| ofs | hex dump | ascii |
|---|
| 0000 | cb 0d 0d 0a 00 00 00 00 0d fd a7 68 fa cc 00 00 e3 00 00 00 00 00 00 00 00 00 00 00 00 05 00 00 | ...........h.................... |
| 0020 | 00 00 00 00 00 f3 bc 01 00 00 97 00 64 00 5a 00 64 01 64 02 6c 01 5a 02 64 01 64 02 6c 03 6d 04 | ............d.Z.d.d.l.Z.d.d.l.m. |
| 0040 | 5a 05 01 00 64 01 64 03 6c 06 6d 07 5a 07 01 00 64 04 64 05 6c 08 6d 09 5a 0a 01 00 64 04 64 06 | Z...d.d.l.m.Z...d.d.l.m.Z...d.d. |
| 0060 | 6c 0b 6d 0c 5a 0c 01 00 67 00 64 07 a2 01 5a 0d 65 0a 6a 1c 00 00 00 00 00 00 00 00 00 00 00 00 | l.m.Z...g.d...Z.e.j............. |
| 0080 | 00 00 00 00 00 00 5a 0f 64 08 84 00 5a 10 64 09 84 00 5a 11 02 00 65 02 6a 24 00 00 00 00 00 00 | ......Z.d...Z.d...Z...e.j$...... |
| 00a0 | 00 00 00 00 00 00 00 00 00 00 00 00 64 0a 64 0b 67 02 ab 01 00 00 00 00 00 00 5a 13 02 00 65 02 | ............d.d.g.........Z...e. |
| 00c0 | 6a 24 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 64 01 67 01 ab 01 00 00 00 00 00 00 | j$..................d.g......... |
| 00e0 | 5a 14 02 00 65 02 6a 24 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 64 04 67 01 ab 01 | Z...e.j$..................d.g... |
| 0100 | 00 00 00 00 00 00 5a 15 02 00 65 02 6a 24 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 | ......Z...e.j$.................. |
| 0120 | 64 04 64 0c 67 02 ab 01 00 00 00 00 00 00 5a 16 64 0d 84 00 5a 17 64 0e 84 00 5a 18 64 0f 84 00 | d.d.g.........Z.d...Z.d...Z.d... |
| 0140 | 5a 19 64 10 84 00 5a 1a 64 11 84 00 5a 1b 64 12 84 00 5a 1c 64 13 84 00 5a 1d 64 26 64 14 84 01 | Z.d...Z.d...Z.d...Z.d...Z.d&d... |
| 0160 | 5a 1e 64 27 64 15 84 01 5a 1f 64 04 67 00 64 01 64 04 64 01 66 05 64 16 84 01 5a 20 64 28 64 17 | Z.d'd...Z.d.g.d.d.d.f.d...Z.d(d. |
| 0180 | 84 01 5a 21 64 18 84 00 5a 22 64 19 84 00 5a 23 64 1a 84 00 5a 24 64 1b 84 00 5a 25 64 1c 84 00 | ..Z!d...Z"d...Z#d...Z$d...Z%d... |
| 01a0 | 5a 26 64 1d 84 00 5a 27 64 1e 84 00 5a 28 64 29 64 1f 84 01 5a 29 64 20 84 00 5a 2a 64 21 84 00 | Z&d...Z'd...Z(d)d...Z)d...Z*d!.. |
| 01c0 | 5a 2b 64 22 84 00 5a 2c 64 23 84 00 5a 2d 02 00 47 00 64 24 84 00 64 25 65 0c ab 03 00 00 00 00 | Z+d"..Z,d#..Z-..G.d$..d%e....... |
| 01e0 | 00 00 5a 2e 79 02 29 2a 61 be 04 00 00 0a 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d | ..Z.y.)*a.....================== |
| 0200 | 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d | ================================ |
| 0220 | 0a 4c 61 67 75 65 72 72 65 20 53 65 72 69 65 73 20 28 3a 6d 6f 64 3a 60 6e 75 6d 70 79 2e 70 6f | .Laguerre.Series.(:mod:`numpy.po |
| 0240 | 6c 79 6e 6f 6d 69 61 6c 2e 6c 61 67 75 65 72 72 65 60 29 0a 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d | lynomial.laguerre`).============ |
| 0260 | 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d | ================================ |
| 0280 | 3d 3d 3d 3d 3d 3d 0a 0a 54 68 69 73 20 6d 6f 64 75 6c 65 20 70 72 6f 76 69 64 65 73 20 61 20 6e | ======..This.module.provides.a.n |
| 02a0 | 75 6d 62 65 72 20 6f 66 20 6f 62 6a 65 63 74 73 20 28 6d 6f 73 74 6c 79 20 66 75 6e 63 74 69 6f | umber.of.objects.(mostly.functio |
| 02c0 | 6e 73 29 20 75 73 65 66 75 6c 20 66 6f 72 0a 64 65 61 6c 69 6e 67 20 77 69 74 68 20 4c 61 67 75 | ns).useful.for.dealing.with.Lagu |
| 02e0 | 65 72 72 65 20 73 65 72 69 65 73 2c 20 69 6e 63 6c 75 64 69 6e 67 20 61 20 60 4c 61 67 75 65 72 | erre.series,.including.a.`Laguer |
| 0300 | 72 65 60 20 63 6c 61 73 73 20 74 68 61 74 0a 65 6e 63 61 70 73 75 6c 61 74 65 73 20 74 68 65 20 | re`.class.that.encapsulates.the. |
| 0320 | 75 73 75 61 6c 20 61 72 69 74 68 6d 65 74 69 63 20 6f 70 65 72 61 74 69 6f 6e 73 2e 20 20 28 47 | usual.arithmetic.operations...(G |
| 0340 | 65 6e 65 72 61 6c 20 69 6e 66 6f 72 6d 61 74 69 6f 6e 0a 6f 6e 20 68 6f 77 20 74 68 69 73 20 6d | eneral.information.on.how.this.m |
| 0360 | 6f 64 75 6c 65 20 72 65 70 72 65 73 65 6e 74 73 20 61 6e 64 20 77 6f 72 6b 73 20 77 69 74 68 20 | odule.represents.and.works.with. |
| 0380 | 73 75 63 68 20 70 6f 6c 79 6e 6f 6d 69 61 6c 73 20 69 73 20 69 6e 20 74 68 65 0a 64 6f 63 73 74 | such.polynomials.is.in.the.docst |
| 03a0 | 72 69 6e 67 20 66 6f 72 20 69 74 73 20 22 70 61 72 65 6e 74 22 20 73 75 62 2d 70 61 63 6b 61 67 | ring.for.its."parent".sub-packag |
| 03c0 | 65 2c 20 60 6e 75 6d 70 79 2e 70 6f 6c 79 6e 6f 6d 69 61 6c 60 29 2e 0a 0a 43 6c 61 73 73 65 73 | e,.`numpy.polynomial`)...Classes |
| 03e0 | 0a 2d 2d 2d 2d 2d 2d 2d 0a 2e 2e 20 61 75 74 6f 73 75 6d 6d 61 72 79 3a 3a 0a 20 20 20 3a 74 6f | .-------....autosummary::....:to |
| 0400 | 63 74 72 65 65 3a 20 67 65 6e 65 72 61 74 65 64 2f 0a 0a 20 20 20 4c 61 67 75 65 72 72 65 0a 0a | ctree:.generated/.....Laguerre.. |
| 0420 | 43 6f 6e 73 74 61 6e 74 73 0a 2d 2d 2d 2d 2d 2d 2d 2d 2d 0a 2e 2e 20 61 75 74 6f 73 75 6d 6d 61 | Constants.---------....autosumma |
| 0440 | 72 79 3a 3a 0a 20 20 20 3a 74 6f 63 74 72 65 65 3a 20 67 65 6e 65 72 61 74 65 64 2f 0a 0a 20 20 | ry::....:toctree:.generated/.... |
| 0460 | 20 6c 61 67 64 6f 6d 61 69 6e 0a 20 20 20 6c 61 67 7a 65 72 6f 0a 20 20 20 6c 61 67 6f 6e 65 0a | .lagdomain....lagzero....lagone. |
| 0480 | 20 20 20 6c 61 67 78 0a 0a 41 72 69 74 68 6d 65 74 69 63 0a 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 0a 2e | ...lagx..Arithmetic.----------.. |
| 04a0 | 2e 20 61 75 74 6f 73 75 6d 6d 61 72 79 3a 3a 0a 20 20 20 3a 74 6f 63 74 72 65 65 3a 20 67 65 6e | ..autosummary::....:toctree:.gen |
| 04c0 | 65 72 61 74 65 64 2f 0a 0a 20 20 20 6c 61 67 61 64 64 0a 20 20 20 6c 61 67 73 75 62 0a 20 20 20 | erated/.....lagadd....lagsub.... |
| 04e0 | 6c 61 67 6d 75 6c 78 0a 20 20 20 6c 61 67 6d 75 6c 0a 20 20 20 6c 61 67 64 69 76 0a 20 20 20 6c | lagmulx....lagmul....lagdiv....l |
| 0500 | 61 67 70 6f 77 0a 20 20 20 6c 61 67 76 61 6c 0a 20 20 20 6c 61 67 76 61 6c 32 64 0a 20 20 20 6c | agpow....lagval....lagval2d....l |
| 0520 | 61 67 76 61 6c 33 64 0a 20 20 20 6c 61 67 67 72 69 64 32 64 0a 20 20 20 6c 61 67 67 72 69 64 33 | agval3d....laggrid2d....laggrid3 |
| 0540 | 64 0a 0a 43 61 6c 63 75 6c 75 73 0a 2d 2d 2d 2d 2d 2d 2d 2d 0a 2e 2e 20 61 75 74 6f 73 75 6d 6d | d..Calculus.--------....autosumm |
| 0560 | 61 72 79 3a 3a 0a 20 20 20 3a 74 6f 63 74 72 65 65 3a 20 67 65 6e 65 72 61 74 65 64 2f 0a 0a 20 | ary::....:toctree:.generated/... |
| 0580 | 20 20 6c 61 67 64 65 72 0a 20 20 20 6c 61 67 69 6e 74 0a 0a 4d 69 73 63 20 46 75 6e 63 74 69 6f | ..lagder....lagint..Misc.Functio |
| 05a0 | 6e 73 0a 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 0a 2e 2e 20 61 75 74 6f 73 75 6d 6d 61 72 79 | ns.--------------....autosummary |
| 05c0 | 3a 3a 0a 20 20 20 3a 74 6f 63 74 72 65 65 3a 20 67 65 6e 65 72 61 74 65 64 2f 0a 0a 20 20 20 6c | ::....:toctree:.generated/.....l |
| 05e0 | 61 67 66 72 6f 6d 72 6f 6f 74 73 0a 20 20 20 6c 61 67 72 6f 6f 74 73 0a 20 20 20 6c 61 67 76 61 | agfromroots....lagroots....lagva |
| 0600 | 6e 64 65 72 0a 20 20 20 6c 61 67 76 61 6e 64 65 72 32 64 0a 20 20 20 6c 61 67 76 61 6e 64 65 72 | nder....lagvander2d....lagvander |
| 0620 | 33 64 0a 20 20 20 6c 61 67 67 61 75 73 73 0a 20 20 20 6c 61 67 77 65 69 67 68 74 0a 20 20 20 6c | 3d....laggauss....lagweight....l |
| 0640 | 61 67 63 6f 6d 70 61 6e 69 6f 6e 0a 20 20 20 6c 61 67 66 69 74 0a 20 20 20 6c 61 67 74 72 69 6d | agcompanion....lagfit....lagtrim |
| 0660 | 0a 20 20 20 6c 61 67 6c 69 6e 65 0a 20 20 20 6c 61 67 32 70 6f 6c 79 0a 20 20 20 70 6f 6c 79 32 | ....lagline....lag2poly....poly2 |
| 0680 | 6c 61 67 0a 0a 53 65 65 20 61 6c 73 6f 0a 2d 2d 2d 2d 2d 2d 2d 2d 0a 60 6e 75 6d 70 79 2e 70 6f | lag..See.also.--------.`numpy.po |
| 06a0 | 6c 79 6e 6f 6d 69 61 6c 60 0a 0a e9 00 00 00 00 4e 29 01 da 14 6e 6f 72 6d 61 6c 69 7a 65 5f 61 | lynomial`.......N)...normalize_a |
| 06c0 | 78 69 73 5f 69 6e 64 65 78 e9 01 00 00 00 29 01 da 09 70 6f 6c 79 75 74 69 6c 73 29 01 da 0b 41 | xis_index.....)...polyutils)...A |
| 06e0 | 42 43 50 6f 6c 79 42 61 73 65 29 1f da 07 6c 61 67 7a 65 72 6f da 06 6c 61 67 6f 6e 65 da 04 6c | BCPolyBase)...lagzero..lagone..l |
| 0700 | 61 67 78 da 09 6c 61 67 64 6f 6d 61 69 6e da 07 6c 61 67 6c 69 6e 65 da 06 6c 61 67 61 64 64 da | agx..lagdomain..lagline..lagadd. |
| 0720 | 06 6c 61 67 73 75 62 da 07 6c 61 67 6d 75 6c 78 da 06 6c 61 67 6d 75 6c da 06 6c 61 67 64 69 76 | .lagsub..lagmulx..lagmul..lagdiv |
| 0740 | da 06 6c 61 67 70 6f 77 da 06 6c 61 67 76 61 6c da 06 6c 61 67 64 65 72 da 06 6c 61 67 69 6e 74 | ..lagpow..lagval..lagder..lagint |
| 0760 | da 08 6c 61 67 32 70 6f 6c 79 da 08 70 6f 6c 79 32 6c 61 67 da 0c 6c 61 67 66 72 6f 6d 72 6f 6f | ..lag2poly..poly2lag..lagfromroo |
| 0780 | 74 73 da 09 6c 61 67 76 61 6e 64 65 72 da 06 6c 61 67 66 69 74 da 07 6c 61 67 74 72 69 6d da 08 | ts..lagvander..lagfit..lagtrim.. |
| 07a0 | 6c 61 67 72 6f 6f 74 73 da 08 4c 61 67 75 65 72 72 65 da 08 6c 61 67 76 61 6c 32 64 da 08 6c 61 | lagroots..Laguerre..lagval2d..la |
| 07c0 | 67 76 61 6c 33 64 da 09 6c 61 67 67 72 69 64 32 64 da 09 6c 61 67 67 72 69 64 33 64 da 0b 6c 61 | gval3d..laggrid2d..laggrid3d..la |
| 07e0 | 67 76 61 6e 64 65 72 32 64 da 0b 6c 61 67 76 61 6e 64 65 72 33 64 da 0c 6c 61 67 63 6f 6d 70 61 | gvander2d..lagvander3d..lagcompa |
| 0800 | 6e 69 6f 6e da 08 6c 61 67 67 61 75 73 73 da 09 6c 61 67 77 65 69 67 68 74 63 01 00 00 00 00 00 | nion..laggauss..lagweightc...... |
| 0820 | 00 00 00 00 00 00 06 00 00 00 03 00 00 00 f3 7e 00 00 00 97 00 74 01 00 00 00 00 00 00 00 00 6a | ...............~.....t.........j |
| 0840 | 02 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 7c 00 67 01 ab 01 00 00 00 00 00 00 5c | ...................|.g.........\ |
| 0860 | 01 00 00 7d 00 64 01 7d 01 7c 00 64 02 64 02 64 03 85 03 19 00 00 00 44 00 5d 17 00 00 7d 02 74 | ...}.d.}.|.d.d.d.......D.]...}.t |
| 0880 | 05 00 00 00 00 00 00 00 00 74 07 00 00 00 00 00 00 00 00 7c 01 ab 01 00 00 00 00 00 00 7c 02 ab | .........t.........|.........|.. |
| 08a0 | 02 00 00 00 00 00 00 7d 01 8c 19 04 00 7c 01 53 00 29 04 61 9f 03 00 00 0a 20 20 20 20 70 6f 6c | .......}.....|.S.).a.........pol |
| 08c0 | 79 32 6c 61 67 28 70 6f 6c 29 0a 0a 20 20 20 20 43 6f 6e 76 65 72 74 20 61 20 70 6f 6c 79 6e 6f | y2lag(pol)......Convert.a.polyno |
| 08e0 | 6d 69 61 6c 20 74 6f 20 61 20 4c 61 67 75 65 72 72 65 20 73 65 72 69 65 73 2e 0a 0a 20 20 20 20 | mial.to.a.Laguerre.series....... |
| 0900 | 43 6f 6e 76 65 72 74 20 61 6e 20 61 72 72 61 79 20 72 65 70 72 65 73 65 6e 74 69 6e 67 20 74 68 | Convert.an.array.representing.th |
| 0920 | 65 20 63 6f 65 66 66 69 63 69 65 6e 74 73 20 6f 66 20 61 20 70 6f 6c 79 6e 6f 6d 69 61 6c 20 28 | e.coefficients.of.a.polynomial.( |
| 0940 | 72 65 6c 61 74 69 76 65 0a 20 20 20 20 74 6f 20 74 68 65 20 22 73 74 61 6e 64 61 72 64 22 20 62 | relative.....to.the."standard".b |
| 0960 | 61 73 69 73 29 20 6f 72 64 65 72 65 64 20 66 72 6f 6d 20 6c 6f 77 65 73 74 20 64 65 67 72 65 65 | asis).ordered.from.lowest.degree |
| 0980 | 20 74 6f 20 68 69 67 68 65 73 74 2c 20 74 6f 20 61 6e 0a 20 20 20 20 61 72 72 61 79 20 6f 66 20 | .to.highest,.to.an.....array.of. |
| 09a0 | 74 68 65 20 63 6f 65 66 66 69 63 69 65 6e 74 73 20 6f 66 20 74 68 65 20 65 71 75 69 76 61 6c 65 | the.coefficients.of.the.equivale |
| 09c0 | 6e 74 20 4c 61 67 75 65 72 72 65 20 73 65 72 69 65 73 2c 20 6f 72 64 65 72 65 64 0a 20 20 20 20 | nt.Laguerre.series,.ordered..... |
| 09e0 | 66 72 6f 6d 20 6c 6f 77 65 73 74 20 74 6f 20 68 69 67 68 65 73 74 20 64 65 67 72 65 65 2e 0a 0a | from.lowest.to.highest.degree... |
| 0a00 | 20 20 20 20 50 61 72 61 6d 65 74 65 72 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 | ....Parameters.....----------... |
| 0a20 | 20 20 70 6f 6c 20 3a 20 61 72 72 61 79 5f 6c 69 6b 65 0a 20 20 20 20 20 20 20 20 31 2d 44 20 61 | ..pol.:.array_like.........1-D.a |
| 0a40 | 72 72 61 79 20 63 6f 6e 74 61 69 6e 69 6e 67 20 74 68 65 20 70 6f 6c 79 6e 6f 6d 69 61 6c 20 63 | rray.containing.the.polynomial.c |
| 0a60 | 6f 65 66 66 69 63 69 65 6e 74 73 0a 0a 20 20 20 20 52 65 74 75 72 6e 73 0a 20 20 20 20 2d 2d 2d | oefficients......Returns.....--- |
| 0a80 | 2d 2d 2d 2d 0a 20 20 20 20 63 20 3a 20 6e 64 61 72 72 61 79 0a 20 20 20 20 20 20 20 20 31 2d 44 | ----.....c.:.ndarray.........1-D |
| 0aa0 | 20 61 72 72 61 79 20 63 6f 6e 74 61 69 6e 69 6e 67 20 74 68 65 20 63 6f 65 66 66 69 63 69 65 6e | .array.containing.the.coefficien |
| 0ac0 | 74 73 20 6f 66 20 74 68 65 20 65 71 75 69 76 61 6c 65 6e 74 20 4c 61 67 75 65 72 72 65 0a 20 20 | ts.of.the.equivalent.Laguerre... |
| 0ae0 | 20 20 20 20 20 20 73 65 72 69 65 73 2e 0a 0a 20 20 20 20 53 65 65 20 41 6c 73 6f 0a 20 20 20 20 | ......series.......See.Also..... |
| 0b00 | 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 6c 61 67 32 70 6f 6c 79 0a 0a 20 20 20 20 4e 6f 74 65 73 | --------.....lag2poly......Notes |
| 0b20 | 0a 20 20 20 20 2d 2d 2d 2d 2d 0a 20 20 20 20 54 68 65 20 65 61 73 79 20 77 61 79 20 74 6f 20 64 | .....-----.....The.easy.way.to.d |
| 0b40 | 6f 20 63 6f 6e 76 65 72 73 69 6f 6e 73 20 62 65 74 77 65 65 6e 20 70 6f 6c 79 6e 6f 6d 69 61 6c | o.conversions.between.polynomial |
| 0b60 | 20 62 61 73 69 73 20 73 65 74 73 0a 20 20 20 20 69 73 20 74 6f 20 75 73 65 20 74 68 65 20 63 6f | .basis.sets.....is.to.use.the.co |
| 0b80 | 6e 76 65 72 74 20 6d 65 74 68 6f 64 20 6f 66 20 61 20 63 6c 61 73 73 20 69 6e 73 74 61 6e 63 65 | nvert.method.of.a.class.instance |
| 0ba0 | 2e 0a 0a 20 20 20 20 45 78 61 6d 70 6c 65 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 | .......Examples.....--------.... |
| 0bc0 | 20 3e 3e 3e 20 69 6d 70 6f 72 74 20 6e 75 6d 70 79 20 61 73 20 6e 70 0a 20 20 20 20 3e 3e 3e 20 | .>>>.import.numpy.as.np.....>>>. |
| 0be0 | 66 72 6f 6d 20 6e 75 6d 70 79 2e 70 6f 6c 79 6e 6f 6d 69 61 6c 2e 6c 61 67 75 65 72 72 65 20 69 | from.numpy.polynomial.laguerre.i |
| 0c00 | 6d 70 6f 72 74 20 70 6f 6c 79 32 6c 61 67 0a 20 20 20 20 3e 3e 3e 20 70 6f 6c 79 32 6c 61 67 28 | mport.poly2lag.....>>>.poly2lag( |
| 0c20 | 6e 70 2e 61 72 61 6e 67 65 28 34 29 29 0a 20 20 20 20 61 72 72 61 79 28 5b 20 32 33 2e 2c 20 2d | np.arange(4)).....array([.23.,.- |
| 0c40 | 36 33 2e 2c 20 20 35 38 2e 2c 20 2d 31 38 2e 5d 29 0a 0a 20 20 20 20 72 02 00 00 00 4e e9 ff ff | 63.,..58.,.-18.])......r....N... |
| 0c60 | ff ff 29 04 da 02 70 75 da 09 61 73 5f 73 65 72 69 65 73 72 0c 00 00 00 72 0e 00 00 00 29 03 da | ..)...pu..as_seriesr....r....).. |
| 0c80 | 03 70 6f 6c da 03 72 65 73 da 01 70 73 03 00 00 00 20 20 20 fa 60 2f 68 6f 6d 65 2f 62 6c 61 63 | .pol..res..ps........`/home/blac |
| 0ca0 | 6b 68 61 6f 2f 75 69 75 63 2d 63 6f 75 72 73 65 2d 67 72 61 70 68 2f 2e 76 65 6e 76 2f 6c 69 62 | khao/uiuc-course-graph/.venv/lib |
| 0cc0 | 2f 70 79 74 68 6f 6e 33 2e 31 32 2f 73 69 74 65 2d 70 61 63 6b 61 67 65 73 2f 6e 75 6d 70 79 2f | /python3.12/site-packages/numpy/ |
| 0ce0 | 70 6f 6c 79 6e 6f 6d 69 61 6c 2f 6c 61 67 75 65 72 72 65 2e 70 79 72 16 00 00 00 72 16 00 00 00 | polynomial/laguerre.pyr....r.... |
| 0d00 | 60 00 00 00 73 48 00 00 00 80 00 f4 4e 01 00 0d 0f 8f 4c 89 4c 98 23 98 15 d3 0c 1f 81 45 80 53 | `...sH......N.....L.L.#......E.S |
| 0d20 | d8 0a 0b 80 43 d8 0d 10 91 14 90 32 90 14 89 59 f2 00 01 05 26 88 01 dc 0e 14 94 57 98 53 93 5c | ....C......2...Y....&......W.S.\ |
| 0d40 | a0 31 d3 0e 25 89 03 f0 03 01 05 26 e0 0b 0e 80 4a f3 00 00 00 00 63 01 00 00 00 00 00 00 00 00 | .1..%......&....J.....c......... |
| 0d60 | 00 00 00 0a 00 00 00 03 00 00 00 f3 4c 01 00 00 97 00 64 01 64 02 6c 00 6d 01 7d 01 6d 02 7d 02 | ............L.....d.d.l.m.}.m.}. |
| 0d80 | 6d 03 7d 03 01 00 74 09 00 00 00 00 00 00 00 00 6a 0a 00 00 00 00 00 00 00 00 00 00 00 00 00 00 | m.}...t.........j............... |
| 0da0 | 00 00 00 00 7c 00 67 01 ab 01 00 00 00 00 00 00 5c 01 00 00 7d 00 74 0d 00 00 00 00 00 00 00 00 | ....|.g.........\...}.t......... |
| 0dc0 | 7c 00 ab 01 00 00 00 00 00 00 7d 04 7c 04 64 01 6b 28 00 00 72 02 7c 00 53 00 7c 00 64 03 19 00 | |.........}.|.d.k(..r.|.S.|.d... |
| 0de0 | 00 00 7d 05 7c 00 64 04 19 00 00 00 7d 06 74 0f 00 00 00 00 00 00 00 00 7c 04 64 01 7a 0a 00 00 | ..}.|.d.....}.t.........|.d.z... |
| 0e00 | 64 01 64 04 ab 03 00 00 00 00 00 00 44 00 5d 3e 00 00 7d 07 7c 05 7d 08 02 00 7c 03 7c 00 7c 07 | d.d.........D.]>..}.|.}...|.|.|. |
| 0e20 | 64 05 7a 0a 00 00 19 00 00 00 7c 06 7c 07 64 01 7a 0a 00 00 7a 05 00 00 7c 07 7a 0b 00 00 ab 02 | d.z.......|.|.d.z...z...|.z..... |
| 0e40 | 00 00 00 00 00 00 7d 05 02 00 7c 01 7c 08 02 00 7c 03 64 05 7c 07 7a 05 00 00 64 01 7a 0a 00 00 | ......}...|.|...|.d.|.z...d.z... |
| 0e60 | 7c 06 7a 05 00 00 02 00 7c 02 7c 06 ab 01 00 00 00 00 00 00 ab 02 00 00 00 00 00 00 7c 07 7a 0b | |.z.....|.|.................|.z. |
| 0e80 | 00 00 ab 02 00 00 00 00 00 00 7d 06 8c 40 04 00 02 00 7c 01 7c 05 02 00 7c 03 7c 06 02 00 7c 02 | ..........}..@....|.|...|.|...|. |
| 0ea0 | 7c 06 ab 01 00 00 00 00 00 00 ab 02 00 00 00 00 00 00 ab 02 00 00 00 00 00 00 53 00 29 06 61 fe | |.........................S.).a. |
| 0ec0 | 03 00 00 0a 20 20 20 20 43 6f 6e 76 65 72 74 20 61 20 4c 61 67 75 65 72 72 65 20 73 65 72 69 65 | ........Convert.a.Laguerre.serie |
| 0ee0 | 73 20 74 6f 20 61 20 70 6f 6c 79 6e 6f 6d 69 61 6c 2e 0a 0a 20 20 20 20 43 6f 6e 76 65 72 74 20 | s.to.a.polynomial.......Convert. |
| 0f00 | 61 6e 20 61 72 72 61 79 20 72 65 70 72 65 73 65 6e 74 69 6e 67 20 74 68 65 20 63 6f 65 66 66 69 | an.array.representing.the.coeffi |
| 0f20 | 63 69 65 6e 74 73 20 6f 66 20 61 20 4c 61 67 75 65 72 72 65 20 73 65 72 69 65 73 2c 0a 20 20 20 | cients.of.a.Laguerre.series,.... |
| 0f40 | 20 6f 72 64 65 72 65 64 20 66 72 6f 6d 20 6c 6f 77 65 73 74 20 64 65 67 72 65 65 20 74 6f 20 68 | .ordered.from.lowest.degree.to.h |
| 0f60 | 69 67 68 65 73 74 2c 20 74 6f 20 61 6e 20 61 72 72 61 79 20 6f 66 20 74 68 65 20 63 6f 65 66 66 | ighest,.to.an.array.of.the.coeff |
| 0f80 | 69 63 69 65 6e 74 73 0a 20 20 20 20 6f 66 20 74 68 65 20 65 71 75 69 76 61 6c 65 6e 74 20 70 6f | icients.....of.the.equivalent.po |
| 0fa0 | 6c 79 6e 6f 6d 69 61 6c 20 28 72 65 6c 61 74 69 76 65 20 74 6f 20 74 68 65 20 22 73 74 61 6e 64 | lynomial.(relative.to.the."stand |
| 0fc0 | 61 72 64 22 20 62 61 73 69 73 29 20 6f 72 64 65 72 65 64 0a 20 20 20 20 66 72 6f 6d 20 6c 6f 77 | ard".basis).ordered.....from.low |
| 0fe0 | 65 73 74 20 74 6f 20 68 69 67 68 65 73 74 20 64 65 67 72 65 65 2e 0a 0a 20 20 20 20 50 61 72 61 | est.to.highest.degree.......Para |
| 1000 | 6d 65 74 65 72 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 63 20 3a 20 61 72 | meters.....----------.....c.:.ar |
| 1020 | 72 61 79 5f 6c 69 6b 65 0a 20 20 20 20 20 20 20 20 31 2d 44 20 61 72 72 61 79 20 63 6f 6e 74 61 | ray_like.........1-D.array.conta |
| 1040 | 69 6e 69 6e 67 20 74 68 65 20 4c 61 67 75 65 72 72 65 20 73 65 72 69 65 73 20 63 6f 65 66 66 69 | ining.the.Laguerre.series.coeffi |
| 1060 | 63 69 65 6e 74 73 2c 20 6f 72 64 65 72 65 64 0a 20 20 20 20 20 20 20 20 66 72 6f 6d 20 6c 6f 77 | cients,.ordered.........from.low |
| 1080 | 65 73 74 20 6f 72 64 65 72 20 74 65 72 6d 20 74 6f 20 68 69 67 68 65 73 74 2e 0a 0a 20 20 20 20 | est.order.term.to.highest....... |
| 10a0 | 52 65 74 75 72 6e 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 70 6f 6c 20 3a 20 6e 64 | Returns.....-------.....pol.:.nd |
| 10c0 | 61 72 72 61 79 0a 20 20 20 20 20 20 20 20 31 2d 44 20 61 72 72 61 79 20 63 6f 6e 74 61 69 6e 69 | array.........1-D.array.containi |
| 10e0 | 6e 67 20 74 68 65 20 63 6f 65 66 66 69 63 69 65 6e 74 73 20 6f 66 20 74 68 65 20 65 71 75 69 76 | ng.the.coefficients.of.the.equiv |
| 1100 | 61 6c 65 6e 74 20 70 6f 6c 79 6e 6f 6d 69 61 6c 0a 20 20 20 20 20 20 20 20 28 72 65 6c 61 74 69 | alent.polynomial.........(relati |
| 1120 | 76 65 20 74 6f 20 74 68 65 20 22 73 74 61 6e 64 61 72 64 22 20 62 61 73 69 73 29 20 6f 72 64 65 | ve.to.the."standard".basis).orde |
| 1140 | 72 65 64 20 66 72 6f 6d 20 6c 6f 77 65 73 74 20 6f 72 64 65 72 20 74 65 72 6d 0a 20 20 20 20 20 | red.from.lowest.order.term...... |
| 1160 | 20 20 20 74 6f 20 68 69 67 68 65 73 74 2e 0a 0a 20 20 20 20 53 65 65 20 41 6c 73 6f 0a 20 20 20 | ...to.highest.......See.Also.... |
| 1180 | 20 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 70 6f 6c 79 32 6c 61 67 0a 0a 20 20 20 20 4e 6f 74 65 | .--------.....poly2lag......Note |
| 11a0 | 73 0a 20 20 20 20 2d 2d 2d 2d 2d 0a 20 20 20 20 54 68 65 20 65 61 73 79 20 77 61 79 20 74 6f 20 | s.....-----.....The.easy.way.to. |
| 11c0 | 64 6f 20 63 6f 6e 76 65 72 73 69 6f 6e 73 20 62 65 74 77 65 65 6e 20 70 6f 6c 79 6e 6f 6d 69 61 | do.conversions.between.polynomia |
| 11e0 | 6c 20 62 61 73 69 73 20 73 65 74 73 0a 20 20 20 20 69 73 20 74 6f 20 75 73 65 20 74 68 65 20 63 | l.basis.sets.....is.to.use.the.c |
| 1200 | 6f 6e 76 65 72 74 20 6d 65 74 68 6f 64 20 6f 66 20 61 20 63 6c 61 73 73 20 69 6e 73 74 61 6e 63 | onvert.method.of.a.class.instanc |
| 1220 | 65 2e 0a 0a 20 20 20 20 45 78 61 6d 70 6c 65 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 | e.......Examples.....--------... |
| 1240 | 20 20 3e 3e 3e 20 66 72 6f 6d 20 6e 75 6d 70 79 2e 70 6f 6c 79 6e 6f 6d 69 61 6c 2e 6c 61 67 75 | ..>>>.from.numpy.polynomial.lagu |
| 1260 | 65 72 72 65 20 69 6d 70 6f 72 74 20 6c 61 67 32 70 6f 6c 79 0a 20 20 20 20 3e 3e 3e 20 6c 61 67 | erre.import.lag2poly.....>>>.lag |
| 1280 | 32 70 6f 6c 79 28 5b 20 32 33 2e 2c 20 2d 36 33 2e 2c 20 20 35 38 2e 2c 20 2d 31 38 2e 5d 29 0a | 2poly([.23.,.-63.,..58.,.-18.]). |
| 12a0 | 20 20 20 20 61 72 72 61 79 28 5b 30 2e 2c 20 31 2e 2c 20 32 2e 2c 20 33 2e 5d 29 0a 0a 20 20 20 | ....array([0.,.1.,.2.,.3.])..... |
| 12c0 | 20 72 04 00 00 00 29 03 da 07 70 6f 6c 79 61 64 64 da 08 70 6f 6c 79 6d 75 6c 78 da 07 70 6f 6c | .r....)...polyadd..polymulx..pol |
| 12e0 | 79 73 75 62 e9 fe ff ff ff 72 27 00 00 00 e9 02 00 00 00 29 08 da 0a 70 6f 6c 79 6e 6f 6d 69 61 | ysub.....r'........)...polynomia |
| 1300 | 6c 72 30 00 00 00 72 31 00 00 00 72 32 00 00 00 72 28 00 00 00 72 29 00 00 00 da 03 6c 65 6e da | lr0...r1...r2...r(...r).....len. |
| 1320 | 05 72 61 6e 67 65 29 09 da 01 63 72 30 00 00 00 72 31 00 00 00 72 32 00 00 00 da 01 6e da 02 63 | .range)...cr0...r1...r2.....n..c |
| 1340 | 30 da 02 63 31 da 01 69 da 03 74 6d 70 73 09 00 00 00 20 20 20 20 20 20 20 20 20 72 2d 00 00 00 | 0..c1..i..tmps.............r-... |
| 1360 | 72 15 00 00 00 72 15 00 00 00 8e 00 00 00 73 cb 00 00 00 80 00 f7 4c 01 00 05 37 d1 04 36 e4 0a | r....r........s.......L...7..6.. |
| 1380 | 0c 8f 2c 89 2c 98 01 90 73 d3 0a 1b 81 43 80 51 dc 08 0b 88 41 8b 06 80 41 d8 07 08 88 41 82 76 | ..,.,...s....C.Q....A...A....A.v |
| 13a0 | d8 0f 10 88 08 e0 0d 0e 88 72 89 55 88 02 d8 0d 0e 88 72 89 55 88 02 e4 11 16 90 71 98 31 91 75 | .........r.U......r.U......q.1.u |
| 13c0 | 98 61 a0 12 d3 11 24 f2 00 03 09 4b 01 88 41 d8 12 14 88 43 d9 11 18 98 11 98 31 98 71 99 35 99 | .a....$....K..A....C......1.q.5. |
| 13e0 | 18 a0 42 a8 21 a8 61 a9 25 a1 4c b0 41 d1 23 35 d3 11 36 88 42 d9 11 18 98 13 99 67 a0 71 a8 31 | ..B.!.a.%.L.A.#5..6.B......g.q.1 |
| 1400 | a1 75 a8 71 a1 79 b0 42 d1 26 36 b9 08 c0 12 bb 0c d3 1e 45 c8 01 d1 1e 49 d3 11 4a 89 42 f0 07 | .u.q.y.B.&6........E....I..J.B.. |
| 1420 | 03 09 4b 01 f1 08 00 10 17 90 72 99 37 a0 32 a1 78 b0 02 a3 7c d3 1b 34 d3 0f 35 d0 08 35 72 2e | ..K.......r.7.2.x...|..4..5..5r. |
| 1440 | 00 00 00 e7 00 00 00 00 00 00 00 00 e7 00 00 00 00 00 00 f0 3f 72 27 00 00 00 63 02 00 00 00 00 | ....................?r'...c..... |
| 1460 | 00 00 00 00 00 00 00 04 00 00 00 03 00 00 00 f3 6e 00 00 00 97 00 7c 01 64 01 6b 37 00 00 72 1b | ................n.....|.d.k7..r. |
| 1480 | 74 01 00 00 00 00 00 00 00 00 6a 02 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 7c 00 | t.........j...................|. |
| 14a0 | 7c 01 7a 00 00 00 7c 01 0b 00 67 02 ab 01 00 00 00 00 00 00 53 00 74 01 00 00 00 00 00 00 00 00 | |.z...|...g.........S.t......... |
| 14c0 | 6a 02 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 7c 00 67 01 ab 01 00 00 00 00 00 00 | j...................|.g......... |
| 14e0 | 53 00 29 02 61 b4 02 00 00 0a 20 20 20 20 4c 61 67 75 65 72 72 65 20 73 65 72 69 65 73 20 77 68 | S.).a.........Laguerre.series.wh |
| 1500 | 6f 73 65 20 67 72 61 70 68 20 69 73 20 61 20 73 74 72 61 69 67 68 74 20 6c 69 6e 65 2e 0a 0a 20 | ose.graph.is.a.straight.line.... |
| 1520 | 20 20 20 50 61 72 61 6d 65 74 65 72 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 | ...Parameters.....----------.... |
| 1540 | 20 6f 66 66 2c 20 73 63 6c 20 3a 20 73 63 61 6c 61 72 73 0a 20 20 20 20 20 20 20 20 54 68 65 20 | .off,.scl.:.scalars.........The. |
| 1560 | 73 70 65 63 69 66 69 65 64 20 6c 69 6e 65 20 69 73 20 67 69 76 65 6e 20 62 79 20 60 60 6f 66 66 | specified.line.is.given.by.``off |
| 1580 | 20 2b 20 73 63 6c 2a 78 60 60 2e 0a 0a 20 20 20 20 52 65 74 75 72 6e 73 0a 20 20 20 20 2d 2d 2d | .+.scl*x``.......Returns.....--- |
| 15a0 | 2d 2d 2d 2d 0a 20 20 20 20 79 20 3a 20 6e 64 61 72 72 61 79 0a 20 20 20 20 20 20 20 20 54 68 69 | ----.....y.:.ndarray.........Thi |
| 15c0 | 73 20 6d 6f 64 75 6c 65 27 73 20 72 65 70 72 65 73 65 6e 74 61 74 69 6f 6e 20 6f 66 20 74 68 65 | s.module's.representation.of.the |
| 15e0 | 20 4c 61 67 75 65 72 72 65 20 73 65 72 69 65 73 20 66 6f 72 0a 20 20 20 20 20 20 20 20 60 60 6f | .Laguerre.series.for.........``o |
| 1600 | 66 66 20 2b 20 73 63 6c 2a 78 60 60 2e 0a 0a 20 20 20 20 53 65 65 20 41 6c 73 6f 0a 20 20 20 20 | ff.+.scl*x``.......See.Also..... |
| 1620 | 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 6e 75 6d 70 79 2e 70 6f 6c 79 6e 6f 6d 69 61 6c 2e 70 6f | --------.....numpy.polynomial.po |
| 1640 | 6c 79 6e 6f 6d 69 61 6c 2e 70 6f 6c 79 6c 69 6e 65 0a 20 20 20 20 6e 75 6d 70 79 2e 70 6f 6c 79 | lynomial.polyline.....numpy.poly |
| 1660 | 6e 6f 6d 69 61 6c 2e 63 68 65 62 79 73 68 65 76 2e 63 68 65 62 6c 69 6e 65 0a 20 20 20 20 6e 75 | nomial.chebyshev.chebline.....nu |
| 1680 | 6d 70 79 2e 70 6f 6c 79 6e 6f 6d 69 61 6c 2e 6c 65 67 65 6e 64 72 65 2e 6c 65 67 6c 69 6e 65 0a | mpy.polynomial.legendre.legline. |
| 16a0 | 20 20 20 20 6e 75 6d 70 79 2e 70 6f 6c 79 6e 6f 6d 69 61 6c 2e 68 65 72 6d 69 74 65 2e 68 65 72 | ....numpy.polynomial.hermite.her |
| 16c0 | 6d 6c 69 6e 65 0a 20 20 20 20 6e 75 6d 70 79 2e 70 6f 6c 79 6e 6f 6d 69 61 6c 2e 68 65 72 6d 69 | mline.....numpy.polynomial.hermi |
| 16e0 | 74 65 5f 65 2e 68 65 72 6d 65 6c 69 6e 65 0a 0a 20 20 20 20 45 78 61 6d 70 6c 65 73 0a 20 20 20 | te_e.hermeline......Examples.... |
| 1700 | 20 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 3e 3e 3e 20 66 72 6f 6d 20 6e 75 6d 70 79 2e 70 6f 6c | .--------.....>>>.from.numpy.pol |
| 1720 | 79 6e 6f 6d 69 61 6c 2e 6c 61 67 75 65 72 72 65 20 69 6d 70 6f 72 74 20 6c 61 67 6c 69 6e 65 2c | ynomial.laguerre.import.lagline, |
| 1740 | 20 6c 61 67 76 61 6c 0a 20 20 20 20 3e 3e 3e 20 6c 61 67 76 61 6c 28 30 2c 6c 61 67 6c 69 6e 65 | .lagval.....>>>.lagval(0,lagline |
| 1760 | 28 33 2c 20 32 29 29 0a 20 20 20 20 33 2e 30 0a 20 20 20 20 3e 3e 3e 20 6c 61 67 76 61 6c 28 31 | (3,.2)).....3.0.....>>>.lagval(1 |
| 1780 | 2c 6c 61 67 6c 69 6e 65 28 33 2c 20 32 29 29 0a 20 20 20 20 35 2e 30 0a 0a 20 20 20 20 72 02 00 | ,lagline(3,.2)).....5.0......r.. |
| 17a0 | 00 00 29 02 da 02 6e 70 da 05 61 72 72 61 79 29 02 da 03 6f 66 66 da 03 73 63 6c 73 02 00 00 00 | ..)...np..array)...off..scls.... |
| 17c0 | 20 20 72 2d 00 00 00 72 0b 00 00 00 72 0b 00 00 00 d7 00 00 00 73 36 00 00 00 80 00 f0 40 01 00 | ..r-...r....r........s6......@.. |
| 17e0 | 08 0b 88 61 82 78 dc 0f 11 8f 78 89 78 98 13 98 73 99 19 a0 53 a0 44 d0 18 29 d3 0f 2a d0 08 2a | ...a.x....x.x...s...S.D..)..*..* |
| 1800 | e4 0f 11 8f 78 89 78 98 13 98 05 8b 7f d0 08 1e 72 2e 00 00 00 63 01 00 00 00 00 00 00 00 00 00 | ....x.x.........r....c.......... |
| 1820 | 00 00 05 00 00 00 03 00 00 00 f3 40 00 00 00 97 00 74 01 00 00 00 00 00 00 00 00 6a 02 00 00 00 | ...........@.....t.........j.... |
| 1840 | 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 74 04 00 00 00 00 00 00 00 00 74 06 00 00 00 00 00 | ...............t.........t...... |
| 1860 | 00 00 00 7c 00 ab 03 00 00 00 00 00 00 53 00 29 01 61 70 06 00 00 0a 20 20 20 20 47 65 6e 65 72 | ...|.........S.).ap........Gener |
| 1880 | 61 74 65 20 61 20 4c 61 67 75 65 72 72 65 20 73 65 72 69 65 73 20 77 69 74 68 20 67 69 76 65 6e | ate.a.Laguerre.series.with.given |
| 18a0 | 20 72 6f 6f 74 73 2e 0a 0a 20 20 20 20 54 68 65 20 66 75 6e 63 74 69 6f 6e 20 72 65 74 75 72 6e | .roots.......The.function.return |
| 18c0 | 73 20 74 68 65 20 63 6f 65 66 66 69 63 69 65 6e 74 73 20 6f 66 20 74 68 65 20 70 6f 6c 79 6e 6f | s.the.coefficients.of.the.polyno |
| 18e0 | 6d 69 61 6c 0a 0a 20 20 20 20 2e 2e 20 6d 61 74 68 3a 3a 20 70 28 78 29 20 3d 20 28 78 20 2d 20 | mial.........math::.p(x).=.(x.-. |
| 1900 | 72 5f 30 29 20 2a 20 28 78 20 2d 20 72 5f 31 29 20 2a 20 2e 2e 2e 20 2a 20 28 78 20 2d 20 72 5f | r_0).*.(x.-.r_1).*.....*.(x.-.r_ |
| 1920 | 6e 29 2c 0a 0a 20 20 20 20 69 6e 20 4c 61 67 75 65 72 72 65 20 66 6f 72 6d 2c 20 77 68 65 72 65 | n),......in.Laguerre.form,.where |
| 1940 | 20 74 68 65 20 3a 6d 61 74 68 3a 60 72 5f 6e 60 20 61 72 65 20 74 68 65 20 72 6f 6f 74 73 20 73 | .the.:math:`r_n`.are.the.roots.s |
| 1960 | 70 65 63 69 66 69 65 64 20 69 6e 20 60 72 6f 6f 74 73 60 2e 0a 20 20 20 20 49 66 20 61 20 7a 65 | pecified.in.`roots`......If.a.ze |
| 1980 | 72 6f 20 68 61 73 20 6d 75 6c 74 69 70 6c 69 63 69 74 79 20 6e 2c 20 74 68 65 6e 20 69 74 20 6d | ro.has.multiplicity.n,.then.it.m |
| 19a0 | 75 73 74 20 61 70 70 65 61 72 20 69 6e 20 60 72 6f 6f 74 73 60 20 6e 20 74 69 6d 65 73 2e 0a 20 | ust.appear.in.`roots`.n.times... |
| 19c0 | 20 20 20 46 6f 72 20 69 6e 73 74 61 6e 63 65 2c 20 69 66 20 32 20 69 73 20 61 20 72 6f 6f 74 20 | ...For.instance,.if.2.is.a.root. |
| 19e0 | 6f 66 20 6d 75 6c 74 69 70 6c 69 63 69 74 79 20 74 68 72 65 65 20 61 6e 64 20 33 20 69 73 20 61 | of.multiplicity.three.and.3.is.a |
| 1a00 | 20 72 6f 6f 74 20 6f 66 0a 20 20 20 20 6d 75 6c 74 69 70 6c 69 63 69 74 79 20 32 2c 20 74 68 65 | .root.of.....multiplicity.2,.the |
| 1a20 | 6e 20 60 72 6f 6f 74 73 60 20 6c 6f 6f 6b 73 20 73 6f 6d 65 74 68 69 6e 67 20 6c 69 6b 65 20 5b | n.`roots`.looks.something.like.[ |
| 1a40 | 32 2c 20 32 2c 20 32 2c 20 33 2c 20 33 5d 2e 20 54 68 65 0a 20 20 20 20 72 6f 6f 74 73 20 63 61 | 2,.2,.2,.3,.3]..The.....roots.ca |
| 1a60 | 6e 20 61 70 70 65 61 72 20 69 6e 20 61 6e 79 20 6f 72 64 65 72 2e 0a 0a 20 20 20 20 49 66 20 74 | n.appear.in.any.order.......If.t |
| 1a80 | 68 65 20 72 65 74 75 72 6e 65 64 20 63 6f 65 66 66 69 63 69 65 6e 74 73 20 61 72 65 20 60 63 60 | he.returned.coefficients.are.`c` |
| 1aa0 | 2c 20 74 68 65 6e 0a 0a 20 20 20 20 2e 2e 20 6d 61 74 68 3a 3a 20 70 28 78 29 20 3d 20 63 5f 30 | ,.then.........math::.p(x).=.c_0 |
| 1ac0 | 20 2b 20 63 5f 31 20 2a 20 4c 5f 31 28 78 29 20 2b 20 2e 2e 2e 20 2b 20 20 63 5f 6e 20 2a 20 4c | .+.c_1.*.L_1(x).+.....+..c_n.*.L |
| 1ae0 | 5f 6e 28 78 29 0a 0a 20 20 20 20 54 68 65 20 63 6f 65 66 66 69 63 69 65 6e 74 20 6f 66 20 74 68 | _n(x)......The.coefficient.of.th |
| 1b00 | 65 20 6c 61 73 74 20 74 65 72 6d 20 69 73 20 6e 6f 74 20 67 65 6e 65 72 61 6c 6c 79 20 31 20 66 | e.last.term.is.not.generally.1.f |
| 1b20 | 6f 72 20 6d 6f 6e 69 63 0a 20 20 20 20 70 6f 6c 79 6e 6f 6d 69 61 6c 73 20 69 6e 20 4c 61 67 75 | or.monic.....polynomials.in.Lagu |
| 1b40 | 65 72 72 65 20 66 6f 72 6d 2e 0a 0a 20 20 20 20 50 61 72 61 6d 65 74 65 72 73 0a 20 20 20 20 2d | erre.form.......Parameters.....- |
| 1b60 | 2d 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 72 6f 6f 74 73 20 3a 20 61 72 72 61 79 5f 6c 69 6b 65 | ---------.....roots.:.array_like |
| 1b80 | 0a 20 20 20 20 20 20 20 20 53 65 71 75 65 6e 63 65 20 63 6f 6e 74 61 69 6e 69 6e 67 20 74 68 65 | .........Sequence.containing.the |
| 1ba0 | 20 72 6f 6f 74 73 2e 0a 0a 20 20 20 20 52 65 74 75 72 6e 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d | .roots.......Returns.....------- |
| 1bc0 | 0a 20 20 20 20 6f 75 74 20 3a 20 6e 64 61 72 72 61 79 0a 20 20 20 20 20 20 20 20 31 2d 44 20 61 | .....out.:.ndarray.........1-D.a |
| 1be0 | 72 72 61 79 20 6f 66 20 63 6f 65 66 66 69 63 69 65 6e 74 73 2e 20 20 49 66 20 61 6c 6c 20 72 6f | rray.of.coefficients...If.all.ro |
| 1c00 | 6f 74 73 20 61 72 65 20 72 65 61 6c 20 74 68 65 6e 20 60 6f 75 74 60 20 69 73 20 61 0a 20 20 20 | ots.are.real.then.`out`.is.a.... |
| 1c20 | 20 20 20 20 20 72 65 61 6c 20 61 72 72 61 79 2c 20 69 66 20 73 6f 6d 65 20 6f 66 20 74 68 65 20 | .....real.array,.if.some.of.the. |
| 1c40 | 72 6f 6f 74 73 20 61 72 65 20 63 6f 6d 70 6c 65 78 2c 20 74 68 65 6e 20 60 6f 75 74 60 20 69 73 | roots.are.complex,.then.`out`.is |
| 1c60 | 20 63 6f 6d 70 6c 65 78 0a 20 20 20 20 20 20 20 20 65 76 65 6e 20 69 66 20 61 6c 6c 20 74 68 65 | .complex.........even.if.all.the |
| 1c80 | 20 63 6f 65 66 66 69 63 69 65 6e 74 73 20 69 6e 20 74 68 65 20 72 65 73 75 6c 74 20 61 72 65 20 | .coefficients.in.the.result.are. |
| 1ca0 | 72 65 61 6c 20 28 73 65 65 20 45 78 61 6d 70 6c 65 73 0a 20 20 20 20 20 20 20 20 62 65 6c 6f 77 | real.(see.Examples.........below |
| 1cc0 | 29 2e 0a 0a 20 20 20 20 53 65 65 20 41 6c 73 6f 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 | ).......See.Also.....--------... |
| 1ce0 | 20 20 6e 75 6d 70 79 2e 70 6f 6c 79 6e 6f 6d 69 61 6c 2e 70 6f 6c 79 6e 6f 6d 69 61 6c 2e 70 6f | ..numpy.polynomial.polynomial.po |
| 1d00 | 6c 79 66 72 6f 6d 72 6f 6f 74 73 0a 20 20 20 20 6e 75 6d 70 79 2e 70 6f 6c 79 6e 6f 6d 69 61 6c | lyfromroots.....numpy.polynomial |
