1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
|
from __future__ import annotations
import collections
import itertools
import operator
from typing import TYPE_CHECKING, Generic
from ..structs import (
CT,
KT,
RT,
DirectedGraph,
IterableView,
IteratorMapping,
RequirementInformation,
State,
build_iter_view,
)
from .abstract import AbstractResolver, Result
from .criterion import Criterion
from .exceptions import (
InconsistentCandidate,
RequirementsConflicted,
ResolutionImpossible,
ResolutionTooDeep,
ResolverException,
)
if TYPE_CHECKING:
from collections.abc import Collection, Iterable, Mapping
from ..providers import AbstractProvider, Preference
from ..reporters import BaseReporter
_OPTIMISTIC_BACKJUMPING_RATIO: float = 0.1
def _build_result(state: State[RT, CT, KT]) -> Result[RT, CT, KT]:
mapping = state.mapping
all_keys: dict[int, KT | None] = {id(v): k for k, v in mapping.items()}
all_keys[id(None)] = None
graph: DirectedGraph[KT | None] = DirectedGraph()
graph.add(None) # Sentinel as root dependencies' parent.
connected: set[KT | None] = {None}
for key, criterion in state.criteria.items():
if not _has_route_to_root(state.criteria, key, all_keys, connected):
continue
if key not in graph:
graph.add(key)
for p in criterion.iter_parent():
try:
pkey = all_keys[id(p)]
except KeyError:
continue
if pkey not in graph:
graph.add(pkey)
graph.connect(pkey, key)
return Result(
mapping={k: v for k, v in mapping.items() if k in connected},
graph=graph,
criteria=state.criteria,
)
class Resolution(Generic[RT, CT, KT]):
"""Stateful resolution object.
This is designed as a one-off object that holds information to kick start
the resolution process, and holds the results afterwards.
"""
def __init__(
self,
provider: AbstractProvider[RT, CT, KT],
reporter: BaseReporter[RT, CT, KT],
) -> None:
self._p = provider
self._r = reporter
self._states: list[State[RT, CT, KT]] = []
# Optimistic backjumping variables
self._optimistic_backjumping_ratio = _OPTIMISTIC_BACKJUMPING_RATIO
self._save_states: list[State[RT, CT, KT]] | None = None
self._optimistic_start_round: int | None = None
@property
def state(self) -> State[RT, CT, KT]:
try:
return self._states[-1]
except IndexError as e:
raise AttributeError("state") from e
def _push_new_state(self) -> None:
"""Push a new state into history.
This new state will be used to hold resolution results of the next
coming round.
"""
base = self._states[-1]
state = State(
mapping=base.mapping.copy(),
criteria=base.criteria.copy(),
backtrack_causes=base.backtrack_causes[:],
)
self._states.append(state)
def _add_to_criteria(
self,
criteria: dict[KT, Criterion[RT, CT]],
requirement: RT,
parent: CT | None,
) -> None:
self._r.adding_requirement(requirement=requirement, parent=parent)
identifier = self._p.identify(requirement_or_candidate=requirement)
criterion = criteria.get(identifier)
if criterion:
incompatibilities = list(criterion.incompatibilities)
else:
incompatibilities = []
matches = self._p.find_matches(
identifier=identifier,
requirements=IteratorMapping(
criteria,
operator.methodcaller("iter_requirement"),
{identifier: [requirement]},
),
incompatibilities=IteratorMapping(
criteria,
operator.attrgetter("incompatibilities"),
{identifier: incompatibilities},
),
)
if criterion:
information = list(criterion.information)
information.append(RequirementInformation(requirement, parent))
else:
information = [RequirementInformation(requirement, parent)]
criterion = Criterion(
candidates=build_iter_view(matches),
information=information,
incompatibilities=incompatibilities,
)
if not criterion.candidates:
raise RequirementsConflicted(criterion)
criteria[identifier] = criterion
def _remove_information_from_criteria(
self, criteria: dict[KT, Criterion[RT, CT]], parents: Collection[KT]
) -> None:
"""Remove information from parents of criteria.
Concretely, removes all values from each criterion's ``information``
field that have one of ``parents`` as provider of the requirement.
:param criteria: The criteria to update.
:param parents: Identifiers for which to remove information from all criteria.
