summaryrefslogtreecommitdiff
path: root/cv/image_similarity/cnn
diff options
context:
space:
mode:
authorzhang <zch921005@126.com>2019-12-01 17:21:30 +0800
committerzhang <zch921005@126.com>2019-12-01 17:21:30 +0800
commita7c7354946a3f9c63f8dda32a871022985a8fd83 (patch)
treed00bbcbc788411008830e1413d5628c72421e677 /cv/image_similarity/cnn
parentdcb7e03b282b03ebd950f0a90714ae4ec770527d (diff)
添加image similarity
Diffstat (limited to 'cv/image_similarity/cnn')
-rw-r--r--cv/image_similarity/cnn/__init__.py0
-rw-r--r--cv/image_similarity/cnn/build_models.py238
-rw-r--r--cv/image_similarity/cnn/deep_ranking.py52
-rw-r--r--cv/image_similarity/cnn/feature_similarity.py71
-rw-r--r--cv/image_similarity/cnn/images/Anastasia_Myskina_0001.jpgbin0 -> 18187 bytes
-rw-r--r--cv/image_similarity/cnn/images/Anastasia_Myskina_0002.jpgbin0 -> 11627 bytes
-rw-r--r--cv/image_similarity/cnn/images/Anastasia_Myskina_0003.jpgbin0 -> 13361 bytes
-rw-r--r--cv/image_similarity/cnn/images/dx.jpegbin0 -> 24383 bytes
-rw-r--r--cv/image_similarity/cnn/images/dx2.jpegbin0 -> 8629 bytes
-rw-r--r--cv/image_similarity/cnn/inception_v3_withtop.pngbin0 -> 4579804 bytes
-rw-r--r--cv/image_similarity/cnn/vgg16_with_top.pngbin0 -> 216528 bytes
-rw-r--r--cv/image_similarity/cnn/vgg16_without_top.pngbin0 -> 176339 bytes
-rw-r--r--cv/image_similarity/cnn/xception_with_top.pngbin0 -> 2002672 bytes
13 files changed, 361 insertions, 0 deletions
diff --git a/cv/image_similarity/cnn/__init__.py b/cv/image_similarity/cnn/__init__.py
new file mode 100644
index 0000000..e69de29
--- /dev/null
+++ b/cv/image_similarity/cnn/__init__.py
diff --git a/cv/image_similarity/cnn/build_models.py b/cv/image_similarity/cnn/build_models.py
new file mode 100644
index 0000000..e55e4f7
--- /dev/null
+++ b/cv/image_similarity/cnn/build_models.py
@@ -0,0 +1,238 @@
+import torch
+import torch.nn as nn
+from torch.nn import Linear, Conv2d, BatchNorm1d, BatchNorm2d, PReLU, ReLU, Sigmoid, Dropout, MaxPool2d, \
+ AdaptiveAvgPool2d, Sequential, Module
+from collections import namedtuple
+
+
+# Support: ['IR_50', 'IR_101', 'IR_152', 'IR_SE_50', 'IR_SE_101', 'IR_SE_152']
+
+
+class Flatten(Module):
+ def forward(self, input):
+ return input.view(input.size(0), -1)
+
+
+def l2_norm(input, axis=1):
+ norm = torch.norm(input, 2, axis, True)
+ output = torch.div(input, norm)
+
+ return output
+
+
+class SEModule(Module):
+ def __init__(self, channels, reduction):
+ super(SEModule, self).__init__()
+ self.avg_pool = AdaptiveAvgPool2d(1)
+ self.fc1 = Conv2d(
+ channels, channels // reduction, kernel_size=1, padding=0, bias=False)
+
+ nn.init.xavier_uniform_(self.fc1.weight.data)
+
+ self.relu = ReLU(inplace=True)
+ self.fc2 = Conv2d(
+ channels // reduction, channels, kernel_size=1, padding=0, bias=False)
+
+ self.sigmoid = Sigmoid()
+
+ def forward(self, x):
+ module_input = x
+ x = self.avg_pool(x)
+ x = self.fc1(x)
+ x = self.relu(x)
+ x = self.fc2(x)
+ x = self.sigmoid(x)
+
+ return module_input * x
+
+
+class bottleneck_IR(Module):
+ def __init__(self, in_channel, depth, stride):
+ super(bottleneck_IR, self).__init__()
+ if in_channel == depth:
+ self.shortcut_layer = MaxPool2d(1, stride)
+ else:
+ self.shortcut_layer = Sequential(
+ Conv2d(in_channel, depth, (1, 1), stride, bias=False), BatchNorm2d(depth))
+ self.res_layer = Sequential(
+ BatchNorm2d(in_channel),
+ Conv2d(in_channel, depth, (3, 3), (1, 1), 1, bias=False), PReLU(depth),
+ Conv2d(depth, depth, (3, 3), stride, 1, bias=False), BatchNorm2d(depth))
+
+ def forward(self, x):
+ shortcut = self.shortcut_layer(x)
+ res = self.res_layer(x)
+
+ return res + shortcut
+
+
+class bottleneck_IR_SE(Module):
+ def __init__(self, in_channel, depth, stride):
+ super(bottleneck_IR_SE, self).__init__()
+ if in_channel == depth:
+ self.shortcut_layer = MaxPool2d(1, stride)
+ else:
+ self.shortcut_layer = Sequential(
+ Conv2d(in_channel, depth, (1, 1), stride, bias=False),
+ BatchNorm2d(depth))
+ self.res_layer = Sequential(
+ BatchNorm2d(in_channel),
+ Conv2d(in_channel, depth, (3, 3), (1, 1), 1, bias=False),
+ PReLU(depth),
+ Conv2d(depth, depth, (3, 3), stride, 1, bias=False),
+ BatchNorm2d(depth),
+ SEModule(depth, 16)
+ )
+
+ def forward(self, x):
+ shortcut = self.shortcut_layer(x)
+ res = self.res_layer(x)
+
+ return res + shortcut
+
+
+class Bottleneck(namedtuple('Block', ['in_channel', 'depth', 'stride'])):
+ '''A named tuple describing a ResNet block.'''