| 1d20 | 2e 6c 65 67 65 6e 64 72 65 2e 6c 65 67 66 72 6f 6d 72 6f 6f 74 73 0a 20 20 20 20 6e 75 6d 70 79 | .legendre.legfromroots.....numpy |
| 1d40 | 2e 70 6f 6c 79 6e 6f 6d 69 61 6c 2e 63 68 65 62 79 73 68 65 76 2e 63 68 65 62 66 72 6f 6d 72 6f | .polynomial.chebyshev.chebfromro |
| 1d60 | 6f 74 73 0a 20 20 20 20 6e 75 6d 70 79 2e 70 6f 6c 79 6e 6f 6d 69 61 6c 2e 68 65 72 6d 69 74 65 | ots.....numpy.polynomial.hermite |
| 1d80 | 2e 68 65 72 6d 66 72 6f 6d 72 6f 6f 74 73 0a 20 20 20 20 6e 75 6d 70 79 2e 70 6f 6c 79 6e 6f 6d | .hermfromroots.....numpy.polynom |
| 1da0 | 69 61 6c 2e 68 65 72 6d 69 74 65 5f 65 2e 68 65 72 6d 65 66 72 6f 6d 72 6f 6f 74 73 0a 0a 20 20 | ial.hermite_e.hermefromroots.... |
| 1dc0 | 20 20 45 78 61 6d 70 6c 65 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 3e 3e 3e 20 | ..Examples.....--------.....>>>. |
| 1de0 | 66 72 6f 6d 20 6e 75 6d 70 79 2e 70 6f 6c 79 6e 6f 6d 69 61 6c 2e 6c 61 67 75 65 72 72 65 20 69 | from.numpy.polynomial.laguerre.i |
| 1e00 | 6d 70 6f 72 74 20 6c 61 67 66 72 6f 6d 72 6f 6f 74 73 2c 20 6c 61 67 76 61 6c 0a 20 20 20 20 3e | mport.lagfromroots,.lagval.....> |
| 1e20 | 3e 3e 20 63 6f 65 66 20 3d 20 6c 61 67 66 72 6f 6d 72 6f 6f 74 73 28 28 2d 31 2c 20 30 2c 20 31 | >>.coef.=.lagfromroots((-1,.0,.1 |
| 1e40 | 29 29 0a 20 20 20 20 3e 3e 3e 20 6c 61 67 76 61 6c 28 28 2d 31 2c 20 30 2c 20 31 29 2c 20 63 6f | )).....>>>.lagval((-1,.0,.1),.co |
| 1e60 | 65 66 29 0a 20 20 20 20 61 72 72 61 79 28 5b 30 2e 2c 20 20 30 2e 2c 20 20 30 2e 5d 29 0a 20 20 | ef).....array([0.,..0.,..0.])... |
| 1e80 | 20 20 3e 3e 3e 20 63 6f 65 66 20 3d 20 6c 61 67 66 72 6f 6d 72 6f 6f 74 73 28 28 2d 31 6a 2c 20 | ..>>>.coef.=.lagfromroots((-1j,. |
| 1ea0 | 31 6a 29 29 0a 20 20 20 20 3e 3e 3e 20 6c 61 67 76 61 6c 28 28 2d 31 6a 2c 20 31 6a 29 2c 20 63 | 1j)).....>>>.lagval((-1j,.1j),.c |
| 1ec0 | 6f 65 66 29 0a 20 20 20 20 61 72 72 61 79 28 5b 30 2e 2b 30 2e 6a 2c 20 30 2e 2b 30 2e 6a 5d 29 | oef).....array([0.+0.j,.0.+0.j]) |
| 1ee0 | 0a 0a 20 20 20 20 29 04 72 28 00 00 00 da 0a 5f 66 72 6f 6d 72 6f 6f 74 73 72 0b 00 00 00 72 0f | ......).r(....._fromrootsr....r. |
| 1f00 | 00 00 00 29 01 da 05 72 6f 6f 74 73 73 01 00 00 00 20 72 2d 00 00 00 72 17 00 00 00 72 17 00 00 | ...)...rootss.....r-...r....r... |
| 1f20 | 00 fd 00 00 00 73 18 00 00 00 80 00 f4 6a 01 00 0c 0e 8f 3d 89 3d 9c 17 a4 26 a8 25 d3 0b 30 d0 | .....s.......j.....=.=...&.%..0. |
| 1f40 | 04 30 72 2e 00 00 00 63 02 00 00 00 00 00 00 00 00 00 00 00 04 00 00 00 03 00 00 00 f3 2e 00 00 | .0r....c........................ |
| 1f60 | 00 97 00 74 01 00 00 00 00 00 00 00 00 6a 02 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 | ...t.........j.................. |
| 1f80 | 00 7c 00 7c 01 ab 02 00 00 00 00 00 00 53 00 29 01 61 e7 03 00 00 0a 20 20 20 20 41 64 64 20 6f | .|.|.........S.).a.........Add.o |
| 1fa0 | 6e 65 20 4c 61 67 75 65 72 72 65 20 73 65 72 69 65 73 20 74 6f 20 61 6e 6f 74 68 65 72 2e 0a 0a | ne.Laguerre.series.to.another... |
| 1fc0 | 20 20 20 20 52 65 74 75 72 6e 73 20 74 68 65 20 73 75 6d 20 6f 66 20 74 77 6f 20 4c 61 67 75 65 | ....Returns.the.sum.of.two.Lague |
| 1fe0 | 72 72 65 20 73 65 72 69 65 73 20 60 63 31 60 20 2b 20 60 63 32 60 2e 20 20 54 68 65 20 61 72 67 | rre.series.`c1`.+.`c2`...The.arg |
| 2000 | 75 6d 65 6e 74 73 0a 20 20 20 20 61 72 65 20 73 65 71 75 65 6e 63 65 73 20 6f 66 20 63 6f 65 66 | uments.....are.sequences.of.coef |
| 2020 | 66 69 63 69 65 6e 74 73 20 6f 72 64 65 72 65 64 20 66 72 6f 6d 20 6c 6f 77 65 73 74 20 6f 72 64 | ficients.ordered.from.lowest.ord |
| 2040 | 65 72 20 74 65 72 6d 20 74 6f 0a 20 20 20 20 68 69 67 68 65 73 74 2c 20 69 2e 65 2e 2c 20 5b 31 | er.term.to.....highest,.i.e.,.[1 |
| 2060 | 2c 32 2c 33 5d 20 72 65 70 72 65 73 65 6e 74 73 20 74 68 65 20 73 65 72 69 65 73 20 60 60 50 5f | ,2,3].represents.the.series.``P_ |
| 2080 | 30 20 2b 20 32 2a 50 5f 31 20 2b 20 33 2a 50 5f 32 60 60 2e 0a 0a 20 20 20 20 50 61 72 61 6d 65 | 0.+.2*P_1.+.3*P_2``.......Parame |
| 20a0 | 74 65 72 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 63 31 2c 20 63 32 20 3a | ters.....----------.....c1,.c2.: |
| 20c0 | 20 61 72 72 61 79 5f 6c 69 6b 65 0a 20 20 20 20 20 20 20 20 31 2d 44 20 61 72 72 61 79 73 20 6f | .array_like.........1-D.arrays.o |
| 20e0 | 66 20 4c 61 67 75 65 72 72 65 20 73 65 72 69 65 73 20 63 6f 65 66 66 69 63 69 65 6e 74 73 20 6f | f.Laguerre.series.coefficients.o |
| 2100 | 72 64 65 72 65 64 20 66 72 6f 6d 20 6c 6f 77 20 74 6f 0a 20 20 20 20 20 20 20 20 68 69 67 68 2e | rdered.from.low.to.........high. |
| 2120 | 0a 0a 20 20 20 20 52 65 74 75 72 6e 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 6f 75 | ......Returns.....-------.....ou |
| 2140 | 74 20 3a 20 6e 64 61 72 72 61 79 0a 20 20 20 20 20 20 20 20 41 72 72 61 79 20 72 65 70 72 65 73 | t.:.ndarray.........Array.repres |
| 2160 | 65 6e 74 69 6e 67 20 74 68 65 20 4c 61 67 75 65 72 72 65 20 73 65 72 69 65 73 20 6f 66 20 74 68 | enting.the.Laguerre.series.of.th |
| 2180 | 65 69 72 20 73 75 6d 2e 0a 0a 20 20 20 20 53 65 65 20 41 6c 73 6f 0a 20 20 20 20 2d 2d 2d 2d 2d | eir.sum.......See.Also.....----- |
| 21a0 | 2d 2d 2d 0a 20 20 20 20 6c 61 67 73 75 62 2c 20 6c 61 67 6d 75 6c 78 2c 20 6c 61 67 6d 75 6c 2c | ---.....lagsub,.lagmulx,.lagmul, |
| 21c0 | 20 6c 61 67 64 69 76 2c 20 6c 61 67 70 6f 77 0a 0a 20 20 20 20 4e 6f 74 65 73 0a 20 20 20 20 2d | .lagdiv,.lagpow......Notes.....- |
| 21e0 | 2d 2d 2d 2d 0a 20 20 20 20 55 6e 6c 69 6b 65 20 6d 75 6c 74 69 70 6c 69 63 61 74 69 6f 6e 2c 20 | ----.....Unlike.multiplication,. |
| 2200 | 64 69 76 69 73 69 6f 6e 2c 20 65 74 63 2e 2c 20 74 68 65 20 73 75 6d 20 6f 66 20 74 77 6f 20 4c | division,.etc.,.the.sum.of.two.L |
| 2220 | 61 67 75 65 72 72 65 20 73 65 72 69 65 73 0a 20 20 20 20 69 73 20 61 20 4c 61 67 75 65 72 72 65 | aguerre.series.....is.a.Laguerre |
| 2240 | 20 73 65 72 69 65 73 20 28 77 69 74 68 6f 75 74 20 68 61 76 69 6e 67 20 74 6f 20 22 72 65 70 72 | .series.(without.having.to."repr |
| 2260 | 6f 6a 65 63 74 22 20 74 68 65 20 72 65 73 75 6c 74 20 6f 6e 74 6f 0a 20 20 20 20 74 68 65 20 62 | oject".the.result.onto.....the.b |
| 2280 | 61 73 69 73 20 73 65 74 29 20 73 6f 20 61 64 64 69 74 69 6f 6e 2c 20 6a 75 73 74 20 6c 69 6b 65 | asis.set).so.addition,.just.like |
| 22a0 | 20 74 68 61 74 20 6f 66 20 22 73 74 61 6e 64 61 72 64 22 20 70 6f 6c 79 6e 6f 6d 69 61 6c 73 2c | .that.of."standard".polynomials, |
| 22c0 | 0a 20 20 20 20 69 73 20 73 69 6d 70 6c 79 20 22 63 6f 6d 70 6f 6e 65 6e 74 2d 77 69 73 65 2e 22 | .....is.simply."component-wise." |
| 22e0 | 0a 0a 20 20 20 20 45 78 61 6d 70 6c 65 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 | ......Examples.....--------..... |
| 2300 | 3e 3e 3e 20 66 72 6f 6d 20 6e 75 6d 70 79 2e 70 6f 6c 79 6e 6f 6d 69 61 6c 2e 6c 61 67 75 65 72 | >>>.from.numpy.polynomial.laguer |
| 2320 | 72 65 20 69 6d 70 6f 72 74 20 6c 61 67 61 64 64 0a 20 20 20 20 3e 3e 3e 20 6c 61 67 61 64 64 28 | re.import.lagadd.....>>>.lagadd( |
| 2340 | 5b 31 2c 20 32 2c 20 33 5d 2c 20 5b 31 2c 20 32 2c 20 33 2c 20 34 5d 29 0a 20 20 20 20 61 72 72 | [1,.2,.3],.[1,.2,.3,.4]).....arr |
| 2360 | 61 79 28 5b 32 2e 2c 20 20 34 2e 2c 20 20 36 2e 2c 20 20 34 2e 5d 29 0a 0a 20 20 20 20 29 02 72 | ay([2.,..4.,..6.,..4.])......).r |
| 2380 | 28 00 00 00 da 04 5f 61 64 64 a9 02 72 3b 00 00 00 da 02 63 32 73 02 00 00 00 20 20 72 2d 00 00 | (....._add..r;.....c2s......r-.. |
| 23a0 | 00 72 0c 00 00 00 72 0c 00 00 00 35 01 00 00 f3 15 00 00 00 80 00 f4 4a 01 00 0c 0e 8f 37 89 37 | .r....r....5...........J.....7.7 |
| 23c0 | 90 32 90 72 8b 3f d0 04 1a 72 2e 00 00 00 63 02 00 00 00 00 00 00 00 00 00 00 00 04 00 00 00 03 | .2.r.?...r....c................. |
| 23e0 | 00 00 00 f3 2e 00 00 00 97 00 74 01 00 00 00 00 00 00 00 00 6a 02 00 00 00 00 00 00 00 00 00 00 | ..........t.........j........... |
| 2400 | 00 00 00 00 00 00 00 00 7c 00 7c 01 ab 02 00 00 00 00 00 00 53 00 29 01 61 f7 03 00 00 0a 20 20 | ........|.|.........S.).a....... |
| 2420 | 20 20 53 75 62 74 72 61 63 74 20 6f 6e 65 20 4c 61 67 75 65 72 72 65 20 73 65 72 69 65 73 20 66 | ..Subtract.one.Laguerre.series.f |
| 2440 | 72 6f 6d 20 61 6e 6f 74 68 65 72 2e 0a 0a 20 20 20 20 52 65 74 75 72 6e 73 20 74 68 65 20 64 69 | rom.another.......Returns.the.di |
| 2460 | 66 66 65 72 65 6e 63 65 20 6f 66 20 74 77 6f 20 4c 61 67 75 65 72 72 65 20 73 65 72 69 65 73 20 | fference.of.two.Laguerre.series. |
| 2480 | 60 63 31 60 20 2d 20 60 63 32 60 2e 20 20 54 68 65 0a 20 20 20 20 73 65 71 75 65 6e 63 65 73 20 | `c1`.-.`c2`...The.....sequences. |
| 24a0 | 6f 66 20 63 6f 65 66 66 69 63 69 65 6e 74 73 20 61 72 65 20 66 72 6f 6d 20 6c 6f 77 65 73 74 20 | of.coefficients.are.from.lowest. |
| 24c0 | 6f 72 64 65 72 20 74 65 72 6d 20 74 6f 20 68 69 67 68 65 73 74 2c 20 69 2e 65 2e 2c 0a 20 20 20 | order.term.to.highest,.i.e.,.... |
| 24e0 | 20 5b 31 2c 32 2c 33 5d 20 72 65 70 72 65 73 65 6e 74 73 20 74 68 65 20 73 65 72 69 65 73 20 60 | .[1,2,3].represents.the.series.` |
| 2500 | 60 50 5f 30 20 2b 20 32 2a 50 5f 31 20 2b 20 33 2a 50 5f 32 60 60 2e 0a 0a 20 20 20 20 50 61 72 | `P_0.+.2*P_1.+.3*P_2``.......Par |
| 2520 | 61 6d 65 74 65 72 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 63 31 2c 20 63 | ameters.....----------.....c1,.c |
| 2540 | 32 20 3a 20 61 72 72 61 79 5f 6c 69 6b 65 0a 20 20 20 20 20 20 20 20 31 2d 44 20 61 72 72 61 79 | 2.:.array_like.........1-D.array |
| 2560 | 73 20 6f 66 20 4c 61 67 75 65 72 72 65 20 73 65 72 69 65 73 20 63 6f 65 66 66 69 63 69 65 6e 74 | s.of.Laguerre.series.coefficient |
| 2580 | 73 20 6f 72 64 65 72 65 64 20 66 72 6f 6d 20 6c 6f 77 20 74 6f 0a 20 20 20 20 20 20 20 20 68 69 | s.ordered.from.low.to.........hi |
| 25a0 | 67 68 2e 0a 0a 20 20 20 20 52 65 74 75 72 6e 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 | gh.......Returns.....-------.... |
| 25c0 | 20 6f 75 74 20 3a 20 6e 64 61 72 72 61 79 0a 20 20 20 20 20 20 20 20 4f 66 20 4c 61 67 75 65 72 | .out.:.ndarray.........Of.Laguer |
| 25e0 | 72 65 20 73 65 72 69 65 73 20 63 6f 65 66 66 69 63 69 65 6e 74 73 20 72 65 70 72 65 73 65 6e 74 | re.series.coefficients.represent |
| 2600 | 69 6e 67 20 74 68 65 69 72 20 64 69 66 66 65 72 65 6e 63 65 2e 0a 0a 20 20 20 20 53 65 65 20 41 | ing.their.difference.......See.A |
| 2620 | 6c 73 6f 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 6c 61 67 61 64 64 2c 20 6c 61 67 | lso.....--------.....lagadd,.lag |
| 2640 | 6d 75 6c 78 2c 20 6c 61 67 6d 75 6c 2c 20 6c 61 67 64 69 76 2c 20 6c 61 67 70 6f 77 0a 0a 20 20 | mulx,.lagmul,.lagdiv,.lagpow.... |
| 2660 | 20 20 4e 6f 74 65 73 0a 20 20 20 20 2d 2d 2d 2d 2d 0a 20 20 20 20 55 6e 6c 69 6b 65 20 6d 75 6c | ..Notes.....-----.....Unlike.mul |
| 2680 | 74 69 70 6c 69 63 61 74 69 6f 6e 2c 20 64 69 76 69 73 69 6f 6e 2c 20 65 74 63 2e 2c 20 74 68 65 | tiplication,.division,.etc.,.the |
| 26a0 | 20 64 69 66 66 65 72 65 6e 63 65 20 6f 66 20 74 77 6f 20 4c 61 67 75 65 72 72 65 0a 20 20 20 20 | .difference.of.two.Laguerre..... |
| 26c0 | 73 65 72 69 65 73 20 69 73 20 61 20 4c 61 67 75 65 72 72 65 20 73 65 72 69 65 73 20 28 77 69 74 | series.is.a.Laguerre.series.(wit |
| 26e0 | 68 6f 75 74 20 68 61 76 69 6e 67 20 74 6f 20 22 72 65 70 72 6f 6a 65 63 74 22 20 74 68 65 20 72 | hout.having.to."reproject".the.r |
| 2700 | 65 73 75 6c 74 0a 20 20 20 20 6f 6e 74 6f 20 74 68 65 20 62 61 73 69 73 20 73 65 74 29 20 73 6f | esult.....onto.the.basis.set).so |
| 2720 | 20 73 75 62 74 72 61 63 74 69 6f 6e 2c 20 6a 75 73 74 20 6c 69 6b 65 20 74 68 61 74 20 6f 66 20 | .subtraction,.just.like.that.of. |
| 2740 | 22 73 74 61 6e 64 61 72 64 22 0a 20 20 20 20 70 6f 6c 79 6e 6f 6d 69 61 6c 73 2c 20 69 73 20 73 | "standard".....polynomials,.is.s |
| 2760 | 69 6d 70 6c 79 20 22 63 6f 6d 70 6f 6e 65 6e 74 2d 77 69 73 65 2e 22 0a 0a 20 20 20 20 45 78 61 | imply."component-wise."......Exa |
| 2780 | 6d 70 6c 65 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 3e 3e 3e 20 66 72 6f 6d 20 | mples.....--------.....>>>.from. |
| 27a0 | 6e 75 6d 70 79 2e 70 6f 6c 79 6e 6f 6d 69 61 6c 2e 6c 61 67 75 65 72 72 65 20 69 6d 70 6f 72 74 | numpy.polynomial.laguerre.import |
| 27c0 | 20 6c 61 67 73 75 62 0a 20 20 20 20 3e 3e 3e 20 6c 61 67 73 75 62 28 5b 31 2c 20 32 2c 20 33 2c | .lagsub.....>>>.lagsub([1,.2,.3, |
| 27e0 | 20 34 5d 2c 20 5b 31 2c 20 32 2c 20 33 5d 29 0a 20 20 20 20 61 72 72 61 79 28 5b 30 2e 2c 20 20 | .4],.[1,.2,.3]).....array([0.,.. |
| 2800 | 30 2e 2c 20 20 30 2e 2c 20 20 34 2e 5d 29 0a 0a 20 20 20 20 29 02 72 28 00 00 00 da 04 5f 73 75 | 0.,..0.,..4.])......).r(....._su |
| 2820 | 62 72 4a 00 00 00 73 02 00 00 00 20 20 72 2d 00 00 00 72 0d 00 00 00 72 0d 00 00 00 5d 01 00 00 | brJ...s......r-...r....r....]... |
| 2840 | 72 4c 00 00 00 72 2e 00 00 00 63 01 00 00 00 00 00 00 00 00 00 00 00 07 00 00 00 03 00 00 00 f3 | rL...r....c..................... |
| 2860 | 98 01 00 00 97 00 74 01 00 00 00 00 00 00 00 00 6a 02 00 00 00 00 00 00 00 00 00 00 00 00 00 00 | ......t.........j............... |
| 2880 | 00 00 00 00 7c 00 67 01 ab 01 00 00 00 00 00 00 5c 01 00 00 7d 00 74 05 00 00 00 00 00 00 00 00 | ....|.g.........\...}.t......... |
| 28a0 | 7c 00 ab 01 00 00 00 00 00 00 64 01 6b 28 00 00 72 0a 7c 00 64 02 19 00 00 00 64 02 6b 28 00 00 | |.........d.k(..r.|.d.....d.k(.. |
| 28c0 | 72 02 7c 00 53 00 74 07 00 00 00 00 00 00 00 00 6a 08 00 00 00 00 00 00 00 00 00 00 00 00 00 00 | r.|.S.t.........j............... |
| 28e0 | 00 00 00 00 74 05 00 00 00 00 00 00 00 00 7c 00 ab 01 00 00 00 00 00 00 64 01 7a 00 00 00 7c 00 | ....t.........|.........d.z...|. |
| 2900 | 6a 0a 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ac 03 ab 02 00 00 00 00 00 00 7d 01 | j.............................}. |
| 2920 | 7c 00 64 02 19 00 00 00 7c 01 64 02 3c 00 00 00 7c 00 64 02 19 00 00 00 0b 00 7c 01 64 01 3c 00 | |.d.....|.d.<...|.d.......|.d.<. |
| 2940 | 00 00 74 0d 00 00 00 00 00 00 00 00 64 01 74 05 00 00 00 00 00 00 00 00 7c 00 ab 01 00 00 00 00 | ..t.........d.t.........|....... |
| 2960 | 00 00 ab 02 00 00 00 00 00 00 44 00 5d 43 00 00 7d 02 7c 00 7c 02 19 00 00 00 0b 00 7c 02 64 01 | ..........D.]C..}.|.|.......|.d. |
| 2980 | 7a 00 00 00 7a 05 00 00 7c 01 7c 02 64 01 7a 00 00 00 3c 00 00 00 7c 01 7c 02 78 02 78 02 19 00 | z...z...|.|.d.z...<...|.|.x.x... |
| 29a0 | 00 00 7c 00 7c 02 19 00 00 00 64 04 7c 02 7a 05 00 00 64 01 7a 00 00 00 7a 05 00 00 7a 0d 00 00 | ..|.|.....d.|.z...d.z...z...z... |
| 29c0 | 63 03 63 02 3c 00 00 00 7c 01 7c 02 64 01 7a 0a 00 00 78 02 78 02 19 00 00 00 7c 00 7c 02 19 00 | c.c.<...|.|.d.z...x.x.....|.|... |
| 29e0 | 00 00 7c 02 7a 05 00 00 7a 17 00 00 63 03 63 02 3c 00 00 00 8c 45 04 00 7c 01 53 00 29 05 61 11 | ..|.z...z...c.c.<....E..|.S.).a. |
| 2a00 | 03 00 00 4d 75 6c 74 69 70 6c 79 20 61 20 4c 61 67 75 65 72 72 65 20 73 65 72 69 65 73 20 62 79 | ...Multiply.a.Laguerre.series.by |
| 2a20 | 20 78 2e 0a 0a 20 20 20 20 4d 75 6c 74 69 70 6c 79 20 74 68 65 20 4c 61 67 75 65 72 72 65 20 73 | .x.......Multiply.the.Laguerre.s |
| 2a40 | 65 72 69 65 73 20 60 63 60 20 62 79 20 78 2c 20 77 68 65 72 65 20 78 20 69 73 20 74 68 65 20 69 | eries.`c`.by.x,.where.x.is.the.i |
| 2a60 | 6e 64 65 70 65 6e 64 65 6e 74 0a 20 20 20 20 76 61 72 69 61 62 6c 65 2e 0a 0a 0a 20 20 20 20 50 | ndependent.....variable........P |
| 2a80 | 61 72 61 6d 65 74 65 72 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 63 20 3a | arameters.....----------.....c.: |
| 2aa0 | 20 61 72 72 61 79 5f 6c 69 6b 65 0a 20 20 20 20 20 20 20 20 31 2d 44 20 61 72 72 61 79 20 6f 66 | .array_like.........1-D.array.of |
| 2ac0 | 20 4c 61 67 75 65 72 72 65 20 73 65 72 69 65 73 20 63 6f 65 66 66 69 63 69 65 6e 74 73 20 6f 72 | .Laguerre.series.coefficients.or |
| 2ae0 | 64 65 72 65 64 20 66 72 6f 6d 20 6c 6f 77 20 74 6f 0a 20 20 20 20 20 20 20 20 68 69 67 68 2e 0a | dered.from.low.to.........high.. |
| 2b00 | 0a 20 20 20 20 52 65 74 75 72 6e 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 6f 75 74 | .....Returns.....-------.....out |
| 2b20 | 20 3a 20 6e 64 61 72 72 61 79 0a 20 20 20 20 20 20 20 20 41 72 72 61 79 20 72 65 70 72 65 73 65 | .:.ndarray.........Array.represe |
| 2b40 | 6e 74 69 6e 67 20 74 68 65 20 72 65 73 75 6c 74 20 6f 66 20 74 68 65 20 6d 75 6c 74 69 70 6c 69 | nting.the.result.of.the.multipli |
| 2b60 | 63 61 74 69 6f 6e 2e 0a 0a 20 20 20 20 53 65 65 20 41 6c 73 6f 0a 20 20 20 20 2d 2d 2d 2d 2d 2d | cation.......See.Also.....------ |
| 2b80 | 2d 2d 0a 20 20 20 20 6c 61 67 61 64 64 2c 20 6c 61 67 73 75 62 2c 20 6c 61 67 6d 75 6c 2c 20 6c | --.....lagadd,.lagsub,.lagmul,.l |
| 2ba0 | 61 67 64 69 76 2c 20 6c 61 67 70 6f 77 0a 0a 20 20 20 20 4e 6f 74 65 73 0a 20 20 20 20 2d 2d 2d | agdiv,.lagpow......Notes.....--- |
| 2bc0 | 2d 2d 0a 20 20 20 20 54 68 65 20 6d 75 6c 74 69 70 6c 69 63 61 74 69 6f 6e 20 75 73 65 73 20 74 | --.....The.multiplication.uses.t |
| 2be0 | 68 65 20 72 65 63 75 72 73 69 6f 6e 20 72 65 6c 61 74 69 6f 6e 73 68 69 70 20 66 6f 72 20 4c 61 | he.recursion.relationship.for.La |
| 2c00 | 67 75 65 72 72 65 0a 20 20 20 20 70 6f 6c 79 6e 6f 6d 69 61 6c 73 20 69 6e 20 74 68 65 20 66 6f | guerre.....polynomials.in.the.fo |
| 2c20 | 72 6d 0a 0a 20 20 20 20 2e 2e 20 6d 61 74 68 3a 3a 0a 0a 20 20 20 20 20 20 20 20 78 50 5f 69 28 | rm.........math::..........xP_i( |
| 2c40 | 78 29 20 3d 20 28 2d 28 69 20 2b 20 31 29 2a 50 5f 7b 69 20 2b 20 31 7d 28 78 29 20 2b 20 28 32 | x).=.(-(i.+.1)*P_{i.+.1}(x).+.(2 |
| 2c60 | 69 20 2b 20 31 29 50 5f 7b 69 7d 28 78 29 20 2d 20 69 50 5f 7b 69 20 2d 20 31 7d 28 78 29 29 0a | i.+.1)P_{i}(x).-.iP_{i.-.1}(x)). |
| 2c80 | 0a 20 20 20 20 45 78 61 6d 70 6c 65 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 3e | .....Examples.....--------.....> |
| 2ca0 | 3e 3e 20 66 72 6f 6d 20 6e 75 6d 70 79 2e 70 6f 6c 79 6e 6f 6d 69 61 6c 2e 6c 61 67 75 65 72 72 | >>.from.numpy.polynomial.laguerr |
| 2cc0 | 65 20 69 6d 70 6f 72 74 20 6c 61 67 6d 75 6c 78 0a 20 20 20 20 3e 3e 3e 20 6c 61 67 6d 75 6c 78 | e.import.lagmulx.....>>>.lagmulx |
| 2ce0 | 28 5b 31 2c 20 32 2c 20 33 5d 29 0a 20 20 20 20 61 72 72 61 79 28 5b 2d 31 2e 2c 20 20 2d 31 2e | ([1,.2,.3]).....array([-1.,..-1. |
| 2d00 | 2c 20 20 31 31 2e 2c 20 20 2d 39 2e 5d 29 0a 0a 20 20 20 20 72 04 00 00 00 72 02 00 00 00 a9 01 | ,..11.,..-9.])......r....r...... |
| 2d20 | da 05 64 74 79 70 65 72 34 00 00 00 29 07 72 28 00 00 00 72 29 00 00 00 72 36 00 00 00 72 41 00 | ..dtyper4...).r(...r)...r6...rA. |
| 2d40 | 00 00 da 05 65 6d 70 74 79 72 51 00 00 00 72 37 00 00 00 29 03 72 38 00 00 00 da 03 70 72 64 72 | ....emptyrQ...r7...).r8.....prdr |
| 2d60 | 3c 00 00 00 73 03 00 00 00 20 20 20 72 2d 00 00 00 72 0e 00 00 00 72 0e 00 00 00 85 01 00 00 73 | <...s.......r-...r....r........s |
| 2d80 | de 00 00 00 80 00 f4 4e 01 00 0b 0d 8f 2c 89 2c 98 01 90 73 d3 0a 1b 81 43 80 51 e4 07 0a 88 31 | .......N.....,.,...s....C.Q....1 |
| 2da0 | 83 76 90 11 82 7b 90 71 98 11 91 74 98 71 92 79 d8 0f 10 88 08 e4 0a 0c 8f 28 89 28 94 33 90 71 | .v...{.q...t.q.y.........(.(.3.q |
| 2dc0 | 93 36 98 41 91 3a a0 51 a7 57 a1 57 d4 0a 2d 80 43 d8 0d 0e 88 71 89 54 80 43 88 01 81 46 d8 0e | .6.A.:.Q.W.W..-.C....q.T.C...F.. |
| 2de0 | 0f 90 01 89 64 88 55 80 43 88 01 81 46 dc 0d 12 90 31 94 63 98 21 93 66 d3 0d 1d f2 00 03 05 1f | ....d.U.C...F....1.c.!.f........ |
| 2e00 | 88 01 d8 16 17 98 01 91 64 90 55 98 61 a0 21 99 65 91 5f 88 03 88 41 90 01 89 45 89 0a d8 08 0b | ........d.U.a.!.e._...A...E..... |
| 2e20 | 88 41 8b 06 90 21 90 41 91 24 98 21 98 61 99 25 a0 21 99 29 d1 12 24 d1 08 24 8b 06 d8 08 0b 88 | .A...!.A.$.!.a.%.!.)..$..$...... |
| 2e40 | 41 90 01 89 45 8b 0a 90 61 98 01 91 64 98 51 91 68 d1 08 1e 8c 0a f0 07 03 05 1f f0 08 00 0c 0f | A...E...a...d.Q.h............... |
| 2e60 | 80 4a 72 2e 00 00 00 63 02 00 00 00 00 00 00 00 00 00 00 00 0a 00 00 00 03 00 00 00 f3 30 02 00 | .Jr....c.....................0.. |
| 2e80 | 00 97 00 74 01 00 00 00 00 00 00 00 00 6a 02 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 | ...t.........j.................. |
| 2ea0 | 00 7c 00 7c 01 67 02 ab 01 00 00 00 00 00 00 5c 02 00 00 7d 00 7d 01 74 05 00 00 00 00 00 00 00 | .|.|.g.........\...}.}.t........ |
| 2ec0 | 00 7c 00 ab 01 00 00 00 00 00 00 74 05 00 00 00 00 00 00 00 00 7c 01 ab 01 00 00 00 00 00 00 6b | .|.........t.........|.........k |
| 2ee0 | 44 00 00 72 05 7c 01 7d 02 7c 00 7d 03 6e 04 7c 00 7d 02 7c 01 7d 03 74 05 00 00 00 00 00 00 00 | D..r.|.}.|.}.n.|.}.|.}.t........ |
| 2f00 | 00 7c 02 ab 01 00 00 00 00 00 00 64 01 6b 28 00 00 72 0b 7c 02 64 02 19 00 00 00 7c 03 7a 05 00 | .|.........d.k(..r.|.d.....|.z.. |
| 2f20 | 00 7d 04 64 02 7d 00 6e a5 74 05 00 00 00 00 00 00 00 00 7c 02 ab 01 00 00 00 00 00 00 64 03 6b | .}.d.}.n.t.........|.........d.k |
| 2f40 | 28 00 00 72 11 7c 02 64 02 19 00 00 00 7c 03 7a 05 00 00 7d 04 7c 02 64 01 19 00 00 00 7c 03 7a | (..r.|.d.....|.z...}.|.d.....|.z |
| 2f60 | 05 00 00 7d 00 6e 86 74 05 00 00 00 00 00 00 00 00 7c 02 ab 01 00 00 00 00 00 00 7d 05 7c 02 64 | ...}.n.t.........|.........}.|.d |
| 2f80 | 04 19 00 00 00 7c 03 7a 05 00 00 7d 04 7c 02 64 05 19 00 00 00 7c 03 7a 05 00 00 7d 00 74 07 00 | .....|.z...}.|.d.....|.z...}.t.. |
| 2fa0 | 00 00 00 00 00 00 00 64 06 74 05 00 00 00 00 00 00 00 00 7c 02 ab 01 00 00 00 00 00 00 64 01 7a | .......d.t.........|.........d.z |
| 2fc0 | 00 00 00 ab 02 00 00 00 00 00 00 44 00 5d 50 00 00 7d 06 7c 04 7d 07 7c 05 64 01 7a 0a 00 00 7d | ...........D.]P..}.|.}.|.d.z...} |
| 2fe0 | 05 74 09 00 00 00 00 00 00 00 00 7c 02 7c 06 0b 00 19 00 00 00 7c 03 7a 05 00 00 7c 00 7c 05 64 | .t.........|.|.......|.z...|.|.d |
| 3000 | 01 7a 0a 00 00 7a 05 00 00 7c 05 7a 0b 00 00 ab 02 00 00 00 00 00 00 7d 04 74 0b 00 00 00 00 00 | .z...z...|.z...........}.t...... |
| 3020 | 00 00 00 7c 07 74 09 00 00 00 00 00 00 00 00 64 03 7c 05 7a 05 00 00 64 01 7a 0a 00 00 7c 00 7a | ...|.t.........d.|.z...d.z...|.z |
| 3040 | 05 00 00 74 0d 00 00 00 00 00 00 00 00 7c 00 ab 01 00 00 00 00 00 00 ab 02 00 00 00 00 00 00 7c | ...t.........|.................| |
| 3060 | 05 7a 0b 00 00 ab 02 00 00 00 00 00 00 7d 00 8c 52 04 00 74 0b 00 00 00 00 00 00 00 00 7c 04 74 | .z...........}..R..t.........|.t |
| 3080 | 09 00 00 00 00 00 00 00 00 7c 00 74 0d 00 00 00 00 00 00 00 00 7c 00 ab 01 00 00 00 00 00 00 ab | .........|.t.........|.......... |
| 30a0 | 02 00 00 00 00 00 00 ab 02 00 00 00 00 00 00 53 00 29 07 61 52 04 00 00 0a 20 20 20 20 4d 75 6c | ...............S.).aR........Mul |
| 30c0 | 74 69 70 6c 79 20 6f 6e 65 20 4c 61 67 75 65 72 72 65 20 73 65 72 69 65 73 20 62 79 20 61 6e 6f | tiply.one.Laguerre.series.by.ano |
| 30e0 | 74 68 65 72 2e 0a 0a 20 20 20 20 52 65 74 75 72 6e 73 20 74 68 65 20 70 72 6f 64 75 63 74 20 6f | ther.......Returns.the.product.o |
| 3100 | 66 20 74 77 6f 20 4c 61 67 75 65 72 72 65 20 73 65 72 69 65 73 20 60 63 31 60 20 2a 20 60 63 32 | f.two.Laguerre.series.`c1`.*.`c2 |
| 3120 | 60 2e 20 20 54 68 65 20 61 72 67 75 6d 65 6e 74 73 0a 20 20 20 20 61 72 65 20 73 65 71 75 65 6e | `...The.arguments.....are.sequen |
| 3140 | 63 65 73 20 6f 66 20 63 6f 65 66 66 69 63 69 65 6e 74 73 2c 20 66 72 6f 6d 20 6c 6f 77 65 73 74 | ces.of.coefficients,.from.lowest |
| 3160 | 20 6f 72 64 65 72 20 22 74 65 72 6d 22 20 74 6f 20 68 69 67 68 65 73 74 2c 0a 20 20 20 20 65 2e | .order."term".to.highest,.....e. |
| 3180 | 67 2e 2c 20 5b 31 2c 32 2c 33 5d 20 72 65 70 72 65 73 65 6e 74 73 20 74 68 65 20 73 65 72 69 65 | g.,.[1,2,3].represents.the.serie |
| 31a0 | 73 20 60 60 50 5f 30 20 2b 20 32 2a 50 5f 31 20 2b 20 33 2a 50 5f 32 60 60 2e 0a 0a 20 20 20 20 | s.``P_0.+.2*P_1.+.3*P_2``....... |
| 31c0 | 50 61 72 61 6d 65 74 65 72 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 63 31 | Parameters.....----------.....c1 |
| 31e0 | 2c 20 63 32 20 3a 20 61 72 72 61 79 5f 6c 69 6b 65 0a 20 20 20 20 20 20 20 20 31 2d 44 20 61 72 | ,.c2.:.array_like.........1-D.ar |
| 3200 | 72 61 79 73 20 6f 66 20 4c 61 67 75 65 72 72 65 20 73 65 72 69 65 73 20 63 6f 65 66 66 69 63 69 | rays.of.Laguerre.series.coeffici |
| 3220 | 65 6e 74 73 20 6f 72 64 65 72 65 64 20 66 72 6f 6d 20 6c 6f 77 20 74 6f 0a 20 20 20 20 20 20 20 | ents.ordered.from.low.to........ |
| 3240 | 20 68 69 67 68 2e 0a 0a 20 20 20 20 52 65 74 75 72 6e 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 0a | .high.......Returns.....-------. |
| 3260 | 20 20 20 20 6f 75 74 20 3a 20 6e 64 61 72 72 61 79 0a 20 20 20 20 20 20 20 20 4f 66 20 4c 61 67 | ....out.:.ndarray.........Of.Lag |
| 3280 | 75 65 72 72 65 20 73 65 72 69 65 73 20 63 6f 65 66 66 69 63 69 65 6e 74 73 20 72 65 70 72 65 73 | uerre.series.coefficients.repres |
| 32a0 | 65 6e 74 69 6e 67 20 74 68 65 69 72 20 70 72 6f 64 75 63 74 2e 0a 0a 20 20 20 20 53 65 65 20 41 | enting.their.product.......See.A |
| 32c0 | 6c 73 6f 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 6c 61 67 61 64 64 2c 20 6c 61 67 | lso.....--------.....lagadd,.lag |
| 32e0 | 73 75 62 2c 20 6c 61 67 6d 75 6c 78 2c 20 6c 61 67 64 69 76 2c 20 6c 61 67 70 6f 77 0a 0a 20 20 | sub,.lagmulx,.lagdiv,.lagpow.... |
| 3300 | 20 20 4e 6f 74 65 73 0a 20 20 20 20 2d 2d 2d 2d 2d 0a 20 20 20 20 49 6e 20 67 65 6e 65 72 61 6c | ..Notes.....-----.....In.general |
| 3320 | 2c 20 74 68 65 20 28 70 6f 6c 79 6e 6f 6d 69 61 6c 29 20 70 72 6f 64 75 63 74 20 6f 66 20 74 77 | ,.the.(polynomial).product.of.tw |
| 3340 | 6f 20 43 2d 73 65 72 69 65 73 20 72 65 73 75 6c 74 73 20 69 6e 20 74 65 72 6d 73 0a 20 20 20 20 | o.C-series.results.in.terms..... |
| 3360 | 74 68 61 74 20 61 72 65 20 6e 6f 74 20 69 6e 20 74 68 65 20 4c 61 67 75 65 72 72 65 20 70 6f 6c | that.are.not.in.the.Laguerre.pol |
| 3380 | 79 6e 6f 6d 69 61 6c 20 62 61 73 69 73 20 73 65 74 2e 20 20 54 68 75 73 2c 20 74 6f 20 65 78 70 | ynomial.basis.set...Thus,.to.exp |
| 33a0 | 72 65 73 73 0a 20 20 20 20 74 68 65 20 70 72 6f 64 75 63 74 20 61 73 20 61 20 4c 61 67 75 65 72 | ress.....the.product.as.a.Laguer |
| 33c0 | 72 65 20 73 65 72 69 65 73 2c 20 69 74 20 69 73 20 6e 65 63 65 73 73 61 72 79 20 74 6f 20 22 72 | re.series,.it.is.necessary.to."r |
| 33e0 | 65 70 72 6f 6a 65 63 74 22 20 74 68 65 0a 20 20 20 20 70 72 6f 64 75 63 74 20 6f 6e 74 6f 20 73 | eproject".the.....product.onto.s |
| 3400 | 61 69 64 20 62 61 73 69 73 20 73 65 74 2c 20 77 68 69 63 68 20 6d 61 79 20 70 72 6f 64 75 63 65 | aid.basis.set,.which.may.produce |
| 3420 | 20 22 75 6e 69 6e 74 75 69 74 69 76 65 22 20 28 62 75 74 0a 20 20 20 20 63 6f 72 72 65 63 74 29 | ."unintuitive".(but.....correct) |
| 3440 | 20 72 65 73 75 6c 74 73 3b 20 73 65 65 20 45 78 61 6d 70 6c 65 73 20 73 65 63 74 69 6f 6e 20 62 | .results;.see.Examples.section.b |
| 3460 | 65 6c 6f 77 2e 0a 0a 20 20 20 20 45 78 61 6d 70 6c 65 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d | elow.......Examples.....-------- |
| 3480 | 0a 20 20 20 20 3e 3e 3e 20 66 72 6f 6d 20 6e 75 6d 70 79 2e 70 6f 6c 79 6e 6f 6d 69 61 6c 2e 6c | .....>>>.from.numpy.polynomial.l |
| 34a0 | 61 67 75 65 72 72 65 20 69 6d 70 6f 72 74 20 6c 61 67 6d 75 6c 0a 20 20 20 20 3e 3e 3e 20 6c 61 | aguerre.import.lagmul.....>>>.la |
| 34c0 | 67 6d 75 6c 28 5b 31 2c 20 32 2c 20 33 5d 2c 20 5b 30 2c 20 31 2c 20 32 5d 29 0a 20 20 20 20 61 | gmul([1,.2,.3],.[0,.1,.2]).....a |
| 34e0 | 72 72 61 79 28 5b 20 20 38 2e 2c 20 2d 31 33 2e 2c 20 20 33 38 2e 2c 20 2d 35 31 2e 2c 20 20 33 | rray([..8.,.-13.,..38.,.-51.,..3 |
| 3500 | 36 2e 5d 29 0a 0a 20 20 20 20 72 04 00 00 00 72 02 00 00 00 72 34 00 00 00 72 33 00 00 00 72 27 | 6.])......r....r....r4...r3...r' |
| 3520 | 00 00 00 e9 03 00 00 00 29 07 72 28 00 00 00 72 29 00 00 00 72 36 00 00 00 72 37 00 00 00 72 0d | ........).r(...r)...r6...r7...r. |
| 3540 | 00 00 00 72 0c 00 00 00 72 0e 00 00 00 29 08 72 3b 00 00 00 72 4b 00 00 00 72 38 00 00 00 da 02 | ...r....r....).r;...rK...r8..... |
| 3560 | 78 73 72 3a 00 00 00 da 02 6e 64 72 3c 00 00 00 72 3d 00 00 00 73 08 00 00 00 20 20 20 20 20 20 | xsr:.....ndr<...r=...s.......... |
| 3580 | 20 20 72 2d 00 00 00 72 0f 00 00 00 72 0f 00 00 00 bb 01 00 00 73 38 01 00 00 80 00 f4 4e 01 00 | ..r-...r....r........s8......N.. |
| 35a0 | 10 12 8f 7c 89 7c 98 52 a0 12 98 48 d3 0f 25 81 48 80 52 88 12 e4 07 0a 88 32 83 77 94 13 90 52 | ...|.|.R...H..%.H.R......2.w...R |
| 35c0 | 93 17 d2 07 18 d8 0c 0e 88 01 d8 0d 0f 89 02 e0 0c 0e 88 01 d8 0d 0f 88 02 e4 07 0a 88 31 83 76 | .............................1.v |
| 35e0 | 90 11 82 7b d8 0d 0e 88 71 89 54 90 42 89 59 88 02 d8 0d 0e 89 02 dc 09 0c 88 51 8b 16 90 31 8a | ...{....q.T.B.Y...........Q...1. |
| 3600 | 1b d8 0d 0e 88 71 89 54 90 42 89 59 88 02 d8 0d 0e 88 71 89 54 90 42 89 59 89 02 e4 0d 10 90 11 | .....q.T.B.Y......q.T.B.Y....... |
| 3620 | 8b 56 88 02 d8 0d 0e 88 72 89 55 90 52 89 5a 88 02 d8 0d 0e 88 72 89 55 90 52 89 5a 88 02 dc 11 | .V......r.U.R.Z......r.U.R.Z.... |
| 3640 | 16 90 71 9c 23 98 61 9b 26 a0 31 99 2a d3 11 25 f2 00 04 09 4a 01 88 41 d8 12 14 88 43 d8 11 13 | ..q.#.a.&.1.*..%....J..A....C... |
| 3660 | 90 61 91 16 88 42 dc 11 17 98 01 98 31 98 22 99 05 a0 02 99 0a a0 52 a8 32 b0 01 a9 36 a1 5d b0 | .a...B......1.".......R.2...6.]. |
| 3680 | 62 d1 24 38 d3 11 39 88 42 dc 11 17 98 03 9c 56 a0 51 a8 12 a1 56 a8 61 a1 5a b0 32 d1 24 35 b4 | b.$8..9.B......V.Q...V.a.Z.2.$5. |
| 36a0 | 77 b8 72 b3 7b d3 1d 43 c0 62 d1 1d 48 d3 11 49 89 42 f0 09 04 09 4a 01 f4 0a 00 0c 12 90 22 94 | w.r.{..C.b..H..I.B....J.......". |
| 36c0 | 66 98 52 a4 17 a8 12 a3 1b d3 16 2d d3 0b 2e d0 04 2e 72 2e 00 00 00 63 02 00 00 00 00 00 00 00 | f.R........-......r....c........ |
| 36e0 | 00 00 00 00 05 00 00 00 03 00 00 00 f3 38 00 00 00 97 00 74 01 00 00 00 00 00 00 00 00 6a 02 00 | .............8.....t.........j.. |
| 3700 | 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 74 04 00 00 00 00 00 00 00 00 7c 00 7c 01 ab | .................t.........|.|.. |
| 3720 | 03 00 00 00 00 00 00 53 00 29 01 61 2f 05 00 00 0a 20 20 20 20 44 69 76 69 64 65 20 6f 6e 65 20 | .......S.).a/........Divide.one. |
| 3740 | 4c 61 67 75 65 72 72 65 20 73 65 72 69 65 73 20 62 79 20 61 6e 6f 74 68 65 72 2e 0a 0a 20 20 20 | Laguerre.series.by.another...... |
| 3760 | 20 52 65 74 75 72 6e 73 20 74 68 65 20 71 75 6f 74 69 65 6e 74 2d 77 69 74 68 2d 72 65 6d 61 69 | .Returns.the.quotient-with-remai |
| 3780 | 6e 64 65 72 20 6f 66 20 74 77 6f 20 4c 61 67 75 65 72 72 65 20 73 65 72 69 65 73 0a 20 20 20 20 | nder.of.two.Laguerre.series..... |
| 37a0 | 60 63 31 60 20 2f 20 60 63 32 60 2e 20 20 54 68 65 20 61 72 67 75 6d 65 6e 74 73 20 61 72 65 20 | `c1`./.`c2`...The.arguments.are. |
| 37c0 | 73 65 71 75 65 6e 63 65 73 20 6f 66 20 63 6f 65 66 66 69 63 69 65 6e 74 73 20 66 72 6f 6d 20 6c | sequences.of.coefficients.from.l |
| 37e0 | 6f 77 65 73 74 0a 20 20 20 20 6f 72 64 65 72 20 22 74 65 72 6d 22 20 74 6f 20 68 69 67 68 65 73 | owest.....order."term".to.highes |
| 3800 | 74 2c 20 65 2e 67 2e 2c 20 5b 31 2c 32 2c 33 5d 20 72 65 70 72 65 73 65 6e 74 73 20 74 68 65 20 | t,.e.g.,.[1,2,3].represents.the. |
| 3820 | 73 65 72 69 65 73 0a 20 20 20 20 60 60 50 5f 30 20 2b 20 32 2a 50 5f 31 20 2b 20 33 2a 50 5f 32 | series.....``P_0.+.2*P_1.+.3*P_2 |
| 3840 | 60 60 2e 0a 0a 20 20 20 20 50 61 72 61 6d 65 74 65 72 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d | ``.......Parameters.....-------- |
| 3860 | 2d 2d 0a 20 20 20 20 63 31 2c 20 63 32 20 3a 20 61 72 72 61 79 5f 6c 69 6b 65 0a 20 20 20 20 20 | --.....c1,.c2.:.array_like...... |
| 3880 | 20 20 20 31 2d 44 20 61 72 72 61 79 73 20 6f 66 20 4c 61 67 75 65 72 72 65 20 73 65 72 69 65 73 | ...1-D.arrays.of.Laguerre.series |
| 38a0 | 20 63 6f 65 66 66 69 63 69 65 6e 74 73 20 6f 72 64 65 72 65 64 20 66 72 6f 6d 20 6c 6f 77 20 74 | .coefficients.ordered.from.low.t |
| 38c0 | 6f 0a 20 20 20 20 20 20 20 20 68 69 67 68 2e 0a 0a 20 20 20 20 52 65 74 75 72 6e 73 0a 20 20 20 | o.........high.......Returns.... |
| 38e0 | 20 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 5b 71 75 6f 2c 20 72 65 6d 5d 20 3a 20 6e 64 61 72 72 61 | .-------.....[quo,.rem].:.ndarra |
| 3900 | 79 73 0a 20 20 20 20 20 20 20 20 4f 66 20 4c 61 67 75 65 72 72 65 20 73 65 72 69 65 73 20 63 6f | ys.........Of.Laguerre.series.co |
| 3920 | 65 66 66 69 63 69 65 6e 74 73 20 72 65 70 72 65 73 65 6e 74 69 6e 67 20 74 68 65 20 71 75 6f 74 | efficients.representing.the.quot |
| 3940 | 69 65 6e 74 20 61 6e 64 0a 20 20 20 20 20 20 20 20 72 65 6d 61 69 6e 64 65 72 2e 0a 0a 20 20 20 | ient.and.........remainder...... |
| 3960 | 20 53 65 65 20 41 6c 73 6f 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 6c 61 67 61 64 | .See.Also.....--------.....lagad |
| 3980 | 64 2c 20 6c 61 67 73 75 62 2c 20 6c 61 67 6d 75 6c 78 2c 20 6c 61 67 6d 75 6c 2c 20 6c 61 67 70 | d,.lagsub,.lagmulx,.lagmul,.lagp |
| 39a0 | 6f 77 0a 0a 20 20 20 20 4e 6f 74 65 73 0a 20 20 20 20 2d 2d 2d 2d 2d 0a 20 20 20 20 49 6e 20 67 | ow......Notes.....-----.....In.g |
| 39c0 | 65 6e 65 72 61 6c 2c 20 74 68 65 20 28 70 6f 6c 79 6e 6f 6d 69 61 6c 29 20 64 69 76 69 73 69 6f | eneral,.the.(polynomial).divisio |
| 39e0 | 6e 20 6f 66 20 6f 6e 65 20 4c 61 67 75 65 72 72 65 20 73 65 72 69 65 73 20 62 79 20 61 6e 6f 74 | n.of.one.Laguerre.series.by.anot |
| 3a00 | 68 65 72 0a 20 20 20 20 72 65 73 75 6c 74 73 20 69 6e 20 71 75 6f 74 69 65 6e 74 20 61 6e 64 20 | her.....results.in.quotient.and. |
| 3a20 | 72 65 6d 61 69 6e 64 65 72 20 74 65 72 6d 73 20 74 68 61 74 20 61 72 65 20 6e 6f 74 20 69 6e 20 | remainder.terms.that.are.not.in. |
| 3a40 | 74 68 65 20 4c 61 67 75 65 72 72 65 0a 20 20 20 20 70 6f 6c 79 6e 6f 6d 69 61 6c 20 62 61 73 69 | the.Laguerre.....polynomial.basi |
