| ofs | hex dump | ascii |
|---|
| 0000 | cb 0d 0d 0a 00 00 00 00 0d fd a7 68 4b d5 00 00 e3 00 00 00 00 00 00 00 00 00 00 00 00 05 00 00 | ...........hK................... |
| 0020 | 00 00 00 00 00 f3 c2 01 00 00 97 00 64 00 5a 00 64 01 64 02 6c 01 5a 02 64 01 64 02 6c 03 6d 04 | ............d.Z.d.d.l.Z.d.d.l.m. |
| 0040 | 5a 05 01 00 64 01 64 03 6c 06 6d 07 5a 07 01 00 64 04 64 05 6c 08 6d 09 5a 0a 01 00 64 04 64 06 | Z...d.d.l.m.Z...d.d.l.m.Z...d.d. |
| 0060 | 6c 0b 6d 0c 5a 0c 01 00 67 00 64 07 a2 01 5a 0d 65 0a 6a 1c 00 00 00 00 00 00 00 00 00 00 00 00 | l.m.Z...g.d...Z.e.j............. |
| 0080 | 00 00 00 00 00 00 5a 0f 64 08 84 00 5a 10 64 09 84 00 5a 11 02 00 65 02 6a 24 00 00 00 00 00 00 | ......Z.d...Z.d...Z...e.j$...... |
| 00a0 | 00 00 00 00 00 00 00 00 00 00 00 00 64 0a 64 0b 67 02 ab 01 00 00 00 00 00 00 5a 13 02 00 65 02 | ............d.d.g.........Z...e. |
| 00c0 | 6a 24 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 64 01 67 01 ab 01 00 00 00 00 00 00 | j$..................d.g......... |
| 00e0 | 5a 14 02 00 65 02 6a 24 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 64 04 67 01 ab 01 | Z...e.j$..................d.g... |
| 0100 | 00 00 00 00 00 00 5a 15 02 00 65 02 6a 24 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 | ......Z...e.j$.................. |
| 0120 | 64 01 64 0c 67 02 ab 01 00 00 00 00 00 00 5a 16 64 0d 84 00 5a 17 64 0e 84 00 5a 18 64 0f 84 00 | d.d.g.........Z.d...Z.d...Z.d... |
| 0140 | 5a 19 64 10 84 00 5a 1a 64 11 84 00 5a 1b 64 12 84 00 5a 1c 64 13 84 00 5a 1d 64 27 64 14 84 01 | Z.d...Z.d...Z.d...Z.d...Z.d'd... |
| 0160 | 5a 1e 64 28 64 15 84 01 5a 1f 64 04 67 00 64 01 64 04 64 01 66 05 64 16 84 01 5a 20 64 29 64 17 | Z.d(d...Z.d.g.d.d.d.f.d...Z.d)d. |
| 0180 | 84 01 5a 21 64 18 84 00 5a 22 64 19 84 00 5a 23 64 1a 84 00 5a 24 64 1b 84 00 5a 25 64 1c 84 00 | ..Z!d...Z"d...Z#d...Z$d...Z%d... |
| 01a0 | 5a 26 64 1d 84 00 5a 27 64 1e 84 00 5a 28 64 2a 64 1f 84 01 5a 29 64 20 84 00 5a 2a 64 21 84 00 | Z&d...Z'd...Z(d*d...Z)d...Z*d!.. |
| 01c0 | 5a 2b 64 22 84 00 5a 2c 64 23 84 00 5a 2d 64 24 84 00 5a 2e 02 00 47 00 64 25 84 00 64 26 65 0c | Z+d"..Z,d#..Z-d$..Z...G.d%..d&e. |
| 01e0 | ab 03 00 00 00 00 00 00 5a 2f 79 02 29 2b 61 fd 04 00 00 0a 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d | ........Z/y.)+a.....============ |
| 0200 | 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d | ================================ |
| 0220 | 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 0a 48 65 72 6d 69 74 65 20 53 65 72 69 65 | ==================.Hermite.Serie |
| 0240 | 73 2c 20 22 50 68 79 73 69 63 69 73 74 73 22 20 28 3a 6d 6f 64 3a 60 6e 75 6d 70 79 2e 70 6f 6c | s,."Physicists".(:mod:`numpy.pol |
| 0260 | 79 6e 6f 6d 69 61 6c 2e 68 65 72 6d 69 74 65 60 29 0a 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d | ynomial.hermite`).============== |
| 0280 | 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d | ================================ |
| 02a0 | 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 0a 0a 54 68 69 73 20 6d 6f 64 75 6c 65 20 70 72 | ================..This.module.pr |
| 02c0 | 6f 76 69 64 65 73 20 61 20 6e 75 6d 62 65 72 20 6f 66 20 6f 62 6a 65 63 74 73 20 28 6d 6f 73 74 | ovides.a.number.of.objects.(most |
| 02e0 | 6c 79 20 66 75 6e 63 74 69 6f 6e 73 29 20 75 73 65 66 75 6c 20 66 6f 72 0a 64 65 61 6c 69 6e 67 | ly.functions).useful.for.dealing |
| 0300 | 20 77 69 74 68 20 48 65 72 6d 69 74 65 20 73 65 72 69 65 73 2c 20 69 6e 63 6c 75 64 69 6e 67 20 | .with.Hermite.series,.including. |
| 0320 | 61 20 60 48 65 72 6d 69 74 65 60 20 63 6c 61 73 73 20 74 68 61 74 0a 65 6e 63 61 70 73 75 6c 61 | a.`Hermite`.class.that.encapsula |
| 0340 | 74 65 73 20 74 68 65 20 75 73 75 61 6c 20 61 72 69 74 68 6d 65 74 69 63 20 6f 70 65 72 61 74 69 | tes.the.usual.arithmetic.operati |
| 0360 | 6f 6e 73 2e 20 20 28 47 65 6e 65 72 61 6c 20 69 6e 66 6f 72 6d 61 74 69 6f 6e 0a 6f 6e 20 68 6f | ons...(General.information.on.ho |
| 0380 | 77 20 74 68 69 73 20 6d 6f 64 75 6c 65 20 72 65 70 72 65 73 65 6e 74 73 20 61 6e 64 20 77 6f 72 | w.this.module.represents.and.wor |
| 03a0 | 6b 73 20 77 69 74 68 20 73 75 63 68 20 70 6f 6c 79 6e 6f 6d 69 61 6c 73 20 69 73 20 69 6e 20 74 | ks.with.such.polynomials.is.in.t |
| 03c0 | 68 65 0a 64 6f 63 73 74 72 69 6e 67 20 66 6f 72 20 69 74 73 20 22 70 61 72 65 6e 74 22 20 73 75 | he.docstring.for.its."parent".su |
| 03e0 | 62 2d 70 61 63 6b 61 67 65 2c 20 60 6e 75 6d 70 79 2e 70 6f 6c 79 6e 6f 6d 69 61 6c 60 29 2e 0a | b-package,.`numpy.polynomial`).. |
| 0400 | 0a 43 6c 61 73 73 65 73 0a 2d 2d 2d 2d 2d 2d 2d 0a 2e 2e 20 61 75 74 6f 73 75 6d 6d 61 72 79 3a | .Classes.-------....autosummary: |
| 0420 | 3a 0a 20 20 20 3a 74 6f 63 74 72 65 65 3a 20 67 65 6e 65 72 61 74 65 64 2f 0a 0a 20 20 20 48 65 | :....:toctree:.generated/.....He |
| 0440 | 72 6d 69 74 65 0a 0a 43 6f 6e 73 74 61 6e 74 73 0a 2d 2d 2d 2d 2d 2d 2d 2d 2d 0a 2e 2e 20 61 75 | rmite..Constants.---------....au |
| 0460 | 74 6f 73 75 6d 6d 61 72 79 3a 3a 0a 20 20 20 3a 74 6f 63 74 72 65 65 3a 20 67 65 6e 65 72 61 74 | tosummary::....:toctree:.generat |
| 0480 | 65 64 2f 0a 0a 20 20 20 68 65 72 6d 64 6f 6d 61 69 6e 0a 20 20 20 68 65 72 6d 7a 65 72 6f 0a 20 | ed/.....hermdomain....hermzero.. |
| 04a0 | 20 20 68 65 72 6d 6f 6e 65 0a 20 20 20 68 65 72 6d 78 0a 0a 41 72 69 74 68 6d 65 74 69 63 0a 2d | ..hermone....hermx..Arithmetic.- |
| 04c0 | 2d 2d 2d 2d 2d 2d 2d 2d 2d 0a 2e 2e 20 61 75 74 6f 73 75 6d 6d 61 72 79 3a 3a 0a 20 20 20 3a 74 | ---------....autosummary::....:t |
| 04e0 | 6f 63 74 72 65 65 3a 20 67 65 6e 65 72 61 74 65 64 2f 0a 0a 20 20 20 68 65 72 6d 61 64 64 0a 20 | octree:.generated/.....hermadd.. |
| 0500 | 20 20 68 65 72 6d 73 75 62 0a 20 20 20 68 65 72 6d 6d 75 6c 78 0a 20 20 20 68 65 72 6d 6d 75 6c | ..hermsub....hermmulx....hermmul |
| 0520 | 0a 20 20 20 68 65 72 6d 64 69 76 0a 20 20 20 68 65 72 6d 70 6f 77 0a 20 20 20 68 65 72 6d 76 61 | ....hermdiv....hermpow....hermva |
| 0540 | 6c 0a 20 20 20 68 65 72 6d 76 61 6c 32 64 0a 20 20 20 68 65 72 6d 76 61 6c 33 64 0a 20 20 20 68 | l....hermval2d....hermval3d....h |
| 0560 | 65 72 6d 67 72 69 64 32 64 0a 20 20 20 68 65 72 6d 67 72 69 64 33 64 0a 0a 43 61 6c 63 75 6c 75 | ermgrid2d....hermgrid3d..Calculu |
| 0580 | 73 0a 2d 2d 2d 2d 2d 2d 2d 2d 0a 2e 2e 20 61 75 74 6f 73 75 6d 6d 61 72 79 3a 3a 0a 20 20 20 3a | s.--------....autosummary::....: |
| 05a0 | 74 6f 63 74 72 65 65 3a 20 67 65 6e 65 72 61 74 65 64 2f 0a 0a 20 20 20 68 65 72 6d 64 65 72 0a | toctree:.generated/.....hermder. |
| 05c0 | 20 20 20 68 65 72 6d 69 6e 74 0a 0a 4d 69 73 63 20 46 75 6e 63 74 69 6f 6e 73 0a 2d 2d 2d 2d 2d | ...hermint..Misc.Functions.----- |
| 05e0 | 2d 2d 2d 2d 2d 2d 2d 2d 2d 0a 2e 2e 20 61 75 74 6f 73 75 6d 6d 61 72 79 3a 3a 0a 20 20 20 3a 74 | ---------....autosummary::....:t |
| 0600 | 6f 63 74 72 65 65 3a 20 67 65 6e 65 72 61 74 65 64 2f 0a 0a 20 20 20 68 65 72 6d 66 72 6f 6d 72 | octree:.generated/.....hermfromr |
| 0620 | 6f 6f 74 73 0a 20 20 20 68 65 72 6d 72 6f 6f 74 73 0a 20 20 20 68 65 72 6d 76 61 6e 64 65 72 0a | oots....hermroots....hermvander. |
| 0640 | 20 20 20 68 65 72 6d 76 61 6e 64 65 72 32 64 0a 20 20 20 68 65 72 6d 76 61 6e 64 65 72 33 64 0a | ...hermvander2d....hermvander3d. |
| 0660 | 20 20 20 68 65 72 6d 67 61 75 73 73 0a 20 20 20 68 65 72 6d 77 65 69 67 68 74 0a 20 20 20 68 65 | ...hermgauss....hermweight....he |
| 0680 | 72 6d 63 6f 6d 70 61 6e 69 6f 6e 0a 20 20 20 68 65 72 6d 66 69 74 0a 20 20 20 68 65 72 6d 74 72 | rmcompanion....hermfit....hermtr |
| 06a0 | 69 6d 0a 20 20 20 68 65 72 6d 6c 69 6e 65 0a 20 20 20 68 65 72 6d 32 70 6f 6c 79 0a 20 20 20 70 | im....hermline....herm2poly....p |
| 06c0 | 6f 6c 79 32 68 65 72 6d 0a 0a 53 65 65 20 61 6c 73 6f 0a 2d 2d 2d 2d 2d 2d 2d 2d 0a 60 6e 75 6d | oly2herm..See.also.--------.`num |
| 06e0 | 70 79 2e 70 6f 6c 79 6e 6f 6d 69 61 6c 60 0a 0a e9 00 00 00 00 4e 29 01 da 14 6e 6f 72 6d 61 6c | py.polynomial`.......N)...normal |
| 0700 | 69 7a 65 5f 61 78 69 73 5f 69 6e 64 65 78 e9 01 00 00 00 29 01 da 09 70 6f 6c 79 75 74 69 6c 73 | ize_axis_index.....)...polyutils |
| 0720 | 29 01 da 0b 41 42 43 50 6f 6c 79 42 61 73 65 29 1f da 08 68 65 72 6d 7a 65 72 6f da 07 68 65 72 | )...ABCPolyBase)...hermzero..her |
| 0740 | 6d 6f 6e 65 da 05 68 65 72 6d 78 da 0a 68 65 72 6d 64 6f 6d 61 69 6e da 08 68 65 72 6d 6c 69 6e | mone..hermx..hermdomain..hermlin |
| 0760 | 65 da 07 68 65 72 6d 61 64 64 da 07 68 65 72 6d 73 75 62 da 08 68 65 72 6d 6d 75 6c 78 da 07 68 | e..hermadd..hermsub..hermmulx..h |
| 0780 | 65 72 6d 6d 75 6c da 07 68 65 72 6d 64 69 76 da 07 68 65 72 6d 70 6f 77 da 07 68 65 72 6d 76 61 | ermmul..hermdiv..hermpow..hermva |
| 07a0 | 6c da 07 68 65 72 6d 64 65 72 da 07 68 65 72 6d 69 6e 74 da 09 68 65 72 6d 32 70 6f 6c 79 da 09 | l..hermder..hermint..herm2poly.. |
| 07c0 | 70 6f 6c 79 32 68 65 72 6d da 0d 68 65 72 6d 66 72 6f 6d 72 6f 6f 74 73 da 0a 68 65 72 6d 76 61 | poly2herm..hermfromroots..hermva |
| 07e0 | 6e 64 65 72 da 07 68 65 72 6d 66 69 74 da 08 68 65 72 6d 74 72 69 6d da 09 68 65 72 6d 72 6f 6f | nder..hermfit..hermtrim..hermroo |
| 0800 | 74 73 da 07 48 65 72 6d 69 74 65 da 09 68 65 72 6d 76 61 6c 32 64 da 09 68 65 72 6d 76 61 6c 33 | ts..Hermite..hermval2d..hermval3 |
| 0820 | 64 da 0a 68 65 72 6d 67 72 69 64 32 64 da 0a 68 65 72 6d 67 72 69 64 33 64 da 0c 68 65 72 6d 76 | d..hermgrid2d..hermgrid3d..hermv |
| 0840 | 61 6e 64 65 72 32 64 da 0c 68 65 72 6d 76 61 6e 64 65 72 33 64 da 0d 68 65 72 6d 63 6f 6d 70 61 | ander2d..hermvander3d..hermcompa |
| 0860 | 6e 69 6f 6e da 09 68 65 72 6d 67 61 75 73 73 da 0a 68 65 72 6d 77 65 69 67 68 74 63 01 00 00 00 | nion..hermgauss..hermweightc.... |
| 0880 | 00 00 00 00 00 00 00 00 06 00 00 00 03 00 00 00 f3 aa 00 00 00 97 00 74 01 00 00 00 00 00 00 00 | .......................t........ |
| 08a0 | 00 6a 02 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 7c 00 67 01 ab 01 00 00 00 00 00 | .j...................|.g........ |
| 08c0 | 00 5c 01 00 00 7d 00 74 05 00 00 00 00 00 00 00 00 7c 00 ab 01 00 00 00 00 00 00 64 01 7a 0a 00 | .\...}.t.........|.........d.z.. |
| 08e0 | 00 7d 01 64 02 7d 02 74 07 00 00 00 00 00 00 00 00 7c 01 64 03 64 03 ab 03 00 00 00 00 00 00 44 | .}.d.}.t.........|.d.d.........D |
| 0900 | 00 5d 1a 00 00 7d 03 74 09 00 00 00 00 00 00 00 00 74 0b 00 00 00 00 00 00 00 00 7c 02 ab 01 00 | .]...}.t.........t.........|.... |
| 0920 | 00 00 00 00 00 7c 00 7c 03 19 00 00 00 ab 02 00 00 00 00 00 00 7d 02 8c 1c 04 00 7c 02 53 00 29 | .....|.|.............}.....|.S.) |
| 0940 | 04 61 8b 03 00 00 0a 20 20 20 20 70 6f 6c 79 32 68 65 72 6d 28 70 6f 6c 29 0a 0a 20 20 20 20 43 | .a.........poly2herm(pol)......C |
| 0960 | 6f 6e 76 65 72 74 20 61 20 70 6f 6c 79 6e 6f 6d 69 61 6c 20 74 6f 20 61 20 48 65 72 6d 69 74 65 | onvert.a.polynomial.to.a.Hermite |
| 0980 | 20 73 65 72 69 65 73 2e 0a 0a 20 20 20 20 43 6f 6e 76 65 72 74 20 61 6e 20 61 72 72 61 79 20 72 | .series.......Convert.an.array.r |
| 09a0 | 65 70 72 65 73 65 6e 74 69 6e 67 20 74 68 65 20 63 6f 65 66 66 69 63 69 65 6e 74 73 20 6f 66 20 | epresenting.the.coefficients.of. |
| 09c0 | 61 20 70 6f 6c 79 6e 6f 6d 69 61 6c 20 28 72 65 6c 61 74 69 76 65 0a 20 20 20 20 74 6f 20 74 68 | a.polynomial.(relative.....to.th |
| 09e0 | 65 20 22 73 74 61 6e 64 61 72 64 22 20 62 61 73 69 73 29 20 6f 72 64 65 72 65 64 20 66 72 6f 6d | e."standard".basis).ordered.from |
| 0a00 | 20 6c 6f 77 65 73 74 20 64 65 67 72 65 65 20 74 6f 20 68 69 67 68 65 73 74 2c 20 74 6f 20 61 6e | .lowest.degree.to.highest,.to.an |
| 0a20 | 0a 20 20 20 20 61 72 72 61 79 20 6f 66 20 74 68 65 20 63 6f 65 66 66 69 63 69 65 6e 74 73 20 6f | .....array.of.the.coefficients.o |
| 0a40 | 66 20 74 68 65 20 65 71 75 69 76 61 6c 65 6e 74 20 48 65 72 6d 69 74 65 20 73 65 72 69 65 73 2c | f.the.equivalent.Hermite.series, |
| 0a60 | 20 6f 72 64 65 72 65 64 0a 20 20 20 20 66 72 6f 6d 20 6c 6f 77 65 73 74 20 74 6f 20 68 69 67 68 | .ordered.....from.lowest.to.high |
| 0a80 | 65 73 74 20 64 65 67 72 65 65 2e 0a 0a 20 20 20 20 50 61 72 61 6d 65 74 65 72 73 0a 20 20 20 20 | est.degree.......Parameters..... |
| 0aa0 | 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 70 6f 6c 20 3a 20 61 72 72 61 79 5f 6c 69 6b 65 0a | ----------.....pol.:.array_like. |
| 0ac0 | 20 20 20 20 20 20 20 20 31 2d 44 20 61 72 72 61 79 20 63 6f 6e 74 61 69 6e 69 6e 67 20 74 68 65 | ........1-D.array.containing.the |
| 0ae0 | 20 70 6f 6c 79 6e 6f 6d 69 61 6c 20 63 6f 65 66 66 69 63 69 65 6e 74 73 0a 0a 20 20 20 20 52 65 | .polynomial.coefficients......Re |
| 0b00 | 74 75 72 6e 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 63 20 3a 20 6e 64 61 72 72 61 | turns.....-------.....c.:.ndarra |
| 0b20 | 79 0a 20 20 20 20 20 20 20 20 31 2d 44 20 61 72 72 61 79 20 63 6f 6e 74 61 69 6e 69 6e 67 20 74 | y.........1-D.array.containing.t |
| 0b40 | 68 65 20 63 6f 65 66 66 69 63 69 65 6e 74 73 20 6f 66 20 74 68 65 20 65 71 75 69 76 61 6c 65 6e | he.coefficients.of.the.equivalen |
| 0b60 | 74 20 48 65 72 6d 69 74 65 0a 20 20 20 20 20 20 20 20 73 65 72 69 65 73 2e 0a 0a 20 20 20 20 53 | t.Hermite.........series.......S |
| 0b80 | 65 65 20 41 6c 73 6f 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 68 65 72 6d 32 70 6f | ee.Also.....--------.....herm2po |
| 0ba0 | 6c 79 0a 0a 20 20 20 20 4e 6f 74 65 73 0a 20 20 20 20 2d 2d 2d 2d 2d 0a 20 20 20 20 54 68 65 20 | ly......Notes.....-----.....The. |
| 0bc0 | 65 61 73 79 20 77 61 79 20 74 6f 20 64 6f 20 63 6f 6e 76 65 72 73 69 6f 6e 73 20 62 65 74 77 65 | easy.way.to.do.conversions.betwe |
| 0be0 | 65 6e 20 70 6f 6c 79 6e 6f 6d 69 61 6c 20 62 61 73 69 73 20 73 65 74 73 0a 20 20 20 20 69 73 20 | en.polynomial.basis.sets.....is. |
| 0c00 | 74 6f 20 75 73 65 20 74 68 65 20 63 6f 6e 76 65 72 74 20 6d 65 74 68 6f 64 20 6f 66 20 61 20 63 | to.use.the.convert.method.of.a.c |
| 0c20 | 6c 61 73 73 20 69 6e 73 74 61 6e 63 65 2e 0a 0a 20 20 20 20 45 78 61 6d 70 6c 65 73 0a 20 20 20 | lass.instance.......Examples.... |
| 0c40 | 20 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 3e 3e 3e 20 66 72 6f 6d 20 6e 75 6d 70 79 2e 70 6f 6c | .--------.....>>>.from.numpy.pol |
| 0c60 | 79 6e 6f 6d 69 61 6c 2e 68 65 72 6d 69 74 65 20 69 6d 70 6f 72 74 20 70 6f 6c 79 32 68 65 72 6d | ynomial.hermite.import.poly2herm |
| 0c80 | 0a 20 20 20 20 3e 3e 3e 20 70 6f 6c 79 32 68 65 72 6d 28 6e 70 2e 61 72 61 6e 67 65 28 34 29 29 | .....>>>.poly2herm(np.arange(4)) |
| 0ca0 | 0a 20 20 20 20 61 72 72 61 79 28 5b 31 2e 20 20 20 2c 20 20 32 2e 37 35 20 2c 20 20 30 2e 35 20 | .....array([1....,..2.75.,..0.5. |
| 0cc0 | 20 2c 20 20 30 2e 33 37 35 5d 29 0a 0a 20 20 20 20 72 04 00 00 00 72 02 00 00 00 e9 ff ff ff ff | .,..0.375])......r....r......... |
| 0ce0 | 29 06 da 02 70 75 da 09 61 73 5f 73 65 72 69 65 73 da 03 6c 65 6e da 05 72 61 6e 67 65 72 0c 00 | )...pu..as_series..len..ranger.. |
| 0d00 | 00 00 72 0e 00 00 00 29 04 da 03 70 6f 6c da 03 64 65 67 da 03 72 65 73 da 01 69 73 04 00 00 00 | ..r....)...pol..deg..res..is.... |
| 0d20 | 20 20 20 20 fa 5f 2f 68 6f 6d 65 2f 62 6c 61 63 6b 68 61 6f 2f 75 69 75 63 2d 63 6f 75 72 73 65 | ....._/home/blackhao/uiuc-course |
| 0d40 | 2d 67 72 61 70 68 2f 2e 76 65 6e 76 2f 6c 69 62 2f 70 79 74 68 6f 6e 33 2e 31 32 2f 73 69 74 65 | -graph/.venv/lib/python3.12/site |
| 0d60 | 2d 70 61 63 6b 61 67 65 73 2f 6e 75 6d 70 79 2f 70 6f 6c 79 6e 6f 6d 69 61 6c 2f 68 65 72 6d 69 | -packages/numpy/polynomial/hermi |
| 0d80 | 74 65 2e 70 79 72 16 00 00 00 72 16 00 00 00 60 00 00 00 73 5a 00 00 00 80 00 f4 4c 01 00 0d 0f | te.pyr....r....`...sZ......L.... |
| 0da0 | 8f 4c 89 4c 98 23 98 15 d3 0c 1f 81 45 80 53 dc 0a 0d 88 63 8b 28 90 51 89 2c 80 43 d8 0a 0b 80 | .L.L.#......E.S....c.(.Q.,.C.... |
| 0dc0 | 43 dc 0d 12 90 33 98 02 98 42 d3 0d 1f f2 00 01 05 2d 88 01 dc 0e 15 94 68 98 73 93 6d a0 53 a8 | C....3...B.......-......h.s.m.S. |
| 0de0 | 11 a1 56 d3 0e 2c 89 03 f0 03 01 05 2d e0 0b 0e 80 4a f3 00 00 00 00 63 01 00 00 00 00 00 00 00 | ..V..,......-....J.....c........ |
| 0e00 | 00 00 00 00 08 00 00 00 03 00 00 00 f3 4c 01 00 00 97 00 64 01 64 02 6c 00 6d 01 7d 01 6d 02 7d | .............L.....d.d.l.m.}.m.} |
| 0e20 | 02 6d 03 7d 03 01 00 74 09 00 00 00 00 00 00 00 00 6a 0a 00 00 00 00 00 00 00 00 00 00 00 00 00 | .m.}...t.........j.............. |
| 0e40 | 00 00 00 00 00 7c 00 67 01 ab 01 00 00 00 00 00 00 5c 01 00 00 7d 00 74 0d 00 00 00 00 00 00 00 | .....|.g.........\...}.t........ |
| 0e60 | 00 7c 00 ab 01 00 00 00 00 00 00 7d 04 7c 04 64 01 6b 28 00 00 72 02 7c 00 53 00 7c 04 64 03 6b | .|.........}.|.d.k(..r.|.S.|.d.k |
| 0e80 | 28 00 00 72 0f 7c 00 64 01 78 02 78 02 19 00 00 00 64 03 7a 12 00 00 63 03 63 02 3c 00 00 00 7c | (..r.|.d.x.x.....d.z...c.c.<...| |
| 0ea0 | 00 53 00 7c 00 64 04 19 00 00 00 7d 05 7c 00 64 05 19 00 00 00 7d 06 74 0f 00 00 00 00 00 00 00 | .S.|.d.....}.|.d.....}.t........ |
| 0ec0 | 00 7c 04 64 01 7a 0a 00 00 64 01 64 05 ab 03 00 00 00 00 00 00 44 00 5d 2e 00 00 7d 07 7c 05 7d | .|.d.z...d.d.........D.]...}.|.} |
| 0ee0 | 08 02 00 7c 03 7c 00 7c 07 64 03 7a 0a 00 00 19 00 00 00 7c 06 64 03 7c 07 64 01 7a 0a 00 00 7a | ...|.|.|.d.z.......|.d.|.d.z...z |
| 0f00 | 05 00 00 7a 05 00 00 ab 02 00 00 00 00 00 00 7d 05 02 00 7c 01 7c 08 02 00 7c 02 7c 06 ab 01 00 | ...z...........}...|.|...|.|.... |
| 0f20 | 00 00 00 00 00 64 03 7a 05 00 00 ab 02 00 00 00 00 00 00 7d 06 8c 30 04 00 02 00 7c 01 7c 05 02 | .....d.z...........}..0....|.|.. |
| 0f40 | 00 7c 02 7c 06 ab 01 00 00 00 00 00 00 64 03 7a 05 00 00 ab 02 00 00 00 00 00 00 53 00 29 06 61 | .|.|.........d.z...........S.).a |
| 0f60 | 05 04 00 00 0a 20 20 20 20 43 6f 6e 76 65 72 74 20 61 20 48 65 72 6d 69 74 65 20 73 65 72 69 65 | .........Convert.a.Hermite.serie |
| 0f80 | 73 20 74 6f 20 61 20 70 6f 6c 79 6e 6f 6d 69 61 6c 2e 0a 0a 20 20 20 20 43 6f 6e 76 65 72 74 20 | s.to.a.polynomial.......Convert. |
| 0fa0 | 61 6e 20 61 72 72 61 79 20 72 65 70 72 65 73 65 6e 74 69 6e 67 20 74 68 65 20 63 6f 65 66 66 69 | an.array.representing.the.coeffi |
| 0fc0 | 63 69 65 6e 74 73 20 6f 66 20 61 20 48 65 72 6d 69 74 65 20 73 65 72 69 65 73 2c 0a 20 20 20 20 | cients.of.a.Hermite.series,..... |
| 0fe0 | 6f 72 64 65 72 65 64 20 66 72 6f 6d 20 6c 6f 77 65 73 74 20 64 65 67 72 65 65 20 74 6f 20 68 69 | ordered.from.lowest.degree.to.hi |
| 1000 | 67 68 65 73 74 2c 20 74 6f 20 61 6e 20 61 72 72 61 79 20 6f 66 20 74 68 65 20 63 6f 65 66 66 69 | ghest,.to.an.array.of.the.coeffi |
| 1020 | 63 69 65 6e 74 73 0a 20 20 20 20 6f 66 20 74 68 65 20 65 71 75 69 76 61 6c 65 6e 74 20 70 6f 6c | cients.....of.the.equivalent.pol |
| 1040 | 79 6e 6f 6d 69 61 6c 20 28 72 65 6c 61 74 69 76 65 20 74 6f 20 74 68 65 20 22 73 74 61 6e 64 61 | ynomial.(relative.to.the."standa |
| 1060 | 72 64 22 20 62 61 73 69 73 29 20 6f 72 64 65 72 65 64 0a 20 20 20 20 66 72 6f 6d 20 6c 6f 77 65 | rd".basis).ordered.....from.lowe |
| 1080 | 73 74 20 74 6f 20 68 69 67 68 65 73 74 20 64 65 67 72 65 65 2e 0a 0a 20 20 20 20 50 61 72 61 6d | st.to.highest.degree.......Param |
| 10a0 | 65 74 65 72 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 63 20 3a 20 61 72 72 | eters.....----------.....c.:.arr |
| 10c0 | 61 79 5f 6c 69 6b 65 0a 20 20 20 20 20 20 20 20 31 2d 44 20 61 72 72 61 79 20 63 6f 6e 74 61 69 | ay_like.........1-D.array.contai |
| 10e0 | 6e 69 6e 67 20 74 68 65 20 48 65 72 6d 69 74 65 20 73 65 72 69 65 73 20 63 6f 65 66 66 69 63 69 | ning.the.Hermite.series.coeffici |
| 1100 | 65 6e 74 73 2c 20 6f 72 64 65 72 65 64 0a 20 20 20 20 20 20 20 20 66 72 6f 6d 20 6c 6f 77 65 73 | ents,.ordered.........from.lowes |
| 1120 | 74 20 6f 72 64 65 72 20 74 65 72 6d 20 74 6f 20 68 69 67 68 65 73 74 2e 0a 0a 20 20 20 20 52 65 | t.order.term.to.highest.......Re |
| 1140 | 74 75 72 6e 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 70 6f 6c 20 3a 20 6e 64 61 72 | turns.....-------.....pol.:.ndar |
| 1160 | 72 61 79 0a 20 20 20 20 20 20 20 20 31 2d 44 20 61 72 72 61 79 20 63 6f 6e 74 61 69 6e 69 6e 67 | ray.........1-D.array.containing |
| 1180 | 20 74 68 65 20 63 6f 65 66 66 69 63 69 65 6e 74 73 20 6f 66 20 74 68 65 20 65 71 75 69 76 61 6c | .the.coefficients.of.the.equival |
| 11a0 | 65 6e 74 20 70 6f 6c 79 6e 6f 6d 69 61 6c 0a 20 20 20 20 20 20 20 20 28 72 65 6c 61 74 69 76 65 | ent.polynomial.........(relative |
| 11c0 | 20 74 6f 20 74 68 65 20 22 73 74 61 6e 64 61 72 64 22 20 62 61 73 69 73 29 20 6f 72 64 65 72 65 | .to.the."standard".basis).ordere |
| 11e0 | 64 20 66 72 6f 6d 20 6c 6f 77 65 73 74 20 6f 72 64 65 72 20 74 65 72 6d 0a 20 20 20 20 20 20 20 | d.from.lowest.order.term........ |
| 1200 | 20 74 6f 20 68 69 67 68 65 73 74 2e 0a 0a 20 20 20 20 53 65 65 20 41 6c 73 6f 0a 20 20 20 20 2d | .to.highest.......See.Also.....- |
| 1220 | 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 70 6f 6c 79 32 68 65 72 6d 0a 0a 20 20 20 20 4e 6f 74 65 73 | -------.....poly2herm......Notes |
| 1240 | 0a 20 20 20 20 2d 2d 2d 2d 2d 0a 20 20 20 20 54 68 65 20 65 61 73 79 20 77 61 79 20 74 6f 20 64 | .....-----.....The.easy.way.to.d |
| 1260 | 6f 20 63 6f 6e 76 65 72 73 69 6f 6e 73 20 62 65 74 77 65 65 6e 20 70 6f 6c 79 6e 6f 6d 69 61 6c | o.conversions.between.polynomial |
| 1280 | 20 62 61 73 69 73 20 73 65 74 73 0a 20 20 20 20 69 73 20 74 6f 20 75 73 65 20 74 68 65 20 63 6f | .basis.sets.....is.to.use.the.co |
| 12a0 | 6e 76 65 72 74 20 6d 65 74 68 6f 64 20 6f 66 20 61 20 63 6c 61 73 73 20 69 6e 73 74 61 6e 63 65 | nvert.method.of.a.class.instance |
| 12c0 | 2e 0a 0a 20 20 20 20 45 78 61 6d 70 6c 65 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 | .......Examples.....--------.... |
| 12e0 | 20 3e 3e 3e 20 66 72 6f 6d 20 6e 75 6d 70 79 2e 70 6f 6c 79 6e 6f 6d 69 61 6c 2e 68 65 72 6d 69 | .>>>.from.numpy.polynomial.hermi |
| 1300 | 74 65 20 69 6d 70 6f 72 74 20 68 65 72 6d 32 70 6f 6c 79 0a 20 20 20 20 3e 3e 3e 20 68 65 72 6d | te.import.herm2poly.....>>>.herm |
| 1320 | 32 70 6f 6c 79 28 5b 20 31 2e 20 20 20 2c 20 20 32 2e 37 35 20 2c 20 20 30 2e 35 20 20 2c 20 20 | 2poly([.1....,..2.75.,..0.5..,.. |
| 1340 | 30 2e 33 37 35 5d 29 0a 20 20 20 20 61 72 72 61 79 28 5b 30 2e 2c 20 31 2e 2c 20 32 2e 2c 20 33 | 0.375]).....array([0.,.1.,.2.,.3 |
| 1360 | 2e 5d 29 0a 0a 20 20 20 20 72 04 00 00 00 29 03 da 07 70 6f 6c 79 61 64 64 da 08 70 6f 6c 79 6d | .])......r....)...polyadd..polym |
| 1380 | 75 6c 78 da 07 70 6f 6c 79 73 75 62 e9 02 00 00 00 e9 fe ff ff ff 72 27 00 00 00 29 08 da 0a 70 | ulx..polysub..........r'...)...p |
| 13a0 | 6f 6c 79 6e 6f 6d 69 61 6c 72 33 00 00 00 72 34 00 00 00 72 35 00 00 00 72 28 00 00 00 72 29 00 | olynomialr3...r4...r5...r(...r). |
| 13c0 | 00 00 72 2a 00 00 00 72 2b 00 00 00 29 09 da 01 63 72 33 00 00 00 72 34 00 00 00 72 35 00 00 00 | ..r*...r+...)...cr3...r4...r5... |
| 13e0 | da 01 6e da 02 63 30 da 02 63 31 72 2f 00 00 00 da 03 74 6d 70 73 09 00 00 00 20 20 20 20 20 20 | ..n..c0..c1r/.....tmps.......... |
| 1400 | 20 20 20 72 30 00 00 00 72 15 00 00 00 72 15 00 00 00 8e 00 00 00 73 cc 00 00 00 80 00 f7 4c 01 | ...r0...r....r........s.......L. |
| 1420 | 00 05 37 d1 04 36 e4 0a 0c 8f 2c 89 2c 98 01 90 73 d3 0a 1b 81 43 80 51 dc 08 0b 88 41 8b 06 80 | ..7..6....,.,...s....C.Q....A... |
| 1440 | 41 d8 07 08 88 41 82 76 d8 0f 10 88 08 d8 07 08 88 41 82 76 d8 08 09 88 21 8b 04 90 01 89 09 8b | A....A.v.........A.v....!....... |
| 1460 | 04 d8 0f 10 88 08 e0 0d 0e 88 72 89 55 88 02 d8 0d 0e 88 72 89 55 88 02 e4 11 16 90 71 98 31 91 | ..........r.U......r.U......q.1. |
| 1480 | 75 98 61 a0 12 d3 11 24 f2 00 03 09 30 88 41 d8 12 14 88 43 d9 11 18 98 11 98 31 98 71 99 35 99 | u.a....$....0.A....C......1.q.5. |
| 14a0 | 18 a0 32 a8 11 a8 61 b0 21 a9 65 a9 1b d1 23 35 d3 11 36 88 42 d9 11 18 98 13 99 68 a0 72 9b 6c | ..2...a.!.e...#5..6.B......h.r.l |
| 14c0 | a8 51 d1 1e 2e d3 11 2f 89 42 f0 07 03 09 30 f1 08 00 10 17 90 72 99 38 a0 42 9b 3c a8 21 d1 1b | .Q...../.B....0......r.8.B.<.!.. |
| 14e0 | 2b d3 0f 2c d0 08 2c 72 31 00 00 00 67 00 00 00 00 00 00 f0 bf e7 00 00 00 00 00 00 f0 3f e7 00 | +..,..,r1...g................?.. |
| 1500 | 00 00 00 00 00 e0 3f 63 02 00 00 00 00 00 00 00 00 00 00 00 05 00 00 00 03 00 00 00 f3 6c 00 00 | ......?c.....................l.. |
| 1520 | 00 97 00 7c 01 64 01 6b 37 00 00 72 1a 74 01 00 00 00 00 00 00 00 00 6a 02 00 00 00 00 00 00 00 | ...|.d.k7..r.t.........j........ |
| 1540 | 00 00 00 00 00 00 00 00 00 00 00 7c 00 7c 01 64 02 7a 0b 00 00 67 02 ab 01 00 00 00 00 00 00 53 | ...........|.|.d.z...g.........S |
| 1560 | 00 74 01 00 00 00 00 00 00 00 00 6a 02 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 7c | .t.........j...................| |
| 1580 | 00 67 01 ab 01 00 00 00 00 00 00 53 00 29 03 61 b9 02 00 00 0a 20 20 20 20 48 65 72 6d 69 74 65 | .g.........S.).a.........Hermite |
| 15a0 | 20 73 65 72 69 65 73 20 77 68 6f 73 65 20 67 72 61 70 68 20 69 73 20 61 20 73 74 72 61 69 67 68 | .series.whose.graph.is.a.straigh |
| 15c0 | 74 20 6c 69 6e 65 2e 0a 0a 0a 0a 20 20 20 20 50 61 72 61 6d 65 74 65 72 73 0a 20 20 20 20 2d 2d | t.line.........Parameters.....-- |
| 15e0 | 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 6f 66 66 2c 20 73 63 6c 20 3a 20 73 63 61 6c 61 72 73 0a | --------.....off,.scl.:.scalars. |
| 1600 | 20 20 20 20 20 20 20 20 54 68 65 20 73 70 65 63 69 66 69 65 64 20 6c 69 6e 65 20 69 73 20 67 69 | ........The.specified.line.is.gi |
| 1620 | 76 65 6e 20 62 79 20 60 60 6f 66 66 20 2b 20 73 63 6c 2a 78 60 60 2e 0a 0a 20 20 20 20 52 65 74 | ven.by.``off.+.scl*x``.......Ret |
| 1640 | 75 72 6e 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 79 20 3a 20 6e 64 61 72 72 61 79 | urns.....-------.....y.:.ndarray |
| 1660 | 0a 20 20 20 20 20 20 20 20 54 68 69 73 20 6d 6f 64 75 6c 65 27 73 20 72 65 70 72 65 73 65 6e 74 | .........This.module's.represent |
| 1680 | 61 74 69 6f 6e 20 6f 66 20 74 68 65 20 48 65 72 6d 69 74 65 20 73 65 72 69 65 73 20 66 6f 72 0a | ation.of.the.Hermite.series.for. |
| 16a0 | 20 20 20 20 20 20 20 20 60 60 6f 66 66 20 2b 20 73 63 6c 2a 78 60 60 2e 0a 0a 20 20 20 20 53 65 | ........``off.+.scl*x``.......Se |
| 16c0 | 65 20 41 6c 73 6f 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 6e 75 6d 70 79 2e 70 6f | e.Also.....--------.....numpy.po |
| 16e0 | 6c 79 6e 6f 6d 69 61 6c 2e 70 6f 6c 79 6e 6f 6d 69 61 6c 2e 70 6f 6c 79 6c 69 6e 65 0a 20 20 20 | lynomial.polynomial.polyline.... |
| 1700 | 20 6e 75 6d 70 79 2e 70 6f 6c 79 6e 6f 6d 69 61 6c 2e 63 68 65 62 79 73 68 65 76 2e 63 68 65 62 | .numpy.polynomial.chebyshev.cheb |
| 1720 | 6c 69 6e 65 0a 20 20 20 20 6e 75 6d 70 79 2e 70 6f 6c 79 6e 6f 6d 69 61 6c 2e 6c 65 67 65 6e 64 | line.....numpy.polynomial.legend |
| 1740 | 72 65 2e 6c 65 67 6c 69 6e 65 0a 20 20 20 20 6e 75 6d 70 79 2e 70 6f 6c 79 6e 6f 6d 69 61 6c 2e | re.legline.....numpy.polynomial. |
| 1760 | 6c 61 67 75 65 72 72 65 2e 6c 61 67 6c 69 6e 65 0a 20 20 20 20 6e 75 6d 70 79 2e 70 6f 6c 79 6e | laguerre.lagline.....numpy.polyn |
| 1780 | 6f 6d 69 61 6c 2e 68 65 72 6d 69 74 65 5f 65 2e 68 65 72 6d 65 6c 69 6e 65 0a 0a 20 20 20 20 45 | omial.hermite_e.hermeline......E |
| 17a0 | 78 61 6d 70 6c 65 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 3e 3e 3e 20 66 72 6f | xamples.....--------.....>>>.fro |
| 17c0 | 6d 20 6e 75 6d 70 79 2e 70 6f 6c 79 6e 6f 6d 69 61 6c 2e 68 65 72 6d 69 74 65 20 69 6d 70 6f 72 | m.numpy.polynomial.hermite.impor |
| 17e0 | 74 20 68 65 72 6d 6c 69 6e 65 2c 20 68 65 72 6d 76 61 6c 0a 20 20 20 20 3e 3e 3e 20 68 65 72 6d | t.hermline,.hermval.....>>>.herm |
| 1800 | 76 61 6c 28 30 2c 68 65 72 6d 6c 69 6e 65 28 33 2c 20 32 29 29 0a 20 20 20 20 33 2e 30 0a 20 20 | val(0,hermline(3,.2)).....3.0... |
| 1820 | 20 20 3e 3e 3e 20 68 65 72 6d 76 61 6c 28 31 2c 68 65 72 6d 6c 69 6e 65 28 33 2c 20 32 29 29 0a | ..>>>.hermval(1,hermline(3,.2)). |
| 1840 | 20 20 20 20 35 2e 30 0a 0a 20 20 20 20 72 02 00 00 00 72 36 00 00 00 29 02 da 02 6e 70 da 05 61 | ....5.0......r....r6...)...np..a |
| 1860 | 72 72 61 79 29 02 da 03 6f 66 66 da 03 73 63 6c 73 02 00 00 00 20 20 72 30 00 00 00 72 0b 00 00 | rray)...off..scls......r0...r... |
| 1880 | 00 72 0b 00 00 00 da 00 00 00 73 33 00 00 00 80 00 f0 44 01 00 08 0b 88 61 82 78 dc 0f 11 8f 78 | .r........s3......D.....a.x....x |
| 18a0 | 89 78 98 13 98 63 a0 41 99 67 98 0e d3 0f 27 d0 08 27 e4 0f 11 8f 78 89 78 98 13 98 05 8b 7f d0 | .x...c.A.g....'..'....x.x....... |
| 18c0 | 08 1e 72 31 00 00 00 63 01 00 00 00 00 00 00 00 00 00 00 00 05 00 00 00 03 00 00 00 f3 40 00 00 | ..r1...c.....................@.. |
| 18e0 | 00 97 00 74 01 00 00 00 00 00 00 00 00 6a 02 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 | ...t.........j.................. |
| 1900 | 00 74 04 00 00 00 00 00 00 00 00 74 06 00 00 00 00 00 00 00 00 7c 00 ab 03 00 00 00 00 00 00 53 | .t.........t.........|.........S |
| 1920 | 00 29 01 61 72 06 00 00 0a 20 20 20 20 47 65 6e 65 72 61 74 65 20 61 20 48 65 72 6d 69 74 65 20 | .).ar........Generate.a.Hermite. |
| 1940 | 73 65 72 69 65 73 20 77 69 74 68 20 67 69 76 65 6e 20 72 6f 6f 74 73 2e 0a 0a 20 20 20 20 54 68 | series.with.given.roots.......Th |
| 1960 | 65 20 66 75 6e 63 74 69 6f 6e 20 72 65 74 75 72 6e 73 20 74 68 65 20 63 6f 65 66 66 69 63 69 65 | e.function.returns.the.coefficie |
| 1980 | 6e 74 73 20 6f 66 20 74 68 65 20 70 6f 6c 79 6e 6f 6d 69 61 6c 0a 0a 20 20 20 20 2e 2e 20 6d 61 | nts.of.the.polynomial.........ma |
| 19a0 | 74 68 3a 3a 20 70 28 78 29 20 3d 20 28 78 20 2d 20 72 5f 30 29 20 2a 20 28 78 20 2d 20 72 5f 31 | th::.p(x).=.(x.-.r_0).*.(x.-.r_1 |
| 19c0 | 29 20 2a 20 2e 2e 2e 20 2a 20 28 78 20 2d 20 72 5f 6e 29 2c 0a 0a 20 20 20 20 69 6e 20 48 65 72 | ).*.....*.(x.-.r_n),......in.Her |
| 19e0 | 6d 69 74 65 20 66 6f 72 6d 2c 20 77 68 65 72 65 20 74 68 65 20 3a 6d 61 74 68 3a 60 72 5f 6e 60 | mite.form,.where.the.:math:`r_n` |
| 1a00 | 20 61 72 65 20 74 68 65 20 72 6f 6f 74 73 20 73 70 65 63 69 66 69 65 64 20 69 6e 20 60 72 6f 6f | .are.the.roots.specified.in.`roo |
| 1a20 | 74 73 60 2e 0a 20 20 20 20 49 66 20 61 20 7a 65 72 6f 20 68 61 73 20 6d 75 6c 74 69 70 6c 69 63 | ts`......If.a.zero.has.multiplic |
| 1a40 | 69 74 79 20 6e 2c 20 74 68 65 6e 20 69 74 20 6d 75 73 74 20 61 70 70 65 61 72 20 69 6e 20 60 72 | ity.n,.then.it.must.appear.in.`r |
| 1a60 | 6f 6f 74 73 60 20 6e 20 74 69 6d 65 73 2e 0a 20 20 20 20 46 6f 72 20 69 6e 73 74 61 6e 63 65 2c | oots`.n.times......For.instance, |
| 1a80 | 20 69 66 20 32 20 69 73 20 61 20 72 6f 6f 74 20 6f 66 20 6d 75 6c 74 69 70 6c 69 63 69 74 79 20 | .if.2.is.a.root.of.multiplicity. |
| 1aa0 | 74 68 72 65 65 20 61 6e 64 20 33 20 69 73 20 61 20 72 6f 6f 74 20 6f 66 0a 20 20 20 20 6d 75 6c | three.and.3.is.a.root.of.....mul |
| 1ac0 | 74 69 70 6c 69 63 69 74 79 20 32 2c 20 74 68 65 6e 20 60 72 6f 6f 74 73 60 20 6c 6f 6f 6b 73 20 | tiplicity.2,.then.`roots`.looks. |
| 1ae0 | 73 6f 6d 65 74 68 69 6e 67 20 6c 69 6b 65 20 5b 32 2c 20 32 2c 20 32 2c 20 33 2c 20 33 5d 2e 20 | something.like.[2,.2,.2,.3,.3].. |
| 1b00 | 54 68 65 0a 20 20 20 20 72 6f 6f 74 73 20 63 61 6e 20 61 70 70 65 61 72 20 69 6e 20 61 6e 79 20 | The.....roots.can.appear.in.any. |
| 1b20 | 6f 72 64 65 72 2e 0a 0a 20 20 20 20 49 66 20 74 68 65 20 72 65 74 75 72 6e 65 64 20 63 6f 65 66 | order.......If.the.returned.coef |
| 1b40 | 66 69 63 69 65 6e 74 73 20 61 72 65 20 60 63 60 2c 20 74 68 65 6e 0a 0a 20 20 20 20 2e 2e 20 6d | ficients.are.`c`,.then.........m |
| 1b60 | 61 74 68 3a 3a 20 70 28 78 29 20 3d 20 63 5f 30 20 2b 20 63 5f 31 20 2a 20 48 5f 31 28 78 29 20 | ath::.p(x).=.c_0.+.c_1.*.H_1(x). |
| 1b80 | 2b 20 2e 2e 2e 20 2b 20 20 63 5f 6e 20 2a 20 48 5f 6e 28 78 29 0a 0a 20 20 20 20 54 68 65 20 63 | +.....+..c_n.*.H_n(x)......The.c |
| 1ba0 | 6f 65 66 66 69 63 69 65 6e 74 20 6f 66 20 74 68 65 20 6c 61 73 74 20 74 65 72 6d 20 69 73 20 6e | oefficient.of.the.last.term.is.n |
| 1bc0 | 6f 74 20 67 65 6e 65 72 61 6c 6c 79 20 31 20 66 6f 72 20 6d 6f 6e 69 63 0a 20 20 20 20 70 6f 6c | ot.generally.1.for.monic.....pol |
| 1be0 | 79 6e 6f 6d 69 61 6c 73 20 69 6e 20 48 65 72 6d 69 74 65 20 66 6f 72 6d 2e 0a 0a 20 20 20 20 50 | ynomials.in.Hermite.form.......P |
| 1c00 | 61 72 61 6d 65 74 65 72 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 72 6f 6f | arameters.....----------.....roo |
| 1c20 | 74 73 20 3a 20 61 72 72 61 79 5f 6c 69 6b 65 0a 20 20 20 20 20 20 20 20 53 65 71 75 65 6e 63 65 | ts.:.array_like.........Sequence |
| 1c40 | 20 63 6f 6e 74 61 69 6e 69 6e 67 20 74 68 65 20 72 6f 6f 74 73 2e 0a 0a 20 20 20 20 52 65 74 75 | .containing.the.roots.......Retu |
| 1c60 | 72 6e 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 6f 75 74 20 3a 20 6e 64 61 72 72 61 | rns.....-------.....out.:.ndarra |
| 1c80 | 79 0a 20 20 20 20 20 20 20 20 31 2d 44 20 61 72 72 61 79 20 6f 66 20 63 6f 65 66 66 69 63 69 65 | y.........1-D.array.of.coefficie |
| 1ca0 | 6e 74 73 2e 20 20 49 66 20 61 6c 6c 20 72 6f 6f 74 73 20 61 72 65 20 72 65 61 6c 20 74 68 65 6e | nts...If.all.roots.are.real.then |
| 1cc0 | 20 60 6f 75 74 60 20 69 73 20 61 0a 20 20 20 20 20 20 20 20 72 65 61 6c 20 61 72 72 61 79 2c 20 | .`out`.is.a.........real.array,. |
| 1ce0 | 69 66 20 73 6f 6d 65 20 6f 66 20 74 68 65 20 72 6f 6f 74 73 20 61 72 65 20 63 6f 6d 70 6c 65 78 | if.some.of.the.roots.are.complex |
| 1d00 | 2c 20 74 68 65 6e 20 60 6f 75 74 60 20 69 73 20 63 6f 6d 70 6c 65 78 0a 20 20 20 20 20 20 20 20 | ,.then.`out`.is.complex......... |
| 1d20 | 65 76 65 6e 20 69 66 20 61 6c 6c 20 74 68 65 20 63 6f 65 66 66 69 63 69 65 6e 74 73 20 69 6e 20 | even.if.all.the.coefficients.in. |
| 1d40 | 74 68 65 20 72 65 73 75 6c 74 20 61 72 65 20 72 65 61 6c 20 28 73 65 65 20 45 78 61 6d 70 6c 65 | the.result.are.real.(see.Example |
| 1d60 | 73 0a 20 20 20 20 20 20 20 20 62 65 6c 6f 77 29 2e 0a 0a 20 20 20 20 53 65 65 20 41 6c 73 6f 0a | s.........below).......See.Also. |
| 1d80 | 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 6e 75 6d 70 79 2e 70 6f 6c 79 6e 6f 6d 69 61 | ....--------.....numpy.polynomia |
| 1da0 | 6c 2e 70 6f 6c 79 6e 6f 6d 69 61 6c 2e 70 6f 6c 79 66 72 6f 6d 72 6f 6f 74 73 0a 20 20 20 20 6e | l.polynomial.polyfromroots.....n |
| 1dc0 | 75 6d 70 79 2e 70 6f 6c 79 6e 6f 6d 69 61 6c 2e 6c 65 67 65 6e 64 72 65 2e 6c 65 67 66 72 6f 6d | umpy.polynomial.legendre.legfrom |
| 1de0 | 72 6f 6f 74 73 0a 20 20 20 20 6e 75 6d 70 79 2e 70 6f 6c 79 6e 6f 6d 69 61 6c 2e 6c 61 67 75 65 | roots.....numpy.polynomial.lague |
| 1e00 | 72 72 65 2e 6c 61 67 66 72 6f 6d 72 6f 6f 74 73 0a 20 20 20 20 6e 75 6d 70 79 2e 70 6f 6c 79 6e | rre.lagfromroots.....numpy.polyn |
| 1e20 | 6f 6d 69 61 6c 2e 63 68 65 62 79 73 68 65 76 2e 63 68 65 62 66 72 6f 6d 72 6f 6f 74 73 0a 20 20 | omial.chebyshev.chebfromroots... |
| 1e40 | 20 20 6e 75 6d 70 79 2e 70 6f 6c 79 6e 6f 6d 69 61 6c 2e 68 65 72 6d 69 74 65 5f 65 2e 68 65 72 | ..numpy.polynomial.hermite_e.her |
| 1e60 | 6d 65 66 72 6f 6d 72 6f 6f 74 73 0a 0a 20 20 20 20 45 78 61 6d 70 6c 65 73 0a 20 20 20 20 2d 2d | mefromroots......Examples.....-- |
| 1e80 | 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 3e 3e 3e 20 66 72 6f 6d 20 6e 75 6d 70 79 2e 70 6f 6c 79 6e 6f | ------.....>>>.from.numpy.polyno |
