74 65 20 74 68 61 | pe.will.be.c.shape[1:]..Note.tha |
| 8ba0 | 74 0a 20 20 20 20 73 63 61 6c 61 72 73 20 68 61 76 65 20 73 68 61 70 65 20 28 2c 29 2e 0a 0a 20 | t.....scalars.have.shape.(,).... |
| 8bc0 | 20 20 20 54 72 61 69 6c 69 6e 67 20 7a 65 72 6f 73 20 69 6e 20 74 68 65 20 63 6f 65 66 66 69 63 | ...Trailing.zeros.in.the.coeffic |
| 8be0 | 69 65 6e 74 73 20 77 69 6c 6c 20 62 65 20 75 73 65 64 20 69 6e 20 74 68 65 20 65 76 61 6c 75 61 | ients.will.be.used.in.the.evalua |
| 8c00 | 74 69 6f 6e 2c 20 73 6f 0a 20 20 20 20 74 68 65 79 20 73 68 6f 75 6c 64 20 62 65 20 61 76 6f 69 | tion,.so.....they.should.be.avoi |
| 8c20 | 64 65 64 20 69 66 20 65 66 66 69 63 69 65 6e 63 79 20 69 73 20 61 20 63 6f 6e 63 65 72 6e 2e 0a | ded.if.efficiency.is.a.concern.. |
| 8c40 | 0a 20 20 20 20 50 61 72 61 6d 65 74 65 72 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 | .....Parameters.....----------.. |
| 8c60 | 20 20 20 78 20 3a 20 61 72 72 61 79 5f 6c 69 6b 65 2c 20 63 6f 6d 70 61 74 69 62 6c 65 20 6f 62 | ...x.:.array_like,.compatible.ob |
| 8c80 | 6a 65 63 74 0a 20 20 20 20 20 20 20 20 49 66 20 60 78 60 20 69 73 20 61 20 6c 69 73 74 20 6f 72 | ject.........If.`x`.is.a.list.or |
| 8ca0 | 20 74 75 70 6c 65 2c 20 69 74 20 69 73 20 63 6f 6e 76 65 72 74 65 64 20 74 6f 20 61 6e 20 6e 64 | .tuple,.it.is.converted.to.an.nd |
| 8cc0 | 61 72 72 61 79 2c 20 6f 74 68 65 72 77 69 73 65 0a 20 20 20 20 20 20 20 20 69 74 20 69 73 20 6c | array,.otherwise.........it.is.l |
| 8ce0 | 65 66 74 20 75 6e 63 68 61 6e 67 65 64 20 61 6e 64 20 74 72 65 61 74 65 64 20 61 73 20 61 20 73 | eft.unchanged.and.treated.as.a.s |
| 8d00 | 63 61 6c 61 72 2e 20 49 6e 20 65 69 74 68 65 72 20 63 61 73 65 2c 20 60 78 60 0a 20 20 20 20 20 | calar..In.either.case,.`x`...... |
| 8d20 | 20 20 20 6f 72 20 69 74 73 20 65 6c 65 6d 65 6e 74 73 20 6d 75 73 74 20 73 75 70 70 6f 72 74 20 | ...or.its.elements.must.support. |
| 8d40 | 61 64 64 69 74 69 6f 6e 20 61 6e 64 20 6d 75 6c 74 69 70 6c 69 63 61 74 69 6f 6e 20 77 69 74 68 | addition.and.multiplication.with |
| 8d60 | 0a 20 20 20 20 20 20 20 20 74 68 65 6d 73 65 6c 76 65 73 20 61 6e 64 20 77 69 74 68 20 74 68 65 | .........themselves.and.with.the |
| 8d80 | 20 65 6c 65 6d 65 6e 74 73 20 6f 66 20 60 63 60 2e 0a 20 20 20 20 63 20 3a 20 61 72 72 61 79 5f | .elements.of.`c`......c.:.array_ |
| 8da0 | 6c 69 6b 65 0a 20 20 20 20 20 20 20 20 41 72 72 61 79 20 6f 66 20 63 6f 65 66 66 69 63 69 65 6e | like.........Array.of.coefficien |
| 8dc0 | 74 73 20 6f 72 64 65 72 65 64 20 73 6f 20 74 68 61 74 20 74 68 65 20 63 6f 65 66 66 69 63 69 65 | ts.ordered.so.that.the.coefficie |
| 8de0 | 6e 74 73 20 66 6f 72 20 74 65 72 6d 73 20 6f 66 0a 20 20 20 20 20 20 20 20 64 65 67 72 65 65 20 | nts.for.terms.of.........degree. |
| 8e00 | 6e 20 61 72 65 20 63 6f 6e 74 61 69 6e 65 64 20 69 6e 20 63 5b 6e 5d 2e 20 49 66 20 60 63 60 20 | n.are.contained.in.c[n]..If.`c`. |
| 8e20 | 69 73 20 6d 75 6c 74 69 64 69 6d 65 6e 73 69 6f 6e 61 6c 20 74 68 65 0a 20 20 20 20 20 20 20 20 | is.multidimensional.the......... |
| 8e40 | 72 65 6d 61 69 6e 69 6e 67 20 69 6e 64 69 63 65 73 20 65 6e 75 6d 65 72 61 74 65 20 6d 75 6c 74 | remaining.indices.enumerate.mult |
| 8e60 | 69 70 6c 65 20 70 6f 6c 79 6e 6f 6d 69 61 6c 73 2e 20 49 6e 20 74 68 65 20 74 77 6f 0a 20 20 20 | iple.polynomials..In.the.two.... |
| 8e80 | 20 20 20 20 20 64 69 6d 65 6e 73 69 6f 6e 61 6c 20 63 61 73 65 20 74 68 65 20 63 6f 65 66 66 69 | .....dimensional.case.the.coeffi |
| 8ea0 | 63 69 65 6e 74 73 20 6d 61 79 20 62 65 20 74 68 6f 75 67 68 74 20 6f 66 20 61 73 20 73 74 6f 72 | cients.may.be.thought.of.as.stor |
| 8ec0 | 65 64 20 69 6e 0a 20 20 20 20 20 20 20 20 74 68 65 20 63 6f 6c 75 6d 6e 73 20 6f 66 20 60 63 60 | ed.in.........the.columns.of.`c` |
| 8ee0 | 2e 0a 20 20 20 20 74 65 6e 73 6f 72 20 3a 20 62 6f 6f 6c 65 61 6e 2c 20 6f 70 74 69 6f 6e 61 6c | ......tensor.:.boolean,.optional |
| 8f00 | 0a 20 20 20 20 20 20 20 20 49 66 20 54 72 75 65 2c 20 74 68 65 20 73 68 61 70 65 20 6f 66 20 74 | .........If.True,.the.shape.of.t |
| 8f20 | 68 65 20 63 6f 65 66 66 69 63 69 65 6e 74 20 61 72 72 61 79 20 69 73 20 65 78 74 65 6e 64 65 64 | he.coefficient.array.is.extended |
| 8f40 | 20 77 69 74 68 20 6f 6e 65 73 0a 20 20 20 20 20 20 20 20 6f 6e 20 74 68 65 20 72 69 67 68 74 2c | .with.ones.........on.the.right, |
| 8f60 | 20 6f 6e 65 20 66 6f 72 20 65 61 63 68 20 64 69 6d 65 6e 73 69 6f 6e 20 6f 66 20 60 78 60 2e 20 | .one.for.each.dimension.of.`x`.. |
| 8f80 | 53 63 61 6c 61 72 73 20 68 61 76 65 20 64 69 6d 65 6e 73 69 6f 6e 20 30 0a 20 20 20 20 20 20 20 | Scalars.have.dimension.0........ |
| 8fa0 | 20 66 6f 72 20 74 68 69 73 20 61 63 74 69 6f 6e 2e 20 54 68 65 20 72 65 73 75 6c 74 20 69 73 20 | .for.this.action..The.result.is. |
| 8fc0 | 74 68 61 74 20 65 76 65 72 79 20 63 6f 6c 75 6d 6e 20 6f 66 20 63 6f 65 66 66 69 63 69 65 6e 74 | that.every.column.of.coefficient |
| 8fe0 | 73 20 69 6e 0a 20 20 20 20 20 20 20 20 60 63 60 20 69 73 20 65 76 61 6c 75 61 74 65 64 20 66 6f | s.in.........`c`.is.evaluated.fo |
| 9000 | 72 20 65 76 65 72 79 20 65 6c 65 6d 65 6e 74 20 6f 66 20 60 78 60 2e 20 49 66 20 46 61 6c 73 65 | r.every.element.of.`x`..If.False |
| 9020 | 2c 20 60 78 60 20 69 73 20 62 72 6f 61 64 63 61 73 74 0a 20 20 20 20 20 20 20 20 6f 76 65 72 20 | ,.`x`.is.broadcast.........over. |
| 9040 | 74 68 65 20 63 6f 6c 75 6d 6e 73 20 6f 66 20 60 63 60 20 66 6f 72 20 74 68 65 20 65 76 61 6c 75 | the.columns.of.`c`.for.the.evalu |
| 9060 | 61 74 69 6f 6e 2e 20 20 54 68 69 73 20 6b 65 79 77 6f 72 64 20 69 73 20 75 73 65 66 75 6c 0a 20 | ation...This.keyword.is.useful.. |
| 9080 | 20 20 20 20 20 20 20 77 68 65 6e 20 60 63 60 20 69 73 20 6d 75 6c 74 69 64 69 6d 65 6e 73 69 6f | .......when.`c`.is.multidimensio |
| 90a0 | 6e 61 6c 2e 20 54 68 65 20 64 65 66 61 75 6c 74 20 76 61 6c 75 65 20 69 73 20 54 72 75 65 2e 0a | nal..The.default.value.is.True.. |
| 90c0 | 0a 20 20 20 20 52 65 74 75 72 6e 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 76 61 6c | .....Returns.....-------.....val |
| 90e0 | 75 65 73 20 3a 20 6e 64 61 72 72 61 79 2c 20 61 6c 67 65 62 72 61 5f 6c 69 6b 65 0a 20 20 20 20 | ues.:.ndarray,.algebra_like..... |
| 9100 | 20 20 20 20 54 68 65 20 73 68 61 70 65 20 6f 66 20 74 68 65 20 72 65 74 75 72 6e 20 76 61 6c 75 | ....The.shape.of.the.return.valu |
| 9120 | 65 20 69 73 20 64 65 73 63 72 69 62 65 64 20 61 62 6f 76 65 2e 0a 0a 20 20 20 20 53 65 65 20 41 | e.is.described.above.......See.A |
| 9140 | 6c 73 6f 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 63 68 65 62 76 61 6c 32 64 2c 20 | lso.....--------.....chebval2d,. |
| 9160 | 63 68 65 62 67 72 69 64 32 64 2c 20 63 68 65 62 76 61 6c 33 64 2c 20 63 68 65 62 67 72 69 64 33 | chebgrid2d,.chebval3d,.chebgrid3 |
| 9180 | 64 0a 0a 20 20 20 20 4e 6f 74 65 73 0a 20 20 20 20 2d 2d 2d 2d 2d 0a 20 20 20 20 54 68 65 20 65 | d......Notes.....-----.....The.e |
| 91a0 | 76 61 6c 75 61 74 69 6f 6e 20 75 73 65 73 20 43 6c 65 6e 73 68 61 77 20 72 65 63 75 72 73 69 6f | valuation.uses.Clenshaw.recursio |
| 91c0 | 6e 2c 20 61 6b 61 20 73 79 6e 74 68 65 74 69 63 20 64 69 76 69 73 69 6f 6e 2e 0a 0a 20 20 20 20 | n,.aka.synthetic.division....... |
| 91e0 | 72 04 00 00 00 54 72 81 00 00 00 72 83 00 00 00 29 01 72 04 00 00 00 72 02 00 00 00 72 2a 00 00 | r....Tr....r....).r....r....r*.. |
| 9200 | 00 72 63 00 00 00 72 2d 00 00 00 72 62 00 00 00 29 10 72 2f 00 00 00 72 4f 00 00 00 72 2c 00 00 | .rc...r-...rb...).r/...rO...r,.. |
| 9220 | 00 72 86 00 00 00 72 87 00 00 00 72 88 00 00 00 da 0a 69 73 69 6e 73 74 61 6e 63 65 da 05 74 75 | .r....r....r......isinstance..tu |
| 9240 | 70 6c 65 72 94 00 00 00 da 07 61 73 61 72 72 61 79 da 07 6e 64 61 72 72 61 79 da 07 72 65 73 68 | pler......asarray..ndarray..resh |
| 9260 | 61 70 65 72 8c 00 00 00 72 8a 00 00 00 72 40 00 00 00 72 5a 00 00 00 29 08 da 01 78 72 31 00 00 | aper....r....r@...rZ...)...xr1.. |
| 9280 | 00 da 06 74 65 6e 73 6f 72 72 65 00 00 00 72 66 00 00 00 da 02 78 32 72 47 00 00 00 72 4a 00 00 | ...tensorre...rf.....x2rG...rJ.. |
| 92a0 | 00 73 08 00 00 00 20 20 20 20 20 20 20 20 72 34 00 00 00 72 12 00 00 00 72 12 00 00 00 41 04 00 | .s............r4...r....r....A.. |
| 92c0 | 00 73 23 01 00 00 80 00 f4 72 01 00 09 0b 8f 08 89 08 90 11 98 21 a0 24 d4 08 27 80 41 d8 07 08 | .s#......r...........!.$..'.A... |
| 92e0 | 87 77 81 77 87 7c 81 7c 90 7f d1 07 26 d8 0c 0d 8f 48 89 48 94 52 97 59 91 59 d3 0c 1f 88 01 dc | .w.w.|.|....&....H.H.R.Y.Y...... |
| 9300 | 07 11 90 21 94 65 9c 54 90 5d d4 07 23 dc 0c 0e 8f 4a 89 4a 90 71 8b 4d 88 01 dc 07 11 90 21 94 | ...!.e.T.]..#....J.J.q.M......!. |
| 9320 | 52 97 5a 91 5a d4 07 20 a1 56 d8 0c 0d 8f 49 89 49 90 61 97 67 91 67 a0 04 a0 71 a7 76 a1 76 a1 | R.Z.Z....V....I.I.a.g.g...q.v.v. |
| 9340 | 0d d1 16 2d d3 0c 2e 88 01 e4 07 0a 88 31 83 76 90 11 82 7b d8 0d 0e 88 71 89 54 88 02 d8 0d 0e | ...-.........1.v...{....q.T..... |
| 9360 | 89 02 dc 09 0c 88 51 8b 16 90 31 8a 1b d8 0d 0e 88 71 89 54 88 02 d8 0d 0e 88 71 89 54 89 02 e0 | ......Q...1......q.T......q.T... |
| 9380 | 0d 0e 90 11 89 55 88 02 d8 0d 0e 88 72 89 55 88 02 d8 0d 0e 88 72 89 55 88 02 dc 11 16 90 71 9c | .....U......r.U......r.U......q. |
| 93a0 | 23 98 61 9b 26 a0 31 99 2a d3 11 25 f2 00 03 09 1f 88 41 d8 12 14 88 43 d8 11 12 90 41 90 32 91 | #.a.&.1.*..%......A....C....A.2. |
| 93c0 | 15 98 12 91 1a 88 42 d8 11 14 90 72 98 42 91 77 91 1d 89 42 f0 07 03 09 1f f0 08 00 0c 0e 90 02 | ......B....r.B.w...B............ |
| 93e0 | 90 51 91 06 89 3b d0 04 16 72 36 00 00 00 63 03 00 00 00 00 00 00 00 00 00 00 00 06 00 00 00 03 | .Q...;...r6...c................. |
| 9400 | 00 00 00 f3 3a 00 00 00 97 00 74 01 00 00 00 00 00 00 00 00 6a 02 00 00 00 00 00 00 00 00 00 00 | ....:.....t.........j........... |
| 9420 | 00 00 00 00 00 00 00 00 74 04 00 00 00 00 00 00 00 00 7c 02 7c 00 7c 01 ab 04 00 00 00 00 00 00 | ........t.........|.|.|......... |
| 9440 | 53 00 29 01 61 17 06 00 00 0a 20 20 20 20 45 76 61 6c 75 61 74 65 20 61 20 32 2d 44 20 43 68 65 | S.).a.........Evaluate.a.2-D.Che |
| 9460 | 62 79 73 68 65 76 20 73 65 72 69 65 73 20 61 74 20 70 6f 69 6e 74 73 20 28 78 2c 20 79 29 2e 0a | byshev.series.at.points.(x,.y).. |
| 9480 | 0a 20 20 20 20 54 68 69 73 20 66 75 6e 63 74 69 6f 6e 20 72 65 74 75 72 6e 73 20 74 68 65 20 76 | .....This.function.returns.the.v |
| 94a0 | 61 6c 75 65 73 3a 0a 0a 20 20 20 20 2e 2e 20 6d 61 74 68 3a 3a 20 70 28 78 2c 79 29 20 3d 20 5c | alues:.........math::.p(x,y).=.\ |
| 94c0 | 73 75 6d 5f 7b 69 2c 6a 7d 20 63 5f 7b 69 2c 6a 7d 20 2a 20 54 5f 69 28 78 29 20 2a 20 54 5f 6a | sum_{i,j}.c_{i,j}.*.T_i(x).*.T_j |
| 94e0 | 28 79 29 0a 0a 20 20 20 20 54 68 65 20 70 61 72 61 6d 65 74 65 72 73 20 60 78 60 20 61 6e 64 20 | (y)......The.parameters.`x`.and. |
| 9500 | 60 79 60 20 61 72 65 20 63 6f 6e 76 65 72 74 65 64 20 74 6f 20 61 72 72 61 79 73 20 6f 6e 6c 79 | `y`.are.converted.to.arrays.only |
| 9520 | 20 69 66 20 74 68 65 79 20 61 72 65 0a 20 20 20 20 74 75 70 6c 65 73 20 6f 72 20 61 20 6c 69 73 | .if.they.are.....tuples.or.a.lis |
| 9540 | 74 73 2c 20 6f 74 68 65 72 77 69 73 65 20 74 68 65 79 20 61 72 65 20 74 72 65 61 74 65 64 20 61 | ts,.otherwise.they.are.treated.a |
| 9560 | 73 20 61 20 73 63 61 6c 61 72 73 20 61 6e 64 20 74 68 65 79 0a 20 20 20 20 6d 75 73 74 20 68 61 | s.a.scalars.and.they.....must.ha |
| 9580 | 76 65 20 74 68 65 20 73 61 6d 65 20 73 68 61 70 65 20 61 66 74 65 72 20 63 6f 6e 76 65 72 73 69 | ve.the.same.shape.after.conversi |
| 95a0 | 6f 6e 2e 20 49 6e 20 65 69 74 68 65 72 20 63 61 73 65 2c 20 65 69 74 68 65 72 20 60 78 60 0a 20 | on..In.either.case,.either.`x`.. |
| 95c0 | 20 20 20 61 6e 64 20 60 79 60 20 6f 72 20 74 68 65 69 72 20 65 6c 65 6d 65 6e 74 73 20 6d 75 73 | ...and.`y`.or.their.elements.mus |
| 95e0 | 74 20 73 75 70 70 6f 72 74 20 6d 75 6c 74 69 70 6c 69 63 61 74 69 6f 6e 20 61 6e 64 20 61 64 64 | t.support.multiplication.and.add |
| 9600 | 69 74 69 6f 6e 20 62 6f 74 68 0a 20 20 20 20 77 69 74 68 20 74 68 65 6d 73 65 6c 76 65 73 20 61 | ition.both.....with.themselves.a |
| 9620 | 6e 64 20 77 69 74 68 20 74 68 65 20 65 6c 65 6d 65 6e 74 73 20 6f 66 20 60 63 60 2e 0a 0a 20 20 | nd.with.the.elements.of.`c`..... |
| 9640 | 20 20 49 66 20 60 63 60 20 69 73 20 61 20 31 2d 44 20 61 72 72 61 79 20 61 20 6f 6e 65 20 69 73 | ..If.`c`.is.a.1-D.array.a.one.is |
| 9660 | 20 69 6d 70 6c 69 63 69 74 6c 79 20 61 70 70 65 6e 64 65 64 20 74 6f 20 69 74 73 20 73 68 61 70 | .implicitly.appended.to.its.shap |
| 9680 | 65 20 74 6f 20 6d 61 6b 65 0a 20 20 20 20 69 74 20 32 2d 44 2e 20 54 68 65 20 73 68 61 70 65 20 | e.to.make.....it.2-D..The.shape. |
| 96a0 | 6f 66 20 74 68 65 20 72 65 73 75 6c 74 20 77 69 6c 6c 20 62 65 20 63 2e 73 68 61 70 65 5b 32 3a | of.the.result.will.be.c.shape[2: |
| 96c0 | 5d 20 2b 20 78 2e 73 68 61 70 65 2e 0a 0a 20 20 20 20 50 61 72 61 6d 65 74 65 72 73 0a 20 20 20 | ].+.x.shape.......Parameters.... |
| 96e0 | 20 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 78 2c 20 79 20 3a 20 61 72 72 61 79 5f 6c 69 6b | .----------.....x,.y.:.array_lik |
| 9700 | 65 2c 20 63 6f 6d 70 61 74 69 62 6c 65 20 6f 62 6a 65 63 74 73 0a 20 20 20 20 20 20 20 20 54 68 | e,.compatible.objects.........Th |
| 9720 | 65 20 74 77 6f 20 64 69 6d 65 6e 73 69 6f 6e 61 6c 20 73 65 72 69 65 73 20 69 73 20 65 76 61 6c | e.two.dimensional.series.is.eval |
| 9740 | 75 61 74 65 64 20 61 74 20 74 68 65 20 70 6f 69 6e 74 73 20 60 60 28 78 2c 20 79 29 60 60 2c 0a | uated.at.the.points.``(x,.y)``,. |
| 9760 | 20 20 20 20 20 20 20 20 77 68 65 72 65 20 60 78 60 20 61 6e 64 20 60 79 60 20 6d 75 73 74 20 68 | ........where.`x`.and.`y`.must.h |
| 9780 | 61 76 65 20 74 68 65 20 73 61 6d 65 20 73 68 61 70 65 2e 20 49 66 20 60 78 60 20 6f 72 20 60 79 | ave.the.same.shape..If.`x`.or.`y |
| 97a0 | 60 20 69 73 20 61 20 6c 69 73 74 0a 20 20 20 20 20 20 20 20 6f 72 20 74 75 70 6c 65 2c 20 69 74 | `.is.a.list.........or.tuple,.it |
| 97c0 | 20 69 73 20 66 69 72 73 74 20 63 6f 6e 76 65 72 74 65 64 20 74 6f 20 61 6e 20 6e 64 61 72 72 61 | .is.first.converted.to.an.ndarra |
| 97e0 | 79 2c 20 6f 74 68 65 72 77 69 73 65 20 69 74 20 69 73 20 6c 65 66 74 0a 20 20 20 20 20 20 20 20 | y,.otherwise.it.is.left......... |
| 9800 | 75 6e 63 68 61 6e 67 65 64 20 61 6e 64 20 69 66 20 69 74 20 69 73 6e 27 74 20 61 6e 20 6e 64 61 | unchanged.and.if.it.isn't.an.nda |
| 9820 | 72 72 61 79 20 69 74 20 69 73 20 74 72 65 61 74 65 64 20 61 73 20 61 20 73 63 61 6c 61 72 2e 0a | rray.it.is.treated.as.a.scalar.. |
| 9840 | 20 20 20 20 63 20 3a 20 61 72 72 61 79 5f 6c 69 6b 65 0a 20 20 20 20 20 20 20 20 41 72 72 61 79 | ....c.:.array_like.........Array |
| 9860 | 20 6f 66 20 63 6f 65 66 66 69 63 69 65 6e 74 73 20 6f 72 64 65 72 65 64 20 73 6f 20 74 68 61 74 | .of.coefficients.ordered.so.that |
| 9880 | 20 74 68 65 20 63 6f 65 66 66 69 63 69 65 6e 74 20 6f 66 20 74 68 65 20 74 65 72 6d 0a 20 20 20 | .the.coefficient.of.the.term.... |
| 98a0 | 20 20 20 20 20 6f 66 20 6d 75 6c 74 69 2d 64 65 67 72 65 65 20 69 2c 6a 20 69 73 20 63 6f 6e 74 | .....of.multi-degree.i,j.is.cont |
| 98c0 | 61 69 6e 65 64 20 69 6e 20 60 60 63 5b 69 2c 6a 5d 60 60 2e 20 49 66 20 60 63 60 20 68 61 73 0a | ained.in.``c[i,j]``..If.`c`.has. |
| 98e0 | 20 20 20 20 20 20 20 20 64 69 6d 65 6e 73 69 6f 6e 20 67 72 65 61 74 65 72 20 74 68 61 6e 20 32 | ........dimension.greater.than.2 |
| 9900 | 20 74 68 65 20 72 65 6d 61 69 6e 69 6e 67 20 69 6e 64 69 63 65 73 20 65 6e 75 6d 65 72 61 74 65 | .the.remaining.indices.enumerate |
| 9920 | 20 6d 75 6c 74 69 70 6c 65 0a 20 20 20 20 20 20 20 20 73 65 74 73 20 6f 66 20 63 6f 65 66 66 69 | .multiple.........sets.of.coeffi |
| 9940 | 63 69 65 6e 74 73 2e 0a 0a 20 20 20 20 52 65 74 75 72 6e 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d | cients.......Returns.....------- |
| 9960 | 0a 20 20 20 20 76 61 6c 75 65 73 20 3a 20 6e 64 61 72 72 61 79 2c 20 63 6f 6d 70 61 74 69 62 6c | .....values.:.ndarray,.compatibl |
| 9980 | 65 20 6f 62 6a 65 63 74 0a 20 20 20 20 20 20 20 20 54 68 65 20 76 61 6c 75 65 73 20 6f 66 20 74 | e.object.........The.values.of.t |
| 99a0 | 68 65 20 74 77 6f 20 64 69 6d 65 6e 73 69 6f 6e 61 6c 20 43 68 65 62 79 73 68 65 76 20 73 65 72 | he.two.dimensional.Chebyshev.ser |
| 99c0 | 69 65 73 20 61 74 20 70 6f 69 6e 74 73 20 66 6f 72 6d 65 64 0a 20 20 20 20 20 20 20 20 66 72 6f | ies.at.points.formed.........fro |
| 99e0 | 6d 20 70 61 69 72 73 20 6f 66 20 63 6f 72 72 65 73 70 6f 6e 64 69 6e 67 20 76 61 6c 75 65 73 20 | m.pairs.of.corresponding.values. |
| 9a00 | 66 72 6f 6d 20 60 78 60 20 61 6e 64 20 60 79 60 2e 0a 0a 20 20 20 20 53 65 65 20 41 6c 73 6f 0a | from.`x`.and.`y`.......See.Also. |
| 9a20 | 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 63 68 65 62 76 61 6c 2c 20 63 68 65 62 67 72 | ....--------.....chebval,.chebgr |
| 9a40 | 69 64 32 64 2c 20 63 68 65 62 76 61 6c 33 64 2c 20 63 68 65 62 67 72 69 64 33 64 0a 20 20 20 20 | id2d,.chebval3d,.chebgrid3d..... |
| 9a60 | a9 03 72 58 00 00 00 da 06 5f 76 61 6c 6e 64 72 12 00 00 00 a9 03 72 9e 00 00 00 da 01 79 72 31 | ..rX....._valndr......r......yr1 |
| 9a80 | 00 00 00 73 03 00 00 00 20 20 20 72 34 00 00 00 72 1f 00 00 00 72 1f 00 00 00 93 04 00 00 73 1a | ...s.......r4...r....r........s. |
| 9aa0 | 00 00 00 80 00 f4 50 01 00 0c 0e 8f 39 89 39 94 57 98 61 a0 11 a0 41 d3 0b 26 d0 04 26 72 36 00 | ......P.....9.9.W.a...A..&..&r6. |
| 9ac0 | 00 00 63 03 00 00 00 00 00 00 00 00 00 00 00 06 00 00 00 03 00 00 00 f3 3a 00 00 00 97 00 74 01 | ..c.....................:.....t. |
| 9ae0 | 00 00 00 00 00 00 00 00 6a 02 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 74 04 00 00 | ........j...................t... |
| 9b00 | 00 00 00 00 00 00 7c 02 7c 00 7c 01 ab 04 00 00 00 00 00 00 53 00 29 01 61 b8 06 00 00 0a 20 20 | ......|.|.|.........S.).a....... |
| 9b20 | 20 20 45 76 61 6c 75 61 74 65 20 61 20 32 2d 44 20 43 68 65 62 79 73 68 65 76 20 73 65 72 69 65 | ..Evaluate.a.2-D.Chebyshev.serie |
| 9b40 | 73 20 6f 6e 20 74 68 65 20 43 61 72 74 65 73 69 61 6e 20 70 72 6f 64 75 63 74 20 6f 66 20 78 20 | s.on.the.Cartesian.product.of.x. |
| 9b60 | 61 6e 64 20 79 2e 0a 0a 20 20 20 20 54 68 69 73 20 66 75 6e 63 74 69 6f 6e 20 72 65 74 75 72 6e | and.y.......This.function.return |
| 9b80 | 73 20 74 68 65 20 76 61 6c 75 65 73 3a 0a 0a 20 20 20 20 2e 2e 20 6d 61 74 68 3a 3a 20 70 28 61 | s.the.values:.........math::.p(a |
| 9ba0 | 2c 62 29 20 3d 20 5c 73 75 6d 5f 7b 69 2c 6a 7d 20 63 5f 7b 69 2c 6a 7d 20 2a 20 54 5f 69 28 61 | ,b).=.\sum_{i,j}.c_{i,j}.*.T_i(a |
| 9bc0 | 29 20 2a 20 54 5f 6a 28 62 29 2c 0a 0a 20 20 20 20 77 68 65 72 65 20 74 68 65 20 70 6f 69 6e 74 | ).*.T_j(b),......where.the.point |
| 9be0 | 73 20 60 28 61 2c 20 62 29 60 20 63 6f 6e 73 69 73 74 20 6f 66 20 61 6c 6c 20 70 61 69 72 73 20 | s.`(a,.b)`.consist.of.all.pairs. |
| 9c00 | 66 6f 72 6d 65 64 20 62 79 20 74 61 6b 69 6e 67 0a 20 20 20 20 60 61 60 20 66 72 6f 6d 20 60 78 | formed.by.taking.....`a`.from.`x |
| 9c20 | 60 20 61 6e 64 20 60 62 60 20 66 72 6f 6d 20 60 79 60 2e 20 54 68 65 20 72 65 73 75 6c 74 69 6e | `.and.`b`.from.`y`..The.resultin |
| 9c40 | 67 20 70 6f 69 6e 74 73 20 66 6f 72 6d 20 61 20 67 72 69 64 20 77 69 74 68 0a 20 20 20 20 60 78 | g.points.form.a.grid.with.....`x |
| 9c60 | 60 20 69 6e 20 74 68 65 20 66 69 72 73 74 20 64 69 6d 65 6e 73 69 6f 6e 20 61 6e 64 20 60 79 60 | `.in.the.first.dimension.and.`y` |
| 9c80 | 20 69 6e 20 74 68 65 20 73 65 63 6f 6e 64 2e 0a 0a 20 20 20 20 54 68 65 20 70 61 72 61 6d 65 74 | .in.the.second.......The.paramet |
| 9ca0 | 65 72 73 20 60 78 60 20 61 6e 64 20 60 79 60 20 61 72 65 20 63 6f 6e 76 65 72 74 65 64 20 74 6f | ers.`x`.and.`y`.are.converted.to |
| 9cc0 | 20 61 72 72 61 79 73 20 6f 6e 6c 79 20 69 66 20 74 68 65 79 20 61 72 65 0a 20 20 20 20 74 75 70 | .arrays.only.if.they.are.....tup |
| 9ce0 | 6c 65 73 20 6f 72 20 61 20 6c 69 73 74 73 2c 20 6f 74 68 65 72 77 69 73 65 20 74 68 65 79 20 61 | les.or.a.lists,.otherwise.they.a |
| 9d00 | 72 65 20 74 72 65 61 74 65 64 20 61 73 20 61 20 73 63 61 6c 61 72 73 2e 20 49 6e 20 65 69 74 68 | re.treated.as.a.scalars..In.eith |
| 9d20 | 65 72 0a 20 20 20 20 63 61 73 65 2c 20 65 69 74 68 65 72 20 60 78 60 20 61 6e 64 20 60 79 60 20 | er.....case,.either.`x`.and.`y`. |