| 3a60 | 73 20 73 65 74 2e 20 20 54 68 75 73 2c 20 74 6f 20 65 78 70 72 65 73 73 20 74 68 65 73 65 20 72 | s.set...Thus,.to.express.these.r |
| 3a80 | 65 73 75 6c 74 73 20 61 73 20 61 20 4c 61 67 75 65 72 72 65 0a 20 20 20 20 73 65 72 69 65 73 2c | esults.as.a.Laguerre.....series, |
| 3aa0 | 20 69 74 20 69 73 20 6e 65 63 65 73 73 61 72 79 20 74 6f 20 22 72 65 70 72 6f 6a 65 63 74 22 20 | .it.is.necessary.to."reproject". |
| 3ac0 | 74 68 65 20 72 65 73 75 6c 74 73 20 6f 6e 74 6f 20 74 68 65 20 4c 61 67 75 65 72 72 65 0a 20 20 | the.results.onto.the.Laguerre... |
| 3ae0 | 20 20 62 61 73 69 73 20 73 65 74 2c 20 77 68 69 63 68 20 6d 61 79 20 70 72 6f 64 75 63 65 20 22 | ..basis.set,.which.may.produce." |
| 3b00 | 75 6e 69 6e 74 75 69 74 69 76 65 22 20 28 62 75 74 20 63 6f 72 72 65 63 74 29 20 72 65 73 75 6c | unintuitive".(but.correct).resul |
| 3b20 | 74 73 3b 20 73 65 65 0a 20 20 20 20 45 78 61 6d 70 6c 65 73 20 73 65 63 74 69 6f 6e 20 62 65 6c | ts;.see.....Examples.section.bel |
| 3b40 | 6f 77 2e 0a 0a 20 20 20 20 45 78 61 6d 70 6c 65 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 | ow.......Examples.....--------.. |
| 3b60 | 20 20 20 3e 3e 3e 20 66 72 6f 6d 20 6e 75 6d 70 79 2e 70 6f 6c 79 6e 6f 6d 69 61 6c 2e 6c 61 67 | ...>>>.from.numpy.polynomial.lag |
| 3b80 | 75 65 72 72 65 20 69 6d 70 6f 72 74 20 6c 61 67 64 69 76 0a 20 20 20 20 3e 3e 3e 20 6c 61 67 64 | uerre.import.lagdiv.....>>>.lagd |
| 3ba0 | 69 76 28 5b 20 20 38 2e 2c 20 2d 31 33 2e 2c 20 20 33 38 2e 2c 20 2d 35 31 2e 2c 20 20 33 36 2e | iv([..8.,.-13.,..38.,.-51.,..36. |
| 3bc0 | 5d 2c 20 5b 30 2c 20 31 2c 20 32 5d 29 0a 20 20 20 20 28 61 72 72 61 79 28 5b 31 2e 2c 20 32 2e | ],.[0,.1,.2]).....(array([1.,.2. |
| 3be0 | 2c 20 33 2e 5d 29 2c 20 61 72 72 61 79 28 5b 30 2e 5d 29 29 0a 20 20 20 20 3e 3e 3e 20 6c 61 67 | ,.3.]),.array([0.])).....>>>.lag |
| 3c00 | 64 69 76 28 5b 20 20 39 2e 2c 20 2d 31 32 2e 2c 20 20 33 38 2e 2c 20 2d 35 31 2e 2c 20 20 33 36 | div([..9.,.-12.,..38.,.-51.,..36 |
| 3c20 | 2e 5d 2c 20 5b 30 2c 20 31 2c 20 32 5d 29 0a 20 20 20 20 28 61 72 72 61 79 28 5b 31 2e 2c 20 32 | .],.[0,.1,.2]).....(array([1.,.2 |
| 3c40 | 2e 2c 20 33 2e 5d 29 2c 20 61 72 72 61 79 28 5b 31 2e 2c 20 31 2e 5d 29 29 0a 0a 20 20 20 20 29 | .,.3.]),.array([1.,.1.]))......) |
| 3c60 | 03 72 28 00 00 00 da 04 5f 64 69 76 72 0f 00 00 00 72 4a 00 00 00 73 02 00 00 00 20 20 72 2d 00 | .r(....._divr....rJ...s......r-. |
| 3c80 | 00 00 72 10 00 00 00 72 10 00 00 00 fd 01 00 00 73 18 00 00 00 80 00 f4 56 01 00 0c 0e 8f 37 89 | ..r....r........s.......V.....7. |
| 3ca0 | 37 94 36 98 32 98 72 d3 0b 22 d0 04 22 72 2e 00 00 00 63 03 00 00 00 00 00 00 00 00 00 00 00 06 | 7.6.2.r..".."r....c............. |
| 3cc0 | 00 00 00 03 00 00 00 f3 3a 00 00 00 97 00 74 01 00 00 00 00 00 00 00 00 6a 02 00 00 00 00 00 00 | ........:.....t.........j....... |
| 3ce0 | 00 00 00 00 00 00 00 00 00 00 00 00 74 04 00 00 00 00 00 00 00 00 7c 00 7c 01 7c 02 ab 04 00 00 | ............t.........|.|.|..... |
| 3d00 | 00 00 00 00 53 00 29 01 61 7e 03 00 00 52 61 69 73 65 20 61 20 4c 61 67 75 65 72 72 65 20 73 65 | ....S.).a~...Raise.a.Laguerre.se |
| 3d20 | 72 69 65 73 20 74 6f 20 61 20 70 6f 77 65 72 2e 0a 0a 20 20 20 20 52 65 74 75 72 6e 73 20 74 68 | ries.to.a.power.......Returns.th |
| 3d40 | 65 20 4c 61 67 75 65 72 72 65 20 73 65 72 69 65 73 20 60 63 60 20 72 61 69 73 65 64 20 74 6f 20 | e.Laguerre.series.`c`.raised.to. |
| 3d60 | 74 68 65 20 70 6f 77 65 72 20 60 70 6f 77 60 2e 20 54 68 65 0a 20 20 20 20 61 72 67 75 6d 65 6e | the.power.`pow`..The.....argumen |
| 3d80 | 74 20 60 63 60 20 69 73 20 61 20 73 65 71 75 65 6e 63 65 20 6f 66 20 63 6f 65 66 66 69 63 69 65 | t.`c`.is.a.sequence.of.coefficie |
| 3da0 | 6e 74 73 20 6f 72 64 65 72 65 64 20 66 72 6f 6d 20 6c 6f 77 20 74 6f 20 68 69 67 68 2e 0a 20 20 | nts.ordered.from.low.to.high.... |
| 3dc0 | 20 20 69 2e 65 2e 2c 20 5b 31 2c 32 2c 33 5d 20 69 73 20 74 68 65 20 73 65 72 69 65 73 20 20 60 | ..i.e.,.[1,2,3].is.the.series..` |
| 3de0 | 60 50 5f 30 20 2b 20 32 2a 50 5f 31 20 2b 20 33 2a 50 5f 32 2e 60 60 0a 0a 20 20 20 20 50 61 72 | `P_0.+.2*P_1.+.3*P_2.``......Par |
| 3e00 | 61 6d 65 74 65 72 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 63 20 3a 20 61 | ameters.....----------.....c.:.a |
| 3e20 | 72 72 61 79 5f 6c 69 6b 65 0a 20 20 20 20 20 20 20 20 31 2d 44 20 61 72 72 61 79 20 6f 66 20 4c | rray_like.........1-D.array.of.L |
| 3e40 | 61 67 75 65 72 72 65 20 73 65 72 69 65 73 20 63 6f 65 66 66 69 63 69 65 6e 74 73 20 6f 72 64 65 | aguerre.series.coefficients.orde |
| 3e60 | 72 65 64 20 66 72 6f 6d 20 6c 6f 77 20 74 6f 0a 20 20 20 20 20 20 20 20 68 69 67 68 2e 0a 20 20 | red.from.low.to.........high.... |
| 3e80 | 20 20 70 6f 77 20 3a 20 69 6e 74 65 67 65 72 0a 20 20 20 20 20 20 20 20 50 6f 77 65 72 20 74 6f | ..pow.:.integer.........Power.to |
| 3ea0 | 20 77 68 69 63 68 20 74 68 65 20 73 65 72 69 65 73 20 77 69 6c 6c 20 62 65 20 72 61 69 73 65 64 | .which.the.series.will.be.raised |
| 3ec0 | 0a 20 20 20 20 6d 61 78 70 6f 77 65 72 20 3a 20 69 6e 74 65 67 65 72 2c 20 6f 70 74 69 6f 6e 61 | .....maxpower.:.integer,.optiona |
| 3ee0 | 6c 0a 20 20 20 20 20 20 20 20 4d 61 78 69 6d 75 6d 20 70 6f 77 65 72 20 61 6c 6c 6f 77 65 64 2e | l.........Maximum.power.allowed. |
| 3f00 | 20 54 68 69 73 20 69 73 20 6d 61 69 6e 6c 79 20 74 6f 20 6c 69 6d 69 74 20 67 72 6f 77 74 68 20 | .This.is.mainly.to.limit.growth. |
| 3f20 | 6f 66 20 74 68 65 20 73 65 72 69 65 73 0a 20 20 20 20 20 20 20 20 74 6f 20 75 6e 6d 61 6e 61 67 | of.the.series.........to.unmanag |
| 3f40 | 65 61 62 6c 65 20 73 69 7a 65 2e 20 44 65 66 61 75 6c 74 20 69 73 20 31 36 0a 0a 20 20 20 20 52 | eable.size..Default.is.16......R |
| 3f60 | 65 74 75 72 6e 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 63 6f 65 66 20 3a 20 6e 64 | eturns.....-------.....coef.:.nd |
| 3f80 | 61 72 72 61 79 0a 20 20 20 20 20 20 20 20 4c 61 67 75 65 72 72 65 20 73 65 72 69 65 73 20 6f 66 | array.........Laguerre.series.of |
| 3fa0 | 20 70 6f 77 65 72 2e 0a 0a 20 20 20 20 53 65 65 20 41 6c 73 6f 0a 20 20 20 20 2d 2d 2d 2d 2d 2d | .power.......See.Also.....------ |
| 3fc0 | 2d 2d 0a 20 20 20 20 6c 61 67 61 64 64 2c 20 6c 61 67 73 75 62 2c 20 6c 61 67 6d 75 6c 78 2c 20 | --.....lagadd,.lagsub,.lagmulx,. |
| 3fe0 | 6c 61 67 6d 75 6c 2c 20 6c 61 67 64 69 76 0a 0a 20 20 20 20 45 78 61 6d 70 6c 65 73 0a 20 20 20 | lagmul,.lagdiv......Examples.... |
| 4000 | 20 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 3e 3e 3e 20 66 72 6f 6d 20 6e 75 6d 70 79 2e 70 6f 6c | .--------.....>>>.from.numpy.pol |
| 4020 | 79 6e 6f 6d 69 61 6c 2e 6c 61 67 75 65 72 72 65 20 69 6d 70 6f 72 74 20 6c 61 67 70 6f 77 0a 20 | ynomial.laguerre.import.lagpow.. |
| 4040 | 20 20 20 3e 3e 3e 20 6c 61 67 70 6f 77 28 5b 31 2c 20 32 2c 20 33 5d 2c 20 32 29 0a 20 20 20 20 | ...>>>.lagpow([1,.2,.3],.2)..... |
| 4060 | 61 72 72 61 79 28 5b 20 31 34 2e 2c 20 2d 31 36 2e 2c 20 20 35 36 2e 2c 20 2d 37 32 2e 2c 20 20 | array([.14.,.-16.,..56.,.-72.,.. |
| 4080 | 35 34 2e 5d 29 0a 0a 20 20 20 20 29 03 72 28 00 00 00 da 04 5f 70 6f 77 72 0f 00 00 00 29 03 72 | 54.])......).r(....._powr....).r |
| 40a0 | 38 00 00 00 da 03 70 6f 77 da 08 6d 61 78 70 6f 77 65 72 73 03 00 00 00 20 20 20 72 2d 00 00 00 | 8.....pow..maxpowers.......r-... |
| 40c0 | 72 11 00 00 00 72 11 00 00 00 2b 02 00 00 73 1a 00 00 00 80 00 f4 44 01 00 0c 0e 8f 37 89 37 94 | r....r....+...s.......D.....7.7. |
| 40e0 | 36 98 31 98 63 a0 38 d3 0b 2c d0 04 2c 72 2e 00 00 00 63 04 00 00 00 00 00 00 00 00 00 00 00 07 | 6.1.c.8..,..,r....c............. |
| 4100 | 00 00 00 03 00 00 00 f3 f4 02 00 00 97 00 74 01 00 00 00 00 00 00 00 00 6a 02 00 00 00 00 00 00 | ..............t.........j....... |
| 4120 | 00 00 00 00 00 00 00 00 00 00 00 00 7c 00 64 01 64 02 ac 03 ab 03 00 00 00 00 00 00 7d 00 7c 00 | ............|.d.d...........}.|. |
| 4140 | 6a 04 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 6a 06 00 00 00 00 00 00 00 00 00 00 | j...................j........... |
| 4160 | 00 00 00 00 00 00 00 00 64 04 76 00 72 1f 7c 00 6a 09 00 00 00 00 00 00 00 00 00 00 00 00 00 00 | ........d.v.r.|.j............... |
| 4180 | 00 00 00 00 74 00 00 00 00 00 00 00 00 00 6a 0a 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 | ....t.........j................. |
| 41a0 | 00 00 ab 01 00 00 00 00 00 00 7d 00 74 0d 00 00 00 00 00 00 00 00 6a 0e 00 00 00 00 00 00 00 00 | ..........}.t.........j......... |
| 41c0 | 00 00 00 00 00 00 00 00 00 00 7c 01 64 05 ab 02 00 00 00 00 00 00 7d 04 74 0d 00 00 00 00 00 00 | ..........|.d.........}.t....... |
| 41e0 | 00 00 6a 0e 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 7c 03 64 06 ab 02 00 00 00 00 | ..j...................|.d....... |
| 4200 | 00 00 7d 05 7c 04 64 07 6b 02 00 00 72 0b 74 11 00 00 00 00 00 00 00 00 64 08 ab 01 00 00 00 00 | ..}.|.d.k...r.t.........d....... |
| 4220 | 00 00 82 01 74 13 00 00 00 00 00 00 00 00 7c 05 7c 00 6a 14 00 00 00 00 00 00 00 00 00 00 00 00 | ....t.........|.|.j............. |
| 4240 | 00 00 00 00 00 00 ab 02 00 00 00 00 00 00 7d 05 7c 04 64 07 6b 28 00 00 72 02 7c 00 53 00 74 01 | ..............}.|.d.k(..r.|.S.t. |
| 4260 | 00 00 00 00 00 00 00 00 6a 16 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 7c 00 7c 05 | ........j...................|.|. |
| 4280 | 64 07 ab 03 00 00 00 00 00 00 7d 00 74 19 00 00 00 00 00 00 00 00 7c 00 ab 01 00 00 00 00 00 00 | d.........}.t.........|......... |
| 42a0 | 7d 06 7c 04 7c 06 6b 5c 00 00 72 09 7c 00 64 09 64 01 1a 00 64 07 7a 05 00 00 7d 00 6e 88 74 1b | }.|.|.k\..r.|.d.d...d.z...}.n.t. |
| 42c0 | 00 00 00 00 00 00 00 00 7c 04 ab 01 00 00 00 00 00 00 44 00 5d 7a 00 00 7d 07 7c 06 64 01 7a 0a | ........|.........D.]z..}.|.d.z. |
| 42e0 | 00 00 7d 06 7c 00 7c 02 7a 12 00 00 7d 00 74 01 00 00 00 00 00 00 00 00 6a 1c 00 00 00 00 00 00 | ..}.|.|.z...}.t.........j....... |
| 4300 | 00 00 00 00 00 00 00 00 00 00 00 00 7c 06 66 01 7c 00 6a 1e 00 00 00 00 00 00 00 00 00 00 00 00 | ............|.f.|.j............. |
| 4320 | 00 00 00 00 00 00 64 01 64 09 1a 00 7a 00 00 00 7c 00 6a 04 00 00 00 00 00 00 00 00 00 00 00 00 | ......d.d...z...|.j............. |
| 4340 | 00 00 00 00 00 00 ac 0a ab 02 00 00 00 00 00 00 7d 08 74 1b 00 00 00 00 00 00 00 00 7c 06 64 01 | ................}.t.........|.d. |
| 4360 | 64 0b ab 03 00 00 00 00 00 00 44 00 5d 21 00 00 7d 09 7c 00 7c 09 19 00 00 00 0b 00 7c 08 7c 09 | d.........D.]!..}.|.|.......|.|. |
| 4380 | 64 01 7a 0a 00 00 3c 00 00 00 7c 00 7c 09 64 01 7a 0a 00 00 78 02 78 02 19 00 00 00 7c 00 7c 09 | d.z...<...|.|.d.z...x.x.....|.|. |
| 43a0 | 19 00 00 00 7a 0d 00 00 63 03 63 02 3c 00 00 00 8c 23 04 00 7c 00 64 01 19 00 00 00 0b 00 7c 08 | ....z...c.c.<....#..|.d.......|. |
| 43c0 | 64 07 3c 00 00 00 7c 08 7d 00 8c 7c 04 00 74 01 00 00 00 00 00 00 00 00 6a 16 00 00 00 00 00 00 | d.<...|.}..|..t.........j....... |
| 43e0 | 00 00 00 00 00 00 00 00 00 00 00 00 7c 00 64 07 7c 05 ab 03 00 00 00 00 00 00 7d 00 7c 00 53 00 | ............|.d.|.........}.|.S. |
| 4400 | 29 0c 61 0f 07 00 00 0a 20 20 20 20 44 69 66 66 65 72 65 6e 74 69 61 74 65 20 61 20 4c 61 67 75 | ).a.........Differentiate.a.Lagu |
| 4420 | 65 72 72 65 20 73 65 72 69 65 73 2e 0a 0a 20 20 20 20 52 65 74 75 72 6e 73 20 74 68 65 20 4c 61 | erre.series.......Returns.the.La |
| 4440 | 67 75 65 72 72 65 20 73 65 72 69 65 73 20 63 6f 65 66 66 69 63 69 65 6e 74 73 20 60 63 60 20 64 | guerre.series.coefficients.`c`.d |
| 4460 | 69 66 66 65 72 65 6e 74 69 61 74 65 64 20 60 6d 60 20 74 69 6d 65 73 0a 20 20 20 20 61 6c 6f 6e | ifferentiated.`m`.times.....alon |
| 4480 | 67 20 60 61 78 69 73 60 2e 20 20 41 74 20 65 61 63 68 20 69 74 65 72 61 74 69 6f 6e 20 74 68 65 | g.`axis`...At.each.iteration.the |
| 44a0 | 20 72 65 73 75 6c 74 20 69 73 20 6d 75 6c 74 69 70 6c 69 65 64 20 62 79 20 60 73 63 6c 60 20 28 | .result.is.multiplied.by.`scl`.( |
| 44c0 | 74 68 65 0a 20 20 20 20 73 63 61 6c 69 6e 67 20 66 61 63 74 6f 72 20 69 73 20 66 6f 72 20 75 73 | the.....scaling.factor.is.for.us |
| 44e0 | 65 20 69 6e 20 61 20 6c 69 6e 65 61 72 20 63 68 61 6e 67 65 20 6f 66 20 76 61 72 69 61 62 6c 65 | e.in.a.linear.change.of.variable |
| 4500 | 29 2e 20 54 68 65 20 61 72 67 75 6d 65 6e 74 0a 20 20 20 20 60 63 60 20 69 73 20 61 6e 20 61 72 | )..The.argument.....`c`.is.an.ar |
| 4520 | 72 61 79 20 6f 66 20 63 6f 65 66 66 69 63 69 65 6e 74 73 20 66 72 6f 6d 20 6c 6f 77 20 74 6f 20 | ray.of.coefficients.from.low.to. |
| 4540 | 68 69 67 68 20 64 65 67 72 65 65 20 61 6c 6f 6e 67 20 65 61 63 68 0a 20 20 20 20 61 78 69 73 2c | high.degree.along.each.....axis, |
| 4560 | 20 65 2e 67 2e 2c 20 5b 31 2c 32 2c 33 5d 20 72 65 70 72 65 73 65 6e 74 73 20 74 68 65 20 73 65 | .e.g.,.[1,2,3].represents.the.se |
| 4580 | 72 69 65 73 20 60 60 31 2a 4c 5f 30 20 2b 20 32 2a 4c 5f 31 20 2b 20 33 2a 4c 5f 32 60 60 0a 20 | ries.``1*L_0.+.2*L_1.+.3*L_2``.. |
| 45a0 | 20 20 20 77 68 69 6c 65 20 5b 5b 31 2c 32 5d 2c 5b 31 2c 32 5d 5d 20 72 65 70 72 65 73 65 6e 74 | ...while.[[1,2],[1,2]].represent |
| 45c0 | 73 20 60 60 31 2a 4c 5f 30 28 78 29 2a 4c 5f 30 28 79 29 20 2b 20 31 2a 4c 5f 31 28 78 29 2a 4c | s.``1*L_0(x)*L_0(y).+.1*L_1(x)*L |
| 45e0 | 5f 30 28 79 29 20 2b 0a 20 20 20 20 32 2a 4c 5f 30 28 78 29 2a 4c 5f 31 28 79 29 20 2b 20 32 2a | _0(y).+.....2*L_0(x)*L_1(y).+.2* |
| 4600 | 4c 5f 31 28 78 29 2a 4c 5f 31 28 79 29 60 60 20 69 66 20 61 78 69 73 3d 30 20 69 73 20 60 60 78 | L_1(x)*L_1(y)``.if.axis=0.is.``x |
| 4620 | 60 60 20 61 6e 64 20 61 78 69 73 3d 31 20 69 73 0a 20 20 20 20 60 60 79 60 60 2e 0a 0a 20 20 20 | ``.and.axis=1.is.....``y``...... |
| 4640 | 20 50 61 72 61 6d 65 74 65 72 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 63 | .Parameters.....----------.....c |
| 4660 | 20 3a 20 61 72 72 61 79 5f 6c 69 6b 65 0a 20 20 20 20 20 20 20 20 41 72 72 61 79 20 6f 66 20 4c | .:.array_like.........Array.of.L |
| 4680 | 61 67 75 65 72 72 65 20 73 65 72 69 65 73 20 63 6f 65 66 66 69 63 69 65 6e 74 73 2e 20 49 66 20 | aguerre.series.coefficients..If. |
| 46a0 | 60 63 60 20 69 73 20 6d 75 6c 74 69 64 69 6d 65 6e 73 69 6f 6e 61 6c 0a 20 20 20 20 20 20 20 20 | `c`.is.multidimensional......... |
| 46c0 | 74 68 65 20 64 69 66 66 65 72 65 6e 74 20 61 78 69 73 20 63 6f 72 72 65 73 70 6f 6e 64 20 74 6f | the.different.axis.correspond.to |
| 46e0 | 20 64 69 66 66 65 72 65 6e 74 20 76 61 72 69 61 62 6c 65 73 20 77 69 74 68 20 74 68 65 0a 20 20 | .different.variables.with.the... |
| 4700 | 20 20 20 20 20 20 64 65 67 72 65 65 20 69 6e 20 65 61 63 68 20 61 78 69 73 20 67 69 76 65 6e 20 | ......degree.in.each.axis.given. |
| 4720 | 62 79 20 74 68 65 20 63 6f 72 72 65 73 70 6f 6e 64 69 6e 67 20 69 6e 64 65 78 2e 0a 20 20 20 20 | by.the.corresponding.index...... |
| 4740 | 6d 20 3a 20 69 6e 74 2c 20 6f 70 74 69 6f 6e 61 6c 0a 20 20 20 20 20 20 20 20 4e 75 6d 62 65 72 | m.:.int,.optional.........Number |
| 4760 | 20 6f 66 20 64 65 72 69 76 61 74 69 76 65 73 20 74 61 6b 65 6e 2c 20 6d 75 73 74 20 62 65 20 6e | .of.derivatives.taken,.must.be.n |
| 4780 | 6f 6e 2d 6e 65 67 61 74 69 76 65 2e 20 28 44 65 66 61 75 6c 74 3a 20 31 29 0a 20 20 20 20 73 63 | on-negative..(Default:.1).....sc |
| 47a0 | 6c 20 3a 20 73 63 61 6c 61 72 2c 20 6f 70 74 69 6f 6e 61 6c 0a 20 20 20 20 20 20 20 20 45 61 63 | l.:.scalar,.optional.........Eac |
| 47c0 | 68 20 64 69 66 66 65 72 65 6e 74 69 61 74 69 6f 6e 20 69 73 20 6d 75 6c 74 69 70 6c 69 65 64 20 | h.differentiation.is.multiplied. |
| 47e0 | 62 79 20 60 73 63 6c 60 2e 20 20 54 68 65 20 65 6e 64 20 72 65 73 75 6c 74 20 69 73 0a 20 20 20 | by.`scl`...The.end.result.is.... |
| 4800 | 20 20 20 20 20 6d 75 6c 74 69 70 6c 69 63 61 74 69 6f 6e 20 62 79 20 60 60 73 63 6c 2a 2a 6d 60 | .....multiplication.by.``scl**m` |
| 4820 | 60 2e 20 20 54 68 69 73 20 69 73 20 66 6f 72 20 75 73 65 20 69 6e 20 61 20 6c 69 6e 65 61 72 20 | `...This.is.for.use.in.a.linear. |
| 4840 | 63 68 61 6e 67 65 20 6f 66 0a 20 20 20 20 20 20 20 20 76 61 72 69 61 62 6c 65 2e 20 28 44 65 66 | change.of.........variable..(Def |
| 4860 | 61 75 6c 74 3a 20 31 29 0a 20 20 20 20 61 78 69 73 20 3a 20 69 6e 74 2c 20 6f 70 74 69 6f 6e 61 | ault:.1).....axis.:.int,.optiona |
| 4880 | 6c 0a 20 20 20 20 20 20 20 20 41 78 69 73 20 6f 76 65 72 20 77 68 69 63 68 20 74 68 65 20 64 65 | l.........Axis.over.which.the.de |
| 48a0 | 72 69 76 61 74 69 76 65 20 69 73 20 74 61 6b 65 6e 2e 20 28 44 65 66 61 75 6c 74 3a 20 30 29 2e | rivative.is.taken..(Default:.0). |
| 48c0 | 0a 0a 20 20 20 20 52 65 74 75 72 6e 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 64 65 | ......Returns.....-------.....de |
| 48e0 | 72 20 3a 20 6e 64 61 72 72 61 79 0a 20 20 20 20 20 20 20 20 4c 61 67 75 65 72 72 65 20 73 65 72 | r.:.ndarray.........Laguerre.ser |
| 4900 | 69 65 73 20 6f 66 20 74 68 65 20 64 65 72 69 76 61 74 69 76 65 2e 0a 0a 20 20 20 20 53 65 65 20 | ies.of.the.derivative.......See. |
| 4920 | 41 6c 73 6f 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 6c 61 67 69 6e 74 0a 0a 20 20 | Also.....--------.....lagint.... |
| 4940 | 20 20 4e 6f 74 65 73 0a 20 20 20 20 2d 2d 2d 2d 2d 0a 20 20 20 20 49 6e 20 67 65 6e 65 72 61 6c | ..Notes.....-----.....In.general |
| 4960 | 2c 20 74 68 65 20 72 65 73 75 6c 74 20 6f 66 20 64 69 66 66 65 72 65 6e 74 69 61 74 69 6e 67 20 | ,.the.result.of.differentiating. |
| 4980 | 61 20 4c 61 67 75 65 72 72 65 20 73 65 72 69 65 73 20 64 6f 65 73 20 6e 6f 74 0a 20 20 20 20 72 | a.Laguerre.series.does.not.....r |
| 49a0 | 65 73 65 6d 62 6c 65 20 74 68 65 20 73 61 6d 65 20 6f 70 65 72 61 74 69 6f 6e 20 6f 6e 20 61 20 | esemble.the.same.operation.on.a. |
| 49c0 | 70 6f 77 65 72 20 73 65 72 69 65 73 2e 20 54 68 75 73 20 74 68 65 20 72 65 73 75 6c 74 20 6f 66 | power.series..Thus.the.result.of |
| 49e0 | 20 74 68 69 73 0a 20 20 20 20 66 75 6e 63 74 69 6f 6e 20 6d 61 79 20 62 65 20 22 75 6e 69 6e 74 | .this.....function.may.be."unint |
| 4a00 | 75 69 74 69 76 65 2c 22 20 61 6c 62 65 69 74 20 63 6f 72 72 65 63 74 3b 20 73 65 65 20 45 78 61 | uitive,".albeit.correct;.see.Exa |
| 4a20 | 6d 70 6c 65 73 20 73 65 63 74 69 6f 6e 0a 20 20 20 20 62 65 6c 6f 77 2e 0a 0a 20 20 20 20 45 78 | mples.section.....below.......Ex |
| 4a40 | 61 6d 70 6c 65 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 3e 3e 3e 20 66 72 6f 6d | amples.....--------.....>>>.from |
| 4a60 | 20 6e 75 6d 70 79 2e 70 6f 6c 79 6e 6f 6d 69 61 6c 2e 6c 61 67 75 65 72 72 65 20 69 6d 70 6f 72 | .numpy.polynomial.laguerre.impor |
| 4a80 | 74 20 6c 61 67 64 65 72 0a 20 20 20 20 3e 3e 3e 20 6c 61 67 64 65 72 28 5b 20 31 2e 2c 20 20 31 | t.lagder.....>>>.lagder([.1.,..1 |
| 4aa0 | 2e 2c 20 20 31 2e 2c 20 2d 33 2e 5d 29 0a 20 20 20 20 61 72 72 61 79 28 5b 31 2e 2c 20 20 32 2e | .,..1.,.-3.]).....array([1.,..2. |
| 4ac0 | 2c 20 20 33 2e 5d 29 0a 20 20 20 20 3e 3e 3e 20 6c 61 67 64 65 72 28 5b 20 31 2e 2c 20 20 30 2e | ,..3.]).....>>>.lagder([.1.,..0. |
| 4ae0 | 2c 20 20 30 2e 2c 20 2d 34 2e 2c 20 20 33 2e 5d 2c 20 6d 3d 32 29 0a 20 20 20 20 61 72 72 61 79 | ,..0.,.-4.,..3.],.m=2).....array |
| 4b00 | 28 5b 31 2e 2c 20 20 32 2e 2c 20 20 33 2e 5d 29 0a 0a 20 20 20 20 72 04 00 00 00 54 a9 02 da 05 | ([1.,..2.,..3.])......r....T.... |
| 4b20 | 6e 64 6d 69 6e da 04 63 6f 70 79 fa 0d 3f 62 42 68 48 69 49 6c 4c 71 51 70 50 7a 17 74 68 65 20 | ndmin..copy..?bBhHiIlLqQpPz.the. |
| 4b40 | 6f 72 64 65 72 20 6f 66 20 64 65 72 69 76 61 74 69 6f 6e fa 08 74 68 65 20 61 78 69 73 72 02 00 | order.of.derivation..the.axisr.. |
| 4b60 | 00 00 7a 2c 54 68 65 20 6f 72 64 65 72 20 6f 66 20 64 65 72 69 76 61 74 69 6f 6e 20 6d 75 73 74 | ..z,The.order.of.derivation.must |
| 4b80 | 20 62 65 20 6e 6f 6e 2d 6e 65 67 61 74 69 76 65 4e 72 50 00 00 00 72 27 00 00 00 29 10 72 41 00 | .be.non-negativeNrP...r'...).rA. |
| 4ba0 | 00 00 72 42 00 00 00 72 51 00 00 00 da 04 63 68 61 72 da 06 61 73 74 79 70 65 da 06 64 6f 75 62 | ..rB...rQ.....char..astype..doub |
| 4bc0 | 6c 65 72 28 00 00 00 da 07 5f 61 73 5f 69 6e 74 da 0a 56 61 6c 75 65 45 72 72 6f 72 72 03 00 00 | ler(....._as_int..ValueErrorr... |
| 4be0 | 00 da 04 6e 64 69 6d da 08 6d 6f 76 65 61 78 69 73 72 36 00 00 00 72 37 00 00 00 72 52 00 00 00 | ...ndim..moveaxisr6...r7...rR... |
| 4c00 | da 05 73 68 61 70 65 29 0a 72 38 00 00 00 da 01 6d 72 44 00 00 00 da 04 61 78 69 73 da 03 63 6e | ..shape).r8.....mrD.....axis..cn |
| 4c20 | 74 da 05 69 61 78 69 73 72 39 00 00 00 72 3c 00 00 00 da 03 64 65 72 da 01 6a 73 0a 00 00 00 20 | t..iaxisr9...r<.....der..js..... |
| 4c40 | 20 20 20 20 20 20 20 20 20 72 2d 00 00 00 72 13 00 00 00 72 13 00 00 00 50 02 00 00 73 73 01 00 | .........r-...r....r....P...ss.. |
| 4c60 | 00 80 00 f4 6a 01 00 09 0b 8f 08 89 08 90 11 98 21 a0 24 d4 08 27 80 41 d8 07 08 87 77 81 77 87 | ....j...........!.$..'.A....w.w. |
| 4c80 | 7c 81 7c 90 7f d1 07 26 d8 0c 0d 8f 48 89 48 94 52 97 59 91 59 d3 0c 1f 88 01 e4 0a 0c 8f 2a 89 | |.|....&....H.H.R.Y.Y.........*. |
| 4ca0 | 2a 90 51 d0 18 31 d3 0a 32 80 43 dc 0c 0e 8f 4a 89 4a 90 74 98 5a d3 0c 28 80 45 d8 07 0a 88 51 | *.Q..1..2.C....J.J.t.Z..(.E....Q |
| 4cc0 | 82 77 dc 0e 18 d0 19 47 d3 0e 48 d0 08 48 dc 0c 20 a0 15 a8 01 af 06 a9 06 d3 0c 2f 80 45 e0 07 | .w.....G..H..H............./.E.. |
| 4ce0 | 0a 88 61 82 78 d8 0f 10 88 08 e4 08 0a 8f 0b 89 0b 90 41 90 75 98 61 d3 08 20 80 41 dc 08 0b 88 | ..a.x.............A.u.a....A.... |
| 4d00 | 41 8b 06 80 41 d8 07 0a 88 61 82 78 d8 0c 0d 88 62 88 71 88 45 90 41 89 49 89 01 e4 11 16 90 73 | A...A....a.x....b.q.E.A.I......s |
| 4d20 | 93 1a f2 00 08 09 14 88 41 d8 10 11 90 41 91 05 88 41 d8 0c 0d 90 13 89 48 88 41 dc 12 14 97 28 | ........A....A...A......H.A....( |
| 4d40 | 91 28 98 41 98 34 a0 21 a7 27 a1 27 a8 21 a8 22 a0 2b d1 1b 2d b0 51 b7 57 b1 57 d4 12 3d 88 43 | .(.A.4.!.'.'.!.".+..-.Q.W.W..=.C |
| 4d60 | dc 15 1a 98 31 98 61 a0 12 93 5f f2 00 02 0d 21 90 01 d8 1e 1f a0 01 99 64 98 55 90 03 90 41 98 | ....1.a..._....!........d.U...A. |
| 4d80 | 01 91 45 91 0a d8 10 11 90 21 90 61 91 25 93 08 98 41 98 61 99 44 d1 10 20 94 08 f0 05 02 0d 21 | ..E......!.a.%...A.a.D.........! |
| 4da0 | f0 06 00 17 18 98 01 91 64 90 55 88 43 90 01 89 46 d8 10 13 89 41 f0 11 08 09 14 f4 12 00 09 0b | ........d.U.C...F....A.......... |
| 4dc0 | 8f 0b 89 0b 90 41 90 71 98 25 d3 08 20 80 41 d8 0b 0c 80 48 72 2e 00 00 00 63 06 00 00 00 00 00 | .....A.q.%....A....Hr....c...... |
| 4de0 | 00 00 00 00 00 00 09 00 00 00 03 00 00 00 f3 a2 04 00 00 97 00 74 01 00 00 00 00 00 00 00 00 6a | .....................t.........j |
| 4e00 | 02 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 7c 00 64 01 64 02 ac 03 ab 03 00 00 00 | ...................|.d.d........ |
| 4e20 | 00 00 00 7d 00 7c 00 6a 04 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 6a 06 00 00 00 | ...}.|.j...................j.... |
| 4e40 | 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 64 04 76 00 72 1f 7c 00 6a 09 00 00 00 00 00 00 00 | ...............d.v.r.|.j........ |
| 4e60 | 00 00 00 00 00 00 00 00 00 00 00 74 00 00 00 00 00 00 00 00 00 6a 0a 00 00 00 00 00 00 00 00 00 | ...........t.........j.......... |
| 4e80 | 00 00 00 00 00 00 00 00 00 ab 01 00 00 00 00 00 00 7d 00 74 01 00 00 00 00 00 00 00 00 6a 0c 00 | .................}.t.........j.. |
| 4ea0 | 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 7c 02 ab 01 00 00 00 00 00 00 73 03 7c 02 67 | .................|.........s.|.g |
| 4ec0 | 01 7d 02 74 0f 00 00 00 00 00 00 00 00 6a 10 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 | .}.t.........j.................. |
| 4ee0 | 00 7c 01 64 05 ab 02 00 00 00 00 00 00 7d 06 74 0f 00 00 00 00 00 00 00 00 6a 10 00 00 00 00 00 | .|.d.........}.t.........j...... |
| 4f00 | 00 00 00 00 00 00 00 00 00 00 00 00 00 7c 05 64 06 ab 02 00 00 00 00 00 00 7d 07 7c 06 64 07 6b | .............|.d.........}.|.d.k |
| 4f20 | 02 00 00 72 0b 74 13 00 00 00 00 00 00 00 00 64 08 ab 01 00 00 00 00 00 00 82 01 74 15 00 00 00 | ...r.t.........d...........t.... |
| 4f40 | 00 00 00 00 00 7c 02 ab 01 00 00 00 00 00 00 7c 06 6b 44 00 00 72 0b 74 13 00 00 00 00 00 00 00 | .....|.........|.kD..r.t........ |
| 4f60 | 00 64 09 ab 01 00 00 00 00 00 00 82 01 74 01 00 00 00 00 00 00 00 00 6a 16 00 00 00 00 00 00 00 | .d...........t.........j........ |
| 4f80 | 00 00 00 00 00 00 00 00 00 00 00 7c 03 ab 01 00 00 00 00 00 00 64 07 6b 37 00 00 72 0b 74 13 00 | ...........|.........d.k7..r.t.. |
| 4fa0 | 00 00 00 00 00 00 00 64 0a ab 01 00 00 00 00 00 00 82 01 74 01 00 00 00 00 00 00 00 00 6a 16 00 | .......d...........t.........j.. |
| 4fc0 | 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 7c 04 ab 01 00 00 00 00 00 00 64 07 6b 37 00 | .................|.........d.k7. |
| 4fe0 | 00 72 0b 74 13 00 00 00 00 00 00 00 00 64 0b ab 01 00 00 00 00 00 00 82 01 74 19 00 00 00 00 00 | .r.t.........d...........t...... |
| 5000 | 00 00 00 7c 07 7c 00 6a 16 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ab 02 00 00 00 | ...|.|.j........................ |
| 5020 | 00 00 00 7d 07 7c 06 64 07 6b 28 00 00 72 02 7c 00 53 00 74 01 00 00 00 00 00 00 00 00 6a 1a 00 | ...}.|.d.k(..r.|.S.t.........j.. |
| 5040 | 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 7c 00 7c 07 64 07 ab 03 00 00 00 00 00 00 7d | .................|.|.d.........} |
| 5060 | 00 74 1d 00 00 00 00 00 00 00 00 7c 02 ab 01 00 00 00 00 00 00 64 07 67 01 7c 06 74 15 00 00 00 | .t.........|.........d.g.|.t.... |
| 5080 | 00 00 00 00 00 7c 02 ab 01 00 00 00 00 00 00 7a 0a 00 00 7a 05 00 00 7a 00 00 00 7d 02 74 1f 00 | .....|.........z...z...z...}.t.. |
| 50a0 | 00 00 00 00 00 00 00 7c 06 ab 01 00 00 00 00 00 00 44 00 5d d5 00 00 7d 08 74 15 00 00 00 00 00 | .......|.........D.]...}.t...... |
| 50c0 | 00 00 00 7c 00 ab 01 00 00 00 00 00 00 7d 09 7c 00 7c 04 7a 12 00 00 7d 00 7c 09 64 01 6b 28 00 | ...|.........}.|.|.z...}.|.d.k(. |
| 50e0 | 00 72 2c 74 01 00 00 00 00 00 00 00 00 6a 20 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 | .r,t.........j.................. |
| 5100 | 00 7c 00 64 07 19 00 00 00 64 07 6b 28 00 00 ab 01 00 00 00 00 00 00 72 11 7c 00 64 07 78 02 78 | .|.d.....d.k(..........r.|.d.x.x |
| 5120 | 02 19 00 00 00 7c 02 7c 08 19 00 00 00 7a 0d 00 00 63 03 63 02 3c 00 00 00 8c 44 74 01 00 00 00 | .....|.|.....z...c.c.<....Dt.... |
| 5140 | 00 00 00 00 00 6a 22 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 7c 09 64 01 7a 00 00 | .....j"..................|.d.z.. |
| 5160 | 00 66 01 7c 00 6a 24 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 64 01 64 0c 1a 00 7a | .f.|.j$..................d.d...z |
| 5180 | 00 00 00 7c 00 6a 04 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ac 0d ab 02 00 00 00 | ...|.j.......................... |
| 51a0 | 00 00 00 7d 0a 7c 00 64 07 19 00 00 00 7c 0a 64 07 3c 00 00 00 7c 00 64 07 19 00 00 00 0b 00 7c | ...}.|.d.....|.d.<...|.d.......| |
| 51c0 | 0a 64 01 3c 00 00 00 74 1f 00 00 00 00 00 00 00 00 64 01 7c 09 ab 02 00 00 00 00 00 00 44 00 5d | .d.<...t.........d.|.........D.] |
| 51e0 | 1e 00 00 7d 0b 7c 0a 7c 0b 78 02 78 02 19 00 00 00 7c 00 7c 0b 19 00 00 00 7a 0d 00 00 63 03 63 | ...}.|.|.x.x.....|.|.....z...c.c |
| 5200 | 02 3c 00 00 00 7c 00 7c 0b 19 00 00 00 0b 00 7c 0a 7c 0b 64 01 7a 00 00 00 3c 00 00 00 8c 20 04 | .<...|.|.......|.|.d.z...<...... |
| 5220 | 00 7c 0a 64 07 78 02 78 02 19 00 00 00 7c 02 7c 08 19 00 00 00 74 27 00 00 00 00 00 00 00 00 7c | .|.d.x.x.....|.|.....t'........| |
| 5240 | 03 7c 0a ab 02 00 00 00 00 00 00 7a 0a 00 00 7a 0d 00 00 63 03 63 02 3c 00 00 00 7c 0a 7d 00 8c | .|.........z...z...c.c.<...|.}.. |
| 5260 | d7 04 00 74 01 00 00 00 00 00 00 00 00 6a 1a 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 | ...t.........j.................. |
| 5280 | 00 7c 00 64 07 7c 07 ab 03 00 00 00 00 00 00 7d 00 7c 00 53 00 29 0e 61 7a 0c 00 00 0a 20 20 20 | .|.d.|.........}.|.S.).az....... |
| 52a0 | 20 49 6e 74 65 67 72 61 74 65 20 61 20 4c 61 67 75 65 72 72 65 20 73 65 72 69 65 73 2e 0a 0a 20 | .Integrate.a.Laguerre.series.... |
| 52c0 | 20 20 20 52 65 74 75 72 6e 73 20 74 68 65 20 4c 61 67 75 65 72 72 65 20 73 65 72 69 65 73 20 63 | ...Returns.the.Laguerre.series.c |
| 52e0 | 6f 65 66 66 69 63 69 65 6e 74 73 20 60 63 60 20 69 6e 74 65 67 72 61 74 65 64 20 60 6d 60 20 74 | oefficients.`c`.integrated.`m`.t |
| 5300 | 69 6d 65 73 20 66 72 6f 6d 0a 20 20 20 20 60 6c 62 6e 64 60 20 61 6c 6f 6e 67 20 60 61 78 69 73 | imes.from.....`lbnd`.along.`axis |
| 5320 | 60 2e 20 41 74 20 65 61 63 68 20 69 74 65 72 61 74 69 6f 6e 20 74 68 65 20 72 65 73 75 6c 74 69 | `..At.each.iteration.the.resulti |
| 5340 | 6e 67 20 73 65 72 69 65 73 20 69 73 0a 20 20 20 20 2a 2a 6d 75 6c 74 69 70 6c 69 65 64 2a 2a 20 | ng.series.is.....**multiplied**. |
| 5360 | 62 79 20 60 73 63 6c 60 20 61 6e 64 20 61 6e 20 69 6e 74 65 67 72 61 74 69 6f 6e 20 63 6f 6e 73 | by.`scl`.and.an.integration.cons |
| 5380 | 74 61 6e 74 2c 20 60 6b 60 2c 20 69 73 20 61 64 64 65 64 2e 0a 20 20 20 20 54 68 65 20 73 63 61 | tant,.`k`,.is.added......The.sca |
| 53a0 | 6c 69 6e 67 20 66 61 63 74 6f 72 20 69 73 20 66 6f 72 20 75 73 65 20 69 6e 20 61 20 6c 69 6e 65 | ling.factor.is.for.use.in.a.line |
| 53c0 | 61 72 20 63 68 61 6e 67 65 20 6f 66 20 76 61 72 69 61 62 6c 65 2e 20 20 28 22 42 75 79 65 72 0a | ar.change.of.variable...("Buyer. |
| 53e0 | 20 20 20 20 62 65 77 61 72 65 22 3a 20 6e 6f 74 65 20 74 68 61 74 2c 20 64 65 70 65 6e 64 69 6e | ....beware":.note.that,.dependin |
| 5400 | 67 20 6f 6e 20 77 68 61 74 20 6f 6e 65 20 69 73 20 64 6f 69 6e 67 2c 20 6f 6e 65 20 6d 61 79 20 | g.on.what.one.is.doing,.one.may. |
| 5420 | 77 61 6e 74 20 60 73 63 6c 60 0a 20 20 20 20 74 6f 20 62 65 20 74 68 65 20 72 65 63 69 70 72 6f | want.`scl`.....to.be.the.recipro |
| 5440 | 63 61 6c 20 6f 66 20 77 68 61 74 20 6f 6e 65 20 6d 69 67 68 74 20 65 78 70 65 63 74 3b 20 66 6f | cal.of.what.one.might.expect;.fo |
| 5460 | 72 20 6d 6f 72 65 20 69 6e 66 6f 72 6d 61 74 69 6f 6e 2c 0a 20 20 20 20 73 65 65 20 74 68 65 20 | r.more.information,.....see.the. |
| 5480 | 4e 6f 74 65 73 20 73 65 63 74 69 6f 6e 20 62 65 6c 6f 77 2e 29 20 20 54 68 65 20 61 72 67 75 6d | Notes.section.below.)..The.argum |
| 54a0 | 65 6e 74 20 60 63 60 20 69 73 20 61 6e 20 61 72 72 61 79 20 6f 66 0a 20 20 20 20 63 6f 65 66 66 | ent.`c`.is.an.array.of.....coeff |
| 54c0 | 69 63 69 65 6e 74 73 20 66 72 6f 6d 20 6c 6f 77 20 74 6f 20 68 69 67 68 20 64 65 67 72 65 65 20 | icients.from.low.to.high.degree. |
| 54e0 | 61 6c 6f 6e 67 20 65 61 63 68 20 61 78 69 73 2c 20 65 2e 67 2e 2c 20 5b 31 2c 32 2c 33 5d 0a 20 | along.each.axis,.e.g.,.[1,2,3].. |
| 5500 | 20 20 20 72 65 70 72 65 73 65 6e 74 73 20 74 68 65 20 73 65 72 69 65 73 20 60 60 4c 5f 30 20 2b | ...represents.the.series.``L_0.+ |
| 5520 | 20 32 2a 4c 5f 31 20 2b 20 33 2a 4c 5f 32 60 60 20 77 68 69 6c 65 20 5b 5b 31 2c 32 5d 2c 5b 31 | .2*L_1.+.3*L_2``.while.[[1,2],[1 |
| 5540 | 2c 32 5d 5d 0a 20 20 20 20 72 65 70 72 65 73 65 6e 74 73 20 60 60 31 2a 4c 5f 30 28 78 29 2a 4c | ,2]].....represents.``1*L_0(x)*L |
| 5560 | 5f 30 28 79 29 20 2b 20 31 2a 4c 5f 31 28 78 29 2a 4c 5f 30 28 79 29 20 2b 20 32 2a 4c 5f 30 28 | _0(y).+.1*L_1(x)*L_0(y).+.2*L_0( |
| 5580 | 78 29 2a 4c 5f 31 28 79 29 20 2b 0a 20 20 20 20 32 2a 4c 5f 31 28 78 29 2a 4c 5f 31 28 79 29 60 | x)*L_1(y).+.....2*L_1(x)*L_1(y)` |
| 55a0 | 60 20 69 66 20 61 78 69 73 3d 30 20 69 73 20 60 60 78 60 60 20 61 6e 64 20 61 78 69 73 3d 31 20 | `.if.axis=0.is.``x``.and.axis=1. |
| 55c0 | 69 73 20 60 60 79 60 60 2e 0a 0a 0a 20 20 20 20 50 61 72 61 6d 65 74 65 72 73 0a 20 20 20 20 2d | is.``y``........Parameters.....- |
| 55e0 | 2d 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 63 20 3a 20 61 72 72 61 79 5f 6c 69 6b 65 0a 20 20 20 | ---------.....c.:.array_like.... |
| 5600 | 20 20 20 20 20 41 72 72 61 79 20 6f 66 20 4c 61 67 75 65 72 72 65 20 73 65 72 69 65 73 20 63 6f | .....Array.of.Laguerre.series.co |
| 5620 | 65 66 66 69 63 69 65 6e 74 73 2e 20 49 66 20 60 63 60 20 69 73 20 6d 75 6c 74 69 64 69 6d 65 6e | efficients..If.`c`.is.multidimen |
| 5640 | 73 69 6f 6e 61 6c 0a 20 20 20 20 20 20 20 20 74 68 65 20 64 69 66 66 65 72 65 6e 74 20 61 78 69 | sional.........the.different.axi |
| 5660 | 73 20 63 6f 72 72 65 73 70 6f 6e 64 20 74 6f 20 64 69 66 66 65 72 65 6e 74 20 76 61 72 69 61 62 | s.correspond.to.different.variab |
| 5680 | 6c 65 73 20 77 69 74 68 20 74 68 65 0a 20 20 20 20 20 20 20 20 64 65 67 72 65 65 20 69 6e 20 65 | les.with.the.........degree.in.e |
| 56a0 | 61 63 68 20 61 78 69 73 20 67 69 76 65 6e 20 62 79 20 74 68 65 20 63 6f 72 72 65 73 70 6f 6e 64 | ach.axis.given.by.the.correspond |
| 56c0 | 69 6e 67 20 69 6e 64 65 78 2e 0a 20 20 20 20 6d 20 3a 20 69 6e 74 2c 20 6f 70 74 69 6f 6e 61 6c | ing.index......m.:.int,.optional |
| 56e0 | 0a 20 20 20 20 20 20 20 20 4f 72 64 65 72 20 6f 66 20 69 6e 74 65 67 72 61 74 69 6f 6e 2c 20 6d | .........Order.of.integration,.m |
| 5700 | 75 73 74 20 62 65 20 70 6f 73 69 74 69 76 65 2e 20 28 44 65 66 61 75 6c 74 3a 20 31 29 0a 20 20 | ust.be.positive..(Default:.1)... |
| 5720 | 20 20 6b 20 3a 20 7b 5b 5d 2c 20 6c 69 73 74 2c 20 73 63 61 6c 61 72 7d 2c 20 6f 70 74 69 6f 6e | ..k.:.{[],.list,.scalar},.option |
| 5740 | 61 6c 0a 20 20 20 20 20 20 20 20 49 6e 74 65 67 72 61 74 69 6f 6e 20 63 6f 6e 73 74 61 6e 74 28 | al.........Integration.constant( |
| 5760 | 73 29 2e 20 20 54 68 65 20 76 61 6c 75 65 20 6f 66 20 74 68 65 20 66 69 72 73 74 20 69 6e 74 65 | s)...The.value.of.the.first.inte |