| 1ea0 | 6d 69 61 6c 2e 68 65 72 6d 69 74 65 20 69 6d 70 6f 72 74 20 68 65 72 6d 66 72 6f 6d 72 6f 6f 74 | mial.hermite.import.hermfromroot |
| 1ec0 | 73 2c 20 68 65 72 6d 76 61 6c 0a 20 20 20 20 3e 3e 3e 20 63 6f 65 66 20 3d 20 68 65 72 6d 66 72 | s,.hermval.....>>>.coef.=.hermfr |
| 1ee0 | 6f 6d 72 6f 6f 74 73 28 28 2d 31 2c 20 30 2c 20 31 29 29 0a 20 20 20 20 3e 3e 3e 20 68 65 72 6d | omroots((-1,.0,.1)).....>>>.herm |
| 1f00 | 76 61 6c 28 28 2d 31 2c 20 30 2c 20 31 29 2c 20 63 6f 65 66 29 0a 20 20 20 20 61 72 72 61 79 28 | val((-1,.0,.1),.coef).....array( |
| 1f20 | 5b 30 2e 2c 20 20 30 2e 2c 20 20 30 2e 5d 29 0a 20 20 20 20 3e 3e 3e 20 63 6f 65 66 20 3d 20 68 | [0.,..0.,..0.]).....>>>.coef.=.h |
| 1f40 | 65 72 6d 66 72 6f 6d 72 6f 6f 74 73 28 28 2d 31 6a 2c 20 31 6a 29 29 0a 20 20 20 20 3e 3e 3e 20 | ermfromroots((-1j,.1j)).....>>>. |
| 1f60 | 68 65 72 6d 76 61 6c 28 28 2d 31 6a 2c 20 31 6a 29 2c 20 63 6f 65 66 29 0a 20 20 20 20 61 72 72 | hermval((-1j,.1j),.coef).....arr |
| 1f80 | 61 79 28 5b 30 2e 2b 30 2e 6a 2c 20 30 2e 2b 30 2e 6a 5d 29 0a 0a 20 20 20 20 29 04 72 28 00 00 | ay([0.+0.j,.0.+0.j])......).r(.. |
| 1fa0 | 00 da 0a 5f 66 72 6f 6d 72 6f 6f 74 73 72 0b 00 00 00 72 0f 00 00 00 29 01 da 05 72 6f 6f 74 73 | ..._fromrootsr....r....)...roots |
| 1fc0 | 73 01 00 00 00 20 72 30 00 00 00 72 17 00 00 00 72 17 00 00 00 02 01 00 00 73 18 00 00 00 80 00 | s.....r0...r....r........s...... |
| 1fe0 | f4 6a 01 00 0c 0e 8f 3d 89 3d 9c 18 a4 37 a8 45 d3 0b 32 d0 04 32 72 31 00 00 00 63 02 00 00 00 | .j.....=.=...7.E..2..2r1...c.... |
| 2000 | 00 00 00 00 00 00 00 00 04 00 00 00 03 00 00 00 f3 2e 00 00 00 97 00 74 01 00 00 00 00 00 00 00 | .......................t........ |
| 2020 | 00 6a 02 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 7c 00 7c 01 ab 02 00 00 00 00 00 | .j...................|.|........ |
| 2040 | 00 53 00 29 01 61 e4 03 00 00 0a 20 20 20 20 41 64 64 20 6f 6e 65 20 48 65 72 6d 69 74 65 20 73 | .S.).a.........Add.one.Hermite.s |
| 2060 | 65 72 69 65 73 20 74 6f 20 61 6e 6f 74 68 65 72 2e 0a 0a 20 20 20 20 52 65 74 75 72 6e 73 20 74 | eries.to.another.......Returns.t |
| 2080 | 68 65 20 73 75 6d 20 6f 66 20 74 77 6f 20 48 65 72 6d 69 74 65 20 73 65 72 69 65 73 20 60 63 31 | he.sum.of.two.Hermite.series.`c1 |
| 20a0 | 60 20 2b 20 60 63 32 60 2e 20 20 54 68 65 20 61 72 67 75 6d 65 6e 74 73 0a 20 20 20 20 61 72 65 | `.+.`c2`...The.arguments.....are |
| 20c0 | 20 73 65 71 75 65 6e 63 65 73 20 6f 66 20 63 6f 65 66 66 69 63 69 65 6e 74 73 20 6f 72 64 65 72 | .sequences.of.coefficients.order |
| 20e0 | 65 64 20 66 72 6f 6d 20 6c 6f 77 65 73 74 20 6f 72 64 65 72 20 74 65 72 6d 20 74 6f 0a 20 20 20 | ed.from.lowest.order.term.to.... |
| 2100 | 20 68 69 67 68 65 73 74 2c 20 69 2e 65 2e 2c 20 5b 31 2c 32 2c 33 5d 20 72 65 70 72 65 73 65 6e | .highest,.i.e.,.[1,2,3].represen |
| 2120 | 74 73 20 74 68 65 20 73 65 72 69 65 73 20 60 60 50 5f 30 20 2b 20 32 2a 50 5f 31 20 2b 20 33 2a | ts.the.series.``P_0.+.2*P_1.+.3* |
| 2140 | 50 5f 32 60 60 2e 0a 0a 20 20 20 20 50 61 72 61 6d 65 74 65 72 73 0a 20 20 20 20 2d 2d 2d 2d 2d | P_2``.......Parameters.....----- |
| 2160 | 2d 2d 2d 2d 2d 0a 20 20 20 20 63 31 2c 20 63 32 20 3a 20 61 72 72 61 79 5f 6c 69 6b 65 0a 20 20 | -----.....c1,.c2.:.array_like... |
| 2180 | 20 20 20 20 20 20 31 2d 44 20 61 72 72 61 79 73 20 6f 66 20 48 65 72 6d 69 74 65 20 73 65 72 69 | ......1-D.arrays.of.Hermite.seri |
| 21a0 | 65 73 20 63 6f 65 66 66 69 63 69 65 6e 74 73 20 6f 72 64 65 72 65 64 20 66 72 6f 6d 20 6c 6f 77 | es.coefficients.ordered.from.low |
| 21c0 | 20 74 6f 0a 20 20 20 20 20 20 20 20 68 69 67 68 2e 0a 0a 20 20 20 20 52 65 74 75 72 6e 73 0a 20 | .to.........high.......Returns.. |
| 21e0 | 20 20 20 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 6f 75 74 20 3a 20 6e 64 61 72 72 61 79 0a 20 20 20 | ...-------.....out.:.ndarray.... |
| 2200 | 20 20 20 20 20 41 72 72 61 79 20 72 65 70 72 65 73 65 6e 74 69 6e 67 20 74 68 65 20 48 65 72 6d | .....Array.representing.the.Herm |
| 2220 | 69 74 65 20 73 65 72 69 65 73 20 6f 66 20 74 68 65 69 72 20 73 75 6d 2e 0a 0a 20 20 20 20 53 65 | ite.series.of.their.sum.......Se |
| 2240 | 65 20 41 6c 73 6f 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 68 65 72 6d 73 75 62 2c | e.Also.....--------.....hermsub, |
| 2260 | 20 68 65 72 6d 6d 75 6c 78 2c 20 68 65 72 6d 6d 75 6c 2c 20 68 65 72 6d 64 69 76 2c 20 68 65 72 | .hermmulx,.hermmul,.hermdiv,.her |
| 2280 | 6d 70 6f 77 0a 0a 20 20 20 20 4e 6f 74 65 73 0a 20 20 20 20 2d 2d 2d 2d 2d 0a 20 20 20 20 55 6e | mpow......Notes.....-----.....Un |
| 22a0 | 6c 69 6b 65 20 6d 75 6c 74 69 70 6c 69 63 61 74 69 6f 6e 2c 20 64 69 76 69 73 69 6f 6e 2c 20 65 | like.multiplication,.division,.e |
| 22c0 | 74 63 2e 2c 20 74 68 65 20 73 75 6d 20 6f 66 20 74 77 6f 20 48 65 72 6d 69 74 65 20 73 65 72 69 | tc.,.the.sum.of.two.Hermite.seri |
| 22e0 | 65 73 0a 20 20 20 20 69 73 20 61 20 48 65 72 6d 69 74 65 20 73 65 72 69 65 73 20 28 77 69 74 68 | es.....is.a.Hermite.series.(with |
| 2300 | 6f 75 74 20 68 61 76 69 6e 67 20 74 6f 20 22 72 65 70 72 6f 6a 65 63 74 22 20 74 68 65 20 72 65 | out.having.to."reproject".the.re |
| 2320 | 73 75 6c 74 20 6f 6e 74 6f 0a 20 20 20 20 74 68 65 20 62 61 73 69 73 20 73 65 74 29 20 73 6f 20 | sult.onto.....the.basis.set).so. |
| 2340 | 61 64 64 69 74 69 6f 6e 2c 20 6a 75 73 74 20 6c 69 6b 65 20 74 68 61 74 20 6f 66 20 22 73 74 61 | addition,.just.like.that.of."sta |
| 2360 | 6e 64 61 72 64 22 20 70 6f 6c 79 6e 6f 6d 69 61 6c 73 2c 0a 20 20 20 20 69 73 20 73 69 6d 70 6c | ndard".polynomials,.....is.simpl |
| 2380 | 79 20 22 63 6f 6d 70 6f 6e 65 6e 74 2d 77 69 73 65 2e 22 0a 0a 20 20 20 20 45 78 61 6d 70 6c 65 | y."component-wise."......Example |
| 23a0 | 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 3e 3e 3e 20 66 72 6f 6d 20 6e 75 6d 70 | s.....--------.....>>>.from.nump |
| 23c0 | 79 2e 70 6f 6c 79 6e 6f 6d 69 61 6c 2e 68 65 72 6d 69 74 65 20 69 6d 70 6f 72 74 20 68 65 72 6d | y.polynomial.hermite.import.herm |
| 23e0 | 61 64 64 0a 20 20 20 20 3e 3e 3e 20 68 65 72 6d 61 64 64 28 5b 31 2c 20 32 2c 20 33 5d 2c 20 5b | add.....>>>.hermadd([1,.2,.3],.[ |
| 2400 | 31 2c 20 32 2c 20 33 2c 20 34 5d 29 0a 20 20 20 20 61 72 72 61 79 28 5b 32 2e 2c 20 34 2e 2c 20 | 1,.2,.3,.4]).....array([2.,.4.,. |
| 2420 | 36 2e 2c 20 34 2e 5d 29 0a 0a 20 20 20 20 29 02 72 28 00 00 00 da 04 5f 61 64 64 a9 02 72 3c 00 | 6.,.4.])......).r(....._add..r<. |
| 2440 | 00 00 da 02 63 32 73 02 00 00 00 20 20 72 30 00 00 00 72 0c 00 00 00 72 0c 00 00 00 3a 01 00 00 | ....c2s......r0...r....r....:... |
| 2460 | f3 15 00 00 00 80 00 f4 4a 01 00 0c 0e 8f 37 89 37 90 32 90 72 8b 3f d0 04 1a 72 31 00 00 00 63 | ........J.....7.7.2.r.?...r1...c |
| 2480 | 02 00 00 00 00 00 00 00 00 00 00 00 04 00 00 00 03 00 00 00 f3 2e 00 00 00 97 00 74 01 00 00 00 | ...........................t.... |
| 24a0 | 00 00 00 00 00 6a 02 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 7c 00 7c 01 ab 02 00 | .....j...................|.|.... |
| 24c0 | 00 00 00 00 00 53 00 29 01 61 f7 03 00 00 0a 20 20 20 20 53 75 62 74 72 61 63 74 20 6f 6e 65 20 | .....S.).a.........Subtract.one. |
| 24e0 | 48 65 72 6d 69 74 65 20 73 65 72 69 65 73 20 66 72 6f 6d 20 61 6e 6f 74 68 65 72 2e 0a 0a 20 20 | Hermite.series.from.another..... |
| 2500 | 20 20 52 65 74 75 72 6e 73 20 74 68 65 20 64 69 66 66 65 72 65 6e 63 65 20 6f 66 20 74 77 6f 20 | ..Returns.the.difference.of.two. |
| 2520 | 48 65 72 6d 69 74 65 20 73 65 72 69 65 73 20 60 63 31 60 20 2d 20 60 63 32 60 2e 20 20 54 68 65 | Hermite.series.`c1`.-.`c2`...The |
| 2540 | 0a 20 20 20 20 73 65 71 75 65 6e 63 65 73 20 6f 66 20 63 6f 65 66 66 69 63 69 65 6e 74 73 20 61 | .....sequences.of.coefficients.a |
| 2560 | 72 65 20 66 72 6f 6d 20 6c 6f 77 65 73 74 20 6f 72 64 65 72 20 74 65 72 6d 20 74 6f 20 68 69 67 | re.from.lowest.order.term.to.hig |
| 2580 | 68 65 73 74 2c 20 69 2e 65 2e 2c 0a 20 20 20 20 5b 31 2c 32 2c 33 5d 20 72 65 70 72 65 73 65 6e | hest,.i.e.,.....[1,2,3].represen |
| 25a0 | 74 73 20 74 68 65 20 73 65 72 69 65 73 20 60 60 50 5f 30 20 2b 20 32 2a 50 5f 31 20 2b 20 33 2a | ts.the.series.``P_0.+.2*P_1.+.3* |
| 25c0 | 50 5f 32 60 60 2e 0a 0a 20 20 20 20 50 61 72 61 6d 65 74 65 72 73 0a 20 20 20 20 2d 2d 2d 2d 2d | P_2``.......Parameters.....----- |
| 25e0 | 2d 2d 2d 2d 2d 0a 20 20 20 20 63 31 2c 20 63 32 20 3a 20 61 72 72 61 79 5f 6c 69 6b 65 0a 20 20 | -----.....c1,.c2.:.array_like... |
| 2600 | 20 20 20 20 20 20 31 2d 44 20 61 72 72 61 79 73 20 6f 66 20 48 65 72 6d 69 74 65 20 73 65 72 69 | ......1-D.arrays.of.Hermite.seri |
| 2620 | 65 73 20 63 6f 65 66 66 69 63 69 65 6e 74 73 20 6f 72 64 65 72 65 64 20 66 72 6f 6d 20 6c 6f 77 | es.coefficients.ordered.from.low |
| 2640 | 20 74 6f 0a 20 20 20 20 20 20 20 20 68 69 67 68 2e 0a 0a 20 20 20 20 52 65 74 75 72 6e 73 0a 20 | .to.........high.......Returns.. |
| 2660 | 20 20 20 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 6f 75 74 20 3a 20 6e 64 61 72 72 61 79 0a 20 20 20 | ...-------.....out.:.ndarray.... |
| 2680 | 20 20 20 20 20 4f 66 20 48 65 72 6d 69 74 65 20 73 65 72 69 65 73 20 63 6f 65 66 66 69 63 69 65 | .....Of.Hermite.series.coefficie |
| 26a0 | 6e 74 73 20 72 65 70 72 65 73 65 6e 74 69 6e 67 20 74 68 65 69 72 20 64 69 66 66 65 72 65 6e 63 | nts.representing.their.differenc |
| 26c0 | 65 2e 0a 0a 20 20 20 20 53 65 65 20 41 6c 73 6f 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 | e.......See.Also.....--------... |
| 26e0 | 20 20 68 65 72 6d 61 64 64 2c 20 68 65 72 6d 6d 75 6c 78 2c 20 68 65 72 6d 6d 75 6c 2c 20 68 65 | ..hermadd,.hermmulx,.hermmul,.he |
| 2700 | 72 6d 64 69 76 2c 20 68 65 72 6d 70 6f 77 0a 0a 20 20 20 20 4e 6f 74 65 73 0a 20 20 20 20 2d 2d | rmdiv,.hermpow......Notes.....-- |
| 2720 | 2d 2d 2d 0a 20 20 20 20 55 6e 6c 69 6b 65 20 6d 75 6c 74 69 70 6c 69 63 61 74 69 6f 6e 2c 20 64 | ---.....Unlike.multiplication,.d |
| 2740 | 69 76 69 73 69 6f 6e 2c 20 65 74 63 2e 2c 20 74 68 65 20 64 69 66 66 65 72 65 6e 63 65 20 6f 66 | ivision,.etc.,.the.difference.of |
| 2760 | 20 74 77 6f 20 48 65 72 6d 69 74 65 0a 20 20 20 20 73 65 72 69 65 73 20 69 73 20 61 20 48 65 72 | .two.Hermite.....series.is.a.Her |
| 2780 | 6d 69 74 65 20 73 65 72 69 65 73 20 28 77 69 74 68 6f 75 74 20 68 61 76 69 6e 67 20 74 6f 20 22 | mite.series.(without.having.to." |
| 27a0 | 72 65 70 72 6f 6a 65 63 74 22 20 74 68 65 20 72 65 73 75 6c 74 0a 20 20 20 20 6f 6e 74 6f 20 74 | reproject".the.result.....onto.t |
| 27c0 | 68 65 20 62 61 73 69 73 20 73 65 74 29 20 73 6f 20 73 75 62 74 72 61 63 74 69 6f 6e 2c 20 6a 75 | he.basis.set).so.subtraction,.ju |
| 27e0 | 73 74 20 6c 69 6b 65 20 74 68 61 74 20 6f 66 20 22 73 74 61 6e 64 61 72 64 22 0a 20 20 20 20 70 | st.like.that.of."standard".....p |
| 2800 | 6f 6c 79 6e 6f 6d 69 61 6c 73 2c 20 69 73 20 73 69 6d 70 6c 79 20 22 63 6f 6d 70 6f 6e 65 6e 74 | olynomials,.is.simply."component |
| 2820 | 2d 77 69 73 65 2e 22 0a 0a 20 20 20 20 45 78 61 6d 70 6c 65 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d | -wise."......Examples.....------ |
| 2840 | 2d 2d 0a 20 20 20 20 3e 3e 3e 20 66 72 6f 6d 20 6e 75 6d 70 79 2e 70 6f 6c 79 6e 6f 6d 69 61 6c | --.....>>>.from.numpy.polynomial |
| 2860 | 2e 68 65 72 6d 69 74 65 20 69 6d 70 6f 72 74 20 68 65 72 6d 73 75 62 0a 20 20 20 20 3e 3e 3e 20 | .hermite.import.hermsub.....>>>. |
| 2880 | 68 65 72 6d 73 75 62 28 5b 31 2c 20 32 2c 20 33 2c 20 34 5d 2c 20 5b 31 2c 20 32 2c 20 33 5d 29 | hermsub([1,.2,.3,.4],.[1,.2,.3]) |
| 28a0 | 0a 20 20 20 20 61 72 72 61 79 28 5b 30 2e 2c 20 20 30 2e 2c 20 20 30 2e 2c 20 20 34 2e 5d 29 0a | .....array([0.,..0.,..0.,..4.]). |
| 28c0 | 0a 20 20 20 20 29 02 72 28 00 00 00 da 04 5f 73 75 62 72 4a 00 00 00 73 02 00 00 00 20 20 72 30 | .....).r(....._subrJ...s......r0 |
| 28e0 | 00 00 00 72 0d 00 00 00 72 0d 00 00 00 62 01 00 00 72 4c 00 00 00 72 31 00 00 00 63 01 00 00 00 | ...r....r....b...rL...r1...c.... |
| 2900 | 00 00 00 00 00 00 00 00 06 00 00 00 03 00 00 00 f3 68 01 00 00 97 00 74 01 00 00 00 00 00 00 00 | .................h.....t........ |
| 2920 | 00 6a 02 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 7c 00 67 01 ab 01 00 00 00 00 00 | .j...................|.g........ |
| 2940 | 00 5c 01 00 00 7d 00 74 05 00 00 00 00 00 00 00 00 7c 00 ab 01 00 00 00 00 00 00 64 01 6b 28 00 | .\...}.t.........|.........d.k(. |
| 2960 | 00 72 0a 7c 00 64 02 19 00 00 00 64 02 6b 28 00 00 72 02 7c 00 53 00 74 07 00 00 00 00 00 00 00 | .r.|.d.....d.k(..r.|.S.t........ |
| 2980 | 00 6a 08 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 74 05 00 00 00 00 00 00 00 00 7c | .j...................t.........| |
| 29a0 | 00 ab 01 00 00 00 00 00 00 64 01 7a 00 00 00 7c 00 6a 0a 00 00 00 00 00 00 00 00 00 00 00 00 00 | .........d.z...|.j.............. |
| 29c0 | 00 00 00 00 00 ac 03 ab 02 00 00 00 00 00 00 7d 01 7c 00 64 02 19 00 00 00 64 02 7a 05 00 00 7c | ...............}.|.d.....d.z...| |
| 29e0 | 01 64 02 3c 00 00 00 7c 00 64 02 19 00 00 00 64 04 7a 0b 00 00 7c 01 64 01 3c 00 00 00 74 0d 00 | .d.<...|.d.....d.z...|.d.<...t.. |
| 2a00 | 00 00 00 00 00 00 00 64 01 74 05 00 00 00 00 00 00 00 00 7c 00 ab 01 00 00 00 00 00 00 ab 02 00 | .......d.t.........|............ |
| 2a20 | 00 00 00 00 00 44 00 5d 26 00 00 7d 02 7c 00 7c 02 19 00 00 00 64 04 7a 0b 00 00 7c 01 7c 02 64 | .....D.]&..}.|.|.....d.z...|.|.d |
| 2a40 | 01 7a 00 00 00 3c 00 00 00 7c 01 7c 02 64 01 7a 0a 00 00 78 02 78 02 19 00 00 00 7c 00 7c 02 19 | .z...<...|.|.d.z...x.x.....|.|.. |
| 2a60 | 00 00 00 7c 02 7a 05 00 00 7a 0d 00 00 63 03 63 02 3c 00 00 00 8c 28 04 00 7c 01 53 00 29 05 61 | ...|.z...z...c.c.<....(..|.S.).a |
| 2a80 | f7 02 00 00 4d 75 6c 74 69 70 6c 79 20 61 20 48 65 72 6d 69 74 65 20 73 65 72 69 65 73 20 62 79 | ....Multiply.a.Hermite.series.by |
| 2aa0 | 20 78 2e 0a 0a 20 20 20 20 4d 75 6c 74 69 70 6c 79 20 74 68 65 20 48 65 72 6d 69 74 65 20 73 65 | .x.......Multiply.the.Hermite.se |
| 2ac0 | 72 69 65 73 20 60 63 60 20 62 79 20 78 2c 20 77 68 65 72 65 20 78 20 69 73 20 74 68 65 20 69 6e | ries.`c`.by.x,.where.x.is.the.in |
| 2ae0 | 64 65 70 65 6e 64 65 6e 74 0a 20 20 20 20 76 61 72 69 61 62 6c 65 2e 0a 0a 0a 20 20 20 20 50 61 | dependent.....variable........Pa |
| 2b00 | 72 61 6d 65 74 65 72 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 63 20 3a 20 | rameters.....----------.....c.:. |
| 2b20 | 61 72 72 61 79 5f 6c 69 6b 65 0a 20 20 20 20 20 20 20 20 31 2d 44 20 61 72 72 61 79 20 6f 66 20 | array_like.........1-D.array.of. |
| 2b40 | 48 65 72 6d 69 74 65 20 73 65 72 69 65 73 20 63 6f 65 66 66 69 63 69 65 6e 74 73 20 6f 72 64 65 | Hermite.series.coefficients.orde |
| 2b60 | 72 65 64 20 66 72 6f 6d 20 6c 6f 77 20 74 6f 0a 20 20 20 20 20 20 20 20 68 69 67 68 2e 0a 0a 20 | red.from.low.to.........high.... |
| 2b80 | 20 20 20 52 65 74 75 72 6e 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 6f 75 74 20 3a | ...Returns.....-------.....out.: |
| 2ba0 | 20 6e 64 61 72 72 61 79 0a 20 20 20 20 20 20 20 20 41 72 72 61 79 20 72 65 70 72 65 73 65 6e 74 | .ndarray.........Array.represent |
| 2bc0 | 69 6e 67 20 74 68 65 20 72 65 73 75 6c 74 20 6f 66 20 74 68 65 20 6d 75 6c 74 69 70 6c 69 63 61 | ing.the.result.of.the.multiplica |
| 2be0 | 74 69 6f 6e 2e 0a 0a 20 20 20 20 53 65 65 20 41 6c 73 6f 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d | tion.......See.Also.....-------- |
| 2c00 | 0a 20 20 20 20 68 65 72 6d 61 64 64 2c 20 68 65 72 6d 73 75 62 2c 20 68 65 72 6d 6d 75 6c 2c 20 | .....hermadd,.hermsub,.hermmul,. |
| 2c20 | 68 65 72 6d 64 69 76 2c 20 68 65 72 6d 70 6f 77 0a 0a 20 20 20 20 4e 6f 74 65 73 0a 20 20 20 20 | hermdiv,.hermpow......Notes..... |
| 2c40 | 2d 2d 2d 2d 2d 0a 20 20 20 20 54 68 65 20 6d 75 6c 74 69 70 6c 69 63 61 74 69 6f 6e 20 75 73 65 | -----.....The.multiplication.use |
| 2c60 | 73 20 74 68 65 20 72 65 63 75 72 73 69 6f 6e 20 72 65 6c 61 74 69 6f 6e 73 68 69 70 20 66 6f 72 | s.the.recursion.relationship.for |
| 2c80 | 20 48 65 72 6d 69 74 65 0a 20 20 20 20 70 6f 6c 79 6e 6f 6d 69 61 6c 73 20 69 6e 20 74 68 65 20 | .Hermite.....polynomials.in.the. |
| 2ca0 | 66 6f 72 6d 0a 0a 20 20 20 20 2e 2e 20 6d 61 74 68 3a 3a 0a 0a 20 20 20 20 20 20 20 20 78 50 5f | form.........math::..........xP_ |
| 2cc0 | 69 28 78 29 20 3d 20 28 50 5f 7b 69 20 2b 20 31 7d 28 78 29 2f 32 20 2b 20 69 2a 50 5f 7b 69 20 | i(x).=.(P_{i.+.1}(x)/2.+.i*P_{i. |
| 2ce0 | 2d 20 31 7d 28 78 29 29 0a 0a 20 20 20 20 45 78 61 6d 70 6c 65 73 0a 20 20 20 20 2d 2d 2d 2d 2d | -.1}(x))......Examples.....----- |
| 2d00 | 2d 2d 2d 0a 20 20 20 20 3e 3e 3e 20 66 72 6f 6d 20 6e 75 6d 70 79 2e 70 6f 6c 79 6e 6f 6d 69 61 | ---.....>>>.from.numpy.polynomia |
| 2d20 | 6c 2e 68 65 72 6d 69 74 65 20 69 6d 70 6f 72 74 20 68 65 72 6d 6d 75 6c 78 0a 20 20 20 20 3e 3e | l.hermite.import.hermmulx.....>> |
| 2d40 | 3e 20 68 65 72 6d 6d 75 6c 78 28 5b 31 2c 20 32 2c 20 33 5d 29 0a 20 20 20 20 61 72 72 61 79 28 | >.hermmulx([1,.2,.3]).....array( |
| 2d60 | 5b 32 2e 20 2c 20 36 2e 35 2c 20 31 2e 20 2c 20 31 2e 35 5d 29 0a 0a 20 20 20 20 72 04 00 00 00 | [2..,.6.5,.1..,.1.5])......r.... |
| 2d80 | 72 02 00 00 00 a9 01 da 05 64 74 79 70 65 72 36 00 00 00 29 07 72 28 00 00 00 72 29 00 00 00 72 | r........dtyper6...).r(...r)...r |
| 2da0 | 2a 00 00 00 72 41 00 00 00 da 05 65 6d 70 74 79 72 51 00 00 00 72 2b 00 00 00 29 03 72 39 00 00 | *...rA.....emptyrQ...r+...).r9.. |
| 2dc0 | 00 da 03 70 72 64 72 2f 00 00 00 73 03 00 00 00 20 20 20 72 30 00 00 00 72 0e 00 00 00 72 0e 00 | ...prdr/...s.......r0...r....r.. |
| 2de0 | 00 00 8a 01 00 00 73 bf 00 00 00 80 00 f4 4e 01 00 0b 0d 8f 2c 89 2c 98 01 90 73 d3 0a 1b 81 43 | ......s.......N.....,.,...s....C |
| 2e00 | 80 51 e4 07 0a 88 31 83 76 90 11 82 7b 90 71 98 11 91 74 98 71 92 79 d8 0f 10 88 08 e4 0a 0c 8f | .Q....1.v...{.q...t.q.y......... |
| 2e20 | 28 89 28 94 33 90 71 93 36 98 41 91 3a a0 51 a7 57 a1 57 d4 0a 2d 80 43 d8 0d 0e 88 71 89 54 90 | (.(.3.q.6.A.:.Q.W.W..-.C....q.T. |
| 2e40 | 41 89 58 80 43 88 01 81 46 d8 0d 0e 88 71 89 54 90 41 89 58 80 43 88 01 81 46 dc 0d 12 90 31 94 | A.X.C...F....q.T.A.X.C...F....1. |
| 2e60 | 63 98 21 93 66 d3 0d 1d f2 00 02 05 1f 88 01 d8 15 16 90 71 91 54 98 41 91 58 88 03 88 41 90 01 | c.!.f..............q.T.A.X...A.. |
| 2e80 | 89 45 89 0a d8 08 0b 88 41 90 01 89 45 8b 0a 90 61 98 01 91 64 98 51 91 68 d1 08 1e 8c 0a f0 05 | .E......A...E...a...d.Q.h....... |
| 2ea0 | 02 05 1f f0 06 00 0c 0f 80 4a 72 31 00 00 00 63 02 00 00 00 00 00 00 00 00 00 00 00 08 00 00 00 | .........Jr1...c................ |
| 2ec0 | 03 00 00 00 f3 fc 01 00 00 97 00 74 01 00 00 00 00 00 00 00 00 6a 02 00 00 00 00 00 00 00 00 00 | ...........t.........j.......... |
| 2ee0 | 00 00 00 00 00 00 00 00 00 7c 00 7c 01 67 02 ab 01 00 00 00 00 00 00 5c 02 00 00 7d 00 7d 01 74 | .........|.|.g.........\...}.}.t |
| 2f00 | 05 00 00 00 00 00 00 00 00 7c 00 ab 01 00 00 00 00 00 00 74 05 00 00 00 00 00 00 00 00 7c 01 ab | .........|.........t.........|.. |
| 2f20 | 01 00 00 00 00 00 00 6b 44 00 00 72 05 7c 01 7d 02 7c 00 7d 03 6e 04 7c 00 7d 02 7c 01 7d 03 74 | .......kD..r.|.}.|.}.n.|.}.|.}.t |
| 2f40 | 05 00 00 00 00 00 00 00 00 7c 02 ab 01 00 00 00 00 00 00 64 01 6b 28 00 00 72 0b 7c 02 64 02 19 | .........|.........d.k(..r.|.d.. |
| 2f60 | 00 00 00 7c 03 7a 05 00 00 7d 04 64 02 7d 00 6e 92 74 05 00 00 00 00 00 00 00 00 7c 02 ab 01 00 | ...|.z...}.d.}.n.t.........|.... |
| 2f80 | 00 00 00 00 00 64 03 6b 28 00 00 72 11 7c 02 64 02 19 00 00 00 7c 03 7a 05 00 00 7d 04 7c 02 64 | .....d.k(..r.|.d.....|.z...}.|.d |
| 2fa0 | 01 19 00 00 00 7c 03 7a 05 00 00 7d 00 6e 73 74 05 00 00 00 00 00 00 00 00 7c 02 ab 01 00 00 00 | .....|.z...}.nst.........|...... |
| 2fc0 | 00 00 00 7d 05 7c 02 64 04 19 00 00 00 7c 03 7a 05 00 00 7d 04 7c 02 64 05 19 00 00 00 7c 03 7a | ...}.|.d.....|.z...}.|.d.....|.z |
| 2fe0 | 05 00 00 7d 00 74 07 00 00 00 00 00 00 00 00 64 06 74 05 00 00 00 00 00 00 00 00 7c 02 ab 01 00 | ...}.t.........d.t.........|.... |
| 3000 | 00 00 00 00 00 64 01 7a 00 00 00 ab 02 00 00 00 00 00 00 44 00 5d 3d 00 00 7d 06 7c 04 7d 07 7c | .....d.z...........D.]=..}.|.}.| |
| 3020 | 05 64 01 7a 0a 00 00 7d 05 74 09 00 00 00 00 00 00 00 00 7c 02 7c 06 0b 00 19 00 00 00 7c 03 7a | .d.z...}.t.........|.|.......|.z |
| 3040 | 05 00 00 7c 00 64 03 7c 05 64 01 7a 0a 00 00 7a 05 00 00 7a 05 00 00 ab 02 00 00 00 00 00 00 7d | ...|.d.|.d.z...z...z...........} |
| 3060 | 04 74 0b 00 00 00 00 00 00 00 00 7c 07 74 0d 00 00 00 00 00 00 00 00 7c 00 ab 01 00 00 00 00 00 | .t.........|.t.........|........ |
| 3080 | 00 64 03 7a 05 00 00 ab 02 00 00 00 00 00 00 7d 00 8c 3f 04 00 74 0b 00 00 00 00 00 00 00 00 7c | .d.z...........}..?..t.........| |
| 30a0 | 04 74 0d 00 00 00 00 00 00 00 00 7c 00 ab 01 00 00 00 00 00 00 64 03 7a 05 00 00 ab 02 00 00 00 | .t.........|.........d.z........ |
| 30c0 | 00 00 00 53 00 29 07 61 51 04 00 00 0a 20 20 20 20 4d 75 6c 74 69 70 6c 79 20 6f 6e 65 20 48 65 | ...S.).aQ........Multiply.one.He |
| 30e0 | 72 6d 69 74 65 20 73 65 72 69 65 73 20 62 79 20 61 6e 6f 74 68 65 72 2e 0a 0a 20 20 20 20 52 65 | rmite.series.by.another.......Re |
| 3100 | 74 75 72 6e 73 20 74 68 65 20 70 72 6f 64 75 63 74 20 6f 66 20 74 77 6f 20 48 65 72 6d 69 74 65 | turns.the.product.of.two.Hermite |
| 3120 | 20 73 65 72 69 65 73 20 60 63 31 60 20 2a 20 60 63 32 60 2e 20 20 54 68 65 20 61 72 67 75 6d 65 | .series.`c1`.*.`c2`...The.argume |
| 3140 | 6e 74 73 0a 20 20 20 20 61 72 65 20 73 65 71 75 65 6e 63 65 73 20 6f 66 20 63 6f 65 66 66 69 63 | nts.....are.sequences.of.coeffic |
| 3160 | 69 65 6e 74 73 2c 20 66 72 6f 6d 20 6c 6f 77 65 73 74 20 6f 72 64 65 72 20 22 74 65 72 6d 22 20 | ients,.from.lowest.order."term". |
| 3180 | 74 6f 20 68 69 67 68 65 73 74 2c 0a 20 20 20 20 65 2e 67 2e 2c 20 5b 31 2c 32 2c 33 5d 20 72 65 | to.highest,.....e.g.,.[1,2,3].re |
| 31a0 | 70 72 65 73 65 6e 74 73 20 74 68 65 20 73 65 72 69 65 73 20 60 60 50 5f 30 20 2b 20 32 2a 50 5f | presents.the.series.``P_0.+.2*P_ |
| 31c0 | 31 20 2b 20 33 2a 50 5f 32 60 60 2e 0a 0a 20 20 20 20 50 61 72 61 6d 65 74 65 72 73 0a 20 20 20 | 1.+.3*P_2``.......Parameters.... |
| 31e0 | 20 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 63 31 2c 20 63 32 20 3a 20 61 72 72 61 79 5f 6c | .----------.....c1,.c2.:.array_l |
| 3200 | 69 6b 65 0a 20 20 20 20 20 20 20 20 31 2d 44 20 61 72 72 61 79 73 20 6f 66 20 48 65 72 6d 69 74 | ike.........1-D.arrays.of.Hermit |
| 3220 | 65 20 73 65 72 69 65 73 20 63 6f 65 66 66 69 63 69 65 6e 74 73 20 6f 72 64 65 72 65 64 20 66 72 | e.series.coefficients.ordered.fr |
| 3240 | 6f 6d 20 6c 6f 77 20 74 6f 0a 20 20 20 20 20 20 20 20 68 69 67 68 2e 0a 0a 20 20 20 20 52 65 74 | om.low.to.........high.......Ret |
| 3260 | 75 72 6e 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 6f 75 74 20 3a 20 6e 64 61 72 72 | urns.....-------.....out.:.ndarr |
| 3280 | 61 79 0a 20 20 20 20 20 20 20 20 4f 66 20 48 65 72 6d 69 74 65 20 73 65 72 69 65 73 20 63 6f 65 | ay.........Of.Hermite.series.coe |
| 32a0 | 66 66 69 63 69 65 6e 74 73 20 72 65 70 72 65 73 65 6e 74 69 6e 67 20 74 68 65 69 72 20 70 72 6f | fficients.representing.their.pro |
| 32c0 | 64 75 63 74 2e 0a 0a 20 20 20 20 53 65 65 20 41 6c 73 6f 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d | duct.......See.Also.....-------- |
| 32e0 | 0a 20 20 20 20 68 65 72 6d 61 64 64 2c 20 68 65 72 6d 73 75 62 2c 20 68 65 72 6d 6d 75 6c 78 2c | .....hermadd,.hermsub,.hermmulx, |
| 3300 | 20 68 65 72 6d 64 69 76 2c 20 68 65 72 6d 70 6f 77 0a 0a 20 20 20 20 4e 6f 74 65 73 0a 20 20 20 | .hermdiv,.hermpow......Notes.... |
| 3320 | 20 2d 2d 2d 2d 2d 0a 20 20 20 20 49 6e 20 67 65 6e 65 72 61 6c 2c 20 74 68 65 20 28 70 6f 6c 79 | .-----.....In.general,.the.(poly |
| 3340 | 6e 6f 6d 69 61 6c 29 20 70 72 6f 64 75 63 74 20 6f 66 20 74 77 6f 20 43 2d 73 65 72 69 65 73 20 | nomial).product.of.two.C-series. |
| 3360 | 72 65 73 75 6c 74 73 20 69 6e 20 74 65 72 6d 73 0a 20 20 20 20 74 68 61 74 20 61 72 65 20 6e 6f | results.in.terms.....that.are.no |
| 3380 | 74 20 69 6e 20 74 68 65 20 48 65 72 6d 69 74 65 20 70 6f 6c 79 6e 6f 6d 69 61 6c 20 62 61 73 69 | t.in.the.Hermite.polynomial.basi |
| 33a0 | 73 20 73 65 74 2e 20 20 54 68 75 73 2c 20 74 6f 20 65 78 70 72 65 73 73 0a 20 20 20 20 74 68 65 | s.set...Thus,.to.express.....the |
| 33c0 | 20 70 72 6f 64 75 63 74 20 61 73 20 61 20 48 65 72 6d 69 74 65 20 73 65 72 69 65 73 2c 20 69 74 | .product.as.a.Hermite.series,.it |
| 33e0 | 20 69 73 20 6e 65 63 65 73 73 61 72 79 20 74 6f 20 22 72 65 70 72 6f 6a 65 63 74 22 20 74 68 65 | .is.necessary.to."reproject".the |
| 3400 | 0a 20 20 20 20 70 72 6f 64 75 63 74 20 6f 6e 74 6f 20 73 61 69 64 20 62 61 73 69 73 20 73 65 74 | .....product.onto.said.basis.set |
| 3420 | 2c 20 77 68 69 63 68 20 6d 61 79 20 70 72 6f 64 75 63 65 20 22 75 6e 69 6e 74 75 69 74 69 76 65 | ,.which.may.produce."unintuitive |
| 3440 | 22 20 28 62 75 74 0a 20 20 20 20 63 6f 72 72 65 63 74 29 20 72 65 73 75 6c 74 73 3b 20 73 65 65 | ".(but.....correct).results;.see |
| 3460 | 20 45 78 61 6d 70 6c 65 73 20 73 65 63 74 69 6f 6e 20 62 65 6c 6f 77 2e 0a 0a 20 20 20 20 45 78 | .Examples.section.below.......Ex |
| 3480 | 61 6d 70 6c 65 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 3e 3e 3e 20 66 72 6f 6d | amples.....--------.....>>>.from |
| 34a0 | 20 6e 75 6d 70 79 2e 70 6f 6c 79 6e 6f 6d 69 61 6c 2e 68 65 72 6d 69 74 65 20 69 6d 70 6f 72 74 | .numpy.polynomial.hermite.import |
| 34c0 | 20 68 65 72 6d 6d 75 6c 0a 20 20 20 20 3e 3e 3e 20 68 65 72 6d 6d 75 6c 28 5b 31 2c 20 32 2c 20 | .hermmul.....>>>.hermmul([1,.2,. |
| 34e0 | 33 5d 2c 20 5b 30 2c 20 31 2c 20 32 5d 29 0a 20 20 20 20 61 72 72 61 79 28 5b 35 32 2e 2c 20 20 | 3],.[0,.1,.2]).....array([52.,.. |
| 3500 | 32 39 2e 2c 20 20 35 32 2e 2c 20 20 20 37 2e 2c 20 20 20 36 2e 5d 29 0a 0a 20 20 20 20 72 04 00 | 29.,..52.,...7.,...6.])......r.. |
| 3520 | 00 00 72 02 00 00 00 72 36 00 00 00 72 37 00 00 00 72 27 00 00 00 e9 03 00 00 00 29 07 72 28 00 | ..r....r6...r7...r'........).r(. |
| 3540 | 00 00 72 29 00 00 00 72 2a 00 00 00 72 2b 00 00 00 72 0d 00 00 00 72 0c 00 00 00 72 0e 00 00 00 | ..r)...r*...r+...r....r....r.... |
| 3560 | 29 08 72 3c 00 00 00 72 4b 00 00 00 72 39 00 00 00 da 02 78 73 72 3b 00 00 00 da 02 6e 64 72 2f | ).r<...rK...r9.....xsr;.....ndr/ |
| 3580 | 00 00 00 72 3d 00 00 00 73 08 00 00 00 20 20 20 20 20 20 20 20 72 30 00 00 00 72 0f 00 00 00 72 | ...r=...s............r0...r....r |
| 35a0 | 0f 00 00 00 bf 01 00 00 73 20 01 00 00 80 00 f4 4e 01 00 10 12 8f 7c 89 7c 98 52 a0 12 98 48 d3 | ........s.......N.....|.|.R...H. |
| 35c0 | 0f 25 81 48 80 52 88 12 e4 07 0a 88 32 83 77 94 13 90 52 93 17 d2 07 18 d8 0c 0e 88 01 d8 0d 0f | .%.H.R......2.w...R............. |
| 35e0 | 89 02 e0 0c 0e 88 01 d8 0d 0f 88 02 e4 07 0a 88 31 83 76 90 11 82 7b d8 0d 0e 88 71 89 54 90 42 | ................1.v...{....q.T.B |
| 3600 | 89 59 88 02 d8 0d 0e 89 02 dc 09 0c 88 51 8b 16 90 31 8a 1b d8 0d 0e 88 71 89 54 90 42 89 59 88 | .Y...........Q...1......q.T.B.Y. |
| 3620 | 02 d8 0d 0e 88 71 89 54 90 42 89 59 89 02 e4 0d 10 90 11 8b 56 88 02 d8 0d 0e 88 72 89 55 90 52 | .....q.T.B.Y........V......r.U.R |
| 3640 | 89 5a 88 02 d8 0d 0e 88 72 89 55 90 52 89 5a 88 02 dc 11 16 90 71 9c 23 98 61 9b 26 a0 31 99 2a | .Z......r.U.R.Z......q.#.a.&.1.* |
| 3660 | d3 11 25 f2 00 04 09 30 88 41 d8 12 14 88 43 d8 11 13 90 61 91 16 88 42 dc 11 18 98 11 98 41 98 | ..%....0.A....C....a...B......A. |
| 3680 | 32 99 15 a0 12 99 1a a0 52 a8 31 b0 02 b0 51 b1 06 a9 3c d1 25 38 d3 11 39 88 42 dc 11 18 98 13 | 2.......R.1...Q...<.%8..9.B..... |
| 36a0 | 9c 68 a0 72 9b 6c a8 51 d1 1e 2e d3 11 2f 89 42 f0 09 04 09 30 f4 0a 00 0c 13 90 32 94 78 a0 02 | .h.r.l.Q...../.B....0......2.x.. |
| 36c0 | 93 7c a0 61 d1 17 27 d3 0b 28 d0 04 28 72 31 00 00 00 63 02 00 00 00 00 00 00 00 00 00 00 00 05 | .|.a..'..(..(r1...c............. |
| 36e0 | 00 00 00 03 00 00 00 f3 38 00 00 00 97 00 74 01 00 00 00 00 00 00 00 00 6a 02 00 00 00 00 00 00 | ........8.....t.........j....... |
| 3700 | 00 00 00 00 00 00 00 00 00 00 00 00 74 04 00 00 00 00 00 00 00 00 7c 00 7c 01 ab 03 00 00 00 00 | ............t.........|.|....... |
| 3720 | 00 00 53 00 29 01 61 94 05 00 00 0a 20 20 20 20 44 69 76 69 64 65 20 6f 6e 65 20 48 65 72 6d 69 | ..S.).a.........Divide.one.Hermi |
| 3740 | 74 65 20 73 65 72 69 65 73 20 62 79 20 61 6e 6f 74 68 65 72 2e 0a 0a 20 20 20 20 52 65 74 75 72 | te.series.by.another.......Retur |
| 3760 | 6e 73 20 74 68 65 20 71 75 6f 74 69 65 6e 74 2d 77 69 74 68 2d 72 65 6d 61 69 6e 64 65 72 20 6f | ns.the.quotient-with-remainder.o |
| 3780 | 66 20 74 77 6f 20 48 65 72 6d 69 74 65 20 73 65 72 69 65 73 0a 20 20 20 20 60 63 31 60 20 2f 20 | f.two.Hermite.series.....`c1`./. |
| 37a0 | 60 63 32 60 2e 20 20 54 68 65 20 61 72 67 75 6d 65 6e 74 73 20 61 72 65 20 73 65 71 75 65 6e 63 | `c2`...The.arguments.are.sequenc |
| 37c0 | 65 73 20 6f 66 20 63 6f 65 66 66 69 63 69 65 6e 74 73 20 66 72 6f 6d 20 6c 6f 77 65 73 74 0a 20 | es.of.coefficients.from.lowest.. |
| 37e0 | 20 20 20 6f 72 64 65 72 20 22 74 65 72 6d 22 20 74 6f 20 68 69 67 68 65 73 74 2c 20 65 2e 67 2e | ...order."term".to.highest,.e.g. |
| 3800 | 2c 20 5b 31 2c 32 2c 33 5d 20 72 65 70 72 65 73 65 6e 74 73 20 74 68 65 20 73 65 72 69 65 73 0a | ,.[1,2,3].represents.the.series. |
| 3820 | 20 20 20 20 60 60 50 5f 30 20 2b 20 32 2a 50 5f 31 20 2b 20 33 2a 50 5f 32 60 60 2e 0a 0a 20 20 | ....``P_0.+.2*P_1.+.3*P_2``..... |
| 3840 | 20 20 50 61 72 61 6d 65 74 65 72 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 | ..Parameters.....----------..... |
| 3860 | 63 31 2c 20 63 32 20 3a 20 61 72 72 61 79 5f 6c 69 6b 65 0a 20 20 20 20 20 20 20 20 31 2d 44 20 | c1,.c2.:.array_like.........1-D. |
| 3880 | 61 72 72 61 79 73 20 6f 66 20 48 65 72 6d 69 74 65 20 73 65 72 69 65 73 20 63 6f 65 66 66 69 63 | arrays.of.Hermite.series.coeffic |
| 38a0 | 69 65 6e 74 73 20 6f 72 64 65 72 65 64 20 66 72 6f 6d 20 6c 6f 77 20 74 6f 0a 20 20 20 20 20 20 | ients.ordered.from.low.to....... |
| 38c0 | 20 20 68 69 67 68 2e 0a 0a 20 20 20 20 52 65 74 75 72 6e 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d | ..high.......Returns.....------- |
| 38e0 | 0a 20 20 20 20 5b 71 75 6f 2c 20 72 65 6d 5d 20 3a 20 6e 64 61 72 72 61 79 73 0a 20 20 20 20 20 | .....[quo,.rem].:.ndarrays...... |
| 3900 | 20 20 20 4f 66 20 48 65 72 6d 69 74 65 20 73 65 72 69 65 73 20 63 6f 65 66 66 69 63 69 65 6e 74 | ...Of.Hermite.series.coefficient |
| 3920 | 73 20 72 65 70 72 65 73 65 6e 74 69 6e 67 20 74 68 65 20 71 75 6f 74 69 65 6e 74 20 61 6e 64 0a | s.representing.the.quotient.and. |
| 3940 | 20 20 20 20 20 20 20 20 72 65 6d 61 69 6e 64 65 72 2e 0a 0a 20 20 20 20 53 65 65 20 41 6c 73 6f | ........remainder.......See.Also |
| 3960 | 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 68 65 72 6d 61 64 64 2c 20 68 65 72 6d 73 | .....--------.....hermadd,.herms |
| 3980 | 75 62 2c 20 68 65 72 6d 6d 75 6c 78 2c 20 68 65 72 6d 6d 75 6c 2c 20 68 65 72 6d 70 6f 77 0a 0a | ub,.hermmulx,.hermmul,.hermpow.. |
| 39a0 | 20 20 20 20 4e 6f 74 65 73 0a 20 20 20 20 2d 2d 2d 2d 2d 0a 20 20 20 20 49 6e 20 67 65 6e 65 72 | ....Notes.....-----.....In.gener |
| 39c0 | 61 6c 2c 20 74 68 65 20 28 70 6f 6c 79 6e 6f 6d 69 61 6c 29 20 64 69 76 69 73 69 6f 6e 20 6f 66 | al,.the.(polynomial).division.of |
| 39e0 | 20 6f 6e 65 20 48 65 72 6d 69 74 65 20 73 65 72 69 65 73 20 62 79 20 61 6e 6f 74 68 65 72 0a 20 | .one.Hermite.series.by.another.. |
| 3a00 | 20 20 20 72 65 73 75 6c 74 73 20 69 6e 20 71 75 6f 74 69 65 6e 74 20 61 6e 64 20 72 65 6d 61 69 | ...results.in.quotient.and.remai |
| 3a20 | 6e 64 65 72 20 74 65 72 6d 73 20 74 68 61 74 20 61 72 65 20 6e 6f 74 20 69 6e 20 74 68 65 20 48 | nder.terms.that.are.not.in.the.H |
| 3a40 | 65 72 6d 69 74 65 0a 20 20 20 20 70 6f 6c 79 6e 6f 6d 69 61 6c 20 62 61 73 69 73 20 73 65 74 2e | ermite.....polynomial.basis.set. |
| 3a60 | 20 20 54 68 75 73 2c 20 74 6f 20 65 78 70 72 65 73 73 20 74 68 65 73 65 20 72 65 73 75 6c 74 73 | ..Thus,.to.express.these.results |
| 3a80 | 20 61 73 20 61 20 48 65 72 6d 69 74 65 0a 20 20 20 20 73 65 72 69 65 73 2c 20 69 74 20 69 73 20 | .as.a.Hermite.....series,.it.is. |
| 3aa0 | 6e 65 63 65 73 73 61 72 79 20 74 6f 20 22 72 65 70 72 6f 6a 65 63 74 22 20 74 68 65 20 72 65 73 | necessary.to."reproject".the.res |
| 3ac0 | 75 6c 74 73 20 6f 6e 74 6f 20 74 68 65 20 48 65 72 6d 69 74 65 0a 20 20 20 20 62 61 73 69 73 20 | ults.onto.the.Hermite.....basis. |
| 3ae0 | 73 65 74 2c 20 77 68 69 63 68 20 6d 61 79 20 70 72 6f 64 75 63 65 20 22 75 6e 69 6e 74 75 69 74 | set,.which.may.produce."unintuit |
| 3b00 | 69 76 65 22 20 28 62 75 74 20 63 6f 72 72 65 63 74 29 20 72 65 73 75 6c 74 73 3b 20 73 65 65 0a | ive".(but.correct).results;.see. |
| 3b20 | 20 20 20 20 45 78 61 6d 70 6c 65 73 20 73 65 63 74 69 6f 6e 20 62 65 6c 6f 77 2e 0a 0a 20 20 20 | ....Examples.section.below...... |
| 3b40 | 20 45 78 61 6d 70 6c 65 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 3e 3e 3e 20 66 | .Examples.....--------.....>>>.f |
| 3b60 | 72 6f 6d 20 6e 75 6d 70 79 2e 70 6f 6c 79 6e 6f 6d 69 61 6c 2e 68 65 72 6d 69 74 65 20 69 6d 70 | rom.numpy.polynomial.hermite.imp |
| 3b80 | 6f 72 74 20 68 65 72 6d 64 69 76 0a 20 20 20 20 3e 3e 3e 20 68 65 72 6d 64 69 76 28 5b 20 35 32 | ort.hermdiv.....>>>.hermdiv([.52 |
| 3ba0 | 2e 2c 20 20 32 39 2e 2c 20 20 35 32 2e 2c 20 20 20 37 2e 2c 20 20 20 36 2e 5d 2c 20 5b 30 2c 20 | .,..29.,..52.,...7.,...6.],.[0,. |
| 3bc0 | 31 2c 20 32 5d 29 0a 20 20 20 20 28 61 72 72 61 79 28 5b 31 2e 2c 20 32 2e 2c 20 33 2e 5d 29 2c | 1,.2]).....(array([1.,.2.,.3.]), |
| 3be0 | 20 61 72 72 61 79 28 5b 30 2e 5d 29 29 0a 20 20 20 20 3e 3e 3e 20 68 65 72 6d 64 69 76 28 5b 20 | .array([0.])).....>>>.hermdiv([. |
| 3c00 | 35 34 2e 2c 20 20 33 31 2e 2c 20 20 35 32 2e 2c 20 20 20 37 2e 2c 20 20 20 36 2e 5d 2c 20 5b 30 | 54.,..31.,..52.,...7.,...6.],.[0 |
| 3c20 | 2c 20 31 2c 20 32 5d 29 0a 20 20 20 20 28 61 72 72 61 79 28 5b 31 2e 2c 20 32 2e 2c 20 33 2e 5d | ,.1,.2]).....(array([1.,.2.,.3.] |
| 3c40 | 29 2c 20 61 72 72 61 79 28 5b 32 2e 2c 20 32 2e 5d 29 29 0a 20 20 20 20 3e 3e 3e 20 68 65 72 6d | ),.array([2.,.2.])).....>>>.herm |
| 3c60 | 64 69 76 28 5b 20 35 33 2e 2c 20 20 33 30 2e 2c 20 20 35 32 2e 2c 20 20 20 37 2e 2c 20 20 20 36 | div([.53.,..30.,..52.,...7.,...6 |
| 3c80 | 2e 5d 2c 20 5b 30 2c 20 31 2c 20 32 5d 29 0a 20 20 20 20 28 61 72 72 61 79 28 5b 31 2e 2c 20 32 | .],.[0,.1,.2]).....(array([1.,.2 |
| 3ca0 | 2e 2c 20 33 2e 5d 29 2c 20 61 72 72 61 79 28 5b 31 2e 2c 20 31 2e 5d 29 29 0a 0a 20 20 20 20 29 | .,.3.]),.array([1.,.1.]))......) |
| 3cc0 | 03 72 28 00 00 00 da 04 5f 64 69 76 72 0f 00 00 00 72 4a 00 00 00 73 02 00 00 00 20 20 72 30 00 | .r(....._divr....rJ...s......r0. |
| 3ce0 | 00 00 72 10 00 00 00 72 10 00 00 00 01 02 00 00 73 18 00 00 00 80 00 f4 5a 01 00 0c 0e 8f 37 89 | ..r....r........s.......Z.....7. |
| 3d00 | 37 94 37 98 42 a0 02 d3 0b 23 d0 04 23 72 31 00 00 00 63 03 00 00 00 00 00 00 00 00 00 00 00 06 | 7.7.B....#..#r1...c............. |