| 9d40 | 6f 72 20 74 68 65 69 72 20 65 6c 65 6d 65 6e 74 73 20 6d 75 73 74 20 73 75 70 70 6f 72 74 20 6d | or.their.elements.must.support.m |
| 9d60 | 75 6c 74 69 70 6c 69 63 61 74 69 6f 6e 0a 20 20 20 20 61 6e 64 20 61 64 64 69 74 69 6f 6e 20 62 | ultiplication.....and.addition.b |
| 9d80 | 6f 74 68 20 77 69 74 68 20 74 68 65 6d 73 65 6c 76 65 73 20 61 6e 64 20 77 69 74 68 20 74 68 65 | oth.with.themselves.and.with.the |
| 9da0 | 20 65 6c 65 6d 65 6e 74 73 20 6f 66 20 60 63 60 2e 0a 0a 20 20 20 20 49 66 20 60 63 60 20 68 61 | .elements.of.`c`.......If.`c`.ha |
| 9dc0 | 73 20 66 65 77 65 72 20 74 68 61 6e 20 74 77 6f 20 64 69 6d 65 6e 73 69 6f 6e 73 2c 20 6f 6e 65 | s.fewer.than.two.dimensions,.one |
| 9de0 | 73 20 61 72 65 20 69 6d 70 6c 69 63 69 74 6c 79 20 61 70 70 65 6e 64 65 64 20 74 6f 0a 20 20 20 | s.are.implicitly.appended.to.... |
| 9e00 | 20 69 74 73 20 73 68 61 70 65 20 74 6f 20 6d 61 6b 65 20 69 74 20 32 2d 44 2e 20 54 68 65 20 73 | .its.shape.to.make.it.2-D..The.s |
| 9e20 | 68 61 70 65 20 6f 66 20 74 68 65 20 72 65 73 75 6c 74 20 77 69 6c 6c 20 62 65 20 63 2e 73 68 61 | hape.of.the.result.will.be.c.sha |
| 9e40 | 70 65 5b 32 3a 5d 20 2b 0a 20 20 20 20 78 2e 73 68 61 70 65 20 2b 20 79 2e 73 68 61 70 65 2e 0a | pe[2:].+.....x.shape.+.y.shape.. |
| 9e60 | 0a 20 20 20 20 50 61 72 61 6d 65 74 65 72 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 | .....Parameters.....----------.. |
| 9e80 | 20 20 20 78 2c 20 79 20 3a 20 61 72 72 61 79 5f 6c 69 6b 65 2c 20 63 6f 6d 70 61 74 69 62 6c 65 | ...x,.y.:.array_like,.compatible |
| 9ea0 | 20 6f 62 6a 65 63 74 73 0a 20 20 20 20 20 20 20 20 54 68 65 20 74 77 6f 20 64 69 6d 65 6e 73 69 | .objects.........The.two.dimensi |
| 9ec0 | 6f 6e 61 6c 20 73 65 72 69 65 73 20 69 73 20 65 76 61 6c 75 61 74 65 64 20 61 74 20 74 68 65 20 | onal.series.is.evaluated.at.the. |
| 9ee0 | 70 6f 69 6e 74 73 20 69 6e 20 74 68 65 0a 20 20 20 20 20 20 20 20 43 61 72 74 65 73 69 61 6e 20 | points.in.the.........Cartesian. |
| 9f00 | 70 72 6f 64 75 63 74 20 6f 66 20 60 78 60 20 61 6e 64 20 60 79 60 2e 20 20 49 66 20 60 78 60 20 | product.of.`x`.and.`y`...If.`x`. |
| 9f20 | 6f 72 20 60 79 60 20 69 73 20 61 20 6c 69 73 74 20 6f 72 0a 20 20 20 20 20 20 20 20 74 75 70 6c | or.`y`.is.a.list.or.........tupl |
| 9f40 | 65 2c 20 69 74 20 69 73 20 66 69 72 73 74 20 63 6f 6e 76 65 72 74 65 64 20 74 6f 20 61 6e 20 6e | e,.it.is.first.converted.to.an.n |
| 9f60 | 64 61 72 72 61 79 2c 20 6f 74 68 65 72 77 69 73 65 20 69 74 20 69 73 20 6c 65 66 74 0a 20 20 20 | darray,.otherwise.it.is.left.... |
| 9f80 | 20 20 20 20 20 75 6e 63 68 61 6e 67 65 64 20 61 6e 64 2c 20 69 66 20 69 74 20 69 73 6e 27 74 20 | .....unchanged.and,.if.it.isn't. |
| 9fa0 | 61 6e 20 6e 64 61 72 72 61 79 2c 20 69 74 20 69 73 20 74 72 65 61 74 65 64 20 61 73 20 61 20 73 | an.ndarray,.it.is.treated.as.a.s |
| 9fc0 | 63 61 6c 61 72 2e 0a 20 20 20 20 63 20 3a 20 61 72 72 61 79 5f 6c 69 6b 65 0a 20 20 20 20 20 20 | calar......c.:.array_like....... |
| 9fe0 | 20 20 41 72 72 61 79 20 6f 66 20 63 6f 65 66 66 69 63 69 65 6e 74 73 20 6f 72 64 65 72 65 64 20 | ..Array.of.coefficients.ordered. |
| a000 | 73 6f 20 74 68 61 74 20 74 68 65 20 63 6f 65 66 66 69 63 69 65 6e 74 20 6f 66 20 74 68 65 20 74 | so.that.the.coefficient.of.the.t |
| a020 | 65 72 6d 20 6f 66 0a 20 20 20 20 20 20 20 20 6d 75 6c 74 69 2d 64 65 67 72 65 65 20 69 2c 6a 20 | erm.of.........multi-degree.i,j. |
| a040 | 69 73 20 63 6f 6e 74 61 69 6e 65 64 20 69 6e 20 60 60 63 5b 69 2c 6a 5d 60 60 2e 20 49 66 20 60 | is.contained.in.``c[i,j]``..If.` |
| a060 | 63 60 20 68 61 73 20 64 69 6d 65 6e 73 69 6f 6e 0a 20 20 20 20 20 20 20 20 67 72 65 61 74 65 72 | c`.has.dimension.........greater |
| a080 | 20 74 68 61 6e 20 74 77 6f 20 74 68 65 20 72 65 6d 61 69 6e 69 6e 67 20 69 6e 64 69 63 65 73 20 | .than.two.the.remaining.indices. |
| a0a0 | 65 6e 75 6d 65 72 61 74 65 20 6d 75 6c 74 69 70 6c 65 20 73 65 74 73 20 6f 66 0a 20 20 20 20 20 | enumerate.multiple.sets.of...... |
| a0c0 | 20 20 20 63 6f 65 66 66 69 63 69 65 6e 74 73 2e 0a 0a 20 20 20 20 52 65 74 75 72 6e 73 0a 20 20 | ...coefficients.......Returns... |
| a0e0 | 20 20 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 76 61 6c 75 65 73 20 3a 20 6e 64 61 72 72 61 79 2c 20 | ..-------.....values.:.ndarray,. |
| a100 | 63 6f 6d 70 61 74 69 62 6c 65 20 6f 62 6a 65 63 74 0a 20 20 20 20 20 20 20 20 54 68 65 20 76 61 | compatible.object.........The.va |
| a120 | 6c 75 65 73 20 6f 66 20 74 68 65 20 74 77 6f 20 64 69 6d 65 6e 73 69 6f 6e 61 6c 20 43 68 65 62 | lues.of.the.two.dimensional.Cheb |
| a140 | 79 73 68 65 76 20 73 65 72 69 65 73 20 61 74 20 70 6f 69 6e 74 73 20 69 6e 20 74 68 65 0a 20 20 | yshev.series.at.points.in.the... |
| a160 | 20 20 20 20 20 20 43 61 72 74 65 73 69 61 6e 20 70 72 6f 64 75 63 74 20 6f 66 20 60 78 60 20 61 | ......Cartesian.product.of.`x`.a |
| a180 | 6e 64 20 60 79 60 2e 0a 0a 20 20 20 20 53 65 65 20 41 6c 73 6f 0a 20 20 20 20 2d 2d 2d 2d 2d 2d | nd.`y`.......See.Also.....------ |
| a1a0 | 2d 2d 0a 20 20 20 20 63 68 65 62 76 61 6c 2c 20 63 68 65 62 76 61 6c 32 64 2c 20 63 68 65 62 76 | --.....chebval,.chebval2d,.chebv |
| a1c0 | 61 6c 33 64 2c 20 63 68 65 62 67 72 69 64 33 64 0a 20 20 20 20 a9 03 72 58 00 00 00 da 07 5f 67 | al3d,.chebgrid3d.......rX....._g |
| a1e0 | 72 69 64 6e 64 72 12 00 00 00 72 a4 00 00 00 73 03 00 00 00 20 20 20 72 34 00 00 00 72 21 00 00 | ridndr....r....s.......r4...r!.. |
| a200 | 00 72 21 00 00 00 be 04 00 00 73 1a 00 00 00 80 00 f4 58 01 00 0c 0e 8f 3a 89 3a 94 67 98 71 a0 | .r!.......s.......X.....:.:.g.q. |
| a220 | 21 a0 51 d3 0b 27 d0 04 27 72 36 00 00 00 63 04 00 00 00 00 00 00 00 00 00 00 00 07 00 00 00 03 | !.Q..'..'r6...c................. |
| a240 | 00 00 00 f3 3c 00 00 00 97 00 74 01 00 00 00 00 00 00 00 00 6a 02 00 00 00 00 00 00 00 00 00 00 | ....<.....t.........j........... |
| a260 | 00 00 00 00 00 00 00 00 74 04 00 00 00 00 00 00 00 00 7c 03 7c 00 7c 01 7c 02 ab 05 00 00 00 00 | ........t.........|.|.|.|....... |
| a280 | 00 00 53 00 29 01 61 72 06 00 00 0a 20 20 20 20 45 76 61 6c 75 61 74 65 20 61 20 33 2d 44 20 43 | ..S.).ar........Evaluate.a.3-D.C |
| a2a0 | 68 65 62 79 73 68 65 76 20 73 65 72 69 65 73 20 61 74 20 70 6f 69 6e 74 73 20 28 78 2c 20 79 2c | hebyshev.series.at.points.(x,.y, |
| a2c0 | 20 7a 29 2e 0a 0a 20 20 20 20 54 68 69 73 20 66 75 6e 63 74 69 6f 6e 20 72 65 74 75 72 6e 73 20 | .z).......This.function.returns. |
| a2e0 | 74 68 65 20 76 61 6c 75 65 73 3a 0a 0a 20 20 20 20 2e 2e 20 6d 61 74 68 3a 3a 20 70 28 78 2c 79 | the.values:.........math::.p(x,y |
| a300 | 2c 7a 29 20 3d 20 5c 73 75 6d 5f 7b 69 2c 6a 2c 6b 7d 20 63 5f 7b 69 2c 6a 2c 6b 7d 20 2a 20 54 | ,z).=.\sum_{i,j,k}.c_{i,j,k}.*.T |
| a320 | 5f 69 28 78 29 20 2a 20 54 5f 6a 28 79 29 20 2a 20 54 5f 6b 28 7a 29 0a 0a 20 20 20 20 54 68 65 | _i(x).*.T_j(y).*.T_k(z)......The |
| a340 | 20 70 61 72 61 6d 65 74 65 72 73 20 60 78 60 2c 20 60 79 60 2c 20 61 6e 64 20 60 7a 60 20 61 72 | .parameters.`x`,.`y`,.and.`z`.ar |
| a360 | 65 20 63 6f 6e 76 65 72 74 65 64 20 74 6f 20 61 72 72 61 79 73 20 6f 6e 6c 79 20 69 66 0a 20 20 | e.converted.to.arrays.only.if... |
| a380 | 20 20 74 68 65 79 20 61 72 65 20 74 75 70 6c 65 73 20 6f 72 20 61 20 6c 69 73 74 73 2c 20 6f 74 | ..they.are.tuples.or.a.lists,.ot |
| a3a0 | 68 65 72 77 69 73 65 20 74 68 65 79 20 61 72 65 20 74 72 65 61 74 65 64 20 61 73 20 61 20 73 63 | herwise.they.are.treated.as.a.sc |
| a3c0 | 61 6c 61 72 73 20 61 6e 64 0a 20 20 20 20 74 68 65 79 20 6d 75 73 74 20 68 61 76 65 20 74 68 65 | alars.and.....they.must.have.the |
| a3e0 | 20 73 61 6d 65 20 73 68 61 70 65 20 61 66 74 65 72 20 63 6f 6e 76 65 72 73 69 6f 6e 2e 20 49 6e | .same.shape.after.conversion..In |
| a400 | 20 65 69 74 68 65 72 20 63 61 73 65 2c 20 65 69 74 68 65 72 0a 20 20 20 20 60 78 60 2c 20 60 79 | .either.case,.either.....`x`,.`y |
| a420 | 60 2c 20 61 6e 64 20 60 7a 60 20 6f 72 20 74 68 65 69 72 20 65 6c 65 6d 65 6e 74 73 20 6d 75 73 | `,.and.`z`.or.their.elements.mus |
| a440 | 74 20 73 75 70 70 6f 72 74 20 6d 75 6c 74 69 70 6c 69 63 61 74 69 6f 6e 20 61 6e 64 0a 20 20 20 | t.support.multiplication.and.... |
| a460 | 20 61 64 64 69 74 69 6f 6e 20 62 6f 74 68 20 77 69 74 68 20 74 68 65 6d 73 65 6c 76 65 73 20 61 | .addition.both.with.themselves.a |
| a480 | 6e 64 20 77 69 74 68 20 74 68 65 20 65 6c 65 6d 65 6e 74 73 20 6f 66 20 60 63 60 2e 0a 0a 20 20 | nd.with.the.elements.of.`c`..... |
| a4a0 | 20 20 49 66 20 60 63 60 20 68 61 73 20 66 65 77 65 72 20 74 68 61 6e 20 33 20 64 69 6d 65 6e 73 | ..If.`c`.has.fewer.than.3.dimens |
| a4c0 | 69 6f 6e 73 2c 20 6f 6e 65 73 20 61 72 65 20 69 6d 70 6c 69 63 69 74 6c 79 20 61 70 70 65 6e 64 | ions,.ones.are.implicitly.append |
| a4e0 | 65 64 20 74 6f 20 69 74 73 0a 20 20 20 20 73 68 61 70 65 20 74 6f 20 6d 61 6b 65 20 69 74 20 33 | ed.to.its.....shape.to.make.it.3 |
| a500 | 2d 44 2e 20 54 68 65 20 73 68 61 70 65 20 6f 66 20 74 68 65 20 72 65 73 75 6c 74 20 77 69 6c 6c | -D..The.shape.of.the.result.will |
| a520 | 20 62 65 20 63 2e 73 68 61 70 65 5b 33 3a 5d 20 2b 0a 20 20 20 20 78 2e 73 68 61 70 65 2e 0a 0a | .be.c.shape[3:].+.....x.shape... |
| a540 | 20 20 20 20 50 61 72 61 6d 65 74 65 72 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 | ....Parameters.....----------... |
| a560 | 20 20 78 2c 20 79 2c 20 7a 20 3a 20 61 72 72 61 79 5f 6c 69 6b 65 2c 20 63 6f 6d 70 61 74 69 62 | ..x,.y,.z.:.array_like,.compatib |
| a580 | 6c 65 20 6f 62 6a 65 63 74 0a 20 20 20 20 20 20 20 20 54 68 65 20 74 68 72 65 65 20 64 69 6d 65 | le.object.........The.three.dime |
| a5a0 | 6e 73 69 6f 6e 61 6c 20 73 65 72 69 65 73 20 69 73 20 65 76 61 6c 75 61 74 65 64 20 61 74 20 74 | nsional.series.is.evaluated.at.t |
| a5c0 | 68 65 20 70 6f 69 6e 74 73 0a 20 20 20 20 20 20 20 20 60 60 28 78 2c 20 79 2c 20 7a 29 60 60 2c | he.points.........``(x,.y,.z)``, |
| a5e0 | 20 77 68 65 72 65 20 60 78 60 2c 20 60 79 60 2c 20 61 6e 64 20 60 7a 60 20 6d 75 73 74 20 68 61 | .where.`x`,.`y`,.and.`z`.must.ha |
| a600 | 76 65 20 74 68 65 20 73 61 6d 65 20 73 68 61 70 65 2e 20 20 49 66 0a 20 20 20 20 20 20 20 20 61 | ve.the.same.shape...If.........a |
| a620 | 6e 79 20 6f 66 20 60 78 60 2c 20 60 79 60 2c 20 6f 72 20 60 7a 60 20 69 73 20 61 20 6c 69 73 74 | ny.of.`x`,.`y`,.or.`z`.is.a.list |
| a640 | 20 6f 72 20 74 75 70 6c 65 2c 20 69 74 20 69 73 20 66 69 72 73 74 20 63 6f 6e 76 65 72 74 65 64 | .or.tuple,.it.is.first.converted |
| a660 | 0a 20 20 20 20 20 20 20 20 74 6f 20 61 6e 20 6e 64 61 72 72 61 79 2c 20 6f 74 68 65 72 77 69 73 | .........to.an.ndarray,.otherwis |
| a680 | 65 20 69 74 20 69 73 20 6c 65 66 74 20 75 6e 63 68 61 6e 67 65 64 20 61 6e 64 20 69 66 20 69 74 | e.it.is.left.unchanged.and.if.it |
| a6a0 | 20 69 73 6e 27 74 20 61 6e 0a 20 20 20 20 20 20 20 20 6e 64 61 72 72 61 79 20 69 74 20 69 73 20 | .isn't.an.........ndarray.it.is. |
| a6c0 | 20 74 72 65 61 74 65 64 20 61 73 20 61 20 73 63 61 6c 61 72 2e 0a 20 20 20 20 63 20 3a 20 61 72 | .treated.as.a.scalar......c.:.ar |
| a6e0 | 72 61 79 5f 6c 69 6b 65 0a 20 20 20 20 20 20 20 20 41 72 72 61 79 20 6f 66 20 63 6f 65 66 66 69 | ray_like.........Array.of.coeffi |
| a700 | 63 69 65 6e 74 73 20 6f 72 64 65 72 65 64 20 73 6f 20 74 68 61 74 20 74 68 65 20 63 6f 65 66 66 | cients.ordered.so.that.the.coeff |
| a720 | 69 63 69 65 6e 74 20 6f 66 20 74 68 65 20 74 65 72 6d 20 6f 66 0a 20 20 20 20 20 20 20 20 6d 75 | icient.of.the.term.of.........mu |
| a740 | 6c 74 69 2d 64 65 67 72 65 65 20 69 2c 6a 2c 6b 20 69 73 20 63 6f 6e 74 61 69 6e 65 64 20 69 6e | lti-degree.i,j,k.is.contained.in |
| a760 | 20 60 60 63 5b 69 2c 6a 2c 6b 5d 60 60 2e 20 49 66 20 60 63 60 20 68 61 73 20 64 69 6d 65 6e 73 | .``c[i,j,k]``..If.`c`.has.dimens |
| a780 | 69 6f 6e 0a 20 20 20 20 20 20 20 20 67 72 65 61 74 65 72 20 74 68 61 6e 20 33 20 74 68 65 20 72 | ion.........greater.than.3.the.r |
| a7a0 | 65 6d 61 69 6e 69 6e 67 20 69 6e 64 69 63 65 73 20 65 6e 75 6d 65 72 61 74 65 20 6d 75 6c 74 69 | emaining.indices.enumerate.multi |
| a7c0 | 70 6c 65 20 73 65 74 73 20 6f 66 0a 20 20 20 20 20 20 20 20 63 6f 65 66 66 69 63 69 65 6e 74 73 | ple.sets.of.........coefficients |
| a7e0 | 2e 0a 0a 20 20 20 20 52 65 74 75 72 6e 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 76 | .......Returns.....-------.....v |
| a800 | 61 6c 75 65 73 20 3a 20 6e 64 61 72 72 61 79 2c 20 63 6f 6d 70 61 74 69 62 6c 65 20 6f 62 6a 65 | alues.:.ndarray,.compatible.obje |
| a820 | 63 74 0a 20 20 20 20 20 20 20 20 54 68 65 20 76 61 6c 75 65 73 20 6f 66 20 74 68 65 20 6d 75 6c | ct.........The.values.of.the.mul |
| a840 | 74 69 64 69 6d 65 6e 73 69 6f 6e 61 6c 20 70 6f 6c 79 6e 6f 6d 69 61 6c 20 6f 6e 20 70 6f 69 6e | tidimensional.polynomial.on.poin |
| a860 | 74 73 20 66 6f 72 6d 65 64 20 77 69 74 68 0a 20 20 20 20 20 20 20 20 74 72 69 70 6c 65 73 20 6f | ts.formed.with.........triples.o |
| a880 | 66 20 63 6f 72 72 65 73 70 6f 6e 64 69 6e 67 20 76 61 6c 75 65 73 20 66 72 6f 6d 20 60 78 60 2c | f.corresponding.values.from.`x`, |
| a8a0 | 20 60 79 60 2c 20 61 6e 64 20 60 7a 60 2e 0a 0a 20 20 20 20 53 65 65 20 41 6c 73 6f 0a 20 20 20 | .`y`,.and.`z`.......See.Also.... |
| a8c0 | 20 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 63 68 65 62 76 61 6c 2c 20 63 68 65 62 76 61 6c 32 64 | .--------.....chebval,.chebval2d |
| a8e0 | 2c 20 63 68 65 62 67 72 69 64 32 64 2c 20 63 68 65 62 67 72 69 64 33 64 0a 20 20 20 20 72 a2 00 | ,.chebgrid2d,.chebgrid3d.....r.. |
| a900 | 00 00 a9 04 72 9e 00 00 00 72 a5 00 00 00 da 01 7a 72 31 00 00 00 73 04 00 00 00 20 20 20 20 72 | ....r....r......zr1...s........r |
| a920 | 34 00 00 00 72 20 00 00 00 72 20 00 00 00 ed 04 00 00 73 1c 00 00 00 80 00 f4 54 01 00 0c 0e 8f | 4...r....r........s.......T..... |
| a940 | 39 89 39 94 57 98 61 a0 11 a0 41 a0 71 d3 0b 29 d0 04 29 72 36 00 00 00 63 04 00 00 00 00 00 00 | 9.9.W.a...A.q..)..)r6...c....... |
| a960 | 00 00 00 00 00 07 00 00 00 03 00 00 00 f3 3c 00 00 00 97 00 74 01 00 00 00 00 00 00 00 00 6a 02 | ..............<.....t.........j. |
| a980 | 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 74 04 00 00 00 00 00 00 00 00 7c 03 7c 00 | ..................t.........|.|. |
| a9a0 | 7c 01 7c 02 ab 05 00 00 00 00 00 00 53 00 29 01 61 20 07 00 00 0a 20 20 20 20 45 76 61 6c 75 61 | |.|.........S.).a.........Evalua |
| a9c0 | 74 65 20 61 20 33 2d 44 20 43 68 65 62 79 73 68 65 76 20 73 65 72 69 65 73 20 6f 6e 20 74 68 65 | te.a.3-D.Chebyshev.series.on.the |
| a9e0 | 20 43 61 72 74 65 73 69 61 6e 20 70 72 6f 64 75 63 74 20 6f 66 20 78 2c 20 79 2c 20 61 6e 64 20 | .Cartesian.product.of.x,.y,.and. |
| aa00 | 7a 2e 0a 0a 20 20 20 20 54 68 69 73 20 66 75 6e 63 74 69 6f 6e 20 72 65 74 75 72 6e 73 20 74 68 | z.......This.function.returns.th |
| aa20 | 65 20 76 61 6c 75 65 73 3a 0a 0a 20 20 20 20 2e 2e 20 6d 61 74 68 3a 3a 20 70 28 61 2c 62 2c 63 | e.values:.........math::.p(a,b,c |
| aa40 | 29 20 3d 20 5c 73 75 6d 5f 7b 69 2c 6a 2c 6b 7d 20 63 5f 7b 69 2c 6a 2c 6b 7d 20 2a 20 54 5f 69 | ).=.\sum_{i,j,k}.c_{i,j,k}.*.T_i |
| aa60 | 28 61 29 20 2a 20 54 5f 6a 28 62 29 20 2a 20 54 5f 6b 28 63 29 0a 0a 20 20 20 20 77 68 65 72 65 | (a).*.T_j(b).*.T_k(c)......where |
| aa80 | 20 74 68 65 20 70 6f 69 6e 74 73 20 60 60 28 61 2c 20 62 2c 20 63 29 60 60 20 63 6f 6e 73 69 73 | .the.points.``(a,.b,.c)``.consis |
| aaa0 | 74 20 6f 66 20 61 6c 6c 20 74 72 69 70 6c 65 73 20 66 6f 72 6d 65 64 20 62 79 20 74 61 6b 69 6e | t.of.all.triples.formed.by.takin |
| aac0 | 67 0a 20 20 20 20 60 61 60 20 66 72 6f 6d 20 60 78 60 2c 20 60 62 60 20 66 72 6f 6d 20 60 79 60 | g.....`a`.from.`x`,.`b`.from.`y` |
| aae0 | 2c 20 61 6e 64 20 60 63 60 20 66 72 6f 6d 20 60 7a 60 2e 20 54 68 65 20 72 65 73 75 6c 74 69 6e | ,.and.`c`.from.`z`..The.resultin |
| ab00 | 67 20 70 6f 69 6e 74 73 20 66 6f 72 6d 0a 20 20 20 20 61 20 67 72 69 64 20 77 69 74 68 20 60 78 | g.points.form.....a.grid.with.`x |
| ab20 | 60 20 69 6e 20 74 68 65 20 66 69 72 73 74 20 64 69 6d 65 6e 73 69 6f 6e 2c 20 60 79 60 20 69 6e | `.in.the.first.dimension,.`y`.in |
| ab40 | 20 74 68 65 20 73 65 63 6f 6e 64 2c 20 61 6e 64 20 60 7a 60 20 69 6e 0a 20 20 20 20 74 68 65 20 | .the.second,.and.`z`.in.....the. |
| ab60 | 74 68 69 72 64 2e 0a 0a 20 20 20 20 54 68 65 20 70 61 72 61 6d 65 74 65 72 73 20 60 78 60 2c 20 | third.......The.parameters.`x`,. |
| ab80 | 60 79 60 2c 20 61 6e 64 20 60 7a 60 20 61 72 65 20 63 6f 6e 76 65 72 74 65 64 20 74 6f 20 61 72 | `y`,.and.`z`.are.converted.to.ar |
| aba0 | 72 61 79 73 20 6f 6e 6c 79 20 69 66 20 74 68 65 79 0a 20 20 20 20 61 72 65 20 74 75 70 6c 65 73 | rays.only.if.they.....are.tuples |
| abc0 | 20 6f 72 20 61 20 6c 69 73 74 73 2c 20 6f 74 68 65 72 77 69 73 65 20 74 68 65 79 20 61 72 65 20 | .or.a.lists,.otherwise.they.are. |
| abe0 | 74 72 65 61 74 65 64 20 61 73 20 61 20 73 63 61 6c 61 72 73 2e 20 49 6e 0a 20 20 20 20 65 69 74 | treated.as.a.scalars..In.....eit |
| ac00 | 68 65 72 20 63 61 73 65 2c 20 65 69 74 68 65 72 20 60 78 60 2c 20 60 79 60 2c 20 61 6e 64 20 60 | her.case,.either.`x`,.`y`,.and.` |
| ac20 | 7a 60 20 6f 72 20 74 68 65 69 72 20 65 6c 65 6d 65 6e 74 73 20 6d 75 73 74 20 73 75 70 70 6f 72 | z`.or.their.elements.must.suppor |
| ac40 | 74 0a 20 20 20 20 6d 75 6c 74 69 70 6c 69 63 61 74 69 6f 6e 20 61 6e 64 20 61 64 64 69 74 69 6f | t.....multiplication.and.additio |
| ac60 | 6e 20 62 6f 74 68 20 77 69 74 68 20 74 68 65 6d 73 65 6c 76 65 73 20 61 6e 64 20 77 69 74 68 20 | n.both.with.themselves.and.with. |
| ac80 | 74 68 65 20 65 6c 65 6d 65 6e 74 73 0a 20 20 20 20 6f 66 20 60 63 60 2e 0a 0a 20 20 20 20 49 66 | the.elements.....of.`c`.......If |
| aca0 | 20 60 63 60 20 68 61 73 20 66 65 77 65 72 20 74 68 61 6e 20 74 68 72 65 65 20 64 69 6d 65 6e 73 | .`c`.has.fewer.than.three.dimens |
| acc0 | 69 6f 6e 73 2c 20 6f 6e 65 73 20 61 72 65 20 69 6d 70 6c 69 63 69 74 6c 79 20 61 70 70 65 6e 64 | ions,.ones.are.implicitly.append |
| ace0 | 65 64 20 74 6f 0a 20 20 20 20 69 74 73 20 73 68 61 70 65 20 74 6f 20 6d 61 6b 65 20 69 74 20 33 | ed.to.....its.shape.to.make.it.3 |
| ad00 | 2d 44 2e 20 54 68 65 20 73 68 61 70 65 20 6f 66 20 74 68 65 20 72 65 73 75 6c 74 20 77 69 6c 6c | -D..The.shape.of.the.result.will |
| ad20 | 20 62 65 20 63 2e 73 68 61 70 65 5b 33 3a 5d 20 2b 0a 20 20 20 20 78 2e 73 68 61 70 65 20 2b 20 | .be.c.shape[3:].+.....x.shape.+. |
| ad40 | 79 2e 73 68 61 70 65 20 2b 20 7a 2e 73 68 61 70 65 2e 0a 0a 20 20 20 20 50 61 72 61 6d 65 74 65 | y.shape.+.z.shape.......Paramete |
| ad60 | 72 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 78 2c 20 79 2c 20 7a 20 3a 20 | rs.....----------.....x,.y,.z.:. |
| ad80 | 61 72 72 61 79 5f 6c 69 6b 65 2c 20 63 6f 6d 70 61 74 69 62 6c 65 20 6f 62 6a 65 63 74 73 0a 20 | array_like,.compatible.objects.. |
| ada0 | 20 20 20 20 20 20 20 54 68 65 20 74 68 72 65 65 20 64 69 6d 65 6e 73 69 6f 6e 61 6c 20 73 65 72 | .......The.three.dimensional.ser |
| adc0 | 69 65 73 20 69 73 20 65 76 61 6c 75 61 74 65 64 20 61 74 20 74 68 65 20 70 6f 69 6e 74 73 20 69 | ies.is.evaluated.at.the.points.i |
| ade0 | 6e 20 74 68 65 0a 20 20 20 20 20 20 20 20 43 61 72 74 65 73 69 61 6e 20 70 72 6f 64 75 63 74 20 | n.the.........Cartesian.product. |
| ae00 | 6f 66 20 60 78 60 2c 20 60 79 60 2c 20 61 6e 64 20 60 7a 60 2e 20 20 49 66 20 60 78 60 2c 20 60 | of.`x`,.`y`,.and.`z`...If.`x`,.` |
| ae20 | 79 60 2c 20 6f 72 20 60 7a 60 20 69 73 20 61 0a 20 20 20 20 20 20 20 20 6c 69 73 74 20 6f 72 20 | y`,.or.`z`.is.a.........list.or. |
| ae40 | 74 75 70 6c 65 2c 20 69 74 20 69 73 20 66 69 72 73 74 20 63 6f 6e 76 65 72 74 65 64 20 74 6f 20 | tuple,.it.is.first.converted.to. |
| ae60 | 61 6e 20 6e 64 61 72 72 61 79 2c 20 6f 74 68 65 72 77 69 73 65 20 69 74 20 69 73 0a 20 20 20 20 | an.ndarray,.otherwise.it.is..... |
| ae80 | 20 20 20 20 6c 65 66 74 20 75 6e 63 68 61 6e 67 65 64 20 61 6e 64 2c 20 69 66 20 69 74 20 69 73 | ....left.unchanged.and,.if.it.is |
| aea0 | 6e 27 74 20 61 6e 20 6e 64 61 72 72 61 79 2c 20 69 74 20 69 73 20 74 72 65 61 74 65 64 20 61 73 | n't.an.ndarray,.it.is.treated.as |
| aec0 | 20 61 0a 20 20 20 20 20 20 20 20 73 63 61 6c 61 72 2e 0a 20 20 20 20 63 20 3a 20 61 72 72 61 79 | .a.........scalar......c.:.array |