| 5780 | 67 72 61 6c 20 61 74 0a 20 20 20 20 20 20 20 20 60 60 6c 62 6e 64 60 60 20 69 73 20 74 68 65 20 | gral.at.........``lbnd``.is.the. |
| 57a0 | 66 69 72 73 74 20 76 61 6c 75 65 20 69 6e 20 74 68 65 20 6c 69 73 74 2c 20 74 68 65 20 76 61 6c | first.value.in.the.list,.the.val |
| 57c0 | 75 65 20 6f 66 20 74 68 65 20 73 65 63 6f 6e 64 0a 20 20 20 20 20 20 20 20 69 6e 74 65 67 72 61 | ue.of.the.second.........integra |
| 57e0 | 6c 20 61 74 20 60 60 6c 62 6e 64 60 60 20 69 73 20 74 68 65 20 73 65 63 6f 6e 64 20 76 61 6c 75 | l.at.``lbnd``.is.the.second.valu |
| 5800 | 65 2c 20 65 74 63 2e 20 20 49 66 20 60 60 6b 20 3d 3d 20 5b 5d 60 60 20 28 74 68 65 0a 20 20 20 | e,.etc...If.``k.==.[]``.(the.... |
| 5820 | 20 20 20 20 20 64 65 66 61 75 6c 74 29 2c 20 61 6c 6c 20 63 6f 6e 73 74 61 6e 74 73 20 61 72 65 | .....default),.all.constants.are |
| 5840 | 20 73 65 74 20 74 6f 20 7a 65 72 6f 2e 20 20 49 66 20 60 60 6d 20 3d 3d 20 31 60 60 2c 20 61 20 | .set.to.zero...If.``m.==.1``,.a. |
| 5860 | 73 69 6e 67 6c 65 0a 20 20 20 20 20 20 20 20 73 63 61 6c 61 72 20 63 61 6e 20 62 65 20 67 69 76 | single.........scalar.can.be.giv |
| 5880 | 65 6e 20 69 6e 73 74 65 61 64 20 6f 66 20 61 20 6c 69 73 74 2e 0a 20 20 20 20 6c 62 6e 64 20 3a | en.instead.of.a.list......lbnd.: |
| 58a0 | 20 73 63 61 6c 61 72 2c 20 6f 70 74 69 6f 6e 61 6c 0a 20 20 20 20 20 20 20 20 54 68 65 20 6c 6f | .scalar,.optional.........The.lo |
| 58c0 | 77 65 72 20 62 6f 75 6e 64 20 6f 66 20 74 68 65 20 69 6e 74 65 67 72 61 6c 2e 20 28 44 65 66 61 | wer.bound.of.the.integral..(Defa |
| 58e0 | 75 6c 74 3a 20 30 29 0a 20 20 20 20 73 63 6c 20 3a 20 73 63 61 6c 61 72 2c 20 6f 70 74 69 6f 6e | ult:.0).....scl.:.scalar,.option |
| 5900 | 61 6c 0a 20 20 20 20 20 20 20 20 46 6f 6c 6c 6f 77 69 6e 67 20 65 61 63 68 20 69 6e 74 65 67 72 | al.........Following.each.integr |
| 5920 | 61 74 69 6f 6e 20 74 68 65 20 72 65 73 75 6c 74 20 69 73 20 2a 6d 75 6c 74 69 70 6c 69 65 64 2a | ation.the.result.is.*multiplied* |
| 5940 | 20 62 79 20 60 73 63 6c 60 0a 20 20 20 20 20 20 20 20 62 65 66 6f 72 65 20 74 68 65 20 69 6e 74 | .by.`scl`.........before.the.int |
| 5960 | 65 67 72 61 74 69 6f 6e 20 63 6f 6e 73 74 61 6e 74 20 69 73 20 61 64 64 65 64 2e 20 28 44 65 66 | egration.constant.is.added..(Def |
| 5980 | 61 75 6c 74 3a 20 31 29 0a 20 20 20 20 61 78 69 73 20 3a 20 69 6e 74 2c 20 6f 70 74 69 6f 6e 61 | ault:.1).....axis.:.int,.optiona |
| 59a0 | 6c 0a 20 20 20 20 20 20 20 20 41 78 69 73 20 6f 76 65 72 20 77 68 69 63 68 20 74 68 65 20 69 6e | l.........Axis.over.which.the.in |
| 59c0 | 74 65 67 72 61 6c 20 69 73 20 74 61 6b 65 6e 2e 20 28 44 65 66 61 75 6c 74 3a 20 30 29 2e 0a 0a | tegral.is.taken..(Default:.0)... |
| 59e0 | 20 20 20 20 52 65 74 75 72 6e 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 53 20 3a 20 | ....Returns.....-------.....S.:. |
| 5a00 | 6e 64 61 72 72 61 79 0a 20 20 20 20 20 20 20 20 4c 61 67 75 65 72 72 65 20 73 65 72 69 65 73 20 | ndarray.........Laguerre.series. |
| 5a20 | 63 6f 65 66 66 69 63 69 65 6e 74 73 20 6f 66 20 74 68 65 20 69 6e 74 65 67 72 61 6c 2e 0a 0a 20 | coefficients.of.the.integral.... |
| 5a40 | 20 20 20 52 61 69 73 65 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 56 61 6c 75 65 45 72 | ...Raises.....------.....ValueEr |
| 5a60 | 72 6f 72 0a 20 20 20 20 20 20 20 20 49 66 20 60 60 6d 20 3c 20 30 60 60 2c 20 60 60 6c 65 6e 28 | ror.........If.``m.<.0``,.``len( |
| 5a80 | 6b 29 20 3e 20 6d 60 60 2c 20 60 60 6e 70 2e 6e 64 69 6d 28 6c 62 6e 64 29 20 21 3d 20 30 60 60 | k).>.m``,.``np.ndim(lbnd).!=.0`` |
| 5aa0 | 2c 20 6f 72 0a 20 20 20 20 20 20 20 20 60 60 6e 70 2e 6e 64 69 6d 28 73 63 6c 29 20 21 3d 20 30 | ,.or.........``np.ndim(scl).!=.0 |
| 5ac0 | 60 60 2e 0a 0a 20 20 20 20 53 65 65 20 41 6c 73 6f 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 | ``.......See.Also.....--------.. |
| 5ae0 | 20 20 20 6c 61 67 64 65 72 0a 0a 20 20 20 20 4e 6f 74 65 73 0a 20 20 20 20 2d 2d 2d 2d 2d 0a 20 | ...lagder......Notes.....-----.. |
| 5b00 | 20 20 20 4e 6f 74 65 20 74 68 61 74 20 74 68 65 20 72 65 73 75 6c 74 20 6f 66 20 65 61 63 68 20 | ...Note.that.the.result.of.each. |
| 5b20 | 69 6e 74 65 67 72 61 74 69 6f 6e 20 69 73 20 2a 6d 75 6c 74 69 70 6c 69 65 64 2a 20 62 79 20 60 | integration.is.*multiplied*.by.` |
| 5b40 | 73 63 6c 60 2e 0a 20 20 20 20 57 68 79 20 69 73 20 74 68 69 73 20 69 6d 70 6f 72 74 61 6e 74 20 | scl`......Why.is.this.important. |
| 5b60 | 74 6f 20 6e 6f 74 65 3f 20 20 53 61 79 20 6f 6e 65 20 69 73 20 6d 61 6b 69 6e 67 20 61 20 6c 69 | to.note?..Say.one.is.making.a.li |
| 5b80 | 6e 65 61 72 20 63 68 61 6e 67 65 20 6f 66 0a 20 20 20 20 76 61 72 69 61 62 6c 65 20 3a 6d 61 74 | near.change.of.....variable.:mat |
| 5ba0 | 68 3a 60 75 20 3d 20 61 78 20 2b 20 62 60 20 69 6e 20 61 6e 20 69 6e 74 65 67 72 61 6c 20 72 65 | h:`u.=.ax.+.b`.in.an.integral.re |
| 5bc0 | 6c 61 74 69 76 65 20 74 6f 20 60 78 60 2e 20 20 54 68 65 6e 0a 20 20 20 20 3a 6d 61 74 68 3a 60 | lative.to.`x`...Then.....:math:` |
| 5be0 | 64 78 20 3d 20 64 75 2f 61 60 2c 20 73 6f 20 6f 6e 65 20 77 69 6c 6c 20 6e 65 65 64 20 74 6f 20 | dx.=.du/a`,.so.one.will.need.to. |
| 5c00 | 73 65 74 20 60 73 63 6c 60 20 65 71 75 61 6c 20 74 6f 0a 20 20 20 20 3a 6d 61 74 68 3a 60 31 2f | set.`scl`.equal.to.....:math:`1/ |
| 5c20 | 61 60 20 2d 20 70 65 72 68 61 70 73 20 6e 6f 74 20 77 68 61 74 20 6f 6e 65 20 77 6f 75 6c 64 20 | a`.-.perhaps.not.what.one.would. |
| 5c40 | 68 61 76 65 20 66 69 72 73 74 20 74 68 6f 75 67 68 74 2e 0a 0a 20 20 20 20 41 6c 73 6f 20 6e 6f | have.first.thought.......Also.no |
| 5c60 | 74 65 20 74 68 61 74 2c 20 69 6e 20 67 65 6e 65 72 61 6c 2c 20 74 68 65 20 72 65 73 75 6c 74 20 | te.that,.in.general,.the.result. |
| 5c80 | 6f 66 20 69 6e 74 65 67 72 61 74 69 6e 67 20 61 20 43 2d 73 65 72 69 65 73 20 6e 65 65 64 73 0a | of.integrating.a.C-series.needs. |
| 5ca0 | 20 20 20 20 74 6f 20 62 65 20 22 72 65 70 72 6f 6a 65 63 74 65 64 22 20 6f 6e 74 6f 20 74 68 65 | ....to.be."reprojected".onto.the |
| 5cc0 | 20 43 2d 73 65 72 69 65 73 20 62 61 73 69 73 20 73 65 74 2e 20 20 54 68 75 73 2c 20 74 79 70 69 | .C-series.basis.set...Thus,.typi |
| 5ce0 | 63 61 6c 6c 79 2c 0a 20 20 20 20 74 68 65 20 72 65 73 75 6c 74 20 6f 66 20 74 68 69 73 20 66 75 | cally,.....the.result.of.this.fu |
| 5d00 | 6e 63 74 69 6f 6e 20 69 73 20 22 75 6e 69 6e 74 75 69 74 69 76 65 2c 22 20 61 6c 62 65 69 74 20 | nction.is."unintuitive,".albeit. |
| 5d20 | 63 6f 72 72 65 63 74 3b 20 73 65 65 0a 20 20 20 20 45 78 61 6d 70 6c 65 73 20 73 65 63 74 69 6f | correct;.see.....Examples.sectio |
| 5d40 | 6e 20 62 65 6c 6f 77 2e 0a 0a 20 20 20 20 45 78 61 6d 70 6c 65 73 0a 20 20 20 20 2d 2d 2d 2d 2d | n.below.......Examples.....----- |
| 5d60 | 2d 2d 2d 0a 20 20 20 20 3e 3e 3e 20 66 72 6f 6d 20 6e 75 6d 70 79 2e 70 6f 6c 79 6e 6f 6d 69 61 | ---.....>>>.from.numpy.polynomia |
| 5d80 | 6c 2e 6c 61 67 75 65 72 72 65 20 69 6d 70 6f 72 74 20 6c 61 67 69 6e 74 0a 20 20 20 20 3e 3e 3e | l.laguerre.import.lagint.....>>> |
| 5da0 | 20 6c 61 67 69 6e 74 28 5b 31 2c 32 2c 33 5d 29 0a 20 20 20 20 61 72 72 61 79 28 5b 20 31 2e 2c | .lagint([1,2,3]).....array([.1., |
| 5dc0 | 20 20 31 2e 2c 20 20 31 2e 2c 20 2d 33 2e 5d 29 0a 20 20 20 20 3e 3e 3e 20 6c 61 67 69 6e 74 28 | ..1.,..1.,.-3.]).....>>>.lagint( |
| 5de0 | 5b 31 2c 32 2c 33 5d 2c 20 6d 3d 32 29 0a 20 20 20 20 61 72 72 61 79 28 5b 20 31 2e 2c 20 20 30 | [1,2,3],.m=2).....array([.1.,..0 |
| 5e00 | 2e 2c 20 20 30 2e 2c 20 2d 34 2e 2c 20 20 33 2e 5d 29 0a 20 20 20 20 3e 3e 3e 20 6c 61 67 69 6e | .,..0.,.-4.,..3.]).....>>>.lagin |
| 5e20 | 74 28 5b 31 2c 32 2c 33 5d 2c 20 6b 3d 31 29 0a 20 20 20 20 61 72 72 61 79 28 5b 20 32 2e 2c 20 | t([1,2,3],.k=1).....array([.2.,. |
| 5e40 | 20 31 2e 2c 20 20 31 2e 2c 20 2d 33 2e 5d 29 0a 20 20 20 20 3e 3e 3e 20 6c 61 67 69 6e 74 28 5b | .1.,..1.,.-3.]).....>>>.lagint([ |
| 5e60 | 31 2c 32 2c 33 5d 2c 20 6c 62 6e 64 3d 2d 31 29 0a 20 20 20 20 61 72 72 61 79 28 5b 31 31 2e 35 | 1,2,3],.lbnd=-1).....array([11.5 |
| 5e80 | 2c 20 20 31 2e 20 2c 20 20 31 2e 20 2c 20 2d 33 2e 20 5d 29 0a 20 20 20 20 3e 3e 3e 20 6c 61 67 | ,..1..,..1..,.-3..]).....>>>.lag |
| 5ea0 | 69 6e 74 28 5b 31 2c 32 5d 2c 20 6d 3d 32 2c 20 6b 3d 5b 31 2c 32 5d 2c 20 6c 62 6e 64 3d 2d 31 | int([1,2],.m=2,.k=[1,2],.lbnd=-1 |
| 5ec0 | 29 0a 20 20 20 20 61 72 72 61 79 28 5b 20 31 31 2e 31 36 36 36 36 36 36 37 2c 20 20 2d 35 2e 20 | ).....array([.11.16666667,..-5.. |
| 5ee0 | 20 20 20 20 20 20 20 2c 20 20 2d 33 2e 20 20 20 20 20 20 20 20 2c 20 20 20 32 2e 20 20 20 20 20 | .......,..-3.........,...2...... |
| 5f00 | 20 20 20 5d 29 20 23 20 6d 61 79 20 76 61 72 79 0a 0a 20 20 20 20 72 04 00 00 00 54 72 5f 00 00 | ...]).#.may.vary......r....Tr_.. |
| 5f20 | 00 72 62 00 00 00 7a 18 74 68 65 20 6f 72 64 65 72 20 6f 66 20 69 6e 74 65 67 72 61 74 69 6f 6e | .rb...z.the.order.of.integration |
| 5f40 | 72 63 00 00 00 72 02 00 00 00 7a 2d 54 68 65 20 6f 72 64 65 72 20 6f 66 20 69 6e 74 65 67 72 61 | rc...r....z-The.order.of.integra |
| 5f60 | 74 69 6f 6e 20 6d 75 73 74 20 62 65 20 6e 6f 6e 2d 6e 65 67 61 74 69 76 65 7a 1e 54 6f 6f 20 6d | tion.must.be.non-negativez.Too.m |
| 5f80 | 61 6e 79 20 69 6e 74 65 67 72 61 74 69 6f 6e 20 63 6f 6e 73 74 61 6e 74 73 7a 16 6c 62 6e 64 20 | any.integration.constantsz.lbnd. |
| 5fa0 | 6d 75 73 74 20 62 65 20 61 20 73 63 61 6c 61 72 2e 7a 15 73 63 6c 20 6d 75 73 74 20 62 65 20 61 | must.be.a.scalar.z.scl.must.be.a |
| 5fc0 | 20 73 63 61 6c 61 72 2e 4e 72 50 00 00 00 29 14 72 41 00 00 00 72 42 00 00 00 72 51 00 00 00 72 | .scalar.NrP...).rA...rB...rQ...r |
| 5fe0 | 64 00 00 00 72 65 00 00 00 72 66 00 00 00 da 08 69 74 65 72 61 62 6c 65 72 28 00 00 00 72 67 00 | d...re...rf.....iterabler(...rg. |
| 6000 | 00 00 72 68 00 00 00 72 36 00 00 00 72 69 00 00 00 72 03 00 00 00 72 6a 00 00 00 da 04 6c 69 73 | ..rh...r6...ri...r....rj.....lis |
| 6020 | 74 72 37 00 00 00 da 03 61 6c 6c 72 52 00 00 00 72 6b 00 00 00 72 12 00 00 00 29 0c 72 38 00 00 | tr7.....allrR...rk...r....).r8.. |
| 6040 | 00 72 6c 00 00 00 da 01 6b da 04 6c 62 6e 64 72 44 00 00 00 72 6d 00 00 00 72 6e 00 00 00 72 6f | .rl.....k..lbndrD...rm...rn...ro |
| 6060 | 00 00 00 72 3c 00 00 00 72 39 00 00 00 72 3d 00 00 00 72 71 00 00 00 73 0c 00 00 00 20 20 20 20 | ...r<...r9...r=...rq...s........ |
| 6080 | 20 20 20 20 20 20 20 20 72 2d 00 00 00 72 14 00 00 00 72 14 00 00 00 a4 02 00 00 73 25 02 00 00 | ........r-...r....r........s%... |
| 60a0 | 80 00 f4 64 02 00 09 0b 8f 08 89 08 90 11 98 21 a0 24 d4 08 27 80 41 d8 07 08 87 77 81 77 87 7c | ...d...........!.$..'.A....w.w.| |
| 60c0 | 81 7c 90 7f d1 07 26 d8 0c 0d 8f 48 89 48 94 52 97 59 91 59 d3 0c 1f 88 01 dc 0b 0d 8f 3b 89 3b | .|....&....H.H.R.Y.Y.........;.; |
| 60e0 | 90 71 8c 3e d8 0d 0e 88 43 88 01 dc 0a 0c 8f 2a 89 2a 90 51 d0 18 32 d3 0a 33 80 43 dc 0c 0e 8f | .q.>....C......*.*.Q..2..3.C.... |
| 6100 | 4a 89 4a 90 74 98 5a d3 0c 28 80 45 d8 07 0a 88 51 82 77 dc 0e 18 d0 19 48 d3 0e 49 d0 08 49 dc | J.J.t.Z..(.E....Q.w.....H..I..I. |
| 6120 | 07 0a 88 31 83 76 90 03 82 7c dc 0e 18 d0 19 39 d3 0e 3a d0 08 3a dc 07 09 87 77 81 77 88 74 83 | ...1.v...|.....9..:..:....w.w.t. |
| 6140 | 7d 98 01 d2 07 19 dc 0e 18 d0 19 31 d3 0e 32 d0 08 32 dc 07 09 87 77 81 77 88 73 83 7c 90 71 d2 | }..........1..2..2....w.w.s.|.q. |
| 6160 | 07 18 dc 0e 18 d0 19 30 d3 0e 31 d0 08 31 dc 0c 20 a0 15 a8 01 af 06 a9 06 d3 0c 2f 80 45 e0 07 | .......0..1..1............./.E.. |
| 6180 | 0a 88 61 82 78 d8 0f 10 88 08 e4 08 0a 8f 0b 89 0b 90 41 90 75 98 61 d3 08 20 80 41 dc 08 0c 88 | ..a.x.............A.u.a....A.... |
| 61a0 | 51 8b 07 90 31 90 23 98 13 9c 73 a0 31 9b 76 99 1c d1 12 26 d1 08 26 80 41 dc 0d 12 90 33 8b 5a | Q...1.#...s.1.v....&..&.A....3.Z |
| 61c0 | f2 00 0d 05 14 88 01 dc 0c 0f 90 01 8b 46 88 01 d8 08 09 88 53 89 08 88 01 d8 0b 0c 90 01 8a 36 | .............F......S..........6 |
| 61e0 | 94 62 97 66 91 66 98 51 98 71 99 54 a0 51 99 59 d4 16 27 d8 0c 0d 88 61 8b 44 90 41 90 61 91 44 | .b.f.f.Q.q.T.Q.Y..'....a.D.A.a.D |
| 6200 | 89 4c 8c 44 e4 12 14 97 28 91 28 98 41 a0 01 99 45 98 38 a0 61 a7 67 a1 67 a8 61 a8 62 a0 6b d1 | .L.D....(.(.A...E.8.a.g.g.a.b.k. |
| 6220 | 1b 31 b8 11 bf 17 b9 17 d4 12 41 88 43 d8 15 16 90 71 91 54 88 43 90 01 89 46 d8 16 17 98 01 91 | .1........A.C....q.T.C...F...... |
| 6240 | 64 90 55 88 43 90 01 89 46 dc 15 1a 98 31 98 61 93 5b f2 00 02 0d 23 90 01 d8 10 13 90 41 93 06 | d.U.C...F....1.a.[....#......A.. |
| 6260 | 98 21 98 41 99 24 91 0e 93 06 d8 1e 1f a0 01 99 64 98 55 90 03 90 41 98 01 91 45 92 0a f0 05 02 | .!.A.$..........d.U...A...E..... |
| 6280 | 0d 23 f0 06 00 0d 10 90 01 8b 46 90 61 98 01 91 64 9c 56 a0 44 a8 23 d3 1d 2e d1 16 2e d1 0c 2e | .#........F.a...d.V.D.#......... |
| 62a0 | 8b 46 d8 10 13 89 41 f0 1b 0d 05 14 f4 1c 00 09 0b 8f 0b 89 0b 90 41 90 71 98 25 d3 08 20 80 41 | .F....A...............A.q.%....A |
| 62c0 | d8 0b 0c 80 48 72 2e 00 00 00 63 03 00 00 00 00 00 00 00 00 00 00 00 06 00 00 00 03 00 00 00 f3 | ....Hr....c..................... |
| 62e0 | b6 02 00 00 97 00 74 01 00 00 00 00 00 00 00 00 6a 02 00 00 00 00 00 00 00 00 00 00 00 00 00 00 | ......t.........j............... |
| 6300 | 00 00 00 00 7c 01 64 01 64 02 ac 03 ab 03 00 00 00 00 00 00 7d 01 7c 01 6a 04 00 00 00 00 00 00 | ....|.d.d...........}.|.j....... |
| 6320 | 00 00 00 00 00 00 00 00 00 00 00 00 6a 06 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 | ............j................... |
| 6340 | 64 04 76 00 72 1f 7c 01 6a 09 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 74 00 00 00 | d.v.r.|.j...................t... |
| 6360 | 00 00 00 00 00 00 6a 0a 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ab 01 00 00 00 00 | ......j......................... |
| 6380 | 00 00 7d 01 74 0d 00 00 00 00 00 00 00 00 7c 00 74 0e 00 00 00 00 00 00 00 00 74 10 00 00 00 00 | ..}.t.........|.t.........t..... |
| 63a0 | 00 00 00 00 66 02 ab 02 00 00 00 00 00 00 72 15 74 01 00 00 00 00 00 00 00 00 6a 12 00 00 00 00 | ....f.........r.t.........j..... |
| 63c0 | 00 00 00 00 00 00 00 00 00 00 00 00 00 00 7c 00 ab 01 00 00 00 00 00 00 7d 00 74 0d 00 00 00 00 | ..............|.........}.t..... |
| 63e0 | 00 00 00 00 7c 00 74 00 00 00 00 00 00 00 00 00 6a 14 00 00 00 00 00 00 00 00 00 00 00 00 00 00 | ....|.t.........j............... |
| 6400 | 00 00 00 00 ab 02 00 00 00 00 00 00 72 2d 7c 02 72 2b 7c 01 6a 17 00 00 00 00 00 00 00 00 00 00 | ............r-|.r+|.j........... |
| 6420 | 00 00 00 00 00 00 00 00 7c 01 6a 18 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 64 05 | ........|.j...................d. |
| 6440 | 7c 00 6a 1a 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 7a 05 00 00 7a 00 00 00 ab 01 | |.j...................z...z..... |
| 6460 | 00 00 00 00 00 00 7d 01 74 1d 00 00 00 00 00 00 00 00 7c 01 ab 01 00 00 00 00 00 00 64 01 6b 28 | ......}.t.........|.........d.k( |
| 6480 | 00 00 72 08 7c 01 64 06 19 00 00 00 7d 03 64 06 7d 04 6e 78 74 1d 00 00 00 00 00 00 00 00 7c 01 | ..r.|.d.....}.d.}.nxt.........|. |
| 64a0 | ab 01 00 00 00 00 00 00 64 07 6b 28 00 00 72 0b 7c 01 64 06 19 00 00 00 7d 03 7c 01 64 01 19 00 | ........d.k(..r.|.d.....}.|.d... |
| 64c0 | 00 00 7d 04 6e 5f 74 1d 00 00 00 00 00 00 00 00 7c 01 ab 01 00 00 00 00 00 00 7d 05 7c 01 64 08 | ..}.n_t.........|.........}.|.d. |
| 64e0 | 19 00 00 00 7d 03 7c 01 64 09 19 00 00 00 7d 04 74 1f 00 00 00 00 00 00 00 00 64 0a 74 1d 00 00 | ....}.|.d.....}.t.........d.t... |
| 6500 | 00 00 00 00 00 00 7c 01 ab 01 00 00 00 00 00 00 64 01 7a 00 00 00 ab 02 00 00 00 00 00 00 44 00 | ......|.........d.z...........D. |
| 6520 | 5d 2f 00 00 7d 06 7c 03 7d 07 7c 05 64 01 7a 0a 00 00 7d 05 7c 01 7c 06 0b 00 19 00 00 00 7c 04 | ]/..}.|.}.|.d.z...}.|.|.......|. |
| 6540 | 7c 05 64 01 7a 0a 00 00 7a 05 00 00 7c 05 7a 0b 00 00 7a 0a 00 00 7d 03 7c 07 7c 04 64 07 7c 05 | |.d.z...z...|.z...z...}.|.|.d.|. |
| 6560 | 7a 05 00 00 64 01 7a 0a 00 00 7c 00 7a 0a 00 00 7a 05 00 00 7c 05 7a 0b 00 00 7a 00 00 00 7d 04 | z...d.z...|.z...z...|.z...z...}. |
| 6580 | 8c 31 04 00 7c 03 7c 04 64 01 7c 00 7a 0a 00 00 7a 05 00 00 7a 00 00 00 53 00 29 0b 61 0d 0a 00 | .1..|.|.d.|.z...z...z...S.).a... |
| 65a0 | 00 0a 20 20 20 20 45 76 61 6c 75 61 74 65 20 61 20 4c 61 67 75 65 72 72 65 20 73 65 72 69 65 73 | ......Evaluate.a.Laguerre.series |
| 65c0 | 20 61 74 20 70 6f 69 6e 74 73 20 78 2e 0a 0a 20 20 20 20 49 66 20 60 63 60 20 69 73 20 6f 66 20 | .at.points.x.......If.`c`.is.of. |
| 65e0 | 6c 65 6e 67 74 68 20 60 60 6e 20 2b 20 31 60 60 2c 20 74 68 69 73 20 66 75 6e 63 74 69 6f 6e 20 | length.``n.+.1``,.this.function. |
| 6600 | 72 65 74 75 72 6e 73 20 74 68 65 20 76 61 6c 75 65 3a 0a 0a 20 20 20 20 2e 2e 20 6d 61 74 68 3a | returns.the.value:.........math: |
| 6620 | 3a 20 70 28 78 29 20 3d 20 63 5f 30 20 2a 20 4c 5f 30 28 78 29 20 2b 20 63 5f 31 20 2a 20 4c 5f | :.p(x).=.c_0.*.L_0(x).+.c_1.*.L_ |
| 6640 | 31 28 78 29 20 2b 20 2e 2e 2e 20 2b 20 63 5f 6e 20 2a 20 4c 5f 6e 28 78 29 0a 0a 20 20 20 20 54 | 1(x).+.....+.c_n.*.L_n(x)......T |
| 6660 | 68 65 20 70 61 72 61 6d 65 74 65 72 20 60 78 60 20 69 73 20 63 6f 6e 76 65 72 74 65 64 20 74 6f | he.parameter.`x`.is.converted.to |
| 6680 | 20 61 6e 20 61 72 72 61 79 20 6f 6e 6c 79 20 69 66 20 69 74 20 69 73 20 61 20 74 75 70 6c 65 20 | .an.array.only.if.it.is.a.tuple. |
| 66a0 | 6f 72 20 61 0a 20 20 20 20 6c 69 73 74 2c 20 6f 74 68 65 72 77 69 73 65 20 69 74 20 69 73 20 74 | or.a.....list,.otherwise.it.is.t |
| 66c0 | 72 65 61 74 65 64 20 61 73 20 61 20 73 63 61 6c 61 72 2e 20 49 6e 20 65 69 74 68 65 72 20 63 61 | reated.as.a.scalar..In.either.ca |
| 66e0 | 73 65 2c 20 65 69 74 68 65 72 20 60 78 60 0a 20 20 20 20 6f 72 20 69 74 73 20 65 6c 65 6d 65 6e | se,.either.`x`.....or.its.elemen |
| 6700 | 74 73 20 6d 75 73 74 20 73 75 70 70 6f 72 74 20 6d 75 6c 74 69 70 6c 69 63 61 74 69 6f 6e 20 61 | ts.must.support.multiplication.a |
| 6720 | 6e 64 20 61 64 64 69 74 69 6f 6e 20 62 6f 74 68 20 77 69 74 68 0a 20 20 20 20 74 68 65 6d 73 65 | nd.addition.both.with.....themse |
| 6740 | 6c 76 65 73 20 61 6e 64 20 77 69 74 68 20 74 68 65 20 65 6c 65 6d 65 6e 74 73 20 6f 66 20 60 63 | lves.and.with.the.elements.of.`c |
| 6760 | 60 2e 0a 0a 20 20 20 20 49 66 20 60 63 60 20 69 73 20 61 20 31 2d 44 20 61 72 72 61 79 2c 20 74 | `.......If.`c`.is.a.1-D.array,.t |
| 6780 | 68 65 6e 20 60 60 70 28 78 29 60 60 20 77 69 6c 6c 20 68 61 76 65 20 74 68 65 20 73 61 6d 65 20 | hen.``p(x)``.will.have.the.same. |
| 67a0 | 73 68 61 70 65 20 61 73 20 60 78 60 2e 20 20 49 66 0a 20 20 20 20 60 63 60 20 69 73 20 6d 75 6c | shape.as.`x`...If.....`c`.is.mul |
| 67c0 | 74 69 64 69 6d 65 6e 73 69 6f 6e 61 6c 2c 20 74 68 65 6e 20 74 68 65 20 73 68 61 70 65 20 6f 66 | tidimensional,.then.the.shape.of |
| 67e0 | 20 74 68 65 20 72 65 73 75 6c 74 20 64 65 70 65 6e 64 73 20 6f 6e 20 74 68 65 0a 20 20 20 20 76 | .the.result.depends.on.the.....v |
| 6800 | 61 6c 75 65 20 6f 66 20 60 74 65 6e 73 6f 72 60 2e 20 49 66 20 60 74 65 6e 73 6f 72 60 20 69 73 | alue.of.`tensor`..If.`tensor`.is |
| 6820 | 20 74 72 75 65 20 74 68 65 20 73 68 61 70 65 20 77 69 6c 6c 20 62 65 20 63 2e 73 68 61 70 65 5b | .true.the.shape.will.be.c.shape[ |
| 6840 | 31 3a 5d 20 2b 0a 20 20 20 20 78 2e 73 68 61 70 65 2e 20 49 66 20 60 74 65 6e 73 6f 72 60 20 69 | 1:].+.....x.shape..If.`tensor`.i |
| 6860 | 73 20 66 61 6c 73 65 20 74 68 65 20 73 68 61 70 65 20 77 69 6c 6c 20 62 65 20 63 2e 73 68 61 70 | s.false.the.shape.will.be.c.shap |
| 6880 | 65 5b 31 3a 5d 2e 20 4e 6f 74 65 20 74 68 61 74 0a 20 20 20 20 73 63 61 6c 61 72 73 20 68 61 76 | e[1:]..Note.that.....scalars.hav |
| 68a0 | 65 20 73 68 61 70 65 20 28 2c 29 2e 0a 0a 20 20 20 20 54 72 61 69 6c 69 6e 67 20 7a 65 72 6f 73 | e.shape.(,).......Trailing.zeros |
| 68c0 | 20 69 6e 20 74 68 65 20 63 6f 65 66 66 69 63 69 65 6e 74 73 20 77 69 6c 6c 20 62 65 20 75 73 65 | .in.the.coefficients.will.be.use |
| 68e0 | 64 20 69 6e 20 74 68 65 20 65 76 61 6c 75 61 74 69 6f 6e 2c 20 73 6f 0a 20 20 20 20 74 68 65 79 | d.in.the.evaluation,.so.....they |
| 6900 | 20 73 68 6f 75 6c 64 20 62 65 20 61 76 6f 69 64 65 64 20 69 66 20 65 66 66 69 63 69 65 6e 63 79 | .should.be.avoided.if.efficiency |
| 6920 | 20 69 73 20 61 20 63 6f 6e 63 65 72 6e 2e 0a 0a 20 20 20 20 50 61 72 61 6d 65 74 65 72 73 0a 20 | .is.a.concern.......Parameters.. |
| 6940 | 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 78 20 3a 20 61 72 72 61 79 5f 6c 69 6b 65 | ...----------.....x.:.array_like |
| 6960 | 2c 20 63 6f 6d 70 61 74 69 62 6c 65 20 6f 62 6a 65 63 74 0a 20 20 20 20 20 20 20 20 49 66 20 60 | ,.compatible.object.........If.` |
| 6980 | 78 60 20 69 73 20 61 20 6c 69 73 74 20 6f 72 20 74 75 70 6c 65 2c 20 69 74 20 69 73 20 63 6f 6e | x`.is.a.list.or.tuple,.it.is.con |
| 69a0 | 76 65 72 74 65 64 20 74 6f 20 61 6e 20 6e 64 61 72 72 61 79 2c 20 6f 74 68 65 72 77 69 73 65 0a | verted.to.an.ndarray,.otherwise. |
| 69c0 | 20 20 20 20 20 20 20 20 69 74 20 69 73 20 6c 65 66 74 20 75 6e 63 68 61 6e 67 65 64 20 61 6e 64 | ........it.is.left.unchanged.and |
| 69e0 | 20 74 72 65 61 74 65 64 20 61 73 20 61 20 73 63 61 6c 61 72 2e 20 49 6e 20 65 69 74 68 65 72 20 | .treated.as.a.scalar..In.either. |
| 6a00 | 63 61 73 65 2c 20 60 78 60 0a 20 20 20 20 20 20 20 20 6f 72 20 69 74 73 20 65 6c 65 6d 65 6e 74 | case,.`x`.........or.its.element |
| 6a20 | 73 20 6d 75 73 74 20 73 75 70 70 6f 72 74 20 61 64 64 69 74 69 6f 6e 20 61 6e 64 20 6d 75 6c 74 | s.must.support.addition.and.mult |
| 6a40 | 69 70 6c 69 63 61 74 69 6f 6e 20 77 69 74 68 0a 20 20 20 20 20 20 20 20 74 68 65 6d 73 65 6c 76 | iplication.with.........themselv |
| 6a60 | 65 73 20 61 6e 64 20 77 69 74 68 20 74 68 65 20 65 6c 65 6d 65 6e 74 73 20 6f 66 20 60 63 60 2e | es.and.with.the.elements.of.`c`. |
| 6a80 | 0a 20 20 20 20 63 20 3a 20 61 72 72 61 79 5f 6c 69 6b 65 0a 20 20 20 20 20 20 20 20 41 72 72 61 | .....c.:.array_like.........Arra |
| 6aa0 | 79 20 6f 66 20 63 6f 65 66 66 69 63 69 65 6e 74 73 20 6f 72 64 65 72 65 64 20 73 6f 20 74 68 61 | y.of.coefficients.ordered.so.tha |
| 6ac0 | 74 20 74 68 65 20 63 6f 65 66 66 69 63 69 65 6e 74 73 20 66 6f 72 20 74 65 72 6d 73 20 6f 66 0a | t.the.coefficients.for.terms.of. |
| 6ae0 | 20 20 20 20 20 20 20 20 64 65 67 72 65 65 20 6e 20 61 72 65 20 63 6f 6e 74 61 69 6e 65 64 20 69 | ........degree.n.are.contained.i |
| 6b00 | 6e 20 63 5b 6e 5d 2e 20 49 66 20 60 63 60 20 69 73 20 6d 75 6c 74 69 64 69 6d 65 6e 73 69 6f 6e | n.c[n]..If.`c`.is.multidimension |
| 6b20 | 61 6c 20 74 68 65 0a 20 20 20 20 20 20 20 20 72 65 6d 61 69 6e 69 6e 67 20 69 6e 64 69 63 65 73 | al.the.........remaining.indices |
| 6b40 | 20 65 6e 75 6d 65 72 61 74 65 20 6d 75 6c 74 69 70 6c 65 20 70 6f 6c 79 6e 6f 6d 69 61 6c 73 2e | .enumerate.multiple.polynomials. |
| 6b60 | 20 49 6e 20 74 68 65 20 74 77 6f 0a 20 20 20 20 20 20 20 20 64 69 6d 65 6e 73 69 6f 6e 61 6c 20 | .In.the.two.........dimensional. |
| 6b80 | 63 61 73 65 20 74 68 65 20 63 6f 65 66 66 69 63 69 65 6e 74 73 20 6d 61 79 20 62 65 20 74 68 6f | case.the.coefficients.may.be.tho |
| 6ba0 | 75 67 68 74 20 6f 66 20 61 73 20 73 74 6f 72 65 64 20 69 6e 0a 20 20 20 20 20 20 20 20 74 68 65 | ught.of.as.stored.in.........the |
| 6bc0 | 20 63 6f 6c 75 6d 6e 73 20 6f 66 20 60 63 60 2e 0a 20 20 20 20 74 65 6e 73 6f 72 20 3a 20 62 6f | .columns.of.`c`......tensor.:.bo |
| 6be0 | 6f 6c 65 61 6e 2c 20 6f 70 74 69 6f 6e 61 6c 0a 20 20 20 20 20 20 20 20 49 66 20 54 72 75 65 2c | olean,.optional.........If.True, |
| 6c00 | 20 74 68 65 20 73 68 61 70 65 20 6f 66 20 74 68 65 20 63 6f 65 66 66 69 63 69 65 6e 74 20 61 72 | .the.shape.of.the.coefficient.ar |
| 6c20 | 72 61 79 20 69 73 20 65 78 74 65 6e 64 65 64 20 77 69 74 68 20 6f 6e 65 73 0a 20 20 20 20 20 20 | ray.is.extended.with.ones....... |
| 6c40 | 20 20 6f 6e 20 74 68 65 20 72 69 67 68 74 2c 20 6f 6e 65 20 66 6f 72 20 65 61 63 68 20 64 69 6d | ..on.the.right,.one.for.each.dim |
| 6c60 | 65 6e 73 69 6f 6e 20 6f 66 20 60 78 60 2e 20 53 63 61 6c 61 72 73 20 68 61 76 65 20 64 69 6d 65 | ension.of.`x`..Scalars.have.dime |
| 6c80 | 6e 73 69 6f 6e 20 30 0a 20 20 20 20 20 20 20 20 66 6f 72 20 74 68 69 73 20 61 63 74 69 6f 6e 2e | nsion.0.........for.this.action. |
| 6ca0 | 20 54 68 65 20 72 65 73 75 6c 74 20 69 73 20 74 68 61 74 20 65 76 65 72 79 20 63 6f 6c 75 6d 6e | .The.result.is.that.every.column |
| 6cc0 | 20 6f 66 20 63 6f 65 66 66 69 63 69 65 6e 74 73 20 69 6e 0a 20 20 20 20 20 20 20 20 60 63 60 20 | .of.coefficients.in.........`c`. |
| 6ce0 | 69 73 20 65 76 61 6c 75 61 74 65 64 20 66 6f 72 20 65 76 65 72 79 20 65 6c 65 6d 65 6e 74 20 6f | is.evaluated.for.every.element.o |
| 6d00 | 66 20 60 78 60 2e 20 49 66 20 46 61 6c 73 65 2c 20 60 78 60 20 69 73 20 62 72 6f 61 64 63 61 73 | f.`x`..If.False,.`x`.is.broadcas |
| 6d20 | 74 0a 20 20 20 20 20 20 20 20 6f 76 65 72 20 74 68 65 20 63 6f 6c 75 6d 6e 73 20 6f 66 20 60 63 | t.........over.the.columns.of.`c |
| 6d40 | 60 20 66 6f 72 20 74 68 65 20 65 76 61 6c 75 61 74 69 6f 6e 2e 20 20 54 68 69 73 20 6b 65 79 77 | `.for.the.evaluation...This.keyw |
| 6d60 | 6f 72 64 20 69 73 20 75 73 65 66 75 6c 0a 20 20 20 20 20 20 20 20 77 68 65 6e 20 60 63 60 20 69 | ord.is.useful.........when.`c`.i |
| 6d80 | 73 20 6d 75 6c 74 69 64 69 6d 65 6e 73 69 6f 6e 61 6c 2e 20 54 68 65 20 64 65 66 61 75 6c 74 20 | s.multidimensional..The.default. |
| 6da0 | 76 61 6c 75 65 20 69 73 20 54 72 75 65 2e 0a 0a 20 20 20 20 52 65 74 75 72 6e 73 0a 20 20 20 20 | value.is.True.......Returns..... |
| 6dc0 | 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 76 61 6c 75 65 73 20 3a 20 6e 64 61 72 72 61 79 2c 20 61 6c | -------.....values.:.ndarray,.al |
| 6de0 | 67 65 62 72 61 5f 6c 69 6b 65 0a 20 20 20 20 20 20 20 20 54 68 65 20 73 68 61 70 65 20 6f 66 20 | gebra_like.........The.shape.of. |
| 6e00 | 74 68 65 20 72 65 74 75 72 6e 20 76 61 6c 75 65 20 69 73 20 64 65 73 63 72 69 62 65 64 20 61 62 | the.return.value.is.described.ab |
| 6e20 | 6f 76 65 2e 0a 0a 20 20 20 20 53 65 65 20 41 6c 73 6f 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 0a | ove.......See.Also.....--------. |
| 6e40 | 20 20 20 20 6c 61 67 76 61 6c 32 64 2c 20 6c 61 67 67 72 69 64 32 64 2c 20 6c 61 67 76 61 6c 33 | ....lagval2d,.laggrid2d,.lagval3 |
| 6e60 | 64 2c 20 6c 61 67 67 72 69 64 33 64 0a 0a 20 20 20 20 4e 6f 74 65 73 0a 20 20 20 20 2d 2d 2d 2d | d,.laggrid3d......Notes.....---- |
| 6e80 | 2d 0a 20 20 20 20 54 68 65 20 65 76 61 6c 75 61 74 69 6f 6e 20 75 73 65 73 20 43 6c 65 6e 73 68 | -.....The.evaluation.uses.Clensh |
| 6ea0 | 61 77 20 72 65 63 75 72 73 69 6f 6e 2c 20 61 6b 61 20 73 79 6e 74 68 65 74 69 63 20 64 69 76 69 | aw.recursion,.aka.synthetic.divi |
| 6ec0 | 73 69 6f 6e 2e 0a 0a 20 20 20 20 45 78 61 6d 70 6c 65 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d | sion.......Examples.....-------- |
| 6ee0 | 0a 20 20 20 20 3e 3e 3e 20 66 72 6f 6d 20 6e 75 6d 70 79 2e 70 6f 6c 79 6e 6f 6d 69 61 6c 2e 6c | .....>>>.from.numpy.polynomial.l |
| 6f00 | 61 67 75 65 72 72 65 20 69 6d 70 6f 72 74 20 6c 61 67 76 61 6c 0a 20 20 20 20 3e 3e 3e 20 63 6f | aguerre.import.lagval.....>>>.co |
| 6f20 | 65 66 20 3d 20 5b 31 2c 20 32 2c 20 33 5d 0a 20 20 20 20 3e 3e 3e 20 6c 61 67 76 61 6c 28 31 2c | ef.=.[1,.2,.3].....>>>.lagval(1, |
| 6f40 | 20 63 6f 65 66 29 0a 20 20 20 20 2d 30 2e 35 0a 20 20 20 20 3e 3e 3e 20 6c 61 67 76 61 6c 28 5b | .coef).....-0.5.....>>>.lagval([ |
| 6f60 | 5b 31 2c 20 32 5d 2c 5b 33 2c 20 34 5d 5d 2c 20 63 6f 65 66 29 0a 20 20 20 20 61 72 72 61 79 28 | [1,.2],[3,.4]],.coef).....array( |
| 6f80 | 5b 5b 2d 30 2e 35 2c 20 2d 34 2e 20 5d 2c 0a 20 20 20 20 20 20 20 20 20 20 20 5b 2d 34 2e 35 2c | [[-0.5,.-4..],............[-4.5, |
| 6fa0 | 20 2d 32 2e 20 5d 5d 29 0a 0a 20 20 20 20 72 04 00 00 00 4e 72 5f 00 00 00 72 62 00 00 00 29 01 | .-2..]])......r....Nr_...rb...). |
| 6fc0 | 72 04 00 00 00 72 02 00 00 00 72 34 00 00 00 72 33 00 00 00 72 27 00 00 00 72 55 00 00 00 29 10 | r....r....r4...r3...r'...rU...). |
| 6fe0 | 72 41 00 00 00 72 42 00 00 00 72 51 00 00 00 72 64 00 00 00 72 65 00 00 00 72 66 00 00 00 da 0a | rA...rB...rQ...rd...re...rf..... |
| 7000 | 69 73 69 6e 73 74 61 6e 63 65 da 05 74 75 70 6c 65 72 74 00 00 00 da 07 61 73 61 72 72 61 79 da | isinstance..tuplert.....asarray. |
| 7020 | 07 6e 64 61 72 72 61 79 da 07 72 65 73 68 61 70 65 72 6b 00 00 00 72 69 00 00 00 72 36 00 00 00 | .ndarray..reshaperk...ri...r6... |
| 7040 | 72 37 00 00 00 29 08 da 01 78 72 38 00 00 00 da 06 74 65 6e 73 6f 72 72 3a 00 00 00 72 3b 00 00 | r7...)...xr8.....tensorr:...r;.. |
| 7060 | 00 72 57 00 00 00 72 3c 00 00 00 72 3d 00 00 00 73 08 00 00 00 20 20 20 20 20 20 20 20 72 2d 00 | .rW...r<...r=...s............r-. |
| 7080 | 00 00 72 12 00 00 00 72 12 00 00 00 1e 03 00 00 73 53 01 00 00 80 00 f4 46 02 00 09 0b 8f 08 89 | ..r....r........sS......F....... |
| 70a0 | 08 90 11 98 21 a0 24 d4 08 27 80 41 d8 07 08 87 77 81 77 87 7c 81 7c 90 7f d1 07 26 d8 0c 0d 8f | ....!.$..'.A....w.w.|.|....&.... |
| 70c0 | 48 89 48 94 52 97 59 91 59 d3 0c 1f 88 01 dc 07 11 90 21 94 65 9c 54 90 5d d4 07 23 dc 0c 0e 8f | H.H.R.Y.Y.........!.e.T.]..#.... |
| 70e0 | 4a 89 4a 90 71 8b 4d 88 01 dc 07 11 90 21 94 52 97 5a 91 5a d4 07 20 a1 56 d8 0c 0d 8f 49 89 49 | J.J.q.M......!.R.Z.Z....V....I.I |
| 7100 | 90 61 97 67 91 67 a0 04 a0 71 a7 76 a1 76 a1 0d d1 16 2d d3 0c 2e 88 01 e4 07 0a 88 31 83 76 90 | .a.g.g...q.v.v....-.........1.v. |
| 7120 | 11 82 7b d8 0d 0e 88 71 89 54 88 02 d8 0d 0e 89 02 dc 09 0c 88 51 8b 16 90 31 8a 1b d8 0d 0e 88 | ..{....q.T...........Q...1...... |
| 7140 | 71 89 54 88 02 d8 0d 0e 88 71 89 54 89 02 e4 0d 10 90 11 8b 56 88 02 d8 0d 0e 88 72 89 55 88 02 | q.T......q.T........V......r.U.. |
| 7160 | d8 0d 0e 88 72 89 55 88 02 dc 11 16 90 71 9c 23 98 61 9b 26 a0 31 99 2a d3 11 25 f2 00 04 09 36 | ....r.U......q.#.a.&.1.*..%....6 |
| 7180 | 88 41 d8 12 14 88 43 d8 11 13 90 61 91 16 88 42 d8 11 12 90 41 90 32 91 15 98 22 a0 02 a0 51 a1 | .A....C....a...B....A.2..."...Q. |
| 71a0 | 06 99 2d a8 32 d1 19 2d d1 11 2d 88 42 d8 11 14 98 02 98 71 a0 32 99 76 a8 01 99 7a a8 51 d1 1e | ..-.2..-..-.B......q.2.v...z.Q.. |
| 71c0 | 2e d1 18 2f b0 32 d1 17 35 d1 11 35 89 42 f0 09 04 09 36 f0 0a 00 0c 0e 90 02 90 61 98 21 91 65 | .../.2..5..5.B....6........a.!.e |
| 71e0 | 91 0c d1 0b 1c d0 04 1c 72 2e 00 00 00 63 03 00 00 00 00 00 00 00 00 00 00 00 06 00 00 00 03 00 | ........r....c.................. |
| 7200 | 00 00 f3 3a 00 00 00 97 00 74 01 00 00 00 00 00 00 00 00 6a 02 00 00 00 00 00 00 00 00 00 00 00 | ...:.....t.........j............ |
| 7220 | 00 00 00 00 00 00 00 74 04 00 00 00 00 00 00 00 00 7c 02 7c 00 7c 01 ab 04 00 00 00 00 00 00 53 | .......t.........|.|.|.........S |
| 7240 | 00 29 01 61 9e 06 00 00 0a 20 20 20 20 45 76 61 6c 75 61 74 65 20 61 20 32 2d 44 20 4c 61 67 75 | .).a.........Evaluate.a.2-D.Lagu |
| 7260 | 65 72 72 65 20 73 65 72 69 65 73 20 61 74 20 70 6f 69 6e 74 73 20 28 78 2c 20 79 29 2e 0a 0a 20 | erre.series.at.points.(x,.y).... |
| 7280 | 20 20 20 54 68 69 73 20 66 75 6e 63 74 69 6f 6e 20 72 65 74 75 72 6e 73 20 74 68 65 20 76 61 6c | ...This.function.returns.the.val |
| 72a0 | 75 65 73 3a 0a 0a 20 20 20 20 2e 2e 20 6d 61 74 68 3a 3a 20 70 28 78 2c 79 29 20 3d 20 5c 73 75 | ues:.........math::.p(x,y).=.\su |
| 72c0 | 6d 5f 7b 69 2c 6a 7d 20 63 5f 7b 69 2c 6a 7d 20 2a 20 4c 5f 69 28 78 29 20 2a 20 4c 5f 6a 28 79 | m_{i,j}.c_{i,j}.*.L_i(x).*.L_j(y |
| 72e0 | 29 0a 0a 20 20 20 20 54 68 65 20 70 61 72 61 6d 65 74 65 72 73 20 60 78 60 20 61 6e 64 20 60 79 | )......The.parameters.`x`.and.`y |
| 7300 | 60 20 61 72 65 20 63 6f 6e 76 65 72 74 65 64 20 74 6f 20 61 72 72 61 79 73 20 6f 6e 6c 79 20 69 | `.are.converted.to.arrays.only.i |
| 7320 | 66 20 74 68 65 79 20 61 72 65 0a 20 20 20 20 74 75 70 6c 65 73 20 6f 72 20 61 20 6c 69 73 74 73 | f.they.are.....tuples.or.a.lists |
| 7340 | 2c 20 6f 74 68 65 72 77 69 73 65 20 74 68 65 79 20 61 72 65 20 74 72 65 61 74 65 64 20 61 73 20 | ,.otherwise.they.are.treated.as. |
| 7360 | 61 20 73 63 61 6c 61 72 73 20 61 6e 64 20 74 68 65 79 0a 20 20 20 20 6d 75 73 74 20 68 61 76 65 | a.scalars.and.they.....must.have |
| 7380 | 20 74 68 65 20 73 61 6d 65 20 73 68 61 70 65 20 61 66 74 65 72 20 63 6f 6e 76 65 72 73 69 6f 6e | .the.same.shape.after.conversion |
| 73a0 | 2e 20 49 6e 20 65 69 74 68 65 72 20 63 61 73 65 2c 20 65 69 74 68 65 72 20 60 78 60 0a 20 20 20 | ..In.either.case,.either.`x`.... |
| 73c0 | 20 61 6e 64 20 60 79 60 20 6f 72 20 74 68 65 69 72 20 65 6c 65 6d 65 6e 74 73 20 6d 75 73 74 20 | .and.`y`.or.their.elements.must. |
| 73e0 | 73 75 70 70 6f 72 74 20 6d 75 6c 74 69 70 6c 69 63 61 74 69 6f 6e 20 61 6e 64 20 61 64 64 69 74 | support.multiplication.and.addit |
| 7400 | 69 6f 6e 20 62 6f 74 68 0a 20 20 20 20 77 69 74 68 20 74 68 65 6d 73 65 6c 76 65 73 20 61 6e 64 | ion.both.....with.themselves.and |
| 7420 | 20 77 69 74 68 20 74 68 65 20 65 6c 65 6d 65 6e 74 73 20 6f 66 20 60 63 60 2e 0a 0a 20 20 20 20 | .with.the.elements.of.`c`....... |
| 7440 | 49 66 20 60 63 60 20 69 73 20 61 20 31 2d 44 20 61 72 72 61 79 20 61 20 6f 6e 65 20 69 73 20 69 | If.`c`.is.a.1-D.array.a.one.is.i |
| 7460 | 6d 70 6c 69 63 69 74 6c 79 20 61 70 70 65 6e 64 65 64 20 74 6f 20 69 74 73 20 73 68 61 70 65 20 | mplicitly.appended.to.its.shape. |
| 7480 | 74 6f 20 6d 61 6b 65 0a 20 20 20 20 69 74 20 32 2d 44 2e 20 54 68 65 20 73 68 61 70 65 20 6f 66 | to.make.....it.2-D..The.shape.of |
| 74a0 | 20 74 68 65 20 72 65 73 75 6c 74 20 77 69 6c 6c 20 62 65 20 63 2e 73 68 61 70 65 5b 32 3a 5d 20 | .the.result.will.be.c.shape[2:]. |