| 3d20 | 00 00 00 03 00 00 00 f3 3a 00 00 00 97 00 74 01 00 00 00 00 00 00 00 00 6a 02 00 00 00 00 00 00 | ........:.....t.........j....... |
| 3d40 | 00 00 00 00 00 00 00 00 00 00 00 00 74 04 00 00 00 00 00 00 00 00 7c 00 7c 01 7c 02 ab 04 00 00 | ............t.........|.|.|..... |
| 3d60 | 00 00 00 00 53 00 29 01 61 7f 03 00 00 52 61 69 73 65 20 61 20 48 65 72 6d 69 74 65 20 73 65 72 | ....S.).a....Raise.a.Hermite.ser |
| 3d80 | 69 65 73 20 74 6f 20 61 20 70 6f 77 65 72 2e 0a 0a 20 20 20 20 52 65 74 75 72 6e 73 20 74 68 65 | ies.to.a.power.......Returns.the |
| 3da0 | 20 48 65 72 6d 69 74 65 20 73 65 72 69 65 73 20 60 63 60 20 72 61 69 73 65 64 20 74 6f 20 74 68 | .Hermite.series.`c`.raised.to.th |
| 3dc0 | 65 20 70 6f 77 65 72 20 60 70 6f 77 60 2e 20 54 68 65 0a 20 20 20 20 61 72 67 75 6d 65 6e 74 20 | e.power.`pow`..The.....argument. |
| 3de0 | 60 63 60 20 69 73 20 61 20 73 65 71 75 65 6e 63 65 20 6f 66 20 63 6f 65 66 66 69 63 69 65 6e 74 | `c`.is.a.sequence.of.coefficient |
| 3e00 | 73 20 6f 72 64 65 72 65 64 20 66 72 6f 6d 20 6c 6f 77 20 74 6f 20 68 69 67 68 2e 0a 20 20 20 20 | s.ordered.from.low.to.high...... |
| 3e20 | 69 2e 65 2e 2c 20 5b 31 2c 32 2c 33 5d 20 69 73 20 74 68 65 20 73 65 72 69 65 73 20 20 60 60 50 | i.e.,.[1,2,3].is.the.series..``P |
| 3e40 | 5f 30 20 2b 20 32 2a 50 5f 31 20 2b 20 33 2a 50 5f 32 2e 60 60 0a 0a 20 20 20 20 50 61 72 61 6d | _0.+.2*P_1.+.3*P_2.``......Param |
| 3e60 | 65 74 65 72 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 63 20 3a 20 61 72 72 | eters.....----------.....c.:.arr |
| 3e80 | 61 79 5f 6c 69 6b 65 0a 20 20 20 20 20 20 20 20 31 2d 44 20 61 72 72 61 79 20 6f 66 20 48 65 72 | ay_like.........1-D.array.of.Her |
| 3ea0 | 6d 69 74 65 20 73 65 72 69 65 73 20 63 6f 65 66 66 69 63 69 65 6e 74 73 20 6f 72 64 65 72 65 64 | mite.series.coefficients.ordered |
| 3ec0 | 20 66 72 6f 6d 20 6c 6f 77 20 74 6f 0a 20 20 20 20 20 20 20 20 68 69 67 68 2e 0a 20 20 20 20 70 | .from.low.to.........high......p |
| 3ee0 | 6f 77 20 3a 20 69 6e 74 65 67 65 72 0a 20 20 20 20 20 20 20 20 50 6f 77 65 72 20 74 6f 20 77 68 | ow.:.integer.........Power.to.wh |
| 3f00 | 69 63 68 20 74 68 65 20 73 65 72 69 65 73 20 77 69 6c 6c 20 62 65 20 72 61 69 73 65 64 0a 20 20 | ich.the.series.will.be.raised... |
| 3f20 | 20 20 6d 61 78 70 6f 77 65 72 20 3a 20 69 6e 74 65 67 65 72 2c 20 6f 70 74 69 6f 6e 61 6c 0a 20 | ..maxpower.:.integer,.optional.. |
| 3f40 | 20 20 20 20 20 20 20 4d 61 78 69 6d 75 6d 20 70 6f 77 65 72 20 61 6c 6c 6f 77 65 64 2e 20 54 68 | .......Maximum.power.allowed..Th |
| 3f60 | 69 73 20 69 73 20 6d 61 69 6e 6c 79 20 74 6f 20 6c 69 6d 69 74 20 67 72 6f 77 74 68 20 6f 66 20 | is.is.mainly.to.limit.growth.of. |
| 3f80 | 74 68 65 20 73 65 72 69 65 73 0a 20 20 20 20 20 20 20 20 74 6f 20 75 6e 6d 61 6e 61 67 65 61 62 | the.series.........to.unmanageab |
| 3fa0 | 6c 65 20 73 69 7a 65 2e 20 44 65 66 61 75 6c 74 20 69 73 20 31 36 0a 0a 20 20 20 20 52 65 74 75 | le.size..Default.is.16......Retu |
| 3fc0 | 72 6e 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 63 6f 65 66 20 3a 20 6e 64 61 72 72 | rns.....-------.....coef.:.ndarr |
| 3fe0 | 61 79 0a 20 20 20 20 20 20 20 20 48 65 72 6d 69 74 65 20 73 65 72 69 65 73 20 6f 66 20 70 6f 77 | ay.........Hermite.series.of.pow |
| 4000 | 65 72 2e 0a 0a 20 20 20 20 53 65 65 20 41 6c 73 6f 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 | er.......See.Also.....--------.. |
| 4020 | 20 20 20 68 65 72 6d 61 64 64 2c 20 68 65 72 6d 73 75 62 2c 20 68 65 72 6d 6d 75 6c 78 2c 20 68 | ...hermadd,.hermsub,.hermmulx,.h |
| 4040 | 65 72 6d 6d 75 6c 2c 20 68 65 72 6d 64 69 76 0a 0a 20 20 20 20 45 78 61 6d 70 6c 65 73 0a 20 20 | ermmul,.hermdiv......Examples... |
| 4060 | 20 20 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 3e 3e 3e 20 66 72 6f 6d 20 6e 75 6d 70 79 2e 70 6f | ..--------.....>>>.from.numpy.po |
| 4080 | 6c 79 6e 6f 6d 69 61 6c 2e 68 65 72 6d 69 74 65 20 69 6d 70 6f 72 74 20 68 65 72 6d 70 6f 77 0a | lynomial.hermite.import.hermpow. |
| 40a0 | 20 20 20 20 3e 3e 3e 20 68 65 72 6d 70 6f 77 28 5b 31 2c 20 32 2c 20 33 5d 2c 20 32 29 0a 20 20 | ....>>>.hermpow([1,.2,.3],.2)... |
| 40c0 | 20 20 61 72 72 61 79 28 5b 38 31 2e 2c 20 20 35 32 2e 2c 20 20 38 32 2e 2c 20 20 31 32 2e 2c 20 | ..array([81.,..52.,..82.,..12.,. |
| 40e0 | 20 20 39 2e 5d 29 0a 0a 20 20 20 20 29 03 72 28 00 00 00 da 04 5f 70 6f 77 72 0f 00 00 00 29 03 | ..9.])......).r(....._powr....). |
| 4100 | 72 39 00 00 00 da 03 70 6f 77 da 08 6d 61 78 70 6f 77 65 72 73 03 00 00 00 20 20 20 72 30 00 00 | r9.....pow..maxpowers.......r0.. |
| 4120 | 00 72 11 00 00 00 72 11 00 00 00 31 02 00 00 73 1a 00 00 00 80 00 f4 44 01 00 0c 0e 8f 37 89 37 | .r....r....1...s.......D.....7.7 |
| 4140 | 94 37 98 41 98 73 a0 48 d3 0b 2d d0 04 2d 72 31 00 00 00 63 04 00 00 00 00 00 00 00 00 00 00 00 | .7.A.s.H..-..-r1...c............ |
| 4160 | 07 00 00 00 03 00 00 00 f3 c6 02 00 00 97 00 74 01 00 00 00 00 00 00 00 00 6a 02 00 00 00 00 00 | ...............t.........j...... |
| 4180 | 00 00 00 00 00 00 00 00 00 00 00 00 00 7c 00 64 01 64 02 ac 03 ab 03 00 00 00 00 00 00 7d 00 7c | .............|.d.d...........}.| |
| 41a0 | 00 6a 04 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 6a 06 00 00 00 00 00 00 00 00 00 | .j...................j.......... |
| 41c0 | 00 00 00 00 00 00 00 00 00 64 04 76 00 72 1f 7c 00 6a 09 00 00 00 00 00 00 00 00 00 00 00 00 00 | .........d.v.r.|.j.............. |
| 41e0 | 00 00 00 00 00 74 00 00 00 00 00 00 00 00 00 6a 0a 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 | .....t.........j................ |
| 4200 | 00 00 00 ab 01 00 00 00 00 00 00 7d 00 74 0d 00 00 00 00 00 00 00 00 6a 0e 00 00 00 00 00 00 00 | ...........}.t.........j........ |
| 4220 | 00 00 00 00 00 00 00 00 00 00 00 7c 01 64 05 ab 02 00 00 00 00 00 00 7d 04 74 0d 00 00 00 00 00 | ...........|.d.........}.t...... |
| 4240 | 00 00 00 6a 0e 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 7c 03 64 06 ab 02 00 00 00 | ...j...................|.d...... |
| 4260 | 00 00 00 7d 05 7c 04 64 07 6b 02 00 00 72 0b 74 11 00 00 00 00 00 00 00 00 64 08 ab 01 00 00 00 | ...}.|.d.k...r.t.........d...... |
| 4280 | 00 00 00 82 01 74 13 00 00 00 00 00 00 00 00 7c 05 7c 00 6a 14 00 00 00 00 00 00 00 00 00 00 00 | .....t.........|.|.j............ |
| 42a0 | 00 00 00 00 00 00 00 ab 02 00 00 00 00 00 00 7d 05 7c 04 64 07 6b 28 00 00 72 02 7c 00 53 00 74 | ...............}.|.d.k(..r.|.S.t |
| 42c0 | 01 00 00 00 00 00 00 00 00 6a 16 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 7c 00 7c | .........j...................|.| |
| 42e0 | 05 64 07 ab 03 00 00 00 00 00 00 7d 00 74 19 00 00 00 00 00 00 00 00 7c 00 ab 01 00 00 00 00 00 | .d.........}.t.........|........ |
| 4300 | 00 7d 06 7c 04 7c 06 6b 5c 00 00 72 09 7c 00 64 09 64 01 1a 00 64 07 7a 05 00 00 7d 00 6e 71 74 | .}.|.|.k\..r.|.d.d...d.z...}.nqt |
| 4320 | 1b 00 00 00 00 00 00 00 00 7c 04 ab 01 00 00 00 00 00 00 44 00 5d 63 00 00 7d 07 7c 06 64 01 7a | .........|.........D.]c..}.|.d.z |
| 4340 | 0a 00 00 7d 06 7c 00 7c 02 7a 12 00 00 7d 00 74 01 00 00 00 00 00 00 00 00 6a 1c 00 00 00 00 00 | ...}.|.|.z...}.t.........j...... |
| 4360 | 00 00 00 00 00 00 00 00 00 00 00 00 00 7c 06 66 01 7c 00 6a 1e 00 00 00 00 00 00 00 00 00 00 00 | .............|.f.|.j............ |
| 4380 | 00 00 00 00 00 00 00 64 01 64 09 1a 00 7a 00 00 00 7c 00 6a 04 00 00 00 00 00 00 00 00 00 00 00 | .......d.d...z...|.j............ |
| 43a0 | 00 00 00 00 00 00 00 ac 0a ab 02 00 00 00 00 00 00 7d 08 74 1b 00 00 00 00 00 00 00 00 7c 06 64 | .................}.t.........|.d |
| 43c0 | 07 64 0b ab 03 00 00 00 00 00 00 44 00 5d 13 00 00 7d 09 64 0c 7c 09 7a 05 00 00 7c 00 7c 09 19 | .d.........D.]...}.d.|.z...|.|.. |
| 43e0 | 00 00 00 7a 05 00 00 7c 08 7c 09 64 01 7a 0a 00 00 3c 00 00 00 8c 15 04 00 7c 08 7d 00 8c 65 04 | ...z...|.|.d.z...<.......|.}..e. |
| 4400 | 00 74 01 00 00 00 00 00 00 00 00 6a 16 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 7c | .t.........j...................| |
| 4420 | 00 64 07 7c 05 ab 03 00 00 00 00 00 00 7d 00 7c 00 53 00 29 0d 61 1c 07 00 00 0a 20 20 20 20 44 | .d.|.........}.|.S.).a.........D |
| 4440 | 69 66 66 65 72 65 6e 74 69 61 74 65 20 61 20 48 65 72 6d 69 74 65 20 73 65 72 69 65 73 2e 0a 0a | ifferentiate.a.Hermite.series... |
| 4460 | 20 20 20 20 52 65 74 75 72 6e 73 20 74 68 65 20 48 65 72 6d 69 74 65 20 73 65 72 69 65 73 20 63 | ....Returns.the.Hermite.series.c |
| 4480 | 6f 65 66 66 69 63 69 65 6e 74 73 20 60 63 60 20 64 69 66 66 65 72 65 6e 74 69 61 74 65 64 20 60 | oefficients.`c`.differentiated.` |
| 44a0 | 6d 60 20 74 69 6d 65 73 0a 20 20 20 20 61 6c 6f 6e 67 20 60 61 78 69 73 60 2e 20 20 41 74 20 65 | m`.times.....along.`axis`...At.e |
| 44c0 | 61 63 68 20 69 74 65 72 61 74 69 6f 6e 20 74 68 65 20 72 65 73 75 6c 74 20 69 73 20 6d 75 6c 74 | ach.iteration.the.result.is.mult |
| 44e0 | 69 70 6c 69 65 64 20 62 79 20 60 73 63 6c 60 20 28 74 68 65 0a 20 20 20 20 73 63 61 6c 69 6e 67 | iplied.by.`scl`.(the.....scaling |
| 4500 | 20 66 61 63 74 6f 72 20 69 73 20 66 6f 72 20 75 73 65 20 69 6e 20 61 20 6c 69 6e 65 61 72 20 63 | .factor.is.for.use.in.a.linear.c |
| 4520 | 68 61 6e 67 65 20 6f 66 20 76 61 72 69 61 62 6c 65 29 2e 20 54 68 65 20 61 72 67 75 6d 65 6e 74 | hange.of.variable)..The.argument |
| 4540 | 0a 20 20 20 20 60 63 60 20 69 73 20 61 6e 20 61 72 72 61 79 20 6f 66 20 63 6f 65 66 66 69 63 69 | .....`c`.is.an.array.of.coeffici |
| 4560 | 65 6e 74 73 20 66 72 6f 6d 20 6c 6f 77 20 74 6f 20 68 69 67 68 20 64 65 67 72 65 65 20 61 6c 6f | ents.from.low.to.high.degree.alo |
| 4580 | 6e 67 20 65 61 63 68 0a 20 20 20 20 61 78 69 73 2c 20 65 2e 67 2e 2c 20 5b 31 2c 32 2c 33 5d 20 | ng.each.....axis,.e.g.,.[1,2,3]. |
| 45a0 | 72 65 70 72 65 73 65 6e 74 73 20 74 68 65 20 73 65 72 69 65 73 20 60 60 31 2a 48 5f 30 20 2b 20 | represents.the.series.``1*H_0.+. |
| 45c0 | 32 2a 48 5f 31 20 2b 20 33 2a 48 5f 32 60 60 0a 20 20 20 20 77 68 69 6c 65 20 5b 5b 31 2c 32 5d | 2*H_1.+.3*H_2``.....while.[[1,2] |
| 45e0 | 2c 5b 31 2c 32 5d 5d 20 72 65 70 72 65 73 65 6e 74 73 20 60 60 31 2a 48 5f 30 28 78 29 2a 48 5f | ,[1,2]].represents.``1*H_0(x)*H_ |
| 4600 | 30 28 79 29 20 2b 20 31 2a 48 5f 31 28 78 29 2a 48 5f 30 28 79 29 20 2b 0a 20 20 20 20 32 2a 48 | 0(y).+.1*H_1(x)*H_0(y).+.....2*H |
| 4620 | 5f 30 28 78 29 2a 48 5f 31 28 79 29 20 2b 20 32 2a 48 5f 31 28 78 29 2a 48 5f 31 28 79 29 60 60 | _0(x)*H_1(y).+.2*H_1(x)*H_1(y)`` |
| 4640 | 20 69 66 20 61 78 69 73 3d 30 20 69 73 20 60 60 78 60 60 20 61 6e 64 20 61 78 69 73 3d 31 20 69 | .if.axis=0.is.``x``.and.axis=1.i |
| 4660 | 73 0a 20 20 20 20 60 60 79 60 60 2e 0a 0a 20 20 20 20 50 61 72 61 6d 65 74 65 72 73 0a 20 20 20 | s.....``y``.......Parameters.... |
| 4680 | 20 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 63 20 3a 20 61 72 72 61 79 5f 6c 69 6b 65 0a 20 | .----------.....c.:.array_like.. |
| 46a0 | 20 20 20 20 20 20 20 41 72 72 61 79 20 6f 66 20 48 65 72 6d 69 74 65 20 73 65 72 69 65 73 20 63 | .......Array.of.Hermite.series.c |
| 46c0 | 6f 65 66 66 69 63 69 65 6e 74 73 2e 20 49 66 20 60 63 60 20 69 73 20 6d 75 6c 74 69 64 69 6d 65 | oefficients..If.`c`.is.multidime |
| 46e0 | 6e 73 69 6f 6e 61 6c 20 74 68 65 0a 20 20 20 20 20 20 20 20 64 69 66 66 65 72 65 6e 74 20 61 78 | nsional.the.........different.ax |
| 4700 | 69 73 20 63 6f 72 72 65 73 70 6f 6e 64 20 74 6f 20 64 69 66 66 65 72 65 6e 74 20 76 61 72 69 61 | is.correspond.to.different.varia |
| 4720 | 62 6c 65 73 20 77 69 74 68 20 74 68 65 20 64 65 67 72 65 65 20 69 6e 0a 20 20 20 20 20 20 20 20 | bles.with.the.degree.in......... |
| 4740 | 65 61 63 68 20 61 78 69 73 20 67 69 76 65 6e 20 62 79 20 74 68 65 20 63 6f 72 72 65 73 70 6f 6e | each.axis.given.by.the.correspon |
| 4760 | 64 69 6e 67 20 69 6e 64 65 78 2e 0a 20 20 20 20 6d 20 3a 20 69 6e 74 2c 20 6f 70 74 69 6f 6e 61 | ding.index......m.:.int,.optiona |
| 4780 | 6c 0a 20 20 20 20 20 20 20 20 4e 75 6d 62 65 72 20 6f 66 20 64 65 72 69 76 61 74 69 76 65 73 20 | l.........Number.of.derivatives. |
| 47a0 | 74 61 6b 65 6e 2c 20 6d 75 73 74 20 62 65 20 6e 6f 6e 2d 6e 65 67 61 74 69 76 65 2e 20 28 44 65 | taken,.must.be.non-negative..(De |
| 47c0 | 66 61 75 6c 74 3a 20 31 29 0a 20 20 20 20 73 63 6c 20 3a 20 73 63 61 6c 61 72 2c 20 6f 70 74 69 | fault:.1).....scl.:.scalar,.opti |
| 47e0 | 6f 6e 61 6c 0a 20 20 20 20 20 20 20 20 45 61 63 68 20 64 69 66 66 65 72 65 6e 74 69 61 74 69 6f | onal.........Each.differentiatio |
| 4800 | 6e 20 69 73 20 6d 75 6c 74 69 70 6c 69 65 64 20 62 79 20 60 73 63 6c 60 2e 20 20 54 68 65 20 65 | n.is.multiplied.by.`scl`...The.e |
| 4820 | 6e 64 20 72 65 73 75 6c 74 20 69 73 0a 20 20 20 20 20 20 20 20 6d 75 6c 74 69 70 6c 69 63 61 74 | nd.result.is.........multiplicat |
| 4840 | 69 6f 6e 20 62 79 20 60 60 73 63 6c 2a 2a 6d 60 60 2e 20 20 54 68 69 73 20 69 73 20 66 6f 72 20 | ion.by.``scl**m``...This.is.for. |
| 4860 | 75 73 65 20 69 6e 20 61 20 6c 69 6e 65 61 72 20 63 68 61 6e 67 65 20 6f 66 0a 20 20 20 20 20 20 | use.in.a.linear.change.of....... |
| 4880 | 20 20 76 61 72 69 61 62 6c 65 2e 20 28 44 65 66 61 75 6c 74 3a 20 31 29 0a 20 20 20 20 61 78 69 | ..variable..(Default:.1).....axi |
| 48a0 | 73 20 3a 20 69 6e 74 2c 20 6f 70 74 69 6f 6e 61 6c 0a 20 20 20 20 20 20 20 20 41 78 69 73 20 6f | s.:.int,.optional.........Axis.o |
| 48c0 | 76 65 72 20 77 68 69 63 68 20 74 68 65 20 64 65 72 69 76 61 74 69 76 65 20 69 73 20 74 61 6b 65 | ver.which.the.derivative.is.take |
| 48e0 | 6e 2e 20 28 44 65 66 61 75 6c 74 3a 20 30 29 2e 0a 0a 20 20 20 20 52 65 74 75 72 6e 73 0a 20 20 | n..(Default:.0).......Returns... |
| 4900 | 20 20 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 64 65 72 20 3a 20 6e 64 61 72 72 61 79 0a 20 20 20 20 | ..-------.....der.:.ndarray..... |
| 4920 | 20 20 20 20 48 65 72 6d 69 74 65 20 73 65 72 69 65 73 20 6f 66 20 74 68 65 20 64 65 72 69 76 61 | ....Hermite.series.of.the.deriva |
| 4940 | 74 69 76 65 2e 0a 0a 20 20 20 20 53 65 65 20 41 6c 73 6f 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d | tive.......See.Also.....-------- |
| 4960 | 0a 20 20 20 20 68 65 72 6d 69 6e 74 0a 0a 20 20 20 20 4e 6f 74 65 73 0a 20 20 20 20 2d 2d 2d 2d | .....hermint......Notes.....---- |
| 4980 | 2d 0a 20 20 20 20 49 6e 20 67 65 6e 65 72 61 6c 2c 20 74 68 65 20 72 65 73 75 6c 74 20 6f 66 20 | -.....In.general,.the.result.of. |
| 49a0 | 64 69 66 66 65 72 65 6e 74 69 61 74 69 6e 67 20 61 20 48 65 72 6d 69 74 65 20 73 65 72 69 65 73 | differentiating.a.Hermite.series |
| 49c0 | 20 64 6f 65 73 20 6e 6f 74 0a 20 20 20 20 72 65 73 65 6d 62 6c 65 20 74 68 65 20 73 61 6d 65 20 | .does.not.....resemble.the.same. |
| 49e0 | 6f 70 65 72 61 74 69 6f 6e 20 6f 6e 20 61 20 70 6f 77 65 72 20 73 65 72 69 65 73 2e 20 54 68 75 | operation.on.a.power.series..Thu |
| 4a00 | 73 20 74 68 65 20 72 65 73 75 6c 74 20 6f 66 20 74 68 69 73 0a 20 20 20 20 66 75 6e 63 74 69 6f | s.the.result.of.this.....functio |
| 4a20 | 6e 20 6d 61 79 20 62 65 20 22 75 6e 69 6e 74 75 69 74 69 76 65 2c 22 20 61 6c 62 65 69 74 20 63 | n.may.be."unintuitive,".albeit.c |
| 4a40 | 6f 72 72 65 63 74 3b 20 73 65 65 20 45 78 61 6d 70 6c 65 73 20 73 65 63 74 69 6f 6e 0a 20 20 20 | orrect;.see.Examples.section.... |
| 4a60 | 20 62 65 6c 6f 77 2e 0a 0a 20 20 20 20 45 78 61 6d 70 6c 65 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d | .below.......Examples.....------ |
| 4a80 | 2d 2d 0a 20 20 20 20 3e 3e 3e 20 66 72 6f 6d 20 6e 75 6d 70 79 2e 70 6f 6c 79 6e 6f 6d 69 61 6c | --.....>>>.from.numpy.polynomial |
| 4aa0 | 2e 68 65 72 6d 69 74 65 20 69 6d 70 6f 72 74 20 68 65 72 6d 64 65 72 0a 20 20 20 20 3e 3e 3e 20 | .hermite.import.hermder.....>>>. |
| 4ac0 | 68 65 72 6d 64 65 72 28 5b 20 31 2e 20 2c 20 20 30 2e 35 2c 20 20 30 2e 35 2c 20 20 30 2e 35 5d | hermder([.1..,..0.5,..0.5,..0.5] |
| 4ae0 | 29 0a 20 20 20 20 61 72 72 61 79 28 5b 31 2e 2c 20 32 2e 2c 20 33 2e 5d 29 0a 20 20 20 20 3e 3e | ).....array([1.,.2.,.3.]).....>> |
| 4b00 | 3e 20 68 65 72 6d 64 65 72 28 5b 2d 30 2e 35 2c 20 20 31 2e 2f 32 2e 2c 20 20 31 2e 2f 38 2e 2c | >.hermder([-0.5,..1./2.,..1./8., |
| 4b20 | 20 20 31 2e 2f 31 32 2e 2c 20 20 31 2e 2f 31 36 2e 5d 2c 20 6d 3d 32 29 0a 20 20 20 20 61 72 72 | ..1./12.,..1./16.],.m=2).....arr |
| 4b40 | 61 79 28 5b 31 2e 2c 20 32 2e 2c 20 33 2e 5d 29 0a 0a 20 20 20 20 72 04 00 00 00 54 a9 02 da 05 | ay([1.,.2.,.3.])......r....T.... |
| 4b60 | 6e 64 6d 69 6e da 04 63 6f 70 79 fa 0d 3f 62 42 68 48 69 49 6c 4c 71 51 70 50 7a 17 74 68 65 20 | ndmin..copy..?bBhHiIlLqQpPz.the. |
| 4b80 | 6f 72 64 65 72 20 6f 66 20 64 65 72 69 76 61 74 69 6f 6e fa 08 74 68 65 20 61 78 69 73 72 02 00 | order.of.derivation..the.axisr.. |
| 4ba0 | 00 00 7a 2c 54 68 65 20 6f 72 64 65 72 20 6f 66 20 64 65 72 69 76 61 74 69 6f 6e 20 6d 75 73 74 | ..z,The.order.of.derivation.must |
| 4bc0 | 20 62 65 20 6e 6f 6e 2d 6e 65 67 61 74 69 76 65 4e 72 50 00 00 00 72 27 00 00 00 72 36 00 00 00 | .be.non-negativeNrP...r'...r6... |
| 4be0 | 29 10 72 41 00 00 00 72 42 00 00 00 72 51 00 00 00 da 04 63 68 61 72 da 06 61 73 74 79 70 65 da | ).rA...rB...rQ.....char..astype. |
| 4c00 | 06 64 6f 75 62 6c 65 72 28 00 00 00 da 07 5f 61 73 5f 69 6e 74 da 0a 56 61 6c 75 65 45 72 72 6f | .doubler(....._as_int..ValueErro |
| 4c20 | 72 72 03 00 00 00 da 04 6e 64 69 6d da 08 6d 6f 76 65 61 78 69 73 72 2a 00 00 00 72 2b 00 00 00 | rr......ndim..moveaxisr*...r+... |
| 4c40 | 72 52 00 00 00 da 05 73 68 61 70 65 29 0a 72 39 00 00 00 da 01 6d 72 44 00 00 00 da 04 61 78 69 | rR.....shape).r9.....mrD.....axi |
| 4c60 | 73 da 03 63 6e 74 da 05 69 61 78 69 73 72 3a 00 00 00 72 2f 00 00 00 da 03 64 65 72 da 01 6a 73 | s..cnt..iaxisr:...r/.....der..js |
| 4c80 | 0a 00 00 00 20 20 20 20 20 20 20 20 20 20 72 30 00 00 00 72 13 00 00 00 72 13 00 00 00 56 02 00 | ..............r0...r....r....V.. |
| 4ca0 | 00 73 52 01 00 00 80 00 f4 6a 01 00 09 0b 8f 08 89 08 90 11 98 21 a0 24 d4 08 27 80 41 d8 07 08 | .sR......j...........!.$..'.A... |
| 4cc0 | 87 77 81 77 87 7c 81 7c 90 7f d1 07 26 d8 0c 0d 8f 48 89 48 94 52 97 59 91 59 d3 0c 1f 88 01 dc | .w.w.|.|....&....H.H.R.Y.Y...... |
| 4ce0 | 0a 0c 8f 2a 89 2a 90 51 d0 18 31 d3 0a 32 80 43 dc 0c 0e 8f 4a 89 4a 90 74 98 5a d3 0c 28 80 45 | ...*.*.Q..1..2.C....J.J.t.Z..(.E |
| 4d00 | d8 07 0a 88 51 82 77 dc 0e 18 d0 19 47 d3 0e 48 d0 08 48 dc 0c 20 a0 15 a8 01 af 06 a9 06 d3 0c | ....Q.w.....G..H..H............. |
| 4d20 | 2f 80 45 e0 07 0a 88 61 82 78 d8 0f 10 88 08 e4 08 0a 8f 0b 89 0b 90 41 90 75 98 61 d3 08 20 80 | /.E....a.x.............A.u.a.... |
| 4d40 | 41 dc 08 0b 88 41 8b 06 80 41 d8 07 0a 88 61 82 78 d8 0c 0d 88 62 88 71 88 45 90 41 89 49 89 01 | A....A...A....a.x....b.q.E.A.I.. |
| 4d60 | e4 11 16 90 73 93 1a f2 00 06 09 14 88 41 d8 10 11 90 41 91 05 88 41 d8 0c 0d 90 13 89 48 88 41 | ....s........A....A...A......H.A |
| 4d80 | dc 12 14 97 28 91 28 98 41 98 34 a0 21 a7 27 a1 27 a8 21 a8 22 a0 2b d1 1b 2d b0 51 b7 57 b1 57 | ....(.(.A.4.!.'.'.!.".+..-.Q.W.W |
| 4da0 | d4 12 3d 88 43 dc 15 1a 98 31 98 61 a0 12 93 5f f2 00 01 0d 2c 90 01 d8 1e 1f a0 21 99 65 a0 71 | ..=.C....1.a..._....,......!.e.q |
| 4dc0 | a8 11 a1 74 99 5e 90 03 90 41 98 01 91 45 92 0a f0 03 01 0d 2c e0 10 13 89 41 f0 0d 06 09 14 f4 | ...t.^...A...E......,....A...... |
| 4de0 | 0e 00 09 0b 8f 0b 89 0b 90 41 90 71 98 25 d3 08 20 80 41 d8 0b 0c 80 48 72 31 00 00 00 63 06 00 | .........A.q.%....A....Hr1...c.. |
| 4e00 | 00 00 00 00 00 00 00 00 00 00 09 00 00 00 03 00 00 00 f3 9c 04 00 00 97 00 74 01 00 00 00 00 00 | .........................t...... |
| 4e20 | 00 00 00 6a 02 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 7c 00 64 01 64 02 ac 03 ab | ...j...................|.d.d.... |
| 4e40 | 03 00 00 00 00 00 00 7d 00 7c 00 6a 04 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 6a | .......}.|.j...................j |
| 4e60 | 06 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 64 04 76 00 72 1f 7c 00 6a 09 00 00 00 | ...................d.v.r.|.j.... |
| 4e80 | 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 74 00 00 00 00 00 00 00 00 00 6a 0a 00 00 00 00 00 | ...............t.........j...... |
| 4ea0 | 00 00 00 00 00 00 00 00 00 00 00 00 00 ab 01 00 00 00 00 00 00 7d 00 74 01 00 00 00 00 00 00 00 | .....................}.t........ |
| 4ec0 | 00 6a 0c 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 7c 02 ab 01 00 00 00 00 00 00 73 | .j...................|.........s |
| 4ee0 | 03 7c 02 67 01 7d 02 74 0f 00 00 00 00 00 00 00 00 6a 10 00 00 00 00 00 00 00 00 00 00 00 00 00 | .|.g.}.t.........j.............. |
| 4f00 | 00 00 00 00 00 7c 01 64 05 ab 02 00 00 00 00 00 00 7d 06 74 0f 00 00 00 00 00 00 00 00 6a 10 00 | .....|.d.........}.t.........j.. |
| 4f20 | 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 7c 05 64 06 ab 02 00 00 00 00 00 00 7d 07 7c | .................|.d.........}.| |
| 4f40 | 06 64 07 6b 02 00 00 72 0b 74 13 00 00 00 00 00 00 00 00 64 08 ab 01 00 00 00 00 00 00 82 01 74 | .d.k...r.t.........d...........t |
| 4f60 | 15 00 00 00 00 00 00 00 00 7c 02 ab 01 00 00 00 00 00 00 7c 06 6b 44 00 00 72 0b 74 13 00 00 00 | .........|.........|.kD..r.t.... |
| 4f80 | 00 00 00 00 00 64 09 ab 01 00 00 00 00 00 00 82 01 74 01 00 00 00 00 00 00 00 00 6a 16 00 00 00 | .....d...........t.........j.... |
| 4fa0 | 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 7c 03 ab 01 00 00 00 00 00 00 64 07 6b 37 00 00 72 | ...............|.........d.k7..r |
| 4fc0 | 0b 74 13 00 00 00 00 00 00 00 00 64 0a ab 01 00 00 00 00 00 00 82 01 74 01 00 00 00 00 00 00 00 | .t.........d...........t........ |
| 4fe0 | 00 6a 16 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 7c 04 ab 01 00 00 00 00 00 00 64 | .j...................|.........d |
| 5000 | 07 6b 37 00 00 72 0b 74 13 00 00 00 00 00 00 00 00 64 0b ab 01 00 00 00 00 00 00 82 01 74 19 00 | .k7..r.t.........d...........t.. |
| 5020 | 00 00 00 00 00 00 00 7c 07 7c 00 6a 16 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ab | .......|.|.j.................... |
| 5040 | 02 00 00 00 00 00 00 7d 07 7c 06 64 07 6b 28 00 00 72 02 7c 00 53 00 74 01 00 00 00 00 00 00 00 | .......}.|.d.k(..r.|.S.t........ |
| 5060 | 00 6a 1a 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 7c 00 7c 07 64 07 ab 03 00 00 00 | .j...................|.|.d...... |
| 5080 | 00 00 00 7d 00 74 1d 00 00 00 00 00 00 00 00 7c 02 ab 01 00 00 00 00 00 00 64 07 67 01 7c 06 74 | ...}.t.........|.........d.g.|.t |
| 50a0 | 15 00 00 00 00 00 00 00 00 7c 02 ab 01 00 00 00 00 00 00 7a 0a 00 00 7a 05 00 00 7a 00 00 00 7d | .........|.........z...z...z...} |
| 50c0 | 02 74 1f 00 00 00 00 00 00 00 00 7c 06 ab 01 00 00 00 00 00 00 44 00 5d d2 00 00 7d 08 74 15 00 | .t.........|.........D.]...}.t.. |
| 50e0 | 00 00 00 00 00 00 00 7c 00 ab 01 00 00 00 00 00 00 7d 09 7c 00 7c 04 7a 12 00 00 7d 00 7c 09 64 | .......|.........}.|.|.z...}.|.d |
| 5100 | 01 6b 28 00 00 72 2c 74 01 00 00 00 00 00 00 00 00 6a 20 00 00 00 00 00 00 00 00 00 00 00 00 00 | .k(..r,t.........j.............. |
| 5120 | 00 00 00 00 00 7c 00 64 07 19 00 00 00 64 07 6b 28 00 00 ab 01 00 00 00 00 00 00 72 11 7c 00 64 | .....|.d.....d.k(..........r.|.d |
| 5140 | 07 78 02 78 02 19 00 00 00 7c 02 7c 08 19 00 00 00 7a 0d 00 00 63 03 63 02 3c 00 00 00 8c 44 74 | .x.x.....|.|.....z...c.c.<....Dt |
| 5160 | 01 00 00 00 00 00 00 00 00 6a 22 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 7c 09 64 | .........j"..................|.d |
| 5180 | 01 7a 00 00 00 66 01 7c 00 6a 24 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 64 01 64 | .z...f.|.j$..................d.d |
| 51a0 | 0c 1a 00 7a 00 00 00 7c 00 6a 04 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ac 0d ab | ...z...|.j...................... |
| 51c0 | 02 00 00 00 00 00 00 7d 0a 7c 00 64 07 19 00 00 00 64 07 7a 05 00 00 7c 0a 64 07 3c 00 00 00 7c | .......}.|.d.....d.z...|.d.<...| |
| 51e0 | 00 64 07 19 00 00 00 64 0e 7a 0b 00 00 7c 0a 64 01 3c 00 00 00 74 1f 00 00 00 00 00 00 00 00 64 | .d.....d.z...|.d.<...t.........d |
| 5200 | 01 7c 09 ab 02 00 00 00 00 00 00 44 00 5d 16 00 00 7d 0b 7c 00 7c 0b 19 00 00 00 64 0e 7c 0b 64 | .|.........D.]...}.|.|.....d.|.d |
| 5220 | 01 7a 00 00 00 7a 05 00 00 7a 0b 00 00 7c 0a 7c 0b 64 01 7a 00 00 00 3c 00 00 00 8c 18 04 00 7c | .z...z...z...|.|.d.z...<.......| |
| 5240 | 0a 64 07 78 02 78 02 19 00 00 00 7c 02 7c 08 19 00 00 00 74 27 00 00 00 00 00 00 00 00 7c 03 7c | .d.x.x.....|.|.....t'........|.| |
| 5260 | 0a ab 02 00 00 00 00 00 00 7a 0a 00 00 7a 0d 00 00 63 03 63 02 3c 00 00 00 7c 0a 7d 00 8c d4 04 | .........z...z...c.c.<...|.}.... |
| 5280 | 00 74 01 00 00 00 00 00 00 00 00 6a 1a 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 7c | .t.........j...................| |
| 52a0 | 00 64 07 7c 07 ab 03 00 00 00 00 00 00 7d 00 7c 00 53 00 29 0f 61 3f 0d 00 00 0a 20 20 20 20 49 | .d.|.........}.|.S.).a?........I |
| 52c0 | 6e 74 65 67 72 61 74 65 20 61 20 48 65 72 6d 69 74 65 20 73 65 72 69 65 73 2e 0a 0a 20 20 20 20 | ntegrate.a.Hermite.series....... |
| 52e0 | 52 65 74 75 72 6e 73 20 74 68 65 20 48 65 72 6d 69 74 65 20 73 65 72 69 65 73 20 63 6f 65 66 66 | Returns.the.Hermite.series.coeff |
| 5300 | 69 63 69 65 6e 74 73 20 60 63 60 20 69 6e 74 65 67 72 61 74 65 64 20 60 6d 60 20 74 69 6d 65 73 | icients.`c`.integrated.`m`.times |
| 5320 | 20 66 72 6f 6d 0a 20 20 20 20 60 6c 62 6e 64 60 20 61 6c 6f 6e 67 20 60 61 78 69 73 60 2e 20 41 | .from.....`lbnd`.along.`axis`..A |
| 5340 | 74 20 65 61 63 68 20 69 74 65 72 61 74 69 6f 6e 20 74 68 65 20 72 65 73 75 6c 74 69 6e 67 20 73 | t.each.iteration.the.resulting.s |
| 5360 | 65 72 69 65 73 20 69 73 0a 20 20 20 20 2a 2a 6d 75 6c 74 69 70 6c 69 65 64 2a 2a 20 62 79 20 60 | eries.is.....**multiplied**.by.` |
| 5380 | 73 63 6c 60 20 61 6e 64 20 61 6e 20 69 6e 74 65 67 72 61 74 69 6f 6e 20 63 6f 6e 73 74 61 6e 74 | scl`.and.an.integration.constant |
| 53a0 | 2c 20 60 6b 60 2c 20 69 73 20 61 64 64 65 64 2e 0a 20 20 20 20 54 68 65 20 73 63 61 6c 69 6e 67 | ,.`k`,.is.added......The.scaling |
| 53c0 | 20 66 61 63 74 6f 72 20 69 73 20 66 6f 72 20 75 73 65 20 69 6e 20 61 20 6c 69 6e 65 61 72 20 63 | .factor.is.for.use.in.a.linear.c |
| 53e0 | 68 61 6e 67 65 20 6f 66 20 76 61 72 69 61 62 6c 65 2e 20 20 28 22 42 75 79 65 72 0a 20 20 20 20 | hange.of.variable...("Buyer..... |
| 5400 | 62 65 77 61 72 65 22 3a 20 6e 6f 74 65 20 74 68 61 74 2c 20 64 65 70 65 6e 64 69 6e 67 20 6f 6e | beware":.note.that,.depending.on |
| 5420 | 20 77 68 61 74 20 6f 6e 65 20 69 73 20 64 6f 69 6e 67 2c 20 6f 6e 65 20 6d 61 79 20 77 61 6e 74 | .what.one.is.doing,.one.may.want |
| 5440 | 20 60 73 63 6c 60 0a 20 20 20 20 74 6f 20 62 65 20 74 68 65 20 72 65 63 69 70 72 6f 63 61 6c 20 | .`scl`.....to.be.the.reciprocal. |
| 5460 | 6f 66 20 77 68 61 74 20 6f 6e 65 20 6d 69 67 68 74 20 65 78 70 65 63 74 3b 20 66 6f 72 20 6d 6f | of.what.one.might.expect;.for.mo |
| 5480 | 72 65 20 69 6e 66 6f 72 6d 61 74 69 6f 6e 2c 0a 20 20 20 20 73 65 65 20 74 68 65 20 4e 6f 74 65 | re.information,.....see.the.Note |
| 54a0 | 73 20 73 65 63 74 69 6f 6e 20 62 65 6c 6f 77 2e 29 20 20 54 68 65 20 61 72 67 75 6d 65 6e 74 20 | s.section.below.)..The.argument. |
| 54c0 | 60 63 60 20 69 73 20 61 6e 20 61 72 72 61 79 20 6f 66 0a 20 20 20 20 63 6f 65 66 66 69 63 69 65 | `c`.is.an.array.of.....coefficie |
| 54e0 | 6e 74 73 20 66 72 6f 6d 20 6c 6f 77 20 74 6f 20 68 69 67 68 20 64 65 67 72 65 65 20 61 6c 6f 6e | nts.from.low.to.high.degree.alon |
| 5500 | 67 20 65 61 63 68 20 61 78 69 73 2c 20 65 2e 67 2e 2c 20 5b 31 2c 32 2c 33 5d 0a 20 20 20 20 72 | g.each.axis,.e.g.,.[1,2,3].....r |
| 5520 | 65 70 72 65 73 65 6e 74 73 20 74 68 65 20 73 65 72 69 65 73 20 60 60 48 5f 30 20 2b 20 32 2a 48 | epresents.the.series.``H_0.+.2*H |
| 5540 | 5f 31 20 2b 20 33 2a 48 5f 32 60 60 20 77 68 69 6c 65 20 5b 5b 31 2c 32 5d 2c 5b 31 2c 32 5d 5d | _1.+.3*H_2``.while.[[1,2],[1,2]] |
| 5560 | 0a 20 20 20 20 72 65 70 72 65 73 65 6e 74 73 20 60 60 31 2a 48 5f 30 28 78 29 2a 48 5f 30 28 79 | .....represents.``1*H_0(x)*H_0(y |
| 5580 | 29 20 2b 20 31 2a 48 5f 31 28 78 29 2a 48 5f 30 28 79 29 20 2b 20 32 2a 48 5f 30 28 78 29 2a 48 | ).+.1*H_1(x)*H_0(y).+.2*H_0(x)*H |
| 55a0 | 5f 31 28 79 29 20 2b 0a 20 20 20 20 32 2a 48 5f 31 28 78 29 2a 48 5f 31 28 79 29 60 60 20 69 66 | _1(y).+.....2*H_1(x)*H_1(y)``.if |
| 55c0 | 20 61 78 69 73 3d 30 20 69 73 20 60 60 78 60 60 20 61 6e 64 20 61 78 69 73 3d 31 20 69 73 20 60 | .axis=0.is.``x``.and.axis=1.is.` |
| 55e0 | 60 79 60 60 2e 0a 0a 20 20 20 20 50 61 72 61 6d 65 74 65 72 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d | `y``.......Parameters.....------ |
| 5600 | 2d 2d 2d 2d 0a 20 20 20 20 63 20 3a 20 61 72 72 61 79 5f 6c 69 6b 65 0a 20 20 20 20 20 20 20 20 | ----.....c.:.array_like......... |
| 5620 | 41 72 72 61 79 20 6f 66 20 48 65 72 6d 69 74 65 20 73 65 72 69 65 73 20 63 6f 65 66 66 69 63 69 | Array.of.Hermite.series.coeffici |
| 5640 | 65 6e 74 73 2e 20 49 66 20 63 20 69 73 20 6d 75 6c 74 69 64 69 6d 65 6e 73 69 6f 6e 61 6c 20 74 | ents..If.c.is.multidimensional.t |
| 5660 | 68 65 0a 20 20 20 20 20 20 20 20 64 69 66 66 65 72 65 6e 74 20 61 78 69 73 20 63 6f 72 72 65 73 | he.........different.axis.corres |
| 5680 | 70 6f 6e 64 20 74 6f 20 64 69 66 66 65 72 65 6e 74 20 76 61 72 69 61 62 6c 65 73 20 77 69 74 68 | pond.to.different.variables.with |
| 56a0 | 20 74 68 65 20 64 65 67 72 65 65 20 69 6e 0a 20 20 20 20 20 20 20 20 65 61 63 68 20 61 78 69 73 | .the.degree.in.........each.axis |
| 56c0 | 20 67 69 76 65 6e 20 62 79 20 74 68 65 20 63 6f 72 72 65 73 70 6f 6e 64 69 6e 67 20 69 6e 64 65 | .given.by.the.corresponding.inde |
| 56e0 | 78 2e 0a 20 20 20 20 6d 20 3a 20 69 6e 74 2c 20 6f 70 74 69 6f 6e 61 6c 0a 20 20 20 20 20 20 20 | x......m.:.int,.optional........ |
| 5700 | 20 4f 72 64 65 72 20 6f 66 20 69 6e 74 65 67 72 61 74 69 6f 6e 2c 20 6d 75 73 74 20 62 65 20 70 | .Order.of.integration,.must.be.p |
| 5720 | 6f 73 69 74 69 76 65 2e 20 28 44 65 66 61 75 6c 74 3a 20 31 29 0a 20 20 20 20 6b 20 3a 20 7b 5b | ositive..(Default:.1).....k.:.{[ |
| 5740 | 5d 2c 20 6c 69 73 74 2c 20 73 63 61 6c 61 72 7d 2c 20 6f 70 74 69 6f 6e 61 6c 0a 20 20 20 20 20 | ],.list,.scalar},.optional...... |
| 5760 | 20 20 20 49 6e 74 65 67 72 61 74 69 6f 6e 20 63 6f 6e 73 74 61 6e 74 28 73 29 2e 20 20 54 68 65 | ...Integration.constant(s)...The |
| 5780 | 20 76 61 6c 75 65 20 6f 66 20 74 68 65 20 66 69 72 73 74 20 69 6e 74 65 67 72 61 6c 20 61 74 0a | .value.of.the.first.integral.at. |
| 57a0 | 20 20 20 20 20 20 20 20 60 60 6c 62 6e 64 60 60 20 69 73 20 74 68 65 20 66 69 72 73 74 20 76 61 | ........``lbnd``.is.the.first.va |
| 57c0 | 6c 75 65 20 69 6e 20 74 68 65 20 6c 69 73 74 2c 20 74 68 65 20 76 61 6c 75 65 20 6f 66 20 74 68 | lue.in.the.list,.the.value.of.th |
| 57e0 | 65 20 73 65 63 6f 6e 64 0a 20 20 20 20 20 20 20 20 69 6e 74 65 67 72 61 6c 20 61 74 20 60 60 6c | e.second.........integral.at.``l |
| 5800 | 62 6e 64 60 60 20 69 73 20 74 68 65 20 73 65 63 6f 6e 64 20 76 61 6c 75 65 2c 20 65 74 63 2e 20 | bnd``.is.the.second.value,.etc.. |
| 5820 | 20 49 66 20 60 60 6b 20 3d 3d 20 5b 5d 60 60 20 28 74 68 65 0a 20 20 20 20 20 20 20 20 64 65 66 | .If.``k.==.[]``.(the.........def |
| 5840 | 61 75 6c 74 29 2c 20 61 6c 6c 20 63 6f 6e 73 74 61 6e 74 73 20 61 72 65 20 73 65 74 20 74 6f 20 | ault),.all.constants.are.set.to. |
| 5860 | 7a 65 72 6f 2e 20 20 49 66 20 60 60 6d 20 3d 3d 20 31 60 60 2c 20 61 20 73 69 6e 67 6c 65 0a 20 | zero...If.``m.==.1``,.a.single.. |
| 5880 | 20 20 20 20 20 20 20 73 63 61 6c 61 72 20 63 61 6e 20 62 65 20 67 69 76 65 6e 20 69 6e 73 74 65 | .......scalar.can.be.given.inste |
| 58a0 | 61 64 20 6f 66 20 61 20 6c 69 73 74 2e 0a 20 20 20 20 6c 62 6e 64 20 3a 20 73 63 61 6c 61 72 2c | ad.of.a.list......lbnd.:.scalar, |
| 58c0 | 20 6f 70 74 69 6f 6e 61 6c 0a 20 20 20 20 20 20 20 20 54 68 65 20 6c 6f 77 65 72 20 62 6f 75 6e | .optional.........The.lower.boun |
| 58e0 | 64 20 6f 66 20 74 68 65 20 69 6e 74 65 67 72 61 6c 2e 20 28 44 65 66 61 75 6c 74 3a 20 30 29 0a | d.of.the.integral..(Default:.0). |
| 5900 | 20 20 20 20 73 63 6c 20 3a 20 73 63 61 6c 61 72 2c 20 6f 70 74 69 6f 6e 61 6c 0a 20 20 20 20 20 | ....scl.:.scalar,.optional...... |
| 5920 | 20 20 20 46 6f 6c 6c 6f 77 69 6e 67 20 65 61 63 68 20 69 6e 74 65 67 72 61 74 69 6f 6e 20 74 68 | ...Following.each.integration.th |
| 5940 | 65 20 72 65 73 75 6c 74 20 69 73 20 2a 6d 75 6c 74 69 70 6c 69 65 64 2a 20 62 79 20 60 73 63 6c | e.result.is.*multiplied*.by.`scl |
| 5960 | 60 0a 20 20 20 20 20 20 20 20 62 65 66 6f 72 65 20 74 68 65 20 69 6e 74 65 67 72 61 74 69 6f 6e | `.........before.the.integration |
| 5980 | 20 63 6f 6e 73 74 61 6e 74 20 69 73 20 61 64 64 65 64 2e 20 28 44 65 66 61 75 6c 74 3a 20 31 29 | .constant.is.added..(Default:.1) |
| 59a0 | 0a 20 20 20 20 61 78 69 73 20 3a 20 69 6e 74 2c 20 6f 70 74 69 6f 6e 61 6c 0a 20 20 20 20 20 20 | .....axis.:.int,.optional....... |
| 59c0 | 20 20 41 78 69 73 20 6f 76 65 72 20 77 68 69 63 68 20 74 68 65 20 69 6e 74 65 67 72 61 6c 20 69 | ..Axis.over.which.the.integral.i |
| 59e0 | 73 20 74 61 6b 65 6e 2e 20 28 44 65 66 61 75 6c 74 3a 20 30 29 2e 0a 0a 20 20 20 20 52 65 74 75 | s.taken..(Default:.0).......Retu |
| 5a00 | 72 6e 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 53 20 3a 20 6e 64 61 72 72 61 79 0a | rns.....-------.....S.:.ndarray. |
| 5a20 | 20 20 20 20 20 20 20 20 48 65 72 6d 69 74 65 20 73 65 72 69 65 73 20 63 6f 65 66 66 69 63 69 65 | ........Hermite.series.coefficie |
| 5a40 | 6e 74 73 20 6f 66 20 74 68 65 20 69 6e 74 65 67 72 61 6c 2e 0a 0a 20 20 20 20 52 61 69 73 65 73 | nts.of.the.integral.......Raises |
| 5a60 | 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 56 61 6c 75 65 45 72 72 6f 72 0a 20 20 20 20 20 | .....------.....ValueError...... |
| 5a80 | 20 20 20 49 66 20 60 60 6d 20 3c 20 30 60 60 2c 20 60 60 6c 65 6e 28 6b 29 20 3e 20 6d 60 60 2c | ...If.``m.<.0``,.``len(k).>.m``, |
| 5aa0 | 20 60 60 6e 70 2e 6e 64 69 6d 28 6c 62 6e 64 29 20 21 3d 20 30 60 60 2c 20 6f 72 0a 20 20 20 20 | .``np.ndim(lbnd).!=.0``,.or..... |
| 5ac0 | 20 20 20 20 60 60 6e 70 2e 6e 64 69 6d 28 73 63 6c 29 20 21 3d 20 30 60 60 2e 0a 0a 20 20 20 20 | ....``np.ndim(scl).!=.0``....... |
| 5ae0 | 53 65 65 20 41 6c 73 6f 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 68 65 72 6d 64 65 | See.Also.....--------.....hermde |
| 5b00 | 72 0a 0a 20 20 20 20 4e 6f 74 65 73 0a 20 20 20 20 2d 2d 2d 2d 2d 0a 20 20 20 20 4e 6f 74 65 20 | r......Notes.....-----.....Note. |
| 5b20 | 74 68 61 74 20 74 68 65 20 72 65 73 75 6c 74 20 6f 66 20 65 61 63 68 20 69 6e 74 65 67 72 61 74 | that.the.result.of.each.integrat |
| 5b40 | 69 6f 6e 20 69 73 20 2a 6d 75 6c 74 69 70 6c 69 65 64 2a 20 62 79 20 60 73 63 6c 60 2e 0a 20 20 | ion.is.*multiplied*.by.`scl`.... |
| 5b60 | 20 20 57 68 79 20 69 73 20 74 68 69 73 20 69 6d 70 6f 72 74 61 6e 74 20 74 6f 20 6e 6f 74 65 3f | ..Why.is.this.important.to.note? |
| 5b80 | 20 20 53 61 79 20 6f 6e 65 20 69 73 20 6d 61 6b 69 6e 67 20 61 20 6c 69 6e 65 61 72 20 63 68 61 | ..Say.one.is.making.a.linear.cha |