| aee0 | 5f 6c 69 6b 65 0a 20 20 20 20 20 20 20 20 41 72 72 61 79 20 6f 66 20 63 6f 65 66 66 69 63 69 65 | _like.........Array.of.coefficie |
| af00 | 6e 74 73 20 6f 72 64 65 72 65 64 20 73 6f 20 74 68 61 74 20 74 68 65 20 63 6f 65 66 66 69 63 69 | nts.ordered.so.that.the.coeffici |
| af20 | 65 6e 74 73 20 66 6f 72 20 74 65 72 6d 73 20 6f 66 0a 20 20 20 20 20 20 20 20 64 65 67 72 65 65 | ents.for.terms.of.........degree |
| af40 | 20 69 2c 6a 20 61 72 65 20 63 6f 6e 74 61 69 6e 65 64 20 69 6e 20 60 60 63 5b 69 2c 6a 5d 60 60 | .i,j.are.contained.in.``c[i,j]`` |
| af60 | 2e 20 49 66 20 60 63 60 20 68 61 73 20 64 69 6d 65 6e 73 69 6f 6e 0a 20 20 20 20 20 20 20 20 67 | ..If.`c`.has.dimension.........g |
| af80 | 72 65 61 74 65 72 20 74 68 61 6e 20 74 77 6f 20 74 68 65 20 72 65 6d 61 69 6e 69 6e 67 20 69 6e | reater.than.two.the.remaining.in |
| afa0 | 64 69 63 65 73 20 65 6e 75 6d 65 72 61 74 65 20 6d 75 6c 74 69 70 6c 65 20 73 65 74 73 20 6f 66 | dices.enumerate.multiple.sets.of |
| afc0 | 0a 20 20 20 20 20 20 20 20 63 6f 65 66 66 69 63 69 65 6e 74 73 2e 0a 0a 20 20 20 20 52 65 74 75 | .........coefficients.......Retu |
| afe0 | 72 6e 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 76 61 6c 75 65 73 20 3a 20 6e 64 61 | rns.....-------.....values.:.nda |
| b000 | 72 72 61 79 2c 20 63 6f 6d 70 61 74 69 62 6c 65 20 6f 62 6a 65 63 74 0a 20 20 20 20 20 20 20 20 | rray,.compatible.object......... |
| b020 | 54 68 65 20 76 61 6c 75 65 73 20 6f 66 20 74 68 65 20 74 77 6f 20 64 69 6d 65 6e 73 69 6f 6e 61 | The.values.of.the.two.dimensiona |
| b040 | 6c 20 70 6f 6c 79 6e 6f 6d 69 61 6c 20 61 74 20 70 6f 69 6e 74 73 20 69 6e 20 74 68 65 20 43 61 | l.polynomial.at.points.in.the.Ca |
| b060 | 72 74 65 73 69 61 6e 0a 20 20 20 20 20 20 20 20 70 72 6f 64 75 63 74 20 6f 66 20 60 78 60 20 61 | rtesian.........product.of.`x`.a |
| b080 | 6e 64 20 60 79 60 2e 0a 0a 20 20 20 20 53 65 65 20 41 6c 73 6f 0a 20 20 20 20 2d 2d 2d 2d 2d 2d | nd.`y`.......See.Also.....------ |
| b0a0 | 2d 2d 0a 20 20 20 20 63 68 65 62 76 61 6c 2c 20 63 68 65 62 76 61 6c 32 64 2c 20 63 68 65 62 67 | --.....chebval,.chebval2d,.chebg |
| b0c0 | 72 69 64 32 64 2c 20 63 68 65 62 76 61 6c 33 64 0a 20 20 20 20 72 a7 00 00 00 72 aa 00 00 00 73 | rid2d,.chebval3d.....r....r....s |
| b0e0 | 04 00 00 00 20 20 20 20 72 34 00 00 00 72 22 00 00 00 72 22 00 00 00 1a 05 00 00 73 1c 00 00 00 | ........r4...r"...r".......s.... |
| b100 | 80 00 f4 5e 01 00 0c 0e 8f 3a 89 3a 94 67 98 71 a0 21 a0 51 a8 01 d3 0b 2a d0 04 2a 72 36 00 00 | ...^.....:.:.g.q.!.Q....*..*r6.. |
| b120 | 00 63 02 00 00 00 00 00 00 00 00 00 00 00 05 00 00 00 03 00 00 00 f3 a8 01 00 00 97 00 74 01 00 | .c...........................t.. |
| b140 | 00 00 00 00 00 00 00 6a 02 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 7c 01 64 01 ab | .......j...................|.d.. |
| b160 | 02 00 00 00 00 00 00 7d 02 7c 02 64 02 6b 02 00 00 72 0b 74 05 00 00 00 00 00 00 00 00 64 03 ab | .......}.|.d.k...r.t.........d.. |
| b180 | 01 00 00 00 00 00 00 82 01 74 07 00 00 00 00 00 00 00 00 6a 08 00 00 00 00 00 00 00 00 00 00 00 | .........t.........j............ |
| b1a0 | 00 00 00 00 00 00 00 7c 00 64 04 64 05 ac 06 ab 03 00 00 00 00 00 00 64 07 7a 00 00 00 7d 00 7c | .......|.d.d...........d.z...}.| |
| b1c0 | 02 64 05 7a 00 00 00 66 01 7c 00 6a 0a 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 7a | .d.z...f.|.j...................z |
| b1e0 | 00 00 00 7d 03 7c 00 6a 0c 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 7d 04 74 07 00 | ...}.|.j...................}.t.. |
| b200 | 00 00 00 00 00 00 00 6a 0e 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 7c 03 7c 04 ac | .......j...................|.|.. |
| b220 | 08 ab 02 00 00 00 00 00 00 7d 05 7c 00 64 02 7a 05 00 00 64 05 7a 00 00 00 7c 05 64 02 3c 00 00 | .........}.|.d.z...d.z...|.d.<.. |
| b240 | 00 7c 02 64 02 6b 44 00 00 72 35 64 09 7c 00 7a 05 00 00 7d 06 7c 00 7c 05 64 05 3c 00 00 00 74 | .|.d.kD..r5d.|.z...}.|.|.d.<...t |
| b260 | 11 00 00 00 00 00 00 00 00 64 09 7c 02 64 05 7a 00 00 00 ab 02 00 00 00 00 00 00 44 00 5d 19 00 | .........d.|.d.z...........D.].. |
| b280 | 00 7d 07 7c 05 7c 07 64 05 7a 0a 00 00 19 00 00 00 7c 06 7a 05 00 00 7c 05 7c 07 64 09 7a 0a 00 | .}.|.|.d.z.......|.z...|.|.d.z.. |
| b2a0 | 00 19 00 00 00 7a 0a 00 00 7c 05 7c 07 3c 00 00 00 8c 1b 04 00 74 07 00 00 00 00 00 00 00 00 6a | .....z...|.|.<.......t.........j |
| b2c0 | 12 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 7c 05 64 02 64 0a ab 03 00 00 00 00 00 | ...................|.d.d........ |
| b2e0 | 00 53 00 29 0b 61 23 05 00 00 50 73 65 75 64 6f 2d 56 61 6e 64 65 72 6d 6f 6e 64 65 20 6d 61 74 | .S.).a#...Pseudo-Vandermonde.mat |
| b300 | 72 69 78 20 6f 66 20 67 69 76 65 6e 20 64 65 67 72 65 65 2e 0a 0a 20 20 20 20 52 65 74 75 72 6e | rix.of.given.degree.......Return |
| b320 | 73 20 74 68 65 20 70 73 65 75 64 6f 2d 56 61 6e 64 65 72 6d 6f 6e 64 65 20 6d 61 74 72 69 78 20 | s.the.pseudo-Vandermonde.matrix. |
| b340 | 6f 66 20 64 65 67 72 65 65 20 60 64 65 67 60 20 61 6e 64 20 73 61 6d 70 6c 65 20 70 6f 69 6e 74 | of.degree.`deg`.and.sample.point |
| b360 | 73 0a 20 20 20 20 60 78 60 2e 20 54 68 65 20 70 73 65 75 64 6f 2d 56 61 6e 64 65 72 6d 6f 6e 64 | s.....`x`..The.pseudo-Vandermond |
| b380 | 65 20 6d 61 74 72 69 78 20 69 73 20 64 65 66 69 6e 65 64 20 62 79 0a 0a 20 20 20 20 2e 2e 20 6d | e.matrix.is.defined.by.........m |
| b3a0 | 61 74 68 3a 3a 20 56 5b 2e 2e 2e 2c 20 69 5d 20 3d 20 54 5f 69 28 78 29 2c 0a 0a 20 20 20 20 77 | ath::.V[...,.i].=.T_i(x),......w |
| b3c0 | 68 65 72 65 20 60 60 30 20 3c 3d 20 69 20 3c 3d 20 64 65 67 60 60 2e 20 54 68 65 20 6c 65 61 64 | here.``0.<=.i.<=.deg``..The.lead |
| b3e0 | 69 6e 67 20 69 6e 64 69 63 65 73 20 6f 66 20 60 56 60 20 69 6e 64 65 78 20 74 68 65 20 65 6c 65 | ing.indices.of.`V`.index.the.ele |
| b400 | 6d 65 6e 74 73 20 6f 66 0a 20 20 20 20 60 78 60 20 61 6e 64 20 74 68 65 20 6c 61 73 74 20 69 6e | ments.of.....`x`.and.the.last.in |
| b420 | 64 65 78 20 69 73 20 74 68 65 20 64 65 67 72 65 65 20 6f 66 20 74 68 65 20 43 68 65 62 79 73 68 | dex.is.the.degree.of.the.Chebysh |
| b440 | 65 76 20 70 6f 6c 79 6e 6f 6d 69 61 6c 2e 0a 0a 20 20 20 20 49 66 20 60 63 60 20 69 73 20 61 20 | ev.polynomial.......If.`c`.is.a. |
| b460 | 31 2d 44 20 61 72 72 61 79 20 6f 66 20 63 6f 65 66 66 69 63 69 65 6e 74 73 20 6f 66 20 6c 65 6e | 1-D.array.of.coefficients.of.len |
| b480 | 67 74 68 20 60 60 6e 20 2b 20 31 60 60 20 61 6e 64 20 60 56 60 20 69 73 20 74 68 65 0a 20 20 20 | gth.``n.+.1``.and.`V`.is.the.... |
| b4a0 | 20 6d 61 74 72 69 78 20 60 60 56 20 3d 20 63 68 65 62 76 61 6e 64 65 72 28 78 2c 20 6e 29 60 60 | .matrix.``V.=.chebvander(x,.n)`` |
| b4c0 | 2c 20 74 68 65 6e 20 60 60 6e 70 2e 64 6f 74 28 56 2c 20 63 29 60 60 20 61 6e 64 0a 20 20 20 20 | ,.then.``np.dot(V,.c)``.and..... |
| b4e0 | 60 60 63 68 65 62 76 61 6c 28 78 2c 20 63 29 60 60 20 61 72 65 20 74 68 65 20 73 61 6d 65 20 75 | ``chebval(x,.c)``.are.the.same.u |
| b500 | 70 20 74 6f 20 72 6f 75 6e 64 6f 66 66 2e 20 20 54 68 69 73 20 65 71 75 69 76 61 6c 65 6e 63 65 | p.to.roundoff...This.equivalence |
| b520 | 20 69 73 0a 20 20 20 20 75 73 65 66 75 6c 20 62 6f 74 68 20 66 6f 72 20 6c 65 61 73 74 20 73 71 | .is.....useful.both.for.least.sq |
| b540 | 75 61 72 65 73 20 66 69 74 74 69 6e 67 20 61 6e 64 20 66 6f 72 20 74 68 65 20 65 76 61 6c 75 61 | uares.fitting.and.for.the.evalua |
| b560 | 74 69 6f 6e 20 6f 66 20 61 20 6c 61 72 67 65 0a 20 20 20 20 6e 75 6d 62 65 72 20 6f 66 20 43 68 | tion.of.a.large.....number.of.Ch |
| b580 | 65 62 79 73 68 65 76 20 73 65 72 69 65 73 20 6f 66 20 74 68 65 20 73 61 6d 65 20 64 65 67 72 65 | ebyshev.series.of.the.same.degre |
| b5a0 | 65 20 61 6e 64 20 73 61 6d 70 6c 65 20 70 6f 69 6e 74 73 2e 0a 0a 20 20 20 20 50 61 72 61 6d 65 | e.and.sample.points.......Parame |
| b5c0 | 74 65 72 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 78 20 3a 20 61 72 72 61 | ters.....----------.....x.:.arra |
| b5e0 | 79 5f 6c 69 6b 65 0a 20 20 20 20 20 20 20 20 41 72 72 61 79 20 6f 66 20 70 6f 69 6e 74 73 2e 20 | y_like.........Array.of.points.. |
| b600 | 54 68 65 20 64 74 79 70 65 20 69 73 20 63 6f 6e 76 65 72 74 65 64 20 74 6f 20 66 6c 6f 61 74 36 | The.dtype.is.converted.to.float6 |
| b620 | 34 20 6f 72 20 63 6f 6d 70 6c 65 78 31 32 38 0a 20 20 20 20 20 20 20 20 64 65 70 65 6e 64 69 6e | 4.or.complex128.........dependin |
| b640 | 67 20 6f 6e 20 77 68 65 74 68 65 72 20 61 6e 79 20 6f 66 20 74 68 65 20 65 6c 65 6d 65 6e 74 73 | g.on.whether.any.of.the.elements |
| b660 | 20 61 72 65 20 63 6f 6d 70 6c 65 78 2e 20 49 66 20 60 78 60 20 69 73 0a 20 20 20 20 20 20 20 20 | .are.complex..If.`x`.is......... |
| b680 | 73 63 61 6c 61 72 20 69 74 20 69 73 20 63 6f 6e 76 65 72 74 65 64 20 74 6f 20 61 20 31 2d 44 20 | scalar.it.is.converted.to.a.1-D. |
| b6a0 | 61 72 72 61 79 2e 0a 20 20 20 20 64 65 67 20 3a 20 69 6e 74 0a 20 20 20 20 20 20 20 20 44 65 67 | array......deg.:.int.........Deg |
| b6c0 | 72 65 65 20 6f 66 20 74 68 65 20 72 65 73 75 6c 74 69 6e 67 20 6d 61 74 72 69 78 2e 0a 0a 20 20 | ree.of.the.resulting.matrix..... |
| b6e0 | 20 20 52 65 74 75 72 6e 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 76 61 6e 64 65 72 | ..Returns.....-------.....vander |
| b700 | 20 3a 20 6e 64 61 72 72 61 79 0a 20 20 20 20 20 20 20 20 54 68 65 20 70 73 65 75 64 6f 20 56 61 | .:.ndarray.........The.pseudo.Va |
| b720 | 6e 64 65 72 6d 6f 6e 64 65 20 6d 61 74 72 69 78 2e 20 54 68 65 20 73 68 61 70 65 20 6f 66 20 74 | ndermonde.matrix..The.shape.of.t |
| b740 | 68 65 20 72 65 74 75 72 6e 65 64 20 6d 61 74 72 69 78 20 69 73 0a 20 20 20 20 20 20 20 20 60 60 | he.returned.matrix.is.........`` |
| b760 | 78 2e 73 68 61 70 65 20 2b 20 28 64 65 67 20 2b 20 31 2c 29 60 60 2c 20 77 68 65 72 65 20 54 68 | x.shape.+.(deg.+.1,)``,.where.Th |
| b780 | 65 20 6c 61 73 74 20 69 6e 64 65 78 20 69 73 20 74 68 65 20 64 65 67 72 65 65 20 6f 66 20 74 68 | e.last.index.is.the.degree.of.th |
| b7a0 | 65 0a 20 20 20 20 20 20 20 20 63 6f 72 72 65 73 70 6f 6e 64 69 6e 67 20 43 68 65 62 79 73 68 65 | e.........corresponding.Chebyshe |
| b7c0 | 76 20 70 6f 6c 79 6e 6f 6d 69 61 6c 2e 20 20 54 68 65 20 64 74 79 70 65 20 77 69 6c 6c 20 62 65 | v.polynomial...The.dtype.will.be |
| b7e0 | 20 74 68 65 20 73 61 6d 65 20 61 73 0a 20 20 20 20 20 20 20 20 74 68 65 20 63 6f 6e 76 65 72 74 | .the.same.as.........the.convert |
| b800 | 65 64 20 60 78 60 2e 0a 0a 20 20 20 20 72 5c 00 00 00 72 02 00 00 00 7a 18 64 65 67 20 6d 75 73 | ed.`x`.......r\...r....z.deg.mus |
| b820 | 74 20 62 65 20 6e 6f 6e 2d 6e 65 67 61 74 69 76 65 4e 72 04 00 00 00 29 02 72 38 00 00 00 72 82 | t.be.non-negativeNr....).r8...r. |
| b840 | 00 00 00 67 00 00 00 00 00 00 00 00 72 2b 00 00 00 72 2a 00 00 00 72 2d 00 00 00 29 0a 72 58 00 | ...g........r+...r*...r-...).rX. |
| b860 | 00 00 72 89 00 00 00 72 7c 00 00 00 72 2f 00 00 00 72 4f 00 00 00 72 8c 00 00 00 72 2c 00 00 00 | ..r....r|...r/...rO...r....r,... |
| b880 | 72 41 00 00 00 72 5a 00 00 00 72 8b 00 00 00 29 08 72 9e 00 00 00 72 5c 00 00 00 da 04 69 64 65 | rA...rZ...r....).r....r\.....ide |
| b8a0 | 67 da 04 64 69 6d 73 da 04 64 74 79 70 da 01 76 72 a0 00 00 00 72 47 00 00 00 73 08 00 00 00 20 | g..dims..dtyp..vr....rG...s..... |
| b8c0 | 20 20 20 20 20 20 20 72 34 00 00 00 72 18 00 00 00 72 18 00 00 00 4c 05 00 00 73 e5 00 00 00 80 | .......r4...r....r....L...s..... |
| b8e0 | 00 f4 46 01 00 0c 0e 8f 3a 89 3a 90 63 98 35 d3 0b 21 80 44 d8 07 0b 88 61 82 78 dc 0e 18 d0 19 | ..F.....:.:.c.5..!.D....a.x..... |
| b900 | 33 d3 0e 34 d0 08 34 e4 08 0a 8f 08 89 08 90 11 98 14 a0 51 d4 08 27 a8 23 d1 08 2d 80 41 d8 0c | 3..4..4............Q..'.#..-.A.. |
| b920 | 10 90 31 89 48 88 3b 98 11 9f 17 99 17 d1 0b 20 80 44 d8 0b 0c 8f 37 89 37 80 44 dc 08 0a 8f 08 | ..1.H.;..........D....7.7.D..... |
| b940 | 89 08 90 14 98 54 d4 08 22 80 41 e0 0b 0c 88 71 89 35 90 31 89 39 80 41 80 61 81 44 d8 07 0b 88 | .....T..".A....q.5.1.9.A.a.D.... |
| b960 | 61 82 78 d8 0d 0e 90 11 89 55 88 02 d8 0f 10 88 01 88 21 89 04 dc 11 16 90 71 98 24 a0 11 99 28 | a.x......U........!......q.$...( |
| b980 | d3 11 23 f2 00 01 09 2c 88 41 d8 13 14 90 51 98 11 91 55 91 38 98 62 91 3d a0 31 a0 51 a8 11 a1 | ..#....,.A....Q...U.8.b.=.1.Q... |
| b9a0 | 55 a1 38 d1 13 2b 88 41 88 61 8a 44 f0 03 01 09 2c e4 0b 0d 8f 3b 89 3b 90 71 98 21 98 52 d3 0b | U.8..+.A.a.D....,....;.;.q.!.R.. |
| b9c0 | 20 d0 04 20 72 36 00 00 00 63 03 00 00 00 00 00 00 00 00 00 00 00 05 00 00 00 03 00 00 00 f3 48 | ....r6...c.....................H |
| b9e0 | 00 00 00 97 00 74 01 00 00 00 00 00 00 00 00 6a 02 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 | .....t.........j................ |
| ba00 | 00 00 00 74 04 00 00 00 00 00 00 00 00 74 04 00 00 00 00 00 00 00 00 66 02 7c 00 7c 01 66 02 7c | ...t.........t.........f.|.|.f.| |
| ba20 | 02 ab 03 00 00 00 00 00 00 53 00 29 01 61 69 06 00 00 50 73 65 75 64 6f 2d 56 61 6e 64 65 72 6d | .........S.).ai...Pseudo-Vanderm |
| ba40 | 6f 6e 64 65 20 6d 61 74 72 69 78 20 6f 66 20 67 69 76 65 6e 20 64 65 67 72 65 65 73 2e 0a 0a 20 | onde.matrix.of.given.degrees.... |
| ba60 | 20 20 20 52 65 74 75 72 6e 73 20 74 68 65 20 70 73 65 75 64 6f 2d 56 61 6e 64 65 72 6d 6f 6e 64 | ...Returns.the.pseudo-Vandermond |
| ba80 | 65 20 6d 61 74 72 69 78 20 6f 66 20 64 65 67 72 65 65 73 20 60 64 65 67 60 20 61 6e 64 20 73 61 | e.matrix.of.degrees.`deg`.and.sa |
| baa0 | 6d 70 6c 65 0a 20 20 20 20 70 6f 69 6e 74 73 20 60 60 28 78 2c 20 79 29 60 60 2e 20 54 68 65 20 | mple.....points.``(x,.y)``..The. |
| bac0 | 70 73 65 75 64 6f 2d 56 61 6e 64 65 72 6d 6f 6e 64 65 20 6d 61 74 72 69 78 20 69 73 20 64 65 66 | pseudo-Vandermonde.matrix.is.def |
| bae0 | 69 6e 65 64 20 62 79 0a 0a 20 20 20 20 2e 2e 20 6d 61 74 68 3a 3a 20 56 5b 2e 2e 2e 2c 20 28 64 | ined.by.........math::.V[...,.(d |
| bb00 | 65 67 5b 31 5d 20 2b 20 31 29 2a 69 20 2b 20 6a 5d 20 3d 20 54 5f 69 28 78 29 20 2a 20 54 5f 6a | eg[1].+.1)*i.+.j].=.T_i(x).*.T_j |
| bb20 | 28 79 29 2c 0a 0a 20 20 20 20 77 68 65 72 65 20 60 60 30 20 3c 3d 20 69 20 3c 3d 20 64 65 67 5b | (y),......where.``0.<=.i.<=.deg[ |
| bb40 | 30 5d 60 60 20 61 6e 64 20 60 60 30 20 3c 3d 20 6a 20 3c 3d 20 64 65 67 5b 31 5d 60 60 2e 20 54 | 0]``.and.``0.<=.j.<=.deg[1]``..T |
| bb60 | 68 65 20 6c 65 61 64 69 6e 67 20 69 6e 64 69 63 65 73 20 6f 66 0a 20 20 20 20 60 56 60 20 69 6e | he.leading.indices.of.....`V`.in |
| bb80 | 64 65 78 20 74 68 65 20 70 6f 69 6e 74 73 20 60 60 28 78 2c 20 79 29 60 60 20 61 6e 64 20 74 68 | dex.the.points.``(x,.y)``.and.th |
| bba0 | 65 20 6c 61 73 74 20 69 6e 64 65 78 20 65 6e 63 6f 64 65 73 20 74 68 65 20 64 65 67 72 65 65 73 | e.last.index.encodes.the.degrees |
| bbc0 | 20 6f 66 0a 20 20 20 20 74 68 65 20 43 68 65 62 79 73 68 65 76 20 70 6f 6c 79 6e 6f 6d 69 61 6c | .of.....the.Chebyshev.polynomial |
| bbe0 | 73 2e 0a 0a 20 20 20 20 49 66 20 60 60 56 20 3d 20 63 68 65 62 76 61 6e 64 65 72 32 64 28 78 2c | s.......If.``V.=.chebvander2d(x, |
| bc00 | 20 79 2c 20 5b 78 64 65 67 2c 20 79 64 65 67 5d 29 60 60 2c 20 74 68 65 6e 20 74 68 65 20 63 6f | .y,.[xdeg,.ydeg])``,.then.the.co |
| bc20 | 6c 75 6d 6e 73 20 6f 66 20 60 56 60 0a 20 20 20 20 63 6f 72 72 65 73 70 6f 6e 64 20 74 6f 20 74 | lumns.of.`V`.....correspond.to.t |
| bc40 | 68 65 20 65 6c 65 6d 65 6e 74 73 20 6f 66 20 61 20 32 2d 44 20 63 6f 65 66 66 69 63 69 65 6e 74 | he.elements.of.a.2-D.coefficient |
| bc60 | 20 61 72 72 61 79 20 60 63 60 20 6f 66 20 73 68 61 70 65 0a 20 20 20 20 28 78 64 65 67 20 2b 20 | .array.`c`.of.shape.....(xdeg.+. |
| bc80 | 31 2c 20 79 64 65 67 20 2b 20 31 29 20 69 6e 20 74 68 65 20 6f 72 64 65 72 0a 0a 20 20 20 20 2e | 1,.ydeg.+.1).in.the.order....... |
| bca0 | 2e 20 6d 61 74 68 3a 3a 20 63 5f 7b 30 30 7d 2c 20 63 5f 7b 30 31 7d 2c 20 63 5f 7b 30 32 7d 20 | ..math::.c_{00},.c_{01},.c_{02}. |
| bcc0 | 2e 2e 2e 20 2c 20 63 5f 7b 31 30 7d 2c 20 63 5f 7b 31 31 7d 2c 20 63 5f 7b 31 32 7d 20 2e 2e 2e | ....,.c_{10},.c_{11},.c_{12}.... |
| bce0 | 0a 0a 20 20 20 20 61 6e 64 20 60 60 6e 70 2e 64 6f 74 28 56 2c 20 63 2e 66 6c 61 74 29 60 60 20 | ......and.``np.dot(V,.c.flat)``. |
| bd00 | 61 6e 64 20 60 60 63 68 65 62 76 61 6c 32 64 28 78 2c 20 79 2c 20 63 29 60 60 20 77 69 6c 6c 20 | and.``chebval2d(x,.y,.c)``.will. |
| bd20 | 62 65 20 74 68 65 20 73 61 6d 65 0a 20 20 20 20 75 70 20 74 6f 20 72 6f 75 6e 64 6f 66 66 2e 20 | be.the.same.....up.to.roundoff.. |
| bd40 | 54 68 69 73 20 65 71 75 69 76 61 6c 65 6e 63 65 20 69 73 20 75 73 65 66 75 6c 20 62 6f 74 68 20 | This.equivalence.is.useful.both. |
| bd60 | 66 6f 72 20 6c 65 61 73 74 20 73 71 75 61 72 65 73 0a 20 20 20 20 66 69 74 74 69 6e 67 20 61 6e | for.least.squares.....fitting.an |
| bd80 | 64 20 66 6f 72 20 74 68 65 20 65 76 61 6c 75 61 74 69 6f 6e 20 6f 66 20 61 20 6c 61 72 67 65 20 | d.for.the.evaluation.of.a.large. |
| bda0 | 6e 75 6d 62 65 72 20 6f 66 20 32 2d 44 20 43 68 65 62 79 73 68 65 76 0a 20 20 20 20 73 65 72 69 | number.of.2-D.Chebyshev.....seri |
| bdc0 | 65 73 20 6f 66 20 74 68 65 20 73 61 6d 65 20 64 65 67 72 65 65 73 20 61 6e 64 20 73 61 6d 70 6c | es.of.the.same.degrees.and.sampl |
| bde0 | 65 20 70 6f 69 6e 74 73 2e 0a 0a 20 20 20 20 50 61 72 61 6d 65 74 65 72 73 0a 20 20 20 20 2d 2d | e.points.......Parameters.....-- |
| be00 | 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 78 2c 20 79 20 3a 20 61 72 72 61 79 5f 6c 69 6b 65 0a 20 | --------.....x,.y.:.array_like.. |
| be20 | 20 20 20 20 20 20 20 41 72 72 61 79 73 20 6f 66 20 70 6f 69 6e 74 20 63 6f 6f 72 64 69 6e 61 74 | .......Arrays.of.point.coordinat |
| be40 | 65 73 2c 20 61 6c 6c 20 6f 66 20 74 68 65 20 73 61 6d 65 20 73 68 61 70 65 2e 20 54 68 65 20 64 | es,.all.of.the.same.shape..The.d |
| be60 | 74 79 70 65 73 0a 20 20 20 20 20 20 20 20 77 69 6c 6c 20 62 65 20 63 6f 6e 76 65 72 74 65 64 20 | types.........will.be.converted. |
| be80 | 74 6f 20 65 69 74 68 65 72 20 66 6c 6f 61 74 36 34 20 6f 72 20 63 6f 6d 70 6c 65 78 31 32 38 20 | to.either.float64.or.complex128. |
| bea0 | 64 65 70 65 6e 64 69 6e 67 20 6f 6e 0a 20 20 20 20 20 20 20 20 77 68 65 74 68 65 72 20 61 6e 79 | depending.on.........whether.any |
| bec0 | 20 6f 66 20 74 68 65 20 65 6c 65 6d 65 6e 74 73 20 61 72 65 20 63 6f 6d 70 6c 65 78 2e 20 53 63 | .of.the.elements.are.complex..Sc |
| bee0 | 61 6c 61 72 73 20 61 72 65 20 63 6f 6e 76 65 72 74 65 64 20 74 6f 0a 20 20 20 20 20 20 20 20 31 | alars.are.converted.to.........1 |
| bf00 | 2d 44 20 61 72 72 61 79 73 2e 0a 20 20 20 20 64 65 67 20 3a 20 6c 69 73 74 20 6f 66 20 69 6e 74 | -D.arrays......deg.:.list.of.int |
| bf20 | 73 0a 20 20 20 20 20 20 20 20 4c 69 73 74 20 6f 66 20 6d 61 78 69 6d 75 6d 20 64 65 67 72 65 65 | s.........List.of.maximum.degree |
| bf40 | 73 20 6f 66 20 74 68 65 20 66 6f 72 6d 20 5b 78 5f 64 65 67 2c 20 79 5f 64 65 67 5d 2e 0a 0a 20 | s.of.the.form.[x_deg,.y_deg].... |
| bf60 | 20 20 20 52 65 74 75 72 6e 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 76 61 6e 64 65 | ...Returns.....-------.....vande |
| bf80 | 72 32 64 20 3a 20 6e 64 61 72 72 61 79 0a 20 20 20 20 20 20 20 20 54 68 65 20 73 68 61 70 65 20 | r2d.:.ndarray.........The.shape. |
| bfa0 | 6f 66 20 74 68 65 20 72 65 74 75 72 6e 65 64 20 6d 61 74 72 69 78 20 69 73 20 60 60 78 2e 73 68 | of.the.returned.matrix.is.``x.sh |
| bfc0 | 61 70 65 20 2b 20 28 6f 72 64 65 72 2c 29 60 60 2c 20 77 68 65 72 65 0a 20 20 20 20 20 20 20 20 | ape.+.(order,)``,.where......... |
| bfe0 | 3a 6d 61 74 68 3a 60 6f 72 64 65 72 20 3d 20 28 64 65 67 5b 30 5d 2b 31 29 2a 28 64 65 67 5b 31 | :math:`order.=.(deg[0]+1)*(deg[1 |
| c000 | 5d 2b 31 29 60 2e 20 20 54 68 65 20 64 74 79 70 65 20 77 69 6c 6c 20 62 65 20 74 68 65 20 73 61 | ]+1)`...The.dtype.will.be.the.sa |
| c020 | 6d 65 0a 20 20 20 20 20 20 20 20 61 73 20 74 68 65 20 63 6f 6e 76 65 72 74 65 64 20 60 78 60 20 | me.........as.the.converted.`x`. |
| c040 | 61 6e 64 20 60 79 60 2e 0a 0a 20 20 20 20 53 65 65 20 41 6c 73 6f 0a 20 20 20 20 2d 2d 2d 2d 2d | and.`y`.......See.Also.....----- |
| c060 | 2d 2d 2d 0a 20 20 20 20 63 68 65 62 76 61 6e 64 65 72 2c 20 63 68 65 62 76 61 6e 64 65 72 33 64 | ---.....chebvander,.chebvander3d |