+
+
+def get_block(in_channel, depth, num_units, stride=2):
+
+ return [Bottleneck(in_channel, depth, stride)] + [Bottleneck(depth, depth, 1) for i in range(num_units - 1)]
+
+
+def get_blocks(num_layers):
+ if num_layers == 50:
+ blocks = [
+ get_block(in_channel=64, depth=64, num_units=3),
+ get_block(in_channel=64, depth=128, num_units=4),
+ get_block(in_channel=128, depth=256, num_units=14),
+ get_block(in_channel=256, depth=512, num_units=3)
+ ]
+ elif num_layers == 100:
+ blocks = [
+ get_block(in_channel=64, depth=64, num_units=3),
+ get_block(in_channel=64, depth=128, num_units=13),
+ get_block(in_channel=128, depth=256, num_units=30),
+ get_block(in_channel=256, depth=512, num_units=3)
+ ]
+ elif num_layers == 152:
+ blocks = [
+ get_block(in_channel=64, depth=64, num_units=3),
+ get_block(in_channel=64, depth=128, num_units=8),
+ get_block(in_channel=128, depth=256, num_units=36),
+ get_block(in_channel=256, depth=512, num_units=3)
+ ]
+
+ return blocks
+
+
+class Backbone(Module):
+ def __init__(self, input_size, num_layers, mode='ir'):
+ super(Backbone, self).__init__()
+ assert input_size[0] in [112, 224], "input_size should be [112, 112] or [224, 224]"
+ assert num_layers in [50, 100, 152], "num_layers should be 50, 100 or 152"
+ assert mode in ['ir', 'ir_se'], "mode should be ir or ir_se"
+ blocks = get_blocks(num_layers)
+ if mode == 'ir':
+ unit_module = bottleneck_IR
+ elif mode == 'ir_se':
+ unit_module = bottleneck_IR_SE
+ self.input_layer = Sequential(Conv2d(3, 64, (3, 3), 1, 1, bias=False),
+ BatchNorm2d(64),
+ PReLU(64))
+ if input_size[0] == 112:
+ self.output_layer = Sequential(BatchNorm2d(512),
+ Dropout(),
+ Flatten(),
+ Linear(512 * 7 * 7, 512),
+ BatchNorm1d(512))
+ # 224, 224
+ else:
+ self.output_layer = Sequential(BatchNorm2d(512),
+ Dropout(),
+ Flatten(),
+ Linear(512 * 14 * 14, 512),
+ BatchNorm1d(512))
+
+ modules = []
+ for block in blocks:
+ for bottleneck in block:
+ modules.append(
+ unit_module(bottleneck.in_channel,
+ bottleneck.depth,
+ bottleneck.stride))
+ self.body = Sequential(*modules)
+
+ self._initialize_weights()
+
+ def forward(self, x):
+ x = self.input_layer(x)
+ x = self.body(x)
+ x = self.output_layer(x)
+
+ return x
+
+ def _initialize_weights(self):
+ for m in self.modules():
+ if isinstance(m, nn.Conv2d):
+ nn.init.xavier_uniform_(m.weight.data)
+ if m.bias is not None:
+ m.bias.data.zero_()
+ elif isinstance(m, nn.BatchNorm2d):
+ m.weight.data.fill_(1)
+ m.bias.data.zero_()
+ elif isinstance(m, nn.BatchNorm1d):
+ m.weight.data.fill_(1)
+ m.bias.data.zero_()
+ elif isinstance(m, nn.Linear):
+ nn.init.xavier_uniform_(m.weight.data)
+ if m.bias is not None:
+ m.bias.data.zero_()
+
+
+def IR_50(input_size):
+ """Constructs a ir-50 model.