| 5ba0 | 6e 67 65 20 6f 66 0a 20 20 20 20 76 61 72 69 61 62 6c 65 20 3a 6d 61 74 68 3a 60 75 20 3d 20 61 | nge.of.....variable.:math:`u.=.a |
| 5bc0 | 78 20 2b 20 62 60 20 69 6e 20 61 6e 20 69 6e 74 65 67 72 61 6c 20 72 65 6c 61 74 69 76 65 20 74 | x.+.b`.in.an.integral.relative.t |
| 5be0 | 6f 20 60 78 60 2e 20 20 54 68 65 6e 0a 20 20 20 20 3a 6d 61 74 68 3a 60 64 78 20 3d 20 64 75 2f | o.`x`...Then.....:math:`dx.=.du/ |
| 5c00 | 61 60 2c 20 73 6f 20 6f 6e 65 20 77 69 6c 6c 20 6e 65 65 64 20 74 6f 20 73 65 74 20 60 73 63 6c | a`,.so.one.will.need.to.set.`scl |
| 5c20 | 60 20 65 71 75 61 6c 20 74 6f 0a 20 20 20 20 3a 6d 61 74 68 3a 60 31 2f 61 60 20 2d 20 70 65 72 | `.equal.to.....:math:`1/a`.-.per |
| 5c40 | 68 61 70 73 20 6e 6f 74 20 77 68 61 74 20 6f 6e 65 20 77 6f 75 6c 64 20 68 61 76 65 20 66 69 72 | haps.not.what.one.would.have.fir |
| 5c60 | 73 74 20 74 68 6f 75 67 68 74 2e 0a 0a 20 20 20 20 41 6c 73 6f 20 6e 6f 74 65 20 74 68 61 74 2c | st.thought.......Also.note.that, |
| 5c80 | 20 69 6e 20 67 65 6e 65 72 61 6c 2c 20 74 68 65 20 72 65 73 75 6c 74 20 6f 66 20 69 6e 74 65 67 | .in.general,.the.result.of.integ |
| 5ca0 | 72 61 74 69 6e 67 20 61 20 43 2d 73 65 72 69 65 73 20 6e 65 65 64 73 0a 20 20 20 20 74 6f 20 62 | rating.a.C-series.needs.....to.b |
| 5cc0 | 65 20 22 72 65 70 72 6f 6a 65 63 74 65 64 22 20 6f 6e 74 6f 20 74 68 65 20 43 2d 73 65 72 69 65 | e."reprojected".onto.the.C-serie |
| 5ce0 | 73 20 62 61 73 69 73 20 73 65 74 2e 20 20 54 68 75 73 2c 20 74 79 70 69 63 61 6c 6c 79 2c 0a 20 | s.basis.set...Thus,.typically,.. |
| 5d00 | 20 20 20 74 68 65 20 72 65 73 75 6c 74 20 6f 66 20 74 68 69 73 20 66 75 6e 63 74 69 6f 6e 20 69 | ...the.result.of.this.function.i |
| 5d20 | 73 20 22 75 6e 69 6e 74 75 69 74 69 76 65 2c 22 20 61 6c 62 65 69 74 20 63 6f 72 72 65 63 74 3b | s."unintuitive,".albeit.correct; |
| 5d40 | 20 73 65 65 0a 20 20 20 20 45 78 61 6d 70 6c 65 73 20 73 65 63 74 69 6f 6e 20 62 65 6c 6f 77 2e | .see.....Examples.section.below. |
| 5d60 | 0a 0a 20 20 20 20 45 78 61 6d 70 6c 65 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 | ......Examples.....--------..... |
| 5d80 | 3e 3e 3e 20 66 72 6f 6d 20 6e 75 6d 70 79 2e 70 6f 6c 79 6e 6f 6d 69 61 6c 2e 68 65 72 6d 69 74 | >>>.from.numpy.polynomial.hermit |
| 5da0 | 65 20 69 6d 70 6f 72 74 20 68 65 72 6d 69 6e 74 0a 20 20 20 20 3e 3e 3e 20 68 65 72 6d 69 6e 74 | e.import.hermint.....>>>.hermint |
| 5dc0 | 28 5b 31 2c 32 2c 33 5d 29 20 23 20 69 6e 74 65 67 72 61 74 65 20 6f 6e 63 65 2c 20 76 61 6c 75 | ([1,2,3]).#.integrate.once,.valu |
| 5de0 | 65 20 30 20 61 74 20 30 2e 0a 20 20 20 20 61 72 72 61 79 28 5b 31 2e 20 2c 20 30 2e 35 2c 20 30 | e.0.at.0......array([1..,.0.5,.0 |
| 5e00 | 2e 35 2c 20 30 2e 35 5d 29 0a 20 20 20 20 3e 3e 3e 20 68 65 72 6d 69 6e 74 28 5b 31 2c 32 2c 33 | .5,.0.5]).....>>>.hermint([1,2,3 |
| 5e20 | 5d 2c 20 6d 3d 32 29 20 23 20 69 6e 74 65 67 72 61 74 65 20 74 77 69 63 65 2c 20 76 61 6c 75 65 | ],.m=2).#.integrate.twice,.value |
| 5e40 | 20 26 20 64 65 72 69 76 20 30 20 61 74 20 30 0a 20 20 20 20 61 72 72 61 79 28 5b 2d 30 2e 35 20 | .&.deriv.0.at.0.....array([-0.5. |
| 5e60 | 20 20 20 20 20 20 2c 20 20 30 2e 35 20 20 20 20 20 20 20 2c 20 20 30 2e 31 32 35 20 20 20 20 20 | ......,..0.5.......,..0.125..... |
| 5e80 | 2c 20 20 30 2e 30 38 33 33 33 33 33 33 2c 20 20 30 2e 30 36 32 35 20 20 20 20 5d 29 20 23 20 6d | ,..0.08333333,..0.0625....]).#.m |
| 5ea0 | 61 79 20 76 61 72 79 0a 20 20 20 20 3e 3e 3e 20 68 65 72 6d 69 6e 74 28 5b 31 2c 32 2c 33 5d 2c | ay.vary.....>>>.hermint([1,2,3], |
| 5ec0 | 20 6b 3d 31 29 20 23 20 69 6e 74 65 67 72 61 74 65 20 6f 6e 63 65 2c 20 76 61 6c 75 65 20 31 20 | .k=1).#.integrate.once,.value.1. |
| 5ee0 | 61 74 20 30 2e 0a 20 20 20 20 61 72 72 61 79 28 5b 32 2e 20 2c 20 30 2e 35 2c 20 30 2e 35 2c 20 | at.0......array([2..,.0.5,.0.5,. |
| 5f00 | 30 2e 35 5d 29 0a 20 20 20 20 3e 3e 3e 20 68 65 72 6d 69 6e 74 28 5b 31 2c 32 2c 33 5d 2c 20 6c | 0.5]).....>>>.hermint([1,2,3],.l |
| 5f20 | 62 6e 64 3d 2d 31 29 20 23 20 69 6e 74 65 67 72 61 74 65 20 6f 6e 63 65 2c 20 76 61 6c 75 65 20 | bnd=-1).#.integrate.once,.value. |
| 5f40 | 30 20 61 74 20 2d 31 0a 20 20 20 20 61 72 72 61 79 28 5b 2d 32 2e 20 2c 20 20 30 2e 35 2c 20 20 | 0.at.-1.....array([-2..,..0.5,.. |
| 5f60 | 30 2e 35 2c 20 20 30 2e 35 5d 29 0a 20 20 20 20 3e 3e 3e 20 68 65 72 6d 69 6e 74 28 5b 31 2c 32 | 0.5,..0.5]).....>>>.hermint([1,2 |
| 5f80 | 2c 33 5d 2c 20 6d 3d 32 2c 20 6b 3d 5b 31 2c 32 5d 2c 20 6c 62 6e 64 3d 2d 31 29 0a 20 20 20 20 | ,3],.m=2,.k=[1,2],.lbnd=-1)..... |
| 5fa0 | 61 72 72 61 79 28 5b 20 31 2e 36 36 36 36 36 36 36 37 2c 20 2d 30 2e 35 20 20 20 20 20 20 20 2c | array([.1.66666667,.-0.5......., |
| 5fc0 | 20 20 30 2e 31 32 35 20 20 20 20 20 2c 20 20 30 2e 30 38 33 33 33 33 33 33 2c 20 20 30 2e 30 36 | ..0.125.....,..0.08333333,..0.06 |
| 5fe0 | 32 35 20 20 20 20 5d 29 20 23 20 6d 61 79 20 76 61 72 79 0a 0a 20 20 20 20 72 04 00 00 00 54 72 | 25....]).#.may.vary......r....Tr |
| 6000 | 5f 00 00 00 72 62 00 00 00 7a 18 74 68 65 20 6f 72 64 65 72 20 6f 66 20 69 6e 74 65 67 72 61 74 | _...rb...z.the.order.of.integrat |
| 6020 | 69 6f 6e 72 63 00 00 00 72 02 00 00 00 7a 2d 54 68 65 20 6f 72 64 65 72 20 6f 66 20 69 6e 74 65 | ionrc...r....z-The.order.of.inte |
| 6040 | 67 72 61 74 69 6f 6e 20 6d 75 73 74 20 62 65 20 6e 6f 6e 2d 6e 65 67 61 74 69 76 65 7a 1e 54 6f | gration.must.be.non-negativez.To |
| 6060 | 6f 20 6d 61 6e 79 20 69 6e 74 65 67 72 61 74 69 6f 6e 20 63 6f 6e 73 74 61 6e 74 73 7a 16 6c 62 | o.many.integration.constantsz.lb |
| 6080 | 6e 64 20 6d 75 73 74 20 62 65 20 61 20 73 63 61 6c 61 72 2e 7a 15 73 63 6c 20 6d 75 73 74 20 62 | nd.must.be.a.scalar.z.scl.must.b |
| 60a0 | 65 20 61 20 73 63 61 6c 61 72 2e 4e 72 50 00 00 00 72 36 00 00 00 29 14 72 41 00 00 00 72 42 00 | e.a.scalar.NrP...r6...).rA...rB. |
| 60c0 | 00 00 72 51 00 00 00 72 64 00 00 00 72 65 00 00 00 72 66 00 00 00 da 08 69 74 65 72 61 62 6c 65 | ..rQ...rd...re...rf.....iterable |
| 60e0 | 72 28 00 00 00 72 67 00 00 00 72 68 00 00 00 72 2a 00 00 00 72 69 00 00 00 72 03 00 00 00 72 6a | r(...rg...rh...r*...ri...r....rj |
| 6100 | 00 00 00 da 04 6c 69 73 74 72 2b 00 00 00 da 03 61 6c 6c 72 52 00 00 00 72 6b 00 00 00 72 12 00 | .....listr+.....allrR...rk...r.. |
| 6120 | 00 00 29 0c 72 39 00 00 00 72 6c 00 00 00 da 01 6b da 04 6c 62 6e 64 72 44 00 00 00 72 6d 00 00 | ..).r9...rl.....k..lbndrD...rm.. |
| 6140 | 00 72 6e 00 00 00 72 6f 00 00 00 72 2f 00 00 00 72 3a 00 00 00 72 3d 00 00 00 72 71 00 00 00 73 | .rn...ro...r/...r:...r=...rq...s |
| 6160 | 0c 00 00 00 20 20 20 20 20 20 20 20 20 20 20 20 72 30 00 00 00 72 14 00 00 00 72 14 00 00 00 a7 | ................r0...r....r..... |
| 6180 | 02 00 00 73 23 02 00 00 80 00 f4 62 02 00 09 0b 8f 08 89 08 90 11 98 21 a0 24 d4 08 27 80 41 d8 | ...s#......b...........!.$..'.A. |
| 61a0 | 07 08 87 77 81 77 87 7c 81 7c 90 7f d1 07 26 d8 0c 0d 8f 48 89 48 94 52 97 59 91 59 d3 0c 1f 88 | ...w.w.|.|....&....H.H.R.Y.Y.... |
| 61c0 | 01 dc 0b 0d 8f 3b 89 3b 90 71 8c 3e d8 0d 0e 88 43 88 01 dc 0a 0c 8f 2a 89 2a 90 51 d0 18 32 d3 | .....;.;.q.>....C......*.*.Q..2. |
| 61e0 | 0a 33 80 43 dc 0c 0e 8f 4a 89 4a 90 74 98 5a d3 0c 28 80 45 d8 07 0a 88 51 82 77 dc 0e 18 d0 19 | .3.C....J.J.t.Z..(.E....Q.w..... |
| 6200 | 48 d3 0e 49 d0 08 49 dc 07 0a 88 31 83 76 90 03 82 7c dc 0e 18 d0 19 39 d3 0e 3a d0 08 3a dc 07 | H..I..I....1.v...|.....9..:..:.. |
| 6220 | 09 87 77 81 77 88 74 83 7d 98 01 d2 07 19 dc 0e 18 d0 19 31 d3 0e 32 d0 08 32 dc 07 09 87 77 81 | ..w.w.t.}..........1..2..2....w. |
| 6240 | 77 88 73 83 7c 90 71 d2 07 18 dc 0e 18 d0 19 30 d3 0e 31 d0 08 31 dc 0c 20 a0 15 a8 01 af 06 a9 | w.s.|.q........0..1..1.......... |
| 6260 | 06 d3 0c 2f 80 45 e0 07 0a 88 61 82 78 d8 0f 10 88 08 e4 08 0a 8f 0b 89 0b 90 41 90 75 98 61 d3 | .../.E....a.x.............A.u.a. |
| 6280 | 08 20 80 41 dc 08 0c 88 51 8b 07 90 31 90 23 98 13 9c 73 a0 31 9b 76 99 1c d1 12 26 d1 08 26 80 | ...A....Q...1.#...s.1.v....&..&. |
| 62a0 | 41 dc 0d 12 90 33 8b 5a f2 00 0c 05 14 88 01 dc 0c 0f 90 01 8b 46 88 01 d8 08 09 88 53 89 08 88 | A....3.Z.............F......S... |
| 62c0 | 01 d8 0b 0c 90 01 8a 36 94 62 97 66 91 66 98 51 98 71 99 54 a0 51 99 59 d4 16 27 d8 0c 0d 88 61 | .......6.b.f.f.Q.q.T.Q.Y..'....a |
| 62e0 | 8b 44 90 41 90 61 91 44 89 4c 8c 44 e4 12 14 97 28 91 28 98 41 a0 01 99 45 98 38 a0 61 a7 67 a1 | .D.A.a.D.L.D....(.(.A...E.8.a.g. |
| 6300 | 67 a8 61 a8 62 a0 6b d1 1b 31 b8 11 bf 17 b9 17 d4 12 41 88 43 d8 15 16 90 71 91 54 98 41 91 58 | g.a.b.k..1........A.C....q.T.A.X |
| 6320 | 88 43 90 01 89 46 d8 15 16 90 71 91 54 98 41 91 58 88 43 90 01 89 46 dc 15 1a 98 31 98 61 93 5b | .C...F....q.T.A.X.C...F....1.a.[ |
| 6340 | f2 00 01 0d 32 90 01 d8 1d 1e 98 71 99 54 a0 51 a8 21 a8 61 a9 25 a1 5b d1 1d 31 90 03 90 41 98 | ....2......q.T.Q.!.a.%.[..1...A. |
| 6360 | 01 91 45 92 0a f0 03 01 0d 32 e0 0c 0f 90 01 8b 46 90 61 98 01 91 64 9c 57 a0 54 a8 33 d3 1d 2f | ..E......2......F.a...d.W.T.3../ |
| 6380 | d1 16 2f d1 0c 2f 8b 46 d8 10 13 89 41 f0 19 0c 05 14 f4 1a 00 09 0b 8f 0b 89 0b 90 41 90 71 98 | ../../.F....A...............A.q. |
| 63a0 | 25 d3 08 20 80 41 d8 0b 0c 80 48 72 31 00 00 00 63 03 00 00 00 00 00 00 00 00 00 00 00 06 00 00 | %....A....Hr1...c............... |
| 63c0 | 00 03 00 00 00 f3 a2 02 00 00 97 00 74 01 00 00 00 00 00 00 00 00 6a 02 00 00 00 00 00 00 00 00 | ............t.........j......... |
| 63e0 | 00 00 00 00 00 00 00 00 00 00 7c 01 64 01 64 02 ac 03 ab 03 00 00 00 00 00 00 7d 01 7c 01 6a 04 | ..........|.d.d...........}.|.j. |
| 6400 | 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 6a 06 00 00 00 00 00 00 00 00 00 00 00 00 | ..................j............. |
| 6420 | 00 00 00 00 00 00 64 04 76 00 72 1f 7c 01 6a 09 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 | ......d.v.r.|.j................. |
| 6440 | 00 00 74 00 00 00 00 00 00 00 00 00 6a 0a 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 | ..t.........j................... |
| 6460 | ab 01 00 00 00 00 00 00 7d 01 74 0d 00 00 00 00 00 00 00 00 7c 00 74 0e 00 00 00 00 00 00 00 00 | ........}.t.........|.t......... |
| 6480 | 74 10 00 00 00 00 00 00 00 00 66 02 ab 02 00 00 00 00 00 00 72 15 74 01 00 00 00 00 00 00 00 00 | t.........f.........r.t......... |
| 64a0 | 6a 12 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 7c 00 ab 01 00 00 00 00 00 00 7d 00 | j...................|.........}. |
| 64c0 | 74 0d 00 00 00 00 00 00 00 00 7c 00 74 00 00 00 00 00 00 00 00 00 6a 14 00 00 00 00 00 00 00 00 | t.........|.t.........j......... |
| 64e0 | 00 00 00 00 00 00 00 00 00 00 ab 02 00 00 00 00 00 00 72 2d 7c 02 72 2b 7c 01 6a 17 00 00 00 00 | ..................r-|.r+|.j..... |
| 6500 | 00 00 00 00 00 00 00 00 00 00 00 00 00 00 7c 01 6a 18 00 00 00 00 00 00 00 00 00 00 00 00 00 00 | ..............|.j............... |
| 6520 | 00 00 00 00 64 05 7c 00 6a 1a 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 7a 05 00 00 | ....d.|.j...................z... |
| 6540 | 7a 00 00 00 ab 01 00 00 00 00 00 00 7d 01 7c 00 64 06 7a 05 00 00 7d 03 74 1d 00 00 00 00 00 00 | z...........}.|.d.z...}.t....... |
| 6560 | 00 00 7c 01 ab 01 00 00 00 00 00 00 64 01 6b 28 00 00 72 08 7c 01 64 07 19 00 00 00 7d 04 64 07 | ..|.........d.k(..r.|.d.....}.d. |
| 6580 | 7d 05 6e 6c 74 1d 00 00 00 00 00 00 00 00 7c 01 ab 01 00 00 00 00 00 00 64 06 6b 28 00 00 72 0b | }.nlt.........|.........d.k(..r. |
| 65a0 | 7c 01 64 07 19 00 00 00 7d 04 7c 01 64 01 19 00 00 00 7d 05 6e 53 74 1d 00 00 00 00 00 00 00 00 | |.d.....}.|.d.....}.nSt......... |
| 65c0 | 7c 01 ab 01 00 00 00 00 00 00 7d 06 7c 01 64 08 19 00 00 00 7d 04 7c 01 64 09 19 00 00 00 7d 05 | |.........}.|.d.....}.|.d.....}. |
| 65e0 | 74 1f 00 00 00 00 00 00 00 00 64 0a 74 1d 00 00 00 00 00 00 00 00 7c 01 ab 01 00 00 00 00 00 00 | t.........d.t.........|......... |
| 6600 | 64 01 7a 00 00 00 ab 02 00 00 00 00 00 00 44 00 5d 23 00 00 7d 07 7c 04 7d 08 7c 06 64 01 7a 0a | d.z...........D.]#..}.|.}.|.d.z. |
| 6620 | 00 00 7d 06 7c 01 7c 07 0b 00 19 00 00 00 7c 05 64 06 7c 06 64 01 7a 0a 00 00 7a 05 00 00 7a 05 | ..}.|.|.......|.d.|.d.z...z...z. |
| 6640 | 00 00 7a 0a 00 00 7d 04 7c 08 7c 05 7c 03 7a 05 00 00 7a 00 00 00 7d 05 8c 25 04 00 7c 04 7c 05 | ..z...}.|.|.|.z...z...}..%..|.|. |
| 6660 | 7c 03 7a 05 00 00 7a 00 00 00 53 00 29 0b 61 11 0a 00 00 0a 20 20 20 20 45 76 61 6c 75 61 74 65 | |.z...z...S.).a.........Evaluate |
| 6680 | 20 61 6e 20 48 65 72 6d 69 74 65 20 73 65 72 69 65 73 20 61 74 20 70 6f 69 6e 74 73 20 78 2e 0a | .an.Hermite.series.at.points.x.. |
| 66a0 | 0a 20 20 20 20 49 66 20 60 63 60 20 69 73 20 6f 66 20 6c 65 6e 67 74 68 20 60 60 6e 20 2b 20 31 | .....If.`c`.is.of.length.``n.+.1 |
| 66c0 | 60 60 2c 20 74 68 69 73 20 66 75 6e 63 74 69 6f 6e 20 72 65 74 75 72 6e 73 20 74 68 65 20 76 61 | ``,.this.function.returns.the.va |
| 66e0 | 6c 75 65 3a 0a 0a 20 20 20 20 2e 2e 20 6d 61 74 68 3a 3a 20 70 28 78 29 20 3d 20 63 5f 30 20 2a | lue:.........math::.p(x).=.c_0.* |
| 6700 | 20 48 5f 30 28 78 29 20 2b 20 63 5f 31 20 2a 20 48 5f 31 28 78 29 20 2b 20 2e 2e 2e 20 2b 20 63 | .H_0(x).+.c_1.*.H_1(x).+.....+.c |
| 6720 | 5f 6e 20 2a 20 48 5f 6e 28 78 29 0a 0a 20 20 20 20 54 68 65 20 70 61 72 61 6d 65 74 65 72 20 60 | _n.*.H_n(x)......The.parameter.` |
| 6740 | 78 60 20 69 73 20 63 6f 6e 76 65 72 74 65 64 20 74 6f 20 61 6e 20 61 72 72 61 79 20 6f 6e 6c 79 | x`.is.converted.to.an.array.only |
| 6760 | 20 69 66 20 69 74 20 69 73 20 61 20 74 75 70 6c 65 20 6f 72 20 61 0a 20 20 20 20 6c 69 73 74 2c | .if.it.is.a.tuple.or.a.....list, |
| 6780 | 20 6f 74 68 65 72 77 69 73 65 20 69 74 20 69 73 20 74 72 65 61 74 65 64 20 61 73 20 61 20 73 63 | .otherwise.it.is.treated.as.a.sc |
| 67a0 | 61 6c 61 72 2e 20 49 6e 20 65 69 74 68 65 72 20 63 61 73 65 2c 20 65 69 74 68 65 72 20 60 78 60 | alar..In.either.case,.either.`x` |
| 67c0 | 0a 20 20 20 20 6f 72 20 69 74 73 20 65 6c 65 6d 65 6e 74 73 20 6d 75 73 74 20 73 75 70 70 6f 72 | .....or.its.elements.must.suppor |
| 67e0 | 74 20 6d 75 6c 74 69 70 6c 69 63 61 74 69 6f 6e 20 61 6e 64 20 61 64 64 69 74 69 6f 6e 20 62 6f | t.multiplication.and.addition.bo |
| 6800 | 74 68 20 77 69 74 68 0a 20 20 20 20 74 68 65 6d 73 65 6c 76 65 73 20 61 6e 64 20 77 69 74 68 20 | th.with.....themselves.and.with. |
| 6820 | 74 68 65 20 65 6c 65 6d 65 6e 74 73 20 6f 66 20 60 63 60 2e 0a 0a 20 20 20 20 49 66 20 60 63 60 | the.elements.of.`c`.......If.`c` |
| 6840 | 20 69 73 20 61 20 31 2d 44 20 61 72 72 61 79 2c 20 74 68 65 6e 20 60 60 70 28 78 29 60 60 20 77 | .is.a.1-D.array,.then.``p(x)``.w |
| 6860 | 69 6c 6c 20 68 61 76 65 20 74 68 65 20 73 61 6d 65 20 73 68 61 70 65 20 61 73 20 60 78 60 2e 20 | ill.have.the.same.shape.as.`x`.. |
| 6880 | 20 49 66 0a 20 20 20 20 60 63 60 20 69 73 20 6d 75 6c 74 69 64 69 6d 65 6e 73 69 6f 6e 61 6c 2c | .If.....`c`.is.multidimensional, |
| 68a0 | 20 74 68 65 6e 20 74 68 65 20 73 68 61 70 65 20 6f 66 20 74 68 65 20 72 65 73 75 6c 74 20 64 65 | .then.the.shape.of.the.result.de |
| 68c0 | 70 65 6e 64 73 20 6f 6e 20 74 68 65 0a 20 20 20 20 76 61 6c 75 65 20 6f 66 20 60 74 65 6e 73 6f | pends.on.the.....value.of.`tenso |
| 68e0 | 72 60 2e 20 49 66 20 60 74 65 6e 73 6f 72 60 20 69 73 20 74 72 75 65 20 74 68 65 20 73 68 61 70 | r`..If.`tensor`.is.true.the.shap |
| 6900 | 65 20 77 69 6c 6c 20 62 65 20 63 2e 73 68 61 70 65 5b 31 3a 5d 20 2b 0a 20 20 20 20 78 2e 73 68 | e.will.be.c.shape[1:].+.....x.sh |
| 6920 | 61 70 65 2e 20 49 66 20 60 74 65 6e 73 6f 72 60 20 69 73 20 66 61 6c 73 65 20 74 68 65 20 73 68 | ape..If.`tensor`.is.false.the.sh |
| 6940 | 61 70 65 20 77 69 6c 6c 20 62 65 20 63 2e 73 68 61 70 65 5b 31 3a 5d 2e 20 4e 6f 74 65 20 74 68 | ape.will.be.c.shape[1:]..Note.th |
| 6960 | 61 74 0a 20 20 20 20 73 63 61 6c 61 72 73 20 68 61 76 65 20 73 68 61 70 65 20 28 2c 29 2e 0a 0a | at.....scalars.have.shape.(,)... |
| 6980 | 20 20 20 20 54 72 61 69 6c 69 6e 67 20 7a 65 72 6f 73 20 69 6e 20 74 68 65 20 63 6f 65 66 66 69 | ....Trailing.zeros.in.the.coeffi |
| 69a0 | 63 69 65 6e 74 73 20 77 69 6c 6c 20 62 65 20 75 73 65 64 20 69 6e 20 74 68 65 20 65 76 61 6c 75 | cients.will.be.used.in.the.evalu |
| 69c0 | 61 74 69 6f 6e 2c 20 73 6f 0a 20 20 20 20 74 68 65 79 20 73 68 6f 75 6c 64 20 62 65 20 61 76 6f | ation,.so.....they.should.be.avo |
| 69e0 | 69 64 65 64 20 69 66 20 65 66 66 69 63 69 65 6e 63 79 20 69 73 20 61 20 63 6f 6e 63 65 72 6e 2e | ided.if.efficiency.is.a.concern. |
| 6a00 | 0a 0a 20 20 20 20 50 61 72 61 6d 65 74 65 72 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 0a | ......Parameters.....----------. |
| 6a20 | 20 20 20 20 78 20 3a 20 61 72 72 61 79 5f 6c 69 6b 65 2c 20 63 6f 6d 70 61 74 69 62 6c 65 20 6f | ....x.:.array_like,.compatible.o |
| 6a40 | 62 6a 65 63 74 0a 20 20 20 20 20 20 20 20 49 66 20 60 78 60 20 69 73 20 61 20 6c 69 73 74 20 6f | bject.........If.`x`.is.a.list.o |
| 6a60 | 72 20 74 75 70 6c 65 2c 20 69 74 20 69 73 20 63 6f 6e 76 65 72 74 65 64 20 74 6f 20 61 6e 20 6e | r.tuple,.it.is.converted.to.an.n |
| 6a80 | 64 61 72 72 61 79 2c 20 6f 74 68 65 72 77 69 73 65 0a 20 20 20 20 20 20 20 20 69 74 20 69 73 20 | darray,.otherwise.........it.is. |
| 6aa0 | 6c 65 66 74 20 75 6e 63 68 61 6e 67 65 64 20 61 6e 64 20 74 72 65 61 74 65 64 20 61 73 20 61 20 | left.unchanged.and.treated.as.a. |
| 6ac0 | 73 63 61 6c 61 72 2e 20 49 6e 20 65 69 74 68 65 72 20 63 61 73 65 2c 20 60 78 60 0a 20 20 20 20 | scalar..In.either.case,.`x`..... |
| 6ae0 | 20 20 20 20 6f 72 20 69 74 73 20 65 6c 65 6d 65 6e 74 73 20 6d 75 73 74 20 73 75 70 70 6f 72 74 | ....or.its.elements.must.support |
| 6b00 | 20 61 64 64 69 74 69 6f 6e 20 61 6e 64 20 6d 75 6c 74 69 70 6c 69 63 61 74 69 6f 6e 20 77 69 74 | .addition.and.multiplication.wit |
| 6b20 | 68 0a 20 20 20 20 20 20 20 20 74 68 65 6d 73 65 6c 76 65 73 20 61 6e 64 20 77 69 74 68 20 74 68 | h.........themselves.and.with.th |
| 6b40 | 65 20 65 6c 65 6d 65 6e 74 73 20 6f 66 20 60 63 60 2e 0a 20 20 20 20 63 20 3a 20 61 72 72 61 79 | e.elements.of.`c`......c.:.array |
| 6b60 | 5f 6c 69 6b 65 0a 20 20 20 20 20 20 20 20 41 72 72 61 79 20 6f 66 20 63 6f 65 66 66 69 63 69 65 | _like.........Array.of.coefficie |
| 6b80 | 6e 74 73 20 6f 72 64 65 72 65 64 20 73 6f 20 74 68 61 74 20 74 68 65 20 63 6f 65 66 66 69 63 69 | nts.ordered.so.that.the.coeffici |
| 6ba0 | 65 6e 74 73 20 66 6f 72 20 74 65 72 6d 73 20 6f 66 0a 20 20 20 20 20 20 20 20 64 65 67 72 65 65 | ents.for.terms.of.........degree |
| 6bc0 | 20 6e 20 61 72 65 20 63 6f 6e 74 61 69 6e 65 64 20 69 6e 20 63 5b 6e 5d 2e 20 49 66 20 60 63 60 | .n.are.contained.in.c[n]..If.`c` |
| 6be0 | 20 69 73 20 6d 75 6c 74 69 64 69 6d 65 6e 73 69 6f 6e 61 6c 20 74 68 65 0a 20 20 20 20 20 20 20 | .is.multidimensional.the........ |
| 6c00 | 20 72 65 6d 61 69 6e 69 6e 67 20 69 6e 64 69 63 65 73 20 65 6e 75 6d 65 72 61 74 65 20 6d 75 6c | .remaining.indices.enumerate.mul |
| 6c20 | 74 69 70 6c 65 20 70 6f 6c 79 6e 6f 6d 69 61 6c 73 2e 20 49 6e 20 74 68 65 20 74 77 6f 0a 20 20 | tiple.polynomials..In.the.two... |
| 6c40 | 20 20 20 20 20 20 64 69 6d 65 6e 73 69 6f 6e 61 6c 20 63 61 73 65 20 74 68 65 20 63 6f 65 66 66 | ......dimensional.case.the.coeff |
| 6c60 | 69 63 69 65 6e 74 73 20 6d 61 79 20 62 65 20 74 68 6f 75 67 68 74 20 6f 66 20 61 73 20 73 74 6f | icients.may.be.thought.of.as.sto |
| 6c80 | 72 65 64 20 69 6e 0a 20 20 20 20 20 20 20 20 74 68 65 20 63 6f 6c 75 6d 6e 73 20 6f 66 20 60 63 | red.in.........the.columns.of.`c |
| 6ca0 | 60 2e 0a 20 20 20 20 74 65 6e 73 6f 72 20 3a 20 62 6f 6f 6c 65 61 6e 2c 20 6f 70 74 69 6f 6e 61 | `......tensor.:.boolean,.optiona |
| 6cc0 | 6c 0a 20 20 20 20 20 20 20 20 49 66 20 54 72 75 65 2c 20 74 68 65 20 73 68 61 70 65 20 6f 66 20 | l.........If.True,.the.shape.of. |
| 6ce0 | 74 68 65 20 63 6f 65 66 66 69 63 69 65 6e 74 20 61 72 72 61 79 20 69 73 20 65 78 74 65 6e 64 65 | the.coefficient.array.is.extende |
| 6d00 | 64 20 77 69 74 68 20 6f 6e 65 73 0a 20 20 20 20 20 20 20 20 6f 6e 20 74 68 65 20 72 69 67 68 74 | d.with.ones.........on.the.right |
| 6d20 | 2c 20 6f 6e 65 20 66 6f 72 20 65 61 63 68 20 64 69 6d 65 6e 73 69 6f 6e 20 6f 66 20 60 78 60 2e | ,.one.for.each.dimension.of.`x`. |
| 6d40 | 20 53 63 61 6c 61 72 73 20 68 61 76 65 20 64 69 6d 65 6e 73 69 6f 6e 20 30 0a 20 20 20 20 20 20 | .Scalars.have.dimension.0....... |
| 6d60 | 20 20 66 6f 72 20 74 68 69 73 20 61 63 74 69 6f 6e 2e 20 54 68 65 20 72 65 73 75 6c 74 20 69 73 | ..for.this.action..The.result.is |
| 6d80 | 20 74 68 61 74 20 65 76 65 72 79 20 63 6f 6c 75 6d 6e 20 6f 66 20 63 6f 65 66 66 69 63 69 65 6e | .that.every.column.of.coefficien |
| 6da0 | 74 73 20 69 6e 0a 20 20 20 20 20 20 20 20 60 63 60 20 69 73 20 65 76 61 6c 75 61 74 65 64 20 66 | ts.in.........`c`.is.evaluated.f |
| 6dc0 | 6f 72 20 65 76 65 72 79 20 65 6c 65 6d 65 6e 74 20 6f 66 20 60 78 60 2e 20 49 66 20 46 61 6c 73 | or.every.element.of.`x`..If.Fals |
| 6de0 | 65 2c 20 60 78 60 20 69 73 20 62 72 6f 61 64 63 61 73 74 0a 20 20 20 20 20 20 20 20 6f 76 65 72 | e,.`x`.is.broadcast.........over |
| 6e00 | 20 74 68 65 20 63 6f 6c 75 6d 6e 73 20 6f 66 20 60 63 60 20 66 6f 72 20 74 68 65 20 65 76 61 6c | .the.columns.of.`c`.for.the.eval |
| 6e20 | 75 61 74 69 6f 6e 2e 20 20 54 68 69 73 20 6b 65 79 77 6f 72 64 20 69 73 20 75 73 65 66 75 6c 0a | uation...This.keyword.is.useful. |
| 6e40 | 20 20 20 20 20 20 20 20 77 68 65 6e 20 60 63 60 20 69 73 20 6d 75 6c 74 69 64 69 6d 65 6e 73 69 | ........when.`c`.is.multidimensi |
| 6e60 | 6f 6e 61 6c 2e 20 54 68 65 20 64 65 66 61 75 6c 74 20 76 61 6c 75 65 20 69 73 20 54 72 75 65 2e | onal..The.default.value.is.True. |
| 6e80 | 0a 0a 20 20 20 20 52 65 74 75 72 6e 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 76 61 | ......Returns.....-------.....va |
| 6ea0 | 6c 75 65 73 20 3a 20 6e 64 61 72 72 61 79 2c 20 61 6c 67 65 62 72 61 5f 6c 69 6b 65 0a 20 20 20 | lues.:.ndarray,.algebra_like.... |
| 6ec0 | 20 20 20 20 20 54 68 65 20 73 68 61 70 65 20 6f 66 20 74 68 65 20 72 65 74 75 72 6e 20 76 61 6c | .....The.shape.of.the.return.val |
| 6ee0 | 75 65 20 69 73 20 64 65 73 63 72 69 62 65 64 20 61 62 6f 76 65 2e 0a 0a 20 20 20 20 53 65 65 20 | ue.is.described.above.......See. |
| 6f00 | 41 6c 73 6f 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 68 65 72 6d 76 61 6c 32 64 2c | Also.....--------.....hermval2d, |
| 6f20 | 20 68 65 72 6d 67 72 69 64 32 64 2c 20 68 65 72 6d 76 61 6c 33 64 2c 20 68 65 72 6d 67 72 69 64 | .hermgrid2d,.hermval3d,.hermgrid |
| 6f40 | 33 64 0a 0a 20 20 20 20 4e 6f 74 65 73 0a 20 20 20 20 2d 2d 2d 2d 2d 0a 20 20 20 20 54 68 65 20 | 3d......Notes.....-----.....The. |
| 6f60 | 65 76 61 6c 75 61 74 69 6f 6e 20 75 73 65 73 20 43 6c 65 6e 73 68 61 77 20 72 65 63 75 72 73 69 | evaluation.uses.Clenshaw.recursi |
| 6f80 | 6f 6e 2c 20 61 6b 61 20 73 79 6e 74 68 65 74 69 63 20 64 69 76 69 73 69 6f 6e 2e 0a 0a 20 20 20 | on,.aka.synthetic.division...... |
| 6fa0 | 20 45 78 61 6d 70 6c 65 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 3e 3e 3e 20 66 | .Examples.....--------.....>>>.f |
| 6fc0 | 72 6f 6d 20 6e 75 6d 70 79 2e 70 6f 6c 79 6e 6f 6d 69 61 6c 2e 68 65 72 6d 69 74 65 20 69 6d 70 | rom.numpy.polynomial.hermite.imp |
| 6fe0 | 6f 72 74 20 68 65 72 6d 76 61 6c 0a 20 20 20 20 3e 3e 3e 20 63 6f 65 66 20 3d 20 5b 31 2c 32 2c | ort.hermval.....>>>.coef.=.[1,2, |
| 7000 | 33 5d 0a 20 20 20 20 3e 3e 3e 20 68 65 72 6d 76 61 6c 28 31 2c 20 63 6f 65 66 29 0a 20 20 20 20 | 3].....>>>.hermval(1,.coef)..... |
| 7020 | 31 31 2e 30 0a 20 20 20 20 3e 3e 3e 20 68 65 72 6d 76 61 6c 28 5b 5b 31 2c 32 5d 2c 5b 33 2c 34 | 11.0.....>>>.hermval([[1,2],[3,4 |
| 7040 | 5d 5d 2c 20 63 6f 65 66 29 0a 20 20 20 20 61 72 72 61 79 28 5b 5b 20 31 31 2e 2c 20 20 20 35 31 | ]],.coef).....array([[.11.,...51 |
| 7060 | 2e 5d 2c 0a 20 20 20 20 20 20 20 20 20 20 20 5b 31 31 35 2e 2c 20 20 32 30 33 2e 5d 5d 29 0a 0a | .],............[115.,..203.]]).. |
| 7080 | 20 20 20 20 72 04 00 00 00 4e 72 5f 00 00 00 72 62 00 00 00 29 01 72 04 00 00 00 72 36 00 00 00 | ....r....Nr_...rb...).r....r6... |
| 70a0 | 72 02 00 00 00 72 37 00 00 00 72 27 00 00 00 72 55 00 00 00 29 10 72 41 00 00 00 72 42 00 00 00 | r....r7...r'...rU...).rA...rB... |
| 70c0 | 72 51 00 00 00 72 64 00 00 00 72 65 00 00 00 72 66 00 00 00 da 0a 69 73 69 6e 73 74 61 6e 63 65 | rQ...rd...re...rf.....isinstance |
| 70e0 | da 05 74 75 70 6c 65 72 74 00 00 00 da 07 61 73 61 72 72 61 79 da 07 6e 64 61 72 72 61 79 da 07 | ..tuplert.....asarray..ndarray.. |
| 7100 | 72 65 73 68 61 70 65 72 6b 00 00 00 72 69 00 00 00 72 2a 00 00 00 72 2b 00 00 00 29 09 da 01 78 | reshaperk...ri...r*...r+...)...x |
| 7120 | 72 39 00 00 00 da 06 74 65 6e 73 6f 72 da 02 78 32 72 3b 00 00 00 72 3c 00 00 00 72 57 00 00 00 | r9.....tensor..x2r;...r<...rW... |
| 7140 | 72 2f 00 00 00 72 3d 00 00 00 73 09 00 00 00 20 20 20 20 20 20 20 20 20 72 30 00 00 00 72 12 00 | r/...r=...s.............r0...r.. |
| 7160 | 00 00 72 12 00 00 00 1f 03 00 00 73 43 01 00 00 80 00 f4 46 02 00 09 0b 8f 08 89 08 90 11 98 21 | ..r........sC......F...........! |
| 7180 | a0 24 d4 08 27 80 41 d8 07 08 87 77 81 77 87 7c 81 7c 90 7f d1 07 26 d8 0c 0d 8f 48 89 48 94 52 | .$..'.A....w.w.|.|....&....H.H.R |
| 71a0 | 97 59 91 59 d3 0c 1f 88 01 dc 07 11 90 21 94 65 9c 54 90 5d d4 07 23 dc 0c 0e 8f 4a 89 4a 90 71 | .Y.Y.........!.e.T.]..#....J.J.q |
| 71c0 | 8b 4d 88 01 dc 07 11 90 21 94 52 97 5a 91 5a d4 07 20 a1 56 d8 0c 0d 8f 49 89 49 90 61 97 67 91 | .M......!.R.Z.Z....V....I.I.a.g. |
| 71e0 | 67 a0 04 a0 71 a7 76 a1 76 a1 0d d1 16 2d d3 0c 2e 88 01 e0 09 0a 88 51 89 15 80 42 dc 07 0a 88 | g...q.v.v....-.........Q...B.... |
| 7200 | 31 83 76 90 11 82 7b d8 0d 0e 88 71 89 54 88 02 d8 0d 0e 89 02 dc 09 0c 88 51 8b 16 90 31 8a 1b | 1.v...{....q.T...........Q...1.. |
| 7220 | d8 0d 0e 88 71 89 54 88 02 d8 0d 0e 88 71 89 54 89 02 e4 0d 10 90 11 8b 56 88 02 d8 0d 0e 88 72 | ....q.T......q.T........V......r |
| 7240 | 89 55 88 02 d8 0d 0e 88 72 89 55 88 02 dc 11 16 90 71 9c 23 98 61 9b 26 a0 31 99 2a d3 11 25 f2 | .U......r.U......q.#.a.&.1.*..%. |
| 7260 | 00 04 09 1f 88 41 d8 12 14 88 43 d8 11 13 90 61 91 16 88 42 d8 11 12 90 41 90 32 91 15 98 12 98 | .....A....C....a...B....A.2..... |
| 7280 | 71 a0 42 a8 11 a1 46 99 7c d1 19 2c d1 11 2c 88 42 d8 11 14 90 72 98 42 91 77 91 1d 89 42 f0 09 | q.B...F.|..,..,.B....r.B.w...B.. |
| 72a0 | 04 09 1f f0 0a 00 0c 0e 90 02 90 52 91 07 89 3c d0 04 17 72 31 00 00 00 63 03 00 00 00 00 00 00 | ...........R...<...r1...c....... |
| 72c0 | 00 00 00 00 00 06 00 00 00 03 00 00 00 f3 3a 00 00 00 97 00 74 01 00 00 00 00 00 00 00 00 6a 02 | ..............:.....t.........j. |
| 72e0 | 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 74 04 00 00 00 00 00 00 00 00 7c 02 7c 00 | ..................t.........|.|. |
| 7300 | 7c 01 ab 04 00 00 00 00 00 00 53 00 29 01 61 e2 06 00 00 0a 20 20 20 20 45 76 61 6c 75 61 74 65 | |.........S.).a.........Evaluate |
| 7320 | 20 61 20 32 2d 44 20 48 65 72 6d 69 74 65 20 73 65 72 69 65 73 20 61 74 20 70 6f 69 6e 74 73 20 | .a.2-D.Hermite.series.at.points. |
| 7340 | 28 78 2c 20 79 29 2e 0a 0a 20 20 20 20 54 68 69 73 20 66 75 6e 63 74 69 6f 6e 20 72 65 74 75 72 | (x,.y).......This.function.retur |
| 7360 | 6e 73 20 74 68 65 20 76 61 6c 75 65 73 3a 0a 0a 20 20 20 20 2e 2e 20 6d 61 74 68 3a 3a 20 70 28 | ns.the.values:.........math::.p( |
| 7380 | 78 2c 79 29 20 3d 20 5c 73 75 6d 5f 7b 69 2c 6a 7d 20 63 5f 7b 69 2c 6a 7d 20 2a 20 48 5f 69 28 | x,y).=.\sum_{i,j}.c_{i,j}.*.H_i( |
| 73a0 | 78 29 20 2a 20 48 5f 6a 28 79 29 0a 0a 20 20 20 20 54 68 65 20 70 61 72 61 6d 65 74 65 72 73 20 | x).*.H_j(y)......The.parameters. |
| 73c0 | 60 78 60 20 61 6e 64 20 60 79 60 20 61 72 65 20 63 6f 6e 76 65 72 74 65 64 20 74 6f 20 61 72 72 | `x`.and.`y`.are.converted.to.arr |
| 73e0 | 61 79 73 20 6f 6e 6c 79 20 69 66 20 74 68 65 79 20 61 72 65 0a 20 20 20 20 74 75 70 6c 65 73 20 | ays.only.if.they.are.....tuples. |
| 7400 | 6f 72 20 61 20 6c 69 73 74 73 2c 20 6f 74 68 65 72 77 69 73 65 20 74 68 65 79 20 61 72 65 20 74 | or.a.lists,.otherwise.they.are.t |
| 7420 | 72 65 61 74 65 64 20 61 73 20 61 20 73 63 61 6c 61 72 73 20 61 6e 64 20 74 68 65 79 0a 20 20 20 | reated.as.a.scalars.and.they.... |
| 7440 | 20 6d 75 73 74 20 68 61 76 65 20 74 68 65 20 73 61 6d 65 20 73 68 61 70 65 20 61 66 74 65 72 20 | .must.have.the.same.shape.after. |
| 7460 | 63 6f 6e 76 65 72 73 69 6f 6e 2e 20 49 6e 20 65 69 74 68 65 72 20 63 61 73 65 2c 20 65 69 74 68 | conversion..In.either.case,.eith |
| 7480 | 65 72 20 60 78 60 0a 20 20 20 20 61 6e 64 20 60 79 60 20 6f 72 20 74 68 65 69 72 20 65 6c 65 6d | er.`x`.....and.`y`.or.their.elem |
| 74a0 | 65 6e 74 73 20 6d 75 73 74 20 73 75 70 70 6f 72 74 20 6d 75 6c 74 69 70 6c 69 63 61 74 69 6f 6e | ents.must.support.multiplication |
| 74c0 | 20 61 6e 64 20 61 64 64 69 74 69 6f 6e 20 62 6f 74 68 0a 20 20 20 20 77 69 74 68 20 74 68 65 6d | .and.addition.both.....with.them |
| 74e0 | 73 65 6c 76 65 73 20 61 6e 64 20 77 69 74 68 20 74 68 65 20 65 6c 65 6d 65 6e 74 73 20 6f 66 20 | selves.and.with.the.elements.of. |
| 7500 | 60 63 60 2e 0a 0a 20 20 20 20 49 66 20 60 63 60 20 69 73 20 61 20 31 2d 44 20 61 72 72 61 79 20 | `c`.......If.`c`.is.a.1-D.array. |
| 7520 | 61 20 6f 6e 65 20 69 73 20 69 6d 70 6c 69 63 69 74 6c 79 20 61 70 70 65 6e 64 65 64 20 74 6f 20 | a.one.is.implicitly.appended.to. |
| 7540 | 69 74 73 20 73 68 61 70 65 20 74 6f 20 6d 61 6b 65 0a 20 20 20 20 69 74 20 32 2d 44 2e 20 54 68 | its.shape.to.make.....it.2-D..Th |
| 7560 | 65 20 73 68 61 70 65 20 6f 66 20 74 68 65 20 72 65 73 75 6c 74 20 77 69 6c 6c 20 62 65 20 63 2e | e.shape.of.the.result.will.be.c. |
| 7580 | 73 68 61 70 65 5b 32 3a 5d 20 2b 20 78 2e 73 68 61 70 65 2e 0a 0a 20 20 20 20 50 61 72 61 6d 65 | shape[2:].+.x.shape.......Parame |
| 75a0 | 74 65 72 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 78 2c 20 79 20 3a 20 61 | ters.....----------.....x,.y.:.a |
| 75c0 | 72 72 61 79 5f 6c 69 6b 65 2c 20 63 6f 6d 70 61 74 69 62 6c 65 20 6f 62 6a 65 63 74 73 0a 20 20 | rray_like,.compatible.objects... |
| 75e0 | 20 20 20 20 20 20 54 68 65 20 74 77 6f 20 64 69 6d 65 6e 73 69 6f 6e 61 6c 20 73 65 72 69 65 73 | ......The.two.dimensional.series |
| 7600 | 20 69 73 20 65 76 61 6c 75 61 74 65 64 20 61 74 20 74 68 65 20 70 6f 69 6e 74 73 20 60 60 28 78 | .is.evaluated.at.the.points.``(x |
| 7620 | 2c 20 79 29 60 60 2c 0a 20 20 20 20 20 20 20 20 77 68 65 72 65 20 60 78 60 20 61 6e 64 20 60 79 | ,.y)``,.........where.`x`.and.`y |
| 7640 | 60 20 6d 75 73 74 20 68 61 76 65 20 74 68 65 20 73 61 6d 65 20 73 68 61 70 65 2e 20 49 66 20 60 | `.must.have.the.same.shape..If.` |
| 7660 | 78 60 20 6f 72 20 60 79 60 20 69 73 20 61 20 6c 69 73 74 0a 20 20 20 20 20 20 20 20 6f 72 20 74 | x`.or.`y`.is.a.list.........or.t |
| 7680 | 75 70 6c 65 2c 20 69 74 20 69 73 20 66 69 72 73 74 20 63 6f 6e 76 65 72 74 65 64 20 74 6f 20 61 | uple,.it.is.first.converted.to.a |
| 76a0 | 6e 20 6e 64 61 72 72 61 79 2c 20 6f 74 68 65 72 77 69 73 65 20 69 74 20 69 73 20 6c 65 66 74 0a | n.ndarray,.otherwise.it.is.left. |
| 76c0 | 20 20 20 20 20 20 20 20 75 6e 63 68 61 6e 67 65 64 20 61 6e 64 20 69 66 20 69 74 20 69 73 6e 27 | ........unchanged.and.if.it.isn' |
| 76e0 | 74 20 61 6e 20 6e 64 61 72 72 61 79 20 69 74 20 69 73 20 74 72 65 61 74 65 64 20 61 73 20 61 20 | t.an.ndarray.it.is.treated.as.a. |
| 7700 | 73 63 61 6c 61 72 2e 0a 20 20 20 20 63 20 3a 20 61 72 72 61 79 5f 6c 69 6b 65 0a 20 20 20 20 20 | scalar......c.:.array_like...... |
| 7720 | 20 20 20 41 72 72 61 79 20 6f 66 20 63 6f 65 66 66 69 63 69 65 6e 74 73 20 6f 72 64 65 72 65 64 | ...Array.of.coefficients.ordered |
| 7740 | 20 73 6f 20 74 68 61 74 20 74 68 65 20 63 6f 65 66 66 69 63 69 65 6e 74 20 6f 66 20 74 68 65 20 | .so.that.the.coefficient.of.the. |
| 7760 | 74 65 72 6d 0a 20 20 20 20 20 20 20 20 6f 66 20 6d 75 6c 74 69 2d 64 65 67 72 65 65 20 69 2c 6a | term.........of.multi-degree.i,j |
| 7780 | 20 69 73 20 63 6f 6e 74 61 69 6e 65 64 20 69 6e 20 60 60 63 5b 69 2c 6a 5d 60 60 2e 20 49 66 20 | .is.contained.in.``c[i,j]``..If. |
| 77a0 | 60 63 60 20 68 61 73 0a 20 20 20 20 20 20 20 20 64 69 6d 65 6e 73 69 6f 6e 20 67 72 65 61 74 65 | `c`.has.........dimension.greate |
| 77c0 | 72 20 74 68 61 6e 20 74 77 6f 20 74 68 65 20 72 65 6d 61 69 6e 69 6e 67 20 69 6e 64 69 63 65 73 | r.than.two.the.remaining.indices |
| 77e0 | 20 65 6e 75 6d 65 72 61 74 65 20 6d 75 6c 74 69 70 6c 65 0a 20 20 20 20 20 20 20 20 73 65 74 73 | .enumerate.multiple.........sets |
| 7800 | 20 6f 66 20 63 6f 65 66 66 69 63 69 65 6e 74 73 2e 0a 0a 20 20 20 20 52 65 74 75 72 6e 73 0a 20 | .of.coefficients.......Returns.. |
| 7820 | 20 20 20 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 76 61 6c 75 65 73 20 3a 20 6e 64 61 72 72 61 79 2c | ...-------.....values.:.ndarray, |
| 7840 | 20 63 6f 6d 70 61 74 69 62 6c 65 20 6f 62 6a 65 63 74 0a 20 20 20 20 20 20 20 20 54 68 65 20 76 | .compatible.object.........The.v |
| 7860 | 61 6c 75 65 73 20 6f 66 20 74 68 65 20 74 77 6f 20 64 69 6d 65 6e 73 69 6f 6e 61 6c 20 70 6f 6c | alues.of.the.two.dimensional.pol |
| 7880 | 79 6e 6f 6d 69 61 6c 20 61 74 20 70 6f 69 6e 74 73 20 66 6f 72 6d 65 64 20 77 69 74 68 0a 20 20 | ynomial.at.points.formed.with... |
| 78a0 | 20 20 20 20 20 20 70 61 69 72 73 20 6f 66 20 63 6f 72 72 65 73 70 6f 6e 64 69 6e 67 20 76 61 6c | ......pairs.of.corresponding.val |
| 78c0 | 75 65 73 20 66 72 6f 6d 20 60 78 60 20 61 6e 64 20 60 79 60 2e 0a 0a 20 20 20 20 53 65 65 20 41 | ues.from.`x`.and.`y`.......See.A |
| 78e0 | 6c 73 6f 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 68 65 72 6d 76 61 6c 2c 20 68 65 | lso.....--------.....hermval,.he |
| 7900 | 72 6d 67 72 69 64 32 64 2c 20 68 65 72 6d 76 61 6c 33 64 2c 20 68 65 72 6d 67 72 69 64 33 64 0a | rmgrid2d,.hermval3d,.hermgrid3d. |
| 7920 | 0a 20 20 20 20 45 78 61 6d 70 6c 65 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 3e | .....Examples.....--------.....> |
| 7940 | 3e 3e 20 66 72 6f 6d 20 6e 75 6d 70 79 2e 70 6f 6c 79 6e 6f 6d 69 61 6c 2e 68 65 72 6d 69 74 65 | >>.from.numpy.polynomial.hermite |
| 7960 | 20 69 6d 70 6f 72 74 20 68 65 72 6d 76 61 6c 32 64 0a 20 20 20 20 3e 3e 3e 20 78 20 3d 20 5b 31 | .import.hermval2d.....>>>.x.=.[1 |
| 7980 | 2c 20 32 5d 0a 20 20 20 20 3e 3e 3e 20 79 20 3d 20 5b 34 2c 20 35 5d 0a 20 20 20 20 3e 3e 3e 20 | ,.2].....>>>.y.=.[4,.5].....>>>. |
| 79a0 | 63 20 3d 20 5b 5b 31 2c 20 32 2c 20 33 5d 2c 20 5b 34 2c 20 35 2c 20 36 5d 5d 0a 20 20 20 20 3e | c.=.[[1,.2,.3],.[4,.5,.6]].....> |
| 79c0 | 3e 3e 20 68 65 72 6d 76 61 6c 32 64 28 78 2c 20 79 2c 20 63 29 0a 20 20 20 20 61 72 72 61 79 28 | >>.hermval2d(x,.y,.c).....array( |
| 79e0 | 5b 31 30 33 35 2e 2c 20 32 38 38 33 2e 5d 29 0a 0a 20 20 20 20 a9 03 72 28 00 00 00 da 06 5f 76 | [1035.,.2883.])........r(....._v |
| 7a00 | 61 6c 6e 64 72 12 00 00 00 a9 03 72 7e 00 00 00 da 01 79 72 39 00 00 00 73 03 00 00 00 20 20 20 | alndr......r~.....yr9...s....... |
| 7a20 | 72 30 00 00 00 72 1d 00 00 00 72 1d 00 00 00 7d 03 00 00 73 1a 00 00 00 80 00 f4 64 01 00 0c 0e | r0...r....r....}...s.......d.... |