| c080 | 2c 20 63 68 65 62 76 61 6c 32 64 2c 20 63 68 65 62 76 61 6c 33 64 0a 20 20 20 20 a9 03 72 58 00 | ,.chebval2d,.chebval3d.......rX. |
| c0a0 | 00 00 da 0f 5f 76 61 6e 64 65 72 5f 6e 64 5f 66 6c 61 74 72 18 00 00 00 29 03 72 9e 00 00 00 72 | ...._vander_nd_flatr....).r....r |
| c0c0 | a5 00 00 00 72 5c 00 00 00 73 03 00 00 00 20 20 20 72 34 00 00 00 72 23 00 00 00 72 23 00 00 00 | ....r\...s.......r4...r#...r#... |
| c0e0 | 81 05 00 00 73 23 00 00 00 80 00 f4 58 01 00 0c 0e d7 0b 1d d1 0b 1d 9c 7a ac 3a d0 1e 36 b8 11 | ....s#......X...........z.:..6.. |
| c100 | b8 41 b8 06 c0 03 d3 0b 44 d0 04 44 72 36 00 00 00 63 04 00 00 00 00 00 00 00 00 00 00 00 06 00 | .A......D..Dr6...c.............. |
| c120 | 00 00 03 00 00 00 f3 54 00 00 00 97 00 74 01 00 00 00 00 00 00 00 00 6a 02 00 00 00 00 00 00 00 | .......T.....t.........j........ |
| c140 | 00 00 00 00 00 00 00 00 00 00 00 74 04 00 00 00 00 00 00 00 00 74 04 00 00 00 00 00 00 00 00 74 | ...........t.........t.........t |
| c160 | 04 00 00 00 00 00 00 00 00 66 03 7c 00 7c 01 7c 02 66 03 7c 03 ab 03 00 00 00 00 00 00 53 00 29 | .........f.|.|.|.f.|.........S.) |
| c180 | 01 61 fc 06 00 00 50 73 65 75 64 6f 2d 56 61 6e 64 65 72 6d 6f 6e 64 65 20 6d 61 74 72 69 78 20 | .a....Pseudo-Vandermonde.matrix. |
| c1a0 | 6f 66 20 67 69 76 65 6e 20 64 65 67 72 65 65 73 2e 0a 0a 20 20 20 20 52 65 74 75 72 6e 73 20 74 | of.given.degrees.......Returns.t |
| c1c0 | 68 65 20 70 73 65 75 64 6f 2d 56 61 6e 64 65 72 6d 6f 6e 64 65 20 6d 61 74 72 69 78 20 6f 66 20 | he.pseudo-Vandermonde.matrix.of. |
| c1e0 | 64 65 67 72 65 65 73 20 60 64 65 67 60 20 61 6e 64 20 73 61 6d 70 6c 65 0a 20 20 20 20 70 6f 69 | degrees.`deg`.and.sample.....poi |
| c200 | 6e 74 73 20 60 60 28 78 2c 20 79 2c 20 7a 29 60 60 2e 20 49 66 20 60 6c 60 2c 20 60 6d 60 2c 20 | nts.``(x,.y,.z)``..If.`l`,.`m`,. |
| c220 | 60 6e 60 20 61 72 65 20 74 68 65 20 67 69 76 65 6e 20 64 65 67 72 65 65 73 20 69 6e 20 60 78 60 | `n`.are.the.given.degrees.in.`x` |
| c240 | 2c 20 60 79 60 2c 20 60 7a 60 2c 0a 20 20 20 20 74 68 65 6e 20 54 68 65 20 70 73 65 75 64 6f 2d | ,.`y`,.`z`,.....then.The.pseudo- |
| c260 | 56 61 6e 64 65 72 6d 6f 6e 64 65 20 6d 61 74 72 69 78 20 69 73 20 64 65 66 69 6e 65 64 20 62 79 | Vandermonde.matrix.is.defined.by |
| c280 | 0a 0a 20 20 20 20 2e 2e 20 6d 61 74 68 3a 3a 20 56 5b 2e 2e 2e 2c 20 28 6d 2b 31 29 28 6e 2b 31 | .........math::.V[...,.(m+1)(n+1 |
| c2a0 | 29 69 20 2b 20 28 6e 2b 31 29 6a 20 2b 20 6b 5d 20 3d 20 54 5f 69 28 78 29 2a 54 5f 6a 28 79 29 | )i.+.(n+1)j.+.k].=.T_i(x)*T_j(y) |
| c2c0 | 2a 54 5f 6b 28 7a 29 2c 0a 0a 20 20 20 20 77 68 65 72 65 20 60 60 30 20 3c 3d 20 69 20 3c 3d 20 | *T_k(z),......where.``0.<=.i.<=. |
| c2e0 | 6c 60 60 2c 20 60 60 30 20 3c 3d 20 6a 20 3c 3d 20 6d 60 60 2c 20 61 6e 64 20 60 60 30 20 3c 3d | l``,.``0.<=.j.<=.m``,.and.``0.<= |
| c300 | 20 6a 20 3c 3d 20 6e 60 60 2e 20 20 54 68 65 20 6c 65 61 64 69 6e 67 0a 20 20 20 20 69 6e 64 69 | .j.<=.n``...The.leading.....indi |
| c320 | 63 65 73 20 6f 66 20 60 56 60 20 69 6e 64 65 78 20 74 68 65 20 70 6f 69 6e 74 73 20 60 60 28 78 | ces.of.`V`.index.the.points.``(x |
| c340 | 2c 20 79 2c 20 7a 29 60 60 20 61 6e 64 20 74 68 65 20 6c 61 73 74 20 69 6e 64 65 78 20 65 6e 63 | ,.y,.z)``.and.the.last.index.enc |
| c360 | 6f 64 65 73 0a 20 20 20 20 74 68 65 20 64 65 67 72 65 65 73 20 6f 66 20 74 68 65 20 43 68 65 62 | odes.....the.degrees.of.the.Cheb |
| c380 | 79 73 68 65 76 20 70 6f 6c 79 6e 6f 6d 69 61 6c 73 2e 0a 0a 20 20 20 20 49 66 20 60 60 56 20 3d | yshev.polynomials.......If.``V.= |
| c3a0 | 20 63 68 65 62 76 61 6e 64 65 72 33 64 28 78 2c 20 79 2c 20 7a 2c 20 5b 78 64 65 67 2c 20 79 64 | .chebvander3d(x,.y,.z,.[xdeg,.yd |
| c3c0 | 65 67 2c 20 7a 64 65 67 5d 29 60 60 2c 20 74 68 65 6e 20 74 68 65 20 63 6f 6c 75 6d 6e 73 0a 20 | eg,.zdeg])``,.then.the.columns.. |
| c3e0 | 20 20 20 6f 66 20 60 56 60 20 63 6f 72 72 65 73 70 6f 6e 64 20 74 6f 20 74 68 65 20 65 6c 65 6d | ...of.`V`.correspond.to.the.elem |
| c400 | 65 6e 74 73 20 6f 66 20 61 20 33 2d 44 20 63 6f 65 66 66 69 63 69 65 6e 74 20 61 72 72 61 79 20 | ents.of.a.3-D.coefficient.array. |
| c420 | 60 63 60 20 6f 66 0a 20 20 20 20 73 68 61 70 65 20 28 78 64 65 67 20 2b 20 31 2c 20 79 64 65 67 | `c`.of.....shape.(xdeg.+.1,.ydeg |
| c440 | 20 2b 20 31 2c 20 7a 64 65 67 20 2b 20 31 29 20 69 6e 20 74 68 65 20 6f 72 64 65 72 0a 0a 20 20 | .+.1,.zdeg.+.1).in.the.order.... |
| c460 | 20 20 2e 2e 20 6d 61 74 68 3a 3a 20 63 5f 7b 30 30 30 7d 2c 20 63 5f 7b 30 30 31 7d 2c 20 63 5f | .....math::.c_{000},.c_{001},.c_ |
| c480 | 7b 30 30 32 7d 2c 2e 2e 2e 20 2c 20 63 5f 7b 30 31 30 7d 2c 20 63 5f 7b 30 31 31 7d 2c 20 63 5f | {002},....,.c_{010},.c_{011},.c_ |
| c4a0 | 7b 30 31 32 7d 2c 2e 2e 2e 0a 0a 20 20 20 20 61 6e 64 20 60 60 6e 70 2e 64 6f 74 28 56 2c 20 63 | {012},.........and.``np.dot(V,.c |
| c4c0 | 2e 66 6c 61 74 29 60 60 20 61 6e 64 20 60 60 63 68 65 62 76 61 6c 33 64 28 78 2c 20 79 2c 20 7a | .flat)``.and.``chebval3d(x,.y,.z |
| c4e0 | 2c 20 63 29 60 60 20 77 69 6c 6c 20 62 65 20 74 68 65 0a 20 20 20 20 73 61 6d 65 20 75 70 20 74 | ,.c)``.will.be.the.....same.up.t |
| c500 | 6f 20 72 6f 75 6e 64 6f 66 66 2e 20 54 68 69 73 20 65 71 75 69 76 61 6c 65 6e 63 65 20 69 73 20 | o.roundoff..This.equivalence.is. |
| c520 | 75 73 65 66 75 6c 20 62 6f 74 68 20 66 6f 72 20 6c 65 61 73 74 20 73 71 75 61 72 65 73 0a 20 20 | useful.both.for.least.squares... |
| c540 | 20 20 66 69 74 74 69 6e 67 20 61 6e 64 20 66 6f 72 20 74 68 65 20 65 76 61 6c 75 61 74 69 6f 6e | ..fitting.and.for.the.evaluation |
| c560 | 20 6f 66 20 61 20 6c 61 72 67 65 20 6e 75 6d 62 65 72 20 6f 66 20 33 2d 44 20 43 68 65 62 79 73 | .of.a.large.number.of.3-D.Chebys |
| c580 | 68 65 76 0a 20 20 20 20 73 65 72 69 65 73 20 6f 66 20 74 68 65 20 73 61 6d 65 20 64 65 67 72 65 | hev.....series.of.the.same.degre |
| c5a0 | 65 73 20 61 6e 64 20 73 61 6d 70 6c 65 20 70 6f 69 6e 74 73 2e 0a 0a 20 20 20 20 50 61 72 61 6d | es.and.sample.points.......Param |
| c5c0 | 65 74 65 72 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 78 2c 20 79 2c 20 7a | eters.....----------.....x,.y,.z |
| c5e0 | 20 3a 20 61 72 72 61 79 5f 6c 69 6b 65 0a 20 20 20 20 20 20 20 20 41 72 72 61 79 73 20 6f 66 20 | .:.array_like.........Arrays.of. |
| c600 | 70 6f 69 6e 74 20 63 6f 6f 72 64 69 6e 61 74 65 73 2c 20 61 6c 6c 20 6f 66 20 74 68 65 20 73 61 | point.coordinates,.all.of.the.sa |
| c620 | 6d 65 20 73 68 61 70 65 2e 20 54 68 65 20 64 74 79 70 65 73 20 77 69 6c 6c 0a 20 20 20 20 20 20 | me.shape..The.dtypes.will....... |
| c640 | 20 20 62 65 20 63 6f 6e 76 65 72 74 65 64 20 74 6f 20 65 69 74 68 65 72 20 66 6c 6f 61 74 36 34 | ..be.converted.to.either.float64 |
| c660 | 20 6f 72 20 63 6f 6d 70 6c 65 78 31 32 38 20 64 65 70 65 6e 64 69 6e 67 20 6f 6e 20 77 68 65 74 | .or.complex128.depending.on.whet |
| c680 | 68 65 72 0a 20 20 20 20 20 20 20 20 61 6e 79 20 6f 66 20 74 68 65 20 65 6c 65 6d 65 6e 74 73 20 | her.........any.of.the.elements. |
| c6a0 | 61 72 65 20 63 6f 6d 70 6c 65 78 2e 20 53 63 61 6c 61 72 73 20 61 72 65 20 63 6f 6e 76 65 72 74 | are.complex..Scalars.are.convert |
| c6c0 | 65 64 20 74 6f 20 31 2d 44 0a 20 20 20 20 20 20 20 20 61 72 72 61 79 73 2e 0a 20 20 20 20 64 65 | ed.to.1-D.........arrays......de |
| c6e0 | 67 20 3a 20 6c 69 73 74 20 6f 66 20 69 6e 74 73 0a 20 20 20 20 20 20 20 20 4c 69 73 74 20 6f 66 | g.:.list.of.ints.........List.of |
| c700 | 20 6d 61 78 69 6d 75 6d 20 64 65 67 72 65 65 73 20 6f 66 20 74 68 65 20 66 6f 72 6d 20 5b 78 5f | .maximum.degrees.of.the.form.[x_ |
| c720 | 64 65 67 2c 20 79 5f 64 65 67 2c 20 7a 5f 64 65 67 5d 2e 0a 0a 20 20 20 20 52 65 74 75 72 6e 73 | deg,.y_deg,.z_deg].......Returns |
| c740 | 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 76 61 6e 64 65 72 33 64 20 3a 20 6e 64 61 72 | .....-------.....vander3d.:.ndar |
| c760 | 72 61 79 0a 20 20 20 20 20 20 20 20 54 68 65 20 73 68 61 70 65 20 6f 66 20 74 68 65 20 72 65 74 | ray.........The.shape.of.the.ret |
| c780 | 75 72 6e 65 64 20 6d 61 74 72 69 78 20 69 73 20 60 60 78 2e 73 68 61 70 65 20 2b 20 28 6f 72 64 | urned.matrix.is.``x.shape.+.(ord |
| c7a0 | 65 72 2c 29 60 60 2c 20 77 68 65 72 65 0a 20 20 20 20 20 20 20 20 3a 6d 61 74 68 3a 60 6f 72 64 | er,)``,.where.........:math:`ord |
| c7c0 | 65 72 20 3d 20 28 64 65 67 5b 30 5d 2b 31 29 2a 28 64 65 67 5b 31 5d 2b 31 29 2a 28 64 65 67 5b | er.=.(deg[0]+1)*(deg[1]+1)*(deg[ |
| c7e0 | 32 5d 2b 31 29 60 2e 20 20 54 68 65 20 64 74 79 70 65 20 77 69 6c 6c 0a 20 20 20 20 20 20 20 20 | 2]+1)`...The.dtype.will......... |
| c800 | 62 65 20 74 68 65 20 73 61 6d 65 20 61 73 20 74 68 65 20 63 6f 6e 76 65 72 74 65 64 20 60 78 60 | be.the.same.as.the.converted.`x` |
| c820 | 2c 20 60 79 60 2c 20 61 6e 64 20 60 7a 60 2e 0a 0a 20 20 20 20 53 65 65 20 41 6c 73 6f 0a 20 20 | ,.`y`,.and.`z`.......See.Also... |
| c840 | 20 20 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 63 68 65 62 76 61 6e 64 65 72 2c 20 63 68 65 62 76 | ..--------.....chebvander,.chebv |
| c860 | 61 6e 64 65 72 33 64 2c 20 63 68 65 62 76 61 6c 32 64 2c 20 63 68 65 62 76 61 6c 33 64 0a 20 20 | ander3d,.chebval2d,.chebval3d... |
| c880 | 20 20 72 b3 00 00 00 29 04 72 9e 00 00 00 72 a5 00 00 00 72 ab 00 00 00 72 5c 00 00 00 73 04 00 | ..r....).r....r....r....r\...s.. |
| c8a0 | 00 00 20 20 20 20 72 34 00 00 00 72 24 00 00 00 72 24 00 00 00 b0 05 00 00 73 27 00 00 00 80 00 | ......r4...r$...r$.......s'..... |
| c8c0 | f4 5a 01 00 0c 0e d7 0b 1d d1 0b 1d 9c 7a ac 3a b4 7a d0 1e 42 c0 51 c8 01 c8 31 c0 49 c8 73 d3 | .Z...........z.:.z..B.Q...1.I.s. |
| c8e0 | 0b 53 d0 04 53 72 36 00 00 00 63 06 00 00 00 00 00 00 00 00 00 00 00 09 00 00 00 03 00 00 00 f3 | .S..Sr6...c..................... |
| c900 | 40 00 00 00 97 00 74 01 00 00 00 00 00 00 00 00 6a 02 00 00 00 00 00 00 00 00 00 00 00 00 00 00 | @.....t.........j............... |
| c920 | 00 00 00 00 74 04 00 00 00 00 00 00 00 00 7c 00 7c 01 7c 02 7c 03 7c 04 7c 05 ab 07 00 00 00 00 | ....t.........|.|.|.|.|.|....... |
| c940 | 00 00 53 00 29 01 61 22 14 00 00 0a 20 20 20 20 4c 65 61 73 74 20 73 71 75 61 72 65 73 20 66 69 | ..S.).a"........Least.squares.fi |
| c960 | 74 20 6f 66 20 43 68 65 62 79 73 68 65 76 20 73 65 72 69 65 73 20 74 6f 20 64 61 74 61 2e 0a 0a | t.of.Chebyshev.series.to.data... |
| c980 | 20 20 20 20 52 65 74 75 72 6e 20 74 68 65 20 63 6f 65 66 66 69 63 69 65 6e 74 73 20 6f 66 20 61 | ....Return.the.coefficients.of.a |
| c9a0 | 20 43 68 65 62 79 73 68 65 76 20 73 65 72 69 65 73 20 6f 66 20 64 65 67 72 65 65 20 60 64 65 67 | .Chebyshev.series.of.degree.`deg |
| c9c0 | 60 20 74 68 61 74 20 69 73 20 74 68 65 0a 20 20 20 20 6c 65 61 73 74 20 73 71 75 61 72 65 73 20 | `.that.is.the.....least.squares. |
| c9e0 | 66 69 74 20 74 6f 20 74 68 65 20 64 61 74 61 20 76 61 6c 75 65 73 20 60 79 60 20 67 69 76 65 6e | fit.to.the.data.values.`y`.given |
| ca00 | 20 61 74 20 70 6f 69 6e 74 73 20 60 78 60 2e 20 49 66 20 60 79 60 20 69 73 0a 20 20 20 20 31 2d | .at.points.`x`..If.`y`.is.....1- |
| ca20 | 44 20 74 68 65 20 72 65 74 75 72 6e 65 64 20 63 6f 65 66 66 69 63 69 65 6e 74 73 20 77 69 6c 6c | D.the.returned.coefficients.will |
| ca40 | 20 61 6c 73 6f 20 62 65 20 31 2d 44 2e 20 49 66 20 60 79 60 20 69 73 20 32 2d 44 20 6d 75 6c 74 | .also.be.1-D..If.`y`.is.2-D.mult |
| ca60 | 69 70 6c 65 0a 20 20 20 20 66 69 74 73 20 61 72 65 20 64 6f 6e 65 2c 20 6f 6e 65 20 66 6f 72 20 | iple.....fits.are.done,.one.for. |
| ca80 | 65 61 63 68 20 63 6f 6c 75 6d 6e 20 6f 66 20 60 79 60 2c 20 61 6e 64 20 74 68 65 20 72 65 73 75 | each.column.of.`y`,.and.the.resu |
| caa0 | 6c 74 69 6e 67 0a 20 20 20 20 63 6f 65 66 66 69 63 69 65 6e 74 73 20 61 72 65 20 73 74 6f 72 65 | lting.....coefficients.are.store |
| cac0 | 64 20 69 6e 20 74 68 65 20 63 6f 72 72 65 73 70 6f 6e 64 69 6e 67 20 63 6f 6c 75 6d 6e 73 20 6f | d.in.the.corresponding.columns.o |
| cae0 | 66 20 61 20 32 2d 44 20 72 65 74 75 72 6e 2e 0a 20 20 20 20 54 68 65 20 66 69 74 74 65 64 20 70 | f.a.2-D.return......The.fitted.p |
| cb00 | 6f 6c 79 6e 6f 6d 69 61 6c 28 73 29 20 61 72 65 20 69 6e 20 74 68 65 20 66 6f 72 6d 0a 0a 20 20 | olynomial(s).are.in.the.form.... |
| cb20 | 20 20 2e 2e 20 6d 61 74 68 3a 3a 20 20 70 28 78 29 20 3d 20 63 5f 30 20 2b 20 63 5f 31 20 2a 20 | .....math::..p(x).=.c_0.+.c_1.*. |
| cb40 | 54 5f 31 28 78 29 20 2b 20 2e 2e 2e 20 2b 20 63 5f 6e 20 2a 20 54 5f 6e 28 78 29 2c 0a 0a 20 20 | T_1(x).+.....+.c_n.*.T_n(x),.... |
| cb60 | 20 20 77 68 65 72 65 20 60 6e 60 20 69 73 20 60 64 65 67 60 2e 0a 0a 20 20 20 20 50 61 72 61 6d | ..where.`n`.is.`deg`.......Param |
| cb80 | 65 74 65 72 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 78 20 3a 20 61 72 72 | eters.....----------.....x.:.arr |
| cba0 | 61 79 5f 6c 69 6b 65 2c 20 73 68 61 70 65 20 28 4d 2c 29 0a 20 20 20 20 20 20 20 20 78 2d 63 6f | ay_like,.shape.(M,).........x-co |
| cbc0 | 6f 72 64 69 6e 61 74 65 73 20 6f 66 20 74 68 65 20 4d 20 73 61 6d 70 6c 65 20 70 6f 69 6e 74 73 | ordinates.of.the.M.sample.points |
| cbe0 | 20 60 60 28 78 5b 69 5d 2c 20 79 5b 69 5d 29 60 60 2e 0a 20 20 20 20 79 20 3a 20 61 72 72 61 79 | .``(x[i],.y[i])``......y.:.array |
| cc00 | 5f 6c 69 6b 65 2c 20 73 68 61 70 65 20 28 4d 2c 29 20 6f 72 20 28 4d 2c 20 4b 29 0a 20 20 20 20 | _like,.shape.(M,).or.(M,.K)..... |
| cc20 | 20 20 20 20 79 2d 63 6f 6f 72 64 69 6e 61 74 65 73 20 6f 66 20 74 68 65 20 73 61 6d 70 6c 65 20 | ....y-coordinates.of.the.sample. |
| cc40 | 70 6f 69 6e 74 73 2e 20 53 65 76 65 72 61 6c 20 64 61 74 61 20 73 65 74 73 20 6f 66 20 73 61 6d | points..Several.data.sets.of.sam |
| cc60 | 70 6c 65 0a 20 20 20 20 20 20 20 20 70 6f 69 6e 74 73 20 73 68 61 72 69 6e 67 20 74 68 65 20 73 | ple.........points.sharing.the.s |
| cc80 | 61 6d 65 20 78 2d 63 6f 6f 72 64 69 6e 61 74 65 73 20 63 61 6e 20 62 65 20 66 69 74 74 65 64 20 | ame.x-coordinates.can.be.fitted. |
| cca0 | 61 74 20 6f 6e 63 65 20 62 79 0a 20 20 20 20 20 20 20 20 70 61 73 73 69 6e 67 20 69 6e 20 61 20 | at.once.by.........passing.in.a. |
| ccc0 | 32 44 2d 61 72 72 61 79 20 74 68 61 74 20 63 6f 6e 74 61 69 6e 73 20 6f 6e 65 20 64 61 74 61 73 | 2D-array.that.contains.one.datas |
| cce0 | 65 74 20 70 65 72 20 63 6f 6c 75 6d 6e 2e 0a 20 20 20 20 64 65 67 20 3a 20 69 6e 74 20 6f 72 20 | et.per.column......deg.:.int.or. |
| cd00 | 31 2d 44 20 61 72 72 61 79 5f 6c 69 6b 65 0a 20 20 20 20 20 20 20 20 44 65 67 72 65 65 28 73 29 | 1-D.array_like.........Degree(s) |
| cd20 | 20 6f 66 20 74 68 65 20 66 69 74 74 69 6e 67 20 70 6f 6c 79 6e 6f 6d 69 61 6c 73 2e 20 49 66 20 | .of.the.fitting.polynomials..If. |
| cd40 | 60 64 65 67 60 20 69 73 20 61 20 73 69 6e 67 6c 65 20 69 6e 74 65 67 65 72 2c 0a 20 20 20 20 20 | `deg`.is.a.single.integer,...... |
| cd60 | 20 20 20 61 6c 6c 20 74 65 72 6d 73 20 75 70 20 74 6f 20 61 6e 64 20 69 6e 63 6c 75 64 69 6e 67 | ...all.terms.up.to.and.including |
| cd80 | 20 74 68 65 20 60 64 65 67 60 27 74 68 20 74 65 72 6d 20 61 72 65 20 69 6e 63 6c 75 64 65 64 20 | .the.`deg`'th.term.are.included. |
| cda0 | 69 6e 20 74 68 65 0a 20 20 20 20 20 20 20 20 66 69 74 2e 20 46 6f 72 20 4e 75 6d 50 79 20 76 65 | in.the.........fit..For.NumPy.ve |
| cdc0 | 72 73 69 6f 6e 73 20 3e 3d 20 31 2e 31 31 2e 30 20 61 20 6c 69 73 74 20 6f 66 20 69 6e 74 65 67 | rsions.>=.1.11.0.a.list.of.integ |
| cde0 | 65 72 73 20 73 70 65 63 69 66 79 69 6e 67 20 74 68 65 0a 20 20 20 20 20 20 20 20 64 65 67 72 65 | ers.specifying.the.........degre |
| ce00 | 65 73 20 6f 66 20 74 68 65 20 74 65 72 6d 73 20 74 6f 20 69 6e 63 6c 75 64 65 20 6d 61 79 20 62 | es.of.the.terms.to.include.may.b |
| ce20 | 65 20 75 73 65 64 20 69 6e 73 74 65 61 64 2e 0a 20 20 20 20 72 63 6f 6e 64 20 3a 20 66 6c 6f 61 | e.used.instead......rcond.:.floa |
| ce40 | 74 2c 20 6f 70 74 69 6f 6e 61 6c 0a 20 20 20 20 20 20 20 20 52 65 6c 61 74 69 76 65 20 63 6f 6e | t,.optional.........Relative.con |
| ce60 | 64 69 74 69 6f 6e 20 6e 75 6d 62 65 72 20 6f 66 20 74 68 65 20 66 69 74 2e 20 53 69 6e 67 75 6c | dition.number.of.the.fit..Singul |
| ce80 | 61 72 20 76 61 6c 75 65 73 20 73 6d 61 6c 6c 65 72 20 74 68 61 6e 0a 20 20 20 20 20 20 20 20 74 | ar.values.smaller.than.........t |
| cea0 | 68 69 73 20 72 65 6c 61 74 69 76 65 20 74 6f 20 74 68 65 20 6c 61 72 67 65 73 74 20 73 69 6e 67 | his.relative.to.the.largest.sing |
| cec0 | 75 6c 61 72 20 76 61 6c 75 65 20 77 69 6c 6c 20 62 65 20 69 67 6e 6f 72 65 64 2e 20 54 68 65 0a | ular.value.will.be.ignored..The. |
| cee0 | 20 20 20 20 20 20 20 20 64 65 66 61 75 6c 74 20 76 61 6c 75 65 20 69 73 20 60 60 6c 65 6e 28 78 | ........default.value.is.``len(x |
| cf00 | 29 2a 65 70 73 60 60 2c 20 77 68 65 72 65 20 65 70 73 20 69 73 20 74 68 65 20 72 65 6c 61 74 69 | )*eps``,.where.eps.is.the.relati |
| cf20 | 76 65 20 70 72 65 63 69 73 69 6f 6e 20 6f 66 0a 20 20 20 20 20 20 20 20 74 68 65 20 66 6c 6f 61 | ve.precision.of.........the.floa |
| cf40 | 74 20 74 79 70 65 2c 20 61 62 6f 75 74 20 32 65 2d 31 36 20 69 6e 20 6d 6f 73 74 20 63 61 73 65 | t.type,.about.2e-16.in.most.case |
| cf60 | 73 2e 0a 20 20 20 20 66 75 6c 6c 20 3a 20 62 6f 6f 6c 2c 20 6f 70 74 69 6f 6e 61 6c 0a 20 20 20 | s......full.:.bool,.optional.... |
| cf80 | 20 20 20 20 20 53 77 69 74 63 68 20 64 65 74 65 72 6d 69 6e 69 6e 67 20 6e 61 74 75 72 65 20 6f | .....Switch.determining.nature.o |
| cfa0 | 66 20 72 65 74 75 72 6e 20 76 61 6c 75 65 2e 20 57 68 65 6e 20 69 74 20 69 73 20 46 61 6c 73 65 | f.return.value..When.it.is.False |
| cfc0 | 20 28 74 68 65 0a 20 20 20 20 20 20 20 20 64 65 66 61 75 6c 74 29 20 6a 75 73 74 20 74 68 65 20 | .(the.........default).just.the. |
| cfe0 | 63 6f 65 66 66 69 63 69 65 6e 74 73 20 61 72 65 20 72 65 74 75 72 6e 65 64 2c 20 77 68 65 6e 20 | coefficients.are.returned,.when. |
| d000 | 54 72 75 65 20 64 69 61 67 6e 6f 73 74 69 63 0a 20 20 20 20 20 20 20 20 69 6e 66 6f 72 6d 61 74 | True.diagnostic.........informat |
| d020 | 69 6f 6e 20 66 72 6f 6d 20 74 68 65 20 73 69 6e 67 75 6c 61 72 20 76 61 6c 75 65 20 64 65 63 6f | ion.from.the.singular.value.deco |
| d040 | 6d 70 6f 73 69 74 69 6f 6e 20 69 73 20 61 6c 73 6f 20 72 65 74 75 72 6e 65 64 2e 0a 20 20 20 20 | mposition.is.also.returned...... |
| d060 | 77 20 3a 20 61 72 72 61 79 5f 6c 69 6b 65 2c 20 73 68 61 70 65 20 28 60 4d 60 2c 29 2c 20 6f 70 | w.:.array_like,.shape.(`M`,),.op |
| d080 | 74 69 6f 6e 61 6c 0a 20 20 20 20 20 20 20 20 57 65 69 67 68 74 73 2e 20 49 66 20 6e 6f 74 20 4e | tional.........Weights..If.not.N |
| d0a0 | 6f 6e 65 2c 20 74 68 65 20 77 65 69 67 68 74 20 60 60 77 5b 69 5d 60 60 20 61 70 70 6c 69 65 73 | one,.the.weight.``w[i]``.applies |
| d0c0 | 20 74 6f 20 74 68 65 20 75 6e 73 71 75 61 72 65 64 0a 20 20 20 20 20 20 20 20 72 65 73 69 64 75 | .to.the.unsquared.........residu |
| d0e0 | 61 6c 20 60 60 79 5b 69 5d 20 2d 20 79 5f 68 61 74 5b 69 5d 60 60 20 61 74 20 60 60 78 5b 69 5d | al.``y[i].-.y_hat[i]``.at.``x[i] |
| d100 | 60 60 2e 20 49 64 65 61 6c 6c 79 20 74 68 65 20 77 65 69 67 68 74 73 20 61 72 65 0a 20 20 20 20 | ``..Ideally.the.weights.are..... |
| d120 | 20 20 20 20 63 68 6f 73 65 6e 20 73 6f 20 74 68 61 74 20 74 68 65 20 65 72 72 6f 72 73 20 6f 66 | ....chosen.so.that.the.errors.of |
| d140 | 20 74 68 65 20 70 72 6f 64 75 63 74 73 20 60 60 77 5b 69 5d 2a 79 5b 69 5d 60 60 20 61 6c 6c 20 | .the.products.``w[i]*y[i]``.all. |
| d160 | 68 61 76 65 20 74 68 65 0a 20 20 20 20 20 20 20 20 73 61 6d 65 20 76 61 72 69 61 6e 63 65 2e 20 | have.the.........same.variance.. |
| d180 | 20 57 68 65 6e 20 75 73 69 6e 67 20 69 6e 76 65 72 73 65 2d 76 61 72 69 61 6e 63 65 20 77 65 69 | .When.using.inverse-variance.wei |
| d1a0 | 67 68 74 69 6e 67 2c 20 75 73 65 0a 20 20 20 20 20 20 20 20 60 60 77 5b 69 5d 20 3d 20 31 2f 73 | ghting,.use.........``w[i].=.1/s |
| d1c0 | 69 67 6d 61 28 79 5b 69 5d 29 60 60 2e 20 20 54 68 65 20 64 65 66 61 75 6c 74 20 76 61 6c 75 65 | igma(y[i])``...The.default.value |
| d1e0 | 20 69 73 20 4e 6f 6e 65 2e 0a 0a 20 20 20 20 52 65 74 75 72 6e 73 0a 20 20 20 20 2d 2d 2d 2d 2d | .is.None.......Returns.....----- |
| d200 | 2d 2d 0a 20 20 20 20 63 6f 65 66 20 3a 20 6e 64 61 72 72 61 79 2c 20 73 68 61 70 65 20 28 4d 2c | --.....coef.:.ndarray,.shape.(M, |
| d220 | 29 20 6f 72 20 28 4d 2c 20 4b 29 0a 20 20 20 20 20 20 20 20 43 68 65 62 79 73 68 65 76 20 63 6f | ).or.(M,.K).........Chebyshev.co |