| 74c0 | 2b 20 78 2e 73 68 61 70 65 2e 0a 0a 20 20 20 20 50 61 72 61 6d 65 74 65 72 73 0a 20 20 20 20 2d | +.x.shape.......Parameters.....- |
| 74e0 | 2d 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 78 2c 20 79 20 3a 20 61 72 72 61 79 5f 6c 69 6b 65 2c | ---------.....x,.y.:.array_like, |
| 7500 | 20 63 6f 6d 70 61 74 69 62 6c 65 20 6f 62 6a 65 63 74 73 0a 20 20 20 20 20 20 20 20 54 68 65 20 | .compatible.objects.........The. |
| 7520 | 74 77 6f 20 64 69 6d 65 6e 73 69 6f 6e 61 6c 20 73 65 72 69 65 73 20 69 73 20 65 76 61 6c 75 61 | two.dimensional.series.is.evalua |
| 7540 | 74 65 64 20 61 74 20 74 68 65 20 70 6f 69 6e 74 73 20 60 60 28 78 2c 20 79 29 60 60 2c 0a 20 20 | ted.at.the.points.``(x,.y)``,... |
| 7560 | 20 20 20 20 20 20 77 68 65 72 65 20 60 78 60 20 61 6e 64 20 60 79 60 20 6d 75 73 74 20 68 61 76 | ......where.`x`.and.`y`.must.hav |
| 7580 | 65 20 74 68 65 20 73 61 6d 65 20 73 68 61 70 65 2e 20 49 66 20 60 78 60 20 6f 72 20 60 79 60 20 | e.the.same.shape..If.`x`.or.`y`. |
| 75a0 | 69 73 20 61 20 6c 69 73 74 0a 20 20 20 20 20 20 20 20 6f 72 20 74 75 70 6c 65 2c 20 69 74 20 69 | is.a.list.........or.tuple,.it.i |
| 75c0 | 73 20 66 69 72 73 74 20 63 6f 6e 76 65 72 74 65 64 20 74 6f 20 61 6e 20 6e 64 61 72 72 61 79 2c | s.first.converted.to.an.ndarray, |
| 75e0 | 20 6f 74 68 65 72 77 69 73 65 20 69 74 20 69 73 20 6c 65 66 74 0a 20 20 20 20 20 20 20 20 75 6e | .otherwise.it.is.left.........un |
| 7600 | 63 68 61 6e 67 65 64 20 61 6e 64 20 69 66 20 69 74 20 69 73 6e 27 74 20 61 6e 20 6e 64 61 72 72 | changed.and.if.it.isn't.an.ndarr |
| 7620 | 61 79 20 69 74 20 69 73 20 74 72 65 61 74 65 64 20 61 73 20 61 20 73 63 61 6c 61 72 2e 0a 20 20 | ay.it.is.treated.as.a.scalar.... |
| 7640 | 20 20 63 20 3a 20 61 72 72 61 79 5f 6c 69 6b 65 0a 20 20 20 20 20 20 20 20 41 72 72 61 79 20 6f | ..c.:.array_like.........Array.o |
| 7660 | 66 20 63 6f 65 66 66 69 63 69 65 6e 74 73 20 6f 72 64 65 72 65 64 20 73 6f 20 74 68 61 74 20 74 | f.coefficients.ordered.so.that.t |
| 7680 | 68 65 20 63 6f 65 66 66 69 63 69 65 6e 74 20 6f 66 20 74 68 65 20 74 65 72 6d 0a 20 20 20 20 20 | he.coefficient.of.the.term...... |
| 76a0 | 20 20 20 6f 66 20 6d 75 6c 74 69 2d 64 65 67 72 65 65 20 69 2c 6a 20 69 73 20 63 6f 6e 74 61 69 | ...of.multi-degree.i,j.is.contai |
| 76c0 | 6e 65 64 20 69 6e 20 60 60 63 5b 69 2c 6a 5d 60 60 2e 20 49 66 20 60 63 60 20 68 61 73 0a 20 20 | ned.in.``c[i,j]``..If.`c`.has... |
| 76e0 | 20 20 20 20 20 20 64 69 6d 65 6e 73 69 6f 6e 20 67 72 65 61 74 65 72 20 74 68 61 6e 20 74 77 6f | ......dimension.greater.than.two |
| 7700 | 20 74 68 65 20 72 65 6d 61 69 6e 69 6e 67 20 69 6e 64 69 63 65 73 20 65 6e 75 6d 65 72 61 74 65 | .the.remaining.indices.enumerate |
| 7720 | 20 6d 75 6c 74 69 70 6c 65 0a 20 20 20 20 20 20 20 20 73 65 74 73 20 6f 66 20 63 6f 65 66 66 69 | .multiple.........sets.of.coeffi |
| 7740 | 63 69 65 6e 74 73 2e 0a 0a 20 20 20 20 52 65 74 75 72 6e 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d | cients.......Returns.....------- |
| 7760 | 0a 20 20 20 20 76 61 6c 75 65 73 20 3a 20 6e 64 61 72 72 61 79 2c 20 63 6f 6d 70 61 74 69 62 6c | .....values.:.ndarray,.compatibl |
| 7780 | 65 20 6f 62 6a 65 63 74 0a 20 20 20 20 20 20 20 20 54 68 65 20 76 61 6c 75 65 73 20 6f 66 20 74 | e.object.........The.values.of.t |
| 77a0 | 68 65 20 74 77 6f 20 64 69 6d 65 6e 73 69 6f 6e 61 6c 20 70 6f 6c 79 6e 6f 6d 69 61 6c 20 61 74 | he.two.dimensional.polynomial.at |
| 77c0 | 20 70 6f 69 6e 74 73 20 66 6f 72 6d 65 64 20 77 69 74 68 0a 20 20 20 20 20 20 20 20 70 61 69 72 | .points.formed.with.........pair |
| 77e0 | 73 20 6f 66 20 63 6f 72 72 65 73 70 6f 6e 64 69 6e 67 20 76 61 6c 75 65 73 20 66 72 6f 6d 20 60 | s.of.corresponding.values.from.` |
| 7800 | 78 60 20 61 6e 64 20 60 79 60 2e 0a 0a 20 20 20 20 53 65 65 20 41 6c 73 6f 0a 20 20 20 20 2d 2d | x`.and.`y`.......See.Also.....-- |
| 7820 | 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 6c 61 67 76 61 6c 2c 20 6c 61 67 67 72 69 64 32 64 2c 20 6c 61 | ------.....lagval,.laggrid2d,.la |
| 7840 | 67 76 61 6c 33 64 2c 20 6c 61 67 67 72 69 64 33 64 0a 0a 20 20 20 20 45 78 61 6d 70 6c 65 73 0a | gval3d,.laggrid3d......Examples. |
| 7860 | 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 3e 3e 3e 20 66 72 6f 6d 20 6e 75 6d 70 79 2e | ....--------.....>>>.from.numpy. |
| 7880 | 70 6f 6c 79 6e 6f 6d 69 61 6c 2e 6c 61 67 75 65 72 72 65 20 69 6d 70 6f 72 74 20 6c 61 67 76 61 | polynomial.laguerre.import.lagva |
| 78a0 | 6c 32 64 0a 20 20 20 20 3e 3e 3e 20 63 20 3d 20 5b 5b 31 2c 20 32 5d 2c 5b 33 2c 20 34 5d 5d 0a | l2d.....>>>.c.=.[[1,.2],[3,.4]]. |
| 78c0 | 20 20 20 20 3e 3e 3e 20 6c 61 67 76 61 6c 32 64 28 31 2c 20 31 2c 20 63 29 0a 20 20 20 20 31 2e | ....>>>.lagval2d(1,.1,.c).....1. |
| 78e0 | 30 0a 20 20 20 20 a9 03 72 28 00 00 00 da 06 5f 76 61 6c 6e 64 72 12 00 00 00 a9 03 72 7e 00 00 | 0.......r(....._valndr......r~.. |
| 7900 | 00 da 01 79 72 38 00 00 00 73 03 00 00 00 20 20 20 72 2d 00 00 00 72 1d 00 00 00 72 1d 00 00 00 | ...yr8...s.......r-...r....r.... |
| 7920 | 7b 03 00 00 73 1a 00 00 00 80 00 f4 5e 01 00 0c 0e 8f 39 89 39 94 56 98 51 a0 01 a0 31 d3 0b 25 | {...s.......^.....9.9.V.Q...1..% |
| 7940 | d0 04 25 72 2e 00 00 00 63 03 00 00 00 00 00 00 00 00 00 00 00 06 00 00 00 03 00 00 00 f3 3a 00 | ..%r....c.....................:. |
| 7960 | 00 00 97 00 74 01 00 00 00 00 00 00 00 00 6a 02 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 | ....t.........j................. |
| 7980 | 00 00 74 04 00 00 00 00 00 00 00 00 7c 02 7c 00 7c 01 ab 04 00 00 00 00 00 00 53 00 29 01 61 79 | ..t.........|.|.|.........S.).ay |
| 79a0 | 07 00 00 0a 20 20 20 20 45 76 61 6c 75 61 74 65 20 61 20 32 2d 44 20 4c 61 67 75 65 72 72 65 20 | ........Evaluate.a.2-D.Laguerre. |
| 79c0 | 73 65 72 69 65 73 20 6f 6e 20 74 68 65 20 43 61 72 74 65 73 69 61 6e 20 70 72 6f 64 75 63 74 20 | series.on.the.Cartesian.product. |
| 79e0 | 6f 66 20 78 20 61 6e 64 20 79 2e 0a 0a 20 20 20 20 54 68 69 73 20 66 75 6e 63 74 69 6f 6e 20 72 | of.x.and.y.......This.function.r |
| 7a00 | 65 74 75 72 6e 73 20 74 68 65 20 76 61 6c 75 65 73 3a 0a 0a 20 20 20 20 2e 2e 20 6d 61 74 68 3a | eturns.the.values:.........math: |
| 7a20 | 3a 20 70 28 61 2c 62 29 20 3d 20 5c 73 75 6d 5f 7b 69 2c 6a 7d 20 63 5f 7b 69 2c 6a 7d 20 2a 20 | :.p(a,b).=.\sum_{i,j}.c_{i,j}.*. |
| 7a40 | 4c 5f 69 28 61 29 20 2a 20 4c 5f 6a 28 62 29 0a 0a 20 20 20 20 77 68 65 72 65 20 74 68 65 20 70 | L_i(a).*.L_j(b)......where.the.p |
| 7a60 | 6f 69 6e 74 73 20 60 60 28 61 2c 20 62 29 60 60 20 63 6f 6e 73 69 73 74 20 6f 66 20 61 6c 6c 20 | oints.``(a,.b)``.consist.of.all. |
| 7a80 | 70 61 69 72 73 20 66 6f 72 6d 65 64 20 62 79 20 74 61 6b 69 6e 67 0a 20 20 20 20 60 61 60 20 66 | pairs.formed.by.taking.....`a`.f |
| 7aa0 | 72 6f 6d 20 60 78 60 20 61 6e 64 20 60 62 60 20 66 72 6f 6d 20 60 79 60 2e 20 54 68 65 20 72 65 | rom.`x`.and.`b`.from.`y`..The.re |
| 7ac0 | 73 75 6c 74 69 6e 67 20 70 6f 69 6e 74 73 20 66 6f 72 6d 20 61 20 67 72 69 64 20 77 69 74 68 0a | sulting.points.form.a.grid.with. |
| 7ae0 | 20 20 20 20 60 78 60 20 69 6e 20 74 68 65 20 66 69 72 73 74 20 64 69 6d 65 6e 73 69 6f 6e 20 61 | ....`x`.in.the.first.dimension.a |
| 7b00 | 6e 64 20 60 79 60 20 69 6e 20 74 68 65 20 73 65 63 6f 6e 64 2e 0a 0a 20 20 20 20 54 68 65 20 70 | nd.`y`.in.the.second.......The.p |
| 7b20 | 61 72 61 6d 65 74 65 72 73 20 60 78 60 20 61 6e 64 20 60 79 60 20 61 72 65 20 63 6f 6e 76 65 72 | arameters.`x`.and.`y`.are.conver |
| 7b40 | 74 65 64 20 74 6f 20 61 72 72 61 79 73 20 6f 6e 6c 79 20 69 66 20 74 68 65 79 20 61 72 65 0a 20 | ted.to.arrays.only.if.they.are.. |
| 7b60 | 20 20 20 74 75 70 6c 65 73 20 6f 72 20 61 20 6c 69 73 74 73 2c 20 6f 74 68 65 72 77 69 73 65 20 | ...tuples.or.a.lists,.otherwise. |
| 7b80 | 74 68 65 79 20 61 72 65 20 74 72 65 61 74 65 64 20 61 73 20 61 20 73 63 61 6c 61 72 73 2e 20 49 | they.are.treated.as.a.scalars..I |
| 7ba0 | 6e 20 65 69 74 68 65 72 0a 20 20 20 20 63 61 73 65 2c 20 65 69 74 68 65 72 20 60 78 60 20 61 6e | n.either.....case,.either.`x`.an |
| 7bc0 | 64 20 60 79 60 20 6f 72 20 74 68 65 69 72 20 65 6c 65 6d 65 6e 74 73 20 6d 75 73 74 20 73 75 70 | d.`y`.or.their.elements.must.sup |
| 7be0 | 70 6f 72 74 20 6d 75 6c 74 69 70 6c 69 63 61 74 69 6f 6e 0a 20 20 20 20 61 6e 64 20 61 64 64 69 | port.multiplication.....and.addi |
| 7c00 | 74 69 6f 6e 20 62 6f 74 68 20 77 69 74 68 20 74 68 65 6d 73 65 6c 76 65 73 20 61 6e 64 20 77 69 | tion.both.with.themselves.and.wi |
| 7c20 | 74 68 20 74 68 65 20 65 6c 65 6d 65 6e 74 73 20 6f 66 20 60 63 60 2e 0a 0a 20 20 20 20 49 66 20 | th.the.elements.of.`c`.......If. |
| 7c40 | 60 63 60 20 68 61 73 20 66 65 77 65 72 20 74 68 61 6e 20 74 77 6f 20 64 69 6d 65 6e 73 69 6f 6e | `c`.has.fewer.than.two.dimension |
| 7c60 | 73 2c 20 6f 6e 65 73 20 61 72 65 20 69 6d 70 6c 69 63 69 74 6c 79 20 61 70 70 65 6e 64 65 64 20 | s,.ones.are.implicitly.appended. |
| 7c80 | 74 6f 0a 20 20 20 20 69 74 73 20 73 68 61 70 65 20 74 6f 20 6d 61 6b 65 20 69 74 20 32 2d 44 2e | to.....its.shape.to.make.it.2-D. |
| 7ca0 | 20 54 68 65 20 73 68 61 70 65 20 6f 66 20 74 68 65 20 72 65 73 75 6c 74 20 77 69 6c 6c 20 62 65 | .The.shape.of.the.result.will.be |
| 7cc0 | 20 63 2e 73 68 61 70 65 5b 32 3a 5d 20 2b 0a 20 20 20 20 78 2e 73 68 61 70 65 20 2b 20 79 2e 73 | .c.shape[2:].+.....x.shape.+.y.s |
| 7ce0 | 68 61 70 65 2e 0a 0a 20 20 20 20 50 61 72 61 6d 65 74 65 72 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d | hape.......Parameters.....------ |
| 7d00 | 2d 2d 2d 2d 0a 20 20 20 20 78 2c 20 79 20 3a 20 61 72 72 61 79 5f 6c 69 6b 65 2c 20 63 6f 6d 70 | ----.....x,.y.:.array_like,.comp |
| 7d20 | 61 74 69 62 6c 65 20 6f 62 6a 65 63 74 73 0a 20 20 20 20 20 20 20 20 54 68 65 20 74 77 6f 20 64 | atible.objects.........The.two.d |
| 7d40 | 69 6d 65 6e 73 69 6f 6e 61 6c 20 73 65 72 69 65 73 20 69 73 20 65 76 61 6c 75 61 74 65 64 20 61 | imensional.series.is.evaluated.a |
| 7d60 | 74 20 74 68 65 20 70 6f 69 6e 74 73 20 69 6e 20 74 68 65 0a 20 20 20 20 20 20 20 20 43 61 72 74 | t.the.points.in.the.........Cart |
| 7d80 | 65 73 69 61 6e 20 70 72 6f 64 75 63 74 20 6f 66 20 60 78 60 20 61 6e 64 20 60 79 60 2e 20 20 49 | esian.product.of.`x`.and.`y`...I |
| 7da0 | 66 20 60 78 60 20 6f 72 20 60 79 60 20 69 73 20 61 20 6c 69 73 74 20 6f 72 0a 20 20 20 20 20 20 | f.`x`.or.`y`.is.a.list.or....... |
| 7dc0 | 20 20 74 75 70 6c 65 2c 20 69 74 20 69 73 20 66 69 72 73 74 20 63 6f 6e 76 65 72 74 65 64 20 74 | ..tuple,.it.is.first.converted.t |
| 7de0 | 6f 20 61 6e 20 6e 64 61 72 72 61 79 2c 20 6f 74 68 65 72 77 69 73 65 20 69 74 20 69 73 20 6c 65 | o.an.ndarray,.otherwise.it.is.le |
| 7e00 | 66 74 0a 20 20 20 20 20 20 20 20 75 6e 63 68 61 6e 67 65 64 20 61 6e 64 2c 20 69 66 20 69 74 20 | ft.........unchanged.and,.if.it. |
| 7e20 | 69 73 6e 27 74 20 61 6e 20 6e 64 61 72 72 61 79 2c 20 69 74 20 69 73 20 74 72 65 61 74 65 64 20 | isn't.an.ndarray,.it.is.treated. |
| 7e40 | 61 73 20 61 20 73 63 61 6c 61 72 2e 0a 20 20 20 20 63 20 3a 20 61 72 72 61 79 5f 6c 69 6b 65 0a | as.a.scalar......c.:.array_like. |
| 7e60 | 20 20 20 20 20 20 20 20 41 72 72 61 79 20 6f 66 20 63 6f 65 66 66 69 63 69 65 6e 74 73 20 6f 72 | ........Array.of.coefficients.or |
| 7e80 | 64 65 72 65 64 20 73 6f 20 74 68 61 74 20 74 68 65 20 63 6f 65 66 66 69 63 69 65 6e 74 20 6f 66 | dered.so.that.the.coefficient.of |
| 7ea0 | 20 74 68 65 20 74 65 72 6d 20 6f 66 0a 20 20 20 20 20 20 20 20 6d 75 6c 74 69 2d 64 65 67 72 65 | .the.term.of.........multi-degre |
| 7ec0 | 65 20 69 2c 6a 20 69 73 20 63 6f 6e 74 61 69 6e 65 64 20 69 6e 20 60 60 63 5b 69 2c 6a 5d 60 60 | e.i,j.is.contained.in.``c[i,j]`` |
| 7ee0 | 2e 20 49 66 20 60 63 60 20 68 61 73 20 64 69 6d 65 6e 73 69 6f 6e 0a 20 20 20 20 20 20 20 20 67 | ..If.`c`.has.dimension.........g |
| 7f00 | 72 65 61 74 65 72 20 74 68 61 6e 20 74 77 6f 20 74 68 65 20 72 65 6d 61 69 6e 69 6e 67 20 69 6e | reater.than.two.the.remaining.in |
| 7f20 | 64 69 63 65 73 20 65 6e 75 6d 65 72 61 74 65 20 6d 75 6c 74 69 70 6c 65 20 73 65 74 73 20 6f 66 | dices.enumerate.multiple.sets.of |
| 7f40 | 0a 20 20 20 20 20 20 20 20 63 6f 65 66 66 69 63 69 65 6e 74 73 2e 0a 0a 20 20 20 20 52 65 74 75 | .........coefficients.......Retu |
| 7f60 | 72 6e 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 76 61 6c 75 65 73 20 3a 20 6e 64 61 | rns.....-------.....values.:.nda |
| 7f80 | 72 72 61 79 2c 20 63 6f 6d 70 61 74 69 62 6c 65 20 6f 62 6a 65 63 74 0a 20 20 20 20 20 20 20 20 | rray,.compatible.object......... |
| 7fa0 | 54 68 65 20 76 61 6c 75 65 73 20 6f 66 20 74 68 65 20 74 77 6f 20 64 69 6d 65 6e 73 69 6f 6e 61 | The.values.of.the.two.dimensiona |
| 7fc0 | 6c 20 43 68 65 62 79 73 68 65 76 20 73 65 72 69 65 73 20 61 74 20 70 6f 69 6e 74 73 20 69 6e 20 | l.Chebyshev.series.at.points.in. |
| 7fe0 | 74 68 65 0a 20 20 20 20 20 20 20 20 43 61 72 74 65 73 69 61 6e 20 70 72 6f 64 75 63 74 20 6f 66 | the.........Cartesian.product.of |
| 8000 | 20 60 78 60 20 61 6e 64 20 60 79 60 2e 0a 0a 20 20 20 20 53 65 65 20 41 6c 73 6f 0a 20 20 20 20 | .`x`.and.`y`.......See.Also..... |
| 8020 | 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 6c 61 67 76 61 6c 2c 20 6c 61 67 76 61 6c 32 64 2c 20 6c | --------.....lagval,.lagval2d,.l |
| 8040 | 61 67 76 61 6c 33 64 2c 20 6c 61 67 67 72 69 64 33 64 0a 0a 20 20 20 20 45 78 61 6d 70 6c 65 73 | agval3d,.laggrid3d......Examples |
| 8060 | 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 3e 3e 3e 20 66 72 6f 6d 20 6e 75 6d 70 79 | .....--------.....>>>.from.numpy |
| 8080 | 2e 70 6f 6c 79 6e 6f 6d 69 61 6c 2e 6c 61 67 75 65 72 72 65 20 69 6d 70 6f 72 74 20 6c 61 67 67 | .polynomial.laguerre.import.lagg |
| 80a0 | 72 69 64 32 64 0a 20 20 20 20 3e 3e 3e 20 63 20 3d 20 5b 5b 31 2c 20 32 5d 2c 20 5b 33 2c 20 34 | rid2d.....>>>.c.=.[[1,.2],.[3,.4 |
| 80c0 | 5d 5d 0a 20 20 20 20 3e 3e 3e 20 6c 61 67 67 72 69 64 32 64 28 5b 30 2c 20 31 5d 2c 20 5b 30 2c | ]].....>>>.laggrid2d([0,.1],.[0, |
| 80e0 | 20 31 5d 2c 20 63 29 0a 20 20 20 20 61 72 72 61 79 28 5b 5b 31 30 2e 2c 20 20 34 2e 5d 2c 0a 20 | .1],.c).....array([[10.,..4.],.. |
| 8100 | 20 20 20 20 20 20 20 20 20 20 5b 20 33 2e 2c 20 20 31 2e 5d 5d 29 0a 0a 20 20 20 20 a9 03 72 28 | ..........[.3.,..1.]])........r( |
| 8120 | 00 00 00 da 07 5f 67 72 69 64 6e 64 72 12 00 00 00 72 83 00 00 00 73 03 00 00 00 20 20 20 72 2d | ....._gridndr....r....s.......r- |
| 8140 | 00 00 00 72 1f 00 00 00 72 1f 00 00 00 ad 03 00 00 73 1a 00 00 00 80 00 f4 6a 01 00 0c 0e 8f 3a | ...r....r........s.......j.....: |
| 8160 | 89 3a 94 66 98 61 a0 11 a0 41 d3 0b 26 d0 04 26 72 2e 00 00 00 63 04 00 00 00 00 00 00 00 00 00 | .:.f.a...A..&..&r....c.......... |
| 8180 | 00 00 07 00 00 00 03 00 00 00 f3 3c 00 00 00 97 00 74 01 00 00 00 00 00 00 00 00 6a 02 00 00 00 | ...........<.....t.........j.... |
| 81a0 | 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 74 04 00 00 00 00 00 00 00 00 7c 03 7c 00 7c 01 7c | ...............t.........|.|.|.| |
| 81c0 | 02 ab 05 00 00 00 00 00 00 53 00 29 01 61 17 07 00 00 0a 20 20 20 20 45 76 61 6c 75 61 74 65 20 | .........S.).a.........Evaluate. |
| 81e0 | 61 20 33 2d 44 20 4c 61 67 75 65 72 72 65 20 73 65 72 69 65 73 20 61 74 20 70 6f 69 6e 74 73 20 | a.3-D.Laguerre.series.at.points. |
| 8200 | 28 78 2c 20 79 2c 20 7a 29 2e 0a 0a 20 20 20 20 54 68 69 73 20 66 75 6e 63 74 69 6f 6e 20 72 65 | (x,.y,.z).......This.function.re |
| 8220 | 74 75 72 6e 73 20 74 68 65 20 76 61 6c 75 65 73 3a 0a 0a 20 20 20 20 2e 2e 20 6d 61 74 68 3a 3a | turns.the.values:.........math:: |
| 8240 | 20 70 28 78 2c 79 2c 7a 29 20 3d 20 5c 73 75 6d 5f 7b 69 2c 6a 2c 6b 7d 20 63 5f 7b 69 2c 6a 2c | .p(x,y,z).=.\sum_{i,j,k}.c_{i,j, |
| 8260 | 6b 7d 20 2a 20 4c 5f 69 28 78 29 20 2a 20 4c 5f 6a 28 79 29 20 2a 20 4c 5f 6b 28 7a 29 0a 0a 20 | k}.*.L_i(x).*.L_j(y).*.L_k(z)... |
| 8280 | 20 20 20 54 68 65 20 70 61 72 61 6d 65 74 65 72 73 20 60 78 60 2c 20 60 79 60 2c 20 61 6e 64 20 | ...The.parameters.`x`,.`y`,.and. |
| 82a0 | 60 7a 60 20 61 72 65 20 63 6f 6e 76 65 72 74 65 64 20 74 6f 20 61 72 72 61 79 73 20 6f 6e 6c 79 | `z`.are.converted.to.arrays.only |
| 82c0 | 20 69 66 0a 20 20 20 20 74 68 65 79 20 61 72 65 20 74 75 70 6c 65 73 20 6f 72 20 61 20 6c 69 73 | .if.....they.are.tuples.or.a.lis |
| 82e0 | 74 73 2c 20 6f 74 68 65 72 77 69 73 65 20 74 68 65 79 20 61 72 65 20 74 72 65 61 74 65 64 20 61 | ts,.otherwise.they.are.treated.a |
| 8300 | 73 20 61 20 73 63 61 6c 61 72 73 20 61 6e 64 0a 20 20 20 20 74 68 65 79 20 6d 75 73 74 20 68 61 | s.a.scalars.and.....they.must.ha |
| 8320 | 76 65 20 74 68 65 20 73 61 6d 65 20 73 68 61 70 65 20 61 66 74 65 72 20 63 6f 6e 76 65 72 73 69 | ve.the.same.shape.after.conversi |
| 8340 | 6f 6e 2e 20 49 6e 20 65 69 74 68 65 72 20 63 61 73 65 2c 20 65 69 74 68 65 72 0a 20 20 20 20 60 | on..In.either.case,.either.....` |
| 8360 | 78 60 2c 20 60 79 60 2c 20 61 6e 64 20 60 7a 60 20 6f 72 20 74 68 65 69 72 20 65 6c 65 6d 65 6e | x`,.`y`,.and.`z`.or.their.elemen |
| 8380 | 74 73 20 6d 75 73 74 20 73 75 70 70 6f 72 74 20 6d 75 6c 74 69 70 6c 69 63 61 74 69 6f 6e 20 61 | ts.must.support.multiplication.a |
| 83a0 | 6e 64 0a 20 20 20 20 61 64 64 69 74 69 6f 6e 20 62 6f 74 68 20 77 69 74 68 20 74 68 65 6d 73 65 | nd.....addition.both.with.themse |
| 83c0 | 6c 76 65 73 20 61 6e 64 20 77 69 74 68 20 74 68 65 20 65 6c 65 6d 65 6e 74 73 20 6f 66 20 60 63 | lves.and.with.the.elements.of.`c |
| 83e0 | 60 2e 0a 0a 20 20 20 20 49 66 20 60 63 60 20 68 61 73 20 66 65 77 65 72 20 74 68 61 6e 20 33 20 | `.......If.`c`.has.fewer.than.3. |
| 8400 | 64 69 6d 65 6e 73 69 6f 6e 73 2c 20 6f 6e 65 73 20 61 72 65 20 69 6d 70 6c 69 63 69 74 6c 79 20 | dimensions,.ones.are.implicitly. |
| 8420 | 61 70 70 65 6e 64 65 64 20 74 6f 20 69 74 73 0a 20 20 20 20 73 68 61 70 65 20 74 6f 20 6d 61 6b | appended.to.its.....shape.to.mak |
| 8440 | 65 20 69 74 20 33 2d 44 2e 20 54 68 65 20 73 68 61 70 65 20 6f 66 20 74 68 65 20 72 65 73 75 6c | e.it.3-D..The.shape.of.the.resul |
| 8460 | 74 20 77 69 6c 6c 20 62 65 20 63 2e 73 68 61 70 65 5b 33 3a 5d 20 2b 0a 20 20 20 20 78 2e 73 68 | t.will.be.c.shape[3:].+.....x.sh |
| 8480 | 61 70 65 2e 0a 0a 20 20 20 20 50 61 72 61 6d 65 74 65 72 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d | ape.......Parameters.....------- |
| 84a0 | 2d 2d 2d 0a 20 20 20 20 78 2c 20 79 2c 20 7a 20 3a 20 61 72 72 61 79 5f 6c 69 6b 65 2c 20 63 6f | ---.....x,.y,.z.:.array_like,.co |
| 84c0 | 6d 70 61 74 69 62 6c 65 20 6f 62 6a 65 63 74 0a 20 20 20 20 20 20 20 20 54 68 65 20 74 68 72 65 | mpatible.object.........The.thre |
| 84e0 | 65 20 64 69 6d 65 6e 73 69 6f 6e 61 6c 20 73 65 72 69 65 73 20 69 73 20 65 76 61 6c 75 61 74 65 | e.dimensional.series.is.evaluate |
| 8500 | 64 20 61 74 20 74 68 65 20 70 6f 69 6e 74 73 0a 20 20 20 20 20 20 20 20 60 60 28 78 2c 20 79 2c | d.at.the.points.........``(x,.y, |
| 8520 | 20 7a 29 60 60 2c 20 77 68 65 72 65 20 60 78 60 2c 20 60 79 60 2c 20 61 6e 64 20 60 7a 60 20 6d | .z)``,.where.`x`,.`y`,.and.`z`.m |
| 8540 | 75 73 74 20 68 61 76 65 20 74 68 65 20 73 61 6d 65 20 73 68 61 70 65 2e 20 20 49 66 0a 20 20 20 | ust.have.the.same.shape...If.... |
| 8560 | 20 20 20 20 20 61 6e 79 20 6f 66 20 60 78 60 2c 20 60 79 60 2c 20 6f 72 20 60 7a 60 20 69 73 20 | .....any.of.`x`,.`y`,.or.`z`.is. |
| 8580 | 61 20 6c 69 73 74 20 6f 72 20 74 75 70 6c 65 2c 20 69 74 20 69 73 20 66 69 72 73 74 20 63 6f 6e | a.list.or.tuple,.it.is.first.con |
| 85a0 | 76 65 72 74 65 64 0a 20 20 20 20 20 20 20 20 74 6f 20 61 6e 20 6e 64 61 72 72 61 79 2c 20 6f 74 | verted.........to.an.ndarray,.ot |
| 85c0 | 68 65 72 77 69 73 65 20 69 74 20 69 73 20 6c 65 66 74 20 75 6e 63 68 61 6e 67 65 64 20 61 6e 64 | herwise.it.is.left.unchanged.and |
| 85e0 | 20 69 66 20 69 74 20 69 73 6e 27 74 20 61 6e 0a 20 20 20 20 20 20 20 20 6e 64 61 72 72 61 79 20 | .if.it.isn't.an.........ndarray. |
| 8600 | 69 74 20 69 73 20 20 74 72 65 61 74 65 64 20 61 73 20 61 20 73 63 61 6c 61 72 2e 0a 20 20 20 20 | it.is..treated.as.a.scalar...... |
| 8620 | 63 20 3a 20 61 72 72 61 79 5f 6c 69 6b 65 0a 20 20 20 20 20 20 20 20 41 72 72 61 79 20 6f 66 20 | c.:.array_like.........Array.of. |
| 8640 | 63 6f 65 66 66 69 63 69 65 6e 74 73 20 6f 72 64 65 72 65 64 20 73 6f 20 74 68 61 74 20 74 68 65 | coefficients.ordered.so.that.the |
| 8660 | 20 63 6f 65 66 66 69 63 69 65 6e 74 20 6f 66 20 74 68 65 20 74 65 72 6d 20 6f 66 0a 20 20 20 20 | .coefficient.of.the.term.of..... |
| 8680 | 20 20 20 20 6d 75 6c 74 69 2d 64 65 67 72 65 65 20 69 2c 6a 2c 6b 20 69 73 20 63 6f 6e 74 61 69 | ....multi-degree.i,j,k.is.contai |
| 86a0 | 6e 65 64 20 69 6e 20 60 60 63 5b 69 2c 6a 2c 6b 5d 60 60 2e 20 49 66 20 60 63 60 20 68 61 73 20 | ned.in.``c[i,j,k]``..If.`c`.has. |
| 86c0 | 64 69 6d 65 6e 73 69 6f 6e 0a 20 20 20 20 20 20 20 20 67 72 65 61 74 65 72 20 74 68 61 6e 20 33 | dimension.........greater.than.3 |
| 86e0 | 20 74 68 65 20 72 65 6d 61 69 6e 69 6e 67 20 69 6e 64 69 63 65 73 20 65 6e 75 6d 65 72 61 74 65 | .the.remaining.indices.enumerate |
| 8700 | 20 6d 75 6c 74 69 70 6c 65 20 73 65 74 73 20 6f 66 0a 20 20 20 20 20 20 20 20 63 6f 65 66 66 69 | .multiple.sets.of.........coeffi |
| 8720 | 63 69 65 6e 74 73 2e 0a 0a 20 20 20 20 52 65 74 75 72 6e 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d | cients.......Returns.....------- |
| 8740 | 0a 20 20 20 20 76 61 6c 75 65 73 20 3a 20 6e 64 61 72 72 61 79 2c 20 63 6f 6d 70 61 74 69 62 6c | .....values.:.ndarray,.compatibl |
| 8760 | 65 20 6f 62 6a 65 63 74 0a 20 20 20 20 20 20 20 20 54 68 65 20 76 61 6c 75 65 73 20 6f 66 20 74 | e.object.........The.values.of.t |
| 8780 | 68 65 20 6d 75 6c 74 69 64 69 6d 65 6e 73 69 6f 6e 61 6c 20 70 6f 6c 79 6e 6f 6d 69 61 6c 20 6f | he.multidimensional.polynomial.o |
| 87a0 | 6e 20 70 6f 69 6e 74 73 20 66 6f 72 6d 65 64 20 77 69 74 68 0a 20 20 20 20 20 20 20 20 74 72 69 | n.points.formed.with.........tri |
| 87c0 | 70 6c 65 73 20 6f 66 20 63 6f 72 72 65 73 70 6f 6e 64 69 6e 67 20 76 61 6c 75 65 73 20 66 72 6f | ples.of.corresponding.values.fro |
| 87e0 | 6d 20 60 78 60 2c 20 60 79 60 2c 20 61 6e 64 20 60 7a 60 2e 0a 0a 20 20 20 20 53 65 65 20 41 6c | m.`x`,.`y`,.and.`z`.......See.Al |
| 8800 | 73 6f 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 6c 61 67 76 61 6c 2c 20 6c 61 67 76 | so.....--------.....lagval,.lagv |
| 8820 | 61 6c 32 64 2c 20 6c 61 67 67 72 69 64 32 64 2c 20 6c 61 67 67 72 69 64 33 64 0a 0a 20 20 20 20 | al2d,.laggrid2d,.laggrid3d...... |
| 8840 | 45 78 61 6d 70 6c 65 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 3e 3e 3e 20 66 72 | Examples.....--------.....>>>.fr |
| 8860 | 6f 6d 20 6e 75 6d 70 79 2e 70 6f 6c 79 6e 6f 6d 69 61 6c 2e 6c 61 67 75 65 72 72 65 20 69 6d 70 | om.numpy.polynomial.laguerre.imp |
| 8880 | 6f 72 74 20 6c 61 67 76 61 6c 33 64 0a 20 20 20 20 3e 3e 3e 20 63 20 3d 20 5b 5b 5b 31 2c 20 32 | ort.lagval3d.....>>>.c.=.[[[1,.2 |
| 88a0 | 5d 2c 20 5b 33 2c 20 34 5d 5d 2c 20 5b 5b 35 2c 20 36 5d 2c 20 5b 37 2c 20 38 5d 5d 5d 0a 20 20 | ],.[3,.4]],.[[5,.6],.[7,.8]]]... |
| 88c0 | 20 20 3e 3e 3e 20 6c 61 67 76 61 6c 33 64 28 31 2c 20 31 2c 20 32 2c 20 63 29 0a 20 20 20 20 2d | ..>>>.lagval3d(1,.1,.2,.c).....- |
| 88e0 | 31 2e 30 0a 0a 20 20 20 20 72 81 00 00 00 a9 04 72 7e 00 00 00 72 84 00 00 00 da 01 7a 72 38 00 | 1.0......r......r~...r......zr8. |
| 8900 | 00 00 73 04 00 00 00 20 20 20 20 72 2d 00 00 00 72 1e 00 00 00 72 1e 00 00 00 e5 03 00 00 73 1c | ..s........r-...r....r........s. |
| 8920 | 00 00 00 80 00 f4 64 01 00 0c 0e 8f 39 89 39 94 56 98 51 a0 01 a0 31 a0 61 d3 0b 28 d0 04 28 72 | ......d.....9.9.V.Q...1.a..(..(r |
| 8940 | 2e 00 00 00 63 04 00 00 00 00 00 00 00 00 00 00 00 07 00 00 00 03 00 00 00 f3 3c 00 00 00 97 00 | ....c.....................<..... |
| 8960 | 74 01 00 00 00 00 00 00 00 00 6a 02 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 74 04 | t.........j...................t. |
| 8980 | 00 00 00 00 00 00 00 00 7c 03 7c 00 7c 01 7c 02 ab 05 00 00 00 00 00 00 53 00 29 01 61 38 08 00 | ........|.|.|.|.........S.).a8.. |
| 89a0 | 00 0a 20 20 20 20 45 76 61 6c 75 61 74 65 20 61 20 33 2d 44 20 4c 61 67 75 65 72 72 65 20 73 65 | ......Evaluate.a.3-D.Laguerre.se |
| 89c0 | 72 69 65 73 20 6f 6e 20 74 68 65 20 43 61 72 74 65 73 69 61 6e 20 70 72 6f 64 75 63 74 20 6f 66 | ries.on.the.Cartesian.product.of |
| 89e0 | 20 78 2c 20 79 2c 20 61 6e 64 20 7a 2e 0a 0a 20 20 20 20 54 68 69 73 20 66 75 6e 63 74 69 6f 6e | .x,.y,.and.z.......This.function |
| 8a00 | 20 72 65 74 75 72 6e 73 20 74 68 65 20 76 61 6c 75 65 73 3a 0a 0a 20 20 20 20 2e 2e 20 6d 61 74 | .returns.the.values:.........mat |
| 8a20 | 68 3a 3a 20 70 28 61 2c 62 2c 63 29 20 3d 20 5c 73 75 6d 5f 7b 69 2c 6a 2c 6b 7d 20 63 5f 7b 69 | h::.p(a,b,c).=.\sum_{i,j,k}.c_{i |
| 8a40 | 2c 6a 2c 6b 7d 20 2a 20 4c 5f 69 28 61 29 20 2a 20 4c 5f 6a 28 62 29 20 2a 20 4c 5f 6b 28 63 29 | ,j,k}.*.L_i(a).*.L_j(b).*.L_k(c) |
| 8a60 | 0a 0a 20 20 20 20 77 68 65 72 65 20 74 68 65 20 70 6f 69 6e 74 73 20 60 60 28 61 2c 20 62 2c 20 | ......where.the.points.``(a,.b,. |
| 8a80 | 63 29 60 60 20 63 6f 6e 73 69 73 74 20 6f 66 20 61 6c 6c 20 74 72 69 70 6c 65 73 20 66 6f 72 6d | c)``.consist.of.all.triples.form |
| 8aa0 | 65 64 20 62 79 20 74 61 6b 69 6e 67 0a 20 20 20 20 60 61 60 20 66 72 6f 6d 20 60 78 60 2c 20 60 | ed.by.taking.....`a`.from.`x`,.` |
| 8ac0 | 62 60 20 66 72 6f 6d 20 60 79 60 2c 20 61 6e 64 20 60 63 60 20 66 72 6f 6d 20 60 7a 60 2e 20 54 | b`.from.`y`,.and.`c`.from.`z`..T |
| 8ae0 | 68 65 20 72 65 73 75 6c 74 69 6e 67 20 70 6f 69 6e 74 73 20 66 6f 72 6d 0a 20 20 20 20 61 20 67 | he.resulting.points.form.....a.g |
| 8b00 | 72 69 64 20 77 69 74 68 20 60 78 60 20 69 6e 20 74 68 65 20 66 69 72 73 74 20 64 69 6d 65 6e 73 | rid.with.`x`.in.the.first.dimens |
| 8b20 | 69 6f 6e 2c 20 60 79 60 20 69 6e 20 74 68 65 20 73 65 63 6f 6e 64 2c 20 61 6e 64 20 60 7a 60 20 | ion,.`y`.in.the.second,.and.`z`. |
| 8b40 | 69 6e 0a 20 20 20 20 74 68 65 20 74 68 69 72 64 2e 0a 0a 20 20 20 20 54 68 65 20 70 61 72 61 6d | in.....the.third.......The.param |
| 8b60 | 65 74 65 72 73 20 60 78 60 2c 20 60 79 60 2c 20 61 6e 64 20 60 7a 60 20 61 72 65 20 63 6f 6e 76 | eters.`x`,.`y`,.and.`z`.are.conv |
| 8b80 | 65 72 74 65 64 20 74 6f 20 61 72 72 61 79 73 20 6f 6e 6c 79 20 69 66 20 74 68 65 79 0a 20 20 20 | erted.to.arrays.only.if.they.... |
| 8ba0 | 20 61 72 65 20 74 75 70 6c 65 73 20 6f 72 20 61 20 6c 69 73 74 73 2c 20 6f 74 68 65 72 77 69 73 | .are.tuples.or.a.lists,.otherwis |
| 8bc0 | 65 20 74 68 65 79 20 61 72 65 20 74 72 65 61 74 65 64 20 61 73 20 61 20 73 63 61 6c 61 72 73 2e | e.they.are.treated.as.a.scalars. |
| 8be0 | 20 49 6e 0a 20 20 20 20 65 69 74 68 65 72 20 63 61 73 65 2c 20 65 69 74 68 65 72 20 60 78 60 2c | .In.....either.case,.either.`x`, |
| 8c00 | 20 60 79 60 2c 20 61 6e 64 20 60 7a 60 20 6f 72 20 74 68 65 69 72 20 65 6c 65 6d 65 6e 74 73 20 | .`y`,.and.`z`.or.their.elements. |
| 8c20 | 6d 75 73 74 20 73 75 70 70 6f 72 74 0a 20 20 20 20 6d 75 6c 74 69 70 6c 69 63 61 74 69 6f 6e 20 | must.support.....multiplication. |
| 8c40 | 61 6e 64 20 61 64 64 69 74 69 6f 6e 20 62 6f 74 68 20 77 69 74 68 20 74 68 65 6d 73 65 6c 76 65 | and.addition.both.with.themselve |
| 8c60 | 73 20 61 6e 64 20 77 69 74 68 20 74 68 65 20 65 6c 65 6d 65 6e 74 73 0a 20 20 20 20 6f 66 20 60 | s.and.with.the.elements.....of.` |
| 8c80 | 63 60 2e 0a 0a 20 20 20 20 49 66 20 60 63 60 20 68 61 73 20 66 65 77 65 72 20 74 68 61 6e 20 74 | c`.......If.`c`.has.fewer.than.t |
| 8ca0 | 68 72 65 65 20 64 69 6d 65 6e 73 69 6f 6e 73 2c 20 6f 6e 65 73 20 61 72 65 20 69 6d 70 6c 69 63 | hree.dimensions,.ones.are.implic |
| 8cc0 | 69 74 6c 79 20 61 70 70 65 6e 64 65 64 20 74 6f 0a 20 20 20 20 69 74 73 20 73 68 61 70 65 20 74 | itly.appended.to.....its.shape.t |
| 8ce0 | 6f 20 6d 61 6b 65 20 69 74 20 33 2d 44 2e 20 54 68 65 20 73 68 61 70 65 20 6f 66 20 74 68 65 20 | o.make.it.3-D..The.shape.of.the. |
| 8d00 | 72 65 73 75 6c 74 20 77 69 6c 6c 20 62 65 20 63 2e 73 68 61 70 65 5b 33 3a 5d 20 2b 0a 20 20 20 | result.will.be.c.shape[3:].+.... |
| 8d20 | 20 78 2e 73 68 61 70 65 20 2b 20 79 2e 73 68 61 70 65 20 2b 20 7a 2e 73 68 61 70 65 2e 0a 0a 20 | .x.shape.+.y.shape.+.z.shape.... |
| 8d40 | 20 20 20 50 61 72 61 6d 65 74 65 72 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 | ...Parameters.....----------.... |
| 8d60 | 20 78 2c 20 79 2c 20 7a 20 3a 20 61 72 72 61 79 5f 6c 69 6b 65 2c 20 63 6f 6d 70 61 74 69 62 6c | .x,.y,.z.:.array_like,.compatibl |
| 8d80 | 65 20 6f 62 6a 65 63 74 73 0a 20 20 20 20 20 20 20 20 54 68 65 20 74 68 72 65 65 20 64 69 6d 65 | e.objects.........The.three.dime |
| 8da0 | 6e 73 69 6f 6e 61 6c 20 73 65 72 69 65 73 20 69 73 20 65 76 61 6c 75 61 74 65 64 20 61 74 20 74 | nsional.series.is.evaluated.at.t |
| 8dc0 | 68 65 20 70 6f 69 6e 74 73 20 69 6e 20 74 68 65 0a 20 20 20 20 20 20 20 20 43 61 72 74 65 73 69 | he.points.in.the.........Cartesi |
| 8de0 | 61 6e 20 70 72 6f 64 75 63 74 20 6f 66 20 60 78 60 2c 20 60 79 60 2c 20 61 6e 64 20 60 7a 60 2e | an.product.of.`x`,.`y`,.and.`z`. |
| 8e00 | 20 20 49 66 20 60 78 60 2c 20 60 79 60 2c 20 6f 72 20 60 7a 60 20 69 73 20 61 0a 20 20 20 20 20 | ..If.`x`,.`y`,.or.`z`.is.a...... |
| 8e20 | 20 20 20 6c 69 73 74 20 6f 72 20 74 75 70 6c 65 2c 20 69 74 20 69 73 20 66 69 72 73 74 20 63 6f | ...list.or.tuple,.it.is.first.co |
| 8e40 | 6e 76 65 72 74 65 64 20 74 6f 20 61 6e 20 6e 64 61 72 72 61 79 2c 20 6f 74 68 65 72 77 69 73 65 | nverted.to.an.ndarray,.otherwise |
| 8e60 | 20 69 74 20 69 73 0a 20 20 20 20 20 20 20 20 6c 65 66 74 20 75 6e 63 68 61 6e 67 65 64 20 61 6e | .it.is.........left.unchanged.an |
| 8e80 | 64 2c 20 69 66 20 69 74 20 69 73 6e 27 74 20 61 6e 20 6e 64 61 72 72 61 79 2c 20 69 74 20 69 73 | d,.if.it.isn't.an.ndarray,.it.is |
| 8ea0 | 20 74 72 65 61 74 65 64 20 61 73 20 61 0a 20 20 20 20 20 20 20 20 73 63 61 6c 61 72 2e 0a 20 20 | .treated.as.a.........scalar.... |
| 8ec0 | 20 20 63 20 3a 20 61 72 72 61 79 5f 6c 69 6b 65 0a 20 20 20 20 20 20 20 20 41 72 72 61 79 20 6f | ..c.:.array_like.........Array.o |
| 8ee0 | 66 20 63 6f 65 66 66 69 63 69 65 6e 74 73 20 6f 72 64 65 72 65 64 20 73 6f 20 74 68 61 74 20 74 | f.coefficients.ordered.so.that.t |
| 8f00 | 68 65 20 63 6f 65 66 66 69 63 69 65 6e 74 73 20 66 6f 72 20 74 65 72 6d 73 20 6f 66 0a 20 20 20 | he.coefficients.for.terms.of.... |
| 8f20 | 20 20 20 20 20 64 65 67 72 65 65 20 69 2c 6a 20 61 72 65 20 63 6f 6e 74 61 69 6e 65 64 20 69 6e | .....degree.i,j.are.contained.in |
| 8f40 | 20 60 60 63 5b 69 2c 6a 5d 60 60 2e 20 49 66 20 60 63 60 20 68 61 73 20 64 69 6d 65 6e 73 69 6f | .``c[i,j]``..If.`c`.has.dimensio |
| 8f60 | 6e 0a 20 20 20 20 20 20 20 20 67 72 65 61 74 65 72 20 74 68 61 6e 20 74 77 6f 20 74 68 65 20 72 | n.........greater.than.two.the.r |
| 8f80 | 65 6d 61 69 6e 69 6e 67 20 69 6e 64 69 63 65 73 20 65 6e 75 6d 65 72 61 74 65 20 6d 75 6c 74 69 | emaining.indices.enumerate.multi |
| 8fa0 | 70 6c 65 20 73 65 74 73 20 6f 66 0a 20 20 20 20 20 20 20 20 63 6f 65 66 66 69 63 69 65 6e 74 73 | ple.sets.of.........coefficients |
| 8fc0 | 2e 0a 0a 20 20 20 20 52 65 74 75 72 6e 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 76 | .......Returns.....-------.....v |
| 8fe0 | 61 6c 75 65 73 20 3a 20 6e 64 61 72 72 61 79 2c 20 63 6f 6d 70 61 74 69 62 6c 65 20 6f 62 6a 65 | alues.:.ndarray,.compatible.obje |
| 9000 | 63 74 0a 20 20 20 20 20 20 20 20 54 68 65 20 76 61 6c 75 65 73 20 6f 66 20 74 68 65 20 74 77 6f | ct.........The.values.of.the.two |
| 9020 | 20 64 69 6d 65 6e 73 69 6f 6e 61 6c 20 70 6f 6c 79 6e 6f 6d 69 61 6c 20 61 74 20 70 6f 69 6e 74 | .dimensional.polynomial.at.point |
| 9040 | 73 20 69 6e 20 74 68 65 20 43 61 72 74 65 73 69 61 6e 0a 20 20 20 20 20 20 20 20 70 72 6f 64 75 | s.in.the.Cartesian.........produ |
| 9060 | 63 74 20 6f 66 20 60 78 60 20 61 6e 64 20 60 79 60 2e 0a 0a 20 20 20 20 53 65 65 20 41 6c 73 6f | ct.of.`x`.and.`y`.......See.Also |
| 9080 | 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 6c 61 67 76 61 6c 2c 20 6c 61 67 76 61 6c | .....--------.....lagval,.lagval |
| 90a0 | 32 64 2c 20 6c 61 67 67 72 69 64 32 64 2c 20 6c 61 67 76 61 6c 33 64 0a 0a 20 20 20 20 45 78 61 | 2d,.laggrid2d,.lagval3d......Exa |
| 90c0 | 6d 70 6c 65 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 3e 3e 3e 20 66 72 6f 6d 20 | mples.....--------.....>>>.from. |
| 90e0 | 6e 75 6d 70 79 2e 70 6f 6c 79 6e 6f 6d 69 61 6c 2e 6c 61 67 75 65 72 72 65 20 69 6d 70 6f 72 74 | numpy.polynomial.laguerre.import |
| 9100 | 20 6c 61 67 67 72 69 64 33 64 0a 20 20 20 20 3e 3e 3e 20 63 20 3d 20 5b 5b 5b 31 2c 20 32 5d 2c | .laggrid3d.....>>>.c.=.[[[1,.2], |
| 9120 | 20 5b 33 2c 20 34 5d 5d 2c 20 5b 5b 35 2c 20 36 5d 2c 20 5b 37 2c 20 38 5d 5d 5d 0a 20 20 20 20 | .[3,.4]],.[[5,.6],.[7,.8]]]..... |
| 9140 | 3e 3e 3e 20 6c 61 67 67 72 69 64 33 64 28 5b 30 2c 20 31 5d 2c 20 5b 30 2c 20 31 5d 2c 20 5b 32 | >>>.laggrid3d([0,.1],.[0,.1],.[2 |
| 9160 | 2c 20 34 5d 2c 20 63 29 0a 20 20 20 20 61 72 72 61 79 28 5b 5b 5b 20 2d 34 2e 2c 20 2d 34 34 2e | ,.4],.c).....array([[[.-4.,.-44. |
| 9180 | 5d 2c 0a 20 20 20 20 20 20 20 20 20 20 20 20 5b 20 2d 32 2e 2c 20 2d 31 38 2e 5d 5d 2c 0a 20 20 | ],.............[.-2.,.-18.]],... |
| 91a0 | 20 20 20 20 20 20 20 20 20 5b 5b 20 2d 32 2e 2c 20 2d 31 34 2e 5d 2c 0a 20 20 20 20 20 20 20 20 | .........[[.-2.,.-14.],......... |
| 91c0 | 20 20 20 20 5b 20 2d 31 2e 2c 20 20 2d 35 2e 5d 5d 5d 29 0a 0a 20 20 20 20 72 86 00 00 00 72 89 | ....[.-1.,..-5.]]])......r....r. |
