summaryrefslogtreecommitdiff
path: root/src/model/predictor.py
diff options
context:
space:
mode:
authorYurenHao0426 <blackhao0426@gmail.com>2026-02-09 12:28:55 -0600
committerYurenHao0426 <blackhao0426@gmail.com>2026-02-09 12:28:55 -0600
commitef678d2e1ba70b1a9dadb78c73ed372f986aea13 (patch)
treeb90b5c53960b22a6a5498ca69fbfffad7e1832f8 /src/model/predictor.py
parent93d77b197d457b1fdfa7341ecd59fc460b20d6b1 (diff)
Fix NLL double-shift bug and head weight init
- NLL loss was shifting labels twice (olmo_labels already shifted, then code did logits[:,:-1] vs labels[:,1:]). Fixed in 9 locations: trainer, pipeline, olmo_graph, sanity_check, eval. - Head U/V weights init with std=0.01 (was Kaiming ~5.7 std) so UV^T≈0 at init, ensuring Z≈logit_bias=15 and A≈0.953. - Updated SVD rank test to subtract logit_bias before checking. Co-Authored-By: Claude Opus 4.6 <noreply@anthropic.com>
Diffstat (limited to 'src/model/predictor.py')
-rw-r--r--src/model/predictor.py10
1 files changed, 10 insertions, 0 deletions
diff --git a/src/model/predictor.py b/src/model/predictor.py
index ed243ad..b5f9674 100644
--- a/src/model/predictor.py
+++ b/src/model/predictor.py
@@ -98,6 +98,16 @@ class PredictorMLP(nn.Module):
self.head_U = nn.Linear(hidden_dim, num_nodes * rank)
self.head_V = nn.Linear(hidden_dim, num_nodes * rank)
+ # Initialize head_U and head_V with small weights so UV^T ≈ 0 at init.
+ # Default Kaiming init gives UV^T with std≈√rank≈5.7 which overwhelms
+ # the logit_bias. Small init ensures Z ≈ logit_bias ± small noise.
+ # std=0.01 gives UV^T std≈0.6 (with hidden_dim=1024, rank=32),
+ # small vs logit_bias=15 but enough for input-dependent gradients.
+ nn.init.normal_(self.head_U.weight, std=0.01)
+ nn.init.normal_(self.head_V.weight, std=0.01)
+ nn.init.zeros_(self.head_U.bias)
+ nn.init.zeros_(self.head_V.bias)
+
# Learnable bias added to Z logits. Initialized positive so that
# σ(init_logit / τ_init) ≈ 1, reproducing dense connectivity (A≈1)
# at init. With τ_init=5.0: σ(15/5) = σ(3) ≈ 0.95.