| d240 | 65 66 66 69 63 69 65 6e 74 73 20 6f 72 64 65 72 65 64 20 66 72 6f 6d 20 6c 6f 77 20 74 6f 20 68 | efficients.ordered.from.low.to.h |
| d260 | 69 67 68 2e 20 49 66 20 60 79 60 20 77 61 73 20 32 2d 44 2c 0a 20 20 20 20 20 20 20 20 74 68 65 | igh..If.`y`.was.2-D,.........the |
| d280 | 20 63 6f 65 66 66 69 63 69 65 6e 74 73 20 66 6f 72 20 74 68 65 20 64 61 74 61 20 69 6e 20 63 6f | .coefficients.for.the.data.in.co |
| d2a0 | 6c 75 6d 6e 20 6b 20 20 6f 66 20 60 79 60 20 61 72 65 20 69 6e 20 63 6f 6c 75 6d 6e 0a 20 20 20 | lumn.k..of.`y`.are.in.column.... |
| d2c0 | 20 20 20 20 20 60 6b 60 2e 0a 0a 20 20 20 20 5b 72 65 73 69 64 75 61 6c 73 2c 20 72 61 6e 6b 2c | .....`k`.......[residuals,.rank, |
| d2e0 | 20 73 69 6e 67 75 6c 61 72 5f 76 61 6c 75 65 73 2c 20 72 63 6f 6e 64 5d 20 3a 20 6c 69 73 74 0a | .singular_values,.rcond].:.list. |
| d300 | 20 20 20 20 20 20 20 20 54 68 65 73 65 20 76 61 6c 75 65 73 20 61 72 65 20 6f 6e 6c 79 20 72 65 | ........These.values.are.only.re |
| d320 | 74 75 72 6e 65 64 20 69 66 20 60 60 66 75 6c 6c 20 3d 3d 20 54 72 75 65 60 60 0a 0a 20 20 20 20 | turned.if.``full.==.True``...... |
| d340 | 20 20 20 20 2d 20 72 65 73 69 64 75 61 6c 73 20 2d 2d 20 73 75 6d 20 6f 66 20 73 71 75 61 72 65 | ....-.residuals.--.sum.of.square |
| d360 | 64 20 72 65 73 69 64 75 61 6c 73 20 6f 66 20 74 68 65 20 6c 65 61 73 74 20 73 71 75 61 72 65 73 | d.residuals.of.the.least.squares |
| d380 | 20 66 69 74 0a 20 20 20 20 20 20 20 20 2d 20 72 61 6e 6b 20 2d 2d 20 74 68 65 20 6e 75 6d 65 72 | .fit.........-.rank.--.the.numer |
| d3a0 | 69 63 61 6c 20 72 61 6e 6b 20 6f 66 20 74 68 65 20 73 63 61 6c 65 64 20 56 61 6e 64 65 72 6d 6f | ical.rank.of.the.scaled.Vandermo |
| d3c0 | 6e 64 65 20 6d 61 74 72 69 78 0a 20 20 20 20 20 20 20 20 2d 20 73 69 6e 67 75 6c 61 72 5f 76 61 | nde.matrix.........-.singular_va |
| d3e0 | 6c 75 65 73 20 2d 2d 20 73 69 6e 67 75 6c 61 72 20 76 61 6c 75 65 73 20 6f 66 20 74 68 65 20 73 | lues.--.singular.values.of.the.s |
| d400 | 63 61 6c 65 64 20 56 61 6e 64 65 72 6d 6f 6e 64 65 20 6d 61 74 72 69 78 0a 20 20 20 20 20 20 20 | caled.Vandermonde.matrix........ |
| d420 | 20 2d 20 72 63 6f 6e 64 20 2d 2d 20 76 61 6c 75 65 20 6f 66 20 60 72 63 6f 6e 64 60 2e 0a 0a 20 | .-.rcond.--.value.of.`rcond`.... |
| d440 | 20 20 20 20 20 20 20 46 6f 72 20 6d 6f 72 65 20 64 65 74 61 69 6c 73 2c 20 73 65 65 20 60 6e 75 | .......For.more.details,.see.`nu |
| d460 | 6d 70 79 2e 6c 69 6e 61 6c 67 2e 6c 73 74 73 71 60 2e 0a 0a 20 20 20 20 57 61 72 6e 73 0a 20 20 | mpy.linalg.lstsq`.......Warns... |
| d480 | 20 20 2d 2d 2d 2d 2d 0a 20 20 20 20 52 61 6e 6b 57 61 72 6e 69 6e 67 0a 20 20 20 20 20 20 20 20 | ..-----.....RankWarning......... |
| d4a0 | 54 68 65 20 72 61 6e 6b 20 6f 66 20 74 68 65 20 63 6f 65 66 66 69 63 69 65 6e 74 20 6d 61 74 72 | The.rank.of.the.coefficient.matr |
| d4c0 | 69 78 20 69 6e 20 74 68 65 20 6c 65 61 73 74 2d 73 71 75 61 72 65 73 20 66 69 74 20 69 73 0a 20 | ix.in.the.least-squares.fit.is.. |
| d4e0 | 20 20 20 20 20 20 20 64 65 66 69 63 69 65 6e 74 2e 20 54 68 65 20 77 61 72 6e 69 6e 67 20 69 73 | .......deficient..The.warning.is |
| d500 | 20 6f 6e 6c 79 20 72 61 69 73 65 64 20 69 66 20 60 60 66 75 6c 6c 20 3d 3d 20 46 61 6c 73 65 60 | .only.raised.if.``full.==.False` |
| d520 | 60 2e 20 20 54 68 65 0a 20 20 20 20 20 20 20 20 77 61 72 6e 69 6e 67 73 20 63 61 6e 20 62 65 20 | `...The.........warnings.can.be. |
| d540 | 74 75 72 6e 65 64 20 6f 66 66 20 62 79 0a 0a 20 20 20 20 20 20 20 20 3e 3e 3e 20 69 6d 70 6f 72 | turned.off.by..........>>>.impor |
| d560 | 74 20 77 61 72 6e 69 6e 67 73 0a 20 20 20 20 20 20 20 20 3e 3e 3e 20 77 61 72 6e 69 6e 67 73 2e | t.warnings.........>>>.warnings. |
| d580 | 73 69 6d 70 6c 65 66 69 6c 74 65 72 28 27 69 67 6e 6f 72 65 27 2c 20 6e 70 2e 65 78 63 65 70 74 | simplefilter('ignore',.np.except |
| d5a0 | 69 6f 6e 73 2e 52 61 6e 6b 57 61 72 6e 69 6e 67 29 0a 0a 20 20 20 20 53 65 65 20 41 6c 73 6f 0a | ions.RankWarning)......See.Also. |
| d5c0 | 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 6e 75 6d 70 79 2e 70 6f 6c 79 6e 6f 6d 69 61 | ....--------.....numpy.polynomia |
| d5e0 | 6c 2e 70 6f 6c 79 6e 6f 6d 69 61 6c 2e 70 6f 6c 79 66 69 74 0a 20 20 20 20 6e 75 6d 70 79 2e 70 | l.polynomial.polyfit.....numpy.p |
| d600 | 6f 6c 79 6e 6f 6d 69 61 6c 2e 6c 65 67 65 6e 64 72 65 2e 6c 65 67 66 69 74 0a 20 20 20 20 6e 75 | olynomial.legendre.legfit.....nu |
| d620 | 6d 70 79 2e 70 6f 6c 79 6e 6f 6d 69 61 6c 2e 6c 61 67 75 65 72 72 65 2e 6c 61 67 66 69 74 0a 20 | mpy.polynomial.laguerre.lagfit.. |
| d640 | 20 20 20 6e 75 6d 70 79 2e 70 6f 6c 79 6e 6f 6d 69 61 6c 2e 68 65 72 6d 69 74 65 2e 68 65 72 6d | ...numpy.polynomial.hermite.herm |
| d660 | 66 69 74 0a 20 20 20 20 6e 75 6d 70 79 2e 70 6f 6c 79 6e 6f 6d 69 61 6c 2e 68 65 72 6d 69 74 65 | fit.....numpy.polynomial.hermite |
| d680 | 5f 65 2e 68 65 72 6d 65 66 69 74 0a 20 20 20 20 63 68 65 62 76 61 6c 20 3a 20 45 76 61 6c 75 61 | _e.hermefit.....chebval.:.Evalua |
| d6a0 | 74 65 73 20 61 20 43 68 65 62 79 73 68 65 76 20 73 65 72 69 65 73 2e 0a 20 20 20 20 63 68 65 62 | tes.a.Chebyshev.series......cheb |
| d6c0 | 76 61 6e 64 65 72 20 3a 20 56 61 6e 64 65 72 6d 6f 6e 64 65 20 6d 61 74 72 69 78 20 6f 66 20 43 | vander.:.Vandermonde.matrix.of.C |
| d6e0 | 68 65 62 79 73 68 65 76 20 73 65 72 69 65 73 2e 0a 20 20 20 20 63 68 65 62 77 65 69 67 68 74 20 | hebyshev.series......chebweight. |
| d700 | 3a 20 43 68 65 62 79 73 68 65 76 20 77 65 69 67 68 74 20 66 75 6e 63 74 69 6f 6e 2e 0a 20 20 20 | :.Chebyshev.weight.function..... |
| d720 | 20 6e 75 6d 70 79 2e 6c 69 6e 61 6c 67 2e 6c 73 74 73 71 20 3a 20 43 6f 6d 70 75 74 65 73 20 61 | .numpy.linalg.lstsq.:.Computes.a |
| d740 | 20 6c 65 61 73 74 2d 73 71 75 61 72 65 73 20 66 69 74 20 66 72 6f 6d 20 74 68 65 20 6d 61 74 72 | .least-squares.fit.from.the.matr |
| d760 | 69 78 2e 0a 20 20 20 20 73 63 69 70 79 2e 69 6e 74 65 72 70 6f 6c 61 74 65 2e 55 6e 69 76 61 72 | ix......scipy.interpolate.Univar |
| d780 | 69 61 74 65 53 70 6c 69 6e 65 20 3a 20 43 6f 6d 70 75 74 65 73 20 73 70 6c 69 6e 65 20 66 69 74 | iateSpline.:.Computes.spline.fit |
| d7a0 | 73 2e 0a 0a 20 20 20 20 4e 6f 74 65 73 0a 20 20 20 20 2d 2d 2d 2d 2d 0a 20 20 20 20 54 68 65 20 | s.......Notes.....-----.....The. |
| d7c0 | 73 6f 6c 75 74 69 6f 6e 20 69 73 20 74 68 65 20 63 6f 65 66 66 69 63 69 65 6e 74 73 20 6f 66 20 | solution.is.the.coefficients.of. |
| d7e0 | 74 68 65 20 43 68 65 62 79 73 68 65 76 20 73 65 72 69 65 73 20 60 70 60 20 74 68 61 74 0a 20 20 | the.Chebyshev.series.`p`.that... |
| d800 | 20 20 6d 69 6e 69 6d 69 7a 65 73 20 74 68 65 20 73 75 6d 20 6f 66 20 74 68 65 20 77 65 69 67 68 | ..minimizes.the.sum.of.the.weigh |
| d820 | 74 65 64 20 73 71 75 61 72 65 64 20 65 72 72 6f 72 73 0a 0a 20 20 20 20 2e 2e 20 6d 61 74 68 3a | ted.squared.errors.........math: |
| d840 | 3a 20 45 20 3d 20 5c 73 75 6d 5f 6a 20 77 5f 6a 5e 32 20 2a 20 7c 79 5f 6a 20 2d 20 70 28 78 5f | :.E.=.\sum_j.w_j^2.*.|y_j.-.p(x_ |
| d860 | 6a 29 7c 5e 32 2c 0a 0a 20 20 20 20 77 68 65 72 65 20 3a 6d 61 74 68 3a 60 77 5f 6a 60 20 61 72 | j)|^2,......where.:math:`w_j`.ar |
| d880 | 65 20 74 68 65 20 77 65 69 67 68 74 73 2e 20 54 68 69 73 20 70 72 6f 62 6c 65 6d 20 69 73 20 73 | e.the.weights..This.problem.is.s |
| d8a0 | 6f 6c 76 65 64 20 62 79 20 73 65 74 74 69 6e 67 20 75 70 0a 20 20 20 20 61 73 20 74 68 65 20 28 | olved.by.setting.up.....as.the.( |
| d8c0 | 74 79 70 69 63 61 6c 6c 79 29 20 6f 76 65 72 64 65 74 65 72 6d 69 6e 65 64 20 6d 61 74 72 69 78 | typically).overdetermined.matrix |
| d8e0 | 20 65 71 75 61 74 69 6f 6e 0a 0a 20 20 20 20 2e 2e 20 6d 61 74 68 3a 3a 20 56 28 78 29 20 2a 20 | .equation.........math::.V(x).*. |
| d900 | 63 20 3d 20 77 20 2a 20 79 2c 0a 0a 20 20 20 20 77 68 65 72 65 20 60 56 60 20 69 73 20 74 68 65 | c.=.w.*.y,......where.`V`.is.the |
| d920 | 20 77 65 69 67 68 74 65 64 20 70 73 65 75 64 6f 20 56 61 6e 64 65 72 6d 6f 6e 64 65 20 6d 61 74 | .weighted.pseudo.Vandermonde.mat |
| d940 | 72 69 78 20 6f 66 20 60 78 60 2c 20 60 63 60 20 61 72 65 20 74 68 65 0a 20 20 20 20 63 6f 65 66 | rix.of.`x`,.`c`.are.the.....coef |
| d960 | 66 69 63 69 65 6e 74 73 20 74 6f 20 62 65 20 73 6f 6c 76 65 64 20 66 6f 72 2c 20 60 77 60 20 61 | ficients.to.be.solved.for,.`w`.a |
| d980 | 72 65 20 74 68 65 20 77 65 69 67 68 74 73 2c 20 61 6e 64 20 60 79 60 20 61 72 65 20 74 68 65 0a | re.the.weights,.and.`y`.are.the. |
| d9a0 | 20 20 20 20 6f 62 73 65 72 76 65 64 20 76 61 6c 75 65 73 2e 20 20 54 68 69 73 20 65 71 75 61 74 | ....observed.values...This.equat |
| d9c0 | 69 6f 6e 20 69 73 20 74 68 65 6e 20 73 6f 6c 76 65 64 20 75 73 69 6e 67 20 74 68 65 20 73 69 6e | ion.is.then.solved.using.the.sin |
| d9e0 | 67 75 6c 61 72 20 76 61 6c 75 65 0a 20 20 20 20 64 65 63 6f 6d 70 6f 73 69 74 69 6f 6e 20 6f 66 | gular.value.....decomposition.of |
| da00 | 20 60 56 60 2e 0a 0a 20 20 20 20 49 66 20 73 6f 6d 65 20 6f 66 20 74 68 65 20 73 69 6e 67 75 6c | .`V`.......If.some.of.the.singul |
| da20 | 61 72 20 76 61 6c 75 65 73 20 6f 66 20 60 56 60 20 61 72 65 20 73 6f 20 73 6d 61 6c 6c 20 74 68 | ar.values.of.`V`.are.so.small.th |
| da40 | 61 74 20 74 68 65 79 20 61 72 65 0a 20 20 20 20 6e 65 67 6c 65 63 74 65 64 2c 20 74 68 65 6e 20 | at.they.are.....neglected,.then. |
| da60 | 61 20 60 7e 65 78 63 65 70 74 69 6f 6e 73 2e 52 61 6e 6b 57 61 72 6e 69 6e 67 60 20 77 69 6c 6c | a.`~exceptions.RankWarning`.will |
| da80 | 20 62 65 20 69 73 73 75 65 64 2e 20 54 68 69 73 20 6d 65 61 6e 73 20 74 68 61 74 0a 20 20 20 20 | .be.issued..This.means.that..... |
| daa0 | 74 68 65 20 63 6f 65 66 66 69 63 69 65 6e 74 20 76 61 6c 75 65 73 20 6d 61 79 20 62 65 20 70 6f | the.coefficient.values.may.be.po |
| dac0 | 6f 72 6c 79 20 64 65 74 65 72 6d 69 6e 65 64 2e 20 55 73 69 6e 67 20 61 20 6c 6f 77 65 72 20 6f | orly.determined..Using.a.lower.o |
| dae0 | 72 64 65 72 20 66 69 74 0a 20 20 20 20 77 69 6c 6c 20 75 73 75 61 6c 6c 79 20 67 65 74 20 72 69 | rder.fit.....will.usually.get.ri |
| db00 | 64 20 6f 66 20 74 68 65 20 77 61 72 6e 69 6e 67 2e 20 20 54 68 65 20 60 72 63 6f 6e 64 60 20 70 | d.of.the.warning...The.`rcond`.p |
| db20 | 61 72 61 6d 65 74 65 72 20 63 61 6e 20 61 6c 73 6f 20 62 65 0a 20 20 20 20 73 65 74 20 74 6f 20 | arameter.can.also.be.....set.to. |
| db40 | 61 20 76 61 6c 75 65 20 73 6d 61 6c 6c 65 72 20 74 68 61 6e 20 69 74 73 20 64 65 66 61 75 6c 74 | a.value.smaller.than.its.default |
| db60 | 2c 20 62 75 74 20 74 68 65 20 72 65 73 75 6c 74 69 6e 67 20 66 69 74 20 6d 61 79 20 62 65 0a 20 | ,.but.the.resulting.fit.may.be.. |
| db80 | 20 20 20 73 70 75 72 69 6f 75 73 20 61 6e 64 20 68 61 76 65 20 6c 61 72 67 65 20 63 6f 6e 74 72 | ...spurious.and.have.large.contr |
| dba0 | 69 62 75 74 69 6f 6e 73 20 66 72 6f 6d 20 72 6f 75 6e 64 6f 66 66 20 65 72 72 6f 72 2e 0a 0a 20 | ibutions.from.roundoff.error.... |
| dbc0 | 20 20 20 46 69 74 73 20 75 73 69 6e 67 20 43 68 65 62 79 73 68 65 76 20 73 65 72 69 65 73 20 61 | ...Fits.using.Chebyshev.series.a |
| dbe0 | 72 65 20 75 73 75 61 6c 6c 79 20 62 65 74 74 65 72 20 63 6f 6e 64 69 74 69 6f 6e 65 64 20 74 68 | re.usually.better.conditioned.th |
| dc00 | 61 6e 20 66 69 74 73 0a 20 20 20 20 75 73 69 6e 67 20 70 6f 77 65 72 20 73 65 72 69 65 73 2c 20 | an.fits.....using.power.series,. |
| dc20 | 62 75 74 20 6d 75 63 68 20 63 61 6e 20 64 65 70 65 6e 64 20 6f 6e 20 74 68 65 20 64 69 73 74 72 | but.much.can.depend.on.the.distr |
| dc40 | 69 62 75 74 69 6f 6e 20 6f 66 20 74 68 65 0a 20 20 20 20 73 61 6d 70 6c 65 20 70 6f 69 6e 74 73 | ibution.of.the.....sample.points |
| dc60 | 20 61 6e 64 20 74 68 65 20 73 6d 6f 6f 74 68 6e 65 73 73 20 6f 66 20 74 68 65 20 64 61 74 61 2e | .and.the.smoothness.of.the.data. |
| dc80 | 20 49 66 20 74 68 65 20 71 75 61 6c 69 74 79 20 6f 66 20 74 68 65 20 66 69 74 0a 20 20 20 20 69 | .If.the.quality.of.the.fit.....i |
| dca0 | 73 20 69 6e 61 64 65 71 75 61 74 65 20 73 70 6c 69 6e 65 73 20 6d 61 79 20 62 65 20 61 20 67 6f | s.inadequate.splines.may.be.a.go |
| dcc0 | 6f 64 20 61 6c 74 65 72 6e 61 74 69 76 65 2e 0a 0a 20 20 20 20 52 65 66 65 72 65 6e 63 65 73 0a | od.alternative.......References. |
| dce0 | 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 2e 2e 20 5b 31 5d 20 57 69 6b 69 70 65 | ....----------........[1].Wikipe |
| dd00 | 64 69 61 2c 20 22 43 75 72 76 65 20 66 69 74 74 69 6e 67 22 2c 0a 20 20 20 20 20 20 20 20 20 20 | dia,."Curve.fitting",........... |
| dd20 | 20 68 74 74 70 73 3a 2f 2f 65 6e 2e 77 69 6b 69 70 65 64 69 61 2e 6f 72 67 2f 77 69 6b 69 2f 43 | .https://en.wikipedia.org/wiki/C |
| dd40 | 75 72 76 65 5f 66 69 74 74 69 6e 67 0a 0a 20 20 20 20 45 78 61 6d 70 6c 65 73 0a 20 20 20 20 2d | urve_fitting......Examples.....- |
| dd60 | 2d 2d 2d 2d 2d 2d 2d 0a 0a 20 20 20 20 29 03 72 58 00 00 00 da 04 5f 66 69 74 72 18 00 00 00 29 | -------......).rX....._fitr....) |
| dd80 | 06 72 9e 00 00 00 72 a5 00 00 00 72 5c 00 00 00 da 05 72 63 6f 6e 64 da 04 66 75 6c 6c da 01 77 | .r....r....r\.....rcond..full..w |
| dda0 | 73 06 00 00 00 20 20 20 20 20 20 72 34 00 00 00 72 19 00 00 00 72 19 00 00 00 e0 05 00 00 73 20 | s..........r4...r....r........s. |
| ddc0 | 00 00 00 80 00 f4 74 03 00 0c 0e 8f 37 89 37 94 3a 98 71 a0 21 a0 53 a8 25 b0 14 b0 71 d3 0b 39 | ......t.....7.7.:.q.!.S.%...q..9 |
| dde0 | d0 04 39 72 36 00 00 00 63 01 00 00 00 00 00 00 00 00 00 00 00 07 00 00 00 03 00 00 00 f3 86 02 | ..9r6...c....................... |
| de00 | 00 00 97 00 74 01 00 00 00 00 00 00 00 00 6a 02 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 | ....t.........j................. |
| de20 | 00 00 7c 00 67 01 ab 01 00 00 00 00 00 00 5c 01 00 00 7d 00 74 05 00 00 00 00 00 00 00 00 7c 00 | ..|.g.........\...}.t.........|. |
| de40 | ab 01 00 00 00 00 00 00 64 01 6b 02 00 00 72 0b 74 07 00 00 00 00 00 00 00 00 64 02 ab 01 00 00 | ........d.k...r.t.........d..... |
| de60 | 00 00 00 00 82 01 74 05 00 00 00 00 00 00 00 00 7c 00 ab 01 00 00 00 00 00 00 64 01 6b 28 00 00 | ......t.........|.........d.k(.. |
| de80 | 72 21 74 09 00 00 00 00 00 00 00 00 6a 0a 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 | r!t.........j................... |
| dea0 | 7c 00 64 03 19 00 00 00 0b 00 7c 00 64 04 19 00 00 00 7a 0b 00 00 67 01 67 01 ab 01 00 00 00 00 | |.d.......|.d.....z...g.g....... |
| dec0 | 00 00 53 00 74 05 00 00 00 00 00 00 00 00 7c 00 ab 01 00 00 00 00 00 00 64 04 7a 0a 00 00 7d 01 | ..S.t.........|.........d.z...}. |
| dee0 | 74 09 00 00 00 00 00 00 00 00 6a 0c 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 7c 01 | t.........j...................|. |
| df00 | 7c 01 66 02 7c 00 6a 0e 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ac 05 ab 02 00 00 | |.f.|.j......................... |
| df20 | 00 00 00 00 7d 02 74 09 00 00 00 00 00 00 00 00 6a 0a 00 00 00 00 00 00 00 00 00 00 00 00 00 00 | ....}.t.........j............... |
| df40 | 00 00 00 00 64 06 67 01 74 09 00 00 00 00 00 00 00 00 6a 10 00 00 00 00 00 00 00 00 00 00 00 00 | ....d.g.t.........j............. |
| df60 | 00 00 00 00 00 00 64 07 ab 01 00 00 00 00 00 00 67 01 7c 01 64 04 7a 0a 00 00 7a 05 00 00 7a 00 | ......d.........g.|.d.z...z...z. |
| df80 | 00 00 ab 01 00 00 00 00 00 00 7d 03 7c 02 6a 13 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 | ..........}.|.j................. |
| dfa0 | 00 00 64 08 ab 01 00 00 00 00 00 00 64 04 64 09 7c 01 64 04 7a 00 00 00 85 03 19 00 00 00 7d 04 | ..d.........d.d.|.d.z.........}. |
| dfc0 | 7c 02 6a 13 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 64 08 ab 01 00 00 00 00 00 00 | |.j...................d......... |
| dfe0 | 7c 01 64 09 7c 01 64 04 7a 00 00 00 85 03 19 00 00 00 7d 05 74 09 00 00 00 00 00 00 00 00 6a 10 | |.d.|.d.z.........}.t.........j. |
| e000 | 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 64 07 ab 01 00 00 00 00 00 00 7c 04 64 03 | ..................d.........|.d. |
| e020 | 3c 00 00 00 64 07 7c 04 64 04 64 09 1b 00 7c 04 7c 05 64 0a 3c 00 00 00 7c 02 64 09 64 09 85 02 | <...d.|.d.d...|.|.d.<...|.d.d... |
| e040 | 64 08 66 02 78 02 78 02 19 00 00 00 7c 00 64 09 64 08 1a 00 7c 00 64 08 19 00 00 00 7a 0b 00 00 | d.f.x.x.....|.d.d...|.d.....z... |
| e060 | 7c 03 7c 03 64 08 19 00 00 00 7a 0b 00 00 7a 05 00 00 64 07 7a 05 00 00 7a 17 00 00 63 03 63 02 | |.|.d.....z...z...d.z...z...c.c. |
| e080 | 3c 00 00 00 7c 02 53 00 29 0b 61 62 02 00 00 52 65 74 75 72 6e 20 74 68 65 20 73 63 61 6c 65 64 | <...|.S.).ab...Return.the.scaled |
| e0a0 | 20 63 6f 6d 70 61 6e 69 6f 6e 20 6d 61 74 72 69 78 20 6f 66 20 63 2e 0a 0a 20 20 20 20 54 68 65 | .companion.matrix.of.c.......The |
| e0c0 | 20 62 61 73 69 73 20 70 6f 6c 79 6e 6f 6d 69 61 6c 73 20 61 72 65 20 73 63 61 6c 65 64 20 73 6f | .basis.polynomials.are.scaled.so |
| e0e0 | 20 74 68 61 74 20 74 68 65 20 63 6f 6d 70 61 6e 69 6f 6e 20 6d 61 74 72 69 78 20 69 73 0a 20 20 | .that.the.companion.matrix.is... |
| e100 | 20 20 73 79 6d 6d 65 74 72 69 63 20 77 68 65 6e 20 60 63 60 20 69 73 20 61 20 43 68 65 62 79 73 | ..symmetric.when.`c`.is.a.Chebys |
| e120 | 68 65 76 20 62 61 73 69 73 20 70 6f 6c 79 6e 6f 6d 69 61 6c 2e 20 54 68 69 73 20 70 72 6f 76 69 | hev.basis.polynomial..This.provi |
| e140 | 64 65 73 0a 20 20 20 20 62 65 74 74 65 72 20 65 69 67 65 6e 76 61 6c 75 65 20 65 73 74 69 6d 61 | des.....better.eigenvalue.estima |
| e160 | 74 65 73 20 74 68 61 6e 20 74 68 65 20 75 6e 73 63 61 6c 65 64 20 63 61 73 65 20 61 6e 64 20 66 | tes.than.the.unscaled.case.and.f |
| e180 | 6f 72 20 62 61 73 69 73 0a 20 20 20 20 70 6f 6c 79 6e 6f 6d 69 61 6c 73 20 74 68 65 20 65 69 67 | or.basis.....polynomials.the.eig |
| e1a0 | 65 6e 76 61 6c 75 65 73 20 61 72 65 20 67 75 61 72 61 6e 74 65 65 64 20 74 6f 20 62 65 20 72 65 | envalues.are.guaranteed.to.be.re |
| e1c0 | 61 6c 20 69 66 0a 20 20 20 20 60 6e 75 6d 70 79 2e 6c 69 6e 61 6c 67 2e 65 69 67 76 61 6c 73 68 | al.if.....`numpy.linalg.eigvalsh |
| e1e0 | 60 20 69 73 20 75 73 65 64 20 74 6f 20 6f 62 74 61 69 6e 20 74 68 65 6d 2e 0a 0a 20 20 20 20 50 | `.is.used.to.obtain.them.......P |
| e200 | 61 72 61 6d 65 74 65 72 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 63 20 3a | arameters.....----------.....c.: |
| e220 | 20 61 72 72 61 79 5f 6c 69 6b 65 0a 20 20 20 20 20 20 20 20 31 2d 44 20 61 72 72 61 79 20 6f 66 | .array_like.........1-D.array.of |
| e240 | 20 43 68 65 62 79 73 68 65 76 20 73 65 72 69 65 73 20 63 6f 65 66 66 69 63 69 65 6e 74 73 20 6f | .Chebyshev.series.coefficients.o |
| e260 | 72 64 65 72 65 64 20 66 72 6f 6d 20 6c 6f 77 20 74 6f 20 68 69 67 68 0a 20 20 20 20 20 20 20 20 | rdered.from.low.to.high......... |
| e280 | 64 65 67 72 65 65 2e 0a 0a 20 20 20 20 52 65 74 75 72 6e 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d | degree.......Returns.....------- |
| e2a0 | 0a 20 20 20 20 6d 61 74 20 3a 20 6e 64 61 72 72 61 79 0a 20 20 20 20 20 20 20 20 53 63 61 6c 65 | .....mat.:.ndarray.........Scale |
| e2c0 | 64 20 63 6f 6d 70 61 6e 69 6f 6e 20 6d 61 74 72 69 78 20 6f 66 20 64 69 6d 65 6e 73 69 6f 6e 73 | d.companion.matrix.of.dimensions |
| e2e0 | 20 28 64 65 67 2c 20 64 65 67 29 2e 0a 20 20 20 20 72 2a 00 00 00 7a 2e 53 65 72 69 65 73 20 6d | .(deg,.deg)......r*...z.Series.m |
| e300 | 75 73 74 20 68 61 76 65 20 6d 61 78 69 6d 75 6d 20 64 65 67 72 65 65 20 6f 66 20 61 74 20 6c 65 | ust.have.maximum.degree.of.at.le |
| e320 | 61 73 74 20 31 2e 72 02 00 00 00 72 04 00 00 00 72 2b 00 00 00 72 67 00 00 00 e7 00 00 00 00 00 | ast.1.r....r....r+...rg......... |
| e340 | 00 e0 3f 72 2d 00 00 00 4e 2e 29 0a 72 58 00 00 00 72 59 00 00 00 72 40 00 00 00 72 7c 00 00 00 | ..?r-...N.).rX...rY...r@...r|... |
| e360 | 72 2f 00 00 00 72 4f 00 00 00 72 30 00 00 00 72 2c 00 00 00 da 04 73 71 72 74 72 9d 00 00 00 29 | r/...rO...r0...r,.....sqrtr....) |
| e380 | 06 72 31 00 00 00 72 32 00 00 00 da 03 6d 61 74 72 45 00 00 00 da 03 74 6f 70 da 03 62 6f 74 73 | .r1...r2.....matrE.....top..bots |
| e3a0 | 06 00 00 00 20 20 20 20 20 20 72 34 00 00 00 72 25 00 00 00 72 25 00 00 00 5d 06 00 00 73 3b 01 | ..........r4...r%...r%...]...s;. |
| e3c0 | 00 00 80 00 f4 2a 00 0b 0d 8f 2c 89 2c 98 01 90 73 d3 0a 1b 81 43 80 51 dc 07 0a 88 31 83 76 90 | .....*....,.,...s....C.Q....1.v. |