"""
if not parents:
return
for key, criterion in criteria.items():
criteria[key] = Criterion(
criterion.candidates,
[
information
for information in criterion.information
if (
information.parent is None
or self._p.identify(information.parent) not in parents
)
],
criterion.incompatibilities,
)
def _get_preference(self, name: KT) -> Preference:
return self._p.get_preference(
identifier=name,
resolutions=self.state.mapping,
candidates=IteratorMapping(
self.state.criteria,
operator.attrgetter("candidates"),
),
information=IteratorMapping(
self.state.criteria,
operator.attrgetter("information"),
),
backtrack_causes=self.state.backtrack_causes,
)
def _is_current_pin_satisfying(
self, name: KT, criterion: Criterion[RT, CT]
) -> bool:
try:
current_pin = self.state.mapping[name]
except KeyError:
return False
return all(
self._p.is_satisfied_by(requirement=r, candidate=current_pin)
for r in criterion.iter_requirement()
)
def _get_updated_criteria(self, candidate: CT) -> dict[KT, Criterion[RT, CT]]:
criteria = self.state.criteria.copy()
for requirement in self._p.get_dependencies(candidate=candidate):
self._add_to_criteria(criteria, requirement, parent=candidate)
return criteria
def _attempt_to_pin_criterion(self, name: KT) -> list[Criterion[RT, CT]]:
criterion = self.state.criteria[name]
causes: list[Criterion[RT, CT]] = []
for candidate in criterion.candidates:
try:
criteria = self._get_updated_criteria(candidate)
except RequirementsConflicted as e:
self._r.rejecting_candidate(e.criterion, candidate)
causes.append(e.criterion)
continue
# Check the newly-pinned candidate actually works. This should
# always pass under normal circumstances, but in the case of a
# faulty provider, we will raise an error to notify the implementer
# to fix find_matches() and/or is_satisfied_by().
satisfied = all(
self._p.is_satisfied_by(requirement=r, candidate=candidate)
for r in criterion.iter_requirement()
)
if not satisfied:
raise InconsistentCandidate(candidate, criterion)
self._r.pinning(candidate=candidate)
self.state.criteria.update(criteria)
# Put newly-pinned candidate at the end. This is essential because
# backtracking looks at this mapping to get the last pin.
self.state.mapping.pop(name, None)
self.state.mapping[name] = candidate
return []
# All candidates tried, nothing works. This criterion is a dead
# end, signal for backtracking.
return causes
def _patch_criteria(
self, incompatibilities_from_broken: list[tuple[KT, list[CT]]]
) -> bool:
# Create a new state from the last known-to-work one, and apply
# the previously gathered incompatibility information.
for k, incompatibilities in incompatibilities_from_broken:
if not incompatibilities:
continue
try:
criterion = self.state.criteria[k]
except KeyError:
continue
matches = self._p.find_matches(
identifier=k,
requirements=IteratorMapping(
self.state.criteria,
operator.methodcaller("iter_requirement"),
),
incompatibilities=IteratorMapping(
self.state.criteria,
operator.attrgetter("incompatibilities"),
{k: incompatibilities},
),
)
candidates: IterableView[CT] = build_iter_view(matches)
if not candidates:
return False
incompatibilities.extend(criterion.incompatibilities)
self.state.criteria[k] = Criterion(
candidates=candidates,
information=list(criterion.information),
incompatibilities=incompatibilities,
)
return True
def _save_state(self) -> None:
"""Save states for potential rollback if optimistic backjumping fails."""
if self._save_states is None:
self._save_states = [
State(
mapping=s.mapping.copy(),
criteria=s.criteria.copy(),
backtrack_causes=s.backtrack_causes[:],
)
for s in self._states
]
def _rollback_states(self) -> None:
"""Rollback states and disable optimistic backjumping."""
self._optimistic_backjumping_ratio = 0.0
if self._save_states:
self._states = self._save_states
self._save_states = None
def _backjump(self, causes: list[RequirementInformation[RT, CT]]) -> bool:
"""Perform backjumping.
When we enter here, the stack is like this::
[ state Z ]
[ state Y ]
[ state X ]
.... earlier states are irrelevant.
1. No pins worked for Z, so it does not have a pin.
2. We want to reset state Y to unpinned, and pin another candidate.
3. State X holds what state Y was before the pin, but does not
have the incompatibility information gathered in state Y.
Each iteration of the loop will:
1. Identify Z. The incompatibility is not always caused by the latest
state. For example, given three requirements A, B and C, with
dependencies A1, B1 and C1, where A1 and B1 are incompatible: the
last state might be related to C, so we want to discard the
previous state.
