summaryrefslogtreecommitdiff
path: root/cv/image_similarity/cnn/deep_ranking.py
diff options
context:
space:
mode:
authorzhang <zch921005@126.com>2019-12-01 17:21:30 +0800
committerzhang <zch921005@126.com>2019-12-01 17:21:30 +0800
commita7c7354946a3f9c63f8dda32a871022985a8fd83 (patch)
treed00bbcbc788411008830e1413d5628c72421e677 /cv/image_similarity/cnn/deep_ranking.py
parentdcb7e03b282b03ebd950f0a90714ae4ec770527d (diff)
添加image similarity
Diffstat (limited to 'cv/image_similarity/cnn/deep_ranking.py')
-rw-r--r--cv/image_similarity/cnn/deep_ranking.py52
1 files changed, 52 insertions, 0 deletions
diff --git a/cv/image_similarity/cnn/deep_ranking.py b/cv/image_similarity/cnn/deep_ranking.py
new file mode 100644
index 0000000..96d8025
--- /dev/null
+++ b/cv/image_similarity/cnn/deep_ranking.py
@@ -0,0 +1,52 @@
+
+import tensorflow as tf
+
+from tensorflow.keras.applications.vgg16 import VGG16
+from tensorflow.keras.applications.inception_v3 import InceptionV3
+from tensorflow.keras.applications import Xception, ResNet50
+
+
+from tensorflow.keras.utils import plot_model
+from tensorflow.keras.layers import *
+from tensorflow.keras import backend as K
+
+from keras.applications.vgg16 import VGG16
+from keras.applications import Xception
+
+vgg_with_top = VGG16(include_top=True)
+# plot_model(vgg_with_top, to_file='vgg16_with_top.png', show_shapes=True)
+
+vgg_without_top = VGG16(include_top=False)
+# plot_model(vgg_without_top, to_file='vgg16_without_top.png', show_shapes=True)
+
+inception = InceptionV3()
+
+# plot_model(inception, to_file='inception_v3_withtop.png', show_shapes=True)
+
+xception = Xception()
+# plot_model(xception, to_file='xception_with_top.png', show_shapes=True)
+resnet = ResNet50()
+plot_model(resnet, to_file='resnet_with_top.png', show_shapes=True)
+
+
+# first_input = Input(shape=(224, 224, 3))
+# first_conv = Conv2D(96, kernel_size=(8, 8), strides=(16, 16), padding='same')(first_input)
+# print(first_conv)
+# first_max = MaxPool2D(pool_size=(3, 3), strides=(4, 4), padding='same')(first_conv)
+# print(first_max)
+# first_max = Flatten()(first_max)
+# first_max = Lambda(lambda x: K.l2_normalize(x, axis=1))(first_max)
+#
+# second_input = Input(shape=(224, 224, 3))
+# second_conv = Conv2D(96, kernel_size=(8, 8), strides=(32, 32), padding='same')(second_input)
+# print(second_conv)
+# second_max = MaxPool2D(pool_size=(7, 7), strides=(2, 2), padding='same')(second_conv)
+# print(second_max)
+# second_max = Flatten()(second_max)
+# second_max = Lambda(lambda x: K.l2_normalize(x, axis=1))(second_max)
+
+# merge_one = concatenate([first_max, second_max])
+
+# print(first_max)
+# print(second_max)
+# print(merge_one) \ No newline at end of file