| 7a40 | 8f 39 89 39 94 57 98 61 a0 11 a0 41 d3 0b 26 d0 04 26 72 31 00 00 00 63 03 00 00 00 00 00 00 00 | .9.9.W.a...A..&..&r1...c........ |
| 7a60 | 00 00 00 00 06 00 00 00 03 00 00 00 f3 3a 00 00 00 97 00 74 01 00 00 00 00 00 00 00 00 6a 02 00 | .............:.....t.........j.. |
| 7a80 | 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 74 04 00 00 00 00 00 00 00 00 7c 02 7c 00 7c | .................t.........|.|.| |
| 7aa0 | 01 ab 04 00 00 00 00 00 00 53 00 29 01 61 af 07 00 00 0a 20 20 20 20 45 76 61 6c 75 61 74 65 20 | .........S.).a.........Evaluate. |
| 7ac0 | 61 20 32 2d 44 20 48 65 72 6d 69 74 65 20 73 65 72 69 65 73 20 6f 6e 20 74 68 65 20 43 61 72 74 | a.2-D.Hermite.series.on.the.Cart |
| 7ae0 | 65 73 69 61 6e 20 70 72 6f 64 75 63 74 20 6f 66 20 78 20 61 6e 64 20 79 2e 0a 0a 20 20 20 20 54 | esian.product.of.x.and.y.......T |
| 7b00 | 68 69 73 20 66 75 6e 63 74 69 6f 6e 20 72 65 74 75 72 6e 73 20 74 68 65 20 76 61 6c 75 65 73 3a | his.function.returns.the.values: |
| 7b20 | 0a 0a 20 20 20 20 2e 2e 20 6d 61 74 68 3a 3a 20 70 28 61 2c 62 29 20 3d 20 5c 73 75 6d 5f 7b 69 | .........math::.p(a,b).=.\sum_{i |
| 7b40 | 2c 6a 7d 20 63 5f 7b 69 2c 6a 7d 20 2a 20 48 5f 69 28 61 29 20 2a 20 48 5f 6a 28 62 29 0a 0a 20 | ,j}.c_{i,j}.*.H_i(a).*.H_j(b)... |
| 7b60 | 20 20 20 77 68 65 72 65 20 74 68 65 20 70 6f 69 6e 74 73 20 60 60 28 61 2c 20 62 29 60 60 20 63 | ...where.the.points.``(a,.b)``.c |
| 7b80 | 6f 6e 73 69 73 74 20 6f 66 20 61 6c 6c 20 70 61 69 72 73 20 66 6f 72 6d 65 64 20 62 79 20 74 61 | onsist.of.all.pairs.formed.by.ta |
| 7ba0 | 6b 69 6e 67 0a 20 20 20 20 60 61 60 20 66 72 6f 6d 20 60 78 60 20 61 6e 64 20 60 62 60 20 66 72 | king.....`a`.from.`x`.and.`b`.fr |
| 7bc0 | 6f 6d 20 60 79 60 2e 20 54 68 65 20 72 65 73 75 6c 74 69 6e 67 20 70 6f 69 6e 74 73 20 66 6f 72 | om.`y`..The.resulting.points.for |
| 7be0 | 6d 20 61 20 67 72 69 64 20 77 69 74 68 0a 20 20 20 20 60 78 60 20 69 6e 20 74 68 65 20 66 69 72 | m.a.grid.with.....`x`.in.the.fir |
| 7c00 | 73 74 20 64 69 6d 65 6e 73 69 6f 6e 20 61 6e 64 20 60 79 60 20 69 6e 20 74 68 65 20 73 65 63 6f | st.dimension.and.`y`.in.the.seco |
| 7c20 | 6e 64 2e 0a 0a 20 20 20 20 54 68 65 20 70 61 72 61 6d 65 74 65 72 73 20 60 78 60 20 61 6e 64 20 | nd.......The.parameters.`x`.and. |
| 7c40 | 60 79 60 20 61 72 65 20 63 6f 6e 76 65 72 74 65 64 20 74 6f 20 61 72 72 61 79 73 20 6f 6e 6c 79 | `y`.are.converted.to.arrays.only |
| 7c60 | 20 69 66 20 74 68 65 79 20 61 72 65 0a 20 20 20 20 74 75 70 6c 65 73 20 6f 72 20 61 20 6c 69 73 | .if.they.are.....tuples.or.a.lis |
| 7c80 | 74 73 2c 20 6f 74 68 65 72 77 69 73 65 20 74 68 65 79 20 61 72 65 20 74 72 65 61 74 65 64 20 61 | ts,.otherwise.they.are.treated.a |
| 7ca0 | 73 20 61 20 73 63 61 6c 61 72 73 2e 20 49 6e 20 65 69 74 68 65 72 0a 20 20 20 20 63 61 73 65 2c | s.a.scalars..In.either.....case, |
| 7cc0 | 20 65 69 74 68 65 72 20 60 78 60 20 61 6e 64 20 60 79 60 20 6f 72 20 74 68 65 69 72 20 65 6c 65 | .either.`x`.and.`y`.or.their.ele |
| 7ce0 | 6d 65 6e 74 73 20 6d 75 73 74 20 73 75 70 70 6f 72 74 20 6d 75 6c 74 69 70 6c 69 63 61 74 69 6f | ments.must.support.multiplicatio |
| 7d00 | 6e 0a 20 20 20 20 61 6e 64 20 61 64 64 69 74 69 6f 6e 20 62 6f 74 68 20 77 69 74 68 20 74 68 65 | n.....and.addition.both.with.the |
| 7d20 | 6d 73 65 6c 76 65 73 20 61 6e 64 20 77 69 74 68 20 74 68 65 20 65 6c 65 6d 65 6e 74 73 20 6f 66 | mselves.and.with.the.elements.of |
| 7d40 | 20 60 63 60 2e 0a 0a 20 20 20 20 49 66 20 60 63 60 20 68 61 73 20 66 65 77 65 72 20 74 68 61 6e | .`c`.......If.`c`.has.fewer.than |
| 7d60 | 20 74 77 6f 20 64 69 6d 65 6e 73 69 6f 6e 73 2c 20 6f 6e 65 73 20 61 72 65 20 69 6d 70 6c 69 63 | .two.dimensions,.ones.are.implic |
| 7d80 | 69 74 6c 79 20 61 70 70 65 6e 64 65 64 20 74 6f 0a 20 20 20 20 69 74 73 20 73 68 61 70 65 20 74 | itly.appended.to.....its.shape.t |
| 7da0 | 6f 20 6d 61 6b 65 20 69 74 20 32 2d 44 2e 20 54 68 65 20 73 68 61 70 65 20 6f 66 20 74 68 65 20 | o.make.it.2-D..The.shape.of.the. |
| 7dc0 | 72 65 73 75 6c 74 20 77 69 6c 6c 20 62 65 20 63 2e 73 68 61 70 65 5b 32 3a 5d 20 2b 0a 20 20 20 | result.will.be.c.shape[2:].+.... |
| 7de0 | 20 78 2e 73 68 61 70 65 2e 0a 0a 20 20 20 20 50 61 72 61 6d 65 74 65 72 73 0a 20 20 20 20 2d 2d | .x.shape.......Parameters.....-- |
| 7e00 | 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 78 2c 20 79 20 3a 20 61 72 72 61 79 5f 6c 69 6b 65 2c 20 | --------.....x,.y.:.array_like,. |
| 7e20 | 63 6f 6d 70 61 74 69 62 6c 65 20 6f 62 6a 65 63 74 73 0a 20 20 20 20 20 20 20 20 54 68 65 20 74 | compatible.objects.........The.t |
| 7e40 | 77 6f 20 64 69 6d 65 6e 73 69 6f 6e 61 6c 20 73 65 72 69 65 73 20 69 73 20 65 76 61 6c 75 61 74 | wo.dimensional.series.is.evaluat |
| 7e60 | 65 64 20 61 74 20 74 68 65 20 70 6f 69 6e 74 73 20 69 6e 20 74 68 65 0a 20 20 20 20 20 20 20 20 | ed.at.the.points.in.the......... |
| 7e80 | 43 61 72 74 65 73 69 61 6e 20 70 72 6f 64 75 63 74 20 6f 66 20 60 78 60 20 61 6e 64 20 60 79 60 | Cartesian.product.of.`x`.and.`y` |
| 7ea0 | 2e 20 20 49 66 20 60 78 60 20 6f 72 20 60 79 60 20 69 73 20 61 20 6c 69 73 74 20 6f 72 0a 20 20 | ...If.`x`.or.`y`.is.a.list.or... |
| 7ec0 | 20 20 20 20 20 20 74 75 70 6c 65 2c 20 69 74 20 69 73 20 66 69 72 73 74 20 63 6f 6e 76 65 72 74 | ......tuple,.it.is.first.convert |
| 7ee0 | 65 64 20 74 6f 20 61 6e 20 6e 64 61 72 72 61 79 2c 20 6f 74 68 65 72 77 69 73 65 20 69 74 20 69 | ed.to.an.ndarray,.otherwise.it.i |
| 7f00 | 73 20 6c 65 66 74 0a 20 20 20 20 20 20 20 20 75 6e 63 68 61 6e 67 65 64 20 61 6e 64 2c 20 69 66 | s.left.........unchanged.and,.if |
| 7f20 | 20 69 74 20 69 73 6e 27 74 20 61 6e 20 6e 64 61 72 72 61 79 2c 20 69 74 20 69 73 20 74 72 65 61 | .it.isn't.an.ndarray,.it.is.trea |
| 7f40 | 74 65 64 20 61 73 20 61 20 73 63 61 6c 61 72 2e 0a 20 20 20 20 63 20 3a 20 61 72 72 61 79 5f 6c | ted.as.a.scalar......c.:.array_l |
| 7f60 | 69 6b 65 0a 20 20 20 20 20 20 20 20 41 72 72 61 79 20 6f 66 20 63 6f 65 66 66 69 63 69 65 6e 74 | ike.........Array.of.coefficient |
| 7f80 | 73 20 6f 72 64 65 72 65 64 20 73 6f 20 74 68 61 74 20 74 68 65 20 63 6f 65 66 66 69 63 69 65 6e | s.ordered.so.that.the.coefficien |
| 7fa0 | 74 73 20 66 6f 72 20 74 65 72 6d 73 20 6f 66 0a 20 20 20 20 20 20 20 20 64 65 67 72 65 65 20 69 | ts.for.terms.of.........degree.i |
| 7fc0 | 2c 6a 20 61 72 65 20 63 6f 6e 74 61 69 6e 65 64 20 69 6e 20 60 60 63 5b 69 2c 6a 5d 60 60 2e 20 | ,j.are.contained.in.``c[i,j]``.. |
| 7fe0 | 49 66 20 60 63 60 20 68 61 73 20 64 69 6d 65 6e 73 69 6f 6e 0a 20 20 20 20 20 20 20 20 67 72 65 | If.`c`.has.dimension.........gre |
| 8000 | 61 74 65 72 20 74 68 61 6e 20 74 77 6f 20 74 68 65 20 72 65 6d 61 69 6e 69 6e 67 20 69 6e 64 69 | ater.than.two.the.remaining.indi |
| 8020 | 63 65 73 20 65 6e 75 6d 65 72 61 74 65 20 6d 75 6c 74 69 70 6c 65 20 73 65 74 73 20 6f 66 0a 20 | ces.enumerate.multiple.sets.of.. |
| 8040 | 20 20 20 20 20 20 20 63 6f 65 66 66 69 63 69 65 6e 74 73 2e 0a 0a 20 20 20 20 52 65 74 75 72 6e | .......coefficients.......Return |
| 8060 | 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 76 61 6c 75 65 73 20 3a 20 6e 64 61 72 72 | s.....-------.....values.:.ndarr |
| 8080 | 61 79 2c 20 63 6f 6d 70 61 74 69 62 6c 65 20 6f 62 6a 65 63 74 0a 20 20 20 20 20 20 20 20 54 68 | ay,.compatible.object.........Th |
| 80a0 | 65 20 76 61 6c 75 65 73 20 6f 66 20 74 68 65 20 74 77 6f 20 64 69 6d 65 6e 73 69 6f 6e 61 6c 20 | e.values.of.the.two.dimensional. |
| 80c0 | 70 6f 6c 79 6e 6f 6d 69 61 6c 20 61 74 20 70 6f 69 6e 74 73 20 69 6e 20 74 68 65 20 43 61 72 74 | polynomial.at.points.in.the.Cart |
| 80e0 | 65 73 69 61 6e 0a 20 20 20 20 20 20 20 20 70 72 6f 64 75 63 74 20 6f 66 20 60 78 60 20 61 6e 64 | esian.........product.of.`x`.and |
| 8100 | 20 60 79 60 2e 0a 0a 20 20 20 20 53 65 65 20 41 6c 73 6f 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d | .`y`.......See.Also.....-------- |
| 8120 | 0a 20 20 20 20 68 65 72 6d 76 61 6c 2c 20 68 65 72 6d 76 61 6c 32 64 2c 20 68 65 72 6d 76 61 6c | .....hermval,.hermval2d,.hermval |
| 8140 | 33 64 2c 20 68 65 72 6d 67 72 69 64 33 64 0a 0a 20 20 20 20 45 78 61 6d 70 6c 65 73 0a 20 20 20 | 3d,.hermgrid3d......Examples.... |
| 8160 | 20 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 3e 3e 3e 20 66 72 6f 6d 20 6e 75 6d 70 79 2e 70 6f 6c | .--------.....>>>.from.numpy.pol |
| 8180 | 79 6e 6f 6d 69 61 6c 2e 68 65 72 6d 69 74 65 20 69 6d 70 6f 72 74 20 68 65 72 6d 67 72 69 64 32 | ynomial.hermite.import.hermgrid2 |
| 81a0 | 64 0a 20 20 20 20 3e 3e 3e 20 78 20 3d 20 5b 31 2c 20 32 2c 20 33 5d 0a 20 20 20 20 3e 3e 3e 20 | d.....>>>.x.=.[1,.2,.3].....>>>. |
| 81c0 | 79 20 3d 20 5b 34 2c 20 35 5d 0a 20 20 20 20 3e 3e 3e 20 63 20 3d 20 5b 5b 31 2c 20 32 2c 20 33 | y.=.[4,.5].....>>>.c.=.[[1,.2,.3 |
| 81e0 | 5d 2c 20 5b 34 2c 20 35 2c 20 36 5d 5d 0a 20 20 20 20 3e 3e 3e 20 68 65 72 6d 67 72 69 64 32 64 | ],.[4,.5,.6]].....>>>.hermgrid2d |
| 8200 | 28 78 2c 20 79 2c 20 63 29 0a 20 20 20 20 61 72 72 61 79 28 5b 5b 31 30 33 35 2e 2c 20 31 35 39 | (x,.y,.c).....array([[1035.,.159 |
| 8220 | 39 2e 5d 2c 0a 20 20 20 20 20 20 20 20 20 20 20 5b 31 38 36 37 2e 2c 20 32 38 38 33 2e 5d 2c 0a | 9.],............[1867.,.2883.],. |
| 8240 | 20 20 20 20 20 20 20 20 20 20 20 5b 32 36 39 39 2e 2c 20 34 31 36 37 2e 5d 5d 29 0a 0a 20 20 20 | ...........[2699.,.4167.]])..... |
| 8260 | 20 a9 03 72 28 00 00 00 da 07 5f 67 72 69 64 6e 64 72 12 00 00 00 72 84 00 00 00 73 03 00 00 00 | ...r(....._gridndr....r....s.... |
| 8280 | 20 20 20 72 30 00 00 00 72 1f 00 00 00 72 1f 00 00 00 b2 03 00 00 73 1a 00 00 00 80 00 f4 70 01 | ...r0...r....r........s.......p. |
| 82a0 | 00 0c 0e 8f 3a 89 3a 94 67 98 71 a0 21 a0 51 d3 0b 27 d0 04 27 72 31 00 00 00 63 04 00 00 00 00 | ....:.:.g.q.!.Q..'..'r1...c..... |
| 82c0 | 00 00 00 00 00 00 00 07 00 00 00 03 00 00 00 f3 3c 00 00 00 97 00 74 01 00 00 00 00 00 00 00 00 | ................<.....t......... |
| 82e0 | 6a 02 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 74 04 00 00 00 00 00 00 00 00 7c 03 | j...................t.........|. |
| 8300 | 7c 00 7c 01 7c 02 ab 05 00 00 00 00 00 00 53 00 29 01 61 78 07 00 00 0a 20 20 20 20 45 76 61 6c | |.|.|.........S.).ax........Eval |
| 8320 | 75 61 74 65 20 61 20 33 2d 44 20 48 65 72 6d 69 74 65 20 73 65 72 69 65 73 20 61 74 20 70 6f 69 | uate.a.3-D.Hermite.series.at.poi |
| 8340 | 6e 74 73 20 28 78 2c 20 79 2c 20 7a 29 2e 0a 0a 20 20 20 20 54 68 69 73 20 66 75 6e 63 74 69 6f | nts.(x,.y,.z).......This.functio |
| 8360 | 6e 20 72 65 74 75 72 6e 73 20 74 68 65 20 76 61 6c 75 65 73 3a 0a 0a 20 20 20 20 2e 2e 20 6d 61 | n.returns.the.values:.........ma |
| 8380 | 74 68 3a 3a 20 70 28 78 2c 79 2c 7a 29 20 3d 20 5c 73 75 6d 5f 7b 69 2c 6a 2c 6b 7d 20 63 5f 7b | th::.p(x,y,z).=.\sum_{i,j,k}.c_{ |
| 83a0 | 69 2c 6a 2c 6b 7d 20 2a 20 48 5f 69 28 78 29 20 2a 20 48 5f 6a 28 79 29 20 2a 20 48 5f 6b 28 7a | i,j,k}.*.H_i(x).*.H_j(y).*.H_k(z |
| 83c0 | 29 0a 0a 20 20 20 20 54 68 65 20 70 61 72 61 6d 65 74 65 72 73 20 60 78 60 2c 20 60 79 60 2c 20 | )......The.parameters.`x`,.`y`,. |
| 83e0 | 61 6e 64 20 60 7a 60 20 61 72 65 20 63 6f 6e 76 65 72 74 65 64 20 74 6f 20 61 72 72 61 79 73 20 | and.`z`.are.converted.to.arrays. |
| 8400 | 6f 6e 6c 79 20 69 66 0a 20 20 20 20 74 68 65 79 20 61 72 65 20 74 75 70 6c 65 73 20 6f 72 20 61 | only.if.....they.are.tuples.or.a |
| 8420 | 20 6c 69 73 74 73 2c 20 6f 74 68 65 72 77 69 73 65 20 74 68 65 79 20 61 72 65 20 74 72 65 61 74 | .lists,.otherwise.they.are.treat |
| 8440 | 65 64 20 61 73 20 61 20 73 63 61 6c 61 72 73 20 61 6e 64 0a 20 20 20 20 74 68 65 79 20 6d 75 73 | ed.as.a.scalars.and.....they.mus |
| 8460 | 74 20 68 61 76 65 20 74 68 65 20 73 61 6d 65 20 73 68 61 70 65 20 61 66 74 65 72 20 63 6f 6e 76 | t.have.the.same.shape.after.conv |
| 8480 | 65 72 73 69 6f 6e 2e 20 49 6e 20 65 69 74 68 65 72 20 63 61 73 65 2c 20 65 69 74 68 65 72 0a 20 | ersion..In.either.case,.either.. |
| 84a0 | 20 20 20 60 78 60 2c 20 60 79 60 2c 20 61 6e 64 20 60 7a 60 20 6f 72 20 74 68 65 69 72 20 65 6c | ...`x`,.`y`,.and.`z`.or.their.el |
| 84c0 | 65 6d 65 6e 74 73 20 6d 75 73 74 20 73 75 70 70 6f 72 74 20 6d 75 6c 74 69 70 6c 69 63 61 74 69 | ements.must.support.multiplicati |
| 84e0 | 6f 6e 20 61 6e 64 0a 20 20 20 20 61 64 64 69 74 69 6f 6e 20 62 6f 74 68 20 77 69 74 68 20 74 68 | on.and.....addition.both.with.th |
| 8500 | 65 6d 73 65 6c 76 65 73 20 61 6e 64 20 77 69 74 68 20 74 68 65 20 65 6c 65 6d 65 6e 74 73 20 6f | emselves.and.with.the.elements.o |
| 8520 | 66 20 60 63 60 2e 0a 0a 20 20 20 20 49 66 20 60 63 60 20 68 61 73 20 66 65 77 65 72 20 74 68 61 | f.`c`.......If.`c`.has.fewer.tha |
| 8540 | 6e 20 33 20 64 69 6d 65 6e 73 69 6f 6e 73 2c 20 6f 6e 65 73 20 61 72 65 20 69 6d 70 6c 69 63 69 | n.3.dimensions,.ones.are.implici |
| 8560 | 74 6c 79 20 61 70 70 65 6e 64 65 64 20 74 6f 20 69 74 73 0a 20 20 20 20 73 68 61 70 65 20 74 6f | tly.appended.to.its.....shape.to |
| 8580 | 20 6d 61 6b 65 20 69 74 20 33 2d 44 2e 20 54 68 65 20 73 68 61 70 65 20 6f 66 20 74 68 65 20 72 | .make.it.3-D..The.shape.of.the.r |
| 85a0 | 65 73 75 6c 74 20 77 69 6c 6c 20 62 65 20 63 2e 73 68 61 70 65 5b 33 3a 5d 20 2b 0a 20 20 20 20 | esult.will.be.c.shape[3:].+..... |
| 85c0 | 78 2e 73 68 61 70 65 2e 0a 0a 20 20 20 20 50 61 72 61 6d 65 74 65 72 73 0a 20 20 20 20 2d 2d 2d | x.shape.......Parameters.....--- |
| 85e0 | 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 78 2c 20 79 2c 20 7a 20 3a 20 61 72 72 61 79 5f 6c 69 6b 65 | -------.....x,.y,.z.:.array_like |
| 8600 | 2c 20 63 6f 6d 70 61 74 69 62 6c 65 20 6f 62 6a 65 63 74 0a 20 20 20 20 20 20 20 20 54 68 65 20 | ,.compatible.object.........The. |
| 8620 | 74 68 72 65 65 20 64 69 6d 65 6e 73 69 6f 6e 61 6c 20 73 65 72 69 65 73 20 69 73 20 65 76 61 6c | three.dimensional.series.is.eval |
| 8640 | 75 61 74 65 64 20 61 74 20 74 68 65 20 70 6f 69 6e 74 73 0a 20 20 20 20 20 20 20 20 60 60 28 78 | uated.at.the.points.........``(x |
| 8660 | 2c 20 79 2c 20 7a 29 60 60 2c 20 77 68 65 72 65 20 60 78 60 2c 20 60 79 60 2c 20 61 6e 64 20 60 | ,.y,.z)``,.where.`x`,.`y`,.and.` |
| 8680 | 7a 60 20 6d 75 73 74 20 68 61 76 65 20 74 68 65 20 73 61 6d 65 20 73 68 61 70 65 2e 20 20 49 66 | z`.must.have.the.same.shape...If |
| 86a0 | 0a 20 20 20 20 20 20 20 20 61 6e 79 20 6f 66 20 60 78 60 2c 20 60 79 60 2c 20 6f 72 20 60 7a 60 | .........any.of.`x`,.`y`,.or.`z` |
| 86c0 | 20 69 73 20 61 20 6c 69 73 74 20 6f 72 20 74 75 70 6c 65 2c 20 69 74 20 69 73 20 66 69 72 73 74 | .is.a.list.or.tuple,.it.is.first |
| 86e0 | 20 63 6f 6e 76 65 72 74 65 64 0a 20 20 20 20 20 20 20 20 74 6f 20 61 6e 20 6e 64 61 72 72 61 79 | .converted.........to.an.ndarray |
| 8700 | 2c 20 6f 74 68 65 72 77 69 73 65 20 69 74 20 69 73 20 6c 65 66 74 20 75 6e 63 68 61 6e 67 65 64 | ,.otherwise.it.is.left.unchanged |
| 8720 | 20 61 6e 64 20 69 66 20 69 74 20 69 73 6e 27 74 20 61 6e 0a 20 20 20 20 20 20 20 20 6e 64 61 72 | .and.if.it.isn't.an.........ndar |
| 8740 | 72 61 79 20 69 74 20 69 73 20 20 74 72 65 61 74 65 64 20 61 73 20 61 20 73 63 61 6c 61 72 2e 0a | ray.it.is..treated.as.a.scalar.. |
| 8760 | 20 20 20 20 63 20 3a 20 61 72 72 61 79 5f 6c 69 6b 65 0a 20 20 20 20 20 20 20 20 41 72 72 61 79 | ....c.:.array_like.........Array |
| 8780 | 20 6f 66 20 63 6f 65 66 66 69 63 69 65 6e 74 73 20 6f 72 64 65 72 65 64 20 73 6f 20 74 68 61 74 | .of.coefficients.ordered.so.that |
| 87a0 | 20 74 68 65 20 63 6f 65 66 66 69 63 69 65 6e 74 20 6f 66 20 74 68 65 20 74 65 72 6d 20 6f 66 0a | .the.coefficient.of.the.term.of. |
| 87c0 | 20 20 20 20 20 20 20 20 6d 75 6c 74 69 2d 64 65 67 72 65 65 20 69 2c 6a 2c 6b 20 69 73 20 63 6f | ........multi-degree.i,j,k.is.co |
| 87e0 | 6e 74 61 69 6e 65 64 20 69 6e 20 60 60 63 5b 69 2c 6a 2c 6b 5d 60 60 2e 20 49 66 20 60 63 60 20 | ntained.in.``c[i,j,k]``..If.`c`. |
| 8800 | 68 61 73 20 64 69 6d 65 6e 73 69 6f 6e 0a 20 20 20 20 20 20 20 20 67 72 65 61 74 65 72 20 74 68 | has.dimension.........greater.th |
| 8820 | 61 6e 20 33 20 74 68 65 20 72 65 6d 61 69 6e 69 6e 67 20 69 6e 64 69 63 65 73 20 65 6e 75 6d 65 | an.3.the.remaining.indices.enume |
| 8840 | 72 61 74 65 20 6d 75 6c 74 69 70 6c 65 20 73 65 74 73 20 6f 66 0a 20 20 20 20 20 20 20 20 63 6f | rate.multiple.sets.of.........co |
| 8860 | 65 66 66 69 63 69 65 6e 74 73 2e 0a 0a 20 20 20 20 52 65 74 75 72 6e 73 0a 20 20 20 20 2d 2d 2d | efficients.......Returns.....--- |
| 8880 | 2d 2d 2d 2d 0a 20 20 20 20 76 61 6c 75 65 73 20 3a 20 6e 64 61 72 72 61 79 2c 20 63 6f 6d 70 61 | ----.....values.:.ndarray,.compa |
| 88a0 | 74 69 62 6c 65 20 6f 62 6a 65 63 74 0a 20 20 20 20 20 20 20 20 54 68 65 20 76 61 6c 75 65 73 20 | tible.object.........The.values. |
| 88c0 | 6f 66 20 74 68 65 20 6d 75 6c 74 69 64 69 6d 65 6e 73 69 6f 6e 61 6c 20 70 6f 6c 79 6e 6f 6d 69 | of.the.multidimensional.polynomi |
| 88e0 | 61 6c 20 6f 6e 20 70 6f 69 6e 74 73 20 66 6f 72 6d 65 64 20 77 69 74 68 0a 20 20 20 20 20 20 20 | al.on.points.formed.with........ |
| 8900 | 20 74 72 69 70 6c 65 73 20 6f 66 20 63 6f 72 72 65 73 70 6f 6e 64 69 6e 67 20 76 61 6c 75 65 73 | .triples.of.corresponding.values |
| 8920 | 20 66 72 6f 6d 20 60 78 60 2c 20 60 79 60 2c 20 61 6e 64 20 60 7a 60 2e 0a 0a 20 20 20 20 53 65 | .from.`x`,.`y`,.and.`z`.......Se |
| 8940 | 65 20 41 6c 73 6f 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 68 65 72 6d 76 61 6c 2c | e.Also.....--------.....hermval, |
| 8960 | 20 68 65 72 6d 76 61 6c 32 64 2c 20 68 65 72 6d 67 72 69 64 32 64 2c 20 68 65 72 6d 67 72 69 64 | .hermval2d,.hermgrid2d,.hermgrid |
| 8980 | 33 64 0a 0a 20 20 20 20 45 78 61 6d 70 6c 65 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 | 3d......Examples.....--------... |
| 89a0 | 20 20 3e 3e 3e 20 66 72 6f 6d 20 6e 75 6d 70 79 2e 70 6f 6c 79 6e 6f 6d 69 61 6c 2e 68 65 72 6d | ..>>>.from.numpy.polynomial.herm |
| 89c0 | 69 74 65 20 69 6d 70 6f 72 74 20 68 65 72 6d 76 61 6c 33 64 0a 20 20 20 20 3e 3e 3e 20 78 20 3d | ite.import.hermval3d.....>>>.x.= |
| 89e0 | 20 5b 31 2c 20 32 5d 0a 20 20 20 20 3e 3e 3e 20 79 20 3d 20 5b 34 2c 20 35 5d 0a 20 20 20 20 3e | .[1,.2].....>>>.y.=.[4,.5].....> |
| 8a00 | 3e 3e 20 7a 20 3d 20 5b 36 2c 20 37 5d 0a 20 20 20 20 3e 3e 3e 20 63 20 3d 20 5b 5b 5b 31 2c 20 | >>.z.=.[6,.7].....>>>.c.=.[[[1,. |
| 8a20 | 32 2c 20 33 5d 2c 20 5b 34 2c 20 35 2c 20 36 5d 5d 2c 20 5b 5b 37 2c 20 38 2c 20 39 5d 2c 20 5b | 2,.3],.[4,.5,.6]],.[[7,.8,.9],.[ |
| 8a40 | 31 30 2c 20 31 31 2c 20 31 32 5d 5d 5d 0a 20 20 20 20 3e 3e 3e 20 68 65 72 6d 76 61 6c 33 64 28 | 10,.11,.12]]].....>>>.hermval3d( |
| 8a60 | 78 2c 20 79 2c 20 7a 2c 20 63 29 0a 20 20 20 20 61 72 72 61 79 28 5b 20 34 30 30 37 37 2e 2c 20 | x,.y,.z,.c).....array([.40077.,. |
| 8a80 | 31 32 30 31 33 31 2e 5d 29 0a 0a 20 20 20 20 72 82 00 00 00 a9 04 72 7e 00 00 00 72 85 00 00 00 | 120131.])......r......r~...r.... |
| 8aa0 | da 01 7a 72 39 00 00 00 73 04 00 00 00 20 20 20 20 72 30 00 00 00 72 1e 00 00 00 72 1e 00 00 00 | ..zr9...s........r0...r....r.... |
| 8ac0 | ed 03 00 00 73 1c 00 00 00 80 00 f4 6a 01 00 0c 0e 8f 39 89 39 94 57 98 61 a0 11 a0 41 a0 71 d3 | ....s.......j.....9.9.W.a...A.q. |
| 8ae0 | 0b 29 d0 04 29 72 31 00 00 00 63 04 00 00 00 00 00 00 00 00 00 00 00 07 00 00 00 03 00 00 00 f3 | .)..)r1...c..................... |
| 8b00 | 3c 00 00 00 97 00 74 01 00 00 00 00 00 00 00 00 6a 02 00 00 00 00 00 00 00 00 00 00 00 00 00 00 | <.....t.........j............... |
| 8b20 | 00 00 00 00 74 04 00 00 00 00 00 00 00 00 7c 03 7c 00 7c 01 7c 02 ab 05 00 00 00 00 00 00 53 00 | ....t.........|.|.|.|.........S. |
| 8b40 | 29 01 61 8d 08 00 00 0a 20 20 20 20 45 76 61 6c 75 61 74 65 20 61 20 33 2d 44 20 48 65 72 6d 69 | ).a.........Evaluate.a.3-D.Hermi |
| 8b60 | 74 65 20 73 65 72 69 65 73 20 6f 6e 20 74 68 65 20 43 61 72 74 65 73 69 61 6e 20 70 72 6f 64 75 | te.series.on.the.Cartesian.produ |
| 8b80 | 63 74 20 6f 66 20 78 2c 20 79 2c 20 61 6e 64 20 7a 2e 0a 0a 20 20 20 20 54 68 69 73 20 66 75 6e | ct.of.x,.y,.and.z.......This.fun |
| 8ba0 | 63 74 69 6f 6e 20 72 65 74 75 72 6e 73 20 74 68 65 20 76 61 6c 75 65 73 3a 0a 0a 20 20 20 20 2e | ction.returns.the.values:....... |
| 8bc0 | 2e 20 6d 61 74 68 3a 3a 20 70 28 61 2c 62 2c 63 29 20 3d 20 5c 73 75 6d 5f 7b 69 2c 6a 2c 6b 7d | ..math::.p(a,b,c).=.\sum_{i,j,k} |
| 8be0 | 20 63 5f 7b 69 2c 6a 2c 6b 7d 20 2a 20 48 5f 69 28 61 29 20 2a 20 48 5f 6a 28 62 29 20 2a 20 48 | .c_{i,j,k}.*.H_i(a).*.H_j(b).*.H |
| 8c00 | 5f 6b 28 63 29 0a 0a 20 20 20 20 77 68 65 72 65 20 74 68 65 20 70 6f 69 6e 74 73 20 60 60 28 61 | _k(c)......where.the.points.``(a |
| 8c20 | 2c 20 62 2c 20 63 29 60 60 20 63 6f 6e 73 69 73 74 20 6f 66 20 61 6c 6c 20 74 72 69 70 6c 65 73 | ,.b,.c)``.consist.of.all.triples |
| 8c40 | 20 66 6f 72 6d 65 64 20 62 79 20 74 61 6b 69 6e 67 0a 20 20 20 20 60 61 60 20 66 72 6f 6d 20 60 | .formed.by.taking.....`a`.from.` |
| 8c60 | 78 60 2c 20 60 62 60 20 66 72 6f 6d 20 60 79 60 2c 20 61 6e 64 20 60 63 60 20 66 72 6f 6d 20 60 | x`,.`b`.from.`y`,.and.`c`.from.` |
| 8c80 | 7a 60 2e 20 54 68 65 20 72 65 73 75 6c 74 69 6e 67 20 70 6f 69 6e 74 73 20 66 6f 72 6d 0a 20 20 | z`..The.resulting.points.form... |
| 8ca0 | 20 20 61 20 67 72 69 64 20 77 69 74 68 20 60 78 60 20 69 6e 20 74 68 65 20 66 69 72 73 74 20 64 | ..a.grid.with.`x`.in.the.first.d |
| 8cc0 | 69 6d 65 6e 73 69 6f 6e 2c 20 60 79 60 20 69 6e 20 74 68 65 20 73 65 63 6f 6e 64 2c 20 61 6e 64 | imension,.`y`.in.the.second,.and |
| 8ce0 | 20 60 7a 60 20 69 6e 0a 20 20 20 20 74 68 65 20 74 68 69 72 64 2e 0a 0a 20 20 20 20 54 68 65 20 | .`z`.in.....the.third.......The. |
| 8d00 | 70 61 72 61 6d 65 74 65 72 73 20 60 78 60 2c 20 60 79 60 2c 20 61 6e 64 20 60 7a 60 20 61 72 65 | parameters.`x`,.`y`,.and.`z`.are |
| 8d20 | 20 63 6f 6e 76 65 72 74 65 64 20 74 6f 20 61 72 72 61 79 73 20 6f 6e 6c 79 20 69 66 20 74 68 65 | .converted.to.arrays.only.if.the |
| 8d40 | 79 0a 20 20 20 20 61 72 65 20 74 75 70 6c 65 73 20 6f 72 20 61 20 6c 69 73 74 73 2c 20 6f 74 68 | y.....are.tuples.or.a.lists,.oth |
| 8d60 | 65 72 77 69 73 65 20 74 68 65 79 20 61 72 65 20 74 72 65 61 74 65 64 20 61 73 20 61 20 73 63 61 | erwise.they.are.treated.as.a.sca |
| 8d80 | 6c 61 72 73 2e 20 49 6e 0a 20 20 20 20 65 69 74 68 65 72 20 63 61 73 65 2c 20 65 69 74 68 65 72 | lars..In.....either.case,.either |
| 8da0 | 20 60 78 60 2c 20 60 79 60 2c 20 61 6e 64 20 60 7a 60 20 6f 72 20 74 68 65 69 72 20 65 6c 65 6d | .`x`,.`y`,.and.`z`.or.their.elem |
| 8dc0 | 65 6e 74 73 20 6d 75 73 74 20 73 75 70 70 6f 72 74 0a 20 20 20 20 6d 75 6c 74 69 70 6c 69 63 61 | ents.must.support.....multiplica |
| 8de0 | 74 69 6f 6e 20 61 6e 64 20 61 64 64 69 74 69 6f 6e 20 62 6f 74 68 20 77 69 74 68 20 74 68 65 6d | tion.and.addition.both.with.them |
| 8e00 | 73 65 6c 76 65 73 20 61 6e 64 20 77 69 74 68 20 74 68 65 20 65 6c 65 6d 65 6e 74 73 0a 20 20 20 | selves.and.with.the.elements.... |
| 8e20 | 20 6f 66 20 60 63 60 2e 0a 0a 20 20 20 20 49 66 20 60 63 60 20 68 61 73 20 66 65 77 65 72 20 74 | .of.`c`.......If.`c`.has.fewer.t |
| 8e40 | 68 61 6e 20 74 68 72 65 65 20 64 69 6d 65 6e 73 69 6f 6e 73 2c 20 6f 6e 65 73 20 61 72 65 20 69 | han.three.dimensions,.ones.are.i |
| 8e60 | 6d 70 6c 69 63 69 74 6c 79 20 61 70 70 65 6e 64 65 64 20 74 6f 0a 20 20 20 20 69 74 73 20 73 68 | mplicitly.appended.to.....its.sh |
| 8e80 | 61 70 65 20 74 6f 20 6d 61 6b 65 20 69 74 20 33 2d 44 2e 20 54 68 65 20 73 68 61 70 65 20 6f 66 | ape.to.make.it.3-D..The.shape.of |
| 8ea0 | 20 74 68 65 20 72 65 73 75 6c 74 20 77 69 6c 6c 20 62 65 20 63 2e 73 68 61 70 65 5b 33 3a 5d 20 | .the.result.will.be.c.shape[3:]. |
| 8ec0 | 2b 0a 20 20 20 20 78 2e 73 68 61 70 65 20 2b 20 79 2e 73 68 61 70 65 20 2b 20 7a 2e 73 68 61 70 | +.....x.shape.+.y.shape.+.z.shap |
| 8ee0 | 65 2e 0a 0a 20 20 20 20 50 61 72 61 6d 65 74 65 72 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 2d | e.......Parameters.....--------- |
| 8f00 | 2d 0a 20 20 20 20 78 2c 20 79 2c 20 7a 20 3a 20 61 72 72 61 79 5f 6c 69 6b 65 2c 20 63 6f 6d 70 | -.....x,.y,.z.:.array_like,.comp |
| 8f20 | 61 74 69 62 6c 65 20 6f 62 6a 65 63 74 73 0a 20 20 20 20 20 20 20 20 54 68 65 20 74 68 72 65 65 | atible.objects.........The.three |
| 8f40 | 20 64 69 6d 65 6e 73 69 6f 6e 61 6c 20 73 65 72 69 65 73 20 69 73 20 65 76 61 6c 75 61 74 65 64 | .dimensional.series.is.evaluated |
| 8f60 | 20 61 74 20 74 68 65 20 70 6f 69 6e 74 73 20 69 6e 20 74 68 65 0a 20 20 20 20 20 20 20 20 43 61 | .at.the.points.in.the.........Ca |
| 8f80 | 72 74 65 73 69 61 6e 20 70 72 6f 64 75 63 74 20 6f 66 20 60 78 60 2c 20 60 79 60 2c 20 61 6e 64 | rtesian.product.of.`x`,.`y`,.and |
| 8fa0 | 20 60 7a 60 2e 20 20 49 66 20 60 78 60 2c 20 60 79 60 2c 20 6f 72 20 60 7a 60 20 69 73 20 61 0a | .`z`...If.`x`,.`y`,.or.`z`.is.a. |
| 8fc0 | 20 20 20 20 20 20 20 20 6c 69 73 74 20 6f 72 20 74 75 70 6c 65 2c 20 69 74 20 69 73 20 66 69 72 | ........list.or.tuple,.it.is.fir |
| 8fe0 | 73 74 20 63 6f 6e 76 65 72 74 65 64 20 74 6f 20 61 6e 20 6e 64 61 72 72 61 79 2c 20 6f 74 68 65 | st.converted.to.an.ndarray,.othe |
| 9000 | 72 77 69 73 65 20 69 74 20 69 73 0a 20 20 20 20 20 20 20 20 6c 65 66 74 20 75 6e 63 68 61 6e 67 | rwise.it.is.........left.unchang |
| 9020 | 65 64 20 61 6e 64 2c 20 69 66 20 69 74 20 69 73 6e 27 74 20 61 6e 20 6e 64 61 72 72 61 79 2c 20 | ed.and,.if.it.isn't.an.ndarray,. |
| 9040 | 69 74 20 69 73 20 74 72 65 61 74 65 64 20 61 73 20 61 0a 20 20 20 20 20 20 20 20 73 63 61 6c 61 | it.is.treated.as.a.........scala |
| 9060 | 72 2e 0a 20 20 20 20 63 20 3a 20 61 72 72 61 79 5f 6c 69 6b 65 0a 20 20 20 20 20 20 20 20 41 72 | r......c.:.array_like.........Ar |
| 9080 | 72 61 79 20 6f 66 20 63 6f 65 66 66 69 63 69 65 6e 74 73 20 6f 72 64 65 72 65 64 20 73 6f 20 74 | ray.of.coefficients.ordered.so.t |
| 90a0 | 68 61 74 20 74 68 65 20 63 6f 65 66 66 69 63 69 65 6e 74 73 20 66 6f 72 20 74 65 72 6d 73 20 6f | hat.the.coefficients.for.terms.o |
| 90c0 | 66 0a 20 20 20 20 20 20 20 20 64 65 67 72 65 65 20 69 2c 6a 20 61 72 65 20 63 6f 6e 74 61 69 6e | f.........degree.i,j.are.contain |
| 90e0 | 65 64 20 69 6e 20 60 60 63 5b 69 2c 6a 5d 60 60 2e 20 49 66 20 60 63 60 20 68 61 73 20 64 69 6d | ed.in.``c[i,j]``..If.`c`.has.dim |
| 9100 | 65 6e 73 69 6f 6e 0a 20 20 20 20 20 20 20 20 67 72 65 61 74 65 72 20 74 68 61 6e 20 74 77 6f 20 | ension.........greater.than.two. |
| 9120 | 74 68 65 20 72 65 6d 61 69 6e 69 6e 67 20 69 6e 64 69 63 65 73 20 65 6e 75 6d 65 72 61 74 65 20 | the.remaining.indices.enumerate. |
| 9140 | 6d 75 6c 74 69 70 6c 65 20 73 65 74 73 20 6f 66 0a 20 20 20 20 20 20 20 20 63 6f 65 66 66 69 63 | multiple.sets.of.........coeffic |
| 9160 | 69 65 6e 74 73 2e 0a 0a 20 20 20 20 52 65 74 75 72 6e 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 0a | ients.......Returns.....-------. |
| 9180 | 20 20 20 20 76 61 6c 75 65 73 20 3a 20 6e 64 61 72 72 61 79 2c 20 63 6f 6d 70 61 74 69 62 6c 65 | ....values.:.ndarray,.compatible |
| 91a0 | 20 6f 62 6a 65 63 74 0a 20 20 20 20 20 20 20 20 54 68 65 20 76 61 6c 75 65 73 20 6f 66 20 74 68 | .object.........The.values.of.th |
| 91c0 | 65 20 74 77 6f 20 64 69 6d 65 6e 73 69 6f 6e 61 6c 20 70 6f 6c 79 6e 6f 6d 69 61 6c 20 61 74 20 | e.two.dimensional.polynomial.at. |
| 91e0 | 70 6f 69 6e 74 73 20 69 6e 20 74 68 65 20 43 61 72 74 65 73 69 61 6e 0a 20 20 20 20 20 20 20 20 | points.in.the.Cartesian......... |
| 9200 | 70 72 6f 64 75 63 74 20 6f 66 20 60 78 60 20 61 6e 64 20 60 79 60 2e 0a 0a 20 20 20 20 53 65 65 | product.of.`x`.and.`y`.......See |
| 9220 | 20 41 6c 73 6f 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 68 65 72 6d 76 61 6c 2c 20 | .Also.....--------.....hermval,. |
| 9240 | 68 65 72 6d 76 61 6c 32 64 2c 20 68 65 72 6d 67 72 69 64 32 64 2c 20 68 65 72 6d 76 61 6c 33 64 | hermval2d,.hermgrid2d,.hermval3d |
| 9260 | 0a 0a 20 20 20 20 45 78 61 6d 70 6c 65 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 | ......Examples.....--------..... |
| 9280 | 3e 3e 3e 20 66 72 6f 6d 20 6e 75 6d 70 79 2e 70 6f 6c 79 6e 6f 6d 69 61 6c 2e 68 65 72 6d 69 74 | >>>.from.numpy.polynomial.hermit |
| 92a0 | 65 20 69 6d 70 6f 72 74 20 68 65 72 6d 67 72 69 64 33 64 0a 20 20 20 20 3e 3e 3e 20 78 20 3d 20 | e.import.hermgrid3d.....>>>.x.=. |
| 92c0 | 5b 31 2c 20 32 5d 0a 20 20 20 20 3e 3e 3e 20 79 20 3d 20 5b 34 2c 20 35 5d 0a 20 20 20 20 3e 3e | [1,.2].....>>>.y.=.[4,.5].....>> |
| 92e0 | 3e 20 7a 20 3d 20 5b 36 2c 20 37 5d 0a 20 20 20 20 3e 3e 3e 20 63 20 3d 20 5b 5b 5b 31 2c 20 32 | >.z.=.[6,.7].....>>>.c.=.[[[1,.2 |
| 9300 | 2c 20 33 5d 2c 20 5b 34 2c 20 35 2c 20 36 5d 5d 2c 20 5b 5b 37 2c 20 38 2c 20 39 5d 2c 20 5b 31 | ,.3],.[4,.5,.6]],.[[7,.8,.9],.[1 |
| 9320 | 30 2c 20 31 31 2c 20 31 32 5d 5d 5d 0a 20 20 20 20 3e 3e 3e 20 68 65 72 6d 67 72 69 64 33 64 28 | 0,.11,.12]]].....>>>.hermgrid3d( |
| 9340 | 78 2c 20 79 2c 20 7a 2c 20 63 29 0a 20 20 20 20 61 72 72 61 79 28 5b 5b 5b 20 34 30 30 37 37 2e | x,.y,.z,.c).....array([[[.40077. |
| 9360 | 2c 20 20 35 34 31 31 37 2e 5d 2c 0a 20 20 20 20 20 20 20 20 20 20 20 20 5b 20 34 39 32 39 33 2e | ,..54117.],.............[.49293. |
| 9380 | 2c 20 20 36 36 35 36 31 2e 5d 5d 2c 0a 20 20 20 20 20 20 20 20 20 20 20 5b 5b 20 37 32 33 37 35 | ,..66561.]],............[[.72375 |
| 93a0 | 2e 2c 20 20 39 37 37 31 39 2e 5d 2c 0a 20 20 20 20 20 20 20 20 20 20 20 20 5b 20 38 38 39 37 35 | .,..97719.],.............[.88975 |
| 93c0 | 2e 2c 20 31 32 30 31 33 31 2e 5d 5d 5d 29 0a 0a 20 20 20 20 72 87 00 00 00 72 8a 00 00 00 73 04 | .,.120131.]]])......r....r....s. |
| 93e0 | 00 00 00 20 20 20 20 72 30 00 00 00 72 20 00 00 00 72 20 00 00 00 25 04 00 00 73 1c 00 00 00 80 | .......r0...r....r....%...s..... |
| 9400 | 00 f4 7a 01 00 0c 0e 8f 3a 89 3a 94 67 98 71 a0 21 a0 51 a8 01 d3 0b 2a d0 04 2a 72 31 00 00 00 | ..z.....:.:.g.q.!.Q....*..*r1... |
| 9420 | 63 02 00 00 00 00 00 00 00 00 00 00 00 06 00 00 00 03 00 00 00 f3 ba 01 00 00 97 00 74 01 00 00 | c...........................t... |
| 9440 | 00 00 00 00 00 00 6a 02 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 7c 01 64 01 ab 02 | ......j...................|.d... |
| 9460 | 00 00 00 00 00 00 7d 02 7c 02 64 02 6b 02 00 00 72 0b 74 05 00 00 00 00 00 00 00 00 64 03 ab 01 | ......}.|.d.k...r.t.........d... |
| 9480 | 00 00 00 00 00 00 82 01 74 07 00 00 00 00 00 00 00 00 6a 08 00 00 00 00 00 00 00 00 00 00 00 00 | ........t.........j............. |
| 94a0 | 00 00 00 00 00 00 7c 00 64 04 64 05 ac 06 ab 03 00 00 00 00 00 00 64 07 7a 00 00 00 7d 00 7c 02 | ......|.d.d...........d.z...}.|. |
| 94c0 | 64 05 7a 00 00 00 66 01 7c 00 6a 0a 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 7a 00 | d.z...f.|.j...................z. |
| 94e0 | 00 00 7d 03 7c 00 6a 0c 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 7d 04 74 07 00 00 | ..}.|.j...................}.t... |
| 9500 | 00 00 00 00 00 00 6a 0e 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 7c 03 7c 04 ac 08 | ......j...................|.|... |
| 9520 | ab 02 00 00 00 00 00 00 7d 05 7c 00 64 02 7a 05 00 00 64 05 7a 00 00 00 7c 05 64 02 3c 00 00 00 | ........}.|.d.z...d.z...|.d.<... |
| 9540 | 7c 02 64 02 6b 44 00 00 72 3e 7c 00 64 09 7a 05 00 00 7d 06 7c 06 7c 05 64 05 3c 00 00 00 74 11 | |.d.kD..r>|.d.z...}.|.|.d.<...t. |
| 9560 | 00 00 00 00 00 00 00 00 64 09 7c 02 64 05 7a 00 00 00 ab 02 00 00 00 00 00 00 44 00 5d 22 00 00 | ........d.|.d.z...........D.]".. |
| 9580 | 7d 07 7c 05 7c 07 64 05 7a 0a 00 00 19 00 00 00 7c 06 7a 05 00 00 7c 05 7c 07 64 09 7a 0a 00 00 | }.|.|.d.z.......|.z...|.|.d.z... |
| 95a0 | 19 00 00 00 64 09 7c 07 64 05 7a 0a 00 00 7a 05 00 00 7a 05 00 00 7a 0a 00 00 7c 05 7c 07 3c 00 | ....d.|.d.z...z...z...z...|.|.<. |
| 95c0 | 00 00 8c 24 04 00 74 07 00 00 00 00 00 00 00 00 6a 12 00 00 00 00 00 00 00 00 00 00 00 00 00 00 | ...$..t.........j............... |
| 95e0 | 00 00 00 00 7c 05 64 02 64 0a ab 03 00 00 00 00 00 00 53 00 29 0b 61 27 06 00 00 50 73 65 75 64 | ....|.d.d.........S.).a'...Pseud |
| 9600 | 6f 2d 56 61 6e 64 65 72 6d 6f 6e 64 65 20 6d 61 74 72 69 78 20 6f 66 20 67 69 76 65 6e 20 64 65 | o-Vandermonde.matrix.of.given.de |
| 9620 | 67 72 65 65 2e 0a 0a 20 20 20 20 52 65 74 75 72 6e 73 20 74 68 65 20 70 73 65 75 64 6f 2d 56 61 | gree.......Returns.the.pseudo-Va |
| 9640 | 6e 64 65 72 6d 6f 6e 64 65 20 6d 61 74 72 69 78 20 6f 66 20 64 65 67 72 65 65 20 60 64 65 67 60 | ndermonde.matrix.of.degree.`deg` |
| 9660 | 20 61 6e 64 20 73 61 6d 70 6c 65 20 70 6f 69 6e 74 73 0a 20 20 20 20 60 78 60 2e 20 54 68 65 20 | .and.sample.points.....`x`..The. |
| 9680 | 70 73 65 75 64 6f 2d 56 61 6e 64 65 72 6d 6f 6e 64 65 20 6d 61 74 72 69 78 20 69 73 20 64 65 66 | pseudo-Vandermonde.matrix.is.def |
| 96a0 | 69 6e 65 64 20 62 79 0a 0a 20 20 20 20 2e 2e 20 6d 61 74 68 3a 3a 20 56 5b 2e 2e 2e 2c 20 69 5d | ined.by.........math::.V[...,.i] |
| 96c0 | 20 3d 20 48 5f 69 28 78 29 2c 0a 0a 20 20 20 20 77 68 65 72 65 20 60 60 30 20 3c 3d 20 69 20 3c | .=.H_i(x),......where.``0.<=.i.< |
| 96e0 | 3d 20 64 65 67 60 60 2e 20 54 68 65 20 6c 65 61 64 69 6e 67 20 69 6e 64 69 63 65 73 20 6f 66 20 | =.deg``..The.leading.indices.of. |
| 9700 | 60 56 60 20 69 6e 64 65 78 20 74 68 65 20 65 6c 65 6d 65 6e 74 73 20 6f 66 0a 20 20 20 20 60 78 | `V`.index.the.elements.of.....`x |
| 9720 | 60 20 61 6e 64 20 74 68 65 20 6c 61 73 74 20 69 6e 64 65 78 20 69 73 20 74 68 65 20 64 65 67 72 | `.and.the.last.index.is.the.degr |
| 9740 | 65 65 20 6f 66 20 74 68 65 20 48 65 72 6d 69 74 65 20 70 6f 6c 79 6e 6f 6d 69 61 6c 2e 0a 0a 20 | ee.of.the.Hermite.polynomial.... |
| 9760 | 20 20 20 49 66 20 60 63 60 20 69 73 20 61 20 31 2d 44 20 61 72 72 61 79 20 6f 66 20 63 6f 65 66 | ...If.`c`.is.a.1-D.array.of.coef |
| 9780 | 66 69 63 69 65 6e 74 73 20 6f 66 20 6c 65 6e 67 74 68 20 60 60 6e 20 2b 20 31 60 60 20 61 6e 64 | ficients.of.length.``n.+.1``.and |
| 97a0 | 20 60 56 60 20 69 73 20 74 68 65 0a 20 20 20 20 61 72 72 61 79 20 60 60 56 20 3d 20 68 65 72 6d | .`V`.is.the.....array.``V.=.herm |
| 97c0 | 76 61 6e 64 65 72 28 78 2c 20 6e 29 60 60 2c 20 74 68 65 6e 20 60 60 6e 70 2e 64 6f 74 28 56 2c | vander(x,.n)``,.then.``np.dot(V, |
| 97e0 | 20 63 29 60 60 20 61 6e 64 0a 20 20 20 20 60 60 68 65 72 6d 76 61 6c 28 78 2c 20 63 29 60 60 20 | .c)``.and.....``hermval(x,.c)``. |
| 9800 | 61 72 65 20 74 68 65 20 73 61 6d 65 20 75 70 20 74 6f 20 72 6f 75 6e 64 6f 66 66 2e 20 54 68 69 | are.the.same.up.to.roundoff..Thi |
| 9820 | 73 20 65 71 75 69 76 61 6c 65 6e 63 65 20 69 73 0a 20 20 20 20 75 73 65 66 75 6c 20 62 6f 74 68 | s.equivalence.is.....useful.both |
| 9840 | 20 66 6f 72 20 6c 65 61 73 74 20 73 71 75 61 72 65 73 20 66 69 74 74 69 6e 67 20 61 6e 64 20 66 | .for.least.squares.fitting.and.f |
| 9860 | 6f 72 20 74 68 65 20 65 76 61 6c 75 61 74 69 6f 6e 20 6f 66 20 61 20 6c 61 72 67 65 0a 20 20 20 | or.the.evaluation.of.a.large.... |
| 9880 | 20 6e 75 6d 62 65 72 20 6f 66 20 48 65 72 6d 69 74 65 20 73 65 72 69 65 73 20 6f 66 20 74 68 65 | .number.of.Hermite.series.of.the |
| 98a0 | 20 73 61 6d 65 20 64 65 67 72 65 65 20 61 6e 64 20 73 61 6d 70 6c 65 20 70 6f 69 6e 74 73 2e 0a | .same.degree.and.sample.points.. |