2. Discard Z.
3. Discard Y but remember its incompatibility information gathered
previously, and the failure we're dealing with right now.
4. Push a new state Y' based on X, and apply the incompatibility
information from Y to Y'.
5a. If this causes Y' to conflict, we need to backtrack again. Make Y'
the new Z and go back to step 2.
5b. If the incompatibilities apply cleanly, end backtracking.
"""
incompatible_reqs: Iterable[CT | RT] = itertools.chain(
(c.parent for c in causes if c.parent is not None),
(c.requirement for c in causes),
)
incompatible_deps = {self._p.identify(r) for r in incompatible_reqs}
while len(self._states) >= 3:
# Remove the state that triggered backtracking.
del self._states[-1]
# Optimistically backtrack to a state that caused the incompatibility
broken_state = self.state
while True:
# Retrieve the last candidate pin and known incompatibilities.
try:
broken_state = self._states.pop()
name, candidate = broken_state.mapping.popitem()
except (IndexError, KeyError):
raise ResolutionImpossible(causes) from None
if (
not self._optimistic_backjumping_ratio
and name not in incompatible_deps
):
# For safe backjumping only backjump if the current dependency
# is not the same as the incompatible dependency
break
# On the first time a non-safe backjump is done the state
# is saved so we can restore it later if the resolution fails
if (
self._optimistic_backjumping_ratio
and self._save_states is None
and name not in incompatible_deps
):
self._save_state()
# If the current dependencies and the incompatible dependencies
# are overlapping then we have likely found a cause of the
# incompatibility
current_dependencies = {
self._p.identify(d) for d in self._p.get_dependencies(candidate)
}
if not current_dependencies.isdisjoint(incompatible_deps):
break
# Fallback: We should not backtrack to the point where
# broken_state.mapping is empty, so stop backtracking for
# a chance for the resolution to recover
if not broken_state.mapping:
break
incompatibilities_from_broken = [
(k, list(v.incompatibilities)) for k, v in broken_state.criteria.items()
]
# Also mark the newly known incompatibility.
incompatibilities_from_broken.append((name, [candidate]))
self._push_new_state()
success = self._patch_criteria(incompatibilities_from_broken)
# It works! Let's work on this new state.
if success:
return True
# State does not work after applying known incompatibilities.
# Try the still previous state.
# No way to backtrack anymore.
return False
def _extract_causes(
self, criteron: list[Criterion[RT, CT]]
) -> list[RequirementInformation[RT, CT]]:
"""Extract causes from list of criterion and deduplicate"""
return list({id(i): i for c in criteron for i in c.information}.values())
def resolve(self, requirements: Iterable[RT], max_rounds: int) -> State[RT, CT, KT]:
if self._states:
raise RuntimeError("already resolved")
self._r.starting()
# Initialize the root state.
self._states = [
State(
mapping=collections.OrderedDict(),
criteria={},
backtrack_causes=[],
)
]
for r in requirements:
try:
self._add_to_criteria(self.state.criteria, r, parent=None)
except RequirementsConflicted as e:
raise ResolutionImpossible(e.criterion.information) from e
# The root state is saved as a sentinel so the first ever pin can have
# something to backtrack to if it fails. The root state is basically
# pinning the virtual "root" package in the graph.
self._push_new_state()
# Variables for optimistic backjumping
optimistic_rounds_cutoff: int | None = None
optimistic_backjumping_start_round: int | None = None
for round_index in range(max_rounds):
self._r.starting_round(index=round_index)
# Handle if optimistic backjumping has been running for too long
if self._optimistic_backjumping_ratio and self._save_states is not None:
if optimistic_backjumping_start_round is None:
optimistic_backjumping_start_round = round_index
optimistic_rounds_cutoff = int(
(max_rounds - round_index) * self._optimistic_backjumping_ratio
)
if optimistic_rounds_cutoff <= 0:
self._rollback_states()
continue
elif optimistic_rounds_cutoff is not None:
if (
round_index - optimistic_backjumping_start_round
>= optimistic_rounds_cutoff
):
self._rollback_states()
continue
unsatisfied_names = [
key
for key, criterion in self.state.criteria.items()
if not self._is_current_pin_satisfying(key, criterion)
]