| e3e0 | 01 82 7a dc 0e 18 d0 19 49 d3 0e 4a d0 08 4a dc 07 0a 88 31 83 76 90 11 82 7b dc 0f 11 8f 78 89 | ..z.....I..J..J....1.v...{....x. |
| e400 | 78 98 31 98 51 99 34 98 25 a0 21 a0 41 a1 24 99 2c 98 1e d0 18 28 d3 0f 29 d0 08 29 e4 08 0b 88 | x.1.Q.4.%.!.A.$.,....(..)..).... |
| e420 | 41 8b 06 90 11 89 0a 80 41 dc 0a 0c 8f 28 89 28 90 41 90 71 90 36 a0 11 a7 17 a1 17 d4 0a 29 80 | A.......A....(.(.A.q.6........). |
| e440 | 43 dc 0a 0c 8f 28 89 28 90 42 90 34 9c 32 9f 37 99 37 a0 32 9b 3b 98 2d a8 31 a8 71 a9 35 d1 1a | C....(.(.B.4.2.7.7.2.;.-.1.q.5.. |
| e460 | 31 d1 13 31 d3 0a 32 80 43 d8 0a 0d 8f 2b 89 2b 90 62 8b 2f 98 21 98 28 98 51 a0 11 99 55 98 28 | 1..1..2.C....+.+.b./.!.(.Q...U.( |
| e480 | d1 0a 23 80 43 d8 0a 0d 8f 2b 89 2b 90 62 8b 2f 98 21 98 28 98 51 a0 11 99 55 98 28 d1 0a 23 80 | ..#.C....+.+.b./.!.(.Q...U.(..#. |
| e4a0 | 43 dc 0d 0f 8f 57 89 57 90 52 8b 5b 80 43 88 01 81 46 d8 0e 13 80 43 88 01 88 02 80 47 d8 0f 12 | C....W.W.R.[.C...F....C.....G... |
| e4c0 | 80 43 88 03 81 48 d8 04 07 8a 01 88 32 88 05 83 4a 90 31 90 53 90 62 90 36 98 41 98 62 99 45 91 | .C...H......2...J.1.S.b.6.A.b.E. |
| e4e0 | 3e a0 63 a8 43 b0 02 a9 47 a1 6d d1 12 34 b0 72 d1 12 39 d1 04 39 83 4a d8 0b 0e 80 4a 72 36 00 | >.c.C...G.m..4.r..9..9.J....Jr6. |
| e500 | 00 00 63 01 00 00 00 00 00 00 00 00 00 00 00 05 00 00 00 03 00 00 00 f3 66 01 00 00 97 00 74 01 | ..c.....................f.....t. |
| e520 | 00 00 00 00 00 00 00 00 6a 02 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 7c 00 67 01 | ........j...................|.g. |
| e540 | ab 01 00 00 00 00 00 00 5c 01 00 00 7d 00 74 05 00 00 00 00 00 00 00 00 7c 00 ab 01 00 00 00 00 | ........\...}.t.........|....... |
| e560 | 00 00 64 01 6b 02 00 00 72 21 74 07 00 00 00 00 00 00 00 00 6a 08 00 00 00 00 00 00 00 00 00 00 | ..d.k...r!t.........j........... |
| e580 | 00 00 00 00 00 00 00 00 67 00 7c 00 6a 0a 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 | ........g.|.j................... |
| e5a0 | ac 02 ab 02 00 00 00 00 00 00 53 00 74 05 00 00 00 00 00 00 00 00 7c 00 ab 01 00 00 00 00 00 00 | ..........S.t.........|......... |
| e5c0 | 64 01 6b 28 00 00 72 20 74 07 00 00 00 00 00 00 00 00 6a 08 00 00 00 00 00 00 00 00 00 00 00 00 | d.k(..r.t.........j............. |
| e5e0 | 00 00 00 00 00 00 7c 00 64 03 19 00 00 00 0b 00 7c 00 64 04 19 00 00 00 7a 0b 00 00 67 01 ab 01 | ......|.d.......|.d.....z...g... |
| e600 | 00 00 00 00 00 00 53 00 74 0d 00 00 00 00 00 00 00 00 7c 00 ab 01 00 00 00 00 00 00 64 05 64 05 | ......S.t.........|.........d.d. |
| e620 | 64 06 85 03 64 05 64 05 64 06 85 03 66 02 19 00 00 00 7d 01 74 0f 00 00 00 00 00 00 00 00 6a 10 | d...d.d.d...f.....}.t.........j. |
| e640 | 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 7c 01 ab 01 00 00 00 00 00 00 7d 02 7c 02 | ..................|.........}.|. |
| e660 | 6a 13 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ab 00 00 00 00 00 00 00 01 00 7c 02 | j.............................|. |
| e680 | 53 00 29 07 61 d8 05 00 00 0a 20 20 20 20 43 6f 6d 70 75 74 65 20 74 68 65 20 72 6f 6f 74 73 20 | S.).a.........Compute.the.roots. |
| e6a0 | 6f 66 20 61 20 43 68 65 62 79 73 68 65 76 20 73 65 72 69 65 73 2e 0a 0a 20 20 20 20 52 65 74 75 | of.a.Chebyshev.series.......Retu |
| e6c0 | 72 6e 20 74 68 65 20 72 6f 6f 74 73 20 28 61 2e 6b 2e 61 2e 20 22 7a 65 72 6f 73 22 29 20 6f 66 | rn.the.roots.(a.k.a.."zeros").of |
| e6e0 | 20 74 68 65 20 70 6f 6c 79 6e 6f 6d 69 61 6c 0a 0a 20 20 20 20 2e 2e 20 6d 61 74 68 3a 3a 20 70 | .the.polynomial.........math::.p |
| e700 | 28 78 29 20 3d 20 5c 73 75 6d 5f 69 20 63 5b 69 5d 20 2a 20 54 5f 69 28 78 29 2e 0a 0a 20 20 20 | (x).=.\sum_i.c[i].*.T_i(x)...... |
| e720 | 20 50 61 72 61 6d 65 74 65 72 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 63 | .Parameters.....----------.....c |
| e740 | 20 3a 20 31 2d 44 20 61 72 72 61 79 5f 6c 69 6b 65 0a 20 20 20 20 20 20 20 20 31 2d 44 20 61 72 | .:.1-D.array_like.........1-D.ar |
| e760 | 72 61 79 20 6f 66 20 63 6f 65 66 66 69 63 69 65 6e 74 73 2e 0a 0a 20 20 20 20 52 65 74 75 72 6e | ray.of.coefficients.......Return |
| e780 | 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 6f 75 74 20 3a 20 6e 64 61 72 72 61 79 0a | s.....-------.....out.:.ndarray. |
| e7a0 | 20 20 20 20 20 20 20 20 41 72 72 61 79 20 6f 66 20 74 68 65 20 72 6f 6f 74 73 20 6f 66 20 74 68 | ........Array.of.the.roots.of.th |
| e7c0 | 65 20 73 65 72 69 65 73 2e 20 49 66 20 61 6c 6c 20 74 68 65 20 72 6f 6f 74 73 20 61 72 65 20 72 | e.series..If.all.the.roots.are.r |
| e7e0 | 65 61 6c 2c 0a 20 20 20 20 20 20 20 20 74 68 65 6e 20 60 6f 75 74 60 20 69 73 20 61 6c 73 6f 20 | eal,.........then.`out`.is.also. |
| e800 | 72 65 61 6c 2c 20 6f 74 68 65 72 77 69 73 65 20 69 74 20 69 73 20 63 6f 6d 70 6c 65 78 2e 0a 0a | real,.otherwise.it.is.complex... |
| e820 | 20 20 20 20 53 65 65 20 41 6c 73 6f 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 6e 75 | ....See.Also.....--------.....nu |
| e840 | 6d 70 79 2e 70 6f 6c 79 6e 6f 6d 69 61 6c 2e 70 6f 6c 79 6e 6f 6d 69 61 6c 2e 70 6f 6c 79 72 6f | mpy.polynomial.polynomial.polyro |
| e860 | 6f 74 73 0a 20 20 20 20 6e 75 6d 70 79 2e 70 6f 6c 79 6e 6f 6d 69 61 6c 2e 6c 65 67 65 6e 64 72 | ots.....numpy.polynomial.legendr |
| e880 | 65 2e 6c 65 67 72 6f 6f 74 73 0a 20 20 20 20 6e 75 6d 70 79 2e 70 6f 6c 79 6e 6f 6d 69 61 6c 2e | e.legroots.....numpy.polynomial. |
| e8a0 | 6c 61 67 75 65 72 72 65 2e 6c 61 67 72 6f 6f 74 73 0a 20 20 20 20 6e 75 6d 70 79 2e 70 6f 6c 79 | laguerre.lagroots.....numpy.poly |
| e8c0 | 6e 6f 6d 69 61 6c 2e 68 65 72 6d 69 74 65 2e 68 65 72 6d 72 6f 6f 74 73 0a 20 20 20 20 6e 75 6d | nomial.hermite.hermroots.....num |
| e8e0 | 70 79 2e 70 6f 6c 79 6e 6f 6d 69 61 6c 2e 68 65 72 6d 69 74 65 5f 65 2e 68 65 72 6d 65 72 6f 6f | py.polynomial.hermite_e.hermeroo |
| e900 | 74 73 0a 0a 20 20 20 20 4e 6f 74 65 73 0a 20 20 20 20 2d 2d 2d 2d 2d 0a 20 20 20 20 54 68 65 20 | ts......Notes.....-----.....The. |
| e920 | 72 6f 6f 74 20 65 73 74 69 6d 61 74 65 73 20 61 72 65 20 6f 62 74 61 69 6e 65 64 20 61 73 20 74 | root.estimates.are.obtained.as.t |
| e940 | 68 65 20 65 69 67 65 6e 76 61 6c 75 65 73 20 6f 66 20 74 68 65 20 63 6f 6d 70 61 6e 69 6f 6e 0a | he.eigenvalues.of.the.companion. |
| e960 | 20 20 20 20 6d 61 74 72 69 78 2c 20 52 6f 6f 74 73 20 66 61 72 20 66 72 6f 6d 20 74 68 65 20 6f | ....matrix,.Roots.far.from.the.o |
| e980 | 72 69 67 69 6e 20 6f 66 20 74 68 65 20 63 6f 6d 70 6c 65 78 20 70 6c 61 6e 65 20 6d 61 79 20 68 | rigin.of.the.complex.plane.may.h |
| e9a0 | 61 76 65 20 6c 61 72 67 65 0a 20 20 20 20 65 72 72 6f 72 73 20 64 75 65 20 74 6f 20 74 68 65 20 | ave.large.....errors.due.to.the. |
| e9c0 | 6e 75 6d 65 72 69 63 61 6c 20 69 6e 73 74 61 62 69 6c 69 74 79 20 6f 66 20 74 68 65 20 73 65 72 | numerical.instability.of.the.ser |
| e9e0 | 69 65 73 20 66 6f 72 20 73 75 63 68 0a 20 20 20 20 76 61 6c 75 65 73 2e 20 52 6f 6f 74 73 20 77 | ies.for.such.....values..Roots.w |
| ea00 | 69 74 68 20 6d 75 6c 74 69 70 6c 69 63 69 74 79 20 67 72 65 61 74 65 72 20 74 68 61 6e 20 31 20 | ith.multiplicity.greater.than.1. |
| ea20 | 77 69 6c 6c 20 61 6c 73 6f 20 73 68 6f 77 20 6c 61 72 67 65 72 0a 20 20 20 20 65 72 72 6f 72 73 | will.also.show.larger.....errors |
| ea40 | 20 61 73 20 74 68 65 20 76 61 6c 75 65 20 6f 66 20 74 68 65 20 73 65 72 69 65 73 20 6e 65 61 72 | .as.the.value.of.the.series.near |
| ea60 | 20 73 75 63 68 20 70 6f 69 6e 74 73 20 69 73 20 72 65 6c 61 74 69 76 65 6c 79 0a 20 20 20 20 69 | .such.points.is.relatively.....i |
| ea80 | 6e 73 65 6e 73 69 74 69 76 65 20 74 6f 20 65 72 72 6f 72 73 20 69 6e 20 74 68 65 20 72 6f 6f 74 | nsensitive.to.errors.in.the.root |
| eaa0 | 73 2e 20 49 73 6f 6c 61 74 65 64 20 72 6f 6f 74 73 20 6e 65 61 72 20 74 68 65 20 6f 72 69 67 69 | s..Isolated.roots.near.the.origi |
| eac0 | 6e 20 63 61 6e 0a 20 20 20 20 62 65 20 69 6d 70 72 6f 76 65 64 20 62 79 20 61 20 66 65 77 20 69 | n.can.....be.improved.by.a.few.i |
| eae0 | 74 65 72 61 74 69 6f 6e 73 20 6f 66 20 4e 65 77 74 6f 6e 27 73 20 6d 65 74 68 6f 64 2e 0a 0a 20 | terations.of.Newton's.method.... |
| eb00 | 20 20 20 54 68 65 20 43 68 65 62 79 73 68 65 76 20 73 65 72 69 65 73 20 62 61 73 69 73 20 70 6f | ...The.Chebyshev.series.basis.po |
| eb20 | 6c 79 6e 6f 6d 69 61 6c 73 20 61 72 65 6e 27 74 20 70 6f 77 65 72 73 20 6f 66 20 60 78 60 20 73 | lynomials.aren't.powers.of.`x`.s |
| eb40 | 6f 20 74 68 65 0a 20 20 20 20 72 65 73 75 6c 74 73 20 6f 66 20 74 68 69 73 20 66 75 6e 63 74 69 | o.the.....results.of.this.functi |
| eb60 | 6f 6e 20 6d 61 79 20 73 65 65 6d 20 75 6e 69 6e 74 75 69 74 69 76 65 2e 0a 0a 20 20 20 20 45 78 | on.may.seem.unintuitive.......Ex |
| eb80 | 61 6d 70 6c 65 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 3e 3e 3e 20 69 6d 70 6f | amples.....--------.....>>>.impo |
| eba0 | 72 74 20 6e 75 6d 70 79 2e 70 6f 6c 79 6e 6f 6d 69 61 6c 2e 63 68 65 62 79 73 68 65 76 20 61 73 | rt.numpy.polynomial.chebyshev.as |
| ebc0 | 20 63 68 65 62 0a 20 20 20 20 3e 3e 3e 20 63 68 65 62 2e 63 68 65 62 72 6f 6f 74 73 28 28 2d 31 | .cheb.....>>>.cheb.chebroots((-1 |
| ebe0 | 2c 20 31 2c 2d 31 2c 20 31 29 29 20 23 20 54 33 20 2d 20 54 32 20 2b 20 54 31 20 2d 20 54 30 20 | ,.1,-1,.1)).#.T3.-.T2.+.T1.-.T0. |
| ec00 | 68 61 73 20 72 65 61 6c 20 72 6f 6f 74 73 0a 20 20 20 20 61 72 72 61 79 28 5b 20 2d 35 2e 30 30 | has.real.roots.....array([.-5.00 |
| ec20 | 30 30 30 30 30 30 65 2d 30 31 2c 20 20 20 32 2e 36 30 38 36 30 36 38 34 65 2d 31 37 2c 20 20 20 | 000000e-01,...2.60860684e-17,... |
| ec40 | 31 2e 30 30 30 30 30 30 30 30 65 2b 30 30 5d 29 20 23 20 6d 61 79 20 76 61 72 79 0a 0a 20 20 20 | 1.00000000e+00]).#.may.vary..... |
| ec60 | 20 72 2a 00 00 00 72 2b 00 00 00 72 02 00 00 00 72 04 00 00 00 4e 72 2d 00 00 00 29 0a 72 58 00 | .r*...r+...r....r....Nr-...).rX. |
| ec80 | 00 00 72 59 00 00 00 72 40 00 00 00 72 2f 00 00 00 72 4f 00 00 00 72 2c 00 00 00 72 25 00 00 00 | ..rY...r@...r/...rO...r,...r%... |
| eca0 | da 02 6c 61 da 07 65 69 67 76 61 6c 73 da 04 73 6f 72 74 29 03 72 31 00 00 00 72 8d 00 00 00 72 | ..la..eigvals..sort).r1...r....r |
| ecc0 | 49 00 00 00 73 03 00 00 00 20 20 20 72 34 00 00 00 72 1b 00 00 00 72 1b 00 00 00 84 06 00 00 73 | I...s.......r4...r....r........s |
| ece0 | 99 00 00 00 80 00 f4 60 01 00 0b 0d 8f 2c 89 2c 98 01 90 73 d3 0a 1b 81 43 80 51 dc 07 0a 88 31 | .......`.....,.,...s....C.Q....1 |
| ed00 | 83 76 90 01 82 7a dc 0f 11 8f 78 89 78 98 02 a0 21 a7 27 a1 27 d4 0f 2a d0 08 2a dc 07 0a 88 31 | .v...z....x.x...!.'.'..*..*....1 |
| ed20 | 83 76 90 11 82 7b dc 0f 11 8f 78 89 78 98 21 98 41 99 24 98 15 a0 11 a0 31 a1 14 99 1c 98 0e d3 | .v...{....x.x.!.A.$.....1....... |
| ed40 | 0f 27 d0 08 27 f4 06 00 09 16 90 61 d3 08 18 99 14 98 32 98 14 99 74 a0 12 98 74 98 1a d1 08 24 | .'..'......a......2...t...t....$ |
| ed60 | 80 41 dc 08 0a 8f 0a 89 0a 90 31 8b 0d 80 41 d8 04 05 87 46 81 46 84 48 d8 0b 0c 80 48 72 36 00 | .A........1...A....F.F.H....Hr6. |
| ed80 | 00 00 63 03 00 00 00 00 00 00 00 00 00 00 00 06 00 00 00 03 00 00 00 f3 98 01 00 00 97 00 74 01 | ..c...........................t. |
| eda0 | 00 00 00 00 00 00 00 00 6a 02 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 7c 01 ab 01 | ........j...................|... |
| edc0 | 00 00 00 00 00 00 7d 01 7c 01 6a 04 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 64 01 | ......}.|.j...................d. |
| ede0 | 6b 44 00 00 73 27 7c 01 6a 06 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 6a 08 00 00 | kD..s'|.j...................j... |
| ee00 | 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 64 02 76 01 73 0f 7c 01 6a 0a 00 00 00 00 00 00 | ................d.v.s.|.j....... |
| ee20 | 00 00 00 00 00 00 00 00 00 00 00 00 64 01 6b 28 00 00 72 0b 74 0d 00 00 00 00 00 00 00 00 64 03 | ............d.k(..r.t.........d. |
| ee40 | ab 01 00 00 00 00 00 00 82 01 7c 01 64 01 6b 02 00 00 72 0b 74 0f 00 00 00 00 00 00 00 00 64 04 | ..........|.d.k...r.t.........d. |
| ee60 | ab 01 00 00 00 00 00 00 82 01 7c 01 64 05 7a 00 00 00 7d 03 74 11 00 00 00 00 00 00 00 00 7c 03 | ..........|.d.z...}.t.........|. |
| ee80 | ab 01 00 00 00 00 00 00 7d 04 02 00 7c 00 7c 04 67 01 7c 02 a2 01 ad 06 8e 00 7d 05 74 13 00 00 | ........}...|.|.g.|.......}.t... |
| eea0 | 00 00 00 00 00 00 7c 04 7c 01 ab 02 00 00 00 00 00 00 7d 06 74 01 00 00 00 00 00 00 00 00 6a 14 | ......|.|.........}.t.........j. |
| eec0 | 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 7c 06 6a 16 00 00 00 00 00 00 00 00 00 00 | ..................|.j........... |
| eee0 | 00 00 00 00 00 00 00 00 7c 05 ab 02 00 00 00 00 00 00 7d 07 7c 07 64 01 78 02 78 02 19 00 00 00 | ........|.........}.|.d.x.x..... |
| ef00 | 7c 03 7a 18 00 00 63 03 63 02 3c 00 00 00 7c 07 64 05 64 06 78 03 78 03 78 03 1a 00 64 07 7c 03 | |.z...c.c.<...|.d.d.x.x.x...d.|. |
| ef20 | 7a 05 00 00 7a 18 00 00 63 04 63 03 63 02 1b 00 7c 07 53 00 29 08 61 12 07 00 00 49 6e 74 65 72 | z...z...c.c.c...|.S.).a....Inter |
| ef40 | 70 6f 6c 61 74 65 20 61 20 66 75 6e 63 74 69 6f 6e 20 61 74 20 74 68 65 20 43 68 65 62 79 73 68 | polate.a.function.at.the.Chebysh |
| ef60 | 65 76 20 70 6f 69 6e 74 73 20 6f 66 20 74 68 65 20 66 69 72 73 74 20 6b 69 6e 64 2e 0a 0a 20 20 | ev.points.of.the.first.kind..... |
| ef80 | 20 20 52 65 74 75 72 6e 73 20 74 68 65 20 43 68 65 62 79 73 68 65 76 20 73 65 72 69 65 73 20 74 | ..Returns.the.Chebyshev.series.t |
| efa0 | 68 61 74 20 69 6e 74 65 72 70 6f 6c 61 74 65 73 20 60 66 75 6e 63 60 20 61 74 20 74 68 65 20 43 | hat.interpolates.`func`.at.the.C |
| efc0 | 68 65 62 79 73 68 65 76 0a 20 20 20 20 70 6f 69 6e 74 73 20 6f 66 20 74 68 65 20 66 69 72 73 74 | hebyshev.....points.of.the.first |
| efe0 | 20 6b 69 6e 64 20 69 6e 20 74 68 65 20 69 6e 74 65 72 76 61 6c 20 5b 2d 31 2c 20 31 5d 2e 20 54 | .kind.in.the.interval.[-1,.1]..T |
| f000 | 68 65 20 69 6e 74 65 72 70 6f 6c 61 74 69 6e 67 0a 20 20 20 20 73 65 72 69 65 73 20 74 65 6e 64 | he.interpolating.....series.tend |
| f020 | 73 20 74 6f 20 61 20 6d 69 6e 6d 61 78 20 61 70 70 72 6f 78 69 6d 61 74 69 6f 6e 20 74 6f 20 60 | s.to.a.minmax.approximation.to.` |
| f040 | 66 75 6e 63 60 20 77 69 74 68 20 69 6e 63 72 65 61 73 69 6e 67 20 60 64 65 67 60 0a 20 20 20 20 | func`.with.increasing.`deg`..... |
| f060 | 69 66 20 74 68 65 20 66 75 6e 63 74 69 6f 6e 20 69 73 20 63 6f 6e 74 69 6e 75 6f 75 73 20 69 6e | if.the.function.is.continuous.in |
| f080 | 20 74 68 65 20 69 6e 74 65 72 76 61 6c 2e 0a 0a 20 20 20 20 50 61 72 61 6d 65 74 65 72 73 0a 20 | .the.interval.......Parameters.. |
| f0a0 | 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 66 75 6e 63 20 3a 20 66 75 6e 63 74 69 6f | ...----------.....func.:.functio |
| f0c0 | 6e 0a 20 20 20 20 20 20 20 20 54 68 65 20 66 75 6e 63 74 69 6f 6e 20 74 6f 20 62 65 20 61 70 70 | n.........The.function.to.be.app |
| f0e0 | 72 6f 78 69 6d 61 74 65 64 2e 20 49 74 20 6d 75 73 74 20 62 65 20 61 20 66 75 6e 63 74 69 6f 6e | roximated..It.must.be.a.function |
| f100 | 20 6f 66 20 61 20 73 69 6e 67 6c 65 0a 20 20 20 20 20 20 20 20 76 61 72 69 61 62 6c 65 20 6f 66 | .of.a.single.........variable.of |
| f120 | 20 74 68 65 20 66 6f 72 6d 20 60 60 66 28 78 2c 20 61 2c 20 62 2c 20 63 2e 2e 2e 29 60 60 2c 20 | .the.form.``f(x,.a,.b,.c...)``,. |
| f140 | 77 68 65 72 65 20 60 60 61 2c 20 62 2c 20 63 2e 2e 2e 60 60 20 61 72 65 0a 20 20 20 20 20 20 20 | where.``a,.b,.c...``.are........ |
| f160 | 20 65 78 74 72 61 20 61 72 67 75 6d 65 6e 74 73 20 70 61 73 73 65 64 20 69 6e 20 74 68 65 20 60 | .extra.arguments.passed.in.the.` |
| f180 | 61 72 67 73 60 20 70 61 72 61 6d 65 74 65 72 2e 0a 20 20 20 20 64 65 67 20 3a 20 69 6e 74 0a 20 | args`.parameter......deg.:.int.. |
| f1a0 | 20 20 20 20 20 20 20 44 65 67 72 65 65 20 6f 66 20 74 68 65 20 69 6e 74 65 72 70 6f 6c 61 74 69 | .......Degree.of.the.interpolati |
| f1c0 | 6e 67 20 70 6f 6c 79 6e 6f 6d 69 61 6c 0a 20 20 20 20 61 72 67 73 20 3a 20 74 75 70 6c 65 2c 20 | ng.polynomial.....args.:.tuple,. |
| f1e0 | 6f 70 74 69 6f 6e 61 6c 0a 20 20 20 20 20 20 20 20 45 78 74 72 61 20 61 72 67 75 6d 65 6e 74 73 | optional.........Extra.arguments |
| f200 | 20 74 6f 20 62 65 20 75 73 65 64 20 69 6e 20 74 68 65 20 66 75 6e 63 74 69 6f 6e 20 63 61 6c 6c | .to.be.used.in.the.function.call |
| f220 | 2e 20 44 65 66 61 75 6c 74 20 69 73 20 6e 6f 20 65 78 74 72 61 0a 20 20 20 20 20 20 20 20 61 72 | ..Default.is.no.extra.........ar |
| f240 | 67 75 6d 65 6e 74 73 2e 0a 0a 20 20 20 20 52 65 74 75 72 6e 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d | guments.......Returns.....------ |
| f260 | 2d 0a 20 20 20 20 63 6f 65 66 20 3a 20 6e 64 61 72 72 61 79 2c 20 73 68 61 70 65 20 28 64 65 67 | -.....coef.:.ndarray,.shape.(deg |
| f280 | 20 2b 20 31 2c 29 0a 20 20 20 20 20 20 20 20 43 68 65 62 79 73 68 65 76 20 63 6f 65 66 66 69 63 | .+.1,).........Chebyshev.coeffic |
| f2a0 | 69 65 6e 74 73 20 6f 66 20 74 68 65 20 69 6e 74 65 72 70 6f 6c 61 74 69 6e 67 20 73 65 72 69 65 | ients.of.the.interpolating.serie |
| f2c0 | 73 20 6f 72 64 65 72 65 64 20 66 72 6f 6d 20 6c 6f 77 20 74 6f 0a 20 20 20 20 20 20 20 20 68 69 | s.ordered.from.low.to.........hi |
| f2e0 | 67 68 2e 0a 0a 20 20 20 20 45 78 61 6d 70 6c 65 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 | gh.......Examples.....--------.. |
| f300 | 20 20 20 3e 3e 3e 20 69 6d 70 6f 72 74 20 6e 75 6d 70 79 2e 70 6f 6c 79 6e 6f 6d 69 61 6c 2e 63 | ...>>>.import.numpy.polynomial.c |
| f320 | 68 65 62 79 73 68 65 76 20 61 73 20 43 0a 20 20 20 20 3e 3e 3e 20 43 2e 63 68 65 62 69 6e 74 65 | hebyshev.as.C.....>>>.C.chebinte |
| f340 | 72 70 6f 6c 61 74 65 28 6c 61 6d 62 64 61 20 78 3a 20 6e 70 2e 74 61 6e 68 28 78 29 20 2b 20 30 | rpolate(lambda.x:.np.tanh(x).+.0 |
| f360 | 2e 35 2c 20 38 29 0a 20 20 20 20 61 72 72 61 79 28 5b 20 20 35 2e 30 30 30 30 30 30 30 30 65 2d | .5,.8).....array([..5.00000000e- |
| f380 | 30 31 2c 20 20 20 38 2e 31 31 36 37 35 36 38 34 65 2d 30 31 2c 20 20 2d 39 2e 38 36 38 36 34 39 | 01,...8.11675684e-01,..-9.868649 |
| f3a0 | 31 31 65 2d 31 37 2c 0a 20 20 20 20 20 20 20 20 20 20 20 20 2d 35 2e 34 32 34 35 37 39 30 35 65 | 11e-17,.............-5.42457905e |
| f3c0 | 2d 30 32 2c 20 20 2d 32 2e 37 31 33 38 37 38 35 30 65 2d 31 36 2c 20 20 20 34 2e 35 31 36 35 38 | -02,..-2.71387850e-16,...4.51658 |
| f3e0 | 38 33 39 65 2d 30 33 2c 0a 20 20 20 20 20 20 20 20 20 20 20 20 20 32 2e 34 36 37 31 36 32 32 38 | 839e-03,..............2.46716228 |
| f400 | 65 2d 31 37 2c 20 20 2d 33 2e 37 39 36 39 34 32 32 31 65 2d 30 34 2c 20 20 2d 33 2e 32 36 38 39 | e-17,..-3.79694221e-04,..-3.2689 |
| f420 | 39 30 30 32 65 2d 31 36 5d 29 0a 0a 20 20 20 20 4e 6f 74 65 73 0a 20 20 20 20 2d 2d 2d 2d 2d 0a | 9002e-16])......Notes.....-----. |
| f440 | 20 20 20 20 54 68 65 20 43 68 65 62 79 73 68 65 76 20 70 6f 6c 79 6e 6f 6d 69 61 6c 73 20 75 73 | ....The.Chebyshev.polynomials.us |
| f460 | 65 64 20 69 6e 20 74 68 65 20 69 6e 74 65 72 70 6f 6c 61 74 69 6f 6e 20 61 72 65 20 6f 72 74 68 | ed.in.the.interpolation.are.orth |
| f480 | 6f 67 6f 6e 61 6c 20 77 68 65 6e 0a 20 20 20 20 73 61 6d 70 6c 65 64 20 61 74 20 74 68 65 20 43 | ogonal.when.....sampled.at.the.C |
| f4a0 | 68 65 62 79 73 68 65 76 20 70 6f 69 6e 74 73 20 6f 66 20 74 68 65 20 66 69 72 73 74 20 6b 69 6e | hebyshev.points.of.the.first.kin |
| f4c0 | 64 2e 20 49 66 20 69 74 20 69 73 20 64 65 73 69 72 65 64 20 74 6f 0a 20 20 20 20 63 6f 6e 73 74 | d..If.it.is.desired.to.....const |
| f4e0 | 72 61 69 6e 20 73 6f 6d 65 20 6f 66 20 74 68 65 20 63 6f 65 66 66 69 63 69 65 6e 74 73 20 74 68 | rain.some.of.the.coefficients.th |
| f500 | 65 79 20 63 61 6e 20 73 69 6d 70 6c 79 20 62 65 20 73 65 74 20 74 6f 20 74 68 65 20 64 65 73 69 | ey.can.simply.be.set.to.the.desi |
| f520 | 72 65 64 0a 20 20 20 20 76 61 6c 75 65 20 61 66 74 65 72 20 74 68 65 20 69 6e 74 65 72 70 6f 6c | red.....value.after.the.interpol |
| f540 | 61 74 69 6f 6e 2c 20 6e 6f 20 6e 65 77 20 69 6e 74 65 72 70 6f 6c 61 74 69 6f 6e 20 6f 72 20 66 | ation,.no.new.interpolation.or.f |
| f560 | 69 74 20 69 73 20 6e 65 65 64 65 64 2e 20 54 68 69 73 0a 20 20 20 20 69 73 20 65 73 70 65 63 69 | it.is.needed..This.....is.especi |
| f580 | 61 6c 6c 79 20 75 73 65 66 75 6c 20 69 66 20 69 74 20 69 73 20 6b 6e 6f 77 6e 20 61 70 72 69 6f | ally.useful.if.it.is.known.aprio |