| 98c0 | 0a 20 20 20 20 50 61 72 61 6d 65 74 65 72 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 | .....Parameters.....----------.. |
| 98e0 | 20 20 20 78 20 3a 20 61 72 72 61 79 5f 6c 69 6b 65 0a 20 20 20 20 20 20 20 20 41 72 72 61 79 20 | ...x.:.array_like.........Array. |
| 9900 | 6f 66 20 70 6f 69 6e 74 73 2e 20 54 68 65 20 64 74 79 70 65 20 69 73 20 63 6f 6e 76 65 72 74 65 | of.points..The.dtype.is.converte |
| 9920 | 64 20 74 6f 20 66 6c 6f 61 74 36 34 20 6f 72 20 63 6f 6d 70 6c 65 78 31 32 38 0a 20 20 20 20 20 | d.to.float64.or.complex128...... |
| 9940 | 20 20 20 64 65 70 65 6e 64 69 6e 67 20 6f 6e 20 77 68 65 74 68 65 72 20 61 6e 79 20 6f 66 20 74 | ...depending.on.whether.any.of.t |
| 9960 | 68 65 20 65 6c 65 6d 65 6e 74 73 20 61 72 65 20 63 6f 6d 70 6c 65 78 2e 20 49 66 20 60 78 60 20 | he.elements.are.complex..If.`x`. |
| 9980 | 69 73 0a 20 20 20 20 20 20 20 20 73 63 61 6c 61 72 20 69 74 20 69 73 20 63 6f 6e 76 65 72 74 65 | is.........scalar.it.is.converte |
| 99a0 | 64 20 74 6f 20 61 20 31 2d 44 20 61 72 72 61 79 2e 0a 20 20 20 20 64 65 67 20 3a 20 69 6e 74 0a | d.to.a.1-D.array......deg.:.int. |
| 99c0 | 20 20 20 20 20 20 20 20 44 65 67 72 65 65 20 6f 66 20 74 68 65 20 72 65 73 75 6c 74 69 6e 67 20 | ........Degree.of.the.resulting. |
| 99e0 | 6d 61 74 72 69 78 2e 0a 0a 20 20 20 20 52 65 74 75 72 6e 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d | matrix.......Returns.....------- |
| 9a00 | 0a 20 20 20 20 76 61 6e 64 65 72 20 3a 20 6e 64 61 72 72 61 79 0a 20 20 20 20 20 20 20 20 54 68 | .....vander.:.ndarray.........Th |
| 9a20 | 65 20 70 73 65 75 64 6f 2d 56 61 6e 64 65 72 6d 6f 6e 64 65 20 6d 61 74 72 69 78 2e 20 54 68 65 | e.pseudo-Vandermonde.matrix..The |
| 9a40 | 20 73 68 61 70 65 20 6f 66 20 74 68 65 20 72 65 74 75 72 6e 65 64 20 6d 61 74 72 69 78 20 69 73 | .shape.of.the.returned.matrix.is |
| 9a60 | 0a 20 20 20 20 20 20 20 20 60 60 78 2e 73 68 61 70 65 20 2b 20 28 64 65 67 20 2b 20 31 2c 29 60 | .........``x.shape.+.(deg.+.1,)` |
| 9a80 | 60 2c 20 77 68 65 72 65 20 54 68 65 20 6c 61 73 74 20 69 6e 64 65 78 20 69 73 20 74 68 65 20 64 | `,.where.The.last.index.is.the.d |
| 9aa0 | 65 67 72 65 65 20 6f 66 20 74 68 65 0a 20 20 20 20 20 20 20 20 63 6f 72 72 65 73 70 6f 6e 64 69 | egree.of.the.........correspondi |
| 9ac0 | 6e 67 20 48 65 72 6d 69 74 65 20 70 6f 6c 79 6e 6f 6d 69 61 6c 2e 20 20 54 68 65 20 64 74 79 70 | ng.Hermite.polynomial...The.dtyp |
| 9ae0 | 65 20 77 69 6c 6c 20 62 65 20 74 68 65 20 73 61 6d 65 20 61 73 0a 20 20 20 20 20 20 20 20 74 68 | e.will.be.the.same.as.........th |
| 9b00 | 65 20 63 6f 6e 76 65 72 74 65 64 20 60 78 60 2e 0a 0a 20 20 20 20 45 78 61 6d 70 6c 65 73 0a 20 | e.converted.`x`.......Examples.. |
| 9b20 | 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 3e 3e 3e 20 69 6d 70 6f 72 74 20 6e 75 6d 70 79 | ...--------.....>>>.import.numpy |
| 9b40 | 20 61 73 20 6e 70 0a 20 20 20 20 3e 3e 3e 20 66 72 6f 6d 20 6e 75 6d 70 79 2e 70 6f 6c 79 6e 6f | .as.np.....>>>.from.numpy.polyno |
| 9b60 | 6d 69 61 6c 2e 68 65 72 6d 69 74 65 20 69 6d 70 6f 72 74 20 68 65 72 6d 76 61 6e 64 65 72 0a 20 | mial.hermite.import.hermvander.. |
| 9b80 | 20 20 20 3e 3e 3e 20 78 20 3d 20 6e 70 2e 61 72 72 61 79 28 5b 2d 31 2c 20 30 2c 20 31 5d 29 0a | ...>>>.x.=.np.array([-1,.0,.1]). |
| 9ba0 | 20 20 20 20 3e 3e 3e 20 68 65 72 6d 76 61 6e 64 65 72 28 78 2c 20 33 29 0a 20 20 20 20 61 72 72 | ....>>>.hermvander(x,.3).....arr |
| 9bc0 | 61 79 28 5b 5b 20 31 2e 2c 20 2d 32 2e 2c 20 20 32 2e 2c 20 20 34 2e 5d 2c 0a 20 20 20 20 20 20 | ay([[.1.,.-2.,..2.,..4.],....... |
| 9be0 | 20 20 20 20 20 5b 20 31 2e 2c 20 20 30 2e 2c 20 2d 32 2e 2c 20 2d 30 2e 5d 2c 0a 20 20 20 20 20 | .....[.1.,..0.,.-2.,.-0.],...... |
| 9c00 | 20 20 20 20 20 20 5b 20 31 2e 2c 20 20 32 2e 2c 20 20 32 2e 2c 20 2d 34 2e 5d 5d 29 0a 0a 20 20 | ......[.1.,..2.,..2.,.-4.]]).... |
| 9c20 | 20 20 72 2d 00 00 00 72 02 00 00 00 7a 18 64 65 67 20 6d 75 73 74 20 62 65 20 6e 6f 6e 2d 6e 65 | ..r-...r....z.deg.must.be.non-ne |
| 9c40 | 67 61 74 69 76 65 4e 72 04 00 00 00 29 02 72 61 00 00 00 72 60 00 00 00 e7 00 00 00 00 00 00 00 | gativeNr....).ra...r`........... |
| 9c60 | 00 72 50 00 00 00 72 36 00 00 00 72 27 00 00 00 29 0a 72 28 00 00 00 72 67 00 00 00 72 68 00 00 | .rP...r6...r'...).r(...rg...rh.. |
| 9c80 | 00 72 41 00 00 00 72 42 00 00 00 72 6b 00 00 00 72 51 00 00 00 72 52 00 00 00 72 2b 00 00 00 72 | .rA...rB...rk...rQ...rR...r+...r |
| 9ca0 | 6a 00 00 00 29 08 72 7e 00 00 00 72 2d 00 00 00 da 04 69 64 65 67 da 04 64 69 6d 73 da 04 64 74 | j...).r~...r-.....ideg..dims..dt |
| 9cc0 | 79 70 da 01 76 72 80 00 00 00 72 2f 00 00 00 73 08 00 00 00 20 20 20 20 20 20 20 20 72 30 00 00 | yp..vr....r/...s............r0.. |
| 9ce0 | 00 72 18 00 00 00 72 18 00 00 00 65 04 00 00 73 f2 00 00 00 80 00 f4 5a 01 00 0c 0e 8f 3a 89 3a | .r....r....e...s.......Z.....:.: |
| 9d00 | 90 63 98 35 d3 0b 21 80 44 d8 07 0b 88 61 82 78 dc 0e 18 d0 19 33 d3 0e 34 d0 08 34 e4 08 0a 8f | .c.5..!.D....a.x.....3..4..4.... |
| 9d20 | 08 89 08 90 11 98 14 a0 51 d4 08 27 a8 23 d1 08 2d 80 41 d8 0c 10 90 31 89 48 88 3b 98 11 9f 17 | ........Q..'.#..-.A....1.H.;.... |
| 9d40 | 99 17 d1 0b 20 80 44 d8 0b 0c 8f 37 89 37 80 44 dc 08 0a 8f 08 89 08 90 14 98 54 d4 08 22 80 41 | ......D....7.7.D..........T..".A |
| 9d60 | d8 0b 0c 88 71 89 35 90 31 89 39 80 41 80 61 81 44 d8 07 0b 88 61 82 78 d8 0d 0e 90 11 89 55 88 | ....q.5.1.9.A.a.D....a.x......U. |
| 9d80 | 02 d8 0f 11 88 01 88 21 89 04 dc 11 16 90 71 98 24 a0 11 99 28 d3 11 23 f2 00 01 09 3e 88 41 d8 | .......!......q.$...(..#....>.A. |
| 9da0 | 14 15 90 61 98 21 91 65 91 48 98 72 91 4d a0 41 a0 61 a8 21 a1 65 a1 48 b0 01 b0 51 b8 11 b1 55 | ...a.!.e.H.r.M.A.a.!.e.H...Q...U |
| 9dc0 | b1 0b d1 24 3c d1 14 3c 88 41 88 61 8a 44 f0 03 01 09 3e e4 0b 0d 8f 3b 89 3b 90 71 98 21 98 52 | ...$<..<.A.a.D....>....;.;.q.!.R |
| 9de0 | d3 0b 20 d0 04 20 72 31 00 00 00 63 03 00 00 00 00 00 00 00 00 00 00 00 05 00 00 00 03 00 00 00 | ......r1...c.................... |
| 9e00 | f3 48 00 00 00 97 00 74 01 00 00 00 00 00 00 00 00 6a 02 00 00 00 00 00 00 00 00 00 00 00 00 00 | .H.....t.........j.............. |
| 9e20 | 00 00 00 00 00 74 04 00 00 00 00 00 00 00 00 74 04 00 00 00 00 00 00 00 00 66 02 7c 00 7c 01 66 | .....t.........t.........f.|.|.f |
| 9e40 | 02 7c 02 ab 03 00 00 00 00 00 00 53 00 29 01 61 ea 07 00 00 50 73 65 75 64 6f 2d 56 61 6e 64 65 | .|.........S.).a....Pseudo-Vande |
| 9e60 | 72 6d 6f 6e 64 65 20 6d 61 74 72 69 78 20 6f 66 20 67 69 76 65 6e 20 64 65 67 72 65 65 73 2e 0a | rmonde.matrix.of.given.degrees.. |
| 9e80 | 0a 20 20 20 20 52 65 74 75 72 6e 73 20 74 68 65 20 70 73 65 75 64 6f 2d 56 61 6e 64 65 72 6d 6f | .....Returns.the.pseudo-Vandermo |
| 9ea0 | 6e 64 65 20 6d 61 74 72 69 78 20 6f 66 20 64 65 67 72 65 65 73 20 60 64 65 67 60 20 61 6e 64 20 | nde.matrix.of.degrees.`deg`.and. |
| 9ec0 | 73 61 6d 70 6c 65 0a 20 20 20 20 70 6f 69 6e 74 73 20 60 60 28 78 2c 20 79 29 60 60 2e 20 54 68 | sample.....points.``(x,.y)``..Th |
| 9ee0 | 65 20 70 73 65 75 64 6f 2d 56 61 6e 64 65 72 6d 6f 6e 64 65 20 6d 61 74 72 69 78 20 69 73 20 64 | e.pseudo-Vandermonde.matrix.is.d |
| 9f00 | 65 66 69 6e 65 64 20 62 79 0a 0a 20 20 20 20 2e 2e 20 6d 61 74 68 3a 3a 20 56 5b 2e 2e 2e 2c 20 | efined.by.........math::.V[...,. |
| 9f20 | 28 64 65 67 5b 31 5d 20 2b 20 31 29 2a 69 20 2b 20 6a 5d 20 3d 20 48 5f 69 28 78 29 20 2a 20 48 | (deg[1].+.1)*i.+.j].=.H_i(x).*.H |
| 9f40 | 5f 6a 28 79 29 2c 0a 0a 20 20 20 20 77 68 65 72 65 20 60 60 30 20 3c 3d 20 69 20 3c 3d 20 64 65 | _j(y),......where.``0.<=.i.<=.de |
| 9f60 | 67 5b 30 5d 60 60 20 61 6e 64 20 60 60 30 20 3c 3d 20 6a 20 3c 3d 20 64 65 67 5b 31 5d 60 60 2e | g[0]``.and.``0.<=.j.<=.deg[1]``. |
| 9f80 | 20 54 68 65 20 6c 65 61 64 69 6e 67 20 69 6e 64 69 63 65 73 20 6f 66 0a 20 20 20 20 60 56 60 20 | .The.leading.indices.of.....`V`. |
| 9fa0 | 69 6e 64 65 78 20 74 68 65 20 70 6f 69 6e 74 73 20 60 60 28 78 2c 20 79 29 60 60 20 61 6e 64 20 | index.the.points.``(x,.y)``.and. |
| 9fc0 | 74 68 65 20 6c 61 73 74 20 69 6e 64 65 78 20 65 6e 63 6f 64 65 73 20 74 68 65 20 64 65 67 72 65 | the.last.index.encodes.the.degre |
| 9fe0 | 65 73 20 6f 66 0a 20 20 20 20 74 68 65 20 48 65 72 6d 69 74 65 20 70 6f 6c 79 6e 6f 6d 69 61 6c | es.of.....the.Hermite.polynomial |
| a000 | 73 2e 0a 0a 20 20 20 20 49 66 20 60 60 56 20 3d 20 68 65 72 6d 76 61 6e 64 65 72 32 64 28 78 2c | s.......If.``V.=.hermvander2d(x, |
| a020 | 20 79 2c 20 5b 78 64 65 67 2c 20 79 64 65 67 5d 29 60 60 2c 20 74 68 65 6e 20 74 68 65 20 63 6f | .y,.[xdeg,.ydeg])``,.then.the.co |
| a040 | 6c 75 6d 6e 73 20 6f 66 20 60 56 60 0a 20 20 20 20 63 6f 72 72 65 73 70 6f 6e 64 20 74 6f 20 74 | lumns.of.`V`.....correspond.to.t |
| a060 | 68 65 20 65 6c 65 6d 65 6e 74 73 20 6f 66 20 61 20 32 2d 44 20 63 6f 65 66 66 69 63 69 65 6e 74 | he.elements.of.a.2-D.coefficient |
| a080 | 20 61 72 72 61 79 20 60 63 60 20 6f 66 20 73 68 61 70 65 0a 20 20 20 20 28 78 64 65 67 20 2b 20 | .array.`c`.of.shape.....(xdeg.+. |
| a0a0 | 31 2c 20 79 64 65 67 20 2b 20 31 29 20 69 6e 20 74 68 65 20 6f 72 64 65 72 0a 0a 20 20 20 20 2e | 1,.ydeg.+.1).in.the.order....... |
| a0c0 | 2e 20 6d 61 74 68 3a 3a 20 63 5f 7b 30 30 7d 2c 20 63 5f 7b 30 31 7d 2c 20 63 5f 7b 30 32 7d 20 | ..math::.c_{00},.c_{01},.c_{02}. |
| a0e0 | 2e 2e 2e 20 2c 20 63 5f 7b 31 30 7d 2c 20 63 5f 7b 31 31 7d 2c 20 63 5f 7b 31 32 7d 20 2e 2e 2e | ....,.c_{10},.c_{11},.c_{12}.... |
| a100 | 0a 0a 20 20 20 20 61 6e 64 20 60 60 6e 70 2e 64 6f 74 28 56 2c 20 63 2e 66 6c 61 74 29 60 60 20 | ......and.``np.dot(V,.c.flat)``. |
| a120 | 61 6e 64 20 60 60 68 65 72 6d 76 61 6c 32 64 28 78 2c 20 79 2c 20 63 29 60 60 20 77 69 6c 6c 20 | and.``hermval2d(x,.y,.c)``.will. |
| a140 | 62 65 20 74 68 65 20 73 61 6d 65 0a 20 20 20 20 75 70 20 74 6f 20 72 6f 75 6e 64 6f 66 66 2e 20 | be.the.same.....up.to.roundoff.. |
| a160 | 54 68 69 73 20 65 71 75 69 76 61 6c 65 6e 63 65 20 69 73 20 75 73 65 66 75 6c 20 62 6f 74 68 20 | This.equivalence.is.useful.both. |
| a180 | 66 6f 72 20 6c 65 61 73 74 20 73 71 75 61 72 65 73 0a 20 20 20 20 66 69 74 74 69 6e 67 20 61 6e | for.least.squares.....fitting.an |
| a1a0 | 64 20 66 6f 72 20 74 68 65 20 65 76 61 6c 75 61 74 69 6f 6e 20 6f 66 20 61 20 6c 61 72 67 65 20 | d.for.the.evaluation.of.a.large. |
| a1c0 | 6e 75 6d 62 65 72 20 6f 66 20 32 2d 44 20 48 65 72 6d 69 74 65 0a 20 20 20 20 73 65 72 69 65 73 | number.of.2-D.Hermite.....series |
| a1e0 | 20 6f 66 20 74 68 65 20 73 61 6d 65 20 64 65 67 72 65 65 73 20 61 6e 64 20 73 61 6d 70 6c 65 20 | .of.the.same.degrees.and.sample. |
| a200 | 70 6f 69 6e 74 73 2e 0a 0a 20 20 20 20 50 61 72 61 6d 65 74 65 72 73 0a 20 20 20 20 2d 2d 2d 2d | points.......Parameters.....---- |
| a220 | 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 78 2c 20 79 20 3a 20 61 72 72 61 79 5f 6c 69 6b 65 0a 20 20 20 | ------.....x,.y.:.array_like.... |
| a240 | 20 20 20 20 20 41 72 72 61 79 73 20 6f 66 20 70 6f 69 6e 74 20 63 6f 6f 72 64 69 6e 61 74 65 73 | .....Arrays.of.point.coordinates |
| a260 | 2c 20 61 6c 6c 20 6f 66 20 74 68 65 20 73 61 6d 65 20 73 68 61 70 65 2e 20 54 68 65 20 64 74 79 | ,.all.of.the.same.shape..The.dty |
| a280 | 70 65 73 0a 20 20 20 20 20 20 20 20 77 69 6c 6c 20 62 65 20 63 6f 6e 76 65 72 74 65 64 20 74 6f | pes.........will.be.converted.to |
| a2a0 | 20 65 69 74 68 65 72 20 66 6c 6f 61 74 36 34 20 6f 72 20 63 6f 6d 70 6c 65 78 31 32 38 20 64 65 | .either.float64.or.complex128.de |
| a2c0 | 70 65 6e 64 69 6e 67 20 6f 6e 0a 20 20 20 20 20 20 20 20 77 68 65 74 68 65 72 20 61 6e 79 20 6f | pending.on.........whether.any.o |
| a2e0 | 66 20 74 68 65 20 65 6c 65 6d 65 6e 74 73 20 61 72 65 20 63 6f 6d 70 6c 65 78 2e 20 53 63 61 6c | f.the.elements.are.complex..Scal |
| a300 | 61 72 73 20 61 72 65 20 63 6f 6e 76 65 72 74 65 64 20 74 6f 20 31 2d 44 0a 20 20 20 20 20 20 20 | ars.are.converted.to.1-D........ |
| a320 | 20 61 72 72 61 79 73 2e 0a 20 20 20 20 64 65 67 20 3a 20 6c 69 73 74 20 6f 66 20 69 6e 74 73 0a | .arrays......deg.:.list.of.ints. |
| a340 | 20 20 20 20 20 20 20 20 4c 69 73 74 20 6f 66 20 6d 61 78 69 6d 75 6d 20 64 65 67 72 65 65 73 20 | ........List.of.maximum.degrees. |
| a360 | 6f 66 20 74 68 65 20 66 6f 72 6d 20 5b 78 5f 64 65 67 2c 20 79 5f 64 65 67 5d 2e 0a 0a 20 20 20 | of.the.form.[x_deg,.y_deg]...... |
| a380 | 20 52 65 74 75 72 6e 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 76 61 6e 64 65 72 32 | .Returns.....-------.....vander2 |
| a3a0 | 64 20 3a 20 6e 64 61 72 72 61 79 0a 20 20 20 20 20 20 20 20 54 68 65 20 73 68 61 70 65 20 6f 66 | d.:.ndarray.........The.shape.of |
| a3c0 | 20 74 68 65 20 72 65 74 75 72 6e 65 64 20 6d 61 74 72 69 78 20 69 73 20 60 60 78 2e 73 68 61 70 | .the.returned.matrix.is.``x.shap |
| a3e0 | 65 20 2b 20 28 6f 72 64 65 72 2c 29 60 60 2c 20 77 68 65 72 65 0a 20 20 20 20 20 20 20 20 3a 6d | e.+.(order,)``,.where.........:m |
| a400 | 61 74 68 3a 60 6f 72 64 65 72 20 3d 20 28 64 65 67 5b 30 5d 2b 31 29 2a 28 64 65 67 5b 31 5d 2b | ath:`order.=.(deg[0]+1)*(deg[1]+ |
| a420 | 31 29 60 2e 20 20 54 68 65 20 64 74 79 70 65 20 77 69 6c 6c 20 62 65 20 74 68 65 20 73 61 6d 65 | 1)`...The.dtype.will.be.the.same |
| a440 | 0a 20 20 20 20 20 20 20 20 61 73 20 74 68 65 20 63 6f 6e 76 65 72 74 65 64 20 60 78 60 20 61 6e | .........as.the.converted.`x`.an |
| a460 | 64 20 60 79 60 2e 0a 0a 20 20 20 20 53 65 65 20 41 6c 73 6f 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d | d.`y`.......See.Also.....------- |
| a480 | 2d 0a 20 20 20 20 68 65 72 6d 76 61 6e 64 65 72 2c 20 68 65 72 6d 76 61 6e 64 65 72 33 64 2c 20 | -.....hermvander,.hermvander3d,. |
| a4a0 | 68 65 72 6d 76 61 6c 32 64 2c 20 68 65 72 6d 76 61 6c 33 64 0a 0a 20 20 20 20 45 78 61 6d 70 6c | hermval2d,.hermval3d......Exampl |
| a4c0 | 65 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 3e 3e 3e 20 69 6d 70 6f 72 74 20 6e | es.....--------.....>>>.import.n |
| a4e0 | 75 6d 70 79 20 61 73 20 6e 70 0a 20 20 20 20 3e 3e 3e 20 66 72 6f 6d 20 6e 75 6d 70 79 2e 70 6f | umpy.as.np.....>>>.from.numpy.po |
| a500 | 6c 79 6e 6f 6d 69 61 6c 2e 68 65 72 6d 69 74 65 20 69 6d 70 6f 72 74 20 68 65 72 6d 76 61 6e 64 | lynomial.hermite.import.hermvand |
| a520 | 65 72 32 64 0a 20 20 20 20 3e 3e 3e 20 78 20 3d 20 6e 70 2e 61 72 72 61 79 28 5b 2d 31 2c 20 30 | er2d.....>>>.x.=.np.array([-1,.0 |
| a540 | 2c 20 31 5d 29 0a 20 20 20 20 3e 3e 3e 20 79 20 3d 20 6e 70 2e 61 72 72 61 79 28 5b 2d 31 2c 20 | ,.1]).....>>>.y.=.np.array([-1,. |
| a560 | 30 2c 20 31 5d 29 0a 20 20 20 20 3e 3e 3e 20 68 65 72 6d 76 61 6e 64 65 72 32 64 28 78 2c 20 79 | 0,.1]).....>>>.hermvander2d(x,.y |
| a580 | 2c 20 5b 32 2c 20 32 5d 29 0a 20 20 20 20 61 72 72 61 79 28 5b 5b 20 31 2e 2c 20 2d 32 2e 2c 20 | ,.[2,.2]).....array([[.1.,.-2.,. |
| a5a0 | 20 32 2e 2c 20 2d 32 2e 2c 20 20 34 2e 2c 20 2d 34 2e 2c 20 20 32 2e 2c 20 2d 34 2e 2c 20 20 34 | .2.,.-2.,..4.,.-4.,..2.,.-4.,..4 |
| a5c0 | 2e 5d 2c 0a 20 20 20 20 20 20 20 20 20 20 20 5b 20 31 2e 2c 20 20 30 2e 2c 20 2d 32 2e 2c 20 20 | .],............[.1.,..0.,.-2.,.. |
| a5e0 | 30 2e 2c 20 20 30 2e 2c 20 2d 30 2e 2c 20 2d 32 2e 2c 20 2d 30 2e 2c 20 20 34 2e 5d 2c 0a 20 20 | 0.,..0.,.-0.,.-2.,.-0.,..4.],... |
| a600 | 20 20 20 20 20 20 20 20 20 5b 20 31 2e 2c 20 20 32 2e 2c 20 20 32 2e 2c 20 20 32 2e 2c 20 20 34 | .........[.1.,..2.,..2.,..2.,..4 |
| a620 | 2e 2c 20 20 34 2e 2c 20 20 32 2e 2c 20 20 34 2e 2c 20 20 34 2e 5d 5d 29 0a 0a 20 20 20 20 a9 03 | .,..4.,..2.,..4.,..4.]])........ |
| a640 | 72 28 00 00 00 da 0f 5f 76 61 6e 64 65 72 5f 6e 64 5f 66 6c 61 74 72 18 00 00 00 29 03 72 7e 00 | r(....._vander_nd_flatr....).r~. |
| a660 | 00 00 72 85 00 00 00 72 2d 00 00 00 73 03 00 00 00 20 20 20 72 30 00 00 00 72 21 00 00 00 72 21 | ..r....r-...s.......r0...r!...r! |
| a680 | 00 00 00 a3 04 00 00 73 23 00 00 00 80 00 f4 70 01 00 0c 0e d7 0b 1d d1 0b 1d 9c 7a ac 3a d0 1e | .......s#......p...........z.:.. |
| a6a0 | 36 b8 11 b8 41 b8 06 c0 03 d3 0b 44 d0 04 44 72 31 00 00 00 63 04 00 00 00 00 00 00 00 00 00 00 | 6...A......D..Dr1...c........... |
| a6c0 | 00 06 00 00 00 03 00 00 00 f3 54 00 00 00 97 00 74 01 00 00 00 00 00 00 00 00 6a 02 00 00 00 00 | ..........T.....t.........j..... |
| a6e0 | 00 00 00 00 00 00 00 00 00 00 00 00 00 00 74 04 00 00 00 00 00 00 00 00 74 04 00 00 00 00 00 00 | ..............t.........t....... |
| a700 | 00 00 74 04 00 00 00 00 00 00 00 00 66 03 7c 00 7c 01 7c 02 66 03 7c 03 ab 03 00 00 00 00 00 00 | ..t.........f.|.|.|.f.|......... |
| a720 | 53 00 29 01 61 5d 08 00 00 50 73 65 75 64 6f 2d 56 61 6e 64 65 72 6d 6f 6e 64 65 20 6d 61 74 72 | S.).a]...Pseudo-Vandermonde.matr |
| a740 | 69 78 20 6f 66 20 67 69 76 65 6e 20 64 65 67 72 65 65 73 2e 0a 0a 20 20 20 20 52 65 74 75 72 6e | ix.of.given.degrees.......Return |
| a760 | 73 20 74 68 65 20 70 73 65 75 64 6f 2d 56 61 6e 64 65 72 6d 6f 6e 64 65 20 6d 61 74 72 69 78 20 | s.the.pseudo-Vandermonde.matrix. |
| a780 | 6f 66 20 64 65 67 72 65 65 73 20 60 64 65 67 60 20 61 6e 64 20 73 61 6d 70 6c 65 0a 20 20 20 20 | of.degrees.`deg`.and.sample..... |
| a7a0 | 70 6f 69 6e 74 73 20 60 60 28 78 2c 20 79 2c 20 7a 29 60 60 2e 20 49 66 20 60 6c 60 2c 20 60 6d | points.``(x,.y,.z)``..If.`l`,.`m |
| a7c0 | 60 2c 20 60 6e 60 20 61 72 65 20 74 68 65 20 67 69 76 65 6e 20 64 65 67 72 65 65 73 20 69 6e 20 | `,.`n`.are.the.given.degrees.in. |
| a7e0 | 60 78 60 2c 20 60 79 60 2c 20 60 7a 60 2c 0a 20 20 20 20 74 68 65 6e 20 54 68 65 20 70 73 65 75 | `x`,.`y`,.`z`,.....then.The.pseu |
| a800 | 64 6f 2d 56 61 6e 64 65 72 6d 6f 6e 64 65 20 6d 61 74 72 69 78 20 69 73 20 64 65 66 69 6e 65 64 | do-Vandermonde.matrix.is.defined |
| a820 | 20 62 79 0a 0a 20 20 20 20 2e 2e 20 6d 61 74 68 3a 3a 20 56 5b 2e 2e 2e 2c 20 28 6d 2b 31 29 28 | .by.........math::.V[...,.(m+1)( |
| a840 | 6e 2b 31 29 69 20 2b 20 28 6e 2b 31 29 6a 20 2b 20 6b 5d 20 3d 20 48 5f 69 28 78 29 2a 48 5f 6a | n+1)i.+.(n+1)j.+.k].=.H_i(x)*H_j |
| a860 | 28 79 29 2a 48 5f 6b 28 7a 29 2c 0a 0a 20 20 20 20 77 68 65 72 65 20 60 60 30 20 3c 3d 20 69 20 | (y)*H_k(z),......where.``0.<=.i. |
| a880 | 3c 3d 20 6c 60 60 2c 20 60 60 30 20 3c 3d 20 6a 20 3c 3d 20 6d 60 60 2c 20 61 6e 64 20 60 60 30 | <=.l``,.``0.<=.j.<=.m``,.and.``0 |
| a8a0 | 20 3c 3d 20 6a 20 3c 3d 20 6e 60 60 2e 20 20 54 68 65 20 6c 65 61 64 69 6e 67 0a 20 20 20 20 69 | .<=.j.<=.n``...The.leading.....i |
| a8c0 | 6e 64 69 63 65 73 20 6f 66 20 60 56 60 20 69 6e 64 65 78 20 74 68 65 20 70 6f 69 6e 74 73 20 60 | ndices.of.`V`.index.the.points.` |
| a8e0 | 60 28 78 2c 20 79 2c 20 7a 29 60 60 20 61 6e 64 20 74 68 65 20 6c 61 73 74 20 69 6e 64 65 78 20 | `(x,.y,.z)``.and.the.last.index. |
| a900 | 65 6e 63 6f 64 65 73 0a 20 20 20 20 74 68 65 20 64 65 67 72 65 65 73 20 6f 66 20 74 68 65 20 48 | encodes.....the.degrees.of.the.H |
| a920 | 65 72 6d 69 74 65 20 70 6f 6c 79 6e 6f 6d 69 61 6c 73 2e 0a 0a 20 20 20 20 49 66 20 60 60 56 20 | ermite.polynomials.......If.``V. |
| a940 | 3d 20 68 65 72 6d 76 61 6e 64 65 72 33 64 28 78 2c 20 79 2c 20 7a 2c 20 5b 78 64 65 67 2c 20 79 | =.hermvander3d(x,.y,.z,.[xdeg,.y |
| a960 | 64 65 67 2c 20 7a 64 65 67 5d 29 60 60 2c 20 74 68 65 6e 20 74 68 65 20 63 6f 6c 75 6d 6e 73 0a | deg,.zdeg])``,.then.the.columns. |
| a980 | 20 20 20 20 6f 66 20 60 56 60 20 63 6f 72 72 65 73 70 6f 6e 64 20 74 6f 20 74 68 65 20 65 6c 65 | ....of.`V`.correspond.to.the.ele |
| a9a0 | 6d 65 6e 74 73 20 6f 66 20 61 20 33 2d 44 20 63 6f 65 66 66 69 63 69 65 6e 74 20 61 72 72 61 79 | ments.of.a.3-D.coefficient.array |
| a9c0 | 20 60 63 60 20 6f 66 0a 20 20 20 20 73 68 61 70 65 20 28 78 64 65 67 20 2b 20 31 2c 20 79 64 65 | .`c`.of.....shape.(xdeg.+.1,.yde |
| a9e0 | 67 20 2b 20 31 2c 20 7a 64 65 67 20 2b 20 31 29 20 69 6e 20 74 68 65 20 6f 72 64 65 72 0a 0a 20 | g.+.1,.zdeg.+.1).in.the.order... |
| aa00 | 20 20 20 2e 2e 20 6d 61 74 68 3a 3a 20 63 5f 7b 30 30 30 7d 2c 20 63 5f 7b 30 30 31 7d 2c 20 63 | ......math::.c_{000},.c_{001},.c |
| aa20 | 5f 7b 30 30 32 7d 2c 2e 2e 2e 20 2c 20 63 5f 7b 30 31 30 7d 2c 20 63 5f 7b 30 31 31 7d 2c 20 63 | _{002},....,.c_{010},.c_{011},.c |
| aa40 | 5f 7b 30 31 32 7d 2c 2e 2e 2e 0a 0a 20 20 20 20 61 6e 64 20 20 60 60 6e 70 2e 64 6f 74 28 56 2c | _{012},.........and..``np.dot(V, |
| aa60 | 20 63 2e 66 6c 61 74 29 60 60 20 61 6e 64 20 60 60 68 65 72 6d 76 61 6c 33 64 28 78 2c 20 79 2c | .c.flat)``.and.``hermval3d(x,.y, |
| aa80 | 20 7a 2c 20 63 29 60 60 20 77 69 6c 6c 20 62 65 20 74 68 65 0a 20 20 20 20 73 61 6d 65 20 75 70 | .z,.c)``.will.be.the.....same.up |
| aaa0 | 20 74 6f 20 72 6f 75 6e 64 6f 66 66 2e 20 54 68 69 73 20 65 71 75 69 76 61 6c 65 6e 63 65 20 69 | .to.roundoff..This.equivalence.i |
| aac0 | 73 20 75 73 65 66 75 6c 20 62 6f 74 68 20 66 6f 72 20 6c 65 61 73 74 20 73 71 75 61 72 65 73 0a | s.useful.both.for.least.squares. |
| aae0 | 20 20 20 20 66 69 74 74 69 6e 67 20 61 6e 64 20 66 6f 72 20 74 68 65 20 65 76 61 6c 75 61 74 69 | ....fitting.and.for.the.evaluati |
| ab00 | 6f 6e 20 6f 66 20 61 20 6c 61 72 67 65 20 6e 75 6d 62 65 72 20 6f 66 20 33 2d 44 20 48 65 72 6d | on.of.a.large.number.of.3-D.Herm |
| ab20 | 69 74 65 0a 20 20 20 20 73 65 72 69 65 73 20 6f 66 20 74 68 65 20 73 61 6d 65 20 64 65 67 72 65 | ite.....series.of.the.same.degre |
| ab40 | 65 73 20 61 6e 64 20 73 61 6d 70 6c 65 20 70 6f 69 6e 74 73 2e 0a 0a 20 20 20 20 50 61 72 61 6d | es.and.sample.points.......Param |
| ab60 | 65 74 65 72 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 78 2c 20 79 2c 20 7a | eters.....----------.....x,.y,.z |
| ab80 | 20 3a 20 61 72 72 61 79 5f 6c 69 6b 65 0a 20 20 20 20 20 20 20 20 41 72 72 61 79 73 20 6f 66 20 | .:.array_like.........Arrays.of. |
| aba0 | 70 6f 69 6e 74 20 63 6f 6f 72 64 69 6e 61 74 65 73 2c 20 61 6c 6c 20 6f 66 20 74 68 65 20 73 61 | point.coordinates,.all.of.the.sa |
| abc0 | 6d 65 20 73 68 61 70 65 2e 20 54 68 65 20 64 74 79 70 65 73 20 77 69 6c 6c 0a 20 20 20 20 20 20 | me.shape..The.dtypes.will....... |
| abe0 | 20 20 62 65 20 63 6f 6e 76 65 72 74 65 64 20 74 6f 20 65 69 74 68 65 72 20 66 6c 6f 61 74 36 34 | ..be.converted.to.either.float64 |
| ac00 | 20 6f 72 20 63 6f 6d 70 6c 65 78 31 32 38 20 64 65 70 65 6e 64 69 6e 67 20 6f 6e 20 77 68 65 74 | .or.complex128.depending.on.whet |
| ac20 | 68 65 72 0a 20 20 20 20 20 20 20 20 61 6e 79 20 6f 66 20 74 68 65 20 65 6c 65 6d 65 6e 74 73 20 | her.........any.of.the.elements. |
| ac40 | 61 72 65 20 63 6f 6d 70 6c 65 78 2e 20 53 63 61 6c 61 72 73 20 61 72 65 20 63 6f 6e 76 65 72 74 | are.complex..Scalars.are.convert |
| ac60 | 65 64 20 74 6f 20 31 2d 44 0a 20 20 20 20 20 20 20 20 61 72 72 61 79 73 2e 0a 20 20 20 20 64 65 | ed.to.1-D.........arrays......de |
| ac80 | 67 20 3a 20 6c 69 73 74 20 6f 66 20 69 6e 74 73 0a 20 20 20 20 20 20 20 20 4c 69 73 74 20 6f 66 | g.:.list.of.ints.........List.of |
| aca0 | 20 6d 61 78 69 6d 75 6d 20 64 65 67 72 65 65 73 20 6f 66 20 74 68 65 20 66 6f 72 6d 20 5b 78 5f | .maximum.degrees.of.the.form.[x_ |
| acc0 | 64 65 67 2c 20 79 5f 64 65 67 2c 20 7a 5f 64 65 67 5d 2e 0a 0a 20 20 20 20 52 65 74 75 72 6e 73 | deg,.y_deg,.z_deg].......Returns |
| ace0 | 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 76 61 6e 64 65 72 33 64 20 3a 20 6e 64 61 72 | .....-------.....vander3d.:.ndar |
| ad00 | 72 61 79 0a 20 20 20 20 20 20 20 20 54 68 65 20 73 68 61 70 65 20 6f 66 20 74 68 65 20 72 65 74 | ray.........The.shape.of.the.ret |
| ad20 | 75 72 6e 65 64 20 6d 61 74 72 69 78 20 69 73 20 60 60 78 2e 73 68 61 70 65 20 2b 20 28 6f 72 64 | urned.matrix.is.``x.shape.+.(ord |
| ad40 | 65 72 2c 29 60 60 2c 20 77 68 65 72 65 0a 20 20 20 20 20 20 20 20 3a 6d 61 74 68 3a 60 6f 72 64 | er,)``,.where.........:math:`ord |
| ad60 | 65 72 20 3d 20 28 64 65 67 5b 30 5d 2b 31 29 2a 28 64 65 67 5b 31 5d 2b 31 29 2a 28 64 65 67 5b | er.=.(deg[0]+1)*(deg[1]+1)*(deg[ |
| ad80 | 32 5d 2b 31 29 60 2e 20 20 54 68 65 20 64 74 79 70 65 20 77 69 6c 6c 0a 20 20 20 20 20 20 20 20 | 2]+1)`...The.dtype.will......... |
| ada0 | 62 65 20 74 68 65 20 73 61 6d 65 20 61 73 20 74 68 65 20 63 6f 6e 76 65 72 74 65 64 20 60 78 60 | be.the.same.as.the.converted.`x` |
| adc0 | 2c 20 60 79 60 2c 20 61 6e 64 20 60 7a 60 2e 0a 0a 20 20 20 20 53 65 65 20 41 6c 73 6f 0a 20 20 | ,.`y`,.and.`z`.......See.Also... |
| ade0 | 20 20 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 68 65 72 6d 76 61 6e 64 65 72 2c 20 68 65 72 6d 76 | ..--------.....hermvander,.hermv |
| ae00 | 61 6e 64 65 72 33 64 2c 20 68 65 72 6d 76 61 6c 32 64 2c 20 68 65 72 6d 76 61 6c 33 64 0a 0a 20 | ander3d,.hermval2d,.hermval3d... |
| ae20 | 20 20 20 45 78 61 6d 70 6c 65 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 3e 3e 3e | ...Examples.....--------.....>>> |
| ae40 | 20 66 72 6f 6d 20 6e 75 6d 70 79 2e 70 6f 6c 79 6e 6f 6d 69 61 6c 2e 68 65 72 6d 69 74 65 20 69 | .from.numpy.polynomial.hermite.i |
| ae60 | 6d 70 6f 72 74 20 68 65 72 6d 76 61 6e 64 65 72 33 64 0a 20 20 20 20 3e 3e 3e 20 78 20 3d 20 6e | mport.hermvander3d.....>>>.x.=.n |
| ae80 | 70 2e 61 72 72 61 79 28 5b 2d 31 2c 20 30 2c 20 31 5d 29 0a 20 20 20 20 3e 3e 3e 20 79 20 3d 20 | p.array([-1,.0,.1]).....>>>.y.=. |
| aea0 | 6e 70 2e 61 72 72 61 79 28 5b 2d 31 2c 20 30 2c 20 31 5d 29 0a 20 20 20 20 3e 3e 3e 20 7a 20 3d | np.array([-1,.0,.1]).....>>>.z.= |
| aec0 | 20 6e 70 2e 61 72 72 61 79 28 5b 2d 31 2c 20 30 2c 20 31 5d 29 0a 20 20 20 20 3e 3e 3e 20 68 65 | .np.array([-1,.0,.1]).....>>>.he |
| aee0 | 72 6d 76 61 6e 64 65 72 33 64 28 78 2c 20 79 2c 20 7a 2c 20 5b 30 2c 20 31 2c 20 32 5d 29 0a 20 | rmvander3d(x,.y,.z,.[0,.1,.2]).. |
| af00 | 20 20 20 61 72 72 61 79 28 5b 5b 20 31 2e 2c 20 2d 32 2e 2c 20 20 32 2e 2c 20 2d 32 2e 2c 20 20 | ...array([[.1.,.-2.,..2.,.-2.,.. |
| af20 | 34 2e 2c 20 2d 34 2e 5d 2c 0a 20 20 20 20 20 20 20 20 20 20 20 5b 20 31 2e 2c 20 20 30 2e 2c 20 | 4.,.-4.],............[.1.,..0.,. |
| af40 | 2d 32 2e 2c 20 20 30 2e 2c 20 20 30 2e 2c 20 2d 30 2e 5d 2c 0a 20 20 20 20 20 20 20 20 20 20 20 | -2.,..0.,..0.,.-0.],............ |
| af60 | 5b 20 31 2e 2c 20 20 32 2e 2c 20 20 32 2e 2c 20 20 32 2e 2c 20 20 34 2e 2c 20 20 34 2e 5d 5d 29 | [.1.,..2.,..2.,..2.,..4.,..4.]]) |
| af80 | 0a 0a 20 20 20 20 72 94 00 00 00 29 04 72 7e 00 00 00 72 85 00 00 00 72 8b 00 00 00 72 2d 00 00 | ......r....).r~...r....r....r-.. |
| afa0 | 00 73 04 00 00 00 20 20 20 20 72 30 00 00 00 72 22 00 00 00 72 22 00 00 00 de 04 00 00 73 27 00 | .s........r0...r"...r".......s'. |
| afc0 | 00 00 80 00 f4 72 01 00 0c 0e d7 0b 1d d1 0b 1d 9c 7a ac 3a b4 7a d0 1e 42 c0 51 c8 01 c8 31 c0 | .....r...........z.:.z..B.Q...1. |
| afe0 | 49 c8 73 d3 0b 53 d0 04 53 72 31 00 00 00 63 06 00 00 00 00 00 00 00 00 00 00 00 09 00 00 00 03 | I.s..S..Sr1...c................. |
| b000 | 00 00 00 f3 40 00 00 00 97 00 74 01 00 00 00 00 00 00 00 00 6a 02 00 00 00 00 00 00 00 00 00 00 | ....@.....t.........j........... |
| b020 | 00 00 00 00 00 00 00 00 74 04 00 00 00 00 00 00 00 00 7c 00 7c 01 7c 02 7c 03 7c 04 7c 05 ab 07 | ........t.........|.|.|.|.|.|... |
| b040 | 00 00 00 00 00 00 53 00 29 01 61 91 15 00 00 0a 20 20 20 20 4c 65 61 73 74 20 73 71 75 61 72 65 | ......S.).a.........Least.square |
| b060 | 73 20 66 69 74 20 6f 66 20 48 65 72 6d 69 74 65 20 73 65 72 69 65 73 20 74 6f 20 64 61 74 61 2e | s.fit.of.Hermite.series.to.data. |
| b080 | 0a 0a 20 20 20 20 52 65 74 75 72 6e 20 74 68 65 20 63 6f 65 66 66 69 63 69 65 6e 74 73 20 6f 66 | ......Return.the.coefficients.of |
| b0a0 | 20 61 20 48 65 72 6d 69 74 65 20 73 65 72 69 65 73 20 6f 66 20 64 65 67 72 65 65 20 60 64 65 67 | .a.Hermite.series.of.degree.`deg |
| b0c0 | 60 20 74 68 61 74 20 69 73 20 74 68 65 0a 20 20 20 20 6c 65 61 73 74 20 73 71 75 61 72 65 73 20 | `.that.is.the.....least.squares. |
| b0e0 | 66 69 74 20 74 6f 20 74 68 65 20 64 61 74 61 20 76 61 6c 75 65 73 20 60 79 60 20 67 69 76 65 6e | fit.to.the.data.values.`y`.given |
| b100 | 20 61 74 20 70 6f 69 6e 74 73 20 60 78 60 2e 20 49 66 20 60 79 60 20 69 73 0a 20 20 20 20 31 2d | .at.points.`x`..If.`y`.is.....1- |
| b120 | 44 20 74 68 65 20 72 65 74 75 72 6e 65 64 20 63 6f 65 66 66 69 63 69 65 6e 74 73 20 77 69 6c 6c | D.the.returned.coefficients.will |
| b140 | 20 61 6c 73 6f 20 62 65 20 31 2d 44 2e 20 49 66 20 60 79 60 20 69 73 20 32 2d 44 20 6d 75 6c 74 | .also.be.1-D..If.`y`.is.2-D.mult |
| b160 | 69 70 6c 65 0a 20 20 20 20 66 69 74 73 20 61 72 65 20 64 6f 6e 65 2c 20 6f 6e 65 20 66 6f 72 20 | iple.....fits.are.done,.one.for. |
| b180 | 65 61 63 68 20 63 6f 6c 75 6d 6e 20 6f 66 20 60 79 60 2c 20 61 6e 64 20 74 68 65 20 72 65 73 75 | each.column.of.`y`,.and.the.resu |
| b1a0 | 6c 74 69 6e 67 0a 20 20 20 20 63 6f 65 66 66 69 63 69 65 6e 74 73 20 61 72 65 20 73 74 6f 72 65 | lting.....coefficients.are.store |
| b1c0 | 64 20 69 6e 20 74 68 65 20 63 6f 72 72 65 73 70 6f 6e 64 69 6e 67 20 63 6f 6c 75 6d 6e 73 20 6f | d.in.the.corresponding.columns.o |
| b1e0 | 66 20 61 20 32 2d 44 20 72 65 74 75 72 6e 2e 0a 20 20 20 20 54 68 65 20 66 69 74 74 65 64 20 70 | f.a.2-D.return......The.fitted.p |
| b200 | 6f 6c 79 6e 6f 6d 69 61 6c 28 73 29 20 61 72 65 20 69 6e 20 74 68 65 20 66 6f 72 6d 0a 0a 20 20 | olynomial(s).are.in.the.form.... |
| b220 | 20 20 2e 2e 20 6d 61 74 68 3a 3a 20 20 70 28 78 29 20 3d 20 63 5f 30 20 2b 20 63 5f 31 20 2a 20 | .....math::..p(x).=.c_0.+.c_1.*. |
| b240 | 48 5f 31 28 78 29 20 2b 20 2e 2e 2e 20 2b 20 63 5f 6e 20 2a 20 48 5f 6e 28 78 29 2c 0a 0a 20 20 | H_1(x).+.....+.c_n.*.H_n(x),.... |
| b260 | 20 20 77 68 65 72 65 20 60 6e 60 20 69 73 20 60 64 65 67 60 2e 0a 0a 20 20 20 20 50 61 72 61 6d | ..where.`n`.is.`deg`.......Param |
| b280 | 65 74 65 72 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 78 20 3a 20 61 72 72 | eters.....----------.....x.:.arr |
| b2a0 | 61 79 5f 6c 69 6b 65 2c 20 73 68 61 70 65 20 28 4d 2c 29 0a 20 20 20 20 20 20 20 20 78 2d 63 6f | ay_like,.shape.(M,).........x-co |
| b2c0 | 6f 72 64 69 6e 61 74 65 73 20 6f 66 20 74 68 65 20 4d 20 73 61 6d 70 6c 65 20 70 6f 69 6e 74 73 | ordinates.of.the.M.sample.points |
| b2e0 | 20 60 60 28 78 5b 69 5d 2c 20 79 5b 69 5d 29 60 60 2e 0a 20 20 20 20 79 20 3a 20 61 72 72 61 79 | .``(x[i],.y[i])``......y.:.array |
| b300 | 5f 6c 69 6b 65 2c 20 73 68 61 70 65 20 28 4d 2c 29 20 6f 72 20 28 4d 2c 20 4b 29 0a 20 20 20 20 | _like,.shape.(M,).or.(M,.K)..... |
| b320 | 20 20 20 20 79 2d 63 6f 6f 72 64 69 6e 61 74 65 73 20 6f 66 20 74 68 65 20 73 61 6d 70 6c 65 20 | ....y-coordinates.of.the.sample. |
| b340 | 70 6f 69 6e 74 73 2e 20 53 65 76 65 72 61 6c 20 64 61 74 61 20 73 65 74 73 20 6f 66 20 73 61 6d | points..Several.data.sets.of.sam |
| b360 | 70 6c 65 0a 20 20 20 20 20 20 20 20 70 6f 69 6e 74 73 20 73 68 61 72 69 6e 67 20 74 68 65 20 73 | ple.........points.sharing.the.s |
| b380 | 61 6d 65 20 78 2d 63 6f 6f 72 64 69 6e 61 74 65 73 20 63 61 6e 20 62 65 20 66 69 74 74 65 64 20 | ame.x-coordinates.can.be.fitted. |
| b3a0 | 61 74 20 6f 6e 63 65 20 62 79 0a 20 20 20 20 20 20 20 20 70 61 73 73 69 6e 67 20 69 6e 20 61 20 | at.once.by.........passing.in.a. |
| b3c0 | 32 44 2d 61 72 72 61 79 20 74 68 61 74 20 63 6f 6e 74 61 69 6e 73 20 6f 6e 65 20 64 61 74 61 73 | 2D-array.that.contains.one.datas |
| b3e0 | 65 74 20 70 65 72 20 63 6f 6c 75 6d 6e 2e 0a 20 20 20 20 64 65 67 20 3a 20 69 6e 74 20 6f 72 20 | et.per.column......deg.:.int.or. |
| b400 | 31 2d 44 20 61 72 72 61 79 5f 6c 69 6b 65 0a 20 20 20 20 20 20 20 20 44 65 67 72 65 65 28 73 29 | 1-D.array_like.........Degree(s) |
| b420 | 20 6f 66 20 74 68 65 20 66 69 74 74 69 6e 67 20 70 6f 6c 79 6e 6f 6d 69 61 6c 73 2e 20 49 66 20 | .of.the.fitting.polynomials..If. |
| b440 | 60 64 65 67 60 20 69 73 20 61 20 73 69 6e 67 6c 65 20 69 6e 74 65 67 65 72 0a 20 20 20 20 20 20 | `deg`.is.a.single.integer....... |
| b460 | 20 20 61 6c 6c 20 74 65 72 6d 73 20 75 70 20 74 6f 20 61 6e 64 20 69 6e 63 6c 75 64 69 6e 67 20 | ..all.terms.up.to.and.including. |
| b480 | 74 68 65 20 60 64 65 67 60 27 74 68 20 74 65 72 6d 20 61 72 65 20 69 6e 63 6c 75 64 65 64 20 69 | the.`deg`'th.term.are.included.i |
| b4a0 | 6e 20 74 68 65 0a 20 20 20 20 20 20 20 20 66 69 74 2e 20 46 6f 72 20 4e 75 6d 50 79 20 76 65 72 | n.the.........fit..For.NumPy.ver |
| b4c0 | 73 69 6f 6e 73 20 3e 3d 20 31 2e 31 31 2e 30 20 61 20 6c 69 73 74 20 6f 66 20 69 6e 74 65 67 65 | sions.>=.1.11.0.a.list.of.intege |
| b4e0 | 72 73 20 73 70 65 63 69 66 79 69 6e 67 20 74 68 65 0a 20 20 20 20 20 20 20 20 64 65 67 72 65 65 | rs.specifying.the.........degree |
| b500 | 73 20 6f 66 20 74 68 65 20 74 65 72 6d 73 20 74 6f 20 69 6e 63 6c 75 64 65 20 6d 61 79 20 62 65 | s.of.the.terms.to.include.may.be |
| b520 | 20 75 73 65 64 20 69 6e 73 74 65 61 64 2e 0a 20 20 20 20 72 63 6f 6e 64 20 3a 20 66 6c 6f 61 74 | .used.instead......rcond.:.float |
| b540 | 2c 20 6f 70 74 69 6f 6e 61 6c 0a 20 20 20 20 20 20 20 20 52 65 6c 61 74 69 76 65 20 63 6f 6e 64 | ,.optional.........Relative.cond |
| b560 | 69 74 69 6f 6e 20 6e 75 6d 62 65 72 20 6f 66 20 74 68 65 20 66 69 74 2e 20 53 69 6e 67 75 6c 61 | ition.number.of.the.fit..Singula |
| b580 | 72 20 76 61 6c 75 65 73 20 73 6d 61 6c 6c 65 72 20 74 68 61 6e 0a 20 20 20 20 20 20 20 20 74 68 | r.values.smaller.than.........th |
| b5a0 | 69 73 20 72 65 6c 61 74 69 76 65 20 74 6f 20 74 68 65 20 6c 61 72 67 65 73 74 20 73 69 6e 67 75 | is.relative.to.the.largest.singu |
| b5c0 | 6c 61 72 20 76 61 6c 75 65 20 77 69 6c 6c 20 62 65 20 69 67 6e 6f 72 65 64 2e 20 54 68 65 0a 20 | lar.value.will.be.ignored..The.. |
| b5e0 | 20 20 20 20 20 20 20 64 65 66 61 75 6c 74 20 76 61 6c 75 65 20 69 73 20 6c 65 6e 28 78 29 2a 65 | .......default.value.is.len(x)*e |
| b600 | 70 73 2c 20 77 68 65 72 65 20 65 70 73 20 69 73 20 74 68 65 20 72 65 6c 61 74 69 76 65 20 70 72 | ps,.where.eps.is.the.relative.pr |
| b620 | 65 63 69 73 69 6f 6e 20 6f 66 0a 20 20 20 20 20 20 20 20 74 68 65 20 66 6c 6f 61 74 20 74 79 70 | ecision.of.........the.float.typ |
| b640 | 65 2c 20 61 62 6f 75 74 20 32 65 2d 31 36 20 69 6e 20 6d 6f 73 74 20 63 61 73 65 73 2e 0a 20 20 | e,.about.2e-16.in.most.cases.... |
| b660 | 20 20 66 75 6c 6c 20 3a 20 62 6f 6f 6c 2c 20 6f 70 74 69 6f 6e 61 6c 0a 20 20 20 20 20 20 20 20 | ..full.:.bool,.optional......... |
| b680 | 53 77 69 74 63 68 20 64 65 74 65 72 6d 69 6e 69 6e 67 20 6e 61 74 75 72 65 20 6f 66 20 72 65 74 | Switch.determining.nature.of.ret |
| b6a0 | 75 72 6e 20 76 61 6c 75 65 2e 20 57 68 65 6e 20 69 74 20 69 73 20 46 61 6c 73 65 20 28 74 68 65 | urn.value..When.it.is.False.(the |
| b6c0 | 0a 20 20 20 20 20 20 20 20 64 65 66 61 75 6c 74 29 20 6a 75 73 74 20 74 68 65 20 63 6f 65 66 66 | .........default).just.the.coeff |
| b6e0 | 69 63 69 65 6e 74 73 20 61 72 65 20 72 65 74 75 72 6e 65 64 2c 20 77 68 65 6e 20 54 72 75 65 20 | icients.are.returned,.when.True. |
| b700 | 64 69 61 67 6e 6f 73 74 69 63 0a 20 20 20 20 20 20 20 20 69 6e 66 6f 72 6d 61 74 69 6f 6e 20 66 | diagnostic.........information.f |
| b720 | 72 6f 6d 20 74 68 65 20 73 69 6e 67 75 6c 61 72 20 76 61 6c 75 65 20 64 65 63 6f 6d 70 6f 73 69 | rom.the.singular.value.decomposi |
| b740 | 74 69 6f 6e 20 69 73 20 61 6c 73 6f 20 72 65 74 75 72 6e 65 64 2e 0a 20 20 20 20 77 20 3a 20 61 | tion.is.also.returned......w.:.a |