+ """
+ model = Backbone(input_size, 50, 'ir')
+
+ return model
+
+
+def IR_101(input_size):
+ """Constructs a ir-101 model.
+ """
+ model = Backbone(input_size, 100, 'ir')
+
+ return model
+
+
+def IR_152(input_size):
+ """Constructs a ir-152 model.
+ """
+ model = Backbone(input_size, 152, 'ir')
+
+ return model
+
+
+def IR_SE_50(input_size):
+ """Constructs a ir_se-50 model.
+ """
+ model = Backbone(input_size, 50, 'ir_se')
+
+ return model
+
+
+def IR_SE_101(input_size):
+ """Constructs a ir_se-101 model.
+ """
+ model = Backbone(input_size, 100, 'ir_se')
+
+ return model
+
+
+def IR_SE_152(input_size):
+ """Constructs a ir_se-152 model.
+ """
+ model = Backbone(input_size, 152, 'ir_se')
+
+ return model
diff --git a/cv/image_similarity/cnn/deep_ranking.py b/cv/image_similarity/cnn/deep_ranking.py
new file mode 100644
index 0000000..96d8025
--- /dev/null
+++ b/cv/image_similarity/cnn/deep_ranking.py
@@ -0,0 +1,52 @@
+
+import tensorflow as tf
+
+from tensorflow.keras.applications.vgg16 import VGG16
+from tensorflow.keras.applications.inception_v3 import InceptionV3
+from tensorflow.keras.applications import Xception, ResNet50
+
+
+from tensorflow.keras.utils import plot_model
+from tensorflow.keras.layers import *
+from tensorflow.keras import backend as K
+
+from keras.applications.vgg16 import VGG16
+from keras.applications import Xception
+
+vgg_with_top = VGG16(include_top=True)
+# plot_model(vgg_with_top, to_file='vgg16_with_top.png', show_shapes=True)
+
+vgg_without_top = VGG16(include_top=False)
+# plot_model(vgg_without_top, to_file='vgg16_without_top.png', show_shapes=True)
+
+inception = InceptionV3()
+
+# plot_model(inception, to_file='inception_v3_withtop.png', show_shapes=True)
+
+xception = Xception()
+# plot_model(xception, to_file='xception_with_top.png', show_shapes=True)
+resnet = ResNet50()
+plot_model(resnet, to_file='resnet_with_top.png', show_shapes=True)
+
+
+# first_input = Input(shape=(224, 224, 3))
+# first_conv = Conv2D(96, kernel_size=(8, 8), strides=(16, 16), padding='same')(first_input)
+# print(first_conv)
+# first_max = MaxPool2D(pool_size=(3, 3), strides=(4, 4), padding='same')(first_conv)
+# print(first_max)
+# first_max = Flatten()(first_max)
+# first_max = Lambda(lambda x: K.l2_normalize(x, axis=1))(first_max)
+#
+# second_input = Input(shape=(224, 224, 3))
+# second_conv = Conv2D(96, kernel_size=(8, 8), strides=(32, 32), padding='same')(second_input)
+# print(second_conv)
+# second_max = MaxPool2D(pool_size=(7, 7), strides=(2, 2), padding='same')(second_conv)
+# print(second_max)
+# second_max = Flatten()(second_max)
+# second_max = Lambda(lambda x: K.l2_normalize(x, axis=1))(second_max)
+
+# merge_one = concatenate([first_max, second_max])
+
+# print(first_max)
+# print(second_max)
+# print(merge_one) \ No newline at end of file
diff --git a/cv/image_similarity/cnn/feature_similarity.py b/cv/image_similarity/cnn/feature_similarity.py
new file mode 100644
index 0000000..ff10250
--- /dev/null
+++ b/cv/image_similarity/cnn/feature_similarity.py
@@ -0,0 +1,71 @@
+import random
+import torch
+from cv.image_similarity.cnn.build_models import IR_50, IR_101, IR_152
+import torchvision
+import os
+from PIL import Image
+
+
+to_torch_tensor = torchvision.transforms.Compose([torchvision.transforms.ToTensor(),
+ torchvision.transforms.Normalize([0.5, 0.5, 0.5],[0.5, 0.5, 0.5])])
+
+
+
+def l2_norm(input, axis=1):
+ norm = torch.norm(input, 2, axis, True)
+ output = torch.div(input, norm)
+
+ return output
+
+
+def init_model(model, param, device):
+ m = model([112, 112])
+ m.eval()
+ m.to(device)