| 91e0 | 00 00 00 73 04 00 00 00 20 20 20 20 72 2d 00 00 00 72 20 00 00 00 72 20 00 00 00 1a 04 00 00 73 | ...s........r-...r....r........s |
| 9200 | 1c 00 00 00 80 00 f4 74 01 00 0c 0e 8f 3a 89 3a 94 66 98 61 a0 11 a0 41 a0 71 d3 0b 29 d0 04 29 | .......t.....:.:.f.a...A.q..)..) |
| 9220 | 72 2e 00 00 00 63 02 00 00 00 00 00 00 00 00 00 00 00 05 00 00 00 03 00 00 00 f3 c8 01 00 00 97 | r....c.......................... |
| 9240 | 00 74 01 00 00 00 00 00 00 00 00 6a 02 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 7c | .t.........j...................| |
| 9260 | 01 64 01 ab 02 00 00 00 00 00 00 7d 02 7c 02 64 02 6b 02 00 00 72 0b 74 05 00 00 00 00 00 00 00 | .d.........}.|.d.k...r.t........ |
| 9280 | 00 64 03 ab 01 00 00 00 00 00 00 82 01 74 07 00 00 00 00 00 00 00 00 6a 08 00 00 00 00 00 00 00 | .d...........t.........j........ |
| 92a0 | 00 00 00 00 00 00 00 00 00 00 00 7c 00 64 04 64 05 ac 06 ab 03 00 00 00 00 00 00 64 07 7a 00 00 | ...........|.d.d...........d.z.. |
| 92c0 | 00 7d 00 7c 02 64 05 7a 00 00 00 66 01 7c 00 6a 0a 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 | .}.|.d.z...f.|.j................ |
| 92e0 | 00 00 00 7a 00 00 00 7d 03 7c 00 6a 0c 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 7d | ...z...}.|.j...................} |
| 9300 | 04 74 07 00 00 00 00 00 00 00 00 6a 0e 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 7c | .t.........j...................| |
| 9320 | 03 7c 04 ac 08 ab 02 00 00 00 00 00 00 7d 05 7c 00 64 02 7a 05 00 00 64 05 7a 00 00 00 7c 05 64 | .|...........}.|.d.z...d.z...|.d |
| 9340 | 02 3c 00 00 00 7c 02 64 02 6b 44 00 00 72 45 64 05 7c 00 7a 0a 00 00 7c 05 64 05 3c 00 00 00 74 | .<...|.d.kD..rEd.|.z...|.d.<...t |
| 9360 | 11 00 00 00 00 00 00 00 00 64 09 7c 02 64 05 7a 00 00 00 ab 02 00 00 00 00 00 00 44 00 5d 2b 00 | .........d.|.d.z...........D.]+. |
| 9380 | 00 7d 06 7c 05 7c 06 64 05 7a 0a 00 00 19 00 00 00 64 09 7c 06 7a 05 00 00 64 05 7a 0a 00 00 7c | .}.|.|.d.z.......d.|.z...d.z...| |
| 93a0 | 00 7a 0a 00 00 7a 05 00 00 7c 05 7c 06 64 09 7a 0a 00 00 19 00 00 00 7c 06 64 05 7a 0a 00 00 7a | .z...z...|.|.d.z.......|.d.z...z |
| 93c0 | 05 00 00 7a 0a 00 00 7c 06 7a 0b 00 00 7c 05 7c 06 3c 00 00 00 8c 2d 04 00 74 07 00 00 00 00 00 | ...z...|.z...|.|.<....-..t...... |
| 93e0 | 00 00 00 6a 12 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 7c 05 64 02 64 0a ab 03 00 | ...j...................|.d.d.... |
| 9400 | 00 00 00 00 00 53 00 29 0b 61 85 06 00 00 50 73 65 75 64 6f 2d 56 61 6e 64 65 72 6d 6f 6e 64 65 | .....S.).a....Pseudo-Vandermonde |
| 9420 | 20 6d 61 74 72 69 78 20 6f 66 20 67 69 76 65 6e 20 64 65 67 72 65 65 2e 0a 0a 20 20 20 20 52 65 | .matrix.of.given.degree.......Re |
| 9440 | 74 75 72 6e 73 20 74 68 65 20 70 73 65 75 64 6f 2d 56 61 6e 64 65 72 6d 6f 6e 64 65 20 6d 61 74 | turns.the.pseudo-Vandermonde.mat |
| 9460 | 72 69 78 20 6f 66 20 64 65 67 72 65 65 20 60 64 65 67 60 20 61 6e 64 20 73 61 6d 70 6c 65 20 70 | rix.of.degree.`deg`.and.sample.p |
| 9480 | 6f 69 6e 74 73 0a 20 20 20 20 60 78 60 2e 20 54 68 65 20 70 73 65 75 64 6f 2d 56 61 6e 64 65 72 | oints.....`x`..The.pseudo-Vander |
| 94a0 | 6d 6f 6e 64 65 20 6d 61 74 72 69 78 20 69 73 20 64 65 66 69 6e 65 64 20 62 79 0a 0a 20 20 20 20 | monde.matrix.is.defined.by...... |
| 94c0 | 2e 2e 20 6d 61 74 68 3a 3a 20 56 5b 2e 2e 2e 2c 20 69 5d 20 3d 20 4c 5f 69 28 78 29 0a 0a 20 20 | ...math::.V[...,.i].=.L_i(x).... |
| 94e0 | 20 20 77 68 65 72 65 20 60 60 30 20 3c 3d 20 69 20 3c 3d 20 64 65 67 60 60 2e 20 54 68 65 20 6c | ..where.``0.<=.i.<=.deg``..The.l |
| 9500 | 65 61 64 69 6e 67 20 69 6e 64 69 63 65 73 20 6f 66 20 60 56 60 20 69 6e 64 65 78 20 74 68 65 20 | eading.indices.of.`V`.index.the. |
| 9520 | 65 6c 65 6d 65 6e 74 73 20 6f 66 0a 20 20 20 20 60 78 60 20 61 6e 64 20 74 68 65 20 6c 61 73 74 | elements.of.....`x`.and.the.last |
| 9540 | 20 69 6e 64 65 78 20 69 73 20 74 68 65 20 64 65 67 72 65 65 20 6f 66 20 74 68 65 20 4c 61 67 75 | .index.is.the.degree.of.the.Lagu |
| 9560 | 65 72 72 65 20 70 6f 6c 79 6e 6f 6d 69 61 6c 2e 0a 0a 20 20 20 20 49 66 20 60 63 60 20 69 73 20 | erre.polynomial.......If.`c`.is. |
| 9580 | 61 20 31 2d 44 20 61 72 72 61 79 20 6f 66 20 63 6f 65 66 66 69 63 69 65 6e 74 73 20 6f 66 20 6c | a.1-D.array.of.coefficients.of.l |
| 95a0 | 65 6e 67 74 68 20 60 60 6e 20 2b 20 31 60 60 20 61 6e 64 20 60 56 60 20 69 73 20 74 68 65 0a 20 | ength.``n.+.1``.and.`V`.is.the.. |
| 95c0 | 20 20 20 61 72 72 61 79 20 60 60 56 20 3d 20 6c 61 67 76 61 6e 64 65 72 28 78 2c 20 6e 29 60 60 | ...array.``V.=.lagvander(x,.n)`` |
| 95e0 | 2c 20 74 68 65 6e 20 60 60 6e 70 2e 64 6f 74 28 56 2c 20 63 29 60 60 20 61 6e 64 0a 20 20 20 20 | ,.then.``np.dot(V,.c)``.and..... |
| 9600 | 60 60 6c 61 67 76 61 6c 28 78 2c 20 63 29 60 60 20 61 72 65 20 74 68 65 20 73 61 6d 65 20 75 70 | ``lagval(x,.c)``.are.the.same.up |
| 9620 | 20 74 6f 20 72 6f 75 6e 64 6f 66 66 2e 20 54 68 69 73 20 65 71 75 69 76 61 6c 65 6e 63 65 20 69 | .to.roundoff..This.equivalence.i |
| 9640 | 73 0a 20 20 20 20 75 73 65 66 75 6c 20 62 6f 74 68 20 66 6f 72 20 6c 65 61 73 74 20 73 71 75 61 | s.....useful.both.for.least.squa |
| 9660 | 72 65 73 20 66 69 74 74 69 6e 67 20 61 6e 64 20 66 6f 72 20 74 68 65 20 65 76 61 6c 75 61 74 69 | res.fitting.and.for.the.evaluati |
| 9680 | 6f 6e 20 6f 66 20 61 20 6c 61 72 67 65 0a 20 20 20 20 6e 75 6d 62 65 72 20 6f 66 20 4c 61 67 75 | on.of.a.large.....number.of.Lagu |
| 96a0 | 65 72 72 65 20 73 65 72 69 65 73 20 6f 66 20 74 68 65 20 73 61 6d 65 20 64 65 67 72 65 65 20 61 | erre.series.of.the.same.degree.a |
| 96c0 | 6e 64 20 73 61 6d 70 6c 65 20 70 6f 69 6e 74 73 2e 0a 0a 20 20 20 20 50 61 72 61 6d 65 74 65 72 | nd.sample.points.......Parameter |
| 96e0 | 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 78 20 3a 20 61 72 72 61 79 5f 6c | s.....----------.....x.:.array_l |
| 9700 | 69 6b 65 0a 20 20 20 20 20 20 20 20 41 72 72 61 79 20 6f 66 20 70 6f 69 6e 74 73 2e 20 54 68 65 | ike.........Array.of.points..The |
| 9720 | 20 64 74 79 70 65 20 69 73 20 63 6f 6e 76 65 72 74 65 64 20 74 6f 20 66 6c 6f 61 74 36 34 20 6f | .dtype.is.converted.to.float64.o |
| 9740 | 72 20 63 6f 6d 70 6c 65 78 31 32 38 0a 20 20 20 20 20 20 20 20 64 65 70 65 6e 64 69 6e 67 20 6f | r.complex128.........depending.o |
| 9760 | 6e 20 77 68 65 74 68 65 72 20 61 6e 79 20 6f 66 20 74 68 65 20 65 6c 65 6d 65 6e 74 73 20 61 72 | n.whether.any.of.the.elements.ar |
| 9780 | 65 20 63 6f 6d 70 6c 65 78 2e 20 49 66 20 60 78 60 20 69 73 0a 20 20 20 20 20 20 20 20 73 63 61 | e.complex..If.`x`.is.........sca |
| 97a0 | 6c 61 72 20 69 74 20 69 73 20 63 6f 6e 76 65 72 74 65 64 20 74 6f 20 61 20 31 2d 44 20 61 72 72 | lar.it.is.converted.to.a.1-D.arr |
| 97c0 | 61 79 2e 0a 20 20 20 20 64 65 67 20 3a 20 69 6e 74 0a 20 20 20 20 20 20 20 20 44 65 67 72 65 65 | ay......deg.:.int.........Degree |
| 97e0 | 20 6f 66 20 74 68 65 20 72 65 73 75 6c 74 69 6e 67 20 6d 61 74 72 69 78 2e 0a 0a 20 20 20 20 52 | .of.the.resulting.matrix.......R |
| 9800 | 65 74 75 72 6e 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 76 61 6e 64 65 72 20 3a 20 | eturns.....-------.....vander.:. |
| 9820 | 6e 64 61 72 72 61 79 0a 20 20 20 20 20 20 20 20 54 68 65 20 70 73 65 75 64 6f 2d 56 61 6e 64 65 | ndarray.........The.pseudo-Vande |
| 9840 | 72 6d 6f 6e 64 65 20 6d 61 74 72 69 78 2e 20 54 68 65 20 73 68 61 70 65 20 6f 66 20 74 68 65 20 | rmonde.matrix..The.shape.of.the. |
| 9860 | 72 65 74 75 72 6e 65 64 20 6d 61 74 72 69 78 20 69 73 0a 20 20 20 20 20 20 20 20 60 60 78 2e 73 | returned.matrix.is.........``x.s |
| 9880 | 68 61 70 65 20 2b 20 28 64 65 67 20 2b 20 31 2c 29 60 60 2c 20 77 68 65 72 65 20 54 68 65 20 6c | hape.+.(deg.+.1,)``,.where.The.l |
| 98a0 | 61 73 74 20 69 6e 64 65 78 20 69 73 20 74 68 65 20 64 65 67 72 65 65 20 6f 66 20 74 68 65 0a 20 | ast.index.is.the.degree.of.the.. |
| 98c0 | 20 20 20 20 20 20 20 63 6f 72 72 65 73 70 6f 6e 64 69 6e 67 20 4c 61 67 75 65 72 72 65 20 70 6f | .......corresponding.Laguerre.po |
| 98e0 | 6c 79 6e 6f 6d 69 61 6c 2e 20 20 54 68 65 20 64 74 79 70 65 20 77 69 6c 6c 20 62 65 20 74 68 65 | lynomial...The.dtype.will.be.the |
| 9900 | 20 73 61 6d 65 20 61 73 0a 20 20 20 20 20 20 20 20 74 68 65 20 63 6f 6e 76 65 72 74 65 64 20 60 | .same.as.........the.converted.` |
| 9920 | 78 60 2e 0a 0a 20 20 20 20 45 78 61 6d 70 6c 65 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 | x`.......Examples.....--------.. |
| 9940 | 20 20 20 3e 3e 3e 20 69 6d 70 6f 72 74 20 6e 75 6d 70 79 20 61 73 20 6e 70 0a 20 20 20 20 3e 3e | ...>>>.import.numpy.as.np.....>> |
| 9960 | 3e 20 66 72 6f 6d 20 6e 75 6d 70 79 2e 70 6f 6c 79 6e 6f 6d 69 61 6c 2e 6c 61 67 75 65 72 72 65 | >.from.numpy.polynomial.laguerre |
| 9980 | 20 69 6d 70 6f 72 74 20 6c 61 67 76 61 6e 64 65 72 0a 20 20 20 20 3e 3e 3e 20 78 20 3d 20 6e 70 | .import.lagvander.....>>>.x.=.np |
| 99a0 | 2e 61 72 72 61 79 28 5b 30 2c 20 31 2c 20 32 5d 29 0a 20 20 20 20 3e 3e 3e 20 6c 61 67 76 61 6e | .array([0,.1,.2]).....>>>.lagvan |
| 99c0 | 64 65 72 28 78 2c 20 33 29 0a 20 20 20 20 61 72 72 61 79 28 5b 5b 20 31 2e 20 20 20 20 20 20 20 | der(x,.3).....array([[.1........ |
| 99e0 | 20 2c 20 20 31 2e 20 20 20 20 20 20 20 20 2c 20 20 31 2e 20 20 20 20 20 20 20 20 2c 20 20 31 2e | .,..1.........,..1.........,..1. |
| 9a00 | 20 20 20 20 20 20 20 20 5d 2c 0a 20 20 20 20 20 20 20 20 20 20 20 5b 20 31 2e 20 20 20 20 20 20 | ........],............[.1....... |
| 9a20 | 20 20 2c 20 20 30 2e 20 20 20 20 20 20 20 20 2c 20 2d 30 2e 35 20 20 20 20 20 20 20 2c 20 2d 30 | ..,..0.........,.-0.5.......,.-0 |
| 9a40 | 2e 36 36 36 36 36 36 36 37 5d 2c 0a 20 20 20 20 20 20 20 20 20 20 20 5b 20 31 2e 20 20 20 20 20 | .66666667],............[.1...... |
| 9a60 | 20 20 20 2c 20 2d 31 2e 20 20 20 20 20 20 20 20 2c 20 2d 31 2e 20 20 20 20 20 20 20 20 2c 20 2d | ...,.-1.........,.-1.........,.- |
| 9a80 | 30 2e 33 33 33 33 33 33 33 33 5d 5d 29 0a 0a 20 20 20 20 da 03 64 65 67 72 02 00 00 00 7a 18 64 | 0.33333333]])........degr....z.d |
| 9aa0 | 65 67 20 6d 75 73 74 20 62 65 20 6e 6f 6e 2d 6e 65 67 61 74 69 76 65 4e 72 04 00 00 00 29 02 72 | eg.must.be.non-negativeNr....).r |
| 9ac0 | 61 00 00 00 72 60 00 00 00 72 3e 00 00 00 72 50 00 00 00 72 34 00 00 00 72 27 00 00 00 29 0a 72 | a...r`...r>...rP...r4...r'...).r |
| 9ae0 | 28 00 00 00 72 67 00 00 00 72 68 00 00 00 72 41 00 00 00 72 42 00 00 00 72 6b 00 00 00 72 51 00 | (...rg...rh...rA...rB...rk...rQ. |
| 9b00 | 00 00 72 52 00 00 00 72 37 00 00 00 72 6a 00 00 00 29 07 72 7e 00 00 00 72 8d 00 00 00 da 04 69 | ..rR...r7...rj...).r~...r......i |
| 9b20 | 64 65 67 da 04 64 69 6d 73 da 04 64 74 79 70 da 01 76 72 3c 00 00 00 73 07 00 00 00 20 20 20 20 | deg..dims..dtyp..vr<...s........ |
| 9b40 | 20 20 20 72 2d 00 00 00 72 18 00 00 00 72 18 00 00 00 57 04 00 00 73 fd 00 00 00 80 00 f4 5a 01 | ...r-...r....r....W...s.......Z. |
| 9b60 | 00 0c 0e 8f 3a 89 3a 90 63 98 35 d3 0b 21 80 44 d8 07 0b 88 61 82 78 dc 0e 18 d0 19 33 d3 0e 34 | ....:.:.c.5..!.D....a.x.....3..4 |
| 9b80 | d0 08 34 e4 08 0a 8f 08 89 08 90 11 98 14 a0 51 d4 08 27 a8 23 d1 08 2d 80 41 d8 0c 10 90 31 89 | ..4............Q..'.#..-.A....1. |
| 9ba0 | 48 88 3b 98 11 9f 17 99 17 d1 0b 20 80 44 d8 0b 0c 8f 37 89 37 80 44 dc 08 0a 8f 08 89 08 90 14 | H.;..........D....7.7.D......... |
| 9bc0 | 98 54 d4 08 22 80 41 d8 0b 0c 88 71 89 35 90 31 89 39 80 41 80 61 81 44 d8 07 0b 88 61 82 78 d8 | .T..".A....q.5.1.9.A.a.D....a.x. |
| 9be0 | 0f 10 90 31 89 75 88 01 88 21 89 04 dc 11 16 90 71 98 24 a0 11 99 28 d3 11 23 f2 00 01 09 49 01 | ...1.u...!......q.$...(..#....I. |
| 9c00 | 88 41 d8 14 15 90 61 98 21 91 65 91 48 a0 01 a0 41 a1 05 a8 01 a1 09 a8 41 a1 0d d1 14 2e b0 11 | .A....a.!.e.H...A.......A....... |
| 9c20 | b0 31 b0 71 b1 35 b1 18 b8 51 c0 11 b9 55 d1 31 43 d1 14 43 c0 71 d1 13 48 88 41 88 61 8a 44 f0 | .1.q.5...Q...U.1C..C.q..H.A.a.D. |
| 9c40 | 03 01 09 49 01 e4 0b 0d 8f 3b 89 3b 90 71 98 21 98 52 d3 0b 20 d0 04 20 72 2e 00 00 00 63 03 00 | ...I.....;.;.q.!.R......r....c.. |
| 9c60 | 00 00 00 00 00 00 00 00 00 00 05 00 00 00 03 00 00 00 f3 48 00 00 00 97 00 74 01 00 00 00 00 00 | ...................H.....t...... |
| 9c80 | 00 00 00 6a 02 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 74 04 00 00 00 00 00 00 00 | ...j...................t........ |
| 9ca0 | 00 74 04 00 00 00 00 00 00 00 00 66 02 7c 00 7c 01 66 02 7c 02 ab 03 00 00 00 00 00 00 53 00 29 | .t.........f.|.|.f.|.........S.) |
| 9cc0 | 01 61 54 07 00 00 50 73 65 75 64 6f 2d 56 61 6e 64 65 72 6d 6f 6e 64 65 20 6d 61 74 72 69 78 20 | .aT...Pseudo-Vandermonde.matrix. |
| 9ce0 | 6f 66 20 67 69 76 65 6e 20 64 65 67 72 65 65 73 2e 0a 0a 20 20 20 20 52 65 74 75 72 6e 73 20 74 | of.given.degrees.......Returns.t |
| 9d00 | 68 65 20 70 73 65 75 64 6f 2d 56 61 6e 64 65 72 6d 6f 6e 64 65 20 6d 61 74 72 69 78 20 6f 66 20 | he.pseudo-Vandermonde.matrix.of. |
| 9d20 | 64 65 67 72 65 65 73 20 60 64 65 67 60 20 61 6e 64 20 73 61 6d 70 6c 65 0a 20 20 20 20 70 6f 69 | degrees.`deg`.and.sample.....poi |
| 9d40 | 6e 74 73 20 60 60 28 78 2c 20 79 29 60 60 2e 20 54 68 65 20 70 73 65 75 64 6f 2d 56 61 6e 64 65 | nts.``(x,.y)``..The.pseudo-Vande |
| 9d60 | 72 6d 6f 6e 64 65 20 6d 61 74 72 69 78 20 69 73 20 64 65 66 69 6e 65 64 20 62 79 0a 0a 20 20 20 | rmonde.matrix.is.defined.by..... |
| 9d80 | 20 2e 2e 20 6d 61 74 68 3a 3a 20 56 5b 2e 2e 2e 2c 20 28 64 65 67 5b 31 5d 20 2b 20 31 29 2a 69 | ....math::.V[...,.(deg[1].+.1)*i |
| 9da0 | 20 2b 20 6a 5d 20 3d 20 4c 5f 69 28 78 29 20 2a 20 4c 5f 6a 28 79 29 2c 0a 0a 20 20 20 20 77 68 | .+.j].=.L_i(x).*.L_j(y),......wh |
| 9dc0 | 65 72 65 20 60 60 30 20 3c 3d 20 69 20 3c 3d 20 64 65 67 5b 30 5d 60 60 20 61 6e 64 20 60 60 30 | ere.``0.<=.i.<=.deg[0]``.and.``0 |
| 9de0 | 20 3c 3d 20 6a 20 3c 3d 20 64 65 67 5b 31 5d 60 60 2e 20 54 68 65 20 6c 65 61 64 69 6e 67 20 69 | .<=.j.<=.deg[1]``..The.leading.i |
| 9e00 | 6e 64 69 63 65 73 20 6f 66 0a 20 20 20 20 60 56 60 20 69 6e 64 65 78 20 74 68 65 20 70 6f 69 6e | ndices.of.....`V`.index.the.poin |
| 9e20 | 74 73 20 60 60 28 78 2c 20 79 29 60 60 20 61 6e 64 20 74 68 65 20 6c 61 73 74 20 69 6e 64 65 78 | ts.``(x,.y)``.and.the.last.index |
| 9e40 | 20 65 6e 63 6f 64 65 73 20 74 68 65 20 64 65 67 72 65 65 73 20 6f 66 0a 20 20 20 20 74 68 65 20 | .encodes.the.degrees.of.....the. |
| 9e60 | 4c 61 67 75 65 72 72 65 20 70 6f 6c 79 6e 6f 6d 69 61 6c 73 2e 0a 0a 20 20 20 20 49 66 20 60 60 | Laguerre.polynomials.......If.`` |
| 9e80 | 56 20 3d 20 6c 61 67 76 61 6e 64 65 72 32 64 28 78 2c 20 79 2c 20 5b 78 64 65 67 2c 20 79 64 65 | V.=.lagvander2d(x,.y,.[xdeg,.yde |
| 9ea0 | 67 5d 29 60 60 2c 20 74 68 65 6e 20 74 68 65 20 63 6f 6c 75 6d 6e 73 20 6f 66 20 60 56 60 0a 20 | g])``,.then.the.columns.of.`V`.. |
| 9ec0 | 20 20 20 63 6f 72 72 65 73 70 6f 6e 64 20 74 6f 20 74 68 65 20 65 6c 65 6d 65 6e 74 73 20 6f 66 | ...correspond.to.the.elements.of |
| 9ee0 | 20 61 20 32 2d 44 20 63 6f 65 66 66 69 63 69 65 6e 74 20 61 72 72 61 79 20 60 63 60 20 6f 66 20 | .a.2-D.coefficient.array.`c`.of. |
| 9f00 | 73 68 61 70 65 0a 20 20 20 20 28 78 64 65 67 20 2b 20 31 2c 20 79 64 65 67 20 2b 20 31 29 20 69 | shape.....(xdeg.+.1,.ydeg.+.1).i |
| 9f20 | 6e 20 74 68 65 20 6f 72 64 65 72 0a 0a 20 20 20 20 2e 2e 20 6d 61 74 68 3a 3a 20 63 5f 7b 30 30 | n.the.order.........math::.c_{00 |
| 9f40 | 7d 2c 20 63 5f 7b 30 31 7d 2c 20 63 5f 7b 30 32 7d 20 2e 2e 2e 20 2c 20 63 5f 7b 31 30 7d 2c 20 | },.c_{01},.c_{02}.....,.c_{10},. |
| 9f60 | 63 5f 7b 31 31 7d 2c 20 63 5f 7b 31 32 7d 20 2e 2e 2e 0a 0a 20 20 20 20 61 6e 64 20 60 60 6e 70 | c_{11},.c_{12}..........and.``np |
| 9f80 | 2e 64 6f 74 28 56 2c 20 63 2e 66 6c 61 74 29 60 60 20 61 6e 64 20 60 60 6c 61 67 76 61 6c 32 64 | .dot(V,.c.flat)``.and.``lagval2d |
| 9fa0 | 28 78 2c 20 79 2c 20 63 29 60 60 20 77 69 6c 6c 20 62 65 20 74 68 65 20 73 61 6d 65 0a 20 20 20 | (x,.y,.c)``.will.be.the.same.... |
| 9fc0 | 20 75 70 20 74 6f 20 72 6f 75 6e 64 6f 66 66 2e 20 54 68 69 73 20 65 71 75 69 76 61 6c 65 6e 63 | .up.to.roundoff..This.equivalenc |
| 9fe0 | 65 20 69 73 20 75 73 65 66 75 6c 20 62 6f 74 68 20 66 6f 72 20 6c 65 61 73 74 20 73 71 75 61 72 | e.is.useful.both.for.least.squar |
| a000 | 65 73 0a 20 20 20 20 66 69 74 74 69 6e 67 20 61 6e 64 20 66 6f 72 20 74 68 65 20 65 76 61 6c 75 | es.....fitting.and.for.the.evalu |
| a020 | 61 74 69 6f 6e 20 6f 66 20 61 20 6c 61 72 67 65 20 6e 75 6d 62 65 72 20 6f 66 20 32 2d 44 20 4c | ation.of.a.large.number.of.2-D.L |
| a040 | 61 67 75 65 72 72 65 0a 20 20 20 20 73 65 72 69 65 73 20 6f 66 20 74 68 65 20 73 61 6d 65 20 64 | aguerre.....series.of.the.same.d |
| a060 | 65 67 72 65 65 73 20 61 6e 64 20 73 61 6d 70 6c 65 20 70 6f 69 6e 74 73 2e 0a 0a 20 20 20 20 50 | egrees.and.sample.points.......P |
| a080 | 61 72 61 6d 65 74 65 72 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 78 2c 20 | arameters.....----------.....x,. |
| a0a0 | 79 20 3a 20 61 72 72 61 79 5f 6c 69 6b 65 0a 20 20 20 20 20 20 20 20 41 72 72 61 79 73 20 6f 66 | y.:.array_like.........Arrays.of |
| a0c0 | 20 70 6f 69 6e 74 20 63 6f 6f 72 64 69 6e 61 74 65 73 2c 20 61 6c 6c 20 6f 66 20 74 68 65 20 73 | .point.coordinates,.all.of.the.s |
| a0e0 | 61 6d 65 20 73 68 61 70 65 2e 20 54 68 65 20 64 74 79 70 65 73 0a 20 20 20 20 20 20 20 20 77 69 | ame.shape..The.dtypes.........wi |
| a100 | 6c 6c 20 62 65 20 63 6f 6e 76 65 72 74 65 64 20 74 6f 20 65 69 74 68 65 72 20 66 6c 6f 61 74 36 | ll.be.converted.to.either.float6 |
| a120 | 34 20 6f 72 20 63 6f 6d 70 6c 65 78 31 32 38 20 64 65 70 65 6e 64 69 6e 67 20 6f 6e 0a 20 20 20 | 4.or.complex128.depending.on.... |
| a140 | 20 20 20 20 20 77 68 65 74 68 65 72 20 61 6e 79 20 6f 66 20 74 68 65 20 65 6c 65 6d 65 6e 74 73 | .....whether.any.of.the.elements |
| a160 | 20 61 72 65 20 63 6f 6d 70 6c 65 78 2e 20 53 63 61 6c 61 72 73 20 61 72 65 20 63 6f 6e 76 65 72 | .are.complex..Scalars.are.conver |
| a180 | 74 65 64 20 74 6f 0a 20 20 20 20 20 20 20 20 31 2d 44 20 61 72 72 61 79 73 2e 0a 20 20 20 20 64 | ted.to.........1-D.arrays......d |
| a1a0 | 65 67 20 3a 20 6c 69 73 74 20 6f 66 20 69 6e 74 73 0a 20 20 20 20 20 20 20 20 4c 69 73 74 20 6f | eg.:.list.of.ints.........List.o |
| a1c0 | 66 20 6d 61 78 69 6d 75 6d 20 64 65 67 72 65 65 73 20 6f 66 20 74 68 65 20 66 6f 72 6d 20 5b 78 | f.maximum.degrees.of.the.form.[x |
| a1e0 | 5f 64 65 67 2c 20 79 5f 64 65 67 5d 2e 0a 0a 20 20 20 20 52 65 74 75 72 6e 73 0a 20 20 20 20 2d | _deg,.y_deg].......Returns.....- |
| a200 | 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 76 61 6e 64 65 72 32 64 20 3a 20 6e 64 61 72 72 61 79 0a 20 20 | ------.....vander2d.:.ndarray... |
| a220 | 20 20 20 20 20 20 54 68 65 20 73 68 61 70 65 20 6f 66 20 74 68 65 20 72 65 74 75 72 6e 65 64 20 | ......The.shape.of.the.returned. |
| a240 | 6d 61 74 72 69 78 20 69 73 20 60 60 78 2e 73 68 61 70 65 20 2b 20 28 6f 72 64 65 72 2c 29 60 60 | matrix.is.``x.shape.+.(order,)`` |
| a260 | 2c 20 77 68 65 72 65 0a 20 20 20 20 20 20 20 20 3a 6d 61 74 68 3a 60 6f 72 64 65 72 20 3d 20 28 | ,.where.........:math:`order.=.( |
| a280 | 64 65 67 5b 30 5d 2b 31 29 2a 28 64 65 67 5b 31 5d 2b 31 29 60 2e 20 20 54 68 65 20 64 74 79 70 | deg[0]+1)*(deg[1]+1)`...The.dtyp |
| a2a0 | 65 20 77 69 6c 6c 20 62 65 20 74 68 65 20 73 61 6d 65 0a 20 20 20 20 20 20 20 20 61 73 20 74 68 | e.will.be.the.same.........as.th |
| a2c0 | 65 20 63 6f 6e 76 65 72 74 65 64 20 60 78 60 20 61 6e 64 20 60 79 60 2e 0a 0a 20 20 20 20 53 65 | e.converted.`x`.and.`y`.......Se |
| a2e0 | 65 20 41 6c 73 6f 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 6c 61 67 76 61 6e 64 65 | e.Also.....--------.....lagvande |
| a300 | 72 2c 20 6c 61 67 76 61 6e 64 65 72 33 64 2c 20 6c 61 67 76 61 6c 32 64 2c 20 6c 61 67 76 61 6c | r,.lagvander3d,.lagval2d,.lagval |
| a320 | 33 64 0a 0a 20 20 20 20 45 78 61 6d 70 6c 65 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 | 3d......Examples.....--------... |
| a340 | 20 20 3e 3e 3e 20 69 6d 70 6f 72 74 20 6e 75 6d 70 79 20 61 73 20 6e 70 0a 20 20 20 20 3e 3e 3e | ..>>>.import.numpy.as.np.....>>> |
| a360 | 20 66 72 6f 6d 20 6e 75 6d 70 79 2e 70 6f 6c 79 6e 6f 6d 69 61 6c 2e 6c 61 67 75 65 72 72 65 20 | .from.numpy.polynomial.laguerre. |
| a380 | 69 6d 70 6f 72 74 20 6c 61 67 76 61 6e 64 65 72 32 64 0a 20 20 20 20 3e 3e 3e 20 78 20 3d 20 6e | import.lagvander2d.....>>>.x.=.n |
| a3a0 | 70 2e 61 72 72 61 79 28 5b 30 5d 29 0a 20 20 20 20 3e 3e 3e 20 79 20 3d 20 6e 70 2e 61 72 72 61 | p.array([0]).....>>>.y.=.np.arra |
| a3c0 | 79 28 5b 32 5d 29 0a 20 20 20 20 3e 3e 3e 20 6c 61 67 76 61 6e 64 65 72 32 64 28 78 2c 20 79 2c | y([2]).....>>>.lagvander2d(x,.y, |
| a3e0 | 20 5b 32 2c 20 31 5d 29 0a 20 20 20 20 61 72 72 61 79 28 5b 5b 20 31 2e 2c 20 2d 31 2e 2c 20 20 | .[2,.1]).....array([[.1.,.-1.,.. |
| a400 | 31 2e 2c 20 2d 31 2e 2c 20 20 31 2e 2c 20 2d 31 2e 5d 5d 29 0a 0a 20 20 20 20 a9 03 72 28 00 00 | 1.,.-1.,..1.,.-1.]])........r(.. |
| a420 | 00 da 0f 5f 76 61 6e 64 65 72 5f 6e 64 5f 66 6c 61 74 72 18 00 00 00 29 03 72 7e 00 00 00 72 84 | ..._vander_nd_flatr....).r~...r. |
| a440 | 00 00 00 72 8d 00 00 00 73 03 00 00 00 20 20 20 72 2d 00 00 00 72 21 00 00 00 72 21 00 00 00 94 | ...r....s.......r-...r!...r!.... |
| a460 | 04 00 00 73 23 00 00 00 80 00 f4 6c 01 00 0c 0e d7 0b 1d d1 0b 1d 9c 79 ac 29 d0 1e 34 b0 71 b8 | ...s#......l...........y.)..4.q. |
| a480 | 21 b0 66 b8 63 d3 0b 42 d0 04 42 72 2e 00 00 00 63 04 00 00 00 00 00 00 00 00 00 00 00 06 00 00 | !.f.c..B..Br....c............... |
| a4a0 | 00 03 00 00 00 f3 54 00 00 00 97 00 74 01 00 00 00 00 00 00 00 00 6a 02 00 00 00 00 00 00 00 00 | ......T.....t.........j......... |
| a4c0 | 00 00 00 00 00 00 00 00 00 00 74 04 00 00 00 00 00 00 00 00 74 04 00 00 00 00 00 00 00 00 74 04 | ..........t.........t.........t. |
| a4e0 | 00 00 00 00 00 00 00 00 66 03 7c 00 7c 01 7c 02 66 03 7c 03 ab 03 00 00 00 00 00 00 53 00 29 01 | ........f.|.|.|.f.|.........S.). |
| a500 | 61 6e 08 00 00 50 73 65 75 64 6f 2d 56 61 6e 64 65 72 6d 6f 6e 64 65 20 6d 61 74 72 69 78 20 6f | an...Pseudo-Vandermonde.matrix.o |
| a520 | 66 20 67 69 76 65 6e 20 64 65 67 72 65 65 73 2e 0a 0a 20 20 20 20 52 65 74 75 72 6e 73 20 74 68 | f.given.degrees.......Returns.th |
| a540 | 65 20 70 73 65 75 64 6f 2d 56 61 6e 64 65 72 6d 6f 6e 64 65 20 6d 61 74 72 69 78 20 6f 66 20 64 | e.pseudo-Vandermonde.matrix.of.d |
| a560 | 65 67 72 65 65 73 20 60 64 65 67 60 20 61 6e 64 20 73 61 6d 70 6c 65 0a 20 20 20 20 70 6f 69 6e | egrees.`deg`.and.sample.....poin |
| a580 | 74 73 20 60 60 28 78 2c 20 79 2c 20 7a 29 60 60 2e 20 49 66 20 60 6c 60 2c 20 60 6d 60 2c 20 60 | ts.``(x,.y,.z)``..If.`l`,.`m`,.` |
| a5a0 | 6e 60 20 61 72 65 20 74 68 65 20 67 69 76 65 6e 20 64 65 67 72 65 65 73 20 69 6e 20 60 78 60 2c | n`.are.the.given.degrees.in.`x`, |
| a5c0 | 20 60 79 60 2c 20 60 7a 60 2c 0a 20 20 20 20 74 68 65 6e 20 54 68 65 20 70 73 65 75 64 6f 2d 56 | .`y`,.`z`,.....then.The.pseudo-V |
| a5e0 | 61 6e 64 65 72 6d 6f 6e 64 65 20 6d 61 74 72 69 78 20 69 73 20 64 65 66 69 6e 65 64 20 62 79 0a | andermonde.matrix.is.defined.by. |
| a600 | 0a 20 20 20 20 2e 2e 20 6d 61 74 68 3a 3a 20 56 5b 2e 2e 2e 2c 20 28 6d 2b 31 29 28 6e 2b 31 29 | ........math::.V[...,.(m+1)(n+1) |
| a620 | 69 20 2b 20 28 6e 2b 31 29 6a 20 2b 20 6b 5d 20 3d 20 4c 5f 69 28 78 29 2a 4c 5f 6a 28 79 29 2a | i.+.(n+1)j.+.k].=.L_i(x)*L_j(y)* |
| a640 | 4c 5f 6b 28 7a 29 2c 0a 0a 20 20 20 20 77 68 65 72 65 20 60 60 30 20 3c 3d 20 69 20 3c 3d 20 6c | L_k(z),......where.``0.<=.i.<=.l |
| a660 | 60 60 2c 20 60 60 30 20 3c 3d 20 6a 20 3c 3d 20 6d 60 60 2c 20 61 6e 64 20 60 60 30 20 3c 3d 20 | ``,.``0.<=.j.<=.m``,.and.``0.<=. |
| a680 | 6a 20 3c 3d 20 6e 60 60 2e 20 20 54 68 65 20 6c 65 61 64 69 6e 67 0a 20 20 20 20 69 6e 64 69 63 | j.<=.n``...The.leading.....indic |
| a6a0 | 65 73 20 6f 66 20 60 56 60 20 69 6e 64 65 78 20 74 68 65 20 70 6f 69 6e 74 73 20 60 60 28 78 2c | es.of.`V`.index.the.points.``(x, |
| a6c0 | 20 79 2c 20 7a 29 60 60 20 61 6e 64 20 74 68 65 20 6c 61 73 74 20 69 6e 64 65 78 20 65 6e 63 6f | .y,.z)``.and.the.last.index.enco |
| a6e0 | 64 65 73 0a 20 20 20 20 74 68 65 20 64 65 67 72 65 65 73 20 6f 66 20 74 68 65 20 4c 61 67 75 65 | des.....the.degrees.of.the.Lague |
| a700 | 72 72 65 20 70 6f 6c 79 6e 6f 6d 69 61 6c 73 2e 0a 0a 20 20 20 20 49 66 20 60 60 56 20 3d 20 6c | rre.polynomials.......If.``V.=.l |
| a720 | 61 67 76 61 6e 64 65 72 33 64 28 78 2c 20 79 2c 20 7a 2c 20 5b 78 64 65 67 2c 20 79 64 65 67 2c | agvander3d(x,.y,.z,.[xdeg,.ydeg, |
| a740 | 20 7a 64 65 67 5d 29 60 60 2c 20 74 68 65 6e 20 74 68 65 20 63 6f 6c 75 6d 6e 73 0a 20 20 20 20 | .zdeg])``,.then.the.columns..... |
| a760 | 6f 66 20 60 56 60 20 63 6f 72 72 65 73 70 6f 6e 64 20 74 6f 20 74 68 65 20 65 6c 65 6d 65 6e 74 | of.`V`.correspond.to.the.element |
| a780 | 73 20 6f 66 20 61 20 33 2d 44 20 63 6f 65 66 66 69 63 69 65 6e 74 20 61 72 72 61 79 20 60 63 60 | s.of.a.3-D.coefficient.array.`c` |
| a7a0 | 20 6f 66 0a 20 20 20 20 73 68 61 70 65 20 28 78 64 65 67 20 2b 20 31 2c 20 79 64 65 67 20 2b 20 | .of.....shape.(xdeg.+.1,.ydeg.+. |
| a7c0 | 31 2c 20 7a 64 65 67 20 2b 20 31 29 20 69 6e 20 74 68 65 20 6f 72 64 65 72 0a 0a 20 20 20 20 2e | 1,.zdeg.+.1).in.the.order....... |
| a7e0 | 2e 20 6d 61 74 68 3a 3a 20 63 5f 7b 30 30 30 7d 2c 20 63 5f 7b 30 30 31 7d 2c 20 63 5f 7b 30 30 | ..math::.c_{000},.c_{001},.c_{00 |
| a800 | 32 7d 2c 2e 2e 2e 20 2c 20 63 5f 7b 30 31 30 7d 2c 20 63 5f 7b 30 31 31 7d 2c 20 63 5f 7b 30 31 | 2},....,.c_{010},.c_{011},.c_{01 |
| a820 | 32 7d 2c 2e 2e 2e 0a 0a 20 20 20 20 61 6e 64 20 20 60 60 6e 70 2e 64 6f 74 28 56 2c 20 63 2e 66 | 2},.........and..``np.dot(V,.c.f |
| a840 | 6c 61 74 29 60 60 20 61 6e 64 20 60 60 6c 61 67 76 61 6c 33 64 28 78 2c 20 79 2c 20 7a 2c 20 63 | lat)``.and.``lagval3d(x,.y,.z,.c |
| a860 | 29 60 60 20 77 69 6c 6c 20 62 65 20 74 68 65 0a 20 20 20 20 73 61 6d 65 20 75 70 20 74 6f 20 72 | )``.will.be.the.....same.up.to.r |
| a880 | 6f 75 6e 64 6f 66 66 2e 20 54 68 69 73 20 65 71 75 69 76 61 6c 65 6e 63 65 20 69 73 20 75 73 65 | oundoff..This.equivalence.is.use |
| a8a0 | 66 75 6c 20 62 6f 74 68 20 66 6f 72 20 6c 65 61 73 74 20 73 71 75 61 72 65 73 0a 20 20 20 20 66 | ful.both.for.least.squares.....f |
| a8c0 | 69 74 74 69 6e 67 20 61 6e 64 20 66 6f 72 20 74 68 65 20 65 76 61 6c 75 61 74 69 6f 6e 20 6f 66 | itting.and.for.the.evaluation.of |
| a8e0 | 20 61 20 6c 61 72 67 65 20 6e 75 6d 62 65 72 20 6f 66 20 33 2d 44 20 4c 61 67 75 65 72 72 65 0a | .a.large.number.of.3-D.Laguerre. |
| a900 | 20 20 20 20 73 65 72 69 65 73 20 6f 66 20 74 68 65 20 73 61 6d 65 20 64 65 67 72 65 65 73 20 61 | ....series.of.the.same.degrees.a |
| a920 | 6e 64 20 73 61 6d 70 6c 65 20 70 6f 69 6e 74 73 2e 0a 0a 20 20 20 20 50 61 72 61 6d 65 74 65 72 | nd.sample.points.......Parameter |
| a940 | 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 78 2c 20 79 2c 20 7a 20 3a 20 61 | s.....----------.....x,.y,.z.:.a |
| a960 | 72 72 61 79 5f 6c 69 6b 65 0a 20 20 20 20 20 20 20 20 41 72 72 61 79 73 20 6f 66 20 70 6f 69 6e | rray_like.........Arrays.of.poin |
| a980 | 74 20 63 6f 6f 72 64 69 6e 61 74 65 73 2c 20 61 6c 6c 20 6f 66 20 74 68 65 20 73 61 6d 65 20 73 | t.coordinates,.all.of.the.same.s |
| a9a0 | 68 61 70 65 2e 20 54 68 65 20 64 74 79 70 65 73 20 77 69 6c 6c 0a 20 20 20 20 20 20 20 20 62 65 | hape..The.dtypes.will.........be |
| a9c0 | 20 63 6f 6e 76 65 72 74 65 64 20 74 6f 20 65 69 74 68 65 72 20 66 6c 6f 61 74 36 34 20 6f 72 20 | .converted.to.either.float64.or. |
| a9e0 | 63 6f 6d 70 6c 65 78 31 32 38 20 64 65 70 65 6e 64 69 6e 67 20 6f 6e 20 77 68 65 74 68 65 72 0a | complex128.depending.on.whether. |
| aa00 | 20 20 20 20 20 20 20 20 61 6e 79 20 6f 66 20 74 68 65 20 65 6c 65 6d 65 6e 74 73 20 61 72 65 20 | ........any.of.the.elements.are. |
| aa20 | 63 6f 6d 70 6c 65 78 2e 20 53 63 61 6c 61 72 73 20 61 72 65 20 63 6f 6e 76 65 72 74 65 64 20 74 | complex..Scalars.are.converted.t |
| aa40 | 6f 20 31 2d 44 0a 20 20 20 20 20 20 20 20 61 72 72 61 79 73 2e 0a 20 20 20 20 64 65 67 20 3a 20 | o.1-D.........arrays......deg.:. |
| aa60 | 6c 69 73 74 20 6f 66 20 69 6e 74 73 0a 20 20 20 20 20 20 20 20 4c 69 73 74 20 6f 66 20 6d 61 78 | list.of.ints.........List.of.max |
| aa80 | 69 6d 75 6d 20 64 65 67 72 65 65 73 20 6f 66 20 74 68 65 20 66 6f 72 6d 20 5b 78 5f 64 65 67 2c | imum.degrees.of.the.form.[x_deg, |
| aaa0 | 20 79 5f 64 65 67 2c 20 7a 5f 64 65 67 5d 2e 0a 0a 20 20 20 20 52 65 74 75 72 6e 73 0a 20 20 20 | .y_deg,.z_deg].......Returns.... |
| aac0 | 20 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 76 61 6e 64 65 72 33 64 20 3a 20 6e 64 61 72 72 61 79 0a | .-------.....vander3d.:.ndarray. |
| aae0 | 20 20 20 20 20 20 20 20 54 68 65 20 73 68 61 70 65 20 6f 66 20 74 68 65 20 72 65 74 75 72 6e 65 | ........The.shape.of.the.returne |
| ab00 | 64 20 6d 61 74 72 69 78 20 69 73 20 60 60 78 2e 73 68 61 70 65 20 2b 20 28 6f 72 64 65 72 2c 29 | d.matrix.is.``x.shape.+.(order,) |
| ab20 | 60 60 2c 20 77 68 65 72 65 0a 20 20 20 20 20 20 20 20 3a 6d 61 74 68 3a 60 6f 72 64 65 72 20 3d | ``,.where.........:math:`order.= |
| ab40 | 20 28 64 65 67 5b 30 5d 2b 31 29 2a 28 64 65 67 5b 31 5d 2b 31 29 2a 28 64 65 67 5b 32 5d 2b 31 | .(deg[0]+1)*(deg[1]+1)*(deg[2]+1 |
| ab60 | 29 60 2e 20 20 54 68 65 20 64 74 79 70 65 20 77 69 6c 6c 0a 20 20 20 20 20 20 20 20 62 65 20 74 | )`...The.dtype.will.........be.t |
| ab80 | 68 65 20 73 61 6d 65 20 61 73 20 74 68 65 20 63 6f 6e 76 65 72 74 65 64 20 60 78 60 2c 20 60 79 | he.same.as.the.converted.`x`,.`y |
| aba0 | 60 2c 20 61 6e 64 20 60 7a 60 2e 0a 0a 20 20 20 20 53 65 65 20 41 6c 73 6f 0a 20 20 20 20 2d 2d | `,.and.`z`.......See.Also.....-- |
| abc0 | 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 6c 61 67 76 61 6e 64 65 72 2c 20 6c 61 67 76 61 6e 64 65 72 33 | ------.....lagvander,.lagvander3 |
| abe0 | 64 2c 20 6c 61 67 76 61 6c 32 64 2c 20 6c 61 67 76 61 6c 33 64 0a 0a 20 20 20 20 45 78 61 6d 70 | d,.lagval2d,.lagval3d......Examp |
| ac00 | 6c 65 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 3e 3e 3e 20 69 6d 70 6f 72 74 20 | les.....--------.....>>>.import. |
| ac20 | 6e 75 6d 70 79 20 61 73 20 6e 70 0a 20 20 20 20 3e 3e 3e 20 66 72 6f 6d 20 6e 75 6d 70 79 2e 70 | numpy.as.np.....>>>.from.numpy.p |
| ac40 | 6f 6c 79 6e 6f 6d 69 61 6c 2e 6c 61 67 75 65 72 72 65 20 69 6d 70 6f 72 74 20 6c 61 67 76 61 6e | olynomial.laguerre.import.lagvan |
| ac60 | 64 65 72 33 64 0a 20 20 20 20 3e 3e 3e 20 78 20 3d 20 6e 70 2e 61 72 72 61 79 28 5b 30 5d 29 0a | der3d.....>>>.x.=.np.array([0]). |
| ac80 | 20 20 20 20 3e 3e 3e 20 79 20 3d 20 6e 70 2e 61 72 72 61 79 28 5b 32 5d 29 0a 20 20 20 20 3e 3e | ....>>>.y.=.np.array([2]).....>> |
| aca0 | 3e 20 7a 20 3d 20 6e 70 2e 61 72 72 61 79 28 5b 30 5d 29 0a 20 20 20 20 3e 3e 3e 20 6c 61 67 76 | >.z.=.np.array([0]).....>>>.lagv |
| acc0 | 61 6e 64 65 72 33 64 28 78 2c 20 79 2c 20 7a 2c 20 5b 32 2c 20 31 2c 20 33 5d 29 0a 20 20 20 20 | ander3d(x,.y,.z,.[2,.1,.3])..... |
| ace0 | 61 72 72 61 79 28 5b 5b 20 31 2e 2c 20 20 31 2e 2c 20 20 31 2e 2c 20 20 31 2e 2c 20 2d 31 2e 2c | array([[.1.,..1.,..1.,..1.,.-1., |
| ad00 | 20 2d 31 2e 2c 20 2d 31 2e 2c 20 2d 31 2e 2c 20 20 31 2e 2c 20 20 31 2e 2c 20 20 31 2e 2c 20 20 | .-1.,.-1.,.-1.,..1.,..1.,..1.,.. |
| ad20 | 31 2e 2c 20 2d 31 2e 2c 0a 20 20 20 20 20 20 20 20 20 20 20 20 2d 31 2e 2c 20 2d 31 2e 2c 20 2d | 1.,.-1.,.............-1.,.-1.,.- |
| ad40 | 31 2e 2c 20 20 31 2e 2c 20 20 31 2e 2c 20 20 31 2e 2c 20 20 31 2e 2c 20 2d 31 2e 2c 20 2d 31 2e | 1.,..1.,..1.,..1.,..1.,.-1.,.-1. |
| ad60 | 2c 20 2d 31 2e 2c 20 2d 31 2e 5d 5d 29 0a 0a 20 20 20 20 72 93 00 00 00 29 04 72 7e 00 00 00 72 | ,.-1.,.-1.]])......r....).r~...r |
| ad80 | 84 00 00 00 72 8a 00 00 00 72 8d 00 00 00 73 04 00 00 00 20 20 20 20 72 2d 00 00 00 72 22 00 00 | ....r....r....s........r-...r".. |
| ada0 | 00 72 22 00 00 00 cd 04 00 00 73 27 00 00 00 80 00 f4 72 01 00 0c 0e d7 0b 1d d1 0b 1d 9c 79 ac | .r".......s'......r...........y. |
| adc0 | 29 b4 59 d0 1e 3f c0 21 c0 51 c8 01 c0 19 c8 43 d3 0b 50 d0 04 50 72 2e 00 00 00 63 06 00 00 00 | ).Y..?.!.Q.....C..P..Pr....c.... |
| ade0 | 00 00 00 00 00 00 00 00 09 00 00 00 03 00 00 00 f3 40 00 00 00 97 00 74 01 00 00 00 00 00 00 00 | .................@.....t........ |
| ae00 | 00 6a 02 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 74 04 00 00 00 00 00 00 00 00 7c | .j...................t.........| |
| ae20 | 00 7c 01 7c 02 7c 03 7c 04 7c 05 ab 07 00 00 00 00 00 00 53 00 29 01 61 ac 15 00 00 0a 20 20 20 | .|.|.|.|.|.........S.).a........ |
| ae40 | 20 4c 65 61 73 74 20 73 71 75 61 72 65 73 20 66 69 74 20 6f 66 20 4c 61 67 75 65 72 72 65 20 73 | .Least.squares.fit.of.Laguerre.s |
| ae60 | 65 72 69 65 73 20 74 6f 20 64 61 74 61 2e 0a 0a 20 20 20 20 52 65 74 75 72 6e 20 74 68 65 20 63 | eries.to.data.......Return.the.c |
| ae80 | 6f 65 66 66 69 63 69 65 6e 74 73 20 6f 66 20 61 20 4c 61 67 75 65 72 72 65 20 73 65 72 69 65 73 | oefficients.of.a.Laguerre.series |
| aea0 | 20 6f 66 20 64 65 67 72 65 65 20 60 64 65 67 60 20 74 68 61 74 20 69 73 20 74 68 65 0a 20 20 20 | .of.degree.`deg`.that.is.the.... |
| aec0 | 20 6c 65 61 73 74 20 73 71 75 61 72 65 73 20 66 69 74 20 74 6f 20 74 68 65 20 64 61 74 61 20 76 | .least.squares.fit.to.the.data.v |
| aee0 | 61 6c 75 65 73 20 60 79 60 20 67 69 76 65 6e 20 61 74 20 70 6f 69 6e 74 73 20 60 78 60 2e 20 49 | alues.`y`.given.at.points.`x`..I |