| f5a0 | 72 69 20 74 68 61 74 20 73 6f 6d 65 20 6f 66 20 63 6f 65 66 66 69 63 69 65 6e 74 73 20 61 72 65 | ri.that.some.of.coefficients.are |
| f5c0 | 0a 20 20 20 20 7a 65 72 6f 2e 20 46 6f 72 20 69 6e 73 74 61 6e 63 65 2c 20 69 66 20 74 68 65 20 | .....zero..For.instance,.if.the. |
| f5e0 | 66 75 6e 63 74 69 6f 6e 20 69 73 20 65 76 65 6e 20 74 68 65 6e 20 74 68 65 20 63 6f 65 66 66 69 | function.is.even.then.the.coeffi |
| f600 | 63 69 65 6e 74 73 20 6f 66 20 74 68 65 0a 20 20 20 20 74 65 72 6d 73 20 6f 66 20 6f 64 64 20 64 | cients.of.the.....terms.of.odd.d |
| f620 | 65 67 72 65 65 20 69 6e 20 74 68 65 20 72 65 73 75 6c 74 20 63 61 6e 20 62 65 20 73 65 74 20 74 | egree.in.the.result.can.be.set.t |
| f640 | 6f 20 7a 65 72 6f 2e 0a 0a 20 20 20 20 72 02 00 00 00 da 02 69 75 7a 12 64 65 67 20 6d 75 73 74 | o.zero.......r......iuz.deg.must |
| f660 | 20 62 65 20 61 6e 20 69 6e 74 7a 11 65 78 70 65 63 74 65 64 20 64 65 67 20 3e 3d 20 30 72 04 00 | .be.an.intz.expected.deg.>=.0r.. |
| f680 | 00 00 4e 72 bc 00 00 00 29 0c 72 2f 00 00 00 72 9b 00 00 00 72 8a 00 00 00 72 2c 00 00 00 da 04 | ..Nr....).r/...r....r....r,..... |
| f6a0 | 6b 69 6e 64 72 2e 00 00 00 da 09 54 79 70 65 45 72 72 6f 72 72 7c 00 00 00 72 1c 00 00 00 72 18 | kindr......TypeErrorr|...r....r. |
| f6c0 | 00 00 00 da 03 64 6f 74 da 01 54 29 08 da 04 66 75 6e 63 72 5c 00 00 00 da 04 61 72 67 73 da 05 | .....dot..T)...funcr\.....args.. |
| f6e0 | 6f 72 64 65 72 da 05 78 63 68 65 62 da 05 79 66 75 6e 63 72 8d 00 00 00 72 31 00 00 00 73 08 00 | order..xcheb..yfuncr....r1...s.. |
| f700 | 00 00 20 20 20 20 20 20 20 20 72 34 00 00 00 72 28 00 00 00 72 28 00 00 00 c1 06 00 00 73 be 00 | ..........r4...r(...r(.......s.. |
| f720 | 00 00 80 00 f4 5a 01 00 0b 0d 8f 2a 89 2a 90 53 8b 2f 80 43 f0 06 00 08 0b 87 78 81 78 90 21 82 | .....Z.....*.*.S./.C......x.x.!. |
| f740 | 7c 90 73 97 79 91 79 97 7e 91 7e a8 54 d1 17 31 b0 53 b7 58 b1 58 c0 11 b2 5d dc 0e 17 d0 18 2c | |.s.y.y.~.~.T..1.S.X.X...]....., |
| f760 | d3 0e 2d d0 08 2d d8 07 0a 88 51 82 77 dc 0e 18 d0 19 2c d3 0e 2d d0 08 2d e0 0c 0f 90 21 89 47 | ..-..-....Q.w.....,..-..-....!.G |
| f780 | 80 45 dc 0c 14 90 55 8b 4f 80 45 d9 0c 10 90 15 d0 0c 1e 98 14 d2 0c 1e 80 45 dc 08 12 90 35 98 | .E....U.O.E..............E....5. |
| f7a0 | 23 d3 08 1e 80 41 dc 08 0a 8f 06 89 06 88 71 8f 73 89 73 90 45 d3 08 1a 80 41 d8 04 05 80 61 83 | #....A........q.s.s.E....A....a. |
| f7c0 | 44 88 45 81 4d 83 44 d8 04 05 80 61 80 62 83 45 88 53 90 35 89 5b d1 04 18 83 45 e0 0b 0c 80 48 | D.E.M.D....a.b.E.S.5.[....E....H |
| f7e0 | 72 36 00 00 00 63 01 00 00 00 00 00 00 00 00 00 00 00 08 00 00 00 03 00 00 00 f3 30 01 00 00 97 | r6...c.....................0.... |
| f800 | 00 74 01 00 00 00 00 00 00 00 00 6a 02 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 7c | .t.........j...................| |
| f820 | 00 64 01 ab 02 00 00 00 00 00 00 7d 01 7c 01 64 02 6b 1a 00 00 72 0b 74 05 00 00 00 00 00 00 00 | .d.........}.|.d.k...r.t........ |
| f840 | 00 64 03 ab 01 00 00 00 00 00 00 82 01 74 07 00 00 00 00 00 00 00 00 6a 08 00 00 00 00 00 00 00 | .d...........t.........j........ |
| f860 | 00 00 00 00 00 00 00 00 00 00 00 74 06 00 00 00 00 00 00 00 00 6a 0a 00 00 00 00 00 00 00 00 00 | ...........t.........j.......... |
| f880 | 00 00 00 00 00 00 00 00 00 74 07 00 00 00 00 00 00 00 00 6a 0c 00 00 00 00 00 00 00 00 00 00 00 | .........t.........j............ |
| f8a0 | 00 00 00 00 00 00 00 64 04 64 05 7c 01 7a 05 00 00 64 05 ab 03 00 00 00 00 00 00 7a 05 00 00 64 | .......d.d.|.z...d.........z...d |
| f8c0 | 06 7c 01 7a 05 00 00 7a 0b 00 00 ab 01 00 00 00 00 00 00 7d 02 74 07 00 00 00 00 00 00 00 00 6a | .|.z...z...........}.t.........j |
| f8e0 | 0e 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 7c 01 ab 01 00 00 00 00 00 00 74 06 00 | ...................|.........t.. |
| f900 | 00 00 00 00 00 00 00 6a 0a 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 7c 01 7a 0b 00 | .......j...................|.z.. |
| f920 | 00 7a 05 00 00 7d 03 7c 02 7c 03 66 02 53 00 29 07 61 75 03 00 00 0a 20 20 20 20 47 61 75 73 73 | .z...}.|.|.f.S.).au........Gauss |
| f940 | 2d 43 68 65 62 79 73 68 65 76 20 71 75 61 64 72 61 74 75 72 65 2e 0a 0a 20 20 20 20 43 6f 6d 70 | -Chebyshev.quadrature.......Comp |
| f960 | 75 74 65 73 20 74 68 65 20 73 61 6d 70 6c 65 20 70 6f 69 6e 74 73 20 61 6e 64 20 77 65 69 67 68 | utes.the.sample.points.and.weigh |
| f980 | 74 73 20 66 6f 72 20 47 61 75 73 73 2d 43 68 65 62 79 73 68 65 76 20 71 75 61 64 72 61 74 75 72 | ts.for.Gauss-Chebyshev.quadratur |
| f9a0 | 65 2e 0a 20 20 20 20 54 68 65 73 65 20 73 61 6d 70 6c 65 20 70 6f 69 6e 74 73 20 61 6e 64 20 77 | e......These.sample.points.and.w |
| f9c0 | 65 69 67 68 74 73 20 77 69 6c 6c 20 63 6f 72 72 65 63 74 6c 79 20 69 6e 74 65 67 72 61 74 65 20 | eights.will.correctly.integrate. |
| f9e0 | 70 6f 6c 79 6e 6f 6d 69 61 6c 73 20 6f 66 0a 20 20 20 20 64 65 67 72 65 65 20 3a 6d 61 74 68 3a | polynomials.of.....degree.:math: |
| fa00 | 60 32 2a 64 65 67 20 2d 20 31 60 20 6f 72 20 6c 65 73 73 20 6f 76 65 72 20 74 68 65 20 69 6e 74 | `2*deg.-.1`.or.less.over.the.int |
| fa20 | 65 72 76 61 6c 20 3a 6d 61 74 68 3a 60 5b 2d 31 2c 20 31 5d 60 20 77 69 74 68 0a 20 20 20 20 74 | erval.:math:`[-1,.1]`.with.....t |
| fa40 | 68 65 20 77 65 69 67 68 74 20 66 75 6e 63 74 69 6f 6e 20 3a 6d 61 74 68 3a 60 66 28 78 29 20 3d | he.weight.function.:math:`f(x).= |
| fa60 | 20 31 2f 5c 73 71 72 74 7b 31 20 2d 20 78 5e 32 7d 60 2e 0a 0a 20 20 20 20 50 61 72 61 6d 65 74 | .1/\sqrt{1.-.x^2}`.......Paramet |
| fa80 | 65 72 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 64 65 67 20 3a 20 69 6e 74 | ers.....----------.....deg.:.int |
| faa0 | 0a 20 20 20 20 20 20 20 20 4e 75 6d 62 65 72 20 6f 66 20 73 61 6d 70 6c 65 20 70 6f 69 6e 74 73 | .........Number.of.sample.points |
| fac0 | 20 61 6e 64 20 77 65 69 67 68 74 73 2e 20 49 74 20 6d 75 73 74 20 62 65 20 3e 3d 20 31 2e 0a 0a | .and.weights..It.must.be.>=.1... |
| fae0 | 20 20 20 20 52 65 74 75 72 6e 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 78 20 3a 20 | ....Returns.....-------.....x.:. |
| fb00 | 6e 64 61 72 72 61 79 0a 20 20 20 20 20 20 20 20 31 2d 44 20 6e 64 61 72 72 61 79 20 63 6f 6e 74 | ndarray.........1-D.ndarray.cont |
| fb20 | 61 69 6e 69 6e 67 20 74 68 65 20 73 61 6d 70 6c 65 20 70 6f 69 6e 74 73 2e 0a 20 20 20 20 79 20 | aining.the.sample.points......y. |
| fb40 | 3a 20 6e 64 61 72 72 61 79 0a 20 20 20 20 20 20 20 20 31 2d 44 20 6e 64 61 72 72 61 79 20 63 6f | :.ndarray.........1-D.ndarray.co |
| fb60 | 6e 74 61 69 6e 69 6e 67 20 74 68 65 20 77 65 69 67 68 74 73 2e 0a 0a 20 20 20 20 4e 6f 74 65 73 | ntaining.the.weights.......Notes |
| fb80 | 0a 20 20 20 20 2d 2d 2d 2d 2d 0a 20 20 20 20 54 68 65 20 72 65 73 75 6c 74 73 20 68 61 76 65 20 | .....-----.....The.results.have. |
| fba0 | 6f 6e 6c 79 20 62 65 65 6e 20 74 65 73 74 65 64 20 75 70 20 74 6f 20 64 65 67 72 65 65 20 31 30 | only.been.tested.up.to.degree.10 |
| fbc0 | 30 2c 20 68 69 67 68 65 72 20 64 65 67 72 65 65 73 20 6d 61 79 0a 20 20 20 20 62 65 20 70 72 6f | 0,.higher.degrees.may.....be.pro |
| fbe0 | 62 6c 65 6d 61 74 69 63 2e 20 46 6f 72 20 47 61 75 73 73 2d 43 68 65 62 79 73 68 65 76 20 74 68 | blematic..For.Gauss-Chebyshev.th |
| fc00 | 65 72 65 20 61 72 65 20 63 6c 6f 73 65 64 20 66 6f 72 6d 20 73 6f 6c 75 74 69 6f 6e 73 20 66 6f | ere.are.closed.form.solutions.fo |
| fc20 | 72 0a 20 20 20 20 74 68 65 20 73 61 6d 70 6c 65 20 70 6f 69 6e 74 73 20 61 6e 64 20 77 65 69 67 | r.....the.sample.points.and.weig |
| fc40 | 68 74 73 2e 20 49 66 20 6e 20 3d 20 60 64 65 67 60 2c 20 74 68 65 6e 0a 0a 20 20 20 20 2e 2e 20 | hts..If.n.=.`deg`,.then......... |
| fc60 | 6d 61 74 68 3a 3a 20 78 5f 69 20 3d 20 5c 63 6f 73 28 5c 70 69 20 28 32 20 69 20 2d 20 31 29 20 | math::.x_i.=.\cos(\pi.(2.i.-.1). |
| fc80 | 2f 20 28 32 20 6e 29 29 0a 0a 20 20 20 20 2e 2e 20 6d 61 74 68 3a 3a 20 77 5f 69 20 3d 20 5c 70 | /.(2.n)).........math::.w_i.=.\p |
| fca0 | 69 20 2f 20 6e 0a 0a 20 20 20 20 72 5c 00 00 00 72 02 00 00 00 7a 1e 64 65 67 20 6d 75 73 74 20 | i./.n......r\...r....z.deg.must. |
| fcc0 | 62 65 20 61 20 70 6f 73 69 74 69 76 65 20 69 6e 74 65 67 65 72 72 04 00 00 00 72 2a 00 00 00 67 | be.a.positive.integerr....r*...g |
| fce0 | 00 00 00 00 00 00 00 40 29 08 72 58 00 00 00 72 89 00 00 00 72 7c 00 00 00 72 2f 00 00 00 da 03 | .......@).rX...r....r|...r/..... |
| fd00 | 63 6f 73 da 02 70 69 72 50 00 00 00 da 04 6f 6e 65 73 29 04 72 5c 00 00 00 72 ae 00 00 00 72 9e | cos..pirP.....ones).r\...r....r. |
| fd20 | 00 00 00 72 ba 00 00 00 73 04 00 00 00 20 20 20 20 72 34 00 00 00 72 26 00 00 00 72 26 00 00 00 | ...r....s........r4...r&...r&... |
| fd40 | 01 07 00 00 73 7c 00 00 00 80 00 f4 40 01 00 0c 0e 8f 3a 89 3a 90 63 98 35 d3 0b 21 80 44 d8 07 | ....s|......@.....:.:.c.5..!.D.. |
| fd60 | 0b 88 71 82 79 dc 0e 18 d0 19 39 d3 0e 3a d0 08 3a e4 08 0a 8f 06 89 06 8c 72 8f 75 89 75 94 72 | ..q.y.....9..:..:........r.u.u.r |
| fd80 | 97 79 91 79 a0 11 a0 41 a8 04 a1 48 a8 61 d3 17 30 d1 0f 30 b0 43 b8 24 b1 4a d1 0f 3f d3 08 40 | .y.y...A...H.a..0..0.C.$.J..?..@ |
| fda0 | 80 41 dc 08 0a 8f 07 89 07 90 04 8b 0d 9c 12 9f 15 99 15 a0 14 99 1c d1 08 26 80 41 e0 0b 0c 88 | .A.......................&.A.... |
| fdc0 | 61 88 34 80 4b 72 36 00 00 00 63 01 00 00 00 00 00 00 00 00 00 00 00 06 00 00 00 03 00 00 00 f3 | a.4.Kr6...c..................... |
| fde0 | 6e 00 00 00 97 00 64 01 74 01 00 00 00 00 00 00 00 00 6a 02 00 00 00 00 00 00 00 00 00 00 00 00 | n.....d.t.........j............. |
| fe00 | 00 00 00 00 00 00 64 01 7c 00 7a 00 00 00 ab 01 00 00 00 00 00 00 74 01 00 00 00 00 00 00 00 00 | ......d.|.z...........t......... |
| fe20 | 6a 02 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 64 01 7c 00 7a 0a 00 00 ab 01 00 00 | j...................d.|.z....... |
| fe40 | 00 00 00 00 7a 05 00 00 7a 0b 00 00 7d 01 7c 01 53 00 29 02 61 cb 01 00 00 0a 20 20 20 20 54 68 | ....z...z...}.|.S.).a.........Th |
| fe60 | 65 20 77 65 69 67 68 74 20 66 75 6e 63 74 69 6f 6e 20 6f 66 20 74 68 65 20 43 68 65 62 79 73 68 | e.weight.function.of.the.Chebysh |
| fe80 | 65 76 20 70 6f 6c 79 6e 6f 6d 69 61 6c 73 2e 0a 0a 20 20 20 20 54 68 65 20 77 65 69 67 68 74 20 | ev.polynomials.......The.weight. |
| fea0 | 66 75 6e 63 74 69 6f 6e 20 69 73 20 3a 6d 61 74 68 3a 60 31 2f 5c 73 71 72 74 7b 31 20 2d 20 78 | function.is.:math:`1/\sqrt{1.-.x |
| fec0 | 5e 32 7d 60 20 61 6e 64 20 74 68 65 20 69 6e 74 65 72 76 61 6c 20 6f 66 0a 20 20 20 20 69 6e 74 | ^2}`.and.the.interval.of.....int |
| fee0 | 65 67 72 61 74 69 6f 6e 20 69 73 20 3a 6d 61 74 68 3a 60 5b 2d 31 2c 20 31 5d 60 2e 20 54 68 65 | egration.is.:math:`[-1,.1]`..The |
| ff00 | 20 43 68 65 62 79 73 68 65 76 20 70 6f 6c 79 6e 6f 6d 69 61 6c 73 20 61 72 65 0a 20 20 20 20 6f | .Chebyshev.polynomials.are.....o |
| ff20 | 72 74 68 6f 67 6f 6e 61 6c 2c 20 62 75 74 20 6e 6f 74 20 6e 6f 72 6d 61 6c 69 7a 65 64 2c 20 77 | rthogonal,.but.not.normalized,.w |
| ff40 | 69 74 68 20 72 65 73 70 65 63 74 20 74 6f 20 74 68 69 73 20 77 65 69 67 68 74 20 66 75 6e 63 74 | ith.respect.to.this.weight.funct |
| ff60 | 69 6f 6e 2e 0a 0a 20 20 20 20 50 61 72 61 6d 65 74 65 72 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d | ion.......Parameters.....------- |
| ff80 | 2d 2d 2d 0a 20 20 20 20 78 20 3a 20 61 72 72 61 79 5f 6c 69 6b 65 0a 20 20 20 20 20 20 20 56 61 | ---.....x.:.array_like........Va |
| ffa0 | 6c 75 65 73 20 61 74 20 77 68 69 63 68 20 74 68 65 20 77 65 69 67 68 74 20 66 75 6e 63 74 69 6f | lues.at.which.the.weight.functio |
| ffc0 | 6e 20 77 69 6c 6c 20 62 65 20 63 6f 6d 70 75 74 65 64 2e 0a 0a 20 20 20 20 52 65 74 75 72 6e 73 | n.will.be.computed.......Returns |
| ffe0 | 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 77 20 3a 20 6e 64 61 72 72 61 79 0a 20 20 20 | .....-------.....w.:.ndarray.... |
| 10000 | 20 20 20 20 54 68 65 20 77 65 69 67 68 74 20 66 75 6e 63 74 69 6f 6e 20 61 74 20 60 78 60 2e 0a | ....The.weight.function.at.`x`.. |
| 10020 | 20 20 20 20 72 67 00 00 00 29 02 72 2f 00 00 00 72 bd 00 00 00 29 02 72 9e 00 00 00 72 ba 00 00 | ....rg...).r/...r....).r....r... |
| 10040 | 00 73 02 00 00 00 20 20 72 34 00 00 00 72 27 00 00 00 72 27 00 00 00 2b 07 00 00 73 30 00 00 00 | .s......r4...r'...r'...+...s0... |
| 10060 | 80 00 f0 24 00 09 0b 8c 62 8f 67 89 67 90 62 98 31 91 66 8b 6f a4 02 a7 07 a1 07 a8 02 a8 51 a9 | ...$....b.g.g.b.1.f.o.........Q. |
| 10080 | 06 a3 0f d1 0e 2f d1 08 30 80 41 d8 0b 0c 80 48 72 36 00 00 00 63 01 00 00 00 00 00 00 00 00 00 | ...../..0.A....Hr6...c.......... |
| 100a0 | 00 00 06 00 00 00 03 00 00 00 f3 ec 00 00 00 97 00 74 01 00 00 00 00 00 00 00 00 7c 00 ab 01 00 | .................t.........|.... |
| 100c0 | 00 00 00 00 00 7d 01 7c 01 7c 00 6b 37 00 00 72 0b 74 03 00 00 00 00 00 00 00 00 64 01 ab 01 00 | .....}.|.|.k7..r.t.........d.... |
| 100e0 | 00 00 00 00 00 82 01 7c 01 64 02 6b 02 00 00 72 0b 74 03 00 00 00 00 00 00 00 00 64 03 ab 01 00 | .......|.d.k...r.t.........d.... |
| 10100 | 00 00 00 00 00 82 01 64 04 74 04 00 00 00 00 00 00 00 00 6a 06 00 00 00 00 00 00 00 00 00 00 00 | .......d.t.........j............ |
| 10120 | 00 00 00 00 00 00 00 7a 05 00 00 7c 01 7a 0b 00 00 74 05 00 00 00 00 00 00 00 00 6a 08 00 00 00 | .......z...|.z...t.........j.... |
| 10140 | 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 7c 01 0b 00 64 02 7a 00 00 00 7c 01 64 02 7a 00 00 | ...............|...d.z...|.d.z.. |
| 10160 | 00 64 05 ab 03 00 00 00 00 00 00 7a 05 00 00 7d 02 74 05 00 00 00 00 00 00 00 00 6a 0a 00 00 00 | .d.........z...}.t.........j.... |
| 10180 | 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 7c 02 ab 01 00 00 00 00 00 00 53 00 29 06 61 89 01 | ...............|.........S.).a.. |
| 101a0 | 00 00 0a 20 20 20 20 43 68 65 62 79 73 68 65 76 20 70 6f 69 6e 74 73 20 6f 66 20 74 68 65 20 66 | .......Chebyshev.points.of.the.f |
| 101c0 | 69 72 73 74 20 6b 69 6e 64 2e 0a 0a 20 20 20 20 54 68 65 20 43 68 65 62 79 73 68 65 76 20 70 6f | irst.kind.......The.Chebyshev.po |
| 101e0 | 69 6e 74 73 20 6f 66 20 74 68 65 20 66 69 72 73 74 20 6b 69 6e 64 20 61 72 65 20 74 68 65 20 70 | ints.of.the.first.kind.are.the.p |
| 10200 | 6f 69 6e 74 73 20 60 60 63 6f 73 28 78 29 60 60 2c 0a 20 20 20 20 77 68 65 72 65 20 60 60 78 20 | oints.``cos(x)``,.....where.``x. |
| 10220 | 3d 20 5b 70 69 2a 28 6b 20 2b 20 2e 35 29 2f 6e 70 74 73 20 66 6f 72 20 6b 20 69 6e 20 72 61 6e | =.[pi*(k.+..5)/npts.for.k.in.ran |
| 10240 | 67 65 28 6e 70 74 73 29 5d 60 60 2e 0a 0a 20 20 20 20 50 61 72 61 6d 65 74 65 72 73 0a 20 20 20 | ge(npts)]``.......Parameters.... |
| 10260 | 20 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 6e 70 74 73 20 3a 20 69 6e 74 0a 20 20 20 20 20 | .----------.....npts.:.int...... |
| 10280 | 20 20 20 4e 75 6d 62 65 72 20 6f 66 20 73 61 6d 70 6c 65 20 70 6f 69 6e 74 73 20 64 65 73 69 72 | ...Number.of.sample.points.desir |
| 102a0 | 65 64 2e 0a 0a 20 20 20 20 52 65 74 75 72 6e 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 | ed.......Returns.....-------.... |
| 102c0 | 20 70 74 73 20 3a 20 6e 64 61 72 72 61 79 0a 20 20 20 20 20 20 20 20 54 68 65 20 43 68 65 62 79 | .pts.:.ndarray.........The.Cheby |
| 102e0 | 73 68 65 76 20 70 6f 69 6e 74 73 20 6f 66 20 74 68 65 20 66 69 72 73 74 20 6b 69 6e 64 2e 0a 0a | shev.points.of.the.first.kind... |
| 10300 | 20 20 20 20 53 65 65 20 41 6c 73 6f 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 63 68 | ....See.Also.....--------.....ch |
| 10320 | 65 62 70 74 73 32 0a 20 20 20 20 fa 14 6e 70 74 73 20 6d 75 73 74 20 62 65 20 69 6e 74 65 67 65 | ebpts2.......npts.must.be.intege |
| 10340 | 72 72 04 00 00 00 7a 11 6e 70 74 73 20 6d 75 73 74 20 62 65 20 3e 3d 20 31 72 bc 00 00 00 72 2a | rr....z.npts.must.be.>=.1r....r* |
| 10360 | 00 00 00 29 06 72 7b 00 00 00 72 7c 00 00 00 72 2f 00 00 00 72 d2 00 00 00 72 50 00 00 00 da 03 | ...).r{...r|...r/...r....rP..... |
| 10380 | 73 69 6e a9 03 da 04 6e 70 74 73 da 05 5f 6e 70 74 73 72 9e 00 00 00 73 03 00 00 00 20 20 20 72 | sin....npts.._nptsr....s.......r |
| 103a0 | 34 00 00 00 72 1c 00 00 00 72 1c 00 00 00 41 07 00 00 73 6f 00 00 00 80 00 f4 2a 00 0d 10 90 04 | 4...r....r....A...so......*..... |
| 103c0 | 8b 49 80 45 d8 07 0c 90 04 82 7d dc 0e 18 d0 19 2f d3 0e 30 d0 08 30 d8 07 0c 88 71 82 79 dc 0e | .I.E......}...../..0..0....q.y.. |
| 103e0 | 18 d0 19 2c d3 0e 2d d0 08 2d e0 08 0b 8c 62 8f 65 89 65 89 0b 90 65 d1 08 1b 9c 62 9f 69 99 69 | ...,..-..-....b.e.e...e....b.i.i |
| 10400 | a8 15 a8 06 b0 11 a9 0a b0 45 b8 41 b1 49 b8 71 d3 1e 41 d1 08 41 80 41 dc 0b 0d 8f 36 89 36 90 | .........E.A.I.q..A..A.A....6.6. |
| 10420 | 21 8b 39 d0 04 14 72 36 00 00 00 63 01 00 00 00 00 00 00 00 00 00 00 00 05 00 00 00 03 00 00 00 | !.9...r6...c.................... |
| 10440 | f3 ce 00 00 00 97 00 74 01 00 00 00 00 00 00 00 00 7c 00 ab 01 00 00 00 00 00 00 7d 01 7c 01 7c | .......t.........|.........}.|.| |
| 10460 | 00 6b 37 00 00 72 0b 74 03 00 00 00 00 00 00 00 00 64 01 ab 01 00 00 00 00 00 00 82 01 7c 01 64 | .k7..r.t.........d...........|.d |
| 10480 | 02 6b 02 00 00 72 0b 74 03 00 00 00 00 00 00 00 00 64 03 ab 01 00 00 00 00 00 00 82 01 74 05 00 | .k...r.t.........d...........t.. |
| 104a0 | 00 00 00 00 00 00 00 6a 06 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 74 04 00 00 00 | .......j...................t.... |
| 104c0 | 00 00 00 00 00 6a 08 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 0b 00 64 04 7c 01 ab | .....j.....................d.|.. |
| 104e0 | 03 00 00 00 00 00 00 7d 02 74 05 00 00 00 00 00 00 00 00 6a 0a 00 00 00 00 00 00 00 00 00 00 00 | .......}.t.........j............ |
| 10500 | 00 00 00 00 00 00 00 7c 02 ab 01 00 00 00 00 00 00 53 00 29 05 61 81 01 00 00 0a 20 20 20 20 43 | .......|.........S.).a.........C |
| 10520 | 68 65 62 79 73 68 65 76 20 70 6f 69 6e 74 73 20 6f 66 20 74 68 65 20 73 65 63 6f 6e 64 20 6b 69 | hebyshev.points.of.the.second.ki |
| 10540 | 6e 64 2e 0a 0a 20 20 20 20 54 68 65 20 43 68 65 62 79 73 68 65 76 20 70 6f 69 6e 74 73 20 6f 66 | nd.......The.Chebyshev.points.of |
| 10560 | 20 74 68 65 20 73 65 63 6f 6e 64 20 6b 69 6e 64 20 61 72 65 20 74 68 65 20 70 6f 69 6e 74 73 20 | .the.second.kind.are.the.points. |
| 10580 | 60 60 63 6f 73 28 78 29 60 60 2c 0a 20 20 20 20 77 68 65 72 65 20 60 60 78 20 3d 20 5b 70 69 2a | ``cos(x)``,.....where.``x.=.[pi* |
| 105a0 | 6b 2f 28 6e 70 74 73 20 2d 20 31 29 20 66 6f 72 20 6b 20 69 6e 20 72 61 6e 67 65 28 6e 70 74 73 | k/(npts.-.1).for.k.in.range(npts |
| 105c0 | 29 5d 60 60 20 73 6f 72 74 65 64 20 69 6e 20 61 73 63 65 6e 64 69 6e 67 0a 20 20 20 20 6f 72 64 | )]``.sorted.in.ascending.....ord |
| 105e0 | 65 72 2e 0a 0a 20 20 20 20 50 61 72 61 6d 65 74 65 72 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d | er.......Parameters.....-------- |
| 10600 | 2d 2d 0a 20 20 20 20 6e 70 74 73 20 3a 20 69 6e 74 0a 20 20 20 20 20 20 20 20 4e 75 6d 62 65 72 | --.....npts.:.int.........Number |
| 10620 | 20 6f 66 20 73 61 6d 70 6c 65 20 70 6f 69 6e 74 73 20 64 65 73 69 72 65 64 2e 0a 0a 20 20 20 20 | .of.sample.points.desired....... |
| 10640 | 52 65 74 75 72 6e 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 70 74 73 20 3a 20 6e 64 | Returns.....-------.....pts.:.nd |
| 10660 | 61 72 72 61 79 0a 20 20 20 20 20 20 20 20 54 68 65 20 43 68 65 62 79 73 68 65 76 20 70 6f 69 6e | array.........The.Chebyshev.poin |
| 10680 | 74 73 20 6f 66 20 74 68 65 20 73 65 63 6f 6e 64 20 6b 69 6e 64 2e 0a 20 20 20 20 72 d6 00 00 00 | ts.of.the.second.kind......r.... |
| 106a0 | 72 2a 00 00 00 7a 11 6e 70 74 73 20 6d 75 73 74 20 62 65 20 3e 3d 20 32 72 02 00 00 00 29 06 72 | r*...z.npts.must.be.>=.2r....).r |
| 106c0 | 7b 00 00 00 72 7c 00 00 00 72 2f 00 00 00 da 08 6c 69 6e 73 70 61 63 65 72 d2 00 00 00 72 d1 00 | {...r|...r/.....linspacer....r.. |
| 106e0 | 00 00 72 d8 00 00 00 73 03 00 00 00 20 20 20 72 34 00 00 00 72 1d 00 00 00 72 1d 00 00 00 60 07 | ..r....s.......r4...r....r....`. |
| 10700 | 00 00 73 59 00 00 00 80 00 f4 24 00 0d 10 90 04 8b 49 80 45 d8 07 0c 90 04 82 7d dc 0e 18 d0 19 | ..sY......$......I.E......}..... |
