summaryrefslogtreecommitdiff
path: root/rl
diff options
context:
space:
mode:
authorzhang <zch921005@126.com>2022-08-21 09:41:53 +0800
committerzhang <zch921005@126.com>2022-08-21 09:41:53 +0800
commit94b6d3246c72eb3cae58a2fd18771e3c2c3e7cb2 (patch)
treee23a287289cdca8020fab062cdebffa60b021d7f /rl
parent756b736ca374dc6ef2adadce101f380e10f06c4e (diff)
copy
Diffstat (limited to 'rl')
-rw-r--r--rl/gym_demo/carl_pole.py60
-rw-r--r--rl/gym_demo/lunar/dqn.py112
-rw-r--r--rl/gym_demo/lunar/main.py35
-rw-r--r--rl/gym_demo/lunar/utils.py36
-rw-r--r--rl/gym_demo/taxi.py0
5 files changed, 207 insertions, 36 deletions
diff --git a/rl/gym_demo/carl_pole.py b/rl/gym_demo/carl_pole.py
index 146c337..dd22d1d 100644
--- a/rl/gym_demo/carl_pole.py
+++ b/rl/gym_demo/carl_pole.py
@@ -2,46 +2,34 @@
import gym
import numpy as np
-class BespokeAgent:
- def __init__(self, env):
- pass
+env_name = 'CartPole-v1'
- def decide(self, observation):
- position, velocity = observation
- lb = min(-0.09*(position + 0.25) ** 2 + 0.03, 0.3*(position + 0.9)**4 - 0.008)
- ub = -0.07*(position + 0.38) ** 2 + 0.07
- if lb < velocity < ub:
- action = 2
- else:
- action = 0
- # print('observation: {}, lb: {}, ub: {} => action: {}'.format(observation, lb, ub, action))
- return action
+env = gym.make(env_name)
- def learn(self, *argg):
- pass
+class Agent:
+ def __init__(self, env):
+ self.action_size = env.action_space.n
-def play(i, agent, env, render=True, train=False):
- episode_reward = 0
- observation = env.reset()
- while True:
- if render:
- env.render()
- action = agent.decide(observation)
- next_observation, reward, done, _ = env.step(action)
- episode_reward += reward
- if train:
- agent.learn(observation, action, reward, done)
- if done:
- env.close()
- break
- observation = next_observation
- print(i, episode_reward)
- return i, episode_reward
+ def action_policy(self, observation):
+ pos, vel, angle, _ = observation
+ if angle < 0:
+ return 0
+ return 1
if __name__ == '__main__':
- env = gym.make('MountainCar-v0')
- agent = BespokeAgent(env)
- rewards = [play(i, agent, env) for i in range(100)]
- print(rewards)
+
+ observation = env.reset()
+ agent = Agent(env)
+ reward_history = []
+ for _ in range(100):
+ # env.render()
+ # action = agent.action_policy(observation)
+ action = env.action_space.sample()
+ observation, reward, done, info = env.step(action)
+ reward_history.append(reward)
+ if done:
+ # env.env.close()
+ env.reset()
+ print(reward_history, np.mean(reward_history))
diff --git a/rl/gym_demo/lunar/dqn.py b/rl/gym_demo/lunar/dqn.py
new file mode 100644
index 0000000..a757a92
--- /dev/null
+++ b/rl/gym_demo/lunar/dqn.py
@@ -0,0 +1,112 @@
+import torch as T
+import torch.nn as nn
+import torch.nn.functional as F
+import torch.optim as optim
+import numpy as np
+
+
+class DeepQNetwork(nn.Module):
+ def __init__(self, lr, input_dims, fc1_dims, fc2_dims,
+ n_actions):
+ super(DeepQNetwork, self).__init__()
+ self.input_dims = input_dims
+ self.fc1_dims = fc1_dims
+ self.fc2_dims = fc2_dims
+ self.n_actions = n_actions
+ self.fc1 = nn.Linear(*self.input_dims, self.fc1_dims)
+ self.fc2 = nn.Linear(self.fc1_dims, self.fc2_dims)
+ self.fc3 = nn.Linear(self.fc2_dims, self.n_actions)
+
+ self.optimizer = optim.Adam(self.parameters(), lr=lr)
+ self.loss = nn.MSELoss()
+ self.device = T.device('cuda:0' if T.cuda.is_available() else 'cpu')
+ self.to(self.device)
+
+ def forward(self, state):
+ x = F.relu(self.fc1(state))
+ x = F.relu(self.fc2(x))
+ actions = self.fc3(x)
+
+ return actions
+
+
+class Agent:
+ def __init__(self, gamma, epsilon, lr, input_dims, batch_size, n_actions,
+ max_mem_size=100000, eps_end=0.05, eps_dec=5e-4):
+ self.gamma = gamma
+ self.epsilon = epsilon
+ self.eps_min = eps_end
+ self.eps_dec = eps_dec
+ self.lr = lr
+ self.action_space = [i for i in range(n_actions)]
+ self.mem_size = max_mem_size
+ self.batch_size = batch_size
+ self.mem_cntr = 0
+ self.iter_cntr = 0
+ self.replace_target = 100
+
+ self.Q_eval = DeepQNetwork(lr, n_actions=n_actions,
+ input_dims=input_dims,
+ fc1_dims=256, fc2_dims=256)
+ self.state_memory = np.zeros((self.mem_size, *input_dims),
+ dtype=np.float32)
+ self.new_state_memory = np.zeros((self.mem_size, *input_dims),
+ dtype=np.float32)
+ self.action_memory = np.zeros(self.mem_size, dtype=np.int32)
+ self.reward_memory = np.zeros(self.mem_size, dtype=np.float32)