| b760 | 72 72 61 79 5f 6c 69 6b 65 2c 20 73 68 61 70 65 20 28 60 4d 60 2c 29 2c 20 6f 70 74 69 6f 6e 61 | rray_like,.shape.(`M`,),.optiona |
| b780 | 6c 0a 20 20 20 20 20 20 20 20 57 65 69 67 68 74 73 2e 20 49 66 20 6e 6f 74 20 4e 6f 6e 65 2c 20 | l.........Weights..If.not.None,. |
| b7a0 | 74 68 65 20 77 65 69 67 68 74 20 60 60 77 5b 69 5d 60 60 20 61 70 70 6c 69 65 73 20 74 6f 20 74 | the.weight.``w[i]``.applies.to.t |
| b7c0 | 68 65 20 75 6e 73 71 75 61 72 65 64 0a 20 20 20 20 20 20 20 20 72 65 73 69 64 75 61 6c 20 60 60 | he.unsquared.........residual.`` |
| b7e0 | 79 5b 69 5d 20 2d 20 79 5f 68 61 74 5b 69 5d 60 60 20 61 74 20 60 60 78 5b 69 5d 60 60 2e 20 49 | y[i].-.y_hat[i]``.at.``x[i]``..I |
| b800 | 64 65 61 6c 6c 79 20 74 68 65 20 77 65 69 67 68 74 73 20 61 72 65 0a 20 20 20 20 20 20 20 20 63 | deally.the.weights.are.........c |
| b820 | 68 6f 73 65 6e 20 73 6f 20 74 68 61 74 20 74 68 65 20 65 72 72 6f 72 73 20 6f 66 20 74 68 65 20 | hosen.so.that.the.errors.of.the. |
| b840 | 70 72 6f 64 75 63 74 73 20 60 60 77 5b 69 5d 2a 79 5b 69 5d 60 60 20 61 6c 6c 20 68 61 76 65 20 | products.``w[i]*y[i]``.all.have. |
| b860 | 74 68 65 0a 20 20 20 20 20 20 20 20 73 61 6d 65 20 76 61 72 69 61 6e 63 65 2e 20 20 57 68 65 6e | the.........same.variance...When |
| b880 | 20 75 73 69 6e 67 20 69 6e 76 65 72 73 65 2d 76 61 72 69 61 6e 63 65 20 77 65 69 67 68 74 69 6e | .using.inverse-variance.weightin |
| b8a0 | 67 2c 20 75 73 65 0a 20 20 20 20 20 20 20 20 60 60 77 5b 69 5d 20 3d 20 31 2f 73 69 67 6d 61 28 | g,.use.........``w[i].=.1/sigma( |
| b8c0 | 79 5b 69 5d 29 60 60 2e 20 20 54 68 65 20 64 65 66 61 75 6c 74 20 76 61 6c 75 65 20 69 73 20 4e | y[i])``...The.default.value.is.N |
| b8e0 | 6f 6e 65 2e 0a 0a 20 20 20 20 52 65 74 75 72 6e 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 0a 20 20 | one.......Returns.....-------... |
| b900 | 20 20 63 6f 65 66 20 3a 20 6e 64 61 72 72 61 79 2c 20 73 68 61 70 65 20 28 4d 2c 29 20 6f 72 20 | ..coef.:.ndarray,.shape.(M,).or. |
| b920 | 28 4d 2c 20 4b 29 0a 20 20 20 20 20 20 20 20 48 65 72 6d 69 74 65 20 63 6f 65 66 66 69 63 69 65 | (M,.K).........Hermite.coefficie |
| b940 | 6e 74 73 20 6f 72 64 65 72 65 64 20 66 72 6f 6d 20 6c 6f 77 20 74 6f 20 68 69 67 68 2e 20 49 66 | nts.ordered.from.low.to.high..If |
| b960 | 20 60 79 60 20 77 61 73 20 32 2d 44 2c 0a 20 20 20 20 20 20 20 20 74 68 65 20 63 6f 65 66 66 69 | .`y`.was.2-D,.........the.coeffi |
| b980 | 63 69 65 6e 74 73 20 66 6f 72 20 74 68 65 20 64 61 74 61 20 69 6e 20 63 6f 6c 75 6d 6e 20 6b 20 | cients.for.the.data.in.column.k. |
| b9a0 | 20 6f 66 20 60 79 60 20 61 72 65 20 69 6e 20 63 6f 6c 75 6d 6e 0a 20 20 20 20 20 20 20 20 60 6b | .of.`y`.are.in.column.........`k |
| b9c0 | 60 2e 0a 0a 20 20 20 20 5b 72 65 73 69 64 75 61 6c 73 2c 20 72 61 6e 6b 2c 20 73 69 6e 67 75 6c | `.......[residuals,.rank,.singul |
| b9e0 | 61 72 5f 76 61 6c 75 65 73 2c 20 72 63 6f 6e 64 5d 20 3a 20 6c 69 73 74 0a 20 20 20 20 20 20 20 | ar_values,.rcond].:.list........ |
| ba00 | 20 54 68 65 73 65 20 76 61 6c 75 65 73 20 61 72 65 20 6f 6e 6c 79 20 72 65 74 75 72 6e 65 64 20 | .These.values.are.only.returned. |
| ba20 | 69 66 20 60 60 66 75 6c 6c 20 3d 3d 20 54 72 75 65 60 60 0a 0a 20 20 20 20 20 20 20 20 2d 20 72 | if.``full.==.True``..........-.r |
| ba40 | 65 73 69 64 75 61 6c 73 20 2d 2d 20 73 75 6d 20 6f 66 20 73 71 75 61 72 65 64 20 72 65 73 69 64 | esiduals.--.sum.of.squared.resid |
| ba60 | 75 61 6c 73 20 6f 66 20 74 68 65 20 6c 65 61 73 74 20 73 71 75 61 72 65 73 20 66 69 74 0a 20 20 | uals.of.the.least.squares.fit... |
| ba80 | 20 20 20 20 20 20 2d 20 72 61 6e 6b 20 2d 2d 20 74 68 65 20 6e 75 6d 65 72 69 63 61 6c 20 72 61 | ......-.rank.--.the.numerical.ra |
| baa0 | 6e 6b 20 6f 66 20 74 68 65 20 73 63 61 6c 65 64 20 56 61 6e 64 65 72 6d 6f 6e 64 65 20 6d 61 74 | nk.of.the.scaled.Vandermonde.mat |
| bac0 | 72 69 78 0a 20 20 20 20 20 20 20 20 2d 20 73 69 6e 67 75 6c 61 72 5f 76 61 6c 75 65 73 20 2d 2d | rix.........-.singular_values.-- |
| bae0 | 20 73 69 6e 67 75 6c 61 72 20 76 61 6c 75 65 73 20 6f 66 20 74 68 65 20 73 63 61 6c 65 64 20 56 | .singular.values.of.the.scaled.V |
| bb00 | 61 6e 64 65 72 6d 6f 6e 64 65 20 6d 61 74 72 69 78 0a 20 20 20 20 20 20 20 20 2d 20 72 63 6f 6e | andermonde.matrix.........-.rcon |
| bb20 | 64 20 2d 2d 20 76 61 6c 75 65 20 6f 66 20 60 72 63 6f 6e 64 60 2e 0a 0a 20 20 20 20 20 20 20 20 | d.--.value.of.`rcond`........... |
| bb40 | 46 6f 72 20 6d 6f 72 65 20 64 65 74 61 69 6c 73 2c 20 73 65 65 20 60 6e 75 6d 70 79 2e 6c 69 6e | For.more.details,.see.`numpy.lin |
| bb60 | 61 6c 67 2e 6c 73 74 73 71 60 2e 0a 0a 20 20 20 20 57 61 72 6e 73 0a 20 20 20 20 2d 2d 2d 2d 2d | alg.lstsq`.......Warns.....----- |
| bb80 | 0a 20 20 20 20 52 61 6e 6b 57 61 72 6e 69 6e 67 0a 20 20 20 20 20 20 20 20 54 68 65 20 72 61 6e | .....RankWarning.........The.ran |
| bba0 | 6b 20 6f 66 20 74 68 65 20 63 6f 65 66 66 69 63 69 65 6e 74 20 6d 61 74 72 69 78 20 69 6e 20 74 | k.of.the.coefficient.matrix.in.t |
| bbc0 | 68 65 20 6c 65 61 73 74 2d 73 71 75 61 72 65 73 20 66 69 74 20 69 73 0a 20 20 20 20 20 20 20 20 | he.least-squares.fit.is......... |
| bbe0 | 64 65 66 69 63 69 65 6e 74 2e 20 54 68 65 20 77 61 72 6e 69 6e 67 20 69 73 20 6f 6e 6c 79 20 72 | deficient..The.warning.is.only.r |
| bc00 | 61 69 73 65 64 20 69 66 20 60 60 66 75 6c 6c 20 3d 3d 20 46 61 6c 73 65 60 60 2e 20 20 54 68 65 | aised.if.``full.==.False``...The |
| bc20 | 0a 20 20 20 20 20 20 20 20 77 61 72 6e 69 6e 67 73 20 63 61 6e 20 62 65 20 74 75 72 6e 65 64 20 | .........warnings.can.be.turned. |
| bc40 | 6f 66 66 20 62 79 0a 0a 20 20 20 20 20 20 20 20 3e 3e 3e 20 69 6d 70 6f 72 74 20 77 61 72 6e 69 | off.by..........>>>.import.warni |
| bc60 | 6e 67 73 0a 20 20 20 20 20 20 20 20 3e 3e 3e 20 77 61 72 6e 69 6e 67 73 2e 73 69 6d 70 6c 65 66 | ngs.........>>>.warnings.simplef |
| bc80 | 69 6c 74 65 72 28 27 69 67 6e 6f 72 65 27 2c 20 6e 70 2e 65 78 63 65 70 74 69 6f 6e 73 2e 52 61 | ilter('ignore',.np.exceptions.Ra |
| bca0 | 6e 6b 57 61 72 6e 69 6e 67 29 0a 0a 20 20 20 20 53 65 65 20 41 6c 73 6f 0a 20 20 20 20 2d 2d 2d | nkWarning)......See.Also.....--- |
| bcc0 | 2d 2d 2d 2d 2d 0a 20 20 20 20 6e 75 6d 70 79 2e 70 6f 6c 79 6e 6f 6d 69 61 6c 2e 63 68 65 62 79 | -----.....numpy.polynomial.cheby |
| bce0 | 73 68 65 76 2e 63 68 65 62 66 69 74 0a 20 20 20 20 6e 75 6d 70 79 2e 70 6f 6c 79 6e 6f 6d 69 61 | shev.chebfit.....numpy.polynomia |
| bd00 | 6c 2e 6c 65 67 65 6e 64 72 65 2e 6c 65 67 66 69 74 0a 20 20 20 20 6e 75 6d 70 79 2e 70 6f 6c 79 | l.legendre.legfit.....numpy.poly |
| bd20 | 6e 6f 6d 69 61 6c 2e 6c 61 67 75 65 72 72 65 2e 6c 61 67 66 69 74 0a 20 20 20 20 6e 75 6d 70 79 | nomial.laguerre.lagfit.....numpy |
| bd40 | 2e 70 6f 6c 79 6e 6f 6d 69 61 6c 2e 70 6f 6c 79 6e 6f 6d 69 61 6c 2e 70 6f 6c 79 66 69 74 0a 20 | .polynomial.polynomial.polyfit.. |
| bd60 | 20 20 20 6e 75 6d 70 79 2e 70 6f 6c 79 6e 6f 6d 69 61 6c 2e 68 65 72 6d 69 74 65 5f 65 2e 68 65 | ...numpy.polynomial.hermite_e.he |
| bd80 | 72 6d 65 66 69 74 0a 20 20 20 20 68 65 72 6d 76 61 6c 20 3a 20 45 76 61 6c 75 61 74 65 73 20 61 | rmefit.....hermval.:.Evaluates.a |
| bda0 | 20 48 65 72 6d 69 74 65 20 73 65 72 69 65 73 2e 0a 20 20 20 20 68 65 72 6d 76 61 6e 64 65 72 20 | .Hermite.series......hermvander. |
| bdc0 | 3a 20 56 61 6e 64 65 72 6d 6f 6e 64 65 20 6d 61 74 72 69 78 20 6f 66 20 48 65 72 6d 69 74 65 20 | :.Vandermonde.matrix.of.Hermite. |
| bde0 | 73 65 72 69 65 73 2e 0a 20 20 20 20 68 65 72 6d 77 65 69 67 68 74 20 3a 20 48 65 72 6d 69 74 65 | series......hermweight.:.Hermite |
| be00 | 20 77 65 69 67 68 74 20 66 75 6e 63 74 69 6f 6e 0a 20 20 20 20 6e 75 6d 70 79 2e 6c 69 6e 61 6c | .weight.function.....numpy.linal |
| be20 | 67 2e 6c 73 74 73 71 20 3a 20 43 6f 6d 70 75 74 65 73 20 61 20 6c 65 61 73 74 2d 73 71 75 61 72 | g.lstsq.:.Computes.a.least-squar |
| be40 | 65 73 20 66 69 74 20 66 72 6f 6d 20 74 68 65 20 6d 61 74 72 69 78 2e 0a 20 20 20 20 73 63 69 70 | es.fit.from.the.matrix......scip |
| be60 | 79 2e 69 6e 74 65 72 70 6f 6c 61 74 65 2e 55 6e 69 76 61 72 69 61 74 65 53 70 6c 69 6e 65 20 3a | y.interpolate.UnivariateSpline.: |
| be80 | 20 43 6f 6d 70 75 74 65 73 20 73 70 6c 69 6e 65 20 66 69 74 73 2e 0a 0a 20 20 20 20 4e 6f 74 65 | .Computes.spline.fits.......Note |
| bea0 | 73 0a 20 20 20 20 2d 2d 2d 2d 2d 0a 20 20 20 20 54 68 65 20 73 6f 6c 75 74 69 6f 6e 20 69 73 20 | s.....-----.....The.solution.is. |
| bec0 | 74 68 65 20 63 6f 65 66 66 69 63 69 65 6e 74 73 20 6f 66 20 74 68 65 20 48 65 72 6d 69 74 65 20 | the.coefficients.of.the.Hermite. |
| bee0 | 73 65 72 69 65 73 20 60 70 60 20 74 68 61 74 0a 20 20 20 20 6d 69 6e 69 6d 69 7a 65 73 20 74 68 | series.`p`.that.....minimizes.th |
| bf00 | 65 20 73 75 6d 20 6f 66 20 74 68 65 20 77 65 69 67 68 74 65 64 20 73 71 75 61 72 65 64 20 65 72 | e.sum.of.the.weighted.squared.er |
| bf20 | 72 6f 72 73 0a 0a 20 20 20 20 2e 2e 20 6d 61 74 68 3a 3a 20 45 20 3d 20 5c 73 75 6d 5f 6a 20 77 | rors.........math::.E.=.\sum_j.w |
| bf40 | 5f 6a 5e 32 20 2a 20 7c 79 5f 6a 20 2d 20 70 28 78 5f 6a 29 7c 5e 32 2c 0a 0a 20 20 20 20 77 68 | _j^2.*.|y_j.-.p(x_j)|^2,......wh |
| bf60 | 65 72 65 20 74 68 65 20 3a 6d 61 74 68 3a 60 77 5f 6a 60 20 61 72 65 20 74 68 65 20 77 65 69 67 | ere.the.:math:`w_j`.are.the.weig |
| bf80 | 68 74 73 2e 20 54 68 69 73 20 70 72 6f 62 6c 65 6d 20 69 73 20 73 6f 6c 76 65 64 20 62 79 0a 20 | hts..This.problem.is.solved.by.. |
| bfa0 | 20 20 20 73 65 74 74 69 6e 67 20 75 70 20 74 68 65 20 28 74 79 70 69 63 61 6c 6c 79 29 20 6f 76 | ...setting.up.the.(typically).ov |
| bfc0 | 65 72 64 65 74 65 72 6d 69 6e 65 64 20 6d 61 74 72 69 78 20 65 71 75 61 74 69 6f 6e 0a 0a 20 20 | erdetermined.matrix.equation.... |
| bfe0 | 20 20 2e 2e 20 6d 61 74 68 3a 3a 20 56 28 78 29 20 2a 20 63 20 3d 20 77 20 2a 20 79 2c 0a 0a 20 | .....math::.V(x).*.c.=.w.*.y,... |
| c000 | 20 20 20 77 68 65 72 65 20 60 56 60 20 69 73 20 74 68 65 20 77 65 69 67 68 74 65 64 20 70 73 65 | ...where.`V`.is.the.weighted.pse |
| c020 | 75 64 6f 20 56 61 6e 64 65 72 6d 6f 6e 64 65 20 6d 61 74 72 69 78 20 6f 66 20 60 78 60 2c 20 60 | udo.Vandermonde.matrix.of.`x`,.` |
| c040 | 63 60 20 61 72 65 20 74 68 65 0a 20 20 20 20 63 6f 65 66 66 69 63 69 65 6e 74 73 20 74 6f 20 62 | c`.are.the.....coefficients.to.b |
| c060 | 65 20 73 6f 6c 76 65 64 20 66 6f 72 2c 20 60 77 60 20 61 72 65 20 74 68 65 20 77 65 69 67 68 74 | e.solved.for,.`w`.are.the.weight |
| c080 | 73 2c 20 60 79 60 20 61 72 65 20 74 68 65 0a 20 20 20 20 6f 62 73 65 72 76 65 64 20 76 61 6c 75 | s,.`y`.are.the.....observed.valu |
| c0a0 | 65 73 2e 20 20 54 68 69 73 20 65 71 75 61 74 69 6f 6e 20 69 73 20 74 68 65 6e 20 73 6f 6c 76 65 | es...This.equation.is.then.solve |
| c0c0 | 64 20 75 73 69 6e 67 20 74 68 65 20 73 69 6e 67 75 6c 61 72 20 76 61 6c 75 65 0a 20 20 20 20 64 | d.using.the.singular.value.....d |
| c0e0 | 65 63 6f 6d 70 6f 73 69 74 69 6f 6e 20 6f 66 20 60 56 60 2e 0a 0a 20 20 20 20 49 66 20 73 6f 6d | ecomposition.of.`V`.......If.som |
| c100 | 65 20 6f 66 20 74 68 65 20 73 69 6e 67 75 6c 61 72 20 76 61 6c 75 65 73 20 6f 66 20 60 56 60 20 | e.of.the.singular.values.of.`V`. |
| c120 | 61 72 65 20 73 6f 20 73 6d 61 6c 6c 20 74 68 61 74 20 74 68 65 79 20 61 72 65 0a 20 20 20 20 6e | are.so.small.that.they.are.....n |
| c140 | 65 67 6c 65 63 74 65 64 2c 20 74 68 65 6e 20 61 20 60 7e 65 78 63 65 70 74 69 6f 6e 73 2e 52 61 | eglected,.then.a.`~exceptions.Ra |
| c160 | 6e 6b 57 61 72 6e 69 6e 67 60 20 77 69 6c 6c 20 62 65 20 69 73 73 75 65 64 2e 20 54 68 69 73 20 | nkWarning`.will.be.issued..This. |
| c180 | 6d 65 61 6e 73 20 74 68 61 74 0a 20 20 20 20 74 68 65 20 63 6f 65 66 66 69 63 69 65 6e 74 20 76 | means.that.....the.coefficient.v |
| c1a0 | 61 6c 75 65 73 20 6d 61 79 20 62 65 20 70 6f 6f 72 6c 79 20 64 65 74 65 72 6d 69 6e 65 64 2e 20 | alues.may.be.poorly.determined.. |
| c1c0 | 55 73 69 6e 67 20 61 20 6c 6f 77 65 72 20 6f 72 64 65 72 20 66 69 74 0a 20 20 20 20 77 69 6c 6c | Using.a.lower.order.fit.....will |
| c1e0 | 20 75 73 75 61 6c 6c 79 20 67 65 74 20 72 69 64 20 6f 66 20 74 68 65 20 77 61 72 6e 69 6e 67 2e | .usually.get.rid.of.the.warning. |
| c200 | 20 20 54 68 65 20 60 72 63 6f 6e 64 60 20 70 61 72 61 6d 65 74 65 72 20 63 61 6e 20 61 6c 73 6f | ..The.`rcond`.parameter.can.also |
| c220 | 20 62 65 0a 20 20 20 20 73 65 74 20 74 6f 20 61 20 76 61 6c 75 65 20 73 6d 61 6c 6c 65 72 20 74 | .be.....set.to.a.value.smaller.t |
| c240 | 68 61 6e 20 69 74 73 20 64 65 66 61 75 6c 74 2c 20 62 75 74 20 74 68 65 20 72 65 73 75 6c 74 69 | han.its.default,.but.the.resulti |
| c260 | 6e 67 20 66 69 74 20 6d 61 79 20 62 65 0a 20 20 20 20 73 70 75 72 69 6f 75 73 20 61 6e 64 20 68 | ng.fit.may.be.....spurious.and.h |
| c280 | 61 76 65 20 6c 61 72 67 65 20 63 6f 6e 74 72 69 62 75 74 69 6f 6e 73 20 66 72 6f 6d 20 72 6f 75 | ave.large.contributions.from.rou |
| c2a0 | 6e 64 6f 66 66 20 65 72 72 6f 72 2e 0a 0a 20 20 20 20 46 69 74 73 20 75 73 69 6e 67 20 48 65 72 | ndoff.error.......Fits.using.Her |
| c2c0 | 6d 69 74 65 20 73 65 72 69 65 73 20 61 72 65 20 70 72 6f 62 61 62 6c 79 20 6d 6f 73 74 20 75 73 | mite.series.are.probably.most.us |
| c2e0 | 65 66 75 6c 20 77 68 65 6e 20 74 68 65 20 64 61 74 61 20 63 61 6e 20 62 65 0a 20 20 20 20 61 70 | eful.when.the.data.can.be.....ap |
| c300 | 70 72 6f 78 69 6d 61 74 65 64 20 62 79 20 60 60 73 71 72 74 28 77 28 78 29 29 20 2a 20 70 28 78 | proximated.by.``sqrt(w(x)).*.p(x |
| c320 | 29 60 60 2c 20 77 68 65 72 65 20 60 60 77 28 78 29 60 60 20 69 73 20 74 68 65 20 48 65 72 6d 69 | )``,.where.``w(x)``.is.the.Hermi |
| c340 | 74 65 0a 20 20 20 20 77 65 69 67 68 74 2e 20 49 6e 20 74 68 61 74 20 63 61 73 65 20 74 68 65 20 | te.....weight..In.that.case.the. |
| c360 | 77 65 69 67 68 74 20 60 60 73 71 72 74 28 77 28 78 5b 69 5d 29 29 60 60 20 73 68 6f 75 6c 64 20 | weight.``sqrt(w(x[i]))``.should. |
| c380 | 62 65 20 75 73 65 64 0a 20 20 20 20 74 6f 67 65 74 68 65 72 20 77 69 74 68 20 64 61 74 61 20 76 | be.used.....together.with.data.v |
| c3a0 | 61 6c 75 65 73 20 60 60 79 5b 69 5d 2f 73 71 72 74 28 77 28 78 5b 69 5d 29 29 60 60 2e 20 54 68 | alues.``y[i]/sqrt(w(x[i]))``..Th |
| c3c0 | 65 20 77 65 69 67 68 74 20 66 75 6e 63 74 69 6f 6e 20 69 73 0a 20 20 20 20 61 76 61 69 6c 61 62 | e.weight.function.is.....availab |
| c3e0 | 6c 65 20 61 73 20 60 68 65 72 6d 77 65 69 67 68 74 60 2e 0a 0a 20 20 20 20 52 65 66 65 72 65 6e | le.as.`hermweight`.......Referen |
| c400 | 63 65 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 2e 2e 20 5b 31 5d 20 57 69 | ces.....----------........[1].Wi |
| c420 | 6b 69 70 65 64 69 61 2c 20 22 43 75 72 76 65 20 66 69 74 74 69 6e 67 22 2c 0a 20 20 20 20 20 20 | kipedia,."Curve.fitting",....... |
| c440 | 20 20 20 20 20 68 74 74 70 73 3a 2f 2f 65 6e 2e 77 69 6b 69 70 65 64 69 61 2e 6f 72 67 2f 77 69 | .....https://en.wikipedia.org/wi |
| c460 | 6b 69 2f 43 75 72 76 65 5f 66 69 74 74 69 6e 67 0a 0a 20 20 20 20 45 78 61 6d 70 6c 65 73 0a 20 | ki/Curve_fitting......Examples.. |
| c480 | 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 3e 3e 3e 20 69 6d 70 6f 72 74 20 6e 75 6d 70 79 | ...--------.....>>>.import.numpy |
| c4a0 | 20 61 73 20 6e 70 0a 20 20 20 20 3e 3e 3e 20 66 72 6f 6d 20 6e 75 6d 70 79 2e 70 6f 6c 79 6e 6f | .as.np.....>>>.from.numpy.polyno |
| c4c0 | 6d 69 61 6c 2e 68 65 72 6d 69 74 65 20 69 6d 70 6f 72 74 20 68 65 72 6d 66 69 74 2c 20 68 65 72 | mial.hermite.import.hermfit,.her |
| c4e0 | 6d 76 61 6c 0a 20 20 20 20 3e 3e 3e 20 78 20 3d 20 6e 70 2e 6c 69 6e 73 70 61 63 65 28 2d 31 30 | mval.....>>>.x.=.np.linspace(-10 |
| c500 | 2c 20 31 30 29 0a 20 20 20 20 3e 3e 3e 20 72 6e 67 20 3d 20 6e 70 2e 72 61 6e 64 6f 6d 2e 64 65 | ,.10).....>>>.rng.=.np.random.de |
| c520 | 66 61 75 6c 74 5f 72 6e 67 28 29 0a 20 20 20 20 3e 3e 3e 20 65 72 72 20 3d 20 72 6e 67 2e 6e 6f | fault_rng().....>>>.err.=.rng.no |
| c540 | 72 6d 61 6c 28 73 63 61 6c 65 3d 31 2e 2f 31 30 2c 20 73 69 7a 65 3d 6c 65 6e 28 78 29 29 0a 20 | rmal(scale=1./10,.size=len(x)).. |
| c560 | 20 20 20 3e 3e 3e 20 79 20 3d 20 68 65 72 6d 76 61 6c 28 78 2c 20 5b 31 2c 20 32 2c 20 33 5d 29 | ...>>>.y.=.hermval(x,.[1,.2,.3]) |
| c580 | 20 2b 20 65 72 72 0a 20 20 20 20 3e 3e 3e 20 68 65 72 6d 66 69 74 28 78 2c 20 79 2c 20 32 29 0a | .+.err.....>>>.hermfit(x,.y,.2). |
| c5a0 | 20 20 20 20 61 72 72 61 79 28 5b 31 2e 30 32 32 39 34 39 36 37 2c 20 32 2e 30 30 30 31 36 34 30 | ....array([1.02294967,.2.0001640 |
| c5c0 | 33 2c 20 32 2e 39 39 39 39 34 36 31 34 5d 29 20 23 20 6d 61 79 20 76 61 72 79 0a 0a 20 20 20 20 | 3,.2.99994614]).#.may.vary...... |
| c5e0 | 29 03 72 28 00 00 00 da 04 5f 66 69 74 72 18 00 00 00 29 06 72 7e 00 00 00 72 85 00 00 00 72 2d | ).r(....._fitr....).r~...r....r- |
| c600 | 00 00 00 da 05 72 63 6f 6e 64 da 04 66 75 6c 6c da 01 77 73 06 00 00 00 20 20 20 20 20 20 72 30 | .....rcond..full..ws..........r0 |
| c620 | 00 00 00 72 19 00 00 00 72 19 00 00 00 1a 05 00 00 73 20 00 00 00 80 00 f4 46 04 00 0c 0e 8f 37 | ...r....r........s.......F.....7 |
| c640 | 89 37 94 3a 98 71 a0 21 a0 53 a8 25 b0 14 b0 71 d3 0b 39 d0 04 39 72 31 00 00 00 63 01 00 00 00 | .7.:.q.!.S.%...q..9..9r1...c.... |
| c660 | 00 00 00 00 00 00 00 00 0c 00 00 00 03 00 00 00 f3 16 03 00 00 97 00 74 01 00 00 00 00 00 00 00 | .......................t........ |
| c680 | 00 6a 02 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 7c 00 67 01 ab 01 00 00 00 00 00 | .j...................|.g........ |
| c6a0 | 00 5c 01 00 00 7d 00 74 05 00 00 00 00 00 00 00 00 7c 00 ab 01 00 00 00 00 00 00 64 01 6b 02 00 | .\...}.t.........|.........d.k.. |
| c6c0 | 00 72 0b 74 07 00 00 00 00 00 00 00 00 64 02 ab 01 00 00 00 00 00 00 82 01 74 05 00 00 00 00 00 | .r.t.........d...........t...... |
| c6e0 | 00 00 00 7c 00 ab 01 00 00 00 00 00 00 64 01 6b 28 00 00 72 23 74 09 00 00 00 00 00 00 00 00 6a | ...|.........d.k(..r#t.........j |
| c700 | 0a 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 64 03 7c 00 64 04 19 00 00 00 7a 05 00 | ...................d.|.d.....z.. |
| c720 | 00 7c 00 64 05 19 00 00 00 7a 0b 00 00 67 01 67 01 ab 01 00 00 00 00 00 00 53 00 74 05 00 00 00 | .|.d.....z...g.g.........S.t.... |
| c740 | 00 00 00 00 00 7c 00 ab 01 00 00 00 00 00 00 64 05 7a 0a 00 00 7d 01 74 09 00 00 00 00 00 00 00 | .....|.........d.z...}.t........ |
| c760 | 00 6a 0c 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 7c 01 7c 01 66 02 7c 00 6a 0e 00 | .j...................|.|.f.|.j.. |
| c780 | 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ac 06 ab 02 00 00 00 00 00 00 7d 02 74 09 00 | ...........................}.t.. |
| c7a0 | 00 00 00 00 00 00 00 6a 10 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 64 07 64 07 74 | .......j...................d.d.t |
| c7c0 | 09 00 00 00 00 00 00 00 00 6a 12 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 64 08 74 | .........j...................d.t |
| c7e0 | 09 00 00 00 00 00 00 00 00 6a 14 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 7c 01 64 | .........j...................|.d |
| c800 | 05 7a 0a 00 00 64 04 64 09 ab 03 00 00 00 00 00 00 7a 05 00 00 ab 01 00 00 00 00 00 00 7a 0b 00 | .z...d.d.........z...........z.. |
| c820 | 00 66 02 ab 01 00 00 00 00 00 00 7d 03 74 08 00 00 00 00 00 00 00 00 6a 16 00 00 00 00 00 00 00 | .f.........}.t.........j........ |
| c840 | 00 00 00 00 00 00 00 00 00 00 00 6a 19 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 7c | ...........j...................| |
| c860 | 03 ab 01 00 00 00 00 00 00 64 0a 64 0a 64 09 85 03 19 00 00 00 7d 03 7c 02 6a 1b 00 00 00 00 00 | .........d.d.d.......}.|.j...... |
| c880 | 00 00 00 00 00 00 00 00 00 00 00 00 00 64 09 ab 01 00 00 00 00 00 00 64 05 64 0a 7c 01 64 05 7a | .............d.........d.d.|.d.z |
| c8a0 | 00 00 00 85 03 19 00 00 00 7d 04 7c 02 6a 1b 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 | .........}.|.j.................. |
| c8c0 | 00 64 09 ab 01 00 00 00 00 00 00 7c 01 64 0a 7c 01 64 05 7a 00 00 00 85 03 19 00 00 00 7d 05 74 | .d.........|.d.|.d.z.........}.t |
| c8e0 | 09 00 00 00 00 00 00 00 00 6a 12 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 64 0b 74 | .........j...................d.t |
| c900 | 09 00 00 00 00 00 00 00 00 6a 14 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 64 05 7c | .........j...................d.| |
| c920 | 01 ab 02 00 00 00 00 00 00 7a 05 00 00 ab 01 00 00 00 00 00 00 7c 04 64 0c 3c 00 00 00 7c 04 7c | .........z...........|.d.<...|.| |
| c940 | 05 64 0c 3c 00 00 00 7c 02 64 0a 64 0a 85 02 64 09 66 02 78 02 78 02 19 00 00 00 7c 03 7c 00 64 | .d.<...|.d.d...d.f.x.x.....|.|.d |
| c960 | 0a 64 09 1a 00 7a 05 00 00 64 08 7c 00 64 09 19 00 00 00 7a 05 00 00 7a 0b 00 00 7a 17 00 00 63 | .d...z...d.|.d.....z...z...z...c |
| c980 | 03 63 02 3c 00 00 00 7c 02 53 00 29 0d 61 22 03 00 00 52 65 74 75 72 6e 20 74 68 65 20 73 63 61 | .c.<...|.S.).a"...Return.the.sca |
| c9a0 | 6c 65 64 20 63 6f 6d 70 61 6e 69 6f 6e 20 6d 61 74 72 69 78 20 6f 66 20 63 2e 0a 0a 20 20 20 20 | led.companion.matrix.of.c....... |
| c9c0 | 54 68 65 20 62 61 73 69 73 20 70 6f 6c 79 6e 6f 6d 69 61 6c 73 20 61 72 65 20 73 63 61 6c 65 64 | The.basis.polynomials.are.scaled |
| c9e0 | 20 73 6f 20 74 68 61 74 20 74 68 65 20 63 6f 6d 70 61 6e 69 6f 6e 20 6d 61 74 72 69 78 20 69 73 | .so.that.the.companion.matrix.is |
| ca00 | 0a 20 20 20 20 73 79 6d 6d 65 74 72 69 63 20 77 68 65 6e 20 60 63 60 20 69 73 20 61 6e 20 48 65 | .....symmetric.when.`c`.is.an.He |
| ca20 | 72 6d 69 74 65 20 62 61 73 69 73 20 70 6f 6c 79 6e 6f 6d 69 61 6c 2e 20 54 68 69 73 20 70 72 6f | rmite.basis.polynomial..This.pro |
| ca40 | 76 69 64 65 73 0a 20 20 20 20 62 65 74 74 65 72 20 65 69 67 65 6e 76 61 6c 75 65 20 65 73 74 69 | vides.....better.eigenvalue.esti |
| ca60 | 6d 61 74 65 73 20 74 68 61 6e 20 74 68 65 20 75 6e 73 63 61 6c 65 64 20 63 61 73 65 20 61 6e 64 | mates.than.the.unscaled.case.and |
| ca80 | 20 66 6f 72 20 62 61 73 69 73 0a 20 20 20 20 70 6f 6c 79 6e 6f 6d 69 61 6c 73 20 74 68 65 20 65 | .for.basis.....polynomials.the.e |
| caa0 | 69 67 65 6e 76 61 6c 75 65 73 20 61 72 65 20 67 75 61 72 61 6e 74 65 65 64 20 74 6f 20 62 65 20 | igenvalues.are.guaranteed.to.be. |
| cac0 | 72 65 61 6c 20 69 66 0a 20 20 20 20 60 6e 75 6d 70 79 2e 6c 69 6e 61 6c 67 2e 65 69 67 76 61 6c | real.if.....`numpy.linalg.eigval |
| cae0 | 73 68 60 20 69 73 20 75 73 65 64 20 74 6f 20 6f 62 74 61 69 6e 20 74 68 65 6d 2e 0a 0a 20 20 20 | sh`.is.used.to.obtain.them...... |
| cb00 | 20 50 61 72 61 6d 65 74 65 72 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 63 | .Parameters.....----------.....c |
| cb20 | 20 3a 20 61 72 72 61 79 5f 6c 69 6b 65 0a 20 20 20 20 20 20 20 20 31 2d 44 20 61 72 72 61 79 20 | .:.array_like.........1-D.array. |
| cb40 | 6f 66 20 48 65 72 6d 69 74 65 20 73 65 72 69 65 73 20 63 6f 65 66 66 69 63 69 65 6e 74 73 20 6f | of.Hermite.series.coefficients.o |
| cb60 | 72 64 65 72 65 64 20 66 72 6f 6d 20 6c 6f 77 20 74 6f 20 68 69 67 68 0a 20 20 20 20 20 20 20 20 | rdered.from.low.to.high......... |
| cb80 | 64 65 67 72 65 65 2e 0a 0a 20 20 20 20 52 65 74 75 72 6e 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d | degree.......Returns.....------- |
| cba0 | 0a 20 20 20 20 6d 61 74 20 3a 20 6e 64 61 72 72 61 79 0a 20 20 20 20 20 20 20 20 53 63 61 6c 65 | .....mat.:.ndarray.........Scale |
| cbc0 | 64 20 63 6f 6d 70 61 6e 69 6f 6e 20 6d 61 74 72 69 78 20 6f 66 20 64 69 6d 65 6e 73 69 6f 6e 73 | d.companion.matrix.of.dimensions |
| cbe0 | 20 28 64 65 67 2c 20 64 65 67 29 2e 0a 0a 20 20 20 20 45 78 61 6d 70 6c 65 73 0a 20 20 20 20 2d | .(deg,.deg).......Examples.....- |
| cc00 | 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 3e 3e 3e 20 66 72 6f 6d 20 6e 75 6d 70 79 2e 70 6f 6c 79 6e | -------.....>>>.from.numpy.polyn |
| cc20 | 6f 6d 69 61 6c 2e 68 65 72 6d 69 74 65 20 69 6d 70 6f 72 74 20 68 65 72 6d 63 6f 6d 70 61 6e 69 | omial.hermite.import.hermcompani |
| cc40 | 6f 6e 0a 20 20 20 20 3e 3e 3e 20 68 65 72 6d 63 6f 6d 70 61 6e 69 6f 6e 28 5b 31 2c 20 30 2c 20 | on.....>>>.hermcompanion([1,.0,. |
| cc60 | 31 5d 29 0a 20 20 20 20 61 72 72 61 79 28 5b 5b 30 2e 20 20 20 20 20 20 20 20 2c 20 30 2e 33 35 | 1]).....array([[0.........,.0.35 |
| cc80 | 33 35 35 33 33 39 5d 2c 0a 20 20 20 20 20 20 20 20 20 20 20 5b 30 2e 37 30 37 31 30 36 37 38 2c | 355339],............[0.70710678, |
| cca0 | 20 30 2e 20 20 20 20 20 20 20 20 5d 5d 29 0a 0a 20 20 20 20 72 36 00 00 00 7a 2e 53 65 72 69 65 | .0.........]])......r6...z.Serie |
| ccc0 | 73 20 6d 75 73 74 20 68 61 76 65 20 6d 61 78 69 6d 75 6d 20 64 65 67 72 65 65 20 6f 66 20 61 74 | s.must.have.maximum.degree.of.at |
| cce0 | 20 6c 65 61 73 74 20 31 2e e7 00 00 00 00 00 00 e0 bf 72 02 00 00 00 72 04 00 00 00 72 50 00 00 | .least.1..........r....r....rP.. |
| cd00 | 00 72 3e 00 00 00 e7 00 00 00 00 00 00 00 40 72 27 00 00 00 4e 72 3f 00 00 00 2e 29 0e 72 28 00 | .r>...........@r'...Nr?....).r(. |
| cd20 | 00 00 72 29 00 00 00 72 2a 00 00 00 72 68 00 00 00 72 41 00 00 00 72 42 00 00 00 da 05 7a 65 72 | ..r)...r*...rh...rA...rB.....zer |
| cd40 | 6f 73 72 51 00 00 00 da 06 68 73 74 61 63 6b da 04 73 71 72 74 da 06 61 72 61 6e 67 65 da 08 6d | osrQ.....hstack..sqrt..arange..m |
| cd60 | 75 6c 74 69 70 6c 79 da 0a 61 63 63 75 6d 75 6c 61 74 65 72 7d 00 00 00 29 06 72 39 00 00 00 72 | ultiply..accumulater}...).r9...r |
| cd80 | 3a 00 00 00 da 03 6d 61 74 72 44 00 00 00 da 03 74 6f 70 da 03 62 6f 74 73 06 00 00 00 20 20 20 | :.....matrD.....top..bots....... |
| cda0 | 20 20 20 72 30 00 00 00 72 23 00 00 00 72 23 00 00 00 a0 05 00 00 73 67 01 00 00 80 00 f4 3a 00 | ...r0...r#...r#.......sg......:. |
| cdc0 | 0b 0d 8f 2c 89 2c 98 01 90 73 d3 0a 1b 81 43 80 51 dc 07 0a 88 31 83 76 90 01 82 7a dc 0e 18 d0 | ...,.,...s....C.Q....1.v...z.... |
| cde0 | 19 49 d3 0e 4a d0 08 4a dc 07 0a 88 31 83 76 90 11 82 7b dc 0f 11 8f 78 89 78 98 23 a0 01 a0 21 | .I..J..J....1.v...{....x.x.#...! |
| ce00 | a1 04 99 2a a0 71 a8 11 a1 74 d1 1a 2b d0 19 2c d0 18 2d d3 0f 2e d0 08 2e e4 08 0b 88 41 8b 06 | ...*.q...t..+..,..-..........A.. |
| ce20 | 90 11 89 0a 80 41 dc 0a 0c 8f 28 89 28 90 41 90 71 90 36 a0 11 a7 17 a1 17 d4 0a 29 80 43 dc 0a | .....A....(.(.A.q.6........).C.. |
| ce40 | 0c 8f 29 89 29 90 52 98 12 9c 62 9f 67 99 67 a0 62 ac 32 af 39 a9 39 b0 51 b8 11 b1 55 b8 41 b8 | ..).).R...b.g.g.b.2.9.9.Q...U.A. |
| ce60 | 72 d3 2b 42 d1 26 42 d3 1e 43 d1 19 43 d0 14 44 d3 0a 45 80 43 dc 0a 0c 8f 2b 89 2b d7 0a 20 d1 | r.+B.&B..C..C..D..E.C....+.+.... |
| ce80 | 0a 20 a0 13 d3 0a 25 a1 64 a8 02 a0 64 d1 0a 2b 80 43 d8 0a 0d 8f 2b 89 2b 90 62 8b 2f 98 21 98 | ......%.d...d..+.C....+.+.b./.!. |
| cea0 | 28 98 51 a0 11 99 55 98 28 d1 0a 23 80 43 d8 0a 0d 8f 2b 89 2b 90 62 8b 2f 98 21 98 28 98 51 a0 | (.Q...U.(..#.C....+.+.b./.!.(.Q. |
| cec0 | 11 99 55 98 28 d1 0a 23 80 43 dc 0f 11 8f 77 89 77 90 72 9c 42 9f 49 99 49 a0 61 a8 11 9b 4f d1 | ..U.(..#.C....w.w.r.B.I.I.a...O. |
| cee0 | 17 2b d3 0f 2c 80 43 88 03 81 48 d8 0f 12 80 43 88 03 81 48 d8 04 07 8a 01 88 32 88 05 83 4a 90 | .+..,.C...H....C...H......2...J. |
| cf00 | 23 98 01 98 23 98 32 98 06 91 2c a0 23 a8 01 a8 22 a9 05 a1 2b d1 12 2e d1 04 2e 83 4a d8 0b 0e | #...#.2...,.#..."...+.......J... |
| cf20 | 80 4a 72 31 00 00 00 63 01 00 00 00 00 00 00 00 00 00 00 00 05 00 00 00 03 00 00 00 f3 6a 01 00 | .Jr1...c.....................j.. |
| cf40 | 00 97 00 74 01 00 00 00 00 00 00 00 00 6a 02 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 | ...t.........j.................. |
| cf60 | 00 7c 00 67 01 ab 01 00 00 00 00 00 00 5c 01 00 00 7d 00 74 05 00 00 00 00 00 00 00 00 7c 00 ab | .|.g.........\...}.t.........|.. |
| cf80 | 01 00 00 00 00 00 00 64 01 6b 1a 00 00 72 21 74 07 00 00 00 00 00 00 00 00 6a 08 00 00 00 00 00 | .......d.k...r!t.........j...... |
| cfa0 | 00 00 00 00 00 00 00 00 00 00 00 00 00 67 00 7c 00 6a 0a 00 00 00 00 00 00 00 00 00 00 00 00 00 | .............g.|.j.............. |
| cfc0 | 00 00 00 00 00 ac 02 ab 02 00 00 00 00 00 00 53 00 74 05 00 00 00 00 00 00 00 00 7c 00 ab 01 00 | ...............S.t.........|.... |
| cfe0 | 00 00 00 00 00 64 03 6b 28 00 00 72 22 74 07 00 00 00 00 00 00 00 00 6a 08 00 00 00 00 00 00 00 | .....d.k(..r"t.........j........ |
| d000 | 00 00 00 00 00 00 00 00 00 00 00 64 04 7c 00 64 05 19 00 00 00 7a 05 00 00 7c 00 64 01 19 00 00 | ...........d.|.d.....z...|.d.... |
| d020 | 00 7a 0b 00 00 67 01 ab 01 00 00 00 00 00 00 53 00 74 0d 00 00 00 00 00 00 00 00 7c 00 ab 01 00 | .z...g.........S.t.........|.... |
| d040 | 00 00 00 00 00 64 06 64 06 64 07 85 03 64 06 64 06 64 07 85 03 66 02 19 00 00 00 7d 01 74 0f 00 | .....d.d.d...d.d.d...f.....}.t.. |
| d060 | 00 00 00 00 00 00 00 6a 10 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 7c 01 ab 01 00 | .......j...................|.... |
| d080 | 00 00 00 00 00 7d 02 7c 02 6a 13 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ab 00 00 | .....}.|.j...................... |
| d0a0 | 00 00 00 00 00 01 00 7c 02 53 00 29 08 61 0c 06 00 00 0a 20 20 20 20 43 6f 6d 70 75 74 65 20 74 | .......|.S.).a.........Compute.t |
| d0c0 | 68 65 20 72 6f 6f 74 73 20 6f 66 20 61 20 48 65 72 6d 69 74 65 20 73 65 72 69 65 73 2e 0a 0a 20 | he.roots.of.a.Hermite.series.... |
| d0e0 | 20 20 20 52 65 74 75 72 6e 20 74 68 65 20 72 6f 6f 74 73 20 28 61 2e 6b 2e 61 2e 20 22 7a 65 72 | ...Return.the.roots.(a.k.a.."zer |
| d100 | 6f 73 22 29 20 6f 66 20 74 68 65 20 70 6f 6c 79 6e 6f 6d 69 61 6c 0a 0a 20 20 20 20 2e 2e 20 6d | os").of.the.polynomial.........m |
| d120 | 61 74 68 3a 3a 20 70 28 78 29 20 3d 20 5c 73 75 6d 5f 69 20 63 5b 69 5d 20 2a 20 48 5f 69 28 78 | ath::.p(x).=.\sum_i.c[i].*.H_i(x |
| d140 | 29 2e 0a 0a 20 20 20 20 50 61 72 61 6d 65 74 65 72 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 2d | ).......Parameters.....--------- |
| d160 | 2d 0a 20 20 20 20 63 20 3a 20 31 2d 44 20 61 72 72 61 79 5f 6c 69 6b 65 0a 20 20 20 20 20 20 20 | -.....c.:.1-D.array_like........ |
| d180 | 20 31 2d 44 20 61 72 72 61 79 20 6f 66 20 63 6f 65 66 66 69 63 69 65 6e 74 73 2e 0a 0a 20 20 20 | .1-D.array.of.coefficients...... |
| d1a0 | 20 52 65 74 75 72 6e 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 6f 75 74 20 3a 20 6e | .Returns.....-------.....out.:.n |
| d1c0 | 64 61 72 72 61 79 0a 20 20 20 20 20 20 20 20 41 72 72 61 79 20 6f 66 20 74 68 65 20 72 6f 6f 74 | darray.........Array.of.the.root |
| d1e0 | 73 20 6f 66 20 74 68 65 20 73 65 72 69 65 73 2e 20 49 66 20 61 6c 6c 20 74 68 65 20 72 6f 6f 74 | s.of.the.series..If.all.the.root |
| d200 | 73 20 61 72 65 20 72 65 61 6c 2c 0a 20 20 20 20 20 20 20 20 74 68 65 6e 20 60 6f 75 74 60 20 69 | s.are.real,.........then.`out`.i |
| d220 | 73 20 61 6c 73 6f 20 72 65 61 6c 2c 20 6f 74 68 65 72 77 69 73 65 20 69 74 20 69 73 20 63 6f 6d | s.also.real,.otherwise.it.is.com |
| d240 | 70 6c 65 78 2e 0a 0a 20 20 20 20 53 65 65 20 41 6c 73 6f 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d | plex.......See.Also.....-------- |
| d260 | 0a 20 20 20 20 6e 75 6d 70 79 2e 70 6f 6c 79 6e 6f 6d 69 61 6c 2e 70 6f 6c 79 6e 6f 6d 69 61 6c | .....numpy.polynomial.polynomial |
| d280 | 2e 70 6f 6c 79 72 6f 6f 74 73 0a 20 20 20 20 6e 75 6d 70 79 2e 70 6f 6c 79 6e 6f 6d 69 61 6c 2e | .polyroots.....numpy.polynomial. |
| d2a0 | 6c 65 67 65 6e 64 72 65 2e 6c 65 67 72 6f 6f 74 73 0a 20 20 20 20 6e 75 6d 70 79 2e 70 6f 6c 79 | legendre.legroots.....numpy.poly |
| d2c0 | 6e 6f 6d 69 61 6c 2e 6c 61 67 75 65 72 72 65 2e 6c 61 67 72 6f 6f 74 73 0a 20 20 20 20 6e 75 6d | nomial.laguerre.lagroots.....num |
| d2e0 | 70 79 2e 70 6f 6c 79 6e 6f 6d 69 61 6c 2e 63 68 65 62 79 73 68 65 76 2e 63 68 65 62 72 6f 6f 74 | py.polynomial.chebyshev.chebroot |
| d300 | 73 0a 20 20 20 20 6e 75 6d 70 79 2e 70 6f 6c 79 6e 6f 6d 69 61 6c 2e 68 65 72 6d 69 74 65 5f 65 | s.....numpy.polynomial.hermite_e |
| d320 | 2e 68 65 72 6d 65 72 6f 6f 74 73 0a 0a 20 20 20 20 4e 6f 74 65 73 0a 20 20 20 20 2d 2d 2d 2d 2d | .hermeroots......Notes.....----- |
| d340 | 0a 20 20 20 20 54 68 65 20 72 6f 6f 74 20 65 73 74 69 6d 61 74 65 73 20 61 72 65 20 6f 62 74 61 | .....The.root.estimates.are.obta |
| d360 | 69 6e 65 64 20 61 73 20 74 68 65 20 65 69 67 65 6e 76 61 6c 75 65 73 20 6f 66 20 74 68 65 20 63 | ined.as.the.eigenvalues.of.the.c |
| d380 | 6f 6d 70 61 6e 69 6f 6e 0a 20 20 20 20 6d 61 74 72 69 78 2c 20 52 6f 6f 74 73 20 66 61 72 20 66 | ompanion.....matrix,.Roots.far.f |
| d3a0 | 72 6f 6d 20 74 68 65 20 6f 72 69 67 69 6e 20 6f 66 20 74 68 65 20 63 6f 6d 70 6c 65 78 20 70 6c | rom.the.origin.of.the.complex.pl |
| d3c0 | 61 6e 65 20 6d 61 79 20 68 61 76 65 20 6c 61 72 67 65 0a 20 20 20 20 65 72 72 6f 72 73 20 64 75 | ane.may.have.large.....errors.du |
| d3e0 | 65 20 74 6f 20 74 68 65 20 6e 75 6d 65 72 69 63 61 6c 20 69 6e 73 74 61 62 69 6c 69 74 79 20 6f | e.to.the.numerical.instability.o |
| d400 | 66 20 74 68 65 20 73 65 72 69 65 73 20 66 6f 72 20 73 75 63 68 0a 20 20 20 20 76 61 6c 75 65 73 | f.the.series.for.such.....values |
| d420 | 2e 20 52 6f 6f 74 73 20 77 69 74 68 20 6d 75 6c 74 69 70 6c 69 63 69 74 79 20 67 72 65 61 74 65 | ..Roots.with.multiplicity.greate |
| d440 | 72 20 74 68 61 6e 20 31 20 77 69 6c 6c 20 61 6c 73 6f 20 73 68 6f 77 20 6c 61 72 67 65 72 0a 20 | r.than.1.will.also.show.larger.. |
| d460 | 20 20 20 65 72 72 6f 72 73 20 61 73 20 74 68 65 20 76 61 6c 75 65 20 6f 66 20 74 68 65 20 73 65 | ...errors.as.the.value.of.the.se |
| d480 | 72 69 65 73 20 6e 65 61 72 20 73 75 63 68 20 70 6f 69 6e 74 73 20 69 73 20 72 65 6c 61 74 69 76 | ries.near.such.points.is.relativ |
| d4a0 | 65 6c 79 0a 20 20 20 20 69 6e 73 65 6e 73 69 74 69 76 65 20 74 6f 20 65 72 72 6f 72 73 20 69 6e | ely.....insensitive.to.errors.in |
| d4c0 | 20 74 68 65 20 72 6f 6f 74 73 2e 20 49 73 6f 6c 61 74 65 64 20 72 6f 6f 74 73 20 6e 65 61 72 20 | .the.roots..Isolated.roots.near. |
| d4e0 | 74 68 65 20 6f 72 69 67 69 6e 20 63 61 6e 0a 20 20 20 20 62 65 20 69 6d 70 72 6f 76 65 64 20 62 | the.origin.can.....be.improved.b |
| d500 | 79 20 61 20 66 65 77 20 69 74 65 72 61 74 69 6f 6e 73 20 6f 66 20 4e 65 77 74 6f 6e 27 73 20 6d | y.a.few.iterations.of.Newton's.m |
| d520 | 65 74 68 6f 64 2e 0a 0a 20 20 20 20 54 68 65 20 48 65 72 6d 69 74 65 20 73 65 72 69 65 73 20 62 | ethod.......The.Hermite.series.b |
| d540 | 61 73 69 73 20 70 6f 6c 79 6e 6f 6d 69 61 6c 73 20 61 72 65 6e 27 74 20 70 6f 77 65 72 73 20 6f | asis.polynomials.aren't.powers.o |
| d560 | 66 20 60 78 60 20 73 6f 20 74 68 65 0a 20 20 20 20 72 65 73 75 6c 74 73 20 6f 66 20 74 68 69 73 | f.`x`.so.the.....results.of.this |
| d580 | 20 66 75 6e 63 74 69 6f 6e 20 6d 61 79 20 73 65 65 6d 20 75 6e 69 6e 74 75 69 74 69 76 65 2e 0a | .function.may.seem.unintuitive.. |
| d5a0 | 0a 20 20 20 20 45 78 61 6d 70 6c 65 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 3e | .....Examples.....--------.....> |
| d5c0 | 3e 3e 20 66 72 6f 6d 20 6e 75 6d 70 79 2e 70 6f 6c 79 6e 6f 6d 69 61 6c 2e 68 65 72 6d 69 74 65 | >>.from.numpy.polynomial.hermite |