# All criteria are accounted for. Nothing more to pin, we are done!
if not unsatisfied_names:
self._r.ending(state=self.state)
return self.state
# keep track of satisfied names to calculate diff after pinning
satisfied_names = set(self.state.criteria.keys()) - set(unsatisfied_names)
if len(unsatisfied_names) > 1:
narrowed_unstatisfied_names = list(
self._p.narrow_requirement_selection(
identifiers=unsatisfied_names,
resolutions=self.state.mapping,
candidates=IteratorMapping(
self.state.criteria,
operator.attrgetter("candidates"),
),
information=IteratorMapping(
self.state.criteria,
operator.attrgetter("information"),
),
backtrack_causes=self.state.backtrack_causes,
)
)
else:
narrowed_unstatisfied_names = unsatisfied_names
# If there are no unsatisfied names use unsatisfied names
if not narrowed_unstatisfied_names:
raise RuntimeError("narrow_requirement_selection returned 0 names")
# If there is only 1 unsatisfied name skip calling self._get_preference
if len(narrowed_unstatisfied_names) > 1:
# Choose the most preferred unpinned criterion to try.
name = min(narrowed_unstatisfied_names, key=self._get_preference)
else:
name = narrowed_unstatisfied_names[0]
failure_criterion = self._attempt_to_pin_criterion(name)
if failure_criterion:
causes = self._extract_causes(failure_criterion)
# Backjump if pinning fails. The backjump process puts us in
# an unpinned state, so we can work on it in the next round.
self._r.resolving_conflicts(causes=causes)
try:
success = self._backjump(causes)
except ResolutionImpossible:
if self._optimistic_backjumping_ratio and self._save_states:
failed_optimistic_backjumping = True
else:
raise
else:
failed_optimistic_backjumping = bool(
not success
and self._optimistic_backjumping_ratio
and self._save_states
)
if failed_optimistic_backjumping and self._save_states:
self._rollback_states()
else:
self.state.backtrack_causes[:] = causes
# Dead ends everywhere. Give up.
if not success:
raise ResolutionImpossible(self.state.backtrack_causes)
else:
# discard as information sources any invalidated names
# (unsatisfied names that were previously satisfied)
newly_unsatisfied_names = {
key
for key, criterion in self.state.criteria.items()
if key in satisfied_names
and not self._is_current_pin_satisfying(key, criterion)
}
self._remove_information_from_criteria(
self.state.criteria, newly_unsatisfied_names
)
# Pinning was successful. Push a new state to do another pin.
self._push_new_state()
self._r.ending_round(index=round_index, state=self.state)
raise ResolutionTooDeep(max_rounds)
class Resolver(AbstractResolver[RT, CT, KT]):
"""The thing that performs the actual resolution work."""
base_exception = ResolverException
def resolve( # type: ignore[override]
self,
requirements: Iterable[RT],
max_rounds: int = 100,
) -> Result[RT, CT, KT]:
"""Take a collection of constraints, spit out the resolution result.
The return value is a representation to the final resolution result. It
is a tuple subclass with three public members:
* `mapping`: A dict of resolved candidates. Each key is an identifier
of a requirement (as returned by the provider's `identify` method),
and the value is the resolved candidate.
* `graph`: A `DirectedGraph` instance representing the dependency tree.
The vertices are keys of `mapping`, and each edge represents *why*
a particular package is included. A special vertex `None` is
included to represent parents of user-supplied requirements.
* `criteria`: A dict of "criteria" that hold detailed information on
how edges in the graph are derived. Each key is an identifier of a
requirement, and the value is a `Criterion` instance.
The following exceptions may be raised if a resolution cannot be found:
* `ResolutionImpossible`: A resolution cannot be found for the given
combination of requirements. The `causes` attribute of the
exception is a list of (requirement, parent), giving the
requirements that could not be satisfied.
* `ResolutionTooDeep`: The dependency tree is too deeply nested and
the resolver gave up. This is usually caused by a circular
dependency, but you can try to resolve this by increasing the
`max_rounds` argument.
"""
resolution = Resolution(self.provider, self.reporter)
state = resolution.resolve(requirements, max_rounds=max_rounds)
return _build_result(state)
def _has_route_to_root(
criteria: Mapping[KT, Criterion[RT, CT]],
key: KT | None,
all_keys: dict[int, KT | None],
connected: set[KT | None],
) -> bool:
if key in connected:
return True
if key not in criteria:
return False
assert key is not None
for p in criteria[key].iter_parent():
try:
pkey = all_keys[id(p)]
except KeyError:
continue
if pkey in connected:
connected.add(key)
return True
if _has_route_to_root(criteria, pkey, all_keys, connected):
connected.add(key)
return True
return False
|