+ self.terminal_memory = np.zeros(self.mem_size, dtype=np.bool)
+
+ def store_transition(self, state, action, reward, state_, terminal):
+ index = self.mem_cntr % self.mem_size
+ self.state_memory[index] = state
+ self.new_state_memory[index] = state_
+ self.reward_memory[index] = reward
+ self.action_memory[index] = action
+ self.terminal_memory[index] = terminal
+
+ self.mem_cntr += 1
+
+ def choose_action(self, observation):
+ if np.random.random() > self.epsilon:
+ state = T.tensor([observation]).to(self.Q_eval.device)
+ actions = self.Q_eval.forward(state)
+ action = T.argmax(actions).item()
+ else:
+ action = np.random.choice(self.action_space)
+
+ return action
+
+ def learn(self):
+ if self.mem_cntr < self.batch_size:
+ return
+
+ self.Q_eval.optimizer.zero_grad()
+
+ max_mem = min(self.mem_cntr, self.mem_size)
+
+ batch = np.random.choice(max_mem, self.batch_size, replace=False)
+ batch_index = np.arange(self.batch_size, dtype=np.int32)
+
+ state_batch = T.tensor(self.state_memory[batch]).to(self.Q_eval.device)
+ new_state_batch = T.tensor(
+ self.new_state_memory[batch]).to(self.Q_eval.device)
+ action_batch = self.action_memory[batch]
+ reward_batch = T.tensor(
+ self.reward_memory[batch]).to(self.Q_eval.device)
+ terminal_batch = T.tensor(
+ self.terminal_memory[batch]).to(self.Q_eval.device)
+
+ q_eval = self.Q_eval.forward(state_batch)[batch_index, action_batch]
+ q_next = self.Q_eval.forward(new_state_batch)
+ q_next[terminal_batch] = 0.0
+
+ q_target = reward_batch + self.gamma*T.max(q_next, dim=1)[0]
+
+ loss = self.Q_eval.loss(q_target, q_eval).to(self.Q_eval.device)
+ loss.backward()
+ self.Q_eval.optimizer.step()
+
+ self.iter_cntr += 1
+ self.epsilon = self.epsilon - self.eps_dec \
+ if self.epsilon > self.eps_min else self.eps_min
+
diff --git a/rl/gym_demo/lunar/main.py b/rl/gym_demo/lunar/main.py
new file mode 100644
index 0000000..b718b71
--- /dev/null
+++ b/rl/gym_demo/lunar/main.py
@@ -0,0 +1,35 @@
+import gym
+from dqn import Agent
+from utils import plotLearning
+import numpy as np
+
+if __name__ == '__main__':
+ env = gym.make('LunarLander-v2')
+ agent = Agent(gamma=0.99, epsilon=1.0, batch_size=64, n_actions=4, eps_end=0.01,
+ input_dims=[8], lr=0.001)
+ scores, eps_history = [], []
+ n_games = 500
+
+ for i in range(n_games):
+ score = 0
+ done = False
+ observation = env.reset()
+ while not done:
+ action = agent.choose_action(observation)
+ observation_, reward, done, info = env.step(action)
+ score += reward
+ agent.store_transition(observation, action, reward,
+ observation_, done)
+ agent.learn()
+ observation = observation_
+ scores.append(score)
+ eps_history.append(agent.epsilon)
+
+ avg_score = np.mean(scores[-100:])
+
+ print('episode ', i, 'score %.2f' % score,
+ 'average score %.2f' % avg_score,
+ 'epsilon %.2f' % agent.epsilon)
+ x = [i + 1 for i in range(n_games)]
+ filename = 'lunar_lander.png'
+ plotLearning(x, scores, eps_history, filename)
diff --git a/rl/gym_demo/lunar/utils.py b/rl/gym_demo/lunar/utils.py
new file mode 100644
index 0000000..e881c76
--- /dev/null
+++ b/rl/gym_demo/lunar/utils.py
@@ -0,0 +1,36 @@
+import matplotlib.pyplot as plt
+import numpy as np
+import gym
+
+def plotLearning(x, scores, epsilons, filename, lines=None):
+ fig=plt.figure()
+ ax=fig.add_subplot(111, label="1")
+ ax2=fig.add_subplot(111, label="2", frame_on=False)
+
+ ax.plot(x, epsilons, color="C0")
+ ax.set_xlabel("Game", color="C0")
+ ax.set_ylabel("Epsilon", color="C0")
+ ax.tick_params(axis='x', colors="C0")
+ ax.tick_params(axis='y', colors="C0")
+
+ N = len(scores)
+ running_avg = np.empty(N)
+ for t in range(N):
+ running_avg[t] = np.mean(scores[max(0, t-20):(t+1)])
+
+ ax2.scatter(x, running_avg, color="C1")
+ #ax2.xaxis.tick_top()
+ ax2.axes.get_xaxis().set_visible(False)
+ ax2.yaxis.tick_right()
+ #ax2.set_xlabel('x label 2', color="C1")
+ ax2.set_ylabel('Score', color="C1")
+ #ax2.xaxis.set_label_position('top')
+ ax2.yaxis.set_label_position('right')
+ #ax2.tick_params(axis='x', colors="C1")
+ ax2.tick_params(axis='y', colors="C1")
+
+ if lines is not None:
+ for line in lines:
+ plt.axvline(x=line)
+
+ plt.savefig(filename) \ No newline at end of file
diff --git a/rl/gym_demo/taxi.py b/rl/gym_demo/taxi.py
new file mode 100644
index 0000000..e69de29
--- /dev/null
+++ b/rl/gym_demo/taxi.py