| af00 | 66 20 60 79 60 20 69 73 0a 20 20 20 20 31 2d 44 20 74 68 65 20 72 65 74 75 72 6e 65 64 20 63 6f | f.`y`.is.....1-D.the.returned.co |
| af20 | 65 66 66 69 63 69 65 6e 74 73 20 77 69 6c 6c 20 61 6c 73 6f 20 62 65 20 31 2d 44 2e 20 49 66 20 | efficients.will.also.be.1-D..If. |
| af40 | 60 79 60 20 69 73 20 32 2d 44 20 6d 75 6c 74 69 70 6c 65 0a 20 20 20 20 66 69 74 73 20 61 72 65 | `y`.is.2-D.multiple.....fits.are |
| af60 | 20 64 6f 6e 65 2c 20 6f 6e 65 20 66 6f 72 20 65 61 63 68 20 63 6f 6c 75 6d 6e 20 6f 66 20 60 79 | .done,.one.for.each.column.of.`y |
| af80 | 60 2c 20 61 6e 64 20 74 68 65 20 72 65 73 75 6c 74 69 6e 67 0a 20 20 20 20 63 6f 65 66 66 69 63 | `,.and.the.resulting.....coeffic |
| afa0 | 69 65 6e 74 73 20 61 72 65 20 73 74 6f 72 65 64 20 69 6e 20 74 68 65 20 63 6f 72 72 65 73 70 6f | ients.are.stored.in.the.correspo |
| afc0 | 6e 64 69 6e 67 20 63 6f 6c 75 6d 6e 73 20 6f 66 20 61 20 32 2d 44 20 72 65 74 75 72 6e 2e 0a 20 | nding.columns.of.a.2-D.return... |
| afe0 | 20 20 20 54 68 65 20 66 69 74 74 65 64 20 70 6f 6c 79 6e 6f 6d 69 61 6c 28 73 29 20 61 72 65 20 | ...The.fitted.polynomial(s).are. |
| b000 | 69 6e 20 74 68 65 20 66 6f 72 6d 0a 0a 20 20 20 20 2e 2e 20 6d 61 74 68 3a 3a 20 20 70 28 78 29 | in.the.form.........math::..p(x) |
| b020 | 20 3d 20 63 5f 30 20 2b 20 63 5f 31 20 2a 20 4c 5f 31 28 78 29 20 2b 20 2e 2e 2e 20 2b 20 63 5f | .=.c_0.+.c_1.*.L_1(x).+.....+.c_ |
| b040 | 6e 20 2a 20 4c 5f 6e 28 78 29 2c 0a 0a 20 20 20 20 77 68 65 72 65 20 60 60 6e 60 60 20 69 73 20 | n.*.L_n(x),......where.``n``.is. |
| b060 | 60 64 65 67 60 2e 0a 0a 20 20 20 20 50 61 72 61 6d 65 74 65 72 73 0a 20 20 20 20 2d 2d 2d 2d 2d | `deg`.......Parameters.....----- |
| b080 | 2d 2d 2d 2d 2d 0a 20 20 20 20 78 20 3a 20 61 72 72 61 79 5f 6c 69 6b 65 2c 20 73 68 61 70 65 20 | -----.....x.:.array_like,.shape. |
| b0a0 | 28 4d 2c 29 0a 20 20 20 20 20 20 20 20 78 2d 63 6f 6f 72 64 69 6e 61 74 65 73 20 6f 66 20 74 68 | (M,).........x-coordinates.of.th |
| b0c0 | 65 20 4d 20 73 61 6d 70 6c 65 20 70 6f 69 6e 74 73 20 60 60 28 78 5b 69 5d 2c 20 79 5b 69 5d 29 | e.M.sample.points.``(x[i],.y[i]) |
| b0e0 | 60 60 2e 0a 20 20 20 20 79 20 3a 20 61 72 72 61 79 5f 6c 69 6b 65 2c 20 73 68 61 70 65 20 28 4d | ``......y.:.array_like,.shape.(M |
| b100 | 2c 29 20 6f 72 20 28 4d 2c 20 4b 29 0a 20 20 20 20 20 20 20 20 79 2d 63 6f 6f 72 64 69 6e 61 74 | ,).or.(M,.K).........y-coordinat |
| b120 | 65 73 20 6f 66 20 74 68 65 20 73 61 6d 70 6c 65 20 70 6f 69 6e 74 73 2e 20 53 65 76 65 72 61 6c | es.of.the.sample.points..Several |
| b140 | 20 64 61 74 61 20 73 65 74 73 20 6f 66 20 73 61 6d 70 6c 65 0a 20 20 20 20 20 20 20 20 70 6f 69 | .data.sets.of.sample.........poi |
| b160 | 6e 74 73 20 73 68 61 72 69 6e 67 20 74 68 65 20 73 61 6d 65 20 78 2d 63 6f 6f 72 64 69 6e 61 74 | nts.sharing.the.same.x-coordinat |
| b180 | 65 73 20 63 61 6e 20 62 65 20 66 69 74 74 65 64 20 61 74 20 6f 6e 63 65 20 62 79 0a 20 20 20 20 | es.can.be.fitted.at.once.by..... |
| b1a0 | 20 20 20 20 70 61 73 73 69 6e 67 20 69 6e 20 61 20 32 44 2d 61 72 72 61 79 20 74 68 61 74 20 63 | ....passing.in.a.2D-array.that.c |
| b1c0 | 6f 6e 74 61 69 6e 73 20 6f 6e 65 20 64 61 74 61 73 65 74 20 70 65 72 20 63 6f 6c 75 6d 6e 2e 0a | ontains.one.dataset.per.column.. |
| b1e0 | 20 20 20 20 64 65 67 20 3a 20 69 6e 74 20 6f 72 20 31 2d 44 20 61 72 72 61 79 5f 6c 69 6b 65 0a | ....deg.:.int.or.1-D.array_like. |
| b200 | 20 20 20 20 20 20 20 20 44 65 67 72 65 65 28 73 29 20 6f 66 20 74 68 65 20 66 69 74 74 69 6e 67 | ........Degree(s).of.the.fitting |
| b220 | 20 70 6f 6c 79 6e 6f 6d 69 61 6c 73 2e 20 49 66 20 60 64 65 67 60 20 69 73 20 61 20 73 69 6e 67 | .polynomials..If.`deg`.is.a.sing |
| b240 | 6c 65 20 69 6e 74 65 67 65 72 0a 20 20 20 20 20 20 20 20 61 6c 6c 20 74 65 72 6d 73 20 75 70 20 | le.integer.........all.terms.up. |
| b260 | 74 6f 20 61 6e 64 20 69 6e 63 6c 75 64 69 6e 67 20 74 68 65 20 60 64 65 67 60 27 74 68 20 74 65 | to.and.including.the.`deg`'th.te |
| b280 | 72 6d 20 61 72 65 20 69 6e 63 6c 75 64 65 64 20 69 6e 20 74 68 65 0a 20 20 20 20 20 20 20 20 66 | rm.are.included.in.the.........f |
| b2a0 | 69 74 2e 20 46 6f 72 20 4e 75 6d 50 79 20 76 65 72 73 69 6f 6e 73 20 3e 3d 20 31 2e 31 31 2e 30 | it..For.NumPy.versions.>=.1.11.0 |
| b2c0 | 20 61 20 6c 69 73 74 20 6f 66 20 69 6e 74 65 67 65 72 73 20 73 70 65 63 69 66 79 69 6e 67 20 74 | .a.list.of.integers.specifying.t |
| b2e0 | 68 65 0a 20 20 20 20 20 20 20 20 64 65 67 72 65 65 73 20 6f 66 20 74 68 65 20 74 65 72 6d 73 20 | he.........degrees.of.the.terms. |
| b300 | 74 6f 20 69 6e 63 6c 75 64 65 20 6d 61 79 20 62 65 20 75 73 65 64 20 69 6e 73 74 65 61 64 2e 0a | to.include.may.be.used.instead.. |
| b320 | 20 20 20 20 72 63 6f 6e 64 20 3a 20 66 6c 6f 61 74 2c 20 6f 70 74 69 6f 6e 61 6c 0a 20 20 20 20 | ....rcond.:.float,.optional..... |
| b340 | 20 20 20 20 52 65 6c 61 74 69 76 65 20 63 6f 6e 64 69 74 69 6f 6e 20 6e 75 6d 62 65 72 20 6f 66 | ....Relative.condition.number.of |
| b360 | 20 74 68 65 20 66 69 74 2e 20 53 69 6e 67 75 6c 61 72 20 76 61 6c 75 65 73 20 73 6d 61 6c 6c 65 | .the.fit..Singular.values.smalle |
| b380 | 72 20 74 68 61 6e 0a 20 20 20 20 20 20 20 20 74 68 69 73 20 72 65 6c 61 74 69 76 65 20 74 6f 20 | r.than.........this.relative.to. |
| b3a0 | 74 68 65 20 6c 61 72 67 65 73 74 20 73 69 6e 67 75 6c 61 72 20 76 61 6c 75 65 20 77 69 6c 6c 20 | the.largest.singular.value.will. |
| b3c0 | 62 65 20 69 67 6e 6f 72 65 64 2e 20 54 68 65 0a 20 20 20 20 20 20 20 20 64 65 66 61 75 6c 74 20 | be.ignored..The.........default. |
| b3e0 | 76 61 6c 75 65 20 69 73 20 6c 65 6e 28 78 29 2a 65 70 73 2c 20 77 68 65 72 65 20 65 70 73 20 69 | value.is.len(x)*eps,.where.eps.i |
| b400 | 73 20 74 68 65 20 72 65 6c 61 74 69 76 65 20 70 72 65 63 69 73 69 6f 6e 20 6f 66 0a 20 20 20 20 | s.the.relative.precision.of..... |
| b420 | 20 20 20 20 74 68 65 20 66 6c 6f 61 74 20 74 79 70 65 2c 20 61 62 6f 75 74 20 32 65 2d 31 36 20 | ....the.float.type,.about.2e-16. |
| b440 | 69 6e 20 6d 6f 73 74 20 63 61 73 65 73 2e 0a 20 20 20 20 66 75 6c 6c 20 3a 20 62 6f 6f 6c 2c 20 | in.most.cases......full.:.bool,. |
| b460 | 6f 70 74 69 6f 6e 61 6c 0a 20 20 20 20 20 20 20 20 53 77 69 74 63 68 20 64 65 74 65 72 6d 69 6e | optional.........Switch.determin |
| b480 | 69 6e 67 20 6e 61 74 75 72 65 20 6f 66 20 72 65 74 75 72 6e 20 76 61 6c 75 65 2e 20 57 68 65 6e | ing.nature.of.return.value..When |
| b4a0 | 20 69 74 20 69 73 20 46 61 6c 73 65 20 28 74 68 65 0a 20 20 20 20 20 20 20 20 64 65 66 61 75 6c | .it.is.False.(the.........defaul |
| b4c0 | 74 29 20 6a 75 73 74 20 74 68 65 20 63 6f 65 66 66 69 63 69 65 6e 74 73 20 61 72 65 20 72 65 74 | t).just.the.coefficients.are.ret |
| b4e0 | 75 72 6e 65 64 2c 20 77 68 65 6e 20 54 72 75 65 20 64 69 61 67 6e 6f 73 74 69 63 0a 20 20 20 20 | urned,.when.True.diagnostic..... |
| b500 | 20 20 20 20 69 6e 66 6f 72 6d 61 74 69 6f 6e 20 66 72 6f 6d 20 74 68 65 20 73 69 6e 67 75 6c 61 | ....information.from.the.singula |
| b520 | 72 20 76 61 6c 75 65 20 64 65 63 6f 6d 70 6f 73 69 74 69 6f 6e 20 69 73 20 61 6c 73 6f 20 72 65 | r.value.decomposition.is.also.re |
| b540 | 74 75 72 6e 65 64 2e 0a 20 20 20 20 77 20 3a 20 61 72 72 61 79 5f 6c 69 6b 65 2c 20 73 68 61 70 | turned......w.:.array_like,.shap |
| b560 | 65 20 28 60 4d 60 2c 29 2c 20 6f 70 74 69 6f 6e 61 6c 0a 20 20 20 20 20 20 20 20 57 65 69 67 68 | e.(`M`,),.optional.........Weigh |
| b580 | 74 73 2e 20 49 66 20 6e 6f 74 20 4e 6f 6e 65 2c 20 74 68 65 20 77 65 69 67 68 74 20 60 60 77 5b | ts..If.not.None,.the.weight.``w[ |
| b5a0 | 69 5d 60 60 20 61 70 70 6c 69 65 73 20 74 6f 20 74 68 65 20 75 6e 73 71 75 61 72 65 64 0a 20 20 | i]``.applies.to.the.unsquared... |
| b5c0 | 20 20 20 20 20 20 72 65 73 69 64 75 61 6c 20 60 60 79 5b 69 5d 20 2d 20 79 5f 68 61 74 5b 69 5d | ......residual.``y[i].-.y_hat[i] |
| b5e0 | 60 60 20 61 74 20 60 60 78 5b 69 5d 60 60 2e 20 49 64 65 61 6c 6c 79 20 74 68 65 20 77 65 69 67 | ``.at.``x[i]``..Ideally.the.weig |
| b600 | 68 74 73 20 61 72 65 0a 20 20 20 20 20 20 20 20 63 68 6f 73 65 6e 20 73 6f 20 74 68 61 74 20 74 | hts.are.........chosen.so.that.t |
| b620 | 68 65 20 65 72 72 6f 72 73 20 6f 66 20 74 68 65 20 70 72 6f 64 75 63 74 73 20 60 60 77 5b 69 5d | he.errors.of.the.products.``w[i] |
| b640 | 2a 79 5b 69 5d 60 60 20 61 6c 6c 20 68 61 76 65 20 74 68 65 0a 20 20 20 20 20 20 20 20 73 61 6d | *y[i]``.all.have.the.........sam |
| b660 | 65 20 76 61 72 69 61 6e 63 65 2e 20 20 57 68 65 6e 20 75 73 69 6e 67 20 69 6e 76 65 72 73 65 2d | e.variance...When.using.inverse- |
| b680 | 76 61 72 69 61 6e 63 65 20 77 65 69 67 68 74 69 6e 67 2c 20 75 73 65 0a 20 20 20 20 20 20 20 20 | variance.weighting,.use......... |
| b6a0 | 60 60 77 5b 69 5d 20 3d 20 31 2f 73 69 67 6d 61 28 79 5b 69 5d 29 60 60 2e 20 20 54 68 65 20 64 | ``w[i].=.1/sigma(y[i])``...The.d |
| b6c0 | 65 66 61 75 6c 74 20 76 61 6c 75 65 20 69 73 20 4e 6f 6e 65 2e 0a 0a 20 20 20 20 52 65 74 75 72 | efault.value.is.None.......Retur |
| b6e0 | 6e 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 63 6f 65 66 20 3a 20 6e 64 61 72 72 61 | ns.....-------.....coef.:.ndarra |
| b700 | 79 2c 20 73 68 61 70 65 20 28 4d 2c 29 20 6f 72 20 28 4d 2c 20 4b 29 0a 20 20 20 20 20 20 20 20 | y,.shape.(M,).or.(M,.K)......... |
| b720 | 4c 61 67 75 65 72 72 65 20 63 6f 65 66 66 69 63 69 65 6e 74 73 20 6f 72 64 65 72 65 64 20 66 72 | Laguerre.coefficients.ordered.fr |
| b740 | 6f 6d 20 6c 6f 77 20 74 6f 20 68 69 67 68 2e 20 49 66 20 60 79 60 20 77 61 73 20 32 2d 44 2c 0a | om.low.to.high..If.`y`.was.2-D,. |
| b760 | 20 20 20 20 20 20 20 20 74 68 65 20 63 6f 65 66 66 69 63 69 65 6e 74 73 20 66 6f 72 20 74 68 65 | ........the.coefficients.for.the |
| b780 | 20 64 61 74 61 20 69 6e 20 63 6f 6c 75 6d 6e 20 2a 6b 2a 20 20 6f 66 20 60 79 60 20 61 72 65 20 | .data.in.column.*k*..of.`y`.are. |
| b7a0 | 69 6e 20 63 6f 6c 75 6d 6e 0a 20 20 20 20 20 20 20 20 2a 6b 2a 2e 0a 0a 20 20 20 20 5b 72 65 73 | in.column.........*k*.......[res |
| b7c0 | 69 64 75 61 6c 73 2c 20 72 61 6e 6b 2c 20 73 69 6e 67 75 6c 61 72 5f 76 61 6c 75 65 73 2c 20 72 | iduals,.rank,.singular_values,.r |
| b7e0 | 63 6f 6e 64 5d 20 3a 20 6c 69 73 74 0a 20 20 20 20 20 20 20 20 54 68 65 73 65 20 76 61 6c 75 65 | cond].:.list.........These.value |
| b800 | 73 20 61 72 65 20 6f 6e 6c 79 20 72 65 74 75 72 6e 65 64 20 69 66 20 60 60 66 75 6c 6c 20 3d 3d | s.are.only.returned.if.``full.== |
| b820 | 20 54 72 75 65 60 60 0a 0a 20 20 20 20 20 20 20 20 2d 20 72 65 73 69 64 75 61 6c 73 20 2d 2d 20 | .True``..........-.residuals.--. |
| b840 | 73 75 6d 20 6f 66 20 73 71 75 61 72 65 64 20 72 65 73 69 64 75 61 6c 73 20 6f 66 20 74 68 65 20 | sum.of.squared.residuals.of.the. |
| b860 | 6c 65 61 73 74 20 73 71 75 61 72 65 73 20 66 69 74 0a 20 20 20 20 20 20 20 20 2d 20 72 61 6e 6b | least.squares.fit.........-.rank |
| b880 | 20 2d 2d 20 74 68 65 20 6e 75 6d 65 72 69 63 61 6c 20 72 61 6e 6b 20 6f 66 20 74 68 65 20 73 63 | .--.the.numerical.rank.of.the.sc |
| b8a0 | 61 6c 65 64 20 56 61 6e 64 65 72 6d 6f 6e 64 65 20 6d 61 74 72 69 78 0a 20 20 20 20 20 20 20 20 | aled.Vandermonde.matrix......... |
| b8c0 | 2d 20 73 69 6e 67 75 6c 61 72 5f 76 61 6c 75 65 73 20 2d 2d 20 73 69 6e 67 75 6c 61 72 20 76 61 | -.singular_values.--.singular.va |
| b8e0 | 6c 75 65 73 20 6f 66 20 74 68 65 20 73 63 61 6c 65 64 20 56 61 6e 64 65 72 6d 6f 6e 64 65 20 6d | lues.of.the.scaled.Vandermonde.m |
| b900 | 61 74 72 69 78 0a 20 20 20 20 20 20 20 20 2d 20 72 63 6f 6e 64 20 2d 2d 20 76 61 6c 75 65 20 6f | atrix.........-.rcond.--.value.o |
| b920 | 66 20 60 72 63 6f 6e 64 60 2e 0a 0a 20 20 20 20 20 20 20 20 46 6f 72 20 6d 6f 72 65 20 64 65 74 | f.`rcond`...........For.more.det |
| b940 | 61 69 6c 73 2c 20 73 65 65 20 60 6e 75 6d 70 79 2e 6c 69 6e 61 6c 67 2e 6c 73 74 73 71 60 2e 0a | ails,.see.`numpy.linalg.lstsq`.. |
| b960 | 0a 20 20 20 20 57 61 72 6e 73 0a 20 20 20 20 2d 2d 2d 2d 2d 0a 20 20 20 20 52 61 6e 6b 57 61 72 | .....Warns.....-----.....RankWar |
| b980 | 6e 69 6e 67 0a 20 20 20 20 20 20 20 20 54 68 65 20 72 61 6e 6b 20 6f 66 20 74 68 65 20 63 6f 65 | ning.........The.rank.of.the.coe |
| b9a0 | 66 66 69 63 69 65 6e 74 20 6d 61 74 72 69 78 20 69 6e 20 74 68 65 20 6c 65 61 73 74 2d 73 71 75 | fficient.matrix.in.the.least-squ |
| b9c0 | 61 72 65 73 20 66 69 74 20 69 73 0a 20 20 20 20 20 20 20 20 64 65 66 69 63 69 65 6e 74 2e 20 54 | ares.fit.is.........deficient..T |
| b9e0 | 68 65 20 77 61 72 6e 69 6e 67 20 69 73 20 6f 6e 6c 79 20 72 61 69 73 65 64 20 69 66 20 60 60 66 | he.warning.is.only.raised.if.``f |
| ba00 | 75 6c 6c 20 3d 3d 20 46 61 6c 73 65 60 60 2e 20 20 54 68 65 0a 20 20 20 20 20 20 20 20 77 61 72 | ull.==.False``...The.........war |
| ba20 | 6e 69 6e 67 73 20 63 61 6e 20 62 65 20 74 75 72 6e 65 64 20 6f 66 66 20 62 79 0a 0a 20 20 20 20 | nings.can.be.turned.off.by...... |
| ba40 | 20 20 20 20 3e 3e 3e 20 69 6d 70 6f 72 74 20 77 61 72 6e 69 6e 67 73 0a 20 20 20 20 20 20 20 20 | ....>>>.import.warnings......... |
| ba60 | 3e 3e 3e 20 77 61 72 6e 69 6e 67 73 2e 73 69 6d 70 6c 65 66 69 6c 74 65 72 28 27 69 67 6e 6f 72 | >>>.warnings.simplefilter('ignor |
| ba80 | 65 27 2c 20 6e 70 2e 65 78 63 65 70 74 69 6f 6e 73 2e 52 61 6e 6b 57 61 72 6e 69 6e 67 29 0a 0a | e',.np.exceptions.RankWarning).. |
| baa0 | 20 20 20 20 53 65 65 20 41 6c 73 6f 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 6e 75 | ....See.Also.....--------.....nu |
| bac0 | 6d 70 79 2e 70 6f 6c 79 6e 6f 6d 69 61 6c 2e 70 6f 6c 79 6e 6f 6d 69 61 6c 2e 70 6f 6c 79 66 69 | mpy.polynomial.polynomial.polyfi |
| bae0 | 74 0a 20 20 20 20 6e 75 6d 70 79 2e 70 6f 6c 79 6e 6f 6d 69 61 6c 2e 6c 65 67 65 6e 64 72 65 2e | t.....numpy.polynomial.legendre. |
| bb00 | 6c 65 67 66 69 74 0a 20 20 20 20 6e 75 6d 70 79 2e 70 6f 6c 79 6e 6f 6d 69 61 6c 2e 63 68 65 62 | legfit.....numpy.polynomial.cheb |
| bb20 | 79 73 68 65 76 2e 63 68 65 62 66 69 74 0a 20 20 20 20 6e 75 6d 70 79 2e 70 6f 6c 79 6e 6f 6d 69 | yshev.chebfit.....numpy.polynomi |
| bb40 | 61 6c 2e 68 65 72 6d 69 74 65 2e 68 65 72 6d 66 69 74 0a 20 20 20 20 6e 75 6d 70 79 2e 70 6f 6c | al.hermite.hermfit.....numpy.pol |
| bb60 | 79 6e 6f 6d 69 61 6c 2e 68 65 72 6d 69 74 65 5f 65 2e 68 65 72 6d 65 66 69 74 0a 20 20 20 20 6c | ynomial.hermite_e.hermefit.....l |
| bb80 | 61 67 76 61 6c 20 3a 20 45 76 61 6c 75 61 74 65 73 20 61 20 4c 61 67 75 65 72 72 65 20 73 65 72 | agval.:.Evaluates.a.Laguerre.ser |
| bba0 | 69 65 73 2e 0a 20 20 20 20 6c 61 67 76 61 6e 64 65 72 20 3a 20 70 73 65 75 64 6f 20 56 61 6e 64 | ies......lagvander.:.pseudo.Vand |
| bbc0 | 65 72 6d 6f 6e 64 65 20 6d 61 74 72 69 78 20 6f 66 20 4c 61 67 75 65 72 72 65 20 73 65 72 69 65 | ermonde.matrix.of.Laguerre.serie |
| bbe0 | 73 2e 0a 20 20 20 20 6c 61 67 77 65 69 67 68 74 20 3a 20 4c 61 67 75 65 72 72 65 20 77 65 69 67 | s......lagweight.:.Laguerre.weig |
| bc00 | 68 74 20 66 75 6e 63 74 69 6f 6e 2e 0a 20 20 20 20 6e 75 6d 70 79 2e 6c 69 6e 61 6c 67 2e 6c 73 | ht.function......numpy.linalg.ls |
| bc20 | 74 73 71 20 3a 20 43 6f 6d 70 75 74 65 73 20 61 20 6c 65 61 73 74 2d 73 71 75 61 72 65 73 20 66 | tsq.:.Computes.a.least-squares.f |
| bc40 | 69 74 20 66 72 6f 6d 20 74 68 65 20 6d 61 74 72 69 78 2e 0a 20 20 20 20 73 63 69 70 79 2e 69 6e | it.from.the.matrix......scipy.in |
| bc60 | 74 65 72 70 6f 6c 61 74 65 2e 55 6e 69 76 61 72 69 61 74 65 53 70 6c 69 6e 65 20 3a 20 43 6f 6d | terpolate.UnivariateSpline.:.Com |
| bc80 | 70 75 74 65 73 20 73 70 6c 69 6e 65 20 66 69 74 73 2e 0a 0a 20 20 20 20 4e 6f 74 65 73 0a 20 20 | putes.spline.fits.......Notes... |
| bca0 | 20 20 2d 2d 2d 2d 2d 0a 20 20 20 20 54 68 65 20 73 6f 6c 75 74 69 6f 6e 20 69 73 20 74 68 65 20 | ..-----.....The.solution.is.the. |
| bcc0 | 63 6f 65 66 66 69 63 69 65 6e 74 73 20 6f 66 20 74 68 65 20 4c 61 67 75 65 72 72 65 20 73 65 72 | coefficients.of.the.Laguerre.ser |
| bce0 | 69 65 73 20 60 60 70 60 60 20 74 68 61 74 0a 20 20 20 20 6d 69 6e 69 6d 69 7a 65 73 20 74 68 65 | ies.``p``.that.....minimizes.the |
| bd00 | 20 73 75 6d 20 6f 66 20 74 68 65 20 77 65 69 67 68 74 65 64 20 73 71 75 61 72 65 64 20 65 72 72 | .sum.of.the.weighted.squared.err |
| bd20 | 6f 72 73 0a 0a 20 20 20 20 2e 2e 20 6d 61 74 68 3a 3a 20 45 20 3d 20 5c 73 75 6d 5f 6a 20 77 5f | ors.........math::.E.=.\sum_j.w_ |
| bd40 | 6a 5e 32 20 2a 20 7c 79 5f 6a 20 2d 20 70 28 78 5f 6a 29 7c 5e 32 2c 0a 0a 20 20 20 20 77 68 65 | j^2.*.|y_j.-.p(x_j)|^2,......whe |
| bd60 | 72 65 20 74 68 65 20 3a 6d 61 74 68 3a 60 77 5f 6a 60 20 61 72 65 20 74 68 65 20 77 65 69 67 68 | re.the.:math:`w_j`.are.the.weigh |
| bd80 | 74 73 2e 20 54 68 69 73 20 70 72 6f 62 6c 65 6d 20 69 73 20 73 6f 6c 76 65 64 20 62 79 0a 20 20 | ts..This.problem.is.solved.by... |
| bda0 | 20 20 73 65 74 74 69 6e 67 20 75 70 20 61 73 20 74 68 65 20 28 74 79 70 69 63 61 6c 6c 79 29 20 | ..setting.up.as.the.(typically). |
| bdc0 | 6f 76 65 72 64 65 74 65 72 6d 69 6e 65 64 20 6d 61 74 72 69 78 20 65 71 75 61 74 69 6f 6e 0a 0a | overdetermined.matrix.equation.. |
| bde0 | 20 20 20 20 2e 2e 20 6d 61 74 68 3a 3a 20 56 28 78 29 20 2a 20 63 20 3d 20 77 20 2a 20 79 2c 0a | .......math::.V(x).*.c.=.w.*.y,. |
| be00 | 0a 20 20 20 20 77 68 65 72 65 20 60 60 56 60 60 20 69 73 20 74 68 65 20 77 65 69 67 68 74 65 64 | .....where.``V``.is.the.weighted |
| be20 | 20 70 73 65 75 64 6f 20 56 61 6e 64 65 72 6d 6f 6e 64 65 20 6d 61 74 72 69 78 20 6f 66 20 60 78 | .pseudo.Vandermonde.matrix.of.`x |
| be40 | 60 2c 20 60 60 63 60 60 20 61 72 65 20 74 68 65 0a 20 20 20 20 63 6f 65 66 66 69 63 69 65 6e 74 | `,.``c``.are.the.....coefficient |
| be60 | 73 20 74 6f 20 62 65 20 73 6f 6c 76 65 64 20 66 6f 72 2c 20 60 77 60 20 61 72 65 20 74 68 65 20 | s.to.be.solved.for,.`w`.are.the. |
| be80 | 77 65 69 67 68 74 73 2c 20 61 6e 64 20 60 79 60 20 61 72 65 20 74 68 65 0a 20 20 20 20 6f 62 73 | weights,.and.`y`.are.the.....obs |
| bea0 | 65 72 76 65 64 20 76 61 6c 75 65 73 2e 20 20 54 68 69 73 20 65 71 75 61 74 69 6f 6e 20 69 73 20 | erved.values...This.equation.is. |
| bec0 | 74 68 65 6e 20 73 6f 6c 76 65 64 20 75 73 69 6e 67 20 74 68 65 20 73 69 6e 67 75 6c 61 72 20 76 | then.solved.using.the.singular.v |
| bee0 | 61 6c 75 65 0a 20 20 20 20 64 65 63 6f 6d 70 6f 73 69 74 69 6f 6e 20 6f 66 20 60 60 56 60 60 2e | alue.....decomposition.of.``V``. |
| bf00 | 0a 0a 20 20 20 20 49 66 20 73 6f 6d 65 20 6f 66 20 74 68 65 20 73 69 6e 67 75 6c 61 72 20 76 61 | ......If.some.of.the.singular.va |
| bf20 | 6c 75 65 73 20 6f 66 20 60 56 60 20 61 72 65 20 73 6f 20 73 6d 61 6c 6c 20 74 68 61 74 20 74 68 | lues.of.`V`.are.so.small.that.th |
| bf40 | 65 79 20 61 72 65 0a 20 20 20 20 6e 65 67 6c 65 63 74 65 64 2c 20 74 68 65 6e 20 61 20 60 7e 65 | ey.are.....neglected,.then.a.`~e |
| bf60 | 78 63 65 70 74 69 6f 6e 73 2e 52 61 6e 6b 57 61 72 6e 69 6e 67 60 20 77 69 6c 6c 20 62 65 20 69 | xceptions.RankWarning`.will.be.i |
| bf80 | 73 73 75 65 64 2e 20 54 68 69 73 20 6d 65 61 6e 73 20 74 68 61 74 0a 20 20 20 20 74 68 65 20 63 | ssued..This.means.that.....the.c |
| bfa0 | 6f 65 66 66 69 63 69 65 6e 74 20 76 61 6c 75 65 73 20 6d 61 79 20 62 65 20 70 6f 6f 72 6c 79 20 | oefficient.values.may.be.poorly. |
| bfc0 | 64 65 74 65 72 6d 69 6e 65 64 2e 20 55 73 69 6e 67 20 61 20 6c 6f 77 65 72 20 6f 72 64 65 72 20 | determined..Using.a.lower.order. |
| bfe0 | 66 69 74 0a 20 20 20 20 77 69 6c 6c 20 75 73 75 61 6c 6c 79 20 67 65 74 20 72 69 64 20 6f 66 20 | fit.....will.usually.get.rid.of. |
| c000 | 74 68 65 20 77 61 72 6e 69 6e 67 2e 20 20 54 68 65 20 60 72 63 6f 6e 64 60 20 70 61 72 61 6d 65 | the.warning...The.`rcond`.parame |
| c020 | 74 65 72 20 63 61 6e 20 61 6c 73 6f 20 62 65 0a 20 20 20 20 73 65 74 20 74 6f 20 61 20 76 61 6c | ter.can.also.be.....set.to.a.val |
| c040 | 75 65 20 73 6d 61 6c 6c 65 72 20 74 68 61 6e 20 69 74 73 20 64 65 66 61 75 6c 74 2c 20 62 75 74 | ue.smaller.than.its.default,.but |
| c060 | 20 74 68 65 20 72 65 73 75 6c 74 69 6e 67 20 66 69 74 20 6d 61 79 20 62 65 0a 20 20 20 20 73 70 | .the.resulting.fit.may.be.....sp |
| c080 | 75 72 69 6f 75 73 20 61 6e 64 20 68 61 76 65 20 6c 61 72 67 65 20 63 6f 6e 74 72 69 62 75 74 69 | urious.and.have.large.contributi |
| c0a0 | 6f 6e 73 20 66 72 6f 6d 20 72 6f 75 6e 64 6f 66 66 20 65 72 72 6f 72 2e 0a 0a 20 20 20 20 46 69 | ons.from.roundoff.error.......Fi |
| c0c0 | 74 73 20 75 73 69 6e 67 20 4c 61 67 75 65 72 72 65 20 73 65 72 69 65 73 20 61 72 65 20 70 72 6f | ts.using.Laguerre.series.are.pro |
| c0e0 | 62 61 62 6c 79 20 6d 6f 73 74 20 75 73 65 66 75 6c 20 77 68 65 6e 20 74 68 65 20 64 61 74 61 20 | bably.most.useful.when.the.data. |
| c100 | 63 61 6e 0a 20 20 20 20 62 65 20 61 70 70 72 6f 78 69 6d 61 74 65 64 20 62 79 20 60 60 73 71 72 | can.....be.approximated.by.``sqr |
| c120 | 74 28 77 28 78 29 29 20 2a 20 70 28 78 29 60 60 2c 20 77 68 65 72 65 20 60 60 77 28 78 29 60 60 | t(w(x)).*.p(x)``,.where.``w(x)`` |
| c140 | 20 69 73 20 74 68 65 20 4c 61 67 75 65 72 72 65 0a 20 20 20 20 77 65 69 67 68 74 2e 20 49 6e 20 | .is.the.Laguerre.....weight..In. |
| c160 | 74 68 61 74 20 63 61 73 65 20 74 68 65 20 77 65 69 67 68 74 20 60 60 73 71 72 74 28 77 28 78 5b | that.case.the.weight.``sqrt(w(x[ |
| c180 | 69 5d 29 29 60 60 20 73 68 6f 75 6c 64 20 62 65 20 75 73 65 64 0a 20 20 20 20 74 6f 67 65 74 68 | i]))``.should.be.used.....togeth |
| c1a0 | 65 72 20 77 69 74 68 20 64 61 74 61 20 76 61 6c 75 65 73 20 60 60 79 5b 69 5d 2f 73 71 72 74 28 | er.with.data.values.``y[i]/sqrt( |
| c1c0 | 77 28 78 5b 69 5d 29 29 60 60 2e 20 54 68 65 20 77 65 69 67 68 74 20 66 75 6e 63 74 69 6f 6e 20 | w(x[i]))``..The.weight.function. |
| c1e0 | 69 73 0a 20 20 20 20 61 76 61 69 6c 61 62 6c 65 20 61 73 20 60 6c 61 67 77 65 69 67 68 74 60 2e | is.....available.as.`lagweight`. |
| c200 | 0a 0a 20 20 20 20 52 65 66 65 72 65 6e 63 65 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 0a | ......References.....----------. |
| c220 | 20 20 20 20 2e 2e 20 5b 31 5d 20 57 69 6b 69 70 65 64 69 61 2c 20 22 43 75 72 76 65 20 66 69 74 | .......[1].Wikipedia,."Curve.fit |
| c240 | 74 69 6e 67 22 2c 0a 20 20 20 20 20 20 20 20 20 20 20 68 74 74 70 73 3a 2f 2f 65 6e 2e 77 69 6b | ting",............https://en.wik |
| c260 | 69 70 65 64 69 61 2e 6f 72 67 2f 77 69 6b 69 2f 43 75 72 76 65 5f 66 69 74 74 69 6e 67 0a 0a 20 | ipedia.org/wiki/Curve_fitting... |
| c280 | 20 20 20 45 78 61 6d 70 6c 65 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 3e 3e 3e | ...Examples.....--------.....>>> |
| c2a0 | 20 69 6d 70 6f 72 74 20 6e 75 6d 70 79 20 61 73 20 6e 70 0a 20 20 20 20 3e 3e 3e 20 66 72 6f 6d | .import.numpy.as.np.....>>>.from |
| c2c0 | 20 6e 75 6d 70 79 2e 70 6f 6c 79 6e 6f 6d 69 61 6c 2e 6c 61 67 75 65 72 72 65 20 69 6d 70 6f 72 | .numpy.polynomial.laguerre.impor |
| c2e0 | 74 20 6c 61 67 66 69 74 2c 20 6c 61 67 76 61 6c 0a 20 20 20 20 3e 3e 3e 20 78 20 3d 20 6e 70 2e | t.lagfit,.lagval.....>>>.x.=.np. |
| c300 | 6c 69 6e 73 70 61 63 65 28 30 2c 20 31 30 29 0a 20 20 20 20 3e 3e 3e 20 72 6e 67 20 3d 20 6e 70 | linspace(0,.10).....>>>.rng.=.np |
| c320 | 2e 72 61 6e 64 6f 6d 2e 64 65 66 61 75 6c 74 5f 72 6e 67 28 29 0a 20 20 20 20 3e 3e 3e 20 65 72 | .random.default_rng().....>>>.er |
| c340 | 72 20 3d 20 72 6e 67 2e 6e 6f 72 6d 61 6c 28 73 63 61 6c 65 3d 31 2e 2f 31 30 2c 20 73 69 7a 65 | r.=.rng.normal(scale=1./10,.size |
| c360 | 3d 6c 65 6e 28 78 29 29 0a 20 20 20 20 3e 3e 3e 20 79 20 3d 20 6c 61 67 76 61 6c 28 78 2c 20 5b | =len(x)).....>>>.y.=.lagval(x,.[ |
| c380 | 31 2c 20 32 2c 20 33 5d 29 20 2b 20 65 72 72 0a 20 20 20 20 3e 3e 3e 20 6c 61 67 66 69 74 28 78 | 1,.2,.3]).+.err.....>>>.lagfit(x |
| c3a0 | 2c 20 79 2c 20 32 29 0a 20 20 20 20 61 72 72 61 79 28 5b 31 2e 30 30 35 37 38 33 36 39 2c 20 31 | ,.y,.2).....array([1.00578369,.1 |
| c3c0 | 2e 39 39 34 31 37 33 35 36 2c 20 32 2e 39 39 38 32 37 36 35 36 5d 29 20 23 20 6d 61 79 20 76 61 | .99417356,.2.99827656]).#.may.va |
| c3e0 | 72 79 0a 0a 20 20 20 20 29 03 72 28 00 00 00 da 04 5f 66 69 74 72 18 00 00 00 29 06 72 7e 00 00 | ry......).r(....._fitr....).r~.. |
| c400 | 00 72 84 00 00 00 72 8d 00 00 00 da 05 72 63 6f 6e 64 da 04 66 75 6c 6c da 01 77 73 06 00 00 00 | .r....r......rcond..full..ws.... |
| c420 | 20 20 20 20 20 20 72 2d 00 00 00 72 19 00 00 00 72 19 00 00 00 09 05 00 00 73 20 00 00 00 80 00 | ......r-...r....r........s...... |
| c440 | f4 46 04 00 0c 0e 8f 37 89 37 94 39 98 61 a0 11 a0 43 a8 15 b0 04 b0 61 d3 0b 38 d0 04 38 72 2e | .F.....7.7.9.a...C.....a..8..8r. |
| c460 | 00 00 00 63 01 00 00 00 00 00 00 00 00 00 00 00 06 00 00 00 03 00 00 00 f3 7c 02 00 00 97 00 74 | ...c.....................|.....t |
| c480 | 01 00 00 00 00 00 00 00 00 6a 02 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 7c 00 67 | .........j...................|.g |
| c4a0 | 01 ab 01 00 00 00 00 00 00 5c 01 00 00 7d 00 74 05 00 00 00 00 00 00 00 00 7c 00 ab 01 00 00 00 | .........\...}.t.........|...... |
| c4c0 | 00 00 00 64 01 6b 02 00 00 72 0b 74 07 00 00 00 00 00 00 00 00 64 02 ab 01 00 00 00 00 00 00 82 | ...d.k...r.t.........d.......... |
| c4e0 | 01 74 05 00 00 00 00 00 00 00 00 7c 00 ab 01 00 00 00 00 00 00 64 01 6b 28 00 00 72 23 74 09 00 | .t.........|.........d.k(..r#t.. |
| c500 | 00 00 00 00 00 00 00 6a 0a 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 64 03 7c 00 64 | .......j...................d.|.d |
| c520 | 04 19 00 00 00 7c 00 64 03 19 00 00 00 7a 0b 00 00 7a 00 00 00 67 01 67 01 ab 01 00 00 00 00 00 | .....|.d.....z...z...g.g........ |
| c540 | 00 53 00 74 05 00 00 00 00 00 00 00 00 7c 00 ab 01 00 00 00 00 00 00 64 03 7a 0a 00 00 7d 01 74 | .S.t.........|.........d.z...}.t |
| c560 | 09 00 00 00 00 00 00 00 00 6a 0c 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 7c 01 7c | .........j...................|.| |
| c580 | 01 66 02 7c 00 6a 0e 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ac 05 ab 02 00 00 00 | .f.|.j.......................... |
| c5a0 | 00 00 00 7d 02 7c 02 6a 11 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 64 06 ab 01 00 | ...}.|.j...................d.... |
| c5c0 | 00 00 00 00 00 64 03 64 07 7c 01 64 03 7a 00 00 00 85 03 19 00 00 00 7d 03 7c 02 6a 11 00 00 00 | .....d.d.|.d.z.........}.|.j.... |
| c5e0 | 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 64 06 ab 01 00 00 00 00 00 00 64 04 64 07 7c 01 64 | ...............d.........d.d.|.d |
| c600 | 03 7a 00 00 00 85 03 19 00 00 00 7d 04 7c 02 6a 11 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 | .z.........}.|.j................ |
| c620 | 00 00 00 64 06 ab 01 00 00 00 00 00 00 7c 01 64 07 7c 01 64 03 7a 00 00 00 85 03 19 00 00 00 7d | ...d.........|.d.|.d.z.........} |
| c640 | 05 74 09 00 00 00 00 00 00 00 00 6a 12 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 64 | .t.........j...................d |
| c660 | 03 7c 01 ab 02 00 00 00 00 00 00 0b 00 7c 03 64 08 3c 00 00 00 64 09 74 09 00 00 00 00 00 00 00 | .|...........|.d.<...d.t........ |
| c680 | 00 6a 12 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 7c 01 ab 01 00 00 00 00 00 00 7a | .j...................|.........z |
| c6a0 | 05 00 00 64 0a 7a 00 00 00 7c 04 64 08 3c 00 00 00 7c 03 7c 05 64 08 3c 00 00 00 7c 02 64 07 64 | ...d.z...|.d.<...|.|.d.<...|.d.d |
| c6c0 | 07 85 02 64 06 66 02 78 02 78 02 19 00 00 00 7c 00 64 07 64 06 1a 00 7c 00 64 06 19 00 00 00 7a | ...d.f.x.x.....|.d.d...|.d.....z |
| c6e0 | 0b 00 00 7c 01 7a 05 00 00 7a 0d 00 00 63 03 63 02 3c 00 00 00 7c 02 53 00 29 0b 61 78 02 00 00 | ...|.z...z...c.c.<...|.S.).ax... |
| c700 | 0a 20 20 20 20 52 65 74 75 72 6e 20 74 68 65 20 63 6f 6d 70 61 6e 69 6f 6e 20 6d 61 74 72 69 78 | .....Return.the.companion.matrix |
| c720 | 20 6f 66 20 63 2e 0a 0a 20 20 20 20 54 68 65 20 75 73 75 61 6c 20 63 6f 6d 70 61 6e 69 6f 6e 20 | .of.c.......The.usual.companion. |
| c740 | 6d 61 74 72 69 78 20 6f 66 20 74 68 65 20 4c 61 67 75 65 72 72 65 20 70 6f 6c 79 6e 6f 6d 69 61 | matrix.of.the.Laguerre.polynomia |
| c760 | 6c 73 20 69 73 20 61 6c 72 65 61 64 79 0a 20 20 20 20 73 79 6d 6d 65 74 72 69 63 20 77 68 65 6e | ls.is.already.....symmetric.when |
| c780 | 20 60 63 60 20 69 73 20 61 20 62 61 73 69 73 20 4c 61 67 75 65 72 72 65 20 70 6f 6c 79 6e 6f 6d | .`c`.is.a.basis.Laguerre.polynom |
| c7a0 | 69 61 6c 2c 20 73 6f 20 6e 6f 20 73 63 61 6c 69 6e 67 20 69 73 0a 20 20 20 20 61 70 70 6c 69 65 | ial,.so.no.scaling.is.....applie |
| c7c0 | 64 2e 0a 0a 20 20 20 20 50 61 72 61 6d 65 74 65 72 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 2d | d.......Parameters.....--------- |
| c7e0 | 2d 0a 20 20 20 20 63 20 3a 20 61 72 72 61 79 5f 6c 69 6b 65 0a 20 20 20 20 20 20 20 20 31 2d 44 | -.....c.:.array_like.........1-D |
| c800 | 20 61 72 72 61 79 20 6f 66 20 4c 61 67 75 65 72 72 65 20 73 65 72 69 65 73 20 63 6f 65 66 66 69 | .array.of.Laguerre.series.coeffi |
| c820 | 63 69 65 6e 74 73 20 6f 72 64 65 72 65 64 20 66 72 6f 6d 20 6c 6f 77 20 74 6f 20 68 69 67 68 0a | cients.ordered.from.low.to.high. |
| c840 | 20 20 20 20 20 20 20 20 64 65 67 72 65 65 2e 0a 0a 20 20 20 20 52 65 74 75 72 6e 73 0a 20 20 20 | ........degree.......Returns.... |
| c860 | 20 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 6d 61 74 20 3a 20 6e 64 61 72 72 61 79 0a 20 20 20 20 20 | .-------.....mat.:.ndarray...... |
| c880 | 20 20 20 43 6f 6d 70 61 6e 69 6f 6e 20 6d 61 74 72 69 78 20 6f 66 20 64 69 6d 65 6e 73 69 6f 6e | ...Companion.matrix.of.dimension |
| c8a0 | 73 20 28 64 65 67 2c 20 64 65 67 29 2e 0a 0a 20 20 20 20 45 78 61 6d 70 6c 65 73 0a 20 20 20 20 | s.(deg,.deg).......Examples..... |
| c8c0 | 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 3e 3e 3e 20 66 72 6f 6d 20 6e 75 6d 70 79 2e 70 6f 6c 79 | --------.....>>>.from.numpy.poly |
| c8e0 | 6e 6f 6d 69 61 6c 2e 6c 61 67 75 65 72 72 65 20 69 6d 70 6f 72 74 20 6c 61 67 63 6f 6d 70 61 6e | nomial.laguerre.import.lagcompan |
| c900 | 69 6f 6e 0a 20 20 20 20 3e 3e 3e 20 6c 61 67 63 6f 6d 70 61 6e 69 6f 6e 28 5b 31 2c 20 32 2c 20 | ion.....>>>.lagcompanion([1,.2,. |
| c920 | 33 5d 29 0a 20 20 20 20 61 72 72 61 79 28 5b 5b 20 31 2e 20 20 20 20 20 20 20 20 2c 20 2d 30 2e | 3]).....array([[.1.........,.-0. |
| c940 | 33 33 33 33 33 33 33 33 5d 2c 0a 20 20 20 20 20 20 20 20 20 20 20 5b 2d 31 2e 20 20 20 20 20 20 | 33333333],............[-1....... |
| c960 | 20 20 2c 20 20 34 2e 33 33 33 33 33 33 33 33 5d 5d 29 0a 0a 20 20 20 20 72 34 00 00 00 7a 2e 53 | ..,..4.33333333]])......r4...z.S |
| c980 | 65 72 69 65 73 20 6d 75 73 74 20 68 61 76 65 20 6d 61 78 69 6d 75 6d 20 64 65 67 72 65 65 20 6f | eries.must.have.maximum.degree.o |
| c9a0 | 66 20 61 74 20 6c 65 61 73 74 20 31 2e 72 04 00 00 00 72 02 00 00 00 72 50 00 00 00 72 27 00 00 | f.at.least.1.r....r....rP...r'.. |
| c9c0 | 00 4e 2e 67 00 00 00 00 00 00 00 40 72 3f 00 00 00 29 0a 72 28 00 00 00 72 29 00 00 00 72 36 00 | .N.g.......@r?...).r(...r)...r6. |
| c9e0 | 00 00 72 68 00 00 00 72 41 00 00 00 72 42 00 00 00 da 05 7a 65 72 6f 73 72 51 00 00 00 72 7d 00 | ..rh...rA...rB.....zerosrQ...r}. |
| ca00 | 00 00 da 06 61 72 61 6e 67 65 29 06 72 38 00 00 00 72 39 00 00 00 da 03 6d 61 74 da 03 74 6f 70 | ....arange).r8...r9.....mat..top |
| ca20 | da 03 6d 69 64 da 03 62 6f 74 73 06 00 00 00 20 20 20 20 20 20 72 2d 00 00 00 72 23 00 00 00 72 | ..mid..bots..........r-...r#...r |
| ca40 | 23 00 00 00 8f 05 00 00 73 3a 01 00 00 80 00 f4 38 00 0b 0d 8f 2c 89 2c 98 01 90 73 d3 0a 1b 81 | #.......s:......8....,.,...s.... |
| ca60 | 43 80 51 dc 07 0a 88 31 83 76 90 01 82 7a dc 0e 18 d0 19 49 d3 0e 4a d0 08 4a dc 07 0a 88 31 83 | C.Q....1.v...z.....I..J..J....1. |
| ca80 | 76 90 11 82 7b dc 0f 11 8f 78 89 78 98 21 98 61 a0 01 99 64 a0 51 a0 71 a1 54 99 6b 99 2f d0 19 | v...{....x.x.!.a...d.Q.q.T.k./.. |
| caa0 | 2a d0 18 2b d3 0f 2c d0 08 2c e4 08 0b 88 41 8b 06 90 11 89 0a 80 41 dc 0a 0c 8f 28 89 28 90 41 | *..+..,..,....A.......A....(.(.A |
| cac0 | 90 71 90 36 a0 11 a7 17 a1 17 d4 0a 29 80 43 d8 0a 0d 8f 2b 89 2b 90 62 8b 2f 98 21 98 28 98 51 | .q.6........).C....+.+.b./.!.(.Q |
| cae0 | a0 11 99 55 98 28 d1 0a 23 80 43 d8 0a 0d 8f 2b 89 2b 90 62 8b 2f 98 21 98 28 98 51 a0 11 99 55 | ...U.(..#.C....+.+.b./.!.(.Q...U |
| cb00 | 98 28 d1 0a 23 80 43 d8 0a 0d 8f 2b 89 2b 90 62 8b 2f 98 21 98 28 98 51 a0 11 99 55 98 28 d1 0a | .(..#.C....+.+.b./.!.(.Q...U.(.. |
| cb20 | 23 80 43 dc 10 12 97 09 91 09 98 21 98 51 93 0f d0 0f 1f 80 43 88 03 81 48 d8 0f 11 94 42 97 49 | #.C........!.Q......C...H....B.I |
| cb40 | 91 49 98 61 93 4c d1 0f 20 a0 32 d1 0f 25 80 43 88 03 81 48 d8 0f 12 80 43 88 03 81 48 d8 04 07 | .I.a.L....2..%.C...H....C...H... |
| cb60 | 8a 01 88 32 88 05 83 4a 90 31 90 53 90 62 90 36 98 41 98 62 99 45 91 3e a0 51 d1 12 26 d1 04 26 | ...2...J.1.S.b.6.A.b.E.>.Q..&..& |
| cb80 | 83 4a d8 0b 0e 80 4a 72 2e 00 00 00 63 01 00 00 00 00 00 00 00 00 00 00 00 06 00 00 00 03 00 00 | .J....Jr....c................... |
| cba0 | 00 f3 6a 01 00 00 97 00 74 01 00 00 00 00 00 00 00 00 6a 02 00 00 00 00 00 00 00 00 00 00 00 00 | ..j.....t.........j............. |
| cbc0 | 00 00 00 00 00 00 7c 00 67 01 ab 01 00 00 00 00 00 00 5c 01 00 00 7d 00 74 05 00 00 00 00 00 00 | ......|.g.........\...}.t....... |
| cbe0 | 00 00 7c 00 ab 01 00 00 00 00 00 00 64 01 6b 1a 00 00 72 21 74 07 00 00 00 00 00 00 00 00 6a 08 | ..|.........d.k...r!t.........j. |
| cc00 | 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 67 00 7c 00 6a 0a 00 00 00 00 00 00 00 00 | ..................g.|.j......... |