| 10720 | 2f d3 0e 30 d0 08 30 d8 07 0c 88 71 82 79 dc 0e 18 d0 19 2c d3 0e 2d d0 08 2d e4 08 0a 8f 0b 89 | /..0..0....q.y.....,..-..-...... |
| 10740 | 0b 94 52 97 55 91 55 90 46 98 41 98 75 d3 08 25 80 41 dc 0b 0d 8f 36 89 36 90 21 8b 39 d0 04 14 | ..R.U.U.F.A.u..%.A....6.6.!.9... |
| 10760 | 72 36 00 00 00 63 00 00 00 00 00 00 00 00 00 00 00 00 03 00 00 00 00 00 00 00 f3 2e 01 00 00 97 | r6...c.......................... |
| 10780 | 00 65 00 5a 01 64 00 5a 02 64 01 5a 03 02 00 65 04 65 05 ab 01 00 00 00 00 00 00 5a 06 02 00 65 | .e.Z.d.Z.d.Z...e.e.........Z...e |
| 107a0 | 04 65 07 ab 01 00 00 00 00 00 00 5a 08 02 00 65 04 65 09 ab 01 00 00 00 00 00 00 5a 0a 02 00 65 | .e.........Z...e.e.........Z...e |
| 107c0 | 04 65 0b ab 01 00 00 00 00 00 00 5a 0c 02 00 65 04 65 0d ab 01 00 00 00 00 00 00 5a 0e 02 00 65 | .e.........Z...e.e.........Z...e |
| 107e0 | 04 65 0f ab 01 00 00 00 00 00 00 5a 10 02 00 65 04 65 11 ab 01 00 00 00 00 00 00 5a 12 02 00 65 | .e.........Z...e.e.........Z...e |
| 10800 | 04 65 13 ab 01 00 00 00 00 00 00 5a 14 02 00 65 04 65 15 ab 01 00 00 00 00 00 00 5a 16 02 00 65 | .e.........Z...e.e.........Z...e |
| 10820 | 04 65 17 ab 01 00 00 00 00 00 00 5a 18 02 00 65 04 65 19 ab 01 00 00 00 00 00 00 5a 1a 02 00 65 | .e.........Z...e.e.........Z...e |
| 10840 | 04 65 1b ab 01 00 00 00 00 00 00 5a 1c 65 1d 64 05 64 03 84 01 ab 00 00 00 00 00 00 00 5a 1e 02 | .e.........Z.e.d.d...........Z.. |
| 10860 | 00 65 1f 6a 40 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 65 21 ab 01 00 00 00 00 00 | .e.j@..................e!....... |
| 10880 | 00 5a 22 02 00 65 1f 6a 40 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 65 21 ab 01 00 | .Z"..e.j@..................e!... |
| 108a0 | 00 00 00 00 00 5a 23 64 04 5a 24 79 02 29 06 72 1e 00 00 00 61 f8 03 00 00 41 20 43 68 65 62 79 | .....Z#d.Z$y.).r....a....A.Cheby |
| 108c0 | 73 68 65 76 20 73 65 72 69 65 73 20 63 6c 61 73 73 2e 0a 0a 20 20 20 20 54 68 65 20 43 68 65 62 | shev.series.class.......The.Cheb |
| 108e0 | 79 73 68 65 76 20 63 6c 61 73 73 20 70 72 6f 76 69 64 65 73 20 74 68 65 20 73 74 61 6e 64 61 72 | yshev.class.provides.the.standar |
| 10900 | 64 20 50 79 74 68 6f 6e 20 6e 75 6d 65 72 69 63 61 6c 20 6d 65 74 68 6f 64 73 0a 20 20 20 20 27 | d.Python.numerical.methods.....' |
| 10920 | 2b 27 2c 20 27 2d 27 2c 20 27 2a 27 2c 20 27 2f 2f 27 2c 20 27 25 27 2c 20 27 64 69 76 6d 6f 64 | +',.'-',.'*',.'//',.'%',.'divmod |
| 10940 | 27 2c 20 27 2a 2a 27 2c 20 61 6e 64 20 27 28 29 27 20 61 73 20 77 65 6c 6c 20 61 73 20 74 68 65 | ',.'**',.and.'()'.as.well.as.the |
| 10960 | 0a 20 20 20 20 61 74 74 72 69 62 75 74 65 73 20 61 6e 64 20 6d 65 74 68 6f 64 73 20 6c 69 73 74 | .....attributes.and.methods.list |
| 10980 | 65 64 20 62 65 6c 6f 77 2e 0a 0a 20 20 20 20 50 61 72 61 6d 65 74 65 72 73 0a 20 20 20 20 2d 2d | ed.below.......Parameters.....-- |
| 109a0 | 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 63 6f 65 66 20 3a 20 61 72 72 61 79 5f 6c 69 6b 65 0a 20 | --------.....coef.:.array_like.. |
| 109c0 | 20 20 20 20 20 20 20 43 68 65 62 79 73 68 65 76 20 63 6f 65 66 66 69 63 69 65 6e 74 73 20 69 6e | .......Chebyshev.coefficients.in |
| 109e0 | 20 6f 72 64 65 72 20 6f 66 20 69 6e 63 72 65 61 73 69 6e 67 20 64 65 67 72 65 65 2c 20 69 2e 65 | .order.of.increasing.degree,.i.e |
| 10a00 | 2e 2c 0a 20 20 20 20 20 20 20 20 60 60 28 31 2c 20 32 2c 20 33 29 60 60 20 67 69 76 65 73 20 60 | .,.........``(1,.2,.3)``.gives.` |
| 10a20 | 60 31 2a 54 5f 30 28 78 29 20 2b 20 32 2a 54 5f 31 28 78 29 20 2b 20 33 2a 54 5f 32 28 78 29 60 | `1*T_0(x).+.2*T_1(x).+.3*T_2(x)` |
| 10a40 | 60 2e 0a 20 20 20 20 64 6f 6d 61 69 6e 20 3a 20 28 32 2c 29 20 61 72 72 61 79 5f 6c 69 6b 65 2c | `......domain.:.(2,).array_like, |
| 10a60 | 20 6f 70 74 69 6f 6e 61 6c 0a 20 20 20 20 20 20 20 20 44 6f 6d 61 69 6e 20 74 6f 20 75 73 65 2e | .optional.........Domain.to.use. |
| 10a80 | 20 54 68 65 20 69 6e 74 65 72 76 61 6c 20 60 60 5b 64 6f 6d 61 69 6e 5b 30 5d 2c 20 64 6f 6d 61 | .The.interval.``[domain[0],.doma |
| 10aa0 | 69 6e 5b 31 5d 5d 60 60 20 69 73 20 6d 61 70 70 65 64 0a 20 20 20 20 20 20 20 20 74 6f 20 74 68 | in[1]]``.is.mapped.........to.th |
| 10ac0 | 65 20 69 6e 74 65 72 76 61 6c 20 60 60 5b 77 69 6e 64 6f 77 5b 30 5d 2c 20 77 69 6e 64 6f 77 5b | e.interval.``[window[0],.window[ |
| 10ae0 | 31 5d 5d 60 60 20 62 79 20 73 68 69 66 74 69 6e 67 20 61 6e 64 20 73 63 61 6c 69 6e 67 2e 0a 20 | 1]]``.by.shifting.and.scaling... |
| 10b00 | 20 20 20 20 20 20 20 54 68 65 20 64 65 66 61 75 6c 74 20 76 61 6c 75 65 20 69 73 20 5b 2d 31 2e | .......The.default.value.is.[-1. |
| 10b20 | 2c 20 31 2e 5d 2e 0a 20 20 20 20 77 69 6e 64 6f 77 20 3a 20 28 32 2c 29 20 61 72 72 61 79 5f 6c | ,.1.]......window.:.(2,).array_l |
| 10b40 | 69 6b 65 2c 20 6f 70 74 69 6f 6e 61 6c 0a 20 20 20 20 20 20 20 20 57 69 6e 64 6f 77 2c 20 73 65 | ike,.optional.........Window,.se |
| 10b60 | 65 20 60 64 6f 6d 61 69 6e 60 20 66 6f 72 20 69 74 73 20 75 73 65 2e 20 54 68 65 20 64 65 66 61 | e.`domain`.for.its.use..The.defa |
| 10b80 | 75 6c 74 20 76 61 6c 75 65 20 69 73 20 5b 2d 31 2e 2c 20 31 2e 5d 2e 0a 20 20 20 20 73 79 6d 62 | ult.value.is.[-1.,.1.]......symb |
| 10ba0 | 6f 6c 20 3a 20 73 74 72 2c 20 6f 70 74 69 6f 6e 61 6c 0a 20 20 20 20 20 20 20 20 53 79 6d 62 6f | ol.:.str,.optional.........Symbo |
| 10bc0 | 6c 20 75 73 65 64 20 74 6f 20 72 65 70 72 65 73 65 6e 74 20 74 68 65 20 69 6e 64 65 70 65 6e 64 | l.used.to.represent.the.independ |
| 10be0 | 65 6e 74 20 76 61 72 69 61 62 6c 65 20 69 6e 20 73 74 72 69 6e 67 0a 20 20 20 20 20 20 20 20 72 | ent.variable.in.string.........r |
| 10c00 | 65 70 72 65 73 65 6e 74 61 74 69 6f 6e 73 20 6f 66 20 74 68 65 20 70 6f 6c 79 6e 6f 6d 69 61 6c | epresentations.of.the.polynomial |
| 10c20 | 20 65 78 70 72 65 73 73 69 6f 6e 2c 20 65 2e 67 2e 20 66 6f 72 20 70 72 69 6e 74 69 6e 67 2e 0a | .expression,.e.g..for.printing.. |
| 10c40 | 20 20 20 20 20 20 20 20 54 68 65 20 73 79 6d 62 6f 6c 20 6d 75 73 74 20 62 65 20 61 20 76 61 6c | ........The.symbol.must.be.a.val |
| 10c60 | 69 64 20 50 79 74 68 6f 6e 20 69 64 65 6e 74 69 66 69 65 72 2e 20 44 65 66 61 75 6c 74 20 76 61 | id.Python.identifier..Default.va |
| 10c80 | 6c 75 65 20 69 73 20 27 78 27 2e 0a 0a 20 20 20 20 20 20 20 20 2e 2e 20 76 65 72 73 69 6f 6e 61 | lue.is.'x'..............versiona |
| 10ca0 | 64 64 65 64 3a 3a 20 31 2e 32 34 0a 0a 20 20 20 20 4e 63 05 00 00 00 00 00 00 00 00 00 00 00 04 | dded::.1.24......Nc............. |
| 10cc0 | 00 00 00 03 00 00 00 f3 62 00 00 00 87 00 87 01 87 03 87 04 97 00 89 03 80 0c 89 00 6a 00 00 00 | ........b...................j... |
| 10ce0 | 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 8a 03 88 04 88 00 88 03 88 01 66 04 64 01 84 08 | ..........................f.d... |
| 10d00 | 7d 05 74 03 00 00 00 00 00 00 00 00 7c 05 7c 02 ab 02 00 00 00 00 00 00 7d 06 02 00 89 00 7c 06 | }.t.........|.|.........}.....|. |
| 10d20 | 89 03 ac 02 ab 02 00 00 00 00 00 00 53 00 29 03 61 ba 04 00 00 49 6e 74 65 72 70 6f 6c 61 74 65 | ............S.).a....Interpolate |
| 10d40 | 20 61 20 66 75 6e 63 74 69 6f 6e 20 61 74 20 74 68 65 20 43 68 65 62 79 73 68 65 76 20 70 6f 69 | .a.function.at.the.Chebyshev.poi |
| 10d60 | 6e 74 73 20 6f 66 20 74 68 65 20 66 69 72 73 74 20 6b 69 6e 64 2e 0a 0a 20 20 20 20 20 20 20 20 | nts.of.the.first.kind........... |
| 10d80 | 52 65 74 75 72 6e 73 20 74 68 65 20 73 65 72 69 65 73 20 74 68 61 74 20 69 6e 74 65 72 70 6f 6c | Returns.the.series.that.interpol |
| 10da0 | 61 74 65 73 20 60 66 75 6e 63 60 20 61 74 20 74 68 65 20 43 68 65 62 79 73 68 65 76 20 70 6f 69 | ates.`func`.at.the.Chebyshev.poi |
| 10dc0 | 6e 74 73 20 6f 66 0a 20 20 20 20 20 20 20 20 74 68 65 20 66 69 72 73 74 20 6b 69 6e 64 20 73 63 | nts.of.........the.first.kind.sc |
| 10de0 | 61 6c 65 64 20 61 6e 64 20 73 68 69 66 74 65 64 20 74 6f 20 74 68 65 20 60 64 6f 6d 61 69 6e 60 | aled.and.shifted.to.the.`domain` |
| 10e00 | 2e 20 54 68 65 20 72 65 73 75 6c 74 69 6e 67 20 73 65 72 69 65 73 0a 20 20 20 20 20 20 20 20 74 | ..The.resulting.series.........t |
| 10e20 | 65 6e 64 73 20 74 6f 20 61 20 6d 69 6e 6d 61 78 20 61 70 70 72 6f 78 69 6d 61 74 69 6f 6e 20 6f | ends.to.a.minmax.approximation.o |
| 10e40 | 66 20 60 66 75 6e 63 60 20 77 68 65 6e 20 74 68 65 20 66 75 6e 63 74 69 6f 6e 20 69 73 0a 20 20 | f.`func`.when.the.function.is... |
| 10e60 | 20 20 20 20 20 20 63 6f 6e 74 69 6e 75 6f 75 73 20 69 6e 20 74 68 65 20 64 6f 6d 61 69 6e 2e 0a | ......continuous.in.the.domain.. |
| 10e80 | 0a 20 20 20 20 20 20 20 20 50 61 72 61 6d 65 74 65 72 73 0a 20 20 20 20 20 20 20 20 2d 2d 2d 2d | .........Parameters.........---- |
| 10ea0 | 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 20 20 20 20 66 75 6e 63 20 3a 20 66 75 6e 63 74 69 6f 6e 0a 20 | ------.........func.:.function.. |
| 10ec0 | 20 20 20 20 20 20 20 20 20 20 20 54 68 65 20 66 75 6e 63 74 69 6f 6e 20 74 6f 20 62 65 20 69 6e | ...........The.function.to.be.in |
| 10ee0 | 74 65 72 70 6f 6c 61 74 65 64 2e 20 49 74 20 6d 75 73 74 20 62 65 20 61 20 66 75 6e 63 74 69 6f | terpolated..It.must.be.a.functio |
| 10f00 | 6e 20 6f 66 20 61 20 73 69 6e 67 6c 65 0a 20 20 20 20 20 20 20 20 20 20 20 20 76 61 72 69 61 62 | n.of.a.single.............variab |
| 10f20 | 6c 65 20 6f 66 20 74 68 65 20 66 6f 72 6d 20 60 60 66 28 78 2c 20 61 2c 20 62 2c 20 63 2e 2e 2e | le.of.the.form.``f(x,.a,.b,.c... |
| 10f40 | 29 60 60 2c 20 77 68 65 72 65 20 60 60 61 2c 20 62 2c 20 63 2e 2e 2e 60 60 20 61 72 65 0a 20 20 | )``,.where.``a,.b,.c...``.are... |
| 10f60 | 20 20 20 20 20 20 20 20 20 20 65 78 74 72 61 20 61 72 67 75 6d 65 6e 74 73 20 70 61 73 73 65 64 | ..........extra.arguments.passed |
| 10f80 | 20 69 6e 20 74 68 65 20 60 61 72 67 73 60 20 70 61 72 61 6d 65 74 65 72 2e 0a 20 20 20 20 20 20 | .in.the.`args`.parameter........ |
| 10fa0 | 20 20 64 65 67 20 3a 20 69 6e 74 0a 20 20 20 20 20 20 20 20 20 20 20 20 44 65 67 72 65 65 20 6f | ..deg.:.int.............Degree.o |
| 10fc0 | 66 20 74 68 65 20 69 6e 74 65 72 70 6f 6c 61 74 69 6e 67 20 70 6f 6c 79 6e 6f 6d 69 61 6c 2e 0a | f.the.interpolating.polynomial.. |
| 10fe0 | 20 20 20 20 20 20 20 20 64 6f 6d 61 69 6e 20 3a 20 7b 4e 6f 6e 65 2c 20 5b 62 65 67 2c 20 65 6e | ........domain.:.{None,.[beg,.en |
| 11000 | 64 5d 7d 2c 20 6f 70 74 69 6f 6e 61 6c 0a 20 20 20 20 20 20 20 20 20 20 20 20 44 6f 6d 61 69 6e | d]},.optional.............Domain |
| 11020 | 20 6f 76 65 72 20 77 68 69 63 68 20 60 66 75 6e 63 60 20 69 73 20 69 6e 74 65 72 70 6f 6c 61 74 | .over.which.`func`.is.interpolat |
| 11040 | 65 64 2e 20 54 68 65 20 64 65 66 61 75 6c 74 20 69 73 20 4e 6f 6e 65 2c 20 69 6e 0a 20 20 20 20 | ed..The.default.is.None,.in..... |
| 11060 | 20 20 20 20 20 20 20 20 77 68 69 63 68 20 63 61 73 65 20 74 68 65 20 64 6f 6d 61 69 6e 20 69 73 | ........which.case.the.domain.is |
| 11080 | 20 5b 2d 31 2c 20 31 5d 2e 0a 20 20 20 20 20 20 20 20 61 72 67 73 20 3a 20 74 75 70 6c 65 2c 20 | .[-1,.1]..........args.:.tuple,. |
| 110a0 | 6f 70 74 69 6f 6e 61 6c 0a 20 20 20 20 20 20 20 20 20 20 20 20 45 78 74 72 61 20 61 72 67 75 6d | optional.............Extra.argum |
| 110c0 | 65 6e 74 73 20 74 6f 20 62 65 20 75 73 65 64 20 69 6e 20 74 68 65 20 66 75 6e 63 74 69 6f 6e 20 | ents.to.be.used.in.the.function. |
| 110e0 | 63 61 6c 6c 2e 20 44 65 66 61 75 6c 74 20 69 73 20 6e 6f 0a 20 20 20 20 20 20 20 20 20 20 20 20 | call..Default.is.no............. |
| 11100 | 65 78 74 72 61 20 61 72 67 75 6d 65 6e 74 73 2e 0a 0a 20 20 20 20 20 20 20 20 52 65 74 75 72 6e | extra.arguments...........Return |
| 11120 | 73 0a 20 20 20 20 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 20 20 20 20 70 6f 6c 79 6e 6f | s.........-------.........polyno |
| 11140 | 6d 69 61 6c 20 3a 20 43 68 65 62 79 73 68 65 76 20 69 6e 73 74 61 6e 63 65 0a 20 20 20 20 20 20 | mial.:.Chebyshev.instance....... |
| 11160 | 20 20 20 20 20 20 49 6e 74 65 72 70 6f 6c 61 74 69 6e 67 20 43 68 65 62 79 73 68 65 76 20 69 6e | ......Interpolating.Chebyshev.in |
| 11180 | 73 74 61 6e 63 65 2e 0a 0a 20 20 20 20 20 20 20 20 4e 6f 74 65 73 0a 20 20 20 20 20 20 20 20 2d | stance...........Notes.........- |
| 111a0 | 2d 2d 2d 2d 0a 20 20 20 20 20 20 20 20 53 65 65 20 60 6e 75 6d 70 79 2e 70 6f 6c 79 6e 6f 6d 69 | ----.........See.`numpy.polynomi |
| 111c0 | 61 6c 2e 63 68 65 62 69 6e 74 65 72 70 6f 6c 61 74 65 60 20 66 6f 72 20 6d 6f 72 65 20 64 65 74 | al.chebinterpolate`.for.more.det |
| 111e0 | 61 69 6c 73 2e 0a 0a 20 20 20 20 20 20 20 20 63 01 00 00 00 00 00 00 00 00 00 00 00 07 00 00 00 | ails...........c................ |
| 11200 | 13 00 00 00 f3 54 00 00 00 95 04 97 00 02 00 89 04 74 01 00 00 00 00 00 00 00 00 6a 02 00 00 00 | .....T...........t.........j.... |
| 11220 | 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 7c 00 89 02 6a 04 00 00 00 00 00 00 00 00 00 00 00 | ...............|...j............ |
| 11240 | 00 00 00 00 00 00 00 89 03 ab 03 00 00 00 00 00 00 67 01 89 01 a2 01 ad 06 8e 00 53 00 29 01 4e | .................g.........S.).N |
| 11260 | 29 03 72 58 00 00 00 da 09 6d 61 70 64 6f 6d 61 69 6e da 06 77 69 6e 64 6f 77 29 05 72 9e 00 00 | ).rX.....mapdomain..window).r... |
| 11280 | 00 72 cc 00 00 00 da 03 63 6c 73 da 06 64 6f 6d 61 69 6e 72 cb 00 00 00 73 05 00 00 00 20 80 80 | .r......cls..domainr....s....... |
| 112a0 | 80 80 72 34 00 00 00 fa 08 3c 6c 61 6d 62 64 61 3e 7a 27 43 68 65 62 79 73 68 65 76 2e 69 6e 74 | ..r4.....<lambda>z'Chebyshev.int |
| 112c0 | 65 72 70 6f 6c 61 74 65 2e 3c 6c 6f 63 61 6c 73 3e 2e 3c 6c 61 6d 62 64 61 3e cc 07 00 00 73 22 | erpolate.<locals>.<lambda>....s" |
| 112e0 | 00 00 00 f8 80 00 99 24 9c 72 9f 7c 99 7c a8 41 a8 73 af 7a a9 7a b8 36 d3 1f 42 d0 1a 4a c0 54 | .......$.r.|.|.A.s.z.z.6..B..J.T |
| 11300 | d2 1a 4a 80 00 72 36 00 00 00 29 01 72 e3 00 00 00 29 02 72 e3 00 00 00 72 28 00 00 00 29 07 72 | ..J..r6...).r....).r....r(...).r |
| 11320 | e2 00 00 00 72 cb 00 00 00 72 5c 00 00 00 72 e3 00 00 00 72 cc 00 00 00 da 05 78 66 75 6e 63 da | ....r....r\...r....r......xfunc. |
| 11340 | 04 63 6f 65 66 73 07 00 00 00 60 60 20 60 60 20 20 72 34 00 00 00 da 0b 69 6e 74 65 72 70 6f 6c | .coefs....``.``..r4.....interpol |
| 11360 | 61 74 65 7a 15 43 68 65 62 79 73 68 65 76 2e 69 6e 74 65 72 70 6f 6c 61 74 65 a8 07 00 00 73 32 | atez.Chebyshev.interpolate....s2 |
| 11380 | 00 00 00 fb 80 00 f0 44 01 00 0c 12 88 3e d8 15 18 97 5a 91 5a 88 46 de 10 4a 88 05 dc 0f 1e 98 | .......D.....>....Z.Z.F..J...... |
| 113a0 | 75 a0 63 d3 0f 2a 88 04 d9 0f 12 90 34 a0 06 d4 0f 27 d0 08 27 72 36 00 00 00 72 ca 00 00 00 29 | u.c..*......4....'..'r6...r....) |
| 113c0 | 02 4e a9 00 29 25 da 08 5f 5f 6e 61 6d 65 5f 5f da 0a 5f 5f 6d 6f 64 75 6c 65 5f 5f da 0c 5f 5f | .N..)%..__name__..__module__..__ |
| 113e0 | 71 75 61 6c 6e 61 6d 65 5f 5f da 07 5f 5f 64 6f 63 5f 5f da 0c 73 74 61 74 69 63 6d 65 74 68 6f | qualname__..__doc__..staticmetho |
| 11400 | 64 72 0c 00 00 00 72 6e 00 00 00 72 0d 00 00 00 72 72 00 00 00 72 0f 00 00 00 da 04 5f 6d 75 6c | dr....rn...r....rr...r......_mul |
| 11420 | 72 10 00 00 00 da 04 5f 64 69 76 72 11 00 00 00 da 04 5f 70 6f 77 72 12 00 00 00 da 04 5f 76 61 | r......_divr......_powr......_va |
| 11440 | 6c 72 14 00 00 00 da 04 5f 69 6e 74 72 13 00 00 00 da 04 5f 64 65 72 72 19 00 00 00 72 b7 00 00 | lr......_intr......_derr....r... |
| 11460 | 00 72 0b 00 00 00 da 05 5f 6c 69 6e 65 72 1b 00 00 00 da 06 5f 72 6f 6f 74 73 72 17 00 00 00 72 | .r......_liner......_rootsr....r |
| 11480 | 6b 00 00 00 da 0b 63 6c 61 73 73 6d 65 74 68 6f 64 72 e7 00 00 00 72 2f 00 00 00 72 4f 00 00 00 | k.....classmethodr....r/...rO... |
| 114a0 | 72 0a 00 00 00 72 e3 00 00 00 72 e1 00 00 00 da 0a 62 61 73 69 73 5f 6e 61 6d 65 72 e8 00 00 00 | r....r....r......basis_namer.... |
| 114c0 | 72 36 00 00 00 72 34 00 00 00 72 1e 00 00 00 72 1e 00 00 00 80 07 00 00 73 bb 00 00 00 84 00 f1 | r6...r4...r....r........s....... |
| 114e0 | 02 18 05 08 f1 34 00 0c 18 98 07 d3 0b 20 80 44 d9 0b 17 98 07 d3 0b 20 80 44 d9 0b 17 98 07 d3 | .....4.........D.........D...... |
| 11500 | 0b 20 80 44 d9 0b 17 98 07 d3 0b 20 80 44 d9 0b 17 98 07 d3 0b 20 80 44 d9 0b 17 98 07 d3 0b 20 | ...D.........D.........D........ |
| 11520 | 80 44 d9 0b 17 98 07 d3 0b 20 80 44 d9 0b 17 98 07 d3 0b 20 80 44 d9 0b 17 98 07 d3 0b 20 80 44 | .D.........D.........D.........D |
| 11540 | d9 0c 18 98 18 d3 0c 22 80 45 d9 0d 19 98 29 d3 0d 24 80 46 d9 11 1d 98 6d d3 11 2c 80 4a e0 05 | .......".E....)..$.F....m..,.J.. |
| 11560 | 10 f2 02 25 05 28 f3 03 00 06 11 f0 02 25 05 28 f0 50 01 00 0e 16 88 52 8f 58 89 58 90 6a d3 0d | ...%.(.......%.(.P.....R.X.X.j.. |
| 11580 | 21 80 46 d8 0d 15 88 52 8f 58 89 58 90 6a d3 0d 21 80 46 d8 11 14 81 4a 72 36 00 00 00 72 1e 00 | !.F....R.X.X.j..!.F....Jr6...r.. |
| 115a0 | 00 00 29 01 e9 10 00 00 00 29 03 72 04 00 00 00 72 04 00 00 00 72 02 00 00 00 29 01 54 29 03 4e | ..)......).r....r....r....).T).N |
| 115c0 | 46 4e 29 01 72 e8 00 00 00 29 38 72 ec 00 00 00 da 05 6e 75 6d 70 79 72 2f 00 00 00 da 0c 6e 75 | FN).r....)8r......numpyr/.....nu |
| 115e0 | 6d 70 79 2e 6c 69 6e 61 6c 67 da 06 6c 69 6e 61 6c 67 72 c2 00 00 00 da 15 6e 75 6d 70 79 2e 6c | mpy.linalg..linalgr......numpy.l |
| 11600 | 69 62 2e 61 72 72 61 79 5f 75 74 69 6c 73 72 03 00 00 00 da 00 72 05 00 00 00 72 58 00 00 00 da | ib.array_utilsr......r....rX.... |
| 11620 | 09 5f 70 6f 6c 79 62 61 73 65 72 06 00 00 00 da 07 5f 5f 61 6c 6c 5f 5f da 08 74 72 69 6d 63 6f | ._polybaser......__all__..trimco |
| 11640 | 65 66 72 1a 00 00 00 72 35 00 00 00 72 39 00 00 00 72 3e 00 00 00 72 4c 00 00 00 72 53 00 00 00 | efr....r5...r9...r>...rL...rS... |
| 11660 | 72 56 00 00 00 72 16 00 00 00 72 15 00 00 00 72 4f 00 00 00 72 0a 00 00 00 72 07 00 00 00 72 08 | rV...r....r....rO...r....r....r. |
| 11680 | 00 00 00 72 09 00 00 00 72 0b 00 00 00 72 17 00 00 00 72 0c 00 00 00 72 0d 00 00 00 72 0e 00 00 | ...r....r....r....r....r....r... |
| 116a0 | 00 72 0f 00 00 00 72 10 00 00 00 72 11 00 00 00 72 13 00 00 00 72 14 00 00 00 72 12 00 00 00 72 | .r....r....r....r....r....r....r |
| 116c0 | 1f 00 00 00 72 21 00 00 00 72 20 00 00 00 72 22 00 00 00 72 18 00 00 00 72 23 00 00 00 72 24 00 | ....r!...r....r"...r....r#...r$. |
| 116e0 | 00 00 72 19 00 00 00 72 25 00 00 00 72 1b 00 00 00 72 28 00 00 00 72 26 00 00 00 72 27 00 00 00 | ..r....r%...r....r(...r&...r'... |
| 11700 | 72 1c 00 00 00 72 1d 00 00 00 72 1e 00 00 00 72 e8 00 00 00 72 36 00 00 00 72 34 00 00 00 fa 08 | r....r....r....r....r6...r4..... |
| 11720 | 3c 6d 6f 64 75 6c 65 3e 72 01 01 00 00 01 00 00 00 73 6b 01 00 00 f0 03 01 01 01 f1 02 6c 01 01 | <module>r........sk..........l.. |
| 11740 | 04 f3 5a 03 00 01 13 dd 00 19 dd 00 36 e5 00 1d dd 00 22 f2 04 07 0b 32 80 07 f0 12 00 0c 0e 8f | ..Z.........6....."....2........ |
| 11760 | 3b 89 3b 80 08 f2 0e 16 01 19 f2 32 16 01 0d f2 32 18 01 1f f2 36 40 01 01 18 f2 46 02 1d 01 0d | ;.;........2....2....6@....F.... |
| 11780 | f2 40 01 1f 01 0e f2 4c 01 2f 01 0f f2 64 01 3a 01 29 f0 46 02 00 0e 16 88 52 8f 58 89 58 90 73 | .@.....L./...d.:.).F.....R.X.X.s |
| 117a0 | 98 42 90 69 d3 0d 20 80 0a f0 06 00 0c 14 88 32 8f 38 89 38 90 51 90 43 8b 3d 80 08 f0 06 00 0b | .B.i...........2.8.8.Q.C.=...... |
| 117c0 | 13 88 22 8f 28 89 28 90 41 90 33 8b 2d 80 07 f0 06 00 09 11 88 02 8f 08 89 08 90 21 90 51 90 16 | ..".(.(.A.3.-..............!.Q.. |
| 117e0 | d3 08 18 80 05 f2 06 23 01 1f f2 4c 01 34 01 33 f2 6e 01 27 01 1b f2 54 01 29 01 1b f2 58 01 2a | .......#...L.4.3.n.'...T.)...X.* |
| 11800 | 01 0f f2 5a 01 2e 01 1b f2 62 01 40 01 01 18 f3 46 02 37 01 28 f3 74 01 57 01 01 0d f0 74 02 00 | ...Z.....b.@....F.7.(.t.W....t.. |
| 11820 | 12 13 90 62 98 71 a0 61 a8 61 f3 00 7a 01 01 0d f3 7a 03 4f 01 01 17 f2 64 02 28 01 27 f2 56 01 | ...b.q.a.a..z....z.O....d.(.'.V. |
| 11840 | 2c 01 28 f2 5e 01 2a 01 2a f2 5a 01 2f 01 2b f2 64 01 32 01 21 f2 6a 01 2c 01 45 01 f2 5e 01 2d | ,.(.^.*.*.Z./.+.d.2.!.j.,.E..^.- |
| 11860 | 01 54 01 f3 60 01 7a 01 01 3a f2 7a 03 24 01 0f f2 4e 01 3a 01 0d f3 7a 01 3d 01 0d f2 40 02 27 | .T..`.z..:.z.$...N.:...z.=...@.' |
| 11880 | 01 10 f2 54 01 13 01 0d f2 2c 1c 01 15 f2 3e 19 01 15 f4 40 01 53 01 01 15 90 0b f5 00 53 01 01 | ...T.....,....>....@.S.......S.. |
| 118a0 | 15 72 36 00 00 00 | .r6... |