summaryrefslogtreecommitdiff
path: root/src/training
diff options
context:
space:
mode:
authorYurenHao0426 <blackhao0426@gmail.com>2026-02-09 12:28:55 -0600
committerYurenHao0426 <blackhao0426@gmail.com>2026-02-09 12:28:55 -0600
commitef678d2e1ba70b1a9dadb78c73ed372f986aea13 (patch)
treeb90b5c53960b22a6a5498ca69fbfffad7e1832f8 /src/training
parent93d77b197d457b1fdfa7341ecd59fc460b20d6b1 (diff)
Fix NLL double-shift bug and head weight init
- NLL loss was shifting labels twice (olmo_labels already shifted, then code did logits[:,:-1] vs labels[:,1:]). Fixed in 9 locations: trainer, pipeline, olmo_graph, sanity_check, eval. - Head U/V weights init with std=0.01 (was Kaiming ~5.7 std) so UV^T≈0 at init, ensuring Z≈logit_bias=15 and A≈0.953. - Updated SVD rank test to subtract logit_bias before checking. Co-Authored-By: Claude Opus 4.6 <noreply@anthropic.com>
Diffstat (limited to 'src/training')
-rw-r--r--src/training/trainer.py18
1 files changed, 9 insertions, 9 deletions
diff --git a/src/training/trainer.py b/src/training/trainer.py
index de0eb96..7ebd21e 100644
--- a/src/training/trainer.py
+++ b/src/training/trainer.py
@@ -299,10 +299,10 @@ class Trainer:
A = self.predictor(raw_texts, tau=tau, mode="train")
logits = self.olmo_wrapper(olmo_ids, A)
- # NLL loss
+ # NLL loss (olmo_labels already shifted, no additional shift needed)
nll = F.cross_entropy(
- logits[:, :-1].contiguous().view(-1, self.olmo.config.vocab_size),
- olmo_labels[:, 1:].contiguous().view(-1),
+ logits.contiguous().view(-1, self.olmo.config.vocab_size),
+ olmo_labels.contiguous().view(-1),
)
# Sparsity loss
@@ -417,8 +417,8 @@ class Trainer:
A_soft = self.predictor(raw_texts, tau=tau, mode="eval_soft")
logits_soft = self.olmo_wrapper(olmo_ids, A_soft)
nll_soft = F.cross_entropy(
- logits_soft[:, :-1].contiguous().view(-1, vocab_size),
- olmo_labels[:, 1:].contiguous().view(-1),
+ logits_soft.contiguous().view(-1, vocab_size),
+ olmo_labels.contiguous().view(-1),
)
nll_soft_total += nll_soft.item()
@@ -426,8 +426,8 @@ class Trainer:
A_hard = self.predictor(raw_texts, tau=tau, mode="eval_hard")
logits_hard = self.olmo_wrapper(olmo_ids, A_hard)
nll_hard = F.cross_entropy(
- logits_hard[:, :-1].contiguous().view(-1, vocab_size),
- olmo_labels[:, 1:].contiguous().view(-1),
+ logits_hard.contiguous().view(-1, vocab_size),
+ olmo_labels.contiguous().view(-1),
)
nll_hard_total += nll_hard.item()
@@ -435,8 +435,8 @@ class Trainer:
A_ones = create_all_ones_A(olmo_ids.shape[0]).to(self.device)
logits_base = self.olmo_wrapper(olmo_ids, A_ones)
nll_base = F.cross_entropy(
- logits_base[:, :-1].contiguous().view(-1, vocab_size),
- olmo_labels[:, 1:].contiguous().view(-1),
+ logits_base.contiguous().view(-1, vocab_size),
+ olmo_labels.contiguous().view(-1),
)
nll_baseline_total += nll_base.item()