| d5e0 | 20 69 6d 70 6f 72 74 20 68 65 72 6d 72 6f 6f 74 73 2c 20 68 65 72 6d 66 72 6f 6d 72 6f 6f 74 73 | .import.hermroots,.hermfromroots |
| d600 | 0a 20 20 20 20 3e 3e 3e 20 63 6f 65 66 20 3d 20 68 65 72 6d 66 72 6f 6d 72 6f 6f 74 73 28 5b 2d | .....>>>.coef.=.hermfromroots([- |
| d620 | 31 2c 20 30 2c 20 31 5d 29 0a 20 20 20 20 3e 3e 3e 20 63 6f 65 66 0a 20 20 20 20 61 72 72 61 79 | 1,.0,.1]).....>>>.coef.....array |
| d640 | 28 5b 30 2e 20 20 20 2c 20 20 30 2e 32 35 20 2c 20 20 30 2e 20 20 20 2c 20 20 30 2e 31 32 35 5d | ([0....,..0.25.,..0....,..0.125] |
| d660 | 29 0a 20 20 20 20 3e 3e 3e 20 68 65 72 6d 72 6f 6f 74 73 28 63 6f 65 66 29 0a 20 20 20 20 61 72 | ).....>>>.hermroots(coef).....ar |
| d680 | 72 61 79 28 5b 2d 31 2e 30 30 30 30 30 30 30 30 65 2b 30 30 2c 20 2d 31 2e 33 38 37 37 37 38 37 | ray([-1.00000000e+00,.-1.3877787 |
| d6a0 | 38 65 2d 31 37 2c 20 20 31 2e 30 30 30 30 30 30 30 30 65 2b 30 30 5d 29 0a 0a 20 20 20 20 72 04 | 8e-17,..1.00000000e+00])......r. |
| d6c0 | 00 00 00 72 50 00 00 00 72 36 00 00 00 72 9d 00 00 00 72 02 00 00 00 4e 72 27 00 00 00 29 0a 72 | ...rP...r6...r....r....Nr'...).r |
| d6e0 | 28 00 00 00 72 29 00 00 00 72 2a 00 00 00 72 41 00 00 00 72 42 00 00 00 72 51 00 00 00 72 23 00 | (...r)...r*...rA...rB...rQ...r#. |
| d700 | 00 00 da 02 6c 61 da 07 65 69 67 76 61 6c 73 da 04 73 6f 72 74 29 03 72 39 00 00 00 72 6c 00 00 | ....la..eigvals..sort).r9...rl.. |
| d720 | 00 da 01 72 73 03 00 00 00 20 20 20 72 30 00 00 00 72 1b 00 00 00 72 1b 00 00 00 cf 05 00 00 73 | ...rs.......r0...r....r........s |
| d740 | 9d 00 00 00 80 00 f4 66 01 00 0b 0d 8f 2c 89 2c 98 01 90 73 d3 0a 1b 81 43 80 51 dc 07 0a 88 31 | .......f.....,.,...s....C.Q....1 |
| d760 | 83 76 90 11 82 7b dc 0f 11 8f 78 89 78 98 02 a0 21 a7 27 a1 27 d4 0f 2a d0 08 2a dc 07 0a 88 31 | .v...{....x.x...!.'.'..*..*....1 |
| d780 | 83 76 90 11 82 7b dc 0f 11 8f 78 89 78 98 13 98 71 a0 11 99 74 99 1a a0 61 a8 01 a1 64 d1 19 2a | .v...{....x.x...q...t...a...d..* |
| d7a0 | d0 18 2b d3 0f 2c d0 08 2c f4 06 00 09 16 90 61 d3 08 18 99 14 98 32 98 14 99 74 a0 12 98 74 98 | ..+..,..,......a......2...t...t. |
| d7c0 | 1a d1 08 24 80 41 dc 08 0a 8f 0a 89 0a 90 31 8b 0d 80 41 d8 04 05 87 46 81 46 84 48 d8 0b 0c 80 | ...$.A........1...A....F.F.H.... |
| d7e0 | 48 72 31 00 00 00 63 02 00 00 00 00 00 00 00 00 00 00 00 09 00 00 00 03 00 00 00 f3 36 02 00 00 | Hr1...c.....................6... |
| d800 | 97 00 7c 01 64 01 6b 28 00 00 72 57 74 01 00 00 00 00 00 00 00 00 6a 02 00 00 00 00 00 00 00 00 | ..|.d.k(..rWt.........j......... |
| d820 | 00 00 00 00 00 00 00 00 00 00 7c 00 6a 04 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 | ..........|.j................... |
| d840 | 64 02 74 01 00 00 00 00 00 00 00 00 6a 06 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 | d.t.........j................... |
| d860 | 74 01 00 00 00 00 00 00 00 00 6a 06 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 74 00 | t.........j...................t. |
| d880 | 00 00 00 00 00 00 00 00 6a 08 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ab 01 00 00 | ........j....................... |
| d8a0 | 00 00 00 00 ab 01 00 00 00 00 00 00 7a 0b 00 00 ab 02 00 00 00 00 00 00 53 00 64 03 7d 02 64 04 | ............z...........S.d.}.d. |
| d8c0 | 74 01 00 00 00 00 00 00 00 00 6a 06 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 74 01 | t.........j...................t. |
| d8e0 | 00 00 00 00 00 00 00 00 6a 06 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 74 00 00 00 | ........j...................t... |
| d900 | 00 00 00 00 00 00 6a 08 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ab 01 00 00 00 00 | ......j......................... |
| d920 | 00 00 ab 01 00 00 00 00 00 00 7a 0b 00 00 7d 03 74 0b 00 00 00 00 00 00 00 00 7c 01 ab 01 00 00 | ..........z...}.t.........|..... |
| d940 | 00 00 00 00 7d 04 74 0d 00 00 00 00 00 00 00 00 7c 01 64 02 7a 0a 00 00 ab 01 00 00 00 00 00 00 | ....}.t.........|.d.z........... |
| d960 | 44 00 5d 49 00 00 7d 05 7c 02 7d 06 7c 03 0b 00 74 01 00 00 00 00 00 00 00 00 6a 06 00 00 00 00 | D.]I..}.|.}.|...t.........j..... |
| d980 | 00 00 00 00 00 00 00 00 00 00 00 00 00 00 7c 04 64 04 7a 0a 00 00 7c 04 7a 0b 00 00 ab 01 00 00 | ..............|.d.z...|.z....... |
| d9a0 | 00 00 00 00 7a 05 00 00 7d 02 7c 06 7c 03 7c 00 7a 05 00 00 74 01 00 00 00 00 00 00 00 00 6a 06 | ....z...}.|.|.|.z...t.........j. |
| d9c0 | 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 64 05 7c 04 7a 0b 00 00 ab 01 00 00 00 00 | ..................d.|.z......... |
| d9e0 | 00 00 7a 05 00 00 7a 00 00 00 7d 03 7c 04 64 04 7a 0a 00 00 7d 04 8c 4b 04 00 7c 02 7c 03 7c 00 | ..z...z...}.|.d.z...}..K..|.|.|. |
| da00 | 7a 05 00 00 74 01 00 00 00 00 00 00 00 00 6a 06 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 | z...t.........j................. |
| da20 | 00 00 64 06 ab 01 00 00 00 00 00 00 7a 05 00 00 7a 00 00 00 53 00 29 07 61 81 02 00 00 0a 20 20 | ..d.........z...z...S.).a....... |
| da40 | 20 20 45 76 61 6c 75 61 74 65 20 61 20 6e 6f 72 6d 61 6c 69 7a 65 64 20 48 65 72 6d 69 74 65 20 | ..Evaluate.a.normalized.Hermite. |
| da60 | 70 6f 6c 79 6e 6f 6d 69 61 6c 2e 0a 0a 20 20 20 20 43 6f 6d 70 75 74 65 20 74 68 65 20 76 61 6c | polynomial.......Compute.the.val |
| da80 | 75 65 20 6f 66 20 74 68 65 20 6e 6f 72 6d 61 6c 69 7a 65 64 20 48 65 72 6d 69 74 65 20 70 6f 6c | ue.of.the.normalized.Hermite.pol |
| daa0 | 79 6e 6f 6d 69 61 6c 20 6f 66 20 64 65 67 72 65 65 20 60 60 6e 60 60 0a 20 20 20 20 61 74 20 74 | ynomial.of.degree.``n``.....at.t |
| dac0 | 68 65 20 70 6f 69 6e 74 73 20 60 60 78 60 60 2e 0a 0a 0a 20 20 20 20 50 61 72 61 6d 65 74 65 72 | he.points.``x``........Parameter |
| dae0 | 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 78 20 3a 20 6e 64 61 72 72 61 79 | s.....----------.....x.:.ndarray |
| db00 | 20 6f 66 20 64 6f 75 62 6c 65 2e 0a 20 20 20 20 20 20 20 20 50 6f 69 6e 74 73 20 61 74 20 77 68 | .of.double..........Points.at.wh |
| db20 | 69 63 68 20 74 6f 20 65 76 61 6c 75 61 74 65 20 74 68 65 20 66 75 6e 63 74 69 6f 6e 0a 20 20 20 | ich.to.evaluate.the.function.... |
| db40 | 20 6e 20 3a 20 69 6e 74 0a 20 20 20 20 20 20 20 20 44 65 67 72 65 65 20 6f 66 20 74 68 65 20 6e | .n.:.int.........Degree.of.the.n |
| db60 | 6f 72 6d 61 6c 69 7a 65 64 20 48 65 72 6d 69 74 65 20 66 75 6e 63 74 69 6f 6e 20 74 6f 20 62 65 | ormalized.Hermite.function.to.be |
| db80 | 20 65 76 61 6c 75 61 74 65 64 2e 0a 0a 20 20 20 20 52 65 74 75 72 6e 73 0a 20 20 20 20 2d 2d 2d | .evaluated.......Returns.....--- |
| dba0 | 2d 2d 2d 2d 0a 20 20 20 20 76 61 6c 75 65 73 20 3a 20 6e 64 61 72 72 61 79 0a 20 20 20 20 20 20 | ----.....values.:.ndarray....... |
| dbc0 | 20 20 54 68 65 20 73 68 61 70 65 20 6f 66 20 74 68 65 20 72 65 74 75 72 6e 20 76 61 6c 75 65 20 | ..The.shape.of.the.return.value. |
| dbe0 | 69 73 20 64 65 73 63 72 69 62 65 64 20 61 62 6f 76 65 2e 0a 0a 20 20 20 20 4e 6f 74 65 73 0a 20 | is.described.above.......Notes.. |
| dc00 | 20 20 20 2d 2d 2d 2d 2d 0a 20 20 20 20 54 68 69 73 20 66 75 6e 63 74 69 6f 6e 20 69 73 20 6e 65 | ...-----.....This.function.is.ne |
| dc20 | 65 64 65 64 20 66 6f 72 20 66 69 6e 64 69 6e 67 20 74 68 65 20 47 61 75 73 73 20 70 6f 69 6e 74 | eded.for.finding.the.Gauss.point |
| dc40 | 73 20 61 6e 64 20 69 6e 74 65 67 72 61 74 69 6f 6e 0a 20 20 20 20 77 65 69 67 68 74 73 20 66 6f | s.and.integration.....weights.fo |
| dc60 | 72 20 68 69 67 68 20 64 65 67 72 65 65 73 2e 20 54 68 65 20 76 61 6c 75 65 73 20 6f 66 20 74 68 | r.high.degrees..The.values.of.th |
| dc80 | 65 20 73 74 61 6e 64 61 72 64 20 48 65 72 6d 69 74 65 20 66 75 6e 63 74 69 6f 6e 73 0a 20 20 20 | e.standard.Hermite.functions.... |
| dca0 | 20 6f 76 65 72 66 6c 6f 77 20 77 68 65 6e 20 6e 20 3e 3d 20 32 30 37 2e 0a 0a 20 20 20 20 72 02 | .overflow.when.n.>=.207.......r. |
| dcc0 | 00 00 00 72 04 00 00 00 72 8e 00 00 00 72 3e 00 00 00 72 9e 00 00 00 72 36 00 00 00 29 07 72 41 | ...r....r....r>...r....r6...).rA |
| dce0 | 00 00 00 72 9a 00 00 00 72 6b 00 00 00 72 a1 00 00 00 da 02 70 69 da 05 66 6c 6f 61 74 72 2b 00 | ...r....rk...r......pi..floatr+. |
| dd00 | 00 00 29 07 72 7e 00 00 00 72 3a 00 00 00 72 3b 00 00 00 72 3c 00 00 00 72 57 00 00 00 72 2f 00 | ..).r~...r:...r;...r<...rW...r/. |
| dd20 | 00 00 72 3d 00 00 00 73 07 00 00 00 20 20 20 20 20 20 20 72 30 00 00 00 da 11 5f 6e 6f 72 6d 65 | ..r=...s...........r0....._norme |
| dd40 | 64 5f 68 65 72 6d 69 74 65 5f 6e 72 b0 00 00 00 0f 06 00 00 73 e7 00 00 00 80 00 f0 36 00 08 09 | d_hermite_nr........s.......6... |
| dd60 | 88 41 82 76 dc 0f 11 8f 77 89 77 90 71 97 77 91 77 a0 01 a4 42 a7 47 a1 47 ac 42 af 47 a9 47 b4 | .A.v....w.w.q.w.w...B.G.G.B.G.G. |
| dd80 | 42 b7 45 b1 45 ab 4e d3 24 3b d1 20 3b d3 0f 3c d0 08 3c e0 09 0b 80 42 d8 09 0b 8c 62 8f 67 89 | B.E.E.N.$;..;..<..<....B....b.g. |
| dda0 | 67 94 62 97 67 91 67 9c 62 9f 65 99 65 93 6e d3 0e 25 d1 09 25 80 42 dc 09 0e 88 71 8b 18 80 42 | g.b.g.g.b.e.e.n..%..%.B....q...B |
| ddc0 | dc 0d 12 90 31 90 71 91 35 8b 5c f2 00 04 05 16 88 01 d8 0e 10 88 03 d8 0e 10 88 53 94 32 97 37 | ....1.q.5.\................S.2.7 |
| dde0 | 91 37 98 42 a0 12 99 47 a0 72 99 3e d3 13 2a d1 0d 2a 88 02 d8 0d 10 90 32 98 01 91 36 9c 42 9f | .7.B...G.r.>..*..*......2...6.B. |
| de00 | 47 99 47 a0 42 a8 12 a1 47 d3 1c 2c d1 13 2c d1 0d 2c 88 02 d8 0d 0f 90 23 89 58 89 02 f0 09 04 | G.G.B...G..,..,..,......#.X..... |
| de20 | 05 16 f0 0a 00 0c 0e 90 02 90 51 91 06 9c 12 9f 17 99 17 a0 11 9b 1a d1 10 23 d1 0b 23 d0 04 23 | ..........Q..............#..#..# |
| de40 | 72 31 00 00 00 63 01 00 00 00 00 00 00 00 00 00 00 00 05 00 00 00 03 00 00 00 f3 88 02 00 00 97 | r1...c.......................... |
| de60 | 00 74 01 00 00 00 00 00 00 00 00 6a 02 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 7c | .t.........j...................| |
| de80 | 00 64 01 ab 02 00 00 00 00 00 00 7d 01 7c 01 64 02 6b 1a 00 00 72 0b 74 05 00 00 00 00 00 00 00 | .d.........}.|.d.k...r.t........ |
| dea0 | 00 64 03 ab 01 00 00 00 00 00 00 82 01 74 07 00 00 00 00 00 00 00 00 6a 08 00 00 00 00 00 00 00 | .d...........t.........j........ |
| dec0 | 00 00 00 00 00 00 00 00 00 00 00 64 02 67 01 7c 00 7a 05 00 00 64 04 67 01 7a 00 00 00 74 06 00 | ...........d.g.|.z...d.g.z...t.. |
| dee0 | 00 00 00 00 00 00 00 6a 0a 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ac 05 ab 02 00 | .......j........................ |
| df00 | 00 00 00 00 00 7d 02 74 0d 00 00 00 00 00 00 00 00 7c 02 ab 01 00 00 00 00 00 00 7d 03 74 0f 00 | .....}.t.........|.........}.t.. |
| df20 | 00 00 00 00 00 00 00 6a 10 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 7c 03 ab 01 00 | .......j...................|.... |
| df40 | 00 00 00 00 00 7d 04 74 13 00 00 00 00 00 00 00 00 7c 04 7c 01 ab 02 00 00 00 00 00 00 7d 05 74 | .....}.t.........|.|.........}.t |
| df60 | 13 00 00 00 00 00 00 00 00 7c 04 7c 01 64 04 7a 0a 00 00 ab 02 00 00 00 00 00 00 74 07 00 00 00 | .........|.|.d.z...........t.... |
| df80 | 00 00 00 00 00 6a 14 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 64 06 7c 01 7a 05 00 | .....j...................d.|.z.. |
| dfa0 | 00 ab 01 00 00 00 00 00 00 7a 05 00 00 7d 06 7c 04 7c 05 7c 06 7a 0b 00 00 7a 17 00 00 7d 04 74 | .........z...}.|.|.|.z...z...}.t |
| dfc0 | 13 00 00 00 00 00 00 00 00 7c 04 7c 01 64 04 7a 0a 00 00 ab 02 00 00 00 00 00 00 7d 07 7c 07 74 | .........|.|.d.z...........}.|.t |
| dfe0 | 07 00 00 00 00 00 00 00 00 6a 16 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 7c 07 ab | .........j...................|.. |
| e000 | 01 00 00 00 00 00 00 6a 19 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ab 00 00 00 00 | .......j........................ |
| e020 | 00 00 00 7a 18 00 00 7d 07 64 04 7c 07 7c 07 7a 05 00 00 7a 0b 00 00 7d 08 7c 08 7c 08 64 07 64 | ...z...}.d.|.|.z...z...}.|.|.d.d |
| e040 | 07 64 08 85 03 19 00 00 00 7a 00 00 00 64 06 7a 0b 00 00 7d 08 7c 04 7c 04 64 07 64 07 64 08 85 | .d.......z...d.z...}.|.|.d.d.d.. |
| e060 | 03 19 00 00 00 7a 0a 00 00 64 06 7a 0b 00 00 7d 04 7c 08 74 07 00 00 00 00 00 00 00 00 6a 14 00 | .....z...d.z...}.|.t.........j.. |
| e080 | 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 74 06 00 00 00 00 00 00 00 00 6a 1a 00 00 00 | .................t.........j.... |
| e0a0 | 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ab 01 00 00 00 00 00 00 7c 08 6a 1d 00 00 00 00 00 | .......................|.j...... |
| e0c0 | 00 00 00 00 00 00 00 00 00 00 00 00 00 ab 00 00 00 00 00 00 00 7a 0b 00 00 7a 12 00 00 7d 08 7c | .....................z...z...}.| |
| e0e0 | 04 7c 08 66 02 53 00 29 09 61 88 04 00 00 0a 20 20 20 20 47 61 75 73 73 2d 48 65 72 6d 69 74 65 | .|.f.S.).a.........Gauss-Hermite |
| e100 | 20 71 75 61 64 72 61 74 75 72 65 2e 0a 0a 20 20 20 20 43 6f 6d 70 75 74 65 73 20 74 68 65 20 73 | .quadrature.......Computes.the.s |
| e120 | 61 6d 70 6c 65 20 70 6f 69 6e 74 73 20 61 6e 64 20 77 65 69 67 68 74 73 20 66 6f 72 20 47 61 75 | ample.points.and.weights.for.Gau |
| e140 | 73 73 2d 48 65 72 6d 69 74 65 20 71 75 61 64 72 61 74 75 72 65 2e 0a 20 20 20 20 54 68 65 73 65 | ss-Hermite.quadrature......These |
| e160 | 20 73 61 6d 70 6c 65 20 70 6f 69 6e 74 73 20 61 6e 64 20 77 65 69 67 68 74 73 20 77 69 6c 6c 20 | .sample.points.and.weights.will. |
| e180 | 63 6f 72 72 65 63 74 6c 79 20 69 6e 74 65 67 72 61 74 65 20 70 6f 6c 79 6e 6f 6d 69 61 6c 73 20 | correctly.integrate.polynomials. |
| e1a0 | 6f 66 0a 20 20 20 20 64 65 67 72 65 65 20 3a 6d 61 74 68 3a 60 32 2a 64 65 67 20 2d 20 31 60 20 | of.....degree.:math:`2*deg.-.1`. |
| e1c0 | 6f 72 20 6c 65 73 73 20 6f 76 65 72 20 74 68 65 20 69 6e 74 65 72 76 61 6c 20 3a 6d 61 74 68 3a | or.less.over.the.interval.:math: |
| e1e0 | 60 5b 2d 5c 69 6e 66 2c 20 5c 69 6e 66 5d 60 0a 20 20 20 20 77 69 74 68 20 74 68 65 20 77 65 69 | `[-\inf,.\inf]`.....with.the.wei |
| e200 | 67 68 74 20 66 75 6e 63 74 69 6f 6e 20 3a 6d 61 74 68 3a 60 66 28 78 29 20 3d 20 5c 65 78 70 28 | ght.function.:math:`f(x).=.\exp( |
| e220 | 2d 78 5e 32 29 60 2e 0a 0a 20 20 20 20 50 61 72 61 6d 65 74 65 72 73 0a 20 20 20 20 2d 2d 2d 2d | -x^2)`.......Parameters.....---- |
| e240 | 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 64 65 67 20 3a 20 69 6e 74 0a 20 20 20 20 20 20 20 20 4e 75 6d | ------.....deg.:.int.........Num |
| e260 | 62 65 72 20 6f 66 20 73 61 6d 70 6c 65 20 70 6f 69 6e 74 73 20 61 6e 64 20 77 65 69 67 68 74 73 | ber.of.sample.points.and.weights |
| e280 | 2e 20 49 74 20 6d 75 73 74 20 62 65 20 3e 3d 20 31 2e 0a 0a 20 20 20 20 52 65 74 75 72 6e 73 0a | ..It.must.be.>=.1.......Returns. |
| e2a0 | 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 78 20 3a 20 6e 64 61 72 72 61 79 0a 20 20 20 20 | ....-------.....x.:.ndarray..... |
| e2c0 | 20 20 20 20 31 2d 44 20 6e 64 61 72 72 61 79 20 63 6f 6e 74 61 69 6e 69 6e 67 20 74 68 65 20 73 | ....1-D.ndarray.containing.the.s |
| e2e0 | 61 6d 70 6c 65 20 70 6f 69 6e 74 73 2e 0a 20 20 20 20 79 20 3a 20 6e 64 61 72 72 61 79 0a 20 20 | ample.points......y.:.ndarray... |
| e300 | 20 20 20 20 20 20 31 2d 44 20 6e 64 61 72 72 61 79 20 63 6f 6e 74 61 69 6e 69 6e 67 20 74 68 65 | ......1-D.ndarray.containing.the |
| e320 | 20 77 65 69 67 68 74 73 2e 0a 0a 20 20 20 20 4e 6f 74 65 73 0a 20 20 20 20 2d 2d 2d 2d 2d 0a 20 | .weights.......Notes.....-----.. |
| e340 | 20 20 20 54 68 65 20 72 65 73 75 6c 74 73 20 68 61 76 65 20 6f 6e 6c 79 20 62 65 65 6e 20 74 65 | ...The.results.have.only.been.te |
| e360 | 73 74 65 64 20 75 70 20 74 6f 20 64 65 67 72 65 65 20 31 30 30 2c 20 68 69 67 68 65 72 20 64 65 | sted.up.to.degree.100,.higher.de |
| e380 | 67 72 65 65 73 20 6d 61 79 0a 20 20 20 20 62 65 20 70 72 6f 62 6c 65 6d 61 74 69 63 2e 20 54 68 | grees.may.....be.problematic..Th |
| e3a0 | 65 20 77 65 69 67 68 74 73 20 61 72 65 20 64 65 74 65 72 6d 69 6e 65 64 20 62 79 20 75 73 69 6e | e.weights.are.determined.by.usin |
| e3c0 | 67 20 74 68 65 20 66 61 63 74 20 74 68 61 74 0a 0a 20 20 20 20 2e 2e 20 6d 61 74 68 3a 3a 20 77 | g.the.fact.that.........math::.w |
| e3e0 | 5f 6b 20 3d 20 63 20 2f 20 28 48 27 5f 6e 28 78 5f 6b 29 20 2a 20 48 5f 7b 6e 2d 31 7d 28 78 5f | _k.=.c./.(H'_n(x_k).*.H_{n-1}(x_ |
| e400 | 6b 29 29 0a 0a 20 20 20 20 77 68 65 72 65 20 3a 6d 61 74 68 3a 60 63 60 20 69 73 20 61 20 63 6f | k))......where.:math:`c`.is.a.co |
| e420 | 6e 73 74 61 6e 74 20 69 6e 64 65 70 65 6e 64 65 6e 74 20 6f 66 20 3a 6d 61 74 68 3a 60 6b 60 20 | nstant.independent.of.:math:`k`. |
| e440 | 61 6e 64 20 3a 6d 61 74 68 3a 60 78 5f 6b 60 0a 20 20 20 20 69 73 20 74 68 65 20 6b 27 74 68 20 | and.:math:`x_k`.....is.the.k'th. |
| e460 | 72 6f 6f 74 20 6f 66 20 3a 6d 61 74 68 3a 60 48 5f 6e 60 2c 20 61 6e 64 20 74 68 65 6e 20 73 63 | root.of.:math:`H_n`,.and.then.sc |
| e480 | 61 6c 69 6e 67 20 74 68 65 20 72 65 73 75 6c 74 73 20 74 6f 20 67 65 74 0a 20 20 20 20 74 68 65 | aling.the.results.to.get.....the |
| e4a0 | 20 72 69 67 68 74 20 76 61 6c 75 65 20 77 68 65 6e 20 69 6e 74 65 67 72 61 74 69 6e 67 20 31 2e | .right.value.when.integrating.1. |
| e4c0 | 0a 0a 20 20 20 20 45 78 61 6d 70 6c 65 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 | ......Examples.....--------..... |
| e4e0 | 3e 3e 3e 20 66 72 6f 6d 20 6e 75 6d 70 79 2e 70 6f 6c 79 6e 6f 6d 69 61 6c 2e 68 65 72 6d 69 74 | >>>.from.numpy.polynomial.hermit |
| e500 | 65 20 69 6d 70 6f 72 74 20 68 65 72 6d 67 61 75 73 73 0a 20 20 20 20 3e 3e 3e 20 68 65 72 6d 67 | e.import.hermgauss.....>>>.hermg |
| e520 | 61 75 73 73 28 32 29 0a 20 20 20 20 28 61 72 72 61 79 28 5b 2d 30 2e 37 30 37 31 30 36 37 38 2c | auss(2).....(array([-0.70710678, |
| e540 | 20 20 30 2e 37 30 37 31 30 36 37 38 5d 29 2c 20 61 72 72 61 79 28 5b 30 2e 38 38 36 32 32 36 39 | ..0.70710678]),.array([0.8862269 |
| e560 | 33 2c 20 30 2e 38 38 36 32 32 36 39 33 5d 29 29 0a 0a 20 20 20 20 72 2d 00 00 00 72 02 00 00 00 | 3,.0.88622693]))......r-...r.... |
| e580 | 7a 1e 64 65 67 20 6d 75 73 74 20 62 65 20 61 20 70 6f 73 69 74 69 76 65 20 69 6e 74 65 67 65 72 | z.deg.must.be.a.positive.integer |
| e5a0 | 72 04 00 00 00 72 50 00 00 00 72 36 00 00 00 4e 72 27 00 00 00 29 0f 72 28 00 00 00 72 67 00 00 | r....rP...r6...Nr'...).r(...rg.. |
| e5c0 | 00 72 68 00 00 00 72 41 00 00 00 72 42 00 00 00 da 07 66 6c 6f 61 74 36 34 72 23 00 00 00 72 a9 | .rh...rA...rB.....float64r#...r. |
| e5e0 | 00 00 00 da 08 65 69 67 76 61 6c 73 68 72 b0 00 00 00 72 a1 00 00 00 da 03 61 62 73 da 03 6d 61 | .....eigvalshr....r......abs..ma |
| e600 | 78 72 ae 00 00 00 da 03 73 75 6d 29 09 72 2d 00 00 00 72 8f 00 00 00 72 39 00 00 00 72 6c 00 00 | xr......sum).r-...r....r9...rl.. |
| e620 | 00 72 7e 00 00 00 da 02 64 79 da 02 64 66 da 02 66 6d 72 9b 00 00 00 73 09 00 00 00 20 20 20 20 | .r~.....dy..df..fmr....s........ |
| e640 | 20 20 20 20 20 72 30 00 00 00 72 24 00 00 00 72 24 00 00 00 38 06 00 00 73 30 01 00 00 80 00 f4 | .....r0...r$...r$...8...s0...... |
| e660 | 4e 01 00 0c 0e 8f 3a 89 3a 90 63 98 35 d3 0b 21 80 44 d8 07 0b 88 71 82 79 dc 0e 18 d0 19 39 d3 | N.....:.:.c.5..!.D....q.y.....9. |
| e680 | 0e 3a d0 08 3a f4 08 00 09 0b 8f 08 89 08 90 21 90 13 90 73 91 19 98 61 98 53 91 1f ac 02 af 0a | .:..:..........!...s...a.S...... |
| e6a0 | a9 0a d4 08 33 80 41 dc 08 15 90 61 d3 08 18 80 41 dc 08 0a 8f 0b 89 0b 90 41 8b 0e 80 41 f4 06 | ....3.A....a....A........A...A.. |
| e6c0 | 00 0a 1b 98 31 98 64 d3 09 23 80 42 dc 09 1a 98 31 98 64 a0 51 99 68 d3 09 27 ac 22 af 27 a9 27 | ....1.d..#.B....1.d.Q.h..'.".'.' |
| e6e0 | b0 21 b0 64 b1 28 d3 2a 3b d1 09 3b 80 42 d8 04 05 88 12 88 62 89 17 81 4c 80 41 f4 08 00 0a 1b | .!.d.(.*;..;.B......b...L.A..... |
| e700 | 98 31 98 64 a0 51 99 68 d3 09 27 80 42 d8 04 06 8c 22 8f 26 89 26 90 12 8b 2a 8f 2e 89 2e d3 0a | .1.d.Q.h..'.B....".&.&...*...... |
| e720 | 1a d1 04 1a 80 42 d8 08 09 88 52 90 22 89 57 89 0d 80 41 f0 06 00 0a 0b 88 51 89 74 90 12 88 74 | .....B....R.".W...A......Q.t...t |
| e740 | 89 57 89 1b 98 01 d1 08 19 80 41 d8 09 0a 88 51 89 74 90 12 88 74 89 57 89 1b 98 01 d1 08 19 80 | .W........A....Q.t...t.W........ |
| e760 | 41 f0 06 00 05 06 8c 12 8f 17 89 17 94 12 97 15 91 15 8b 1e 98 21 9f 25 99 25 9b 27 d1 09 21 d1 | A....................!.%.%.'..!. |
| e780 | 04 21 80 41 e0 0b 0c 88 61 88 34 80 4b 72 31 00 00 00 63 01 00 00 00 00 00 00 00 00 00 00 00 04 | .!.A....a.4.Kr1...c............. |
| e7a0 | 00 00 00 03 00 00 00 f3 38 00 00 00 97 00 74 01 00 00 00 00 00 00 00 00 6a 02 00 00 00 00 00 00 | ........8.....t.........j....... |
| e7c0 | 00 00 00 00 00 00 00 00 00 00 00 00 7c 00 64 01 7a 08 00 00 0b 00 ab 01 00 00 00 00 00 00 7d 01 | ............|.d.z.............}. |
| e7e0 | 7c 01 53 00 29 02 61 a1 02 00 00 0a 20 20 20 20 57 65 69 67 68 74 20 66 75 6e 63 74 69 6f 6e 20 | |.S.).a.........Weight.function. |
| e800 | 6f 66 20 74 68 65 20 48 65 72 6d 69 74 65 20 70 6f 6c 79 6e 6f 6d 69 61 6c 73 2e 0a 0a 20 20 20 | of.the.Hermite.polynomials...... |
| e820 | 20 54 68 65 20 77 65 69 67 68 74 20 66 75 6e 63 74 69 6f 6e 20 69 73 20 3a 6d 61 74 68 3a 60 5c | .The.weight.function.is.:math:`\ |
| e840 | 65 78 70 28 2d 78 5e 32 29 60 20 61 6e 64 20 74 68 65 20 69 6e 74 65 72 76 61 6c 20 6f 66 0a 20 | exp(-x^2)`.and.the.interval.of.. |
| e860 | 20 20 20 69 6e 74 65 67 72 61 74 69 6f 6e 20 69 73 20 3a 6d 61 74 68 3a 60 5b 2d 5c 69 6e 66 2c | ...integration.is.:math:`[-\inf, |
| e880 | 20 5c 69 6e 66 5d 60 2e 20 74 68 65 20 48 65 72 6d 69 74 65 20 70 6f 6c 79 6e 6f 6d 69 61 6c 73 | .\inf]`..the.Hermite.polynomials |
| e8a0 | 20 61 72 65 0a 20 20 20 20 6f 72 74 68 6f 67 6f 6e 61 6c 2c 20 62 75 74 20 6e 6f 74 20 6e 6f 72 | .are.....orthogonal,.but.not.nor |
| e8c0 | 6d 61 6c 69 7a 65 64 2c 20 77 69 74 68 20 72 65 73 70 65 63 74 20 74 6f 20 74 68 69 73 20 77 65 | malized,.with.respect.to.this.we |
| e8e0 | 69 67 68 74 20 66 75 6e 63 74 69 6f 6e 2e 0a 0a 20 20 20 20 50 61 72 61 6d 65 74 65 72 73 0a 20 | ight.function.......Parameters.. |
| e900 | 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 78 20 3a 20 61 72 72 61 79 5f 6c 69 6b 65 | ...----------.....x.:.array_like |
| e920 | 0a 20 20 20 20 20 20 20 56 61 6c 75 65 73 20 61 74 20 77 68 69 63 68 20 74 68 65 20 77 65 69 67 | ........Values.at.which.the.weig |
| e940 | 68 74 20 66 75 6e 63 74 69 6f 6e 20 77 69 6c 6c 20 62 65 20 63 6f 6d 70 75 74 65 64 2e 0a 0a 20 | ht.function.will.be.computed.... |
| e960 | 20 20 20 52 65 74 75 72 6e 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 77 20 3a 20 6e | ...Returns.....-------.....w.:.n |
| e980 | 64 61 72 72 61 79 0a 20 20 20 20 20 20 20 54 68 65 20 77 65 69 67 68 74 20 66 75 6e 63 74 69 6f | darray........The.weight.functio |
| e9a0 | 6e 20 61 74 20 60 78 60 2e 0a 0a 20 20 20 20 45 78 61 6d 70 6c 65 73 0a 20 20 20 20 2d 2d 2d 2d | n.at.`x`.......Examples.....---- |
| e9c0 | 2d 2d 2d 2d 0a 20 20 20 20 3e 3e 3e 20 69 6d 70 6f 72 74 20 6e 75 6d 70 79 20 61 73 20 6e 70 0a | ----.....>>>.import.numpy.as.np. |
| e9e0 | 20 20 20 20 3e 3e 3e 20 66 72 6f 6d 20 6e 75 6d 70 79 2e 70 6f 6c 79 6e 6f 6d 69 61 6c 2e 68 65 | ....>>>.from.numpy.polynomial.he |
| ea00 | 72 6d 69 74 65 20 69 6d 70 6f 72 74 20 68 65 72 6d 77 65 69 67 68 74 0a 20 20 20 20 3e 3e 3e 20 | rmite.import.hermweight.....>>>. |
| ea20 | 78 20 3d 20 6e 70 2e 61 72 61 6e 67 65 28 2d 32 2c 20 32 29 0a 20 20 20 20 3e 3e 3e 20 68 65 72 | x.=.np.arange(-2,.2).....>>>.her |
| ea40 | 6d 77 65 69 67 68 74 28 78 29 0a 20 20 20 20 61 72 72 61 79 28 5b 30 2e 30 31 38 33 31 35 36 34 | mweight(x).....array([0.01831564 |
| ea60 | 2c 20 30 2e 33 36 37 38 37 39 34 34 2c 20 31 2e 20 20 20 20 20 20 20 20 2c 20 30 2e 33 36 37 38 | ,.0.36787944,.1.........,.0.3678 |
| ea80 | 37 39 34 34 5d 29 0a 0a 20 20 20 20 72 36 00 00 00 29 02 72 41 00 00 00 da 03 65 78 70 29 02 72 | 7944])......r6...).rA.....exp).r |
| eaa0 | 7e 00 00 00 72 9b 00 00 00 73 02 00 00 00 20 20 72 30 00 00 00 72 25 00 00 00 72 25 00 00 00 7e | ~...r....s......r0...r%...r%...~ |
| eac0 | 06 00 00 73 1c 00 00 00 80 00 f4 36 00 09 0b 8f 06 89 06 90 01 90 31 91 04 88 75 8b 0d 80 41 d8 | ...s.......6..........1...u...A. |
| eae0 | 0b 0c 80 48 72 31 00 00 00 63 00 00 00 00 00 00 00 00 00 00 00 00 03 00 00 00 00 00 00 00 f3 1c | ...Hr1...c...................... |
| eb00 | 01 00 00 97 00 65 00 5a 01 64 00 5a 02 64 01 5a 03 02 00 65 04 65 05 ab 01 00 00 00 00 00 00 5a | .....e.Z.d.Z.d.Z...e.e.........Z |
| eb20 | 06 02 00 65 04 65 07 ab 01 00 00 00 00 00 00 5a 08 02 00 65 04 65 09 ab 01 00 00 00 00 00 00 5a | ...e.e.........Z...e.e.........Z |
| eb40 | 0a 02 00 65 04 65 0b ab 01 00 00 00 00 00 00 5a 0c 02 00 65 04 65 0d ab 01 00 00 00 00 00 00 5a | ...e.e.........Z...e.e.........Z |
| eb60 | 0e 02 00 65 04 65 0f ab 01 00 00 00 00 00 00 5a 10 02 00 65 04 65 11 ab 01 00 00 00 00 00 00 5a | ...e.e.........Z...e.e.........Z |
| eb80 | 12 02 00 65 04 65 13 ab 01 00 00 00 00 00 00 5a 14 02 00 65 04 65 15 ab 01 00 00 00 00 00 00 5a | ...e.e.........Z...e.e.........Z |
| eba0 | 16 02 00 65 04 65 17 ab 01 00 00 00 00 00 00 5a 18 02 00 65 04 65 19 ab 01 00 00 00 00 00 00 5a | ...e.e.........Z...e.e.........Z |
| ebc0 | 1a 02 00 65 04 65 1b ab 01 00 00 00 00 00 00 5a 1c 02 00 65 1d 6a 3c 00 00 00 00 00 00 00 00 00 | ...e.e.........Z...e.j<......... |
| ebe0 | 00 00 00 00 00 00 00 00 00 65 1f ab 01 00 00 00 00 00 00 5a 20 02 00 65 1d 6a 3c 00 00 00 00 00 | .........e.........Z...e.j<..... |
| ec00 | 00 00 00 00 00 00 00 00 00 00 00 00 00 65 1f ab 01 00 00 00 00 00 00 5a 21 64 02 5a 22 79 03 29 | .............e.........Z!d.Z"y.) |
| ec20 | 04 72 1c 00 00 00 61 f2 03 00 00 41 6e 20 48 65 72 6d 69 74 65 20 73 65 72 69 65 73 20 63 6c 61 | .r....a....An.Hermite.series.cla |
| ec40 | 73 73 2e 0a 0a 20 20 20 20 54 68 65 20 48 65 72 6d 69 74 65 20 63 6c 61 73 73 20 70 72 6f 76 69 | ss.......The.Hermite.class.provi |
| ec60 | 64 65 73 20 74 68 65 20 73 74 61 6e 64 61 72 64 20 50 79 74 68 6f 6e 20 6e 75 6d 65 72 69 63 61 | des.the.standard.Python.numerica |
| ec80 | 6c 20 6d 65 74 68 6f 64 73 0a 20 20 20 20 27 2b 27 2c 20 27 2d 27 2c 20 27 2a 27 2c 20 27 2f 2f | l.methods.....'+',.'-',.'*',.'// |
| eca0 | 27 2c 20 27 25 27 2c 20 27 64 69 76 6d 6f 64 27 2c 20 27 2a 2a 27 2c 20 61 6e 64 20 27 28 29 27 | ',.'%',.'divmod',.'**',.and.'()' |
| ecc0 | 20 61 73 20 77 65 6c 6c 20 61 73 20 74 68 65 0a 20 20 20 20 61 74 74 72 69 62 75 74 65 73 20 61 | .as.well.as.the.....attributes.a |
| ece0 | 6e 64 20 6d 65 74 68 6f 64 73 20 6c 69 73 74 65 64 20 62 65 6c 6f 77 2e 0a 0a 20 20 20 20 50 61 | nd.methods.listed.below.......Pa |
| ed00 | 72 61 6d 65 74 65 72 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 63 6f 65 66 | rameters.....----------.....coef |
| ed20 | 20 3a 20 61 72 72 61 79 5f 6c 69 6b 65 0a 20 20 20 20 20 20 20 20 48 65 72 6d 69 74 65 20 63 6f | .:.array_like.........Hermite.co |
| ed40 | 65 66 66 69 63 69 65 6e 74 73 20 69 6e 20 6f 72 64 65 72 20 6f 66 20 69 6e 63 72 65 61 73 69 6e | efficients.in.order.of.increasin |
| ed60 | 67 20 64 65 67 72 65 65 2c 20 69 2e 65 2c 0a 20 20 20 20 20 20 20 20 60 60 28 31 2c 20 32 2c 20 | g.degree,.i.e,.........``(1,.2,. |
| ed80 | 33 29 60 60 20 67 69 76 65 73 20 60 60 31 2a 48 5f 30 28 78 29 20 2b 20 32 2a 48 5f 31 28 78 29 | 3)``.gives.``1*H_0(x).+.2*H_1(x) |
| eda0 | 20 2b 20 33 2a 48 5f 32 28 78 29 60 60 2e 0a 20 20 20 20 64 6f 6d 61 69 6e 20 3a 20 28 32 2c 29 | .+.3*H_2(x)``......domain.:.(2,) |
| edc0 | 20 61 72 72 61 79 5f 6c 69 6b 65 2c 20 6f 70 74 69 6f 6e 61 6c 0a 20 20 20 20 20 20 20 20 44 6f | .array_like,.optional.........Do |
| ede0 | 6d 61 69 6e 20 74 6f 20 75 73 65 2e 20 54 68 65 20 69 6e 74 65 72 76 61 6c 20 60 60 5b 64 6f 6d | main.to.use..The.interval.``[dom |
| ee00 | 61 69 6e 5b 30 5d 2c 20 64 6f 6d 61 69 6e 5b 31 5d 5d 60 60 20 69 73 20 6d 61 70 70 65 64 0a 20 | ain[0],.domain[1]]``.is.mapped.. |
| ee20 | 20 20 20 20 20 20 20 74 6f 20 74 68 65 20 69 6e 74 65 72 76 61 6c 20 60 60 5b 77 69 6e 64 6f 77 | .......to.the.interval.``[window |
| ee40 | 5b 30 5d 2c 20 77 69 6e 64 6f 77 5b 31 5d 5d 60 60 20 62 79 20 73 68 69 66 74 69 6e 67 20 61 6e | [0],.window[1]]``.by.shifting.an |
| ee60 | 64 20 73 63 61 6c 69 6e 67 2e 0a 20 20 20 20 20 20 20 20 54 68 65 20 64 65 66 61 75 6c 74 20 76 | d.scaling..........The.default.v |
| ee80 | 61 6c 75 65 20 69 73 20 5b 2d 31 2e 2c 20 31 2e 5d 2e 0a 20 20 20 20 77 69 6e 64 6f 77 20 3a 20 | alue.is.[-1.,.1.]......window.:. |
| eea0 | 28 32 2c 29 20 61 72 72 61 79 5f 6c 69 6b 65 2c 20 6f 70 74 69 6f 6e 61 6c 0a 20 20 20 20 20 20 | (2,).array_like,.optional....... |
| eec0 | 20 20 57 69 6e 64 6f 77 2c 20 73 65 65 20 60 64 6f 6d 61 69 6e 60 20 66 6f 72 20 69 74 73 20 75 | ..Window,.see.`domain`.for.its.u |
| eee0 | 73 65 2e 20 54 68 65 20 64 65 66 61 75 6c 74 20 76 61 6c 75 65 20 69 73 20 5b 2d 31 2e 2c 20 31 | se..The.default.value.is.[-1.,.1 |
| ef00 | 2e 5d 2e 0a 20 20 20 20 73 79 6d 62 6f 6c 20 3a 20 73 74 72 2c 20 6f 70 74 69 6f 6e 61 6c 0a 20 | .]......symbol.:.str,.optional.. |
| ef20 | 20 20 20 20 20 20 20 53 79 6d 62 6f 6c 20 75 73 65 64 20 74 6f 20 72 65 70 72 65 73 65 6e 74 20 | .......Symbol.used.to.represent. |
| ef40 | 74 68 65 20 69 6e 64 65 70 65 6e 64 65 6e 74 20 76 61 72 69 61 62 6c 65 20 69 6e 20 73 74 72 69 | the.independent.variable.in.stri |
| ef60 | 6e 67 0a 20 20 20 20 20 20 20 20 72 65 70 72 65 73 65 6e 74 61 74 69 6f 6e 73 20 6f 66 20 74 68 | ng.........representations.of.th |
| ef80 | 65 20 70 6f 6c 79 6e 6f 6d 69 61 6c 20 65 78 70 72 65 73 73 69 6f 6e 2c 20 65 2e 67 2e 20 66 6f | e.polynomial.expression,.e.g..fo |
| efa0 | 72 20 70 72 69 6e 74 69 6e 67 2e 0a 20 20 20 20 20 20 20 20 54 68 65 20 73 79 6d 62 6f 6c 20 6d | r.printing..........The.symbol.m |
| efc0 | 75 73 74 20 62 65 20 61 20 76 61 6c 69 64 20 50 79 74 68 6f 6e 20 69 64 65 6e 74 69 66 69 65 72 | ust.be.a.valid.Python.identifier |
| efe0 | 2e 20 44 65 66 61 75 6c 74 20 76 61 6c 75 65 20 69 73 20 27 78 27 2e 0a 0a 20 20 20 20 20 20 20 | ..Default.value.is.'x'.......... |
| f000 | 20 2e 2e 20 76 65 72 73 69 6f 6e 61 64 64 65 64 3a 3a 20 31 2e 32 34 0a 0a 20 20 20 20 da 01 48 | ....versionadded::.1.24........H |
| f020 | 4e 29 23 da 08 5f 5f 6e 61 6d 65 5f 5f da 0a 5f 5f 6d 6f 64 75 6c 65 5f 5f da 0c 5f 5f 71 75 61 | N)#..__name__..__module__..__qua |
| f040 | 6c 6e 61 6d 65 5f 5f da 07 5f 5f 64 6f 63 5f 5f da 0c 73 74 61 74 69 63 6d 65 74 68 6f 64 72 0c | lname__..__doc__..staticmethodr. |
| f060 | 00 00 00 72 49 00 00 00 72 0d 00 00 00 72 4e 00 00 00 72 0f 00 00 00 da 04 5f 6d 75 6c 72 10 00 | ...rI...r....rN...r......_mulr.. |
| f080 | 00 00 72 59 00 00 00 72 11 00 00 00 72 5b 00 00 00 72 12 00 00 00 da 04 5f 76 61 6c 72 14 00 00 | ..rY...r....r[...r......_valr... |
| f0a0 | 00 da 04 5f 69 6e 74 72 13 00 00 00 da 04 5f 64 65 72 72 19 00 00 00 72 98 00 00 00 72 0b 00 00 | ..._intr......_derr....r....r... |
| f0c0 | 00 da 05 5f 6c 69 6e 65 72 1b 00 00 00 da 06 5f 72 6f 6f 74 73 72 17 00 00 00 72 46 00 00 00 72 | ..._liner......_rootsr....rF...r |
| f0e0 | 41 00 00 00 72 42 00 00 00 72 0a 00 00 00 da 06 64 6f 6d 61 69 6e da 06 77 69 6e 64 6f 77 da 0a | A...rB...r......domain..window.. |
| f100 | 62 61 73 69 73 5f 6e 61 6d 65 a9 00 72 31 00 00 00 72 30 00 00 00 72 1c 00 00 00 72 1c 00 00 00 | basis_name..r1...r0...r....r.... |
| f120 | a1 06 00 00 73 a8 00 00 00 84 00 f1 02 18 05 08 f1 34 00 0c 18 98 07 d3 0b 20 80 44 d9 0b 17 98 | ....s............4.........D.... |
| f140 | 07 d3 0b 20 80 44 d9 0b 17 98 07 d3 0b 20 80 44 d9 0b 17 98 07 d3 0b 20 80 44 d9 0b 17 98 07 d3 | .....D.........D.........D...... |
| f160 | 0b 20 80 44 d9 0b 17 98 07 d3 0b 20 80 44 d9 0b 17 98 07 d3 0b 20 80 44 d9 0b 17 98 07 d3 0b 20 | ...D.........D.........D........ |
| f180 | 80 44 d9 0b 17 98 07 d3 0b 20 80 44 d9 0c 18 98 18 d3 0c 22 80 45 d9 0d 19 98 29 d3 0d 24 80 46 | .D.........D.......".E....)..$.F |
| f1a0 | d9 11 1d 98 6d d3 11 2c 80 4a f0 06 00 0e 16 88 52 8f 58 89 58 90 6a d3 0d 21 80 46 d8 0d 15 88 | ....m..,.J......R.X.X.j..!.F.... |
| f1c0 | 52 8f 58 89 58 90 6a d3 0d 21 80 46 d8 11 14 81 4a 72 31 00 00 00 72 1c 00 00 00 29 01 e9 10 00 | R.X.X.j..!.F....Jr1...r....).... |
| f1e0 | 00 00 29 03 72 04 00 00 00 72 04 00 00 00 72 02 00 00 00 29 01 54 29 03 4e 46 4e 29 30 72 c1 00 | ..).r....r....r....).T).NFN)0r.. |
| f200 | 00 00 da 05 6e 75 6d 70 79 72 41 00 00 00 da 0c 6e 75 6d 70 79 2e 6c 69 6e 61 6c 67 da 06 6c 69 | ....numpyrA.....numpy.linalg..li |
| f220 | 6e 61 6c 67 72 a9 00 00 00 da 15 6e 75 6d 70 79 2e 6c 69 62 2e 61 72 72 61 79 5f 75 74 69 6c 73 | nalgr......numpy.lib.array_utils |
| f240 | 72 03 00 00 00 da 00 72 05 00 00 00 72 28 00 00 00 da 09 5f 70 6f 6c 79 62 61 73 65 72 06 00 00 | r......r....r(....._polybaser... |
| f260 | 00 da 07 5f 5f 61 6c 6c 5f 5f da 08 74 72 69 6d 63 6f 65 66 72 1a 00 00 00 72 16 00 00 00 72 15 | ...__all__..trimcoefr....r....r. |
| f280 | 00 00 00 72 42 00 00 00 72 0a 00 00 00 72 07 00 00 00 72 08 00 00 00 72 09 00 00 00 72 0b 00 00 | ...rB...r....r....r....r....r... |
| f2a0 | 00 72 17 00 00 00 72 0c 00 00 00 72 0d 00 00 00 72 0e 00 00 00 72 0f 00 00 00 72 10 00 00 00 72 | .r....r....r....r....r....r....r |
| f2c0 | 11 00 00 00 72 13 00 00 00 72 14 00 00 00 72 12 00 00 00 72 1d 00 00 00 72 1f 00 00 00 72 1e 00 | ....r....r....r....r....r....r.. |
| f2e0 | 00 00 72 20 00 00 00 72 18 00 00 00 72 21 00 00 00 72 22 00 00 00 72 19 00 00 00 72 23 00 00 00 | ..r....r....r!...r"...r....r#... |
| f300 | 72 1b 00 00 00 72 b0 00 00 00 72 24 00 00 00 72 25 00 00 00 72 1c 00 00 00 72 cc 00 00 00 72 31 | r....r....r$...r%...r....r....r1 |
| f320 | 00 00 00 72 30 00 00 00 fa 08 3c 6d 6f 64 75 6c 65 3e 72 d6 00 00 00 01 00 00 00 73 3e 01 00 00 | ...r0.....<module>r........s>... |
| f340 | f0 03 01 01 01 f1 02 4c 01 01 04 f3 5a 02 00 01 13 dd 00 19 dd 00 36 e5 00 1d dd 00 22 f2 04 06 | .......L....Z.........6....."... |
| f360 | 0b 40 01 80 07 f0 10 00 0c 0e 8f 3b 89 3b 80 08 f2 06 2b 01 0f f2 5c 01 37 01 2d f0 40 02 00 0e | .@.........;.;....+...\.7.-.@... |
| f380 | 16 88 52 8f 58 89 58 90 73 98 42 90 69 d3 0d 20 80 0a f0 06 00 0c 14 88 32 8f 38 89 38 90 51 90 | ..R.X.X.s.B.i...........2.8.8.Q. |
| f3a0 | 43 8b 3d 80 08 f0 06 00 0b 13 88 22 8f 28 89 28 90 41 90 33 8b 2d 80 07 f0 06 00 09 11 88 02 8f | C.=........".(.(.A.3.-.......... |
| f3c0 | 08 89 08 90 21 90 55 90 1a d3 08 1c 80 05 f2 06 25 01 1f f2 50 01 35 01 33 f2 70 01 25 01 1b f2 | ....!.U.........%...P.5.3.p.%... |
| f3e0 | 50 01 25 01 1b f2 50 01 32 01 0f f2 6a 01 3f 01 29 f2 44 02 2d 01 24 f3 60 01 22 01 2e f3 4a 01 | P.%...P.2...j.?.).D.-.$.`."...J. |
| f400 | 4e 01 01 0d f0 62 02 00 12 13 90 62 98 71 a0 61 a8 61 f3 00 75 01 01 0d f3 70 03 5b 01 01 18 f2 | N....b.....b.q.a.a..u....p.[.... |
| f420 | 7c 02 32 01 27 f2 6a 01 38 01 28 f2 76 01 35 01 2a f2 70 01 3d 01 2b f2 40 02 3b 01 21 f2 7c 01 | |.2.'.j.8.(.v.5.*.p.=.+.@.;.!.|. |
| f440 | 38 01 45 01 f2 76 01 39 01 54 01 f3 78 01 43 02 01 3a f2 4c 04 2c 01 0f f2 5e 01 3d 01 0d f2 40 | 8.E..v.9.T..x.C..:.L.,...^.=...@ |
| f460 | 02 26 01 24 f2 52 01 43 01 01 10 f2 4c 02 1c 01 0d f4 46 01 2b 01 15 88 6b f5 00 2b 01 15 72 31 | .&.$.R.C....L.....F.+...k..+..r1 |
| f480 | 00 00 00 | ... |