+ m.load_state_dict(torch.load(param, map_location=torch.device('cpu')))
+ return m
+
+
+def get_model_pool(device):
+ model_pool = []
+ # double
+ model_pool.append(init_model(IR_50, 'models/backbone_ir50_ms1m_epoch120.pth', device))
+ # model_pool.append(init_model(IR_50, 'models/backbone_ir50_ms1m_epoch120.pth', device))
+ #
+ # model_pool.append(init_model(IR_50, 'models/Backbone_IR_50_LFW.pth', device))
+ # model_pool.append(init_model(IR_101, 'models/Backbone_IR_101_Batch_108320.pth', device))
+ # model_pool.append(init_model(IR_152, 'models/Backbone_IR_152_MS1M_Epoch_112.pth', device))
+ return model_pool
+
+
+def get_model(device):
+ return init_model(IR_50, 'models/backbone_ir50_ms1m_epoch120.pth', device)
+
+
+device = torch.device('cpu')
+model = get_model(device)
+print('----models load over----')
+images = os.listdir('../imgs/lena')
+
+
+vectors = []
+
+for img in images:
+ print(img)
+ img = Image.open('../imgs/lena/' + img).convert('RGB')
+ # print(dir(img))
+ print(img.size, img.mode)
+ img = to_torch_tensor(img.resize((112, 112), Image.ANTIALIAS))
+ img = img.unsqueeze_(0).to(device)
+ feature = model(img)
+ vectors.append(l2_norm(feature).detach_())
+
+print('----vectors calculate over----')
+
+
+for i in range(len(vectors)):
+ for j in range(len(vectors)):
+ # consine distance
+ dist = (vectors[i]*vectors[j]).sum().item()
+ print(images[i], images[j], dist)
+ print('-------------')
diff --git a/cv/image_similarity/cnn/images/Anastasia_Myskina_0001.jpg b/cv/image_similarity/cnn/images/Anastasia_Myskina_0001.jpg
new file mode 100644
index 0000000..ae7f5b8
--- /dev/null
+++ b/cv/image_similarity/cnn/images/Anastasia_Myskina_0001.jpg
Binary files differ
diff --git a/cv/image_similarity/cnn/images/Anastasia_Myskina_0002.jpg b/cv/image_similarity/cnn/images/Anastasia_Myskina_0002.jpg
new file mode 100644
index 0000000..cce9bfc
--- /dev/null
+++ b/cv/image_similarity/cnn/images/Anastasia_Myskina_0002.jpg
Binary files differ
diff --git a/cv/image_similarity/cnn/images/Anastasia_Myskina_0003.jpg b/cv/image_similarity/cnn/images/Anastasia_Myskina_0003.jpg
new file mode 100644
index 0000000..c2d7d1e
--- /dev/null
+++ b/cv/image_similarity/cnn/images/Anastasia_Myskina_0003.jpg
Binary files differ
diff --git a/cv/image_similarity/cnn/images/dx.jpeg b/cv/image_similarity/cnn/images/dx.jpeg
new file mode 100644
index 0000000..8a7475c
--- /dev/null
+++ b/cv/image_similarity/cnn/images/dx.jpeg
Binary files differ
diff --git a/cv/image_similarity/cnn/images/dx2.jpeg b/cv/image_similarity/cnn/images/dx2.jpeg
new file mode 100644
index 0000000..e21642b
--- /dev/null
+++ b/cv/image_similarity/cnn/images/dx2.jpeg
Binary files differ
diff --git a/cv/image_similarity/cnn/inception_v3_withtop.png b/cv/image_similarity/cnn/inception_v3_withtop.png
new file mode 100644
index 0000000..3b9f939
--- /dev/null
+++ b/cv/image_similarity/cnn/inception_v3_withtop.png
Binary files differ
diff --git a/cv/image_similarity/cnn/vgg16_with_top.png b/cv/image_similarity/cnn/vgg16_with_top.png
new file mode 100644
index 0000000..ba1af31
--- /dev/null
+++ b/cv/image_similarity/cnn/vgg16_with_top.png
Binary files differ
diff --git a/cv/image_similarity/cnn/vgg16_without_top.png b/cv/image_similarity/cnn/vgg16_without_top.png
new file mode 100644
index 0000000..4320644
--- /dev/null
+++ b/cv/image_similarity/cnn/vgg16_without_top.png
Binary files differ
diff --git a/cv/image_similarity/cnn/xception_with_top.png b/cv/image_similarity/cnn/xception_with_top.png
new file mode 100644
index 0000000..e72ad68
--- /dev/null
+++ b/cv/image_similarity/cnn/xception_with_top.png
Binary files differ