| cc20 | 00 00 00 00 00 00 00 00 00 00 ac 02 ab 02 00 00 00 00 00 00 53 00 74 05 00 00 00 00 00 00 00 00 | ....................S.t......... |
| cc40 | 7c 00 ab 01 00 00 00 00 00 00 64 03 6b 28 00 00 72 22 74 07 00 00 00 00 00 00 00 00 6a 08 00 00 | |.........d.k(..r"t.........j... |
| cc60 | 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 64 01 7c 00 64 04 19 00 00 00 7c 00 64 01 19 00 | ................d.|.d.....|.d... |
| cc80 | 00 00 7a 0b 00 00 7a 00 00 00 67 01 ab 01 00 00 00 00 00 00 53 00 74 0d 00 00 00 00 00 00 00 00 | ..z...z...g.........S.t......... |
| cca0 | 7c 00 ab 01 00 00 00 00 00 00 64 05 64 05 64 06 85 03 64 05 64 05 64 06 85 03 66 02 19 00 00 00 | |.........d.d.d...d.d.d...f..... |
| ccc0 | 7d 01 74 0f 00 00 00 00 00 00 00 00 6a 10 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 | }.t.........j................... |
| cce0 | 7c 01 ab 01 00 00 00 00 00 00 7d 02 7c 02 6a 13 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 | |.........}.|.j................. |
| cd00 | 00 00 ab 00 00 00 00 00 00 00 01 00 7c 02 53 00 29 07 61 00 06 00 00 0a 20 20 20 20 43 6f 6d 70 | ............|.S.).a.........Comp |
| cd20 | 75 74 65 20 74 68 65 20 72 6f 6f 74 73 20 6f 66 20 61 20 4c 61 67 75 65 72 72 65 20 73 65 72 69 | ute.the.roots.of.a.Laguerre.seri |
| cd40 | 65 73 2e 0a 0a 20 20 20 20 52 65 74 75 72 6e 20 74 68 65 20 72 6f 6f 74 73 20 28 61 2e 6b 2e 61 | es.......Return.the.roots.(a.k.a |
| cd60 | 2e 20 22 7a 65 72 6f 73 22 29 20 6f 66 20 74 68 65 20 70 6f 6c 79 6e 6f 6d 69 61 6c 0a 0a 20 20 | .."zeros").of.the.polynomial.... |
| cd80 | 20 20 2e 2e 20 6d 61 74 68 3a 3a 20 70 28 78 29 20 3d 20 5c 73 75 6d 5f 69 20 63 5b 69 5d 20 2a | .....math::.p(x).=.\sum_i.c[i].* |
| cda0 | 20 4c 5f 69 28 78 29 2e 0a 0a 20 20 20 20 50 61 72 61 6d 65 74 65 72 73 0a 20 20 20 20 2d 2d 2d | .L_i(x).......Parameters.....--- |
| cdc0 | 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 63 20 3a 20 31 2d 44 20 61 72 72 61 79 5f 6c 69 6b 65 0a 20 | -------.....c.:.1-D.array_like.. |
| cde0 | 20 20 20 20 20 20 20 31 2d 44 20 61 72 72 61 79 20 6f 66 20 63 6f 65 66 66 69 63 69 65 6e 74 73 | .......1-D.array.of.coefficients |
| ce00 | 2e 0a 0a 20 20 20 20 52 65 74 75 72 6e 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 6f | .......Returns.....-------.....o |
| ce20 | 75 74 20 3a 20 6e 64 61 72 72 61 79 0a 20 20 20 20 20 20 20 20 41 72 72 61 79 20 6f 66 20 74 68 | ut.:.ndarray.........Array.of.th |
| ce40 | 65 20 72 6f 6f 74 73 20 6f 66 20 74 68 65 20 73 65 72 69 65 73 2e 20 49 66 20 61 6c 6c 20 74 68 | e.roots.of.the.series..If.all.th |
| ce60 | 65 20 72 6f 6f 74 73 20 61 72 65 20 72 65 61 6c 2c 0a 20 20 20 20 20 20 20 20 74 68 65 6e 20 60 | e.roots.are.real,.........then.` |
| ce80 | 6f 75 74 60 20 69 73 20 61 6c 73 6f 20 72 65 61 6c 2c 20 6f 74 68 65 72 77 69 73 65 20 69 74 20 | out`.is.also.real,.otherwise.it. |
| cea0 | 69 73 20 63 6f 6d 70 6c 65 78 2e 0a 0a 20 20 20 20 53 65 65 20 41 6c 73 6f 0a 20 20 20 20 2d 2d | is.complex.......See.Also.....-- |
| cec0 | 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 6e 75 6d 70 79 2e 70 6f 6c 79 6e 6f 6d 69 61 6c 2e 70 6f 6c 79 | ------.....numpy.polynomial.poly |
| cee0 | 6e 6f 6d 69 61 6c 2e 70 6f 6c 79 72 6f 6f 74 73 0a 20 20 20 20 6e 75 6d 70 79 2e 70 6f 6c 79 6e | nomial.polyroots.....numpy.polyn |
| cf00 | 6f 6d 69 61 6c 2e 6c 65 67 65 6e 64 72 65 2e 6c 65 67 72 6f 6f 74 73 0a 20 20 20 20 6e 75 6d 70 | omial.legendre.legroots.....nump |
| cf20 | 79 2e 70 6f 6c 79 6e 6f 6d 69 61 6c 2e 63 68 65 62 79 73 68 65 76 2e 63 68 65 62 72 6f 6f 74 73 | y.polynomial.chebyshev.chebroots |
| cf40 | 0a 20 20 20 20 6e 75 6d 70 79 2e 70 6f 6c 79 6e 6f 6d 69 61 6c 2e 68 65 72 6d 69 74 65 2e 68 65 | .....numpy.polynomial.hermite.he |
| cf60 | 72 6d 72 6f 6f 74 73 0a 20 20 20 20 6e 75 6d 70 79 2e 70 6f 6c 79 6e 6f 6d 69 61 6c 2e 68 65 72 | rmroots.....numpy.polynomial.her |
| cf80 | 6d 69 74 65 5f 65 2e 68 65 72 6d 65 72 6f 6f 74 73 0a 0a 20 20 20 20 4e 6f 74 65 73 0a 20 20 20 | mite_e.hermeroots......Notes.... |
| cfa0 | 20 2d 2d 2d 2d 2d 0a 20 20 20 20 54 68 65 20 72 6f 6f 74 20 65 73 74 69 6d 61 74 65 73 20 61 72 | .-----.....The.root.estimates.ar |
| cfc0 | 65 20 6f 62 74 61 69 6e 65 64 20 61 73 20 74 68 65 20 65 69 67 65 6e 76 61 6c 75 65 73 20 6f 66 | e.obtained.as.the.eigenvalues.of |
| cfe0 | 20 74 68 65 20 63 6f 6d 70 61 6e 69 6f 6e 0a 20 20 20 20 6d 61 74 72 69 78 2c 20 52 6f 6f 74 73 | .the.companion.....matrix,.Roots |
| d000 | 20 66 61 72 20 66 72 6f 6d 20 74 68 65 20 6f 72 69 67 69 6e 20 6f 66 20 74 68 65 20 63 6f 6d 70 | .far.from.the.origin.of.the.comp |
| d020 | 6c 65 78 20 70 6c 61 6e 65 20 6d 61 79 20 68 61 76 65 20 6c 61 72 67 65 0a 20 20 20 20 65 72 72 | lex.plane.may.have.large.....err |
| d040 | 6f 72 73 20 64 75 65 20 74 6f 20 74 68 65 20 6e 75 6d 65 72 69 63 61 6c 20 69 6e 73 74 61 62 69 | ors.due.to.the.numerical.instabi |
| d060 | 6c 69 74 79 20 6f 66 20 74 68 65 20 73 65 72 69 65 73 20 66 6f 72 20 73 75 63 68 0a 20 20 20 20 | lity.of.the.series.for.such..... |
| d080 | 76 61 6c 75 65 73 2e 20 52 6f 6f 74 73 20 77 69 74 68 20 6d 75 6c 74 69 70 6c 69 63 69 74 79 20 | values..Roots.with.multiplicity. |
| d0a0 | 67 72 65 61 74 65 72 20 74 68 61 6e 20 31 20 77 69 6c 6c 20 61 6c 73 6f 20 73 68 6f 77 20 6c 61 | greater.than.1.will.also.show.la |
| d0c0 | 72 67 65 72 0a 20 20 20 20 65 72 72 6f 72 73 20 61 73 20 74 68 65 20 76 61 6c 75 65 20 6f 66 20 | rger.....errors.as.the.value.of. |
| d0e0 | 74 68 65 20 73 65 72 69 65 73 20 6e 65 61 72 20 73 75 63 68 20 70 6f 69 6e 74 73 20 69 73 20 72 | the.series.near.such.points.is.r |
| d100 | 65 6c 61 74 69 76 65 6c 79 0a 20 20 20 20 69 6e 73 65 6e 73 69 74 69 76 65 20 74 6f 20 65 72 72 | elatively.....insensitive.to.err |
| d120 | 6f 72 73 20 69 6e 20 74 68 65 20 72 6f 6f 74 73 2e 20 49 73 6f 6c 61 74 65 64 20 72 6f 6f 74 73 | ors.in.the.roots..Isolated.roots |
| d140 | 20 6e 65 61 72 20 74 68 65 20 6f 72 69 67 69 6e 20 63 61 6e 0a 20 20 20 20 62 65 20 69 6d 70 72 | .near.the.origin.can.....be.impr |
| d160 | 6f 76 65 64 20 62 79 20 61 20 66 65 77 20 69 74 65 72 61 74 69 6f 6e 73 20 6f 66 20 4e 65 77 74 | oved.by.a.few.iterations.of.Newt |
| d180 | 6f 6e 27 73 20 6d 65 74 68 6f 64 2e 0a 0a 20 20 20 20 54 68 65 20 4c 61 67 75 65 72 72 65 20 73 | on's.method.......The.Laguerre.s |
| d1a0 | 65 72 69 65 73 20 62 61 73 69 73 20 70 6f 6c 79 6e 6f 6d 69 61 6c 73 20 61 72 65 6e 27 74 20 70 | eries.basis.polynomials.aren't.p |
| d1c0 | 6f 77 65 72 73 20 6f 66 20 60 78 60 20 73 6f 20 74 68 65 0a 20 20 20 20 72 65 73 75 6c 74 73 20 | owers.of.`x`.so.the.....results. |
| d1e0 | 6f 66 20 74 68 69 73 20 66 75 6e 63 74 69 6f 6e 20 6d 61 79 20 73 65 65 6d 20 75 6e 69 6e 74 75 | of.this.function.may.seem.unintu |
| d200 | 69 74 69 76 65 2e 0a 0a 20 20 20 20 45 78 61 6d 70 6c 65 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d | itive.......Examples.....------- |
| d220 | 2d 0a 20 20 20 20 3e 3e 3e 20 66 72 6f 6d 20 6e 75 6d 70 79 2e 70 6f 6c 79 6e 6f 6d 69 61 6c 2e | -.....>>>.from.numpy.polynomial. |
| d240 | 6c 61 67 75 65 72 72 65 20 69 6d 70 6f 72 74 20 6c 61 67 72 6f 6f 74 73 2c 20 6c 61 67 66 72 6f | laguerre.import.lagroots,.lagfro |
| d260 | 6d 72 6f 6f 74 73 0a 20 20 20 20 3e 3e 3e 20 63 6f 65 66 20 3d 20 6c 61 67 66 72 6f 6d 72 6f 6f | mroots.....>>>.coef.=.lagfromroo |
| d280 | 74 73 28 5b 30 2c 20 31 2c 20 32 5d 29 0a 20 20 20 20 3e 3e 3e 20 63 6f 65 66 0a 20 20 20 20 61 | ts([0,.1,.2]).....>>>.coef.....a |
| d2a0 | 72 72 61 79 28 5b 20 20 32 2e 2c 20 20 2d 38 2e 2c 20 20 31 32 2e 2c 20 20 2d 36 2e 5d 29 0a 20 | rray([..2.,..-8.,..12.,..-6.]).. |
| d2c0 | 20 20 20 3e 3e 3e 20 6c 61 67 72 6f 6f 74 73 28 63 6f 65 66 29 0a 20 20 20 20 61 72 72 61 79 28 | ...>>>.lagroots(coef).....array( |
| d2e0 | 5b 2d 34 2e 34 34 30 38 39 32 31 65 2d 31 36 2c 20 20 31 2e 30 30 30 30 30 30 30 65 2b 30 30 2c | [-4.4408921e-16,..1.0000000e+00, |
| d300 | 20 20 32 2e 30 30 30 30 30 30 30 65 2b 30 30 5d 29 0a 0a 20 20 20 20 72 04 00 00 00 72 50 00 00 | ..2.0000000e+00])......r....rP.. |
| d320 | 00 72 34 00 00 00 72 02 00 00 00 4e 72 27 00 00 00 29 0a 72 28 00 00 00 72 29 00 00 00 72 36 00 | .r4...r....Nr'...).r(...r)...r6. |
| d340 | 00 00 72 41 00 00 00 72 42 00 00 00 72 51 00 00 00 72 23 00 00 00 da 02 6c 61 da 07 65 69 67 76 | ..rA...rB...rQ...r#.....la..eigv |
| d360 | 61 6c 73 da 04 73 6f 72 74 29 03 72 38 00 00 00 72 6c 00 00 00 da 01 72 73 03 00 00 00 20 20 20 | als..sort).r8...rl.....rs....... |
| d380 | 72 2d 00 00 00 72 1b 00 00 00 72 1b 00 00 00 bd 05 00 00 73 9b 00 00 00 80 00 f4 66 01 00 0b 0d | r-...r....r........s.......f.... |
| d3a0 | 8f 2c 89 2c 98 01 90 73 d3 0a 1b 81 43 80 51 dc 07 0a 88 31 83 76 90 11 82 7b dc 0f 11 8f 78 89 | .,.,...s....C.Q....1.v...{....x. |
| d3c0 | 78 98 02 a0 21 a7 27 a1 27 d4 0f 2a d0 08 2a dc 07 0a 88 31 83 76 90 11 82 7b dc 0f 11 8f 78 89 | x...!.'.'..*..*....1.v...{....x. |
| d3e0 | 78 98 11 98 51 98 71 99 54 a0 41 a0 61 a1 44 99 5b 99 1f d0 18 29 d3 0f 2a d0 08 2a f4 06 00 09 | x...Q.q.T.A.a.D.[....)..*..*.... |
| d400 | 15 90 51 8b 0f 99 04 98 22 98 04 99 64 a0 02 98 64 98 0a d1 08 23 80 41 dc 08 0a 8f 0a 89 0a 90 | ..Q....."...d...d....#.A........ |
| d420 | 31 8b 0d 80 41 d8 04 05 87 46 81 46 84 48 d8 0b 0c 80 48 72 2e 00 00 00 63 01 00 00 00 00 00 00 | 1...A....F.F.H....Hr....c....... |
| d440 | 00 00 00 00 00 06 00 00 00 03 00 00 00 f3 0e 02 00 00 97 00 74 01 00 00 00 00 00 00 00 00 6a 02 | ....................t.........j. |
| d460 | 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 7c 00 64 01 ab 02 00 00 00 00 00 00 7d 01 | ..................|.d.........}. |
| d480 | 7c 01 64 02 6b 1a 00 00 72 0b 74 05 00 00 00 00 00 00 00 00 64 03 ab 01 00 00 00 00 00 00 82 01 | |.d.k...r.t.........d........... |
| d4a0 | 74 07 00 00 00 00 00 00 00 00 6a 08 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 64 02 | t.........j...................d. |
| d4c0 | 67 01 7c 00 7a 05 00 00 64 04 67 01 7a 00 00 00 ab 01 00 00 00 00 00 00 7d 02 74 0b 00 00 00 00 | g.|.z...d.g.z...........}.t..... |
| d4e0 | 00 00 00 00 7c 02 ab 01 00 00 00 00 00 00 7d 03 74 0d 00 00 00 00 00 00 00 00 6a 0e 00 00 00 00 | ....|.........}.t.........j..... |
| d500 | 00 00 00 00 00 00 00 00 00 00 00 00 00 00 7c 03 ab 01 00 00 00 00 00 00 7d 04 74 11 00 00 00 00 | ..............|.........}.t..... |
| d520 | 00 00 00 00 7c 04 7c 02 ab 02 00 00 00 00 00 00 7d 05 74 11 00 00 00 00 00 00 00 00 7c 04 74 13 | ....|.|.........}.t.........|.t. |
| d540 | 00 00 00 00 00 00 00 00 7c 02 ab 01 00 00 00 00 00 00 ab 02 00 00 00 00 00 00 7d 06 7c 04 7c 05 | ........|.................}.|.|. |
| d560 | 7c 06 7a 0b 00 00 7a 17 00 00 7d 04 74 11 00 00 00 00 00 00 00 00 7c 04 7c 02 64 04 64 05 1a 00 | |.z...z...}.t.........|.|.d.d... |
| d580 | ab 02 00 00 00 00 00 00 7d 07 7c 07 74 07 00 00 00 00 00 00 00 00 6a 14 00 00 00 00 00 00 00 00 | ........}.|.t.........j......... |
| d5a0 | 00 00 00 00 00 00 00 00 00 00 7c 07 ab 01 00 00 00 00 00 00 6a 17 00 00 00 00 00 00 00 00 00 00 | ..........|.........j........... |
| d5c0 | 00 00 00 00 00 00 00 00 ab 00 00 00 00 00 00 00 7a 18 00 00 7d 07 7c 06 74 07 00 00 00 00 00 00 | ................z...}.|.t....... |
| d5e0 | 00 00 6a 14 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 7c 06 ab 01 00 00 00 00 00 00 | ..j...................|......... |
| d600 | 6a 17 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ab 00 00 00 00 00 00 00 7a 18 00 00 | j...........................z... |
| d620 | 7d 06 64 04 7c 07 7c 06 7a 05 00 00 7a 0b 00 00 7d 08 7c 08 7c 08 6a 19 00 00 00 00 00 00 00 00 | }.d.|.|.z...z...}.|.|.j......... |
| d640 | 00 00 00 00 00 00 00 00 00 00 ab 00 00 00 00 00 00 00 7a 18 00 00 7d 08 7c 04 7c 08 66 02 53 00 | ..................z...}.|.|.f.S. |
| d660 | 29 06 61 80 04 00 00 0a 20 20 20 20 47 61 75 73 73 2d 4c 61 67 75 65 72 72 65 20 71 75 61 64 72 | ).a.........Gauss-Laguerre.quadr |
| d680 | 61 74 75 72 65 2e 0a 0a 20 20 20 20 43 6f 6d 70 75 74 65 73 20 74 68 65 20 73 61 6d 70 6c 65 20 | ature.......Computes.the.sample. |
| d6a0 | 70 6f 69 6e 74 73 20 61 6e 64 20 77 65 69 67 68 74 73 20 66 6f 72 20 47 61 75 73 73 2d 4c 61 67 | points.and.weights.for.Gauss-Lag |
| d6c0 | 75 65 72 72 65 20 71 75 61 64 72 61 74 75 72 65 2e 0a 20 20 20 20 54 68 65 73 65 20 73 61 6d 70 | uerre.quadrature......These.samp |
| d6e0 | 6c 65 20 70 6f 69 6e 74 73 20 61 6e 64 20 77 65 69 67 68 74 73 20 77 69 6c 6c 20 63 6f 72 72 65 | le.points.and.weights.will.corre |
| d700 | 63 74 6c 79 20 69 6e 74 65 67 72 61 74 65 20 70 6f 6c 79 6e 6f 6d 69 61 6c 73 20 6f 66 0a 20 20 | ctly.integrate.polynomials.of... |
| d720 | 20 20 64 65 67 72 65 65 20 3a 6d 61 74 68 3a 60 32 2a 64 65 67 20 2d 20 31 60 20 6f 72 20 6c 65 | ..degree.:math:`2*deg.-.1`.or.le |
| d740 | 73 73 20 6f 76 65 72 20 74 68 65 20 69 6e 74 65 72 76 61 6c 20 3a 6d 61 74 68 3a 60 5b 30 2c 20 | ss.over.the.interval.:math:`[0,. |
| d760 | 5c 69 6e 66 5d 60 0a 20 20 20 20 77 69 74 68 20 74 68 65 20 77 65 69 67 68 74 20 66 75 6e 63 74 | \inf]`.....with.the.weight.funct |
| d780 | 69 6f 6e 20 3a 6d 61 74 68 3a 60 66 28 78 29 20 3d 20 5c 65 78 70 28 2d 78 29 60 2e 0a 0a 20 20 | ion.:math:`f(x).=.\exp(-x)`..... |
| d7a0 | 20 20 50 61 72 61 6d 65 74 65 72 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 | ..Parameters.....----------..... |
| d7c0 | 64 65 67 20 3a 20 69 6e 74 0a 20 20 20 20 20 20 20 20 4e 75 6d 62 65 72 20 6f 66 20 73 61 6d 70 | deg.:.int.........Number.of.samp |
| d7e0 | 6c 65 20 70 6f 69 6e 74 73 20 61 6e 64 20 77 65 69 67 68 74 73 2e 20 49 74 20 6d 75 73 74 20 62 | le.points.and.weights..It.must.b |
| d800 | 65 20 3e 3d 20 31 2e 0a 0a 20 20 20 20 52 65 74 75 72 6e 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d | e.>=.1.......Returns.....------- |
| d820 | 0a 20 20 20 20 78 20 3a 20 6e 64 61 72 72 61 79 0a 20 20 20 20 20 20 20 20 31 2d 44 20 6e 64 61 | .....x.:.ndarray.........1-D.nda |
| d840 | 72 72 61 79 20 63 6f 6e 74 61 69 6e 69 6e 67 20 74 68 65 20 73 61 6d 70 6c 65 20 70 6f 69 6e 74 | rray.containing.the.sample.point |
| d860 | 73 2e 0a 20 20 20 20 79 20 3a 20 6e 64 61 72 72 61 79 0a 20 20 20 20 20 20 20 20 31 2d 44 20 6e | s......y.:.ndarray.........1-D.n |
| d880 | 64 61 72 72 61 79 20 63 6f 6e 74 61 69 6e 69 6e 67 20 74 68 65 20 77 65 69 67 68 74 73 2e 0a 0a | darray.containing.the.weights... |
| d8a0 | 20 20 20 20 4e 6f 74 65 73 0a 20 20 20 20 2d 2d 2d 2d 2d 0a 20 20 20 20 54 68 65 20 72 65 73 75 | ....Notes.....-----.....The.resu |
| d8c0 | 6c 74 73 20 68 61 76 65 20 6f 6e 6c 79 20 62 65 65 6e 20 74 65 73 74 65 64 20 75 70 20 74 6f 20 | lts.have.only.been.tested.up.to. |
| d8e0 | 64 65 67 72 65 65 20 31 30 30 20 68 69 67 68 65 72 20 64 65 67 72 65 65 73 20 6d 61 79 0a 20 20 | degree.100.higher.degrees.may... |
| d900 | 20 20 62 65 20 70 72 6f 62 6c 65 6d 61 74 69 63 2e 20 54 68 65 20 77 65 69 67 68 74 73 20 61 72 | ..be.problematic..The.weights.ar |
| d920 | 65 20 64 65 74 65 72 6d 69 6e 65 64 20 62 79 20 75 73 69 6e 67 20 74 68 65 20 66 61 63 74 20 74 | e.determined.by.using.the.fact.t |
| d940 | 68 61 74 0a 0a 20 20 20 20 2e 2e 20 6d 61 74 68 3a 3a 20 77 5f 6b 20 3d 20 63 20 2f 20 28 4c 27 | hat.........math::.w_k.=.c./.(L' |
| d960 | 5f 6e 28 78 5f 6b 29 20 2a 20 4c 5f 7b 6e 2d 31 7d 28 78 5f 6b 29 29 0a 0a 20 20 20 20 77 68 65 | _n(x_k).*.L_{n-1}(x_k))......whe |
| d980 | 72 65 20 3a 6d 61 74 68 3a 60 63 60 20 69 73 20 61 20 63 6f 6e 73 74 61 6e 74 20 69 6e 64 65 70 | re.:math:`c`.is.a.constant.indep |
| d9a0 | 65 6e 64 65 6e 74 20 6f 66 20 3a 6d 61 74 68 3a 60 6b 60 20 61 6e 64 20 3a 6d 61 74 68 3a 60 78 | endent.of.:math:`k`.and.:math:`x |
| d9c0 | 5f 6b 60 0a 20 20 20 20 69 73 20 74 68 65 20 6b 27 74 68 20 72 6f 6f 74 20 6f 66 20 3a 6d 61 74 | _k`.....is.the.k'th.root.of.:mat |
| d9e0 | 68 3a 60 4c 5f 6e 60 2c 20 61 6e 64 20 74 68 65 6e 20 73 63 61 6c 69 6e 67 20 74 68 65 20 72 65 | h:`L_n`,.and.then.scaling.the.re |
| da00 | 73 75 6c 74 73 20 74 6f 20 67 65 74 0a 20 20 20 20 74 68 65 20 72 69 67 68 74 20 76 61 6c 75 65 | sults.to.get.....the.right.value |
| da20 | 20 77 68 65 6e 20 69 6e 74 65 67 72 61 74 69 6e 67 20 31 2e 0a 0a 20 20 20 20 45 78 61 6d 70 6c | .when.integrating.1.......Exampl |
| da40 | 65 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 3e 3e 3e 20 66 72 6f 6d 20 6e 75 6d | es.....--------.....>>>.from.num |
| da60 | 70 79 2e 70 6f 6c 79 6e 6f 6d 69 61 6c 2e 6c 61 67 75 65 72 72 65 20 69 6d 70 6f 72 74 20 6c 61 | py.polynomial.laguerre.import.la |
| da80 | 67 67 61 75 73 73 0a 20 20 20 20 3e 3e 3e 20 6c 61 67 67 61 75 73 73 28 32 29 0a 20 20 20 20 28 | ggauss.....>>>.laggauss(2).....( |
| daa0 | 61 72 72 61 79 28 5b 30 2e 35 38 35 37 38 36 34 34 2c 20 33 2e 34 31 34 32 31 33 35 36 5d 29 2c | array([0.58578644,.3.41421356]), |
| dac0 | 20 61 72 72 61 79 28 5b 30 2e 38 35 33 35 35 33 33 39 2c 20 30 2e 31 34 36 34 34 36 36 31 5d 29 | .array([0.85355339,.0.14644661]) |
| dae0 | 29 0a 0a 20 20 20 20 72 8d 00 00 00 72 02 00 00 00 7a 1e 64 65 67 20 6d 75 73 74 20 62 65 20 61 | )......r....r....z.deg.must.be.a |
| db00 | 20 70 6f 73 69 74 69 76 65 20 69 6e 74 65 67 65 72 72 04 00 00 00 4e 29 0d 72 28 00 00 00 72 67 | .positive.integerr....N).r(...rg |
| db20 | 00 00 00 72 68 00 00 00 72 41 00 00 00 72 42 00 00 00 72 23 00 00 00 72 a3 00 00 00 da 08 65 69 | ...rh...rA...rB...r#...r......ei |
| db40 | 67 76 61 6c 73 68 72 12 00 00 00 72 13 00 00 00 da 03 61 62 73 da 03 6d 61 78 da 03 73 75 6d 29 | gvalshr....r......abs..max..sum) |
| db60 | 09 72 8d 00 00 00 72 8e 00 00 00 72 38 00 00 00 72 6c 00 00 00 72 7e 00 00 00 da 02 64 79 da 02 | .r....r....r8...rl...r~.....dy.. |
| db80 | 64 66 da 02 66 6d 72 9a 00 00 00 73 09 00 00 00 20 20 20 20 20 20 20 20 20 72 2d 00 00 00 72 24 | df..fmr....s.............r-...r$ |
| dba0 | 00 00 00 72 24 00 00 00 fd 05 00 00 73 f1 00 00 00 80 00 f4 4e 01 00 0c 0e 8f 3a 89 3a 90 63 98 | ...r$.......s.......N.....:.:.c. |
| dbc0 | 35 d3 0b 21 80 44 d8 07 0b 88 71 82 79 dc 0e 18 d0 19 39 d3 0e 3a d0 08 3a f4 08 00 09 0b 8f 08 | 5..!.D....q.y.....9..:..:....... |
| dbe0 | 89 08 90 21 90 13 90 73 91 19 98 61 98 53 91 1f d3 08 21 80 41 dc 08 14 90 51 8b 0f 80 41 dc 08 | ...!...s...a.S....!.A....Q...A.. |
| dc00 | 0a 8f 0b 89 0b 90 41 8b 0e 80 41 f4 06 00 0a 10 90 01 90 31 8b 1c 80 42 dc 09 0f 90 01 94 36 98 | ......A...A........1...B......6. |
| dc20 | 21 93 39 d3 09 1d 80 42 d8 04 05 88 12 88 62 89 17 81 4c 80 41 f4 08 00 0a 10 90 01 90 31 90 51 | !.9....B......b...L.A........1.Q |
| dc40 | 90 52 90 35 d3 09 19 80 42 d8 04 06 8c 22 8f 26 89 26 90 12 8b 2a 8f 2e 89 2e d3 0a 1a d1 04 1a | .R.5....B....".&.&...*.......... |
| dc60 | 80 42 d8 04 06 8c 22 8f 26 89 26 90 12 8b 2a 8f 2e 89 2e d3 0a 1a d1 04 1a 80 42 d8 08 09 88 52 | .B....".&.&...*...........B....R |
| dc80 | 90 22 89 57 89 0d 80 41 f0 06 00 05 06 88 11 8f 15 89 15 8b 17 81 4c 80 41 e0 0b 0c 88 61 88 34 | .".W...A..............L.A....a.4 |
| dca0 | 80 4b 72 2e 00 00 00 63 01 00 00 00 00 00 00 00 00 00 00 00 03 00 00 00 03 00 00 00 f3 32 00 00 | .Kr....c.....................2.. |
| dcc0 | 00 97 00 74 01 00 00 00 00 00 00 00 00 6a 02 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 | ...t.........j.................. |
| dce0 | 00 7c 00 0b 00 ab 01 00 00 00 00 00 00 7d 01 7c 01 53 00 29 01 61 72 02 00 00 57 65 69 67 68 74 | .|...........}.|.S.).ar...Weight |
| dd00 | 20 66 75 6e 63 74 69 6f 6e 20 6f 66 20 74 68 65 20 4c 61 67 75 65 72 72 65 20 70 6f 6c 79 6e 6f | .function.of.the.Laguerre.polyno |
| dd20 | 6d 69 61 6c 73 2e 0a 0a 20 20 20 20 54 68 65 20 77 65 69 67 68 74 20 66 75 6e 63 74 69 6f 6e 20 | mials.......The.weight.function. |
| dd40 | 69 73 20 3a 6d 61 74 68 3a 60 65 78 70 28 2d 78 29 60 20 61 6e 64 20 74 68 65 20 69 6e 74 65 72 | is.:math:`exp(-x)`.and.the.inter |
| dd60 | 76 61 6c 20 6f 66 20 69 6e 74 65 67 72 61 74 69 6f 6e 0a 20 20 20 20 69 73 20 3a 6d 61 74 68 3a | val.of.integration.....is.:math: |
| dd80 | 60 5b 30 2c 20 5c 69 6e 66 5d 60 2e 20 54 68 65 20 4c 61 67 75 65 72 72 65 20 70 6f 6c 79 6e 6f | `[0,.\inf]`..The.Laguerre.polyno |
| dda0 | 6d 69 61 6c 73 20 61 72 65 20 6f 72 74 68 6f 67 6f 6e 61 6c 2c 20 62 75 74 20 6e 6f 74 0a 20 20 | mials.are.orthogonal,.but.not... |
| ddc0 | 20 20 6e 6f 72 6d 61 6c 69 7a 65 64 2c 20 77 69 74 68 20 72 65 73 70 65 63 74 20 74 6f 20 74 68 | ..normalized,.with.respect.to.th |
| dde0 | 69 73 20 77 65 69 67 68 74 20 66 75 6e 63 74 69 6f 6e 2e 0a 0a 20 20 20 20 50 61 72 61 6d 65 74 | is.weight.function.......Paramet |
| de00 | 65 72 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 78 20 3a 20 61 72 72 61 79 | ers.....----------.....x.:.array |
| de20 | 5f 6c 69 6b 65 0a 20 20 20 20 20 20 20 56 61 6c 75 65 73 20 61 74 20 77 68 69 63 68 20 74 68 65 | _like........Values.at.which.the |
| de40 | 20 77 65 69 67 68 74 20 66 75 6e 63 74 69 6f 6e 20 77 69 6c 6c 20 62 65 20 63 6f 6d 70 75 74 65 | .weight.function.will.be.compute |
| de60 | 64 2e 0a 0a 20 20 20 20 52 65 74 75 72 6e 73 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 | d.......Returns.....-------..... |
| de80 | 77 20 3a 20 6e 64 61 72 72 61 79 0a 20 20 20 20 20 20 20 54 68 65 20 77 65 69 67 68 74 20 66 75 | w.:.ndarray........The.weight.fu |
| dea0 | 6e 63 74 69 6f 6e 20 61 74 20 60 78 60 2e 0a 0a 20 20 20 20 45 78 61 6d 70 6c 65 73 0a 20 20 20 | nction.at.`x`.......Examples.... |
| dec0 | 20 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 3e 3e 3e 20 66 72 6f 6d 20 6e 75 6d 70 79 2e 70 6f 6c | .--------.....>>>.from.numpy.pol |
| dee0 | 79 6e 6f 6d 69 61 6c 2e 6c 61 67 75 65 72 72 65 20 69 6d 70 6f 72 74 20 6c 61 67 77 65 69 67 68 | ynomial.laguerre.import.lagweigh |
| df00 | 74 0a 20 20 20 20 3e 3e 3e 20 78 20 3d 20 6e 70 2e 61 72 72 61 79 28 5b 30 2c 20 31 2c 20 32 5d | t.....>>>.x.=.np.array([0,.1,.2] |
| df20 | 29 0a 20 20 20 20 3e 3e 3e 20 6c 61 67 77 65 69 67 68 74 28 78 29 0a 20 20 20 20 61 72 72 61 79 | ).....>>>.lagweight(x).....array |
| df40 | 28 5b 31 2e 20 20 20 20 20 20 20 20 2c 20 30 2e 33 36 37 38 37 39 34 34 2c 20 30 2e 31 33 35 33 | ([1.........,.0.36787944,.0.1353 |
| df60 | 33 35 32 38 5d 29 0a 0a 20 20 20 20 29 02 72 41 00 00 00 da 03 65 78 70 29 02 72 7e 00 00 00 72 | 3528])......).rA.....exp).r~...r |
| df80 | 9a 00 00 00 73 02 00 00 00 20 20 72 2d 00 00 00 72 25 00 00 00 72 25 00 00 00 40 06 00 00 73 18 | ....s......r-...r%...r%...@...s. |
| dfa0 | 00 00 00 80 00 f4 32 00 09 0b 8f 06 89 06 90 01 88 72 8b 0a 80 41 d8 0b 0c 80 48 72 2e 00 00 00 | ......2..........r...A....Hr.... |
| dfc0 | 63 00 00 00 00 00 00 00 00 00 00 00 00 03 00 00 00 00 00 00 00 f3 1c 01 00 00 97 00 65 00 5a 01 | c...........................e.Z. |
| dfe0 | 64 00 5a 02 64 01 5a 03 02 00 65 04 65 05 ab 01 00 00 00 00 00 00 5a 06 02 00 65 04 65 07 ab 01 | d.Z.d.Z...e.e.........Z...e.e... |
| e000 | 00 00 00 00 00 00 5a 08 02 00 65 04 65 09 ab 01 00 00 00 00 00 00 5a 0a 02 00 65 04 65 0b ab 01 | ......Z...e.e.........Z...e.e... |
| e020 | 00 00 00 00 00 00 5a 0c 02 00 65 04 65 0d ab 01 00 00 00 00 00 00 5a 0e 02 00 65 04 65 0f ab 01 | ......Z...e.e.........Z...e.e... |
| e040 | 00 00 00 00 00 00 5a 10 02 00 65 04 65 11 ab 01 00 00 00 00 00 00 5a 12 02 00 65 04 65 13 ab 01 | ......Z...e.e.........Z...e.e... |
| e060 | 00 00 00 00 00 00 5a 14 02 00 65 04 65 15 ab 01 00 00 00 00 00 00 5a 16 02 00 65 04 65 17 ab 01 | ......Z...e.e.........Z...e.e... |
| e080 | 00 00 00 00 00 00 5a 18 02 00 65 04 65 19 ab 01 00 00 00 00 00 00 5a 1a 02 00 65 04 65 1b ab 01 | ......Z...e.e.........Z...e.e... |
| e0a0 | 00 00 00 00 00 00 5a 1c 02 00 65 1d 6a 3c 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 | ......Z...e.j<.................. |
| e0c0 | 65 1f ab 01 00 00 00 00 00 00 5a 20 02 00 65 1d 6a 3c 00 00 00 00 00 00 00 00 00 00 00 00 00 00 | e.........Z...e.j<.............. |
| e0e0 | 00 00 00 00 65 1f ab 01 00 00 00 00 00 00 5a 21 64 02 5a 22 79 03 29 04 72 1c 00 00 00 61 f2 03 | ....e.........Z!d.Z"y.).r....a.. |
| e100 | 00 00 41 20 4c 61 67 75 65 72 72 65 20 73 65 72 69 65 73 20 63 6c 61 73 73 2e 0a 0a 20 20 20 20 | ..A.Laguerre.series.class....... |
| e120 | 54 68 65 20 4c 61 67 75 65 72 72 65 20 63 6c 61 73 73 20 70 72 6f 76 69 64 65 73 20 74 68 65 20 | The.Laguerre.class.provides.the. |
| e140 | 73 74 61 6e 64 61 72 64 20 50 79 74 68 6f 6e 20 6e 75 6d 65 72 69 63 61 6c 20 6d 65 74 68 6f 64 | standard.Python.numerical.method |
| e160 | 73 0a 20 20 20 20 27 2b 27 2c 20 27 2d 27 2c 20 27 2a 27 2c 20 27 2f 2f 27 2c 20 27 25 27 2c 20 | s.....'+',.'-',.'*',.'//',.'%',. |
| e180 | 27 64 69 76 6d 6f 64 27 2c 20 27 2a 2a 27 2c 20 61 6e 64 20 27 28 29 27 20 61 73 20 77 65 6c 6c | 'divmod',.'**',.and.'()'.as.well |
| e1a0 | 20 61 73 20 74 68 65 0a 20 20 20 20 61 74 74 72 69 62 75 74 65 73 20 61 6e 64 20 6d 65 74 68 6f | .as.the.....attributes.and.metho |
| e1c0 | 64 73 20 6c 69 73 74 65 64 20 62 65 6c 6f 77 2e 0a 0a 20 20 20 20 50 61 72 61 6d 65 74 65 72 73 | ds.listed.below.......Parameters |
| e1e0 | 0a 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 20 20 20 63 6f 65 66 20 3a 20 61 72 72 61 79 | .....----------.....coef.:.array |
| e200 | 5f 6c 69 6b 65 0a 20 20 20 20 20 20 20 20 4c 61 67 75 65 72 72 65 20 63 6f 65 66 66 69 63 69 65 | _like.........Laguerre.coefficie |
| e220 | 6e 74 73 20 69 6e 20 6f 72 64 65 72 20 6f 66 20 69 6e 63 72 65 61 73 69 6e 67 20 64 65 67 72 65 | nts.in.order.of.increasing.degre |
| e240 | 65 2c 20 69 2e 65 2c 0a 20 20 20 20 20 20 20 20 60 60 28 31 2c 20 32 2c 20 33 29 60 60 20 67 69 | e,.i.e,.........``(1,.2,.3)``.gi |
| e260 | 76 65 73 20 60 60 31 2a 4c 5f 30 28 78 29 20 2b 20 32 2a 4c 5f 31 28 58 29 20 2b 20 33 2a 4c 5f | ves.``1*L_0(x).+.2*L_1(X).+.3*L_ |
| e280 | 32 28 78 29 60 60 2e 0a 20 20 20 20 64 6f 6d 61 69 6e 20 3a 20 28 32 2c 29 20 61 72 72 61 79 5f | 2(x)``......domain.:.(2,).array_ |
| e2a0 | 6c 69 6b 65 2c 20 6f 70 74 69 6f 6e 61 6c 0a 20 20 20 20 20 20 20 20 44 6f 6d 61 69 6e 20 74 6f | like,.optional.........Domain.to |
| e2c0 | 20 75 73 65 2e 20 54 68 65 20 69 6e 74 65 72 76 61 6c 20 60 60 5b 64 6f 6d 61 69 6e 5b 30 5d 2c | .use..The.interval.``[domain[0], |
| e2e0 | 20 64 6f 6d 61 69 6e 5b 31 5d 5d 60 60 20 69 73 20 6d 61 70 70 65 64 0a 20 20 20 20 20 20 20 20 | .domain[1]]``.is.mapped......... |
| e300 | 74 6f 20 74 68 65 20 69 6e 74 65 72 76 61 6c 20 60 60 5b 77 69 6e 64 6f 77 5b 30 5d 2c 20 77 69 | to.the.interval.``[window[0],.wi |
| e320 | 6e 64 6f 77 5b 31 5d 5d 60 60 20 62 79 20 73 68 69 66 74 69 6e 67 20 61 6e 64 20 73 63 61 6c 69 | ndow[1]]``.by.shifting.and.scali |
| e340 | 6e 67 2e 0a 20 20 20 20 20 20 20 20 54 68 65 20 64 65 66 61 75 6c 74 20 76 61 6c 75 65 20 69 73 | ng..........The.default.value.is |
| e360 | 20 5b 30 2e 2c 20 31 2e 5d 2e 0a 20 20 20 20 77 69 6e 64 6f 77 20 3a 20 28 32 2c 29 20 61 72 72 | .[0.,.1.]......window.:.(2,).arr |
| e380 | 61 79 5f 6c 69 6b 65 2c 20 6f 70 74 69 6f 6e 61 6c 0a 20 20 20 20 20 20 20 20 57 69 6e 64 6f 77 | ay_like,.optional.........Window |
| e3a0 | 2c 20 73 65 65 20 60 64 6f 6d 61 69 6e 60 20 66 6f 72 20 69 74 73 20 75 73 65 2e 20 54 68 65 20 | ,.see.`domain`.for.its.use..The. |
| e3c0 | 64 65 66 61 75 6c 74 20 76 61 6c 75 65 20 69 73 20 5b 30 2e 2c 20 31 2e 5d 2e 0a 20 20 20 20 73 | default.value.is.[0.,.1.]......s |
| e3e0 | 79 6d 62 6f 6c 20 3a 20 73 74 72 2c 20 6f 70 74 69 6f 6e 61 6c 0a 20 20 20 20 20 20 20 20 53 79 | ymbol.:.str,.optional.........Sy |
| e400 | 6d 62 6f 6c 20 75 73 65 64 20 74 6f 20 72 65 70 72 65 73 65 6e 74 20 74 68 65 20 69 6e 64 65 70 | mbol.used.to.represent.the.indep |
| e420 | 65 6e 64 65 6e 74 20 76 61 72 69 61 62 6c 65 20 69 6e 20 73 74 72 69 6e 67 0a 20 20 20 20 20 20 | endent.variable.in.string....... |
| e440 | 20 20 72 65 70 72 65 73 65 6e 74 61 74 69 6f 6e 73 20 6f 66 20 74 68 65 20 70 6f 6c 79 6e 6f 6d | ..representations.of.the.polynom |
| e460 | 69 61 6c 20 65 78 70 72 65 73 73 69 6f 6e 2c 20 65 2e 67 2e 20 66 6f 72 20 70 72 69 6e 74 69 6e | ial.expression,.e.g..for.printin |
| e480 | 67 2e 0a 20 20 20 20 20 20 20 20 54 68 65 20 73 79 6d 62 6f 6c 20 6d 75 73 74 20 62 65 20 61 20 | g..........The.symbol.must.be.a. |
| e4a0 | 76 61 6c 69 64 20 50 79 74 68 6f 6e 20 69 64 65 6e 74 69 66 69 65 72 2e 20 44 65 66 61 75 6c 74 | valid.Python.identifier..Default |
| e4c0 | 20 76 61 6c 75 65 20 69 73 20 27 78 27 2e 0a 0a 20 20 20 20 20 20 20 20 2e 2e 20 76 65 72 73 69 | .value.is.'x'..............versi |
| e4e0 | 6f 6e 61 64 64 65 64 3a 3a 20 31 2e 32 34 0a 0a 20 20 20 20 da 01 4c 4e 29 23 da 08 5f 5f 6e 61 | onadded::.1.24........LN)#..__na |
| e500 | 6d 65 5f 5f da 0a 5f 5f 6d 6f 64 75 6c 65 5f 5f da 0c 5f 5f 71 75 61 6c 6e 61 6d 65 5f 5f da 07 | me__..__module__..__qualname__.. |
| e520 | 5f 5f 64 6f 63 5f 5f da 0c 73 74 61 74 69 63 6d 65 74 68 6f 64 72 0c 00 00 00 72 49 00 00 00 72 | __doc__..staticmethodr....rI...r |
| e540 | 0d 00 00 00 72 4e 00 00 00 72 0f 00 00 00 da 04 5f 6d 75 6c 72 10 00 00 00 72 59 00 00 00 72 11 | ....rN...r......_mulr....rY...r. |
| e560 | 00 00 00 72 5b 00 00 00 72 12 00 00 00 da 04 5f 76 61 6c 72 14 00 00 00 da 04 5f 69 6e 74 72 13 | ...r[...r......_valr......_intr. |
| e580 | 00 00 00 da 04 5f 64 65 72 72 19 00 00 00 72 97 00 00 00 72 0b 00 00 00 da 05 5f 6c 69 6e 65 72 | ....._derr....r....r......_liner |
| e5a0 | 1b 00 00 00 da 06 5f 72 6f 6f 74 73 72 17 00 00 00 72 46 00 00 00 72 41 00 00 00 72 42 00 00 00 | ......_rootsr....rF...rA...rB... |
| e5c0 | 72 0a 00 00 00 da 06 64 6f 6d 61 69 6e da 06 77 69 6e 64 6f 77 da 0a 62 61 73 69 73 5f 6e 61 6d | r......domain..window..basis_nam |
| e5e0 | 65 a9 00 72 2e 00 00 00 72 2d 00 00 00 72 1c 00 00 00 72 1c 00 00 00 60 06 00 00 73 a8 00 00 00 | e..r....r-...r....r....`...s.... |
| e600 | 84 00 f1 02 18 05 08 f1 34 00 0c 18 98 06 d3 0b 1f 80 44 d9 0b 17 98 06 d3 0b 1f 80 44 d9 0b 17 | ........4.........D.........D... |
| e620 | 98 06 d3 0b 1f 80 44 d9 0b 17 98 06 d3 0b 1f 80 44 d9 0b 17 98 06 d3 0b 1f 80 44 d9 0b 17 98 06 | ......D.........D.........D..... |
| e640 | d3 0b 1f 80 44 d9 0b 17 98 06 d3 0b 1f 80 44 d9 0b 17 98 06 d3 0b 1f 80 44 d9 0b 17 98 06 d3 0b | ....D.........D.........D....... |
| e660 | 1f 80 44 d9 0c 18 98 17 d3 0c 21 80 45 d9 0d 19 98 28 d3 0d 23 80 46 d9 11 1d 98 6c d3 11 2b 80 | ..D.......!.E....(..#.F....l..+. |
| e680 | 4a f0 06 00 0e 16 88 52 8f 58 89 58 90 69 d3 0d 20 80 46 d8 0d 15 88 52 8f 58 89 58 90 69 d3 0d | J......R.X.X.i....F....R.X.X.i.. |
| e6a0 | 20 80 46 d8 11 14 81 4a 72 2e 00 00 00 72 1c 00 00 00 29 01 e9 10 00 00 00 29 03 72 04 00 00 00 | ..F....Jr....r....)......).r.... |
| e6c0 | 72 04 00 00 00 72 02 00 00 00 29 01 54 29 03 4e 46 4e 29 2f 72 b6 00 00 00 da 05 6e 75 6d 70 79 | r....r....).T).NFN)/r......numpy |
| e6e0 | 72 41 00 00 00 da 0c 6e 75 6d 70 79 2e 6c 69 6e 61 6c 67 da 06 6c 69 6e 61 6c 67 72 a3 00 00 00 | rA.....numpy.linalg..linalgr.... |
| e700 | da 15 6e 75 6d 70 79 2e 6c 69 62 2e 61 72 72 61 79 5f 75 74 69 6c 73 72 03 00 00 00 da 00 72 05 | ..numpy.lib.array_utilsr......r. |
| e720 | 00 00 00 72 28 00 00 00 da 09 5f 70 6f 6c 79 62 61 73 65 72 06 00 00 00 da 07 5f 5f 61 6c 6c 5f | ...r(....._polybaser......__all_ |
| e740 | 5f da 08 74 72 69 6d 63 6f 65 66 72 1a 00 00 00 72 16 00 00 00 72 15 00 00 00 72 42 00 00 00 72 | _..trimcoefr....r....r....rB...r |
| e760 | 0a 00 00 00 72 07 00 00 00 72 08 00 00 00 72 09 00 00 00 72 0b 00 00 00 72 17 00 00 00 72 0c 00 | ....r....r....r....r....r....r.. |
| e780 | 00 00 72 0d 00 00 00 72 0e 00 00 00 72 0f 00 00 00 72 10 00 00 00 72 11 00 00 00 72 13 00 00 00 | ..r....r....r....r....r....r.... |
| e7a0 | 72 14 00 00 00 72 12 00 00 00 72 1d 00 00 00 72 1f 00 00 00 72 1e 00 00 00 72 20 00 00 00 72 18 | r....r....r....r....r....r....r. |
| e7c0 | 00 00 00 72 21 00 00 00 72 22 00 00 00 72 19 00 00 00 72 23 00 00 00 72 1b 00 00 00 72 24 00 00 | ...r!...r"...r....r#...r....r$.. |
| e7e0 | 00 72 25 00 00 00 72 1c 00 00 00 72 c1 00 00 00 72 2e 00 00 00 72 2d 00 00 00 fa 08 3c 6d 6f 64 | .r%...r....r....r....r-.....<mod |
| e800 | 75 6c 65 3e 72 cb 00 00 00 01 00 00 00 73 37 01 00 00 f0 03 01 01 01 f1 02 4c 01 01 04 f3 5a 02 | ule>r........s7..........L....Z. |
| e820 | 00 01 13 dd 00 19 dd 00 36 e5 00 1d dd 00 22 f2 04 06 0b 1d 80 07 f0 10 00 0b 0d 8f 2b 89 2b 80 | ........6.....".............+.+. |
| e840 | 07 f2 06 2b 01 0f f2 5c 01 34 01 36 f0 7a 01 00 0d 15 88 42 8f 48 89 48 90 62 98 22 90 58 d3 0c | ...+...\.4.6.z.....B.H.H.b.".X.. |
| e860 | 1e 80 09 f0 06 00 0b 13 88 22 8f 28 89 28 90 41 90 33 8b 2d 80 07 f0 06 00 0a 12 88 12 8f 18 89 | .........".(.(.A.3.-............ |
| e880 | 18 90 31 90 23 8b 1d 80 06 f0 06 00 08 10 80 72 87 78 81 78 90 11 90 42 90 07 d3 07 18 80 04 f2 | ..1.#..........r.x.x...B........ |
| e8a0 | 06 23 01 1f f2 4c 01 35 01 31 f2 70 01 25 01 1b f2 50 01 25 01 1b f2 50 01 33 01 0f f2 6c 01 3f | .#...L.5.1.p.%...P.%...P.3...l.? |
| e8c0 | 01 2f f2 44 02 2b 01 23 f3 5c 01 22 01 2d f3 4a 01 51 01 01 0d f0 68 02 00 11 12 90 52 98 61 a0 | ./.D.+.#.\.".-.J.Q....h.....R.a. |
| e8e0 | 51 a8 51 f3 00 77 01 01 0d f3 74 03 5a 01 01 1d f2 7a 02 2f 01 26 f2 64 01 35 01 27 f2 70 01 32 | Q.Q..w....t.Z....z./.&.d.5.'.p.2 |
| e900 | 01 29 f2 6a 01 3a 01 2a f2 7a 01 3a 01 21 f2 7a 01 36 01 43 01 f2 72 01 39 01 51 01 f3 78 01 43 | .).j.:.*.z.:.!.z.6.C..r.9.Q..x.C |
| e920 | 02 01 39 f2 4c 04 2b 01 0f f2 5c 01 3d 01 0d f2 40 02 40 01 01 10 f2 46 02 1a 01 0d f4 40 01 2b | ..9.L.+...\.=...@.@....F.....@.+ |
| e940 | 01 15 88 7b f5 00 2b 01 15 72 2e 00 00 00 | ...{..+..r.... |